
,I' ,.ci..
~ ~ ,-">

XEROX

VIEWPOINT PROGRAMMING COURSE

610E00260
December, 1986

Xerox Corporation
Information Systems Division
475 Oakmead Parkway
Sunnyvale, California 94086

Copyright © 1986, Xerox Corporation. All rights reserved.
Printed in U.S. A.

TABLE OF CONTENTS

1.1ntroduction
1.1 If you won't write ViewPoint applications 1-1

1.2 If you will write ViewPoint applications 1-1

1.3 Your investment 1-2

1.4 What you get out of it 1-2

1.5 Course structure 1-2

1.6 Reference documentation 1-3

1.7 Setting up your machine 1-3

1.8 Getting help and reporting problems 1-5

1.9 Future editions 1-5

2.User interface
2. 1 The desktop and icons 2-1

2.2 Windows 2-2

2.3 Pop-up menus 2-3

2.4 Attention Window 2-4

2.5 Form windows and property sheets 2-4

2.6 The Directory icon 2-6

2.7 The Prototype Folder 2-6

2.8 Other user interface features 2-7

3.Strings and messages
3.1 XChar 3-1

3.2 XString 3-2

3.2.1 Readers and ReaderBodys 3-2

3.2.2 Writers and WriterBodys 3-5

3.3 XFormat 3-6

3.4 XMessage 3-10

3.4.1 The definitions module 3-11

3.4.2 The implementation module 3-12

3.4.3 The client module 3-14

3.5 Attention 3-14

3.6 Summary 3-15

3.7 Exercise: Concordance Tool 3-15

VIEWPOINT PROGRAMMING COURSE

TABLE OF CONTENTS

4.Creating a simple application
4.1 Adding a command to the Attention menu 4-1

4.2 Creating a StarWindowShell 4-2

4.2.1 Transition procedures 4-4

4.2.2 IsCloselegalProc 4-4

4.3 Bodywindows 4-5

4.4 Commands 4-6

4.4.1 Putting commands in the header 4-7

4.4.2 Putting commands in a popup menu 4-9

4.5 Displaying windows on the screen 4-10

4.6 Summary 4-10

4.7 Exercise: DMT I 4-13

5.Context
5.1 Context types 5-1

5.2 Creating the context 5-2

5.3 Using the context 5-3

5.4 Summary 5-4

5.5 Exercise: DMT II 5-7

6.Displaying information on the screen
6.1 Overview 6-1

6.2 Invalidating and validating 6-1

6.3 Writing a display procedure 6-3

6.3.1 SimpleTextDisplay 6-4

6.3.2 Display 6-5

6.4 limitProcs and AdjustProcs 6-10

6.5 Summary 6-11

6.6 Exercise: Text Window 6-12

7. Form windows
7. 1 Overvi ew 7-1

7.1 Creating form windows 7-2

7.2.1 MakeltemsProcs 7-3

7.2.2 layoutProcs 7-6

7.2.3 ChangeProcs 7-9

7.2.4 Example 7-10

7.3 Getting and setting values 7-13

7.4 Destroyi ng a form wi ndow 7-13

7.5 Summary 7-13

7.6 Exercise: Time Clock I 7-13

ii VIEWPOINT ~ROGRAMMING COURSE

TABLE OF CONTENTS

8.Property sheets
8. 1 Creati ng a property sheet 8-1

8. 1. 1 Menu Items 8-2

8.1.2 MenultemsProc 8-2

8.1.3 Example 8-3

8.2 Linked property sheets 8-4

8.3 Summary 8-7

8.4 Exercise: Time Clock II 8-8

9.TIP
9.1 Overview 9-1

9.2 TIP tables 9-2

9.2.1 TIP table syntax 9-3

9.2.2 Results 9-4

9.3 The NotifyProc 9-6

9.4 Incorporating the new TIP table 9-7

9.4.1 Creating a compiled TIP table 9-7

9.4.2 Associating tables and NotifyProcs 9-9

9.4.3 Input focus 9-10

9.4.4 Example 9-11

9.5 Periodic notifiers 9-13

9.6 User aborts 9-15

9.7 Summary 9-15

9.8 Exercise: Tank 9-16

10. NSFiling attributes
1 o. 1 Conte nt and attri butes 1 0-1

10.2 Interpreted and uninterpreted attributes 10-1

10.3 Specifying attributes 10-2

10.3.1 Specifying interpreted attributes 10-3

10.3.2 Specifying extended attributes 10-4

10.4 Getting interpreted attributes 10-5

10.4.1 Selections 10-6

10.4.2 Attributes - 10-7

10.4.3 Sessions 10-7

10.4.4 Storage management 10-8

10.4.5 Example of GetAttributes and SetAttri butes 10-8

10.5 Getting extended attributes 10-10

10.6 Summary 10-11

10.7 Exercise: Music Man I 10-12

VIEWPOINT PROGRAMMING COURSE iii

TABLE OF CONTENTS

11.NSFiling operations
11.1 Naming files 11-1

11.2 Opening local files 11-2

11.2.1 NSFile.Open 11-2

11.2.2 NSFile.OpenByReference 11-3

11.2.3 NSFile.OpenByName 11-4

11.2.4 Catalog.Open 11-4

11.3 Opening remote files 11-5

11.4 Closing files 11-7

11.5 Creating files 11-7

11.5.1 NSFile.Create 11-7

11.5.2 Catalog.Create 11-8

11.6 Deleting files 11-9

11.7 Finding files 11-9

11.7.1 Filters 11-10

11.7.2 NSFile.Find 11-11

11.8 Listing files 11-11

11.9 Errors 11-13

11 . 1 0 Summary 11-14

11.11 Exercise: Music Man II 11-15

12.Streams
12.1 Overview 12-1

12.2 Creating a stream 12-2

12.3 Stream I/O 12-3

12.3.1 Example of I/O 12-3

12.3.2 Block I/O 12-4

12.3.3 Random access 12-6

12.3.4 Miscellaneous operations 12-7

12.4 Deleting streams 12-7

12.5 Summary 12-8

12.6 Exercise: Stream Tool 12-8

iv VIEWPOINT PROGRAMMING COURSE

Ii_II, 1IIIUllllilia

TABLE OF CONTENTS

13. NSSegment
13.1 Definition of terms 13-1

13.2 Virtual memory overview 13-1

13.3 Mapping 13-2

13.3.1 Setting up the mapping 13-2

13.3.2 Accessing the file 13-4

13.3.3 Updating the file 13-5

13.3.4 Complete mapping example 13-6

13.4 Copyln and CopyOut 13-8

13.5 Summary 13-9

13.6 Exercise: Black Book I 13-17

14. Selection req uestors
14.1 Converting the selection 14-1

14.2 Resource management 14-3

14.3 Can you convert the selection? 14-5

14.4 Enumerating selections 14-6

14.5 Summary 14-7

14.5 Exercise: Checkers 14-8

15.lcon applications
15.1 Overview 15-1

15.2 Registering with the desktop 15-1

15.2.1 PictureProcs

15.2.2 SmallPictureProcs 15-5

15.2.3 GenericProcs 15-6

15.3 The Prototype interface 15-11

15.4 Summary 15-12

15.5 Exercise: Tic-Tac-Toe 15-14

16. Application folders
16.1 Building an application folder 16-1

16.1.1 Application description files 16-2

16.2 Modifying the code 16-3

16.2.1 Message files 16-4

16.2.2 Private TIP fi Ie 16-7

16.2.3 Private icons file 16-9

16.3 Create the application folder 16-9

16.4 Summary 16-10

16.5 Exercise: Black Book 1\ 16-11

VIEWPOINT PROGRAMMING COURSE v

TABLE OF CONTENTS

17. Doclnterchange_
17.1 Creating documents 17-1

17.1.1 Adding information to a document 17-2

17.1.2 Finalizing a document 17-7

17.2 Properties 17-8

17.2.1 Anchored frame properties 17-9

17.2.2 Font properties 17-9

17.2.3 Page properties 17-9

17.2.4 Field properties 17-10

17.2.5 Utilities for getting and setting properties 17-10

17.3 Example: creating a document 17-11

17.4 Enumerating documents 17-12

17.5 Summary 17-14

17.6 Example: copying a file 17-14

17.7 Exercise: Form Letter application 17-17

18. Graphics
18.1 Creating graphics 18-1

18.1.1 Start routines 18-1

18.1.2 Add routines 18-5

18.1.3 Finish routines 18-11

18.2 Reading graphics 18-12

18.3 Summary 18-14

A.Running an application
A.1 The programming cycle A-1

A.2 The WorkstationProfile A-1

A.3 The System Folder A-2

A.4 The Application Loader A-2

A.5 .autorun files A-3

B. Icon editor
B. 1 Getti ng started B-1

B.2 Editing an icon B-2

vi VIEWPOINT PROGRAMMING COURSE

TABLE OF CONTENTS

c. Message tools
C.1 Message Master File Creation tool C-1

C.2 Message file property sheet C-3

C.3 Message Master Editor C-3

C.3.1 Searching Message Master files C-4

C.3.2 Search parameters C-5

C.3.3 Closing, saving, and resetting C-7

C.3.4 Printing message files C-7

C.4 Runtime File Creation tool C-8

VIEWPOINT PROGRAMMING COURSE vii

LIST OF FIGURES

1-1 The Course directory structure 1-4

2-1 Icons on a desktop 2-1

2-2 A basic window 2-2

2-3 Attention wi ndow 2-4

2-4 Sample form window 2-5

2-5 Property sheet for the Wastebasket icon 2-5

2-6 Prototype folder 2-6

3-1 XString. ReaderBody 3-2

3-2 Reader and ReaderBody 3-3

3-3 The XFormat abstraction 3-7

3-4 Using a w~iter as output sink 3-8

3-5 An XFormat.Object with a stream as output sink 3-8

3-6 Diagram of XFormat example 3-10

3-7 The Concordance Tool 3-16

4-1 A StarWindowShel1 4-3

4-2 Commands 4-7

4-3 The DMTTool 4-13

5-1 Contexts 5-1

6-1 The Checkers display 6-6

6-2 The Text Window Tool 6-12

7-1 Form Window 7-1

7-2 The TimeClock application 7-14

8-1 Property sheet 8-1

8-2 Linked property sheet 8-4

8-3 The Time Clock property sheet 8-8

viii VIEWPOINT pROGRAMMING COURSE

LIST OF FIGURES

9-1 Path of user input 9-1

9-2 The Placeholder tables 9-2

9-3 The normal TIP tables 9-3

9-4 A possible results list 9-5

9-5 Pushi ng NewTableA onto mouseActions 9-9

9-6 Pushing NewTableB onto mouseActions 9-9

9-7 The Tank application 9-15

10-1 An NSFile 10-1

10-2 ARRAY of NSFile.Attributes 10-3

10-3 ARRAY of NSFile.Attributes 10-5

10-4 An NSFile.Selections record 10-6

10-5 selections and myAttributes 10-9

10-6 After a call to GetAttributes 10-9

10-7 attri buteArray 10-9

10-8 A ttri butes record 10-11

10-9 The Music Man application 10-12

12-1 A stream to a file 12-1

12-2 After a GetBlock operation 12-5

12-3 Using stream block operations 12-6

13-1 Mapping a file to virtual memory 13-3

13-2 An NSSegment.Origin 13-3

13-3 Mapping a file then LOOPHOLING 13-5

13-4 Unmapping 13-6

13-5 The CopyOut operation 13-8

13-6 The File Tool 13-10

13-7 Little Black Book 13-17

14-1 The Checkers tool 14-8

15-1 Icons 15-3

15-2 Document header with ti ny icons 15-5

15-3 The Tic-Tac-Toe appl ication 15-14

16-1 ADF syntax 16-3

16-2 Building an application folder 16-10

VIEWPOINT PROGRAMMING COURSE ix

LIST OF FIGURES

17-1 Appending to a document 17-3

17-2 Adding text to a header 17-3

17-3 Data file 17-17

17-4 Template document 17-17

17-5 Form letter icon 17-18

18-1 Graphics frames 18-3

18-2 Arrowheads 18-6

18-3 Lines 18-6

18-4 Ellipse 18-7

18-5 Defining curves 18-8

18-6 Curves 18-9

18-7 Text frame 18-11

C-1 Message Master Creation Tool C-1

C-2 Master File icon C-2

C-3 Message Master property sheet C-3

C-4 Message Master Editor window C-4

C-5 Searchi ng by parameter C-6

C-6 Print options C-7

C-7 Using the Create Message File command C-8

C-8 The resu Iti ng icon C-8

x VIEWPOINT PROGRAMMING COURSE

1. INTRODUCTION

As the authors of this course, we have made some assumptions
about your background and why you will be taking this course.
As the readers, you undoubtedly would like to know what you
are getting into and what you will get out of it. This chapter
describes our assumptions and should help you set your
expectations. It also describes the course structure and
reference documentation, how to get started, how to get help,
how to report problems, and how to have your suggestions
incorporated into future editions of this manual.

1.1 If you won't write ViewPoint applications

If you do not intend to write ViewPoint applications we assume
the following about you:

• You have Mesa programming experience but little if any
knowledge of ViewPoint application development .

• You want an understanding of the principal components of
a typical ViewPoint application and how they interact.

We assume that you know how to read Mesa code.

This manual is intended for programmers. If you are an
experienced Mesa programmer reading this manual to get the
flavor of ViewPoint application programming, all well and
good. If you are not an experienced Mesa programmer and do
not intend to do any programming exercises, be warned: the
material is dense and you are not properly dressed for the
terrain.

1.2 If you will write ViewPoint appUcations

VIEWPOINT PROGRAMMING COURSE

If you want to develop ViewPoint applications we assume the
following about you:

• Your knowledge of ViewPoint application programming is
limited and you want to expand it to the point that you can
write significant ViewPoint applications.

• You are familiar with the Xerox Development Environment
(XDE).

• You can program in Mesa. We assume that, at a minimum,
you have worked through at least the first ten chapters of
the Mesa Course (see Section 1.6). Nothing in this course
depends directly on the Mesa Course, however, so you are
free to acquire expertise in Mesa in other ways.

1-1

INTRODUCTION

1.3 Your investment

1.4 What you get out of it

1.5 Course structure

1-2

You can read the text of this manual in two days.

We estimate that it will take between three to eight weeks of
full time study to complete all readings and associated
exercises.

Whether or not you intend to program in ViewPoint, you will
acquire an appreciation of the architecture of a typical
ViewPoint application.

If you complete the course and its associated exercises, you will
be able to write significant ViewPoint applications, and you
will know where to look for information on more advanced
topics.

The course has 18 chapters and 3 appendices. This is the first
chapter. The second chapter discusses the user interface. The
remaining chapters discuss how to create a new application,
starting with the basics and gradually increasing in complexity.
Each chapter concentrates on a particular topic, providing a
description and examples to illustrate the topic. You should
work through the chapters in order.

Each chapter also has an associated programming exercise.
Some of the exercises build on one another, although we have
tried to keep them largely independent. We expect that those
of you who intend to develop ViewPoint applications will do
all of the exercises. The exercises vary in complexity and
difficulty; the easiest can be done in a matter of hours, the
hardest may take as long as a week. We provide solutions to all
of the exercises.

The appendices contain information that you need to know,
but that is not directly part of this course.

Appendix A, Programming in ViewPoint, describes the logistics
of writing, testing, and debugging a ViewPoint application. If
you don't already know how to do this, you should read
Appendix A immediately after you read this introduction.

Appendix B, Icon Editor, and Appendix (, Message Tools,
describe how to use some ViewPoint applications that you may
need to use in the final chapters. The course text directs you to
these appendices at the appropriate point. There are no
exercises associated with the appendices.

VIEWPOINT PROGRAMMING COURSE

INTRODUCTION

1.6 Reference documentation

1.7 Setting up your machine

VIEWPOINT PROGRAMMING COURSE

The goal of this course is to familiarize you with the basic
structure of a ViewPoint application and get you started; it is
not a reference manual, and it does not replace the existing
reference manuals. Here is a list of other documentation that
you may need to use before, during, or after the course.

OF Software Reference Manual
This describes how to use the df software to simplify
storing and retrieving large numbers of files. You may
need to consult this manual to fi nd out how to use the df
files to retrieve the course software. (See the next section.)

Mesa Course (version 12.0, July, 1985)
This is a programming course that covers the Mesa
language and programming for XDE.

Mesa Language Manual (version 3.0, November 1984)
This is the reference for the Mesa programming language.

Services Programmer's Manual
This manual contains individual reference manuals for
Services interfaces. In particular, you will need the Filing
Programmer's Manual, (November, 1984), which
documents the ViewPoint filing system.

ViewPoint Programmer's Guide (September, 1985)
This is a complete reference for ViewPoint programming.
It describes all procedures in the public ViewPoint
interfaces. This course is basically a condensed version of
the information in this manual. This is the primary
reference for the course.

ViewPoint Series Reference Library
This is the set of user manuals for ViewPoint applications
software. It contains information on documents, folders,
and the like.

XOE Tutorials {September, 1985)
This is a printed version of the on-line tutorials.

XOE User Guide (version 3.0, November 1984)
This is the user manual for the develoment environment. It
discusses the XDE user interface, and the tools that run in
XDE.

This section describes how you should set up your machine. In
most cases, you should show this section to an experienced user
and let him or her set up your machine for you.

We assume that you have a Dandelion or Daybreak running
the XDE 4.0 (or later), and ViewPoint 1.0 (or later). Your
volume configuration isn't critical, but you should have at least
a CoPilot volume and a ViewPoint (aka User) volume.

1-3

INTRODUCTION

1-4

Your machine should have the SystemFolder application, and a
WorkstationProfile with the following two entries:

[Application Loader]
Developer: TRUE

[System]
Developer: TRUE

You should also check your user.cm file, which lives on your
CoPilot volume. The only section that will affect this course is
the [Executive] section. In particular, you need to check your
ClientVolume, CompilerSwitches, BinderSwitches, and
ClientSwitches entries. Here is one possible [Executive] section:

[Executive]
CompilerSwitches: eub-j
Bi nderSwitches: ec
ClientVolume: User
ClientSwitches: Ody\365

The files that you will need for the course are stored on
[Bob:OSBU North:Xerox] <ViewPointProgrammingCourse>.
Figure 1.1 illustrates the structure within this drawer.

Exercises
(PUBLIC)

ViewPoint Programming Course

Interpress
(PUBLIC,

initially)

12.0

DF
(PUBLIC)

Solutions
(PRIVATE,

initially)

Figure 1.1: The course directory structure

Errata
(PUBLIC)

The Exercises folder contains the files that you will need to do
the exercises at the end of each chapter. This folder contains a
folder for each chapter in the course.

The Interpress folder contains interpress masters for each
chapter of the course. You can print a copy of the course from
these if you must, but we recommend that you do not overload
your printer. Double sided, printed, bound copies of this course
are available from:

VIEWPOINT PROGRAMMING COURSE

Patience Nason
XOE Technical Services
Xerox Corporation
475 Oakmead Parkway
Sunnyvale, CA., 94086

There is a charge for the manual.

INTRODUCTION

The OF folder contains df files for each chapter in the course.
You can use these files to retrieve everything you need to do
the exercises for a given chapter. To find out how to use these,
consult the DF Software Reference Manual.

The Solutions folder contains our solutions to the
programming exercises.

The Errata folder contains a description of the mistakes that we
have found since the last printing.

1.8 Getting help and reporting problems

1.9 Future editions

VIEWPOINT PROGRAMMING COURSE

This is the first edition of this course, and we expect that you
will find some problems and have some suggestions for
improvements. If you do, we would appreciate it if you would
report them. Internal users can submit ARs against the course
(System Oocumentation:OSBU South, subsystem Programming
Course); external users can send mail messages to the
distribution list XDESupport.osbunorth@Xerox.COM.

If you have suggestions about topics that you would like to see
included in future editions, we would like to hear from you. If
you have written ViewPoint applications that are elegant,
relevant, and reasonably compact and would like to see them
immortalized in subsequent editions, please submit them to us
for review. You can contact the authors through the
distribution list XDE-Training:osbu north:Xerox if you are an
internal user or XDE-Training.osbunorth@Xerox.COM
otherwise.

1-5

INTRODUCTION

Notes:

1-6 VIEWPOINT PROGRAMMING COURSE

2.1 The Desktop and icons

VIEWPOINT PROGRAMMING COURSE

2. USER INTERFACE

This chapter describes the ViewPoint user interface, which is
based on the metaphor of a business office. The user interface
includes symbols for standard components of an office, such as
the desktop, folders, file drawers, baskets for incoming and
outgoing mail, and wastebaskets.

ViewPoint also provides programming interfaces to support
these user interface characteristics. By using these interfaces
when you write new applications, you ensure that your
applications integrate well with existing software. This chapter
describes the basic components of the user interface; the rest
of this course describes how to incorporate these user interface
features into a new application.

The ViewPoint user interface is based on the idea of icons that
reside on a desktop. The desktop represents the typical
business office; an icon represents an object in that office. A
typical desktop might include icons that represent various
documents, folders, mail baskets, a printer, and so on.

The user accesses an object through its icon, generally by
selecting the icon and pressing the OPEN key. The MOVE, COPY,

and DELETE keys also apply to icons. Figure 2.1 illustrates a
desktop with several different icons and an open document.

Figure 2.1 : Icons on a desktop

2-1

USER INTERFACE

2.2 Windows

Control pOint

Header

Control pOint

2-2

The user can move the icons to different positions on the
surface, but two icons cannot occupy the same square at the
same time.

The use of icons is simple and intuitive. Therefore, you should
use icons to represent applications that the end user will access
frequently. However, since associating an icon with an
application requires a fair amount of programming overhead
and the icon itself uses screen real estate, icons are not a cost
effective or efficient way of representing simple, infrequently
used applications. Instead, you can have such applications run
from a command in a global pop-up menu, as described in the
next section.

A window is a rectangular region of the display screen in which
an application can display information to the user. Figure 2.2
illustrates the various parts of a basic window.

Figure 2.2: A basic window

Vertical
--E----I

Scrollbar

Horizontal

Scrollbar

I Control paint

VIEWPOINT ~ROGRAMMING COURSE

2.3 Pop-up menus

VIEWPOINT PROGRAMMING COURSE

USER INTERFACE

Windows can be in one of two modes: overlapping or tiled. In
overlapping mode, windows can appear on top of each other
and there is no limit to the number of windows that can
appear. In tiled mode, each window occupies its own section of
the screen, and there is no overlap. Windows must be in one
mode or the other; you cannot have some windows in
overlapping mode and others in tiled mode.

Initially, windows are in overlapping mode: each window has a
single-line header and a control point in each corner. Pressing
POINT (the left mouse button) in any control point invokes a
Top/Bottom operation. Pressing POINT down in any control
point and then moving the mouse moves the entire window.
Pressing ADJUST (the right mouse button) in any control point
and then moving the mouse changes the size of the window.

You can specify whether overlapping windows employ simple
offset, repeat offset, or don't offset. Simple offset means that
up to six windows can appear at one time, starting at the upper
left and going to the lower right. The seventh window appears
on top of the first window and the same pattern continues for
each succeeding window. If you close a window and then re
open it, the system remembers the window's initial position
and redisplays it in that position. Repeat offset opens windows
in the same way as simple offset. However, if you close and
then reopen a window, the system does not remember the
initial location of the window, but rather places it in the first
available position. With don't Offset, there is no rigid
ordering; windows can appear anywhere on the screen.

When windows are in tiled mode, no more than six windows
can appear on the screen at one time. You cannot move a tiled
window on top of another tiled window. You can only move it
to an empty space on the screen.

To switch between overlapping and tiled mode and between
simple, repeat, and don't offset, you can either use the
Window Management property sheet or edit the User Profile.
The Window Management property sheet is available through
the Attention Window menu; it specifies whether windows
appear overlapping or tiled and with single- or double-line
headers. (The next section discusses the Attention Menu.)

If you want to change the defaults for these parameters, you
can edit the User Profile. (For more information on the User
Profile, consult the ViewPoint user documentation.) Here is an
example of a User Profile entry for window characteristics:

[Windows]

Arrangement: overlapping --or tiled

Header Style: single line -- or double line

Placement: simple offset -- or repeat or don't offset

A menu is a list of named commands. A pop-up menu is a menu
that appears only when the user specifically requests it by
holding down the left mouse button over the pop-up menu
symbol (::). Each application generally has a pop-up menu; the

2-3

USER INTERFACE

2.4 Attention window

Attention
window

Attention
window
with menu
shown

author of the application chooses which commands go directly
in the window header and which go in the pop-up menu.
However, if the window is too small for all the specified
commands to fit in the header, the rightmost header
commands will automatically overflow into the pop-up menu
instead of appearing in the header. Using. pop-up menus
conserves screen space while the menus are not in use, but
means that the commands are not readily visible and that the
user must go through an extra step to access a command.

The Attention window is the window that appears across the
top of your screen. The Attention window has an associated
pop-up menu with a list of system-wide commands; you can
access the menu by mousing anywhere in the Attention
window, not necessarily over the menu symbol itself. The
Attention window also allows applications to display messages
to the user. Figure 2.3 illustrates the Attention window and its
associated menu. (The Attention window is also shown in
Figure 2.1.)

r-+ I Please confirm the command 151

Date and time

---.. I Please confirm the command End session 151
Show User Profile

Show Size

Spelling Checker

Paginate

Figure 2.3: Attention window

You can access a standard set of commands available from the
Attention menu, and applications can add commands to this
menu. For example, many applications run from a command in
the Attention window menu rather than from an icon. Thus,
when the user wants an application's window to appear, he
invokes the appropriate command from the Attention window
menu, instead of selecting an icon and opening it. As a
programmer, you get to choose whether your application runs
from an icon or from a command in the Attention window.
Placing commands in the Attention Window menu conserves
screen space, but makes them less accessible than icons.

2.5 Form windows and property sheets

2-4

A form window is a window that displays one or more items.
There are many types of items, the most common of which are

VIEWPOINT PROGRAMMING COURSE

CALENDAR

Scan

For

Time 9 Aug 85 19:00

USER INTERFACE

boolean, choice (enumerated), and text. The user can observe
the current value of each item in the form and change that
value if he desires. Figure 2.4 illustrates a form window for a
calendar application.

Text items (to

r------------~~;t~ be filled in by L.....-__________ ---' user)

Place

Title

Duration

Details

ReminderType

WASTEBASKET PROPE

Purge deleted iten-.s

Choice items

Figure 2.4: Sample Form window

A property sheet is a form window in which the items control
the properties of an object. To see the properties of an object,
select the object and then press the PROPs key. Different objects
have different properties; for example, the properties of a
paragraph include left and right margins, justification, and line
height. The header of a property sheet usually contains some
subset of the standard commands: ? (Help), Done, Cancel,
Apply, and Defaults. Figure 2.5 illustrates a property sheet for
the Wastebasket icon.

Number of contained iterns: 24 Total size: '1027 Disk Pages

Figure 2.5: Property sheet for the Wastebasket icon

VIEWPOINT PROGRAMMING COURSE 2-5

USER INTERFACE

2.6 The Directory icon

2.7 The Prototype folder

2-6

Every ViewPoint desktop has a Directory icon, which provides
access to various ViewPoint applications and features. Opening
the Directory icon provides three choices: Workstation, User,
and Network. The Workstation category contains workstation
specific items, such as blank documents, the Converter, and the
Loader. The User category contains user-specific items, such as
mail in and out baskets, a wastebasket, and the User Profile.
The Network category provides access to icons for remote
servers, such as printers and file drawers. You can copy icons
out of the Directory as needed.

When you run an application that has an icon, the icon does
not automatically appear on the desktop. Instead, you must
open a special system folder, known as the Prototype Folder,
selected the desired icon, and copy it to the desktop. Figure 2.6
illustrates the Prototype folder.

E]Basic Icons

Name Version Date

[j Basic Graphics Transfer Document

[j Blank Document

E] Blank Folder

E] Blank Mail Folder

~ Blank Mail Note

~ Blank Reference

Figure 2.6 Prototype folder

There are two possible ways to access the Prototype folder. The
fi rst method is to open the Di rectory Icon and then the
Workstation folder. Inside the Workstation folder is a folder
called Basic Icons; this is the Prototype folder. Inside this folder,
you will find such icons associated with the various applications

VIEWPOINT PROGRAMMING COURSE

USER INTERFACE

running on your machine; you can copy any or all of these
icons to your desktop.

The second way to access the Prototype folder is a shortcut, but
it requires that you be running the program SystemFolder.bcd.
(The easiest way to run this program is to drop it on the Loader
directly from a file drawer; see Appendix A, Programming In
ViewPoint, for more information on running a program.)

System Folder registers three commands in the Attention Menu,
one of which is Prototype Folder. Selecting this command will
open the Prototype folder on your screen. (The other
commands are System Folder, and Set System Folder Filter. See
Appendix A, Programming In ViewPoint, for more information
on these commands.)

2.8 Other user interface features

VIEWPOINT PROGRAMMING COURSE

This chapter discussed the major user interface features that
you might want to incorproate into a new application. For a
complete discussion of the ViewPoint user interface from the
user's point of view, however, you should refer to the
ViewPoint Series Reference Library and the ViewPoint Series
Training Guides.

2-7

USER INTERFACE

Notes:

2-8 VIEWPOINT ~ROGRAMMING COURSE

3.1 XChar

VIEWPOINT PROGRAMMING COURSE

3. STRINGS AND
MESSAGES

This chapter discusses some basic aspects of ViewPoint
programming, such as string representation, manipulation,
and management.

The specific interfaces covered are XChar, which defines the
structure of a character; XString, which defines the structure of
a string and various operations on strings; XFormat, which
supports conversion among various data types; XMessage,
which helps separate messages to the user from the rest of the
code for an application; and Attention, which supports posting
messages to the user.

The material in this chapter is difficult, but it is necessary
background to the rest of the course.

Most computer systems represent characters with either a 7-bit
code (ASCII), or an 8-bit code (ISO). An 8-bit code allows 256
characters, which is plenty for English and associated special
characters, but not nearly enough for multilingual capability.
To allow true multi nationality, character codes need to be
much bigger, which has obvious attendant disadvantages.

The Xerox solution to this problem is a character encoding
system (The Xerox Character Code Standard) that normally
conforms to the ASCII and ISO 8-bit character codes, but
expands to a 16-bit code when necessary. Defining a character
as 16 bits provides 65,536 distinct characters; reserving space
for control characters reduces it to 65,512 . This 65,512 range is
partitioned into 256 blocks (character sets) of 256 character
codes each. (Actually, there can be at most 255 x 255
characters; the last block is reserved.)

A character is thus composed of two 8-bit quantities: a
character set and a character code. The character set is optional
when all characters in a given string are part of the same
character set. When there is no character set, the character
code conforms to ASCII and ISO. This approach provides both
versatility and compactness.

The XChar interface defines the basic character type and some
operations on that character type.

XChar.Character: TYPE = WORD;

XChar.CharRep: TYPE = MACHINE DEPENDENT RECORD [
set, code: Environment.Byte];

3-1

STRINGS AND MESSAGES

3.2 XString

3.2.1 Readers and ReaderBodys

offset = 0

The XString interface provides data structures and operations
for strings encoded with the Character Code Standard. XString
declares two kinds of strings: one for read-only access
("reader") and one for writing ("writer"') Readers occupy less
space than writers. Thus, programs that create strings once and
do not later need to modify them can save significant space.

XString defines the following types for readers:

XString.Reader: TYPE. LONG POINTER TO XString.ReaderBody;

XString.ReaderBody: TYPE = PRIVATE MACHINE DEPENDENT RECORD[
context(O): XString.Context,
limit(1): CARDINAL,
offset(2): CARDINAL,
bytes(3): XString.ReadOnlyBytes];

XString.Context: TYPE = MACHINE DEPENDENT RECORD [
suffixSize(O:O .. 6): [1 .. 2], --bit positions 0-6 in word 0
homogeneous(O: 7 .. 7): BOOLEAN,
prefix(O:8 .. 15): XString.Byte];

XString.ReadOnlyBytes: TYPE =
LONG POINTER TO READONLY XString .. ByteSequence;

XString.ByteSequence: TYPE = RECORD [
PACKED SEQUENCE COMPUTED CARDINAL OF XString .. Byte];

XString.Byte: TYPE = Environment.Byte;

The basic structure is the sequence referenced by bytes. limit is
the offset from the pointer to the byte after the last byte in the
byte sequence; and offset is the offset from the pointer to the
first byte (the "beginning" of the string). Figure 3.1 shows two
ReaderBodys, one that starts at the beginning of the byte
sequence (offset = 0), and one that starts in the middle of the
byte sequence (offset ~ 0.)

limit = (3-0) + 1 = 4

offset = 2

limit = (10-2)+ 1 = 9

Figure 3.1 : XString.ReaderBody

3-2 VIEWPOINT PROGRAMMING COURSE

Reader

STRINGS AND MESSAGES

A Context contains information about the character encoding
within the byte sequence. The suffixSize field describes
whether the fi rst byte is encoded as a 8-bit character or a 16-bit
character. The homogeneous field is an accelerator specifying
whether the byte sequence contains any character set shifts.
The prefix field specifies the character set of the first character.
Subsequent characters in the string use the same prefix unless
there is an encoding transition. (The prefix field is used only for
8-bit characters, since the 16-bit representation includes a
character set.)

Figure 3.2 illustrates these data structures.

context
.r-----------------------,

• I I

••• : suffixSize (7 bits) :
• I I

••• : homogeneous (1 bit) :
• I I

•

. .

. •

. . . .
.

' .
• context

limit

offset

bytes

.
. . . .

•
.

ReaderBody

•
. . .

: prefix (8 bits) :
.~-------.. ------------~.~

..

offset: the offset from the pointer to the first byte

limit: the offset from the pointer to the byte after the last
byte in the byte sequence

context: describes how characters are encoded
suffixSize: states whether the first character is

encoded in 8 bits or 16 bits

prefix: contains the character set of the first
character (only for 8-bit characters)

homogeneous: TRUE if no character set shifts in sequence

Figure 3.2: Reader and ReaderBody

Examples of character ehcodings and character set shifts are
beyond the scope of this course; if you are interested, consult
the XChar chapter of the ViewPoint Programmer's Manual, the
Xerox Character Code Standard, or the Xerox NetworkSytems
Architecture General Information Manual.

VIEWPOINT PROGRAMMING COURSE 3-3

STRINGS AND MESSAGES

3.2.1.1 Accessing the contents of a reader

3.2.1.2 Creating readers

3.2.1.3 Readers vs. ReaderBodys

3-4

Because of the possibility of different character encodings, you
shouldn't access the contents of a reader just by indexing.
Instead, you should always use procedures from the XString
interface. For example:

XString.First: PROCEDURE [r: XString.Reader] RETURNS [
c: XString.Character];

XString.NthCharacter: PROCEDURE [r: XString.Reader, n: CARDINAL]
RETURNS [c: XString.Character];

XString.Lop: PROCEDURE [r: XString.Reader] RETURNS [
c: XString.Character];

First and NthChar return the specified character; Lop removes
the first character and returns it. First and Lop are more
efficient than NthCharacter; you should use them when
appropriate. XString also provides procedures to determine
other information about a reader, such as the number of
logical characters that it contains; consult the XString chapter
of the ViewPoint Programmer's Manual for details.

There are several ways to create readers. One way is to start
with a writer; once the contents are fixed, you can use
XString.ReaderFromWriter to convert from a writer to a reader.
You can also use XString.FromSTRING or XString.FromNSString to
convert a Mesa stri ng or an NSStri ng into a reader:

XString.ReaderFromWriter: PROCEDURE [w: XString.Writer]
RETURNS [XString.Reader] = INLlNE ... ;

XString.FromSTRING: PROCEDURE [s: LONG STRING,
homogeneous: BOOLEAN ~ FALSE]
RETURNS [XString.ReaderBody];

XString.FromNSString: PROCEDURE [5: NSString.String,
homogeneous: BOOLEAN ~ FALSE]
RETURNS [XString.ReaderBody];

When writing procedures and data structures, you must decide
when to use the actual ReaderBody or just the Reader.
Obviously, since readers are just pointers, they require less
space than ReaderBodys. However, you should use the
ReaderBody when keeping track of who owns the storage is a
problem. Thus, you should generally put a ReaderBody, not
just a Reader, in your data structure.

For procedures, the guideline is to take a Reader and return a
ReaderBody. The idea is that passing readers as parameters
reduces the number of words of parameters, while returning
ReaderBodys allows the client to manage the storage for the
ReaderBody.

VIEWPOINT PROGRAMMING COURSE

3.2.2 Writers and WriterBodys

3.2.2.1 Allocating writers

VIEWPOINT PROGRAMMING COURSE

STRINGS AND MESSAGES

Another guideline is that clients should be able to pass pointers
to local ReaderBodys. That is, clients should be able to allocate
ReaderBodies from the local frame, rather than from
permanent storage. For example, consider the following
fictional procedure that renames a file:

RenameFile: PROCEDURE [oldName:xString.Reader] = {
rb: XString.ReaderBody +- Somelnterface.GetNewName[] ;
file +- Somelnterface.LookupByName[oldName];
Somelnterface.Rename[file: file, newName: @rb]};

The procedure RenameFile takes a reader, which it passes to
LookupByName. This is an example of using a reader as a
parameter. GetNewName, on the other hand, returns a
ReaderBody. If it returned a Reader, there would be a problem
with the storage for the ReaderBody. Either it would have to
be global, or it would have to be deallocated from a known
place after RenameFile was done with it. Returning the
ReaderBody itself makes it clear that RenameFile owns that
storage and can deallocate it when appropriate. The newName
parameter to the Rename operation is a pointer to a local
ReaderBody. Rename should copy the ReaderBody (and the
bytes) if it intends to save the characters.

A Writer is much like a Reader, except that it has additional
fields to permit editing:

XString.Writer: TYPE II LONG POINTER TO XString.WriterBody;

XString.WriterBody: TYPE II PRIVATE MACHINE DEPENDENT RECORD [
context(O): XString.Context,
limit(1): CARDINAL,
offset(2): CARDINAL,
bytes(3): Bytes,
maxLimit(S): CARDINAL,
endContext(6): XString.Context,
zone(7): UNCOUNTED ZONE];

XString.Bytes: TYPE II LONG POINTER TO XString.ByteSequence;

The first four fields are the same as in a reader; the last three
fields contain information to support editing. maxLimit
describes the 'limits of the allocation unit; endContext is the
context that describes the encoding of the last character (this is
an accelerator for operations that append characters); and
zone is the zone that contains the allocation unit.

Including a zone in the WriterBody enables operations that
add characters to the writer to allocate a larger byte sequence,
copy the old bytes, and update the byte pointer in the
WriterBody without invalidating the caller's writer variable.

There are several ways to initially create a writer. To allocate a
brand new writer, call XString.NewWriterBody:

3-5

STRINGS AND MESSAGES

3.2.2.2 Expanding writers

3.2.2.3 Editing writers

3.3 XFormat

3-6

XString.NewWriterBody: PROCEDURE [maxLength: CARDINAL,
Z: UNCOUNTED ZONE]
RETURNS [XString.WriterBody];

NewWriterBody allocates a byte sequence that has room for
maxLength bytes using z and returns an empty WriterBody
that contains the bytes.

You can also create writers from existing strings or NSStrings:

XString.WriterBodyFromNSStri ng: PROCEDURE [
s: NSString.String,
homogeneous: BOOLEAN FALSE]
RETURNS [XString.WriterBody];

XString.WriterBodyFromSTRING: PROCEDURE [
s: LONG STRING,
homogeneous: BOOLEAN FALSE]
RETURNS [XString.WriterBody];

You can expand a WriterBody with XString.ExpandWriter:

XString.ExpandWriter: PROCEDURE [w: XString.Writer, extra:
CARDINAL];

ExpandWriter assures that at least extra bytes are available in
the writer's bytes. There are several procedures for writing and
editing writers; check the Viewpoint Programmer's Manual to
find out what is available.

There are a number of procedures that you can use to add
information to a writer or to edit a writer. For example, there is
a procedure to add a reader to a writer (XString.AppendReader),
to add a character to a writer (XString.AppendChar), to append
a mesa string to a writer (XString.AppendSTRING), and so on.
See the ViewPoint Programmer's Manual for the declarations
of these procedures.

Another common way to add contents to a writer is with the
XFormat interface, as described inthe next section.

The XFormat interface provides facilities for formatting data
types into other data types. For example, you could use
XFormat to convert a series of characters into an XString, or a
series of cardinals into an NSString. Instead of providing a
different routine for every possible conversion that you might
want to do, however, the XFormat interface provides a
standardized way of converting one type to another.

The basic idea is to convert the input data to an intermediate
format, and then convert from that intermediate format into a
specified output format. (The intermediate format is just a

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

STRINGS AND MESSAGES

Reader, but you don't need to know that to use the XFormat
facilities.) Figure 3.3 illustrates this idea.

Object to be formatted I

~,

Format abstraction
(Format Proc)

~,

I Destination (sink)

Figure 3.3: The XFormat abstraction

The major data structure of the XFormat interface is the
Handle:

XFormat.Handle: TYPE = LONG POINTER TO XFormat.Object;

xFormat.Object: TYPE = RECORD [
proc: XFormat.FormatProc,
context: XString.Context E- XString.VanillaContext,
data: XFormat.ClientData E- NIL];

XFormat.FormatProc: TYPE = PROCEDURE [r:xString.Reader,
h: xFormat.Handle];

XFormat.ClientData: TYPE. LONG POINTER;

A handle is a pointer to an Object; the principle field of an
Object is the format procedure, proc. The format procedure is
responsible for converting from the intermediate format
(reader) to the output format. It takes a reader and a handle as
parameters, and it should pass its reader parameter to its
output sink. Obviously, there must be a different format
procedure for every type of output; a format procedure that
produces streams is not the same as a format procedure that
prod uces writers.

The context field of an Object contains context information on
the last character sent to the format procedure; the format
procedure is repsonsible for updating this information.

To use the XFormat facilities, the first step is to create an Object
that has a format procedure that implements the output sink
you are interested in. For example, you might want to use a
writer or·a stream as your output sink. You can then pass in
various data types that you want to add to the writer, as
illustrated in Figure 3.4. Note that you can either pass several
items invididually to several different writers, or you can
concatenate them into one writer.

3-7

STRINGS AND MESSAGES

Character

1
XFormat
Writer
Object

1
Writer1

3-8

Number Reader Character Number Reader

1 1 ~l/
XFormat XFormat XFormat
Writer Writer Writer
Object Object Object

1 ~, ~,

Writer2 Writer3 Writer1

Figure 3.4: Using a writer as output sink

The XFormat interface provides format procedures for four
common data types: XString.Writer, Stream.Handle, TTv.Handle,
and NSString.String. Thus, if you want to use any of these four
data types as your output sink, then you don't have to write
the procedure that converts from a reader to your specified
output format. If you want to use an output sink other than
these four, then you do need to write the procedure yourself.

For example, suppose that you want to use a stream as your
output sink. (For now, don't worry about it if you don't know
what a stream is; we discuss streams at length in Chapter 12,
Streams. For now, you just need to get a basic idea of how
XFormat works.) You can make a call to the procedure
xFormat.StreamObject, which will create an Object with the
correct format procedure, and with the stream as its data
parameter.

The format procedure itself is called XFormat.StreamProc:

XFormat.StreamProc: XFormat.FormatProc;

xFormat.StreamObject: PROCEDURE [sH: Stream.Handle]
RETURNS [XFormat.Object];

Figure 3.5 illustrates the format object that StreamObject
returns.

FormatObject

proc: XFormat.StreamProc
context: XFormat.VaniliaContext
data: sH

Figure 3.5: An xFormat.Object with a stream as
output sink

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

STRINGS AND MESSAGES

Once you have initialized the format object, you can then pass
in the data that you want to format. XFormat provides a
number of procedures that you can call to pass various data
types to a format object. For example:

XFormat.Char: PROCEDURE [h: XFormat.Handle.Eo- NIL,
char: XString.Character];

XFormat.Decimal: PROEDURE[h: XFormat.Handle Eo- NIL,
n: LONG INTEGER];

XFormat.Reader: PROEDURE [h: XFormat.Handle Eo- NIL,
r: XString.,Reader];

These procedures all take two parameters, a piece of data of
the specified type, and a Handle. They take the piece of data,
format it into a reader, and then pass it to the format
procedure in the format object, which formats it into the
desi red output format.

Here is an example that concatenates several different data
types into a writer:

--Statement1: create a new writer
writerBody: XString.WriterBody Eo

XString.NewWriterBody[maxLength:250, z: sysZ];
--Statement2: Create an object with writer format object
xfo: XFormat.Object Eo- XFormat.WriterObject[

w: @writerBody];
--Statement3: Concatenate data types into writer
XFormat.String[h:@xfo,s:"My name is "L];
XFormat.String[h:@xfo, s: namePassedlnAsAParameter];
xFormat.String[h:@xfo, s:" and my age is "L];
XFormat.Decimal[h:@xfo, n: agePassedlnAsAParameter];
xFormat.Char[h:@xfo, char: ' .. ORD];

This example first creates a new writer, and then calls
WriterObject to create an object initialized with the format
procedure WriterProc and data @writerBody. This sets up the
writer as the output sink, as illustrated in the innermost box of
Figure 3.6.

The next step is to call String, Decimal, and Char to put the
various data types to the writer. Each of these procedures takes
a piece of data, puts it in the intermediate format, and then
calls h.proc, passing in the data. Thus, String calls h.proc,
(which is the writer format procedure WriterProc), passing in
the string "My name is,", and WriterProc puts the bytes of the
string to the writer. Note that the argument to Char is just a
period; the statement above takes the ordinal value of the
period character.

This code will create a writer whose contents are something
like this: "My name is Lucille and my age is 11."

3-9

STRINGS AND MESSAGES

Data structures after executing Statement 2

(

'-.

t ,

Data structures after executing Statement 1

writerBody

.....
context

~ limit
249

I I

I I I I bytes -
~quence ...

xfo

proc: XFormat.WriterProc

context: XFormat.Vani"a Context

"" data: @writerBody

h s arguments of XFormat.String in Statement 3

@xfo I M I y I I n I a I m I e I I i I s I
Figure 3.6: Diagram of XFormat example

For the purposes of this course, you do not need to see the
actual code for a format procedure. It you want to write your
own format procedure for a data type other than the four that
XFormat supports, see the XFormat chapter of the ViewPoint
Programmer's Manual.

3.4 XMessage

3-10

The idea behind the XMessage interface is to group a"
messages that the user sees (generally speaki ng, all the readers

VIEWPOINT pROGRAMMING COURSE

3.4.1 The definitions module

3.4.2 The implementation module

VIEWPOINT PROGRAMMING COURSE

STRINGS AND MESSAGES

in a program) into a single module. Eventually, when you are
through with your application, you can use Message Tools to
remove the messages from the code altogether. The advantage
of this approach is that you can change the messages without
changing the code; this is particularly important when dealing
with multinational applications.

During development, however, while things are still changing,
you should use the method described here. Chapter 16,
Application Folders and Appendix C, Message Tools describe
how to handle messages for a completed application.

The messages mechanism used during develoment uses the
standard three-module structure: a definitions module, an
implementation module, and one or more client modules.

The definitions module defines the messages for the
application and a procedure for clients to call when they need
to access the messages. (A message definitions module does
not have to be distinct from other interfaces; you can just add
the messages definitions to another interface, if you like.)

First, you need to define a type Key that includes a name for
each of the messages. Thus, for example:

Key: TYPE=- {hiMom, elephant, noFile, badlnput};

You also need a procedure that clients can call to access the
messages. For example:

Get: PROC [key: Key] RETURNS [XString.ReaderBody];

The job of this procedure is to return the actual message
corresponding to the specified key.

The second piece is the implementation module that supplies
the actual messages. In the implementation module, you need
to define the actual text for each message, and implement the
Get procedure.

The fi rst step is to call XMessage.AllocateMessages, which
defines the domain of messages for your application:

XMessage.AllocateMessages: PROCEDURE [
applicationName: LONG STRING,
maxMsglndex: CARDINAL,
cI ientData: xMessage.CI ientData,
proc: XMessage.DestroyMsgsProc]
RETURNS [h: XMessage.Handle];

xMessage.Handle: TYPE = LONG POINTER TO XMessage.Object;

XMessage.Object: TYPE;

3-11

STRINGS AND MESSAGES

3-12

applicationName is the name of the application, maxMsglndex
is the number of messages, clientData is for your own use.
DeleteMessages is a call back procedure to deallocate any
storage associated with the message handle.

AllocateMessages returns a message handle for the
application; here is an example of calling this procedure:

h: XMessage.Handle +-XMessage.AllocateMessages [
applicationName: "TestApplication"L,
maxMessages: MsgDefs.MessageKey.LAsT.ORD + 1,
clientData: NIL,
proc: NIL];

To implement the messages, you need to create an object of
type XMessage,Messages:

xMessage,Messages: TYPE :II

LONG DESCRIPTOR FOR ARRAY OF XMessage.MsgEntry;

XMessage.MsgEntry: TYPE = RECORD [
msgKey: XMessage.MsgKey, --key used in interface
msg: XString.ReaderBody, --The actual message
owner: LONG STRING +- NIL, --Who owns the ReaderBody
severity: xMessage.MsgSeverity +- good,
translationNote: LONG STRING +-NIL,
translatable: BOOLEAN +- TRUE,
type: XMessage.MsgType +- userMsg~
id: XMessage.MsgID];

XMessage.MsgKey: TYPE :II CARDINAL;

msgKey is the ordinal value of the key defined in the interface
(for example, khiMom), and msg is the actual text for the
message. The other fields are for the purposes of translation.
The only one that you must supply is id, which is a unique
identifier. This id is for the use of the translators and should not
change; note that the id and the msgKey for a message don't
have to be the same.

For example, here is a fragment that illustrates how to
implement the hiMom key:

msgArray: ARRAY Defs.Key OF XMessage.MsgEntry +- [
hiMom: [

msgKey: Defs.Key.hiMom.ORD,
msg:xStrng.FromString["Hi, Mom!"],
id: 1] .

. . .];

The final step is to call xMessage.RegisterMessages to actually
initialize your messages:

XMessage.RegisterMessages: PROCEDURE [
h: XMessage.Handle,
messages: XMessage. Messages,
stringbodiesAreReal: BOOLEAN];

This procedure takes a message handle and the messages for
the application, and initializes the messages. If
stringBodiesAreReal is FALSE, then RegisterMessages will copy

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

STRINGS AND MESSAGES

the bytes for the string; if it is TRUE, then RegisterMessages
assumes that the bytes will remain valid.

Once you have made this call, clients can access your messages
by calling Get; to implement Get, just call xMessage.Get:

XMessage.Get: PROCEDURE [
h: XMessage.Handle, msgKey: XMessage.MsgKey]
RETURNS [msg: XString.ReaderBody];

For example:

Get: PUBLIC PROCEDURE [key: Defs.Key] RETURNS [xs.ReaderBody] •
RETURN h.Get[key.ORO]};

Here is a complete implmentation module:

DIRECTORY Oefs, XMessage, XString;

Msglmpl: PROGRAM IMPORTS XMessage, XString EXPORTS Oefs = {
OPEN XS: XString;
h: XMessage.Handle ~ NIL; -- The messages handle

Get: PUBLIC PROC [key: Defs.Key] RETURNS [xs.ReaderBody] •
RETURN h.Get[key.ORO]};

Init: PROC = { -- Creates, allocates, and registers messages
msgArray: ARRAY Defs.Key OF XMessage.MsgEntry ~

[hiMom: [
msgKey: Oefs.Key.hiMom.ORO,
msg: XS.FromString["Hi, Mom!"l],
id: 1], .

elephant: [
msgKeY:Defs.Key.elephant.ORO,
msg: XString.FromSTRING ["Elephants are pink."l],
id: 2],

nOFile: [
msgKey:,Defs.Key.noFile.ORO,
msg: XString.FromSTRING ["Error .. .file not found"L],
id: 3],

badlnput: [
msgKeY:Defs.Key.badlnput.ORO,
msg: XString.FromSTRING ["Invalid input."l],
id: 4]];

messages: xMessage.Messages ~ DESCRIPTOR [LOOPHOLE [
msgArray, ARRAY[O .. Oefs.Key.LAST.ORO] OF
XMessage.MsgEntry]] ;

h ~ XMessage.AllocateMessages [
applicationName: "TestApplication"l,
maxMessages: oefs.Key.LAST.ORO + 1,
c1ientData: NIL,
proc:NIL];

XMessage. Reg isterMessages [
h: h,
messages: messages,
stringBodiesAreReal: FALSE]};

--Mainline code
Init [];} ...

3-13

STRINGS AND MESSAGES

3.4.3 The client module

3.5 Attention

3-14

From the client side, things are much simpler: you just call
oefs.Get to retrieve a particular message. For example:

Typical message usage
noFile: XString.ReaderBody ~ oefs.Get [Oefs.Key.noFile];

Attention.POst [@noFile];}. --Discussed in the next section

One final note on XMessage: the method we present here is
slightly different (and simpler) than that suggested in the
ViewPoint Programmer's Manual. Unfortunately, many of our
examples either don't use messages or use the other method.
Do as we say, not as we do.

The Attention interface implements a single window for
displaying messages. The Attention Window also has an
associated menu; Chapter 4, Simple Application, describes this
menu.

There are three types of messages that you can put in the
Attention Window: simple messages, sticky messages and
confirmed messages. Simple messages have no special
semantics. Sticky messages are redisplayed when a non-sticky
message is cleared. Attention keeps track of one sticky
message. Confirmed messages ask the user to confi rm
something.

There are three posting operations: Post, PostSticky, and
PostAndConfirm.

Attention.POSt: PROCEDURE [s: XString.Reader,
clear: BOOLEAN ~TRUE];

Attention.PostSticky: PROCEDURE [s: XString.Reader,
clear: BOOLEAN ~TRUE];

Attention.PostAndConfirm: PROCEDURE [
s: XString.Reader,
clear: BOOLEAN ~TRUE,
confirmChoices: Attention.ConfirmChoices oE- [NIL, NIL],
ti meout: Process. Ticks ~ Attention.dontTi meout]
RETURNS [confirmed, timedOut: BOOLEAN];

The Post procedures display the message s in the Attention
window. If clear is TRUE, the procedure clears the Attention
window before displaying s, otherwise it displays it after
whatever text is currently showing. PostAndConfirm acts like
Post in displaying the message s but waits for the user to
confirm. See the ViewPoint Programmer's Manual for details
on how to use PostSticky and PostAndConfirm. There are also
the inverse operations:

VIEWPOINT PROGRAMMING COURSE

3.6 Summary

3.7 Exercise

VIEWPOINT PROGRAMMING COURSE

STRINGS AND MESSAGES

Attention.Clear: PROCEDURE;

Attention.ClearSticky: PROCEDURE;

Clear clears the Attention window of any simple message. If
there is a current sticky message, Attention will display it after
clearing the simple message. Clear has no effect if the current
message is sticky. ClearSticky clears any current sticky message.
ClearSticky has no effect if there is no sticky message.

Constructing messages in the single global Attention window
does not work well if multiple processes try to display messages
simultaneously. Thus, to avoid interference, you should follow
this guideline: only call procedures in the Attention interface
from the Notifier process. Chapter 9, TIP, discusses the Notifier
process in detail; for now, you should just realize that there is a
potential conflict.

The XChar interface provides the definition of a character.
ViewPoint characters are encoded with the Xerox Character
Code Standard, which provides increased generality at the
price of slightly increased complexity.

The XString interface defines the data structures and opeations
for strings. XString defines two different kinds of strings,
readers (read-only strings) and writers (editable strings.)
XString provides a wide variety of procedures for manipulating
both readers and writers.

The XFormat interface provides procedures to format various
data types into readers, and vice versa.

The XMessage interface provides facilities for keeping
messages that the user will see (readers) separate from the
actual code for the application. To use the XMessage
approach, you need three modules: a defi nitions module, a
client module, and an implementation.

The Attention interface allows you to post messages to the
global attention window. The chief procedures are Post and
Clear.

The exercise for this chapter is the Concordance Tool, which
determines the number of times that a particular pattern
occurs in a textual selection. To use this tool, you fill in a
pattern and a ,Selection, specify a context, and then invoke the
Find All command. (The context is the number of words on
each side of the pattern; note that the pattern cannot include
wildcard characters.) The tool then provides a list of matches in
the specified context, and a count of the total number of
matches. Figure 3.7 illustrates this tool.

3-15

STRINGS AND MESSAGES

Concordance

Search Field

Amount of Context

Results

3-16

I Find All I
this chapter

is the Concordance

Number of matches: 2

Figure 3.7 The ConcordanceTool

Your assignment is to complete the module
ConcordFormlmpITemplate.mesa. Specifically, you need to
write the two procedures Find, and ProcessString. Find is the
FormWindow.CommandProc that implements Find All: it first calls
a procedure to get the current selection, and then calls
ProcessString, which searches the text for pattern matches and
extracts concordances for each match. Find then displays any
matches and also frees any storage.

For a complete explanation of what you need to do, see the
comments in ConcordFormlmpITemplate.mesa. You will also
need the following modules:

Concord Defs. bcd
ConcordMsglmpl.bcd
Concord I m pl. bcd
ConcordSelectionlmpl.bcd
Concord.config

VIEWPOINT PROGRAMMING COURSE

4.
CREATING A

SIMPLE APPLICATiON

This chapter discusses how to create a basic user interface for
an application: how to add a command to the Attention Menu,
how to create a window, and how to display the window on
the screen. The information in this chapter is just a skeleton;
the next four chapters discuss how to add additional
functionality and features to your user interface.

4.1 Adding a command to the Attention menu

VIEWPOINT PROGRAMMING COURSE

You can structure a Viewpoint application to run either from a
command in the Attention Menu or from an icon. Chapter 14,
Icon Applications, discusses how to write applications that use
icons; this chapter describes how to write an application that
runs from a command in the Attention Menu.

To have your application run from the Attention Menu, you
need to add a command to the menu and supply a procedure
to implement that command. To add a command to the
Attention Menu, call Attention.AddMenultem:

Attention.AddMenultem: PROCEDURE [item:
MenuData.ltemHandle] ;

MenuData.ltemHandle: TYPE == LONG POINTER TO MenuData.ltem;

MenuData.ltem: TYPE == MenuData.Privateltem; --hidden

AddMenultem requires a parameter of type ItemHandle, which
represents a menu item. To get an ItemHandle, call
MenuData.Createltem:

MenuData.Createltem: PROCEDURE [
zone: UNCOUNTED lONE,
name: XString.Reader.
proc: MenuData.MenuProc,
itemData: LONG UNSPECIFIED +- 0]
RETURNS [MenuData.ltemhandle];

Createltem builds an item record in zone. name is the string
that will appear in the menu, and proc is a call back procedure
that will be called when the user invokes the command from
the Attention Menu.

A call back procedure is a procedure that is passed in as a
parameter to another procedure, and is later called by that
procedure. Thus, you write a MenuProc but don't call it; you jst
pass it to Createltem, and the MenuData implementation will
call it when the user invokes your command.

4-1

CREA TING A SIMPLE APPLICATION

The proc parameter is of type MenuData.MenuProc:

MenuData.MenuProc: TYPE = PROCEDURE [
window: Window.Handle,
menu: MenuData.MenuHandle,
itemData: LONG UNSPECIFIED];

The parameters to this procedure are a handle to your
application's window, a handle to the menu, and the itemData
parameter that you passed to Createltem. window identifies a
particular window on the screen, and menu identifies the
menu from which the command was invoked.

There is a MenuProc associated with every command in a
menu, whether the command is in the menu of commands for
an application, or in the Attention Menu. For some MenuProcs,
you will need to use the window, menu, and itemData
parameters. The examples in this chapter, however, do not use
any of these parameters. (Section 4.4 discusses MenuProcs
associated with commands in the header of an application.)

item Data is referred to as client data; it is entirely for your own
use. If there is no extra information that you need to have
available in proc, you can leave itemData defaulted in the call
to Createltem.

Here is an example of how to add a command to the Attention
Menu:

--This procedure gets called from the mainline code
Init: PROC • {

command: XString.ReaderBody E-Defs.Get[
Defs.Key.commandName];

Attention.AddMenultem [
MenuData.Createltem [

zone: Heap.systemZone,
name: @command,
proc: SampleMenuProc]] };

This procedure will add the command Sample Tool to the
Attention Menu. When the user selects this command,
ViewPoint will call the procedure SampleMenuProc.
SampleMenuProc is then responsible for putting the
application's window on the screen, as described in the next
section.

4.2 Creating a StarWindowShell

4-2

When the user invokes your command from the Attention
Menu, ViewPoint will 'call your MenuProc. Typically, the first
thing you want to do is create a window on the screen.

ViewPoint implements windows with something called a
StarWindowShell. A StarWindowShell is a basic window that
can have a title, commands, pop-up menus, and scroll bars
(horizontal or vertical), as illustrated in Figure 4.1

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

CREATING A SIMPLE APPLICATION

Figure 4.1 A StarWindowSheli

1..-1----1 Vertical
Scrollbar

....... _-1 Horizontal
Scroll bar

To create a shell, call StarWindowShell.Create:

StarWindowShell.Create: PROCEDURE [
transitionProc: StarWindowShell.TransitionProc E- NIL,
name:xString.Reader E- NIL, --The name of the tool
namePicture:xstring.Character E-XChar.null,
host: StarWindowShell.Handle E- NIL,
type: StarWindowShell.ShellType E- regular,
sleeps: BOOLEAN E- FALSE, --see below
considerShowingCoverSheet: BOOLEAN E- TRUE,
currentlyShowingCoverSheet: BOOLEAN E- FALSE,
pushersAreReadonly: BOOLEAN E- FALSE,
readonly: BOOLEAN E- FALSE,
scroll Data: StarWindowShell.SCroliData E- vaniliaScrollData,
garbageCollectBodiesProc: PROCEDURE [Handle] E- NIL,
isCloseLegalProc: IsCloseLegalProc ~ NIL, --See below
bodyGravity: Window.Gravity E- nw,
zone: UNCOUNTED ZONE ~ NIL]
RETURNS [StarWindowShell.Handle);

StarWindowShell.Handle: TYPE = RECORD [Window.Handle];

Note that all of these parameters are defaulted, which means
that they are all optional. However, most calls to Create include
at least the first two (name and transitionProc.) We discuss
transitioriProc and isCloseLegalProc below; for information on
the other parameters, consult the StarWindowShell chapter of
the ViewPoint Programmer's Manual.

4-3

CREATING A SIMPLE APPLICATION

4.2.1 Transition procedures

4.2.2 IsCloseLegalProc

4-4

Create returns a StarWindowshell.Handle, which is essentially a
Window.Handle. As mentioned earlier, a handle identifies your
particular window; you will need to pass this handle to various
proced u res.

Thus, the first part of your MenuProc will look like this:

SampleMenuProc: MenuData.MenuProc = {
toolName: XString.ReaderBody ~Defs.Get[

Defs.Key.tooIName];

shell: StarWindowShell.Handle ~ StarWindowShell.Create[
name: @tooIName];

... };

A transitionProc for a shell is a procedure that ViewPoint will
call when the state of the shell is about to change:

StarWindowShell.TransitionProc: TYPE = PROCEDURE [
sws: StarWindowShell.Handle,
state: StarWindowShell.State];

StarWindowShell.State: TYPE =
{awake(O), sleeping, dead, last(7)};

A StarWindowSheli is always in one of three states: awake,
sleeping, or dead. awake indicates that the shell is currently
displayed. sleeping indicates that the shell still exists, but is not
being displayed and therefore you should free resources
associated with the display state. dead indicates that the shell is
about to be destroyed and therefore you should free all
resources associated with the shell. If you have any storage
associated with your shell, you should use a transitionProc to
allocate and free that storage. Here is a "generic" example of a
transition procedure:

SimpleTransitionProc: StarWindowShell.TransitionProc =
BEGIN

SELECT state FROM
awake = > IF data ::I NIL THEN AllocateData[sws];
sleeping, dead = > FreeData;

ENDCASE;
END;

An isCloseLegalProc allows you to veto an attempt to close
your window. An isCloseLegalProc is of type IsCloseLegalProc:

StarWindowShell.lsCloseLegalProc: TYPE = PROCEDURE [
sws: StarWindowShell.Handle,
closeAII: BOOLEAN] RETURNS [BOOLEAN];

closeAII indicates whether the current command is a Close or a
CloseAII.

VIEWPOINT PROGRAMMING COURSE

4.3 Body windows

VIEWPOINT PROGRAMMING COURSE

CREATING A SIMPLE APPLICATION

ViewPoint will call the isCloseLegalProc that you supply when
either a user or a client program attempts to close the
StarWindowShel1. If it's okay to close the window, you should
return TRUE; otherwise, return FALSE. (The isCloseLegalProc is
also a convenient way to get control when the window is being
closed.) Here is a simple example that prints a message and
ignores the close under certain circumstances:

SimplelsCloseLegalProc: StarWindowshell.lsCloseLegalProc =
BEGIN

IF --YouDon'tCarelfTheWindowlsClosed-- THEN RETURN [TRUE];
ELSE {. --print a message, and then abort the close request
a bortMsg: XString. Reader +- Defs.Get[Defs. Key.a bortMsg];
Attention.Post[@abortMsg];
RETURN [FALSE]};

END;

ViewPoint windows are organized in a tree structure, with the
desktop window at the root of the tree. The StarWindowShell
for an application is generally a child of the desktop window. A
StarWindowShell ,is just a shell, however; before the window
can do anything useful, you need to put body windows within
the StarWindowShell.

Body windows are what define the functionality of a shell. For
example, if you want to display in a window, you display that
information to a body window, not to the StarWindowShel1.
You can create various different arrangements of body
windows, depending on what you want your application to do.

The simplest arrangement is to have one very long body
window that is much longer than the shell. This makes scrolling
easy: you simply slide the body window within the window
shell. This is how the StarWindowShell default scrolling works,
so if you use this approach the StarWindowShell
implementation will take care of all scrolling for you.

However, if you use this approach, the dimensions of the body
window won't change when the user changes the size of the
shell. Thus, the body window may be much bigger or much
smallerthan the shell.

An alternate way of handling body windows is to specify that
the body window should change size whenever the size of the
StarWindowShell changes. If you do this, you are responsible
for keeping track of what is in the window, and you must
perform all scrolling operations yourself.

This chapter discusses only how to create a single body window
whose size never changes. If you are interested in creating
body windows that change size when the shell does, or if you
want to create multiple body windows within a given shell, see
the StarWindowShell chapter of the ViewPoint Programmer's
Manual.

To create a body window, you call StarWindowshell.CreateBody:

StarWindowShell.CreateBody: PROCEDURE [
sws: StarWindowShell.Handle, --the StarWindowShell

4-5

CREA TlNG A SIMPLE APPLICATION

4.4 Commands

4-6

repaintProc: PROCEDURE [Window.Handle] Eo- NIL,
bodyNotifyProc: TlP.NotifyProc Eo- NIL,
box: Window.Box Eo- [[0,0],[0,29999]]]

RETURNS [Window.Handle];

Window.Box: TYPE = RECORD [place: Place, dims: Dims];

Window.Place: TYPE = UserTerminal.Coordinate; --[x,y: INTEGER1

Window.Dims: TYPE = RECORD [w,h: INTEGER];

Create Body creates a body window within the sws. The
Window implementation will call repaintProc whenever it
needs to redisplay part or all of the information in the body
window. Chapter 6, Displaying information on the screen,
discusses repaint procedures in detail.

bodyNotifyProc is a procedure that is responsible for
determining how the window handles user input; Chapter 8,
TIP, discusses this subject in detail.

box indicates the size and location of the body window within
the shell. If box.dims.w and/or box.dims.h is zero, the body
window will take on the dims.w and/or dims.h of the shell. If
you are going to create one long body window, you should use
box to specify the dimensions that you want the body window
to have. For example, here is a code fragment from a
MenuProc:

--dimensions of the body window in pixels
bodyWindowDims: Window.Dims == [1000,1000];

-- Create the StarWindowShell.
shell: StarWindowShell.Handle = StarWindowShell.Create [

name: @sampieTool];

-- Create one long body window inside the StarWindowShell
body: Window.Handie = StarWindowshell.CreateBody [

sws: shell,
box: [[0,0], bodyWindowDims],
repaintProc: SomeRedisplayProc, --discussed in chapter 6
bodyNotifyProc: SomeNotifyProc];--discussed in chapter 8

StarWindowShelis have commands in the header that the user
can invoke. The commands can appear either directly in the
header, or in a pop-up menu available from the header, as
illustrated in Figure 4.2.

VIEWPOINT pROGRAMMING COURSE

Math Tool

Math Tool

CREA TING A SIMPLE APPUCA TION

Subtract

Tool with regular commands

Function

Add +-
Subtract
Multiply

Tool with commands in pop-up menu

Figure 4.2 Commands

Commands for an application work just like commands in the
Attention Menu: when you specify a command, you associate a
procedure (of type MenuData.MenuProc) with the command.
When the user invokes the command, the corresponding
procedure is called.

StarWindowShell automatically puts the Close command in
the header of every application, and you can also add
additional commands. The following sections provide
examples of how to put commands directly in the header and
how to put them in a pop-up menu. (Note: if you specify
commands in the header and they don't fit, they will
automatically overflow into the popup menu.)

4.4.1 Putting commands directly in the header

VIEWPOINT PROGRAMMING COURSE

To put commands in the header, you start by calling
MenuData.Createltem to create an individual ItemHandle for
each command. (Remember, this is what we did in the first

4-7

CREATING A SIMPLE APPLICATION

4-8

section, when we created the ItemHandle for the command in
the Attention Menu.). Once you have called Createltem for
each command that you want to have, you store them in an
array, and then call MenuData.CreateMenu:

MenuData.CreateMenu: PROCEDURE [
zone: UNCOUNTED ZONE,
title: MenuData.ltemHandle,
array: MenuData.ArrayHandle,
copyltemsl ntoMen usZone: BOOLEAN ~ FALSE]
RETURNS [MenuData.MenuHandle];

MenuData.ArrayHandle: TYPE=- LONG DESCRIPTOR FOR ARRAY OF
MenuData.ltemHandle;

This procedure returns a handle to a menu; you can then put
the "menu" of commands in the header. (Note: the idea that
commands in the header are actually a menu may seem a bit
strange, but in fact a command in the header is considered to
be an individual menu item with a box around it.)

Finally, you call StarWindowShell.SetRegularCommands to display
the commands in the header:

StarWindowShell.SetRegularCommands: PROCEDURE [
sws: StarWindowShell.Handle,
commands: MenuData.MenuHandle] ;

Here is an example of how to create the commands Add,
Multiply, and Subtract, and put them directly in the header:

-- retrieve zone attached to the StarWindowShell
z: UNCOUNTED ZONE ~StarWindowShell.GetZone [shell];
--declare ReaderBodys for the commands that you want to have
add: XString.ReaderBody ~ XString.FromSTRING ["Add"];
subtract: XString.ReaderBody ~ XString.FromSTRING["Subtract"L];
multiply: XString.ReaderBody ~ XString.FromSTRING["Multiply"L];

--call Create/tem for each command, passing in the ReaderBodys
--and a call back procedure for each command. Store the
--ltemHandles into an array.
items: ARRAY [0 .. 3) OF MenuData.ltemHandle ~ [

MenuData.Createltem[zone: z, name: @add, proc: Add],
MenuData.Createltem [zone: z, name: @subtract,

proc: Subtract],
MenuData.Createltem [zone: z, name: @multiply,

proc: Multiply]];

--Create a MenuHandle by calling CreateMenu, passing in
--a descriptor for the array of Item Handles.
myMenu: MenuData.MenuHandle =- MenuData.CreateMenu [

zone: z, -- Generally use zone attached to SWS
title: NIL,
array: DESCRIPTOR [items]];

--specify that the commands should appear as individual
--items in the header.
StarWindowshell.SetRegularCommands[

sws: shell, commands: myMenu];

The first step is to retrieve the heap attached to the shell. When
you call StarWindowShell.Create to create a StarWi ndowShell, the
implementation creates a private heap and uses it as storage

VIEWPOINT PROGRAMMING COURSE

CREATING A SIMPLE APPLICATION

for all shell-related items, such as name strings. It is a good idea
to use this zone for your own storage, since it will be deleted
when you delete the StarWindowShelI.

The next step is to call MenuData.Createltem once for each
command, and store the individualltemHandles into an array.

Once you have an array of ItemHandles, you can call
CreateMenu, which puts the array into a menu and returns a
MenuHandle. The last step is to pass that MenuHandle to the
procedure StarWindowShell.SetRegularCommands.

4.4.2 Putting commands in a popup menu

VIEWPOINT PROGRAMMING COURSE

Putting the commands in a pop-up menu is much like putting
them directly in the header, except that you need to include a
title for the menu, and you need to call AddPopupMenu
instead of SetRegular Commands:

StarWindowShell.AddPopupMenu: PROCEDURE [
sws: StarWindowShell.Handle, menu: MenuData.MenuHandle] ;

Here is an example of how to put commands ina pop-up menu:

-- retrieve zone attached to the StarWindowShell
z: UNCOUNTED ZONE ~ StarWindowShell.GetZone [shell];
--declare ReaderBodys for the commands and the title
add: XString.ReaderBody ~ XString.FromSTRING ["Add"];
subtract: XString.ReaderBody ~ XString.FromSTRING["Subtract"L];
multiply: XString.ReaderBody ~ XString.FromSTRING["Multiply"L];
title: XString.ReaderBody ~XString.FromSTRING ["Function"];

--call Create/tem for each command, passing in the ReaderBodys
-- and a call back procedure for each command. Store the
ltemHandles into an array.
items: ARRAY [0 .. 3) OF MenuData.ltemHandle ~ [

MenuData.Createltem[zone: z, name: @add,
proc: Add],

MenuData.Createltem [zone: z, name: @subtract,
proc: Subtract],

MenuData.Createltem [zone: z, name: @multiply,
proc: Multiply]];

--Create a menu item for the title (but don't store it in array.)
-- Notice that there is no proc; when the user invokes this
--command, MenuData will display the menu.
titleltem: MenuData.ltemHandle ~MenuData.Createltem [

zone: z, name: @title, proc: NIL];

--Create a MenuHandle by calling CreateMenu, passing in
--a descriptor for the array of ItemHandles.
--Notice that title is not NIL.
myMenu: MenuData.MenuHandle = MenuData.CreateMenu [

zone: z, -- Generally use zone attached to SWS
title: titleltem,
array: DESCRIPTOR [items]];

--specify that commands should appear in menu.
StarWindowShell.AddPopupMenu[

sws: shell, commands: myMenu];

4-9

CREATING A SIMPLE APPLICATION

4.5 Displaying windows on the screen

4.6 Summary

4-10

Once you have created a window shell, body window, and
associated commands, you still need to display the shell on the
screen. (Note that Create generates a StarWindowShel1 but
does not display it on the screen.) To display a shell on the
screen, call StarWindowShell.Push, which inserts the new window
into the existing tree structure:

StarWindowShell.Push: PROCEDURE [
newShell: StarWindowShell.Handle,
topOfStack: StarWindowShell.Handle +- NIL,
poppedProc: StarWindowShell.POppedProc+- NIL];

Push displays newShell by inserting it into the visible window
tree. If poppedProc is NIL, popping newShell will destroy the
shell. You can write your own PoppedProc if you want to do
something other than destroy the shell; see the ViewPoint
Programmer's Manual for details.

You can remove a StarWindowShell from the screen by calling
StarWindowShell.Pop. You will almost never call this procedure
yourself, however; it is usually called by StarWindowShell as
the result of an operation such as Close!.

To create a bare-bones user interface for a new application,
you need to do the following:

1. In your initialization code, add a command to the Attention
Menu with the following steps:

A. Call MenuData.Createltem to create an ItemHandle. The
most important parameters to this procedure are the
name of the command and the call back procedure that
ViewPoint will call when the command is invoked.

B. Call Attention.AddMenultem to add your new command
to the Attention Menu.

2. In your MenuProc, do the following:

A. Call StarWindowShell.Create, which creates a window shell.
You can optionally associate a TransitionProc and an
IsCloseLegal procedure with your shell.

B. Call StarWindowShell.CreateBody to create one or more
body windows within the StarWindowSheli. There are
many different possible arrangements of body windows;
this chapter discussed only the simplest case.

C. Add commands to the shell with the following steps:

1. Call MenuData.Createltem to get an Item handle for
each command. Store the ItemHandles into an array.

2. Call MenuData.CreateMenu to create a menu of
commands. If you want the commands to appear in a

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

CREATING A SIMPLE APPLICATION

popup menu, you need to include a title in the call to
CreateMenu; if you want the commands to appear
directly in the header, you don't need a title.

3. Call either StarWindowshell.SetRegularCommands or
StarWindowShell.AddPopupMenu, depend i ng on
whether you want your commands to appear
directly in the header or in a popup menu.

D. Display the window on the screen with a call to
StarWindowShell.Push.

Here is a complete example:

< < This is a sample tool that you can use as a template for
creating a new user interface. We will add to this program in
the next few chapters.

This tool adds the command Sample Tool to the attention
window menu. When the user invokes this command, the
MenuProc creates a StarWindowShell with a single body
window in it. The commands Post and Redisplay are placed in
the header of the StarWindowShell. > >

DIRECTORY
Attention USING [AddMenultem, Post],
Heap USING [systemZone],
MenuData USING [Createltem, CreateMenu, ItemHandle,

MenuHandle, MenuProc],
StarWindowShell USING [Create, Create Body, GetZone,

Handle, Push, SetRegularCommands],
Window USING [Dims, Handle],
XString USING [FromSTRING, ReaderBody, WriterBody];

Sample Tool: PROGRAM
IMPORTS Attention, MenuData, StarWindowShell, XString •

BEGIN

-- Constant; used for size of body window
bodyWindowDims: Window.Dims = [1000,1000];

--Procedures

< < This procedure is called from the mainline code. It registers
the command Sample Tool in the Attention Menu. When the
user invokes this command, MenuProc will be called. > >
Init: PROC = {

command: XString.ReaderBody +
Defs.Get[Defs. Key .commandNmae];

Attention.AddMenultem [
MenuData.Createltem [

};

zone: Heap.systemZone,
name: @commandName,
proc: MenuProc]];

4-11

CREA TING A SIMPLE APPLICATION

4-12

< < Called when the user invokes the Sample Tool command.
Create a StarWindowShell, a single body window within that
shell, and some commands, and then display the shell on the
screen. »
MenuProc: MenuData.MenuProc == {

redisplay: XString.ReaderBody +
XString.FromSTRING[IIRedisplayIlL];

};

post: XString.ReaderBody +- XString.FromSTRING[IPost"L];
sampleTool: XString.ReaderBody oE

XString.FromSTRING["Sample TooIIIL];

-- Create the StarWindowShell.
shell: StarWindowShell.Handle == StarWindowShell.Create [

name: @sampleTool];

-- Create one long body window inside the shell.
body: Window.Handle == StarWindowShell.CreateBody [

sws: shell,
box: [[0,0], bodyWindowDims],
repaintProc: SomeRedisplayProc, --chapter 6, Display
bodyNotifyProc: SomeNotifyProc];--chapter 8, TIP

--Get the zone attached to the window shell and use it
--to create the menu items.
Z: UNCOUNTED ZONE +- StarWindowShell.GetZone [shell];

--Create an array of menu items
items: ARRAY [0 .. 2) OF MenuData.ltemHandle +- [

MenuData.Createltem [zone: z, name: @redisplay,
proc: RedisplayMenuProc],

MenuData.Createltem [zone: z, name: @post, proc: Post]];

--Create the menu. If you want to put commands directly in
--the header, title can be NIL; if you want to put them in
-- a popup menu, you need to include a title.
myMenu: MenuData.MenuHandle = MenuData.CreateMenu [

zone: z,
title: NIL,
array: DESCRIPTOR [items]];

-- Add the menu to the StarWindowShell header.
StarWindowShell.SetRegularCommands [sws: shell,

commands: myMenu];

-- Put the StarWindowShell on the screen.
StarWindowShell.Push [shell];

--Procedures to implement the commands in the header.
Post: MenuData.MenuProc == {

msg: XString.ReaderBody +
Defs.Get[Defs.Key.sampleMessage];

Attention.Post [@msg]};

RedisplayMenuProc: MenuData.MenuProc = {
--chapter 6 discusses how to display on the screen};

-- Mainline code
Init[];
END ...

VIEWPOINT PROGRAMMING COURSE

4.4 Exercise

VIEWPOINT PROGRAMMING COURSE

CREATING A SIMPLE APPLICATION

The exercise for this chapter is to write the user interface for a
simple tool, called DMT. This tool takes a string and displays it
in random places in the tool's window, much like the DMT
program that runs in XDE. This tool registers the command
DMT Tool in the Attention Menu. Figure 4.3 illustrates the
window that will appear when the user invokes this command.

Figure 4.3 The DMT Tool

Invoking the Start command will take the current selection, if it
is a string, and display it in the window at random locations. If
the current sele~tion cannot be recognized as a string, the
default string will be My DMT. (Note that the selected string
must be in a simple document, not a standard document.)

Invoking Stop will stop the DMT. You can only have one DMT
at a given time. Invoking Close will destroy the window.

Your job is to write the following procedures:

Init

MenuProc

This procedure registers the DMT Tool
command in the AttentionMenu.

This procedure is called when the user
invokes DMT Tool command. This procedure

4-13

CREA TING A SIMPLE APPLICA TION

4-14

should create the shell and display it on the
screen.

IsCloseLegalProc This is the IsCloseLegalProc parameter to
StarWindowshell.Create.

Redisplay

Start

Stop

This is the repaintProc parameter to
StarWindowshell.CreateBody.

This is the command procedure for the Start
command.

This is the command procedure for the Stop
command.

We provide a template, called DMTExercise.mesa, that contains
detailed instructions for each of these procedures. To run the
program, you will also need the files DMTDefs.bcd,
DMTlmpl.bcd, and DMTConfig.mesa.

VIEWPOINT PROGRAMMING COURSE

5.1 Context types

5. CONTEXT

In general, you should structure applications so that the user
can run more than one copy ("instance") simultaneously.This
doesn't typically involve much restructuring, but it does create
a problem with storage for global data.

All copies of an application share the same global frame, so
you can't use the global frame to store data that wi II be
different for each instance of the application. Examples of such
window-relative data include the contents of the window, a
handle to the StarWindowShell itself, the state of some options
associated with the window, and so on.

ViewPoint solves this problem with the notion of a context. A
context is a data object associated with a window instance;
contexts allow you to store global state information with a
window rather than in the program's global frame. This
approach has the additional advantage that it helps minimize
global frame size, which is an important consideration.

To use contexts, the first step is to get a context type for your
application. Every client of the Context interface has a unique
type; this is how the client identifies itself in later calls to the
Context interface. Figure 5.1 illustrates this idea; notice that
each window has the same context type but distinct data.

Context type :I 337778
Window ~ ___ I x = 5,

z=O
~----------------~

~----------------~

/

Instance1 y=10,

,...-. _______ ---, .--______ --. Contexttype :I 337778

Appl ication
(data in global frame)

VIEWPOINT PROGRAMMING COURSE

..... Window
+----.....
"" ... [Instance 2

~ Window
Instance 3

...... 1-_ 1 x = 22,
Y = 6,
z = 45

Context type =- 337778

........... _--1 ... x = 12,
Y = 9,
z=3

Figure 5.1: Contexts

5-1

CONTEXT

5.2 Creating the context

5-2

To get a context, call Context.UniqueType:

--Note that all instances share one context type
context: Context. Type +-Context.UniqueType[];

This call returns a context type. You don't need to know
anything about the actual number that the type represents;
you just need to use it in future calls to the Context interface.

You only need to make this call once for each time the
application is run, not once for each instance of the window,
since every instance of a given application uses the same
context type. Thus, you should store your context type in the
shared global frame.

The next step is to allocate the data that you want to keep in
your context. You need to allocate a context each time that
you initialize an instance of the window with which you are
going to associate the context; this will typically be in your
MenuProc. You can associate the context either with the shell
or with a particular body window.

To allocate a context, call Context.Create:

Context.Create: PROCEDURE = [
type: Context. Type,
data: Context. Data,
proc: Context.DestroyProcType,
window: Window.Handle];

Context.Data: TYPE = LONG POINTER TO UNSPECIFIED;

Context.DestroyProcType: TYPE = PROCEDURE [
data: Context.Data,
window: Window.Handle];

type is your unique context type, data is the data that you want
to keep in the context, proc is a procedure that the system will
call to free the context when it is about to destroy the window,
and window is the body window with which you want to
associate the context.

Notice that Data is a pointer to an unspecified data structure;
this means that it can be a pointer to any data structure you
declare. Obviously, there is no general structure for this data;
every application will be different. You should declare a type
that represents the data you want to keep in your context. For
example, the data for a game might look like this:

--global type declaration
DataObject: TYPE =- RECORD [

currentUser: XString.ReaderBody +-xString.nuIlReaderBody,
level: {beginner, intermediate, advanced} +- beginner,
score: CARDINAL +- 0];

The actual call to Create would then look like this:

VIEWPOINT PROGRAMMING COURSE

5.3 Using the context

VIEWPOINT PROGRAMMING COURSE

CONTEXT

Context. Create [
type: context, --your context type
data: sysZ.NEw[DataObject]; --data to be stored in context
proc: DestroyContext,
window: body]; --body window for context

The call to Create allocates a DataObject, associates it with
type, and stores it with window.

DestroyContext is a procedure that is responsible for
deallocating the storage associated with the context. When it is
about to destroy a window with an associated context
(typically in response to a Close command), ViewPoint will call
Context. Destroy, which will in turn call your DestroyProc. (If you
like, you can call Destroy yourself, but this is rare. You never
call your DestroyContext procedure directly.)

Your DestroyContext procedure should deallocate the context
data. The Context interface provides two procedures of this
type:

Context.NopDestroyProc: Context.DestroyProcType;

Context. Si m pi eDestroyProc: Context. DestroyProcType;

NopDestroyProc does nothing; SimpleDestroyProc just
deal locates data from the system heap. Thus, if you allocate
your context from the systemZone, you can use
SimpleDestroyProc instead of writing your own DestroyProc. If
you use a private heap to allocate your data, or if you have
additional deallocation that you need to do, then you should
write your own DestroyProc. Here is a simple example of a
DestroyProc:

DestroyContext: Context.DestroyProcType = {
Z.FREE[@data]};

Once you have stored the context, you can retrieve it at any
point to inspect or change the information in the context. To
retrieve your context, callContext.Find or Context.Acquire:

Context.Find: PROCEDURE [type: Context.Type,
window: Window.Handle] RETURNS [Context.Data];

Context.Acquire: PROCEDURE [type: Context.Type,
window: Window.Handle] RETURNS [Context.Data];

These procedures both retrieve the data associated with a
particular context (type specifies which context to retrieve).The
difference between the two is that Acquire monitors the data
so that only one process can have the context at a time. You
can use either one, depending on the needs of your
application.

The only case where retrieving the context is slightly tricky is
when you have the wrong window handle: that is, if the
context is associated with the body window, and you have a
handle to the shell, or vice versa.

5-3

CONTEXT

5.4 Summary

5-4

If you have a body window, and would like the shell, you can
call StarWindowShell.SheIiFromChild; if you have the shell and
want the body window, you can call StarWindowshell.GetBody to
get a handle to the body window. (Note that this only works if
there is only one body window.)

StarWindowShell.GetBody: PROCEDURE [
sws: StarWindowShell.Handle] RETURNS [Window.Handle];

StarWindowShell.SheIiFromChild: PROCEDURE [
child: Window.Handle] RETURNS [StarWindowShell.Handle];

Here is an example of retrieving the context:

--This procedure actually retrieves the context. It is called
--from various other procedures
GetContext: PROC [body: Window.Handle] RETURNS [data: Data]

== {data +-context.Find[context, body];
RETURN [data]};

--This procedure makes the game more difficult, if possible.
--If the player is already an expert,ca/l another procedure to
--post an appropriate message.
MakeGameHarder: MenuData.MenuProc = {

body: Window.Handle == --get handle to body window
StarWindowshell.GetBody[[wi ndow]];

data: Data +- GetContext[body]; --Find context
SELECT data.level FROM

beginner == > data.level +- intermediate,
intermediate = > data.Jevel +- expert,
expert = > MessageUser[expert];

ENDCASE};
};

In this case, we have associated the context with the body
window, and not the shell. Thus, inside the MenuProc we need
to call GetBody, since we have a handle to the
StarWindowShell (which was passed in to the MenuProc), but
we don't have a handle to the body wi ndow itself.

To allow the user to have multiple copies of your application,
you need to do the following:

1. Declare a Context. Type in your (shared) global frame, and
initialize it with a call to Context.UniqueType.

2. Create the context with a call to Context. Create. You should
make this call in your window creation code, after you
create the body window with which you are going to
associate the context. One of the parameters to Create is a
call back procedure to destroy the context.

3. Access the context as often as necessary with Context.Find or
Context.Acq u i re.

4. Include a command (such as Another) so that the user can
conveniently create new instances of the application. (The
Close command will destroy an instance.)

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

CONTEXT

To illustrate the use of contexts, here is the example from the
last chapter, with the addition of Context information.

DIRECTORY
Attention USING [AddMenultem, Post],
Context USING [Create, Data, Find, Type, UniqueType],
Heap USING [systemZone],
MenuData USING [Createltem, CreateMenu, ItemHandle,

MenuHandle, MenuProc],
StarWi:ndowShell USING [Create, CreateBody, GetZone,

Handle, Push, SetRegularCommands],
Window USING [Dims, Handle],
XString USING [FromSTRING, null ReaderBody, ReaderBody,

WriterBody];

SampleVPTool: PROGRAM
IMPORTS Attention, Context, MenuData, StarWindowShell,

XStri ng = BEGIN

-- TYPEs
Data: TYPE == LONG POINTER TO DataObject;
DataObJect: TYPE == RECORD [

currentUser: XString.ReaderBody Eo- XString.nuIiReaderBody,
level: Level Eo- beginner,

score: LONG CARDINAL Eo- 0];

Level: TYPE == {beginner, intermediate, advanced}

-- Constants
bodyWindowDims: Window.Dims = [1000, 1000];
sysZ: UNCOUNTED ZONE = Heap.systemZone;

-- Shared global data
context: Context. Type Eo- Context.UniqueType[];

--Procedures
--This procedure retrieves the context associated with a given
-- body window and returns it to the calling procedure.
GetContext: PROC [body: Window.Handle] RETURNS [data: Data]
== {data +-context.Find[context, body];

IF data == NIL THEN ERROR; --Just in case.
RETURN [data]; };

--Register the command Sample Tool in the Attention Menu.
Init: PROC = {

sampleTool: XString.ReaderBody Eo
XString.FromSTRING["Sample Tool II L];

Attention.AddMenultem [
MenuData.Createltem [

zone: Heap.systemZone,
name: @sampleTool,
proc: MenuProc]] };

5-5

CONTEXT

5-6

< < This procedure is called when the user invokes the Sample
Tool command from the Attention Menu or the Another
command from the header. It creates a StarWindowShell,
creates a single body window within that shell, allocates a
context to go with that body window, adds some commands to
the shell, and then displays the shell on the screen. > >
MenuProc: MenuData.MenuProc = {

};

another: XString. ReaderBody ~
XString. FromSTRI NG [" Another" L];

redisplay: XString.ReaderBody ~
XString.FromSTRING[" Redisplay" L];

post: XString.ReaderBody ~ XString.FromSTRING["Post" L];
sampleTool: XString.ReaderBody ~

XString.FromSTRING["Sample Tool" L];
-- Create the StarWindowShell.
shell: StarWindowshell.Handle = StarWindowShell.Create [

name: @sampleTool];

-- Create a body window inside the StarWindowShell.
body: Window. Handle = StarWindowShell.CreateBody [

sws: shell,
box: [[0,0], bodyWindowDims],
repaintProc: SomeRedisplayProc, --chapter 6, Display
bodyNotifyProc: SomeNotifyProc];--Chapter 8, TIP

--Get the zone attached to the window shell and use it
--to create the menu items.
z: UNCOUNTED ZONE ~ StarWindowShell.GetZone [shell];
items: ARRAY [0 .. 3) OF MenuData.ltemHandle ~ [

MenuData.Createltem [zone: z, name: @another,
proc: MenuProc],

MenuData.Createltem [zone: z, name: @destroy,
proc: DestroyMenuProc],

MenuData.Createltem [zone: z, name: @post, proc: Post]
] ;

--Create the menu.
myMenu: MenuData.MenuHandle = MenuData.CreateMenu [

zone: z,
title: NIL,
array: DESCRIPTOR [items]];

-- Add the menu to the StarWindowShell header.
StarWindowShell.SetRegularCommands [sws: shell,

commands: myMenu];

-- Create a context and "hang it" from the body window.
Context. Create [

type: context,
data: sysZ.NEW[DataObject],
proc: Context.SimpleDestroyProc,
window: body];

-- Put the StarWindowShell on the screen.
StarWindowShell.PUSh [shell];

VIEWPOINT PROGRAMMING COURSE

5.5 Exercise

VIEWPOINT PROGRAMMING COURSE

CONTEXT

< < Procedures to implement header commands. Note that the
Another command just calls MenuProc again. Recall that

window is a parameter to the MenuProc. > >
Post: MenuData.MenuProc = {

msg: XString.ReaderBody;
body: Window.Handle • StarWindowShell.GetBody[[window]];
data: Data ~ GetContext [body];

};

IF XString.Empty[data.currentUser] THEN
msg~ XString.FromSTRING ["No current user."L]

ELSE msg ~ ..• ;
Attention.POst [@msg];

--see chapter 6, Displaying information on the screen
RedisplayMenuProc: MenuData.MenuProc = {};
-- Mainline code
Init[];
END ...

The exercise for this chapter is to take your solution to the
exercise for the last chapter and modify it so that you store the
global tool data in a context rather than in the global frame. (If
you did not do the exercise for the last chapter, you should
retrieve our solution from the file server and modify it for this
exercise.)

Once again, there is a template, in this case called
DMTExercise2.mesa, that describes exactly what you need to
write. You will also need the following files:

DMTDefs. mesa
DMTlmpl.mesa
DMTConfig2.mesa

The interface and the implementation file are identical to the
ones in the last chapter; the configuration file is slightly
different ..

5-7

CONTEXT

Notes:

5-8 VIEWPOINT PROGRAMMING COURSE

6.1 Overview

6.
DISPLAYING INFORMATION

ON THE SCREEN

Most applications need to display some sort of information on
the screen. For example, the document editor needs facilities to
display text and user-defined graphics, and the loader needs to
display a list of applications. This chapter describes how to use
the Window, Display and SimpleTextDisplay interfaces to
display text and graphics in a body window.

In general, every application that displays information on the
screen has a display procedure that actually paints the display.
When called, this procedure can display all or part of the
information in the application's window. The display
procedure typically creates the display based on an associated
data structure that represents the current data.

A display procedure is a call back procedure: the system calls
the appropriate display procedure when it needs to repaint a
particular portion of the screen. The system decides when to
paint a window by keeping an invalid list. This list represents
portions of the screen that contain invalid information. For
example, if the user uncovers a window that was previously
covered by another window, the window implementation will
call the display procedure for the window that is being
uncovered. A client can also call the window implementation
to specify that a portion of its display has become invalid.

The window implementation accumulates invalid areas until a
client requests a screen validation. At that point, it will call the
appropriate display procedures to repaint the screen.

When performance is critical, an application can also paint
directly to the screen instead of going through the display
procedure. Even if you choose to display directly to the screen,
however, you still need to provide a display procedure.
(Otherwise, when the user moves another window on top of
yours and then moves it back, there will be no way for the
window i"mplementation to repaint the display.) This chapter
has examples of both methods.

6.2 Invalidating and validating

VIEWPOINT PROGRAMMING COURSE

Either a client or a user can invalidate a portion of the screen.
The window package handles repainting as the result of user
actions, but if your program changes something that
invalidates your application's display, you are responsible for
ensuring that the display is correctly updated.

6-1

DISPLAYING INFORMATION ON THE SCREEN

6-2

To specify that a portion of the screen contains invalid
information, you call1nvalidateBox:

Window.lnvalidateBox: PROCEDURE [
window: window.Handle,
box: Window. Box,
clarity: Window.Clarity +- isDirty];

Window. Box: TYPE == RECORD [
place: Window.Place, dims: Window.Dims];

Window.Place: TYPE. UserTerminal.Coordinate;

Window.Dims: TYPE = RECORD [w, h: INTEGER];

Window.Clarity: TYPE = {isClean, isDirty};

box describes an invalid region with its position in the window
and its dimensions (width and height). place is relative to the
window's upper-left corner, which is defined to be at [0,0]. The
place, width, and height are all measured in pixels.

clarity specifies the current state of the window. isClean means
that the region is already white and there is nothing to erase;
isDirty means that there is some information displayed that the
system should erase before it displays the new information.

Calling Invalidate does not actually initiate a repaint
operation; it merely adds the specified area to the invalid list
for that window. To initiate the repaint, you need to call either
Validate or ValidateTree:

Window.Validate: PROCEDURE [window: Window.Handle];

Window.ValidateTree: PROCEDURE [
window: Window.Handle +-Window.rootWindow];

Calling Validate will affect only your window; calling
ValidateTree will update the tree of windows whose root is
window. As a simple example of calling Invalidate and
Validate, suppose that your application has a Redisplay
command in the header. When the user invokes this command
you should invalidate the entire window and then validate it:

RepaintMenuProc: MenuData.MenuProc = {
body: Window.Handle = StarWindowShell.GetBody[[window));
window.lnvalidateBox[body, [[0,0], [30000, 30000]));
Window.Validate[body]; };

Recall that within a MenuProc you have a handle to the
StarWindowShell and not the body window. Thus, as in the
example above, you must get a handle to the body window
before you do the invalidation and validation.

The [30000, 30000] dimensions are arbitrary; they just need to
be large enough to guarantee that you invalidate the entire
window. It is never wrong to invalidate a box that is larger than
you really need; the window implementation ensures that you
cannot paint outside the boundary of your window.

VIEWPOINT ~ROGRAMMING COURSE

DISPLAYING INFORMATION ON THE SCREEN

6.3 Writing a display procedure

VIEWPOINT PROGRAMMING COURSE

The display procedure is of type Window.DisplayProc:

Window.DisplayProc: TYPE • PROCEDURE [
window: Window.Handle];

Within a display procedure, you have two choices for how to
display information. You have access to a list of invalid regions
for the window, and you can repaint just the invalid regions, or
you can ignore the list and repaint the entire window.

If you want to enumerate the invalid regions and repaint each
one individually, you call Window.EnumeratelnvalidBoxes:

Window.EnumeratelnvalidBoxes: PROCEDURE [
window: Window.Handle,
proc: PROCEDURE [Window,Handle, Window.Box]];

EnumeratelnvalidBoxes will call proc once for each box on
window's invalid list, passing in the window handle and the
invalid region. The window passed to proc is the same as the
window passed to EnumeratelnvalidBoxes; this should be the
body window (the window parameter to the DisplayProc.)proc
is responsible for redisplaying the correct information in the
sped fi ed reg i on.

You must call EnumeratelnvalidBoxes from within a
DisplayProc. Here is an example of using this method:

DisplayGraphicSW: Window.DisplayProc •
BEGIN
data: DataHandle • FindContext[window];

RepaintGraphicSW: PROC [
window: Window. Handle, box: Window. Box] =
{RepaintBox[data.bitmap, window,box]};

Window.EnumeratelnvalidBoxes[
window, RepaintGraphicSW];

END;

When this display procedure is called, it makes two calls: one to
FindContext, and the other to EnumeratelnvalidBoxes. The call
to EnumeratelnvalidBoxes will in turn result in a call to
RepaintGraphicSW for each of the invalid boxes in window;
RepaintGraphicSW is then responsible for repainting the area
described by box. For now, don't worry about how RepaintBox
displays to the screen; the following sections discuss this.

The other way to write a DisplayProc is to ignore the invalid list
and just repaint the entire window. This isn't as inefficient as it
sounds, because ViewPoint keeps a bad phosphor list for each
window. The bad phosphor list consists of the visible portions
of the window's invalid areas; it thus represents the parts of
the window that need to be repainted. If your DisplayProc
ignores the invalid list and repaints the entire window, the
painting will be clipped to this list. This means that the window
implementation will only paint areas that are on the bad
phosphor list, and will ignore requests to paint other areas.

6·3

DISPLAYING INFORMATION ON THE SCREEN

6.3.1 SimpleTextDisplay

6-4

Thus, even when you try to repaint the entire window, the
window implementation will only repaint the areas that are
both invalid and visible. Thus, you should usually just repaint
your entire window within the DisplayProc; you only need to
use the EnumeratelnvalidBoxes method whe"n there is no bad
phosphor list (the window has never been validated) or when
redisplaying the entire window will take too long.

Whichever method you use, your display procedure should not
change the data structure; it should just paint the screen. To be
safe, you should generally MONITOR your display data structure
and make the display procedure an ENTRY procedure. (See
section 50.3.1 of the ViewPoint Programmer's Manual for a
complete discussion of this problem.)

The following sections discuss how to use the facilities of the
SimpleTextDisplay and Display interfaces to actually paint
information on the screen.

The SimpleTextDisplay interface provides facilities for
displaying text in a window. The primary procedure in this
interface is StringlntoWindow:

SimpleTextDisplay.StringlntoWindow: PROCEDURE [
stri ng: XString.Reader,
window: Window.Handle,
place: Window.Place,
lineWidth: CARDINAL +-CARDINAL.LAST,
maxNumberOflines: CARDINAL +- 1,
lineToDeltaY: CARDINAL +-0,
wordBreak: BOOLEAN +- TRUE,
flags: BitBlt.BitBltFlags +- Display.paintFlags]
RETURNS [lines, lastlineWidth: CARDINAL];

This procedure displays string in window, starting at place. The
other parameters describe formatting details; see the
SimpleTextDisplay documentation for details. For example:

Redisplay: Window.DisplayProc = {
data: Data +- GetContext [window];
writerBody: XString.WriterBody +- XString.NewWriterBody [

maxLength: 250, z: sysZ];
xfo: XFormat.Object +-xFormat.WriterObject [

w: @writerBody];

--put text and value of data. count in string
XFormat.String [h: @xfo, s: "This is a string displayed in a

body window using StringlntoWindow. The current
value of data.count is "L];

xFormat.Decimal [h: @xfo, n: data.count];

--display the string
[] +- SimpleTextDisplay.StringlntoWindow [

string: XString.ReaderFromWriter [@writerbody],
window: window, --The body window
place: [10,10], --Upper-left corner is [0, OJ
lineWidth: 300, --number of pixels wide
maxNumberOfLines: 10]; --Arbitrary-- };

VIEWPOINT PROGRAMMING COURSE

6.3.2 Display

VIEWPOINT PROGRAMMING COURSE

DISPLAYING INFORMATION ON THE SCREEN

This display procedure displays a constant string .and the
current value of data.count. data.count is just a count of
something interesting; it doesn't matter exactly what is being
counted. (Remember, window is a parameter to the
DisplayProc; it specifies the body window that is to be
painted.) Notice that the information displayed in the window
depends on the value of the variable count; if your program
changes the value of count, you need to do an Invalidate and
then a Validate to update the display.

The Display interface provides procedures to paint points,
lines, bitmaps, repeating patterns, boxes, circles, arcs, ellipses,
and so on. Because of the wide variety, we won't try to cover all
of the routines in this interface. As examples, however, here
are the declarations of two of the more common Display
procedures:

Display.Black: PROCEDURE [
window: Window.Handle,
box: Window.Box];

Display.Bitmap: PROCEDURE [
window: Window.Handle,
box: Window.Box,
address: Environment.BitAddress,
bitmapBitWidth: CARDINAL,
flags: BitBlt.BitBltFlags ~ paintFlags];

Environment.BitAddress: TYPE == MACHINE DEPENDENT RECORD [
word: LONG POINTER,
reserved: [O .. LAST[WORD]/Environment.bitsPerWord) ~ 0,
bit: [O .. Environment.bitsPerWord)];

Black just paints the specified portion of the display black.
There are similar procedures to paint a portion white or to
invert it.

Bitmap displays the bitmap specified by address and
bitmapBitWidth into box in window.

bitmapBitWidth specifies the width of the bitmap in pixels.
This must be a multiple of 16.

address is the field that describes the bitmap to be painted.
Within an address, word is a pointer to an array of bits (the
actual bitmap.) reserved and bit are primarily for the purposes
of lower-level routines; for the purposes of this course, they
will both always be O.

flags specifies how Bitmap should interact with the pixels that
are already displayed in the specified area. The default,
paintFlag·s, specifies that black source pixels should cause black
display pixels, and white source pixels have no effect. There are
various other alternative ways to interact with existing pixels,
such as XORing; check the Display chapter of the ViewPoint
Programmer's Manual for details.

6·5

DISPLAYING INFORMATION ON THE SCREEN

6.3.2.1 Example: Checkerboard

6-6

Here is a DisplayProc that draws the checkerboard in Figure
6.1.

Figure 6.1: The checkers display

DisplayProc: window.DisplayProc = {
boardWidth: INTEGER~(8*Defs.squareDims.w) + 8;
checkerWidth: INTEGER = Defs.squareDims.w;
checkerHeight: INTEGER = Defs.squareDims.h;
--the offset is the difference between the upper left hand
--corner of the window and the upper left hand corner of
--the checkerboard
offsetWidth: INTEGER ~ Defs.offset. w;
offsetHeight: INTEGER ~ Defs.offset.h;
mydata: Defs.Data ~ GetContext[window];

--draw edges of checkerboard. Use boxes of width 1 pixel
Display.Black[--upper left to upper right

window: window,
box: [place: [offsetWidth,offsetHeight],

dims: [boardWidth, 1]]];
Display.Black[--lower left to lower right

window: window,
box: [place: [offsetWidth,

(offsetHeight + boardWidth)],
dims: [boardWidth, 1]]];

Display.Black[--lower left to upper left
window: window,
box: [place: [offsetWidth,offsetHeight],

dims: [1, boardWidth)]];
Display.Black[--lower right to upper right

window: window, .
box: [place: [(offsetWidth + boardWidth),

offsetHeight),
dims: [1, boardWidth]]);

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

DISPLAYING INFORMATION ON THE SCREEN

-- Use Display. Line instead of Display. Black for variety
--draw 7 horizontal lines to make 8 boxes.
FOR i: CARDINAL IN [1 .. 8) DO

Display.Line[
window: window,
start: [x: offsetWidth + 0,

y: (offsetHeight + i*(checkerHeight + 1»J,
stop: [x: (offsetWidth + boardWidth),

y: (offsetHeight + i*(checkerHeight + 1»]];

--draw 7 vertical lines
Display.Line[

window: window,
start: [x: (offsetWidth + i*(checkerWidth + 1»,

y: offsetHeight + 0],
stop: [x: (offsetWidth + i*(checkerWidth + 1»,

y: (offsetHeight + boardWidth)]];
ENDLOOP;

--draw gray boxes
FOR i: CARDINAL IN [0 .. 8) DO

FOR j: CARDINAL IN [0 .. 8) DO
IF (i MOD 2 • j MOD 2) THEN Display.Gray[

window: window,
box: [place: [

x: (offsetWidth + 1 + i*(checkerWidth + 1»,
y: (offsetHeight + 1 + j*(checkerHeight + 1»],

dims: [checkerWidth, checkerHeight]]] ;
ENDLOOP;

ENDLOOP;

-- put the checkers on the board
FOR m: CARDINAL IN [0 .. 8) DO

FOR n: CARDINAL IN [0 .. 8) DO
bitmap: Defs.Bitmapltems;
SELECT mydata[m][n].piece FROM

black • > bitmap +- black;
blackKing = > bitmap +- blackKing;
white. > bitmap +-white;
whiteKing = > bitmap +- whiteKing;

ENDCASE = > LOOP; --no piece here
Display. Bitma p[

window: window,
box: [place: mydata[m][n].place,

dims: Defs.squareDims],
address: Defs.GetChecker[bitmap],
bitmapBitWidth: checkerWidth,
flags: Display.replaceFlags];

IF mydata[m][n].marked THEN Display.lnvert[
window: window,
box: [place: mydata[m][n].place,

dims: Defs.squareDims]];
ENDLOOP;

ENDLOOP; };

6-7

DISPLAYING INFORMATION ON THE SCREEN

6.3.2.2 Example: FlySwatter

6-8

Once an actual game is in progress, areas of the screen
(checkerboard squares) will gradually become invalid as the
user moves the checkers around. Thus, the code to move and
delete checkers requires invalidations and validations. For
example, the code to delete a piece might look like this:

DeletePiece: PROC[
square: Defs.Square, window: Window.handle] = {

IF square. NIL THEN RETURN;
square.piece Eo- none;
Window.l nva I i date Box[

window, [square.place, Defs.squareDims]];
Window.Validate[window];
};

This code assumes that the data type Defs.Square contains fields
for the tool window, the location of the square in the matrix,
and the current contents of the square.

Here is an example that uses Display.White and Display.Bitmap.
This example is part of a "Fly Swatter" game that displays flies
in the body window of an application, turns the cursor into a
flyswatter, and lets the user swat flies on the screen.

--Here is part of the interface FlyDefs
Data: TYPE. LONG POINTER TO DataObject;

DataObject: TYPE = RECORD [
iterations: CARDINAL Eo- 0, -- number of times fly has appeared
numberOfHits: CARDINAL Eo- 0, -- successful hits
stopGame: BOOLEAN Eo-TRUE]; -- game in progress or not

--messages stuff
Key: TYPE. {startGame, ... };

Get: PROCEDURE [key: Key] RETURNS [XString.ReaderBody];

--the implementation
FlySwatterlmpl: PROGRAM ... =
BEGIN
sysZ: UNCOUNTED ZONE = Heap.systemZone;
--the width of a "fly"
FlyBitMapWidth: CARDINAL = 32;
--bitmap is 32x 32, so it takes 64 16-bit words to represent a fly.
WordslnPicture: CARDINAL = 64;
lconPictureBits: TYPE. ARRAY [O .. WordslnPicture) OF WORD;

VIEWPOINT ~ROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

DISPLAYING INFORMATION ON THE SCREEN

--procedure to start game
PlayGame: PUBLIC PROCEDURE [

body: Window.Handle, data: FlyDefs.Data] •
BEGIN
ticks: Process.Ticks • Process.MsecToTicks[1000];
startGame: XString.ReaderBody ~

Defs. Get[Defs. Key .sta rtGa me];

< < Create a temporary area of storage for the bitmap, to
keep itout of the program's frame. This is the standard way
to allocate space for a bitmap. > >
bitBuffer: LONG POINTER TO IconPictureBits ~

Space.ScratchMap[1].pointer;

-- make the cursor turn into a flyswatter
newCursorBitMap: UserTerminal.CursorArray ~ [177776B, ...];
swatter: Cursor.Object ~ [[Iast,7,7], newCursorBitMap];
Cursor .Store[@swatter];

--start out with whole body window white
Display.White[body,UO,OJ. FlyDefs.bodyWindowDims]];

--initialize bitBuffer to contain bitmap picture of fly
bitBuffer t ~ [000007B, 174000B ...];

-- reset all the data variables
data.iterations ~ 0;
data.numberOfHits ~O;
data.stopGame ~ FALSE;

--post message telling user that game is starting
Attention.PoSt[@startGame];

--choose a random location for the fly; store in myBox
FOR i: CARDINAL IN [O .. FlyDefs.iterationsPerGame)
WHILE NOT data.stopGame DO

xPos: INTEGER~ .. random location
yPos: INTEGER ~ .. random location
myBox: Window.Box ~

[[xPos, yPos], [FlyBitMapWidth, FlyBitMapWidth]];

--display the fly in appropriate place
Display.Bitmap[window: body,

box: myBox,
bitmapBitWidth: FlyBitMapWidth,
address: [bitBuffer, 0, 0]];

--increment count of number of flies
data.iterations ~ data.iterations + 1;

-- wait until its time to do next fly
Process.Pause[ticks:ticks];

ENDLOOP;

--Game is over, so clear the display, reset the pointer, and
--print out results of game.
Display.White[body,[[O,O], FlyDefs.bodyWindowDims]];
data.stopGame ~TRUE;
Cursor.Set[textPointer];
Pri ntStats[body ,data];
bitBuffer ~space.Unmap[bitBuffer];

END;

6-9

DISPLAYING INFORMATION ON THE SCREEN

The first step is to create a bitmap of a flyswatter, and store
that as the current cursor representation. (Note: Appendix B,
Icon Editor, discusses how to create bitmaps.) The second step
is to create a bitmap picture of a fly, and display it periodically
on the screen. This example displays a fly once a second; a real
game would make this time variable. We did not include the
code that decides where to put the fly, since it is incidental to
the example.

When the game is over, make the entire body window white,
and then call PrintStats to print the results of the game.

You should notice that the procedure PlayGame is not a display
procedure. When an application wants to display something
on the screen, the standard method is to update your data
structures, call Invalidate and then call Validate. This will result
in a call to the application's display procedure, which will
update the display.

However, when painting performance is critical, you can paint
directly to the screen without going through your display
procedure, as illustrated in this example. This example puts a
fly on the screen once every second, so soing regular
invalidations and validations would be inefficient.

In fact, there is no display procedure for this example. Even if
you generally paint directly to the display, you generally still
need a display procedure to recreate the state of the screen
when the user moves windows around. However, in this case,
there is no "current state" of the display to be lost if you cover
the window and then uncover it, so there is no need for a
display procedure.

6.4 LimitProcs and AdjustProcs

6-10

Depending on the kind of information that you display, there
are times when you want to put some restrictions on the size or
location of your shell. For example, you might want to ensure
that the shell always retains a certain minimum size, or that it is
always on the screen somewhere. You can exercise this kind of
control with LimitProcs and AdjustProcs.

A LimitProc gives you control over the size and placement of a
shell. A LimitProc is of type StarWindowShell.LimitProc:

StarWindowShell.LimitProc: TYPE = PROCEDURE [
sws: StarWindowShell.Handle,
box: Window. Box]
RETURNS [Window.BOx];

The window system will call the LimitProc for a window
whenever the size or location of the shell is about to change.
You then have veto or modification rights over the size and
location of the shell. box is the requested size of the shell; the
return value is the size that you want the shell to be. A
LimitProc is thus just a way to potentially change box before
the actual size change takes place. You set and obtain
LimitProcs with the following procedures:

VIEWPOINT PROGRAMMING COURSE

6.5 Summary

VIEWPOINT PROGRAMMING COURSE

DISPLAYING INFORMATION ON THE SCREEN

StarWindowShell.GetLimitProc: PROCEDURE [
SWS: StarWindowShell.Handle]
RETURNS [StarWindowSheli. Li m itProc];

StarWindowShell.SetLimitProc: PROCEDURE [
SWS: StarWindowShell.Handle,
proc: StarWindowShell.LimitProc]
RETURNS [old: StarWindowshell.LimitProc];

You should call SetLimitProc from your MakeShell procedure.
There is a default LimitProc, StarWindowShell.StandardLimitProc,
that keeps shells on the screen and keeps them from getting
too small. You only need to write your own limit procedure if
you have some special needs.

If your body window display depends on the size of the
surrounding shell, then you need to write an AdjustProc. An
AdjustProc is of type StarWindowShell.AdjustProc:

StarWindowShell.AdjustProc: TYPE = PROCEDURE [
sws: StarWindowshell.Handle,
box: Window. Box,
when: StarWindowSheli. When];

StarWindowShell.When: TYPE = {before, after};

StarWindowShell.GetAdjustProc: PROCEDURE [
sws: StarWindowShell.Handle]
RETURNS [StarWindowShell.Adj ustProc];

StarWindowShell.SetAdjustProc: PROCEDURE [
SWS: StarWindowShell.Handle,
proc: StarWindowShell.Adj ustProc]
RETURNS [old: StarWindowShell.AdjustProc];

An AdjustProc will be called both before and after a shell
changes size. box is the interior size of the StarWindowShel1.
when indicates whether the current call is before or after the
size changes. Typically, the after case is more interesting, since
you may have to adjust the display to fit the new box size.

For more information on LimitProcs and AdjustProcs, seethe
StarWindowShell documentation.

Using SimpleTextDisplay and Display, an application can
display arbitrary text and graphics in a body window. Most
body windows that display information must provide a display
procedure that can recreate all or part of that display on
demand. The window implementation will call this procedure
whenever it needs to redisplay the application's window. The
only exceptions to this rule are applications like the Fly Swatter,
which have no state to recreate.

If an application wants to change its display, it can either just
display the new information directly to the screen, or it can
update its data structures to represent the correct information,
call Window.lnvalidateBox to specify that a portion of the screen
is invalid, and then call Window.Validate to force the window
system to update the display. The latter method is preferred. If

6-11

DISPLAYING INFORMATION ON THE SCREEN

6.6 Exercise

6-12

you want to display information directly to the screen without
going through your DisplayProc, you should read the caveats in
section 50.3 of the ViewPoint Programmer's Guide.

If the informationthat you display depends on the size or
location of the shell, then you need to write a
StarWindowShell.LimitProc and/or a StarWindowShell.AdjustProc.
The LimitProc allows you to exercise control over the location
o,f your shell; the AdjustProc allows you to adjust the contents
display according to the size and location of the shell.

Text Window provides a non-editable window for displaying
text. You display text by selecting an icon (simple document)
on the desktop and invoking the Load command. If no file is
currently selected, Load will clear the window.

Text Window also has a Wrap command that toggles the state
of the wrapping. When the wrapping is on, the line width will
be equal to the width of the window (the text will fit the body
window.) When wrapping is off, the line width will be
constant, and you will have to make the window bigger if you
want to see more of the text. Figure 6.2 illustrates the Text
Window tool with a file loaded in it and wrapping turned on.

Text Window

Whet1 to the sessions of sweet silent thought
I surnrnon up remernbrance of things past.,
I sign the lack of many a thing I sought ...
And with old 'Tloes new wail rny dear tirnes vaste:
Then can I dro vn an eye ... unus"'d to flo~N ...
For precious friends hid in death"'s dateless night.

nd weep afresh love"'s long-since cancelrd voe ...
Po,nd rnoan the expense of many a vanish"'d sight,
Then can I grieve at grievances foregone ...
And heavily fron", woe to Vioe tell oE(r
The sad account of for-bernoaned tYloan ...

hich I new pay as if not paid before,
But if the while I think on thee ... dear friend",
AII/osses are restored and sorrO~NS end,

Figure 6.2 The Text Window tool

You are to write the user interface for the Text Window and
implement the Load and Wrap commands. The procedures that
you will 'implement are in the template TextExercise.mesa.
Other files that you will need are Textlmpl.mesa,
TextDefs.mesa, and Text.Config.

VIEWPOINT PROGRAMMING COURSE

7.1 Overview

...... (Execute query)

Command

item

VIEWPOINT PROGRAMMING COURSE

Choice item

7. FORM WINDOWS

Once you have created a body wi ndow for an appl ication, you
need to define its user interface. The last chapter discussed
how to display arbitrary text and graphics in a body window.
This chapter discusses how to convert a body window into a
form window.

A form window is a body window whose purpose is to display
the parameters and commands associated with an application.
Thus, you might want to use a form window if your application
requires specific user input, commands, and feedback.

Form windows are also the basis for property sheets, which
provide a standardized way to examine and change the
properties of an object. This chapter discusses the facilities of
the FormWindow interface; the next chapter discusses the
PropertySheet interface.

" " "

The form window is based on the abstraction of a form, such as
a personnel form or an income tax form, that has specific
blanks for the user to fill in. Figure 7.1 illustrates a typical form
window.

" " "

Data /-.
" /roJarne

III,il'll E ~,'1 P # DEPT,

I William Baurnann

,,// Aliases I·-:-Wild Billy"-:-
" ~------------------~

/,,/ KnO¥ln vices I Square dancing
,," ~

Figure 7.1: Form window

A form window contains form items, which generally consist of
a keyword, such as the name of a command or parameter, and
space for the user to fill in values for parameters. The user fills

7-1

FORM WINDOWS

7.2 Creating form windows

7-2

in the appropriate parameters and then invokes a command.
Here is a list of form item types:

boolean item A boolean item has two states: on and off (or
TRUE and FALSE). When the value is TRUE, the item
is highlighted.

choice item A choice item has an enumerated list of choices,
from which the user can select one value at a
time. A choice item's value is of type
FormWindow.Choicel ndex.

text item A text item is a user-editable string; its value is
of type XString.ReaderBody.

decimal item A decimal item is a text item that has a value of
type XLReal.Number.

integer item An integer item is a text item that has a value of
type LONG INTEGER.

command item A command item is an item that has an
associated procedure. The system calls this
procedure when the user invokes the
command.

tagonly item A tagonly item is a string that the user can
neither select nor edit.

window item A window item is a window that is a child of the
form window and can contain anything you
like. A window item's value is a Window.Handle.

To create a form window, call FormWindow.Create:

FormWindow.Create: PROCEDURE[
window: Window.Handle,
ma keltems: FormWindow.MakeltemsProc,
layoutProc: Formwindow.LayoutProc +- NIL,
windowChangeProc: FormWindow.GlobalChangeProc +-NIL,
zone: UNCOUNTED ZONE +-NIL,
cI ientData: LONG POINTER +- NIL];

Create takes an ordinary window and makes it a form window.
Typically, the window parameter will be a body window that
you created by calling StarWindowshell.CreateBody.

makeltems, layoutProc, and windowChangeProc are call-back
procedures. makeltems creates the items that you want in your
form window; layoutProc specifies the desired position of the
items in the window, and windowChangeProc allows you to
react when the value of something in the form window
changes. The following sections discuss each of these
parameters in detail. There is also an example in section 7.2.4
that contains a full example of a call to Create.

VIEWPOINT ~ROGRAMMING COURSE

7.2.1 MakeltemsProcs

7.2.1.1 MakeCommandltem

VIEWPOINT PROGRAMMING COURSE

FORM WINDOWS

zone is the zone from which FormWindow will allocate storage
for the items in the form window. If you don't supply a zone,
FormWindow will use its own private zone.

clientData is passed to makeltems, layoutProc, and
windowChangeProc. This parameter is for your own use: if
there is any additional information that you want to pass to
your makeltems, layoutProc, or windowchangeProc, you can
do it via clientData.

The Makeltems parameter to Create is of type
FormWindow.MakeltemsProc:

FormWindow.MakeltemsProc: TYPE :II PROCEDURE [
window: Window.Handle, --form window
clientData: LONG POINTER]; --pointer passed to Create

This procedure allocates the various items that you want to
display in your form window. The FormWindow interface
provides a procedure for creating each type of item:
MakeBooleanltem, MakeChoiceltem, MakeCommandltem,and
so on. In your Makeltems procedure, you should just call the
appropriate procedure for each item that you want in your
form window.

Obviously, since each type of form item has different
characteristics, the procedures to make the various kinds of
form items are slightly different. The following sections
describe MakeCommandltem, MakeTextltem, and
MakeChoiceltem; consult the ViewPoint Programmer's Manual
for the declarations of any of the other MakeXXX procedures.

The example in section 7.2.4 contains an example of a
MakeltemsProc.

FormSW.MakeCommandltem: PROCEDURE [
window: Window.Handle,
myKey: Formsw.ltemKey,
tag: XString.Reader +-NIL,
suffix: XString.Reader +-NIL,
visibility: Formsw.Visibility +- visible,
boxed: BOOLEAN +-TRUE,
readOnly: BOOLEAN +-FALSE,
commandProc: FormSW.commandProc,
commandName: XString.Reader];

This procedure creates a command item. The first seven
parameters are common to all the procedures that create form
items; only the last two are specific to command items.

window is the form window. (This should be the same as the
wi ndow passed to your MakeltemsProc.)

myKey is a key that you define for the item. The item key
uniquely identifies the item. You will need to use this key to
make calls on other FormWindow procedures. You can use any

7-3

FORM WINDOWS

7.2.1.2 MakeTextltem

7-4

scheme you want for defining keys, but each item in a given
form window must have a unique key. (An ItemKey is just a
CARDINAl.)

tag is text that will appear before (to the left of) the item on
the same line; suffix is text that will appear after (to the right
of) the item on the same line. Typically, there is no tag or suffix
associated with a command item.

visibility indicates whether the item should be displayed on the
screen. The default is visible. For information on invisible items,
see the ViewPoint Programmer's Manual.}

boxed indicates whether the item should have a box drawn
around it.

readOnly indicates whether the user can change the value of
the item. (If an item is readOnly, the client can still change the
value by calling appropriate procedures in the FormWindow
interface.)

The last two parameters are specific to a command item. The
commandName is the name that will appear in the form
window; invoking this command will result in a call to
commandProc. A commandProc is of type
FormWindow.CommandProc:

FormWindow.CommandProc: TYPE = PROCEDURE [
window: Window.Handle,
item:FormSW.ltemKey);

FormWindow.MakeTextltem: PROCEDURE [
window: Window.Handle,
myKey: FormWindow.ltemKey,
tag: XString.Reader E-NIL,
suffix: XString. Reader E- NIL,
visibility: FormWindow.Visibility E- visible,
boxed: BOOLEAN E-TRUE,
readOnly: BOOLEAN E- FALSE,
width: CARDINAL,
initString: XString.Reader E-NIL,
wra pU nderTag: BOOLEAN E- FALSE,
passwordFeedback: BOOLEAN E-FALSE,
hintsProc: FormWindow.TextHintsProc E- NIL,
nextOutOfProc: FormWindow.NextOutOfProc E- NIL,
SPECIALKeyboard: BlackKeys.Keyboard E- NIL];

The first seven parameters are identical to those in
MakeCommandltem.

width is the desired width of the item, in screen dots.

initString is the initial string (default value) for the text item.

wrapUnderTag is not yet implemented.

passwordFeedback indicates that the text should be displayed
in an unreadable form (asterisks) rather than as normal

VIEWPOINT PROGRAMMING COURSE

7.2.1.3 MakeChoieeltem

VIEWPOINT PROGRAMMING COURSE

FORM WINDOWS

characters. The correct value of the string is maintained
internally.

hintsProc will be called to make a popup hint menu for the
user. nextOutOfProc will be called when the user presses the
next key while the input focus is in this text item. This gives the
client an opportuntity to create more text items.
SPECIALKeyboard allows clients to make a special keyboard
available to the user when he is typing into a text field.

These last three parameters are beyond the scope ofthis course.
For more information, see the FormWindow documentation in
the ViewPoint Programmer's Manual.

FormWindow.MakeChoieeltem: PROCEDURE [
window: Window.Handle,
myKey: FormWindow.ltemKey,
tag: XString.Reader ~NIL,
suffix: XString.Reader ~ NIL,
visibility: FormWindow.Visibility ~ visible,
boxed: BOOLEAN ~ TRUE,
readOnly: BOOLEAN ~ FALSE,
va lues: FormWindow.Choiceltems,
in itChoice: FormWindow.Choicel ndex,
fullyDisplayed: BOOLEAN ~TRUE,
vertiea:llyDisplayed: BOOLEAN ~ FALSE,
hintsProe: FormWindow.ChoieeHintsProe ~ NIL,
ehangeProc: FormWindow.ChoieeChangeProe ~ NIL,
outlineOrHighlight: FormWindow.OutlineOrHighlight ~

highlight];

This procedure creates a choice item. A choice item is an
enumerated list of choices, from which the user selects the
current value of the item. When the user clicks on a choice, that
choice becomes the current choice.

values is the list of all possible choices. It is of type Choieeltems:

FormWindow.Choieeltems: TYPE = LONG DESCRIPTOR FOR ARRAY
FormWindow.Choieelndex OF FormWindow.Choieeltem;

FormWindow.Choieelndex: TYPE = CARDINAL [0 .. 37777B];

FormWindow.Choiceltem: TYPE = RECORD [
var: SELEcTtype: FormWindow.ChoieeltemType FROM

string :II > [
ehoiceNumber: FormWindow.Choieelndex,
string: XString.ReaderBody],

bitmap = > [
ehoiceN umber: FormWindow .Choi eel ndex,
bitmap: FormWindow.Bitmap],

wraplndieator = > NULL];

FormWindow.Bitmap: TYPE :II RECORD [
height, width: CARDINAL,
bitsPerLine: CARDINAL,
bits; Environment. BitAdd ress];

Thus, each choice consists of either a stri ng or a bitmap, and an
associated Choieelndex. (Chapter 6, Displaying information on

7-5

FORM WINDOWS

7.2.2 LayoutProcs

7-6

the screen, discusses bitmaps in more detail.) You define the
item indices; the values don't matter, except that each item
within a given choice must have a unique index.

For string choices, the FormWindow implementation will copy
the storage for the string; for bitmap choices, it will not. Thus,
if you use a bitmap, you must ensure that the bitmap pointer is
valid for the life of the form window.

wraplndicator is not really a choice; it allows you to specify
that the choices should go onto a new line. wraplndicator is
thus exclusively for formatting.

initChoice specifies which value should be the initial choice.

fullyDisplayed indicates whether to display all choices or just
the current one. If fullyDisplayed == FALSE, the rest of the
choices are available from a popup menu.

verticallyDisplayed indicates whether to display the choices
vertically or horizontally. This is only important when
fullyDisplayed is TRUE.

hintsProc allows you to create a popup hint menu. The default
creates a hint menu with all possible choices. See the
FormWindow documentation for details.

changeProc will be called whenever the choice changes.
Section 7.2.3 discusses change procedures in more detail.

outlineOrHighlight specifies whether to highlight or underline
the selected item.

FOrmWindow.OutlineOrHighlight: TYPE == {outline, highlight};

The second procedure parameter to Create is a layoutProc,
which defines the layout of the form items on the screen. The
layout procedure is of type FormWindow.layoutProc:

FormWindow.layoutProc:TYPE == PROCEDURE [
window: Window.Handle,
clientData: LONG POINTER];

Unless you explicitly layout an item, it will not appear in the
form window at all. If you don't want to write your own layout
procedure, you can use FormWindow.Defaultlayout, which
places each item on a separate line. If you prefer to write your
own layout procedure, you can use either flexible layout or
fixed layout.

Flexible layout allows text, decimal, integer, and window items
to grow and shrink (and other items to move around
accordingly) as the user or program changes values of items in
the form window. Among other things, this kind of layout
simplifies multinational conversion. Fixed layout, on the other
hand, does not allow any movement; you specify where the
items are to go, and they remain there until you explicitly move

VIEWPOINT ~ROGRAMMING COURSE

7.2.2.1 Flexible layout

VIEWPOINT PROGRAMMING COURSE

FORM WINDOWS

them. Flexible layout is the preferred method. The following
sections discuss both methods in detail.

A form window with flexible layout consists of horizontal lines
with zero or more items on each line. Each line may be a
different height, but should be at least
FormWindow.defaultLineHeight to avoid overlap. You can
control vertical spacing by using appropriate heights for the
lines. Similarly, you can control horizontal spacing with
TabStops. The example in Section 7.2.4 uses TabStops; for
more detail, you will have to consult the FormWindow
documentation.

To create a flexible layout, start by calling either
FormWindow.AppendLine or FormWindow.lnsertLine to create a
line. Once you have a line, you put items on that line by calling
FormWindow.Appendltem or FormWindow.lnsertltem. The Append
routines add items after the previously created line or item; the
Insert routines add items between previously created items or
lines:

FormWindow.AppendLine: PROCEDURE [
window: Window.Handle,
height: CARDINAL t-FormWindow.defaultLineHeight] --In pixels
RETURNS [Iine:FormWindow. Line];

FormWindow.lnsertLine: PROCEDURE [
window: Window.Handle,
before: FormWindow.Line,
height: CARDINAL t- FormWindow.defaultLineHeight]
RETURNS [line: FormWindow.Line];

FormWindow.Appendltem: PROCEDURE [
window: Window.Handle,
item: FormWindow.ltemKey,
line: FormWindow.Line,
preMargin: CARDINAL +-0,
tabStop: CARDINAL +- nextTabStop,
repaint: BOOLEAN +-TRUE];

FormWindow.lnsertltem: PROCEDURE [
window: Window.Handle,
item: FormWindow.ltemKey,
line: FormWindow.Line,
beforeltem: FormWindow.ltemKey,
preMargin: CARDINAL +-0,
tabStop: CARDINAL +- FormWindow.nextTabStop,
repaint: BOOLEAN +-TRUE];

Here is an example of a layout procedure using the flexible
method:

7-7

FORM WINDOWS

7.2.2.2 Fixed layout

7-8

LayoutFormltems: FormWindow.LayoutProc = {
--create first line

line: FormWindow.Line ~FormWindow.AppendLine
[window: window,
-- height ~ defaultLi neHeight --];

--add items whose keys are 1 and 4 to first line
FormWindow.Appendltem [

window: window, item: 1, line: line];
FormWindow.Appendltem

[window: window, item: 4, line: line];
--Create second line
line ~FormWindow.AppendLine [

window: window];
--add item whose key is 2 to second line
FormWindow.Appendltem [

window: window, item: 2, line: line];
--create third line
line ~ FormWindow.AppendLine [window: window];
--add item whose key is 3 to third line
FormWindow.Appendltem [

window: window, item: 3, line: line];
};

With fixed layout, you call FormWindow.SetltemBox to specify
the exact position of each item:

FOrmWindow.SetltemBox: PROCEDURE [
window: Window.Handle,
item: Formwindow.ltemKey,
box: window.Box];

Window.Box: TYPE = RECORD [place: Window.Place,
dims: Window.Dims];

Window.Place: TYPE = UserTerminal.Coordinate;

Window.Dim~: TYPE = RECORD [w: INTEGER, h: INTEGER];

With this method, all items stay where you put them unless you
make another call to SetltemBox. Thus, text, decimal, integer,
and window items will not grow or shrink. This method is
incompatible with flexible layout: either all layout must be
flexible, or all layout must be fixed. Here is an example of
laying out a window using the fixed method:

LayoutFormltems: FormWindow.LayoutProc = {
FormWindow.SetltemBox [

window: window, item: 1, box: [[10,20],[60,20]];
FormWindow.SetltemBox [w

indow: window, item: 2, box: [[10,50],[45,20]];
FormWindow.SetltemBox [

window: window, item: 3, box: [[20,80],[150,120]];
FormWindow.SetltemBox [w

indow: window, item: 4, box: [[70,20],[60,80]];
};

VIEWPOINT PROGRAMMING COURSE

7.2.3 ChangeProcs

VIEWPOINT PROGRAMMING COURSE

FORM WINDOWS

The third procedure parameter to Create is a change
procedure. When the user changes somethi ng in the form
window, you typically need to recognize that change and act
upon it. There are three ways that you can monitor changes in
a form window: with a global change procedure, with a local
change procedure, or with a changed boolean.

The change procedure that you pass to Create is a global
change procedure that ViewPoint will call whenever a user or a
program changes the value of an item in the form window.

FOrmWindow.GlobaIChangeProc: TYPE = PROCEDURE [
window: Window.Handle,
item: FormWindow.ltemKey,
calledBecauseOf: FormWindow.ChangeReason,
clientData: LONG POINTER];

FOrmWindow.ChangeReason: TYPE = {user, client, restore};

Whenever the value of any item in the window changes,
ViewPoint will call your GlobalChangeProc with the key of the
item that was changed. If more than one item was changed,
item will be nullltemKey and you will have to use the changed
boolean (discussed below) to decide which items have
changed.

calledBecauseOf specifies the kind of change. (Restore means
that the client called FormWindow.Restore to return the form
window to a former state.)

You can also associate local change procedures with particular
kinds of items, such as booleans and choice items. You can
associate a local change procedure with an item when you
make the item. (Note: if a window has both a global change
procedure and a local change procedure, the local one will be
ca II ed fi rst.)

The thi rd way to keep track is with the II changed boolean."
Every item that has a value that the user can change (all except
tag-only, command, and window items) has an associated
changed boolean. The initial value of this boolean is always
FALSE. When the value of an item changes, the FormWindow
implementation sets the boolean to TRUE. You can thus check
the boolean for a given item to fi nd out if that item has
changed.You are responsible for setting the boolean back to
FALSE.

The FormWindow interface provides procedures that you can
call to see if any items in the window have changed
(HasAnyBeenChanged), to see if a specific item has been
changed (HasBeenChanged), to reset the boolean for an
individual item (ResetChanged), and to reset all booleans
(ResetAIIChanged). See the FormWindow chapter of the
ViewPoint Programmer's Manual for detai Is.

7-9

FORM WINDOWS

7.2.4 Example

7-10

Here is an example that creates the application illustrated in
Figure 7.1.

DIRECTORY.

Example: PROGRAM IMPORTS ... = {
Items: TYPE = {checkforvalidity, data, execute Query, name,

aliases, born, knownVices};

formWindowDims: Window.Dims +- [450, 250];
sheliDims: Window.Dims • [550,750];-- size of tool
name: XString.ReaderBody -Eo- XString.FromSTRING[IExample"L];

tabStoplnterval: CARDINAL = 50;
context: Context. Type -Eo-Context.UniqueType[];

-- Procedures

--register command in Attention Menu
Init: PROCEDURE :I {

Attention.AddMenultem [

};

MenuData.Createltem [
zone: Heap.systemZone,
name: @name,
proc: MakeShell]];

< < create StarWindowShell with one body window. Make
body window a form window, and then display shell on
screen.»
MakeShell: MenuData.MenuProc = {

shell: StarWindowShell.Handle = StarWindowShell.Create [
name: @name];

formWindow: Window.Handle -Eo
StarWindowShell.CreateBody [

sws: shell,
box: [[0,0], formWindowDims]];

FormWindow.Create [
window: formWindow,
makeltemsProc: Makeltems,
layoutProc: DoLayout];

StarWindowShell.SetPreferredDims [shell, sheIIDims];
StarWindowShell.Push [shell];
};

--create the items in the form window
Makeltems: FormWindow.MakeltemsProc = {

fwz: UNCOUNTED ZONE = FormWindow,GetZone[window];

--create Check for validity boolean
BEGIN
rb: XString.ReaderBody-Eo

XString.FromSTRING["Check for validity"L];
FormWindow.MakeBooleanltem [

window: window,
myKey: Items.checkforvalidity.ORD,
initBoolean: TRUE,
label: [string[rb]]];

END;

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

FORM WINDOWS

--create Data choice item
BEGIN
choiceO: XString.ReaderBody Eo

XString.FromSTRING[INAME"L];
choice1: XString.ReaderBody Eo

XString.FromSTRING["EMP NO. ilL];
choice2: XString.ReaderBody Eo

XString.FromSTRING["DEPT. ilL];
tag: XString.ReaderBody Eo-XString.FromSTRING["Data"L];
choices: ARRAY [0 .. 3) OF FormWindow.Choiceltem Eo- [

[string[O, choiceO]],
[string[1, choice1]],
[string[2, choice2]]];

FormWindow.MakeChoiceltem [
window: window,
myKey: Items.data.ORO,
tag: @tag,
values: OESCRIPTOR[choices],
initChoice: 0];

END;

--Create command item
BEGIN
rb: XString.ReaderBody Eo-XString.FromSTRING[

"Execute Query"L];
FormWindow.MakeCommandltem [

window: window,
myKey: Items.executeQuery.oRo,
commandProc: ExecuteQuery,
commandName: @rb];

END;

--Create first text item. Omit code for other text items,
--since they are all nearly identical.
BEGIN
initString: XString.ReaderBody Eo

XString.FromSTRING["Wiliiam Baumann"L];
tag: XString.ReaderBody E-XString.FromSTRING["Name:"L];
FormWindow.MakeTextltem [

window: window,
myKey: Items.name.oRo,
tag: @tag,
width: 40,
initString: @initString];

END;
... };

7-11

FORM WINDOWS

7-12

--layout the form window with flexible layout
DoLayout: FormWindow.LayoutProc = {

lineLeading: CARDINAL = 6; --space between lines
topMargin: CARDINAL = 16; --space before first line
line: FormWindow.Line;

--tabs fixed at 50 spaces apart. Line up data, name,
--aliases, and known vices vertically
tabChoice: fixed FormWindow.TabStops =

[fixed[tabStoplnterval]];
FormWindow. SetTa bStops[

window: window, tabStops: tabChoice];
-- Line 1: check for validity boolean and data choice
line ~ FormWindow.AppendLine [

window: window,
spaceAboveLine: topMargin];

Formwindow.Appendltem [
window: window,
item: Items.checkforvalidity.ORD,
line: line,
tabStop: 161 tabStoplnterval,
preMargin: 16 MODtabStoplnterval];

FormWindow.Appendltem [
window: window,
item: Items.data.ORD,
line: line,
tabStop: 2121 tabStoplnterval,
preMargin: 212 MOD tabStoplnterval];

-- Line 2: blank line
line ~ FormWindow.AppendLine [

window: window,
spaceAboveLine: IineLeading];

-- Line 3: execute query command and name text item
line ~ FormWindow.AppendLine [

window: window,
spaceAboveLine: IineLeading];

FormWi ndow .Appendltem [
window: window,
item: Items.executeQuery.ORD,
line: line,
tabStop: 161 tabStoplnterval,
preMargin: 16 MOD tabStoplnterval];

FormWi ndow.Appendltem [
window: window,
item: Items.name.ORD,
line: line,
tabStop: 2011 tabStoplnterval,
preMargin: 201 MODtabStoplnterval];

-- Line 4: aliases ...
--Line 5: known vices ...
};

-- Mainline code
Init[];

} ...

VIEWPOINT PROGRAMMING COURSE

FORM WINDOWS

7.3 Getting and setting values

Every item that has a value that the user can change (all except
tag-only and command items) also has procedures for the
client to get and set the value. For example, the procedures for
boolean items are called FormWindow.GetBooleanltemValue and
FormWindow.SetBooleanltemValue:

FormWindow.GetBooleanltemValue: PROCEDURE [
window: Window.Handle,
item: FormWindow.ltemKey]
RETURNS [value: BOOLEAN];

FOrmWindow.SetBooleanltemValue: PROCEDURE [
window: Window.Handle,
item: FormWindow.ltemKey,
newValue: BOOLEAN,
repaint: BOOLEAN +-TRUE];

For example, to get the value of the Check for validity boolean,
you could make the following call:

valid: BOOLEAN +-FormWindow.GetBooleanltemValue[
window, .
items.checkForValidity.ORD];

The procedures to get and set the values of other types are
nearly identical, except for the type of the value. See the
ViewPoint Programmer's Manual if you want more details.

7.4 Destroying a form window

7.5 Summary

FormWindow.Destroy: PROCEDURE [window: Window.Handle];

Destroy destroys all FormWindow data associated with
window, turning it back into an ordinary window. This
procedure does not destroy the window itself; it destroys the
form items within the window. You can also use either
FormWindow.Destroyltem or FormWindow.Destroyltems to destroy
individual items without destroying all of the items in the
window.

Form windows provide a standardized user interface for
collecting parameters.

To create a form window, perform the following steps:

• Call FormWindow.Create, passing in the following parameters:

• An.existing body window

• A MakeltemsProc, in which you need to create each item
that you want to have in your form window.

• An optional LayoutProc, which specifies where the items
are to appear in the formwindow. Your layout

VIEWPOINT PROGRAMMING COURSE 7-13

FORM WINDOWS

7.6 Exercise

7-14

TimeClock

Print Report

Editing

procedure can use either fixed layout or flexible layout.
If you don't supply a layout procedure, the default is to
put each item on a separate line.

• An optional global change procedure, which will be
called whenever the user changes the value of anything
in the form window. This allows you to recognize the
change and act on it.

For more information on the other procedures in the
FormWindow interface, see the FormWindow chapter of the
ViewPoint Programmer's Guide.

The exercise for this chapter is the Time Clock application,
which keeps track of how much time you spend on various
tasks. Figure 7.2 illustrates this tool.

Reading/answering mail 2

Figure 7.2: The TimeClock application

For each task that you want to keep track of, you create a new
job, which consists of a title, in-use boolean, and a job number.
To create a job, type a job number in the appropriate field and
invoke the "New Job" command. This will create a form field
for the new job; you can then fill in the name of the job in the
text item. The tool allows a maximum of 20 possible jobs.

When you want to start tracking a particular job, you select the
associated boolean field, and the tool starts keeping track of
the ti me that you spend on that job. When you want to stop
billing a job you can either turn off the boolean or select
another job. In the figure above, the tool is billing Job 1, but
not Job 2. The tool can only bill one job at a time; it assumes
that you can only work on one task at a ti me.

You can delete an existing job by typing in the job number and
selecting the "Delete Job" command. This will remove the
deleted job from the display and delete all data associated with
the job.

When you want to see the data, you can select the "Print
Report" command to print a report of your activities from any
date to any other date. "Print Report" creates a property sheet
that contains from-date/to-date fields; simply fill in these fields

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

FORM WINDOWS

and select Done and a report will appear on the display. You
can then copy this report into a document and print it.

Your assignment is to write the code to generate the form
wi ndow for this tool. The fi rst line of the form wi ndow wi II
contain 3 commands and an integer (Print Report, DeleteJob,
NewJob, and jobNumber.) These items are fairly
straightforward and have corresponding enumerated items in
the definitions module.

You also need to create 20 lines, one for each possible job. Each
of these 20 lines should have a text item, boolean item, and
integer item. You will have to calculate the item Key for each of
these items. In addition, some of these lines may need initial
values, so you will need to check the context data to see if an
item has initial values. If the user has created that particular
job, then the item should have some initial values.

If a line does have corresponding values in the context data you
should use those values when creating the form items. If a line
does not have any values associated with it then you should not
initialize those values and you should make the line invisible.
Later, when the user wants to create a new job, our code will
make these items visible.

The procedures that you need to implement are in
TimeClockFormlmpITemp.mesa. The comments in this module
define what you need to do more completely.

You will also need the following modules:

TimeClockDefs
TimeClockFormlmpl
TimeClockMsglmpl
TimeClocklmpl
TimeClockPSheetlmpl
TimeClock.config

7-15

FORM WINDOWS

Notes:

7-16 VIEWPOINT I?ROGRAMMING COURSE

8. PROPERTY SHEETS

This chapter describes how to create property sheets, which are
essentially specialized form windows; the material in this
chapter is very closely tied to the material in the last chapter.
However, property sheets also depend on information
discussed later in the course, such as icons. Thus, there are some
aspects of property sheets which we delay until later in the
course. In particular, you will not be implement the aspects
associated with icons until you have read chapter 15, Icon
App/ ications.

Property sheets allow the user to inspect and modify the
properties of various objects. For example, paragraph
properties include margins, justification, and line spacing, and
printer properties include number of copies and paper size.
Figure 8.1 shows the property sheet for a mail inbasket

Inbasket Properties Defaults

Mailbox Name Lucille J, Glassrnan: OSBU North: >~erox

Icon Label Lucille J, Glassn"lan: OSBU r..Jorth: ><erox

On New Mail I BEEP II FLASH II ~v1ESS,~GE I
Polling Interval G 1\·1inutes

~Nhen Opened 1 •• lli_dM'11

Figure 8.1 : Property sheet

8.1 Creating a property sheet

VIEWPOINT PROGRAMMING COURSE

To create a property sheet, you call PropertySheet.Create.
Typically, you will call this procedure when the user selects an
icon and presses PROPS, but we do not discuss how to implement
this until chapter 15. Until then, you can call this procedure
from anywhere else in your code; in the exercise for this
chapter, we call it from a command in a tool's header.

8-1

PROPERTY SHEETS

8.1.1 Menultems

8-2

PropertySheet.Create: PROCEDURE [
formWindowltems: FormWindow.MakeltemsProc,
menultemProc: PropertySheet.MenultemProc,
size: Window.Dims, --preferred size of property sheet
menultems: PropertySheet.Menultems +-:-

PropertySheet.propertySheetDefaultMenu,
title: XString.Reader +-:- NIL,
placeToDisplay: Window.Place +-:- PropertySheet.nuIlPlace,
formWindowltemsLayout: FormWindow.LayoutProc +-:- NIL,
windowAttachedto: StarWindowShell.Handle +-:- [NIL],
globalChangeProc: FormWindow.GlobalChangeProc +-:- NIL,
display: BOOLEAN +-:- TRUE,
clientData: LONG POINTER +-:- NIL,
afterTakenDown: PropertySheet.MenultemProc +-:- NIL,
zone: UNCOUNTED ZONE +-:- NIL]
RETURNS [shell: StarWindowSheII.Handle];

Some of these parameters, such as MakeltemsProc, LayoutProc,
and globalChangeProc are identical to the parameters to
FormWindow.Create. When you are deciding what items to put
in a property sheet, note that it is conventional to put
adjectives, rather than commands. For example, "centered" is
better than" center" and "justified" is better than "justify."

title is the property sheet title. This should include the word
"properties" and be in all capitals. For example, INBASKET
PROPERTIES would be better than Inbasket Pro'perties.

The rest of this section provides some detail on the
menultemProc and menultems parameters, and a complete
example of a call to Create. For information on the other
parameters, see the PropertySheet documentation in the
ViewPoint Programmer's Manual.

menultems specifies the menu items (commands) that are
displayed in the header of the property sheet:

PropertySheet.Menultems: TYPE. PACKED ARRAY
PropertySheet.MenultemType OF

PropertySheet.BooleanFalseDefault;

PropertySheet.MenultemType: TYPE =
{done, apply, cancel, defaults, start, reset};

PropertySheet.BooleanFalseDefault: TYPE = BOOLEAN +- FALSE;

MenultemType enumerates the possible commands;
Menultems specifies a subset of those commands.

The PropertySheet interface defines two common choices:

PropertySheet.propertySheetDefa ultMen u:
PropertySheet.Menultems • [

done: TRUE, apply: TRUE, cancel: TRUE];

PropertySheet.optionSheetDefaultMenu:
PropertySheet.Menultems = [start: TRUE, cancel: TRUE];

VIEWPOINT PROGRAMMING COURSE

8.1.2 MenultemsProc

PROPERTY SHEETS

You can use either of these, if you like. If you want a different
subset of commands, you will have to use a record constructor
to set the desired menu items to TRUE. See section 8.1.3 for an
example of this.

ViewPoint will call the menultemProc whenever the user
selects one of the menu items in the header of the property
sheet. A menultemProc is of type PropertySheet.MenultemProc:

PropertySheet.MenultemProc: TYPE = PROCEDURE [
shell: StarWindowShell,Handle,
formWindow: Window.Handle,
menultem: PropertySheet.MenultemType]
RETURNS [ok: BOOLEAN E-FALSE];

formWindow is the main form window of the property sheet,
and menultem is the menu item that the user selected. Within
this procedure, you implement the commands that are in the
property sheet header. See the next section for an example.

8.1.3 Example of PropertySheet.Create

Here is an example of a call to create a property sheet. This
code creates the property sheet illustrated in Figure 8.2:

'WASTEBASKET PR.OPERTIES

Purge deleted items 1IIIII1 114ii81'1 NEVER. I
Number of contained itetYls: 24 Total size:'1 027 Disk Pages

Figure 8.2: Property sheet for the Wastebasket icon

VIEWPOINT PROGRAMMING COURSE 8-3

PROPERTY SHEETS

8-4

MakePropertySheet: PROC [...] II {

title: XString.ReaderBody +- XString.FromSTRING [
"WASTEBASKET PROPERTI ES" l];

< < Create the property sheet. Have the commands Done,
Cancel, and Defaults; have MyMenultemProc implement
those commands. Include a title. > >
pSheetShell: StarWindowshell.Handle +- PropertySheet.Create[

formWindowltems: MakeFWltems,
menultemProc:MyMenultemProc,
menultems: [done: TRUE, apply: FALSE, cancel: TRUE,

defaults: TRUE, start: FALSE, reset: FALSE],
title: @title,
formWindowltemslayout: Dolayout]] };

--Omit the MakeltemsProc and the LayoutProc, since they are
-- just like those used with form windows.
MakeFWltems: FormWindow.MakeltemsProc II { ••• };

Dolayout: Formwindow.layoutProc II { ••• };

< < Called when the user selects a command. If the command
is Done, then call ApplyAnyChanges to actually make the
changes; if Cancel, just return OK, since there is nothing to
change. If Defaults, then call a procedure to set defaults. > >
MyMenultemProc: PropertySheet.MenultemProc II {

SELECT menultem FROM
done II>

RETURN [ok:ApplyAnyChanges[formWindow].ok];
cancel II > RETURN [Ok:TRUE];
defaults II > {SetDefaults[formWindow];

RETURN [Ok:FALSE]};
ENOCASE; };

< < Update internal information based on the user's change to
the property sheet. This procedure is just a skeleton, because
the actual procedure relies on information presented in the
next few chapters. There is a complete example of this kind of
procedure in chapter 16, Icon Applications. > >
ApplyAnyChanges: PROC [fw:Window.Handle] RETURNS [Ok:BOOL]
II {IF NOT FormWindow.HasAnyBeenChanged[fw] THEN

RETURN [Ok:TRUE];
< < check which items have changed. > >
FOR myltem: Items IN Items DO

itemKey: FormWindow.ltemKey II myltem.ORO;
IF NOT FormWindow.HasBeenChanged [fw, itemKey]

THEN LOOP;
SELECT myltem FROM

purgedeleteditems II > ... ,
... , },

ENOCASE;
ENOLOOP; I
RETURN [ok: TRUE];
};

--procedure called when user invokes defaults command
SetDefaults: PROC [window: Window.Handle] = {

FormWindow.SetChoiceltemValue[
window: window,
item: Items.purged~leteditems.ORD,
newValue: 0, repaint: FALSE];

Formwindow.Repaint[window: window];
};

} ...

VIEWPOINT PROGRAMMING COURSE

8.2 Linked property sheets

PROPERTY SHEETS

You can also create linked property sheets, which consist of
several distinct property sheets that all share the same window.
The user can only see one property sheet at a time; he selects
which one to view from a choice item in an additional body
window, called the link window. The link window remains
visible at all times, while the main form window displays one of
the possible choices.

The Text Property Sheet available with the document editor is
an example of a linked property sheet. The link window
contains choices for Character, Paragraph, and Tab Setting
property sheets; selecting one of them displays the appropriate
sheet. Figure 8.3 shows a generic linked property sheet with
three possible property sheets: PSHEET1, PSHEET2, and
PSHEET3.

TEXT PROPERTY SHEET

Display CH,~RACTER PARAGRAPH

Units [!ll Spaces

Position

51

VIEWPOINT PROGRAMMING COURSE

Tab Type

I_~I T I 1- I J- I
I_~I T I 1- I J- I

Figure 8.3: Linked property sheet

Note that you should only use linked property sheets when you
have too much information to fit on a single property sheet. In
general, a property sheet should occupy roughly t of the
screen. If you find that a property sheet is getting signifcantly
larger than that, then you should use linked sheets or separate
sheets or some other method of making the sheet smaller.

To create a linked property sheet, the first step is to write a
MakeltemsProc and a LayoutProc for each of the individual
property sheets. You do not call Create for each individual
sheet, however. Instead, you call PropertySheet.CreateLinked.
This procedure is just like Create except that it has two
additional parameters: the LayoutProc and the MakeltemsProc
for the link window:

8-5

PROPERTY SHEETS

8-6

PropertySheet,CreateLinked: PROCEDURE [
formWi ndowltems: FormWindow,MakeltemsProc,
menultemProc: PropertySheet.MenultemProc,
size: Window.Dims, --preferred size of property sheet
menu Items: PropertySheet.Menultems ~

PropertySheet.propertySheetDefaultMenu,
title: XString.Reader E- NIL,
placeToDisplay: Window.Place ~ PropertySheet.nuliPlace,
formWi ndowltemsLayout: FormWindow. LayoutProc E- NIL,
windowAttachedto: StarWindowShell.Handle ~ [NIL],
globalChangeProc: FormWindow.GlobalChangeProc ~ NIL,
display: BOOLEAN ~ TRUE,
Ii nkWi ndowltems: FormWindow. Ma keltemsProc,
linkWindowltemsLayout: Formwindow.LayoutProc ~NIL
clientData: LONG POINTER ~ NIL,
afterTakenDown: PropertySheet,MenultemProc E-NIL,
zone: UNCOUNTED ZONE ~ NIL]
RETURNS [shell: StarWindowSheII.Handle];

The formWindowltems and the formWindowltemLayout
parameters should be the appropriate procedures for the
property sheet that you want to display initially,
linkWindowltems and linkWindowltemsLayout are the
corresponding procedures for the link window,

The layout procedure for the link window is just like any other
layout procedure.

The linkWindowltems procedure should create one item: the
choice item that determines which property sheet is currently
displayed. You create this item with a call to MakeChoiceltem.
Recall from the previous chapter that one of the parameters to
this procedure is a local change procedure that ViewPoint will
call whenever the user selects a new choice from the choice
item. This change procedure is responsible for swapping
property sheets.

To swap property sheets, call SwapFormWindows:

PropertySheet,SwapFormWindows: PROCEDURE =
shell: StarWindowShell.Handle, --the property sheet
newFormWi ndowltems: FormWindow. Ma keltemsProc,
newFormWindowltemsLayout: Formwindow,LayoutProc ~ NIL,
apply: BOOLEAN ~ TRUE,
destroyOld: BOOLEAN ~TRUE,
newMenultemProc: PropertySheet.MenultemProc ~ NIL,
newMenultems: PropertySheet.Menultems ~ALL[FALSE],
newTitle: XString.Reader ~NIL,
newGlobalchangeProc: FormWindow.GlobalChangeProc ~ NIL,
newAfterTakenDownProc: PropertySheet.MenultemProc ~

NIL,
RETURNS [old: Window.Handle];

With the exception of shell, apply, and destroyOld, all of these
parameters are the same as the parameters for a standard call
to PropertySheet,Create.

she" is the property sheet. apply specifies whether you want to
apply any changes to the old property sheet before you
execute the swap.

destroyOld determines what happens to the old property
sheet. If you don't destroy the old one, it is the return

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

PROPERTY SHEETS

parameter. You can then store this old sheet, and call
SwapExistingFormWindows instead of SwapFormWindows
the next ti me you want to create that property sheet. Whether
you store the old property sheet is up to you; it is a simple
trade-off of space for ti me. See the ViewPoint Programmer's
Manual for the declaration of SwapExistingFormWindows.

Here is an example that creates a linked property sheet:

--the items in the link window, plus items in Sheet1.
Items: TYPE II {radix, bOOLEAN, choice, tag};

MakePropertySheet: PROC [...] = {
< < Create the linked sheet with a call to CreateLinked. Sheet1
is the sheet that is initially displayed. Omit the layout procs and
Make/tem procedures for the three linked property sheets,
since they are the same as in earlier examples. > >
pSheetShell: StarWindowShell.Handle ~

PropertySheet.CreateLi n ked [
formWi ndowltems: Ma keSheet1,
menultemProc: MakeMenultems1,
size: ... ,
linkWindowltems: MakeLinkWindowltems,
linkWindowltemslayout: NIL]; --Use default layout

-- for link window
};

< < This is the MakeltemsPrac far the link window. /t has just
one item, the choice item that determines which property
sheet is being displayed. Note the changePrac, which takes
care of switching the items. > >
MakeLinkWindowltems: FormWindow.MakeltemsProc II {

--declare necessary strings
sheet1, sheet2, sheet3, tag: XXstring.ReaderBody;
sheet1 ~ XString.FromSTRING ["Sheet1"l];
sheet2 ~XString.FromSTRING ["Sheet2"L);
sheet3 ~XString.FromSTRING ["Sheet3"l);
tag ~ XString.FromSTRING ["Current Sheet"l];

--set up the possible choices as the three strings
choices: ARRAY [0 .. 3) OF FormWindow.Choiceltem ~ [

[string[choiceNumber: 1, string: sheet1]],
[string[choiceNumber: 2, string: sheet2]],
[string[choiceNumber: 3, string: sheet3]]);

--Create an array of FormWindow.Choice/tem. The tag will be
--Current Sheet, and the three choices will be Sheet1,
-- Sheet2,and Sheet3.
FormWindow.MakeChoiceltem [

window:window,

};

myKey:ltems.radix.ORD, --items is the array of form items
tag:@tag,
values:oEscRIPTOR[choices],
initChoice:1, --choiceNumber of first sheet displayed
changeProc: ChangeFormWindow];

8-7

PROPERTY SHEETS

8-8

--Local change procedure that switches property sheets.
ChangeFormWindow: FormWindow.ChoiceChangeProc = {
SELECT newValue FROM

1 • > [] +- PropertySheet.SwapFormWindows [
shell :pSheetShell,
newFormWi ndowltems: Ma keSheet1];

2 • > [] +-PropertySheet.SwapFormWindows [
shell: pSheetShell,
newFormWindowltems: MakeSheet2];

3 • > [] +-PropertySheet.SwapFormWindows [
shell: pSheetShell,
newFormWi ndowltems: MakeSheet3];

ENOCASE;

--the MakeltemsProc for the initial property sheet. Use
--messages this time.
MakeSheet1: FormWindow.MakeltemsProc = {

--make the boolean item
FormWindow.MakeBooleanltem [

window: window,
myKey: Items.boolean.oRo,
tag: Oefs. Get[Oefs. Key. tag],
suffix: oefs.Get[Defs. Key .suffixBoolea n],
initBoolean: itemData.boolean,
label: [string[
(Oefs .. Get[Oefs.Key.boolean])]]];

--make the choice item
BEGIN

choice1, choice2, choice3: XXstring.ReaderBody;
choices: ARRAY [0 .. 3) OF FormWindow.Choiceltem +- [

[string[choiceNumber: 1,
string:oefs.Get[Defs.Key.psChoice1]],

[string[choiceNumber: 2,
stri ng: Defs. Get[oefs. Key. psChoi ce2]],

[string[choiceNumber: 3,
string: Defs.Get[Oefs.Key.psChoice3]]];

FormWindow.MakeChoiceltem [
window: window,
myKey: Items.choice.oRD,
tag: Oefs. Get[Oefs. Key. tagChoi ce],
values: DESCRIPTOR [choices],
initChoice: itemData.choice.oRo];

END;

--make the text item
BEGIN
FormWindow.MakeTextltem [

window: window,
myKey: Items.tag.oRo,
tag: oefs.Get[Oefs.Key.tagTag],
width: 20,
initString: @itemData.tag];

END;
};

VIEWPOINT PROGRAMMING COURSE

8.3 Summary

8.4 Exercise

PROPERTY SHEETS

To create a property sheet, you call PropertySheet.Create instead
of FormWindow.Create. In addition to a LayoutProc, a
MakeltemsProc, and a GlobalChangeProc, PropertySheet.Create
has the following parameters:

• A menultems record, which specifies the items that are
to appear in the header for the property sheet. The
default is for Start and Cancel to appear.

• A MenultemsProc, which is a call-back procedure to
implement the commands in the property sheet header.

You can also create linked property sheets, which are held
together by a link window. The link window is a form window
with a choice item, which lists possible property sheets. To
swap property sheets, you associate a change procedure with
the choice item in the link window. The change procedure then
calls PropertySheet.SwapFormWindows to do the swap.

For more information on the PropertySheet interface, see the
PropertySheet chapter of the ViewPoint Programmer's Guide.

The exercise for this chapter is an extension of the exercise for
the last chapter. In the last chapter, you wrote the form
window implementation for the Time Clock application; in this
chapter, you need to write the property sheet implementation.
If you didn't do the last exercise, you should go back and read
the description of how the tool works.

Invoking the Print Report command creates the property sheet
illustrated in Figure 8.4.

Report File Narne SarnpleReport
~-----~-----~--~

Date values should be in the follo ,ing ranges:

~" 0 n th 1-1 2 ... Day 1 - 31 ... and Yea r '1 900 - 9999

FrotY! ~y"onth G Frorn Day 1 281 Frorn \(ear 86 1

To Month [)] To Day 1 281 To Year

Figure 8.4: The Time Clock property sheet

VIEWPOINT PROGRAMMING COURSE 8-9

PROPERTY SHEETS

8-10

Your assignment is to write the code to implement this
property sheet. For a more complete description of what you
need to do, see the module TimeClockPSheetlmpITemp.mesa,
which contains a template and comments for the code that you
need to write.

VIEWPOINT ~ROGRAMMING COURSE

9.1 Overview

VIEWPOINT PROGRAMMING COURSE

9. TIP

Many applications require specialized interpretation of user
input. For example, in a game that moves a piece through a
maze, however, you might want mouse clicks or keystrokes to
move the piece. This chapter describes the Terminal Interface
Package (TIP), which provides basic user input facilities.

There are two named processes that respond to user actions:
the Stimulus and the Notifier. The Stimulus watches the
keyboard and mouse for user actions and enqueues them; its
job is to ensure that no user actions are lost. The Notifier
dequeues each action and associates it with a window. If the
action is a mouse click, it goes to the window with the cursor;
all other actions go to the window with the input focus.

Once it has determined the correct window for a user action,
the Notifier decides how to interpret that action by checking
for the action in the window's TIP tables. A TIP table is
essentially a giant SELECT statement: the left side of the table
contai ns various user actions, and the right side of the table has
a list of results for each user action. There is typically a chain of
TIP tables to handle various types of input.

The Notifier searches all TIP tables associated with a window
until it finds a match or runs out of tables to check. If it doesn't
find a match, it discards the action. If it finds a match, it passes
the corresponding list of results to the application's NotifyProc
procedure. The NotifyProc then executes some program action
in response. Figure 9.1 illustrates this chain of events.

I User presses a keyboard key or mouse button.

I Stimulus process enqueues the action.

Notifier dequeues action, sends it to a window, and
then checks the window's TIP tables. If it finds the
action, the Notifier calls the window's NotifyProc
with an associated results list.

The NotifyProc acts on those results.

Figure 9.1: Path of user input

9-1

TIP

9.2 TIP tables

9-2

TIP tables and NotifyProcs thus control the wayan application
responds to user input; this chapter describes how to create
and modify TIP tables and how to write NotifyProcs.

TIP tables define the wayan application responds to user input.
Since there can be a large number of TIP tables in the system,
ViewPoint groups TIP tables into a structure based on the type
of user action that they handle. The TIPStar interface defines
this structure, which is based on the Placeholder:

TIPStar.Placeholder: TYPE. {mouseActions, keyOverrides,
softKeys, keyboardSpecific, blackKeys, sideKeys,
backstopSpeciaIFocus};

As their name implies, Placeholders are just categories, not
actual TIP tables; they are effectively stacks onto which clients
can add actual TIP tables. There can be a chain of TIP tables
associated with any placeholder. Figure 9.2 illustrates the list of
Placeholders, in the order in which they are checked.

I mouseActions

softKeys

blackKeys

sideKeys

NIL

Point and Adjust

(e.g., PROPS when Props sheet
is open)

Top row of keys

Keys on physically different
keyboards

The physical keyboard and its
modifications

Keys on either side of main
keyboard

All actions not directed to the
input focus

STOP, UNDO, etc.

Figure 9.2: The Placeholder tables

Booting ViewPoint establishes an initial set of tables, called the
normal tables. The new tables do not replace the placeholders;

VIEWPOINT PROGRAMMING COURSE

9.2.1 TIP table syntax

VIEWPOINT PROGRAMMING COURSE

TIP

they are added to the appropriate placeholder "stack", as
illustrated in Figure 9.3

I ~m __ o_u_s_eA __ ct_io __ ns __ p_la_c_e_h_o_ld_e_r ______ ~I~~ ______ ~ ______ ~
keyOverrides Placeholder

softKeys Placeholder

keyboardSpecific Placeholder

I blackKeys Placeholder

sideKeys Placeholder
NormalSideKeys. TIP

backstopSpecial Focus Placeholder
~ I NormalBackstop.TIP I
~ I

Figure 9.3: The normal tip tables

The normal TIP tables provide a standard interpretation of user
actions. When you write an application, one choice is to have
that application just use the standard TIP tables. However, if
you want to change the interpretation of certain keystrokes or
mouse actions, you can add a new table to one of these chains,
as described later in the chapter. First, however, we discuss the
syntax of a TIP table and the structure of a NotifyProc.

In its simplest form, a TIP table is a user-editable file with the
extension ".TIP." TIP tables are stored in the system catalog.

The left hand side of a TIP table specifies triggers and enablers.
A trigger action is an action that has just been dequeued from
the user action queue; this is the action that caused the

9-3

TIP

9.2.2 Results

9-4

Notifier to check the TIP table. Here is part of the relevant
syntax:

TriggerTerm :: • (Key I MOUSE I ENTER I EXIT) TimeOut

TimeOut:: • empty I BEFORE Number I AFTER Number

Key:: • Keyldent UP I Keyldent DOWN

Thus, the actions that can be in the left hand side of a TIP table
are mouse movement (MOUSE), whether the mouse has entered
or exited the window (ENTER and EXIT), time constraints, and key
transitions. A Keyldent can be any key or a mouse button. (See
the TIP chapter of the ViewPoint Programmer's Manual for a
complete list of the key names and for the complete syntax.)
Timeout specifies a time interval within which the action must
happen.

Enable actions are actions that have already happened, or that
are in progress; enables are generally used to check the current
state of a key. An ENABLE is thus similar to a WHILE statement.

The right hand side of a TIP table contains results, which are
passed to the program's NotifyProc. We discuss results in the
next section.

Here is an example of a text version of a TIP table:

SELECT TRIGGER FROM
Poi nt Down • >

SELECT TRIGGER FROM
Point Up BEFORE 200 AND Point Down BEFORE 200 • >

SELECT ENABLE FROM
LeftShift Down • > COORDS, ShiftedDoubleClick;

ENDCASE • > COORDS, NormalDoubleClick;
Adjust Down BEFORE 300 • > PointAndAdjust;

ENDCASE • > COORDS, SimpleClick;
ENDCASE;

This TIP table matches the trigger action Point Down. When
the left mouse button goes down, remai ns there no longer
than 200 milliseconds, and goes down again before another
200 milliseconds has elapsed, the state of the left shift key is
checked. If the key is down, the results are COORDS and
ShiftedDoubleClick; otherwise, the results are COORDS and
NormalDoubleClick. Similarly, If the right mouse button goes
down less than 300 milliseconds after the left button, then the
result is Poi ntAndAdj ust. If neither of these things happens
after the left mouse button goes down, then the results are
COORDS and SimpleClick.

The results passed to a NotifyProc are structured into a linked
list, of type TIP.Results:

TIP.Results: TYPE. LONG POINTER TO TIP.ResultObject;

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

TIP.ResultObject: TYPE == RECORD [
next: TIP.Results,
body: SELECT type: * FROM

atom == > [a: TIP.ATOM],
bufferedChar == > NULL,
coords == > [place: Window.Place],
int • > [i: LONG INTEGER],
key. > [key: TIP.KeyName, downUp: TIP.DownUp],
nop =- > [],
string == > [rb: XString.ReaderBody],
time == > [time: System.Pulses],
ENDCASE];

TIP

For example, Figure 9.4 illustrates one possible chain of results
for the TIP table discussed above.

8----- -----
next - - - - - - - __
coords: 355,506 -", -NIL

atom: ShiftedDoubleClick

Figure 9.4: A possible results list

Each element of a results I ist is an object of type ResultsObject.
Most of the variants of a ResultObject provide information
about the current state of the keyboard or mouse. For
example, (OORDS is the current coordinates of the mouse, key
represents the state of a particular key, and time measures time
between user actions. (See the ViewPoint Programmer's
Manaul for a complete explanation of the variants.) These
kinds of results are called information results, since they
encapsulate information about the current state of the world.

However, a program also typically needs an action result, or
some indication of what just happened. The most common way
to convey this information is with an atom, which is essentially
a unique string. For example, in the previous TIP table we used
the atoms ShiftedDoubleClick, NormalDoubleClick,
PointAndAdjust, and SimpleClick. Each of these are just terms
that a particular program defines to represent a particular set
of user acti ons.

Thus, a typical results list contains an atom and any necessary
related information results. The convention is to pass
"information" results first, and "action" results (atoms) last, so
that you have the information result available when you
implement the action. Thus, in the example above, we passed
the information result (OORDS before the atom. The next
section contains an example that illustrates how the NotifyProc
might use these results.

When you define an atom, you must create it and insure its
uniqueness with a call to either Atom.MakeAtom or Atom.Make:

9-5

TIP

9.3 The NotifyProc

9-6

Atom.Make: PROCEDURE [pName: XString.Reader]
RETURNS [atom: Atom.ATOM];

Atom.MakeAtom: PROCEDURE [pName:LONG STRING]
RETURNS [atom: Atom.ATOM];

Make and MakeAtom both return an atom corresponding to
the character string that you pass in; the only difference
between them is the type of the argument that you pass in. The
Atom interface will return the specified atom, creating a new
one if necessary.

Here is an example that creates the atoms in the above table.
Note that we allocate dynamically to keep the storage out of
the global frame:

Atoms: PROGRAM = {
z: UNCOUNTED ZONE = Heap.systemZone;
atoms: LONG POINTER TO AtomRec ~ NIL;
AtomRec: TYPE == RECORD [

PointAndAdjust, NormalDoubleClick, ShiftedDoubleClick,
SimpleClick: Atom.ATOM];

InitAtoms: PROCEDURE == {

};

IF atoms == NIL THEN atoms ~Z.NEw[AtomRec ~ [
Poi ntAndAdj ust:

Atom.MakeAtom["PointAndAdjust"L],
NormalDoubleClick:

Atom.MakeAtom["NormaIDoubleClick"L],
ShiftedDoubleClick:

Atom.MakeAtom["ShiftedDoubleClick"L],
SimpleClick: Atom.MakeAtom["SimpleClick"L]]];

InitAtoms;
};

When the Notifer process recognizes a user action in the left
side of a TIP table, it passes the associated results list to a
NotifyProc. The job of a NotifyProc is to interpret the results
and take appropriate program ac.tion. A NotifyProc is of type
TIP. NotifyProc:

TIP.NotifyProc: TYPE == PROCEDURE [
window: Window.Handle, results: TIP.Results];

Here is a possible NotifyProc for the aboveTIP table:

VIEWPOINT PROGRAMMING COURSE

TIPMe: TIP.NotifyProc = {
place: Window.Place;

TIP

< < Note the loop syntax here. This is the standard way to
use a loop to go through a linked list. At the first iteration,
the local variable input is set equal to the input parameter
results. Each iteration of the loop looks at input. next until it
reaches the end of the linked list. > >
FOR input: TIP.Results ~ results, input.next UNTIL input. NIL
DO

WITH z: input SELECT FROM
coords • > place ~ z.place;
atom • > SELECT z.a FROM

SimpleClick • > Simple[place];
NormalDoubleClick • > NormaIDouble[place];
ShiftedDoubleClick • > ShiftedDouble[place];
PointAndAdjust • > Chord[];
ENDCASE;

ENDCASE;
ENDLOOP};

This procedure loops through the linked list of results. When it
finds the information result COORDS, it stores the coordinates
into the local variable place, and then loops. When it finds an
action result (atom), it calls an appropriate procedure, passing
in place when necessary. (This is why it is important to pass
information results first from the TIP table; if you passed the
atom first, the value of place would not be available.)

It is important to realize that the NotifyProc is called once for
every successful match in the TIP table. The loops in the
NotifyProc are there because the results list may have more
than one element (e.g.,cOORDS, NormaIDoubleClick), not
because a series of user actions have been buffered.

9.4 Incorporating a new TIP table _

If you want to write your own new TIP table, you also need to
write code that makes your TIP table available to your
application. This section describes the steps involved in that
process.

9.4.1 Creating the compiled TIP table

VIEWPOINT PROGRAMMING COURSE

The first step is to translate the text version of the TIP table into
a program-readable "compiled" TIP table by calling
TIP.CreateTable:

TIP.CreateTable: PROCEDURE [
file: XString.Reader,
z: UNCOUNTEDZONE~NIL,
contents: XString.Reader ~NIL]
RETURNS [table: TIP.Table];

TIP.Table: .TYPE • LONG POINTER TO TIP.TableObject;

TIP.TableObject: TYPE;

9-7

TIP

9-8

CreateTable generates a TIP table from the text file file. The
storage for the table will come from z; if z is NIL, then the TIP
implementation will use its own zone.

contents is the default contents of file. If CreateTable cannot
read file or cannot parse file correctly, it will raise InvalidTable:

TIP.lnvalidTable: SIGNAL [type: TIP.TableError,
message: XString.Reader];

TIP.TableError: TYPE. {fileNotFound, badSyntax};

The type will be badSyntax if CreateTable could not parse the
contents of file. REsuMEing the signal will cause TIP to write
contents string in as the new contents of the file. If the
contents string doesn't work either, then CreateTable will just
return NIL, without raising the error again. Note, however, that
the file parameter cannot initially be NIL, because TIP needs
the name of a file to write the contents string into.

If the contents parameter is NIL, the type wil be fileNotFound:
the TIP file did not contain the correct information, and there is
no backup in the contents string.

When type = badSyntax, the message parameter will contain
the name of the bad TIP file.

Here is an example of calling CreateTable:

--declare strings for the title of the. TIP file and its contents
fileName: XString.ReaderBody +-

XString.FromSTRING ["MyTipFile"L];
contents: XString.ReaderBody +- XString.FromSTRING["

SELECT TRIGGER FROM
S Down • > Tu rn Left;
D Down • > TurnRight;
K Down. > Forward;
L Down = > Fire;

ENDCASE ... ilL];

--create the compiled version.
table: TIP.Table +-TIP.CreateTable[

file: @fileName,
contents: @contents! TIP.lnvalidTable = > RESUME];

IF table. NILTHEN { --bad contents string
error: XString.ReaderBody +- XString.FromSTRING [

"Problem parsing "L];
Attention.Post[@error] ;
Attention.Post[@fileName] };

This example will parse the contents of fileName and generate
the file fileName. TlPe. If there is something wrong with file,
CreateTable will raise InvalidTable, which we RESUME. The
RESUME writes the contents string into file and reparses it. If the
contents string doesn't work either, then CreateTable does not
raise the signal again; it just returns NIL. (This means that the
RESUME will not cause an infinite loop.) Thus, we must check for
NIL after the call to CreateTable. Since we provide a contents
string, the error type fileNotFound will never be raised.

VIEWPOINT PROGRAMMING COURSE

TIP

9.4.2 Associating tables and NotifyProcs

VIEWPOINT PROGRAMMING COURSE

Once you have a table and a NotifyProc, you need to associate
them with your application. (If you have just a NotifyProc, and
don't need your own TIP table, you can just pass the NotifyProc
as a parameter to Create Body, and you don't need to worry
about any of this.)

To associate a window, a table, and a NotifyProc, you call
SetTableAndNotifyProc:

TIP.SetTableAndNotifyProc: PROCEDURE [
window: Window.Handle,
table: TIP.Table ~NIL,
notify: TIP.NotifyProc ~NIL];

This procedure tells the TIP interface about the existence of
your application's window, and associates a table and
NotifyProc with it. If you want your application to use only
your TIP table, and not any of the standard tables, you pass in
your own table as table.

If, however, you want your appliation to recognize the
standard TIP tables, as well as your own new special TIP table,
then you should obtain the head of the list of standard tables,
and use that value as table. To obtain the head of the table list
(the mouseActions placeholder), call TIPStar.NormaITable:

TIPStar.NormaITable: PROCEDURE RETURNS [TIP.Table];

Calling SetTableAndNotifyProc with the head of the tables list
associates your window with the standard set of TIP tables, and
registers your NotifyProc. However, you still have to insert your
TIP table somewhere in the tree of tables. To do this, you call
TIPStar.PushTable:

TIPStar.PushTable: PROCEDURE [TIPStar.Placeholder, TlP.Table];

PushTable places the new table directly after the specified
placeholder, without removing any of the existing tables.
Figure 9.5 illustrates the effect of pushing a new table
(NewTableA.TIP) onto the mouseActions placeholder.

I ~m __ o_us_e_A_c_t_io_n_s_p_la_c_e_ho_l_d_e_r ______ '~I~~ ________ ------~
I keyOverrides Placeholder

Figure 9.5: Pushing NewTableA onto mouseActions

Several different calls to PushTable will result in a stack of
tables "hanging" from the Placeholder. The first table in the

9-9

TIP

9.2.3 Input focus

9-10

chain will be the last one added. Figure 9.6 illustrates the effect
of pushing a second new TIP table onto mouseActions.

I L.. m_o_u_se_A_ct_io_n_s_PI_a_c_e_ho_ld_e_r ___ ~I------.1 New Ta bl eB. TI P

l~k_e_Y_O_v_e_rr_id_e_s_p_la~c_e_h_o_ld_e_r ______ ~I.--~ ____________ ~
+

Figure 9.6: Pushing NewTableB onto mouseActions

Note: If you want to replace the old tables, rather than just add
a new one, you can call TIPStar.StoreTable instead of PushTable.
See the TIPStar chapter of the ViewPoint Programmer's manual
for details.

The net effect of all of this is that your new table is not part of
the standard TIP chain, and that your application is now a
standard TIP client. When the user is not using your
application, however, you should remove your TIP table from
the tree so that your changes do not apply to all other
applications as well. (Of course, if you want to change the
interpretation of keystrokes for all applications, you can just
call PushTable and leave it that way.)

You remove the table at the top of a particular placeholder
with PopTable;

TIPStar.PopTable: PROCEDURE [TIPStar.Placeholder, TIP.table];

One standard approach is to call PushTable when the mouse
enters your window, and PopTable when it exits the window;
the example in the next section illustrates this.

The Notifier directs mouse actions to the window containing
the cursor, and keystrokes to the window containing the input
focus. Thus, if you want your window to be able to accept
keystrokes, you must make your application control the input
focus by calling SetlnputFocus:

TIP.SetlnputFocus: PROCEDURE [
w: Window.Handle,
takeslnput: BOOLEAN,
newlnputFocus: LosingFocusProc ~ NIL,
clientData: LONG POINTER +- NIL];

VIEWPOINT ~ROGRAMMING COURSE

9.2.4 Example

VIEWPOINT PROGRAMMING COURSE

TIP.LosingFocusProc: TYPE .. PROCEDURE [
w: Window.Handle, data: LONG POINTER];

TIP

SetlnputFocus makes your window the input focus; if you want
your window to take type-in, you should set takeslnput to
TRUE. When you are about to lose the input focus, ViewPoint
will call your LosingFocusProc; at this point, you can do any
sort of clean up that you need to do, such as calling
TIPStar.PopTable.

Here are the relevant portions of a program that creates its
own TIP table and NotifyProc.

TIPExamplelmpl: PROGRAM ... = {
-- Declare global vars and types
zone: UNCOUNTED ZONE ~ Heap.Create [initial: 4];
context: Context.Type ~Context.UniqueType[];
atoms: LONG POINTER TO AtomRec ~ NIL;
AtomRec: TYPE. RECORD [

enter, exit, mouse, pointDown, pointMotion, pointUp:
Atom.ATOM];

--initialization proc called from the mainline code
Init: PROC .. {

commandName: XString.ReaderBody ~
XString.FromSTRING["TIPExample"L];

Attention.AddMenultem [
MenuData.Createltem [

zone: sysZ,
name: @commandName,
proc: MenuProc]] ;

InitAtoms; };

--Initialize atoms; called from Init
InitAtoms: PROCEDURE" {

IF atoms • NIL THEN atoms ~Z.NEw[AtomRec E- [

enter: Atom.MakeAtom["Enter"L],

};

exit: Atom.MakeAtom["Exit"L],
mouse: Atom.MakeAtom["Mouse"L],
pointDown: Atom.MakeAtom["PointDown"L] ,
pointMotion: Atom.MakeAtom["PointMotion"L].
pointUp: Atom.MakeAtom["PointUp"L]]];

9-11

TIP

9-12

MenuProc: MenuData.MenuProc := {

name: XString.ReaderBody +
XString.FromSTRING[ITIPExample"L];

data: Defs.Data 4E-NIL;
tipFile: XString.ReaderBody 4E

XString.FromSTRING["TIPExample.TIP"L];

--This string represents the contents of tipFile.
contents: XString.ReaderBody 4E- XString.FromSTRING["

SELECT TRIGGER FROM
MOUSE = > SELECT ENABLE FROM

Point Down. > COORDS, PointMotion;
ENDCASE;

EXIT = > COORDS, Exit;
ENTER = > COORDS, Enter;
Point Down = > COORDS, PointDown;
PointUp = > COORDS, PointUp;

ENDCASE ••• ilL];

-- Create the TIP table
table: TIP.Table 4E-TIP.CreateTable[

file: @tipFile, contents: @contents!TIP.lnvalidTable := >
RESUME}];

IF table := NIL THEN {
error: XString.ReaderBody 4E

XString.FromSTRING["Bad syntax in TIP table ilL];
Attention.POst[@error] ;
RETURN};

-- Create the StarWindowShell, body window, etc.
shell4E-StarWindowShell.Create [name: @name];
body: Window.Handle 4E- StarWindowShell.CreateBody [

sws: shell,
box: [place: [0,0],
dims: Defs.bodyWindowDims));

--(Set up the form window, pop up menus, ; allocate
-- context, etc.)

< < Make application a TIP client and have it use the
standard tables. Any actions that newtable does not handle
will thus be checked against normal TIP tables. > >
TIP.SetTableAndNotifyProc [

window: body,
table: TIPStar.NormaITable[],
notify: MyNotifyProc];

StarWindowShell.Push [shell] };

VIEWPOINT PROGRAMMING COURSE

9.5 Periodic notifiers

VIEWPOINT PROGRAMMING COURSE

-- Handle user input
MyNotifyProc: TIP.NotifyProc = {

data: Defs.Data tEo- Defs.GetContext[parent];
place: Window.Place;

TIP

FOR input: TIP.Results tEo- results, input.next UNTIL input. NIL
DO

WITH z: input SELECT FROM
coords II > place tEo- z.place;
atom • > SELECT z.a FROM
pointMotion = > PointMotion[window, data, place];
enter. > {TIP.SetlnputFocus[

w: window, takeslnput: FALSE];
TIPStar.PushTable[mouseActions, table]};

exit. > {
TIPStar.PopTable[mouseActions, table]};

pointDown II >
{data.oldCursorPos tEo- place;
Defs.Selectltem[window, data]} ;

pointUp • > PointUp[parent, data, place];
ENDCASE;

ENDCASE; -- WITH z: input
ENDLOOP;

};

--The rest of the procedures that do the actual work

-- Main line code
Init[];
END.

The Notifier process is important because it responds directly to
the user. When the user invokes a command, and a process acts
on that command, that process is "in the Notifier." Only one
process can be in the Notifier at a given time, and that process
is guaranteed that the Notifier will not process another user
action until it has completed.

This notification mechanism has some important consequences
for program design.

First, if you will be processing a command that will take a long
time to execute, you should FORK it from your NotifyProc to
avoid tying up the Notifier. (If for some reason you must tie up
the Notifier, you should turn the cursor into an hourglass to
indicate this to the user.)

Second, you need to think carefully about which operations
must be executed from the Notifier to guarantee that there is
no interference. A good example of such an operation is
setting the selection: when the user asks to "select" a certain
object, the process that is responsible for implementing the
selection (highlighting, etc.) must be guaranteed that no other
user action (such as one that acts on the selection or changes
the selection) can interfere.

When you are responding to a user action (in your NotifyProc),
you are guaranteed to be in the Notifier, and you have nothing

9-13

TIP

9-14

to worry about. However, there are times when you are not
processing a command, but you still want to have your action
run from the Notifier to guarantee that there is no
interference.

To be able to execute in the Notifier when you are not directly
processing a user action, you can create a call back procedure
that will be called from the Notifier at regular intervals:

TIP.CreatePeriodicNotify: PROCEDURE [
window: Window.Handle,
results: TIP.Results,
milliSeconds: CARDINAL,
notifyProc: TIP.NotifyProc ~ NIL]
RETURNS [TIP.PeriodicNotify];

TIP.PeriodicNotify: TYPE [1];

CreatePeriodicNotify registers a periodic notify procedure. The
specified notifyProc is called from the Notifier with parameters
window and results once every milliseconds milliseconds, as
long as no user action notifications are taking place. (If
notifyProc is NIL, it defaults to the NotifyProc associated with
window.) For example, suppose that for some reason you want
to keep a count of the number of windows on the screen.
When you want to examine or change this value, you must do
so from the Notifier:

count: Atom.ATOM ~Atom.MakeAtom["UpdateCount"];
results: TIP.ResultsObject ~ [

next: NIL, body: atom[a: count));
notifier: TIP.PeriodicNotify ~TIP.CreatePeriodicNotify[

window: window,
results: @results,
milliSeconds: 20000];

< < The NotifyProc associated with the window. Since we
didn't specify a NotifyProc in the call to CreatePeriodicNotifier,
this one will be used. > >
MyNotifyProc: TIP.NotifyProc = {

input: TIP.Results;
FOR input ~ results, results.next DO

WITH z: input SELECT FROM
atom. >

IF z.a • count THEN { --do something
ELSE { --do something else

ENDCASE;
ENDLOOP;

This example creates a periodic notifier that will be called every
20,000 milliseconds. The first step is to declare a ResultsObject
that contains only the atom count. Each time the NotifyProc is
called, it looks at the value of the count and acts accordingly.

If you make a call to CreatePeriodicNotify with milliseconds =
0, then the process runs once and destroys itself. This is known
as a kamikaze notify proc.

VIEWPOINT PROGRAMMING COURse

9.6 User aborts

9.7 Summary

VIEWPOINT PROGRAMMING COURSE

TIP

TIP also provides facilities for checking whether the user has
aborted your application. One way to do this is to associate an
AttentionProc with your windowby calling
TIP.SetAttentionProc:

TIP.SetAttention: PROC [
window: Window.Handle,
attention: TIP.AttentionProc];

TIP.AttentionProc: TYPE. PROC [window: Window.Handle];

An AttentionProc is called whenever the user presses the STOP
key. (Note that it is not called from the Notifier.) You associate
an AttentionProc with your window

If you don't associate an AttentionProc with your window, the
system keeps a user abort flag that records whether the user
has pressed the STOP key. You can check that flag at any time by
call i ng TIP.UserAbort:

TIP.UserAbort: PROC [Window.Handle] RETURNS [BOOLEAN];

To check if the user has pressed the ABORT key over a particular
window, pass in a handle to that window. To check if the user
has pressed ABORT anywhere (a global abort), pass in NIL. For
example, code to check for a global abort might look like this:

IF TIP.UserAbort[NIL] THEN GOTO GlobalAbort;

The abort flag for a window is cleared whenever a non-shift
key goes down or whenever a notification is sent to the
window. Once you have looked at the abort flag and acted on
it, you should call ResetUserAbort to set the flag back to FALSE.

TIP.ResetUserAbort: PROC [Window.Handle];

The TIP interface provides facilities for translating user actions
into program actions. The basic scheme is that the Stimulus
process enqueues user actions and the Notifier process
dequeues them and directs them to a window. The Notifier
then looks up the action in a TIP table (or TIP tables) associated
with the window. If it finds the action, it passes associated
results to a NotifyProc, which acts on those results.

To write a new TIP table for an application, you must call
Tip.CreateTable to create a program-readable version of the TIP
file, SetTableAndNotifyProc to make your table a TIP client and
set the NotifyProc, and TIPStar.PushTable to insert the new TIP
table into the existing tree of TIP tables. Later, you should call
TIPStar.PopTable to remove your new table from the tree.

TIP also provides a periodic notification mechanism, which
allows you to provide a call-back procedure that the Notifier
will call. This allows you to avoid multi-process interference.
When you are designing your programs, you should think

9-15

TIP

9.8 Exercise

•
•
•

9-16

about whether you need to use this technique to avoid multi
process interference.

TIP also provides many other user-input facilities; for more
information about TIP, see the TIP and TIPStar chapters of the
ViewPoint Programmer's Manual. Appendix A of the
ViewPoint Programmer's Manual contains more information
on the normal TIP tables.

The exercise for this chapter is Tank, which plays the classic
video game of Tank. To play this game, you first decide how
many enemies you want to have by choosing a value from one
to five from the Number of Enemies menu. (Note: depending
on the size of your window, this command may appear in the
header of the window or it may be in the auxiliary menu for
the tool.) You can also increase or decrease the speed of the
tanks by invoking Faster or Slower.

When you are ready to start playing, invoke Start Game. This
command draws the "battlefield" and the tanks, as illustrated
in Figure 9.7. (The octogonal tank is your tank; the others are
enemy tanks.)

•
8-

•
•

Figure 9.7: The Tank application

The battlefield is of fixed size and contains a tank representing
the user, the tank(s) for the computer, and gray areas that

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

TIP

serve as barriers. Any tank can destroy a gray area by shooting
at it. You can stop the game at any time by invoking Stop
Game. Otherwise, the game is over when either you have
destroyed all of the enemy's tanks or you have been destroyed
by the enemy.

When you start the game, you have a short amount of time to
move and or get the first shot in before the other tanks come
to life. The enemy tanks will always move and shoot in your
direction.

You can move your tank with the following keyboard keys:

s
d
k
I

=>
=>
=>
=>

turn left (rotate counterclockwise)
turn right (rotate clockwise)
move forward
shoot

Your assignment is to write the code for the following four
procedures in TankTIPlmplTemp:

InitAtoms initializes the atom used in the NotifyProc

LostlnputFocus gets called when the tool window loses the
input focus (let the user know this by posting a message in
the Attention Window.)

MyNotifyProc interprets the atoms passed in and calls the
appropriate procedures.

SetUpTipTable creates the TIP table for user actions.

You will also need the following modules:

TankDefs
TankGraphiclmpl
TankMsglmpl
Tanklmpl
Tank.config

9-17

TIP

Notes:

9-18 VIEWPOINT ~ROGRAMMING COURSE

10.1 Content and attributes

10. NSFILE ATTRIBUTES

Every ViewPoint volume contains a tree-structured directory of
files that you can manipulate with the ViewPoint filing system,
called NSFiling. This chapter and the next three chapters discuss
ViewPoint files in detail.

ViewPoint files consist of two types of information: content
and attributes. The content of a file is the actual data in the
file. Attributes are pieces of information associated with the
file that help identify the file, describe its structure or behavior,
and record other information about the file. Figure 10.1
illustrates a typical file, with some content and four attributes.

Name: AddressList.txt
Att 'b ~ isDirectory: FALSE

n utes --,. modifiedOn: 2-12-8614:35:46

Content --+

sizelnBytes: 10,425

Robin Miller
10513 Edgefield Drive
Adelphi, Maryland 20783

John Pettey
Box 2563
Gettysburg, PA 20604

Figure 10.1: An NSFi Ie

This chapter concentrates on specifying and accessing file
attributes. The next chapter, NSFiling, discusses basic filing
operations, such as naming, creating, opening, closing and
deleting files. Chapter 12, Streams, and Chapter 13,
NSSegment, discuss how to access the content of a file.

10.2 Interpreted and uninterpreted attributes

VIEWPOINT PROGRAMMING COURSE

There are two major classes of attri butes: interpreted and
uninterpreted. Interpreted attributes are attributes that have a
specific meaning to the file system; uninterpreted attributes
are additional attributes that you define; they do not have a
specific meaning to the file system.

10-1

ATTRIBUTES

10.3 Specifying attributes

10-2

The file system defines a wide range of interpreted attributes.
Not all attributes apply to all files, but you can associate as
many applicable attributes with a file as you like. Here is a brief
summary of the major types of interpreted attributes:

Identity attributes serve to identify a file. Examples of
identity attributes are name, version, service, and file type.

File attributes describe basic characteristics of a file.
Examples of file attributes are checksum, isDirectory, and
parentlD.

Activity attributes record the date and ti me of significant
events in the life of a file, and the name of the user on
whose behalf the event occurred. Examples of activity
attributes are created By, filedOn, modifiedOn, and readBy.

Size attributes record the size of a file. There are two
possible size attribues: sizelnPages and sizelnBytes.

Access attributes specify the access restrictions of a file. To
use these attributes, you make access lists and give a
particular access, such as fuliAccess, noAccess, or
readAccess, to the list.

Directory attributes apply only to directory files. They
describe useful characteristics of a directory. Examples of
such attributes are numberOfChildren, ordering, and
defaultOrdering.

The above list is not an exhaustive one, but it does cover the
major kinds of attributes. In general, the file system maintains,
the value of interpreted attributes. For example, when a client
opens a file with write access, the file system will update the
modifiedBy attribute as a side-effect. (You can also explicitly
change the value of an interpreted attribute via a procedure
call; see Section 10.4.)

Unintepreted attributes, on the other hand, do not have a
specific meaning to the file system. You define and maintain
your own uninterpreted attributes (also called extended
attributes), depending on your application. For example, if you
were implementing a mail system, you might want to use
extended atttributes to keep information like "sender," "time
received," "return path" and the like. Section 10.3.2 discusses
how to defi ne extended attri butes.

When you create a file, you specify the interpreted attributes
that you want the file system to maintain for that file. The file
system will maintain only the attributes you request; it does
not automatically maintain all possible attributes for all files.

Attributes are specified with variant records; an NSFile.Attribute
can take on a number of different values, depending on the
variant that you select. When you create a file, you pass an
NSFile.AttributeList, which is a descriptor for an array of variant
records representing the attributes that you would like that file
to have. Here are the relevant type declarations:

VIEWPOINT PROGRAMMING COURSE

NSFile.Attribute: TYPE = MACHINE DEPENDENT RECORD [
var: SELECT type: NSFile.AttributeType FROM

filelO, parentlO = > [value: NSFile.IO],
checksum • > [value: CARDINAL],
type=- > [value: NSFile.Type],
position. > [value: NSFile.Position],

··service • > [value: NSFile.Service],
ordering=- > [value: NSFile.Ordering],
access List, defaultAccessList == >

[value: NSFile.AccessList],

ATTRIBUTES

backedUpOn, createdOn, filedOn, modifiedOn, readOn
• >[value: NSFile.Time],

created By, filedBy, modifiedBy, readBy = >
[value: NSFile.String],

name, pathname = > [value: NSFile.String],
childrenUniquelyNamed, iSDirectory, isTemporary =- >

[value: BOOLEAN],
version, numberOfChiidren =- > [value: CARDINAL],
sizelnBytes, sizelnPages, subtreeSize, subtreeSizeLimit

= > [value: LONG CARDINAL],
extended • > [type: NSFile.ExtendedAttributeType,

value: NSFile.Words],
ENDCASE];

NSFile.AttributeList: TYPE = LONG DESCRIPTOR FOR ARRAY OF
NSFile.Attribute;

Thus, you specify a set of attributes with an array of Attribute
records, one for each attribute that you want your file to have.

10.3.1 Specifying interpreted attributes

VIEWPOINT PROGRAMMING COURSE

Here is some code that specifies a set of interpreted attributes:

--declare the attributes of interest
nsFile: NSString.String +

NSString.StringFromMesaString["file"L];
myVersion: CARDINAL +- 1 ;
myType: NSFile. Type +- 110010;

--store them in an array of records
attributes: ARRAY [0 .. 3) OF NSFile.Attribute +- [

rna me[nsFi Ie]],
[version[myVersion]] ,
[type[myType]]] ;

This code will produce an array of three Attributes, as
illustrated in Figure 10.2.

--

attributes 0 1 2

name version type
value:nsFile value: myVersion value: myType

Figure 10.2: ARRAY OF NSFile.Attributes

10-3

ATTRIBUTES

Later, you will need to create a DESCRIPTOR for this array (an
NSFile.AttributeList), and pass the array descriptor to various
procedures in the NSFile interface. We discuss how to use these
attribute lists in the next chapter; for now you only need to
worry about the syntax of specifying an attribute list. (If you
are not comfortable with variant record syntax, you might
want to review the appropriate chapter of the Mesa Language
Manual or the Mesa Course.)

You should note the file type attribute. All NSFiles must have a
file type, which is a LONG CARDINAl. Each distinct application has
a distinct file type; files with similar function or multiple
instances of an application use the same type. A file type is thus
an important identity attribute. (You obtain a file type for a
new application from the Xerox filing group.)

10.3.2 Specifying extended attributes

10-4

The last variant in the declaration of NSFile.Attribute is
extended, which allows you to declare extended attributes. An
extended attribute is a record with two fields: type and value.

A type is just a LONG CARDINAL:

NSFile.ExtendedAttributeType: TYPE = LONG CARDINAL;

A type is a unique identifier for a particular extended attribute.
All attributes, both interpreted and uninterpreted, have a
unique attribute type. An attribute type identifies a particular
attribute, much as a file type identifies a particular file. You
typically don't need to be aware of the type of an interpreted
attribute, since interpreted attributes have names, but you do
need to be aware of the attribute type for an extended
attribute, since extended attributes do not have names. An
attribute type is the only way to distinguish among different
extended attri butes.

The value of an extended attribute is the actual attribute
information. The value is stored in an encoded form. NSFile
provides procedures that encode/decode BOOLEANS, LONG
CARDINALS, INTEGERS, LONG INTEGERS, NSStrings, and
NSFile.References. Thus, when you want to store an extended
attribute, you need to call the appropriate encoding
procedure, and when you want to examine an extended
attribute you need to call a decoding procedure. For example,
the procedures to encode and decode CARDINALS look like this:

NSFile.Words: TYPE = LONG DESCRIPTOR FOR ARRAY OF UNSPECIFIED;

NSFile.EncodeCardinal: PROCEDURE [c: CARDINAL]
RETURNS [NSFile.Words];

NSFile.DecodeCardinal: PROCEDURE [NSFile.Words]
RETURNS [c: CARDINAL];

Here is a code segment that stores two extended attri butes, a
LONG STRING and a CARDINAL:

VIEWPOINT ~ROGRAMMING COURSE

ATTRIBUTES

stringAttribute: NSFile.ExtendedAttributeType. 42332;
cardinalAttribute: NSFile.ExtendedAttributeType • 23231;
myString: NSString.String ~
NSString.StringFromMesaString["aString"L];

myCardinal: CARDINAL ~ 99; -- arbitrary values

--store the encoded values for string and cardinal into
--the records, and create an array of the records.
newAttributes: ARRAY [0 .. 2) OF NSFile.Attribute ~ [
[extended[
type: stringAttribute,
value: NSFile.EncodeString[myString]]],

[extended[
type: cardinalAttribute,
value: NSFile.EncodeCardinal[myCardinal]]]];

This code creates an array of attribute records, as illustrated in
Figure 10.3. (Note that the figure shows the actual values for
the attributes, whereas they are actually stored in an encoded
form.)

~---~

newAttributes 0

extended
type: 42332
value: aString

extended
type: 23231
value: 99

Figure 10.3: ARRAY OF NSFile.Attributes

The attribute types in this example are arbitrary. You can
choose any value you like for an extended attribute type, as
long as it does not conflict with any other attribute type (either
interpreted or uninterpreted). Typically, you should consult
other members of your group to see if they have a standard
strategy for allocating such types_ The range of interpreted
attribute types is documented in the Filing Programmer's
Manual. It is good practice to define extended attributes in an
interface so that you can access them from other modules.

10.4 Getting interpreted attributes

VIEWPOINT PROGRAMMING COURSE

The NSFile interface also provides procedures that allow you to
inspect and modify attributes of a given file. To retrieve
attributes, call NSFile.GetAttributes; to set new attributes, call
NSfile.Cha ngeA ttri butes:

NSFile.GetAttributes: PROCEDURE [
file: NSFile.Handle,
selections: NSFile.Selections,
attributes: NSFile.Attributes,
session: NSFile.Session ~ NSFile.nuIlSession];

10-5

ATTRIBUTES

10.4.1 Selections

10-6

NSFile.ChangeAttributes: PROCEDURE [
file: NSFile.Handle,
attri butes: NSFile.Attri buteList,
session: NSFile.Session ~ NSFile.nuIiSession];

file is a file handle, which is just a way to specify and access a
particular file; we discuss file handles in the next chapter.

selections specifies the attributes of interest, and attributes
provides the storage for those attributes. The following
sections provide a detailed explanation of the selections,
attributes, and session parameters, as well as a complete
example illustrating both of these procedures.

The selections parameter is of type NSFile.Selections:

NSFile.Selections: TYPE = RECORD [
interpreted: NSFile.lnterpretedSelections ~

NSFile.nolnterpretedSelections,
extended: NSFile.ExtendedSelections ~

NSFile.noExtendedSelections];

NSFile.lnterpretedSelections: TYPE = PACKED ARRAY
NSFile.AttributeType OF NSFile.BooleanFalseDefault;

NSFile.AttributeType: TYPE = MACHINE DEPENDENT {checksum,
childrenUniquelyNamed, created By, createdOn, filelD,
isDirectory, isTemporary, modifiedBy, modifiedOn, name,
numberOfChildren, ordering, parentlD, position, readBy,
readOn, sizelnBytes, type, version, accessList,
defaultAccessList, pathname, service, backedUpOn, filedBy,
filedOn, sizelnPages, subtreeSize, subtreeSizeLimit,
extended};

NSFile.BooleanFalseDefault: TYPE = BOOLEAN ~ FALSE;

This parameter specifies the attri butes that you want to
retrieve. As illustrated in Figure 10.4, a Selections record
contains an array of booleans corresponding to the possible
interpreted attributes and a descriptor for an array of
extended attributes. {For now, ignore the extended attributes;
section 10.5 discusses how to retrieve extended attributes.}

interpreted

extended

I ARRAY DESCRIPTOR I

Figure 10.4: An NSFile.Selections record

VIEWPOINT PROGRAMMING COURSE

10.4.2 Attributes

10.4.3 Sessions

VIEWPOI.NT PROGRAMMING COURSE

ATTRIBUTES

To show interest in particular interpreted attributes, you set
those attributes to TRUE in the array. GetAttributes will retrieve
those attributes and store them in the attributes parameter.

The attributes parameter to GetAttributes is of type
N SFile.A ttri butes:

NSFile.Attributes: TYPE. LONG POINTER TO
NSFile.A ttri butes Record;

NSFile.AttributesRecord: TYPE. RECORD [
filelD: NSFile.lD,
service: NSFile.Service,
name: NSFile.String,
pathname: NSFile.String,
version: CARDINAL,
checksum: CARDINAL,
type: NSFile.Type,
isDirectory: BOOLEAN,
isTemporary: BOOLEAN,
parentlD: NSFile.lD,
position: NSFile.Position,
backedUpOn: NSFile.Time,
createdOn: NSFile.Time,
filedOn: NSFile.Time,
modifiedOn: NSFile.Time,
readOn: NSFile.Time,
createdBy: NSFile.String,
filedBy: NSFile.String,
modifiedBy: NSFile.String,
readBy: NSFile.String,
sizelnBytes: LONG CARDINAL,
si zel nPages: LONG CARDINAL,
accessList: NSFile.AccessList,
defaultAccessList: NSFile.AccessList,
ordering: NSFile.Ordering,
childrenUniquelyNamed: BOOLEAN,
subtreeSizeLimit: LONG CARDINAL,
subtreeSize: LONG CARDINAL,
numberOfChildren: CARDINAL,
extended: NSFile.ExtendedAttributeList);

The purpose of the attributes record is to provide storage for
the attributes being retrieved. GetAttributes will copy the
specified attributes into your attributes record; you can then
do anything you like with those attributes.

The attributes parameter to SetAttributes is of type
NSFile.AttributeList, which is a descriptor for an array of
attributes. (See section 10.3.) Be careful to distinguish among
these data types, which all have similar names.

Before it can use the file system, a client must log on via the
Authentication Service. (Note that it is actually the user who is
authenticated, not the client.) Once the client has been

10-7

ATTRIBUTES

10.4.4 Storage management

authenticated, the file system establishes a session, which is
identified by a session handle. The file system returns the
session handle to the client, which can then use the session
handle to identify itself in future calls to the file system.

Logging in to ViewPoint establishes a default session. The filing
system will use this session in all subsequent filing operations
unless you specifically request a different session handle. In the
declaration of GetAttributes, session has a default value of
nuliSession. This default is reatly the default session, and not a
null session. In this chapter we use only the default session
handle; for more information on sessions, see the Filing
Programmer's Manual.

Another thing you need to know about GetAttributes is that t
allocates storage from the system zone. Thus, you need to call
NSFile.FreeAttributes after a call to GetAttributes to release
that storage. The example in the next section illustrates this.

10.4.5 Example of GetAttributes and SetAttributes

10-8

Here is an example that obtains a file's attributes and then
changes the file's name and version number.

newVersion: CARDINAL;
newName: NSString.String +

NSString.StringFromMesaString["newNameForFile"L];
fileHandle: NSFile.Handle +- --GetFileHandleSomeHow;

--storage for old attributes being retrieved
myAttributes: NSFile.AttributesRecord;
--storage for new attributes
attributeArray: ARRAY [0 .. 2) OF NSFile.Attribute;
--create a selections record and set the ones we want to TRUE
selections: NSFile.Selections = [interpreted: [

name: TRUE, version: TRUE]];

NSFile.GetAttri butes[
file: fileHandle,
selections: selections, -- select name and version only
attributes: @myAttributes]; ~- retrieved attributes

--Put the new attributes in attributeArray
newVersion +- myAttributes.version + 1;
attributeArray +- [name[newName], version[newVersion]];
--store the new attributes
NSFile.ChangeAtlributes[file: fileHandle,

attri butes: DESCRIPToR[attri buteArray]];

NSFile.FreeAtlributes[@myAttributes]; --important!

The first step is to set up the parameters to GetAttributes.
myAttributes is the storage for the attributes being retrieved,
and selections specifies the attributes of interest. Figure 10.5
illustrates these data structures.

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

ATTRIBUTES

myAttributes filelD:

selections

service:
name:
pathname:
version:
checksum:
type:

interpreted

extended NIL

name version

Figure 10.5: selections and myAttributes

The call to GetAttributes will store the specified attributes in
myAttributes, as illustrated in Figure 10.6.

myAttributes filelD:
service:
name: fileName
pathname:
version: 3
checksum:
type:

Figure 10.6: After the call to GetAttributes

The next step is to look at the old version number, update it,
and then store new attributes with a call to SetAttributes. The
attributes parameter to SetAttributes is a descriptor for the
array of attributes illustrated in Figure 10.7.

attri buteArray 0

name version
value:newName value: newVersion

Figure 10.7: attributeArray

10-9

ATTRIBUTES

The final step is to call FreeAttributes. Although myAttributes,
selections, and attributeArray all come from the local frame
and will go away when the procedure returns, GetAttributes
allocates string items from the systemZone and places just a
pointer to the string in the AttributesRecord. Thus, you need to
call FreeAttributes to free this storage from the systemZone.

10.5 Getting extended attributes

10-10

You can also call GetAttributes to retrieve extended attributes.
With extended attri butes, the selections parameter is a
descriptor for an array of attribute types, rather than an array
of booleans. (See § 10.4.1 for the declaration of Selections.)

NSFile.ExtendedSelections: TYPE = LONG DESCRIPTOR FOR ARRAY
CARDINAL OF NSFile.ExtendedAttributeType;

Looking at the value of the attributes once you have retrieved
them is also a little more complicated with extended attributes,
since the values are encoded. You need to search for the
desired extended attribute type and then call a decoding
procedure to extract the corresponding value. For example:

stringAttribute: NSFile.ExtendedAttributeType = 42332;
cardinalAttribute1: NSFile.ExtendedAttributeType = 23231;
cardinalAttribute2: NSFile.ExtendedAttributeType = 2222;
myString: NSString.String;
firstCardinal. secondCardinal: CARDINAL;

--used for specifying selections of interest
attr: ARRAY [0 .. 3) OF NSFile.ExtendedAttributeType E

[stringAttribute. cardinalAttribute1, cardinaIAttribute2];

--storage for attributes being returned
attri butes: NSFile.Attri butesRecord;

fileHandle: NSFile.Handle E- --Get File Handle Somehow;
NSFile.GetAttributes[

file: fileHandle.
selections: [extended: DESCRIPToR[attr]],
attributes: @attributes];

-- get the values from the extended attributes array by
--searching for for the attribute type.
FOR c: CARDINAL IN [O .. LENGTH[attributes.extended]) DO

SELECT attributes.extended[c].type FROM
stringAttribute = > myString E

NSFile.DecodeString[attributes.extended[c].value
!Courier.Error .. > CONTINUE] -- decoding error

cardinaiAttribute1 = > firstCardinal E
NSFile.DecodeCardinal[attributes.extended[c].value
!Courier.Error = > CONTINUE];

cardinaiAttribute2 = > secondCardinal E
NSFile.DecodeCardinal[attributes.extended[c].value
!Courier.Error = > CONTINUE];

ENDCASE;
ENDLOOP;

VIEWPOINT PROGRAMMING COURSE

10.6 Summary

VIEWPOINT PROGRAMMING COURSE

ATTRIBUTES

The first step is to create the array attr, which contains the
attribute types for the extended attributes of interest, and an
attributes record, which provides storage for the attributes.

Next, we call GetAttributes, passing in a descriptor for the
array of attribute types, and the attributes record. The call to
GetAttributes will store the specified attributes in the
attributes record, as illustrated in Figure 10.8.

attributes filelD:
service:
name:

extended:
type: 42332
value: encoded string

extended:
type: 2222
value: encoded cardinal

extended:
type: 23231
value: encoded cardinal

Figure 10.8: Attributes record

Since the value field is encoded, you cannot directly access the
value of an extended attribute; you need to use decoding
procedures. Thus, the next step is to loop through the
extended attributes in attributes and match the attribute type
to stringAttribute, cardinalAttribute1, or cardinalAttribute2. If
there is a match, call the appropriate decoding procedure to
extract the actual value of the extended attribute. (Note: The
loop is necessary because NSFiling does not guarantee that the
attributes will be stored in the order specified in selections.)

You should note the catch phrase for Courier. Error in the
decoding procedures. This catch phrase is used to catch several
errors, such as using a decoding procedure that is not
appropriate for the encoded information. To protect yourself,
you should always catch this error and CONTINUE.

NSFiling attributes contain various pieces of information about
a file. Attributes are distinct from content, which is the actual
data in a file. The file system defines a large number of
interpreted attributes and also allows you to define your own
extended attri butes.

Attributes are represented by variant records. To specify a set
of attributes, you create an array of variant records: each
record represents one attribute. You can then use this array to
change the attributes for an existing file, to identify an existing
file or create a new file. This chapter described how to set new

10-11

ATTRIBUTES

10.7 Exercise

10-12

attributes for an existing file; the next chapter describes how
to create new files and find existing files.

You can specify extended attributes by defining an attribute
type and an associated value. If you use extended attribute
types, you have to call encoding and decoding procedures to
store and record the value of the attribute.

If you want to access or change a file's attributes, you can call
NSFile.GetAttributes. To call this procedure, you need to pass a
selections parameter that specifies the attributes of interest,
and an attributes parameter that provides storage for the
attributes being retrieved.

The exercise for this chapter is an application called Music Man.
This application allows you to write music by adding notes to a
scale. When run, this application registers the command
"Music Man" in the Attention Menu; invoking this command
displays the window illustrated in Figure 10.10.

Figure 10.9: The Music Man application

To add a note, select the desired note, hold down Point, and
choose a location for the note. The note will track the cursor, so
you can move the mouse until you reach the right place on the

VIEWPOINT ~ROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

ATTRIBUTES

staff. Releasing Point will add the note to the staff and include
it in the application's data structure.

To delete notes, select the "none" choice, move the cursor over
the desired measure and begin clicking Point. This will
highlight the notes one at a time. Pressing the DELETE key when
a note is video-inverted will remove the note.

After you have finished editing a page of music you can create
an Interpress master from the display or you can store the
music in a file. To make an Interpress master, specify a file and
select the "Make IP Master"command. To store your music,
specify a file and select "Store"; to load an existing file select
"Load". The file that you load can be either on the desktop or
in the system folder. If the file is on the desktop, you can select
it instead of typing the file name.

We have written most of the code for this application. You
need to write procedures that store and retrieve extended
attributes. The extended attributes for this application contain
the number of notes (or other objects) contained in each
measure of music. The procedures that you will implement are
called GetExtendedAttributes and StoreExtendedAttributes.

GetExtendedAttributes takes a file handle and returns the
extended attributes in an array. All of the extended attributes
are CARDINALS and their NSFile.ExtendedAttributeTypes are
specified by the subrange ExtendedSubrange. Thus you should
get all the extended attributes in the range
ExtendedSubrange, decode them as CARDINALS and return them
in the specified array.

We have written some of the code in StoreExtendedAttributes
(so you do not have to understand the details of the data
structure). You just need to encode the count for each measure
and associate it with the proper extended attribute type (this is
well documented within the procedure). Lastly, you need to
call NSFile.ChangeAttributes to store the new extended values
in the file.

These two procedures are in the module
MusicFilelmpIExerciseA.mesa. This file also contains some
comments with a more detailed explanation of the code that
you have to write.

To run the program, you will need several other modules, all of
which are stored on the course directory and listed in the
configuration file, Music.config. You should not need to
modify any of these other modules.

10-13

ATTRIBUTES

Notes:

10-14 VIEWPOINT PROGRAMMING COURSE

11.1 Naming files

VIEWPOINT PROGRAMMING COURSE

11. NSFILING OPERATIONS

This chapter discusses how to perform basic filing operations
such as creating, opening, closing and deleting files. It covers
only operations on the files themselves, not the content of the
files. The next two chapters, Streams and NSSegment, discuss
how to access the content of a file.

Before you can operate on a file, you must first have a way to
identify that file. You can identify a ViewPoint file by
reference, by attributes, or by path name.

The most common way to locate a file is by reference. An
NSFile.Reference is a unique identifier for a file: it includes the
name and network location of the file service containing the
file, and a unique identifier for the file on that volume:

NSFile.Reference: TYPE = RECORD [
filelD: NSFile.ID,
service: NSFile.Service];

NSFile.Service: TYPE = LONG POINTER TO NSFile.ServiceRecord;

NSFile.ServiceRecord: TYPE = RECORD [
name: NSName.NameRecord,
system Element: NSFile.SystemElement];

A service specifies the physical location of a file; that is, the
machine where the file resides. A fileld is a unique identifier for
a file on a particular machine. Section 11.3, Opening remote
files, provides more information on Service. For now, you just
need to be aware that a Reference uniquely specifies a file.

The second way to name a file is by attributes. To name a file
using attributes, you must create an array of attributes that
contains at least the file's name and version number. (For more
information on specifying attributes, see Chapter 10, NSFile
Attributes.)

The third common way to identify a file is by path name. A
path name is a hierarchical list of directories in the path to the
file, such as Working/Currentitemp.mesa. The path name may
be relative to a specified starting directory or to the root file.

The following sections contain examples of each of these
methods.

11-1

NSFILNG

11.2 Opening local files

11.2.1 NSFile.Open

11-2

If you want to be able to do anything useful with a file, such as
examine its contents, change its attributes, modify its contents,
or delete it, you first need to open the file. When you open a
file, the file system gives you a handle to that file. A handle is
effectively just a pointer to a particular file, although the
actual structure of a handle is private to the implementation:

NSFile.Handle: TYPE. [2];

Having a handle marks the file as "in use," so that other
processes are aware that you are using the file, but does not
necessarily restrict other processes from using the file
simultaneously.

When you acquire a file, you can also associate controls with
your file handle. Controls are essentially ways to describe your
use of the file. There are three types of controls: locks,
timeouts, and access.

A lock is a restriction on the ways that other sessions can use a
file. For example, you might wish to specify that no other client
can read or modify the file while you are using it. Note that a
lock only restricts file access through other sessions, not
through other handles in the same session; this is not a comlete
locking mechanism. You can open a file several times within a
single session, thereby creating several distinct handles. The
default lock is none, which only prevents other processes from
deleting the file.

A timeout control specifies a length of time that you are willing
to wait to acquire the file before the attempt times out.
NSFiling defines a defaultTimeout.

An access control determines the access that a particular file
handle allows; this can be read, write, owner, add, remove, or
some combination of the above. The default is fullAccess,
which sets all the accesses to TRUE.

The following sections discuss various ways to open files, but
do not show examples of using controls, since the defaults are
sufficient for most uses. For more information on controls, see
the Filing Programmer's Manual.

The most general way to open a file is by calling NSFile.Open:

NSFile.Open: PROCEDURE [
attributes: NSFile.AttributeList, --name file by attributes
directory: NSFile.Handle ~ NSFile.nuIlHandle,
controls: NSFile.Controls ~ [],
session: NSFile.Session ~ NSFile.nuIlSession]
RETURNS [file: NSFile.Handle];

The attributes parameter identifies the file that you wish to
open; you are thus naming the file by attributes. The directory
parameter specifies a directory in which to start searching for

VIEWPOINT PROGRAMMING COURSE

11.2.2 NSFile.OpenByReference

VIEWPOINT PROGRAMMING COURSE

NSFILING

the file. If you don't know or don't care where the search
should begin, you can leave this defaulted to the null handle.
In the example below, the directory is passed in as a parameter.

controls and session have default values; all the examples in
this chapter use these default values. See the Filing
Programmer's Manual if you want more information on either
of these parameters.

Here is an example of calling Open:

OpenFile: PROCEDURE[directory: NSFile.Handle,
name: XString.ReaderBody,
version: CARDINAL]
RETURNS [file: NSFile.Handle] =

BEGIN
nsName: NSString.String ~

XString.NSStringFromReader [@name, sysZ];

--specify the attributes used to name the file
--need at least name and version

attributes: ARRAY [0 .. 2) OF NSFile.Attribute ~ [
[name[nsName]],
[version[version]]];

--open the file
file ~ NSFile.Open[attributes: DESCRIPTOR [attributes],

directory: directory];

--perform operations on the file then free storage and file
NSString.FreeString[sysZ, nsName];
NSFile.Close[directory];

END;

This example creates an attributes record that contains the
name and version, and uses that attributes record to identify
the file in the call to NSFile.Open.

Once the file is open, you can perform operations on it. Before
exiting the procedure, the final step is to free the storage from
the system zone and close the file. (Section 4 discusses closing
files in more detail.)

If you have a reference to a file, you can use
NSFile.OpenByReference instead of NSFlle.Open:

NSFile.OpenByReference: PROCEDURE [
reference: NSFile.Reference,
controls: NSFile.Controls ~ [],
session: NSFile.Session ~ NSFile.nuliSession)
RETURNS [NSFile.Handle];

OpenByReference is less general than Open, but is somewhat
simpler to use if you already have a reference to the file.

11·3

NSFILNG

11.2.3 OpenByName

11.2.4 Catalog.Open

11-4

NSFile.OpenByName is another alternative to Open:

NSFile.OpenByName: PROCEDURE [
directory: NSFile.Handle,
path: NSFile.String,
controls: NSFile.Controls +- n.
session: NSFile.Session +- NSFile.nuIiSession]
RETURNS [NSFile.Handle];

OpenByName opens a descendant of a directory with a given
path name. If directory is null, the path name is assumed to be
relative to the root file. For example:

BEGIN
nsName: NSString.String +- NSString.StringFromMesaString [

"Blackjackitemp/BlackJack.df"];
file +- NSFile.OpenByName [path: nsName];
NSFile.Close [directory];
NSString.FreeString [nsName];

END;

This fragment will open a file called BlackJack.df on the
subdirectory temp, on the directory blackjack. Your path name
can include as many subdirectories as you like; you must
separate directories with the I character.

You can also open files with the Catalog interface. A catalog is
a file that is a direct descendant of the root file, so a catalog is
just a special case of a directory. The Catalog interface provides
procedures for creating and opening catalogs and files
conta i ned in cata logs.

The two most commonly used catalogs are the system catalog
and the prototype catalog. The system catalog contains TIP
files, program bcds, font files, and any other files that you
bring over from XDE. The prototype catalog contains blank
copies of icons that the user can copy onto his desktop.

The two relevant open operations are Catalog.Open, and
Catalog.GetFile. These procedures open a catalog and open a file
within a catalog, respectively.

Catalog.Open: PROCEDURE [
catalogType: NSFile.Type,
session: NSFile.Session +- NSFile.nuIiSession]
RETURNS [catalog: NSFile.Handle];

Catalog.GetFile: PROCEDURE [
catalogType: NSFile.Type +- BWSFileTypes.systemFileCatalog,
name: XString.Reader, .
readOnly: BOOLEAN +- FALSE,
session: NSFile.Session +- NSFile.nuliSession,
RETURNS [file: NSFile.Handle];

VIEWPOINT PROGRAMMING COURSE

11.3 Opening remote files

VIEWPOINT PROGRAMMING COURSE

NSFILING

You can use these procedures to operate on any catalog: the
system catalog, the prototype catalog, or any other catalog. If
you want to use one of the well-known catalogs, you will have
to get the file type for that catalog from the BWSFileTypes
interface. The example below uses the system catalog:

GetFileFromCatalog: PUBLIC PROCEDURE [name: XString.Reader)
RETURNS [file: NSFile.Handle] =
BEGIN

catalogType: NSFile.Type +- BWSFileTypes.systemFileCatalog;
file +- Catalog.GetFile [catalogType: catalogType,

name: name,
readonly: TRUE]; -- if file not found nul/Handle returned

END;

This example obtains the file type for the system catalog, and
then calls GetFile to search for a file with the given name. If the
file is in the catalog, GetFile returns a handle to it; if the file is
not in the catalog, GetFile returns a null handle. Note that with
Catalog operations, you pass in the file name directly, without
creating an attributes list.

If the catalog does not exist, then Catalog will raise a filing
error. ViewPoint will catch the error and post a message in the
Attention window. If this isn't how you would like to handle
this situation, you can explicitly call Catalog.Open to make sure
that the catalog type is valid and if it is not valid, then handle
the error yourself.

Opening a remote file (a file on another machine) is not much
more complicated than opening a local file. To open a remote
file, you get a file handle to the machine on which the file
resides, and then specify that file handle as the directory when
you ask to open the file. To get a handle to the machi'ne, call
Open, specifying the service attribute to identify the machine.
The service attribute is of type Service:

NSFile.Service: TYPE = LONG POINTER TO ServiceRecord;

NSFile.ServiceRecord: TYPE = RECORD [
name: NSName.NameRecord,
systemElement: NSFile.SystemElement +

NSFile.nuIISystemElement];

NSName.NameRecord: TYPE = RECORD [
org: NSName.Organization,
domain: NSName.Domain,
local: NSName.Local];

NSFile.SystemElement: TYPE = System.NetworkAddress;

Thus, to uniquely specify a remote service, you need both the
name of that service and its network address. (The reason for
this is that there might be more than one service on a given
machine.)

11-5

NSFILNG

11-6

If you do not specify an address for the system element, the file
system will look up the name of the service in the
Clearinghouse to get its network address.

To minimize repetitive lookups, it maintains a cache of service
records with network addresses. If you want to get such a
reference from the cache, you can call MakeReference:

NSFile.MakeReference: PROCEDURE [
filelD: NSFile.ID,
service: NSFile.Service ~ NSFile.nuIlService]
RETURNS [reference: NSFile.Reference];

Section 11.8 has an example of this procedure.

Here is an example that opens a file on a remote machine:

hostHandle: NSFile.Handle ~ NSFile.nuIlHandle;

< < host is an XString.ReaderBody obtained from the user to
specify the machine of choice. If host is not NIL, then get a
handle to it; otherwise, use the default value (nuIlHandle),
which specifies the root directory of the local volume. > >
IF NOT XString.Empty[@host] THEN {

serviceRec: NSFile.ServiceRecord;
< < array of attributes for calling Open. This example
specifies only the service attribute. > >
attribute: ARRAY [0 .. 1) OF NSFile.Attribute ~

[service[@serviceRec]];

< < get host name into proper format (first convert from
XString to NSString, and then from NSString to
NSName) > >
nsName: NSName.Name ~NSName.NameFromString[

z: Heap.systemZone,
s: XString.NSStringFromReader

[@host, Heap.systemZone]];

--set up the name field of the service record
--use the default network address
serviceRec.name ~ nsName i ;

< < open host machine. Note that with remote operations,
you need to catch Courier. Error. > >
hostHandle ~ NSFile.Open[DEscRIPToR[attri bute]

INSFile.Error • > CONTINUE;
Courier.Error = > CONTINUE]};

The point of this code is to get a handle to the remote machine
whose name is host. If host is not an empty string, call Open,
identifying the file by attributes. In this case, we use only one
attribute to identify the file: the service attribute. The service
attribute includes only the name of the service; we use the
default address, which means that the file system will obtain
the address from the Clearinghouse.

Once hostHandle has been initialized, you can use it as the
directory parameter to other NSFiling procedures.

VIEWPOINT PROGRAMMING COURSE

11.4 Closing files

11.5 Creating files

11.5.1 NSFile.Create

VIEWPOINT PROGRAMMING COURSE

NSFILING

When you are finished with a file, you must close it. Once you
have closed a file, your handle is no longer valid, and other
clients may move or delete the file.

NSFile.Close: PROCEDURE [
file: NSFile.Handle,
session: NSFile.Session ~ NSFile.nuIiSession];

If the file handle is invalid, the NSFile implementation will raise
NSFile.Error. After calling Close, you should set your file handle
to NIL to ensure that you don't try to use it again.

The NSFile and Catalog interfaces also provide procedures to
create new files. When you create a file, you do not necessarily
associate any contents with the file; instead, you typically
associate content with the file later. NSFiling itself does not
care about the contents of the file; it allocates storage for the
content, but does not manipulate the content. (See the next
chapter, Streams, for information on putting content in files.
For now, we limit the discussion to creating the file itself.)

You can also create files by other means, such as copying
existing files. For more information on other methods, see the
Filing Programmer's Manual.

The most general way to create a new file or directory is by
calling NSFile.Create. The file that you create can either be
temporary or permanent (contained in a directory).

NSFile.Create: PROCEDURE [
directory: NSFile.Handle,
attributes: NSFile.AttributeList ~ NSFile.nuIlAttributeList,
controls: NSFile.Controls ~ [],
session: NSFile.Session ~ NSFile.nuIiSession]

RETURNS [file: NSFile.Handle];

Note that you must first open the directory in which the file is
to be located. Specifying a null directory will create a
temporary file. Here is an example of a procedure that creates
a file and returns a handle to that file.

11-7

NSFILNG

11.5.2 Catalog.Create

11-8

CreateFile: PUBLIC PROCEDURE [
catalogType: NSFile.Type,
name: XString.Reader,
type: NSFile.Type, -- type of file being created
isDirectory: BOOLEAN +- FALSE,
size: LONG CARDINAL +- 0]
RETURNS [file: NSFile.Handle +- NSFile.nuIiHandle] =

BEGIN
catalog: NSFile.Handle +-Catalog.Open [catalogType];
nsName: NSString.String +

XString.NSStringFromReader [name, zone];

attributes: ARRAY [0 .. 4) OF NSFile.Attribute +- [
[name[nsName]],
[isDirectory[isDirectory]],
[sizelnBytes[size]],
[type[type]]];

IF catalog. NSFile.nuliHandle THEN RETURN;
file +-NSFile.Create [

directory: catalog,
attributes: DESCRIPTOR [attributes)! NSFile.Error = >
{HandleError[error]; CONTINUE}];

NSFile.Close [catalog];
NSString.FreeString [zone, nsName];

END;

This procedure opens the catalog in which the file is to be
located, creates an attributes record, and then creates a file in
the specified directory with the specified attributes.

One thing you should notice from this example is the
sizelnBytes attribute. This attribute is optional, but is very
important; it specifies the size of the initial chunk of storage
for the file. If you do not include this attribute, the file will
grow as it is written; this can scatter the file's pages over the
disk, and can result in very long access times. Thus, you should
always make a good guess as to the final size of your file and
include that value in your attributes.

Trying to create a file that already exists will generate an error.
If this happens, you should catch the signal and create a new
file with a higher version number. (Section 11.9 provides more
information on NSFile errors.)

The Catalog interface provides an easy way for you to create a
file that is a descendant of a particular catalog:

Catalog.CreateFile: PROCEDURE [
catalogType: NSFile.Type+- BWSFileTypes.systemFileCatalog,
name: XString.Reader,
type: NSFile. Type,
isDirectory: BOOLEAN +- FALSE,
size: LONG CARDINAL +- 0,
sessiori: NSFile.Session +- NSFile.nuIlSession,
RETURNS [file: NSFile.Handle];

Note that with CreateFile, you just pass name, type, isDirectory
and size as parameters; you don't specify file attributes in an

VIEWPOINT PROGRAMMING COURSE

11.6 Deleting files

11.7 Finding files

VIEWPOIINT PROGRAMMING COURSE

NSFILING

AttributeList. You are limited to the attributes listed in the
procedure declaration, however. (If you want additional
attributes, you will have to set them later, after you have
created the file.) As you can see from the type declaration, if
you don't specify a catalog, the default is to use the system
catalog. Once again, you should include the size parameter to
avoid fragmentation.

NSFile.Delete deletes an existing file, removes any association
with a directory, and frees the resources allocated to the file. If
the deleted file is a directory, then all descendants are deleted
too.

NSFile.Delete [
file: NSFile.Handle,
session :NSFile.Session E- NSFile.nuIiSession];

To correctly delete a file, there can be no other handles
attached to the file. If an error occurs during the Delete
process, the file handle will remain valid; otherwise, the handle
becomes invalid.

Suppose you want to locate all files whose name contains a
particular string or all files created by a particular person. In
such cases, you can use NSFile.Find:

NSFile.Find: PROCEDURE [
directory: NSFile.Handle,
scope: NSFile.Scope E- [],
controls: NSFile.Controls E- [],
session: NSFile.Session E- NSFile.nuIlSession]
RETURNS [file: NSFile.Handle];

scope is the most important parameter here; scope is how you
specify the subset of files that you are interested in:

NSFile.Scope: TYPE :I RECORD [
count: CARDINAL E- LAST[CARDINAL],
direction: NSFile.Direction E-forward,
filter: NSFile.Filter E-NsFile.nuIlFilter,
ordering: NSFile.Ordering E- NSFile.nuIIOrdering,
depth: CARDINAL E-1];

count, direction, ordering, and depth are relatively
straightforward; filter is the hard part.

count is the maximum number of files that you are interested
in. The file system will continue to search until it has found a
match, until it has searched count files, or until it has run out of
fjles to search. The default value considers all possible files.

direction is the direction of the search: you can either start at
the end of the directory and work back to the beginning, or
vice versa.

11-9

NSFILNG

11.7.1 Filters

11-10

ordering is the order in which you want to search the directory.
nuliOrdering defaults to the directory's ordering attribute.
(Directories can have complicated orderings; see section 6.3.6
of the Filing Programmer's Manual for details.) Your other
choice for ordering is defaultOrdering; no other ordering
schemes are implemented. defaultOrdering specifies
alphabetical order by file name.

depth is the number of levels subdirectories) in the file system
hierarchy that you want the search to encompass.

filter is the real basis of the scope. In most cases, the filter is the
only part of the scope that changes. The filter may be an
arbitrarily complex relational expression, as described in the'
next section.

NSFile.Filters allow you to construct a relational expression
made up of attributes and the relations "and," "or," and
"not". Here is the declaration of Filter:

NSFile.Filter: TYPE. MACHINE DEPENDENT RECORD [
var: SELEcTtype: FilterType FROM

less, lessOrEqual, equal, notEqual, greaterOrEqual, greater
• > [attribute: NSFile.Attribute,

interpretation: NSFile.lnterpretation ~ none],
matches. > [attribute: NSFile.Attribute],
and, or • > [list: LONG DESCRIPTOR FOR ARRAY OF NSFile.Filter],
not. > [filter: LONG POINTER TO NSFile.Filter],
none, all • > [],

ENDCASE];

You can create various combinations of these filters,
depending on the search criteria that you are interested in. For
example, if you wanted to find a file whose name was
"Training Notes," with a version number less than 3, that was
not created by anyone with a first name of "Jim," then you
would make the following filter:

[and[
[equal [[name ["Training Notes"]]]],
[less [[version [3]]]],
[not [[matches [[created By ["Jim *"]]]]]]

]]

The Mesa code for this filter would look something like this:

createdByFilter: NSFile.Filter ~
[matches [[created By ["Jim
*"]]]] ;

filterArray: ARRAY [0 .. 3) OF NSFile.Filter ~ [
[equal [[name ["Training Notes"]]]],
[less [[version [3]]]],
[not [@createdByFilter]]];

filter: NSFile.Filter ~ [and[DEscRIPTOR[filterArray]]];

VIEWPOINT PROGRAMMING COURSE

11.7.2 NSFile.Find

11.8 Listing files

VIEWPOINT PROGRAMMING COURSE

NSFILING

This filter will search for files whose name attribute is "training
notes," whose version attribute is less than 3, and whose
created By attribute does not pass createdByFilter.

Notice that the not operation requires a long pointer to a
Filter, so you need to first create the "inner" filter, and then
put a pointer to it in the "outer" filter.

You can also use the two wildcards * and # in your matches
expression. The * character matches zero or more characters
within a string attribute; # matches any single character.

Once you specify a scope, you can call Find to locate and open a
file in a particular directory. Here is an example that finds any
file whose name matches a specified string:

FindFile: PROCEDURE [file: XString.Reader,
zone: UNCOUNTED ZONE, dir: NSFile.Handle]
RETURNS [handle: NSFile.Handle +-NSFile.nuIlHandle] :::I

BEGIN
nsSource: NSString. Stri ng +- XString. NSStri ngFromReader[

fi Ie, zone];

-- if no directory is specified use the root file
IF dir • NSFile.nuliHandle THEN dir +
NSFile.OpenByReference[reference: NSFile.nuIIReference];

handle +-NSFile.Find[
directory:dir, .
scope: [filter: [matches[[name[nsSource]]]]]! NSFile.Error :::I >

CONTINUE);
NSString.FreeStri ng [Defs.zone, nsSource];

END;

This example opens the specified directory. If there is no
directory, then it uses the root directory. Next, it searches the
open directory for all files whose name attribute matches the
file parameter.

You can use NSFile.List to enumerate files in a directory and
return the desired attributes of each listed file:

NSFile.List: PROCEDURE [
directory: NSFile.Handle,
proc: NSFile.AttributesProc,
selections: NSFile.Selections,
scope: NSFile.Scope +- [],
cI ientData: LONG POINTER +- NIL,
sessiot:": NSFile.Session +- NSFile.nuIlSession];

NSFile.AttributesProc: TYPE = PROCEDURE [
attributes: NSFile.Attributes, clientData: LONG POINTER]
RETURNS [continue: BOOLEAN +- TRUE];

11-11

NSFILNG

11-12

directory is the directory that you want to search. proc is a call
back procedure that you want the file system to call when it
finds an appropriate file. For each file that matches the
specified scope, the file system will call proc with attributes,
which is a pointer to an attributes record.

clientData is a LONG POINTER to information of your choice. If
there is any additional information that you want available
when proc is called, you can pass it in via clientData.

Here is an example of using List:

< < The file system will call Enumerate when it finds a file that
matches the search criteria. When called, Enumerate will open
the file by reference. If there are problems, abort this
enumeration and continue the search with other files.
Enumerate: NSFile.AttributesProc • {

};

ref: NSFile.Reference ~ NSFile.MakeReference[
filelD: attributes.fileID! NSFile.Error • > GOTO Exit];

handle: NSFile.Handle ~
NSFile.OpenByReference[ref! NSFile.Error • > GOTO Exit];

-- do something interesting with file handle
NSFile.Close[handle! NSFile.Error • > CONTINUE];
EXITS Exit • > NULL;

--This is the procedure that does the actual search.
ListDirectories: PROCEDURE[

};

handle: NSFile.Handle, file: XString.Reader] • {
nsSource: NSString. Stri ng ~ XString. NSStri ng From Reader[

file, Defs.zone];

--interested in all files whose name matches nsSource
scope: NSFile.Scope ~

[filter: [matches[[name[nsSource]]]],direction:backward];
-- get the ID of the file being enumerated
selections: NSFile.Selections;
selections.interpreted[fileID] ~TRUE;

-- if no directory specified use the root
IF handle. NSFile.nuliHandle THEN handle ~

NSFile.OpenByReference[reference: NSFile.nuIIReference];

-- call List. This will result in a call to Enumerate for each file
--that matches the specified scope
NSFile.List[

directory: handle,
proc: Enumerate,
selections: selections,
scope: scope!NsFile.Error • > CONTINUE];

-- free all allocated data and close the directory
NSString.FreeString[Defs.zone, nsSource];
NSFile.Close[handle! NSFile.Error • > CONTINUE];

The parameters to ListDirectories are a handle to a directory,
and the name of a file. ListDirectories sets up a filter to match
all files whose name matches the file parameter, and then calls
NSFile.List. List calls Enumerate for each file that matches the

VIEWPOINT PROGRAMMING COURSE

11.9 Errors

VIEWPOINT PROGRAMMING COURSE

NSFILING

specified scope; Enumerate can then perform any desired
operations on those files.

When working with the NSFiling system, you need to concern
yourself with the errors NSFile.Error and Courier.Error. NSFile.Error
has a parameter that indicates the type of error:

NSFile.Error: ERROR [error: NSFile.ErrorRecord];

NSFile.ErrorRecord: TYPE. RECORD [
SELECT errorType: NSFile.ErrorType FROM

access • > [problem: NSFile.AccessProblem],
attributeType, attributeValue • > [

problem: NSFile.ArgumentProblem,
type: NSFile.AttributeType,
extendedType: NSFile.ExtendedAttributeType Eo

LAST[NSFile.ExtendedAttributeType] ;
authentication. > [

problem: NSFile.AuthenticationProblem],
clearingHouse. > [problem: NSFile.ClearinghouseProblem],
connection. > [problem: NSFile.ConnectionProblem];
controlType, controlValue • > [

problem: NSFile.ArgumentProblem,
type: NSFile.ControIType].

handle. > [handle: NSFile.HandleProblem],
insertion. > [problem: NSFile.lnsertionProblem],
range. > [problem: NSFileArgumentProblem],
scopeType, scopeValue • > [

problem: NSFile.ArgumentProblem,
type: NSFile.ScopeType],

service. > [problem: NSFile.ServiceProblem],
session. > [problem: NSFile.SessionProblem].
space • > [problem NSFile.SpaceProblem],
transfer=- > [problem: NSFile.TransferProblem],
undefined. > [problem: NSFile.UndefinedProblem],
ENDCASE];

Within an Error, there are various classes of errors. The error
classes are Access errors, Argument errors, Authentication
errors, Clearinghouse errors, Connection errors, Handle errors,
Insertion errors, Service errors, Range errors, Session errors,
Space errors, Transfer errors, and Undefined errors.

Within each of these classes, there are a number of specific
errors. For example, in the case of an access error, there is a
parameter problem that indicates the exact nature of the
problem. This problem is of type AccessProblem:

NSFile.AccessProblem: TypE=- MACHINE DEPENDENT {
accessRightslnsufficient{O), accessRightslndeterminate(1),
fileChanged(2), fileDamaged(3), filelnUse(4),
fileNotFound(5), fileOpen(6), fileNotLocal(7)};

Each of the other classes of errors has a similar list of specific
errors; consult the Filing Programmer's Manual for a complete
list. When working with filing operations, you need to catch
NSfile.Error, select the error class and then select the actual error
from within the class. For example:

11-13

NSFILNG

11.10 Summary

11-14

NSFileCatchError: PROCEDURE [error: NSFile.ErrorRecord] =
BEGIN

WITH mvError: error SELECT FROM
access. > SELECT myError.problem FROM

fi leChanged • > < < File changed error> >
filelnUse • > < <File in use error> >
fileNotFound • > «File not found error> >

ENDCASE;
handle. >

SELECT myError.problem FROM
invalid. > < < Invalid handle error> >
obsolete. > «Obsolete handle error»

ENDCASE;
ENDCASE • > < < Undefined error> >

END;

If you are working with remote files, you also need to be
concerned with Courier.Error. Like NSfile.Error, this error has a
parameter that indicates the exact nature of the problem:

Courier.Error: ERROR [errorCode: Courier.ErrorCode];

Courier.ErrorCode: TYPE = {
transmissionMediumHardwareProblem,
transmissionMediumUnavailable,
transmissionMedi umNotReady, nOAnswerOrBusy,
noRouteToSystemElement, transportTimeout,
remoteSystemElementNotResponding,
noCourierAtRemoteSite, tooManyConnections,
invalidMessage, noSuchProcedureNumber,
returnTimedOut, callerAborted,
unknownErrorlnRemoteProcedure, streamNotVours,
truncatedTrandfer, parameterl nconsistency,
invalidArguments, noSuchProgramNumber,
protocol Mismatch, duplicateProgramExport,
noSuchProgramExport, invalidHandle, noError];

For more information on any of these error codes, see Section
6.6.4.1 of the Pilot Programmer's Manual.

To open a file so that you can read or write to it, you generally
use NSFile.Open. Alternatives to Open are
NSFile.OpenByReference, NSFile.OpenByName, and Catalog.Open.

To close a file, use NSFile.Close.

To create a file, use NSFile.Create. If you want to create a file in a
catalog, you can use Catalog.Create instead.

To delete a file, call NSFile.Delete.

To find or list files matching particular criteria, call NSFile.Find or
NSFile.List.

There is a complete filing example at the end of Chapter 13,
NSSegments. This example illustrates a full range of filing
operations, covering the information in Chapters 10 through
13.

VIEWPOINT pROGRAMMING COURSE

11.11 Exercise

VIEWPOINT PROGRAMMING COURSE

NSFILING

For complete documentation on the NSFile interface, see the
Filing Programmer's Manual.

The exercise for this chapter builds on the exercise for the
previous chapter. You don't need to have done the earlier
exercise to do this one, but you do need to have read the
description of the user interface. If you didn't do the last
exercise, you should go back now and read the description of
how the tool operates.

For this exercise, you need to implement the two procedures
GetSelectedFile and OpenTypedfile.

GetSelectedFile should open the currently selected file and
return an NSFile.Handle to it. If there are any problems, you
should print an error message to the user and raise the signal
Fi,leProblem.

The second procedure, OpenTypedFile, is more complicated. In
this procedure, you recieve the name of a file and an operation
(saveData, loadData, or savelP) as parameters. You need to do
the following:

• Check to see if the file is on the desktop or in the system
catalog. If it is, then just return a handle to it. (See the
StarDesktop interface for more information on
manipulating the desktop.)

• If the file isn't in either the system catalog or on the desktop,
you need to decide whether to create it or return an error. If
the operation is load Data, then you are tryi ng to read the
contents of the file. Since the file doesn't exist, you should
print an error message and raise the signal FileProblem.

If the operation is not loadData, then you need to create a
new file on the desktop. To create the file, you need to
determine the file type by checking the operation argument
agai n. If operation is saveData, then use the type
SimpleDocumentType; otherwise use IPMasterType. The
reason for having two file types is that this procedure is
called to create files both for storing data and creating
Interpress masters.

The procedures that you need to modify are in
MusicFilelmpIExerciseB.mesa. This is the same module that you
worked with in the last exercise. This time, however, we
provide the attributes code, and you must write the code that
manipulates the files. The comments in this module describe
exactly what you need to do.

11-15

NSFILNG

Notes:

11-16 VIEWPOINT PROGRAMMING COURSE

12.1 Overview

VIEWPOINT PROGRAMMING COURSE

12. STREAMS

The last chapter discussed how to create, open, close, and
delete files, but did not discuss how to access the actual
contents of the file. The two most common ways for a program
to access the contents of a file are attaching a stream to the
file, and mapping the contents of the file to virtual memory.
This chapter focusses on how to attach a stream to a file; the
next chapter discusses mapping the file to virtual memory.

A stream is an abstraction for accessing data sequentially: one
byte at a time, one word at a time, and so on. Streams are
device-independent: you can use streams to access data on
various different devices, such as local disk files, floppies and
tape drives. For the purposes of this chapter, however, a
stream is a connection from a program to a local disk file. If you
want to know how to use streams to access other kinds of
devices, see the Pilot Programmer's Manual.

To use a stream to access the contents of a fi Ie, you need to set
up a connection between your program and the file. Creating
the stream is device-dependent; you need to use a procedure
that knows the details of file liD. The ViewPoint NSFileStream
interface provides this procedure.

Once the stream is established, however, you can use
procedures from the Pilot Stream interface to do I/O. These
procedures are device-independent; you use the same liD
procedures regardless of the type of the device to which the
stream is attached. Figure 12.1 illustrates this idea.

device-i ndependent
stream
(Stream interface liD
procedure)

device-dependent
connection
(NSFileStream
interface)

~~ 1.----------,
'---p_r_o_

9
_ra_m_ F- .------. ~L-__ f_i I_e_----I

12.1 A stream to a file

The rest of this chapter describes how to set access the contents
of a file using the facilities of NSFileStream and Stream.

12-1

STREAMS

12.2 Creating a stream

12.3 Stream I/O

12-2

To open a stream to a file, the first step is to call
NSFileStream.Create :

NSFileStream.Create: PROCEDURE [
file: NSFile.Handle,
closeOnDelete: BOOLEAN +- TRUE,
options: Stream.lnputOptions +-Stream.defaultlnputOptions,
session: NSFile.Session]
RETURNS [fileStream: NSFileStream.Handle];

file is a handle to the file to which you want to attach the
stream; you can get the file handle with any of the methods
described in the previous chapter. Note that file must be a
handle to a local file; you cannot use NSFileStream to access
remote files.

closeOnDelete specifies whether the file is to be automatically
closed when the stream is deleted. options controls various
aspects of the stream. session is as described in Chapter 10,
NSFiling Operations.

Create creates a stream to the specified file and returns a
handle to that stream. The handle is of type NSFileStream.Handle,
which is equivalent to a Stream.Handle:

NSFileStream.Handle: TYPE = RECORD [Stream.Handle];

Stream.Handle: TYPE. LONG POINTER TO Stream.Object;
Stream.Object: TYPE • RECORD [

options: Stream.l n putOptions,
getByte: Stream.GetByteProcedure,
putByte: Stream.PutByteProcedure,
...];

A Stream.Object defines the mechanisms for data transfer to
and from the particular device for which the stream was
created. The Object contains specific procedures to do I/O; the
Stream implementation will call these procedures when the
client requests a read or write. (The next section covers stream
I/O in detail.) You don't need to know anything about the
Object however; the stream handle is all you need.

Once you have created a stream to a file, you can use the
facilities of the Stream interface to read and write to the file.
Note that controls acquired when creating the file handle
apply when you access the file via the file stream, and are used
to determine your access to the file.

The basic output operations for streams are PutByte, PutWord,
and PutBlock. (PutBlock 'is discussed in the next section.) The
procedures are declared as follows:

Stream.PutByte: PROCEDURE [sH: Stream.Handle,
byte: Stream.Byte];

VIEWPOINT PROGRAMMING COURSE

12.3.1 Example of I/O

VIEWPOINT PROGRAMMING COURSE

STREAMS

Streall:1.PutWord: PROCEDURE [sH: Stream.Handle,
word: Stream.Word];

These procedures are straightforward; you provide a stream
handle and a piece of data, and the procedure puts that data
to the appropriate stream.

The basic input procedures are GetByte, GetWord, and
GetBlock. (GetBlock is discussed in the next section.)

Stream.GetByte: PROCEDURE [sH: Stream.Handle]
RETURNS [byte: Stream.Byte];

Stream.GetWord: PROCEDURE [sH: Stream.Handle]
RETURNS [word: Stream.Word]; ,

These procedures return the next byte or word (respectively)
from the specified stream.

When it reaches the end of an input file, the Stream interface
raises the signal EndOfStream. You need to catch this signal
and re,act accordingly. For example:

ch: Stream.Byte;
DO -- copy the file input to the file output

ch ~ Stream.GetByte[input!Stream.EndOfStream = > EXIT];
Stream.PutByte[output,ch];

ENDLOOP;

This example gets a byte from input and puts it to output until
it reaches the end of the input file. At that point, the Stream
interface raises the EndOfStream signal, which is caught inside
the loop. The catch phrase exits the loop, and control will
resume at the statement following the loop.

Here is an example of a procedure that creates streams on two
files and then copies the contents of one file to the other. After
the copy is complete, the streams are deleted, thus closing the
files. (Deleting a stream automatically closes the file to which
the stream is attached, unless you change the value of the
c1oseOnDelete boolean parameter of NSFileStream.Create.)

Copy: PROCEDURE [from, to: NSFile.Handle] = {
--set up the streams with NSFlleStream
input: NSFileStream.Handle ~ NSFileStream.Create[file: from];
output: NSFileStream.Handle ~ NSFileStream.Create[file: to];

-- after Streams are created you can use Pilot Stream operations
ch: Stream.Byte;
DO -- copy the file

ch E- Stream.GetByte[inputlstream.EndOfStream = > EXIT];
Stream.PutByte[output,ch] ;

ENDLOOP;

Stream.Delete[input]; --deletes stream and closes file
Stream.Delete[output] };

12-3

STREAMS

12.3.2 Block 1/0

12-4

Stream blocks allow you to transfer arbitrary data structures.

Stream.Block: TYPE=- Environment.BIOck;

Environment.Block: TYPE. RECORD [
blockPointer: LONG POINTER TO PACKED ARRAY [0 .. 0)

OF Environment.Byte,
startlndex, stoplndexPlusOne: CARDINAL];

Stream.GetBlock: PROCEDURE [sH: Stream.Handle,
block: Stream.BIOck]
RETURNS [bytesTransferred: CARDINAL,

why: Stream.CompletionCode,
sst: Stream.SubSequenceType];

Stream.PutBlock: PROCEDURE [sH: Stream.Handle,
block: Stream.Block,
endRecord: BOOLEAN of- FALSE];

Stream.CompletionCode: TYPE = {normal, endRecord,
sstChange, endOfStream, attention, timeout};

To use GetBlock, you must first declare a Block, which includes
a pointer to a buffer (array) of bytes, and information on
where to start and stop in the array of bytes. You then call
GetBlock, passing in a stream handle and your Block. GetBlock
will retrieve bytes from the file and store them into the buffer
specified by block, as illustrated in Figure 12.2.

block

blockPointer startlndex stoplndexPlusOne

Buffer of uninterpreted bytes buffer

11

12.2 After a GetBlock operation

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

STREAMS

Once you have the array of bytes, you can use Mesa's LOOPHOLE

operation to operate on the bytes as if they were a data
structure. The LOOPHOLE operation allows you to circumvent
Mesa's type checking; you can use LOOPHOLE to treat any type as
if it were another, as long as the two types occupy the same
number of words. Thus, you can loophole the block pointer
into a pointer to another record structure, as illustrated in
Fi ure 12.3.

block

blockPointer startlndex stoplndexPlusOne

buffer

1100 11111111@ill

1 LOOPHOLE

block

blockPointer startlndex stoplndexPlusOne

buffer

name ssn employeeNumber gradelevel

12.3 Using stream block operations

12-5

STREAMS

12-6

Here is a code fragment that corresponds to the above figure:

Employeelnfo: TYPE. MACHINE DEPENDENT RECORD[
name(O): PACKED ARRAY[O .. 30) OF CHARACTER,
ssn(15): LONG CARDINAL,
employeeNumber(17): LONG CARDINAL,
gradeLevel(19): CARDINAL];

--size of record in bytes
RecordSize • SIZE [Employeelnfo] * Environment.BytesPerWord;
inputStream, outputStream: Stream.Handle +- NIL;

myRec: LONG POINTER TO Employeelnfo;
--declare a buffer that has same number of bytes as the record
buffer: PACKED ARRAY[O .. RecordSize) OF Environment.Byte;
--create a stream block with pointer to your buffer
block: Stream.Block +- [@buffer, 0, RecordSize];

--need to initialize stream handles here by calling
--NSFileStream. Create

completionCode: Stream.CompletionCode +- normal;
UNTILcompletionCode = endOfStream DO
--get a block

[block.stoplndexPlusOne, completionCode,] +
Stream.GetBlock[inputStream,block];

--lay template on data
myRec +- LOOPHOLE [block. blockPoi nter];

--modify record
myRec.gradeLevel +- myRec.gradeLevel + 1;

--put modified record to output file
Stream.PutBlock[sH: outputStream, block: block,

endRecord: TRUE]; -- ensure block is sent before return
ENDLOOP;

In this example, we declare a buffer, make a Stream.Block that
has a pointer to that buffer, and then call GetBlock, passing in
our input stream and the block. GetBlock fills the buffer with
bytes taken from the stream. We then use LOOPHOLE to access
the block pointer as if it were a pointer to our record structure.
We can then use the record pointer to modify the bytes as if
they were a record of type Employeelnfo. (Note that we never
actually declare a record of type Employeelnfo; instead, we use
the buffer of bytes as if it were the record.) When we have
finished modifying the record, we use PutBlock to write the
buffer to another stream.

You should notice that GetBlock normally uses the completion
code endOfStream instead of signalling endOfStream. To
cause GetBlock to raise the signal, you can call
Stream.SetlnputOptions to set signalEndOfStream in
inputOptions to TRUE. (Recall from section 11.2 that
NSFileStream.Create has an options parameter that specifies
certain characteristics of the stream. Stream.SetlnputOptions is a
procedure that allows you to change the characteristics of a
stream once it has been created.)

VIEWPOINT PROGRAMMING COURSE

12.3.3 Random access

12.3.4 Miscellaneous operations

VIEWPOINT PROGRAMMING COURSE

STREAMS

Although streams are generally used for sequential access,
NSFileStream supports random access to the contents of local
files. Note, however, that you should not do a lot of random
access with streams. If you need to do a lot of random access,
you should use mapping instead of streams. (The next chapter
discusses this method.)

To get to a particular position you call Stream.SetPosition.
Similarly, you can determine the current location within a file
by using Stream.GetPosition:

Stream.Position: TYPE == LONG CARDINAL;

Stream.GetPosition: PROCEDURE [sH: Stream.Handle] RETURNS
[position: Stream.Position];

Stream.SetPosition: PROCEDURE [sH: Stream.Handle,
position: Stream.Position];

In both of the procedure declarations, the position parameter
is the byte-index of the next data in the stream to be read or
written, where the first byte in the file has the index O. Here is
some code to illustrate the use of these procedures:

Advance: PROCEDURE[stream: Stream.Handle,
advanceAmount: Stream.Position]
RETURNS [newPos: Stream.Position] :II

BEGIN
position: Stream.Position +-Stream.GetPosition (sH: stream];
newPos +- position + advanceAmount;
Stream.SetPosition [sH: stream, position: newPos];

END;

NSFileStream also provides procedures that allow you to
obtain a count of the data bytes in a file stream, or set the
length of data bytes in the file stream:

NSFileStream.GetLength: PROCEDURE [
fileStream: NSFileStream.Handle]
RETURNS [IengthlnBytes: LONG CARDINAL];

NSFileStream.SetLength: PROCEDURE [
fileStream: NSFileStream.Handle,
lengthlnBytes: LONG CARDINAL];

Note that the length returned by GetLength is not necessarily
equal to the size of the underlying file. For example, if you are
appending data to the stream, the actual size of the file may be
smaller than the number of bytes in the stream. See the Filing
Programmer's Manual for details.

Note also that you can use SetLength to make the length of the
file stream either larger or smaller.

12-7

STREAMS

12.4 Deleting streams

12.5 Summary

12.6 Exercises

12-8

Another NSFileStream procedure that you might find useful is
FileFromStream:

NSFileStream.FileFromStream: PROCEDURE [
fileStream: NSFileStream.Handle]

RETURNS [file: NSFile.Handle];

This procedure returns a copy of the file handle to which the
stream is attached. It is a copy of the handle used to acquire the
stream; it is valid only during the session during which you
acquired the stream.

Since a stream is a connection between a program and a
device, the program should never terminate without telling
the device that the connection is no longer open. For every
stream you create, you must call Stream. Delete to close the
stream when you are finished with it.

Stream.Delete: PROCEDURE [sH :Stream.Handle];

After closing the stream, you should always set the stream
handle variable to NIL, to ensure that you don't accidentally try
to use it later on. (Delete invalidates the stream handle, but
does not set it to NIL.)

Streams provide sequential access to data. You can use streams
to access various devices, but this chapter only discussed how to
use them to access the contents of local disk files.

To create a stream, you need to use a procedure that knows
something about the device to which you are attaching a
stream. To attach a stream to a local disk file, you use
NSFileStream.Create.

Once you have created a stream, you perform I/O with the
Stream procedures PutByte, PutWord, PutBlock, GetByte,
GetWord, and GetBlock.

To do random access, use Stream.GetPosition and
Strea m. SetPosition.

When you are through, call Stream.Delete to delete the stream.

The tool for this chapter is the Stream Tool, which allows you to
load a file (simple document) into the tool window, or load the
contents of the window into a file.

To load a file into the tool, select the file and invoke Load. To
store the current contents of the window into a file, select the

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

STREAMS

destination file and invoke Save. You can use standard editing
techniques to change the contents of the window.

You must write the commands Load and Save. The procedures
that you need to change are in the module
StreamToollmpITemp.mesa. You will also need the following
modules:

StreamTool Defs
StreamToollmpl
StreamToollmplTemp
StreamToolMsglmpl
StreamTool.config

12-9

STREAMS

Notes:

12-10 VIEWPOINT ~ROGRAMMING COURSE

13.1 Definition of terms

13. NSSEGMENT

The last chapter discussed how to access the contents of a file
with a stream; this chapter discusses how to access the contents
of a file by mapping the file to virtual memory.

Streams are an easy way to access a file sequentially. For some
applications, however, you want to access a file via a data
structure rather than sequentially. For example, if you have a
file that contains a binary tree of data, you probably need to
access that data as a tree and not as a sequence of bytes. For
this kind of application, you should modify the file by mapping
it to virtual memory rather than using a stream.

This chapter describes how to use the facilities of the Services
NSSegment interface and the unqerlying Pilot Space interface
to map files to virtual memory. You should be familiar with the
basic idea of virtual memory before you read this chapter.

Page: One page is Environment.wordsPerPage (256) words or
Environment.bytesPerPage (512) bytes.

13.2 Virtual memory overview

VIEWPOINT PROGRAMMING COURSE

Since no machine ever has enough real memory, virtual
memory has become the standard way to combine the
resources of the disk drive with the resources of real memory.
The idea is to create the illusion of an environment that has the
size of the disk and the speed of main memory.

The underlying premise is that you don't have to have all of a
program in real memory to execute the program. Rather, the
parts of the program that are currently executing are in real
memory, and the rest of it is "in virtual memory." Everything
that is "in" virtual memory must be backed by a page on the
disk; the disk is the reallocation of the information.

Since there are more pages in virtual memory than can fit in
real memory, there will come a point when a program tries to
access a page that is not currently in real memory. At this point,
the operating system will swap out pages that are no longer
needed and swap in the necessary page and any other pages of
the containing swap unit. (A swap unit is just a way to group
pages so tt'1at they will be swapped in and out together.)

The operating system handles all swapping; you never know
whether your code is in real memory or not. However,
swapping pages in and out takes more time than just loading a
program into'real memory and executing it. Virtual memory

13-1

NSSEGMENT

13.3 Mapping

13.3.1 Setting up the mapping

13-2

allows you to execute more programs, but each individual
program may be somewhat slowed by swapping.

Every piece of virtual memory that contains useful information
must have a backing file on the disk. Typically the backing file
for a piece of virtual memory is anonymous, but it is possible to
set up a mapping between a specific file and a specific piece of
virtual memory. Thus, you can get a pointer to a piece of virtual
memory that is backed by your file, modify the virtual memory,
and then write the information back out to the file on the disk.

The simplest view of the relationship between an interval of
virtual memory and its backing store is that the virtual memory
and the file always contain the same data. This isn't really the
way it works, however, since changes to the virtual memory
interval aren't immediatly reflected in the backing file.

A page that has been changed in memory but not in the
backing file is "dirty." The operating system writes dirty pages
to the backing file before it swaps the page out of virtual
memory, but you should not count on this for backup since you
have no way of knowing when or if it will happen. Instead, you
can explicitly write dirty pages to the disk with procedure calls,
either in the middle of modifications (as an intermediate
backup) or when you are through maki ng changes.

The rest of this chapter describes how to map a file to virtual
memory, how to modify it, and how to write the modified
contents of virtual memory back to the file.

To map a file to virtual memory, you call NSSegment.Map:

NSSegment.Map: PROCEDURE [
origin: NSSegment.Origin,
access: NSFile.Access ~ NSFile.ReadAccess,
usage: Space.Usage ~ Space.unknownUsage,
life: space.Life ~ alive, --or dead
swapUnits: Space.SwapUnitOption ~

space.defaultSwapUnitOption,
session: NSSegment.Session ~ NSSegment.nuIISession]
RETURNS [mapUnit: Space.lnterval];

NSSegment.Origin: TYPE = RECORD [
file: NSFile.Handle,
base: NSSegment.PageNumber,
count: NSSegment.PageCount.
segment: 10 ~ NSSeg~ent.defaultIO];

Space.lnterval: TYPE :II RECORD [
pointer: LONG POINTER,
count: Environment.PageCount];

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

VM

NSSEGMENT

As illustrated in Figure 13.1, Map takes a specified portion of a
file, copies it to virtual memory, and returns a pointer to the
appropriate pages in virtual memory. (The next section
provides detail on the Space.lnterval that Map returns.)

/
/

map unit

/
/

Mapping a file or portion
of a file puts a copy of
the file in VM

file file portion

Figure 13.1 Mapping a file to virtual memory

The origin record specifies the location of the information that
you want to map. Within an origin, file specifies the file of
interest, base is the page in that file where you want to start
processing, and count is the number of pages of interest.

The segment field allows you to specify the portion of a file
that you are interested in. Every file is composed of segments.
There must be at least one segment, the default segment, in a
file. Although the NSSegment interface currently supports
multi-segment files, their use is not recommended. Thus, you
should always leave the segment field defaulted. Figure 13.2
illustrates an origin record.

Origin specifies pages, (starting from base for count pages),
of segment number segment in file file.

origin
·
· .

file base count • segment: .
myFile 1 2 N/A · ·

origin specifies a two-page chunk

myFile
p p p p p

a a a a a a

g g g g g g

e e e e e e

3 4 5 n-1 n

Figure 13.2 An NSSegment.Origin

The access parameter to Map determines whether you are
allowed to write in the mapped space after you map a file. You
must have at least read access, or you will raise NSFile.Error.

13-3

NSSEGMENT

13.3.2 Accessing the file

13-4

Note that the default access is read (even if you have write
access to the file), so you will have to change this if you wish to
write the file.

usage provides a hint as to how the space will be used. This
data will be made available to tools like the debugger and the
performance management package. The Space interface
defines an interval of usages that is further managed by the
SpaceUsage interface. See the Pilot Programmer's Manual for
details.

life specifies whether or not the initial contents of the backing
file are useful. alive specifies that a swap unit initially contains
useful data; dead specifies that it does not. See the Pilot
Programmer's Manual for more details.

The swapUnit parameter specifies the size of the swap units
that Pilot should use when your program takes a page fault. If
you don't specify a size, it will be defaulted. See the Pilot
Programmer's Manual for details of default swap units.

session is as described in Chapter 10, NSFile Attributes.

Here is an example of calling Map:

-- set up to retrieve attributes.
selections: NSFile.Selections;
attributes: NSFile.AttributesRecord;

--open the file
file: NSFile.Handle +- NSFile,OpenByReference[fileReference];

--retrieve the sizelnPages attribute
selections.interpreted[sizelnPages] +- TRUE;
NSFile.GetAttributes[file, selections, attributes];

-- map file to VM so we can write to it. Specify entire file as
--origin; allow write access.
space: space.lnterval +- NSSegment,Map[

origin: [file:file, base: 0, count: attributes.sizelnPages],
access: NSFile.fuIlAccess];

This example maps an entire file. The first step is to retrieve the
sizelnPages attribute to find out how big the file is. The second
step is to map the file, using the sizelnPages information to
specify that we are mapping the entire file.

Map returns a Space.lnterval, which describes a sequence of
pages in the virtual memory. An Interval contains a pointer to
the first page and a count of the number of pages:

space.lnterval: TYPE == RECORO[
pointer: LONG POINTER, count: Environment.PageCount];

Since you have a pointer to the starting address of the interval,
you can impose any structure on your interval of virtual
memory by creating a variable that is a pointer to a data object

VIEWPOINT PROGRAMMING COURSE

13.3.3 Updating the file

VIEWPOINT PROGRAMMING COURSE

VM

NSSEGMENT

and then assigning to that pointer the address of the segment.
(This typically involves a LOOPHOLE operation.) For example:

--declare a record type with a LONG POINTER and two BOOLS
RecType: TYPE. RECORD [

someString: XString.Reader,
isEnglish: BOOLEAN,
isAlphabetized: BOOLEAN];

RecPointer: TYPE = LONG POINTER TO MyRec;

--map the file
space: Space.lnterval ~ NSSegment.Map[.•.];

-- use somePtr to access the contents of the file as if
--it were a variable of type RecType. Notice that we never
--actually declare a variable of type RecType; we just use the
--virtual memory as if it were a variable of RecType.
someptr: RecPointer ~LOOPHoLE[space.pointer];
someptr.isEnglish ~FALSE;

This example sets up a record structure with three fields, maps
a file to virtual memory, and then access the virtual memory as
it were a variable of type RecType. Figure 13.3 illustrates this
idea.

I map the file with NSSegment.Map

space.pointer

VM

I LOOPHOLE someptr into space.pointer

Figure 13.3: Mapping a file and then LOOPHOLING

When you are finished with a mapped space, you should call
Space.Unmap:

Space.Unmap: PROCEDURE [
pointer: LONG POINTER,
returnWait: Space.ReturnWait ~ wait]
RETURNS [nil: LONG POINTER];

13-5

NSSEGMENT

VM

file

VM

file

13.3.4 Complete mapping example

13-6

pointer denotes your virtual memory interval; returnWait
specifies whether Pilot backs up dirty pages before returning to
the client. (wait is currently the only value implemented; you
should always just default this parameter.) Unmap returns a NIL
pointer; the idea is that you should do something like this:

myPointer +- space.Unmap[myPointer];

Unmap will write any dirty pages, and free the virtual memory
that the space occupies, as illustrated in Figure 13.4. You
should call Unmap regardless of whether you have made any
changes.

.. .frees the interval of
vi rtual memory, and
ends the mapped
rei ati onsh i p.

Figure 13.4: Unmapping

You can also back up dirty pages manually, with the procedure
space.ForceOut:

space.ForceOut: PROCEDURE [interval: space.lnterval];

You can call this procedure at any time to force your changes
to be written to the disk. How often you call ForceOut is a
judgment call based on the importance of the data that you
are manipulating and the probability of a machine failure.

Here is a program fragment that keeps a record of the
ingredients that are used to make various kinds of drinks. It
maps the data file to virtual memory in order to add a new
drink.

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

NSSEGMENT

NSSegmentExample: PROGRAM IMPORTS NSFile, NSSegment,
Space.

BEGIN

--max number of drinks that can be on file
maxNumberOfDrinks: CARDINAL = 255;
--max number of ingredients in a given drink
numOflngredients: CARDINAL. 32;
--A drink
Drink: TYPE = PACKED ARRAY [O .. numOflngredients) OF BOOL];

--the main data structure. Count keeps track of the number
--of drinks currently on file; bitmap is an array of drinks,.
ContentBitMap: TYPE. RECORD [

count: CARDINAL, -- number of drinks in file
bitmap:,ARRAY [O .• maxNumberOfDrinks) OF Drink;

BitMapptr: TYPE = LONG POINTER TO ContentBitMap;

--This procedure is called when it is time to add a new drink
--to the database
WriteContents: PUBLIC PROC[

drink: Drink.
fileReference: NSFile.Reference] • {

--get the size of the file in pages. If the file is not an exact
--multiple of the page size, include an extra partial page.
sizelnPages: LONG CARDINAL +-

SlzE[ContentBitMap] I Environment.wordsPerPage;
IF SlzE[ContentBitMap] MOD Environment.wordsPerPage # 0

THEN sizelnPages +- sizelnPages + 1;

--open the file
file: NSFile.Handle +- NSFile.OpenByReference[fileReference];

-- map file to VM so we can write to it. Specify entire file as
--origin; allow write access.
space: Space.lnterval +- NSSegment.Map[

origin: [file:file, base: 0, count: sizelnPages],
access: NSFile.fu IIAccess];

-- use contentPtr to access the contents of the file as if
--it were a variable of type ContentBitMap
contentptr: BitMapptr +-LOOPHoLE[space.pointer];

--set index to be the next available slot for new drink
index: CARDINAL +- contentptr.count;
--update count of drinks. Raise a Signal if we're out
--of room.
contentptr.count +- index + 1;

IF contentptr.count > maxNumberOfDrinks
THEN SIGNAL FileFull;

-- write ingredients of new drink to mapped contents file
FOR i: CARDINAL IN [O .. numberOflngredients) DO

contentptr.bitmap[index][i] +- drink[i];
ENDLOOP;

-- unmap the interval, thus writing changes back to the file
space.pointer +- Space.Unmap[space.pointer!

space.Error = > CONTINUE];
NSFile.Close[file:file]};

END ...

13-7

NSSEGMENT

13.4 Copylnl CopyOut

13-8

The WriteContents procedure is called with two arguments: a
new drink, and a reference to the file where the data is stored.
WriteContents should add the new drink to the file.

The first step is to map the file to virtual memory. To do this,
we geta handle to the file, and set up an origin that represents
the entire file. We then call NSSegment.Map to map the file to
virtual memory.

Once we have the interval of virtual memory, we LOOPHOLE
space.pointer into a pointer to our record structure. We can
then access the virtual memory as if it were a variable of type
ContentBitMap. We add the new drink to the file, and then call
Unmap to write the changes back out to the file. Finally, we call
NSFile.Close.

NSSegment.Copyln and NSSegment.CopyOut allow you to copy
from virtual memory to a file and vice versa. Thus, for example,
you can map one file to virtual memory and then use the
CopyOut operation to copy the information to a second file.
Figure 13.5 illustrates this idea.

file1

VM

Map a portion of file1 to VM

..........................

.
Copy Out from VM

into file2.

Figure 13.5: The CopyOut operation

An example of a situation in which you would want to use one
of the Copy procedures is in copying portions of files. You
might first map a file to a space and then call CopyOut to copy
part of its contents into another file.

Here is some code that uses CopyOut to copy one entire file to
another:

VIEWPOINT PROGRAMMING COURSE

13.5 Summary

VIEWPO!NT PROGRAMMING COURSE

NSSEGMENT

Copy: PROCEDURE[fromFile, toFile: NSFile.Handle]
RETURNs[copied: BOOLEAN ~FALSE] •
BEGIN

ENABLE {NSFile.Error == > GOTO Exit;
space.Error == > GOTO Exit;};
BEGIN

pages: NSSegment.PageCou nt;
length: NSSegment.PageCou nt ~NSSegment.GetSi zel nPages[

file: fromFile]; --length of original file
fromOrigin: NSSegment.Origin ~ [

file: fromFile,
base: 0,
count: length];

toOrigin: NSSegment.Origin ~ [
file: toFile,
base: 0,
count: length];

--map original file to virtual memory
space: space.lnterval ~ NSSegment.Map [

origin: fromOrigin); --default access is read
NSSegment.SetSizelnPages[file: toFile, pages: length];

--copy from first file to second file
pages ~ NSSegment.CopyOut[

pointer: space.pointer, origin: toOrigin];
IF pages == length THEN copied ~ TRUE;
space.pointer ~ Space.Unmap[space.pointer];

END;
EXITS Exit == > RETURN;

END;

To establish a mapping between a file and an interval of virtual
memory, call NSSegment.Map. Map takes several parameters, the
most important of which are origin, and access. origin specifies
the portion of a file that you are interested in, and access
specifies whether or not you can write the space. Map returns a
Space.lnterval, which describes a portion of virtual memory.

You can then use LOOPHOLE to access that interval as if it were
the data structure of your choice. When you are through
making changes, you need to call space.Unmap to write your
changes out to the file. If you want to save your information at
an intermediate point, you can call space.ForceOut.

You can also use NSSegment.Copyln and NSSegment.CopyOut to
copy data from one file into another via virtual memory_ For
example, you could first map a file to a space and then call
CopyOut to copy part of its contents into another file.

For more information on the topics in this chapter, consult the
Space chapter of the Pilot Programmer's Manual and the
NSSegment chapter of the Filing Programmer's Manual.

13-9

NSSEGMENT

File Tool

FileName

Version

13-10

Finally, here is the complete filing example that we promised
you. The code creates the tool ill ustrated in Figure 13.6

Another

Figure 13.6: The File Tool

With this tool, the user can create a new file in the system
catalog by filling in a name and version, typing the desired
contents of the file in the space below the version field, and
then invoking Save. Similarly, he can load an existing file with
the Load command or delete a file with the Destroy command.

DIRECTORY
Atom,
Attention,
BWSFileTypes,
Context,
FormWindow,
Catalog,
Environment,
Heap,
MenuData,
NSFile,
NSSegment,
NSString,
NSFileStream,
Process,
Space,
StarWindowShell,
Stream,
TIP,
Window,
XChar,
XString;

BWSFileTool: PROGRAM
IMPORTS Attention, Catalog, Context, ForrnWindow, Heap,
MenuData, NSFile, NSFileStream, NSSegment, Space,
StarWindowShell, Stream, XString SHARES XString =
BEGIN

fileType: NSFile.Type = 100101; -- arbitrary
Items: TYPE = {nameltem, versionltern, textltem};
context: Context. Type ~Context.UniqueType[];
bodyWindowDims: Window.Dims = [1000,1000];

VIEWPOINT ~ROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

NSSEGMENT

Data: TYPE = LONG POINTER TO DataObject;
DataObject: TYPE = RECORD [

fileHandle: NSFile.Handle ~ NSFile.nuIiHandle,
space: Space.lnterval ~ Space.nullinterval,
string: XString.ReaderBody ~NULL];

--Procedures

-- delete the specified file
Destroy: MenuData.MenuProc = {

noName: XString.ReaderBody ~
XString.FromSTRING ["No name specified ilL];

name: XString.ReaderBody;
fileName: NSFile.Handle;
body: Window.Handle ~

StarWindowShell.GetBody[[wi ndow]];

--get name and version from form window
name ~ FormWindow.GetTextltemValue[

body, 0, Heap.systemZone];
IF XString.Empty[@name] THEN

{Attention.Post[@noName]; RETURN;};

--get a handle to file and then delete it.
fileName ~Catalog.GetFile[name: @name

! NSFile.Error • > GOTO Exit];
NSFile.Delete[fileName! NSFile.Error • > GOTO Exit2];

--set the file name and contents to NIL in form window.
FormWindow.SetTextltemValue[

body, Items.nameltem.ORD. NIL];
FormWindow.SetTextltemValue[

body,ltems.textltem.ORD, NIL];

EXITS
Exit. > {

error: XString.ReaderBody ~
XString.FromSTRING ["NSFile create error"L];

Attention.Post[@error]; RETURN;};
Exit2 = > {

error2: XString.ReaderBody ~
XString.FromSTRING ["NSFile Delete error"L];

Attention.Post[@error2]; RETURN;} };

-- return the context for this window body
GetContext: PROC [body: Window.Handle]

RETURNS [data: Data] = {
data ~ Context.Find[context, body];
IF data. NIL THEN ERROR;
RETURN [data]};

--register "File Tool" command in Attention Menu
Init: PROC = {

fileTool: XString.ReaderBody ~
XString.FromSTRING["File Tool"L];

Attention.AddMenultem [MenuData.Createltem [
zone: Heap.systemZone,
name: @fileTool,
proc: MenuProc]]};

13-11

NSSEGMENT

13-12

-- get the contetns of the file by mapping the file to VM
-- and then LOOPHOLING a pointer to the characters.
--Display contents of file in window.
Load: MenuData.MenuProc = {

body: Window.Handle +-
StarWindowShell.GetBody[[window]];

data: Data +- GetContext[body];
sizelnBytes: LONG CARDINAL +- 0;
deleted: XString.ReaderBody +-

XString.FromSTRING ["File Deleted"l];
name: XString.ReaderBody;
version: LONG INTEGER;
myBlock: Environment.Block +- [NIL, 0, 0];

BEGIN ENABLE {
Space.Error = >

{error: XString.ReaderBody +
XString.FromSTRING ["Space Error"l];

Attention.Post[@error];
GOTO Exit;};

NSFile.Error = > {NSFileError[error]; GOTO Exit};
XString.lnvalidNumber, XString.Overflow = >

{error: XString.ReaderBody +
XString.FromSTRING ["Space Error"l];

Attention.Post[@error];
GOTO Exit} };

--get name and version from input in form window
name +- Formwindow.GetTextltemValue[

body, Items.nameltem.oRD, Heap.SystemZone];
version +- Formwindow.GetlntegerltemValue[

body, Items.versionltem.ORD];

--open file
data.fileHandle +- Open[name, version];
IF data.fileHandle = NSFile.nuliHandle THEN RETURN;

--map entire file to virtual memory
data.space ~ NSSegment.Map[

origin: [
data.fileHandle,
0,
NSSegment.GetSizelnPages[data.fileHandle]],

swapUnits: [uniform[4]]];

--access virtual memory as if it is a Environment.block
sizelnBytes ~

NSSegment.GetSizelnBytes[data.fileHandle];
myBlock.stopl ndexPI usOne +- CARDINAL[si zel n Bytes];
myBlock.blockPointer +- data.space.pointer;
data.string ~XString.FromBlock[block: myBlock);

--display contents of file in form window and then close
--everything up.
FormWindow.SetTextltemValue[

body, Items.textltem.ORD, @data.string];
data.space.pointer +

Space.Unmap[data.space.pointer);
NSFile.Close[data.fileHandle];
EXITS Exit = > RETURN;

END };

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

-- Build the window and menu commands
MenuProc: MenuData.MenuProc = {

another: XString.ReaderBody +
XString.FromSTRING[IAnother"L];

load: XString.ReaderBody +
XString.FromSTRING[ILoad"L];

save: XString.ReaderBody +
XString.FromSTRING[ISave"L];

destroy: XString.ReaderBody +
XString.FromSTRING[IDestroy"L];

fileTool: XString.ReaderBody +
XString.FromSTRING["File Tool ilL];

-- Create the StarWindowShell.
shell: StarWindowShell.Handle =

StarWindowShell.Create [name: @fileTool];

NSSEGMENT

-- Create a body window inside the StarWindowShell.
body: Window.Handle = StarWindowShell.CreateBody [

sws: shell,
box: [[0,0], bodyWindowDims]];

--add commands
z: UNCOUNTED ZONE +- StarWindowShell.GetZone [shell];
items: ARRAY [0 .. 4) OF MenuData.ltemHandle +- [

MenuData.Createltem [
zone: z, name: @another, proc: MenuProc],

MenuData.Createltem [
zone: z, name: @Ioad, proc: Load],

MenuData.Createltem [
zone: z, name: @save, proc: Save],

MenuData.Createltem [
zone: z, name: @destroy, proc: Destroy]];

--create menu of commands
myMenu: MenuData.MenuHandle =

MenuData.CreateMenu [
zone: z,
title: NIL,
array: DESCRIPTOR [items]];

--add commands to header
StarWindowshell.SetRegularCommands [

sws: shell, commands: myMenu];

-- Allocate data and "hang it off the body window"
Context. Create [type: context,

data: Heap.systemZone.NEw[DataObject +- []],
proc: Context.Si mpleDestroyProc,
window: body];

--make the body window a form window
FormWindow.Create [window:body,

makeltemsProc:MakeFormltems,
zone: Heap.systemZone];

-- Put the StarWindowShell on the screen.
StarWindowShell.Push [shell] };

13-13

NSSEGMENT

13-14

--MakeitemsProc for form window. Note that there are
--three fields: a text field for the name of the file, an
--integer item for the version, and another text item for
--the contents of the file. The contents text item does not
--have a box around it, so it is not visible on the screen.
MakeFormltems: FormWindow.MakeltemsProc = {

nameTag: XString.ReaderBody ~
XString.FromSTRING ["FileName"L];

version Tag : XString.ReaderBody ~
XString.FromSTRING [IVersion"L];

FormWindow.MakeTextltem[
window: window,
myKey: Items.nameltem.oRD,
tag: @nameTag, width: 300];

FormWindow.Makelntegerltem[
window: window,
myKey: Items.versionltem.oRD,
tag: @versionTag, width: 200];

FormWindow.MakeTextltem[
window: window,
boxed: FALSE,
myKey: Items.textltem.oRD,
width: 600] };

-- print NSFile error messages
NSFileError: PROCEDURE [error: NSFile.ErrorRecord] =
BEGIN

accessError: XString.ReaderBody ~
XString.FromSTRI NG [" accessError ll L];

attributeTypeError: XString.ReaderBody ~
XString.FromSTRING ["attributeTypeErrorIlL];

handleError: XString.ReaderBody ~
XString.FromSTRING [lhandleError"L];

spaceError: XString.ReaderBody ~
XString.FromSTRING [lspaceError"L];

undefinedError: XString.ReaderBody ~
XString.FromSTRING ["undefinedError"L];

WITH myError: error SELECT FROM
access = > Attention.Post[@accessError];
attributeType, attributeValue = >

Attention.Post[@attributeTypeError];
handle. > Attention.Post[@handleError];
space = > Attention.Post[@spaceError];
undefined = > Attention.Post[@undefinedError];

ENDCASE;
END;

VIEWPOINT PROGRAMMING COURSE

14.1 Converting the selection

VIEWPOINT PROGRAMMING COURSE

14. SELECTION REOUESTORS

This chapter discusses how to use the Selection interface, which
defines the abstraction of the user's current selection.

There are two kinds of programs that use the Selection
interface: requestors and managers. Requestors are programs
that want to obtain the value of the current selection;
managers are programs that own and change the current
selection. For example, the desktop implementation is a
selection manager: when the user selects an icon, the desktop
implementation must implement that selection. A printer icon,
on the other hand, is a requestor: it needs to know the value of
the currently selected icon so that it can print the correct file,
but it does not change the val ue of that selection.

This chapter covers only requestors; for information on
selection managers you will have to consult the Selection
chapter of the ViewPoint programmer's Manual.

When the user selectssomething and then asks an application
to operate on that selection, the application needs to get the
value of the current selection. An application typically can't act
on all possible selections, however. For example, if the user
selects something, presses COPY, and then selects a printer icon,
the printer application can only print the selection if it is a
document, a folder, an interpress master, or the like. If the
selection is a paragraph of text, or another printer icon, then
the printer cannot accept the selection. Similarly, a document
editor might only be interested in the selection if it is a string.

Thus, a selection requestor is only interested in the selection if
it can obtain that selection in a particular format. To request
the selection as a particular data type, you call
Selection.Convert:

Selection.COnvert: PROCEDURE [
target: Selection.Target,
zone: UNCOUNTED ZONE +- NIL]
RETURNS [value: Selection.Value];

Selection.Target: TYPE • MACHINE DEPENDENT{
window(O), shell, subwindow, string, length, position,
integer, interpressMaster, file, fileType, token, help,
interscriptScript, interscriptFragment, serializedFile, name,
firstFree,last(1777B)};

Selection.Value: TYPE. RECORD [value: LONG POINTER, ...];

Selection.nuIiValue: Selection.Value • [value: NIL, ...];

14-1

SELECTION REQUESTORS

14-2

Convert is a request to produce the selection as an object of
TYPE target. (Note that the target is just the type, not the actual
data object.)

When a requestor calls Convert, the Selection implementation
will call the selection manager to obtain the selection in the
desired format. The selection manager determines whether or
not it supports conversion to a particular target; most
managers only support a limited number of targets. For
example, if the selection is a text string, the manager might
implement conversion to string and perhaps to integer, but
probably not to file or fileType.

If the conversion is possible, the return parameter value.value
will be a LONG POINTER TO the converted selection. (There are
also other fields in value, but they are for the use of selection
managers only. You don't have to worry about them for now.)
If the conversion is not possible, Convert will return nuliValue.

Notice that target is an open-ended enumeration of data
types. The Selection interface defines a number of common
targets, and the values that each returns. If the target type that
you need is not among those defined in this interface, you can
define a new target with a call to Selection.UniqueTarget. See
the ViewPoint Programmer's Manual for detai Is.

Here is a list of the most frequently used targets and the results
that they return; for more information on any of the values in
Selection.Target, see the Selection chapter of the ViewPoint
Programmer's Manual:

window

shell

string

length

integer

returns a Window.Handle for the window that
contains the current selection.

returns a StarWindowShell.Handle for the shell
that contains the current selection.

returns an XString.Reader representi ng the
text of the current selection.

retu rns a LONG POINTER TO LONG CARDINAL
containing the number of characters in the
selection.

returns a LONG POINTER TO LONG INTEGER
containing the selection as a number.

interpressMaster returns a Stream.Handle to an interpress
master.

file

fileType

returns a LONG POINTER TO NSFile.Reference for
the file associated with the selection.

returns a LONG POINTER TO NSFile. Type for the
file associated with the selection.

Here is an example of calling Selection.Convert with a target
type of stri ng:

VIEWPOINT PROGRAMMING COURSE

14.2 Resource management

VIEWPOINT PROGRAMMING COURSE

SELECTION REQUESTORS

streamHandle: Stream.Handle +- --GetStreamToSomeFile--;
xfo: XFormat.Object +- XFormat.StreamObject[streamHandle];
-- Convert returns nul/Value if manager can't convert selection;
-- nul/Value has a value. value of NIL.
savedStri ng: Selection. Val ue +- Selection.Convert[stri ng];
IF savedString.value • NIL THEN {

Stream.Delete[streamHandle]; RETURN};
XFormat. Reader[@xfo, LOOPHOLE [

savedString.value, XString.Reader]];
Stream.Delete[streamHandle];
Selection.Free[@savedString];

This example sets up a stream to a file, creates an XFormat
object that contains the stream, and then calls Convert to try to
convert the selection to a string. If the conversion is not
possible, the procedure just returns. If the conversion is
possible, it sends the string to the stream, and then returns,
deleting the stream and calling Selection.Free on the way out.

You must call Selection. Free when you are through with the
selection; this allows the selection manager to deallocate any
storage that it may have allocated:

Selection.Free: PROCEDURE [v: Selection.ValueHandle];

Note: To guarantee that the user cannot alter the selection
while you are reading it, you should only read the selection
from within the Notifier. If you are not responding to a user
command when you need to get the value of the selection, you
should use a periodic notifier. See Chapter 9, TIP, for more
information on the Notifier and periodic notifiers.

An important rule for requestors is that the selection belongs
to the manager, not the requestor. Convert returns a read-only
value: you can look at the data in value, but you cannot modify
it. If you want to use the selection later, or pass it to another
process, you must first 'copy the selection using Selection.COpy,
Selection. Move, or Selection.CopyMove:

Selection.COpy: PROCEDURE [
v: Selection.ValueHandle,
data: LONG POINTER] :II INLINE {CopyMove[v,copy, data]};

Selection.Move: PROCEDURE [
v: Selection.ValueHandle,
data: LONG POINTER] :I INLINE {CopyMove[v,move, data]};

Selection.CopyMove: Selection. Va I ueCopyMoveProc;

selection.ValueCopyMoveProc: TYPE :I PROCEDURE [
v: Selection.ValueHandle, Op: CopyOrMove,
data: LONG POINTER];

Selection.CQPyOrMove: TYPE :II {copy, move};

Selection.ValueHandle: LONG POINTER TO Selection.Value;

The meani ng of data depends on the target. It is often used as
the storage for the destination of the copy. See the ViewPoint

14-3

SELECTION REQUESTORS

14-4

Programmer's Manual for the exact meaning of data for a
particular target.

Here is an example of calling Copy:

GetSelectedFile: PROC RETURNS [stream: Stream.Handle ~ NIL] = {
element: Selection.Value ~Selection.Convert [target: file];

};

IF element.value = NIL THEN SIGNAL FileProblem
ELSE BEGIN --conversion was successful

ref: LONG POINTER TO NSFile.Reference;
handle: NSFile.Handle;
dir: NSFile.Reference ~

StarDesktop.GetCurrentDesktopFi le[];
Selection.Copy[@element, @dir];
ref ~ element.value;
handle: NSFile.Handle ~ NSFile.OpenByReference [

reference: ref i !NSFile.Error = > SIGNAL FileProblem];
stream ~ NSFileStream.Create[handle];
Selection.Free[@element];

END;

This example obtains the value of the currently selected file. If
the selection cannot be converted to a file, then raise a signal
indicating that there is a problem. If there is no problem, then
the next step is to copy the selection.

When the selection is a file, the data parameter to Copy should
be a LONG POINTER TO NSFile.Reference to the directory in which
you want to store the file. (Remember, you need to consult the
ViewPoint Programmer's Manual to find out what data should
be for a given selection type.)

In this case, we call StarDesktop.GetCurrentDesktopFile to get a
reference to the current desktop, and then call Copy, passing in
the desktop reference as the data parameter. Once we .have
copied the selection, we open the file, get a stream to the file,
call Selection. Free, and then return.

If the selection is a string, you can use standard String routines,
such as XString.CopyReader or XString.CopyToNewWriterBody or
the like, to copy the string instead of using Selection.Copy. For
example:

GetStri ng: PUBLIC PROCEDURE [] RETURNS
[string: XString.ReaderBody] = {

};

value: Selection.Value ~ Selection.Convert[string];
string ~ IF value.value = NIL

THEN GetConstantString[]
ELSE XString.CopyReader[LOOPHOLE

[value.value, XString.Reader], sysZ] t ;
Selection.Free[@value];

This example gets the currently selected string by calling
Convert with a target type of string. If the return value is NIL
(the conversion did not succeed), then call the procedure
GetConstantString to get a default constant value. Otherwise,
call CopyReader to copy the string, call Free to allow the
manager to deallocate storage, and then return.

. VIEWPOINT PROGR-AMMING COURSE

SELECTION REQUESTORS

Note that in the case of the target type stream, calling Copy is
particularly important. In this case, you cannot even read the
stream without copying it, because reading the stream alters
the stream state and thus alters the Stream.Object to which the
Stream.Handle points. Thus, you must copy the stream handle
before using the stream. (Even after you have copied the
stream, you can only read it; the stream handle has read-only
access.) Once you have copied the handle, you are responsible
for the stream and you must call Stream.Delete when you are
through with it.

In all cases you must call Selection.Free regardless of whether you
copy the selection. If you do copy the selection, you own the
resources, and you should eventually free them. If you don't
copy the selection, the manager owns the resources but you
should still call Free to let him know that he can free the
resources.

14.3 Can you convert the selection?

VIEWPOINT PROGRAMMING COURSE

Since all selections do not convert to all target types, you might
want to find out whether a particular conversion is possible,
and possibly get an indication of how difficult the conversion
would be before you actually do the conversion. This is useful
in cases where the conversion is expensive (for example, when
the target type is an interpress master), and you want to find
out whether or not the conversion is possible before you waste
too much time. To find out this information, you can call
Selection.CanVouConvert.

Selection.Ca n VouConvert: PROCEDURE [
target: Selection. Target.
enumeration: BOOLEAN +- FALSE]
RETURNS [yes: BOOLEAN] = INlINE {

RETURN[HowHard[target. enumeration] # impossible]};

The enumeration parameter allows you to ask if the manager
supports enumerating the selection (see the next section.)

CanVouConvert returns a BOOLEAN specifying whether the
manager supports conversion to the specified type. Note that
this is just an indication of whether the manager believes it is
possible; it is not a guarantee that the conversion will actually
work. The manager might still run into some unexpected
difficulties, such as running out of disk space or the like.

If you want a specific indication of how hard the conversion
will be, instead of an indication of whether it is possible, you
can call HowHard directly:

Selection.HowHard: PROCEDURE [
target: Selection.Target.
enumeration: BOOLEAN +- FALSE]
RETURNS [difficult: Selection.Difficulty];

Selection.Difficulty: TYPE =- {easy. moderate, hard, impossible};

Here is an example of calling CanVouConvert. This type of
procedure is generally called from the canVouTakeSelection
arm of a Containee.GenericProc. This code is interested in the
selection only if it is an integer or a string. If the selection

14-5

SELECTION REQUESTORS

14.4 Enumerating selections

14-6

manager does not implement conversion to any of these types,
then this application cannot accept the selection.

CanlTake: PROCEDURE RETURNs[yes: BOOLEAN] =
BEGIN

-- Take anything that is a string or integer
RETURN[

END;

Selection.CanVouConvert[
target: string, enumeration: FALSE] OR

Selection.Can VouConvert[
target:integer,enumeration:FALSE]];

Note also that there is a Selection.Query procedure, which
effectively allows you to ask multiple CanVouConvert
questions at the same time. See the ViewPoint Programmer's
Manual for details.

A selection is often a collection of items (several files in a
folder) or a single large item that can be split up (such as a long
string.). In particular, there is a limit on the size of string that
Convert can return. A call to Convert[string] never produces a
string longer than Selection.maxStringLength (200) characters; if
the selection is a longer string you will have to treat it as a
sequence of stri ngs.

A requestor can convert each part of such a selection
individually by calling Selection.Enumerate.

Selection.Enumerate: PROCEDURE [
proc: Selection.EnumerationProc,
target: Selection. Target,
data: Selection.RequestorData ~ NIL,
zone: UNCOUNTED ZONE ~ NIL]
RETURNS [aborted: BOOLEAN]I

Selection.EnumerationProc: TYPE = PROCEDURE [
element: Selection.Value,
data: Selection.RequestorData]
RETURNS [stop: BOOLEAN ~FALSE];

Selection.RequestorData: TYPE = LONG POINTER;

Calling Enumerate will result in a call to proc for each piece of
the selection. Each time it calls proc, the Selection
implementation will pass data as a parameter. This data is for
your own use; it can be NIL if you like.

Calling Enumerate is thus roughly equivalent to calling Convert
for each individual piece. (If the manager can't convert the
selection to the specified target, proc won't be called.) If you
want to stop the enumeration, you can set stop to be TRUE in
your proc.

Here is an example of using Enumerate:

VIEWPOINT P~OGRAMMING COURSE

14.5 Summary

VIEWPOINT PROGRAMMING COURSE

SELECTION REQUESTORS

Absorb: PROCEDuRE[data: Containee.DataHandle]
RETURNs[absorbed: BOOLEAN +- FALSE] •
BEGIN

--This is the enumeration proc. It will be called once for
--each piece of the selection. It appends element. value to
-- the end of the stream.
AbsorbString: Selection.EnumerationProc -= BEGIN

XFormat.Reader[@xfo, LOOPHOLE[element.value]];
Selection.Free[@element];

END;

--set up a format object whose output sink is a stream
xfo: XFormat.Object;
fileStream: NSFileStream.Handle +- GetStream [data];
--set current position to be the end of the file
Stream.SetPosition[

fileStream, NSFileStream.GetLength[fileStream]];
xfo +- XFormat.StreamObject [fileStream];

--if the manager can convert the selection to a series of strings,
--then call Selection. Enumerate; if it can be converted to a
--single string, call AbsorbString directly.
IF Selection.CanYouConvert [string, TRUE] THEN

[] +-Selection.Enumerate[AbsorbString, string, NIL]
ELSE {

v: Selection.Value -= Selection.Convert[string];
IF v.value # NIL THEN [] +-AbsorbString[v, NIL]};

Stream.Delete[fileStream];
END;

The main code of Absorb starts by setting up a format object
with a stream as its output sink. The next step is to call
CanYouConvert to find out if it is possible to get the selection
as a simple string. If it is, then call the procedure AbsorbString
to add the string to the stream.

If isn't possible, call CanYouConvert again with enumeration
TRUE to find out if it it can be converted to a series of strings. If
it can, call Enumerate. This will result in a call to AbsorbString
for each string in the sequence. AbsorbString can then add the
stri ngs to the stream one at a ti me.

Applications that need to obtain the value of the current
selection are requestors; applications that own and control the
current selection are managers. This chapter discussed only
requestors.

The principle action that requestors perform is asking for the
selection in a particular form by calling Convert. The Selection
interface defines a number of common target types for the
selection; you can also define your own target. When a
requestor calls Convert, the Selection interface in turn calls the
selection manager to determine whether the conversion is
possible. If the conversion is possible, Convert returns a long
pointer to the selection. If the conversion is not possible,
Convert returns nullValue.

The value that Convert returns belongs to the manager, not
the requestor. If you want to use the value of the current
selection after you leave the Notifier, or if you want to pass it

14-7

SELECTION REQUESTORS

14.6 Exercise

14-8

to another process, you must first copy the selection with Copy,
Move,' or CopyMove.

When you are through with the selection, you should call Free
to free the resources associated with the selection. You need to
do this regardless of whether or not you have copied the
selection.

If you want to find out how difficult a particular conversion will
be before you actually attempt it, you can call CanYouConvert
or HowHard. These procedures provide information on
whether the selection manager believes the conversion is
possible; they do not produce a guarantee that the conversion
will be successful.

You may also have to obtain the selection as a series of objects
rather than a single object. For example, if the user copies a
folder to the printer, the printer implementation will need to
call Enumerate to get an interpress master for each of the
documents in the folder. This procedure is often called when a
call to CanYouConvert says that the manager supports
conversion to the specified type, but a call to Convert fails.

The exercise for this chapter is the Checkers Tool, which is
illustrated in Figure14.1.

Figure 14.1: The checkers tool

To move a checker, you select the desired checker with the
mouse and then select a new location for that checker. When

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

SELECTION REQUESTORS

you select a new square, the checker is erased from the
previous square and drawn in the new square.

If you don't finish a game, you can store it in a file by selecting
a file on the desktop and invoking "StoreGame." To resume an
old game, select the file that contains the game and invoke
"ResumeOldGame." If the selection contai ns several files, the
tool will enumerate the available files, and you can choose the
game that you want to play from the Attention window.

Standard checkers rules apply. The tool checks the legality of
moves, although it does not keep track of whose turn it is.

Your assignment is to write the code for the procedures
ResumeOldGame and GetSelectedFile in the module
CheckersSelectionlmplTemp.

ResumeOldGame gets the current selection, converts it into a
file, and reads the data in that file. GetSelectedFile is called
when the tool needs a stream handle to a file; it converts the
current selection to a file.

You will also need the following modules:

CheckersDefs
Checkerslmpl
CheckersMsglmpl
CheckersBitmaplmpl
Checkers. confi g

14-9

SELECTION REQUESTORS

Notes:

14-10 VIEWPOINT PROGRAMMING COURSE

15.1 Overview

15.
ICON

APPLICATiONS

This chapter describes how to write an application that runs
from an icon instead of from a command in the Attention
Menu.

Icons on the desktop are part of what is referred to as the "user
illusion." The user sees various icons, such as printers and
documents, and associates those icons with certain functions
and files. He can open a document, copy a document to the
printer, look at properties of the document, and so forth.

From the client's point of view, however, an icon is a picture
that represents a file. The desktop itself is a directory with
children; there is an icon for each child of the desktop. Every
application that uses icons must register with the desktop by
specifying the file type on which it operates and providing
procedures to display the icon on the screen and implement
operations on that icon.

When the user first logs in, the desktop enumerates its children
and calls the appropriate application to display an icon on the
desktop. When the user selects an icon and wants to operate
on it, the desktop determines the file type for that icon,
associates the file type with an application, and then calls that
application to perform the operation.

To write an icon application, you need to register with the
desktop and write the appropriate call back procedures.

15.2 Registering with the desktop

VIEWPOINT PROGRAMMING COURSE

To register an application with the desktop, call
Containee.Setlmplementation:

Containee.Setlmplementation: PROCEDURE[
NSFile. Type,
Containee.l m plementation]
RETURNS[Containee.lmplementation];

Containee.lmplementation: TYPE. RECORD [
implernentors: LONG POINTER ~ NIL,
name: XString.ReaderBoc;iy ~ XString.nuliReaderBody,
smaliPictureProc: Containee.SmallPictureProc ~ NIL,
pictureProc: Containee.PictureProc ~ NIL,
convertProc: Selection.ConvertProc ~ NIL,
genericProc: Containee.GenericProc ~ NIL];

15-1

ICON APPLICATIONS

15-2

Setlmplementation associates an Implementation record with
a file type, and returns the Implementation previously
associated with that file type.

implementors is a pointer for client-specific data; you can store
the data of your choice here. name is a name for the objects on
which the application operations, such as "spreadsheet." You
can ignore both of these fields for now.

pictureProc is a call back procedure that displays the icon
picture on the screen. Section 15.2.1 discusses PictureProcs.

smaliPictureProc is similar to pictureProc, except that it creates
a miniature version of the icon picture. Section 15.2.2 discusses
SmaliPictureProcs.

genericProc is a call back procedure that determines how the
icon implements the "generic" operations COPY, MOVE, OPEN,
and PROPS. Section 15.2.3 discusses GenericProcs.

convertProc is a call back procedure that determines whether
the manager can convert the file to a particular type. This is
important when you are managing the selection. For now, just
use Containee.DefaultFileConvertProc, which implements
conversion to the types file and fileType. See the
ViewPointProgrammer's Manual for more information.

Here is an example of calling Setlmplementation:

--register application with desktop. Called from mainline code.
--myFile Type is a global variable
Setlmplementation: PROC = {

newlmpl: Containee.lmplementation +-
Containee.Getlmplementation[myFileType);

oldlmpl +- zone.NEW[Containee.lmplementation +- newlmpl);
newlmpl.convertProc +-Containee.DefaultFileConvertProc;
newlmpl.genericProc +- GenericProc;
newlmpl.pictureProc +- PictureProc;
newlmpl.smaliPictureProc +- SmaliPictureProc;
[] .+-Containee.Setlmplementation[myFileType, newlmpl) };

This example declares the local variable newlmpl, and then
calls Getlmplementation to store the existing implementation
in newlmpl. It then allocates the variable oldlmpl (a global
LONG POINTER TO Containee.lmplementation), and stores the old
implementation in this variable as well. At this point, newlmpl
and oldlmpl contain the same information.

The next step is to change the convertProc, genericProc,
SmaliPictureProc, and pictureProc in newlmpl, and then store
the new implementation. Notice that we discard the results of
the call to Setlmplementation; since we have already retrieved
the value of the old implementation.

newlmpl is a local variable. It doesn't need to be global,
because you can always get this information with a call to
Getlmplementation. oldlmpl is a global variable because you
will need to access it from another procedure. (There is an
example in the next section that shows why you need oldlmpl.)
oldlmpl is a pointer to an Implementation rather than an
Implementation to minimize storage in the global frame.

VIEWPOINT P~OGRAMMING COURSE

15.2.1 PictureProcs

VIEWPOINT PROGRAMMING COURSE

ICON APPLICATIONS

The pictureProc field of an Implementation is a call back
procedure that displays an icon on the screen. There are two
possible ways to define an icon picture: you can include a
pictureProc in your Implementation or you can use icon files.
An icon file associates an icon bitmap with a file type; when
the application is loaded, the icon file in the application folder
is opened to read the bitmap and display the icons. Chapter 16,
Application Folders, discusses how to use icon files.

A pictureProc is of type Containee.PictureProc:

Containee.PictureProc: TYPE == PROCEDURE [
data: Containee.DataHandle,
window: Window.Handle,
box: Window. Box,
old, new: Containee.PictureState);

Containee.DataHandle: TYPE == LONG POINTER TO Containee.Data;

Containee.Data: TYPE == RECORD [
reference: NSFile.Reference E- NSFile.nuIiReference);

Containee.PictureState: TYPE = {garbage, normal, highlighted,
ghost, reference, referenceHighlighted};

old and new describe the state of the icon. An icon generally
has slightly different pictures for different states, such as when
the icon is selected (highlighted) or open (ghost.) Figure 15.1
illustrates different states of the document icon.

::00::::::::::::::::::::::
:::~:!:!=!c!:!:!:!:~:::::::::::: II::::::!:::: 1_::::
I,'§: :: ~I.III.I.I I.', •••• ' '.
','* ~I.IIIII.I ','.',',' "
",~ :;:1,1"11,1 1.'.1,',1 I.
III :$"-1'11,- ',1,',',' I.
:.: Do cu m t:':':':': Do cu m :.:':.:.: Do Ct.1 rn :: ,'I::: :::,'.1,1.1. ,'.1,','. I
:::I~ en t ~::::::::: en t ::::::::: p n t :: .:. !,!.:.:.:. .:.:.:.:. - - '.
::: ~::::::::: ::::!:::: ::
"" I',',',',' ',',',',' " '.1 ~:ac::::::~:c:=:::::::::::::: ',','.',' •• 1 ••••• ' I, :,1""""".,,0:0"1:1:':.:1'8,':':':':':1,11"'"11 1: . . : :.:.:.:1:' .:1:1:':1:1:1:181:1:1: " Reference ,',',',',' Normal ',',',',',',',' Ghost ',',', '. .1,',1,'1' ... ,1 ••• 1 ••••• ' 1.'.1, I. ",1,',' •• 1.1.1,',1.'11 1.1.1, . .1.. 1:.:

Figure 15.1 Icons

window and box describe the area of the screen where the
icon is to appear; you should pass these parameters to the
Display routine that you call to actually display the icon.

data allows you to distinguish among many files of the same
file type. You can create slightly different icons for various files
associated with an application. For example, all documents
associated with the document editor have the same file type
(and hence the same icon shape), but generally different
names and contents. Thus, the document editor includes the
name of the file on each icon.

To get the name of the file from the NSFile.Reference, you don't
need to use NSFile routines. Instead, you should use
Containee.GetCachedName:

15-3

ICON APPLICATIONS

15-4

Containee.GetCachedName: PROCEDURE [
data: Containee.DataHandle]
RETURNS [name: XString.ReaderBody, ticket: Containee.Ticket];

Containee.Ticket: TYPE[2];

data is the data parameter to the PictureProc. The return
parameters are the file name and a Ticket. A Ticket ensures
that no other process can change the name of the file while
you are looking at it. When you are through, you need to
return the ticket:

Containee.ReturnTicket: PROCEDURE [ticket: Containee.Ticket];

Here is a PictureProc that puts the name of the file on the icon:

--This procedure describes the actual bitmap.
InitBigPicture: PROC • {

mylconPic +- Space.ScratchMap[1].pointer;
mylconPic t +- [177777B, 177777B, 000063B, ...] };

--This procedure paints the name of the file on the icon
PaintlconName: PROC [window: Window.Handle,

box, textBox: Window.Box, name: XString.Reader] = {
[] +- SimpleTextDisplay.StringlntoWindow [

string: name,
window: window,
place: textBox.place,
IineWidth: textBox.dims.w] };

PictureProc: Containee.PictureProc = {
--textBox describes where the title is to appear. textBox is
--relative to box, which is in turn relative to window.

textBox: Window. Box +- [[x:7, y:10],[w:55, h:36]];
name: XString.ReaderBody;
ticket: Containee.Ticket;
IF new. garbage THEN RETURN;
box.dims +- [64,64]; --size of the icon

--Retrieve the name of the file whose reference is data.
[name, ticket] +- Containee.GetCachedName[data];

< < Display the icon. Call1nitBigPicture to display the icon,
and PaintlconName to add the name of the file. > >
SELECT old FROM

garbage,ghost = > {
Display.Bitmap[

window:window,
box: box,
bitmapBitWidth: 64,
address: [mylconPicture, 0, 0];

PaintlconName[window, box, textBox, @name]};
ENDCASE;

SELECT new FROM
highlighted. > Display.lnvert[window, box];
ghost. > {Display.White[window, box];

PaintlconName[window, box, textBox, @name]};
ENDCASE;

--return the ticket from the call to GetCachedName
Containee.ReturnTicket[ticket] };

VIEWPOINT PROGRAMMING COURSE

15.2.2 SmaliPictureProcs

VIEWPOINT PROGRAMMING COURSE

ICON APPLICATIONS

InitBigPicture is the procedure that contains the actual bits for
the icon picture. See Appendix B, Icon Editor, to find out how
to generate the bits for your desired picture.

Inside the PictureProc, the first step is to call GetCachedName
to retrieve the name of the file. The next step is to display the
icon picture with a call to Display.Bitmap and to display the
name of the icon with a call to PaintlconName. If the icon state
is highlighted, invert the icon picture; if the icon state is ghost,
paint a white version of it. After it paints the icon, it returns the
Ticket that it got in the call to GetCachedName, and then
returns.

A SmallPictureProc is similar to a PictureProc, except that it
defines a small (13 X 13 pixels) version of the icon. For example,
this tiny icon will be used when the icon is inside a folder.
When you open a document inside a folder, the title for the
folder will display the tiny icon for both the folder and the
document, as illustrated in Figure 15.2.

12-Strearns

15.2: Document header with tiny icons

A smallPictureProc is of type Containee.SmaIiPictureProc:

Containee.SmaIlPictureProc: TYPE = PROCEDURE [
data: Containee.DataHandle +- NIL,
type: NSFile.Type +- Containee.ignoreType,
normalOrReference: Containee.PictureState]
RETURNS [smaIlPicture: XString.Character];

To create a tiny icon, you create the bitmap and then create a
new character out of that bitmap. You create a new character
by call i ng SimpleTextFont.AddCI ientDefi nedCha racter:

SimpleTextFont.AddClientDefinedCharacter: PROCEDURE [
width, height: CARDINAL,
bitsPerLine: CARDINAL,
bits: LONG POINTER,
offsetl ntoBits: CARDINAL +- 0,
RETURNS [XString.Character];

This procedure takes a bitmap and creates a character out of it.
Here is a code fragment that illustrates how to do a tiny icon:

15-5

ICON APPLICATIONS

15.2.3 Generic procs

15-6

smaliPic: XString.Character ~ XString.nuIlChar;
SmaliPicture: Containee.SmallPictureProc ::III {RETURN [smaIlPic]};

--Call this procedure directly from mainline code, or from
--Setlmplementation (which is called from mainline.)
InitSmaliPicture: PROCEDURE ::III {

bits: ARRAY [0 .. 13) OF Word ~ [1777778, ... J;
IF smallPic ::III XString.nuliChar THEN

sma IIPic~ SimpleTextFont.AddCI ientDefi nedCharacter[
width:13,
height: 13,
bitsPerLine 16,
bits: @bits] };

You can also initialize the bitmap directly in your
SmallPictureProc, if you like.

When the user selects an icon, the desktop implementation
determines the icon's file type, calls Getlmplementation to find
the Implementation associated with that file type, and then
calls the genericProc in the Implementation.The genericProc
thus implements various icon operations: for example, it
determines what happens when the user MOVE or COPYS
something to your application.

A genericProc is of type Containee.GenericProc:

Containee.GenericProc: TYPE ::III PROCEDURE [
atom: Atom.ATOM,
data: Containee.DataHandle,
changeProc: Containee.ChangeProc ~ NIL,
changeProcData: LONG POINTER ~ NIL]
RETURNS [LONG UNSPECIFIED];

Containee.ChangeProc: TYPE ::III PROCEDURE [
changeProcData: LONG POINTER ~ NIL,
data: Containee.DataHandle,
changedAttributes: NSFile.Selections ~ [],
noChanges: BOOLEAN ~ FALSE];

atom specifies which operation to perform. Notice that the
return result is unspecified; different operations return
different results. Here is a list of the most common atoms and
the results that you should return for each:

CanVouTakeSelection
The user has selected something, pressed COpy or MOVE, and
then selected your file. You should determine whether you
can accept the selection (by calling Selection.CanVouConvert,
Selection.HowHard or the like) and return a LONG POINTER TO
BOOLEAN indicating whether the conversion is possible.

Open
The user has selected 'your icon and invoked OPEN. You
should create a StarWindowShell and return a handle to it.

VIEWPOINT PROGRAMMING COURSE

15.2.3.1 ChangeProc

VIEWPOINT PROGRAMMING COURSE

ICON APPLICATIONS

Props
The user has selecetd your icon and invoked PROPS. You
should create a property sheet and return a handle to it.

TakeSelection
The user has selected something, pressed MOVE, and then
selected your icon. You should implement the operation
(how you do this depends on the application) and then
return a LONG POINTER TO BOOLEAN indicating whether the
operation was successful.

TakeSelectionCopy
This atom is just like TakeSelection, except that the user
pressed COpy instead of MOVE.

Here is a simple example of a GenericProc:

GenericProc: Containee.GenericProc = {
SELECT atom FROM

open • > RETURN[
Defs.MakeShell[data, changeProc, changeProcData]];

props • > RETURN[
Defs.MakePropertySheet[

data, changeProc, changeProcData]];
ENDCASE • > RETURN[oldlmpl.genericProc[atom, data,

changeProc, changeProcData]] };

Note the ENDCASE, which calls the old implementation for any
atoms that the SELECT statement doesn't handle. (This is why
you need to store the old Implementation when you call
Setlmplementation.) In most cases, the old implementation
will be the default implementation supplied by Containee,
which displays an appropriate message to the user.

Notice also that we pass changeProc and changeProcData as
parameters to MakeShell and MakePropertySheet. The next
section discusses ChangeProcs in detail.

Depending on which operation you are performing, executing
the GenericProc can potentially change the value of some of
the file's attributes. This is not a problem for the application
itself: if it does something that alters an attribute, it is
responsible for updating the attributes accordingly. There are
times, however, when a change to an application's file affects
other applications.

For example, suppose the user presses PROPS on a document in a
folder, uses the property sheet to change the name of the
document, and then selects Done. The document application
can respond to the change in its implementation of the Done
command, but the folder must also recognize the change so
that it can update the name of the document inside the folder.

A ChangeProc is a procedure that a "contai ner" (such as a
folder) supplies to a "containee" (such as a document). The
containee is expected to call the ChangeProc to allow the
container to recognize changes. Note that the containee
implementation does not provide the ChangeProc, and never
even sees it; the containee just has to call the ChangeProc.

15-7

ICON APPLICATIONS

15-8

In this case, the icon application is the" containee," and the
desktop is the" container." Thus, the desktop implementation
supplies a ChangeProc as a parameter to every GenericProc;
the application must in turn call that ChangeProc.

Since the purpose of a ChangeProc is to allow the container to
act on changes, you might think that you only need to call the
ChangeProc if you change attributes. However, calling the
ChangeProc also allows the container to deallocate the
changeProcData. Thus, you must call the ChangeProc
regardless of whether you have changed any attributes.

Therefore, you need to ensure that every arm of your
GenericProc results in a call to the ChangeProc. If the operation
can't affect any attributes, you can call the ChangeProc
immediately, before you implement the operation. If the
operation can potentially change attributes, however, you
need to call the ChangeProc after the operation completes.
This sometimes requires some careful planning to make sure
that you have access to the ChangeProc when you need it.

For example, consider the following GenericProc:

GenericProc: Containee.GenericProc • {
SELECT atom FROM

open • > RETURN[
Defs.MakeShell[data,changeProc, changeProcData]];

props • > RETURN[
Defs.MakePropertySheet[
data, changeProc, changeProcData]];

canVouTakeSelection • > {
cha ngeProc[cha ngeProcData: cha ngeProcData,

noChanges: TRUE];
RETURN @[false]};

ENDCASE • > RETURN[oldlmpl.genericProc[atom, data,
changeProc, changeProcData]] };

This GenericProc calls the ChangeProc directly from the
canVouTakeSelection atom, since executing that arm cannot
change any attributes. Note that the @[false] value returned is
a pointer to a global variable false, which is a boolean declared
to be FALSE. Using a local variable is not good enough, since the
storage must exist after return from this procedure.

The open and props branches, however, can both potentially
change attributes, so we pass changeProc and changeProcData
to MakeShell and MakePropertySheet, which should call
changeProc when the operation completes.

This is harder than it sounds, however. In the case of
MakePropertySheet, you really need to call the ChangeProc
when the user invokes Done or Cancel, not when you have just
put the property sheet on the screen. Similarly, in the case of
MakeShell, you need to call the ChangeProc after the shell is
put away, not when it is first created.

For example, here is a program fragment that shows how
MakePropertySheet should handle the changeProc:

VIEWPOINT P~OGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

ICON APPLICATIONS

--Globals, including record to contain change procedure
DataObject: TYPE == RECORD [

fh: NSFile.Handle,
changeProc: Containee.ChangeProc +- NIL,
changeProcData: LONG POINTER +- NIL];

Data: TYPE • LONG POINTER TO DataObject;
zone: UNCOUNTED ZONE +- Heap.Create[initial :1];

< < This procedure is called from the GenericProc, with
parameters changeProc, changeProcData, and data. It allocates
a record for the changeProc, and calls PropertySheet.Create,
passing the data record as clientData. > >
MakePropertySheet: PUBLIC PROC [

data: Containee.DataHandle,
changeProc: Containee.ChangeProc +- NIL,
changeProcData: LONG POINTER +- NIL]
RETURNS [pSheetShell: StarWindowShell.Handle] == {

--allocate data. Note that fh is an open file handle.
myData: Data +- zone.NEW [DataObject +- [

fh: NSFile.OpenByReference[data.reference],
changeProc: changeProc,
cha ngeProcData: cha ngeProcData]];

< < Call Create. Note the clientData parameter, which is the
ChangeProc. > >
pSheetShell +- PropertySheet.Create [

formWi ndowltems: Ma keltems,
menultemProc: MenultemProc,
menultems [done: TRUE, cancel: TRUE],
size: size,
title: @title,
placeToDisplay: placeToDisplay,
formWindowltemsLayout: FormWindow.defaultLayoutProc,
display: FALSE,
clientData: myData1 };

--See chapter 7, Form Windows
Makeltems: FormWindow.MakeltemsProc == { ... };

< < Called when user invokes Done or Cancel. clientData is the
myData record allocated in MakePropertySheet. To use this
data, you need to declare a local variable and then assign
clientData to it. > >
MenultemProc: PropertySheet.MenultemProc == {

myData: Data +- clientDataj
SELECT menultem FROM

done == > {
ok +- ApplyAnyChanges[formWindow, myData].ok;
zone.FREE[@myData];
NSFile.Close[myData.fh];
RETURN [ok]};

--call the change procedure even though there are no
--changes
cancel == > {

data: Containee.Data +- NSFile.GetReference[myData.fh]];
IF myData.changeProc # NIL THEN myData.changeProc [

changeProcData: myData.changeProcData,
data: @data,
changedAttributes: [],
noChanges: TRUE]j

N SFile.CI ose[myData. fh];
zone.FREE[@myData];
RETURN [ok: TRUE]};

ENDCASE == > RETURN [ok: FALSE] };

15-9

ICON APPLICATIONS

15-10

--Called when the user invokes Done. Updates actual attributes
ApplyAnyChanges: PROC [fw: Window.Handle, myData: Data]

RETURNS [ok: BOOLEAN] = {
attrList: ARRAY [0 .. 1) OF NSFile.Attribute;
changedAttributes: NSFile.Selections ~ [];
ctChangedAttrs: CARDINAL ~ 0;

--if nothing's been changed, call ChangeProc and return
IF NOT FormWindow.HasAnyBeenChanged[fw] THEN {
IF myData.changeProc # NIL THEN

myData .changeProc[
cha ngeProcData: myData .cha ngeProcData,
noChanges: TRUE];

RETURN [ok: TRUE] };

< < Something has been changed. Loop through to find
out what has changed, update the attributes, and then call
the changeProc ... > >
fOR myltem: Items IN Items DO

itemKey: Formwindow.ltemKey = myltem.oRD;
--if this item hasn't changed, then loop
IF NOT FormWindow.HasBeenChanged [fw, itemKey]

THEN LOOP;
--the item has changed, so update appropriate attributes
SELECT myltem FROM

name -> {
rb: XString.ReaderBody ~

FormWindow.LookAtTextltemValue [fw, itemKey];
ns: NSString.String ~XString.NSStringFromReader [

@rb, locaIZone];
FormWindow.DoneLookingAtTextltemValue [

fw, itemKey];
attrList[ctChangedAttrs] ~ [name[ns]];
changedAttributes.interpreted[name] ~TRUE; };

ENDCASE;
ctChangedAttrs ~ ctChangedAttrs + 1;

ENDLOOP;

--if any attributes have changed, then store new attributes
--and then call change proc
IF ctChangedAttrs > 0 THEN {

data: Containee.Data ~ [NSFile.GetReference [myData.fh]];
NSFile.ChangeAttributes [

myData.fh, DESCRIPTOR [@attrList, ctChangedAttrs]];
NSFile.ClearAttributeList [

DE SCRIPTOR[@attrList, ctCha ngedA ttrs]] ;
--call change proc
IF myData.changeProc # NIL THEN

myData.changeProc[
myData.changeProcData, @data, changedAttributes];

}

--no attributes have changed, but still have to call
changeProc

ELSE
IF myData.changeProc # NIL THEN

myData .cha ngeProc[
cha ngeProcData: myData .cha ngeProcData,
noChanges: TRUE];

RETURN [ok: TRUE];
};

VIEWPOINT PROGRAMMING COURSE

15.3 The Prototype interface

VIEWPOINT PROGRAMMING COURSE

ICON APPLICATIONS

The PROPS a~m of the genericProc calls MakePropertySheet,
passing In changeProc and changeProcData.
MakePropertySheet creates the property sheet but does not
implement the Done and Cancel commands, so you need to
pass the changeProc on to the procedure that will be in control
when the user finishes making changes and invokes Done.

To do this, allocate a record that contains the change
procedure. The storage for this record should come from a
heap, not from a local or global frame. (The local frame doesn't
work because the storage isn't permanent enough; the global
frame doesn't work because there may be more than one
property sheet open for a given application.)

Once you have stored the changeProc in the record, you can
pass a pointer to that record as the c1ientData parameter to
PropertySheet.Create. You should also pass MenultemProc as the
procedure to be called when the user invokes Done or Cancel;
c1ientData will be a parameter to this procedure.

Inside the MenultemProc, store c1ientData into a variable of
type Data. (Mesa's type checking prevents you from accessing it
directly.) If the command was Cancel, call the changeProc and
return. If the command was Done, call ApplyAnyChanges,
which figures out if there were any changes and acts
accordingly. Notice that we call the changeProc in all cases.

The MakeShell procedure will be somewhat similar. You need
to pass the changeProc to MakeShell, but you should call it
from your TransitionProc. (The potential changes to the file
will occur after MakeShell has completed.) The standard way to
handle this is to pass the changeProc to MakeShell, and then
store it in the shell's context. You can then retrieve the context
from the TransitionProc and call the changeProc from there.

When you write an icon application you don't place the icon
directly on the desktop; that is the user's prerogative. Instead,
you put your icon in the Prototype folder.

You create and manipulate prototype files using the ViewPoint
Prototype interface. Its main procedures are Find and Create:

Prototype.Find: PROCEDURE [
type: NSFile.Type,
version: Prototype.Version,
sUbtype: Prototype.Subtype ~ 0,
session: NSFile.Session ~ NSFile.nuIiSession]
RETURNS [reference: NSFile.Reference];

Prototype.Create: PROCEDURE [
name: XString.Reader,
type: NSFile.Type,
version: Prototype.Version,
sUbtype: Prototype.Subtype ~ 0,
size: LONG CARDINAL ~ 0,
isDirectory: BOOLEAN ~FALSE,
session: NSFile.Session ~NSFile.nuIiSession]
RETURNS [prototype: NSFile.Handle];

15-11

ICON APPLICATIONS

15.4 Summary

15-12

type, subtype, and version uniquely identify a given prototype
file. subtype distinguishes objects of the same type; version
helps determine if the prototype is current.

Find returns a reference for the file with the specified type,
version, and sUbtype. If the file doesn't exist, Find returns
NSFile.nuIiReference. Create creates a file in the Prototype
catalog with the specified name, type, version, subtype, size (in
bytes), and isDirectory attribute. The following code fragment
shows typical usage of Prototype.Find and Prototype.Create:

--This procedure is called from the mainline code
FindOrCreatelconFile: PROCEDURE [name: XString.ReaderBody,

type: NSFile.Type, version: CARDINAL] • {
IF Prototype.Find[type, version] • NSFile.nuliReference

THEN NSFile.Close[Prototype.Create[
name:@name,type:type, version:version]] };

The first step is to call Find to see if the file already exists. If not,
(Find returns NSFile.nuIiReference), then call Create, which
creates the file, opens it, and returns a file handle. In this
example, we just close the file immediately, since we don't
need the open file handle for anything.

To write an icon application, you need to do the following:

• Write a GenericProc to implement MOVE, COPY, etc. Make
sure that you call the ChangeProc (sooner or later) from
each arm of the GenericProc.

• Initialize the atoms you recognize in the GenericProc.

• Write a PictureProc to display the icon, and optionally a
SmaliPictureProc for the tiny version of the icon.

• Call Containee.Setlmplementation to register the
application with the desktop. Your Implementation
should include at least a GenericProc and a PictureProc.

• Put a copy of the icon in the Prototype folder using
either Prototype.Find or Prototype.Create.

Here is a program fragment that illustrates these steps:

--global data
smaliPic: XString.Character +- XString.nuIiChar;
oldlmpl: LONG POINTER TO Containee.lmplementation;

--called from the mainline code to put icon in prototype folder
FindOrCreatelconFile: PROCEDURE = {

mh: XMessage.Handle • Defs.GetMessageHandle[];
name: XString.ReaderBody +- XMessage.Get [

mh, Defs.MessageKey.prototypeFileName.oRo];
version: CARDINAL +-1 ;

IF Prototype.Find[type, version] = NSFile.nuliReference
THEN NSFile.Close[Prototype.Create[

name:@name, type:type, version:version]] };

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

ICON APPLICATIONS

--implement OPEN and PROPS; all other atoms go to the ENDCASE.
GenericProc: Containee.GenericProc = {

SELECT atom FROM
open • > RETURN[Defs.MakeShell[

data, changeProc, changeProcData]];
props III > RETURN[

Defs.MakePropertySheet[
data, changeProc, changeProcData]];

ENDCASE • > RETURN[oldlmpl.genericProc[
atom, data, changeProc, changeProcData]] };

--called from mainline code to intialize atoms
InitAtoms: PROC • {

open: Atom.ATOM ~Atom.MakeAtom["Open"L];
props: Atom.ATOM ~ Atom.MakeAtom["Props"L]};

InitBigPicture: PROC = { iconPicture ~ ... --set up bitmap};

InitSmaliPicture: PRO,CEDURE • {
bits: ARRAY [0 .. 13) OF Word ~ [177777B, ...];
IF small Pic = XString.nuliChar THEN

sma II Pic~ SimpleTextFont.AddCI ientDefi nedCha racter[
width:13,
height: 13,
bitsPerLine 16,
bits: @bits] };

--draw the icon
PictureProc: Containee.PictureProc = {

textBox: Window. Box ~ [[x:7, y:10],[w:55, h:36]];
name: XString.ReaderBody;
ticket: Containee. Ticket;
IF new III garbage THEN RETURN;
box.dims E- [64,64];
[name, ticket] ~Containee.GetCachedName[data];
SELECT old FROM

garbage, ghost = > {Oisplay.Bitmap[...];
PaintlconName[window, box, textBox, @name]};

ENDCASE;
SELECT new FROM

highlighted = > Oisplay.lnvert[window, box];
ghost = > {

Display.White[window, box];
PaintlconName[window, box, text Box, @name]};

ENDCASE;
Containee.ReturnTicket[ticket] };

--register application with the desktop
Setlmplementation: PROC == {

newlmpl: Containee.lmplementation ~
Containee.Getlmplementation[myFileType);

oldlmpl ~ zone.NEW[Containee.lmplementation Eo- newlmpl];
newlmpl.convertProc Eo-Containee.DefaultFileConvertProc;
newlmpLgenericProc ~ GenericProc;
newlmpLpictureProc ~ PictureProc;
newlmpLsmaliPictureProc Eo- SmallPicture;
[] ~Containee.Setlmplementation[myFileType, newlmpl] };

SmaliPicture: Containee.SmaliPictureProc == {RETURN [small Pic]};

15-13

ICON APPLICATIONS

15.5 Exercise

Tic Tac Toe

15-14

--mainline code
InitAtoms[];
FindOrCreatelconFile[];
InitBigPicture[];
InitSmaIlPicture[];
Setlmplementation[];

The exercise for this chapter is a Tic-Tac-Toe game, illustrated
in Figure 15.3.

User Starts uter Starts Confirrn Move

Figure 15.3 The Tic Tac Toe application

To start a game, select either Computer Starts or User Starts. If
you select Computer Starts, the program will make a random
move on the board and wait for you to respond. If you select
User Starts, the program waits for you to make the first move.

To make a move, select a box and invoke Confirm Move. You
cannot select a square that is already occupied. You can start a
new game at any time with User Starts or Computer Starts.

The module TicTacToeToollmplTemp.mesa implements the
tool code and the user commands. The application currently
runs from the Attention menu; you should modify this module
so that the tool will run from an icon on the desktop. This will
involve writing the procedures GenericProc,
FindOrCreatelconFile, InitBigPicture, PaintlconName, and
Setlmplementation and modifying the MakeShel1 procedure.
You will also need the following modules:

Ti cTacT oe Defs
TicTacToelmpl

TicTacToeMsglmpl
TicTacToe.config

. VIEWPOINT PROGR-AMMING COURSE

16. APPLICATION FOLDERS

Once you have an application running to your satisfaction, it is
time to package it as a finished application. Packaging consists
of taking auxiliary data out of the code modules and putting it
in separate data files. For example, if you have designed a new
icon for your application (other than the ones in
Standard.icons), you should put the bitmap for that icon in an
icon file. If your application posts messages you should put the
messages in a separate message file rather than in an
implementation module. This approach has the advantage that
it allows you to modify the data files without recompiling the
application. This is particularly useful for applications that are
potentially multinational.

Once you have moved the data into separate data files, you
need to group the data files and the object files together into a
single coherent object, so that the user doesn't have to concern
himself with obtaining all the component files. ViewPoint
provides the notion of an application folder for this purpose.

16.1 Building an application folder

VIEWPOINT PROGRAMMING COURSE

An application folder consists of object fi les and associated
data files. Note that the term application folder is a bit of a
misnomer, since an application folder is not the same thing as a
standard folder on the desktop (i.e., they have different file
types.) An application folder must must have at least one
object file, and may have any or all of the following data files:

• A message file

• An icon file

• One or more TIPC files

• A keyboard file (if the application uses a keyboard that is
not in the standard keyboard file)

An application folder can also include other private data files,
such as translation tables or the like. For example, if your
application translates ASCII to some other code, such as
EBCDIC, you might wish to include a translation table for this
purpose.

This chapter discusses only how to build the application folder
once you have the data files; it does not discuss how to
generate the data files. The appendices of this manual describe
some tools that are available for creating message and icon
files; Chapter 9, TIP, discusses .TIPC files.

16-1

APPLICATION FOLDERS

16.1.1 Application description files

16-2

In addition to the actual files that constitute the application,
an application folder must contain an Application Description
File (ADF). This file describes the components of the
application; having a separate description file means that you
don't need to hardcode the names of the data files into the
application.

When you write an application, you should include the
capability of having the data files either bound in an
application folder or stored in the system folder. Typically,
developers store their data files in the system folder during
development (and use the WorkstationProfile as an ADF), and
then create their own application folder as the final step. The
examples later in this chapter show how to write code that
allows either of these approaches.

An ADF consists of the application's internal name, the names
of the data files, the loading priority of the application, and
any other entries an application requires. The application's
object files are listed in starting order. All other entries may
occur in any order.

The loading priority is important only for an application that
depends on another application. In such a situation, the
application that must start first has a lower priority number
than the dependent application; the loader starts applications
in increasing priority number order. If your application has no
dependencies, use a priority of zero (the default.)

The easiest way to create an ADF is to copy the
WorkstationProfile, modify it, and then rename it. The syntax
for an ADF follows that of an option file. (Other examples of
option files are the Workstation Profile and the User Profile.)

Here is an example of an ADF:

[Sa m pi eAppli eati on]
bed: Sample.bed -- Object file
MessageFile: Sample.messages
leonFile: Sample.ieons
KeyboardFile:Sample.keyboards
TIPFile: Sample.TIP -- Really a TlPC file
Priority: 0

Only the section name and bcd entry are mandatory. The
section name (SampleApplication) is the internal name of the
application; the code for the application uses this name to
reference the application folder. The internal name never
changes. The application also has an external name, which
appears on the folder. The external name can be changed,
making multilingual conversion easier and more complete. An
external name for an ADF is typically something like
ApplieationName.adf.

Figure 16.1 illustrates the complete syntax for an ADF:

VIEWPOINT PROGRAMMING COURSE

APPLICATION FOLDERS

<ADF> :: II [<application internal name>] <keyword series> I NIL
<keyword series> :: =- <keyword series> <component> I<component>

<component>

<object file>

< message fi Ie>

<icon file>

< keyboard file>

<TIPCfile>

<priority>

<requires>

16.2 Modifying the code

VIEWPOINT PROGRAMMING COURSE

:: - <objectfile> I <message file> I <icon file> I
<keyboard file>I<TIPC File>l<priority>/<requires>

::- bcd: <any legal NSFile name>.bcd

::. < Entry Identifier>: < any legal NSFile name>

:: II <Entry Identifier>: <any legal NSFile name>.icons

:: II < Entry Identifier>: <any legal NSFile name>

:: II < Entry Identifier>: < any legal NSFi Ie name>

:: =- Priority: <Integer>

:: =- Requires: < Required application internal Name 1 >,. ,
< Required application internal Name n>

Figure 16.1 ADF syntax

Note that the < Entry Identifier >s can be any identifier, but
should indicate the type of entry. For example, the entry name
for translation tables could be TransTable. The standard
identifiers are MessageFile, IconFile, KeyboardFile, and TIPFile.

The Requires entry lists the internal names of applications that
must be loaded and started for this application to run.

Once you have created your data files and written an ADF for
them, you must change your code to access the data files.
Typically, you start with the internal name of the application,
and then you need to perform the following steps.

1. Call ApplicationFolder.FromName to get an NSFile.Reference to
the application folder. This procedure returns
NSFile.nuliReference if it can't find the specified folder.

ApplicationFolder.FromName: PROCEDURE [
internalName: XString.Reader]
RETURNS [applicationFolder: NSFile.Reference];

2. Open the folder with NSFile.OpenByReference.

3. Get a reference to the ADF within the specified folder with a
call to ApplicationFolder.FindDescriptionFile:

ApplicationFOlder.FindDescriptionFile: PROCEDURE [
applicationFolder: NSFile.Handle]
RETURNS [descriptionFile: NSFile.Reference];

16-3

APPLICATION FOLDERS

16.2.1 Message Files

16-4

4. Parse the ADF to find the name of the data file that you are
interested in. To do this, call OptionFile.GetStringValue:

OptionFile.GetStringValue: PROCEDURE [
section, entry: XString.Reader,
callBack: PROCEDURE [value: XString.Reader],
index: CARDINAL -E- 0,
file: NSFile.Reference -E- NSFile.nuIlReference];

GetStringValue calls callBack with the value of a string entry.
section is the internal name of the ADF that you want to
read; entry is the specific entry that you are interested in. If
the entry is there, GetStringValue will call back to callBack,
passing in the value of that entry. file is a reference to the
file that contains the specified ADF.

The following sections show examples of these steps for
retrieving a message file, a TIP file, and an icon file from an
ADF.

Whenever an application uses messages, it must provide a way
to access the message handle. Recall that when you use a
message implementation, you call XMessage.AllocateMessages
and xMessage.RegisterMessages to retrieve the messages. (See
Chapter 3, Strings and Messages, if you want to review
message bcds.) If your messages are in a file, however, you
retrieve them using xMessage.MessageFromFile or
XMessage.MessagesFromReference

XMessage.MessagesFromFile: PROCEDURE [
fileName: LONG STRING,
c1ientData: XMessage.ClientData,
proc: XMessage.DestroyMsgsProc]
RETURNS [msgDomains: XMessage.MsgDomains];

XMessage.MessagesFromReference: PROCEDURE [
file: NSFile.Reference,
c1ientData: XMessage.ClientData,
proc: XMessage.DestroyMsgsProc]
RETURNS [msgDomains: XMessage.MsgDomains];

XMessage.MsgDomains: TYPE. LONG DESCRIPTOR FOR ARRAY OF
XMessage.MsgDomain;

XMessage.MsgDomain: TYPE = RECORD [
applicationName: XString.ReaderBody,
handle: xMessage.Handle];

MessagesFromFile gets the messages from the file named
fileName in the system folder, while MessagesFromReference
gets the messages from the file whose reference is file. When
you are through with the messages, you must call
FreeMsg Doma i nsStorage:

XMessage.FreeMsgDomainsStorage: PROCEDURE [msgDomains:
XMessage. Msg Doma ins];

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

APPLICATION FOLDERS

Here is an example of how to write code that uses a message
file. The code reads the ADF to find the name of the message
file, and then uses XMessage routines to access the messages.

-- File: SampleMsgFileimpl.mesa
-- Copyright (C) 1985 by Xerox Corporation. All rights reserved.

DIRECTORY
...• {
-- Data
h: XMessage.Handle +- NIL;
localZone: UNCOUNTED ZONE +- Heap.systemZone;

•• Procedures
DeleteMessages: PROC [clientData: XMessage.ClientData] •

{};

GetMessageHandle: PUBLIC PROC RETURNS [XMessage.Handle] •
{RETURN[h]};

< < This procedure is called from mainline code. Itsjob is to call
MessagesFromReference to initialize the value of h so that
other procedures can call GetMessageHandle and be able to
access the messages. The hard part is getting the file parameter
to MessagesFromReference. To do this, first call FromName to
get a reference to the folder for the appication, and then call
GetMessageFileRef to find the message file within that folder.
»

InitMessages: PROCEDURE = {
internalName: XString.ReaderBody +

XString.FromSTRING [ISampleBWSApplication"L];
msgDomains: XMessage.MsgDomains +- NIL;
msgDomains +- XMessage.MessagesFromReference [

file: GetMessageFileRef
[ApplicationFolder.FromName[@internaIName]],

clientData: NIL,
proc: DeleteMessages];

h +- msgDomains[O].handle;
xMessage.FreeMsgDomainsStorage [msgDomains);
};

16-5

APPLICATION FOLDERS

16-6

< < This procedure is called from InitMessages. It declares the
internal procedure FindMessageFileFromName, and then
initializes folderHandle and adf. If there is no ADF for the
application, use the system folder and the WorkStationProfile;
otherwise, call FindDescriptionFile to find the appropriate
ADF. The final step is to call GetStringValue to get the name of
the message file. GetStringValue results in a call back to
FindMessageFile, which finally gets a handle to the message
file.»

GetMessageFileRef: PROCEDURE [folder: NSFile.Reference]
RETURNS [msgFile: NSFile.Reference E-

NSFile.nuIlReference]. {

folderHandle: NSFile.Handle E-NSFile.nuIiHandle;
adf: NSFile.Reference E- NSFile.nuIiReference;
internalName: XString.ReaderBody E-

XString.FromSTRING [ISampleBWSApplication"L];
messageFile: XString.ReaderBody E

XString.FromSTRING ["MessageFile"L];

FindMessageFileFromName: PROCEDURE [
value: XString.Reader] • {
nssName: NSString.Stri ng E- XString. NSStri ng From Reader

[r: value, z: locaIZone];
msgFileHandle: NSFile.Handle E- NSFile.nuIiHandle;
-- do NSFile.Find in case the name has an asterisk in it
msgFileHandle E-NSFile.Find [directory: folderHandle,

scope: [filter: [matches[
attribute: [name[nssName]]]]] !

NSFile.Error • > {msgFileHandle E- NSFile.nuIiHandle;
CONTINUE}];

-- No message file
IF msgFileHandle • NSFile.nuliHandle THEN ERROR;
msgFile E- NSFile.GetReference [msgFileHandle];
NSFile.Close [msgFileHandle];
NSString.FreeString [z: localZone, s: nssName];
};

IF folder. NSFile.nuliReference THEN {
-- No application folder, so use the system catalog and the
--Workstation Profile

folderHandle E- Catalog.Open
[BWSFileTypes.systemFileCatalog];

adf E- OptionFile.GetWorkstationProfile []}
ELSE {
-- There was an application folder, so use the folder and
-- the adf inside it.

folderHandle E- NSFile.OpenByReference [folder];
adf E-ApplicationFolder.FindDescriptionFile

[folderHandle]};
OptionFile.GetStringValue [section: @internaIName,

entry: @messageFile,
callBack: FindMessageFileFromName,
file: adf];

NSFile.Close [folderHandle];
};

-- Mainline code

In itMessages [];

} ..

VIEWPOINT ~ROGRAMMING COURSE

16.2.2 Private TIP file

VIEWPOINT PROGRAMMING COURSE

APPLICATION FOLDERS

The mainline code calls InitMessages, which calls
xMessage.MessagesFromReference to obtain the messages for
the application. To call MessagesFromReference, however, it
needs a reference to the file containing the messages. To get
this reference, it calls ApplicationFolder.FromName to get a
reference to the folder and then calls GetMessageFileRef.

GetMessageFileRef checks to see whether folder is
null Reference. If it is, it sets folder to the system catalog, and
adf to the workstation profile. If there is an ADF for the
application, however, it calls ApplicationFolder.FindDescriptionFile
to get a reference to the ADF (within the specified folder.)

Once folderHandle and adf are initialized, the next step is to
call OptionFile.GetStringValue to parse the ADF. If there is a
messages entry in the option file, this procedure results in a call
back to FindMessageFileFromName. This procedure just gets a
handle to the file that contains the messages; this handle
(msgFile) is returned up to InitMessages to be the file
parameter to MessagesFromReference.

Once you have edited the message implementation to use
message files, you still need to use the Message Tools to
actually create the messages file. See Appendix C, Message
Tools, for information on how to use these tools to create a
message file.

This example shows how to write code that puts a TIP file in the
ADF instead of putting it directly in the code. Note that the
actual data file that you put in the ADF should be a .TIPC file,
but that you should name it .TIP in the ADF entry.

sampleTIPTable: TIP.Table ~NIL;

< < This procedure is called from the mainline code. It calls
AppendTiPFileName to get the complete path name for the TIP
file, and then calls CreateTable to generate the runtime TIP
table for the program's use. > >
InitTIPTable: PROCEDURE = {
--separator is a / character, used for separating directories

separator: XChar.Character = LOOPHOLE[
NSFileName.nameVersionPairSeparator];

pathName: XString.WriterBody ~ XString.NewWriterBody[
40, zone];

AppendTIPFileName [@pathName];
sampleTIPTable ~ TIP.CreateTable [

file: XString.ReaderFromWriter [@pathName]];
XString.FreeWriterBytes [@pathName];
};

16-7

APPLICATION FOLDERS

16-8

< < The job of this procedure is to get a full path name for the
TIP file and store it in the writer parameter. This involves
parsing the ADF. > >
AppendTIPFileName: PROCEDURE [writer: XString.Writer] = {

separator: xChar.Character = LOOPHOLE
[NSFileName.nameVersionPairSeparator];

internalName: XString.ReaderBody +- XString.FromSTRING
[ISampleBWSApplication"L];

tipFile: XString.ReaderBody +-XString.FromSTRING [
"TIPFile"L];

folderHandle: NSFile.Handle;
--get a reference to the folder

folderRef: NSFile.Reference +- ApplicationFolder.FromName
[@internaIName];

--call back procedure that is called if there is a TIP entry in
--the ADF. Adds the name of the ADF to the path name in
--writer.
AppendName: PROCEDURE [value: XString.Reader] = {

XString.AppendReader [to: writer, from: value];
};

--If there is no application folder, then use a default,
-- hard-coded TIP file name.

IF folderRef = NSFile.nuliReference THEN {
XString.AppendSTRI NG [

writer,ISampleBWSApplication.TIP"L];
RETURN};

-- ELSE (there is an ADF, so parse it to get the
-- name of the TIP file.
folderHandle +- NSFile.OpenByReference [folderRef];
--put the name of the folder in the writer
AppendFolderName [folderHandle, writer];
--add a directory separator
XString.AppendChar [to: writer, c: separator];
--parse the ADF to get the name of the TIP entry. If the entry
--is there, this results in a call to AppendName, which adds
--the name of the file to create a full path name.
OptionFile.GetStringValue [

section: @internaIName,
entry: @tipFile,
callBack: AppendName,
file: ApplicationFolder.FindDescriptionFile [folderHandle]];

NSFile.Close [folderHandle];
};

--stick the name of the folder in writer.
AppendFolderName: PROCEDURE [

applFolder: NSFile.Handle, writer: XString.Writer] = {
attrs: NSFile.AttributesRecord;
rb: XString.ReaderBody;
NSFile.GetAttributes[appIFolder, [interpreted: [name:

TRUE]], @attrs];
rb +-XString.FromNSString [attrs.name];
XString.AppendReader [writer, @rb];
NSFile.ClearAttributes[@attrs];
};

This example is somewhat simliar to the message file example.
The basic goal is to obtain the name of the TIP file from the
application folder. To do this, we call AppendTIPFileName,
which gets the name of the folder by calling GetAttributes,

VIEWPOINT PROGRAMMING COURSE

16.2.3 Private icons file

APPLICATION FOLDERS

and then gets the name of the file from the ADF. These two
names are concatentated into the pathName variable, which is
then used to create the runtime TIP table.

If there is no application folder, the default hard-coded value
of SampleBWSApplication.TIP will be used. You should only
use hard-coded information during development.

If you want your application to use an icons file, you need to
modify your Setlmplementation procedure so that it doesn't
use a PictureProc. When you use application folders, you don't
have to worry about finding the icon file; if you register the file
type that you are interested in, ViewPoint will locate the icon
file when the user loads the application and associate the
application and its icon by type.

Here is an example of a Setlmplementation procedure that
uses an icon file instead of a PictureProc. Notice that there is no
mention of the PictureProc or SmallPictureProc.

samplelconFileType: NSFile.Type = 100100; -- arbitrary

Setlmplementation: PROCEDURE = {
mh: XMessage.Handle • Defs.GetMessageHandle[];
oldlmpl E- newlmpl E-

Containee.Getlmplementation[samplelconFileType];
newlmpl.convertProc E-Containee.DefaultFileConvertProc;
newlmpl.genericProc E- GenericProc;
newlmpl.name E- XMessage.Get [
mh, SampleBWSApplicationOps.kApplicationName];
[] E-Containee.Setlmplementation [

samplelconFileType, newlmpl];
};

16.3 Create the application folder

VIEWPOINT PROGRAMMING COURSE

Once you have created all your data files, and modified your
code so that it uses the data files, you still need to actually
create the application folder. To do this, you need to:

• Copy all of the components, including the ADF, into a folder .

• Run the application folder tool, Applize.bcd. This will put
two items in the Attention window menu:

Folder -+ Application

Application -+Folder

The first item takes a regular folder and turns it into an
application folder. It does this by changing the file type of the
folder and stamping the create date with the current date and
time. It also sets the version to OS 6.0.

16-9

APPLICATION FOLDERS

The second item turns an application folder back into a regular
folder. It changes the file type back to "folder" and sets the
version to NIL.

Thus, to turn a folder into an application folder, just.select the
folder, and then invoke Folder -+ Application. Figure 16.2
illustrates the steps of buildng an application folder.

C!mpIS~
~on File~ . __ --1./-

16.4 Summary

16-10

folder ..

Figure 16.2 Building an application folder

To create an application folder, you need to do the following:

• Build the data files for the application
• Write an application description file
• Change code so that it accesses the data files
• Integrate the components into an application folder

The hardest part is writing the code that acceses the data files.
Starting with the internal name of the folder, you need to do
the following:

• Get a reference to the folder with specified internal name.
(ApplicationFolder.FromName)

• Open the folder

• Get a reference to the ADF withi n that folder
(Applica~ionFolder.FindDescriptionFile)

• Parse the ADF to get the name of your desired data file.
(OptionFile.GetStri ngVal ue)

VIEWPOINT PROGRAMMING COURSE

16.5 Exercise

VIEWPOINT PROGRAMMING COURSE

APPLICATION FOLDERS

The assignment for this chapter is to turn the Black Book
application into an application folder. Black Book was the
exercise for Chapter 13, NSSegment; if you have not done this
exercise, you will need to go back and read the description in
Chapter 13. Also, if you do not have a working version of this
application, then you will need to retrieve our version from the
solutions for Chapter 13.

You need to create a messages file, an icon file, and an ADF,
modify the code to reference the new data files, and then run
the Applize tool to create an application folder.

16-11

APPLICATION FOLDERS

Notes:

16-12 VIEWPOINT PROGRAMMING COURSE

17.1 Creating documents

VIEWPOINT PROGRAMMING COURSE

17. DOCINTERCHANGE

This chapter introduces the document interfaces, which are a
group of interfaces that enable you to create or read the
contents of ViewPoint documents. The principle interface in
this group is DocinterchangeDefs, which supports creating and
reading basic document structures such as text, fields,
heapings/ footings, frames, and formatting characters.

Although DocinterchangeDefs includes the facilities for adding
frames to documents, it does not include the facilities for
creati ng the contents of frames; there are separate interfaces
for dealing with graphics, tables, and the like. We discuss these
frame content interfaces in the next chapter.

To create a new ViewPoint document, you call
DocinterchangeDefs.StartCreation. This creates a document whose
only contents are a single page format character and a single
new paragraph character.

DOcinterchangeDefs.StartCreation: PROC [
paginateOption: DocinterchangeDefs.PaginateOption E-

compress,
wantHeadingHandles, wantFootingHandles: BOOl E- FALSE,
initialFontProps: FontPropSDefs.ReadonlyProps E- Nil,
initialParaProps: paraPropsDefs.ReadonlyProps E- Nil,
initialPageProps: DocpagePropsDefs.ReadonlyProps E- Nil]
RETURNS [

doc: DocinterchangeDefs.Doc,
doclzn: InstanceDefs.lzn,
leftHeading, rightHeading: DocinterchangeDefs.Heading,
leftFooti ng, ri 9 htFooti ng: DocinterchangeDefs. Footi ng];

DocinterchangeDefs.PaginateOption: TYPE == {
none, simple, compress};

DocinterchangeDefs.DOc: TYPE == lONG POINTER TO
DocinterchangeDefs.DocObject;

DocinterchangeDefs.DocObject: TYPE;

InstanceDefs.lzn: TYPE • RECORD [UNSPECIFIED];

paginateOption specifies the type of pagination that will occur
when you finish the document. compress pagination is full
pagination. simple pagination provides the same external
appearance as compress pagination, but leaves the internal
structure of the document less compact. none leaves the
document without any pagination at all. If your document will
be longer than a few pages, you should use some form of
pagination, or performance will be very slow.

17-1

DOCINTERCHANGE

wantHeadingHandles and wantFootingHandles specify
whether the document will have headings and footings. If you
specify true for either of these parameters, StartCreation will
return handles to the headings and footings. Like the
document itself, the headings and footings will be initially
blank; the next section discusses how to add content to the
document and its headings.

initialFontProps, initialParaPros, and initialPageProps indicate
the initial properties for the document. If you do not specify
any properties, StartCreation will use the document default
properties. See Section 17.2 for more information on
properties.

StartCreation returns a Doc handle, a doclzn, and handles for
headings and footings.

The doclzn is a storage space that holds various "instances"
(objects) within the document. You can just elide this value.
The heading and footing handles will be NIL unless you
specified TRUE for the corresponding want*Handle parameter.
If you have a valid heading or footing handle, you must later
free it; see section 17.1.1.4 for details.

The Doc handle represents the new document, which does not
yet have any contents. Thus, the next step is to pass this handle
to the Append* procedures described below, which allow you
to add various kinds of information to the document.

17.1.1 Adding information to a document

17-2

Once you have a document handle, the next step is to add
information to the document with various Append*
procedures: AppendAnchoredFrame, AppendChar,
AppendColumnBreak, AppendField, AppendNewParagraph,
AppendPageBreak, AppendPFC (Page Format Character), or
AppendText. (All of these procedures are in the
DocinterchangeDefs interface.)

Each of these procedures appends the specified text or
formatting character to the existing text in the document. You
thus add all desired information to the document sequentially.
Some of the objects within a document, such as page format
characters and fields, can themselves have contents. Thus, the
process of adding information to a document can be recursive.
Figure 17.1 illustrates the kinds of information that you can
add to a document.

VIEWPOINT PROGRAMMING COURSE

17.1.1.1 Add i ng text

VIEWPOINT PROGRAMMING COURSE

DOCINTERCHANGE

Page

Break

Figure 17.1: Appending to a document

Content

(See next chapter)

The routines that append textual information-AppendChar,
AppendField, AppendNewParagraph, and AppendText-take a
DocinterchangeDefs.TextContainer and a piece of data as
parameters, and append the data to the text container.

A TextContainer is any object that can contain text: a caption,
document, field, heading, or footing:

DocinterchangeDefs.TextContainer: TYPE = RECORD [
var: SELECT type: * FROM

caption:. > [h: DOcinterchangeDefs.Caption],
doc = > [h: DocinterchangeDefs.Doc],
field = > [h: DocinterchangeDefs.Field],
heading:. > [h: DocinterchangeDefs.Heading],
footing:. > [h: DOcinterchangeDefs.Footing],

ENDCASE];

The individual types are all opaque: for example, here are the
declarations of caption and doc:

DocinterchangeDefs.Caption: TYPE =
LONG POINTER TO DocinterchangeDefs.captionObject;

Doclntercha ngeDefs.Ca pti onObj ect: TYPE;

DocinterchangeDefs.Doc: TYPE =
LONG POINTER TO DoclnterchangeDefs.DocObject;

DocinterchangeDefs.DocObject: TYPE;

Thus, you add information to a header within a document the
same way that you add information to the document itself: the
TextContainer that you pass to AppendChar can be a heading,

17-3

DOCINTERCHANGE

17-4

a document, or any of the other variants. Note that you get the
different types of text containers from different routines: doc,
heading, and footing come from StartCreation; caption and
field from AppendAnchoredFrame and AppendField,
respsectively. See below for more information on these two
procedures. Figure 17.2 illustrates adding information to a
header within a document.

Figure 17.2: Adding text to a header

Note that all TextContainers always contain at least one
newParagraph character; you don't have to provide the initial
paragraph character. Also note that most of the Append
routines allow you to specify new properties for the
information you want to append. If you default this
information, the new information will inherit the properties of
the preceding paragraph or character, as appropriate. See
Section 17.2 for a more complete discussion of the various
properties.

As an example of one of these procedures, here is the
declaration of AppendChar:

DocinterchangeDefs.AppendChar: PROC [
to: DocinterchangeDefs.TextContainer,
char: XChar.Character,
fontProps: FontPropsDefs.ReadonlyProps E- NIL,
nToAppend: CARDINAL E-1];

AppendChar appends one or more copies of the text character
char to the specified TextContainer. nToAppend specifies the
number of copies of the character that are to be appended;
fontProps specifies the character properties. AppendText is
similar, except it takes an XString.Reader as a parameter instead
of an XChar.Character.

VIEWPOINT PROGRAMMING COURSE

17.1.1.2 Adding formatting information

VIEWPOINT PROGRAMMING COURSE

DOCINTERCHANGE

AppendField is slightly different, because it returns a text
container that you can use in other calls to Append* routines:

DoclnterchangeDefs.AppendField: PROC [
to: DoclnterchangeDefs.TextContainer,
fieldProps: FieldPropsDefs.ReadonlyProps,
fontProps: FontPropsDefs.ReadonlyProps +- NIL]
RETURNS [field: DoclnterchangeDefs.Field];

AppendNewParagraph is straightforward:

DOclnterchangeDefs.AppendNewParagraph: PROC [
to: DoclnterchangeDefs.TextContainer,
paraProps: paraPropsDefs.ReadonlyProps +- NIL];

The only part of this that is slightly tricky is the syntax for
specifying the variant. For example, here is a code fragment to
create a document and add some text to it:

doc: DoclnterchangeDefs.Doc +- DoclnterchangeDefs.StartCreation [];
DoclnterchangeDefs.AppendText[

to: [doc[h: Doc]],
text: @text,
textEndContext: XString.unknownContext];

AppendText appends an XString.Reader to the document,
assuming that the variable text contains some string. This is a
very incomplete fragment, but it does illustrate how to convert
a document handle to a doc variant of a TextContainer.

The remaining Append procedures-AppendAnchoredFrame,
AppendColumnBreak, AppendPageFormatCharacter, and
AppendPageBreak-take only a Doc, and not a general purpose
TextContainer. These procedures append characters that can
appear in a document, but not in other TextContainers such as
headings and footings.

AppendColumnBreak, AppendPFC, and AppendPageBreak
each take a document and some properties as parameters, and
append the specified character with the specified properties to
the document.

Like AppendField, AppendPFC returns a text containere: this
allows you to call Append* routines recursively to add text and
formatting information to PFC headers if you like. It will return
NIL headings and footings unless you specify TRUE for one of the
want*Handle parameters.

DoclnterchangeDefs.AppendPFC: PROC [
to: DoclnterchangeDefs.Doc,
pageProps: DocPagePropsDefs. Readon lyProps,
wantHeadingHandles, wantFootingHandles: BOOL +- FALSE,
fontProps: FontPropsDefs.ReadonlyProps +- NIL]
RETURNS [

leftHeading, rightHeading: DoclnterchangeDefs.Heading,
leftFooti ng, rig htFooti ng: DOclnterchangeDefs.Footi ng];

AppendPFC appends a page format character to the mai n
document text.

17-5

DOCINTERCHANGE

17.1.1.3 Adding frames

17.1.1.4 Storage management

17-6

AppendAnchoredFrame appends an anchored frame such as a
graphics or bitmap frame to a document.

DoclnterchangeDefs.AppendAnchoredFrame: PROC [
to: DoclnterchangeDefs.Doc,
type: DOclnterchangeDefs.AnchoredFrameType,
anchoredFrameProps: DOCFramePropsDefs.ReadonlyProps,
content: InstanceDefs.lnstance +-lnstanceDefs.instanceNil,
wantTopCaptionHandle,
wantBottomCa ptionHand Ie,
wantLeftCaptionHandle,
wantRightCaptionHandle: BOOL +- FALSE,

anchorFontProps: FontPropsDefs.ReadonlyProps +- NIL]
RETURNS [

anchoredFrame: InstanceDefs.lnstance,
topCaption, bottomCaption,
leftCaption, rightCaption: DOclnterchangeDefs.Caption];

DoclnterchangeDefs.AnchoredFrameType: TYPE =
MACHINE DEPENDENT {

nil(O), bitmap,
cuspButton, equation, graphics, IMG, table, text,
firstAvaiiable,lastAvaiiable(255)};

AppendAnchoredFrame appends the anchored frame type
with properties anchoredFrameProps to the document to.
content is a pointer to the contents of the frame.
DocinterchangeDefs does not provide the facilities for creating
the contents of frames; instead, you will have to use
specialized interfaces such as GraphicslnterchangeDefs or
TablelnterchangeDefs to create the contents of the frame, and
then call AppendAnchoredFrame to add that frame and its
contents to the document. See the next chapter for details; for
now, just assume that you have a pointer to the contents of the
frame.

The want*CaptionHandle parameters indicate whether you
want the frame to have captions. If you indicate TRUE for any of
these parameters, the procedure will return a valid caption
handle, which you can then use as a text container in other calls
to Append routines. If you specify TRUE, and receive a valid
caption handle, you must later free the storage for that handle,
as described in the next section.

With all of the Append procedures, you must manage the
storage for the property records or other data structures that
you pass in, except for handles obtained from the interface
itself. The storage for the properties must remain valid during
the call to Append*; after Append* returns, you can free it.

Also, you are responsible for freeing any non-NIL handles
obtained from any Append routines, or from StartCreation.
with a call to an appropriate Release* routine. This applies to
caption handles, field handles, and heading/footings. Here are
the declarations of the relevant Release routi nes:

VIEWPOINT PROGRAMMING COURSE

17.1.2 Finalizing document

VIEWPOINT PROGRAMMING COURSE

DOCINTERCHANGE

DocinterchangeDefs.ReleaseCa ption: PROC [
captionPtr: LONG POINTER TO DocinterchangeDefs.Caption];

DocinterchangeDefs.ReleaseField: PROC [
fieldPtr: LONG POINTER TO DocinterchangeDefs.Field];

DocinterchangeDefs.ReleaseHeadi ng: PROC [
headingPtr: LONG POINTER TO DocinterchangeDefs.Heading];

DocinterchangeDefs.ReleaseFooti ng: PROC [
footingPtr: LONG POINTER TO DocinterchangeDefs.Footing];

After you call Release*, the handle will be invalid. To help
prevent use of an invalid handle, the Release* routines take a
pointer to the handle, and set the handle itself to NIL. (This is
similar to Mesa's FREE operation.)

When you have added all the necessary information to a
document, you must call DocinterchangeDefs.FinishCreation to
finalize the document and release the Doc handle.
FinishCreation returns an NSFile.Handle to the newly-created
document, and a status. The document that FinishCreation
provides will be in paginated form if you so specified in
StartCreation.

DocinterchangeDefs.FinishCreation: PROC [
docPtr: LONG POINTER TO DocinterchangeDefs.OOc]
RETURNS [

docFile: NSFile.Handle,
status: DocinterchangeDefs.FinishCreationStatus];

DocinterchangeDefs.FinishCreationStatus: TYPE. {ok,
okButNotEnoughOiskSpaceToPaginate,.
okBuNotEnoughVMToPaginate,
okButUnknownPaginateProblem, unknownProblem};

This document file is temporary, and will be deleted when you
reboot. To make the file permanent, you must move it to the
current user desktop with NSFile.Move, followed by a call to
StarDesktop.AddReference to put the icon on the display. To do
this, you must first get a reference to the file and to the current
desktop. Here is a fragment to illustrate this; there is a
complete example at the end of this section:

doc File: NSFile.Handle +- DocinterchangeDefs.FinishCreation[...];
--get reference to file
ref Doc: NSFile.Reference +- NSFile.GetReference[docFile];
--get reference to desktop
refOT: NSFile.Reference +- StarDesktop.GetCurrentOesktopFile[];
--open file
fileOT: NSFile.Handle +- NSFile.OpenByReference[refOn;
--move file to desktop
NSFile.Move[docFile, fileOn;
NSFile.Close[fi leon;
NSFile.Close[docFile];
StarDesktop.AddReferenceToOesktop[refOoc];

17-7

DOCINTERCHANGE

17.2 Properties

17-8

If you want the opportunity to abort creation under certain
circumstatnces, you can use FinishCreationWithAbortProc
instead of FinishCreation:

DoclnterchangeDefs,FinishCreationWithCheckAbortProc: PROC [
docptr: LONG POINTER TO DoclnterchangeDefs.Doc,
checkAbortProc: DocumentDefs.CheckAbortProc,
elientData: LONG POINTER Eo- NIL]
RETURNS [

docFile: NSFile.Handle,
status: DOclnterchangeDefs.Fi n ishCreationStatus,
aborted: BOOLEAN];

DocumentDefs.CheckAbortProc: PROC [el ientData: LONG POINTER]
RETURNS [abort: BOOLEAN];

FinishCreationWithCheckAbortProc provides the ability to
abort the document creation. DoclnterchangeDefs will call you
checkAbortProc just before it creates the document; if it
returns TRUE, the process will be aborted. At that point, you
should call AbortCreation.

DoclnterchangeDefs,AbortCreation: PROC [docptr: LONG POINTER TO
DoclnterchangeDefs.Doc] ;

AbortCreation aborts document creation and deallocates the
storage associated with that document.

Each of the objects in a document has associated properties;
there is a separate interface for each of these possible types of
properties. DocFramePropsDefs descri bes the properties of an
anchored frame within a document; DocPageProps describes
the properties of a page format character, ParaPropsDefs
describes paragraph properties, FieldPropsDefs describes a
field, and FontPropsDefs describes font properties.

Each of these interfaces contains the following three types:

Props: TYPE =- LONG POINTER TO Props Record ;

ReadonlyProps: TYPE. LONG POINTER TO READONLY propsRecord;

Props Record : TYPE = RECORD [
...];

The Props Record contains various fields for the particular
properties. We include the declarations each of the
Props Records here, but not all of the subsidiary types that they
reference, since that would take up too much space. To see the
full declarations, consult the appropriate chapter of the
ViewPoint Programmer's Manual.

VIEWPOINT PROGRAMMING COURSE

17.2.1 Anchored frame properties

17.2.2 Font properties

17.2.3 Page properties

VIEWPOINT PROGRAMMING COURSE

DOCINTERCHANGE

DocFrameProps.PropsRecord: TYPE =- RECORD [
borderStyle: BorderStyle ~TRASH,
borderTh ickness: CARDINAL ~ TRASH,
frameDims: DocFrameProps.FrameDims ~ TRASH,
fixedWidth, fixedHeight: BaaL ~ TRASH,
span: Span ~TRASH,
verticalAlignment: DocFrameProps.VerticalAlignment ~ TRASH,
horizontalAlignment: DocFrameProps.HorizontalAlignment

~TRASH,

topMarginHeight, bottomMarginHeight,
leftMarginWidth, rightMarginWidth: CARDINAL ~TRASH];

FontPropsDefs.PropsRecord: TYPE=- MACHINE DEPENDENT RECORD [
fontDesc(O: 0 .. 31): FontPropsDefs.FontDescri ption,
offset(2:0 .. 15): INTEGER ~ TRASH,
foregroundBackground(3:0 .. 1):

FontPropsDefs.ForegroundBackground,
nUnderlines(3:2 .. 3): CARDINAL[O .. 3] ~TRASH,
strikeout(3:4 •. 4): BOOLEAN ~TRASH;
placement(3: 5 .. 7): FontPropsDefs.Placement ~ TRASH,
unused3(3:8 .. 15): PACKED ARRAY [8 .. 15] OF [0 .. 1] ~AlL[O]];

DocpagePropsDefs.PropsRecord: TYPE = MACHINE DEPENDENT RECORD [
pageDi ms(O: 0 .. 31): DocPagePropsDefs.PageDi ms ~ TRASH,
topMarginHeight(2:0 •. 15): CARDINAL ~ TRASH,
bottomMarginHeight(3:0 .. 15): CARDINAL ~ TRASH,
leftMarginWidth(4:0 .. 15): CARDINAL ~TRASH,
rightMarginWidth(5:0 .. 15): CARDINAL ~ TRASH,
startingPageSide(6:0 .• 1): DocPagePropsDefs.PageSide ~ TRASH,
bindingMarginWidth(6:2 •• 15): CARDINAL[0 .. 16383] ~TRASH,
nColumns(7:0 .• 6): CARDINAL[1 .. 127] ~ TRASH,
balancedColumns(7:7 .. 7): Baal ~TRASH,
unused7(7:8 .. 15): PACKED ARRAY [8 .. 15] OF [0 .. 1] ~ALL[O],
columnSpacing(8:0 .. 15): CARDINAL +- TRASH,
startingPageNumber(9:0 .. 15): CARDINAL +- TRASH,
pageNumberFormat(10:0 .. 2):

DocPagePropsDefs.NumberFormat ~ TRASH,
restartPageNumbering(10:3 .. 3): BOOL +- TRASH,
unused10(10:4 .. 15): PACKED ARRAY [4 .. 15] OF [0 .. 1] ~ALL[O],
startingLineNumber(11 :0 .. 15): CARDINAL +- TRASH,
lineNumberlnterval(12:0 .• 1 0): CARDINAL[O .. 2047] +- TRASH,
IineNumberFormat(12:11 .. 13): NumberFormat +-TRASH,
lineNumberlocation(12:14 .• 15):

DocpagePropsDefs.LineNumberlocation ~ TRASH,
headingStartsOnThisPage(13:0 .. 0): BOOL ~ TRASH,
headingSameOnleftRightPages(13:1 .. 1): BOOL +-TRASH,
footingStartsOnThisPage(13:2 .. 2): BOOL +-TRASH,
footingSameOnleftRightPages(13:3 .. 3): BOOL ~ TRASH,
unused13(13:4 .. 15): PACKED ARRAY [4 .. 15] OF [0 .. 1] +-ALL[O]];

17-9

DOCINTERCHANGE

17.2.4 Field properties

FieldPropsDefs.PropsRecord: TYPE = RECORD [
language: MultiNational.language ~TRASH,
length: CARDINAL ~ TRASH,
required: BOOLEAN ~TRASH,
skiplf: FieldPropsDefs.SkiplfChoiceType ~TRASH,
stopOnSkip: BOOLEAN ~TRASH,
type: FieldPropsDefs.FieldChoiceType ~TRASH,
fillinRule,
description,
format,
name,
range,
skiplfField: XString.ReaderBody ~TRASH,
fillinRuleRuns: FontRunDefs.FontRuns ~ TRASH];

17.2.5 Utilities for getting and setting properties

17-10

DoclnterchangeDefs also provides some routines to get and set
properties easily. The following three routines create
properties records with "reasonable" default values:

DocinterchangeDefs.GetFontPropsDefaults: PROC [
props: FontPropsDefs.Props];

DocinterchangeDefs.GetPagePropsDefaults: PROC [
props: DocPagePropsDefs.Props];

DocinterchangeDefs.GetParaPropsDefaults: PROC [
props: ParaPropsDefs.Props];

To set properties, you can use SetCurrentParagraphProps:

DocinterchangeDefs.SetCurrentParagraphProps: PROC [
textContainer: DOcinterchangeDefs.TextContai ner,
paraProps: ParaPropsDefs.ReadonlyProps];

You can call SetCurrentParagraphProps at any time, with any
TextContainer as an argument. If you call it repeatedly, only
the most recent call wi II remai n in effect.

SetCurrentParagraphProps affects the entire current
paragraph, including any text that you append later. The
properties also affect all subsequent paragraphs unless you
override the properties with new ones passed to
AppendNewParagraph, or by another call to
SetCurrentParagraphProps.

Note, however, that you must be careful when calling
SetCurrentParagraphProps on an empty text container. The
algorithm that DocinterchangeDefs uses for adding the initial
new paragraph properties is to check before doing an
Append*, and add a paragraph character if there is not already
one there. Thus, calling SetCurrentParagraphProps before
calling any Append* routines will result in an error, since there
is not yet a paragraph character in the text container.

VIEWPOINT PROGRAMMING COURSE

17.3 Example

VIEWPOINT PROGRAMMING COURSE

DOCINTERCHANGE

Here is a simple example that creates a new document and puts
a few words in it. Note that it is just a command procedure, and
not a complete example:

--called when user invokes some command
MakeDoc: MenuData.MenuProc == {

doc: DoclnterchangeDefs.Doc +- NIL;
heading: DoclnterchangeDefs.Heading +- NIL;
fontProps: FontPropsDefs.PropsRecord;
pageProps: DocPagePropsDefs.PropsRecord;
pa raProps: ParaPropsDefs.PropsRecord;
status: DOclnterchangeDefs.FinishCreationStatus;
docFile: NSFile.Handle;
--strings for doc. and header contents.
text: XString.ReaderBody +- XString.FromSTRING[

"But if the while I think on thee, dear friend,
All losses are restored and sorrows end."L];

headerText: XString. ReaderBody +- XString. FromSTRI NG [
"Shakespeare"L];

--get default properties
DodnterchangeDefs.GetFontPropsDefaults[@fontProps];
DoclnterchangeDefs.GetParaPropsDefaults[@paraProps];
DoclnterchangeDefs. GetPagePropsDefa u Its [@pageProps];
--create new document with headings and no footings.
--elide docizn, footing, and second heading, since left
--and right headings will be the same
[doc" heading, ,] +- DOclnterchangeDefs.StartCreation[

paginateOption: compress,
wantHeadingHandles: TRUE,
wantFootingHandles: FALSE,
initialFontProps: @fontProps,
initialParaProps: @paraProps,
initialPageProps: @pageProps];

--add text to document and header
DoclnterchangeDefs.AppendText[

to: [doc[h: doc]],
text: @text,
textEndContext: XString.unknownContext];

DOclnterchangeDefs.AppendText[
to: [heading[h:leftHeading]],
text: headerText,
textEndContext: XString.unknownContext];

--free header and then finish up
DOclnterchangeDefs.ReleaseHeading[@heading];
[docFile, status] +- DoclnterchangeDefs.Fi nishCreation[@doc];
IF status # ok THEN UserTerminal.BlinkDisplay[]
ELSE { --copy document to desktop

};

ref Doc: NSFile.Reference +- NSFile.GetReference[docFile);
refDT: NSFile.Reference +-

StarDesktop.GetCurrentDesktopFile[];
fileDT: NSFile.Handle +- NSFile.OpenByRefererice[refDT);
NSFile.Move[docFile, fileDT];
NSFile.Close[fileDT];
NSFile.Close[docFile];
StarDesktop.AddReferenceToDesktop[refDoc] ;

17-11

DOCINTERCHANGE

17.4 Enumerating -documents

17-12

To read (Enumerate) the contents of an existing ViewPoint
document, the first step is to call Open, which opens the
document and returns a Doc handle for that document.

DodnterchangeDefs.Open: PROC [
docFileRef: NSFile.Reference,
password: XString.Reader +-NIL]
RETURNS [

doc: DodnterchangeDefs.Doc,
status: DOdnterchangeDefs.OpenStatus];

DodnterchangeDefs.OpenStatus: TYPE • {
ok, badSeal, cantOpenlzn, incompatible,
notLocal,outOfDiskSpaceForBackup,
outOfDiskSpaceToUpgrade,outOfVMToUpgrade,
unknownProblem, outOfVMToOpen, accessConflict,
i nva I idPassword};

password is currently ignored.

Once you have a handle to the document, the next step is to
call Enumerate, passing in the Doc and an EnumProcs record.
The EnumProcs record contains a set of callback procedures,
one for each of the following structures: {anchored frame,
column break, field, new paragraph, page break, page format
character, text, tile}.

DodnterchangeDefs.Enumerate: PROC [
textContainer: DodnterchangeDefs.TextContainer,
procs: Dodntercha ngeDefs. En u m Procs,
clientData: LONG POINTER +- NIL]
RETURNS [dataSkipped: BOOL];

DodnterchangeDefs.EnumProcs: TYPE = LONG POINTER TO
Dodntercha ngeDefs. E n u m ProcsRecord;

DodnterchangeDefs.EnumProcsRecord: TYPE = RECORD [
anchored Fra meProc:

DodnterchangeDefs.AnchoredFrameProc +- NIL,
columnBreakProc: DodnterchangeDefs.ColumnBreakProc +- NIL,
fieldProc: DodnterchangeDefs.FieldProc +- NIL,
newParagraphProc:

DodnterchangeDefs.NewParagraphProc +- NIL,
pageBreakProc: DodnterchangeDefs.PageBreakProc +- NIL,
pfcProc: DodnterchangeDefs.PFCProc +- NIL,
textProc: DodnterchangeDefs. TextProc +- NIL,
ti I eProc: DodnterchangeDefs. Ti leProc+- NIL];

Enumerate proceeds sequentially from the beginning of the
document: as it comes to different structures within the
document, it calls the appropriate callback procedures (which
you have to write.) If you don't supply a procedure for some
type of object, Enumerate will ignore all objects of that type.

Each of the call back procedures takes as parameters the
properties of the structure and its content when appropriate.
For example, here are the declarations of two of the
procedures, one with content and one without. Since the

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

DOCINTERCHANGE

others are quite similar, we won't include all the declarations;
see the ViewPoint Programmer's Manual for a complete list.

DocinterchangeDefs.ColumnBreakProc: TYPE. PROC [
clientData: lONG POINTER,
fontProps: FontPropsDefs. Readon I yProps]
RETURNS [stop: BOOl Eo- FALSE];

DocinterchangeDefs.TextProc: TYPE == PROC [
clientData: lONG POINTER,
fontProps: FontPropsDefs. Readon I yProps,
text: XString.Reader,
textEndContext: XString.Context]
RETURNS [stop: BOOl Eo- FALSE];

clientData is the clientData that you passed to Enumerate.

The data handle (header, caption, etc.) supplied to you in the
call-back is readonly and is valid only during the call-back's
invocation; you should not try to free this handle. It is possible
for such a handle to be NIL; a NIL handle means that the
corresponding object has no text content.

The storage for the properties passed to these procedures is
also temporary; you must explicitly copy any properties that
you want to save.

Each of the call back procedures returns a boolean value stop;
if anyone of the procedures returns stop = TRUE, the
enumeration will terminate. If stop is never TRUE, the
enumeration will continue to the end of the document.

Note that the enumeration does include the default paragraph
and page format characters supplied with the TextContainer.
Thus, when copying a document into a new document, you
should be careful to avoid copying the default paragraph and
page format properties, since that would cause duplication.

Document enumeration can be recursive, just like document
creation. For example, if there is a page format character in the
document, then you can use Enumerate recursively to parse the
contents of that page format character.

When the enumeration is complete, you should call Close to
free all associated data structures and close any open file
handles to the document. Close sets docPtr i to Nil

DocinterchangeDefs.Close: PROC [
docPtr: lONG POINTER TO DocinterchangeDefs,Doc];

17-13

DOCINTERCHANGE

17.5 Summary

17.6 Example: copying a file

17-14

Creating a new document requires the following steps:

• Call DoclnterchangeDefs.StartCreation to get a doc handle

• Pass that doc handle to DOclnterchangeDefs.Append* to add
information to the document

• Call DoclnterchangeDefs.Release* to release any valid
caption, heading, footing, or field handles.

• Call DOclnterchangeDefs.FinishCreation to complete the
document

• Call NSFile.Move to move the file to the desktop and
make it permanent and then StarDesktop.AddReference to
display the new icon on the desktop.

Enumerating a document involves the following steps:

• Call DoclnterchangeDefs.Opento get a document handle

• Call DoclnterchangeDefs.Enumerate, passing in the document
handle and a record of call back procedures to enumerate
the vaious items within the document

• Call DoclnterchangeDefs.Close to close the document.

Here is an example of both enuemration and creation. This
program adds the command DocEx to the Attention Window.
When called, this command checks to see if the current
selection is a document. If it is, then the program enumerates
the contents of that document and copies the information into
a new document.

< < A DICtxtHandle is passed as c1ientData to procs called by
DoclnterchangeDefs.Enumerate. The record contains handles
to the new document, and the old document. ignoreNewPar
and ignorePFC allow you to avoid duplicating the initial page
format character and initial new paragraph character. > >
DICtxtHandle: TYPE. LONG POINTER TO DICtxt;
DICtxt: TYPE. RECORD [

sourceDoc, targetDoc: DoclnterchangeDefs.Doc,
ignoreNewPar, ignorePFC: BOOLEAN];

TabStopsHandle: TYPE = LONG POINTER TO TabStops;
TabStops: TYPE = RECORD [

list: SEQUENCE length: CARDINAL OF ParaPropSDefs.TabStop];

Z: UNCOUNTED ZONE = Heap.systemZone;

diEnumProcs: DoclnterchangeDefs.EnumProcs +- NIL;

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

DOCINTERCHANGE

< < This is the command procedure. It copies the contents of
the currently selected document to a new document. > >
MakeDoc: MenuData.MenuProc == {

--get reference to selected file
IF Selection.CanYouConvert[file] THEN {

selValue: Selection.Value ~Selection.COnvert[file];
docFileRef: NSFile.Reference • LOOPHOLE[

seIValue.value, LONG POINTER TO NSFile.Reference] t ;

--open source document
sourceDoc: DocinterchangeDefs.Doc;
openStatus: DocinterchangeDefs. OpenStatus;
[source Doc, openStatus] ~

DocinterchangeDefs.Open[docFileRef];

IF openStatus • ok THEN {
--declare some variables
ta rgetDoc: DocinterchangeDefs. Doc;
diCtxt: DICtxt;
docFile: NSFile.Handle;
ref Doc, refDt: NSFile.Reference;
fileDt: NSFile.Handle;
tabStops: TabStopsHandle;
fontProps: FontPropsDefs.PropsRecord;
pa raProps: paraPropsDefs.PropsRecord;
pageProps: DocpagePropsDefs.PropsRecord;
--get props from source document, and create new doc
--with those props
GetlnitialDocProps[

docFileRef, @sourceDoc, @fontProps, @paraProps,
@pageProps,@tabStops];

paraProps.tabStops ~
IF tabStops • NIL THEN DESCRIPTOR[Nll, 0]
ELSE DESCRIPTOR[@tabStops.list[O], tabStops.length];

targ.etDoc ~ DOcinterchangeDefs.StartCreation[
paginateOption: simple, initialFontProps: @fontProps,
initialParaProps: @paraProps,
in itialPageProps: @pageProps].doc;

IF tabStops # NIL THEN Z.FREE[@tabStops];
diCtxt ~ [sourceDoc, targetDoc, TRUE, TRUE];

--start enumeration
n ~ DOcinterchangeDefs.Enumerate[

[doc[h: sourceDoc]], diEnumProcs, @diCtxt];
--enumeration done. Close source doc; create new doc,
make it permament, and display it on desktop.
DocinterchangeDefs.Close [@sourceDoc];
docFi Ie ~ DocinterchangeDefs.Fi nishCreation[

@targetDoc].docFile;
ref Doc ~ NSFile.GetReference[docFi Ie];
refDt ~ StarDesktop.GetCurrentDesktopFile[];
fileDt ~ NSFile.OpenByReference[refDt];
NSFile.Move[docFile, fileDt]; -- put new doc on Desktop
NSFile.Close[fileDt];
NSFile.Close[docFile];
StarDesktop.AddReferenceToDesktop[refDoc];
}

ELSE UserTerminal. BI i n kDisplay[];
}

ELSE UserTerminal.BlinkDisplay[];
}; -- MakeDoc

17-15

DOCINTERCHANGE

17-16

< < The call back procedures for enumeration. They all just
add the specified structure to the new document. > >

< <Add new paragraph to new document. If it is the first new
paragraph character, then ignore it, since new document will
already have one. > >
AppendNewParToTargetDoc:

DocinterchangeDefs.NewParagraphProc == {
diCtxt: DICtxtHandle == clientData;
IF diCtxt.ignoreNewPar THEN diCtxt.ignoreNewPar +- FALSE
ELSE DocinterchangeDefs.AppendNewParagraph[

[doc[h: diCtxt.targetDoc]], paraProps, fontProps]; };

--Append page break to new document
AppendPageBreakToTargetDoc:

DOcinterchangeDefs.PageBreakProc == {
diCtxt: DICtxtHandle • clientData;
DocinterchangeDefs.AppendPageBreak[

diCtxt.targetDoc, fontProps]; };

< <Add page format character to new document. If it is the
first format character, then ignore it, since new document will
already have one. > >
AddPFCToTargetDoc: DocinterchangeDefs.PFCProc == {

diCtxt: DICtxtHandle • clientData;
IF diCtxt.ignorePFC THEN diCtxt.ignorePFC +- FALSE
E lS E [] +- Doclntercha ngeDefs.Appe nd PFC[

to: diCtxt.targetDoc, pageProps: pageProps,
fontProps: fontProps]; };

--Append text to new document
AppendTextToTargetDoc: DocinterchangeDefs.TextProc == {

diCtxt: DICtxtHandle == clientData;
DOcinterchangeDefs.AppendText[

[doc[h: diCtxt.targetDoc]],
text,
textEndContext,
fontProps]; };

--Copy the font, para, and page props of source document.
GetlnitialDocProps: PROC [...] == { ... };

< <Allocate enumProcs record, and add command to
attention menu. EnumProcs record is only interested in new
paragraphs, page breaks, page format characters, and text; it
ignores all other structures. > >
Init: PROC == {

name: XString.ReaderBody +- XString.FromSTRING[nDocEx"L];
diEnumProcs +- Z.NEW[

DocinterchangeDefs.EnumProcsRecord +- [
anchoredFrameProc: Nil,
columnBreakProc: NIL,
fieldProc: NIL,
newParagraphProc: AppendNewParToTargetDoc,
pageBreakProc: AppendPageBreakToTargetDoc,
pfcProc: AppendPFCToTargetDoc,
textProc: AppendTextTo Ta rgetDoc]];

Attention.AddMenultem[
MenuData.Createltem[z, @name, MakeDoc]]; };

Init[];
}.

VIEWPOINT PROGRAMMING COURSE

17.7 Exercise

NameFile

Rusty E, Scupper

DOCINTERCHANGE

The Form letter application takes a template document and
name file as arguments and produces form letters. The
template has VP fields that contain keywords; when the
application finds one of these keywords, it substitutes the
corresponding information from the data file. For example, if
a field in the template contained the keyword "LAST" then the
resulting document might contain the name "Smith" from the
data file. Figure 17.3 illustrates a data file and Figure 17.4
illustrates a template.

333 Oakmead Parkway
Sunnyvale ... California 94040
8 i" ~1I e I a te r
999 Hogs ~Nay
Con',jille ... Texas 53543

Figure 17.3: Data file

mrFIRST JrLAST J
r ADDF~ESSJ
rCITY JrST A TEJrZIP J

Dear Mrs.rLAST J:

Save&Edit

This letter is to infonTI vo~ that you have rnay have alr~ady VY'on
1.,000 ... 000 ... 000 dollars. Wou(dtr t you love to spend all that n-1onev In rCITY J?
rv1aybe you could 7ven buy rv1~ (LAST J a ne\N fur coat, Life in rS-T ,8. TEJ sure
'yvould be great 'yvlth all that cold cash,

Sincerely ...

rv1ark Hahn

Figure 17.4: Template document

To use the program, you select a template file and a data file
and drop them onto the Form letter maker icon, shown in

VIEWPOINT PROGRAMMING COURSE 17-17

DOCINTE RCHANG E

17-18

Figu.re 17.5. The program will parse the name file, merge its
information with the template file, and create a new
document on the desktop for each person in the name file.

Figure 17.5: Form
letter icon

Your assignment is to write the (ode to merge the template
with the information in the name file and generate new
documents. You will need the following files to complete this
assignment:

FormLetter.config,
Form LetterDefs. mesa,
FormLetterlmpl.mesa,
Form LetterMsg I m pl. mesa,
FormLetterDoclmpITemplate.mesa.

The procedures that you need to implement are all in
FormLetterDoclmplTemplate.

VIEWPOINT PROGRAMMING COURSE

18.1 Creating graphics

18.1.1 Start routines

VIEWPOINT PROGRAMMING COURSE

18. GRAPHICS

This chapter describes how to create and enumerate graphics
within graphics frames, using the facilities of the
GraphicslnterchangeDefs interface. GraphicslnterchangeDefs
is meant to be used in conjunction with DocinterchangeDefs;
you need to be familiar with the material in the previous
chapter before you read this chapter.

There are also similar interfaces for manipulating tables and
charts, which we do not discuss in this course. For information
on creating and reading tables within documents, see the
TablelnterchangeDefs chapter in the ViewPoint Programmer's
Manual. For information on creating and enumerating charts,
see the ChartDatalnstaliDefs chapter in the ViewPoint
Programmer's Manual.

To create new graphics, the first step is to call StartGraphics,
which creates a new graphics frame and returns a graphics
Handle for it.

Once you have a Handle, you can pass that Handle to various
Add* routines to add new graphics objects, such as curves,
rectangles, bitmaps, and text frames, to the graphics frame.

When you are through adding graphics, the final step is to call
FinishGraphics, which returns an object of type
InstanceDefs.lnstance. Typically, you will then pass that handle to
DodnterchangeDefs.AppendAnchoredFrame to add the frame and
its contents to a document.

The following sections discuss each of these steps in detail.

To create new graphics objects, you must first call
GraphicslnterchangeDefs.StartGraphics to get an anchored frame
handle:

GraphicslnterchangeDefs,StartGraphics: PROC [
doc: DodnterchangeDefs.Doc]
RETURNS [h: GraphicSlnterchangeDefs.Handle];

GraphicslnterchangeDefs,Halidle: TYPE =
LONG POINTER TO GraphicslnterchangeDefs.Object;

GraphicslnterchangeDefs.Object: TYPE;

18-1

GRAPHICS

18-2

StartGraphics creates a new graphics frame, taking the storage
from doc. StartGraphics returns a Handle, which is a pointer to
an opaque type that contains, among other things, a graphics
container. A graphics container is just an object that can
contain graphic objects: a graphics container can be an
anchored graphics frame, a nested graphics frame, a cusp
button within a graphics frame, or another similar construct,
such as a chart.

There are also similar routines to create nested frames within
an anchored frame: StartGraphicsFrame initializes a nested
frame within an anchored frame; StartCluster initializes a
cluster of graphic objects within a graphics frame:

GraphicslnterchangeDefs.StartCluster: PROC [
h: GraphicslnterchangeDefs.Handle,
box: GraphicslnterchangeDefs.Box]
RETURNS [ch: GraphicslnterchangeDefs.Handle];·

GraphicslnterchangeDefs.Box: TYPE = RECORD [
place: GraphicslnterchangeDefs.Place,
dims: GraphicslnterchangeDefs.Di ms];

GraphicslnterchangeDefs.Place: TYPE = RECORD [x, y: INTEGER];

GraphicslnterchangeDefs.Dims: TYPE = RECORD [w, h: INTEGER];

StartCluster initializes a cluster of graphics objects within the
graphics frame h. box describes the size and location of the
cluster relative to the anchored frame; place and dims are in
micas. (2540 micas = 1 inch.)

GraphicslnterchangeDefs.StartGraphicsFrame: PROC [
h: GraphicslnterchangeDefs.Handle,
box: GraphicslnterchangeDefs.Box,
frameProps: GraphicslnterchangeDefs.FrameProps,
wantTopCaptionHandle,
wantBottomCaptionHandle,
wantLeftCaptionHandle,
wantRightCaptionHandle: BOOLEAN ~FALSE]
RETURNS [

gfh: Handle, topCaption, bottomCaption,
leftCaption, rightCaption: DocinterchangeDefs.Caption];

StartGraphicsFrame creates a new nested nonanchored frame
within the anchored frame h. Again, box describes the location
of the nested frame.

want*CaptionHandle indicates whether you want the frame to
have the corresponding captions. If you pass in TRUE for any of
these values, StartGraphicsFrame will return a valid caption
handle; you can then use DocinterchangeDefs routines to add
text to the caption. If you pass in TRUE, and receive a caption
handle, you must eventually free that caption with
DocinterchangeDefs.ReleaseCaption. See Section 17.1.1.4 for more
details.

frameProps are the properties for the nested frame. Note that
StartGraphics does not have a corresponding parameter to
specify the properties for the anchored frame; you set these
properties when you add the frame to a document. See Section
17.1.1.3 for details.

VIEWPOINT t;»ROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

GRAPHICS

GraphicslnterchangeDefs.Fra meProps: TYPE -=
LONG POINTER TO GraphicslnterchangeDefs.FramePropsRec;

GraphicslnterchangeDefs.FramePropsRec: TYPE. RECORD [
brush: GraphicslnterchangeDefs.Brush,
expandRight, expandBottom: BOOLEAN,
margins: ARRAY GraphicslnterchangeDefs.Side OF CARDINAL,
captionContent: ARRAY Side OF DOcinterchangeDefs.Caption
];

GraphicslnterchangeDefs.Brush: TYPE • RECORD [
wthbrush: CARDINAL,
stylebrush: GraphicslnterchangeDefs.StyleBrush];

GraphicslnterchangeDefs.StyleBrush: TYPE = MACHIN E DEPENDENT {
invisible{O), solid(1), dashed(2), dotted(3), double(4),
broken{S), (1S)};

GraphicSlnterchangeDefs.Side: TYPE = {top, bottom, left, right};

brush describes the properties of the lines that make up the
frame. The brush width is in micas. The standard brush widths
on the property sheet are roughly multiples of 35: 35, 71, 106,
141, 176, and 212. You should use one of these widths.

expandRight, expandBottom indicate whether the frame
should expand automatically when the user puts in more
information; these correspond to the entries on the property
sheet.

margins are the frame margins, in points.

captionContent is an array of captions for the frame. Note that
this parameter is only interesting during enumeration, since
you add the caption content after you create the frame.

Here is a code fragment that creates the graphics frames shown
in Figure 18.1:

Figure 18.1: Graphics frames

18-3

GRAPHICS

18-4

doc: DocinterchangeDefs.Doc ~ NIL;
graphics: InstanceDefs.lnstance;
anchoredFrame, nestedFrame: GraphicslnterchangeDefs.Handle;
bCaption: DocinterchangeDefs.Caption; --for bottom caption
content: XString.ReaderBody ~

XString.FromSTRING["Figure 18.1: Graphics frames ilL];
--set up properties for both frames and para props for caption
nestedProps: GraphicslnterchangeDefs.FramePropsRec ~ [

brush: [wthbrush: 106, stylebrush: double],
expandRight: FALSE, expandBottom: FALSE,
margins: [0,0,0,0],
captionContent: [NIL, NIL, NIL, NIL]];

anchoredProps: DocFramePropsDefs.PropsRecord ~ [
borderStyle: solid,
borderThickness: 2,
frameDims: [w: 176, h: 101],
fixedWidth: TRUE,
fixedHeight: TRUE,
span: fuliColumn,
verticalAlignment: floating,
horizontalAlignment: right,
topMarginHeight: 0,
bottomMarginHeight: 0,
leftMarginWidth: 0,
rightMarginWidth: 100]; --points; 72 points to the inch

captionProps: ParaPropsDefs.PropsRecord;
DocinterchangeDefs.GetParaPropsDefaults[@captionProps];
captionProps.basicProps.preLeading ~ 10; --points
captionProps.basicProps.paraAlignment ~ center;

--create doc, then anchored frame, then nested frame. box
--dimensions are in micas; 2450 micas to an inch
[doc, , , ,] ~ DocinterchangeDefs.StartCreation[];
anchoredFrame ~GraphicslnterchangeDefs.StartGraphics[doc];
[nestedFrame",] ~GraphicslnterchangeDefs.StartGraphicsFrame[

h: anchored Frame,
box: [place: [x: 2540, y: 1270], dims: [w: 2540, h: 1270]],
frameProps: @nestedProps];

--now finish nested frame and anchored frame, and pass
--content of anchored frame to AppendFrame
GraphicslnterchangeDefs.FinishGraphicsFrame[nestedFrame];
graphics ~GraphicslnterchangeDefs.FinishGraphics[

anchoredFrame];
[, , bCaption, ,] ~ DOcinterchangeDefs.AppendAnchoredFrame[

to: doc,
type: graphics,
anchoredFrameProps: @anchoredProps,
content: graphics,
wantBottomCaptionHandle: TRUE];

--add new par. with new props. Just changing props won't
--work, because there is not yet a para. char in the caption.
DocinterchangeDefs.Append NewPa rag ra ph [

to: caption:[h: bCaption)),
paraProps: @captionProps];

DocinterchangeDefs.AppendText[
to: [caption[h: bCaption]],
text: @content,
textEndContext: XString. un knownContext,
fontProps: @fontProps];

DocinterchangeDefs.Rel easeCa ption[@bCaption];
--finish document
[docFile] ~DocinterchangeDefs.FinishCreation[@doc];

VIEWPOINT PROGRAMMING COURSE

18.1.2 Add routines

18.1.2.1 Lines

VIEWPOINT PROGRAMMING COURSE

GRAPHICS

After calling a Start* routine to initialize a graphics container,
the next step is typically to call various Add* routines to add
information to the graphics container. The Add* routines all
add a specified object to a specified place in the graphics
frame.

Note that we have not included the declarations of all possible
graphics routines; for a complete list, check the
GraphicslnterchangeDefs documentation in the ViewPoint
Programmer's Manual.

AddLine is a basic example of an Add routine:

GraphicslnterchangeDefs.AddLine: PROC [
h: GraphicslnterchangeDefs.Handle,
box: GraphicslnterchangeDefs.Box,
lineProps: GraphicslnterchangeDefs.LineProps];

GraphicSlnterchangeDefs.LineProps: TYPE •
LONG POINTER TO Li nePropsRec;

GraphicSlnterchangeDefs.LinePropsRec: TYPE. RECORD [
brush: GraphicslnterchangeDefs.Brush,
Ii neEnd NW: GraphicslnterchangeDefs.Li neEnd,
Ii neEndSE: GraphicslnterchangeDefs.Li neEnd,
Ii neEndHeadNW: GraphicslnterchangeDefs.Li neEndHead,
Ii neEndHeadSE: GraphicslnterchangeDefs. Li neEnd Head,
di redion: GraphicslnterchangeDefs.Li neDi rection
];

GraphicslnterchangeDefs.LineEnd: TYPE == MACHINE DEPENDENT
{flush(O), square(1), round(2), arrow(3), (7)};

GraphicslnterchangeDefs.LineEndHead: TYPE = MACHINE DEPENDENT
{none(O), h1(1), h2(2), h3(3), (15)};

GraphicslnterchangeDefs.LineDiredion: TYPE = MACHINE DEPENDENT
{WECO), NS(1), NwSe(2), SwNe(3)};

AddLine adds a line to the graphics container at location
box. place. Thus, box is the parameter that describes the
location of the line; you specify a line by specifying the box in
which the line should fit.

lineEnd* describe the properties of the ends of the curve.
IineEndNW describes the end that is in the West, North, or
North-West; lineEndSE describes the end that is in the East,
South, or South-East. (Note that West and East take
precedence, so an end in the SW is considered the NW end. See
the example below.)

If lineEnd :: arrow, then lineEndHead describes the type of
arrow: see Figure 18.2. If lineEnd :t: arrow, then IineEndHead is
none.

18-5

GRAPHICS

18-6

--~...... h1

--...... h2

--... h3

Figure 18.2: Arrowheads

wthbrush specifies the width of the line. As with frames, the
standard widths are 35, 71, 106, 141, 176, and 212.

Here is a fragment that creates the graphics frame in Figure
18.3. Note that we have omitted the document creation code,
which is the same as in the last example.

/
Figure 18.3: Lines

--set up line properties
lineProps: GraphicslnterchangeDefs.LinePropsRec E- [

brush: [wthbrush: 71, stylebrush: solid],
IineEndNW: square,
IineEndSE: square,
IineEndHeadNW: none,
IineEndHeadSE: none,
direction: NS];

--start graphics frame
anchoredFrame E-GraphicslnterchangeDefs.StartGraphics[doc];
--add first line
GraphicslnterchangeDefs.AddLine [

h: anchored Frame,
box: [place:[x: 1129, y: 494],

dims:[w:O, h:2540]],
lineProps: @lineProps];

--change properties
IineProps E- [[106, solid], square, arrow, h1, none, SwNe];
--add second line
GraphicslnterchangeDefs.AddLine [

h: anchored Frame,
box: [place:[x: 2646, y: 635],

dims:[w:2117, h:2081]],
IineProps: @lineProps];

--finish up
graphics E-GraphicslnterchangeDefs.FinishGraphics[

anchoredFrame];

VIEWPOINT PROGRAMMING COURSE

18.1.2.2 Rectangles and ellipses

VIEWPOINT PROGRAMMING COURSE

GRAPHICS

GraphicslnterchangeDefs.AddRectangle: PROC [
h: GraphicslnterchangeDefs.Handle,
box: GraphicslnterchangeDefs. Box,
rectangleProps: GraphicslnterchangeDefs.RectangleProps]

GraphicslnterchangeDefs.RectangleProps: TYPE •
LONG POINTER TO GraphicslnterchangeDefs.RectanglePropsRec;

GraphicslnterchangeDefs.RectanglePropsRec: TYPE = RECORD [
brush: GraphicslnterchangeDefs. Brush,
shadi ng: GraphicslnterchangeDefs.Shadi ng];

GraphicslnterchangeDefs.Shading: TYPE. RECORD [
gray: GraphicslnterchangeDefs.Gray,
textures: GraphicslnterchangeDefs.Textures];

GraphicslnterchangeDefs.Gray: TYPE • MACHINE DEPENDENT{
none(O), gray2S(1), graySO(2), gray7S(3), black(4), (1S)};

GraphicslnterchangeDefs.Textures: TYPE • PACKED ARRAY
GraphicslnterchangeDefs.Texture OF BOOLEAN;

GraphicslnterchangeDefs.Texture: TYPE • MACHINE DEPENDENT{
vertical(O), horizontal(1), nwse(2), swne(3),
polkadot(4), (11)};

AddRectangle adds the rectangle whose shape is specified by
box.dims to the graphics container at location box.place.
AddEllipse is just like AddRectangle, except that it creates
curved lines rather than straight lines. box.dims determine the
size and shape of the ellipse; box.place determines its location
relative to the frame.

GraphicslnterchangeDefs.AddEllipse: PROC [
h: GraphicslnterchangeDefs.Handle,
box: GraphicslnterchangeDefs. Box,
ellipseProps: GraphicslnterchangeDefs.EllipseProps];

GraphicslnterchangeDefs.EllipseProps: TYPE. LONG POINTER TO
GraphicslnterchangeDefs. Ell i psePropsRec;

GraphicslnterchangeDefs.EllipsePropsRec: TYPE. RECORD [
brush: GraphicslnterchangeDefs. Brush,
shadi ng: GraphicslnterchangeDefs.Shadi ng];

For example, here is a call that creates the ellipse in Figure 18.4:

Figure 18.4: Ellipse

. 18-7

GRAPHICS

18.1.2.3 Curves

18-8

--set up the ellipse props
ell i pseProps: GraphicslnterchangeDefs.EII i psePropsRec ~

[brush: [wthbrush: 71, stylebrush:dashed],
shading: [gray:none,

textures: [TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE,FAlSE]]];

--add the ellipse to the graphics frame
GraphicslnterchangeDefs.Add Ell ipse [

h: anchoredFrame,
box: [place:[x: 1000, y: 1000], dims:[w:2540, h:1000]],
ellipseProps: @ellipseProps];

GraphicslnterchangeDefs.AddCurve: PROC [
h: GraphicslnterchangeDefs.Handle,
box: GraphicslnterchangeDefs.Box,
curveProps: GraphicslnterchangeDefs.CurveProps];

GraphicslnterchangeDefs.CurveProps: TYPE = LONG POINTER TO
GraphicslnterchangeDefs.CurvePropsRec;
GraphicslnterchangeDefs.CurvePropsRec: TYPE = RECORD [

brush: GraphicslnterchangeDefs. Brush,
Ii neEnd NW: GraphicslnterchangeDefs. Li neEnd,
Ii neEndSE: GraphicslnterchangeDefs. Li neEnd,
Ii neEndHead NW: GraphicslnterchangeDefs. Li neEnd Head,
Ii neEnd HeadSE: GraphicslnterchangeDefs. Li neEndHead,
direction: GraphicslnterchangeDefs.LineDirection,
placeNW, placeApex, placeSE, placePeak:

GraphicslnterchangeDefs.Place] ;

In AddCurve, placeNW, placeApex, placeSE, and placePeak are
the four points that define the curve, relative to box (and not
the frameitself.) The apex of a curve is the intersection of the
tangents; the peak is the "highest" point on the curve, where
highest is defined as the farthest from the straight line that
connects the endpoint.

Figure 18.S illustrates these four points for two different
curves; the triangle marks the apex, the square marks the peak,
and the circles mark the endpoints. The dotted lines on the
lefthand curve indicate the lines used for determining the peak
and apex. Also note that curves always paint clockwise, so you
must make sure that the NW endpoint precedes the SW
endpoint when tracing the curve clockwise .

. ' ... :~

•••• , ..

,.
,.

, .

'. ". ".

18.S: Defining curves

direction is ignored; you should always set this to WE.

VIEWPOINT ~ROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

GRAPHICS

box specifies the location of the curve relative to the graphics
frame. The function of box.dims is slightly different than in the
previous Add* routines, however. Rather than defining the
shape of the curve, box.dims specifies the part of the curve that
is visible. Thus, if you define a curve that is larger than box,
only the part of the curvethat fits within box.dims will appear.

Here is an example that paints the three curves shown in Figure
18.6. Notice that the box for the first curve is not large enough
to contain the entire curve, so only the endpoint and the
portion that fits within the box appear on the screen. However,
the curves do print properly, so the printed version of this
document will contain the entire curve.

\ I

\ I , / -

18.6: Curves

--set up some initial curve properties

\
curveProps: GraphicslnterchangeDefs.CurvePropsRec Eo

[brush: [wthbrush: 71, stylebrush:dashed],
lineEndNW: square,
lineEndSE: square,
lineEndHeadNW: none,
lineEndHeadSE: none,
direction: WE,
placeNW: [0,71],
placeApex: [1199,2681],
placeSE: [1870,0],
placePeak: [1023,1129]];

--after setting things up, add a curve to the graphics frame
GraphicslnterchangeDefs.AddCurve [

h: anchoredFrame,
box: [place:[x: 1305, y: 988], dims:[w:1870, h:671]],

--671 is too small for curve
curveProps: @curveProps];

--change the curve props and add another curve
curveProps Eo- [[141, solid], square, square, none, none, WE,

[1305,1235], [0,212], [1976,0], [917,423]];
GraphicslnterchangeDefs.AddCu rye [

h: anchored Frame,
box: [place:[x: 2716, y: 2822], dims:[w:1976, h:1235]],
curveProps: @curveProps];

--and again: change props and add third curve
curveProps Eo- [[212, solid], square, square, none, none, WE,

[0,0], [247,1094],[494,1799],[247,953));
GraphicslnterchangeDefs.AddCurve [

h: anchoredFrame,
box: [place:[5826,1588], dims:[494,2000)),
curveProps: @curveProps];

18-9

GRAPHICS

18.1.2.4 Text frames

18-10

There are also a number of Add* routines to add various types
of frame objects to the graphics container. For example, here is
the declaration of AddTextFrame:

GraphicslnterchangeDefs.AddTextFrame: PROC [
h: GraphicslnterchangeDefs.Handle,
box: GraphicslnterchangeDefs.Box,
frameProps: GraphicslnterchangeDefs.Fra meProps,
wantTextHandle,
wantTopCaptionHandle,
wantBottomCaptionHandle,
wantLeftCaptionHandle,
wantRightCaptionHandle: BOOLEAN ~ FALSE]
RETURNS [

text: Text, topCaption, bottomCaption,
leftCaption, rightCaption: DocinterchangeDefs.Caption];

GraphicslnterchangeDefs.Text: TYPE = LONG POINTER TO
GraphicslnterchangeDeis.TextObject; -

Gra phicslnterchangeDefs. TextObj ect: TYPE;

AddTextFrame adds a text frame to the specified graphics
container. frameProps and want*CaptionHandle are as
described in section 18.1.1. If you specify wantTextHandle =
TRUE, AddText will return a handle to a text frame. Once you
have the handle to the text frame, you can call any of the
Append*ToText routines below to add text to the text frame.

GraphicslnterchangeDefs.AppendCharToText: PROC [
to: GraphicslnterchangeDefs.Text,
char: xChar.Character,
fontProps: FontPropsDefs.ReadonlyProps ~ NIL,
nToAppend: CARDINAL ~ 1];

GraphicslnterchangeDefs.AppendFieldToText: PROC [
to: GraphicslnterchangeDefs.Text,
fieldProps: FieldProps,
fontProps: FontPropsDefs.ReadonlyProps ~ NIL]
RETURNS [field: DocinterchangeDefs.Field];

GraphicslnterchangeDefs.AppendNewParagraphToText: PROC [
to: GraphicslnterchangeDefs.Text,
paraProps: paraPropsDefs.ReadonlyProps ~ NIL,
fontProps: FontPropsDefs.ReadonlyProps ~ NIL,
nToAppend: CARDINAL ~ 1];

GraphicslnterchangeDefs.AppendTextToText: PROC [
to: GraphicslnterchangeDefs.Text,
text: XString.Reader,
textEndContext: XString.Context,
fontProps: FontPropsDefs.ReadonlyProps ~ NIL];

These routines are just like the Append routines in
DocinterchangeDefs; see Section 17.1.1 for more information.

If you receive a valid text handle from AddTextFrame, you must
eventually call ReleaseText to return the storage:

VIEWPOINT PROGRAMMING COURSE

18.1.3 Finish routines

VIEWPOINT PROGRAMMING COURSE

GRAPHICS

GraphicslnterchangeDefs.ReleaseText: PROC [
textPtr: L9NG POINTER TO GraphicslnterchangeDefs.Text];

ReleaseText releases handles obtained from AddText. Like
Mesa's FREE operator, these routines take a pointer to the
object to be freed, and set the handle itself to NIL. Thus, after a
caU to ReleaseText, text wiU be NIL.

Here is a code fragment to create the text frame shown in
Figure 18.7:

I There's a first time for everything.

Figure 18.7: Text frame

text: GraphicslnterchangeDefs. Text ~ NIL;
content: XString.ReaderBody ~ XString.FromSTRI NG[

"There's a first time for everything. "L];
--set up text frame props
textfra meProps: GraphicslnterchangeDefs.FramePropsRec ~

[brush: [35, solid],
expandRight: TRUE,
expandBottom: TRUE,
margins: [0,0,0,0],
captionContent: [NIL,NIL,NIL,NIL]];

--set up character props for content of text frame
fontProps: FontPropsDefs.PropsRecord;
DocinterchangeDefs.GetFontPropsDefaults[@fontProps];
fontProps.fontDesc.pointSize ~ 10;

--after setting up graphics frame, add text frame to it
[text] ~ GraphicslnterchangeDefs.AddTextFrame [

h: anchoredFrame,
box: [place:[x: 1058, y: 847],

dims:[w:3563, h:706]],
frameProps: @textFrameProps,
wantTextHandle: TRUE];

--initialize contents of text frame
GraphicslnterchangeDefs.AppendTextToText[

to: text,
text: @content,
textEndContext: XString.unknownContext,
fontProps: @fontProps];

--release text handle
GraphicslnterchangeDefs.ReleaseText[@text];
.. . --finish graphics frame and document

When you are through adding things to a new graphics frame,
the last step is to caU a Finish routine:

GraphicslnterchangeDefs.FinishCluster: PROC [
ch: GraphicslnterchangeDefs.Handle];

18-11

GRAPHICS

18.2 Reading graphics

18-12

GraphicslnterchangeDefs.FinishGraphics: PROC [h: Handle] RETURNS [
graphics: InstanceDefs.lnstance];

GraphicslnterchangeDefs.FinishGraphicsFrame: PROC [
gfh: GraphicslnterchangeDefs.Handle];

ch, h, and gfh are the handles obtained from the
corresponding Start routines. Typically you will pass the
InstanceDefs.lnstance returned by FinishGraphics to
DocinterchangeDefs.AppendAnchoredFrame.

You can also use GraphicslnterchangeDefs to read the contents
of graphics frames. To read a graphics frame, you start by
calling GraphicslnterchangeDefs.Enumerate, which takes as
parameters a graphics container and a record of call back
procedures, one for each of the kinds of things that might be in
the graphics container: bitmap frame, cusp button, cluster,
curve, ellipse, form field, frame, image, line, point, rectangle,
text, triangle, other.

Enumerate proceeds through the contents of the graphics
container, calling the appropriate procedure for each object
that it encounters. If you don't provide a procedure for a
particular type of object, the enumeration will ignore objects
of that type.

GraphicslnterchangeDefs.Enumerate: PROC [
doc: DocinterchangeDefs.Doc,
graphicsContainer: InstanceDefs.lnstance,
procs: GraphicslnterchangeDefs.EnumProcs,
clientData: LONG POINTER +-NIL]
RETURNS [dataSkipped: BOOLEAN];

GraphicslnterchangeDefs.EnumProcs: TYPE = LONG POINTER TO
GraphicslnterchangeDefs.EnumProcsRecord;

GraphicslnterchangeDefs.EnumProcsRecord: TYPE = RECORD [
bitmapProc: GraphicslnterchangeDefs.BitmapProc +- NIL,
buttonProc: GraphicslnterchangeDefs.ButtonProc +- NIL,
clusterProc: GraphicslnterchangeDefs.ClusterProc +- NIL,
curveProc: GraphicslnterchangeDefs.CurveProc +- NIL,
ellipseProc: GraphicslnterchangeDefs.EllipseProc +- NIL,
formFieldProc: GraphicslnterchangeDefs.FormFieldProc +- NIL,
frameProc: GraphicslnterchangeDefs.FrameProc +- NIL,
imageProc: GraphicslnterchangeDefs.lmageProc +- NIL,
lineProc: GraphicslnterchangeDefs.LineProc +- NIL,
otherProc: GraphicslnterchangeDefs.OtherProc +- NIL,
pointProc: GraphicslnterchangeDefs.PointProc +- NIL,
rectangleProc: GraphicslnterchangeDefs,RectangleProc +- NIL,
textFrameProc: GraphicslnterchangeDefs. TextFrameProc +- NIL,
triangleProc: GraphicslnterchangeDefs.TriangleProc +- NIL];

Each enumeration procedure takes parameters that describe
the prop~rties of the object. These properties are temporary,
which means that you shouldn't try to release the storage
associated with them. It also means that you must explicitly
copy any properties that you wish to save, since they will be
destroyed destroyed after the procedure returns. You

VIEWPOINT PROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

GRAPHICS

In the case of a cluster, or nested graphics frame within an
anchored frame, you can recursively call Enumerate to get the
contents of the nested object.

Here are the declarations of some of the enumeration
procedures; see the ViewPointProgrammer's Manual for the
complete documentation:

GraphicslnterchangeDefs.ClusterProc: TYPE == PROC [
cI ientData: LONG POINTER,
graphicsContainer: InstanceDefs.lnstance,
box: GraphicslnterchangeDefs.Box]
RETURNS [stop: BOOLEAN Eo- FALSE];

GraphicslnterchangeDefs.CurveProc: TYPE == PROC [
clientData: LONG POINTER,
box: GraphicslnterchangeDefs. Box,
curveProps: GraphicslnterchangeDefs.CurveProps]
RETURNS [stop: BOOLEAN Eo- FALSE];

GraphicslnterchangeDefs.EllipseProc: TYPE • PROC [
clientData: LONG POINTER,
box: GraphicslnterchangeDefs.Box,
ellipseProps: GraphicslnterchangeDefs.EllipseProps]
RETURNS [stop: BOOLEAN Eo-FALSE];

GraphicslnterchangeDefs.FrameProc: TYPE == PROC [
clientData: LONG POINTER,
graphicsContainer: InstanceDefs.lnstance,
box: GraphicslnterchangeDefs.Box,
frameProps: FrameProps]
RETURNS [stop: BOOLEAN Eo- FALSE];

GraphicslnterchangeDefs.LineProc: TYPE == PROC [
clientData: LONG POINTER,
box: GraphicslnterchangeDefs. Box,
Ii neProps: GraphicslnterchangeDefs.Li neProps]
RETURNS [stop: BOOLEAN Eo-FALSE];

GraphicslnterchangeDefs.PointProc: TYPE == PROC [
cI ientData: LONG POINTER,
box: GraphicslnterchangeDefs.Box,
poi ntProps: GraphicslnterchangeDefs.Poi ntProps]
RETURNS [stop: BOOLEAN Eo- FALsE];

GraphicslnterchangeDefs.RectangleProc: TYPE == PROC [
clientData: LONG POINTER,
box: GraphicslnterchangeDefs.Box,
recta ng I eProps: GraphicslnterchangeDefs. Recta ng I eProps]
RETURNS [stop: BOOLEAN Eo- FALSE];

GraphicslnterchangeDefs.TextFrameProc: TYPE == PROC [
cI ientData: LONG POINTER,
box: GraphicslnterchangeDefs. Box,
frameProps: GraphicslnterchangeDefs.FrameProps,
content: GraphicslnterchangeDefs. Text]
RETURNS [stop: BOOLEAN Eo-FALSE];

GraphicslnterchangeDefs.TriangleProc: TYPE = PROC [
clientData: LONG POINTER,
box: GraphicslnterchangeDefs. Box,
triangleProps: GraphicslnterchangeDefs.TriangleProps]
RETURNS [stop: BOOLEAN Eo-FALSE];

18-13

GRAPHICS

18.2.1 Enumerating text frames

18.3 Summary

18-14

There is also a related enumerator, EnumerateText, that takes
as parameters a text frame and a record of procedures to
handle the various kinds of information that can be in a text
frame: fields, new paragraphs, and text.

GraphicslnterchangeDefs.EnumerateText: PROC [
text: GraphicslnterchangeDefs. Text,
procs: GraphicslnterchangeDefs. TextEnu mProcs,
clientData: LONG POINTER ~NIL]
RETURNS [dataSkipped: BOOLEAN];

GraphicslnterchangeDefs.TextEnumProcs: TYPE == LONG POINTER TO
GraphicslnterchangeDefs.TextEnumProcsRecord;

GraphicslnterchangeDefs.TextEnumProcsRecord: TYPE == RECORD [
fieldProc: DOclnterchangeDefs.FieldProc ~ NIL,
newParagraphProc:

DoclnterchangeDefs.NewParagraphProc ~ NIL,
textProc: DoclnterchangeDefs. TextProc ~ NIL];

EnumerateText enumerates the contents of a text frame,
calling the client-supplied EnumProcs as appropriate.

Creating new graphics and inserting them in a document
involves the following steps:

1. Call DoclnterchangeDefs.StartCreation to get a document
handle (doc.)

2. Call StartGraphics[doc] to get an anchored frame handle
(h).

3. Call Add*[h] to add graphics to the anchored frame.

4. Call FinishGraphics[h] to complete the anchored frame
and get an object of type InstanceDefs.lnstance (graphics).

5. Call DoclnterchangeDefs.AppendAnchoredFrame[graphics],
optionally receiving caption handles in return.

6. Call DoclnterchangeDefs.Append* to add information to the
captions. (Optional.)

7. Call DOclnterchangeDefs.FinishCreation[@doc].

Enumerating the contents of an existing graphics frame
involves the following steps:

1. Call DoclnterchangeDefs.Open to open the document

2. Call DoclnterchangeDefs.Enumerate, passi ng ina
DoclnterchangeDefs.AnchoredFrameProc to handle any
graphics frames within the document.

3. Within the DOclnterchangeDefs.AnchoredFrameProc, call
GraphicslnterchangeDefs.Enumerate, passing in procedures
for any graphic objects of interest.

4. Call DOclnterchangeDefs.Close.

VIEWPOINT PROGRAMMING COURSE

A.1 The programming cycle

A.2 The Workstation Profile

VIEWPOINT PROGRAMMING (OURS

A. PROGRAMMING IN VIEWPOINT

This appendix describes some miscellaneous information that
you will need to know about running and debugging a new
ViewPoint application. You need to have finished the XOE
tutorials before you read this appendix.

If you have never run a ViewPoint application before, you
should read this appendix before you start the course. If you
have, you might want to skim this anyway.

When you program in the Xerox Development Environment
(XOE), there are two possible "target environments": XOE and
ViewPoint. When you want to write new applications for XOE
itself, you write the application in CoPilot, test it in Tajo and
debug in CoPilot until it works, and then eventually run in it
CoPilot alongside other XOE tools.

When you program for ViewPoint, you write the code in
CoPilot, test it in ViewPoint, debug in CoPilot, and then
eventually run it in ViewPoint alongside other applications.

When you are testing a new Viewpoint application, you need
to copy the code to ViewPoint and then run it there. There are
two ways to do this: you can copy the code from XOE to
ViewPoint with CommandCentral, or you can put the code in a
remote file drawer from XDE and then retrieve it from
ViewPoint. Ouring development, you can use either method.
Once you are through with your application, however, you
should put it on a file server so that others can access it. (See
the XDE User's Guide for more information on
CommandCentral, the debugger, the editor, the compiler, and
the binder.)

One thing to remember when you are testing an application is
that loading an application does not produce any visible
results. As discussed in Chapter 2, User interface, an application
can run either from a command in the Attention Menu or from
an icon on the desktop. If the application runs from a
command in the Attention Menu, you need to bring up that
menu before you see the command. If the application runs
from an icon, you will have to open the Prototype folder and
copy the icon onto your desktop. Applications do not place
icons directly on the desktop: that is the user's prerogative.

As mentioned in the introduction, you need to have a
Workstation Profile on your machine. This file specifies

A-1

PROGRAMMING FOR VIEWPOINT

A.3 The System_Folder

A.4 The Application Loader

A-2

whether or not you are a "developer"; being a developer gives
you certain privileges that customers do not have. Your
WorkstationProfile should look like this:

[System]
Developer: TRUE

[Application Loader]
Developer: TRUE

You might also want to have a UserProfile, which allows you to
set defaults for various tools. The course does not depend on
one, however.

Every file on your ViewPoint system must be either on the
desktop or in the system directory. The SystemFolder
application provides access to all files in the System directory. If
you do not run this application, files will be in your System
directory, but you will not have any way of accessing them.

When run, SystemFolder registers the System Folder command
in the Attention Menu. Invoking the System Folder command
opens a window showing the contents of the System folder,
including object files, TIP files, font files, and icon picture files.
You can then copy those files onto your desktop, or onto the
loader, as described in the next section.

The SystemFolder application also registers a third command,
Prototype Folder, which provides easy access to the Prototypes
folder.

Copying files from XDE via CommandCentral is one way to run
an application; the other way is to use the Application Loader
to load and start programs directly from ViewPoint. To use the
Application Loader, you must have a Loader icon on your
desktop. If you donlt, open the Directory icon, and then the
User folder. Inside the User folder you will find the Loader icon;
copy it to your desktop. You can then copy or move object code
icons (beds) or application icons to the Application Loader for
subsequent loading and starting, with associated feedback
appearing in the Attention window.

Using the Application Loader in conjunction with the
SystemFolder application makes it very easy to load files that
are in the System directory. You just open the System folder,
select the desired files, and move or copy them to the Loader
icon.

You can also load applications directly from remote file
drawers. To do so, just open the file drawer, select the
application, and copy it either directly to the Loader or onto
your desktop.

Opening the Loader icon will show all the applications on the
workstation and their status; that is, whether they are idle or

VIEWPOINT ~ROGRAMMING COURSE

PROGRAMMING IN VIEWPOINT

A.S .autorun files

VIEWPOINT PROGRAMMING COURSE

running. An additional way of running a program that is on
the desktop but not yet started is to select it from within the
open Loader icon and select the Run command in the header of
the Loader window.

You should note, however, that the term application is a loose
one; there is actually a difference between a file of object code
and something called an application folder. An application
folder is a complete application; it always contains at least one
bcd file, but it can also contain other items such as information
on the picture that will appear on the icon, messages that the
application will post to the user, and other supplementary
information. A bcd file is a single file of object code.
Application folders represent finished applications; bcds often
represent applications that are still under development. Thus,
"standard" applications such as the document editor are
actually application folders; applications with the extension
.bcd are object files. (Chapter 16, Application folders, discusses
application folders in detail.)

This distinction is important because the Loader looks for the
following entry in the Workstation Profile:

[Appl ication Loader]
Developer: TRUE --or FALSE

If the Developer value is TRUE, the opened Loader icon will
show application folders and bcds. If Developer is FALSE, it will
only display application folders.

At boot time, the loader looks in the system catalog for files
with an extension of .autorun and automatically loads and
starts any files with that extension. Thus, commonly used tools,
such as SystemFolder, usually have the .autorun extension. To
change a file's extension to .autorun, either name it that way in
XDE and use CommandCentral to copy it into the System
folder, or change its name in ViewPoint by selecting it within
the System folder and modifying its name via its property
sheet. If you rename the . file from XDE and use
CommandCentral to copy it to ViewPoint, you must use the /-e
client switch in CommandCentral. If you don't, ViewPoint will
attempt to start it twice, which will cause problems.

Note also that there are built-in applications that are always
run automatically. Such applications are not the same as
.autorun applications, because you do not get to choose
whether they are run. Such applications are referred to as
invisible applications, because they appear even when not
explicitly run. The Wastebasket and the Directory are examples
of invisible applications.

A·3

PROGRAMMING FOR VIEWPOINT

Notes:

A-4 VIEWPOINT PROGRAMMING COURSE

B.1 Getting started

VIEWPOINT PROGRAMMING COURSE

B. ICON EDITOR

The icon editor is a tool that allows you to create icon files for
inclusion in an application folder.

To use the icon editor, make sure that you have the files
BWSlconEditor.bcd and Standard.icons in your system folder. If
they are not there, you can add them either by copying them
from a file drawer, or by running them from Command Central
usi ng the /-e switch.

Once you have these two files in the system folder, you need to
do the following:

1. Open your System folder and copy Standard.icons to your
desktop. Standard.icons contains a list of the icons currently
available, and the file types with which those icons are
associ ated.

2. Use the PROPS key to rename the copy of Standard.icons that
is on your desktop to be New.icons, and change the file type
to be 6010. (The new name that you choose is arbitrary; in
fact, you don't even have to rename it. However, the new
file type must be 6010.)

The basic idea is that you create a new icon by modifying an
existing icon. Once you have the new icon, you can use it for
any application. There is nothing to prevent you from
modifying Standard.icons directly, without copying it;
copying the file just protects you from accidentally
overwriting an existing icon.

3. Move or copy BWSlconEditor.bcd to the Loader.

4. Open the New.icons file, and you will get a list of icons and
associated file types. Choose an icon that you want to
modify, and open it. If you want to modify one of the
standard icons, you should open that icon; if you want to
create a new one, you can select any of them to modify.

When you open an icon, you will get a list of sizes, such as 8
X 8 or 65 X 65. These sizes correspond to the various possible
forms of that icon, such as tiny, cursor, and reference. Select
the size that you want to modify and open it to start editing.
(See the ViewPoint Series Reference Library for more
information on icons.)

The next section desribes the available editing commands.

5. When you have finished editing the file, invoke the Save
command. You then have a file called new. icons that

B-1

ICON EDITOR

B.2 Editing the icon

8-2

contains your new icon. You can delete all the other icons in
the file, and then include new. icons in an application folder,
as described in Chapter 16, Application Folders.

While you are editing an icon file, you have the following
operations available:

Left mouse button

Right mouse button

Magnification

Shift

Save

Reset

Clear

Make a white box black

Make a black box white

Change the size of the icon. Provides
a popup menu that allows you to
choose the power of the
magnification.

Shift the current bitmap pixel by
pixel. Supplies a menu that allows
you to specify the direction of the
shift.

Save the current bitmap in a file. You
should use this command when you
have finished editing.

Restore a bitmap to its original
condition (before any edits)

Clear bitmap completely

You can also use the PROPS key to change the dimensions of the
text box (where the icon name is displayed.) To do this, select
an icon from the list of icons in the .icons file, and press PROPS.

VIEWPOINT PROGRAMMING COURSE

c. MESSAGE TOOLS

This chapter describes tools for creating, modifying, and
translating message files. There are three related tools: the
Message Master File Creation tool, the Message Master Editor,
and the Message Runtime File Creation tool.

The Message Master File Creation Tool takes a message bcd
and generates a Message Master file. A Message Master file
contains the original text, a translation of that text, and
additional information for the translator. You can then modify
or translate those messages with the Message Master Editor.

Finally, once you have finished editing your messages, you
need to use the Message Runtime File Creation Tool. This tool
builds a Message Runtime file from a Message Master file. The
runtime file ("compiled version") contains information for a
running application; it cannot be edited.

C.1 Message Master File Creation Tool

VIEWPOINT PROGRAMMING COURSE

To create a message master file, the first step is to run
MasterFileCreate.bcd; this will create an icon identified by the
words "Msg Master Maker." Next, copy the file containing your
message information to this icon. (The fi Ie with the message
information is the compiled version of the message
implementation; it can be either a single file or a folder with
several files. See Chapter 3, Strings and Messages.)

When you copy a file to the Message Master icon, an options
window appears that allows you to specify the application
name, language, and version. The default application name is
the name of the Message bcd file or folder. The default
language is US. You must specify a version number, however;
there is no default. Figure C.1 illustrates this option sheet.

Application Name: I The name of the application

Version: 13.3i

Language: ~
Figure C.1 Message Master Creation Tool

To create the Message Master file, select Start in the tool
window header. If you do not enter a version number, you will

C-1

MESSAGE TOOLS

C-2

get an error message; the message master creation process will
not continue until you enter a version number and select Start
again. During file creation, the window disappears from the
screen. Until the window disappears, you can abort the
operation by selecting Cancel in the tool window header.

This tool produces an icon identified by the name of the
application, as illustrated in Figure C.2.

4418

SampleAppl
icationMsgl
mpl.bcd.1.0.
US.Master

Figure C.2 Master File icon

The name of the Message Master file will be:

<Application Name>. < version>. < language> .master

For example: Cusp.3.3i.US.master is the Message Master file
for version 3.3i of the application Cusp. Its language is US.

The Message Master Creation tool also produces an errorlog
and places it on the desktop. The possible errors are:

• Duplicate IDs: This error indicates that a set of
Messagelmpl bcds has messages in identical domains
with identical IDs. This error means that the source will
have to be changed and recompiled. (See Chapter 3,
Strings and Messages, for a discussion of IDs.)

• Unbound Procedure: This error indicates that a
Messagelmpl bcd contains references to other bcds that
are not bound in. To fix this, you must remove the
offending unbound reference or bind the files with the
appropriate implementation.

• No domains: This error indicates that the Messagelmpl
bcd contains no calls to xMessage.AllocateMessages or
xMessage.RegisterMessages.

• RegisterMessages/AliocateMessages Error: This error
indicates that the bcd has either called
XMessage.AllocateMessages and
xMessage.RegisterMessages in the wrong order or has
only referenced one of them.

The message master file contains an untranslated version of all
the messages. Once you have this file, you can either edit the
messages with the Message Master Editor, or you can go
directly to the last step, creating a runtime ("compiled")
version of the file. Typically, you won't need to edit the
Message Master file when you first create it, but you may later
need to changes the messages and create a new runtime
message file. Section C.3 discusses the Message Master Editor;
Section C.4 discusses the Message Runtime File Creation Tool.

VIEWPOINT ~ROGRAMMING COURSE

MESSAGE TOOLS

C.2 Message File property sheet

There is also a property sheet associated with each Message
Master file. To display the properties of a file, select the
corresponding Message File icon and press the PROPS key. The
property sheet that appears is shown in Figure C.3.

Application

IName:
Application Name

Date Created: dd-mm-yy Last Edit on dd-mm-yy

Previous Message Master I File for finding changed messages I
I Automatic Save I No. of Keys Edited before save: D

Figure C.3 Message Master property sheet

You can use this property sheet to change the application
name, frequency of automatic save, and so on. For more
information on any of the fields in this property sheet, see the
complete Message Tools documentation.

C.3 Message Master Editor

VIEWPOINT PROGRAMMING COURSE

Once you have the message master icon, you can edit its
contents with the Message Master Editor. To use this tool, load
the program Me"ssageFileTool.bcd. The editor allows you to
search, edit, translate or print the text of the messages. To edit
a message master, select the icon and press OPEN. This will bring
up the editor window, as illustrated in Figure C.4.

C-3

MESSAGE TOOLS

Display Window

Print Messages

.... -----------------------------... Search Archive
Window for Editor Messages e.g. message has incorrect parameters

I First Instance

Find Msg using

I Next Instance

Check Msg File

I Backward

I Sequential II New I Untranslated I Translated 11::,~jijij~ij:j:11 Deleted II Parameters I
..............
: Current Message

Key: 27

I
Status: Untranslated Ms~ Type: menultem Translatable: Yes

Old US Message: Text of old meSsage (only for "changed" messages)

US Message: Text of new message

Tra nslation: Editable field for message translation

Note: I Implementor's note to the translators.

Figure C.4 Message Master Editor window

Using this window, you can edit the current message, and
change the current message using various search criteria. For
example, you can examine and potentially modify any new
messages, or all untranslated messages, or the like.

C.3.1 Searching Message Master files

C-4

To search the message file to find a message that satisfies a
particular criterion, use the commands Firstlnstance and
Nextlnstance. First Instance searches the Message Master file
from the beginning to find and display the first message that
satisfies the given search criteria. Next Instance finds the next
instance (going either forward or backward from the last
successful 'search) of the specified message type. You can also
execute this command by pressing the NEXT key.

The Find Msg Using field allows you to specify the type of
message searched for. The search proceeds either forward or

VIEWPOINT PROGRAMMING COURSE

C.3.2 Search parameters

VIEWPOINT PROGRAMMING COURSE

MESSAGE TOOLS

backward, depending on the value selected in the form
window. The choices are:

Sequential

New

Untranslated

Translated

Changed

Deleted

Parameters

finds the first or next message in the file.

fi nds the next message with the status
"new."

fi nds the next message with the status
"untranslated. "

finds the next message with the status
"translated. "

fi nds the next message with the status
"changed." If an entry of this type is
found, an additional field appears that
contains the previous version of the
original text. (This field is not displayed for
other types of messages.) If you have not
specified the previous original text in the
fi Ie properties, an error message appears
and no text is displayed.

fi nds the next message with the status
"deleted."

displays a set of options that specify the
search criteria. See Section C.2.2 for
details.

If no message of the type specified can be found, "No message
Found" appears in the Message window and the currently
displayed message remains in the tool window.

You can also search by parameter. When you select the
parameters option, a section on search parameters will appear,
as illustrated in Figure C.5. A search is successful only if all
specified criteria are met. If you specify Message Text, you can
search for the original text (by specifying US) or for a
translation of the original text (by specifying Trans).

C-5

MESSAGE TOOLS

C-6

Display Window

Print Messages 1--------------------------------1 Search Archive
Window for Editor Messages e.g. message has incorrect parameters

I First Instance

Find Msg using

I Next Instance

Check File

I Backward

I Sequential II New I Untranslated I Translated II Changed II Deleted Ilij:~ijtijffij~~~~:ijil

..............
: Current Message

Key: 27 ID: 25
I

Status: Untranslated MSff) Type: menultem Translatable: Yes

Old US Message: Text of old meisage (only for "changed" messages)

US Message: Textofnewmessage

Translation: Editable Field for message translation

Note: Implementor's note to the translators .

.
: Search Parameters :

Key: I Key No. 10: I 10 No.

Message Text: I Field for message text

Status:

Msg Type:

B I Changed I
I userMsg II template I I argList I

Figure C.5 Searching by parameter

Simple searches by Key, 10, Status field, or Msg Type are
reasonably quick. However, specifying the Key or 10 fields in
conjunction with other .fields is slow and unproductive, as
these fields are specific to the message.

When searching for strings (either translated or original text),
setting the Status field or the Msg Type field accelerates the

VIEWPOINT PROGRAMMING COURSE

MESSAGE TOOLS

search. String searches are based on a search for the substring
entered in the Message Text field.

When a search is successful, a message appears with
information about the message. See the complete Messate
Tools documentation for more information.

C.3.3 Closing, saving, and resetting

Once you have edited a message file, there are three ways to
save the resulting file:

Use the, Save command in the main window header. This
function saves all changes made since the file was
opened {or since the last save command.}

2 Use the Automatic Save function in the Message File
property sheet. See section C.2 for details.

3 Use the Close command. This function closes the edit
window and saves any changes made to the file since it
was opened or since the last save.

You can also use the Reset command to restore a file to its last
saved state. If you have changed the file, you must confirm the
command {by reselecting the Reset command.}

C.3.4 Printing message files

VIEWPOINT PROGRAMMING COURSE

To obtain hardcopies of information contained within the
Message Master, use the Print Messages command in the
auxiliary menu of the Message Editor. This command displays a
list of print options, as illustrated in Figure C6.

Printer Name: Ilnky:sBo-E:Rx

Print Messages:

Untranslated I Changed II New II Deleted I

Figure C.6 Print options

Selecting Start produces ·an Interpress master and sends it to
the printer specified in the Printer Name field. You can print all
messages or a category of messages. (The category can be
translated, untranslated, changed, new, or deleted.)

(-7

MESSAGE TOOLS

C.4 Runtime File Creation Tool

C-8

In addition, you can specify verbose or terse. Verbose produces
a document containing all available information (original text,
translated text and translation information.) Terse produces a
document containing only the original text, message key
number, and message ID.

The final step is to create a Runtime Message file. A Runtime
Message file is essentially a compiled version; it can be loaded
with an application, but it can't be edited or viewed. You can
run this program either from the auxiliary menu of the
Message Master Editor, or as a tool in its own right. In either
case, you need to run the program RuntimeFileCreate.bcd.

To run this tool from the Message Master Editor, select the
Create Message File command from the auxiliary menu. This
command creates the window illustrated in Figure C.7.

Figure C.7 Using the Create Message File command

This window allows you to specify the type of text (original or
translated) in the Runtime Message file. If you specify Original,
the Runtime Message file will contain only the original text. If
you specify Translated, the command Runtime Message file
will contain only the translated text.

The Runtime Message file is produced when you select Start.
The resulting file appears as an icon on the current desktop. As
illustrated in Figure C.8, this icon is just like the message master
icon, except that its name ends in .Runtime instead of .Master.
You cannot perform any operations on the runtime file.

Master File Icon

4418

SampleAppl
icationMsgl
mpl.bcd.1.0.
US.Master

Figure C.8 The resulting icon

Runtime File Icon

4418

SampleAppl
icationMsgl
mpl.bcd.1.0.
US.Runtime

VIEWPOINT ~ROGRAMMING COURSE

VIEWPOINT PROGRAMMING COURSE

MESSAGE TOOLS

To create a Runtime Message file without using the Message
File Editor, use the Runtime Message Creation tool. The icon
for this tool is identified by the words "Runtime Msg Maker".
Use the copy key to copy a Message Master file containing the
message information to this icon. The tool then produces an
original language Runtime Message file with the same name as
the Message Master file followed by the extension .messages.

When the operation is complete, the tool places a Runtime
Message file on the desktop.

C-9

MESSAGE TOOLS

Notes:

C-10 VIEWPOINT PROGRAMMING COURSE

.autorun appl ications, A-3

.TIPC files, 9-8

A
aborting an application, 9-15
aborti ng document creation, 17-8
access attri butes, 10-2
access control (of files), 11-2
activity attributes, 10-2
ADF, 16··2

example, 16-2
AdjustProc, 6-10
anchored frames

adding to documents, 17-6
properties of, 17-8

apex
of a curve, 18-8

application
internal name for, 16-2
vs. application folders, A-2

Application Description File, 16-2
application folders, 16-1

creati ng, 16-9
summary, 16-10

Application Loader, A-2
ApplicationFolder interface

FindDescriptionFile (Def), 16-3
FindDescriptionFile (Ex), 16-6
FromName (Def), 16-3
FromName (Ex), 16-5, 16-8

a ppl i cati ons
loading, A-2
loading priority for, 16-2
packagi ng, 16-1
running, A-1

Applize tool, 16-9
atom, 9··5

creatilon of (Ex), 9-6
Atom interface

Make, 9-5
MakeAtom (Def), 9-6
MakeAtom (Ex), 9-6, 9-11

Attention interface
AddMenultem (Def), 4-1, 4-2
AddMenultem (Ex), 4-11
Clear, 3-15
ClearSticky, 3-15
Post (Def), 3-14
Post(Ex),3-14,4-5
PostAndConfirm, 3-14
PostSticky, 3-14

Attention Menu
adding a command to, 4-1

VIEWPOINT PROGRAMMING COURSE

Attention Window, 2-4
clearing messages, 3-15
posting messages to, 3-14

attri bute types, 10-4, 10-5
attributes (of files)

access, 10-2
activity, 10-2
changing, 10-5
directory, 10-2
example, 10-8
extended, 10-2
file, 10-2
identity, 10-2
interpreted, 10-1
of fi I es, 1 0-1
retrieving uninterpreted, 10-10
size, 10-2
specifying, 10-2
uninterpreted,10-1

autorun applications, A-3

B
backing file, 13-2
bad phosphor list, 6-3
body wi ndows, 4-5

display of, 6-11
boolean

in form window, 7-2
BWSFileTypes, 11-4

SystemFileCatalog, 13-15

C
call back procedure, 4-1
CanYouTakeSelection, 15-6
Catalog interface

CreateFile (Oef), 11-8
CreateFile (Ex), 13-16
GetFile (Def), 11-4
GetFile (Ex), 11-5, 13-11
Open (Oef), 11-4
Open (Ex), 13-15

catalogs, 11-4
change procedure

in form window, 7-9
changed boolean

for form window item, 7-9
ChangeProcs

with icon applications, 15-7
Character Code Standard, 3-1
character set, 3-1
characters

defining new, 15-5
representation of, 3-1

INDEX

INDEX-1

INDEX

choice item
creating, 7-5
in form window, 7-2

clipping (of windows), 6-3
commands

in form window, 7-1 -7-3
in StarWindowShell, 4-6

Containee interface
ChangeProc (Def), 15-6
ChangeProc (Ex), 15-7
Data, 15-3
DataHandle, 15-3
DefaultF!leConvertProc(Def), 15-2
DefaultFileConvertProc (Ex), 15-13
GenericProc (Def), 15-6
GenericProc(Ex), 15-7, 15-13
GetCachedName (Def), 15-3
GetCachedName (Ex), 15-4, 15-13
Getlmplementation, 15-2, 15-13, 16-9
Implementation (Def), 15-1
Implementation (Ex), 15-13
PictureProc (Def), 15-3
PictureProc (Ex), 15-4, 15-13
PictureState 15-3
ReturnTicket (Def), 15-4
ReturnTicket (Ex), 15-4, 15-13
Setlmplementation (Def), 15-1
Setlmplementation (Ex), 15-2, 15-13, 16-9
SmaliPictureProc (Def), 15-5
SmaliPictureProc (Ex), 15-6, 15-13
Ticket, 15-4

content
of files, 10-1

Context interface, 5-1
Acquire, 5-3
Create (Def), 5-2
Create(Ex),5-3,5-5
Data, 5-2
DestroyProcType, 5-2
Find, 5-3
NopDestroyProc, 5-3
SimpleDestroyProc (Def), 5-3
SimpleDestroyProc (Ex), 5-6
UniqueType, 5-2, 5-4

context
full example, 5-4
retrieving, 5-3

control poi nt, 2-3
controls

for file access, 11-2
COORDS, 9-4
COpy

implementing, 15-6
Courier interface

Error, 10-10, 11-14
ErrorCode, 11-14

current selection, 14-1 (Seese/ection)
Cursor interface

Set, 6-9
Store, 6-9

curves
adding to graphics frame, 18-8
apex of, 18-8
peak of, 18-8

INDEX-2

o
decimal item (in form window), 7-2
default session, 10-8
deleting files, 11-8
desktop, 2-1

adding files to, 17-7
directory attributes, 10-2
Di rectory icon, 2-6
dirty page, 13-2

updating, 13-6
Display interface, 6-5

Bitmap (Def), 6-5
Bitmap (Ex), 6-7, 6-9
Black, 6-5
Gray, 6-7
Line, 6-7
White, 6-9

display procedure, 6-1,6-3
displaying on the screen, 6-1

text, 6-4
wi ndows, 4-10

DocFrameProps interface
PropsRecord, 17-8

DocinterchangeDefs interface, 17-1
AbortCreation, 17-8
AnchoredFrameType, 17-6
AppendAnchoredFrame (Def), 17-6
AppendAnchoredFrame (Ex), 18-4
AppendChar, 17-4
AppendField,17-5
AppendNewParagraph, 17-5
AppendPFC, 17-5
AppendText, 17-5,17-11
Caption, 17-3
CheckAbortProc, 17-8
Close, 17-13
ColumnBreakProc, 17-12
Doc, 17-1
Enumerate (Def), 17-12
Enumerate (Ex), 17-15
EnumProcs, 17-12
FinishCreation (Def), 17-7
FinishCreation (Ex), 17-7, 17-11
FinishCreationStatus, 17-7
FinishCreationWithCheckAbortProc, 17-8
GetFontPropsDefaults, 17-10
GetPagePropsDefaults, 17-10
GetParaPropsDefaults (Def), 17-10
GetParaPropsDefaults (Ex), 18-4
Open (Def), 17-12
Open (Ex), 17-15
OpenStatus, 17-12
PaginateOption, 17-1
ReleaseCaption (Def), 17-7
ReleaseCaption (Ex), 18-4
ReleaseField, 17-7
ReleaseFooting, 17-7
ReleaseHeading (Def), 17-7
ReleaseHeading (Ex), 17-11
SetCurrentParagraphProps, 17-10
StartCreation (Def), 17-1
StartCreation (Ex), 17-11
TextContainer, 17-3
TextProc, 17-12

VIEWPOINT PROGRAMMING COURSE

DocPagePropsDefs interface
PropsRecord, 17-9

documents
aborting creation of, 17-8
accessing, 17-1
adding anchored frames, 17-6
adding formatting information, 17-5
adding information to, 17-2
adding page format characters, 17-5
add i ng text, 17-3
adding text (ex), 17-5
creating, 17-1
creating heading (Ex), 17-11
creating headings, 17-2
creation (Ex), 17-11
enumerating, 17-12
enumeration example, 17-15
example of copying, 17-14
field properties, 17-10
finalizing, 17-7
font properties, 17-8
frame properties, 17-8
getti ng properties, 17-10
getting properties (Ex), 17-11
initial pagination of, 17-1
initial paragraphs, 17-4
making files permanent, 17-7
page properties, 17-9
properties of, 17-8
reading contents of, 17-12
setti ng properties, 17-10
setting props for empty paragraph, 17-10

E
ellipses

adding to graphics frame, 18-7
enable actions

in TIPtables, 9-4
encoding uninterpreted attributes, 10-4
ENTER,9-4
Environment interface

BitAddress, 6-5
Block (Def), 12-4
Block (Ex), 13-12
bytesPerPage, 13-1
wordsPerPage, 13-1

example
of accessi ng mapped fi I es, 13-5
of ADF, 16-2
of all filing operations, 13-9
of appending text, 17-5
of catchi ng fi ling errors, 11-13
of Containee.ChangeProc, 15-7
of copying files, 17-14
of copying selection, 14-4
of creati ng atoms, 9-6
of creating nested graphics frames, 18-3
of creating text frame, 18-11
of document creation, 17-11
of end of stream, 12-3
of enumerating seelction, 14-6
offile creation, 11-7
of generic proc, 15-7
of implementing property sheet commands, 15-7

VIEWPOINT PROGRAMMING COURSE

of listing files, 11-12
of making icon applications, 15-12
of mapped files, 13-6
of mapping files, 13-4
of obtaining selection, 14-2
of opening files, 11-3
of opening remote file, 11-6

INDEX

of putting icon in Prototype folder, 15-12
of registering icon with desktop, 15-2
of retri evi ng extended attri butes, 10-10
of setting filing attributes, 10-8
of stream blocks, 12-6
of stream 10, 12-3
of TIP tables, 9-11
of uninterpreted attributes, 10-4
of using icons file, 16-9
of using TIP files, 16-7
of XFormat, 3-9
of XMessage implementation module, 3-13

EXIT, 9-4
extended attri butes, 10-2

(See uninterpreted attributes)
external name, 16-2

F
FieldPropsDefs interface

PropsRecord,17-10
field properties, 17-10
fi Ie attri butes, 10-2
file handle, 11-2
file system, 10-1
file type, 10-4
files

access control, 11-2
addi ng to desktop, 17-7
closing, 11-7
complete example, 13-9
contents of, 12-1
controls for, 11-2
creating, 11-7
deleting, 11-8
error handling for, 11-12
10,12-2
listing, 11-9
making permanent, 17-7
mapping (Ex), 13-4
mapping to virtual memory, 13-2
opening, 11-2
references to, 11-1
remote, 11-5
segments of, 13-3
temporary, 11-7
unmapping, 13-5

fixed layout, 7-8
flexi ble layout, 7-6
font properties, 17-8
FontPropsDefs interface

Props Record, 17-8
form items, 2-4, 7-1

creating, 7-3
getting and setting values, 7-13
key for, 7-3

form windows, 2-4, 7-1
destroying, 7-13

INDEX-3

INDEX

format procedures, 3-8
FormWindow interface

Appendltem (Oef), 7-7
Appendltem (Ex), 7-8, 7-12
AppendLine,7-7
Bitmap, 7-5
ChangeReason,7-9
Choicelndex,7-5
Choiceltem,7-5
Choiceltems,7-5
CommandProc,7-4
Create (Oef), 7-2
Create (Ex), 7-10
DefaultLayout,7-6
defaultLineHeight,7-7
Destroy, 7-13
Destroyltem, 7-13
Destroyltems, 7-13
GetBooleanltemValue,7-13
GlobaIChangeProc,7-9
HasAnyBeenChanged, 7-9
HasAnyBeenChanged (Ex), 8-3
HasBeenChanged, 7-9
HasBeenChanged (Ex), 8-3
Insertltem,7-7
InsertLine,7-7
LayoutProc (Oef), 7-6
LayoutProc(Ex), 7-8, 7-12
MakeBooleanltem, 7-10
MakeChoiceltem (Oef), 7-5
MakeChoiceltem (Ex), 7-11
MakeCommandltem (Def), 7-3
MakeCommandltem (Ex), 7-11
MakeltemsProc (Def), 7-2
MakeltemsProc (Ex), 7-10
MakeTextltem (Def), 7-4
MakeTextltem (Ex), 7-11
OutlineOrHighlight,7-6
ResetAIiChanged,7-9
ResetChanged,7-9
SetBooleanltemValue,7-13
SetltemBox,7-8
SetTabStops, 7-12
SetTextltemValue, 13-11
TabStops,7-7
TabStops (Ex), 7-12

frame properties, 17-8

G
graphics container, 18-2
graphics frames

adding text frames, 18-10
creati ng ell i pses, 18-7
creati ng, 18-1
creating captions, 18-2
creati ng lines, 18-5
creating rectangles, 18-5
finalizing, 18-11
inserting curves, 18-8
nested, 18-2
reading, 18-12
setting properties, 18-2

INDEX-4

GraphicslnterchangeDefs interface, 18-1
AddCurve, 18-8

H

AddEllipse,18-7
AddLine, 18-5
AddRectangle, 18-6
AddTextFrame,18-10
AppendCharToText, 18-10
AppendFieldToText, 18-10
AppendNewParagraphToText, 18-10
AppendTextToText, 18-10
Box, 18-2
Brush, 18-3
ClusterProc,18-12
CurveProc, 18-12
CurveProps, 18-8
CurvePropsRec, 18-8
Dims, 18-2
EllipseProc, 18-12
EllipseProps,18-7
EllipsePropsRec,18-7
Enumerate, 18-12
EnumerateText, 18-14
EnumProcs, 18-12
EnumProcsRecord, 18-12
FinishCluster, 18-11
FinishGraphics, 18-12
FinishGraphics (Ex), 18-4
FinishGraphicsFrame, 18-12
FrameProc, 18-12
FrameProps, 18-3
FramePropsRec, 18-3
Gray, 18-7
LineDirection, 18-5
LineEnd,18-5
LineEndHead, 18-5
Li neProc, 18-12
LineProps, 18-5
LinePropsRec, 18-5
Place, 18-2
Poi ntProc, 18-12
RectangleProc, 18-12
RectanglePropRec, 18-6
RectangleProps, 18-6
ReleaseText, 18-11
Shading, 18-7
StartCluster, 18-2
StartGraphics, 18-1
StartGraphics (Ex), 18-4
StartGraphicsFrame, 18-2
StartGraphicsFrame (Ex), 18-4
StyleBrush, 18-3
Text, 18-10
TextEnumProcs, 18-14
TextEnumProcsRecord, 18-14
TextFrameProc, 18-12
Texture, 18-7
Textures, 18-7
TriangleProc, 18-12

headings
creating, 17-2
creating (Ex), 17-11

VIEWPOINT PROGRAMMING COURSE

I
icon applications

full example, 15-12
summary, 15-12

icon editor, 8-1
icon files

creati ng, 8-1
example of using, 16-9

icons, 2-1, 15-1
displaying, 15-3
putting in Prototype folder, 15-11
registering with desktop, 15-1
states, 15-3
tiny version, 15-5

identity attributes, 10-2
input focus

setti ng, 9-10
integer item

in form window, 7-2
internal name, 16-2
interpreted attri butes, 10-1

changing, 10-5
retrieving, 10-5
specifying, 10-3

invalid list
of window, 6-1

invisible applications, A-3
10 (to files), 12-2

K
kamikaze periodic notifier, 9-14

L
LimitProc,6-10
lines (in graphics frame), 18-5
link window, 8-4
linked property sheets, 8-5
loading priority, 16-2
lock

for fi Ie access, 11-2
LOOPHOLE, 12-5, 12-6, 13-5, 13-7

M
managers (selection), 14-1
mapped files, 13-2

accessi ng, 13-4
example, 13-4, 13-6
unmapping,13-5
updating, 13-5

MasterFileCreate.bcd, C-1
menu, 2-3

pop up, creation of, 4-9
MenuData interface

ArrayHandle, 4-8
Createltem (Oef), 4-1
Createltem (Ex), 4-8
CreateMenu (Def), 4-8
CreateMenu (Ex), 4-8, 4-12
Item, 4-1
ItemHandle, 4-1
MenuProc, 4-2

message files, C-1
creati ng, C-1
editing, C-3

VIEWPOINT PROGRAMMING COURSE

printing, C-7
property sheet, C-3
runtime, C-8
searchi ng, C-4

message keys, 3-11
Message Master Editor, C-3
Message Master File Creation Tool, C-1
MessageFileTool.bcd, C-3
messages

definitions module, 3-11
MOUSE, 9-4
MOVE

implementing, 15-6

N
normal TIP tables, 9-2
Notifier, 9-1, 9-13

and selection, 14-3
NotifyProc, 9-1, 9-6

(Ex), 9-12
NSFi Ie interface

AccessProblem, 11-13
Attribute, 10-2
AttributeList, 10-2, 10-7
Attributes, 10-7
AttributesProc, 11-11
AttributesRecord, 10-7
AttributeType, 10-6
BooleanFalseDefault,10-6
ChangeAttributes (Def)' 10-5
ChangeAttributes (Ex), 10-8
ClearAttributes, 16-8
Close(Oef),11-7
Close (Ex), 11-3
Create, 11-7
DecodeCardinal (Def), 10-4
DecodeCardinal (Ex), 10-10
DecodeStri ng, 1 0-1 0
Delete (Def), 11-9
Delete (Ex), 13-11
EncodeCardinal, 10-4
EncodeString, 10-5
Error (Oef), 11-13
Error (Ex), 13-14
ErrorRecord, 11-13
ErrorRecord (Ex), 11-14, 13-14
ExtendedAttributeType, 10-4
ExtendedSelections, 10-10
Filter, 11-9
Find (Oef), 11-9
Find (Ex), 11-11,16-6
FreeAttributes, 10-8
GetAttributes (Oef)' 10-5

INDEX

GetAttributes (Ex), 10-8, 10-10, 13-4, 16-8
Handle, 11-2
InterpretedSelections, 10-6
List, 11-11
MakeReference, 11-6
nullSession, 10-8
Open (Def)' 11-2
Open (Ex), 11-3, 11-6, 13-15
OpenByName, 11-4
OpenByReference (Oef)' 11-3
OpenByReference (Ex), 11-11, 11-12, 13-4

INDEX-5

INDEX

Reference, 11-1
Scope (Oef), 11-9
Scope (Ex), 11-12
Selections, 10-5
Service, 11-1, 11-5
ServiceRecord, 11-1, 11-5
SystemElement, 11-5
Words, 10-4

NSFileStream interface, 12-1
Create (Oef), 12-2
Create (Ex), 12-3, 13-16
FileFromStream, 12-8
GetLength, 12-7
Handle, 12-2
SetLength, 12-7

NSFiling, 10-1
NSName interface

NameRecord, 11-5
NSSegment interface

o

Copyl n, 13-8
CopyOut, 13-8
GetSizelnPages, 13-9, 13-12
Map (Def), 13-2
Map (Ex), 13-4, 13-7, 13-9, 13-12
Origin, 13-2
SetSizelnPages, 13-9

opening files, 11-2
example, 11-3

option files, 16-2
OptionFile interface

GetStringValue (Def), 16-4
GetStringValue (Ex), 16-6, 16-8
GetWorkstationProfile, 16-6

overlapping windows, 2-3

P
packaging applications, 16-1
page, 13-1

dirty, 13-2
page format characters, 17-5
page properties, 17-9
path name, 11-1
peak

of a curve, 18-8
periodic notifiers, 9-13

kamikaze, 9-14
pop-up menu, 2-3

creation of, 4-9
properties

getting and setting, 17-10
of documents, 17-8
setting for empty paragraph, 17-10

property sheets, 2-5, 8-1
creati ng, 8-3

. linked,8-5
PropertySheet interface

BooleanFalseDefault, 8-2
Create (Oef), 8-1
Create (Ex), 8-4
CreateLinked,8-5
Menultem, 8-2
MenultemProc, 8-3

INDEX-6

MenultemType, 8-2
optionSheetDefaultMenu, 8-2
propertySheetDefaultMenu, 8-2
SwapExistingFormWindows, 8-7
SwapFormWindows, 8-6

Prototype interface
Create, 15-11
Find,15-11

prototype catalog, 11-4
Prototype folder, 2-6

R
readers, 3-2

accessi ng contents of, 3-4
creati ng, 3-4
vs. readerBodys, 3-4

rectangles
adding to graphics frame, 18-5

reference (to file), 11-1
remote files, 11-5
requestors (selection), 14-1
results (in TIP table), 9-4
Runtime File Creation Tool, C-8
Runtime Message Files, C-8
RuntimeFileCreate.bcd, C-8

S
segments (of files), 13-3
Selection interface

CanYouConvert(Oef),14-5
CanYouConvert (Ex), 14-6, 14-7
Convert (Def), 14-1
Convert (Ex), 14-2, 14-4
Copy 14-3
CopyMove, 14-3
CopyOrMove, 14-3
Difficulty, 14-5
Enumerate, 14-6
EnumerationProc, 14-6
Free, 14-3, 14-5
HowHard,14-5
maxStringLength, 14-6
Move, 14-3
nullValue, 14-1
RequestorData, 14-6
Target, 14-1
UniqueTarget, 14-2
Value, 14-1
ValueCopyMoveProc, 14-3
ValueHandle, 14~3

selection
copying (Ex), 14-4
copying streams, 14-5
defining new target types for, 14-2
enumerating, 14-6
example, 14-2
is conversion possible?, 14-5
managers, 14-1
monitoring, 14-3
Notifier and, 14-3
obtaining, 14-1
requestors, 14-1
target types for, 14-2

session, 10-8

VIEWPOINT PR.OGRAMMING COURSE

SimpleTextDisplay interface
StringlntoWindow, 6-4

SimpleTextFont interface
AddClientDefinedCharacter (Def), 15-5
AddClientDefinedCharacter (Ex), 15-6, 15-13

SIZE (Ex), 12-6, 13-7
si ze attri butes, 10-2
Space interface

Error, 13-7, 13-12
ForceOut, 13-6
Interval, 13-2
Scratch Map, 15-4
Unmap (Def), 13-5
Unmap(Ex), 13-6, 13-7, 13-12

StarDesktop interface
Add ReferenceToDesktop, 17-7
GetCurrentDesktop, 14-4

StarWindowShel1 interface
AddPopupMenu, 4-9
AdjustProc, 6-11
Create (Def), 4-3
Create (Ex), 4-4, 4-6, 4-11
Create Body (Def), 4-5
Create Body (Ex), 4-6, 4-11
GetAdj ustProc, 6-11
GetLimitProc,6-11
GetZone, 4-8, 4-11
Handle, 4-3
IsCloseLegalProc, 4-4
Li m itProc, 6-1 0
Pop, 4-10
Push,4-12
SetAdj ustProc, 6-11
SetLimitProc, 6-11
SetRegularCommands (Def), 4-8
SetRegularCommands (Ex), 4-8, 4-12
StandardLimitProc,6-11
State, 4-4
TransitionProc,4-4
When, 6-11

StarWindowShel1
adding commands to (Ex), 4-8
creati ng, 4-2
creation of (Ex), 4-11

Stimulus,9-1
Stream interface, 12-1

Block, 12-4
Delete (Def), 12-8
Delete (Ex), 12-3, 13-16
EndOfStream, 12-3
GetBlock (Def), 12-4
GetBlock (Ex), 12-6
GetByte, 12-3
GetPosition, 12-7
GetWord, 12-3
Handle, 12-2
Object, 12-2
Position, 12-7
PutBlock (Def), 12-4
PutBlock (Ex), 12-6, 13-16
PutByte, 12-2
PutWord,12-3
SetlnputOptions, 12-6
SetPosition, 12-7

VIEWPOINT PROGRAMMING COURSE

streams, 12-1
as target of selection, 14-5
block example, 12-6
counting bytes of, 12-7
creati ng, 12-2
deleting, 12-8
example of end of stream, 12-3
10 example, 12-3
miscellaneous operations on, 12-7
random access, 12-7

stri ngs, 3-1
swap unit, 13-1
swapping, 13-1
syntax

forADF, 16-2
of TIP tables, 9-3

system catalog, 11-4
system directory, A-2
System Folder, A-2
System Folder application, 2-7

T
tagonly item

in form window, 7-2
TakeSelection, 15-7
TakeSelectionCopy, 15-7
temporary file, 11-7
Terminal Interface Package

see TIP, 9-1
text frames

add i ng contents to, 18-10
creating, 18-10
reading contents of, 18-14
releasing storage, 18-11

text item
creating, 7-4
in form window, 7-2

tiled windows, 2-3
timeout

for fi Ie access, 11-2
TIP interface

AttentionProc, 9-15
CreatePeriodicNotify,9-14
CreateTable (Def), 9-7
CreateTable (Ex), 9-8, 9-12
InvalidTable (Def), 9-8
InvalidTable (Ex), 9-12
LosingFocusProc, 9-10
NotifyProc (Def), 9-6
NotifyProc (Ex), 9-6, 9-12
PeriodicNotify,9-14
ResetUserAbort, 9-15
ResultObject,9-4
Results, 9-4
SetAttention, 9-15
SetlnputFocus,9-10
SetTableAndNotifyProc (Def), 9-9
SetTableAndNotifyProc (Ex), 9-12
Table, 9-7
TableError,9-8
TableObject,9-7
UserAbort, 9-15

TIP files
in application folder, 16-7

INDEX

INDEX-7

INDEX

TIPtables,9-1
associating with windows~ 9-9
creating (Ex), 9-8
example of, 9-4, 9-11
i ncorporati ng, 9-7
normal, 9-2
NotifyProcs and, 9-9
results lists, 9-4
syntax of, 9-3

TIPC files, 9-8
TIPStar interface

NormalTable,9-9
Placeholder, 9-2
PopTable,9-10
PushTable, 9-9

trigger action, 9-3
type checki ng

circumventing, 12-5

U
uninterpreted attributes, 10-1

encoding and decoding, 10-4
retri evi ng, 10-10
specifying, 10-4

user abort, 9-15
user actions, 9-1
User Profile

window entries for, 2-3

V
virtual memory overview, 13-1

W
window, 2-2

adding commands to, 4-6
creating, 4-2

Wi ndow interface
Box, 4-6, 6-2, 7-8
Clarity, 6-2
Dims, 4-6, 6-2, 7-8
DisplayProc , 6-3
EnumeratelnvalidBoxes, 6-3
InvalidateBox (Def), 6-2
InvalidateBox (Ex), 6-2, 6-8
Place, 4-6, 6-2, 7-8
Validate (Def), 6-2
Validate (Ex), 6-2, 6-8
ValidateTree,6-2

windows
changing defaults for, 2-3
cI i ppi ng, 6-3
controlling size of, 6-10
creation of (Ex), 4-11
displaying information in, 6-1
displaying on screen, 4-10
overlapping mode, 2-3
stori ng data with, 5-1
tiled mode, 2-3
validating and invalidating, 6-1

WorkstationProfile, A-2
writers, 3-2

allocating, 3-5
editing, 3-6
expanding, 3-6

INDEX-8

X
XChar,3-1
Xerox Character Code Standard, 3-1
XFormat interface, 3-6

Char, 3-9
Character, 3-1
CharRep, 3-1
ClientData,3-7
Decimal, 3-9
example, 3-9
format procedures, 3-8
FormatObject,3-8
FormatProc, 3-7
Handle, 3-7
Object (Def), 3-7
Object (Ex), 3-9
Reader, 3-9
StreamObject, 3-8
StreamProc, 3-8
String, 3-9
WriterObject, 3-9

XMessage interface
AliocateMessages (Def), 3-11
Allocate Messages (Ex), 3-12, 3-13
client module, 3-14
definitions module, 3-11
FreeMsgDomainsStorage, 16-4
Get, 3-13
Handle, 3-11
implementation module, 3-11
Messages, 3-12
MessagesFromFile, 16-4
MessagesFromReference, 16-4
MsgDomain, 16-4
MsgDomains, 16-4
MsgEntry, 3-12
MsgKey, 3-12
Object, 3-11
RegisterMessages, 3-12

XStri ng interface
AppendReader, 16-8
Byte, 3-2
Bytes, 3-5
ByteSequence, 3-2
Context, 3-2
CopyReader, 14-4
ExpandWriter, 3-6
First, 3-4
FromBlock, 13-12
FromNSString, 3-4
FromSTRING 3-4
InvalidNumber, 13-12
Lop, 3-4
NewWriterBody),3-5
NthCharacter, 3-4
Overflow, 13-12
Reader 3-2
ReaderBody, 3-2
ReaaerFromWriter, 3-4
ReadOnlyBytes , 3-2
Writer, 3-5
WriterBody, 3-5, 3-6
WriterBodyFromNSString, 3-6

VIEWPOINT PROGRAMMING COURSE

