
'I,; 

. . " .. r· XEROX 

Xerox 
Development 
Environment 

Concepts and Principles 

610E00130 



XEROX 

xoe Concepts and Principles 

610E001.30 
September 1985 



XEROX Xerox Development Environment 

Xerox Development Environment: 
Concepts and Principles 

XDE3.0·1001 
Version 3.0 
November 1984 

Office Systems Division 
Xerox Corporation 
3450 Hillview Avenue 
Palo Alto, California 94304 



Xerox Development Environment 

Notice 

This manual is the current release of the Xerox: Development Environment (XDE) and may be revised by Xerox 

without notice. No representations or warranties of any kind are made relative to this manual and use thereof, 

including implied warranties of merchantability and fitness for a particular purpose or that any utilization 

thereof will be free from the proprietary rights of a third party. Xerox does not assume any responsibility or 

liability for any errors or inaccuracies that may be contained in the manual or have any liabilities or obligations 

for any damages, including but not limited to special, indirect or consequential damages, arising out of or in 

connection with the use of this manual or products or programs developed from its use. No part of this manual, 

either in whole or part, may be reproduced or transmitted mechanically or electronically without the written 

permission of Xerox Corporation. 

Preliminary . 

Copyright 0 1984 by Xerox Corporation. 
All Rights Reserved. 



Preface 

This document is one of a series of manuals written to aid in programming and operating 
the Xerox Development Environment (XDE). 

Comments and suggestions on this document and its use are encouraged. The form at the 
back of this document has been prepared for this purpose. Please send your comments to : 

Xerox Corporation 
Office Systems Division 
XDE Technical Documentation, MIS 37-18 
3450 Hillview Avenue 
Palo Alto, California 94304 



Table of contents 

Introduction 

1 Tajo 

1.1 

1.2 

1.3 

Tools and windows 

The user interface 

1.2.1 Window structure: subwindows 

1.2.1.1 Form subwindows . 

1.2.2 "Don't call us; we'll call you" 

1.2.2.1 The notification process 

Cooperation . 

1.3.1 The local file system. . 

1.3.1.1 Call-back procedures 

1.3.1.2 Access notification. 

1.3.1.3 An example of cooperating files 

2 Communications and network services 

2.1 

2.2 

2.3 

2.4 

Network Services. 

2.1.1 File Service 

2.1.2 Print Service 

2.1.1 Mail Service 

The Clearinghouse 

2.2.1 Clearinghouse structure 

2.2.2 Clearinghouse updates 

Authentication Service 

2.3.1 The authentication process 

Courier 

1-1 

1-2 

1-3 

1-4 

1-5 

1-6 

1-6 

1-7 

1-7 

1-8 

1-8 

2-1 

2-1 

2-2 

2-2 

2-2 

2-3 

2-3 

2-3 

2-4 

2-5 



2.5 

Table of contents 

2.4.1 Remote programs 

2.4.2 Courier operation 

Ethernet architecture and protocols 

2.5.1 CSMAlCD: Theory of operation. 

2.5.2 Protocols . 

2.5.3 XNS Protocols. 

2.5.3.1 Level 0 protocols 

2.5.3.2 Levell protocols 

2.5.3.3 Level 2 protocols 

2.5.3.4 Level 3 and above 

3 The supporting technology 

3.1 

3.2 

3.3 

The Mesa language 

3.1.1 Modules and interfaces. 

3.1. 2 Binding 

3.1.2.1 Information visibility 

3.1.2.2 Inter-modular type checking 

3.1.3 Loading and running a program 

3.1.4 Processes and monitors. 

3.1.4.1 Monitors 

3.1.4.2 Condition variables 

3.1.4.3 .Monitored objects 

Pilot, the operating system 

3.2.1 Files and volumes . 

3.2.2 Virtual memory and Pilot 

3.2.3 Streams and input/output devices 

3.2.4 Communications 

3.2.5 Mesa language support. 

3.2.6 World swapping 

The XDE processor 

3.3.1 Compact program representation 

3.3.2 Stack machine. 

3.3.3 Control transfers . 

3.3.4 Process mechanism 

3.3.5 Virtual memory and the processor. 

3.3.6 Contexts 

Glossary 

References 

2-5 

2-6 

2-7 

2-7 

2-8 

2-9 

2-10 

2-11 

2-12 

2-13 

3-1 

3-1 

3-3 

3-4 

3-5 

3-6 

3-6 

3-7 

3-7 

3-8 

3-8 

3-8 

3-8 

3-9 

3-10 

3-10 

3-10 

3-10 

3-11 

3-11 

3-11 

3-12 

3-12 

3-13 



Introduction 

The purpose of the Xerox Development Environment (XDE) is to facilitate program 
development. Specifically, its goals are to reduce the cost of programming (in terms of 
people time and processor time), and increase the quality of the code produced (in terms of 
efficiency, reliability, and ease of maintenance). The foundation of the XDE is therefore an 
integrated set of cooperating programs that aid in developing and maintaining large 
programs. This tool set is used in a distributed environment; that is, a group of powerful 
personal workstations loosely tied together by a local area network (Ethernet). 

Because each machine has only one user, the XDE can rely on the principle of cooperation, 
rather than competition. Thus, there is no need for a centralized resource manager, and 
individual programs can directly share resources such as memory and compute power 
("personal timesharing"). Similarly, distinct machines can cooperate via the Ethernet. 
Expensive resources such as electronic printers can be shared among many distributed 
users. Incorporating such resources into each workstation would be utterly impractical: by 
assuming that workstations are cooperative rather than antagonistic, it is possible to 
share such a resource among many users. Cooperation thus allows the full exploitation of 
the environment's resources and capabilities, since little effort is expended in centralized 
control or protection. 

The XDE provides a standard set of tools, or applications programs, that support and 
simplify many common programming tasks. However, this tool kit is completely open­
ended; you are not limited to the existing tools. Rather, the tools are built from a large 
library of extensively layered system routines and primitives. You have access to all the 
system routines, both simple and complex, and are free to use them to custom tailor the 
existing tools or to create your own specialized tools. Because you are the only user on your 
machine, you can modify the environment as much as you like; tools that you create have 
exactly the same status as the built-in ones. The software environment is thus layered, 
fully extensible, and extremely flexible. 

Like the software architecture, the hardware architecture also emphasizes cooperation 
and tailorability. The XDE is distributed both geographically and in terms of control: all 
machines on a given network have equal control and equal access to shared resources. 
Individual workstations cooperate via the Ethernet in order to share a resource, provide 
one another with files, or enable a conversation bet\i\1een users. The facilities for 

1-1 



1-2 

Introduction 

communication among workstations are also layered, allowing for different degrees of 
reliability and specialization. 

The distributed architecture also means that the hardware, like the software, is easily 
extensible. It is easy to add or remove new workstations or resources, or to modify the 
topology of the network to fit the needs of a particular group of users. Because you can 
access any resource from any workstation, the distributed environment also increases 
re1iab~lity. For example, if one printer is busy or not functioning, there may be another 
working somewhere on the network. 

The goal of the Xerox Development Environment, then, was to create a cooperative, 
extensible environment to support software development in a networked system. With 
this goal in mind, the designers of the XDE began the development of the Mesa 
programming language, the Pilot operating system, and the Mesa processor architecture. 
The three pieces were designed expressly to support the goals of the XDE (rather than the 
other way around). 

The Mesa programming language is a high-level language with strict type-checking and 
strong support for modularity and concurrent processes. Pilot is a specialized operating 
system that provides a uniform basis for the development of applications software. The 
Mesa processor emphasizes efficient execution of high-level language constructs and 
extremely compact program representation. 

The first part of this document discusses the advantages and implications of the tools 
environment, and some of the ways in which it facilitates cooperation among programs. 
The second part describes the communication network linking individual machines, and 
the additional services that it makes available. Part three discusses the support provided 
by the language, the operating system, and the processor architecture. There is a glossary 
following the third chapter which includes both terms from this document and other temrs 
that you are likely to encounter during your first exposure to the Xerox Development 
Environment. A selected bibliography is also included. 



1 

Tajo 

The Xerox Development Environment tools environment, called Tajo, is a set of 
integrated tools designed for creating, debugging, and maintaining large programs. The 
primary goal of the Tajo design is to provide maximum flexibility and functionality. Thus, 
you, and not the system, should be in control at all times: you should be free to interact 
with any tool at any time, without having to wait until another tool finishes execution. 
Tajo thus allows tools to run in parallel with other tools, including other instances of the 
same tool. 

To simplify the problems of interacting with several tools at once, Tajo provides a highly­
interactive window-based user interface. Each tool is represented on the display screen by 
one or more windows, which are just rectangular partitions of the screen. 

The user interface, which is consistent across all windows, is largely based on visual 
imagery. The emphasis is on minimal typing and maximum assistance to the user. For 
example, a window can be "scrolled" up and down to view different parts of a file; there is 
no need to calculate character position numbers or line numbers. Similarly, operations are 
performed by pointing at words and pressing a mouse button, or by choosing an item from 
a menu. In general, you can see the available commands and options and can just select 
them with your mouse without having to type a complicated command line. 

An integral part of the user interface is the concept of the global "current selection", which 
can be either a text string or a graphics icon. You choose the current selection with your 
mouse; doing so highlights your selection on the screen. Many commands use the current 
selection as an argument. For example, if you want to move text from one window to 
another, you select the desired location, push the MOVE key, and then select the text that 
you want to move. Among other things, the current selection mechanism allows you to use 
all (or part) of one tool's output as the input (argument) to another tool in a visual way. 

1.1 Tools and windows 

A window is a rectangular portion of the screen in which text or graphics can be displayed. 
There can be any number of potentially overlapping windows on the display at any time, 
and you can change their shape and size at will. Figure 1.1 is an illustration of a sample 
screen with several overlapping windows. 

1-1 



Expand! Compile! 
Compile: mlscprocs 
Bind: 
Run: 
Log: {compiler} 

Bind! Run! Go! 

Mesa Compiler 11.01 of 25-Apr-84 14:25:24 
23-Aug-84 16:57:04 

Command: mlscprocs 
mlscprocs.mesa 

. Options! 

lines: 57, code: 212, links: 3, frame: 17, time: 1:14 

: Source: 

: Dest'n: 

iris 

* 

: Connect: 

~ Retrieve! 
: Store! 

: Remote list of * 

Local-List! 
Remote-List! 

<Glassman >tutonals 

Directory: 

LocalDir: 

Password: 

Copy! 
Close! 

glassman > doc 

< 

Local-Delete! 
Remote-Delete! 

bootlng.mail!4 11535 23-Aug-84 16:24:57 PDT 
Complle-8Ind-Run mall! 1 14769 22-Aug-84 14:06:49 PDT 
debuggermail!5 25341 23-Aug-84 16:29:48 PDT 

• verify. 

List-Options! 

: mallsystem.mal1!3 28508 23-Aug-84 15:58: 11 PDT 
~------------------------------------------------------------0 

Local list of c* 
< CoPilot> mall 

CompilerLog 
copies. mall 
coples.mall-TOC 

<CoPilot >tools 
Calendarbcd 
Chat.bcd 
Compiler.bcd 

Total of 6 files 

Figure 1.1 

: >mallfile bootlng.mail 
:Mall File Scavenger of 7-Sept-83 18:29 
:Scavenglng mall file: booting mail 
:Message 2: eXisting count was 20 bytes too short. 
: Message 3: eXisting count was 1 byte too short. 
:5 
:8 messages processed. 
:Scavenging complete Into a temporary file. 
:Shalll copy It back to bootlng.mall? Yes 
~-------------------------------------------~ 
: >pnnt film.lp2 
: Papermate: Pare: Spooler available; Formatter available; Pnnter 
:available; 
:fllm.lp2 already In Interpre~s format ... sending to Papermate: Pare ... 
:Done 

.::;' 



XDE: Concepts and Principles 1 

Tools own windows: each tool usually owns one window, although a tool is not required to 
have a window, and may have several windows. You communicate with a tool through its 
window by choosing commands or values from menus, invoking commands, and typing or 
editing text. Windows exist so that tools can communicate with users: if a tool is not going 
to be used by a human, there is no need for it to have a window. 

Windows are also the mechanism by which the environment isolates tools from one 
another on the display. Thus, you alternate your attention among the variou8 windows on 
the screen as you alternate your attention among the corresponding tools. When you are 
temporarily through with a tool, you can conceptually "put it away" for a while by making 
its window tiny (that is, by putting the window into its iconic form. Notice the tiny 
windows at the bottom of Figure 1.1. ) A tiny window retains all window state, such as 
parameters that you have given the tool, options that you have turned on, or messages 
that the tool has posted to you. You can also deactivate a tool. Deactivating a tool is like 
putting it away in a tool box: the window is destroyed-and all window state is lost, but the 
tool itself is still available for future use. 

Tools are unobtrusive; you can use them when you need them, and ignore them when you 
don't need them. Consistent with the principle that you are in control, a tool will not make 
itselflarge, obscure other windows, or otherwise attempt to attract your attention. Thus, a 
tool can make no assumptions about window layout. In particular, a tool cannot make any 
assumptions about the size or shape of its window. For instance, if a tool attempts to 
produce output based on the current width of its window, the window may change shape 
between the time that the tool checked the width and the time that the output is sent to 
the window. 

1.2 User interface 

For the approach of multiple windows representing multiple tools to be most effective (for 
you to be able to change activities quickly and easily), the user interface must be 
consistent across all tools. The perceptions, models, and conjectures that a user 
accumulates about a system are referred to as the "user illusion". The intent underlying 
Tajo is that you should see the tools only in relation to your needs and purposes, and that' 
you should not have to concern yourself with their internal workings. Thus, Tajo tries to 
create a consistent user illusion that enables you to predict instinctively how to use any 
tool, regardless of whether or not you have had any previous exposure to it. The principle 
is that similar actions, in different contexts, should have predictable results. (This is 
sometimes called the Law of Least Astonishment.) 

Tajo therefore provides extensive routines for performing basic display and input/output 
management, manipulation of windows and subwindows, scrollbars, current selection 
management, menus, and cursor control. For example, there is a window package that 
provides general window manipulation functions, such as creating and destroying 
windows, painting text, curves, shades, and bitmaps, and moving windows. 

The built-in tools all use these user interface routines, and the individual tool builder is 
encouraged to use them as well. This approach has two advantages. It presents the user 
with a consistent, easy-to-use interface that frees him from the operating system details 
inherent in switching from one activity to the next. Similarly, it allows the programmer to 
concentrate on the central aspects of his program rather than on I/O management. 

1-3 



1 

1-4 

Tajo 

1.2.1 Window structure: subwindows 

Windows are visually separated into subwindows. There are various classes of 
subwindows provided by the environment, each of which defines a different style of user 
interface to serve a specific purpose. When you want to write a tool, you can create a 
window for it from the existing subwindow classes, or you can develop your own 
subwindow class if the existing ones do not fill your needs. 

One system-supplied subwindow type is the message subwindow. A message subwindow is 
used for displaying messages from a tool to the user; it is a read-only subwindow. 

A second kind of sub window, the text subwindow, provides a place where streams of text 
can be input, output, or manipulated. Text displayed in a text subwindow is managed by a 
common display and user input package, which provides a consistent way to select and 
modify text. A text subwindow allows you to do such things as scrolling, searching, 
positioning to a character index, and editing. For example, the File Tool has a text 
subwindow that contains a log of recent filing actions, and the mail tool (Hardy) has two 
text subwindows, one for the Table of Contents, and the other for display of messages. The 
main subwindow of an Empty (file) window is also a text subwindow. 

A third kind of subwindow, the form subwindow, is used for gathering and modifying 
parameters. Sometimes a form subwindow contains both commands and parameters; 
sometimes there are two separate form subwindows, one for commands and one for 
parameters. The form subwindow is discussed in more detail in the next section. Figure 
1.2 is a picture of the Sample Tool window, which has three subwindows: a message 
subwindow, a form subwindow, and a text subwindow. 

This subwindow is used for posting messages to the user. 

Co_neil Vanilla: 
Password: 
ReadOnly: Read Only String 
boolean(truePalse): {TRUE,FALSE} 
enumerated(one):{A} enumerated(all): {x, iIIZ} 

The 
selection. 

'in this subwindow is the current 

The type-in point is t the end of this sentence. • 

Current selection Insertion Point 

Figure 1.2 The Sample Tool 

Window 
name frame 

Message 
subwindow 

Form 
subwindow 

Text 
subwindow 



XDE: Concepts and Principles 1 

1.2.1.1 Form subwindows 

In most systems, a command that requires mUltiple parameters dictates that they be 
collected in a specific order, usually via a command line. A program thus has complete 
control of the processor while it is getting input: you can't do anything else until you have 
finished interacting with that particular tool. This mode of operation is referred to as "get 
a command and execute it". 

Such programs generally have a main procedure that initially receives control and then 
calls various procedures or subroutines. The program eventually calls a system routine, 
req~ests input, and waits for you to type something. It then must interpret the input, 
possibly through some command parser, and finally execute the desired command. The 
program controls the interaction: it has strong notions about the order in which 
information must be presented and about the actions that it is willing to recognize and act 
upon. The order in which information is provided is driven by the tool writer, not by the 
tool user. 

The "get a command and execute it" paradigm conflicts strongly with the XDE philosophy 
that you should be free to interact with multiple tools simultaneously and never be 
restricted to interaction with just one tool. Tajo therefore provides form subwindows to 
prevent unncecessary restrictions on how a tool receives input, and to make parameter 
gathering easier, more flexible, and more uniform from one tool to the next. 

The abstraction behind the form subwindow is a form, such as a personnel form or an 
income tax form, which has specific blanks to be filled in by the person using it. A form 
subwindow contains keywords, generally either the name of a command (indicated by a ! 
after the keyword), or a word suggesting necessary string input (followed by a : and space 
for you to insert your desired string), or a word suggesting necessary numeric input 
(followed by an =). The keywords thus remind the tool user of the possible options and the 
required input to each command. 

Some form items have an associated menu that contains all possible values for the item. 
These are called enumerated items; they are designated by {} following the keyword. There 
are two different kinds of enumerated items: in one kind, the possible choices for the item 
are all listed within the brackets and the value currently in effect is highlighted; in the 
other kind, the possible choices are listed in a menu, and only the current value is 
displayed within the brackets. Both of these kinds are illustrated in Figure 1.1; you might 
want to take another look at that figure. 

Figure 1.3 is an illustration of the Adobe Edit window, which has two form subwindows 
(and a message subwindow). 

1-5 



1 

1-6 

Tajo 

Examine! Checkin! Checkin&out! Check in&Exam ! Checkout! Abort! 

UseQL Hext! 

Humber: 

System:{} 
Version: 

Status:{} 

Subject: 
Disposition: 

Priority:{} 
Assigned To: 
Modules: 
Description: 

Test Case: 
Edit-By: 

Humber= Previous! 

Originator: 

Subsystem:{ } 

Impact:{} 
In/By: 

Date: 

Attn: 

Difficulty:{} 

Hardware: 

Edit-Date: 

Figure l.3 The Adobe Edit window 

Pile Harne: 

You can edit the parameters as much and as often as you like, using the keywords as 
reminders of what information is required, and then invoke commands. The code to 
execute a command is not called until you actually invoke the command. Form 
subwindows thus provide a means for the tool writer to inform the tool user of necessary 
input and possible options, without restricting the order in which the information is 
entered. 

1.2.2 "Don't call US; we'll call you" 

Tools are passive: they respond to user commands, but never seize control of the processor 
or act independently. Instead of a main procedure that calls subroutines, therefore, each 
tool contains an initialization procedure and individual command execution routines. 

Loading a tool calls its initialization procedure, which then registers the available 
commands and user interface constructs with the system. When the tool is fully 
initialized, control returns to· the system. Thus, if the tool is not actually processing a user 
action, there is no program counter location associated with the tool to which control must 
return. The tool simply provides a set of functions and arranges for the environment to 
notify it when you wish it to perform some action. This style is characterized by the phrase 
"Don't call us, we'll call you." 

While a tool window is active on the display screen, Tajo provides facilities to notify it of 
user actions (mouse movement, keyboard transitions) that are directed toward it. The user 
actions are then converted into requests to execute commands, select menu items, and so 
forth. When the user requests execution of a tool command, the environment calls the 
client tool's execution routine to get the work done. (In general, a client is a program that 
uses the service of another program or system. A Tajo client is thus a program that uses 
the Tajo facilities.) The command execution routines are thus referred to as "call-back" 



XDE: Concepts and Principles 1 

procedures, because the system will call back to those procedures when the user requests a 
specific action. (See also section 1.3.1.1.) 

1.2.2.1 The notification process 

The translation of user actions into procedure invocations is performed by several 
cooperating processes. (You can think of a process as something that uses the processor; 
check the Glossary for a more formal definition.) There is one very high-priority process 
that watches the hardware (keyboard and mouse) for user actions and queues them. A 
separate process then dequeues each user action, and determines which window the action 
is associated with. (Generally the window containing the input focus; sometimes the 
window containing the current selection. See the Glossary if you are not familiar with 

. these terms.) Finally, the action or actions are looked up in a TIP (terminal interface 
package) table to determine which procedure in the associated tool is to be called. 

The action lookup table, or TIP table, specifies translations betwe.en a sequence of user 
actions and a sequence of client actions. Each tool window has an associated chain of TIP 
tables. A user action is looked up in the first table associated with the designated window. 
If the event matches the left hand side of a statement in that TIP table, the right hand side 
(result list) of that statement is executed. If no match is found in that table, the next table 
in the chain is checked, and so on. If no match is found in any table, the event is discarded. 

All of this is performed "automatically" by the Tajo facilities; you need not know anything 
about how a mouse or keyboard action is translated into a procedure invocation. (You will 
sometimes hear this function called "the notifier", since it is responsible for notifying tools 
of actions that are meant for them.) 

1.3 Cooperation 

The built-in tools conform to the XDE philosophy and guidelines, but there is no central 
facility responsible for ensuring that the individual tool builder follows the conventions as 
well. Thus, for example, there is nothing to prevent you from writing a tool that steals the 
notifier (so that you can't interact with any other tool) and then rearranges all the 
windows on the display. Similarly, programs must explicitly allocate and deallocate 
storage; there is no garbage collector to reclaim unused memory. All programs on a 
machine share the same pool of resources, and there is no scheduler watching for 
programs using more than their share of execution time, memory, or any other resource. 
Instead, the XDE depends on the assumption that programs are friendly, and that they 
are not trying to circumvent or sabotage the system; it relies on the voluntary cooperation 
of those who use its facilities. 

1.3.1 The local file system 

The XDE local file system is an example of how the environment depends on and exploits 
the principle of cooperation. In general, file systems must coordinate simultaneous access 
offiles by concurrent client processes. (A client of the file system is a tool or program that 
uses its facilities.) Since most file systems consider processes to be antagonistic, they 
prevent one process from acting on a file if there is a chance that the actions will harm 
another process using the file. If several processes need to cooperate in the use of a file, 
they must communicate explicitly among themselves. 

1-7 



1 

1-8 

Tajo 

The XDE file system, on the other hand, views processes as cooperative, thus enabling a 
sophisticated sharing of files. The cooperation is provided by the file system instead of the 
programs themselves; the processes that share files need neither communicate explicitly 
nor know one another's identities. If one process wishes to use a file in a way that conflicts 
with the way a second process is using the file, the process using the file may be asked to 
relinquish it. For example, if a process (A) wants to write a file being read by another 
process (B), process B may be asked to stop reading the file. Process B can then decide 
whether or not to release the file. 

Similarly, a process may ask to be notified when a file becomes available for a particular 
use. These facilities allow design strategies that would be impractical under other 
circumstances, secure in the knowledge that if an optional use of a file is interfering with 
other work, the offending program will be informed. 

1.3.1.1 Call-back procedures 

When a client program wants to use a file, it requests a handle for it from the file system. 
A file handle identifies the file in all subsequent calls to the file system. When a client 
finishes using the file, it must release its handle and relinquish its use of the file. 

A request for a file handle includes an access parameter that indicates how the file is to be 
used. (For example, the access can be readOnly, anchor, append, writeOnly, readWrite, 
delete, or rename.) The file system then checks that the requested access does not conflict 
with other current uses of the file. When determining whether there is an access conflict, 
the file system tries to maximize the sharing of files. For example, consider the case of a 
client program that requests read access for a file, and another program already has 
append access for it. The file system will grant read access to the second process, but the 
read length will be fixed at the length that the file had when the request was made. 

In some cases, however; the requested access conflicts with a current use of the file. For 
example, the file system must grant exclusive access to a process that wants to write a file, 
and all other accesses are considered to be conflicting. In such cases, the file system will 
check with the process using the file to see whether it is willing to relinquish its access. 
The file system thus asks its client programs to provide procedures (called 
PleaseReleaseProc's) that it can call when such a conflict occurs. These procedures are 
thus also "call-back procedures", since the file system will call back to the client via these 
procedures when there is an access conflict. 

When a process requests an access that causes a conflict, the file system will call the 
PleaseReleaseProc associated with each conflicting handle on the file, and ask the owner 
of each handle to release the handle. If all clients with conflicting handles release them, 
the request is honored and the new use is granted. Otherwise, the request is denied. Thus, 
a program that has registered a PleaseReleaseProc for a particular file can be confident 
that it will be notified if any other program is waiting for that file. 

1.3.1.2 Access notification 

A client can also ask the file system to be notifed when a file (or class of files) becomes 
available for some particular access. For example, when a client is denied access to a file, 
it might want to be notified when that file later becomes available. In this case, the client 
registers a NotifyProc with the file system. When the file system determines that the 



XDE: Concepts and Principles 1 

conditions of a request have been satisfied, it calls the associated NotifyProc, passing the 
name of the file, a handle on the file, and the kind of access. Thus, NotifyProcs are also 
call-back procedures. 

Because a client can acquire a file for a conflicting access before other interested clients 
have been notified that the file is available for some weaker access, there is no guarantee 
that a client will be called for every state change of a file. For instance, clients to be 
notified that a file is available for readOnly access will not be notified if another client 
acquires the file for readWrite access in the interim. When a client is notified, however, it 
is guaranteed that it can acquire the file for its desired access. 

1.3.1.3 An example of cooperating files 

Suppose that you load the compiler error log into a window to look at your compilation 
errors while you edit your source file. The file window program thus has a read access 
handle on the error log. After finishing the edits, you recompile the source, and the 
compiler needs to write a new error log. If you run the compiler without unloading the 
compiler log from your file window, there will be an access conflict: the compiler wants the 
file for write access, but the file window has a read access handle on it. The file system will 
then call the PleaseReleaseProc associated with the file window. 

When the PleaseReleaseProc is called, the file window program checks the state of the 
window. If the file is being edited, it refuses to release the handle. Otherwise, it unloads 
the window, registers a NotifyProc for read access on the file, and relinquishes ownership 
of the file. The compiler can then write a new error log. When it finishes, it releases its 
write access handle on the file. The file system then notices that read access has become 
available on the file, so it calls the file window's NotifyProc. The file window program 
acquires the file for read access once more and reloads it into the window. Hence, a client 
will not be blocked if a file that it needs has been left loaded in a window, and file windows 
automatically update themselves to the most recent version of whichever files they 
contain. 

1-9 



2 

Communications and network services 

A Xerox Development Environment workstation equipped with the Tajo facilities 
provides wonderful support for most common programming and editing activities. 
However, XDE workstations are almost never used singly; instead, many individual 
machines are linked together with a communication network to enable communication 
among users and to provide shared access to expensive resources such as high-speed 
electronic printers. 

Some of the machines attached to each network are dedicated to the management of a 
particular shared resource. A machine that contains such a resource is called a server; the 
software that makes it possible for you to use the resource is called a service. Some of the 
services provided by the Xerox Development Environment are printing, filing, mailing, 
internetwork routing (combines multiple networks into a single logical internetwork), 
and the Clearinghouse. 

An interaction between a client and a service is always initiated by the client. A client 
always interacts with a service on behalf of a user. The user is generally a human, but may 
be some other entity (such as another service). When a client wants to access a service, it 
generally knows the name of that service. It must then use the Clearinghouse facility to 
find out the location (network address) of the appropriate server. The Courier remote 
procedure call facility is then used to actually invoke the desired operation. The 
Authentication Service is used to verify that the client is authorized to use the service. 

2.1 Network Services 

This chapter overviews some' common services, and then describes the various pieces of 
communication software that cooperate to allow you to access those services. 

2.1.1 File Service 

A file server is a processor attached to a large capacity magnetic file store. A remote file 
server is used when local storage is inadequate, or when documents need to be shared. 
Remote file servers also provide substantial backup facilities, which are not u~ually 
available on the local disk. Access to the file server is controlled by the file service, which 
allows clients to do such things as retrieve a file, replace a file, change its name, or change 
some other identifier associated with the file. 

2-1 



2 Communications and network services 

2.1.2 Print Service 

The Print Service provides a high-quality printing facility that can be accessed by other 
stations on the internet. An electronic printer "paints" images on paper using a laser 
much like a television set uses an electron beam to paint pictures on a screen. 

When a print command is issued, the text file is converted into an Interpress master, 
which is then sent through the ethernet to a print server. Print Services usually accept 
and print only those documents in Interpress format, which is a file format used to encode 
documents to be transmitted to a printer. A document in Interpress format can be 
considered a kind of program. The characters transmitted to the Print Service are really 
instructions to construct a page of information. Interpress has instructions which apply to 
ordinary text as well as foreign alphabets and graphics. 

Anything that can be placed on paper can be described in Interpress, though some printers 
may not be able to print what is described because it is too complex. For instance, some 
devices have limited internal storage and may not be able to handle a page with a large 
number of different fonts. Some may not have the computational power to rotate shapes or 
pages an arbitrary number of degrees. And few printers will have color capability or be 
able to reproduce images at arbitrarily high bit densitites. 

2.1.3 Mail Service 

Electronic mail is written communication between people that is transported 
electronically, not physically. An electronic Mail Service provides speed, reliability, and 
convenience: messages are usually received within a few minutes of being sent; there is a 
very low probability of a message being lost or damanged, and users are free to read and 
send mail at their convenience. It is particularly convenient to exchange electronic 
messages with people who are located in different time zones. 

2.2 The Clea.ringhouse 

2-2 

Distributed objects, such as workstations and servers, are identified with network 
addresses. An XDE network address is a unique 48-bit number, assigned by Xerox, that 
identifies the location of an object in the network. Network addresses, however, are very 
unintuitive for humans. (It is much easier to think of a printer as "Nevermore" than as a 
48-bit number.) Objects are therefore also given names; all objects are named according to 
the same hierarchical naming system. (Thus, an object has a fully-qualified name that 
consists of its local name suffixed by a domain and organization, as in Nevermore:OSBU 
North:Xerox. The name "Nevermore" must be unique within the domain "OSBU North", 
but there could be another object named Nevermore:OSBU South: Xerox.) 

When a client wishes to access a service, it knows the name of that service. The name must 
then be mapped into the current network address for that object. The network address for a 
particular service may vary occasionally, as when the server is physically moved from one 
location to another. The binding between network address and name is therefore not 
permanent. Instead, the binding is done dynamically (each time the service is needed) by a 
'service called the Clearinghouse. Naming thus provides a level of indirection between 
network address and users, since machines change location more frequently than they 
change name. 



XDE: Concepts and Principles 2 

For each object registered in the Clearinghouse database, the service stores a unique name 
(chosen by the client), and related information, such as the location and type of the object. 
When a client wants to use a service, it presents the name of the service to the 
Clearinghouse, which returns the network address. The Clearinghouse thus enables users 
to specify resources with human-readable textual names, rather than machine-readable 
network addresses. 

2.2.1 Clearinghouse structure 

The Clearinghouse is decentralized and replicated. That is, instead of one global physical 
Clearinghouse server, there are many local Clearinghouse servers, e~ch storing a portion 
of the global database. Conceptually, however, there is only one global database called 
"the Clearinghouse". 

Decentralization and replication increase efficiency (it is faster to access a Clearinghouse 
server physically nearby), security (each organization can control access to its own 
Clearinghouse servers) and reliability (if one Clearinghouse server is down, perhaps 
another can respond to a request). 

A client of the Clearinghouse may query the Clearinghouse about any named object, 
regardless of the location of the object, the location of the client, or the present distributed 
configuration of the Clearinghouse. The implementation makes no assumptions about the 
physical proximity of Clearinghouse clients to the objects whose names they present to the 
Clearinghouse. 

2.2.2 Clearinghouse updates 

Like many other aspects of the Xerox Development Environment, the Clearinghouse 
depends on the goodwill and voluntary cooperation of its clients. A user who has caused 
Clearinghouse information to be invalid must send the appropriate update: the 
responsibility for initiating updates to the database rests with the users of the system. 

Thus, a Clearinghouse server database may occasionally have incorrect information, 
especially since the Clearinghouse is distributed. It cannot guarantee that the error in its 
database will be corrected. Since clients of the Clearinghouse are pieces of hardware and 
software, and not people, all aspects of the Clearinghouse interaction, including fault­
tolerance, must be fully automated. Information gleaned from the Clearinghouse should 
therefore be treated as only a hint, and clients should check the information before using 
it. For example, before printing a document on a printer located by the Clearinghouse, the 
client should check to make sure that it is really a printer. 

2.3 Authentication Service 

When initiating interaction with a service, a client presents credentials, which must be 
verified by the Authentication Service to prove the identity of the client or user. At each 
subsequent request, the client presents a verifier (essentially a time stamp), which helps 
ensure security. 

2-3 



2 

2-4 

Communications and network services 

2.3.1 The authentication process 

Each client of the Authentication Service recieves its own specially encrypted password, 
called a key. A sender (initiator), that wants to authenticate itself to a receiver (recipient) 
contacts the Authentication Service with his name, and the name of the service he wishes 
to access. The Authentication Service encrypts a set of credentials with the recipient's key. 
It then sends the encrypted credentials, back to the initiator along with a conversation key 
encrypted with the initiator's secret key. The initiator then has a set of credentials that he 
cannot decrypt, and a conversation key that he can decrypt (because he knows his own 
key). Figure 2.1 diagrams this process. 

tication 
Service 
{Ka, Kb} 

A, B, Texp 

Kb[A, T exp, Kcl 

Ka[Kcl 

A, B = the fully qual ified names of the 
client, A, and service, B 

= the keys of A and B 

Kc = the conversation key 

Texp = the expiration time for a set 
of credentials 

Ky[x] = the value x encrypted with the key Ky 

Kb[A, T exp, Kc1 

Keltl ] 

tl = a time stamp obtained from the system clock at time i 

Figure 2.1 The Authentication Process 

The initiator uses his key to decrypt the conversation key, and then re-encrypts it with a 
time stamp, called a verifier. The original credentials and the conversation key plus 
verifier are then sent to the recipient. The recipient decrypts the credentials with his own 
key: the decrypted credentials contain the name of the initiator, the conversation key, and 
a date and time, called the expiration date, after which the credentials are no longer valid. 



XDE: Concepts and Principles 2 

Since only the recipient can decrypt the credentials, the recipient knows that the initiator 
is authentic. 

The recipient then uses the conversation key to decrypt the verifier, and determines if the 
time stamp is reasonably close to the current time. This allows the recipient to detect a 
replay. (To be effective, a verifier may only be used once.) Only the initiator can encrypt 
the verifier (the time stamp), and only the recipient can decrypt it, since only these two 
parties know the conversation key. Each time the service needs to interact with the client 
initiator it must send the client the time stamp encrypted with the conversation key. For 
example, in order for the service to send a message to the client (ie, service is complete), it 
must send the time stamp with the message. 

2.4 Courier 

The Clearinghouse tells the client where a desired service is; the Authentication Service 
allows it to access that service; the Courier facility allows the desired function to be 
performed. 

Because the procedure is the major control and data transfer mechanism in Mesa, Courier 
uses the procedure call as a metaphor for the exchange of a remote request and its positive 
reply. Courier thus extends the concept of procedure call from a mechanism that provides 
for transfer of control and data within a single computer to a mechanism that provides for 
transfer of control and data across a communication network. 

Courier makes the semantics of a remote procedure call as close as possible to those of a 
local procedure call in Mesa. An operation is modeled as the name of a remote procedure; 
the parameters of the Courier request become the arguments of that procedure, and the 
parameters of the positive reply are the procedure's results. Because the Mesa language 
provides a signal facility for exception handling in local procedures, Courier also uses 
exception conditions (signals or errors) as a metaphor for the return of a negative reply. By 
using this model, Courier permits clients to make procedure calls without regard for the 
physical location of the service being accessed. 

2.4.1 Remote programs 

A family of remote procedures and the exception conditions those procedures can 
designate are said to constitute a remote program. Every remote program is assigned a 
program number, which identifies it at run time, and a version number, which 
distinguishes sucessive versions of the program. 

A remote program usually represents a complete service, and its remote procedures 
represent the primitives of the service. One remote program, for example, might provide a 
file service and contain remote procedures to open or close a directory, and to create, delete 
or retrieve a file. Another remote program might provide a mail service and contain 
remote procedures to retrieve a piece of mail, or check the status of a mail server. A remote 
program to provide a print service might contain procedures to check printer properties, 
interrogate printer status, and print a document. 

2-5 



2 

2-6 

Communications and network services 

2.4.2 Courier operation 

Figure 2.2 diagrams the model for making a remote procedure call; refer to it as you read 
the next two paragraphs. 

Active System Element (Client) 

Client program Client program 

Request Connection Act on ResultRecord 

Local CourierC Local CourierC 

M.O.FromC Eo- Encapsulate ResultRecord Eo- Decapsulate (M.O.FromS) 
Message·(M.O.From C) 

Retu rn message 

Call (ProcS, ArgS) or 
ABORT 

Passive System Element (Server) 

Local CourierS 

Decapsulate (M.O.Frome) Local Call 
ProcS 

Results Eo-ProcS (Args) ~ 

ResultRecord Eo- ResultProc (Results) 
ProcS (Args) 

M.O.FromS Eo- Encapsulate (ResultRecord) 
Message (M.O.FromS) 

~ 

~ ./ 
Figure 2.2 Courier Model 

A local program on the client machine (C) initiates the process by making a "standard" 
procedure call, with the name and version of the remote procedure it wants to call, and the 
arguments to be passed to it. The courier stub on the client machine then encapsulates 
this information into a Courier message object (defined by the Courier protocol). The 



XDE: Concepts and Principles 2 

message object (MO) is then transmitted across the network and delivered to a Courier on 
the destination server, which decapsulates (unpacks) it, and makes a local procedure call 
to perform the requested operation. 

When the procedure on the server finishes, it calls a procedure known as the results 
procedure to inform Courier that it is done and that the results record may be created. This 
procedure sends a Courier return message back through the net to the client Courier, 
which returns results to the local user. 

2.5 Ethernet architecture and protocols 

There are many different kinds of local computer networks, such as Ethernet, Mitrenet, 
Primenet, LocalNet, and Cambridge Ring. The Xerox Development Environment uses the 
Ethernet. 

The broad features of an ethernet are that it: 

• has relatively high data rates [l..lOMbits Isec] 

• is able to cover a geographic distance spanning about one kilometer (typically 
within a building or small set of buildings) 

• can support several hundred independent devices, each with fair access to the 
system 

• has good error characteristics, good reliability, and minimal dependence upon 
any centralized components or control 

• enables effficient use of shared resources, particularly the commmunications 
network itself 

• has stability under high load 

• permits easy installation of a small system, with graceful growth as the system 
evolves 

• allows ease ofreconfiguration and maintenance 

• is available at low cost 

• has broadcast capability 

The ethernet is a broadcast network: that is, there is a single communication channel that 
is shared by all hosts. Every receiver on the cable hears everything transmitted by every 
sender; receivers simply discard messages not addressed to them. There is no central 
resource to control communication among system elements: access to the channel by hosts 
wishing to transmit is coordinated by the hosts themselves, using a statistical arbitration 
scheme called carrier sense multiple access with collision detection (CSMAlCD). 

2.5.1 CSMAlCD: Theory of operation 

With the CSMAlCD approach, there is no central controller that manages access to the 
channel, and there is no pre-allocation of time slots or frequency bands. A station wishing 
to transmit "contends" for use of the common communications channel (sometimes called 
the ether) until it "acquires" the channel; once the channel is acquired, the station uses it 
to transmit a packet. The packet is the fundamental unit of information flow. An ethernet 

2-7 



2 

2-8 

Communications and network services 

packet contains control information (the header), source and destination network 
addresses, and digital data. Data length may range from 512 bits to 12096 bits. 

To acquire the channel, a station checks whether the network is busy (that is, uses carrier 
sense) and defers transmission of its packet until the ether is quiet (no other transmissions 
are occurring.) When quiet is detected, the deferring station immediately begins to 
transmit. During transmission, the station listens for a collision (other transmitters 
attempting to use the channel simultaneously). Collisions should occur only within a short 
time interval following the start of transmission, since after this interval all other stations 
will sense the transmission and defer. This time interval, called the collision window or 
the collision interval, is based on the round-trip propagation time between the farthest two 
points in the system. 

If no collisions occur during this time, a station has acquired the ether and continues 
transmission of the packet. If a station detects a collision, the transmission of the rest of 
the packet is immediately aborted. To ensure that all parties to the collision have properly 
detected it, any station that detects a collision invokes a collision consensus enforcement 
procedure that briefly jams the channel. Each transmitter involved in the collision then 
schedules its packet for retransmission at some later time. To minimize repeated 
collisions, each station involved in a collision tries to retransmit at a different time; each 
individual retransmission begins afer a delay period whose length is determined by 
random selection. 

Under very high load, short periods of time on the channel may be lost due to collisions, 
but the collision resolution procedure operates quickly. Channel utilization under these 
conditions will remain high, particularly if packets are large with respect to the collision 
interval. 

2.5.2 Protocols 

For distributed system elements to communicate with one another, certain standard 
protocols must be observed. A protocol is essentially an exact technical description of 
events that must take place for a service to be successfully provided. 

To reduce the design complexity of the network architecture, protocols are layered by 
conceptual abstraction. The purpose of the layering is to offer certain services to higher 
layers while shielding them from the details of the implementation. The number oflayers, 
the name of each layer, and the function of each layer differ among the various network 
systems. The XDE uses a four level categorization, called the Xerox Network System 
(XNS) model. For those of you familiar with other models, Figure 2.3 diagrams the 
correspondence between the XNS model and the OSI model. The OSI (Open Systems 
Interconnect) model is a seven-layer model developed by the International Standards 
Organization. 



XDE: Concepts and Principles 2 

7 Application Serves a user directly Filing, Printing, etc. 

"'Level 3" 

6 Presentation Reconciles formats offiles, 
representations of integers, etc. Courier 

5 Session Facilitates interactions between 
cooperating parties 

4 Transport Provides error recovery, Internet Transport Protocols 
data integrity, flow control "Level 2" 

3 Network Routes packets through Internet Datagram Protocol 
an internet "Levell" 

2 Data Link Defines packets or frames The Ethernet Specification 
"Level 0" 

1 Physical Defines plug shape, electrical 
signals, physical circuits 

Figure 2.3 Open Systems Interconnect Reference Model 

The XNS system has no protocol corresponding to level 5, the session layer. In the Xerox 
network architecture, the linking of two parties is actually handled by the "transport" 
layer. Although the Clearinghouse Service may be used prior to establishing the link, this 
service properly belongs in the "application" layer. 

2.5.3 XNS protocols 

The rest of this chapter describes the XNS protocol layers. Remember that the protocol 
architecture is open-ended and permits evolution and growth. The protocols provided 
fulfill most common communication needs: implementors with special needs can use the 
layered protocols to build their own protocols. 

Please refer to figure 2.4 for the following discussion. 

2-9 



2 

2-10 

Communications and network services 

Level 4 and above 

Application protocols 

Level 3 

Control Protocols: 

conventions for 

data structUring and 

process interaction 

Level 2 

Transport Protocols: 

i nterprocess 

communication 

primitives 

Level 1 

Transport Protocols: 

internetwork packet format. 

internetwork adresslng and 

routing 

Level 0 

Transmission media 

protocols: 

packet transport 

mechanism 

2.5.3.1 Level 0 protocols 

Sequenced 
packet 

Internetwork datagram protocol 
(internetwork packet) 

Figure 2.4 XNS Protocols 

The function of a level 0 protocol is to move data across a physical transmission medium. 
Level 0 protocols thus include specifications such as hardware interfaces, electrical and 
timing characteristics, bit encodings, and line control procedures. Level 0 protocols also 
include network-dependent packet formatting conventions; these conventions are 
naturally specific to the particular transmission medium being used (such as an ethernet 
cable and transceiver). Figure 2.5 is a picture of an Ethernet packet. 



XDE: Concepts and Principles 2 

~ I--------------l . ___ 2 words 
Source ~ 

Destination 

1--_...:E::..;:t::..;h.;::,er;..;.n.:.;;:e:..::t.:..P.;:;.a_ck..;.;e::.;:t'""tv~p;e:""'_-I+---'1 word 

Data 

Ethernet CRC Checksum ~--3words 

Figure 2.5 Ethernet packet 

Level 0 protocols are either broadcast (such as the ethernet) or point-to-point (such as the 
synchronous point-to-point protocol used on phone networks.) In either case, a level 0 
protocol will deliver packets only to machines directly physically connected to the 
transmission medium. In a broadcast network such as the ethernet, where every machine 
"sees" every packet that is sent, level 0 protocols also provide the way for a machine to 
decide whether a packet is addressed to it. When a machine receives a packet, the 
hardware can directly compare the address on the packet with its own machine 
identification. If the addresses don't match, the machine ignores the packet. The 
comparison process is very fast, so very little machine time is wasted. 

The Xerox level 0 protocols provide only a "best-effort" delivery to directly connected 
machines: packets are delivered with high probability, but no guarantee of success. No 
notion of a connection exists at this level; packets are delivered individually and without 
guarantee. Reliability and transmission of packets to machines that are not directly 
connected to the physical network are provided as needed or by higher-level protocols. 

2.5.3.2 Level 1 protocol 

There is only one XNS level! protocol: the internet datagram protocol (IDP). The function 
of IDP is to address, route, and deliver standard packets, or internet datagrams. An 
internet is just a collection of physically distinct and potentially heterogeneous networks: 
the predominant network will generally be the ethernet, but an internet may also contain 
leased lines and other public or private networks. A datagram is a standardized internet 
packet which is media-, processor-, and application- independent, and has no relationship 
to any other packet in the system. (The word "datagram" thus also implies that each 
packet is handled separately, and that no resources are dedicated specifically to anyone 
datagram.) 

2-11 



2 

2-12 

Communications and network services 

The IDP defines the format for the standard internet datagram. lOP thus serves as the 
common layer that unifies all the different media that are possible at level 0 and presents 
a uniform interface to all the layers above. The interface between levels 0 and 1 is very 
simple: lOP passes down a packet and a destination address, and level 0 encapsulates the 
packet (according to the protocol for that particular physical transportation medium) and 
does it its best to deliver it to the specified host. When a packet arrives at a host, level 0 
decapsulates it and passes it up to lOP .. 

This means that lOP is responsible for the routing of a packet from source to destination. 
The packet itself contains only the ultimate destination address; the mapping of an actual 
route from source to destination is done dynamically. The piece of software that performs 
the logical function of switching (routing) packets between sockets on a single machine, or 
between machines on an ethernet, or between ethernets, is called a router. There is a 
router in every Xerox machine, although not all routers perform the full set of routing 
capabilities. For example, the router in a workstation only routes packets within the 
machine or within the network, but not across the internet. 

A router that routes among networks is called an internetwork router, and provides a 
service called the Internetwork Routing Service (IRS). A machine connected to two or more 
networks and providing the Internetwork Routing Service is called a gateway. The IRS 
routes a packet from its own ethernet (or other local area network) to another 
Internetwork Routing Service, which delivers it to the destination ethernet, and 
ultimately to the destination machine. 

Every router maintains a routing table, or diagram of the network, that is used to direct 
packets toward another router on the way to their destination, along the path of shortest 
delay. The maps maintained by a workstation are a subset of the maps maintained by the 
internetwork routers. Each IRS map (routing table) of the internetwork is composed of 
information about remote networks: how far away each is, and the next IRS in the path to 
get there. When an IRS receives a packet to be forwarded to a remote network, it uses its 
map to send the packet to the next IRS on the shortest path to that network. The packet 
eventually reaches its destination host, either by being broadcast out onto the destination 
network (if it's an ethernet), or by point-to-point reception (if the host is on a medium 
other than an ethernet.) 

The routing tables are maintained dynamically rather than statically: IRS's that are 
attached to the same ethernet exchange their maps on a regular basis. Thus, routing 
tables are not created on installation of an IRS; instead, a newly installed IRS gradually 
learns of the complete internetwork map from neighboring IRS's. Likewise, changes to the 
network gradually propagate from one IRS to another until all IRS's reflect the change. 

The routing table itself is kept at levell, but creating and updating is done by the IRS, in 
conjunction with a level 2 protocol called the Routing Information Protocol. This protocol 
basically sends routing packets around the network, using them to verify and update the 
information currently in the routing table, and to give out new information. 

2.5.3.3 Level 2 protocols 

The level 2 protocols give structure to a stream of related packets. Because different 
applications need different degrees of reliability and functionality, the protocol 



XDE: Concepts and Principles 2 

architecture allows for many implementations of level 2 protocols. There are two basic 
kinds oflevel2 protocols: connection-based, and connectionless. 

Connectionless protocols are used to exchange packets that require little or no state, for 
example, requesting the time from a time server. Another good example of a 
connectionless protocol is the Echo protocol. The Echo protocol is a debugging protocol 
used to verify the existence and correct operation of a host, as well as the shortest path to 
it. The protocol simply specifies that all Echo protocol packets received shall be returned to 
their source. Thus, there is no need for a connection between machines, nor for any special 
reliability guarantees. 

Connection-based protocols, on the other hand, enable an extended conversation between 
two machines in which more information is conveyed than can be sent in one packet. The 
Sequenced Packet Protocol (SPP) is an example of a connection-based level 2 protocol: it 
provides reliable, sequenced, and duplicate-suppressed transmission of successive 
internetwork packets. 

The SPP makes a connection between two processes in different machines, and carries a 
sequence of packets in each direction. Each packet gets a sequence number when it is 
transmitted by the source. Sequence numbers are used by the recipient to order the 
packets, to detect and suppress duplicates and to acknowlege receipt of the packets. Each 
direction of flow is independently sequenced. 

The Sequenced Packet Protocol provides reliable communication, in the sense that the 
data is reliably sent from the source's packet buffer to the destination's packet buffer. 
However, no guarantee can be made as to whether the data was succesfully retrieved by 
the destination client or whether the data was appropriately processed. This final degree 
of reliability must lie with higher level protocols, such as level 3 protocols. 

2.5.3.4 Level 3 and above 

Level 3 protocols are concerned more with the content of data than with communication 
per se. Level 3 protocols thus allow functions such as tel net and Courier (see section 2.4). 
For example, the File Transfer Protocol (FTP) consists of a set of conventions for talking 
abut files and a format for sending them through the net. Protocols at level 4 and above 
are applications protocols. 

2-13 



3 

The supporting technology 

The Xerox Development Environment is unusual in that the goals of the environment 
were formulated before development of the programming language, the operating system, 
or the hardware architecture was begun. Thus, all three pieces are specialized for the 
XDE, and provide extremely strong support for its goals and facilities. This chapter 
provides a brief overview of each piece, and discusses the ways in which it supports the 
design goals of the XDE. 

3.1 The Mesa language 

The Mesa language is a structured, strongly-typed language similar to PASCAL. Students 
of programming languages will also discern influences from Algol 68, BCPL, and several 
other system implementation languages. 

Mesa's extensions of PASCAL are largely intended to simplify the building of large 
systems where many programmers work on individual components. In particular, Mesa 
provides for and enforces extensive modularization: large programs are built out of 
smaller pieces called modules. Modules are written, compiled, and tested separately, and 
then integrated together with complete assurance of matching data types (type safety). 
Mesa modules are thus a "programming in the large" mechanism for partitioning a 
system into manageable units, while still maintaining strict type-checking. 

Mesa also provides support for mUltiple concurrent processes in the form of a monitor 
facility that enables synchronization between logically asynchronous processes. Mesa 
monitors will be discussed more fully in section 3.1.4. 

3.1.1 Modules and interfaces 

Interfaces are the mechanism by which modules share information about variables, 
procedures, constants, and types. There are two basic kinds of modules in Mesa: DEFINITIONS 

(or interface) modules, which define interfaces, and PROGRAM modules, which contain the 
executable code to implement the interfaces. 

Interface modules typically declare some types, variables, and constants, and specify a 
collection of procedures that act on values of those types. An interface thus defines an 
abstraction; all operations on a class of objects are collected in a single interface. An 

3-1 



3 

3-2 

The supporting technology 

interface contains no executable code; it only contains enough information to allow the 
compiler to type check other programs that use the declared symbols. For example, a 
procedure in an interface is only a declaration; the procedure body is not part of the 
interface. Interface modules thus compile into symbol tables. 

The data and executable code (such as procedure bodies) to implement an interface are 
contained in the second kind of module, called a program module. A program module that 
provides code for some or all of the symbols defined in an interface is said to export, or 
implement that interface. A module that uses non-constant declarations (e.g., exported 
types and procedures) from another module imports that interface. A program that 
imports an interface is a client of that interface. Several program modules can cooperate to 
implement an interface, with each module implementing some subset of the interface. 

An interface can be thought of as a contract between client and implementor: the interface 
specifies items that are available for clients to use, but doesn't say how they will be 
provided; the implementing module(s) determine the details of the implementation. An 
interface is thus the link between client (user) and implementation (supplier); a client 
module need not communicate directly with an implementation module. Figure 3.1 
illustrates this relationship. 

FooDefs 

Client: PROGRAM 

Imports FooDefs 

Exports ... 

Types 
+-- Procedure Declarations 

Foo: PROGRAM 

Imports ... 

Exports FooDefs 

• Mesa separates the definition of an interface from the actual code that 
implements the interface. 

• Client, Foo, and FooOefs are individual files, separately prepared. Foo 
implements the procedures declared in FooOefs. 

• Client program imports FooOefs interface. 

• Compiler and Binder type-check the interface between Client and Foo. 

Figure 3.1 Mesa modularity 



XDE: Concepts and Principles 3 

The Mesa approach to interfaces has several important advantages: 

• Once an interface has been agreed upon, construction of the importer and exporter 
can proceed independently. In particular, interfaces and implementations are 
decoupled. This facilitates information hiding, and also permits minor changes to 
exporting modules without invalidating a previously established interface. 

• Interfaces enforce consistency in the connections among modules. The operations 
upon a class of objects are collected into a single interface, not defined individually 
and in potentially incompatible ways. 

• Nearly all of the work required for type-checking interfaces is done by the 
compiler. 

3.1.2 Binding 

Roughly speaking, binding is the process of matching the imports of one program to the 
exports of another. In simple systems, each interface is exported by exactly one module, 
and the binding can be done by the loader. But in more complex cases, there might be 
several different modules in the system that can implement the same components of an 
interface under somewhat different conditions, or with somewhat different performance. 
Describing exactly which modules are to supply which components to which other modules 
can then become rather subtle. A whole language, called ClMesa (configuration Mesa), 
was devised to describe these subtle cases. 

The binder is the program that reads a ClMesa description and builds a runnable system 
by filling imports request from exports according to the recipe specified in the C/Mesa 
program. The input to the binder is a configuration description (config) file, which lists the 
basic modules and describes how they are to be combined and initialized. The job of the 
binder is to locate and assign actual code to all symbols used in the configuration; that is, 
to match import requests to export requests. 

The binder combines modules, and possibly previously bound configurations, to produce a 
new object file. (A configuration is one or more modules that have been bound together; 
program modules and configurations are interchangeable in building a larger 
configuration.) Both the compiler and the binder produce object files; the compiler 
produces a simple object file that contains code and binding information for just one 
module; the binder produces complex object files from simple ones. 

See figure 3.2 for an example of modules cooperating to implement an interface. 

3-3 



3 

3-4 

The supporting technology 

Foo: CONFIGURATION 

Imports ... 

Exports FooDefs 

~------------------r-------- -+ 
I I 
; I 

Foo1: PROGRAM 

Imports ... 
Exports 

FooDefs 

Foo2: PROGRAM 

Imports ... 
Exports 

FooDefs 

FooDefs 

• Multiple Mesa modules (e.g., Foo1 & Foo2) may cooperate to 
implement an interface (e.g., FooDefs). 

• Modules are grouped into configurations. 

• The client of an interface need not know the nature of the 
implementors nor their internal relationships. 

3.1.2.1 Information visibility 

Figure 3.2 Mesa configurations 
Multiple Implementors 

If the code for an imported symbol is exported by another module in the configuration, 
then that symbol can be resolved within the configuration. Otherwise, the symbol must be 
listed as an import of the entire configuration. Similarly, a symbol may be exported by a 
particular module but not by the configuration as a whole. Only symbols that are listed as 
imports or exports of the configuration can be accessed by other modules; symbols that are 
resolved within the configuration are said to be private to the configuration. The 
programmer can thus control the visibility of variables and routines, as illustrated in 
Figure 3.3. 

Mesa also has PUBLIC, PRIVATE, and READ-ONLY attributes that can be used to control access to 
specific identifiers. By default, identifiers are PUBLIC in definitions modules and PRIVATE 

otherwise. Any identifer with the attribute PRIVATE is visible only in the module in which it 
is declared and in any module implementing that module. Subject to the ordinary rules of 
scope, an identifer with the attribute PUBLIC is visible in any module that includes and 
opens the module in which it is declared. The PUBLIC attribute can be restricted by 
specifying the additional attribute READ-ONLY. 



XDE: Concepts and Principles 

ABC: CONFIGURATION 

r-------------------------- ---. Imports e 

- -.. Exports d 
: r--------, r---------, 
I I I I j-------., I r--
I I I I I I I I 

ea abc cbd 
:+ :+: +:+ 
I I I I I I I I 

+: +:+ :+: 
IT] m m 

• A configuration is a collection of source modules and a configuration 
description. 

• Mesa configurations import and export interfaces; they may in turn be 
bound to other programs and/or other configurations. 

• a, b, c, d, and e are Mesa interfaces. 

• This simple configuration named ABC exports d and imports e from the 
configuration of programs A, a, and C. Interfaces a, b, and c are private 
to (resolved within) the configuration. 

• Compiler and binder type check the interface between A, a, and C. 

Figure 3.3 Mesa configurations hiding interfaces 

3.1.2.2 Inter-modular type-checking 

3 

When a DEfINITIONS (interface) module is compiled, the compiler generates a unique 
internal name for the interface (essentially a time stamp concatenated to the name of the 
file). The compiler places this unique name in the object file generated for any module 
compiled using that interface. An object file contains the executable code for the module, a 
symbol table, and a binary configuration description. As its name implies, the primary use 
of a binary configuration description is to describe a configuration. Hence, a bcd 

• gives the internal names of the modules(s) used in the compilation 

• lists the symbols available for other modules and configurations to use (exports) 

• lists symbols that are used but declared elsewhere (imports) 

• specifies where to find the object code and symbol table associated with the module 
or modules, since the code and symbols for a configuration may be scattered over 
many files. 

3-5 



3 

3-6 

The supporting technology 

Interfaces are "the same" for the purposes of binding only if they have the same internal 
name (version stamp) The binder checks that each interface is used in exactly the same 
version by every importer and exporter. Thus, the binder extends Mesa's compile-time 
checking to bind-time, and type-safety is guaranteed even across module boundaries. 

This strategy has profound effects on the organization and management of large systems. 
It guarantees complete type-safety and consistency among all modules in a system 
communicating via a particular interface. On the other hand, accessing other modules 
introduces compilation order dependencies. Each module must be compiled after the 
modules it accesses (and recompiled if they change), since the compiler needs their symbol 
tables. However, modules that are not accessed by others (virtually all implementations) 
may be freely recompiled without invalidating previous compilation and checking of any 
other modules. 

3.1.3 Loading and running a program 

Once an object file has been created, it can be loaded and run. Loading allocates a global 
frame (activation record) for each module in the .bcd, allowing space for that module's 
variables as well as for information used by the system. The loader also resolves the 
relative binder-generated references into absolute references. The module body itself 
generally contains the code to initialize the global variables and establish any necessary 
invariants. It will be executed when the module is started, or upon application of one of the 
module's procedures, whichever comes first. 

3.1.4 Processes and Monitors 

The Mesa language provides efficient mechanisms for concurrent execution of multiple 
processes within a single system. In Mesa, a process is effectively a special procedure 
activation that executes concurrently with its caller, allowing asynchronous activities. 
Creation of a new process is done with the FORK operation, which spawns a new process 
parallel to the original. The result is a separate, independently executing thread of 
control, with its own local data (if any). A process thus has the same status as a procedure: 
it is a first class value that may call procedures, be assigned to a variable or an array 
element, passed as a parameter, and in general treated exactly like any other value. 

This "process as procedure" approach also means that the method for passing parameters 
to a new process and retrieving the results is exactly the same as the corresponding 
method for procedures, and is subject to the same strict type checking. Since the Xerox 
Development Environment supports only one user and processes are assumed to be 
cooperating, no additional protection is associated with Mesa processes except that which 
is implicit in the type system of the language. Thus, all processes can execute in the same 
address space, which means that creating processes and switching between processes is 
inexpensi ve--not much more time-consuming than a procedure call. Thus Mesa processes 
are very "lightweight" and can be created and destroyed very frequently. 

A forked process can later be re-synchronized with its caller, in which case the returning 
process communicates its results to the joining process, and is then deleted. In other cases, 
however, the role of a forked process is not to calculate a particular result, but rather to 
provide some continuing service. Such forked processes are "detached", and need never be 
synchronized with their creator. Such processes illustrate one major difference between 



XDE: Concepts and Principles 3 

Mesa processes and the concept of job found in many other systems. A job has a well­
defined beginning and end, but a process may exist for as long as the power is on. 

3.1.4.1 Monitors 

Multiple processes that work on different aspects of a problem need to communicate both 
data and control information with one another. Such cooperating processes need to 
interact in more complicated ways than simply forking and joining. The general 
philosophy of process synchronization in the XDE is that interaction among processes 
always reduces to carefully synchronized access to shared data. 

Shared data is managed by a monitor. The simplest monitor is an instance of a module. In 
simple cases, a monitor's data comprises its global variables, protected by an implicit lock 
that is automatically allocated in its global frame. A MONITOR module differs only slightly 
from a standard Mesa program module. 

To access a shared resource or data structure, a process calls a special kind of procedure in 
the monitor module, called an ENTRY procedure. Application of one of a monitor's ENTRY 

procedures automatically acquires the monitor's lock (waiting if necessary), and a return 
releases it. The monitor lock thus ensures that at most one process is executing a monitor 
procedure at a time; this process is said to be in the monitor. If a process is in the monitor, 
any other process that calls an entry procedure will be delayed. Thus, a process may be 
forced to wait on a queue until another process releases a monitor lock. 

3.1.4.2 Condition variables 

The condition variable facility provides additional flexibility in process synchronization. 
Suppose, for example, that a process only wishes to execute monitored code under certain 
conditions. If the process enters a monitor and finds that the condition is not satisfied, it 
can choose to wait until that condition is satisfied. The WAIT operation allows a process to 
release the monitor lock temporarily (and suspend execution) without returning. The 
blocked process then waits on a condition queue until some other process enters the 
monitor and establishes the necessary condition. 

Many implementations of monitors require that a process waiting on a condition variable 
must run immediately when another process signals that variable, and that the signalling 
process runs when the waiting process has left the monitor. In Mesa, however, a process 
that establishes a condition for which some other process may be waiting notifies the 
corresponding condition variable. Notification is regarded as a hint to a waiting process, 
which then resumes execution at some convenient future time (reacquiring the monitor 
lock). There is no guarantee that some other process will not enter the monitor before the 
waiting process. Hence the waiting process must reevaluate the situation each time it 
resumes. 

The condition variable facility also pro vices a timeout option. A condition variable has an 
associated· time-out interval. A process that has been waiting for the specified interval will 
resume regardless of whether the condition has been notified. A process may also be 
aborted at any time, with the result that a waiting process may. resume immediately. 

3-7 



3 The supporting technology 

3.1.4.3 Monitored objects 

Programmers often wish to have a collection of shared data objects, each one representing 
an instance of some abstract object such as a file, a storage volume, or a database view, and 
to be able to add and delete from the collection dynamically, In a sequential program this 
is done with standard techniques for allocating and freeing storage. In a concurrent 
program, however, provision must also be made for serializing access to each object. 

Mesa therefore provides a type constructor called a monitored record, which is exactly like 
an ordinary record except that it includes a monitor lock and is intended to be used as the 
protected data of a monitor. Such an object is declared as a MONITORED RECORD, and the lock 
is associated with the record itself, rather than with the module's global frame. 

3.2 Pilot, the operating system 

3-8 

The Xerox Development Environment operating system, called Pilot, is not a typical, 
general purpose operating system. Instead, it is a nucleus of software that is viewed as an 
entity by applications programs. In particular, Pilot defines a "Basic Machine" that is an 
abstraction of the physical resources provided by the hardware. The purpose of this Basic 
Machine is to define a standard interface that is relatively independent of the size, speed, 
particular model, and configuration upon which it is operating. It thus provides a uniform 
environment for program design, and insulates clients as much as possible from variations 
in hardware configuration from site to site and from time to time. 

Because Pilot is designed around the notion that its clients are a cooperative system, it is 
far more tolerant and permissive than most operating systems, and delegates much more 
control of system resources to its users. It permits programs and subsystems to recover 
gracefully from errors, but it also places more responsibility on them to ensure the overall 
well-being of the machine and of the networks to which it is connected. Thus, Pilot is 
essentially co-equal with the applications programs that it supports. 

The major features supported by Pilot are a hierarchical virtual memory mapped to a 
large file space, streams, and support for the concurrency features of the Mesa language. 
Pilot also provides substantial support for the network communications that are at the 
heart of the Xerox distributed environment. Pilot omits certain functions that have been 
integrated into some other operating systems, such as character-string naming and user­
command interpretation; Pilot assumes that such facilities are provided as needed by the 
Xerox Development Environment software. 

3.2.1 Files and volumes 

A file is the basic unit of long-term information storage. A file consists of a sequence of 
pages, the contents of which can be preserved across system restarts. The Pilot file system 
can support up to 264 separate files of up to 223 pages each, a page being 512 bytes. The 
space of files is "flat", in the sense that files have no recognized relationships among them 
(no directory hierarchy.) Pilot expects the XDE file system to super-impose further 
structure on files and volumes as necessary: the emphasis at the Pilot level is on simple, 
powerful primitives for accessing information. 

Pilot stores files on logical volumes, which are contained in physical volumes of storage 
devices (typically disks). A physical volume is the basic unit of physical availability for 



XDE: Concepts and Principles 3 

random access file storage. A logJ.cal volume is the unit of storage for client files and the 
system data structures for manipulating them. A logical volume is either a physical 
volume or a subset of a physical volume or a collection of subsets of physical volumes. For 
instance, a large logical volume could span several physical volumes, or several logical 
volumes could be put on the same physical volume. A logical volume becomes logically 
available or unavailable as a unit and contains only complete files (Le., files cannot span 
logical volumes). 

Pilot supports access to files on local volumes. Each existing file is uniquely defined within 
that volume. Thus, a file is uniquely identified by its file 10 and the 10 of the containing 
volume. 

3.2.2 Virtual memory and Pilot 

The XOE processor defines a simple linear virtual memory of up to 232 I6-bit words, 
organized into 256-word pages. All computations on the machine, including Pilot itself, 
run in the same address space. Pilot structures this homogenous address space into 
contiguous runs of pages called spaces. Above Pilot, the XOE software super-imposes still 
further structure upon the contents. of spaces, casting them as client-defined data 
structures within the Mesa language. 

Client programs allocate a region of virtual memory by creating a space of appropriate 
size: a new space is always created as a subspace of an existing space. To associate 
information with a region of virtual memory, a client program maps a space to a region of 
some file. The interval of virtual memory used is normally allocated as part of the 
mapping operation. Each map unit, or mapped interval, is typically subdivided into swap 
units, as described in the next paragraph. Pilot also provides operations to remove the 
mapping when it is no longer required. 

When a process attempts to reference (Le., fetch or store) a virtual memory location within 
a map unit, the page containing that location may not be present in real memory. If it is 
not, Pilot must read it into real memory. Execution of the process is suspended until the 
swapping is completed. Pilot provides swapping either under client program control or on 
demand. A client program can inform Pilot that certain intervals of virtual memory will 
be needed in the immediate future and that swapping should be initiated as soon as 
possible, or that an interval is not currently needed and should be swapped out, or that an 
interval will never be needed again. If the page referenced is neither in real memory nor 
the subject of a recent swapping command to bring it in, Pilot will itself initiate a 
swapping action to bring in that page and any adjoining swapped-out pages of the 
containing swap unit. 

Swapping performance can be improved by organizing the Mesa code file(s) so that related 
procedures are located in the same interval of virtual memory. Pilot further improves 
performance by attempting to allocate the pages of a file contiguously so that an interval 
can be swapped in a single I/O operation. 

3.2.3 Streams and input/output devices 

A stream is a temporary type of object that exists as an interim agent for accessing other 
objects. A stream can be used to access an object on a device, a file, another process, or a 
remote system element. For example, the simplest type of I/O to a keyboard may involve 

3-9 



3 The supporting technology 

reading bytes from a stream assigned to the keyboard. (The Pilot stream facility is thus 
similar in spirit to UNIX streams.) Streams provide reliable communication between any 
two machines on an internet. Most I/O devices are also made directly available to clients 
through low-level procedural interfaces in order to provide maximum flexibility to client 
programs. 

The stream package provides a basic set of transducers and filters and, more important, a 
way of assemblirtg them sequentially into processing and transmitting pipelines. See the 
glossary for definitions of transducer, filter, and pipeline. 

3.2.4 Communications 

As discussed in section 3.1.4, the monitor facility enables communication among tightly 
coupled processes executing in the same system element. Communication among client 
processes in different machines, however, is performed by Pilot's packet transportation 
facilities. The basic communication function provided by Pilot is the transport of 
datagrams. A datagram is a fundamental packet with internet-wide source and 
destination addresses that allow the datagram to be sent between any two nodes in the 
internet. 

Information received from one Pilot client for transmission to another Pilot client (on the 
same or another system element) is broken into packets for delivery. These packets, 
encapsulated in the Xerox Internet Transport Protocols, are passed to a software packet 
called the router. If the destination client is on the local machine, the packet is passed to 
that client. 

3.2.5 Mesa Language support 

The implementation of processes and monitors is split among the Mesa compiler, the 
operating system, and the underlying machine. The compiler recognizes the various 
syntactic constructs and generates appropriate code. Pilot implements the less heavily 
used operations, such as process creation and destruction. The machine directly 
implements the more heavily used features, such as process scheduling. 

3.2.6 World swapping 

Pilot also provides a world-swap facility for debugging. Executing a world-swap to the 
debugger saves the contents of memory and the total machine state in a file, and then 
loads a snapshot of the debugger into memory and starts it running. Execution can be 
resumed by doing a second world swap back to the system being debugged. The state is 
saved with sufficient care so that the program being debugged will be unaffected by the 
visit to the debugger. The world-swap approach to debugging yields strong isolation 
between the debugger and the program being debugged. Not only the contents of main 
memory, but the version of Pilot, the accessible volumes, and even the microcode can be 
different in the two worlds. 

3.3 The XDE processor 

3-10 

The XDE processor architecture is unusual in that the hardware architecture was 
designed for the software architecture, rather than the other way around. In the XDE, the 
architecture design is separated from any particular implementation. Thus, the term 



XDE: Concepts and Principles 3 

architecture means the characteristics of the processor as seen by the programmer writing 
instructions to be executed by the machine; the term processor refers to a particular 
implementation of the architecture (or all such implementations). Thus, many different 
combinations of hardware and microcode might be used to implement an XDE processor. 

Like other aspects of the Xerox Development Environment, the architecture is designed 
for cooperating, not competing, processes. There is no "supervisor mode", nor are there any 
"privileged" instructions. The primary goals of the architecture are to enable the efficient 
implementation of a modular, high level programming language, such as Mesa, and to 
provide a very compact representation of programs and data so that large, complex 
systems can run efficiently with relatively small amounts of primary memory. The 
emphasis is on efficiency of the object code and on a good match between the semantics of 
the language and the capabilities of the processor. 

3.3.1 Compact program representation 

The Mesa instruction set is designed for a compact representation of programs. The 
general idea is to introduce special instructions into the instruction set so that frequent 
operations can be represented in a minimum number of bytes. Instructions are variable 
length with the most frequently used operations and operands encoded in a single byte; 
less frequently used combinations are encoded in two bytes, and so on. For example, 
operations such as reading a word from a record given a pointer to the record in a local 
variable, storing values through pointers, and procedure calls are encoded in a single byte. 
The guiding principle of the Mesa instruction set is "if an operation, even a complex one 
involving indirection and indexing, occurs frequently in programs, then it should be a 
single instruction or family of instructions. " 

Similarly, frequently referenced variables are stored together. Most operands are 
addressed with small offsets from local or global frame pointers or from variable's pointers 
stored in the local or global frame. Using small offsets means that instructions can be 
smaller because fewer bits are needed to record the offset. 

3.3.2 Stack machine 

The Mesa processor is a stack machine; it has no general purpose registers. The evaluation 
stack is used as the destination for load instructions, the source for store instructions, and 
as both the source and destination for arithmetic instructions; it is also used for passing 
parameters to procedures. 

The primary motivation for the stack architecture is not to simplify code generation, but 
to achieve compact program representation. Instructions can be smaller because they need 
not specify all operand locations: since the stack is assumed as the source and/or 
destination of one or more operands. Another motivation for the stack is to minimize the 
register saving and restoring required during procedure calls. 

3.3.3 Control transfers 

The Mesa architecture is designed to support modular programming, and therefore 
optimizes transfers of control between modules. The Mesa processor implements all 
control transfers with a single efficient primitive, called XFER, which is a generalization of 
the notion of a procedure or subroutine call. All of the standard procedure calling 

3-11 



3 

3-12 

The supporting technology 

conventions, and all transfers of control between contexts (procedure call and return, 
nested procedure calls, coroutine transfers, traps, and prcoess switches) are implemented 
using the XFER primitive. 

3.3.4 Process mechanism 

The Mesa processor provides for the simultaneous execution of up to one thousand 
asynchronous preemptable processes on a single processor. The process implementation is 
based on queues of small objects called Process State Blocks (PSB's), each representing a 
single process. When a process is not running, its PSB records the state associated with 
the process. If the process was preempted, its evaluation stack is also saved in an auxiliary 
data structure; the evaluation stack is known to be empty when a process stops running 
voluntarily (by waiting on a condition or blocking on a monitor). 

Each PSB is a member of exactly one process queue. There are four kinds of queues: 
condition variable, ready, monitor lock, and fault. The ready queue contains all processses 
that are ready to run; that is, not blocked on a monitor, waiting on a condition variable, or 
faulted (e.g. suspended by a page fault). The process at the head of the ready queue is the 
one currently being executed. 

The primary effect of the process instrucions is to move PSB's back and forth between the 
ready queue and a monitor or condition queue. A process moves from the ready to a 
monitor queue when it attempts to enter a locked monitor; it moves from the monitor 
queue to the ready queue when the monitor is unlocked (by some other process). Similarly, 
a process moves from the ready queue to a condition queue when it waits on a condition 
variable, and it moves back to the ready queue when the condition variable is notified, or 
when the process has timed out. 

Each time a process is requeued, the scheduler is invoked; it saves the state of the current 
process in the process's PSB, loads the state of the highest priority ready process, and 
continues execution. To simplify the task of choosing the highest priority task from a 
queue, all queues are kept sorted by priority. 

3.3.5 Virtual memory and the processor 

Virtual addresses are mapped into real addresses by the processor. The mapping 
mechanism can be modeled as an array of real page numbers indexed by virtual page 
numbers. 

Virtual memory is addressed by either long (32 bit) pointers containing a full virtual 
address or by short (16 bit) pointers containing an offset from an implicit 64K word 
aligned base address. There are several uses of short pointers defined by the architecture: 

• the first 64K words of virtual memory are reserved for booting data and 
communication with I/O devices. Virtual addresses known to be in this range are 
passed to I/O devices as short pointers with an implicit base of zero. 

• the second 64K of virtual memory contains data structures relating to processes. 
Pointers to data structures in this area are stored as short pointers with an 
implicit base of 64K. 



XDE: Concepts and Principles 3 

Code may be placed anywhere in virtual memory, although in general it is not located 
within the reserved regions mentioned above. A code segment contains read only 
instructions and constants for the procedures that comprise a Mesa module; it is never 
modified during normal execution and is usually write-protected. A code segment is 
relocatable without modification; no information in a code segment depends on its location 
in virtual memory. 

Any region of the virtual memory can contain additional dynamically allocated user data; 
it is managed by the programmer and referenced indirectly using long or short pointers. 

An important interval of virtual memory recognized by the processor and the Mesa system 
is the main data space (MDS). This is a 64k block of virtual memory, any part of which 
may be addressed by a short pointer. An MDS contains the global data of program 
modules and the local data of procedure invocations. Of course, a program or procedure 
can refer to arbitrary data via a pointer in its local or global data .. Each process is 
associated with one and only one MDS. Although the processor supports multiple 
coexisting MDS's, Pilot does not. Thus, any Pilot-based system has only one MDS, which 
is shared by all of the system's processes. 

The data associated with a Mesa program is allocated in a main data space in the form of 
local and global frames. A global frame contains the data common to all procedures in the 
module. The global frame is allocated when a module is loaded and freed when the module 
is destroyed. A local frame contains data declared within a procedure; it is allocated when 
the procedure is called and freed when it returns. 

3.3.6 Contexts 

In addition to a program's variables, there is a small amount of linkage and control 
information in each frame. A local frame contains a short pointer to the associated global 
frame and a short pointer to the local frame of its caller (the return link). A local frame 
also hold the program counter for a procedure whose execution has been suspended. Each 
global frame contains a long pointer to the code segment of the module. 

To speed access to code and data, the processor contains registers that hold the local and 
global frame adddreses and the code base and program counter for the currently executing 
procedure; these are collectively called a context. When a procedure is suspended, the 
single sixteen bit value which is the MDS relative pointer to its local frame is sufficient to 
reestablish this complete context by fetching global frame and program counter from the 
loccal frame and code base from the global frame. 

1-13 



Glossary 

Abstract machine: An abstract machine is a 
set of functions, provided by hardware or 
software, that forms the underpinnings of a 
system sitting above. Pilot, for example, is an 
abstract machine that runs on a variety of 
machines. 

Abort: To abort is to terminate a process 
abnormally, such as by using the ABORT key. 

Accelerator: An accelerator is an easier or 
faster way of doing a common operation. 
Clicking ADJUST in the center third of the name 
stripe, for example, is an accelerator for sizing a 
window (rather than bringing up the window 
menu and selecting "Size".) 

Active window: An active window is a window 
that is ready for interaction with the user and is 
displayed full size. (Compare Tiny window, 
Inactive window.) 

Address Fault: An address fault occurs when 
an attempt is made to reference an illegal 
address. 

Adjective: An adjective is an identifier 
constant from an enumerated type, used to select 
one of the alternatives in a variant record. (See 
Tag.) 

ADJUST: ADJUST is the right mouse button, 
generally used to extend selections and for 
accelerators. 

ALT B: ALT 8 is a boot button used to do alternate 
booting, such as booting from" another device. 

Argument: An argument to a procedure or 
command is a piece of data upon which the 
operation is performed. For example, the 
argument to a MOVE command is the video­
inverted text to be moved. 

Asynchronous call: An asynchronous call is a 
procedure call that initiates an operation, but 
returns control to its caller without waiting for 
the operation to complete. 

Atom: An atom is a Mesa primitive providing a 
unique identifier in a global naming space. An 
atom has an associated property list. 

Authenticate: To authenticate is to establish 
that a user or client is who he, she, or it claims to 
be, such as by checking the user or client's 
credentials. (See Credentials.) 

Background process: A background process is 
a process that receives machine resources only if 
higher priority processes are idle or blocked. 

Backing store: Backing store is a sequence of 
pages from a file to which a part of virtual 
memory is mapped. Any part of virtual memory 
with useful contents is mapped to a backing 
store. (See Map.) 

BCD: A binary configuration description (BCD) 
is a compiled and possibly bound Mesa module, 
sometimes called an object file. (See 
Configuration description.) 



Glossary 

Bind: To bind is to combine object modules into 
one executable unit (called a configuration) by 
resolving intermodure references. 

Bitmap: A bitmap is a representation of a 
rectangular image as a sequence of bits, each of 
which represents the intensity of a point in the 
image. The display hardware and microcode 
convert a bitmap to a displayed image. 

Boot: To boot is to load and start a system on a 
machine whose main memory has essentially 
undefined contents. The Dandelion can be 
booted by pressing the B RESET boot button. 
("Boot" is short for "bootstrap", which is in turn 
short for "bootstrap load".) 

Boot button: A boot button is a maintenance 
panel button used to boot the processor. The 
Dandelion has two boot buttons, labelled B RESET 

and ALTB. 

Boot flle: A boot file is a file that contains a 
bootable system, such as CoPilot, that receives 
control when the volume is booted. 

Broadcast network: A braodcast network is 
one in which a packet can be sent to every host 
on the network, rather than to just one specific 
host. (See multi-cast.) 

CALL DEBUG: CALL DEBUG is the action of pressing 
SHIFT-ABORT together, which transfers control to 
the debugger. 

Call Stack: The call stack is a Mesa processor 
data structure containing a frame for each 
procedure invocation that has not yet returned. 
The call stack is ordered with the most recent 
invocation first. 

Caret: The caret is a blinking pointer that 
indicates the type-in point. 

Catch Phrase: A catch phrase is a Mesa 
construct that establishes code to catch one or 
more signals. 

Channel: A channel is a low-level procedural 
interface for accessing and driving 1/0 devices. 

Chord: To chord keys or buttons is to push 
them down at the same time, as when chording 
the mouse buttons. 

Clearinghouse: A clearinghouse is a server for 
locating named objects in a distributed 
environment. 

Click: To click a mouse button is to press down 
on it and let it up. 

Client: A client is a program (as opposed to a 
person) that uses the services of another 
program or system. (See User.) 

CoCoPilot: CoCoPilot is the name usually 
given to the debugger Debugger volume used to 
debug programs running in the CoPilot volume. 

Command Central: Command Central is a 
tool for compiling and binding programs on a 
development volume and running them on a 
client volume. 

Command file: A command file is a file 
containing commands, especially Executive 
commands. 

Compile: To compile is to translate a source file 
into an object file (BCD). 

Condition variable: A condition variable is a 
Mesa construct by which processes wait for or 
provide notification of an event. A condition 
variable is associated with a monitor. 

Configuration description: A configuration 
description (config for short) is a CIMesa source 
file that tells the Binder how to combine 
modules into a configuration. A configuration 
file is the bound code of one or (usually) more 
modules. 

Context: See Debugger context. 

Continue: To continue a signal is to resume 
program execution at the statement following 
the one to which the catch phrase belongs. Thus, 
control is resumed in the procedure where the 
signal was caught, not the procedure that raised 
the signal. 

CoPilot: CoPilot is the name of the debugger 
volume used to debug programs in Tajo and 
other normal volumes. The boot file that 



Xerox Development Environment 

contains the debugger, used on both the CoPilot 
and CoCoPilot volumes, is also called CoPilot. 

Courier: Courier is the Network Systems 
remote procedure call facility, A remote 
procedure call causes a procedure to be executed 
in another machine over a network. 

Create date: The create date is the date and 
time that the information contained in a 
particular version of a· particular file was 
created. Since create dates are accurate to the 
nearest second, the pair < file name, file 
version's create date> serves as a unique 
identifier for the contents of a file. 

Credentials: Credentials are the identification, 
such as name and password, presented by a 
client to a service for authentication. 

Critical section: A critical section is a portion 
of a program in which only one process may be 
executing at a time. In Mesa, access to critical 
sections is arbitrated by monitors. 

Current selection: See Selection. 

Cursor: The cursor is an icon that tracks the 
mouse position: moving the mouse moves the 
cursor. The system may change the cursor shape 
to provide feedback about what it is doing. 

Dandelion: Dandelion is the internal name for 
the processor that supports both the Xerox 
Development Environment and the Office 
System products. 

Dangling Pointer: A dangling pointer is a 
pointer to an invalid memory location, usually 
the result of deallocating storage while a pointer 
to it remains. 

Deactivate: To deactivate is to make a tool 
inactive, removing all windows associated with 
the tool from the display and discarding the 
state of the tool. 

Debugger context: A context in the debugger 
is a referencing environment that determines 
the meaning of symbols. The current context 
identifies one of the executing processes (within 
a particular module within a particular 
configuration) that the debugger will use in 
interpreting other commands. For example, the 

current context determines which variables in 
which procedure in vocations to use in 
evaluating an expression. 

debugger volume: A debugger volume is a 
logical volume that contains a debugger and is 
used to debug normal volumes. (See normal 
volume, debuggerDebugger volume.) 

debugger Debugger volume: A debugger­
Debugger volume is a logical volume that 
contains a debugger and is used to debug 
debugger volumes. 

Dereference: To dereference a pointer is to 
follow the pointer through one level of 
indirection toward the value it is referencing. 

Device: A device is a peripheral unit (almost 
always hardware) that is separately accessible 
through its own channel. 

Device driver: A device driver is a program 
that translates channel requests into physical 
device actions. 

Directory: A directory is a named subdivision 
of a logical volume. A directory can in turn be 
divided into subdirectories. The top-level 
directory on a volume has the same name as the 
volume. 

Discrimination: A discrimination statement 
provides access to the fields in the variant part of 
a variant record, based on the value ofthe tag. 

Disk page: A disk page is a contiguous 256-
word region of disk storage. 

Dynamic allocation: Dynamic allocation 
acquires storage during program execution. 

Encapsulate: To encapsulate a packet is to 
transform it in whatever fashion is necessary to 
allow the packet to pass as data. Generally, 
encapsulation consists of mechanism such as 
adding headers and trailers. 

Error: An error is a Mesa language construct 
similar to a signal, except that a signal can 
return to where it was raised (like a procedure), 
whereas an error cannot. 



Glossary 

Ethernet: The Ethernet is a communications 
system for carrying digital data among locally 
distributed computer systems. The Ethernet is 
implemented as a 10 megabit/second multi­
access packet-switched network. 

Exception: An exception is an unusual event 
that programs must be prepared to handle, such 
as VO error. In Mesa, exceptions are associated 
with signals. (See Signal.) 

Executive: The Executive is a tool with a 
simple teletype interface for loading and 
running Mesa programs. Some commands are 
built in to the Executive. 

Export: To export is to implement all or part of 
an interface for use by other modules. (See 
Import, Interface.) 

Face: A face is a Mesa interface that embodies 
part of the XDE abstract machine. 

File: A file is a sequence of data pages located 
on some physical device and containing some 
common grouping of information. Files may be 
local or remote. 

File extension: The file extension is the 
(possibly null) portion of a file name that follows 
a period. By convention, some extensions 
indicate the format of the data in the file 
(although not all tools use default extensions 
consistently). Some common extensions are: 

archiveBcd 
bcd 
boot 
cm 
config 

doc 
errlog 
ip 
log 
mesa 
symbols 

tip 

Mesa object program module 
Mesa object program module 
boot file 
command file 
a C/Mesa source file 
(configuration description 
file) 
documentation file 
error message file 
Interpress format 
history of program actions 
Mesa source module 
Mesa symbol table in binary 
format (for debugging) 
TIP tables 

File handle: A file handle is a data structure 
that identifies a file being accessed. 

File service: The file service is a set of network 
facilities that provide file storage and retrieval. 

A machine implementing this service is called a 
file server. 

File Tool: The file tool is a tool that allows the 
user to store, retrieve, delete, and list files on 
remote file services. 

File type: A file type is a file attribute provided 
by Pilot for the use of higher level software. 

File window: A file window is a window whose 
main subwindow is a text ~ubwindow for 
displaying and editing the contents of a file. A 
contiguous group of pages within a file into 
which a map unit is mapped is also called a file 
window. 

Filter: A filter is a software entity that 
implements a stream for transforming, 
buffering, and manipulating data. 

Font: A font is a set of characters of similar size 
and style. Fonts come in different families (such 
as Classic or Gothic), different sizes (such as 10 
point or 14 point), and different styles (such as 
plain, bold, or italic). This sentence is in Classic 
10 plain font. 

Formatter: The Formatter is a tool that 
transforms Mesa source files into a standard 
format. 

Form subwindow: A form subwindow is a 
system-provided subwindow type that supports 
invoking commands and displaying or changing 
the values of data. 

Frame: A frame is a data structure allocated 
for the variables and internal data structures of 
an executing module or procedure. Module 
frames are called global frames, and procedure 
frames are called local frames. Since Mesa 
supports recursion, there may be several frames 
for a given procedure. 

Frame pack: A frame pack is a swap unit 
produced by the Packager that contains the 
global frames for a collection of modules. 

Frozen: A system is frozen if no program can 
respond to input from either the mouse or 
keyboard, including a panic interrput. 
(Compare Wedged.) 



Xerox Development Environment 

Gateway: A gateway is a processor serving as a 
forwarding link between Ethernets. (See 
Router.) 

Germ: The germ is the Pilot program that loads 
a boot file into memory and starts it executing. 
The germ also creates outload files and 
implements communication with remote 
debuggers. The germ is so named because it is· 
the first program executed when a boot button is 
pushed. 

Head: A head is an implementation of a face for 
some processor or device. A collection of heads 
provides a processor-independent environment 
in which Pilot and its clients execute. 

Heap: A heap is a system-designated area of 
virtual memory used for dynamic allocation of 
storage. Heaps, which provide more automatic 
management of storage than zones, support the 
Mesa language operators NEW and FREE, which 
allocate and deallocate storage dynamically. 

Herald Window: The herald window is a tool 
(usually a wide, short window at the top of the 
screen) that displays information about the state 
of the environment, has a menu to boot logical 
volumes, and allows tools to display messages. 

Hint: A hint is information that is usually 
accurate and is easy for a program to use. A 
program can detect when a hint is inaccurate 
and find the truth in some other (usually less 
efficient) way. 

Icon: An icon is a small picture on the display 
representing some entity. 

Implementation module: An implementation 
or PROGRAM module is a program that codes 
(implements) and makes available to clients 
(exports) items in an interface. One 
implementation module can export all or part of 
one or several interfaces, and an interface can be 
jointly implemented by several implementation 
modules. 

Import: To import is to make accessible to one 
module the procedures and variables exported 
by other modules. (See Exports.) 

Inactive window: An inactive window is one 
that is not represented on the display and that 

retains no state. (Compare Active window, 
Tiny window.) 

Input Focus: The input focus is the window to 
which keyboard commands and typed characters 
are sent. The input focus contains the type-in 
point. 

Interface: An interface is a formal contract 
between pieces of a system that describes the 
services to be provided. A provider of these 
services is said to implement the interface; a 
consumer of them is called a client of the 
interface. 

Interface module: An interface or DEFINITIONS 

module defines types, variables, constants, 
procedures, and signals, thus specifying the 
services to be provided by its implementation 
modules. 

Interlisp: Interlisp is an interactive version of 
LISP with a large library of facilities. 

Internet: An internet is a collection of networks 
mutually accessible via internet routing 
services. 

Interpress: Interpress is a print file format 
standard. 

Lister: The Lister produces listings of 
information in object files, such as dates of the 
interface modules used and cross references of 
procedure calls. 

Log file: A log file is a file containing a history 
of program actions. For example, 
compiler .log contains summary statistics for 
each source file compiled by the most recent 
invocation of the compiler. 

Logical volume: A logical volume is a partition 
of storage for client files, including system data 
structures for manipulating those files. A 
physical volume is divided into one or more 
logical volumes. Each logical volume is largely 
protected from actions in other logical volumes. 

Loophole: Loophole is a Mesa operator that 
coerces a value of one type into another type, 
thus circumventing Mesa's strong typing. For 
example, loopholing is often used in the 
debugger to translate a CARDINAL (the internal 



Glossary 

representation of a signal) into the name of the 
signal. 

Machine: A machine is a hardware 
configuration consisting of a processor, main 
memory, and peripheral devices. Workstations 
and servers are machines. 

Main data space: The main data space (MDS) 
is a subspace of virtual memory that provides 
the local execution environment for Mesa 
programs and holds the implicit Mesa data 
structures. The MDS can contain up to 64K 
words. Thus, only short (16-bit) pointers are 
needed to address any part of the MDS. 

Maintenance panel codes: Maintenance panel 
codes (MP codes) are three or four-digit status 
and error codes that indicate the current 
processor state. 

Maintenance release: A maintenance release 
is a re-release of a system to correct flaws that 
cannot be worked around. Maintenance releases 
do not introduce new features. 

Map: To map is to associate a region of virtual 
memory with a file window so that the contents 
of the file window appear to be the contents of 
the region. 

Map unit: A map unit is a contiguous group of 
virtual memory pages that is the principle unit 
for allocating, mapping, and swapping virtual 
memory. 

Menu: A menu is a list of available commands 
or data chosen by mouse selection. More than 
one menu may be associated with a tool window 
or subwindow or with the unused portion of the 
display. 

Mesa: The Mesa language is a Pascal-like, 
strongly typed, system programming language 
that forms the basis of the Xerox Development 
Environment. 

Message subwindow: A message subwindow 
is a system-provided subwindow type for posting 
messages (including errors). 

MLM: The Mesa Language Manual is a 
reference manual for the Mesa programming 
language. . 

Mode: A mode is a special state of a system in 
which user actions have special meaning. 

Modeless: A mode less user interface is one that 
is free of modes. In such an interface, pressing a 
particular key always has essentially the same 
effect. 

Module: A module is a Mesa program. A 
source module is a text file that can be compiled 
into an object module. 

Monitor: A monitor module is a Mesa module 
that controls access to shared data, thus 
synchronizing interactions among processes. 

Monitor invariant: A monitor invariant is a 
logical assertion about the state of monitored 
data whenever the monitor is unlocked (i.e., 
exited). Every monitor has a monitor invariant. 

Monitor lock: A monitor lock is essentially a 
hidden data item associated with each 
monitored record or program that indicates 
when a process has entered and not yet exited a 
critical section. 

Mouse: The mouse is a pointing device that 
allows the user to direct the attention of the 
machine to a particular point on the display. A 
mouse usually has two buttons, POINT and ADJUST. 

(See POINT, ADJUST.) 

Mouse-ahead: Analogous to type-ahead, 
mouse-ahead is mouse clicks made before a 
program has asked for them. 

Movable boundary: A movable boundary is a 
horizontal line with a small box on its right end 
that divides a window into subwindows or splits 
a text subwindow. A movable boundary is used 
to change the relative heights of adjacent 
subwindows. 

MPM: The Mesa Programmer's Manual 
describes the interfaces that provide the 
framework and run-time system for writing 
Mesa programs in the Xerox Development 
Environment. 

Multi-cast network; A multi-cast network is 
local network that has the capacity to transmit a 
packet to more than one host. Broadcasting is 



Xerox Development Environment 

thus a special case of multi-casting that allows a 
packet to be transmitted to all hosts. 

Name lookup: Name lookup is the process of 
mapping a character string to a network 
address. 

Name stripe: The name stripe is a rectangular 
region at the top of a window. It is usually black, 
with the window's name and other information 
in white. 

Network: A network is a communication 
medium, such as an Ethernet, known to routers 
by a unique network number. 

Network address: A network address consists 
of a network number, host number, and socket 
number. The network number identifies a 
network anywhere in the world. The host 
number uniquely identifies a machine, 
independent of which network it is on. A socket 
number identifies a particular socket on that 
host. (See Socket.) 

Network stream: A network stream is a stream 
representing a connection over a network 
between two processes, often on different 
machines. 

Node: A storage node, or node for short, is a 
block of allocated storage, often with a record 
structure. 

Normal volume: A normal volume is a logical 
volume used to run client, programs. (See 
debugger volume, debuggerDebugger 
volume.) 

Notifier: The Notifier process in Tajo handles 
user actions, informing each tool of each user 
action directed to it. Because tools perform their 
work in the N otifier process, further user input 
is not acted on until a tool operation is finished. 

NS: Network Systems (NS) are the Xerox 
standard protocols for using the Ethernet. 

Object file: An object file is a BCD. 

Othello: Othello is a utility for managing Pilot 
volumes, including initializing physical and 
logical volumes, installing and invoking boot 
files, and scavenging logical volumes. 

Outload file: An outload file is a snapshot of 
the volatile state of a system (essentially the 
contents of real memory and registers). Outload 
files are used by the debugger. (See World­
swap.) 

Package: To package is to group components of 
modules together into swap units to try to 
improve use of real memory. 

Packet: An NS packet is the unit of information 
in the internet. A packet consists of a header 
and data, and has a maximum length of 576 
bytes. The information in the header is specified 
by the Internet Datagram Protocol. 

Page: A page is a block of 256 words of 
information in either virtual memory or a file. 
The page is the basic addressable unit of a file. 

Panic interrupt: A panic interrupt in the 
Xerox Development Environment is caused by 
hitting STOP while holding down both SHIFT keys. 

Path name: The path name is the complete 
name of a file, including the file server or 
workstation and directory or subdirectory on 
which it is stored. A path name is usually 
denoted by a machine name in square brackets 
followed by a directory name in angle brackets, 
optionally followed by one or more subdirectory 
names separated with right angle brackets, 
followed by the file name itself, such as 
[Iris] < Mesa> Doc> Compiler .doc. 

Physical volume: A physical volume is the 
basic unit available for random access file page 
storage. A physical volume corresponds to a 
storage device, typically a disk. 

Pilot: Pilot is the operating system for the 
Xerox Development Environment. Pilot 
provides a single-user, single-language 
environment including virtual memory, a large 
flat file system, network communication 
facilities, and Mesa run-time support (including 
concurrency facilities). 

Pilot kernel: The Pilot kernel comprises the 
basic facilities of Pilot. 

Pipeline: A pipeline is a sequence of 
concatenated filters that perform a series of 



Glossary 

transformations on the contents and properties 
ofastream. 

POINT: POINT is the left mouse button, generally 
used to identify data and to invoke commands. 

Pointer: A pointer is a data item containing the 
location of a value. The Mesa language has 
pointer types. 

Point-to-point: Point-to-point connectivity 
menas that a channel has exactly two hosts 
attached to it; a host can thus send a packet to 
any other single host. 

PPM: The Pilot Programmer's Manual 
describes the visible structure and interfaces of 
Pilot. 

Print service: A print service provides printing 
facilities, usually for files formatted in 
Interpress format. 

Process: A process is effectively a procedure 
activation that runs concurrently with its caller, 
allowing asychronous activities. 

Processor: A processor is a computing engine 
(including its memory) in a workstation or 
server. 

Raise: To raise a signal is to instruct the 
Signaller to look on the call stack for the most 
recently invoked procedure with a catch phrase 
for that signal. If none is found, an uncaught 
signal occurs. 

Real estate: Real estate is any part or all of the 
display screen. 

Real memory: Real memory is the physical 
memory that holds software and data during 
processing (as opposed to secondary or virtual 
memory). 

Reject: A catch phrase rejects a signal when it 
is not prepared to resolve it. A catch phrase 
rejects a signal either by explicitly placing a 
REJECT statement in the code or by not specifying 
how to resolve the signal. 

Release: A release is an official, consistent 
version of software produced and maintained by 
its developers. 

Resume: To resume a signal is to return 
program control (and possibly values) to the 
statement immediately following the one that 
raised the signal. An ERROR cannot be resumed. 

Retry: To retry a signal is to tell the Signaller 
to re-execute the statement containing the catch 
phrase. 

Router: A router is a software package that 
sends packets between sockets. The path chosen 
by a router includes intermediate stops if the 
destination socket is on another network. A 
router that sends packets between networks is 
called an internet router. 

RS-232-C: RS-232-C is a standard established 
by the Electronic Industries Association for 
serial binary data interchange between a 
machine and data communication equipment. 
An RS-232-C controller connects a machine to a 
modem, allowing data to be sent across 
telephone lines. 

Scavenge: To scavenge is to check for damaged 
file structures and to attempt to repair them. 

Scroll: To scroll is to reposition the data visible 
in a subwindow as though it were part of a long, 
continuous sheet of paper. Scrolling up, for 
example, moves the data near the bottom of the 
window toward the top. 

Scrollbar: A scrollbar is a tall, narrow 
rectangle near the left border of a sub window , 
used in scrolling and thumbing. 

Search path: The search path is a sequence of 
directories (with subdirectories) used as prefixes 
to look up file names that are not fully specified; 
i.e., that do not start with a directory name. 

Selection: The selection is a text string or icon 
that the user has caused to be highlighted. 
Many actions operate on the current selection, 
which need not be in the window associated with 
the action. 



Xerox Development Environment 

Server: A server is a machine dedicated to 
performing one or more services. 

Service: A service is a related set of facilities 
provided for general use, such as a print service 
or file servic,e. 

Signal: A signal is a Mesa language construct 
used to help handle exceptional conditions 
encountered during program execution. Signals 
are like procedures except that the code to be 
executed is determined at run-time. 

Signaller: The Signaller is the program that 
gets control when a signal is raised, attempts to 
fmd an associated catch phrase, and executes the 
code in the catch phrase. 

Size: To size a window is to switch its state 
either from active to tiny or vice versa. (See 
Window state.) 

Smalltalk: Smalltalk is an object-oriented 
programming language (and its integrated 
programming system) developed by Xerox. 

Snarl: To snarr is to copy files between logical 
volumes, especially from the CoPilot volume. 

Socket: A socket is a source or destination of 
packets on a given machine. A socket is 
uniquely identified by a I6-bit socket number. 
Several streams of packets may share a single 
socket. A socket is accessed through a channel 
interface and is thus a logical input/output 
device. The Clearinghouse and the time server, 
for example, each has its own socket. 

Source module: There are three kinds of 
source modules: PROGRAM, MONITOR, and 
DEFINITIONS. (See Module.) 

Space: Space is the Pilot interface for 
managing virtual memory. Space often refers 
more generally to virtual memory. 

Storage Leak: A storage leak occurs when a 
program neglects to free all the storage nodes it 
has allocated, thus reducing the total amount of 
space available for the system. 

Stream: A stream is an abstraction for device­
and format-independent sequential access to a 
collection of data. Some streams also provide 

random access to the data. A stream is a 
sequence of bytes, possibly marked by attention 
flags and possibly partitioned into identifiable 
subsequences. 

Stream component manager: A stream 
component manager is the software entity that 
implements a stream component-a transducer, 
filter, or pipeline. 

Stream Handle: A stream handle is a pointer 
to a stream object, which identifies the 
particular stream being accessed and contains 
the data and procedures for operations on the 
stream. 

String: A string is conceptually a sequence of 
characters, such as "that". A string is 
represented in Mesa as a pointer to a record 
containing a sequence of characters, the current 
length, and the current maximum length. 

Stub: A stub is a program that implements a 
Mesa interface in terms of Courier calls to a 
remote server or workstation. 

Subdirectory: A file directory can be divided 
into a hierarchical collection of subdirectories. 
Subdirectory names are listed from the root of 
the tree down to the leaves, separated by">". 
(See Path name.) 

Subwindow: A window is often composed of 
one or more rectangular subwindows. The 
Xerox Development Environment provides 
several standard subwindow types, including 
form subwindows and text sub windows. 

Swap: To swap is to transfer data between 
memory and files, either in response to hints 
from the client program or upon demand. To 
swap in is to copy from a file window into real 
memory; to swap out is to copy from real memory 
to a file window. 

Swap unit: A swap unit is a portion of a space 
to be swapped. Proper choice of the size of swap 
units can improve use of real memory and 
reduce disk overhead. 

Swat: To swat is to strike CAll·DEBUG to invoke 
the debugger. 



Glossary 

Switch: A switch is a modifier to a command or 
subcommand, often preceded by a "/". 

Symbiote: A symbiote is a subwindow that can 
be added dynamically to a subwindow in an 
existing tool without changing the tool or Tajo. 
A symbiote provides extra facilities via stick­
around menu items or functions. 

Synchronous call: A synchronous call is a 
procedure call that returns control only after the 
operation completes. 

Tag: The tag is a field of a variant record whose 
value selects one of the alternatives of the 
variant part by matching one of the adjectives. 

Tajo: Tajo is the user interface part of the 
Xerox Development Environment. The main 
client volume and its boot file are also often 
called Tajo. 

Teledebug: To teledebug is to debug remotely, 
that is, to debug one machine from another over 
the internet. 

Text subwindow: A text subwindow is a 
system-provided subwindow type with text 
display and editing capabilities. 

Thumb: To thumb is to position the data in a 
file (usually text) to an arbitrary position for 
viewing on a display. The "thumb-index" in 
some dictionaries performs somewhat the same 
function: it gets you to roughly the right place 
quickly. 

Timeout: Timeout is the failure to complete an 
operation within a specified amount of time. 

Tiny window: A window is tiny if it is 
represented on the display by an icon. A tiny 
window is not ready for interaction with the 
user, but maintains the state of the tool. 
(Compare Active window, Inactive window.) 

TIP: Terminal Input Processor (TIP) is a 
system for interpreting keyboard and mouse 
actions and turning them into sequences of 
commands based on TIP tables. 

Tool: A tool is a Xerox Development 
Environment applications program. A tool can 
run in parallel with other tools, including other 
instances of the same tool. Tools react to 

prompting and seldom carry out operations 
when not in use. A tool usually, but not always, 
has an associated window. 

Transducer: A transducer is a software entity 
that implements a stream, such as MStream, 
connected to a specific device or medium through 
a Pilot channel. 

Trash bin: The trash bin is the conceptual 
container of the most recently deleted selection, 
which can be retrieved to a different spot or a 
different window. 

Type-ahead: Type-ahead is the ability to type 
characters to a program before that program has 
asked for them. 

Type-in point: The type-in point is the text 
location where typed characters are to be 
inserted. The type-in point is indicated by a 
flashing caret or box. 

Uncaught signal: An uncaught signal occurs 
when no module in the call stack handles a 
signal that has arisen. If a signal is uncaught, 
the Signaller transfers control to the debugger. 

Unwind: Unwind is a special signal raised by 
the Signaller to allow procedures about to be 
deleted from the call stack to do clean up (such 
as deallocate storage and close files). When 
there is an unconditional branch out of the catch 
phrase, the Signaller raises the unwind signal at 
the point where the original signal originated. 

User: A user is a person (rather than a 
program) who uses the services of some program 
or system. (See Client.) 

User.cm: User.cm is a file on the system 
volume used to set defaults for many of the tools 
in the Xerox Development Environment. This 
file allows users to customize their environment. 

User Interface: The user interface is the 
man/machine interface. It is the manner in 
which information is presented to you on the 
display screen, and the way that you 
communicate using keyboard and mouse. 

User profile: A user profile is commonly 
accessed global information that identifies a 



Xerox Development Environment 

user in the internet. A user profile includes 
name, password, and Clearinghouse domain. 

Valid memory location: A location is valid if 
it is currently allocated. A location that has 
been freed is invalid and should not be 
referenced. 

Version stamp: The version stamp is the date 
and time, accurate to the nearest second, at 
which a file was created. Different versions of a 
file are distinguished by their version stamps. 
Version stamps allow tools such as' the binder 
and the debugger to ensure that proper versions 
offiles are used. 

Video-invert: To video-invert a region is to 
cause black areas of the region to become white 
and white areas to become black. 

Virtual memory: Virtual memory is the large 
word-oriented address space of up to 232 words 
that forms the execution environment. 

Volume: See physical volume, logical 
volume. 

Wedged: A program is wedged when it cannot 
respond to input from either the keyboard or the 
mouse. If all programs are wedged, the system is 
frozen. (See Frozen.) 

Window: A window is a rectangular region of 
the display in which text and graphics can be 
displayed. Most tools communicate via 
windows. 

Window state: The state of a window is either 
active, tiny, or inactive. (See Active window, 
Tiny window, Inactive window.) 

Word: A word is the basic I6-bit unit of 
information manipulated by Mesa processors. 

Workstation: A workstation is a machine 
connected to the network and used as a personal 
computer. Most Dandelions are used as 
workstations. (See Server.) 

World-swap: A world-swap is the process of 
writing out the complete state of a logical 
volume onto a disk file and reading in a different 
state. CoPilot normally works by world-swaps 

between the debugger and the program being 
debugged. (See Outload file.) 

Xerox Development Environment: The 
Xerox Development Environment is a set of basic 
tools for manipulating programs, including the 
Tajo user interface and a variety of built-in tools, 
but not including language-dependent tools such 
as the compiler and debugger. 

XUG: The Xerox Development Environment 
User's Guide introduces the XDE and describes 
how to use the tools that make up the 
environment. 

Zoom: To zoom a window is to switch the size of 
an active window either from normal to full 
screen or vice-versa. Zooming a normal-sized 
window also puts it on top of all other windows. 

Zone: A zone is a client-designated area of 
virtual memory used to allocate and free 
arbitrary-sized storage nodes. (See Heap.) 



Chapter 2 

Chapter 3 

References 

Authentication Protocol. Xerox System Integration Standard. April 1984. 

Clearinghouse Protocol. Xerox System Integration Standard. April 1984. 

Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote Procedure Calls. Xerox 
Technical Report CSL -83-7. 

Boggs, David Reeves. Internet Broadcasting. Xerox Technical Report CSL 83-3. 

D.R Boggs, J.F. Shoch, E.A. Taft, and RM. Metcalfe. Pup: An Internetwork Architecture. 
IEEE Transactions on Communications. COM-28(4), April 1980. 

Nelson, Bruce Jay. Remote Procedure Call. Xerox Technical Report CSL-81-9. 

Oppen, D.C.; Dalal, Y.K. The Clearinghouse: A Decentralized Agent for Locating Named 
Objects in a Distributed Environment. ACM Trans. Office Inf. Systm. 1(3):230-253; 1983 
July. [Also in Office Systems Technology.] 

Shoch, J.F.; Dalal, Y.K.; Crane, RC.; Redell, D.D. Evolution of Ethernet Local Computer 
Network. IEEE Computer magazine. 15(8): 10-27; 1982 August. (Also jn Office Systems 
Technology. ] 

Redell, D.D.; Dalal, Y.K.; Horsley, T.R; Lauer, H.C.; Lynch, W.C.; McJones, P.R; Murray, 
H.G.; Purcell, S.C .. Pilot: An Operating System for a Personal Computer. Comm. ACM. 
23(2): 81-92; 1980 February. [Also in Office Systems Technology.] 

Johnsson, RK.; Wick, J.D. An Overview of the Mesa Processor Architecture. Proc. of the 
Symposium on Architectural Support for Programming Languages and Operating 
Systems; 1982; March; Palo Alto. [Also in Office Systems Technology.] 



OFFICE SYSTEMS DIVISION 

Reader's Feedback 

Xerox's Technical Publications Departments want to provide documents that meet 
the needs of all our product users. Your comments help us correct and improve our 
publications. Please take a few minutes to respond. If you have comments on the 
productthis'document ~escribes, contact your Xerox representative. 

1. Did you find any errors in this publication? What were they? On which pages? 

2. Were there any areas that were hard to understand because of descriptions or 
wording? What were they? Where? 

3. Did this publication give you all the information you needed? If not, what was 
missing? 

4. Was this manual at the right level for your needs? If not, what other types of 
publicationsdo you need? 

5. What one thing could we do to.improve this manual for you? 

NAME DATE -------------------------------------------- ----------TITLE COMPANY 
----------~~----- -------------------------------

ADDRESS 
----------~--------------------------------------------

CITY STATE ZIP --------------------- ~--------------------- -----------
XDE3.0·1001 


