
XEROX

610E00280
September 1986

C REFERENCE GUIDE

Xerox Corporation
Information Systems Division
475 Oakmead Parkway
Sunnyvale, CA 94086

Copyright © 1986, Xerox Corporation. All rights reserved.
XEROX @,8010, and 860 are trademarks of XEROX CORPORATION
Printed in U.S. A.

TABLE OF CONTENTS

1. Introduction 1-1

1 . 1 System overvi ew 1-1

1 . 1 . 1 Environment for C programs 1-1

1.1.2 The ViewPointlXDE program paradigm 1-2

1.1.3 CTool 1-2

1.1.4 C library 1-2

1.1.5 Accessi ng Mesa interfaces 1-2

1.2 Getting started 1-3

1.2.1 Files 1-3

1.2.2 Starting the C environment 1-4

1.2.3 The first program 1-5

1.3 Guide to documentation 1-5

1.3.1 Organization of this document 1-5

1.3.2 Other documenation 1-6

1.4 References 1-3

2. (Tool and (Exec 2-1

2.1 Overview 2-1

2.2 Starting CTool and CExec 2-1

2.2.1 Starting CTool in ViewPoint 2-1

22.2 Starting CTool and CExec in XDE 2-2

2.3 User interface 2-2

2.3.1 Scri pt fi I es 2-3

2.3.2 Form subwindow 2-3

2.3.3 TTY subwindow 2-3

2.4 Sample script file 2-6

2.5 Terminal emulation 2-6

2.5.1 Terminal emulation in the ViewPoint CTool 2-6

2.5.2 Terminal emulation in the XDE CTool 2·7

2.6 User profile and User.cm 2-7

2.7 BWS search path 2-7

2.7.2 Searchpath concept 2-8

2.7.3 User interface 2-8

C REFERENCE MANUAL

TABLE OF CONTENTS

3. CC 3-1

3.1 Files 3-1

3.2 User interface 3-1

3.2.1 Options 3-2

3.2.2 Examples 3-3

3.3 Error messages 3-4

3.4 C Language extensions 3-4

3.5 Current limitations 3-4

4. Linker 4-1

4.1 Files 4-1

4.2 User interface 4-1

4.2.1 Command line 4-1

4.2.2 Switches 4-2

4.3 Examples 4-2

5. Library 5-1

5.1 I/O functions 5-1

5.1.1 File operations 5-1

5.1.2 Character 1/0 5-3

5.1.3 String 1/0 5-5

5.1.4 Block 1/0 5-6

5.1.5 Random access functions 5-6

5.1.6 Formatted I/O 5-7

5.1.7 Accessi ng standard streams 5-11

5.2 Storage allocation functions 5-11

5.2.1 Allocation/deallocation operations 5-12

5.2.2 Accessing the heap 5-12

5.3 String operations 5-13

5.4 Character operations and predicates 5-14

5.5 VarArgsfunctions 5-15

5.5.1 Operations provided 5-15

5.5.2 Sample function 5-15

5.6 Functions provided by CTool 5-16

5.6.1 ioctl 5-16

5.6.2 System 5-17

5.7 Math functions 5-18

5.8 Miscellaneous functions 5-21

5.8.1 String-to-number conversions 5-21

5.8.2 Aborting programs 5-22

ii C REFERENCE MANUAL

TABLE OF CONTENTS

6. Runtime support 6-1

6.1 Overview 6-1

6.1.1 Files 6-2

6.2 Runtime basics 6-2

6.2.1 The CBasics interface 6-3

6.2.2 The CRuntime interface 6-3

6.2.3 The CRuntime.log file 6-6

6.2.4 The CString interface 6-7

6.2.5 The Pipe interface 6-8

6.3 Start state 6-8

6.3.1 The StartState interface 6-9

7. C program debugging 7-1

7.1 Introduction 7-1

7.2 CoPilot review 7-1

7.2.1 Invoking the debugger 7-2

7.2.2 Commands vs. expressions 7-3

7.2.3 Setting context 7-4

7.2.4 Breakpoints 7-5

7.2.5 Displaying the call stack 7-5

7.3 Types and values 7-6

7.3.1 Display format 7-6

7.3.2 Type values 7-9

7.3.3 Anomalies 7-12

7.4 Evaluating expressions 7-14

7.4.1 Single variable expressions 7-14

7.4.2 Dereferencing 7-14

7.4.3 Subscripting 7-15

7.4.4 Field access 7-15

7.4.5 Assignment 7-15

7.4.6 Address of operator 7-16

7.4.7 Arithmetic operations 7-16

7.4.8 Expressions involving function applications 7-16

7.4.9 Type coercion 7-17

7.5 Limitations 7-17

7.5.1 Generic debugger limitations 7-18

7.5.2 C-specific limitations 7-18

7.6 A guide to CPrint, a C debugging aid 7-19

7.6.1 Functionality 7-20

7.6.2 Operation 7-20

C REFERENCE MANUAL iii

TABLE OF CONTENTS

Appendices:
A. Porting C programs to xoe A-l

A 1 Differences in C environments A-l

A 1.1 Machine architecture A-l

A.l.2 The ViewPoint and XDE operating environments A-2

A2 Porting steps A-2

A2.1 De-lint the source program fl. 3

A2.2 Check for system-dependent function calls A-3

A2.3 Implement system-dependent function calls A-4

A2.4 Check include files for storage allocation A-6

A2.$ Other hints A-7

A.3 Debugging A-8

A.3.1 Address faults A-8

A.4 References A-9

B. Compatability with Mesa B-1

B.l Accessing Mesa procedures B-1

B.2 Signals B-1

B.3 INLINE and MACHINE CODE procedures B-2

B.4 Mesa data types B-2

B.4.1 Numeric types 8-2

B.4.2 Pointertypes B-3

B.4.3 Strings B-4

B.4.4 Records and arrays 8-4

B.4.$ Booleans B-5

B.4.6 Array descriptors B-$

B.4.7 Proceduretypes 8-5

B.4.8 Opaque types B-5

B.4.9 Special abstract types B-6

B. ViewPoint Veneer Guide C-1

Cl Purpose C-1

C2 Overview of veneer C-l

C2.1 Contents of header files C-3

C2.2 Contents of Mesa interfaces (-3

C3 Naming conventions (-3

C3.1 Files (-3

C3.2 Items in header files (-3

C3.3 Items in veneer interfaces (-4

C4 Interfaces covered by the veneer (-4

IV C REFERENCE MANUAL

TABLE OF CONTENTS

C4.1 Atom (-5

C4.2 (ontainee (-5

C4.3 Display (-5

C4.4 FormWindow (-6

C4.5 Heap (-8

C4.6 MenuData (-8

C4.7 NSFile (-9

C4.8 PropertySheet (-9

C4.9 Selection (-10

C4.1 0 SimpleTextDisplay (-11

C4.11 StarWindowShel1 (-12

C4. 12 Wi ndow (-13

C4.13 XString (-13

C5 Sample application (-13

C5.1 Sample (-14

D. Sample XDE C Application D-1

D.l ExecEcho.c D-l

C REFERENCE MANUAL v

LIST OF FIGURES ANO TABLES

List of figures and tables

Figures
2-1 CTool Form Subwindow 2-2

2-2 BWS Searchpath Tool 2-8

6-1 Structure of runtime support 6-1

A-1 A 32-bit byte pointer A-1

A-2 Example Clmpl.c A-S

A-3 Example MesaDefs.mesa A-S

A-4 Example Mesalmpl.mesa A-6

A-S Configuration before modification A-7

A-6 Configuration after modification A-7

B-1 Calling a Mesa procedure B-3

vi C REFERENCE GUIDE

LIST OF FIGURES ANO TABLES

Tables
3-1 Si zes of types 3-5

7-1 Context vs. swap reason 7-4

7-2 Applicability of arithmetic operators 7-16

8-1 Mesa and C equivalent types 8-2

8-2 C substitutes for Mesa types 8-6

C REFERENCE GUIDE vii

LIST Of fiGURES AND TABLES

(This page intentionally blank.)

viii C REFERENCE GUIDE

1.1 System overview

1. INTRODUCTION

This chapter introduces the C programming language tools and
environment for XDE. It describes the features of the
environment and how to use them. It also discusses other C,
XDE, and ViewPoint documentation as well as the organization
of this document.

You should be familiar with ViewPoint, XDE, and the C
language. The last section of this chapter provides references
to documents that more fully descnbe ViewPoint, XDE, and C.

The system consists of an environment and tools for
developing and executing C programs on 8010 and 6085
processors. The tools include the C compiler and preprocessor,
the assembler, the linker, and cc (a compilation driver
program). The environment, which consists of a user interface,
C libraries, and C runtime support, is designed to aid in porting
C programs from other environments. There are separate
versions of the C environment--one for XDE and one for
ViewPoint. The two versions are functionally almost the same.

The C compiler can be run in either the ViewPoint or the XDE
version of the C environment. There are not separate versions
for each environment.

Many of the program development tools of XDE, including the
debugger, DF software (for program source code and version
control), and the release tools, are compatible with C
programs.

1.1.1 Environment for C programs

C REFERENCE GUIDE

The (environment for ViewPoint and XDE supports both
porting applications from other programming environments to
ViewPoint and XDE, and developing new applications
specifically for ViewPoint and XDE. (programs can therefore
assume either the ViewPoint/XDE program paradigm (see
section 1.1.2) or the the traditional paradigm of most (
programming environments. They can either use the standard
user interfaces of ViewPoint and XDE or the simple TTY user
interface provided by (Tool (see section 1.1.3) In general,
programs that assume the traditional (programming
paradigm and a TTY user interface are ru n in (Tool, whi I e
those that assume the program paradigm of ViewPol nt and

,.,

INTROOUCTION

XOE are loaded and started with the standard user interfaces
of ViewPoint and XOE.

1.1.2 The ViewPointlXDE program paradigm

1.1.3 CTool

1.1.4 C library

'·2

The general program paradigm of ViewPoint and XOE differs
from that of most other programming environments. In most
other environments, programs perform their ta.;:, : ,-.:n they
are loaded and started. When the flow of control reaches the
end of the program, the program is finished; it is unloaded and
the resources it holds are reclaimed. In ViewPoint and XOE, a
program is not considered to be finished when the flow of
control reaches the end of the program. When the program is
started, it performs only minimal intialization. However, it
remains loaded and performs its main tasks in response to user
actions (such as mouse clicking or menu selecting). The
ViewPoint paradigm does not include a notion of programs
terminating.

A further discussion of the ViewPointlXOE paradigm is in the
Mesa Course, chapter 11 (Introduction to Tajo). This chapter is
written about XOE (Tajo is the name of the XOE user interface),
but the general ideas about program paradigm and call-back
procedures are the same for both ViewPoint and XOE.For a
brief description of ViewPoint and its user interfaces, see the
ViewPoint Programmer's Manual, chapter 2 (Overview).

CTool provides a subenvironment within ViewPoint or XOE for
C programs that assume the program paradigm of most C
programming environments. Unlike programs that assume the
ViewPoint program paradigm, a program run in CTool is
considered finished when the flow of control reaches the end
of the program. Resources acquired through C library
functions (see below) are automatically freed when programs
that run in crool finish.

CTool also provides a user interface that is similar to most C
programming environments. It contains a TTY window for
entering the names of programs to be run and argv parameters
to be passed to a main function. The TTY window is also the
default source and sink of the stdin, stdout, and stderr streams
of programs run in CTool.

For more information on CTool, see chapter 2 (CTool and
(Exec).

The C library contains many standard (library functions found
in other C programming environments. These functions

C REFERENCE GUIDE

1.1.5 Accessing Mesa interfaces

1.2 Getting started

1.2.1 Files

BWSCenvironment.bed

Library interfaces

Header files

C REFERENCE GUIDE

INTRODUCTION

perform I/O operations, storage allocation, string and
character operati ons, stri ng-to-n umber conversi om, math
functions, and program aborting, as well as other operations.
Programs using the C library can avoid directly calling
ViewPoint, XDE, and Pilot to perform these operations.

If a program runs in CTool and uses the C library, its resources
that are acquired through library procedures are automatically
freed when the program finishes. Files opened through C
library functions are automatically closed, and storage
allocated through library functions is automatically freed.

Programs that do not run in CTool can also use the C library,
but resources acquired through library functions are not
automatically freed for such programs.

For complete documentation of the C library, see chapter 5
(Li brary).

C programs can access procedures and variables in Mesa
interfaces by using a C language extension described in chapter
3 (cc). section 3.4 (C language extensions). In many cases, C
programs can avoid directly calling Mesa interfaces by calling
functions in the C library. .

The first step in preparing a workstation to use the C
environment is fetching the environment and tools from the
release directory. The files needed are:

Provides the CTool user interfaces to the C support tools, along
with the C library and runtime support. XDE users should use
CEnvironment.bcd instead of BWSCEnvironment.bcd.

Compiled Mesa interfaces to the C library and runtime support.
These files must be present to compile C programs. The
interfaces are: CIOLib.bed, CHeap. bcd, CFormat.bed,
CAbort.bed, CWindowLib.bed, CTypeArray.bcd, Libm.bed,
StringOps.bed, VarArgs.bed, CBasics.bed, and CRuntime.bed.

Including stdio.h, strings.h, stdlib.h, ctype.h, math.h,
varargs.h, and sgtty.h. These files provide the declarations
necessary to use the C library.

1-3

INTRODUCTION

Compiler tools

1.2.2 Starting the C environment

Including the C preprocessor (epp.bed), the C compiler
(CComp.bed), the assembler (Assembler. bed), the Linker
(Linker.bed), and the compiler driver program cc (ee.bed).

For XOE users, a OF file (Cuser.df) on the release directory
simplifies fetching these files. Executing the command

> BringOver Cuser.df

in the XOE executive fetches the released version of all these
files. It fetches CEnvironment.bed (the XOE version of the
environment) rather than BWSCEnvironment.bed.

ViewPoint users can use the OF file to ascertain the location of
the files but cannot use the OF software to automatically bring
the files to their local desktop.

The process of starting the C environment is different for
ViewPoint and for XOE.

1.2.2.1 Starting the C environment in ViewPoint

1.2.2.2 Starting the C environment in XOE

1-4

To load and start the C environment, copy the icon for
BWSCEnvironment.bcd to the ViewPoint loader. When the
environment is started, a CTool icon appears in the Basic Icons
folder of the directory Copy this icon to the desktop. When it
is opened, it becomes a CTool instance. You can make
additional copies of the icon for multiple instances of CTool.

To load and start the C environment, enter the command

> Run.- CEnvironment

to the XDE executive. Once the environment is started, the
commands CToo/. - and CExec. - (see chapter 2) are registered
with the executive. To create an instance of CTool, type

>CfooL-

in the executive.

To unload the C environment, use the executive command

> Unload.-CEnvironment.-

C REFERENCE GUIDE

1.2.3 The first program

1.3 Guide to documentation

Suppose that the program

#include < stdio.h >
main 0
{

printf("hello, world\n");

INTRODUCTION

is in the file hello.c. To compile this program, you type into the
(Tool

> > > cc hello.c

When the compilation is complete, you can run the program by
typing into the CTool

> > >foo.bcd

To gain some familiarity with compiling and running (
programs in ViewPoint or XDE, compile and run this program
before you go on.

1.3.1 Organization of this document

C REFERENCE GUIDE

The rest of this document describes the user interface of the
various tools, libraries, and utilities that are provided. chapter 2
descri bes the (Tool and provides the information necessary for
using input and output redirection. chapter 3 describes the
compiler driver program, cc. chapter 4 describes the linker and
explains the steps necessary for linking large programs and
library files into executable modules. chapter 5 explains the
library functions provided chapter 6 describes the (runtime
support and the Mesa interfaces it exports. chapter 7 gives an
overview of debugging C programs in XDE. Appendix A,
"Porting (Programs to ViewPoint and XDE," gives some hints
on how to ease the job of porting C programs from other
environments to ViewPoint or XDE. Appendix B discusses
calling Mesa procedures from C programs.

1·5

INTROOUCTION

1.3.2 Other documentation

1.3.2.1 Mesa language

1.3.2.2 Environment interfaces

1.3.2.3 Using XDE

1.4 References

To access procedures and variables in Mesa interfaces, you must
know some Mesa constructs, especially Mesa data types.
Besides Appendix B of this manual, chapters 4-10 of the Mesa
Course contain an abridged description of the Mesa language,
including all the data types. The Mesa Language Manual
contains a full definition of the language.

The ViewPoint Programmer's Manual contains documentation
for the public ViewPoint interfaces. chapter 3 of this manual
gives general information about which interfaces are needed
for various types of applications.

Documentation for the public XDE interfaces is in the Mesa
Programmer's Manual. Appendix A of this manual contains an
example tool demonstrating the use of many of these
interfaces.

The public Pilot interfaces are documented in the Pilot
Programmer's Manual. These interfaces include access to basic
kernel facilities (such as processes), environment definitions,
storage management, I/O devices, communication facilities,
and formatting procedures.

The Services Programmer's Guide documents the public
interfaces to the NS file system (the file system ViewPoint uses)
and all the network services.

Although the C compiler runs in both ViewPoint and XDE, most
program development tools, including the debugger, run only
in XDE. C programmers, therefore, need some familiarity with
XDE.

Complete documentation for XDE is in XDE User Guide.
chapter 1, contains a general introduction to XDE and its user
interfaces.

Several other documents may help you understand ViewPoint,
XDE and the C Language. They Include:

[1] XDE User Guide. Version 3.0 [November 1984]

1-6 C REFERENCE GUIDE

INTRODUCTION

[2] The C Programming Language. Brian W. Kernighan and
Dennis M. Ritchie, Prentice-Hall, Inc., Englewood Cliffs, NJ.
1978.

[3] Mesa Assembler Reference Manual.

[4] A Tour Through the Portable C Compiler, S.c. Johnson.

[5] Mesa Programmer's Manual. Version 3.0 [November
1984].

[6] Pilot Programmer's Manual. Version 3.0 [November 1984].

[7] ViewPoint Programmer's Manual. Version 4.0 [September,
1985].

[8] Mesa Course. Version 11 1 [February 1985].

[9] Services Programmer's Guide Version 8.0 [November
1984].

[10] Mesa Language Manual. Version 11.0 [June 1984].

C REFERENCE GUIDE 1-7

INTRODUCTION

(This page intentionally blank)

1-8 C REFERENCE GUIDE

2.1 Overview

2. CTOOL AND CEXEC

(Tool and (Exec provide a user interface for interactively
running (programs in ViewPoint and the XDE. This chapter
describes the function and operation of (Tool and (Exec.

(Tool is a multi-instance window tool with a TTY subwindow
for entering program names to be run. The TTY subwindow of
the instance in which a client program is run is the default
source and sink of the standard streams of that program. (Tool
also has a form subwindow for specifying redirection of the
standard streams and for setting switches, and a message
subwindow for posting error messages.

(Exec exists only in the XDE version of the (environment. it
provides the same functionality as (Tool but uses the executive
window. Because (Exec does not contain a form .subwindow,
there is also command line syntax for setting switches and
redirecting standard streams. (Tool and (Exec both recognize
the same command line syntax

These tools also accept script files for running client programs
in batch mode.

(Tool and (Exec are clients of StartState and (Runtime (see
chapter. 6). They will restart a program whenever it is safe.
They assume that a program is completed when it returns from
its mainline flow of control. Upon completion, they free a
program's resources (delete the heap used in library storage
allocation functions and close open streams) and assume that
the global frames can be reused. Programs that register
procedures with the environment, such as procedures asso­
ciated with menu items, should not be run in CTool or (Exec.

2.2 Starting CTool and CExec

2.2.1 . Starting CTool in ViewPoint

C REFERENCE GUIDE

There are different procedures for creating instances of (Tool
and (Exec in the two versions of the (environment.

The file BWS(Environment.bcd contains a configuration that
includes (Tool as well as ail runtime support and library
functions.

2·1

(TOOL AND (EXEC

After you load and start CTool, its icon appears in the Basic
Icons folder of the directory. When you copy this icon to the
desktop and open it, it becomes a CTool instance. You can
create multiple instances of CTool by making copies of the
icon.

The Destroy command in CTool closes the icon. To delete a
CTool instance, delete the icon.

2.2.2 Starting CTool and CExec in XOE

2.3 User interface

stdin

::. ::. ::.

2-2

The file CEnvironment.bed contains a configuration that
includes CTool, CExec, and all runtime support and library
functions. When it is started, it registers the commands CTool.­
and CExec. -. with the executive. Invoking the CTool. -command
creates an instance of CTool. Clicking over Another!, or
reinvoking the executive command creates additional
instances of CTool. Clicking over Destroy! destroys the CTool
instance.

The command CExec. - causes the executive window to function
like the TTY subwindow of CTool. You can create multiple
instances of CExec with multiple instances of the executive.

CTool has a message subwindow, a form subwindow (Figure
2.1), and a TTY subwindow. In support of script files and CExec,
you can set all the data items in the form subwindow by
entering commands in the TTY subwindow.

Figure 2-1: CTool Form Subwindow

2 REFERENCE GUIDE

2.3.1 Script files

2.3.2 Form subwindow

2.3.3 TTY subwindow

C REFERENCE GUIDE

CTOOL AND CEXEC

Script files enable several client programs to be executed in a
batch mode. When a script file is executed, each line is
interpreted as if it were typed into the TTY subwindow. The
line is echoed in the TTY subwindow, and the action taken is
the same as ifthe line were typed in.

Input for stdin cannot be included in a script file. After a
command to execute a client program, the next line of the
script file is not read until the program completes.

The form subwindow of CTool has three text items--stdin:,
stdout:, and stderr:--for redirecting the standard streams to
files. If these fields are empty, the TTY subwindow is the source
and si nk of the standard streams. Otherwise, the contents of
these fields are interpreted as the names of files to be used for
the standard streams.

There are two boolean items: Debug and StopScriptOnError. If
Debug is set, a world swap occurs just before a client program
is started or restarted. If Stop5criptOnError is set, execution of
a script file ceases after the first program that cannot be
successfully run. For this purpose, execution is unsuccessful if:

The program file or a standard stream file cannot be
acquired.
The program cannot be loaded successfully.
The program calls abort ().
The program calls exit () with an argument other than
zero.

Because CExec has no form subwindow, all of these data items
must be set with commands in the TTY subwindow, as
described in section 2.3.3.

The form subwindow also has command items for creating,
destroying, and closing CTool instances These are discussed in
section 2.2.

The TTY subwindow is used for:

Entering the names of client programs to be run and the
strings for the argv parameters.
Setting the data items of the form subwindow of CTool. In
CTool this is an alternate way of setting them; in CExec it is
the only way.
Providing a source and Sink of the standard streams when
they are not red i rected

2·3

CTOOL AND CEXEC

2.3.3.1 Running client programs

2.3.3.2 Unloading programs

2.3.3.3 Changing the standard streams

2-4

Setting data items with the TTY subwindow is equivalent to
setting them in the form subwindow. The settings take effect
the next time a <lient program is run and remain in effect until
they are set again.

The interpretation of a line of input to the TTY subwindow
depends on the first non-blank character of the line, as
described below.

Ifthe first non-blank character of a line is neither '!, '@, '_, ", or
'/, and the first word is not Unload. - or Show. -, then the line is
interpreted as the name of a program to be run, followed by
the strings for argv. The argv strings are separated from each
other and from the program name by one or more spaces. The
program name need only be the unique prefix of a filename.
The filename extensions .archivebcd and .bed are assumed if
the name provided does not specify a unique filename by itself.

Pressing the STOP key causes a running program to abort
execution. No exit status is returned, and a new prompt is
printed. The program does not always abort at the moment
the user presses the STOP key (see section 6.2.2.8).

If the first word of a line is Unload. -, then the line is interpreted
as a command to unload a program. Following the Unload. - is a
list of either file names or load handles, MLoader.Handles. A
load handle corresponds to a single loaded instance of a
program It is printed in CTool's message subwindow
whenever a program is loaded or restarted (with CExec it is
printed in the Herald window). When it is given as a parameter
to an unload command, the corresponding program instance is
unloaded. If a file name is given, all loaded instances of that
program are unloaded.

The load handles for each load instance of a program can be
displayed with the Show. - command. If the fi rst word of a line is
Show. - then the line is interpreted as a. command to show the
load handles for a list of programs. Following the Show. - is a list
of the file names of the programs for which load handles are to
be displayed.

Programs currently running in another instance of CTool or
CExec will not be unloaded.

The descriptions in section 6.3.1.1 of the unloading procedures
in the StartState and BWSStartState interfaces give a more
detailed description of what occurs when unloading programs.

If the first non-blank character of a line is 'I, the I!ne is
interpreted as a command to change the standard stream

2 REFERENCE GUIDE

2.3.3.4 Changing the switches

2.3.3.5 Displaying the current status

2.3.3.6 Executing script files

C REFERENCE GUIDE

CTOOL AND CEXEC

string items. The names of the files follow the', They can be
separated by either commas or spaces, but commas are
necessary to specify a name after an empty string.

Examples:

!foo, bar, baz Changes stdin to "foo", stdout to "bar", and
stderrto "baz".

faa Changes stdin to "foo", and stdout and stderr
to empty.

!,bar Changes stdin and stderr to empty, and stdout
to "bar".

foo, ,baz Changes stdin to "foo", stdout to empty, and
stderrto "baz".

Changes all three to empty.

The files are not acquired at the time these fields are set; they
are acquired the next time a client program is run.

If the first non-blank character of a line is 'I, the line is
interpreted as a command to change the Debug and
StopScriptOnError switches. The switches follow the '/ . A 'd
sets the Debug switch and an's sets the stopScriptOnError
switch. To negate a switch, precede the letter with either ,- or
'-. Switches other than 'd or's are ignored. The individual
switches are not separated.

Examples:

/d-s Sets Debug to TRUE and StopScriptOnErrorto FALSE

/·d Sets Debug to FALSE and leaves StopScriptOnError as it
was.

Has no effect.

If the first non-blank character of a line is '?, the line IS
interpreted as a command to display the current values of the
standard stream strings and the switches in the TTY
subwindow. Text on the line after the '? is ignored This
feature is particularly useful for (Exec because the values
cannot be examined in a form subwindow.

If the first non-blank character on a line IS a '@, the Ii ne IS
interpreted as a command to execute a SCrIpt file The name of

2·5

CTOOL AND CEXEC

2.3.3.7 Comment lines

2.3.3.8 Exiting from CExec

2.4 Sample script file

2.5 Terminal emulation

the script file follows the '@. The default extension for script
files is .cscript.

If the first non-blank character of a line is a '- the line is
ignored. Such lines are useful only in script files.

If the first non-blank character of a line entered to CExec is a ",
the line is interpreted as a command to quit and return the
executive to its normal state. In CTool such lines are ignored.

It is advisable to begin script files with commands to initialize
the standard stream fields and switches, so that the result of
the file's execution is not affected by commands that were
previously entered.

-- Sample.cscript
-- Created 13 -Sep-8.5 9: 17:02

-- First initialize the switches and standard stream
-- fields
/-ds
!
lin I outl
Test pI p2 p3

! in2, out2
Test p4 p5 p6 p7

terror In"err Log
Test p9 plO

2.5.1 Terminal emulation in the ViewPoint CTool

2-6

In the ViewPoint version of CTool, the TTY subwindow
emulates a VT100 terminal. No special action is needed to get
terminal emulation

2 REFERENCE GUIDE

CTOOL AND CEXEC

2.5.2 Terminal emulation in the XOE CTool

2.6 User Profile and User.em

2.7 BWS searehpath

2.7.1 Files

C REFERENCE GUIDE

If an e switch is appended to the croo/. - command, a CTool
instance is created that has a VT100 terminal emulation
subwindow in place of the ordinary TTY subwindow. Clicking
Another! in the form subwindow of such an instance causes
another instance with a terminal emulation subwindow to be
created.

To create an instance with terminal emulation, the file
Emu.bed (or any configuration that includes Emu.bed and
exports Emulators.bed) must be loaded. If it is not loaded, an
error message is printed and no tool instance is created.

The terminal emulation version of the XDE CTool has an
additional boolean item, Writelog, in the form subwindow.
Output to the terminal emulation subwindow is sent to a log
file only when this switch is set. This switch allows users to
avoid having a log file that partially consists of characters used
for cursor control.

The ViewPoint CTool is affected by a [CTool] section of the User
Profile, and in XDE both CTool and CExec are affected by a
[CTool] section in the User.cm file. The prompt used in the TTY
subwindow can be set as follows:

[CTool)
Prompt: <your prompt>

The default prompt is .. > > >".

To facilitate program development in BWS, a searchpath
mechanism similar to that of XDE has been provided in the
BWS. In BWS, all file I/O operations in the C libraries, along with
the C Tool command interpreter, use the searchpath when
trying to open files. The BWS Searchpath Tool is provided to
manipulate the searchpath.

The BWS searchpath mechanism is part of the BWS
CEnvironment. The search path tool is created when
BWSCEnvironment.bcd is loaded. The searchpath mechanism

2-7

CTOOL ANO CEXEC

2.7.2

2.7.3

2,8

Search path concept

User interface

Sean:hPathTool '

I: ,.!1.,dd ,.!1.,n Elernent J

and tool are also created when just running (Support. bed and
MonNS.bed (see section 6.1.1).

The BWs search path is similar to the XDE searchpath
implemented by MFile. The search path is a sequence of
directories. These directories are searched for files in the order
in which they appear on the search path. The search occurs
whenever a client attempts to open a file. When a file is
created, if it is not found, a new file is created in the first
directory on the searchpath.

The BWs searchpath is similar to the PATH facility in Unix.
However, in Unix the PATH is searched only for commands.
When a file is opened, only the current directory is searched. In
BWs the search path is used whenever a file is opened. Also
note that the BWs search path is used only for the C Tool
command interpreter and the C I/O libraries. It has no effect on
other ViewPoint appl ications.

The search path in BWS is manipulated via the BWs Search path
Tool (Figure 2-2).

'.maMi SystemFoldet- ()ther Folder

S\o'sternFolder
"

Cat.alogFor'l 0400B!'1 ir" ... 1ichael E, '",·",'agner: ':)SEil.) r",Jort.h: ::'::ero::<! '1 iCI.)ser!1

Sys t.e tOn F (I Ide r I F:,e rn o",o'e J

Cat.alogFor'l 0400B! '1 ir" ... 1ichael E, '",·",'agnet': I) 5 Eil.) r",Jort.h: :·::ero:o:!1 iCLance !1

Figure 2-2: BWS Search path Tool

2 REFERENCE GUIDE

C REFERENCE GUIDE

CTOOL AND CEXEC

Three types of objects can be put on the searchpath. Two of
them, the Desktop and the System Folder, are single-instance
objects. Although they may be on the searchpath many times,
only their first occurrence is useful. Subsequent occurrences
only slow performance. The third object, the Other Folder, may
refer to any folder in the local file system. When the BWS
(Environment is loaded, the searchpath is initialized only to
the desktop.

An instance of the BWS Search path Tool is created by selecting
SearchPathTool from the attention menu. A form window
displaying the search path's current setting is created. The
searchpath reads top down, so in Figure 2-2, the desktop is the
first item on the searchpath (the first directory searched for a
file), and the last directory searched is a folder called (Lance on
the desktop. You can remove any element of the search path by
clicking on the Remove button next to a particular element.
You add elements to the end of the search path by clicking the
Add An Element button at the top of the window. To change
the value of a particular element, click on the type of element
desired--Desktop, SystemFolder, or Other Folder. When you
choose the Other Folder option, you must first select the folder
you want to be entered onto the searchpath.

2·9

CTOOl AND CEXEC

(This page intentionally blank.)

2-10 2 REFERENCE GUIDE

3.1 Files

3.2 User interface

C REFERENCE GUIDE

3. cc

The command cc invokes the C language compiler by issuing
commands that perform the desired sequence of compilations.
Command line arguments to cc consist of a list of files and a set
of switches. Options allow the user to specify the level of
optimization desired, rename output files, stop compilation at
various points, or to pass other flags to the C preprocessor,
compiler, assembler, or linker.

Retrieve ee.bed from the Release directory. There is one version
of ee.bed, epp.bed, CComp.bed, Assembler.bed, and Linker.bed
for both ViewPoint and XDE.

The command cc runs in the CTool or under CExec and takes
arguments from the command line. The simplest form of cc is a
list of file names, as in the following:

> > > cc sourcefile1.c sOllrcefile2.c sourcefilen.c

During execution, cc gives feedback about its operations in the
form of the name of the file under process together with
messages provided by the various steps. Any errors reported
during the process are output to stderr (normally mapped to
the CTool window).

The command cc produces an executable program out of a list
of source (.c), assembler(.as) or object (.bcd) files. Each source
file is preprocessed and compiled, producing a assembly file.
Each assembly file (either specified on the command line or
produced by a previous preprocess/compile step) is assembled,
producing an object file. The object files (either specified on
the command line or produced by previous assembler steps)
are linked into the final executable file foo.bcd.

You can modify the behavior of cc by using various switches.

3-1

cc

3.2.1 Options

3-2

CC accepts several switches that modify the command input. A
command has the general form

> > > cc [switches} filelist

where [] indicates an optional part and the switches and fi/e/ist
are as described.

Each switch specification is a a letter prefixed by a hyphen. You
can specify multiple switches, but each switch must consist of a
hyphen followed immediately by one of the letters on the
following list.

c Suppress the linking phase of the compilation and force a .bed
file to be produced even if only one program is compiled.

d Have the compiler generate runtime stack error checks.

Have the assembler turn off cross-jumping optimizations.

h Have the assembler turn off peephole optimizations.

p Have the compiler pause after the first error is encountered.

w Suppress warning diagnostics.

k Retain intermediate files. Compiling with cc -k testfile.e
produces the files testfile.epp (preprocessor output), testfile.as
(compiler output), testfile.bed (assembler output), and foo.bed
(linker output).

s Compile the named C programs and leave the assembly
language output on corresponding files suffixed .as. (-s implies
-e)

e Execute only the preprocessor step on the named C source files,
and send the output to stdout.

a All arrays are guaranteed by the user to be less than 32K words
long. This allows the compiler to generate more efficient code
for array accesses. It should be used if possible.

9 Produce minimal debugging information. This shortens
compile times and decreases object code size, but forces the
user to use octal debugging.

a output

mmname

Allocate string literals in read-only vi rtual memory Any
attempt to modify these literals will result in a write-protect
fault. The default is to allocate string literals in read/write
memory so that they may be modified.

Name the final output file output.bed. If this option is used, the
file foo.bed will be left undisturbed. A blank space may appear
between the switch 0 and the argument output.

Normally, the Linker assumes that the first routine to be called
in a configuration is mainO. Using the -m option instructs the
Linker to generate code to call the routine mnameO first,

C REFERENCE GUIDE

I library

c

Dname = def

Uname

3.2.2 Examples

C REFERENCE GUIDE

cc

instead of mainO. A blank space must appear between the
switch m and the argument mname.

The given file is a library (a Mesa interface file). It is passed to
the linker, and any unbound references to items in that library
are correctly bound by the linker.

Prevent the C preprocessor from eliding comments.

Define the name to the preprocessor, as if by ff #define". If no
definition is given, the name is defined as "1". Blank spaces
cannot appear after the switch D.

Remove any initial definition of name. Blank spaces cannot
appear after the switch U.

The default for all the switches is off. For example, cc
program.c compiles and links the source file into the
executable image foo.bed, with crossjumping and peephole
optimization enabled.

Other arguments are taken to be members of the file list,
typically C source programs or files produced by an earlier cc
run. These files, together with the results of any compilations
specified, are linked (in the order given) to produce an
executable program with the name foo.bed. C source files must
have the extension .e, files with the extension .as are assumed
to be C-compatible assembly language files, and files with the
extension .bed are assumed to be linkable object files.

> > > cc example.c

Compiles the C source in the file example.e. The output is
a file, faa. bed, which is executable in the CTooI/CExec.

> > > cc -s example.c

Compiles the C source in the file example.e but stops
after generating the assembly language file example.as.

> > > cc -w -0 pr-ogr'am ex.c lib l.bcd

Compiles the C source file ex.e and then links the
assembler output (ex.bed) with the library module
lib1.bed The flag -w directs cc to suppress warning
messages from the compiler. The output of the linker IS

placed in the file program.bed.

> > cc ·[)dehug ex. as impl.c demo.hcd mumble.c

Compiles the C source files imp!.c and mumble.c as if the
declaration ff #define debug 1 ff appeared at the start of
both files The assembly language file ex.as is assembled
and the respective beds are linked with the file

3·3

CC

3.3 Error messages

3.4 C Language extensions

3.5 Current limitations

3·4

demo.bed. The output of the linker is place in the file
foo.bed.

The C preprocessor, compiler, assembler, and linker all direct
error messages to the stderr stream. (See chapter 2 for an
explanation of the standard streams and stream redirection.)
Error messages are reported in (approximate) source order by
each of the compiler tools. A souce file character position is
reported if possible, along with a description of the error
condition. If an error is discovered by a compilation tool (for
example, by the assembler), processing continues until that
tool reaches completion. The compilation is then aborted
before the next compilation tool (in this example, the linker) is
invoked.

A new storage class, the Mesa External class, has been added to
this C implementation. Because references to external objects
implemented in Mesa programs must use an interface in the
reference, a different method of declaring such objects in C
programs is needed. The syntax is similar to that of extern
declarations. For instance, to use Time.Current[] in a C
program, add the declaration:

mesa unsigned long Time _ CurrentO;

as if the procedure/constant werean external object. The object
name must have an embedded underscore, which is used as the
delimiter between the interface name and the object name.
Similarly, to use Heap.systemZone, add the declaration:

mesa int *Heap_systemZone;.

Note that there is no UNCOUNTED ZONE type in C, so int * is used
to get the size right. Table 3-1 summarizes the bit-size
implementation specifics of the C compiler tools. Appendix A
provides a simple example of the use of Mesa routines from C
programs.

The following limits are built into the current implementation
of C and are enforced by the compiler tools:

The include syntax #indude <file.h> is equivalent to
#indude "file.h". In both cases the search path is
traversed until the first occurrence of file.h is located. In
ViewPoint file.h cannot be a full path name, and the
header file must be on the searchpath. In XDE the

C REFERENCE GUIDE

8010/6085
Workstation

Character Set Xerox
Character Set

char 8 bits

int 16

short 16

long 32

float 32

double 64

C REFERENCE GUIDE

cc

header file need not be on the searchpath if file.h is a
full pathname. If it is a full pathname, the quote syntax
must be used because of XDE's directory syntax. For
example: #include "<Tajo>Oirectory > File.h" wi II
include File.h regardless of the setting of the search
path.

The maximum local frame size is limited to 4K words.

The maximum length for a single assembly language file
is 64 Kbvtes.

Table 3-1 summarizes the bit-size implementation specifics of
the C compiler tools.

VAX 11/780 PDP-11/70 IBM 370
Interdata
8/32

ASCII ASCII EBCDIC ASCII

8 bits 8 bits 8 bits 8 bits

32 16 32 32

16 16 16 16

32 32 32 32

32 32 32 32

64 64 64 64

Table 3-1: Sizes of types

3·5

CC

(This page intentionally blank.)

3-6 C REFERENCE GUIDE

4.1 Files

4.2 User interface

4.2.1 Command line

4. LINKER

This section discusses the operation of the linker, including its
switches and error messages. The linker is the counterpart of
the Mesa Binder for non-Mesa languages. It takes a collection
of separately compiled modules and creates a single output
file. The linker resolves all external references among the
modules that it can, linking implementors to importers.
References that cannot be resolved are left unbound and may
optionally be bound by subsequent applications of the linker,
or, in the case of unbound references to Mesa programs, by the
binder or the loader.

Retrieve Linker.bcd from the Release directory. There is one
version for both ViewPoint and XDE.

Although the linker runs in both ViewPoint and XDE, in
ViewPoint it can only be invoked by cc. There is no direct user
interface to the linker in ViewPoint.

In XDE the linker can be invoked directly. It runs in the
executive and registers the command Linker. - with the
executive.

A summary of the linker's commands, including errors and
warnings, is written to the executive. No log file is produced.

To invoke the linker in XDE, type a command of the following
form to the executive:

>Linker Iglobal-switches [outputfile/o] file1/10cal-switches file2/10cal-switches ...

C REFERENCE GUIDE

The command is Linker, the global-switches apply to all files
that will be linked, filej are the actual object files to be linked,
and local-switches are switches that apply only to a single file.
Local switches always supersede global switches. An optional

4·1

LINKER

4.2.2 Switches

4.3 Examples

4-2

output file may be given, followed by the /0 switch. If no
output file is given, output is written on Foo.bcd.

The input files of the linker may be the output of any compiler
(including the Mesa compiler), the table compiler, or the linker
itself.

The optional switches are a sequence of zero or more letters,
preceded by a slash. Each letter is interpreted as a separate
switch designator, and each may optionally be preceded by - or
- to invertthesense oftheswitch.

The linker recognizes the following switches. Defaults are
given in parentheses. .

e Link in the driver module for C. This module contains storage
for standard stream variables and calls the main function.
(TRue)

d File is a Mesa interface; warn about unbound references to this
interface. (FALse)

e Name is the entry function for the configuration. If. not given, a
function named main is the default. (FALse)

g Pass unbound non-Mesa imports to the resulting object file for
subsequent linking. Default is to generate a warning and
suppress the import. (FALSE)

File is a library (may only be a local switch) .(FALse)

m Warn about unbound Mesa imports. (FALse)

o File is to be the output file .. bed extension is appended if not
al ready present. (FALse)

s Copy symbols into the file output.symbols, where output is the
root of the output filename. (FALse)

u Warn about unbound non-Mesa imports. (TRUE)

v Apply two-page uniform swap units to the virtual memory of
the resulting object file's code. (TRue)

>Linker Impl11mpl21mpl3

Links ImpI1.bed, ImpI2.bed, and ImpI3.bed, putting the output
into Foo.bed. Warnings will be given only for unbound non­
Mesa references.

C REFERENCE GUIDE

C REFERENCE GUIDE

LINKER

>linker Prog/o Impl1 Impl2 CIOLib/1 Heap/d Stream/d

Links Impl1.bed and ImpI2.bed, putting the output in Prog.bed.
References to items in the library CIOLib will also be resolved.
The file CIOlib.bed must be on the local disk. Unbound
references to the Mesa interfaces Heap and Stream wi II
generate warni ngs.

>Linker/-u Out/o mymain/e Mesalmpl Clmpl Fortlmpl

Links Mesalmpl.bed, Clmpl.bed, and Fortlmpl.bed, putti~~ ':h"

output in Out.bed. No warnings about unbound references will
be given. The procedure mymain is called as the entry point to
the configuration.

4-3

LINKER

(This page intentionally blank.)

4-4 C REFERENCE GUIDE

5.1 I/O functions

5.1.1 File operations

C REFERENCE GUIDE

5. liBRARY

I/O functions that involve access to files are implemented with
calls to procedures in the NSFileStream, Stream, and NSFile
interfaces in the ViewPoint version of the (environment, and
with calls to procedures in the MStream, Stream, and MFile
interfaces in the XDE version. The library procedures catch any
signals raised by the procedures in these interfaces and return
values that indicate an error occurred in the operation.

The type FILE, defined in stdio.h, is a replacement for a
Stream.Handle. A pointer to a FILE is interpreted as a LONG

POINTER TO Stream.Handle within the library procedures.

There are no restrictions on intermixing calls to (I/O library
procedures and calls to Mesa I/O interfaces. (ails to the (I/O
library do not affect the behavior of the Mesa interface
procedures. However, calls to the function ungetc do
temporarily change the state of the associated stream object
(see the discussion of ungetc below).

Programs using these functions should include stdio.h.

fopen

FILE *fopen (filename, type)
char *filename, *type;

This function attaches a stream to the file named filename and
returns a pointer to that stream. The type parameter, whose
acceptable values are listed below, specifies the type of file
(text or binary), the type of access, and the initial stream
position (beginning or end of the file). If the file cannot be
opened with the specified access, or if type is not one of the
strings listed below, then the value NULL is returned.

Values for the type parameter:

r or rb:

r+:
r + b:
w:
wb:
w+ :

Read-only access. The type of the file does not
matter.
Read and write access to a text file.
Read and wri te access to a bi nary fi Ie.
Write-only access to a text file
Write-only access to a binary file
Read and wri te access to a text fi I e (sa m e as r +)

:'-1

LIBRARY

5-2

w+b:

a:

ab:

a +:

Read and write access to a binary file (same as
r + b).
Write-only access to a text file. The stream
position is initialized to be the end of the file.
Write-only access to a binary file. The stream
position is initialized to be the end of the file.
Read and write access to a text file. The stream
position is initialized to be the end of the file.
Read and write access to a binary file. The stream
position is initialized to be the end of the file.

For values that begin with r or w, the stream position is
initialized to the beginning of the file. For values that begin
with a, the stream position is initialized to the end of the file,
but there is no restriction on later setting it to any other
position in the file.

fclose

int fclose (stream)
FILE *stream:

This function deletes a stream and releases the associated file.
The output buffer for the stream is flushed before it is deleted.
The return value is zero if no errors arise during the operation,
and non-zero otherwise.

freopen

FILE *freopen (filename, type. stream)
char *filename, *type;
FILE *stream;

The freopen function first deletes the stream specified by the
stream parameter and then attaches a stream to the file named
filename. The return value is the stream parameter (whose
referent has been changed) if the file is opened successfully
and NULL otherwise. The type parameter is the same as for the
function fopen.

unlink

int unlink (path)
char *path:

The unlink function deletes the file whose name is path. The
return value is zero if it is successful, and EOF otherwise.

fflush

int fflush (stream)
FILE *stream;

The fflush function forces all data written to the stream to be
written to the file, thus flushing the output buffer The value
returned is zero if no errors arise during the operation, and
non-zero otherwise.

tmpfile

FILE *tmptile ()

C REFERENCE GUIDE

5.1.2 Character 1/0

C REFERENCE GUIDE

LIBRARY

This function acquires a temporary file and attaches a stream to
it, returning a pointer to that stream. The file is deleted when
the stream is deleted. If the operation does not complete
successfully, then the value NULL is returned.

rename

int rename (old, new)
char *old, *new;

The rename function changes the name of the file specified by
old to new. The return value is zero if no errors occur, and non­
zero otherwise. The file must be closed to rename it.

feof

int feof (stream)
FILE *stream;

The function feof returns a non-zero value if stream IS

positioned at the end ofthe stream, and zero otherwise.

fgetc

int fgetc (stream)
FILE *stream;

The fgetc function returns the next character, converted to an
integer, from the stream specified by the parameter. If an error
occurs during the read, or if the end of the file has been
reached, then it returns EOF, a constant defined in stdio.h.

getc

int getc (stream)
FILE *stream;

The function getc is identical to the function fgetc. It is simply a
macro, defined in stdio.h, that expands to fgetc (stream).

getchar

int getehar ()

The function getchar IS a macro, defined in stdio.h, that
expands to fgetc (stdin).

fputc

int fpute (e, stream)
FILE *stream;

The putc function interprets the integer parameter c as a
character and writes it to the specified stream. If the write !s

5-3

LIBRARY

5-4

successful, then it returns the parameter c. Otherwise, it returns
the constant EOF.

pute

int putc (c, stream)
FILE *stream;

The function putc is identical to the function fpute. It is simply a
macro, defined in stdio.h, that expands to fputc (c. stream).

putchar

int putchar (cl

The function putchar is a macro, defined in stdio.h, that
expands to fputc (e, stdout).

ungetc

int ungetc (c, stream)
FILE *stream;

The function ungetc interprets the integer parameter e as a
character and puts it back into the input stream. The position
of the stream is set back by one. This function does not change
the file associated with the stream and may be used even if
there is only read access to the stream.

After ungetc is called, any input procedure called with the
same stream, whether from a Mesa interface or from any
library, returns the pushed-back character as the first character
of input.

Any write procedure, and any procedure that changes the
stream position (such as fseek), if successful, erases the memory
of the pushed-back character. Because ungete sets the stream
position back by one, calling a write procedure after calling
ungetc overwrites the pushed-back character.

The value returned by ungetc is the same as the parameter c if
the operation is successful, and EOF otherwise. The operation is
unsuccessful if the current stream position is the beginning of
the file.

Only one character may be pushed back at any time. Attempts
to push back several characters will yield undefined results.

The value EOF cannot be pushed back into the stream.

This function is implemented by retaining the pushed-back
character and temporarily replacing the procedures of the
stream object. The new procedures return the retained
character as the first byte of input and then restore the original
procedures to the stream object. The ciientData field of the
stream object is used to cache the pushed-back character and
the original procedures. The original value of the ciientData
field is retained; it is restored when the rest of the stream
object is restored. If clients need to access the original client
data before the stream object is restored, it can be accessed by
using one extra dereference. While the stream is in its altered

C REFERENCE GUIDE

5.1.3 String 1/0

C REFERENCE GUIDE

LIBRARY

state, the dientData field points to a record whose first field is
the original clientData pointer.

fgets

char *fgets (s, n, stream)
char *s;
FILE *stream;

The fgets function reads up to n-l characters into the string
referenced by the parameter s. Input stops either after a
carriage return or after n-l characters have been read,
whichever happens first. A null character is appended after the
last character read.

Unlike the gets function (described below). if a carriage return
is read, it is put in the string.

The value returned is either NULL if a read error occurs and no
characters were read, or the parameter s otherwise.

gets

char *gets (s)
char *s;

The gets function reads into the string referenced by the
parameter s from the stdin stream, stopping when a carriage
return is read. The carriage return is not put in the string
(unlike the fgets function) but is replaced by a null character

The value returned is either NULL if a read error occurs and no
characters were read, or the parameter s otherwise.

fputs

int fputs (s, stream)
char *s;
FILE *stream;

This function writes the string referenced by the parameter s,
which must end with a null character, to the specified stream.
The null character is not written to the stream. The val ue
returned is the last character printed.

puts

int puts (s)
char *s;

This function writes the string referenced by the parameter s,
which must end with a null character, to the stdout stream. It
then writes a carriage return to stdout. The null character is not
written. The value returned is a carriage return.

5-5

LIBRARY

5.1.4 Block 1/0

5.1.5 Random access functions

5-6

fread

int fread (ptr, sizeof(*ptr), count, stream)
unsigned count;
char *ptr;
FILE *stream;

This function reads into a block referenced by the parameter
ptr from the specified stream. It reads count items, whose size
in bytes is specified by the second parmaeter. The val ue
returned is the number of items actually read.

fwrite

int fwrite (ptr, sizeof (*ptr), count, stream)
unsigned count;
char *ptr;
FILE *stream;

This function writes from the block referenced by the
parameter ptr to the specified stream. It writes count items,
whose size in bytes is specified by the second parameter. The
value returned is the number of items actually written.

The pointer passed in to fread and fwrite is a pointer to a
character and therefore should be a byte pointer. However, if
an ordinary pointer is passed in, these functions convert it to a
byte pointer before doing any 1/0, so the results are correct
anyway.

fseek

int fseek (stream, offset, ptrname)
FILE *stream;
long offset;

The fseek function changes the current position of the
specified stream. The new position is offset bytes from a
position specified by ptrname. The valid values for ptrname are
the constants SEEK SET, SEEK CUR, and SEEK END, defined
in stdio.h. They specify whether the offseT is from the
beginning of the file, the current position, or the end of the
file, respectively. The stream position is unchanged if any other
values are passed for ptrname.

The value returned is zero if the operation is successful, and
non-zero otherwise. It is also non-zero if an invalid value for
ptrname is passed.

If fseek is called after ungetc is called, the original procedures
and client data of the stream object are restored (see note on
implementation of ungetc in section 5.1.2.).

C REFERENCE GUIDE

5.1.6 Formatted 1/0

C REFERENCE GUIDE

rewind

int rewind (stream)
FILE *stream;

LIBRARY

This function sets the position of the specified stream to the
beginning of the file. It is equivalent to fseek (stream, O.
SEEK SET).

ftell

long ftell (stream)
FILE *stream;

The ftell function returns the current position of the stream as
an offset, in bytes, from the beginning of the file. It returns -1 if
an error occurs.

These functions, which read and write formatted input and
output, can be called with a variable number of parameters.
Each has a format parameter, which is a string specifying the
number, type, and format of the parameters that follow it. If
the number and type of the parameters passed do not match
that of the format string passed, the results are undefined.

fprintf. printf, and sprintf

int fprintf (stream, format, ...)
FILE *stream;
char *format;

int printf(format, ...)
char *format;

char *sprintf(s, format, ...)
char *s, *format;

These function produce formatted output. The fprint function
writes to the stream specified, printf writes to the stdout
stream, and sprintf writes to the string supplied and appends a
null character. The value returned for fprintf and printf is the
number of characters written. sprintf returns the string passed
in.

The format string contains two types of objects: plain
characters, which are simply copied to the output stream or
string, and conversion specifications, which convert and print
the next successive parameter.

A conversion specification begins with the % character.
Following this character is one of the conversion characters
described below. Between the % and the conversion character
there may optionally be one or more of the following:

-- A minus sign (-) that indicates left justification (right
justification is the default)

5·7

LIBRARY

5-8

-- A digit string specifying a minimum field width. If the value
requires fewer characters than the specified field width,
blank padding is added. If the digit string begins with a zero,
then zero padding is used instead of blanks. If more
characters than the specified field width are needed, they
are printed as needed. The number is not truncated.

-- A period (.) separating the field width string from a second
digit string.

A second digit string if the value to be printed is a floatinq­
point number (conversion characters e, f, or g) or a string
(conversion character 5). If it is a floating-point number, this
string specifies the number of digits that appear after the
decimal point. If it is a string, it specifies the maximum
number of characters from the string that will be printed.

A lowercase ell (I) if the value to be printed is a fixed-point
number (conversion characters d,o,x, and u). It specifies that
the argument is a long.

The conversion characters and their meanings are:

-- d: The argument is a fixed-point number and is printed in
decimal.

-- 0: The argument is a fixed-point number and is printed in
octal.

-- x: The argument is a fixed-point number and is printed in
hexadecimal.

-- u: The argument is an unsigned fixed-point number and is
printed in decimal.

c: The argument is a character.

5: The argument is a string.

e: The argument is a floating-point number and is printed
as [-]d.dddE ± dd. There is one digit before the decimal
point, and the number of digits after the decimal point is
specified by the second digit string preceding the
conversion character, or defaults to six.

-- f: The argument is a floating-point number and is printed
as [-lddd.ddd. The number of digits following the
decimal point is specified by the second digit string
preceding the conversion character, or defaults to six. If
zero digits are specified to follow the decimal point, the
decimal point is not printed.

-- g: The argument is a floating-point number and is printed
as an e format if the exponent is less than -4 or greater
than the precision.

If the characters that follow a % cannot be interpreted as a
valid conversion specification, then they are simply output to
the stream or stri ng. A % can, therefore, be pri nted by putti ng
"% %" in the format string.

C REFERENCE GUIDE

fscanf. scanf. and sscanf

fscanf (stream, format, ... J
FILE *stream;
char *format;

scanf (format, ...)
char *format;

sscanf (s, format, ...)
char *s, *format;

LIBRARY

Scanf reads from the standard input stream stdin. Fscanf reads
from the named input stream. Sscanf reads from the character
string s. Each function reads characters, interprets them
according to a format, and stores the results in its arguments.
Each expects as arguments a control string format, described
below, and a set of pointer arguments indicating where the
converted input should be stored.

The control string usually contains conversion specifications,
which are used to direct interpretation of input sequences. The
control string may contain:

1. Blanks, tabs, or new lines that match optional white space
in the input.

2. An ordi nary character (not %) that must match the next
character of the input stream.

3. Conversion specifications, consisting of the character %, an
optional assignment-suppressing character *, an optional
numerical maximum field width, and a conversion
character.

A conversion specification di rects the conversion of the next
input field; the result is placed in the variable pointed to by the
corresponding argument, unless assignment suppression was
indicated by *. An input field is defined as a string of non-space
characters; it extends to the next inappropriate character or
until the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the
input field; the corresponding pointer argument must usually
be of a restricted type. The followi ng conversIOn characters are
legal:

-- %: A single%' is expected in the input at this point; no
assignment is done.

-- d: A decimal integer is expected; the corresponding
argument should be an integer pointer.

-- 0: An octal integer is expected; the corresponding
argument should be a integer pointer.

-- x: A hexadecimal integer is expected; the corresponding
argument should be an integer pointer

-- 5: A character string is expected; the corresponding
argument should be a character pointer pOinting to an
array of characters large enough to accept the string and

C REFERENCE GUIDE 5-9

LIBRARY

5-1 (}

a terminating \0, which will be added. The input field is
terminated by a space character or a new line.

-- c: A character is expected; the corresponding argument
should be a character pointer. The normal skip over
space characters is suppressed in this case; to read the
next non-space character, try % 1 s. If a field width is
given, the corresponding argument should refer to a
character array. The indicated number of characters are
read.

-- f: A floating-point number is expected; the next field is
converted accordingly and stored through the
corresponding argument, which should be a pointer to a
float. The input format for floating-point numbers is an
optionally signed string of digits possibly containing a
decimal point, followed by an optional exponent field
consisting of an E or e followed by an optionally signed
integer.

-- [: Indicates a string not to be delimited by space
characters. The left bracket is followed by a set of
characters and a right bracket; the characters between
the brackets define a set of characters making up the
string. If the first character is not circumflex C), the input
field is all characters until the first character not in the
set between the brackets; if the first character after the
left bracket is " the input field is all characters until the
first character that is in the remaining set of characters
between the brackets. The corresponding argument
must point to a character array.

The conversion characters d, 0, and x may be capitalized or
preceded by I to indicate that a pointer to long rather than to
int is in the argument list. Similarly, the conversion characters e
or f may be capitalized or preceded by I to indicate a pointer to
double rather than to float. The conversion characters d, 0, and
x may be preceded by h to indicate a pointer to short rather
than to into

The scanf functions return the number of successfully matched
and assigned input items. This can be used to decide how many
input items were found. The constant EOF is returned upon
end of input; note that this is different from 0, which means
that no conversion was done. If conversion was intended, it
was frustrated by an inappropriate characer in the input.

For example, the call

int i; float X; char namel501;
scanf("o/rd%f%s", &i, &x, name);

with the input line

25 54.32E-I thompson

assigns to i the value 25, x the value 5.432, and name will
contain thompson\O. Or

int i; float x; char namel50 I;
scanf("(k2d%f%*d'H 12345678901", &i, &x, name);

C REFERENCE GUIDE

5.1.7 Accessing standard streams

LIBRARY

with input

56789012356a72

assigns 56 to i, 789.0 to x, skips 0123, and places the string
'56\0' in name. The next call to getchar returns a.

get_stdin. get_stdout. and get_stderr

FILE *get stdin ()
FILE *get-stdout()
FILE *get= stderr ()

These functions access the standard streams associated with
the caller's configuration.

set stdin. set stdout. and set stderr

int set stdin (sH)
FILE *sH;

int set stdout (sH)
FILE TSH;

int set stderr (sH)
FILE TSH;

Programs can dynamically supply or change their standard
streams with these functions. The value returned is zero.

5.2 Storage allocation functions

C REFERENCE GUIDE

The library procedures for allocating and deallocating storage
are implemented with calls to the Heap interface (see the Pilot
Programmer's Manual). If the error Heap.Error is raised in these
calls, it is caught by the library procedures, and the value NULL is
returned.

A separate heap is maintained for each program loaded. A
program's heap is created the first time it calls any of the
procedures in this library. The allocation procedures all allocate
from the caller's private heap, and the deal location procedures
assume that their parameters point to storage allocated from
that heap.

The size parameters in the allocation procedures specify the
si ze in bytes, not in words.

Programs using these functions should include stdlib.h.

5-11

LIBRARY

5.2.1

5.2.2

5-12

Allocation/Deallocation operations

Accessing the heap

malloe

char *malloc (size)
unsigned size;

The malloe function allocates a block of storage at least size
bytes large and returns a pointer to the beginning of the block.
If size is zero, then this function returns the value NIL

ealloe

char *calloc (nelem, elsize)
unsigned nelem, elsize;

This function allocates space for an array of nelem elements
whose size in bytes is elsize, and initializes the entire space
with zeroes. The value returned is either NUll if either nelem or
elsize is zero, or is a pointer to the storage allocated otherwise.

realloc

char *realloc (ptr, size)
char *ptr;

The realloe function changes the size of the block referenced
by ptr to size bytes. The val ue returned is a poi nter to the
block, which might have been moved. The contents of the
block up to the original size is unchanged (that is, the contents
are copied if the block is moved). The results are undefined if
ptr does not point to a previously allocated block.

free

free (ptr)
char *ptr;

This function deallocates the block referenced by ptr. The
results are undefined if ptr does not point to a previously
allocated block.

The ptr passed in to realloe or free is a pointer to a character, so
it should be a byte pointer (See scection 6.2.3). However, these
functions check if an ordinary pointer is passed in and the
results are correct anyway.

In general, programs do not need to call these functions
because the functions described in the previous section retrieve
and set the heap as needed.

get_ heap

char *get_ heap ();

C REFERENCE GUIDE

5.3 String operations

C REFERENCE GUIDE

LIBRARY

This function returns the heap assigned to the caller's
configuration. A heap is not created for a configuration until
the first time it calls one of the allocation library procedures.
However, call i ng get heap causes a heap to be created for the
calling configuration"~if one has not already been created.

set_ heap

set heap (z);
char *z;

A program can supply the heap used by the procedures in this
library by calling set heap. If this function is called after a
heap has already beencreated for a program (either by calling
malloe or calloe or a previous call to set heap), then the
program must take responsibility for the OTd heap to avoid
space leaks. Furthermore, storage allocated from the old heap
cannot be freed or reallocated with functions in this library
unless the old heap is restored.

Programs using these functions should include strings.h.

strepv and strnepy

char *strcpy (s 1, s2)
char *sl,*s2;

char *strncpy (s 1, s2, n)
char *sl,*s2;

These functions copy the stri ng s2 to s1 and return s1. strcpy
copies as many characters as there are in s2 (including the
terminating null character). strnepy copies exactly n
characters, truncating or padding with null characters if
necessary. The results of these functions are undefined if s1 is
not large enough to hold the characters to be copied.

streat and strncat

char *strcat (s l,s2)
char *s 1. *s2;

char *strncat(s1,s2,n)
char *s 1, *s2;

These functions append the string 52 to the end of 51 and
return s1. strcat appends as many characters as there are in 52
(including the terminating null character). 5trncat appends at
most n characters. The results of these functions are undefined
if s1 is not large enough to hold the characters to be
appended.

5trcmp and strncmp

int *stt"Cmp (s l,s2)
chat· *s1. *s2;

5-13

LIBRARY

int *strncmp (sl, s2, n)
char *sl, *s2;

These functions compare the strings s1 and s2. The value
returned is 0 if the strings are the same (that is, the same
characters), a negative value if s1 is less than s2 (that is, forthe
first positio.n in the strings for which the characters are
different, the character in s1 is less than the character in s2),
and a positive value if sl is greater than s2. The function
strncmp compares only the first n characters.

strlen

int strlen (s)
char *s;

This function returns the number of characters in the string s,
up to but excluding the terminating null character.

5.4 Character operations and predicates

5-14

The operations and predicates listed here are macros defined
in ctype.h.

toupper, tolower and toascii

toupper (c)
tolower (c)
toasell (c)

The macros toupper and tolower subtract and add,
respectively, the proper amount to a letter to change its case. If
the argument is not a letter, they return the argument. toascii
masks off all but the lower seven bits of a character.

predicates

Although characters are 16-bit values, the predicates listed
here only consider the low-order byte to be significant.

The following macros return a non-zero value if the predicate
is true and zero if it is false.

isalpha (c)
isupper (c)
islower (c)
isdigit (c)
isxdigit (c)

isalnum (c)
isspace (c)

ispunct (c)
is print (c)
isgraph (c)
iscntrl(c)

c is a letter.
c is an uppercase letter.
c is a lowercase letter.
c is a decimal digit.
c is a letter (upper- or lowercase) that is a
hexadecimal digit.
c is an alphanumeric character.
c is a space, tab, carriage return, new line, or form
feed.
c is a punctuation character.
c is in the range 20 16 (space) through 7E 16 (tilde)
c is any printing character other than a space
c is either a delete (7F1Ei) or a control character
(0< C<20 16)

C REFERENCE GUIDE

5.5 VarArgs functions

5.5.1 Operations Provided

5.5.2 Sample function

C REFERENCE GUIDE

LIBRARY

isascii (C) c is an Ascii character (0<C<80'6)

Programs that implement functions that are called with
varying numbers of parameters must use the functions
described here. Such programs should include varargs.h.

va start and va end

int *va _start ();

va end(ap);
inf*p;

A function that is to be called with varying numbers of
parameters must be declared as having no parameters. The first
executable statement in the function must be a call to
va start, which returns a pointer to a block containing all the
parameters. Before returning, the function should call
va end. The pointer passed to va end must be the same as
that returned by va start. The parameters cannot' be accessed
after va end is call€cl .

int *va arg (p, size);
int *p;-

Accessing individual parameters can be facilitated by successive
calls to va arg, which is a macro that returns a pointer to the
next parameter. The arguments to va arg are a pointer and
the size of the argument. The units of'ffie size argument must
be the same as that of the referent of the pointer. Thus, if the
referent of the argument p is int, then size is in words (16-bits).
For the first call to va arg, the pointer passed should be the
pointer returned by va-start. For subsequent calls, the pointer
passed should be the pOinter returned by the previous call.

If the va arg macro is used, then the poi nter returned by
va start-must be saved with a separate pointer, because
va-arg changes its pointer argument and the pointer passed
tova end must be the same as the pointer returned by
va sta'"rt.

The following example implements a function that can be
called with varying numbers of parameters:

5·15

LIBRARY

include "varargs.h"
include "stdio.h"

fprintf()
{

char *pl, *p2;
FILE *stream;
char *format;
int *other _args;

pI = p2 = va start ();
stream = *(FILE **)va arg (p2, 2);
format = *(char **)va arg (p2, 2);
other args = va ari{p2,0);
do prInt (stream7format, other args);
va_end (pl); -

do print (iop, fmt, argptr)
FILE *iop;
char *fmt;
int *argptr;
{ ... }

5.6 Functions provided by (Tool

5.6.1 ioetl

5-16

The functions described here are available to programs that are
run in CTool or CExec.

int ioctl (stream, request, argp);
FILE *stream;
sgttyb *argp;

Programs using this function should include sgtty.h.

This function is used to set and access the mode of the default
stdin stream of a CTool or CExec instance. The mode affects
whether the input is echoed, whether it is buffered, and how
the control-C character is treated. The two valid values for the
request parameter (defined in sgtty.h) are: TIOCGETP for
getting the mode and TIOCSETP for setting the mode. If the
value of request is not one of these two values, or if stream is
not the default stdin stream, then the function returns -1 and
has no effect. The return value is 0 if these parameters are
valid.

The argp parameter points to an object that encodes the
mode. Each feature of the mode (such as echoi ng) has a
corresponding bit in the object that indicates whether that
feature is on. If request is TIOCSETP, this object contains the
mode to which the stream is to be set If request is TIOCGETP,
the mode is copied to this object (the type sgttyb is defined In

sgtty.h)

C REFERENCE GUIDE

5.6.2 System

C REFERENCE GUIDE

LIBRARY

The following are the constants (defined in sgtty.h) for
features that can be set or cleared. Each constant has one bit
set and the others cleared.

ECHO: If set, each character typed in is echoed to the
window instance.

RAW: If set, then the input is not buffered (that is,
characters are available to a program as soon as they are
typed, and control-C is treated as any other character.

CBREAK: If set, then input is not buffered, but if control-C
is entered, the program aborts with an exit status of 1 the
next time any input is read from the stream.

If both RAW and CBREAK are cleared, then the input is
buffered (that is, a line of input is not available to a program
until a carriage return is typed) and control-C causes an abort
at the next read. The default mode is ECHO set, and RAW and
CBREAK cleared.

Calls to the ioctl function affect neither command line input
nor the mode of subsequent programs run in the tool instance.
Each program starts with the default stdin stream in default
mode.

The following code clears ECHO and set CBREAK:

include "sgtty.h"

sgttyb ptr;

ptr = CBREAK;
ioctl (stdin, TIOCSETP, &ptr);

int system (string);
char *string;

This function is defined in stdlib.h.

The system function processes the string passed to it as if it
were typed in to the window of a CTool or CExec instance. The
string is not echoed, but any response to it is printed in the
window instance in which the calling program was started. This
window instance also becomes the default source and sink for
the standard streams of programs invoked by calls to system.

The string passed to system may contain carriage returns that
separate it into lines. Each line of the string is processed
sequentially.

For each call to system, a temporary set of data items
corresponding to the form subwindow items of CTool is
created. Strings that would change these data items (such as
"!foo, bar") thus do not change the data items for the program

5-17

LIBRARY

5.7 Math functions

5-18

that calls system and have no effect on subsequent calls to
system. The result is similar to creating a new temporary
instance of CTool or CExec, except that it shares the window of
the instance in which the calling program is started.

The defaults for the data items are: empty strings for the
standard streams, Debug set to false, and StopScriptOnError
set to true. To change these data items and invoke a program,
it is necessary to pass a multi-line string to system. For example,
the following call invokes Prog, with stdin set to the file foo:

system (,'!foo \N Prog");

in contrast, in the following two calls, the first call has no net
effect, and the second call invokes Prog with the default
standard streams.

system ("!foo"); system ("Prog");

If the last line of the string is a command to run a program (the
only type of last line that makes sense), then the return value
of system is the exit status of the last program. However, if the
last program cannot be acquired or loaded, or if the standard
streams cannot be opened, then the return value is -1. if the
last line of the string is not a command to run a program, the
return value is O.

Programs using math library functions should include math.h.

sin, cos, tan, asin, acos, atan, atan2

double sin (x)
double X;

double cos(x)
double X;

double tan(x)
double X;

double asin(x)
douhle x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(x,y)
double x,y;

sin, cos and tan return trigonometric functions of radian
arguments x.

asin returns the arc sine in the range -pl/2 to pI/2

C REFERENCE GUIDE

C REFERENCE GUIDE

LIBRARY

acos returns the arc cosi ne in the range 0 to pi.

atan returns the arc tangent in the range -pi/2 to pi/2.

atan2 returns the arc tangent of x/y in the range -pi to pi.

sinh, cosh, tanh, asinh, acosh, atanh

double sinh(x)
double X;

dou ble cosh(x)
double X;

double tanh(x)
double x;

double asinh(x)
double X;

double acosh(x)
double X;

double atanh(x)
double X;

These functions compute the hyperbolic functions for the
floating-point value x.

exp, expm1, log, log10, log1p, Igamma, pow

double exp(x)
double X;

double expml(x)
double X;

double log(x)
double X;

double loglO(x)
double X;

double loglp(x)
double X;

double 19amma(x)
double X;

double pow(x,y)
double x,y;

exp returns the exponential function of x.

expm1 returns exp(x)-l accurately even for tiny x.

log returns the natural logarithm of x.

log10 returns the logarithm of x to base 10

log1p returns log(1 + x) accurately even for tiny x

5-19

LIBRARY

5-20

Igamma returns the log of the absolute value of the gamma
function applied to x.

pow(x,y) returns x raised to the power y.

frexp, ldexp, modf, modf

double frexp(value, iptr)
double value;
int * iptr;

double ldexp(value, exp)
double value;

double modf(value,iptr)
double value, * iptr;

double modf(x,y)
double x, y;

The function frexp returns a double value x and stores an
integer as the referent of iptr, such that value = x * (2 raised
to the *iptr power).

The return value of Idexp is value * (2 raised to the exp power).

The function modf separates a floating-point value into an
integer and fractional part. The return value is the fractional
part, and the the integer part is stored as the referent of iptr.

The function fmod returns the floating-point remainder of x/yo

ceil, floor, rint

double ceiI(x)
double X;

double flOOl"(X)

double X;

double rint(x)
double x;

The function ceil, floor, and rint return integer values in
floating-point format. ceil returns the nearest integer no less
than x. floor returns the nearest integer no greater than x. rint
rounds x to the nearest integer. If x is exactly halfway between
integers, it rounds toward the even integer.

abs, fabs

int abs(i}

double fabs (x)

double X;

The abs function returns the absolute value of the integer i,
and the fabs function returns the absol ute val ue of the
floating- point value x.

sqrt, cbrt

C REFERENCE GUIDE

double sqrt(x)
double X;

double cbrt (x)
double X;

LIBRARY

The functions sqrt and cbrt return the square root and cube
root, respectively, of the val ue x.

cabs. hypot

double cabs(z)
struct {double x, y} z;

double hypot(x, y)
double X, y;

The functions cabs and hypot return sqrt(x*x + y*y) computed
in such a way that underflow will not happen.

hypot(infinity,v) = hypot(v,infinity) = positive infinity for all
v, including non-numbers.

jO.jl.jn

double jO(x)
double X;

double jl(x)
double X;

double jn(n, x)
double X;

These functions return Bessel's functions of the first kind for
the value x. The order is 0 for jO, 1 for jl, and n for jn.

5.8 Miscellaneous functions

5.8.1 String-to-number conversions

atoi, atol, atof

C REFERENCE GUIDE

double atof(nptr·)
char nptr;

long atol (nptr)
char npt .. ;

int atoi (nptr)
char· npt .. ;

5·21

LIBRARY

5.8.2 Aborting programs

5-22

The functions atof, atol, and atoi convert strings to doubles,
longs, and ints, respectively.

abort, exit

int abort ();

int exit (status);

These functions terminate execution and invoke cleanup
operations (see section 6.2). The value passed as a parameter to
exit is the exit code of the program. When abort is called, the
exit code is -1.

Although these are library functions, they are implemented in
the Runtime Basics of the runtime support (see section 6.1).
They can be called only by programs invoked with procedures
in the CRuntime interface (see section 6.2.2) or the
BWSStartState (StartState for the XDE version) interface (see
section 6.3.1). Programs run in CTool or CExec (see chapter 2)
are always invoked with procedures in the BWSStartState
(StartState) interface, so abort and exit can be called by any
program run in CTool or CExec.

Although abort and exit are declared as returning an integer,
they never return.

C REFERENCE GUIDE

6.1 Overview

C REFERENCE GUIDE

6. RUNTIME SUPPORT

Figure 6-1 shows the general structure of the runtime support
and its relation to the library and CTool. This chapter describes
areas labeled in Figure 6-1 as Runtime Basics and Start State. It
explains the functionality and exported interfaces of the
runtime support. Most C programs do not directly use these
interfaces. Their main clients are the C library and CTool/CExec
(see chapter 2). Because most of these client programs are
Mesa programs, the interfaces are described with Mesa syntax.

CTOOUCEXEC

START STATE C LIBRARY

exports: StartState exports: CIOLib. CHeap.
StringOps, VarArgs,

CTypeArray. CFormat. Li bm

RUNTIME BASICS

exports: CRuntime. CBasics. CAbort. CString.
CRuntimelnternal. Pipe. SpecialCRuntime

Figure 6-1: Structure of runtime support

The lowest level, Runtime Basics, keeps track of the standard
streams, open files, and storage heap of each C program. It
provides facilities for accessing or altering this data, starting
and restarting C programs, aborting C programs, supplying the
arguments to the Main function (argc and argv), cleaning up
resources (closing open files and deallocating storage), and
performing pipes. It also provides routines for converting
between C stri ngs a nd Mesa stri ngs.

The start state and the CTool/CExec are for programs that
assume a traditional paradigm of performing their tasks when
the program is started and having their resources automatically
freed upon completion. This paradigm is in opposition with
that of XDE and ViewPoint, in which programs perform only
their intialization when they are started, register procedures
that perform the main tasks with the environment, and have
no notion of completion The start state keeps track of
programs loaded and which ones are currently running, so It

6·1

RUNTIME SUPPORT

6.1.1 Files

6.2 Runtime basics

6-2

can determine whether a program must be loaded or just
restarted. (Tool is a multiple-instance tool with a TTY window,
from which users can run programs and supply the arguments
to the Main function (arge and argv). The window instance
from which a program is started or restarted is the default
source and sink of the standard streams. (Exec, which exists
only in the XDE version of the (environment, provides the
same functionality as (Tool but uses the executive window.
(Tool and (Exec are described in detail in chapter 2.

The file CSupport,bed includes Runtime Basics, the (Library,
and the Start State. There is one version of CSupport.bed for
both XDE and ViewPoint. The file CEnvironment.bed
(BWSCEnvironment.bed for the BWS versi on) i ncl udes
everything in CSupport.bed (BWSCSupport.bed) plus CTool
{and (Exec for XDE).

If you don't need (Tool, you can run CSupport.bed instead of
CEnvironment.bed or BWSCEnvironment.bed. ViewPoint users
who are running CSupport.bed instead of
BWSCEnvironment.bed must also run the file MonNS.bed.

This layer keeps track of resources used by each program that is
started or restarted through the CRuntime or StartState
interface. For each configuration, it records: the stdin, stdout,
and stderr streams, a list of files opened through the library
procedure fopen (or opened through some other means and
then entered into this I ist), and a heap for the library
procedures malloe, ealloe, realloe, and free. It provides
procedures for accessing and setting this data, for providing
the arguments to the Main function, for starting and restarting
programs, for aborting programs, and for performing clean-up
operations to free resources.

In addition, it maintains a heap for global arrays for each
module. Because ported (programs were written without the
restrictions imposed by a 64-Kb main data space, they often
contain large global arrays. To avoid filling up the main data
space with global arrays, they are allocated from this heap
rather than from global frames; only pointers to the arrays are
stored in global frames. The (compiler generates the proper
code for this added indirection, so the programmer can access
global arrays as if they were actually In global frames

To facilitate calling Mesa procedures from (programs and vice
versa, the CString interface provides routines for converting
between Mesa strings and (strings.

C REFERENCE GUIDE

6.2.1

6.2.2

6.2.2.1

The CBasics Interface

The CRuntime Interface

Starting and restarting programs

Start: PROCEDURE [

RUNTIME SUPPORT

The (compiler automatically generates calls to procedures in
the CBasics interface. Although (programs do not need to
explicitly call these procedures, the interface must be available
to compile and link (programs. This interface also contains the
type definition of Fileptr, which is how streams are represented
in (programs. See chapter 5 for how streams are represented.

There should be no need for (or Mesa programmers to call
functions in the (Basics interface.

The (Runtime interface provides procedures for setting and
acquiring the resources associated with each program. Some
of the procedures require a global frame handle as a
parameter to identify a particular program. While a program is
running, however, it is identified by its process.

gf: PrincOps.GlobalFrameHandle, argc: CARDINAL,argv: LONG POINTER TO CString.CString,
stdin, stdout, stderr: Stream.H andle] RETURNS [outcome: INTEGER];

Restart: PROCEDURE [

gf PrincOps.GlobalFrameHandle, argc: CARDINAL, argv: LONG POINTER TO CString.CString,
stdin, stdout, stderr: Stream.Handle 1 RETURNS [outcome: INTEGER I;

StartProgram: PROCEDURE [

filename: CString.CString, arge: CARDINAL, argu: LONG POINTER TO CString.CString, "tdin,
stdout, stderr: Stream.Handle] RETURNS[outcome: INTEGERI;

normalOutcome: INTEGER = 0:

abortOutcome: INTEGER = -1:

Loaded programs can be started or restarted with the Start and
Restart procedures, with the standard streams and arguments
to Main supplied as parameters. The return value is
normal Outcome unless the program started calls the library
procedures exit or abort (see section 582) If exit is called, the
value returned is the value passed to exit. If abort is called, the
return value is abortOutcome.

The semantics of restarting a program are the same as that of
starting a program for the first time.

The procedure StartProgram loads and starts a program
specified by a filename If the file cannot be acquired, or the
program cannot be loaded successfully, the return value IS

C REFERENCE GUIDE 6·3

RUNTIME SUPPORT

6.2.2.2 Removing configurations

6.2.2.3 Standard streams

6.2.2.4 Heap used by library functions

6-4

abortOutcome. Otherwise, the return value is the same as for
Start and Restart.

Programs that use standard streams or need argc and argv
parameters must be started with Start, Restart, StartProgram,
or one of the procedures in the StartState interface.

Start, Restart, and StartProgram do not access or update the
start state and do not invoke any automatic clean up
operations. They are called by implementations of the start
state and by programs that do not use the start state at all.
Clients that start or restart programs with the assumptions of a
traditional C paradigm (see section 6.1) should be invoked with
the procedures in the StartState interface.

R e moueC onfig: PROCEDURE [gf PrincO ps. GlobalF rameH andle I;

This procedure removes all information pertaining to a
configuration from the runtime basics data structures and
unmaps the global array space of every module in the
configuration. This procedure should be called when programs
are unloaded because programs loaded thereafter might have
the same global frame handles as the program unloaded. The
unloading procedures in the StartState interfaces call
RemoveConfig.

GetStdin, GetStdout, GetStderr: PROCEDURE RETURNS [FilePtr];

SetStdin, SetStdout, SetStderr: PROCEDURE [fp:FilePtrl;

These procedures store and retrieve the standard streams of
the configuration associated with the caller's process.

The parameters of these procedures are pointers to stream
handles rather than stream handles themselves because
streams in C programs are implemented as pointers to stream
handles. This representation facilitates library functions that
change the referent of a stream and also allows the standard
streams to be changed without changing the standard stream
variables.

GetH eap: PROCEDURE RETURNS I UNCOUNTED ZONE);

SetIIeap: PROCEDURE [h: UNCOUNTEDZONEj;

These procedures store and retrieve the heap C runtime records
for the configuration associated with the caller's process
configuration.

C REFERENCE GUIDE

6.2.2.5 Freeing resources

6.2.2.6 Registering processes

C REFERENCE GUIDE

RUNTIME SUPPORT

When a configuration is started or restarted, no heap is
created. The procedures in the CHeap interface create a heap
for a configuration the first time an allocation procedure is
called. A call to GetHeap before a heap is created returns NIL

Cleanup: PROCEDURE;

EnterStream: PROCEDURE [sH: Stream.Handle];

RemoueStream: PROCEDURE[sH: Stream.Handle!:

A call to CleanUp causes the resources for the caller's
configuration to be freed. If there is a heap, it is deleted, and
open files that were entered into the list of open files are
closed and their associated streams are deleted. Space mapped
for global arrays, however, is left mapped so that the program
can be restarted more efficiently. This space is unmapped only
when the procedure RemoveConfig is called for the
configuration. All clean-up operations are logged in the file
CRuntime.log.

The start and restart procedures of the StartState interface and
the library functions exit and abort call CleanUp.

Streams on opened files are added to and removed from the
list of open files by calls to EnterStream and RemoveStream,
respectively. The library functions fopen and fclose (from the
CIOLib interface) call EnterStream and RemoveStream,
respectively, when they succeed. If the stream handle passed is
not in the list, no action is taken. EnterStream and
RemoveStream do not perform any stream operations, but
simply add or remove a stream handle to or from the list of
streams for the configuration.

RegisterProcess:PROCEDURE;

ProcessNotRegistered: SIGNAL;

While programs are executing, the runtime support maintains
an association between their process and a record showing the
resources they hold. For C programs, the association is made
when any module in a configuration is started in the implicit
call to CBasics.RegisterFrame (see section 6.21). An association
can aso be made with a call to RegisterProcess. This procedure
identifies the caller by its global frame handle and then
associates its resources with its process. This procedure is used
for the C library in procedures called back from the
environment (such as menu procedures), which may not be
running in the same process as when they were started.

If a procedure in the CRuntime interface IS called that requires
accessing the resources of the caller's configuration, and no

6-5

RUNTIME SUPPORT

6.2.2.8 User aborts

6.2.3 The CRuntime.log File

6-6

association has been made with the caller's process, the signal
ProcessNotRegistered is raised.

processesA borted:ProcessList;

ProcessList:TVPE = LONG POINTER TO ProcessE ntry;

ProcessE ntry:TVPE;

StoplruserAborted:PROCEDURE = INLINE {

IF processesAborted # NIL THEN S topl {C urrentP rocessA borted[J;};

Stopl{CurrentProcessAborted:PROCEDURE:

N oteAbortedProcess:PROCEDURElp: PROCESS J;

The runtime support maintains a list of processes for which user
aborts have been noted. The variable processesAborted
references this list. Processes can be added to this list with the
proced u re NoteAbortedProcess. (I i ents that provi de
environments for running (programs (such as (Tool) should
call NoteAbortedProcess whenever they detect a user abort.

The procedure StoplfCurrentProcessAborted checks if the
current process is in the list of processes for which user aborts
have been noted. If it finds the current process in the list, it
removes it and then raises the error ABORTED. For efficiency,
clients can check if the variable processesAborted is Nil before
calling StoplfCurrentProeesssAborted. Mesa clients can make
this check by calling the inline procedure StoplfUserAborted
instead of StoplfCurrentProeessAborted. Programs running in
environments that catch ABORTED can periodically call
StoplfUserAborted or StoplfCurrentProeessAborted to stop if
the user has aborted. Most of the (library functions call
StoplfUserAborted before performing any operations, so (
programs that use the (library need not explicity check for
user aborts.

In the XDE version of the C environment, automatic clean-up
operations are recorded in a file called CRuntime.log. If any
clean-up operations are performed after a program fi nishes
execution, the following information IS appended to this file:

1. The name of the program for which the clean-up
operati ons are bei ng perform ed

2. The names of all the files being closed, if there are any

3. The size of the heap being deleted, if there is one

This log file is rewritten each time CSupport.bed or
CEnvironment.bed is started It can be loaded into a Window
while (Support or (Environment are running, but the Window

C REFERENCE GUIDE

RUNTIME SUPPORT

is not automatically updated as the file is writtten to. To see
additions to the file, empty the window and reload it.

The ViewPoint version of the C environment does not create
this log file.

6.2.4 The (String interface

C REFERENCE GUIDE

CString:TYPE = PrincOpsExtrasBP.BytePointer;

CStringToString: PROCEDURE [

cs: CString, z: MDSZone] RETURNS [STRING];

CStringToLongString: PROCEDURE f
cs: CString, z: UNCOUNTED ZONE] RETURNS [LONG STRING];

StringToCString: PROCEDURE [

S: STRING, z: UNCOUNTED ZONE] RETURNS] CString]:

LongStringToCString: PROCEDURE [

S: LONG STRING, z: UNCOUNTED ZONE] RETURNS [CString];

ReadChar: PROCEDURE [CString] RETURNS [CHARACTER] = MACHINE CODe

ReadByte: PROCEDURE [CString] RETURNS [Enuironment.Bytel = MACHINE CODE ... ;

WriteChar: PROCEDURE [CHARACTER, CString] = MACHINE CODE ... ;

WriteByte: PROCEDURE [Environment.Byte, CString] = MACHINE CODE

IncrBPointer: PROCEDURE [p: CString] RETURNS [CString] = INLINE .. ,

DecrBPointer: PROCEDURE [p: CString] RETURNS [CString] = INLINE

AddToBPointer: PROCEDURE [p: CString-, i: INTEGER] RETURNS reString] = INLINE

ToBytePointer: PROCEDURE [LONG POINTER] RETURNS [CString] = MACHINE CODE

ToWordPointer: PROCEDURE [CString] RETURNS [LONG POINTER] = MACHINE CODE.

A C string points to a packed array of characters that
terminates with an Ascii null character Thus, strings passed to
CStringToString and CStringToLongString must be terminate
with an Ascii null, and the C strings returned by
StringToCString and LongStringToCString have an Ascii null
appended at the end

The characters in a C string are packed with one byte per
character. Therefore, to be able to reference any character in a
string, a CString is a byte pointer, which is a special kind of
pointer that can reference either the high byte or the low byte
of a word. C programs need not do anything speCial to
dereference or add to C strings Programs in other languages
can do these operations on C strings with the procedures
ReadChar, ReadByte, WriteChar, WriteByte, IncrBPointer,

6-7

RUNTIME SUPPORT

6.2.5 The Pipe interface

6.3 Start state

6·8

DecrBPointer, and AddToBPointer. The procedures
ToBytePointer and ToWordPointer are for conversions
between byte pointers and ordinary pointers.

Handle: TYPE = LONG POINTER TO Object;

Object: TYPE;

NW ords: TYPE = CARDINAL;

defaultBufferSize: NWords = Enuironment.wordsPerPage * 4:

Create: PROCEDURE[
bufferSize: NWords -defaultBufferSizel RETURNS [h:Handle,
producer, cons umer:S tream.H andle];

Delete: PROCEDURE[h:lIandle];

GetProducer: PROCEDURE[h:Handlel RETURNS [Stream.Handlel;

GetConsumer: PROCEDURE[h:Handle / RETURNS [Stream.Handle /;

The Pipe interface supports tools such as a C Shell that allow
users to have the output of one program become the input of
another program.

The Create procedure creates a pipe and returns a Handle that
can be passed to other procedures in this interface. It also
returns the streams that write into and read out of the pipe.
When the pipe is no longer needed, the Handle should be
passed to Delete. This procedure deletes both streams and
frees the pipe's resources. Clients should not delete the streams
themselves.

The two streams associated with each pipe can be accessed
with GetProducer and GetConsumer. However, the Create
procedure also returns these two streams, so most applications
need not call GetProducer or GetConsumer.

The start state is a record of loaded programs, identifying
which are currently running, to determine whether a program
can be safely restarted.

The start state is updated only when programs are loaded and
started by procedures in the StartState interface. Clients that
load and start programs with the i ntenti on of restarti ng them
later, must use the procedures in these interfaces.

Programs started by procedures in the StartState interface are
assumed to be finished after they return from their main line
flow of control. Their resources will be freed (see section 6 2),

C REFERENCE GUIDE

6.3.1 The StartState interface

RUNTIME SUPPORT

and their global frames may be reused if the program is
restarted. Therefore programs that register procedures with
the environment (such as procedures associated with menu
items) should not be invoked with the start state.

Some of the parameters tc tJ(v-.<..dures in the StartState
interface are of type MFile.Handle or MLoader.Handle.
Although the MFile and MLoader interfaces are not normally
available to programs that run in ViewPoint, the ViewPoint C
environment exports them. Therefore clients of StartState can
acquire an MFile.Handle or an MLoClder.Handle in the same
way that they would be acquired in XDE.

6.3.1.1 Loading, unloading, starting, and restarting

StartOrRestart: PROCEDURE [

file: MFile.Handle, argc: CARDINAL, argv: LONG POINTER TO CString.CString, stdin, stdout, stderr:
Stream.Handlel RETURNS [outcome: INTEGER];

GetHandle: PROCEDURE [file: MFile.Handle] RETURNS [h:Handle, canRestart: BOOLEAN);

Load: PROCEDURE [h:Handle, fh: MFile.Handle] RETURNS [MLoader. Handle);

Start: PROCEDURE [

h:Handle, argc: CARDINAL, argv: LONG POINTER TO CString.CString,

stdin, stdout, stderr: Stream.Handlel RETURNS [outcome: INTEGER);

Resart: PROCEDURE [

h:Handle, argc: CARDINAL, argu: LONG POINTER TO CString.CString,
stdin, stdout, stderr: Stream.Handle) RETURNS [outcome: INTEGER];

Unload:PROCEDURE [h: MLoader.Handlel;

U nloadFromFile:PROCEDUREl
file:MFile.Handle)RETURNS[instances U nloaded:CARDINAL I:

UnloadUnstartedProgram:PROCEDURE [h:Handlel:

Handle: TYPE = LONG POINTER ToObject;

Ohject: TYPE;

normalOutcome: INTEGER = 0:

ahortOutcome: INTEGER = -1:

[,(luciE rror: ERROR I message: LONG STRING I:

Vl'rsionMismCllch: SIGNAL I moci,,/e: LONG STRING].

C REFERENCE GUIDE 6-9

RUNTIME SUPPORT

U nloadE rror: ERROR [message:LONG STRING, [nstancesAlreadyU nloaded:CARDINAL 1;

6-10

The simplest way to start or restart a program is to call
StartOrRestart, supplying a file handle, the arguments to Main,
and the standard streams. This procedure checks if there is a
loaded instance of it not currently running. If there is, then it
restarts that instance; otherwise, it loads a new instance and
starts it. The return value is normalOutcome unless the started
program calls Exit or Abort. If Exit is called, the return value is
the value passed to Exit. If Abort is called, the return value is
abortOutcome.

Clients can gain finer control over the loading and starting
process by using GetHandle, Load, Start, and Restart instead of
StartOrRestart. The procedure GetHandle acquires a
StartState.Handle from a file handle and also returns a flag
indicating whether that Handle can be passed to Restart. If the
handle cannot be passed to Restart, it must be passed first to
Load and then to Start. The return value of Start and Restart is
the same as that of StartOrRestart.

Programs that expect their resources to be freed automatically
(closing files and deallocating storage allocated through
library procedures) must be started with Start, Restart, or
StartOrRestart.

The procedures StartOrRestart and Load can raise the error
LoadError or the signal VersionMismatch.

The Unload procedure unloads the program associated with
the load handle passed and removes the program instance
from the record of loaded programs. It also calls
CRuntime.RemoveConfig (see section 6.2.2.2) to remove the
configuration from the data structures of the runtime basics. If
the program associated with the handle passed is running,
then the error UnloadError is raised and the program is not
unloaded.

All loaded instances of a program can be unloaded and
removed from the start state and runtime basics data structures
with the procedure UnloadFromFile. The return value is the
number of instances that were unloaded. If it encounters a
running instance of the program, it raises the error
UnloadError with the instancesAlreadyUnloaded parameter,
indicating how many instances it unloaded before it
encountered the running instance.

Programs that have been loaded but not started should not be
unloaded with Unload or UnloadFromFile, but instead should
call UnloadUnstartedProgram. It does not call
CRuntime.RemoveConfig, as do Unload and UnloadFromFile.
This function is useful for unloading programs in which version
mismatches were detected while loading.

Restarting a program has the same effect as starting a program
for the first time.

C REFERENCE GUIDE

6.3.1.2

RUNTIME SUPPORT

Accessing load handles

GetLoadHandle: PROCEDURE Lh:.Handlel RETURNS [MLoader.Handlel;

SetLoadHandle: PROCEDURE [h:Handle, lh: MLoader.Handlel;

EnumerateHandles:PROCEDURE[file:MFile.Handle,proc:EnumerateProcl;

EnumerateProc: TYPE = PROCEDURE [

ssh: HanaLe,mn: MLoader.Handlel RETURNS [continUe:BOOLEAN ~ TRUE];

These procedures support accessing and setting the load
handle associated with each StartState.Handle. Clients do not
usually need to call these procedures because the procedures
described in section 6.3.1.1. return and set the load handles as
needed.

EnumerateHandles calls the procedure proc for every instance
of file in the start state, passing in the StartState.Handle and
load handle associated with the instance. The enumeration
stops if proc returns FALSE.

C REFERENCE GUIDE 6·11

RUNTIME SUPPORT

(This page intentionally blank.)

6-12 C REFERENCE GUIDE

7.1 Introduction

7.2 Copilot review

C PROGRAM DEBUGGING

7. C PROGRAM DeBUGGING

The Xerox Development Environment provides a source-level
debugger called Copilot,to aid in program development. This
document describes how to use Copilot to develop and debug
C programs. The document reviews the use of Copilot but does
not describe the debugger commands in detail. For this
information, see chapter 24 of the XDE User Guide.

Copilot is not yet fully multilingual in the programming
language sense. In most cases, however, a C programmer can
debug at a source-program level. For instance, the debugger
can coordinate C source program locations with runtime
program counter values. This coordination enables a user to set
breakpoints by pointing at a source program statement,and
enables the debugger to display the source location associated
with the PC of any suspended procedure. The debugger is not
multilingual in that it r:urrently understands only Mesa
expressions and data types (see the Mesa Language Manual).
Fortunately, it is very easy to convert between the two.

The remaining sections of this document give:

• A review of basic Copilot operations and functionality

• A description of how types and values are used and
displayed in the debugger

• A guide to converting C expressions to Mesa expressions

• A list of current limitations

• A guide to CPrint, a C debugging aid

The reader is assumed to be familiar with C programming and
the use of the Xerox Development Environment.

This section provides a whirlwind review of the basic Copilot
features and characteristics. It gives the reader an overview of
Copilot's functionality and a model of the user-debugger
interaction. For a complete description of the debugger, refer
to the XDE User Guide, chapter 24.

7·1

C PROGRAM DEBUGGING

7.2.1 Invoking the debugger

There are several ways to invoke the debugger. The simplest is
to press the CALLDEBUG key. This action suspends all processing
in the current XOE instance (called the client) and swaps the
user to another instance of the XOE. This instance provides
debugging support for the client instance. Once in this
environment, you can execute debugger commands, evaluate
expressions, browse source files, and perform any other XOE
activity. After you have performed the desired debugging
activities, you may return to the client instance in one of two
ways:

1. You can swap back. This reactivates all of the suspended
processes and no context is lost. This method is not always
possible or desirable. Sometimes too much of the client
world was damaged by the problem that invoked the
debugger.

2. You can reboot the client instance and start again. In this
case you lose the context of the previous boot session. For
instance, you must reload all previously loaded tools.

The process of switching between instances of the XOE is called
world swapping. A world swap can occur for several reasons
other than the use of the CALLDEBUG key. When a debugging
instance is invoked, the mouse cursor temporaily displays an
indication of why the world swap occurred. The following list
summarizes the possible swap reasons and the cursor icon
displayed for each:

• Uncaught SIGNAL or ERROR. SIGNALS and ERRORS are Mesa
language constructs that are used to specify exceptional
conditions. For example, if the Pilot storage management
package notices that a storage region has been trashed, it
raises a SIGNAL saying so. If a SIGNAL is raised in the call stack
of some process, and no procedure in that call stack catches
the SIGNAL, you will end up in the debugger. Currently, a C
program cannot raise a SIGNAL or ERROR, nor can it catch one.
The debugger catches all SIGNALs and ERRORS. The mouse
cursor contains "Unc 5ig" for this swap reason.

• A program explicitly requested a trip to the debugger by
calling a routine in the Pilot runtime package {see the Pilot
Programmer's Manual, section 2.4.4). A program might
enter the debugger this way if it decides that some
important invariant no longer holds and that proceeding
may cause serious problems. The cursor displayed is "Call
Debug".

• A program executing in the client instance hits a previously
set breakpoint. The cursor displayed is "Brk pt".

• A fault occurs. A program that address faults or write­
protect faults causes the debugger to be invoked. The
cursor displayed is "Addr Fault".

• To maintain a consistent and accurate map of the client's
virtual memory, the debugger is invoked periodically to
update internal data structures. This action, called map
logging, requires no intervention from the user The

7-2 C REFERENCE GUIOE

7.2.2 Commands vs. expressions

C REFERENCE GUIDE

C PROGRAM DEBUGGING

debugger automatically swaps back to the client when
map logging is complete. The cursor displayed is "Map
Log".

• In the event of a serious internal system error, the client
world calls the debugger, indicating that a bug has been
hit. The cursor displayed is "Bug".

• When CALLDEBUG is used, the cursor displays "Int" for
interrupt.

The debugger has a command-line-oriented interpreter that
accepts commands as well as language level expressions.
Currently, the debugger only accepts Mesa language
expressions. Programmers must manually convert C expressions
to Mesa syntax to interpret them using by Copilot. Section 7.4
gives the details of converting from C to Mesa.

All debugger input falls into one of three categories:

1. A debugger command: The debugger is usually waiting for
this type of input. The debugger prompts for command
input with a greater-than sign (».

2. A response to a debugger prompt: Some debugger
commands require additional data. For instance, the
command that sets the debugging context to a specified
module prompts for the module name.

3. An expression to be interpreted: A leading space puts the
debugger into expression interpreter mode. The debugger
interprets the characters foil owi ng the space as a Mesa
language expression and evaluates it in the current
context. Once the space has been typed, a backspace will
not put the debugger back in command mode. You must
either enter an expression or press the DELETE key.

Copilot uses a command completion scheme that allows you to
enter the shortest unique prefix of each command word. For
example, to enter the List Configurations command you need
only type LC - L for List and C for Configurations. CoPilot
supplies the remainder of the command words ("ist" and
"onfigurations"). In the remainder of this document, debugger
commands are presented as they would be expanded by
Copilot. The characters you type are given in uppercase and are
underlined

73

C PROGRAM OeSUGGING

7.2.3 Setting context

Swap Reason

Interrupt

The debugger needs to know the context in which to interpret
commands and expressions. When it is invoked, the debugger
sets its context to a value that mayor may not be the context
that you are interested in debugging. The following table
summarizes the debugger context, given the swap reason.

Resulting Context

Correct Context Other Context

Context not set anywhere in
particular

Uncaught Signal Context set to process that

Call Debugger

Breakpoint

Fault

raised the SIGNAUERROR

Context set to process that
called the debugger

Context set to process that
hit the breakpoint.

Context set to process that
caused the fault

Table 7-1: Context vs. swap reason

Table 1 shows that in most cases the debugger sets the context
as desired. However, you must sometimes change context to
set breakpoints or examine variables in other parts of the
system. Copilot provides several commands for displaying and
setting the context:

• CUrrent context: displays the current context.

• 1:ist ~onfigurations: lists all loaded configurations (a
configuration is a linked program).

• 1:ist erocesses: lists all processes and their current state.

• ReSet context: sets the context to what it was when the
debugger was entered.

• SEt ~onfiguration [config]: sets the current configuration
to the named configuration. This command operates
within the scope established by Set Root Configuration.

• SEt Module context [module]: sets the current module to
the named module. This command operates within the
scope of the current configuration.

• SEt Erocess context [process]: sets the current process to the
named process.

• SEt B.oot configuration [config]: sets the current
configuration to the named configuration. This command
establishes a scope for both the SEt Configuration and SEt
Module Context commands

7·4 C REFERENCE GUIDE

7.2.4 Breakpoints

7.2.5 Displaying the call stack

C REFERENCE GUIDE

C PROGRAM DEBUGGING

You can cause program execution to be suspended at a certain
point by setting a breakpoint. A breakpoint can be set at the
beginning of any statement, on entry to a procedure, and on
exit from a procedure. To set a breakpoint on a statement,
perform the following steps:

1. Set the context to apprl")nri;:ltl> module (it may already be
set).

2. Load the source program into a file window.

3. Make a selection anywhere in the statement of interest.

4. Select the Break item in the file window's Debug Ops
menu.

To set a breakpoint on the entry to, or exit from, a procedure,
set the context as above and then use the !!reak §.ntry or !!reak
~it command. These commands prompt you for the name of a
procedure. In all cases, the debugger indicates that the
breakpoint has been set and gives the breakpoint number. This
number is used to identify a breakpoint in other commands.

The debugger provides a variety of breakpoint manipulation
commands. For a full list, see section 24.3.2.1 of the XDE User
Guide. The most commonly used commands are listed below.

• kist §.reaks: Lists all currently set breakpoints.

• Qisplay !!reak [number]: Gives information about the
specified breakpoint.

• ~Lear 611 §.reaks: Clears all breakpoints.

• CLear §.reak [number]: Clears the specified breakpoint.

• ATtach Keystrokes [num ber, keystrokes]: Attaches the
keystrokes to the specified breakpoint. When the
breakpoint is hit, the keystrokes are passed to the
debugger as if you had typed them.

• ATtach ~ondition [number, condition]: Makes the specified
breakpoint conditional. That is, the breakpoint is taken
only if the attached boolean expression .is satisfied. As with
all expressions, the conditional is given in Mesa syntax.

Copilot allows you to examine the call stack of any process by
using the Qisplay ~tack command. Typing this command
displays the topmost procedure on the call stack of the current
context, and enables a variety of subcommands These
subcommands can only be used in Qisplay ~tack mode, and the
normal debugger commands cannot be used until you exit thiS

7·5

C PROGRAM DEBUGGING

7.3 Types and values

7.3.1 Display format

7-6

mode. The expression interpreter can still be invoked by typing
a space. The following list summarizes the subcommands:

• N: move to the next entry on the call stack (that is, the
procedure that called the current procedure).

• ~: move to the previous entry on the call stack (that is, the
procedure called by the current procedure).

• §.: display the global variables of the module containing
the current procedure.

• E: display the parameters of the current procedure.

• B: display the return value of the procedure. Because
return parameters are unnamed in C, Copilot will give anon
as the name of the return variable.

• ! in]: Jumps n entries down the stack. If n is too large, the
debugger responds with the upper bound on n.

• ~: Prints the source line where the current procedure is
stopped (this will usually be a procedure call). Also loads
the source file into a file window and positions the text to
the corresponding source line.

• 1:: Same as S, but just displays the source line in the
debugger log.

• Q or DELETE key: Terminates Display Stack mode and returns
to the main command processor.

As you move through the call stack, you change the context in
which expressions are evaluated. A procedure's local variables
are only visible if that procedure is equal to or below the
current procedure on the call stack. Similarly, the global
variables of a module are only visible if a procedure in that
module is equal to or below the current procedure on the call
stack.

The debugger uses Mesa syntax to print types and values. This
section describes the format that the debugger uses to display
each C type and value. It also describes some naming anomalies
and how to work around them.

The following subsections describe the format that the
debugger uses to display values of each of the C data types.
Copilot provides some flexibility in how values are displayed via
the Copilot options window To get this window, select the
item labeled Options in the Copilot pop-up menu Using the
options Window, you can change the display representation of

C REFERENCE GUIDE

CARDINAL:

INTEGER:

POINTER:

LONG POINTER:

RELATIVE:

UNSPECIFIED:

Array elements:

String length:

Apply:

Abort:

C PROGRAM DEBUGGING

various types. The following list summarizes the fields of the
options window and describes how these names relate to C
datatypes:

This item controls the display format for unsigned quantiti es
(unsigned int, unsigned short, and unsigned long). They can be
displayed in octal, decimal, or hexadecimal.

This item controls the display format for signed quantities (int,
short, and long). Once again, you can choose either octal,
decimal, or hexadecimal.

Unused for C

Controls the display format for all C pointer types. You may
choose octal or decimal.

Unused for C

Unused for C

When displaying an array, the debugger will display up to this
many elements.

Unused for C

Apply the selected options and remove the options window

Reset any changes made to the options and remove the
window

7.3.1.1 Simple scalar types

C REFERENCE GUIDE

int: You may display these in either octal, decimal, or hexadecimal
format. As mentioned above, unsigned values can be displayed
differently than signed values. All sizes of int (short, int and
long) are treated uniformly. The decimal number 25 is
displayed as:

char:

float:

pointer:

318 (octal) or 25 (decimal) or 19X (hexadecimal)

The debugger displays characters with a single quote followed
by a character. If the debugger encounters a non-printing
character, it will display a mnemonic for it. For instance, Copilot
displays a carriage return character as CR and a line feed as LF.
Uninterpreted control characters are displayed with a leading
i· For instance, control-H is displayed as i H. If the character
code is greater than 127, then the debugger displays the
character code in octal.

CoPilot displays floats as a string of digits followed by a decimal
point, followed by a string of digits. Based on the magnitude
of the float, CoPilot may decide to display the value uSing
exponent notation For example, 1,000,000 = 1 e6 = 1 * 10 i 6.

The debugger treats all C pointers uniformly It displays them
as either octal or decimal values followed by a i to indicate
that the value is a pointer Note, however, that a pOinter to a
character has a different internal representation than a pOinter
to another type A character pointer cannot be used directly

7-7

C PROGRAM DEBUGGING

7.3.1.2 Aggregate Types

array:

struct:

union:

7-8

with debugger commands that prompt for an address. The low
order bit of a character pointer indicates which byte is of
interest and the high order bit is turned on to show that it is a
byte pointer. So, to find the word of memory refered to by a
character pointer, you must remove the high-order bit and
divide by two. For example, if a pointer has the value
20004567891 octal, you would divide 4567891 by two to find
the word of interest. See §7.6 for a description of character
poi nter support.

The debugger displays an array in the following format:

where n is the size of the array and e10 through el n-1 are the
elements of the array. The debugger displays an element of an
array in the same way it would display any other variable of
that type.

Copilot displays a structure in the following format:

[fieldName:value, nextFieldName:value, ... ,lastFieldName:valuej

The debugger displays each field of the structure in the same
way it would display any other variable of that type.

The debugger has to be given some information to do
anything useful with a union. With no information, the
debugger displays the value of any union as:

[OVERLAID[...)]

The debugger prints OVERLAID to denote the fact that several
different representations of the value are being overlaid. To
see the value using a particular representation, you must
specify the variant of interest by typing the field name. The
type of the field determines the representation to use. The
debugger displays the resulting value in the same way it would
display any other value of that type. For example, say we have
a union declared as:

union myUnion {
int variant 1:
char variant2:
f10at variant3:

} myUnionVariable:

The debugger displays:

myUnionVariable as [OVERLAID[...)]
myUnionVariable.variantl as an int
myUnionVariable.variant2 as a char
myUnionVariable.variant3 as a float.

C REFERENCE GUIDE

7.3.1.3 Other Types

enum:

function:

7.3.2 Type values

C REFERENCE GUIDE

C PROGRAM DEBUGGING

Copilot displays a value of type enum with the name used in
the source program. For example, consider the following code
fragment:

enum colors {red, blue, green};
enum colors carColor;
carColor = red;

If you were to display carColor using the debugger, it would
print the identifier red as the value.

Copilot displays the value of a function variable by giving the
function's name and the name of the module that contains the
function. For instance, consider the following code fragment
taken from the file MyProgram:

char (*funcVar)(); 1* Pointer to function returning char *1

char eharProc(c)
char e;
{
}

otherProcO
{

char (*p)O; 1* Pointer to function returning char *1
fune V ar = char Proe;

If you were to ask for the value of funcVar after it was assigned
to in otherProcO, the debugger would display

funcVar = PROCEOURE charProc (
in module MyProgram, G: nnnnnnB)

The number following the G: further identifies the module. It
is an indication of where the module's global variables are
stored.

As well as displaying the value of variables, Copilot can also
display the value of types. That is, if a program gives a name to
some type (using a typedef, struct, union, or enum construct),
Copilot can display that type at debug time without the source
file. For instance, the following code fragment declares an
enum, a struct, a typedef, and a union:

enum colors {red, blue, green};
typedef struct Cire *Circ;
struct Cire tint cf1; Circ cf2:};
union simpleC nion {

int variantl:
char variant2;
long \·ariant3:

7-9

C PROGRAM DEBUGGING

7.3.2.1 Struet's

7.3.2.2 Typedef's

7-10

STRname
PUBLIC

TYPE
MACHINE DEPENDENT

RECORD
fieldName
fieldType

Note that in this case, the typedef name and the struet name
are the same. This situation can also arise for enums and
unions. To avoid naming conflicts, the compiler prepends STR
to struct names, UNN to union names, and ENM to enum
names. The compiler does not change typedef names.

The debugger displays type values using Mesa syntax. A
programmer declares new types or aliases old ones by using the
struct, union, enum, and typedef constructs. The following list
describes how the debugger displays types declared using each
of these constructs.

For struet's, the debugger displays the followi ng:

STRname: PUBLIC TYPE = MACHINE DEPENDENT RECORD [
fieldName: fieldType,
nextFieldName: nextFieldType,

lastFieldName: lastFieldType]

Where:

is the name of the struet type prepended with STR
indicates that the type is not PRIVATE in the Mesa sense (this can
be ignored)
indicates that this represents a type declaration
indicates that field positions will not be changed by the
compiler (this is always the case for (struets, so it can be
ignored).
is the Mesa substitute for the struct keyword.
represents the name of a member.
represents the type of the field.

For example, the debugger displays the following for struct
Cire above:

STRCire: PUBLIC TYPE = MACHINE DEPENDENT RECORD [ef1: int, ef2: LONG POINTER TO STRCirc]

Cire

PUBLIC

TYPE

For typedefs, the debugger simply displays the type that was
equated to the typedef name. From the fragment above, (ire
would be displayed as:

Ci rc: PUBLIC TYPE = LONG POINTER TO STRCi rc

Where:

is the name of the type.

indicates that the type is not PRIVATE In the Mesa sense (this
item can be ignored)

i nd i cates that thi s represents a type decl ar a ti on

C REFERENCE GUIDE

LONG POINTER TO STRCirc

7.3.2.2 Enum's

ENMname

PUBLIC

TYPE

7.3.2.3 Union's

UNNname

PUBLIC

TYPE

MACHINE DEPENDENT

RECORD

xx

SELECT OVERLAID PRIVATE· FROM

C REFERENCE GUIDE

C PROGRAM DEBUGGING

is the definition of the new type.

Copilot displays enumerated types in a straightforward way:

ENMname: PUBLIC TYPE = {item1, item2, ... , itemn}

Where:

is the name of the enum type prepended with ENM.

indicates that the type is not PRIVATE in the Mesa sense (this
item can be ignored).

indicates that this represents a type declaration.

is the textual name of one of the enumerated items.

From the fragment above, colors would be displayed as:

ENMcolors: PUBLIC TYPE = {red, blue, green}

The display format of a union type is somewhat complex. It
takes the form:

UNNname: PUBLIC TYPE = MACHINE DEPENDENT RECORD [
XX: SELECT OVERLAID PRIVATE * FROM

Where:

yyy = > [variant: varType],
zzz = > [nextVariant: nextVarType],

www = > [lastVariant: lastVarType],
ENDCAsE]

is the name of the union type prepended with UNN.

indicates that the type is not PRIVATE in the Mesa sense (this
item can be ignored).

indicates that this represents a type declaration.

indicates that fields' position will not be changed by the
compiler (this is always the case for C unions, so it can be
ignored).

is the Mesa substitue for the union keyword. Mesa implements
unions as variant records, so the keyword for struct's is the
same as for union's.

is the name of a variant tag. Because C unions do not have tags,
this name is generated by the compiler and can be ignored

This phrase 15 used to introduce the variants of the union

7·11

C PROGRAM OEBUGGING

yyy =>

variant

varType

ENDCASE

7.3.3 Anomalies

7.3.3.1 Global arrays

7.3.3.2 Multiply defined names

7-12

introduces a particular variant. The string in place of YYY can
be ignored.

is the member name of a particular variant.

is the type of that variant.

indicates the end of the variant list.

So, for simpleUnion in our fragment above, Copilot displays:

UNNsimpleUnion: PUBLIC TYPE = MACHINE DEPENDENT
RECORD [

LDLR38: SELECT OVERLAID PRIVATE * FROM
DLRTDLR40 = > [variant1: INTEGER],
DLRTDLR41 = > [variant2: CHARACTER],
DLRTDLR42 = > [variant3: LONG INTEGER],
ENDCASE]

The XDE C compiler and debugger handle some C data types in
an unconventional way. This section lists all such anomalies and
describes how todeal with them when debugging.

To avoid space problems, the XDE C compiler allocates global
arrays in a different area than other global variables. Because
of this, global arrays are really pointers to arrays. This is
completely transparent to the C programmer until debugging,
then a global array will appear as a pointer to an array of the
same type, which must be dealt with accordingly. That is, to see
the contents of a global array rather than a poi nter to the
contents, you must dereference the global array variable.

The C language allows the same name to be used several times
within a single scope. For example, you might declare a struct
named my5truct and then create a typedef of that struct using
the same name, such as:

struct myStruct {
int fieldl:
char fielcl2:

} instance:
typedef struct myStruct myStruct:

To avoid naming conflicts, the XOE C compiler prepends an
identifier to struct, union, and enum names (5TR, UNN, and
ENM respectively) in the debugger symbol table. So to refer to
the struct above using the debugger, you type 5TRmyStruct. To
refer to the typedef'd name, you would simply type myStruct.

C REFERENCE GUIDE

7.3.3.3

7.3.3.4 Doubles

7.3.3.5 Strings

C REFERENCE GUIDE

C PROGRAM DeBUGGING

It is important to understand that the compiler only modifies
struct, union, and enum names, not the names of variables of
those types. For example, in the fragment above we have
declared a struct variable called instance. You refer to that
variable by its declared name, instance, not by STRinstance.
Furthermore, as mentioned above, the compiler only changes
names in the debugger's symbol table. Within a program
struct, union, and enum names are used normally.

Local static variables introduce another potential naming
problem because the XDE C compiler makes them global data
That is, a programmer could declare a static called myStatic in
two functions and would end up with two globals named
myStatic. For this reason, the compiler prepends a function
name to all locally declared static variables. The following
example illustrates this point:

static myStatic; /* myStatic = > myStatic. Global statics
are untouched */

void funclO
{

static myStatic; /* my Static = > func1_myStatic. */
}
void func20
{

static myStatic; 1* myStatic = > func2_myStatic. */

As for struct, union, and enum names, the compiler only
changes the name of a local static in the debugger's symbol
table. Within a program, local static vartiables are referred to
normally.

The debugger does not currently support doubles. CoPilot
displays a double as if it were defined with the following C
declaration:

struct double {
long high; /* 32 bits of data */
long low:!* 32 bits of clata */

}:

In general, it is not reasonable to interpret a double displayed
in this format as a floating-point number See §7.6 for
information about additional support for displaying doubles.

Copilot displays strings declared as an array of characters (char
string[slze]) using the array format desUibed in § 1.3.1 2 above
Although CoPilot has no facility for displaying a pointer to
character (char ·strlng) as a null terminated string, it can
display a block of memory as ASCii characters The AScii 8ead

7-13

C PROGRAM DEBUGGING

7.4 Evaluating expressions

7.4.1 Single variable expressions

7.4.2 Dereferencing

7-14

command takes a memory location and a size (in bytes) and
displays the block of memory in Ascii. For example, assume we
have a char pointer named foo that points to the string "This is
a test of the emergency broadcasting system". To display the
first twelve characters pointed to by foo, convert the character
pointer foo into a word pointer (see §7.3.1.1) and then give
that value to the AScii Read command:

AScii Read: 4456792, n(10): 1l

The debugger responds with'

This is a tes

See §7.6 for information about additional support for
displaying C strings.

This section describes how to evaluate expressions using
CoPilot. As mentioned above, the debugger expects Mesa
expressions, not C expressions. The following subsections
describe how to convert expressions involving each of the basic
C types into Mesa expressions. Remember that you must put
CoPilot into expression interpreter mode by typing a leading
space.

To display the value of a variable, enter an expression
consisting of only that variable. For instance, to see the value of
the float variable pi, type

pi~

The debugger responds with the value of the expression, which
in this case is simply the value of pi

Given a pointer variable, you can display its referent by using
the dereferencing operator, an upward-pointing arrow (i).
For instance, say a program contains a pointer named arrayPtr
to an array of 5 ints. Displaying the variable arrayPtr results in
the value of the pointer not the value of the array. To see the
array, type

arrayPtr t Ii

Copilot displays the pointer's referent in the format
appropriate to its data type.

C REFERENCE GUIDE

7.4.3 Subscripting

7.4.4 Field Access

7.4.5 Assignment

C REFERENCE GUIDE

C PROGRAM DEBUGGING

To display an element of an array (regardless of the element
type), give the array name followed by an open square bracket,
followed by the array subscript, followed by a closing square
bracket. For example, to display the third element of an array
called ra, one would type

It is important to note that Mesa does not share the C language
view that pointers and arrays are almost equivalent. This means
that the debugger will not accept a subscri pted poi nter
variable.

To access a field of a struct, use the familiar dot notation. So, to
access a field named empName in the struct variable empRec,
type

empRec.empName"

CoPilot displays the specified field using the format
appropriate to the field's type. Similarly, to access a some
variant of a union variable, give the name of the union variable
followed by a dot and the name of the variant.

To access a field through a struct or union pointer, you can
dereference the pointer and then use the dot notation. This
means that a C expression such as

unionPtr- > variant~ame becomes unionPtr 1. variantName

Actually, you can make such references even more simply than
that. You can type:

unionPtr. variant~ amelt

The debugger will notice that unionPtr is a pointer and
dereference it automatically. Consequently, you can use the
dot notation for both struct'union variables and struct'union
pointers.

Assignement in Mesa uses the "get" operator, a left-pointing
arrow (~). So to assign an int variable x the value 755, type

x ~ 755c~

7 ·15

C PROGRAM DEBUGGING

7.4.6 Address of operator

7.4.7 Arithmetic operations

+

-

*

/

MOD

Similarly, to assign the value of x to the field empNo, which is
pointed to by the struct ptr empRec, type

empRec t .empNo ~ x or simply empRec.empNo ~ x

As in the C language, you can obtain the address of a variable
using the" address of" operator. In C this is the & operator; in
Mesa it is the @ operator. Mesa has pointer types, POINTER and
LONG POINTER. All C pointers are LONG POINTERS. Unfortunately,
the debugger generates a POINTER as the result of the @
operator. To get a C pointer (LONG POINTER), you must explicitly
lengthen the result of an @ expression using the LONG[)
construct. For example, to put the address of an int variable
mylnt, into an int * variable mylntPtr, type

mylntPtr ~ LONG[@mylnt]

At present there is no automatic way to generate a character
pointer. You must generate a normal pointer and reverse the
process described in §7.3.1.1.

Table 7-2 summarizes which arithmetic operations can be
applied to each of the basic arithmetic C types.

short int long char pointer float double

yes yes yes yes yes 1 no no

yes yes yes yes yes' no no

yes yes yes yes yes 1 no no

yes yes yes yes yes 1 no no

yes yes yes yes yes 1 no no

Table 7-2: Applicability of arithmetic operators

1 Although these operations are available for pointers, their
meaning is questionable. (That is, what does it mean to
multiply two pointers 7)

7.4.8 Expressions involving function applications

7-16

You can evaluate expressions that involve function
applications In a very straightforward way. Mesa uses square

C REFERENCE GUIDE

7.4.9 Type coercion

7.5 Limitations

C REFERENCE GUIDE

C PROGRAM DEBUGGING

brackets rather than parentheses to delimit function
parameters, so a C expression like

4 * f(i) becomes ~

The debugger displays the expression value using the format
corresponding to the expression's result type. Invoking a
function in this way causes the same side effects that a normal
function application causes.

Occasionally you must interpret a value of one type as being a
value of another type. Using C, you can accomplish this by
usi ng a cast. In Mesa you use the LOOPHOLE construct. LOOPHOLE
has two parameters, a value and a type: LOOPHoLE[value, type].
The result of a LOOPHOLE is the input value tagged with the
input type. Because the debugger accepts Mesa expressions,
you must perform type coercions by using LOOPHOLE.

There is a very important difference between a cast and a
LOOPHOLE. A cast converts a value from one type to another; a
LOOPHOLE does not. LOOPHOLE simply tells the type checker to
accept the value as if it had the named type. A LOOPHOLE never
converts its input to a different representation. The following
comparison demonstrates the importance of the distinction
between a cast and a LOOPHOLE:

Case 1: A cast from long to float in a C program

long k = 1;
float X;
X = (float)k;

Result: x has the value 1.0

Case 2: A LOOPHOLE from long to float using CoPilot

x ~LOOPHOLE[k, REAL]

Result: x has the same bit pattern as k, which is not 1.0 in
the floati ng-poi nt representati on.

This section reviews both the general and the (-specific
limitations of the current debugger. We have touched on some
debugger limitiations already, but we will repeat them here for
completeness. The first subsection deals with general
debugger limitations; the second addresses (-specific
limitations.

7-17

C PROGRAM OEBUGGING

7.5.1 Generic debugger limitations

7.5.2 C-specific limitations

7·18

Copilot has two primary limitations:

• Tracing: With some debuggers it is possible to suspend
execution when a variable takes on a specific value, or
when a variable changes value. This feature can be useful
when a variable is being "smashed" by some unknown
agent. Copilot does not provide integral support for this
functionality.

• Single stepping: Copilot has no direct support for single­
stepping statements at the source code level. That is, you
cannot simply tell the debugger to execute one statement
of a program. To simulate this, you must set a breakpoint
on each statement that can follow the current statement in
execution order.

There are five primary limtiations for C program debugging
using Copilot:

• Syntax translation: Copilot expects expressions to be given
using Mesa syntax. Also, the debugger displays values using
Mesa format and notation. Consequently, Copilot users
must on occasion transpose from C to Mesa and vice versa.

• Character pointer manipulation: You cannot directly
dereference a character pointer, nor can you supply it as an
address to a Copilot command. You must first convert it to
a word pointer as described in §7.3.1.1. The debugging aid
described in §7.6, CPrint, alleviates many of the problems
associated with this limitation.

• External variables: At present, you cannot directly access
extern variables. To reference an extern, you prepend the
variable name with the name of the module that contains
the storage for the variable. For example, assume that a file
called user.c contains the declaration:

extel'n int h:

and the file definer.h contains the declaration:

int h;

To reference the variable h while debugging user.c, type

definer$h"

The dollar sign ($) tells the debugger that the preceding
name is the module containing h. External variables can be
accessed directly if the context is set to the module that
contains the storage for the variable.

C REFERENCE GUIDE

C PROGRAM DEBUGGING

• Cpp confusion: Several debugging problems arise from the
use of the C preprocessor. First, all of the symbolic names
defined using #define are lost. The compiler never sees
these names because the preprocessor removes them. Since
the compiler does not see the names, it cannot keep them
around for the debugger.

Second, the debugger cannot correlate included code with
source positions. That is, if a C program #includes a file
that contains a function, the debugger will not be able to
find the source text for that function. This means that you
cannot set source breaks in such a function, nor can the
debugger show the source position of a suspended process
ifthe position is in an included function.

• Naming anomalies: As mentioned above, you may have to
take some special action to display certain types and values.
Naming anomalies arise when the compiler must change a
varaible or type name to avoid ambiguity. Of course,
names are only changed from the debugger's poi nt of
view. The programmer uses all names normally. The
following list summarizes the name transformations made
the compiler:

• The names of struct's have STR prepended to them.

struct foo D = > STRfoo

• The names of union's have U NN prepended to them.

union bar {} = > UNNbar

• The names of enum's have ENM prepended to them.

enum mumble {a, b, c} = > ENMmumble

• The names of static's have a function name prepended
tothem.

void proclO {static int testcase;} = > proc1 testcase

7.6 A guide to (Print, a (debugging aid

C REFERENCE GUIDE

CPrint is a program that works in conjunction with Copilot to
handle the C data types that are not handled well by Copilot
alone. In particular, CPrint allows youto interpret a character
pointer as a pointer to a null-terminated string of characters,
and it allows youto display doubles in an intelligible format.

The first section below describes the basic functionality of
CPrint. The second section describes the commands and
provides other information necessary for operation.

7·19

C PROGRAM DEBUGGING

7.6.1 Functionality

7.6.2 Operation

CPrint operates by intercepting debugger requests and
handling certain requests on its own. Specifically, CPrint
intercedes whenever Copilot is asked to display a pointer to
character or a double. When a pointer to character passes by,
CPrint reads the referenced .characters and displays them. It
displays characters until it finds a null or until it reaches a user­
determined limit on string length. CPrint displays the
characters as well as the pointer value and the string length.
For example, assume cptr is a character pointer that points to
the string "my mother the car." To display the string, you
simply type the name of the pointer to Copilot, and CPrint will
do the rest:

The debugger responds with:

cptr = (20004567891, 17) "my mother the car"

CPrint only intercepts references to character pointers and a
type called DoubleReal.Double. So, to display the value of a
double, you must LOOPHOLE the variable to the type
DoubleReal.Double. For instance, say you have a double
variable called pi, to display the value of pi you enter the
following LOOPHOLE expression:

LOOPHOLE [pi, DoubleReal.DoubleJ([

The debugger responds with:

pi = 3.1415926

CPrint operation is very simple. All CPrint commands are given
to the Executive. To make CPrint active, simply type

to the executive. You may disable the functionality of CPrint at
any point by typing the command

to the executive. The remaining CPrint commands are
summarized below:

• CPrint SetSize/n: Set the maximum length of displayed
strings to n.

• CPrint SetPrec/n: Set the precision with which doubles are
displayed to n.

7-20 C REFERENCE GUIDE

--- - ----_. ----

C REFERENCE GUIDE

C PROGRAM DEBUGGING

• (Print Notation/{Sci or Normal}: Set the display format of
doubles to either scientific notation or normal decimal
notation.

• (Print Show: Show the settings of all (Print options.

• Help (Print: Display the help text for the (Print Program.

In order to run (Print, you must have the file CPrint.bed. To
interpret doubles, you must have the file DoubleReal,bed on
your search path, and you must be running either the C
Environment or FloatingPt.bcd (the (Environment contains
FloatingPt.bcd) in the debugger instance of the XDE.

7·21

C PROGRAM DeBUGGING

(This page intentionally blank.)

7·22 C REFERENCE GUIDE

A.
PORTING C

PROGRAMS TO THE XOE

This appendix describes some points you should consider when
porting C programs to ViewPoint or XDE.

A.1 Differences in C environments

A.1.1 Machine architecture

1 TAG BIT

C REFERENCE GUIDE

There are two types of differences between the C environment
in ViewPoint and XDE and the C environment on other
machines. The first is caused by the differences in architectures
between Mesa PrincOps and register-based machines. The
second is the result of differences between the ViewPoint and
XDE environments and other programming environments.

The Mesa PrincOps architecture supports 16-bit integers and
32-bit pointers. Many C programs coming from other machines
assume that pointers and integers are the same size. This can
create problems in porting programs. The program "Lint" can
help in detecting such potential problems.

Because a Mesa processor is a word-addressable machine,
character handling requires special attention. Anything that is
of type "pointer to char" is a byte pointer. The representation
of these pointers is different than that of a normal pointer
because the Mesa architecture allows addressing only of words,
not bytes. Byte pointers are 32 bits long, with the following
i nterpretati on:

30 BITS FOR THE WORD POINTER 1 BIT FOR
WHICH BYTE

Figure A-l: A 32-bit byte pointer

The high-order tag bit is always one. Because Pilot only
implements 24 bits of virtual memory, using a byte pointer as a
normal pointer results in an address fault. Similarly, using a
normal pointer when a byte pointer is expected results in a
byte pointer trap. The C compiler handles all conversions of the
two pointer representations as needed except for one case:
passi ng poi nters as parameters to fu ncti ons. No type check i n9
is done between the caller and the callee, so the complier
doesn't have the information needed to know if a conversion is
needed. Any necessary conversions must be done by the

A 1

PORTING C PROGRAMS TO THE XOE

programmer with casts. If you get a byte pointer trap and think
you have a normal pointer that points to text, try the
debugger's Ascii read command. .

If you want to convert a byte pointer to a normal pointer
manually, get the octal representation of the pointer value.
Then strip off the leading "2" and any zeroes that follow it.
Divide the result by two and you'll get the word to which the
byte pointer was referring. For example, "200001245208"
would be "1246208/2" = "523108".

On Mesa processors, the parameters are passed in a register
stack instead of a stack in memory. This leads to the
requirement that the number and size of actual and formal
parameters must match exactly on a function call.

A.1.2 The ViewPoint and XOE operating environments

A.2 Porting steps

A-2

When a C program consists of more than one C source module,
those modules must be linked in the sequence in which they
depend within a program. This is necessary because the global
variables within these modules are initialized in the same
sequence as they are linked. For example, if module A contains
a global pointer that is initialized to point to an array in
module 8, then module B must come before module A when
these modules are linked. Otherwise, the pointer 'in module A
is initialized before storage is allocated for the array in module
8, and the pointer will point to an illegal address.

In UNIX environments all the global variables are allocated to a
"common" segment by the linker. If two or more C source
modules contain a declaration of the same global variable, the
linked program has only one instance of that variable. But in
ViewPoint and XDE, the linked program will have as many
instances of global variables as there are global declarations.
When porting C programs the include files must be checked for
variable declarations that include storage allocation (as
opposed to extern declarations), In some C programs, one
include file containing the declarations of global variables may
be included in more than one C source module. To port such
programs, it is necessary to declare these variables as global in
one module (normally the module with the routine main) and
then define them to be extern in the include file.

This section outlines the suggested steps in porting programs
from another environment to ViewPoint or XDE. A short
motivation for each step is provided along with a description
of ways to deal with some of the obstacles to porting.

C REFERENCE GUIDE

A.2.1 De-lint the source program

PORTING C PROGRAMS TO THE XDE

In general, it is a good idea to run Lint on the programs to be
ported to ViewPoint or XDE. The use of the Lint switches "-hp"
aid in locating portability sensitive source code. A note about
the philosophy of the program Lint should be understood
during these efforts; users are encouraged to review s.c.
Johnson's Lint--A C Program Checker. The sections" A Word
About Philosophy" and "Portability" are particularly helpful.

A common complaint with Lint is that it produces many error
messages for legal C constructs. In Lint's defense it should be
said that too much output is preferable to too little, and that
the vast majority of porting obstacles that have been
encountered so far could have been avoided by careful scrutiny
of the Lint output. Use Lint!

Often, you may be willing to lose some special system­
dependent function in exchange for a quicker port. If this is the
case, commenting out code is one option, but another is to
make use of the C preprocessor's conditional compilation
facility. Instead of commenting out the code, use the phrases
#ifndef princops and #endif to bracket the undesired code. It
will be included the code in compilations on the host machine
but will be deleted when the program is compiled on the
PrincOps machine. (The C preprocessor on the PrincOps
machine automatically defines princops to be true.)

A.2.2 Check for system-dependent function calls

C REFERENCE GUIDE

Programs that were written on other systems may make
extensive use of operating system calls that are not part of the
C language. Basically there are two strategies for dealing with
these calls: implement the call in software or rewrite the code
so that the system call is not required.

As an example, consider porting a program from a UNIX
environment where the program includes the system calls
openO and closeO These calls use the Unix operating system's
notion of file descriptors, for which there is no equivalent in
ViewPoint or XDE. One approach would be to implement the
calls openO and closeO, perhaps by using a table to bind FILE
pointers to integer file descriptors and then usi ng the stdio
routines fopenO and fcioseO to do the actual file manipulation.
Another option, in this case preferable, is to convert the openO
and c1oseO calls to fopenO and fcioseO calls and to replace all
occurrences of file descriptors with pointers to FILEs (that is,
replace readO with freadO and writeO with fwrite()) This
technique has the desirable side effect of rendering the code
less system dependent and hence more portable to subsequent
envi ronments.

But how do you determine which routines are system calls? The
easiest way is to let the compiler help you. If you compile the
example program discussed above with cc, an error message is
printed for each undefined procedure (in this case, the list
would include open, close, read, and write). Another
technique is to use the XDE program Lister (see the XDE User's

A·3

PORTING C PROGRAMS TO THE XOE

Guide) to examine the bcd links (use Lister
bcdlinks[example.bcd] then examine the resulting file
example.bl).

A.2.3 Implement system-dependent function calls

A-4

In some cases it will not be possible to side-step the system
dependenci€:5 .;.~ .:. program, and in fact those system
dependencies may be crucial to the functionality of the
program. In this case there is little to do but implement the call.
Yet here again there are options: you can implement the
function in C using lower-level system-independent calls, or
you can implement the function by using the existing facilities
of ViewPoint or XDE. For example, suppose that a program
that manipulated directories was being ported to XDE, and at
some point in the code you need to know the answer to the
question: "Is the file pointed to by this FILE pointer actually a
directory?" It would be possible (but painful!) to write the C
routines necessary to dereference the pointer, examine the
FILE contents, and decide whether it was actually a directory.

In this case it would be much easier to make use of the Mesa
MFile interface procedure MFile.GetProperties to obtain an
MFile.Type (unknown, text, binary, directory or null) for the
file in question. Figures A-2, A-3, and A-4 show an ,example use
of a Mesa implementation of a system-dependent function for
a C program. This program simply checks to see if the file foo is
a directory_ The program is constructed by first compiling the
Mesa programs:

>Compiler exampleMesaDefs exampleMesalmpl

and then compiling the C program and linking it with the Mesa
implementation module:

cc -0 example exampleClmpl.c exampleMesalmpl.bcd

This example is stored in the release directory in the folder
"Examples" for programmer reference. In particular, see the
file Example.df.

C REFERENCE GUIDE

C REFERENCE GUIDE

PORTING C PROGRAMS TO THE XDE

/* Example program to demonstrate Mesa Interfaces *1

#Include <stdlo.h>

Ifdef prlncops

mesa Int exampleMesaDefs_ftypeO;

#define ftype(s) exampleMesaDefs_ftype(s)

#endlf

maihO

{
If (ftype("FOO") = = 1) prlntf("FOO IS a directoryln");

Figure A-2: ExampleClmpl.e

Several points should be noted in this example. In Example.e,
the syntax

mesa int exampleMesaDefs_ftypeO;

is introduced. This extension to the C language is documented
more fully in chapter 3 .

. - exampleMesaDefs.mesa

-- ftype returns 1 If the file with the name pOinted to by s IS a directory, 2 If a file else returns 0

DIRECTORY

CString USING [CString);

exampleMesaDefs: DEFINITIONS =

{

}

ftype: PROCEDURE Is: CString.CStrlngj RETURNS [INTEGERj;

Figure A-3: ExampleMesaDefs.mesa

The Mesa definitions module (here exampleMesaDefs.mesa)
must be produced and the corresponding .bed file (here
exampleMesaDefs.bed) must be on the search path because
the assembler uses this module to resolve function references.

A-S

PORTING C PROGRAMS TO THE XDE

A.2.4

A-6

--exampleMesalmpl.mesa

DIRECTORY

exampleMesaDefs USING [1.
CBasics USING [RegisterFramel.

CString USING [CString. CStringToLongStringl.

Heap USING [systemZonel.

MFile USING [Acquire. ByteCount. Error. GetProperties. Handle. Release. Type],

Time USING [Packed];

exampleMesalm pi: PROGRAM

{

IMPORTS CBasics. CString. Heap.MFile

EXPORTS exampleMesaDefs =

ftype: PUBLIC PROCEDURE [s: CString.CStrlngl RETURNS [retval: INTEGER] =
BEGIN

fileName: LONG STRING+--CString.CStringToLongString[s.Heap.systemZone];

BEGIN ENABLE UNWIND = > IF fileName # NIL THEN Heap.systemZone.FREE[@fileName];

create. write. read: Time.Packed;

length: MFile.ByteCount;

type: MFile.Type;

deleteProtected. writeProtected. readProtected: BOOLEAN;

file: MFile.Handle +-- MFile.Acquire[name: fileName. access: anchor. release: [NIL. NIL]

IMFile.Error = > {retval +--0; GO TO return};J;

[create. write, read,length. type. deleteProtected. write Protected. readProtectedl Eo- MFile.GetPropertles[file

IMFlle.Error = > {MFrle.Release[filel; retval Eo-O; GO TO'return};];

MFile.Release[file ! MFile.Error = > {retval +-- 0; GO TO return}; J;

SELECT type FROM

directory = > retval +-- 1;

text. binary = > retval Eo- 2;

ENDCASE = > retval +-- 0;

IF fileName # NIL THEN Heap.systemZone.FREE[@fileNameJ;

RETURN[retvaIJ;

EXITS return = > {IF fileName # NIL THEN Heap.systemZone.FREE[@flleNamel; RETURN [OJ;};

END;

END;

[] Eo-CBaslCs.ReglsterFrame[OJ;

}.

Figure A-4: ExampleMesalmpl.mesa

In any Mesa implementation module that will be used with C.
care must be taken to catch all possible signals that might be
raised by calls to other routines because most C programs have
no notion of signals in the Mesa sense.

Check include files for storage allocation

As discussed in section A.l.2. the declaration of global variables
in a file that is included in more than one module will not have
the desired effect of sharing the single common global variable
but instead will declare multiple global variables with the same

C REFERENCE GUIDE

A.2.S Other hints

C REFERENCE GUIDE

PORTING C PROGRAMS TO THE XOE

name. The fix is to declare these variables in a single location
(normally the module that contains the routine main(» and
then to modify the include file to declare the same variables as
extern. Figures A-S and A-6 describe an example of this
conversion.

#include "fnn.h"

extern int proc to;
mainO

procl();

foo.h:

lint i;

procs.c:

#include "foo.h"

proclO
(

i = 3;

Figure A-S: Configuration before modification

main.c:

#include "foo.h"

extern int proc lO;

int i;

mainO

procl(l;

foo.h:

extern int i;

procs.c:

#include "f()o.h"

proclO

{

i = 3;

Figure A-6: Configuration after modification

Longs (and poi nters) are not_the same si ze as i nts. See the tabl e
in chapter 3.

All C programs must be linked, even if there is only one source
module. CC takes care of linking for you, but if you use the -c
option with cc, you must at some point link the resulting
module before you can run it. See chapter 4 for more details.

The start order of a multi-file configuration is significant. The
order in which modules are started is the same as the order in
which modules are specified on the command line to CC or to
the linker.

A·7

PORTING C PROGRAMS TO THE XDE

A.3 Debugging

The type of most numeric constants is int or long. This can have
odd effects when combined with unsigned variables, especially
in comparisons, division and mod. A comparison is unsigned if
either operand is unsigned.

As a general rule, it is best to keep the source in a state so that
it will compile and run on the original host. The process of
porting tends to be iterative, so that at frequent intervals it is
desirable to rerun the source on the original host to detect any
machine-independent errors that may have been introduced
while porting. In particular, the #ifndef princops ... #else
... #endif construct is very helpful in maintaining this
compatibility.

Debugging a C program in XDE is very similar to debugging a
Mesa program, and in fact the syntax for using the CoPilot
debugger is unchanged. See chapter 7 and the XDE User's
Guide for the details of debugger use.

Some C-specific debugging hints are provided below.

A.3.1 Address faults and stack errors

A-S

A common problem encountered when porting C programs is
the occurrence of address faults, particularly at the entry to
function calls. These address faults are often the result of a
mismatch in actual and formal parameters of a function call
and frequently manifest themselves as address faults in printfO.
The C language allows the number of actual parameters to be
different from the number of formal parameters. This presents
problems to a stack machine because the stack is expected to
contain exactly as many a'ctual parameters as formal
parameters in the function that was called. To detect this
problem the program can be compiled with the 'd' (stack­
checking) switch. It checks that the stack is empty at all
statement boundaries and that functions return the number of
words the caller expects. Stack checking will slow a program
down significantly because a stack dump and restore is
required for each procedure call. Again, Lint is of particular aid
in detecting mismatches of this kind.

C REFERENCE GUIDE

A.4 References

C REFERENCE GUIDE

PORTING C PROGRAMS TO THE XDE

[1] XDE User Guide. Version 3.0 [November 1984].

[2] The C Programming Language. Brian W. Kernighan and
Dennis M. Ritchie, Prentice-Hall, Inc., Englewood Cliffs, N.J.
1978.

[3] Lint -- A C Program Checker. S.c. Johnson.

UNIX is a trademark of Bell Laboratories.

A9

PORTING C PROGRAMS TO THE XOE

(This page intentionally blank.)

A-l0 C REFERENCE GUIDE

B. COMPATIBILITY WITH MESA

This appendix describes points that must be considered when
calling Mesa procedures from (programs. It describes
problems that may be encountered in calling Mesa routines
and explains how to construct data types in (that are
equivalent to Mesa data types.

B.1 Accessing Mesa procedures

B.2 Signals

Mesa procedures must be declared in a Mesa interface for (
programs to access them. chapter 3 (ccl. section 3.4 ((language
extensions) explains the syntax for calling Mesa procedures in (
programs.

Although the (library functions are accessed from Mesa
interfaces, (programs need not explicitly declare them as Mesa
procedures. There is a set of Mesa interfaces for standard
library functions, and the linker, when invoked through cc,
assumes that library functions are in these interfaces. Both cc
and the linker accept switches that expand this set of library
interfaces (see chapters 3 and 4).

Programs that are ported to ViewPoint or XDE from other
environments and use only (Tool for a user interface may still
need to explicitly call Mesa procedures to access features of the
system that are inaccessable from any of the library functions.
(programs that use the standard ViewPoint and XDE user
interfaces (windows, menus, etc.) need to call Mesa procedures
extensively.

Many procedures in Mesa interfaces raise signals to note
exceptional conditions Signals are described in the Mesa
Language Manual, chapter 8 (Signaling and signal data types)
(programs cannot catch signals. If a (program needs to call a
Mesa procedure that might raise a signal, it must either:

1. (all an intermediary Mesa procedure that calls the
procedure that can raise signals. The intermediary
procedure catches the signals and can return a value
indicating exceptional conditions if they arise The (
program calls the intermediary procedure rather than the
procedure that can raise a signal. Many of the C library
functions serve as such Intermediary procedures to catch
signals

C REFERENCE GUIDE 8·1

COMPATIBILITY WITH MESA

2. Ensure that the exceptional conditions for which signals
are raised are not present before calling the Mesa
procedure. Because it is not always possible to determine
whether the exceptional conditions are present, this
technique cannot always be used.

B.3 INLINE and MACHINE CODE procedures

B.4 Mesa data types

B.4.1 Numeric types

B.4.1.1 Fixed point types

B·2

INLINE procedures are Mesa procedures for which the code of
the procedure is simply placed in the caller's code. They are
described in the Mesa Language Manual, chapter 5
(Procedures, section 5.6)

C programs cannot call INLINE procedures. MACHINE CODE
procedures in interfaces are implicitly INLINE procedures, and
thus can not be called by C programs either.

When calling Mesa procedures, it is important that the types
used for the parameters and the return value are equivalent to
those used by the Mesa procedure. The types must be of the
same size and must be interpreted the same way in both Mesa
and C. This section explains how to construct types in C that are
equivalent to Mesa types.

For all the fixed-point Mesa types there are simple equivalents
in C. Table 8-1 shows the C types equivalent to each fixed­
point Mesa type.

Mesa type C equivalent Words

INTEGER int or short 1

LONG INTEGER long 2

CARDINAL unsigned or 1
unsigned short

LONG unsigned long 2
CARDINAL

NATURAL unsigned or 1
unsigned short

Table 8-1· Mesa and C equivalent types

C REFERENCE GUIDE

8.4.1.1 Floating point types

B.4.2 Pointer types

COMPATIBILITY WITH MESA

The Mesa type REAL is equivalent to the C type float. There is no
Mesa type equivalent to double. Because values of type float
are expanded to doubles when they are passed as parameters,
there is no simple way to pass floating-point parameters to
Mesa procedures. The expansion of floats to doubles can be
prevented, however, by using a pointer to a float and casting it
into a pointer to a long. The actual parameter is then the
referent of the pointer to a long. Figure B-1 shows how to call
a Mesa procedure that expects a REAL parameter:

{

}

floatf *fp;
long *Ip;

fp = &f;
Ip = (long *)fp;
mesaProc{ ...• *Ip);

Figure B-1: Calling a Mesa procedure

8.4.2.1 Short pointers. long pointers. and relative pointers

B.4.2.2 Byte pointers

C REFERENCE GUIDE

There are three kinds of pointer types in Mesa: pointers, long
pointers, and relative pointers. Mesa pointers are described in
the Mesa Language Manual, chapter 3 (Common constructed
data types). section 3.4 (The types POINTER and LONG POINTER).
and chapter 6 (Other data types and storage management).
section 6.3 (Base and relative pointers). A pointer in C (except
for a pointer to a char) is equivalent to a long pointer. To call a
Mesa procedure that requires a short pointer parameter, the C
program should use a pointer to a variable in a frame and cast
it into an into The referent of such a short pointer must be a
frame variable.

Relative pointers are offsets from another pointer, called a
base pointer. The C type unsigned is equivalent to a relative
pointer.

In C, a pointer to a char is a special kind of pointer called a byte
pointer. It can point to either the high byte or the low byte of a
word (see section 6.2.4) A pointer to a char is not equivalent
to any standard type in Mesa. In particular, a pointer to a char
is not equivalent to the Mesa type LONG POINTER TO CHARACTER,
which is an ordinary long pointer If a pointer to a char '5 to be

B 3

COMPATIBILITY WITH MESA

8.4.3 Strings

B.4.3.1 Strings in ViewPoint

8.4.4 Records and arrays

8-4

passed to any Mesa procedure that expects any kind of long
pointer, it should be cast into a pointer to an int before being
passed.

The CString Mesa interface (see section 6.2.4) defines a type
that is equivalent to a C pointer to a char. It also contains
procedures for converting between byte pointers and ordinary
pointers.

Mesa and C represent strings differently. A string in C is a
pointer to a char and is terminated by a null character. In Mesa
it is a pointer to a record that holds the maximum length of the
string, the current length of the string, and the characters.
There is no special termination character. They are described
fully in the Mesa Language Manual, chapter 6 (Other data
types and storage management), section 6.1 (Strings).

The CString Mesa interface (see section 6.2.4) contains
procedures for converting between C strings and Mesa strings.

The interfaces for ViewPoint generally do not use Mesa strings
for string parameters To support multilingual strings,
ViewPoint uses its own representation of strings, defined in
ViewPoint's XString interface (see the ViewPoint Programmer's
Manual). The XString interface contains procedures for
converting Mesa strings to XStrings. C programs can call
procedures that have string parameters by first converting C
strings to Mesa strings with the CString interface and then
converting Mesa strings to ViewPoint's representation with the
XString interface.

In Mesa, records are automatically packed whenever possible.
Because characters, booleans, and some subrange and
enumerated types require less than one word of storage,
records containing fields of these types may be packed. C
structures containing the same fields as Mesa records and in
the same order, therefore, are not necessarily equivalent. It
may be necssary to use bit fields in the C structure declaration
to construct a type that is equivalent to a Mesa record. The
debugger's type&bits command can be used to determine the
bit placement of each field in a Mesa record.

If a record in Mesa is declared to be a MONITORED RECORED, then
it contains an implicit field of type MONITORLOCK (see section
B.4.9). The debugger's type&bits command shows the
placement of this hidden field.

C RE~ERENCE GUIDE

8.4.5 800leans

8.4.6 Array descriptors

8.4.7 Procedure types

8.4.8 Opaque types

C REFERENCE GUIDE

COMPATIBILITY WITH MESA

Arrays in Mesa are not packed unless they are explicitly
declared as packed arrays. There is no way of constructing
types in C that are equivalent to packed arrays. If the size of
the array can be determined, it is possible to declare a type that
is of the same type, but the C program cannot index the array
in the same way the Mesa procedure can.

A Mesa parameter or variable of type BOOLEAN is the same size
as a C int if it appears as a separate parameter or variable. If it
is a component of a record or a packed array, it may occupy as
little as one bit.

The boolean value TRUE IS represented as 1, and the value FALSE

is represented as O.

Array descriptors describe the length and location of an array.
They consist of a pointer to the base of the array, and a one­
word field describing the length. If a descriptor is declared to
be a long descriptor, then the base pointer is a long pointer.
Array descriptors are described fully in the Mesa Language
Manual, chapter 6 (Other data types and storage
management), section 6.2 (Array descri ptors).

A C type equivalent to a long descriptor can be constructed
with a structure containing a base field and a length field. The
base field must come first. For example, for the Mesa type:

t: TYPE = LONG DESCRIPTOR FOR ARRA Y OF INTEGER;

an equivalent C type is:

typedef struct {
int *base;
unsigned length};

A pointer to a function in C is equivalent in type to a procedure
in Mesa.

An opaque type is a type that is declared in an interface, but ail
the information about the type IS exported from an

8·5

COMPA TlBILITY WITH MESA

B.4.9 Special abstract types

8-6

implementation module. The interface declaration may
contain the size of the type; however, in that case, values of
the type can be passed as parameters. Opaque types are
described in the Mesa Language Manual, chapter 7 (Modules,
programs, and configurations), section ~.6 (Exported (Opaque)
types).

To hold a value of an opaque type in a variable in C, the type of
the variable can simply be an array of int whose length is the
size of the opaque type.

Mesa includes several primitive types, whose values are not
interpreted by Mesa programs, but which can be arguments to
procedures or Mesa language constructs.

Variables in C that need to hold values of these types need only
be the same size as the Mesa type. Table 8-2 shows C types that
can substitute for these Mesa types.

Mesa type Possible C Words type

PROCESS int 1

CONDITION long 2

SIGNAL long 2

MONITORLOCK int 1

UNCOUNTED ZONE int * 2

Table 8-2 C substitutes for Mesa types

C REFERENCE GUIDE

C.1 Purpose

C.2 Overview of veneer

VIEWPOINT VENEER GUIDE

c. ViewPoint Veneer Guide

This document describes the functioni'llitll d the ViewPoint
veneer. It assumes the reader is familiar with both C and Mesa.
The last section of this document contains a sample application
that uses the veneer.

The purpose of the veneer is to simplify writing ViewPoint
applications in C. It does not relieve the C programmer of
understanding ViewPoint programming, but it does make
ViewPoint programming simpler and far less error-prone. It
eliminates some of the awkwardness that results from using
Mesa interfaces with features of the Mesa language that are
not included in the C langauge. It also shields C programmers
from needing to know all the details about the types and
constants defi ned in Vi ewPoi nt interfaces. .

By using the veneer, C programmers can also avoid repeating
declarations and code in every C module. It can, therefore, be
considered an extension of the C library.

The veneer consists of C header files and Mesa interfaces. Each
header file and interface contain declarations and procedures
relating to one ViewPoint interface. For some ViewPoint
interfaces, a header file but no auxilliary Mesa interface is
needed.

A header file called Mesa.h contains definitions of TRUE, FALSE,

and NIL, and a typedef for array descri ptors. This header fi I e
does not correspond to any ViewPoint interface.

Because ViewPoint applications also need to access Pilot and
Services Interfaces, the veneer covers some of these interfaces
as well.

(.,

VIEWPOINT VENEER GUIDE

C.2.1 Contents of header files

C.2.2 Contents of Mesa interfaces

C-2

The header files contain:

Typedefs for types defined in the corresponding ViewPoint
interface.

Mesa declarations for procedures and variables in the
corresponding ViewPoint interface and the auxiliary veneer
interface.

Definitions of single- and double-word constants defined in
the corresponding ViewPoint interface.

Macros for inline procedures defined in thE:'! corresponding
ViewPoint interface.

Because interfaces depend on other interfaces, the header files
include other header files in the veneer. Programmers need
not be concerned with including things more than once,
however, because each header file defines its name and is
compiled only if its name is not already defined. For example:

/* File: StarWindowShell.h */
#ifndef Star WindowShell
#define StarWindowShell
#include Window.h

#endif

The Mesa interfaces in the veneer include:

Procedures similar to those in the corresponding ViewPoint
interface, but with the following changes:

1. They supply all or some of the default parameters to the
corresponding procedure in the ViewPoint interface.

2. They replace XString parameters and return values with
C strings.

3. They catch signals raised by calls to the corresponding
ViewPoint procedure.

Procedures that return multi-word constants defined In the
corresponding ViewPoint interface.

Procedures that compare multi-word values with constants
defi ned in the correspond i ng Vi ewPoi nt interface

These procedures can often reduce the amount of storage a C
program needs for variables. They eliminate the need to
declare multi-word records or arrays that are only used to hold
constants to be passed as parameters to Mesa procedures or

VIEWPOINT VENEER GUIDE

VIEWPOINT VENEER GUIDE

C.3 Naming conventions

C.3.1 Files

C.3.2 Items in header files

C.3,2.1 Values of enumerated types

C.3.2.2 Variant record types

VIEWPOINT VENEER GUIDE

hold the return value of a Mesa procedure so that it can be
compared with a constant.

Header files always have the same root name as the ViewPoint
interface to which they correspond but have" .h" as their
extension. Veneer interfaces have the same name as the
ViewPoint interface to which they correspond but have a C
prepended to their name. For example, the header file and
interface that correspond to the ViewPoint interface
Display.mesa (Display,bcd) are Display.h and CDisplay.mesa
(CDisplay.bed).

Items in the header files have the same name as the
corresponding item in the ViewPoint interface, except that the
interface name is separated by an underscore rather than by a
dot. For example, the Mesa type XString.Reader appears as
XString_ Reader in XString.h.

Because C does not permit the use of the same identifier as
values in different enumerated types, the values for
enumerated types have the name of the type and an
underscore prepended to them. For example, the the Mesa
type:

FormWindow.8ooleanltemLabeIType: TYPE = {
string, bitmap};

appears in FormWindow.h as:

typedefenum {
Form Window Boolean I temLahelType _string,
FOl'mWindow -BooleanltemLahelType hitmapf
Fm'm Window =BooleanltemLahle'l'ype;

For a variant record in a Mesa interfaces, the equivalent C type
in a header file is encoded as follows. The common fields of the
variant record type are encoded the same way as for fields of
non-variant record types. For each variant arm of the record, a

(·3

VIEWPOINT VENEER GUIOE

C.3.3 Items in veneer interfaces

separate type is declared whose name is the type of the entire
record with an underscore and the variant adjective appended.
The entire variant part of the record is a union of these
separately declared types. Ihhere is a tag field, it is encoded as
a field of the common part of the record. For example, the
Mesa type:

FormWindow.BooleantltemLabe/: TYPE = RECORO[
SELECT type: BooleanltemLabelType FROM

string = > [string: XString.ReaderBody],
bitmap = > [bitmap: Bitmap]
ENOCASEj;

appears in FormWindow.h as the three declarations:

typedef struct {
XString ReaderBody string}

Form Window _Boolean I temLabel_ string;

typedef struct {
FormWindow Bitmap bitmap}

Form Window _ BooleanltemLabel_ bitmap;

typedef struct {
Form Window Boolean Item LabelType type;
union { -
FormWindow Boolean ItemLabel string string;
FormWindow BooleanltemLanel bitmap
bitmap} var; -
} Form Window _ BooleanltemLabel;

Procedures in the veneer interfaces that are similar to
procedures in ViewPoint interfaces but with the changes noted
above have the same name as the procedure in the ViewPoint
procedure.

C.4 Interfaces covered by the veneer

(-4

This section documents the contents of each header file and
veneer interface. Each subsection describes the header file and
veneer interface that correspond to a particular ViewPoint (or
Pilot or Services) interface.

VIEWPOINT VENEER GUIOE

VIEWPOINT VENEER GUIDE

C.4.1 Atom

C.4.1.1 Atom.h

C.4.1.2 CAtom.mesa

C.4.2 Containee

C.4.2.1 Containee.h

C.4.3 Display

C.4.3.1 Display.h

VIEWPOINT VENEER GUIDE

Type: Atom

Constant: null

Procedures: Make, MakeAtom, GetPName, procedure in
CAtom

Make: PROCEDURE [pName: CString. (String] RETuRNs[atom: A tom.A TOM];

The procedure Make is equivalent to the procedures Make and
MakeAtom in the Atom interface except that it takes a C string
as a parameter.

For the Containee interface, the veneer includes a header file
but no Mesa interface.

Types: Data, DataHandle, Implementation, Ticket, PictureState

Constant: ignoreType,

Procedures: Setlmplementation, Getlmplementation,
SetDefaultl m pi ementati on, G etDefau It I m pi em entati on,
GetCachedType, SetCachedName, SetCachedType,
InvalidateCache, InvalidateWholeCache, Ticket, ReturnTicket,
GetCachedName.

Types: Handle, DstFunc, SrcFunc (from BitBlt interface),
BitAddress, BitBltFlags, LineStyleObject, LlneStyle, Brick

(,5

VIEWPOINT VENEER GUIDE

C.4.3.2 CDisplay.mesa

Constants: paintGrayFlags, bitFlags, replaceGrayFlags,
boxFlags, xorGrayFlags, xorBoxFlags, replaceFlags, textFlags,
paintFlags, xorFlags, eraseFlags, DashCnt

Procedures: Are, Black, Gray White, Invert, Bitmap, Circle,
Conic, Ellipse, Line, Point, procedures in CDisplay

Black: PROCEDuRE[window: Display.Handle, box: Window.Box);

White: PROCEDuRE[window: Display.Handle, box: Window.Box];

Gray: PROCEDuRE[window: Display.Handle, box: Window. Box, gray: Display.Brick];

FiftyPercentGray: PROCEDuRE[window: Display. Handle, box: Window. Box];

Bitmap: PROCEDURE [

window: Display.Handle, box: Window. Box, address: Display.BitAddress,
bitmapBitWidth: CARDINAL, flags: Display. BitBltFlags);

Invert: PROCEDuRE[window: Display. Handle, box: Window. Box];

Circle: PROCEDURE[

window: Display. Handle, place: Window. Place, radius: INTEGER];

Line: PROCEDURE[

window: Display. Hand/e, start: Window.Place, stop: Window.Place);

The procedures Black, White, Gray, Bitmap, Invert, Circle, and
Line call the procedures of the same name in the Display
interface and supply the default bounds parameter (NIL). The
procedure Gray also supplies the default destination function.
FiftyPercentGray calls Display. Gray wi th Display. fiftyPercent as
the gray Brick.

C.4.4 FormWindow

C.4.4.1 FormWindow.h

C-6

Types: Item Key, Choiceltems, ItemType, Visibility, TabType,
ChangeReason, TextHi ntAction, Bool ean Item Label Type,
ChoiceltemType, Choicelndex, Bitmap, BooleanltemLabel,
Choiceltem

Procedures: Create, Destroy, Repaint, MakeBooleanltem,
MakeChoi celtem, Make M u I ti pieCh oi ce I te m,
MakeCommandltem, MakeTextltem, MakeDecimalltem,
Makelntegerltem, Destroyltem,
DoneLook i ngAtTextltem Val u e, SetWi n d ow Item 5 i z e,
SetBooleanltemValue, SetChoiceltemValue,
SetDeci malltemVal ue, SetlntegerltemVal ue, SetTextltemVal ue,
SetMultipleChoiceltemValue, SetTextltemValue,

VIEWPOINT VENEER GUIDE

VIEWPOINT VENEER GUIDE

MakeWi ndowltem, GetWi ndow I tem Va I u e,
GetBool ean Item Va I ue, Get I ntege rltem Val u e,
GetMulti pi eChoiceltemVal ue, GetTextltem Va I u e,
LookAtTextltemVal ue, GetVisi bi I ity, HasAnyBeenChanged,
HasBeenChanged, procedures in CFormWindow

C.4.4.2 FormWindow.mesa

Create: PROCEDURE[

window: Window. Handle, makeltemsProc: FormWindow.MakeltemsProcl;

MakeBoo/eanltem: PROCEDURE[

window: Window. Handle, myKey: FormWindow.ltemKey,
tag, suffix: CString. CString, readOnly: BOOLEAN,

label: FormWindow.Boo/eanltemLabel, initBoolean:Boo~EAN1;

MakeChoiceltem: PROCEDURE [

window: Window. Handle, myKey: Form Window. Item Key,
tag, suffix: CString.CString, readOnly: BOOLEAN,

values: FormWindow.Choiceltems, initChoice: Form Window. Choicelndexj;

MakeMultipleChoiceltem: PROCEDURE[

window: Window. Handle, myKey: FormWindow.ltemKey,
tag, suffix: CString.CString, readOnly: BOOLEAN,

values: Form Window. Choiceltems,
initChoice: LONG DESCRIPTOR FOR ARRAY CARDINAL OF Form Window. Choicelndex];

MakeCommandltem: PROCEDURE[

window: Window. Handle, myKey: FormWindow.ltemKey,
tag, suffix: CString.CString, readOnly: BOOLEAN,

commandProc: FormWindow.CommandProc, commandName: CString.CString];

MakeTextltem: PROCEDURE[

window: Window. Handle, myKey: FormWindow.ltemKey,
tag, suffix: CString. CString, readOnly: BOOLEAN,

width: CARDINAL, initString: CString.CString];

MakeDecimalltem: PROCEDURE[

window: Window. Handle, myKey: FormWindow.ltemKey,
tag, suffix: CString. CString, readOnly, signed: BOOLEAN,

width: CARDINAL, inttDecimal: XL Real. Number];

Makelntegerltem: PROCEDURE [

window: Window. Handle, myKey: FormWindow.ltemKey,
tag, suffix: CString.CString, readOnly, signed: BOOLEAN,

width: CARDINAL, I ni tl n teger: LONG INTEGER];

MakeWindowltem: PROCEDURE[

window: Window. Handle, myKey: Form Window. Item Key,
tag: CString.CString,slze: Window. Dims]
RETURNS [clientWindow: Window. Handle];

VIEWPOINT VENEER GUIDE (·7

VIEWPOINT VENEER GUIDE

C.4.5 Heap

SetChoiceltemValue: PROCEDURE[

window: Window. Handle, item: FormWindow.ltemKey,
newValue: FormWindow.Choicelndex];

SetMultipleChoiceltemValue: PROCEDURE[

window: Window. Handle, item: FormWindow.ltemKey,
newValues: LONG DESCRIPTOR FOR ARRAY CARDINAL OF Form Window. Choicelndex];

GetTextltem Value: PROCEDURE [

windov.:: ~JI/!_-::!:'/V.Handle, item: Form Window. Item Key, zone: UNCOUNTED ZONE]

RETURNS[CString. CString];

These procedures all call procedures of the same name in the
FormWindow interface_ They provide some of the default
parameters, and their string parameters and return values are
C strings rather than XStrings.

The procedures MakeWindowltem SetChoiceltemValue, and
SetMultipleChoiceltemValue catch the error
FormWindow.Error, thereby making it possible to attempt to
set choice items to invalid values. The other procedures in this
interface do not catch FormWindow.Error.

For the Heap interface, the veneer includes a header file but no
Mesa interface.

C.4.5.1 Heap.h

C.4.6 MenuData

C.4.6.1 MenuData.h

C-8

Type: NWords

Constant: unlimitedSize,

Variables: systemZone, systemMDSZone, minimumNodeSize

Procedures: Create, CreateUniform, Delete, Flush, FreeNode,
MakeNode

For the MenuData interface, the veneer includes a header file
but no Mesa interface.

Types: Item Handle, MenuObject, MenuHandle

VIEWPOINT VENEER GUIDE

VIEWPOINT VENEER GUIDE

C4.7 NSFile

C.4.7.1 NSFile.h

C.4.7.2 CNSFile.mesa

VIEWPOINT VENEER GUIDE

Procedures: Createltem, Oestroyltem, OestroyM e n u,
Item Name, Item Data, CreateMenu

This header file contains some definitions from the NSName
interfaces as well as from the NSFile interface.

Types: Handle, Type, SystemElement, ServiceRecord, Service,
10, Reference, Selections

Types from NSName: Organization, String Local, NameRecord

Procedures: Close, procedures from CNSFile

Close: PROCEDURE [file: NSFile. Handle];

IsNullReference: PROCEDURE[

reference: NSFile.Referencel RETURNS [BOOLEAN];

GetNolnterpretedSelections: PROCEDURE

RETURNS [NSFile.lnterpretedSelections);

GetNoExtendedSelections: PROCEDURE

RETURNS[NSFile. ExtendedSelectionsl;

GetSelectionsDefaultValue: PROCEDURE

RETURNs[defultVa/: NSFile.Selectionsl;

The procedure Close calls NSFile.Close and catches NSFile.Error

IsNullReference compares the NSfile.Reference passed with the
constant NSFile.NuIiReference.

The procedures GetNolnterpretedSelections and
GetNoExtendedSelections return the constants
NSFile.nolnterpretedSelections and
NSFile. noExtendedSelections, respecti vel y.

The default value for the type NSFile.Selections can be acquired
with the procedure GetSelectlOnsDefaultValue.

C-9

VIEWPOINT VENEER GUIDE

C.4.8 PropertySheet

C.4.8.1 PropertySheet.h

C.4.8.2 CPropertySheet.mesa

(·10

Types: MenultemType, Menultems

Constants: nullPlace, propertySheetDefaultMenu,
opti onSheetDefa u I tM en u

Procedures: Create, CreateLinked, GetFormWindows,
Install FormWi ndow, Swa pE xi sti n g FormWi ndows,
SwapFormWindows, procedures in CPropertySheet

Create: PROCEOURE[

formWindowltems: Form Window. MakeltemsProc, menultemProc:
PropertySheet.MenultemProc, size: Window. Dims, title: CString.CString]
RETURNs(shefl: StarWi ndowShefl. Handle 1;

CreateLinked: PROCEOURE[

formWindowltems: FormWindow.MakeltemsProc, menultemProc:
PropertySheet.MenultemProc, size: Window. Dims, title: CString.CString,
linkWindowltems: FormWindow Make/temsProcl
RETURNs(shefl: StarWindowShefl.Handlel;

Install Form Window: PROCEDURE [

shell: StarWindowShell. Handle, menultemProc:
PropertySheet.MenultemProc, title: CString.CString,
form Window: Window. Handle];

SwapExistingFormWindows: PROCEDURE[

shell: StarWindowShell.Handle, new: Window. Handle,
newTitle: CString. CString] RETURNS [old: Window. Handle];

SwapFormWindows: PROCEDURE[

shell: StarWindowShell. Handle, newForm Window/tems:
Form Window. MakeltemsProc, newTitle: CString. CString]
RETURNS[old: Window. Handle];

The procedures in this interface call procedures of the same
name in the PropertySheet interface. They supply some of the
default parameters to the procedures in the PropertySheet
interface, and their string parameters are C strings rather than
XStrings.

These procedures do not catch the error PropertySheet. Error

VIEWPOINT VENEER GUIDE

VIEWPOINT VENEER GUIDE

C.4.9 Selection

C.4.9.1 Selection.h

C.4.10 SimpleTextDisplay

C.4.10.1 SimpleTextDisplay.h

,
For the Selection interface, the veneer includes a header file
but no Mesa interface.

Types: ManagerData, RequestorData, ValueProcs, Value,
ValueHandle, Target, Difficulty, Action, CopyOrMove

Constants: m axStri ng Length

Procedures: Convert, ConvertNumber, Free, CopyMove, Set,
ActOn, Clear, ClearOnMatch, Copy, Move, HowHard,
CanYouConvert, Enumerate, Match, UniqueTarget,
UniqueAction

Procedure: StringlntoWindow, proced u re in
CSimpleTextDisplay

C.4.10.2 CSimpleTextOisplay.mesa

VIEWPOINT VENEER GUIDE

StringlntoWindow: PROCEDURE[

string: CString.CString, window: Window. Handle, place: Window. Place,
maxNumberOfLines: CARDINAL]

RETURNS [lines: CARDINAL, lastLineWidth: CARDINAL];

The procedure StringlntoWindow calls
SimpleTextDisplay. Stringlnto Window, supplying some of the
default parameters. The string parameter is a C string instead
of an XString.

C-l1

VIEWPOINT VENEER GUIDE

C.4.11 StarWindowShell

C.4.11.1 StarWindowShell.h

Types: Handle, Shell Type, State, ArrowFlavor,
ArrowScrollAction, MoreFlavor, When, Thu m bFI av~r,
ScrollData, PopOrSwap

Constant: nullHandle

Procedures: Create, GetHost, Pop, SetHost, ShellFromChild,
SleepOrDestroy, StandardClose, StandardCloseAII,
StandardCloseEverythi ng, AddPopupMenu, Destall Body,
Destroy, DestroyBody, EnumerateDisplayed,
EnumerateDisplayedOfType, EnumerateMyDisplayedParasites,
EnumeratePopupMenus, InstallBody. Push.
SetBodyWi ndowJustFits, SetB ottom PusheeCom ma nd s,
SetContai nee, SetisCI oseLegal Proc,
SetMiddlePusheeCommands, SetName, SetNamePicture,
SetPreferred Di ms, SetPreferred PI ace, SetRead On I y,
SetRegul arCommands, SetTopPu sheeCo m m a nd s,
SubtractPopupMenu, Swap, CreateBody,
EnumerateBodieslnDecreasingY,
EnumerateBodieslnlncreasingY, GetBody, GetAdj ustProc,
GetAvailableBodyWindowDims, GetBodyWindowJustFits,
GetReadonly, GetSleeps, GetZone, HaveDisplayedParasite,
IsBodyWi ndowOutOfl nteri or, IsCI ose Lega I,
IsCI oseLega I ProcRetu r ns F a I se, G etConta in ee,
GetlsCloseLegalProc, GetLimitProc, GetPusheeCommands,
GetRegularCommands, GetScroll Data, SetScrol1 Data, GetState,
SetState, GetTransiti onProc, GetTy pe, SetAdj u stProc,
SetLimitProc, StandardLi mitProc, Vani II aArrowScroll,
VaniliaThumbScroll, procedures in CStarWindowShel1.

C.4.11.2 CStarWindowShell.mesa

(-12

Create: PROCEDURE[

transitionProc: StarWindowShell. TransitionProc, name: CString.CStringj
RETURNS [StarWindowShell.Handlej;

CreateBody: PROCEDURE[

sws: StarWindowShell.Handle, repaintProc: PROCEDURE[Window.HandJe]]
RETURNs[Window.HandJe];

Push: PROCEDURE [newShell: StarWindowShell. Handle];

The procedures in this interface supply many of the default
parameters to the procedures of the same names in the
StarWindowShel1 interface. The Create procedure takes a C
string for the name parameter, rather than an XString.

VIEWPOINT VENEER GUIDE

VIEWPOINT VENEER GUIDE

C.4.12 Window

C.4.12.1 Window.h

C.4.13 X5tring

C.4.13.1 XString.h

C.4.13.2 CXString.mesa

For the Window interface, the veneer includes a header file but
no Mesa interface.

Types: Place, Dims, Box, BoxHandle, Clarity, Gravity, Object,
Handle

Variable: rootWindow

Procedures: EnumeratelnvalidBoxes, InvalidateBox, Validate,
ValidateTree, InsertlntoTree, RemoveFromTree,
EnumerateTree, GetParent, GetSibling, GetChild, SetParent,
SetSibling, SetChild, EntireBox, GetBox, GetDims, IsPlacelnBox,
IsDescendantOfRoot

Types: Context, ReaderBody, Reader, WriterBody, Writer,
Character

Procedures: First, NthCharacter, Equal, FromSTRING,
ReaderFromWriter, WriterBodyFromSTRI NG, AppendChar,
AppendReader, AppendSTRING, CopyReader,
CharacterLength, Empty, procedures in CXString

CSTRING: TYPE = CString.CString;

FromSTRING: PROCEDURE [cs: CSTRING, zone: UNCOUNTED ZONE] RETURNS [XString.ReaderBody];

AppendReader: PROCEDURE[

to: XString. Writer, from: XString.Reader, extra: CARDINAL];

AppendSTRING: PROCEDURE[

to: XStnng. Writer, from: CSTRING, extra: CARDINAL];

CStringFromReader: PROCEDURE[

reader: XString. Reader, zone: UNCOUNTED ZONE]

RETURNS[CString. CString];

VIEWPOINT VENEER GUIDE (,13

VIEWPOINT VENEER GUIDE

c.s Sample application

C.5.1 Sample.c

/* Sumpll!.c */

The procedures in this interface do not catch errors raised by
procedures in the XString interface.

FromSTRING produces an XString.ReaderBody from a C String.
Storage for the characters is allocated from zone. Clients
should call XString.FreeReaderBytes with the same zone when
finished with the ReaderBody.

AppendReader calls XString.AppendReader, supplying a
default parameter.

The procedure AppendSTRING converts the from parameter to
a Mesa string and calls XString.AppendString, supplying a
default parmaeter.

CStringFromReader produces a C string from a XString.Reader.
The XString.Reader must describe a string consisting only of
Ascii characters.

The example below is a simple ViewPoint application that is
written in C and uses the ViewPoint veneer. It uses standard
ViewPoint user interfaces such as icons, Star window shells, and
property sheets (see the chapters StarWindowShell,
PropertySheet, FormWindow, and Containee in the ViewPoint
Programmer's Manual).

This application creates its own icon, which can be copied,
moved, selected, and opened like those of other applications.
When the icon is opened, a Star window shell is created that
has a single body window displaying some simple text. The user
can choose the text to be displayed with a property sheet. A
property sheet is created when you press the PROP'S key while
an icon for the application is selected. The form window in the
propery sheet contains a single text item, the text that is
displayed in the opened windows. Initially the text displayed is
"Hello world!". One global string is used for all copies of the
icon, so changing this string changes the text displayed when
any copy of the icon for this application is opened.

/* ;1 sumpll! Vicwpoint application in C. llsing thl! Viewpoint L'f'rlf'er. */

;* veneer hf'ucien; */
#include "XString.h"
#include "Containee.h"
#include "Display.h"
#include "StarWindowShell.h"
#includc "-"iSFile.h"
#inclucle "SimpleTcxtDisplayh"
#include "Window.h"
#indudc ",\t()ll1.h"
#include "\,j(}l1uData.h"
#include "Scl(:ct.iol1.h"

(-14 VIEWPOINT VENEER GUIDE

VIEWPOINT VENEER GUIDE

#incl ude "PropertySheet. h"
#include "FormWindow.h"
#include "Heap.h"
#inclucle ":vJ:esa.h"

/* Standard C library header */
#include "strings.h"

#define HELLOFILETYPE 30305L /* An NSFile.Type for icon of this application. */

#define maxMsgLength 50/* Maximum length of text displayed in window. */

#define myKey 0 /* Used for form window item. */

typedef int word;

/* Atoms for the Containee_GenericProc */
Atom_ATOM open, props, can YouTakeSelection, takeSelection, takeSelectionCopy;

Containee_Implementation old, new;

/* Following 2 ints needed as referents for return */
/* values ofContainee_GenericProc*/
int true = TRUE;
intfalse = FALSE;

word ch;

char message[maxMsgLengthl; /* Message to be printed in window */

mesa NSFile_Reference Prototype_FindO;
mesa word SimpleTextFont_AddClientDefinedCharacter():
mesa NSFile_Handle Prototype_Create();

/* bitmap for icon */
word icon[256] = {

0177777,0177777,0177777,0177777,0177777,0177777,0177777,0177777,
0152525,052525,052525,052527,0165252,0125252,0125252,0125253,
0152525,052525,052525,052527,0165252,0125252,0125252,0125253,
0152525,052525,052525,052527,0165252,0125252,0125252,0125253,
0152525,052525,052525,052527,0165252,0125252,0125252,0125253,
0152525,052525,052525,052527,0165252,0125252,0125252,0125253,
0152525,052525,052525,052527,0165252,0125252,0125252,0125253,
0177777,0177777,0177777,0177777,0177777,0177777,0177777,0177777,
0140000,0,0,03,0140000,0,0,03,
0140000,0,0,03,0140000,0,0,03,
0140040,01,0200,03,0140060,015,0103300,03,
0140044,01005,0101300,040003,0140032,016401,0100303,0120003,
0140073,0601,0100303,0130003,0140073,017601,0100303,030003,
0140063,016601,0100303,030003,0140063,021601,0100304,070003,
0140167,017603,0100703,0170003,0140063,07401,0100301,0160003,
0140000,0,0,03,0140000,0,0,03,
0140000,0,0,03,0140000,040,0,03,
0140000,0160,0,03,0140000,060,0110000,03,
0140000,0660,064000,03,0140000,0260,0166000,03,
0140000,060,0166000,03,0140000,060,0146000,03,
0140000,060,0146000,03,0140000,0161,0156000,03,
0140000,060,0146000,03,0140000,0,0,03,
0140000,0,0,03,0140000,0,0,03,
0140000,0,0,03,0140000,0,0,03,
0140000,01,0,03,0140000,016,0100000,03,
0140000,016,0140000, 03, 0140000,OIS, 0140000, 03,
0140000,014,0140000,03,0140000,014,0100000,03,
0140000,014,0140000,03,0140000,021,0140000,03,
0140000,017,0140000,03,0140000,07,0100000,03,
0140000,0,0,03,0140000,0,0,03,
0140000,0,0,03,0140000,0,0,03,
() lii777. 1l177777, 0 17ii77, () 177777,0 17i777, 0177777,0177777, () 177777':

ll1Uln()

VIEWPOINT VENEER GUIDE (,15

VIEWPOINT VENEER GUIDE

{

}

strncpy(message, "Hello world!", maxMsgLength); /* Set initial message. */
MakeGenericProcAtoms();
FindOrCreateIconFile();
SetI mplementationO;

MakeGenericProcAtomsO
{

}

open = CAtom_Make("Open");
props = CAtom_Make("Props");
can YouTakeSelection = CAtom Make("Can YouTakeSelection");
takeSelection = CAtom Make("TakeSelection");
takeSelectionCopy = CAtom_Make("TakeSelectionCopy");

FindOrCreatelconFileO
{
XString_ReaderBody name;
extern struct ReaderBody ReaderBodyFromCString();

if(C~SFile_IsNullReference(Prototype_Find(HELLOFILETYPE,0,0,;..rIL)))
{
name = CXString_FromSTRING("Hello",Heap_systemZone);
CNSFile Close(

}

Prototype_Create(
&name, /* name */
HELLOFILETYPE, /* type */ ° /* version */ 0: /* subtype */
OL, /* size */
FALSE, /* isDirectory */
NIL /* session */ »;

SetImplementation()
{
extern word SmallPictureProc();
extern long GenericProcO;
extern void PictureProc();
Containee_Implementation dummy; /* compiler needs this */
extern void MakeSmallPictureChar();

old = new = Containee_GetImplementation(HELLOFILETYPE);
new.genericProc = GenericProc;
new.pictureProc = PictureProc;
MakeSmallPictureChar() ;
new.smallPictureProc = SmallPictureProc;
dummy = Containee Setlmplementalion(l'IELLOFILETYPE,new);

} -

/* Gl'nericProc is call1'd whf:'n thl' IISf:'r pl'r/()rms cuz action on an instancl' 0/,*1
/* the icon (such as selecting it or opl'ning it. */
long GenericProc(atom, data, changeProc. changeProcDatal
Containee DataHandle data:
Atom ATO:VI atom;
inl *changeProcData;
;'oicl (*changeProc)();

long val:
extern StarWindowShell_I landle \Iake WindowShellO, :VlakePropSheeU);

if(atom = = open)
\'ctl = ([ong!\IakeWinciowShell():

el,;e i['(alom = = props)
va I = (long) :'vlake PropSheeU):

else il'lalol1l = = canYouTakeSelcction)
i
if' i Sf' Icc! iOrl_ Can Y ouCon VC'rtl Sc leet ion _Target_ti If·).i

(·16 VIEWPOINT VENEER GUIDE

VIEWPOINT VENEER GUIDE

}

return ((long)&true);
else
return ((long)&false);

}
else if«atom = = takeSelection) II (atom = = takeSelectionCopy))

return ((long)&true);
else

return (old.genericProc(atom, data, changeProc, changeProcData)l;
if (changeProcl
changeProc(changeProcData,data,CNSFile_GetSelectionsDefaultValue(),TRlJE);

return (val);

/* PictureProc paints the icon, the selected icon, and the ghost icon that */
/* appears while the icon is open. */
void PictureProc(data, window, box, old, new)
Containee DataHandle data;
Window Handle window;
Window-Box box;
Containee PictureState old, new;
{ -
union {
Display BitBltFlags asFlags;
int aslntfflags;

if(new = = Containee_PictureState_garbage) return;
box.dims.w = box.dims.h = 64;
box.place.x + = 4;
box.place.y + = 4;
if(new = = Containee_PictureState_ghost)
{
CDisplay _ White(window ,box);
CSimpleTextDisplay _Stringlnto Window(
"Hello",window,box.place.x + 10, box.place.y + 4,1);

}
else
{
flags.asInt = Display_replaceFlags;
if (new = = Containee_PictureState_highlightedl
/* Create video-inverted icon ifit is selected. */
flags.asFlags.srcFunc = Display _SrcFunc complement;

CDisplay_Bitmap(window, box, icon, 0, 64, flags.aslnt);
}

/* SmallPictureProc is called when the small icon picture needs to */
/* be painted (such as when copying the icon). */
SmallPictureProc(data, type, normalOrReferencel
Containee DataHandle data:
)iSFile_ Type type;
Containee PictureState normalOrReference;
{ -
return (ch):

void :VlakcSmallPictureChar()
{
. static word bitsj16j = {/* bitmap fil!' smull icon pictll!"P. */

000000,000000,014030,014030,014030,014030.014030.017770,
017770,014030,014030. 01-Hl30, 0140:30, 0140:30, OOO()()O, OO()UDO}:

eh = SimpleTextFont_AddClientDefineclCharacter(Hi, 16, Hi,bits,Ol:

StarWinciowShell lIandle :\IakeWinciowShel\()

StarWindowShell Handle shell:
(".;tern void WI·ite\f:.;gl 1:

"hell = CStarWindowShell_Crccttci '\ I L."C .\pplicctlion");
CSlar \Vi nell) wShe 11_ C rca Ie Bodyi she II. \V ri te'\l "g I:

VIEWPOINT VEN EER GUIDE C-17

VIEWPOINT VENEER GUIDE

return (shell);
}

StarWindowShell_Handle MakePropSheetO
{

}

StarWindowShelI_Handle pSheet;
extern void FormProcO;
extern int MenuProcO;

pSheet = CPropertySheet_Create(
FormProc, MenuProc, 300, 300, "Sample props");

return(pSheet);

/* FormProc is called when the (orm window in the */
/* property sheet is being created. */
void FormProc(window, client Data)
Window Handle window:
int *clientData;
{
CFormWindow MakeTextItem(
window, myKey, "Message", NIL, FALSE, 200, message);

/* MenuProc is called when the user clicks [Jone or Cancel in the property sheet. */
int MenuProc(shell, formWindow, menuItem, clientDatal
StarWindowShell Handle shell;
Window Handle form Window;
PropertySheet_MenuItemType menuItem;
int *clientData;
{
char *msg;

if(menuItem = = PropertySheet_MenuItemType_donel
{
1* Copy the value of the text item to message. */
msg = CFormWindow_GetTextItemValue(formWindow, myKey, Heap_systemZone):
if(msg!= NIL)
strncpy(message, msg, max:\1sgLength);

else
message[O 1 = '\0';

};
return(TRUE); /* Destroy the property sheet */

/* WriteMsg is called whenever an instance of the Star window shell */
/* needs repainting. It displays the current message in the body window. */
void WriteMsg(window)
Window Handle window:
{ -
CSimpleTextDisplay_StringlntoWindow(message, window, 10, 10, 1);

}

(-18 VIEWPOINT VENEER GUIDE

0.1 ExecEcho.c

/* ExecEcho.c */
/* A simple XDE application written in C. */

D. Sample XDE C Application

The example below--ExecEcho.c--is an XDE application written
in C. This program is intended to be run in the Executive (see
the XDE User Guide), not in CTool (see chapter 2). It follows the
XDE program paradigm of registering with the environment
call-back procedures that are invoked in response to user
actions. This program registers a command with the executive.

The main procedure of this program just registers the
command Echo.- with the executive. The call- back procedure
invoked when you enter this command to the executive is
Echo. This procedure simply echoes the parameters and
switches you enter.

typedefint *handle; 1* any pointer type (except for ptr. to char). */

struct TokenAndSwitches {
handle token,switches};

#define nil (handle)O
#define normal 0

mesa void Exec AddCommandO, Exec PutCharO, Heap FreeNodeO;
mesa struct TOKenAndSwitches Exec G"etToken(); -
mesa handle Exec FreeTokenStringo. Heap systemZone, CString_ CStringToLongString();
mesa Exec DefaUTtUnloadProcO; -
mesa (*(Exec _ OutputProc())) 0;

(* main registers the command "Echo . . " with the Executive. *1
main()
{
handle command Name;
extern echo();

1" Create a LWesa string jllr the cornmurui name'1'
commandName = CString CStringToLongStr-ing(nEcho. 'n, Heap systemZone);
Exec AddCommand(commandName, echo, nil, Exec DefaultUnfOadProc ,nil);
Heap- FreeNode(Heap systemZone. command Name);

~ - -
" echo is an Exec.ExecProc.*/

echo(h, clientData)
handle h. clientData;
{
struct TokenAndSwitches ts;
int (*OlltPlltPl"OC)();

OlitPlItPI'OC = Exec OutplitProC(h);
fot' I ;;J I

C REFERENCE GUIDE D·'

SAMPLE XOE C APPlICA nON

}

ts = Exec GetToken(h};
if (!ts.token && !ts.switches) break;
if (ts.token) {
«void (*)())(*outputProc))(ts.token,nil);
ts.token = Exec FreeTokenString(ts.token);}

if (ts.switches) { -
Exec PutChar(h,'I');
«void""'{*)O)(*outputProc»(ts.switches,nil);
ts.switches = Exec FreeTokenString(ts.switches);}

Exec PutChar(h,' 'J;"
} -

return(normal);

D-2 C REFERENCE GUIDE

