
XEROX

ASSEMBLER REFERENCE MANUAL

610E00290
December. 1986

Xerox Corporation
Information Systems Division
XDE Technical Services
475 Oakmead Parkway
Sunnyvale. CA 94086

Copyright (0 1986, Xerox Corporation. All rights reserved.
XEROX 0),8010, and 860 are trademarks of XEROX CORPORATION
Printed in U.S. A.

TABLE OF CONTENTS

1. Introduction 1-1

1.1 Introduction 1-1

2. General Rules 2-1

2.1 Sops and pseudoops 2-1

2.2 Files 2-1

2.3 Imports 2-1

2.4 Exports 2-2

2.5 Stack 2-2

2.6 Frames 2-2

2.7 Block structure and scoping 2-2

2.8 Addressing 2-3

2.9 Code constants 2-4

2.10 Comments 2-4

2.11 Identifiers 2-4

2.12 Labels 2-4

2.13 Constants 2-5

2.14 Expressions 2-5

3. Grammar 3-1

4. Pseudooes 4-1

5. Programming Hints 5-1

5.1 Static links 5-1

S.2 Parameter passing 5-2

6. Sops 6-1

ASSEMBLER REfeRENCE MANUAL

TABLE OF CONTENTS

(This page intentionally blank.)

ii ASSEMBLER REFERENCE MANUAL

ASSEMBLER REFERENCE MANUAL

1. Network components

The Mesa assembler is a program that takes as input a file
containing assembly code and outputs an object file that may
be loaded directly by the Mesa loader or bound into a larger
object file by a linker. Object files all have the same format.
This allows object files created from different source languages
to be bound together. Programs in one language can thus
easily access global variables and procedures written in another
language. The assembler provides protection so that the rules
of object-oriented programming may be enforced. Programs
written in other languages are expected to make frequent use
of the extensive libraries written in Mesa (the window system,
for instance).

The major goal of the assembler is to be independent of any
high-level language. A portable compiler for any language
should find the instruction set of the assembler complete
enough that porting the compiler is simple. The assembler is
intended to be used in the porting of the Berkeley C and Pascal
portable compilers to the Xerox Development Environment
that runs on the Xerox 8010. If the machine architecture
changes, then changes to the ported compilers should be
limited to the assembler.

The assembler should be easy for compiler writers to use. That
is, the assembly language should be readable and should hide
some of the peculiarities of the Mesa machine architecture. The
Mesa architecture is described in detail in the Mesa Processor
Principles of Operation (PrincOps). The assembler instruction
set is a simplified version of the PrincOps instruction set. The
assembler is, to some extent, machine independent in that it
produces code that can run on any PrincOps machine.

The assembler also eases the compiler writer's task by doing a
significant amount of optimization on the assembly program
so the compiler may produce very naive code,and the
performance of the final code will be reasonably good. The
assembler performs peephole optimization, crossjumping,
unreachable code elimination, and other optimizations .. No
global program optimizations are performed.

The reader is assumed to be intimately familiar with the
PrincOps. PrincOps code for specific programs may be
examined by running the Lister on an object file.

1-1

INTRODUCTION

(This page intentionally blank.)

1-2 ASSEMBLER REFERENCE MANUAL

2.1 Sops and pseudoops

2.2 Files

2.3 Imports

ASSEMBLER REFERENCE MANUAL

2. General Rules

The object file that the assembler produces is called a bcd file.
The format of bcds rarely changes and is guaranteed to be the
same for every bcd in a release. The bcd contains enough
information so that the linker and the loader can do their job.
The linker's job is resolving references to imports and exports
of the modules being linked and combining the code segments
of the modules into a single file. The loader's job is resolving
any imports and exports of the bcd with any bcds previously
loaded and allocating memory space for global frames and
code. This section gives some general rules for writing assembly
code that creates a valid bcd.

The assembler instruction set consists of two types of
instructions, sops and pseudoops. Sops are converted to one or
more PrincOps instructions (PrincOps instructions are known as
"mopcodes"). Sops are instructions like "pop" or "add".
Pseudoops contain information needed by the linker and
loader as well as information needed to build a symbol table.

Filenames may be referred to by just their textual name or by
their unique id (uid). A uid is a name and version stamp. It is
expected that for C and Pascal, version stamps will not be
necessary, except where they access Mesa interfaces. In that
case the Mesa interfaces 00 not need to be opened to obtain
their stamps. The linker uses version stamps to guarantee
consistency across interfaces. It is up to the compiler to choose
whether it wants version checking or not. Consistency of
version stamps within an assembly program is not checked. If
two uids with the same name but different stamps appear in an
assembly program, the first stamp seen is used.

Imports allow a module to access variables, procedures, and
constants in other modules. The import pseudoop is a
convenience for specifying a version stamp for a particular
imported file and is only needed to import from Mesa
interfaces. Imported items from Mesa interfaces may be

2-1

GENERAL RULES

2.4 Exports

2.5 Stack

2.6 Fra~es

2.7 Block structure and scoping

2-2

referred to as "Interface.ltem". Imported items from non-Mesa
modules may be referred to as "?.ltem". If a Ifc, read, or write
instruction uses a name that is undefined, then the name is
assumed to be imported and a link is generated. Constants are
imported just as variables are, but they are stuffed directly into
the code and no links are generated for them. Symbols for
imported items are always copied to the new object file.

Modules may make procedures or variables in their outer scope
available for import by other modules by exporting them.
Many languages do not have the notion of explicit exports.
Such languages need only put an export all pseudoop in
assembly programs, which automatically exports every
procedure and variable in the global scope. To export to a
Mesa interface, the pseudoops exportvar and exportproc are
available for selectively exporting particular variables or
procedures. If those pseudoops are used, then for each file
exported to there must be an export pseudoop that gives the
total number of items in the definitions file as well as an
optional time stamp.

For machine independence, an infinite stack should be
provided by the assembler so that the compiler need not worry
about stack overflow. However, this is quite compltcated, and it
is more reasonable for the compiler to worry about it. The
compiler therefore must know that the actual number of
registers is 14, and should save the stack if it overflows. The
compiler should keep a stack model to prevent stack underflow
or overflow.

For local frames, the frame size is specified in the entry
pseudoop. For global variables, the assembler automatically
computes the amount of space necessary. The gbyte, gword,
and gblock pseudoops allocate space for global variables. The
maximum size of a local frame or a global frame is 4092 ~?rds.

An assembly program has a block structure similar to a high
level program. There are four types of blocks: the program
block, entry blocks, nested blocks, and unnamed blocks. All
code between the beginning and end of a block is part of the
block, except for code contained in inner blocks. The first

ASSEMBLER REFERENCE MANUAL

2.8 Addressing

ASSEMBLER REFERENCE MANUAL

GENERAL RULES

pseudoop in an assembly program must be a program
pseudoop, and there is only one such program block. Entry
blocks declared with the entry pseudoop (usually procedures in
the outer scope) are callable and have their own local frame.
Nested blocks declared with the nested pseudoop (usually
nested procedures) are callable and have their own local
frame. They may also access the local frame of their parent,
where the parent is the nearest surrounding block with a
frame. Unnamed blocks declared with the begin pseudoop are
not callable and share the local frame of their parent.
Unnamed blocks are used to help build the symbol table and
have no effect on the code generated. All types of blocks end
with the end pseudoop.

The assembler tries not to enforce any unnecessary scoping or
pseudoop placement. For instance, global declarations,
imports, and exports may be located anywhere in a program
with the same effect. Code constants are gathered and put out
before the code for the nearest enclosing procedure.

PrincOps instructions do not have addressing modes. There are
more instructions than there would be if there were addressing
modes. The number of instructions was reduced for the
assembler by allowing different addressing modes. It was felt
that this would make the sops more mnemonic and uniform
for compiler writers.

There are two forms of addressing, immediate and eventual.
They have the forms

immediate:
eventual:

sopname. format length expression
sopname.format length [base offset] indirection

The format is one of .r, .d, .f[num:numl, .f[] or empty. r
specifies that an argument is in floating-point format. d
specifies that an argument is a double word. f specifies that a
field within a word is to be operated on; the first number is the
offset of the first bit in the field, and the second number is the
length in bits of the field. f[J specifies that the field descriptor
is on the stack and is not a code argument.

The length is one of I, k, or empty. I specifies that one of the
arguments is a long pointer. If I is not present, short pointers
are assumed. k specifies that the argument is a link. Generally
the k is not used.

In immediate addressing, the expression may be an assembly
time constant (for instance, in a load immediate instruction).
The expression may be the name of an imported variable or
procedure (for instance, in an external function call
instruction).

In eventual addressing, the base may be either If, gf, or cb. If is
the start of the local frame. gf is the start of the global frame.
cb is the start of the code segment. The offset has the form .. +
expression", where expression is an assembly ti me constant.
The offset may be empty, in which case it is assumed to be zero.

2·3

GENERAL RULES

2.9 Code constants

2.10 Comments

2.11 Identifiers

2.12 Labels

2-4

For offsets from the global frame, the label of the global
declaration may be used in the place of the offset. This is a side
effect of having the assembler layout the global frame. For
instance,

global1: gblock 2
load.d [gf + global1]

The gf may be left out entirely, as in,

load.d global1

This allows assembly code to be written in ignorance of
whether the item is defined within the program or externally.
The indirection has the form .. t + expression", where
expression is an assembly time constant. The indirection may be
empty.

Raw data, such as jump tables, strings, or default values, may
be inserted into the code segment with the words, bytes, and
string pseudoops. These constants are gathered and output
before the code for the nearest enclosing procedure body.
However, they may be referred to anywhere in the program.

Comments may be put in an assembly program by the special
symbol "--". Any characters between the double hyphen and
the next carriage return are ignored. Any characters between
two double hyphens on the same line are ignored. Any
characters between a ~ and a a-, including carriage returns,
are ignored. Comments may not be nested.

All identifiers in an assembly program begin with a letter. They
may contain alphanumerics, $, and 1. They may be any length.
Case is significant.

Labels refer to code locations or global frame locations. Labels
may not be duplicated in the same block. Arithmetic is allowed

ASSEMBLER REFERENCE MANUAL

2.13 Constants

2.14 Expressions

ASSEMBLER REFERENCE MANUAL

GENERAL RULES

on global frame labels, as if they were an offset from the
global frame base, but not on jump labels.

Constants may be defined anywhere in the program by a
pseudoop of the form "constantname = constantexpression".
Complex expressions (those involving an arithmetic operator)
may not have forward references to constants, though they
may have backward references. The expression may forward
reference one level if the constant expression has no operators.
Thus

LEGAL

b-3
,-4
a - b + ,

a- b
b-3

ILLEGAL

b - 3
a-b+c
,-4
a - b b-,
c =- 3

- forward reference in expression

-- forward reference two levels

The allowed arithmetic operators are +, -, *, and I. If the
dividend mod the divisor is not zero, the answer is floored. No
warnings are given for overflow and underflow. Operators are
all left associative with standard precedence. Parentheses may
be used to get precedence other than left to right. Unary minus
is allowed, but binary minus takes precedence.

2·5

GENERAL RULES

(This page intentionally blank.)

2-6 ASSEMBLER REFERENCE MANUAL

ASSEMBLER REFERENCE MANUAL

3. Grammar

Every sop and pseudoop must terminate with a carriage return.

1 0 goal :: = . program;

2 1 program :: = programop eol statementlist

3 2 statementlist :: = pseudoop eol statementlist

~ ! leol

6 5 pseudoop :: = id • exp
7 7 include filename
8 8 label entry exp , id
9 9 label nested exp , exp , id
10 10 begin
11 11 id : gword
12 12 id : gbyte
13 13 id : gblock num
14 14 end
15 15 source num
16 16 id: varid, num, num
17 17 opaque id, filename
18 18 import filename
19 19 export filename, num
20 20 exportvar id, filename, num
21 21 exportproc id , filename, num
22 43 typedef
23 44 export all
24 45 id : string string
25 46 id : bytes bytes
26 47 id : words words
27 48 align num
28 49 sop
29 50 label
30 51 label sop

31 6 programop :: = program id , objectStamp ,
creatorS tamp , source File , id

32 22 typedef :: = id : type id
33 23 id : type enum{ enumeratedlist}
34 24 id : type record [recordlist]
35 25 id : type proc [recordlist] returns [recordlist]
36 26 id : type long readonly pointer to id
37 31 id : type packed array id of id
38 34 id : type subrange [num , num] of id
39 35 id : type constant id words

40 27 long
41 28

.. -.. -
I long

42 29 readonly :: =
43 30 I readonly

3-1

GRAMMAR

44 32 packed :: =
45 33 I packed

46 36 enumerated list :: = enumerated list. eitem
47 37 leitem

48 38 eitem :: = (num : id)

49 39 recordlist :: = recordlist. ritem
50 40 /ritem
51 41

52 42 ritem :: = (id • id • num , num)

53 52 label :: = id:

54 53 bytes :: = bytes exp
55 54 lexp

56 55 words :: = words exp
57 56 lexp

58 57 filename :: = uid
59 58 lid

60 59 uid :: = (id, stamp)

61 60 sourceFile :: = (string. stamp)

62 61 creatorStamp :: = stamp

63 62 objectStamp : : = stamp

64 63 stamp
65 64

:: = (num • num , Inum)
I (num , num • num)

66 65 sop
67 66
68 67

:: = sid effectiveaddr
sid. r effectiveaddr
sid. d effectiveaddr

69 68 sid. f [num : num I effectiveaddr

70 69 effectiveaddr :: =
71 70 [base offset] indirection
72 71 length [base offset] indirection
73 72 length exp
74 73 exp
75 74 id .id
76 75 length id • id

77 76 length :: = I
78 77 I k

::= If 79 78 base
80 79
81 80 \%
82 81 offset
83 82

:: = + exp

84 83 indirection offset
85 84 I

86 85 exp :: = primary
87 86 I (exp)

3-2 ASSEMBLER REFERENCE MANUAL

ASSEMBLER REFERENCE MANUAL

88 87
89 88
90 89
91 90

exp '. primary
exp + primary
exp I primary
exp * primary

92 91 primary :: = num
93 92 I'num
94 93 id

GRAMMAR

3-3

GRAMMAR

(This page intentionally blank.)

3-4 ASSEMBLER REFERENCE MANUAL

ASSEMBLER REFERENCE MANUAL

4. Pseudoops

An object file contains more information than just the object
code. It also contains information about the procedures and
block structure of the module, the symbol table, and
references to other files besides the one being assembled. The
assembler has pseudoops to collect such information.
Pseudoops also allow data to be inserted in the code stream.
See the grammar fo~ details about particular constructs.

label. exp

The • pseudoop equates the label on the left with the
expression on the right. The expression must be a
numeric constant. Constants may be forward-referenced
one level only, and forward references may not occur in
expressions. Example:

a. b
b • (1214) + 8

program id , objectStamp , creatorStamp , sourceFile, typelabel

There is only one program pseudoop in an assembly
code file. It must be the first pseudoop. It specifies the
name of the module, a stamp for the object file, and a
stamp for the creator of the assembly code file (usually
the compiler). The sourceFile is the name of the high
level language source code for the assembly code,
enclosed in quotes. The typelabel is the label giving the
type of the program. Stamps are specified by three
numbers enclosed in parentheses, for example
(5,6,12345). The first two numbers must be in the range
[0 .. 255] and are net and host numbers (these numbers
are currently ignored by system programs). The last
number is a LONG CARDINAL and is a
System.GreenwichMeanTime that can be obtained from
the Time interface. Example:

program InsertionSort, (0, 170, 2652982585), (0, 0,
2652981290), ("lnsertionSort.mesa n, (0, 0, 2652775726))

The program pseudoop is the only pseudoop in which
time stamps are required. For any other pseudoop,·a file
may be specified by name without a version stamp and
without parentheses. The assembler will do version
checking for whatever time stamps are given. It is up to
the compiler to choose whether it wants version
checking or not.

include filename

The include pseudoop causes the assembler to act as if
the file were a Mesa interface, so that there is a

4·1

PSEUDOOPS

4·2

dependency between the object file and the include file.
Example:

include ("stdio.h", (0,0,0»

label : entry framesize, typelabeJ
label: nested framesize, frameoffset, typelabel
begin
end

The entry pseudoop should be placed at the start of an
entry block (a procedure). label is the name of the
procedure; the framesize is in words; the typelabel is
the label giving the type of the procedure. The nested
pseudoop should be placed at the start of a nested block
(a nested procedure). The frameoffset is the offset of
the procedure descriptor in the frame of the parent (see
the programming hint on static links below). The BEGIN
pseudoop should be placed at the start of an unnamed
block. Unnamed blocks are different from procedures.
They may not be called by using XFER, and they do not
have frames, so any local frame references use the frame
of their parent. The END pseudoop is used to end a
block. Procedures may be nested up to seven levels deep,
and blocks may be nested arbitrarily deep. Example:

P: entry 5
N: nested 5,6
begin
end
end
end

label :gword
label :gbyte
label : gblock num

These pseudoops are for allocating space in the global
frame. gword and gbyte both allocate a word (no
packing is implied by gbyte). gblock allocates num
words. The labels may be used to reference the
locations. Example:

g1:gword
store.d [gf + g1)

source location

The source pseudoop maintains a mapping between
source code and object code. The location is a character
position in the source file. The source pseudoop is
optional and is used by the debugger for -setting
breakpoints. Wherever there is a source pseudoop, a
source-level breakpoint may be set. Example:

source 800

import filename

ASSEMBLER REFERENCE MANUAL

ASSEMBLER REFERENCE MANUAL

PSEUDOOPS

The import pseudoop specifies a version stamp for an
imported file. If no stamp is given in the file name, then
a null stamp is assumed. Example:

import (Exec. (0. 170. 2604877475»

export filename. itemcount

The export pseudoop should be used for each Mesa
definitions file that is exported to. The itemcount is the
total number of items in the interface.

exportvar offsetLabel • filename. itemNumber

The exportvar pseudoop exports a variable. If two
modules wish to share a variable, then this pseudoop
makes the variable available for another module to
import. The variable may be shared through filename,
which is a Mesa interface file. If the variable is not shared
through an interface file (which is the usual case with
languages other than Mesa), then the filename may be
replaced by a question mark. The offsetLabel is the
global declaration of the variable. The item is a number
that distinguishes exports to a particular interface. The
item numbers should lie between zero and the total
number of exports for the interface minus one. (Item
numbers imply that the interface must be opened by the
compiler in order to export to it. This is intentional.} If
the filename is a question mark, then the itemNumber
should be zero. Example:

exportvar globalvar. (StripDefs. (
0.170.2604877475».3

exportproc entryLabel • filename. itemNumber

The exportproc pseudoop exports procedures. The
procedure is shared through filename, which is an
interface file. The entryLabel is the label of the
procedure. The itemNumber tells which export to
filename this procedure is. filename has to be opened to
look up the itemNumber of entryLabel. If filename is not
a Mesa interface, it should be replaced by a question
mark, and the should be zero. Example:

exportproc StripComments, (StripDefs. (0. 170.
2604877475».3

export all

The export all pseudoop is equivalent to "exportproc
name,?,O" for every global procedure and an "exportvar
name, ?,O" for every global variable. It is expected that
the export all pseudoop will be used for C and Pascal.

label: string string

The string pseudoop places a string in the object code.
The characters contained within the quoted string are
passed to the output file. Each character is converted to

4-3

PSEUOOOPS

4-4

ASCII and occupies a byte. A backslash may be used to
generate certain ASCII characters:

\n, \N, \r, \R
\t, \T
\b, \8
\f, \F
\I, \L
\\

" '" '000

carriage return
tab
backspace
form feed
line feed
backslash
single quote
double quote
null

Any ASCII character can be inserted into the string using
a backslash followed by an octal digit, as is the null
character above. The bytes pseudoop may also be used.
The string may be referred to by using the label. For
instance label + 0 refers to the first character of the
string, label + 1 refers to the second character, and so on,
asin

ss: string "hi there"
load [cb + (ss + 3)

label : bytes num , •••
label : words num , •••

The bytes and words pseudoops place data into the
object code. The numbers following the keyword are
separated by commas. For the bytes pseudoop, the
numbers must lie between 0 and 255. Each number is
placed in a consecutive byte. For the words pseudoop,
the numbers must lie between 0 and 65535. Each
number is placed in a consecutive word.

jumptable: words 2, 40, 24

table num

The table pseudoop marks the beginning of a jump table
in the code. The pseudoop should be followed by num
jumpc instructions, and finally a single jumpca
instruction. To construct a jump table, first load the
maximum index value (the limit) and then the actual
index. Next, for each value in the index range, give a
jumpc instruction with a target label as the code for the
corresponding case arm. Finally, give a jumpca to an
endcase label. The code offsets should be in a separately
defined code constant.

label: var typelabel, size, frameoffset

The var pseudoop specifies the types of variables. The
typelabel points to the type of the variable. The size is
the size in bits of the variable. The frameoffset is the
offset in the local frame of the variable in bits. var
pseudoops are optional but must be used to allow
symbolic debugging. Variables may be placed in the
scope of a procedure or block by inserting an
appropriate var pseudoop after the entry or begin and
before the start of an enclosed procedure or block.

ASSEMBLER REFERENCE MANUAL

ASSEMBLER REFERENCE MANUAL

PSEUDOOPS

label: type label

Defines a named type. The first label becomes an alias of
the second within the current block.

label: type enum {(num : id), •.. }

Defines an enumerated type. Each element of the
enumerated type has a number and a name.

label: type record [(fieldname, fieldtype, offset, size), •..)

Defines a record type. Each field of the record is enclosed
in parentheses, and gives the name of the field, its type,
its bit offset within the record, and its bit size.

label: type proc [(itemname, itemtype, offset, size), ••.]
returns [(item name, itemtype, offset, size), ...)

Defines a procedure type. The parameters and return
values are in the same format as records.

label: type pointer to label
label: type long pointer to label
label: type readonly pointer to label
label: type long readonly pointer to label

Defines a pointer. The long keyword should be used if
the pointer is a doubleword. The readonly keyword
should be used only if the compiler has enforced it.

label: type array indexlabel of componentlabel
label: type packed array indexlabel of componentlabel

Defines an array with the given index type and
component type. The index type should be a subrange or
a basic type.

label: type subrange [Iowerindex, range] of typelabel

Defines a subrange with lowest element and range,
which must be numbers (this implies that the compiler
know the numbers corresponding to the subrange
elements). The type of each element in the subrange is
given by the typelabel.

label: type constant typelabel, word, word, ••.

Defines a constant of the given type containlng the
given words. The size of the type should match the
number of words given. The words of the constant
should be laid out according to its type.

label: type union (unimplemented)

Defines a variant type.

4-5

PSEUDOOPS

4-6

type label, filename (unimplemented)

The type pseudoop exports opaque types that the module has
defined. The label is the label of the pseudoop that describes
the type to be exported. The filename is the object file where
the concrete type is actually defined- in other words, the file
where the type has a symbol table entry. The type pseudoop is
not needed for languages besides Mesa.

ASSEMBLER REFERENCE MANUAL

5.1 Static links

ASSEMBLER REFERENCE MANUAL

5. ProQramminq Hints

This section provides some useful hints about assembly
language programming.

See Mesa Compiler Internal Documentation, Section 5.2. When
you allocate space for a procedure descriptor of a nested
procedures, the descriptor must be in a location whose address
is 2 MOD 4. This is so that the address of the procedure
descriptor is interpreted as an indirect control link by the xfer
instruction. For example, say a procedure P contains two nested
procedures, Rand S. P would have the following code to
initialize the procedure descriptors for Rand S:

lea [gf + 1)
lea [eb + R]
store.d [If + 2]

lea [gf + 1]
lea [eb + 51
store.d [If + 6]

-- must be odd, GF is always 0 MOD 4

-- address must be 2 MOD 4, LF is
-- a/ways OMOD4

-- address must be 2 MOD 4

Note that we load the address GF + 1 so that the control link is
interpreted as a procedure descriptor. A procedure call from P
to R would look like:

lea [If + 2]
load 0
sfc

-- get address of descriptor
-- fill the link

This code loads the address of the procedure descriptor for R
and then does an XFER with that address as the destination.
The address is treated as an indirect control link. After the
XFER is complete, the address is left below the stack. By
executing an LK instruction, the address can be recovered. The
local frame of P can then be had by subtracting the off~t of R's
procedure descriptor in P'S frame. So the first code in R should
be:

Ik2

This puts the static link to P'S frame in local o. Subsequent
access to P'S variables can be made with

read [If + 0] + n -- n is the offset of a variable

5-1

PROGRAMMING HINTS

5.2 Parameter passing

5-2

If R made a call to S, the code would be just slightly different. S
has to get the address of R's procedure descriptor from P's
frame:

load [If +0]
load 2
add
load 0
sfc

-- static link to P's frame

-- get address of descriptor
-- fill the link

The stack has only 14 registers. For expression evalution, all of
the registers may be used. However, for procedure calls, a
maximum of 12 registers can be used to pass arguments, so
that the xfer information can be recovered if it is needed. If
more than 12 words are needed, the compiler should allocate a
frame (using the af sop) to pass the parameters in. The callee
should copy the arguments into its own frame and free the
argument frame (using the ff sop).

ASSEMBLER REFERENCE MANUAL

ASSEMBLER REFERENCE MANUAL

6. Sops

The table on the following pages lists all of the sops and the
legal forms of address for each sop. Many of the sops have only
one form of address, while some, such as read and write, have
almost all possible forms of address.

6-1

SOPS

Address and Operand Formats

OpCode Name Meaning

Val GF IF CB .0 .F .R l K Ind :#

ACD Add cardinal Stack has 16-bit data 1, 32-
to Double bit data2. Push

data 1 + data2.

ADC Add Double to Stack has 32-bit data 1, 16-
Cardinal bit data2. Push

data1 + data2.

ADD Addition Stack has data 1 , data2.
Push data 1 + data2. X

X

AF Allocate Frame Stack has size. Allocate
frame of that size and
push 16-bit address of
frame.

AMUl Multiply Just like MUl except it
without won't be converted to a
shifting. shift instruction.

AND logical AND Stack has data 1, data2.
Push data 1 1\ data2. x

BC Broadcast Wake up all processes on
Condition the condition queue and

reschedule if any
awakened.

BITBlT Bit Block Stack has pointer to
Transfer parameters record.

Performs as many
operations on
rectangular areas in
memory. Used mostly in
conjunction with bitmap
display data.

BlT Block Transfer Block transfer
X
X X

X

BLTET Block Transfer Stack has 32-bit pointer1,
Equality Test 16-bit count, 32-bit

X X
pointer2. Compare count
words beginning at
pointer1 and pointer2;
push 1 if all words are X
equal, 0 otherwise.

BNDCK Bounds Check Stack has value, limit. IF
value - IN [O . .limit) THEN
trap ELSE discard limit.

X

6-2 ASSEMBLER REFERENCE MANUAL

SOPS

Address and Operand Formats

OpCode Name Meaning

Val GF LF CB .0 .F .R L K Ind #

BRK Breakpoint IF resuming from
debugger THEN execute
broken opcode ELSE trap.

CATCH Catch code Two byte no-op used by
follows. Mesa runtime system.

Operand is the catch
entry vector position of
the catch code.

CATCHFS Catch Frame Operand is the frame size
Size for catch code.

CMP Compare Stack has data 1, data2.
Compare data 1 and data2 X
(signed) and push -1 if
data1 <data2; 0 if
data 1 = data2; + 1 if X
data1 >data2.

DBL Double Stack has data. Push
data*2. X

DEC Decrement Stack has data. Push data-
L

01 Disable Increment the
Interrupts WakeupDisableCounter

thus disabling any
interrupt processing and
process timeouts. Trap if
the counter overflows.

DIS Discard Discard the top value on
the stack, Le., decrement
the stack pointer by the
size of the value. X

DIV Signed Stack has data 1, data2.
Division Push quotient and

remainder from
data 1/data2; decrement X
the stack pointer so as to
leave the remainder
above the stack. X

DSK Dump Stack Dump the evaluation
stack and stack pointer
starting. No more than X

two values above the top
of stack need be stored.

DUP Duplicate Duplicate the top value
on the stack. X

ASSEMBLER REFERENCE MANUAL 6-3

SOPS

Address and Operand Formats

OpCode Name Meaning

Val GF LF CB .0 .F .R L K Ind #:

EFC External Fetch link alpha as
Function Call described in LLKB and X

XFERtoit.

EI Enable Decrement the
Interrupts WakeupDisableCounter;

if the new val ue is zero,
interrupts are now

. enable. Trap if the
counter underflows.

EXCH Exchange Interchange the top two
values on the stack. X

EXDIS Exchange Equivalent to the
Discard sequence ESCH; DIS.

FF Free Frame Stack has pointer to
frame. Put frame in free
list.

FIX Fix Stack has 32-bit real. Push
32-bit integer.

FIXC Fix to Cardinal Stack has 32-bit real. Push
16-bit unsigned number.

FIXI Fixto Integer. Stack has 32-bit real. Push
16-bit integer.

FLOAT Float Stack has 32-bit integer.
push equivalent floating
point.

GMF Get Map Flags Stack has 32-bit virtual
page. Push the flags of
the indicated virtual
page.

INC Increment Stack has data. Push
data + 1. X

lOR Inclusive OR Stack has data 1, data2.
Push data 1 V data2. X

KFC Kernel Fetch link from SD[parm]
Function Call and XFER to it. X

JUMP Unconditional Unconditional jump to a X
Jump label.

JUMPE Jump Equal Stack has datal, data2. X
Jump if data 1 = data2.

JUMPN Jump Not Stack has data 1, data2. X
Equal Jump if data 1 :t: data2.

6-4 ASSEMBLER REfERENCE MANUAL

SOPS

Address and Operand Formats

OpCode Name Meaning

Val GF ·.LF CB .0 .F .R L K Ind #

JUMPL Jump Less Stack has data 1, data2. X
Than Jump if datal < data2.

JUMPLE Jump Less Stack has data 1, data2. X
Than or Equal Jump ifdatal S data2.
To

JUMPG Jump Greater Stack has data 1, data2. X
Than Jump if data 1 > data2.

JUMPGE Jump Greater Stack has data 1, data2. X
Than or Equal Jump if datal ~ data2.
To

UJUMPL Unsigned Stack has data 1, data2. X
Jump Less Jump if data 1 < data2.
Than Unsigned comparison.

UJUMPLE Unsigned Stack has data 1, data2. X
Jump Less Jump if datal S data2
Than or Equal Unsigned comparison.
To

UJUMPG Unsigned Stack has datal, data2. X
Jump Greater Jump if data 1 > data2
Than Unsigned comparison.

UJUMPG Unsigned Stack has data 1, data2. X
E Jump Greater Jump if datal ~ data2.

Than or Equal Unsigned comparison.
To

JUMPC Jump Case Jump table entry X

JUMPCA Jump Case Unconditional jump at X
Always end of jump table

JUMPRET No return The previous instruction
cannot return. Used by
the optimizers to delete
unreachable code.

LEA Load Effective Load the memory address X
Address of the operand. X

X

LFC Local Function Do the last half of XFER
Call (frame allocation and set

new PC) using operand as X

the PC of the new
procedure.

LINT Lengthen Stack has l6-bit data. Sign
Integer extend data to 32-bits.

ASSEMBLER REFERENCE MANUAL 6-5

SOPS

Address and Operand Formats

OpCode Name Meaning

Val GF IF CB .0 ·.F .R l K Ind #

lK link Recover word from above
the top of stack; store
word - operand in IF + O.
For establishing static
links.

lOAD load Push value at given X
address on top of stack. X X

X
X X

X
X X

X
X

lP lengthen Stack has 16-bit pointer.
Pointer IF pointer=OTHEN push 0

ELSE push MOS.

lSK load Stack load the evaluation stack
and stack pointer from

X given location. No more
than two values above
the top of stack need be
loaded.

ME Monitor Enter Stack has 32-bit pointer
to monitor lock. IF the
monitor is unlocked THEN
lock it ELSE enqueue
current process on the
monitor queue and
reschedule.

MOD Modulus Stack has data 1, data2. X
Push data 1 MOD data2.

•
MBP Make Byte Stack has long pointer.

Pointer Push byte pointer to high
byte.

6-6 ASSEMBLER REFERENCE MANUAL

SOPS

Address and Operand Formats

OpCode Name Meaning

Val GF LF CB .0 .F .R L K Ind #

MR Monitor Stack has 32-bit monitor
Reenter pointer, 32-bit condition

pointer. IF monitor locked
THEN enqueue on
monitor queue and
reschedule ELSE {test for
aborting and trap if
appropriate; lock
monitor and proceed}.

MUL Multiply Stack has data 1, data2.
Push the 32-bit value
data 1 *data2. IF data
were 16-bitTHEN X

decrement stack pointer
ELSE ignore overflow. X

MW Monitor Wait Stack has 32-bit
monitorPointer, 32-bit
conditionPointer,16-bit
timeout. Unlock monitor
(and wake upwaiting
process if any); enqueue
current process on
condition with timeout
value; reschedule.
Exceptions: IF condition
has wakeup waiting OR
process has been aborted
THEN current process
continues to run.

MX Monitor Exit Stack has 32-bit pointer
to monitor lock. Unlock
the monitor; IF the queue
is not empty, wake up the
first waiting process and
reschedule.

NC Notify Stack has 32-bit
Condition conditionPointer. Wake

up the fi rst process on the
condition queue and
reschedule if awakened.

NEG Negate Stack has data. Push 0-
data.

NILCK NIL Check Stack has pointer. IF
pointer = 0 THEN trap
ELSE leave pointer on X
stack.

ASSEMBLER REFERENCE MANUAL 6-7

SOPS

Address and Operand Formats

OpCode Name Meaning

Val GF IF CB .0 .F .R L K Ind #

PI Port In Recover source and
portAdd-ress from above
~tack. ~tbre 32-bit zero at
portAddress + 0; IF
source#O THEN extend it
with a high order zero
and store at
portAddress + 2 and
portAddress + 3.

PO Port Out Stack has portAddress.
Store Lat
portAddress + 0; fetch
link from portAddress + 2
and portAddress + 3 and
XFER to it with a source of
portAddress.

POR Port Out Identical to PO. The
Responding distinction between the

two is used by a trap
handler to decide how to
recover from port faults.

PUT Put Stack has data. Store data X
into effective address;
leave data on stack.

X X

PUTS Put Swapped Stack has pointer, data. X
Store data into

X X
pointer + operand; leave
pointer on stack (but not X X X
data). X X

X X

X X X

6-8 ASSEMBLER REFERENCE MANUAL

SOPS

Address and Operand Formats

OpCode Name Meaning

Val GF LF CB .D .F .R L K Ind #

READ Read Load from effective X
address. If base is not

X
given, then pointer is on
top of stack. Field X 'X

specifier for "READ .F[] X X
L(n)- may be empty, i.e.,

X X X it is on the stack. The field
specifier for reading from X X

the code must be on the X X
stack.

X X X

X X X

X

X X

X

X X X

X X X X

X X

X X

X X X

X X X

X X X X

READSTR Read String Stack has pointer, index.
Fetch word from
poi nter + (i ndeX/2) +
operand; IF index MOD 2
= 0 THEN push X
word.high ELSE push
word.low.

REC Recover Recover data item from
above the stack (i.e.,
increment stack pointer

X by one or two).

REM Remainder Floating point only.
Perform division and X
leave remainder on stack.

RO Read Stack has pointer. Load
Overhead from pointer-operand.

All access to local and
global frame overhead is
done through this
instruction (and WO) so
that the processor could
cache this data.

ASSEMBLER REFERENCE MANUAL 6·9

SOPS

..

Address and Operand Formats

OpCode Name Meaning

Val GF LF CB .0 .F .R L K Ind /I

ROTATE Rotate Stack has data, count.
Rotate data by count
MOD 16 bits; left if count
is positive; right if count
is negative.

ROUND Round Stack has floating point.
Rounds to 32-bjt integer'

ROUNDC Round to Stack has floating point..
Cardinal Rounds to 16-bit

unsigned number.

ROUNDI Round to Stack has floating point.
'Integer Rounds to 16-bit signed

number.

RPB Read byte Stack has byte pointer. X
pointer Add offset. Push byte

pointed to.

SFC Stack Function Stack has 32-bit
Call control Link. XFER to

control Link.

SHIFT Shift Stack has data, count.
Shift data by count bits;
left if count is positive;
right if count is negative. X

STC Stack Check If stack pointer /I arg X
then stackerror

STORE Store Stack has data. Store into X
effective address.

X X

X

X X

SUB Subtraction Stack has data 1, data2.
Push datal-data2. X

X

TRPL Triple Stack has data. Push
data*3.

UCMP Unsigned Stack has data 1, data2.
Compare Compare data 1 and data2

X (unsigned) and push -1 if
datal <data2; 0 if
data 1 = data2; + 1 if
data 1 >data2.

6·10 ASSEMBLER REFERENCE MANUAL

SOPS

Address and Operand Formats

OpCode Name Meaning

Val GF IF CB .0 .F .R l K Ind #

UDIV Unsigned Stack hasdata1, data2.
Divide Push quotient and

remainder form
data 1/data2; decrement
the stack poi nter so as to
leave the remai nder
above the stack.

UMOD Unsigned Stack hasdata1, data2.
Modulus Push remai nder from X

data1/data2.

WPB Write byte Stack has value, byte X
pointer pointer. Write value to

byte.

WRITE Write Stack has data. Store into X
effective address. If no X X
base is given, then X X X
pointer is below data on

X X the stack.lf writing to a
field in the local frame X X

through a long pointer, X X X
the field specifier may be X X X X
on the stack (Le., X X X
"WRITE.F[) (IF + n)H). X X X

X X X X
X X

X X
X X
X X X
X X X X
X X X
X X X
X X X X

WRITES Write Like write except pointer X
Swapped is above data on stack. X X

X X X
X X ..
X X X
X X

ASSEMBLER REFERENCE MANUAL 6·11

SOPS

~

Atldr'eb'3h<fOperand Formats

OpCode Name Meaning.

Val GF LF CiJ .0 .F ..R L K Ind #

WRrTEST Write String Stack has dau" ~inter; '.

R1NG index: Fetch word from
pointer + (inc:ktxl2) + para
meter; IF index MOO 2 =
o THEN word.high I data

X
ElSEwo,d.low ' data.;
Store word at
pointer + (indeXl2) + para
meter.

XOR Exclusive-OR Stack has data 1, data2.
Push data 1 e data2.

6·12 , .".,.: ASSEMBLER REFERENCE MANUAL

