
XEROX Xerox Development Environment

Mesa Course

September 1988
610E00230

Xerox Corporation
Document ,'stems Business Unit
XDE Techlllcal Services
475 Oakritead Parkway
Sunnyvale, California 940~.

Introduction

The Mesa Course is a self-paced programming tutorial intended to give you hands-on
experience with applications and systems programming in the Xerox Development
Environment. The course introduces important concepts, illustrates those concepts with
extensive examples, and provides exercises to ensure your familiarity with those concepts.
The Mesa Course is intended for use at any XDE customer site.

The twenty one chapters of the Mesa Course are grouped into two major sections: the Mesa
Language and the "Tajo" development environment. The experienced professional need
only skim the Mesa Language chapters and can begin with serious study of the
development environment, referring to language issues in the first section as required.
The less experienced programmer should work through the material sequentially. The
initial section of the course is designed to present Mesa programming to someone who is
familiar with other structured languages, particularly Pascal, and has completed the
Introduction to XDE on-line tutorials.

The Mesa Language section introduces you to Mesa programming concepts and essential
components of the Xerox Development Environment. You will learn how to develop and
run programs in our environment, including how to:

• convert standard Pascal constructs into their Mesa counterparts,

• use Mesa's interface mechanism to integrate independently developed
programs and share information among them,

• allocate dynamic storage from a common pool,

• declare and manipulate strings, dynamic arrays, and variant records

• use processes and monitors effectively,

• handle exception occurrences via a software interrupt mechanism,

• debug your program when things go awry, and

• use the Mesa reference manuals to find the information you need.

Upon completing the first section you should have a well-grounded understanding of how
to use Mesa and the development environment.

1

Introduction

The last half of the course emphasizes advanced features of XDE and concentrates on
fundamental aspects of tool creation. In this section you will learn how to

• write programs that run in the Executive window,

• interact with the Mesa file system including performing file I/O and attaching a
stream to a file,

• allocate space from virtual memory and map it to a backing file,

• use the form subwindow layout tool to generate "standard" tool subwindow
implementation code,

• implement tool features not provided by the form subwindow layout tool,

• handle terminal input for a tool, and

• paint into the windows of a tool

If you do not intend to be an active Mesa programmer, then this course is probably not for
you. The Introduction to XDE on-line tutorials provide an explanation of the non­
programming aspects of the development environment, and may be what you want.

Course structure

The course consists of twenty one chapters, six appendices, and a Glossary. The early
chapters, Chapters 1 through 10, each concentrate on a single concept and build on the
previous chapters. If this material is appropriate for your experience level, you should
study each of these in order. The chapters of the environment section, from Chapter 11 on,
are somewhat more independent and self-standing. Chapter 12 deals with the Executive,
chapters 13 through 15 deal with aspects of the file system, chapters 16 through 19 cover
fundamental aspects of tool construction, and chapters 20 and 21 discuss gathering input
for tools and painting tool windows.

Some of the appendices cover basic debugging techniques. The remaining appendices,
answers to questions, and the Glossary should be referenced as needed. The course
suggests points when studying the appendices might be most helpful to you.

How to read a chapter

2

For the most part, each chapter contains the following sections in the following order:

• An introduction covering what it is about, what you will learn from it, and what you
will do in it.

• A description of preliminary readings and where to find them. These are usually the
sections in the reference documentation that describe the concepts to be discussed.
You should read, but not disect, this information. We discuss the depth to which you
should study these readings in the next section, Using the Course.

• A glossary of terms, which defines the terms new to that particular section.

Mesa Course

• A discussion of the chapter's main topic. This section is the main body of the chapter.
It usually takes the form of a general introduction to the concept, a discussion of the
facilities you need, and at least one programming example.

• A summary of what you have learned. This helps you to check quickly that you have
understood the major points ofthe chapter, and can later serve as a reference.

• A discussion of style-related issues related to the concept being learned. The section
explains the choice and type of coding style used in the examples.

• A description of reference materials and where to find them. These are usually
collected journal articles that relate to the concept being taught. Using these
materials will extend the breadth of your knowledge or give you a different
perspective on the topic.

• A set of questions. Questions and answers are provided so you can judge how well you
have understood the material. The answers are collected in an appendix.

• A programming exercise that applies the new concept and provides experience with
the Mesa language. It is primarily through these exercises, as well as through
programming examples and readings in the Mesa Language Manual, and the Mesa
and Pilot Programmers Manuals, that you will become familiar with the XDE.

U sing the course

Beginning users of Mesa come with a wide range of experience. You can use the following
guidelines to gauge the level appropriate for you and how best to use this course.

The primary purpose of this training is to initiate you to programming in the Xerox
development environment. This environment is documented by well over one thousand
pages of material. You need to know how to find, use, and understand information in these
documents. The course presents the information in the reference materials around a
framework of examples and exercises. There is no information in the course that is not
also in at least one other document.

Many chapters ask you to do preliminary readings in reference manuals. If you
understand the reference materials easily, then the chapter will not provide you with any
more information. Instead, you may find it best, after completing the preliminary
readings, to skim the chapter, check your understanding via the questions, and go straight
to the exercises. On the other hand, if you find the reference readings overly difficult, do
not pore over them. Instead, skim them and concentrate your ,efforts on the discussion
section of the appropriate Mesa Course chapter. Mter you have finished the chapter, go
back and re-read the reference material. This will give you more information on the
subject, and will also give you experience in using the manuals.

Getting Started

This is version 12.0 of the Mesa Course. It assumes that you are using a Dandelion or
Daybreak processor running the Sequoia release (12.0) of the Xerox Development

3

4

Introduction

Environment with Tajo installed on a normal volume, CoPilot serving as a debugger for
the volume on which Tajo is installed, and a U ser.cm that is set up for this configuration.

Programs
(PUBLIC)

Interpress
(PUBLIC.

initially)

MesaCourse

OF
(PUBLIC)

12.0

Solutions
(PRIVATE,

initially)

Errata
(PUBLIC)

The Mesa Course Directory Structure

References
(PUBLIC)

Interpress masters for the course text are stored electronically in the folder
[CustomerHSFileServer1<MesaCourse>12.0>Interpress>. You can print copies
of the course from these folders as you need them (universities may have this folder
protected). Your local support group may have bound copies of the Mesa Course available.

The programs discussed in the chapters are stored in the [, .. 1 < •.• > •.• >
Programs >ChapterHame(ChapterHumber) folder for each chapter. Retrieve all files
from this folder before starting a chapter, e.g., retrieve all the files in
[CustomerHSFileServer1 <MesaCourse > 12. O>Programs > Interfaces (2) before
starting Chapter 2.

Solutions to programming exercises are stored in the [, .. 1 < ••• > ••• > Solutions>
folder. Your XDE training liaison will decide who has access rights to this folder: it may be
read protected initially.

There are two papers cited in the Mesa Course that are not part of the XDE release
documentation. They can be found in the [, .. 1 < ••• > ••• > References> folder.

The Mesa Course is still under development, and we would appreciate your comments and
corrections. We apologize for any inconveniences caused by inconsistencies or inaccuracies
that have escaped our current review. Please check on [•••] < ••• > ••• > Er ra ta > for
any update information.

If you run into any trouble getting started or while you are going through the course, do
not hesitate to ask your XDE training mentor for help. Initially, please ask your mentor to
make sure that your disk and User.cm are compatible with the course, and for the name of
a CUs tomerHSFi leServer near you that has a copy of the <MesaCourse> folder.

1

From Pascal to Mesa

This chapter will introduce you to the programming language Mesa by building on your
knowledge of Pascal.

Pascal has become the instructional language of choice in the computer science academic
community and is gaining in general popularity. It is a language that has integrated a
small set of features into a powerful and efficient programming tool. One of Pascal's most
attractive features is user-defined data types that enable data structuring capability and
data abstraction. Standard Pascal does have a significant shortcoming in terms of writing
a large system: there is no way to break the system down into small separately compiled
units and then integrate them into a consistent whole. This prevents the compiler from
checking the type correctness of actual parameters in distinct units, inhibits the
development of "libraries" to extend the language, and generally complicates the
implementation of large systems constructed by a group of programmers. Furthermore,
standard Pascal does not support dynamic array bounds; it is difficult to write general
routines that process arrays of different sizes. Standard Pascal has no exception handling
facilities and does not support concurrent processes.

Mesa is a strongly typed, block structured programming language whose syntax is similar
to that of Pascal. Mesa extends Pascal in a number of ways intended to make it more
effective for the development oflarge systems, while preserving Pascal's data structuring
and data abstraction facilities. We begin this chapter by examining the common ground
between Pascal and Mesa: shared language concepts and constructs. Then we look at some
of the ways in which Mesa differs from Pascal.

1.1 Definition of terms

Most of the concepts found in Pascal have counterparts in Mesa. The list below defines
terms that are either distinctive to both Pascal and Mesa or terms whose Pascal and Mesa
definitions differ slightly.

type definitions

name

Type definitions are the mechanism for describing data of
Mesa programs.

A name (or identifier) is a sequence of alphabetic and
numeric characters beginning with an alphabetic

1-1

1 From Pascal to Mesa

static variables

dynamic variables

strongly typed

procedural abstraction

actual procedure

procedure variable

character. Identifiers in Mesa can be up to 256 characters
long; character case is significant in Mesa identifiers.

Static variables are variables for which an explicit variable
declaration has been made.

Dynamic variables are generated by a special procedure
(NEW) that yields a pointer or reference value that
subsequently serves in place of a name to refer to the
variable.

The Ylesa compiler uses static analysis to deduce the type
of every constant, variable, and expression to ensure that
all programs are type correct. Languages in which such
type correctness is determined at compile time are called
strongly typed.

A procedural abstraction is a mapping from a set of inputs
to a set of outputs that can be described by a specification.
The specification must show how the outputs relate to the
inputs, but it does not reveal or imply the way the outputs
are to be computed.

An actual procedure is a procedure initialized so that its
meaning (defined by its body) cannot change. You cannot
assign a value to an actual procedure.

A procedure variable is a procedure initialized in such a
way that the procedure's value (body) can be changed by
assignment.

1.2 A comparison of Mesa and Pascal constructs

This section presents a sequence of examples showing analogous Mesa and (standard)
Pascal constructs.

Mesa

Comments

--This is a comment terminated by EDL

--This is a comment terminated by dashes--

< < This is a comment extending
over more than one line> >

1-2

Pascal

{This is a comment}

{This is a comment extending
over more than one line}

Mesa Course

Mesa Pascal

Constant declarations

Pi: REAL. 3.14;
--Note
-- Mesa is case sensitive.
-- Reserved words are capitalized.
-- Constants have explicit types.

MinusPi: REAL III ·Pi;

linesPerPage: INTEGER III 60;

shortPage: INTEGER. linesPerPage· 6;

capA: CHARACTER III 'A;

smallA: CHAR. 'a;
--CHARACTER and CHAR are equivalent

message: LONG STRING = "Hello there";
--String literal allocated in global frame.

anotherMessage: LONG STRING = "Boo"L;
--The string literal is allocated in the local frame
--of the innermost procedure enclosing the
--literal. Thus, in Mesa you can choose whether
--to allocate from a local or global frame.

CONST

Pi III 3.14;
{Pascal is not case sensitive.
Capitalization is only for readability.
Constants have implicit TYPE.}

MinusPi • ·Pi;

linesPerPage = 60;

{Pascal does not support general
expression constants}

capA = 'A';

smaliA .. 'a';

message = 'Hello there';

Type declarations: One dimensional ARRAVS

Name: TYPE. ARRAV[0 .. 9] OFCHAR;

packName: TVPE • PACKEDARRAV

[0 .. 9] OF CHAR;

Dashes: TYPE • ARRA v[O •• 7) OF CHAR ... ALL['·];

--[O .. n + 1) equivalent to [O .. n]

RARRAV: TVPE • ARRAY[O .. 8) OF REAL;

TYPE

Name. ARRAV[O .. 9] OF CHAR;

packName • PACKEDARRAY[O .. 9] OFCHAR;

Dashes. ARRAV[O .. 6] OF CHAR;

{No default initialization}

RARRAV .. ARRAV[O .. 7] OF REAL;

1

1-3

1 From Pascal to Mesa

Mesa Pascal

Type declarations: Two dimensional ARRAYS

M3by4: TYPE • ARRAY[1..3] OF ARRAY[1 .• 4]
OF INTEGER +- ALL[O];

M3by4,. ARRAY[1 .. 3] OFARRAY[1..4]
OF INTEGER;

{No default initialization}

{or}

ALT3by4 • ARRAY[3,4] OF INTEGER;
{Compact representation of two dimensional ARRA Y,
no default initialization}

Type declarations: Records

Coordinate: TYPE = RECORD[
horizontal: REAL +- 0.00;
vertical: INTEGER +- 0];
-- default field initialization

--or

Coordinate: TYPE. RECORD[
horizontal: REAL,
vertical: INTEGER] +- [0.00,0]
-- default TYPE initialization

Coordinate.
RECORD

horizontal: REAL; {no initialization}
vertical: INTEGER

END;

Type declarations: Variant Records

Shape: TYPE. {point, line. circle};

Figure TYPE • RECORD[
figureName: Name,
specificFigure: SELEcTfieldlD: Shape FROM

point. > [position: Coordinate],
line. > [xCoef, yCoef, slope: REAL].
circle. > [center: Coordinate,

radius: REAL];
ENDCASE];

1-4

Shape. (point. line. circle);

Figure.
RECORD

figureName: Name;
CASE tag: Shape OF

point:

END;

(postion: Coordinate);
line:

(xCoef, yCoef, slope: REAL);
circle:

(center: Coordinate;
radius: REAL);

Mesa Course

Mesa Pascal

Type declarations: Records containing pointers

personPtr: TYPE = LONG POINTER TO Person;

Person: TYPE = RECORD[
name: Name,
age: [21 .. 120].
sex: {male, female},
party: {Demo, GOP}.
contribution: [0 .. 1 0000]];

link: TYPE = LONG POINTER TO Node;

Node:TYPE • RECORD[
voter: Person,
next: link];

personPtr • t Person;

Person.
RECORD

name: Name;
age: 21 .. 120;
sex: (male, female);
party: (Demo, GOP);
contribution: (0 .. 10000)

END;

link =- t Node;

Node =
RECORD

voter: Person;
next: link

END;

Variable declarations

b: BOOLEAN +-TRUE;
--BOOLEAN and BOOL are equivalent

Ii, Ij: LONG INTEGER +--7;

i, j: INTEGER +- 41;
iSquared: INTEGEU- i*i;
k: INTEGER +- iSquared - i + 1;

a: RARRAY;

mxy: M3by4;

control: [1 .. 15];

VAR

b:BOOLEAN; {no initialization possible}

{no double precision or initialization}

i, j: INTEGER;
iSquared: INTEGER;
k: INTEGER;
{Initialization of iSquared and k must be done
in statement section.}

a: RARRAY;

mxy: M3by4;
altmxy: AL T3by4

control: 1 .. 15;

1

1-5

1 From Pascal to Mesa

Mesa Pascal

Variant record variables

figure: Figure; figure, pointFigure, lineFigure, circieFigure: Figure;

"Bound" variant record variables

pointFigure: point Figure;
lineFigure: line Figure;
circieFigure: circle Figure;

{Pascal has no concept of bound variant RECORDS.}

Dynamic storage allocation

Z: UNCOUNTED ZONE +-NIL;
--source of dynamically allocated objects

{Nodes are automatically allocated from a
system heap}

Variables for poin ter examples

cand1, cand2, cand3, cand4: Person;
preswinner, presloser, vpwinner,
vploser: personptr;
p, rootNode: link;

cand1, cand2, cand3, cand4: Person;
preswinner, presloser, vpwinner
vploser: personptr;
p, rootNode: link;

Procedure declarations

Fact: PROCEDURE[n: LONG INTEGER]
RETURNS [LONG INTEGER] =
BEGIN

RETURN [IF n = 0 THEN 1
ELSE n*Fact[n -1]]

END;
--Mesa does not differentiate between
--FUNCTION and PROCEDURE.

Swap: PROCEDURE[iptr, jptr:
LONG POINTER TO INTEGER] •
{temp: INTEGER;
temp +- iptr t;
iptr t +- jptr t ;
jptr t +- temp};

--All arguments are passed by value in Mesa:
--i.e., the value of an argument, not its address
--is assigned to the parameter. Of course, this
--value itself can be an address.

--In Mesa, a block can be delimited either by
--BEGIN ... END or by { ... }

1-6

FUNCTION Fad(n: INTEGER}: INTEGER;
BEGIN

IF n = 0 THEN Fact: = 1
ELSE Fact: = n*Fact(n -1)

END; {Fact}

{Pascal FUNCTIONS can only return "simple" TYPES,

i.e., CHAR, INTEGER, and REAL.}

PROCEDURE Swap{var i, j: INTEGER);
VAR t: INTEGER;

BEGIN
t:. i;
i : • j;
j : = t

END;

Mesa

a[1) +- 3.8E6;
mxy[2][3) +- 7;

Mesa Course

IF b THEN PROCEDURE1 [];

IFi#j/2
THEN PROCEDURE1 []
ELSE PROCEDURE2[];

a[1) +-IF boolvar1
THEN 4.56
ELSE 8.71;

--An IF expression

--control: [1 .• 15];
SELECT control FROM

1, IN [7 .. 10] • > statement1;
2, 5, > 1 0 • > statement2;
ENDCASE .. > statement3;

SELECT TRUE FROM
boolvar1 .. > statement1;
boolvar2 • > statement2;

boolvarn • > statementn;
ENDCASE;

a[1) +- SELECT control FROM
1,IN[7 .. 10] .. > 1.12;
2.5, >10 • > -4.856;
ENDCASE • > 73.2;

--A SELECT expression

i: INTEGER +- 1 ;
WHILE i < 10

DO ... i +- i + 1; .•. ENDLOOP;

Statements

Pascal

a[1] :. 3.8E6;
mxy[2][3] : • 7;
altmxy[2,3] : • 7;

IF b THEN PROCEDURE1 ;

IF i< > j div 2
THEN PROCEDURE1
ELSE PRDCEDURE2;

IF boolvar1
THEN a[1] : • 4.56
ELSE a[1] : • 8.71;

{control: 1 .. 15;}
CASE control OF

1,7,8,9,10: statement1;
2,5,11,12,13,14,15: statement2;
3,4,6: statement3

END;

IF boolvar1 THEN
statement1

ELSE IF boolvar2 THEN
statement2

ELSE IF boolvarn THEN
statementn;

CASE control OF
1.7,8.9.10: a[1):. 1.12;
2.5,11.12.13.14,15: a[1] :. -4.856;
3.4,6: a[1) : • 73.2

END;

i : .. 1; {assume i defined earlier}
WHILE i < 10 DO

BEGIN ••. i : • i + 1; ... END;

1

1-7

1 From Pascal to Mesa

Mesa Pascal
Statements continued

i: INTEGER 1;
DO

.. .i i+1; ...
IF i > • 10 THEN EXIT;

ENDLOOP;

--The Mesa construct

--UNTIL condition DO

-- {StatementSeries};
--ENDLOOP;

--is similar to that of Pascal except that the
--condition is tested atthe "top "of the LOOP

--and, if false, the LOOP is not executed. REPEAT

--is a Mesa reserved word whose semantics are
--not the same as Pascal REPEAT.

FOR i: INTEGER IN [1 .. n) DO

... sum sum + ali]; ...
ENDLOOP;

i:. 1;
REPEAT ... i:= i + 1; ...
UNTIL i 2: 10;

{In the Pascal construct

REPEAT StatementSeries
UNTIL condition;

the condition is tested only after the StatementSeries
has been executed once, i.e., the test is at the "bottom"
of the LOOP.}

{i: INTEGER; defined earlier}
FOR i : • 1 to n - 1 DO

BEGIN ... sum _sum + a[i]; ... END; :=
Unbound variant record initialization

figure.figureName ['a, 'r, 'b, 'i, 't, 'r, 'a, 'r, 'y];
WITH f: figure SELECT FROM

point. > f.position [-1.37.14];
line. > {f.xCoef 2.81.

f .yCoef 4.2,
f.slope -.7};

circle. > {f.center [O.00,3.00J,
f.radius S.OO};

ENDCASE;

--the variable figure must be renamed
--within the WITH statement

figure.figureName[O] : • 'a';
figure.figureName[1] : • 'r';
WITH figure DO

CASE tag OF

point: WITH position DO

BEGIN horizontal:. -1.37;
vertical:. 14;

END;

line: BEGIN

xCoef : • 2.81;
yCoef : • 4.2;
slope: = -.7;

END;

circle: WITH center DO -

END;

BEGIN horizontal: • 0.00;
vertical:. 3.00;
radius: • 5.00;

END

Bound variant record initialization

pointFigure.figureName ['p, '0, 'i, 'n, 't, , ,'1, , ,'];
pointFigure.point [-1.37.14];

1-8

{Pascal has no notion of bound variants}

Mesa Course

Mesa Pascal

Some pointer examples

cand1 ~ Person[
name: Name['R, 'e, 'a, 'g, 'a, 'n, , , , , '],
age: 72,
sex: male,
party: GOP,
contribution: 0];

--Similarly initialize cand2 to MondaleData,
--cand3 to BushData, and cand4 to FerraroData.

z~ Heap.Create[initial:1];
--Initialize source FOR dynamically
--allocated objects

preswinner ~ Z.NEw[Person ~ cand1];
presloser ~ Z.NEw[Person ~ cand2);
vpwinner ~ Z.NEw[Person ~ cand3];
vploser ~ Z.NEw[Person ~ cand4);

preswinner ~ presloser;
--preswinner and pres/oser both point to
--the same RECORD (initialized to MondaleData).
--No access path remains to the RECORD initialized
--with ReaganData.

vpwinner f ~vploser f;
--vp winner and vploser point to distinct
--RECORDS, each initialized to FerraroData.

FOR p: LONG POINTER TO Node ~
rootNode, p.next UNTIL p.next • NIL DO

IF p.voter.contribution > 100
THEN AskFoRMoney[p.voter.name]

ENDLOOP;

--When applied to a pointer, the operation
--of selection implies dereferencing. In Mesa,
--this type of dereferencing is done
--automatically. Thus, it is not necessary to
--write p l' . voter. contribution or
--p l' . voter. name.

WITH cand1 DO
BEGIN

name[O] : • 'R'; name[1) : = 'e'; ••.
age:. 72;
sex:. male;
party: • GOP;
contribution: = 0;

END;

{Pascal allocation will be from an anonymous
system heap.}

NEw(preswinner); preswinner f : = cand1;
NEw(presloser); presloser f : = cand2;
NEw(vpwinner); vpwinner f : = cand3;
NEW(vploser); vploser f : = cand4;

preswinner : =- presloser;

vpwinner f : =- .vploser f;

p : =- rootNode;
WHILE p < > NIL DO

BEGIN
IF P f .voter.contribution > 100

THEN AskFORMone'y[p f .voter.name];
p:. p.next

END;

1

1-9

1 From Pascal to Mesa

1.3 Mesa extensions of Pascal

1-10

1.3.1 Modules and interfaces

Mesa programs look quite similar to Pascal programs when viewed in'the small. However,
Mesa provides and enforces a modularization capability that is far more powerful than
that of Pascal. In Mesa, you build large systems from a collection of smaller, separately
compiled components called modules. The Mesa binder (the binder is similar to a linking
loader in Pascal) enforces strong type checking among the modules that make up a system.
In Pascal, you must make a choice when developing a large system. Either you construct a
monolithic program to ensure type correctness, or you link separately complied program
units without. any guarantee that the type of variable X in one unit matches the type of
variable X in another unit. In the latter case, type mismatches are discovered only at run­
time.

Type checking across module boundaries in Mesa is only part of its modularization power.
There are two categories of module in Mesa. Definitions (or interface) modules declare
types, constants, and procedure headers of procedures that manipulate values of types
declared in the module. An interface defines an abstraction by collecting all operations on
a class of objects into a single module. An interface module contains no executable code; it
only contains enough information to allow the compiler to type check other modules that
use the declared symbols. The body of a procedure declared in an interface is not part of the
interface. Interface modules compile into symbol tables.

The second category of module is the Program module. A program module acts as an
implementor of an interface if it contains code that implements procedures declared in an
interface module. A program module acts as a client of an interface if it calls procedures
defined in that interface module.

An interface is a contract between client and implementor: the interface specifies items
that are available for clients to use, but doesn't say how they will be provided; the
implementing module determines the details of the implementation.

There are several advantages of interfaces:

• Once an interface has been agreed upon, construction of the implementor and client
can proceed independently. Thus interfaces and implementations are decoupled. This
facilitates information hiding and permits changes to implementing modules without
requiring a change to a client. Once an abstraction has been defined in a DEFINITIONS
module (the interface) and implemented in one or more PROGRAM modules, an arbitrary
(client) PROGRAM module can access the services advertised in the interface.

• Interfaces enforce consistency in the connections among modules. Operations upon a
class of objects are collected into a single interface, not defined individually and in
potentially incompatible ways.

• Nearly all of the work required for type-checking interfaces is done by the compiler.

Mesa Course

Queue: DEFINITION

Types
Queue Procedure Declarations

~ '" QueueClient: PROGRAM Queuelmpl: PROGRAM

IMPORTS Queue EXPORTS Queue

• Mesa separates the definition of an interface from the actual code that
implements the interface.

• QueueClient, Queue, and Queuelmpl are individual files, separately
prepared. Queuelmpl implements the procedures declared in Queue.

• QueueClientprogram uses the Queue interface.

• Compiler and Binder type-check the interface between QueueClient and
Queuelmpl.

Mesa modularity

1.3.2 Exceptions: signals and errors

1

Mesa provides signals to indicate exception conditions. Signals provide an orderly means
for dealing with exceptions that is inexpensive if they occur infrequently. Examples of
exceptions are invalid inputs, the inability of an abstractions to respond (e.g.,an allocator
out of space), or any unusual or "impossible" event.

A Mesa SIGNAL can be thought of as the association of a procedure with an exceptional
condition. "Raising" a signal when the exception occurs is similar to invoking the
associated procedure except that the code to be executed is deterI?ined dynamically and is
found in a "handler". The binding to a handler is determined by searching catch phrases
(that contain handlers) in the call stack of the process in which the exception is raised; the
dynamically innermost catch phrase that accepts the signal (by having a handler prepared
to deal with the signal) is selected and executed. Often, parameters are passed when the
signal is raised to help a handler determine what went wrong. Catch phrases are written
in a distinctive syntax that clearly identifies them as the location of handlers containing
code to respond to signals.

1-11

1

1-12

From Pascal to Mesa

The cost of raising a signal is significantly higher than the cost of calling a procedure, but
exceptions are events that should not happen very often. The system guarantees that all
exceptions are handled at some level; those that the program fails to catch are accepted by
the debugger. The debugger keeps intact the state of the program that raises a signal.

1.3.3 Processes, monitors, and condition variables

Mesa provides efficient mechanisms for concurrent execution of multiple processes within
a single system. This allows programs that are inherently parallel in nature to be clearly
expressed.

Example

Getlnput: PROCEDURE[buffer: LONG POINTER TO Buffer]
RETURNS [bytes Read : CARDINAL] •

BEGIN
p: PROCESS RETURNS [CARDINAL];

p ~ FORK ReadLine[buffer];

< < concurrent computation > >

bytes Read ~JOIN p;
END;

FORK makes it possible to start the execution of another procedure concurrently with the
program that started it. FORK returns a process, which may either be detached to proceed
independently, or saved for a future JOIN. A process type is declared similarly to a
procedure type, except that only the type of the result is specified.

All processes execute in the same address space. Consequently, they are not protected
from each ather (certainly acceptable in a single-user system) but process creation and
switching between processes is cheap (about the same as a procedure call).

Mesa provides facilities for synchronizing processes by means of entry to monitors and
waiting on condition variables. A monitor has shared data in its global frame, and its own
procedures for accessing it. To prevent two processes from executing the the same monitor
at the same time, a monitor lock is used for mutual exclusion. Calling one of a monitor's
ENTRY procedures automatically acquires the monitor lock (WAITing if necessary), and a
return releases it. The monitor lock serves to guarantee the integrity of the global data,
which is expressed as the monitor invariant, an assertion defining what constitutes a
"good state" of the data for that particular monitor. It is the responsibility of every entry
procedure to restore the monitor invariant before returning.

Mesa Course

StorageAliocator: MONITOR.
BEGIN
StorageAvailable: CONDITION;
Block: TYPE = RECORD[...]:

Example

listPtr: TYPE. LONG POINTER TO ListElmt;
ListElmt: TYPE. RECORD[block: Block, next: ListPtr];
FreeList: listPtr;

Allocate: ENTRY PROCEDURE RETURNS [p: ListPtr] =
BEGIN
WHILE Freelist • NIL DO

WAIT StorageAvailable
ENDLOOP;

p +- FreeList; FreeList +- p.next;
END;

Free: ENTRY PROCEDURE[P: ListPtr] •
BEGIN
p.next +- FreeList; FreeList +- p;
NOTIFY StorageAvailable
END;

END.

1

It may happen that one process enters the monitor, finds the monitor data in a valid state,
but cannot continue until some other process enters the monitor and alters the state (for
example, a process may find that there is no storage available). The WAIT operation allows
the first process to release the monitor lock and await the desired condition. The WAIT is
performed on a condition variable associated by agreement with the actual condition
required. When another process makes that condition true, it will perform a NOTIFY on the
condition variable, and the waiting process will continue from where it left off (after
reacquiring the lock) and testing the condition again.

1.3.4 New data types

In Mesa, the predefined type LONG STRING is really "LONG POINTER TO Stringbody"; a
StringBody contains a packed array of characters, a maxlength field giving the length of
that array, and a length field indicating how many of the characters are currently
significant. Each program contains the following predeclarations:

Example

LONG STRING: TYPE. LONG POINTER TO StringBody;
StringBody: TYPE • MACHINE DEPENDENT RECORD[

lengtn: CARDINAL,
maxlength: --readonly-- CARDINAL,
text: PACKED ARRAY[O •• O) OF CHARACTER];

whatWasThat: LONG STRING. "En?"; --constant STRING

answer: LONG STRING +- [256]; --allocate a StringBody with maxlength 256

1-13

1

1-14

From Pascal to Mesa

A sequence is an indexable collection of items, all of which have the same type. In this
respect a sequence resembles an array; however, the length of the sequence is not part of
its type. The (maximum) length of a sequence is specified when the object containing that
sequence is created, and it subsequently cannot be changed. It is the responsibility of the
programmer to keep track of the number of items in the sequence at, any time. Sequences
are declared as the last field in a record.

Example

Iptscr: TYPE • LONG POINTER TO SequenceContainingRecord;
finger: Iptscr ~ NIL;
SequenceContainingRecord TYPE. RECORO[

a: BOOLEAN,
b: BOOLEAN,
seq: SEQUENCE length:CARDINAL OF LONG INTEGER];

finger ~ Heap.systemZone.NEw[SequenceContainingRecord[10));
--SequenceContainingREcoRo[10} is a TYPE specification describing a RECORD with a
--sequence part, seq, containing 70 LONG INTEGERS. The effect of the call is to allocate
--enough storage to hold two BOOLEANS and 70 LONG INTEGERS and return a long
--pointer to this storage.

Dynamic variables in Mesa are allocated in zones. Zones are not necessarily associated
with fixed areas of storage; rather they are objects characterized by procedures for
allocation and deallocation. There is a standard system zone, systemZone, but programs
that allocate substantial numbers of similar dynamic variables can often improve
performance by segregating each kind into its own zone. NEW is used to allocate a dynamic
variable from a zone, and FREE to release it.

Mesa allows a default initial value to be associated with a type. Default values for
arguments can simplify procedure applications; default initial values are useful to ensure
that the corresponding storage is always well-formed, even before the variable has been
used by the program.

1.3.5 Mesa extensions of Pascal constructs

This section mentions a number of areas where Mesa provides "convenience" extensions or
conceptually small changes.

SELECT statements generalize Pascal's CASE construct by allowing several ways to specify
how one statement is to be chosen for execution from an ordered list. The most common
form is based on the relation between the value of a given expression and those of
expressions associated with each selectable statement. The relation may be equality (the
default),- any relational operator appropriate to the types of the values involved, or
containment in a subrange. A single selection may be prefixed by several selectors and an
optional ENDCASE statement is selected only if none of the others are. Discriminating
selection is used to branch on the type of a variant record value. SELECT expressions are
analogous, but choose from an ordered list of expressions.

Mesa Course

Examples

--control: (1 •. 15];
SELECT control FROM

1,IN [7 .. 10] • > statement1;
2,5, >10 :I> statement2;
ENDCASE :I > statement3;

Shape: TYPE = {point, line, circle};

Figure TYPE :I RECORO[
figureName: Name,
specificFigure: SELEcTfieldlD: Shape FROM

point. > [position: Coordinate]
line :I > [xCoef, yCoef, slope: REAL],
circle. > (center: Coordinate,

radius: REAL];
ENDCASE];

a[1] SELECT control FROM
1, IN [7 •• 10] :I> 1 .. 12;
2,5, >10 :I> -4.856;

ENOCASE = > 73.2;
--A SELECT expression

1

Iteration is provided by loop statements in which several different kinds of control can be
freely intermixed. A loop has a control clause and a body. The control clause may specify a
logical condition for normal termination, possibly combined with a range or a sequence of
assignments for a controlled variable. In addition to ordinary statements, the body may
contain EXIT or GO TO statements to explicitly terminate its execution, and may be followed
by a REPEAT clause that acts like a selection on the GOTO used to terminate the loop. (GOTO
cannot be used to synthesize arbitrary control structures. It is much like a "local"
exception.)

i 1;
UNTIL i > .10

DO ..• i i + 1; .•• ENDLOOP;
Next-Statement;

Examples

--UNTIL i> = 10 is the loop control

The following example is equivalent to the one above.

i 1;
DO
IF i > • 10 THEN GOToquit; --first statement in the body'
... i i + 1; ...
REPEAT --REPEAT doesn't mean repeat, it means "location of exits options".

quit :I > NULL;
ENDLOOP;
Next-Statement;

1-15

1

1-16

From Pascal to Mesa

An example of linked list traversal:

NodeLink: TYPE == LONG POINTER TO Node;
node, head Of List: NodeLink;
Node: TYPE == RECORO[

listValue: SOmeTYPE,
next: NodeLink);

FOR node ~ headOfList, node.next UNTIL node = NIL
DO ... ENDLOOP;

The loop control variable is node. Its initial value, head Of List, is assigned prior to the first
iteration. Before each subsequent iteration the next expression, node.next, is reevaluated
and assigned to the control variable. The user must either use a GOTO to terminate the loop
or include a condition test. The condition test UNTIL node == NIL was used in the above
example.

The LOOP statement is used when there is nothing more to do in the iteration, and the
programmer wishes to go on to the next repetition, if any.

stuff: ARRAV[0 .• 100) of PotentiallylnterestingData;
Interesti ng: PROCEDURE[Potentia Ilyl nteresti ngData) RETURNS[SOOLEAN);
i: CARDINAL;

FOR i IN [0 .. 100) DO
---some PRocessing FOR each value of i

IF -Interesting[stuff[ill THEN LOOP;
--PROcess stuff[i];

ENOLOOP;

In Pascal, procedure execution must proceed somehow to the end of the body before
terminating; in Mesa, it can be terminated anywhere by executing a RETURN statement. If
the procedure's type includes results, the RETURN statement may supply the values to be
returned - otherwise they are taken from the result variables named in the type. Each
procedure body is followed by an implicit return.

Mesa Course

Examples

ReturnExample1: PROCEDURE[option: [1 •. 4]] RETuRNs[a, b, c: INTEGER] =­
BEGIN
a+-b+-c+-O;
SELECT option FROM

1 =- > RETURN [a:1, b:2,c:3];
2 = > RETURN [1,2,3];
3 :I> RETURN;
ENDCASE = > b +- 4;

c+-9;

--keyword parameter list
-- position version of option
-- a = b = c = 0

END; -- implicit return; a = 0, b = 4, C = 9

ReturnExample2: PROCEDURE[g: INTEGER] RETURNS[lNTEGER +- 3, INTEGER +- 4] =
BEGIN
SELECT 9 FROM

o • > RETURN [, 2];
1 • > RETURN [8,];
2 =- > RETURN [,];
3 • > RETURN [5];
4 =- > RETURN [];
ENDCASE • >

END;

-- RETURNS [3,2}
--RETURNS [8,4}
--RETURNS [3,4}
--RETURNS [5,4}
--RETURNS {3,4}

--implicit return: [3,4}

1

Pascal procedures are not values that may be assigned to variables; Mesa procedures are.

Example

InverseTrigValue: REAL;
InverseTrigFunction: TYPE=- PROCEDURE [x: REAL] RETURNS [REAL];

ArcSin: InverseTrigFunction • BEGIN --PROCEDURE body-- ... END; --PROCEDURE constant
ArcCos: InverseTrigFunction • BEGIN --PROCEDURE body-- ... END; --PROCEDURE constant
ArcTan: InverseTrigFunction = BEGIN --PROCEDURE body-- ... END; --PROCEDURE constant
InverseTrigFunctionVariable: InverseTrigFunction; --PROCEDURE variable

InverseTrigFunctionVariable +- ArcSin;
InverseTrigValue +-lnverseTrigFunctionVariable[3.141S/4];

1.3.6 Input and output in Mesa

The Mesa language definition omits many of the features commonly expected in
programming languages, such as input/output and string manip.ulation operations. These
facilities are available to Mesa programmers, but they are provided by interfaces written
in the language itself. Standard interfaces are documented in the Mesa Programmer's
Manual.

1-17

1 From Pascal to Mesa

1.4 References

The definitive reference for the language is the Mesa Language Manual, version 11.0. The
remaining chapters in the Mesa Course will guide your reading of the Mesa Language
Manual and will discuss in detail all of the topics mentioned only brie-fly in this chapter.

1.5 Exercises

1-18

1. Convert the following Pascal program fragment to Mesa.

CONST

maxlength = 1000;
TYPE

index = 1 .. maxlength;
rowType • ARRAY [index] OF integer;

VAR

inrow: rowType;
ix: index;

PROCEOURE shellsort (VAR row: rowType; length: index);
VAR

jump, m, n : index;
temp: integer;
all done : boolean;

BEGIN

jump: = length;
WHILE jump> 1 00

BEGIN

jump: = jump DIV 2;
REPEAT

alldone : = true;
FOR m : • 1 TO length. jump DO

BEGIN

n: = m + jump;
IF row[m] > row[n]

THEN

END { FOR}

UNTIL all done

BEGIN

END

temp: = row[m];
row[m] :. row[n];
row[n] : = temp;
alldone : • false

END {while}
END; {sort}

Mesa Course

2. Convert the following Pascal program fragment to Mesa.

{straight list insertion}
TYPE

ref. f word;
word • RECORD

VAR

key: integer;
count: integer;
next: ref

END;

root: ref;

PROCEDURE search (x: integer; VAR root: ref);
VAR

w: ref;
b: boolean;

BEGIN
w:. root;
b:. true;
WHILE (w < > nil) AND b DO

IF w f .key • x THEN b : = false ELSE w : = w f .next;
IF bTHEN

BEGIN {NEW ENTRY}
w: = root;
NEw(root);
WITH root f DO

END
ELSE

BEGIN

END

key: • x;
count: = 1;
next:- w

W f .count : • w f .count + 1
END; {search}

1

1-19

1 From Pascal to Mesa

Notes:

1-20

2

Interfaces

As mentioned in the last chapter, the chief differences between Pascal and Mesa lie not in
the syntax of the language, but rather in how modules interact to share information, and
how individual modules are combined together into systems. Mesa's structured
modularization allows modules to be created and tested individually, and then later
integrated with complete type safety. Thus, Mesa effectively reduces the problems of
programming in the large down to the problems of programming in the small. This
chapter illustrates how Mesa's interfaces allow individual programs to share information;
the next chapter discusses how interfaces are used in large-scale system building.

2.1 Preliminary readings

Skim the first five chapters in the Mesa Language Manual to get acquainted with the
common Mesa constructs and syntax. You will need these chapters as a reference as you
read this chapter and do the exercises.

Read Appendix B of the Mesa Language Manual, Programming Conventions, before you
start to write your own programs.

2.2 Definition of terms

Client

Interface

Interface module

Implementation module

A client is a program (as opposed to a person) that uses the
services of another program or system.

An interface is a formal contract between pieces of a system
that describes the services to be provided. A provider of
these services is said to implement the interface; a
consumer of them is called a client of the interface.

An interface or DEFINITIONS module defines types, variables,
constants, procedures, and signals, thus specifying the
services to be provided by its implementation modules.

An implementation or PROGRAM module is a program that
codes (implements) and makes available to clients (exports)
items in an interface. One implementation module can
export all or part of one or several interfaces, and an

2-1

2 Interfaces

Load

Symbol

interface can be implemented by several implementation
modules jointly.

Loading a module allocates memory space for its code and
data, and links it to other modules that are already loaded,
but does not start it. .

A symbol is any user-defined name in a program, such as a
constant, type, variable, or procedure.

2.3 Discussion

2-2

There are two kinds of modules in Mesa: DEFINITIONS and PROGRAM. DEFINITIONS modules are
also called interface modules, or just interfaces for short. You can think of an interface or
DEFINITIONS module as a catalog containing a precise description of each item offered. The
purpose of an interface is only to define procedures and variables that will be available to
other programs; the interface does not contain the actual code for those procedures.

All executable code is contained in the second kind of module, called a PROGRAM module. A
program module can act as a manufacturer of an interface (creating the items in the
catalog), or as a customer (ordering items from the catalog). In Mesa, the "manufacturers"
are called implementors, and the "customers" are called clients. Thus, program modules
communicate via interfaces: a shared symbol is defined in an interface module,
implemented by a program module, and used by other program modules. The interface is
the link between the two program modules; there is no direct communication between
client and implementation.

One advantage of this approach is information hiding; the client knows nothing of the
implementation, and thus cannot take advantage of specific details of that
implementation. Another important advantage is that the implementation is decoupled
from the client; as long as the declaration in the interface remains the same, the
implementation can be changed without affecting the client.

The rest of this chapter discusses the mechanics of linking together the three- basic pieces
of the interface mechanism, which are:

(1) an interface or DEFINITIONS module,
(2) an implementor of that interface, which is a PROGRAM module, and
(3) a client, which is also a PROGRAM module.

2.3.1 CompareImplA, which uses no interfaces

You can write Mesa code without using interfaces at all. ComparelmplA.mesa is a simple
example ofa self-contained PROGRAM module. Take a look at the code:

ComparelmplA: PROGRAM.

BEGIN

Compare: PROCEDURE [x,y: CARDINAL] RETURNS [same: BOOLEAN] •

BEGIN

IF x • Y THEN RETURN[samef- TRUE]

ELSE RETURN[samef- FALSE] ;

END; --of procedure Compare
END.

Mesa Course 2

ComparelmplA consists of one procedure, Compare, which takes two numbers as
arguments, compares them, and returns a result of either TRUE (the numbers are the same)
or FALSE (the numbers are not the same). However, there is no mainline code to call
Compare, nor are there any UO calls to get input or print results. Obviously, this program
is of little use by itself. One way to make it useful is to "publish" it so that other programs
can call our Compare procedure. This is called exporting the procedure.

2.3.2 Exporting

Exporting describes the relationship between an interface and its implementation. If you
want to make a procedure available to the outside world, you define that procedure in an
interface, implement it in a program module, and export the implementation to the
interface. Client programs can then access the procedure directly from the interface. This
process is called exporting an interface.

To use the earlier analogy, we want to publish a catalog from which clients can order a
compare procedure, and we want to sign up as the manufacturer of the compare procedure
advertised in the catalog. To do this, we have to write the interface and upgrade
ComparelmplA so that it exports Compare.

2.3.2.1 The interface

Here is the interface, which we have called InterfaceB:

InterfaceB: OEFINITIONS • --keyword DEFINITIONS declares this to be an interface
BEGIN
Compare: PROCEDURE [X,y:CARDINAL) RETURNSlresult:BOOLEAN);
END.

This module is an interface; it defines procedures that are available to others. This
particular interface contains only one definition, that of the procedure Compare.
InterfaceB provides enough information about Compare so that the compiler can type­
check client programs, but it does not contain the actual executable code for Compare. The
actual code for Compare is in our implementation, which is a PROGRAM module.

2.3.2.2 The implementation

Here is ComparelmplB, the implementation module:

DIRECTORY
InterfaceB;

ComparelmplB: PROGRAM EXPORTS InterfaceB.
BEGIN
Compare: PUBLIC PROCEDURE [X,Y:CARDINAL] RETURNS[result:aOOLEAN] •

BEGIN
IF X • Y THEN RETURN[result Eo-TRUE]
ELSE RETURN[result Eo- FALSE] ;
END; --of procedure Compare

END.

This module is an upgraded version of ComparelmplA; the code for the procedure is the
same, but this time we are exporting the code to the interface. To export all or part of an
interface, you need to do three things. You need to specify that you are referencing other

2-3

2

2-4

Interfaces

modules, you need to list the interfaces that you are exporting, and you need to list the
specific procedures that you are exporting.

The DIRECTORY clause in ComparelmplB accomplishes the first of these three; it tells the
compiler which interfaces will be referenced during this compilatio~. If you want to use
information from an interface, you must include that interface in your DIRECTORY clause. In
this case, the compiler needs to reference InterfaceB to verify that the procedure
declaration in the implementation matches the procedure declaration in the interface.

The EXPORTS clause accomplishes the second objective; it lists the interfaces that are being
implemented, at least in part, by this module. An exporting module need not implement
all the symbols in an interface; the implementation of an interface is often the cooperative
effort of several modules. A PROGRAM module can also export more than one interface.

The third objective is achieved by declaring Compare to be a PUBLIC procedure. Symbols can
be declared as being PUBLIC or PRIVATE. PUBLIC symbols can be exported to an interface, but
PRIVATE symbols cannot. In PROGRAM modules, the default is PRIVATE: all symbols are
assumed to be PRIVATE unless specifically declared PUBLIC. Thus, the word PUBLIC indicates
that Compare is an implementation that is being exported to an interface. The compiler
verifies that the declaration matches the declaration in the interface exactly, except for
the word PUBLIC.

Figure 2.1 summarizes the communication between an interface and its implementation.

2.3.3 Importing

Interface

InterfaceName: DEFINITIONS =
BEGIN

ProcedureName: PROCEDURE ••• ;

END.

Implementor

DIRECTORY

InterfaceName ;
Interfacelmp/: PROGRAM

EXPORTS InterfaceName =
BEGIN

ProcedureName: PUBLIC PROCEDURE ••• =
BEGIN

END; -- of procedure
END. -- of implementation module

Figure 2.1

Now that we have exported Compare, other programs can use it. Conveniently, we have a
willing client, CompareClient, eagerly waiting on the sidelines to import our code.

Importing describes the relationship between a client program and an interface. A client
that wishes to use a particular procedure only needs to know the definition of the
procedure and the name of the interface from which to access it. It knows nothing about

Mesa Course 2

the actual implementation. Thus, in our example, ComparelmplB exported Compare to
the interface InterfaceB, and now CompareClient can import Compare from InterlaceB.
There is no direct communication between ComparelmplB and CompareClient.

2.3.3.1 Importing a procedure

Here is the skeleton of Compare Client:

DIRECTORY
InterfaceB USING [Compare] ;

CompareClient: PROGRAM IMPORTS InterlaceB =
BEGIN

f f-lnterfaceB.Compare[a, b] ;

END;

There are three steps to importing a procedure, which correspond to the three steps of
exporting a procedure. First, you must list the interface in the DIRECTORY statement, just as
in the exporting example. This tells the compiler that your module references InterlaceB.
In this example, the DIRECTORY clause is further restricted by a USING clause, which lists the
specific symbols that you will be using from that interface. Thus, CompareClient can use
Compare from InterfaceB, but cannot use any other symbols from that interface. You do
not have to have a USING clause, but it is a very good idea.

Second, you need to list InterfaceB in the IMPORTS list; this specifies the interfaces for which
implementations must be provided at run-time.

Finally, you need to indicate that the procedure is imported by referring to it as
InterfaceB.Compare, and not just Compare. You must always fully qualify the name of an
imported symbol so that the compiler will know that it is corning from another interface.

2.3.3.2 Template for importing a procedure

Figure 2.2 diagrams the communication between an inter-face and a client that IMPORTS a
procedure.

Interface
InterfaceName: DEFINITIONS =

BEGIN

~Iient

ProcedureName: PROCEDURE ..• ;
END.

DIRECTORY
InterfaceName USING [ProcedureName];

ClientName: PROGRAM
IMPORTS InterfaceName =

BEGIN
... lnterfaceName.ProcedureName[...] ; ...
END.

Figure 2.2

2-5

2

2-6

Interfaces

2.3.3.3 Importing a constant

In the last section, we discussed how to import a procedure from an interface.However, not
all information in an interface requires an implementation. Some of the symbols in an
interface, such as variables, types, and constants, are compile-time sy.mbols. Such symbols
are available directly from the interface; no implementation is necessary. Run-time
symbols, on the other hand, are symbols (such as procedures) for which code must be
supplied at run-time. If you use only compile-time symbols from an interface, and not run­
time symbols, you do not need to import the interface. For example, here is an interface:

IncrementDefs: DEFINITIONS =
BEGIN

inputTooBig: CARDINAL = LAST[CARDINAL]

END.

--LAST returns largest value

and here is the module Incrementlmpl, which imports inputTooBig from IncrementDefs.

DIRECTORY

IncrementDefs USING [inputTooBig] ;

Incrementlmpl: PROGRAM =
BEGIN

-~ note interface and constant name

Increment: PROCEDURE [x: CARDINAL] RETURNS [Y:CARDINAL. error:BoOLEAN] =
BEGIN

IF X < IncrementDefs.inputTooBig THEN

RETURN [y +- x + 1, error +- FALSE]

ELSE RETURN[Y +- x, error +- TRUE] ;

END;

END.

-- note fully-qualified name

Thus, importing compile-time information is just like importing run-time information,
except that you do not need to include the interface in the IMPORTS list. The IMPORTS list
includes only those interfaces for which run-time implementations are needed.

2.3.3.4 Template for importing a constant

Figure 2.3 diagrams the communication between an interface and a client that is
importing a constant from that interface.

Interface

InterfaceName: DEFINITIONS =
BEGIN

ConstantName: CARDINAL = ... ;
END.

Client using a constant

DIRECTORY

InterfaceName USING [ConstantName];
Interfacelmp/: PROGRAM =

BEGIN

.. .InterfaceName.ConstantName ... ;
END.

Figure 2.3

Mesa Course 2

2.3.4 Compiling and running your programs

As discussed above, a module's DIRECTORY clause lists all the interfaces referenced by that
module. When you compile a module, the compiler needs to be able to read all the
interfaces listed in the DIRECTORY clause so that it can type-check your program. This
means that if you list an interface in your DIRECTORY clause, you must have the compiled
version of that interface on your local disk when you compile your program, or you will get
a compilation error. Thus, an interface must always be compiled before program modules
that reference that interface.

Another important thing to remember is that when you recompile an interface, you will
ha ve to recompile all of its clients and implementors as well. The reason for this is that all
Mesa object modules (.bcd files) contain a time stamp as part of their identification. When
clients and implementors of an interface are compiled, the time stamp of the interface is
noted and retained in both the client and implementation object code file identification.
When you try to combine the client and the implementation into a larger system, the time
stamps are checked against one another. If the client and the implementation do not
reference the same version of the interface, a version mismatch will occur, which prevents
the system from running.

Once you have compiled all the modules that make up a system, you can run the system.
In the next chapter, you will learn how to use the binder to help you group your modules
together, but for now you will have to load them all manually from CommandCentral. (All
modules listed on the Run line of CommandCentral will be loaded.) You need to load all
the program modules (your client, plus the implementations for any procedures that you
have imported), but not the interfaces (since they don't contain executable code.)
Implementation modules must be loaded before client modules, so that the
implementation is ready when the client needs it.

Thus, to execute the Compare system, you would have to set up Command Central like
this, and invoke Go!. You can run Compare now, if you like. (Note: CompareClient
references some interfaces that you may not have on your local disk, so we have provided a
compiled version of this module. Normally you would have to compile CompareClient.)

Compile: InterfaceB ComparelmpiB
Bind:
Run: ComparelmplB CompareClient

2.3.5 Importing and exporting

In the previous example, each program module was either a client or an implementor.
Generally speaking, however, a PROGRAM module can be a client,. an implementor, or both.
Most commonly, a given PROGRAM module is both client and implementor. The module can
import and export the same interface, or it can export one or more interfaces and import
another (or several others.) The terms client and implementor refer more to the function of
a module than to the module itself; there is nothing to prevent a .client module from also
being an implementor, or vice versa.

Figure 2.4 is a diagram of the communication between an interface and another module,
which is both an implementor and a client of the interface. This diagram is merely a
composite of the client/interface and the implementor/interface diagrams.

2-7

2

2-8

Interfaces

Interface
InterfaceName: DEFINITIONS =

BEGIN

ConstantName: CARDINAL = ... ;
ExportedProcedureName: PROCEDURE ••• ;

ImportedProcedureName: PROCEDURE ... ;

END.

Implementor and Client

DIRECTORY

InterfaceName USING [ConstantName, ImportedProcedureName]
Interface/mpl: PROGRAM

IMPORTS InterfaceName
EXPORTS InterfaceName =
BEGIN

ExportedProcedureName: PUBLIC PROCEDURE ... = BEGIN ... END;

.. .InterfaceName.ConstantName ... ;
InterfaceName./mportedProcedureName[] ;
END.

Figure 2.4

2.3.6 System interfaces

System interfaces are general purpose interfaces that define comprehensive facilities for
building everything from tools to whole systems. System interfaces serve as the entry
point to an extensi ve library of procedures, variables, and data types, that saves you from
reinventing and reimplementing utilities. Examples of system interface are Stri ng, which
performs common string operations, and Exec, which handles communication with the
Executive window.

System interfaces are nice because they provide so many useful utilities, but they have the
attendant disadvantage that you must learn what interfaces are available, and what
routines they implement. System interfaces that are part of Pilot (the operating system)
are documented in the Pilot Programmer's Manual; interfaces that are part of the tools
environment are documented in the Mesa Programmer's Manual.

You use symbols from a system interface just like private interfaces; you need to include
the interface in the DIRECTORY clause and in the IMPORTS list, and refer to the symbol as
InterfaceName.Symbol. In fact, system interfaces are just like all other interfaces except for
one thing: the compiled versions of implementations of system ~nterfaces are included in
the XDE system bootfile. Thus, since the implementations are provided in the bootfile, you
do not have to explicitly load implementation modules for system interfaces.

Recall from section 2.3.4 that when you use symbols from any interface, system or private,
you must have the compiled version of the interface (not the implementation) on your local
disk. If, for example, you want to use some procedures from the Heap interface (a system
interface), you must make sure that Heap.bed is on your local disk before you compile your
program. Compiled versions of system interfaces are stored on a special directory, called
the release directory; when you need to use a system interface, you will have to ask

Mesa Course 2

someone where the release directory is and retrieve the appropriate object file for that
interface from that directory.

Thus, to summarize: if you want to use procedures defined in the system interface Stri ng,
you must import that interface and you must have the file String.bed on your local disk
when you compile your program (which is thus a client of the String interface), but you do
not have to explicitly run the file that implements those procedures. In fact, you will not
normally even know the name of the implementation file; remember, an interface is the
link between programs, and the client need know nothing about the implementation.

2.3.6.1 An example of using system interfaces

To see an example, take another look at CompareClient.mesa, which uses procedures from
several system interfaces. Here is the beginning of that program:

DIRECTORY

FormSW USING [

AllocateltemDescriptor, ClientltemsProcType, Commandltem, Ii neO, I ine1,
Numberltem, ProcType],

Heap USING [systemZone],
InterfaceB USING [Compare],
Put USING [Line],
Tool USING [Create, MakeFileSW, MakeFormSW, MakeMsgSW, MakeSWsProc,

UnusedlogName],
ToolWindow USING [TransitionProcType],
Window USING [Handle];

CompareClient: PROGRAM IMPORTS FormSW, Heap, Put, Tool, InterfaceB =

CompareClient uses procedures from seven interfaces: six system interfaces and one
private interface (lnterfaceB). As you can see, the USING clause is a good way to document
the exact symbols that this progam uses. Also notice that two of the interfaces are in the
DIRECTORY, but not in th~ IMPORTS list. As discussed in section 2.3.3, this means that the
symbols being used from that interface are compile-time values, and not run-time values.

2.4 Summary

Mesa's interfaces provide a formalized mechanism to allow individual modules to share
types, constants, variables, and procedures. You can define your own interface, implement
procedures declared in that interface, or use procedures implemented elsewhere.
Interfaces thus encourage data abstraction and information hiding. As a quick review:

To implement a symbol defined in an interface you must:

• include the interface in your module's DIRECTORY clause;
• include the interface in your module's EXPORTS list;
• declare the symbol with the same name and type as appears in the interface;
• declare the symbol to be PUBLIC; and
• compile your module after the interface.

2-9

2 Interfaces

To be a client (use symbols defined in an interface), you must:

• include the interface name in the DIRECTORY clause;
• include the symbol in a USING clause

(you do not have to have a USING clause, but it is a good programming habit);
• include the interface name in the IMPORTS list;
• use the symbol with its interface's name prefixed, as Interface.Symbol;
• compile the module after the interface has been compiled; and
• make sure the module that the implementation is available at run-time (loaded).

If you only use compile-time symbols, you do not need to IMPORT the interface.

Figure 2.5 on the next page summarizes the communication between an interface and its
implementation and between an interface and its client. Implementations and clients are
both PROGRAM modules, and a single module can function in both ways (although this is not
shown in the figure.)

2.5 Questions

1) In what order must the following six modules be compiled? In what order must they be
run?

a) Program1 is an implementation module that imports procedures from
Interface1 and Interface2. One of the procedures that it imports is implemented
by Program2. Program1 also exports a procedure to Interface3.

b) Interface1 is a definitions module.

c) Program2 is an implementation module that uses types from Interface1 and
exports a procedure to Interface2.

d) Interface2 is a definitions module that uses types from Interface1.

e) Program3 is a module that imports procedures from all three interfaces.

o Interface3 is a definitions module

2.6 References

2-lO

Chapter 7 of the Mesa Language Manual is essentially a denser statement of the
information in this chapter and the next chapter.

Appendix A of the Mesa Language Manual, Pronouncing Mesa, tells you how to pronounce
Mesa symbols.

Mesa Course

Client

DIRECTORY
InterlaceName USING (ProcedureName, ConstantName] ;

OientName: PROGRAM
IMPORTS InterfaceName =
BEGIN .. .InterfaceName.ProcedureName[]; ... lnterfaceName.ConstantName ... END.

Notes:

1) This is a client module because it IMPORTS an interface.
2) The client can call procedures and use constants defined in the interface.
3) The interface must be listed in the DIRECTORY.
4) The procedures and constants must be in a USING clause.
5) The implementations of the procedures are bound at run-time, not at compile-

time. The interface must be IMPORTed.
6) The constants are bound at compile-time. The interface need not be IMPORTed just

to access them.

Interface

InterfaceName: DEFINITIONS =
BEGIN
ConstantName: CARDINAL •... ; .
ProcedureName: PROCEDURE ... ;
END.

Notes:
1) This is a interface module, as shown by the key word DEFINITIONS.
2) Interfaces can define constants that are available directly from the interface.
3) Interfaces can define procedures that are implemented by an implementation

module.

Implementor

DIRECTORY
Interfa'ceName;

Interfacelmp/: PROGRAM
EXPORTslnterfaceName.
BEGIN
ProcedureName: PUBLIC PROCEDURE ... • BEGIN ... END ;
END.

Notes:

1) This is an implementation module because it EXPORTS an interface.
2) The InterlaceName must appear in the DIRECTORY.
3) The procedures being exported are declared as PUBLIC.
4) The EXPORTS list causes public procedures in this Implementation to be exported to

the interface.
5) The module that implements interface X is conventionally called XImpl.
6) An implementation can also be a client provided the correct DIRECTORY ... USING

clause is included. (see Figure 2.4.)

Figure 2.5

2

2-11

2 Interfaces

2.7 Exercises

2-12

Before beginning these exercises you should read Appendices A and B of this manual,
which address Mesa syntax errors and debugger basics, respectively. Do the debugger
exercises of Appendix B to start becoming familiar with the debugger-.

2.7.1 Exercise in importing a procedure

Your assignment is to write a client program. We have provided an interface
(ReverseLettersDefs) that defines a procedure, and an implementation module
(ReverseLetterslmpl) that supplies that procedure. The client module, which you should
call ReverseLetters.mesa, will call the procedure ReverseProc from ReverseLettersDefs.
ReverseProc in turn calls procedures that accept a character string from the user and
output the string with the letters reversed.

Use the client template from Figure 2.5 to help you with this exercise. Once you have
written your client program, compile the following modules (remember, an interface must
be compiled before any modules that use it):

• ReverseLettersDefs.mesa -- the interface that defines ReverseProc

• ReverseLetters.mesa -- your client module

• ReverseLetterslmpl.mesa -- the module that implements ReverseProc,.

• BasiclOlmpl .mesa -- contains 1/0 procedures used by ReverseLetterslmpl

Run the following modules

Run: BasicIOImpl ReverseLettersImpi ReverseLetters

BasiclOlmpl implements procedures that are imported by ReverseLetterslmpl, imported so
it must be loaded before Reverseletterslmpl. When Tajo is ready, bring up the Tajo
Executive window and type:

> ReverseLetters.- hello -- you type this

The reversed letters are: olleh -- the program returns this

Experiment with reversing strings ofletters and spaces.

2.7.2 Exercise in exporting a procedure

Now it's your turn to write an implementation module. You will write a procedure called
GetAverage that computes the average of the integers passed to if. (You can do the average
computation by any method, or do something else with the numbers, as long as you pass out
an integer.) To keep the lIO simple, the average passed out of your procedure will be an
integer value, and thus will be rounded up or down.

Your procedure will receive an array containing up to ten integers, and the actual number
of integers to average. You will export your procedure GetAverage to the interface
Average Defs. mesa, which we provide. We also supply a client program to call your
procedure and do the lIO.

Mesa Course 2

After you have written your implementation module, compile the following modules:

e AverageClient.mesa -- this client program gets up to ten integers from the user,
counts them, imports the interface AverageDefs to get your procedure, calls your
procedure to compute the average of the numbers, and outputs the result.

eAverageDefs.mesa -- this is the interface that contains the definition of your
procedure.

e Averagelmpl.mesa (or whatever you called your implementation module).

Run the following files:

Run: Averagelmpl AverageClient

Invoking Run! will put you into Tajo. Bring up the Executive and type:

> Average 24 -- you type this

The average is: 3 -- the program returns this

2.7.3 Exercise in importing and exporting using one interface

This exercise demonstrates importing and exporting using a single interface. First, you
will import the interface CombineDefs. This imported interface provides the factorial
routine Fact, which computes the factorial of a number for you. Com bi neDefs also contains
some types and constants that you will need.

Your job is to write a procedure to compute a combinatorics problem, using the imported
Fact. You will then export your procedure to the interface CombineDefs for a client to use.
The client, which is provided for you, will create a tool window for you to enter data, and
will use your code to compute a solution and display the result.

The first step is to write a procedure to calculate the following: Given a group of people of
size "baseSize", how many ways can you combine them into groups of size
"groupingSize" ? The formula for this problem is

baseSize!

groupingSize! (base Size • groupingSize)!

These variable names must be exact, and capitalization IS relevant. The name of your
procedure will be Combine, and its type is CombineDefs.Combin"eType. You will find its
definition in the interface CombineDefs. You will need to import CombineType, and the
procedure Fact to perform the factorials from the interface CombineDefs. You will then
export your procedure Combine to the interface CombineDefs.

Using CommandCentral, compile the following 5 modules:

2-13

2

2-14

Interfaces

.CombineDefs.mesa -- the interface
• Combinelmpl (or whatever you called it) -- the implementation module for Combine
• Factoriallmpl,mesa -- supplies the factorial procedure for Fact
• Combi natori csToollm pI, mesa -- supplies the user interface tool for the client
.CombineClient.mesa -- the client module

Runt the four implementation modules:

Run: Combinelmpl FactorialImpl CombinatoricsToolImpl CombineClient

When you arrive in Tajo, you will see a tool window, which was produced by
CombinatoricsToolimpl. Fill in the fields for baseSize and groupingSize and invoke
Combine!. The answer will appear in the lower subwindow.

3

Binding

In the last chapter, we discussed how individual modules can use interfaces to share
information. In this chapter, we will focus on how separately compiled modules are bound
together into larger units.

3.1 Definition of terms

Configuration

Configuration file

System interface

3.2 Discussion

A configuration is the bound code of one or more individual
modules.

A configuration file is the file that contains the names of the
modules that are to be bound together and describes how they
are to be bound.

A system interface is an interface whose implementation is
exported by the system bootfile.

In the last chapter, you had to run several modules in a specific order to ensure that the
implementation of an interface was available when a client program tried to reference it.
This process is inconvenient, but manageable when there are few modules involved. When
you are working on a large system, however, the job of keeping track of the necessary
modules and their loading order becomes more difficult.

To help simplify things, the Mesa binder creates a logical structure called a configuration
for the modules comprising a large system. This is analogous to the grouping of employees
within a company. Groups of employees are organized into departments, with each
department having certain duties. While the employees in a department do the actual
work, the department itself can be thought of as doing the work, thus simplifying the
world's view of things. Similarly, each configuration can be thought of as one logical entity
that performs a certain task, although the task is actually performed by the modules
within the configuration.

The binder processes a special file called a configuration file. This file contains a list of
modules, which may be program modules or other configurations, and describes how they

3-1

3

3-2

Binding

are to be combined and initialized. The binder matches the import requests and export
requests of the listed modules and creates an object module containing information about
imported and exported items, object code for each module in the configuration, the names
and versions of each module, and the interfaces referenced by those modules. This object
module, the configuration, is also called a binary configuration description or "bed" file.

There are several advantages to using a configuration instead of loading each module
individually. One advantage is simplicity: after you have bound the modules together, you
can type just the name of the configuration to run your program or system. Additionally, if
other programmers want to use your system, they only need to obtain one module, the
bound configuration, instead of finding and retrieving each individual module.

Another advantage of using the binder is version control. Every program module and
definitions module has an associated time-stamp. This time-stamp can be thought of as an
extension of the module's name; thus different versions of a module are different modules.
For example, Comparelmpl.bcd of Oct 14, 1984 1: 15 p.m. is a different module from
Comparelmpl.bcd of Oct 15, 1984 10: 12 a.m. When creating a configuration, the binder
insures that all clients and implementors of an interface are referring to the same version
of that interface; this effectively extends Mesa's strict type-checking across module
boundaries.

3.2.1 A configuration file

The input to the binder is a configuration file, which contains a list of the modules to be
bound, a list of imports and exports, and the order in which the modules are to be loaded.
Here is Average.config, a configuration file for the program that you wrote in chapter 2:

Average: CONFIGURATION

IMPORTS Exec, String, Format, Heap
CONTROL AverageCI ient =
BEGIN

Averagelmpl;
AverageClient;
END.

3.2.1.1 Reading a configuration file

Although Average looks much like a Mesa program, it is actually written in C/Mesa
(configuration Mesa). There are five parts to a C/Mesa file:

(1) declaration (Name: CONFIGURATION),

(2) IMPORTS list
(3) EXPORTS list
(4) CONTROL list
(5) BEGIN-END block

• The Name of the configuration file is the name that you will type to run your
program after you have bound it.

• The IMPORTS list contains any interfaces that need to be imported from outside of the
configuration; this is covered more fully in section 3.2.1.3.

Mesa Course 3

• The EXPORTS list names all the interfaces for which this configuration exports an
implementation. In this case, nothing is exported so there is no exports list.
Exporting from a configuration is covered more fully in section 3.2.1.4.

• The CONTROL list states which bound components are to be started and in which
order. In most simple applications, only one component need·be started explicitly.
This is usually the component that contains mainline code. The other components
are started implicitly when procedures in them are called.

• The BEGIN·END block itemizes the modules and configurations that are going to be
bound together in the output configuration. This list corresponds to the list that you
typed on the Run: line in the last chapter. In this case, the binder will use the
information given in Average.eonfig to bind together the files AverageClient.bed
and Averagelmpl.bed, and the resulting configuration will be stored in the file
Average.bed. The module names in the BEGIN·END block do not have to be listed in
any particular order.

When you run the configuration Average, it will execute just as the individually loaded
modules Averagelmpl and AverageClient did in the chapter 2 exercise. If you want to try
it, set up Command Central as follows and invoke Go!:

Compile:
Bind: Average
Run: Average

3.2.1.2 Importing into a configuration

The IMPORTS list of a configuration file is not simply a list of the imports of its components.
It is a list of interfaces that need to be imported from outside the configuration. Interfaces
that are imported by one module of the configuration and exported by another module in
the same configuration are referred to as "self-contained" within the configuration, or
"resolved." Such interfaces do not need to be imported by the configuration, but you must
make sure that their implementation modules are listed in the configuration file.

The module AverageClient imports GetAverage from the interface AverageDefs, and the
module Averagelmpl supplies GetAverage. Thus, all the necessary information is
available; GetAverage need not be imported into the configuration. The implementations
for Exec, String, Format, and Heap, however, are not supplied by either of the modules
being bound together, and must thus be imported into the configuration. (Recall from the
last chapter that implementations for system interfaces are part of the bootfile, and are
thus already loaded.)

3.2.1.3 Exporting from a configuration

Like the IMPORTS list, the EXPORTS list is not just a list of items exported by the components
of the configuration. Putting an interface in the EXPORTS list of a configuration makes its
symbols available to the world outside the configuration, just as putting an interface in
the EXPORTS list ofa module makes its symbols available outside the module. You can think
ofthe bound configuration as a large module, composed of other, smaller modules. You get
to choose which symbols you will make available to the outside world, and which you will

3-3

3

3-4

Binding

keep local to your configuration. You might want to keep all of your symbols local to your
configuration, in which case you wouldn't even have an EXPORTS list.

One of the side effects of exporting an interface from a configuration is that the interface's
implementation will remain loaded. (It thus has the same status as a system interface.)
This means that the next configuration that imports the interface won't have to load the
implementation module by listing it in the configuration file. Figure 3.1 illustrates
exporting an interface from a configuration.

MoreDefs Config2 : CONFIGURATION
r-------------------~ I IMPORTS MoreDefs

~ EXPORTS ...

TwoProgs: CONFIGURATION

IMPORTS ...

EXPORTS MoreDefs

CONTROL Prog2 =
BEGIN Prog1 ; Prog2 ; END.

ProgDefs

r------------------+

Notes:

Prog1 :PROGRAM

IMPORTS ...

EXPORTS ProgDefs

Prog2: PROGRAM

IMPORTS ProgDefs ...

EXPORTS MoreDefs

1) The procedures imported by Prog2 are exported by Prog1
2) Another configuration (Config2) can now import MoreDefs because

TwoProgs exported it.
3) IfConfig2 imported MoreDefs, it wouldn't have to load Prog2 (the

implementation ofMoreDefs). Prog2 will already be loaded because
MoreDefs was exported by TwoProgs. This means that Config2 wouldn't
have to list Prog2 in its BEGIN·END block.

Figure 3.1 Exporting from a configuration

Mesa Course 3

3.2.1.4 Template for a configuration file

Figure 3.2 is a general template for a configuration file.

Configuration

ConfigName: CONFIGURATION

IMPORTS InterfaceA, InterfaceB, .•.
EXPORTS InterfaceX, InterfaceY, InterfaceZ, ...
CONTROL Module 1, ... =
BEGIN

Module 1; Module2; ...
END.

Notes:

1) This is a configuration because of the key word CONFIGURATION. The name of the
source file should be ConfigName.config.

2) The configuration contains Module1, Module2, etc. ModuleK can be a program or a
configuration. Order of module names within the BEGIN ... END block is not important.

3) The CONTROL statement specifies the module that is to receive control when the
configuration is started. (Also list there any modules that require explicit starting,

I but this is rarely necessary.)
I 4)
I

ConfigName will import the interfaces listed in the IMPORTS statement. These
interfaces should be all those imported within any ModuleM and not exported by
another ModuleN.

5) ConfigName will export the interfaces listed in the EXPORTS statement. These
interfaces must be exported by some ModuleJ. (You never have to export anything
from a configuration, unless you want to make it available to others.)

Figure 3.2 Template for a configuration file

3.2.2 Unbound procedures

In XDE, a configuration can be run even if some of the procedures are not available, as
when the exporting module has not yet been loaded. If a missing procedure is not called,
everything runs without incident. However, when a missing procedure is called, a
software interrupt named UnboundProcedure is generated. The program will not be able
to continue and control will transfer to the debugger. If this happens, you should make
sure that all of the modules necessary to run your program are listed in your configuration
file, and add them if they're not there. Such errors are generally easy to debug.

3.2.3 Naming conventions

The file name is the name of the file in which you store modules, as in XYZ.mesa. The
module name is the name that appears before the word PROGRAM, DEFINITIONS, or
CONFIGURATION. It is highly recommended that you keep the file name the same as the
module name (and remember that capitalization is significant.)

The name of a configuration file should be different from the names of the modules that it
binds together. The reason is this: if you compile a module called XYZ.mesa, you get an
object file called XYZ.bcd. If you bind this module to other modules using a configuration

3-5

3 Binding

file called XYZ.config, you get a bound configuration called XYZ.bcd, which overwrites the
old XYZ.bcd. Consequently, you lose your compiled implementation of XYZ.mesa. By
convention, implementation modules should have the suffix Impl, as in XYZlmpl.mesa, to
avoid this problem. Figure 3.3 illustrates this problem and its solution.

XVZ.mesa ---- .. I compiler ~ - --+ XVZ.bed of Oct 14.1984 at 2:17 pm I
XVZ.eonfig - - - - "I binder

L- XVZ.bed of Oct 14.1984 at 2:20 pm

I----.... L....-_______ ---I

WRONG WAY: The bound configuration overwrites the compiled source code.

XVZlmpl.mesa ---- .. 1 compiler ~---"I XVZlmpl.bed

XVZ.eonfig - - - - .. I binder 1- ---'1 XVZ.bed

RIGHT WAY: The configuration file and the its components have different names,
so nothing is overwritten.

Figure 3.3 Naming conventions

3.2.4 System interfaces

As discussed in the last chapter, system interfaces are interfaces whose implementations
are included in the bootfile. Thus, when you import a system interface, you do not have to
include its implementation in your config file. The implementation is already bound into
the bootfile, and will be available when you run your program. You do have to import the
interface, but you do not have to include its implementation in your configuration, and
you do need to have the copmiled version of the interface on your local disk.

3.3 Summary

3-6

This chapter discussed using the binder to produce bound configurations from a list of
object modules. From the information in the "config" file and in each "bcd" file being
bound, the binder can:

(1) resolve requests from modules for imported items
(2) combine a group of object modules into one larger object module
(3) control which interfaces are to be exported.
(4) determine which module is to be started first.
(5) maintain version control

Figure 3.4 gives a summary of the source file used by the binder, and its relationship to
the modules that it binds together. This diagram also includes the use of system interfaces
in program modules and in the configuration file.

Mesa Course

Implementation Module

--this text stored in a file called ProgramNamelmpJ.mesa
DIRECTORY
InterfaceName;

ProgramNamelmpl: PROGRAM
EXPORTS I nterfaceName •
BEGIN

ProcedureName: PROCEDURE •.• • BEGIN ... END.
END

Client Module

--this text stored in a file called ClientName.mesa
DIRECTORY
InterfaceName USING [ProcedureName] ,
SystemlnterfaceName USING [SystemProcedure];

ClientName: PROGRAM
IMPORTS InterfaceName, SystemlnterfaceName •
BEGIN ...
InterfaceName.ProcedureName[] ;
Systeml nteriaceName. SystemProcedure[) ...

END

Notes:
1) System interfaces are imported just like any other interface.
2) The module name should be the same as the program name, but not

the same as any of the procedure names.

Configuration File

--this text stored in a file called ProgramName.config
Program Name : CONFIGURATION
IMPORTS Systeml nteriaceName
CONTROL ClientName •
BEGIN
ProgramNamelmpl ;
ClientName;

END.

Notes:
1) The name of the configuration file is not the same as the name of

any of the modules that it binds together.
2) Implementation modules for the system interfaces are not listed.
3) There are no imports other than system interfaces because all of the

imported interfaces are implemented by modules within the
configuration.

4) Control goes to the module that has the mainline code, generally the
client module.

Figure 3.4 Configuration file and Naming Conventions

3

3-7

3 Binding

3.4 References

Chapter 7 of the Mesa Language Manual, Modules, Programs, and Configurations, discusses
configuration files and ClMesa.

Chapter 17 of the Xerox Development Environment User's Guide discusses the binder and
how to use it. This chapter also describes the binder's switches and error messages.

The Mesa Programmer's Manual and the Pilot Programmer's Manual give the details of the
various system interfaces.

3.5 Exercises

3-8

3.5.1 Writing a configuration file and binding

For your first exercise, we have supplied a client program and two interfaces. Your job is to
write a configuration file to bind the client with the implementations of the interfaces.

You will need the following files:

• ReverseWordslmpl.mesa -- the client program. It takes a string of input words
(separated by spaces) from the user and reverses the order of the words.

• PrivateStorage.mesa -- an interface defining storage allocation procedures
• BasiciODefs.mesa -- another interface
• BasiclOlmpl.mesa -- the implementation for some of the procedures defined in the

interfaces BasiciODefs and PrivateStorage.

The scenario looks like this: ReverseWordslmpl gets the definitions of the procedures it
needs from the interfaces PrivateStorage and BasiciODefs. These interfaces in turn get the
actual code for the procedures from the implementation module BasiclOlmpl. Therefore, you
need to write a configuration file that binds together the client program and the
implementation module. The name of your configuration file should be Reverser.config. You
will then run the entire program under the name "Reverser".

Remember, if you are binding two modules together and one of them exports the symbols
that the other imports, you don't need to list the interface in the IMPORTS or EXPORTS list of the
configuration file. You only need to list interfaces that are IMPORTed from outside the
configuration file (such as system interfaces).

3.5.2 Writing an interface

We're going to re-visit the combinatorics exercise. This time, instead of using CombineDefs
to export Combine, you will write your own interface to define this procedure. Modify your
implementation of Combine so that it exports the interface MoreCombineDefs, and write
this interface so that it defines Combine.

You still need to import CombineDefs to use Fact and CombineType. However, you should
now export Combine to MoreCombineDefs.

You must also modify the client module to import Combine from MoreCombineDefs.

Mesa Course 3

Compile the following 3 modules:

• your interface (MoreCombineDefs)
• the modified client module (CombineClient)
• your modified implementation module (Combinelmpl)

Write a configuration file, bind the necessary modules together, and run your configuration.
Remember, you need all the same implementation modules that you needed last time you
ran this program.

3-9

3 Binding

Notes:

3-10

4

Pointers

This chapter is an introduction to using pointers in Mesa. It covers what pointers are, how
to perform common operations such as initialization and assignment on them, and how to
pass them as procedure parameters. The next chapter, Dynamic Allocation, discusses how
to allocate storage for the data that pointers reference.

There are a number of graphs throughout this chapter. They depict the memory in a
hypothetical machine by representing each location in memory as a box. The number
above the box is the memory location. The number in the box is the value stored in the
location. The name below the box is the symbol in the example that has the associated
value stored in the memory location.

4.1 Definition of terms

Pointer A pointer is a reference to the location of a value. Mesa has pointer
types, for pointers to specific types of values, and pointer variables,
which contain the addresses of values rather than the values
themselves. In Figure 4.1 below, c is a variable of type INTEGER

containing the value 5. The variable b, a LONG POINTER, contains the
address of c, and therefore b is a pointer to c and is said to reference c.

@ @ is the prefix "address of' operator. @x generates a reference to the
expression x. In Figure 4.1, b contains the value @c, and so b is a
pointer to c. Similarly, a contains @b, and so is a pointer to b.

Dereference To dereference a pointer is to follow the pointer through one level of
indirection toward the value it is referencing .. Dereferencing a variable
is the opposite of generating a reference to a variable. In other words, if
b is a pointer to c then dereferencing b produces c. In Figure 4.1,
dereferencing a once produces b, and dereferencing a twice produces c.

t In Mesa, t is the postfix de referencing operator. t is the inverse of @,
and is found at the opposite end of the expression. In Figure 4.1, a is
@b, while a f is b, and a f f is the same as b f , which is c.

Dangling pointer A dangling pointer is a pointer to an invalid memory location. A
dangling pointer is usually caused by deallocating storage while a

4-1

4 Pointers

Address fault

Frame

pointer to it remains. Dereferencing a dangling pointer leads to
unpredictable results.

An address fault occurs when an attempt is made to reference an
illegal address. For example, suppose that pointer b were not
initialized to point to (, but instead left to be whatever value was in
that location when b was allocated. If the value in the location is not a
legal address, then dereferencing b causes an address fault. If, on the
other hand, the address is legal, then you will not get an address fault.
Rather, your pointer will be referencing some arbitrary location in
memory, and you will be working with invalid data.

A frame is a Mesa processor data structure allocated while a module or
procedure is executing to contain the variables and internal data
structures for that module or procedure. Program frames are called
global frames, and procedure frames are called local frames. Since
Mesa supports recursion, there may be several frames for a particular
program or procedure.

memory address 12 861 942

value
1 861 942 1

5

Symbol name a II- b II-

Figure 4.1

4.2 Discussion

4-2

Pointers are essential for good programming.

4.2.1 Declaring pointers

The Mesa architecture defines a uniform, paged virtual memory of I6-bit words. (A page is
256 words.) The entire virtual memory can be accessed by LONG POINTERS, which are two
words long and can therefore address all 232 locations.

Within this uniform virtual memory there is a distinguished region called the Main Data
Space (MOS). Within the MOS, words may be addressed by POINTERS, which are one word
long. The MOS is used internally to hold global and local frames. Therefore, all the pointers
to storage that you allocate should be LONG POINTERS.

Pointers in Mesa are declared as references to types so that the Compiler can type-check
their usage. The following example declares a pointer to an object of type INTEGER:

intPtr: LONG POINTER TO INTEGER;

4.2.2 Initializing pointers

Pointers allow indirect access to objects. In order for a pointer to be meaningful, the object
it points to must exist. This means that storage has been allocated for the object, and has

Mesa Course 4

been appropriately initialized. In the exercises in this chapter, the storage is allocated
from the program's frame. Once an object is allocated and initialized, the @ operator is
used to generate the pointer.

You can also allocate storage dynamically using the system's storage allocator; we will
discuss this in the next chapter. .

To initialize a pointer called intPtr to point to an INTEGER variable whose value is 5 you
would write:

int: INTEGER ~ 5;
intPtr: LONG POINTER TO INTEGER ~ @int;

The first line allocates a space in the global frame and initializes it to 5. The second line
initializes the pointer to the address of the storage location that contains the integer, as
depicted in Figure 4.2 below.

memory address 12861 .
value

1 861 I ~ I 51
Symbol name IntPtr •

Figure 4.2

What if intPtr were initialized and int were not? As shown in Figure 4.3, the value for int
would be meaningless, even though int is allocated. Pointing intptr to this location is
valid, but not very useful.

int: INTEGER;

intPtr: LONG POINTER TO INTEGER ... @int;

memory address

value

Symbol name mtPtr

Figure 4.3

last value placed here

(garbage)

It is a good idea to avoid having pointers to uninitialized objects, lest you forget that the
object is uninitialized and try to use the pointer. This would cause strange errors that are
hard to debug. Instead, keep a pointer "uninitialized" until the object it will point to is
initialized. Consider:

int: INTEGER;

intPtr: LONG POINTER TO INTEGER;

4-3

4

4-4

Pointers

This recoding is one way of keeping your pointer uninitialized, but it suffers from the same
problem as before. Now there are two uninitialized variables instead of just one, as
illustrated in Figure 4.4.

memory address

value

Symbol name IntPtr

last value placed here

(garbage)

Figure 4.4

last value placed here

(garbage)

We have already discussed what might happen if you have a pointer to an uninitialized
variable (such as int). If you try to dereference an uninitialized pointer, on the other hand,
the value stored in the pointer's location would be interpreted as the address of a location.
As shown in Figure 4.5 this pointer's value might point to a valid memory location in the
address space. Dereferencing intPtr would therefore yield the garbage value 212 stored in
memory location 942.

If, on the other hand, the value of intPtr pointed outside of the address space, to
unavailable memory, then your program would address fault and the debugger would be
called. In an environment that uses real memory addresses in code, this means that any
address that points beyond the end of available memory would cause an address fault.
However, the Pilot environment provides virtual memory. Addresses (that appear in code)
are virtual and must be dynamically translated into real memory address at runtime.

During address translation, Pilot determines whether the page containing the reference is
in real memory. Ifit is not, a page fault occurs and the page is swapped in from its backing
file using available mapping information. An address fault occurs if the page to be
swapped in is not mapped (has no associated backing store). Thus, in a virtual memory
system, addresses that lie in the address space of a process can still cause address faults if
they reference sections of the address space that are not mapped, as shown in figure 4.6.

Mesa Course 4

unmapped section of

the virtual address

space

memory address 12 416 861

value
1942 I ?

1 1471

Symbol name IntPtr

r----t-----,
Int

,
Address fault I

I I L ___________ J
Figure 4 6

It is important to initialize all pointers, even those that have no referent. Mesa provides
the special value NIL for this purpose. NIL signifies that a pointer does not point to anything
valid and should not be dereferenced. Dereferencing a NIL pointer is undefined and will
cause an address fault. When you are debugging, getting an immediate address fault is far
better than having your program continue to execute with invalid data. In the latter case,
your program may not malfunction until far from the scene of the crime.

int: INTEGER;
intPtr: LONG POINTER TO INTEGER +- NIL;

4.2.3 Assigning pointers

There are two common uses of pointers in assignment statements: assigning the address of
a location to a pointer, as in the initialization of intPtr; and changing the contents of one
pointers's referent to be a copy of another pointer's referent.

4.2.3.1 Assigning pointer values

In Mesa, pointers are type checked to the object they r~ference. This means that only
pointers pointing to the same type of object can be assigned, as in this example:

int: INTEGER+-S;
intPtr: LONG POINTER TO INTEGER +-@int;
anotherPtr: LONG POINTER TO INTEGER+-NIL;
anotherPtr +- intPtr;

The assignment of intPtr to anotherPtr is valid because they both point to an object of type
INTEGER. After the assignment is complete, both intPtr and anotherPtr point to the same
memory location. This has the same effect as if both pointers were individually assigned
the address ofint, like this:

int: INTEGER +-S;
intPtr: LONG POINTER TO INTEGER +-@int;
anotherPtr: LONG POINTER TO INTEGER+-@int;

Figure 4.7 shows a before-and-after view of this assignment.

4-5

4

4-6

Pointers

Before

memory address 12 861 942

value
1861 I: I 5

1 1 ~ Nlll,

Symbol name IntPtr --. int anotherPtr

After

memory address 12 861 942

value

Symbol name IntPtr --. Int -+- anotherPtr

Figure 4.7

Now both intPtr and anotherPtr reference into When int's value changes, dereferencing
either pointer will yield the changed value.

4.2.3.2 Assigning the contents of pointer references

Often, you do not want to share the value of an object, but you want to have two pointers
that reference identical copies of one object. To do this, you dereference the pointers in the
assignment statement:

int: INTEGER~5;
anotherlnt: INTEGER ~O;
intPtr: LONG POINTER TO INTEGER~@int;
anotherPtr: LONG POINTER TO INTEGER ~ @anotherlnt;
anotherPtr t ~ intPtr t ;

This assignment copies the value referenced by intPtr into the memory location referenced
by anotherPtr. Changing the value in either of th~se two locations has no effect on the
value pointed to by the other pointer. Figure 4.8 shows this situation.

Before I
memory address

value

Symbol name

After

memory address

value

Symbol name

12 861

12 861

861 1 1 51

IntPtr --. Int

Figure 4.8

• 942 985

1 0 1

anotherPtr--' anotherlnt

• 942 985

985 1 I 51

anotherPtr--' anotherlnt

Mesa Course 4

When you use pointers, be sure to think about the type of assignments you want your
program to perform. If you accidentally share data between two or more pointers when you
intend to copy the values, you will undoubtedly find some surprises when one pointer's
referent is unexpectedly changed through another pointer. Conversely, copying data when
you intend to share it will result in expected changes not taking effect;

4.2.4 Using pointers for parameter passing

There are two basic techniques of parameter passing: call by reference and call by value. In
Mesa, all parameter passing is done as call by value. In other words, the variables passed
as parameters to a procedure are not changed by what happens inside that procedure's
body. For example, consider the procedure DoNothing:

DoNothing: PROCEDURE [a: INTEGER].

BEGIN a +-a + 1; END;

Assume that an INTEGER int has the value 5. When a program calls DoNothing [int], the
value of int is copied into DoNothing's local variable a. When DoNothing changes the
value of a, nothing happens to the value of into Once int's value has been copied into a, int
is isolated from whatever goes on inside of DoNothing. Upon exit from DoNothing, a has
the value 6 but int still has the value 5, as illustrated in Figure 4.9.

I Before Entry

memory address 861 985

value

Symbol name tnt

I After Entry

memory address 861 985

value 5

Symbol name tnt a

I After Increment I
memory address 861 985

value 6

Symbol name tnt a

I After Exit I
memory address 861 985

value

Symbol name tnt

Figure 4.9

4-7

4

4-8

Pointers

If Mesa did support call by reference and DoNothing was called so that its parameter, a,
was a reference to the actual parameter, int, then DoNothing would have the desired
effect of incrementing into This manner of programming, where an argument to a
procedure is changed as a side effect of the call, is considered bad form and discouraged in
favor of having the procedure return the new value, as in:

DoSomething: PROCEDURE [a: INTEGER] RETURNS [INTEGER] =
BEGIN RETURN [a + 1]; END;

Nevertheless, it is sometimes desirable for a procedure to modify one of its arguments. For
example, a procedure may be called with a large array, several components of which need
to be changed. If the array is so large that returning a copy of it would consume significant
processor time and memory, then efficiency considerations may outweigh model
programming, and the procedure might be designed to accomplish its end through side
effects on its input.

When a procedure needs to have a side effect on one of its input variables, it takes as an
argument not the variable itself but a pointer to that variable. After all, a pointer is a
reference to where the value of the variable is stored. Given this reference (the address of
the variable), a procedure can freely manipulate the contents of a variable by storing
values into the location in memory where the variable's value resides. For example, a
procedure Increment could look like this in Mesa:

Increment: PROCEDURE [a: LONG POINTER TO INTEGER] =
BEGIN a f +- a f + 1; END;

To change the value of int by calling Increment, a program has to pass the procedure a
pointer to into When it makes the call Increment[@int], the program makes the local
variable a inside Increment point to int. Given such a call, Increment can change the value
of the variable int by dereferencing the pointer a. Figure 4.10 illustrates the situation
upon entry to the Increment procedure. The local variable a contains the address of the
global variable into When the assignment statement a f +- a f + 1 is executed inside of
Increment, the value of int is incremented. If int held the value 5 before the call
Increment(@int], then it will contain the value 6 immediately after the statement a f +­
a f + 1 is executed, as illustrated in Figure 4.10.

Mesa Course 4

I Before Entry

memory address 861 985

value 5

Symbol name mt

I After Entry

memory address 861 985

value 861 I
Symbol name mt a

I After Increment I
memory address 861 985

value 6 861 I
Symbol name a

I After Exit I
memory address 861 985

value 6

Symbol name mt

Figure 4.10

4.2.5 A common mistake: dangling pointers to local storage

When you asssign pointers to local values in procedures, you must not reference these
values after exiting the procedure. Dereferencing a dangling pointer that used to point to a
value allocated in a local proced).lre is undefined. The following example illustrates this.

SimplePointerl.mesa contains an instance of the Increment procedure discussed
above. This program, when run, will work perfectly. Take a look at the code:

SimplePointer1: PROGRAM.

BEGIN

c: CARDINAL +- 0;
worked: BOOLEAN +- FALSE;

Increment: PROCEDURE [a: LONG POINTER TO CARDINAL] =
BEGIN a f +- a f + 1; END; ··Increment

Unity: PROCEDURE RETURNS [b: CARDINAL] = BEGIN b +-1; END; ··Unity

··Mainline Code
c +- Unity[];
Increment[@c];
worked +-c • 2;
END.

4-9

4

4-10

Pointers

SimplePointer2. mesa tries to accomplish the same thing as SimplePointer1, but it
takes a more devious approach. The code for SimpiePointer2 is slightly confusing, but
looks like it will work when run. Unfortunately, the code is faulty. See if you can find the
problem:

SimplePointer2: PROGRAM =
BEGIN
c: CAROINAL ~ 0;
worked: BOOLEAN ~ FALSE;

Increment: PROCEDURE [a: LONG POINTER TO CAROINAL] =
BEGIN a i ~ a t + 1; END; ··Increment

PointerToUnity: PROCEDURE RETURNS [b: LONG POINTER TO CARDINAL] =
BEGIN d: CARDINAL ~ 1; RETURN[@d]; END; ·-Unity

--Mainline Code
c ~ PointerToUnity[] i ;
Increment[@c];
worked ~ c = 2;
END.

Look at the first assignment statement in the main body of SimplePointer2, the line: c ~
PointerToUnity[] i ;. The intent is to dereference the pointer returned by the call to
PointerToUnity in order to get the value l. While PointerToUnity is executing, the
situation is as depicted in the "Before Exit" part of Figure 4.11. The pointer b to be
returned by PointerToUnity contains the address of the variable d, a variable local to
PointerToUnity.

I Before Exit I
memory address 12 861 • 942

value

Symbol name b • d c

After Exit I
memory address 12 861 • 942

value IS61 ? ? I
Symbol name b • d c

Figure 4 11

"After Exit" shows the situation after returning from PointerToUnity. The variable c
should be assigned the value contained in the variable pointed to by b. But, now that
PointerToUnity has been exited, the space used by PointerToUnity is considered by the
system to be free space, ready to be overwritten as space is needed. Since d is local to
PointerToUnity, it may already be overwritten now that PointerToUnity has been exited.
The pointer returned by PointerToUnity points to where the value of d used to be. But d
may be overwritten now, and so the pointer is worthless. When the program tries to assign

Mesa Course 4

the value @d t to c, it will be assigning a value that might not be the value that d had
when PointerToUnity finished execution.

This procedure demonstrates the mistake of returning a dangling pointer to a local
variable. When assigning pointers to values in local frames, be sure that the referents will
still exist after the procedure has returned. One way to ensure this is to dynamically
allocate space that outlives the local frame; this is the subject of the next chapter.

4.3 Summary

This chapter briefly discussed how pointers are used in Mesa programs. It presented a set
of do's and don't's to keep in mind when programming with pointers, most notably:

• Do declare pointers as pointers to objects. This keeps you inside of the Mesa type
checking system, which will go a long way in preventing pointer errors.

• Do initialize all variables including pointers. Having initialized variables will save
you the trouble of worrying about whether or not a variable's value is valid. When you
cannot initialize a pointer to an allocated and initialized piece of storage, signify this
by initializing the pointer to NIL.

• Do be aware, when using pointers in assignment statements, whether you want the
value shared between the two pointers (and therefore alterable by either pointer), or
copied. To share the value between two pointers, assign the pointers (ptr2 ~ ptr1); to
copy the value, assign the dereferenced pointers (ptr2 i ~ ptr1 t).

• Do use pointers as arguments to procedures when you want the value of the caller's
variable changed by the called procedure.

• Do not return pointers that point to a procedure's local variables.

4.4 References

Sections 3.3 and 3.4 of the Mesa Language Manual cover the syntax of record and pointer
declarations, as well as detailing the operations that can be performed on pointers and
records.

4.5 Questions

1) Assume that you are calling a procedure from an interface in order to get the next piece of
input data from a file of CARDINALS. Let's say that the Dataln .interface contains three
procedures, declared as follows, that can each get the next CARDINAL from the file.

GetNextValue1: PROCEDURE [nextValue: CARDINAL];

GetNextValue2: PROCEDURE [nextValue: LONG POINTER TO CARDINAL];

GetNextValue3: PROCEDURE RETURNS [nextValue: CARDINAL];

From looking at those declarations, determine which of the following calls will actually
get the next piece of data from the file, and decide which call would be the best one to use
in a Mesa program from a stylistic point of view.

4-11

4 Pointers

i: CARDINAL +- 0;
Dataln.GetNextValue1 [@i];
Dataln.GetNextVal ue1 [i];
Dataln.GetNextValue2[@i];
Dataln.GetNextvalue2[i];
@i +- Dataln.GetNextValue3[];
i +- Dataln.GetNextValue3[];

2) Given the type declarations below, explain what the differences between calling
AverageData1 and AverageData2 are.

DataHandle: TYPE. LONG POINTER TO Data;
Data: TYPE • RECORD [

interval, scale, length, maxlength: CARDINAL,
data: ARRAY [0 .• 0) OF CARDINAL];

AverageData1: PROCEDURE [dataToAverage: Data] •
BEGIN
FOR i: CARDINAL IN [O .. dataToAverage.length -1) DO

BEGIN
dataToAverage.data[i] +- (dataToAverage.data[i] + dataToAverage.data[i + 1])/2;
END;

END;

AverageData2: PROCEDURE [dataToAverage: DataHandle] •
BEGIN
FOR i: CARDINALIN [O •. dataToAverage.length -1) DO

BEGIN
dataToAverage.data[i] +- (dataToAverage.data[i] + dataToAverage.data[i + 1])/2;
END;

END;

4.6 Exercises

4-12

1) Study Appendix D, which appears at the end of this course. It discusses how to debug
address faults.

Write two procedures: Compare, which compares the values referenced by two pointers, and
Exchange, which exchanges the value referenced by two pointers. You should declare your
procedures to be of type PointerDefs.CompareProcType and PointerDefs.ExchangeProcType. Store
your procedures in a file called CompareAndExchangelmpl.mesa.

To test your procedures, have your program call pointerDefs.CreateCompareAndExchangeTool
passing the names of the two procedures. We have provided a config file
(CompareAndExchangeTool.config) and the implementation for the tool
(MesaCourselmpIForCompareAndExchangeTool.bcd). Thus, you need to write your
implementation, bind the config file, and run CompareAndExchangeTool.bcd.

5

Dynamic storage allocation and
management

After reading the last chapter, you undoubtedly realized that pointers were not invented
to point at just INTEGERS, when there're so many more interesting data structures in the
world. Pointers can point at just about anything, including objects of undeterminable size
at compile-time. Of course, constructs such as CARDINALS, with their fixed known length at
compile-time, can reside in a local or global frame, but what about a dynamic array or a
string of characters? To allocate storage for constrt\cts whose length or usage is not known
at compile-time, you need dynamic allocation.

This chapter discusses how you allocate and deallocate storage dynamically, and suggests
some ways for managing that storage effectively. We also discuss heaps, which are the
storage allocators used for dynamic allocation.

5.1 Preliminary readings

Read the Pilot Memory Managment section (§ 4.6) in the Pilot Programmer's Manual 11.0.
This section discusses zones and heaps.

Read § 6.6 in the Mesa Language Manual 11.0, entitled "Dynamic Storage Allocation." It
discusses the Mesa operators NEW and FREE, which are used to allocate and deallocate
storage.

5.2 Definition of terms

Dynamic allocation

Dynamic deallocation

Node

Storage Leak

Dynamic allocation acquires storage during program
execution.

Dynamic deallocation releases space acquired through
dynamic allocation.

A storage node, or node for short, is a block of allocated
storage, often with a record structure.

A storage leak occurs when a program neglects to free all
the storage nodes it has allocated, thus reducing the total
amount of space available for the system. Leaked storage

5-1

5 Dynamic storage allocation and management

Heap

Valid memory location

Zone

degrades the system performance and in extreme cases can
cause the system to crash.

A heap is a system-designated area of virtual memory used
for dynamic allocation of storage. Heaps, which provide
more automatic management of storage than zones, are
designed to support the Mesa language operators NEW and
FREE, which allocate and deallocate storage dynamically.

A location is valid if it is currently allocated. A location
that has been freed is invalid and should not be referenced.

A zone is a client-designated area of virtual memory used
to acquire and manage arbitrarily sized storage nodes.

5.3 Discussion

5-2

Heaps are the primary storage allocators in Mesa. They are designed to allocate and free
blocks of storage (nodes) of arbitrary size. A heap begins as one large free (unallocated)
node somewhere in virtual memory. When a program requests storage, a node is allocated
and a pointer to its location is returned to the requesting program. The program then
moves values in and out of this node by indirect reference through the pointer. When the
program no longer needs the storage, it returns the node to the heap's pool of available
(free) nodes.

Clients interact directly with a heap by using Mesa's NEW and FREE operators and the
facilities of the Heap interface. Clients use the Heap interface to obtain a heap (by either
creating one or using one provided by the system) and to destroy a heap. Clients allocate
storage from a heap with the NEW operator, and return storage to the heap when it is no
longer needed with the FREE operator.

5.3.1 The system heap

Tajo provides a system-wide heap, called the systemZone, for all programs to share. If you
need to share storage with other programs, the system heap is a good place to allocate the
common storage. You should also use the system heap for programs that only allocate a
small amount of storage. You will see an example of using the systemZone a little later in
the chapter.

You access the systemZone through the Heap interface. For a program to allocate and
deallocate nodes from the systemZone, it must IMPORT it from t~e Heap interface. Take a
look at Section 4.6.2 of the Pilot Programmer's Manual, which describes this interface.
Heap.systemZone is declared as an UNCOUNTED ZONE. (Think of this name as historic, not
mnemonic.) The size of the systemZone, initially 40 pages, is bounded only by the amount
of a vailable virtual memory; it expands automatically when a request for storage is larger
than the largest free node. The systemZone is created when a volume is booted and not
destroyed unless the volume is rebooted. Misuse of this heap can be costly, since there is no
garbage collection mechanism to free nodes that are no longer in use.

Mesa Course 5

5.3.2 Private heaps

A program can create a private heap. Private heaps exist separately from the system heap,
and only programs that have access to a private heap can allocate nodes from it. Like the
system heap, private heaps can be grown to unlimited size, although they are typically
bounded at 64K pages. The growth of an unbounded heap is limited only by available
virtual memory.

Heap.Create is declared as follows:

Heap.Create: PROCEDURE[initial: Space.PageCount,
maxSize: space.PageCount ~ Heap.unlimitedSize,
increment: Space.PageCount ~ 4,
swapUnit: Heap.SwapUnitSize ~ Heap.defaultSwapUnitSize
threshold: NWords ~ Heap.minimumNodeSize,
largeNodeThreshold: NWords ~ Space.wordsPerPage/2,
ownerChecking: BOOLEAN ~ FALSE, checking: BOOLEAN ~ FALSE]
RETURNS [UNCOUNTED ZONE];

Except for initial, the parameters have default values, which you will not (at this point)
need to change. initial specifies the initial size of the heap, in pages. The system will
automatically grow the heap as needed, in steps of increment up to maxSize.

You should destroy a private heap when you are finished with it. To destroy a private
heap, call Delete, passing the zone returned by Create, like this:

Heap.Delete: PROCEDURE[Z: UNCOUNTED ZONE, checkEmpty: BOOLEAN ~ FALSE];

Delete has a second parameter to check if all the allocated nodes have been deallocated.
This parameter, defaulted to false, prevents the accidental deletion of a heap still in use.

Space leaks are not as important in private heaps as they are in the systemZone, since
deleting a private heap frees the entire space occupied by the heap and thereby reclaims
any unfreed nodes. Any space leaks would be a potential problem only during the life of
the private heap.

5.3.3 Allocating nodes: Using the NEW operator

A conventional way to allocate a node is to determine the amount of storage needed, and
then ask the heap for a chunk of that size. The NEW operator does this, but it adds the
protection of type checking for the allocated node by taking the type of the object as a
parameter. It determines the size of the node that needs to be allocated, allocates it, and
then returns a pointer to the allocated node.

Mesa enforces type checking on the returned value (the pointer). For example, if you were
allocating a record of 3 CARDINALS, your code would look something like this:

5-3

5

5-4

Dynamic storage allocation and management

ptrToRecord: LONG POINTER TO Record +- NIL;
Record: TYPE = [a: CARDINAL +- 0,

b: CARDINAL +-1,
c: CARDINAL +- 2];

ptrToRecord +- Heap.systemZone.NEw[Record];

The node allocated by the NEW operator (from Heap.systemZone) is of type Record. The
pointer returned by NEW is thus a LONG POINTER TO Record. The variable on the left side of
this assignment statement must conform to that type.

You can also initialize a node while allocating it with the NEW operator. To get the default
initialization for Record, you could change the assignment to be:

ptrToRecord +- Heap.SystemZone.NEw[Record +- []];

To override the default values, to set c +-10, for example, you could write:

ptrToRecord +- Heap.systemZone.NEw[Record +- [c:10));

5.3.4 Deallocating nodes: Using the FREE operator

The FREE operator takes a pointer to a node pointer as its parameter. It frees the node and
sets the value of the node pointer to NIL, as in

Heap.systemZone.FREE[@ptrToRecord];

Setting the pointer to NIL reduces the chances of creating a dangling reference. Figure 5.1
illustrates how FREE works. Without the extra level of indirection in @ptrToRecord, the
system would not be able to change the value in ptrToRecord to NIL.

Before FREE

ptrToRecord

add ress of record

During FREE

record [D=o
b = 1

c = 2

@ptrToRecord -----i.~ ptrToRecord

r-a-d-d-re-ss-O-f-pt-r-T-oR-e-co-r-d'" I address of record

After FREE

ptrToRecord

NIL

Figure 5.1 Using FREE

r-----------,
: storage for record is

I freed

Mesa Course 5

5.3.5 The systemMDSZone

The Mesa environment also provides a second system-wide heap. This second heap is
called the systemMDSZone, and is used for allocating storage pointed to by POINTERS

(whereas the systemZone is used for allocating storage pointed to by LONG POINTERS). The
systemMDSZone exists inside a 256-page space called the Main Data'Space (MDS), and is
limited to that size. Since you will not ordinarily be using the systemMDSZone, this
chapter discussed only the systemZone. However, the two heaps are functionally
identical, and all observations about the systemZone apply also to the systemMDSZone.

5.4 Basic rules for storage management

So far, you've learned the definition of dynamic storage allocation and the procedures to
manipulate storage dynamically. However, we haven't covered the best ways to supervise
and manipulate space allocation and de allocation. If you had an infinite amount of
resources (time and space), then management of those resources would be unnecessary,
but since resources are limited and therefore considered to be precious, taking the time to
understand storage management can improve your program's (and system's) performance.
The following list represents general guidelines for efficient storage management. The
rest of this chapter will discuss each item on the list in detail.

1. Hold onto storage only while you are using it.
2. Minimize the number of times you allocate anyone item.
3. Keep global frames small.
4. Allocate temporary variables from local frames.
5. Avoid allocating string literals from the global frame.
6. Pass a pointer to an object as an argument rather than the object itself.
7. Use the systemZone when the total amount of allocated storage is small, and when

use is over a short period of time.
8. Use a private heap when your program (or set of programs) require a lot of storage.
9. Avoid allocation from the systemMDSZone.

5.4.1 Hold onto storage only while you are using it

The actual space taken up by dynamically allocated objects is a precious resource, so you
should only use it when absolutely necessary. Avoid allocating storage until you need it,
and release that storage when you are no longer using it.

5.4.2 Minimize the number of times you allocate anyone item

This rule really asks you to think about how a particular item is to be used in your
program. When you learn about SEQUENCES in the next chapter, you'll find that a dynamic
array is implemented by copying different-sized arrays back and forth and changing the
pointers to create the illusion of a dynamic array. The problem is that repeated allocations
and deallocations take time and cause fragmentation within the heap. If you can
determine the approximate use of the SEQUENCE in the program, then you can allocate a
SEQUENCE that is, for example, four elements larger than what is currently needed, because
you know that the SEQUENCE will need space for four more elements in the near future.

You might have noticed that this rule can conflict with the first rule of holding onto
storage only while you are using it. You walk a fine line between the time issue and the

5-5

5

5-6

Dynamic storage allocation and management

space issue and must make tradeoffs between the two to "optimize" your program. When
making decisions about tradeoffs, keep in mind such issues as the size of the allocations,
the use of the allocated space, and the length of use of the space.

5.4.3 Keep global frames small

Again, you are trying to conserve a precious resource. Global frames reside in the Main
Data Space (MDS), a 256-page segment of virtual memory that can be directly addressed
by short (16-bit) POINTERS. The MDS is heavily used by the run-time system, so you should
avoid placing non-essential demands on it. As you may know, once a program is loaded it
stays loaded until it is explicitly unloaded or until the system is rebooted. As a result,
many global frames can exist in the MDS; thus the amount of free pages available for
other programs to use decreases. Keeping global frames small helps to free the MDS for
other tasks.

5.4.4 Allocate temporary variables from local frames

Besides the global frame, you can allocate space from a local frame and from heaps.
Storage for local frames also comes from the MDS (see above). The difference between local
and global frames (in terms of their burden on the MDS) is that a local frame remains
allocated only as long as it is executing. When the procedure returns, the space for the
local frame is released. Therefore, when you have fixed-size variables that are not needed
for the life of the program, you should allocate them from local frames.

5.4.5 Avoid allocating string literals from the global frame

Suppose you need a string literal in the mainline code. If you allocate a string)iteral in the
mainline code (with or without the L suffix), that literal will take up space in your global
frame for the life of the program. To work around this problem, you should have the
mainline code call a procedure that includes the code using the string literal. That way,
the space for the string literal is released when the procedure finishes.

5.4.6 Pass a pointer to an object as an argument rather than the object itself

In Mesa, procedures pass arguments by value. In a procedure call, the parameters are
copied into the local frame of the called procedure. Thus, passing a large object wastes both
space and time. Avoid copying large objects in procedure calls by passing a pointer to an
object instead.

5.4.7 Use the systemZone when the total amount of allocated storage is s,mall, and when
use is over a short period of time

The systemZone is created when the system is booted; a private heap, however, is created
when your program makes a call to Heap.Create. The time needed to make this call can be
significant when all you need is a small block of storage for a short period of time. For
transient storage, the low overhead of using the systemZone is quite attractive.

Mesa Course 5

5.4.8 Usea private heap when your program (or set of programs) requires a lot of storage

Private heaps have several advantages over public heaps. You can restrict the number of
clients using a private heap, allowing faster access and minimizing fragmentation. You
have potentially faster access because requests for storage must be monitored; thus, the
fewer the clients, the less you have to wait in line for storage. Having a small number of
clients reduces the amount that allocated nodes are spread around the heap. Since you
have no control over where a block of storage is allocated from, the degree of dispersion of
nodes wlll be large if the heap is large. The result of this is that a large heap will have very
little of it mapped into real memory at anyone time, and accessing the blocks of storage
will cause more swapping than if they were allocated within a smaller heap.

5.4.9 Avoid allocation from the systemMDSZone

Since the systemMDSZone is contained within the MDS, allocations from this public heap
compete with local and global frames for the bounded 256-page resource. The systemZone
and private heaps, by comparison, are bigger and less congested.

5.5 Summary

This chapter discussed why you need dynamic allocation, and introduced heaps as the
most common storage allocator for dynamically allocating nodes. To access the heap
facility, you use the Heap interface (described in the Pilot Programmer's Manual). This
interface provides two system heaps, as well as the mechanisms for creating and deleting
private heaps.

You use the NEW operator to allocate nodes from a heap. When using NEW, you specify the
heap the node should be allocated from and the type of the node to be allocated. The NEW

operator calculates the size of storage needed, causes the allocation to occur, and returns a
pointer to the node.

When your program is through with a node it must return the storage to the storage
allocator. You do this with the FREE operator, passing a pointer to the pointer to the node.
FREE deallocates the node and sets your pointer to NIl.

This chapter also presented some guidelines to help you manage storage allocation in a
manner that will help your programs' performance. Most of the guidelines are common
sense maxims that will help you use the system's time and space efficiently. The
guidelines can be boiled down to two basic themes: don't waste time and space, and make a
careful tradeoff when time and space issues conflict.

5.6 Questions

Assume that you are using an interface named Node that has procedures to allocate and
free nodes of type NodeType, as defined below:

5-7

5 Dynamic storage allocation and management

NodePtr: TYPE == LONG POINTER TO NodeType;
NodeType: TYPE == RECORD [

start, end, size: LONG CARDINAL,
duration: CARDINAL];

AllocateNDde: PROCEDURE RETURNS [newNode: NodePtr];
FreeNode: PROCEDURE [nodeToFree: NodePtr);

Because the FreeNode procedure does not return NIL, you must set the NodePtrs to NIL with
an assignment statment after you call FreeNode. Since the code frees nodes in many
places, the following procedure was written to help free nodes. Does this procedure work as
intended?

OurFreeNode: PROCEDURE [nodeToFree: NodePtr] =
BEGIN
Node.FreeNode[nodeToFree];
nodeToFree ~ NIL;
END;

5.7 Exercises

5-8

The Tree Traversal Tool allows you to enter numbers into a sorted binary tree. At any point,
you can make a preorder, inorder, or postorder traversC-l1 ofthe tree,with the order of traversal
displayed in the tool. Your assignment is to complete the tool by writing the procedures Init,
EnterNumber, and ClearTree in the module TreeTraversaIProblem.mesa. The comments in this

PreOrder called

Number = 14

Enter Input! . Clear Tree!

PreOrder! InOrder! PostOrder!

»»»»««««

PreOrder is 7 4 2 5 9 8 12

»»»»««««

Tree Traversal Tool

module provide a more complete explanation of the procedures that you are expected to write.

You will also need the modules TreeProblem.config, TreeTraversalTool.mesa, and
TreeTraversal Defs. mesa.

6

Sequences

Now that you know about heaps, it's time to look at one of the most common heap­
dependent Mesa constructs: SEQUENCES, the Mesa implementation of dynamic arrays. This
construct allows you to defer specifying the size of an array until run-time. Because you
don't know the size of a sequence until run-time, you have to allocate that sequence from a
heap rather than in a local or global frame. This chapter discusses how to allocate,
deallocate, and use sequences.

6.1 Discussion

One of the main advantages of using a dynamic array rather than a static array is that
you don't have to commit your program to consuming storage before it uses that storage. A
program does not allocate storage until it is actually ready to use that storage. You can
also change the size of a dynamic array after it allocating it; this comes in handy when you
find out sometime in the middle of your program that your sequence is too short. However,
a corresponding drawback of using dynamic arrays is the amount of time it takes to
allocate a dynamic array during run-time. Static arrays avoid this overhead since they're
allocated when the program is loaded.

6.1.1 Declaring a Sequence

Sequences are always declared as the last field in a record. For example, the following
declares a record structure that contains a sequence of LONG INTEGERS:

ptrToRecord: LONG POINTER TO Record +- NIL;

Record : TYPE III RECORD[

a: BOOLEAN +-TRUE,

b: BOOLEAN +- FALSE,

C: BOOLEAN +- TRUE,

seq: SEQUENCE length: CARDINAL OF LONG INTEGER];

The declaration of a sequence has a variant tag part (the length: CARDINAL) and an element
type part (the LONG INTEGER). The type specification in the variant part determines the type
of the indices used to select a sequence element. The range of valid indices is not specified
when the sequence is declared but will be computed by the FIRST and SUCC functions when
the sequence is allocated. This computation requires that the variant tag specify a valid

6-1

6

6-2

Sequences

IndexType, as defined in the Mesa Language Manual. The element type defines the type of
object that is being sorted in the sequence, thereby making sequences type-safe.

6.1.2 Allocating a Sequence

To allocate the record to contain a sequence of 10 elements, you could encode:

ptrToRecord *- Heap.SystemZone.NEw[Record[10]];

Record[10] is a type specification describing a RECORD with a sequence part, seq,
containing 10 LONG INTEGERS. The effect of Heap.SystemZone.NEw[Record[10]] is to allocate
slzE[Record[10]] words of storage from the systemZone and return a LONG POINTER TO Record
to this storage. All fields in the common part ofthe RECORD (the BOOLEAN fields a,b, and c in
the example)' are initialized to their default values if default values have been specified
(TRUE, FALSE, and TRUE in the example). The sequence tag field, length, is set to 10, a value
computed automatically using the formula:

length *- succ10 [FIRST[CARDINAL]]

If the variant tag type uses an enumerated type or a subrange type whose first element is
not 0, the value of length would still be the value of the tenth successor of the first element
of the index set.

The index will range over [0 .. 10), a set of values computed using the formula:

[FIRST[CARDINAL) .. SUCc10 [CARDINAL])

The elements of the sequence part are not initialized when the sequence is allocated.
Initializing the sequence is your responsibility. However, you can use a constructor of type
Record in the call to NEW to provide different initial values for the common part of the
RECORD, as in:

ptrToRecord *- Heap.systemZone.NEw[Record[10] *- [a: FALSE]];

6.1.3 Using a Sequence

You can index individual elements of a sequence directly. For example, if var is of type
LONG INTEGER ,then all of the following are equivalent:

var *- ptrToRecord f .seq(3);
var *- ptrToRecord.seq[3];
var *- ptrToRecord(3);

Once you have allocated a sequence, you can use it as you would an array:

IF ptrToRecord.length > 5 THEN ptrToRecord[5] *-13;

6.1.4 Deallocating a Sequence

You deallocate the record containing the sequence as you would any other node, by using
the FREE operator:

Heap.systemZone.FREE[@ptrToRecord];

Mesa Course 6

6.1.5 VowelSeparatorWithPublicHeap

VowelSeparatorWithPublicHeap is an example of dynamically allocating records with
sequences in them. The program, which runs from the Executive, separates user input
into vowels and consonants. A sample input would be:

VowelSeparator.- separate the letters in these words by vowels and
consonants

Try running the program now.

6.1.5.1 TextSeqBody: the data structure used for storing text

The input is stored in the TextSeqBody data structure, which is defined in the
SequenceDefs interface as:

TextSeqBody: TYPE,. RECORD [
length: CARDINAL,
text: SEQUENCE maxlength: CARDINAL OF CHARACTER];

The length field specifies the number of elements currently stored in the sequence. The
text field defines the sequence of characters where the input is stored. The max length tag
field specifies the maximum number of characters that can be stored in the sequence.

TextSeq is a pointer type to this record object, defined as:

TextSeq: TYPE,. LONG POINTER TO TextSeqBody;

6.1.5.2 The procedure Main

In VowelSeparatorWithPublicHeaplmpl, the procedure Main controls translating the
input into a TextSeqBody and separating the characters into vowels and consonants.
However, since the program runs from the Executive, no call to Main appears in the
program. Instead, the mainline code calls Init, which subsequently calls InitializeVowel­
Separator (from the SequenceDefs interface). InitializeVowelSeparator registers the
program with the Executive, telling it that Main is the procedure to call when a user types
the VowelSeparator.- command. It is important to remember that the procedure, not
the whole program, is executed when the command is invoked.

Let's assume a user types into the Executive

VowelSeparator. - separate the characters in ~hese words

The Executive recognizes the command and calls Main. Main declares three variables,
input, vowels, and consonants, of type TextSeq. These variables will point to TextSeq­
Bodys containing the input, the vowels in the input and the consonants in the input. The
variables vowels and consonants are initialized to NIL.

SequenceDefs.GetText stores the user's input in input and then translates it into a
TextSeqBody. Because GetText must allocate the TextSeqBody, we pass the system Zone
as a parameter to GetText. Passing the zone ensures that all nodes are allocated from the
same heap. Figure 6.1 depicts the situation at this point.

6-3

6

6-4

Sequences

After initializations

r--__ ..;i~n~pu~t:.....-==:::;_---_:==~. node In systemZone

address of TextSeqBody
returned by GetText

vowels

NIL

length = 38
text = separate the characters In these words

consonants

NIL

Figure 6.1

Following these initializations, Main calls Separate to sort the input line into vowels and
consonants. Separate creates (allocates) two TextSeqBodys and returns a pointer to each
of these TextSeqBodys. Figure 6.2 represents the situation after Separate has returned.

After Separate returns

input

address of TextSeqBody
returned by GetText

vowels

address of TextSeqBody
returned bySeparate

consonants

address of TextSeqBody
returned bySeparate

node In system Zone

length = 38
text = separate the characters In these words

node In systemZone

length = 12

text = eaaee'aaeleeo

node In system Zone

length = 21

text = sprtthchrctrsnthswrds

Figure 6.2

Main now outputs the separated characters, first checking to see if there is anything to
print. It uses SequenceDefs.PutComments and SequenceDefs.PutText to print to the Executive.
(PutComments outputs string literals; PutText outputs a TextSeqBody.)

Next, Main frees the TextSeqBodys that were allocated and passed to it:

FreeTextSeq[@input);
FreeTextSeq[@vowels);
FreeTextSeq[@consonants);

Figure 6.3 shows that all allocated storage is freed before Main returns.

Mesa Course 6

After deallocatlons

vowels vowels consonants

NIL ~ ____ N_IL ____ ~I ~I _____ N_IL ____ ~

Figure 6 3

Note: Use the information presented in the last chapter (Dynamic Storage Allocation and
Management) to figure out the reason for freeing the TextSeqBody nodes in this procedure
as well as in AppendChar

6.1.5.3 How the input is separated

Separate and AppendChar are the procedures primarily responsible for separating the
characters. Separate defines the algorithm for separating the characters; AppendChar
adds a character into a TextBodySeq object.

Separate takes a parameter of type TextSeq and separates the characters into two
sequences, one containing vowels and the other containing consonants, and returns
pointers to each of these TextSeqBodys. We use the following algorithm: check if the next
character in the input line is alphabetic; if it is, check the alphabetic character to see if it
is a vowel. If the character is a vowel, we append it to the vowels TextSeqBody.
Otherwise, we append it to the consonants TextSeqBody.

Note: In the implementation of this algorithm, Separate allocates storage for vowels and
consonants from a reasonable guess of vowel and consonant distribution. We did this to
minimize the number of allocations done by AppendChar.

AppendChar builds the vowel and consonant sequences by adding a character to the end of
a text sequence. If the text sequence is not full (Le., length is less than maxLength), then
the character can just be appended (by entering it as the next element in the sequence and
incrementing length).

However, if the text sequence is full, the situation is more complicated. AppendChar
cannot add the next element because there is no room left in text. Trying to store into the
sequence will cause a run-time error if you compiled with the b switch (bounds checking).
If there is no bounds checking, the append will be done, but the element will not be stored
into a properly allocated memory location. Instead, it will be stored just beyond the end of
the allocated storage. This location could be undefined (causing an address fault),
currently allocated for another node (smashing memory by writing over other data), or
unallocated (with no assurances on how long the location will stay unallocated and its
contents unchanged).

To avoid this situation, you must allocate a new TextSeqBody when the sequence is full.
(This is how to "grow" a sequence.) You must then copy the contents from the old sequence
into the new one. This is what AppendChar does; take a look at the code for this procedure.

6-5

6

6-6

Sequences

The series of graphs in Figure 6.4 illustrates the expansion of the sequence when
AppendChar is asked to append the letter e to a full TextSeqBody.

Entry to AppendChar char

8
onto • vowels .node In systemZone

I address of vowels I address of TextSeqBody length = 9

containing vowels text = eaaeeaael

After allocation of S char

8
onto • vowels • node In systemZone

I address of vowels I address of TextSeqBody length = 9
containing vowels text = eaaeeaael

s • node In system Zone

address of larger length = 10
TextSeqBody text = space for 10 characters

After vowels copied to S char

8
onto • vowels • node in systemZone

I add ress of vowels I address of TextSeqBody length = 9
containing vowels text = eaaeeaael

s • node In system Zone

address of larger length = 10
TextSeqBody text = eaaeeaael

Figure 6.4

After char appended char

8
onto • vowels • node In systemlone

I add ress of vowels I address of TextSeqBody length = 9
containing vowels text = eaaeeaael

s • node In systemlone

address of larger length = 10
TextSeqBody text = eaaeeaaele

After node pointed char

to by vowel is freed 8
onto • vowels • node In systemlone

I address of vowels I address of now freed I Freed node I
node

s • node In systemZone

address of larger length = 10
TextSeqBody text = eaaeeaaele

After vowels assigned char
to point to new node 8

onto

• _m ffl node In system lone

I I address of vowels address of TextSeqBody I Freed node I containing vowels

s • node In system lone

address of larger length = 10
TextSeqBody text = eaaeeaaele

After Exit from AppendChar

vowels • node In systemlone

address of TextSeqBody length = 10
containing vowels text = eaaeeaaele

Figure 6.5

6-7

6 Sequences

6.1.6 VowelSeparatorWithPrivateHeap

VowelSeparatorWithPrivateHeaplmpl differs from VowelSeparatorWithPublicHeaplmpl
only in that it uses a private heap instead of the systemZone to allocate TextSeqBody.
This module is part of the configuration called VowelSeparatorWithPrivate­
Heap. bcd. It runs from the Executive command VowelSeparator. -. Run the program
to verify that it acts like VowelSeparatorWithPubl icHeap, and then study
VowelSeparatorWithPrivateHeaplmpl.mesa. Pay particular attention to the
creation and deletion of the private heap, and to the allocation and deallocation of nodes.

6.2 Summary

A sequence appears as the last field in a record. It contains a variant index field in its
declaration, which becomes fixed at the time of allocation. To enlarge a sequence,
therefore, you must:

1) allocate a new, larger one,

2) copy the data from the full sequence into the new one,

3) free the old sequence, and

4) adjust the pointers so the new sequence is referenced by the pointer that
referenced the original sequence.

6.3 Reference

The Mesa Language Manual 11.0 section entitled "Sequences" is a thorough reference.

6.4 Exercises

6-8

Complete a program that takes a string of characters as input and stores the characters
alphabetically in queues according to the number of queues that the user specifies. For
example, if the input were James! Where are you?!, and the user wanted four groups of
characters, the result would look like this:

For Group 0 (A-G):
a e e e a e

For Group 1 (H-N):
J m h

For Group 2 (O-T):
s r r 0

For Group 3 (U -Z):
Wyu

For Last Group (non-alphabetic characters):
! SP SP SP ? !

Done.

Mesa Course

The program runs from a tool, which consists of the following modules:

LetterTool.mesa: contains tool-related code (110);
Letterlmpl.mesa: contains the implementation code that actually processes the input;
LetterDefs.mesa: is the interface for these modules; .
LetterConfig.config: is the configuration module for the above.

Input: James! Where are you?!

Number of Queues: {four}

Group!

For Group 0 (A-G):
a e e e a e

For Grou p 1 (H-N):

The tool as it appears when LetterConfig.bcd is executed.

6

When Group! is invoked, the Commanditem procedure Group (in LetterTool) passes the input
string and the number of desired queues to procedure Processlnput (in Letterlmpl).
Processlnput calls InitQueues to create and initialize the queues. It then calls CutUpAlphabet
to determine which characters each queue will handle. Processlnput then calls Store Letters
to actually put the characters into the queues. Finally, PrintResults (in LetterTool) is called to
display the results of the user-requested action.

There are two instances where you must consider dynamic storage allocation. First, there is
the initial allocation from a heap, where two factors are variable: the number of queues and
the size of each queue. Secondly, there is the expansion of a queue when the sequence that
represents the queue is full. The "expansion" really consists of allocating a new sequence that
is larger than the original one, copying over the original sequence into the new one, inserting
the new sequence in place of the original one, and freeing the space that the original sequence
occupied (see diagram on next page).

6-9

f) Sequences

I I l I I I 'a I I 'a I
allocate new, larger

'a Ie 'b 'd seq~ence

I I I I I I I I

I t I I I 'a Ie I 'b I 'a 'd I 'a I copy contents of old
sequence to new one

I 'a I Ie I 'b I 'a I 'd I 'a I I

,\1 I
insert new sequence in

I I I I I place of old one, which is
deallocated back to the , heap

'a I Ie I 'b I 'a I 'd I 'a I I

II Expansion" of a sequence

6-10

7

Strings

In this chapter we introduce Mesa strings. Although you may not have realized it. the
classic implementation of a string as an array of characters with an associated length
actually involves a pointer. In languages such as Pascal. these string pointers are hidden
from you. Mesa. on the other hand. makes this string pointer explicit and puts it under
program control.

.
This chapter will show how string pointers differ from standard pointers. and how string
use is facilitated by using public interfaces.

7.1 Definition of terms

String

7.2 Discussion

A string is conceptually a sequence of characters. such as "that". A string is
represented in Mesa as a pointer to a record that contains an array of
characters and a length.

The structure of a STRING is very similar to the structure of'the TextSeqBody in the last
chapter. As described in the Mesa Language Manual (§6.1). the type LONG STRING is:

LONG STRING: TYPE. LONG POINTER TO StringBody;
StringBody: TYPE = MACHINE DEPENDENT RECORD [

length: CARDINAL,

maxlength: CARDINAL,

text: PACKED ARRAY[O •• O) OF CHARACTER];

The length field of the string is. by convention. the current length of the string in the text
array. The maxlength field specifies the maximum length of the string. This field is read­
only because the size of a string is fixed when it is allocated.

The text field is a special form of array. which used to be the primary way for providing
dynamic arrays in Mesa. before SEQUENCES were added to the language. It declares an array
(as the last field in a record) to have an undetermined length (indices from [0 .. 0»). The
compiler. however. interprets this field as an array with zero length. This has interesting

7-1

7

7-2

Strings

effects on string pointer manipulations in assignment and comparisons, as discussed
below.

7.2.1 Allocating a STRING

There are four ways to allocate a STRING:

• Allocate fixed-sized storage from the local or global frame of a program.

• Assign a string literal to a string variable. String literals are automatically allocated
in the local or global frames of your program.

• Use the NEW operator to allocate storage from a heap.

• Use procedures provided by the String interface (discussed in the Pilot Programmer's
Manual, §7.3) to allocate storage from a heap.

STRINGS are the only Mesa construct that can be allocated by an explicit request for space
from a local or global frame. For example, the following declares a variable string and
allocates space for up to 256 characters from the same local or global frame as the
statement itself:

string: LONG STRING ~ [256];

Sometimes, however, you may want to use known text as a string, for example, to print a
message, prompt the user for input, or explain how to use the program. Mesa provides
string literals for these uses, such as:

globalString: LONG STRING ~ "Hi There";
localString: LONG STRING ~ "Hi There"L;

Both of these strings are initialized to point to a record whose length and maxlength fields
are 8 and whose text field contains the characters H, i, , T, h, e, r, e. globalString is
allocated out of the program's global frame; localString is allocated from the local frame
(denoted by the suffixed L.)

When a string literal is inappropriate, you will often allocate the string from a heap (or it
will be allocated for you). As a pointer, a STRING is well suited for the NEW and FREE
operators. The following example accomplishes what our first example did, except it gets
its storage from the heap instead of the local or global frame of the program. It declares a
LONG STRING and initializes it to NIL. When space is needed, it uses the NEW operator on the
StringBody type to allocate a space for 256 characters:

string: LONG STRING ~NIL;

string ~ Heap.systemZone.NEw[StringBody[256]];

To deallocate the string, you use the FREE operation:

Heap.systemZone.FRE E[@string];

Because strings are very common in Mesa programs, there is a system interface (called
String) that implements primitive string operations such as allocating, copying, and

Mesa Course 7

comparing strings. The MakeString and FreeString procedures in this interface work
much like NEW and FREE for allocating and de allocating a string.

String.MakeString takes two parameters: the heap from which the node is to be allocated,
and the maximum size of the string:

String.MakeString: PROCEDURE[Z: UNCOUNTED ZONE. maxlength: CARDINAL];

Thus, the following code is equivalent to calling Heap.systemZone.NEw[StringBody[256]]:

stri ng: LONG STRING ~ NIL;

string ~String.MakeString[z: Heap.systemZone, maxlength: 256];

FreeString takes as parameters a string and the heap from which the string was allocated:

String.FreeString[z: UNCOUNTED lONE, S: LONG STRING];

FreeString frees the space occupied by the String Body; you are responsible for setting the
string to NIL.

7.2.2 Caveats in using strings

Besides the usual pointer considerations, there are a few peculiarities related to the
structure of strings that you should be aware of. The following examples demonstrate
common STRING misuse. Try to figure out the effect of each group (and the error) before
looking at the explanations.

7.2.2.1 Initializing strings from the current frame

string1, string2: LONG STRING ~ [256];

This is analogous to

number: CAROINAL ~ 5;
ptrToNumber1, ptrToNumber2: LONG POlfl!TER TO CARDINAL ~ @number;

It points both strings to the same 256-character space, which is most likely not what was
intended. To point each string to its own space of256 characters, you would code:

string1: LONG STRING ~ [256];
string2: LONG STRING ~ [256];

7.2.2.2 Comparing strings

Consider the following attempts to compare string1 and string2:

string1: LONG STRING. "Hi There"L;
string2: LONG STRING. "Hi There"L;

1) IF string1 • string2 THEN ' •.
2) IF string1 t • string2 t THEN ...
3) IF string1.text • string2.textTHEN ...

All three string comparisons are incorrect. The first compares the value of the pointers,
and not the objects which these pointers reference. This comparison asks if the two

7-3

7 Strings

pointers point to the same object, not if the two objects pointed to are equal. For this
example, the result is FALSE, even though the two strings contain the same text.

The second comparison seems like it should work: it compares the objects referenced by the
two pointers. Unfortunately, when the compiler generates code for, the comparison, it
treats strings as having text fields with zero length without taking run-time sizes into
account. Since the sizes are zero, the statement only compares the length and maxlength
fields of the two strings (equivalent to string1.length • string2.length AND
string1.maxlength = string2.maxlength). For this example, the result is TRUE. However,
this comparison does not really compare the two strings.

The final statement fails for the same reason as the second comparison. When the
compiler gen,erates the comparison code, it treats the text field as an empty array [0 .. 0).
The compiler thinks it is comparing two empty objects. (The result of this is left for you to
determine. The value is definitely a constant, but is it TRUE or FALSE?)

To compare two strings properly, you need to compare each element in their arrays. This is
. simple to encode, and you may want to try it as a short exercise. However, the String
interface provides String. Equal and String.Compare to perform these primitive STRING
operations; take a look at their descriptions in the String section of the Pilot Programmer's
Manual.

7.2.2.3 Assigning strings

string1: LONG STRING +- [256];
string1 +- "Copy this into the string. please"L;

This set of statements does not, in fact, copy the string literal into the space allocated from
the current frame. The first statement declares the variable string1 and initializes it to
point at a String Body with a 256-character text field. The second statement assigns
string1 to point to a new StringBody, one which contains the literal "Copy this into the
string, please", making the original 256-character text field leaked storage that can no
longer be referenced.

To correctly copy this literal into string1 you could use either AppendString or Copy from
the String interface.

7.2.3 Using the String interface.

The String interface provides routines for doing common string operations: comparing,
appending, copying, and allocating. A number of the appending a,nd copying routines also
involve allocation. You will need to be familiar with these routines to complete the
exercises at the end of this chapter.

7.3 Summary

7-4

This chapter has not really presented anything new. All string use involves pointers, and
you have already learned the intricacies of pointer usage. However, STRINGs do cause
problems, often because programmers are used to strings as arrays of characters. Just
remember that in Mesa, the pointer has been put under program control. The structure of
Mesa STRINGS is another potential source of difficulty. Because the text field is seen by the

Mesa Course 7

compiler as having zero length, comparisons among StringBodies are not as
straightforward as among other pointer objects. However, the String interface supplies
most common string routines, so you will not have to worry about writing them yourself.

7.4 References

Section 6.1 of the Mesa Language Manual briefly describes the record structure of a STRING

and discusses how to declare and use string variables.

Section 7.3 of the Pilot Programmer's Manual describes the String interface, including
many procedures for manipulating STRINGS.

7.5 Exercises

In this exercise, you will modify a line editor that runs in a tool window. The line editor
currently calls several string manipulation procedures defined in the String interface.
These procedures allocate and deallocate strings from a heap, free strings, copy strings,
and replace strings. In addition, the tool implements some more advanced string features
such as substring operations. Your assignment is to implement the same procedures
through another interface called String2. You will write the implementations to this new
interface and bind the modules together into a configuration.

You will need the following modules for this assignment:
EditorDefs.mesa
Editorlmp1.mesa
EditorTool.mesa
String2.mesa
Editor2.config

Notice that none of the modules currently use String2. You should:

1) Change all String references in the module Editorlmpl to String2.

2) Create an implementation module for String2.
(Name it String2Impl.mesa.)

3) Move the procedure InsertString from the module Editorlmpl to String2Imp1.mesa.

4) Change alllnsertString references to String2.1nsertString.

5) Write implementations for the procedures listed in String2.

6) Change the configuration Editor2.config to reflect the new program modules.

All of the procedures in String2 are taken directly from the Pilot String interface. You
should take a look at the String documentation in the Pilot Programmer's Manual to get
an idea of what each of these procedures is supposed to do.

This might also be a good time for you to familiarize yourself with a tool called
DebugHeap. This tool allows you to check for storage leaks in your programs. To find out
how to use this tool, check your XDE User's Guide.

7-5

7 Strings

Notes:

7-6

8

Signals

Signals are a software interrupt facility used when exceptional conditions occur during
the execution of a program. Mesa's signal mechanism is more flexible and powerful than
the exception handling facilities provided by most other languages or systems.

This chapter provides several examples that illustrate how to suspend program execution
to handle an exception, how to provide code to handle the exception, and how to continue
program execution afterwards. At the end of the chapter, you will apply your
understanding of signals to write a program that both generates and handles signals.

8.1 Definition of terms

Exception

Signal

Error

Catch Phrase

Signaller

Call Stack

An exception is an unusual event that programs must be prepared to
handle, such as end-of-file or an invalid input.

A signal is a Mesa language construct used to help handle exceptional
conditions encountered during program execution. Signals are like
procedures except that the code to be executed for a signal call 1S

determined at run-time.

An error is a Mesa language construct similar to a signal, except that
program execution can be resumed after a signal, but not after an
error. The word "signal" is used to refer to both signals and errors,
except where explicitly noted.

A catch phrase is a Mesa construct that establishes code to catch one or
more signals. The catch phrase contains the code to be executed when
the exception occurs.

The Signaller is the program that receives control when a signal is
raised, attempts to find an associated catch phrase, and executes the
code in the catch phrase.

The call stack is a Mesa processor data structure containing a frame for
each procedure invocation that has not yet returned. The call stack is
ordered by most recent invocation, and is referred to as growing

8-1

8 Signals

Raise

Reject

Resume

Continue

Retry

Goto,Exit,
Loop

Unwind

downward. Therefore, going "up" the call stack means going from the
most recently called procedure record toward the oldest.

To raise a signal is to instruct the Signaller to look in each procedure
on the call stack until it finds a procedure with a catch phrase for that
signal. The Signaller searches up the call stack. .

A catch phrase rejects a signal when it is not prepared to handle it (the
Signaller continues searching up the call stack for another catch
phrase for the same signal). A catch phrase rejects a signal either by
explicitly placing a REJECT statement in the code or by not specifying
how to resolve the signal.

To resume a signal is to tell the Signaller to resume program execution
immediately after the statement that raised the signal. As when
returning from a procedure call, any values returned by the signal are
passed back to the statement that raised the signal. An ERROR. cannot
be resumed.

To continue a signal is to tell the Signaller to resume program
execution at the statement following the one to which the catch phrase
belongs. Thus, control is resumed in the procedure where the signal
was caught, not the procedure that raised the signal.

To retry a signal is to tell the Signaller to re-execute the statement to
which the catch phrase belongs.

These are Mesa statements that can be used, in addition to REJECT,

RESUME, CONTINUE, and RETRY to indicate where execution is to occur
after the signal handling mechanism is finished.

Unwind is a special signal raised by the Signaller to allow procedures
about to be deleted from the call stack to clean up their data structures
(e.g. deallocate storage and close files). When there is an unconditional
branch out of the catch phrase (GOTO, EXIT, LOOP, CONTINUE, RETRY) the
Signaller raises the unwind signal at the point where the original
signal was raised.

8.2 Discussion

8-2

Generally speaking, there are two methods for detecting an event at which you are not
present. You can continuously poll an observer or participant of the event, or you can have
the observer or participant notify you. If the event you are checking for is reasonably
predictable and you have time, polling may be convenient. However, if the event is
unlikely to occur or happens intermittently, notification may be more convenient. The
choice of method always involves a trade-off between the inefficiency of polling when
nothing has happened and the inconvenience of being interrupted for notification.

Most computer languages do not implement a notification system for errors or exceptions.
Since computers execute so quickly, the inefficiency of polling can often be tolerated,
particularly when compared with the expense of providing a notification capability.

Mesa Course 8

However, there are cases, such as device time-out, when notification is an easier, more
logical, and more efficient way to communicate the information that an exception has
occurred. For example, while you are transferring files from a file server, it is a rare event
for the connection to time out, and notification is preferable to polling. Mesa provides the
signal facility for cases such as this.

Signals also make it easier for someone who is reading a program to see the exceptions
that are being handled and to identify the code that handles them. A signal always
indicates the occurrence of a rare event. Status polling doesn't have this feature: since it is
usually implemented by boolean checking, it is not always obvious which of the two is the
rare case.

8.2.1 How signals work

The declaration of a signal is similar to that of a procedure: there may be a parameter list
and a returns list. But instead of being initialized to an actual body of code, a signal is
initialized by the symbol CODE. Here's a sample signal declaration:

StringBoundsFault: SIGNAL[S: LONG STRING]
RETURNS [ns: LONG STRING] = CODE;

A signal is raised when a SIGNAL (or ERROR) statement is executed, as in:

SIGNAL StringBoundsFault [string];

The body of code to be executed for a signal is determined at run-time (dynamic binding).
When a signal is raised, normal execution is suspended and control is passed to the
Signaller, which is part of Mesa's run-time support. It is the Signaller'S responsibility to
find and execute the bodies of code to handle the signal.

These bodies of code are called catch phrases . . Each catch phrase can have code for one or
more signals, in a structure similar to a SELECT statement. For example:

StringBoundsFault • >
BEGIN
'ns +-AliocNewString [5: length + 10];
CopyString [from: 5, to: ns];
DealiocateString [5];
RESUME Ins];
END;

String2 = > BEGIN ... END;

A catch phrase can occur in one of two places: explicitly on a procedure call (denoted by
"!"), or after the word ENABLE in a BEGIN-END block. A !-defined catch phrase will catch a
signal raised while the called procedure is executing, or while procedures called by that
procedure are executing. An ENABLE-defined catch phrase does the same thing for every
procedure call in the surrounding BEGIN-END block, and in addition will catch any signal
raised directly in the BEGIN-END block. In the code fragment below, Signal1 would be caught
only if it is raised while Procedure1 is executing. Signal2, on the other hand, would be
caught if it is raised through Procedure1, through another procedure call in the block, or
directly, as in the SIGNAL Signal2 statement.

8-3

8

8-4

Signals

BEGIN
ENABLE Signal2 • > BEGIN ... END;

Procedure1[... !SignaI1 • > BEGIN ... END];
SIGNAL Signal2;

END;

Catch phrases form a dynamic list that is ordered by the call stack, and by BEGIN·END blocks
within each procedure call. In the example above, the catch phrase for Signal1 in the call
to Procedure1 is nested below the ENABLE-defined catch phrase for Signal2. These two catch
phrases are followed by any ENABLE-defined catch phrases in enclosing BEGIN-END blocks and
then any catc;h phrase on the procedure one higher on the call stack, etc. This list of catch
phrases is terminated at the root of the call stack, where there is an implicit catch phrase
that catches any signal that has not been otherwise dealt with and raises the error
UncaughtSignal.

When a signal is raised, the Signaller goes up the program's call stack looking in the BEGIN­
END blocks of each procedure on the stack for a catch phrase that recognizes the signaL
When an appropriate catch phrase is found, the Signaller executes a call to it. The
parameters (if any) are passed and the catch phrase is entered. As with procedures, the
signal's parameters can be referenced inside the body of the catch phrase. (The signal's
parameters have precedence over any other symbols of the same name. Within a
StringBoundsFault catch phrase, for example,s and ns refer to the signal's parameters.)

After the catch phrase is entered one of three things can happen:

• Resume A RESUME statement tells the Signaller to conclude processing of this
signal and resume execution of the program at the point where the signal was
raised. Its syntax is just like RETURN, and the signal can return values if it is
defined that way. RESUME is not legal if the signal is an ERROR.

• Exit EXIT, CONTINUE, RETRY, LOOP, and GOTO are the statements used to
conclude processing a signal by jumping to a point outside the catch phrase .

. When a jump occurs, the Signaller raises the special signal UNWIND to inform
procedures more deeply nested on the call stack that they are about to be
deleted. (UNWIND is discussed in §8.2.5.)

• Reject This tells the Signaller to continue processing this signal and to pass
it to the next higher catch phrase. There are three ways that a catch phrase can
reject a signal: explicitly (with a REJECT statement), implicitly (by not catching
the signal), or by first catching the signal, and then "falling off the end" without
executing a RESUME, EXIT, CONTINUE, RETRY, LOOP, or GOTO.

8.2.2 Resume

After handling an exception, it's possible to return to the code that raised the signaL This
is desirable if the code executed in the catch phrase has eliminated the source of the
exception.

For example,

Mesa Course

Node: TYPE • RECORD[
index: CARDINAL,
sequence: SEQUENCE length: CARDINAL OF SeqType);

PtrToNode: TYPE • LONG POINTER TO Node;
seq: PtrToNode;

GrowSequence: PROCEDURE [seqNeedsLengthening: PtrToNode)
RETuRNs[lengthenedSeq: Ptr ToNode) = { ... };

8

--lfseqNeedsLengthening is NILthen GrowSequence allocates a new sequence and
--returns a pointer, lengthenedSeq, to it. Otherwise, GrowSequence allocates a
--new sequence longer than seqNeedsLengthening.length, copies the data from
-- seqNeedsLengthening f to lengthenedSeq f, frees seqNeedsLengthening f ,
--and returns a pointer, lengthened Seq, to the new sequence.

InsertNode: PROCEDURE [object: SeqType) •
BEGIN

IF (seq = NIL) OR (seq.index = seq.length) THEN seq +- GrowSequence[seq);
seq[seq.index) +- object;
seq.index +- seq.index + 1;

ProcessNextObject PROCEDURE[object: SeqType);
BEGIN

IF DuplicateObject[object) THEN TakeAppropriateAction
ELSE InsertNode[object);

END;

If the sequence is full, InsertNode calls GrowSequence[seq) to lengthen the sequence. It
would improve modularity ifinsertNode knew only how to add data to the sequence, and
did not attempt to handle the exception. Instead, when the sequence is full, InsertNode
would raise a signal to inform a catch phrase on the call stack (presumably one that knows
how to grow the sequence) to take care of the problem. Once the sequence has been
lengthened, the signal can be RESUMEd, returning control to InsertNode, which can then
continue to add data to the sequence.

Call Stack

Code to allocate and deallocate
storage

~atch phrase to allocate and
deallocate node

...

InsertNode (Raises a signal if
node allocation is required)

FigureS.1

8-5

8

8-6

Signals

Figure 8.1 illustrates this scheme. It shows a box for a procedure that knows how to
allocate and deallocate storage, and, lower on the stack, a box for the procedure
InsertNode, which communicates with the previous procedure by raising a signal when it
is necessary to allocate a new node.

Let's look at how to add the appropriate signal-raising and signal-handling code to the
above fragment to accomplish this design.

First, we declare the following signal:

SequenceBoundsFault: SIGNAL[oldSeq: PtrToNode]
RETURNS [newSeq: PtrToNode] = CODE;

We want to raise this signal when the sequence needs more space. This can occur either
when the sequence needs to be initialized for the first time, or when the sequence needs to
be extended beyond its present boundaries. We have modified InsertNode as follows:

InsertNode: PROCEDURE [object: SeqType] =
BEGIN

IF seq = NIL THEN seq ~ SIGNAL SequenceBoundsFault[seq]; --raise signal
UNTIL seq.index < seq.length DO

seq +- SIGNAL SequenceBoundsFault[seq]; --raise signal
ENDLOOP;
seq[seq.index] ~object;
seq.index ~ seq.index + 1;

END;

The first line of code checks to see if the sequence is NIL. If it is, it raises Sequence­
BoundsFault, passing seq as the sequence to be extended. When the signal is raised,
normal program execution is suspended. The Signaller takes over and begins to examine
catch phrases on the call stack. An appropriate one is found in the call to InsertNode in the
revised ProcessNextObj ect:

ProcessNextObject PRocEDuRE[object: SeqType];
BEGIN

IF DuplicateObject[object] THEN TakeAppropriateAction
ELSE InsertNode[object! SequenceBoundsFault = > --catch Signal

RESUME[GrowSequence[oldSeq]]];
END;

The body of the catch phrase is dynamically bound to the signal call and is executed after
passing in the parameter, oldSeq, of SequenceBoundsFault. This catch phrase only
contains one line of code, the RESUME statement, which calls -GrowSequence[oldSeq].
GrowSequence takes oldSeq, allocates a larger one (copying the data from oldSeq t), and
returns the new sequence. The signal is then resumed, which passes control back to
InsertNode, in the statement that raised the signal. At this point, seq is assigned the
newly allocated sequence returned by the RESUME. InsertNode now has a freshly allocated
sequence into which it can insert data.

The UNTIL loop handles the case of no space for new data in the existing sequence.
SequenceBoundsFault works in the same way as just described. (The raising of the signal
appears in a loop for robustness, in case the catch phrase does not allocate enough new
space to cover InsertNode's needs in a single call. The copying operation described above is

Mesa Course 8

performed each time the signal sequenceBoundsFault is raised in the UNTIL loop of
I nsertNode.)

Figure 8.2 shows the state of the call stack when a full sequence is encountered.
ProcessNextObject has called InsertNode, which has raised sequenceBoundsFault[seq) to
signify the need for a larger sequence. This resulted in a run-time system call to the
Signaller, which created a call to the catch phrase for SequenceBoundsFault (labelled
CatchFrame: ProcessNextObject in the figure). The catch phrase has then called
GrowSequence, which will allocate a new sequence and deallocate the old one. When
GrowSequence returns, the catch phrase will execute a RESUME, and return the longer
sequence to InsertNode.

Call Stack

ProcessNextObject

InsertNode
(Raises Sequence Bounds Fault)

Signaller (One or more prc;>cedures)

Catch Frame: ProcessNextObject

GrowSequence

Figure 8.2

Signals do not automatically return after execution of a catch phrase; you must indicate
where control is to continue if you do not want the Signaller to continue up the call stack
looking for catch phrases. In this case we wanted to return to the point where the signal
was raised, so we used RESUME. Allowing a signal to "fall off the end" of a catch phrase, is
not a RESUME, but rather an implicit REJECT.

8.2.3 Retry and continue

There ar.e times when an unsuccessful action raises a signal and it is appropriate to repeat
the action until it is successful. For instance, if the File Tool is unable to open a connection
to a specified service on the first try, you might want it to keep trying until it was
successful or until you told it to stop. RetryExample provides an -example of this. Run the
program by typing RetryB_ .. ple in the Executive, followed by the name of a server.
(You should move the program to the Tajo volume via Command Central, etc.) The
pro~am simulates a failure to open a connection to the specified server. (Notice the
message to that effect.) On the second attempt the simulated connection is made.

Take a look at the source listing to see how this retry was accomplished.
RetryExamplelmpl primarily consists of one procedure, RetryProc, which gets the server
name from the user's input and then tries to open a connection. Inside OpenConnection

8-7

8

8-8

Signals

the signal TimeOut can be raised if the connection is not established within a certain time
period. This signal is defined in the SignalsDefs interface as

TimeOut: ERROR;

OpenConnection has been rigged for this example to raise the signal TimeOut the first
time it is called. We catch this signal in the call to OpenConnection, print a message to
the user to explain the problem and RETRY. This causes the program to make the procedure
call to OpenConnection again. The second call succeeds and we post a message indicating
the open connection. Figure 8.3 shows the situation after the signal is caught.

Call Stack

RetryPro(

OpenConnection
(Raises Timeout)

Signaller (One or more
procedures)

CatchFrame:
OpenConnection

Figure 8.3

When the catch phrase executes the RETRY, there is ajump to the beginning of the statement
that contains the catch phrase, in this case, the call to OpenConnection:

OpenConnection[server! Timeout == > BEGIN .•• RETRY END]

When an ENABLE clause is used to define the catch phrase, the BEGIN-END block surrounding
the ENABLE clause is the "statement that contains the catch phrase." For example, if
RetryPro(had been coded this way:

BEGIN

ENABLE Timeout == > BEGIN ... RETRY END;

OpenConnection [server];
END;

then the RETRY would jump to the beginning of the outermost BEGIN-END block.

CONTINUE is similar to RETRY, except that the jump is to the statement following the one that
contains the catch phrase, or for an ENABLE clause, the statement following the BEGIN-END

block surrounding the clause. CONTINUE is used when the catch phrase determines that it is
desirable to skip the signal-raising statement rather than retry it.

Mesa Course 8

8.2.4 Exit, loop and goto

The Mesa statements EXIT, LOOP, and GOTO can be used within a catch phrase just as they
are used in BEGIN·END blocks and loops. These statements are legal within a catch phrase
whenever the catch phrase is enclosed within a loop or BEGIN·END block. in which they would
normally be legal.

As an example, consider a program fragment that reads data from a file and inserts it into
a linked list in sorted order. (We use the system interface Stream, discussed later in the
course, to read the file. Stream raises the signal Stream. EndOfStream at end offile.)

DIRECTORY
Heap USING [Create, Delete],
MStream USING [Handle, •.•],
Stream USING [EndOfStream, GetWord, •..],

.. -,

ExitExample: PROGRAM
IMPORTS Heap, MStream, Stream, ... =

BEGIN
-·TYPES
Node: TYPE = RECORD[

data: CARDINAL +- 0,
nextNode: PtrToNode +- NIL];

PtrToNode: TYPE = LONG POINTER TO Node;
PtrToPtrToNode: TYPE = LONG POINTER TO PtrToNode;

--Variables
z: UNCOUNTED ZONE +-NIL;
headOfList: PtrToNode +-NIL;

--Heap allocation I deallocation procedures
CreateStorageArea: PROCEDURE = BEGIN Z +- Heap.Create[initial: 20]; END;

DestroyStorageArea: PROCECURE • { ... };

MakeNode: PROCEDURE[nextNode: PtrToNode]
RETuRNs[nodePtr: PtrToNode] • { ... };

FreeOneNode: PROCEDuRE[freeThisNode: PtrToPtrToNode]
RETuRNs[nodePtr: PtrToNode] • { ... };

FreeAIINodes: PROCEDURE.

BEGIN
tempNodePtr: PtrToNode +- headOfList;
UNTIL tempNodePtr • NIL DO

tempNodePtr +- FreeOneNode[@tempNodePtr];
ENDLOOP;
head Of List +- NIL;

END;

8-9

8

8-10

Signals

--File Management Procedures
OpenDataFile: PROCEDURE [fileName: LONG STRING]

RETURNS[sh: MStream.Handle] • { ... J;

CloseDataFile: PROCEDURE[sh: MStream.Handle]
RETURNs[default: MStream.Handle Eo- NIL] = { .•. };

GetNextData: PROCEDURE[sh: MStream.Handle]
RETURNs[n: CARDINAL] =
BEGIN

RETURN[Stream.GetWord[sh)); --raises Stream.EndOfStream
END; -- at "end of file"

--Linked List Management
Process Data: PROCEDURE •

BEGIN
insertHere: PtrToPtrToNode Eo-NIL;
sh: MStream.Handle Eo- OpenDataFile[MyFile];
n: CARDINAL Eo- 0;
DO

n Eo- GetNextData[sh! Stream.EndOfStream = > EXIT];
insertHere Eo- SearchLinkedList[n];
InsertNode[insertHere, n];

ENDLOOP;
sh Eo- CloseDataFile[sh];

END;

SearchLinkedList: PROCEDURE[n: CARDINAL]
RETURNS [insertionPoint: PtrToPtrToNode] = { ... };

InsertNode: PROCEDURE[insertionPoint: PtrToPtrToNode, n: CARDINAL] • { ... };

END.

The loop in Process Data gets the next data item from the file, searches the list to see where
it belongs and inserts it. Execution of the loop ends at the end of the file. The procedure
Stream.GetWord, which is called in GetNextData, raises the signal Stream.EndOfStream
when there is no more data to be transferred. The signal is caught in the call to
GetNextData in ProcessData. The loop is then EXITed and control is transfered to

sh Eo- CloseDataFile[sh];

which closes the file before returning.

8.2.5 Unwind

A GOTO, EXIT, RETRY, LOOP or CONTINUE statement can cause a jump out of a catch phrase into
the surrounding code. When a jump of this sort occurs, there may be several procedure
calls on the stack below the target of the jump that will be prematurely exited when the
jump is accomplished. (The signal was necessarily raised by the procedure on the bottom of
the call stack, so neither that procedure nor any of the procedures between it and the
procedure with the catch phrase will be completed when the jump is executed.) Since these

Mesa Course 8

procedures may have been in the midst of doing something when the signal was raised,
Mesa provides a facility for them to wrap up any unfinished operations.

Before executing the jump, the Signaller raises a special signal called UNWIND to tell all
catch phrases that had previously rejected the signal that they are about to be removed.
UNWIND propagates along the same path as the original signal: from the BEGIN·END block in
which the original signal was raised to the BEGIN·END block containing the catch phrase
executing the jump. It is the responsibility of each of these blocks to catch UNWIND and
clean up its operations. The Signaller stops UNWIND when it reaches the catch phrase that
is making the jump. The jump is then executed and control returns to the program.

Call Stack

ProcA
(Target of the jump below)

...

ProcB
(Raises a signal)

...

CatchFrame: ProcA
(Does jump into ProcA)

Figure 8.4

In Figure 8.4, ProcB has raised a signal which was caught by a catch phrase in ProcA.
When that catch phrase does ajump, all the procedures below ProcA will be removed from
the call stack and all BEGIN·END blocks within ProcA below the target of the jump will be
exited. All of the catch phrases more deeply nested than the one executing have
(necessarily) rejected the signal, so UNWIND propagates through this set of catch phrases.
Because UNWIND stops after going through the catch phrases that rejected the original
signal, it never results in an uncaught signal.

When doing a GOTO, EXIT, RETRY, LOOP or CONTINUE from a catch phrase, you must be aware
that the UNWIND signal is going to be raised and that you need to clean up any work in
progress in the procedures and BEGIN·END blocks lower on the call stack. If you forget, your
programs may have space leaks from storage that should have been deallocated, or they
may develop strange bugs from things such as files that should have been closed.

As an example, let's modify the previous fragment to allow the user to cancel the operation
of inserting data from MyFile into the linked list. If the user hits the ABORT key (detected

8·11

8

8-12

Signals

by the call to the system interface Userlnput) then the file transfer and insertion operation
will be terminated.

DIRECTORY

Userlnput USING [UserAbortJ,
FormSW USING[ProcType, ... J,
Put USING[Line, ... J,

... ,

UnwindExample: PROGRAM
IMPORTS Heap, MStream, Stream, Userlnput, ..• =

BEGIN

--Signal declaration
UserAbort: ERROR. CODE;

CheckForAbort: FormSW.ProcType =
--Later chapters discuss sending text to a tool message subwindow

BEGIN
ENABLE

UserAbort = > BEGIN GOTO abort; END;
Put.Line[PtrToSomeToolsDataStructure.msgSW, "Processing File "l];
Process Data [];
Put.Line[PtrToSomeToolsDataStructure,msgSW, " . , . done" l];
EXITS

abort = >Put,Line[PtrToSomeToolsDataStructure.msgSW, " ... aborted" l];
END;

Process Data : PROCEDURE •
BEGIN

insertHere: PtrToPtrToNode +-NIL;
sh: MStream.Handle +- OpenDataFile[MyFile];
n: CARDINAL +-0;
BEGIN
ENABLE

UNWIND· >
BEGIN

IF sh # NIL THEN sh +- CloseDataFile[sh];
IF headOfList # NIL THEN FreeAIiNodes;

END;
DO

IF Userlnput.UserAbort[PtrTolnputWindowJ THEN ERROR UserAbort;
--If the user has pressed the abort key raise the global signal UserAbort
n +- GetNextData[sh! Stream.EndOfStream • > EXIT];
insertHere +- SearchLinkedList[n];
I nsertNode(i nsertHere, n];

ENDLOOP;
sh +- CloseDataFile[sh];
END;

END;

Mesa Course 8

--mainline code

CheckForAbort;

On each pass throug~ the DO loop of ProcessData, we check to see if the user has hit the
ABORT key. If so, the error UserAbort is raised. (See the Style section for a discussion of
when to use ERROR and when to use SIGNAL.)

We catch the signal and print a message to the user that the action has been aborted. Since
this signal has been declared as an ERROR, the catch phrase cannot RESUME. It must remove
Process Data from the stack, but at this point ProcessData has an open file and a linked list
filled with nodes allocated from a heap. By providing a catch phrase for UNWIND in
Process Data, we get the chance to deallocate the nodes in the linked list and close the file
before the procedure is removed. (See the Style section for a discussion on why the ENABLE

clause is in an embedded BEGIN-END block.)

Note: It is common to recognize an exception condition (either by boolean checking or by
catching a signal), and then raise a signal to pass this information on to a higher level
procedure. This is often done to hide the lower level's implementation from the higher
level's implementation. When debugging an uncaught signal, it is important to remember
to check on the call stack for nested signals. For example, the apparent signal may have
been raised in a catch phrase for some other signal. The root of the problem may be more
apparent from the original signal than the one being debugged.

8.3 Summary

Signals and errors are an alternative to status polling. They are best at handling rare
events, since raising a signal requires fewer checks than status polling within a loop, but
processing a signal (with the Signaller) takes more time than processing a boolean
statement. Using signals also helps the reader of a program to see which exceptions are
being handled and to identify the code that handles them.

Though raising a signal is similar to calling a procedure, there are several differences:

• The code for a signal is dynamically bound to the signal at run-time, whereas the code
for procedures is specified at compile-time.

• Normal execution halts during the processing of a signal, and the Signaller takes
control.

• Execution can proceed at several places after a signal is _raised, whereas after a
procedure call execution must proceed after the statement that made the call.

The code for processing a signal is contained in a catch phrase. Catch phrases can occur
either after an ENABLE, or after an ! in a procedure call. Catch phrases after an ENABLE can
catch signals from any procedure calls nested within the BEGIN·END block, but catch phrases
in procedure calls can only catch signals nested within that procedure call.

When the Signaller takes control, it does the following:

8-13

8 Signals

1. Looks up the call stack for a catch phrase that recognizes the signal, starting with the
BEGIN·END blocks in the code that raised the signal.

2. Executes any catch phrases found for the signal, branching as indicated in the catch
phrase. If no jump is indicated, it continues looking up the call stack.

3. If it can't find a catch phrase in any of the procedures on the cab stack, the signal is
uncaught, and the debugger is called via the special signal UncaughtSignal.

There are several ways to tell the Signaller how to continue execution after a catch phrase.
You can use the Mesa statements GOTO, EXIT, or LOOP, with their normal effects. There are
also several signal-specific jump statements. Doing a RESUME is similar to returning from a
procedure call: control returns to the statement that raised the signal. However, you
cannot RESUME an error. (This is the only difference between signals and errors.) CONTINUE

causes execution to be transferred to the first statement after the one containing the the
catch phrase. RETRY retries the statement that contains the catch phrase. (If the catch
phrase is in an ENABLE clause, then the "containing statement" means the BEGIN·END block
that contains the ENABLE.) REJECT tells the Signaller to continue looking up the call stack for
another catch phrase that recognizes the signal. If you don't specify any jump statement
the catch phrase performs an implicit reject.

GOTO, EXIT, LOOP, CONTINUE, and RETRY each cause ajump into the procedure containing the
catch phrase. This means that the procedure and BEGIN·END blocks below it will be removed
from the call stack. The Signaller generates the special signal UNWIND to allow catch
phrases that have previously rejected the signal to do clean up, such as closing files and
deallocating storage.

8.4 Style

8·14

8.4.1 Scope

The scope of an ENABLE clause places it outside the scope of variables declared in the same
BEGIN·END block, since the ENABLE clause must precede any declarations. (See page 8.5 of the
Mesa Language Manual for a diagram of clause scopes.) To permit the catch phrase in the
ENABLE clause to have access to local variables, the ENABLE clause must be more deeply
nested than the local variables. To accomplish this, declare the ENABLE clause and the
executable statements within an extra BEGIN·END block. The ENABLE clause will then know
about the variables since they are declared in a surrounding block:

BEGIN

Declarations
BEGIN

ENABLE

Statements
END

END

8.4.2 Errors vs. signals

An ERROR is used instead of a signal when a RESUME cannot be handled, since it is illegal to
RESUME an ERROR. You don't want a catch phrase to do a RESUME if you do not want to return
to the procedure that generated the ERROR, either because it would be inappropriate, or

Mesa Course 8

because something catastrophic has happened. In the program UnwindExample, we used
the ERROR UserAbort. We made UserAbort an ERROR since the user wants the procedure to
stop. This is a case where it would be inappropriate to resume execution.

8.4.3 A caution

In the RESUME example in §8.2.2, the catch phrase returned a pointer for use by the RESUMEd
procedure. If some intermediate procedure held the value of the old pointer it would not
have been informed of the new value, and presumably an error situation would arise when
control returned to it. When you code a catch phrase to replace a node out from under a
pointer, make sure that any code that used the old node will use the revised pointer.

8.5 Questions

1) In the following code fragment, to which statement will the CONTINUE branch?

commands +-0;
BEGIN
ENABLE

AlreadyDone =- > CONTINUE;
GetToken[token] ;
DoCommand[token]; -- where AlreadyDone would get raised
commands +- commands + 1;
ResetStatus[] ;

END
Write["Commands completed."L];

In the following code fragments, list the order that the statements labeled <statement n>
will be executed.

2)
Sig1: SIGNAL. CODE;
x: CARDINAL +- 0;

FOR counter: INTEGER IN [1 .. 3] DO
ENABLE

Sig1 • > RETRY;
<statement 1 >
IF counter =- 2 THEN

BEGIN
ENABLE

BEGIN
Sig1 • > < statement 2> ;
UNWIND. > x f-1;
END;

< statement 3> ;
IFX • OTHEN

SIGNAL Sig1 ;
<statement 4>;
END;

<statement 5>
ENDLOOP; ...

8-15

8 Signals

3)
Sig1: SIGNAL = CODE;

FOR counter: INTEGER IN [1 .. 2] DO

BEGIN

ENABLE

Sig1 = > LOOP;

< statement 1 > ;
IF counter = 1 THEN

SIGNAL Sig1;
< statement 2> ;
END;

< statement 3> ;
ENDLOOP;

< statement 4 > ;

4)

Sig1: SIGNAL = CODE;

FOR counter: INTEGER IN [1..2] DO

BEGIN

ENABLE

Sig1 = > CONTINUE;

< statement 1 >;
IF counter = 1 THEN

SIGNAL Sig1;
< statement 2> ;
END;

< state ment 3 > ;
ENDLOOP;

< statement 4> ;

5)

Sig1: SIGNAL. CODE;

FOR counter: INTEGER IN [1 .. 2] DO

BEGIN

ENABLE

Sig1 • > EXIT;

< statement 1 > ;
IF counter = 1 THEN

SIGNAL Sig1 ;
< statement 2 > ;
END;

< statement 3> ;
ENDLOOP;

< statement 4 > ;

8-16

Mesa Course 8

6)
Sig1: SIGNAL II CODE;

FDR counter: INTEGER IN [1 •• 2] DO
ENABLE

Sig1 • > LODP;
< statement 1 > ;
IF counter II 1 THEN

SIGNAL Sig1;
<statement 2>;
<statement 3 >;

ENDlOOP;
<statement 4>;

7)
Sig1: SIGNAL II CODE;

FOR counter: INTEGER IN [1 .• 2] DO
ENABLE

Sig1 • > CONTINUE;
< statement 1 > ;
IFCounter II 1 THEN

SIGNAL Sig1;
< statement 2> ;
< statement 3> ;

ENDlOOP;
< statement 4 > ;

8)
Sig1: SIGNAL • CODE;

Proc1: PROCEDURE =
BEGIN

SIGNAL Sig1;
END;

IF TRUE THEN
BEGIN
ENABLE

Sig1 II > RESUME;
< statement 1 > ;
Proc1 [!Sig1 • > CONTINUE];
< statement 2> ;
Proc1;
< statement 3> ;
END;

< statement 4> ;

8-17

8

8-18

9)

Signals

Sig1: SIGNAL .. CODE;

BEGIN
ENABLE

Sig1 .. > RESUME;
< statement 1 > ;
IFTRUE THEN

BEGIN
ENABLE

Sig1 .. > GOToTheEnd:
<statement 2>;
SIGNAL Sig1 ;
< statement 3> ;
EXITS

TheEnd .. > <statement 4>;
< statement 5> ;
EXITS

The End .. > < statement 6> ;
END;

10) In the following pseudo-Mesa code, what happens when the call Proc1 [0] is made? (Assume
that catch-cases 4 and 7 reject Sig1.) Which catch-cases are executed, and in what order?

Proc1: PROC [x: CARDINAL] ..
BEGIN -- block A
ENABLE { -- Catch phrase-l

Sig1 .. > GOTO punt; -- Catch-case-l
Sig2 .. > < Catch-case-2 > ;
UNWIND .. > <Catch-case-3>};

Stmt1;
Stmt2;

BEGIN -- block B
ENABLE -- Catch phrase-2

Sig1 II > < Catch-case-4 > ;
Stmt3;
Stmt4;
OtherProc[x ! -- Catch phrase-3

Sig2 .. > < Catch-case-S > ;
UNWIND .. > <Catch-case-6>1;

END; -- block B, and scope of Catch phrase-2
StmtS;
EXITS

punt II > Stmt6;
END; -- Proc1, and scope of Catch phrase-l

OtherProc: PROC [x: CARDINAL] • {stiIlOtherProc[x ! -- Catch phrase-4
Sig1 .. > <Catch-case-7>;
Sig2 .. > < Catch-case-8 > ;
UNWIND • > < Catch-case-9 >]};

Mesa Course

StiliOtherProe: PROC [x: CARDINAL] • {

IF x • 0 THEN ERROR Sig1 ELSE ERROR Sig2};

11) In the program below, what value does b get?

Question3: PROGRAM.

8.6 Exercise

BEGIN

Sig: SIGNAL [e1: CARDINAL] RETURNS [e2: CARDINAL] • CODE;

Proc: PROCEDURE [e1, e2: CARD] RETURNS [BOOLEAN] •

BEGIN

ENABLE Sig • > {c2 ~ e1; RESUME];

If e2 # e1 THEN e2 ~ SIGNAL Sig[c2];
RETURN [c1 • e2]

END;

c1, c2: CARDINAL;

b: BOOLEAN;

--Mainline code
b ~ Proc[1 ,2];

END.

8

In this programming assignment, you will alter a program that has been written to play
the game of blackjack. The user initially specifies the number of games the program will
play with itself. There will only be 2 players in the game: the dealer and the player. When
the user clicks Start!, the program will play out all of the games; the player's winnings
will be output to a file sub-window when all of the games are finished:

Start! Gues=10000

Your total winnings are -1

Your total winnings are 25

Your total winnings are -150

8-19

8

8-20

Signals

In this game of blackjack, the player bets 1 dollar on every hand. If he gets blackjack (a
total of 21 in exactly two cards), then he wins 2 dollars. If the dealer gets blackjack, the
player loses. If the game continues, the player receives hits (additional cards) according a
conservative strategy based on his hand, and the dealer's face card. If he busts (exceeds
21), he loses. Otherwise, the dealer receives hits until his total is ~ hard 17 (a hand in
which an ace is counted as 1 rather than 11) or above. If the dealer busts, the player wins 1
dollar. Finally, if the game has reached this stage, the 2 hands are compared. The players
wins 1 dollar if his hand is greater; his winnings remain the same if the hands tie; and he
loses ifthe dealer's hand is greater. There is no double-down, splitting, or insurance in this
version of blackjack.

When the user invokes Startl, the following procedure in the implementation module is
called:

Mesa Course

PlayBlackJack: PUBLIC PROCEDURE[Output: Window.Handle ~ NIL, gamesToBePlayed:
CARDINAL ~ 0) =
.• This procedure will play Blackjack as many times as specified in gamesToBePlayed.
-After the games have been played, results are written out to the window handle
··output
BEGIN
playerTotal: CARDINAL;
dealerTotal: CARDINAL;
playerHasAce: BOOLEAN;
dealerHasAce: BOOLEAN;
dealerHole: CardType;
dealerFace: CardType;
winnings:. INTEGER ~ 0;

THROUGH [1 .• gamesToBePlayed] DO
I ntial izeDeckForNewGame;
[playerTotal,dealerTotal,playerHasAce,dealerHasAce,dealerHole,dealerFace] ~

Deal[];
IFplayerHasAce AND (playerTotal = 11) THEN

BEGIN
winnings ~ winnings + 2; .. Player has Blackjack
LOOP;
END;

IF dealerHasAce AND (dealerTotal = 11) THEN
BEGIN
winnings ~ winnings. 1; ··Dealer has Blackjack
LOOP;
END;

[playerTotal] ~ HitPlayer[playerHasAce, playerTotal, dealerFace];
IF playerTotal > 21 THEN

BEGIN
winnings ~ winnings· 1; .. Player busted
LOOP;
END;

dealerTotal ~ HitDealer[dealerHasAce, dealerTotal];
IF dealerTotal > 21 THEN

BEGIN
winnings ~ winnings + 1; ··Dealer busted
LOOP;
END;

SELECT playerTotal FROM
< dealerTotal • > winnings ~ winnings· 1;
> dealerTotal • > winnings ~ winnings + 1;
ENDCASE • > NULL; •• Push

ENDLOOP;
Put.CR[output] ;
Put.Text[output,"Your total winnings are "L];
Put.LongDecimal[output, winnings];
Put.CR[output);
END;

8

8-21

8 Signals

The procedures Deal, HitPlayer, and HitDealer all call the following procedure when
they need a card:

NewCard: PROCEDURE RETURNS [card: CardType] =
- This procedure returns the next card in the deck. If at any point, the last card in
00 the deck is used, the non-used cards in the deck are shuffled, and play continues
-where it left off
BEGIN
IF freeCard = 53 THEN

[deck, firstCard, freeCard] +- Shuffled[deck, firstCard];
card +- deck[freeCard];
freeCard +- freeCard + 1;
RETURN;

END;

In the procedure NewCard, deck is an array of 52 records with each record representing
one card. Dealing is accomplished by stepping through the deck one card at a time. At any
point during a game of blackjack, firstCard is an index indicating the first card that was
dealt for that hand. freeCard is an index indicating the top card on the remaining deck
(the next card to be dealt). Thus, when freeCard is 53, deck, firstCard, and freeCard
are reinitialized by calling the procedure Shuffled, which makes sure that the cards on
the table are not included in the shuffle. To complete this assignment, you don't have to
know how Shuffled works, just that it does the right thing when passed the right
arguments.

Currently, if the dealer runs out of cards at any point in the game, the cards are in use are
shuffied, and the game continues where it left off. So if only 1 card remains in the deck,
that card will be dealt, the rest of the deck will be shuffled, and the dealing will continue.

Modify this program (using a signal) so that if the dealer runs out of cards while dealing
the initial hand (the first 4 cards), that game is started over with a shuffied full deck of 52
cards. If the dealer runs out of cards while hitting the player, the unused cards in the deck
should be shuffled, and the game continued where it had paused (as before). If the dealer
runs out of cards while hitting himself, then the dealer loses the game and the next game
is started with a shuffled full deck of 52 cards. The file that you will be altering is
Blackjacklmpl.mesa. Other files you will need are BlackjackDefs.mesa,
BlackjackControl. mesa, and Blackjack.config. Once you have the new version of
Blackjacklmpl.mesa, answer the following questions:

1. Briefly describe how you could have completed the the assignment without using a
signal.

2. Signals could have been used to indicate DealerBlackjack, DealerBusted, ... From an
efficiency point of view, why isn't this a good idea?

8.7 References

8-22

Chapter 8 of the Mesa Language Manual describes the syntax of signals and some reasons
for using them.

Section 4 of Mesa: A Designer's User Perspective gives some background information on
signals.

9

Variant records

Programmers often find it convenient to aggregate information of different types. For
example, suppose you want a data base of statistics for individual softball players. For
each player, you want to know things like name (LONG STRING), position (enumerated TYPE),

times at bat (INTEGER), hits (INTEGER), etc. When the information is the same for all players,
you can use the Mesa RECORD type to group the data for each player. However, some players
have additional pieces of information that are relevant only to the position they play. For
example, if a player is a pitcher, you want to keep track of the number of walks given up,
and the number of strikeouts pitched, in addition to the common information that you
keep track of for all players. Or, if a player is an infielder, you might want to know the
number of errors committed. In cases where members of a class have information that is
relevant only to their subclass, you should use the v.ariant RECORD construct.

In this chapter, we discuss how to declare variant RECORD types, how to declare, allocate
and initialize variant RECORD variables, how to use constructors to assign values to variant
RECORDS, and how to access the fields of variant RECORDS.

9.1 Definition of terms

adjective

tag

discrimination

9.2 Discussion

An adjective is an identifier constant from an enumerated TYPE used to
select one of the alternatives in a variant RECORD template.

The tag is a field of a variant RECORD; tag is used to select one of the
alternative "arms" of the variant part by matching one of the
adjectives.

A discrimination statement provides access t~ the fields in the variant
part of a variant RECORD variable, based on the value of the tag.

9.2.1 Declaring variant RECORDS

There are basically two parts to declaring a record variable. Step one is to declare a TYPE

that provides a "template" - that is, the TYPE declaration shows all the fields that a
variable of that TYPE will have. Step two is to declare variables of the newly defined RECORD

9-1

9

9-2

Variant Records

type. Variant RECORDS are done the same way. The only difference is that the TYPE

declaration must show the fields for all possible alternative variants ofthe TYPE.

It is worth taking some time to study the syntax of variant RECORDS to make your use of
them less error-prone. We declare the TYPE as follows:

identifier: TYPE = RecordTC

The syntax for RecordTC is shown in Fig. 9.1. Refer to it as you read this discussion.

RecordTC
MachineDependent

. ::" :.

:: V~i~ij\'ieldtlSt·
..... :

,',' .,'::,

::.i< : ..

CommonPart

VmanWart

. ", :." : :.: ,':-:'
:'.' ..

Access

TagType
VariantList
Variant

.::"

;:' '

N amedFieldList

.. -
MachineDependent RECORD [VariantFieldListl
empty I MACHINE DEPENDENT

.:::. :::: ~C~~~~Pat.tidentin..r : Ai:~S$.V ariantpal't I
.. .:. .. :. ·VariantPirtl '..
" .. ',: ;:·N4ltt~t~ldLtlt":l;. .

.': .·U:tl~~hl~dFi~ld~ist·:" ,:' '.:.,'

.;'
',', : :

empty I
N amedFieldList ,

SELECTTilg FROM

VariantList
IN:OCA.SE:: :

empty I
PUBLICi

PRIVATE

TypeSpecification I *
Variant I Variant List Variant
IdList ~ [VariantFieldListl , I
IdList ~ []

IdList: Access TypeSpecification DefaultOption I
NamedFieldList, idList: Access TypeSpecification
DefaultOption

Figure 9.1 RecordTC Syntax

Obviously, the syntax presents a lot of possibilities for declaring a variant RECORD type.
The main things to notice are the syntax for the variant field list, for the variant part and

Mesa Course 9

for the tag within the variant part. If a RECORD has a common part and a variant part, there
will be an identifier for the variant part and a second identifier for the tag.

Let's look at a simple example. There is a variant RECORD type declared in the program
SoftballDataTool. (You should retrieve the files SoftballDataTool.mesa and
SoftballDataTool. bed from the course directory, if you don't aiready have them on
your local disk.) This program is designed to solve the problem of keeping track of
information for people on a softball team. Let's look first at the TYPE declarations.

The declaration for SoftbaliPlayerData is a variant RECORD:

SoftbaliPlayerData: TYPE. RECORD[
name: LONG STRING +- NIL,
timesAtBat: INTEGER +-0,
hits: INTEGER +- 0,
otherlnfo: SELECT position: Position FROM

outfielder • > [
bestPosition: OutfieldPosition,
errors: INTEGER +-0], .

infielder. > [
bestPosition: InfieldPosition,
doublePlays: INTEGER +- 0,
errors: INTEGER +- 0],

pitcher. > [strikeouts. walks: INTEGER +- 0].
catcher • > [].

ENDCAS~];

The fields in the common part include name, timesAtBat and hits. We want these three
pieces of information about every player. Notice that the syntax requires that you declare
all fields of the common part before you declare the variant part. The identifier for the
variant part, otherlnfo, comes just after the fields for the common part.

Each player has a position, which is the tag identifier. The TYPE of this field is enumerated:
Position: TYPE • {outfielder. infielder. pitcher. catcher};. The constants of the
enumerated TYPE are used as adjectives in the variant part of the variant RECORD. In our
example, the value of position for any given player may be either outfielder, infielder,
pitcher, or catcher. The remaining fields in the RECORD representing any individual player
will depend on the value in the tag field. If a player's position is outfielder, for example,
the RECORD representing that player will have two fields (bestPosition and errors) in
addition to the fields in the common part of the RECORD. SO, a RECORD representing an
outfielder has a total of five fields, while the RECORD of an infielder has a total of six fields.
Notice that a catcher's RECORD only has three fields, because

catcher ~ []

is the way to express the fact that this variant has no additional fields.

This is a relatively simple example. The syntax for RECORD types provides many
possibilities, such as bound variant types, implicit tags and computed tags.

9.2.2 Allocation of variant RECORDS

Now that we have declared a variant RECORD type, we can declare variables of that TYPE.
You declare and initialize variant RECORD variables in the usual way. For example, notice

9-3

9

9-4

Variant Records

noPlayer: SoftbaliPlayerData ~ [NIL, 0, 0, catcher[]];

in SoftballDataTool.mesa. This is the declaration and initialization of a variant
RECORD variable. You may be wondering how the Compiler can allocate space for a variable
whose size may change during the course of execution of the program; after all, we may
assign some other variant to noPlayer at some point. The answer is tlliit when a variable is
declared to be of TYPE SoftbaliPlayerData, the Compiler allocates enough space for the
largest variant.

This program also illustrates allocation from a heap. Instead, the space for the dataSeq is
dynamically allocated from the system heap by the following statement:

IF dataPtr = NIL THEN
dataPtr ~ Heap.systemZone.NEw[Data[numberOfPlayers]];

in the procedure ClientTransition. Here the run-time system allocates enough space for
each member of the sequence to hold the largest possible variant.

9.2.3 Initialization of and assignment to variant RECORD variables

Variant RECORDS are initialized and assigned values like regular RECORDS, except that you
must supply appropriate information about the variant part. Here's a helpful way to look
at variant record initialization: the variant part is another, embedded record, whose type
is determined by the tag, and the syntax for constructing this embedded record is exactly
the same as for a regular record.

The RECORD constructor that you use to initialize a variant RECORD variable must specify a
value for the tag field, and values for the appropriate fields for that variant. In the above
example, the value catcher is assigned to the tag field of noPlayer. Recall that the catcher
variant had no additional fields, so no additional values are given in the above
constructor. We see other examples of initialization of variant RECORD variables in the
procedure InitDataBase. For example

dataPtr[O] ~ [String.CopyToNewString[s: "Ralph"L, z: Heap.systemZone],
140,128, pitcher[133, 1]];

assigns "Ralph" to the 'name field, 140 to the timesAtBat field, and 128 to the hits field of
the RECORD. The position field is assigned the val ue pitcher, 133 is assigned to the
strikeouts field in the variant part, and 1 is assigned to the walks field of the variant part
ofthe RECORD.

An alternate way of stating this assignment is:

dataPtr[O] ~ SoftbaliPlayerData[
name: String.copyToNewString[s: "Ralph"L, z: Heap.systemZone],
timesAtBat: 140,
hits: 128,
otherlnfo: pitcher[

strikeOuts: 133,
walks: 1]];

9.2.4 Accessing the fields of a variant RECORD variable

Finally, now that we have declared a variant RECORD type and variant RECORD variables, we
are ready to use these variables. A typical situation is when a procedure accepts a

Mesa Course 9

parameter that is of some variant RECORD type, and processes the information contained in
the RECORD variable. For example, take a look at the procedure DisplayData. This
procedure displays the information about each player in the data base in the tool's
message subwindow. Notice that it expects a parameter of TYPE SoftballPlayerData.

The "discrimination statement" solves the problem of making sure the procedure knows
which variant it is dealing with. The common fields of the actual parameter can be
accessed normally, but the fields in the variant part can be accessed only inside the
discrimination statement, which is

WITH player: playerData SELECT FROM

outfielder ~ { ... };
infielder ~ { ... };
pitcher ~ { ... };

ENDCASE;

Notice how the structure of the discrimination statement mirrors the structure of the TYPE

declaration of Softball Player Data.

Inside the discrimination statement, an "alternate name" is given to the actual parameter
by

WITH player: playerData SELECT FROM

The fields of the variant part of player (but not playerData) become accessible inside
whichever arm is selected, based on the value in the tag of playerData. This construct
allows the compiler to detect any attempt to access an "incorrect" field within a given arm.
For example, if you write

put.Decimal[tooIData.msgSW, player.strikeouts];

inside the outfielder arm of this discrimination statement, the compiler will tell you that
"strikeouts is not valid as a field selector " This prevents you from trying to access a
field in an incorrect variant at run time.

Since the discrimination statement relies on the value in the tag field of the RECORD,

suppose youjust ~hange that value in the tag field. That is, what if you add

playerData.position ... pitcher

as the first statement in DisplayData? Would the discrimination statement always select
the pitcher arm of the discrimination statement, and try to use the value strikeouts for
every kind of player? No, Mesa won't allow you to selectively access the tag field of a
variant RECORD. In fact, if you try to write the above statement, the Compiler will tell you
that "playerData.position cannot be updated " The only way you can change the
variant tag is to assign a new value to the entire variant part using a constructor for that
variant part. Variant RECORDS in Mesa are type-safe.

9.3 Summary

This chapter introduced the fundamentals of variant RECORDS. One important feature of
Mesa's variant records is that they are type-safe. You can depend on the discrimination
statement, in concert with the syntax, to prevent errors associated with accessing the
fields in the variant parts ofRECORDS.

9-5

9 Variant Records

Several topics related to variant RECOROS that we did not discuss include "bound" variant
types, and "implicit" and "computed" tags. The built-in predicate ISTYPE, and the built-in
operator NARROW are also available to assist you in your use of variant RECORDS. These
features, along with a variation of the discrimination statement that is more efficient in
certain eases than the one we looked at, are described in the Mesa Language Manual.

9.4 References

Section 6.4 of the Mesa Language Manual discusses variant RECORDS, including declaring
variant RECORD types and variables, giving values to variant RECORD variables, and
accessing the fields of variant RECORDS. This section also discusses several other points
regarding particular uses of variant RECORDS that we did not discuss in this chapter.

9.5 Exercises

9-6

Modify the SoftbaliDataTool (used as an example in this chapter) to include the following
information:

If a player is an infielder, has he been traded?

If he has been traded:

-- how many times has he been traded?

-- in what year was he last traded?

If he has NOT been traded:

-- how many years has he played for the team?

-- is he likely to be traded this season?

You should include this information in a variant section, which is enclosed by the infielder
section. Thus, you will create a variant within a variant record. You will have to add this
new information for any infielders already existing in the database. Assume that existing
infielders have never been traded.

Once you have added the new variant section, a new player will be joining the team. His
name is Larry, he is an infielder who plays third base, and he has been traded 3 times, the
last time in 1983. You will have to increase the numberOfPlayers in order to add him to
the database, and print out his statistics along with those of the rest of the team.
Obviously, you will also have to change the output routines to dispaly the new
information.

10

Concurrency

Mesa provides language support for concurrent execution of multiple processes, as well as
monitors and condition variables to help synchronize such processes.

In this chapter, we discuss how to use the FORK and JOIN operators to create new processes
and later resynchronize them. We also illustrate how to monitor access to a module's
global variables, and how to use condition variables to accomplish more complex forms of
synchronization. We do not discuss how to monitor data implemented by a multi-module
abstraction, or data that is encapsulated in an object rather than in a module; you will
have to consult the Mesa Language Manual for information on these topics.

10.1 Definition of terms

Asynchronous call

Background process

Condition variable

Critical section

Hint

Monitor

An asynchronous call is a procedure call that initiates an
operation and then returns control to its caller without waiting
for the operation to complete.

A background process is a process that receives machine
resources only ifhigher priority processes are idle or blocked.

A condition variable is a Mesa construct by which processes wait
for or provide notification of an event. A condition variable is
associated with a monitor.

A critical section is a portion of a program in which only one
process may be executing at a time. In Mesa, access to critical
sections is arbitrated by monitors. '

A hint is information that is usually accurate and is easy for a
program to use. A program can detect when a hint is inaccurate

. and find the truth in some other (usually less efficient) way.

A monitor module is a Mesa module that controls access to
shared data.

10-1

10 Concurrency

Monitor invariant

Monitor lock

Process

Synchronous call

A monitor invariant is a logical assertion about the state of
monitored data whenever the monitor is unlocked (i.e., exited).
Every monitor has a monitor invariant.

A monitor lock is essentially a hidden data item associated with
each monitored record or program that indi~ates when a process
has entered and not yet exited a critical section.

A process is effectively a procedure activation that runs
concurrently with its caller, allowing asychronous activities.

A synchronous call is a procedure call that returns control only
after the operation completes.

10.2 Discussion

10-2

Mesa casts the creation of a new process as a special procedure call. You create a new
process by FORKing a procedure rather than simply calling it; the new process then runs
concurrently with its caller. The new process has a different call stack, with the forked
procedure as the root of the activation. Mesa allows any procedure (except an internal
procedure ofa monitor; see section 10.2.3.1) to be invoked in this way.

10.2.1 JOINing processes

Once you have created concurrent, processes, there are various levels of synchronization
possible, depending on the role that your forked process is to perform. For example, you
might fork a process when you have a long computation to perform, and you would like to
allow other processing to take place concurrently. When you create such a process, you
later need to synchronize that process with its parent so that it can return the result of the
computation. You can accomplish this synchronization with the JOIN operation. JOIN
establishes a rendezvous point: the first process to reach the rendezvous is blocked until
the other arrives. When both processes have arrived, the forked process returns its results
and is then terminated.

To illustrate this, here is an example that iteratively reads a large buffer of data and
processes it. A sequential implementation might look like this:

Control: PROCEDURE =
BEGIN
buffer: LONG POINTER TO Buffer 4- zone.NEw[Buffer);
DO

ENABLE
NoMore • > EXIT;

ReadBuffer[buffer) ;
ProcessBuffer[buffer);
ENDLOOP;

zone.FREE[@buffer);
END;

ReadBuffer collects input data in buffer, and then ProcessBuffer manipulates the data.
The signal NoMore is raised when there is no more data, causing the DO loop to terminate.

Mesa Course 10

A problem with this code is that you can not read a buffer of data while processing one, nor
process a buffer of data while reading one. Since these operations are distinct, it would be
useful (and more efficient) to read the next buffer of data while processing the previous
one. This double buffering scheme might look like this:

Control: PROCEDURE =
BEGIN
Status: TYPE • {normal, end};
readBuffer: LONG POINTER TO Buffer +- zone.NEw[Buffer];
process Buffer : LONG POINTER TO Buffer +- zone.NEw[Buffer];
status: Status +- normal;
p: PROCESS RETURN5[status: Status]; --declare the process

status +- ReadBuffer[readBuffer];
WHILE status • normal DO

SwapBuffers[readBuffer, process Buffer] ;
< < points read Buffer to the buffer that has just been processed and points
processBuffer to the buffer that has just been read> >

p +- FORK ReadBuffer[readBuffer];
ProcessBuffer[processBuffer] ;
status +- JOIN p;
ENDLOOP;

zone.FREE[@readBuffer];
zone.FREE[@processBuffer];
END;

Control now allocates two buffers, one of which can be processed while the other is being
filled with the next block of data. Control reads in an initial buffer of data and then loops
until the reading process returns a state other than normal. During the loop, we swap
buffers and then we fork ReadBuffer. Thus, we can fill the new buffer while we process the
old one. At the end ofthe l!)op, we synchronize the two processes with the JOIN operator.

Some things to notice from this example:

• FORK always returns a value (of type PROCESS) and thus a FORK cannot stand alone as a
statement. Unlike a procedure call, which returns a RECORD, you cannot discard the
value of the FORK by writing an empty extractor. Thus FORK ReadBuffer[readBuffer] is
assigned to p.

• The JOIN appears as either a statement or an expression, depending upon whether or not
the process being joined returns anything. When the forked procedure has executed a
RETURN and the JOIN is executed (in either order),

the returning process is deleted, and

the joining process receives the results, and continues execution.

• There is no intrinsic rule against multiple activations (calls and/or forks) of the same
procedure coexisting at once. Of course, it is possible to write procedures that will work
incorrectly if used in this way, but the mechanism itself does not prohibit such use.

10-3

10

10-4

Concurrency

10.2.2 Detached processes

Not all processes follow the FORK/JOIN paradigm; there are others whose role is better cast
as continuing provision of services, rather than one-time calculation of results. Such
processes are called "detached", since they never need to be resynchronized with their
caller. If the lifetime of a detached process is bounded at all, its deletion is a private
matter, since it involves neither synchronization nor delivery of results.

Pilot provides the facilities for detaching processes. The Process interface, documented in
section 2.4.1 of the Pilot Programmer's Manual, includes operations to check on the state
of a process, to set process timeouts, to set process priorities, to abort processes, and to
detach processes.

Process. Detach takes a process and detaches it from its creator. If you use this procedure to
create a detached process, the Process interface will take care of deleting the process when
it returns from its root procedure.

Consider a tool with one command, which takes a long time to process. Typically this
command runs in the notifier and therefore prevents concurrent user interactions. To
avoid this, you can FORK the command as a new detached process:

Command: Form5w.ProcType =
BEGIN

10.2.3 Monitors

Process.Detach[FORK ReaICommand);
END;

FORK/JOIN enables very simple synchronization: you can synchronize two process when a
computation has been completed. However, you need a more general mechanism to allow
processes to communicate while work is in progress. Specifically, the FORK/JOIN construct
does not provide access control (mutual exclusion) to shared data. Thus, we coded the
double buffering example to ensure that ReadBuffer and Process Buffer never shared a
buffer by executing the pointer swap while only one process existed (and thus there could
be no contention to the data).

To enable more sophisticated interaction, Mesa provides an interprocess synchronization
mechanism that is a variant of monitors adapted from the work of Hoare, Brinch Hansen,
and Dijkstra. The underlying view is that processes share little, but when they do, the
interaction reduces to carefully synchronized access to shared data.

10.2.3.1 Mutual exclusion to shared data

A monitor is a module instance. It thus has its own global frame, and its own procedures
for accessing this (global) data. Unlike normal PROGRAM module instances, however, a
monitor module has an associated monitor lock, which guarantees that only one process at
a time can access the data. (The lock can also be associated with the object being shared;
see section 9.4.5 of the Mesa Language Manual).

" 'I

Mesa Course

Monitor modules are declared much like program or definitions modules; for example:

M: MONITOR [arguments] =
BEGIN

END.

10

A call into the monitor implicitly acquires the lock; returning from the monitor releases
the lock. When a process attempts to enter a monitor and the lock is already held, it must
wait until the current process finishes and releases the lock. The monitor lock thus
ensures that only one process at a time can change the data, thereby guaranteeing the
integrity of the monitor invariant. (A monitor invariant is an assertion defining what
constitutes a "good state" of the data for that particular monitor.)

It is important to realize that the mutual exclusion takes place at the entry and exit points
ofa monitor. In Mesa, these entry/exit points are encapsulated in procedures called ENTRY

procedures. The code within an ENTRY procedure is a critical section: a call to an ENTRY

procedure acquires the monitor lock, a return from an ENTRY procedure releases the
monitor lock. Entry procedures are declared as:

P: ENTRY PROCEDURE [arguments) RETURNS [results] = ...
.

The entry procedures will usually comprise the set of public procedures visible to clients of
the monitor module. (There are some situations in which this is not the case; see external
procedures, below). The usual Mesa default rules for PUBLIC and PRIVATE procedures apply.

Many monitors will also have internal procedures, which are common routines shared
among the several entry procedures. These execute with the monitor lock held, and may
thus freely access the monitor data as necessary. Internal procedures should be private,
since direct calls to them from outside the monitor would bypass the acquisition of the
lock. You can only call internal procedures from an entry procedure or another internal
procedure. They are declared as follows:

Q: INTERNAL PROCEDURE [arguments] RETURNS [results] =

The attributes ENTRY or INTERNAL may be specified only on a procedure in a MONITOR module
(or on an INLINE procedure in a definitions module).

Some monitor modules may also wish to have external procedures. These are declared as
normal non-monitor procedures:

R: PROCEDURE [arguments] RETURNS [results] = ...

Such procedures are logically outside the monitor, but are declared within the same
module for reasons of logical packaging. For example, a public external procedure might

. do some preliminary processing and then make repeated calls into the monitor proper (via
a private entry procedure) before returning to its client. Since it is outside the monitor, an
external procedure must not reference any monitor data nor call any internal procedures.
The compiler ch~ks for calls to internal procedures within external procedures, but does
not check for accesses to monitor data.

Generally speaking, a chain of procedure calls involving a monitor module has the form:

10-5

10

10-6

Concurrency

Client procedure -- outside module

l
External procedure(s) -- inside module but outside monitor

l
Entry procedure -- inside monitor

l
Internal procedure(s) -- inside monitor

Any deviation from this pattern is likely to be a mistake. A useful technique to avoid bugs
and increase the readability of a monitor module is to structure the source text in the
corresponding order:

M:MONITOR =
BEGIN
< External procedures>
< Entry procedures>
< Internal procedures>
< Initialization (main-body) code>
END.

To illustrate mutual exclusion using monitors, consider the case where many processes
may be capable of inspecting, incrementing, and decrementing a counter of active and
inactive windows of a mUltiple instance tool. The operation Activate decrements the
inactive counter by one and increments the active counter. The Deactivate operation does
the reverse. To ensure consistent data (Le. the number of active windows plus the number
of inactive windows equals the number of instantiated windows) the increment/decrement
to the active and inactive counters must occur atomically. Otherwise, it would be possible
for an Inspect operation to return a counter that has only been partially updated.

KeepCount: MONITOR =
BEGIN
CounterType: TYPE = RECORD[active: INTEGER, inactive: INTEGER];
counter: CounterType +- [0,0);
Activate: ENTRY PROCEDURE =

BEGIN
ENABLE UNWIND. > NULL; --see section 10.5.3 for a discussion ofthis statement
counter.active +- counter.active + 1;
counter.inactive +- counter.inactive·1;
END;

Deactivate: ENTRY PROCEDURE.
BEGIN
ENABLE UNWIND = > NULL; --see section 10.5.3 for a discussion of this statement
counter.active +- counter.active· 1;
counter.inactive +- counter.inactive + 1;
END;

Insped: ENTRY PROCEDURE RETURNs[counter: CounterType) •
BEGIN
ENABLE UNWIND • > NULL; --see section 10.5.3 for a discussion of this statement
RETURN[counter);
END;

END.

Mesa Course 10

10.2.4 Synchronization with condition variables

In addition to providing mutual exclusion; monitors also allow a sophisticated form of
synchronization. For example, a process may only want to execute monitored code if
certain conditions hold. If the conditions hold, the process conti-nues as usual. If a
condition is not satisfied, however, the process blocks and releases its hold of the monitor
lock. A new process can then enter the monitor, eventually make the condition true, and
notify the blocked process that it may continue. This kind of synchronization is provided
by condition variables.

Condition variables are declared as:

c: CONDITION;

All the fields of a condition variable are private to the process mechanism; you can only
access a condition variable via the condition variable operations WAIT, NOTIFY, and
BROADCAST.

WAIT condition blocks the current process and releases the monitor lock. Since a WAIT

always releases the monitor lock while waiting, you must restore the monitor invariant
(Le., return the shared data to a "good state") before waiting.

NOTIFY condition wakes up one process waiting on the condition. (Each condition
variable has an associated queue.) If no process is waiting on the condition, the
notification is discarded. Unlike WAIT, NOTIFY does not release the monitor lock.
Therefore you can leave the monitored data in an arbitrary state, so long as you restore
the invariant before the next time you release the lock (by exiting the entry procedure).

BROADCAST condition wakes up all processes waiting on the condition variable. If no
processes are waiting on the condition, the broadcast is discarded. Like NOTIFY, the
monitor lock is held during this operation.

10.2.4.1 Producer/Consumer problem

Consider the buffering scheme described in the beginning of this chapter. Because of the
synchronization limitations imposed by FORK/JOIN, we could only use two buffers. A more
general solution, however, would allow the two operations to share a buffer pool. This
buffer pool would be bounded, as shown in the example on the next page:

10-7

10

10-8

Concurrency

DIRECTORY
Heap USING [systemZone],
MStream USING [Handle, ReadOnly, ReadWrite],
Process USING [Detach],
Stream USING [Delete, EndOfStream, GetChar, Handle, PutChar];

CircularBuffer: MONITOR IMPORTS Heap, MStream, Process, Stream =
BEGIN
maxElements: CARDINAL = 10; --max number of buffers
bufferSize: CARDINAL = 128;
zone: UNCOUNTED ZONE ..- Heap.systemZone;

Elmt: TYPE = LONG POINTER TO Buffer;
Buffer: TYPE = RECORD[

length: CARDINAL +- 0,
chars: ARRAY [O .• bufferSize) OF CHARACTER +-ALL[']];

BufferArrayType: TYPE. ARRAY [O .. maxElements) OF Elmt..- ALL[NIL];

get, put: CARDINAL [O .. maxElements] ..- 0; --which buffer being read/written
bufferArray: BufferArrayType;
notEmpty: CONDITION;
notFull: CONDITION;

-- The consumer gets a buffer from the monitored array of buffers and writes its
-- contents to another file. This process blocks if there are no buffers available.
Consumer: PROCEDURE[outStream: MStream.Handle] =
BEGIN

DO
myBuffer: Elmt ..- ConsumeBuffer[];
FOR i: CARDINAL IN [O .. myBuffer.length) DO

ch: CHARACTER +- myBuffer .chars[i];
IF ch = '& THEN GOTO Exit;
Stream.PutChar[outStream. ch];

ENDLOOP;
zone.FREE[@myBuffer];

ENDLOOP;
EXITS Exit :I > Stream.Delete[outStream];

END;

-- Producer produces buffers of information obtained from reading a file.
-- It blocks when there is no more room in the monitored array of buffers
Producer: PROCEDuRE[inStream: MStream.Handle] =­
BEGIN

DO
myBuffer: Elmt ..- zone.NEW[Buffer];
FOR i: CARDINALIN [O .. bufferSize) DO

myBuffer.chars[i] ..- Stream.GetChar[inStream! Stream.EndOfStream = >
{myBuffer.length..- i; GOTO Exit}];

ENDLOOP;
ProduceBuffer[myBuffer]; -- put buffer in monitored buffer array

ENDLOOP;
EXITS Exit. > Stream.Delete[inStream];

END;

Mesa Course

-- Produce Buffer is called when the Producer needs a buffer.
ProduceBuffer: ENTRY PRocEDuRE[element: Elmt) :.
BEGIN

ENABLE UNWIND = > NULL;
WHILE (put + 1) MOD maxi:iements = get DO WAIT notFuii ENDlOOP;
bufferArray[put) ~ element;
put ~ (put + 1) MOD maxElements;
NOTIFY notEmpty

END;

10

-- Consume Buffer returns a previously allocated buffer to the available buffer list
ConsumeBuffer: ENTRY PROCEDURE RETURNs[element: Elmt) =
BEGIN
ENABLE UNWIND = > NULL;

WHILE get. put DO WAIT notEmpty ENDLOOP;
element ~ bufferArray[get);
get ~ (get + 1) MOD maxElements;
NOTIFY notFull;

END;

Init: PROCEDURE[] =
BEGIN

inStream: MStream.Handle ~ MStream.ReadOnly[
name:"inFile"l,
release: [NIL,NIL]];

outStream: MStream.Handle ~ MStream.ReadWrite[
name: "outFile"l,
type: text,
release: [NIL,NIL]];

Process.Detach[FORK Consumer[outStream));
Process.Detach[FORK Producer[i nStream));

END;

--mainline code
Init[];
END ...

In this example, bufferArray is an array that can contain at most maxElements (10)
elements (buffers). The bufferArray starts out empty. The Producer (the process reading
input) allocates buffers, fills them with information, and adds them to the buffer pool via
ProduceBuffer. If the buffer pool is full, ProduceBuffer waits until there is room. After
adding the element to the buffer, ProduceBuffer notifies any waiting consumers that
another element is available. Similarly, the Consumer (the process processing the input)
receives its elements by calling ConsumeBuffer. If there are no elements in the buffer pool
ConsumeBuffer waits. Once an element becomes available, ConsumeBuffer removes it
and notifies any waiting producer processes that the buffer pool is not full.

Notice that a condition variable c is always associated with some boolean expression
describing a desired state of the monitor data. Each WAIT must be embedded in a loop that
checks the validity of the corresponding boolean. In Mesa, NOTIFY is regarded as a hint to a
waiting process; it causes a process waiting on the condition variable to resume execution
at some convenient time in the future. When the waiting process resumes, it will
reacquire the monitor lock. But there is no guarantee that some other process will not
enter the monitor before the waiting process. Therefore, the waiting process must

10-9

10

10-10

Concurrency

reevaluate the condition before continuing. The general pattern for condition variable
code is therefore:

Process waiting for condition:

WHILE -BooleanExpression DO
WAITe
ENDLOOP;

Process making condition true:

make BooleanExpression TRUE;
NOTIFYe;

-- i. e. as side effect of modifying global da ta

When appropriate, the process mechanism always does a NOTIFY, even when there are no
processes waiting to be notified. The reason for this is that the built in check (and discard
mechanism) is more efficient than any explicit test you could use to avoid the NOTIFY. Thus,
for example, ProduceBuffer always notifies notEmpty even if no process is waiting.

This arrangement results in an extra evaluation of the condition after a wait. In return,
however, it avoids extra process switches and puts no constraints on when the waiting
process must run after a notify. This method is preferable and efficient in Mesa because in
general few processes are waiting on the same condition variable at the same time (not
many processes will be notified), and context switching is fast (it does not take long for all
processes to recheck the state).

10.2.4.2 Single resource manager

Controlling access to a limited shared resource is another common problem that requires
interprocess synchronization. The following code segment illustrates a simple storage
allocator for objects of uniform size.

StorageAliocator: MONITOR.
BEGIN
storageAvaiiable: CONDITION;

Block: TYPE. RECORD [... J; •• or some other data type
ListPtr: TYPE. LONG POINTER TO ListElmt;
ListElmt: TYPE. RECORD[block: Block, next: ListPtrJ;
freelist: ListPtr +- NIL;

Allocate: ENTRY PROC RETURNS [elmt:ListPtrJ •
BEGIN
ENABLE UNWIND II > NULL;
WHILE freelist • NIL DO WAIT storageAvailable ENDLOOP;
elmt +-freelist;
freelist +-elmt.next;
END;

Mesa Course

Free: ENTRY PROC [elmt:Listptr] =­
BEGIN
ENABLE UNWIND • > NULL;
elmt.next 4- free List;
freeList 4- elmt;
NOTIFY storageAvailable;
END;

END ...

10

freeList is the global linked list of available storage. Allocate waits until freeList is not
empty to remove an element. Free puts an element back on the free List and notifies any
process waiting in Allocate that more storage is available.

10.2.4.3 Variable size, single resource manager

If a resource manager manipulates variable sized objects, notification will not work as
well. The difficulty is that NOTIFY only wakes up one process when more storage is
available. Since the size of storage requests vary, available storage may not be enough to
meet the needs of the process that is awakened, but it may be enough to satisfy another
waiting process.

In this case, you should use BROADCAST instead of NOTIFY. A BROADCAST wakes up all waiting
processes. Since the WAIT condition statement occurs in a WHILE loop, each process will
check state before continuing and put itself to sleep if there is not enough storage. Thus,
processes that need a smaller amount of storage will be able to continue.

Here is an example of this sort of storage allocator:

StorageAliocator: MONITOR =
BEGIN
storageAvailable: CONDITION;

Block: TYPE. RECORD [...]; -- or some other data type
Listptr: TYPE. LONG POINTER TO ListElmt;
ListElmt: TYPE. RECORD[block: Block. next: Listptr];
freeList: Listptr 4- NIL;

Allocate: ENTRY PRoc[size: CARDINAL] RETURNS [elmt:Listptr] •
BEGIN
ENABLE UNWIND. > NULL;
UNTIL < storage chunk of si ze words available> DO WAIT storageAvai lable ENDLOOP;
elmt 4- < remove chunk of size words> ; -
END;

Free: ENTRY PROC [elmt:Listptr. size: CARDINAL] •
BEGIN
ENABLE UNWIND • > NULL;
<put back storage of size words>

BROADCAST storageAvailable;
END;

END ...

10-11

10 Concurrency

Again, the waiting processes treat notification only as a hint. A process that is awakened
does not assume that the condition is true; rather, it assumes that state has changed, and
that it should check to see if the condition is true.

10.3 Issues and concerns

10-12

This section discusses some issues associated with monitors and processes: how to abort a
process, and the relationships between signals and processes, and signals and monitors.

10.3.1 Aborting a process

In addition to NOTIFY and BROADCAST, you can also resume a waiting process with a timeout
or an abort. We discuss Abort in this section; for a discussion on using timeouts see section
9.3.2 of the MLM.

Abort does really not abort the process; it merely raises a signal that indicates to the
process that it should clean itself up and return. (If the process is detached, Pilot will
destroy it when it returns.) However, the aborted process is free to do arbitrary
computations before returning, or indeed to ignore the abort entirely.

You can raise the signal Abort by calling Process. Abort, with the process to be removed as
its argument. The signal is raised the next time the process WAITS on any condition
variable that has aborts enabled (the default is to not have aborts enabled; you can call
Process.EnableAborts to reverse this). If the process is currently waiting it is aborted
immediately.

If you want to abort a process that never waits on a condition variable, you must
periodically force the process to pause. Process.Pause causes a process to wait with aborts
enabled for a specified length of time.

10.3.2 Signals and process

Though the creation of a new process via FORK is similar to a procedure call, the new
process has a different call stack with the forked procedure as the root of the activation.
The implication of this is that signals will not cross process activations. Any signal not
caught by a new process will not continue to propagate to its parent; instead the debugger
will be invoked with an uncaught signal.

10.3.3 Signals and monitors

Signals interact with monitors (entry procedures) in two special ways; in raising a signal
and in handling UNWIND. Both cases are motivated by the need to release the monitor lock.

When you raise a signal from an entry procedure, the lock is not released. Thus, catch
phrases, which can invoke arbitrary operations, may deadlock if they try to reenter the
monitor. For errors, you can avoid this with the RETURN WITH ERROR construct.

RETURN WITH ERROR NoSuchObject;

Mesa Course 10

This statement has the effect of removing the currently executing process from the call
chain before issuing the ERROR. Thus, if you execute this statement within an entry
procedure, the monitor lock is released before the error is started.

For example, consider the following code segment:

Failure: ERROR [kind: CARDINAL] = CODE;

Proc: ENTRY PROCEDURE[...] RETURNS[c1, c2: CHARACTER] =
BEGIN
ENABLE UNWIND = > .. ,

IF cond1 THEN ERROR Failure[1];
IF cond2 THEN RETURN WITH ERROR Failure[2];

ENO;

Executing ERROR Failure[1] raises a signal that propagates until some catch phrase
specifies an exit. At that time unwinding begins; the catch phrase for UNWIND in Proc is
executed and then Proc's frame is destroyed. The lock is held until the unwind occurs.

Executing RETURN WITH ERROR Failure[2] releases the monitor lock and destroys the frame of
Proc before propagation of the signal begins. The catch phrase for UNWIND is not executed
in this case. The signal Failure is actually raised by the system, after which Failure
propagates as an ordinary error.

Another important issue regarding signals is the handling of UNWIND. The monitor lock is
released as part of the UNWIND, so any entry procedure that may experience an UNWIND
must catch it and restore the monitor invariant:

Proc: ENTRY PROCEDURE[...] =
BEGIN
ENABLE UNWIND = > BEGIN < restore invariant> END;

END;

At the end of the outermost UNWIND catch phrase, the compiler appends code to release the
monitor lock before the frame is destroyed.

Even if you don't have to restore the monitor invariant, you should still catch UNWIND in
every entry procedure in which it might propagate. The compiler will not generate the
code to release the lock unless the UNWIND catch phrase is present. If the monitor is not
released during an UNWIND, ensuing calls to the monitor will deadJock.

10.4 Summary

You can spawn new processes from existing ones via the FORK operation. FORK creates a new
process, with the invoked procedure as the root of the activation, and returns a process id
of type PROCESS to identify the object.

Once instantiated, a new process will either run forever, run for a finite time and return
values to (or need to be synchronized with) another process, or run for a finite time without
returning results to another process. In the first case, FORKing the new process is sufficient.

10-13

10 Concurrency

In the second case, when a process is expected to return results, you can synchronize its
return with the JOIN construct. At this junction, the returning process is deleted and the
joining process receives the results and continues its execution.

In the third case, when a process is not JOINed, you must ensure that the process activation
is removed. If you use Process. Detach, Pilot will delete the process when it returns to its root
procedure.

Concurrent processes create a need for cooperation and communication. Monitors and
condition variables provide this cooperation by allowing controlled access and
synchronization through shared variables and code.

~esa monitors are module instances with an associated monitor lock. Mutual exclusion to
shared variables (global variables in the monitor module) is ensured by allowing only one
process to hold the lock at a time.

In addition to a collection of data and an associated lock, a monitor contains a set of
procedures that perform operations on the data. There are three kinds of procedures:
entry, internal, and external. External procedures are declared as normal procedures and
logically live outside the monitor. Calls to these procedures do not acquire the monitor
lock. Entry procedures provide controlled access into the monitor. Calls to an entry
procedure either acquire the monitor lock or block until the lock can be acquired. Internal
procedures contain the common routines shared among the several entry procedures.
These procedures execute with the monitor lock held, and therefore may freely access the
monitored data.

Synchronization is accomplished with condition variables and the operations WAIT, NOTIFY,
and BROADCAST. A WAIT releases the monitor lock before it blocks. NOTIFY and BROADCAST do
not release the lock. Therefore WAIT statements occur in loops, since the condition that was
notified may no longer be true when the blocked processes wakes up.

This chapter discussed only the most common form of monitor lock, the global monitor
lock. Mesa also supports more specialized forms of monitors, including monitored records
and object monitors. Consult chapter 9 ofthe Mesa Language Manual for more deta~ls.

10.5 References

Read Chapter 9 of the Mesa Language Manual on Processes and Concurrency.

Read "Experience with Processes and Monitors in Mesa" by Lampson and Redell. (Page
191 of the Office Systems Technology book.)

10.6 Exercises

10-14

The basic assignment for this chapter is to implement the dining philosophers problem. In
this problem, you have 5 philosophers at a dining table. However, there is only one
chopstick between each plate, and a philosopher needs 2 chopsticks to eat. At any given
time, a philosopher may be thinking, eating, or waiting for the philosopher next to him to
put down a chopstick so he can use it.

Mesa Course 10

You can tell a philosopher to try to start eating, or to stop eating and start thinking. When
a philosopher is told to start eating, he will look around for some chopsticks and start
eating if he can; otherwise he will wait. When a philosopher is told to start thinking, he
stops eating (puts down his chopsticks); other waiting philosophers will then see if they
can start eating.

Ph il osopherl: {thinking, waiting, eating}
Philosopher2 : {thinking, waiting, eating}
Philosopherl: {thinking, waiting, eating}
Philosopher4: {thinking, waiting, eating}
Philosopher5: {thinking, waiting, eating}

Philosopher # is eating.
Philosopher # 2 must wait to eat.
Philosopher # 1 has finished eating.
Philosopher # 2 is eating.

There are two levels to this problem, easy and hard. The hard assignment is to solve the
dining philosophers problem by yourself. For the easy assignment, we have provided two
interfaces and part of the implementation; you only need to write two procedures. If you
are adventurous, go start solving the problem now. If you are less adventurous, read the
next page to get some help in solving this problem.

10-15

10

10-16

Concurrency
5 ~,'

For the easier version of this problem, you need to implement the procedures BeginEating
and EndEating from the DP interface:

-- DP.mesa

DP: DEFINITIONS •
BEGIN
numOfPhils: CARDINAL. 5;

BeginEating:
EndEating:
IsWaiting:
IsEating:

PROCEDURE[phi losopher: CARDINAL];
PROCEDURE[phi losopher: CARDINAL];
PROCEDURE[philosopher: CARDINAL];
PROCEDURE[philosopher: CARDINAL];

END ..

BeginEating will be called every time a philosopher (a process) thinks it might be able to
eat. The philosopher will look around him (look at an array) and see if he can start eating.
If he can't, he informs the world that he must wait to eat, calls the procedure DP.lsWaiting,
and then waits. If he can eat, he informs the world that he is eating, uses his chopsticks
(sets some variables in an array) and calls the procedure DP.lsEating.

EndEating will be called every time a philosopher has been told to stop eating and start
thinking. He should inform the world that he is no longer eating, set down his chopsticks,
and tell all waiting philosophers (if any) that they might want to try to start eating. ~ote
that although the tool refers to philosophers 1 through 5, philosopher in the above
procedures will range from 0 through 4.

To communicate with the world, use the procedures provided in the ToolDefs interface:

-- ToolDefs.mesa

ToolDefs: DEFINITIONS.
BEGIN

PostText: PROCEDURE[string: LONG STRING];
PostLine: PROCEDURE[string: LONG STRING];
PostNumber: PROCEDURE[num: CARDINAL];

END ..

--writes a string of text
--writes a string of text with CR
--writes a number

You need to write the implementation module DPlmpl.mesa, which implements the
procedures BeginEating, and EndEating in the DP interface. Use a monitor and a condition
variable to synchronize access to the chopsticks by the 5 philosophers (processes). You will
need the files DP.mesa, TooIDefs.mesa, DPTool.mesa, and DiningPhilosophers.config,
which are on the course directory for this chapter.

	000
	001
	002
	003
	004
	01-01_From_Pascal_to_Mesa
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	02-01_Interfaces
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01_Binding
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01_Pointers
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01_Dynamic_Storage
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01_Sequences
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	07-01_Strings
	07-02
	07-03
	07-04
	07-05
	07-06
	08-01_Signals
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-01_Variant_Records
	09-02
	09-03
	09-04
	09-05
	09-06
	10-01_Concurrency
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16

