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Introduction 

The Mesa Course is a self-paced programming tutorial intended to give you hands-on 
experience with applications and systems programming in the Xerox Development 
Environment. The course introduces important concepts, illustrates those concepts with 
extensive examples, and provides exercises to ensure your familiarity with those concepts. 
The Mesa Course is intended for use at any XDE customer site. 

The twenty one chapters of the Mesa Course are grouped into two major sections: the Mesa 
Language and the "Tajo" development environment. The experienced professional need 
only skim the Mesa Language chapters and can begin with serious study of the 
development environment, referring to language issues in the first section as required. 
The less experienced programmer should work through the material sequentially. The 
initial section of the course is designed to present Mesa programming to someone who is 
familiar with other structured languages, particularly Pascal, and has completed the 
Introduction to XDE on-line tutorials. 

The Mesa Language section introduces you to Mesa programming concepts and essential 
components of the Xerox Development Environment. You will learn how to develop and 
run programs in our environment, including how to: 

• convert standard Pascal constructs into their Mesa counterparts, 

• use Mesa's interface mechanism to integrate independently developed 
programs and share information among them, 

• allocate dynamic storage from a common pool, 

• declare and manipulate strings, dynamic arrays, and variant records 

• use processes and monitors effectively, 

• handle exception occurrences via a software interrupt mechanism, 

• debug your program when things go awry, and 

• use the Mesa reference manuals to find the information you need. 

Upon completing the first section you should have a well-grounded understanding of how 
to use Mesa and the development environment. 
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The last half of the course emphasizes advanced features of XDE and concentrates on 
fundamental aspects of tool creation. In this section you will learn how to 

• write programs that run in the Executive window, 

• interact with the Mesa file system including performing file I/O and attaching a 
stream to a file, 

• allocate space from virtual memory and map it to a backing file, 

• use the form subwindow layout tool to generate "standard" tool subwindow 
implementation code, 

• implement tool features not provided by the form subwindow layout tool, 

• handle terminal input for a tool, and 

• paint into the windows of a tool 

If you do not intend to be an active Mesa programmer, then this course is probably not for 
you. The Introduction to XDE on-line tutorials provide an explanation of the non­
programming aspects of the development environment, and may be what you want. 

Course structure 

The course consists of twenty one chapters, six appendices, and a Glossary. The early 
chapters, Chapters 1 through 10, each concentrate on a single concept and build on the 
previous chapters. If this material is appropriate for your experience level, you should 
study each of these in order. The chapters of the environment section, from Chapter 11 on, 
are somewhat more independent and self-standing. Chapter 12 deals with the Executive, 
chapters 13 through 15 deal with aspects of the file system, chapters 16 through 19 cover 
fundamental aspects of tool construction, and chapters 20 and 21 discuss gathering input 
for tools and painting tool windows. 

Some of the appendices cover basic debugging techniques. The remaining appendices, 
answers to questions, and the Glossary should be referenced as needed. The course 
suggests points when studying the appendices might be most helpful to you. 

How to read a chapter 
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For the most part, each chapter contains the following sections in the following order: 

• An introduction covering what it is about, what you will learn from it, and what you 
will do in it. 

• A description of preliminary readings and where to find them. These are usually the 
sections in the reference documentation that describe the concepts to be discussed. 
You should read, but not disect, this information. We discuss the depth to which you 
should study these readings in the next section, Using the Course. 

• A glossary of terms, which defines the terms new to that particular section. 
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• A discussion of the chapter's main topic. This section is the main body of the chapter. 
It usually takes the form of a general introduction to the concept, a discussion of the 
facilities you need, and at least one programming example. 

• A summary of what you have learned. This helps you to check quickly that you have 
understood the major points ofthe chapter, and can later serve as a reference. 

• A discussion of style-related issues related to the concept being learned. The section 
explains the choice and type of coding style used in the examples. 

• A description of reference materials and where to find them. These are usually 
collected journal articles that relate to the concept being taught. Using these 
materials will extend the breadth of your knowledge or give you a different 
perspective on the topic. 

• A set of questions. Questions and answers are provided so you can judge how well you 
have understood the material. The answers are collected in an appendix. 

• A programming exercise that applies the new concept and provides experience with 
the Mesa language. It is primarily through these exercises, as well as through 
programming examples and readings in the Mesa Language Manual, and the Mesa 
and Pilot Programmers Manuals, that you will become familiar with the XDE. 

U sing the course 

Beginning users of Mesa come with a wide range of experience. You can use the following 
guidelines to gauge the level appropriate for you and how best to use this course. 

The primary purpose of this training is to initiate you to programming in the Xerox 
development environment. This environment is documented by well over one thousand 
pages of material. You need to know how to find, use, and understand information in these 
documents. The course presents the information in the reference materials around a 
framework of examples and exercises. There is no information in the course that is not 
also in at least one other document. 

Many chapters ask you to do preliminary readings in reference manuals. If you 
understand the reference materials easily, then the chapter will not provide you with any 
more information. Instead, you may find it best, after completing the preliminary 
readings, to skim the chapter, check your understanding via the questions, and go straight 
to the exercises. On the other hand, if you find the reference readings overly difficult, do 
not pore over them. Instead, skim them and concentrate your ,efforts on the discussion 
section of the appropriate Mesa Course chapter. Mter you have finished the chapter, go 
back and re-read the reference material. This will give you more information on the 
subject, and will also give you experience in using the manuals. 

Getting Started 

This is version 12.0 of the Mesa Course. It assumes that you are using a Dandelion or 
Daybreak processor running the Sequoia release (12.0) of the Xerox Development 
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Environment with Tajo installed on a normal volume, CoPilot serving as a debugger for 
the volume on which Tajo is installed, and a U ser.cm that is set up for this configuration. 

Programs 
(PUBLIC) 

Interpress 
(PUBLIC. 

initially) 

MesaCourse 

OF 
(PUBLIC) 

12.0 

Solutions 
(PRIVATE, 

initially) 

Errata 
(PUBLIC) 

The Mesa Course Directory Structure 

References 
(PUBLIC) 

Interpress masters for the course text are stored electronically in the folder 
[CustomerHSFileServer1<MesaCourse>12.0>Interpress>. You can print copies 
of the course from these folders as you need them (universities may have this folder 
protected). Your local support group may have bound copies of the Mesa Course available. 

The programs discussed in the chapters are stored in the [, .. 1 < •.• > •.• > 
Programs >ChapterHame(ChapterHumber) folder for each chapter. Retrieve all files 
from this folder before starting a chapter, e.g., retrieve all the files in 
[CustomerHSFileServer1 <MesaCourse > 12. O>Programs > Interfaces (2) before 
starting Chapter 2. 

Solutions to programming exercises are stored in the [, .. 1 < ••• > ••• > Solutions> 
folder. Your XDE training liaison will decide who has access rights to this folder: it may be 
read protected initially. 

There are two papers cited in the Mesa Course that are not part of the XDE release 
documentation. They can be found in the [, .. 1 < ••• > ••• > References> folder. 

The Mesa Course is still under development, and we would appreciate your comments and 
corrections. We apologize for any inconveniences caused by inconsistencies or inaccuracies 
that have escaped our current review. Please check on [ ••• ] < ••• > ••• > Er ra ta > for 
any update information. 

If you run into any trouble getting started or while you are going through the course, do 
not hesitate to ask your XDE training mentor for help. Initially, please ask your mentor to 
make sure that your disk and User.cm are compatible with the course, and for the name of 
a CUs tomerHSFi leServer near you that has a copy of the <MesaCourse> folder. 
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From Pascal to Mesa 

This chapter will introduce you to the programming language Mesa by building on your 
knowledge of Pascal. 

Pascal has become the instructional language of choice in the computer science academic 
community and is gaining in general popularity. It is a language that has integrated a 
small set of features into a powerful and efficient programming tool. One of Pascal's most 
attractive features is user-defined data types that enable data structuring capability and 
data abstraction. Standard Pascal does have a significant shortcoming in terms of writing 
a large system: there is no way to break the system down into small separately compiled 
units and then integrate them into a consistent whole. This prevents the compiler from 
checking the type correctness of actual parameters in distinct units, inhibits the 
development of "libraries" to extend the language, and generally complicates the 
implementation of large systems constructed by a group of programmers. Furthermore, 
standard Pascal does not support dynamic array bounds; it is difficult to write general 
routines that process arrays of different sizes. Standard Pascal has no exception handling 
facilities and does not support concurrent processes. 

Mesa is a strongly typed, block structured programming language whose syntax is similar 
to that of Pascal. Mesa extends Pascal in a number of ways intended to make it more 
effective for the development oflarge systems, while preserving Pascal's data structuring 
and data abstraction facilities. We begin this chapter by examining the common ground 
between Pascal and Mesa: shared language concepts and constructs. Then we look at some 
of the ways in which Mesa differs from Pascal. 

1.1 Definition of terms 

Most of the concepts found in Pascal have counterparts in Mesa. The list below defines 
terms that are either distinctive to both Pascal and Mesa or terms whose Pascal and Mesa 
definitions differ slightly. 

type definitions 

name 

Type definitions are the mechanism for describing data of 
Mesa programs. 

A name (or identifier) is a sequence of alphabetic and 
numeric characters beginning with an alphabetic 
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static variables 

dynamic variables 

strongly typed 

procedural abstraction 

actual procedure 

procedure variable 

character. Identifiers in Mesa can be up to 256 characters 
long; character case is significant in Mesa identifiers. 

Static variables are variables for which an explicit variable 
declaration has been made. 

Dynamic variables are generated by a special procedure 
(NEW) that yields a pointer or reference value that 
subsequently serves in place of a name to refer to the 
variable. 

The Ylesa compiler uses static analysis to deduce the type 
of every constant, variable, and expression to ensure that 
all programs are type correct. Languages in which such 
type correctness is determined at compile time are called 
strongly typed. 

A procedural abstraction is a mapping from a set of inputs 
to a set of outputs that can be described by a specification. 
The specification must show how the outputs relate to the 
inputs, but it does not reveal or imply the way the outputs 
are to be computed. 

An actual procedure is a procedure initialized so that its 
meaning (defined by its body) cannot change. You cannot 
assign a value to an actual procedure. 

A procedure variable is a procedure initialized in such a 
way that the procedure's value (body) can be changed by 
assignment. 

1.2 A comparison of Mesa and Pascal constructs 

This section presents a sequence of examples showing analogous Mesa and (standard) 
Pascal constructs. 

Mesa 

Comments 

--This is a comment terminated by EDL 

--This is a comment terminated by dashes--

< < This is a comment extending 
over more than one line> > 
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Pascal 

{This is a comment} 

{This is a comment extending 
over more than one line} 
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Mesa Pascal 

Constant declarations 

Pi: REAL. 3.14; 
--Note 
-- Mesa is case sensitive. 
-- Reserved words are capitalized. 
-- Constants have explicit types. 

MinusPi: REAL III ·Pi; 

linesPerPage: INTEGER III 60; 

shortPage: INTEGER. linesPerPage· 6; 

capA: CHARACTER III 'A; 

smallA: CHAR. 'a; 
--CHARACTER and CHAR are equivalent 

message: LONG STRING = "Hello there"; 
--String literal allocated in global frame. 

anotherMessage: LONG STRING = "Boo"L; 
--The string literal is allocated in the local frame 
--of the innermost procedure enclosing the 
--literal. Thus, in Mesa you can choose whether 
--to allocate from a local or global frame. 

CONST 

Pi III 3.14; 
{Pascal is not case sensitive. 
Capitalization is only for readability. 
Constants have implicit TYPE.} 

MinusPi • ·Pi; 

linesPerPage = 60; 

{Pascal does not support general 
expression constants} 

capA = 'A'; 

smaliA .. 'a'; 

message = 'Hello there'; 

Type declarations: One dimensional ARRAVS 

Name: TYPE. ARRAV[0 .. 9] OFCHAR; 

packName: TVPE • PACKEDARRAV 

[0 .. 9] OF CHAR; 

Dashes: TYPE • ARRA v[O •• 7) OF CHAR ... ALL['·]; 

--[O .. n + 1) equivalent to [O .. n] 

RARRAV: TVPE • ARRAY[O .. 8) OF REAL; 

TYPE 

Name. ARRAV[O .. 9] OF CHAR; 

packName • PACKEDARRAY[O .. 9] OFCHAR; 

Dashes. ARRAV[O .. 6] OF CHAR; 

{No default initialization} 

RARRAV .. ARRAV[O .. 7] OF REAL; 

1 
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Mesa Pascal 

Type declarations: Two dimensional ARRAYS 

M3by4: TYPE • ARRAY[1..3] OF ARRAY[1 .• 4] 
OF INTEGER +- ALL[O]; 

M3by4,. ARRAY[1 .. 3] OFARRAY[1..4] 
OF INTEGER; 

{No default initialization} 

{or} 

ALT3by4 • ARRAY[3,4] OF INTEGER; 
{Compact representation of two dimensional ARRA Y, 
no default initialization} 

Type declarations: Records 

Coordinate: TYPE = RECORD[ 
horizontal: REAL +- 0.00; 
vertical: INTEGER +- 0]; 
-- default field initialization 

--or 

Coordinate: TYPE. RECORD[ 
horizontal: REAL, 
vertical: INTEGER] +- [0.00,0] 
-- default TYPE initialization 

Coordinate. 
RECORD 

horizontal: REAL; {no initialization} 
vertical: INTEGER 

END; 

Type declarations: Variant Records 

Shape: TYPE. {point, line. circle}; 

Figure TYPE • RECORD[ 
figureName: Name, 
specificFigure: SELEcTfieldlD: Shape FROM 

point. > [position: Coordinate], 
line. > [xCoef, yCoef, slope: REAL]. 
circle. > [center: Coordinate, 

radius: REAL]; 
ENDCASE]; 

1-4 

Shape. (point. line. circle); 

Figure. 
RECORD 

figureName: Name; 
CASE tag: Shape OF 

point: 

END; 

(postion: Coordinate); 
line: 

(xCoef, yCoef, slope: REAL); 
circle: 

(center: Coordinate; 
radius: REAL); 
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Mesa Pascal 

Type declarations: Records containing pointers 

personPtr: TYPE = LONG POINTER TO Person; 

Person: TYPE = RECORD[ 
name: Name, 
age: [21 .. 120]. 
sex: {male, female}, 
party: {Demo, GOP}. 
contribution: [0 .. 1 0000]]; 

link: TYPE = LONG POINTER TO Node; 

Node:TYPE • RECORD[ 
voter: Person, 
next: link]; 

personPtr • t Person; 

Person. 
RECORD 

name: Name; 
age: 21 .. 120; 
sex: (male, female); 
party: (Demo, GOP); 
contribution: (0 .. 10000) 

END; 

link =- t Node; 

Node = 
RECORD 

voter: Person; 
next: link 

END; 

Variable declarations 

b: BOOLEAN +-TRUE; 
--BOOLEAN and BOOL are equivalent 

Ii, Ij: LONG INTEGER +--7; 

i, j: INTEGER +- 41; 
iSquared: INTEGEU- i*i; 
k: INTEGER +- iSquared - i + 1; 

a: RARRAY; 

mxy: M3by4; 

control: [1 .. 15]; 

VAR 

b:BOOLEAN; {no initialization possible} 

{no double precision or initialization} 

i, j: INTEGER; 
iSquared: INTEGER; 
k: INTEGER; 
{Initialization of iSquared and k must be done 
in statement section.} 

a: RARRAY; 

mxy: M3by4; 
altmxy: AL T3by4 

control: 1 .. 15; 

1 
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Mesa Pascal 

Variant record variables 

figure: Figure; figure, pointFigure, lineFigure, circieFigure: Figure; 

"Bound" variant record variables 

pointFigure: point Figure; 
lineFigure: line Figure; 
circieFigure: circle Figure; 

{Pascal has no concept of bound variant RECORDS.} 

Dynamic storage allocation 

Z: UNCOUNTED ZONE +-NIL; 
--source of dynamically allocated objects 

{Nodes are automatically allocated from a 
system heap} 

Variables for poin ter examples 

cand1, cand2, cand3, cand4: Person; 
preswinner, presloser, vpwinner, 
vploser: personptr; 
p, rootNode: link; 

cand1, cand2, cand3, cand4: Person; 
preswinner, presloser, vpwinner 
vploser: personptr; 
p, rootNode: link; 

Procedure declarations 

Fact: PROCEDURE[n: LONG INTEGER] 
RETURNS [LONG INTEGER] = 
BEGIN 

RETURN [IF n = 0 THEN 1 
ELSE n*Fact[n -1]] 

END; 
--Mesa does not differentiate between 
--FUNCTION and PROCEDURE. 

Swap: PROCEDURE[iptr, jptr: 
LONG POINTER TO INTEGER] • 
{temp: INTEGER; 
temp +- iptr t; 
iptr t +- jptr t ; 
jptr t +- temp}; 

--All arguments are passed by value in Mesa: 
--i.e., the value of an argument, not its address 
--is assigned to the parameter. Of course, this 
--value itself can be an address. 

--In Mesa, a block can be delimited either by 
--BEGIN ... END or by { ... } 
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FUNCTION Fad(n: INTEGER}: INTEGER; 
BEGIN 

IF n = 0 THEN Fact: = 1 
ELSE Fact: = n*Fact(n -1) 

END; {Fact} 

{Pascal FUNCTIONS can only return "simple" TYPES, 

i.e., CHAR, INTEGER, and REAL.} 

PROCEDURE Swap{var i, j: INTEGER); 
VAR t: INTEGER; 

BEGIN 
t:. i; 
i : • j; 
j : = t 

END; 
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a[1) +- 3.8E6; 
mxy[2][3) +- 7; 

Mesa Course 

IF b THEN PROCEDURE1 []; 

IFi#j/2 
THEN PROCEDURE1 [] 
ELSE PROCEDURE2[]; 

a[1) +-IF boolvar1 
THEN 4.56 
ELSE 8.71; 

--An IF expression 

--control: [1 .• 15]; 
SELECT control FROM 

1, IN [7 .. 10] • > statement1; 
2, 5, > 1 0 • > statement2; 
ENDCASE .. > statement3; 

SELECT TRUE FROM 
boolvar1 .. > statement1; 
boolvar2 • > statement2; 

boolvarn • > statementn; 
ENDCASE; 

a[1) +- SELECT control FROM 
1,IN[7 .. 10] .. > 1.12; 
2.5, >10 • > -4.856; 
ENDCASE • > 73.2; 

--A SELECT expression 

i: INTEGER +- 1 ; 
WHILE i < 10 

DO ... i +- i + 1; .•. ENDLOOP; 

Statements 

Pascal 

a[1] :. 3.8E6; 
mxy[2][3] : • 7; 
altmxy[2,3] : • 7; 

IF b THEN PROCEDURE1 ; 

IF i< > j div 2 
THEN PROCEDURE1 
ELSE PRDCEDURE2; 

IF boolvar1 
THEN a[1] : • 4.56 
ELSE a[1] : • 8.71; 

{control: 1 .. 15;} 
CASE control OF 

1,7,8,9,10: statement1; 
2,5,11,12,13,14,15: statement2; 
3,4,6: statement3 

END; 

IF boolvar1 THEN 
statement1 

ELSE IF boolvar2 THEN 
statement2 

ELSE IF boolvarn THEN 
statementn; 

CASE control OF 
1.7,8.9.10: a[1):. 1.12; 
2.5,11.12.13.14,15: a[1] :. -4.856; 
3.4,6: a[1) : • 73.2 

END; 

i : .. 1; {assume i defined earlier} 
WHILE i < 10 DO 

BEGIN ••. i : • i + 1; ... END; 

1 
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Mesa Pascal 
Statements continued 

i: INTEGER ..... 1; 
DO 

.. .i ..... i+1; ... 
IF i > • 10 THEN EXIT; 

ENDLOOP; 

--The Mesa construct 

--UNTIL condition DO 

-- {StatementSeries}; 
--ENDLOOP; 

--is similar to that of Pascal except that the 
--condition is tested atthe "top "of the LOOP 

--and, if false, the LOOP is not executed. REPEAT 

--is a Mesa reserved word whose semantics are 
--not the same as Pascal REPEAT. 

FOR i: INTEGER IN [1 .. n) DO 

... sum ..... sum + ali]; ... 
ENDLOOP; 

i:. 1; 
REPEAT ... i:= i + 1; ... 
UNTIL i 2: 10; 

{In the Pascal construct 

REPEAT StatementSeries 
UNTIL condition; 

the condition is tested only after the StatementSeries 
has been executed once, i.e., the test is at the "bottom" 
of the LOOP.} 

{i: INTEGER; defined earlier} 
FOR i : • 1 to n - 1 DO 

BEGIN ... sum _sum + a[i]; ... END; := 
Unbound variant record initialization 

figure.figureName ..... ['a, 'r, 'b, 'i, 't, 'r, 'a, 'r, 'y]; 
WITH f: figure SELECT FROM 

point. > f.position ..... [-1.37.14]; 
line. > {f.xCoef ..... 2.81. 

f .yCoef ..... 4.2, 
f.slope ..... -.7}; 

circle. > {f.center ..... [O.00,3.00J, 
f.radius ..... S.OO}; 

ENDCASE; 

--the variable figure must be renamed 
--within the WITH statement 

figure.figureName[O] : • 'a'; 
figure.figureName[1] : • 'r'; 
WITH figure DO 

CASE tag OF 

point: WITH position DO 

BEGIN horizontal:. -1.37; 
vertical:. 14; 

END; 

line: BEGIN 

xCoef : • 2.81; 
yCoef : • 4.2; 
slope: = -.7; 

END; 

circle: WITH center DO -

END; 

BEGIN horizontal: • 0.00; 
vertical:. 3.00; 
radius: • 5.00; 

END 

Bound variant record initialization 

pointFigure.figureName ..... ['p, '0, 'i, 'n, 't, , ,'1, , ,']; 
pointFigure.point ..... [-1.37.14]; 

1-8 

{Pascal has no notion of bound variants} 
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Mesa Pascal 

Some pointer examples 

cand1 ~ Person[ 
name: Name['R, 'e, 'a, 'g, 'a, 'n, , , , , '], 
age: 72, 
sex: male, 
party: GOP, 
contribution: 0]; 

--Similarly initialize cand2 to MondaleData, 
--cand3 to BushData, and cand4 to FerraroData. 

z~ Heap.Create[initial:1]; 
--Initialize source FOR dynamically 
--allocated objects 

preswinner ~ Z.NEw[Person ~ cand1]; 
presloser ~ Z.NEw[Person ~ cand2); 
vpwinner ~ Z.NEw[Person ~ cand3]; 
vploser ~ Z.NEw[Person ~ cand4); 

preswinner ~ presloser; 
--preswinner and pres/oser both point to 
--the same RECORD (initialized to MondaleData). 
--No access path remains to the RECORD initialized 
--with ReaganData. 

vpwinner f ~vploser f; 
--vp winner and vploser point to distinct 
--RECORDS, each initialized to FerraroData. 

FOR p: LONG POINTER TO Node ~ 
rootNode, p.next UNTIL p.next • NIL DO 

IF p.voter.contribution > 100 
THEN AskFoRMoney[p.voter.name] 

ENDLOOP; 

--When applied to a pointer, the operation 
--of selection implies dereferencing. In Mesa, 
--this type of dereferencing is done 
--automatically. Thus, it is not necessary to 
--write p l' . voter. contribution or 
--p l' . voter. name. 

WITH cand1 DO 
BEGIN 

name[O] : • 'R'; name[1) : = 'e'; ••. 
age:. 72; 
sex:. male; 
party: • GOP; 
contribution: = 0; 

END; 

{Pascal allocation will be from an anonymous 
system heap.} 

NEw(preswinner); preswinner f : = cand1; 
NEw(presloser); presloser f : = cand2; 
NEw(vpwinner); vpwinner f : = cand3; 
NEW(vploser); vploser f : = cand4; 

preswinner : =- presloser; 

vpwinner f : =- .vploser f; 

p : =- rootNode; 
WHILE p < > NIL DO 

BEGIN 
IF P f .voter.contribution > 100 

THEN AskFORMone'y[p f .voter.name]; 
p:. p.next 

END; 

1 
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1 From Pascal to Mesa 

1.3 Mesa extensions of Pascal 

1-10 

1.3.1 Modules and interfaces 

Mesa programs look quite similar to Pascal programs when viewed in'the small. However, 
Mesa provides and enforces a modularization capability that is far more powerful than 
that of Pascal. In Mesa, you build large systems from a collection of smaller, separately 
compiled components called modules. The Mesa binder (the binder is similar to a linking 
loader in Pascal) enforces strong type checking among the modules that make up a system. 
In Pascal, you must make a choice when developing a large system. Either you construct a 
monolithic program to ensure type correctness, or you link separately complied program 
units without. any guarantee that the type of variable X in one unit matches the type of 
variable X in another unit. In the latter case, type mismatches are discovered only at run­
time. 

Type checking across module boundaries in Mesa is only part of its modularization power. 
There are two categories of module in Mesa. Definitions (or interface) modules declare 
types, constants, and procedure headers of procedures that manipulate values of types 
declared in the module. An interface defines an abstraction by collecting all operations on 
a class of objects into a single module. An interface module contains no executable code; it 
only contains enough information to allow the compiler to type check other modules that 
use the declared symbols. The body of a procedure declared in an interface is not part of the 
interface. Interface modules compile into symbol tables. 

The second category of module is the Program module. A program module acts as an 
implementor of an interface if it contains code that implements procedures declared in an 
interface module. A program module acts as a client of an interface if it calls procedures 
defined in that interface module. 

An interface is a contract between client and implementor: the interface specifies items 
that are available for clients to use, but doesn't say how they will be provided; the 
implementing module determines the details of the implementation. 

There are several advantages of interfaces: 

• Once an interface has been agreed upon, construction of the implementor and client 
can proceed independently. Thus interfaces and implementations are decoupled. This 
facilitates information hiding and permits changes to implementing modules without 
requiring a change to a client. Once an abstraction has been defined in a DEFINITIONS 
module (the interface) and implemented in one or more PROGRAM modules, an arbitrary 
(client) PROGRAM module can access the services advertised in the interface. 

• Interfaces enforce consistency in the connections among modules. Operations upon a 
class of objects are collected into a single interface, not defined individually and in 
potentially incompatible ways. 

• Nearly all of the work required for type-checking interfaces is done by the compiler. 
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Queue: DEFINITION 

Types 
Queue Procedure Declarations 

~ '" QueueClient: PROGRAM Queuelmpl: PROGRAM 

IMPORTS Queue EXPORTS Queue 

• Mesa separates the definition of an interface from the actual code that 
implements the interface. 

• QueueClient, Queue, and Queuelmpl are individual files, separately 
prepared. Queuelmpl implements the procedures declared in Queue. 

• QueueClientprogram uses the Queue interface. 

• Compiler and Binder type-check the interface between QueueClient and 
Queuelmpl. 

Mesa modularity 

1.3.2 Exceptions: signals and errors 

1 

Mesa provides signals to indicate exception conditions. Signals provide an orderly means 
for dealing with exceptions that is inexpensive if they occur infrequently. Examples of 
exceptions are invalid inputs, the inability of an abstractions to respond (e.g.,an allocator 
out of space), or any unusual or "impossible" event. 

A Mesa SIGNAL can be thought of as the association of a procedure with an exceptional 
condition. "Raising" a signal when the exception occurs is similar to invoking the 
associated procedure except that the code to be executed is deterI?ined dynamically and is 
found in a "handler". The binding to a handler is determined by searching catch phrases 
(that contain handlers) in the call stack of the process in which the exception is raised; the 
dynamically innermost catch phrase that accepts the signal (by having a handler prepared 
to deal with the signal) is selected and executed. Often, parameters are passed when the 
signal is raised to help a handler determine what went wrong. Catch phrases are written 
in a distinctive syntax that clearly identifies them as the location of handlers containing 
code to respond to signals. 

1-11 
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The cost of raising a signal is significantly higher than the cost of calling a procedure, but 
exceptions are events that should not happen very often. The system guarantees that all 
exceptions are handled at some level; those that the program fails to catch are accepted by 
the debugger. The debugger keeps intact the state of the program that raises a signal. 

1.3.3 Processes, monitors, and condition variables 

Mesa provides efficient mechanisms for concurrent execution of multiple processes within 
a single system. This allows programs that are inherently parallel in nature to be clearly 
expressed. 

Example 

Getlnput: PROCEDURE[buffer: LONG POINTER TO Buffer] 
RETURNS [bytes Read : CARDINAL] • 

BEGIN 
p: PROCESS RETURNS [CARDINAL]; 

p ~ FORK ReadLine[buffer]; 

< < concurrent computation > > 

bytes Read ~JOIN p; 
END; 

FORK makes it possible to start the execution of another procedure concurrently with the 
program that started it. FORK returns a process, which may either be detached to proceed 
independently, or saved for a future JOIN. A process type is declared similarly to a 
procedure type, except that only the type of the result is specified. 

All processes execute in the same address space. Consequently, they are not protected 
from each ather (certainly acceptable in a single-user system) but process creation and 
switching between processes is cheap (about the same as a procedure call). 

Mesa provides facilities for synchronizing processes by means of entry to monitors and 
waiting on condition variables. A monitor has shared data in its global frame, and its own 
procedures for accessing it. To prevent two processes from executing the the same monitor 
at the same time, a monitor lock is used for mutual exclusion. Calling one of a monitor's 
ENTRY procedures automatically acquires the monitor lock (WAITing if necessary), and a 
return releases it. The monitor lock serves to guarantee the integrity of the global data, 
which is expressed as the monitor invariant, an assertion defining what constitutes a 
"good state" of the data for that particular monitor. It is the responsibility of every entry 
procedure to restore the monitor invariant before returning. 
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StorageAliocator: MONITOR. 
BEGIN 
StorageAvailable: CONDITION; 
Block: TYPE = RECORD[ ... ]: 

Example 

listPtr: TYPE. LONG POINTER TO ListElmt; 
ListElmt: TYPE. RECORD[block: Block, next: ListPtr]; 
FreeList: listPtr; 

Allocate: ENTRY PROCEDURE RETURNS [p: ListPtr] = 
BEGIN 
WHILE Freelist • NIL DO 

WAIT StorageAvailable 
ENDLOOP; 

p +- FreeList; FreeList +- p.next; 
END; 

Free: ENTRY PROCEDURE[P: ListPtr] • 
BEGIN 
p.next +- FreeList; FreeList +- p; 
NOTIFY StorageAvailable 
END; 

END. 

1 

It may happen that one process enters the monitor, finds the monitor data in a valid state, 
but cannot continue until some other process enters the monitor and alters the state (for 
example, a process may find that there is no storage available). The WAIT operation allows 
the first process to release the monitor lock and await the desired condition. The WAIT is 
performed on a condition variable associated by agreement with the actual condition 
required. When another process makes that condition true, it will perform a NOTIFY on the 
condition variable, and the waiting process will continue from where it left off (after 
reacquiring the lock) and testing the condition again. 

1.3.4 New data types 

In Mesa, the predefined type LONG STRING is really "LONG POINTER TO Stringbody"; a 
StringBody contains a packed array of characters, a maxlength field giving the length of 
that array, and a length field indicating how many of the characters are currently 
significant. Each program contains the following predeclarations: 

Example 

LONG STRING: TYPE. LONG POINTER TO StringBody; 
StringBody: TYPE • MACHINE DEPENDENT RECORD[ 

lengtn: CARDINAL, 
maxlength: --readonly-- CARDINAL, 
text: PACKED ARRAY[O •• O) OF CHARACTER]; 

whatWasThat: LONG STRING. "En?"; --constant STRING 

answer: LONG STRING +- [256]; --allocate a StringBody with maxlength 256 

1-13 
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A sequence is an indexable collection of items, all of which have the same type. In this 
respect a sequence resembles an array; however, the length of the sequence is not part of 
its type. The (maximum) length of a sequence is specified when the object containing that 
sequence is created, and it subsequently cannot be changed. It is the responsibility of the 
programmer to keep track of the number of items in the sequence at, any time. Sequences 
are declared as the last field in a record. 

Example 

Iptscr: TYPE • LONG POINTER TO SequenceContainingRecord; 
finger: Iptscr ~ NIL; 
SequenceContainingRecord TYPE. RECORO[ 

a: BOOLEAN, 
b: BOOLEAN, 
seq: SEQUENCE length:CARDINAL OF LONG INTEGER]; 

finger ~ Heap.systemZone.NEw[SequenceContainingRecord[10)); 
--SequenceContainingREcoRo[10} is a TYPE specification describing a RECORD with a 
--sequence part, seq, containing 70 LONG INTEGERS. The effect of the call is to allocate 
--enough storage to hold two BOOLEANS and 70 LONG INTEGERS and return a long 
--pointer to this storage. 

Dynamic variables in Mesa are allocated in zones. Zones are not necessarily associated 
with fixed areas of storage; rather they are objects characterized by procedures for 
allocation and deallocation. There is a standard system zone, systemZone, but programs 
that allocate substantial numbers of similar dynamic variables can often improve 
performance by segregating each kind into its own zone. NEW is used to allocate a dynamic 
variable from a zone, and FREE to release it. 

Mesa allows a default initial value to be associated with a type. Default values for 
arguments can simplify procedure applications; default initial values are useful to ensure 
that the corresponding storage is always well-formed, even before the variable has been 
used by the program. 

1.3.5 Mesa extensions of Pascal constructs 

This section mentions a number of areas where Mesa provides "convenience" extensions or 
conceptually small changes. 

SELECT statements generalize Pascal's CASE construct by allowing several ways to specify 
how one statement is to be chosen for execution from an ordered list. The most common 
form is based on the relation between the value of a given expression and those of 
expressions associated with each selectable statement. The relation may be equality (the 
default),- any relational operator appropriate to the types of the values involved, or 
containment in a subrange. A single selection may be prefixed by several selectors and an 
optional ENDCASE statement is selected only if none of the others are. Discriminating 
selection is used to branch on the type of a variant record value. SELECT expressions are 
analogous, but choose from an ordered list of expressions. 
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Examples 

--control: (1 •. 15]; 
SELECT control FROM 

1,IN [7 .. 10] • > statement1; 
2,5, >10 :I> statement2; 
ENDCASE :I > statement3; 

Shape: TYPE = {point, line, circle}; 

Figure TYPE :I RECORO[ 
figureName: Name, 
specificFigure: SELEcTfieldlD: Shape FROM 

point. > [position: Coordinate] 
line :I > [xCoef, yCoef, slope: REAL], 
circle. > (center: Coordinate, 

radius: REAL]; 
ENDCASE]; 

a[1] .... SELECT control FROM 
1, IN [7 •• 10] :I> 1 .. 12; 
2,5, >10 :I> -4.856; 

ENOCASE = > 73.2; 
--A SELECT expression 

1 

Iteration is provided by loop statements in which several different kinds of control can be 
freely intermixed. A loop has a control clause and a body. The control clause may specify a 
logical condition for normal termination, possibly combined with a range or a sequence of 
assignments for a controlled variable. In addition to ordinary statements, the body may 
contain EXIT or GO TO statements to explicitly terminate its execution, and may be followed 
by a REPEAT clause that acts like a selection on the GOTO used to terminate the loop. (GOTO 
cannot be used to synthesize arbitrary control structures. It is much like a "local" 
exception.) 

i .... 1; 
UNTIL i > .10 

DO ..• i .... i + 1; .•• ENDLOOP; 
Next-Statement; 

Examples 

--UNTIL i> = 10 is the loop control 

The following example is equivalent to the one above. 

i .... 1; 
DO 
IF i > • 10 THEN GOToquit; --first statement in the body' 
... i .... i + 1; ... 
REPEAT --REPEAT doesn't mean repeat, it means "location of exits options". 

quit :I > NULL; 
ENDLOOP; 
Next-Statement; 

1-15 
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An example of linked list traversal: 

NodeLink: TYPE == LONG POINTER TO Node; 
node, head Of List: NodeLink; 
Node: TYPE == RECORO[ 

listValue: SOmeTYPE, 
next: NodeLink); 

FOR node ~ headOfList, node.next UNTIL node = NIL 
DO ... ENDLOOP; 

The loop control variable is node. Its initial value, head Of List, is assigned prior to the first 
iteration. Before each subsequent iteration the next expression, node.next, is reevaluated 
and assigned to the control variable. The user must either use a GOTO to terminate the loop 
or include a condition test. The condition test UNTIL node == NIL was used in the above 
example. 

The LOOP statement is used when there is nothing more to do in the iteration, and the 
programmer wishes to go on to the next repetition, if any. 

stuff: ARRAV[0 .• 100) of PotentiallylnterestingData; 
Interesti ng: PROCEDURE[Potentia Ilyl nteresti ngData) RETURNS[SOOLEAN); 
i: CARDINAL; 

FOR i IN [0 .. 100) DO 
---some PRocessing FOR each value of i 

IF -Interesting[stuff[ill THEN LOOP; 
--PROcess stuff[i]; 

ENOLOOP; 

In Pascal, procedure execution must proceed somehow to the end of the body before 
terminating; in Mesa, it can be terminated anywhere by executing a RETURN statement. If 
the procedure's type includes results, the RETURN statement may supply the values to be 
returned - otherwise they are taken from the result variables named in the type. Each 
procedure body is followed by an implicit return. 
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Examples 

ReturnExample1: PROCEDURE[option: [1 •. 4]] RETuRNs[a, b, c: INTEGER] =­
BEGIN 
a+-b+-c+-O; 
SELECT option FROM 

1 =- > RETURN [a:1, b:2,c:3]; 
2 = > RETURN [1,2,3]; 
3 :I> RETURN; 
ENDCASE = > b +- 4; 

c+-9; 

--keyword parameter list 
-- position version of option 
-- a = b = c = 0 

END; -- implicit return; a = 0, b = 4, C = 9 

ReturnExample2: PROCEDURE[g: INTEGER] RETURNS[lNTEGER +- 3, INTEGER +- 4] = 
BEGIN 
SELECT 9 FROM 

o • > RETURN [ , 2]; 
1 • > RETURN [8,]; 
2 =- > RETURN [,]; 
3 • > RETURN [5]; 
4 =- > RETURN []; 
ENDCASE • > 

END; 

-- RETURNS [3,2} 
--RETURNS [8,4} 
--RETURNS [3,4} 
--RETURNS [5,4} 
--RETURNS {3,4} 

--implicit return: [3,4} 

1 

Pascal procedures are not values that may be assigned to variables; Mesa procedures are. 

Example 

InverseTrigValue: REAL; 
InverseTrigFunction: TYPE=- PROCEDURE [x: REAL] RETURNS [REAL]; 

ArcSin: InverseTrigFunction • BEGIN --PROCEDURE body-- ... END; --PROCEDURE constant 
ArcCos: InverseTrigFunction • BEGIN --PROCEDURE body-- ... END; --PROCEDURE constant 
ArcTan: InverseTrigFunction = BEGIN --PROCEDURE body-- ... END; --PROCEDURE constant 
InverseTrigFunctionVariable: InverseTrigFunction; --PROCEDURE variable 

InverseTrigFunctionVariable +- ArcSin; 
InverseTrigValue +-lnverseTrigFunctionVariable[3.141S/4]; 

1.3.6 Input and output in Mesa 

The Mesa language definition omits many of the features commonly expected in 
programming languages, such as input/output and string manip.ulation operations. These 
facilities are available to Mesa programmers, but they are provided by interfaces written 
in the language itself. Standard interfaces are documented in the Mesa Programmer's 
Manual. 

1-17 
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1.4 References 

The definitive reference for the language is the Mesa Language Manual, version 11.0. The 
remaining chapters in the Mesa Course will guide your reading of the Mesa Language 
Manual and will discuss in detail all of the topics mentioned only brie-fly in this chapter. 

1.5 Exercises 

1-18 

1. Convert the following Pascal program fragment to Mesa. 

CONST 

maxlength = 1000; 
TYPE 

index = 1 .. maxlength; 
rowType • ARRAY [index] OF integer; 

VAR 

inrow: rowType; 
ix: index; 

PROCEOURE shellsort (VAR row: rowType; length: index); 
VAR 

jump, m, n : index; 
temp: integer; 
all done : boolean; 

BEGIN 

jump: = length; 
WHILE jump> 1 00 

BEGIN 

jump: = jump DIV 2; 
REPEAT 

alldone : = true; 
FOR m : • 1 TO length. jump DO 

BEGIN 

n: = m + jump; 
IF row[m] > row[n] 

THEN 

END { FOR} 

UNTIL all done 

BEGIN 

END 

temp: = row[m]; 
row[m] :. row[n]; 
row[n] : = temp; 
alldone : • false 

END {while} 
END; {sort} 
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2. Convert the following Pascal program fragment to Mesa. 

{straight list insertion} 
TYPE 

ref. f word; 
word • RECORD 

VAR 

key: integer; 
count: integer; 
next: ref 

END; 

root: ref; 

PROCEDURE search (x: integer; VAR root: ref); 
VAR 

w: ref; 
b: boolean; 

BEGIN 
w:. root; 
b:. true; 
WHILE (w < > nil) AND b DO 

IF w f .key • x THEN b : = false ELSE w : = w f .next; 
IF bTHEN 

BEGIN {NEW ENTRY} 
w: = root; 
NEw(root); 
WITH root f DO 

END 
ELSE 

BEGIN 

END 

key: • x; 
count: = 1; 
next:- w 

W f .count : • w f .count + 1 
END; {search} 

1 
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Notes: 
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As mentioned in the last chapter, the chief differences between Pascal and Mesa lie not in 
the syntax of the language, but rather in how modules interact to share information, and 
how individual modules are combined together into systems. Mesa's structured 
modularization allows modules to be created and tested individually, and then later 
integrated with complete type safety. Thus, Mesa effectively reduces the problems of 
programming in the large down to the problems of programming in the small. This 
chapter illustrates how Mesa's interfaces allow individual programs to share information; 
the next chapter discusses how interfaces are used in large-scale system building. 

2.1 Preliminary readings 

Skim the first five chapters in the Mesa Language Manual to get acquainted with the 
common Mesa constructs and syntax. You will need these chapters as a reference as you 
read this chapter and do the exercises. 

Read Appendix B of the Mesa Language Manual, Programming Conventions, before you 
start to write your own programs. 

2.2 Definition of terms 

Client 

Interface 

Interface module 

Implementation module 

A client is a program (as opposed to a person) that uses the 
services of another program or system. 

An interface is a formal contract between pieces of a system 
that describes the services to be provided. A provider of 
these services is said to implement the interface; a 
consumer of them is called a client of the interface. 

An interface or DEFINITIONS module defines types, variables, 
constants, procedures, and signals, thus specifying the 
services to be provided by its implementation modules. 

An implementation or PROGRAM module is a program that 
codes (implements) and makes available to clients (exports) 
items in an interface. One implementation module can 
export all or part of one or several interfaces, and an 
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Load 

Symbol 

interface can be implemented by several implementation 
modules jointly. 

Loading a module allocates memory space for its code and 
data, and links it to other modules that are already loaded, 
but does not start it. . 

A symbol is any user-defined name in a program, such as a 
constant, type, variable, or procedure. 

2.3 Discussion 

2-2 

There are two kinds of modules in Mesa: DEFINITIONS and PROGRAM. DEFINITIONS modules are 
also called interface modules, or just interfaces for short. You can think of an interface or 
DEFINITIONS module as a catalog containing a precise description of each item offered. The 
purpose of an interface is only to define procedures and variables that will be available to 
other programs; the interface does not contain the actual code for those procedures. 

All executable code is contained in the second kind of module, called a PROGRAM module. A 
program module can act as a manufacturer of an interface (creating the items in the 
catalog), or as a customer (ordering items from the catalog). In Mesa, the "manufacturers" 
are called implementors, and the "customers" are called clients. Thus, program modules 
communicate via interfaces: a shared symbol is defined in an interface module, 
implemented by a program module, and used by other program modules. The interface is 
the link between the two program modules; there is no direct communication between 
client and implementation. 

One advantage of this approach is information hiding; the client knows nothing of the 
implementation, and thus cannot take advantage of specific details of that 
implementation. Another important advantage is that the implementation is decoupled 
from the client; as long as the declaration in the interface remains the same, the 
implementation can be changed without affecting the client. 

The rest of this chapter discusses the mechanics of linking together the three- basic pieces 
of the interface mechanism, which are: 

(1) an interface or DEFINITIONS module, 
(2) an implementor of that interface, which is a PROGRAM module, and 
(3) a client, which is also a PROGRAM module. 

2.3.1 CompareImplA, which uses no interfaces 

You can write Mesa code without using interfaces at all. ComparelmplA.mesa is a simple 
example ofa self-contained PROGRAM module. Take a look at the code: 

ComparelmplA: PROGRAM. 

BEGIN 

Compare: PROCEDURE [x,y: CARDINAL] RETURNS [same: BOOLEAN] • 

BEGIN 

IF x • Y THEN RETURN[samef- TRUE] 

ELSE RETURN[samef- FALSE] ; 

END; --of procedure Compare 
END. 
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ComparelmplA consists of one procedure, Compare, which takes two numbers as 
arguments, compares them, and returns a result of either TRUE (the numbers are the same) 
or FALSE (the numbers are not the same). However, there is no mainline code to call 
Compare, nor are there any UO calls to get input or print results. Obviously, this program 
is of little use by itself. One way to make it useful is to "publish" it so that other programs 
can call our Compare procedure. This is called exporting the procedure. 

2.3.2 Exporting 

Exporting describes the relationship between an interface and its implementation. If you 
want to make a procedure available to the outside world, you define that procedure in an 
interface, implement it in a program module, and export the implementation to the 
interface. Client programs can then access the procedure directly from the interface. This 
process is called exporting an interface. 

To use the earlier analogy, we want to publish a catalog from which clients can order a 
compare procedure, and we want to sign up as the manufacturer of the compare procedure 
advertised in the catalog. To do this, we have to write the interface and upgrade 
ComparelmplA so that it exports Compare. 

2.3.2.1 The interface 

Here is the interface, which we have called InterfaceB: 

InterfaceB: OEFINITIONS • --keyword DEFINITIONS declares this to be an interface 
BEGIN 
Compare: PROCEDURE [X,y:CARDINAL) RETURNSlresult:BOOLEAN); 
END. 

This module is an interface; it defines procedures that are available to others. This 
particular interface contains only one definition, that of the procedure Compare. 
InterfaceB provides enough information about Compare so that the compiler can type­
check client programs, but it does not contain the actual executable code for Compare. The 
actual code for Compare is in our implementation, which is a PROGRAM module. 

2.3.2.2 The implementation 

Here is ComparelmplB, the implementation module: 

DIRECTORY 
InterfaceB; 

ComparelmplB: PROGRAM EXPORTS InterfaceB. 
BEGIN 
Compare: PUBLIC PROCEDURE [X,Y:CARDINAL] RETURNS[result:aOOLEAN] • 

BEGIN 
IF X • Y THEN RETURN[result Eo-TRUE] 
ELSE RETURN[result Eo- FALSE] ; 
END; --of procedure Compare 

END. 

This module is an upgraded version of ComparelmplA; the code for the procedure is the 
same, but this time we are exporting the code to the interface. To export all or part of an 
interface, you need to do three things. You need to specify that you are referencing other 
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modules, you need to list the interfaces that you are exporting, and you need to list the 
specific procedures that you are exporting. 

The DIRECTORY clause in ComparelmplB accomplishes the first of these three; it tells the 
compiler which interfaces will be referenced during this compilatio~. If you want to use 
information from an interface, you must include that interface in your DIRECTORY clause. In 
this case, the compiler needs to reference InterfaceB to verify that the procedure 
declaration in the implementation matches the procedure declaration in the interface. 

The EXPORTS clause accomplishes the second objective; it lists the interfaces that are being 
implemented, at least in part, by this module. An exporting module need not implement 
all the symbols in an interface; the implementation of an interface is often the cooperative 
effort of several modules. A PROGRAM module can also export more than one interface. 

The third objective is achieved by declaring Compare to be a PUBLIC procedure. Symbols can 
be declared as being PUBLIC or PRIVATE. PUBLIC symbols can be exported to an interface, but 
PRIVATE symbols cannot. In PROGRAM modules, the default is PRIVATE: all symbols are 
assumed to be PRIVATE unless specifically declared PUBLIC. Thus, the word PUBLIC indicates 
that Compare is an implementation that is being exported to an interface. The compiler 
verifies that the declaration matches the declaration in the interface exactly, except for 
the word PUBLIC. 

Figure 2.1 summarizes the communication between an interface and its implementation. 

2.3.3 Importing 

Interface 

InterfaceName: DEFINITIONS = 
BEGIN 

ProcedureName: PROCEDURE ••• ; 

END. 

Implementor 

DIRECTORY 

InterfaceName ; 
Interfacelmp/: PROGRAM 

EXPORTS InterfaceName = 
BEGIN 

ProcedureName: PUBLIC PROCEDURE ••• = 
BEGIN 

END; -- of procedure 
END. -- of implementation module 

Figure 2.1 

Now that we have exported Compare, other programs can use it. Conveniently, we have a 
willing client, CompareClient, eagerly waiting on the sidelines to import our code. 

Importing describes the relationship between a client program and an interface. A client 
that wishes to use a particular procedure only needs to know the definition of the 
procedure and the name of the interface from which to access it. It knows nothing about 
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the actual implementation. Thus, in our example, ComparelmplB exported Compare to 
the interface InterfaceB, and now CompareClient can import Compare from InterlaceB. 
There is no direct communication between ComparelmplB and CompareClient. 

2.3.3.1 Importing a procedure 

Here is the skeleton of Compare Client: 

DIRECTORY 
InterfaceB USING [Compare] ; 

CompareClient: PROGRAM IMPORTS InterlaceB = 
BEGIN 

f f-lnterfaceB.Compare[a, b] ; 

END; 

There are three steps to importing a procedure, which correspond to the three steps of 
exporting a procedure. First, you must list the interface in the DIRECTORY statement, just as 
in the exporting example. This tells the compiler that your module references InterlaceB. 
In this example, the DIRECTORY clause is further restricted by a USING clause, which lists the 
specific symbols that you will be using from that interface. Thus, CompareClient can use 
Compare from InterfaceB, but cannot use any other symbols from that interface. You do 
not have to have a USING clause, but it is a very good idea. 

Second, you need to list InterfaceB in the IMPORTS list; this specifies the interfaces for which 
implementations must be provided at run-time. 

Finally, you need to indicate that the procedure is imported by referring to it as 
InterfaceB.Compare, and not just Compare. You must always fully qualify the name of an 
imported symbol so that the compiler will know that it is corning from another interface. 

2.3.3.2 Template for importing a procedure 

Figure 2.2 diagrams the communication between an inter-face and a client that IMPORTS a 
procedure. 

Interface 
InterfaceName: DEFINITIONS = 

BEGIN 

~Iient 

ProcedureName: PROCEDURE ..• ; 
END. 

DIRECTORY 
InterfaceName USING [ProcedureName]; 

ClientName: PROGRAM 
IMPORTS InterfaceName = 

BEGIN 
... lnterfaceName.ProcedureName[ ... ] ; ... 
END. 

Figure 2.2 
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2.3.3.3 Importing a constant 

In the last section, we discussed how to import a procedure from an interface.However, not 
all information in an interface requires an implementation. Some of the symbols in an 
interface, such as variables, types, and constants, are compile-time sy.mbols. Such symbols 
are available directly from the interface; no implementation is necessary. Run-time 
symbols, on the other hand, are symbols (such as procedures) for which code must be 
supplied at run-time. If you use only compile-time symbols from an interface, and not run­
time symbols, you do not need to import the interface. For example, here is an interface: 

IncrementDefs: DEFINITIONS = 
BEGIN 

inputTooBig: CARDINAL = LAST[CARDINAL] 

END. 

--LAST returns largest value 

and here is the module Incrementlmpl, which imports inputTooBig from IncrementDefs. 

DIRECTORY 

IncrementDefs USING [inputTooBig] ; 

Incrementlmpl: PROGRAM = 
BEGIN 

-~ note interface and constant name 

Increment: PROCEDURE [x: CARDINAL] RETURNS [Y:CARDINAL. error:BoOLEAN] = 
BEGIN 

IF X < IncrementDefs.inputTooBig THEN 

RETURN [y +- x + 1, error +- FALSE] 

ELSE RETURN[Y +- x, error +- TRUE] ; 

END; 

END. 

-- note fully-qualified name 

Thus, importing compile-time information is just like importing run-time information, 
except that you do not need to include the interface in the IMPORTS list. The IMPORTS list 
includes only those interfaces for which run-time implementations are needed. 

2.3.3.4 Template for importing a constant 

Figure 2.3 diagrams the communication between an interface and a client that is 
importing a constant from that interface. 

Interface 

InterfaceName: DEFINITIONS = 
BEGIN 

ConstantName: CARDINAL = ... ; 
END. 

Client using a constant 

DIRECTORY 

InterfaceName USING [ConstantName]; 
Interfacelmp/: PROGRAM = 

BEGIN 

.. .InterfaceName.ConstantName ... ; 
END. 

Figure 2.3 
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2.3.4 Compiling and running your programs 

As discussed above, a module's DIRECTORY clause lists all the interfaces referenced by that 
module. When you compile a module, the compiler needs to be able to read all the 
interfaces listed in the DIRECTORY clause so that it can type-check your program. This 
means that if you list an interface in your DIRECTORY clause, you must have the compiled 
version of that interface on your local disk when you compile your program, or you will get 
a compilation error. Thus, an interface must always be compiled before program modules 
that reference that interface. 

Another important thing to remember is that when you recompile an interface, you will 
ha ve to recompile all of its clients and implementors as well. The reason for this is that all 
Mesa object modules (.bcd files) contain a time stamp as part of their identification. When 
clients and implementors of an interface are compiled, the time stamp of the interface is 
noted and retained in both the client and implementation object code file identification. 
When you try to combine the client and the implementation into a larger system, the time 
stamps are checked against one another. If the client and the implementation do not 
reference the same version of the interface, a version mismatch will occur, which prevents 
the system from running. 

Once you have compiled all the modules that make up a system, you can run the system. 
In the next chapter, you will learn how to use the binder to help you group your modules 
together, but for now you will have to load them all manually from CommandCentral. (All 
modules listed on the Run line of CommandCentral will be loaded.) You need to load all 
the program modules (your client, plus the implementations for any procedures that you 
have imported), but not the interfaces (since they don't contain executable code.) 
Implementation modules must be loaded before client modules, so that the 
implementation is ready when the client needs it. 

Thus, to execute the Compare system, you would have to set up Command Central like 
this, and invoke Go!. You can run Compare now, if you like. (Note: CompareClient 
references some interfaces that you may not have on your local disk, so we have provided a 
compiled version of this module. Normally you would have to compile CompareClient.) 

Compile: InterfaceB ComparelmpiB 
Bind: 
Run: ComparelmplB CompareClient 

2.3.5 Importing and exporting 

In the previous example, each program module was either a client or an implementor. 
Generally speaking, however, a PROGRAM module can be a client,. an implementor, or both. 
Most commonly, a given PROGRAM module is both client and implementor. The module can 
import and export the same interface, or it can export one or more interfaces and import 
another (or several others.) The terms client and implementor refer more to the function of 
a module than to the module itself; there is nothing to prevent a .client module from also 
being an implementor, or vice versa. 

Figure 2.4 is a diagram of the communication between an interface and another module, 
which is both an implementor and a client of the interface. This diagram is merely a 
composite of the client/interface and the implementor/interface diagrams. 
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Interface 
InterfaceName: DEFINITIONS = 

BEGIN 

ConstantName: CARDINAL = ... ; 
ExportedProcedureName: PROCEDURE ••• ; 

ImportedProcedureName: PROCEDURE ... ; 

END. 

Implementor and Client 

DIRECTORY 

InterfaceName USING [ConstantName, ImportedProcedureName] 
Interface/mpl: PROGRAM 

IMPORTS InterfaceName 
EXPORTS InterfaceName = 
BEGIN 

ExportedProcedureName: PUBLIC PROCEDURE ... = BEGIN ... END; 

.. .InterfaceName.ConstantName ... ; 
InterfaceName./mportedProcedureName[] ; 
END. 

Figure 2.4 

2.3.6 System interfaces 

System interfaces are general purpose interfaces that define comprehensive facilities for 
building everything from tools to whole systems. System interfaces serve as the entry 
point to an extensi ve library of procedures, variables, and data types, that saves you from 
reinventing and reimplementing utilities. Examples of system interface are Stri ng, which 
performs common string operations, and Exec, which handles communication with the 
Executive window. 

System interfaces are nice because they provide so many useful utilities, but they have the 
attendant disadvantage that you must learn what interfaces are available, and what 
routines they implement. System interfaces that are part of Pilot (the operating system) 
are documented in the Pilot Programmer's Manual; interfaces that are part of the tools 
environment are documented in the Mesa Programmer's Manual. 

You use symbols from a system interface just like private interfaces; you need to include 
the interface in the DIRECTORY clause and in the IMPORTS list, and refer to the symbol as 
InterfaceName.Symbol. In fact, system interfaces are just like all other interfaces except for 
one thing: the compiled versions of implementations of system ~nterfaces are included in 
the XDE system bootfile. Thus, since the implementations are provided in the bootfile, you 
do not have to explicitly load implementation modules for system interfaces. 

Recall from section 2.3.4 that when you use symbols from any interface, system or private, 
you must have the compiled version of the interface (not the implementation) on your local 
disk. If, for example, you want to use some procedures from the Heap interface (a system 
interface), you must make sure that Heap.bed is on your local disk before you compile your 
program. Compiled versions of system interfaces are stored on a special directory, called 
the release directory; when you need to use a system interface, you will have to ask 
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someone where the release directory is and retrieve the appropriate object file for that 
interface from that directory. 

Thus, to summarize: if you want to use procedures defined in the system interface Stri ng, 
you must import that interface and you must have the file String.bed on your local disk 
when you compile your program (which is thus a client of the String interface), but you do 
not have to explicitly run the file that implements those procedures. In fact, you will not 
normally even know the name of the implementation file; remember, an interface is the 
link between programs, and the client need know nothing about the implementation. 

2.3.6.1 An example of using system interfaces 

To see an example, take another look at CompareClient.mesa, which uses procedures from 
several system interfaces. Here is the beginning of that program: 

DIRECTORY 

FormSW USING [ 

AllocateltemDescriptor, ClientltemsProcType, Commandltem, Ii neO, I ine1, 
Numberltem, ProcType], 

Heap USING [systemZone], 
InterfaceB USING [Compare], 
Put USING [Line], 
Tool USING [Create, MakeFileSW, MakeFormSW, MakeMsgSW, MakeSWsProc, 

UnusedlogName], 
ToolWindow USING [TransitionProcType], 
Window USING [Handle]; 

CompareClient: PROGRAM IMPORTS FormSW, Heap, Put, Tool, InterfaceB = 

CompareClient uses procedures from seven interfaces: six system interfaces and one 
private interface (lnterfaceB). As you can see, the USING clause is a good way to document 
the exact symbols that this progam uses. Also notice that two of the interfaces are in the 
DIRECTORY, but not in th~ IMPORTS list. As discussed in section 2.3.3, this means that the 
symbols being used from that interface are compile-time values, and not run-time values. 

2.4 Summary 

Mesa's interfaces provide a formalized mechanism to allow individual modules to share 
types, constants, variables, and procedures. You can define your own interface, implement 
procedures declared in that interface, or use procedures implemented elsewhere. 
Interfaces thus encourage data abstraction and information hiding. As a quick review: 

To implement a symbol defined in an interface you must: 

• include the interface in your module's DIRECTORY clause; 
• include the interface in your module's EXPORTS list; 
• declare the symbol with the same name and type as appears in the interface; 
• declare the symbol to be PUBLIC; and 
• compile your module after the interface. 
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To be a client (use symbols defined in an interface), you must: 

• include the interface name in the DIRECTORY clause; 
• include the symbol in a USING clause 

(you do not have to have a USING clause, but it is a good programming habit); 
• include the interface name in the IMPORTS list; 
• use the symbol with its interface's name prefixed, as Interface.Symbol; 
• compile the module after the interface has been compiled; and 
• make sure the module that the implementation is available at run-time (loaded). 

If you only use compile-time symbols, you do not need to IMPORT the interface. 

Figure 2.5 on the next page summarizes the communication between an interface and its 
implementation and between an interface and its client. Implementations and clients are 
both PROGRAM modules, and a single module can function in both ways (although this is not 
shown in the figure.) 

2.5 Questions 

1) In what order must the following six modules be compiled? In what order must they be 
run? 

a) Program1 is an implementation module that imports procedures from 
Interface1 and Interface2. One of the procedures that it imports is implemented 
by Program2. Program1 also exports a procedure to Interface3. 

b) Interface1 is a definitions module. 

c) Program2 is an implementation module that uses types from Interface1 and 
exports a procedure to Interface2. 

d) Interface2 is a definitions module that uses types from Interface1. 

e) Program3 is a module that imports procedures from all three interfaces. 

o Interface3 is a definitions module 

2.6 References 

2-lO 

Chapter 7 of the Mesa Language Manual is essentially a denser statement of the 
information in this chapter and the next chapter. 

Appendix A of the Mesa Language Manual, Pronouncing Mesa, tells you how to pronounce 
Mesa symbols. 
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Client 

DIRECTORY 
InterlaceName USING (ProcedureName, ConstantName] ; 

OientName: PROGRAM 
IMPORTS InterfaceName = 
BEGIN .. .InterfaceName.ProcedureName[]; ... lnterfaceName.ConstantName ... END. 

Notes: 

1) This is a client module because it IMPORTS an interface. 
2) The client can call procedures and use constants defined in the interface. 
3) The interface must be listed in the DIRECTORY. 
4) The procedures and constants must be in a USING clause. 
5) The implementations of the procedures are bound at run-time, not at compile-

time. The interface must be IMPORTed. 
6) The constants are bound at compile-time. The interface need not be IMPORTed just 

to access them. 

Interface 

InterfaceName: DEFINITIONS = 
BEGIN 
ConstantName: CARDINAL •... ; . 
ProcedureName: PROCEDURE ... ; 
END. 

Notes: 
1) This is a interface module, as shown by the key word DEFINITIONS. 
2) Interfaces can define constants that are available directly from the interface. 
3) Interfaces can define procedures that are implemented by an implementation 

module. 

Implementor 

DIRECTORY 
Interfa'ceName; 

Interfacelmp/: PROGRAM 
EXPORTslnterfaceName. 
BEGIN 
ProcedureName: PUBLIC PROCEDURE ... • BEGIN ... END ; 
END. 

Notes: 

1) This is an implementation module because it EXPORTS an interface. 
2) The InterlaceName must appear in the DIRECTORY. 
3) The procedures being exported are declared as PUBLIC. 
4) The EXPORTS list causes public procedures in this Implementation to be exported to 

the interface. 
5) The module that implements interface X is conventionally called XImpl. 
6) An implementation can also be a client provided the correct DIRECTORY ... USING 

clause is included. (see Figure 2.4.) 

Figure 2.5 

2 
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2.7 Exercises 

2-12 

Before beginning these exercises you should read Appendices A and B of this manual, 
which address Mesa syntax errors and debugger basics, respectively. Do the debugger 
exercises of Appendix B to start becoming familiar with the debugger-. 

2.7.1 Exercise in importing a procedure 

Your assignment is to write a client program. We have provided an interface 
(ReverseLettersDefs) that defines a procedure, and an implementation module 
(ReverseLetterslmpl) that supplies that procedure. The client module, which you should 
call ReverseLetters.mesa, will call the procedure ReverseProc from ReverseLettersDefs. 
ReverseProc in turn calls procedures that accept a character string from the user and 
output the string with the letters reversed. 

Use the client template from Figure 2.5 to help you with this exercise. Once you have 
written your client program, compile the following modules (remember, an interface must 
be compiled before any modules that use it): 

• ReverseLettersDefs.mesa -- the interface that defines ReverseProc 

• ReverseLetters.mesa -- your client module 

• ReverseLetterslmpl.mesa -- the module that implements ReverseProc,. 

• BasiclOlmpl .mesa -- contains 1/0 procedures used by ReverseLetterslmpl 

Run the following modules 

Run: BasicIOImpl ReverseLettersImpi ReverseLetters 

BasiclOlmpl implements procedures that are imported by ReverseLetterslmpl, imported so 
it must be loaded before Reverseletterslmpl. When Tajo is ready, bring up the Tajo 
Executive window and type: 

> ReverseLetters.- hello -- you type this 

The reversed letters are: olleh -- the program returns this 

Experiment with reversing strings ofletters and spaces. 

2.7.2 Exercise in exporting a procedure 

Now it's your turn to write an implementation module. You will write a procedure called 
GetAverage that computes the average of the integers passed to if. (You can do the average 
computation by any method, or do something else with the numbers, as long as you pass out 
an integer.) To keep the lIO simple, the average passed out of your procedure will be an 
integer value, and thus will be rounded up or down. 

Your procedure will receive an array containing up to ten integers, and the actual number 
of integers to average. You will export your procedure GetAverage to the interface 
Average Defs. mesa, which we provide. We also supply a client program to call your 
procedure and do the lIO. 
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After you have written your implementation module, compile the following modules: 

e AverageClient.mesa -- this client program gets up to ten integers from the user, 
counts them, imports the interface AverageDefs to get your procedure, calls your 
procedure to compute the average of the numbers, and outputs the result. 

eAverageDefs.mesa -- this is the interface that contains the definition of your 
procedure. 

e Averagelmpl.mesa (or whatever you called your implementation module). 

Run the following files: 

Run: Averagelmpl AverageClient 

Invoking Run! will put you into Tajo. Bring up the Executive and type: 

> Average 24 -- you type this 

The average is: 3 -- the program returns this 

2.7.3 Exercise in importing and exporting using one interface 

This exercise demonstrates importing and exporting using a single interface. First, you 
will import the interface CombineDefs. This imported interface provides the factorial 
routine Fact, which computes the factorial of a number for you. Com bi neDefs also contains 
some types and constants that you will need. 

Your job is to write a procedure to compute a combinatorics problem, using the imported 
Fact. You will then export your procedure to the interface CombineDefs for a client to use. 
The client, which is provided for you, will create a tool window for you to enter data, and 
will use your code to compute a solution and display the result. 

The first step is to write a procedure to calculate the following: Given a group of people of 
size "baseSize", how many ways can you combine them into groups of size 
"groupingSize" ? The formula for this problem is 

baseSize! 

groupingSize! (base Size • groupingSize)! 

These variable names must be exact, and capitalization IS relevant. The name of your 
procedure will be Combine, and its type is CombineDefs.Combin"eType. You will find its 
definition in the interface CombineDefs. You will need to import CombineType, and the 
procedure Fact to perform the factorials from the interface CombineDefs. You will then 
export your procedure Combine to the interface CombineDefs. 

Using CommandCentral, compile the following 5 modules: 

2-13 



2 

2-14 

Interfaces 

.CombineDefs.mesa -- the interface 
• Combinelmpl (or whatever you called it) -- the implementation module for Combine 
• Factoriallmpl,mesa -- supplies the factorial procedure for Fact 
• Combi natori csToollm pI, mesa -- supplies the user interface tool for the client 
.CombineClient.mesa -- the client module 

Runt the four implementation modules: 

Run: Combinelmpl FactorialImpl CombinatoricsToolImpl CombineClient 

When you arrive in Tajo, you will see a tool window, which was produced by 
CombinatoricsToolimpl. Fill in the fields for baseSize and groupingSize and invoke 
Combine!. The answer will appear in the lower subwindow. 
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Binding 

In the last chapter, we discussed how individual modules can use interfaces to share 
information. In this chapter, we will focus on how separately compiled modules are bound 
together into larger units. 

3.1 Definition of terms 

Configuration 

Configuration file 

System interface 

3.2 Discussion 

A configuration is the bound code of one or more individual 
modules. 

A configuration file is the file that contains the names of the 
modules that are to be bound together and describes how they 
are to be bound. 

A system interface is an interface whose implementation is 
exported by the system bootfile. 

In the last chapter, you had to run several modules in a specific order to ensure that the 
implementation of an interface was available when a client program tried to reference it. 
This process is inconvenient, but manageable when there are few modules involved. When 
you are working on a large system, however, the job of keeping track of the necessary 
modules and their loading order becomes more difficult. 

To help simplify things, the Mesa binder creates a logical structure called a configuration 
for the modules comprising a large system. This is analogous to the grouping of employees 
within a company. Groups of employees are organized into departments, with each 
department having certain duties. While the employees in a department do the actual 
work, the department itself can be thought of as doing the work, thus simplifying the 
world's view of things. Similarly, each configuration can be thought of as one logical entity 
that performs a certain task, although the task is actually performed by the modules 
within the configuration. 

The binder processes a special file called a configuration file. This file contains a list of 
modules, which may be program modules or other configurations, and describes how they 
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are to be combined and initialized. The binder matches the import requests and export 
requests of the listed modules and creates an object module containing information about 
imported and exported items, object code for each module in the configuration, the names 
and versions of each module, and the interfaces referenced by those modules. This object 
module, the configuration, is also called a binary configuration description or "bed" file. 

There are several advantages to using a configuration instead of loading each module 
individually. One advantage is simplicity: after you have bound the modules together, you 
can type just the name of the configuration to run your program or system. Additionally, if 
other programmers want to use your system, they only need to obtain one module, the 
bound configuration, instead of finding and retrieving each individual module. 

Another advantage of using the binder is version control. Every program module and 
definitions module has an associated time-stamp. This time-stamp can be thought of as an 
extension of the module's name; thus different versions of a module are different modules. 
For example, Comparelmpl.bcd of Oct 14, 1984 1: 15 p.m. is a different module from 
Comparelmpl.bcd of Oct 15, 1984 10: 12 a.m. When creating a configuration, the binder 
insures that all clients and implementors of an interface are referring to the same version 
of that interface; this effectively extends Mesa's strict type-checking across module 
boundaries. 

3.2.1 A configuration file 

The input to the binder is a configuration file, which contains a list of the modules to be 
bound, a list of imports and exports, and the order in which the modules are to be loaded. 
Here is Average.config, a configuration file for the program that you wrote in chapter 2: 

Average: CONFIGURATION 

IMPORTS Exec, String, Format, Heap 
CONTROL AverageCI ient = 
BEGIN 

Averagelmpl; 
AverageClient; 
END. 

3.2.1.1 Reading a configuration file 

Although Average looks much like a Mesa program, it is actually written in C/Mesa 
(configuration Mesa). There are five parts to a C/Mesa file: 

(1) declaration (Name: CONFIGURATION), 

(2) IMPORTS list 
(3) EXPORTS list 
(4) CONTROL list 
(5) BEGIN-END block 

• The Name of the configuration file is the name that you will type to run your 
program after you have bound it. 

• The IMPORTS list contains any interfaces that need to be imported from outside of the 
configuration; this is covered more fully in section 3.2.1.3. 
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• The EXPORTS list names all the interfaces for which this configuration exports an 
implementation. In this case, nothing is exported so there is no exports list. 
Exporting from a configuration is covered more fully in section 3.2.1.4. 

• The CONTROL list states which bound components are to be started and in which 
order. In most simple applications, only one component need·be started explicitly. 
This is usually the component that contains mainline code. The other components 
are started implicitly when procedures in them are called. 

• The BEGIN·END block itemizes the modules and configurations that are going to be 
bound together in the output configuration. This list corresponds to the list that you 
typed on the Run: line in the last chapter. In this case, the binder will use the 
information given in Average.eonfig to bind together the files AverageClient.bed 
and Averagelmpl.bed, and the resulting configuration will be stored in the file 
Average.bed. The module names in the BEGIN·END block do not have to be listed in 
any particular order. 

When you run the configuration Average, it will execute just as the individually loaded 
modules Averagelmpl and AverageClient did in the chapter 2 exercise. If you want to try 
it, set up Command Central as follows and invoke Go!: 

Compile: 
Bind: Average 
Run: Average 

3.2.1.2 Importing into a configuration 

The IMPORTS list of a configuration file is not simply a list of the imports of its components. 
It is a list of interfaces that need to be imported from outside the configuration. Interfaces 
that are imported by one module of the configuration and exported by another module in 
the same configuration are referred to as "self-contained" within the configuration, or 
"resolved." Such interfaces do not need to be imported by the configuration, but you must 
make sure that their implementation modules are listed in the configuration file. 

The module AverageClient imports GetAverage from the interface AverageDefs, and the 
module Averagelmpl supplies GetAverage. Thus, all the necessary information is 
available; GetAverage need not be imported into the configuration. The implementations 
for Exec, String, Format, and Heap, however, are not supplied by either of the modules 
being bound together, and must thus be imported into the configuration. (Recall from the 
last chapter that implementations for system interfaces are part of the bootfile, and are 
thus already loaded.) 

3.2.1.3 Exporting from a configuration 

Like the IMPORTS list, the EXPORTS list is not just a list of items exported by the components 
of the configuration. Putting an interface in the EXPORTS list of a configuration makes its 
symbols available to the world outside the configuration, just as putting an interface in 
the EXPORTS list ofa module makes its symbols available outside the module. You can think 
ofthe bound configuration as a large module, composed of other, smaller modules. You get 
to choose which symbols you will make available to the outside world, and which you will 
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keep local to your configuration. You might want to keep all of your symbols local to your 
configuration, in which case you wouldn't even have an EXPORTS list. 

One of the side effects of exporting an interface from a configuration is that the interface's 
implementation will remain loaded. (It thus has the same status as a system interface.) 
This means that the next configuration that imports the interface won't have to load the 
implementation module by listing it in the configuration file. Figure 3.1 illustrates 
exporting an interface from a configuration. 

MoreDefs Config2 : CONFIGURATION 
r-------------------~ I IMPORTS MoreDefs 

~ EXPORTS ... 

TwoProgs: CONFIGURATION 

IMPORTS ... 

EXPORTS MoreDefs 

CONTROL Prog2 = 
BEGIN Prog1 ; Prog2 ; END. 

ProgDefs 

r------------------+ 

Notes: 

Prog1 :PROGRAM 

IMPORTS ... 

EXPORTS ProgDefs 

Prog2: PROGRAM 

IMPORTS ProgDefs ... 

EXPORTS MoreDefs 

1) The procedures imported by Prog2 are exported by Prog1 
2) Another configuration (Config2) can now import MoreDefs because 

TwoProgs exported it. 
3) IfConfig2 imported MoreDefs, it wouldn't have to load Prog2 (the 

implementation ofMoreDefs). Prog2 will already be loaded because 
MoreDefs was exported by TwoProgs. This means that Config2 wouldn't 
have to list Prog2 in its BEGIN·END block. 

Figure 3.1 Exporting from a configuration 
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3.2.1.4 Template for a configuration file 

Figure 3.2 is a general template for a configuration file. 

Configuration 

ConfigName: CONFIGURATION 

IMPORTS InterfaceA, InterfaceB, .•. 
EXPORTS InterfaceX, InterfaceY, InterfaceZ, ... 
CONTROL Module 1, ... = 
BEGIN 

Module 1; Module2; ... 
END. 

Notes: 

1) This is a configuration because of the key word CONFIGURATION. The name of the 
source file should be ConfigName.config. 

2) The configuration contains Module1, Module2, etc. ModuleK can be a program or a 
configuration. Order of module names within the BEGIN ... END block is not important. 

3) The CONTROL statement specifies the module that is to receive control when the 
configuration is started. (Also list there any modules that require explicit starting, 

I but this is rarely necessary.) 
I 4) 
I 

ConfigName will import the interfaces listed in the IMPORTS statement. These 
interfaces should be all those imported within any ModuleM and not exported by 
another ModuleN. 

5) ConfigName will export the interfaces listed in the EXPORTS statement. These 
interfaces must be exported by some ModuleJ. (You never have to export anything 
from a configuration, unless you want to make it available to others.) 

Figure 3.2 Template for a configuration file 

3.2.2 Unbound procedures 

In XDE, a configuration can be run even if some of the procedures are not available, as 
when the exporting module has not yet been loaded. If a missing procedure is not called, 
everything runs without incident. However, when a missing procedure is called, a 
software interrupt named UnboundProcedure is generated. The program will not be able 
to continue and control will transfer to the debugger. If this happens, you should make 
sure that all of the modules necessary to run your program are listed in your configuration 
file, and add them if they're not there. Such errors are generally easy to debug. 

3.2.3 Naming conventions 

The file name is the name of the file in which you store modules, as in XYZ.mesa. The 
module name is the name that appears before the word PROGRAM, DEFINITIONS, or 
CONFIGURATION. It is highly recommended that you keep the file name the same as the 
module name (and remember that capitalization is significant.) 

The name of a configuration file should be different from the names of the modules that it 
binds together. The reason is this: if you compile a module called XYZ.mesa, you get an 
object file called XYZ.bcd. If you bind this module to other modules using a configuration 
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file called XYZ.config, you get a bound configuration called XYZ.bcd, which overwrites the 
old XYZ.bcd. Consequently, you lose your compiled implementation of XYZ.mesa. By 
convention, implementation modules should have the suffix Impl, as in XYZlmpl.mesa, to 
avoid this problem. Figure 3.3 illustrates this problem and its solution. 

XVZ.mesa ---- .. I compiler ~ - --+ XVZ.bed of Oct 14.1984 at 2:17 pm I 
XVZ.eonfig - - - - "I binder 

L- XVZ.bed of Oct 14.1984 at 2:20 pm 

I----.... L....-_______ ---I 

WRONG WAY: The bound configuration overwrites the compiled source code. 

XVZlmpl.mesa ---- .. 1 compiler ~---"I XVZlmpl.bed 

XVZ.eonfig - - - - .. I binder 1- ---'1 XVZ.bed 

RIGHT WAY: The configuration file and the its components have different names, 
so nothing is overwritten. 

Figure 3.3 Naming conventions 

3.2.4 System interfaces 

As discussed in the last chapter, system interfaces are interfaces whose implementations 
are included in the bootfile. Thus, when you import a system interface, you do not have to 
include its implementation in your config file. The implementation is already bound into 
the bootfile, and will be available when you run your program. You do have to import the 
interface, but you do not have to include its implementation in your configuration, and 
you do need to have the copmiled version of the interface on your local disk. 

3.3 Summary 

3-6 

This chapter discussed using the binder to produce bound configurations from a list of 
object modules. From the information in the "config" file and in each "bcd" file being 
bound, the binder can: 

(1) resolve requests from modules for imported items 
(2) combine a group of object modules into one larger object module 
(3) control which interfaces are to be exported. 
(4) determine which module is to be started first. 
(5) maintain version control 

Figure 3.4 gives a summary of the source file used by the binder, and its relationship to 
the modules that it binds together. This diagram also includes the use of system interfaces 
in program modules and in the configuration file. 
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Implementation Module 

--this text stored in a file called ProgramNamelmpJ.mesa 
DIRECTORY 
InterfaceName; 

ProgramNamelmpl: PROGRAM 
EXPORTS I nterfaceName • 
BEGIN 

ProcedureName: PROCEDURE •.• • BEGIN ... END. 
END 

Client Module 

--this text stored in a file called ClientName.mesa 
DIRECTORY 
InterfaceName USING [ProcedureName] , 
SystemlnterfaceName USING [SystemProcedure]; 

ClientName: PROGRAM 
IMPORTS InterfaceName, SystemlnterfaceName • 
BEGIN ... 
InterfaceName.ProcedureName[] ; 
Systeml nteriaceName. SystemProcedure[) ... 

END 

Notes: 
1) System interfaces are imported just like any other interface. 
2) The module name should be the same as the program name, but not 

the same as any of the procedure names. 

Configuration File 

--this text stored in a file called ProgramName.config 
Program Name : CONFIGURATION 
IMPORTS Systeml nteriaceName 
CONTROL ClientName • 
BEGIN 
ProgramNamelmpl ; 
ClientName; 

END. 

Notes: 
1) The name of the configuration file is not the same as the name of 

any of the modules that it binds together. 
2) Implementation modules for the system interfaces are not listed. 
3) There are no imports other than system interfaces because all of the 

imported interfaces are implemented by modules within the 
configuration. 

4) Control goes to the module that has the mainline code, generally the 
client module. 

Figure 3.4 Configuration file and Naming Conventions 

3 
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3.4 References 

Chapter 7 of the Mesa Language Manual, Modules, Programs, and Configurations, discusses 
configuration files and ClMesa. 

Chapter 17 of the Xerox Development Environment User's Guide discusses the binder and 
how to use it. This chapter also describes the binder's switches and error messages. 

The Mesa Programmer's Manual and the Pilot Programmer's Manual give the details of the 
various system interfaces. 

3.5 Exercises 
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3.5.1 Writing a configuration file and binding 

For your first exercise, we have supplied a client program and two interfaces. Your job is to 
write a configuration file to bind the client with the implementations of the interfaces. 

You will need the following files: 

• ReverseWordslmpl.mesa -- the client program. It takes a string of input words 
(separated by spaces) from the user and reverses the order of the words. 

• PrivateStorage.mesa -- an interface defining storage allocation procedures 
• BasiciODefs.mesa -- another interface 
• BasiclOlmpl.mesa -- the implementation for some of the procedures defined in the 

interfaces BasiciODefs and PrivateStorage. 

The scenario looks like this: ReverseWordslmpl gets the definitions of the procedures it 
needs from the interfaces PrivateStorage and BasiciODefs. These interfaces in turn get the 
actual code for the procedures from the implementation module BasiclOlmpl. Therefore, you 
need to write a configuration file that binds together the client program and the 
implementation module. The name of your configuration file should be Reverser.config. You 
will then run the entire program under the name "Reverser". 

Remember, if you are binding two modules together and one of them exports the symbols 
that the other imports, you don't need to list the interface in the IMPORTS or EXPORTS list of the 
configuration file. You only need to list interfaces that are IMPORTed from outside the 
configuration file (such as system interfaces). 

3.5.2 Writing an interface 

We're going to re-visit the combinatorics exercise. This time, instead of using CombineDefs 
to export Combine, you will write your own interface to define this procedure. Modify your 
implementation of Combine so that it exports the interface MoreCombineDefs, and write 
this interface so that it defines Combine. 

You still need to import CombineDefs to use Fact and CombineType. However, you should 
now export Combine to MoreCombineDefs. 

You must also modify the client module to import Combine from MoreCombineDefs. 
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Compile the following 3 modules: 

• your interface (MoreCombineDefs) 
• the modified client module (CombineClient) 
• your modified implementation module (Combinelmpl) 

Write a configuration file, bind the necessary modules together, and run your configuration. 
Remember, you need all the same implementation modules that you needed last time you 
ran this program. 
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Notes: 

3-10 



4 

Pointers 

This chapter is an introduction to using pointers in Mesa. It covers what pointers are, how 
to perform common operations such as initialization and assignment on them, and how to 
pass them as procedure parameters. The next chapter, Dynamic Allocation, discusses how 
to allocate storage for the data that pointers reference. 

There are a number of graphs throughout this chapter. They depict the memory in a 
hypothetical machine by representing each location in memory as a box. The number 
above the box is the memory location. The number in the box is the value stored in the 
location. The name below the box is the symbol in the example that has the associated 
value stored in the memory location. 

4.1 Definition of terms 

Pointer A pointer is a reference to the location of a value. Mesa has pointer 
types, for pointers to specific types of values, and pointer variables, 
which contain the addresses of values rather than the values 
themselves. In Figure 4.1 below, c is a variable of type INTEGER 

containing the value 5. The variable b, a LONG POINTER, contains the 
address of c, and therefore b is a pointer to c and is said to reference c. 

@ @ is the prefix "address of' operator. @x generates a reference to the 
expression x. In Figure 4.1, b contains the value @c, and so b is a 
pointer to c. Similarly, a contains @b, and so is a pointer to b. 

Dereference To dereference a pointer is to follow the pointer through one level of 
indirection toward the value it is referencing .. Dereferencing a variable 
is the opposite of generating a reference to a variable. In other words, if 
b is a pointer to c then dereferencing b produces c. In Figure 4.1, 
dereferencing a once produces b, and dereferencing a twice produces c. 

t In Mesa, t is the postfix de referencing operator. t is the inverse of @, 
and is found at the opposite end of the expression. In Figure 4.1, a is 
@b, while a f is b, and a f f is the same as b f , which is c. 

Dangling pointer A dangling pointer is a pointer to an invalid memory location. A 
dangling pointer is usually caused by deallocating storage while a 
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Address fault 

Frame 

pointer to it remains. Dereferencing a dangling pointer leads to 
unpredictable results. 

An address fault occurs when an attempt is made to reference an 
illegal address. For example, suppose that pointer b were not 
initialized to point to (, but instead left to be whatever value was in 
that location when b was allocated. If the value in the location is not a 
legal address, then dereferencing b causes an address fault. If, on the 
other hand, the address is legal, then you will not get an address fault. 
Rather, your pointer will be referencing some arbitrary location in 
memory, and you will be working with invalid data. 

A frame is a Mesa processor data structure allocated while a module or 
procedure is executing to contain the variables and internal data 
structures for that module or procedure. Program frames are called 
global frames, and procedure frames are called local frames. Since 
Mesa supports recursion, there may be several frames for a particular 
program or procedure. 

memory address 12 861 942 

value 
1 861 942 1 

5 

Symbol name a II- b II-

Figure 4.1 

4.2 Discussion 
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Pointers are essential for good programming. 

4.2.1 Declaring pointers 

The Mesa architecture defines a uniform, paged virtual memory of I6-bit words. (A page is 
256 words.) The entire virtual memory can be accessed by LONG POINTERS, which are two 
words long and can therefore address all 232 locations. 

Within this uniform virtual memory there is a distinguished region called the Main Data 
Space (MOS). Within the MOS, words may be addressed by POINTERS, which are one word 
long. The MOS is used internally to hold global and local frames. Therefore, all the pointers 
to storage that you allocate should be LONG POINTERS. 

Pointers in Mesa are declared as references to types so that the Compiler can type-check 
their usage. The following example declares a pointer to an object of type INTEGER: 

intPtr: LONG POINTER TO INTEGER; 

4.2.2 Initializing pointers 

Pointers allow indirect access to objects. In order for a pointer to be meaningful, the object 
it points to must exist. This means that storage has been allocated for the object, and has 
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been appropriately initialized. In the exercises in this chapter, the storage is allocated 
from the program's frame. Once an object is allocated and initialized, the @ operator is 
used to generate the pointer. 

You can also allocate storage dynamically using the system's storage allocator; we will 
discuss this in the next chapter. . 

To initialize a pointer called intPtr to point to an INTEGER variable whose value is 5 you 
would write: 

int: INTEGER ~ 5; 
intPtr: LONG POINTER TO INTEGER ~ @int; 

The first line allocates a space in the global frame and initializes it to 5. The second line 
initializes the pointer to the address of the storage location that contains the integer, as 
depicted in Figure 4.2 below. 

memory address 12861 . 
value 

1 861 I ~ I 51 
Symbol name IntPtr • 

Figure 4.2 

What if intPtr were initialized and int were not? As shown in Figure 4.3, the value for int 
would be meaningless, even though int is allocated. Pointing intptr to this location is 
valid, but not very useful. 

int: INTEGER; 

intPtr: LONG POINTER TO INTEGER ... @int; 

memory address 

value 

Symbol name mtPtr 

Figure 4.3 

last value placed here 

(garbage) 

It is a good idea to avoid having pointers to uninitialized objects, lest you forget that the 
object is uninitialized and try to use the pointer. This would cause strange errors that are 
hard to debug. Instead, keep a pointer "uninitialized" until the object it will point to is 
initialized. Consider: 

int: INTEGER; 

intPtr: LONG POINTER TO INTEGER; 
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This recoding is one way of keeping your pointer uninitialized, but it suffers from the same 
problem as before. Now there are two uninitialized variables instead of just one, as 
illustrated in Figure 4.4. 

memory address 

value 

Symbol name IntPtr 

last value placed here 

(garbage) 

Figure 4.4 

last value placed here 

(garbage) 

We have already discussed what might happen if you have a pointer to an uninitialized 
variable (such as int). If you try to dereference an uninitialized pointer, on the other hand, 
the value stored in the pointer's location would be interpreted as the address of a location. 
As shown in Figure 4.5 this pointer's value might point to a valid memory location in the 
address space. Dereferencing intPtr would therefore yield the garbage value 212 stored in 
memory location 942. 

If, on the other hand, the value of intPtr pointed outside of the address space, to 
unavailable memory, then your program would address fault and the debugger would be 
called. In an environment that uses real memory addresses in code, this means that any 
address that points beyond the end of available memory would cause an address fault. 
However, the Pilot environment provides virtual memory. Addresses (that appear in code) 
are virtual and must be dynamically translated into real memory address at runtime. 

During address translation, Pilot determines whether the page containing the reference is 
in real memory. Ifit is not, a page fault occurs and the page is swapped in from its backing 
file using available mapping information. An address fault occurs if the page to be 
swapped in is not mapped (has no associated backing store). Thus, in a virtual memory 
system, addresses that lie in the address space of a process can still cause address faults if 
they reference sections of the address space that are not mapped, as shown in figure 4.6. 
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unmapped section of 

the virtual address 

space 

memory address 12 416 861 

value 
1942 I ? 

1 1471 

Symbol name IntPtr 

r----t-----, 
Int 

, 
Address fault I 

I I L ___________ J 
Figure 4 6 

It is important to initialize all pointers, even those that have no referent. Mesa provides 
the special value NIL for this purpose. NIL signifies that a pointer does not point to anything 
valid and should not be dereferenced. Dereferencing a NIL pointer is undefined and will 
cause an address fault. When you are debugging, getting an immediate address fault is far 
better than having your program continue to execute with invalid data. In the latter case, 
your program may not malfunction until far from the scene of the crime. 

int: INTEGER; 
intPtr: LONG POINTER TO INTEGER +- NIL; 

4.2.3 Assigning pointers 

There are two common uses of pointers in assignment statements: assigning the address of 
a location to a pointer, as in the initialization of intPtr; and changing the contents of one 
pointers's referent to be a copy of another pointer's referent. 

4.2.3.1 Assigning pointer values 

In Mesa, pointers are type checked to the object they r~ference. This means that only 
pointers pointing to the same type of object can be assigned, as in this example: 

int: INTEGER+-S; 
intPtr: LONG POINTER TO INTEGER +-@int; 
anotherPtr: LONG POINTER TO INTEGER+-NIL; 
anotherPtr +- intPtr; 

The assignment of intPtr to anotherPtr is valid because they both point to an object of type 
INTEGER. After the assignment is complete, both intPtr and anotherPtr point to the same 
memory location. This has the same effect as if both pointers were individually assigned 
the address ofint, like this: 

int: INTEGER +-S; 
intPtr: LONG POINTER TO INTEGER +-@int; 
anotherPtr: LONG POINTER TO INTEGER+-@int; 

Figure 4.7 shows a before-and-after view of this assignment. 
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Before 

memory address 12 861 942 

value 
1861 I: I 5 

1 1 ~ Nlll, 

Symbol name IntPtr --. int anotherPtr 

After 

memory address 12 861 942 

value 

Symbol name IntPtr --. Int -+- anotherPtr 

Figure 4.7 

Now both intPtr and anotherPtr reference into When int's value changes, dereferencing 
either pointer will yield the changed value. 

4.2.3.2 Assigning the contents of pointer references 

Often, you do not want to share the value of an object, but you want to have two pointers 
that reference identical copies of one object. To do this, you dereference the pointers in the 
assignment statement: 

int: INTEGER~5; 
anotherlnt: INTEGER ~O; 
intPtr: LONG POINTER TO INTEGER~@int; 
anotherPtr: LONG POINTER TO INTEGER ~ @anotherlnt; 
anotherPtr t ~ intPtr t ; 

This assignment copies the value referenced by intPtr into the memory location referenced 
by anotherPtr. Changing the value in either of th~se two locations has no effect on the 
value pointed to by the other pointer. Figure 4.8 shows this situation. 

Before I 
memory address 

value 

Symbol name 

After 

memory address 

value 

Symbol name 

12 861 

12 861 

861 1 1 51 

IntPtr --. Int 

Figure 4.8 

• 942 985 

1 0 1 

anotherPtr--' anotherlnt 

• 942 985 

985 1 I 51 

anotherPtr--' anotherlnt 
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When you use pointers, be sure to think about the type of assignments you want your 
program to perform. If you accidentally share data between two or more pointers when you 
intend to copy the values, you will undoubtedly find some surprises when one pointer's 
referent is unexpectedly changed through another pointer. Conversely, copying data when 
you intend to share it will result in expected changes not taking effect; 

4.2.4 Using pointers for parameter passing 

There are two basic techniques of parameter passing: call by reference and call by value. In 
Mesa, all parameter passing is done as call by value. In other words, the variables passed 
as parameters to a procedure are not changed by what happens inside that procedure's 
body. For example, consider the procedure DoNothing: 

DoNothing: PROCEDURE [a: INTEGER]. 

BEGIN a +-a + 1; END; 

Assume that an INTEGER int has the value 5. When a program calls DoNothing [int], the 
value of int is copied into DoNothing's local variable a. When DoNothing changes the 
value of a, nothing happens to the value of into Once int's value has been copied into a, int 
is isolated from whatever goes on inside of DoNothing. Upon exit from DoNothing, a has 
the value 6 but int still has the value 5, as illustrated in Figure 4.9. 

I Before Entry 

memory address 861 985 

value 

Symbol name tnt 

I After Entry 

memory address 861 985 

value 5 

Symbol name tnt a 

I After Increment I 
memory address 861 985 

value 6 

Symbol name tnt a 

I After Exit I 
memory address 861 985 

value 

Symbol name tnt 

Figure 4.9 
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If Mesa did support call by reference and DoNothing was called so that its parameter, a, 
was a reference to the actual parameter, int, then DoNothing would have the desired 
effect of incrementing into This manner of programming, where an argument to a 
procedure is changed as a side effect of the call, is considered bad form and discouraged in 
favor of having the procedure return the new value, as in: 

DoSomething: PROCEDURE [a: INTEGER] RETURNS [INTEGER] = 
BEGIN RETURN [a + 1]; END; 

Nevertheless, it is sometimes desirable for a procedure to modify one of its arguments. For 
example, a procedure may be called with a large array, several components of which need 
to be changed. If the array is so large that returning a copy of it would consume significant 
processor time and memory, then efficiency considerations may outweigh model 
programming, and the procedure might be designed to accomplish its end through side 
effects on its input. 

When a procedure needs to have a side effect on one of its input variables, it takes as an 
argument not the variable itself but a pointer to that variable. After all, a pointer is a 
reference to where the value of the variable is stored. Given this reference (the address of 
the variable), a procedure can freely manipulate the contents of a variable by storing 
values into the location in memory where the variable's value resides. For example, a 
procedure Increment could look like this in Mesa: 

Increment: PROCEDURE [a: LONG POINTER TO INTEGER] = 
BEGIN a f +- a f + 1; END; 

To change the value of int by calling Increment, a program has to pass the procedure a 
pointer to into When it makes the call Increment[@int], the program makes the local 
variable a inside Increment point to int. Given such a call, Increment can change the value 
of the variable int by dereferencing the pointer a. Figure 4.10 illustrates the situation 
upon entry to the Increment procedure. The local variable a contains the address of the 
global variable into When the assignment statement a f +- a f + 1 is executed inside of 
Increment, the value of int is incremented. If int held the value 5 before the call 
Increment(@int], then it will contain the value 6 immediately after the statement a f +­
a f + 1 is executed, as illustrated in Figure 4.10. 
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I Before Entry 

memory address 861 985 

value 5 

Symbol name mt 

I After Entry 

memory address 861 985 

value 861 I 
Symbol name mt a 

I After Increment I 
memory address 861 985 

value 6 861 I 
Symbol name a 

I After Exit I 
memory address 861 985 

value 6 

Symbol name mt 

Figure 4.10 

4.2.5 A common mistake: dangling pointers to local storage 

When you asssign pointers to local values in procedures, you must not reference these 
values after exiting the procedure. Dereferencing a dangling pointer that used to point to a 
value allocated in a local proced).lre is undefined. The following example illustrates this. 

SimplePointerl.mesa contains an instance of the Increment procedure discussed 
above. This program, when run, will work perfectly. Take a look at the code: 

SimplePointer1: PROGRAM. 

BEGIN 

c: CARDINAL +- 0; 
worked: BOOLEAN +- FALSE; 

Increment: PROCEDURE [a: LONG POINTER TO CARDINAL] = 
BEGIN a f +- a f + 1; END; ··Increment 

Unity: PROCEDURE RETURNS [b: CARDINAL] = BEGIN b +-1; END; ··Unity 

··Mainline Code 
c +- Unity[]; 
Increment[@c]; 
worked +-c • 2; 
END. 

4-9 
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SimplePointer2. mesa tries to accomplish the same thing as SimplePointer1, but it 
takes a more devious approach. The code for SimpiePointer2 is slightly confusing, but 
looks like it will work when run. Unfortunately, the code is faulty. See if you can find the 
problem: 

SimplePointer2: PROGRAM = 
BEGIN 
c: CAROINAL ~ 0; 
worked: BOOLEAN ~ FALSE; 

Increment: PROCEDURE [a: LONG POINTER TO CAROINAL] = 
BEGIN a i ~ a t + 1; END; ··Increment 

PointerToUnity: PROCEDURE RETURNS [b: LONG POINTER TO CARDINAL] = 
BEGIN d: CARDINAL ~ 1; RETURN[@d]; END; ·-Unity 

--Mainline Code 
c ~ PointerToUnity[] i ; 
Increment[@c]; 
worked ~ c = 2; 
END. 

Look at the first assignment statement in the main body of SimplePointer2, the line: c ~ 
PointerToUnity[] i ;. The intent is to dereference the pointer returned by the call to 
PointerToUnity in order to get the value l. While PointerToUnity is executing, the 
situation is as depicted in the "Before Exit" part of Figure 4.11. The pointer b to be 
returned by PointerToUnity contains the address of the variable d, a variable local to 
PointerToUnity. 

I Before Exit I 
memory address 12 861 • 942 

value 

Symbol name b • d c 

After Exit I 
memory address 12 861 • 942 

value IS61 ? ? I 
Symbol name b • d c 

Figure 4 11 

"After Exit" shows the situation after returning from PointerToUnity. The variable c 
should be assigned the value contained in the variable pointed to by b. But, now that 
PointerToUnity has been exited, the space used by PointerToUnity is considered by the 
system to be free space, ready to be overwritten as space is needed. Since d is local to 
PointerToUnity, it may already be overwritten now that PointerToUnity has been exited. 
The pointer returned by PointerToUnity points to where the value of d used to be. But d 
may be overwritten now, and so the pointer is worthless. When the program tries to assign 
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the value @d t to c, it will be assigning a value that might not be the value that d had 
when PointerToUnity finished execution. 

This procedure demonstrates the mistake of returning a dangling pointer to a local 
variable. When assigning pointers to values in local frames, be sure that the referents will 
still exist after the procedure has returned. One way to ensure this is to dynamically 
allocate space that outlives the local frame; this is the subject of the next chapter. 

4.3 Summary 

This chapter briefly discussed how pointers are used in Mesa programs. It presented a set 
of do's and don't's to keep in mind when programming with pointers, most notably: 

• Do declare pointers as pointers to objects. This keeps you inside of the Mesa type 
checking system, which will go a long way in preventing pointer errors. 

• Do initialize all variables including pointers. Having initialized variables will save 
you the trouble of worrying about whether or not a variable's value is valid. When you 
cannot initialize a pointer to an allocated and initialized piece of storage, signify this 
by initializing the pointer to NIL. 

• Do be aware, when using pointers in assignment statements, whether you want the 
value shared between the two pointers (and therefore alterable by either pointer), or 
copied. To share the value between two pointers, assign the pointers (ptr2 ~ ptr1); to 
copy the value, assign the dereferenced pointers (ptr2 i ~ ptr1 t). 

• Do use pointers as arguments to procedures when you want the value of the caller's 
variable changed by the called procedure. 

• Do not return pointers that point to a procedure's local variables. 

4.4 References 

Sections 3.3 and 3.4 of the Mesa Language Manual cover the syntax of record and pointer 
declarations, as well as detailing the operations that can be performed on pointers and 
records. 

4.5 Questions 

1) Assume that you are calling a procedure from an interface in order to get the next piece of 
input data from a file of CARDINALS. Let's say that the Dataln .interface contains three 
procedures, declared as follows, that can each get the next CARDINAL from the file. 

GetNextValue1: PROCEDURE [nextValue: CARDINAL]; 

GetNextValue2: PROCEDURE [nextValue: LONG POINTER TO CARDINAL]; 

GetNextValue3: PROCEDURE RETURNS [nextValue: CARDINAL]; 

From looking at those declarations, determine which of the following calls will actually 
get the next piece of data from the file, and decide which call would be the best one to use 
in a Mesa program from a stylistic point of view. 
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i: CARDINAL +- 0; 
Dataln.GetNextValue1 [@i]; 
Dataln.GetNextVal ue1 [i]; 
Dataln.GetNextValue2[@i]; 
Dataln.GetNextvalue2[i]; 
@i +- Dataln.GetNextValue3[]; 
i +- Dataln.GetNextValue3[]; 

2) Given the type declarations below, explain what the differences between calling 
AverageData1 and AverageData2 are. 

DataHandle: TYPE. LONG POINTER TO Data; 
Data: TYPE • RECORD [ 

interval, scale, length, maxlength: CARDINAL, 
data: ARRAY [0 .• 0) OF CARDINAL]; 

AverageData1: PROCEDURE [dataToAverage: Data] • 
BEGIN 
FOR i: CARDINAL IN [O .. dataToAverage.length -1) DO 

BEGIN 
dataToAverage.data[i] +- (dataToAverage.data[i] + dataToAverage.data[i + 1] )/2; 
END; 

END; 

AverageData2: PROCEDURE [dataToAverage: DataHandle] • 
BEGIN 
FOR i: CARDINALIN [O •. dataToAverage.length -1) DO 

BEGIN 
dataToAverage.data[i] +- (dataToAverage.data[i] + dataToAverage.data[i + 1] )/2; 
END; 

END; 

4.6 Exercises 
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1) Study Appendix D, which appears at the end of this course. It discusses how to debug 
address faults. 

Write two procedures: Compare, which compares the values referenced by two pointers, and 
Exchange, which exchanges the value referenced by two pointers. You should declare your 
procedures to be of type PointerDefs.CompareProcType and PointerDefs.ExchangeProcType. Store 
your procedures in a file called CompareAndExchangelmpl.mesa. 

To test your procedures, have your program call pointerDefs.CreateCompareAndExchangeTool 
passing the names of the two procedures. We have provided a config file 
(CompareAndExchangeTool.config) and the implementation for the tool 
(MesaCourselmpIForCompareAndExchangeTool.bcd). Thus, you need to write your 
implementation, bind the config file, and run CompareAndExchangeTool.bcd. 
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Dynamic storage allocation and 
management 

After reading the last chapter, you undoubtedly realized that pointers were not invented 
to point at just INTEGERS, when there're so many more interesting data structures in the 
world. Pointers can point at just about anything, including objects of undeterminable size 
at compile-time. Of course, constructs such as CARDINALS, with their fixed known length at 
compile-time, can reside in a local or global frame, but what about a dynamic array or a 
string of characters? To allocate storage for constrt\cts whose length or usage is not known 
at compile-time, you need dynamic allocation. 

This chapter discusses how you allocate and deallocate storage dynamically, and suggests 
some ways for managing that storage effectively. We also discuss heaps, which are the 
storage allocators used for dynamic allocation. 

5.1 Preliminary readings 

Read the Pilot Memory Managment section (§ 4.6) in the Pilot Programmer's Manual 11.0. 
This section discusses zones and heaps. 

Read § 6.6 in the Mesa Language Manual 11.0, entitled "Dynamic Storage Allocation." It 
discusses the Mesa operators NEW and FREE, which are used to allocate and deallocate 
storage. 

5.2 Definition of terms 

Dynamic allocation 

Dynamic deallocation 

Node 

Storage Leak 

Dynamic allocation acquires storage during program 
execution. 

Dynamic deallocation releases space acquired through 
dynamic allocation. 

A storage node, or node for short, is a block of allocated 
storage, often with a record structure. 

A storage leak occurs when a program neglects to free all 
the storage nodes it has allocated, thus reducing the total 
amount of space available for the system. Leaked storage 
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Heap 

Valid memory location 

Zone 

degrades the system performance and in extreme cases can 
cause the system to crash. 

A heap is a system-designated area of virtual memory used 
for dynamic allocation of storage. Heaps, which provide 
more automatic management of storage than zones, are 
designed to support the Mesa language operators NEW and 
FREE, which allocate and deallocate storage dynamically. 

A location is valid if it is currently allocated. A location 
that has been freed is invalid and should not be referenced. 

A zone is a client-designated area of virtual memory used 
to acquire and manage arbitrarily sized storage nodes. 

5.3 Discussion 

5-2 

Heaps are the primary storage allocators in Mesa. They are designed to allocate and free 
blocks of storage (nodes) of arbitrary size. A heap begins as one large free (unallocated) 
node somewhere in virtual memory. When a program requests storage, a node is allocated 
and a pointer to its location is returned to the requesting program. The program then 
moves values in and out of this node by indirect reference through the pointer. When the 
program no longer needs the storage, it returns the node to the heap's pool of available 
(free) nodes. 

Clients interact directly with a heap by using Mesa's NEW and FREE operators and the 
facilities of the Heap interface. Clients use the Heap interface to obtain a heap (by either 
creating one or using one provided by the system) and to destroy a heap. Clients allocate 
storage from a heap with the NEW operator, and return storage to the heap when it is no 
longer needed with the FREE operator. 

5.3.1 The system heap 

Tajo provides a system-wide heap, called the systemZone, for all programs to share. If you 
need to share storage with other programs, the system heap is a good place to allocate the 
common storage. You should also use the system heap for programs that only allocate a 
small amount of storage. You will see an example of using the systemZone a little later in 
the chapter. 

You access the systemZone through the Heap interface. For a program to allocate and 
deallocate nodes from the systemZone, it must IMPORT it from t~e Heap interface. Take a 
look at Section 4.6.2 of the Pilot Programmer's Manual, which describes this interface. 
Heap.systemZone is declared as an UNCOUNTED ZONE. (Think of this name as historic, not 
mnemonic.) The size of the systemZone, initially 40 pages, is bounded only by the amount 
of a vailable virtual memory; it expands automatically when a request for storage is larger 
than the largest free node. The systemZone is created when a volume is booted and not 
destroyed unless the volume is rebooted. Misuse of this heap can be costly, since there is no 
garbage collection mechanism to free nodes that are no longer in use. 
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5.3.2 Private heaps 

A program can create a private heap. Private heaps exist separately from the system heap, 
and only programs that have access to a private heap can allocate nodes from it. Like the 
system heap, private heaps can be grown to unlimited size, although they are typically 
bounded at 64K pages. The growth of an unbounded heap is limited only by available 
virtual memory. 

Heap.Create is declared as follows: 

Heap.Create: PROCEDURE[initial: Space.PageCount, 
maxSize: space.PageCount ~ Heap.unlimitedSize, 
increment: Space.PageCount ~ 4, 
swapUnit: Heap.SwapUnitSize ~ Heap.defaultSwapUnitSize 
threshold: NWords ~ Heap.minimumNodeSize, 
largeNodeThreshold: NWords ~ Space.wordsPerPage/2, 
ownerChecking: BOOLEAN ~ FALSE, checking: BOOLEAN ~ FALSE] 
RETURNS [UNCOUNTED ZONE]; 

Except for initial, the parameters have default values, which you will not (at this point) 
need to change. initial specifies the initial size of the heap, in pages. The system will 
automatically grow the heap as needed, in steps of increment up to maxSize. 

You should destroy a private heap when you are finished with it. To destroy a private 
heap, call Delete, passing the zone returned by Create, like this: 

Heap.Delete: PROCEDURE[Z: UNCOUNTED ZONE, checkEmpty: BOOLEAN ~ FALSE]; 

Delete has a second parameter to check if all the allocated nodes have been deallocated. 
This parameter, defaulted to false, prevents the accidental deletion of a heap still in use. 

Space leaks are not as important in private heaps as they are in the systemZone, since 
deleting a private heap frees the entire space occupied by the heap and thereby reclaims 
any unfreed nodes. Any space leaks would be a potential problem only during the life of 
the private heap. 

5.3.3 Allocating nodes: Using the NEW operator 

A conventional way to allocate a node is to determine the amount of storage needed, and 
then ask the heap for a chunk of that size. The NEW operator does this, but it adds the 
protection of type checking for the allocated node by taking the type of the object as a 
parameter. It determines the size of the node that needs to be allocated, allocates it, and 
then returns a pointer to the allocated node. 

Mesa enforces type checking on the returned value (the pointer). For example, if you were 
allocating a record of 3 CARDINALS, your code would look something like this: 
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ptrToRecord: LONG POINTER TO Record +- NIL; 
Record: TYPE = [a: CARDINAL +- 0, 

b: CARDINAL +-1, 
c: CARDINAL +- 2]; 

ptrToRecord +- Heap.systemZone.NEw[Record]; 

The node allocated by the NEW operator (from Heap.systemZone) is of type Record. The 
pointer returned by NEW is thus a LONG POINTER TO Record. The variable on the left side of 
this assignment statement must conform to that type. 

You can also initialize a node while allocating it with the NEW operator. To get the default 
initialization for Record, you could change the assignment to be: 

ptrToRecord +- Heap.SystemZone.NEw[Record +- []]; 

To override the default values, to set c +-10, for example, you could write: 

ptrToRecord +- Heap.systemZone.NEw[Record +- [c:10)); 

5.3.4 Deallocating nodes: Using the FREE operator 

The FREE operator takes a pointer to a node pointer as its parameter. It frees the node and 
sets the value of the node pointer to NIL, as in 

Heap.systemZone.FREE[@ptrToRecord]; 

Setting the pointer to NIL reduces the chances of creating a dangling reference. Figure 5.1 
illustrates how FREE works. Without the extra level of indirection in @ptrToRecord, the 
system would not be able to change the value in ptrToRecord to NIL. 

Before FREE 

ptrToRecord 

add ress of record 

During FREE 

record [D=o 
b = 1 

c = 2 

@ptrToRecord -----i.~ ptrToRecord 

r-a-d-d-re-ss-O-f-pt-r-T-oR-e-co-r-d'" I address of record 

After FREE 

ptrToRecord 

NIL 

Figure 5.1 Using FREE 

r-----------, 
: storage for record is 

I freed 
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5.3.5 The systemMDSZone 

The Mesa environment also provides a second system-wide heap. This second heap is 
called the systemMDSZone, and is used for allocating storage pointed to by POINTERS 

(whereas the systemZone is used for allocating storage pointed to by LONG POINTERS). The 
systemMDSZone exists inside a 256-page space called the Main Data'Space (MDS), and is 
limited to that size. Since you will not ordinarily be using the systemMDSZone, this 
chapter discussed only the systemZone. However, the two heaps are functionally 
identical, and all observations about the systemZone apply also to the systemMDSZone. 

5.4 Basic rules for storage management 

So far, you've learned the definition of dynamic storage allocation and the procedures to 
manipulate storage dynamically. However, we haven't covered the best ways to supervise 
and manipulate space allocation and de allocation. If you had an infinite amount of 
resources (time and space), then management of those resources would be unnecessary, 
but since resources are limited and therefore considered to be precious, taking the time to 
understand storage management can improve your program's (and system's) performance. 
The following list represents general guidelines for efficient storage management. The 
rest of this chapter will discuss each item on the list in detail. 

1. Hold onto storage only while you are using it. 
2. Minimize the number of times you allocate anyone item. 
3. Keep global frames small. 
4. Allocate temporary variables from local frames. 
5. Avoid allocating string literals from the global frame. 
6. Pass a pointer to an object as an argument rather than the object itself. 
7. Use the systemZone when the total amount of allocated storage is small, and when 

use is over a short period of time. 
8. Use a private heap when your program (or set of programs) require a lot of storage. 
9. Avoid allocation from the systemMDSZone. 

5.4.1 Hold onto storage only while you are using it 

The actual space taken up by dynamically allocated objects is a precious resource, so you 
should only use it when absolutely necessary. Avoid allocating storage until you need it, 
and release that storage when you are no longer using it. 

5.4.2 Minimize the number of times you allocate anyone item 

This rule really asks you to think about how a particular item is to be used in your 
program. When you learn about SEQUENCES in the next chapter, you'll find that a dynamic 
array is implemented by copying different-sized arrays back and forth and changing the 
pointers to create the illusion of a dynamic array. The problem is that repeated allocations 
and deallocations take time and cause fragmentation within the heap. If you can 
determine the approximate use of the SEQUENCE in the program, then you can allocate a 
SEQUENCE that is, for example, four elements larger than what is currently needed, because 
you know that the SEQUENCE will need space for four more elements in the near future. 

You might have noticed that this rule can conflict with the first rule of holding onto 
storage only while you are using it. You walk a fine line between the time issue and the 
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space issue and must make tradeoffs between the two to "optimize" your program. When 
making decisions about tradeoffs, keep in mind such issues as the size of the allocations, 
the use of the allocated space, and the length of use of the space. 

5.4.3 Keep global frames small 

Again, you are trying to conserve a precious resource. Global frames reside in the Main 
Data Space (MDS), a 256-page segment of virtual memory that can be directly addressed 
by short (16-bit) POINTERS. The MDS is heavily used by the run-time system, so you should 
avoid placing non-essential demands on it. As you may know, once a program is loaded it 
stays loaded until it is explicitly unloaded or until the system is rebooted. As a result, 
many global frames can exist in the MDS; thus the amount of free pages available for 
other programs to use decreases. Keeping global frames small helps to free the MDS for 
other tasks. 

5.4.4 Allocate temporary variables from local frames 

Besides the global frame, you can allocate space from a local frame and from heaps. 
Storage for local frames also comes from the MDS (see above). The difference between local 
and global frames (in terms of their burden on the MDS) is that a local frame remains 
allocated only as long as it is executing. When the procedure returns, the space for the 
local frame is released. Therefore, when you have fixed-size variables that are not needed 
for the life of the program, you should allocate them from local frames. 

5.4.5 Avoid allocating string literals from the global frame 

Suppose you need a string literal in the mainline code. If you allocate a string )iteral in the 
mainline code (with or without the L suffix), that literal will take up space in your global 
frame for the life of the program. To work around this problem, you should have the 
mainline code call a procedure that includes the code using the string literal. That way, 
the space for the string literal is released when the procedure finishes. 

5.4.6 Pass a pointer to an object as an argument rather than the object itself 

In Mesa, procedures pass arguments by value. In a procedure call, the parameters are 
copied into the local frame of the called procedure. Thus, passing a large object wastes both 
space and time. Avoid copying large objects in procedure calls by passing a pointer to an 
object instead. 

5.4.7 Use the systemZone when the total amount of allocated storage is s,mall, and when 
use is over a short period of time 

The systemZone is created when the system is booted; a private heap, however, is created 
when your program makes a call to Heap.Create. The time needed to make this call can be 
significant when all you need is a small block of storage for a short period of time. For 
transient storage, the low overhead of using the systemZone is quite attractive. 
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5.4.8 Usea private heap when your program (or set of programs) requires a lot of storage 

Private heaps have several advantages over public heaps. You can restrict the number of 
clients using a private heap, allowing faster access and minimizing fragmentation. You 
have potentially faster access because requests for storage must be monitored; thus, the 
fewer the clients, the less you have to wait in line for storage. Having a small number of 
clients reduces the amount that allocated nodes are spread around the heap. Since you 
have no control over where a block of storage is allocated from, the degree of dispersion of 
nodes wlll be large if the heap is large. The result of this is that a large heap will have very 
little of it mapped into real memory at anyone time, and accessing the blocks of storage 
will cause more swapping than if they were allocated within a smaller heap. 

5.4.9 Avoid allocation from the systemMDSZone 

Since the systemMDSZone is contained within the MDS, allocations from this public heap 
compete with local and global frames for the bounded 256-page resource. The systemZone 
and private heaps, by comparison, are bigger and less congested. 

5.5 Summary 

This chapter discussed why you need dynamic allocation, and introduced heaps as the 
most common storage allocator for dynamically allocating nodes. To access the heap 
facility, you use the Heap interface (described in the Pilot Programmer's Manual). This 
interface provides two system heaps, as well as the mechanisms for creating and deleting 
private heaps. 

You use the NEW operator to allocate nodes from a heap. When using NEW, you specify the 
heap the node should be allocated from and the type of the node to be allocated. The NEW 

operator calculates the size of storage needed, causes the allocation to occur, and returns a 
pointer to the node. 

When your program is through with a node it must return the storage to the storage 
allocator. You do this with the FREE operator, passing a pointer to the pointer to the node. 
FREE deallocates the node and sets your pointer to NIl. 

This chapter also presented some guidelines to help you manage storage allocation in a 
manner that will help your programs' performance. Most of the guidelines are common 
sense maxims that will help you use the system's time and space efficiently. The 
guidelines can be boiled down to two basic themes: don't waste time and space, and make a 
careful tradeoff when time and space issues conflict. 

5.6 Questions 

Assume that you are using an interface named Node that has procedures to allocate and 
free nodes of type NodeType, as defined below: 
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NodePtr: TYPE == LONG POINTER TO NodeType; 
NodeType: TYPE == RECORD [ 

start, end, size: LONG CARDINAL, 
duration: CARDINAL]; 

AllocateNDde: PROCEDURE RETURNS [newNode: NodePtr]; 
FreeNode: PROCEDURE [nodeToFree: NodePtr); 

Because the FreeNode procedure does not return NIL, you must set the NodePtrs to NIL with 
an assignment statment after you call FreeNode. Since the code frees nodes in many 
places, the following procedure was written to help free nodes. Does this procedure work as 
intended? 

OurFreeNode: PROCEDURE [nodeToFree: NodePtr] = 
BEGIN 
Node.FreeNode[nodeToFree]; 
nodeToFree ~ NIL; 
END; 

5.7 Exercises 

5-8 

The Tree Traversal Tool allows you to enter numbers into a sorted binary tree. At any point, 
you can make a preorder, inorder, or postorder traversC-l1 ofthe tree,with the order of traversal 
displayed in the tool. Your assignment is to complete the tool by writing the procedures Init, 
EnterNumber, and ClearTree in the module TreeTraversaIProblem.mesa. The comments in this 

PreOrder called 

Number = 14 

Enter Input! . Clear Tree! 

PreOrder! InOrder! PostOrder! 

»»»»«««« 

PreOrder is 7 4 2 5 9 8 12 

»»»»«««« 

Tree Traversal Tool 

module provide a more complete explanation of the procedures that you are expected to write. 

You will also need the modules TreeProblem.config, TreeTraversalTool.mesa, and 
TreeTraversal Defs. mesa. 
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Now that you know about heaps, it's time to look at one of the most common heap­
dependent Mesa constructs: SEQUENCES, the Mesa implementation of dynamic arrays. This 
construct allows you to defer specifying the size of an array until run-time. Because you 
don't know the size of a sequence until run-time, you have to allocate that sequence from a 
heap rather than in a local or global frame. This chapter discusses how to allocate, 
deallocate, and use sequences. 

6.1 Discussion 

One of the main advantages of using a dynamic array rather than a static array is that 
you don't have to commit your program to consuming storage before it uses that storage. A 
program does not allocate storage until it is actually ready to use that storage. You can 
also change the size of a dynamic array after it allocating it; this comes in handy when you 
find out sometime in the middle of your program that your sequence is too short. However, 
a corresponding drawback of using dynamic arrays is the amount of time it takes to 
allocate a dynamic array during run-time. Static arrays avoid this overhead since they're 
allocated when the program is loaded. 

6.1.1 Declaring a Sequence 

Sequences are always declared as the last field in a record. For example, the following 
declares a record structure that contains a sequence of LONG INTEGERS: 

ptrToRecord: LONG POINTER TO Record +- NIL; 

Record : TYPE III RECORD[ 

a: BOOLEAN +-TRUE, 

b: BOOLEAN +- FALSE, 

C: BOOLEAN +- TRUE, 

seq: SEQUENCE length: CARDINAL OF LONG INTEGER]; 

The declaration of a sequence has a variant tag part (the length: CARDINAL) and an element 
type part (the LONG INTEGER). The type specification in the variant part determines the type 
of the indices used to select a sequence element. The range of valid indices is not specified 
when the sequence is declared but will be computed by the FIRST and SUCC functions when 
the sequence is allocated. This computation requires that the variant tag specify a valid 

6-1 



6 

6-2 

Sequences 

IndexType, as defined in the Mesa Language Manual. The element type defines the type of 
object that is being sorted in the sequence, thereby making sequences type-safe. 

6.1.2 Allocating a Sequence 

To allocate the record to contain a sequence of 10 elements, you could encode: 

ptrToRecord *- Heap.SystemZone.NEw[Record[10]]; 

Record[10] is a type specification describing a RECORD with a sequence part, seq, 
containing 10 LONG INTEGERS. The effect of Heap.SystemZone.NEw[Record[10]] is to allocate 
slzE[Record[10]] words of storage from the systemZone and return a LONG POINTER TO Record 
to this storage. All fields in the common part ofthe RECORD (the BOOLEAN fields a,b, and c in 
the example)' are initialized to their default values if default values have been specified 
(TRUE, FALSE, and TRUE in the example). The sequence tag field, length, is set to 10, a value 
computed automatically using the formula: 

length *- succ10 [FIRST[CARDINAL]] 

If the variant tag type uses an enumerated type or a subrange type whose first element is 
not 0, the value of length would still be the value of the tenth successor of the first element 
of the index set. 

The index will range over [0 .. 10), a set of values computed using the formula: 

[FIRST[CARDINAL) .. SUCc10 [CARDINAL] ) 

The elements of the sequence part are not initialized when the sequence is allocated. 
Initializing the sequence is your responsibility. However, you can use a constructor of type 
Record in the call to NEW to provide different initial values for the common part of the 
RECORD, as in: 

ptrToRecord *- Heap.systemZone.NEw[Record[10] *- [a: FALSE]]; 

6.1.3 Using a Sequence 

You can index individual elements of a sequence directly. For example, if var is of type 
LONG INTEGER ,then all of the following are equivalent: 

var *- ptrToRecord f .seq(3); 
var *- ptrToRecord.seq[3]; 
var *- ptrToRecord(3); 

Once you have allocated a sequence, you can use it as you would an array: 

IF ptrToRecord.length > 5 THEN ptrToRecord[5] *-13; 

6.1.4 Deallocating a Sequence 

You deallocate the record containing the sequence as you would any other node, by using 
the FREE operator: 

Heap.systemZone.FREE[@ptrToRecord]; 
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6.1.5 VowelSeparatorWithPublicHeap 

VowelSeparatorWithPublicHeap is an example of dynamically allocating records with 
sequences in them. The program, which runs from the Executive, separates user input 
into vowels and consonants. A sample input would be: 

VowelSeparator.- separate the letters in these words by vowels and 
consonants 

Try running the program now. 

6.1.5.1 TextSeqBody: the data structure used for storing text 

The input is stored in the TextSeqBody data structure, which is defined in the 
SequenceDefs interface as: 

TextSeqBody: TYPE,. RECORD [ 
length: CARDINAL, 
text: SEQUENCE maxlength: CARDINAL OF CHARACTER]; 

The length field specifies the number of elements currently stored in the sequence. The 
text field defines the sequence of characters where the input is stored. The max length tag 
field specifies the maximum number of characters that can be stored in the sequence. 

TextSeq is a pointer type to this record object, defined as: 

TextSeq: TYPE,. LONG POINTER TO TextSeqBody; 

6.1.5.2 The procedure Main 

In VowelSeparatorWithPublicHeaplmpl, the procedure Main controls translating the 
input into a TextSeqBody and separating the characters into vowels and consonants. 
However, since the program runs from the Executive, no call to Main appears in the 
program. Instead, the mainline code calls Init, which subsequently calls InitializeVowel­
Separator (from the SequenceDefs interface). InitializeVowelSeparator registers the 
program with the Executive, telling it that Main is the procedure to call when a user types 
the VowelSeparator.- command. It is important to remember that the procedure, not 
the whole program, is executed when the command is invoked. 

Let's assume a user types into the Executive 

VowelSeparator. - separate the characters in ~hese words 

The Executive recognizes the command and calls Main. Main declares three variables, 
input, vowels, and consonants, of type TextSeq. These variables will point to TextSeq­
Bodys containing the input, the vowels in the input and the consonants in the input. The 
variables vowels and consonants are initialized to NIL. 

SequenceDefs.GetText stores the user's input in input and then translates it into a 
TextSeqBody. Because GetText must allocate the TextSeqBody, we pass the system Zone 
as a parameter to GetText. Passing the zone ensures that all nodes are allocated from the 
same heap. Figure 6.1 depicts the situation at this point. 
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After initializations 

r--__ ..;i~n~pu~t:.....-==:::;_---_:==~. node In systemZone 

address of TextSeqBody 
returned by GetText 

vowels 

NIL 

length = 38 
text = separate the characters In these words 

consonants 

NIL 

Figure 6.1 

Following these initializations, Main calls Separate to sort the input line into vowels and 
consonants. Separate creates (allocates) two TextSeqBodys and returns a pointer to each 
of these TextSeqBodys. Figure 6.2 represents the situation after Separate has returned. 

After Separate returns 

input 

address of TextSeqBody 
returned by GetText 

vowels 

address of TextSeqBody 
returned bySeparate 

consonants 

address of TextSeqBody 
returned bySeparate 

node In system Zone 

length = 38 
text = separate the characters In these words 

node In systemZone 

length = 12 

text = eaaee'aaeleeo 

node In system Zone 

length = 21 

text = sprtthchrctrsnthswrds 

Figure 6.2 

Main now outputs the separated characters, first checking to see if there is anything to 
print. It uses SequenceDefs.PutComments and SequenceDefs.PutText to print to the Executive. 
(PutComments outputs string literals; PutText outputs a TextSeqBody.) 

Next, Main frees the TextSeqBodys that were allocated and passed to it: 

FreeTextSeq[@input); 
FreeTextSeq[@vowels); 
FreeTextSeq[@consonants); 

Figure 6.3 shows that all allocated storage is freed before Main returns. 
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After deallocatlons 

vowels vowels consonants 

NIL ~ ____ N_IL ____ ~I ~I _____ N_IL ____ ~ 

Figure 6 3 

Note: Use the information presented in the last chapter (Dynamic Storage Allocation and 
Management) to figure out the reason for freeing the TextSeqBody nodes in this procedure 
as well as in AppendChar 

6.1.5.3 How the input is separated 

Separate and AppendChar are the procedures primarily responsible for separating the 
characters. Separate defines the algorithm for separating the characters; AppendChar 
adds a character into a TextBodySeq object. 

Separate takes a parameter of type TextSeq and separates the characters into two 
sequences, one containing vowels and the other containing consonants, and returns 
pointers to each of these TextSeqBodys. We use the following algorithm: check if the next 
character in the input line is alphabetic; if it is, check the alphabetic character to see if it 
is a vowel. If the character is a vowel, we append it to the vowels TextSeqBody. 
Otherwise, we append it to the consonants TextSeqBody. 

Note: In the implementation of this algorithm, Separate allocates storage for vowels and 
consonants from a reasonable guess of vowel and consonant distribution. We did this to 
minimize the number of allocations done by AppendChar. 

AppendChar builds the vowel and consonant sequences by adding a character to the end of 
a text sequence. If the text sequence is not full (Le., length is less than maxLength), then 
the character can just be appended (by entering it as the next element in the sequence and 
incrementing length). 

However, if the text sequence is full, the situation is more complicated. AppendChar 
cannot add the next element because there is no room left in text. Trying to store into the 
sequence will cause a run-time error if you compiled with the b switch (bounds checking). 
If there is no bounds checking, the append will be done, but the element will not be stored 
into a properly allocated memory location. Instead, it will be stored just beyond the end of 
the allocated storage. This location could be undefined (causing an address fault), 
currently allocated for another node (smashing memory by writing over other data), or 
unallocated (with no assurances on how long the location will stay unallocated and its 
contents unchanged). 

To avoid this situation, you must allocate a new TextSeqBody when the sequence is full. 
(This is how to "grow" a sequence.) You must then copy the contents from the old sequence 
into the new one. This is what AppendChar does; take a look at the code for this procedure. 
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The series of graphs in Figure 6.4 illustrates the expansion of the sequence when 
AppendChar is asked to append the letter e to a full TextSeqBody. 

Entry to AppendChar char 

8 
onto • vowels .node In systemZone 

I address of vowels I address of TextSeqBody length = 9 

containing vowels text = eaaeeaael 

After allocation of S char 

8 
onto • vowels • node In systemZone 

I address of vowels I address of TextSeqBody length = 9 
containing vowels text = eaaeeaael 

s • node In system Zone 

address of larger length = 10 
TextSeqBody text = space for 10 characters 

After vowels copied to S char 

8 
onto • vowels • node in systemZone 

I add ress of vowels I address of TextSeqBody length = 9 
containing vowels text = eaaeeaael 

s • node In system Zone 

address of larger length = 10 
TextSeqBody text = eaaeeaael 

Figure 6.4 



After char appended char 

8 
onto • vowels • node In systemlone 

I add ress of vowels I address of TextSeqBody length = 9 
containing vowels text = eaaeeaael 

s • node In systemlone 

address of larger length = 10 
TextSeqBody text = eaaeeaaele 

After node pointed char 

to by vowel is freed 8 
onto • vowels • node In systemlone 

I address of vowels I address of now freed I Freed node I 
node 

s • node In systemZone 

address of larger length = 10 
TextSeqBody text = eaaeeaaele 

After vowels assigned char 
to point to new node 8 

onto 

• _m ffl node In system lone 

I I address of vowels address of TextSeqBody I Freed node I containing vowels 

s • node In system lone 

address of larger length = 10 
TextSeqBody text = eaaeeaaele 

After Exit from AppendChar 

vowels • node In systemlone 

address of TextSeqBody length = 10 
containing vowels text = eaaeeaaele 

Figure 6.5 
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6.1.6 VowelSeparatorWithPrivateHeap 

VowelSeparatorWithPrivateHeaplmpl differs from VowelSeparatorWithPublicHeaplmpl 
only in that it uses a private heap instead of the systemZone to allocate TextSeqBody. 
This module is part of the configuration called VowelSeparatorWithPrivate­
Heap. bcd. It runs from the Executive command VowelSeparator. -. Run the program 
to verify that it acts like VowelSeparatorWithPubl icHeap, and then study 
VowelSeparatorWithPrivateHeaplmpl.mesa. Pay particular attention to the 
creation and deletion of the private heap, and to the allocation and deallocation of nodes. 

6.2 Summary 

A sequence appears as the last field in a record. It contains a variant index field in its 
declaration, which becomes fixed at the time of allocation. To enlarge a sequence, 
therefore, you must: 

1) allocate a new, larger one, 

2) copy the data from the full sequence into the new one, 

3) free the old sequence, and 

4) adjust the pointers so the new sequence is referenced by the pointer that 
referenced the original sequence. 

6.3 Reference 

The Mesa Language Manual 11.0 section entitled "Sequences" is a thorough reference. 

6.4 Exercises 

6-8 

Complete a program that takes a string of characters as input and stores the characters 
alphabetically in queues according to the number of queues that the user specifies. For 
example, if the input were James! Where are you?!, and the user wanted four groups of 
characters, the result would look like this: 

For Group 0 (A-G): 
a e e e a e 

For Group 1 (H-N): 
J m h 

For Group 2 (O-T): 
s r r 0 

For Group 3 (U -Z): 
Wyu 

For Last Group (non-alphabetic characters): 
! SP SP SP ? ! 

Done. 
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The program runs from a tool, which consists of the following modules: 

LetterTool.mesa: contains tool-related code (110); 
Letterlmpl.mesa: contains the implementation code that actually processes the input; 
LetterDefs.mesa: is the interface for these modules; . 
LetterConfig.config: is the configuration module for the above. 

Input: James! Where are you?! 

Number of Queues: {four} 

Group! 

For Group 0 (A-G): 
a e e e a e 

For Grou p 1 (H-N): 

The tool as it appears when LetterConfig.bcd is executed. 

6 

When Group! is invoked, the Commanditem procedure Group (in LetterTool) passes the input 
string and the number of desired queues to procedure Processlnput (in Letterlmpl). 
Processlnput calls InitQueues to create and initialize the queues. It then calls CutUpAlphabet 
to determine which characters each queue will handle. Processlnput then calls Store Letters 
to actually put the characters into the queues. Finally, PrintResults (in LetterTool) is called to 
display the results of the user-requested action. 

There are two instances where you must consider dynamic storage allocation. First, there is 
the initial allocation from a heap, where two factors are variable: the number of queues and 
the size of each queue. Secondly, there is the expansion of a queue when the sequence that 
represents the queue is full. The "expansion" really consists of allocating a new sequence that 
is larger than the original one, copying over the original sequence into the new one, inserting 
the new sequence in place of the original one, and freeing the space that the original sequence 
occupied (see diagram on next page). 

6-9 



f) Sequences 

I I l I I I 'a I I 'a I 
allocate new, larger 

'a Ie 'b 'd seq~ence 

I I I I I I I I 

I t I I I 'a Ie I 'b I 'a 'd I 'a I copy contents of old 
sequence to new one 

I 'a I Ie I 'b I 'a I 'd I 'a I I 

,\1 I 
insert new sequence in 

I I I I I place of old one, which is 
deallocated back to the , heap 

'a I Ie I 'b I 'a I 'd I 'a I I 

II Expansion" of a sequence 

6-10 



7 
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In this chapter we introduce Mesa strings. Although you may not have realized it. the 
classic implementation of a string as an array of characters with an associated length 
actually involves a pointer. In languages such as Pascal. these string pointers are hidden 
from you. Mesa. on the other hand. makes this string pointer explicit and puts it under 
program control. 

. 
This chapter will show how string pointers differ from standard pointers. and how string 
use is facilitated by using public interfaces. 

7.1 Definition of terms 

String 

7.2 Discussion 

A string is conceptually a sequence of characters. such as "that". A string is 
represented in Mesa as a pointer to a record that contains an array of 
characters and a length. 

The structure of a STRING is very similar to the structure of'the TextSeqBody in the last 
chapter. As described in the Mesa Language Manual (§6.1). the type LONG STRING is: 

LONG STRING: TYPE. LONG POINTER TO StringBody; 
StringBody: TYPE = MACHINE DEPENDENT RECORD [ 

length: CARDINAL, 

maxlength: CARDINAL, 

text: PACKED ARRAY[O •• O) OF CHARACTER]; 

The length field of the string is. by convention. the current length of the string in the text 
array. The maxlength field specifies the maximum length of the string. This field is read­
only because the size of a string is fixed when it is allocated. 

The text field is a special form of array. which used to be the primary way for providing 
dynamic arrays in Mesa. before SEQUENCES were added to the language. It declares an array 
(as the last field in a record) to have an undetermined length (indices from [0 .. 0»). The 
compiler. however. interprets this field as an array with zero length. This has interesting 
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effects on string pointer manipulations in assignment and comparisons, as discussed 
below. 

7.2.1 Allocating a STRING 

There are four ways to allocate a STRING: 

• Allocate fixed-sized storage from the local or global frame of a program. 

• Assign a string literal to a string variable. String literals are automatically allocated 
in the local or global frames of your program. 

• Use the NEW operator to allocate storage from a heap. 

• Use procedures provided by the String interface (discussed in the Pilot Programmer's 
Manual, §7.3) to allocate storage from a heap. 

STRINGS are the only Mesa construct that can be allocated by an explicit request for space 
from a local or global frame. For example, the following declares a variable string and 
allocates space for up to 256 characters from the same local or global frame as the 
statement itself: 

string: LONG STRING ~ [256]; 

Sometimes, however, you may want to use known text as a string, for example, to print a 
message, prompt the user for input, or explain how to use the program. Mesa provides 
string literals for these uses, such as: 

globalString: LONG STRING ~ "Hi There"; 
localString: LONG STRING ~ "Hi There"L; 

Both of these strings are initialized to point to a record whose length and maxlength fields 
are 8 and whose text field contains the characters H, i, , T, h, e, r, e. globalString is 
allocated out of the program's global frame; localString is allocated from the local frame 
(denoted by the suffixed L.) 

When a string literal is inappropriate, you will often allocate the string from a heap (or it 
will be allocated for you). As a pointer, a STRING is well suited for the NEW and FREE 
operators. The following example accomplishes what our first example did, except it gets 
its storage from the heap instead of the local or global frame of the program. It declares a 
LONG STRING and initializes it to NIL. When space is needed, it uses the NEW operator on the 
StringBody type to allocate a space for 256 characters: 

string: LONG STRING ~NIL; 

string ~ Heap.systemZone.NEw[StringBody[256]]; 

To deallocate the string, you use the FREE operation: 

Heap.systemZone.FRE E[@string]; 

Because strings are very common in Mesa programs, there is a system interface (called 
String) that implements primitive string operations such as allocating, copying, and 
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comparing strings. The MakeString and FreeString procedures in this interface work 
much like NEW and FREE for allocating and de allocating a string. 

String.MakeString takes two parameters: the heap from which the node is to be allocated, 
and the maximum size of the string: 

String.MakeString: PROCEDURE[Z: UNCOUNTED ZONE. maxlength: CARDINAL]; 

Thus, the following code is equivalent to calling Heap.systemZone.NEw[StringBody[256]]: 

stri ng: LONG STRING ~ NIL; 

string ~String.MakeString[z: Heap.systemZone, maxlength: 256]; 

FreeString takes as parameters a string and the heap from which the string was allocated: 

String.FreeString[z: UNCOUNTED lONE, S: LONG STRING]; 

FreeString frees the space occupied by the String Body; you are responsible for setting the 
string to NIL. 

7.2.2 Caveats in using strings 

Besides the usual pointer considerations, there are a few peculiarities related to the 
structure of strings that you should be aware of. The following examples demonstrate 
common STRING misuse. Try to figure out the effect of each group (and the error) before 
looking at the explanations. 

7.2.2.1 Initializing strings from the current frame 

string1, string2: LONG STRING ~ [256]; 

This is analogous to 

number: CAROINAL ~ 5; 
ptrToNumber1, ptrToNumber2: LONG POlfl!TER TO CARDINAL ~ @number; 

It points both strings to the same 256-character space, which is most likely not what was 
intended. To point each string to its own space of256 characters, you would code: 

string1: LONG STRING ~ [256]; 
string2: LONG STRING ~ [256]; 

7.2.2.2 Comparing strings 

Consider the following attempts to compare string1 and string2: 

string1: LONG STRING. "Hi There"L; 
string2: LONG STRING. "Hi There"L; 

1) IF string1 • string2 THEN ' •. 
2) IF string1 t • string2 t THEN ... 
3) IF string1.text • string2.textTHEN ... 

All three string comparisons are incorrect. The first compares the value of the pointers, 
and not the objects which these pointers reference. This comparison asks if the two 
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pointers point to the same object, not if the two objects pointed to are equal. For this 
example, the result is FALSE, even though the two strings contain the same text. 

The second comparison seems like it should work: it compares the objects referenced by the 
two pointers. Unfortunately, when the compiler generates code for, the comparison, it 
treats strings as having text fields with zero length without taking run-time sizes into 
account. Since the sizes are zero, the statement only compares the length and maxlength 
fields of the two strings (equivalent to string1.length • string2.length AND 
string1.maxlength = string2.maxlength). For this example, the result is TRUE. However, 
this comparison does not really compare the two strings. 

The final statement fails for the same reason as the second comparison. When the 
compiler gen,erates the comparison code, it treats the text field as an empty array [0 .. 0). 
The compiler thinks it is comparing two empty objects. (The result of this is left for you to 
determine. The value is definitely a constant, but is it TRUE or FALSE?) 

To compare two strings properly, you need to compare each element in their arrays. This is 
. simple to encode, and you may want to try it as a short exercise. However, the String 
interface provides String. Equal and String.Compare to perform these primitive STRING 
operations; take a look at their descriptions in the String section of the Pilot Programmer's 
Manual. 

7.2.2.3 Assigning strings 

string1: LONG STRING +- [256]; 
string1 +- "Copy this into the string. please"L; 

This set of statements does not, in fact, copy the string literal into the space allocated from 
the current frame. The first statement declares the variable string1 and initializes it to 
point at a String Body with a 256-character text field. The second statement assigns 
string1 to point to a new StringBody, one which contains the literal "Copy this into the 
string, please", making the original 256-character text field leaked storage that can no 
longer be referenced. 

To correctly copy this literal into string1 you could use either AppendString or Copy from 
the String interface. 

7.2.3 Using the String interface. 

The String interface provides routines for doing common string operations: comparing, 
appending, copying, and allocating. A number of the appending a,nd copying routines also 
involve allocation. You will need to be familiar with these routines to complete the 
exercises at the end of this chapter. 

7.3 Summary 

7-4 

This chapter has not really presented anything new. All string use involves pointers, and 
you have already learned the intricacies of pointer usage. However, STRINGs do cause 
problems, often because programmers are used to strings as arrays of characters. Just 
remember that in Mesa, the pointer has been put under program control. The structure of 
Mesa STRINGS is another potential source of difficulty. Because the text field is seen by the 
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compiler as having zero length, comparisons among StringBodies are not as 
straightforward as among other pointer objects. However, the String interface supplies 
most common string routines, so you will not have to worry about writing them yourself. 

7.4 References 

Section 6.1 of the Mesa Language Manual briefly describes the record structure of a STRING 

and discusses how to declare and use string variables. 

Section 7.3 of the Pilot Programmer's Manual describes the String interface, including 
many procedures for manipulating STRINGS. 

7.5 Exercises 

In this exercise, you will modify a line editor that runs in a tool window. The line editor 
currently calls several string manipulation procedures defined in the String interface. 
These procedures allocate and deallocate strings from a heap, free strings, copy strings, 
and replace strings. In addition, the tool implements some more advanced string features 
such as substring operations. Your assignment is to implement the same procedures 
through another interface called String2. You will write the implementations to this new 
interface and bind the modules together into a configuration. 

You will need the following modules for this assignment: 
EditorDefs.mesa 
Editorlmp1.mesa 
EditorTool.mesa 
String2.mesa 
Editor2.config 

Notice that none of the modules currently use String2. You should: 

1) Change all String references in the module Editorlmpl to String2. 

2) Create an implementation module for String2. 
(Name it String2Impl.mesa.) 

3) Move the procedure InsertString from the module Editorlmpl to String2Imp1.mesa. 

4) Change alllnsertString references to String2.1nsertString. 

5) Write implementations for the procedures listed in String2. 

6) Change the configuration Editor2.config to reflect the new program modules. 

All of the procedures in String2 are taken directly from the Pilot String interface. You 
should take a look at the String documentation in the Pilot Programmer's Manual to get 
an idea of what each of these procedures is supposed to do. 

This might also be a good time for you to familiarize yourself with a tool called 
DebugHeap. This tool allows you to check for storage leaks in your programs. To find out 
how to use this tool, check your XDE User's Guide. 
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Signals 

Signals are a software interrupt facility used when exceptional conditions occur during 
the execution of a program. Mesa's signal mechanism is more flexible and powerful than 
the exception handling facilities provided by most other languages or systems. 

This chapter provides several examples that illustrate how to suspend program execution 
to handle an exception, how to provide code to handle the exception, and how to continue 
program execution afterwards. At the end of the chapter, you will apply your 
understanding of signals to write a program that both generates and handles signals. 

8.1 Definition of terms 

Exception 

Signal 

Error 

Catch Phrase 

Signaller 

Call Stack 

An exception is an unusual event that programs must be prepared to 
handle, such as end-of-file or an invalid input. 

A signal is a Mesa language construct used to help handle exceptional 
conditions encountered during program execution. Signals are like 
procedures except that the code to be executed for a signal call 1S 

determined at run-time. 

An error is a Mesa language construct similar to a signal, except that 
program execution can be resumed after a signal, but not after an 
error. The word "signal" is used to refer to both signals and errors, 
except where explicitly noted. 

A catch phrase is a Mesa construct that establishes code to catch one or 
more signals. The catch phrase contains the code to be executed when 
the exception occurs. 

The Signaller is the program that receives control when a signal is 
raised, attempts to find an associated catch phrase, and executes the 
code in the catch phrase. 

The call stack is a Mesa processor data structure containing a frame for 
each procedure invocation that has not yet returned. The call stack is 
ordered by most recent invocation, and is referred to as growing 
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Raise 

Reject 

Resume 

Continue 

Retry 

Goto,Exit, 
Loop 

Unwind 

downward. Therefore, going "up" the call stack means going from the 
most recently called procedure record toward the oldest. 

To raise a signal is to instruct the Signaller to look in each procedure 
on the call stack until it finds a procedure with a catch phrase for that 
signal. The Signaller searches up the call stack. . 

A catch phrase rejects a signal when it is not prepared to handle it (the 
Signaller continues searching up the call stack for another catch 
phrase for the same signal). A catch phrase rejects a signal either by 
explicitly placing a REJECT statement in the code or by not specifying 
how to resolve the signal. 

To resume a signal is to tell the Signaller to resume program execution 
immediately after the statement that raised the signal. As when 
returning from a procedure call, any values returned by the signal are 
passed back to the statement that raised the signal. An ERROR. cannot 
be resumed. 

To continue a signal is to tell the Signaller to resume program 
execution at the statement following the one to which the catch phrase 
belongs. Thus, control is resumed in the procedure where the signal 
was caught, not the procedure that raised the signal. 

To retry a signal is to tell the Signaller to re-execute the statement to 
which the catch phrase belongs. 

These are Mesa statements that can be used, in addition to REJECT, 

RESUME, CONTINUE, and RETRY to indicate where execution is to occur 
after the signal handling mechanism is finished. 

Unwind is a special signal raised by the Signaller to allow procedures 
about to be deleted from the call stack to clean up their data structures 
(e.g. deallocate storage and close files). When there is an unconditional 
branch out of the catch phrase (GOTO, EXIT, LOOP, CONTINUE, RETRY) the 
Signaller raises the unwind signal at the point where the original 
signal was raised. 

8.2 Discussion 

8-2 

Generally speaking, there are two methods for detecting an event at which you are not 
present. You can continuously poll an observer or participant of the event, or you can have 
the observer or participant notify you. If the event you are checking for is reasonably 
predictable and you have time, polling may be convenient. However, if the event is 
unlikely to occur or happens intermittently, notification may be more convenient. The 
choice of method always involves a trade-off between the inefficiency of polling when 
nothing has happened and the inconvenience of being interrupted for notification. 

Most computer languages do not implement a notification system for errors or exceptions. 
Since computers execute so quickly, the inefficiency of polling can often be tolerated, 
particularly when compared with the expense of providing a notification capability. 
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However, there are cases, such as device time-out, when notification is an easier, more 
logical, and more efficient way to communicate the information that an exception has 
occurred. For example, while you are transferring files from a file server, it is a rare event 
for the connection to time out, and notification is preferable to polling. Mesa provides the 
signal facility for cases such as this. 

Signals also make it easier for someone who is reading a program to see the exceptions 
that are being handled and to identify the code that handles them. A signal always 
indicates the occurrence of a rare event. Status polling doesn't have this feature: since it is 
usually implemented by boolean checking, it is not always obvious which of the two is the 
rare case. 

8.2.1 How signals work 

The declaration of a signal is similar to that of a procedure: there may be a parameter list 
and a returns list. But instead of being initialized to an actual body of code, a signal is 
initialized by the symbol CODE. Here's a sample signal declaration: 

StringBoundsFault: SIGNAL[S: LONG STRING] 
RETURNS [ns: LONG STRING] = CODE; 

A signal is raised when a SIGNAL (or ERROR) statement is executed, as in: 

SIGNAL StringBoundsFault [string]; 

The body of code to be executed for a signal is determined at run-time (dynamic binding). 
When a signal is raised, normal execution is suspended and control is passed to the 
Signaller, which is part of Mesa's run-time support. It is the Signaller'S responsibility to 
find and execute the bodies of code to handle the signal. 

These bodies of code are called catch phrases . . Each catch phrase can have code for one or 
more signals, in a structure similar to a SELECT statement. For example: 

StringBoundsFault • > 
BEGIN 
'ns +-AliocNewString [5: length + 10]; 
CopyString [from: 5, to: ns]; 
DealiocateString [5]; 
RESUME Ins]; 
END; 

String2 = > BEGIN ... END; 

A catch phrase can occur in one of two places: explicitly on a procedure call (denoted by 
"!"), or after the word ENABLE in a BEGIN-END block. A !-defined catch phrase will catch a 
signal raised while the called procedure is executing, or while procedures called by that 
procedure are executing. An ENABLE-defined catch phrase does the same thing for every 
procedure call in the surrounding BEGIN-END block, and in addition will catch any signal 
raised directly in the BEGIN-END block. In the code fragment below, Signal1 would be caught 
only if it is raised while Procedure1 is executing. Signal2, on the other hand, would be 
caught if it is raised through Procedure1, through another procedure call in the block, or 
directly, as in the SIGNAL Signal2 statement. 
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BEGIN 
ENABLE Signal2 • > BEGIN ... END; 

Procedure1[ ... !SignaI1 • > BEGIN ... END]; 
SIGNAL Signal2; 

END; 

Catch phrases form a dynamic list that is ordered by the call stack, and by BEGIN·END blocks 
within each procedure call. In the example above, the catch phrase for Signal1 in the call 
to Procedure1 is nested below the ENABLE-defined catch phrase for Signal2. These two catch 
phrases are followed by any ENABLE-defined catch phrases in enclosing BEGIN-END blocks and 
then any catc;h phrase on the procedure one higher on the call stack, etc. This list of catch 
phrases is terminated at the root of the call stack, where there is an implicit catch phrase 
that catches any signal that has not been otherwise dealt with and raises the error 
UncaughtSignal. 

When a signal is raised, the Signaller goes up the program's call stack looking in the BEGIN­
END blocks of each procedure on the stack for a catch phrase that recognizes the signaL 
When an appropriate catch phrase is found, the Signaller executes a call to it. The 
parameters (if any) are passed and the catch phrase is entered. As with procedures, the 
signal's parameters can be referenced inside the body of the catch phrase. (The signal's 
parameters have precedence over any other symbols of the same name. Within a 
StringBoundsFault catch phrase, for example,s and ns refer to the signal's parameters.) 

After the catch phrase is entered one of three things can happen: 

• Resume A RESUME statement tells the Signaller to conclude processing of this 
signal and resume execution of the program at the point where the signal was 
raised. Its syntax is just like RETURN, and the signal can return values if it is 
defined that way. RESUME is not legal if the signal is an ERROR. 

• Exit EXIT, CONTINUE, RETRY, LOOP, and GOTO are the statements used to 
conclude processing a signal by jumping to a point outside the catch phrase . 

. When a jump occurs, the Signaller raises the special signal UNWIND to inform 
procedures more deeply nested on the call stack that they are about to be 
deleted. (UNWIND is discussed in §8.2.5.) 

• Reject This tells the Signaller to continue processing this signal and to pass 
it to the next higher catch phrase. There are three ways that a catch phrase can 
reject a signal: explicitly (with a REJECT statement), implicitly (by not catching 
the signal), or by first catching the signal, and then "falling off the end" without 
executing a RESUME, EXIT, CONTINUE, RETRY, LOOP, or GOTO. 

8.2.2 Resume 

After handling an exception, it's possible to return to the code that raised the signaL This 
is desirable if the code executed in the catch phrase has eliminated the source of the 
exception. 

For example, 
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Node: TYPE • RECORD[ 
index: CARDINAL, 
sequence: SEQUENCE length: CARDINAL OF SeqType); 

PtrToNode: TYPE • LONG POINTER TO Node; 
seq: PtrToNode; 

GrowSequence: PROCEDURE [seqNeedsLengthening: PtrToNode) 
RETuRNs[lengthenedSeq: Ptr ToNode) = { ... }; 

8 

--lfseqNeedsLengthening is NILthen GrowSequence allocates a new sequence and 
--returns a pointer, lengthenedSeq, to it. Otherwise, GrowSequence allocates a 
--new sequence longer than seqNeedsLengthening.length, copies the data from 
-- seqNeedsLengthening f to lengthenedSeq f, frees seqNeedsLengthening f , 
--and returns a pointer, lengthened Seq, to the new sequence. 

InsertNode: PROCEDURE [object: SeqType) • 
BEGIN 

IF (seq = NIL) OR (seq.index = seq.length) THEN seq +- GrowSequence[seq); 
seq[seq.index) +- object; 
seq.index +- seq.index + 1; 

ProcessNextObject PROCEDURE[object: SeqType); 
BEGIN 

IF DuplicateObject[object) THEN TakeAppropriateAction 
ELSE InsertNode[object); 

END; 

If the sequence is full, InsertNode calls GrowSequence[seq) to lengthen the sequence. It 
would improve modularity ifinsertNode knew only how to add data to the sequence, and 
did not attempt to handle the exception. Instead, when the sequence is full, InsertNode 
would raise a signal to inform a catch phrase on the call stack (presumably one that knows 
how to grow the sequence) to take care of the problem. Once the sequence has been 
lengthened, the signal can be RESUMEd, returning control to InsertNode, which can then 
continue to add data to the sequence. 

Call Stack 

Code to allocate and deallocate 
storage 

~atch phrase to allocate and 
deallocate node 

... 

InsertNode (Raises a signal if 
node allocation is required) 

FigureS.1 
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Figure 8.1 illustrates this scheme. It shows a box for a procedure that knows how to 
allocate and deallocate storage, and, lower on the stack, a box for the procedure 
InsertNode, which communicates with the previous procedure by raising a signal when it 
is necessary to allocate a new node. 

Let's look at how to add the appropriate signal-raising and signal-handling code to the 
above fragment to accomplish this design. 

First, we declare the following signal: 

SequenceBoundsFault: SIGNAL[oldSeq: PtrToNode] 
RETURNS [newSeq: PtrToNode] = CODE; 

We want to raise this signal when the sequence needs more space. This can occur either 
when the sequence needs to be initialized for the first time, or when the sequence needs to 
be extended beyond its present boundaries. We have modified InsertNode as follows: 

InsertNode: PROCEDURE [object: SeqType] = 
BEGIN 

IF seq = NIL THEN seq ~ SIGNAL SequenceBoundsFault[seq]; --raise signal 
UNTIL seq.index < seq.length DO 

seq +- SIGNAL SequenceBoundsFault[seq]; --raise signal 
ENDLOOP; 
seq[seq.index] ~object; 
seq.index ~ seq.index + 1; 

END; 

The first line of code checks to see if the sequence is NIL. If it is, it raises Sequence­
BoundsFault, passing seq as the sequence to be extended. When the signal is raised, 
normal program execution is suspended. The Signaller takes over and begins to examine 
catch phrases on the call stack. An appropriate one is found in the call to InsertNode in the 
revised ProcessNextObj ect: 

ProcessNextObject PRocEDuRE[object: SeqType]; 
BEGIN 

IF DuplicateObject[object] THEN TakeAppropriateAction 
ELSE InsertNode[object! SequenceBoundsFault = > --catch Signal 

RESUME[GrowSequence[oldSeq]]]; 
END; 

The body of the catch phrase is dynamically bound to the signal call and is executed after 
passing in the parameter, oldSeq, of SequenceBoundsFault. This catch phrase only 
contains one line of code, the RESUME statement, which calls -GrowSequence[oldSeq]. 
GrowSequence takes oldSeq, allocates a larger one (copying the data from oldSeq t ), and 
returns the new sequence. The signal is then resumed, which passes control back to 
InsertNode, in the statement that raised the signal. At this point, seq is assigned the 
newly allocated sequence returned by the RESUME. InsertNode now has a freshly allocated 
sequence into which it can insert data. 

The UNTIL loop handles the case of no space for new data in the existing sequence. 
SequenceBoundsFault works in the same way as just described. (The raising of the signal 
appears in a loop for robustness, in case the catch phrase does not allocate enough new 
space to cover InsertNode's needs in a single call. The copying operation described above is 
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performed each time the signal sequenceBoundsFault is raised in the UNTIL loop of 
I nsertNode.) 

Figure 8.2 shows the state of the call stack when a full sequence is encountered. 
ProcessNextObject has called InsertNode, which has raised sequenceBoundsFault[seq) to 
signify the need for a larger sequence. This resulted in a run-time system call to the 
Signaller, which created a call to the catch phrase for SequenceBoundsFault (labelled 
CatchFrame: ProcessNextObject in the figure). The catch phrase has then called 
GrowSequence, which will allocate a new sequence and deallocate the old one. When 
GrowSequence returns, the catch phrase will execute a RESUME, and return the longer 
sequence to InsertNode. 

Call Stack 

ProcessNextObject 

InsertNode 
(Raises Sequence Bounds Fault) 

Signaller (One or more prc;>cedures) 

Catch Frame: ProcessNextObject 

GrowSequence 

Figure 8.2 

Signals do not automatically return after execution of a catch phrase; you must indicate 
where control is to continue if you do not want the Signaller to continue up the call stack 
looking for catch phrases. In this case we wanted to return to the point where the signal 
was raised, so we used RESUME. Allowing a signal to "fall off the end" of a catch phrase, is 
not a RESUME, but rather an implicit REJECT. 

8.2.3 Retry and continue 

There ar.e times when an unsuccessful action raises a signal and it is appropriate to repeat 
the action until it is successful. For instance, if the File Tool is unable to open a connection 
to a specified service on the first try, you might want it to keep trying until it was 
successful or until you told it to stop. RetryExample provides an -example of this. Run the 
program by typing RetryB_ .. ple in the Executive, followed by the name of a server. 
(You should move the program to the Tajo volume via Command Central, etc.) The 
pro~am simulates a failure to open a connection to the specified server. (Notice the 
message to that effect.) On the second attempt the simulated connection is made. 

Take a look at the source listing to see how this retry was accomplished. 
RetryExamplelmpl primarily consists of one procedure, RetryProc, which gets the server 
name from the user's input and then tries to open a connection. Inside OpenConnection 
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the signal TimeOut can be raised if the connection is not established within a certain time 
period. This signal is defined in the SignalsDefs interface as 

TimeOut: ERROR; 

OpenConnection has been rigged for this example to raise the signal TimeOut the first 
time it is called. We catch this signal in the call to OpenConnection, print a message to 
the user to explain the problem and RETRY. This causes the program to make the procedure 
call to OpenConnection again. The second call succeeds and we post a message indicating 
the open connection. Figure 8.3 shows the situation after the signal is caught. 

Call Stack 

RetryPro( 

OpenConnection 
(Raises Timeout) 

Signaller (One or more 
procedures) 

CatchFrame: 
OpenConnection 

Figure 8.3 

When the catch phrase executes the RETRY, there is ajump to the beginning of the statement 
that contains the catch phrase, in this case, the call to OpenConnection: 

OpenConnection[server! Timeout == > BEGIN .•• RETRY END] 

When an ENABLE clause is used to define the catch phrase, the BEGIN-END block surrounding 
the ENABLE clause is the "statement that contains the catch phrase." For example, if 
RetryPro( had been coded this way: 

BEGIN 

ENABLE Timeout == > BEGIN ... RETRY END; 

OpenConnection [server]; 
END; 

then the RETRY would jump to the beginning of the outermost BEGIN-END block. 

CONTINUE is similar to RETRY, except that the jump is to the statement following the one that 
contains the catch phrase, or for an ENABLE clause, the statement following the BEGIN-END 

block surrounding the clause. CONTINUE is used when the catch phrase determines that it is 
desirable to skip the signal-raising statement rather than retry it. 
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8.2.4 Exit, loop and goto 

The Mesa statements EXIT, LOOP, and GOTO can be used within a catch phrase just as they 
are used in BEGIN·END blocks and loops. These statements are legal within a catch phrase 
whenever the catch phrase is enclosed within a loop or BEGIN·END block. in which they would 
normally be legal. 

As an example, consider a program fragment that reads data from a file and inserts it into 
a linked list in sorted order. (We use the system interface Stream, discussed later in the 
course, to read the file. Stream raises the signal Stream. EndOfStream at end offile.) 

DIRECTORY 
Heap USING [Create, Delete], 
MStream USING [Handle, •.• ], 
Stream USING [EndOfStream, GetWord, •.. ], 

.. -, 

ExitExample: PROGRAM 
IMPORTS Heap, MStream, Stream, ... = 

BEGIN 
-·TYPES 
Node: TYPE = RECORD[ 

data: CARDINAL +- 0, 
nextNode: PtrToNode +- NIL]; 

PtrToNode: TYPE = LONG POINTER TO Node; 
PtrToPtrToNode: TYPE = LONG POINTER TO PtrToNode; 

--Variables 
z: UNCOUNTED ZONE +-NIL; 
headOfList: PtrToNode +-NIL; 

--Heap allocation I deallocation procedures 
CreateStorageArea: PROCEDURE = BEGIN Z +- Heap.Create[initial: 20]; END; 

DestroyStorageArea: PROCECURE • { ... }; 

MakeNode: PROCEDURE[nextNode: PtrToNode] 
RETuRNs[nodePtr: PtrToNode] • { ... }; 

FreeOneNode: PROCEDuRE[freeThisNode: PtrToPtrToNode] 
RETuRNs[nodePtr: PtrToNode] • { ... }; 

FreeAIINodes: PROCEDURE. 

BEGIN 
tempNodePtr: PtrToNode +- headOfList; 
UNTIL tempNodePtr • NIL DO 

tempNodePtr +- FreeOneNode[@tempNodePtr]; 
ENDLOOP; 
head Of List +- NIL; 

END; 

8-9 
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--File Management Procedures 
OpenDataFile: PROCEDURE [fileName: LONG STRING] 

RETURNS[sh: MStream.Handle] • { ... J; 

CloseDataFile: PROCEDURE[sh: MStream.Handle] 
RETURNs[default: MStream.Handle Eo- NIL] = { .•. }; 

GetNextData: PROCEDURE[sh: MStream.Handle] 
RETURNs[n: CARDINAL] = 
BEGIN 

RETURN[Stream.GetWord[sh)); --raises Stream.EndOfStream 
END; -- at "end of file" 

--Linked List Management 
Process Data: PROCEDURE • 

BEGIN 
insertHere: PtrToPtrToNode Eo-NIL; 
sh: MStream.Handle Eo- OpenDataFile[MyFile]; 
n: CARDINAL Eo- 0; 
DO 

n Eo- GetNextData[sh! Stream.EndOfStream = > EXIT]; 
insertHere Eo- SearchLinkedList[n]; 
InsertNode[insertHere, n]; 

ENDLOOP; 
sh Eo- CloseDataFile[sh]; 

END; 

SearchLinkedList: PROCEDURE[n: CARDINAL] 
RETURNS [insertionPoint: PtrToPtrToNode] = { ... }; 

InsertNode: PROCEDURE[insertionPoint: PtrToPtrToNode, n: CARDINAL] • { ... }; 

END. 

The loop in Process Data gets the next data item from the file, searches the list to see where 
it belongs and inserts it. Execution of the loop ends at the end of the file. The procedure 
Stream.GetWord, which is called in GetNextData, raises the signal Stream.EndOfStream 
when there is no more data to be transferred. The signal is caught in the call to 
GetNextData in ProcessData. The loop is then EXITed and control is transfered to 

sh Eo- CloseDataFile[sh]; 

which closes the file before returning. 

8.2.5 Unwind 

A GOTO, EXIT, RETRY, LOOP or CONTINUE statement can cause a jump out of a catch phrase into 
the surrounding code. When a jump of this sort occurs, there may be several procedure 
calls on the stack below the target of the jump that will be prematurely exited when the 
jump is accomplished. (The signal was necessarily raised by the procedure on the bottom of 
the call stack, so neither that procedure nor any of the procedures between it and the 
procedure with the catch phrase will be completed when the jump is executed.) Since these 
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procedures may have been in the midst of doing something when the signal was raised, 
Mesa provides a facility for them to wrap up any unfinished operations. 

Before executing the jump, the Signaller raises a special signal called UNWIND to tell all 
catch phrases that had previously rejected the signal that they are about to be removed. 
UNWIND propagates along the same path as the original signal: from the BEGIN·END block in 
which the original signal was raised to the BEGIN·END block containing the catch phrase 
executing the jump. It is the responsibility of each of these blocks to catch UNWIND and 
clean up its operations. The Signaller stops UNWIND when it reaches the catch phrase that 
is making the jump. The jump is then executed and control returns to the program. 

Call Stack 

ProcA 
(Target of the jump below) 

... 

ProcB 
(Raises a signal) 

... 

CatchFrame: ProcA 
(Does jump into ProcA) 

Figure 8.4 

In Figure 8.4, ProcB has raised a signal which was caught by a catch phrase in ProcA. 
When that catch phrase does ajump, all the procedures below ProcA will be removed from 
the call stack and all BEGIN·END blocks within ProcA below the target of the jump will be 
exited. All of the catch phrases more deeply nested than the one executing have 
(necessarily) rejected the signal, so UNWIND propagates through this set of catch phrases. 
Because UNWIND stops after going through the catch phrases that rejected the original 
signal, it never results in an uncaught signal. 

When doing a GOTO, EXIT, RETRY, LOOP or CONTINUE from a catch phrase, you must be aware 
that the UNWIND signal is going to be raised and that you need to clean up any work in 
progress in the procedures and BEGIN·END blocks lower on the call stack. If you forget, your 
programs may have space leaks from storage that should have been deallocated, or they 
may develop strange bugs from things such as files that should have been closed. 

As an example, let's modify the previous fragment to allow the user to cancel the operation 
of inserting data from MyFile into the linked list. If the user hits the ABORT key (detected 

8·11 
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by the call to the system interface Userlnput) then the file transfer and insertion operation 
will be terminated. 

DIRECTORY 

Userlnput USING [UserAbortJ, 
FormSW USING[ProcType, ... J, 
Put USING[ Line, ... J, 

... , 

UnwindExample: PROGRAM 
IMPORTS Heap, MStream, Stream, Userlnput, ..• = 

BEGIN 

--Signal declaration 
UserAbort: ERROR. CODE; 

CheckForAbort: FormSW.ProcType = 
--Later chapters discuss sending text to a tool message subwindow 

BEGIN 
ENABLE 

UserAbort = > BEGIN GOTO abort; END; 
Put.Line[PtrToSomeToolsDataStructure.msgSW, "Processing File "l]; 
Process Data []; 
Put.Line[PtrToSomeToolsDataStructure,msgSW, " . , . done" l]; 
EXITS 

abort = >Put,Line[PtrToSomeToolsDataStructure.msgSW, " ... aborted" l]; 
END; 

Process Data : PROCEDURE • 
BEGIN 

insertHere: PtrToPtrToNode +-NIL; 
sh: MStream.Handle +- OpenDataFile[MyFile]; 
n: CARDINAL +-0; 
BEGIN 
ENABLE 

UNWIND· > 
BEGIN 

IF sh # NIL THEN sh +- CloseDataFile[sh]; 
IF headOfList # NIL THEN FreeAIiNodes; 

END; 
DO 

IF Userlnput.UserAbort[PtrTolnputWindowJ THEN ERROR UserAbort; 
--If the user has pressed the abort key raise the global signal UserAbort 
n +- GetNextData[sh! Stream.EndOfStream • > EXIT]; 
insertHere +- SearchLinkedList[n]; 
I nsertNode(i nsertHere, n]; 

ENDLOOP; 
sh +- CloseDataFile[sh]; 
END; 

END; 
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--mainline code 

CheckForAbort; 

On each pass throug~ the DO loop of ProcessData, we check to see if the user has hit the 
ABORT key. If so, the error UserAbort is raised. (See the Style section for a discussion of 
when to use ERROR and when to use SIGNAL.) 

We catch the signal and print a message to the user that the action has been aborted. Since 
this signal has been declared as an ERROR, the catch phrase cannot RESUME. It must remove 
Process Data from the stack, but at this point ProcessData has an open file and a linked list 
filled with nodes allocated from a heap. By providing a catch phrase for UNWIND in 
Process Data, we get the chance to deallocate the nodes in the linked list and close the file 
before the procedure is removed. (See the Style section for a discussion on why the ENABLE 

clause is in an embedded BEGIN-END block.) 

Note: It is common to recognize an exception condition (either by boolean checking or by 
catching a signal), and then raise a signal to pass this information on to a higher level 
procedure. This is often done to hide the lower level's implementation from the higher 
level's implementation. When debugging an uncaught signal, it is important to remember 
to check on the call stack for nested signals. For example, the apparent signal may have 
been raised in a catch phrase for some other signal. The root of the problem may be more 
apparent from the original signal than the one being debugged. 

8.3 Summary 

Signals and errors are an alternative to status polling. They are best at handling rare 
events, since raising a signal requires fewer checks than status polling within a loop, but 
processing a signal (with the Signaller) takes more time than processing a boolean 
statement. Using signals also helps the reader of a program to see which exceptions are 
being handled and to identify the code that handles them. 

Though raising a signal is similar to calling a procedure, there are several differences: 

• The code for a signal is dynamically bound to the signal at run-time, whereas the code 
for procedures is specified at compile-time. 

• Normal execution halts during the processing of a signal, and the Signaller takes 
control. 

• Execution can proceed at several places after a signal is _raised, whereas after a 
procedure call execution must proceed after the statement that made the call. 

The code for processing a signal is contained in a catch phrase. Catch phrases can occur 
either after an ENABLE, or after an ! in a procedure call. Catch phrases after an ENABLE can 
catch signals from any procedure calls nested within the BEGIN·END block, but catch phrases 
in procedure calls can only catch signals nested within that procedure call. 

When the Signaller takes control, it does the following: 

8-13 
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1. Looks up the call stack for a catch phrase that recognizes the signal, starting with the 
BEGIN·END blocks in the code that raised the signal. 

2. Executes any catch phrases found for the signal, branching as indicated in the catch 
phrase. If no jump is indicated, it continues looking up the call stack. 

3. If it can't find a catch phrase in any of the procedures on the cab stack, the signal is 
uncaught, and the debugger is called via the special signal UncaughtSignal. 

There are several ways to tell the Signaller how to continue execution after a catch phrase. 
You can use the Mesa statements GOTO, EXIT, or LOOP, with their normal effects. There are 
also several signal-specific jump statements. Doing a RESUME is similar to returning from a 
procedure call: control returns to the statement that raised the signal. However, you 
cannot RESUME an error. (This is the only difference between signals and errors.) CONTINUE 

causes execution to be transferred to the first statement after the one containing the the 
catch phrase. RETRY retries the statement that contains the catch phrase. (If the catch 
phrase is in an ENABLE clause, then the "containing statement" means the BEGIN·END block 
that contains the ENABLE.) REJECT tells the Signaller to continue looking up the call stack for 
another catch phrase that recognizes the signal. If you don't specify any jump statement 
the catch phrase performs an implicit reject. 

GOTO, EXIT, LOOP, CONTINUE, and RETRY each cause ajump into the procedure containing the 
catch phrase. This means that the procedure and BEGIN·END blocks below it will be removed 
from the call stack. The Signaller generates the special signal UNWIND to allow catch 
phrases that have previously rejected the signal to do clean up, such as closing files and 
deallocating storage. 

8.4 Style 

8·14 

8.4.1 Scope 

The scope of an ENABLE clause places it outside the scope of variables declared in the same 
BEGIN·END block, since the ENABLE clause must precede any declarations. (See page 8.5 of the 
Mesa Language Manual for a diagram of clause scopes.) To permit the catch phrase in the 
ENABLE clause to have access to local variables, the ENABLE clause must be more deeply 
nested than the local variables. To accomplish this, declare the ENABLE clause and the 
executable statements within an extra BEGIN·END block. The ENABLE clause will then know 
about the variables since they are declared in a surrounding block: 

BEGIN 

Declarations 
BEGIN 

ENABLE 

Statements 
END 

END 

8.4.2 Errors vs. signals 

An ERROR is used instead of a signal when a RESUME cannot be handled, since it is illegal to 
RESUME an ERROR. You don't want a catch phrase to do a RESUME if you do not want to return 
to the procedure that generated the ERROR, either because it would be inappropriate, or 
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because something catastrophic has happened. In the program UnwindExample, we used 
the ERROR UserAbort. We made UserAbort an ERROR since the user wants the procedure to 
stop. This is a case where it would be inappropriate to resume execution. 

8.4.3 A caution 

In the RESUME example in §8.2.2, the catch phrase returned a pointer for use by the RESUMEd 
procedure. If some intermediate procedure held the value of the old pointer it would not 
have been informed of the new value, and presumably an error situation would arise when 
control returned to it. When you code a catch phrase to replace a node out from under a 
pointer, make sure that any code that used the old node will use the revised pointer. 

8.5 Questions 

1) In the following code fragment, to which statement will the CONTINUE branch? 

commands +-0; 
BEGIN 
ENABLE 

AlreadyDone =- > CONTINUE; 
GetToken[token] ; 
DoCommand[token]; -- where AlreadyDone would get raised 
commands +- commands + 1; 
ResetStatus[] ; 

END 
Write["Commands completed."L]; 

In the following code fragments, list the order that the statements labeled <statement n> 
will be executed. 

2) 
Sig1: SIGNAL. CODE; 
x: CARDINAL +- 0; 

FOR counter: INTEGER IN [1 .. 3] DO 
ENABLE 

Sig1 • > RETRY; 
<statement 1 > 
IF counter =- 2 THEN 

BEGIN 
ENABLE 

BEGIN 
Sig1 • > < statement 2> ; 
UNWIND. > x f-1; 
END; 

< statement 3> ; 
IFX • OTHEN 

SIGNAL Sig1 ; 
<statement 4>; 
END; 

<statement 5> 
ENDLOOP; ... 
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3) 
Sig1: SIGNAL = CODE; 

FOR counter: INTEGER IN [1 .. 2] DO 

BEGIN 

ENABLE 

Sig1 = > LOOP; 

< statement 1 > ; 
IF counter = 1 THEN 

SIGNAL Sig1; 
< statement 2> ; 
END; 

< statement 3> ; 
ENDLOOP; 

< statement 4 > ; 

4) 

Sig1: SIGNAL = CODE; 

FOR counter: INTEGER IN [1..2] DO 

BEGIN 

ENABLE 

Sig1 = > CONTINUE; 

< statement 1 >; 
IF counter = 1 THEN 

SIGNAL Sig1; 
< statement 2> ; 
END; 

< state ment 3 > ; 
ENDLOOP; 

< statement 4> ; 

5) 

Sig1: SIGNAL. CODE; 

FOR counter: INTEGER IN [1 .. 2] DO 

BEGIN 

ENABLE 

Sig1 • > EXIT; 

< statement 1 > ; 
IF counter = 1 THEN 

SIGNAL Sig1 ; 
< statement 2 > ; 
END; 

< statement 3> ; 
ENDLOOP; 

< statement 4 > ; 
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6) 
Sig1: SIGNAL II CODE; 

FDR counter: INTEGER IN [1 •• 2] DO 
ENABLE 

Sig1 • > LODP; 
< statement 1 > ; 
IF counter II 1 THEN 

SIGNAL Sig1; 
<statement 2>; 
<statement 3 >; 

ENDlOOP; 
<statement 4>; 

7) 
Sig1: SIGNAL II CODE; 

FOR counter: INTEGER IN [1 .• 2] DO 
ENABLE 

Sig1 • > CONTINUE; 
< statement 1 > ; 
IFCounter II 1 THEN 

SIGNAL Sig1; 
< statement 2> ; 
< statement 3> ; 

ENDlOOP; 
< statement 4 > ; 

8) 
Sig1: SIGNAL • CODE; 

Proc1: PROCEDURE = 
BEGIN 

SIGNAL Sig1; 
END; 

IF TRUE THEN 
BEGIN 
ENABLE 

Sig1 II > RESUME; 
< statement 1 > ; 
Proc1 [!Sig1 • > CONTINUE]; 
< statement 2> ; 
Proc1; 
< statement 3> ; 
END; 

< statement 4> ; 
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Sig1: SIGNAL .. CODE; 

BEGIN 
ENABLE 

Sig1 .. > RESUME; 
< statement 1 > ; 
IFTRUE THEN 

BEGIN 
ENABLE 

Sig1 .. > GOToTheEnd: 
<statement 2>; 
SIGNAL Sig1 ; 
< statement 3> ; 
EXITS 

TheEnd .. > <statement 4>; 
< statement 5> ; 
EXITS 

The End .. > < statement 6> ; 
END; 

10) In the following pseudo-Mesa code, what happens when the call Proc1 [0] is made? (Assume 
that catch-cases 4 and 7 reject Sig1.) Which catch-cases are executed, and in what order? 

Proc1: PROC [x: CARDINAL] .. 
BEGIN -- block A 
ENABLE { -- Catch phrase-l 

Sig1 .. > GOTO punt; -- Catch-case-l 
Sig2 .. > < Catch-case-2 > ; 
UNWIND .. > <Catch-case-3>}; 

Stmt1; 
Stmt2; 

BEGIN -- block B 
ENABLE -- Catch phrase-2 

Sig1 II > < Catch-case-4 > ; 
Stmt3; 
Stmt4; 
OtherProc[x ! -- Catch phrase-3 

Sig2 .. > < Catch-case-S > ; 
UNWIND .. > <Catch-case-6>1; 

END; -- block B, and scope of Catch phrase-2 
StmtS; 
EXITS 

punt II > Stmt6; 
END; -- Proc1, and scope of Catch phrase-l 

OtherProc: PROC [x: CARDINAL] • {stiIlOtherProc[x ! -- Catch phrase-4 
Sig1 .. > <Catch-case-7>; 
Sig2 .. > < Catch-case-8 > ; 
UNWIND • > < Catch-case-9 > ]}; 
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StiliOtherProe: PROC [x: CARDINAL] • { 

IF x • 0 THEN ERROR Sig1 ELSE ERROR Sig2}; 

11) In the program below, what value does b get? 

Question3: PROGRAM. 

8.6 Exercise 

BEGIN 

Sig: SIGNAL [e1: CARDINAL] RETURNS [e2: CARDINAL] • CODE; 

Proc: PROCEDURE [e1, e2: CARD] RETURNS [BOOLEAN] • 

BEGIN 

ENABLE Sig • > {c2 ~ e1; RESUME]; 

If e2 # e1 THEN e2 ~ SIGNAL Sig[c2]; 
RETURN [c1 • e2] 

END; 

c1, c2: CARDINAL; 

b: BOOLEAN; 

--Mainline code 
b ~ Proc[1 ,2]; 

END. 

8 

In this programming assignment, you will alter a program that has been written to play 
the game of blackjack. The user initially specifies the number of games the program will 
play with itself. There will only be 2 players in the game: the dealer and the player. When 
the user clicks Start!, the program will play out all of the games; the player's winnings 
will be output to a file sub-window when all of the games are finished: 

Start! Gues=10000 

Your total winnings are -1 

Your total winnings are 25 

Your total winnings are -150 

8-19 
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In this game of blackjack, the player bets 1 dollar on every hand. If he gets blackjack (a 
total of 21 in exactly two cards), then he wins 2 dollars. If the dealer gets blackjack, the 
player loses. If the game continues, the player receives hits (additional cards) according a 
conservative strategy based on his hand, and the dealer's face card. If he busts (exceeds 
21), he loses. Otherwise, the dealer receives hits until his total is ~ hard 17 (a hand in 
which an ace is counted as 1 rather than 11) or above. If the dealer busts, the player wins 1 
dollar. Finally, if the game has reached this stage, the 2 hands are compared. The players 
wins 1 dollar if his hand is greater; his winnings remain the same if the hands tie; and he 
loses ifthe dealer's hand is greater. There is no double-down, splitting, or insurance in this 
version of blackjack. 

When the user invokes Startl, the following procedure in the implementation module is 
called: 
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PlayBlackJack: PUBLIC PROCEDURE[Output: Window.Handle ~ NIL, gamesToBePlayed: 
CARDINAL ~ 0) = 
.• This procedure will play Blackjack as many times as specified in gamesToBePlayed. 
-After the games have been played, results are written out to the window handle 
··output 
BEGIN 
playerTotal: CARDINAL; 
dealerTotal: CARDINAL; 
playerHasAce: BOOLEAN; 
dealerHasAce: BOOLEAN; 
dealerHole: CardType; 
dealerFace: CardType; 
winnings:. INTEGER ~ 0; 

THROUGH [1 .• gamesToBePlayed] DO 
I ntial izeDeckForNewGame; 
[playerTotal,dealerTotal,playerHasAce,dealerHasAce,dealerHole,dealerFace] ~ 

Deal[]; 
IFplayerHasAce AND (playerTotal = 11) THEN 

BEGIN 
winnings ~ winnings + 2; .. Player has Blackjack 
LOOP; 
END; 

IF dealerHasAce AND (dealerTotal = 11) THEN 
BEGIN 
winnings ~ winnings. 1; ··Dealer has Blackjack 
LOOP; 
END; 

[playerTotal] ~ HitPlayer[playerHasAce, playerTotal, dealerFace]; 
IF playerTotal > 21 THEN 

BEGIN 
winnings ~ winnings· 1; .. Player busted 
LOOP; 
END; 

dealerTotal ~ HitDealer[dealerHasAce, dealerTotal]; 
IF dealerTotal > 21 THEN 

BEGIN 
winnings ~ winnings + 1; ··Dealer busted 
LOOP; 
END; 

SELECT playerTotal FROM 
< dealerTotal • > winnings ~ winnings· 1; 
> dealerTotal • > winnings ~ winnings + 1; 
ENDCASE • > NULL; •• Push 

ENDLOOP; 
Put.CR[output] ; 
Put.Text[output,"Your total winnings are "L]; 
Put.LongDecimal[output, winnings]; 
Put.CR[output); 
END; 

8 
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The procedures Deal, HitPlayer, and HitDealer all call the following procedure when 
they need a card: 

NewCard: PROCEDURE RETURNS [card: CardType] = 
- This procedure returns the next card in the deck. If at any point, the last card in 
00 the deck is used, the non-used cards in the deck are shuffled, and play continues 
-where it left off 
BEGIN 
IF freeCard = 53 THEN 

[deck, firstCard, freeCard] +- Shuffled[deck, firstCard]; 
card +- deck[freeCard]; 
freeCard +- freeCard + 1; 
RETURN; 

END; 

In the procedure NewCard, deck is an array of 52 records with each record representing 
one card. Dealing is accomplished by stepping through the deck one card at a time. At any 
point during a game of blackjack, firstCard is an index indicating the first card that was 
dealt for that hand. freeCard is an index indicating the top card on the remaining deck 
(the next card to be dealt). Thus, when freeCard is 53, deck, firstCard, and freeCard 
are reinitialized by calling the procedure Shuffled, which makes sure that the cards on 
the table are not included in the shuffle. To complete this assignment, you don't have to 
know how Shuffled works, just that it does the right thing when passed the right 
arguments. 

Currently, if the dealer runs out of cards at any point in the game, the cards are in use are 
shuffied, and the game continues where it left off. So if only 1 card remains in the deck, 
that card will be dealt, the rest of the deck will be shuffled, and the dealing will continue. 

Modify this program (using a signal) so that if the dealer runs out of cards while dealing 
the initial hand (the first 4 cards), that game is started over with a shuffied full deck of 52 
cards. If the dealer runs out of cards while hitting the player, the unused cards in the deck 
should be shuffled, and the game continued where it had paused (as before). If the dealer 
runs out of cards while hitting himself, then the dealer loses the game and the next game 
is started with a shuffled full deck of 52 cards. The file that you will be altering is 
Blackjacklmpl.mesa. Other files you will need are BlackjackDefs.mesa, 
BlackjackControl. mesa, and Blackjack.config. Once you have the new version of 
Blackjacklmpl.mesa, answer the following questions: 

1. Briefly describe how you could have completed the the assignment without using a 
signal. 

2. Signals could have been used to indicate DealerBlackjack, DealerBusted, ... From an 
efficiency point of view, why isn't this a good idea? 

8.7 References 
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Chapter 8 of the Mesa Language Manual describes the syntax of signals and some reasons 
for using them. 

Section 4 of Mesa: A Designer's User Perspective gives some background information on 
signals. 
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Variant records 

Programmers often find it convenient to aggregate information of different types. For 
example, suppose you want a data base of statistics for individual softball players. For 
each player, you want to know things like name (LONG STRING), position (enumerated TYPE), 

times at bat (INTEGER), hits (INTEGER), etc. When the information is the same for all players, 
you can use the Mesa RECORD type to group the data for each player. However, some players 
have additional pieces of information that are relevant only to the position they play. For 
example, if a player is a pitcher, you want to keep track of the number of walks given up, 
and the number of strikeouts pitched, in addition to the common information that you 
keep track of for all players. Or, if a player is an infielder, you might want to know the 
number of errors committed. In cases where members of a class have information that is 
relevant only to their subclass, you should use the v.ariant RECORD construct. 

In this chapter, we discuss how to declare variant RECORD types, how to declare, allocate 
and initialize variant RECORD variables, how to use constructors to assign values to variant 
RECORDS, and how to access the fields of variant RECORDS. 

9.1 Definition of terms 

adjective 

tag 

discrimination 

9.2 Discussion 

An adjective is an identifier constant from an enumerated TYPE used to 
select one of the alternatives in a variant RECORD template. 

The tag is a field of a variant RECORD; tag is used to select one of the 
alternative "arms" of the variant part by matching one of the 
adjectives. 

A discrimination statement provides access t~ the fields in the variant 
part of a variant RECORD variable, based on the value of the tag. 

9.2.1 Declaring variant RECORDS 

There are basically two parts to declaring a record variable. Step one is to declare a TYPE 

that provides a "template" - that is, the TYPE declaration shows all the fields that a 
variable of that TYPE will have. Step two is to declare variables of the newly defined RECORD 

9-1 
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type. Variant RECORDS are done the same way. The only difference is that the TYPE 

declaration must show the fields for all possible alternative variants ofthe TYPE. 

It is worth taking some time to study the syntax of variant RECORDS to make your use of 
them less error-prone. We declare the TYPE as follows: 

identifier: TYPE = RecordTC 

The syntax for RecordTC is shown in Fig. 9.1. Refer to it as you read this discussion. 

RecordTC 
MachineDependent 

. ::" :. 

:: V~i~ij\'ieldtlSt· 
..... : 

,',' .,'::, 

::.i< : .. 

CommonPart 

VmanWart 

. ", :." : .... :.: ,':-:' 
:'.' .. 

Access 

TagType 
VariantList 
Variant 

.::" ..... 

;:' ' 

N amedFieldList 

.. -
MachineDependent RECORD [VariantFieldListl 
empty I MACHINE DEPENDENT 

.:::. :::: ~C~~~~Pat.tidentin..r : Ai:~S$.V ariantpal't I 
.. .:. .. :. ·VariantPirtl '.. . . . .. . 
" .. ',: ;:·N4ltt~t~ldLtlt":l;. . 

.': .·U:tl~~hl~dFi~ld~ist·:" ,:' '.:.,' 

.;' 
',', : : 

empty I 
N amedFieldList , 

SELECTTilg FROM 

VariantList 
IN:OCA.SE:: : 

empty I 
PUBLICi 

PRIVATE 

TypeSpecification I * 
Variant I Variant List Variant 
IdList ~ [VariantFieldListl , I 
IdList ~ [] 

IdList: Access TypeSpecification DefaultOption I 
NamedFieldList, idList: Access TypeSpecification 
DefaultOption 

Figure 9.1 RecordTC Syntax 

Obviously, the syntax presents a lot of possibilities for declaring a variant RECORD type. 
The main things to notice are the syntax for the variant field list, for the variant part and 
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for the tag within the variant part. If a RECORD has a common part and a variant part, there 
will be an identifier for the variant part and a second identifier for the tag. 

Let's look at a simple example. There is a variant RECORD type declared in the program 
SoftballDataTool. (You should retrieve the files SoftballDataTool.mesa and 
SoftballDataTool. bed from the course directory, if you don't aiready have them on 
your local disk.) This program is designed to solve the problem of keeping track of 
information for people on a softball team. Let's look first at the TYPE declarations. 

The declaration for SoftbaliPlayerData is a variant RECORD: 

SoftbaliPlayerData: TYPE. RECORD[ 
name: LONG STRING +- NIL, 
timesAtBat: INTEGER +-0, 
hits: INTEGER +- 0, 
otherlnfo: SELECT position: Position FROM 

outfielder • > [ 
bestPosition: OutfieldPosition, 
errors: INTEGER +-0], . 

infielder. > [ 
bestPosition: InfieldPosition, 
doublePlays: INTEGER +- 0, 
errors: INTEGER +- 0], 

pitcher. > [strikeouts. walks: INTEGER +- 0]. 
catcher • > []. 

ENDCAS~]; 

The fields in the common part include name, timesAtBat and hits. We want these three 
pieces of information about every player. Notice that the syntax requires that you declare 
all fields of the common part before you declare the variant part. The identifier for the 
variant part, otherlnfo, comes just after the fields for the common part. 

Each player has a position, which is the tag identifier. The TYPE of this field is enumerated: 
Position: TYPE • {outfielder. infielder. pitcher. catcher};. The constants of the 
enumerated TYPE are used as adjectives in the variant part of the variant RECORD. In our 
example, the value of position for any given player may be either outfielder, infielder, 
pitcher, or catcher. The remaining fields in the RECORD representing any individual player 
will depend on the value in the tag field. If a player's position is outfielder, for example, 
the RECORD representing that player will have two fields (bestPosition and errors) in 
addition to the fields in the common part of the RECORD. SO, a RECORD representing an 
outfielder has a total of five fields, while the RECORD of an infielder has a total of six fields. 
Notice that a catcher's RECORD only has three fields, because 

catcher ~ [] 

is the way to express the fact that this variant has no additional fields. 

This is a relatively simple example. The syntax for RECORD types provides many 
possibilities, such as bound variant types, implicit tags and computed tags. 

9.2.2 Allocation of variant RECORDS 

Now that we have declared a variant RECORD type, we can declare variables of that TYPE. 
You declare and initialize variant RECORD variables in the usual way. For example, notice 

9-3 
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noPlayer: SoftbaliPlayerData ~ [NIL, 0, 0, catcher[]]; 

in SoftballDataTool.mesa. This is the declaration and initialization of a variant 
RECORD variable. You may be wondering how the Compiler can allocate space for a variable 
whose size may change during the course of execution of the program; after all, we may 
assign some other variant to noPlayer at some point. The answer is tlliit when a variable is 
declared to be of TYPE SoftbaliPlayerData, the Compiler allocates enough space for the 
largest variant. 

This program also illustrates allocation from a heap. Instead, the space for the dataSeq is 
dynamically allocated from the system heap by the following statement: 

IF dataPtr = NIL THEN 
dataPtr ~ Heap.systemZone.NEw[Data[numberOfPlayers]]; 

in the procedure ClientTransition. Here the run-time system allocates enough space for 
each member of the sequence to hold the largest possible variant. 

9.2.3 Initialization of and assignment to variant RECORD variables 

Variant RECORDS are initialized and assigned values like regular RECORDS, except that you 
must supply appropriate information about the variant part. Here's a helpful way to look 
at variant record initialization: the variant part is another, embedded record, whose type 
is determined by the tag, and the syntax for constructing this embedded record is exactly 
the same as for a regular record. 

The RECORD constructor that you use to initialize a variant RECORD variable must specify a 
value for the tag field, and values for the appropriate fields for that variant. In the above 
example, the value catcher is assigned to the tag field of noPlayer. Recall that the catcher 
variant had no additional fields, so no additional values are given in the above 
constructor. We see other examples of initialization of variant RECORD variables in the 
procedure InitDataBase. For example 

dataPtr[O] ~ [String.CopyToNewString[s: "Ralph"L, z: Heap.systemZone], 
140,128, pitcher[133, 1]]; 

assigns "Ralph" to the 'name field, 140 to the timesAtBat field, and 128 to the hits field of 
the RECORD. The position field is assigned the val ue pitcher, 133 is assigned to the 
strikeouts field in the variant part, and 1 is assigned to the walks field of the variant part 
ofthe RECORD. 

An alternate way of stating this assignment is: 

dataPtr[O] ~ SoftbaliPlayerData[ 
name: String.copyToNewString[s: "Ralph"L, z: Heap.systemZone], 
timesAtBat: 140, 
hits: 128, 
otherlnfo: pitcher[ 

strikeOuts: 133, 
walks: 1]]; 

9.2.4 Accessing the fields of a variant RECORD variable 

Finally, now that we have declared a variant RECORD type and variant RECORD variables, we 
are ready to use these variables. A typical situation is when a procedure accepts a 
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parameter that is of some variant RECORD type, and processes the information contained in 
the RECORD variable. For example, take a look at the procedure DisplayData. This 
procedure displays the information about each player in the data base in the tool's 
message subwindow. Notice that it expects a parameter of TYPE SoftballPlayerData. 

The "discrimination statement" solves the problem of making sure the procedure knows 
which variant it is dealing with. The common fields of the actual parameter can be 
accessed normally, but the fields in the variant part can be accessed only inside the 
discrimination statement, which is 

WITH player: playerData SELECT FROM 

outfielder ~ { ... }; 
infielder ~ { ... }; 
pitcher ~ { ... }; 

ENDCASE; 

Notice how the structure of the discrimination statement mirrors the structure of the TYPE 

declaration of Softball Player Data. 

Inside the discrimination statement, an "alternate name" is given to the actual parameter 
by 

WITH player: playerData SELECT FROM 

The fields of the variant part of player (but not playerData) become accessible inside 
whichever arm is selected, based on the value in the tag of playerData. This construct 
allows the compiler to detect any attempt to access an "incorrect" field within a given arm. 
For example, if you write 

put.Decimal[tooIData.msgSW, player.strikeouts]; 

inside the outfielder arm of this discrimination statement, the compiler will tell you that 
"strikeouts is not valid as a field selector .... " This prevents you from trying to access a 
field in an incorrect variant at run time. 

Since the discrimination statement relies on the value in the tag field of the RECORD, 

suppose youjust ~hange that value in the tag field. That is, what if you add 

playerData.position ... pitcher 

as the first statement in DisplayData? Would the discrimination statement always select 
the pitcher arm of the discrimination statement, and try to use the value strikeouts for 
every kind of player? No, Mesa won't allow you to selectively access the tag field of a 
variant RECORD. In fact, if you try to write the above statement, the Compiler will tell you 
that "playerData.position cannot be updated .... " The only way you can change the 
variant tag is to assign a new value to the entire variant part using a constructor for that 
variant part. Variant RECORDS in Mesa are type-safe. 

9.3 Summary 

This chapter introduced the fundamentals of variant RECORDS. One important feature of 
Mesa's variant records is that they are type-safe. You can depend on the discrimination 
statement, in concert with the syntax, to prevent errors associated with accessing the 
fields in the variant parts ofRECORDS. 

9-5 
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Several topics related to variant RECOROS that we did not discuss include "bound" variant 
types, and "implicit" and "computed" tags. The built-in predicate ISTYPE, and the built-in 
operator NARROW are also available to assist you in your use of variant RECORDS. These 
features, along with a variation of the discrimination statement that is more efficient in 
certain eases than the one we looked at, are described in the Mesa Language Manual. 

9.4 References 

Section 6.4 of the Mesa Language Manual discusses variant RECORDS, including declaring 
variant RECORD types and variables, giving values to variant RECORD variables, and 
accessing the fields of variant RECORDS. This section also discusses several other points 
regarding particular uses of variant RECORDS that we did not discuss in this chapter. 

9.5 Exercises 

9-6 

Modify the SoftbaliDataTool (used as an example in this chapter) to include the following 
information: 

If a player is an infielder, has he been traded? 

If he has been traded: 

-- how many times has he been traded? 

-- in what year was he last traded? 

If he has NOT been traded: 

-- how many years has he played for the team? 

-- is he likely to be traded this season? 

You should include this information in a variant section, which is enclosed by the infielder 
section. Thus, you will create a variant within a variant record. You will have to add this 
new information for any infielders already existing in the database. Assume that existing 
infielders have never been traded. 

Once you have added the new variant section, a new player will be joining the team. His 
name is Larry, he is an infielder who plays third base, and he has been traded 3 times, the 
last time in 1983. You will have to increase the numberOfPlayers in order to add him to 
the database, and print out his statistics along with those of the rest of the team. 
Obviously, you will also have to change the output routines to dispaly the new 
information. 
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Mesa provides language support for concurrent execution of multiple processes, as well as 
monitors and condition variables to help synchronize such processes. 

In this chapter, we discuss how to use the FORK and JOIN operators to create new processes 
and later resynchronize them. We also illustrate how to monitor access to a module's 
global variables, and how to use condition variables to accomplish more complex forms of 
synchronization. We do not discuss how to monitor data implemented by a multi-module 
abstraction, or data that is encapsulated in an object rather than in a module; you will 
have to consult the Mesa Language Manual for information on these topics. 

10.1 Definition of terms 

Asynchronous call 

Background process 

Condition variable 

Critical section 

Hint 

Monitor 

An asynchronous call is a procedure call that initiates an 
operation and then returns control to its caller without waiting 
for the operation to complete. 

A background process is a process that receives machine 
resources only ifhigher priority processes are idle or blocked. 

A condition variable is a Mesa construct by which processes wait 
for or provide notification of an event. A condition variable is 
associated with a monitor. 

A critical section is a portion of a program in which only one 
process may be executing at a time. In Mesa, access to critical 
sections is arbitrated by monitors. ' 

A hint is information that is usually accurate and is easy for a 
program to use. A program can detect when a hint is inaccurate 

. and find the truth in some other (usually less efficient) way. 

A monitor module is a Mesa module that controls access to 
shared data. 

10-1 
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Monitor invariant 

Monitor lock 

Process 

Synchronous call 

A monitor invariant is a logical assertion about the state of 
monitored data whenever the monitor is unlocked (i.e., exited). 
Every monitor has a monitor invariant. 

A monitor lock is essentially a hidden data item associated with 
each monitored record or program that indi~ates when a process 
has entered and not yet exited a critical section. 

A process is effectively a procedure activation that runs 
concurrently with its caller, allowing asychronous activities. 

A synchronous call is a procedure call that returns control only 
after the operation completes. 

10.2 Discussion 

10-2 

Mesa casts the creation of a new process as a special procedure call. You create a new 
process by FORKing a procedure rather than simply calling it; the new process then runs 
concurrently with its caller. The new process has a different call stack, with the forked 
procedure as the root of the activation. Mesa allows any procedure (except an internal 
procedure ofa monitor; see section 10.2.3.1) to be invoked in this way. 

10.2.1 JOINing processes 

Once you have created concurrent, processes, there are various levels of synchronization 
possible, depending on the role that your forked process is to perform. For example, you 
might fork a process when you have a long computation to perform, and you would like to 
allow other processing to take place concurrently. When you create such a process, you 
later need to synchronize that process with its parent so that it can return the result of the 
computation. You can accomplish this synchronization with the JOIN operation. JOIN 
establishes a rendezvous point: the first process to reach the rendezvous is blocked until 
the other arrives. When both processes have arrived, the forked process returns its results 
and is then terminated. 

To illustrate this, here is an example that iteratively reads a large buffer of data and 
processes it. A sequential implementation might look like this: 

Control: PROCEDURE = 
BEGIN 
buffer: LONG POINTER TO Buffer 4- zone.NEw[Buffer); 
DO 

ENABLE 
NoMore • > EXIT; 

ReadBuffer[buffer) ; 
ProcessBuffer[buffer); 
ENDLOOP; 

zone.FREE[@buffer); 
END; 

ReadBuffer collects input data in buffer, and then ProcessBuffer manipulates the data. 
The signal NoMore is raised when there is no more data, causing the DO loop to terminate. 
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A problem with this code is that you can not read a buffer of data while processing one, nor 
process a buffer of data while reading one. Since these operations are distinct, it would be 
useful (and more efficient) to read the next buffer of data while processing the previous 
one. This double buffering scheme might look like this: 

Control: PROCEDURE = 
BEGIN 
Status: TYPE • {normal, end}; 
readBuffer: LONG POINTER TO Buffer +- zone.NEw[Buffer]; 
process Buffer : LONG POINTER TO Buffer +- zone.NEw[Buffer]; 
status: Status +- normal; 
p: PROCESS RETURN5[status: Status]; --declare the process 

status +- ReadBuffer[readBuffer]; 
WHILE status • normal DO 

SwapBuffers[readBuffer, process Buffer] ; 
< < points read Buffer to the buffer that has just been processed and points 
processBuffer to the buffer that has just been read> > 

p +- FORK ReadBuffer[readBuffer]; 
ProcessBuffer[processBuffer] ; 
status +- JOIN p; 
ENDLOOP; 

zone.FREE[@readBuffer]; 
zone.FREE[@processBuffer]; 
END; 

Control now allocates two buffers, one of which can be processed while the other is being 
filled with the next block of data. Control reads in an initial buffer of data and then loops 
until the reading process returns a state other than normal. During the loop, we swap 
buffers and then we fork ReadBuffer. Thus, we can fill the new buffer while we process the 
old one. At the end ofthe l!)op, we synchronize the two processes with the JOIN operator. 

Some things to notice from this example: 

• FORK always returns a value (of type PROCESS) and thus a FORK cannot stand alone as a 
statement. Unlike a procedure call, which returns a RECORD, you cannot discard the 
value of the FORK by writing an empty extractor. Thus FORK ReadBuffer[readBuffer] is 
assigned to p. 

• The JOIN appears as either a statement or an expression, depending upon whether or not 
the process being joined returns anything. When the forked procedure has executed a 
RETURN and the JOIN is executed (in either order), 

the returning process is deleted, and 

the joining process receives the results, and continues execution. 

• There is no intrinsic rule against multiple activations (calls and/or forks) of the same 
procedure coexisting at once. Of course, it is possible to write procedures that will work 
incorrectly if used in this way, but the mechanism itself does not prohibit such use. 

10-3 
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10.2.2 Detached processes 

Not all processes follow the FORK/JOIN paradigm; there are others whose role is better cast 
as continuing provision of services, rather than one-time calculation of results. Such 
processes are called "detached", since they never need to be resynchronized with their 
caller. If the lifetime of a detached process is bounded at all, its deletion is a private 
matter, since it involves neither synchronization nor delivery of results. 

Pilot provides the facilities for detaching processes. The Process interface, documented in 
section 2.4.1 of the Pilot Programmer's Manual, includes operations to check on the state 
of a process, to set process timeouts, to set process priorities, to abort processes, and to 
detach processes. 

Process. Detach takes a process and detaches it from its creator. If you use this procedure to 
create a detached process, the Process interface will take care of deleting the process when 
it returns from its root procedure. 

Consider a tool with one command, which takes a long time to process. Typically this 
command runs in the notifier and therefore prevents concurrent user interactions. To 
avoid this, you can FORK the command as a new detached process: 

Command: Form5w.ProcType = 
BEGIN 

10.2.3 Monitors 

Process.Detach[FORK ReaICommand); 
END; 

FORK/JOIN enables very simple synchronization: you can synchronize two process when a 
computation has been completed. However, you need a more general mechanism to allow 
processes to communicate while work is in progress. Specifically, the FORK/JOIN construct 
does not provide access control (mutual exclusion) to shared data. Thus, we coded the 
double buffering example to ensure that ReadBuffer and Process Buffer never shared a 
buffer by executing the pointer swap while only one process existed (and thus there could 
be no contention to the data). 

To enable more sophisticated interaction, Mesa provides an interprocess synchronization 
mechanism that is a variant of monitors adapted from the work of Hoare, Brinch Hansen, 
and Dijkstra. The underlying view is that processes share little, but when they do, the 
interaction reduces to carefully synchronized access to shared data. 

10.2.3.1 Mutual exclusion to shared data 

A monitor is a module instance. It thus has its own global frame, and its own procedures 
for accessing this (global) data. Unlike normal PROGRAM module instances, however, a 
monitor module has an associated monitor lock, which guarantees that only one process at 
a time can access the data. (The lock can also be associated with the object being shared; 
see section 9.4.5 of the Mesa Language Manual). 
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Monitor modules are declared much like program or definitions modules; for example: 

M: MONITOR [arguments] = 
BEGIN 

END. 

10 

A call into the monitor implicitly acquires the lock; returning from the monitor releases 
the lock. When a process attempts to enter a monitor and the lock is already held, it must 
wait until the current process finishes and releases the lock. The monitor lock thus 
ensures that only one process at a time can change the data, thereby guaranteeing the 
integrity of the monitor invariant. (A monitor invariant is an assertion defining what 
constitutes a "good state" of the data for that particular monitor.) 

It is important to realize that the mutual exclusion takes place at the entry and exit points 
ofa monitor. In Mesa, these entry/exit points are encapsulated in procedures called ENTRY 

procedures. The code within an ENTRY procedure is a critical section: a call to an ENTRY 

procedure acquires the monitor lock, a return from an ENTRY procedure releases the 
monitor lock. Entry procedures are declared as: 

P: ENTRY PROCEDURE [arguments) RETURNS [results] = ... 
. 

The entry procedures will usually comprise the set of public procedures visible to clients of 
the monitor module. (There are some situations in which this is not the case; see external 
procedures, below). The usual Mesa default rules for PUBLIC and PRIVATE procedures apply. 

Many monitors will also have internal procedures, which are common routines shared 
among the several entry procedures. These execute with the monitor lock held, and may 
thus freely access the monitor data as necessary. Internal procedures should be private, 
since direct calls to them from outside the monitor would bypass the acquisition of the 
lock. You can only call internal procedures from an entry procedure or another internal 
procedure. They are declared as follows: 

Q: INTERNAL PROCEDURE [arguments] RETURNS [results] = 

The attributes ENTRY or INTERNAL may be specified only on a procedure in a MONITOR module 
(or on an INLINE procedure in a definitions module). 

Some monitor modules may also wish to have external procedures. These are declared as 
normal non-monitor procedures: 

R: PROCEDURE [arguments] RETURNS [results] = ... 

Such procedures are logically outside the monitor, but are declared within the same 
module for reasons of logical packaging. For example, a public external procedure might 

. do some preliminary processing and then make repeated calls into the monitor proper (via 
a private entry procedure) before returning to its client. Since it is outside the monitor, an 
external procedure must not reference any monitor data nor call any internal procedures. 
The compiler ch~ks for calls to internal procedures within external procedures, but does 
not check for accesses to monitor data. 

Generally speaking, a chain of procedure calls involving a monitor module has the form: 

10-5 
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Client procedure -- outside module 

l 
External procedure(s) -- inside module but outside monitor 

l 
Entry procedure -- inside monitor 

l 
Internal procedure(s) -- inside monitor 

Any deviation from this pattern is likely to be a mistake. A useful technique to avoid bugs 
and increase the readability of a monitor module is to structure the source text in the 
corresponding order: 

M:MONITOR = 
BEGIN 
< External procedures> 
< Entry procedures> 
< Internal procedures> 
< Initialization (main-body) code> 
END. 

To illustrate mutual exclusion using monitors, consider the case where many processes 
may be capable of inspecting, incrementing, and decrementing a counter of active and 
inactive windows of a mUltiple instance tool. The operation Activate decrements the 
inactive counter by one and increments the active counter. The Deactivate operation does 
the reverse. To ensure consistent data (Le. the number of active windows plus the number 
of inactive windows equals the number of instantiated windows) the increment/decrement 
to the active and inactive counters must occur atomically. Otherwise, it would be possible 
for an Inspect operation to return a counter that has only been partially updated. 

KeepCount: MONITOR = 
BEGIN 
CounterType: TYPE = RECORD[active: INTEGER, inactive: INTEGER]; 
counter: CounterType +- [0,0); 
Activate: ENTRY PROCEDURE = 

BEGIN 
ENABLE UNWIND. > NULL; --see section 10.5.3 for a discussion ofthis statement 
counter.active +- counter.active + 1; 
counter.inactive +- counter.inactive·1; 
END; 

Deactivate: ENTRY PROCEDURE. 
BEGIN 
ENABLE UNWIND = > NULL; --see section 10.5.3 for a discussion of this statement 
counter.active +- counter.active· 1; 
counter.inactive +- counter.inactive + 1; 
END; 

Insped: ENTRY PROCEDURE RETURNs[counter: CounterType) • 
BEGIN 
ENABLE UNWIND • > NULL; --see section 10.5.3 for a discussion of this statement 
RETURN[counter); 
END; 

END. 
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10.2.4 Synchronization with condition variables 

In addition to providing mutual exclusion; monitors also allow a sophisticated form of 
synchronization. For example, a process may only want to execute monitored code if 
certain conditions hold. If the conditions hold, the process conti-nues as usual. If a 
condition is not satisfied, however, the process blocks and releases its hold of the monitor 
lock. A new process can then enter the monitor, eventually make the condition true, and 
notify the blocked process that it may continue. This kind of synchronization is provided 
by condition variables. 

Condition variables are declared as: 

c: CONDITION; 

All the fields of a condition variable are private to the process mechanism; you can only 
access a condition variable via the condition variable operations WAIT, NOTIFY, and 
BROADCAST. 

WAIT condition blocks the current process and releases the monitor lock. Since a WAIT 

always releases the monitor lock while waiting, you must restore the monitor invariant 
(Le., return the shared data to a "good state") before waiting. 

NOTIFY condition wakes up one process waiting on the condition. (Each condition 
variable has an associated queue.) If no process is waiting on the condition, the 
notification is discarded. Unlike WAIT, NOTIFY does not release the monitor lock. 
Therefore you can leave the monitored data in an arbitrary state, so long as you restore 
the invariant before the next time you release the lock (by exiting the entry procedure). 

BROADCAST condition wakes up all processes waiting on the condition variable. If no 
processes are waiting on the condition, the broadcast is discarded. Like NOTIFY, the 
monitor lock is held during this operation. 

10.2.4.1 Producer/Consumer problem 

Consider the buffering scheme described in the beginning of this chapter. Because of the 
synchronization limitations imposed by FORK/JOIN, we could only use two buffers. A more 
general solution, however, would allow the two operations to share a buffer pool. This 
buffer pool would be bounded, as shown in the example on the next page: 

10-7 
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DIRECTORY 
Heap USING [systemZone], 
MStream USING [Handle, ReadOnly, ReadWrite], 
Process USING [Detach], 
Stream USING [Delete, EndOfStream, GetChar, Handle, PutChar]; 

CircularBuffer: MONITOR IMPORTS Heap, MStream, Process, Stream = 
BEGIN 
maxElements: CARDINAL = 10; --max number of buffers 
bufferSize: CARDINAL = 128; 
zone: UNCOUNTED ZONE ..- Heap.systemZone; 

Elmt: TYPE = LONG POINTER TO Buffer; 
Buffer: TYPE = RECORD[ 

length: CARDINAL +- 0, 
chars: ARRAY [O .• bufferSize) OF CHARACTER +-ALL[' ]]; 

BufferArrayType: TYPE. ARRAY [O .. maxElements) OF Elmt..- ALL[NIL]; 

get, put: CARDINAL [O .. maxElements] ..- 0; --which buffer being read/written 
bufferArray: BufferArrayType; 
notEmpty: CONDITION; 
notFull: CONDITION; 

-- The consumer gets a buffer from the monitored array of buffers and writes its 
-- contents to another file. This process blocks if there are no buffers available. 
Consumer: PROCEDURE[outStream: MStream.Handle] = 
BEGIN 

DO 
myBuffer: Elmt ..- ConsumeBuffer[]; 
FOR i: CARDINAL IN [O .. myBuffer.length) DO 

ch: CHARACTER +- myBuffer .chars[i]; 
IF ch = '& THEN GOTO Exit; 
Stream.PutChar[outStream. ch]; 

ENDLOOP; 
zone.FREE[@myBuffer]; 

ENDLOOP; 
EXITS Exit :I > Stream.Delete[outStream]; 

END; 

-- Producer produces buffers of information obtained from reading a file. 
-- It blocks when there is no more room in the monitored array of buffers 
Producer: PROCEDuRE[inStream: MStream.Handle] =­
BEGIN 

DO 
myBuffer: Elmt ..- zone.NEW[Buffer]; 
FOR i: CARDINALIN [O .. bufferSize) DO 

myBuffer.chars[i] ..- Stream.GetChar[inStream! Stream.EndOfStream = > 
{myBuffer.length..- i; GOTO Exit}]; 

ENDLOOP; 
ProduceBuffer[myBuffer]; -- put buffer in monitored buffer array 

ENDLOOP; 
EXITS Exit. > Stream.Delete[inStream]; 

END; 
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-- Produce Buffer is called when the Producer needs a buffer. 
ProduceBuffer: ENTRY PRocEDuRE[element: Elmt) :. 
BEGIN 

ENABLE UNWIND = > NULL; 
WHILE (put + 1) MOD maxi:iements = get DO WAIT notFuii ENDlOOP; 
bufferArray[put) ~ element; 
put ~ (put + 1) MOD maxElements; 
NOTIFY notEmpty 

END; 
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-- Consume Buffer returns a previously allocated buffer to the available buffer list 
ConsumeBuffer: ENTRY PROCEDURE RETURNs[element: Elmt) = 
BEGIN 
ENABLE UNWIND = > NULL; 

WHILE get. put DO WAIT notEmpty ENDLOOP; 
element ~ bufferArray[get); 
get ~ (get + 1) MOD maxElements; 
NOTIFY notFull; 

END; 

Init: PROCEDURE[] = 
BEGIN 

inStream: MStream.Handle ~ MStream.ReadOnly[ 
name:"inFile"l, 
release: [NIL,NIL]]; 

outStream: MStream.Handle ~ MStream.ReadWrite[ 
name: "outFile"l, 
type: text, 
release: [NIL,NIL]]; 

Process.Detach[FORK Consumer[outStream)); 
Process.Detach[FORK Producer[i nStream)); 

END; 

--mainline code 
Init[]; 
END ... 

In this example, bufferArray is an array that can contain at most maxElements (10) 
elements (buffers). The bufferArray starts out empty. The Producer (the process reading 
input) allocates buffers, fills them with information, and adds them to the buffer pool via 
ProduceBuffer. If the buffer pool is full, ProduceBuffer waits until there is room. After 
adding the element to the buffer, ProduceBuffer notifies any waiting consumers that 
another element is available. Similarly, the Consumer (the process processing the input) 
receives its elements by calling ConsumeBuffer. If there are no elements in the buffer pool 
ConsumeBuffer waits. Once an element becomes available, ConsumeBuffer removes it 
and notifies any waiting producer processes that the buffer pool is not full. 

Notice that a condition variable c is always associated with some boolean expression 
describing a desired state of the monitor data. Each WAIT must be embedded in a loop that 
checks the validity of the corresponding boolean. In Mesa, NOTIFY is regarded as a hint to a 
waiting process; it causes a process waiting on the condition variable to resume execution 
at some convenient time in the future. When the waiting process resumes, it will 
reacquire the monitor lock. But there is no guarantee that some other process will not 
enter the monitor before the waiting process. Therefore, the waiting process must 
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reevaluate the condition before continuing. The general pattern for condition variable 
code is therefore: 

Process waiting for condition: 

WHILE -BooleanExpression DO 
WAITe 
ENDLOOP; 

Process making condition true: 

make BooleanExpression TRUE; 
NOTIFYe; 

-- i. e. as side effect of modifying global da ta 

When appropriate, the process mechanism always does a NOTIFY, even when there are no 
processes waiting to be notified. The reason for this is that the built in check (and discard 
mechanism) is more efficient than any explicit test you could use to avoid the NOTIFY. Thus, 
for example, ProduceBuffer always notifies notEmpty even if no process is waiting. 

This arrangement results in an extra evaluation of the condition after a wait. In return, 
however, it avoids extra process switches and puts no constraints on when the waiting 
process must run after a notify. This method is preferable and efficient in Mesa because in 
general few processes are waiting on the same condition variable at the same time (not 
many processes will be notified), and context switching is fast (it does not take long for all 
processes to recheck the state). 

10.2.4.2 Single resource manager 

Controlling access to a limited shared resource is another common problem that requires 
interprocess synchronization. The following code segment illustrates a simple storage 
allocator for objects of uniform size. 

StorageAliocator: MONITOR. 
BEGIN 
storageAvaiiable: CONDITION; 

Block: TYPE. RECORD [ ... J; •• or some other data type 
ListPtr: TYPE. LONG POINTER TO ListElmt; 
ListElmt: TYPE. RECORD[block: Block, next: ListPtrJ; 
freelist: ListPtr +- NIL; 

Allocate: ENTRY PROC RETURNS [elmt:ListPtrJ • 
BEGIN 
ENABLE UNWIND II > NULL; 
WHILE freelist • NIL DO WAIT storageAvailable ENDLOOP; 
elmt +-freelist; 
freelist +-elmt.next; 
END; 
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Free: ENTRY PROC [elmt:Listptr] =­
BEGIN 
ENABLE UNWIND • > NULL; 
elmt.next 4- free List; 
freeList 4- elmt; 
NOTIFY storageAvailable; 
END; 

END ... 

10 

freeList is the global linked list of available storage. Allocate waits until freeList is not 
empty to remove an element. Free puts an element back on the free List and notifies any 
process waiting in Allocate that more storage is available. 

10.2.4.3 Variable size, single resource manager 

If a resource manager manipulates variable sized objects, notification will not work as 
well. The difficulty is that NOTIFY only wakes up one process when more storage is 
available. Since the size of storage requests vary, available storage may not be enough to 
meet the needs of the process that is awakened, but it may be enough to satisfy another 
waiting process. 

In this case, you should use BROADCAST instead of NOTIFY. A BROADCAST wakes up all waiting 
processes. Since the WAIT condition statement occurs in a WHILE loop, each process will 
check state before continuing and put itself to sleep if there is not enough storage. Thus, 
processes that need a smaller amount of storage will be able to continue. 

Here is an example of this sort of storage allocator: 

StorageAliocator: MONITOR = 
BEGIN 
storageAvailable: CONDITION; 

Block: TYPE. RECORD [ ... ]; -- or some other data type 
Listptr: TYPE. LONG POINTER TO ListElmt; 
ListElmt: TYPE. RECORD[block: Block. next: Listptr]; 
freeList: Listptr 4- NIL; 

Allocate: ENTRY PRoc[size: CARDINAL] RETURNS [elmt:Listptr] • 
BEGIN 
ENABLE UNWIND. > NULL; 
UNTIL < storage chunk of si ze words available> DO WAIT storageAvai lable ENDLOOP; 
elmt 4- < remove chunk of size words> ; -
END; 

Free: ENTRY PROC [elmt:Listptr. size: CARDINAL] • 
BEGIN 
ENABLE UNWIND • > NULL; 
<put back storage of size words> 

BROADCAST storageAvailable; 
END; 

END ... 

10-11 
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Again, the waiting processes treat notification only as a hint. A process that is awakened 
does not assume that the condition is true; rather, it assumes that state has changed, and 
that it should check to see if the condition is true. 

10.3 Issues and concerns 
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This section discusses some issues associated with monitors and processes: how to abort a 
process, and the relationships between signals and processes, and signals and monitors. 

10.3.1 Aborting a process 

In addition to NOTIFY and BROADCAST, you can also resume a waiting process with a timeout 
or an abort. We discuss Abort in this section; for a discussion on using timeouts see section 
9.3.2 of the MLM. 

Abort does really not abort the process; it merely raises a signal that indicates to the 
process that it should clean itself up and return. (If the process is detached, Pilot will 
destroy it when it returns.) However, the aborted process is free to do arbitrary 
computations before returning, or indeed to ignore the abort entirely. 

You can raise the signal Abort by calling Process. Abort, with the process to be removed as 
its argument. The signal is raised the next time the process WAITS on any condition 
variable that has aborts enabled (the default is to not have aborts enabled; you can call 
Process.EnableAborts to reverse this). If the process is currently waiting it is aborted 
immediately. 

If you want to abort a process that never waits on a condition variable, you must 
periodically force the process to pause. Process.Pause causes a process to wait with aborts 
enabled for a specified length of time. 

10.3.2 Signals and process 

Though the creation of a new process via FORK is similar to a procedure call, the new 
process has a different call stack with the forked procedure as the root of the activation. 
The implication of this is that signals will not cross process activations. Any signal not 
caught by a new process will not continue to propagate to its parent; instead the debugger 
will be invoked with an uncaught signal. 

10.3.3 Signals and monitors 

Signals interact with monitors (entry procedures) in two special ways; in raising a signal 
and in handling UNWIND. Both cases are motivated by the need to release the monitor lock. 

When you raise a signal from an entry procedure, the lock is not released. Thus, catch 
phrases, which can invoke arbitrary operations, may deadlock if they try to reenter the 
monitor. For errors, you can avoid this with the RETURN WITH ERROR construct. 

RETURN WITH ERROR NoSuchObject; 
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This statement has the effect of removing the currently executing process from the call 
chain before issuing the ERROR. Thus, if you execute this statement within an entry 
procedure, the monitor lock is released before the error is started. 

For example, consider the following code segment: 

Failure: ERROR [kind: CARDINAL] = CODE; 

Proc: ENTRY PROCEDURE[ ... ] RETURNS[c1, c2: CHARACTER] = 
BEGIN 
ENABLE UNWIND = > .. , 

IF cond1 THEN ERROR Failure[1]; 
IF cond2 THEN RETURN WITH ERROR Failure[2]; 

ENO; 

Executing ERROR Failure[1] raises a signal that propagates until some catch phrase 
specifies an exit. At that time unwinding begins; the catch phrase for UNWIND in Proc is 
executed and then Proc's frame is destroyed. The lock is held until the unwind occurs. 

Executing RETURN WITH ERROR Failure[2] releases the monitor lock and destroys the frame of 
Proc before propagation of the signal begins. The catch phrase for UNWIND is not executed 
in this case. The signal Failure is actually raised by the system, after which Failure 
propagates as an ordinary error. 

Another important issue regarding signals is the handling of UNWIND. The monitor lock is 
released as part of the UNWIND, so any entry procedure that may experience an UNWIND 
must catch it and restore the monitor invariant: 

Proc: ENTRY PROCEDURE[ ... ] = 
BEGIN 
ENABLE UNWIND = > BEGIN < restore invariant> END; 

END; 

At the end of the outermost UNWIND catch phrase, the compiler appends code to release the 
monitor lock before the frame is destroyed. 

Even if you don't have to restore the monitor invariant, you should still catch UNWIND in 
every entry procedure in which it might propagate. The compiler will not generate the 
code to release the lock unless the UNWIND catch phrase is present. If the monitor is not 
released during an UNWIND, ensuing calls to the monitor will deadJock. 

10.4 Summary 

You can spawn new processes from existing ones via the FORK operation. FORK creates a new 
process, with the invoked procedure as the root of the activation, and returns a process id 
of type PROCESS to identify the object. 

Once instantiated, a new process will either run forever, run for a finite time and return 
values to (or need to be synchronized with) another process, or run for a finite time without 
returning results to another process. In the first case, FORKing the new process is sufficient. 

10-13 
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In the second case, when a process is expected to return results, you can synchronize its 
return with the JOIN construct. At this junction, the returning process is deleted and the 
joining process receives the results and continues its execution. 

In the third case, when a process is not JOINed, you must ensure that the process activation 
is removed. If you use Process. Detach, Pilot will delete the process when it returns to its root 
procedure. 

Concurrent processes create a need for cooperation and communication. Monitors and 
condition variables provide this cooperation by allowing controlled access and 
synchronization through shared variables and code. 

~esa monitors are module instances with an associated monitor lock. Mutual exclusion to 
shared variables (global variables in the monitor module) is ensured by allowing only one 
process to hold the lock at a time. 

In addition to a collection of data and an associated lock, a monitor contains a set of 
procedures that perform operations on the data. There are three kinds of procedures: 
entry, internal, and external. External procedures are declared as normal procedures and 
logically live outside the monitor. Calls to these procedures do not acquire the monitor 
lock. Entry procedures provide controlled access into the monitor. Calls to an entry 
procedure either acquire the monitor lock or block until the lock can be acquired. Internal 
procedures contain the common routines shared among the several entry procedures. 
These procedures execute with the monitor lock held, and therefore may freely access the 
monitored data. 

Synchronization is accomplished with condition variables and the operations WAIT, NOTIFY, 
and BROADCAST. A WAIT releases the monitor lock before it blocks. NOTIFY and BROADCAST do 
not release the lock. Therefore WAIT statements occur in loops, since the condition that was 
notified may no longer be true when the blocked processes wakes up. 

This chapter discussed only the most common form of monitor lock, the global monitor 
lock. Mesa also supports more specialized forms of monitors, including monitored records 
and object monitors. Consult chapter 9 ofthe Mesa Language Manual for more deta~ls. 

10.5 References 

Read Chapter 9 of the Mesa Language Manual on Processes and Concurrency. 

Read "Experience with Processes and Monitors in Mesa" by Lampson and Redell. (Page 
191 of the Office Systems Technology book.) 

10.6 Exercises 
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The basic assignment for this chapter is to implement the dining philosophers problem. In 
this problem, you have 5 philosophers at a dining table. However, there is only one 
chopstick between each plate, and a philosopher needs 2 chopsticks to eat. At any given 
time, a philosopher may be thinking, eating, or waiting for the philosopher next to him to 
put down a chopstick so he can use it. 
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You can tell a philosopher to try to start eating, or to stop eating and start thinking. When 
a philosopher is told to start eating, he will look around for some chopsticks and start 
eating if he can; otherwise he will wait. When a philosopher is told to start thinking, he 
stops eating (puts down his chopsticks); other waiting philosophers will then see if they 
can start eating. 

Ph il osopherl: {thinking, waiting, eating} 
Philosopher2 : {thinking, waiting, eating} 
Philosopherl: {thinking, waiting, eating} 
Philosopher4: {thinking, waiting, eating} 
Philosopher5: {thinking, waiting, eating} 

Philosopher # is eating. 
Philosopher # 2 must wait to eat. 
Philosopher # 1 has finished eating. 
Philosopher # 2 is eating. 

There are two levels to this problem, easy and hard. The hard assignment is to solve the 
dining philosophers problem by yourself. For the easy assignment, we have provided two 
interfaces and part of the implementation; you only need to write two procedures. If you 
are adventurous, go start solving the problem now. If you are less adventurous, read the 
next page to get some help in solving this problem. 

10-15 
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5 ~,' 

For the easier version of this problem, you need to implement the procedures BeginEating 
and EndEating from the DP interface: 

-- DP.mesa 

DP: DEFINITIONS • 
BEGIN 
numOfPhils: CARDINAL. 5; 

BeginEating: 
EndEating: 
IsWaiting: 
IsEating: 

PROCEDURE[phi losopher: CARDINAL]; 
PROCEDURE[phi losopher: CARDINAL]; 
PROCEDURE[philosopher: CARDINAL]; 
PROCEDURE[philosopher: CARDINAL]; 

END .. 

BeginEating will be called every time a philosopher (a process) thinks it might be able to 
eat. The philosopher will look around him (look at an array) and see if he can start eating. 
If he can't, he informs the world that he must wait to eat, calls the procedure DP.lsWaiting, 
and then waits. If he can eat, he informs the world that he is eating, uses his chopsticks 
(sets some variables in an array) and calls the procedure DP.lsEating. 

EndEating will be called every time a philosopher has been told to stop eating and start 
thinking. He should inform the world that he is no longer eating, set down his chopsticks, 
and tell all waiting philosophers (if any) that they might want to try to start eating. ~ote 
that although the tool refers to philosophers 1 through 5, philosopher in the above 
procedures will range from 0 through 4. 

To communicate with the world, use the procedures provided in the ToolDefs interface: 

-- ToolDefs.mesa 

ToolDefs: DEFINITIONS. 
BEGIN 

PostText: PROCEDURE[string: LONG STRING]; 
PostLine: PROCEDURE[string: LONG STRING]; 
PostNumber: PROCEDURE[num: CARDINAL]; 

END .. 

--writes a string of text 
--writes a string of text with CR 
--writes a number 

You need to write the implementation module DPlmpl.mesa, which implements the 
procedures BeginEating, and EndEating in the DP interface. Use a monitor and a condition 
variable to synchronize access to the chopsticks by the 5 philosophers (processes). You will 
need the files DP.mesa, TooIDefs.mesa, DPTool.mesa, and DiningPhilosophers.config, 
which are on the course directory for this chapter. 
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