Mesa Language Class -- March, 1988 Intro-1

Training Overview

Training Overview

Mesa Language Class -- March, 1988 Intro-2

Your Instructors

- This week your instructors could be any combination of the people listed
~_ below. If you have any comments about the course structu re or content, feel
"f_‘free to messageJnm Herz (e-mall addresses listed bnlow)

Jim Herz - - <Herz:OSBU North: Xerox >
- Gail Kubeczko
Holly Wanless

Grant Ruiz

Training Overview

Mesa Language Class - March, 1988 ' ‘ Intro-3

Available XDE Training

Here is the ordermg in which XDE training should be done Bold boxes
represent self-paced tutorials. The numbered boxes represent stand-up
courses offered by our Training Group. Classes are usually held in Sunnyvale,
California. Descriptions of each are on the following pages.

XDE Intro

|

1. Mesa

Y

Mesa Course Tutorial

5. Nexf Class
(stay tuned)

2. XNS

3. ViewPoint|JViewPoint}]
Programming | JProgramming
Tutorial

4. Advanced
ViewPoint
Programming

Training Overview

Mesa'Language Class -- March, 1988 Intro-4

The Stand-Up Courses

UNIT 1. The Mesa Language
Introduces a new user to the Mesa programming language. Stress is
placed on possibly unfamiliar features such as explicit storage
management (allocation and deallocation), modules and configurations,
monitors, processes, and signals. System issues are not covered in detail.

UNIT 2. Introduction to Xerox Network Systems Protocols and Agents
Defines the Xerox Internet Transport Protocols. Emphasis on definition
‘and Hlustration of Network Systems remote procedure call protocol
(Courier). Examination of service-like apphcatlons mteract/ng with top
level protocols. :

UNIT 3. Xerox ViewPoint Programming '
- In this unit we introduce ViewPoint architecture, user interface, tool set,
and design methodology for applications built on the ViewPoint base.
Topics covered include Programmer/User interaction, ‘running programs
from the desktop, registering programs with the desktop, NS file
manipulation, and application folders.

UNIT 4. Advanced ViewPoint Programming
This class will focus on writing applications that interact with documents
‘and other applications in a sophisticated manner. Topics will include
" using advanced graphics, notifying procedures when user actions occur,
~writing and managing TIP (Termmal lnterface Package) tables, and
R manag:ngaselectlon — SR

Training Overview

Mesa Language Class -- March, 1988 ' Intro-5

The Self Study Materials

e XDE Concepts and Principles

A high level overview of XDE and Xerox Network Services architecture.
Intended to provide a philsophical and conceptual framework on
which to base an understanding of XDE.

Introduction to XDE

A computer aided tutorial that will familiarize a new user with the
XDE tool set and associated user interface, operation of essential tools,
editing, and XDE documentation. This tutorial will take two to three
days to complete. |

The Mesa Course

A self paced Mesa Language programming tutorial that includes
representative . instructional software and is intended for use at a
customer site. Its purpose is to provide instruction in tool development
skills and familiarize a new user with basic Mesa and Pilot interfaces.
This course will take four to eight weeks to complete.

The ViewPoint Programming Course Tutorial

A self paced programming tutorial completed at the customer site; itis
designed to follow the one week Xerox ViewPoint Programming
Course. The ViewPoint Programming Tutorial assumes that you are an
experienced Mesa Programmer. The course covers the range of
programming skills required for development of sophisticated
ViewPoint applications. The course with all exercises will take three to
eight weeks to complete.

Training Overview

Mesa Language Class - March, 1988 Intro-6

Course Objective

Need: The Mesa language is one of the cornerstones of the Xerox
Development Environment. Being a proficient Mesa programmer is an
essential first step to effective use of the power of XDE.

Objective: Graduates will be able to prepare, compile, debug, and run Mesa
programs. These programs will exercise features of Mesa that are new or
unfamiliar to most students.

Please Note: This class is NOT geared to teach basic computer science topics.
We assume that you are EXPERIENCED programmers. We will teach
experienced programmers how to program in the Mesa Language.

Do: Ask questions at any time. We may, however, defer answering some
questions or ask you to submit them through the mail system.

" Submit your course evaluations daily using the mail system.

Have fun.

Don’t: Instigate religious debates by touting your favorite (non-Mesa)
language. We are here to teach you Mesa.

Expect to learn everything about Mesa in one week. We will get you
started in the right direction.

Training Overview

Mesa Language Class -- March, 1988 Intro-7

We're Not Your Mother

The general format of the class is lecture in the morning, lab in the
afternoon. The lab has no format: you are expected to complete your
assignments {or at least try) but you can come and go as you wish.

Major No-No: Don’t leave for three hours in the middle of the afternoon
and then come back and expect us to stay here with you until 10 PM.

Training Overview

Mesa Language Class --

Day 1 - Monday
9:00-9:45

9:45-10:15

10:15-10:30
10:30-12:00

12:00-1:00
1:00-6:00

March, 1988

Daily Schedule

Introduction and Course Organization
Training Overview
Mesa Language
Pilot Operating System
Physical and Logical Volumes
Getting Started in Mesa
The Fundamental Module Types
What a PROGRAM module looks like
Comments
Basic Data Types and Expressions
Break
Getting Started in Mesa (Cont'd)
Common constructed Data Types
Statements
Procedures
Additional data types, Extensions
The Debugger
Lunch
Debugging and Compiling Exercises
Ask for Solution when finished

Training Overview

Intro-8

Mesa Language Class -~ March, 1988

Daily Sched"ule (Cont'd)

Day 2 - Tuesday

9:00-10:15 Interfaces
Review Definitions
Opaque Types
Examples of Interface modules
Examples of Program modules
10:15-10:30 Break
10:30-11:15 Interfaces (Cont'd)
Examples of configurations
More Examples
11:15-12:00 Interfaces Exercise
12:00-1:00 Lunch
1:00-6:00 Interfaces Exercise (Cont'd)
Ask for Solution when finished

Day 3 - Wednesday

9:00-10:30 Dynamic Storage Allocation
Different types of heaps
Declaring and creating heaps
Allocating and deallocating from heaps
10:30-10:45 Break
10:45-11:30 Form Subwindow Layout Tool
11:30-12:00 Dynamic Storage Allocation Exercise
12:00-1:00 Lunch
1:00-6:00 Dynamic Storage Allocation Exercise (Cont'd)
Ask for Solution when finished

Training Overview

Intro-9

Mesa Language Class --

Day 4 - Thursday
9:00-10:15

10:15-10:30
10:30-11:30
11:30-12:00
12:00- 1:00
1:00- 6:00

Day 5 - Friday
9:00-10:30

10:30-10:45
10:45-12:15

12:15-1:15
1:15-6:00

March, 1988 Intro-10

Daily Schedule (Cont’d)

Signals
Signal Examples
Operations with signals
Catch Phrases
UNWIND signals
Break
Streams
Streams / Signals Exercise
Lunch
Streams/ Signals Exercise (Cont’'d)
Ask for Solution when finished

Processes and Concurrency
Concurrent execution
New language features for processes
Monitors
Break
Processes and Concurrency (Cont’d)
Condition Variables
More about monitors
Signals ,
Deadlocks
Other operations on processes
Lunch
Monitors Exercise
Ask for Solution when finished

Training Overview

Mesa Language Class -- March, 1988 ' Intro-11

What is Mesa?

® A programming language
® An operating system, Pilot

® A processor architecture

Training Overview

Mesa Language Class -- March, 1988 Intro-12

History of Mesa

® Research started at PARCin 1971
® Wentinto production use at Xerox (OSD, ISD) DSBU in 1976

® Various Mesa machines include the Alto, Dandelion, Dorado, Daybreak
(6085).

Training Overview

Mesa Language Class -- March, 1988 Intro-13

Architecture Highlights

® High-level Language Oriented
® Stack Machine: 16 bits wide, 8 - 14 words deep

® Large Shared Virtual Memory

' 32 bit address space, 256 word pages
Word addressed, 16 bit words
64K word Main Data Space

® Shared code and Data
Read only code, shared across modules
Global (static) data shared across processes

® Procedure Oriented
Parameter passing on stack
Heap allocation of activation records
Single transfer primitive (XFER)
Local and Global calls, single return

® Process Mechanism
Preemptive event driven scheduling, 8 priority levels
Monitors and Conditions
Interrupts, Timeouts, and Aborts
Fork any procedure

® Dense Instruction
Average instruction is 1.4 - 1.5 bytes

Training Overview

Mesa Language Class -- March, 1988 ‘ Intro-14

Advantages of Mesa

® Support of large scale system application development through direct
and efficient support of styuctured, modular programming.

ded_ ,
® Reduced product costs through 2x programmer productivity gain

e Efficient machine implementations

Training Overview

Mesa Language Class -- March, 1988 Intro-15

Mesa Language

® High level systems programming language

® Strong type checking

e Modular programming

® Flexible control transfer mechanisms

® Concurrent processes with protected, shared data

® High density object code

Training Overview

Mesa Language Class -- March, 1988 Intro-16

The Mesa Language

Mesa is a language that is basically similar to Pascal but which extends Pascal
in @ number of directions intended to make it more effective for the
development of large systems. Mesa features include (among others):

® Rich Type System

Basic: BOOLEANs, CHARACTERs, INTEGERs, CARDINALs, REALs

Constructed: Subrange, Enumerated, ARRAYs, RECORDs, POINTERSs,
STRINGS, Variant RECORDs, PROCEDUREs, PROGRAMSs, SIGNALs,
ERRORs, PROCESSes

e Simple Control Structures

Statements: Assignment, IF, SELECT, FOR, WHILE, DO
Compounds: Blocks, PROCEDUREs, PROGRAMs

® Module Structure

Interfaces: DEFINITIONs modules
Clients and Implementors: PROGRAM modules
Systems: CONFIGURATION modules

e Explicit Storage Mana'gement
Heaps and Zones

® Exception Handling"
SIGNALs and ERRORs

® Concurrent Processes

Creation and Destruction: FORK, JOIN
Locking: MONITORs and ENTRY procedures
Synchronization: CONDITIONs, WAIT, NOTIFY

Training Overview

Mesa Language Class -- March, 1988 Intro-17

Mesa Features with no Pascal Counterparts

® Type checking across separately compiled modules

® Interface modules

® Concurrent process support

® Procedure variables - procedures are a full fledged type
® Explicit storage management - no garbage collection

® Default field values

® Base and relative pointers

® Pointer arithmetic

® Constructors and extractérs

® Exception handling mechanisms

Training Overview

Mesa Language Class -- March, 1988 Intro-18

Pilot: The Mesa Operating System (Overview)
Pilot defines a “Basic Machine” that is an abstraction of the physical
resources provided by the hardware. The purpose of the basic machine is to:

® Define astandard interface that is independent of the size, speed, model,
and configuration upon which it is operating

® Provide a uniform environment for program design

® [nsulate clients as much as possible from variation in hardware
configuration

Training Overview

Mesa Language Class -- March, 1988 Intro-19

Facilities of Pilot

® Runtime support for the Mesa Programming Language including Mesa
processes.

® Virtual Memory Management.
® Local Disk Management, for local file system setup and manipulation.

® Packages for management of processes, physical memory, bitmap display,
and CPU.

® Device l/O Package, for local peripheral management.

® Communications package, for network streams, packet exchange,
modem support, and other basic communication services.

® Streams for handling sequential /0 in a device independent way.
® Common Software, for handling device I/O, strings, and formatting.

® Diagnostics, for detecting and analyzing hardware problem:s.

Training Overview

Mesa Language Class -- March, 1988 Intro-20

Pilot is Not a General-Purpose Time Sharing System

® No master/slave mode; no protection against malicious programs
® No enforcement of resource allocation/billing/accounting

® Client assumed to be a collection of cooperating processes

® Client controls specialized devices directly

® No user interface

Training Overview

Mesa Language Class -- March, 1988 Intro-21

The Main Data Space

The Main Data Space (MDS) is a contiguous region of 64K words of virtual
memory. Its purpose is to allow the most commonly used data structures to
be referenced by single word pointers rather than double word pointers.

® It is used mostly by low level system clients. Generally, application
programmers should not ailocate storage for user data from a MDS.

® User storage allocated from the MDS is referenced indirectly using
POINTERS, any other storage is referenced using LONG POINTERS.

Note: In pre Pilot 14.0 releases, both Local and Global Frames are allocated
from the MDS. In post Pilot 14.0 releases, Local frames are allocated from
the MDS but Global frames are allocated from an anonymous backing store.

Training Overview

Mesa Language Class -- March, 1988 Intro-22

The Xerox Development Environment

® XDE (Xerox Development Environment) is the programming environment
for our products.
In XDE, one can write programs for XDE itself as well as for the
Viewpoint. environment. As an example of what can be done with
XDE, all of XDE, Viewpoint and Network Services was developed using
Mesa in the Xerox Development Environment.

® XDE includes everything the programmer uses:
- all programming tools and applications
- all programming interfaces
- all support materials
- product support

Training Overview

Mesa Language Class -- March, 1988 Intro-23

XDE Support

How you get initial support for XDE depends on who your company is.

If you are a:
Xerox i.nternal programmer, contact: XDEConsultants:All Areas:Xerox
Rank Xerox employee, contact: XDESupport:SBD-E:RX

Commercial customer, USMG Analyst, USMG Sales Rep, contact:
. XDESupport:0OSBU North:Xerox

Training Overview

Mesa Language Class -- March, 1988 Intro-24

System Configuration

® A physical volume is the basic unit available for random access file page
storage. A Physical volume corresponds to a storage device, typically a
disk.

® A logical volume is a partition of storage for client files, including system
data structures for manipulating those files.

Typically, a physical volume is divided into one or more logical volumes.
Each logical volume is largely protected from actions in other logical
volumes. Different logical volumes contain different systems.

Volume Name Contents
User BWS bootfile, ViewPaoint data files and applications
Scavenger Can be used as backing store for the User volume;

File system recovery software for the User volume is
located here, if needed

CoPilot CoPilot bootfile [pre-14.0 releases only]
(CoPilot hootfile = Tajo bootfile + built-in debugger),
plus debugging files, XDE tools, XDE user files
* % OR %* %
Tajo bootfile & Sword [12.3 releases or later only]
plus debugging files, XDE tools, XDE user files

Tajo (If present) Tajo bootfile, XDE tools

A standard configuration for Viewpoint developers might be a User and
Scavenger volumes for Viewpoint and one XDE volume running Sword
(Same WOrld Debugger).

Training Overview

Mesa Language Class -- March, 1988 Intro-25

Graphically Speaking

Debugger.outload
Debuggee.outload
_ Programmer
Created
XDET?OTS ViewPoint
incl: SWorD Applications
XDE Standard
Tools ViewPoint
Applications
Editor
Tajo.boot (Printiﬁg,
Mail, Fonts,
etc.)
Diagnostic
Boot
Microcode Microcode .
Tajo BWS.boot
Germ Microcode -boot
Pilot Microcode
CoPilot Tajo User Sﬁavenger
Disk Sectors: each with Header, Label, and Date

Training Overview

Mesa Language Class -- March, 1988 | Intro-26

World Swapping

With the CoPilot debugger, you can only keep the state of one client around
at any given time.

With Sword, you can debug multiple clients! In addition, Sword can debug
in the same world, as well as be the resident debugger for client volumes.

For world-swap debugging, you must boot the client volume once in order
to establish a debugger-client relationship. But once that relationship is
established, it is easy to swap between the debugger and the client.

1. Boot: Tajo

2.Shift-Stop
CoPilot Tajo User
(debugger
volume)

1’. Boot: User

A ——

/

2’. Shift-Stop

3'.Proceed .

Training Overview

Mesa Language Class -- March, 1988

Getting Started in Mesa

Getting Started in Mesa

1-1

Mesa Language Class -- March, 1988

Outline

1. Getting Started in Mesa
a. The Fundamental Module Types
b. What a PROGRAM Module looks like
¢. Comments
d. Basic Data Types and Expressnons

Getting Started in Mesa

Mesa Language Class -- March, 1988

filename.mesa

source
code

Compiling Modules

—_— compiler |——p

Getting Started in Mesa

filename.bcd

object
code

1-3

Mesa Language Class - March, 1988 1-4

Modules
Definitions | Program Configuration
¥ 4 \
/ \

/ \

/ \

/ \
/ \
7 \
/ \
/ \
Client Implementation

Definitions files (a.k.a Interfaces) define an abstraction.
Program files contain executable code that implement the abstraction.

Configuration files specify how program modules are combined.

Getting Started in Mesa

Mesa Language Class -- March, 1988 1-5

Program (Client) and Definition Modules

ReadDefs.mesa

ReadDefs: DEFINITIONS =
BEGIN

ReadChar: PROCEDURE;

END.

Definitions Module

DoWork.mesa

DoWork: PROGRAM =
BEGIN

RéadDefs.ReadChar[];

END.

Program Module
(Client)

The PROGRAM module, DoWork, is using the procedure ReadChar that is

defined in ReadDefs. The implementation of ReadChar is unknown to this
module.

Getting Started in Mesa

Mesa Language Class -- March, 1988 1-6

Program (Implementation) and Definition Modules

ReadDefs.mesa

ReadDefs: DEFINITIONS =
BEGIN

ReadChar: PROCEDURE:

END.

Definitions Module

ReadImpl.mesa

ReadImpl1: PROGRAM =
BEGIN

ReadChar: PUBLIC PROCEDURE =
BEGIN

EI(ID;]

EI(ID;

Program Module
(Implementation)

The PROGRAM module, ReadImpl, supplies the actual implementation for
the procedure ReadChar that is defined in ReadDefs.

Getting Started in Mesa

Mesa Language Class -- March, 1988 1-7
Fitting Client and Implementation Modules Together
DoWork.bcd ReadImpl.bcd
DoWork: PROGRAM = ReadImpl: PROGRAM =

BEGIN BEGIN
. ReadChar: PUBLIC
. < l ‘ PROCEDURE =
ReadDefs.ReadChar[]; BEGIN
) needs supplies END;
END. ReadChar ReadChar

END;

ExecutableVersion.config

ExecutableVersion:
CONFIGURATION =

BEGIN
ReadImpl;
DoWork;

END.

Binder

v

ExecutableVersion.bcd

A CONFIGURATION file brings together the PROGRAMS DoWork and
ReadImp1 so that the implementation for ReadChar is around when DoWork

calls for it.

Getting Started in Mesa

Mesa Language Class -~ March, 1988 1-8

Program Module Structure & Syntax

DIRECTORY
{InterfaceNamel> USING [<ProcNamel)>, ...],
{InterfaceName2> USING [<ProcNamel>, ...],
{InterfaceNameN>;

{ModuleName>: PROGRAM
IMPORTS <InterfaceNamel>, <InterfaceName2>
EXPORTS <InterfaceNameN> =

BEGIN
{type, variable, procedure declarations>;

{main code, if any>
END.

Note: {...} is an alternative to any BEGIN...END.

Getting Started in Mesa

Mesa Language Class -- March, 1988

Program Module Example

DIRECTORY
Stream USING [GetBlock, Delete],
Window USING [Create],
ReadDefs;
ReadImp1: PROGRAM
IMPORTS Stream, Window
EXPORTS ReadDefs =
BEGIN
n: CARDINAL « 0;
DoSomethingInteresting: PUBLIC PROCEDURE = {
h « Window.Create[...]:

.WHILE n < 100 DO
Stream.GetBlock[...];
Stream.Delete[...];

ENDLOOP;
}s

END.

Getting Started in Mesa

1-9

Mesa Language Class -- March, 1988

Comments

--This comment is terminated at the end of the line.
IF i =1 -- Middle of 1ine comment -- THEN

{{This comment ignores all
carriage-returns. It ends here.>>

Getting Started in Mesa

1-10

Mesa Language Class -- March, 1988 1-11

Identifiers

Identifiers can be any mixture of upper letters, lower case letters, and digits.
The first character must be a letter. Upper and lower case letters are
different and do distinguish identifiers. All characters are significant.

Examples:

aBc

Abc
DiskCommandWord
displayVector
mach1l

x32y40

Mesa Reserved words are always all upper case. For a complete listing see
Appendix E of the Mesa Language Manual.

Examples:

BEGIN
END
PROGRAM
INTEGER
CARDINAL

Getting Started in Mesa

Mesa Language Class -~ March, 1988

Built-in Element Types

(INT)EGER - [-2N1. 2Ny N =16

(NAT)JURAL - [0..2\)
CARDINAL -- [0..2Y
(BOOL)EAN -- FALSE | TRUE

-- INTEGER N CARDINAL

(CHAR)ACTER -- all characters:

Examples:

lowerCaseA: CHAR « ’a;
mark: CHAR « ~ ;
endMarker: CHAR « ’;;
asciiCR: CHAR « 15C;
tab: CHAR « \t;

[] indicates inclusion
() indicates exclusion

-- character literals are assigned with a single quote

-- octal
-- escape convention

Getting Started in Mesa

Mesa Language Class -- March, 1988

LONG INTEGER and LONG CARDINAL

LONG INTEGER -- [-22N-1 22N-1y ~-N=16
LONG CARDINAL -- [0..22N)

Getting Started in Mesa

1-13

Mesa Language Class -- March, 1988 1-14

REAL

Mesa has adopted the proposed |IEEE standard for floating-point arithmetic.
Examples:

4.32
0.15
8.0E-19

The mantissa is therefore represented by 24 bits (including the "hidden bit")
with the decimal point to the right of the first bit; the exponent is
represented by 8 bits with a range of -126 to 127 (All 0's and all 1's are
exceptional conditions).

Getting Started in Mesa

Mesa Language Class - March, 1988

Declarations

All identifiers must be declared in one of 3 ways:

Simple declaration:
<identifier>: <{type>;

Initial Value declaration:
{identifier>: {type> ¢« <initial valued;

Constant declaration:
<identifier>: {type> = <{constant value>;

Examples:

first: CARDINAL;

condition: BOOLEAN;

pageCount: CARDINAL « 0;

isOn: BOOLEAN « TRUE;

pi: REAL = 3.141562;

indirectPi: REAL = pi;
startingPageCount: CARDINAL = pageCount;

Getting Started in Mesa

Mesa Language Class - March, 1988 1-16

Numeric Operators

+ - / * MOD
/ truncates toward zero for integers

MOD yields the remainder of dividing 2 numbers
It does not apply to REAL operands
The sign of MOD is the sign of the dividend

Examples of various expressions:

n

15

(1 + 7 + k)

-15

3.14

m*n

n MOD 8 --theresult has the sign ofn
i+l

Exponents, powers, and roots are implemented in software.

Getting Started in Mesa

Mesa Language Class -- March, 1988

Relational Operators

The operators below apply to all ordered types
< <= 3 # > >=

NOT ~

IN <interval>

Examples of various expressions:

n=2>5

m # n

m ~=n

i <= j

(1 <§) = (3<xK)
n IN [1..5]

i NOT IN [-1..5]

Getting Started in Mesa

1-17

Mesa Language Class -- March, 1988 1-18

Boolean Operators

NOT ~ AND OR

Evaluation is from left to right and stops when the value of the expression
has been determined.

Examples of various expressions:

NOT i = 15

~q

~(p AND q)

i <= j AND j < k

p AND ~q

i=6 AND j NOT IN [-1..1]
m>n OR m= 5

~p OR ~q

Getting Started in Mesa

Mesa Language Class -- March, 1988 1-19

Character Arithmetic
A CHARACTER value plus or minus a short numeric value yields a
CHARACTER value.
Subtracting 2 CHARACTER values yields an INTEGER value.
Examples: |

c: CHARACTER « ’‘c;

digit: INTEGER;

digit « c - ’0;

c¢«c+ (A - "a); -- converts lower case to upper case

Getting Started in Mesa

Mesa Language Class — March, 1988 1-20

PRED SucC
ORD
VAL
FIRST LAST

Function-like Operators

used with all element types and LONG CARDINAL and
LONG INTEGER. The values of PRED[x] and SUCC[x] are
the predecessor and successor of x respectively.

converts a character or enumerated value into a numeric
value.

is the inverse of ORD:
c:CHARACTER « VAL[101B];

used with all element types and LONG CARDINAL and
LONG INTEGER. These yield the least and greatest values
respectively.

Getting Started in Mesa

Mesa Language Class -- March, 1988 ' 1-21

Precedence

Operators in order of decreasing precedence:

- + -- unary operators

+ -
= # < <= > >= IN
~ NOT

AND

OR

.

Parentheses can be used to explicitly control the association of operands
with operators.

Getting Started in Mesa

Mesa Language Class -- March, 1988 ' 1-22

Static Type Determination

The inherent type of every expression and variable in Mesa can be
determined by static analysis.

Type rules in Mesa take 2 forms:

Target Type Rule: The inhezent type of a variable or expression must
conform to atarget type.

Balancing Rule: The inherent type of a variable or expression must
satisfy a relation for a known set of types.

*Type A conforms to another type B if Mesa can convert a variable of type A
to be of type B at runtime.

Getting Started in Mesa

Mesa Language Class -- March, 1988 ' 1-23

Target Type Example

x: INTEGER;
X ¢ y:
type: type:
INTEGER unknown

TYPE unknown must conform to TYPE INTEGER.

Getting Started in Mesa

Mesa Language Class -- March, 1988 1-24
Balancing Example

x: INTEGER;
y: LONG INTEGER;

X+ Yy L.,
type: type:
INTEGER LONG INTEGER

An INTEGER cannot be directly added to a LONG INTEGER; balancing must
take place.

Getting Started in Mesa

Mesa Language Class —~ March, 1988 1-25

Bounds Checking

When mixing numeric types:

Not all CARDINALS are valid INTEGERS
Not all INTEGERS are valid CARDINALS
Not all LONG INTEGERS are valid CARDINALS (using a range assertion).

If bounds checking is requested of the compiler (switch b), code will be
inserted before each cross assignment to ensure that the value is within
range.

Otherwise, it is the responsibility of the programmer to ensure that the
conversion is valid.

Examples:

i: INTEGER; c: CARDINAL;
c « 40000;

i« c; -- With the b switch, this generates a bounds fault
-- (because this is a cross assignment)

Getting Started in Mesa

Mesa Language Class -- March, 1988 1-26

Domains of Numeric Operators

When the result of an operation falls outside the range of its assumed type,
overflow or underflow occurs.

it is the programmer’s responsibility to guard against overflow and
underflow conditions.

Examples:
i,j,k: INTEGER;
a,b,c: CARDINAL;
i « 30000;
j ¢ 30000;
k « 1+ j; -- k has value -5536 (all variables are INTEGERS)
a « 4;
« 5
c «a-b; -- ¢ has value 65535 (all variables are CARDINALs)
k « a - b; -- With the b switch, this generates a bounds fauit

-- (because this is a cross assignment)

Getting Started in Mesa

Mesa Language Class — February, 1988 1-27

Outline

1. Getting Started in Mesa (cont’d)

e. Common Constructed Data Types
i. Type Conformance in general
ii. The element types
ili. Arrays
iv. Records
v. Pointers
f. Statements
i. Assignment statements and expressions
ii. IF statements and expressions
iii. SELECT statements and expressions
iv. Blocks
v. Loop statements and loop control

Getting Started in Mesa

Mesa Language Class -- February, 1988 1-28

Conformance and Constructed Data Types

In an assignment statement, the right side must conform to the left side.
B« A
There are 3 relationships a type A may have to type B:

A conforms to B.
A freely conforms to B.
A is equivalent to B.

is equivalent sy frecly conforms memmnd onforms

Equivalence -- Mesa sees no difference between type A and type B if A
and B are equivalent.

Free Conformity -- At runtime, Mesa can store any value of type A into a
variable of type B without checking, change of
representation, or other computation if A freely
conforms to B.

Conformity -- Mesa can convert a variable of type A to type B at
runtime if A conforms to B. (Runtime computation is
required.)

Often whether or not A conforms to B depends on whether parts of A are
equivalent or freely conform to parts of B.

Conformance issues related to specific Mesa TYPES will be covered when the
TYPE is introduced.

Getting Started in Mesa

Mesa Language Class — February, 1988

Enumerated Types

Enumerated types may be declared as in Pascal:

Color: TYPE = {red, orange, yellow, violet};
foreground: Color;
background: Color;

Fruit: TYPE = {orange, lemon};
state: {disconnected, busy, available};
i: CARDINAL;

foreground « orange;

background « VAL[2]; -- assigns yellow
i « ORD[foreground]; -- assigns 1

IF Color[orange] > foreground THEN .

Note that Color and Fruit are ‘named’ enumerated types while
{disconnected, busy, available}isan ‘anonymous’ enumerated type.

Conformance:

Every appearance of an enumerated type definition generates a new type
that is not equivalent to, and does not freely conform or conform to, any
other enumeration.

Therefore, 2 TYPE definitions with the same definitions, letter for letter,
define different types.

Getting Started in Mesa

Mesa Language Class - February, 1988 1-30

Subrange Types

Subrange types may be declared for all element types:

day: CARDINAL[1..31];
year: CARDINAL[1900..19997;

UpperCase: TYPE
AssertTrue: TYPE

CHARACTER['A.. Z7;
BOOLEAN[TRUE. .TRUE];

The basetype for a subrange is that type of which it is a subrange and which
is not itself a subrange.

The assignment of a value to a subrange variable makes an associated
assertion that the value is in the appropriate interval.

If bounds checking is requested of the compiler (switch b), code will be
inserted before each assignment to a subrange variable to ensure that the
value is within range.

Otherwise, it is the responsibility of the programmer to ensure that the
value is valid.

Example:

n: CARDINAL[0..107;
m: INTEGER[-5..57;

n«n+1; --notvalidifn =10
n «m; --onlyvalidifm IN [0 .. 5]

Getting Started in Mesa

Mesa Language Class -- February, 1988 1-31

Subrange Types

The syntax for subranges follows mathematical notation:

{ indicate inclusion
0 indicate exclusion

The following intervals all designate the range from -1 to 5 inclusive. The
endpoints of a subrange must be compile-time constants:

[-1..5] [-1..6) (-2..8) (-2..5]

The initial type identifier may be omitted if each bound in the interval
specifies a short numeric value:

si: [-10..10]; --signed rep

s2: [100..33000]; --unsignedrep

s3: [0..10); -- both reps
Conformance:

A subrange type conforms to its base type and a base type conforms to any
of its subrange types. Subrange type T[i..j] freely conforms to T if
i = FIRST[T] and to T[i..k] if j < k. Two subrange types are
equivalent if their base types are equivalent and if the corresponding
bounds are equal.

Getting Started in Mesa

Mesa Language Class - February, 1988 1-32

Arrays

An array variable can be declared like:

<varname>: <PACKED> ARRAY <indextype> OF <componenttype>;
Or you can declare an array TYPE like:

<{name>: TYPE = <PACKED> ARRAY <indextype> OF <componenttype>;
And then array variables would be declared like:

{varnamel>: <{name>;
<varname2>: <name>;

Examples:

IndexTyp: TYPE
ArrayTypel: TYPE ARRAY IndexTyp OF INTEGER;
ArrayType2: TYPE ARRAY [0..10) OF INTEGER;
nameArray: ARRAY [0..10) OF INTEGER;
anotherArray: ArrayTypel;

[0..10);

The <indextype> can be any element type. The <componenttype> can be any
type including another array type.

Arrays may be initialized when they are declared.
Examples:
octalChar: ARRAY[0..7] BF CHARACTER =
[‘0,‘1,‘2,‘3,‘4,‘5,\6,‘7];
dashes: ARRAY[0..7] OF CHARACTER « [*-,'=,'=,'=,'"=,'-,'-,'-];
dashes: ARRAY[0..7] OF CHARACTER « ALL['-]:

freshVector: ARRAY[0..3) OF CARDINAL = ALL[O0];
currentVector: ARRAY[0..3) OF CARDINAL « freshVector;

Getting Started in Mesa

Mesa Language Class — February, 1988 1-33

Array Constructors

Array constructors may be used to assign all the components of an array in
an assignment statement:

Triple: TYPE = ARRAY[1..3] OF CARDINAL;
triplet: Triple; '

triplet « Triple[11, 12, 13];

When the array type is implied by context, the type identifier may be
omitted:

triplet « [11, 12, 13];

The function ALL may also be used during initialization (only when the array
type is implied by context):

Matrix3by4: TYPE = ARRAY[0..3) OF ARRAY [0..4) OF CARDINAL;
allOnes: Matrix3by4 « ALL[ALL[1]];

You can, of course, access individual components of an array:

triplet[1] « 82;
allOnes[2][3] « 82;--2ndrow, 3rd column

Getting Started in Mesa

Mesa Language Class -- February, 1988 1-34

Array Equivalence and Conformance

Two array types are equivalent if both their index types and their
component types are equivalent and if they are both packed or both
unpacked.

Conformance:

An array type freely conforms to another if the component type of the first
freely conforms to that of the second, the index types are equivalent, and
they are both packed or both unpacked. Packed arrays with non-
equivalent types do not freely conform.

Examples:

IndexTyp: TYPE = [0..10);

ArrayTypel: TYPE = ARRAY IndexTyp OF INTEGER;
ArrayType2: TYPE = ARRAY [0..10) OF INTEGER;
Numbers: TYPE = PACKED ARRAY [0..10) OF INTEGER;

ArrayTypel and ArrayType2 are equivalent.

Getting Started in Mesa

Mesa Language Class - February, 1988 1-35

Records

Most records are declared with named field-lists:

MilitaryTime: TYPE = RECORD[
hrs: [0..24),
mins: [0..60)];

0oldTime, newTime: MilitaryTime;
You can assign parts of the record field by field:

oldTime.hrs « 8;:
oldTime.mins « 0;

Or you can assign the entire record with either a keyword or positional
constructor:

oldTime « [mins:0, hrs:8]; --Fields may be in any order
ol1dTime « [8,0]; -- Fields must be in order

Sometimes records are declared with unnamed field-lists:
RecType: TYPE = RECORD [CARDINAL, CARDINAL];

Only a positional constructor can be used with such records.

Getting Started in Mesa

Mesa Language Class -- February, 1988 1-36

Default Field Values
When a record type is declared, default values may be specified for each
field. Fields in a record constructor may be voided, elided, or omitted:

Rec: TYPE = RECORD [
vl: CARDINAL,
v2: CARDINAL « 37;

rec:Rec;
rec « [v1:4, v2:5];--v2gets5(overrides default)

rec « [v1:47; -- v2 is omitted, so v2 gets 3
rec « [vl:4, v2:];--v2iselided, sov2gets3

Getting Started in Mesa

Mesa Language Class -- February, 1988 1-37

Record Extractors

Extractors are used to "explode” record objects and assign their
components to individual variables in a single statement:

MonthName: TYPE = {Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,
Oct, Nov, Dec};

Date: TYPE RECORD[
day: [1..31];
month: MonthName,
year: [1900..2000)];

birthDay: Date;

dd: [1..31];
mm: MonthName;
yy: [1900..2000);

birthDay « [8, Aug, 1959];

[dd, mm, yy] ¢« birthDay;

[dd, , yy] « birthDay;

[dd, mm, yy] « Date[25, Apr, 1943];
[month:mm, day:dd, year:yy] « birthDay;

The type of a constructor must be explicitly stated when an extractor is on
the left side.

Getting Started in Mesa

Mesa Language Class -~ February, 1988 1-38

Record Extractors

A value with a single-component record type may be converted
automatically to a value with the type of that component.

j: INTEGER; -
k: RECORD[i: INTEGER « 57;

I ek

Getting Started in Mesa

Mesa Language Class -~ February, 1988 1-39

Record Conformance

Every appearance of a record constructor creates a new type that is not
equivalent to, and does not conform to, any other record type.

RecTypel: TYPE = RECORD[a,b: INTEGER];
recl: RecTypel;

RecType2: TYPE = RECORD[a,b: INTEGER];
rec2: RecType2;

rec3: RECORD[a,b: INTEGER];
rec4: RECORD[a,b: INTEGER];

The record variables rec1, rec2, rec3, and rec4 all have different, non-
conforming types. None of these can be assigned to any of the others.

Getting Started in Mesa

Mesa Language Class — February, 1988 1-40

Pointers

POINTERS are one word objects that, therefore, reference objects in the
MDS in virtual memory. The MDS is 64K words of virtual memory in which
system data structures and all local frames of executing processes reside.

LONG POINTERS are two word objects that, therefore, reference objects
outside the MDS. Most dynamically allocated objects are outside the MDS.
For generality, LONG POINTERS are often used to reference objects in the
MDS, as well.

In general, use LONG POINTERS.

intPtr: POINTER TO INTEGER;
bool1Ptr: LONG POINTER TO BOOLEAN;
intPtr « NIL;

Note: NIL is a Mesa reserved word that conforms to any POINTER or LONG
POINTER type. It denotes that the pointer value has no valid referent.

Also, In Post Pilot 14.0 releases, global frames do not reside in the MDS (as
they did previously). Therefore (short) POINTERS can not be used to
indirectly access global variables.

Getting Started in Mesa

Mesa Language Class -- February, 1988 1-41

Pointer Dereferencing

Referents of pointers can be obtained with the operator 1. Pointer values
can be generated from objects with the operator @.

AgeRange: TYPE = [21..150);
SexValues: TYPE = {male, female};
PartyValues: TYPE = {democratic, republican};

Person: TYPE = RECORD[
age: AgeRange,
sex: SexValues,
party: PartyValues];

candidatel, candidate2: Person;
winner, loser: LONG POINTER TO Person « NIL;

toser « @candidatel; --/osergetsthe addressofcandidatel
winner « @candidate2;

winnert. age « 45;

winner.age « 45; -- Mesa automatic dereferencing

Getting Started in Mesa

Mesa Language Class — February, 1988 1-42

Pointer Conformance and Equivalence
Two pointer types are equivalent if their reference types are equivalent and
if they are both long pointers or both short pointers:

IntPtrType: TYPE = LONG POINTER TO INTEGER;
a: IntPtrType;
b: LONG POINTER TO INTEGER;

Here, a and b have the same type.

Getting Started in Mesa

Mesa Language Class -- February, 1988 143

Dangling Pointers
Be careful to avoid dangling pointers to local storage:

pointerl, pointer2: LONG POINTER TO INTEGER;

RiskyProc: PROCEDURE[i: INTEGER] = {
local: INTEGER;

pointerl « @i; -- the storage fori and local exists only for

pointer2 «@local; --thelife of this procedure
RETURN; -- all local storage is released
}s

After the procedure, RiskyProc returns, pointerl and pointer2 will pointto
variables that no longer exist.

Getting Started in Mesa

Mesa Language Class — February, 1988 1-44

Assignment Statements and Expressions

The type of the <rightside> must conform to the type of the <1eftside>:

{leftside> « <rightside>;

a+b + c;

A variable may also be assigned using an assignment expression. The type
and value of an assignment expression (multiple assignment statements) is
the type and value of the <leftside>:

aebeec <« 4; --a,b,and call get4

Getting Started in Mesa

Mesa Language Class -- February, 1988 1-45

IF Statements

Standard If-Then statements:

IF <boolean expression> THEN
{statement>;

Example:

IF x > 5 THEN
X € x * 2;

Standard If-Then-Else statements:

IF <boolean expression> THEN
{statementl>

ELSE
{statement2>;

Example:

IF x > 5 THEN
X € x * 2
ELSE
y «y + 200;

Getting Started in Mesa

Mesa Language Class - February, 1988 1-46

IF Expressions

The IF Expression syntax is similar to that of an IF Statement. There are two
differences:

1) The clauses contain expressions, not statements, and

2) an IF Expression must have an ELSE clause.

IF <boolean expression> THEN
{expression>

ELSE
{expression>

Example:

x « |IF x > 5 THEN
x*2 .

ELSE
x + 200 :

Getting Started in Mesa

Mesa Language Class -- February, 1988 1-47

SELECT Statements

SELECT statements are similar to Pascal CASE statements.

SELECT <expression> FROM
{expressionl)> => <{statementl>;
<expression2> => <{statement2>;
<{expression3> => <{statement3>;

<expressionN> => <(statementN>;
ENDCASE => <statement>;

Example:

i: CARDINAL;

SELECT i FROM

0 =>1i« i+ 1; —-i=0
K3 =>{jei; ie€i-1}%} —-i=1tori=2
=5 => i « 0; —-i=5
ENDCASE => i « 2; -- none of the above

Getting Started in Mesa

Mesa Language Class -- February, 1988

Select Statements

A single SELECT arm may specify more than one test in one arm.

Example:

i,j.k: CARDINAL;

SELECT i*j+k FROM
1, IN[7..10] => <stmtl)>; --values: 1,7,8,9,10
2, 5, >10 => <stmt2>; --values: 2,5,11,12, ...
ENDCASE; -- no arm for endcase

Getting Started in Mesa

1-48

Mesa Language Class -- February, 1988 1-49

SELECT Expressions

SELECT expressions can be used in the same way as IF expressions (with the
same restrictions):

SELECT <expression> FROM
{expressionl> => <result expressionl>,
{expression2> => <result expression2>,
{expression3d> => <{result expression3>,

CexpressionN> => <{result expressionN>,
ENDCASE => <result expression>

Example:

pt: INTEGER; -- Pointon a line
1o, hi: INTEGER: -- Boundsforaline

PointPosition: TYPE = {leftMargin, rightMargin, inside,
outside, degenerate};
position: PointPosition;

position « |SELECT pt FROM
IN (lo..hi) => dnside,
NOT IN [lo..hi] => outside,

< hi => leftMargin, --=/obut #hi
> lo => rightMargin, -- =hibut #lo
ENDCASE => degenerate --=/oand =hi-- |.

Getting Started in Mesa

Mesa Language Class — February, 1988 1-50

Blocks

The general structure of a compound statement is:

BEGIN
{OpenClause>
<{EnableClause>
{DeclarationSeries>
{(StatementSeries>
<ExitsClause>
END;

Everything but the <StatementSeries> is optional.

An <OpenClause> allows more convenient reference to the fields of a record
and symbols in an interface.

An <EnableClause> is used with signals.

The <DeclarationSeries> allows you to declare variables at the beginning
of any block:

IF 10 > hi THEN
BEGIN
temp: INTEGER « 1lo;
1o « hi;
hi « temp;
END;

Getting Started in Mesa

Mesa Language Class -- February, 1988 ' 1-51

GOTO Statements

A series of labeled statements may be written immediately preceding the
END in a block. One can jump to these statements from within the block
using a GOTO statement:

IF ... THEN
BEGIN
- IF ... THEN GOTO useDefault;
IF ... THEN GOTO filelsDefault;
IF ... THEN GOTO newFile:
EXITS

useDefault, fileIsDefault => {...}:
newFile => pages « 0;
END;

Restrictions:
1) A GOTO may only jump forward in a program, never backward, and
2) A GOTO may only jump out of a block, never into one.

Getting Started in Mesa

Mesa Language Class -- February, 1988 ' 1-52

Loop Statements

The basic structure of a loop is shown below:

<LoopControl> DO
{OpenClause>
<EnableClause>
<{DeclarationSeries>
{StatementSeries>
{LoopExitsClause>
ENDLOOP;

The loop control can either be a form of conditional control or iterative
control or both.

Getting Started in Mesa

Mesa Language Class -~ February, 1988 1-53

Conditional Control

Either a WHILE loop or UNTIL loop can be used in loop control:

WHILE <boolean expression> DO
{statement>;
{(statement>;

ENDLOOP;
UNTIL <boolean expression> DO

{statement>;
{(statement>;

ENDLOOP;
Examples:
ie1;
WHILE i < 10 DO

ied+1;
ENDLOOP ;

i« 1;

UNTIL i >= 10 DO
iedi+1;
ENDLOOP;

Getting Started in Mesa

Mesa Language Class -- February, 1988 1-54

Iterative Control -- Repetition

With repetition, a loop range specifies how many times the loop body is to
be executed:

THROUGH <looprange> DO
{statement>
ENDLOOP;

Example:
THROUGH [1..100] DO
ENDLOOP;
A loop range can have any element type or any subrange of LONG

CARDINAL or LONG INTEGER. This is the one time that a subrange of a long
numeric is allowed.

Repetition and a conditional test may be combined:
THROUGH [low..high] WHILE l1ineIsConnected DO
ENDLOOP
Normal termination occurs after (high - low + 1) iterations; conditional

termination can occur sooner if TineIsConnected is FALSE prior to some
iteration.

Getting Started in Mesa

Mesa Language Class — February, 1988 1-55

Iterative Control -- Iteration

Iteration is very similar to a FOR loop in Pascal:

FOR <preDeclaredControlVariable> IN <looprange> DO
ENDLOOP ;
Example:
FOR i IN [1..length) DO
é&éLOOP;
The control variable can be declared at the point it’'s used:
FOR j: CARDINAL DECREASING IN [0..256) DO
E&BLOOP:

Iteration and a condition test may also be combined.

Getting Started in Mesa

Mesa Language Class -- February, 1988 1-56

Iterative Control -- Assignation

With assignation, a control variable is given an initial expression and a next
expression after each execution of the block. A condition test should be
included to provide loop termination:

FOR <var> « <initial expr>, <next expr> DO
ENDLOOP;
Example:

NodePtr: TYPE = LONG POINTER TO Node;
node: NodePtr;
head: NodePtr;
Node: TYPE = RECORD[
l1istValue: CARDINAL,
next: NodePtr];

FOR node « head, node.next UNTIL node

NIL DO

ENDLOOP;

Getting Started in Mesa

Mesa Language Class - February, 1988 1-57

GOTOs, LOOPs, and EXITs

A loop may be forcibly terminated by a GOT0 or an EXIT. The LoopExitsClause
serves the same purpose as the ExitsClause in a block. There are 4
differences.

(1)The LoopExitsClause is bracketed by REPEAT and ENDLOOP instead of
EXITS and END.

(2)The LoopExitsClause may contain a final statement labeled with the
keyword FINISHED; this statement is executed if the loop terminates
normally or conditionally, but not if it is forcibly terminated by an EXIT
or GOTO statement.

(3)There is a special case of the more general GOTO, called EXIT, which
simply terminates a loop forcibly without giving control to any
statement in the LoopExitsClause.

(4)There is another kind of GOTO statement, called LOOP, which does not
terminate the loop but skips the remainder of the loop body in the
current iteration and continues with the next iteration.

Getting Started in Mesa

Mesa Language Class -- February, 1988

(1) & (2):

GOTOs, LOOPs, and EXITs Examples

FOR i IN [0..nEntries) DO
If a[i] = x THEN GOTO found;
REPEAT -- REPEAT is not indicative
found => old « TRUE; '
FINISHED => {
afi « nEntries] « x;
nEntries « nEntries + 1;
old « FALSE };
ENDLOOP;

(3):

DO
IF ... THEN EXIT;

ENDLOOP;

(4):

stuff: ARRAY[0..100) OF PotentiallyInterestingData;
FOR i: CARDINAL IN [0..100) DO
IF NOT Interesting[stuff[i]] THEN LOOP;

ENDLOOP;

Getting Started in Mesa

1-58

Mesa Language Class -- May, 1988 1-59

Outline

1. Getting Started in Mesa (cont'd)

g. PROCEDUREs
h. Additional Data Types, Extensions
i. Strings ' ‘
ii. Variant Records
iii. Array Descriptors
iv. Base and Relative Pointers

Getting Started in Mesa

Maesa Language Class -- May, 1988

Procedures
The definition of a procedure provides a name for a function or action:

<{name>: PROCEDURE <argument record>
RETURNS <result record> =
BEGIN

END;
Examples:

NewNumber:PROCEDURE RETURNS [x:CARDINAL] =
BEGIN

END;

Gcd: PROCEDURE[m,n: INTEGER] RETURNS [gcd: CARDINAL] =

BEGIN
r: INTEGER;
UNTIL n = 0 DO
r <« m MOD n;
m < n;
n ¢ r;
ENDLOOP;
RETURN[ABS[m]];
END;

Getting Started in Mesa

1-60

Mesa Language Class -- May, 1988 1-61

Procedures -- Passing Arguments

In procedure call, the arguments are packaged into a record. Therefore, a
procedure call may use all the syntax for record constructors in passing
arguments. Arguments may be specified using either keyword or positional
notation. Arguments not explicitly specified may be supplied by default. The
following calls of Gcd are equivalent:

Ged[x+1,y]; Ged[m:x+1,n:y]; Ged[n:y,m:x+17;
All parameters are passed by value.

If the procedure returns no results, the procedure is written as a normal
statement:

-- code fragment
X ¢« x +1;
Display[x];

Note: A procedure call that passes no arguments should include empty

brackets to avoid confusion with procedure variables (explained later).

x ¢ SomeProc[];

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-62

Procedures -- Results

If the procedure returns results, the results are obtained with an extractor:

ExampleProc: PROCEDURE RETURNS [a,b:INTEGER] =
BEGIN

END;

x,y: INTEGER;

-- code fragment
[x,y] ¢« ExampleProc[];
[b:y,a:x] « ExampleProc[];

If the procedure returns only one result, the extractor is not necessary:

gcd: CARDINAL;
gcd ¢ Ged[m,n]; --Calling the procedure declared earlier

(etting Started in Mesa

Mesa Language Class -- May, 1988 1-63

Return Statements

A RETURN statement may be used anywhere in the procedure to terminate
execution of the current procedure activation:

ReturnExample: PROC [option:[1..4]] RETURNS [a,b,c:INTEGER] = {
a+«beece«0;
SELECT option FROM
1 => RETURN [a:1, b:2, c:3]; --explicitRETURNs
2 => RETURN [1,2,3];
3 => RETURN; -- returns the currentvaluesofa, b, ¢
ENDCASE => b ¢ 4;
c « 9;
}; -- Implicit RETURN

Getting Started in Mesé

Mesa Language Class -- May, 1988
Scoping Rules for Procedures
Mesa uses static scoping rules; each block defines a new scope:

SomeModule: PROGRAM =

BEGIN
X,y: INTEGER;

OuterProc: PROCEDURE =

BEGIN
x: BOOLEAN;

LocalProc: PROCEDURE

[parml: CARDINAL] RETURNS[parm2: CARDINAL] =

BEGIN
x: CHARACTER;

END;

END;

END.

Getting Started in Mesa

Mesa Language Class - May, 1988 1-65

Procedure Types and Variables

Procedures are actually types that are similar to pointers.

fr’igProc: TYPE = PROCEDURE[x: REAL] RETURNS[REAL]; --Procedure TYPE

ArcSin: TrigProc = BEGIN ... END; -- Procedure Constant
ArcTan: TrigProc = BEGIN ... END; -- Procedure Constant
FooBar: TrigProc; -- Procedure Variable

FooBar « ArcSin; --thisisnotmaking acall to ArcSin, but rather assigning what
-- the procedure ArcS1in is equal to to the procedure Func
x « FooBar[x]; --since Func has meaning, it is valid to make a call to it

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-66

Procedure Equivalence and Conformance

Equivalence and conformance of procedure types are defined in terms of
relations between fields of their parameter lists and result lists.

Two procedure types are equivalent if, for each pair of fields, the names are
identical (or both are unnamed), the types are equivalent, and both default
options are empty.

One field is compatible with another if the names are identical or if either is
unnamed, and if the types are equivalent. A procedure type conforms freely
to another if all corresponding fields are compatible.

Example:

Handle: TYPE = LONG POINTER TO Person;
SignedNumber: TYPE = INTEGER;
Int: TYPE = INTEGER;

ProcA: PROCEDURE[h: Handle, v: SignedNumber];
ProcB: PROCEDURE[h: Handle, v:Int];
ProcC: PROCEDURE[LONG POINTER TO Person, INTEGER];

ProcA, ProcB, and ProcC all conform to each other.

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-67

Inline Procedures

INLINE prdcedures can be used to eliminate the overhead of a procedure call
and return usually at the cost of alonger object program.

If the attribute INLINE appears before the body in the declaration of a
procedure, the call of that procedure is replaced by an inline expansion, a
modified copy of the procedure’s body:

Proc: PROCEDURE[v: INTEGER] RETURNS [INTEGER] = INLINE
BEGIN '
RETURN[v*v + 3*v + 17;
END;

See the rules in the MLM for applying the INLINE attribute.

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-68

Strings

In Mesa, a STRING represents a finite, possibly empty series of characters.
Mesa contains the following predefined types:

STRING: TYPE = POINTER TO StringBody;
StringBody: TYPE = MACHINE DEPENDENT RECORD([
Tength: CARDINAL,
maxlength: CARDINAL, -- readonly
text: PACKED ARRAY [0..0) OF CHARACTER];

Where:

text is a PACKED ARRAY of characters
maxlength is the maximum numbers of characters that text can hold
Tength is the number of characters currently in text

String variables can be declared and initialized two ways.
1) to specify the maxlength of the string, but not its contents
2) to assign a string literal to the variable

Examples:

LocalProc: PROC = {

currentLine: STRING ¢« [256]; -- no value set here for the characters
whatWasThat: STRING = "Eh?"L; -- string literal

--currentlLine gets a value somehow

IF currentLine[2] = 'R THEN HelpaLot[];
-- can reference a specific character in the string

}s

Getting Started in Mesa

Mesa Language Class -~ May, 1988 1-69

Long Strings and String Operators

A LONG STRING is predefined as:
LONG STRING: TYPE = LONG POINTER TO StringBody;

Note: A LONG STRING does not mean that it can hold more characters than a
STRING, it means that it is a LONG POINTER to a StringBody. The difference is
that STRINGSs are short pointers and therefore they reference into the MDS,
whereas LONG STRINGs can access storage outside the MDS.

Also, in Post Pilot 14.0 releases, a string literal in the global frame can be
assigned only to a LONG STRING, since the storage for global frames does
not come from the MDS as in earlier releases.

In general, LONG STRINGSs should be used instead of STRINGs.

Since STRINGs and LONG STRINGs are essentially pointers, the fundamental
pointer operations «, =, and # can be used with STRINGs and LONG
STRINGs. ’

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-70

Variant Records

Variant records contain a set of common fields and a variant portion with a
specified set of different possible interpretations. In Mesa, there are 4
different forms of the tag and they represent:

-- an actual tag with an explicit enumerated type
-- an actual tag implicitly defined
-- a computed tag

--an OVERLAID tag

Getting Started in Mesa

Mesa Language Class - May, 1988 1-71

Variant Record Examples

Service: TYPE = {savings, checking};
Account: TYPE RECORD[-- actual tag with explicit type
balance: REAL,
specifics: SELECT variantType: Service FROM
savings => [intRate: REAL, term: [30..365]],
checking => [charges: REAL],
ENDCASE];

Account: TYPE = RECORD[-- actual tag with implicitly defined type
balance: REAL,
specifics: SELECT variantType:* FROM
savings => [intRate: REAL, term: [30..365]],
checking => [charges: REAL],
ENDCASE]:

Account: TYPE = RECORD[~--computed tag
balance: REAL, :
specifics:SELECT COMPUTED {savings,checking}FROM

savings => [intRate: REAL, term: [30..365]],
checking => [charges: REAL],
ENDCASE];

Account: TYPE = RECORD[-- overlaid tag
balance: REAL,
specifics: SELECT OVERLAID * FROM
savings => [intRate: REAL, term: [30..365]],
checking => [charges: REAL],
ENDCASE];

* is used to indicate that the type of an actual tag is being defined implicitly
by the set of adjectives naming the variants in the tag’s variant part.

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-72

Variant Record Variables

Variables that are variant records can either have bound variant types or
unbound variant types:

r: Account; --unbound variant type
rSavings: savings Account; -- bound variant type

rChecking: checking Account; --bound varianttype

Getting Started in Mesa

Mesa Language Class - May, 1988 1-73

Variant Pért, Tag Access

The variant part of a record and its tag can only be assigned with a
constructor.

r « [balance: 100.0, specifics: checking [charges: 0.5]];

r « [100.0, savings[7.0,35]];

Assigning the variant part of a record has the side effect of assigning the tag.

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-74

Accessing Components of Variants

When a record is a bound variant, components of its variant part may be
accessed as if they were common components:

rSavings.intRate « 8.9;

rChecking.charges « 1.0;

With unbound variants, a generalized SELECT statement must be used for
actual tags:

—

WITH r SELECT vMpe FROM
savings => {
intRate « 8.8;

term « 90;

}s
checking => charges « 1.0;
ENDCASE;

For computed and overlaid tags, an expression must be supplied yielding a
tag value:

WITH r SELECT (IF ... THEN savings ELSE checking) FROM
savings => ...
checking => ...
ENDCASE;

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-75

Accessing Components of Variants

For overlaid tags, a field in a variant that appears in no other variant can be
referenced directly:

r.intRate « 8.8;

r.charges « 1.0;

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-76

Array Descriptors

An array descriptor describes the location and length of an array. There are
three operators that are relevant to array descriptors.

LENGTH[<an array>] -- yields the number of array elements
BASE[<an array>] -- yields a pointer value for locating the first element
DESCRIPTOR[<an array>] --yieldsan array descriptor (record of base and length)

Example:

history: DESCRIPTOR FOR ARRAY OF CARDINAL;
numbers: ARRAY [0..1000) OF CARDINAL;
history « DESCRIPTOR[numbers];

Descriptors historically were used for dynamic arrays and are present mainly
for backward compatibility. They are used for parameter passing now.
Sequences (described later) are now used for dynamic arrays instead and are
the recommended method.

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-77

Base and Relative Pointers

Relative pointers require the addition of a base pointer to obtain an
absolute pointer. This allows data structures with internal references that
are independent of memory location.

They are used with movable storage areas called ZONEs. Consult the MLM
and the PPM for details.

Getting Started in Mesa

Mesa Language Class -- May, 1988

The Debugger

The Debugger

Mesa Language Class -- May, 1988 D-2

The Debugger
Some of the material in this section overlaps the material covered in the XDE
tutorials that you should have already completed. This is desirable because:

1) some students will not have gone through the tutorials, thus making
this lab their first exposure to the debugger.

2) the extra practice can’t hurt.

The Debugger

Mesa Language Class -- May, 1988 D-3

CoPilot vs. Sword

There are two different debuggers depending on what version of software
you are running. If you are running a pre 12.3 release, then you will be using
the CoPilot debugger, which is built into the CoPilot bootfile.

If you are running at 12.3, then you have the option of using the built-in
CoPilot debugger or using the new SWorD debugger, which is a separate
application that must be run on a Tajo bootfile.

CoPilot will not be available for versions newer than 12.3.

The information in this lecture applies to both the CoPilot debugger and to
SWorD.

The Debugger

Mesa Lanqguage Class -- May, 1988 D-4

The Debugger

® |nteractive, sourceline-level

® Resides on an XDE volume.
The debugger need not reside on the same machine as the client (e.g.
Remote debugging). '

® Allows inspection of run-time stack, variables, processes, etc.; variables
can be re-assigned, individual procedures can be called.

® What will be covered:
® Common command usage
® What the programmer sees

® What won't be covered:
® Low-level and other operating system-related details

The Debugger

Mesa Language Class - May, 1988 D-5

Getting the Debugger Window

If you are using the CoPilot debugger, then you do not run anything special.
The Copilot debugger is built into the CoPilot bootfile. Look for a window
labelled Debug.log, which when opened looks like this:

A-MNoy-8712:15
3

If you are using the Sword debugger, then you must run Sword.bcd. Sword
requires a Tajo bootfile. Look for a window labelled Debug.log, which when
opened looks like this:

LocalWorld (Crebuc.log2) .

go: {proceed, abort, kill, screen, start} client: {1ocal} destroy!
read: {} write: {} processes configs attach: {source, symbols}
source! finddiodule! rep?! showType! typetbits! options!

break: {set, clear, clearall, list, attachCond, attachkey} watch: {off}

{1
Localworld (Debug.logZ)
Interpreter
>

Sword can have multiple windows. To get another window:

1) In 12.3, execute the “New Interpreter” command in the stack of root
menus, or

2) In 14.0, execute the "Another!” command in the Sword form
subwindow.

The Debuggér

Mesa Language Class - May, 1988

Reasons for Entering the Debugger

® |[nterrupt
® Breakpoint
® Map Log

® Error
® Address Fault
® Uncaught Signal

The Debugger

Mesa Language Class -- May, 1988 ' : D-7

Commands for When in Doubt

® {zero or more characters} 2:
Displays all the commands that begin with the specified characters.

® the DELETE key:
Allows you to cancel any command before it's been invoked.

® the STOP key:
Allows you to cancel any command during its execution.

The Debugger

Mesa Language Class -- May, 1988 . : D-8

Commands to Inspect Modules

® SEt Module Context:
Sets the module context to the user-specified module. The variables

and procedures in the current module are recognized.

® Display Stack: _
Displays the top of the run-time stack, which is the procedure
currently being executed. Also puts you in a subcommand mode to
learn more about each element on the stack.

The Debugger

Mesa Language Class - May, 1988 D-9

Subcommand Mode (after a Display Stack)

® source:
displays the source line where the debugger was invoked and loads
the file in a window if it isn't loaded already. The source file is
scrolled so that the line in question is in view.

® variables:
displays the local variables and the parameters for that procedure

® global variables
displays the global variables for that module

® parameters:
displays the parameters for that procedure

® next:
displays the next procedure call on the run-time stack

® back:
goes back up the stack (reverse of next)

® quit (or the DELETE key):
gets you out of the subcommand mode

The Debugger

Mesa Language Class - May, 1988 D-10

Commands to Inspect Processes
® List Processes (also available in the Sword FormSW):
Lists the currently active processes in the client volume.

® SEtProcess Context: ,
Sets the current process context to the user-specified process. The
call stack for that process is recognized.

The Debugger

Mesa Language Class -- May, 1988 D-11

Commands Related to Swapping

® Proceed (also available in the Sword FormSW):
Continues execution of the program by going back to the client
volume and executing from the point where the debugger was
invoked.

® Quit (also available in the Sword FormSW as ‘abort’):
Raises the signal ABORTED in the process that entered the
debugger, which usually results in that process being deleted.

® Userscreen (also available in the Sword FormSW as ‘screen’):
-Applies only to world-swap debugging. Displays the screen bitmap
of the client volume for 20 seconds, or less if the “"STOP” key is
toggled.

® ReDisplay swap reason:
Redisplays the reason why the debugger was called. Sometimes the
user can give the debugger more information and then redisplay
the swap reason to learn more about why the swap occurred.

The Debugger

Mesa Language Class -- May, 1988 D-12

Setting Breakpoints

® Break Entry procedure:
Sets a breakpoint at the point of entry to a procedure

® Break Xit procedure:
Sets a breakpoint at the point of exit of a procedure.

® To set a breakpoint in source other than at the beginning or end of a
procedure, load the source file into a window, make a selection on the
line where the breakpoint is to be set. Then,

1) with Sword hit the “set” command of the “break:” enumerated
within the FormSW.

2) With CoPilot, click “Break” in the window menu.

A breakpoint will then be set at the beginning of the statement in
which the selection was made.

The Debugger

Mesa Language Class -- May, 1988 D-13

- Some Other Breakpoint Commands

® List Breaks (also available in the Sword FormSW):
Lists all the breakpoints that are currently set.

® Clear All Breaks (also available in the Sword FormSW):
Clears all currently set breakpoints.

® Clear Break # (also available in the Sword FormSW):
Clears the break that you specify by number.

® Attach Condition (also available in the Sword FormSW):
Attaches a boolean condition that must be TRUE in order for the
break to occur.

® Attach Keystrokes (also available in the Sword FormSWw):
Attaches a user-supplied string of characters to be entered into the
debugger when the associated breakpoint is executed.

The Debugger

Mesa Language Class -- May, 1988 D-14

Using the Interpreter Mode

® Interpreter mode handles a subset of Mesa.

® In the interpeter mode, you can display and re-assign variables (simple or
complex), dereference pointers, call procedures, and convert types.

® Interpreter mode is invoked by typing a space character at the beginning
of a line. After typing the space, you can type a variable name to inspect
that variable. .

® To dereference a pointer variable, type the variable name followed by an
up-arrow (“foot”). To dereference a pointer to a pointer, type the
variable name followed by 2 up-arrows (“foot1").

The Debugger

Mesa Language Class -- May, 1988 D-15

Setting the Options

The Debugger Options window allows you to change the default format
that the debugger uses in displaying values of variables as well as specify (for
Sword only) whether or not a particular kind of event is handled locally.

Invoke the options! command in the FormSW to bring up the Options
window.

There are four booleans at the bottom of the window. If a boolean is TRUE
and the corresponding event occurs, it is handled locally. If a boolean if FALSE
then the event causes a world-swap. The booleans map to:

fault = address fault, uncaught = uncaughtsignal,

break = breakpoint, calldebug = SHIFT-STOP

Lacaltworld {Debug.1og2)
go: {proceed, abort, kill, screen, start} client: {local} destroy!
read: {} write: {} processes configs attach: {source, symbols]
source! findkodule! rep?! showType! typeddbits! options!
break: {sst, clear, ¢learall, list, attachCond, attachKey} watch: {off}

{d

LocalWorld (Debug.loge)
Interpreter
b

CARDINAL: {octal, BESIREY. hex)signed INTEGER: {octal, EESIuEy. hex) Bl ooy
Apply! POINTER: {BIEEY. decimal, hex] PROCESS: JiEY. decimal, hex}
Abort! RELATIVE: {ENZY. decimal, hex} UNSPECIFIED: {BE=Y. decimal, hex}
Array elements = 10 String length = 150

filter: i

B CETD CET BESTY processes configs

Be sure to invoke Apply! to have the changes take effect or Abort! to restore
them to the previous options. (Do not just tiny or deactivate the options
window.)

The Debugger

Mesa Language Class -- May, 1988 D-16

Show Type

Show Type allows you to find out the type of various procedures and
variables. It operates on the current selection (anywhere on the screen). The
format must be:

InterfaceName.symbolName

If only the Interface name is selected, then all of the types in that file are
displayed.

LocalWarld (Debug.log2)

go: {proceed, abort, kill, screen, start} client: {local} destroy!
read: {} write: {3 processes configs attach: {source, symbols}
mrt:e! findiodule! rep?! showType! typekbits! options!

break: {set, clear, clearall, list, attachCon&attachKey} watch: {off}

-0
LocalWwaorld (Debug.loge)

Interpreter

5 .

Exec.AddCommand: PROCEDURE [name: LONG STRING, proc: Exec.ExecProc, help:
Exec.ExecProc « NIL, unload: Exec. ExecF‘roc « Exec.DefaultUnloadProc, clientData:
LONG POINTER « MIL];

File: <CoPilot>WwD>FactorialTgolBlmpl.mesa
Create OPos Edit Load Empty Save Time Store Reset Split Match Destroy

ANl 5! RS < SR R«

CreateFactorialTool: PROCEDURE = {
B e " Factorial Tool. ~"L, NoOp, NIL, Unload];
wh « Tool,Create(
makeSWsProc: MakeSws, initialState: default,
clientTransition: ClientTransition, name: “Factorial Tool"L];

The Debugger

Mesa Language Class -- May, 1988 D-17

Processes Boolean (in Sword Only)

Turning on the processes boolean in the Sword FormSW creates a proceses
subwindow. This subwindow contains processes, call stacks, and local
variables. You can zoom or close a particular line by selecting the cross at the
head of the line. Zooming displays more detail; for instance, zooming a stack
frame line displays the local variables of the stack frame.

LocalWaorld {Debug.log2)

go: {proceed, abort, kill, screen, start} client; {local} destroy!

read: {} write: {} fopeoes configs attach: {zources, symbols}

source! findkodule! rep?! showType! typetdbits! options!

break: {set, clear, clearall, list, attachCond, attachKey} watch: {off}
0

% PSB: 53B, waiting C¥, L: 4570S4B+, PC: 13936 (in TTYSWsA, G 431674B+)
® PSB: 548, waiting C¥, L: 4060108+, PC: 18336 (in TTYSWsA, G: 4316746+)
x PSB: 55B*, waiting CV¥, L: 4553048+, PC: 2896 (in ITinstall, G: 517414B1)
» P3B: 56B, waiting CV, L: 4051708+, PC: 18336 (in TTYSWsA, G 431674B1)
x No symbols for L: 4051708+, PC: 18936 (in TTYSWsA, G: 431674B+)
x No Variables!
x No symbols for L: 40641082, PC: 204 (in TTYImpl, G: 440244B+)
% PSB: BEB, waiting CV, L: 4561148+, PC: 39 (in TTY¥Impl, G: 440244B+)
x PSB: 678, waiting CV, L: 4142548+, PC: 89 {in TTY!mpl, G: 440244B+)
% PSB: 1178, waiting C¥, L: 4030408+, PC: 389 (in Processes, G: 417674B1)
% No symbols for L: 4030408+, PC: 389 (in Processes, G: 417674B4¢)
% No symbols for L: 4056648, PC: 268 (in ClockToolimpl, G: 523314B+)
x PSB: 124B, waiting C¥, L: 4553548+, PC: 18936 (in TTYSWsa, G: 431674B+)

Localworld (Debug.log2)
Interpreter
>

The Debugger

Mesa Language Class -- May, 1988 D-18

Configs Boolean (in Sword Only)

Turning on the configs boolean creates a configs subwindow. This
subwindow contains configurations, modules, and global variables. You can
zoom or close a particular line by selecting the cross at the head of the line.
Zooming a configuration line, for instance, displays the nested
configurations and modules.

LocalWworld (Debug.1og2) ‘)

go: {proceed, abart, kill, screen, start} client: {local} destroy!
read: {3} write: {3 processes [Lghs attach: {source, symbols}
source! findkodule! rep?! showType! typetdits! options!
break: {set, clear, clearall, list, attachCond, attachkey} watch: {off}

: J
x Activity

x MailTool

* RemoteExec

x AddHintMenus

x FileTool2

x FileToollmpla, G:S112708 No symbols.,
® Mo Wariables!

% FileToollmplB, G:5115006 Mo symbals,

» FileToollmplC, G:5115648 No symbols,

Sword

ExpandType

OriginalPosition

SourcaTime

XK XN K X

LocalWorld (Debug.log2)
Interpreter
>

The Debugger

Mesa Language Class -- May, 1988 D-19

PROPS-STOP

Sometimes your machine will “hang”, especially when you are locally
debugging some program and it crashes. PROPS-STOP is a special command
that is built into 12.3 (and later) Tajo bootfiles. This will create a new notifier
to let you continue what you were doing.

PROPS-STOP will usually work when a particular operation is hung but not
when the entire workstation is hung. (Look at the clock to see if everything is
hung.) When PROPS-STOP does not work, you will have to re-boot.

CoPilot bootfiles do not have this feature.

The Debugger

Mesa Language Class - May, 1988 D-20

Summary

This lecture was not complete coverage of all commands that are available in
the debugger. It was meant to give you an introduction to using the
debuggers. There are many more ways to use the debugger to help you in
your development work.

For more information about the CoPilot debugger refer to the Debugger
chapter in the XDE User's Guide.

For more information about using Sword, refer to Appendix E of the XDE
User’s Guide.

The Debugger

Mesa Language Class -- February, 1988 Appendix-1

Appendix: Conformance and Type Determination

Appendix: Conformance and Type Determination

Mesa Language Class — February, 1988 Appendix-2

Conformance Among Numerics

INTEGER, NATURAL, CARDINAL conform to INTEGER
INTEGER, NATURAL, CARDINAL conform to CARDINAL
INTEGER, NATURAL, CARDINAL conform to NATURAL
INTEGER, NATURAL, CARDINAL

LONG INTEGER, LONG CARDINAL conform to LONG INTEGER
INTEGER, NATURAL, CARDINAL

LONG INTEGER, LONG CARDINAL conform to LONG CARDINAL
INTEGER, NATURAL, CARDINAL

LONG INTEGER, LONG CARDINAL, REAL conform to REAL

Examples:

i: INTEGER; «c¢: CARDINAL; n: NATURAL;
11: LONG INTEGER; 1c: LONG CARDINAL; r: REAL;

--The right side conforms to the left side.

i« cy
1c « n;
c « i;
n «c;
reli;

Appendix: Conformance and Type Determination

Mesa Language Class - February, 1988 Appendix-3

Conformance Using Range Assertions

LONG INTEGER, LONG CARDINAL conform to INTEGER
LONG INTEGER, LONG CARDINAL conform to CARDINAL
LONG INTEGER, LONG CARDINAL conform to NATURAL
Examples:

i: INTEGER; c: CARDINAL
1i: LONG INTEGER; 1c: LONG CARDINAL;

-- The right side conforms to the left side.
i « INTEGER[1i];

c « CARDINAL[11];

i « INTEGER[1c];

Appendix: Conformance and Type Determination

Mesa Language Class -- February, 1988 Appendix-4

Word Length Rules For Expressions (Balancing)

In determining what type of operation (INTEGER, CARDINAL, LONG
INTEGER, LONG CARDINAL, REAL) should be performed in an expression, a
common word length must first be found.

In general, the operation requiring the fewest automatic type conversions
will be the one used. So for numerics:

1. If all (both) operands are short numerics, a short numeric operation
will be used.

2. If all (both) operands are long numerics, a long numeric operation will
be used.

3. If one operand is a long numeric, the other operand will be
lengthened and a long operation will be used.

a. When an INTEGER is lengthened, its inherent type is LONG
INTEGER.

b. When a CARDINAL or NATURAL is lengthened, its inherent type is
LONG INTEGER and LONG CARDINAL.

4. If one operand is a REAL the other operand is converted and a REAL
operation is used.

Appendix: Conformance and Type Determination

Mesa Language Class - February, 1988 Appendix-5

Determination of Representation (Balancing)

Once a common word length is found for an expression, the following rules
will choose whether a signed (INTEGER, LONG INTEGER) or unsigned
(CARDINAL, LONG CARDINAL) operation will take place.

1.

If the operands have exactly one common inherent representation,
the operation defined for that representation is selected (and the
target representation is ignored).

If the operands have no common inherent representation but the
target representation is well-defined, the operation yielding that
representation is chosen. |

If the operands have both inherent representations in common, and if
the target representation is well-defined, The representation of the
target type selects the operation.

If the operands have both inherent representations in common but
the target representation is ill defined, the signed operation is
chosen.

Unary minus converts its argument to a signed representation if
necessary and produces a signed result.

If the operands have no representation in comon and the target
representation is ill-defined, the expression is in error.

Appendix: Conformance and Type Determination

Mesa Language Class - February, 1988 Appendix-6

Type Determination Examples

i: INTEGER; <c:CARDINAL; n: NATURAL;
1i: LONG INTEGER 1c: LONG CARDINAL;

c¢+cCc +c¢C
CARDINAL ‘CARDINAL CARDINAL
CARDINAL Lfength rule: 1
Sign rule:
i« c+c
INTEGER CARDINAL CARDINAL
\/ Length rule: 1
CARDINAL Sign rule: 1

Appendix: Conformance and Type Determination

Mesa Language Class -- February, 1988 Appendix-7

Type Determination Examples

14 € 4+ i

/AN

LONG INTEGER INTEGER INTEGER
INTEGER Lfangth rule: 1
Sign rule: 1
iec+ i
INTEGER CARDINAL INTEGER
\/ Length rule: 1

Appendix: Conformance and Type Determination

Mesa Language Class - February, 1988 Appendix-8

Type Determination Examples

1c « n +n
LONG INTEGER and INTEGER and
CARDINAL CARDINAL CARDINAL
CARDINAL Lgngth rule: 1
Sign rule: 3
IF n+n> ...
INTEGER and INTEGER and
CARDINAL CARDINAL

\ // Length rule: 1

INTEGER Sign rule: 4

Appendix: Conformance and Type Determination

Mesa Language Class — February, 1988 ' Appendix-9

Type Determination Examples

1c « ¢ + 11

LONG CARDINAL LONG INTEGER
CARDINAL

LONG INTEGER and LONG INTEGER
LONG CARDINAL

Length rule: 3b

LONG INTEGER

Sign rule: 1

Appendix: Conformance and Type Determination

Mesa Language Class -- February, 1988 Appendix-10

Example of Incorrect Statement

IF ¢ < 1 THEN ...
\

Length rule: 1
CARDINAL INTEGER Sign rule: -

BOOLEAN

There is no target type; Mesa cannot determine if you want a signed <
operation or an unsigned < operation.

Appendix: Confarmance and Type Determination

Mesa Language Class -- February, 1988 Appendix-11

The Long Operator

Use the LONG operator to force an operand to be lengthened according to
the previous length rules.

Examples:
19 « i + LONG[i];
LONG INTEGER INTEGER LONG[INTEGER]

INTEGER LONG INTEGER
\ / Length rule: 3a
LONG Sign rule: 1
INTEGER

Appendix: Conformance and Type Determination

Mesa Language Class -- February, 1988 Index-1

INDEX
A
1Y o =P 1-33-1-34, 1-59, 1-76
2 ¢ - 1-27,1-32
ASSIgNMIENt . e e i i e e 1-27,1-44
B
BalanCing e e 1-22,1-24
bed ... e e e 1-3,1-7
Binderooiiiiiiiiiii.. e 1-7
Blocks ..., ettt 1-27, 1-50
BOOL ...ttt e e et a e, 1-12
BOOLEAN ... i i e i e e e e e 1-15, 1-30, 1-40, 1-64
BOUNAS ... i et 1-25, 1-49
C ,
CARDINAL, 1-12-1-13, 1-15, 1-20, 1-25 - 1-26, 1-29 - 1-30, 1-54
L Y 2 1-12
CHARACTER ... i ettt e e eeae e 1-19 - 1-20, 1-30, 1-32, 1-64, 1-68
L0 =T 3 1-4 - 1-5,1-7
(e T oV o V=T o It 1-10
1000 4 o1 ¢ 7= o & &P 1-2, 1-10
ONfig .. e 1-7
Configuration e e 1-4,1-7
Conformancecciiiiiiiinninnnn. 1-27 - 1-29, 1-31, 1-34, 1-39, 1-42, 1-66
D
Declarations e e 1-15
D iNItiONS L. e 1-4-1-6
B 1= E Yo g o 1 o Y - 1-59, 1-76
D RECT O RY ittt it e e e e 1-8-1-9
E
EnUMeErated e e 1-29
Xl e e e e 1-57 - 1-58
F .
FleldS .ot e e 1-35-1-36
13 1-20, 1-31
floating-Point ... e 1-14

Index for Getting Started in Mesa

Mesa Language Class -- February, 1988 Index-2

G

T 1 1 L 1-51,1-57 - 1-58
|

o =1 08 4 (=] -3 1-11
BB ottt e e ettt 1-14
I e 1-10, 1-27, 1-29, 1-45 - 1-46, 1-49 - 1-51, 1-58, 1-68
Implementation i e e 1-4,1-6 - 1-7
I L e 1-67
IN T e e e e e e e e e e e 1-12-1-13
INTEGER ...t 1-12-1-13, 1-19- 1-20, 1-25- 1-26, 1-30, 1-54
IMterfaces ... e 1-4
L

LA ST ottt e e 1-20
= =Y« J 1-27,1-52,1-57 - 1-58
M

MO D L e e 1-16, 1-21, 1-60
MOAUIES .ttt e e e 1-3-1-7
N

1 7 1-12
(0]

Operatorsc.oiuiiii it i e 1-16 - 1-18, 1-20 - 1-21, 1-26, 1-69
ORD i e e 1-20, 1-29
5

o T30} = 1-41-1-42
PoiNters ... e 1-27, 1-40, 1-43, 1-59, 1-77
o = TT=To =Y o V- P 1-21
PRED it e e 1-20
ProCeAUIES ..ottt e 1-60 - 1-62, 1-64 - 1-65, 1-67
Program e 1-2,1-4-1-9,1-11, 1-64
R

REAL i e e e 1-14 - 1-16, 1-65, 1-71
2 =T e o 1-37-1-39,1-71-1-72
2 (=Tl = 1 o 13 1-27, 1-35, 1-59, 1-70
2= 4] o o 1-63

Index for Getting Started in Mesa

Mesa Language Class -~ February, 1988 Index-3

S

Scoping e e e et ettt ettt ee ettt et e 1-64
SELECT . ittt e e a e 1-27,1-47 - 1-49, 1-63, 1-71, 1-74
STRING ..ot e i ettt 1-68 - 1-69
1 T o 1P 1-59, 1-68 - 1-69
SUBranNge ... e 1-30 - 1-31
1 L 1-20
u

UNAerfloW oo 1-26
\"

VAL e e e e e 1-20, 1-29
LV T4 =T 1 1-59,1-70 - 1-73
VAN aNTS . e veee. 1-74-1-75

Index for Getting Started in Mesa

Mesa Language Class -- March, 1988

Modules:
Definitions, Programs, and Configurations

Modules: Definitions, Programs and Configurations

2-1

Mesa Language Class -- March, 1988

Outline

1. Interfaces
a. What interfaces are all about
b. Definitions modules
¢ Program modules
i. Clients
ii. Implementations
d. Configurations

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988

Programming Without Interfaces

This code can not be shared with any other program.

--DolLittle.mesa
DoLittle: PROGRAM = {
var: CARDINAL;

var « 0;

THROUGH [1..100] DO
var « var + 5;
ENDLOOP;

}.

Dolittle.bed

Execute: Dolittle.bcd

Modules: Definitions, Programs and Configurations

2-3

Mesa Language Class -- March, 1988 2-4

Types of Mesa Modules

There are two types of Mesa modules: DEFINITIONS and PROGRAM.

DEFINITIONS and PROGRAM modules are both written in Mesa. They are
input to the compiler. The output of the compiler is a binary configuration
description (bcd) file. :

When a module is compiled a time stamp (right down to the second) is
included in the bcd file. This time stamp is what differentiates multiple
versions of the same file.

A DEFINITIONS module is commonly referred to as an Interface.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-5

Overview

There are three basic pieces to the interface mechanism:

An interface, which defines an abstraction.
(An interface is a module of type DEFINITIONS.)

A client, which uses the facilities defined in the interface.
(A client is a module of type PROGRAM.)

An implementation, which provides the facilities defined in the interface.
(An implementation is a module of type PROGRAM.)

There can be more than one client of an interface, and the implementation
is not necessarily a single module.

Interface:
.defines procedures

Client: Implementation:
uses the procedures provides the actual code
from the interface ~ |for the procedures in the
interface

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-6

Definitions Module

Interfaces (DEFINITIONS modules) generally define the data structures and
operations for an abstraction. Interfaces contain only declarations -- no
executable code.

Here is a typical interface module:

--Example.mesa
Example: DEFINITIONS = {
1imit: INTEGER = 88;
Range: TYPE = [-1imit..limit];

ReadChar: PROCEDURE RETURNS[input:CHARACTER];
WriteChar: PROCEDURE[output: CHARACTER];

}.

Modules: Definitions, Programs and Configurations

Mesa Language Class - March, 1988 2-7

Compile-Time Items and Run-Time Items

The items in a DEFINITIONS module fall into two classes:
compile-time items: definitions of TYPEs and constants

run-time items: definitions of procedures, signals, programs,
and other variables

In the example on the previous page, the first two items are compile-time
items; the two procedures are run-time items.

Note: In the Mesa Language Manual, compile-time items are referred to as
non-interface elements, and run-time items are referred to as
interface elements.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-8

Directory Statement

If any module uses information from an interface, that interface must be
listed in the module’s DIRECTORY clause. The Directory clause is the first
thing in any module.

Note: ONLY DEFINITIONS modules are listed in a DIRECTORY clause.
Example:

--SomeModule.mesa

DIRECTORY
Interfacel,
Interface?2,
Interface3;

SomeModule: DEFINITIONS = {

};

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-9

USING Clause

The USING clause is an optional part of the DIRECTORY statement. It is used
to list the names of all of the items that will be used from the referenced
interface. A USING clause is not required, though it is recommended.
Although, if you do have a USING clause, then you must list each and every
symbol that you want to use from that interface in the USING clause.

Examples:

-=-SomeModule.mesa
DIRECTORY
Interfacel USING [iteml, item2, item3]; --recommended method

OR:

" --Table.mesa
DIRECTORY
Interfacel;

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 . 2-10

Referencing Items from an Interface

To reference the item from the interface in the program body, you must put
the Interface name first then the symbol name (separated by a period), i.e.
Interfacetl.item1.

Example:

--Simple.mesa
Simple: DEFINITIONS = {
1imit: INTEGER = 86;
Range: TYPE = [-limit..limit];

Pair: TYPE = RECORD[first, second: Range]; --wantto use thisitem
PairPtr: TYPE = LONG POINTER TO Pair;
}.

--Table.mesa -
DIRECTORY
Simple USING [Pair];

Table: DEFINITIONS = {
l1imit: INTEGER = 256;
Index: TYPE = [0..1imit);
PairTable: TYPE = ARRAY Index OF Simple.Pair;

}.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-11

Program Modules

A program module can access the compile-time items from a definitions
module as easily as a definitions module.

--TableUser.mesa
DIRECTORY
Simple USING [Pair],
Table USING [PairTable];

TableUser: PROGRAM = {
pair: Simple.Pair;
table: Table.PairTable;

}.
Note that you must qualify identifiers from definitions modules with the
name of the DEFINITIONS module.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-12

Summary: Using Compile-Time Items

To be a client of an interface, you need to know the name of the interface
and the name of the symbols that you want to use from that interface.

To access compile-time items from an interface, a client module must do
three things:

® Include the name of the interface in its DIRECTORY clause.
® Include the name of the symbol in the USING clause.

e Reference the symbol as InterfaceName.Symbol.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-13

IMPORTS Clause

The Imports clause lists the Interfaces for which there needs to be an
implementation supplied from somewhere. For example, procedures (and
other run-time items) are defined in an interface but are implemented
elsewhere. The system needs to know that it needs to match up the
implementation of the procedure with the caller of that procedure.

The syntax of using run-time items is like that of using compile-time items
except that you must also include the interface in the IMPORTS list.

Note: Only DEFINITIONS modules are listed in an IMPORTS clause.

--I0.mesa

I0: DEFINITIONS = {
ReadChar: PROCEDURE RETURNS[input: CHARACTER];
ReadLine: PROCEDURE RETURNS[input: LONG STRING];
WriteChar: PROCEDURE[output: CHARACTER];
WriteLine: PROCEDURE[output: LONG STRING];

}.

--CopyDriver.mesa
DIRECTORY
I0 USING [ReadLine, WritelLinel;

CopyDriver: PROGRAM IMPORTS IO = {
input: LONG STRING « [256];
DO
input « IO.ReadLine[];
IF input[0] = ’. THEN EXIT;
I0.WritelLine[input];
ENDLOOP;

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 . 2-14

Summary: Using Run-Time Items

To access run-time items from an interface, a client module must:
® Include the name of the interface in its DIRECTORY clause.
® [nclude the name of the symbolin the USING clause.
® Include the name of the interface in its IMPORTS clause.
® Reference the symbol as InterfaceName.Symbol.

Note: You do not need to know anything about the implementation of the
procedures in the interface. You just take on faith that if something is
advertised in an Interface, you can use it.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-15

Compilation Order

The DIRECTORY clause lists all the interfaces from which you are using
information. To type-check your program, the compiler must be able to read
all of the interfaces listed in the DIRECTORY clause. This means that when
you compile a program, the compiled version of all the interfaces in the
DIRECTORY clause must be on your local disk.

--StringClient.mesa
DIRECTORY
String USING [Equivalent];

StringClient: PROGRAM IMPORTS String = {
sameString: BOOLEAN « String.Equivalent[strl, str2];
}.
Thus, to compile StringClient.mesa, you must have the file String.bcd on
your local disk. The compiler will include the time stamp of String.bcd in

StringClient.bcd. If the referenced Interface is not present, the compiler will
give the message "Can’t Open String.bcd of ...".

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-16

What Exactly Do You Need?

What do you need at compile time and what do you need at run time? This
topic usually confuses new Mesa programmers. Hopefully this table will
help.

Examples Examples
of Interfaces of Implementations

1) System Interface | 1) System Interface Impl
2) an Interface 2) Own Interface Impl

Must it be present on the 1) Yes 1) No

local disk when client 2) Yes 2) No

program is compiling?

Must it be present on the 1) No 1) Yes

local disk when client 2) No 2) Yes

program is running?

Isit provided in the bootfile? 1) No 1) Yes
2) No 2) No

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-17

Example # 1
--Heap.mesa --String.mesa . oQ
DEFINITIONS DEFINITIONS !\‘Otef- Since these”afe Sysgem
Heap.bcd String.bed inter ar:es, you usually only have
2/8/84 3/7/84 the object code (bcds), not the
' source code mesa).

--DoSome.mesa

String.bed
DIRECTORY 3784
String USING [...],

Heap USING [...];
Heap.bed

DoSome: PROGRAM 2/8/84 |
IMPORTS String, Heap = {

s1l: LONG STRING = "Hi!";
c: CARDINAL;

c « String. Len th(s1];
Heap Al]oc[i

3.

A

DoSome.bcd

Execute: DoSome.bcd

Loaded Implementations

B string.bcs
e 1738

The implementations for String.bcd and Heap.bcd
are supplied at run time.

(Note: Since these are system interfaces, the
implementation is supplied in the bootfile.)

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-18

EXPORTS Clause

The Exports clause lists the Interfaces for which this module supplies the
implementation for some or all of the run-time items in that Interface.

To EXPORT a procedure (or any other run-time item) to an interface, you
need to do three things.

® List the name of the interface in the DIRECTORY clause.
® Listthe name of the interface in the EXPORTS list.

® Include the word PUBLIC in the declaration of the procedure.

Example:

--I0Impl.mesa
DIRECTORY
10;

IOImp1: PROGRAM EXPORTS I0 = {
terminalState: {off, on, hung} ¢ off;

ReadChar: PUBLIC PROCEDURE RETURNS[input: CHARACTER] =
BEGIN

END;
ReadLine: PUBLIC PROCEDURE RETURNS[input: LONG STRING] =

BEGIN

END;

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988

Opaque Types

It is also possible to export the implementation of a type. Opaque types
provide a way to hide the internal structure of a type from the client. The
implementation can then be changed as needed without affecting the

clients of the Interface.
In a DEFINITIONS module, you might have:

--AnotherDefs.mesa
AnotherDefs: DEFINITIONS = {
SomeOpaqueType: TYPE;
Ptr: TYPE = LONG POINTER TO SomeOpaqueType;

--Or:

AnotherOpaqueType:TYPE[<expression>];

-- where <expression> is a positive integer specifying the word length

}-
The implementation in the PROGRAM module might look like:
--AnotherDefsImpl.mesa

DIRECTORY
AnotherDefs:

AnotherDefsImpl: PROGRAM EXPORTS AnotherDefs = {
SomeOpaqueType: PUBLIC TYPE = RECORD[v: ...];

}.

When the word length is specified, a client using this type can declare
variables of this type and perform the standard operations «, =, and #.
Without a known length, no operations can be performed on the type so

usually a LONG POINTER to the opaque type is included.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-20

A Program Module Can Be Both Client and Implementor

In this example, TypicalProgram implements DumbDefs, and is a client of
DumbDefs and String.

Example:

--DumbDefs.mesa

DumbDefs: DEFINITIONS = {
Language: TYPE = {english, french, german}; --will use this
SomeProc: PROC RETURNS[isIt: BOOLEAN]; --willimplement this

}.

--TypicalProgram.mesa
DIRECTORY

DumbDefs USING [Language].
String USING [Equivalent];

TypicalProgram: PROGRAM
IMPORTS String EXPORTS DumbDefs = {

lang: DumbDefs.lLanquage « english;
stringl: LONG STRING ¢ "Charlie Brown";
string2: LONG STRING « "Snoopy";

-

SomeProc: PUBLIC PROC RETURNS[isIt: BOOLEAN] = {
IF (lang = english) AND ‘
(String.Equivalent[stringl, string2]) THEN RETURN[TRUE]
ELSE, RETURN[FALSE];

}s

Moaodules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-21

Multi-Module Implementations

The implementation of an interface is not necessarily a single module.

--ManyProcs.mesa

ManyProcs: DEFINITIONS = {

Procl: PROC Ex,y: CARDINALg;

Proc2: PROC RETURNS [true:BOOLEAN];
Proc3: PROC[text: LONG STRING];

L~

ManyProcs.bed

--ManyProcsAImpl.mesa

DIRECTORY
ManyProcs;

ManyProcsAImpl: PROGRAM
EXPORTS ManyProcs = {

Procl: PUBLIC PROC[x,y: CARDINAL] = {

~
};

ManyProcsAlmpi.bcd

--ManyProcsBImpl.mesa

DIRECTORY
ManyProcs;

ManyProcsBImpl: PROGRAM
EXPORTS ManyProcs = {

\\STOCZ: PUBLIC PROCEDURE RETURNS[true:BOOLEAN] = {
};

Proc3: PUBLIC PROC[text: LONG STRING] = {

~—)

}.

ManyProc¢sBimpl.bed

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-22

Configuration Files

A configuration file groups together clients and implementations so that
the implementation is loaded when the client calls it.

Remember:

If you import from System Interfaces -
the implementation is in the bootfile.

If you import from your own interface -
the implementation should be supplied by your program.

The easiest way to ensure that everything will be there when needed is with
a configuration file.

A configuration file is input to the Binder. The output of the Binder is a bed
file (same as the output of the compiler).

Modules: Definitions, Programs and Configurations

Mesa Language Class - March, 1988 2-23

Configuration File Syntax

--Prog.config
Prog: CONFIGURATION
IMPORTS String, Heap
CONTROL ProgControl = {
ProgControl;
ProgImpl;
}.

The body (everything between BEGIN and END) should contain the names of
all the PROGRAM modules that are part of your application.

The CONTROL clause should list the PROGRAM module(s) that should be
started when this configuration is started. Typically, only one program
module will have mainline code; the other program module(s) will just
contain procedures.

The IMPORTS list should contain every DEFINITIONS module that must be
imported from outside the configuration. That is, if any of the included
PROGRAM modules need an implementation that is not supplied by any of
the other PROGRAM modules, then the implementation must be IMPORTED
from outside the configuration. More about this on upcoming slides.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988

Example # 2

Heap USING [...],
ProgDf USING [...];

ProgControl: PROGRAM
IMPORTS String, Heap, ProgDf

s1: LONG STRING = "Hi!";
c: CARDINAL;

c « String. Length[sl]
ProgDF Proc[...];

3.

{

--Heap.mesa --String.mesa --ProgDf.mesa
DEFINITIONS DEFINITIONS DEFINITIONS
Heap.bcd String.bed ProgDf.bed
2/8/84 : 3/7/84 7/7/84
--ProgControl.mesa ‘ -
N
DIRECTORY |
String USING [...],

Heap.bcd
2/8/84

ProgDF.bed
177/84

VAVAN

ProgControl.bed

--ProgImpl.mesa

DIRECTORY
ProgDf;

ProgImpl: PROGRAM
EXPORTS ProgDf = {

Proc: PUBLIC PROC [...]
3
}.

u
-~

[
ProgDF.bed
717188

Progimpl.bcd

Modules: Definitions, Programs and Configurations

2-24

Mesa Language Class -- March, 1988 2-25

Example # 2 Continued

--Prog.config , - | Note: The implementation
Prog: CONFIGURATION l_iti__n?;i for ProgDF is supplied from
IMPORTS String, Heap within the config, so it
CONTROL ProgControl = =7 |doesn’t need to be
Heap.bc
BEGIN l:““ IMPORTED.
ProgControl;
ProgImpl;
END.
Prog.bcd

Bind: Prog.config

Execute: Prog.bcd

Loaded Implementations

- , String.bed
i 3/7'84

Implementations for String.bcd and Heap.bcd
are bound at run time when Prog is run. (The
implementations come from the bootfile.)

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988

2-26

More on IMPORTING Into a Configuration

An imports clause lists interfaces for which their implementations need to
be supplied from eisewhere (outside the configuration). If one module in a
configuration imports certain procedures from an interface, and another
module in that configuration exports those procedures, the interface does

not have to be imported into the configuration.

TwoProgs: CONFIGURATION
IMPORTS Heap, String

CONTROL Prog2 = {

Note that ProgDefs does not need to
be imported into the configuration,

g:ggéf since Progl supplies the procedure
}. that Prog2 requires.
ProgDefs.SomeProc
A (Request is fulfilled) V
DIRECTORY DIRECTORY
Heap USING [Create], MoreDefs,
ProgDefs, ProgDefs USING [SomeProc];

Progl:PROGRAM
IMPORTS Heap, Strin
EXPORTS ProgDefs = %

.};

String USING [CopyString]

SomeProc: PUBLIC PROC

Prog2:PROGRAM
IMPORTS ProgDefs
EXPORTS MoreDefs = {

ﬁéégDefs.SomeProc[];
}...

Modules: Definitions, Programs and Configurations

Mesa Language Class -~ March, 1988 2-27

General Rule in Writing a Configuration

Here are a few simple steps in writing a configuration file. Note that this is
to be used a general rule of thumb. There are exceptions to this rule. Can
anyone think of one?

1) List in the body (between the BEGIN - END) all PROGRAM modules that
make up the configuration.

2) Decide which PROGRAM modules have mainline code that needs to be
started when the configuration is loaded. List these PROGRAM modules
in start order on the CONTROL line.

3) Make a list of all of the IMPORTS of all of the PROGRAM modules listed in
the body. Make another list of all of the EXPORTS of the PROGRAM
modules listed in the body. Subtract the list of EXPORTS from the list of
IMPORTS. Put the interfaces that remain in the IMPORTS clause of the
configuration.

Modules: Definitions, Programs and Configurations

‘Mesa Language Class -- March, 1988 2-28

Inter-Modular Type Checking

In a nutshell, the job of the binder is to match up export requests to import
requests, and to ensure that type safety is maintained across module
boundaries. Recall that when a module references interfaces, the compiler
includes the time stamp of the interface as part of the .bcd file. When the
binder processes a config file, it reads the compiled versions of the
constituent modules to verify that all modules reference the same versions
of interfaces.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-29

Exporting From a Configuration File

An implementation for an interface may be given the same status as already
loaded implementations (e.g. implementations in the bootfile) by exporting
the implementation from the configuration file. This is done by including
the Interface in an EXPORTS clause in the configuration file:

Example:

--Exporter.config

Exporter: CONFIGURATION
IMPORTS String, Heap
EXPORTS ExportedInterface
CONTROL ExportControl = {

ExportControl;
ExportImpl;

}.

Once Exporter isrun, the implementation of ExportedInterface remains
loaded for use by later clients. The loaded state is preserved until the next
system boot.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-30

Naming Configuration Files

The compiler and the binder both produce files with the .bcd extension.
Thus, the root name of your configuration file must be different from its
component modules.

WRONG WAY:
The bound configuration overwrites the compiled source code.

XYZ.mesa |---»]|compiler ----+leZ.bcd of Sept. 14,1985 2:17:42
: XYZ.bcd of Sept. 14,1985 2:20:11
XYZ.config |----+|binder |.---5
RIGHT WAY:

The configuration file and its components have different
names, so nothing is overwritten.

XYZImpl.mesa |----3|compiler |[----+|XYZImpl.bcd

XYZ.config ----3|binder ---=» | XYZ.bcd

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-31

Other Naming Conventions

Configuration Modules:
{Bar>.config or <Foo>Tool.config
i.e. Editor.config, MathTool.config

Interfaces (Definitions Modules):
Public Interfaces:
<{Foo0>.mesa
i.e. Edit.mesa, MT.mesa
Private Interfaces:
<{Foo>0Ops.mesa, {Foo>Defs.mesa
i.e. EditOps.mesa, MTOps.mesa, MTDefs.mesa

e

Implementation Modules (most frequently used):
{Foo>Impl.mesa)
-- Or {Foo><function>Impl.mesa --recommended method
-- or <Foo>AImp1l.mesa, <Foo>BImpl.mesa -- o/d method
i.e. Editimpl.mesa,
MTAImpl.mesa, MTBImpl.mesa
MTFormImpl.mesa, MTCalcImpl.mesa

Client Modules (rarely used):
{Foo>Control.mesaor<Foo>Client.mesa
i.e. EditControl.mesa or MTClient.mesa

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988

More Examples

2-32

This example shows how you might restrict a client to only see what is
necessary in one interface. A separate interface that the client never sees is
used by the implementation module(s).

Client: PROGRAM
//’,,—————-\\\~ IMPORTS FooDefs =
BEGIN
END.
FooDefs: DEFINITIONS =
BEGIN
END.
FooPrivDefs: DEFINITIONS =
BEGIN
END.
FooImpl: PROGRAM FooPrivImpl: PROGRAM
IMPORTS FooPrivDefs EXPORTS FooPrivDefs =
EXPORTS FooDefs = BEGIN
BEGIN e
e END.
END.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988

More Examples

2-33

In this example, several program modules implement the private interface:

ClientImpl: PROGRAM
IMPORTS FooDefs =
BEGIN

BEGIN
END.

EXPORTS FooPrivDefs =

END.
FooDefs: DEFINITIONS =
BEGIN
END.
FooPrivDefs: DEFINITIONS =
BEGIN
" END.
FooImpl: PROGRAM
IMPORTS FooPrivDefs
EXPORTS FooDefs =
BEGIN ' _
END. |
FooPrivAImpl: PROGRAM FooPrivBImpl: PROGRAM

EXPORTS FooPrivDefs
BEGIN
END.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 “ 2-34

More Examples

In this example, several program modules implement several private
interfaces:

Client: PROGRAM
IMPORTS FooDefs =
BEGIN
END.

Foggggﬁz DEFINITIONS = FooPrivADefs {{FooPrivBDefs |[(FooPrivCDefs
END.
/
/
/
/
/
//
/ .7
/ e
¥ 2 &
FooImp1: PROGRAM FooPrivAImpl [[FooPrivBImpl |[FooPrivCImpl
IMPORTS FooPrivADefs,
FooPrivBDefs,
FooPrivCDefs
EXPORTS FooDefs =
BEGIN
END.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-35

Configurations of Configurations

In the earlier example, all of the implementation files can be combined into
one configuration file:

--FooDefsImpl.config
FooDefsImpl: CONFIGURATION
IMPORTS Heap, String --orwhatever--
EXPORTS FooDefs = {
FoolImpl;
FooPrivAImpl;
FooPrivBImpl;

}.
Notice there is no CONTROL clause. The resulting file FooDefsimpl.bcd can
then be included in the client’s own configuration:

--Client.config
Client: CONFIGURATION
IMPORTS Heap, String -- mustinclude Clientimpl & FooDefsimplimports --
CONTROL ClientImpl = {
ClientImpl;
FooDefsImpl;

Modules: Definitions, Programs and Configurations

Mesa Language Class -- February, 1988 - Index-1

INDEX

C

Client .. e 2-5,2-20, 2-31 - 2-32, 2-34 - 2-35
ComMPIle-TimME .. i i e e 2-7,2-12
Configuration 2-22 - 2-23, 2-25- 2-27, 2-29 - 2-31, 2-35
D

DEFINITIONS 2-4-2-8,2-10-2-11,2-13,2-17,2-19 - 2-21, 2-23 - 2-24, 2-32- 2-34
DIRECTORY .. e 2-8-2-15,2-17 - 2-18, 2-20 - 2-21, 2-24, 2-26
E

EXPORTS ..o 2-18, 2-20 - 2-21, 2-24, 2-26 - 2-27, 2-29, 2-32 - 2-35
|

IMPORTS ... it 2-13 - 2-15, 2-17, 2-20, 2-23 - 2-27, 2-29, 2-32 - 2-35
Interface ... e 2-5,2-10, 2-14 - 2-16, 2-18 - 2-19, 2-29
N

NaMING e e 2-30 - 2-31
(0]

10 o - T 11 1= PP 2-19
Ol i e 2-15
P

PROGRAM . i it e e e i 2-3-2-5,2-11,2-13,2-17 - 2-21
R

RUN-TIME o et e e e e e e 2-7,2-14
S

UMY oottt i e e e e e 2-12,2-14
u

USING ... e e e e 2-9 - 2-15, 2-17, 2-20, 2-24, 2-26

Index for Modules: Definitions, Programs and Configurations

Mesa Language Class - May, 1988

Dynamic Storage Allocation

Dynamic Storage Allocation

Mesa Language Class - May, 1988

Outline

1. How is DSA in Mesa different?

2. Heaps
a. What are they? What kinds are there?
b. How do you declare/ get rid of them?
c. How do you allocate / deallocate from them?
d. What does a typical example of heap usage look like?
e. How do you know which heap to use?

3. Special data structures that use the Heap facility
a. Strings
b. Sequences

Dynamic Storage Allocation

3-2

Mesa Language Class -- May, 1988 3-3

Overview of Dynamic Storage Allocation (DSA)
When do you need DSA? When the amount of storage needed is not known
until run-time.

This lecture is intended to help you understand the different issues involved
in dynamically allocating storage as it relates to the Mesa Language and to
learn how to allocate storage efficiently.

We will not be talking about low level issues such as operating system issues.

Dynamic Storage Allocation .

Mesa Language Class - May, 1988 3-4

Why Dynamically Allocate?

® Space, logical considerations

Dynamic allocation is needed for objects which can not or should not be
allocated in your program’s global and local frames.

Remember, storage for local frames comes from the Main Data Space.

Dynamic Storage Allocation

Mesa Language Class - May, 1988 3-5

How is DSA in Mesa Different?

What's the big deal about DSA as it pertains to Mesa? How is it different
from forms of DSA you've seen in other systems?

® Choice of storage type
® Type checking

® No automatic garbage collection at either the micro or macro level

Macro Level:

myHeap —P

Micro Level:

linkedListPtr <7 \‘

NIL

Dynamic Storage Allocation

Mesa Language Class -- May, 1988 3-6

Heaps

® Heap facility = Heap Interface + NEW and FREE
® Allocate fixed or arbitrary sized blocks of storage (nodes)

® Three types of heaps:

Normal:allows allocation of arbitrary-sized nodes
Uniform: allows allocation of nodes less than or equal to a specified
size
MDS: allows allocation of arbitrary-sized nodes from the Main Data
Space (MDS)

® Public and Private Heaps

Public: The environment provides a normal heap (the systemZone)
and an MDS heap (the systemMDSZone). Information in
these heaps can be shared among subsystems. There is no
public uniform heap.

Private: User can create private heaps (normal, uniform, or MDS) for
specific purposes.

Dynamic Storage Allocation

Mesa Language Class -- May, 1988 3-7

Choosing the Proper Heap Type for a Spetific Application

® If a set of programs requires a lot of private storage, it is often more
efficient to create a private heap than to use the system-provided (public)
heaps.

® [f objects being allocated are all the same size, uniform heaps are more
efficient since less overhead is required for each node.

® A process that uses a private heap instead of a system (public) heap avoids
direct competition with other processes for resources.

® System heaps can be used with low overhead for transient storage.

® MDS heaps would generally be used by low-level system clients.

Dynamic Storage Allocation

Mesa Language Class - May, 1988 3-8

Using the Public Heaps
In the Heap Interface, there are two constants that are available for use in
your program.

Heap.systemZone: READONLY UNCOUNTED ZONE:; --the Normalsystem heap
Heap.systemMDSZone: READONLY MDSZone; -- the MDS system heap

You can either reference these constants directly thrbughout your program,
or create alocal variable and assign the value of the system heap to it.

Example:

z: UNCOUNTED ZONE = Heap.systemZone;
mz: MDSZone = Heap.systemMDSZone;

Dynamic Storage Allocation

Mesa Language Class -- May, 1988 39

Using Private Heaps

To create a private heap, you must call one of the Create procedures
provided in the Heap interface. Abbreviated declarations are shown below
with only the required parameters (others are defaulted). For a complete list
of parameters, consult the Pilot Programmer’s Manual.

Heap.Create: PROCEDURE [initial: Environment.PageCount,
maxSize: Environment.PageCount ¢ Heap.unlimitedSize,
increment: Environment.PageCount « 4, ...]

RETURNS [UNCOUNTED ZONE];

Heap.CreateUniform: PROCEDURE [initial: Environment.PageCount,
maxSize: Environment.PageCount ¢« Heap.unlimitedSize,
increment: Environment.PageCount « 4, ‘
objectSize: Heap.NWords, ...]

RETURNS [UNCOUNTED ZONE];

Heap.CreateMDS: PROCEDURE [initial: Environment.PageCount,
maxSize: Environment.PageCount « Heap.unlimitedSize,
increment: Environment.PageCount « 4, ...]

RETURNS [MDSZone]:

Examples:

z: UNCOUNTED ZONE « Heap.Create[initial: 4];

uz: UNCOUNTED ZONE « Heap.CreateUniform[
initial: 5, objectSize: 10];

mz: MDSZone ¢« Heap.CreateMDS[initial: 2];

Hint: Since there are so many parameters to these procedures, it is
recommended that you name all of the parameters that you are passing.

Dynamic Storage Allocation

Mesa Language Class - May, 1988 3-10

How to Get Rid of Private Heaps

When you no longer need a private heap, you should delete it so that the
space can be used by other processes. To delete private heaps, use one of the
delete procedures provided in the Heap interface. Deleting a heap will
automatically deallocate any currently allocated storage (which is what you
usually want), unless the checkEmpty parameter is set to TRUE.

Heap.Delete: PROC[-- for Normal or Uniform Heaps
z: UNCOUNTED ZONE, checkEmpty: BOOLEAN ¢« FALSE];

Heap.DeleteMDS: PROC[-- for MDS heaps only
z: MDSZone, checkEmpty: BOOLEAN « FALSE];

Note: When you have deleted a heap, you should set your zone pointer to
NIL to avoid accessing a previcusly deleted heap.

Examples:

z: UNCOUNTED ZONE « Heap.Create[4];
mz: MDSZone « Heap.CreateMDS[2];

Heap.Delete[z];
z « NIL;

Héap.DeleteMDS[mz];
mz « NIL;

Dynamic Storage Allocation

Mesa Lanquage Class -- May, 1988 3-11

Allocating Storage From a Heap
Nodes are allocated from a heap using the NEW operator. NEW returns a
LONG POINTER to the object in the heap.
Example:

z: UNCOUNTED ZONE « Heap.Create[initial: 5];
Node: TYPE = RECORD[...];
NodePtr: TYPE = LONG POINTER TO Node;

currentNode: NodePtr « z.NEW[Node];

Graphically speaking:

2 currentNode

T

Node

Other Examples:

sz: UNCOUNTED ZONE ¢« Heap.systemZone;
anotherNode: NodePtr ¢ sz.NEW[Node];
yetAnotherNode: NodePtr « Heap.systemZone.NEW[Node];

Dynamic Storage Allocation

Mesa Language Class — May, 1988 ‘ 3-12

Getting Initial Values

There are several ways for a new node to pick up its initial values. They are
called type initialization, field initialization, and explicit initialization. An
example is the best way to understand the differences.

Example:

z: UNCOUNTED ZONE « Heap.Create[initial: 4];
NodePtr: TYPE = LONG POINTER TO Node;
Node: TYPE = RECORD [
value: LONG CARDINAL ¢ 0, --thisisadefaultforthe field
next: NodePtr « nillnit] « [1, NIL]; --thisisadefaultforthe type

currentNode, otherNode: NodePtr;
nillnit: NodePtr « NIL;

-- to explicitly set the values, use a record constructor
currentNode « z.NEW[Node « [value: 4, next: otherNode]];

-- ifyou omit a field in the record constructor, the field will pick up it
-- the default for the field.
currentNode « z.NEW[Node « [, next:otherNode]]:

-- to pick up all of the field defaults, elide all fields
currentNode ¢« z.NEW[Node « [, 1]:

-- to pick up the default for the type, do not specify a record constructor
-- if no type default exists, it will pick up the field defaults
currentNode « z.NEW[Node]; '

Dynamic Storage Allocation

Mesa Language Class -- May, 1988 3-13

Getting Initial Values (Cont’d)

Node

value: 4

next: otherNode
Node

value: 0

next: otherNode
Node : _

value::0

next: nillnit
Node

value: 1

next: NIL

Dynamic Storage Allocation

Mesa Language Class — May, 1988 3-14

Deallocating Storage From a Heap

Nodes are deallocated from a Heap using the Mesa FREE operator. FREE sets
the node pointer to NIL and then frees the storage used for the node. For
FREE to make changes to the pointer, it must have a reference to the node
pointer (since all parameter passing is call-by-value).

Example:

Zz: UNCOUNTED ZONE ¢ Heap.Create[initial: 10];
NodePtr: TYPE = LONG POINTER TO Node;
Node: TYPE = RECORD [

value: LONG CARDINAL « 0,

next: NodePtr « nillnit] « [1, NIL]:

currentNode: NodePtr « z.NEW[Node ¢« [value: 4, next: NIL];

z.FREE[@currentNode];

Graphically speaking:

currentNode - v Node

-
L -
.........
""""""""""

1. State of heap before executing z.FREE!@currentNode].
F 4 —
currentNode « NIL Node

2. currentNode is set to NIL.

R
currentNode « NIL

3. Storage in the heap is freed.

Dynamic Storage Allocation

Mesa Language Class - May, 1988 3-15

~ Typical Use of a Heap in a Program

DIRECTORY
Heap USING [Create, Delete],

L

SampleProgram: PROGRAM IMPORTS Heap,

u
~

z: UNCOUNTED ZONE « NIL:

RecStructure: TYPE = RECORD[...];
PtrType: TYPE = LONG POINTER TO RecStructure;
ptr: PtrType « NIL;

Allocate: PROCEDURE[...] = {
ptr « z.NEW[RecStructure « []];

N

Deallocate: PROCEDURE[...] = {
z.FREE[@ptr];
..}

CleanUp: PROCEDURE = {
If z # NIL THEN {
Heap.Delete[z];
z « NIL };
c)

Init: PROCEDURE = {
IF z = NIL THEN z « Heap.Create[initial: 5]

.o}

Dynamic Storage Allocation

Mesa Language Class - May, 1988 - 3-16

Expanding a Heap

When there is not enough contiguous space in the heap to allocate a node,
the system automatically expands the heap by a specified number of pages.
This number is specified by a parameter to the Create procedure, called
increment. (It is defaulted to 4.) Expansions are not guaranteed to be
contiguous in VM.

Let's trace a representation of an automatic expansion by the system when
more space was needed in the heap. In this case: initial = 3,
increment = 2

1. Heapiscreated in VM;

2. Two different 1-page objects are allocated;

4. Heap is expanded;

6. A new 1-page objectis allocated from previously used page that was freed.

What would happen if objectSize > increment ?

Dynamic Storage Allocation

Mesa Language Class - May, 1988 3-17

| Expanding a Heap (Cont'd)

Fragmentation and other problems may be avoided by doing a manual
expansion, if the heap needs to be expanded by more than increment
number of pages. This expansion can be done by calling the Expand
procedure in the Heap interface.

Heap.Expand: PROC[
Z: UNCOUNTED ZONE, pages: Environment.PageCount];

Dynamic Storage Allocation

Mesa Language Class - May, 1988 3-18

Other Operations on Heaps

® To determine initial parameters and current attributes of a heap:
Heap.GetAttributes: PROC[z: UNCOUNTED ZONE]
RETURNS[heapPages, maxSize,
increment: Environment.PageCount, ...];

® To return heap to its virgin state:
Heap.Flush: PROC[z: UNCOUNTED ZONE];

® To release unused extensions of a heap:
Heap.Prune: PROC[z: UNCOUNTED ZONE];

® To allocate an untyped node:
Heap .MakeNode: PROC[
z: UNCOUNTED ZONE ¢« Heap.systemZone, n: Heap.NWords]
RETURNS[p: LONG POINTER];

® To deallocate an untyped node:
Heap.FreeNode: PROC[
z: UNCOUNTED ZONE « Heap.systemZone, p: LONG POINTER];

Note: There are similar procedures for MDS heaps.

Dynamic Storage Allocation

Mesa Language Class — May, 1988

Strings

Definition from Day 1:

STRING: TYPE = POINTER TO StringBody;
LONG STRING: TYPE = LONG POINTER TO StringBody:
StringBody: TYPE = MACHINE DEPENDENT RECORD{
Tength: CARDINAL,
maxlength: CARDINAL, -- readonly
text: PACKED ARRAY [0..0) OF CHARACTER];

Where:
text is a PACKED ARRAY of characters

maxlength is the maximum numbers of characters that text can hold

length is the number of characters currently in text

Dynamic Storage Allocation

3-19

Mesa Language Class -- May, 1988 ~ 3-20

Allocating and Deallocating Strings

1) Allocate fixed-sized storage from a local or global frame of the program:

string: LONG STRING « [256];
-- sets maxlength to 256, length to zero & text is uninitialized

2) Assign astring literal to a string variable:

gString: LONG STRING ¢« "Hello";
1String: LONG STRING « "Hello"L;
" -- sets maxlength to 5, length to 5 & text to the characters 'H, ‘e, ’l, ‘I, ‘0

3) Use the NEW operator to allocate storage from a heap:

str: LONG STRING; .

str « someZone.NEW[StringBody[8]];: -- MUST specifysize of StringBody
-- sets maxlength to 8, length to zero & text is uninitialized

Deallocate using Mesa construct FREE:
someZone.FREE[@str];

4) Use procedures provided by the String interface to allocate storage from a
heap:

str: LONG STRING;
str ¢« String.MakeString[z: someZone, maxlength: 8];
-- sets maxlength to 8, length to zero & text is uninitialized

Deallocate using String interface procedures:

String.FreeString[z: someZone, s: str];

Dynamic Storage Allocation

Mesa Language Class — May, 1988

Sequences are dynamic arrays

Sequences

® They must be declared within a record
® There cannot be more than one sequence per record
® They must be the last field in a record

Syntax:

ptr: LONG POINTER TO Rec;

Rec: TYPE = RECORD [

{zero or more fields>,
seq: SEQUENCE length: CARDINAL OF <elementType>]:

/

Reserved word
indicating that a
sequence is
being declared

AN

<elementType>
whatever

programmer needs

is
the

length is a tag (of type
CARDINAL) that indicates the
number of elements in the
sequence. It is non-assignable
(e.g.length « 3isillegal).

Dynamic Storage Allocation

3-21

Mesa Language Class -- May, 1988 3-22

Sequence Example

myRecordPtr: LONG POINTER TO MyRecord;

MyRecord: TYPE = RECORD [
bool11l: BOOL, --These booleans are just for this example application
bool12: BOOL, --and are notspecific to Sequencesin general
seq: SEQUENCE length: CARDINAL OF INTEGER];

To allocate this record to contain a sequence of ten elements and set the
boolean variables: '

myRecordPtr « someZone.NEW[
MyRec[10] ¢« [TRUE, FALSE,]]: -- MUST specify size of sequence

Although other fields can be assigned during allocation, the sequence must
be assigned in a separate statement, usually a loop.

FOR 1i: CARDINAL in [0.;myRecordPtr.length) DO
myRecordPtr.seq[i] « 0;
ENDLOOP;

To deallocate this record:
someZone.FREE[@myRecordPtr];
To use the sequence:

num: INTEGER; _

num <« myRecordPtr.seq[3];

num ¢« myRecordPtr[3]; -- equivalent to above statement, and
-- num ¢« myRecPtr 1 .seq[3]; , and
-- num « myRecPtr 1[3];

ok: BOOLEAN ¢« myRecordPtr.bool1l;

IF myRecordPtr.length > 5 THEN RETURN[TRUE];

Dynamic Storage Allocation

Mesa Language Class - May, 1988

Example Using Sequences, Strings and Heaps

DIRECTORY
Heap USING [Create, Delete];

GetInfo: PROGRAM IMPORTS Heap = {

Dossier: TYPE = RECORD({
name: LONG STRING,« NIL,
age: CARDINAL,
ssn: LONG STRING « NIL];
DossierPtr: TYPE = LONG POINTER TO Dossier;

Personnel: TYPE = RECORD[

currentEntry: CARDINAL « 0,

stuff: SEQUENCE maxEntries: CARDINAL OF DossierPtr];
PersonnelPtr: TYPE = LONG POINTER TO Personnel;

people: PersonnelPtr « NIL;
z: UNCOUNTED ZONE « Heap.Create[initial: 5];

-- Procedures

Init: PROC = {
people « z.NEW[Personnel[6]]; --allocate the sequence of pointers
FOR i: CARDINAL IN [0..people.maxEntries) DO
people[i] « z.NEW[Dossier]; - allocate each of the records in the sequence
people[i].age ¢« O0; - initialize any fields that don’t have defaults
ENDLOOP;
}; -ofinit

Dynamic Storage Allocation

3-23

Mesa Language Class — May, 1988 3-24

Example Using Sequences, Strings and Heaps (cont’'d)

ExpandList: PROC = { - expandsthe sequence of pointers to include 3 new entries
-- create a new, larger (temporary) sequence
temp: PersonnelPtr « z.NEW[Personnel[people.maxEntries + 3]];
FOR i:CARDINAL IN [0..people.maxEntries) DO
-- copy each of the pointers to the Dossier records into the new sequence
temp[i] « people[i];
ENDLOOP;
temp.currentEntry « people.currentEntry; - copyoverany otherfields
FOR j:CARDINAL IN [people.maxEntries..temp.maxEntries) DO
temp[j] « z.NEW[Dossier]; --allocate the three new records in the sequence
temp[j].age « 0;
ENDLOOP;
z.FREE[@peoplie]; - deallocate the old sequence of pointers
people ¢« temp; - make theglobal variable point to the new sequence; Why??
}: - ofExpandlist

ShrinkList: PROC [toBeDeleted: CARDINAL] = {
-- ShrinkList removes the record indexed by ‘toBeDeleted’ from the sequence of pointers
IF toBeDeleted >= people.maxEntries THEN RETURN --orhandle elegantly
ELSE { - move each of the pointers of the sequence over one position
z.FREE[@people[toBeDeleted]]; - deallocate the record indexed by ‘toBeDeleted"’
FOR i:CARDINAL IN [toBeDeleted..people.maxEntries - 1) DO
people[i] « people[i + 1]; - copyeach pointeroverignoring ‘toBeDeleted’
ENDLOOP;
people[people.maxEntries] « NIL; -reinitialize the last record in the sequence
}; —Endif
}: - ofShrinkList

Dynamic Storage Allocation

Mesa Language Class — May, 1988

3-25

Example Using Sequences, Strings and Heaps (cont’d)

people ¢« z.NEW[Personnel[6]]1;

people ——p

currentEntry:...

stuff; —=——__

e —

maxEntries: 6 ”’,a"'
Y

name: ...
age: ...
ssn: ...

name: ...
age: ...

ssn: ...

temp ¢« z.NEW[Personnel[

people.maxEntries + 371]

\\‘\

name: ...
age: ...
ssn: ...

FOR_1:CARDINAL IN JO0..x] DO

temp[i] « people[i];

currentEntry:...
temp ——p |stuff: —=——_

maxEntries: 9
z.FREE[@people];

k

name: ...
age: ...

name: ...
age: ...
ssn: ...

name: ...
age: ...
ssn: ...

"—-‘f
[———

\ |\

—
Lo

peopie amp NIL

people ¢« temp;

people

Dynamic Storage Allocation

Mesa Language Class -- May, 1988 3-26

Sequences vs. Array Descriptors

® Array descriptors are useful for parameter passing.
® Sequences are type-safe.
® Sequences can be more readily treated as regular arrays.

® Sequences must be allocated from a heap; arrays can be allocated from a
local or global frame.

® Sequences are the replacement for array descriptors. Newer code uses
mostly sequences; older code uses array descriptors.

Dynamic Storage Allocation

Mesa Language Class - May, 1988 3-27

Review of DSA

® Heaps are of the type you choose: normal, uniform, MDS, public, private.

® To use a public heap, use a variable from the Heap interface
(Heap.systemZone.) TOo use a private heap, call Heap.Create (and later
Heap.Delete.)

® To allocate and deallocate from heaps, use the language operators NEW
and FREE.

® Allocation is strongly typed; you almost never allocate untyped storage.

® Allocate storage from a heap when it's not logical to allocate storage
from a local or global frame.

® Among the things allocated from a heap are strings and sequences, which
require special attention. 4

® Deallocation is your responsibility; it's not performed automatically.
When you create a heap, you must delete it. When you allocate storage
for a data structure, you must deallocate that storage.

Dynamic Storage Allocation

Mesa Language Class -~ May, 1988 ¢ 3-28

Selected Bibliography

Information on Heaps:
Pilot Programmers Manual (version 12.0). Ch. 4, pp. 49 - 54.

Information on Strings:
Mesa Language Manual (version 12.0). Ch. 6, pp.2-5
Pilot Programmers Manual (version 12.0). Ch. 7, pp.5-10

Information on Sequences:
Mesa Language Manual (version 12.0). Ch. 6, pp. 25-30

Information on Array Descriptors:
Mesa Language Manual (version 12.0). Ch. 6, pp.5-9

Information on Virtual Memory:
Pilot Programmers Manual (version 12.0). Ch. 4, pp. 29-43

Dynamic Storage Allocation

Mesa Language Class - May, 1988 3-29

FormSWLayoutTool Code

FormSWLlayoutTool Code

Mesa Language Class -- May, 1988 3-30

Outline

1. Tool Window code generated by FormSWLayoutTool (Handout)
a. Global variables
b. Main Program
¢. Call-back Procedures
d. Command Procedures
2. Adding code to your tool

FormSWLayoutTool Code

Mesa Language Class - May, 1988 3-31

FormSWLayoutTool Code

The tool FormSWLayoutTool generates most of the tool code for you. You
only have to supply the command procedures that are specific to your tool.
See the Tool-Written Factorial Tool handout.

FormsWlLayoutTool Code

Mesa Language Class - May, 1988

--Types

DataHandle:

Global Variables

TYPE = LONG POINTER TO Data;

Data: TYPE = MACHINE DEPENDENT RECORD [
msgSW(0): Window.Handle « NIL,

formSW(2):
fileSW(4):
number(6):
format(7):

Window.Handle « NIL,
Window.Handle « NIL,
CARDINAL « 0,
FormatType ¢« decimal];

FormatType: TYPE = {hex, octal, decimal};

--Variables

data: DataHandle « NIL; -

wh: Window.Handle « NIL; --the window handle for the entire window
zone: UNCOUNTED ZONE « Heap.Create[initial: 4];

busyBit: BOOLEAN « FALSE; --is TRUE when tool is busy

Where:

datat.msgSW, datat.formSW,
datat.fileSWare window handles for the three subwindows

datat.number holds the current value of Number in the tool window

datat.format holds the current value of Formatin the tool window

FormSWlLayoutTool Code

3-32

Mesa Language Class - May, 1988 3-33

Main Program

BEGIN

-- Mainline code
Init[];
END...

When the program is started, one call is made to the procedure Init.

FormSWlayoutTool Code

Mesa Language Class -- May, 1988 3-34

Call-Back Procedures

Init: PROCEDURE = {
--This procedure is called once from the main program.
--It creates the tool and registers a command with the Executive.
Exec.AddCommand[name: "FactorialTool.”"L, proc: NoOp,
help: NIL, unload: Unload];
wh ¢« Tool.Create[makeSWsProc: MakeSWs, initialState: default,
clientTransition: ClientTransition, name: "FactorialTool"L,
cmSection: "FactorialTool"L];

}:
NoOp: Exec.ExecProc = { };

Unload: Exec.ExecProc = {
IF Busy[] THEN {
.Exec.QutputProc[h]["Tool is busy. Sorry.\n"L];
RETURN[error] };
Tool.Destroy[wh]; ,
Exec.RemoveCommand[h, "FactorialTool.""L];

Done[] }:

ClientTransition: ToolWindow.TransitionProcType = {
--This procedure is called whenever the tool undergoes a user-invoked
--transition between the 3 states: active, tiny, and inactive.

—-input Parameters: window, old, new '
SELECT TRUE FROM
., 01d = inactive =>
IF data = NIL THEN data « zone.NEW[Data « []];
new = inactive =>
IF data # NIL THEN {
zone.FREE[@data]};
ENDCASE ;

}:

FormSWlLlayoutTool Code

Mesa Language Class — May, 1988 3-35

Call-Back Procedures (cont’d)

MakeSWs: Tool.MakeSWsProc = {
--This procedure is called when the tool is created and whenever the tool's state
--changes from inactive to active, or tiny. This procedure creates three subwindows.
--Input Parameters: window

logName: LONG STRING « [20];

Tool.UnusedLogName[unused: logName, root: "FactorialTool.log"L];

data.msgSW « Tool.MakeMsgSW[window: window];

data.formSW ¢« Tool.MakeFormSW[

window: window, formProc: MakeForm];
data.fileSW ¢« Tool.MakeFileSW[window: window, name: logName];

}:

~MakeForm: FormSW.ClientItemsProcType = {
--This procedure is called when the form subwindow is created.
--Input Parameters: sw ' '
--Output Results: items, freeDesc
format: ARRAY [0..3) OF FormSW.Enumerated « [
["hex"L, 0], ["octal"L, 1], ["decimal”"L, 2]];
items « FormSW.AllocateItemDescriptor[3];
items[0] ¢« FormSW.NumberItem[
tag: "Number"L, place: [6, FormSW.1ine0], signed: FALSE,
notNegative: TRUE, value: @data.number];
items[1] « FormSW.EnumeratedItem[
tag: "Format"L, place: [168, FormSW.1ine0], feedback: all,
choices: DESCRIPTOR[format], value: @data.format];
items[2] ¢« FormSW.CommandItem[
tag: "Factorial"L, place: [6, FormSW.1inel],
proc: Factorial];
RETURN[items: items, freeDesc: TRUE];

}:

FormsWlayoutTool Code

Mesa Language Class - May, 1988 3-36

Call-Back Procedures (cont'd) -

The Init procedure calls Exec.AddCommand passing in 2 procedures: NoOp and
UnLoad. These procedures are then called as needed by XDE. Too1.Create is
also passed 2 procedures: MakeSWs and C1ientTransition.

The procedure MakeSWs calls procedure Tool.MakeFormSW passing in the
procedure MakeForm to make the form subwindow. MakeForm is then called as
needed by XDE.

These procedures that are passed to System procedures, and then called as
needed by XDE are “Call-back procedures”. '

FormSW(LlayoutTool Code

Mesa Language Class — May, 1988 3-37

Scheduling Procedures

Busy: ENTRY PROCEDURE RETURNS [isBusy: BOOLEAN] = {
ENABLE UNWIND => NULL;
isBusy ¢ busyBit;
busyBit « TRUE;

}s

Done: ENTRY PROCEDURE = {
ENABLE UNWIND => NULL;
busyBit ¢« FALSE;

};

FormSWlayoutTool Code

Mesa Language Class -- May, 1988 3-38

Printing Procedures

Write: Format.StringProc = {Put.Text[data.fileSW, s]};

Msg: Format.StringProc = {Put.Text[data.msgSW, s]};

Where:

Format.StringProc = PROCEDURE[
s: LONG STRING, clientData: LONG POINTER « NILJ;

FermSWLlayoutTool Code

Mesa Language Class -- May, 1988 3-39

The Put Interface

While we're on the topic of displaying information to the screen, here is how
to do it from any program. The Put Interface, defined in the Mesa
Programmer’s Manual, has many procedures to aid you in displaying data to
windows. Some of the most commonly used procedures are shown here, but
there are many others. Refer to the MPM.

All of these procedures take a Window.Hand1e and (usually) a piece of data to
be formatted. If the Window.Hand1e is NIL then the output is directed to the
Herald Window.

Put.Char: PROCEDURE[h: Window.Handle « NIL, char: CHARACTER];
Put.Text: PROCEDURE[h: Window.Handle « NIL, s: LONG STRING];

Put.Line: PROCEDURE[h: Window.Handle « NIL, s: LONG STRING];
-- puts a LONG STRING and then a CR

Put.CR: PROCEDURE[h: Window.Handle « NILJ;

FormSWLayoutTool Code

Mesa Language Class -- May, 1988

Dummy Command Procedures

Factorial: FormSW.ProcType = {
ENABLE ABORTED => {Done[]; CONTINUE};
IF Busy[] THEN {
Msg["Tool is busy.\n"L]; RETURN}; _
Process.Detach[FORK FactorialInternal[]]}:

FactorialInternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};
Write["Factorial called\n"L];
Done[];

};

3-40

The resulting file from the FormSWLayoutTool can be compiled and
executed. Command procedures like the above are used since the tool

cannot know what the command is supposed to do.

Whenever Factorial! (in the tool window) is invoked, the procedure

Factorial is called. Factorial checks to see if the tool is busy.

FactorialInternal is where the real work to calculate the factorial would

be done.

FormSW(LayoutTool Code

Mesa Language Class - May, 1988 3-41

Adding Code

The dummy command procedures can be modified to contain either the
actual implementation (shown below), or, more commonly, a call to an
interface that implements the command (shown on next page).

Factoriallnternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};

IF data.number > 12 THEN { -- Outofrange
Put.CR[data.msgSW];
Put.Text[data.msgSW, "Too high, try again."L]
}

ELSE {

result: LONG CARDINAL « 1;
temp: CARDINAL « data.number;
WHILE temp > 0 DO
result ¢ result * temp;
temp. ¢« temp - 1;
ENDLOOP;
Put.CR[data.fileSW];
Put.Text[data.fileSW, "The factorial of "];
Put.Decimal[data.fi1eSW, data.number];
Put.Text[data.fileSW, " is "];
SELECT data.format FROM
hex => Put.LongNumber[data.fileSW, result, [16]]:
octal => Put.LongNumber[data.fileSW, result, [8]]:
decimal => Put.LongNumber[data.fileSW, result, [10]];
ENDCASE;
Put.CR[data.fileSW];
};
Done[]:
}s

-FormSW(LlayoutTool Code

Mesa Language Class - May, 1988 3-42

Adding Code (con’t)

If the implementation of the command is something more complex than a
simple procedure, it is wise to put the implementation in another module
and simply make a procedure call to it.

FactoriallInternal: PROCEDURE = {
ENABLE ABORTED => {Done[]: CONTINUE};
MyDefs.Factorial[data.msgSW, data.fileSW, data.number];
Done[]:

};

FormSWlayoutTool Code

Mesa Language Class - February, 1988 3-43

Using the FormSWLayoutTool

Using the FormSWlLayoutTool

Mesa Language Class — February, 1988

Layout Mode / Edit Mode

FormsilLayoutTool

FormType: {4, command, enum, longNum, numb, source, string, tag} o
Tag: Verbose Zone:

Align® Usebox Anyfont Root: SimpleTool

Dolt! Clear! SetDefaults! Load! Save! Plagiarize!

Verbose This is a Phone Book Tool -
Find! Insert! Delete!

Building: {fix the enums}

Name: Phone=

Address:

R L R R R I I I I R R R R I I I I R

Using the FormSWLayoutTool

Mesa Language Class -- February, 1988

Form3wilayoutTool

FormType: &), command, enum, longNum, numb, source, string, tag} .
Tag: Verbose Zone:
Align¥ Usebox Anyfont Root: SimpleTool
Doitt Clear! SetDefaults! Load! Save! Plagiarize!
Verbose This is a Phone Book Tool -
Find! Insert! Delete!
Building: {fix the enums}
Name: Phone=
Address:
T
: O
FormType: (B, command, enum, longNum, numb, source, string, tag)
Tag: Zone:
IS Usebox Anyfont Root: SimpleTool
Doit! Clear! SetDefaults! Load! Save! Plagiarize!
Verbose Thiz is a Phone Book Tool .
Find! Insert! Delete!
Building: {fix the enums}
Name: Phone=
Address:

Using the FormSWlayoutTool

3-45

jooLinoheIpmswiod ay3 bursn

_

FormType: (], command, enum, longhum, numb, source, string, tag)
Tag: Zone:
Alignx [EE0F Anyfont Root: UseBoxTool _

Dolt! Clear! SetDefaults! Load! Save! Plagiarize!

Find! Insert! Delete!

Xogasn

8861 ‘ueniga4 -- sse|d abenbue7 esppy

9r-€

Mesa Language Class -- February, 1988

AnyFont
FormSWLavoutTool L
|
FormType: (&4, command, enum, longNum, numb, source, string, tag}
Tag: Zone:
AlignX Usebox Anyfont Root: DefaultFontTool
Doit!t Clear! SetDefaults! Load! Save! Plagiarize!
|
Name: Phone=

3-47

Address: DefaultFontTool

Find! Insert! Delete!
{1
Name: Phone= 0
Address:
FincinserDelete!
. - » a
-0
FormType: i), command, enum, longNum, numb, source, string, tag}
Tag: Zone:
AlignX Usebox [NMinq: Root: AnyFontTool
Dolt! Clear! SetDefaults! Load! Save! Plagiarize!
O
Name: Phone=

Address: anyFontTool :

.|

Name: . . " Phone= 0
. Address:
. Find! Insert! Delete!

Using the FormSWLayoutTool

Mesa Language Class — February, 1988

Dolt! / Root:

Farm3SwwlayoutTool

0
FormType: i3 command, enum, longNum, numb, source, string, tag}

Tag: _ Zone:
AlignX Usebox Anyfont Root: SimpleTool
Doit! Clear! SetDefaults! Load! Save! Plagiarize!

Verbose This is a Phone Book tool -
Find! Insert! . Delete!

Name Phone=

Address: Building: {fix the enums}

File: <CoPilot>wD>SimpleTool.mesa.
Create OPos Edit Load Empty Save Time Store Reset Split Match

- —{
ANl S! RS! e SRR«

-- SimpleTool.mesa .
-- Create by FormSwlLayoutTool on 31-Jul-87 16:02
DIRECTORY

Exec,

Format,

FormSiy,

Heap,

Process,

Put,

TextSource,

Tool,

ToolWindow,

Window;

SimpleTool: MOMITOR
IMPORTS :
Exec, Form3W, Heap, Process, Put, Tool = {

DataHandle: TYPE = LONG PQINTER TO Data;

Data: TYPE = MACHINE DEPENDENT RECORD [
msgsW(0): Window.Handle « NIL,
formSWi{2): Window.Handle « NiL,
fileSW(4): Window.Handle « NiL,
verbose(B): BOOLEAN « FALSE,

{J

Using the FormSWlayoutTool

Mesa Language Class -- February, 1988 3-49

Clear!

FormSwiayoutTool

FormType: i8], command, enum, longNum, numb, source, string, tag} -
Tag: : : Zone:

AlignX Usebox " Root: SimpleTool

Doitt Clear! SetDefaults! Load! Save! Plagiarize! -

..

Using the FormSWLlayoutTool

Mesa Language Class -- February, 1988 3-50

SetDefaults!

Farm3vwlayoutTool

FormType: ({4, command, enum, longNum, numb, source, string, tag} -
Tag: Zone:

Align Usebox Anyfont Root: SimpleTool

Doltt Clear! SetDefaults! Load! Save! Plagiarize! -
Verbose This is ‘a Phone Book tool

Find! Insert! Delete!

Name: Phone=

Address: Building: {fix the =snums}

[Defaults for new items]
ReadOnly Invisible - DrawBox HasContext

[Emn\eratéd defaults]

[CopyChoices; Feedback: {one}

[(Long) Number defaults]

Radix: {decimal} MotHegative Signed ; BoxWidth= 54
(Long)Default= 2147433647 {Short)Default= 32767

[String defaults]
InHeag! Feedback: {normal} BoxWidth= 0

[MACHINE DEPENDENT RECORD]
Starting word= 0

[Global Things]

EnumType: Formltems HandleName: data
ProcName: MakeForm

StuffString:

Using the FormSWLayoutTool

Mesa Language Class -- February, 1988 3-51

Load! / Save!

Form3vlayoutTool

FormType: & command, enum, longNum, numb, source, string, tag} -
Tag: Zone:

AlignX Usebox Anyfont Root: SimpleTool
iDolt! Clear! SetDefaults! Load! Save! Plagiarize! a
. Verbose * Phone Book Tool

Find! Insert! Delete!

Name: Phone=

Address: Building: {fix the enums}

File: <«CoPilot>WD>3impleToal.

y

§Create OPos Edit Load Empty Save Time Store Reset 3plit Match Destroy
ATl 5! RS e SR R«

Global[o

enumType: qumltemsf, handieName: data, procName: MakeForm];
- i Booleanltem|[‘

tag: "Verbose", enumName: verbose, place: [8, 2], switch: verhose];
TagOnlyltem[

tag: "Phone Book Tool", enumName: phoneBookTool, place: [204, 2]];
Commandltem[:

tag: "Find", enumName: find, place: [6, 19], proc: Find];
Commanditem[

tag: "Insert", enumName: insert, place: [54, 19], proc: Insert];
Commanditem[

~ tag: "Delete", enumName: delete, place: [114, 19], proc: Delete];
Stringltem[

tag: "Name", enumName: name, place: [6, 36], inHeap: TRUE, string:
name];

Number ltem[

tag: "Phone", enumName: phone, place: [204, 36], signed: FALSE,
value: phone];
Stringltem(

tag: "Address", enumName: address, place: [6, 53], inHeap: TRUE,
string: address];
Enumerateditem[

tag: "Bullding”, enumName: building, place: [204, 53], choices:
building, value: building];
-- Waltaminnit [buddy, 43] "fix the enums"

Using the FormSW!layoutTool

Mesa Language Class -- February, 1988 3-52

Plagiarize!

Form3WwlLayoutTool

§FurmType: {8, command, enum, lohgNum, numb, source, string, tag} -
Tag Zone:
‘AlignX Usebox Anyfont Root: SimpleTool

'Dolt! Clear! SetDefaults! Load! Save! Plagiarize! -
Expand! Compile! Bind! P! Go! Options!

§Cm|pile:

‘Bind:

an {Compiler}

Command Central 12,3 of 17-May-85 12:40:33

SimpleTool/be~ju...... lines: 154, code: 1406, links: 25, frame: 8, time: S6
Elapsed time: 1:00 ‘

, - O
Expand! Compile! . Bind! Ruri! Go! Options!
Compile: SimpleTool
Bind: =)
Log: {Compiler}
{

Mesa Compiler 12.3 of 24-Sep-54 11:45:20
31-Jul-87 16:22:59

Command: SimpleTool

SimpleTool.mesa
lines: 154, code: 1406, links: 25, frame: 8, time: 56

\

Using the FormSWlayoutTool

Mesa Language Class - February, 1988

Zone:

FarmaWwlayout Tool

FormType: {8}, command, enum, longNum, numb, source, string, tag} -

Tag: Zone:

Align¥ Usebox Anyfont Root: SimpleTool

Dolt! Clear! SetDefaults! Load! Save! Plagiarize! .

Yerbose Phone Book Tool

Find! Insert! Delete!

Name: Phone=

R eveenbess BN - |:_<CoPi 0D WD Simpl=Tool mesa |
Create OPos Edit Load Empty Save Time Store Reset [~
AT S RS e R R«

data: DataHandle « NIL;
wh: Window.Handle « NIL;
zone: UNCOUNTED ZOME « Heap.systemZone;

%ﬂﬂﬂﬂ5EEEﬁlIlIIIﬂIIIIIIIIIIIIIIIIIIIIIIIII!

{0

FormType: (sl command, enum, longMum, numb, source, string, tag}
Tag: Zone: myHeap
Align¥ Usebox Anyfont Root: SimpleTool2

Doit! ° Clear! SetDefaults! Load! Save! Plagiarize!

Yerbose Phone Book Tool

Find! Insert! Delete!

File: <CaPilot>WD>3impleTool2.mesa
ECreate CPos Edit Load Empty Save Time Store Reset

—

; .|
Al 5! RS! e R R e

data: DataHandle « NIL;
wh: Window Handle « NIL;
myHeap: UNCOUNTED ZONE « Heap.Create[initial: 4];

Using the FormSWlayoutTool

3-53

Mesa Language Class -- February, 1988

Enum Props

Form3ywLayoutTool

FormType: {HEf), command, enum, longNum, numb, source, string, tag}

Tag: Zone:
AlignX Usebox Anyfont Root: SimpleTool

Doitt Clear! SetDefaults! Load! Save! Plagiarize!
Verbose Phone Book Tool

Find! Insert! Delete!

Name: ' Phone=

Address:

Enumerated Props > Tag:
Close!

Building <<
Erum Name: building

Tag: Building

| ireadOnly invisible drawBox hasContext
SroeEe Feedback: {one}

Yalue: building Proc: ChoiceName: building

Choices: Waitaminnit [buddy, 43] "fix the enums"

Change Choices field:

Enumerated Props »>» Tag: Building

Close! Enum Name: building Tag: Building
readOnly invisible drawBox hasContext

e Feedback: {one}

Value: building Proc: ChoiceName: building
Choices: one two three "more than one word"

Using the FormSWLayoutTool

3-54

Mesa Language Class — February, 1988

Other Props

Form3w'LayoutTool

FormType: {{iF). command, enum, longNum, numb, source, string, tag} .
Tag: Zone:

Align¥ Usebox Anyfont Root: SimpleTool

Doit! Clear! SetDefaults! Load! Save! Plagiarize! o
Verbose Phone Book Tool

Find! Insert! Delete!

Close! Enum Name: phone Tag: Phone

readOnly invisible drawBox hasContext

Signed MotNegative BoxWidth= 64 Default= 32767 Radix: {decimal}
Proc: Yalue: phone

String Props »» Tag: Mg

iClose! Enum Name: name Tag: Name
§read0nly invisible drawBox hasContext
[T Feedback: {normal} BoxWidth= 0 String: name

FilterProc: MenuProc:
Command Props > Tag: Find <<
iClose! Enum Name: find Tag: Find
ireadOnly invisible drawBox hasContext

Pml: Find

3 »» Tag: Verbose <

iClose! Enum MName: verbose Tag: Verhose
‘readOnly invisible drawBox hasContext

i Proc: Switch: verbose

Using the FormSWlayoutTool

3-55

Mesa Language Class -- February, 1988 Index-1

INDEX
A
Allocating ... e e 3-11, 3-20
Allocation e e 3-1, 3-3, 3-27
C : _
Call-Back e e e e e e e e e e e 3-34-3-36
QAT o e 3-39
QR o e e e e e 3-39, 3-41
Create ..ot 3-9-3-12, 3-14-3-16, 3-23, 3-27, 3-34, 3-36
CreateMIDS . . e 3-9-3-10
CreateUniform .. 3-9
D
Deallocating ... e 3-14,3-20
DealloCatioN ..t e 3-27
Delete ...t e e 3-10, 3-15, 3-23, 3-27
DeleteMIDS . e e e e 3-10
Dummy e e e e 3-40
: .
EXPANA .o e e 3-16, 3-18
EXPaNding ... e e 3-16-3-17
F
FIUSI ot e 3-18
FormSWLayoutToolo i 3-29-3-31, 3-40, 3-43
FREE oo i 3-6, 3-14-3-15, 3-20, 3-22, 3-24-3-25, 3-27, 3-34
FreeNoOde ... 3-18
=Ty 1 ' P 3-20
G
GetAL I DULES ..o 3-18
H
(=T « J 3-2, 3-6-3-12, 3-14-3-18, 3-23, 3-27, 3-32
L
LN Lt e e e 3-39

Index for Dynamic Storage Allocation & FormSWLayoutTool

Mesa Language Class -- February, 1988 Index-2

M

MakeNoOde ... e e et 3-18
Y Y =3 4 T T PP 1.1 0
MDD S . e et 3-6-3-8, 3-10, 3-18, 3-27
N

NEW . 3-6, 3-11-3-12, 3-14-3-15, 3-20, 3-22-3-25, 3-27, 3-34
ST 1 Y P 3-6, 3-8, 3-10
P

PriNting ... e e 3-38
o L7 - P 3-6, 3-9-3-10
PIUNE L ettt e 3-18
PUDBIIC o e e 3-6, 3-8
PUL L e 3-38-3-39, 3-41
S

Scheduling ... oo e 3-37
SEQUENCE, e e e e e e 3-21-3-23
QUM S ...ttt i i 3-2,3-21-3-26, 3-28
SHriNG .. e e [P 3-19-3-20, 3-23, 3-35, 3-39
SHriNGS ...t e e e 3-2, 3-19-3-20, 3-23-3-25, 3-28
SYStEMMDSZONe .. e 3-6, 3-8
SYS eMZONe ... e 3-6, 3-8, 3-11, 3-18, 3-27, 3-32
T

=33 PP 3-38-3-39, 3-41
u

UNiform o e 3-6, 3-10

Index for Dynamic Storage Allocation & FormSWLayoutTool

Mesa Language Class -- March, 1988

Signals

Signals

4-1

Mesa Language Class -- March, 1988

1. Signals
a. Signals overview
b. Declaring signals
c. Generating signals
d. Catching signals
e. Thesignal UNWIND

Outline

Signals

42

Mesa Language Class

-- March, 1988

Layefed Software

Level 3

Level 2

Levei 1

Level 0

T~

" Signals

Mesa Language Class -- March, 1988

Types of Signals Crossing Abstraction Boundaries

-- Informational signal (e.g. bounds fault)

-- Caller error (e.g. bad data, wrong order)

-- Abstraction failure (e.g. buffer overflow, no channel)
-- Internal Error

Signals

4-4

+ Mesa Language Class -- March, 1988

Signals vs. Polling

An example of polling:

-- -1isareturn code forinvalid data.
n « GetInput[];
WHILE n = -1 DO
n « GetInput[]; --ifinputtoo big, try again
ENDLOOP;

An example of signals:

n « GetInput[!InputTooBig => RETRY];

Signals

4-5

Mesa Language Class -- March, 1988 ' 4-6

The Signaller

When a signal gets “raised”, normal execution is suspended and control is
transferred to the Signaller, which is part of Mesa’s run-time support. It is
the Signaller’s responsibility to find and execute bodies of code that
recognize the signal that was raised. The bodies of code that recognize the
the signal are called catch phrases.

Catch phrases are visited in reverse order of the standard scope rules; that is,
inner blocks are visited first, then outer blocks. The order at the procedure
level goes from the most recently called procedure to the least recently
called procedure, beginning with the procedure that raised the signal.

The path that the Signaller follows in order to find catch phrases that
recognize asignal is called the propagation path.

Signals

Mesa Language Class -- March, 1988

3 Signal Operations

-- Declaring a signal
-- Generating a signal (a.k.a. Raising a signal)

-- Recognizing a signal-

Signals

4-7

Mesa Language Class -- March, 1988 4-8

Declaring a Signal

If you are going to use a particular signal only within one module, you
should declare it only within that module. If you are going to use the signal
across many modules, the signal must be declared in an Interface. (Unless
otherwise specified, the term signal may stand for both SIGNAL and ERROR.)

Syntax for Signals:
{signalname>: SIGNAL[<args if any>] RETURNS[<results if any>]:
Example:

mySignal: SIGNAL[s: LONG STRING] RETURNS[ns: LONG STRING]:

Syntax for Errors:
{errorname>: ERROR[<args if any>] RETURNS[<results if any>];
Example:

myError: ERROR[type: ErrorType];

ErrorType: TYPE = {...,maxSizeExceeded, invalidParameters,
invalidSize, insufficientSpace, otherError...,};

** ERRORs cannot be RESUMEd.

Signals

Mesa Language Class -- March, 1988 4-9

Initializing a signal
In the implementation module, initialize the body of the signal to the
keyword CODE:
Example:

mySignal: SIGNAL[s: LONG STRING]
RETURNS[ns: LONG STRING] = CODE;

The actual code for the signal will be dynamically bound at runtime.

Signals

Mesa Language Class -- March, 1988

Generating a Signal

If the signal doesn’t return results:

SIGNAL <signalname>[<arguments if any>];
ERROR <errorname or signalname>[<arguments if any>];

RETURN WITH ERROR <errorname or signalname>
[<arguments if any>];

ERROR;

If the signal returns results:

{leftside> « SIGNAL <signalname>[<arguments, if any>];

{leftside> « ERROR <errorname or signalname>[<args, if any>];

Signals

4-10

Mesa Language Class -- March, 1988

GetInput: PROCEDURE RETURNS[inputNumber: INTEGER] = {

Generating a Signal

IF inputNumber NOT < 1000 THEN

SIGNAL InputTooBig;

"|Proc 1

Call Stack

Main Prog

Proc 2

Proc 3

Getinput

InputTooBig

Signals

4-1

Mesa Language Class -- March, 1988 4-12

Recognizing Signals With Catch Phrases

A propagating signal can be recognized by catch phrases. Catch phrases, in
general, contain 2 parts:
1) a recognition clause (specifying the signal of interest) and
2) an action clause (specifying what should happen if that signal is
recognized). Its syntax is similar to a SELECT statement.

Catch phrases can be located in 2 places:
1) during a procedure call (tucked in with the argument list) and
2) at the beginning of any block (including loops).

Signals

Mesa Language Class -- March, 1988 4-13

Methods of Recognizing a Signal
(in an Argument List)

A catch phrase can be included in an argument list as the last item. That
includes any procedure call, signal call, START, RESTART, STOP, JOIN, FORK,
and WAIT. A ! (exclamation point) in the argument list marks the beginning
of a catch phrase.

Examples:

n « GetInput[!InputTooLittle => BEGIN ... END;
InputTooBig => RESUME]; -- example without parameters

OpenChannel[size, handle !InputTooBig, NoChannels => RETRY];
-- example with parameters

Scope: If the signals InputTooLittle or InputTooBig are raised within
GetInput they will be recognized by the catch phrase attached to the
GetInput procedure call.

Similarly, if the signals InputTooBig or NoChannels are raised within
OpenChannel they will be recognized by the catch phrase attached to the
OpenChannel procedure call.

Signals

Mesa Language Class -- March, 1988 | 4-14

More Examples of Recognizing a Signal
(in an Argument List)

Note that the catch phrases can be different each time that a procedure is
called.

Example:

n ¢« GetInput[!InputToolLittle => BEGIN ... END;
InputTooBig => RESUME];

n « GetInput[!InputTooBig => RETRY];

Signals

Mesa Language Class -- March, 1988 4-15

Another Method of Recognizing a Signal
(With ENABLE Clauses)

A catch phrase can be included at the beginning of any BEGIN - END block.
This is done with an ENABLE Clause.

Example:

PlayAGame: PROCEDURE = {
IF ... THEN

BEGIN

ENABLE OutOfMoney => {
GetMoreMoney[]:;
RESUME;
}s

{statement 1>;

{statement 2>;

END;
{statement 3>;

3 |
Scope: Signals raised in <statement 1> or<statement 2> will be recognozed

with this catch phrase. Signals raised in <statement 3> will not be
recognized.

Signals

Mesa Language Class -- March, 1988 4-16

More Examples with ENABLE Clauses

An ENABLE Clause can also occur at the beginning of any DO loop.
Example:

THROUGH [1..n]

DO
ENABLE {
Sigl => LOOP;
Sig2, Sig3 => RETRY;
}:

{statement 1>:
{statement 2>;

ENDLOQOOP;
{statement 3>;

Scope: Signals raised in <statement 1> or <(statement 2> will be recognized
with this catch phrase. Signals raised in <statement 3> will not be
recognized.

Signals

Mesa Language Class -- March, 1988 4-17

The Scope of ENABLE

BEGIN
<{ENABLE clause>
{Declarations>
{Statements>
{ExitsClause>
END;

Catch phrases in an ENABLE clause cannot access variables declared in the
enclosing BEGIN-END block.

Example:

BEGIN _
ENABLE OutOfMoney => {
IF i < 0 THEN ... --iisundefined at this point
GetMoreMoney[];
RESUME ;
}; --ofthe Enable Clause

i: CARDINAL « 0; --iisdeclared here
i€ i+ 1;

END;

Signals

Mesa Language Class -- March, 1988 4-18

The Scope of ENABLE (con’t)

To get around this, use 2 sets of BEGIN and END:

BEGIN
{Declarations>
BEGIN
{ENABLE clause>
{Statements>
END;
{ExitsClause>
END;

Example:

BEGIN

i: CARDINAL « 0; --declareiinan outerblock
BEGIN

ENABLE OutOfMoney => {

IF 4 < 0 THEN ... --validto referenceihere
GetMoreMoney[];
RESUME ;

};
i« i+ 1;
END;
END;

Signals

Mesa Language Class - March, 1988 4-19

Results of Entering a Catch Phrase

A signal that has been recognized in a catch phrase can either be rejected
(which means that the signal will continue to propagate up the call stack) or
it can be caught which means that the signal will stop its propagation).

A catch phrase can reject the signal three different ways:
1) explicitly with a REJECT statement,
2) implicitly by not being recognized,
3) implicitly by falling off the end (not explicitly stopping propagation).

Methods of “catching” a signal will be forthcoming.

Signals

Mesa Language Class -- March, 1988 4-20

Rejection Examples

For the signal InputTooBig:

1) InputTooBigis recognized but explicitly rejected:
n « GetInput[!InputTooBig => {

IF ... THEN REJECT;

2) InputTooBig is not recognized therefore, itis implicitly not caught:

n « GetInput[!InputTooLittle => BEGIN .. END];

3) InputTooBig fell off the end because there was no explicit command
about where control should go (just ‘recognized’, but not ‘caught’):

n « GetInput[!InputTooBig => {

11

Signals

Mesa Language Class -- March, 1988 4-21

Catchy Statements

RESUME
CONTINUE
RETRY
LOOP

EXIT
GOTO

If you want to “catch” a signal (stop its propagation), you must have one of
these six statements at the end of a catch phrase. These statements tell the
Signaller where to transfer program control. If none of these statements are
used in a catch phrase, it is assumed that the Signaller is to remain in control
and should continue along the propagation path looking for more catch
phrases.

Any signal that is not caught within the call stack will be caught by the
debugger. The message that you will see is “Uncaught Signal ... “.

Signals

Mesa Language Class -- March, 1988 4-22

RESUME Statement

Treat the signal call as a procedure call; return to the point the signal was
raised.

Example:

BadData: SIGNAL[...] RETURNS[...];
GetData: PROC[...] RETURNS[...] = {

IF ... THEN
n « SIGNAL BadData[...]; --control returns here after the RESUME
-- with n getting assigned the returned value.

--mainline code

n « GetData[... !BadData => Cemnn pud code Mare
RESUME[-- with some number that will get assigned ton -- 17 ;

Control returns to where the signal was raised, but with a new value (if
there is one).

Note: There are two more-detailed examples of RESUME in later slides.

Signals

Mesa Language Class -- March, 1988 4-23

CONTINUE Statement

Goes to the statement following the one to which the catch phrase belongs.

® Catch phrase in an argument list:

temp ¢« MostRecentTemp[!NoTemp => CONTINUE];
{statement 1>

Control passes to <statement 1>.

® Catch phrase in an Enable Clause:

-- code fragmentin a program
IF ... THEN

BEGIN

.|ENABLE NolInterest => CONTINUE;
{statement 1>;

n « GetData[]; -- Nointerest may be raised here
{statement 2>;

END;

<{statement 3>

Control passes to <statement 3>.

Signals

Mesa Language Class -- March, 1988

CONTINUE Statement (con’t)

® Catch phrasein aloop:
-- code fragment in a program
WHILE ... DO

ENABLE NoInterest => CONTINUE;
{statement 1>;

n « GetData[]; -- Nointerest may be raised here.
{statement 2>;

ENDLOQOOP;
{statement 3>;

Control passes to the next iteration.

Signals

4-24

Mesa Language Class -- March, 1988 4-25

RETRY Statement

Go back to the beginning of the statement to which this catch phrase
belongs.

® Catch phrase in an argument list:
-- code fragment in a program
tries « 0;
n « GetHandle[!NonelLeft => {
tries « tries + 1;
IF tries < 8 THEN RETRY ELSE GOTO errorMsg; }];

The call to GetHandle is executed again.

® Catch phrasein an Enable Clause:
-- code fragment in a program
IF ... THEN {

ENABLE IncorrectResults => RETRY;
{statement 1>;

{statement 2>; --IncorrectResults may be raised here.
{statement 3>;

}:
{statement 4>;

The block (starting with <statement 1>)isstarted over.

Signals

Mesa Language Class -- March, 1988 4-26

RETRY Statement (c_on’t)

® Catch phrasein alLoop:
-- code fragment in a program
WHILE ... DO

ENABLE Sigl => RETRY;

{statement 1>;

n « GetData[]; --Sig1 could be raised here
{statement 2>;

ENDLOQOP:
{statement 3>;

The iteration in which the SIGNAL was raised (the current iteration) is
started over (starting with <statement 1>).

Signals

Mesa Language Class -- March, 1988 4-27

LOOP, EXIT and GOTO (revisited)

LOOP and EXIT are only meaningful within loops.

® Example of LOOP:
-- code fragment in a program
WHILE ... DO

ENABLE Sigl => LOOP;

{statement 1>;

n « GetData[]; -- Sig1 could be raised here
{statement 2>; '

ENDLOOP;
{statement 3>;

Control passes to the next iteration.

® Example of EXIT:
-- code fragment in a program
WHILE ... DO

ENABLE Sigl => EXIT;

{statement 1>;

n « GetData[]: --Sig!?couldbe raised here
{statement 2>;

ENDLOOP;
{statement 3>:

Control passes to <statement 3>.

Signals

Mesa Language Class -- March, 1988 4-28

LOOP, EXIT and GOTO (con't)

® Example of GOTO in a BEGIN - END block:
-- code fragment in a program
IF .. THEN { ‘

ENABLE IncorrectResults => GOTO punt;
{statement 1>;
{statement 2>; --IncorrectResults may be raised here.

¥
{statement 4>;
EXITS

punt => {...};

Control jumps to the EXITS clause looking for the arm labelled punt.

® Example of GOTO in a Loop:
-- code fragment in a program
WHILE ... DO

ENABLE NoInterest => GOTO getOut;
{statement 1>;

n « GetData[]; -- Nolnterest may be raised here.
{statement 2>;

REPEAT
getOut => NULL;
ENDLOOP;
{statement 3>;

Signals

Mesa Language Class -- March, 1988 4-29

UNWIND

Proc

Proc A l

Proc

Proc

Proc

Proc

M| m|[|O|O | |>

Proc Signal

In the example above, assume procedure F raises a signal. Procedure A
catches that signal and does a CONTINUE (which resumes control in the
frame which the signal was caught), so procedures B, C, D, E, and F will be
removed from the call-stack.

A procedure that is going to be removed from the call-stack should be
notified of that fact so that it may have a chance to clean up after itself (e.g.
close files, deallocate storage, etc.).

Mesa provides the signal UNWIND as a mechanism of notifying procedures
that they will be removed from the call-stack. This allows a procedure to
restore invariants if that procedure suddenly finds itself being removed as
the result of a lower level signal being caught and handled by a catch phrase
in a procedure higher in the call-stack.

Signals

Mesa Language Class -- March, 1988 4-30

The path of UNWIND

When a catch phrase has recogn.ized é signal, and is about to do a GOTO,
EXIT, LOOP, RETRY, or CONTINUE, the UNWIND signal is raised at the point
the original signal was raised.

The propagation path for UNWIND is the same as that of the original signal.
After UNWIND is passed to the last catch phrase in a given procedure frame,
the frame is deallocated. When UNWIND reaches the “scoping boundary”
of the catch frame that accepted the original signal, it stops and the jump
corresponding to the statements above takes place, destroying the last
catch frame in the process. (The UNWIND does not enter the catch phrase
that accepted the original signal.)

Since an UNWIND signal is just like any other signal, it may be recognized by
procedures that wish to restore invariants before being removed from the
call-stack.

The propagation of UNWIND should never be stopped by one of the six
magic “catchy” keywords.

-- Code fragment
ENABLE UNWIND =>
BEGIN
.. -- close files, etc --
END;

Signals

Mesa Language Class -- March, 1988 . 4-31

Summary

Declare the signal (or use a pre-declared signal)
Generate | Raise the signal

Recognize the signal (at which point you can perform some action or make
some test)

Catch or Reject the signal (IF the signal is caught with something other than
RESUME, then the Signaller raises the signal UNWIND before transferring
control.)

If UNWIND was raised, it will follow the original propagation path.

Transfer program control to the pre-specified place.

Signals

Mesa Language Class -- March, 1988

Full Signal Example

InputTooBig: SIGNAL[number: INTEGER]
RETURNS[newNumber: INTEGER] = CODE;

n: INTEGER;

GetInput: PROCEDURE RETURNS[inputNumber: INTEGER] = {

inputNumber « ... --inputNumber getssome value --
IF inputNumber NOT < 1000 THEN

inputNumber ¢« SIGNAL InputTooBig[inputNumber];
. --dosomething interesting

};

--start of mainline code

-- code fragment
n « GetInput[!InputTooBig =>
IF number < 1100 THEN
RESUME[999]
ELSE {
-- Message user about range of Input --
RETRY }71;

Signals

4-32

Mesa Language Class -- March, 1988 4-33

Another Signal Example

-- Just FYI| (it is already declared in the String Interface)
String.StringBoundsFault: SIGNAL[s: STRING]
RETURNS[ns: STRING] = CODE;

-- code fragment in a program
str: LONG STRING « GetStringFromSomehwhere[];
c: CHARACTER ¢« GetCharFromSomewhereElse[];

String.AppendChar[str, ¢ !String.StringBoundsFault =>

BEGIN
ns « String.MakeString{z, s.maxlength + 5]; --temporary
String.Copy[from:s, to:ns]; --Copyoldstring to new string
String.FreeString[z, s]; -- Deallocate old string
str « ns; -- set global pointer to new string
RESUME[str]; -- RESUME with the new string

END];

After the BEGIN in the Catch Phrase

Stf-\\\\‘ ¢ \~,J:]

Se—P T Ih|i |s i s t |hile sitirli|n

nse

stre. éefore the END in the Catch Phrase EJ
C ¥
¢ T7lh!i i t [h tlr i
1 }S 1 1S e S ri{irin
ns /

Signals

Mesa Language Class -- March, 1988 4-34

References

J. d. Horning, Programming Languages, in T. Anderson and B. Randell
(eds.) COMPUTING SYSTEMS RELIABILITY, Cambridge University
Press, 1979.

Roy Levin, Program Structures for Exceptional Condition Handling, Ph. D.
thesis (available as technical report), Department of Computer Science,
Carnegie-Mellon University, 1977.

J. B. Goodenough, Exception handling: Issues and a proposed notation,
COMM. ACM 18,no0.12,1975.

F. Christian, Exception Handling and Software Fault Tolerance, 10th
Symposium on Fault Tolerant Computing Systems, Kyoto, 1980.

Signals

Mesa Language Class -- May, 1988 4-35

Mesa Streams

Streams

Mesa Language Class - May, ~1988 4-36

Outline

1.Streams
a. Streams overview
b. Declaring Streams and initializing them
c. Possible Errors
d. I/O Procedures
e. Stream Blocks
f. Deleting Streams

Streams

Mesa Language Class -- May, 1988 4-37

Mesa Streams

Streams provide sequential access to data (a way to read or write a “stream”
of bytes, words, etc.) [There are other facilities for handling random access of
files by mapping segments of files to virtual memory. See the MSegment
interface documented in the Mesa Programmer’s Manual for more
information.]

Streams are device independent. (Floppy, tape drive, disk file, etc.) However,
for the purposes of this lecture, a stream is a connection from a program to a
file on the local disk in order to read and write that file.

Streams

Mesa Language Class -- May, 1988 4-38

Necessary Stream Operations

-- Declare a stream variable

-- Acquire the stream handle (initialize the connection)
-- Use the stream (get data and put data)

-- Delete the stream

Streams

Mesa Language Class -- May, 1988 , 4-39

Declaring Streams

inStream: MStream.Handle;

inStream: Stream.Handle;

MStream.Handle and Stream.Handle are equivalent types. You can use them

interchangeably. This is because:
MStream.Handle: TYPE Stream.Handle;

Streams

Mesa Language Class -- May, 1988 4-40

MStream and Stream

MStream is a Tajo interface (documented in the Mesa Programmer’s
Manual.)

Stream is a Pilot interface (documented in the Pilot Programmer’s Manual.)

To attach a stream to a local disk file, use the MStream interface. All device-
specific information will be encapsulated in the stream handle. MStream is
usually used in conjunction with the MFile interface, also documented in the
Mesa Programmer’s Manual.

Once you have set up the stream, use the Stream interface to do your input
and output. Once you have a connectidn, a stream to a disk file is just like a
stream to any other device.

Streams

Mesa Language Class -- May, 1988 4-41

Acquiring Stream Handles

Two step process:
® Acquire a handle to the file (MFile procedures)
® Attach astream to that file (MStream procedures)

1) To acquire a handle to a specified file, use this MFile procedure
(remember, this is just the definition!):

MFile.Acquire: PROCEDURE [
name: LONG STRING,
access: MFile.Access,

-- MFile.Access: TYPE = {readOnly, writeOnly, readWrite, ...}
release: MFile.ReleaseData, --explained later
mightWrite: BOOLEAN « FALSE,
initiallLength: MFile.InitialLength « MFile.dontCare,
type: MFile.Type « unknown]

RETURNS [MFile.Handle];

2) To attach a stream to that file, use this MStream procedure:

MStream.Create: PROCEDURE [
file: MFile.Handle,
release: MStream.ReleaseData, --explained later
options: Stream.InputOptions ¢« Stream.defaultInputOptions,
streamBase: File.PageNumber « 0]
RETURNS [stream: MStream.Handle];

Example:

fileName: LONG STRING ¢« "junk"L;
file: MFile.Handle « MFile.Acquire[
name: fileName, access: readWrite,
release: [NIL, NIL] !MFile.Error => GOTO exit];
stream: MStream.Handle « MStream.Create[:
file: file, release: [NIL, NIL] !MStream.Error => GOTO exit];

Streams

Mesa Language Class -- May, 1988 4-42

Acquiring Stream Handles to Temp Files

The MFile interface provides a mechanism of providing a temporary,
anonymous file, if that is what your program needs. Once you have acquired
a file handle to a temporary file, use the same MStream procedure shown
earlier to attach a stream to it.

MFile.AcquireTemp: PROCEDURE [
type: MFile.Type, --MFile.Type: TYPE = {text, binary, directory, ...}
initialLength: MFile.InitiallLength « MFile.dontCare,
volume: Volume.ID « [0, 0, 0, 0, 0]]
RETURNS [MFile.Handle];

Example:

tempFile: MFile.Handle « MFile.AcquireTemp[type: text
IMFile.Error => GOTO exit];

tempStream: MStream.Handle « MStream.Create[file: tempFile,
release: [NIL, NIL] !MStream.Error => GOTO exit];

Streams

Mesa Lanqguage Class -- May, 1988 4-43

ReleaseData

The acquire procedures in both MStream and MFile have a parameter of type
ReleaseData. (Definitions are below.) ReleaseData is used to specify how
your program intends to share files with other programs.

MFile.ReleaseData: TYPE = RECORD [
proc: MFile.PleaseReleaseProc « NIL,
clientInstanceData: LONG POINTER « NIL];

MStream.ReleaseData: TYPE = RECORD [
proc: MStream.PleaseReleaseProc « NIL,
clientInstanceData: LONG POINTER « NIL];

Unless you are planning to share the file with other processes, you should
just pass the record [NIL, NIL]for the ReleaseData parameter.

Streams

Mesa Language Class -- May, 1988 4-44

Accelerators

When you know the name of the file that you want to attach a stream to,
and you want to have one of the standard accesses, you can use

an “accelerator” procedure to acquire the file handle and attach a stream to
that file:

MStream.ReadOnly: PROCEDURE[
name: LONG STRING, release: MStream.ReleaseData]
RETURNS [MStream.Handle];

MStream.ReadWrite: PROCEDURE[
name: LONG STRING, release: MStream.ReleaseData,
type: MFile.Type]
RETURNS [MStream.Handle];

MStream.WriteOnly: PROCEDURE[
name: LONG STRING, release: MStream.ReleaseData,
type: MFile.Type]
RETURNS [MStream.Handle];

Example:

fileName: LONG STRING « "name"L;

foo: MStream.Handle « MStream.ReadWrite[
name: fileName, release: [NIL, NIL], type: text
IMStream.Error, MFile.Error => GOTO exit];

Streams

Mesa Language Class -- May, 1988 4-45

Errors

MStream and MFile procedures can potentially raise signals that you need to
handle. These signals are:

From the MFile Interface:

MFile.Error: ERROR [file: MFile.Handle, code: MFile.ErrorCode];

MFile.ErrorCode: TYPE = MACHINE DEPENDENT {noSuchFile,
conflictingAccess, insufficientAccess, directoryFull,
directoryNotEmpty, illegalName, noSuchDirectory, ...};

From the MStream Interface:

MStream.Error: ERROR [
stream: Stream.Handle, code: MStream.ErrorCode];

MStream.ErrorCode: TYPE = MACHINE DEPENDENT {invalidHandle,
indexOutOfRange, invalidOperation, fileToolLong,
fileNotAvailable, invalidFile, other(LAST[CARDINAL])};

Example:

foo: MStream.Handle ¢« MStream.ReadWrite[
name: "someName", release: [NIL, NIL], type: text
IMFile.Error => {
SELECT code FROM .

conflictingAccess, insuffiqientAccesé => GOTO AccessProblems;
illegalName => GOTO BadName;
ENDCASE => GOTO Al110ther};

MStream.Error => GOTO StreamProblems];

Streams

Mesa Language Class - May, 1988

Stream |/0

Use the Stream Interface to perform any I/O with your stream.

For getting information from the stream:

Stream.GetByte: PROCEDURE[sH: Stream.Handle]
RETURNS [byte: Stream.Byte];

Stream.GetChar: PROCEDURE[sH: Stream.Handle]
RETURNS [char: CHARACTER];

Stream.GetWord: PROCEDURE[sH: Stream.Handle]
RETURNS [word: Stream.Word]; --word = 2 bytes

For sending information to the stream:

Stream.PutByte: PROCEDURE[sH: Stream.Handle,
byte: Stream.Byte];

Stream.PutChar: PROCEDURE[sH: Stream.Handle,
char: CHARACTER]:

Stream.PutWord: PROCEDURE[sH: Stream.Handle,
word: Stream.Word]; --word = 2 bytes

Stream.PutString: PROCEDURE[sH: Stream.Handle,
string: LONG STRING, endRecord: BOOLEAN « FALSE];

Streams

4-46

Mesa Language Class -- May, 1988 4-47

Reaching the End of the Stream

All of the Stream.Get* I/0 procedures will raise a signal if the end of the
stream (end of file) is reached. You should catch this signal.

Stream.EndOfStream: SIGNAL[nextIndex: CARDINAL];
Example:

DO
ch: CHARACTER;
ch « Stream.GetChar[inStream !Stream.EndOfStream => EXIT];
Stream.PutChar[outStream,ch];
ENDLOOP;

Streams

Mesa Language Class -- May, 1988 4-48

Stream Blocks

Stream Blocks provide a method of transfering arbitrary data structures.
These structures are read into or out of a buffer of uninterpreted bytes. You
can then LOOPHOLE the information into the structure of your choice.

The Stream.B1ock is a record that contains a pointer to a buffer, the starting
position within that buffer, and the stopping position.

blockPointer |startIndex |stopIndexPlusOne

Buffer of uninterpreted bytes

Streams

Mesa Language Class -- May, 1988 | 4-49

Stream Block Definitions

Stream.Block: TYPE = Environment.Block;

Environment.Block: TYPE = RECORD([
blockPointer: LONG POINTER TO PACKED ARRAY [0..0)
OF Environment.Byte,
startIndex, stopIndexPlusOne: CARDINAL];

Stream.CompletionCode: TYPE = {normal, endRecord,
sstChange, endOfStream, attention, timeout};

Stream.GetBlock: PROCEDURE[sH: Stream.Handle, block: Stream.Block]
RETURNS [bytesTransferred: CARDINAL, why: Stream.CompletionCode,
sst: Stream.SubsequenceType];

Stream.PutBlock: PROCEDURE[sH: Stream.Handle,
block: Stream.Block, endRecord: BOOLEAN « FALSE];

Streams

Mesa Language Class -- May, 1988 ‘ 4-50

Block Example

EmployeelInfo: TYPE = MACHINE DEPENDENT RECORD[
name(0): PACKED ARRAY[0..30) OF CHARACTER,
ssn(15): LONG CARDINAL,
employeeNumber(17): LONG CARDINAL,
gradelevel(19): CARDINAL];

RecordSize: CARDINAL = SIZE [Employeelnfo] * 2;--SIZE returns # of words
rec: LONG POINTER TO EmployeelInfo;

buffer: PACKED ARRAY[O0..RecordSize) OF Environment.Byte;
block: Stream.Block ¢« [@buffer, 0, RecordSize];

inputStream: Stream.Handle « MStream.ReadOnly[name: "input",
release: [NIL, NIL] !MStream.Error, MFile.Error => GOTO exit];

outputStream: Stream.Handle ¢« MStream.ReadWrite[name: "output",
release: [NIL, NIL]}!MStream.Error, MFile.Error => GOTO exit];

-- code fragment
completionCode: Stream.CompletionCode ¢« normal;
UNTIL completionCode = endQfStream DO
[block.stopIndexPlusOne, completionCode,] «
Stream.GetBlock[inputStream, block];
rec « LOOPHOLE[block.blockPointer];
rec.gradelevel « rec.gradelevel + 3;
Stream.PutBlock[outputStream, block, TRUE];
ENDLOOP;

il

Streams

Mesa Language Class — May, 1988 4-51
Block Example
blockPointer
Get bytes from inputStream
\4
buffer
After LOOPHOLE
blockPointer
gradelevel
[
e name ssn # $ buffer

T~

rec

Put bytes to outputStream

Streams

Mesa Language Class -- May, 1988 4-52

Random Access

Stream.Position: TYPE = LONG CARDINAL; --zeroisthe beginning of the file

Stream.GetPosition: PROCEDURE [sH: Stream.Handle]
RETURNS [position: Stream.Position];

Stream.SetPosition: PROCEDURE [sH: Stream.Handle,
position: Stream.Position];

Example:

Advance: PROC[stream: Stream.Handle, amount: Stream.Position]
RETURNS[newPos: Stream.Position] = {
position: Stream.Position ¢« Stream.GetPosition[sH: stream];
newPos ¢« position + amount;
Stream.SetPosition[sH: stream, position: newPos];

};

Streams

Mesa Language Class - May, 1988 : 4-53

Deleting Streams

Always delete the stream handle when you are through with it. This will

release the file handle, so that other processes may use the file. Regardless of
how the stream handle was acquired, use this procedure:

Stream.Delete: PROCEDURE[sH: Stream.Handle];

Example:

myStream: Stream.Handle « MStream.ReadOnly[...];
--Do /0 --

Stream.Delete[myStream];
myStream « NIL;

Streams

Mesa Language Class -- May, 1988 4-54

Stream Example

This example copies the contents of one file to another.

-- code fragment
inStream, outStream: MStream.Handle;

inStream « MStream.ReadOnly[
name: "letter.txt"L, release: [NIL, NIL]
!IMFile.Error, MStream.Error => GOTO exit];

outStream « MStream.WriteOnly[
name: "letter.out"L, release: [NIL,NIL], type: text
IMFile.Error, MStream.Error => GOTO exit];

DO
Stream.PutChar[outStream,
Stream.GetChar[inStream !Stream.EndOfStream => EXIT]];
ENDLOOP;

Stream.Delete[inStream];

Stream.Delete[outStream];
inStream « outStream ¢« NIL;

Streams

Mesa Language Class -- February, 1988 Index-1

INDEX
A
ACCRIEIatOrS . i e e 4-44
Yo L = P 4-38, 4-41
F el LT = =T 4 T« TP 4-42
B
BloCK o 4-48 - 4-51
BlOCKS o 4-36, 4-48
c
Catching ... o e 4-2
CatChy .. e e PR 4-21
CompletionCodettt i e e e e e 4-49 - 4-50
CONTINUE ..ot e et 4-21,4-23-4-24,4-29 - 4-30
(O = = P 4-41-4-42
D
Declaning ... i i e i e et 4-2,4-7 -4-8,4-36, 4-39
Delete P e et et 4-38,4-53 - 4-54
Deleting ..o 4-36, 4-53
E
ENABLE ... i i it it e i e e 4-15-4-18,4-23 - 4-28, 4-30
ENdO S tream ..o e e e 4-47,4-54
=3 =) 4-4,4-8, 4-10, 4-41 - 4-42, 4-44 - 4-45, 4-50, 4-54
Errors P e 4-8, 4-36, 4-45
EXamMPle . e et i 4-32 - 4-33,4-50- 4-54
EXT e e 4-21,4-27 - 4-28, 4-30, 4-47,4-54
G 4
GeNneratingt e e 4-2,4-7,4-10 - 4-11
GetBlOCK .. i e e e i e e 4-49 - 4-50
GetByte i i P 4-46
7= oo - T PP 4-46 - 4-47,4-54
L= d oo L T o P 4-52
LT3 707 T PP 4-46
GOTO ...t 4-21, 4-25, 4-27 - 4-28, 4-30, 4-41 - 4-42, 4-44, 4-50, 4-54
H
Handleot 4-39, 4-41 - 4-42,4-44 - 4-46, 4-49 - 4-50, 4-52 - 4-54

Index for Signals & Streams

Mesa Language Class -- February, 1988 Index-2

I

F T4 = 114 T o T 4-9
L

LoOp e 4-16,4-21,4-24, 4-26 - 4-28, 4-30
M

M o e e 4-40 - 4-45, 4-50, 4-54
Y RS = -1 o O 4-39 - 4-45, 4-50, 4-53 - 4-54
0

L@ < = - £ '« 1o TP 4-7,4-38
P

Pollingccooiiiiiin.. P 4-5
POSITION .« ottt R 4-52
PULBIOCK ..o e e L. 4-49-4-50
PULBY L ..ot e e 4-46
PULC Al L e 4-46 - 4-47, 4-54
W% o o T 4-46
[3 A4 e o P 4-46
R

RAISING. o it i i i e et e e 4-7
2= 1 o U= o o AP 4-52
ReadONIY ..t i e e i e 4-44, 4-50, 4-53 - 4-54
REAAWIEE . ittt et e ettt e e e e 4-44, 4-50
RECOGNIZING ..ot i i i ettt it it e 4-7,4-12 - 4-15
REJECT i i e et e e ettt e e 4-19-4-20
2= =T 4 o o TP 4-20
ReleaseData ...t e e 4-41,4-43 - 4-44
RESUIS .o i i i i e et e e e e, 4-19
RESUME i, 4-13 - 4-15,4-17 - 4-18, 4-20 - 4-22,4-31 - 4-33
RETRY ... 4-5,4-13 - 4-14,4-16, 4-20 - 4-21, 4-25 - 4-26, 4-30, 4-32

Index for Signals & Streams

Mesa Language Class -- February, 1988 Index-3

S

1 oo T o 1= PP 4-13,4-15-4-18
S P OSITION L i e e 4-52
SIGNAL ... e 4-8 - 4-11,4-22, 4-26, 4-32 - 4-33, 4-47
Signaller ... e e e 4-6,4-21,4-31
Signals e e 4-1-4-2,4-4-4-5,4-8,4-12,4-15- 4-16
13 - o < 4-11
Stream ... e 4-36, 4-38 - 4-42, 4-45 - 4-50, 4-52 - 4-54
11 == T .o T 4-35 - 4-37, 4-39, 4-53
U _

UNWIND . e e e e e sttt e 4-2,4-29 - 4-31
w

WHteONlY L e e 4-44,4-54

Index for Signals & Streams

Mesa Language Class

-- March, 1988

Processes and Concurrency

Processes and Concurrency

Mesa Language Class -- March, 1988

Outline

1. Processes and Concurrency

a
b

C.

d
e

f.

. Concurrent execution

. New language features for processes
Monitors
. Synchronization -- Condition Variables

. More general forms of monitors

Signals

Processes and Concurrency

Mesa Language Class -- March, 1988 5-3

Concurrency

The Mesa architecture is designed for applications that expect a large
amount of concurrent activity. Support for concurrent execution of multiple
processes is provided in the Mesa Language. Mesa’s goal is to reduce the
complexities associated with concurrent programming.

Processes and Concurrency

Mesa Language Class -- March, 1988 . 5.4

Concurrency

In order to support the notion of dynamic processes, the Mesa Language
must provide the ability to create new processes and also allow
communication between the processes.

There must also be a way to control the scheduling of these processes so
that they are not manipulating shared data at the same time.

To create new processes and synchronize their results, Mesa has provided to
language operators:
FORK/JOIN

To control the scheduling of these processes, Mesa has provided the
synchronization mechanism of:
Monitors

Processes and Concurrency

Mesa Language Class -- March, 1988 5-5

Processes

In Mesa, the creation of a new process is simply a special procedure
activation that executes concurrently with its caller.

Mesa allows any procedure (except an internal procedure -- to be discussed
shortly) to be invoked in this way, at the caller’s discretion.

It is possible to later retrieve the results returned by this procedure.

Processes and Concurrency

Mesa Language Class -- March, 1988

Call Stack
Synchronous call Asynchronous call
From AtoB
ProcZ ProcZ ProcB
Proc A Proc A Proc C
Proc B
ProcC

Processes and Concurrency

Mesa Language Class -- March, 1988 5-7

New Language Operations and Data Types

There are two new language operators and one new data type for
supporting concurrent execution of multiple processes.

PROCESS-- the data type of the value returned by invoking FORK and used
to identify the process in future operations, including JOIN.

FORK -- the operator that is used to create a new process.
JOIN - the operator that is used to synchronize the return of a
process.

Processes and Concurrency

Mesa Language Class -- March, 1988 5-8

The Process Interface

Pilot also implements some routines that are used less frequently. These
routines are defined in the Process interface (in the PPM).

Process.Detach: PROCEDURE[PROCESS];
-- the operator that is used to let a new process run by itself (that is, it will never
be JOINed)

Process.Abort: PROCEDURE[process: UNSPECIFIED];
-- notifies a specific process that it should abort

Process.Pause: PROCEDURE[ticks: Process.Ticks];
-- puts a process to sleep for a specified amount of time

Process.Yield: PROCEDURE;
-- the calling process gives up control of the processor

Process.SetTimeout: PROCEDURE[
condition: LONG POINTER TO CONDITION, ticks: Process.Ticks];
-- sets the time limit a process will wait on a condition variable '

Process.Ticks is a tick of the process timer clock. There are procedures to
convert from milliseconds < = > ticks and seconds < = > ticks. Consult the
PPM.

Processes and Concurrency

Mesa Language Class -- March, 1988 5-9

Process Representation

In the Mesa architecture, a process corresponds to either
1) an instance of execution of a PROGRAM module or
2) a procedure call that runs concurrently with its caller.

Every process is represented as a Process State Block (PSB) residing on some
operating system queue. A PSB contains information that allows the system
to find the MDS in which the process is executing, its context (GF, LF, CB, and
PC), its priority, and other information.

Operating system queues are maintained in sorted order.

Each non-running process will either be ready to run or blocked.

Processes and Concurrency

Mesa Language Class -- March, 1988

Process Representation (con't)

Ready to Run Queue

Ready List
0 15 PS8 Register
PS8 |

7 Current PSB

\
Y
Y

highest priority 0 typical 15

5-10

fowest priority

Blocked Processes
) Monitor Lock

tail I
0 15

¥
\
)

highest priority

lowest priority

Condition Variable

0 : 15

highest priority

lowest priority

Processes and Concurrency

Mesa Language Class -- March, 1988 5-11

Example: Synchronous Call

The unrelated computation will have to wait for the return of ReadLine
even though it does not need the results returned from that operation.

GetInput: PROCEDURE[buffer: LONG POINTER TO Buffer]
RETURNS[bytesRead: CARDINAL] = {

bytesRead « ReadLine[buffer];

<< unrelated computation >>

}s

ReadLine: PROCEDURE[buffervar: LONG POINTER TO Buffer]
RETURNS[numberOfBytes: CARDINAL] = { ...},

Processes and Concurrency

Mesa Language Class -- March, 1988

Example: Asynchronous Call

The new process is synchronized at termination.

GetInput: PROCEDURE[buffer: LONG POINTER TO Buffer]
RETURNS[bytesRead: CARDINAL] = {
p: PROCESS RETURNS [CARDINAL];
p « FORK ReadlLine[buffer];

<< concurrent computation >>

bytesRead « JOIN p;
};

Processes and Concurrency

5-12

Mesa L;anguage Class -- March, 1988 5-13

PROGRAM Module Execution.

Stack for Process N Stack for Process N + 1
ReadLine
GetInput
p ¢« FORK ReadLine *
JOIN p ** RETURN
NextProc

* The FORK creates a new PSB for ReadLine and places it on the ready
queue.

** When the JOIN is reached and ReadLine RETURNS, the results are retrieved
and the call stack for Process N + 1is deleted.

Processes and Concurrency

Mesa Language Class -- March, 1988 5-14

Example: Asynchronous Call

If the new process is intended to function independently and the never be
JOINed then that process should be detached.

Example:

LookForMail: PROCEDURE[mailBox: MailBox] = {
Process.Detach[FORK ReallLookForMail[mailBox]]:
}s

RealLookForMail is a procedure that has been declared elsewhere. The
actual searching takes place in this procedure.

Processes and Concurrency

Mesa Language Class -- March, 1988 5-15

Summary
Mesa’s goal is to reduce the complexities associated with concurrent
programming by providing high-level language support.

The method for passing parameters to a new process and retrieving its
results is exactly the same as the corresponding method for procedures.

No special declaration is needed for a procedure that is FORKed as a
process.

The cost of creating and destroying a process is moderate, and the cost in
storage is only twice the minimum cost of a procedure instance.

The cost of a context switch is roughly twice the cost of a procedure call.
Therefore, ...

You are encouraged to build systems that use many processes with a high
rate of interaction. | |

Processes and Concurrency

Mesa Language Class -- March, 1988 5-16

Monitors -- Overview

When several processes interact by sharing data, care must be taken to
properly synchronize access to the data.

The belief is that processes, in general, do not interact. When they do it is in
small segments of code that manipulate shared data values. -

Safe communication implies cnly one process is operating in these critical
sections at a time.

Processes not only need to ensure mutual exclusion to data, but may also
wish to enforce scheduling decisions.

The idea behind monitors is that a proper vehicle for this interaction is one
that unifies:

1) the synchronization

2) the shared data :

3) the body of code that performs the accesses
4) the scheduling needs

Processes and Concurrency

Mesa Language Class -- March, 1988 5-17

Monitors -- Overview

For consistency, Mesa groups these components in a MONITOR module.

Access to shared data is controlled by a MONITOR lock. One lock is
associated with the monitor. When the monitor’s code is entered the lock
must be acquired. When a process leaves the monitor, the lock is released.

| Monitor
Processes Enter (only one process is Processes Exit

others must wait)

Access to the module are controlled by three types of procedures:

external procedures -- procedures that reside in a MONITOR module
but execute outside of the monitor.

ENTRY procedures -- entry points into the monitor.

INTERNAL procedures -- shared monitor routines that are only called
' from other ENTRY or INTERNAL procedures

Processes and Concurrency

Mesa Language Class -- March, 1988 5-18

- Monitoring Global Data

Most common form of a monitor is to package all the data and procedures
of the monitor within a single monitor instance.

The monitor lock, in this case, is declared automatically in the global frame
of the module. Thus, all of the global variables are monitored.

Process B

Process A Process C

f Shared

f Code

Monitor
5 Lock

: Shared

. Data

Processes and Concurrency

Mesa Language Class -- March, 1988 5-19

Monitor Module Structure

Monitor modules are declared much like program modules, except with the
keyword MONITOR instead of PROGRAM.

Example:

DIRECTORY

SampleMonitor: MONITOR IMPORTS ... EXPORTS ...= {

{{declaration of shared variables>>
(<code>>
}.
External procedures are declared as normal non-mohitor procedures:
P: <PUBLIC> PROCEbURE[args] RETbRNS[results] = ...
Every monitor has at least one entry procedure; these are declared as:
Q: <PUBLIC> ENTRY PROCEDURE[args] RETURNS[results] = ...

internal procedures are declared as:

R: INTERNAL PROCEDURE[args] RETURNS[results] = ...

Note that external procedures should not reference global data as only
monitored procedures should reference the global data (external
procedures are logically outside the monitor).

Processes and Concurrency

Mesa Language Class -- March, 1988 5-20

Interfaces to Monitors

In Mesa, the attributes ENTRY and INTERNAL are associated with a
procedure’s body, not with its type. Therefore, from the client side of an
interface, a monitor appears to be a normal program modaule.

For example, a monitor M with entry procedures P and Q might have an
interface that appears as:

MDefs: DEFINITIONS = {
P: PROCEDURE[args] RETURNS[results];
Q: PROCEDURE[args] RETURNS[results];

}s

Processes and Concurrency

Mesa Language Class -- March, 1988 5-21

Mutual Exclusion
Mutual exclusion in a monitor module is ensured by the monitor lock:
The lock can only be held by one process at a time.
The lock is implicitly acquired upon entry to an ENTRY procedure.
The lock is implicitly released when the ENTRY procedure returns.

Once the lock is held, other processes attempting to enter the monitor
are blocked.

Once the lock is released, one of the processes waiting for the lock or a
new process that is attempting to enter the monitor can acquire the lock.

Processes and Concurrency

Mesa Language Class -- March, 1988 5-22

‘Mutual Exclusion Example

Mutual exclusion to a structure that keeps count of the number of active
and inactive objects in an environment:

MutexDefs: DEFINITIONS = {
CounterType: TYPE = RECORD[
active: INTEGER,
inactive: INTEGER];

Activate: PROCEDURE;

Deactivate: PROCEDURE;

Inspect: PROCEDURE RETURNS[counter: Countertype];
}.

Processes and Concurrency

Mesa Language Class -- March, 1988 ‘ 5-23

Mutual Exclusion Example (con’t)

DIRECTORY
MutexDefs;

Mutex: MONITOR EXPORTS MutexDefs = {
counter: MutexDefs.CounterType « [0,0]; --thisisthe monitored data

Activate: PUBLIC ENTRY PROCEDURE = {
ENABLE UNWIND => NULL; --explained later
counter.active ¢« counter.active + 1;
counter.inactive ¢ counter.inactive - 1;

}:

Deactivate: PUBLIC ENTRY PROCEDURE = {
ENABLE UNWIND => NULL;
counter.active « counter.active - 1;
counter.inactive « counter.inactive + 1;

};s

Inspect: PUBLIC ENTRY PROCEDURE
RETURNS[counter: MutexDefs.CounterType] = {
ENABLE UNWIND => NULL;
RETURN[counter];

};

Processes and Concurrency

Mesa Language Class - March, 1988 5-24

Synchronization

Synchronization among cooperating processes is expressed explicitly
through operations on condition variables:

Condition variables are declared as:
c: CONDITION;
Operations on condition variables:

WAIT condition -- puts process to sleep. The process that executes
this statement exits the monitor and waits.

NOTIFY condition -- wakes up first process that is waiting

BROADCAST condition -- wakes up all waiting processes

Processes and Concurrency

Mesa Language Class -- March, 1988 5-25

CONDITION Variables

Condition variables are always associated with some boolean expression
describing the desired state of the monitor data. This yields the general
pattern:

Example of a process (in the monitor) waiting for condition:

... --code fragment
WHILE ~DesiredState DO
WAIT c; -- release lock
ENDLOOP; --reacquire lock
< execute with monitor lock held>>

{<RETURN>> -- release lo_ck

Example of a process (in the monitor) making condition true:

. --code fragment
<<Kmake DesiredState TRUED>) -- maybe as side effect of modifying global data
NOTIFY c; :
<Lcontinue execution>>

<KRETURN>> --release lock

Processes and Concurrency

Mesa Language Class -~ March, 1988) 5-26
CONDITION Variables

Processes Enter MONITOR

!

e Processes Temporarily
WHILE ~DesiredState DO Exit MONITOR
WAIT c; — -
c list
ENDLOOP; _
cee Processes Re-enter MONITOR
<<makerDesiredState TRUE>>
NOTIFY c;
Process A
Process B
Process C

Processes Exit MONITOR

Note that only one process can be in the MONITOR at a time.

Processes and Concurrency

Mesa Language Class - Ma}ch, 1988 5-27

NOTIFY Example

DIRECTORY
AllocDefs;

StorageAllocator: MONITOR EXPORTS AllocDefs {
StorageAvailable: CONDITION;

Block: TYPE = RECORD[...]; --orsome otherdata type
ListPtr: TYPE = LONG POINTER TO ListEImt;

ListEImt: TYPE = RECORD[block: Block, next: ListPtr];
freeList: ListPtr;

Allocate: PUBLIC ENTRY PROCEDURE RETURNS[p: ListPtr] = {
ENABLE UNWIND => NULL:; --explained later
WHILE freelList NIL DO --boolean expression testing for desired state
WAIT StorageAvailable;
"ENDLOOP;
p « freeList;
freeList « p.next;

}s

Free: PUBLIC ENTRY PROCEDURE[p: ListPtr] = {
ENABLE UNWIND => NULL;
p.next « freelList;-

freeList « p; --changesthe desired state
NOTIFY StorageAvailable;
}s

Processes and Concurrency

Mesa Language Class -- March, 1988

NOTIFY Example Graphics

Processes Enter MONITOR

!

ENABLE UNWIND => NULL;

WHILE freeList = NIL DO
WAIT StorageAvailable;
ENDLOOP;

p « freeList;

freeList « p.next;

};

Free: PUBLIC ENTRY PROCEDURE [p: ListPtr] = {
ENABLE UNWIND => NULL;
p.next « freeList; freelList « p;
NOTIFY StorageAvailable;

}s

Allocate: PUBLIC ENTRY PROCEDURE RETURNS[p: ListPtr] =K

5-28

Storage Available list

Processes Exit MONITOR

Processes and Concurrency

il

Process A

!

Process B

]

Process C

Mesa Language Class -- March, 1988

BROADCAST Example

DIRECTORY
AllocDefs;

StorageAllocator: MONITOR EXPORTS AllocDefs
StorageAvailable: CONDITION ; M
Block: TYPE = RECORD[...]; --orsome otherdata type
ListPtr: TYPE = LONG POINTER TO ListEImt;

ListEimt: TYPE = RECORD[block: Block, next: ListPtr];
freeList: ListPtr;

{

Allocate: PUBLIC ENTRY PROCEDURE [size: CARDINAL]
. RETURNS [p: ListPtr] = {
ENABLE UNWIND => NULL;
UNTIL << chunk of size words is available >> DO
WAIT StorageAvailable;
ENDLOOP; ~ -
p « LK remove chunk of size words >>;

};

Free: PUBLIC ENTRY PROCEDURE [p:ListPtr,size: CARDINAL] = {

ENABLE UNWIND => NULL;
<< put back storage of size words >>

BROADCAST StorageAvailable;
}s

Processes and Concurrency

5-29

Mesa Language Class -- March, 1988 5-30

Other Forms of Notification
Since notification is a hint, a process can be awakened for reasons other
than aNOTIFY or BROADCAST on a CONDITION.

Timeouts -- wakes up a process after a specified period of time.
(The process must determine why it was awakened).

Abort a process -- wakes up a process and generates the error
ABORTED.

Processes and Concurrency

Mesa Language Class -- March, 1988 5-31

Example: Timeouts

DIRECTORY
RemResDefs USING [Print];

RemoteResource: MONITOR IMPORTS RemResDefs EXPORTS RemResDefs = {
ResourceAvailable: CONDITION;
available: BOOLEAN « TRUE;

ConnectAndWork: PUBLIC ENTRY PROCEDURE[work: Work]= {
ENABLE {
ABORTED => GOIO return; --see nextexample
UNWIND => NULL};
UNTIL available DO
Process.Detach[FORK RemResDefs.Print[<<note to user>>]];
WAIT ResourceAvailable;
ENDLOOP;
available « FALSE;
<{<do work with connection>>;
EXITS
return => NULL;

}s
Disconnect: PUBLIC ENTRY PROCEDURE[res: Resource]= {

ENABLE UNWIND => NULL;

available « TRUE;
NOTIFY ResourceAvailable;
};

-- mainline code

Process.SetTimeout[@ResourceAvailable, RemResDefs.oneMin];
Process.EnableAborts[@ResourceAvailable];

Processes and Concurrency

Mesa Language Class -- March, 1988 5-32

Example: Abort

DIRECTORY
RemResDefs;

SomeImpl: PROGRAM IMPORTS RemResDefs = {
p: PROCESS;

MakeConnection: PROCEDURE[work: Work]= {
p « FORK RemResDefs.ConnectAndWork[work];

};

Print: PUBLIC PROCEDURE[message: LONG STRING]= {
{Kprint the message>>
IF <{Kuser does not want to continue>> THEN
Process.Abort[p]; --raiseserror ABORTED|[p]

}s

Processes and Concurrency

Mesa Language Class -- March, 1988 5-33

More General Forms of Monitors

We've covered the basic form of a monitor, however, there are situations
when one wants to provide a different form of monitoring.

There may be times when the monitor code may be too large to fit inside
one programming module, so it needs to be broken into several modules.
This is called Multi-Module Monitors. The idea is that you have many
programming modules but only one Logical Monitor and therefore, need
only one Monitor lock. This requires an explicit declaration of the monitor
lock.

There also may be a need to not monitor the code but rather just the shared
data structures. This is called Object Monitors and is implemented with
monitored records.

Processes and Concurrency

Mesa Language Class -- March, 1988

Multi-Module Monitor

Process A

Process B

Process C

Monitor
Lock

Shared Shared Shared
. Code Code Code
: Module #1 Module #2 Module #3
Shared
Data

Processes and Concurrency

5-34

Mesa Language Class -- March, 1988

5-35

Object Monitor
Process B Process E
Process A Process C| |ProcessD Process F
—

Shared
. Code . . 5233? :
: |_Module #1 ; : | Module #1 :
Monitor Lock | : Monitor Lock
: #1 : : #2 :
: Shared Data . - |Shared Data :
: #1 : : #2 :

Processes and Concurrency

Mesa Language Class -- March, 1988

Object Monitor

Processes A, B, C

Process Group #1

Process Group #2
Processes D, E, F

\/

Shared
Code

Shared Data
#1

' Monitor Lock
#1

Shared Data
#2

Monitor Lock
#2

Processes and Concurrency

5-36

Mesa Language Class -- March, 1988 5-37

Explicit Declaration of Monitor Locks

To have the compiler use a programmer declared lock instead of inserting a
anonymous global lock, you must include a LocksClause. The LocksClause
goes just after the naming of a MONITOR module.

General form of a LocksClause:

LocksClause :=empty |
LOCKS Expression |
LOCKS Expression USING
identifier: TypeSpecification

A monitor lock must also be explicitly declared in the global frame of the
Monitor:

myLock: MONITORLOCK;

And since the lock is going to be shared among several modules, it will need
to be declared in a DEFINITIONS module, too. ‘

Example of the Monitor Module:

--SampleMonitor.mesa
DIRECTORY

.
e 9

SampleMonitor: MONITOR LOCKS ﬁyLock = {
myLock: MONITORLOCK;

Procl: ENTRY PROC[...] = {...};

Processes and Concurrency

Mesa Language Class -- March, 1988 5-38

Multi-Module Monitor Example

-- Definitions Module
MultiModuleInternalDefs: DEFINITIONS
sharedLock: MONITORLOCK;
P, Q, R, S: PROCEDURE[...];
<<other necessary definitions>>

}.

-- Monitor Module #1
DIRECTORY
MultiModuleInternalDefs;
MultiModuleImplA: MONITOR LOCKS sharedLock
EXPORTS MultiModuleInternalDefs = {

{

sharedlLock: PUBLIC MONITORLOCK;

P: PUBLIC ENTRY PROCEDURE[...] = {...};
}.
-- Monitor Module #2
DIRECTORY
MultiModulelInternalDefs;
MultiModuleImpiB: MONITOR LOCKS MultiModuleInternalDefs.sharedlLock

IMPORTS MultiModulelInternalDefs
EXPORTS MultiModuleInternalDefs = {

Q: PUBLIC ENTRY PROCEDURE[...] = {...};

Processes and Concurrency

. Mesa Language Class -- March, 1988 :) 5-39

Multi-Module Monitor Example (con’t)

-- Monitor Module #3

DIRECTORY
MultiModulelInternalDefs;

MultiModuleImp1C: MONITOR LOCKS MultiModuleInternalDefs.sharedLock
IMPORTS MultiModuleInternalDefs
EXPORTS MultiModuleInternalDefs = {

R: PUBLIC ENTRY PROCEDURE[...] = {...};
}.
-- Monitor Module #4
DIRECTORY |
MultiModuleInternalDefs;
MultiModuleImp1D: MONITOR LOCKS MultiModuleInternalDefs.sharedLock

IMPORTS Mu1tiModU1eInterna10efs
EXPORTS MultiModuleInternalDefs = {

S: PUBLIC ENTRY PROCEDURE[...] = {...};

Processes and Concurrency

Mesa Language Class -- March, 1988

Multi-Module Monitor Example (con’t)

MultiModulelnternalDefs

MultiModulelnternalDefs:
DEFINITIONS = {

sharedLock: MONITORLOCK;
P,Q,R,S: PROCEDURE(.. .];

}-

5-40

MultiModulelnternalDefs.sharedLock

\ MultiModulelmplA

DIRECTORY
MultiModulelnternalDefs;
MultiModulelmplA: MONITOR LOCKS
sharedlLock
EXPORTS MultiModuleinternalDefs = {

sharedLock: PUBLIC MONITORLOCK;
LD

\ MultiModulelmpiB

DIRECTORY
MultiModuleinternalDefs;

MultiModuleimplB: MONITOR LOCKS
MultiModuleinternalDefs.sharedLock

IMPORTS.MultiModuleinternalDefs

\ MultiModuleimplC

DIRECTORY .
MultiModulelnternalDefs;

MultiModulelmplC: MONITOR LOCKS
MultiModuleinternalDefs.sharedLock

IMPORTS MultiModulelnternalDefs

L :
\ MultiModulelmp!D

| DIRECTORY
MultiModuleinternalDefs;

MultiModulelmpiD: MONITOR LOCKS
MultiModuleinternalDefs.sharedLock

IMPORTS MultiModulelnternalDefs

Note: All Modules use the same lock.

Processes and Concurrency

Mesa Language Class -- March, 1988 5-41

Monitored Records

For situations in which the monitor data cannot simply be the global
variables of the monitor module, a monitored record can be used. They are
delcared as normal records with the key word MONITORED describing it:

r: MONITORED RECORD[x: INTEGER, ...];
Characteristics of Monitored Records:
A Monitor Lock is automatically inserted in the record.

Fields of the monitored record must not be accessed except from within a
monitor which first acquires a lock.

If a monitored record is passed as an argument to a procedure, it must
only be done by reference.

Processes and Concurrency

Mesa Language Class -- March, 1988 5-42

Object Monitor Example

StackDefs: DEFINITIONS = {

Handle: TYPE = LONG POINTER TO Object;
Object: TYPE; --AnOpaque Type! Thiswill be a monitored record

Pop: PROCEDURE[stack: Handle] RETURNS[value: LONG CARDINAL];
Push: PROCEDURE[stack: Handle, value: LONG CARDINAL];

IsEmpty: PROCEDURE[stack: Handle] RETURNS[itIs: BOOLEAN];
Create: PROCEDURE[size: LONG CARDINAL] RETURNS[stack: Handle];
Destroy: PROCEDURE[stack: Handle];

}. -- End of StackDefs

DIRECTORY
Heap,
StackDefs;

ObjectImpl: MONITOR LOCKS stack USING stack: StackDefs.Handle
EXPORTS StackDefs = {

myZone: UNCOUNTED ZONE ¢ Heap.Create[initial: 5];

Object: PUBLIC TYPE = MONITORED RECORD[
< some representation of a stack >>];

Processes and Concurrency

Mesa Language Class -- March, 1988 5-43

Object Monitor Example (con’t)

Pop: PUBLIC ENTRY PROCEDURE[stack: StackDefs.Handle]
RETURNS[value: LONG CARDINAL] = {
ENABLE UNWIND => NULL;
<< can access the record’s fields in here >> };

Push: PUBLIC ENTRY PROCEDURE[stack: StackDefs.Handle,
value: LONG CARDINAL] = {
ENABLE UNWIND => NULL;
<< can access the record’s fields in here >> };

IsEmpty: PUBLIC ENTRY PROCEDURE[stack: StackDefs.Handle]
RETURNS[itIs: BOOLEAN] = {
ENABLE UNWIND => NULL;
<< can access the record’s fields in here >> };

Create: PUBLIC PROCEDURE[size: LONG CARDINAL]
RETURNS[stack: StackDefs.Handle] = {
<< allocate the stack object and initialize here >>
stack « myZone.NEW[Object[]];

¥s

Destroy: PUBLIC ENTRY PROCEDURE[stack: StackDefs.Handle] = {
ENABLE UNWIND => NULL;
< free the stack object hered>
myZone.FREE[@stack];

}s

Processes and Concurrency

Mesa Language Class -- March, 1988 5-44

Object Monitor Example (con’t)

StackDefs Objectimpl
StackDefs: DEFINITIONS = { DIRECTORY
Handle: TYPE = .,.; StackDefs;
Object: TYPE; .
Pop: PROC ... ObjectImpl: MONITOR LOCKS stack
Push: PROC ... USING stack:StackDefs.Handle
ces EXPORTS StackDefs = {
3.
Object: PUBLIC TYPE =
MONITORED RECORD[...];
Client)
DIRECTORY
StackDefs;

Client:PROGRAM
IMPORTS StackDefs = {
handlel: StackDefs.Handle « StackDefs.Create[sizel];

handle1 handle2: StackDefs.Handle « StackDefs.Create[size2];

handle3: StackDefs.Handle « StackDefs.Create[size3];

StackDefs.Push[handle2, 15];

handle2 handle3

Eand1ez.mon1‘torLock
. .

lock for stack 1

handlel.monitorlLock

Logical Monitor 3:

Logical Monitor 1: Logical Monitor 2: i
Monitored Record Monitored Record mz?ztgmd Record
of size1 of size2

Processes and Concurrency

Mesa Language Class -- March, 1988 5-45

General Issues

Signals and Processes
Signals and Monitors

Deadlock conditions

Processes and Concurrency

Mesa Language Class -- March, 1988 5-46

Signals and Processes

Each process has its own call stack.
FORKing a process, therefore creates a new call stack.
Recall that signals propagate up a call stack.

This implies that signals cannot propagate across the gap created by FORKing
a procedure.

The only suitable targets for a FORK, therefore, are procedures that catch any
signals they incur, and that never generate signals of their own that are
expected to be handled by another process.

Processes and Concurrency

Mesa Language Class -- March, 1988 5-47

Signals and Monitors

Signals within the body of an entry procedure require special attention:

Monitor locks are not released when entry frames are unwound.

Raising a signal from within an entry procedure does not release the
monitor lock.

Processes and Concurrency

Mesa Language Class -- March, 1988 5-48

Releasing the Lock Using UNWIND

To ensure the monitor lock is released when an entry procedure is being
unwound, include an UNWIND catch in the outermost block of the
procedure body.

Example:

Proc: ENTRY PROCEDURE[...] = { _
ENABLE UNWIND => { << restore invariant >> };
3
Or:

Proc: ENTRY PROCEDURE[...] = {
ENABLE UNWIND => NULL; --Evenifyou don’tneed to do anything special,
-- you must include this to release the lock

};

Processes and Concurrency

Mesa Language Class -- March, 1988 5-49

RETURN WITH ERROR

When raising a signal from within an entry procedure you can use the
RETURN WITH ERROR constructif you want to release the monitor lock.

Failure: ERROR[kind: CARDINAL] = CODE;

Proc: PUBLIC ENTRY PROCEDURE[...] RETURNS[c1l, c2: CHAR] = {
ENABLE UNWIND => NULL;

IF condl THEN ERROR Failure[1];
IF cond2 THEN RETURN WITH ERROR Failure[2];

};

Processes and Concurrency

Mesa Language Class -- March, 1988 5-50

Deadlocks

Three common cases of pairwise deadlock:

Two processes in a monitor WAITing, expecting the other to wake it up.
Cyclic calls between two monitors.

Embedded levels of monitors

Processes and Concurrency

Mesa Language Class — February, 1988 Index-1

INDEX
A
/- « oY o 5-8, 5-30, 5-32
ASYNCNIONOUS ..ottt it iie ettt iteeeeeacneeaaneasanenonaannnn 5-6,5-12,5-14
B .
BROADCAST ittt ittt ittt ittt teeneteenaseenaseennnnanas. 5-24,5-29-5-30
C
[@0a Y ol U o - o Ve 5-1-5-4
CONDITION ottt e e e e ettt e e 5-8, 5-24 - 5-26, 5-27, 5-29 - 5-31
D
DEAAIOCK ... e e e 5-45
1= - Yl o T 5-8, 5-14, 5-31
E
ENT RY ittt ettt ettt et s et aaee e 5-17,5-19-5-21,5-48 - 5-49
23243 @] .. 5-49
Example 5-14,5-22 - 5-23, 5-25, 5-27 - 5-29, 5-31 - 5-32, 5-38 - 5-40, 5-42 - 5-44
EXclUSionciiiiiinniinann. [5-21-5-23
External e e e e e e e e e e e e 5-19
F
FORK o e e e e e e 5-4,5-7,5-12-5-14,5-31 - 5-32, 5-46
G
[= « Y- U 5-18
| .
Interfacescoiiiiiii i, e e e e e e 5-20
INTERN AL o e e e e e e et e 5-17,5-19-5-20
J .
JOIN L e 5-4,5-7,5-12 - 5-13
L
1 Y4 < 5-10, 5-18, 5-34 - 5-36, 5-41, 5-48
M
Monitorscoiiiiiiiiiiii i, 5-2,5-4,5-16 - 5-17, 5-20, 5-33, 5-45, 5-47
Multi-Module it e et ettt e 5-33 - 5-34,5-38 - 5-40

Index for Processes and Concurrency

Mesa Language Class -- February, 1988 Index-2

N

Notification oo i i e e e i e e 5-30
NOTIFY i i i ettt eeieennaeanennns 5-24 - 5-26, 5-27 - 5-28, 5-30 - 5-31
(0]

ObjeCt ..o e e 5-33, 5-35-5-36, 5-42 - 5-44
P

Pause i e e e ettt taee e, 5-8
Process 5-7 - 5-10, 5-12 - 5-14, 5-18, 5-26, 5-28, 5-31 - 5-32, 5-34 - 5-36
Processes 5-1-5-2,5-5,5-10,5-16 - 5-17, 5-26, 5-28, 5-36, 5-45 - 5-46
R

RECOIAS ..o\ttt ittt et e e 5-41
Representationttt i ettt e... 5-9-5-10
S

St TIMEOUt .. . e e e 5-8, 5-31
SIgNaAlS L. e e 5-2, 5-45 - 5-47
) - T 5-6, 5-13
Structure i e et e e e 5-19
SYNChroNization i i i e e 5-2,5-24
13 e 1o T Ve T T3 5-6, 5-11
T

TIOKS L 5-8
1T 2 1= T 5-30-5-31
u

UNWIND ... it e 5-23,5-27 - 5-29, 5-31, 5-43, 5-48 - 5-49
W _ .

W AT ot et e e 5-24 - 5-26, 5-27 - 5-29, 5-31
Y

D 1] o P 5-8

Index far Processes and Concurrency

Mesa Language Class -- August, 1987

Day 1-#20of9
Mesa Types
\
scqlar procedures processes zones aggregate
SN TN\~
s%g'xlga ordered pointers arrays records sequences d e:c';'ri?) ors
LONG LONG REAL element

CARDINAL INTEGER

INTEGER CARDINAL NATURAL CHARACTER BOOLEAN onumerated

\ types
Numerics
subranges
long REAL short
numerics numerics

LONG LONG
CARDINAL INTEGER INTEGER CARDINAL NATURAL

Mesa Language Class -- August, 1987
Day 1 - #3of9

Type Determination of Numeric Expressions

Word Length Rules for Expressions (Balancing)

In determining what type of operation (INTEGER, CARDINAL, LONG INTEGER, LONG CARDINAL, REAL)
should be performed in an expression, a common word fength must first be found.

In general, the operation requiring the fewest automatic type conversions will be the one used. So, for
numerics:

1.

2.

4,

If all (both) operands are short numerics, a short numeric operation will be used.
If all (both) operands are long numerics, a long numeric operation wil be used.

If one operand is a long numeri¢, the other operand will be lengthened and a long operation

will be used.

a. When an INTEGER is lengthened, its inherent type is LONG INTEGER.

b. When a CARDINAL or NATURAL is lengthened, its inherent type is LONG INTEGER and
LONG CARDINAL.

If one operand is a REAL the other operand is converted and a REAL operation is used.

Determination of Representation (Balancing)

Once a common word length is found for an expression, the following rules will choose whether a
signed (INTEGER, LONG INTEGER) or unsioned (CARDINAL, LONG CARDINAL) operation will take place.

1.

If the operands have exactly one common inherent representation, the operation defined for
that representation is selected (and the target representation is ignored).

If the operands have no common inherent representation but the target representation is well-
defined, the operation yielding that representation is chosen.

If the operands have both inherent representations in common, and if target representation is
well-defined, it selects the operation.

if the operands have both inherent representations in common but the target representation is
ill-defined, the signed operation is chosen.

Unary minus converts its argument to a signed representation if necessary and produces a
signed result.

If the operands have no representation in common and the target representation is ill-defined, the
expressionisinerror.

Mesa Language Class -- February, 1988
Day 1- #4 0of 9

About The Lab

The Training Lab is located in room C401, next door. There are 20 machines available, so there should be
one for everyone. The machines are already set up to contain all of the software you will need for the
week. The XDE Mail Tutorials have also been installed in case you have not completed all of them or you
would like to refer back to them. Here are a few other things to keep in mind:

1)

2)

3)

4)

5)

6)

7)

8)

9)

The afternoon labs are “Free Form”. That is, you may come and go as you please, taking breaks and
lunch as you wish. We do expect, however, that you do put some effort into working on the day’'s
assignment. '

In order for the instructors to understand how well the information is getting through, we would like
each of you to show one of the instructors a running version of your assignment. (We may choose to
test a few key things to see how robust your implementation actually is.)

There is an information card on each keyboard assigning you a logon name and password as well as
other information about your machine. You do not need to be logged in to work in XDE, although you
do need to be logged in to perform any operations over the net (e.g. Printing something). If you have
your own logon name on the Xerox net, you may use it if you like.

The lab machines have an established SearchPath of directories. These include a working directory
(MesaWD), a Mesa Interface directory (MesaDefs), etc. To avoid problems, you should not alter this
SearchPath.

XDE Documentation is located in the back of the room. There are copies of the Mesa Language

~ Manual, Mesa Programmer’s Manual, Pilot Programmer’s Manual, XDE User’s Guide, and HardCopy

versions of the XDE Tutorials. You are encouraged to use these throughout the course, although they
are to remain here for future students and classes.

You may wish to personalize the User.cm on your workstation by changing the HardCopy PrintedBy:
option, or the default Brush, the Logon Name, etc. It is okay to do so, but you do not have to.

At the end of each day, send a mail message to us mentioning what you liked or disliked about the
day'’s work, any typos you noticed, bugs in the programs (ours not yours), or suggestions you may have.
(We are constantly modifying the material based on students’ suggestions.) The message may be as
brief or lengthy as you like. We have found, though, that students who wait until Day 5 to summarize
their thoughts in one message, tend to forget some of the thoughts that they had earlier in the week.

Before you leave for an extended period of time (especially overnight), be sure to run some sort of
DMT on the screen in order to protect them. There are many to choose from (e.g. DMT, BrushDMT,
Poly, SpaceOQut, KineticFractal, etc.).

Most Importantly: ASK QUESTIONS! We are here to help you.

Our electronic addresses: MacKay:0SBU North:Xerox, Herz:OSBU North:Xerox

Mesa Language Class -- August, 1987
Day 1- #50f9

Compiler Exercise

There are two parts to this assignment to help you learn mesa syntax. In Part | you will fix errors in code
already written for you. In Part Il you will write some code yourself.

Part I: Syntax Errors

The file CompilerPractice.mesa has several intentional compiler errors. Use Command Central (or the
executive) to compile CompilerPractice.mesa. You can see the results in the Compiler log,which is
displayed in the bottom subwindow of Command Central. (If you used the executive to compile, then
you will have to load the file Compiler.log into a file window.)

When the compiler finds an error, it gives an indication of the error (an error message), the position of
the error in the source file, a listing of the offending line, and the fix the Compiler assumed in order to
continue (when possible).

The compiler will not go on to the next pass after it detects an error. This means that you must fix the
errors and compile the program again. If it finds more errors, then you must fix them and repeat the
cycle.

Upon successfully compiling the program, run the program in the Executive by typing
‘CompilerPractice’.

Part Il: Simple Programming

If you ran CompilerPractice, you will have noticed that the tool is a simple Math tool. You might have
noticed that there are five functions (add, subtract, multiply, divide, yx). The first four functions have
already been implemented. You will implement the function yx. '

In the program, each function is implemented in separate procedures. The procedure YtotheXinternal,
which is where the work should be done, has already been started for you. The code for printing the
answer has been provided. You need to calculate what Y to the X power is and store the answer in the
variable answer. The values of x and y are stored in data.x and data.y, respectively. (Don’t worry about
all cases; you need only be concerned with relatively small numbers for x and y. This is just to give you
some experience in writing very simple mesa code.)

To test your program, you need to unload the previous version by typing ‘Unload CompilerPractice’ in
the executive. Then, recompile and then run your new version (like you did in Part 1).

Mesa Language Class -- March, 1988
Day 1 - #6 of 9

Debugger Examples

Debugger Examples

Mesa Language Class -- March, 1988
Day 1-#60f9 2

Learning Some Debugger Commands with MiscProcs

These examples are to give you a little experience with debugger before working on today’s debugger
assignments.

This is the same MiscProcs example that is used in the on-line debugger tutorial. If you are not completely
comfortable with the concepts covered in the on-line tutorial, or if you haven’'t done the debugger
tutorial, you should go through this example. Otherwise, feel free to go on to the next example.

The purpose of this example is to introduce you to some of the more useful aspects of the debugger’s
interpreter. At this point, you shouid make sure that you have the file MiscProcs.mesa on your Copilot
volume. Load the file into an empty window. Compile the module either from the Executive (by
typing ‘Compiler MiscProcs’) or by using the Command Central tool. If it does not compile successfully, stop
and ask a lab assistant for help. Otherwise, run the program by typing ‘MiscProcs/d’ in the Executive.

This command loads the file MiscProcs.bcd, but does not start it. What this means is that the global frame
has been allocated for the program (and certain information has been recorded in the operating system)
but none of the mainline code has been executed and none of the variables have been initialized.The
switch /d, calls the debugger. If there is not a sword window to debug locally (or if it is tiny), then one will
be made activefor you; otherwise, search the active windows looking for the local debugging window. At
this point, you can refer to the module from the debugger (since its global frame has been allocated).

In this example, you should type whatever is underlined into the debugger file subwindow. Let's begin
with:

>SEt Module context: MiscProcs -- type a carriage return (CR) at the end of the line

> Azi - --type aspace, then the characters "A;j" followed by a CR
>_Factorial[5] -- type a space at the beginning of lines 3 thru 9

>_1708? ‘

> A3l

>_A[3] « 30; A[7] « 70

> A

>_InterChangef3,7]

>_A

VONOUNAEWN =

On line 1, you told the debugger the module that you were interested in.

On line 2, you used the interpeter to examine the variables A" (an array) and “j” (a long cardinal). (The
Interpreter is invoked by typing a space at the beginning of a line.) Their values look unfamiliar; they
weren't initialized because the module hadn’t been started (which explains the warning that you got in
the debugger: “{global frame number} is not started”).

On line 3, you made an interpreted call to the procedure Factorial in module MiscProcs. You passed the
necessary parameter (in this case, a cardinal), and it returned to you an answer (the factorial of your
number). This rumber may have been in an octal format (denoted by the “B” after the number). (Note
again that you were warned, before the procedure call, that the module had not been started).

On line 4, you interpreted the number “170B” by typing a “?” after the number. The reason that you did
this was because the answer returned by procedure Factorial was probably in octal format, and you
wanted to see what the answer was in decimal format. What you got when you interpreted “170B” was its
value in octal, hexidecimal, decimal, ascii, and other formats. You can also change the default format by
invoking Options! in the Sword FormSW and changing the value of the enumerated type for cardinals.

Debugger Examples

Mesa Language Class -- March, 1988
Day 1- #6 of9

On line 5, you re-examined the variables “A” and “j” and found that they contained values that were
assigned to them in the program (“A” initlalized to all zeroes and “j” being set by the Factorial call to 120).
How did the variables become set? You executed code in'the moduie when you called the procedure

Factorial. This caused all the global variables in the module to be initialized.

On line 6, you stuffed your own values into the 3rd and 7th spots in the array “A.”

Online 7, you examined "A" to make sure that the array contained your values.

On line 8, you made an interpeted call to the procedure InterChange, which interchanges the two values in

the spots in the array that you specified (in this case, the third and seventh spot).

On line 9, you re-examined “A" to check that the values for the 3rd and 7th spot had been interchanged.

Your debugger should look similar to the following:

Client: {local}
attach: {source, symbols}

i go: {proceed, abort, kill, screen, start}
i read: { }
! source!

§ break: {set, clear, clearall, 1ist, attachCond, attachKey}

write : { }
findModule!

processes
rep?!

configs

showType! type&bits!

destroy!

options!

watch: {off}

P> A[3] 30;
P> A

: A = (13)[0,0,0,30,0,0,0,76,0,0,0,0,0]
; > Integcnange [3, 7]

P> A
P A=
P>

! You called?

i >SEt Module context: MiscProcs
P> A g "

: 1125608 is not started!

PA = (13)[1,
: 671448,
{ 1125608 is not started!
P -
{ > Factorial[5]

2, 201468,

200008]

64008, 178, 208, 201568, 675648,

46406504418

1 1125608 is not started!
: 1708

'S 17087

i 1708 = 78X = 120 =
1> A

i A = (13)[0,0,0,0,0,0,0,0,0,0,0,0,0]

'x = 7:8

§ =<1708
A[7] « 70

(13)[0,0,0,70,0,0,0,30,0,0,0,0,0]

675658,

67144B, 201418,

Debugger Examples

Mesa Language Class -- March, 1988
Day 1-#60of 9 4

Now, try the following in the debugger:

10. >_MakeLinkedList[4]
11. >_headNode

12. >_headNodet

13. >_headNode.nextt

14. >_headNode.next.nextt

15. >_headNode.next.next.nextt

On line 10, you made a call to the procedure MakeLinkedList, which creates a singly-linked list where the
size is specified by the caller (in this case, the size is 4). The global variable neadNode is a pointer variable
that acts as the header for this linked list.

On line 11, you examined the value of headNode and found the address of the record that it points to. You
know that it’s an address by the up-arrow that follows the returned number.

On line 12, you asked to dereference the pointer headNode and examined the contents of what headNode
points to. Notice the field next and the fact that it contains a number with an up-arrow after it. This field
points to the next element in the linked list. (The other field in this record, str, is a LONG STRING of
length = 1 and maxlength = 1 [hence the “(1,1)"] that contains the text “D".)

On line 13, you asked to examine the contents of what the next field points to. Notice that you did not have
to type headNodet.nextt, Only headNode.nextt, due to the auto-dereferencing feature that exists in the Mesa
language and is included in the interpreter.

On line 14, you examined the contents of what the next next field points to.

On line 15, you looked at the final element in the linked list. Notice that the next field for this last element
is NIL.

The last part of your debugger should look similar to the following.

go: {proceed, abort, kill, screen, start} Client: {local} destroy!
i read: { } write : {} processes configs attach: {source, symbols}
E, source! findModule! rep?! showType! type&bits! options!

5‘ break: {set, clear, clearall, 1ist, attachCond, attachKey} watch: {off}

|

> MakelinkedList[4]

> headNode

‘headNode = 40217318+

> headNodet

headNode = [str:40217368+(1,1)"D", next:4021742B+]
> headNode.next?

next = [str:40217478¢(1,1)"C", next:4021753B1]
> headede.next.next?

next = [str:4021760B+(1,1)"B", naxt:4021764B8+]
> headNode.next.next.nextt

next = [str:4021771B+(1,1)"A", next:NIL]

>

Debugger Examples

Mesa Language Class -- March, 1988 :
Day 1- #6 of 9 5

Second Example: “"Function”

This example takes you through a fairly realistic debugging session. Suppose that you have just written a
program called Function.mesa and you want to test it to see if it gives the correct answers, and if it catches
human errors in input and handles them in a desirable way. Load Function.mesa in a window, then
compile (your favorite way) and run it from the executive (this time, with no switches.) Also, in the
executive type 'help function’ to see how to use the program. Test the program by entering the following
commands in the Executive:

function s/20
function c/5

function s/6 s/10 c/4
function q/

At this point, the program fails and the debugger gets called. (If a debugger window is not automatically
brought up, search the active windows loaking for the local debugging window.) In the debugger, you're
told that an uncaught SIGNAL caused the debugger to be invoked. SIGNALs have names, and if this signal
can't be identified, it is because the symbols for the module that raised the signal are not present on your
disk. In this case, the module that contains the signal is StringsimpiB. You may not have the symbols for the
module StringsimplB, and you, therefore, don’t have any information other than the fact that the
program Function.bcd had made a call into StringsimpiB. If you don’t already have the file
StringsimplB.bcd on your local disk, ask a lab assistant to give you the file. After you have loaded the file
onto your machine, type the letters “rd" in the debugger:

>ReDisplay swap reason

The debugger will now consider the new information (the file StringsimpiB.bcd) and tell you what the
signal was (String.InvalidNumber) that caused the debugger to be called. You can now display the stack
and run-time variables to determine what caused the uncaught SIGNAL. In the foliowing, type what's
underlined into the debugger: :

1. >Display Stack -- Display the first element on the run-time stack

2. >a '

3. >s -- Look at the line in the source code that executed
4. >v -- Look at the local variables in this procedure

On line 1, you asked to display the most recent call on the run-time stack. It was a procedure in
StringsimplB, and since we are looking for our code in Function, we go on to the next item on the run-time
stack. (The format of each line of the stack is this: procedureName, local frame pointer, moduleName,
globalFrameNumber.) '

On line 2, you asked to see the next cail on the run-time stack. This time, you recognized one of your
modules on the stack, namely “Function.” You saw that the procedure being executed was procedure
Main when a call was made to a procedure in StringsimplB. (Generally, when debugging an error like this,
you want to keep using the “next” command until you see a procedure in your code.)

On line 3, you displayed the source-code line that called the procedure in StringsimplB. It was a call
through the String interface, and the call was to String.StringToNumber. If you look in your Pilot
Programmer’s Manual (version 12.0, p. 7-7), you will see that this procedure interprets an input string as an
number and returns its value.

On line 4, you inspected the variables that are local to the procedure on the stack. Notice that the string

variable that was passed to String.StringToNumber, called number, is NIL. An educated guess would be that
this NIL string caused the problem because String.StringToNumber wouldn’t expect a NIL string.

Debugger Examples

Mesa Language Class -~ March, 1988

Day 1- #6 of 9

Your debugger should look something like this:

§ go: {proceed, abort, kill, screen, start} Client: {local} destroy!
:read: { } write : { } processes configs attach: {source, symbols}
! source! findModule! rep?! showType! type&bits! options!

i break: {set, clear, clearall, list, attachCond, attachKey} watch: {off}

P oewe uncaught SIGNAL InvalidNumber (in StringsImp1B, G:37420B) *»*

§ >Display Stack

§ No symbols for L: 14130B, PC: 4660B (in StringsImp1B, G: 37420B) on

i Main, L: 105708, PC: 337B (in Function, G: 112570B) >s <>cardinal «
g String.StringToNumber[number, 107];

>v

h = 4107208+

cliientData = NIL

outcome = normal

OutputProc = PROCEDURE [10758B] (in module ExecImpl, G: 35004B)
operation = 33144648+(1,100)"q"

number = NIL

cardinal = 0

answer = 0

>

Now you need to determine how this situation got past your error checking. In the procedure Main, the

line immediately before the call to String.StringToNumber is:

IF (operation = NIL) AND (number = NIL) THEN EXIT;

Notice that operation is not NIL in this case, but number is. This is the situation that should be caught because

it produces an uncaught SIGNAL if itisn't. The correct error-catching code should be:

IF (operation = NIL) OR (number = NIL) THEN EXIT;

Make this change to Function.mesa. Before you can recompile your new version, you must Abort the
current version by clicking the abort command in the Sword formSW and then unloading Function in the

Executive. Then re-compile and run your new version.

Debugger Examples

Mesa Language Class -- March, 1988
Day 1- #6 of 9 7

More on Uncaught Signals

This part of the exercise will show you how to stop uncaught sugnals from entering the debugger. Now try
this command in the executive:

function s/4k6

This should cause the locai debugger to be invoked with another Uncaught SIGNAL in StringsimplB. The
signal should be String.InvalidNumber. Now display the stack and run-time variables to determine what
caused the uncaught signal this time. If you look at the Pilot Programmer’s Manual (Ch. 7), you'll see that
the procedure String.StringToNumber can raise the signal String.InvalidNumber. In order to make
Function.mesa catch the signal you need to change:

cardinal « String.StringToNumber[number, 10];
to:

cardinal « String.StringToNumber[number, 10 !String.InvalidNumber => {
OQutputProc{"Bad number...continuing..."L];
CONTINUE }];

You don’t really need to understand what an uncaught signal is for now; signals will be covered in-depth
later this week. Hopefully, what you should get out of this example is the knowledge of how to debug an
uncaught signal.

Remember, If you don't have the symbols for the module that raised the signal, you may want to retrieve
them onto your machine and redisplay the reason for the swap (from the debugger).

If you already have the symbols on your machine, you do not have to retrieve anything; the debugger will
tell you what the uncaught signal was since it will have all the information it needs. Often, you will be able
to debug such errors without ever retrieving the symbols: just proceed up the stack until you find one of
your procedures, and then use the Source command to find the line of code where it died. This will often
be enough information to enable you to debug the problem.

Setting Breakpoints
Now, type the following in the Executive:

function q/
function s/100
function c/100

The answers you got for the last query should seem a little strange. 100 cubed is not 16960. At this point, it
is a good idea to set breakpoints in the code to see why the wrong answer occasionally gets returned. To
set breakpoints, the program must always be loaded first. Since, we have already run our program, then it
must be loaded!

Suppose you suspect that the variables contain the correct information, but they are not being printed out
correctly in the procedure PrintResult. Find a local debugging window and type the underlined parts into
the fileSW to set a breakpoint at the beginning of PrintResult:

1. >SEt Module context: Fumction

2. >Break Entry procedure: PrintResult
3. >Proceed (Confirm) -- Type a carriage return at the end of this line to confirm

Debugger Examples

Mesa Language Class -- March, 1988
Day 1- #6 of 9 8

Now try the following command in the Executive:
function ¢/100

When the procedure PrintResult is entered, the breakpoint will be executed, thus causing the debugger to
be called. In the debugger, examine the parameters for PrintResult:

4. >Display Stack
5. >p

The value that’s given to PrintResult is 16960, so the problem is not in printing out the result; the result
itself is incorrect. Now try setting breakpoints on the procedures that actually calculate the results:

’q
>ClLear Break #: 1
>Break Xit procedure: Cubelnput
>Proceed (Confirm)

weNo

Again, try "function ¢/100” in the Executive. You should hit the breakpoint that you set in the procedure
Cubelnput. (If you get a Stack Error first, just proceed and you will eventually hit your breakpoint.) Use the
debugger to examine the return parameter (type “r” while in Display Stack mode) for Cubelnput; it should
be equal to 16960. Therefore, you know that the calculation itself is incorrect.

If you remember from the lecture this morning, multiplication of two CARDINALs will yield a CARDINAL. In
this case, multiplying the three CARDINALs (100 and 100 and 100) resulted i m an answer outside the range
of CARDINAL (which is [0..2'8)). The number 16960 is the modulo of (100 / 2'%).The way to fix this is to
make the answer a LONG CARDINAL so that the overflow cases will not occur.

You should change the following two lines of code in Function.mesa before re-compiling it and running
Function.bcd again (remember to abort and unload before re-compiling):

(In procedure Squarelnput...)
RETURN [input * input]; change to... RETURN [I_.OHG['input] * input];

(In procedure Cubelnput...)
: RETURN [input * input * input]; change to... RETURN [LONG[input] * input * input];

“LONG” will force one of the multiplicands to be a LONG CARDINAL; hence, the answer will be a LONG
CARDINAL because operations involving CARDINALs and LONG CARDINALS resultin LONG numbers.

Debugger Examples

Mesa Language Class -- Au§ust, 1987
Day 1 - #7 of 9

Debugger Exercises

All of the following source files include comments at the beginning of the file explaining what the
program does. Read those comments! Compile the programs using your favorite method and then run
them each from the executive. Then, follow the instructions below. Each program will crash and you
should find and fix the problem causing the crashes. Debugging techniques will be required to fix the
programs.

Part I: Hash.mesa
Run the following commands from the Exec:

Help Hash

Hash Tu mark john
Hash john/d

Hash john/d

At this point, you should get an address fault. If there isn't a current local debugging session, a local
debugging window will be created for you; otherwise, search through the active windows for the local
debugging session. Use the debugger to your advantage. It can help you. Really! After you fix the
problem, abort the debugging session and unload the program from the executive. Then re-compile
and re-run your new version. Make sure that all the bugs are out by running the following commands:

Hash 1u mark
Hash john/d

Part Il: BubbleSortProgram.mesa
Run the following commands from the Exec:
Help BubbleSort
BubbleSort 2 7 4 1 10
BubbleSort 9 7 4 12 31 16 4 28 1 32
BubbleSort 5 18 7 22 10 11 83 22 84 24
You should get an uncaught signal at some point. After you fix the problem, abort, unioad, recompile,
and re-run (same steps as above) and then make sure that all the bugs are out by running the following
commands:

BubbleSort 13 19 34 81 18 56 23 44 48
BubbleSort 26 20 4 17 11 18 19 68 1 42

If that input works, then try to input just one number:

BubbleSort 13

Mesa Language Class -- August, 1987
Day 1- #8of 9

else Put.Line[data.fileSW, "undefined"L];
t+ Syntax Error [4047]
Text inserted is: ;
~-- Capitolize ELSE

}s
+ Syntax Error [5281]
Text inserted is: ENDCASE
-- Notice the SELECT statement. For every SELECT there should be an ENDCASE. Insert one here.

Trial # 3

ELSE Put.Line[data.fileSW, "undefined"L];

t+ Syntax Error [4041]
Text doleted is: ELSE
-- There should not be a colon separating the THEN-part from the ELSE-part of the IF-THEN-ELSE
statement.

Trial #4

Integer 1is undeclared, at CompilerPractice[1021]:
x(6): Long Integer « O,
-- Again, ALL Mesa Reserved Words must be Capitolized - so, Capitolize INTEGER

Long does not name a variant, at CompilerPractice[1021]:
x(6): Long Integer « O,
-- Capitolize LONG

Integer 1is undeclared, at CompilerPractice[1049]:
y(8): Long Integer ¢« NIL];
-- Capitolize INTEGER

Long does not name a variant, at CompilerPractice[1049]:
y(8): Long Integer « NIL];
-- Capitolize LONG

Trial #5
.NIL bhas incorrect type, at CompilerPractice[1049]:

y(8): LONG INTEGER « NIL];
-- A LONG INTEGER should be initialized to zero not NIL.

Trial #6

Command: CompilerPractice
CompilerPractice.mesa
Tines: 220, code: 1774, links: 22, frame: 11, time: 52

-~ After correcting all of the above errors, CompilerPractice.mesa should compile correctly!!!

Compiler Practice Solution

Mesa Language Class -- August, 1987 _
Day 1 - #80f9 1

Compiler Practice Solution

This is the .mesa file with no syntax errors. Following this listing is a listing of the compiler errors that were
encountered and the fixes that were made.

-- File: CompilerPracticeSolution.mesa - - Last edited by:
-- MacKay 16-May-86 12:26:30
-- Create by FormSWLayoutTool on 15-May-86 10:15A11 rights reserved.

DIRECTORY

Exec USING [AddCommand, ExecProc, Handle, OutputProc, RemoveCommand],

Format USING [StringProc],

FormSW USING [AllocateltemDescriptor, ClientItemsProcType, CommandItem, 1ine0, line2,
LongNumberItem, ProcType],

Heap USING [systemZone],

Process USING [Detach],

Put USING [CR, Line, LongNumber, Text],

Tool USING [Create, Destroy, MakeFileSW, MakeFormSW, MakeMsgSW, MakeSWsProc, UnusedlLogName],

ToolWindow USING [TransitionProcType],

Window USING [Box, Handle],

WindowFont USING [CharWidth];

CompilerPractice: MONITOR
IMPORTS
Exec, FormSW, Heap, Process, Put, Tool, WindowFont = {

DataHandle: TYPE = LONG POINTER TO Data;
Data: TYPE = MACHINE DEPENDENT RECORD [
msgSW(0): Window.Handle « NIL,
formSW(2): Window.Handle « NIL,
f11eSW(4): Window.Handle « NIL,
x(6): LONG INTEGER « 0,
y(8): LONG INTEGER « 0];

FormItems: TYPE = {x, add, subtract, ytotheX, y, multiply, divide};

data: DataHandle « NIL;

wh: Window,Handle « NIL;

zone: UNCOUNTED ZONE « Heap.systemZone;
answer: LONG INTEGER « 0;

initialBox: Window.Box = [place: [x:436, y: 82], dims: [w: 512, h: 555]];
busyBit: BOOLEAN « FALSE;

Busy: ENTRY PROCEDURE RETURNS [1isBusy: BQOLEAN] = {
ENABLE UNWIND => NULL;
isBusy ¢« busyBit;
busyBit « TRUE };

Done: ENTRY PROCEDURE = {
ENABLE UNWIND => NULL;
busyBit « FALSE};

Write: Format.StringProc = {Put.Text[data.fileSW, s]};
Msg: Format.StringProc = {Put.Text[data.msgSW, s]};

Compiler Practice Solution

Mesa Language Class -~ August, 1987
Day 1 - #8 of 9

Add: FormSW.ProcType = {
ENABLE ABORTED => {Done[]; CONTINUE};
IF Busy[] THEN {
Msg["Tool 1is busy.\n"L]; RETURN};
Process.Detach[FORK AddInternal[]]};

AddInternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};
answer ¢« data.x + data.y;
Put.LongNumber[data.fileSW, data.x, [unsigned: FALSE]];
Put.Text[data.fileSW, " plus "L];
Put.LongNumber[data.fileSW, data.y, [unsigned: FALSE]];
Put.Text[data.fileSW, " is "L];
Put.LongNumber[data.fi1eSW, answer, [uns-igned: FALSE]];
Put.CR[data.fileSW];

Done[] };

Subtract: FormSW.ProcType = {
ENABLE ABORTED => {Done[]; CONTINUE};
IF Busy[] THEN {
Msg["Tool is busy.\n"L]; RETURN};
Process.Detach[FORK SubtractInternal[]]}:

SubtractInternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};
answer + data.x - data.y;
Put.LongNumber[data.fi1eSW, data.x, [unsigned: FALSE]];
Put.Text[data.fileSW, " minus "L];
Put.LongNumber[data.fi1eSW, data.y, [unsigned: FALSE]];
Put.Text[data.fileSW, " 1is "L];
Put.LongNumber[data.fileSW, answer, [unsigned: FALSE]];
Put.CR[data.fileSW];
Done[] };

Multiply: FormSW.ProcType = {
ENABLE ABORTED => {Done[]; CONTINUE};
IF Busy[] THEN {
Msg["Tool 1is busy.\n"L]; RETURN};
Process.Detach[FORK MultiplyInternal[]]}:

MultiplyInternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};
answer + data.x * data.y;
Put.LongNumber[data.fileSW, data.x, [unsigned: FALSE]];
Put.Text[data.fileSW, " times "L];
Put.LongNumber[data.fileSW, data.y, [unsigned: FALSE]];
Put.Text[data.fileSW, " is "L];
Put.LongNumber[data.fileSW, answer, [unsigned: FALSE]];
Put.CR[data.fi1eSW];
Done[] };

Divide: FormSW.ProcType = {
ENABLE ABORTED => {Done[]; CONTINUE};
IF Busy[] THEN {
Msg["Tool is busy.\n"L]; RETURN} ;
Process.Detach[FORK DivideInternal(]]};

Comepiler Practice Solution

Mesa Language Class -- August, 1987
Day 1- #80f9

DivideInternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};
Put.LongNumber[data.fileSW, data.x, [unsigned: FALSE]];
Put.Text[data.fileSW, " divided by "L];
Put.LongNumber[data.fi1eSW, data.y, [unsigned: FALSE]];
Put.Text[data.fileSW, " is "L];
IF data.y # 0 THEN {
answer « data.x / data.y;
Put.LongNumber[data.fi1eSW, answer, [unsigned: FALSE]];
Put.CR[data.fi1eSW];
Done[];}
ELSE Put.Line[data.fi1eSW, "undefined"L];
Done[] };

YtotheX: FormSW.ProcType = {
ENABLE ABORTED => {Done[]; CONTINUE};
IF Busy[] THEN {
Msg["Tool is busy.\n"L]; RETURNY};
Process.Detach[FORK YtotheXInternal[]]};

YtotheXInternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};
IF data.x = 0 THEN answer « 1
ELSE {
answer « data.y;
THROUGH [1..data.x) DO
answer + answer * data.y;
ENDLOOP; } ;
Put.LongNumber[data.fileSW, data.y, [unsigned: FALSE]];
Put.Text[data.fileSW, " raised to the power of "L];
Put.LongNumber[data.fileSW, data.x, [unsigned: FALSE]];
Put.Text[data.fileSW, " is "L];
Put.LongNumber[data.fileSW, answer, [unsigned: FALSE]];
Put.CR[data.fileSW];
Done[] };

ClientTransition: ToolWindow.TransitionProcType = {
SELECT TRUE FROM
old = inactive =>
IF data = NIL THEN data « zone.NEW[Data « []];
new = ipactive =>
IF data # NIL THEN {
zone .FREE[@data]};
ENDCASE ;

3

Compiler Practice Solution

Mesa Language Class -- August, 1987
Dayl-#son 4

-- The rest of the code is used for building the tool window. You will learn about this on Wednesday,
so don't worry if you don't understand it. There are not any compiler errors in these procedures.

Init: PROCEDURE = {
Exec.AddCommand["CompilerPractice. "L, NoOp, NIL, Unload];
wh « Tool.Create[.
makeSWsProc: MakeSWs, initialState: default, initialBox: initialBox,
clientTransition: ClientTransition, name: "CompilerPractice"L,
cmSection: "CompilerPractice"L] };

NoOp: Exec.ExecProc = { };

Unload: Exec.ExecProc = {
IF Busy[] THEN {
Exec.OutputProc[h]["Tool is busy. Sorry.\n"L];
RETURN[error] };
Tool.Destroy[wh];
Exec.RemoveCommand[h, "CompilerPractice.”"L];
Done[] };

MakeSWs: Tool.MakeSWsProc = {
TogName: LONG STRING « [23];
Tool.UnusedLogName[unused: logName, root: "CompilerPractice.log"L];
data.msgSW « Tool.MakeMsgSW[window: window];
data.formSW + Tool.MakeFormSW[
window: window, formProc: MakeForm];
data.fileSW « Tool.MakeFileSW[window: window, name: TogName] };

charWidth: CARDINAL « WindowFont.CharWidth{'0];
CharPos: PROC[char: CARDINAL] RETURNS [x: INTEGER] = {
x ¢ charWidth * char };

MakeForm: FormSW.ClientIltemsProcType = {

OPEN FormSW;
nltems: CARDINAL = FormItems.LAST.ORD + 1;
items « AllocateltemDescriptor[nItems];
items[FormItems.x,0RD] « LongNumberItem[

tag: "X"L, place: [CharPos[1], 1ine0], signed: FALSE, value: @data.x];
items[FormItems.add.ORD] « CommandItem[

tag: "ADD"L, place: [CharPos[34], 1ined], proc: Add];
items[FormItems.subtract.ORD] « CommandItem[

tag: "SUBTRACT"L, place: [CharPos[47], 1ine0], proc: Subtract];
items{FormItems.ytotheX.0RD] « CommandItam[

tag: "Y to the X"L, place: [CharPos[66], 1ine0], proc: YtotheX];
items[FormItems.y.ORD] « LongNumberItem(

tag: "Y"L, place: [CharPos[1], 11ne2], signed: FALSE, value: Q@data.y];
items[FormItems.multiply.ORD] « CommandItem[

tag: "MULTIPLY"L, place: [CharPos[34], 1ine2], proc: Multiply];
items[FormItems.divide .ORD] « CommandItem[

tag: "DIVIDE"L, place: [CharPos[47], 1ine2], proc: Divide];
RETURN[items: items, freeDesc: TRUE] };

-- Mainline code
Init[]; -- this gets string out of global frame ¢

}oo.

Compiler Practice Solution

Mesa Language Class -- August, 1987
Day 1 - #8 of9 5

Here is a listing of the 6 different compiler logs that it took to get the program compiled, with error
meanings and the fixes that should be made. Keep in mind that depending on how you interpreted the
errors, you might not get the same subsequent errors.

Trial # 1

DIRECTORY:

t+ Syntax Error [218]
Text deleted is:
-- Just delete the colon

Window USING [Box, Handle],
+ Syntax Error [654]
Text deleted is: USING
Text inserted is: ([
-- Notice the line above this one. The semi-colon indicates the end of the DIRECTORY clause, which
shouldn't end here. The semi-colon should be replaced with a comma.

WindowFont USING [CharWidth];
+ Syntax Error [688]
No recovery found.
-- This error was caused by the misplaced semi-colon, also. When that -correction is made, this error
will go away.

Trial # 2

Exec, FormSW, Heap, Process, Put, Tool, WindowFont, = {
+ Syntax Error [799]
Text inserted is: id
-- Delete the comma following "Windowfont"

Put.Text(data.fileSW, " plus "L);
+ Syntax Error [2025]
Text deleted is: (id . id ,
Text inserted is: ; (
-- Replace the opening AND closing parentheses with square brackets.

Put.CR(data.fileSW);
+ Syntax Error [2217]
Text inserted is: ;
-- Same error as above

if data.y # 0 then {
+ Syntax Error [3890]

Text inserted is:
-- The problem here is caused from 'if' not being in caps, so the compiler doesn't recognize it as a
reserved word. Solution: capitolize IF

if data.y # 0 then {

+ Syntax Error [3901]

Text deleted is: id
Text inserted is: ;
-- Capitolize THEN

Compiler Practice Solution

Mesa Language Class -- March, 1988
Day 1-#90f9

Solutions to Debugger Exercises

Partl: Hash.mesa

An address fault occurs when you are searching for an element to be deleted and the element is not in
the list. To fix this error, add some error checking to make sure that the element is in the list before you
try to deleteit.

DeleteRec: PROCEDURE [string: LONG STRING « NIL] RETURNS [BOOLEAN « TRUE] = BEGIN
ptr, ptr2: Handle;
bucket: CARDINAL;
[ptr, bucket] « FindRec[string];
IF ptr = NIL THEN RETURN[FALSE];
ptr2 « table[bucket];
UNTIL (ptr2.mySibiing = NIL) OR (ptr2.mySibling = ptr) DO
ptr2 « ptr2.mySibling;
ENDLOOP;
IF ptr2.mySibling = ptr THEN BEGIN
ptr2.mySibling « ptr.mySibling;
RETURN[TRUE];
END
ELSE RETURN[FALSE];
END;

PartIl: BubbleSortProgram.mesa

An Uncaught Signal (BoundsFault) occurs because the comparision statement in the FOR loop tries to
access one node larger than the allocated array size. This was caused by a square bracket (which is
inclusive) instead of a parenthesis (which is exclusive) in FOR statement.

DoTheBubbleSort: PROCEDURE [upperBound:CARDINAL] RETURNS [BOOLEAN, CARDINAL] =
BEGIN
exchangeMade: BOOLEAN « FALSE;
position: CARDINAL « 0;
FOR j: CARDINAL IN [O..upperbound-1) DO
IF A[J] > A[j +1] THEN {
InterChange[j, j+11;
position « j;
exchangeMade « TRUE;
}s
ENDLOOP;
RETURN[exchangeMade, position];
END; --DoTheBubbleSort

Note: The range [0. .upperbound-2] will not work when upperbound < 2.

4

Mesa Language Class -- March, 1988
Day 2 - #1 of 5

Program Example

Math Tool

{ First Number= 22

Second Number= 17

; Product! Sum} Difference! Quotient!

.

The product of 22 and 17 is 374
The sum of 22 and 17 is 39

The difference of 22 and 17 is 5
The quotient of 22 and 17 is 1

--Math.mesa
--John Erskine
7 --14-Dec-84 17:30:08

DIRECTORY
Window USING [Handle];

Math: DEFINITIONS =
BEGIN
Add: PROCEDURE [output: Window.Handle, nl1, n2: INTEGER];
Divide: PROCEDURE [output: Window.Handle, n1, n2: INTEGER];
Multiply: PROCEDURE [output: Window.Handle, nl, n2: INTEGER];
Subtract: PﬁbCEDURE [output: Window.Handle, nl, n2: INTEGER];

END..

Program Example - MathTool

Mesa Language Class -- March, 1988
Day 2 - #1 of 5

-- MathControl.mesa - Last Edited on:
-- 13-Aug-87 13:19:23
-- Create by FormSWLayoutTool on 12-Aug-87 17:57

DIRECTORY
Exec USING [AddCommand, ExecProc, OutputProc, RemoveCommand],
Format USING [StringProc],
FormSW USING [AllocateltemDescriptor, ClientItemsProcType, CommandItem, 1ine0, line2,
LongNumberItem, ProcType],
Heap USING [Create],
Math USING [Add, Divide, Multiply, Subtract],
Process USING [Detach],
Put USING [Text],
Tool USING [Create, Destroy, MakefileSW, MakeFormSW, MakeMsgSW, MakeSWsProc, UnusedLogName],
ToolWindow USING [TransitionProcType],
Window USING [Handle];

MathControl: MONITOR
IMPORTS
Exec, FormSW, Heap, Math, Process, Put, Tool = {

DataHandle: TYPE = LONG POINTER TO Data;

Data: TYPE = MACHINE DEPENDENT RECORD [
msgSW(0): Window.Handle « NIL,
formSW(2): Window.Handle « NIL,
fileSW(4): Window.Handle « NIL,
firstNumber(6): LONG INTEGER « O,
secondNumber(8): LONG INTEGER « 0];

FormItems: TYPE = {firstNumber, secondNumber, sum, difference, product, quotient};

data: DataHandle « NIL;
wh: Window.HandTle « NIL; .
myZone: UNCOUNTED ZONE « Heap.Create[initial: 4];

busyBit: BOOLEAN « FALSE;

Busy: ENTRY PROCEDURE RETURNS [isBusy: BOOLEAN] = {
ENABLE UNWIND => NULL;
isBusy « busyBit;
busyBit « TRUE };

Done: ENTRY PROCEDURE = {
ENABLE UNWIND => NULL;
busyBit « FALSE };

Write: Format.StringProc = {Put.Text[data.fileSW, s]};
Msg: Format.StringProc = {Put.Text[data.msgSW, s]};
Sum: FormSW.ProcType = {

ENABLE ABORTED => {Done[]; CONTINUE};

IF Busy[] THEN {

Msg["Tool is busy.\n"L}; RETURN} ;
Process.Detach[FORK SumInternal[]]};

Program Example - MathTool

Mesa Language Class -- March, 1988
Day 2 - #1 of 5

SumInternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};
Math.Add[data.fileSW, data.firstNumber, data.secondNumber];
Done[] };

Difference: FormSW.ProcType = {
ENABLE ABORTED => {Done[]; CONTINUE};
IF Busy[] THEN {
Msg["Tool is busy.\n"L]; RETURN};
Process.Detach[FORK Differencelnternal[]]}:

Differencelnternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};
Math.Subtract[data.fileSW, data.firstNumber, data.secondNumber];
Done[] };

Product: FormSW.ProcType = {
ENABLE ABORTED => {Done[]; CONTINUE};
IF Busy[] THEN {
Msg{"Tool 1is busy.\n"L]; RETURN};
Process.Detach[FORK ProductInternal{]]};

ProductInternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};
Math.Multiply[data.fileSW, data.firstNumber, data.secondNumber];

Done[] };

Quotient: FormSW.ProcType = {
ENABLE ABORTED => {Done[]; CONTINUE};
IF Busy[] THEN {
Msg["Tool 1s busy.\n"L]; RETURN};
Process.Detach[FORK QuotientInternal[]]};

QuotientInternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};
Math.Divide[data.fi1eSW, data.firstNumber, data.secondNumber];
Done[] };

ClientTransition: ToolWindow.TransitionProcType = {
SELECT TRUE FROM
old = inactive =>
IF data = NIL THEN data « myZone.NEW[Data « []];
newf= inactive =>
IF data # NIL THEN myZone.FREE[@data];
ENDCASE ;

Y N

Init: PROCEDURE = {
Exec.AddCommand["MathToo1. "L, NoOp, NIL, Unload];
wh « Tool.Create[:
makeSWsProc: MakeSWs, initialState: default,
clientTransition: ClientTransition, name: "MathTool"L,
cmSection: "MathTool"L];

}:

Program Example - MathTool

Mesa Language Class - March, 1988
Day 2 - #1 of 5

NoOp: Exec.ExecProc = { };

Unload: Exec.ExecProc =
IF Busy[] THEN {
Exec.QutputProc[h]["Tool is busy. Sorry.\n"L];
RETURN[error] };
Tool.Destroy[wh];
Exec.RemoveCommand[h, "MathTool.7"L];
Done[] };

MakeSWs: Tool.MakaSWsProc = {
TogName: LONG STRING « [15];
Too1l.UnusedLogName[unused: logName, root: "MathTool.log"L];
data.msgSW « Tool.MakeMsgSW[window: window];
data.formSW « Tool.MakeFormSW[
window: window, formProc: MakeForm, zone: myZone];
data.fileSW « Tool.MakefileSW[window: window, name: logName];

3

MakeForm: FormSW.ClientItemsProcType = {

nitems: CARDINAL = FormItems.LAST.ORD + 1;
items ¢« FormSW.AllocateltemDescriptor[nltems, myZone];
items[FormItems.f1irstNumber.ORD] « FormSW.LongNumberItem[

tag: "First Number"L, place: [6, FormSW.1ine0], signed: FALSE,

value: @data.firstNumber, z: myZone];
items[FormItems.secondNumber.ORD] ¢ FormSW.LongNumberItem[

tag: "Second Number"L, place: [186, FormSW.1ine0], signed: FALSE,

value: @data.secondNumber, z: myZone]; :
items[FormItems.sum.ORD] + FormSW.CommandItem[

tag: "Sum"L, place: [6, FormSW.line2], proc: Sum, z: myZone];
items[FormItems.difference.ORD] « FormSW.CommandItem{

tag: "Difference"L, place: [90, FormSW.line2]}, proc: Difference, z: myZone];
items[FormItems.product.ORD] « FormSW.CommandItem([

tag: "Product"L, place: [188, FormSW.l1ine2], proc: Product, z: myZone];
items[FormItems.quotient.ORD] « FormSW.(ommandItem(

tag: "Quotient"L, place: [294, FormSW.1ine2], proc: Quotient, z: myZone];
RETURN[items: items, freeDesc: TRUE];

}s;

-- Mainline code
Init[]; -- this gets string out of global frame

Yoo

Program Example - MathTool

Mesa Language Class -- March, 1988
Day 2 - #1 of 5

--MathImpl.mesa
--John Erskine
--14-Dec-84 17:40:29

DIRECTORY
Window USING [Handle],
Put USING [CR, Decimal, Text],
Math;

MathImpl: PROGRAM IMPORTS Put EXPORTS Math = {

Add: PUBLIC PROCEDURE [output: Window.Handle, ni,
Put.Text[output,"The sum of "L];
Put.Decimal[output,nl];

Put.Text[output,” and "];
Put.Decimalloutput,n2];
Put.Textfoutput," 1is "L];
Put.Decimal[output,ni+n2];
Put.CR[output]:

}s

n2: INTEGER] = {

Divide: PUBLIC PROCEDURE [output: Window.Handle, nl, n2: INTEGER] = {

Put.Text[output,”The quotient of "L];
Put.Decimalfoutput,nl];
Put.Text[output,” and "];
Put.Decimalfoutput,n2];
Put.Text[output," is "L];
IF n2 = 0 THEN
Put.Text[output,"infinity"]
ELSE
Put.Decimal[output,ni/n2];
Put.CR[output];
}

Multiply: PUBLIC PROCEDURE [output: Window.Handle,
Put.Text[output,"The product of "L];
Put.Decimalfoutput,ni];

Put.Text[output,"” and "J;
Put.Decimal[output,n2];
Put.Text[output,” is "L];
Put.Decimalf[output,ni*n2];
Put.CR[outpgt];

¥

Subtract: PUBLIC PROCEDURE [output: Window.Handle,
Put.Text[output,"The difference of "L];
Put.Decimal[output,ni];

Put.Text[output,” and "J;
Put.Decimal[output,n2];
Put.Text[output,” is "L];
Put.Decimal[output,ni-n2];
Put.CR[output];

}i

}...

nl, n2: INTEGER] = {

nl, n2: INTEGER] = {

Program Example - MathTool

Mesa Language Class -- March, 1988
Day 2 - #1 of 5

--MathTool.config
--John Erskine
--14-Dec-84 17:49:17

MathTool: CONFIGURATION
IMPORTS Exec, FormSW, Heap, Tool, Process, Put

CONTROL MathControl = {

MathControl;
MathImpl;

}.o..

Program Example - MathTool

Mesa Language Class -- February, 1988
Day 2- #2 of 5

In Class Exercise - Configurations

Write a CONFIGURATION file for a program consisting of the files shown below. (The bold lined boxes are
PROGRAM modules and the dotted-lined boxes are DEFINITIONS modules.)

Note: Just write one configuration file for the entire application instead of a nested config within a config.

PrivAlmpl: PROGRAM PrivBImpl: PROGRAM
EXPORTS PrivDefs = EXPORTS PrivDefs =
BEGIN BEGIN
END. END.
: FOrmSW: DEFINITIONS = : : PrivDefs: DEFINITIONS = : : String: DEFINITIONS = :
i BEGIN ! BEGIN : : BEGIN :
! END. : ' END. ’ : : END.

..
..

Publicimpl: PROGRAM

IMPORTS FormSW, PrivDefs, String

EXPORTS PublicDefs =

BEGIN

END.

: Heap: DEFINITIONS a : PublicDefs: DEFINITIONS = : String: DEFINITIONS = :

BEGIN : ! BEGIN : i BEGIN :
END. i END. : i END.

PublicClient: PROGRAM
IMPORTS Heap, PublicDefs, String =
BEGIN
-- mainline code
END.

Mesa Language Class - August, 1987
Day 2 - #3 of 5 i

Interfaces Programming Assignment: Turtle

In this programming assignment, you need to provide the implementation of one interface using
procedures defined in another interface. The finished product will implement the Turtle programming
language:

Initially, a turtle is located at the top left-hand side of the window (coordinates 0, 0). This turtle carries a
pen. You can tell the turtle to move different distances and different directions with his pen either
lowered or raised by clicking the appropriate commands. While the pen is lowered, you will see the turtle
leave a trail behind him as he moves.

! Direction: (N, NE,
i Distance= 1

SE, S, SW, W, NW}

: Home! Move! Erase!

The interface you will be implementing is called Turtle.mesa:

--Turtle.mesa
--2-Oct-84 11:14:51

DIRECTORY
Window USING [Handle];

Turtle: DEFINITIONS = {

gridSize: CARDINAL = 32; -- length and width of grid
Home: PROCEDURE [output: Window.Handle]; - Puts turtle at (0,0)

PenUp: PROCEDURE; -- Raises the pen.

PenDown: PROCEDURE; -- Lowers the pen.

Move: PROCEDURE [output: Window.Handle, distance: CARDINAL, direction: [0 .. 8)];
-- Moves the turtle by the amount in distance in the given
--direction. 0is up (North), 1isup 1 and right 1 (NorthEast),
-- 2 is to the right (East), . . .
Erase: PROCEDURE [output: Window.Handle]; -- Completely clears the grid.
Redraw: PROCEDURE [output: Window.Handle];
-- Draws the grid from scratch when the window becomes active

}.

Turtle Assignment

Mesa Language Class —~ August, 1987
Day2 - #3 of § 2

You need to write an implementation module, Turtleimpl.mesa, that implements the procedures listed
above. These procedures get called from the module TurtleControl.mesa when the user invokes the
appropriate commands in the form subwinclow. (Redraw is called when the user changes the size of the
window. For example, Redraw will be called if you make the Turtle window tiny and then reactivate it.)
You don't have to actually write the code that draws the boxes on the screen; instead, you should import
procedures from the Boxes interface to do the actual drawing:

--Boxes.mesa

DIRECTORY
Window USING [Handle];

Boxes: DEFINITIONS = {

DrawWhite: PROCEDURE [output: Window.Handle, y, x: CARDINAL]; -- Draws a white box
DrawGray: PROCEDURE [output: Window.Handle, y, x: CARDINAL]; -- Draws a gray box
DrawBlack: PROCEDURE [output: Window.Handle, y, x: CARDINAL]J; -- Draws a black box
}.

These procedures will draw a box at the coordinates (y,x). [(0,0) is the top Ieft-hand corner of the window
shown in the tool. x increases to the right and y increases downward.] The implementation for the Boxes
interface has already heen written and is provided in the module Boxesimpl.mesa.

Note that the procedures Home, Move, Erase, and ReDraw are all passed in a parameter of type
Window.Handle. This parameter is used to specify the window in which the painting is to be done.
(Basically, it is just a pointer to the proper subwindow.) You don‘t have to do anything with this parameter
except pass it along to the routines in Boxes. (Those routines need to know where to do the painting.)

In your impiementation module, you will need a 2-dimensional packed array of BOOLEANS in order to
determine where the turtle has been. The length of each dimension should be indicated by the constant
gridSize in the interface Turtle.mesa. You'll have to keep track of whether the pen is up or down and
where the turtie is at any given time. Your implementation should handle the case where the user instructs
the turtle to go off the edge of the grid (outside the bounds of the array). Simply not moving is the easiest
implementation. When the pen is down, everytime the turtle moves off a square, that square should be
marked with a gray box. When the pen is up, the square should remain in its original condition.

Assighment

1. Write the implementation module Turtleimpi.mesa that implements the procedures in
Turtle.mesa.

2. Write the configuration file TurtleTool.config.
3. Verify that your implementation is correct by running the tool.

Extra for Experts
In your implementation module Turtlelmpl.mesa, change the implementation for the procedure Home
so that when Home is called, the turtle will recursively look for a path home from his current position,
and mark that path with all black squares. Limit the turtle to only the gray squares that up to this point
have marked his wanderings. Allow for the possibility that there may not be a path home in which case

you may either place the turtle home or leave him in his current position. When testing this extension,
you may want to increase the constant gridSize in the definitions module Turtle.mesa.

Turtle Assignment

Mesa Language Class -- March, 1988
Day 3-#10f 11

Tool-Written Factorial Tool

Number= Format: {hex, octal, decimal}
Factorial!
-]

The factorial of 4 is 24

-- FactorialTool.mesa
-- Create by FormSWLayoutTool on 16-May-86 10:42

DIRECTORY
Exec,
Format,
FormSw,
Heap,
Process,
Put,

Tool,
ToolWindow,
Window;

FactortalTool: MONITOR IMPORTS Exec, FormSW, Heap, Process, Put, Tool = {

DataHandle: TYPE = LONG POINTER TO Data;
Data: TYPE = MACHINE DEPENDENT RECORD [
msgSW(0): Window.Handle « NIL,
formSW(2): Window.Handle « NIL,
fileSW(4): Window.Handle « NIL,
number(6): UNSPECIFIED « 0,
format(7): UNSPECIFIED « 0];

FormItems: TYPE = {number, format, factorial};

data: DataHandle « NIL;

wh: Window.Handle « NIL;

zone: UNCOUNTED ZONE « Heap.Create[initial: 4];
busyBit: BOOLEAN +« FALSE;

Busy: ENTRY. PROCEDURE RETURNS [isBusy: BOOLEAN] = {
ENABLE UNWIND => NULL;
isBusy « busyBit;
busyBit « TRUE };

Done: ENTRY PROCEDURE = {
ENABLE UNWIND => NULL;
busyBit « FALSE };

Write: Format.StringProc = {Put.Text[data.fileSW, s1};
Msg: Format.StringProc = {Put.Text[data.msgSW, s]};

Tool Written Factorial Tool

Mesa Language Class -- March, 1988
Day3- #1of 11

Factorial: FormSW.ProcType = {
ENABLE ABORTED => {Done[]; CONTINUE};
IF Busy[] THEN { Msg["Tool is busy.\n"L]; RETURN};
Process.Detach[FORK Factoriallnternal[]]};

FactorialInternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};
Write["Factorial called\n"L];

Done[] }:

ClientTransition: ToolWindow.TransitionProcType
SELECT TRUE FROM
old = inactive => IF data = NIL THEN data « zone.NEW[Data « []];
new = inactive => IF data # NIL THEN { zone.FREE[@data] };
ENDCASE };

{

Init: PROCEDURE = {
Exec.AddCommand["FactorialTool. "L, NoOp, NIL, Unload];
wh « Tool.Create[makeSWsProc: MakeSWs, initialState: default,
clientTransition: ClientTransition, name: "FactorialTool"L, cmSection: "FactorialTool"L] };

NoOp: Exec.ExecProc = { };

Unload: Exec.ExecProc = {
IF Busy[] THEN {
Exec.OutputProc[h]["Tool is busy. Sorry.\n"L];
RETURN[error] };
Tool.Destroy[wh]; .
Exac.RémdveCommand[h. "FactorialTool. "L];

Done[] };

MakeSWs: Tool.MakeSWsProc = {
logName: LONG STRING « [20];
Tool.UnusedLogName[unused: logName, root: "FactorialTool.log"L];
data.msgSW « Tool.MakeMsgSW[window: window];
data,formSW « Tool.MakeFormSW[window: window, formProc: MakeForm];
data.fil1eSW « Tool.MakeFileSW[window: window, name: logName] };

MakeForm: FormSW.ClientItemsProcType =
OPEN FormSW;
nItems: CARDINAL = FormItems.LAST.ORD + 1;
format: ARRAY[0..3) OF Enumerated « [
["hex"L, 0], ["octal"L, 1], [“"decimal’L, 2]];
items- « A¥locateltemDescriptor[nItems];
items[FormItems.number.ORD] ¢ NumberItem[
tag: "Number"L, place: [8, 1ine0], signed: FALSE, notNegative: TRUE, value: @data.number];
items[FormItems.format.ORD] « EnumeratedItem{tag: "Format"L,
place: [186, 1ine0], feedback: all, choices: DESCRIPTOR[format], value: @data.format];
items[FormItems.factorial.ORD] « CommandItem[
tag: "Factorial"L, place: [6, 1inel], proc: Factorial]:
RETURN[items: items, freeDesc: TRUE] };

-- Mainline code

Init[]; -- this gets string out of global frame
}...

Tool Written Factorial Tool

Mesa Language Class -- March, 1988
Day3-#2of 11

User-Modified Factorial Tool

-- FactorialTool.mesa
-- Create by FormSWLayoutTool on 16-May-86 10:42. Modified on 16-May-86 10:57

DIRECTORY
Exec USING [AddCommand, ExecProc, Handle, OutputProc, RemoveCommand],
Format USING [StringProc],
FormSW USING [AllocateitemDescriptor, ClientitemsProcType, Commanditem, Enumerated,
Enumerateditem, line0, line1, Numberitem, ProcType] ,
Heap USING [Create],
Process USING [Detach],
Put USING [Text],
Tool USING [Create, Destroy, MakeFileSW, MakeFormSW, MakeMsgSW, MakeSWsProc, UnusedLogName],
ToolWindow USING [TransitionProcType],
Window USING [Handle];

FactorialTool: MONITOR IMPORTS Exec, FormSW, Heap, Put, Process, Tool = {

DataHandle: TYPE = LONG POINTER TO Data;
Data: TYPE = MACHINE DEPENDENT RECORD [
msgSW(0): Window.Handle « NIL,
formSW(2): Window.Handle « NIL,
fi1eSW(4): Window.Handle « NIL,
number(8): CARDINAL « 0,
format(7): FormatType «decimal];

FormatType: TYPE = {hex, octal, decimal}; -

FormItems: TYPE = {number, format, factorial};
data: DataHandle « NIL; ‘

wh: Window.Handle « NIL;

zone: UNCOUNTED ZONE « Heap.Create[initial: 4];
busyBit: BOOLEAN « FALSE;

Busy: ENTRY PROCEDURE RETURNS [1sBusy: BOOLEAN] = {
ENABLE UNWIND => NULL:
isBusy ¢ busyBit;
busyBit « TRUE };
Done: ENTRY PROCEDURE =
ENABLE UNWIND => NULL:
busyBit « FALSE };

Write: Format.StringProc = {Put.Text[data.fileSW, s]};
Msg: Format.StringProc = {Put.Text[data.msgSWw, s]};

ClientTransition: ToolWindow.TransitionProcType = {
SELECT TRUE -FROM
old = inactive => IF data = NIL THEN data « zone.NEW[Data « []];
new = inactive => IF data # NIL THEN { zone.FREE[Q@data] };
ENDCASE };

Factorial: FormSW.ProcType = {
ENABLE ABORTED => {Done[]; CONTINUE};
IF Busy [] THEN { Msg["Tool is busy.\n"L]; RETURN};
Process.Detach[FORK FactorialInternal{]};

User Modified Factorial Tool

Mesa Language Class -- March, 1988
Day 3 - #2of 17 2

FactorialInternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};
IF data.number > 12 THEN { --Outof range.
Put.CR[data.msgSW]; Put.Text[data.msgSW, "Too high, try again.”L] }
ELSE{
resuit: LONG CARDINAL « 1;
temp: CARDINAL « data.number;
WHILE temp > 0 DO result «result * temp; temp «temp-1; ENDLOOP;
Put.CR[data.fileSW];
Put.Text[data.fileSW, “The factorial of “];
Put.Decimal[data.fileSW, data.number];
Put.Text[data.fileSW, "is "],
SELECT data.format FROM
hex =2> Put.LongNumber[data.fileSW, result, [16]];
octal => Put.LongNumber[data.fileSW, result, [8]];
decimal = > Put.LongNumber[data.fileSW, result, [10]];
ENDCASE;
Put.CR[data.fileSW] }:
Done[1}:

Init: PROCEDURE = {
Exec.AddCommand["FactorialTool.~"L. NoOp, NIL, Unload];
wh « Tool.Create[makeSWsProc: MakeSWs, initialState: default,
clientTransition: ClientTransition, name: "FactorialTool"L, cmSection: "FactorialTool"L] };

NoOp: Exec.ExecProc = { };

Unload: Exec.ExecProc = {
“IF Busy[] THEN {
Exec.QutputProc[h]["Tool is busy. Sorry.\n"L];
RETURN[error] };
Tool.Destroy[wh];
Exec.RemoveCommand[h, "FactorialTool.~"L];
Done[] };

MakoSWs: Tool.MakeSWsProc = {
logName: LONG STRING « [20];
Tool.UnusedLogName[unused: logName, root: "FactorialTool.log"L];
data.msgSW « Tool.MakeMsgSW[window: window];
data.formsw Tool.MakeFormSW[window: window, formProc: MakeForm];
data.fi1eSW ¢ Tool.MakeFileSW[window: window, name: logName] };

MakeForm: FormSW.ClientItemsProcType = { OPEN FormSW;
nItems: CARDINAL = FormItems.LAST.ORD + 1;
format: ARRAY[0..3) OF Enumerated ¢« [["hex"L, 0], ["octal"L, 1], ["decimal”L, 2]];
items « AllocateltemDescriptor[nItems];
items[Formitems.number.ORD] « NumberItem[
tag: "Number"L, place: [6, 1ine0], signed: FALSE, notNegative: TRUE, value: @data.number];
items{FormItems.format.ORD] ¢« EnumeratedItem[tag: "Format"L,
place: [188, 1ine0], feedback: all, choices: DESCRIPTOR[format], value: @data.format];
items[FormItems.factortial.ORD] « CommandItem[tag:"Factorial”L, place:[8, 1inel], proc: Factorial];
RETURN[items: items, freeDesc: TRUE] };

Init[]; -- this MainLine code gets the string out of global frame
}...

User Modified Factorial Tool

Mesa Language Class — August, 1987
Day3- #3of 11 1

Using the FormSWLayoutTool

Description

The FormSWLayoutTool has three subwindows: a message subwindow, a form subwindow, and a file
subwindow. The items in the FormSWLayoutTool form subwindow are as follows:

FormType:

{bool, command, enum, longNum, num, source, string, tag}

This is an enumerated item that lists the possible items that you can have in a form subwindow. When
you are laying out a form subwindow, you select the type of the item that you want from this
enumeration.

bool

creates a Mesa BOOLEAN, and is video inverted when TRUE.

command creates a command with an associate procedure that will be called when the command is

enum

invoked.

creates a tag containing an enumerated list of items. The code generated does not use
Mesa enumerated types; rather it creates an ARRAY DESCRIPTOR containing strings
corresponding to the names in the enumerated tag, and cardinal numbers that correspond
to the ORD of the tag item.

longNum generates a LONG UNSPECIFIED, which you can change to a LONG CARDINAL or LONG

num
source
string

tag

Tag:

Zone:

AlignX

Usebox

Anyfont

INTEGER.

genérates an UNSPECIFIED, which you can change to a CARDINAL or INTEGER.
is not currently supported.

creates a LONG STRING and in the code sets it to NIL.

does not generate a Mesa variable; it simply creates the named tag and places it on your
tool. The tag has no functionality; it is for documentation/information.

This is where you type the name of the tag for the item that you want to place in your form
subwindow. Thus, if you want your new form subwindow to have a command called Fred!, you
would put Fred in the Tag: field and select Command from the FormType enumeration.

This specifies the heap that you want your program to use for storage allocation. If you leave
this field blank, the defauit is to use the systemZone.

is a boolean that causes columns to be defined by the width of the character ‘0. If you don’t use
this option, the default is to define one column per bit on the screen. You should use AlignX to
ensure that you have straight columns, since it may be difficult to discern if a column is off by
one bit.

causes the generated tool to have the same dimensions and location as the
FormSWLayoutTool. Thus you simply manipulate the layout tool to the size and position you
like and your new tool will have the same characteristics. Obviously, this only controls the initial
size and position of the tool; the user is free to change the window.

causes the layout tool to generate code that will have proportional spacing rather than
absolute. This means that the form subwindow will look right regardiess of the font that the

Using the FormSWlLayoutTool

Mesa Language Class - August, 1987
Day3-#30f 11 2

user chooses. Otherwise, if the tool is displayed in a large font, the letters may distort and
overiap.

Root: is where you specify the name that you want your source file to have. Don’t include the .mesa
extension; this is added automatically by the tool.

Doit! causes the layout tool to generate code for the form subwindow.

SetDefauits! allows you to set the defaults for the property sheets of the different form items.

Save! saves the contents of the form subwindow that you are creating in a file named root .by. This
can be useful if you are creating a complex tool and want to ensure that a system crash won't
destroy your work.

Load! loads a .by file into the layout tool so you can continue work (the .by is automatically

appended onto the root.)

Plagiarize! lets you copy a form subwindow from another tool into the layout tool’s window. Just invoke
Plagiarize! and then select the form subwindow that you want to plagiarize. You can then edit
the plagiarized window, as described below.

Operation

The layout tool has two modes of operation: initial layout and editing. When there is text in the Tag: field,
you are in initial layout; otherwise, you are editing.

When you are in initial layout mode, the mouse pointer becomes a brush (a string of characters that
represents the tag). To add an item to your new form subwindow, select the type of the item from the
FormType enumeration, put the appropriate tag in the Tag: field, move the mouse into the bottom
subwindow and click over the desired location. When you are through laying out your new form
subwindow, remove the text from the Tag: field and you are ready to edit the form.

In edit mode, you can use the DELETE, MOVE, COPY and PROPS keys to edit the items in your form
subwindow. DELETE, MOVE, and COPY have the obvious meanings; PROPS allows you to change the
properties of an item. Each form item that you create has associated properties, which you can display by
selecting the item and pressing the PROP’S key on your keyboard. You can use this property sheet to
change various aspects of the item, such as the name of the Mesa variable that an item represents. When
you create an enumerated item, you will have to use the property sheet to set the values that the
enumeration can have.

Using the FormSWlayoutTool

Mesa Language Class -- August, 1987
Day3-#40f11 ‘ 1

Dynamic Storage Allocation Exercise: Letter Groups

In this exercise, you will complete a program that takes a string of characters as input and stores the
characters alphabetically in queues according to the number of queues that the user specifies. For
example, if the input were James! Where are you?' and the user wanted four groups of characters, the
result would look like this:

For Group 0 (A-G):
aeeeae

For Group 1 (H-N):
Jmh

For Group 2 (O-T):
srro

For Group 3 (U-2):
Wyu

For Last Group (non-alphabetic characters)
1 SPSPSP?!

Done.
The program runs from a tool, which consists of the following files:

LetterControl.mesa: contains tool-related code (I/0);

Letterimpl.mesa: contains the implementation code that actually processes the input;
LetterDefs.mesa: = - is the interface for this tool;
LetterTool.config: is the configuration module for the above.

Input: James! Where are you?!
Number of Queues: {four}
Group!

For Group 0 (A-G):
a e o e a o
For Group 1 (H-N):
J m h

For Group 2 (0-T):
s r r o

The tool as it appears when LetterTool.bcd is executed.

Letter Groups Exercise

Mesa Language Class - August, 1987 i
Day 3- #40of 11 2

When the user invokes Group!, the Commanditem procedure Group (in LetterControl) passes the input
string and desired the number of queues to procedure Processinput (in Letterimpl). Processinput calls five
procedures: InitQueues, CutUpAlphabet, Storeletters, PrintResults, and DeallocateQueues. InitQueues
creates and initializes the queues; CutUpAlphabet determines which characters in the alphabet each
queue will handle; StoreLetters actually puts the characters into the queues; PrintResults (in
LetterControl) displays the results; and DeallocateQueues deallocates the storage that the queues used.

There are two instances where dynamic storage allocation must be considered. First, there is the initial
allocation from a heap, where two factors are variable: the number of queues and the size of each queue.
Secondly, there is the expansion of a queue when the sequence that represents the queue is full. The
“expansion” really consists of allocating a new sequence that is larger than the original one, copying over
the original sequence into the new one, inserting the new sequence in place of the original one, and
freeing the space that the original sequence occupied.

Assignment
Modify the file Letterimpl.mesa and fill in the dynamic storage allocation code in the indicated places. The

procedures that you need to write are listed at the top of the Letterimpl.mesa. You will need to use some
of the types that are declared in LetterDefs.mesa.

Letter Groups Exercise

Mesa Language Class -- August, 1987
Day 3-#5o0f11 1

Extra Programming Assignment: Editor

In this exercise, you will modify a line editor that runs in a tool window. To use this tool, you use the Enter
Input! command to enter input in the line editor, and then use the other commands to change that input.

;]
¢ Input:

i Line Number = 0

Enterinput! Load Line Number! Redisplay Text! Delete Line!

! Find! & '

: Replace!

' —]

The line editor currently calls the following string manipulation procedures in the String interface:

String.CopyToNewString
String.DeleteSubString
String.EqualSubString
String.ExpandString
String.FreeString
String.InsertString
String.Replace

Your assignment is to implement the same procedures through another interface called String2. We have
provided the interface; you need to write the implementations to this new interface and bind the modules
together into a configuration.

You will need the following modules for this assignment:

EditorDefs.mesa
Editorimpl.mesa
EditorTool.mesa
String2.mesa
Editor2.config

Editor Assignment

Mesa Language Class -- August, 1987
Day3-#50of 11 2

Before you start writing your implementation module, you might want to run the working version
(Editor.bcd) to get an idea of how it works. Once you are ready to start writing code, you need to do the
following:

1)
2)
3)
4)
5)
6)

7

Change all String references to String2 in the module Editorimpl.

Create an implementation module for String2 (Name it String2lmpl.mesa).

Move the procedure InsertString from the module Editorimpl to String2impl.mesa.
Change all InsertString references to String2.InsertString.

Write the implementations for the procedures listed in String2.

Change the configuration Editor2.config to reflect the new usage of program modules.

Test your program.

Note that in order to write the implementations for the String2 procedures, you will have to read the
String documentation in the Pilot Programmer’s Manual to get an idea of what the procedures are
supposed to do, and how a substring works.

Editor Assignment

Mesa Language Class -- August, 1987
Day3-#60of 11 v

DSA Extra Exercise: Tree Traversal Tool

The Tree Traversal Tool allows you to enter numbers into a sorted binary tree. At any point, you can make a
preorder, inorder, or postorder traversal of the tree,with the order of traversal displayed in the tool.

! Number= 5

Enter Input! Clear Tree!
PreOrder! InOrder! PostOrder!
MIIIILLKLLKKK

! PreOrder is 7 4 2 5 9 8 12

HYSSIIIIRIRRLE

Your assignment is to write the procedures Init, EnterNumber, and ClearTree in the module
TreeTraversalProblem.mesa. The comments in this module provide a more complete explanation of what
you need to do.

You will also need the following modules:
TreeTraversalDefs.mesa

TreeTraversalimp.mesa
TreeTraversalTool.config

Mesa Language Class — August, 1987
Day 3-#90of11

Letter Group Solution

--LettorImpl.mesa - last edit on:
-- 14-May-86 18:26:05

DIRECTORY
Heap USING [Create, Delete],

LetterDefs USING [CharQ, CharQPtr, PrintResults, QList, QListHandle];

LetterImpl: PROGRAM IMPORTS Heap, LetterDefs EXPORTS LetterDefs = {

CleanUp: PROC = {
IF qList # NIL THEN DeallocateQueues[];
IF z # NIL THEN { ‘
Heap .Delete[z];
z « NIL } };

CreateHeap: PUBLIC PROC = {
IF z # NIL THEN Heap.Delete[z];
z « Heap.Create[initial: 1];

L

-- optional (If you don’t do this, then do:
-- gqlisteNIL)

-- justin case
-- create a private heap

InitQueues: PROC [howMany: CARDINAL, input: LONG STRING] = {
Initia1Size0fQs: CARDINAL « input.length / howMany + 1;
gList « z.NEW[LetterDefs .QList[howMany + 1]]; -- allocate the sequence of pointers

FOR i: CARDINAL IN [0..howMany +1) DO

-- allocate a queue for each of the pointers

qList[i] « z.NEW[LetterDefs .CharQ[InitialSize0fQs]];

qlList[i].length « 0;
ENDLOOP;
badCharQ « howMany;

3}

DeallocateQueues: PROC = {
FOR i: CARDINAL IN [0..qList.index) DO
z . FREE[@qList[i]];
ENDLOOP;
z.FREE[@qList];
qList « NIL };

-- initialize length

-- set badCharQ to be the last sequence

--deallocate each of the queues

-- deallocate the sequence of pointers

ExpandQ: PROC [queue: LONG POINTER TO LetterDefs.CharQPtr] = {

--allocate new queue

temp: LetterDefs.CharQPtr « z.NEW[LetterDefs.CharQ[queue.maxlength + 5]];

FOR i: CARDINAL IN [0..queue.length) DO
temp[i] ¢ queue[i];
ENDLOOP;

temp.length ¢« queue.length;

temp.first « queue.first;

temp.last ¢« queue.last;

z.FREE[queue];

quoeuet + temp;

}s
}ooo

-- copy sequence

-- copy remaining fields

-~ free old sequence
-- adjust the pointers

Mesa Language Class -- August, 1987
Day 4- #10f9

Where Does Control Go After a SIGNAL is Caught?

UNWIND raised ?
YES NO

Statement ‘ Frame and Block Where Control is Resumed After a Catch

RESUME Control is resumed in the frame where the signal was raised, at the point where the signal was raised.
View this situation as a return from a procedure call.

CONTINUE | Control is resumed in the frame (and block) where the signal is caught, not in the frame where the
signal was raised (if these frames are different).

Control is given to the statement following the statement to which the catch phrase belongs.
If Catch phrase isin a(n):

1. Argumentlist: Go to the statement following the call.

2. BEGIN - END block: Go to the statement following the BEGIN - END block most narrowly

enclosing the ENABLE clause.
3. Loop: Gotothe “next” iterationif any.

Control is resumed in the frame (and block) where the signal is caught.
Control passes to the beginning of the statement to which the catch phrase belongs.
If Catch phrase isin a(n):
1. Argument list: Execute the call again.
2. BEGIN - END block: Go to the first statement of the BEGIN - END block most narrowly enclosing
the ENABLE clause. '
3. Loop: Start the current iteration again from the beginning.

Control is resumed in the frame (and block) where the signal is caught.
Control passes to the “next” iteration.

Control is resumed in the frame (and block) where the signal is caught.
Control passes to the first statement outside the loop containing the EXIT statement.

Control is resumed in the frame where the signal is caught.
Control passes to the EXITS clause of the block containing the catch phrase or to some
surrounding block of the block containing the catch phrase.

Note that control need not resume in the block where the signal is caught.

Mesa Language Class - August, 1987
Day4- #2 of 9

Complex Signal Example

Consider the code below and name the statements that will be executed when the following call is made:
Procifo0];

Sigl: ERROR = CODE;
Sig2: ERROR = CODE;
Sig3: SIGNAL = CODE;

Proc1l: PROCEDURE[x: CARDINAL] =
BEGIN
ENABLE
. BEGIN
Sigl => GOTO punt;
Sig2 => {statement 1>;
UNSIND => <statement 25; P Catch Phrase 1
END;
{statement 3>;
<{statement 4>;
IF TRUE THEN
BEGIN
ENABLE
Sigl => <statement 5>; ﬁ Catch Phrase 2
- {statement 8>;)
<statement 7>;
Proc2[x!
Sig2, Sig3 => <(statement 8>;
UNWIND => <statement 9>]; —— Catch Phrase 3
END;
(statement 10>;
EXITS
punt => <statement 11>;
END;

Proc2: PROCEDURE[x: CARDINAL] =
BEGIN
Proc3[x!
Sigl => <{statement 12>;

Sig2 => <{statement 13>; ﬁ
UNWIND => <statement 14>7; Catch Phrase 4
END;

Proc3: PROCEDURE [x: CARDINAL] =

BEGIN
IF x = 0 THEN
ERROR Sigl
ELSE
ERROR Sig2;
END;

Complex Signal Example

Mesa Language Class -- August, 1987

Day 4 - #2 of 9

Statements are executed in the following order:

Statement 3
Statement 4
Statement 6
Statement 7
Proc2(0]
Proc3(0]
Statement 12
Statement 5
Statement 14
Statement 9
GOTO punt;
Statement 11

Snapshots of the call-stack when it changes state are shown below (CP = Catch Phrase):

Proc 1

Proc 2

Proc 3

CP4Sigi1]

Proc 1

Proc 2

CP 4 [Unwind]

Proc 1 Proc 1 Proc 1
’ \
Proc 2 Proc2
Proc 3
Proc 1 Proc 1 Proc 1
Proc 2 ’ Proc 2 " Proc2
Proc 3 Proc 3 Proc 3
CP 3 [Sigt] CP 2 [Sig1] CP 1 [Sig1]
(O ——
Proc 1 Proc 1 Proc 1
— P
CP 3 [Unwind] CP 2 [Unwind]

Complex Signal Example

Mesa Language Class -- February, 1988
Day4- #3of 9 1

Streams Programming Assignment: Madlibs™

In this programming assignment, you will write a program that will play the game of Madlibs™. In
Madlibs™, the user is asked to think of some words at random. Typically he is asked for adjectives, nouns,
verbs, etc. Once these words are collected, they are placed into an incomplete story that has specific
destinations for adjectives, nouns, verbs, etc. For instance the incomplete story line might look like this:

Dear Mom and Dad:

How are things? My classes aren’t hard; they're just a little <adjective>.

I'm having fun though. My teachers are very <adjective> and they

all like to <verb>. Last night, my English teacher showed me how to
<verb>. She also gave me a <noun>> and told me to <verb> every day.
My girlfriend is fine. Yesterday we went to <place> and <past tense verb>.
well, | should go. Send < plural noun>.

love, <name>
The finished story might read:
Dear Mom and Dad:

How are things? My classes aren’t hard; they're just a little slimy.

I'm having fun though. My teachers are very green and they

all like to roller skate. Last night, my English teacher showed me how to
climb trees. She also gave me a twig and told me to sleep every day.

My girlfriend is fine. Yesterday we went to Hoover Tower and sat.

well, | should go. Send trees. :

love, John

In this version of Madlibs™, the incomplete story lines will exist as a local file. Your program will read
through the story letter by letter and copy most of the file to a temporary file. Whenever a left bracket, <,
is encountered, the program will read the word between the two brackets, and display the word to the
tool’s message subwindow asking the user to input this type of word. You then think of a word to type
into the input field and click over the Read Input! command. Your program will then write the string,
contained in the backing store of the input field, to the temporary file. These steps should be repeated
until the input file is empty. When the file is empty your program should display the completed story to the
tool’s file subwindow.

When the tool is run, the user should type in a file name. After a game has started, the tool will query for
words:

! Type in a verb

: Filename: Madl.txt Input: ran
: Play Madlibs! Read Input! 0

Madlibs Assignment

Mesa Language Class -- February, 1988
Day 4 - #3 0of 9 2

Finally, when the end-of-file has been reached and the new file has been created the text is displayed to
the file subwindow:.

§ Filename: Madi.txt Input:
i Play Madlibs! Read Input!

Dear Mom and Dad:

: How are things? My classes are ok; sometimes they’re a T1ittle slimy.

§ I'm having fun though. My teachers are very green and they

i all 1ike to roller skate. Last night, my English teacher showed me how to
§ climb trees. She also gave me a twig and told me to sleep every day.

§ My girlfriend is fine. Yesterday we went to Hoover Tower and sat.

g well, I should go. Send treas.

§ Tove, John

Programming Assignment
Your assignment is divided into two parts:

Part 1: Create a tool with the FormSWLayoutTool that contains 4 tags: 2 strings and 2 commands. Modify
the generated code so when commands are invoked the tool will call the procedures defined in
MadlibsDefs.mesa. The generated code should be placed in the file MadlibsControl.mesa.

Part 2: Modify the file Madlibsimpl.mesa which implements the Play Madlibs! and Read Input!
commands. (The two procedures that implement those commands, PlayMadlibs and Getinput,
should be called from the MadlibsControl module whenever the user clicks on those commands in
the window.) You will have to implement three procedures in Madlibsimpl according to the
comments that describe the procedures. Bind the 2 program modules Madlibsimpl and
MadlibsControl using the configuration file Madlibs.config. There are 3 files with which to test
your program; Mad1.txt, Mad2.txt, and Mad3.txt.

Madlibs Assignment

Mesa Language Class -- February, 1988
Day 4 - #4of 9 1

Signal Exercises

For the following code fragments, list the order that the statements labeled <statement n> will be
executed.

In all code fragments, assume the following declaration:
Sigl: SIGNAL = CODE;

1. FOR counter: INTEGER IN [1..2] DO 4. FOR counter: INTEGER IN [1..2] DO
BEGIN ' ENABLE
ENABLE) Sigl => LOOP;
Sig1l => LOOP; {statement 1>;
{statement 1>; IF counter = 1 THEN SIGNAL Sig1l;
IF counter = 1 THEN SIGNAL Sigl; {statement 2>;
{statement 2>; {statement 3>;
END; ENDLOOP;
{statement 3>; {statement 4>;
ENDLOOP;
{statement 4>;
2. FOR counter: INTEGER IN [1..2] DO 5. FOR counter: INTEGER IN [1..2] DO
BEGIN ENABLE
ENABLE Sigl => CONTINUE;
Sigl => CONTINUE; {statement 1>; _
{statement 1>; IF counter = 1 THEN SIGNAL Sig1l;
IF counter = 1 THEN SIGNAL Sigi; {statement 2>;
{statement 2>;) <{statement 3>;
END; ENDLOOP ;
{statement 3>; {statement 4>;
ENDLOOP;

{statement 4>;

3. FOR counter: INTEGER IN [1..2] DO 6. Procl: PROCEDURE =
BEGIN BEGIN
ENABLE SIGNAL Sigl;
Sigl => EXIT; END;
<statement 1>;
IF counter = 1 THEN SIGNAL Sig1l; IF TRUE THEN
{statement 2>; BEGIN
END; ENABLE
{statement 3>; . Sigl => RESUME;
ENDLOOP; <{statement 1>;
{statement 4>; Proci[!1Sigl => CONTINUE];
{statement 2>;
Procl;
{statement 3>;
END;

{statement 4)>;

Signal Exercises

Mesa Language Class -- February, 1988
Day 4 - #4 of 9

7. BEGIN
ENABLE
Sig1l => RESUME;
{statement 1>;
IF TRUE THEN
BEGIN
ENABLE
Sigi => GOTO ThekEnd;
<{statement 2>;
SIGNAL Sigi:
{statement 3>;
EXITS
TheEnd => {statement 4>;
END;
{statement 5>;
EXITS
TheEnd => <{statement 6>;
END;

8. x: CARDINAL « 0;

FOR counter: INTEGER IN [1..3] DO

ENABLE
Sigl => RETRY;
<{statement 1>;
IF counter = 2 THEN
BEGIN
ENABLE
BEGIN
Sigl => {statement 2>;
UNWIND => x « 1;
END;
{statement 3>;
IF x = 0 THEN SIGNAL Sigl;
{statement 4>;
END;
{statement 5>;
ENDLOOP;

Signal Exercises

Mesa Language Class -- August, 1987
Day4- #50of 9 1

Extra Signals Programming Assignment: Blackjack

In this programming assignment, you will alter a program which has been written to play the game of
blackjack. The user initially specifies the number of games the program will play with itself. There will only
be 2 players in the game: the dealer and the player. When the user clicks Start!, the program will play out
all of the games; both hands will be output to a file sub-window as each card is played. When all of the
games are finished ,the total number of dollars won will also be output to a file sub-window:

Start! Games= 1

--==> Beginning a new game <{----
Your card is a two of clubs
My card is a jack of spades
Your card is a three of hearts
My card is a king of hearts
Your card is a ten of diamonds
Your card is a six of spades
You hold at 21
I hold at 20
Youiwin.

You are ahead by 1 dollar(s).

In this game of blackjack, the player bets 1 dollar on every hand. If he gets blackjack, then he wins 2 dollars.
Otherwise if the dealer gets blackjack, the player loses. If the game continues, the player receives hits
according a conservative strategy based on his hand, and the dealer’s face card. If he busts, he loses.
Otherwise, the dealer receives hits until his total is a hard 17 or above. If the dealer busts, the player wins 1
dollar. Finally, if the game has reached this stage, the 2 hands are compared. The players wins 1 dollar if his
hand is greater; his winnings remain the same if the hands tie; and he loses if the dealer’s hand is greater.
There is no double-down, splitting, or insurance in this version of blackjack.

When Start! is clicked, the following procedure in the implementation module is called:

PlayBlackJack: PUBLIC PROCEDURE[output: Window.Handle « NIL, gamesToBePlayed: CARDINAL « 0] = {
--This procedure will play Blackjack as many times as specified in gamesToBePlayed. After the
-- games have been played, results are written out to the window handle output.

playerTotal, dealerTotal: CARDINAL;

playerHasAce, dealerHasAce: BOOLEAN;

dealerHole, dealerFace: CardType;

THROUGH [1..gamesToBePlayed] DO
IntializeDeckForNewGame;
Put.CR[output]; Put.CR[output];
Put.Line[output, " ---->Beginning a new game <----"L7J;
[playerTotal,dealerTotal,playerHasAce,dealarHasAce,dealerHole,dealerface] « Deal[output];
IF playerHasAce AND (playerTotal = 11) THEN
winnings « winnings + 2; --Player has Blackjack
Put.Line[output, " *#+ You Have A Blackjack!!!! ***"L];
LOOP };

Blackjack Assignment

Mesa Language Class -- August, 1987
Day 4- #50f9 2

IF dealerHasAce AND (dealerTotal = 11) THEN {

winnings « winnings - 1; --Dealer has Blackjack

Put.Line[output, "*** I Have A Blackjacki!l!l ***"L7];

LOOP };
[playerTotal] « HitPlayer[output, playerHasAce, playerTotal, dealerFace];
IF playerTotal > 21 THEN {

winnings + winnings - 1; --Player busted.

Put.Line[output, " You Busted"L];
LooP }

ELSE {
Put.Text[output, " You hold at "L];

Put.LongDecimal[output, playerTotal];
Put.CR[output] };
dealerTotal « HitDealer[output, dealerHasAce, dealerTotal];
IF dealerTotal > 21 THEN {
winnings « winnings + 1; --Dealer busted.
Put.Text[output, "I Busted"L];
LOOP }
ELSE {
Put.Text[output, "I hold at "L];
Put.LongDecimalf{output, dealerTotal];
Put.CR[output] };
SELECT playerTotal FROM
< dealerTotal => { °
winnings « winnings - 1;
Put.Line[output, "I Win"L] };
> dealerTotal => {
winnings « winnings + 1;

Put.Line[output, " You Win"L] };
ENDCASE => Put.Line[output, " We’re aeven. Tie Game."L];
ENDLOOP;
Put.CR[output];
IF winnings < o THEN Put.Text[output, " You are behind by "L]
ELSE Put.Text[output, " You are ahead by "L];

Put.LongDecimalfoutput, ABS[winnings]];
Put.Line[output, * dollar(s)."L];
}; --PlayBlackJack

The procedures Deal, HitPlayer, and HitDealer all call the following procedure when they need a card:

NewCard: PROCEDURE RETURNS [card: CardType] = {
--This procedure returns the next card in the deck. If at any point, the last card in the deck is
-- used, the non-used cards in the deck are shuffled, and play continues where it left off.

IF freeCard = 53 THEN [deck, firstCard, freeCard] ¢« Shuffled[deck, firstCard];

card « deck[freeCard];

freeCard ¢« freeCard + 1;

}; --NewCard

In the procedure NewCard, deck is an array of 52 records with each record representing one card. Dealing
is accomplished by stepping through the deck one card at a time. At any instance during a game of
blackjack, firstCard is an index indicating the first card that was dealt for that hand. freeCard is an index
indicating the top card on the remaining deck, the next card that will be dealt. Thus, when freeCard is 53,
deck, firstCard, and freeCard are reinitialized by calling the procedure Shuffled which makes sure that the
cards on the table are not included in the shuffle. To complete this assignment, you don’t have to know
how Shuffled works, just that it does the right thing when passed the right arguments.

Blackjack Assignment

Mesa Language Class -- August, 1987
Day 4 - #50f9 3

Currently, if the dealer runs out of cards at any point in the game, the cards currently not in use are
shuffled, and the game continues where it left off. So if only 1 card remains in the deck, that card will.be
dealt, the rest of the deck will be shuffled, and the dealing will continue.

Assignment

Modify this program (using a signal) so that if the dealer runs out of cards while dealing the initial hand
(the first 4 cards), that game is started over with a shuffled full deck of 52 cards. If the dealer runs out of
cards while hitting the player, the unused cards in the deck should be shuffled, and the game continued
where it.had paused (like before). If the dealer runs out of cards while hitting himself, then the dealer loses
the game and the next game is started with a shuffled full deck of 52 cards. The file that you will
be altering is Blackjackimpl.mesa. Other files you will need are BlackjackDefs.mesa,
BlackjackControl.mesa, and Blackjack.config. Once you have the new version of Blackjackimpl.mesa,
answer the following questions:

1. Briefly describe how the assignment might have been completed without using a signal.

2. Signals could have been used to indicate DealerBlackjack, DealerBusted,... From an efficiency point
of view, why isn‘t this such a great idea?

Blackjack Assignment

Mesa Language Class -- February, 1988

Day4-#80of9

In all code fragments, assume the following declaration:

Sig1l: SIGNAL = CODE;

1. FOR counter: INTEGER IN
BEGIN
ENABLE
Sigl => LOOP;
{statement 1>;
IF counter = 1 THEN
{statement 2>;
END;
{statement 3>;
ENDLOOP;
{statement 4>;

2. FOR counter: INTEGER IN
BEGIN
ENABLE
Sigl => CONTINUE;
{statement 1>;
IF counter = 1 THEN
{statement 2>;
END;
{statement 3>;
ENDLOOP;
{statement 4>;

3. FOR counter: INTEGER IN
BEGIN
ENABLE
Sigl => EXIT;
{statement 1>;
IF counter = 1 THEN
{statement 2>;
END;
{statement 3>;
ENDLOOP;
{statement 4>;

Signal Exercises Solutions

[1..2] DO

SIGNAL Sig1l;

[1..2] DO

SIGNAL Sigl;

[1..2] DO

SIGNAL Sigt;

W N -

AW N - W

FOR counter: INTEGER IN [1..2] DO
ENABLE
Sigl => LOOP;
{statement 1>;
IF counter = 1 THEN SIGNAL Sigl;
{statement 2>;
{statement 3>;
ENDLOOP;
{statement 4>;

FOR counter: INTEGER IN [1..2] DO
ENABLE
Sigl => CONTINUE;
{statement 1>;
IF counter = 1 THEN SIGNAL Sigl;
{statement 2>;
C(statement 3>;
ENDLOOP;
{statement 4>;

Procl: PROCEDURE =
BEGIN
SIGNAL Sigl;
END;

" IF TRUE THEN

BEGIN

ENABLE
Sigl => RESUME;
{statement 1>;
Proc1[!Sigl => CONTINUE];
{statement 2>;
Proci;
{statement 3>;
END;
{statement 4>;

Signal Exercises Solutions

W N e B WN o

W N =

Mesa Language Class -- February, 1988
Day 4 - #8 of 9

7. BEGIN

ENABLE
Sigl => RESUME;

<statement 1>;

IF TRUE THEN
BEGIN
ENABLE

Sigl => GOTO TheEnd;

{statement 2>;
SIGNAL Sigl;
{statement 3>;

EXITS
TheEnd => <statement 4>;
END;
{statement 5>;
EXITS
TheEnd => <{statement B8>;
END;

8. x: CARDINAL « 0;
FOR counter: INTEGER IN [1..3] DO
ENABLE
Sigl => RETRY;
<{statement 1>;
IF counter = 2 THEN
BEGIN
ENABLE
BEGIN
Sigl => <{statement 2>;
UNWIND => x « 1;
END;
{statement 3>;
IF x = 0 THEN SIGNAL Sigl;
{statement 4>;
END;
{statement 5>;
ENDLOOP;

O s N -

N = O W= N W e

Signal Exercises Solutions

Mesa Language Class -- August, 1987
Day5- #10of7

Monitors Programming Assignment: One Lane Bridge

In this programming assignment, you need to write part of a program that emulates the traffi¢c 3H% dhe
lane bridge. As shown in the diagram below, there are two lanes of traffic on each side of a bridge that has
only one lane. You will write a monitor to handle the traffic on the bridge (and prevent hédd= on !
collisions). Keep in mind that if a car is on the bridge going in some direction (i.e. east), then othef''cafs
going in the same direction can follow it. Only the cars going in the opposite direction would have to wait.

: Direction: west} Drive!

: Car Type: { Jeep, Volkswagen}

: Cars In Motion= 4

' -1
N

When you select a direction (east-or west) and type of car (Datsun Z, Jeep, or Volkswagen) and then invoke
Drive!, a new car of the chosen type going in the chosen direction will be created, and the variable Cars In
Motion will be incremented. Cars In Motion cannot be changed from the window - only from within the
program. When you start a car, it will move toward the bridge, then wait, if necessary, until it can cross the
bridge, and then continue driving. When it drives past the window, it parks somewhere and Cars In Motion
will be decremented to reflect that the car is no longer in motion.

The entire user interface has been written for you. This includes the code to create the window and also
the code to draw the moving cars. You need to implement the procedure Bridge.Drive,which is called
when the user invokes Drivel. This procedure is defined in the interface Bridge.mesa. You should
implement this procedure in BridgeMonitorimpl.mesa. A template has been provided for you.

Notice that this module is a MONITOR, but the procedure Drive is not an entry procedure - it is an external
procedure. But, since this is a MONITOR module, you can put all of your procedures for monitoring the
bridge in this module, too.

The interface Bridge.mesa (shown below) contains many declarations that you will need. Each of the items
in this interface are explained below DO NOT ALTER OR RE-COMPILE THIS INTERFACE. There are many
modules that are dependent upon the particular version of Bridge.bcd that is on your disk, and you do not
have the source to recompile those other modules.

One Lane Bridge Assignment

Mesa Language Class - August, 1987
Day5- #10f7 2

--Bridge.mesa
-- 16-Jan-86 16:07:48

DIRECTORY
Supervisor USING [SubsystemHandle],
Window USING [Handle];

Bridge: DEFINITIONS = {

DataHandle: TYPE = LONG POINTER TO Data;

Data: TYPE = MACHINE DEPENDENT RECORD[
msgSW(0): Window.Handle « NIL,
formSW(2): Window.Handle « NIL,

bridgeSW(4): Window.Handle « NIL, --the subwindow where the cars are displayed
wh(8): Window.Handle « NIL, ' .

direction(8):Direction « oeast, " _.ismapped to the chdice in the fofmSwW
car(9): CarType « DatsunZ, --is mapped to the chaice in the formS’W
carsInMotion(10): CARDINAL « 0, —-is mapped to the variable in the formsw

agent(11): Supervisor.SubsystemHandle]; --is used to control deactivation of the tool
R TS A S

Direction: TYPE = {east, west}: --Direction and CarType are enumerated
CarType: TYPE = {DatsunZ, Jeep, Volkswagen}; --types that are used in the datarecord

BridgeType: TYPE = RECORD[
.carsOnBridgs:. CARDINAL «. 0, . .. --the number of cars gn the bridge at any time
direction: D1 rect’lon « east] ., .—the direction of the cars ori the bndge

e

) Drive: PROCEDURE[instanceDatar DataHandla],\

Beg1nDr1ving: PROCEDURE[sw Wmdow Hand1e Lo car CarType, ‘it Direction]’__ e
CrossBridge: PROCEDURE[sw: Window. Handle , car: CarType, dir: Direction],
vCont'lnueDriving:\PB,QC_E_DURE[;sw:"Lw1rgdow..Han.d1e , car: CarType, dir: D1rect)gn],,

P

FECEEN

In your momtor, you should create an. mstance of the record type BrldgeType to keep track of the number
of cars on the bridge at any given time and the direction of those éars. The procedure Drive is the
procedure that you will implement in BridgeMonitorimpl.mesa. The three procedures BeginDriving,
. CrassBridge, and ContinueDriving are the procedures that you will call when you want to send a car off in
a given direction. They have already been implemented for you. These procedures dlspiay the moving car
along the specified part of the road and return control to thelr caller, when they have completed. So, when
you want to start a car driving in a given direction, a call like Begmprwmg[data bridgeSW, which car,
which direction] (where which car and which direction have the values of & partncular CarType and
Direction) would do the display part for you. When you know. that a partlcular car is ready to cross the
bridge, call CrossBridgel...], and when the car has left the bndge, call ContinueDriving[...].

One Lane Bridge Assignment

Mesa Language Class -- August, 1987
Day5- #10f7

Here is the template for BridgeMonitorimpl.mesa:

--BridgeMonitorimpl.mesa
-- 16-Jan-86 16:10:52

DIRECTORY
Bridge USING [DataHandle],
Process USING [MsecToTicks, Pause];

BridgeMonitorImpl: MONITOR
IMPORTS Process
EXPORTS Bridge = {

data: Bridge,ggﬁar&andle <-€VJI?_‘IL;__ﬁw e
Drive: PUBLIC. PRQCEDURE[inﬁtanceData Br;1dge DataHand1e] = {
data ¢ 1nstan,geDQta,
Process. Pause[!’_rg,cess MsecToﬁcks[SOO]]

- You need td vi'/r)te ‘the'rest -
}; --Drive

The parameter mstancebm is a pomier to a'record of type Bridge.Data. data is:’f"n'l'%edi‘aﬁtely assighed the
value of instanceData. Now data will always have thé most current data &fid you can access sny of the
fields in data (i.e. data.direction) from anywhere within this module. Process Pausel...] will suspend the
process for a specified time, in this case a half second. This'puts a little timé"iit between ¢ars $o thidt they
don't start so close to each, other that they appear one on top of another You need to fmnsh wntmg thas
procedure and all other 'help procedures that'you may need P i i

Every time that you change *the value f CarsinMotion, you need‘té redtsplay 'th new value. You tan' do
this with a call to FormSW.Displayltem[data.formSW, 3]. The parameters of FormSW.Displayltem are ‘the
window that the item we want to redisplay is in (data, formSW) and the number of the item that we want
to redisplay. Each ltem m the formSW has a correspondmg rtem number The rtem number 'o‘f o
CarsinMotionis3. =~~~ i) e an

PET . . . oy PR £ CE A R § FERN I Sf Tkt 31

There is a maximum num"ber of €0o- exnstung prOCesses allowed To prevent problems, you should catch ‘the'
error Process. TooManyProcesses. d{gsplay a message to the message subwindow, and’ prevent ANy new carsr
from starting (at least, untll other ¢ars have parked). For information on howto cétch the error, refer to the

S P
Pilot Programmer's Manual pd, pk 26 ’through 2-§0
The configuration-modu(%,5,pn.é'l‘.fa‘a'qg'gnﬂge.co'pfig,_ has beén written for you.
Assignment

1. Finish the implementation module BridgeMonitorimpl.mesa.
2. Verify your implementation by running the tool.

One Lane Bridge Assignment

Mesa Language Class -- August, 1987 .
Day5- #20f7 ' 1

Extra Monitors Programming Assignment:
Dining Philosophers (Hard Version)

Your assignment is to implement the dining philosophers problem. In this problem, you have 5
philosophers at a dining table. However, there is only one chopstick between each plate, and a
philosopher needs 2 chopsticks to eat. At any given time, a philosopher may be thinking, eating, or waiting
for the philosopher next to him to put down a chopstick so he can use it.

Olo
O/O\

The tool has an enumerated item to represent each philosopher:

.

{1
: Philosopherli: {thinking, waiting, eating}
Philosopher2: {thinking, waiting, eating}
Philosopherd: {thinking, waiting, eating}
: Philosopher4: {thinking, waiting, eating}
i Philosopher5: {thinking, waiting, eating} -

: Philosopher # 1 is ®mating.

! Philosopher # 2 must wait to eat.

! Philosopher # 1 has finished eating.
Philosopher # 2 is eating.

Initially, all philosophers are thinking. The user can tell a philosopher to start eating by changing the value
of the enumerated from thinking to eating. If the philosopher can eat, then the state will change to
eating, and appropriate feedback will appear in the file subwindow. If the philosopher must wait to eat,
then the state will change to waiting, and an appropriate message will appear.

Thus, in the program, you need to write a procedure that reacts to changes in the state of the enumerated
“philosophers.” When the user asks a philosopher to eat, you should check to see if he can eat (see if his
chopsticks are available.) If the philosopher can eat, then you need to update data to indicate that his
chopsticks are in use, and display a message. Otherwise, the process should wait until it can eat. While the

Dining Philosophers (Hard Version)

Mesa Language Class -- August, 1987
Ddy 5- #2of 7 2

processis'waiting, the state of the philosopher should be “waiting.” Note that your implementation is the s
only way to change the state to "waiting”; the user should not be able to explicitly change the state to or
from waiting.

Iftheuser changes the state of a philosopher from eating to thinking, then you should change the data so
that his chopsticks are no longer in use, and inform other philosophers that they might be able to eat.

You are on your own for this assignment; we do not provide any of the code for you. =

Dining Philosophers (Hard Version)

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_1-05
	1_1-06
	1_1-07
	1_1-08
	1_1-09
	1_1-10
	1_1-11
	1_1-12
	1_1-13
	1_1-14
	1_1-15
	1_1-16
	1_1-17
	1_1-18
	1_1-19
	1_1-20
	1_1-21
	1_1-22
	1_1-23
	1_1-24
	1_1-25
	1_1-26
	1_1-27
	1_1-28
	1_1-29
	1_1-30
	1_1-31
	1_1-32
	1_1-33
	1_1-34
	1_1-35
	1_1-36
	1_1-37
	1_1-38
	1_1-39
	1_1-40
	1_1-41
	1_1-42
	1_1-43
	1_1-44
	1_1-45
	1_1-46
	1_1-47
	1_1-48
	1_1-49
	1_1-50
	1_1-51
	1_1-52
	1_1-53
	1_1-54
	1_1-55
	1_1-56
	1_1-57
	1_1-58
	1_1-59
	1_1-60
	1_1-61
	1_1-62
	1_1-63
	1_1-64
	1_1-65
	1_1-66
	1_1-67
	1_1-68
	1_1-69
	1_1-70
	1_1-71
	1_1-72
	1_1-73
	1_1-74
	1_1-75
	1_1-76
	1_1-77
	1_D-01
	1_D-02
	1_D-03
	1_D-04
	1_D-05
	1_D-06
	1_D-07
	1_D-08
	1_D-09
	1_D-10
	1_D-11
	1_D-12
	1_D-13
	1_D-14
	1_D-15
	1_D-16
	1_D-17
	1_D-18
	1_D-19
	1_D-20
	1_a-01
	1_a-02
	1_a-03
	1_a-04
	1_a-05
	1_a-06
	1_a-07
	1_a-08
	1_a-09
	1_a-10
	1_a-11
	1_i-01
	1_i-02
	1_i-03
	2_2-01
	2_2-02
	2_2-03
	2_2-04
	2_2-05
	2_2-06
	2_2-07
	2_2-08
	2_2-09
	2_2-10
	2_2-11
	2_2-12
	2_2-13
	2_2-14
	2_2-15
	2_2-16
	2_2-17
	2_2-18
	2_2-19
	2_2-20
	2_2-21
	2_2-22
	2_2-23
	2_2-24
	2_2-25
	2_2-26
	2_2-27
	2_2-28
	2_2-29
	2_2-30
	2_2-31
	2_2-32
	2_2-33
	2_2-34
	2_2-35
	2_i-01
	3_3-01
	3_3-02
	3_3-03
	3_3-04
	3_3-05
	3_3-06
	3_3-07
	3_3-08
	3_3-09
	3_3-10
	3_3-11
	3_3-12
	3_3-13
	3_3-14
	3_3-15
	3_3-16
	3_3-17
	3_3-18
	3_3-19
	3_3-20
	3_3-21
	3_3-22
	3_3-23
	3_3-24
	3_3-25
	3_3-26
	3_3-27
	3_3-28
	3_3-29
	3_3-30
	3_3-31
	3_3-32
	3_3-33
	3_3-34
	3_3-35
	3_3-36
	3_3-37
	3_3-38
	3_3-39
	3_3-40
	3_3-41
	3_3-42
	3_3-43
	3_3-44
	3_3-45
	3_3-46
	3_3-47
	3_3-48
	3_3-49
	3_3-50
	3_3-51
	3_3-52
	3_3-53
	3_3-54
	3_3-55
	3_i-01
	3_i-02
	4_4-01
	4_4-02
	4_4-03
	4_4-04
	4_4-05
	4_4-06
	4_4-07
	4_4-08
	4_4-09
	4_4-10
	4_4-11
	4_4-12
	4_4-13
	4_4-14
	4_4-15
	4_4-16
	4_4-17
	4_4-18
	4_4-19
	4_4-20
	4_4-21
	4_4-22
	4_4-23
	4_4-24
	4_4-25
	4_4-26
	4_4-27
	4_4-28
	4_4-29
	4_4-30
	4_4-31
	4_4-32
	4_4-33
	4_4-34
	4_4-35
	4_4-36
	4_4-37
	4_4-38
	4_4-39
	4_4-40
	4_4-41
	4_4-42
	4_4-43
	4_4-44
	4_4-45
	4_4-46
	4_4-47
	4_4-48
	4_4-49
	4_4-50
	4_4-51
	4_4-52
	4_4-53
	4_4-54
	4_i-01
	4_i-02
	4_i-03
	5_5-01
	5_5-02
	5_5-03
	5_5-04
	5_5-05
	5_5-06
	5_5-07
	5_5-08
	5_5-09
	5_5-10
	5_5-11
	5_5-12
	5_5-13
	5_5-14
	5_5-15
	5_5-16
	5_5-17
	5_5-18
	5_5-19
	5_5-20
	5_5-21
	5_5-22
	5_5-23
	5_5-24
	5_5-25
	5_5-26
	5_5-27
	5_5-28
	5_5-29
	5_5-30
	5_5-31
	5_5-32
	5_5-33
	5_5-34
	5_5-35
	5_5-36
	5_5-37
	5_5-38
	5_5-39
	5_5-40
	5_5-41
	5_5-42
	5_5-43
	5_5-44
	5_5-45
	5_5-46
	5_5-47
	5_5-48
	5_5-49
	5_5-50
	5_i-01
	5_i-02
	Day1_2of9
	Day1_3of9
	Day1_4of9
	Day1_5of9
	Day1_6of9_1
	Day1_6of9_2
	Day1_6of9_3
	Day1_6of9_4
	Day1_6of9_5
	Day1_6of9_6
	Day1_6of9_7
	Day1_6of9_8
	Day1_7of9
	Day1_8of9
	Day1_8of9_1
	Day1_8of9_2
	Day1_8of9_3
	Day1_8of9_4
	Day1_8of9_5
	Day1_9of9
	Day2_1of5_1
	Day2_1of5_2
	Day2_1of5_3
	Day2_1of5_4
	Day2_1of5_5
	Day2_1of5_6
	Day2_2of5
	Day2_3of5_1
	Day2_3of5_2
	Day3_1of11_1
	Day3_1of11_2
	Day3_2of11_1
	Day3_2of11_2
	Day3_3of11_1
	Day3_3of11_2
	Day3_4of11_1
	Day3_4of11_2
	Day3_5of11_1
	Day3_5of11_2
	Day3_6of11
	Day3_9of11
	Day4_1of9
	Day4_2of9_1
	Day4_2of9_2
	Day4_3of9_1
	Day4_3of9_2
	Day4_4of9_1
	Day4_4of9_2
	Day4_5of9_1
	Day4_5of9_2
	Day4_5of9_3
	Day4_8of9_1
	Day4_8of9_2
	Day5_1of7_1
	Day5_1of7_2
	Day5_1of7_3
	Day5_2of7_1
	Day5_2of7_2

