
Mesa Language Class -- March, 1988 Intro-1

!·raini:ng Overvie",;, :

Training Overview

Mesa Language Class -- March, 1988 Intro-2

Yc)ur Instructors

This week YQu.r~ instructors could be any combin~tio'1 of the people listed
belo,!,,{ .. ,I(yo·u, b~ve a.n'y comments about the course',s.t~uc~ure or content, feel

,:~free to"m~·~s~g.~jim):ferZ- (e-m(~iI addresS,es listed befow·.y"., . _
':',,.. ':" ~ •. .' ~ .' ",,' t ~ .'

Jim Herz ,' .. < He'rz:()SBU North-:Xerox>

" Gail Kubeczko

Holly Wanless

Grant Ruiz

Training Overview

Mesa Language Class -- March, 1988 Intro-3

Available XDE Training

Here is the ordering in which .XDE training should be done. Bold boxes
represent self-Pdc'~dl 'tutorials. The numb'eted boxes repre'sent s~and_-up
courses offered by our Training Group. Classes are usualry held in Sunnyvale,
California. Descriptions of each"are on the following pages.

I XDE Intra I

Mesa Course Tutorial

3. Vie w Poi n t Vie w Poi n t
Programming Programming

Tutorial

4. Advanced
ViewPoint
Programming

Training Overview

5. Next Class
-(stay tuned)

Mesa Language Class -- March, 1988 Intro-4

The Stand-Up Courses

UNIT 1. The Mesa Language
Introduces a new user to the Mesa programming language. Stress is
placed on possibly unf4~miliar features such as explicit storage
management (allocation and deallocation), modules and configurations,
monitors, processes, and si9nals. System issues are not covered in detail.

UNIT 2. Introduction to Xero)c Network Systems Protocols and Agents
Defines the Xerox Internet Transport Protocols. Emphasis on definition

'andHlustration of Network Systems remote procedure call protocol
(Courier). Examination of service-like applications interacting with top
level protocols.

UNIT 3. Xerox ViewPoint Pro~Jramming
In this unit we introduce ViewPoint architecture, user interface, tool set,
and design methodology for applications built on the ViewPoint base.
Topics covered include Programmer/User interaction, running programs
from the desktop, regist1ering programs with the desktop, NS file
manipulation, and application folders.

UNIT 4. Advanced ViewPoint Programming
This class will focus on writing applications that interact with documents
an'd other applications in a sophisticated manner. Topics will include
using advanced graphics, notifying procedures when user actions occur,

, "writing and managing TIP (Terminal Interface Packa'ge) tables, and
.. '~: managing a selection. .',

Training Overview

Mesa Language Class -- March, 1988 Intro-5

The Self Study Materials

• xoe Concepts and Principles
A high level overview of XDE and Xerox Network Services architecture.
Intended to provide a philsophical and conceptual framework on
which to base an understanding of XDE.

• Introduction to xoe
A computer aided tutorial that will familiarize, a new user with the
XDE tool set and associated user interface, operation of essential tools,
editing, and XDE documentation. This tutorial will take t~o to three
days to complete. .

• The Mesa Course
A self paced Mesa Language programming tutorial that includes
representative· instructional software and is intended for u,se at a
customer site. Its purpose is to provide instruction in tool development
skills and familiarize a new user with basic Mesa and Pilot interfaces.
This course will take four to eight weeks to complete.

• The ViewPoint Programming Course Tutorial .
A self paced programming tutorial completed at the customer site; it is
designed to follow the one week Xerox ViewPoint Programming
Course. The. ViewPoint Programming Tutorial assumes tf1at Y0t! are an
experienced Me~a Programmer. The course covers .the rarlge of
programming skills required for development of sophisticated
ViewPoint applications. The. course with all exercises will take three to
eight weeks to complete.

Training Overview

Mesa Language Class - March, 1988 Intro-6

Cc.urse Objective

Need: The Mesa language is one of the cornerstones of the Xerox
Development Environment. Being a proficient Mesa programmer is an
essential first step to effective use of the power of XDE.

Objective: Graduates will be able to prepare, compile, debug, and run Mesa
programs. These programs will exercise features of Mesa that are new or
unfamiliar to most students.

Please Note: This class is NOT £Jeared to teach basic computer science topics.
We assume that you are E;(PERIENCED programmers. We will teach
experienced programmers hovv to program in the Mesa Language.

Do: Ask questions at any time. We may, however, defer answering some
questions or ask you tC) submit them through the mail system.

Submit your course evaluations daily using the mail system.

Have fun.

Don't: Instigate religious debates by touting your favorite (non-Mesa)
language. We are here to teach you Mesa.

Expect to learn everything about Mesa in one week. We will get you
started in the right direction.

Training Overview

Mesa Language Class -- March, 1988 Intro-7

We're Not Your Mother

The general format of the class is lecture in the morning, lab in the
afternoon. The lab has no format: you are expected to complete your
assignments (or at least try) but you can come and go as you wish.

Major No-No: Don't leave for three hours in the middle of the afternoon
and then come back and expect us to stay here with you until 10 PM.

Training Overview

Mesa Language Class -- March, 1988

[)aily Schedule

Day 1 - Monday

9:00-9:45 Introduction and Course Organization
Trainin!~ Overview
Mesa Lcinguage
Pil ot Operating System
Physical! and Logical Volumes

9:45-10: 15 Getting Started in Mesa

10: 15-10: 30
10: 30-12: 00

12:00-1 :00
1 :00-6:00

The Fundamental Module Types
What a PROGRAM module looks like
Comments
Basic Data Types and Expressions

Break
Getting Started in Mesa (Cont'd)

Common constructed Data Types
StatemE~nts

Procedures
Additional data types, Extensions

The Debugger
Lunch
Debuggin~~ and Compiling Exercises

Ask for Solution when finished

Training Ov~rview

Intro-8

Mesa Language Class -- March, 1988

Day 2 - Tuesday

9: 00-1 0: 15

10: 15-10:30
10: 30-11 : 15

11 : 1 5-12: 00
12:00-1 :00
1 :00-6:00

Day 3 - Wednesday

9:00-10:30

10:30-10:45
10:45-11 :30
11 : 30-12: 00
12:00- 1 :00
1: 00- 6: 00

Daily Schedule (Cont'd)

Interfaces
Review Definitions
Opaque Types
Examples of Interface modules
Examples of Program modules

Break
Interfaces (Cont'd)

Examples of configurations
More Examples

Interfaces Exercise
Lunch
Interfaces Exercise (Cont'd)

Ask fo'r Solution when finished

Dynamic Storage Allocation
Different types of heaps
Declaring and creating heaps
Allocating and deallocating from heaps

Break
Form Subwindow Layout Tool
Dynamic Storage Allocation Exercise
Lunch
Dynamic Storage Allocation Exercise (Cant' d)

Ask for Solution when finished

Training Overview

Intro-9

Mesa Language Class -- March, 1988

Day 4 - Thursday

9:00-10: 15

10: 15-10: 30
10: 30-11 : 30
11:30-12:00
12:00- 1 :00
1 :00- 6:00

Day 5 - Friday

9:00-10:30

10: 30-1 0:45
10: 45-12: 15

12: 15- 1 : 15
1 : 15- 6: 00

Daily Schedule (Cant'd)

Signals
Signal Examples
'Operations with signals
Catch Ph rases
UNWIND signals

Break
Streams
Streams / Signals Exercise
Lunch
Streams / Signals Exercise (Cont'd)

Ask for Solution when finished

Processes and Concu rrency
Concurrent execution
New language features for processes
Monitors

Break
Processes and Concurrency (Cont'd)

Condition Variables
More about monitors
Signals
Deadlocks
Other operations on processes

Lunch
Monitors Exercise

Ask for Solution when finished

Training Overview

IntrD-10

Mesa Language Class -- March, 7988 Intro-17

'Nhat is Mesa?

• A programming language

• An operating system, Pilot

• A processor architecture

Training Overview

Mesa Language Class .- March, 1988 Intro-12

History of Mesa

• Research started at PARe in 1971

• Went into production use at Xerox (OSD, ISO) DSBU in 1976

• Various Mesa machines include the Alto, Dandelion, Dorado, Daybreak
(G08S).

Training Overview

Mesa Language Class -- March, 1988

Architecture Highlights

• High-level Language Oriented

• Stack Machine: 16 bits wide, 8 - 14 words deep

• Large Shared Virtual Memory
32 bit address space, 256 word pages
Word addressed, 16 bit vvords
64K word Main Data Spaice

• Shared code and Data
Read only code, shared across modules
Global (static) data share'd across processes

• Procedure Oriented
Parameter passing on stclck
Heap allocation of activation records
Single transfer primitive (XFER)
Local and Global calls, single return

• Process Mechanism
Preemptive event driven scheduling, 8 priority levels
Monitors and Conditions
Interrupts, Timeouts, and Aborts
Fork any procedure

• Dense Instruction
Average instruction is 1.4 - 1.5 bytes

Training Overview

Intro,·13

Mesa Language Class -- March, 1988 Intro-14

Advantages of Mesa

• Support of large scale system application development through direct

and efficient supp~~~~~ramming.

• Reduced product costs throug.h 2x programmer productivity gain

• Efficient machine implementations

Training Overview

Mesa Language Class -- March, 1988 Intro-IS

1V1esa Language

• High level systems prograrr,ming language

• Strong type checking

• Modular programming

• Flexible control transfer mE~chanisms

• Concurrent processes with protected, shared data

• High density object code

Training Overview

Mesa Language Class -- March, 1988 Intro-16

The Mesa Language

Mesa is a language that is basically similar to Pascal but which extends Pascal
in a number of directions intended to make it more effective for the
development of large systems. Mesa features include (among others):

• Rich Type System

Basic: BOOLEANs, CHARACTERs, INTEGERs, CARDINALs, REALs

Constructed: Subrange, Enumerated, ARRAYs, RECORDs, POINTERs,
STRINGs, Variant RECORDs, PROCEDUREs, PROGRAMs, SIGNALs,
ERRORs, PROCESSes

• Simple Control Structures

Statements: Assignment, IF, SELECT, FOR, WHILE, DO

Compounds: Blocks, PROCEDUREs, PROGRAMs

• Module Structure

Interfaces: DEFINITIONs modules

Clients and Implementors: PROGRAM modules

Systems: CONFIGURATION modules

• Explicit Storage Management

Heaps and Zones

• Exception Handling·

SIGNALs and ERRORs

• Concurrent Processes

Creation and Destruction: FORK, JOIN

Locking: MONITORs and ENTRY procedures

Synchronization: CONDITIONs, WAIT, NOTIFY

Training Overview

Mesa Language Class -- March, 1988 Intro-17

Mesa Features with no Pascal Counterparts

• Type checking across separately compiled modules

• Interface modules

• Concurrent pro~ess support

• Procedure variables - procedures are a full fledged type

• Explicit storage management - no gi)rbage collection

• Default field values

• Base and relative pointers

• Pointer arithmetic

• Constructors and extractors

• Exception handling mechanisms

Training Overview

Mesa Language Class -- March, 1988 Intro-18

Pilot: The Mesa Operating System (Overview)

Pilot defines a "Basic Machine" that is an abstraction of the physical
resources provided by the hardware. The purpose of the basic machine is to:

• Define a standard interfacE~ that is independent of the size, speed, model,
and configuration upon which it is operating

• Provide a uniform environrnent for program design

• Insulate clients as much as possible from variation in hardware
configu ration

Training Overview

Mesa Language Class -- March, 1988 Intro-19

Faci liti es of Pi lot

• Runtime support for the Mesa Programming Language including Mesa
processes.

• Virtual Memory Management.

• Local Disk Management, for local file system setup and manipulation.

• Packages for management of processes, physical memory, bitmap display,
and cpu.

• Device I/O Package, for local peripheral management.

• Communications package, for network streams, packet exchange,
modem support, and other basic communication services.

• Streams for handling sequential I/O in a device independent way.

• Common Software, for handling device I/O, strings, and formatting.

• Diagnostics, for detecting and analyzing hardware problems.

Training Overview

Mesa Language Class -- March, 1988 Intro-20

Pilot is Not a General-Purpose Time Sharing System

• No master/slave mode; no protection against malicious programs

• No enforcement of resource allocation/billing/accounting

• Client assumed to be a collE~ction of cooperating processes

• Client controls specialized devices directly

• No user ~nterface

Training Overview

Mesa Language Class -- March, 1988 Intro-21

The Main Data Space

The Main Data Space (MOS) is a contiguous region of 64K words of virtual
memory. Its purpose is to allow the most commonly used data structures to
be referenced by single word pointers rather than double word pointers .

• It is used mostly by low level system clients. Generally, application
programmers should not allocate storage for user data from a MOS .

• User storage allocated from the MOS is referenced indirectly uSing
POINTERS, any other storage is referenced using LONG POINTERS.

Note: In pre Pilot 14.0 releases, both Local and Global Frames are allocated
from the MOS. In post Pilot 14.0 releases, Local frames are allocated from
the MOS but Global frames are allocated from an anonymous backing store.

Training Overview

Mesa Language Class -- March, 1988 Intro-22

The Xerox Development Environment

• XDE (Xerox Development Environment) is the programming environment
for our products.

In XDE, one can write programs for XDE itself as well as for the
Viewpoint. environment. As an example of what can be done with
XDE, all of XDE, Viewpoint and Network Services was developed using
Mesa in the Xerox Development Environment.

• XDE includes everything the programmer uses:
- all programming tools and applications
- all programming interfaces
- all support materials
- product support

Training Overview

Mesa Language Class -- March, 1988

xoe Support

How you get initial support for XDE depends on who your company is.

If you are a:

Intro-23

Xerox internal programmer, contact: XDEConsultants:AII Areas:Xerox

Rank Xerox employee, contact: XDESupport:SBD-E:RX

Commercial customer, USMG Analyst, USMG Sales Rep, contact:
. XDESupport:OSBU North:Xerox

Training Overview

Mesa Language Class -- March, 1988 Intro-24

Syst1em .Configuration

• A physical volume is the basic unit available for random access file page
storage. A Physical volumte corresponds to a storage device, typically a
disk.

• A logical volume is a partition of storage for client files, including system
data structures for manipulating those files.

Typically, a physical volume is divided into one or more logical volumes.
Each logical volume is largf~ly protected from actions in other logical
volumes. Oifferent logical volumes contain different systems.

Volume Name

User

Scavenger

CoPilot

Tajo

Contents

BWS bootfile, ViewPoint data files and applications

Can be used as backing store for the User volume;
File system recovery software for the User volume is
located here, if needed

CoPilot bootfile [pre-14.0 releases only]
(CoPilot bootfile = Tajo bootfile + built-in debugger),

plus debugging files, XOE tools, XOE user files
** OR *'*
Tajo bocjtfile & Sword [12.3 releases or later only]
plus debugging files, XOE tools, XOE user files

(If present) Tajo bootfile, XOE tools

A standard configuration for Viewpoint developers might be a User and
Scavenger volumes for Viewpoint and one XOE volume running Sword
(Same WOrld Debugger).

Training Overview

Mesa Language Class -- March, 1988 Intro-25

Graphically Speaking

Debugger. outl oad

Debuggee.outload

PrograJllller

XDE Tools Created
ViewPoint

incl: SWorD Applications

XDE Standard
Tools ViewPoint

Applications

Tajo.boot
(Editor,
Printing,
Mail, Fonts,
etc.)

Boot Diagnostic
Microcode Microcode

Tajo BWS.boot
Germ Microcode • boot

Pilot Microcode

CoPilot Tajo User Scavenger

Oi sk Sectors·: each with Header, Label, and Date

Training Overview

Mesa Language Class -- March, 1988 Intro-26

V\'orld Swapping

With the CoPilot debugger, y()U can only keep the state of one client around
at any given time.

With Sword, you can debug rnu/tip/e clients! In addition, Sword can debug
in the same world, as well as be the resident debugger for client volumes.

For world-swap debugging, you must boot the client volume once in order
to establish a debugger-client relationship. But once that relationship is
established, it is easy to swap between the debugger and the client.

CoPilot
(debugger
volume)

1. Boot: Tajc)

Tajo User

1'. Boot: User

Training Overview"

Mesa Language Class -- March, 1988 1-1

Getting Started in Mesa

Getting Started in Mesa

Mesa Language Class -- March, 1988

Outline

1. Getting Started in Mesa
a. The Fundamental Module Types
b. What a PROGRAM Module looks like
c. Comments
d. Basic Data Types and Expressions

Getting Started in Mesa

1-2

Mesa Language Class -- March, 1988

COITlpiling Modules

filename.mesa

source
code

compiler

Getting Started in Mesa

filename. bed

object
code

1-3

Mesa Language Class - March, 1988 1-4

Modules

Definitions Program Configuration

/
/

/ ,
Client

/
/

,
/

/

, , , , , , , , ,
Implementation

Definitions files {a.k.a Interfaces} define an abstraction.

Program files contain executable code that implement the abstraction.

Configuration files specify how program modules are combined.

Getting Started in Mesa

Mesa Language Class -- March, 1988

Program (Client) and Definition Modules

ReadDefs.mesa

ReadDefs: DEFINITIONS =

BEGIN

DoWork..mesa

DoWork: PROGRAM =

BEGIN

.

.
ReadChar: PROCEDURE;

.
END.

DE~finitions Module

ReadDefs.ReadChar[];

.
END.

Program Module
(Client)

1-5

The PROGRAM module, DoWor·k, is using the procedure ReadChar that is
defined in ReadDefs. The implementation of ReadChar is unknown to this
module.

Getting Started in Mesa

Mesa Language Class -- March, 1988

Program (Implementation) and Definition Modules

ReadDefs.mesa

ReadDefs: DEFINITIONS =
BEGIN

.
ReadChar: PROCEDURE;

.
END.

Definitions Module

ReadImpl.mesa

ReadImpl: PROGRAM =
BEGIN

.
ReadChar: PUBLIC PROCEDURE =

BEGIN

.
END;

.
END;

Program Module
(Implementation)

1-6

The PROGRAM module, Read Imp 1, supplies the actual implementation for
the procedure ReadChar that is defined in ReadDefs.

Getting Started in Mesa

Mesa Language Class - March, 1988 1-7

Fitting Client and Implementation Modules Together

DaWark.bcd ReadImpl.bcd

DaWark: PROGRAM =
BEGIN

ReadImpl: PROGRAM =
BEGIN

.
ReadDefs.ReadChar[];

.
END.

needs
ReadChar

supplies
ReadChar

ReadChar: PUBLIC
PROCEDURE =

BEGIN .
END;

END;

\ I
ExecutableVersian.canfig

ExecutableVersian:
CONFIGURATION =

BEGIN
ReadImpl;
DaWark;

END.

Binder

ExecutableVersian.bcd

A CONFIGURATION file brings together the PROGRAMS DaWa rk and
Readlmpl so that the implementation for ReadChar is around when DaWark
calls for it.

Getting Started in Mesa

Mesa Language Class - March, 1988

Program Module Structure & Syntax

DIRECTORY
<InterfaceNamel) USING [<ProcNamel), ...],
(InterfaceName2) USING [<ProcNamel), ...],

<InterfaceNameN);

<ModuleName>: PROGRAM
IMPORTS <InterfaceNamel), <InterfaceName2)
EXPORTS <InterfaceNameN) =

BEGIN
<type, variable, procedure declarations);
<main code, if any)
END.

Note: { ... } is an alternative to any BEGIN ... END.

G'~tting Started in Mesa

1-8

Mesa Language Class - March, 1988

Program Module Example

DIRECTORY
Stream USING [GetBlock, Delete],
Window USING [Create],
ReadDefs;

ReadImpl: PROGRAM
IMPORTS Stream, Window
EXPORTS ReadDefs =

BEGIN

n: CARDINAL +- 0;

DoSomethingInteresting: PUBLIC PROCEDURE = {
h +- Window.Create[...];

.WHILE n < 100 DO

Stream.GetBlock[...];

Stream.Delete[...];

ENDLOOP;
} ;

END.

Getting Started in Mesa

1-9

Mesa Language Class -- March, 1988

Comments

--This comment is terminated at the end of the line.

IF i = 1 -- Middle of line comment -- THEN

«This comment ignores all
carriage-returns. It ends here.»

GE~tting Started in Mesa

1-10

Mesa Language Class -- March, 1988 1-11

Identifiers

Identifiers can be any mixture of upper letters, lower case letters, and digits.
The first character must be a letter. Upper and lower case letters are
different and do distinguish identifiers. All characters are significant.

Examples:

aBc
Abc
DiskCommandWord
displayVector
machl
x32y40

Mesa Reserved words are always all upper case. For a complete listing see
Appendix E of the Mesa Language Manual.

Examples:

BEGIN
END
PROGRAM
INTEGER
CARDINAL

Getting Started in Mesa

Mesa Language Class -- March, 1988

{lNT)EGER

(NAT)URAL

CARDINAL

(BOOL)EAN

Built-in Element Types

[_2N-1 .. 2N-1) -- N = 16

[0 .. 2N-1) -- INTEGER n CARDINAL

[0 .. 2N)

FALSE I TRUE

(CHAR)ACTER -- all characters:

Examples:

1-12

lowe rCaseA: CHAR ... ' a; .. - character literals are assigned with a single quote

mark: CHAR'" ' ;

endMarker: CHAR'" ';;

asc;;CR: CHAR ... 15C; --octal

tab: CHAR ... \ t; .. - escape convention

[] indicates inclusion
() indicates exclusion

G,etting Started in Mesa

Mesa Language Class - March, 1988

LONG INTEGER and LONG CARDINAL

LONG INTEGER -- [_22N-1 .. 22N-')

LONG CARDINAL -- [0 .. 22N)

-- N = 16

Getting Started in Mesa

1-13

Mesa Language Class -- March, 1988 1-14

REAL

Mesa has adopted the proposed IEEE standard for floating-point arithmetic.

Examples:

4.32
0.15
800E-19

The mantissa is therefore represented by 24 bits (including the "hidden bit")
with the decimal point to the right of the first bit; the exponent is
represented by 8 bits with a range of -126 to 127 (All 0'5 and all 1'5 are
exceptional cond itions).

Getting Started in Mesa

Mesa Language Class - March, 1988

Declarations

All identifiers must be declared in one of 3 ways:

Simple declaration:
<identifier): <type);

Initial Value declaration:
<identifier): <type) ~ <initial value);

Constant declaration:
<identifier): <type) = <constant value);

Examples:

first: CARDINAL;
condition: BOOLEAN;
pageCount: CARDINAL ~ 0;
isOn: BOOLEAN ~ TRUE;
pi: REAL = 3.141562;
indirectPi: REAL = pi;
startingPageCount: CARDINAL = pageCount;

Getting Started in Mesa

1-15

Mesa Language Class - March, 1988

Nun1eric Operators

+ / * MOD

/ truncates toward zero for integers

MOD yields the remainder of dividing 2 numbers
It does not apply to REAL operands
The sign of MOD is the si£ln of the dividend

Examples of various expressions:

n
15
(; + j + k)

-15
3.14
m*n
n MOD 8 -- the result has the ~~ign of n
;+1

Exponents, powers, and roots eire implemented in software.

G,etting Started in Mesa

1-16

Mesa Lan'guage Class - March, 1988

Relational Operators

The operators below apply to all ordered types

< <= #))=

NOT

IN <interval)

Examples of various expressions:

n = 5
m # n
m -= n
1 <= j
(1 < j) = (j < k)

n tN [1 .. 5]
1 NOT IN [-1 .. 5]

Getting Started in Mesa

1-17

Mesa Language Class - M~rch,1988 1-18

Boolean Operators

NOT AND OR

Evaluation is from left to right and stops when the value of the expression
has been determined.

Examples of various expressions:

NOT ; = 15
-q
-(p AND q)

; <= j AND j < I<

P AND q

;=5 AND j NOT IN [-1 .. 1]
m)n OR m:= 5

-p OR -q

G·etting Started in Mesa

Mesa Language Class -- March, 1988 1-19

Character Arithmetic

A CHARACTER value plus or minus a short numeric value yields a
CHARACTER value.

Subtracting 2 CHARACTER values yields an INTEGER value.

Examples:

e: CHARACTER ~ 'e;
digit: INTEGER;
digit ~ e - '0;

e ~ e + ('A - 'a); -- converts lower case to upper case

Getting Started in Mesa

Mesa Language Class - March, 7988 7-20

PREO SUCC

ORO

VAL

FIRST LAST

Function-like Operators

used with .all element types and LONG CARDINAL and
LONG INTE·GER. The values of PREO[x] and SUCC[x] are
the predecE!ssor and successor of x respectively.

converts a c:haracter or enumerated value into a numeric
value.

is the inverse of ORO:

c:CHARACTER ~ VAL[1018];

used with .all element types and LONG CARDINAL and
LONG INTEc3ER. These yield the least and greatest values
respectively.

GI!tting Started in Mesa

Mesa Language Class -- March, 1988 1-21

Precedence

Operators in order of decreasing precedence:

+ -- unary operators

III / MOO

+

= # < <=))= IN

NOT

AND

OR

Parentheses can be used to "explicitly control the association of operands
with operators.

Getting Started in Mesa

Mesa Language Class -- March, 1988 1-22

Static Type Determination

The inherent type of every expression and variable in Mesa can be
determined by static analysis.

Type rules in Mesa take 2 forms:

Target Type Rule: The inherent type of a variable or expression must
*

Balancing Rule:

conform to a target type.

The inherent type of a variable or expression must
satisfy a relation for a known set of types.

*Type A conforms to another type B if Mesa can convert a variable of type A
to be of type B at runtime.

Getting Started in Mesa

Mesa Language Class -- March, 1988

x: INTEGER;

x .. y;

type:

INTEGER

type:

unknown

Target Type Example

TYPE unknown must conform to TYPE INTEGER.

G,etting Started in Mesa

1-23

Mesa Language Class -- March, 1988 1-24

Balancing Example

x: INTEGER;
y: LONG INTEGER;

. .. x + y ...

I~
type: type:

INTEGER LONG INTEGER

An INTEGER cannot be directly added to a LONG INTEGER; balancing must
take place.

Getting Started in Mesa

Mesa Language Class - March, 1988

Bounds Checking

When mixing numeric types:

Not all CARDINALS are valid INTEGERS
Not all INTEGERS are valid CJt:\RDINALS
Not all LONG INTEGERS are valid CARDINALS (using a range assertion).

1-25

If bounds chec~ing is requested of the compiler (switch b), code will be
inserted before each cross as~.ignment to ensure that the value is within
range.

Otherwise, it is the responsibility of the programmer to ensure that the
conversion is val id.

Examples:

i: INTEGER; c: CARDINAL;

c +- 40000;
; +- c; -- With the b switch, this generates a bounds fault

-- (because this is a cross assignment)

G,etting Started in Mesa

Mesa Language Class - March, 1988 1-26

Domains of Numeric Operators

When the result of an operation falls outside the range of its assumed type,
overflow or underflow occurs.

It is the programmer's responsibility to guard against overflow and
underflow conditions.

Examples:

; ,j ,k: INTEGER;
a,b,c: CARDINAL;

; .. 30000;
j .. 30000;
k .. ; + j;

a .. 4;
b .. 5;
c .. a - b ;

k .. a - b ;

-- k has value -5536 (all variables are INTEGERs)

-- c has value 65535 (all variables are CARDINALs)

-- With the b switch, this generates a bounds fault

-- (because this is a cross assignment)

Getting Started in Mesa

Mesa Language Class - February, 1988

Outline

1. Getting Started in Mesa (cont'd)

e. Common Constructed Data Types
i. Type Conformance in general
ii. The element types
iii. Arrays
iv. Records
v. Pointers

f. Statements
i. Assignment statements and expressions
ii. IF statements and expressions
iii. SELECT statements and expressions
iv. Blocks
v. Loop statements and loop control

Getting Started in Mesa

1-27

Mesa Language Class - February, 1988

Conformance clnd Constructed Data Types

In an assignment statement, the right side must conform to the left side.

Bt4:-A

There are 3 relationships a type A may have to type B:

A conforms to B.
A freely conforms to B.
A is equivalent to B.

is equivalent --.. _.... freely conforms --.. _.... conforms

1-28

Equivalence -- Mesa sees 110 difference between type A and type 8 if A
and B are equivalent.

Free Conformity -- At runtimE~, Mesa can store any value of type A into a
variable of type B without checking, change of
representation, or other computation if A freely
conforms to B.

Conformity -- Mesa can convert a variable of type A to type 8 at
runtime if A conforms to B. (Runtime computation is
required.)

Often whether or not A conforms to 8 depends on whether parts of A are
equivalent or freely conform tC) parts of B.

Conformance issues related to specific Mesa TYPES will be covered when the
TYPE is introduced.

G'etting Started in Mesa

Mesa Language Class - February, 1988

Enumerated Types _

Enumerated types may be declared as in Pascal:

Co lor: TYPE = {red, orange, yellow, violet};
foreground: Color;
background: Color;
Fruit: TYPE = {orange, lemon};
state: {disconnected, busy, available}:

i: CARDINAL;

foreground ~ orange;
backg round ~ VAL[2]; -- assigns yellow

i ~ ORD[foreground]; --assigns 1
IF Color[orange] > foreground THEN.

Note that Color and Fruit are 'named' enumerated types while
{d; sconnected, busy, ava i 1 ab 1 e} is an 'anonymous' enumerated type.

Conformance:

Every appearance of an enumerated type definition generates a new type
that is not equivalent to, and does not freely conform or conform to, any
other enumeration.

Therefore, 2 TYPE definitions with the same definitions, letter for letter,
define different types.

Getting Started in Mesa

Mesa Language Class - Februa'ry, 1988

SUlbrange Types

Subrange types may be declare!d for all element types:

day: CARDINAL[l .. 31];
year: CARDINAL[1900 .. 1999];

UpperCase: TYPE = CHARACTER['A .. 'Z];
AssertTrue: TYPE = BOOLEAN[TRUE .. TRUEJ;

1-30

The basetype for a subrange is that type of which it is a subrange and which
is not itself a subrange.

The assignment of a value to a subrange variable makes an associated
assertion that the value is in th~~ appropriate interval.

If bounds checking is requested of the compiler (switch b), code will be
inserted before each assignme~nt to a subrange variable to ensure that the
va·lue is within range.

Otherwise, at is the responsibility of the programmer to ensure that the
value is valid.

Example:

n: CARDINAL[O .. 10];
m: INTEGER[-5 .. 5];

n +- n + 1; -- not valid if n = 10

n +- m; -- on Iy valid if mIN [0 .. 5 J

Ge1tting Started in Mesa

Mesa Language Class -- February, 1988 1-31

Sub"range Types

The syntax for subranges follows mathematical notation:

[] indicate inclusion
o indicate exclusion

The following intervals all designate the range from -1 to 5 inclusive. The
endpoints of a subrange must be compile-time constants:

[-1 .. 5] [-1 .. 6) (-z .. 6) (-z •. 5]

The initial type identifier may be omitted if each bound in the interval
specifies a short numeric value:

sl: [-10 .. 10]; --signed rep

s2: [100 .. 33000]; -- unsigned rep

s 3 : [0 .. 10) ; -- both reps

Conformance:

A subrange type conforms to its base type and a base type conforms to any
of its subrange types. Subrange type T[i .. j] freely conforms to T if
i = FIRST[T] and to T[i .• k] if j ~ k. Two subrange types are
equivalent if their base types are equivalent and if the corresponding
bounds are equal.

Getting Started in Mesa

Mesa Language Class - February, 1988

Arrays

An array variable can be declared like:

<varname>: <PACKED> ARRAY <indextype> OF <componentiype>;

Or you can declare an array TYPE like:

<name>: TYPE = <PACKED> ARRAY <indextype> OF <componenttype>;

And then array variables would be declared like:

<varnamel>: <name>;
<varname2>: <name>;

Examples:

IndexTyp: TYPE = [0 .. lO};
ArrayTypel: TYPE = ARRAY IndexTyp OF INTEGER;
ArrayType2: TYPE = ARRAY [0 .. 10} OF INTEGER;
nameArray: ARRAY [0 .. 10} OF INTEGER;
anotherArray: ArrayTypel;

The <indextype> can be any element type. The <componenttype> can be any
type including another array type.

Arrays may be initialized when they are declared.

Examples:

octalChar: ARRAY[0 .. 7] bF CHARACTER =
['0, '1, '2, '3, '4, '5, '6, '7];

dashes: ARRAY[0 .. 7] OF CHARACTER ~ ['-,'-,'-,'-,'-,'-,'-,'-];
dashes: ARRAY[0 .. 7] OF CHARACTER ~ ALL['-];
freshVector: ARRAY[0 .. 3} OF CARDINAL = ALL[O];
currentVector: ARRAY[0 .. 3} OF CARDINAL ~ freshVector;

Getting Started in Mesa

Mesa Language Class - February, 1988 1-33

Array Constructors

Array constructors may be used to assign all the components of an array in
an assignment statement:

Triple: TYPE = ARRAY[1 .. 3] OF CARDINAL;
triplet: Triple;

triplet ~ Trip1e[11, 12, 13];

When the array type is implied by context, the type identifier may be
omitted:

triplet ~ [11, 12, 13];

The function ALL may also be used during initialization (onlywhen the array
type is implied by context):

Matrix3by4: TYPE = ARRAY[0 .. 3) OF ARRAY [0 .. 4) OF CARDINAL;
a110nes: Matrix3by4 ~ ALL[ALL[l]];

You can, of course, access individual components of an array:

trip1et[1] ~ 82;
a110nes[2][3] ~ 82;--2ndrow,3rdcolumn

Getting Started in Mesa

Mesa Language Class - February, 1988 1-34

Array Equivalence and Conformance

Two array types are equivalent if both their index types and their
component types are equivalent and if they are both packed or both
unpacked.

Conformance:

An array type freely conforms to another if the component type of the first
freely conforms to that of the second, the index types are equivalent, and
they are both packed or both unpacked. Packed arrays with non­
equivalent types do not freely conform.

Examples:

IndexTyp: TYPE = [O .. lO};
ArrayTypel: TYPE = ARRAY IndexTyp OF INTEGER;
ArrayType2: TYPE = ARRAY [O .. lO} OF INTEGER;
Numbers: TYPE = PACKED ARRAY [O .. lO} OF INTEGER;

ArrayType1 and ArrayType2 are equivalent.

Getting Started in Mesa

Mesa Language Class - February, 1988

Records

Most records are declared with named field-lists:

MilitaryTime: TYPE = RECORD[
hrs: [0 .. 24},
mins: [0 .. 60}];

oldTime, newTime: MilitaryTime;

You can assign parts of the record field byfield:

oldTime.hrs ... 8;

oldTime.mins ... 0;

1-35

Or you can assign the entire record with either a keyword or positional
constructor:

old Time ... [m ins: 0, h r s : 8] ; -- Fields may be in any order

01 dTi me ... [8,0]; -- Fields must be in order

Sometimes records are declared with unnamed field-lists:

RecType: TYPE = RECORD [CARDINAL, CARDINAL];

Only a positional constructor can be used V\(ith such records.

G.~tting Started in Mesa

Mesa Language Class - February, 1988 1-36

Default Field Values

When a record type is declared, default values may be specified for each
field. Fields in a record constructor may be voided, elided, or omitted:

Ree: TYPE = RECORD [
v1: CARDINAL,
v2: CARDINAL ~ 3];

ree:Ree;

ree ~ [vi: 4, v2: 5]; -- v2 gets 5 (overrides default)

ree ~ [v 1: 4] ; -- v2 is omitted, so v2 gets 3

ree ~ [vi: 4, v2:]; -- v2 is elided, so v2 gets 3

Getting Started in Mesa

Mesa Language Class -- February, 1988 1-37

Rec:ord Extractors

Extractors are used to "explode" record objects and assign their
components to individual variables in a single statement:

MonthName: TYPE = {Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,
Oct, Nov, Dec};

Date: TYPE = RECORD[
day: [1 .. 31] ;
month: MonthName,
year: [1900 .. 2000)];

birthDay: Date;

dd: [1 .. 31];
mm: MonthName;
yy: [1900 .. 2000);

birthDay ~ [8, Aug, 1959];
[dd, mm, yy] ~ birthDay;
[dd, , yy] ~ birthDay;
[dd, mm, yy] ~ Date[25, Apr, 1943];
[month:mm, day:dd, year:yy] ~ birthDay;

The type of a constructor must be explicitly stated when an extractor is on
the left side.

Getting Started in Mesa

Mesa Language Class - February, 1988 1-38

Record Extractors

A value with a single-component record type may be converted
automatically to a value with the type of that component.

j: INTEGER;
k: RECORO[i: INTEGER ~ 5];

j ~ k;

Getting Started in Mesa

Mesa Language Class - February, 1988 1-39

Record Conformance

Every appearance of a record constructor creates a new type that is not
equivalent to, and does not conform to, any other record type.

ReeTypel: TYPE = RECORD[a,b: INTEGER];
reel: ReeTypel;

ReeType2: TYPE = RECORD[a,b: INTEGER];
ree2: ReeType2;

ree3: RECORD[a,b: INTEGER];
ree4: RECORD[a,b: INTEGER];

The record variables rec1, rec2, rec3, and rec4 all have different, non­
conforming types. None of these can be assigned to any of the others.

Getting Started in Mesa

Mesa Language Class - February, 1988 1-40

Pointers

POINTERS are one word obje'cts that, therefore, reference objects in the
MOS in virtual memory. The I\~OS is 64K words of virtual memory in which
system data structures and all local frames of executing processes reside.

LONG POINTERS are two word objects that, therefore, reference objects
outside the MOS. Most dynarrlically allocated objects are outside the MOS.
For generality, LONG POINTERS are often used to reference objects in the
MOS, as well.

In general, use LONG POINTER:S.

intPtr: POINTER TO INTEGER;
boolPtr: LONG POINTER TO BOOLEAN;
intPtr +- NIL;

Note: NIL is a Mesa reserved 'Nord that conforms to any POINTER or LONG
POINTER type. It denotes that the pointer value has no valid referent.

Also, In Post Pilot 14.0 releases, global frames do not reside in the MDS (as
they did previously). Therefc)re (short) POINTERS can not be used to
indirectly access global variabIE~s.

GE~tting Started in Mesa

Mesa Language Class -- February, 1988 1-41

Pointer Dereferencing

Referents of pointers can be obtained with the operator i. Pointer values
can be generated from objects with the operator @.

AgeRange: TYPE = [21 .. 150);
SexValues: TYPE = {male, female};
PartyValues: TYPE = {democratic, republican}:

Person: TYPE = RECORD[
age: AgeRange,
sex: SexValues,
party: PartyValues];

candidatel, candidate2: Person;
winner, loser: LONG POINTER TO Person ~ NIL;

lose r ~ @candidatel; --Iosergets the address of candidate 1

winner ~ @candidate2;
winner~.age ~ 45;
winner. age ~ 45; -- Mesa automatic dereferencing

Getting Started in Mesa

Mesa Language Class - February, 1988 1-42

Pointer Conformance and Equivalence

Two pointer types are equivale1nt if their reference types are equivalent and
if they are both long pointers Clr both short pointers:

IntPtrType: TYPE = LONG POINTER TO INTEGER;
a: IntPtrType;
b: LONG POINTER TO INTEGER;

Here, a and b have the same type.

Getting Started in Mesa

Mesa Language Class - February, 1988

Dangling Pointers

Be careful to avoid dangling pointers to local storage:

pointerl, pointer2: LONG POINTER TO INTEGER;

RiskyProc: PROCEDURE[i: INTEGER] = {
local: INTEGER;

poi n t e r 1 ... @ i ; -- the storage for i and local exists only for

poi nte r2 ... @l oca 1 ; -- the life of this procedure

RETURN;
};

-- all local storage is released

1-43

After the procedure, R; skyP roc returns, po; nte rl and po; n te r2 will point to
variables that no longer exist.

Getting Started in Mesa

Mesa Language Class - February, 1988 1-44

Assignment Statements and Expressions

The type of the < r; ghts i de> must conform to the type of the <1 efts ide>:

(leftside> ~ (rightside>;

a ~ b + c;

A variable may also be assigned using an assignment expression. The type
and value of an assignment expression (multiple assignment statements) is
the type and value of the < 1 efts ide>:

a ~ b ~ c ~ 4; -- a, b, and c all get 4

Getting Started in Mesa

Mesa Language Class - February, 1988

If: Statements

Standard If-Then statements:

IF <boolean expression> THEN
<statement>;

Example:

IF x > 5 THEN
x .. x * 2;

Standard If-Then-Else statements:

IF <boolean expression> THEN
<statement1>

ELSE

<statement2>;

Example:

IF x > 5 THEN
x .. x 1[1 2

ELSE
Y .. Y + 200;

Ge;tting Started in Mesa

1-45

Mesa Language Class - February, 1988 1-46

IF Expressions

The IF Expression syntax is similar to that of an IF Statement. There are two
differences:

1) The clauses contain expressions, not statements, and
2) an IF Expression must have an ELSE clause.

IF (boolean expression) THEN
(expression)

ELSE
(expression)

Example:

x +- IF x > 5 THEN

x*Z
ELSE

x + ZOO

Getting Started in Mesa

Mesa Language Class -- February, 1988

SELIECT Statements

SELECT statements are similar to Pascal CASE statements.

SELECT <expression) FROM
<expressionl) =) <statement1);
<express1on2) => <statement2>;
<expressiori3> => <statement3);

<expressionN> => <statementN);
ENDCASE =) <statement>;

Example:

i: CARDINAL;

SELECT i FROM
o => ; +- ; + 1;

<3 => { j +- ;; ; +- ; •. 1 }:

=5 => ; +- 0;

ENDCASE => ; +- 2;

-- i = 0

-- i = 1 or i = 2
-- i = 5
-- none of the above

Getting Started in Mesa

1-47

Mesa Language Class - February, 1988

Select Statements

A single SELECT arm may specify more than one test in one arm.

Example:

;,j,.k: CARDINAL;

SELECT ;*j+k FROM
1, IN[7 .. 10] =) <stmtl); --values: 1,7,8,9,10

2, 5,)10 =) <stmt2); --values:2,5,11,12, ...

ENDCASE; -- no arm for endcase

Getting Started in Mesa

1-48

Mesa Language Class - February, 1988 1-49

SELECT Expressions

SELECT expressions can be used in the same way as IF expressions (with the
same restrictions):

SELECT <expression) FROM
<express;onl) =) <result expressionl),
<expression2) =) <result expression2),
<expression3) =) <resul t expression3),

<expressionN) =) <result expressionN),
ENDCASE =) <result expression)

Example:

pt: INTEGER; .. Point on a line

10, hi: INTEGER; .. Bounds fora line

PointPosition: TYPE = {leftMargin, r;ghtMargin, inside,
outside, degenerate};

position: PointPosition;

position ~ SELECT pt FROM

IN (10 .. hi) =) inside,

NOT IN [10 .. hi] =) outside,

< hi =) 1eftMargin, ··=Iobut#hi

) 10 =) rightMargin, --=hibut#lo

ENDCASE =) degene rate -- = 10 and = hi--

Getting Started in Mesa

Mesa Language Class - February, 1988

Blocks

The general structure of a compound statement is:

BEGIN
<OpenClause>

<EnableC1ause>
<OeclarationSeries)

<StatementSeries)
<ExitsClause>

END;

Everything but the <StatementSe ri es> is optional.

1-50

An <OpenC1 ause> allows more c:onvenient reference to the fields of a record
and symbols in an interface.

An <Enab 1 eC1 ause> is used with signals.

The <Oec1arationSeries> allo'Ns you to declare·variables at the beginning
of any block:

IF 10 > hi THEN
BEGIN
temp: INTEGER ... 10;
10 ... hi;
hi ... temp;
END;

Ge·tting Started in Mesa

Mesa Language Class - February, 1988 1-51

GOTO Statements

A series of labeled statements may be written immediately preceding the
END in a block. One can jump to these statements from within the block
using a GOTO statement:

IF . . . THEN
BEGIN

IF THEN GOTO useDefault;
IF THEN GOTO fileIsOefault;
IF THEN GOTO newFile:

EXITS
useDefault t fileIsDefault =) { ••• };

newFile =) pages ~ 0;
END;

Restrictions:
1} A GOTO may only jump forward in a program, never backward, and
2} A GOTO may only jump out of a block, never into one.

Getting Started in Mesa

Mesa Language Class -- February, 1988

Loc)p Statements

The basic structure of a loop is shown below:

<LoopControl> DO
<OpenC'l ause>

<EnableClause>
<OeclarationSeries)

<StatementSeries)
<LoopExitsClause)

ENDLOOP;

1-52

The loop control can either be a form of conditional control or iterative
control or both.

Ge.1tting Started in Mesa

Mesa Language Class -- February, 1988

Conditional Control

Either a WHILE loop or UNTIL loop can be used in loop control:

WHILE <boolean expression> DO
<statement>:
<statement>;

ENDLOOP;

UNTIL <boolean expression> DO
<statement>;
<statement>;

ENDLOOP;

Examples:

i +- 1;

WHILE ; < 10 DO
; +- ; + 1;
ENDLOOP;

; +- 1;
UNTIL ; >= 10 DO

; +- ; + 1;
ENDLOOP;

Getting Started in Mesa

1-53

Mesa Language Class - February, 1988 1-54

Iterative Control -- Repetition

With repetition, a loop range specifies how many times the loop body is to
be executed:

THROUGH (looprange) DO
(statement)
ENDLOOP;

Example:

THROUGH [1 .. 100] DO

ENDLOOP;

A loop range can have any element type or any subrange of LONG
CARDINAL or LONG INTEGER. This is the one time that a subrange of a long
numeric is allowed.

Repetition and a conditional test may be combined:

THROUGH [low .. high] WHILE lineIsConnected DO

ENDLOOP;

Normal termination occurs aftf~r (h i 9 h - low + 1) iterations; conditional
termination can occur sooner if 1 i neIsConnected is FALSE prior to some
iteration.

GE,tting Started in Mesa

Mesa Language Class - February, 1988

Iterative Control -- Iteration

Iteration is very similar to a FOR loop in Pascal:

FOR <preDeclaredControlVariable) IN <looprange) DO

ENDLOOP;

Example:

FOR i IN [1 .. length) DO

ENDLOOP;

The control variable can be declared at the point it's used:

FOR j: CARDINAL DECREASING IN [0 .. 256) DO

ENDLOOP;

Iteration and a condition test may also be combined.

Getting Started in Mesa

1-55

Mesa Language Class -- February, 1988 1-56

Iterative Control -- Assignation

With assignation, a control variable is given an initial expression and a next
expression after each execution of the block. A condition test should be
included to provide loop termination:

FOR <var> ~ <initial expr>t <next expr> DO

ENDLOOP;

Example:

NodePtr: TYPE = LONG POINTER TO Node;
node: NodePtr;
head: NodePtr;
Node: TYPE = RECORD[

listValue: CARDINAL,
next: NodePtr];

FOR node ~ head t node. next UNTIL node = NIL DO

ENDLOOP;

Getting Started in Mesa

Mesa Language Class - February, 1988 1-57

GaTOs, LOOPs, and EXITs

A loop may be forcibly terminated by a GOTO or an EXIT. The LoopExitsCJause
serves the same purpose as, the ExitsClause in a block. There are 4
differences.

(1)The LoopExitsClause is bracketed by REPEAT and ENDLOOP instead of
EXITS and END.

(2)The LoopExitsClause may contain a final statement labeled with the
keyword FINISHED; this statement is executed if the loop terminates
normally or conditionally, but not if it is forcibly terminated by an EXIT

or GOTO statement.

(3)There is a special case oif the more general GOTO, called EXIT, which
simply terminates a loop forcibly without giving control to any
statement in the LoopE~itsClause.

(4)There is another kind of GOTO statement, called LOOP, which does not
terminate the loop but s,kips the remainder of the loop body in the
current iteration and continues with the next iteration.

Ge'tting Started in Mesa

Mesa Language Class -- February, 1988

GOTOs, LOOPs, and EXITs Examples

(1) & (2): FOR i IN [0 .. nEnt ri es) 00

If a[i] = x THEN GOTO found;
REPEAT -- REPEAT is not indicative

found =) old ~ TRUE;
FINISHED =) {

a[i ~ nEntries] ~ x;
nEntries ~ nEntries + 1;
old ~ FALSE };

ENDLOOP;

(3): 00

IF ... THEN EXIT; . . .
ENDLOOP;

(4): stuff: ARRAY[O .. 100) OF PotentiallyInterestingData;

FOR i: CARDINAL IN [0 .. 100) DO

IF NOT Interesting[stuff[i]] THEN LOOP;

ENDLOOP;

Getting Started in Mesa

1-58

Mesa Language Class -- May, 1988

Outline

1. Getting Started in Mesa (cont'd)

g. PROCEDUREs
h. Additional Data Types, Extensions

i. Strings .
ii. Variant Records
iii. Array Descriptors
iVa Base and Relative Pointers

Getting Started in Mesa

1-59

Mesa Language Class -- May, 1988

Procedures

The definition of a procedure provides a name for a function or action:

<name>: PROCEDURE (argument record>
RETURNS <result record) =
BEGIN

END;

Examples:

NewNumber:PROCEDURE RETURNS [x:CARDINAL] =
BEGIN

END;

Gcd: PROCEDURE[m,n: INTEGER] RETURNS [gcd: CARDINAL] =
BEGIN
r: INTEGER;
UNTIL n = 0 DO

r +- m MOD n;
m +- n;
n +- r;

ENDLOOP;
RETURN[ABS[m]];
END;

Getting Started in Mesa

1-60

Mesa Language Class -- May, 1988 1-61

Procedures -- Passing Arg'uments

In procedure call, the arguments are packaged into a record. Therefore, a
procedure call may use all the syntax for record constructors in passing
arguments. Arguments may be specified using either keyword or positional
notation. Arguments not explicitly specified may be supplied by default. The
following calls of Gcd are equivalent:

Gcd[x+1,y]; Gcd[m:x+1,n:y]; Gcd[n:y,m:x+1];

All parameters are passed by value.

If the procedure returns no results, the procedure is written as a normal
statement:

-- code fragment

x +- x + 1;

Oisplay[x];

Note: A procedure call that passes no arguments should include empty
brackets to avoid confusion with procedure variables (explained later).

x +- SomeProc[];

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-62

Proc:edures -- Results

If the procedure returns results, the results are obtained with an extractor:

ExampleProe: PROCEDURE RETURNS [a,b:INTEGER] =
BEGIN

END;

x,y: INTEGER;
. .. -- code fragment

[x,y] ~ ExampleProe[];
[b:y,a:x] ~ ExampleProe[];

If the procedure returns only one result, the extractor is not necessary:

ged: CARDINAL;
9 e d ~ G e d [m , n] ; -- Calling the procedure declared earlier

('ietting Started in Mesa

Mesa Language Class -- May, 1988 1-63

Return Statements

A RETURN statement may be used anywhere in the procedure to terminate
execution of the current procedure activation:

ReturnExample: PROC [option:[1 .. 4]] RETURNS [a,b,c:INTEGER] = {
a .. b .. c .. 0;

SELECT option FROM
1 =) RETURN [a:1, b:2, c:~]; --explicitRETURNs

2 =) RETURN [1,2,3];
3 =) RETURN;
ENDCASE =) b .. 4;

c .. 9;
} ; --Implicit RETURN

-- returns the current values of a, b, c

Getting Started in Mesa

Mesa Language Class - May, 1988

Scoping Rules for Procedures

Mesa uses static scoping rules; each block defines a new scope:

SomeModule: PROGRAM =

BEGIN
x,y: INTEGER;

OuterProc: PROCEDURE =

BEGIN
x: BOOLEAN;

LocalProc: PROCEDURE

[parm1: CARDINAL] RETURNS[parm2: CARDINAL] =
BEGIN
x: CHARACTER;

END;

END;

END.

(ietting Started in Mesa

1-64

Mesa Language Class -- May, 1988 1-65

Procedure Types and Variables

Procedures are actually types that are similar to pointers.

TrigProc: TYPE = PROCEDURE[x: REAL] RETURNS[REAL]; --ProcedureTYPE

ArcSin: TrigProe = BEGIN ••• END; -- Procedure Constant

ArcTan: Tr;gProc

FooBar: Tr;gProe;

= BEG IN. .. END; -- Procedure Constant

-- Procedure Variable

F ooBa r +- A re~ in; -- this is not making a call to A reS in, but rather assigning what

-- the procedure A reS in is equal to to the procedure Fun e

x +- FooBar[x]; -- since Fune has meaning, it is valid to make a call to it

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-66

Procedure Equivalence and Conformance

Equivalence and conformanCE! of procedure types are defined in terms of
relations between fields of thE~ir parameter lists and result lists.

Two procedure types are equivalent if, for each pair of fields, the names are
identical (or both are unnamed), the types are equivalent, and both default
options are empty.

One field is compatible with another if the names are identical or if either is
unnamed, and if the types are equivalent. A procedure type conforms freely
to another if all correspondin9 fields are compatible.

Example:

Handle: TYPE = LONG POINTER TO Person;
SignedNumber: TYPE = INTEGER;
Int: TYPE = INTEGER;

ProcA: PROCEDURE[h: Handle, v: SignedNumber];
ProcB: PROCEDURE[h: Handle~ v:Int];
ProcC: PROCEDURE[LONG POINTER TO Person, INTEGER];

P rocA, P roeS, and P rocC all conform to each other.

(jetting Started in Mesa

Mesa Language Class -- May, 1988 1-67

Inline Procedures

INLINE procedures can be used to eliminate the overhead of a procedure call
and return usually at the cost of a longer object program.

If the attribute INLINE appears before the body in the declaration of a
procedure, the call of that procedure is replaced by an inline expansion, a
modified copy of the procedure's body:

Proc: PROCEDURE[v: INTEGER] RETURNS [INTEGER] = INLINE
BEGIN

RETURN[v*v + 3*v + 1];
END;

See the rules in the MLM for applying the INLINE attribute.

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-68

Strings

In Mesa, a STRING represents a finite, possibly empty series of characters.
Mesa contains the following predefined types:

STRING: TYPE = POINTER TO StringBody;
StringBody: TYPE = MACHINE DEPENDENT RECORD[

length: CARDINAL,
max 1 ength: CARDINAL, -- readonly

text: PACKED ARRAY [0 .. 0) OF CHARACTER];

Where:

text is a PACKED ARRAY of characters
maxl ength is the maximum numbers of characters that text can hold
1 ength is the number of characters currently in text

String variables can be declared and initialized two ways.
1) to specify the maxlength of the string, but not its contents
2) to assign a string literal to the variable

Examples:

LocalProc: P~oc = {
currentLine: STRING ~ [256];
whatWasThat: STRING = "Eh?"L;

-- no value set here for the characters

-- string literal

-- cu rrentL i ne gets a value somehow

IF currentLine[2] = 'R THEN HelpaLot[];
-- can reference a specific character in the string

};

G:etting Started in Mesa

Mesa Language Class - May, 1988 1-69

Long Strings and String Operators

A LONG STRING is predefined as:

LONG STRING: TYPE = LONG POINTER TO StringBody;

Note: A LONG STRING does not mean that it can hold more characters than a
STRING, it means that it is a LONG POINTER to a StringBody. The difference is
that STRINGs are short pointers and therefore they reference into the MOS,
whereas LONG STRINGs can access storage outside the MOS.

Also, in Post Pilot 14.0 releases, a string literal in the global frame can be
assigned only to a LONG STRING, since the storage for global frames. does
not come from the MOS as in earlier releases.

In general, LONG STRINGs should be used instead of STRINGs.

Since STRINGs and LONG STRINGs are essentially pointers, the fundamental
pointer operations E-, =, and # can be used with STRINGs and LONG
STRINGs.

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-70

V43riant Records

Variant records contain a set of common fields and a variant portion with a
specified set of different possible interpretations. In Mesa, there are 4
different forms of the tag and they represent:

-- an actual tag with an explicit enumerated type

-- an actual tag implicitly delfined

-- a computed tag

-- an OVERLAID tag

G4~tting Started in Mesa

Mesa Language Class - May, 1988

Variant Record Examples

Service: TYPE = {savings, checking};
Account: TYPE = RECORD[--actual tag with explicit type

balance: REAL,
specifics: SELECT variantType: Service FROM

savings =) [intRate: REAL, term: [30 .. 365]],
checki~g =) [charges: REAL],
ENDCASE];

1-71

Account: TYPE = RECORD[
balance: REAL,

-- actual tag with implicitly defined type

specifics: SELECT variantType:* FROM
savings =) [intRate: REAL, term: [30 .. 365]],
checking =) [charges: REAL],
ENDCASE];

Account: TYPE = ~ECORD[-- computed tag

balance: REAL,
specifics:SELECT COMPUTED {savings,checking}FROM

s a v i n g s =) [i n t Rat e': REA L , term: [3 O. • 365]] ,
checking =) [charges: REAL],
ENDCASE];

Account: TYPE = RECORD[-- overlaid tag

balance: REAL,
specifics: SELECT OVERLAID * FROM

savings =) [intRate: REAL, term: [30 .. 365]],
checking =) [charges: REAL],
ENDCASE];

* is used to indicate that the type of an actual tag is being defined implicitly
by the set of adjectives naming the variants in the tag's variant part.

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-72

Variant Record Variables

Variables that are variant records can either have bound variant types or
unbound variant types:

r: Account; -- unbound variant type

rSavings: savings Account; -- bound variant type

rCheck. i ng: check. i ng Account; -- bound variant type

c':ietting Started in Mesa

Mesa Language Class -- May, 1988 1-73

Variant Part, Tag Access

The variant part of a record and its tag can only be assigned with a
constructor.

r ~ [balance: 100.0, specifics: checking [charges: 0.5]];

r ~ [100.0, savings[7.0,35]];

Assigning the variant part of a record has the side effect of assigning the tag.

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-74

Accessing Components of Variants

When a record is a bound variant, components of its variant part m'ay be
accessed as if they were comnnon components:

rSavings.intRate ~ 8.9;

rChecking.charges ~ 1.0;

With unbound variants, a gE~neralized SELECT statement must be used for
actual tags:

WITH r SELECT v~;e FROM
savings =) { ,

intRate ~ 8.8;

term ~ 90;
};

checking =) charges ~ 1.0;
ENDCASE;

For computed and overlaid tags, an expression must be supplied yielding a
tag value:

WITH r SELECT (IF ... THEN savings ELSE che~king) FROM
savings =) ••.

checking =) •••

ENDCASE;

(jetting Started in Mesa

Mesa Language Class -- May, 1988 1-75

Accessing Components of Variants

For overlaid tags, a field in a variant that appears in no other variant can be
referenced directly:

r.intRate +- 8.8;

r.charges +- 1.0;

Getting Started in Mesa

Mesa Language Class -- May, 1988 1-76

fJ~rray Descriptors

An array descriptor describes the location and length of an array. There are
three operators that are relevant to array descriptors.

LENGTH[<an ar ray>] -- yields the number of array elements

BASE [< an a r ray>] -- yields a pointer value for locating the first element

DESCRI PTOR[<an a r ray>] -- yields an array descriptor (record of base and length)

Example:

history: DESCRIPTOR FOR ARRAY OF CARDINAL;
numbers: ARRAY [0 .. 1000) OF CARDINAL;
history ~ DESCRIPTOR[numbers];

Descriptors historically were used for dynamic arrays and are present mainly
for backward compatibility. They are used for parameter passing now.
Se.quences (described later) are now used for dynamic arrays instead and are
the recommended method.

(jetting Started in Mesa

Mesa Language Class -- May, 1988 1-77

Base and Relative Pointers

Relative pointers require the addition of a base pointer to obtain an
absolute pointer. This allows data structures with internal references that
are independent of memory location.

They are used with movable storage areas called ZONEs. Consult the MLM
and the PPM for details.

Getting Started in Mesa

Mesa Language Class -- May, 1988 0-1

The Debugger

The Debugger

Mesa Language Class -- May, 1988 D-2

The Debugger

Some of the material in this slection overlaps the material covered in the XDE
tutorials that you should havE~ already completed. This is desirable because:

1) some students will not have gone through the tutorials, thus making
this lab their first exposure to the debugger.

2) the e.xtra practice can't hurt.

The Debugger

Mesa Language Class -- May, 1988 0-3

CoPilot vs. Sword

There are two different debuggers depending on what version of software
you are running. If you are running a pre 12.3 release, then you will be using
the CoPilot debugger, which is built into the CoPilot bootfile.

If you are running at 12.3, then you have the option of using the built-in
CoPilot debugger or using the new SWorD debugger, which is a separate
application that must be run on a Tajo bootfile.

CoPilot will not be available for versions newer than 12.3.

The information in this lecture applies to both the CoPilot debugger and to
SWorD.

The Debugger

Mesa Language Class -- May, 1988 D-4

The Debugger

• Interactive, sourceline-levE~1

• Resides on an XDe volume"
The debugger need not reside on the same machine as the client (e.g.
Remote debugging).

• Allows ~nspection of run-time stack, variables, processes, etc.; variables
can be re-assigned, individual procedures can be called.

• What will be covered:
• Common command usage
• What the programmE~r sees

• What won't be covered:
• Low-level and other operating system-related details

The Debugger

Mesa Language Class -- May, 1988 0-5

Getting the Debugger Window

If you are using the CoPilot debugger, then you do not run anything special.
The Copilot debugger is built into the CoPilot bootfile. Look for a window
labelled Debug.log, which when opened looks like this:

Oebu .10 _
~ 9-f\Jov-87 12: 15

! >

If you are using the Sword debugger, then you must run Sword.bcd. Sword
requires a Tajo bootfile. Look for a window labelled Debug.log, which when
opened looks like this:

Local'.ltJorlcl (Debu .10. 2) .
go: {proceed} abort kilL screen} start} client: {1oc.~l} destroy!

read: {} write: {} processes configs attach: {source} symbols}
SOU'"Ce! fird.toWle! rep?! showType! type&:bits! options!
break: {set clear} clearal1} list .. att.9.chCond} attachKey} watch: {off}

Local War1 d (Debug.1 092)
Interpreter

I >

Sword can have multiple windows. To get another window:

1) In 12.3, execute the" New Interpreter" command in the stack of root
menus, or

2) In 14.0, execute the" Another!" command in the Sword form
subwindow.

The Debugger

Mesa Language C/~ss - May, 1988 D-6

Reasons fc)r Entering the Debugger

• Interrupt

• Breakpoint

• Map Log

• Error
• Address Fault
• Uncaught Signal

The Debugger

Mesa Language Class -- May, 1988 0-7

Commands for When in Doubt

• {zero or more characters} 1,:
Displays all the commands that begin with the specified characters.

• the DELETE key:
Allows you to cancel any command before it's been invoked.

• the STOP key:
Allows you to cancel any command during its execution.

The Debugger

Mesa Language Class -- May, 1988 D-8

Commar,ds to Inspect Modules

• SEt Module Context: --
Sets the module context to the user-specified module. The variables
and procedures in thE~ current module are recognized.

• Display ~tack:
Displays the top of the run-time stack, which is the procedure
currently being executed. Also puts you in a subcommand mode to
learn more about each element on the stack.

The Debugger

Mesa Language Class - May, 1988 0-9

Subcommand Mode (after a Display Stack)

• source:
displays the source line where the debugger was invoked and loads
the file in a window if it isn't loaded already. The source file IS

scrolled so that th~ line in question is in view.

• variables:
displays the local variables and the parameters for that procedure

• global variables
displays the global variables for that module

• 2arameters:
displays the parameters for that procedure

• next:
displays the next procedure call on the run-time stack

• back:
goes back up the stack (reverse of next)

• guit (or the DELETE key):
gets you out of the subcommand mode

The Debugger

Mesa Language Class -- May, 1988 0-10

Commanlds to Inspect Processes

• .bist Processes (also availc,ble in the Sword FormSW):
Lists the currently active processes in the client volume.

• SEt Process Context:
Sets the current proc:ess context to the user-specified process. The
call stack for that process is recognized.

The Debugger

Mesa Language Class -- May, 1988 0-11

Commands Related to Swapping

• Proceed (also available in the Sword FormSW):
Continues execution of the program by going back to the client
volume and executing from the point where the debugger was
invoked.

• Quit (also available in the Sword FormSW as 'abort'):
Raises the signal ABORTED in the process that entered the
debugger, which usually results in that process being deleted.

• Userscreen (also available in the Sword FormSW as 'screen'):
. Applies only to world-swap debugging. Displays the screen bitmap
of the client volume for 20 seconds, or less if the "STOP" key is
toggled.

• ReDisplay swap reason:
Redisplays the reason why the debugger was called. Sometimes the
user can give the debugger more. information and then redisplay
the swap reason to learn more about why the swap occurred.

The Debugger

Mesa Language Class -- May, 1988 D-12

Setting Breakpoints

• Break Entry procedure:
Sets a breakpoint at the point of entry to a procedure

• Break Xit procedure:
Sets a breakpoint at the point of exit of a procedure.

• To set a breakpoint in source other than at the beginning or end of a
procedure, load the source file into a window, make a selection on the
line where the breakpoint is to be set. Then,

1) with Sword hit thE~ "set" command of the "break:" enumerated
within the FormSVV.

2) With CoPilot, click "Break" in the window menu.

A breakpoint will then be set at the beginning of the statement in
which the selection was Imade.

The Debugger

Mesa Language Class -- May, 1988 0-13

Some Other B~eakpoint Commands

• !:ist Breaks (also available in the Sword FormSW):
Lists all the breakpoints that are currently set.

• Clear All Breaks (also available in the Sword FormSW):
Clears all currently set breakpoints.

• Clear Break # (also available in the Sword FormSW):
Clears the break that you specify by number.

• Attach Condition (also available in the Sword FormSW):
Attaches a boolean condition that must be TRUE in order for the
break to occur.

• Attach Keystrokes (also available in the Sword FormSW):
Attaches a user-supplied string of characters to be entered into the
debugger when the associated breakpoint is executed.

The Debugger

Mesa Language Class -- May, 1988 0-14

Using the Interpreter Mode

• Interpreter mode handles (31 subset of Mesa.

• In the interpeter mode, you can display and re-assign variables (simple or
complex), dereference pointers, call procedures, and convert types.

• Interpreter mode is invoked by typing a space character at the beginning
of a line. After typing the space, you can type a variable name to inspect
that variable.

• To dereference a pointer variable, type the variable name followed by an
up-arrow ("foo1""). To dereference a pointer to a pointer, type the
variable name followed by:2 up-arrows (" fool"l"").

The Debugger

Mesa Language Class -- May, 1988 0-15

Setting the Options

The Debugger Options window allows you to change the default format
that the debugger uses in displaying values of variables as well as specify (for
Sword only) whether or not a particular kind of event is handled locally.

Invoke the options! command in the FormSW to bring up the Options
window.

There are four booleans at the bottom of the window. If a boolean is TRUE

and the corresponding event occurs, it is handled locally. If a boolean if FALSE

then the event causes a world-swap. The booleans map to:
fault = address fault, uncaught = uncaught signal,
break = breakpoint, calldebug = SHIFT-STOP

Local~Norld (Debu .10. 2)
go: {proceed, abort, kilL screen, start} cUent: {l'Jcal} destToy!

read: {} write: () processes configs atta.ch: {source,. symbols}

surce! firddodule! rep?! shlwType! ~its! optioos!
break: {set clear I clear alL 1 i st, a ttachConct a ttachKey} watch: {off}

LocalWorld (Oebug.log2)
Interpreter

:')
~ ..

Inter reter 0 t ions
!CARDIHAL: {octal, Amah.€iI, hex} si~ INTEGER: {octal} aMBh,liI, hex}atf~1
~ApplY! POINTER: tE.d .. decimaL hex} PROCESS: tE.d .. decimaL hex}

~Abcrt! RELATIVE: tE.d, decim.:l1 , hex} LNSPEClfIED: {satmJ, decimaL hex}
~ Pn"ay elernents = 1 0 String 1ength = 1 ~IO

!filter:
1- (I ,:§1i)JjJ ~ rgt"G:m processes configs

Be sure to invoke Apply! to have the changes take effect or Abort! to restore
them to the previous options. (Do not just tiny or deactivate the options
window.)

The Debugger

Mesa Language Class -- May, 1988 0-16

Show Type·

Show Type allows you to find out the type of various procedures and
variables. It operates on the c:u rrent selection {anywhere on the screen}. The
format must be:

InteriaceName.symbolNanle

If only the Interface name is selected, then all of the types in that file are
displayed.

go: {proceed, a.bort, kill, scre!en, start}

read: {} write: {} processes configs attach: {source, symbols}
S(U'Ce! fird.biJle! rep?! showTYJJe! type&bits! options!

treak: {set, clear) clearalL 1 ist, attachCon~attachKey} watu.: {off}

Loca 1 Worl d (Debug.1 og2)
Interpreter
> .
Exec.AddCommand: PROCEDURE [name: LONG STRING, proc: Exec.ExecProc, help:
Exec.ExecProc ~ NIL, unload: Exec.ExecProc ~ Exec. DefaultUn1oadProc .. cl ientD.3.ta:
LONG POINTER ~ NIL];

File: <CoPilot>WD)FactorialT

Create OPos Edit Load Empty Save Time Store Reset Spl it Match Destroy

An! 5! RS! ~: SR! R! ~:

Crea teF actor i a 1 Too 1: PROCEDURE = {
Exec . AddComma.nd ["FactorialToo1. II L, NoOp, NIL, Unload];
'l ... h ~ Tool.Create(

makeSWsProc: Make~)Ws, initi.3.1State: default,
clientTransition: C1 iElntTransition, name: "Factorial Tool ilL];

The Debugger

Mesa Language Class - May, 1988 0-17

Processes Boolean (in Sword Only)

Turning on the processes boolean in the Sword FormSW creates a proceses
subwindow. This subwindow contains processes, call stacks, and local
variables. You can zoom or close a particular line by selecting the cross at the
head of the line. Zooming displays more detail; for instance, zooming a stack
frame line displays the local variables of the stack frame.

Local\Norld (Debu .10 2)

go: {proceed) abort~ kilL screen) start} client: {local} destroy!

read: {} write: {} i(;I:":+'f{~: configs attach: {source) symbols}

SOl.rce! fird.todule! rep?! showType! type&bits! options!
break: {setl clear} cle.9.ra1L 1 ist) attachCond) .3.ttachKey} watch: {off}

,< PS8: 538} 'Met.iting CVI L: 4570548·1') PC: 18936 (in TTYS'.,.VsA) G: 4316748'1:')
x PS8: 546) waiting CV} L: 40601081' .. PC: 18936 (in TTYS\tVsA) G: 43167481')
x PS8: SS8*} waiting CVI L: 4553048'1'~ PC: 2896 (in ITlnstalL G: 5174148·1')

j x PS8: S88} waiting CVI L: 4051708·1') PC: 18936 (in TTYS"NsA) G: 43167481')
1 x No symbols for L: 40517081'1 PC: 18936 (in TTYSWsA) G: 4316748-t)

x No Variables!
x No symbols for L: 406410B'1'1 PC: 204 (in TTVlmpL G: 440244B·t-)

x PS8: 6S8} waiting CVI L: 4561148·1') PC: 89 (in TTYlmpL G: 440244B·t-)
x PS8: 678) waiting CV) L: 41425481') PC: 89 (in TTYlmpL G: 4402448·1')
x PS8: 1178) waiting CV) L: 40304081'~ pc: 389 (in Processes) G: 417674B-t)

x No symbols for L: 403040B1'} PC: 389 (in Processes) G: 41787481')
x No symbols for L: 4056648'1'1 PC: 268 (in ClockToollmpL G: 52331481')

x PS8: 124BI waiting CVI L: 455354B·1' .. pc: 18936 (in TTYSWsAI G: 431674B·t-)

LocalWorld (Debug. 1092)
Interpreter
>

The Debugger

Mesa Language Class -- May, 1988 0-18

Configs Boolean (in Sword Only)

Turning on the configs b()olean creates a configs subwindow. This
subwindow contains configulrations, modules, and global variables. You can
zoom or close a particular linle by selecting the cross at the head of the lineo
Zooming a configuration line, for instance, displays the nested
configurations and modules.

Local'Norld (Debu .10. 2) ,
go: {proceed, abort k ilL :screen, start} client: {1 oca l} destroy!

read: {} write: {} processes [..:, f1'r:m: attach: {source, symb,Jls}
SOtrCe! firxMlduJe! .Irep?! showType! type&bits! opticns!

break.: {set, clear, cleara"/l, 1 ist, .9.ttachCond, .9.ttachKey} watch: {off}
~--~o

1 x Activity
1 x MailTool
l x RemoteExec
l x AddHintMenus
: x FileToo12

x FileToollmplA, G:5112708 No symbols.
x No Vari.9.bles!

x FileToollmp16, G:511500B No symbols.
~(FileToollmplC, G:5115648 No symbols .

. x Sword
x ExpandType
x OriginalPosition
x Source Ti me

~---o
Local \lVorld (Debug.log2)
Interpreter

I >

The Debugger

Mesa Language Class -- May, 1988 0-19

PROPS-STOP

Sometimes your machine will "hang", especially when you are locally
debugging some program and it crashes. PROPS-STOP is a special command
that is built into 12.3 (and later) Tajo bootfiles. This will create a new notifier
to let you continue what you were doing.

PROPS-STOP will usually work when a particular operation is hung but not
when the entire workstation is hung. (Look at the clock to see if everything is
hung.) When PROPS-STOP does not work, you will have to re-boot.

CoPilot bootfiles do not have this feature.

The Debugger

Mesa Language Class - May, 1988 D-20

Summary

This lecture was not complete coverage of all commands that are available in
the debugger. It was meant to give you an introduction to using the
debuggers. There are many ",ore ways to use the debugger to help you in
your development work.

For more information about the CoPilot debugger refer to the Debugger
chapter in the XDE User's Guide.

For more information about using Sword, refer to Appendix E of the XDE
User's Guide.

The Debugger

Mesa Language Class - February, 1988 Appendix-1

Appendix: Conformance and Type Determination

Appendix: Conformance and Type Determination

Mesa Language Class - February, 1988 Appendix-2

Conformc3nce Among Numerics

INTEGER, NATURAL, CARDINAL

INTEGER, NATURAL, CARDINAL

INTEGER, NATURAL, CARDINAL

INTEGER, NATURAL, CARDINAL
LONG INTEGER, LONG CARDINAL

INTEGER, NATURAL, CARDINAL
LONG INTEGER, LONG CARDINAL

INTEGER, NATURAL, CARDINAL
LONG INTEGER, LONG CARDIN,AL, REAL

Examples:

i: INTEGER; c: CARDINAL; n; NATURAL;

conform to INTEGER

conform to CARDINAL

conform to NATURAL

conform to LONG INTEGER

conform to LONG CARDINAL

conform to REAL

11: LONG INTEGER; 1c: LONG CARDINAL; r: REAL;

--The right side conforms to the left side.

1 .. c;
1c .. n;
c .. 1;
n .. c;
r .. 11;

Appendix: Conformance and Type Determination

Mesa Language Class - February, 1988 Appendix-3

Conformance Using Range Assertions

LONG INTEGER, LONG CARDINAL

LONG INTEGER, LONG CARDINAL

LONG INTEGER, LONG CARDINAL

Examples:

;: INTEGER; c: CARDINAL
1;: LONG INTEGER; lc: LONG CARDINAL;

-- The right side conforms to the left side.

; +- INTEGER[li];
c +- CARDINAL[l;];
; +- INTEGER[lc];

conform to INTEGER

conform to CARDINAL

conform to NATURAL

Appendix: Conformance and Type Determination

Mesa Language Class - February, 1988 Appendix-4

Word Length Rule's For Expressions (Balancing)

In determining what type of operation (INTEGER, CARDINAL, LONG
INTEGER, LONG CARDINAL, RE)~L) should be performed in an expression, a
common word length must first be found.

In general, the operation requiiring the fewest automatic type conversions
will be the one used. So for nurl'lerics:

1. If all (both) operands are short numerics, a short numeric operation
will be used.

2. If all (both) operands are long numerics, a long numeric operation will
be used.

3. If one operand is a long numeric, the other operand will be
lengthened and a long operation will be used.

a. When an INTEGER is lengthened, its inherent type is LONG
INTEGER.

b. When a CARDINAL or r~ATURAL is lengthened, its inherent type is
LONG INTEGER and LONG CARDINAL.

4. If one operand is a REAL the other operand is converted and a REAL
operation is used.

Appendix: Conf.,rmance and Type Determination

Mesa Language Class - February, 1988 Appendix-5

Determination of Representation (Balancing)

Once a common word length is found for an expression, the following rules
will choose whether a signed (INTEGER, LONG INTEGER) or unsigned
(CARDINAL, LONG CARDINAL) operation will take place.

1. If the operands have exactly on'e common inherent representation,
the operation defined for that representation is selected (and the
target representation is ignored).

2. If the operands have no common inherent representation but the
target representation is well-defined, the operation yielding that
representation is chosen.

3. If the operands have both inherent representations in common, and if
the target representation is well-defined, The representation of the
target type selects the operation.

4. If the operands have both inherent representations in common, but
the target representation is ill defined, the signed operation is
chosen.

5. Unary minus converts its argument to a signed representation if
necessary and produces a signed result:

If the operands have no representation in comon and the target
representation is ill-defined~ the expression is in error.

Appendix: Conformance and Type Determination

Mesa Language Class - February, 1988

Type Determination Examples

i: INTEGER; c:CARDINAL;
1i: LONG INTEGER lc:

n: NATURAL;
LONG CARDINAL;

c +- c + c

CARDINAL 'CARDINAL CARDINAL

CARDINAL

; +- c + c

INTEGER CARDINAL CARDINAL

\
CARDINAL

Length rule: 1
Sign rule:· 1

Length rule: 1
Sign rule: 1

Appendix: ComFormance and Type Determination

Appendix-6

Mesa Language Class - February, 1988

LONG INTEGER

INTEGER

Type Determination Examples

1; +- ; + ;

INTEGER INTEGER

INTEGER

; +- c + ;

CARDINAL INTEGER

INTEGER

Length rule: 1
Sign rule: 1

Length rule: 1
Sign rule: 2

Appendix: Conformance and Type Determination

Appendix-7

Mesa Language Class - February, 1988

Type Determination Examples

lc ... n + n

LONG INTEGER and INTEGER and
CARDINAL CARDINAL CARDINAL

\
Length rule: CARDINAL
Sign rule:

IF n + n)0

INTEGER and
CARDINAL

INTEGER and
CARDINAL

INTEGER

Length rule: 1
Sign rule: 4

Appendix: Conformance and Type Determination

Appendix-8

1

3

Mesa Language Class - Februaty, 1988 Appendix-9

LONG
CARDINAL

Type Determination Examples

lc +- c + 1;

CARDINAL

LONG INTEGER and
LONG CARDINAL

LONG INTEGER

LONG INTEGER

Length rule: 3b

LONG INTEGER

Sign rule: 1

Appendix: Conformance and Type Determination

Mesa Language Class - February, 1988

Example CJf Incorrect Statement

IF c < ; THEN ... \\
CARDINAL INTEGER

BOOLEAN

Length rule: 1
Sign rule:

Appendix-10

There is no target type; Mesa cannot determine if you want a signed <
operation or an unsigned < operation.

Appendix: Conformance and Type Determination

Mesa Language Class -- February, 1988 Appendix-11

The Long Operator

Use the LONG operator to force an operand to be lengthened according to
the previous length rules.

Examples:

LONG INTEGER

1; ~ ; + LONG[i];

INTEGER

INTEGER

LONG[INTEGER]

LONG INTEGER

LONG
INTEGER

Appendix: Conformance and Type Determination

Length ru Ie: 3a
Sign rule: 1

Mesa Language Class -- February, 1988 Index-1

INDEX

A
Array .. 1-33 - 1-34, 1-59, 1-76
Arrays ... 1-27,1-32
Assignment .. 1-27,1-44

B
Balancing .. 1-22, 1-24
bcd '. 1-3, 1-7
Binder ' '. 1-7
Blocks ".................................... 1-27, 1-50
BOOl " ... 1-12
BOOLEAN ".......................... 1-15, 1-30, 1-40, 1-64
Bounds ".................................... 1-25, 1-49

C
CARDINAL 1-12 - 1-13, 1-15, 1-20, 1-25 - 1-26, 1-29 - 1-30, 1-54
CHAR "... 1-12
CHARACTER ". 1-19 - 1-20, 1-30, 1-32, 1-64,1-68
Client '.................................. 1-4 - 1-5, 1-7
comment '... 1-10
Comments .. 1-2, 1-10
config .. ,.' 1-7
Configuration .. 1-4,1-7
Conformance 1-27 - 1-29, 1-31, 1-34, 1-39, 1-42, 1-66

D

Decfarations '.. 1-15
Definitions .. '. .. 1-4 - 1-6
Descri pta rs .. '. 1-5 9, 1 -76
DIRECTORY .".. 1-8 - 1-9

E
Enumerated ... 1-29
EXiT " ".... 1-57 - 1-58

F
Fields .. 1-35 - 1':36
FIRST .. 1-20, 1-31
floating-point. 1-14

Index fe)r Getting Started in Mesa

Mesa Language Class -- February, 1988

G
GOTO

Index-2

1-51,1-57 - 1-58

Identifiers 0 • 1-11
IEEE .. 1-14
IF 1-10,1-27,1-29,1-45 - 1-46, 1-49 - 1-51, 1-58, 1-68
Implementation 0 •• 0.0... . ••• 1-4,1-6 - 1-7
Inline ... 0 • '-67
I NT .. 1 -1 2 - '-1 3
INTEGER "........................ 1-12 - 1-13, 1-19 - 1-20, 1-25 - 1-26, 1-30, 1-54
Interfaces 0 • 1-4

L
LAST
Loop

M

1-20
1-27,1-52,1-57 - 1-58

MOD 0 ••••••••••••••••••• 0 • 1-16, 1-21, 1-60
Mod u I es 0 •••.••••.••••• 0 • 0 • • • • • • . • • • • . . • • • • . • • • • . . . • • • . • . . •.• . •. 1-3 - 1-7

N
NAT :... 1-12

o
Operators ... o. 00 .•••..•••••• 0................... 1-16 - 1-18, 1-20 - 1-21,1-26,1-69
ORO 0 •• 0 •• 0 • 0 ••••.•••• 0 .•••..•••••• 0 ••.•• 0 • • • • • • . . • • . . • • . • 1-20, 1-29

P
Pointer .: 0 •••• 0 •• 0 ..••.••• 0 . . • • • . . • • . . • . • • • • • . . . • . • • 1-41 - 1-42
Pointers 0 .•••.•••.. 0 ••• 0.:........................ 1-27,1-40,1-43,1-59,1-77
Precedence 0 0 ••. 0 ••.•.•.....••....•••....•.• 0 1-2'
PRED 0 ••••••••••••••••••••••••••••••••••••••• 0 • 1-20
Procedures ... 1-60 - , -62, 1-64 - 1-65, 1-67
Program o •••••••••••••••••••••••••••••••• 1-2,1-4-1-9,1-11,1-64

R
REAL 0 0 ••••.•••••. 0 •• 0. 0 0 ••• 0 ••••••.•..•. 0 •.•••• 0 ••••.. 1-14- 1-16,1-65, '-7'
Record ... o. 0 •••• 000 .•• o ••• 0 •••.•.•••.• 0 ..••••.••• 0.0. ..•. 1-37 - 1-39,1-71 - 1-72
Records 0 ••••••••••••.•• 0 •••••••••••••• 0 •••.• 0 ••.•• 0 •.. 0.... 1-27,1-35,1-59,1-70
Return ... 0........................ 1-63

Index for Getting Started in Mesa

Mesa Language Class - February, 7988 Index-3

S
Seoping "... 1-64
SELECT .. 1-27,1 ... 47 - 1-49, 1-63, 1-71, 1-74
STRING .. 1-68 - 1-69
Strings....... 1-59,1-68 - 1-69
Subrange .. 1-30 - 1-31
SUCC ... 1-20

U
underflow 1-26

V
VAL ... 1-20,1-29
Variant ... 1-59, 1-70 - 1-73
Variants .. "..... 1-74 - 1-75

Index for Getting Started in Mesa

Mesa Language Class -- March, 1988 2-1

Modules:
Definitions, Programs, and Configurations

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988

Outline

1. Interfaces
a. What interfaces are all about
b. Definitions modules
c Program modules

i. Clients
ii. Implementations

d. Configurations

Modules: Definitions, Programs and Configurations

2-2

Mesa Language Class -- March, 1988

Programming Without Interfaces

This code can not be shared with any other program.

--DoLittle.mesa

DoLittle: PROGRAM = {

var: CARDINAL;

var ... 0;
THROUGH [1 .. 100] DO

var ... var + 5;
ENDLOOP;

} .

DoLittle.bcd

I Execute: DoLittle.bcd

Modules: Definitions, Programs and Configurations

2-3

Mesa Language Class -- March, 1988 2-4

Types of Mesa Modules

There are two types of Mesa modules: DEFINITIONS and PROGRAM.

DEFINITIONS and PROGRAM rnodules are both written in Mesa. They are
input to the compiler. The output of the compiler is a binary configuration
description (bcd) file.

When a module is compiled ,a time stamp (right down to the second) is
included in the bcd file. This time stamp is what differentiates multiple
versions of the same file.

A DEFINITIONS module is comrnonly referred to as an Interface.

Modules: Defil1itions, Programs and Configurations

Mesa Language Class -- March, 1988

Overview

There are three basic pieces to the interface mechanism:

An interface, which defines an abstraction.
(An interface is a module of type DEFINITIONS.)

A client, which uses the facilities defined in the interface.
(A client is a module of type PROGRAM.)

2-5

An implementation, which provides the facilities defined in the interface.
(An implementation is a module of type PROGRAM.)

There can be more than one client of an interface, and the implementation
is not necessarily a single module.

Interface:
. defines procedures

Client:
uses the procedures

from the interface

Implementation:
provides the actual code
for the procedures in the

interface

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-6

Definitions Module

Interfaces (DEFINITIONS modules) generally define the data structures and
operations for an abstraction. Interfaces contain only declarations -- no
executable code.

Here is a typical interface module:

--Example.mesa
Example: DEFINITIONS = {

limit: INTEGER = 86;
Range: TYPE = [-limit .. limit];

ReadChar: PROCEDURE RETURNS[input:CHARACTER];
WriteChar: PROCEDURE[output: CHARACTER];
} .

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988

Compile-Time Items and Run-Time Items

The items in a DEFINITIONS module fall into two classes:

compile-time items: definitions of TYPEs and constants

run-time items: definitions of procedures, signals, programs,
and other variables

2-7

In the example on the previous page, the first two items are compile-time
items; the two procedures are run-time items.

Note: In the Mesa Language Manual, compile-time items are referred to as
non-interface elements, and run-time items are referred to as
interface elements.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-8

Directory Statement

If any module uses information from an interface, that interface must be
listed in the module's DIRECT()RY clause. The Directory clause is the first
thing in any module.

Note: ONLY DEFINITIONS modules are listed in a DIRECTORY clause.

Example:

--SomeModule.mesa
DIRECTORY

Interface1,
Interface2,
Interface3;

SomeModule: DEFINITIONS = {

} ;

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-9

USING Clause

The USING clause is an optional part of the DIRECTORY statement. It is used
to list the names of all of the items that will be used from the referenced
interface. A USING clause is not required, though it is recommended.
Although, if you do have a USING clause, then you must list each and every
symbol that you want to use from that interface in the USING clause.

Examples:

--SomeModule.mesa
DIRECTORY

Interfacel USING [iteml, item2, item3]; --recommendedmethod

OR:

--Table.mesa
DIRECTORY

Interfacel ;

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-10

Referencing Items from an Interface

To reference the item from the' interface in the program body, you must put
the Interface name first then the symbol name (separated by a period), i.e.
Interface1.item1.

Example:

--Simple.mesa
Simple: DEFINITIONS = {

1 imi t: INTEGER = 86;
Range: TYPE = [-limit .. limit];
Pair: TYPE = RECORD[first. second: Range]; --wanttousethisitem
PairPtr: TYPE = LONG POINTER TO Pair:
} .

--Table.mesa
DIRECTORY

Simple USING [Pair]:

Table: DEFINITIONS = {
1 imi t: INTEGER = 256;
Index: TYPE = [O .. limit);
PairTable: TYPE = ARRAY Index OF Simple.Pair;
} .

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-11

Program Modules

A program module can access the compile-time items from a definitions
module as easily as a definitions module.

--TableUser.mesa
DIRECTORY

Simple USING [Pair',
Table USING [PairTable';

TableUser: PROGRAM = {
pair: Simple.Pair;
table: Table.PairTable;

} .
Note that you must qualify identifiers from definitions modules with the
name of the DEFINITIONS module.

Modules: Definitions, Program~ and Configurations

Mesa Language Class -- March, 1988 2-12

Summary: Using Compile-Time Items

To be a client of an interface, you need to know the name of the interface
and the name of the symbols that you want to use from that interface.

To access compile-time items from an interface, a client module must do
three things:

• Include the name of the interface in its DIRECTORY clause.

• Include the name of the symbol in the USING clause.

• Reference the symbol as InterfaceName.Symbol.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-13

IMPORTS Clause

The Imports clause lists the Interfaces for which there needs to be an
implementation supplied from somewhere. For example, procedures (and
other run-time items) are defined in an interface but are implemented
elsewhere. The system needs to know that it needs to match up the
implementation of the procedure with the caller of that procedure.

The syntax of using run-time items is like that of using compile-time items
except that you must also include the interface in the IMPORTS list.

Note: Only DEFINITIONS modules are listed in an IMPORTS clause.

--IO.mesa
10: DEFINITIONS = {

ReadChar: PROCEDURE RETURNS[input: CHARACTER]:
ReadLine: PROCEDURE RETURNS[input: LONG STRING];
WriteChar: PROCEDURE[output: CHARACTER]:
WriteLine: PROCEDURE[output: LONG STRING];
} .

--CopyDriver.mesa
DIRECTORY

10 USING [ReadLine, WriteLine];

CopyOriver: PROGRAM IMPORTS 10 = {
input: LONG STRING ~ [l56];
DO

} .

input ~ IO.ReadLine[];
IF input[O] = '. THEN EXIT;
10.WriteLine[input];
ENDLOOP;

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-14

Summary: Using Run-Time Items

To access run-time items from an interface, a client module must:

• Include the name of the interface in its DIRECTORY clause.

• Include the name of the symbol in the USING clause.

• Include the name of the interface in its IMPORTS clause.

• Reference the symbol as InterfaceName.Symbol.

Note: You do not need to know anything about the implementation of the
procedures in the interface. You just take on faith that if something IS

advertised in an Interface, you can use it.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-15

Conlpilation Order

The DIRECTORY clause lists all the interfaces from which you are using
information. To type-check your program, the compiler must be able to read
all of the interfaces listed in the DIRECTORY clause. This means that when
you compile a program, the (~ompi1ed version of all the interfaces in the
DIRECTORY clause must be on your local disk.

--Str;ngClient.mesa
DIRECTORY

String USING [Equivalent]:

StringClient: PROGRAM IMPORTS String = {

sameString: BOOLEAN ~ String.Equivalent[strl, str2];

}.

Thus, to compile StringClient.mesa, you must have the file String.bed on
your local disk. The compiler will include the time stamp of String.bcd in
StringClient.bcd. If the referenced Interface is not present, the compiler will
give the message" Can't Open String.bcd of ... ".

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-16

What Exactly Do You Need?

What do you need at compile time and what do you need at run time? This
topic usually confuses new Mesa programmers. Hopefully this table will
help.

Must it be present on the
local disk when cl ient
program is compiling?

Must it be present on the
local disk when cl ient
program is running?

Is it provided in the bootfile?

Examples
of Interfaces

Examples
of Implementations

1) System Interface 1) System Interface Impl
2) Own Interface 2) Own Interface Impl

1) Yes 1) No
2) Yes 2) No

1) No 1) Yes
2) No 2) Yes

1) No 1) Yes
2) No 2) No

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-17

Example # 1

--Heap.mesa
DEFINITIONS

Heap.bed
2/8/84

--String.mesa
DEFINITIONS

String.bed
3/7/84

Note: Since these are system
interfaces, you usually only have
the object code (bcds), not the
source code mesa).

--DoSome.mesa

DIRECTORY
String USING [...],
Heap USING [...];

DoSome: PROGRAM .
IMPORTS String, Heap = {
51: LONG STRING = "Hi!";
c: CARDINAL;
c ~ String.Length[s1];
Heap.Al1oc[... J;
}.

DoSome.bcd

I Execute: DoSome.bcd

Loaded Implementations

The implementations for String.bcd and Heap.bcd
are supplied at run time.
(Note: Since these are system interfaces, the
implementation is supplied in the bootfile.)

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-18

EX:PORTS Clause

The Exports clause lists the Interfaces for which this module supplies the
implementation for some or alii of the run-time items in that Interface.

To EXPORT a procedure (or any other run-time item) to an interface, you
need to do three things.

• List the name of the interface in the DIRECTORY clause.

• List the name of the interface in the EXPORTS list.

• Include the word PUBLIC in the declaration of the procedure.

Example:

--IOImpl.mesa
DIRECTORY

10;

10lmpl: PROGRAM EXPORTS 10 = {
terminalState: {off, on, hung} ~ off;

ReadChar: PUBLIC PROCEDURE RETURNS[input: CHARACTER] =

BEGIN

END;

ReadLine: PUBLIC PROCEDURE RETURNS[input: LONG STRING] =
BEGIN

END;

} ...

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-19

Opaque Types

It is also possible to export the implementation of a type. Opaque types
provide a way to hide the internal structure of a type from the client. The
implementation can then be changed as needed without affecting the
clients of the Interface.

In a DEFINITIONS module, you might have:

--AnotherDefs.mesa
AnotherDefs: DEFINITIONS = {

SomeOpaqueType: TYPE;
Ptr: TYPE = LONG POINTER TO SomeOpaqueType;

-- Or:

AnotherOpaqueType:TYPE[<expression>];
-- where <expression> is a positive integer specifying the word length

} .
The implementation in the PROGRAM module might look like:

--AnotherDefsImpl.mesa
DIRECTORY

AnotherDefs;

AnotherDefsImpl: PROGRAM EXPORTS AnotherDefs = -{
SomeOpaqueType: PUBLIC TYPE = RECORD[v: ...];

} .

When the word length is specified, a client using this type can declare
variables of this type and perform the standard operations~, =, and #.
Without a known length, no operations can be performed on the type so
usually a LONG POINTER to the opaquetype is included.

Modules: Definitions, Programs and Configurations

Mesa LanguageC/ass -- March, 1988 2-20

A Program Module Can Be Both Client and Implementor

In this example, Typ i ca 1 P rog ram implements DumbDefs, and is a client of
DumbDefs and String.

Example:

--DumbOefs.mesa
DumbDefs: DEFINITIONS = {

Language: TYPE = {eng 1 ish t french, ge rman}: -- will use this

SomeP roc: PROC RETURNS[i sIt: BOOLEAN]; -- will implement this

} .

--TypicalProgram.mesa
DIRECTORY
DumbDefs USING [Language],
String USING [Equivalent];

TypicalProg~am: PROGRAM
IMPORTS String EXPORTS DumbDefs = {

lang: DumbDefs.Language ~ english;
string1: LONG STRING ~ "Charlie Brown";
string2: LONG STRING ~ "Snoopy";

SomeProc: PUBLIC PROC RETURNS[isIt: BOOLEAN] = {

} .

IF (lang = english) AND
(String.Eguivalen~[string1, string2]) THEN RETURN[TRUE]

ELSE. RETURN[FALSE];
} ;

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988

Multi-Module Implementations

The implementation of an interface is not necessarily a single module.

--ManyProcs.mesa

ManyProcs: DEFINITIONS = {
Procl: PROC rx,y: CARDINAL1:
Proc2: PROC RETURNS [true:BOOLEAN];
Proc3: PROC[text: LONG STRING]:
} .

ManyProes. bed

--ManyProcsAImpl.mesa

DIRECTORY
ManyProcs:

ManyProcsAlmpl: PROGRAM
EXPORTS ManyProcs = {

2-21

Procl: PUBLIC PROC[x,y': CARDINAL] = {
}';

} .

--ManyProcsBImpl.mesa

DIRECTORY
ManyProcs:

ManyProcsBImpl: PROGRAM
EXPORTS ManyProcs = {

ManyProesAlmpl.bed

Proc2: PUBLIC PROCEDURE RETURNS[true:BOOLEAN] = {

} ;

PUBLIC PROC[text: LONG STRING] = {
} ;

}.

ManyProesBlmpl.bed

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-22

Cor,figuration Files

A configuration file groups tc:>gether clients and implementations so that
the implementation is loaded 'Nhen the client calls it.

Remember:

If you import from System Interfaces -
the implementation is in the bootfile.

If you import from your own interface-
the implementation should be supplied by your program.

The easiest way to ensure that everything will be there when needed is with
a configuration file.

A configuration file is input tOI the Binder. The output of the Binder is a bcd
file (same as the output of the compiler).

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988

Configuration File Syntax

--Prog.config
Prog: CONFIGURATION
IMPORTS String, Heap
CONTROL ProgControl = {

ProgControl;
ProgImpl;
} .

2-23

The body (everything between BEGIN and END) should contain the names of
all the PROGRAM modules that are part of your application.

The CONTROL clause should list the PROGRAM module(s) that should be
started when this configuration is started. Typically, only one program
module will have mainline code; the other program module(s) will just
contain procedures.

The IMPORTS list should contain every DEFINITIONS module that must be
imported from outside the configuration. That is, if any of the included
PROGRAM modules need an implementation that is not supplied by any of
the other PROGRAM modules, then the imp.lementation must be IMPORTED
from outside the configuration. More about this on upcoming slides.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988

Example # 2

--Heap.mesa
DEFINITIONS

--String.mesa
DEFINITIONS

Heap.bed
218/84

--ProgControl.mesa

DIRECTORY
String USING [...],
Heap USING r ...],
ProgDf USING [...];

String.bed
3/7/84

ProgControl: PROGRAM
IMPORTS String, Heap, ProgDf = {

s1: LONG STRING = "Hi!";
c: CARDINAL;
c ~ String.Length[s1];
ProgDF.Proc[...];

} .
ProgControl. bed

--ProgImpl.mesa

DIRECTORY
ProgDf;

ProgImpl: PROGRAM
EXPORTS ProgDf = {

Proc: PUBLIC PROC [...] = {

} ;
} .

Proglmpl.bed

--ProgDf.mesa
DEFINITIONS

ProgOf.bed
7/7/84

Modules: Definitions, Programs and Configurations

2-24

Mesa Language Class •• March, 1988 2-25

Example # 2 Continued

--Prog.eonfig

Prog: CONFIGURATION
IMPORTS String, Heap
CONTROL ProgControl =

BEGIN
ProgControl;
ProgImpl;

END.

Prog.bcd

Bind: Prog.config

Execute: Prog.bcd

Note: The implementation
for P rogDF is supplied from
within the config, so it
doesn't need to be
IMPORTED.

Loaded Implementations

Implementations for String.bed and Heap.bed
are bound at run time when Prog is run. (The
implementations come from the bootfile.)

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-26

More on IMPORTING Into a Configuration

An imports clause lists interfaces for which their implementations need to
be supplied from elsewhere (c)utside the configuration). If one module in a
configuration imports certain procedures from an interface, and another
module in that configuration exports those procedures, the interface does
not have to be imported into the configuration.

TwoProgs: CONFIGURATION
IMPORTS Heap, String

CONTROL Prog2 = {
P rog 1;
Prog2;
} .

Note that P rogDefs does not need to
be imported into the configuration,
since P rog 1 supplies the procedu re
that Prog2 requires.

ProgDefs.SomeProc · · • (Hequest is fulfilled)
·

DIRECTORY
Heap USING [Create],
ProgDefs,
String USING [CopyString];

Progl:PROGRAM
IMPORTS Heap, String
EXPORTS ProgDefs = {

SomeProc: PUBLIC PROC = { ... } ;

} ...

DIRECTORY
MoreDefs,

•

ProgDefs USING [SomeProc];

Prog2:PROGRAM
IMPORTS ProgDefs
EXPORTS MoreDefs = {

ProgDefs.SomeProc[];

} ...

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-27

General Rule in Writing a Configuration

Here are a few simple steps in writing a configuration file. Note that this is
to be used a general rule of thumb. There are exceptions to this rule. Can
anyone think of one?

1) List in the body (between the BEGIN - END) all PROGRAM modules that
make up the configuration.

2) Decide which PROGRAM modules have mainline code that needs to be
started when the configuration is loaded. List these PROGRAM modules
in start order on the CONTROL line.

3) Make a list of all of the IMPORTS of all of the PROGRAM modules listed in
the body. Make another list of all of the EXPORTS of the PROGRAM
modules listed in the body. Subtract the list of EXPORTS from the list of
IMPORTS. Put the interfaces that remain in the IMPORTS clause of the
configuration.

Modules: Definitions, Programs and Configurations

"Mesa Language Class -- March, 1988 2-28

Inter-Mctdular Type Checking

In a nutshell, the job of the binder is to match up export requests to import
requests, and to ensure that type safety is maintained across module
boundaries. Recall that when a module references interfaces, the compiler
includes the time stamp of the interface as part of the .bcd file. When the
binder processes a config file, it reads the compiled versions of the
constituent modules to verify that all modules reference the same versions
of interfaces.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-29

Exporting From a Configuration File

An implementation for an interface may be ·given the same status as already
loaded implementations (e.g. implementations in the bootfile) by exporting
the implementation from the configuration file. This is done by including
the Interface in an EXPORTS clause in the configuration file:

Example:

--Exporter.config

Exporter: CONFIGURATION
IMPORTS String t Heap
EXPORTS E«portedlnterface
CONTROL ExportControl = {

ExportControl;
ExportImpl;
} .

Once Expo rte r is run, the implementation of Expo rted I n te rf ace remains
loaded for use by later clients. The loaded state is preserved until the next
system boot.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-30

Namin£J Configuration Files

The compiler and the binder both produce files with the .bcd extension.
Thus, the root name of your configuration file must be different from its
component modules.

WRONG WAY:
The bound configuration overwrites the compiled source code.

Ixyz.mesa 1---.... 1 compiler 1----+ XYI.bed of Sept. 14.1985 2:17:42

-

I I. ____ ~ XYZebcd of Sept. 14,19852:20:11
XYZ ':"conf; 9 ----+ binder. ~

RIGHT WAY:
The configuration file and its components have different

names, so nothing is overwritten.

I XYZImp 1 • mesa 1----+1 comp~ ----+ I XYZImp 1 . bed

I XYI. eonfi 9 1----+ I binde~ ---... I'--X_Y_Z_o_b_cd ___ --'

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988

Other Naming Conventions

Configuration Modules:
(Bar).configor(Foo)Tool.config
i.e. Editor.config, MathTool.conf1g

Interfaces (Definitions Modules):
Public Interfaces:

(Foo>.mesa
i.e. Edit.mesa, MT.mesa

Private Interfaces:
(Foo)Ops.mesa,(Foo)Oefs.mesa
i.e. Ed i tOps. mesa, MTOps. mesa, MTOefs. mesa

.....

Implementation Modules (most frequently used):
(Foo)Impl.mesa

--or (Foo)(function)Impl.mesa . --recommendedmethod

--or (Foo)Almpl.mesa, (Foo)Blmpl.mesa --oldmethod

i.e. Editlmpl.mesa,
MTAlmpl.mesa, MTBlmpl.mesa
MTFormlmpl.mesa, MTCalclmpl.mesa

Client Modules (rarely used):
(Foo)Control.mesaor(Foo)Client.mesa
i.e. EditControl.mesa or MTCl ient.mesa

Modules: Definitions, Programs and Configurations

2-31

Mesa Language Class -- March, 1988 2-32

1\J1ore Examples

This example shows how you might restrict a client to only see what is
necessary in one interface. A separate interface that the client never sees is
used by the implementation nlodule(s).

• f!

Client: PROGRAM
IMPORTS FooDefs =
BEGIN .

END .

FooOefs: DEFINITIONS =
BEGIN

END.

fooPrivDefs: DEFINITIONS =
BEGIN

END.

/\
FooImpl: PROGRAM

IMPORTS FooPrivDefs
EXPORTS FODDefs =
BEGIN

END.

FooPrivImpl: PROGRAM
EXPORTS FooPrivDefs =
BEGIN

END.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-33

More Examples

In this example, several program modules implement the private interface:

FooOefs: DEFINITIONS =
BEGIN

END.

ClientImpl: PROGRAM
IMPORTS FooDefs =
BEGIN

END.

FooPrivOefs: DEFINITIONS =
BEGIN

FooImpl: PROGRAM
IMPORTS FooPrivDefs
EXPORTS FooDefs =
BEGIN

END.

END.

FooPrivAImpl: PROGRAM
EXPORTS FooPrivDefs =
BEGIN

END.

FooPrivBlmpl: PROGRAM
EXPORTS FooPrivDefs =
BEGIN

END.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- March, 1988 2-34

1V1ore Examples

In this example, several program modules implement several private
interfaces:

FooDefs: DEFINITIONS
BEGIN

END.

FooImpl: PROGRAM l
IMPORTS FooPrivADefs,

FooPrivBDefs,
FooPrivCDefs

EXPORTS FooDefs =
BEGIN

END. .

Client: PROGRAM
IMPORTS FooDefs =
BEGIN

END.

FooPrivBDefs

=ooPrivAImpl FooPrivBImpl
.

Modules: Definitions, Programs and Configurations

FooPrivCDefs

FooPrivCImpl

Mesa Language Class -- March, 1988 2-35

Configurations of Configurations

In the earlier example"all of the implementation files can be combined into
one configuration file:

-~FooDefsImpl.config

FooOefslmpl: CONFIGURATION
IMPORTS Heap, String --orwhatever-­

EXPORTS FooDefs = {
FooImpl;
FooPrivAImpl;
FooPrivBImpl;

} .

Notice there is no CONTROL clause. The resulting file FooDefslmpl.bcd can
then be included in the client's own configuration:

--Client.config
Client: CONFIGURATION

IMPORTS Heap, St ri ng -- must include Clientlmpl & FooDefslmpl imports-­

CONTROL ClientImpl = {
ClientImpl;
FooOefslmpl;

}.

Modules: Definitions, Programs and Configurations

Mesa Language Class -- February, 1988 • Index-1

INDEX

C
Client ... 2-5, 2-20, 2-31 - 2-32, 2-34 - 2-35
Compile-Time ... 2-7,2-12
Configuration 2-22 - 2-23, 2-25 - 2-27, 2-29 - 2-31, 2-35

D
DEFINITIONS 2-4 - 2-8, 2-10 - 2-11, 2-13, 2-17, 2-19 - 2-21, 2-23 - 2-24, 2-32 - 2-34
DIRECTORY 2-8 - 2-15, 2-17 - 2-18, 2-20 - 2-21, 2-24, 2-26

E
EXPORTS , 2-18,2-20 - 2-21, 2-24, 2-26 - 2-27, 2-29, 2-32 - 2-35

I
IMPORTS........................ 2-13 - 2-15, 2-17, 2-20, 2-23 - 2-27,2-29,2-32 - 2-35
Interface.................................... 2-5,2-10,2-14 - 2-16, 2-18 - 2-19, 2-29

N
Naming .. 2-30 - 2-31

o
Opaque .. ~ , 2-19
Order .. , .', . . . 2-15

P
PROGRAM

R
Run-Time

S
Summary

U

2-3 - 2-5, 2-11, 2-13, 2-17 - 2-21

2-7,2-14

2-12,2-14

USING .. 2-9 - 2-15, 2-17, 2-20, 2-24, 2-26

Index for Modules: Definitions, Programs and Configurations

Mesa Language Class - May, 1988 3-1

Dynamic Storage Allocation

Dynamic Storage Allocation

.Mesa Language Class - May, 1988

Outline

1. How is DSA in Mesa different?

2. Heaps
a. What are they? What kinds are there?
b. How do you declare / !~et rid of them?
c. How do you allocate / deallocate from them?
d. What does a typical e)cample of heap usage look like?
e. How do you know which heap to use?

3. Special data structures that use the Heap facility
'a. Strings
b. Sequences

Dy'namic Storage Allocation

3-2

Mesa Language Class - May, 1988 3-3

Overview of Dynamic Storage Allocation (DSA)

When do you need DSA? When the amount of storage needed is not known
until run-time.

This lecture is. intended to help you understand the different issues involved
in dynamically allocating storage 'as it relates to the Mesa Language and to
learn how to allocate storage efficiently.

We will not be talking about low level issues such as operating system issues.

Dynamic Storage Allocation .

Mesa Language Class - May, 1988 3-4

Why Dynamically Allocate?

• Space, logical considerations

Dynamic allocation is needed for objects which can not or should not be
allqcated in your program's gl~Dbal and local frames.

Remember, storage for local frames comes from the Main Data Space.

D~'namic Stora9,e Allocation

Mesa Language Class - May, 1988 3-5

How is DSA in Mesa Different?

What's the big deal about DSA as it pertains to Mesa? How is it different
from forms of DSA you've seen in other systems?

• Choice of storage type

• Type checking

• No automatic garbage collection at either the micro or macro level

Macro Level:

...
"... myHeap

Micro Leve I :

-linkedLis tPtr /' ")
-V" ')

I h
I h

NIL

Dynamic Storage Allocation

Mesa Language Class - May, 1988 3-6

Heaps

• Heap facility = Heap Interf.:.ce + NEW and FREE

• Allocate fixed or arbitrary siized blocks of storage (nodes)

• Three types of heaps:

Normal: allows allocation of arbitrary-sized nodes
Uniform: allows allocation of nodes less than or equal to a specified

size
MDS: allows allocation of arbitrary-sized nod~s from the Main Data

Space (MDS)

• Public and Private Heaps

Public: The environmlent provides a normal heap (the systemZone)
and an MDS heap (the systemMDSZone). Information in
these heaps c:an be shared among subsystems~ There is no
public uniforrn heap.

Private: User can create private heaps (normal, uniform, or MDS) for
specific pu rpc)ses.

Dynamic Storage Allocation

Mesa Language Class - May, 1988 3-7

Choosing the Proper Heap Type for a Specific Application

• If a set of programs requires a lot of private storage, it is often more
efficient to create a private heap than to use the system-provided (public)
heaps.

• If objects being allocated are all the same size, uniform heaps are more
efficient since less overhead is required for each node.

• A process that uses a .private heap instead of a system (public) heap avoids
direct competition with other processes for resources.

• System heaps can be used with low over.head for transient storage.

• MDS heaps would generally be used by low-level system clients.

Dynamic Storage Allocation

Mesa Language Class - May, 1988 3-8

Usin~~ the Public Heaps

In the Heap Interface, there elre two constants that are available for use in
your program.

Heap.systemZone: READONLY UNCOUNTED ZONE;
Heap.systemMDSZone: READONLY MDSZone;

-- the Normal system heap

-- the MDS system heap

You can either reference thes,e constants directly throughout your program,
or create a ~ocal variable and c,ssign the value of the system heap to it.

Example:

z: UNCOUNTED ZONE = Heap.systemZone;
mz: MDSZone = Heap.systemMDSZone;

Dj,namic Storage Allocation

Mesa Language Class - May, 1988 3-9

Using Private Heaps

To create a private heap, you must call one of the Create procedures
provided in the Heap interface. Abbreviated declarations are shown below
with only the required parameters (others are defaulted). For a complete list
of parameters, consult the Pilot Programmer's Manual.

Heap.Create: PROCEDURE [initial: Environment.PageCount.
maxSize: Environment.PageCount ~ Heap.unlimitedSize.
increment: Environment.PageCount
RETURNS [UNCOUNTED ZONE];

~ 4, •••]

Heap.CreateUniform: PROCEDURE [initial: Environment.PageCount.
maxSize: Environment.PageCount ~ Heap.unlim1tedS1ze.
increment: Environment.PageCount ~ 4.
objectSize: Heap.NWords, ...]
RETURNS [UNCOUNTED ZONE];

Heap.CreateMDS: PROCEDURE "[initial: Environment.PageCount.
maxS1ze: Environment.PageCount ~ Heap.un11mitedS1ze.
increment: Environment.PageCount ~ 4. ...]
RETURNS [MDSZone];

Examples:

z: UNCOUNTED ZONE ~ Heap.Create[initial: 4];
uz: UNCOUNTED ZONE ~ Heap.CreateUniform[

initial: 5, objectSize: 10];

mz: MDSZone ~ Heap.CreateMDS[initial: 2];

Hint: Since there are so many parameters to these procedures, it is
recommended that you name all of the parameters that you are passing.

Dynamic Storage Allocation

Mesa Language Class - May, 1988 3-10

How to Get Rid of Private Heaps

When you no longer need a private heap, you should delete it so that the
space can be used by other processes. To delete private heaps, use one of the
delete procedures provided in the Heap ,interface. Deleting a heap will
automatically deallocate any c:urrently allocated storage (which is what you
usually want), unless the checkEmpty parameter is set to TRUE.

Heap. De 1 ete: PROC[-- for Normal or Uniform Heaps

z: UNCOUNTED ZONE, checkEmpty: BOOLEAN. FALSE]:

Heap. De 1 eteMDS: PROC[-- for MDS heaps only

z: MDSZone, checkEmpty: BOOLEAN. FALSE]:

Note: When you have deleted a heap, you should set your zone pointer to
NIL to avoid accessing a previc1usly deleted heap.

Examples:

z: UNCOUNTED ZONE ~ Heap.Create[4];
mz: MDSZone ~ Heap.Cr~ateMDS[2];

Heap.Oelete[z]:
z • NIL;

Heap.DeleteMDS[mz];
mz • NIL;

Dynamic Storage Allocation

Mesa Language Class -- May, 1988 3-11

Allocating Storage From a Heap

Nodes are allocated from a heap using the NEW operator. NEW returns a
LONG POINTER to the object in the heap.

Example:

Z: UNCOUNTED ZONE ~ Heap.Create[initial: 5];
Node: TYPE = RECORD[...];
NodePtr: TYPE = LONG POINTER TO Node;

currentNode: NodePtr ~ z.NEW[Node];

Graphically speaking:

cu rrentNode

z--------.....--_ _.' ----._---.

Node

Other Examples:

sz: UNCOUNTED ZONE ~ Heap.systemZone;
anotherNode: NodePtr ~ sZ.NEW[NodeJ;
yetAnotherNode: NodePtr ~ Heap.systemZone.NEW[Node];

Dynamic Storage Allocation

Mesa Language Class - May, 1988 3-12

Getting Initial Values

There are several ways for a new node to pick up its initial values. They are
called type initialization, fie/id initialization, and explicit initialization. An
example is the best way to understand the differences.

Example:

z: UNCOUNTED ZONE ~ Heap.Create[1n1t1al: 4];
NodePtr: TYPE = LONG POINTER TO Node;
Node: TYPE = RECORD [

value: LONG CARDINAL •. 0, --thisisadefaultforthefield

next: NodePtr +- ni 11 niit] +- [1, NIL]; -- this isa default for the type

currentNode, otherNode: NodePtr;
nil1nit: NodePtr ~ NIL;

-- to explicitly set the values, usel a record constructor

currentN~de +- z.NEW[Node +- [value: 4, next: otherNode]];

-- if you omit a field in the record constructor, the field will pick up it

-- the default for the field.

currentNode +- z.NEW[Node +- [, next:otherNode]];

-- to pick up all of the field defaults, elide all fields

currentNode +- z.NEW[Node +- [,]];

-- to pick up the default for the type, do not specify a record constructor

-- if no type default exists, it will pick up the field defaults

currentNode +- z.NEW[Node];

D)'namic Storage Allocation

Mesa Language Class - May, 1988

Getting Initial Values (Cont'd)

Node

Node

Node

Node

value: 4

next: otherNode

value: 0

next: otherNode

value: ~,O

next: nillnit

value: l'

next: NIL

Dynamic Storage Allocation

3-13

Mesa Language Class - May, 1988 .3-14

Deallocatilng Storage From a Heap

Nodes are deallocated from a Heap using the Mesa FREE operator. FREE sets
the node pointer to NIL and then frees the storage used for the node. For
FREE to make changes to the pointer, it must have a reference to the node
pointer (since all parameter pc3ssing is call-by-value).

Example:

z: UNCOUNTED ZONE ~ Heap.Create[init1al: 10];

NodePtr: TYPE = LONG POINTER TO Node;
Node: TYPE = RECORD [

value: LONG CARDINAL ~ 0,
next: NodePtr ~ n1lln1t] ~ [1, NIL];

currentNode: NodePtr ~ 4~.NEW[Node ~ [value: 4, next: NIL];

z.FREE[8currentNode];

Graphically speaking:

z

currentNode '. pi Node I
1. State of heal2 before executing z.FREE[@currentNode).

currentNode ~ NIL
z-_·I

I Node I
1

2. currentNode is set to NIL.

z-=_.

currentNode ~ NIL · · Node . · .
• D ••• 0 ••

3. Storage in the hleap is freed.

Dynamic Storage Allocation

Mesa Language Class - May, 1988

Typical Use of a Heap in a Program

DIRECTORY
Heap USING [Create, Delete],

.
• • • t

SampleProgram: PROGRAM IMPORTS Heap, ... = {

z: UNCOUNTED ZONE ~ NIL;

RecStructure: TYPE = RECORD[...];
PtrType: TYPE = LONG POINTER TO RecStructure;
ptr: PtrType ~ NIL;

Allocate: PROCEDURE[...] = {
ptr ~ z.NEW[RecStructure ~ []];
· .. } ;

Deallocate: PROCEDURE[...] = {
z.FREE[@ptr];
· .. };

CleanUp: PROCEDURE = {
If z # NIL THEN {

Heap.Delete[z];
z +- NIL };

· .. } ;

In1t: PROCEDURE = {
IF z = NIL THEN z ~ Heap.Create[init1al: 5]
· .. } ;

}.

Dynamic Storage Allocation

3-15

Mesa Language Class - May, 1988 • 3-16

Expanding a Heap

When there is not enough contiguous space in the heap to allocate a node,
the system lautomatically expclnds the heap by a specified number of pages.
This number is specified by (~ parameter to the Create procedure, called
increment. (It is defaulted to 4.) Expansions are not guaranteed to be
contiguous in VM.

Let's trace a representation o~f an automatic expansion by the system when
more space was needed in the heap. In this case: in it i a 1 = 3 t

increment = 2

1. Heap is created in VM;

2. Two different 1-page objects are allocated;

3. First object is freed; prograrn needs 2 pages for next object;

4. Heap is expanded;

5. New object is allocated fron, the extension;

6. A new 1-page object is alloc:ated from previously used page that was freed.

What would happen if objectSize > increment?

O)'namic Storage Allocation

Mesa Language Class - May, 1988 3-17

Expanding a Heap (Cant'd)

Fragmentation and other problems may be avoided by doing a manual
expansion, if the heap needs to be expanded by more than increment
number of pages. This expansion can be done by calling the Expand
procedure in the Heap interface.

Heap.E~pand: PROC[
z: UNCOUNTED ZONE, pages: Environment.PageCount];

Dynamic Storage Allocation

Mesa Language Class - May, 1988

Other Operations on Heaps

• To determine initial parameters and current attributes of a heap:
Heap.GetAttributes: PROC[z: UNCOUNTED ZONE]

RETURNS[heapPages, maxSize,
increment: Environment.PageCount,];

• To return heap to its virgin state:
Heap.Flush: PROC[z: UNCOUNTED ZONE];

• To release unused extensions of a heap:
Heap.Prune: PROC[z: UNCOUNTED ZONE];

• To allocate an untyped node:
Heap.MakeNode: PROC[

z: UNCOUNTED ZONE ~ Heap.systemZone, n: Heap.NWords]
RETURNS[p: LONG POINTER];

• To deallocate an-untyped node:
Heap.FreeNode: PROC[

z: UNCOUNTED ZONE ~ Heap.systemZone, p: LONG POINTER];

Note: There are similar procedures for MDS heaps.

Dynamic Storage Allocation

3-18

Mesa Language Class - May, 1988

Strings

Definition from Day 1:

STRING: TYPE = POINTER 10 StringBody;
LONG STRING: TYPE = LONG POINTER TO Str1ngBody;
StringBody: TYPE = MACHINE DEPENDENT RECORD[

length: CARDINAL,
maxlength: CARDINAL, --readonly

text: PACKED ARRAY [0 .• 0) OF CHARACTER];

Where:

text is a PACKED ARRAY of characters
max 1 eng th is the maximum numbers of characters that tex t can hold
1 ength is the number of characters currently in text

D}rnamic Storage Allocation

3-19

Mesa La-nguage Class -- May, 1988 3-20

Alloc~ting and De~lIocating Strings

1) Allocate fixed-sized storage from a local or global frame of the program:

string: LONG STRING ~ [256];
-.. sets maxlength to 256, length to zero & text is uninitialized

2) Assign a string literal to a string variable:

gString: LONG STRING ~ "Hello";
1String: LONG STRING ~ "He110"L;

" sets maxlength to 5, length to 5 & text to the characters'H, 'e, '1, '1, '0

3) Use the NEW operator to allocate storage from a heap:

str: LONG STRING;
str ~ someZone. NEW[Stri ng80dy[8]]; -- MUST specify size of String Body

-- sets maxlength to 8, length to zero & text is uninitialized

Deallocate using Mesa construct FREE:

someZone.FREE[8str];

4) Use procedures provided by the String interfac'e to allocate storage from a
heap:

str: LONG STRING;
str ~ String.MakeString[z: someZone, max1ength: 8];
-- sets maxlength to 8, length to zero & text is uninitialized

Deallocate using String interface procedures:

String.FreeString[z: someZone, s: str];

Dynamic Storage Allocation

Mesa Language Class - May, 1988

Sequences

Sequences are dynamic arrays

• They must be declared vvithin a record
• There cannot be more than one sequence per record
• They must be the last fie!ld in a record

Syntax:

ptr: LONG POINTER TO Ree;
Ree: TYPE = RECORD [

<zero or more fields>,
seq: SEQUENCE length: CARDINAL OF <elementType>];

I
Reserved word
indicating that a
sequence is
being declared

1 eng t his a tag··(oft Y p e
CARDINAL) that indicates the
number o'f elements in the
sequence. It is non-assignable
(e.g. 1 ength ... 3 is illegal).

D}mamic Storage Allocation

\
<e1 ementType) is
whatever th e
pr.ogrammer needs

3-21

Mesa Language Class - May, 1988

Sequence Example

myRecordPtr: lONG POINTER TO MyRecord;
MyRecord: TYPE = RECORD [

boo 1 ~: Baal, -- These booleans are just for this example application

bool 2: Baal, 0-- and are not specific to Sequences in general

seq: SEQUENCE length: CARDINAL OF INTEGER];

3-22

To allocate this record to contain a sequence of ten elements and set the
boolean variables:

myRecordPtr ~ someZone.NEW[
MyRec[lO] ~ [TRUE, FALSE,]]; -- MUST specify size of sequence

Although other fields can be assigned durinOg allocation, the sequence must
be assigned in a separate statement, usually a loop.

FOR i: CARDINAL in [O.~myRecordPtr.length) DO
myRecordPtr.seq[i] ~ 0;
ENDLOOP;

To deallocate this record:

someZone.FREE[8myRecordPtr];

To use the sequence:

num: INTEGER;
num ~ myRecordPtr.seq[3];
n um ~ my Reco rd Pt r[3] ; -- equivalent to above statement, and

-- num ~ myRecPtr t .seq[3}; , and

-- num ~ myRecPtr t [3};

ok: BOOLEAN ~ myRecordPtr.bool1;
IF myRecordPtr.length > 5 THEN RETURN[TRUE];

Dynamic Storage Allocation

Mesa Language Class - May, 1988

Example Using Sequences, Strings and Heaps

DIRECTORY
Heap USING [Create, Delete];

GetInfo: PROGRAM IMPORTS Heap = {

Dossier: TYPE = RECORD[
name: LONG STRING.~ NIL,
age: CARDINAL,
ssn: LONG STRING ~ NIL];

DossierPtr: TYPE = LONG POINTER TO Dossier;

Personnel: TYPE = RECORD[
currentEntry: CARDINAL ~ 0,
stuff: SEQUENCE maxEntries: CARDINAL OF DossierPtr];

PersonnelPtr: TYPE = LONG POINTER TO Personnel;

people: PersonnelPtr ~ NIL;
z: UNCOUNTED ZONE ~ Heap.Create[initial: 5];

- Procedures

Init: PROC = {
p e 0 p 1 e ~ z. NEW [Per son n Ie 1 [6]]; - allocate the sequence of pointers

FOR i: CARDINAL IN [O .. people.maxEntries) DO
peop 1 e [.i] ~ z. NEW[Dos s i e r]; - allocate each of the records in the sequence

p e 0 p 1 e [i] . ag e ~ 0; - initialize any fields that don't have defaults

ENDLOOP;
}; - of/nit

D~'namic Storage Allocation

3-23

Mesa Language Class - May, 1988 3-24

Example Using Sequences, Strings and Heaps (cont'd)

ExpandL 1st: PROC = { -expands the sequence of pointers to include 3 new entries

-- create a new, larger (temporary) sequence

temp: PersonnelPtr ~. z.NEW[Personnel[people.maxEntrias + 3]];
FOR i:CARDINAL IN [O .. paople.maxEntries) DO

- copy each of the pointers to the Dossier records into the new sequence

tamp[i] ~ paopla[i];
ENDLOOP;

tam p . cur ran tEn try ~ p e 0 p 1 a . cur r e n tEn try; - copy over any other fields

FOR j:CARDINAL IN [paopla.maxEntrias .. tamp.maxEntrias) DO
temp [j] ~ z. NEW[Dos s 1 a· r]; - allocate the three new records in the sequence

temp[j].age ~ 0;
ENDLOOP;

z.FREE[@people]; - deallocate the old sequence of pointers

paop 1 a ~ tamp; - make the global variable point to the new sequence; Why??

}; - of ExpandList .

Shr1nkL1st: ~ROC [toBaDalatad: CARDINAL] = {
- ShrinkList removes the record indexed by 'toBeDeleted' from the sequence of pointers

IF toBaDal atad)= paopl a .maxEntrias THEN RETURN --orhandleelegantly

E LS E { - move each of the pointers of the sequence over one position

z. FREE [@paop 1 a [toBaDa 1 eted]]; - dealloc~te the record indexed by 'toBeDeleted'

FOR i:CARDINAL IN [toBaDalated .. paopla.maxEntrias - 1) DO
P a 0 p 1 a [i] ~ P a 0 p 1 a [i + 1]; -- copy each pointer over ignoring 'toBeDeleted'

ENDLOOP;
p a 0 p 1 a [p a 0 p 1 a . m a x E n t r ; as] ~ NIL; - reinitialize the last record in the sequence

}; -End If

}; - of ShrinkList

Dynamic Storage Allocation

Mesa Language Class - May, 1988

Example Using SeqLlences, Strings and Heaps (cont'd)

people ~ z.NEW[Personnel[S":
currentEntry: ...

peop 1 e --.. stuff:

maxEntries: 6

name: ...
age: .. .
55n: .. .

temp ~ z.NEW[Personnel[
people.maxEntries + 3'J~'

FOR i:CARDINAL IN [O •• x' DO
temp[i] ~ people[i,;

currentEntry: ...

temp .. stuff:

maxEntries: 9

z.FREE[8peoplel;

people _--I". NIL

people ~ temp;

people

o 1 2 3 4 5

012345678

Dji(namic Storage Allocation

3-25

Mesa Language Class - May, 1988 3-26

Sequences vs. Array Descriptors

• Array descriptors are useful for parameter passingm

• Sequences are type-safe.

• Sequences can be more readily treated as regular arrays.

• Sequences must be allocated from a heap; arrays can be allocated from a
local or global frame.

• Sequences are the replacement for array descriptors. Newer code uses
mostly sequences; older code uses array descriptors.

Dynamic Storage Allocation

Mesa Language Class - May, 1988 3-27

Fteview of DSA

• Heaps are of the type you choose: normal, uniform, MOS, public, private.

• To use a public heap, IUse a variable from the Heap interface
(Heap. systemlone.) To use a private heap, call Heap. C reate (and later
Heap. De lete.)

• To allocate and deallocate from heaps, use the language operators NEW
a'nd FREE.

• Allocation is strongly typed; you almost never allocate untyped storage.

• Allocate storage from a heap when it's not logical to allocate storage
from a local or global framE!.

• Among the things allocated from a heap are strings and sequences, which
requirespecial attention.

• Deallocation is your resp()nsibility; it's not performed automatically.
When you create a heap, you must delete it. When you allocate storage
for a data structure, you must deallocate that storage.

Dy'namic Storage Allocation

Mesa Language Class - May, 1988

Selected Bibliography

Information on Heaps:
Pilot Programmers Manual (version 12.0). Ch. 4, pp. 49 - 54.

Information on Strings:
Mesa Language Manual (version 12.0). Ch. 6, pp. 2 - 5
Pilot Programmers Manual (version 12.0). Ch. 7, pp. 5 - 10

Information on Sequences:
Mesa Language Manual (version 12.0). Ch. 6, pp. 25- 30

Information 'on Array Descriptors:
Mesa Language Manual (version 12.0). Ch. 6, pp. 5 - 9

Information on Virtual Memory:
Pilot Programmers Manual (version 12.0). Ch. 4, pp. 29 - 43

Dynamic Storage Allocation

3-28

Mesa Language Class - May, 1988 3-29

FormSWLayoutTool C9de

FormSVVLayoutToolCode

Mesa Language Class - May, 1988

Outline

1. Tool Window code generated by FormSWLayoutTool (Handout)
a. Global variables
b. Main Program
c. Call-back Procedures
d. Command Procedures

2. Adding code to your tool

FormSWLayoutTool Code

3-30

Mesa Language Class - May, 1988 3-31

FormSWLayoutTool Code

The tool FormSWLayoutTool generates most of the tool code for you. You
only have to supply the command procedures that are specific to your tool.
See the Tool-Written Factorial Tool handout.

FormSWLayoutTool Code.

Mesa Language Class - May, 1988

Global Variables

--Types

DataHandle: TYPE = LONG POINTER TO Data;
Data: TYPE = MACHINE DEPENDENT RECORD [

msgSW(O): Window.Handle ~ NIL,
formSW(2): Window.Handle ~ NIL,
fileSW(4): Window.Handle ~ NIL,
number(6): CARDINAL ~ 0,
format(7): FormatType ~ decimal];

FormatType: TYPE = {hex, octal, decimal};

--Variables

data: DataHandle ~ NIL;
wh: Wi ndow. Hand 1 e .. NI L; -- the window handle for the entire window

zone: UNCOUNTED ZONE ~ Heap.Create[initial: 4];
b u syB it: BOOLEAN ~ FALSE; -- is TRUE when tool is busy

Where:

data~.msgSW, data~.formSW,

data~. fi 1 eSW are window handles for the three subwindows

data~. number holds the current value of Number in the tool window

data~. format holds the current value of Format in the tool window

FortnSVVLayoutToolCode

3-32

Mesa Language Class - May, 1988

BEGIN

-- Mainline code

Init[];
END ...

Main Program

When the program is started, one call is made to the procedure Init.

FormSWLayoutTool Code

3-33

Mesa Language Class - May, 1988

Call-Back Procedures

Init: PROCEDURE = {
--This procedure is called once from the main program.

--It creates the tool and registers a' command with the Executive.

Exec.AddCommand[name: "FactorialTool.-"L, proc: NoOp,
help: NIL, unload: Unload];

wh ~ Tool.Create[makeSWsProc: MakeSWs, initialState: default,
cl~entTransition: ClientTrans1tion, name: "FactorialTool"L,
cmSect1on: "FactorialTool"L];

};

NoOp: Exec.ExecProc = { };

Unload: Exec.ExecProc = {
IF Busy[] THEN {

. Exec.OutputProc[h]["Tool is busy. Sorry.\n"L];
RETURN[error] };.

Tool.Destroy[wh];
Exec.RemoveCommand[h, "FactorialTool.-"L];
Done[] };

ClientTransition: ToolWindow.TransitionProcType = {

- This procedure is called whenevE'r the tool undergoes a user-invoked

--transition between the 3 states: I~ctive, tiny, and inactive.

--input Parameters: window, old, new

SELECT TRUE FROM
old = inactive =) .

IF data = NIL THEN data ~ zone.NEW[Data ~ []];
new = inactive =)

IF data # NIL THEN {
zone.FREE[@data]};

ENDCASE;
};

ForrnSVVLayoutToolCode

3-34

Mesa Language Class - May, 1988 3-35

Call-Back Procedures (cont'd)

MakeSWs: Tool.MakeSWsProc = {
--This procedure is called when the tool is created and whenever the tool's state

--changes from inactive to active, or tiny. This procedure creates three subwindows.

--Input Parameters: window

logName: LONG STRING ~ [20];
Tool.UnusedLogName[unused: logName 9 root: "FactorialTool.log"L];
data.msgSW ~ Tool.MakeMsgSW[window: window];
data.formSW ~ Tool.MakeFormSW[

window: window, formProc: MakeForm];
data.fileSW ~ Tool.MakeFileSW[window: window, name: logName];
} ;

. MakeForm: FormSW.ClientItemsProcType = {
--This procedure is called when the form subwindow is created.

--Input Parameters: sw

--Output Results: items, freeDesc

format: ARRAY [0 .. 3) OF FormSW.Enumerated ~ [
["hex"L, 0], ["octal nL, 1] t ["decimal "L, 2]];

items ~ FormSW.A11ocateItemDescriptor[3];
items[O] ~ FormSW.NumberItem[

tag: "Number"L, pl~ce: [6, FormSW.lineO], signed: FALSE,
notNegative: TRUE, value: @data.number];

items[l] ~ FormSW.EnumeratedItem[
tag: "Format"L, place: [168, FormSW.1ineO], feedback: all,
choices: DESCRIPTOR[format], value: @data.format]:

items[2] ~ FormSW.CommandItem[
tag: "Factorial"L, place: [6, FormSW.line1],
proc: Factorial];

RETURN[items: items, freeDesc: TRUE];
};

FormSWLayoutTool Code

Mesa Language Class - May, 1988 3-36

Call-Back Procedures (cont'd) .

The Init procedure calls Exec .AddCommand passing in 2 procedures: NoOp and
Unload. These procedures are then called as needed by XDE. Too1.Create is
also passed 2 procedures: MaknSWs and C1 ientTransition.

The procedure MakeSWs calls procedure Tool.MakeFormSW passing in the
procedure MakeForm to make the form subwindow. MakeForm is then called as
needed by XDE.

These procedures that are pa~ssed to System procedures, and then called as
needed by XDE are "Call-back procedures".

F,ormSWLayoutTool Code

Mesa Language Class - May, 1988

Scheduling Procedures

Busy: ENTRY PROCEDURE RETURNS [isBusy: BOOLEAN] = {
ENABLE UNWIND =) NULL;
;sBusy ~ busyBit;
busyBit ~ TRUE;
};

Done: ENTRY PROCEDURE = {
ENABLE UNWIND =) NULL;
busyBit ~ FALSE;
};

FormSVVLayoutT.oolCode

3-37

Mesa Language Class - May, 1988 3-38

Pri I,ti ng. Proced u res

Write: Format.StringProc = {Put~Text[data.fileSW, s]};

Msg: Format.StringProc = {Put.Text[data.msgSW, s]};

Where:

Format.StringProc = PROCEDURE[
s: LONG STRING, clientData: LONG POINTER ~ NIL];

PQrmSWLayoutTool Code

Mesa Language Class -- May, 1988 3-39

The .Put Interface

While we're on the topic of displaying information to the screen, here is how
to do it from ,any program. The Put Interface, defined in the Mesa
Programmer's Manual, has ~any procedures to aid you in displaying data to
windows. Some of the most commonly used procedures are shown here, but
there are many others. Refer to the MPM.

All of these procedures take a Wi ndow. Handl e and (usually) a piece of data to
be formatted. If the Wi ndow. Handl e is NIL then the output is directed to the
Herald Window.

Put.Char: PROCEDURE[h: Window.Handle ~ NIL, char: CHARACTER]:

Put. Text: PROCEDURE[h: Window.Handle ~ NIL, s: LONG STRING];

Put.Line: PROCEDURE[h: Window.Handle ~ NIL, s: LONG STRING];
-- puts a LONG STRING and then a CR

Put.CR: PROCEDURE[h: Window.Handle ~ NIL];

FormSVVLayoutToolCode

Mesa Language Class· - May, 1988

Du.mmy ~Command Procedures

Factorial: FormSW.ProcType = {
ENABLE ABORTED =) {Done[]; CONTINUE};
IF Busy[] THEN {

Msg["Tool is busy.\n"L]; RETURN};
Process.Detach[FORK FactorialInternal[]]};

Factoriallnternal: PROCEDURE = {
ENABLE ABORTED =) {Done[]; CONTINUE};
Write["Factorial called\n"L];
Done[];
};

3-40

The resulting file from the FormSWLayoutTool can be compiled and
executed. Command procedures like the above are used since the tool
cannot know what the commclnd is supposed to do.

Whenever Factorial! (in thE~ tool window) is invoked, the procedure
Factorial is called. Factorial checks to see if the tool is busy.

Factorial Internal is where the real work to calculate the factorial would
be done.

FCJrmSWLayoutTool Code

Mesa Language Class - May, 1988 3-41

Adding Code

The dummy command procedures can be modified to contain either the
actual implementation (shown below), or, more commonly, a call to an
interface that implements the command (shown on next page).

FactorialInternal: PROCEDURE = {
ENABLE ABORTED =) {Done[]; CONTINUE};
IF data. number > 12 THEN {

Put.CR[data.msgSW];
-- Out of range

Put.Text[data.msgSW, "Too high, try again."L]
}

ELSE {
result: LONG CARDINAL ~ 1;
temp: CARDINAL ~ data. number;
WHILE temp) 0 DO

result ~ result • temp;
, temp~ temp - 1;

ENDLOOP;
Put.CR[data.fileSW];
Put.Text[data.fileSW, "The factorial of "];
Put.Decimal[data.fileSW. data. number];
Put.Text[data.fileSW, " is "];
SELECT data. format FROM

hex =) Put.LongNumber[data.fileSW, result, [16]];
octal =} Put.LongNumber[data.fileSW, result~ [8]];
decimal =) Put.LongNumber[data.fileSW, result. [10]];
ENDCASE;

Put.CR[data.fileSW];
};

Done[];
};

. FormSVVLayoufTool Code

Mesa Language Class - May, 1988 3-42

Ad(jing Code (can't) .

If the implementation of the command is something more complex than a
simple procedure, it is wise tlO put the implementation in another module
and simply make a procedure call to it.

Factor1alInternal: PROCEDURE = {
ENABLE ABORTED =) {Done[]; CONTINUE};
MyDefs.Factorial[datafimsgSW, data.fileSW, data.number]:
Done[];
};

ForrnSVVLayoutToolCode

Mesa Language Class - February, 1988 3-43

Using the FormSWLayoutTool

Using the FormSWLayoutTool

Mesa Language Class - February, 1988 3-44

Layout Mode / Edit Mode

FOrtlY3 '"'V La youtToo 1

FormType: _ .. command .. enum .. longNum" numb" source" string" tag}
Tag: Verbose Zone:

A1i!J"X lJsetJox Anyfont Root: SimpleT,)ol
Dolt! Clear! SetDefaults! Load! Save! Plagiarize!

Verbose This is a Phone Book Tool

Find! Insert! De1ete!

8ui1di~: {f i x the enums}

Name: Phone=

Using the FormSWLayoutTool

Mesa Language Class - February, 1988 3-45

AlignX

Forrn3',NLayoutTool

~--o
FormType: a .. command .. enum .. longNum .. numb .. source .. string .. tag}

Tag: Verbose Zone:
. Ali!J'X Usebox Anyfont Root: Si mpl e Too 1
Dolt! Clear! SetDefaul1:!~! Load! Save! Plagiarize!

~---o
Verbose This is a Phone Book Tool
Find! Insert! llelete!

Eklilding: {fix the enums}

Name: Phone=

0" •••••• II • II I •••• " " •••• I • " ~ a " " II • • • • 0 • <I

FormType: a .. command .. enum .. longNum .. numb .. source .. string .. tag}

Tag: Zme:
wm~ IlsetJox Anyfont Root: SimpleTool

Dolt! Clear! SetDefaulbs! Load! Save! Plagiarize!

Verbose This is a Phone Book Tool
Fim! Insert! Delete!

lkIiJdi"A: {f i x the enums} .

Name: Phone =
Adress:

US;lng the FormSWLayoutTool

~
~
r-
AI
~
~ c:

F orrnSVJlLayoutToo 1
AI
~
11)

Q
AI
~

FormType: _~ command .. enUtll .. longNurn .. numb .. source .. string .. tag}

Tag: Zone: :
0-

A1i!J1X IISm: Anyfmt Root: UseBoxTool 2
AI

Dolt! Clear! 5etDefaults! Load! Save! ~lagiaJ'"ize! ~ -\Q

Name: Phone = m
Afiir'es:s:

Find! Insert! Delete! C
'" to

UseBoxTool
to
0
><

-0
Name: Phone= 0

Adcres:s:

Find! Insert! Delete!

Mesa Language Class -- February, 1988 3-47

AnyFont

ForrnS\JVLayoutToo 1

~----------------------·--------------------------------~D
FonnTYJle: _J command" E~num" longNuml numb .. source" string" tag}
Tag: Zone:
AUg'lX Usebox Anytont Ii!oot: DefaultFontTool
Dolt! Clear! SetDefaults! Load! Save! Plagiarize!

~--~D
Phone= i a. _.

~ ncu.-Kr.

l Adlress: Def au~ tF ant Too 1
: .
t .f.I.~!. J~! .~l~w.!. ...

~-------------------~~--~D
Nclme: Phone= 0
A(jdress:
Fil1clnserDelete!

~--D

FormS\JVLayoutTool '

~--~D
1 FormType: _" command, e~numl longNum, numb .. source" string .. tag}
1 Tag: Zone:

Alig'lX Usebox nwWu ~bot: AnyFontTool
Dolt! Clear! SetDefaults! Load! Save! Plagiarize!

~---D
Name: Phone =
AdIress: AnyFo tTool

t .f.i.~! ... I~.! ... ~~~~.
~----------------~---------------------------~------------D

Name: Phone= 0
Adldress:
Firld! Insert! Delete!

~--D

Using the FormSWLayoutToo!

Mesa Language Class - February, 1988

Dolt! / Root:

FormS\lVLa youtT 001

i FormType: . ' command, enum, longNum, numb, source, str ing, tag}

Tag: Zone:

A1i!JlX Usebox AnyfiJnt Root: Simple Too 1
Dolt! Clear! SetDetaults! Load! Save! Plagiarize!

l Fini!
i Name' ~ .

Delete!

This is a Phone Book tool

Phone =

t. ~: ~i.l.~~~: .. \~!~ .. ~~~ .. ~r!~~~)
File: <CoPilot>\lVD>Sim leToo1.mesa _

Create OPos Edit Load Empty Save Time Store Reset Spl it Match

An! S! RS! 41: SR! 'R! 41:

-- SimpleToo1.mesa
-- Create by FormSWLayoutTool on 31-JUl-87 16:02
DIRECTORV

ExecJ

Format,
FormSW1

Heap,
Process,
Put
T extSource,
Tool,
ToolWindow ..
Window;

SimpleTool: MONITOR
IMPORTS

Exec, FormSW .. Heap, Process .. Put .. Tool = (
DataHandle: TVPE = LONG POINTER TO Data;
Data: TVPE = MACHINE DEPENDENT RECORD [

msgSW{O): Window .Handle ~ NIL,
formSW(2): Wi ndow. Handl e ~ NIL ..
fileSW(4): Window.Handle +c NIL ..
verbose(6): BOOLEAN ~ FALSE ..

Using the FormSWLayoutTool

.....

3-48

Mesa Language Class -- February, 1988 3-49

Clear!

F ormS',NLa youtToo 1

~--D ! FmmType: .' command, ienum.. longNum, numb.. source, stri ng.. tag}

Tag: ZoI'E:
Ali!J1X Iisebox Anyfont l!loot: Simple Too 1

Dolt! Clear! SetDefaults! Load! Save! Pla.Aiarize!
~--D

Using the FormSWLayoutTool

Mesa Language Class - February, 1988

SetDefaults!

Form5VI/La youtToo 1

FormType: raJ command J enum .. longNum .. numb" source J string .. tag}

Tag: Zone:
Ali{J'X Usebox Anyfont Root: Simple Too 1
Dolt! Clear! SetDefaults! Load! Save! P1~iarize!

Verbose This is 'a Phone Book tool
Find! Insert! Delete!

Name: Phone =

. ~: ~i.l.~~~~ . J ~ !!-.. ~~~ .. ~~':J~~ J

[Defaults for new items]
Rea.dOnly Invisible

[Eruner"ated defaults]
WW •• nB":+: Fed)ack: {one}

[(Long) tl.I'rmer defaults]
Radix: {dec ima 1} NotNegative
(Long)Default= 21 47483647

[String defaults]

iltiJSJ~1 Fefd)ack: {normal}

(MAOi1r£ 0EPEN)fNf RECORD]

Starting WOI'"d= 0

[Global Things]
ErunType: Formltems

ProcNa.me: MakeForm

StuffString:

DrawBox HasContext

Si!J'fld BoxWidth= 64

(Short)Default= 32767

BoxWidth= I]

HandleName: da ta

Using the FormSWLayoutTool

3-50

Mesa Language Class -- February, 1988

Load! /Save!

FormS VLayoutTool !

~----------------------·----------------------------------~O
FormType: .' command, enum .. longNum, numbl source .. string .. tag}
Tag: Zone:
Al i!JIX Usebox Anyfont Irroot: Simple Too 1

Dolt! Clear! SetDefaults! Load! Save! PlaRiarize!
~----------------------·----------------------------------~o

1 Verbose Phone Book Tool

I Find! Insert! Delete!

1 Name: Phone=

1 .. ~~: ~i.l.~~~: . J ~ !~ .. ~~~ .. ~r!~~~ J
File: <CoPilot>VI/D>Sim leTool.

Crea te OPos Ed i t Load Emp ty Save Time Store Reset Sp 1 it Match Destroy
~----------------------·-------------------------------------o

AU! S! RS! 4&: SR! R! 4&' .
~----~----------------·-------------------------------------o Global [.

enumType: Formltems: .. handleName: data, procName: MakeForm];
Booleanltem[· ..

tag: nVerbose", enumName: verbose .. place: [6, 2]) switch: verbose];
TagOnlyltem[

tag: "Phone Book T()ol" .. enumNa.me: phoneBookTooL jOlace: [204, 2]];
Commandltem[.

tag: "Find" .. enumNan1e: find .. place: [6 .. 19], proc: Find];
Command Item [

tag: "Insertll .. enumN':ime: insert .. place: [54, 19] .. proc: Insert];
Command Item [

tag: "Delete" .. enumName: delete .. place: [114, 19] .. proc: Delete];
Stringltem[

tag: "Name'''' enumName: name .. place: [6 .. 36]) inHeap: TRUE· .. string:
name];
Number I tem[

tag: "Phone'·' .. enumN':lme: phone .. place: [204 .. 36], signed: FALSE ..
value: phone];
Stringltem[.

tag: IIAddress" .. enumiName: address .. place: [6 .. 53] .. inHeap: TRUE ..
str i ng: address];
Enumer ated Item [

tag: "Bullding" .. enumiName: building, place: [204 .. 53] .. choices:
buildins. .. value: building];
-- Waltaminnit [buddy, 43] "fix the enums"

Using the FormSWLayoutTool

3-51

Mesa Language Class - February, 1988

Plagiarize!

ForrnS")VLayoutToo 1

!FormType:
iTag:

a .. command .. enum,i longNum .. numb .. source .. string .. tag}
Zone:

i A1i!JIX Usebox Anyfoot Root: SimpleTool

! Dolt! Clear! SetDefaults! Load! Save! Pla.Qiarize!
!J:...,..::Io-..l1
!~

ieorr.i1e:

iBind:
; _.
~KY" ••

eorr.i1e! Bind! 1Ul! Go! Options!

l~~ .. ~ ~.~~:.~~~~~ .. .
Command Central 12.3 of 17-May-85 12:40:38

SimpleTool/be,."ju 1 ines: 154 .. code: 1406,. 1 inks: 25 .. frame: 8,. time: 56
Elapsed time: 1 :00

Expand! Compile!
Compile: Simp1eTool

Bind:

lRtrt:
I Log: {Compiler}

Bind! lUi! Go!

l Mesa Compiler 12.3 of 24-Sep-84 11 :45:20
31 -Jul-87 16:22:59

Command: SimpleTool
SimpleTool.mesa
lines: 154 .. code: 1406 .. links: 25,. frame: 8,. time: 56

Using the FormSWLayoutTool

Options!

3-52

Mesa Language Class - February, 1988

Zone:

Form:3V1JLa:loutTool '

~--~D
FormType: & .. command .. enum .. longNum .. numb .. source .. string .. tag}

Tag: Zone:

Al i!J'X Usebox Anytont Root: Simp 1 e Too 1
Dolt! Clear! SetDetault:s! Load! Save! P1~iarize!

~---D
Verbose

Find! Insert!

Name:

Phone Book Tool

Delete!

Phone =
File: <CoPil

Create OPos Edit Load Empty Save Time Store Reset
~---~D

All! 5! RS! 41:
~---~D

data: DataHandle +< NIL;
wh: Wi"dow,Handle -i:-I NIL;
zone: UNCOUNTED ZONE +e Heap.systemZone;

FormSVI/LayoutTool I

~--~D
FormType: & .. command .. enum .. longNum~ numb .. source .. string .. tag}

Tag: Zone: myHeap

A1i!J'X IIsetJox Anyfoot Root: SimpleToo12

Dolt!· Clear! SetDe1aults! Load! Save! P1~iarize!
~---D

Verbose

Find! Insert!

Name:
AdIress:

Phone Book Tool

Delete!

Phone =
File: <Copj ot>~ND>Sim leToo12.mesa

Create OPos Edit Load Empty Save Time Store Reset
~---~D

All! 5! RS! 41: SR! R! 41:
~--D

data: l)ataHandle +< NIL;
wh: Window.Handle -i:-I NIL;
myHeap: UNCOUNTED ZONE +< Heap. Crea tee i n i ti a 1: 4];

Using the FormSWLayoutTool

3-53

Mesa Language Oass - February, 1988 3-54

Enum Props

FormS'I}· ... 'LayoutToo 1

FormT)'pe: a .. command .. enum .. longNum .. numb .. source .. string .. tag}

Tag: Zooe:
Ali91X Iisebox Anytmt Root: Simple Too 1
Dolt! Clear! SetDefaults! Load! Save! PlaAiarize!

Verbose Phone Book Tool
Find! Insert! Delete!

Name: Phone=

AdIress: Buildi~: {fi x the enums}

Enumerated Pro s }) Ta : Buildin. «
I Close! Erun Name: building Tag: Building

I readOnly invisible m-awBox hasCootext

I Lit U%-,:.J u.:+--= F~: {one}
~Value: building Proc: a.oi~: building
I CbJices: Waitaminnit [buddy .. 43] "fix the enums"

Change Choices field:

Enumerated Pro s » Ta : Buildin «
I Close! Erun Name: bu i 1 ding Tag: Bu i 1 di ng

1 readOnly invisible -rawBox hasContext

!Li!!W",:.)[t{~--= F~: {one}

~value: building Proc: a.oi~: building
1 Oloices: one two three II more than one word"

Using the FormSWLayoutTool

Mesa Language Class - February, 1988

Other Props

FormSVI/La youtToo 1

~----------------------·----------------------------------~D
!FormType:
iTag:

& .. command, enum .. longNum, numb .. source .. string .. tag}

Zone:

I Al i!JlX Usebox Anyfont Root: S i mpl e Tool

! Dolt! Clear! SetDefaul~s! Load! Save! PlaAiarize!
~-------------------------·-------------------------------------D ! Verbose Phone Book Tool

~ Find! Insert! Delete!
1 IU ... --.....:.. ;-;.

t . ~: ~i.l.~~~: .. <t::l~~~ .. ~~~n .. c!I'}.~. :~.~~~~
Number Pro s) > To3. _: Phone «

Close! En.m Name: phone Tag: Phone

readOnly invisible .rawElnx hasContext

Si~ NotNegative ~'idth= 64 Default= 32767 Radix: {decimal}

Proc: Vellue: phone

Strin. Pro s »Taq: N me «
I Close! Erun Name: name

~ readOnly invisible crawBox
Utt;:@i~ Feed)ack: {n()tmal}
: .
1 FllterProc:

Tag: Name

hasContext

BoxWidth= 0
Men.I'roc:

Command Pro s » Ta : Find «

String: na.me

lC1ose! Erun Name: find Tag: Find

! readOnly imris:ible .rawBox hasContext

lProc: Find
!

Boolean Pr - ... -
l Close! Erun Name: verbose Tag: Verbose

i readOnly invisible drawBox hasContext

~ Proc: Switch: verbose

Using the FormSWLayoutTool

3-55

Mesa Language Class -- February, 1988 Index-l

INDEX

A
Allocating ... 3-11,3-20
Allocation .. 3-1, 3-3, 3-27

C
Call-Back '.. 3-34-3-36
Char. 3-39
CR .. 3-39, 3-41
Create 3-9-3-12, 3-14-3-16, 3-23, 3-27, 3-34, 3-36
CreateMDS ... 3-9-3-10
CreateUniform ... 3-9

D
Deallocating ... 3-14, 3-20
Deallocation .. 3-27
Delete '..................... 3-10, 3-15, 3-23, 3-27
DeleteMDS .. 3-10
Dummy ••••••••••••••••••••••••• s' ••• 3-40

E
Expand
Expanding .. .

F

3-16,3-18
3-16-3-17

Flush ... 3-18
FormSWLayoutTool .. 3-29-3-31, 3-40, 3-43
FREE 3-6,3-14-3-15, 3-20, 3-22, 3-24-3-25, 3-27, 3-34
FreeNode ... 3-18
FreeString .. 3-20

G
GetA ttri butes 3-18

H
Heap 3-2, 3-6-3-12, 3-14-3-18, 3-23, 3-27, 3-32

L
Line ."... 3-39

Index for Dynamic Storage Allocation & FormSWLayoutTool

Mesa Language Class -- February, 1988

M
MakeNode

Index-2

3-18
MakeString ... 0 • ". • • • 3-2~0

MDS . 0 •••• 0 ••••••• 0 •••••••••••••••••••••••••• 0 ••••••••• ". 3-6-3-8, 3-10, 3-18, 3-27

N
NEW 3-6, 3-11-3-12, 3-14-3-15, 3-20, 3-22-3-25, 3-27, 3-34
Normal 0 0 0 : •• " • • • • • • 3-6, 3-8, 3-10

P
Printing ... ~ . 3-38
Private 0 •• 3-6, 3-9-3-10
Prune .. o. 3-18
Public 0 • 0 •••••••••••• 0 •••••••••••••••••• 0 ••••• 0 • • • • • • • • • • • • • • • • • • • 3-6, 3-8
Put 0 ••••••••••••••••••••• 0 0 0 ••••••••••••••••••• 0 • • • • • • • • • • • • • • • •• 3-38-3-39, 3-41

S
Scheduling 0.0 •••••••••••••••• 0 ••••••••••••••••••• 0 •••••••••• 0 •• 0 • 3-37
SEQUENCE ~ , ... 0 .0 ••••••••••• 00.0000 ••••••••• 0 • 0 3-21-3-23
Sequences 0 0 0 0 0 • 0 0 0 • 0 •• 0 •••••• 0 0 •••• 0 0 0 • 0 0 •• 0 •• 0 •••••• 0 0 0 0 0 0 0 3-2, 3-21-3-26, 3-28
String .. 0 0 • 0 •• 0 0 0 0 0 0 0 .'. 0 0 • 0 ••• 0 0 ••• 0 • 0 0 •••• 0 ••• ' • 0 • • • • •• 3-19-3-20, 3-23, 3-35, 3-39
Strings 0 •••••••••• 0'0 • 0 • 0 0 • 0 3-2, 3-19":3-20, 3-23-3-25, 3-28
systemMDSZone .. 0 0 •••• 0 ••••••• 0 •••••••••••••• 0 •••••••••• 0 0 0 0 0 • 0 • 0 •••• 0 3-6, 3-8
systemZone 0 •• 0 0 ••• 0 •• 0 •••••••• 0 •• 0 0 •• 0 •• 0 ••• 0 • • • • •• 3-6, 3-8, 3-11, 3-18, 3-27, 3-32

T

Text ... 0 0 •• 0 • 0 • 0 • 0 •• 00 0 0 • 0 0 ••• 0 ••••• 0 •• 0 ••••••••••• 0 0 •• 0 •• 0 • 0 • • •• 3-38-3-39, 3-41

U
Uniform .. 0 •••• 0 •••••••••• o ••••• 0 •••••••• 0. •••• • •• •••••••• ••• • •• • • • ••• 3-6,3-10

Index for Dynamic Storage Allocation & FormSWLayoutTool

Mesa Language Class -- March, 1988 4-1

Signals

Signals

Mesa Language Class -- March, 1988

1. Signals
a. Signals overview
bo Declaring signals
c. Generating signals
d. Catching signals
e. The signal UNWIND

4-2

Outline

Signals

Mesa Language Class -- March, 1988 4-3

Layered Software

I Level 0 I

Signals

Mesa Language Class -- March, 1988 4-4

Types of Signals Crossing Abstraction Boundaries

-- Informational signal (e.g. bounds fault)
-- Caller error (e.g. bad data, ""rong order)
-- Abstraction failure (e.g. buffer overflow, no channel)
-- Internal Error

Signals

• Mesa Language Class -- March, 1988

Signals vs. Polling

An example of polling:

-- -1 is a return code for invalid data.

n +- GetInput[J;
WHILE n = -1 DO

n +- Get I nput[]; -- if input too big; try again

ENDLOOP;

An example of signals:

n +- GetInput[IInputTooBig =) RETRY];

Signals

4-5

Mesa Language Class -- March, 1988 4-6

-rhe Signaller

When a signal gets "raised", normal execution is suspended and control is
transferred to the Signaller, vvhich is part of Mesa's run-time support. It is
the Signaller's responsibility to find and execute bodies of code that
recognize the signal that was raised. The bodies of code that recognize the
the signal are called catch phrases.

Catch phrases are visited in reverse order of the standard scope rules; that is,
inner blocks are visited first, then outer blocks. The order at the procedure
level goes from the most rec:ently called procedure to the least recently
called procedure, beginning with the procedure that raised the signal.

The path that the Signaller follows in order to find catch phrases that
recognize a signal is called the propagation path.

Signals

Mesa Language Class -- March, 1988 4-7

3 Signal Operations

-- Declaring a signal

-- Generating a signal (a.k.a. Raising a signal)

-- Recognizing a signal'

Signals

Mesa Language Class -- March, 1988 4-8

Dec:laring a Signal

If you are going to use a particular signal only within one module, you
should declare it only within that module. If you are going to use the signal
across many modules, the signal must be declared in an Interface. (Unless
otherwise specified, the term signal may stand for both SIGNAL and ERROR.)

Syntax for Signals:

<signal name>: SIGNAL[<args if any>] RETURNS[<results if any>];

Example:

myS;gnal: SIGNAL[s: LONG STRING] RETURNS[ns: LONG STRING]:

Syntax for Errors:

<errorname>: ERROR[<args' if any>] RETURNS[<~esults if any>];

Example:

myError: ERROR[type: ErrorType];

ErrorType: TYPE = {oo 0 ,maxS;zeExceeded, ;nvalidParameters,
invalidSize, insufficientSpace, otherErroro 00 ,};

** ERRORs cann.ot be RESUMEd.

Signals

Mesa Language Class -- March, 1988 4-9

Initializing a signal

In the implementation module, initialize the body of the signal to the
keyword CODE:

Example:

mySignal: SIGNAL[s: LONG STRING]
RETURNS[ns: LONG STRING] = CODE;

The actual code for the signal will be dynamically bound at runtime.

Signals

Mesa Language Class -- March, 1988

Ger,erating a Signal

If the signal doesn't return results:

SIGNAL <signalname>[<arguments if any>];

ERROR <errorname or signalname>[<arguments if any>];

RETURN WITH ERROR <errorname or signal name>
[<arguments if any>];

ERROR;

If the signal returns results:

<leftside> ~ SIGNAL <signalname>[<arguments, if any>];

<leftside> ~ ERROR <errorname or signalname>[<args, if any>];

Signals

4-10

Mesa Language Class -- March, 1988

Generating a Signal

GetInput: PROCEDURE RETURNS[inputNumber: INTEGER] = {

IF inputNumber NOT < 1000 THEN
SIGNAL InputTooBig;

} ;

Call Stack

Main Prog

Proc 1

Proc 2

Proc 3'

...

Getlnput

Signals

1
IlnputToOBig I

4-71

Mesa Language Class -- March, 1988 4-12

Recognizing Signals With Catch Phrases

A propagating signal can be recognized by catch phrases. Catch phrases, in
general, contain 2 parts:

1) a recognition clause (specifying the signal of interest) and
2) an action clause (specifying what should happen if that signal IS

recognized). Its syntax is similar to a SELECT statement.

Catch phrases can be located in 2 places:
1) during a procedure call (tucked in with the argument list) and
2) at the beginn,ing of any block (including loops).

Signals

Mesa Language Class -- March, 1988

Methods of Recognizing a Signal
(in art Argument List)

4-13

A catch phrase can be included in an argument list as the last item. That
includes any procedure call, si~lnal call, START, RESTART, STOP, JOIN, FORK,
and WAIT. A ! (exclamation point) in the argument list marks the beginning
of a catch phrase.

Examples:

n ~ Getlnput[IInputToolittle =) BEGIN ••• END;

InputTooBig =) RESUME]: -- example without parameters

OpenChannel[s;ze, handle IInputTooBig, NoChannels =) RETRY]:

-- example with parameters

Scope: If the signals InputTool ittle or InputTooBig are raised within
GetInput they will be recognized by the catch phrase attached to the
GetInput procedure call.

Similarly, if the signals InputTooBig or NoChannel s are raised within
OpenChannel they will be recognized by the catch phrase attached to the
OpenChannel procedure call.

Signals

Mesa Language Class -- March, 1988

More Examples of Recognizing a Signal
(in an Argument List)

4-14

Note that the catch phrases can be different each time that a procedure is
called.

Example:

n ~ Getlnput[IInputTooLittle =) BEGIN END;
InputTooBig =) RESUME];

n ~ Getlnput[IInputTooBig =) RETRY];

Signals

Mesa Language Class -- March, 1988

Another Method of Recognizing a Signal
(Withl ENABLE Clauses)

4-15

A catch phrase can be included at the beginning of any BEGIN - END block.
This is done with an ENABLE Clause.

Example:

PlayAGame: PROCEDURE = {
IF e •• THEN

BEGIN
ENABLE OutOfMoney =) {

GetMoreMoney[];
RESUME;
} ;

<statement 1);
<statement 2);

END;

<statement 3);

} ;

Scope: Signals raised in <statement 1) or <statement 2) will be recognozed
with this catch phrase. Signals raised in <statement 3) will not be
recognized.

Signals

Mesa Language Class -- March, 1988

More Examples with ENABLE Clauses

An ENABLE Clause can also occur at the beginning of any DO loop.

Example:

THROUGH

DO
ENABLE {

5;g1 => LOOP;
5;g2, 5;g3 => RETRY;
} ;

<statement 1>;
<statement 2>;

ENDLOOP;

<statement 3>;

4-16

Scope: Signals raised in <statement 1> or <statement 2> will be recognized
with this catch phrase. Signals raised in <statement 3) will not be
recognized.

Signals

Mesa Language Class -- March, 1988

BEGIN
(ENABLE clause>

(Declarations>
(Statements>

(ExitsClause>
END;

The Scope of ENABLE

4-17

Catch phrases in an ENABLE cLause cannot access variables declared in the
enclosing BEGIN-END block.

Example:

BEGIN
ENABLE OutOfMoney => {

IF; (0 THEN ... -- i i.s undefined at this point

GetMoreMoney[];
RESUME;
}; -- of the Enable Clause

;: CARD I NAL ~ 0; -- {is declared here

; ~ ; + 1;

END;

Signals

Mesa Language Class -- March, 1988

The Scope of ENABLE (con't)

To get around this, use 2 sets of BEGIN and END:

BEGIN
(Declarations)

BEGIN
(ENABLE clause)

(Statements)
END;

(ExitsClause)
END;

Example:

BEGIN
;: CARD I NAL +- 0; -- declare i in an outer block

BEGIN
ENABLE OutOfMoney =) {

IF; (0 TH EN ... -- valid to reference i here

GetMoreMoney[];
RESUME;
} ;

; +- ; + 1;

END;
END;

Signals

4-18

Mesa Language Class • March, 1988 4-19

Results of Entering a Catch Phrase

A signal that has been recognized in a catch phrase can either be rejected
(which means that the signal ""ill continue to propagate up the call stack) or
it can be caught which means that the signal will stop its propagation).

A catch phrase can reject the signal three different ways:
1) expl icitly with a REJ ECT statement,
2) implicitly by not being rec:ognized,
3) implicitly by falling off th,e end (not explicitly stopping propagation).

Methods of "catching" a signal will be forthcoming.

Signals

Mesa Language Class -- March, 1988

Rejection Examples

For the signal InputTooBig:

1) InputTooB i 9 is recognized but explicitly rejected:

n ~ GetInput[!InputTooBig =) {

IF ... THEN REJECT;
... }] ;

2) InputTooBig is not recognized therefore, it is implicitly not caught:

n ~ Getlnput[lInputTooLittle =) BEGIN .. END];

4-20

3) InputTooBig fell off the end because there was no explicit co'mmand
about where control should go Gust 'recognized', but not 'caught'):

n ~ GetInput[!InputTooBig =) {

}];

Signals

Mesa Language Class -- March, 1988

RESUME
CONTINUE
RETRY

LOOP
EXIT

GOTO

Catchy Statements

4-21

If you want to "catch" a signal (stop its propagation), you must have one of
these six statements at the end of a catch phrase. These statements tell the
Signaller where to transfer program control. If none of these statements are
used in a catch phrase, it is assumed that the Signaller is to remain in control
and should continue along the propagation path looking for more catch
phrases.

Any signal that is not caught within the call stack will be caught by the
debugger. The message that you will see is "Uncaught Signal ... ".

Signals

Mesa Language Class -- March, 1988 4-22

RESUME Statement

Treat the signal call as a procedure call; return to the point the signal was
raised.

Example:

BadData: SIGNAL[... J RETURNS[... J;

GetData: PROC[... J RETURNS[... J = {

IF ... THEN
n +- SIGNAL BadData[...]; -- control returns here after the'RESUME

-- with n getting assigned the returned va~ue.

} .

-- mainline code

n +- GetData[... !8adData =) ~ ~ ~ku.-

RESUME [-- with some number that will get assigned to n --] J ;

Control returns to where the signal was raised, but with a new value (if
there is one).

Note: There are two more-detailed examples of RESUME in later slides.

Signals

Mesa Language Class -- March, 1988 4-23

CON-rINUE Statement

Goes to the statement following the one to which the catch phrase belongs .

• Catch phrase in an argument list:

temp ~ MostRecentTemp[!NoTemp => CONTINUE];
<statement 1)

Control passes to <statement 1>.

• Catch phrase in an Enable C:lause:
-- code fragment in a program

IF .. 'f THEN

BEGIN
ENABLE NoInterest =) CONTINUE;
<statement 1>;

n+- GetDa ta[] ; -- Nolnterest may be raised here

<statement 2);

END;

<statement 3>;

Control passes to < s tat erne n t :3).

Signals

Mesa Language Class -- March, 1988

CONTINUE Statement (can't)

• Catch phrase in a Loop:
-- code fragment in a program

WHILE e. e DO

ENABLE NoInterest =) CONTINUE;
<statement 1);
n +- GetData[]; -- Nolnterest may be raised here.

<statement 2);

ENDLOOP;
<statement 3);

Control passes to the next iteration.

Signals

4-24

Mesa Language Class -- March, 1988 4-25

RE1-RY Statement

Go back to the beginning of the statement to which this catch phrase
belongs .

• Catch phrase in an argument list:
-- code fragment in a program

tries +- 0;
n +- GetHandle[!NoneLeft =) {

tries +- tries + 1;

IF tries < 8 THEN RETRY ELSE GO TO errorMsg; }J;

The call to GetHand 1 e is execute·d again.

• Catch phrase in an Enable CLause:
-- code fragment in a program

IF ... THEN {

ENABLE IncorrectResults => RETRY;
<statement 1>;
< s ta teme n t 2>; --incorrectResu/ts may be raised here.

<statement 3>;

};
(statement 4>;

The block (starting with <statement 1» is started over.

Signals

Mesa Language Class -- March, 1988

RETRY Statement (can't)

• Catch phrase in a Loop:
-- code fragment in a program

WHILE ... 00

ENABLE 5;91 => RETRY;
<statement 1>;
n ~ GetOata[];
<statement 2>;

ENOLOOP;
<statement 3>;

--5ig 1 could be raised here

4-26

The iteration in which the SIGNAL was raised (the current iteration) IS

started over (starting with <statement 1».

Signals

Mesa Language Class -- March, 1988

LOOP, EXIT and GOTO (revisited)

LOOP and EXIT are only meaniingful within loops.

• Example of LOOP:
-- code fragment in a program

WHILE 00. DO

ENABLE 5191 =) LOOP;
<statement 1);
n +- GetOata[J;
<statement 2);

-- Sig 1 could be raised here

ENOLOOP;
<statement 3);

Control passes to the next iteration.

• Example of EXIT:
-- code fragment in a program

WHILE 000 DO

ENABLE 5191 =) EXIT;
<statement 1>;
n+- GetOata[J;
<statement 2);

-- Sig 1 could be raised here

ENOLOOP;
(statement 3);

Control passes to <statement 3).

Signals

4-27

Mesa Language Class -- March, 1988

LOOP, EXIT and GOTO (can't)

• Example of GOTO in a BEGIN - END block:
-- code fragment in a program

IF .. THEN {

ENABLE IncorrectResults => GOTO punt;
<statement 1>;
< s ta teme n t 2>; -- IncorrectResults may be raised here.

};
<statement 4>:

EXITS
punt =) { ... }:

Control jumps to the EXITS clause looking for the arm labelled punt.

• Example of GOTO in a Loop:
-- code fragment in a program

WHILE ... DO

ENABLE NoInterest => GOTO getOut:
<statement 1>;
n +- GetOata[]; -- Nolnterest may be raised here.

<statement 2>;

REPEAT
getOut => NULL;

ENDLOOP;
<statement 3>;

Signals

4-28

Mesa Language Class -- March, 1988 4-29

UNWIND

Proc A Proc A

Proc B

Proc C

Proc D

Proc E

Proc F

In the example above, assume procedure F raises a signal. Procedure A
catches that signal and does a CONTINUE (which resumes control in the
frame which the signal was caught), so procedures B, C, 0, E, and F will be
removed from the call-stack.

A procedure that is going to be removed from the call-stack should be
notified of that fact so that it rnay have a chance to clean up after itself (e.g.
close files, deallocate storage, f~tC.).

Mesa provides the signal UNWIND as a mechanism of notifying procedures
that they will be removed from the call-stack. This allows a procedure to
restore invariants if that procE~dure suddenly finds itself being removed as
the result of a lower level signal being caught and handled by a catch phrase
in a procedure higher in the call-stack.

Signals

Mesa Language Class -- March, 1988 4-30

The path of UNWIND

When a catch phrase has recognized a signal, and is about to do a GOTO,
EXIT, LOOP, RETRY, or CONTINUE, the UNWIND signal is raised at the point
the original signal was raised.

The propagation path for UNWIND is the same as that of the original signal.
After UNWIND is passed to the last catch phrase in a given procedure frame,
the frame is deallocated. When UNWIND reaches the "scoping boundary"
of the catch frame that accepted the original signal, it stops and the jump
corresponding to the statements above takes place, destroying the last
catch frame in the process. (The UNWIND does not enter the catch phrase
that accepted the original signal.)

Since an UNWIND signal is just like any other signal, it may be recognized by
procedures that wish to restore invariants before being removed from the
call-stack.

The propagation of UNWIND should never be stopped by one of the six
magic" catchy" keywords.

. .. -- Code fragment

ENABLE UNWIND =)

BEGIN
-- close files, etc--

END;

Signals

Mesa Language Class -- March, 1988

Summary

Declare the signal (or use a pre-declared signal)

Generate I Raise the signal

4-31

Recognize the signal (at which point you can perform some action or make
some test)

Catch or Reject the signal (IF the signal is caught with something other than
RESUME, then the Signaller raises the signal UNWIND before transferring
control.)

If UNWIND was raised, it will follow the original propagation path.
·ft,.

Transfer program control to the pre-specified place.

Signals

Mesa Language Class -- March, 1988

Full Signal Example

InputTooBig: SIGNAL[number: INTEGER]
RETURNS[newNumber: INTEGER] = CODE;

n: INTEGER;

GetInput: PROCEDURE RETURNS[inputNumber: INTEGER] = {

i nputNumber +- -- inputNumber gets some value--

IF inputNumber NOT < 1000 THEN
;nputNumber +- SIGNAL InputTooBig[inputNumber];

-- do something interesting'

} ;

-- start of mainline code

-- code fragment

n ~ Getlnput[IInputTooBig =)

IF number < 1100 THEN
RESUME[999]

ELSE {
-- Message user about range O'f Input -­

RETRY }];

Signals

4-32

Mesa Language Class -- March, 1988

Another Signal Example

-- Just FYI (it is already declared in the String Interface)

String.StringBoundsFault: SIGNAL[s: STRING]
RETURNS[ns: STRING] = CODE;

-- code fragment in a program

str: LONG STRING ~ GetStringFromSomehwhere[];
c: CHARACTER ~ GetCharFromSomewhereElse[];

String.AppendChar[str, c !String.StringBoundsFault =)

BEGIN
ns ~ String.MakeString[z, s.maxlength + 5]; --temporary

St ring. Copy[from: s, to: n s]; -- Copy old string to new string

String.FreeString[zt s]; --Deallocateoldstring

str ~ ns;
RESUME[str];

END] ;

-- set global pointer to new string

-- RESUME with the new string

After the BEGIN in the Catch Phrase

4-33

c~

ns·

Signals

Mesa Language Class -- March, 1988 4-34

References

J. J. Horning, Programming Languages, in T. Anderson and B. Randell
(eds.) COMPUTING SYSTE"MS RELIABILITY, Cambridge University
Press, 1979.

Roy Levin, Program Structures for Exceptional Condition Handling-, Ph. D.
thesis (available as technical report), Department of Computer Science,
Carnegie-Mellon University, 1977.

J. B. Goodenough, Exception handling: Issues and a proposed notation,
COMM. ACM 18, no. 12, 1975.

F. Christian, Exception Han.dling and Software Fault Tolerance, 10th
Symposium on Fault Tolerant Computing Systems, Kyoto, 1980.

Signals

Mesa Language Class -- May, 1988 4-35

Mesa Streams

Streams

Mesa Language Class -- May, 1988

Outline

1. Streams
a. Streams overview
b. Declaring Streams and initializing them
c. Possible Errors
d. I/O Procedures
e. Stream Blocks
f. Deleting Streams

Streams

4-36

Mesa Language Class -- May, 1988 4-37

rVlesa Streams

Streams provide sequential act:ess to data (a way to read or write a "stream"
of bytes, words, etc.) [There are other facilities for handling random access of
files by mapping segments o·f files to virtual memory. See the MSegment
interface documented in the Mesa Programmer's Manual for more
information.]

Streams are device independent. (Floppy, tape drive, disk file, etc.) However,
for the purposes of this lecturE~, a stream is a connection from a program to a
file on the local disk in order tC) read and write that file.

Streams

Mesa Language Class -- May, 1988 4-38

Necessary Stream Operations

-- Declare a stream variable
-- Acquire the stream handle (initialize the connection)
-- Use the stream (get data and put data)
-- Delete the stream

Streams

Mesa Language Class -- May, 1988 4-39

Declaring Streams

inStream: MStream.Handle;

inStream: Stream. Handle;

MStream.Handle and Stream.Handle are equivalent types. You can use them
interchangeably. This is because:

MStream.Handle: TYPE = Stream.Handle;

Streams

Mesa Language Class -- May, 1988 4-40

MStream and Stream

MStream is a Tajo interface (documented in the Mesa Programmer's
Manual.)

Stream is a Pilot interface (documented in the Pilot Programmer's Manual.) \

To attach a stream to a local disk file, use the MStream interface. All device­
specific information will be encapsulated in the stream handle. MStream is
usually used in conjunction with the MFile interface, also documented in the
Mesa Programmer's Manual.

Once you have set up the stream, use the Stream interface to do your input
and output. Once you have a connection, a stream to a disk file is just like a
stream to any other device.

Streams

Mesa Language Class -- May, 1988 4-41

Acquiring Stream Handles

Two step process:
• Acquire a handle to the file (MFile procedures)
• Attach a stream to that file (MStream procedures)

1) To acquire a handle to a specified file, use this MFile procedure
(remember, this is just the defi:nition!):

MFi1e.Acquire: PROCEDURE [
name: LONG STRING,
access: MFi1e.Access,

.- MFile.Access: TYPE = (rE~adOnly, writeOnly, readWrite, ... J
re 1 ease: MF i 1 e. Re 1 easeOata, -- explained later

mightWrite: BOOLEAN ~ FALSE,
initialLength: MFile.InitialLength ~ MFile.dontCare,
type: MFile.Type ~ unknown]
RETURNS [MFi1e.Hand1e];

2) To attach a stream to that file, use this MStream procedure:

MStream.Create: PROCEDURE [
file: MFi1e.Handle,
re 1 ease: MSt ream. Re 1 ea,seOata, -- explained later

options: Stream.InputOptions ~ Stream.defaultInputOptions,
streamBase: File.PageNumber ~ 0]
RETURNS [stream: MStream.Handle];

Example:

fileName: LONG STRING ~ "junk"L;
file: MFile.Handle ~ MFi1e.Acquire[

name: fileName, access: readWrite,
release: [NIL, NIL] lMfile.Error =) GOTO exit];

stream: MStream.Handle ~ MStream.Create[
file: file, release: [NIL, NIL] lMStream.Error =) GOTO exit];

Streams

Mesa Language Class -- May, 1988 4-42

Acquiring Stream Handles to Temp Files

The MFile interface provides a mechanism of providing a temporary,
anonymous file, if that is what your program needs. Once you have acquired
a file handle to a temporary file, use the same MStream procedure shown
earlier to attach a stream to it.

MFile.AcquireTemp: PROCEDURE [
type: MF i 1 e . Type, -- MFile. Type: TYPE = (text, binary, directory, ... J
initialLength: MFile.lnitialLength ~ MFile.dontCare,
volume: Volume.ID ~ [0, 0, 0, 0, 0]]
RETURNS [MFile.Handle];

Example:

tempFile: MFile.Handle ~ MFile.Acqu;reTemp[type: text
!MFile.Error =) GOTO exit];

tempStream: MStream.Handle ~ MStream.Create[file: tempFile,
release: [NIL, NIL] IMStream.Error =) GOTO exit];

Streams

Mesa Language Class -- May, 1988 4-43

ReleaseData

The acquire procedures in both MStream and MFile have a parameter of type
ReleaseData. (Definitions are below.) ReleaseData is used to specify how
your program intends to share· files with other programs.

MF11e.ReleaseData: TYPE = RECORD [
proc: MF11e.PleaseReleaseProc ~ NIL,
clientInstanceData: LONG POINTER ~ NIL];

MStream.ReleaseData: TYPE = RECORD [
proc: MStream.PleaseReleaseProc ~ NIL,
clientInstanceData: LONG POINTER ~ NIL];

Unless you are planning to share the file with other processes, you should
just pass the record [NIL, NIL] for the ReleaseData parameter.

Streams

Mesa Language Class - May, 1988 4-44

Accelerators

When you know the name of the file that you want to attach a stream to,
and you want to have one .of the standard accesses, you can use
an "accelerator" procedure to acquire the file handle and attach a stream to
that file:

MStream.ReadOnly: PROCEDURE[
name: LONG STRING, release: MStream.ReleaseData]
RETURNS [MStream.Handle];

MStream.ReadWrite: PROCEDURE[
name: LONG STRING, release: MStream.ReleaseData,
type: MFile.Type]
RETURNS [MStream.Handle];

MStream.WriteOnly: PROCEDURE[
name: LONG STRING, release: MStream.ReleaseData,
type: MFile.Type]
RETURNS [MStream.Handle];

Example:

fileName: LONG STRING ~ "name"L;
foo: MStream.Handle ~ MStream.ReadWrite[

name: fileName, release: [NIL, NIL], type: text
!MStream.Error, MFile.Error =) GOTD exit];

Streams

Mesa Language Class -- May, 1988 4-45

Errors

MStream and MFile procedures can potentially raise signals that you need to
handle. These signals are:

From the MFile Interface:

MFile.Error: ERROR [file: MFile.Handle, code: MFile.ErrorCode];

MFile.ErrorCode: TYPE = MACHINE DEPENDENT {noSuchFile,
conflictingAccess, insufficientAccess, directoryFull,
directoryNotEmpty, illegalName, noSuchDirectory, ... };

From the MStream Interface:

MStream.Error: ERROR [
stream: Stream.Handle, code: MStream.ErrorCode];

MStream.ErrorCode: TYPE = MACHINE DEPENDENT {invalidHandle,
indexOutOfRange, invalidOperation, fileTooLong,
fileNotAvailable, invalidFile, other(LAST[CARDINAL])};

Example:

foo: MStream.Handle ~ MStream.ReadWrite[
name: "someName", release: [NIL, NIL], type: text
!MFile.Error =) {

SELECT code FROM
conf11ctingAccess, insuffi~ientAccess =) GOTO AccessProblems;
illegalName =) GOTO BadName;
ENOCASE =) GOTO AllOther};

MStream.Error =) GOTO StreamProblems];

Streams

Mesa Language Class -- May, 1988

Stream I/O

Use the Stream Interface to pE~rform any I/O with your stream.

For getting information from the stream:

Stream.GetByte: PROCEDURE[sH: Stream.Handle]
RETURNS [byte: Stream.Byte];

Stream.GetChar: PROCEDURE[sH: Stream.Handle]
RETURNS [char: CHARACTER]:

Stream.GetWord: PROCEDURE[sH: Stream. Handle]
RETURNS [word: Stream. Word]: -- word = 2 bytes

For sending information to th4~ stream:

Stream.PutByte: PROCEDURE[sH: Stream. Handle,
byte: Stream. Byte];

Stream.PutChar: PROCEDURE[sH: Stream. Handle,
char: CHARACTER];

Stream.PutWord: PROCEDURE[sH: Stream.Handle,
wo rd: St ream. Wo rd]; -- vvord = 2 bytes

Stream.PutString: PROCEDURE[sH: Stream. Handle,
string: LONG STRING, endRecord: BOOLEAN ~ FALSE]:

Streams

4-46

Mesa Language Class -- May, 1988 4-47

Reaching the End of the Stream

All of the Stream.Get- lID procedures will raise a signal if the end of the
stream (end of file) is reached. You should catch this signal.

Stream.EndOfStream: SIGNAL[nextIndex: CARDINAL];

Example:

DO
ch: CHARACTER;
ch ~ Strearn.GetChar[inStream IStream.EndOfStream =) EXIT];
Stream.PutChar[outStrearn,ch];
ENDLOOP;

Streams

Mesa Language Class -- May, 1988 4-48

Stream Blocks

Stream Blocks provide a method of transfering arbitrary data stru ctu res.
These structures are read into or out of a buffer of uninterpreted bytes. You
can then LOOPHOLE the inforrllation into the structure of your choice.

The Stream. 81 oc·k is a record that contains a pointer to a buffer, the starting
position within that buffer, and the stopping position.

IstoPlndexPlusone

Buffer of uninterpreted bytes

11

Streams

Mesa Language Class -- May, 1988

Stream Block Definitions

Stream.Block: TYPE = Environment.Block;

Environment.Block: TYPE = RECORD[
blockPointer: LONG POINTER TO PACKED ARRAY [0 .. 0)

OF Environment.Byte,
startIndex, stopIndexPlusOne: CARDINAL]:

Stream.CompletionCode: TYPE = {normal, endRecord,
sstChange, endOfStream, attention, timeout}:

4-49

Stream.GetBlock: PROCEDURE[sH: Stream. Handle, block: Stream. Block]
RETURNS [bytesTransferred: CARDINAL, why: Stream.CompletionCode,
sst: Stream.SubsequenceType];

Stream.PutBlock: PROCEDURE[sH: Stream.Handle,
block: Stream.Block, endRecord: BOOLEAN ~ FALSE];

Streams

Mesa Language Class -- May, 1988

Block Example

EmployeeInfo: TYPE = MACHINE DEPENDENT RECORD[
name(O): PACKED ARRAY[0 .. 30) OF CHARACTER,
ssn(15): LONG CARDINAL,
employeeNumber(17): LONG CARDINAL,
gradeLevel(19): CARDINAL];

4-50

RecordSize: CARDINAL = SIZE [EmployeeInfo] * 2;--SIZEreturns#ofwords

rec: LONG POINTER TO EmployeeInfo;

buffer: PACKED ARRAY[O .. RecordSize) OF Environment.Byte;
block: Stream.Block ~ [@buffer, 0, RecordSize];

inputStream: Stream.Handle ~ MStream.ReadOnly[name: "input",
release: [NIL, NIL] !MStream.Error, MFile.Error =) GOTO exit];

outputStream: Stream.Handle ~ MStream.ReadWrite[name: "output",
release: [NIL, NIL]!MStr~am.Error, MFile.Error =) GOTO exit];

-- code fragment

completionCode: Stream.CompletionCode ~ normal;
UNTIL completionCode = endOfStream DO

[block.stopIndexPlusOne, completionCode,] ~
Stream.GetBlock[inputStream, block];

rec ~ LOOPHOLE[block.blockPo1nter];
rec.gradeLevel ~ rec.gradeLevel + 3;
Stream.PutBlock[outputStream, block, TRUE];
ENDLOOP;

Streams

Mesa Language Class - May, 1988 4-51

Block Example

bloekPointer 1
\ 1IIilii liilliilil;~II;lilliiilili~1111111111111111111111111111 buffer

After LOOPHOLE

bloekPointer

name

ree 1 Put bytes to outputStream

Streams

gradeLevel

I

Ss" # ... buffer

Mesa Language Class - May, 1988

Ftandom Access

St ream. Pos i t ion: TV P E = LONG CARD I NAL; -- zero is the beginning of the file

Stream.GetPosition: PROCEDURE [sH: Stream. Handle]
R~TURNS [position: Stream. Position];

Stream.SetPosition: PROCEDURE [sH: Stream. Handle,
position: Stream. Position];

Example:

Advance: PROC[stream: Stream.Handle, amount: Stream. Position]
RETURNS[newPos: Stream. Position] = {
position: Stream. Position ~ Stream.GetPosition[sH: stream];
newPos ~ position + amount;
Stream.SetPosition[sH: stream, position: newPos];
} ;

Streams

4-52

Mesa Language Class -- May, 7988 4-53

Deleting Streams

Always delete the stream handle when you are through with it. This will
release the file handle, so that other processes may use the file. Regardless of
how the stream handle was acquired, use this procedure:

Stream.Delete: PROCEDURE[sH: Stream. Handle]:

Example:

myStream: Stream.Handle ~ MStream.ReadOnly[...]:
-- Do 1/0--

Stream.Delete[myStream];
myStream +- NIL;

Streams

Mesa Language Class -- May, 1988

Stream Example

This example copies the contents of one file to another.

-- code fragment

inStream, outStream: MStream.Handle;

inStream ~ MStream.ReadOnly[
name: "letter.txt"L, release: [NIL, NIL]
!MFile.Error, MStream.Error =) GOTO exit];

outStream ~ MStream.WriteOnly[

DO

name: "letter.out"L, release: [NIL,NIL], type: text
lMFile.Error, MStream.Error =) GOTO exit];

Stream.PutChar[outStream,
Stream.GetChar[inStream !Stream.EndOfStream =) EXIT]];

ENDLOOP;

Stream.Delete[inStream];
Stream.Delete[outStream];
inStream ~ outStream ~ NIL;

Streams

4-54

Mesa Language Class -- February, 1988 Index-1

INDEX

A
Accelerators .. 4-44
Acquire .. 4-38, 4-41
AcquireTemp .. 4-42

B
Block .. 4-48 - 4-51
Blocks ... 4-36, 4-48

C
Catching ... 4-2
Catchy .. -: 4-.21
CompletionCode ... 4-49 - 4-50
CONTINUE ... 4-21,4-23 - 4-24,4-29 - 4-30
Create ... 4-4 1 - 4-42

D
Declaring .. 4-2,4-7 - 4-8,4-36,4-39
Delete '. .. 4-38,4-53 - 4-54
Deleting ... 4-36, 4-53

E
E NAB LE ... 4-' 5 - 4-18, 4-2 3 - 4-2 8, 4-3 a
EndOfStream ... 4-47,4-54
Error 4-4,4-8, 4-10, 4-41 - 4-42, 4-44 - 4-45, 4-50, 4-54
Errors 4-8, 4-36, 4-45
Example .. 4-32 - 4-33, 4-50 - 4-54
EXIT ... 4-21, 4-27 - 4-28, 4-30, 4-47, 4-54

G
Generating .. 4-2,4-7,4-10 - 4-11
GetBlock ... 4-49 - 4-50
GetByte .. '. .. 4-46
GetChar .. 4-46 - 4-47, 4-54
GetPosition ... 4-:52
GetWo rd ... 4-46
GOTO 4-21,4-25,4-27 - 4-28, 4-30, 4-41 - 4-42, 4-44, 4-50, 4-54

H
Handle 4-39,4-41 - 4-42,4-44 - 4-46,4-49 - 4-50, 4-52 - 4-54

Index for Signals & Streams

Mesa Language Class -- February, 1988 Index-2

Initializing 4-9

L
Loop 4-16, 4-21, 4-24, 4-26 - 4-28, 4-30

M
MFile .. 4-40 - 4-45, 4-50,4-54
MStream 4-39 - 4-45, 4-50, 4-53 - 4-54

o
Operations ,...................................... 4-7, 4-38

P
Polling "... 4-5
Position ".. 4-52
PutBlock .. '.. 4-49 - 4-50
PutByte ,'.. 4-46
PutChar .. 4-46 - 4-47, 4-54
PutString ... 4-46
PutWord .. 4-46

R
Raisi ng, ,. 4-7
Random ... 4-52
ReadOnly ... 4-44,4-50,4-53 - 4-54
ReadWrite ... 4-44, 4-50
Recognizing.. .. 4-7,4-12 - 4-lS
R·EJECT .. 4-19 - 4-20
Rejection ... 4-20
ReleaseData ... 4-41,4-43 - 4-44
Results ... 4-19
RES U ME. 4-13 - 4-1 5, 4-17 - 4-18, 4-20 - 4-22, 4-31 - 4-33
RETRY 4-5,4-13 - 4-14, 4-16, 4-20 - 4-21, 4-25 - 4-26, 4-30, 4-32

Indf.~x for Signals & Streams

Mesa Language Class -- February, 1988 Index-3

S
Scope .. 4-13, 4-15 - 4-18
SetPosition .. 4-52
SIGNAL 4-8 - 4-11, 4-22, 4-26,4-32 - 4-33, 4-47
Signaller ... 4-6, 4-21, 4 .. 31
Signals 4-1 - 4-2, 4-4 - 4-5, 4-8, 4-12, 4-15 - 4-16
Stack ... 4-11
Stream 4-36, 4-38 - 4-42, 4-45 - 4-50, 4-52 - 4-54
Streams .. 4-35 - 4-37, 4-39, 4-53

U
UNWIND ... 4-2,4-29 - 4-31

W
WriteOnly ... 4-44,4-54

Index for Signals & Streams

Mesa Language Class -- March, 1988 5-1

Processes and Concurrency

Processes and Concurrency

Mesa Language Class -- March, 1988

Outline

1. Processes and Concu rrency
a. Concurrent execution
b. New language features for processes
c. Monitors
d. Synchronization -- Condition Variables
e. More general forms of monitors
f. Signals

Processes and Concurrency

5-2

Mesa Language Class -- March, 1988 5-3

C:oncurrency

The Mesa architecture is desiigned for applications that expect a large
amount of concurrent activity. Support for concurrent execution of multiple
processes is provided in the 1'v1esa Language. Mesa's goal is to reduce the
complexities associated with c()ncurrent programming.

PrcJCesses and Concurrency

Mesa Language Class -- March, 1988 5-4

Concurrency

In order to support the notion of dynamic processes, the Mesa Language
must provide the ability to create new processes and also allow
communication between the processes.

There must also be a way to control the" scheduling of these processes so
that they are not manipulating shared data at the same time.

To create new processes and synchronize their results, Mesa has provided to

language operators:

FORK/JOIN

To control the scheduling of these processes, Mesa has provided the

synchronization mechanism of:

Monitors

Processes and Concurrency

Mesa Language Class -- March, 1988 5-5

Processes

In Mesa, the creation of a new process is simply a special procedure
activation that executes concurrently with its caller.

Mesa allows any procedure (except an internal procedure -- to be discussed
shortly) to be invoked in this "'fay, at the caller's discretion.

It is possible to later retrieve the results returned by this procedure.

Processes and Concurrency

Mesa Language Class -- March, 1988

Synchronous call

Proc Z

ProcA

Proc B

Proc C

Call Stack

Asynchronous call
From A to B

Proc Z l Proc B
I----------f I----------f

Proc A Proc C

Processes and Concurrency

5-6

Mesa Language Class -- March, 1988 5-7

New Language Operations and Data Types

There are two new langua~Je operators and one new data type for
supporting concurrent execution of multiple processes.

PROCESS-- the data type of the value returned by invoking FORK and used
to identify the plrocess in future operations, including JOIN.

FORK the operator that is used to create a new process.

JOIN the operator that is used to synchronize the return of a
process.

p,.ocesses and Concurrency

Mesa Language Class - March, 1988 5-8

The Process Interface

Pilot also implements some routines that are used less frequently. These
routines are defined in the Process interface (in the PPM).

Process.Detach: PROCEDURE[PROCESS];
-- the operator that is used to let a new process run by itself (that is, it will never

belO/Ned)

Process.Abort: PROCEDURE[process: UNSPECIFIED];
-- notifies a specific process that it should abort

Process.Pause: PROCEDURE[ticks: Process. Ticks];
-- puts a process to sleep for a specified amount of time

Process. Yield: PROCEDURE;
-- the calling process gives up control of the processor

Process.SetTimeout: PROCEDURE[
cond i t ion:" LONG POINTER TO CUNDITION, tick's: P roc;ess. Ti cks];
-- sets the time limit a process will wait on a condition variable

Process. Ticks is a tick of the process timer clock. There are procedures to
convert from milliseconds < = > ticks and seconds < = > ticks. Consult the
PPM.

Processes and Concurrency

Mesa Language Class -- March, 1988 5-9

Process Representation

In the Mesa architecture, a process corresponds to either
1) an instance of execution ,of a PROGRAM module or
2) a procedure call that runs concurrently with its caller.

Every process is represented as a Process State Block (PSB) residing on some
operating system queue. A PSB contains information that allows the system
to find the MDS in which the process is' executing, its context (GF, LF, CB, and
PC), its priority, and other infolrmation.

Operating system queues are nnaintained in sorted order.

Each non-running process will either be ready to run or blocked.

Prc,cesses and Concurrency

Mesa Language Class -- March, 1988 5-10

Process Representation (can't)

d . Rea IY List Ready to Run Queue

I tail I :
0 15 PS8 Re2ister

I PSB I

1 Current PSB ~

- -

highest priority o typical 15 lowest priority

Blocked Processes
Monitor Lock

I I ~il I ~I ~~~~~~~~~~~~~~!
o 75

highest priority lowest priority

Condition Variable

I tail I I
I

0 75
If

highest priority lowest priority

Processes and Concurrency

Mesa Language Class -- March, 1988 5-11

Example: Synchronous Call

The unrelated computation will have to wait for the return of ReadL; ne
even though it does not need the results returned from that operation.

GetInput: PROCEDURE[buffer: LONG POINTER TO Buffer]
RETURNS[bytesRead: CARDINAL] = {

bytes Read ~ ReadLine[buffer];

« unrelated computation »

};

ReadLine: PROCEDURE[buffervar: LONG POINTER TO Buffer]
RETUR~S[numberOfBytes: CARDINAL] = { ... };

Processes and Concurrency

Mesa Language Class -- March, 1988

ExampIE~: Asynchronous Call

The new process is synchronizE~d at termination.

GetInput: PROCEDURE[buffer: LONG POINTER TO Buffer]
RETURNS[bytesRead: CARDINAL] = {
p: PROCESS RETURNS [CARDINAL];

p ~ FORK ReadLine[buffer];

« concurrent computation »

bytesRead ~ JOIN p;
} ;

Processes and Concurrency

5-12

Mesa Language Class -- March, 1988 5-13

PROGRAM Module Execution.

Stack for Process N Stack for Process N + 1

. . . ReadLine

Getlnput
p .. FORK ReadLine *
. . .
JOIN P **

RETURN

. . .

NextProc

. . .
* The FORK creates a new PSB for ReadL i ne and places it on the ready

queue.

** When the JOIN is reached and ReadL 1 ne RETUR~S, the results are retrieved
and the call stack for Process N + 1 is deleted. .

Processes and Concurrency

Mesa Language Class -- March, 1988 5-·14

ExampIE~: Asynchronous Call

If the new process is intended to function independently and the never be
JOINed then that process should be detached.

Example:

LookForMail: PROCEDURE[mailBox: MailBox] = {

Process.Detach[FORK RealLookForMail[mailBox]];

};

Real LookForMai 1 is a procedure that has been declared elsewhere. The
actual searching takes place in this procedure.

Processes and Concurrency

Mesa Language Class -- March, 1988 5-15

Summary

Mesa's goal is to reduce the complexities associated with concu rrent
programming by providing high-level language support.

The method for passing parameters to a new process and retrieving its
results is exactly the same as the corresponding method for procedures.

No special declaration is needed for a procedure that is FORKed as a
process.

The ~ost of creating and destroying a process is moderate, and the cost in
storage is only twice the minimum cost of a procedure instance.

The cost of a context switch is roughly twice the cost of a procedure call. .

Therefore, ...

You are encouraged to build systems that use many processes with a high
rate of interaction.

Processes and Concurrency

Mesa Language Class -- March, 1988 5-16

Monitors -- Overview

When several processes interc3ct by sharing data, care must be taken to
properly synchronize access to the data.

The belief is that processes,' in ~general, do not interact. When they do it is in
small segments of code that m,anipulate shared data values.

Safe communication implies only one process is operating in these critical
sections at a time.

Processes not only need to ensure mutual exclusion to data, but may also
wish to enforce scheduling de<:isions.

The idea behind monitors is that a proper vehicle for this interaction is one
that unifies:

1) the synchronization
2) the shared data
3) the body of code that performs the accesses
4) the scheduling needs

Pr·ocesses and Concurrency

Mesa Language Class -- March, 1988 5-17

Monitors -- Overview

For consistency, Mesa groups these components in a MONITOR module.

Access to shared data is controlled by a MONITOR lock. One lock is
associated with the monitor. When the monitor's code is entered the lock
must be acquired. When a process leaves the monitor, the lock is released.

Processes Enter
Monitor

Monitor
(only one process is
here at any time;

others must wait)

Processes Exit
Monitor

Access to:the module are controlled by three types of procedures:

external procedures -- procedures that reside in a MONITOR module
but execute outside of the monitor.

ENTRY procedures

INTERNAL procedures

entry points into the monitor.

shared moni~or routines that are only called
from other ENTRY or INTERNAL procedures

Processes and Con.currency

Mesa Language Class -- March, 1988 5-·18

Monitoring Global Data

Most common form of a moni;tor is to package all the data and procedures
of the monitor within a single monitor instance.

The monitor lock, in this case, is declared automatically in the global frame
of the module. Thus, all of the global variables are monitored.

~ocess B

~.hared
L-Code

~;hared
L- Data

...........................

I Monitor
Lock

.

I

.
• • • • • • • •••••• II ••••••••••• Ii. •••••••••••••••••••••••

Pro~esses and Concurrency

Mesa Language Class -- March, 1988 5-19

Monitor Module Structure

Monitor modules are declared much like program modules, except with the
keyword MONITOR instead of PROGRAM.

Example:

DIRECTORY
.

SampleMonitor: MONITOR IMPORTS ... EXPORTS = {

«declaration of sh,ared variables»

«code»
}.

External procedures are declared as normal non-monitor procedures:

P: (PUBLIC) PROCEDURE[args] RETURNS[results] = ...

Every monitor has at least one entry procedure; these are declared as:

Q: <PUBLIC) ENTRY PROCEDURE[args] RETURNS[results] = •••

Interr:'al procedures are declared as:

R: INTERNAL PROCEDURE[args] RETURNS[results] =

Note that external procedures should not reference global data as only
monitored procedures should reference the, global data (external
procedures are logically outside the monitor).

Processes and Concurrency

Mesa Language Class -- March, 1988 5-20

Interifaces to Monitors

In Mesa, the attributes ENlrRY and INTERNAL are associated with a
procedure's body, not with its type. Therefore, from the client side of an
interface, a monitor appears tC) be a normal program module.

For example, a monitor M with entry procedures P and Q might have an
interface that appears as:

MOefs: DEFINITIONS = {
P: PROCEDURE[args] RETURNS[results];
Q: PROCEDURE[args] RETURNS[results];
} ;

Prc)cesses and Concurrency

Mesa Language Class -- March, 1988 5-21

Mutual Exclusion

Mutual exclusion in a monitor module is ensured by the monitor lock:

The lock can only be held by one process at a time.

The lock is implicitly acquired upon entry to an ENTRY procedure.

The lock is implicitly released when the ENTRY procedure returns.

Once the lock is held, other processes attempting to enter the monitor
are blocked.

Once the lock is released, one of the processes waiting for the lock or a
new process that is attempting to enter the monitor can acquire the lock.

Processes and Concurrency

Mesa Language Class -- March, 1988 5-22

'Mutual Exclusion Example

Mutual exc~usion to a structure that keeps count of the number of active
and inactive objects in an environment:

MutexDefs: DEFINITIONS = {
CounterType: TYPE = RECORD[

activ.e: INTEGER,
inactive: INTEGER];

Activate: PROCEDURE;
Deactivate: PROCEDURE;
Inspect: PROCEDURE RETURNS[counter: Countertype];
} .

Processes and Concurrency

Mesa Language Class -- March, 1988

Mutual Exclusion Example (can't)

DIRECTORY
MutexDefs;

Mutex: MONITOR EXPORTS MutexDefs = {
counte r: MutexDefs. Counte rType ... [0 to]; -- this is the monitored data

Activate: PUBLIC ENTRY PROCEDURE = {
ENABLE UNWIND =) NULL; -- explained later

counter. active ... counter. active + 1 ;
counter. inactive ... counter. inactive -
};

Deactivate: PUBLIC ENTRY PROCEDURE = {
ENABLE UNWIND =) NULL;
counter. active ... counte r. act i v-e - 1-;

counter. inactive ... counter. inactive +
} ;

Inspect: PUBLIC ENTRY PROCEDURE

1 ;

1 ;

RETURNS[counter: MutexDefs.CounterType] = {
ENABLE UNWIND =) NULL;
RETURN[counter];
};

} .

Processes and Concurrency

5-23

Mesa Language Class -- March, 1988 5-24

Synchronization

Synchronization among cooperating processes is expressed explicitly
through operations on condition variables:

Condition variables are declared as:

c: CONDITION;

Operations on condition variables:

WAIT condition

NOTIFY condition

puts process to sleep. The process that executes
this statement exits the monitor and waits.

wakes up first process that is waiting

BROADCAST condition -- wakes up all waiting processes

Processes and Concurrency

Mesa Language Class -- March, 1988 5-25

CONDITION Variables

Condition variables are always associated with some boolean expression
describing the desired state lof the monitor data. This yields the general
pattern:

Example of a process (in the monitor) waiting for condition:

... -- code fragment

WHILE -DesiredState DO

WAIT c; -- release lock

ENDLOOP; -- reacquire lock

«execute with monit~r lock held»

«RETURN» -- release lock

Example of a process (in the monitor) making condition true:

. .. -- code fragment

< <make Des; redState TRUE:> > -- maybe as side effect of modifying global data

NOTIFY c;

«continue execution»

< < RETURN> > -- release lock

Processes and Concurrency

Mesa Language C/ass-- March, 1988

CONDITION Variables

Processes Enter MONITOR

l
WHILE -DesiredState 00

WAIT c;

ENDLOOP;

«make DesiredState TRUE»

NOTIFY c;

Processes Exit MONITOR

Processes Temporarily
Exit MONITOR

Processes Re-enter MONITOR

Note that only one process can be in the M"ONITOR at a time.

Processes and Concurrency

5-26

c list

1
I Process A I

J,
I Process B I

J,
I Process C I

Mesa Language Class -- March, 1988

N()TIFY Example

DIRECTORY
AllocDefs;

StorageAllocator: MONITOR EXPORTS AllocDefs = {

. StorageAvailable: CONDITION;
Block: TYPE = RECORD[... J; --orsomeotherdatatype

ListPtr: TYPE = LONG POINTER TO L1stElmt;
ListElmt: TYPE = RECORD[block: Block, next: ListPtr];
freeList: ListPtr;

Allocate: PUBLIC ENTRY PROCEDURE RETURNS[p: ListPtr] = {
ENABLE UNWIND =) NULL; -- explained later

WHILE freeList = NIL DO --boolean expression testing for desired state

WAIT StorageAvailable;
ENDLOOP;

p +- freeList;
freeList +- p.next;
} ;

Free: PUBLIC ENTRY PROCEDURE[p: ListPtr] = (
ENABLE UNWIND =) NULL;

} .

p.next +- freeList;-
f reeL is t +- p; -- change1s the desired state

NOTIFY StorageAvailable·;
} ;

Processes and Concurrency

5-27

Mesa Language Class -- March, 7988

NOTIFY Example Graphics

Processes Enter MONITOR

l
Allocate: PUBLIC ENTRY PROCEDURE RETURNS[p: ListPtr] = {

ENABLE UNWIND =) NULL;
WHILE freeList = NIL DO

WAIT StorageAvailable;---___ __
ENDLOOP;

p +- freeList;
freeList +- p.next;
} ;

Free: PUBLIC ENTRY. PROCEDURE [p: ListPtr] = {
ENABLE' UNWIND =) NULL;
p . n ext +- f r eeL i s t ; f r eeL'; s t +- p;
NOTIFY StorageAvailable;
} ;

5-28

I Storage Available list

Processes Exit MONITOR l
I Process A I

!
I Process B I

!
I Process C I

Processes and Concurrency

Mesa Language Class -- March, 1988

BRO)~DCAST Example

DIRECTORY
AllocDefs;

StorageAllocator: MONITOR EXPORTS AllocDefs = {
StorageAvailable: CONDITION;
Block: TYPE = RECORD[...]; --orsomeotherdatatype

ListPtr: TYPE = LONG POINTER TO ListElmt;
ListElmt: TYPE = RECORD[block: Block, next: ListPtr];
freeList: ListPtr;

Allocate: PUBLIC ENTRY PROCEDURE [size: CARDINAL]
RETURNS [p: ListPtr] = {
ENABLE UNWIND => NULL;
UNTIL « chunk of size words is available » DO

WAIT StorageAvailable;
ENDLOOP;

p ~ « remove chunk of size words »;
} ;

Free: PUBLIC ENTRY PROCEDURE [p:ListPtr,size: CARDINAL] = {
ENABLE UNWIND => NULL;

}.

« put back storage of size words »

BROADCAST StorageAvailable;
} ;

PrlJCeSSes and Concurrency

5-29

Mesa Language Class -- March, 1988 5-30

Other Forms of Notification

Since notification is a hint, a process can be awakened for reasons other
than a NOTIFY or BROADCAST on a CO~DITION.

Timeouts wakes up a process after a specified period of time.
(The process must determine why it was awakened).

Abort a process -- wakes up a process and generates the error
ABORTED.

Processes and Concurrency

Mesa Language Class -- March, 1988 5-31

Example: Timeouts

DIRECTORY
RemResDefs USING [Print];

RemoteResource: MOKITOR IMPORTS RemResDefs EXPORTS RemResDefs = {
ResourceAvailable: CONDITION;
available: BOOLEAN ~ TRUE;

ConnectAndWork: PUBLIC ENTRY PROCEDURE[work: Work]= {
ENABLE {

ABORTED =) GOTO retu rn; --see next example

UNWIND =) NULL};
UNTIL available DO

Process.Detach[FORK RemResDefs.Print[«note to user»]J~
WAIT ResourceAvailable;
ENDLOOP;

available ~ FALSE;
«do work with connection»;
EXITS

return =) NULL;
} ;

Disconnect: PUBLIC ENTRY PROCEDURE[res: Resource]= {
ENABLE UNWIND => NULL;

available ~ TRUE;
NOTIFY ResourceAvailable;
} ;

-- mainline code

Process.SetTimeout[8ResourceAvailable, RemResDefs.oneMin];
Process.EnableAborts[8ResourceAvailable];

}.

Prlocesses and Concurrency

Mesa Language Class -- March, 1988

Example: Abort

DIRECTORY
RemResDefs;

SomeImpl: PROGRAM IMPORTS RemResDefs = {
p: PROCESS;

MakeConnection: PROCEDURE[work: Work]= {
p ~ FORK RemResDefs.ConnectAndWork[work]:
} ;

Print: PUBLIC PROCEDURE[message: LONG STRING]= {
«print the message»

} .

IF «user does not want to continue» THEN
Process .Abo~t[p]; -- raises errorABORTED[p]

} ;

Processes and Concurrency

5-32

Mesa Language Class -- March, 1988 5-33

More Genteral Forms of Monitors

We've covered the basic form of a monitor, however, there are situations
when one wants to provide a different form of monitoring.

There may be times when the· monitor code may be too large to fit inside
one programming module, sal it needs.to be broken into several modules.
This is called Multi-Module jMonitors. The idea is that you have many
programming modules but only one Logical Monitor and therefore, need
only one Monitor lock. This rE~quires an explicit declaration of the monitor
lock.

There also may be a need to n()t monitor the code but rather just the shared
data structures. This is called Object Monitors and is implemented with
monitored records.

PflJcesses and Concurrency

Mesa Language Class -- March, 1988

Multi-Module Monitor

Shared
Code

Module #1

Process B

Shared
Code

Module #2

Shared
Data

Shared
Code

Module #3

I Monitor
. Lock I

.
II •••••• , •• ~

Processes and Concurrency

5-34

Mesa Language Class -- March, 1988

· -. · ·

· . · ·

O'bJect Monitor

Process B

a _ •••••••••••

Shared
Code

Module #1

Monitor Lock I
#1

Shared Data
#1

· · " · "
"

" .
"
"

.. ·
·

Process E

Shared
Code

Module #1

Mon itor Lock
#2

Shared Data
#2

5·-35

· ·

Pr,ocesses and Concurrency

Mesa Language Class -- March, 1988

Object Monitor

Process Group #1
Processes A, S, C

Shared
Code

Process Group #2
Processes 0, E, F

· · .

I Moni~o1r Lock I

· · · · ·

·
I Moni~O; Lock I

Processes and Concurrency

· · · · · · · ·

5-36

Mesa Language Class -- March, 1988 5-37

E.xplicit Declaration of Monitor Locks

To have the compiler use a programmer declared lock instead of inserting a
anonymous global lock, you must include a LocksClause. The LocksClause
goes just after the naming of a MONITOR module.

General form of a LocksClause:

LocksClause :=empty
LOCKS Expression
LOCKS Expression USING

identifier: TypeSpecification

A monitor lock must also be explicitly declared in the global frame of the
Monitor:

myLock: MONITORLOCK;

And since the lock is going to be shared among several modules, it will need
to be declared in a DEFINITIONS module, too. '

Example of the Monitor Module:.

--SampleMonitor.mesa

DIRECTORY
.

• • • t

SampleMonitor: MONITOR LOCKS myLock = {
myLock: MONITORLOCK;

Procl: ENTRY PROC[...] = {o.o};

} .

Processes and Concurrency'

Mesa Language Class -- March, 1988

Multi-Moldule Monitor Example

-- Definitions Module

MultiModuleInternalDefs: DEFINITIONS = {
sharedLock: MONITORLOCK;
P, Q, R, S: PROCEOURE[... J;

«other necessary definitions»
} ..

-- Monitor Module #1

DIRECTORY
Mu·' t iModu 1 elnte rna 1 Oefs;

MultiModulelmplA: MONITOR LOCKS sharedLock
EXPORTS MultiModulelnternalDefs = {

sharedLock: PUBLIC MONITORLOCK;

P: PUBLIC ENTRY PROCEDURE[... J = .{ .•. };

} .

-- Monitor Module #2

DIRECTORY
MultiModuleInternalDefs;

5-38

MultiModuleImplB: MONITOR LOCKS MultiModuleInternalDefs.sharedLock
IMPORTS MultiModulelnternalDefs
EXPORTS MultiModulelnternalOefs = {

Q: PUBLIC ENTRY PROCEDURE[... J = { ••. };

}.

Processes and Concurrency

• Mesa Language Class -- March, 1988

Multi-Module Monitor Example (con't)

-- Monitor Module #3

DIRECTORY
MultiModuleInternalDefs;

5-39

MultiModuleImplC: MONITOR LOCKS MultiModule!nternalDefs.sharedLock
IMPORTS MultiModuleInternalDefs
EXPORTS MultiModuleInternalDefs = {

R: PUBLIC ENTRY PROCEDURE[...] = { ... };

} .
-- Monitor Module #4

DIRECTORY
MultiModuleInternalDefs;

MultiModulelmplD: MONITOR LOCKS MultiModuleInternalDefs.sharedLock
IMPORTS MultiModuleInternalDefs
EXPORTS MultiModuleInternalDefs = {

S: PUBLIC ENTRY PROCEDURE[...] = { ... };

} .

Processes and Concurrency

Mesa Language Class -- March, 1988 5·~40

Multi-Modul~~ Monitor Example (can't)

MultiModulelnternalDefs MultiModulelnternalDefs.sharedLock I I
Multi Mod u lei nternal Defs: ~ r, MultiModulelmplA

J

DEFINITIONS = {

sharedLock: MONITORLOCK;
DIRECTORY

~ Multi Mod u lei nterna I Defs;
P/Q,R,S: PROCEDURE[...]; MultiModulelmplA: MONITOR LOCKS

}.
sharedLock

EXPORTS MultiModulelnternalDefs = {

~
· ..
shared Lock : PUBLIC MONITORLOCK;
· .. }.

~~ MultiModulelmplB

DIRECTORY
MultiModulelnternalDefs;

MultiModulelmplB: MONITOR LOCKS
MultiModulelnternalDefs.sharedLock

IMPORTS.M u Iti Mod u lei nternal Defs
· ..

\ MultiModulelmplC

DIRECTORY
Multi Mod u lei nternal Defs;

MultiModulelmplC: MONITOR LOCKS
Multi Mod u lei nternal Defs.sharedLock

IMPORTS MultiModulelnternalDefs
~ ...

\ MultiModulelmplD

DIRECTORY

~ MultiModulelnternalDefs;
MultiModulelmplD: MONITOR LOCKS

MultiModulelnternalDefs.sharedLock
IMPORTS MultiModulelnternalDefs
· ..

Note: All Modules use the same lock.

Pn,cesses and Concurrency

Mesa Language Class -- March, 1988 5-41

Monitored Records

For situations in which the monitor data cannot simply be the global
variables of the monitor module, a monitored record can be used. They are
delcared as normal records with the key word MONITORED describing it:

r: MONITORED RECORD[x: INTEGER, ...];

Characteristics of Monitored Records:

A Monitor Lock is automatically inserted in the record.

Fields of the monitored record must not be accessed except from within a
monitor which first acquires a lock.

If a monitored record is passed as an argument to a procedure! it must
only be done by reference. ..

Processes and Concurrency

Mesa Language Class -- March, 1988

Object Monitor Example

StackDefs: DEFINITIONS = {

Handle: TYPE = LONG POINTER TO Object;
Obj ect: TYPE; -- An Opaque Type! This will be a monitored record

Pop: PROCEDURE[stack: Handle] RETURNS[value: LONG CARDINAL];
Push: PROCEDURE[stack: Handle, value: LONG CARDINAL];
IsEmpty: PROCEDURE[stack: Handle] RETURNS[1tIs: BOOLEAN]:

5-42

Create: PROCEDURE[s;ze: LONG CARDINAL] ~ETURNS[stack: Handle];
Destroy: PROCEDURE[stack: Handle];

} . -- End of StackDefs

DIRECTORY
Heap,
StackDefs;

Objectlmpl: MONITOR LOCKS stack USING stack: StackDefs.Handle
EXPORTS StackDefs = {

myZone: UNCOUNTED ZONE ~ Heap.Create[initial: 5];

Object: PUBLIC TYPE = MONITORED RECORD[
« some representation of a stack »];

Processes and Concurrency

Mesa Language Class -- March, 1988

Object Monitor Example (can't)

Pop: PUBLIC ENTRY PROCEDURE[stack: StackDefs.Handle]
RETURNS[value: LONG CARDINAL] = {
ENABLE UNWIND => NULL;
« can access the record's fields in here » };

Push: PUBLIC ENTRY PROCEDURE[stack: StackDefs.Handle,
value: LONG CARDINAL] = {
ENABLE UNWIND => NULL;
« can access the record's fields in here » };

IsEmpty: PUBLIC ENTRY PROCEDURE[stack: StackDefs.Handle]
RETURNS[itIs: BOOLEAN] = {

ENABLE UNWIND => NULL;
« can access the record's fields in here » };

Create: PUBLIC PROCEDURE[size: LONG CARDINAL]
RETURNS[stack: StackDefs.Handle] = {
« allocate the stack object and initialize here »
stacK ~ myZone.NEW[Object[]];

}~

Destroy: PUBLIC ENTRY PROCEDURE[stack: StackDefs.Handle] = {
ENABLE UNWIND => NULL;

} .

« free the stacK object here»
myZone.FREE[@stack];
} ;

Processe~ and Concurrency

5-43

Mesa Language Class -- March, 1988

handle1
,,/

Object MCJnitqr Example (can't)

StackDefs

StackDefs: DEFINITIONS • {

}.

Handle: TYPE =
Object: TYPE;
Pop: PROC .. .
Push: PROC .. .

Client

DIRECTORY
StackDefs;

Client:PROGRAM
IMPORTS StackDefs = {

Objectlmpl

DIRECTORY
StackDefs;

ObjectImpl: MONITOR LOCKS stack
USING stack:StackDefs.Handle

EXPORTS StackDefs = {

} .

Object: PUBLIC TYPE =
MONITORED RECORD(...];

handlel: StackDef:i.Handle ~ StackDefs.Create(sizel];

handlel: StackDef:i.Handle ~ StackDefs.Create(size2];

handle3: StackDef:;.Handle ~ StackDefs.Create(size3];

StackDefs.Push(handlel. 15];

} .

handle3

5-44

-~~~~~~:-__ ~ ____ ~lo~c~k~f~o~r~~~a:c!k~3~~
lock for stack 2

handlel.monitorLock

Logical Monitor 1:
Monitored Record
of size1

handleZ.monitorLock

15

Logical Monitor 2:
Monitored Record
of size2

Processes and Concurrency

handle3.monitorLock

Logical Monitor 3:
Monitored Record
of size3

Mesa Language Class -- March, 1988

Signals and Processes

Signals and Monitors

Deadlock conditions

5-45

General Issues

Processes and Concurrency

Mesa Language Class -- March, 1988

Signals and Processes

Each process has its own call stack.

FORKing a process, therefore creates a new call stack.

Recall that signals propagate Lip a call stack.

5··46

This implies that signals cannot propagate across the gap created by FORKing
a procedure.

The only suitable targets for a FORK, therefore, are procedures that catch any
signals they incur, and that rlever generate signals of their own that are
expected to be handled by an()ther process.

Prc)cesses and Concurrency

Mesa Language Class -- March, 1988 5-47

Signals and Monitors

Signals within the body of an entry procedure require special attention:

Monitorlocks are not released when entry frames are unwound.

Raising a signal from within an entry procedure does not release the
monitor lock.

Processes and Concurrency

Mesa Language Class ~- March, 1988 5-48

Releasing the Lock Using UNWIND

To ensure the monitor lock is released when an entry procedure is being
unwound, include an UNWIND catch in the outermost block of the
procedure body.

Example:

Proc: ENTRY PROCEDURE[... J = {
ENABLE UNWIND => { « restore invariant » };

} ; .

Or:

Proc: ENTRY PROCEDURE[... J = {
ENABLE UNWIND =) NULL; -- Even if you don't need to do anything special,

-- you must include this to release the lock

} ;

Processes and Concurrency

Mesa Language Class -- March, 1988 5-49

RETURN WITH ERROR

When raising a signal from within an entry procedure you can use the
RETURN WITH ERROR construct if you want to release the monitor lock.

Failure: ERROR[kind: CARDINAL] = CODE;

Proc: PUBLIC ENTRY PROCEDURE[...] RETURNS[cl, c2: CHAR] = {
ENABLE UNWIND =) NULL;

IF condl THEN ERROR Failure[l];
IF cond2 THEN RETURN WITH ERROR Failure[2];

} ;

Processes and Concurrency

Mesa Language Class -- March, 1988 5-50

Deadlocks

Three common cases of pairwiise deadlock:

Two processes in a monitor WAITing, expecting the other to wake it up.

Cyclic calls between two m()nitors.

Embedded levels of monitors

p,.ocesses and Concurrency

Mesa Language Class - February, 1988

A
Abort
Asynchronous

B
BROADCAST

C

INDEX

Index-1

5-8, 5-30, 5-32
5-6, 5-1 2, 5-14

5-24, 5-29 - 5-30

Concurrency ... 5-1 - 5-4
CONDITION 5-8, 5-24 - 5-26, 5-27, 5-29 - 5-31

D
Deadlock ... ~ ~ . 5'-45
Detach .. 5-8, 5-14, 5-31

E
ENTRy.. 5-17,5-19 - 5-21,5-48 - 5-49
ERROR r •.• • 5-49
Example 5-14, 5-22 - 5-23, 5-25, 5-27 - 5-29, 5-31 - 5-32, 5-38 - 5-40, 5-42 - 5-44
Exclusion .. 5-21 - 5-23
External .. 5-19

F
FORK .. 5-4,5-7,5-12 - 5-14, 5-31 - 5-32, 5-46

G
Global .. 5-18

Interfaces ... 5-20
INTERNAL.. 5-17,5-19 - 5-20

J
JOIN .. 5-4,5-7,5-12" 5-13

L
Lock ... 5-10, 5-18, 5-34 - 5-36, 5-41, 5-48

M
Monitors 5-2, 5-4, 5-16 - 5-17, 5-20, 5-33, 5-45, 5-47
Multi-Module ... 5-33 - 5-34, 5-38 - 5-40

Index for Processes and Concurrency

Mesa Language Class - February, 1988 Index-2

N
Notification ... 5-30
NOTIFY .. 5-24 - 5-26, 5-27 - 5-28, 5-30 - 5-31

o
Object

P

5-33, 5-35 - 5-36, 5-42 - 5-44

Pause :............................... 5-8
Process 5-7 - 5-10, 5-12 - 5-14, 5-18, 5-26, 5-28, 5-31 - 5-32, 5-34 - 5-36
Processes 5-1 - 5-2, 5-5, 5-10, 5-16 - 5-17, 5-26, 5-28, 5-36, 5-45 - 5-46

R
Records ... 5-41
Representation .. 5-9 - 5-10

S
SetTimeout ... 5-8, 5-31
Sign~als .. 5-2, 5-45 - 5-47
Stack ... 5-6, 5-13
Structure- : 5-19
Synchronization ~ . 5-2, 5-24
Synchronous .. 5-6, 5-11

T
Ticks .. 5-8
Timeouts .. 5-30 - 5-31

U
UNWIND

W

5-23, 5-27 - 5-29, 5-31, 5-43, 5-48 - 5-49

5-24 - 5-26, 5-27 - 5-29, 5-31

, .

WAIT

Y
Yield • II • .. 5-8

Index fair Processes and Concurrency

Mesa Language Class -- August, 1987

Day 1- #20f9

scalar

Mesa Types

procedures processes

LONG
STRING

ordered pointers

LONG
CARDINAL

LONG
INTEGER

REAL element

zones

arrays

INTEGER CARDINAL NATURAL CHARACTER BOOLEAN

aggregate

records sequences

Numerics
sut-ranges

long REAL short
numerics numerics

A
LONG LONG

CARDINAL INTEGER INTEGER CARDINAL

array
descri ptors

NATURAL

Mesa Language Class -- August, 1987

Day 1- #30f9

Type Determination of Numeric Expressions

Word Length Rules for Expressions (Balancing)

In determining what type of operation (INTEGER, CARDINAL, LONG INTEGER, LONG CARDINAL, REAL)
should be performed in an expression, a common word length must first be found.

In general, the operation requiring the fewest automatic type conversions will be the one used. So, for
numerics:

1. If all (both) operands are short numerics, a short numeric operation will be used.

2. If all (both) operands are long numerics, a long numeric operation wil be used.

3. If one operand is a long numeric, the other operand will be lengthened and a long operation
will be used.
a. When an INTEGER is lengthened, its inherent type is LONG INTEGER.
b. When a CARDINAL or NATURAL is lengthened, its inherent type is LONG INTEGER and

LONG CARDINAL.

4. If one operand is a REAL the other operand is converted and a REAL operation is used.

Determination of Representation (Balancing)

Once a common word length is found for an expression, the following rules will choose whether a
signed (INTEGER, LONG INTEGER) or unsi~!1ed (CARDINAL, LONG CARDINAL) operation will take place.

1. If the operands have exactly one common inherent representation, the operation defined for
that representation is selected (and the target representation is ignored).

2. If the operands have no common inherent representation but the target representation is well­
defined, the operation yielding that representation is chosen.

3. If the operands have both inherent representations in common, and if target representation is
well-defined, it selects the operation.

4. If the operands have both inherent representations in common but the target representation is
ill-defined, the signed operation is chosen.

5. Unary minus converts its argument to a signed representation if necessary and produces a
signed result.

If the operands have no representation in common and the target representation is ill-defined, the
expression is in error.

Mesa Language Class -- February, 1988

Day 1- #40f9

About The Lab
The Training Lab is located in room C401, next door. There are 20 machines available, so there should be
one for everyone. The machines are already set up to contain all of the software you will need for the
week. The XOEMaii Tutorials have also been installed in case you have not completed all of them or you
would like to refer back'to them. Here are a few other things to keep in mind:

1) The afternoon labs are" Free Form". That is, you may come and go as you please, taking breaks and
lunch as you wish. We do expect, however, that you do put some effort into working on the day's
assignment.

2) In order for the instructors to understand how well the .information is getting through, we would like
each of you to show one of the instructors a running version of your assignment. (We may choose to
test a few key things to see how robust your implementation actually is.)

3) There is an information card on each keyboard assigning you a logon name and password as well as
other information about your machine. You do not need to be logged in to work in XOE, although you
do need to be logged in to perform any operations over the net (e.g. Printing something). If you have
your own logon name on the Xerox net, you may use it if you like.

4) The lab machines have an established SearchPath of directories. These include a working directory
(MesaWO), a Mesa Interface directory (MesaDefs), etc. To avoid problems, you should not alter this
SearchPath.

5) XOE Documentation is located in the back of the room. There are copies of the Mesa Language
. Manual, Mesa Programmer's Manual, Pilot Programmer's Manual, XDE User's Guide, and HardCopy

versions of the XOE Tutorials. You are encouraged to use these throughout the course, although they
are to remain here for future students and classes.

6) You may wish to personalize the User.em on your workstation by changing the HardCopy PrintedBy:
option, or the default Brush, the Logon Name, etc. It is okay to do so, but you do !1ot have to.

7) At the end of each day, send a mail message to us mentioning what you liked or disliked about the
day's work, any typos you noticed, bugs in the programs (ours not yours), or suggestions you may have.
(We are constantly modifying the material based on students' suggestions.) The message may be as
brief or lengthy as you like. We have found, though, that students who wait until Day 5 to summarize
their thoughts in one message, tend to forget some of the thoughts that they had earlier in the week.

8) Before you leave for an extended period of time (especially overnight), be sure to run some sort of
DMT on the screen in order to protect them. There are many to choose from (e.g. DMT, BrushDMT,
Poly, Space Out, KineticFractal, etc.).

9) Most Importantly: ASK QUESTIONS! We are here to help you.

Our electronic addresses: MacKay:OSBU North:Xerox, Herz:OSBU North:Xerox

Mesa Language Class -- August, 1987

Day 1- #50f9

Compiler Exercise
There are two parts to this assignment to help you learn mesa syntax. In Part I you will fix errors in code
already written for you. In Part II you will write some code yourself.

Part I: Syntax Errors

The file CompilerPractice.mesa has several intentional compiler errors. Use Command Central (or the
executive) to compile CompilerPractice.mesa. You can see the results in the Compiler log,which is
displayed in the bottom subwindow of Command Central. (If you used the executive to compile, then
you will have to load the file Compiler.log into a file window.)

When the compiler finds an error, it gives an indication of the error (an error message), the position of
the error in the source file, a listing of the offending line, and the fix the Compiler assumed in order to
continue (when possible).

The compiler will not go on to the next pass after it detects an error. This means that you must fix the
errors and compile the program again. If it frnds more errors, then you must fix them and repeat the
cycle.

Upon successfully comp-iling the program, run the program in the Executive by typing
'CompilerPractice'.

Part II: Simple Programming

If you ran CompilerPractice, you will have noticed that the tool is a simple Math tool. You might have
noticed that there are five functions (add, subtract, multiply, divide, yx). The first four functions have
already been implemented. You will implement the function yx.

In the program, each function is implemented in separate procedures. The procedure YtotheXlnternal,
which is where the work should be done, has already been started for you. The code for printing the
answer has been provided. You need to calculate what Y to the X power is and store the answer in the
variable answer. The values of x and yare stored in data.x and data.y, respectively_ (Don't worry about
all cases; you need only be concerned with relatively small numbers for x and y. This is just to give you
some experience in writing very simple mesa code.)

To test your program, you need to unload the previous version by typing 'Unload CompilerPractice' in
the executive. Then, recompile and then run your new version (like you did in Part I).

Mesa Language Class -- March, 1988
Day 1- #60f9

Debugger Examples

Debugger Examples

Mesa Language Class -- March, 7988
Day 7 -#6of9

Learning Some Debu~lger Commands with MiscProcs

2

These examples are to give you a little exp'erience with debugger before working on today's debugger
assignments.

This is the same MiscProcs example that is used in the on-line debugger tutorial. If you are not completely
comfortable with the concepts covered in the on-line tutorial, or if you haven't done the debugger
tutorial, you should go through this example. Otherwise, feel free to go on to the next example.

The purpose of this example is to introducE~ you to some of the more useful aspects of the debugger's
interpreter. At this point, you should make sure that you have the file MiscProcs.mesa on your Copilot
volume. Load the file into an empty window. Compile the module either from the Executive (by
typing 'Compiler MiscProcs') or by using the t:ommand Central tool. If it does not compile successfully, stop
and ask a lab assistant for help.-Otherwise, run the program by typing 'MiscProcs/d' in the Executive.

This command loads the file MiscProcs.bcd, but does not start it. What this means is that the global frame
has been allocated for the program (and certain information has been recorded in the operating system)
but none of the mainline code has been e}(ecuted and none of the variables have been initialized.The
switch Id, calls the debugger. If there is not al sword window to debug locally (or if it is tiny), then one will
be made activefor you; otherwise, search th4! active windows looking for the local debugging window. At
this point, you can refer to the module from the debugger (since its global frame has been allocated).

In this example, you should type whatever is underlined into the debugger file subwindow. Let's begin
with:

1. >SEt !Odule context: MiscProcs
2. >...AU
3. > Factorial[5]
4. > 17081
S. >...AU
6. > A[3] • 30; A[7] • 70
7. >~
8. > InterChange[3.7]
9. >~

-- type a carriage return (CR) at the end of the line
-- type a space, then the characters "A;j" followed by a CR
-- type a space at the beginning of lines 3 thru 9

On line 1, you told the debugger the module that you were interested in.

On line 2, you used the interpeter to examine the variables "A" (an array) and "j" (a long cardinal). (The
Interpreter is invoked by typing a space at the beginning of a line.) Their values look unfamiliar; they
weren't initialized because the module hadn't been started {which explains the warning that you got in
the debugger: ." {global frame number} is not started ").

On line 3, you made an interpreted call to the procedure Factorial in module MiscProcs. You passed the
necessary parameter (in this case, a cardin.al), and it returned to you an answer (the factorial of your
number). This riu~ber may have been in an octal format (denoted by the "B" after the number). (Note
again that you wer~ warned, before the procedure call, that the module had not been started).

On line 4, you interpreted the number "170B" by typing a "?" after the number. The reason that you did
this was because the answer returned by procedure Factorial was probably in octal format, and you
wanted to see what the answer was in decimal format. What you got when you interpreted "170B" was its
value in octal, hexidecimal, decimal, ascii, and other formats. You can also change the default format by
invoking Options! in the Sword FormSW and changing the value of the enumerated type for cardinals.

Debugger Examples

Mesa Language Class -- March, 1988

Day 1- #60f9 3

On line 5, you re-examined the variables "A" and "j" and found that they contained values that were
assigned to them in the program ("A" init(alized to all zeroes and "j" being set by the Factorial call to 120).
How did the variables become set? You executed code in ·the module when you called the procedure
Factorial. This caused all the global variables in the module to be initialized.

On line 6, you stuffed you r own val ues into the 3rd and 7th spots in the array "A. "

On line 7, you examined "A" to make sure that the array contained your values.

On line 8, you made an interpeted call to the procedure InterChange, which interchanges the two values in
the spots in the array that you specified (in this case, the third and seventh spot).

On line 9, you re-examined" A" to check that the values for the 3rd and 7th spot had been interchanged.

Your debugger should look similar to the following:

;

go: {proceed, abort, kill, screen, start} Client: {local} destroyl

read: {} write: {} processes configs attach: {source, symbols}

sourcel findModulel rep?! showType! type&bitsl options!

break: {set, clear, clearall, list, attachCond. attach Key} watch: {off}

You called?
>SEt Module context: MiscProcs

> A; j

112560B is not star~edl
A = (13)[1, 2, 6400B, 17B, 20B, 20156B, 67564B, 20146B, 67565B, 671448, 201418,

671448, 20000B]

112560B is not started!

j = 4640650441B

> Factorial[5]
112560B is not started!

1708

> 170B?
170B = 78X = 120 = 'x = 7:8

> A; j

A =, (13)[0,0,0,0,0,0,0,0,0,0,0,0,0]

j =' 170B
> A[3] ~ 30; A[7] ~ 70

> A
A = (13}[O,0,0,30,0,0,0,70,0,0,0,0,0]

> InterCh·ange [3, 7]

> A
A = (13}[0,0,0,70,0,0,0,30,0,0,0,0.0]

>

Debugger Examples

Mesa Language Class -- March, 1988

Day 1-#60f9

Now, try the following in the debugger:

10.) Makelinkedlist[4]

11.) headNode
12.) headNode't
13.) headNode.next't
14.) headNode.next.next't
15.) headNode.next.next.next't

4

On line 10, you made a call to the procedure' MakeLinkedList, which creates a singly-linked list where the
size is specified by the caller (in this case, the size is 4). The global variable headNode is a pointer variable
that acts as the header for this linked list.

On line 11, you examined the value of headNude and found the address of the record that it points to. You
know that it's an address by the up-arrow that follows the returned number.

On line 12, you asked to dereference the plJinter headNode and examined the contents of what headNodo
points to. Notice the field next and the fact that it contains a number with an up-arrow after it. This field
points to the next element in the linked list. (The other field in this record, stl", is a LONG STRING of
length = 1 and maxlength = 1 [hence the "0,1)"] that contains the text "0".)

On line 13, you asked to examine the contents of what the next field points to. Notice that you did not have
to type headNode't .next't, only headNode.next't, due to the auto-dereferencing feature that exists in the Mesa
language and is included in the interpreter.

On line 14, you examined the contents of what the next next field points to.

On line 15, you looked at the final element in the linked list. Notice that the next field for this last element
is NIL.

The last part of your debugger should look similar to the following.

go: {proceed, abort, kill, screen, start} Client: {local} destroy!

read: {} write: {} processes configs attach: {source, symbols}
source! findModule! rep?! showType! type&bitsl options!

break: {set, clear, clearall, li:st, attachCond, attach Key} watch: {off}

~--~D
) MakelinkedList[4]
). headNode

headNode = 4021731B~

)' headNode~

headNode = [str:4021736B~(1,1)"O", next:4021742B~]

) he~dNode.next~

next = [str:4021747Bt(1,l)"C". next:4021753B~]
) headNode.next.next~

next = [str:4021760Bt(1,l)"B", next:4021764Bt]

) headN~de.next.next.nextt

next = [str:4021771B~(1,l)"A", next:NIL]
)

Debugger Examples

Mesa Language Class -- March, 1988

Day 1- #6of9

Second Example: "Function"

5

This example takes you through a fairly realistic debugging session. Suppose that you have just written a
program called Function.mesa and you want to test it to see if it gives the correct answers, and if it catches
human errors in input and handles them in a desirable way. Load Function.mesa in a window, then
compile (your favorite way) and run it from the executive (this time, with no switches.) Also, in the
executive type 'help function' to see how to use the program. Test the program by entering the following
commands in the Executive:

function s/20
function c/5
function s/8 s/10 c/4
function ql

At this point, the program fails and the debugger gets called. (If a debugger window is not automatically
brought up, search the active windows looking for the local debugging window.) In the debugger, you're
told that an uncaught SIGNAL caused the debugger to be invoked. SIGNALs have names, and if this signal
can't be identified, it is because the symbols for the module that raised the signal are not present on your
disk. In this case, the module that contains the signal is StringslmplB. You may not have the symbols for the
module StringslmplB, and you, therefore, don't have any information other than the fact that the
program Function.bcd had made a call into StringslmplB. If you don't already have the fi Ie
StringslmplB.bcd on your local disk, ask a lab assistant to give you the file. After you have loaded the file
onto your machine, type the letters urd" in the debugger:

>~e~isplay swap reason

The debugger will now consider the new information (the file StringslmpIB.bcd) and tell you what the
signal was (String.lnvalidNumber) that caused the debugger to be called. You can now display the stack
and run~time variables to determine what caused the uncaught SIGNAL. 1n the following, type what's
underlined into the debugger:

1. >~isplay ~tack -- Display the first element on the run-time stack
2. >.!i
3. >1 -- Look at the line in the source code that executed
4. >! -- Look at the local variables in this procedure

On line 1, you asked to display the most recent call on the run-time stack. It was a procedure in
StringslmplB, and since we are looking for our code in Function, we go on to the next item on the run-time
stack. (The format of each line of the stack is this: procedureName, local frame pointer, moduleName,
global FrameNumber.) .

On line 2, you asked to see the next calion the run-time stack. This time, you recognized one of your
modules on the stack, namely "Function." You saw that the procedure being executed was procedure
Main when a call 'was made to a procedure in StringslmplB. (Generally, when debugging an error like this,
you want to keep using the "next" command until you see a procedure in your code.)

On line 3, you displayed the source-code line that called the procedure in StringslmplB. It was a call
through the String interface, and the call was to String.StringToNumber. If you look in your Pilot
Programmer's Manual (version 12.0, p. 7-7), you will see that this procedure interprets an input string as an
number and returns its value.

On line 4, you inspected the variables that are local to the procedure on the stack. Notice that the string
variable that was passed to String.StringToNumber, called nUllber, is NIL. An educated guess would be that
this NIL string caused the problem because String.StringToNumber wouldn't expect a NIL string.

Debugger Examples

Mesa Language Class - March, 7988

Day 7 -#60f9

Your debugger should look something like this:

go: {proceed, abort, kill, screon, start} Client: {local} destroyl
read: {} write: {} procosses configs attach: {source, symbols}

source! findModule! rep?! showType! type&b1ts! options!

break: {set, clear, clearall. l"ist. attachCond. attach Key} watch: {off}
~--~O

••• uncaught SIGNAL InvalidNumber {in StringsImplB,

>Display Stack
G:37420B) •••

No symbols for L: 14130B, PC: 4660B (in StringslmplB, G: 37420B) >n

Main, L: 10570B, PC: 337B (in Function, G: 112570B) >s <>cardinal ~

String.StringToNumber[number, 10];
>v

h = 410720Bt

clientData = NIL
outcome = normal

OutputProc = PROCEDURE [10758B] (in module Execlmpl, G: 35004B)
operation = 3314464Bt{1.100)~q"

number = NIL

cardinal 0
answer = 0

>

6

Now you need to determine how this situation got past your error checking. In the procedure Main, the
line immediately before the call to String.StringToNumber is:

IF (operation = NIL) AND (nu.ber = NIL) THEN EXIT;

Notice that operation is not NIL in this case, but nu.ber is. This is the situation that should be caught because
it produces an uncaught SIGNAL if it isn't. The correct error-catching code should be:

IF (operation = NIL) OR (nu.ber = NIL) THEN EXIT;

Make this change to Function.mesa. BeforE! you can recompile your new version, you must Abort the
current versipn by clicking the abort command in the Sword formSW and then unloading Function in the
Executive. Then re-compile and run your new version.

Debugger Examples

Mesa Language Class -- March, 1988

Day 1-#60f9

More on Uncaught Signals

7

This part of the exercise will show you how to stop uncaught signals from entering the debugger. Now try
this command in the executive:

function s/4k6

This should cause the local debugger to be invoked with another Uncaught SIGNAL in StringslmplB. The
signal should be String.lnvalidNumber. Now display the stack and run-time variables to determine what
caused the uncaught signal this time. If you look at the Pilot Programmer's Manual (Ch. 7), you'll see that
the procedure String.StringToNumber can raise the signal String.lnvalidNumber. In order to make
Function.mesa catch the signal you need to change:

cardinal ~ Str1ng.Str1ngToNumber[number, 10];

to:

cardinal ~ String.StringToNumber[number, 10 IStr1ng.Inva11dNumber =) {

OutputProc[·Bad number ••• continu1ng ••• ·L];
CONTINUE }];

You don't really need to understand what an uncaught signal is for now; signals will be covered in-depth
later this week. Hopefully, what you should get out of this example is the knowledge of how to debug an
uncaught signal.

Remember, If you don't have the symbols for the module that raised the signal, you may want to retrieve
them onto your machine and redisplay the reason for the swap (from the debugger).

If you already have the symbols on your machine, you do not have to retrieve anything; the debugger will
tell you what the uncaught signal was since it will have all the information it needs. Often, you will be able
to debug such errors without ever retrieving the symbols: just proceed up the stack until you find one of
your procedures, and then use the Source command to find the line of code where it died. This will often
be enough information to enable you to debug the problem.

Setting Breakpoints

Now, type the following in the Executive:

function ql
function 5/100
function c/100

The answers you got for the last query should seem a little strange. 100 cubed is not 16960. At this point, it
is a good idea to set breakpoints in the code to see why the wrong answer occasionally gets returned. To
set breakpoints, the program must always be loaded first. Since, we have already run our program, then it
must be loadedl

Suppose you suspect that the variables contain the correct information, but they are not being printed out
correctly in the procedure PrintResult. Find a local debugging window and type the underlined parts into
the fileSW to set a breakpoint at the beginning of PrintResult:

1. >§Et !odule context: Function
2. >§reak ~ntry procedure: PrintResult.
3. >froceed (Confi rm) -- Type a carriage return at the end of this line to confirm

Debugger Examples

Mesa Language Class -- March, 1988

Day 1- #60f9

Now try the following command in the Executive:

function c/l00

8

When the procedure PrintResult is entered, the breakpoint will be executed, thus causing the debugger to
be called. In the debugger, examine the parameters for PrintResult:

4. >~;splay §tack
S. >2

The value that's given to PrintResult is 1696(), so the problem is not in printing out the result; the result
itself is incorrect. Now try setting breakpoints on the procedures that actually calculate the results:

6. >g
7. >CLear §reak #: !
8. >§reak ~it procedure: CubeInput
9. >~roceed (Confirm)

Again, try "function C/100" in the Executive. You should hit the breakpoint that you set in the procedure
Cubelnput. (If you get a Stack Error first, just proceed and you will eventually hit your breakpoint.) Use the
debugger to examine the return parameter (type "r" while in Display Stack mode) for Cubelnput; it should
be equal to 16960. Therefore, you know that the calculation itself is incorrect.

If you remember from the lecture this morning, multiplication of two CARDINALs will yield a CARDINAL In
this case, mUltiplying the three CARDINALs CIOO and 100 and 100) resulted in an answer outside the range
of CARDINAL (which is [0 .. 216». The number 16960 is the modulo of (1003 1 216).The way to fix this is to
make the answer a LONG CARDINAL so that the overflow cases will not occur.

You should change the following two lines lof code in Function.mesa before re-compiling it and runn'ing
Function.bed again (remember to abort and unload before re-compiling):

(In procedure Squarelnput. .. J
RETURN [input • input];

(In procedure Cubelnput. ..)

change to ... RETURN [LONG[input] • input];

RETURN [input • input • input]; change to ... RETURN [LONG[input] • input • input];

"LONG" will force one of the multiplicands to be a LONG CARDINAL; hence, the answer will be a LONG
CARDINAL because operations involving CARDINALs and LONG CARDINALs result in LONG numbers.

Debugger Examples

Mesa Language Class -- August, 1987

Day 1 - #70f9

Debugger Exercises
All of the following source files include comments at the beginning of the file explaining what the
program does. Read those commentsl Compile the programs using your favorite method and then run
them each from the executive. Then, follow the instructions below. Each program will crash and you
should find and fix the problem causing the crashes. Debugging techniques will be required to fix the
programs.

Part I: Hash.mesa

Run the following commands from the Exec:

Help Hash
Hash lu mark john
Hash john/d
Hash john/d

At this point, you should get an address fault. If there isn't a current local debugging session, a local
debugging window will be created for you; otherwise, search through the active windows for the local
debugging session. Use the debugger to your advantage. It can help you. Really! After you fix the
problem, abort the debugging session and unload the program from the executive. Then re-compile
and re-run your new version. Make sure that all the bugs are out by running the following commands:

Hash lu mark
Hash john/d

Part II: BubbleSortProgram.mesa

Run the following commands from the Exec:

Help BubbleSort
BubbleSort 2 7 4 1 10
BubbleSort 9 7 4 12 31 16 4 28 1 32
BubbleSort 5 18 7 22 10 11 63 22 84 24

You should get an uncaught signal at some point. After you fix the problem, abort, unload, recompile,
and re-run (same steps as above) and then make sure that all the bugs are out by running the following
commands:

BubbleSort 13 19 34 81 18 56 23 44 46
BubbleSort 26 20 4 17 11 18 19 68 1 42

If that input works, then try to input just one number:

BubbleSort 13

Mesa Language Class -- August, 1987

Day 1-#80f9

else Put.Line[data.f1leSW, "undefined"L];
t Syntax Error [4047]

Text inserted is:
Capitolize ELSE

};
t Syntax Error [5281]

Text inserted is: ENDCASE
-- Notice the SELECT statement. For every SELECT there should be an ENDCASE. Insert one here.

Trial # 3

ELSE Put.Line[data.fileSW, "undefined"L];
t Syntax Error [4041]

Text deleted is: ELSE
-- There should not be a colon separating the THEN-part from the ELSE-part of the IF-THEN-ELSE
statement.

Trial # 4

Integer is undeclared, at Comp1lerPractice[1021]:
x(6): Long Integer ~ 0,

Again, ALL Mesa Reserved Words must be Capitolized - so, Capitolize INTEGER

Long does not name a variant, at CompilerPr~ctice[1021]:
x(6): Long Integer ~ 0,

-- Capitolize LONG

Integer is undeclared, at Comp1lerPract1ce[1049]:
y(8}: Long Integer ~ NIL];

-- Capitolize INTEGER

Long does not name a variant, at CompilerPractice[1049]:
y(8): Long Integer ~ NIL];

-- Capitolize LONG

Trial # 5

.NIL has incorrect type, at CompilerPractice[1049]:
y(8): LONG INTEGER ~ NIL];

-- A LONG INTEGER should be initialized to zero not NIL.

Trial # 6

Command: Compi1erPractice
CompilerPract1ce.mesa
lines: 220, code: 1774, links: 22, frame: 11. time: 52

-- After correcting all of the above errors, CompilerPract1ce.mesa should compile correctly!!!

Compiler Practice Solution

6

Mesa Language Class - August, 1987

Day 1- #80f9

Compiler Practice Solution

This is the .mesa file with no syntax errors. Following this listing is a listing of the compiler errors that were
encountered and the fixes that were made.

File: CompilerPracticeSolution.mesa - - Last edited by:
MacKay 16-May-86 12:26:30
Create by FormSWLayoutTool on 15-May-86 10:15All rights reserved.

DIRECTORY
Exec USING [AddCommand', ExecProc, Handle, OutputProc, RemoveCommand],
Format USING [StringProc],
FormSW USING [AllocateItemDescriptor, C11entItemsProcType, CommandItem, lineO, line2,

LongNumberItem, ProcType],
Heap USING [systemZone],
Process USING [Detach],
Put USING [CR, Line, LongNumber, Text],
Tool USING [Create, Destroy, MakeFileSW, MakeFormSW, MakeMsgSW, MakeSWsProc, UnusedLogName],
ToolWindow USING [TransitionProcType],
Window USING [Box, Handle],
WindowFont USING [CharWidth];

Comp11erPractice: MONITOR
IMPORTS

Exec, FormSW, Heap, Process, Put, Tool, WindowFont {

DataHandle: TYPE = LONG POINTER TO Data;
Data: TYPE = MACHINE DEPENDENT RECORD [

msgSW(O): Window.Handle ~ NIL,
formSW(2): Window.Handle ~ NIL,
f1leSW(4): Window.Handle ~ NIL,
x(6): LONG INTEGER ~ 0,
y(8): LONG INTEGER ~ 0];

FormItems: TYPE = {x, add, subtract, ytotheX, y, multiply, divide};

data: DataHandle ~ NIL;
wh: Window.Handle ~ NIL;
zone: UNCOUNTED ZONE ~ Heap.systemZone;
answer: LONG INTEGER ~ 0;

initialBox: Window.Box = [place: [x:436, y: 82], dims: [w: 512, h: 555]];
busyBit: BOOLEAN ~ FALSE;

Busy: ENTRY PROCEDURE RETURNS [isBusy: BOOLEAN] {
ENABLE UNWIND => NULL;
isBusy ~ busyBit;
busyBit ~ TRUE };

Done: ENTRY PROCEDURE = {

ENABLE UNWIND => NULL;
busyBit ~ FALSE};

Write: Format.StringProc = {Put.Text[data.fileSW, s]};
Msg: Format.StringProc = {Put.Text[data.msgSW, s]};

Compiler Practice Solution

Mesa Language Class - August, 1987

Day 1 - #80f9

Add: FormSW.ProcType = {
ENABLE ABORTED =) {Done[]; CONTINUE};
IF Busy[] THEN {

Msg["Tool is busy.\n"L]; RETURN};
Process.Detach[FORK AddInternal[]]};

AddInternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};
answer ~ data.x + data.y;
Put.LongNumber[data.fileSW, data.x, [unsigned: FALSE]];
Put.Text[data.fileSW, " plus "L];
Put.LongNumber[data.fileSW, data.y, [unsigned: FALSE]];
Put.Text[data.fileSW, " is "L];
Put.LongNumber[data.f1leSW, answer, [unsigned: FALSE]];
Put.CR[data.fileSW];
Done[] };

Subtract: FormSW.ProcType {
ENABLE ABORTED =) {Done[]; CONTINUE};
IF Busy[] THEN {

Msg["Tool is busy.\n"L]; RETURN};
Process.Detach[FORK Subtractlnternal[]]}:

Subtractlnternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};
answer ~ data.x - data.y;
Put.LongNumber[data.fileSW, data.x, [unsigned: FALSE]];
Put.Text[data.fileSW, " minus "L];
Put.LongNumber[data.fileSW, data.y, [unsigned: FALSE]];
Put.Text[data.fileSW, " is "L];
Put.LongNumber[data.fileSW, answer, [unsigned: FALSE]];
Put.CR[data.fileSW];
Done[] };

Multiply: FormSW.ProcType = {

ENABLE ABORTED =) {Done[]; CONTINUE};
IF Busy[] THEN {

Msg["Tool is busy.\n"L]; RETURN};
Process.Detach[FORK Multiplylnternal[]]};

Multiplylnternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};
answer ~ data.x • data.y;
Put.LongNumber[data.fileSW, data.x, [unsigned: FALSE]];
Put.Text[data.fileSW, " times "L];
Put.LongNumber[data.fileSW, data.y, [unsigned: FALSE]];
Put. T ext [d at a . f i 1 e SW , " is" L] ;
Put.LongNumber[data.fileSW, answer, [unsigned: FALSE]];
Put.CR[data.fileSW];
Done[] };

Divide: FormSW.ProcType = {
ENABLE ABORTED => {Done[]; CONTINUE};
IF Busy[] THEN {

Msg["Tool is busy.\n"L]; RETURN};
Process.Detach[FORK Dividelnternal[]]};

Compiler Practice Solution

2

Mesa Language Class - August, 7987
Day 7- #80f9 3

DivideInternal: PROCEDURE = {
ENABLE ABORTED =) {Done[]; CONTINUE};
Put.LongNumber[data.fileSW, data.x, [unsigned: FALSE]];
Put.Text[data.fileSW, " divided by "L];
Put.LongNumber[data.fileSW, data.y, [unsigned: FALSE]];
Put.Text[data.fileSW, " is "L];
IF data.y # 0 THEN {

answer ~ data.x / data.y;
Put.LongNumber[data.fileSW, answer, [unsigned: FALSE]];
Put.CR[data.fileSW];
Done[];}

ELSE Put.Line[data.fileSW, "undefined"L];
Done[] };

YtotheX: FormSW.ProcType = {

ENABLE ABORTED =) {Done[]; CONTINUE};
IF Busy[] THEN {

Msg["Tool is busy.\n"L]; RETURN};
Process.Detach[FORK YtotheXInternal[]]};

YtotheXInternal: PROCEDURE = {
ENABLE ABORTED =) {Done[]; CONTINUE};
IF data.x = 0 THEN answer ~ 1
ELSE {

answer ~ data.y;
THROUGH [l .. data.x) DO

answer ~ answer • data.y;
ENDLOOP;};

Put.LongNumber[data.fileSW, data.y, [unsigned: FALSE]];
Put.Text[data.fileSW, " raised to the power of "L];
Put.LongNumber[data.fileSW, data.x, [unsigned: FALSE]];
Put.Text[data.fileSW, " is "L];
Put.LongNumber[data.fileSW, answer, [unsigned: FALSE]];
Put.CR[data.fileSW];
Done[] };

ClientTrans1tion: ToolWindow.TransitionProcType {
SELECT TRUE FROM

};

old = inactive =)

IF data • NIL THEN data ~ zone.NEW[Data ~ []];
new = inactive =)

IF data # NIL THEN {
zone.FREE[@data]};

ENDCASE;

Compiler Practice Solution

Mesa Language Class -- August, 1987

Day 1- #80f9 4

The rest of the code is used for buildin"g the tool window. You will learn about this on Wednesday,
so don't worry if you don't understand it. There are not any compiler errors in these procedures.

Init: PROCEDURE = {
Exec.AddCommand["CompilerPractice.-"L, NoOp, NIL, Unload];
wh ~ Tool.Create[

makeSWsProc: MakeSWs, initialState: default, initialBox: initialBox,
clientTransition: ClientTransition, name: "CompilerPractice"L,
cmSection: "CompilerPractice"L] };

NoOp: Exec.ExecProc = { };

Unload: Exec.ExecProc = {

IF Busy[] THEN {
Exec.OutputProc[h]["Tool is busy. Sorry.\n"L]:
RETURN[error] };

Tool.Destroy[wh]:
Exec. RemoveCommand[h , "CompilerPract1ce.-"L];
Done[] };

MakeSWs: Tool.MakeSWsProc = {
10gName: LONG STRING ~ [23];
Tool.UnusedLogName[unused: 10gName, root~ "CompilerPractice.log"L];
data.msgSW ~ Tool.MakeMsgSW[window: window];
data.formSW ~ Tool.MakeFormSW[

window: window, formProc: MakeForm];
data.fileSW ~ Tool.MakeFileSW[window: window, name: logName] };

charWidth: CARDINAL ~ WindowFont,CharWidth['O];
CharPos: PROC[char: CARDINAL] RETURNS [x: INTEGER] {

x ~ charW1dth • char };

MakeForm: FormSW,ClientItemsProcType = {
OPEN FormSW;
nItems: CARDINAL = Formltems.LAST.ORD + L;
items ~ AllocataltemDescriptor[nItems];
items[Formltems.x.ORD] ~ LongNumberltem[

tag: "X"L, place: [CharPos[l], lineO], signed: FALSE, value: @data.x];
items[Formltems.add.ORD] ~ Commandltem[

tag: "ADD"L, place: [CharPos[34], lineO], proc: Add];
items[Formltems.subtract.ORD] ~ Commandltem[

tag: "SUBTRACT"L, place: [CharPos[47], lineO], proc: Subtract];
items[Formltems.ytotheX.ORD] ~ Commandlttm[

tag: "Y to the X"L, place: [CharPos[66], lineO], proc: YtotheX];
items[Formltems,y.ORD] ~ LongNumberltem[

tag: "Y"L, place: [CharPos[l], line2], signed: FALSE, value: @data.y];
items[Formltems.multiply.ORD] ~ Commandltem[

tag: "MULTIPLY"L, place: [CharPos[34], 11ne2], proc: Multiply];
items[Formltems.d1vide.ORD] ~ Commandltem[

tag: "DIVIDE"L, place: [CharPos[47], 11ne2], proc: Divide];
RETURN[items: items, freeDesc: TRUE] };

-- Mainline code
Init[]; this gets string out of global frame •

} ...

Compiler Pr aetice Solution

Mesa Langua~e Class -- August, 1987
Day 1- #80f9 5

Here is a listing of the 6 different compiler logs that it took to get the program compiled, with error
meanings and the fixes that should be made. Keep in mind that depending on how you interpreted the
errors, you might not get the same subsequent errors.

Trial # 1

DIRECTORY:
~ Syntax Error [218]

Text deleted is:
-- Just delete the colon

Window USING [Box, Handle],
~ Syntax Error [654]

Text deleted is: USING
Text inserted is: {[
-- Notice the line above this one. The semi-colon indicates the end of the DIRECTORY clause, which
shouldn't end here. The semi-colon should be replaced with a comma.

WindowFont USING [CharWidth]:
t Syntax Error [688]

No recovery found.
-- This error was caused by the misplaced semi-colon, also. When that -correction is made, this error
will go away.

Trial # 2

Exec, FormSW, Heap, Process, Put, Tool, WindowFont, = {
t Syntax Error [799]

Text inserted is: id
Delete the comma following "WindowFont"

Put.Text{data.fileSW, " plus "L};
t Syntax Error [2025]

Text deleted is: (id. id ,
Text inserted is: : {

Replace the opening AND closing parentheses with square brackets.

Put.CR{data.fileSW}:
t Syntax Error [2217]

Text inserted is:
Same error as above

if data.y # 0 then {
t Syntax Error [3890]

Text inserted is:
-- The problem here is caused from 'if' not being in caps, so the compiler doesn't recognize it as a
reserved word. Solution: capitolize IF

if data.y # 0 then {
t Syntax Error [3901]

Text deleted is: id
Text inserted is:
-- Capitolize THEN

Compiler Practice Solution

Mesa Language Class -- March, 1988

Day 1-#90f9

Solutions to Debugger Exercises
Part I: Hash.mesa

An address fault occurs when you are searching for an element to be deleted and the element is not in
the list. To fix this error, add some error checking to make sure that the element is in the list before you
try to delete it.

DeleteRec: PROCEDURE [string: LONG STRING ~ NIL] RETURNS [BOOLEAN ~ TRUE] = BEGIN
ptr, ptr2: Handle:
bucket: CARDINAL:
[ptr, bucket] ~ FindRec[string];
IF ptr = NIL THEN RETURN[FALSE];
ptr2 ~ table[bucket];
UNTIL (ptr2.mySibling = NIL) OR (ptr2.mySibling ~ ptr) DO

ptr2 ~ ptr2.mySibling;
ENDLOOP:
IF ptr2.mySibling = ptr THEN BEGIN

ptr2.mySib11ng ~ ptr.mySibling;
RETURN[TRUE];
END

ELSE RETURN[FALSE];
END;

Part II: BubbleSortProgram.mesa

An Uncaught Signal (BoundsFault) occurs because the comparision statement in the FOR loop tries to
access one node larger than the allocated array size. This was ~aused by a square bracket (which is
inclusive) instead of a parenthesi~ (which is exclusive) in FOR statement.

DoTheBubbleSort: PROCEDURE [upperBound:CARDINAL] RETURNS [BOOLEAN, CARDINAL]
BEGIN
exchangeMade: BOOLEAN ~ FALSE;
position: CARDINAL ~ 0:
FOR j: CARDINAL IN [O •• upperbound-l} DO

IF A[j] > A[j +1] THEN {
InterChange[j, j+1]:
position ~ j;

exchangeMade ~ TRUE;
} ;

ENDLOOP;
RETURN[exchangeMade, position]:

END; --DoTheBubbleSort

Note: The range [0 •• upperbound-2] will not work when upperbound < 2.

Mesa Language Class -- March, 1988
Oay2- #1 of5

Program Example

First Nu.ber= 22 Second Nu.ber= 17

Productl Differencel

The product of 22 and 17 is 374
The sum of 22 and 17 is 39
The difference of 22 and 17 is 5
The quotient of 22 and 17 is 1

--Math.mesa
--John Erskine
--14-Dec-84 17:30:08

DIRECTORY
Window USING [Handle];

Math: DEFINITIONS =

BEGIN

Quotientl

Add: PROCEDURE [output: Window. Handle, n1, n2: INTEGER];

Divide: PROCEDURE [output: W1ndow.Handl&, n1, n2: INTEGER];

Multiply: PROCEDURE [output: Window.Handle, n1, n2: INTEGER];

Subtract: PROCEDURE [output: Window.Handle, n1, n2: INTEGER];

END ..

Program Example - MathTool

Mesa Language Class -- March, 7988

Oay2- #7 of5

MathControl.mesa - last Edited on:
13-Aug-87 13:19:23
Create by FormSWlayoutToo1 on 12-Aug-87 17:57

DIRECTORY
Exec USING [AddCommand, ExecProc, OutputProc, RemoveCommand],
Format USING [StringProc],
FormSW USING [AllocateItemDescriptor, C1ientItemsProcType, CommandItem, 11neO. 11ne2.

longNumberItem, ProcType].
Heap USING [Create].
Math USING [Add, Divide, Multiply, Subtra.ct],
Process USING [Detach],
Put USING [Text],
Tool USING [Create, 'Destroy, MakeFi1eSW, MakeFormSW, MakeMsgSW, MakeSWsProc, UnusedlogName],
Too1Window USING [Trans1t1onProcType],
Window USING [Handle];

MathControl: MONITOR
IMPORTS

Exec, FormSW, Heap, Math, Process, Put, Tool {

DataHandle: TYPE = LONG POINTER TO Data;
Data: TYPE = MACHINE DEPENDENT RECORD [

msgSW(O): Window.Handle ~ NIL,
formSW(2): Window.Handle ~ NIL,
fileSW(4): Window.Handle ~ NIL,
firstNumber(6): LONG INTEGER ~ 0,
secondNumber(8): LONG INTEGER ~ 0];

FormItems: TYPE = {firstNumber, secondNumber, sum, difference, product, quotient};

data: DataHandle ~ NIL;
wh: Window.Handle ~ NIL;
myZone: UNCOUNTED ZONE ~ Heap.Create[init1al: 4];

busyBit: BOOLEAN ~ FALSE;

Busy: ENT~Y PROCEDURE RETURNS [isBusy: BOOLEAN] = {
ENABLE UNWIND =) NULL;
i5Busy ~ busyBit;
busyBit ~ TRUE };

Done: ENTRY PROCEDURE = {
ENABLE UNWIND =} NULL;
busyBit ~ FALSE };

Write: Format.Stri~gProc = {Put.Text[data.fileSW, 5]};

Msg: Format.StringProc = {Put.Text[data.msgSW, 5]};

Sum: FormSW.ProcTyp;e = {
ENABLE ABORTED :>h{Done[]; CONTINUE};
IF Busy[] THEN {

Msg["Tool is busy.\n"l]; RETURN};
Process.Detach[FORK SumInternal[]]};

Program Example - MathTool

2

Mesa Language Class -- March, 7988
Oay2-#lof5

SumInternal: PROCEDURE = {
ENABLE ABORTED => {Done(]; CONTINUE};
Math.Add[data.fileSW, data.firstNu~er, data.secondNu.ber];
Done[] };

Difference: FormSW.ProcType = {
ENABLE ABORTED => {Done[]; CONTINUE};
IF Busy[] THEN {

Msg["Tool is busy.\n"L]; RETURN};
Process.Detach[FORK DifferenceInternal[]]};

DifferenceInternal: PROCEDURE = {
ENABLE ABORTED => {Done[]; CONTINUE};
Math.Subtract[data.fileSW, data.firstNu.ber, data.secondNu.ber];
Done[] };

Product: FormSW.ProcType = {
ENABLE ABORTED =) {Done[]; CONTINUE};
IF Busy[] THEN { .

Msg["Tool is busy.\n"L]; RETURN};
Process.Detach[FORK ProductInternal[]]};

ProductInternal: PROCEDURE = {
ENABLE ABORTED => {Done[]: CONTINUE};
Math.Multiply[data.fileSW, data.firstNu.ber. data.secondNu.ber];
Done[] };

Quotient: FormSW.ProcType = {
ENABLE ABORTED =) {Done[]; CONTINUE};
IF Busy[] THEN {

Msg["Tool is busy.\n"L]; RETURN}:
Process.Detach[FORK QuotientInternal[]]};

QuotientInternal: PROCEDURE = {
ENABLE ABORTED -> {Done[]; CONTINUE};
Math.Divide[data.fileSW. data.firstNu~er. data.secondNumber];
Done[] };

ClientTransition: ToolWindow.TransitionProcType {
SELECT TRUE FROM

};

old - inactive -)
IF data = NIL THEN data ~ myZone.NEW[Data ~ []];

new:= inactive =)
IF data * NIL THEN myZone.FREE[~data];

ENDCASE;

Init: PROCEDURE = {
Exec.AddCommand["MathTool.-"L, NoOp, NIL, Unload];
wh ~ Tool.Create[

};

makeSWsProc: MakeSWs, initialState: default,
c11entTransit1on: ClientTransition, name: "MathTool"L,
cmSection: "MathTool"L];

Program Example - MathTool

3

Mesa Language Class .• March, 1988

Oay2- #1 of5

NoOp: Exec.ExecProc = { };

Unload: Exec.ExecProc • {
IF Busy[] THEN {

Exec.OutputProc[h]["Too1 is busy. Sorry.\n"L];
RETURN[error] };

Tool.Destroy[wh];
Exec. RemoveCommand[h, "MathToo1.-"L];
Done[] };

MakeSWs: Too1.MakeSWsProc = {
10gName: LONG STRING ~ [15];
Too1.UnusedLogName[unused: 1 ogName , root: "MathTool.log"L];
data.msgSW ~ Tool.MakeMsgSW[window: window];
data.formSW ~ Tool.MakeFormSW[

window: window, formProc: MakeForm, zone: myZone];
data.fileSW ~ Too1.MakeFi1eSW[window: window, name: logName];
};

MakeForm: FormSW.ClientItemsProcType = {
nItems: CARDINAL = FormItems.LAST.ORD + 1;
items ~ FormSW.AllocateItemDescriptor[nItems, myZone];
items[FormItems.firstNumber.ORD] ~ FormSW.LongNumberltem[

tag: "First Number"L, place: [8, FormSW.lineO], signed: FALSE,
value: @data.firstNumber, z: mylone];

items[FormItems.secondNumber.ORD] ~ FormSW.LongNumberltem[
tag: "Second Number"L, place: [188, FormSW.lineO], signed: FALSE,
value: @da~a.secondNumber, z: myZone];

items[FormItems.sum.ORD] ~ FormSW.Comma:ndltem[
tag: "Sum"L, place: [8, FormSW.line2], proc: Sum, z: myZone];

i tems[FormItems. di fference .ORD] ~ FormS11J. CommandItem[
tag: "Difference"L, place: [90, FormSW.line2], proc: Difference, z: myZone];

items[FormItems.product.ORD] ~ FormSW.CommandItem[
tag: "Product"L, place: [188, FormSW.line2], proc: Product, z: myZone];

items[FormItems.quotient.ORD] ~ FormSW.CommandItem[
tag: "Quotient"L, place: [294, FormSW.line2], proc: Quotient, z: mylone];

RETURN[items: item's, f reeDesc: TRUE];
}; ,-

-- Mainline code
Init[]; tilis gets string out of globa'i frame

} ...

Prog,ram Example - MathTool

4

Mesa Language Class -- March, 1988

Day2-#10f5

--MathImpl.mesa
--John Erskine
--14-Dec-84 17:40:29

DIRECTORY
Window USING [Handle],
Put USING [CR, Decimal, Text],
Math;

MathImpl: PROGRAM IMPORTS Put EXPORTS Math = {

Add: PUBLIC PROCEDURE [output: Window.Handle, n1, n2: INTEGER] {
Put.Text[output,"The sum of "L];
Put.Decimal[output,n1];
Put.Text[output," and "];
Put.Decimal[output,n2];
Put.Text[output," is "L];
Put.Decimal[output,n1+n2];
Put.CR(output]:
};

Divide: PUBLIC PROCEDURE [output: Window. Handle, n1, n2: INTEGER] {
Put.Text[output,"The quotient of "L];
Put.Decimal[output,n1];
Put.Text[output," and "];
Put.Decimal[output,n2];
Put.Text(output," is "l];

IF n2 = 0 THEN
Put.Text(output,"infinity"]

ELSE
Put.Decimal[output,n1/n2];

Put.CR[output];
} ;

Multiply: PUBLIC PROCEDURE (output: Window.Handle, n1, n2: INTEGER] {
Put.Text[output,"The product of "L];
Put.Decimal[output,n1];
Put.Textr~utPut," and "];
Put.Decimal[output,n2];
Put.Text[output," is "l];
Put.Decimal[output,n1*n2]:
Put.CR[output];
}; '.

Subtract: PUBLIC PROCEDURE [output: Window.Handle, n1, n2: INTEGER] {
Put.Text(output,"The difference of "L];
Put. Decimal [output., n 1];
Put.Text[output," apd "];
Put.Decimal(output,n2];
Put.Text[output," is "L];
Put.Decimal[output,n1-n2];
Put.CR(output]; ~
};

} ...

Program Example - MathTool

5

Mesa Language Class -- March, 1988

Day2-#10f5

--MathTool.config
--John Erskine
--14-Dec-84 17:49:17

MathTool: CONFIGURATION
IMPORTS Exec, FormSW, Heap, Tool, Process, Put

CONTROL MathControl ~ {

MathControl;
MathImpl;

} ...

Program Example - MathTool

6

Mesa Language Class -- February, 1988

Oay2- #20f5

In Class Exercise - Configurations
Write a CONFIGURATION file for a program consisting of the files shown below. (The bold-lined boxes are
PROGRAM modules and the dotted-lined boxes are DEFINITIONS modules.) .

Note: Just write one configuration file for the entire application instead of a nested config within a config,

PrivAlmpl: PROGRAM
EXPORTS PrivDefs •

BEGIN

PrivBlmpl: PROGRAM
EXPORTS PrivDefs •

BEGIN
END.

FormSW: DEFINITIONS •
BEGIN
END.

END •

....................................... . .
~ PrivDefs: DEFINITIONS.

~ BEGIN
: END.
, . , • • • • • • • • • • • • • • • • '.fI ~'.' ••••••••••••••••••

.................................
Heap: DEFINITIONS •

BEGIN
END.

. .. . '" " .•.... ~
".

".
Publiclmpl: PROGRAM

IMPORTS FormSW, PrivDefs, String
EXPORTS PublicDefs -.

BEGIN
END •

~ PublicDefs: DEFINITIONS.
j BEGIN

~ END.
. .
••••••• I .. D.

"
PublicClient: PROGRAM

IMPORTS Heap, PublicDefs, String.
BEGIN

-- mainline code
END.

~ String: DEFINITIONS.

~ BEGIN
~ END.
.

.,'

String: DEFINITIONS.
BEGIN
END.

. : =:- , .

Mesa Language Class - August, 1987

Day2- #30f5

Interfaces Programming Assignment: Turtle
In this programming assignment, you need to provide the implementation of one interface using
procedures defined in another interface. The finished product will implement the Turtle programming
language:

Initially, a turtle is located at the top left-hand side of the window (coordinates 0, 0). This turtle carries a
pen. You can tell the turtle to move different distances and different directions with his pen either
lowered or raised by clicking the appropriate commands. While the pen is lowered, you will see the turtle
leave a trail behind him as he moves.

Di rect ion: {N, NE. I~i~: SE, S. SW, W, NW}
Distance" 1
iiiiiiii!I!!

Move! Erasel
--~

The interface you will be implementing is called Turtle.mesa:

--Turtle. mesa
-- 2-0ct-84 11: 14:51

DIRECTORY
Window USING [Handle];

Turtle: DEFINITIONS .. {

gridS'be: CARDINAL .. 32; -length and width of grid
HOM: PROCEDURE [output: Wi ndow. Hand 1 e] ; - Puts turtle at (0,0)
PenUp: PROCEDURE; - Raises the pen.
PenDown: PROCEDURE; -- Lowers the pen.
Move: PROCEDURE [output: Window.Handle, distance: CARDINAL, direction: [0 .. 8)];

- Moves the turtle by the amount in distance in the given
-- direction. 0 is up (North), 1 is up 1 and right 1 (NorthEast),
- 2 is to the right (East), ...

Erase: PROCEDURE [output: Window.Handle]: --Complete/yclearsthegrid.
Redra.: PROCEDURE [output: Window.Handle];

- Draws the grid from scratch when the window becomes active
}.

Turtle Assignment

Mesa Language Class - August, 1987

Oay2 - #30f5 2

You need to write an implementation module, Turtleimptmesa, that implements the procedures listed
above. These procedures get called from the module TurtleControl.mesa when the user invokes the
appropriate commands in the form subwinclow. (Redraw is called when the user changes the size of the
window. For example, Redraw will be called if you make the Turtle window tiny and then reactivate it ..)
You don't have to actually write the code that draws the boxes on the screen; instead, you should import
procedures from the Boxes interface to do the actual drawing~

-Boxes. mesa

DIRECTORY
Window USING [Handle];

Boxes: DEFINITIONS s {

DrawWbite: PROCEDURE [output: Window.Handlle, y, x~ CARDINAL];
DrawGray: PROCEDURE [output: Window.Handle, y, x: CARDINAL];
DrawBla~k: PROCEDURE (output: Window.Handle, y, x~ CARDINAL];

}.

-- Draws a white box
- Draws a gray box
~- Draws a black box

These procedures will draw a bo)(at the coordinates (y,x). [(0,0) is the top left-hand corner of the window
shown in the tool. x increases to the right alnd y increases downward.] The implementation for the Boxes
interface has already been written and is provided in the module Boxeslmpl.mesa.

Note that the procedures Home, Move, E:rase, and ReDraw are all passed in a parameter of type
Window.Handle. This parameter is used to specify the window in which the painting is to be done.
(Basically, it is just a pointer to the proper subwindow.) You don't have to do anything with this parameter
except pa5$ it along to the routines in Saxes. (Those routines need to know where to do the painting.)

In your impiamentation module, you will rleed a 2-dimensional packed array o"f BOOLEANs in order to
determine where the turtle has been. The Ic!ngth of each dimension should be indicated by the constant
gridSize in the interface Turtle.mesa. You'll have to keep track of whether the pen is up or down and
where the turtle is at any given time. Your implementation should handle the case where the user instructs
the turtle to go off the edge of the grid (outside the bounds of the array). Simply not moving is the easiest
implementation. When the pen is down, everytime the turtle moves off a square, that square should be
marked with a gray box. When the pen is up, the square should remain in its original condition.

Assignment

1. Write the implementation module TurtlelmpLme$a that implements the procedures in
Turtle.mesa.

2. Write the configuration file TurtleTool.config.

3. Verify that your implementation is c()rrectby runncng the tool.

Extra for Experts

In your implementation module TurtlehTlpl.mesa, change tho implementation for the procedure Home
so that when Home is called, the turtle vvill recurs~ve!y look for a path home from his current position,
and mark that path with all black square's. Limit the turtle to only the gray squares that up to this point
have marked his wanderings. Allow for the possibility that there may not be a path home in which case
you may either place the turtle home or leave him in his (,vrrent position. When testing this extension,
you may want to increase the constant glridSize in the dafinitions module Turtle.mesa.

Turtle Assignment

Mesa Language Class -- March, 1988

Day 3 - #1 of 11

Tool-Written Factorial Tool

Nu.ber=
Factoriall

The factorial of 4 is 24

FactorialTool.mesa

Fonaat: {hex, octal, decimal}

Create by FormSWLayoutTool on 16-May-86 10:42

DIRECTORY
Exec,
Format,
FormSW,
Heap,
Process,
Put,
Tool,
ToolWindow,
Window;

Factori-alTool: MONITOR IMPORTS Exec, FormSW, Heap, Process, Pu.t, .Tool {

DataHandJe: TYPE = LONG POINTER TO Data;
Data: TYPE = MACHINE DEPENDENT RECORD [

msgSW(O): Window.Handle ~ NIL,
formSW(2): Window.Handle ~ NIL,
fileSW(4): Window.Handle ~ NIL,
number(6): UNSPECIFIED ~ 0,
format(7): UNSPECIFIED ~ 0];

Formltems: TYPE = {number, format, factorial};

data: DataHandle ~ NIL;
wh: Wi~dow.Handle ~ NIL;
zone: UNCOUNTED lONE ~ Heap.Create[init1al: 4];
busyBi~: B09LEAN ~ FALSE;

Busy: ENTRY PROCEDURE RETURNS [1sBusy: BOOLEAN] (
ENABLE U~~IND =) NULL;
isBusy ~ b~$yB1t;
busyBit ~ TRUE };

Done: ENTRY PROCEDURE = (
ENABLE UNWIND =) NULL;
busyBit ~ FALSE };

Write: Formai.StringProc = {Put.Text[data.fileSW, s]};
Msg: Format.StringProc = {Put.Text[data.msgSW, s]};

Tool Written Factorial Tool

Mesa Language Class - March, 1988

Day 3 - #1 of 11

Factorial: FormSW.ProcType = {
ENABLE ABORTED =) {Done[]; CONTINUE};
IF Busy[] THEN { Msg["T~ol is busy.\n"L]; RETURN};
Process.Detach[FORK FactorialInternal[]]};

FactorialInterna1: PROCEDURE = {
ENABLE ABORTED =) {Done[]; CONTINUE};
Write["Factoria1 cal1ed\n"L];
Done[] };

C1ientTransition: ToolWindow.TransitionProcType = {
SELECT TRUE FROM

old = inactive =) IF data = NIL THEN data ~ zone.NEW[Data ~ []];
new = inactive =) IF data # NIL THEN { zone.FREE[@data] };
ENDCASE };

Init: PROCEDURE = {

Exec.AddCommand["FactorialToo1.·"L, NoOp, NIL, Unload];
wh ~ Tool.Create[makeSWsProc: MakeSWs, initialState: default,

c11entTransition: ClientTransition, name: "FactorialToo1"L, cmSection: "FactorialTool"L] };

NoOp: Exec.ExecProc a { };

Unload: Exec.ExecProc = {

IF Busy[] THEN {
Exec.OutputProc[h]["Tool is busy. Sorry.\n"L];
RETURN[error] };

Tool.Destroy[wh];
Exec. RemdveCommand[h, "FactorialToo1.·"L];
Done[] };

MakeSWs: Too1.MakeSWsProc = {
logName: LONG STRING ~ [20];
Tool.UnusedLogName[unused: logName, root: "FactorialToo1.1og"L];
data.msgSW ~ Tool.MakeMsgSW[window: window];
data.formSW ~ Too1.MakeFormSW[window: window, formProc: MakeForm];
data.fileSW ~ Tool.MakeFi1eSW[window: window, name: 10gName] };

MakeForm: FormSW.ClientItemsProcType = {
OPEN FormSW;
nItems: CARDINAL = FormItems.LAST.ORD + 1;
form&t: ARRAY[0 .. 3) OF Enumerated ~ [

("h"ex"L, 0], ["octal"L, 1], ["decimal"L, 2]];
item~~ AllocateItemDescriptor[nItems];
items[FormItems.number.ORD] ~ NumberItem[

tag: "Number"L, place: [6, 1ineO], signed: FALSE, notNegative: TRUE, value: @data.number];
1tems[For~Items.format.ORD] ~ EnumeratedItem[tag: "Format"L,

place: [18~, 11neO], feedback: all, choices: DESCRIPTOR[format], value: @data.format];
items(FormItems.factoria1.0RD] ~ CommandItem[

tag: "Factoria1"L, place: [6, 1ine1]. proc: Factorial];
RETURN[items; items, freeDesc: TRUE] };

-- Mainline code
In1t[]; tb1s gets string out of global frame
} ...

To()1 Written Factorial Tool

2

Mesa Language Class -- March, 1988

Day 3 - #2 of 11

User-Modified Factorial Tool
FactorialTool.mesa
Create by FormSWLayoutTool on 16-May-86 10:42. Modified on 16-May-86 10:57

DIRECTORY
Exec USING (AddCommand, ExecProc, Handle, OutputProc, RemoveCommandl,

Forma t USING (StringProc] ,

F 0 rmSW USING (AllocateltemDescriptor, ClientltemsProcType, Commandltem, Enumerated,

Enumeratedltem, lineO,Iine1, Numberltem, ProcType] ,
Heap USING (Create] ,

P roces s USING (Detach] ,

Put USING (Text],

Tool USING (Create, Destroy, MakeFileSW, MakeFormSW, MakeMsgSW, MakeSWsProc, UnusedLogName] ,

Too 1 Wi ndow USING (TransitionProcType] ,

Wi ndow USING (Handle];

FactorialTool: MONITOR IMPORTS Exec, FormSW, Heap, Put, Process, Tool {

DataHandle: TYPE = LONG POINTER TO Data;
Data: TYPE • MACHINE DEPENDENT RECORD [

msgSW(O): Window.Handle ~ NIL,
formSW(2): Window. Handle ~ NIL,
fileSW(4): Window.Handle ~ NIL,
number(6): CARDINAL ~ 0,
forma t (7): FormatType decimal] ;

FormatType: TYPE = (hex, octal, decimal);

FormItems: TYPE = {number, format, factorial};
data: DataHandle ~ NIL;
wh: Window.Handle ~ NIL;
zone: UNCOUNTED ZONE ~ Heap.Create[1nitial: 4];
busyBit: BOOLEAN ~ FALSE;

Busy: ENTRY PROCEDURE RETURNS [isBusy: BOOLEAN] = {
ENABLE .UNWIND =) NULL:
isBusy ~ busyBi~;
busyBit ~ TRUE };

Done: ENTRY PROCEDURE = {
ENABLE UNWIND =) NULL:
busyB~t ~ FALSE };

Write: Forma~.StringProc = {Put.Text[data.fileSW, s]};
Msg: Format.StringProc = {Put.Text[data.msgSW, s]};

ClientTrans\tion: ToolWindow.TransitionProcType = {
SELECT TRUEjFROM

old • inactive =) IF data = NIL THEN data ~ zone.NEW[Data ~ []];
new = inactive =) IF data # NIL THEN { zone.FREE[8data] };
ENDCASE };

Factorial: FormSW.ProcType = {
ENABLE ABORTED =) {Done[]; CONTINUE};
IF Busy [] THEN { Msg["Tool is busy.\n"L]; RETURN};
Process.Detach[FORK Factoriallnternal[]};

User Modified Factorial Tool

Mesa Language Class -- March, 1988

Day 3 - #2 of 11

FactorialInternal: PROCEDURE = {

ENABLE ABORTED => {Done[]; CONTINUE};
IF data.number > 12 THEN { --Out of range.

Put. CR{data.msgSW/; Put. Text{data.msgSW, "Too high, try again. "LI }

ELSE {
result: LONG CARDINAL __ 1;

temp: CARDINAL __ data.number;

WHILE temp> 0 DO result __ result" temp; tjtmp __ temp - 1; ENDLOOP;

Put.CR[data.fileSWI;

Put. Text{data.fileSW, "The factorial of "I;
Put.Decimalldata.fileSW, data.numberJ;
Put.Text{data.fileSW, I' is "I;

SELECT data. format FROM

hex =- > Put.LongNumberldata.fileSW, result, 116JJ;

octal =- > Put.LongNumberldata.fileSW. rejiult, 18JJ;

decimal=- > Puf.LongNumberldata.fileSW, ,.esult, {10JI;

ENDCASE;

Put.CR{data.fileSWJ }:

Done[]};

Init: PROCEDURE = {
Exec.AddCommand[UFactor1alTool.-"L. NoOp, NIL, Unload];
wh ~ Tool.Create[makeSWsProc: MakeSWs, initia1State: default,

clientTransit ion: ClientTrans1 t ion, name: II Factor1 a1 Too1"L, cmSect ion: II Fa·ctori a1 Tool II L] };

NoOp: Exec.ExecProc z { };

Unload: Exec.ExecProc = {
'IF Busy[] THEN {

Exec.OutputProc[h]["Tool is busy. Sorry.\n"L];
RETURN[error] };

Tool.Destroy[wh];
Exec. RemoveCommand[h, "FactorialTool.-"L];
Done[] };

MakeSWs: Tool.MakeSWsProc = {
logName: LONG STRING ~ [20];
Tooi,UnusedLogName[unused: 10gName, root: "FactorialToo1.log"L];
dat~ .. msgSW ~ Tool.MakeMsgSW[w1ndow: window];
data.formSW ~ Tool.MakeFormSW[w1ndow: window, formProc: MakeForm];
data.fileSW ~ Tool.MakeFileSW[window: window, name: 10gName] };

MakeForm: FormSW,ClientItemsProcType = { OPEN FormSW;
nItems-: CARDINAL = FormItems.LAST.ORD + 1;
format: ARRAY[O .. 3) OF Enumerated ~ [["hex"L. 0]. ["octal"L, 1], ["dec1mal"L, 2]];
items ~ AllocateItemDescr1ptor[nItems];
1tems[Formtt.~ms. number .ORD] ~ NumberItem[

tag: "Numbe~IIL, place: [8, linea], signed: FALSE. notNegat1ve: TRUE. value: @data.number];
items[FormItems.format.ORD] ~ EnumeratedItem[tag: "Format"L.

place: [188. linea]. feedback: all, choices: DESCRIPTOR[format]. value: @data.format];
1tems[FormItems.factorial.ORD] ~ CommandItem[tag:"Factorial"L. place:[8. 1ine1], proc: Factorial];
RETURN[items:

L

items, freeDesc: TRUE] };

Init[]; ._- th.is Mainline code gets the string out of global frame
} ...

Use.r Modified Factorial Tool

2

Mesa Language Class - August, 1987

Oay3- #3 of 11

Using the FormSWLayoutTool
Descri ption

The FormSWLayoutTool has three subwindows: a message subwindow, a form subwindow, and a file
subwindow. The items in the FormSWLayoutTool form subwindow are as follows:

FormType: {bool. command, enum, longNum, num, source, string. tag}

This is an enumerated item that lists the possible items that you can have in a form subwindow. When
you are laying out a form subwindow, you select the type of the item that you want from this
enumeration.

boo I creates a Mesa BOOLEAN, and is video inverted when TRUE.

command creates a command with an associate procedure that will be called when the command is
invoked.

enum creates a tag containing an enumerated list of items. The code generated does not use
Mesa enumerated types; rather it creates an ARRAY DESCRIPTOR containing strings
corresponding to the names in the enumerated tag, and cardinal numbers that correspond
to the ORO of the tag item.

longNum generates a LONG UNSPECIFIED, which you can change to a LONG CARDINAL or LONG
INTEGER.

num generates an UNSPECIFIED, which you can change to a CARDINAL or INTEGER.

source is not currently supported.

string creates a LONG STRING and in the code sets it to' NIL.

tag does not generate a Mesa variable; it simply creates the named tag and places it on your
tool. The tag has no functionality; it is for documentation/information.

Tag: This is where you type the name of the tag for the item that you want to place in your form
subwindow. Thus, if you want your new forr:n subwindow to have a command called Fred!, you
would put Fred in the Tag: field and select Command from the FormType enumeration.

Zone: This specifies the heap that you want your program to use for storage allocation. If you leave
this field blank, the default is to use the systemZone.

AlignX is a boolean that causes columns to be defined by the width of the character '0. If you don't use
this option, the default is to define one column per bit on the screen. You should use AlignX to
ensure that you have straight columns, since it may be difficult to discern if a column is off by
one bit.

Usebox causes the generated tool to have the same dimensions and location as the
FormSWLayoutTool. Thus you simply manipulate the layout tool to the size and position you
like and your new tool will have the same characteristics. Obviously, this only controls the initial
size and position of the tool; the user is free to change the window.

Anyfont causes the layout tool to generate code that will have proportional spacing rather than
absolute. This means that the form subwindow will look right regardless of the font that the

USing the FormSWLayoutTool

Mesa Language Class - August, 1987

Day3- #3 of 11 2

user chooses. Otherwise, if the tool is displayed in a large font, the letters may distort and
overlap.

Root: is where you specify the name that you want your source file to have. Don't include the .mesa
extension; this is added automatically by the tool.

Doltl causes the layout tool to generate code for the form subwindow.

SetDefaultsl allows you to set the defaults for the property sheets of the different form items.

Savel saves the contents of the form ~jubwindow that you are creating in a file named root .by. This
can be useful if you are creatingl a complex tool and want to ensure that a system crash won't
destroy your work.

Load! loads a .by file into the layout tool so you can continue work (the .by is automatically
appended onto the root.)

Plagiarize! lets you copy a form subwindovlf from another tool into the layout tool's window. Just invoke
Plagiarize! and then select the fc)rm subwindow that you want to plagiarize. You can then edit
the plagiarized window, as described below.

Operation

The layout tool has two modes of operation:: initial layout and editing. When there is text in the Tag: field,
you are in initial layout; otherwise, you a-re E!diting.

When you are in initial layout mode, the mouse pointer becomes a brush (a string of charac.ters that
represents the tag). To add an item to youl~ new form subwindow, select the type of the item from the
FormType enumeration, put the appropriate tag in the Tag: field, move the mouse into the bottom
subwindow and click over the desired 104:ation. When you are through laying out your new form
subwindow, remove the text from the Tag: field and you are ready to edit the form.

In edit mode, you can use the DELETE, MOVE, COpy and PROPS keys to edit the items in your form
subwindow. DELETE, MOVE, and COpy have the obvious meanings; PROPS allows you to change the
properties of an item. Each form item that you create has associated properties, which you can display by
selecting the item and pressing the PROP'S key on your keyboard. You can use this property sheet to
change various aspects of the item, ~uch as 1the name of the Mesa variable that an item represents. When
you create an enumerated item, you will have to use the property sheet to set the values that the
enumeration can have.

Using the FormSWLayoutTool

Mesa Language Class -- August, 1987

Oay 3 - #4 of 11

Dynamic Storage Allocation Exercise: Letter Groups
In this exercise, you will complete a program that takes a string of characters as input and stores the
characters alphabetically in queues according to the number of queues that the user specifies. For
example, if the input were Jamesl Where are you?l, and the user wanted four groups of characters, the
result would look like this:

For Group 0 (A-G):
aeeeae

For Group 1 (H-N):
J m h

For Group 2 (O .. T):
s r r 0

For Group 3 (U-Z):
W y u

For Last Group (non-alphabetic characters):
I SP SP SP ? !

Done.

The" program runs from a tool, which consists of the following files:

LetterControl.mesa: contains tool-related code (110);
Letterl mpl.mesa:
LetterDefs.mesa:
LetterTool.config:

contains the implementation code that actually processes the input;
is the interface for this tool-;
is the configuration module for the above.

Input: Jamesl Where are you?l
Nu~er of Queues: {four}
Group I

For Group 0 (A-G) :
a e e e a e
For Group 1 (H-N):
J m h
For Group 2 (O-T) :

s r r 0

The tool as it appears when LetterTool.bcd is executed.

Letter Groups Exercise

Mesa Language Class - August, 1987

Day3~ #40f11 2

When the user invokes Group., the Commclndltem procedure Group (in LetterControl) passes the input
string and desired the number of queues to procedure Processlnput (in Letterlmpl). Processlnput calls five
procedures: InitQueues, CutUpAlphabet, S1oreLetters, PrintResults, and DealiocateQueues. InitQueues
creates and initializes the queues; CutUpA!lphabet determines which characters in the alphabet each
queue will handle; StoreLetters actually put~ the characters into the queues; PrintResults (in
LetterControl) displays the results; and DealilocateQueues deallocates the storage that the queues used.

There are two instances where dynamic sto1rage allocation must be considered. First, there is the initial
allocation from a heap, where two factors are variable: the number of queues and the size of each queUE!.
Secondly, there is the expansion of a queue when the sequence that represents the queue is full. The
"expansion" really consists of allocating a new sequence that is larger than the original one, copying over
the original sequence into the new one, inserting the new sequence in place of the original one, and
freeing the space that the original sequence occupied.

Assignment

Modify the file Letterlmpl.mesa and fill in the dynamic storage allocation code in the indicated places. The
procedures that you need to write are listed at the top of the Letterlmpl.mesa. You will need to use some
of the types that are declared in LetterDefs.n1esa.

Letter Groups Exercise

Mesa Language Class -- August, 1987

Day 3 - #5 of 11

Extra Programming Assignment: Editor
In this exercise, you will modify a line editor that runs in a tool window. To use this tool, you use the Enter
Input! command to enter input in the line editor, and then use the other commands to change that input.

Input:
Line Number = 0

Enter Input! Load Line Number! Redisplay Text! Delete Line!
Find! +-:
Replace! +-:

The line editor currently calls the following string manipulation procedures in the String interface:

Stri ng.CopyToNewStri ng
String.DeleteSubString
String.EqualSubString
String.ExpandString
String.FreeString
Stri ng.1 nsertStri ng
Stri ng.Replace

Your assignment is to implement the same procedures through another interface called String2. We have
provided the interface; you need to write the implementations to this new interface and .bind the modules
together into a configuration.

You will need the following modules for this assignment:

EditorDefs. mesa
Editorl mpl.mesa
EditorTool.mesa
String2.mesa
Editor2.config

Editor Assignment

Mesa Language Class -- August, 1987

Day 3 - #5 of 11 2

Before you start writing your implementation module, you might want to run the working version
(Editor.bed) to get an idea of how it works. Once you are ready to start writing code, you need to do the
following:

1) Change all String references to String2 in the module Editorlmpl.

2) Create an implementation module for String2 (Name it String2Impl.mesa).

3) Move the procedure InsertString from the module Editorlmpl to String2lmpl.mesa.

4) Change alilnsertString references toString2.1nsertString.

5) Write the implementations for the pr,ocedures listed in String2.

6) Change the configuration Editor2.eonfig to reflect the new usage of program modules.

7) Test your program.

Note that in order to write the implementi:ttions for the String2 procedures, you will have to read the
String documentation in the Pilot Programmer's Manual to get an idea of what the procedures are
supposed to do, and how a substring works.

Editor Assignment

Mesa Language Class - August, 1987

Day 3 - #6 of 11

DSA Extra Exercise: Tree Traversal Tool
The Tree Traversal Tool allows you to enter numbers into a sorted binary tree. At any point, you can make a
preorder, inorder, or postorder traversal of the tree,with the order of traversal displayed in the tool.

Nu ... e 5

Ente ... Inputl Clea ... Treel

PreOrderl InOrderl PostOrde ... l

»»»»««««

PreOrder is 7 4 2 5 9 8 12

»»»»««««

Y.our assignment is to write the procedures lliit, EnterNumber, and ClearTree in the module
TreeTraversaIProblem.mesa. The comments in this module provide a more complete explanation of what
you need to do.

You will also need the following modules:

TreeTraversalDefs.mesa
TreeTraversallmp.mesa
TreeTraversalTool.config

Mesa Language Class - August, 1987

Day 3 - #9 of 11

Letter Group Solution
--LetterImpl.mesa - last edit on:
-- 14-May-86 18:26:05

DIRECTORY
Heap USING [Create. Delete],
LetterOefs USING [CharQ, CharQPtr, PrintResults, QList, QListHandle];

LetterImpl: PROGRAM IMPORTS Heap, LetterDefs EXPORTS LetterOefs = {

CleanUp: PROC = {
IF qList # NIL THEN DeallocateOueue~[];
IF z # NIL THEN {

Heap.Delete[z];
z ... NIL} };

CreateHeap: PUBLIC PROC = {

IF z # NIL THEN Heap.Delete[z];
z ... Heap.Create[initial: 1];
};

-- optional (If you don't do this, then do:
-- qList ~ NIL)

-- just in case
-- create a private heap

InitQueues: PROC [howMany: CARDINAL, input: LONG STRING] = {
InitialSizeOfQs: CARDINAL ~ input.length I howMany + 1;
qL1st ... z.NEW[LetterDefs .OL ist[howMany + 1]]; -- aI/ocate the sequence of pointers
FOR i: CARDINAL IN [0 .• howMany +1) 00 -- aI/ocate a queue for each of the pointers

qList[i] ... z.NEW[LetterOefs .CharQ[InitialSizeOfQs]];
qL1st[i].length ... 0; -- initialize length
ENDLOOP;

badCharQ ... howMany;
};

DeallocateQueues: PROC = {
FOR i: CARDINAL IN [O •. qList.index) 00

z.FREE[8qList[i]];
ENDLOOP;

z.FREE[8qList];
qL1st ... NIL};

-- set badCharQ to be the last sequence

-- deallocate each of the queues

-- deallocate the sequence of pointers

ExpandQ: PROC [queue: LONG POINTER TO LetterDefs.CharQPtr] = {
--aI/ocate new queue •

temp: LetterDefs.CharQPtr ... z.NEW[LetterOefs.CharQ[queue.maxlength + 5]];
FOR i: CARDINAL IN [0 .• queue. 1 ength) 00 -- copy sequence

temp[i] ... queue[i];
ENDLOOP;

temp. length ... queue. length; -- copy remaining fields
temp.first ... queue.first;
temp. last ... queue. last;
z.FREE[queue]; -- free old sequence
queue't ... temp; -- adjust the pointers
};

} ...

Mesa Language Class -- August, 1987

Oay4- #1 of9

Where Does Control Go After a SIGNAL is Caught?

Statement Frame and Block Where Control is Resumed After a Catch

RESUME Control is resumed in the frame where the signal was raised, at the point where the signal was raised.
View this situation as a return from a procedure call.

CONTINUE Control is resumed in the frame (and block) where the signal is caught, not in the frame where the
signal was raised (if these frames are different).

Control is given to the statement following the statement to which the catch phrase belongs.
If Catch phrase is in a{n):

1. Argument list: Go to the statement following the call.
2. BEGIN - END block: Go to the statement following the aEGIN - END block most narrowly

enclosing the ENABLE clause.
3. Loop: Go to the U next" iteration if any.

RETRY Control is resumed in the frame (and block) where the signal is caught.
Control passes to the beginning of the statement to which the catch phrase belongs.

If Catch phrase is in a{n):
1. Argument list: Execute the call again.
2. BEGIN - END block: Go to the first statement of the BEGIN - END block most narrowly enclosing

the ENABLE clause.
3. Loop: Start the current iteration again from the beginning.

LOOP Control is resumed in the frame (and block) where the signal is caught. ".

Control passes to the "next" iteration.

EXIT Control is resumed in the frame (and block) where the signal is caught.
Control passes to the first statement outside the loop containing the EXIT statement.

GOTO Control is resumed in the frame where the signal is caught.
Control passes to the EXITS clause of the block containing the catch phrase or to some

surrounding block of the block containing the catch phrase.

Note that control need not resume in the block where the signal is caught.

UNWIND raised?

YES NO

X

X

X

X

X

X

Mesa Language Class - August, 1987

Day4-#2of9

Complex Signal Example

Consider the code below and name the statements that will be executed when the following call is made:
Procl[O];

51g1: ERROR • CODE;
51g2: ERROR = CODE;
51g3: 5IGNAL • CODE;

Proc1: PROCEDURE[x: CARDINAL] =
BEGIN
ENABLE

BEGIN
51g1 =)

51g2 =)

UNWIND .)
END;

GOTO punt;
<statement 1>;
<statement 2);

<statement 3);
<statement 4);
IF TRUE THEN

BEGIN
ENABLE

51g1 =) <statement 5);
<statement 6);
<statement 7);
Proc2.[x!

51g2, 51g3 =) <statement 8);
UNWIND .) <statement 9)];

END;
<statement 10);
EXIT5

punt =) <statement 11);
END;

Proc2: PROCEDURE[x: CARDINAL] • .
BEGIN
Proc3[x!

51g1 =.)

51g2 .)
UNWIND =)

END;

<statement 12);
<statement 13);
<statement 14)];

Proc3: PROCEDURE [x: CARDINAL] •
BEGIN
IF x • 0 THEN

ERROR 51g1
EL5E

ERROR 51g2;
END;

Catch Ph rase 1

-----.. _... Catch Phrase 2

-------_... Catch Phrase 3

Catch Phrase 4

Complex Signal Example

Mesa Language Class - August, 1987

Day4-#2of9

Statements are executed in the following order:

Statement 3
Statement 4
Statement 6
Statement 7
Proc2[O]
Proc3[O]
Statement 12
Statement 5
Statement 14
Statement 9
GOTOpunt;
Statement 11

Snapshots of the call-stack when it changes state are shown below (CP = Catch Phrase):

Proc 1 J Proc 1 j Proc 1 Proc 1

Proc2 Proc2 Proc 2

Proc3 Proc3

CP 4 [Sig1]

Proc 1 Proc 1 Proc 1 Proc 1

Proc2 Proc2 Proc2 Proc 2

Proc3 Proc3 Proc3 CP 4 [Unwind]

CP 3 [Sig1] CP 2 [Sig1] CP 1 [Sig1]

r
Proc 1

CP 3 [Unwind)

Proc 1] /1 L..-_Pr_oc_1---1

CP 2 [UnWind!]

Complex Signal Example

2

Mesa Language Class -- February, 1988

Day4- #30f9

Streams Programming Assignment: Madlibs™
In this programming assignment, you will write a program that will play the game of Madlibs™. In
Madlibs™, the user is asked to think of some words at random. Typically he is asked for adjectives, nouns,
verbs, etc. Once these words are collected, they are placed into an incomplete story that has specific
destinations for adjectives, nouns, verbs, etc. For instance the incomplete story line might look like this:

Dear Mom and Dad:

How are thi ngs? My classes aren't hard; they're just a little < adjective>.
1'm having fun though. My teachers are very <adjective> and they
all like to <verb>. Last night, my English teacher showed me how to
<verb>. She also gave me a <noun> and told me to <verb> every day.
My girlfriend is fine. Yesterday we went to <place> and < past tense verb>.
well, I should go. Send <plural noun>.

love, <name>

The finished story might read:

Dear Mom and Dad:

How are things? My classes aren't hard; they're just a little slimy.
1'm having fun though. My teachers are very green and they
all like to roller skate. Last night, my English teacher showed me how to
climb trees. She also gave me a twig and told me to sleep every day.
My girlfriend is fine. Yesterday we went to Hoover Tower and sat.
well, I should go. Send trees.

love, John

In this version of Madlibs™, the incomplete story lines will exist as ,a local file. Your program will read
through the story letter by letter and copy most of the file to a temporary file. Whenever a left bracket, <,
is encountered, the program will read the word between the two brackets, and display the word to the
tool's message subwindow asking the user to input this type of word. You then think of a word to type
into the input field and click over the Read Input! command. Your program will then write the string,
contained in the backing store of the input field, to the temporary file". These steps should be repeated
until the input file is empty. When the file is empty your program should display the completed story to the
tool's file subwindow.

When the tool is run, the user should type in a file name. After a game has started, the tool will query for
words:

Type in a verb

Filename: Madl.txt
Play Mad1ibsl

Input: ran
Read Inputl

Madlibs Assignment

Mesa Language Class .. - February, 1988

Oay4- #30f9 .2

Finally, when the end-of-file has been reached and the new file has been created the text is displayed to
the file subwindow.

Filename: Madl.txt
Play Madlibsl

Dear Mom and Dad:

Inpu1t:
Read Inputl

How are things? My classes are ok; sometimes they're a little slimy.
I'm having fun though. My teachers are very green and they
all like to roller skate. Last night, my English teacher showed me how to
climb trees. She also gave me a twig and told me to sleep every day.
My girlfriend is fine. Yesterday we went to Hoover Tower and sat.
well, I should go. Send trees.

love, John

Programming Assignment

Your assignment is divided into two parts:

Part 1: Create a tool with the FormSWLayoutTool that contains 4 tags: 2 strings and 2 commands. Modify
the generated code so when commcmds are invoked the tool will call the procedures defined in
MadlibsDefs.mesa. The generated code should be placed in the file MadlibsControl.mesa.

Part 2: Modify the file Madlibslmpl.mesa which implements the Play Madlibs! and Read Input!
commands. (The two procedures th.at implement those commands, PlayMadlibs and Getlnput,
should be called from the MadlibsControl module whenever the user clicks on those commands in
the window.) You will have to implement three procedures in Madlibslmpl according to the
comments that describe the procE!dures. Bind the 2 program modules Madlibslmpl and
MadlibsControl using the configuration file Madlibs.config. There are 3 files with which to test
your program; Mad1.txt, Mad2.txt, and Mad3.txt.

Madlibs Assignment

Mesa Language Class -- February, 1988

Day4- #40f9

Signal Exercises
For the following code fragments, Ust the order that the statements labeled <statement n> will be
executed.

In all code fragments, assume the following declaration:
Sig1: SIGNAL = CODE;

1. FOR counter: INTEGER IN [1 .. 2] DO
BEGIN

ENABLE
S1g1 => LOOP;

<statement 1>;

IF counter • 1 THEN SIGNAL Sig1;
<statement 2>;
END;

<statement 3>;
ENDLOOP;

<statement 4>;

2. FOR counter: INTEGER IN [1 .. 2] 00
BEGIN

ENABLE
S1g1 => CONTINUE;

<statement 1>;
IF counter = 1 THEN SIGNAL Sig1;
<statement 2>;
END;

<statement 3>;
ENDLOOP;

<statement 4>:

3. FOR counter: INTEGER IN [1 .. 2] 00
BEGIN

ENABLE
51g1 => EXIT;

<statement 1>;
IF counter = 1 THEN SIGNAL S1g1;
<statement 2>;
END;
<statement 3>;

ENDLOOP;
<statement 4>;

4. FOR counter: INTEGER IN [1 .. 2] 00
ENABLE

Sig1 => LOOP;
<statement 1>;
IF counter = 1 THEN SIGNAL S1g1;
<statement 2>;
<statement 3>;
ENDLOOP;

<statement 4>;

5. FOR counter: INTEGER IN [1 .. 2] 00
ENABLE

S1g1 => CONTINUE;
<statement 1>;

IF counter = 1 THEN SIGNAL S1g1;
<statement 2>:
<statement 3>;
ENDLOOP;

<statement 4>;

6. Proc1: PROCEDURE
BEGIN

Signal Exercises

SIGNAL S1g1;
END:

IF TRUE THEN
BEGIN

ENABLE
S1g1 => RESUME;

<statement 1>;
Proc1[lSig1 => CONTINUE];
<statement 2>;
Proc1 ;
<statement 3>;
END;

<statement 4>;

Mesa Language Class -- February, 1988

Day4-#4of9

7. BEGIN
ENABLE

S1g1 -> RESUME;
<statement 1>;
IF TRUE THEN

BEGIN
ENABLE

51g1 => GO TO TheEnd;
<statement 2>:
SIGNAL S1g1;
<statement 3>;
EXITS

TheEnd => <statement 4>;
END:

<statement 5>;
EXITS

TheEnd => <statement 6>;
END;

8. x: CARDINAL ~ 0;
FOR counter: INTEGER IN [1 .. 3] 00

ENABLE
S1g1 -> RETRY;

<statement 1>;

IF counter = 2 THEN
BEGIN

ENABLE
BEGIN

S1g1 => <statement 2>;
UNWIND => x ~ 1;
END;

<statement 3>;
IF x = 0 THEN SIGNAL Sig1:
<statement 4>;
END;

<statement 5>;
ENDlOOP;

2

Signa/Exercises

Mesa Language Class .- August, 1987

Day 4 - #50f9

Extra Signals Programming Assignment: Blackjack
In this programming assignment, you will alter a program which has been written to play the game of
blackjack. The user initially specifies the number of games the program will play with itself. There will only
be 2 players in the game: the dealer and the player. When the user clicks Start!, the program will play out
all of the games; both hands will be output to a file sub-window as each card is played. When all of the
games are finished ,the total number of dollars won will also be output to a file sub-window:

----) Beginning a new game <----
Your card is a two of clubs

My card is a jack of spades
Your card is a three of hearts

My card is a king of hearts
Your card is a ten of diamonds
Your card is a six of spades
You hold at 21

I hold at 20
You Win.

You are ahead by 1 dollar(s).

In this game of blackjack, the player bets 1 dollar on every hand. If he gets blackjack, then he wins 2 dollars.
Otherwise if the dealer gets blackjack, the player loses. If the game continues, the player receives hits
according a conservative strategy based on his hand, and the dealer's face card. If he busts, he loses.
Otherwise, the dealer receives hits until his total is a hard 17 or above. If the dealer busts, the player wins 1
dollar. Finally, if the game has reached this stage, the 2 hands are compared. The players wins 1 dollar if his
hand is greater; his winnings remain the same if the hands tie; and he loses if the dealer's hand is greater.
There is no double-down, splitting, or insurance in this version of blackjack.

When Start! is clicked, the following procedure in the implementation module is called:

PlayBlackJack: PUBLIC PROCEDURE[output: Window.Handle ~ NIL, gamesToBePlayed: CARDINAL ~ 0] = {
--ThiS procedure will play Blackjack as many times as specified ih gamesToBePlayed. After the
-- games have been played, results are written out to the window handle output.

playerTotal, dealerTotal: CARDINAL;
playerHasAce, dealerHasAce: BOOLEAN;
dealerHole, dealerFace: CardType;

THROUGH [1 .. gamesToBePlayed] DO
Int1al1zeDeckForNewGame;
Put.CR[output]; Put.CR[output]:
Put.line[output, II ----)Beg1nn1ng a new game <----IIL];
[playerTotal,dealerTotal,playerHasAce,dealerHasAce,dealerHole,dealerFace] ~ Deal[output];
IF playerHasAce AND (playerTotal = 11) THEN {

winnings ~ winnings + 2: --Player has Blackjack
Put.Line[output, II ••• You Have A Blackjack1111 ••• IIL];
LOOP };

Blackjack Assignment

Mesa Language Class -- August, 1987

Oay4- #50f9

IF dealerHasAce AND (dealerTotal .. 11) THEN {
winnings ~ winnings - 1; --Dealer has Blackjack
Put.Line[output, " ••• I Have A Blackjack!!!! ···"L];
LOOP };

[playerTotal] ~ HitPlayer[output, p'layerHasAce, playerTota1, dealerFace];
IF p1ayerTotal) 21 THEN {

winnings ~ winnings - 1; --Player busted.
Put.Line[output, "
LOOP }

ELSE {
Put.Text[output, "
Put.LongDecimal[output, playerTotal];
Put.CR[output] };

You Busted"L];

You hold at ilL];

dea1erTotal ~ HitDea1er[output, dealerHasAce, dealerTota1];
IF dea1erTotal) 21 THEN {

winnings ~ winnings + 1; --Dealer busted.
Put.Text[output, "I Busted"L];
LOOP }

ELSE {
Put.Text[output, "I hold at "L];
Put.LongDecimal[output, dealerTotal];
Put.CR[output] };

SELECT playerTota1 FROM
< dealerTotal =) { .

winnings ~ winnings - 1;
Put.Line[output, "I Win"L] };

) dealerTota1 =) {

winnings ~ winnings + 1;
Put.Line[output, "

ENDCASE :) Put.Line[output, "
ENDLOOP;

Put.CR[output];

You Win"L] };
We're even. Tie Game."L];

IF winnings < 0 THEN Put.Text[output, "
ELSE Put.Text[output, " You

You are behind by "L]
are ahead by "L];

Put.LongDecima1[output, ABS[winnings]];
Put.Line[output, " dol1ar(s)."L];
}; --PlayB1ackJack

The procedures Deal, HitPlayer, and HitDealE!r all call the following procedure when they need a card:

NewCard: PROCEDURE RETURNS [card: CardType] = {
--This procedure returns the next card in the deck. If at any point. the last card in the deck is
-- used, the non-used cards in the deck are shuffled, and play continues where it left off.

IF freeCard .. 53 THEN [deck, firstCard, freeCard] ~ Shuffled[deck, f1rstCard];
card ~ deck[freeCard];
freeCard ~ freeCard + 1;
}; --NewCard

2

In the procedure NewCard, deck is an array of 52 records with each record representing one card. Dealing
is accomplished by stepping through the deck one card at a time. At any instance during a game of
blackjack, firstCard is an index indicating the first card that was dealt for that hand. freeCard is an index
indicating the top card on the remaining deck, the next card that will be dealt. Thus, when freeCard is 53,
deck, firstCard, and freeCard are reinitialized by calling the procedure Shuffled which makes sure that the
cards on the table are not included in the shuffle. To complete this assignment, you don't have to know
how Shuffled works, just that it does the right thing when passed the right arguments.

Blackjack Assignment

Mesa Language Class -- August, 1987

Day4- #50f9 3

Currently, if the dealer runs out of cards at any point in the game, the cards currently not in use are
shuffled, and the game continues where it left off. 50 if only 1 card remains in the deck, that card will. be
dealt, the rest of the deck will be shuffled, and the dealing will continue.

Assignment

Modify this program (using a signal) so that if the dealer runs out of cards while dealing the initial hand
(the first 4 cards), that game is started over with a shuffled full deck of 52 cards. If the dealer runs out of
cards while hitting the player, the unused cards in the deck should be shuffled, and the game continued
where it.had paused (like before). If the dealer runs out of cards while hitting himself, then the dealer loses
the game and the next game is started with a shuffled full deck of 52 cards. The file that you will
be altering is Blackjacklmpl.mesa. Other files you will need are BlackjackDefs.mesa,
BlackjackControl.mesa, and Blackjack.config. Once you have the new version of Blackjacklmpl.mesa,
answer the following questions:

1. Briefly describe how the assignment might have been completed without using a signal.

2. Signals could have been used to indicate DealerBlackjack, DealerBusted, ... From an efficiency point
of view, why isn't this such a great idea?

Blackjack ASSignment

Mesa Language Class -- February, 1988

Oay4- #80f9

Signal Exercises Solutions
In all code fragments, assume the following declaration:

S191: SIGNAL = CODE;

1. FOR counter: INTEGER IN [1 .. 2]00
BEGIN

ENABLE
S191 =) LOOP;

<statement 1>;

IF counter = 1 THEN SIGNAL S191;
<statement 2);
END;

<statement 3);
ENDLOOP;

<statement 4);

2. FOR counter: INTEGER IN [1 .. 2] DO
BEGIN

ENABLE
S191 =) CONTINUE;

<statement 1>;

IF counter = 1 THEN SIGNAL Si91;
<statement 2);
END:

<statement 3);
ENDLOOP;

<statement 4);

3. FOR counter: INTEGER IN [1 .. 2] DO
BEGIN

ENABLE
S191 =) EXIT;

<statement 1>;

IF counter = 1 THEN SIGNAL Si91;
<statement 2);
END;
<statement 3>;

ENDLOOP;
<statement 4>;

1
1
2
3
4

1

3
1

2

3
4

1

4

4. FOR counter: INTEGER IN [1.. 2J DO
ENABLE

Sigl => LOOP;
<statement 1>;

IF counter = 1 THEN SIGNAL Sigl;
<statement 2>:
<statement 3>:
ENDLOOP;

<statement 4>;

5. FOR counter: INTEGER IN [1 .. 2J DO
ENABLE

S1g1 => CONTINUE;
<statement 1>;
IF counter = 1 THEN SIGNAL Sig1;
<statement 2>;
<statement 3>;
ENDLOOP;

<statement 4>;

6. Procl: PROCEDURE
BEGIN

SIGNAL S1g1;
END;

IF TRUE THEN
BEGIN

ENABLE
Sig1 => RESUME:

<statement 1>;

Proc1[IS;g1 => CONTINUEJ;
<statement 2>;
Procl ;
<statement 3);
END;

<statement 4>;

Signal Exercises Solutions

1

1

2

3

4

1

2

~
4

1

2

3
4

Mesa Language Class -- February, 1988

Day4-#8of9

7. BEGIN
ENABLE

Sig1 => RESUME;
<statement 1>;

IF TRUE THEN
BEGIN
ENABLE

S1g1 => GOTO TheEnd;
<statement .2>;
SIGNAL Sig1;
<statement 3>;
EXITS

TheEnd => <statement 4);
END;

<statement 5);
EXITS

TheEnd =) <statement 6);
END;

8. x: CARDINAL ~ 0;
FOR counter: INTEGER IN [1 .. 3] DO

ENABLE
Sig1 =) RETRY;

<statement 1>;

IF counter = .2 THEN
BEGIN

ENABLE
BEGIN

Sig1 =) <statement 2);
UNWIND =) x ~ 1;
END;

<statement 3);
IF x = 0 THEN SIGNAL Sig1;
<statement 4);
END;

<statement 5);
ENDLOOP;

1

2
4

5

1

5

1

3
2

1

3
4

5

5

Signal Exercises Solutions

2

Mesa Language Class -- August, 1987

Day5- #1 of7

Monitors Pr,togramming Assignment: One Lane B.ridg~e
i, '.", , " ; ~ 'Ie.,

In this programming assignment, you need to write part of a program that emulates the traffi(~fibadRe
lane bridge. As shown in the diagram below, there are two lanes of traffic on each side of a bridge that has
only one lane. You will' write a monitor to handle the traffic on the' bridge (and. prev'ent t1e'cidrdn ll

collisions). Keep in mind that if a ca'r is on the bridge going in some direction (Le. east), then oth~eflcafs'
going in the same direction can follf;>w it. Only the cars going in the opposite direction w()uld have to wait.

When you select a direction (east'or west) and type of car (Datsun Z, Jeep, or Volkswagen) and then invoke
Drive!, a new car of the chosen type going in the chosen direction will be created, and the variable Cars In
Motion will be incremented. Cars In Motion cannot be changed from the window - only from within the
program. When you start a car, it will move toward the bridge, then wait, if necessary, until it can cross the
bridge, and then continue driving. When it drives past the window, it parks somewhere and Cars In Motion
will be decremented to reflect that the car is no longer in motion.

The entire user interface has been written for you. This includes the code to create the window and also
the code to draw the moving cars. You need to implement the procedure Bridge.Drive,which is called
when the user invokes Drivel. This procedure is defined in the interface Bridge.mesa. You should
implement this procedure in BridgeMonitorlmpl.mesa. A template has been provided for you.

Notice that this module is a MONITOR, but the procedure Drive is not an entry procedure - it is an external
procedure. But, since this is a MONITOR module, you can put all of your procedures for monitoring the
bridge in this module, too.

The interface Bridge.mesa (shown below) contains many declarations that you will need. Each of the items
in this interface are explained below DO NOT ALTER OR RE-COMPILE THIS INTERFACE. There are many
modules that are dependent UPOlJ the particular version of Bridge.bed that is on your disk, and you do not
have the source to recompile those other modules.

One Lane Bridge Assignment

MeSl{,tanguage Class - August, 1987

DayS - #1 of7

--Bridge. mesa
-- 16-Jan-86 16:07:48

DIRECTORY
Supervisor USING [SubsystemHandle],
Window USING [Handle];

Bridge: DEFINITIONS = {

DataHandle: TYPE = LONG POINTER TO Data;
Data: TYPE 8 MACHINE DEPENDENT RECORD[

msgSW(O): Window.Handle ~ NIL,
formSW(2): Window.Handle ~ NIL,
br1dgeSW(4): Window.Handle ~ NIL,
wh(6): W1ndow.Handle ~ NIL,
d1rect1on(8):D1rect1on ~ east,
car(9): CarType ~ DatsunZ,
carsInMotion(10): CARDINAL ~ 0,
agent(11): Supervisor.SubsystemHandlo];

--the subwindow where th'e cars are'displayed

I.,,' " ... ;, ' ") " !., , '

--is mapped to the choice in the foftrlSW
--is mapped to the chQic~ in the formlSW
--is mapped to' the variable in the 'fd;~~w
--is used to control deactivation of the tool

',;' .?~.. .; ~f" \ ~ J -'of ~~'. ::~ ~

01 rection: TYPE = {east. west}; --Direction and CarType are enumerated
CarType: TYPE • {DatsunZ. Jeep, Vol kswagen}; --types that are used in the datarecord

BridgeType: TYPE = RECORD[
,~, ; :, c.ar~OnBr~ dg',r ~,~RDI~.~~ t: 0, f;', ~"" ":,

,d i \e~,:t 1,Q~: 01 r.,~.ct 1 o~\ ~ • ~,a,s t J ;:,;;, '.
--the number of cars~qlJ the pridge at any time

) r --th~ ~irection ?f"~,,e-'c~'rs?r th~:'~(idg~",
,. I ~~, • :' ~.' ~.,: !~

, Dr1~8: ~ROCEDURE[i,ns,ta,~ceD~tM'l Data~andl,eJ,;:
, .. f]-.;),~,:· ! .j~.J 'i' ".' .:~ t"::~ .. ':>,' ~.': 'i, I, 1 ~ .". . i)~ .. ,_

BeginOriving: PROCEDURE[sw: Window.Handle" car; CarType",,~ir: Qirection];' :' .
. : :~'l" . .,:: ',' I, .. " " 0'".. ...~: , '"' t" ;., , .. 1 ~"~ •

CrossBridge: PROCEOURE[sw: Window.Handle, car: CarType, dir: bire6tion];' ,
Cont1nueOriving: ,PROC~,OURE[sw:· ,Window .. Handle. ,car: CarType, dir: Directio.nl;
'} ,. • • "..',' .', " .. ,' ',' ' '.!' "~o' "

2

",I~. • .:.. 1 ~ ~ (c~ ~:.:

In your .monitor, y()u'should c;.reate an,i!1~tanc.E! of the record type BridgeType to k¢e"p vack of the number
of cars on the bridge' at any given ti'me and the direction of those ca-rs. The procedure Drive is the
procedure that you will implement in BridgeMonitorlmpl.mesa. The three procedures BeginDriving,

, CrQ$sBridge, andC~mtinueDriving are the pro1cedures that YQu,will cal,!. whe,p Y()u w,a.~t to send a car off in
a g~ven direct,it;>n. They ,have a~ready' be'en :implemented f~~' Y?~U. These 'fi:rd(~~pres ~!splay the moving car
along the specified p~rt of the road and return control to th~ir caller wh~J1,tti-eY:have<:ompleted. So, when
you want to start a c'ar drh/lng in a given direction, a cal~: like Beg,inQ~~ivi't;l'g,[data~~ridgeSw, which car,
which direction] (where which car and whkh direction have the"vai'ijes of "if particular CarType and
Direction) would do the display part for you. When you kno'1Y,.,that a.J?~rticyl~r c~r is ready to cross the
bridge, call CrossBridge[...], and when the car Ihas left the bridge~ call Ce)r't'inueDrivirig[...].

One I.ane Bridge Assignment

Mesa Language Class -- August, 1987

DayS- #1 of7

Here is the template for BridgeMonitorlmpl.mesa:

--BridgeMonitorlmpl.mesa
-- 16-Jan-86 16: 10:52

DIRECTORY
Bridge USING [DataHandle],
Process USING [MsecToT1cks. Pause];

BridgeMonitorImpl: MONITOR

IMPORTS Process
EXPORTS Bridge = {

Dri ve: PUBLIC)e~9C~p~~:E[i n~ ta?\,9{{~~ta:, ~Sl;J,ge. Da,~aH~ndl e] {
data .. i nst~I)~~Q~ta; "~l 'v' ':' i

Process . paus;et~f,~f;ce~i's. MS~?~'rO't~i::CkS[50p,j J;,

-- You need"t~J .z~/t~(tNeJrest ~~

}; --Drive "

} ...

The parameter inst~ri,~~'~~,tl)r~ <'poip~~r. ,tQ,~';r~C6rd"pf ,~ype Bridge.Data:dat'a i's:~·tm·rhediately a'ssr~ihed the
value of instanceDafa:Now data wIn always have tne"most current data 'And 'you ~can a'cce~'s any 'of the
fields in data (Le. data.direction) from anywhere within this module. Proce~s.Pause[...] will suspend the
process for a specified time, in this case a half second. This'putsa: little tltrHffn'Oetween(ars 'so tt'lat they
don't start so close to each other th~t they appear one on top of another. You need to finish writing this
procedure and all other 'help"- p'r:bce4ures that"You m~yiHeed:';' ,~", r'\); ;" , ,,~! :;,lUl),]. "'/}

, . ~: ! 1 ~ "." . ~ . ''''t -. '. : ,I' ': ~.~ ~~: •. <? ~,~ '\

Every time that you cha"ng'e\he valu1J tof CarslnMotion, you rieecrt6 redfsfll~Yth~hrl~w ~alue~ Vou can' do
this with a call to FormSW.Displayltem[data.formSW. 3]. The parameters of FormSW.Displayltem are "the
window that the item V\(e.,w~nt to redisplay is in (data.forn,'lSW) andth~ number of the item that we want
to redisplay. Each J~~rn 'tn, the fbrmSW has a "c~r;'~spondi'n~g if~m"~~lj:'m'ber.b The' item'number;6'f; .t:
CarslnMotion is 3. '.,< .. , ,,) ,.i, ,'" ", lb (~I;, \. ,'. ,- '" ,.,r \"

':1, ':,: ~; ; i ~ 'w. :':, ~, ;'. ~) ~ r ::: I) 1 f : '.' ,.f I:., < ","'1 ~ t' ()~. ~.l

There is a maximum nu~bergtc9:~x($~ing pro~esses allowed:'t'oprevent problems, 'you':shodld dttchth~:':
error Process.TooManyprocess~~.dtspiaya message to the messa~e subwincfow;: andpre've'n·t"anY'new'ca'rsr:
from starting (at least.,\JfltiJC?~~~;r ~,JtAh.aY~ .. 'parkett). For information on how~to cat~h the error, rEHer to the~: ':
Pilot Programmer's M·a,9liiir1,"~Pt:~i~2~·tD~16U9~'2-30. '. ,', . '" ",

The configurationmodui~, .O';';~[~~n~dJrf~ge.co'~'fi'g, has b~e'n written for you.
" • • ',;."1 • hi" : L. ~" '''.' ",., ".

Assignment

1. Finish the implementation module BridgeMonitorlmpl.mesa.
2. Verify your implementation by running the tool.

One Lane Bridge Assignment

Mesa Language Class -- August, 1987
DayS- #2of7

Extra Monitors Programming Assignment:
Dining Philosophers (Hard Version)

Your assignment is to implement the dining philosophers ·problem. In this problem, you have 5
philosophers at a dining table. However, there is only one chopstick between each plate, and a
philosopher needs 2 chopsticks to eat. At any given time, a philosopher may be thinking, eating, or waiting
for the philosopher next to him to put down a chopstick so he can use it.

The tool has an enumerated item to represent each philosopher:

Philosopher1 : {thinking, waiting, eating}
Philosopher2 : {thinking, waiting. eating}
Philosopher3: {thinking, waiting, eating}
Philosopher4: {thinking, waiting, eating}
Philosopher5: {thinking, waiting, eating}

Philosopher # 1 is ~ating.
Philosopher # 2 must wait to eat.
Philosopher # 1 has finished eating.
Philosopher # 2 is eating.

Initially, all philosophers are thinking. The user can tell a philosopher to start eating by changing the value
of the enumerated from thinking to eating. If the philosopher can eat, then the state will change to
eating, and appropriate feedback will appear in the file subwindow. If the philosopher must wait to eat,
then the state will change to waiting, and an appropriate message will appear.

Thus, in the program, you need to write a procedure that reacts to changes in the state of the enumerated
"philosophers." When the user asks a philosopher to eat, you should check to see if he can eat (see if his
chopsticks are available.) If the philosopher can eat, then you need to update data to indicate that his
chopsticks are in use, and display a message. Otherwise, the process should wait until it can eat. While the

Dining Philosophers (Hard Version)

Mesa Language Class _n August, 1987

DayS - #20f7 2

proces~:iscwaiting, the state of the philosophE~r should be "waiting." Note that your implementation is the!
only way'!to change the state to "waiting"; the user should not be able to explicitly change the state to or
fro'll ~ait~ng.

Ifth~,Js~,. changes the state of a philosopher from eating to thinking, then you should change the data so
that hi~ chopsticks are no longer in use, and inform other philosophers that they might be able to eat.

You are on your own for this assignment; we do not provide any of the code for you. '

Dining Philosophers (Hard Version)

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_1-05
	1_1-06
	1_1-07
	1_1-08
	1_1-09
	1_1-10
	1_1-11
	1_1-12
	1_1-13
	1_1-14
	1_1-15
	1_1-16
	1_1-17
	1_1-18
	1_1-19
	1_1-20
	1_1-21
	1_1-22
	1_1-23
	1_1-24
	1_1-25
	1_1-26
	1_1-27
	1_1-28
	1_1-29
	1_1-30
	1_1-31
	1_1-32
	1_1-33
	1_1-34
	1_1-35
	1_1-36
	1_1-37
	1_1-38
	1_1-39
	1_1-40
	1_1-41
	1_1-42
	1_1-43
	1_1-44
	1_1-45
	1_1-46
	1_1-47
	1_1-48
	1_1-49
	1_1-50
	1_1-51
	1_1-52
	1_1-53
	1_1-54
	1_1-55
	1_1-56
	1_1-57
	1_1-58
	1_1-59
	1_1-60
	1_1-61
	1_1-62
	1_1-63
	1_1-64
	1_1-65
	1_1-66
	1_1-67
	1_1-68
	1_1-69
	1_1-70
	1_1-71
	1_1-72
	1_1-73
	1_1-74
	1_1-75
	1_1-76
	1_1-77
	1_D-01
	1_D-02
	1_D-03
	1_D-04
	1_D-05
	1_D-06
	1_D-07
	1_D-08
	1_D-09
	1_D-10
	1_D-11
	1_D-12
	1_D-13
	1_D-14
	1_D-15
	1_D-16
	1_D-17
	1_D-18
	1_D-19
	1_D-20
	1_a-01
	1_a-02
	1_a-03
	1_a-04
	1_a-05
	1_a-06
	1_a-07
	1_a-08
	1_a-09
	1_a-10
	1_a-11
	1_i-01
	1_i-02
	1_i-03
	2_2-01
	2_2-02
	2_2-03
	2_2-04
	2_2-05
	2_2-06
	2_2-07
	2_2-08
	2_2-09
	2_2-10
	2_2-11
	2_2-12
	2_2-13
	2_2-14
	2_2-15
	2_2-16
	2_2-17
	2_2-18
	2_2-19
	2_2-20
	2_2-21
	2_2-22
	2_2-23
	2_2-24
	2_2-25
	2_2-26
	2_2-27
	2_2-28
	2_2-29
	2_2-30
	2_2-31
	2_2-32
	2_2-33
	2_2-34
	2_2-35
	2_i-01
	3_3-01
	3_3-02
	3_3-03
	3_3-04
	3_3-05
	3_3-06
	3_3-07
	3_3-08
	3_3-09
	3_3-10
	3_3-11
	3_3-12
	3_3-13
	3_3-14
	3_3-15
	3_3-16
	3_3-17
	3_3-18
	3_3-19
	3_3-20
	3_3-21
	3_3-22
	3_3-23
	3_3-24
	3_3-25
	3_3-26
	3_3-27
	3_3-28
	3_3-29
	3_3-30
	3_3-31
	3_3-32
	3_3-33
	3_3-34
	3_3-35
	3_3-36
	3_3-37
	3_3-38
	3_3-39
	3_3-40
	3_3-41
	3_3-42
	3_3-43
	3_3-44
	3_3-45
	3_3-46
	3_3-47
	3_3-48
	3_3-49
	3_3-50
	3_3-51
	3_3-52
	3_3-53
	3_3-54
	3_3-55
	3_i-01
	3_i-02
	4_4-01
	4_4-02
	4_4-03
	4_4-04
	4_4-05
	4_4-06
	4_4-07
	4_4-08
	4_4-09
	4_4-10
	4_4-11
	4_4-12
	4_4-13
	4_4-14
	4_4-15
	4_4-16
	4_4-17
	4_4-18
	4_4-19
	4_4-20
	4_4-21
	4_4-22
	4_4-23
	4_4-24
	4_4-25
	4_4-26
	4_4-27
	4_4-28
	4_4-29
	4_4-30
	4_4-31
	4_4-32
	4_4-33
	4_4-34
	4_4-35
	4_4-36
	4_4-37
	4_4-38
	4_4-39
	4_4-40
	4_4-41
	4_4-42
	4_4-43
	4_4-44
	4_4-45
	4_4-46
	4_4-47
	4_4-48
	4_4-49
	4_4-50
	4_4-51
	4_4-52
	4_4-53
	4_4-54
	4_i-01
	4_i-02
	4_i-03
	5_5-01
	5_5-02
	5_5-03
	5_5-04
	5_5-05
	5_5-06
	5_5-07
	5_5-08
	5_5-09
	5_5-10
	5_5-11
	5_5-12
	5_5-13
	5_5-14
	5_5-15
	5_5-16
	5_5-17
	5_5-18
	5_5-19
	5_5-20
	5_5-21
	5_5-22
	5_5-23
	5_5-24
	5_5-25
	5_5-26
	5_5-27
	5_5-28
	5_5-29
	5_5-30
	5_5-31
	5_5-32
	5_5-33
	5_5-34
	5_5-35
	5_5-36
	5_5-37
	5_5-38
	5_5-39
	5_5-40
	5_5-41
	5_5-42
	5_5-43
	5_5-44
	5_5-45
	5_5-46
	5_5-47
	5_5-48
	5_5-49
	5_5-50
	5_i-01
	5_i-02
	Day1_2of9
	Day1_3of9
	Day1_4of9
	Day1_5of9
	Day1_6of9_1
	Day1_6of9_2
	Day1_6of9_3
	Day1_6of9_4
	Day1_6of9_5
	Day1_6of9_6
	Day1_6of9_7
	Day1_6of9_8
	Day1_7of9
	Day1_8of9
	Day1_8of9_1
	Day1_8of9_2
	Day1_8of9_3
	Day1_8of9_4
	Day1_8of9_5
	Day1_9of9
	Day2_1of5_1
	Day2_1of5_2
	Day2_1of5_3
	Day2_1of5_4
	Day2_1of5_5
	Day2_1of5_6
	Day2_2of5
	Day2_3of5_1
	Day2_3of5_2
	Day3_1of11_1
	Day3_1of11_2
	Day3_2of11_1
	Day3_2of11_2
	Day3_3of11_1
	Day3_3of11_2
	Day3_4of11_1
	Day3_4of11_2
	Day3_5of11_1
	Day3_5of11_2
	Day3_6of11
	Day3_9of11
	Day4_1of9
	Day4_2of9_1
	Day4_2of9_2
	Day4_3of9_1
	Day4_3of9_2
	Day4_4of9_1
	Day4_4of9_2
	Day4_5of9_1
	Day4_5of9_2
	Day4_5of9_3
	Day4_8of9_1
	Day4_8of9_2
	Day5_1of7_1
	Day5_1of7_2
	Day5_1of7_3
	Day5_2of7_1
	Day5_2of7_2

