
XER()X

Xerox System Integration Guide

FILINGSUBSET
IMPLEMENTOR'S GUIDE

XNSG098609
September 1986

Notice

This Xerox System Integration Guide is being provided for informational purposes only. Xerox makes no
warranties or representations of any kind relative to this document or its use, including the implied
warranties of merchantability and fitness for a particular purpose. Xerox does not assume any responsibility
or liability for any errors or inaccuracies that may be contained in the document, or warrant that the use of
the information herein will produce results in an intended manner.

The information contained herein is subject to change without any obligation of notice on the part of
Xerox.

All text and graphics prepared on the Xerox 8010 Information System.

Copyright @ 1986, Xerox Corporation. All rights reserved.
XEROX (@) and XNS are trademarks of XEROX CORPORATION.
UNIX is a trademark of AT&T Bell Laboratories.
Printed in U.S.A. Publication number: 610PS0681

TABLE OF CONTENTS

1. Int."oduction ------------------.----------------------------------.-----------------
1.1 Purpose

1.2 Document c)rganiz,ation 1

1.3 Document c:onventions 2

1.3.1 Notation 2

1.3.2 Notation for Courier examples 2

1.3.3 Notation for C examples 3

2. XNSprotocol dependencies 5

2.1 Internet Transport Protocols 5

2.1.1 Relationship of transport to FilingSubset session 5

2.2 Courier and Bulk Data Protocols 6

2.3 Clearinghouse Protocol 6

2.3.1 Implementation with a Clearinghouse service 6

2.3.2 Implementation without a Clearinghouse service 7

2.4 Authentication Protocol 8

2.4.1 Implementation with an Authentication Service 8

2.4.2 Implementation without an Authentication Service 9

2.5 Time Proto(:ol 10

3. Client implementation 11

3.1 Opening a session 11

3.3.1 Maintaining an open session 12

3.2 Closing a session 13

3.3 Enumerating a file(s) 13

3.4 Storing a file(s) 14

3.4.1 Overwriting an existing remote file 14

3.4.2 Bulk data transfer 15

3.5 Retrieving a file(s) 15

3.5.1 Overwriting an existing local file 16·

3.5.2 Bulk data transfer 16

3.6 Deleting a file(s) 16

3.7 Creating a directory 17

FILlNGSUBSET IMPLEMENTOR'S GUIDE iii

TABLE OF CONTENTS

4. Service implementation '19 ______________ L-__ _

4.1 Common data structures '19 --
4.1.1 Session handle 20 ---
4.1.2 File handle 20

4.2 Common support 21

4.2.1 Session validation 21

4.2.2 Use of the continuance timer 21

4.2.3 File handle validation 22

4.3 Procedures 22

4.3.1 Logon 22

4.3.2 Logoff 24

4.3.3 Continue

4.3.4 Open

4.3.5 Close

4.3.6 List 26

4.3.7 Store 27 --
4.3.8 Retrieve ~IO --
4.3.9 Delete ~'1 --

S._U_N_IX_sy&..s_t_e_m_in_t_e_rf_a_c_e ____________________ 33

5.1 Attribute support ~13
----------~~--

5.1.1 Mandatory attributes 314
----------~---------------------------------
5.1.2 Implied attributes 319
----~---------------------------------------
5.1.3 Optional attributes 319

5.2 Client procedure support 40
------~--------~--

5.2.1 Continuance timer support ~~O
------------------~~------------------------
5.2.2 Determining mandatory attribute values ~~ 1
------------~------~------------------------

5.3 Service procedure support 42
--------~------~~--

5.3. 1 Logon 43
----~~--------------------------------------
5.3.2 Continue 45 --
5.3.3 Open 45
----~--
5.3.4 List 47 --
5.3.5 Store 48 --
5.3.6 Retrieve 5: 1

5.3.7 Delete 5:2 --
6. VMS system interface 55

----------~---
6.1 Attribute support 5,5
----------~~--

6.1.1 Mandatory attributes 56
----------~----------------------------------
6.1.2 Implied attributes 64
----~--

iv FILlNGSUBSET IMPLEMENTOR'S GUIDE

TABLE OF CONTENTS

6.1.3 Optional attributes 64

6.2 Client procedure support 65

6.2.1 Continuance timer support 65

6.2.2 Determining m,andatory attribute values 66

6.3 Service pro1cedure support 68

6.3.1 Logon 69

6.3.2 Conti nue 69

6.3.3 Open 70

6.3.4 List 72

6.3.5 Store 76

6.3.6 Retrieve 79

6.3.7 Delete 79

Appendices ---
A. References 81

FILlNGSUB'SIET IMPLEMENTOR'S GUIDE v

TABLE OF CONTENTS

vi FILlNGSUBSET IMPLEMENTOR'S GUIDE:

LIST OF TABLES

Tables
4.1 Primary and secondary credentials combinations 23

5.1 UNIX supported values for implied attributes 39

6.1 VMS supported values for implied attributes 65

FILINGSUBSET IMPLEMENTOR'S GUIDE vii

LIST OF TABLES

viii FILINGSUBSET IMPLEMENTOR'S GUIDIE

1. INTRODUCTION

The FilingSubset Protocol defines a minimal capability to store, retrieve, enumerate, and
delete files of a remote service. Maximum interconnectivity is ensured when both client and
service implementations support this specified minimum level of service and make no
assumptions regarding the availability ofa broader functionality.

The FilingSubset Protocol has been designed to provide XNS access to native file systems on
heterogeneous hosts in a straightforward and easily implementable fashion. The
FilingSubset specification defines the behavior between clients and services without respect
to a specific implementation.

1.1 Purpose

The FilingSubset Implementor's Guide describes a framework for implementation of the
FilingSubset Protocol which can serve as a handbook for future implementors. This
document presents:

• a client mapping of common user functions to FilingSubset procedures

• service support for the FilingSubset

• recommended use of and support for FilingSubset procedures and attributes on the
UNIX YII 4.2850, UNIX YII 4.3850, UNIX YII 5ystem V, and VAXNM5 operating systems

Through the use of specific implementation exanlples, the reader will be shown a common
method for implementing thE~ protocol within the above operating systems, and, thereby,
further interconnectivity, and reduce the potential for implementation inconsistencies.

The examples presented in this guide describe a consistent implementation of the required
functionality of the FilingSubset Protocol. These examples are by no means the only method
for providing the facility desired; they have been chosen because they offer a simple and
clearly understood framework for an actual implementation, regardless of the interface to
the lower level XNS protocols.

1.2 Document organization

Chapter 2 of this document describes the relationship between the FilingSubset Protocol and
other XNS protocols in terms of the support required for FilingSubset implementations.
Chapter 3 describes a client implementation for translating common user functions into the
appropriate FilingSubset procedures. Chapter 4 presents a service implementation at a level
independent of the underlying file system interfa.ce. Each of these chapters deals with the

FILINGSUBSIET IMPLEMENTOR'S GUIDE

INTRODUCTION

recommended use of the FilingSubset for interaction between client and server. Chapter 5
details the support for FilingSubset procedures and attributes with regard to the UNIX
4.2850, UNIX 4.3850, and UNIX 5ystem V operating systems. Support for these same
procedures and attributes for the V AXNM5 operating system is described in section 6.

1.3 Document conventions

Courier text and examples are depicted in special fonts, and generally conform to a certain
style. Examples illustrated through the use of C code are also depicted in a special font. The
rules and style are set forth below.

1.3.1 Notation

Throughout this document, special fonts are used to depict Courier text/examples and C
examples, instead of using quote marks or other delimiters. This convention also aids the
eye in discriminating between various examples and the exposition.

Items in THIS fONT indicate elements of the Courier language and are almost always in upper
case. This font indicates items that are defined using the Courier language. Identifiers will
have their first letter capitalized if they are the name of a type, error, or procedure;
identifiers with a lowercase first letter are usually the names of variables, arguments, 01'

results.

Items in this font indicate C code examples. Identifiers which are entirely uppercase are the
names of user-defined C constants or macros. Identifiers will have their first letter
capitalized if they represent the name of a structure type, constant Courier value or Courier
defined procedure. Those identifiers with a lowercase first letter are usually the names of'
user-defined variables, arguments, or results.

1.3.2 Notation for Courier examples

2

In the examples that follow, a call to a remote procedure is denoted by the name of the
procedure followed by the arguments supplied to it. A return from a remote procedure is
denoted simply by the results, preceded-when confusion might otherwise result-by the
keyword RETURNS. The argument or result list is modeled as a record; the arguments or
results as the record's components. Accordingly, Courier's standard notation for record
constants is used to specify arguments and results lists.

For example, if the procedure Add is defined as:

Add: PROCEDURE [fi rst, second: CARDINAL]

RETURNS [sum: CARDINAL] • 99;

then a call to that procedure would be denoted by:

Add [first: 7, second: S1

FILINGSUBSET IMPLEMENTOR'S GUIDI:

INTRODUCTION

and the call would yield the result:

[sum: 12] or RETURNS [sum: 12]

Fine point: The above notation for procedure calls should not be confused with the Htandard notation for a record
constant selected by means of a choice data type. The two are similar in appearance, but otherwise unrelated.

Examples of remote errors are either just the name of the error, if it is defined without
arguments:

OVERFLOW

or the same as a procedure call, if it is defined with arguments. For example, if Overflow
were defined as:

Overflow: ERROR [carry: CARDII~AL] • 99;

then an example of its use might be:

Overflow [carry: 1]

indicating that Overflow was reported with argulnent carry having the value 1.

Courier requires values for a SEQUENCE OF UNSPECIFIED to be a sequence of numbers. So as to
retain readability in examples, the content of a SEQUENCE OF UNSPECIFIED is described using
Courier notation. The reader should understand that the numeric representation of these
types is what should be used as the content of the sequence.

1.3.3 Notation for C examples

Code examples are used in this document to describe the interface to the native file system.
All examples are written in the C language as described in t~The C Programming
Language," Kernighan and Ritchie, Prentice-Hall, 1978.

The examples in chapters 5 and 6 will present routines or portions of routines which make
use of the resident system interface to provide the necessary support for attributes or
procedures. These examples are intended to be working examples; however, the procedure
and variable names are chosen for maximum clarity and may not necessarily adhere to the
restrictions of a particular cOlnpiler.

FILlNGSUBSET IMPLEMENTOR'S GUIDE 3

INTRODUCTION

4 FILlNGSUBSET IMPLEMENTOR'S GUIDI:

2. XNS PROTOCOL DE:PENDENCIES

All implementations of the FilingSubset Protocol require, as a prerequisite, working
implementations, or at least knowledge, of several other XNS protocols. Specifically, the
FilingSubset is dependent upon the XNS Internet Transport, Courier, Bulk Data,
Clearinghouse, Authentication, and Tinle Protocols.

Although the intent of this document is not to describe actual implementations of these
supporting protocols, this section discusses specific portions of these protocols which must be
implemented, and recommends certain implementation restrictions which will further the
interconnecti vity of FilingSubset implementations.

2.1 Internet Transport Protocols

Any FilingSubset implementation requires a functional implementation of the following
Internet Protocols [8]: Intern.et Datagram Protocol, Sequenced Packet Protocol (SPP),
Routing Protocol, and Error Protocol.

Although the Packet Exchange Protocol (PEP) is not essential to the implementation of the
FilingSubset, a PEP implementation is recommended, since it shoUlld be used for locating
Clearinghouse and Authentication services on the network.

2.1.1 Relationship of transport connection to FilingSubset session

Implicit within the layered architecture of the XNS protocols is the notion that a higher
level connection exists independent of the transport connection supporting it. The XNS
architecture allows complete independence between transport and session connections, so
that one or more transports may be used to communicate procedure calls to a single session,
and a single transport may be used to communicate procedure calls to one or more sessions.
With this in mind, some FilingSubset implementations may wish to restrict a session
connection to a single transport connection. In order to provide the greatest degree of
interconnectivity, FilingSubset clients should restrict all operations pertaining to a given
FilingSubset session to a single transport connection. That is to say, clients should endeavor
to keep the transport alive during the life of the session, and should not divide operations on
a given session among differen.t transport connections.

The XNS architecture permits a further distinction to be made between the SPP and Courier
connections. Within this model, a single transport connection implies both a single Courier
connection and a single SPP connection.

FILlNGSUBSI:T IMPLEMENTOR'S GUIDE 5

XNS PROTOCOL DEPENDENCIES

2.2 Courier and Bulk Data Protocols

All FilingSubset procedures are defined in the Courier language and also pass arguments
and convey results as Courier data types; therefore, implementation of the Courier RemotE~
Procedure Call Protocol [6] is required by all FilingSubset implementations.

The FilingSubset is an application level protocol based on the Courier remote procedure call.
model. As such, all subset clients issue the initial connection request to the Courier well··
known socket. Implementation of a FilingSubset service implies the existence of such a
Courier listener which accepts incoming requests and creates a connection which the subset
service subsequently uses.

The FilingSubset Protocol uses the Bulk Data Protocol [2] to transfer file contents and
enumerated lists. All FilingSubset implementations must support, at a minimum, thE~
BulkData.immediate and BulkData.null transfer choices. Third party bulk data transfers
need not be supported for operation of the FilingSubset.

2.3 Clearinghouse Protocol

The Clearinghouse Protocol [4] is used to interrogate a Clearinghouse service for
information about objects within the network, such as users, services, etc. It is recommended
that FilingSubset implementations use the Clearinghouse service when those functions arE~
required; however, a subset implementation can perform without a Clearinghouse service.,
Alternative methods are presented for those cases where a Clearinghouse service does not
exist or the implementation of such a service is non-trivial.

2.3.1 Implementation with a Clearinghouse service.

FilingSubset client implementations may make use of the Clearinghouse Protocol for two
specific functions: 1) location of Clearinghouse servers, and 2) location and description offilE~
services.

2.3.1.1 Location of a Clearinghouse server

Locating a Clearinghouse server is a prerequisite to the use of a Clearinghouse for other
activities. The BroadcastForServers operation described in section 3.8 and appendix E of thE~
Clearinghouse Protocol [4] is the recommended procedure for locating a ClearinghousE~
server.

Use of the BroadcastForServers procedure implies that a functional implementation of thE~
Packet Exchange Protocol exists.

2.3.1.2 Location and description of file services

6

In most instances, a FilingSubset client will possess the name of the service for which SL

connection is desired. The client must translate this name into the unique network address

FILINGSUBSET IMPLEMENTOR'S GUIDI:

XNS PROTOCOL DEPENDENCIES

which is used by the Internet Transport Protocols. In addition, the client must determine
whether the name identifies a properly registered file service, and~ if so, what level of the
Filing Protocol is provided, what level of Authentication is supported, and the required
secondary credentials item types.

This is accomplished by issui.ng a Courier Retrieveltem procedure call to a Clearinghouse
service requesting the fileService property. The values returned from this procedure are
described in Clearinghouse Entry Formats [5] and contain the following:

• the distinguished object name of the server, type ClearingholJse.ObjectName

• a description of the file service, type STRING

• a list of network addresses, SEQUENCE OF Clearinghouse.NetworkAddress

• the Authentication levels supported by the service, type AuthenticationLevelValue

• the level of Filing Protocol support provided by the service

• the secondary credentials item types required by that service

The Clearinghouse service may report an error indicating that the name supplied does not
identify a file service.

2.3.2 Implementation without (a Clearinghouse service

Under some circumstances, the use of a Clearinghouse service may not be possible or the
implementation costs too great. Alternatives to Clearinghouse use are presented here;
however, their use will result in a lesser degree of functionality, robustness, and security.
Each of these methods may be used as individual or collective replacements for the
respecti.ve Clearinghouse proc:edures.

2.3.2.1 Location of a Clearinghouse server

A simpler mechanism of caching Clearinghouse server addresses may be used to a void
implementation of the BroadcastForServers procedure. This requires maintaining a single
file which contains the host name and network address of the Clearinghouse servers within
commonly-used domains.

For example, the file Sales. map could contain entries for the Clearinghouse servers which
service the sa 1 es domain, as follows:

sales-clearinghouse1 1#1-123-456-789
sales-clearinghouse2 1#1-987-654-321

This mechanism is quite easily implemented and can provide service for the more
commonly-used domains. However, it is not reasonable to employ this mechanism as a
means to access all dOlnains on the network, since the volume of data would be quite large
and the data itself would be subject to change as the network changes.

FILlNGSUBSET IMPLEMENTOR'S GUIDE 7

XNS PROTOCOL DEPENDENCIES

2.3.2.2 Location and description of file services

A mechanism similar to that described above for locating Clearinghouse servers could also
be employed for locating file services. However, this will only provide the name to address,
translation and will not allow the client to determine the file service's requirements
regarding levels of Authentication support, protocol support, and secondary credentials. A
client should be prepared to receive appropriate error conditions from the service, if th€~
service does not support the FilingSubset Protocol, or requires credentials different from:
those supplied.

If a Clearinghouse service does exist and its address can be ascertained with either of the
previously mentioned methods, then location of the file service as specified in section 2.3. l.~:
is preferable to maintaining a large and dynamic file of file service addresses.

2.4 Authentication Protocol

FilingSubset clients and services rely on the Authentication Protocol. This defines 1) the
format of the user's network credentials and verifiers, and 2) the protocol to use when
communicating with Authentication services to create and validate these credentials and
verifiers.

FilingSubset services should provide support for immediate credentials, of which there arE~
two types: simple or strong. Clients may use either of these types, although the use of strong
credentials is encouraged because they incorporate a greater level of network security"
However, support for strong credentials requires the use of an Authentication Service.

Subset clients provide both primary and secondary credentials and a verifier on a Logon"
Primary credentials are those credentials that resolve a client's identity to a ClearinghousE~
name. Validation of-primary credentials is accomplished through use of the Authentication
Protocol [1], unless a client uses nuliPrimaryCredentials which indicates that network
authentication is not to be performed.

Secondary credentials communicate host-specific authentication information. ThesE~
credentials are validated, according to the mechanisms defined by the host operating systerrL
for the service. As such, the format of secondary credentials is service-specific. Secondary
Credentials Formats [9] describes a set of well-known secondary item types to be employed
by services.

2.4.1 Implementation with an Authentication Service

8

Successful use of the Authentication Protocol is predicated on interaction with an
Authentication Service. An Authentication Service is located in much the same way as a
Clearinghouse service. The BroadcastForServers operation, as described in section 3.6 ofthE~
Authentication Protocol, is used. This operation requires a working implementation of thE~
Packet Exchange Protocol; however, an alternate mechanism, similar to that suggested in
section 2.3.2.1 of this document, may be employed.

FILINGSUBSET IMPLEMENTOR'S GUIDIE

XNS PROTOCOL DEPENDENCIES

2.4.1.1 Priimary credentials

A client does not require interaction with an Authentication Service to create simple
credentials and a verifier. The credentials consist of the user's distinguished Clearinghouse
name or alias, of type Clearinghouse.Name, while the verifier is of type HashedPassword.
The verifier value is (!omputed using the algorithm in section 5.1 of the Authentication
Protocol.

A FilingSubset service validates simple credentials by issuing a C:heckSimpleCredentials
call to an Authentication Service. The subset service passes the client-supplied credentials
and verifier and receives a boolean response, which if TRUE indicates a valid verifier.
Appropriate errors are returned if the verifier is invalid.

Strong primary credentials are manufactured by an Authentication Service at the request of
a client initiating a conversation. These credentials are then passed to a FilingSubset
service which performs the validation using the procedure described in section 2.9.1 of the
Authentication Protocol.

2.4.1.2 Secondary credentials

Secondary credentials are created by a client, depending upon the set of SecondaryltemType
values required by the FilingSubset service. The client determines the necessary types by
issuing a request to a Clearinghouse service. The required items of SecondaryltemType are
then combined to form the secondary credentials passed to the service. If a Clearinghouse
service is not available, the service will reject a Logon when a client supplies the wrong set
of secondary item types for the service. In this case, the item types required by the service
will accompany the error, so that the client may use these to repeat the Logon with the
correct item types.

Secondary credentials are also available in the simple a~d strong types, and it is
recommended that a FilingSubset service support both of these types. Simple secondary
credentials are validated by the service using the mechanisms supplied by the host
operating system.

Strong secondaries are simple secondaries encrypted with the client's conversation key, as
used to form the strong primary credentials. The unencrypted simple secondary value is
formed, then padded with zero bits to a multiple of 64 bits and encrypted, using the client's
conversation key, as described in section 5.3 of the Authentication Protocol.

2.4.2 Impltementation without an Authentication Service

FilingSubset clients and services can operate successfully without the use of an
Authentication Service, by relying on validation of the secondary credentials only.

FILlNGSUBSIET IMPLEMENTOR'S GUIDE 9

XNS PROTOCOL DEPENDENCIES

2.4.2.1 Primary credentials

The use of simple and strong primary credentials is precluded if use of an Authentication
Service is not possible, since the use of either type of credentials involves interaction with
the service.

Instead, a client can use nuliPrimaryCredentials, which indicates to the service that network
authentication is not to be performed.

2.4.2.2 Secondary credentials

Secondary credentials of strength none or simple can be employed by subset clients and
services without requiring an Authentication Service. Strong secondaries cannot be used
since they are encrypted with a conversation key, which is created by the Authentication
Service.

The use of simple secondaries is identical to that described in section 2.4.1.2.

The use of secondaries of strength none is not encouraged, since a client must USE~
nuliPrimaryCredentials when an Authentication Service is not available. This would providEl
no user authentication within the network or on the specific service.

2.5 Time Protocol

10

FilingSubset implementations do not explicitly require use of the Time Protocol as it applies;
to the use of network time servers. However, several FilingSubset attributes are defined in
XNS Time format, which will imply a conversion to/from the native operating system timEl
format.

FILlNGSUBSET IMPLEMENTOR'S GUIDI:

3. CLIENT IMPLEMENTATION

A FilingSubset client interacts with a FilingSubset service on behalf of a user. This user
may be a human being, where commands are input from an interactive user interface, or
another software entity, where actions are requested via a procedural interface. In all cases,
the user initiates the interaction between client and service; the service never initiates
activity with a client.

The client is responsible for translation of user requests into FilingSubset procedures to
effect the desired user action. The FilingSubset procedures, in turn, provide the client with
low-level access to the file system of remote hosts. It is the client's responsibility to sequence
these procedure calls and maintain an appropriate control state to provide the desired
action.

The FilingSubset client presented in this section allows the user to perform the following
actions:

• open a session

• close a session

• enumerate a file or files in a directory

• store a file or files on a remote service

• retrieve a file or files from a remote service

• delete a file or files on a remote service

• create an empty directory on a remote service

Only those functions supported by the FilingSubset are used by this client. All pathnames
presented to the service are specified in absolute syntax, where the null Handle is used to
specify the parent directory. Attribute integrity is assured by conveying all legal mandatory
attributes to the service on a Store and retaining all mandatory attributes in the local file
system on a Retrieve. The use of a single transport connection for the session implies that
the client cannot enum,erate the candidate files for retrieval or deletion on one connection,
then simultaneously open a second connection to perform the retrieval or deletion. Instead,
the client must save the enumerated list returned by the service and use this list when
performing the retrieval or deletion later.

3.1 Opening a session

Prior to accessing any files 011 a file service, a client must open a Courier connection to a
subset service and perform a L.ogon. This procedure returns a session handle, which is used

FILING SUBSET IMPLEMENTOR'S GUIDE 11

CLIENT IMPLEMENTATION

on subsequent procedure calls until a Logoff is issued or the connection is closed. U poll
return from the Logon, the client may issue other procedure calls to the service by includinl~
the returned session handle on those calls.

In some scenarios, a user may specify either a file service name or a network address for the
intended service. In the case where a name is specified, this name must be translated to the
associated network address via the procedure outlined in section 2.3 before the Logon can b4~
performed.

User credentials are created as defined by the Authentication Protocol. Clients must supply
both primary and secondary credentials and a verifier to the service. The client should use
the appropriate primary and secondary credentials based upon the Authentication level
supported by the service, as determined by the procedure outlined in section 2.3. Secondary
credentials are created according to the procedure outlined in section 2.4.1.2.

Once the Logon has successfully completed, the client may open a default
directory-generally the root. This is not necessary when the client uses the absolutf~
pathname syntax for all file identification, since specification of the null Handle as a
directory handle implies the root.

The root file may be opened by specifying the nuliHandle for the directory file handle, alon~~
with an empty attribute sequence, [SEQUENCE 0 OF UNSPECIFIED]. The use of null Handle with thE~
empty attribute sequence will imply the root directory, regardless of any service-specific=
pathname syntax.

3.1.1 Maintaining an open session

12

Once a session has been successfully established, the client is responsible for keeping tha1G
session open, especially during long periods of inactivity. This is accomplished by issuin~~
Continue procedures at specific intervals to ensure that the service does not terminate thE~
session.

Once the Logon has completed, the client issues a Continue to the service to determine thE!
service specific continuance value. The value returned is specified in seconds, so the client
should decrease this by some factor (Le., t) and establish a timeout mechanism which win
issue another Continue at the expiration of the interval. This allows the client to issue thE!
next Continue well before the service timeoutinterval.

Once the timeout mechanism is in place, any FilingSubset call including the Continue is
considered to be activity and causes the service to reset its timer. The client should cancell
any pending timer prior to issuing any procedure and reset the timer upon successfull
completion of each procedure. Once the Logoff has successfully completed, the client should
cancel any pending timer without reestablishing it.

The XNS architecture allows any given session to exist over multiple transport connections"
The definition of the FilingSubset does not preclude use of this facility; however, it is
recognized that not all subset services can support this function. Clients should not assume
that this facility exists and should be able to operate correctly with only a single transport
connection for each session. Likewise, clients should, where possible, prevent an early
termination of the transport connection.

FILlNGSUBSET IMPLEMENTOR'S GUIDE:

CLIENT IMPLEMENTATION

3.2 Closing a session

A user will typically close a connection, once the desired interaction with that service has
been completed. Closing a connection requires a Logoff to release the session handle,
followed by a close of the Courier connection used for that se'ssion and usually the
underlying SPP connection. Mter successfully completing the Logofi, the client should also
cancel any pending continuance timer alarms.

3.3 Enumerating a file(s)

It is often useful to enumerate the pathnames of :files in a given directory and optiohally to
retrieve additional attributes of those files. This is accomplished through the List procedure.
A client is responsible for specifying those attributes which will be returned, along with the
search criteria to be used. Subset services are only required to provide support for
mandatory and implied attributes; therefore, the client should restrict the requested
attribute types to the set of mandatory attributes: createdOn, dataSize, isDirectory,
modifiedOn, pathnam(e, and type. A request for other attribute types may result in return
values which are either null or constant for the service implementation. A client may also
specify aliAttributeTypes to request that values for all attributes supported by the service be
returned.

Clients should only request those attributes which are of interest to the user. Asking for
unnecessary attribute IS may result in more performance overhead on the service and
undoubtedly results in a larger amount oftransfel'red data.

The FilingSubset allows use of the pathname attribute in the specification of the selection
criteria and requires all services to support the absolute pathname syntax. Clients should
specify a scope of type filter, with a filter type of matches, on the attribute pathname, which
has a value in the absolute form. This guarantees that the service will accept the
specification criteria. Since the pathname value specified in the filter is in absolute form, the
null Handle should be supplied as the directory handle on the List. The service will return
appropriate errors if the pathname value specified is non-existent or inaccessible.

The stream of enumerated data returned to the client is of type StreamofAttributeSequence.
The client interprets this stream and presents the results to the user. This stream contains
one AttributeSequence for each file listed, where each AttributeSequence contains an
attribute value for each requested attribute. Those attributes defined by the FilingSubset to
be mandatory or implied will contain a non-null value, whereas those attributes defined as
optional may have a null value (Attribute: [type: AttributeType, value: SEQUENCE 0 OF

UNSPECIFIED]), if the service does not support the requested attribute.

Due to restrictions in the underlying operating system, a given service may actually perform
the enumeration as a two-step process: 1) enumerate the candidate files, and 2) determine
the requested attributes. This implies that an individual file may be deleted and/or
inaccessible at the time the service determines the attribute values. If a file no longer exists,
that file will simply not be returned by the service in the enumerated list. If a file has
become inaccessible, all attributes except pathname will have null values.

f:ILlNGSUB,SET IMPLEMENTOR'S GUIDE 13

CLIENT IMPLEMENTATION

3.4 Storing a file(s)

A new file is created on a remote service through use of the Store procedure. The client is
responsible for specifying all mandatory attributes (except modifiedOn, which is illegal) on
the Store. In addition, the client must determine if the file exists on the service and deletE~
the existing file, if desired, when the service does not support multiple versions of a file with
the same name.

Several FilingSubset procedures may be executed during the course of storing a file, or files,
on a remote service. Since a user may provide a file specification which contains wildcard
characters, the client must first enumerate the possible files on the local file system, and
then store each file individually, with or without user confirmation.

The client lists the specified files on the local file system using the standard host operating
system facility. For each file listed, the values for the corresponding mandatory
FilingSubset attributes (createdOn, dataSize, isDirectory, modifiedOn, pathname, and
type) should be determined. Having accomplished this, the client can create the file on thE~
remote service by issuing a Store followed by a Close, to release the file handle created on
the Store.

The Store procedure should specify the following arguments: the directory handlE!
null Handle, an AttributeSequence containing values for all mandatory attributes except
modifiedOn, the empty sequence for controls, the bulk data stream tYPE!
BulkData.immediateSource, and the session handle returned on the Logon. The file is read
from the local system and transferred via a bulk data stream to the service. If the file is
successfully created, a file handle is returned by the service.

If the Store was successful, a Close is issued to release the returned file handle. This willl
specify the file handle and the current session handle. Once the file has been closed, thE!
sequence of Store and Close can be repeated for each file to be stored.

3.4.1 Overwriting an existing remote file

14

The possibility exists that a given FilingSubset service implementation does not support
multiple versions of similarly named files, and will not allow the client to overwrite an
existing file on the service. In this case, the error InsertionError [problem: fileNotUnique] is
returned by the service. A client who wishes to achieve the effect of overwriting an existing
file on a service which does not support multiple versions must first delete the existing file~
and then perform the Store.

A client can determine if the file exists on the service and if it should be deleted, by
enumerating the desired file requesting the childrenUniquelyNamed attribute. If the file is
not found, the service returns the error AccessError [problem: fileNotFound], and the client
may continue with the Store. If the file does exist and the value returned for
childrenUniquelyNamed is FALSE, then the client may store the file and the service will
create the next highest version. If the value for childrenUniquelyNamed is TRUE, then the~
client may choose to either not perform the Store, or first delete the existing file and then do
the Store.

FILINGSUBSET IMPLEMENTOR'S GUIDI:

CLIENT IMPLEMENTA TION

When the existing file must be deleted, the client should issue an Open and Delete similar to
the scenario described in section 3.6.

3.4.2 Bulk data transfer

File content is transferred from the client to service in a bulk data stream. The format of the
data in this stream will vary, depending upon whether the transferred file is of type
tAsciiText.

A file of type tAsciiText is transmitted as a StreamofAsciiText. This represents an encoding
of the records within the file, where a record is determined by the native operating system
definition. The client must strip any operating system specific data from the record, along
with the record delimiter, if one exists, and transmit this as type AsciiString. The boolean
lastByteSignificant must also be set to reflect whether the length of the record was odd or
even, since AsciiString is actually a SEQUENCE OF UNSPECIFIED. These lines are then formatted
into the StreamofAsciiText an.d transmitted.

Any files which are not oftypE~ tAsciiText are simply sent as a single uninterpreted stream of
bytes. The service writes this stream to the local file system with no change offormat.

3.5 R'etrieving a file(s)

Similar to storing files, the client is responsible for retaining all mandatory attributes of a
file retrieved from a remote service. On operating systems where multiple versions are not
supported, the client Inust also determine if the local file exists and needs to be deleted
before the file can be retrieved. A client also has the option to override the service's notion of
the file type and, in turn, force the service to transfer the file as a specified type. .

A user may provide a file specification which contains wildcard characters. This implies that
the client must first enumera.te the possible files and then retrieve each one individually.
This enumeration has another purpose, in that it retrieves the attributes of the file as stored
on the remote service, so that the client can retain these attributes on the local file system.

Initially, the client performs a List in a manner similar to section 3.3. The user-supplied file
specification is provided as the pathname attribute value, and all mandatory attributes are
requested in types. The service returns a bulk data stream containing a SEQUENCE OF

AttributeSequence for each file found which matches the pathname value. No subsequent
procedures can be issued before the entire bulk data stream is received, so the data received
by the client must be retained until it can be used for the retrieval sequence later.

For each file to be retrieved; the client issues an Open to obtain a file handle, a Retrieve to
transfer the file, and a Close to release the file handle. The Open requires the following
arguments: an AttributeSequence containing the pathname attribute value returned from
the List, the directory handle null Handle, the empty sequence for controls, and the session
handle returned from the previous Logon. If the client wishes to request a particular type of
transfer, the desired value for the type attribute would also be included in
AttributeSequence. The file handle returned frOlT! the Open is then used on the subsequent
Retrieve and Close calls.

F~LlNGSUBSE:T IMPLEMENTOR'S GUIDE 15

CLIENT IMPLEMENTATION

The Retrieve procedure requires the file handle returned from the Open, a bulk data stream
type of BulkData.immediateSink, and the session handle obtained on the Logon. The
resulting bulk data stream is received from the service and written to the local file. All
attributes returned from the List should be retained, along with the file in the local file
system. Sections 5 and 6 of this document describe how this is done on the UNIX and VMS
operating systems, respectively.

Once the Retrieve has completed, either successfully or unsuccessfully, a Close procedure is
issued specifying the file handle and the current session handle. Once the file has been
closed, the next file can be retrieved, as determined by the enumerated data returned from
the List.

3.5.1 Overwriting an existing local file

Some operating systems do not support the ability to create multiple versions of the same
named file. On those systems, the client may wish to allow the user to decide whether to
overwrite an existing local file or not. To accomplish this, the client must determine if the
specified local file exists. If the file does not exist, the client may continue with the Retrieve.
If the file does exist, the user may be prompted for a response. If the file is not to be
overwritten, the client will not retrieve this file and continue with the next file in the
enumerated list. Otherwise, the file is deleted via the local mechanisms and the file
subsequently retrieved.

3.5.2 Bulk data transfer

File content is transferred from the service to client in a bulk data stream. The format of the
data in this stream will vary, depending upon whether the transferred file is of type
tAsciiText.

A file of type tAsciiText is transmitted as a StreamofAsciiText. This represents an encoding
of the records within the file, where a record is determined by the native operating system
definition. The client must format the data from each AsciiString within this stream,
according to the local operating system conventions, and write it to the local file.
Specifically, any line delimiters required by the local system will have to be added to the
string as it is written. Since the string is transmitted as a SEQUENCE OF UNSPECIFIED, the
boolean lastByteSignificant is used to determine if the client should ignore the last byte of
the data string. Decoding of the 5treamofAsciiText is operating system specific and implies.
that the true value for the data5ize attribute may be different than that supplied by the·
service.

Any files which are not of type tAsci iText are sent as a single uninterpreted stream of bytes.
The client writes this stream to the local file system with no change offormat.

3.6 Deleting a file(s)

16

File deletion is accomplished in a manner similar to that of storage and retrieval. A List:,
requesting the pathname attribute, is performed to enumerate the candidates for deletion"
For each file returned, the file is deleted by the sequence of procedures: Open and Delete.

FILINGSUBSET IMPLEMENTOR·S GUIDI:

CLIENT IMPLEMENTATION

The List is executed specifying the arguments: the directory handle nuliHandle, an
AttributeTypeSequence containing only the pathname attribute, a scope of type filter with
a filter type of matches including the user supplied file specification as the pathname
attribute value, the bulk data stream type BulkDa'ta.immediateSink, and the current session
handle. The bulk data stream returned will contain a pathname attribute value for each file
matching the user specification. The entire bulk data transfer must complete before the
client can continue with the file deletion. This implies that the enumerated list will have to
be retained for use later.

Each file in the returned bulk data list is opened via Open, specifying an AttributeSequence
containing the pathname attribute value returned from the List, the directory handle
null Handle, the empty sequence for controls, and the current session handle. Upon
successful completion, a file handle is returned, which is used by the client on the
subsequent Delete. Appropriate errors will be returned from the service, if the file does not
exist or is inaccessible.

The Delete requires the file handle returned from the Open and the current session handle.
Once the file is deleted, the filt~ handle associated with that file is invalidated by the service.
A Close should be issued to release the associated file handle, if an error occurs on the
deletion.

The client should be aware that a given service mayor may not support deletion of directory
files and their descendants. If a service does not support deletion of directory files, the
service will return the error AccessError [problem: accessRightslnsufficient]. A client
should not assume that the file was in fact deleted, unless the Delete returns successfully.

A service may not always guarantee that all descendants of a directory file will, in turn, be
deleted. When the service cannot support this feature or encounters a problem deleting the
descendants, the error AccessError [problem: accessRightslnsufficient] is reported. Clients
should be aware that when this error is reported, a portion of the directory tree may still
remain on the service.

3.7 Cr'eating a directory

The FilingSubset allows directory files to be created by using the Store procedure and
providing an isDirectory attribute value of TRUE. A given service may allow or disallow the
creation of a directory file and, if allowed, may also only allow the creation of empty
directory files.

The sequence of steps used to create a directory file is almost identical to that of storing a
file. The client supplies the following arguments on the Store procedure: the directory
handle nullHandie, an AttributeSequence containing the set of mandatory attributes where
the value for isDirectory must be TRUE and the value for type should be tDirectory, the empty
sequence for controls, the bulk data stream type of BulkData.nuIiSource, and the current
session handle. No bulk data is transferred to the service since the source stream specified is
of type BulkData.nuIlSource. The service returns a file handle upon successful completion.

Once the directory is successfully created, a Close must be issued to release the file handle.

FILlNGSUBSET IMPLEMENTOR'S GUIDE 17

CLIENT IMPLEMENTATION

18 FILlNGSUBSET IMPLEMENTOR'S GUIDI:

4. SERVICE IMPLEMENTATION

A FilingSubset service interprets Courier procedures and provides the necessary interfaces
to the local operating system. As such, a service irnplementation must accept the procedures
defined by the FilingSubset: Logon, Logoff, Continue, Open, Close, Store, Retrieve, and
Delete.

This section describes how to support these procedures in a FilingSubset service
independent of any underlying file system. Each procedure is discussed in detail, describing
the actions required to interface to the local file system, acceptable procedure argument
values, and the use of specific error return values.

The service implementation described in this section provides support for the minimal
functionality defined by the FilingSubset, as summarized in section E.3.7 of the Filing
Protocol. Specifically, all file identification is performed with the pathname attribute in the
absolute form, with an accompanying nuliHandle directory handle. All mandatory and
implied attributes are supported and retained with stored files. 1rhe creation of empty
directory files is supported, although not required by the FilingSubset; however, creation of
non-empty directories and retrieval of directories is not supported. Additional comments
may also be provided for common functions which are above the minimal functionality, but
may be of merit to specific implementation schemes.

Several sections of the implementation scheme presented here assu'me that a FilingSubset
session is supported by a single transport conne~tion, where loss of the transport implies loss
of the session. This im.plementation also relies on the premise that a single instance of a
process (as defined by the local operating systeln) will service a single session from the
initial establishrnent of a Cou.rier connection to the subsequent termination of the session.
This allows the state of the session to be maintained internal to the process and eliminates a
reliance on interprocess communication. The scenarios described here would need to be
enhanced to remove these restrictions.

4.1 Common data structures

A service is responsible for creation and maintenance of several data structures, which
reflect the current state of a client's interaction with the service. The session handle is used
to maintain the state of a FilingSubset session over the life of the session. The file handle
maintains the state of a. file that a client has opened on the remote service.

FILINGSUBSIET IMPLEMENTOR'S GUIDE 19

SERVICE IMPLEMENTATION

4.1.1 Session handle

The session handle contains two items: a token, which is a unique service-specific value
representing the session, and a verifier, which is an Authentication verifier used to enforcE~
security on consecutive session procedure calls.

The item token is generated by the service when the session handle is created. The value
given to token is an identifier which is used by the service to point to a session context block.
This context block actually contains various entries relevant to the associated session, such
as:

• the state of the session (Le., logged on, file currently open, store in progress, retrievE~
in progress, etc.)

• identification of the underlying Courier connection

• the primary credentials of the user who is logged on

• the current verifier

• a list of handles for files which are currently open in the session

The session state is updated by each procedure processing routine to reflect the current
activity of the session. This updating ensures consistency across procedure calls and allows
errors to be returned for inappropriate calls sequences.

4.1.2 File handle

20

A file handle is used by the client and service to identify files which are to be accessed on thE!
service. Upon completion of a successful Open or Store, a file handle is returned which
identifies the file to the service on subsequent calls. This handle value is used to point to a.
file context block which contains information relevant to the associated file such as:

• the pathname attribute value for the file as specified on the Open or Store

• the type attribute value specified by the client on the Open

• an appropriate entry for each of the mandatory attribute values, createdOn l,

dataSize, isDirectory, modifiedOn, and type

• a field indicating whether the file is physically open, closed, etc.

• any operating system-specific structures, as needed by the implementation

An Open procedure sets the pathname and type fields to the values specified in the'
AttributeTypeSequence provided. The remaining mandatory attribute values are
determined and set appropriately. Any operating system-specific structures are also
initialized at that time. The values contained in the context block allow subsequent
procedures to discern relevant information about the file by looking in this context block
,rather than interacting with the local file system.

FILINGSUBSET IMPLEMENTOR'S GUIDE:

SERVICE IMPLEMENTATION

A Store sets the pathname field and all attribute value fields to those values provided on the
Store. The service will then retain these values in the local file system.

4.2 Clommon support

Many of the procedure routines perform a common set of actions, in addition to any
procedure-specific processing required. All routi.nes, with the exception of Logon, must
verify the session and reset the continuance mechanism prior to other actions. Also, all
routines which specify a file handle (Close, Retrieve and Delete) must check the file handle
for validity.

4.2.1 Se:ssion validation

The session handle provided on each call subsequent to the Logon must be validated by the
service. Specifically, two functions are accomplished by this validation: 1) the verifier
included in the session handle is revalidated, and 2) the internal state of the session is
checked for consi.stency.

4.2.1.1 Verifier validation

The verifier included in the session handle may be one of two types: simple or strong,
depending upon the primary credentials type provided by the Logon that created the session
handle. The implementation presented here uses simple credentials; the validation of strong
credentials is described in the Authentication Protocol [1].

The mechanism for validating a simple verifier involves saving the Logon verifier within
the session context block. Each subsequent procedure call simply compares the verifier
within the session handle against the saved verifier, and returns the error
AuthenticationError [problem: verifierlnvalid], if they do not match.

4.2.1.2 Se:ssion consistency validation

The session context block created at Logon is used to validate the internal state of the
session. The token within the session handle points to the session context block
corresponding to the associated session. Specifically, the service verifies that the session
~tate re:flects an open session, If the token value is invalid or the context block pointed to
represents a session which is not open, the error Session Error [problem: tokenlnvalid] is
returned.

4.2.2 Use cf the continuance timer

A service cannot always expe(!t that a client will terminate a session explicitly. The service
should also maintain the option of termi.nating an open session after some specified period of
inactivity. To enforce this, a service-specific continuance value is Inaintained. This value

FILlNGSUBSIET IMPLEMENTOR'S GUIDE 21

SERVICE IMPLEMENTATION

defines, in seconds, the interval which must elapse between successive client procedure calls
before the service will terminate the session.

Upon completion of a successful Logon, the service establishes an internal continuancE~
timer, which will cause the execution of a routine to terminate the session upon expiration
of this interval. During each successive procedure call from the client, the processing routinE!
cancels the previous timer and rearms the mechanism again. Mter a Logoff is successfully
completed, the service cancels the previous timer and does not reset the interval.

If the continuance interval expires before the client issues its next procedure call, the service
can terminate the session by closing any open files, releasing the associated file context
blocks, closing the underlying Courier connection, and releasing the session context block.

4.2.3 File handle validation

The Close, Retrieve and Delete procedures require the file handle for a file previously
opened on the service. To maintain consistency, the service should perform a verification of
the file handle in each of these routines.

These routines do not allow the specified file handle to be null Handle. If null Handle is used.,
the error HandleError [problem: nuliDisaliowed] is returned.

The state entry within the file context block is also checked to insure that the file was
previously opened. The error HandleError [problem: invalid] is returned if the file pointed to
by the file handle is not open.

Some FilingSubset implementations may not guarantee that a previously-opened file is not
deleted by another utility on the system. These services should check for file existence each
time the file handle is used, and should report the error HandleError [problem: invalid] if thE!
file no longer exists.

The ownership of a previously-opened file may also be altered by other utilities, even though
the client has a valid file handle. If the service is presented with a valid file handle, but
cannot access the file that the handle references, then the error AccessError [problem::
fileChanged] is reported.

4.3 Procedures

4.3.1 Logon

22

Logon: PROCEDURE [service: Clearinghouse.Name, credentials: Credentials, verifier: Verifier]
RETURNS [session: Session]
REPORTS [Authentication Error, ServiceError, SessionError, UndefinedError] • Filing.Logon;

Logon establishes a session which is used to control the subsequent interaction between.
client and service. This procedure is accompanied by three arguments: service, credentials,
and verifier. Service is the distinguished name of the service being connected to, while~
credentials and verifier describe the credentials to be used in validating a user.

FILINGSUBSET IMPLEMENTOR'S GUIDE:

SERVICE IMPLEMENTATION

This procedure initially verifies that the service being connected to is in fact the service
currently processing the procedure. It is possible for multiple FilingSubset services to reside
on the same network server, where each service has the same or a different root directory.
Each service should maintain an internal tag to identify itself. This tag is used to validate
the service name provided on the Logon.

Secondary
none simple strong

Primary

nullPrimaryCredentials legal legal illegal

simple legal legal illegal

strong legal illegal legal

Table 4.1 Prinlary and secondary credentials combinations

User credentials are validated according to the type and strength of credentials supplied.
The error AuthenticationError [problem: secondaryCredentialsTypelnvalid] should be
returned if the combination of primaries and secondaries is not allowed as shown -in Table
4.1.

The primary user credentials and verifier are validated as specified by the Authentication
Protocol. Credentials of type riuliPrimaryCredentials are not subject to any validation. A set
of simple primary credentials and verifier are validated by passing them to an
Authentication Service on a CheckSimpleCredentials procedure. A return value of TRUE

indicates that the verifier is good. If the Authentication Service returns an
AuthenticationError, the acco:mpanying' problem can be returned to the FilingSubset client
as AuthenticationError [problem: problem]. The error ServiceError [problem:
cannotAuthenticate] is. returned if the Authentication Service can not be contacted. A set of
strong primary credentials and verifier are validated, as described in the Authentication
Protocol, with an appropriate error being returned if the credentials are invalid.

Secondary credentials are validated via the host operating system validation procedures,
with appropriate errors being returned to the client if the validation fails. If a required
SecondaryltemType is not supplied by the client, the error AuthenticationError [problem:
secondaryCredentialsTypelnvalid] is returned, indicating the item types required. Subset
services should report AuthenticationError [problem: secondaryCD'edentialsRequired] if
secondary credentials of strength none are used in conjunction with nullPrimaryCredentials.

On hybrid hosts, the Logon routine may also have to alter the effective identity of the
process to be that of the user specified in the secondary credentials. This action is dependent
upon the host operating system and is accomplished by the local mechanisms, as required.
This alteration would be performed to ensure that user access to and ownership of files can
be handled by the standard host mechanisms.

To be consistent with the Filing Protocol, the process should not position itself in a default
working directory, other than the root for the given service. It is the client's responsibility to
perform any positioning subsequent to a successful Logon; this implies that the client may
open the root explicitly. On some hybrid host services, it may be advantageous for the
service to position itself to the appropriate root directory during the Logon, since use of the

FILlNGSUBSET IMPLEMENTOR'S GUIDE 23

SERVICE IMPLEMENTATION

4.3.2 Logoff

nullHandle by a client implies the service root directory. The error ServiceError [problem:
serviceUnavaiiable] should be reported if this positioning fails.

Once this has been accomplished, the procedure creates a session handle, initializes the state
of this handle, and returns the handle to the client. If an error occurs in creating the session
handle, the error ServiceError [problem: serviceUnavailable] should be returned. In a case
where a single service process is responsible for a session, the error ServiceError [problem:
serviceFull] should be reported, if a Logon is attempted prior to the Logoff which terminates
the current session.

Logoff: PROCEDURE [session: Session]
REPORTS [Authentication Error, ServiceError, SessionError, UndefinedError] :II Filing.Logoff;

Logoff indicates that the client is terminating the session. This procedure has one
argument: session which is the handle of the session to be ended.

This procedure initially verifies that the session handle supplied is indeed valid using the
procedure in section 4.2. The Logoff routine not only verifies that the session is currently
open, it also has to determine if any other actions are in progress. Subset clients are
encouraged to maintain a single Courier connection for each session, so the service is not
required to support simultaneous actions. When the Logoff is issued while another
operation is in progress, the error ServiceError [problem: sessionlnUse] is returned.

During the existence of the session, it is possible that some files have been opened and not
subsequently closed. Prior to returning to the client, all files which are currently open
within this session are closed, and the associated file context blocks released.

4.3.3 Continue

4.3.4 Open

24

Continue: PROCEDURE [session: Session]
RETURNS [continuance: CARDINAL]

REPORTS [AuthenticationError, SessionError, UndefinedError] • Filing.Continue;

Continue registers a client's interest in maintaining an open session during a long period of
inactivity. This procedure passes session, the handle of the session to be continued.

Processing of a Continue involves verification of the session handle and resetting of the
continuance mechanism, as explained in section 4.2.

Open: PROCEDURE [attributes: AttributeSequence, directory: Handle,
controls: ControlSequence, session: Session]

RETURNS [file: Handle]
REPORTS [Access Error, AttributeTypeError, AttributeValueError,

AuthenticationError, ControlTypeError, ControlValueError, HandleError,
SessionError, UndefinedError] • Filing.Open;

FILlNGSUBSET IMPLEMENTOR'S GUIDE:

SERVICE IMPLEMENTATION

Open makes a file available for use by the client. The following arguments are passed in the
Open procedure: attributes identifies the file to be opened, directory specifies the starting
directory in which to look for the file, controls specify the controls applied to the resulting
file handle, and sessiol' is the client's session handle.

Initially, the session handle is verified and the continuance timer reset. Argument values
and attribute types and values contained in attributes are then checked for validity. The
FilingSubset defines restrictions on the argument values and attribute types and values
provided on the Open. The foHowing errors are returned for the respective conditions:

AttributeTypeError [problem: disallowed, type: attribute type]
an attribute type other than parentlD, pathnarne, type, or version is
specified

AttributeTypeError [problem: duplicated, type: attribute type]
the parentlD, pathname, type, or version is specified more than once

AttributeTypeError [problem: illegal, type: attribute type]
an attribute type not defined by the Filing Protocol is specified

AttributeValueError [problem: illegal, type: attribute type]
an illegal attribute value is specified

AttributeValueError [problem: unimplemelnted, type: parentlD]
a parentlD value other than nuliFilelD is specified

AttributeValueError [problem: unimplemented, type: version]
a version value other than lowestVersion or highestVersion is specified

ControlTypeError [problem: disaUowed]
controls is not the empty sequence

HandleError: [problem: invalid]
directory is not nuliHandle

A file handle is allocated and initialized by setting the pathname and type entries from the
corresponding attribute values. If no values are specified, an appropriate default is used (Le.,
the root pathname for the service and the actual file type as determined by the service). The
pathname value is used to identify the file when it is opened. The type attribute conveys the
client's intention to have the file content transfer be of this type when retrieved. To be
consistent with its treatment of directory files, a service may only allow the tAsciiText and
tUnspecified type values to be specified. The error AttributeValueError [problem:
disallowed, type: type] would be returned if another type was requested.

The service then verifies that the file exists and the user has permission to access the file.
The error AccessError [problem: accessRightslnsufficient] is returned if the user does not
have access to the file. AccessError [problem: fileNotFound] is returned to indicate that the
file does not exist. The service determines the values for the isDirectory and type attributes
and saves these in the file context block. The operating system-specific structures are also
initialized once the file is opened. If successful, the file handle is inserted into the open file
queue in the session context block and returned to the client.

A service should allow the specification of an empty AttributeSequence in conjunction with
use of null Handle for d~rectory. This is used to open the root of the file service, regardless of

FILlNGSUBSET IMPLEMENTOR'S GUIDE 25

SERVICE IMPLEMENTATION

4.3.5 Close

4.3.6 List

26

any service-specific path name syntax. The file handle returned to the client, in this case,
should not be nullHandle.

Close: PROCEDURE [file: Handle, session: Session]
REPORTS [AuthenticationError, HandleError, SessionError, UndefinedError] • Filing.Close;

Close indica.tes that a client no longer needs a file handle within the specified session.
Arguments to this procedure are file, the handle to be closed, and session, the session
handle.

The accompanying session handle is validated and the continuance mechanism reset. Tht~
file handle is checked for validity as described in section 4.2.3, and, if successful, the file i8
closed and the handle removed from the open queue in the session context block.

List: PROCEDURE [directory: Handle, types: AttributeTypeSequence,
scope: ScopeSequence, listing: BulkData.Sink, session: Session]

REPORTS [AccessError, AttributeTypeError, AuthenticationError,
ConnectionError, HandleError, ScopeTypeError, ScopeValueError, SessionError,
TransferError, UndefinedError] • Filing.List;

List enumerates files within a directory and returns the requested attributes associated with
those files. This procedure includes the following arguments: directory, the handle for thE~
directory to be enumerated; types, the attribute types to be returned; scope, the selection
criteria for enumeration; listing, the bulk data sink to receive the attribute list; and session,
the handle of the session to be continued.

The List procedure initially verifies the session handle and resets the continuance timer. ThEl
argument values and attribute types provided on the call are validated, and the followin~~
errors reported if the specified conditions occur:

AttributeTypeError [problem:duplicate, type: attribute type]
an attribute type is specified more than once

AttributeTypeError [problem:illegal, type: attribute type]
an attribute type not defined in the Filing Protocol is specified

ScopeTypeError [problem:illegal, type: scope type]
a scope type not defined in the Filing Protocol is specified

ScopeTypeError [problem:missing, type: scope type]
a scope type of count or filter is not specified

ScopeTypeError [problem:unimplemented, type: scope type]
a scope type other than count or filter is specified

FILINGSUBSET IMPLEMENTOR'S GUIDI:

4.3.7 Store

ScopeValueError [problem: illegal, type: scope type]
an illegal pathname attribute value is specified
an illegal count value is specified

ScopeValueError [problem: unimplemented, type: filter]
a filter type other than matches is specified

SERVICE IMPLEMENTATION

a matches attribute type other than pathname is specified

TransferError [problem: aborted]
a bulk data sink type other than BulkData.immediateSink or
BulkData.nullSink is specified

The routine can return if listing specifies BulkData.nuIlSink. If BulkData.immediateSink is
specified, the pathname attribute value is then us.ed to enumerate the candidate files by the
host operating system. The attributes requested are retrieved for each file enumerated, and
transferred as a bulk data stream to the client.

The stream is formatted as a StreamofAttributeSequences with a single AttributeSequence
for each file enumerated. The ordering of the AttributeSequence types within the stream is
determined by the associated ordering value for the directory listed. If the ordering
attribute is not supported by the service, the ordering will be defaultOrdering ([key: name,
ascending: TRUE, interpretation: string]).

The FilingSubset states that values must be returned for all attributes requested. If the
attribute is mandatory or implied, a non-null value is returned. If an implied attribute is not
supported, the value returned is the service default value for that attribute. The value
returned for unsupported optional attributes win be null (attribute: [type: attribute type,
value: SEQUENCE 0 OF UNSPECIFIED]); optional attributes which are supported return valid
values. Iftypes requests aliAttributeTypes, then the service must return non-null values for
all mandatory, implied, and supported optional attributes.

The error AccessError [problem:accessrightslnsufficient] is returned if the requested file is
inaccessible by the user. AccessError [problem:fileNotFound] is ret.urned if the path name
value results in no files being c~numerated.

Some service implementations may perform the file and attribute enumeration in two steps.
Thus, the possibility exists that the service can enumerate the directory, but may not be able
to access individual files later to determine values for the requested attributes. If an
individual file has been deleted, then the file will not be included in the bulk data stream
returned to the client. If the user no longer has permission to access the file, the service will
return null values for all attributes except the pathname attribute. This implies to the client
that the requested attribute values are not accessible on the service, even though the parent
directory is accessible.

Store: PROCEDURE [directory: Handle, attributes: AttributeSequence,
controls: ControlSequence, content: BulkData.Source, session: Session]

RETURNS [file: Handle]

F:ILlNGSUBSET IMPLEMENTOR'S GUIDE 27

SERVICE IMPLEMENTATION

28

REPORTS [AccessError, AttributeTypeError, AttributeValueError,
AuthenticationError, Connection Error , ControlTypeError, ControlVal ueError,
HandleError, InsertionError, SessionError, SpaceError, TransferError,
UndefinedError] • Filing.Store;

Store creates a file with the specified content and the specified attributes. Store uses fiv~~
arguments: directory specifies the directory in which to insert the file; attributes, th~~
attributes to give to the created file; controls, the controls to be applied to the resulting filE~
handle; content, the bulk data source used to send the file contents; and session, the current
session handle.

Store verifies the session handle and resets the continuance mechanism. The followin~~
errors are returned if the associated restrictions on argument values and attribute types
occur:

AttributeTypeError [problem: disallowed, type: attribute type]
an attribute type offilelD, modifiedBy, modifiedOn, name,
numberOfChildren, parentlD, readBy, readOn, storedSize or
subtreeSize is specified

AttributeTypeError [problem: duplicated, type: attribute type]
a valid attribute is specified more than once

AttributeTypeError [problem: illegal, type: attribute type]
an attribute type not defined by the Filing Protocol is specified

AttributeTypeError [problem: missing, type: pathname]
a pathname attribute value is not specified

AttributeTypeError [problem: unimplemented type: attribute type]
an attribute type of checksum, created By or position is specified

AttributeTypeError [problem: unreasonable, type: type]
the isDirectory value is TRUE and the type value is not tDirectory
the type value is tDirectory and the isDirectory value is FALSE

AttributeValueError [problem: illegal, type: attribute type]
an illegal attribute value is specified

AttributeValueError [problem: unimplemented, type: accessList]
an accessList value other than [defaulted: TRUE] is specified

AttributeValueError [problem: unimplemented, type: chiidrenUniquelyNamed]
a childrenUniquelyNamed value other than the service specific value is
specified

AttributeValueError [problem: unimplemented, type: defaultAccessList]
a defaultAccessList value other than [defaulted: TRUE] is specified

AttributeValueError [problem: unimplemented, type: isTemporary]
an isTemporary value other than FALSE is specified

AttributeValueError [problem: unimplemented, type: ordering]
an ordering value other than defaultOrdering is specified

FILINGSUBSET IMPLEMENTOR'S GUIDE:

SERVICE IMPLEMENTATION

AttributeValuelError [problem: unimplemented, type: subtreeSizeLimit]
a subtreeSizeLimit value other than nulisubtreeSlizeLimit is specified

AttributeValueError [problem: unimplemented, type: type]
a type value other than tAsciiText, tDirectory or tUnspecified is specified

AttributeValueError [problem: unimplemented, type: version]
a version value other than highestVersion is specified

ControlTypeError [problem: disallowed]
controls is not the empty sequence

HandleError: [problem: invalid]
directory is not null Handle

TransferError: [problern: aborted]
a bulk data source type other than BulkData.immediateSource or
BulkData.nullSource is specified

If content specifies BulkData.nuliSink, the routine returns to the client. Otherwise, a file
handle is created and the values supplied for the mandatory attributes cached in the file
context block. Table E.4 of the Filing Protocol [7] describes the values to be given to any
mandatory attributes not specified on the procedure c~ll. The value for the dataSize
attribute should be the number of bytes as stored on the local file system, once the bulk data
transfer has completed.

The specified file is created using the local operating system procedures and the necessary
operating system specific structures initialized in the file context block. The error
AccessError [problem: accessRightslnsufficient] is reported if the user does not have
permission to create the file. If the file exists, the error InsertionError [problem:
fileNotlJnique] is reported to the client. If no space exists on the service to create the file, the
error SpaceError [problem: mediumFull] is returned. The previously-allocated file context
block is released if an error is reported.

The content of the file is read from the bulk data stream and written to the file on the local
file system. If any problems are encountered while reading the bulk data stream or writing
to the file system, the service sends an out-of-band notification to the client to abort the bulk
data transfer, reports the error TransferError [problem: aborted], and deletes the partial
file. If the client aborts the bulk data transfer, the same error is also reported and the partial
file deleted.

Upon successful completion of the bulk data transfer, the attribute values contained in the
file context block are stored with the file, through the use of the local file system
mechanismR. The file handle is queued onto the session context block and the file handle
returned to the client. If an error is reported after the file handle has been created, the
associated context block is freed.

Files of type other than tAsciiText are transferred as an uninterpreted sequence of bytes and
are written to the local file system with no formatting. The data transferred in the bulk data
stream will be of type StreamofAsciiText for a file of type tAsciiText. Each AsciiString within
this stream will be written to the file in the appropriate format for the local operating
system. The value of lastByteSignificant will indicate whether the last byte in each
AsciiString.bytes should be written to the file.

FILlNGSUBSET IMPLEMENTOR'S GUIDE 29

SERVICE IMPLEMENTATION

To indicate that the file to be created is a directory, a client will set the isDirectory value to
TRUE. A TRUE value for the isDirectory attribute also implies a type value of tDirectory if the
type value is not specified; however, a type oftDirectory does not imply an isDirectory value
of TRUE. Ifboth the isDirectory and type values are specified and they are in conflict, the error
AttributeTypeError [problem: unreasonable, type: type] should be reported. This error
would also be reported if a type value oftDirectory is specified with no associated isDirectory
value.

A subset service is not required to support the creation of directory files and will report
AccessError [problem: accessRightslnsufficient] if directory creation is not allowed.
Furthermore, a service which does support directory creation is not required to allow the
creation of non-empty directory files. A service which does not support this feature reports
the error AttributeTypeError [problem: unreasonable, type: isDirectory], if the client
specifies an isDirectory value of TRUE in conjunction with BulkData.immediateSource and a
non-zero length data transfer.

4.3.8 Retrieve

30

Retrieve: PROCEDURE [file: Handle, content: BulkData.Sink, session: Session]
REPORTS [Access Error, AuthenticationError, ConnectionError, HandleError,

SessionError, TransferError, UndefinedError] • Filing.Retrieve;

Retrieve transfers the contents of a file on the service to the client. Three arguments
accompany the Retrieve procedure: file, the handle of the file to be transfered, content, the
bulk data sink to receive the file contents, and session, the handle of the session to be
continued.

The Retrieve routine verifies the session handle and resets the continuance timer, as
described in section 4.2. The supplied file handle is verified, as described in section 4.2.3, and
the following error reported if the corresponding restriction on argument values occur:

TransferError: [problem: aborted]
a bulk data sink type other than BulkData.immediateSink or
BulkData.nuliSink is specified

If content specifies BulkData.nuIiSink, the procedure returns. If BulkData.immediateSink is
specified, then the file identified by the file handle is read from the local file system and
written to a bulk data stream for transfer to the client. If an error is encountered while
either reading the file or writing to the bulk data stream, an out-of-band notification is sent
to abort the transfer, and the error TransferError [problem: aborted] is reported to the
client. If the client, for some reason, aborts the transfer, then the same error is reported.

The bulk data stream may be formatted, depending upon the type of the file being
transferred. The type is determined from a combination of the type attribute value as it was
specified on the previous Open and the type attribute value of the file as it exists on the local
file system. If the client specified a type on the Open, the file content is transferred as that
type. If type was not specified, the locally-determined file type is used. The service
determines the correct transfer type by examining the respective values in the session
context block at the time of the transfer.

Files of a type other than tAsciiText are transferred as a single un interpreted stream of
bytes. A file of type tAsciiText will be transferred in the bulk data stream as type
StreamofAsciiText. Each line of the input file is stripped of any operating system-specific:

FILINGSUBSET IMPLEMENTOR'S GUIDE:

4.3.9 Dele1te

SERVICE IMPLEMENTATION

data t including line delimiters, and encoded into an AsciiString. If the number of characters
in the line is odd, then lastByteSignificant is set to FALSE; otherwise it is set to TRUE.

FilingSubset services are not required to permit the retrieval of di.rectory files. A service
which does not allow this reports the error AccessError [problem: accessRightslnsufficient).
The isDirectory entry in the file context block is used to determine if the file is indeed a
directory.

Delete: PROCEDURE [file: Handle, session: Session]
REPORTS [AccessError, AuthenticationError, HandleError, SessionError,

UndefinedError] • Filing.Delete;

Delete deletes an existing file. The following arguments are passed in the Delete procedure:
file, the handle of the file to be deleted, and sessior" the current session handle.

The session handle is verified, the continuance mechanism rearmed, and the file handle
verified, as described in section 4.2. The file specified by the file handle will then be deleted.
Different actions may be taken, depending upon whether the file is a directory as
determined by examining the isDirectory entry in the file context block. Upon successful
deletion of the file, the associated file handle is removed from the open file queue in the
session context block and released.

FilingSubset services are not required to allow deletion of directory files. If directory
deletion is not supported, then the error AccessError [problem: accessRightslnsufficient] is
reported. A service that does in fact support deletion of directories may not be able to
guarantee that all des(~endants of that directory will in fact be deleted, in accordance with
the Filing Protocol. The error AccessError [problem: accessRightslnsufficient] should also be
reported for this condition. Clients should recognize that in the situation where this error is
reported, the portion of the directory structure that cannot be deleted, along with other files
which would have been encountered had the deletion continued, may be retained on the
service.

FILINGSUBSIET IMPLEMENTOR'S GUIDE 31

SERVICE IMPLEMENTATION

32 FILINGSUBSET IMPLEMENTOR'S GUIDE

5. UNIX SYSTEM INTERFACE

Implementation. of the FilingSubset under UNIX requires both procedure and attribute
support within the native operating and file systems. This section presents an
implementation scenario which describes the necc~ssary interactions with the UNIX system.

This section describes those interface procedures required by the client and service
implementations presented in sections 3 and 4. 1'hese are by no means the only method for
providing the facility desired; they have been chosen either because they have actually been
tested, or are more likely to be portable between various versions of UNIX. In those cases
where differences arise between implementations on UNIX 4.2BSO, UNIX 4.3BSO, and UNIX
System V, these differences are noted.

In several instances, the examples presented will be identical to the VMS counterparts
presented in chapter 6. This replication is done in an effort to make both the UNIX and the
VMS sections complete standa.lone section~.

Several of the examples presented are predicated on the assumption that a separate UNIX
process instance handles all procedure calls from the time the Courier connection was
established on the initial Logon call until the subsequent Logoff call. The examples also
assume the definition of Filing defined constants, and Courier defined data types. In the
examples, the string "F i 1 i ng_" is prepended to structure and vari.able names which are
defined by the Filing Protocol.

5.1 Attribute Support

The FilingSubset Protocol distinguishes three classes of attributes: mandatory, implied, and
optional. This section describes specific scenarios under the UNIX operating system for

• services to retain attributes so that they may be interpreted by other native
operating system utilities and returned when requested by network clients

• clients to retrieve and retain the attributes when dealing with remote services

All attributes presented here are discussed with respect to two areas: 1) where attributes
must be retained in the native file structures, and 2) how they may be retrieved from these
structures and transferred to other FilingSubset clients and services. Retention of attributes
is of importance to FilingSubset clients when retrieving files from a service, and by services
when a client requests creation of a file on the service. Likewise, retrieval of attributes from
the native file structures is used by clients when issuing a Store, and by services when
returning attributes on a List procedure.

FILINGSUBSET IMPLEMENTOR'S GUIDE 33

UNIX SYSTEM INTERFACE

5.1.1 Mandatory attributes

Mandatory attributes are those attributes which must be interpreted by all FilingSubset
implementations. These attributes are guaranteed to be retained by any service
implementing the FilingSubset Protocol, and must be accepted in specific procedure calls to
the extent that they are legal arguments of the corresponding procedure in the Filing
Protocol. Additionally, clients may wish to retain these attributes when retrieving files from
a service. The FilingSubset defines the following mandatory attributes: createdOn,
dataSize, isDirectory, modifiedOn, pathname, and type.

Each of these attributes is discussed with respect to the areas of retention and retrieval.
Retention of an attribute value describes a mechanism for saving the specified XNS
attribute value within the UNIX file system, along with the file contents. Retrieval of
attribute values presents methods for deriving the XNS value from the UNIX file system. In
each of these cases, the values may need to be converted from one form to the other.

In the case of the createdOn and modifiedOn attributes, the retention and retrieval of'
attribute values requires a conversion between the UNIX and XNS formats. The createdOn
and modifiedOn values are always specified in XNS Time format [10]. XNS time is based on
the number of seconds since 00:00:00 Jan. 1, 1901 Greewich Mean Time. The UNIX operating
system maintains time in a form specifying seconds since 00:00:00 GMT, Jan. 1, 1970. To
convert XNS time values to UNIX time values, the constant 2177452800 must be subtracted
from the XNS value. Note that this constant is the XNS encoding for the U NIX time 00:00:00
GMT, Jan. 1, 1970 [«1970-1901) years * 365 days/year + 17 leap days) * 24 hours/day * 60
minuteslhour * 60 seconds/minutel. Conversion from UNIX format to XNS format simply
requires adding the constant to the UNIX value.

5.1.1.1 createdOn

34

The createdOn attribute is useful in determining if similarly named files on different file
servers within the network are identical. This is especially true on systems such as UNIX
where versions are not supported. The ability to retain the createdOn date must be coupled
with a mechanism for native utilities to provide this date on demand. This can be
accomplished on UNIX by retaining the createdOn value in the file status field
stat.st_mtime. This allows non-network UNIX users to access this date easily and also allows.
the network client and service to determine and modify this date. If this file is modified by
local UNIX uilities, the date will change, in effect implying a new version to network users.

[Retention]

The createdOn value is first converted to UNIX form, as described above, and then retained.
in the UNIX file status block field, stat.st_mtime, by issuing a utimes call (4.2B50 or 4.3B50)l
or a utime call (4.2B50, 4.3B50 and 5ystem V).

FILINGSUBSET IMPLEMENTOR'S GUIDI:

UNIX SYSTEM INTERFACE

The following example illustrates use of the ut ime procedure for retai.ning the createdOn and
modifiedOn values:

#include (sys/types.h)

#define 2177452800 /* difference between base times */

/*

*/

routine:
set_create_t ime'

input:
pointer to file context block

where

returns:
none

if no createdOn value was specified on Store, createdon 0
1f createdOn value was specified on Store, createdOn 1= 0, value is
1n XNS time format

set_create_time{file_context_block)
file_handle ·file_context_block;
{

}

time_buffer[2];
time();

if (file_context_block-)createdon) /* save createdOn if specified */

time_buffer[O]m file_context_block-)createdon ~ XNS_TIME_DIFFERENCE;
else /* else, set to current date/time */

time_buffer[O]= time(O);

time_buffer[l]= time(O); /* set modifiedOn to current date/time */

utime(file_context_block-)pathname.time_buffer);

[Retrieval}

Network processes can retrieve the createdOn value by issuing a stat call on the file and
returning the stat. st_mt ime value after adding the conversion constant described above.

5.1.1.2 dataSize

The FilingSubset defines the value of the dataSize attribute to be an estimate of the number
of eight-bit bytes within the file content. The UNIX file system maintains a file size, in bytes,
which can be used for the dataSize value.

FILlNGSUBSET IMPLEMENTOR'S GUIDE 35

UNIX SYSTEM INTERFACE

[Retention1

Since the dataSize value is regarded as an estimate of the native storage size, a UNIX serViCE!
does not need to explicitly save this value. It will be retained by the UNIX file system OnCE!
the file is created.

[Retrievall

The dataSize value can be returned by issuing a stat call on the desired file and returning
the stat.st_size value.

5.1.1.3 isDirectory

The isDirectory is a boolean designating whether the file is a directory or not. Since UNIX
differentiates between directory and non-directory files, this value is retained in the format
of the file and derived from the stat file structure field, stat. st_mode.

[Retention1

Retention of the isDirectory attribute implies that the file be created differently based on the!
attribute value. When the value is FALSE, the standard UNIX file creation routines (open,.

creat, fopen, etc.) can be used. If the value is TRUE, the directory file can be created with the:
mkdi r system call (4.28S0 and 4.38S0) or the mkdi rcommand (4.28S0, 4.38S0 and System V).

[R etrievall

The isDirectory attribute value can be determined by issuing a call to the stat routine. This.
returns a file status block which contains the field stat. st_mode. The isDirectory value will
be TRUE if the returned stat. st_mode value is TRUE when logically anded with the constant
S_IFDIR.

5.1.1.4 modifiedOn

36

The modifiedOn attribute is retained in the UNIX file status field stat. st_atime.

[Retention1

The modifiedOn attribute is retained in the stat. st_at ime field by a call to ut imes (4.28S0
and 4.38S0) or utime (4.28S0, 4.38S0 and System V). When a file is created by a FilingSubset
client or service, the modifiedOn value becomes the current date and time. If no value is
specified for the modified date on the utimes routine, the current date and time will be used.

[R etrievall

The modifiedOnvalue is returned to network processes by issuing a stat call on the file and
returning the stat. st_at ime value added to the U NIX to XNS time conversion constant
described in section 5.1.1.

FILlNGSUBSET IMPLEMENTOR'S GUIDE

UNIX SYSTEM INTERFACE

5.1.1.5 pathrlame

5.1.1.6 type

The FilingSubset requires all service implementations to allow the specification of files by
the pathname attribute value. The syntax of the attribute value is defined to be service
specific, which implies that the pathname value will in fact be the UNIX file name. Likewise,
the pathname value can be easily derived from the UNIX file name when listing the parent
directory.

The context for use of the pathname attribute within the FilingSubset restricts the use of
wildcard characters to the matches attribute value on the List procedure.

[Retention]

The pathname attribute value specified will be used as the UNIX file name when actually
creating the file. This value is retained by the parent directory file, once the file is
successfully created.

[Retrieval]

A FilingSubset service is allowed to require the pathname attribute when accessing a file.
As such, the value is always specified by the client, except on a List when the service must
enumerate the parent directory. The Inechanisnl presented in section 5.3.4 using the 1 s
command will always return a fully-specified UNIX filename to the service.

The ability to transfer files between systems and retain generic file types is advantageous to
the users of a heterogeneous network. In particular, the ability to transfer a text file to
another system and preserve the editability of that file by the native text editors on the
receiving system without explicit conversion is especially beneficial.

All FilingSubset implementations must support the type attribute values: tAsciiText,
tDirectory, and "tUnspecified. The UNIX operating system does not provide an explicit
mechanism to distinguish between text and binary files, so support for this distinction must
rely on the client or service m.aking a good guess as to the file type, based upon analysis of
the file content.

Generally, the distinction can be made that files containing only Ascii characters will be
treated as tAsciiText, and all other files (excluding directories) will be treated as
tUnspecified. .

[Retention]

The tDirectory file type is retained in a manner similar to the isDirectory attribute. When
the attribute value is tDirectory, the directory is created via a systenl call mkdi r (4.2850 and
4.3850) or the command mkd1 r (4.2850,4.3850 and 5ystem V).

Since the UNIX operating system does not create text and non-text files differently, the
service does not explicitly retain the attribute value when storing the file. Instead, the
distinction is made when the type attribute is retrieved.

FILlNGSUBSIET IMPLEMENTOR'S GUIDE 37

UNIX SYSTEM INTERFACE

38

[R etrieval}

The tDirectory file type can be determined in a manner similar to that of the isDirector~,
attribute. A call to s ta t will return a file status block which contains the field s ta t . s t_mode.
The type value will be set to tDirectory if the returned stat. st_mode value is TRUE when
logically anded with the consant S_IFOIR.

Since the UNIX file system does not provide explicit file types to distinguish between
tAsciitext and tUnspecified, this distinction must be made based on the file content. A
simple, but effective, method for determining the file type is to read a selected number of
bytes from the file and look for any byte sequences which contain non-ASCII characters (Le.,
any character is 0 or has the high-order bit set). If any non-ASCII characters are found, then
the file can be assumed to be tUnspecified; if only ASCII characters are found, then the
tAsciiText type can be assumed. It should be noted that this· method will not discern the
correct type in all cases; however, it is possible for the client to override the service
determined value by specifying the desired type on the Open call.

The routine get_type is defined to return the file type.

#include <stdio.h>

/.

./

routine:
get_type

input:
pointer to pathname of file

returns:
Cardinal containing Filing defined file type

Cardinal get_type(pathname)
char ·pathname;
{

FILE ·file_desc;
char buffer[CHARS_TO_REAO];
int count;
char ·ptr;
Cardinal type;

if ((file_desc= fopen(pathname,"r"») {
type= Filing_tUnspec1fied;
return(type);

}

/. if error, assume tUnspec1fied ./

if ((count= fread(buffer,sizeof(char),CHARS_TO_REAO,file_desc» 1= 0)
type= F11ing_tUnspecified;

else {
type= Filing_tAsc1iText;

/. if error, assume tUnspecified ./

/. assume tAsciiText ./

FILINGSUBSET IMPLEMENTOR'S GUIDIE

}

}

for (ptr= buffer; ptr < buffer + count - 1;
if ((. P t r •• 0) I (. P t r++ & 0200)) {

typeD Filing_tUnspecified;
break;

}

}

fclose(file_desc);
retu rn (type) ;

UNIX SYSTEM INTERFACE

{ /. for each character -/
/- if 0 or high order bit -/
/- assum~ tUnspecified -/

/- close file -/

5.1.2 Implied attributes

Implied attributes are those attributes which obtain an implicit value when a new file is
created. All subset implementations are required to permit the specification of the implied
(default) value for these attributes. A service implementation may reject a Store procedure,
if the value for an implied attribute is not the default value and the service does not support
the retention of non-default va.lues for the attribute.

The implied attributes defined in the FilingSubset are accessList, childrenUniquelyNamed,
defaultAccessList, isTemporary, ordering, subtreeSizeLimit, arid version.

Table 5.1 specifies the default values for these attributes on the UNIX operating system.
Since the attribute values are identical for every file, unless otherwise supported, no explicit
provision for retention and retrieval of these attributes is needed. The service should verify
that the associated value is i.ndeed the default on a Store and return the default values
when requested on a List procedure.

5.1.3 Opti()nal attributes

Attribute Supported Values

accessList [defaulted: TRUE]

children Uniquely Named TRUE

defaultAccessList [defaulted: TRUE]

isTemporary FALSE

ordering defaultOrdering

subtree Size Limit nullSubtreeSizeLimit

version highestVersion

Table 5.1 UNIX supported values for
implied attributes

Those attributes which are defined as interpreted in the Filing Protocol, but are not defined
as either mandatory or implied within the FilingSubset, are classified as optional attributes.
These attributes are not requi.red to be supported by any FilingSubset service. Conventions

F:ILlNGSUBSET IMPLEMENTOR'S GUIDE 39

UNIX SYSTEM INTERFACE

for retaining and retrieving values for these attributes are not discussed here, since they are
outside the definition for required functionality in the FilingSubset.

5.2 Client procedure support

Client routines require various UNIX system calls to perform functions specific to the UNIX
operating system and to access the UNIX file system. Examples of this interaction are
discussed in this section.

5.2.1 Continuance timer support

40

A FilingSubset client must issue a Continue procedure at specific time intervals to prevent
the service from terminating the session for lack of activity. This mechanism is implemented
via use of the alarm and signal UNIX routines. Three routines are defined for use by the
client: set_continuance_timer, reset_continuance_timer, and cancel_conti nuance_timer. In
addition, the routine send_continue is referenced. This routine will send a Continue to thle
service to maintain the open session.

set_continua"nce_timer calls send_continue to determine the service continuance value and
then initializes the timer mechanism to send a SIGALRM signal before the expiration of that
interval.

#include (signal.h>

extern send_continue():

Cardi nal continuance;

/.

routine:
set_continuance_timer

/. expiration routine, will send continue ./

/. continuance value, in seconds ./
/. returned from service ./

called after a successful Logon
./

set_continuance_timer(}
{

}

continuance= send_continue();
continuance= continuance/3;

alarm(O):
signal(SIGALRM,send_continue);
alarm(continuance):

/. get service value ./
/. insure we expire before service .,

/. cancel any previous alarm ./
/. set routine to catch alarm ./
/. set alarm ./

FILINGSUBSET IMPLEMENTOR'S GUIDIE

UNIX SYSTEM INTERFACE

reset_continuance_timer cancels any pending timer and reissues a new timer request.

/*

routine:
reset_conti nuance_timer

called after any FilingSubset procedure call
"'I

reset_continuance_timer()
{

}

alarm(O);
alarm(continuance);

/* cancel previous alarm *1
1* then, reset alarm *1

cancel_continuance_timer cancels the previous request and turns off handling of the SIGALRM
signal.

/*

*1

routine:
cancel_continuance_timer

called after a successful Logoff

cancel_continuance_timer()
{

}

alarm(O) ;
signal(SIGALRM,SIG_IGN);

5.2.2 Detelrmining mandatory attribute values

1* cancel any previous alarm *1
1* set routine to ignore alarm */

When a client performs a Store, values for the Inandatory attributes may accompany the
remote procedure call. Each of these values, with the exception of pathname and type, can
be obtained locally by using the stat system call. 'rhe routine get_attributes illustrates how
to accomplish this.

#1nclude <sys/types.h)
#1nclude <sys/stat.h)

extern LongCard1nal createdon;
extern LongCard1nal modifiedon;
extern Boolean isdirectory;
extern Cardinal datasize;
extern Cardinal type;

FILINGSUBSET IMPLEMENTOR'S GUIDE 41

UNIX SYSTEM INTERFACE

/*

routine:
get_attributes

input:
pointer to pathname of file

returns:
-1 - success

1 - error

get_attributes(pathname)
char *pathname: /* file name */
{

struct stat

if (stat(pathname,&f11e_stat) == -1)

return(1);

createdon= file_stat.st_mtime + XNS_TIME_DIFFERENCE;
modif1edon- file_stat.st_atime + XNS_TIME_DIFFERENCE;

datasize- f11e_stat.st_s1ze;

/* stat file */

/* createdOn */
/* modifiedOn */

/* dataSize */

/* type and isD1rectory */
if ((f11e_stat.st_mode & S_IFDIR) t= 0) {

isdirectory. TRUE;
type= Fi11ng_tDirectory;

} else {
isdirectory. FALSE;
type= get_type(pathname);

}

return(-1);

}

5.3 Service procedure support

42

A FilingSubset service implemented on the UNIX operating system will need to use various
system calls to access the local file system and provide UNIX specific procedure support. This
section presents detailed examples of this interaction.

Client access to files on a subset service is controlled through the use of a file handle. ThE!
implementation presented in chapter 4 describes the value of the file handle as a pointer to a
file context block. To provide the necessary functionality, this context block will contain SOmE!
items which are operating system specific.

FILlNGSUBSET IMPLEMENTOR'S GUIDIE

5.3.1 Logon

UNIX SYSTEM INTERFACE

For the implementation presented here, the following items are contained in the file context
block:

• a copy of the pathname attribute value as specified on the Open or Store

• a cardinal identifying the file type requested by the client on the Open

• a cardinal specifying the file type as determined by the service

• a cardinal specifying the dataSize value for the file

• a boolean specifying the isDiredory value for the file

• a long cardinal specifying the createdOn value for the file in XNS format

• a long cardinal specifying the modifiedOn value for the file in XNS format

• a FILE file descriptor used to access the opened file

The following C structure defines the structure used in this section:

typedef file_handle {

} ;

char
Cardinal
Cardinal
Cardinal
Boolean
LongCardinal
LongCardinal
FILE

*pathname;
typo;
truotype;
datasize;
isdirectory;
createdon;
mod'lfiedon;
*file_desc;

/* pointer to pathname value */

/* client requested type (from Open) *'
'* file system file type */

/* dataSize value */

/* isDirectory */

/* createdOn value */

/* modifiedOn value */

/* ptr to file descriptor for open file */

The Logon procedure is responsible for validating the user attempting the connection and, if
successful, altering th(~ process ownership to that of the user. This alteration of ownership
ensures tha~ the process is subject to the normal access/protection mechanisms employed by
the UNIX operating system when subsequent procedure calls request access to files on the
service.

The user name and password entries of the secondary credentials supplied on the Logon are
validated against the standard UNIX account file (letc/passwd). Once this has been
completed, the user ID and group ID of the process is changed to thl:lt of the respective user,
as determined from the password file entry for the user. The process is also positioned to the
appropriate root file for the service, generally the UNIX root ttl". This provides a working
directory which can be associated with nuliHandle.

FILlNGSUBSIET IMPLEMENTOR'S GUIDE 43

UNIX SYSTEM INTERFACE

The verifyandposition_user routine is defined to perform these functions.

44

#include <pwd.h>

#define SERVICE_ROOT "I"

/*

*/

routine:
verifyand position_user

input:
user name - derived from secondary credentials
user password - derived from secondary credentials

returns:
-1 - success
else Filing Error, Problem

Filing_Error verifyandposition_user(user_name, user_password)
char
char

*user_name;
*user_password;

/* user name derived from secondary credentials */
/* user password derived from secondary credentials */

{

}

struct passwd
struct passwd
char
Filing_Error

*pwd_entry;
*getpwnam{) ;
*crypt;
error_value; /* Filing error, problem pair */

/* set to Filing AuthenticationError */
error_val ue .error= Fil i ng_Authenti cat ionError;
error_value.problem= Aut'hentication_secondaryCredentialsInvalid;

if ((pwd_entry= getpwnam(user_name»
return(error_value);

/* determine if user is valid */
(struct passwd *)0)

/* determine if password is valid */
if (strcmp(pwd_entry->pw_passwd,crypt(user_password,pwd_entry->pw_passwd»

return(error_value);

if (setuid(pwd_entry->pw_uid) -1)
return(error_value);

if (setgid(pwd_entry->pw_gid) == -1)
return(error_value);

/* set process user 10 */

/* set process group 10 */

/* pOSition in service root */
if (chdir(SERVICE_ROOT) == -1) {

error_value.error= Filing_ServiceError;
error_val ue. probl em= Fil i ng_servi ceUnavall able;
return(error_value);

}

return(-l)

FILINGSUBSET IMPLEMENTOR'S GUID!E

UNIX SYSTEM INTERFACE

5.3.2 C~ontinue

5.3.3 Open

The continuance mechanism is defined to allow services to close a session if it has been idle
for a long period of time or the session needs to be terminated for other reasons. Each service
maintains a continuance value which is the number of seconds that it will keep a session
open between successive procedure calls. This allows the service to set a timeout mechanism
to notify it when this time interval has passed and allow it to disconnect the active session.

This mechanism is armed once a session has been successfully established by a Logon and is
terminated once the session is ended with a Logoff. Additionally, each routine which
processes a FilingSubset procedure, as described in chapter 4, should rearm the timer.

The alarm and signal routines are used to implement this mechanism for UNIX services.
alarm is used to set the timer mechanism for the specified interval, while signal is used to
indicate whether the service is to handle or ignore the alarm.

The routines set_cont; nuance_t imer, reset_cont i nuance_t imer, and cancel_cont i nuance_t ;mer
are defined. The service routine continuance_expiration is referenced by
set_conti nuance_timer and would execute at the expiration of a timeout interval. At that
time, this routine wo:uld close the current session in a manner similar to that proposed for
the Logoff procedure in section 4.4.

set_continuance_timer initially establishes the timeout mechanism.

#include <signal.h>

Cardinal
extern

continuance;
continuance_expiration();

1*

*1

routine:
set_continuance_timer

set_continuance_timer(}
{

}

al arm(0) ;
signal(SIGALRM,continuance_expiration);
alarm(continuance);

1* continuance value, in seconds *1
1* expiration routine *1

1* cancel any previous alarm *1
1* set routine to catch alarm *1
1* set alarm 01

The reset_continuance_timer and cancel_continuance_timer routines are identical to the
client routines specified in section 5.2.1.

The Open procedure opens a file for subsequent access by the client. The file is identified by
the value specified for the pathname attribute. UNIX does not support multiple versions, so
the version values lowestVersion and highestVelrsion are accepted, but indicate the same
file.

FILlNGSUBSF:T IMPLEMENTOR'S GUIDE 45

UNIX SYSTEM INTERFACE

46

With respect to the UNIX file system, there is no guarantee that the file cannot be deleted by
other utilities running outside of the process that has the file open. Since there is no benefit
to physically opening the file during processing of an Open, the Open routine will simply
determine if the file exists and the user has permission to access the file. Subsequent
procedures which require physical access to the file will be responsible for actually
performing the open.

The stat_file routine is defined to accomplish this. The UNIX routine stat is used to fill in
the attribute entries within the file context block. In addition, a call to get_type is issued to
determine the file type as stored on the UNIX file system. This allow's subsequent file
transfer procedures to determine values for the mandatory attributes dataSize, iSDirectory,
and type simply by examining the file context block. The possible error returns are:
accessRightslnsufficient, if the file cannot be accessed; fileNotFound, if the file or some
component of the pathname does not exist; and accessRightslndeterminate, if any other
error occurs.

#inc1ude <errno.h>
#inc1ude <sys'types.h>
#inc1ude <sys'stat.h)

routine:
stat_file

input:
pointer to file handle

returns:
-1 - success
else Filing Error, Problem

fi1e_context_b10ck entries filled in

Filing_Error stat_file(file_context_block)
file_handle ·fi1e_context_block;
{

struct stat

'* Filing error, problem pair *'
error_va1ue.error= Fi1ing_AccessError; '* default to AccessError *'
if (stat(fi1e_context_b10ck-)pathname,&f11e_stat) == -1) {

switch (errno) {

case EACCES: '* user has no access *'
error_va1ue.prob1em= Filing_accessRightslnsufficient;
return(error_va1ue);

case ENOTDIR: '* directory doesn't exist *'
case ENOENT: '* file doesn't exist *'

error_va1ue.prob1em= Filing_fileNotFound;
return(error_va1ue);

default: '* all other errors *'
error_va1ue.prob1em= Fi1ing_accessRightslndeterminate;
return(error_va1ue);

FILlNGSUBSET IMPLEMENTOR'S GUIDIE

5.3.4 List

UNIX SYSTEM INTERFACE

}

}

fi1e_context._b1ock-)datasize= file_stat.st_size; /- dataSize -/
/- file type -/

if ((file_stat.st_mode & S_IFDIR) 1= 0) { /- type and isDirectory -/
file_context_b1ock-)isdirectory= TRUE;
truetype= Filing_tDirectory;

} else {
file_context_block-)isdirectory= FALSE;
file_context_block-)truetype= get_type(file_context_block-)pathname);

}

return(-l);
}

The List procedure enumerates a directory looking for the specified file or files and returns
the requested attributes for each file found. The file specification to be listed is specified in
the pathname attribute value on a filter of type matches. This procedure is unique in that it
is the only procedure which will allow wildcard characters in the pathname syntax which is
interpreted by the service.

This function is easily accommodated through the use of the UNIX 1 s command, which lists a
directory and returns the files matching some file name criteria. The service uses the popen
routine to execute the ls command and read the subsequent output. Use of the -ld switches
result in the output being formatted one file name per line, with the file name being fully
specified from the UNIX root rt/"). The file names are also returned in ascending order by
name which is the defaultOrdering value for the UNIX implementation. Each file name
returned can then be used to determine the attribute values as requested on the List. If for
any reason the popen routine is not successful, the AccessProblem accessRightslnsufficient
is returned.

The routine list_directory is defined to perform this function. [Note: A slightly altered
version of the get_attributes routine presented in section 5.2.2 can be used to determine the
mandatory attributes for a file,]

#include <stdio.h)
#inc1ude <errno.h>

routine:
list_directory

input:
pointer to UNIX file specification

returns:
-1 - success
else Filing Error, Problem

FILlNGSUBSET IMPLEMENTOR'S GUIDE 47

UNIX SYSTEM INTERFACE

5.3.5 Store

char 1* pathname attribute from filter of type matches *'
{

/*

*1

}

Filing_AttributeSequence ~ttribute_sequence;

FILE *pipe_desc;
FILE *popen():
char command[256]:
Filing_Error error_value:

error_va1ue.error= Fi1ing_AccessError;

strcpy{command,"/bin/1s -ld H);
strcat(command,fi1e_spec):

if { (p1pe_desc= popen(command» == NULL) {

1* Filing error, problem pair */

1* default to AccessError */

1* form appropriate command */

1* issue command *1

error_va1ue.prob1em= Fi1ing_accessRightsInsufficient;
return(error_va1ue):

}

/* read each file name *1
while fgets(fi1ename,MAX_FILENAME_LENGTH,pipe_desc) 1= NULL) {

insert implementation specific routines here:
- determine the values for the requested attributes
- make an attribute sequence
- write the attribute sequence to the bulk data stream

}

pc10se(pipe_desc);
return(-l):

The Store procedure is used to create both directory and non-directory files. A differen1G
system call is used to create directory files under UNIX, so the service will take an
appropriate action based on the values of the isDirectory and type attribute values, as stored
in the file context block.

Non-directory files are stored by creating the specified file, reading the bulk data stream,
writing to the file, and closing the file. The createdOn and modifiedOn attribute values arE~
retained once the file is closed, as described in section 5.1.

After the Store routine has validated the argument and attribute values, a file handle is
allocated. The create_file routine is then called to physically create the file. AppropriatE~
values for AccessProblem are returned if the file cannot be created for any reason. ThE~
service does not allow overwriting an existing file and returns an error if the file exists.

#inc1ude <stdio.h>
#inc1ude <errno.h>

48 FILlNGSUBSET IMPLEMENTOR'S GUIDIE

/*

*/

UNIX SYSTEM INTERFACE

routine:
create_f 11 e

input:
pointer to file handle

returns:
-1 - success
else Filing Error, Problem

FILE *fopen() ;
/* Filing error, problem pair */

/* open file for write */
if (fi1e_context_b1ock-)fi1e_desc=

fopen(fl1e_c:ontext_b10ck-)pathname, "w")) {

}

swi tch (errno) {

}

case EACCES: /* user has no access */
error_va1ue.error- Fi1ing_AccessError;
error_va1ue.prob1em= Filing_accessr1ghtsInsufficient;
return(rror_va1ue);

case EEXIST: /* file exists */
error_va1ue.error- Fi1ing_InsertionError;
error_va1ue.prob1em= Filing_fi1eNotUnique;
return(error_value);

case ENOENT:
break;

case ENOTDIR:

/* no such file, OK */

/* no such directory */
error_va1ue.error- Fi1ing_AccessError;
error_va1ue.prob1em= Fi11ng_fi1eNotFound;
return(elrror _val ue);

case EMFILE: /* process file table full */

case ENFILE:: /* system file table full */
error_vail ue. error- Fi 11 ng_SpaceError;
error _va:1 ue. prob1em= Fi 1 ingLa110cat1onExceeded;
return(error_va1ue);

default: /* any other error */
error_va1ue.prob1em= F111ng_accessRightsIndeterminate;
return(error_value);

return(-l);

FILlNGSUBSET IMPLEMENTOR'S GUIDE 49

UNIX SYSTEM INTERFACE

50

}

Once the file has been successfully created, the Store routine will save the attribute
specified on the procedure call in the file context block. Default values will be assigned for
all mandatory attributes not specified. The bulk data stream will be read and written to thE~
file. If the file transfer is tAsciiText, then the appropriate decoding of AsciiString must bE!
performed to allow the UNIX line delimiters (the linefeed character, octal 012) to be added to
the file. This can be accomplished by writing the contents of AsciiString.bytes to the filE!
followed by a call to fputc as follows:

{

}

int count;

/. character count is sequence length • 2 ./
count= sequence_length(Asc1iString.bytes)/2;
if (lAsciiString.lastByteS1gnificant)

count--;
/. if count is odd, ./
/. decrement by 1 ./

/. write characters ./
fwrite(Asci1String.bytes,sizeof(char),count,file_context_block->file_desc);
fputc('\n',file_context_block->file_desc); /. then line feed ./

FilingSubset services are not required to support directory creation. If directory creation is
supported, the service may optionally restrict this to only allow the creation of empty
directories. Directory files can be created easily on UNIX with the mkd i r command; however,
the format of directory files is operating system dependent and, therefore, does not
encourage the transfer of directory file contents. The create_di rectory routine is provided to
illustrate the creation of empty directory files.

/.

./

routine
create_directory

input:
pointer to file handle

returns:
-1 - success
else Filing Error, Problem

Filing_Error create_directory(file_context_block)
file_handle ·file_context_block;
{

int status;
/. Filing error, problem pair ./

error_value.error= Filing_AccessError; /. default to AccessError ./

FILINGSUBSET IMPLEMENTOR'S GUIDI:

}

5.3.6 Retrieve

UNIX SYSTEM INTERFACE

status= 0;
if (fork{) == °) { /* executa command */

execl{"/bin/mkdir","mkdir",file_context_b1ock->pathname,O);
ex1t(-l);

}

wait{&status);
if (status) { /* error reports accessRightslnsufficient */

error_va1ue.prob1em= Filing_accessRightslnsufficient;
return(error_value);

}

return{-l);

The Retrieve procedure transfers a file from a service to the calling client. FilingSubset
services are not required to allow the retrieval of directory files. This is true of the
implementation presented here; however, the fact that a file is a directory or not is
determined at a higher level. If the file is not a directory, then the file is opened and the
content transferred via a bulk data stream to the client.

The open_fi1 e routine physically opens the file for reading via the fopen subroutine. Any
errors encountered during thh; are returned as type AccessProblem.

#inc1ude <stdio.h>
#inc1ude <errno.h>

/.-,.

*/

routine
open_file

input:
pointer to file handle

returns:
-1 - success
else Filing Error, Problem

FILE *fopen();

error_value- Filing_AccessError;

F~LlNGSUBSET IMPLEMENTOR'S GUIDE

/* Filing error, problem pair */

/* default to AccessError */

51

UNIX SYSTEM INTERFACE

5.3.7 Delete

52

}

/* open file */

if (fi1e_context_b10ck->fi1e_desc=
fopen(fi1e_context_b10ck->pathname,"r")) {

}

switch (errno) {

}

case EACCES: /* user has no acces~ */

error_va1ue.prob1em= Fi1ing_accessrightslnsufficient;
return(error_value);

case ENOENT:
case ENOTDIR:

/* no such file */

/* no such directory */

error_value.prob1em= Fi1ing_fi1eNotFound;
return(error_va1ue);

default: /* all other errors */

error_value.prob1em= Fi1ing_accessRightslndeterminate;
return(error_va1ue);

return(-1);

The content of the file is then read and written to the bulk data stream. Files of tYPE!
tAsciiText are transferred as a StreamofAsciiText. The content of the file as read from thE!
file must be encoded into this form for transmission to the client. This involves removing thE!
UNIX line delimiter (the linefeed character, octal 012) before representing the data as aI'll
AsciiString.

The Delete procedure is used by clients to delete files. If the specified file is a directory, B.

FilingSubset service is not required to support the deletion of that file and optionally all.
descendants of the file. The UNIX rm command provides a relatively simple mechanism for
providing this facility. The delete_file routine decides on the required processing, basedl
upon whether the file is a directory or not. Directory files are deleted by specifying the - r'

switch on rm. The -f switch is also used to force the deletion, if necessary. Errors encounteredl
during the deletion of the directory and its descendants are returned as AccessProblem
accessRightslnsufficient.

N on-directory files are deleted with the UNIX un 1 ink routine. Appropriate errors are reported
as type AccessProblem.

#inc1ude <errno.h>

/*

*/

routine:
delete_file

input:
pointer to file handle

returns:
-1 - success
else Filing Error, Problem

FILINGSUBSET IMPLEMENTOR'S GUIDI:

UNIX SYSTEM INTERFACE

Filing_Error de1ete_.fi1e(file_hand1e)
file_handle *fi1e_context_b10ck;
{

}

int status;
Filing_Error error_value; /* Filing error, problem pair */

error_va1ue.error= Filing_AccessError; /* default to AccessError */

if ('fi1e_context_b10ck-)isdirectory) {
if (fork() ~= a) { /* use rm -rf for directories */

}

exec1("/bin/rm","rm","-rf",file_context_b10ck-)pathname,O);
exit(-l);

wait(&status);
if (status) { /* error reports accessRightslnsufficient */

}

error_va1ue.prob1em= Filing_accessRightslnsufficient;
return(error_va1ue);

} else { /* use unlink for non-directories */

}

if (un1ink(file_context_b10ck-)pathname)
switch (errno) {

-1) {

}

}

case EACCES: /* user has no access */
error_val ue. prob1 em= F"Il i ng_accessRightslnsuffi cient;
return(error_va1ue);

case ENOENT:
case ENOTDIR:

/* no such file */
/* no such directory */

error_va1ue.problem= Fi1ing_fileNotFound g

return(error_val ue);

default: /* all other errors */
error_va1ue.problem= Fi1ing_accessRightslndeterminate;
return(error_va1ue);

retu rn (-1) ;

FILlNGSUBSET IMPLEMENTOR'S GUIDE 53

UNIX SYSTEM INTERFACE

54 FILlNGSUBSET IMPLEMENTOR'S GUIDI:

6. VMS SYSTEM INTERFACE

Implementation of the FilingSubset under VMS requires both procedure and attribute
support within the native operating and file systems. This section presents an
implementation scenario which describes the necessary interactions with the VMS system.

This section describes those interface procedures required by the client and service
implementations presented in chapters 3 and 4. These are by no means the only method for
providing the facility desired; they have been chosen because they are consistent with the
UNIX routines of the previous section, with the exception of those instances where
appropriate VAX C routines do not provide the necessary funtionaIity. Several procedures
are alluded to but cannot be provided, due to the lack of support for certain features from the
V AX C run-time library and the proprietary nature of the VMS operating system. In these
cases, it is assumed that the appropriate functions can be provided through the use of
internal VMS functions.

In several instances, the examples presented will be identical to the UNIX counterparts
presented in chapter 5. This replication is done in an effort to make both the UNIX and the
VMS sections complete standalone sections.

Several of the examples presented are predicated on the assumption that a single VMS
process instance handles all procedure calls from the time the Courier connection has been
established on the initial Logon call until the subsequent Logoff call. The examples also
assume the definition of Filing defined constants and Courier defined data types. In the
examples, the string "F i 1 i n9_" is prepended to structure and variable names which are
defined by the Filing Protocol.

6.1 Attribute Support

The FilingSubset Protocol distinguishes three classes of attributes: mandatory, implied, and
optional. This section describes specific scenarios under the VMS operating system for

• services to retain attributes so that they may be interpreted by other native
operating system utilities and returned when requested by network clients

• clients to retrieve and retain the attributes when dealing with remote services

All attributes presented here are discu.ssed with respect to two areas: 1) where attributes
must be retained in thE~ native file structures, and 2) how they may be retrieved from these
structures and transferred to other FilingSubset clients and services. Retention of attributes
is of importance to FilingSubset clients when retrieving files from a service, and to services
when a client requests creation of a file on the service. Likewise, retrieval of attributes from
the native file structures is used by clients when issuing a Store, and by services when
returning attributes on a List procedure.

FILlNGSUBSET IMPLEMENTOR'S GUIDE 55

VMS SYSTEM INTERFACE

6.1.1 Mandatory attributes

56

Mandatory attributes are those attributes which must be interpreted by all FilingSubset
implementations. These attributes are guaranteed to be retained by any service
implementing the FilingSubset Protocol and must be accepted in specific procedure calls to
the extent that they are legal arguments of the corresponding procedure in the Filing
Protocol. Additionally, clients may wish to retain these attributes when retrieving files from
a service. The FilingSubset defines the following mandatory attributes: createdOn,
dataSize, isDirectory, modifiedOn, pathname, and type.

Each of these attributes is discussed with respect to the areas of retention and retrieval.
Retention of an attribute value describes a mechanism for saving the specified XNS
attribute value within the VMS file system, along with the file contents. Retrieval of
attribute values presents methods for deriving the XNS value from the VMS file system. In
each of these cases, the values may need to be converted from one form to the other.

In the case of the created On and modifiedOn attributes, the retention and retrieval of
attribute values requires a conversion between the VMS and XNS formats. The createdOn
and modifiedOn values are always specified in XNS Time format [10]. XNS time is based on
the number of seconds since 00:00:00 Jan. 1, 1901 Greewich Mean Time. The VMS operating
system maintains time in a 64-bit quadword specifying 100 nano-second intervals from
00:00:00, Nov. 17, 1858 in local time. VMS has no knowledge of offset from Greenwich Mean
Time nor daylight saving time (DST) adjustments; therefore, the conversion mechanism
must adjust according to the local values for these offsets.

For a given machine, the difference between the Jan. 1968 and Nov. 1858 base values and
the local difference from GMT are constants. Thus, the combined offset can be calculated at
process initialization. The set_base_time routine converts the earliest representable XNS
time (00:00:00 Jan. 1, 1968) to VMS format and adjusts it by the appropriate GMT offset, as
expressed in VMS format.

#include rms
#include ssdef
#include descrip

/.

routine:
set_base_time

input
gmt_difference

returns

/. VMS value for XNS earliest time ./

- local GMT offset in VMS ASCII time format
maximum offset is ± 12 hours from GMT
(i.e., for EST, "0 5:0:0.0")

- Boolean representing east/west of GMT
(TRUE - east, FALSE - west)

xns_base_time set to appropriate vms time value
-1 - if unsuccessful

struct dsc$descriptor
Boolean

·gmt_difference;
east_of_gmt;

/. local GMT offset ./
/. direction ./

FILlNGSUBSET IMPLEMENTOR'S GUIDE:

VMS SYSTEM INTERFACE

{

double time, gmt_offset;

static $OESCRIPTOR(XNS_EARLIEST_TIME,"01-JAN-1968 0:0:0.0");

1* convert earliest representable XNS time to VMS format *1
if «error= sys$bintim(&XNS_EARLIEST_TIME,&time» 1= SSS_NORMAL)

return(-1);

1* convert GMT offset to VMS format ~I

if «error= sys$bintim(gmt_clifference,&gmt_offset» 1= SS$_NORMAL)
return(-l);

if (east_of_gmt) { Ie if east, subtract offset; if west, add offset *1

}

if «error= lib$subx(&time,&gmt_offset,&xns_base_time» 1= SS$_NORMAL)
return(-l);

} else {

}

if ({error- lib$addx(&time,&gmt_offset,&xns_base_time» 1- SS$_NORMAL)
return(-1);

The conversion from XNS time to VMS time is then accomplished by subtracting the XNS
representation for earliestTime (2114294400) from the XNS time and adjusting for any
daylight savings time offset. The resulting value will be the number of seconds from
00:00:00 Jan. 1, 1968. This value is multiplied by 10 million, to convert to 100 nano-second
intervals and the previously computed VMS constant for the XNS earliest time added to
create an VMS value.

The routine convert_xns_time illustrates this:

#i ncl ude ssdef

#define XNS_EARLIEST_TIME 2114294400

routine:
convert_xns_time

input:

1* VMS value for XNS earliest time *1

xns_time - XNS time value
IS_OST function which will indicate whether daylight savings time is

*1

in effect on local machine (TRUE - dst in effect)
returns

corresponding VMS time value (64 bit quadword)
-1 - if error occurs

double convert_xns_time(xns_time)
LongCardinal xns_time;
{

double

FILlNGSUBSET IMPLEMENTOR'S GUIDE 57

VMS SYSTEM INTERFACE

58

}

long ten_mi11ion= 10000000;
long addend= 0;

/* get difference from XNS earliest time */
xns_time = xns_time - XNS_EARLIEST_TIME;

if (IS_DST) /* adjust for daylight savings time */

xns_time= xns_time - 3600;

/* convert to 100 nano-second intervals */
if «error= lib$emu1(&xns_time,&ten_million,&addend,&vms_time» 1= SSS_NORMAL)

return(-l);

/* make relative to Nov. 17, 1858 local standard time */
if «error= lib$addx(&vms_time,xns_base_time,&vms_time» 1= SSS_NORMAL)

retu rn (-1) ;

return(vms_time);

Retrieval of the created On or modifiedOn attributes involves using the reverse of the above
conversion. 'fhe routine convert_vms_time illustrates the conversion from VMS to XNS
format.

#include ssdef

2114294400

double /* VMS value for XNS earliest time */

*/

routine:
convert_vms_time

input:
vms_value
xns_va1ue
IS_FILE_DST

- pointer to 64 bit quadword containing VMS value

returns:
xns_value

- pointer to LongCardina1 to receive XNS value
function which will indicate whether daylight savings

time is in effect for the specified vms_time
(TRUE - dst in effect)

- XNS time value
-1 - if error occurs

convert_vms_time(vms_va1ue,xns_value)
double *vms_va1ue;
LongCardinal
{

double date;
long ten_mil 1 ion= 10000000;
long remainder;
int error;

FILlNGSUBSET IMPLEMENTOR'S GUIDI:

}

6.1.1.1 cr,eatedOn

VMS SYSTEM INTERFACE

/* get difference from earliest time */

if «error= lib$subx(vms_value,&xns_base_time,&date» 1= SS$_NORMAL)
return(,,1);

/* convert to seconds (divide by ten million) */

if «error- lib$ediv(&ten_million,&date,xns_value,
&remainder» 1= SS$_NORMAL)

return(-·l);
/* relative to earliest XNS time */

xns_value= xns_value + XNS_EARLIEST_TIME;

if (IS_FILE __ DST) /* adjust for local DST offset, when in effect */

xns_value xns_value + 3600; /. add 1 hour (60 min * 60 sec) */

The createdOn attribute is useful in determining if similarly named files on different file
systems within the network are identical. The ability to retain the (reatedOn date must be
coupled with a mechanism for native utilities to provide this date on demand. This can be
accomplished on VMS by setting the XAB$Q_CDT field of the XABDAT file structure to the
createdOn value prior to creating the file. This allows non-network VMS users to access this
date easily, and also allows the network client and service to det«~rmine and modify this
date.

[Retention]

The createdOn value is converted from XNS format to VI\IIS format using the
convert_xns_time routine described in section 6.1.1. The VMS value can then be retained by
placing the value in the XAB$Q_CDT field before creating the file, as illustrated below:

#include rms
#include ssdef

struct xab_date_format {
unsigned: 32;
unSigned: 32;

} ;

/*

routine:
set_create_time

input:
pointer to file context block

wherEI

/* xab defined format for date/time */

/* alleviates compiler typing problems */

if no createdOn value was specified on Store. createdon a
if createdOn value was specified on Store, createdon 1- 0, value is
in XNS time format

returns:
sets xab$q_cdt if appropriate

*/

FILlNGSUBSIET IMPLEMENTOR'S GUIDE 59

VMS SYSTEM INTERFACE

}

union { /* this alleviates compiler typing problems */

date_format; struct xab_date_format
double date_double;

} vms_time;

if (file_context_block-)createdon) { /* save createdOn if specified */

}

if «vms_time.date_double=
convert_xns_time(f1le_context_block-)createdon» 1= -1)

f1le_context_block-)xab.xab$q_cdt= vms_t1me.date_format;

[Retrieval}

Network processes can retrieve the createdOn value by requesting the file creation date
(ATR$C_CREDATE) when performing an IO$_ACCESS QIO to the disk ACP, and converting from
VMS to XNS format using the convert_vms_time routine from section 6.1.1.

The VAX C stat routine can also be used to determine the value for the createdOn attribute.
In this case, the returned value stat,st_ctime is converted to XNS time in a manner similar
to the UNIX mechanism. The value returned from stat is specified as seconds since 00:00:00
GMT, Jan. 1,1970. To convert to XNS format, the constant 2177452800 must be added to
this value. Note that this constant is the XNS encoding for the time 00:00:00 GMT, Jan. 1,
1970 [«1970-1901) years * 365 days/year + 17 leap days) * 24 hours/day * 60 minuteslhour *
60 seconds/minute].

6.1.1.2 dataSize

60

The FilingSubset defines the value of the dataSize attribute to be an estimate of the number
of eight-bit bytes within the file content. The VMS file system maintains a file size, in bytes,
which can be used for the dataSize value. Since the VMS value accounts for appropriate
formatting overhead, this value may not be equivalent to the actual file content size.

[Retention]

Since the dataSize value is regarded as an estimate of the native storage size, a VMS service
does not need to explicitly save this value. An appropriate value will be retained by the VMS
file system once the file is created.

[Retrieval}

The dataSize value can be determined in one of two ways: issuing an IO$_ACCESS QIO to the'
Files-11 ACP requesting the file attributes (ATR$C_RECATTR), or invoking the VAX C stat.
routine. The dataSize value can be computed by combining the FAT$l_EFBlK and FAT$W_FFBYTE
values returned from the QIO as follows:

FllINGSUBSET IMPLEMENTOR'S GUIDI:

#include fatdef

routine:
compute_datasize

input:

VMS SYSTEM INTERFACE

file_attributes
returns:

- FAT structure containing returned file attributes

XNS dataSize value as a LongCardinal
*/

LongCardinal compute_datasize{file_attributes)
struct fat
{

int block_count;

/* need to swap 16-bit words */
block_count= (file_attributes.fatSl_efblk « 16) I

(file_attributes.fatSw_efblk » 16);

/* dataSize is (block_count-l) * 512 + #bytes used in last block */
return ({ (bl oCk_count-l)*512)+fil e_attributes. fatSw_ffbyte);

}

The stat. st_s i ze value returned from stat will yield the dataSize value directly.

6.1.1.3 is[.irectory

The isDirectory is a boolean designating whethel' the file is a directory or not. Since VMS
differentiates between directory and non-directory files, this value is retained in the format
of the file and retrieved in one of several ways.

[Retention]

Retention of the isDirectory attribute implies that the file be created differently based on the
attribute value. When the value is FALSE, the standard RMS file creation routines
(sys$create or sys$open) or VAX C file creation routines (open, creat, 'fopen, etc.) can be used.
If the value is TRUE, thE~ directory file can be created with the VAX C mkdi r or LIB$CREATE_DlR
routine.

[Retrieval]

The isDirectory attribute value can be determined by issuing an lO$_ACCESS QIO to the Files-
11 ACP requesting the file characteristics of the file, or through use of the VAX C stat
routine. The isDirectory value will be TRUE, if the value from the QIO is TRUE when logically
anded with the constant FCH$M_DlRECTORY. Likewise, if the stat. st_mode value returned from
stat is TRUE when logically anded with S_lFDlR, the isDirectory value will be TRUE.

FILlNGSUBSET IMPLEMENTOR'S GUIDE 61

VMS SYSTEM INTERFACE

6.1.1.4 modifiedOn

The modifiedOn attribute is retained in the XABSQ_RDT field of the XAB file structure.

[Retention]

The modifiedOn attribute is set to the current date and time when a file is created by a
FilingSubset client or service. VMS will set the XABSQ_RDT field to the current date and time
when a file is created, unless otherwise specified.

[Retrieval]

The modifiedOn value is returned to network processes by requesting the revision date
(ATRSC_REVDATE) on an lOS_ACCESS QIO to the Files-11 ACP. The returned value can then be
converted to XNS time, as described in section 6.1.1. The VAX C stat routine cannot be used
to determine a value for the modifiedOn attribute, since it does not return the XABSQ_RDT

value.

6.1.1.5 pathname

6.1.1.6 type

62

The FilingSubset requires all service implementations to allow the specification of files by
the pathname attribute value. The syntax of the attribute value is defined to be servicH
specific, which implies that the pathname value will in fact be the VMS file name. Likewise,
the pathname value can be easily derived from the VMS file name when listing the paren1G
directory.

The context for use of the pathname attribute within the FilingSubset restricts the use of
wildcard characters to the matches attribute value on the List procedure.

[Retention]

The pathname attribute value specified on a Store will be used as the VMS file name when
actually creating the file. This value is retained in the VMS file system once the file iB
successfully created.

[Retrieval]

A FilingSubset service is allowed to require the path name attribute for accessing a file. As
such, the value is always specified by the client, except on a List when the service must
enumerate the parent directory. The mechanism presented in section 6.3.4 using thEl
lOS_ACCESS QIO to the Files-11 ACP will return a fully specified VMS filename that the servicEl
can return to the client.

The ability to transfer files between systems and retain generic file types is advantageous to
the users of a heterogeneous network. In particular, the ability to transfer a text file to
another system and preserve the editability of that file by the native text editors on thEt
receiving system without explicit conversion is especially beneficial.

FILlNGSUBSET IMPLEMENTOR"S GUIDI:

VMS SYSTEM INTERFACE

All FilingSubset implementations must support the type attribute values: tAsciiText,
tDirectory, and tUnspecified. The VMS operating system provides an explicit mechanism to
distinguish between various file types; however, it is possible that several VMS file types
will map to a single Filing type value. In general, a VMS client or service will choose a single
VMS file type to represent the various Filing type values when creating files on either the
Retrieve or Store procE~dures. This may result in a given implementation, not creating the
file in the correct format as desired by the user. However, without support for VMS-specific
attributes, this cannot be avoided. Generally, files containing only Ascii characters will be
treated as tAsciiText, and all other non-directory files will be treated as tUnspecified.

[Retention]

The tDirectory file type is retained in a manner similar to the isDirectory attribute. When
the attribute value is tDirectory, the directory is created via the VA~ C mkdi r or the
LIB$CREATE_DIR routine.

It is possible to represent the tAsciiText and tUnspecified file types as one of several VMS file
types. Without explicit support for VMS-specific attributes, the client or service
implementation must make a choice, which may be what the user wants or not. One solution
is to create tAsciiText files as VMS files with the following VMS attributes: sequential
organization, variable record format with implied carriage control. Files of type
tU nspecified can be created as VMS files with sequential organization and undefined record
format.

[Retrieval]

Values for the type attribute ean be determined in one of two ways: either a call to stat, or
an IO$_ACCESS QIO to the Files-11 ACP asking for both file characteristics (ATRSC_UCHAR) and
record attributes (ATRSC_RECATTR).

The tDirectory file type can be determined in a manner similar to that of the isDirectory
attribute. The type value will be set to tDirectory, if the file characteristics value returned
from the QIO is TRUE when logically anded with the consant FCH$M_DIRECTORY. Likewise, if the
value stat. st_mode value returned from stat is TRUE when logically anded with S_I FDIR, the
type value will be set to tDirectory.

The file organization and record format values (stat. st_fab_rfm and stat. st_fab_rat

returned from stat, or FAT$B_RTYPE and FAT$B_RATTRIB returned from the QIO) can be used to
determine non-directory values for the type attribute. The type tAsciiText can be assumed if
the file has the following VMS record attributes: variable or fixed record format with implied
carriage control or stream, streamlf or streamcr record formats. Files of any other record
format can be assumed to be of type tUnspecified. The following routine illustrates this
process:

#include fatdef

/*

routine:

get_type

input:

record_format

record_atttributes

FILlNGSUBSET IMPLEMENTOR'S GUIDE

- VMS record format (FAB$B_RFM)

- VMS record attributes (FAB$B_RAT)

63

VMS SYSTEM INTERFACE

returns:
Cardinal containing XNS type value

*'
Cardinal get_type(record_format,record_attributes)
int record_format;
int record_attributes;
{

}

'* stream, streamlf and streamer assumed tAsciiText *'
if ((record_format == FAT$M_STM) II

(record_format == FAT$C_STMLF) 1/

(record_format == FAT$C_STMCR)
return(F1l1ng_tAsciiText};

'* variable with implied carriage control assumed tAsciiText *'
else if ((record_format == FAT$C_VAR) &&

(record_attributes == FAT$M_CR))
return(F11ing_tAsci1Text);

'* fixed with implied carriage control assumed tAsciiText *'
else if ((record_format == FAT$C_FIX) &&

(record_attributes == FAT$M_CR))
return(Fil1ng_tAsci1Text);

'* all else, assume tUnspecified *'
else return(Filing_tUnspecified);

The contents of files which are determined to be of type tAsciiText will be transferred in the
form StramofAsciiText. The specific encoding/decoding of the bulk data stream is discussed
in sections 6.3.6 (Store) and 6.3.7 (Retrieve).

6.1.2 Implied attributes

Implied attributes are those attributes which obtain an implicit value when a new file is
created. All subset implementations are required to permit the specification of the impliecil
(default) value for these attributes. A service implementation may reject a Store procedure:.
if the value for an implied attribute is not the default value and the service does not support
the retention of non-default values for the attribute.

The implied attributes defined in the FilingSubset are accessList, chiidrenUniquelyNamed:.
defaultAccessList, isTemporary, ordering, subtreeSizeLimit, and version ..

Table 6.1 specifies the default values for these attributes on the VMS operating system"
Since the attribute values are identical for every file, unless otherwise supported, no explicit
provision for retention and retrieval of these attributes is needed. The service should verify
that the associated value is indeed the default on a Store and return the default values
when requested on a List procedure.

6.1.3 Optional attributes

64

Those attributes which are defined as interpreted in the Filing Protocol, but are not defined.
as either mandatory or implied within the FilingSubset, are classified as optional attributes.

FILINGSUBSET IMPLEMENTOR'S GUIDI:

VMS SYSTEM INTERFACE

Attribute Supported Values

accessList [defaulted: TRUE]

childrenU niquelyN amed TRUE

defaultAccessList [defaulted: TRUE]

isTemporary FALSE

ordering deft'aultOrdering

subtreeSizeLimit nullSubtreeSizeLimit

version highestVersion

Table 6.1 VMS supported values for
implied attributes

These attributes are not required to be supported by any FilingSubset service. Conventions
for retaining and retrieving values for these attributes are not discussed here, since they are
outside the definition for required functionality in the FilingSubset.

6.2 Client procedure support

Client routines require various VMS, RMS, and VAX C routines to perform functions specific
to the VMS operating system and to access the VMS/RMS file system. This interaction is
discussed in this section.

6.2.1 Continuance timer support

A FilingSubset client must issue a Continue procedure at specific time intervals to prevent
the service from terminating the session for lack of activity. This mechanism is implemented
via use of the a 1 a rm and s i g n a 1 V AX C routines. Three routines are defined for use by the
client: set_cont 1 nuance_t imer, reset_conti nuance_,t 1mer, and cance l_cont i nuance_time r. In
addition, the routine send_continue is referenced. This routine will send a Continue to the
service to maintain the open session.

set_continuance_timer calls send_continue to determine the service continuance value and
then initializes the timer mechanism to send a SIGALRM signal before the expiration of that
interval.

#include signal

extern send_continue();

Cardinal continuance;

routine:
set_continuance_timer

FILlNGSUBSET IMPLEMENTOR'S GUIDE

/* expiration routine, will send continue */

/* continuance value, in seconds */

/. returned from service */

65

VMS SYSTEM INTERFACE

called after a successful Logon
*/

set_continuance_timer()
{

}

continuance= send_continue();
continuance= continuance/3;

al arm(0) ;
signal(SIGALRM,send_continue);
alarm(continuance);

/*

/*

/*

/*

/*

get servi ce value */

insure we expire before service

cancel any previous alarm */

set routine to catch alarm */

set alarm */

reset_continuance_timer cancels any pending timer and reissues a new timer request.

/*

*/

routine:
reset_continuance_timer

called after any FilingSubset procedure call

reset_continuance_timer()
{

}

alarm(O) ;
alarm(continuance);

/* cancel previous alarm */

/* reset alarm */

*/

cancel_continuance_timer cancels the previous request and turns off handling of the SIGALR~I
signal.

/*

routine:
cancel_conti nuance_timer

called after a successful Logoff
*/

cancel_continuance_timer()
{

}

a1 arm(0);
signa1(SIGALRM,SIG_IGN);

/* cancel any previous alarm */

/* set routine: to ignore alarm */

6.2.2 Determining mandatory attribute values

66

When a client performs a Store, values for the mandatory attributes may accompany thE!
remote procedure call. Most of these values, with the exception of pathname and type, can
be obtained locally by using the stat system call. The routine get_attributes illustrates how
to accomplish this.

The stat routine returns the various file dates in a form similar to UNIX. The conversion
mechanism described in section 6.1.1 is not required to convert this value to XNS format ..

FILINGSUBSET IMPLEMENTOR'S GUIDI:

VMS SYSTEM INTERFACE

Instead, the conversion mechansim for use with the stat routine described in section 6.1.1.1
is used. The XNS time is computed by adding the returned value to the constant
2177452800, which represents the base time (00:00:00 GMT Jan. 1, 1970).

#include stat

#define 2177452800 /* seconds between base times */

extern LongCardinal createdon;
extern LongCardinal modifiedon;
extern Boolean isdirectory;
extern Cardinal datasize;
extern Cardinal type;

/*

*/

routine
get_attributes

input~

pathname - service-specific pathname of file
returns:

-1 - success
1 - error

get_attributes(pathname)
char *pathname;
{

struct stat

if (stat(pathnamef&file_stat) == -1)
return(l);

createdon= flle_stat.st_ctime + XNS_TIME_DIFFERENCE;
modifiedon= file_stat.st_mtime + XNS_TIME_DIFFERENCE;

datasize= f11e_stat.st_s1ze;

if (file_stat.st_Rlode & S_IFDIR) {
isdirectory· TRUE;
type- tD1rectory;

} else {
1sdirectory= FALSE;

/* stat file */

/* createdOn */
/* modifiedOn */

/* dataSize */

/* directory file */

/* non-directory */

type= get_type(f1 1 e_stat. st_fab_rfm, fi 1 e_stat. st_fab,_rat) ;
}

return(-1);
}

FILlNGSUBSET IMPLEMENTOR'S GUIDE 67

VMS SYSTEM INTERFACE

6.3 Service procedure support

68

A FilingSubset service implemented on the VMS operating system may use various VMS,
RMS, and VAX C routines to access the local file system and provide VMS-specific procedure
support. This section presents detailed examples of this interaction.

Client access to files on a subset service is controlled through the use of a file handle. The
implementation presented in section 4 describes the value of the file handle as a pointer to a
file context block. To provide the necessary functionality, this context block will contain some
items which are operating system specific.

For the implementation presented here, the following items are contained in the file context
block:

• a copy of the pathname attribute value as specified on the Open or Store

• a cardinal identifying the file type requested by the client on the Open

• a cardinal specifying the file type as determined by the service

• a cardinal specifying the dataSize value for the file

• a boolean specifying the isDirectory value for the file

• a long cardinal specifying the createdOn value for the file in XNS format

• a long cardinal specifying the modifiedOn value for the file in XNS format

• F AB, XABDAT, RAB, and NAM file structures used when accessing a file

• an appropriate buffer for use with the RAB structure

The following C structure defines the structure used in this section:

typedef file_handle {
char *pathname; /* pointer to pathname value */
Cardinal type; /* client requested type (from Open) */
Cardinal truetype; /* file system file type */
Cardi nal datasize; /* dataSize value */
Boolean i sd i rectory; /* isDirectory */
LongCardi nal createon; /* createdOn value */
LongCardina'1 modifiedon; /* modifiedOn value */
struct fab file_fab; /* file access block (FAB) */
struct rab 'file_rab; /* record access block (RAB) */
struct xabdat file_xab; /* extended attribute block (XABDAT) */
struct nam file_nam; /. name block (NAM) ./
char file_buffer[32767J; /* input/output buffer 32767= max size *'

} ;

FILlNGSUBSET IMPLEMENTOR'S GUIDI:

6.3.1 Logon

VMS SYSTEM INTERFACE

The Logon procedure is responsible for validating the user attempting the connection and, if
successful, altering the process ownership to that of the user. This alteration of ownership
ensures that the process is subject to the normal access/protection mechanisms employed by
the VMS operating system when subsequent procedure calls request access to files on the
service. The user name and password ,entries of the secondary credentials supplied on the
Logon are validated against the standard VMS UAF file. Once this has been completed, the
UIe and privileges of the process are changed to that of the respective user, as determined
from the authorization file entry for the user.

The process is also positioned to the appropriate root directory for the service, which
corresponds to a VMS disk/directory pair (generally the VMS root, [000000], on a specific
disk). This provides a VMS disk and directory which can be associated with null Handle as the
root for the service. The examples in this section use the external variable
service_root_device to specify the default device for the service. The Logon procedure will set
this variable to the appropriate value.

VMS does not export routines to perform these services and the nature of these routines is
such that they are proprietary to VMS. Because of this, no routines are presented here.
Instead, it is assumed that im.plementors of a VMS service will have access to VMS internal
documentation which describes the VMS mechanisms ~or performing the required functions.

6.3.2 Continue

The continuance mechanism is defined to allow services to close a session, if it has been idle
for a long period of time or the session needs to be terminated for other reasons. Each service
maintains a continuance value, which is the nUDlber of seconds that it will keep a session
open between successive procedure calls. This allows the service to set a timeout mechanism
to notify it when this time interval has passed and allow it to disconnect the active session.

This mechanism is armed once a session has been I:mccessfully established by a Logon, and is
terminated once the session is ended with a Logoff. Additionally, each routine which
processes a FilingSubset procedure, as described in section 4, should rearm the timer.

The alarm and signa 1 routines are used to implement this mechanism for VMS services. alarm
is used to set the timer mechanism for the specified interval, while signal is used to indicate
whether the service is to handle or ignore the alarIn.

The routines set_continuance_,timer, reset_conti nuance_timer, and cancel_continuance_timer

are defined. The service routine con t i nu an ce_e xp i ra t i on is referenced by
set_continuance_timer and would execute at the expiration of a thneout interval. At that
time, this routine would close the current session in a manner similar to that proposed for
the Logoff procedure in section 4.4.

set_continuance_timer initially establishes the timeout mechanism.

#include sig~al

Cardinal
extern

FILlNGSUBSI:T IMPLEMENTOR'S GUIDE

continuance;
continuance_expiration();

/. continuance value, in seconds ./
/* expiration routine ./

69

VMS SYSTEM INTERFACE

6.3.3 Open

70

routine:
set_conti nuance_timer

set_continuance_timer()
{

}

a1arm(O) ;
signal(SIGALRM,continuance_expiration);
a1arm(continuance);

/* cancel any previous alarm */

/* set routine to catch alarm */

/* set alarm ./

The reset_continuance_timer and cance'_continuance_timer routines are identical to the
client routines specified in section 6.2.1.

The Open procedure opens a file for subsequent access by the client. The file is identified by
the value specified for the pathname attribute. VMS supports multiple versions, so the
version values lowestVersion and highestVersion will indicate different files if more than
one version exists. If the pathname does not contain a version specification, the string ";-0'"
or ";0" can be catenated to the pathname value to indicate the lowest version or highest.
version of a file, respectively. When an explicit version value is specified along with a.
pathname value that contains a version, the explicit version value will take precedence over
the path name value.

The Open routine first performs a call to stat_fl1e to determine values for the dataSize ,1

isDirectory, and type attributes for the desired file. This allows the subsequent file transfer
procedures to access necessary information, simply by examining the file context block.

#inc1ude stat

routine:
stat_fl1e

input:
pointer to file handle

returns:
-1 - success
1 - failure (specific errors will be determined on the 'subsequent file

open)

file_context_block filled in

struct stat

FILINGSUBSET IMPLEMENTOR'S GUIDIE

VMS SYSTEM INTERFACE

}

'* stat does not return detailed errors so specific errors will be returned
when the actual open is attempted *'
if (stat(file_context_block-)pathname,&file_stat) == -1 }

return(1);

if (fil e_st.at. st_mode & S_IFDIR) {
file_context_block-)isdirectory· TRUE;
file_context_block-)truetype= Filing_tDirectory;

'* directory *'
} else {

}

file_context_block-)isdirectory= FALSE; /* non-directory *'

file_context_block-)truetype= get_type(file_stat.st_fab_rfm,
file_stat.st_fab_rat};

return(-1};

The routine open_file is subsequently called to open the file. This routine will be called
regardless of any errors that are returned from stat_file, since specific error conditions
cannot be determined unt:il the open is atempted. The only possible errors are:
accessRightslnsufficient if the file cannot be accessed, fileNotFound if the file or some
component of the pathname does not exist, and accessRightslndeternlinate if any other error
occurs.

#include rms

routine:
open_fi 1e

input:
pointer to file handle

returns:
-1 - success
else Filing Error, Problem

file_context block entries filled in

Filing_Error open_file(file_context_block}
file_handle ·file_context_block;
{

int error;
Filing_Error error_value; ,. Filing error, problem pair .,

error_value.error= Filing_AccessError; /. set to Fil'ing AccessError */

file_context_block-)file_fab= cc$rms_fab; ,. initialize FAB */

file_context_block·o)file_fab.fab$l_fna= cbptr-)pathname;
file_context_block-)file_fab.fab$b_fns= strlen(cbptr-)pathname);
file_conterxt_block-)file_fab.fab$b_fac= FAB$M_GET I FAB$M_BRO;
fi 1 e_context_bl ock·o)fi 1 e_fab. fab$b_sh,·· FAB$M_NIL;

FILlNGSUBSET IMPLEMENTOR'S GUIDE 71

VMS SYSTEM INTERFACE

6.3.4 List

72

error= sys$open{&file_context_block-)file_fab):
if (error 1= RMS$_NORMAL) {

/* open file */

if (error == RMS$_FNF) /* no such file */

error_value.problem= Filing_fileNotFound;
else if (error == RMS$_PRV) /* user has no access */

error_value.problem= Filing_accessRightslnsufficient:
else /* all other errors */

error_value.problem= Filing_accessRightslndeterminate;
return (error_value);

}

file_context_block-)file_rab= ccSrms_rab; /* initialize RAB */

file_context_block-)file_rab.rabSl_fab= &file_context_block-)file_fab;
file_context_block-)file_rab.rabS'_ubf= file_context_block-)file_buffer;
file_context_block-)file_rab.rabSw_usz= MAX_RECORD_SIZE;

error= sys$connect(&file_context_block-)file_rab); /* connect rab to fab */

if (error 1= RMS$_NORMAL) {
error_value.problem= Filing_accessRightslndeterminate;
return (error_value);

}

return(-l);
}

The List procedure enumerates a directory looking for the specified file or files and returns
the requested attributes for each file found. The file specification to be listed is specified in
the pathname attribute value on a filter of type matches. This procedure is unique in that ijG
is the only procedure which will allow wildcard characters in the pathname syntax which
are interpreted by the service.

This function is easily accommodated through the use of the IO$_ACCESS QIO to the Files-11
ACP, which lists a directory and returns the files matching some file name criteria alon~~
with various file characteristics requested. The file names are returned in ascending order
by name, which is the Filing Protocol defaultOrdering .

The routine 1 is t_ d i recto ry is defined to perform this function. This routine performs a VMS
SYS$ASSIGN to the service disk device, as specified by servi ce_root_dev ice. The routinE!
get_di rectory_ id is then called to parse the specified pathname to return the VMS filE!
identifier for the appropriate directory. 1 ist_di rectory then repetitively performs an
IO$ACCESS QIO to retrieve the next filename matching the pathname specification taken froIr.L
the filter of type matches. Appropriate VMS file characteristics are requested so that thE!
values for the FilingSubset defined mandatory attributes can be returned to the client"
ATRSC_UCHAR is used to determine the value for the isDirectory attribute. The type and
dataSize values are determined from the values returned from ATR$C_RECATTR. ThE!
createdOn and modifiedOn values come from ATRSC_CREDATE and ATR$C_REVDATE, respectively"
The resulting filename buffer specified on the QIO will return the VMS specific pathnamE!
value.

FILlNGSUBSET IMPLEMENTOR'S GUIDI:

VMS SYSTEM INTERFACE

The error AccessError accessRightslnsufficient is returned if an error is encountered during
the SYSSASSIGN or returned from get_directory_id. If an error occurs when accessing an
individual file, that file is simply omitted from the list returned.

#include rms
#include ssdef
#include descrip
#include atrdef
#include 'fibdef
#include 'fatdef
#include 'fchdef
#include 10sb

#define EVENT_FLAG

extern char

1*
routine:

list_directory
input:

2

1° assumes include files which define public *'
,0 structures ATR, FIB, FAT, FCH and IOSB *1

1° these are not necessarily included in VAX C *'

. 1* event flag for QIO use *1

'* VMS device known as service root *'

file_spec - pointer to VMS file specification
returns:

-1 - success
else Filing Error, Problem

*'
char '* pathname attribute from filter of type matches *'
{

int error;
struct fib fib'" 0;
struct atr attributes[5];
char file_name[NAM$C_MAXRSS];
char result_name[NAMSC_MAXRSS];
long length;
double creation_date;
double reviSion_date;
struct fat record_attributes;
long file_characteristics;
short channel;
struct iosb io_status;
Fil ing_Error error_value;

'* following are used to hold mandatory attributes until added to
outgoing bulk data stream *1

LongCardinal createdon;
LongCardinal modifiedon;
Cardi nal
Boolean
Cardina.l
String

datasize;
isdi rectory
type;
pathname;

FILlNGSUBSET IMPLEMENTOR'S GUIDE 73

VMS SYSTEM INTERFACE

74

struct dsc$descriptor_s result_name_descriptor:
struct dsc$descriptor_s device_descriptor:
struct dsc$descriptor_s fib_descriptor;
struct dsc$descriptor_s file_descriptor;

error_value.error= Filing_AccessError; /* set to Filing AccessError */

/* turn on wildcard mechanism */

/* fill in directory id */

if (get_directory_id(file_spec,&fib) == 1) {

error_value.problem= Filing_accessRightslnsufficient;
return(error_value);

}

/* VMS descriptor setup */

/* file name returned from QlO */

result_name_descriptor.dscSa_pointer= result_name; /* pathname value */

result_name_descriptor.dscSw_length= NAM$C_MAXRSS+l;
result_name_descriptor.dsc$b_class= DSC$K_CLASS_S;
result_name_descriptor.dscSb_dtype= DSCSK_DTYPE_T;

/* device known as service root */

device_descriptor.dscSa_pointer= service_root_device;
device_descriptor.dsc$w_1ength= str1en(service_root_device):
device_descriptor.dsc$b_c1ass= DSCSK_CLASS_S;
device_descriptor.dscSb_dtype= DSCSK_DTYPE_T:

fib_descriptor.dscSa_pointer= &fib:
fib_descriptor.dscSw_1ength= FlB$K_SMALLSIZE:
fib_descriptor.dsc$b_class= DSC$K_CLASS_S;
fib_descriptor.dscSb_dtype= DSCSK_DTYPE_T:

fi1e_descriptor.dscSa_pointer= file_spec;
file_descriptor.dsc$w_1ength= str1en(fi1e_spec):
fi1e_descriptor.dscSb_class= DSC$K_CLASS_S;
file_descriptor.dsc$b_dtype= DSC$K_DTYPE_T;

/* file identifier block */

/* input pathname value */

'* set up VMS attribute structures to be returned */

attributes[O].atrSw_size= ATR$S_UCHAR; /* file characteristics */

attributes[O].atrSw_type= ATRSC_UCHAR: /* isDirectory value */

attributes[O].atr$l_addr= &fi1e_characteristics;

attributes[l].atr$w_size= ATR$S_RECATTR;
attributes[l].atr$w_type= ATR$C_RECATTR;
attributes[l].atr$l_addr= &record_attributes:

attributes[2].ATR$W_SIZE= ATR$S_CREDATE:
attributes[2].atr$w_type= ATR$C_CREDATE;
attributes[2].atrS1_addr= &creation_date:

/* record attributes */

/* type and dataSize values */

/* creation date */

/* createdOn value */

FILINGSUBSET IMPLEMENTOR'S GUIDE

VMS SYSTEM INTERFACE

attributes[3].atr$w_size= ATR$S_REVDATE;
attributes[3].atr$w_type= ATR$C_REVDATE;
attributes[3].atr$1_addr= &revision_date;

1* revision date *1
1* modifiedOn value *1

attributes[4].atr$w_size= attributes[4].atr$w_type= 0;

if ((error= sys$assign(&device_descriptor,&channel,O,O» 1= SS$_NORMAL} {
error_va1ue.problem= Fi1ing_accessRightslnsufficient;
return(error_value};

}

while (TRUE) { 1* get each file matching file_spec *1
fib.fib$w_fid[O]= fib.fib$w_fid[1]= fib.fib$w_fid[2]= 0;

1* returns next file and characteristics *1
sys$qiow(EVENT_.FLAG,channel,IO$_ACCESSIIO$M_ACCESS,&io_status,O,O,

&fib_descriptor,&fils_descriptor,&length,&resu1t_oame_descriptor,
attributes,O};

1* break out when no file returned *1
if (io_status.s_status 1= SS$_NORMAL) {

}

if (fib.fib$l_wcc && (io_status.s_status 1= SS$_NOMOREFILES) }
continue;

el se break;
1* any other error simply omit file from list *1

1* determine mandatory attribute values *1
strncpy(pathname,resu1t_name,length); 1* pathname from result_name *1
*(pathname+length)- '/0';

1* convert createdOn, modifiedOn to XNS format *1
convert_vms_time(&creation_date,createdon);
convert_vms_time(&revision_date,modifiedon);

1* compute dataSize value *1
datasize= compute_datasize(record_attributes);

1* set isDirectory and type as appropriate *1
if (file_characteristics & FCH$M_DIRECTORY) {

isdirectory= TRUE;
type= tDirectory;

} else {

}

isdirectory= FALSE;
type= get_type(record_attributes.fat$b_rtype,

record_attributes.fat$b_rattrib);

1* insert implementation specific routines here:

*1

}

- make an attribute sequence from createdon, datasizs, isdirectory,
modifiedon. pathname and type variables

(if other non-mandatory attributes arerequested, appropriate values
must also be returned)

- write the attribute sequence to the bulk data stream

return(-1);

FILlNGSUBSET IMPLEMENTOR'S GUIDE 75

VMS SYSTEM INTERFACE

6.3.5 Store

76

/-

-/

routine:
get_directory_id

input:
file_spec - pointer to pathname value
file_fib - pointer to fib structure to fill in directory id info

returns:
-1 - success
1 - error occurred

char
struct FIB

-file_spec;
-file_fib;

{

}

struct fab
struct nam

file_fab;
file_nam;

file_fab= cC$rms_fab;
file_fab.fab$l_fna= file_spec;
file_fab.fab$b_fns= strlen(file_spec);

file_nam= cc$rms_nam;
file_fab.fab$l_nam= &fl1e_nam;

/- initialize fab ./

/- initialize nam ./

/- use sys$parse to obtain directory id -/
if (sys$parse(&file_fab) 1- SS$_NORMAL

return(l);

file_fib->fib$w_did[O]= file_nam.nam$w_did[O];
file_fib->fib$w_did[l]= file_nam.nam$w_did[l];
file_fib->fib$w_did[2]= file_nam.nam$w_did[2];

return(-l);

The Store procedure is used to create both directory and non-directory files. A different
method is used to create directory files under VMS, so the service will take an appropriatE!
action based on the values of the isDirectory and type attribute values, as stored in the filE!
context block.

Mter the Store routine has validated the argument and attribute values, a file handle is
allocated. The create_file routine is then called to actually create the file with the specifiedl
attributes and default values for unspecified mandatory attributes. A FilingSubset serviCE'
will always create a new version of a file. If a specified pa.thname includes a specific version
and that version already exists, the service will return InsertionError fileNotUnique"
Appropriate values for AccessProblem are returned, if the file cannot be created for any
other reason.

FILlNGSUBSET IMPLEMENTOR'S GUIDI:

VMS SYSTEM INTERFACE

#include rms

#define
/*

routine:
create_file

input:
pointer to file handle

returns:
-1 - success

32767

else Filing Error, Problem

file_context_block structures filled in

int error;

/* maximum VMS record size */

Filing_Error error_value; /* Filing error, problem pair ./

error_value,error= F11ing_AccessError; /* set default Filing error ./

fi 1 e_context_b1 ock··)f 11 e_fab= cc$rms_fab; /* i nit i a1 i ze FAB ./
file_context_block-)fi1e_fab,fab$1_fna- file_context_block-)pathname;
file_context_block-)file_fab,fab$b_fn:;= strlen(file_context_block-)pathname);
fi1e_context_block··)file_fab,fab$1_alq- file_context_block-)dataS1ze/512 + 1;
f1 1 e_context_bl ock-)fi 1 e_fab, fab$l_foJ)= FAB$M_MXV;
fi 1 e_context_bl ock··)fi 1 e_fab, fab$w_mrl»= MAX_RECORD_SIZE;

/* pick VMS type from type value ./
if (file_context_block-)type == Filing_tAsciiText) {

file_context_block-)file_fab,fab$b_rfm= FAB$C_VAR;
file_context_b10ck-)file_fab,fab$b_rat= FAB$M_CR;

} else if (file_context_block-)type == Filing_tUnspec1fied) {
file_context_block-)file_fab.fab$b_rfm= FAB$C_UDF;

}

/. initialize XAB ./
f1 1 e_context_bl ock-·)fi 1 e_fab, fab$l_xab= &fi 1 e_context_bl ock-)fi 1 e_xab;
file_context_block-)file_xab= cc$rms_xabdat;

/* save createdOn, per Section 6,1,1,1 */

error= sys$create(&file_context_block-)file_fab);
if (error 1= RMS$_NORMAL) {

if (error == RMS$_PRV)

/* create file */

/* check for errors */

/. no privilege */

error_val ue., probl em= Fil i ng_accessRightsInsuff i c'lent;
else if (error == RMS$_FEX) { /* file exists */

error_value.error= Fil1ng_InsertionError;
error_val ue. prob 1 em= Fi 1 i ng_fi'l eNotUnique;

FILlNGSUBSET IMPLEMENTOR'S GUIDE 77

VMS SYSTEM INTERFACE

78

}

}

} else /. all others ./
error_va1ue.prob1em= Fi1ing_accessRightslndeterminate;

return(error_va1ue);

file_context_block-)fi1e_rab= cc$rms_rab; /. initialize RAB ./
file_context_block-)file_rab.rab$l_fab= &file_context_block-)file_fab;
file_context_block-)file_rab.rab$rbf= file_context_block-)file_buffer;
file_context_block-)file_rab.rab$w_rsz= MAX_RECORD_SIZE;

/. connect RAB to FAB ./
if (error= sys$connect(file_context_block-)file_rab» 1= RMS$_NORMAL

error_value.problem= Fi1ing_accessRightslndeterminate;
return(error_value);

}

return(-l);

Mter the file is successfully created by create_file, the bulk data stream will be read and
written to the file and the file is closed. Files of type tAsciiText will have to be decoded to
determine the correct record size before writing the record, as illustrated below:

{

}

int count;

/. character count is sequence length • 2 ./
count= sequence_length(AsciiString.bytes)/2;
if (IAsciiString.lastByteSignificant)

count--;

file_context_block-)rab.rab$b_rsz= count;

sys$put(&file_context_block-)fab);

/. if count is odd, ./
/. decrement by 1 ./

j. set count in rab ./
/. write characters ./

FilingSubset services are not required to support directory creation. If directory creation is
supported, the service may optionally restrict this to only allow the creation of empty
directories. Directory files can be created easily on VMS with the VAX C mkdi r or thE!
LIB$CREATE_DIR routines; however, the format of directory files is operating system dependent
and, therefore, does not encourage the transfer of directory file contents. ThEl
create_di rectory routine is provided to illustrate the creation of empty directory files.

FILlNGSUBSET IMPLEMENTOR'S GUID'E

*/

routine:
create_d'i rectory

input:
pointer to file handle

returns:
-1 - success
else Filing Error, Problem

VMS SYSTEM INTERFACE

Filing_Error create_directory(file_context_block)
file_handle *file_context_block;
{

}

int status;
Filing_Error error_value; /* Filing error, problem pair */

error_value.error= Filing_AccessError; /* default to AccessError */

/* create directory */
if (mkdir(file_context_block-)pathname,O) == -1) {

error_value.problem= Filing_8ccessRightslnsufficient;
return(error_value);

return(-l);

6.3.6 Retrieve

6.3.7 Delete

The Retrieve procedure transfers a file from a service to the calling client. FilingSubset
services are not :required to aU ow the retrieval of directory files. The VMS implementation
does not allow the retrieval of directory files, since the format of these files is VMS-specific.
If the file is not a directory, then the file is opened and the content transferred via a bulk
data stream to the client.

The Retrieve procedure assumes that the file was previously opened by an Open procedure
and that the appropriate file_.context_block fields have been initialized. The content of the
file is then read and written to the bulk data strealn.

Files of type tAsciiText are transferred as a StreamofAsciiText. The content of the file as
read from the file must be encoded into this format for transmission to the client.

The Delete procedure is used by clients to delete files. If the specified file is a directory, a
FilingSubset service is not required to support the deletion of that file and all its
descendants. VMS does not provide a simple mechanism for supporting the deletion of non­
empty directories; therefore, the service returns AccessProblem accessRightslnsufficient if
the directory file cannot be deleted.

FILlNGSUBSET IMPLEMENTOR'S GUIDE 79

VMS SYSTEM INTERFACE

80

The VMS delete routine is used to delete the specified file. The delete routine will return an
error if the file is a non-empty directory. Appropriate Filing errors are reported as type
AccessProblem.

The following procedure illustrates the file deletion mechanism:

#inc1ude errno

/*

*/

routine:
delete_file

input:
pointer to file handle

returns:
-1 - success
else Filing Error, Problem

Filing_Error de1ete_fi1e(fi1e_context_block)
file_handle *file_context_block;
{

}

int status;
Filing_Error error_value; /* Filing error, problem pair *'

error._va1ue,error= Filing_AccessError; /* set to Filing AccessError */
/* attempt delete of directory, success only if empty */

if (file_context_b10ck-)isdirectory) {
if (delete(file_context_block-)pathname) == -1) {

error_value.problem= Fi1ing_accessRightslnsufficient;
return(error_value);

}

} else { /* use delete for non-directories *'

if (de1ete(file_context_b10ck-)pathname) -1) {
switch (errno) {

}

}

}

return(-1);

case EACCES: /* user has no access */

case EPERM: /* user has no access */

error_va1ue.problem= Fi1ing_accessRightslnsufficient;
return(error_va1ue);

case ENOENT:
case ENOTDIR:

/* no such file */

/* no such directory */

error_va1ue.problem= Fi1ing_fileNotFound;
return(error_value);

default: /* all other errors */

error_va1ue.problem= Fi1ing_accessRightslndeterminate;
return(error_va1ue);

FILINGSUBSET IMPLEMENTOR'S GUIDI:

A. REFERENCES

The following documents describe those protocols and data structures referenced within this
guide.

[1] Xerox Corporation. Authentication Protocol. Xerox Network Systems Standard.
Stamford, Connecticut; May 1986; XNSS 098605.
This reference defines the Authentication Protocol upon which the Filing and
FilingSubset Protocols rely for authentication.

[2] Xerox Corporation. Bulk Data Transfer. Xerox Network Systems Standard. Stamford,
Connecticut; April 1984; XNSS 038112 (XSIS 038112); Addendum 1a. Augments [6].
This reference defines the Bulk Data Transfer Protocol upon which the Filing and
FilingSubset Protocols rely for bulk data transfer.

[3] Xerox Corporation. Character Code Standard. Xerox Network Systems Standard.
Stamford, Connecticut; May 1986; XNSS 058605.
This reference defines the character set and the string format which provide the basis
for Courier's string data type.

[4] Xerox Corporation. Clearinghouse Protocol. Xerox Network Systems Standard.
Stamford, Connecticut; April 1984; XNSS 078404 (XSIS 078404).
This reference defines the protocol which FilingSubset implementations use to
provide various services. It also defines the structure of user names which appear as
various file attributes.

[5] Xerox Corporation. Clearinghouse Entry Formats. Xerox Network Systems Standard.
Stamford, Connecticut; April 1984; XNSS 168404 (XSIS 168404).
This document defines Clearinghouse property types and the structure of their entries
in terms of Courier data types.

[6] Xerox Corporation. Courier: The Remote Procedure Call Protocol. Xerox Network
Systems Standard. Stamford, Connecticut; December 1981; XNSS 038112 (XSIS
038112).
This reference defines the Courier language, in terms of which the Filing and
FilingSubset Protocols are defined.

[7] Xerox Corporation. Filing Protocol. Xerox Network Systems Standard. Stamford,
Connecticut; May 1986; XNSS 108605.
This reference defines the Filing and the FilingSubset Protocols.

[8] Xerox Corporation. Internet Transport Protocols. Xerox Network Systems Standard.
Stamford, Connecticut; December 1981; XNSS 028112 (XSIS 028112).
This reference defines the Sequenced Packet Protocol upon which Courier relies for
data transport.

81

REFERENCES

[9] Xerox Corporation. Secondary Credentials Formats. Xerox Network System!;
Standard. Stamford, Connecticut; May 1986; XNSS 258605.
This reference documents specific type assignments and data formats for secondary
credentials. Implementations of FilingSubset on hybrid hosts may require secondary
authentication information.

[10] Xerox Corporation. Time Protocol. Xerox Network Systems Standard. Stamford,
Connecticut; April 1984; XNSS 088404 (XSIS 088404).
This reference defines the Time Standard upon which the Filing and FilingSubset
Protocols rely for the definition of the format for time and date quantities.

82 FILlNGSUBSET IMPLEMENTOR'S GUIDI:

	001
	002
	003
	004
	005
	006
	007
	008
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82

