
Xerox System Integration 
Standard 



XEROX Xerox System Integration 
Standard 

Authentication Protocol 

XSIS098404 
April 1984 

Xerox Corporation 
Stamford, Connecticut 06904 



Notice 

This Xerox System Integration Standard describes the Authentication Protocol. 

1. This standard includes subject matter relating to patent(s) of Xerox Corporation. No 
license under such patent(s) is granted by implication, estoppel, or otherwise, as a 
result of publication of this specification. 

2. This standard is furnished for informational purposes only. Xerox does not warrant or 
represent that this standard or any products made in conformance with it will work in 
the intended manner or be compatible with other products in a network system. Xerox 
does not assume any responsibility or liability for any errors or inaccuracies that this 
document may contain, nor have any liabilities or obligations for any damages, 
including but not limited to special, indirect, or consequential damages, arising out of 
or in connection with the use of this document in any way. 

3. No representations or warranties are made that this specification, or anything made 
in accordance with it, is or will be free of any proprietary rights of third parties. 

c Copyright 1984 Xerox Corporation. 
All Rights Reserved. 

XEROX·, Xerox Network Systems, XNS, and Clearinghouse 
are trademarks of XEROX CORPORATION. 



Preface 

This document is one of a family of publications that describes the network protocols 
underlying Xerox Network Systems (XNS). 

This version of the Authentication Protocol Standard replaces the previous version of the 
same document (XSIS 098210, October 1982). It represents a major extension of the 
facility defined by the earlier document, while retaining backward compatibility. In 
addition to the "Simple" form of authentication defined in the earlier version, this revision 
defines "Strong" Authentication by specifying the data types, remote procedures and other 
protocol facilities needed to provide this stronger encryption-based form of network 
security. It also defines additional protocol operations to support the use of the old Simple 
form of credentials, including a new operation to be used by servers to check the validity of 
Simple credentials. 

Xerox Network Systems comprise a variety of digital processors interconnected by means 
of a variety of transmission media. System elements communicate both to transmit 
information between users and to economically share resources. For system elements to 
communicate with one another, certain standard protocols must be observed. 

Comments and suggestions on this document and its use are encouraged. Please address 
communications to: 

Xerox Corporation 
Office Systems Division 
Network Systems Administration Office 
3450 Hillview Avenue 
Palo Alto, California 94304 

iii 



iv 



Table of contents 

1 Introduction 1 

1.1 Purpose 1 
1.2 Relationship to other protocols. 1 
1.3 Documentation conventions 1 

1.3.1 Notation 2 
1.3.2 Notation for examples 2 

1.4 Document organization 3 

2 Overview 5 

2.1 Clients and services 5 
2.2 How authentication works . 5 

2.2.1 The authentication model 6 
2.2.2 Some assumptions . 7 

2.3 Levels of security 7 
2.4 Passwords. 7 

2.4.1 Passwords for a user 7 
2.4.2 Passwords for a service. 8 

2.5 Data protection 8 
2.6 Credentials and verifiers 8 

2.6.1 Strong credentials and verifiers 8 
2.6.2 Simple credentials and verifiers 8 
2.6.3 Summary 9 

2.7 Privileged users 9 
2.8 The Authentication database .10 
2.9 Guidelines for authenticating an initiator .11 

2.9.1 Checking strong credentials .11 
2.9.2 Checking simple credentials .11 

2.10 Protection provided by Authentication Service. .11 

v 



vi 

3 

3.1 
3.2 

3.3 

3.4 
3.5 

3.6 

4 

4.1 
4.2 

5 

5.1 
5.2 
5.3 
5.4 

Table of contents 

Remote procedures 

Encoded data . 
Credentials 
3.2.1 Strong credentials . 
3.2.2 Simple credentials. 
Verifiers . 
3.3.1 Strong verifiers 
3.3.2 Simple verifiers 
Obtaining credentials 
Modifying keys. 
3.5.1 Strong keys 
3.5.2 Simple keys 
Locating an Authentication server. 

Remote errors. 

Authentication errors 
Calling errors . 

Algorithms. 

Hashing algorithm. 
DES encryption 
Algorithm for computing a strong key 
Algorithm for computing returned verifier. 

Appendices 

A 
B 
C 
D 

References 
Program declaration. 
Well-known service names 
Example 

Figures 

2.1 
2.2 
3.1 
3.2 
5.1 
5.2 
5.3 

Tables 

2.1 

Strong authentication 
Simple authentication . 
BroadcastforServers packet format 
Response packet format 
Standard cipher block chaining 
Cipher block chaining with checksum 
Decomposing a password into blocks 

Summary of credentials, keys, and verifiers 

'. 

'. ';'. ;, 

· 13 

· 13 
· 14 
.14 
· 15 
.15 
· 15 
.16 
.16 
.17 
.17 
.18 
· 18 

.21 

.21 

.22 

.25 

.25 

.26 

.27 

.28 

.31 

.33 

.37 

.39 

· 9 
.10 
.19 
.20 
.26 
.27 
.28 

.10 



1 

Introduction 

Security is an important aspect of any information handling system. It is a particularly 
difficult problem in a distributed system where network resources are constantly 
changing. The Authentication Service solves part of the security problem, that of 
guaranteeing the identity of network users. 

1.1 Purpose 

This document defines the complete specification of the protocol employed for interactions 
between clients and the Authentication Service. This document also serves as a guide for 
using the Authentication Service. It does not describe any particular implementation of 
the Authentication Protocol. 

The Authentication Service is an element in providing information security on the net­
work. It provides a method of protecting user passwords, of verifying a user's identity, and 
of protecting interactions between clients and other services. It does not, however, require 
that either clients or other services make use of these facilities. 

1.2 Relationship to other protocols 

The protocol defined in this document is an application-level protocol. It employs several 
other protocols. Requests to an Authentication Service are communicated using the 
request-reply or transaction discipline defined by Courier [8]. Every request is modeled as 
a remote procedure as defined in Courier; every exceptional condition that may arise is 
modeled as a remote error. All parameters transferred between the client and the 
Authentication Service obey the conventions described in the Courier specification. This 
present specification, therefore, constitutes a Courier remote program. 

The Authentication Protocol also depends upon the standard time format defined in the 
Time Protocol [11], and on the standard definition of Clearinghouse'" Directory Service 
names defined in the Clearinghouse Protocol [7]. 

1.3 Documentation conventions 

Courier text and examples are depicted in special fonts, and generally conform to a certain 
style. The rules and style are set forth below. 

1 



1 

2 

Introduction 

1.3.1 Notation 

Throughout this document, special fonts are used to depict Courier text instead of using 
quote marks or other delimiters. This convention also aids the eye in;discriminating 
between Courier text and the exposition. Items in THIS FONT indicate elements of the 
Courier language and are almost always in upper case. This font indica tee; items that are 
defined using the Courier language. 

Identifiers that are defined in this protocol (as opposed to being defined by Courier) will 
have their first letter capitalized if they are the name of a type, error, or procedure; 
identifiers with a lower case first letter are usually the names of variables, arguments, or 
results. 

1.3.2 Notation for examples 

In the examples that follow, a call to a remote procedure is denoted by the name of the 
procedure followed by the arguments supplied to it. A return from a remote procedure is 
denoted simply by the results, preceded-when confusion might otherwise result-by the 
keyword RETURNS. The argument or result list is modeled as a record; the arguments or 
results as the record's components. Accordingly, Courier's standard notation for record 
constants is used to specify argument and result lists. 

For example, ift}:le procedure Add is defined as: 

Add: PROCEDURE [first, second: CARDINAL] 

RETURNS [sum: CARDINAL] • 99; 

then a call to that procedure would be·deno,ted by: 

Add [first: 7, second: 5] 

and the call would yield the result: 

[sum: 12] or RETURNS [sum: 12] 

Note: The above notation for procedure calls should not be confused with the standard 
notation for a record constant selected by means of a CHOICE data type. The two are. similar 
in appearance but otherwise unrelated. 

Examples of remote errors are either just the name of the error, if it is defined without 
arguments: 

Overflow 

or the same as a procedure call if it is defined with arguments. 



Authentication Protocol Xerox System Integration Standard 1 

For example, if Overflow were defined as: 

Overflow: ERROR [carry: CARDINAL] = 99; 

then an example ofits use might be: 

Overflow [carry: 1) 

indicating that Overflow was reported with argument carry having the value 1. 

Courier requires values for a SEQUENCE OF UNSPECIFIED to be a sequence of numbers. To retain 
readability in examples, the content of a SEQUENCE OF UNSPECIFIED is described using Courier 
notation. The reader should understand that the numeric representation of these types is 
what should be used as the content of the sequence. 

1.4 Documentorganization 

Section 2 of this document gives an overview of the concepts defined in the standard and 
how the identity of a client should be verified. Section 3 defines the meaning and use of the 
various types of credentials and verifiers that are interpreted by the Authentication 
Service, and defines the remote procedures needed to interact with an Authentication 
Service. Section 4 defines the remote errors reported by the Authentication Service when 
exceptional conditions occur. Section 5 describes the different algorithms used by the 
Authentication Service for encryption, hashing, key transformation, and verifier 
calculation. 

Appendix A lists other documents which supplement the specification. Appendix B lists 
the Authentication remote program in its entirety. Appendix C lists the well-known 
names of the distributed services. Appendix D gives an example of an interaction between 
a client, a service, and the Authentication Service using the Authentication Protocol. 

3 



1 Introduction 

4 



2 

Overview 

The Xerox Network System is an open, distributed system. The devices attached to the 
internet are heterogeneous and autonomous and may be under the control and admin­
istration of widely separated groups of people. In such an environment it is important to 
provide protection from unauthorized use of services, and to provide privacy for data 
stored by clients. Two things are required before a service can provide this kind of 
security: the service must provide access control machinery, and the service must have 
some means of determining the identity of its clients. Access control mechanisms allow 
the group which controls a particular service to determine who is allowed to access that 
service and what those people are allowed to do. Determining the identity of a client 
allows the access control machinery to know with some degree of certainty exactly which 
person is trying to access the service. Neither proof of identity nor access control is any 
good without the other. . 

The Authentication Protocol addresses the problem of determining identities. It provides a 
means whereby a mutually suspicious client and service may prove their identities to each 
other. It is based upon a design by Needham and Schroeder [4]. 

2.1 Clients and services 

A service is an entity that runs on a system element called a server. The term Authen­
tication Service refers to both an implementation of the Authentication abstraction and to 
the tasks performed by that implementation. An Authentication Service is accessible to 
and used by software entities on other system elements called clients. 

A client always interacts with an Authentication Service on behalf of a user. The user may 
be a human being, or it may be a software entity such as another service. All interaction 
between the client and the service is initiated by the client. The service never initiates 
activity with a client. 

2.2 How authentication works 

The fundamental problem of authentication is how to get the data that proves who one is 
to a recipient in a fashion that protects against the following two kinds of impersonation: 

5 



2 

6 

Overview 

a) impersonation enabled by theft of identifying information (for example. a person's 
name and password); 

b) impersonation by play-back of recorded information (for example, selected portions of 
a dialog between sender and recipient). 

What makes the authentication process particularly elaborate is that the entire exchange 
of information between the various parties takes place over an unsecured communication 
medium. The exchange must be done in such a fashion that an intruder, if he were to 
monitor the entire conversation, could learn nothing that would compromise the process. 

2.2.1 The authentication model 

The solution provided by the Authentication Protocol postulates a secure Authentication 
Service which knows the specially-encrypted password, called a key, of every user and 
service in the internet. A sender. called the initiator, which wishes to authenticate itself to 
a receiver, called the recipient, contacts the Authentication Service, telling it the names of 
both parties and supplying a random number called the nonce. The Authentication 
Service sends back to the initiator several pieces of encrypted information that can be 
decoded only by the initiator (or anyone with the initiator's key). These pieces are: the 
credentials, the nonce, the recipient's name, and the conversation key. 

The credentials are encrypted with the recipient's key. When decrypted, it contains the 
name of the initiator, the conversation key, and a date and time, called the expiration time, 
after which the credentials are no longer valid. (The expiration interval is fixed for an 
internet and is· determined by the implementation of the Authentication Service on that 
internet. It should be on the order of many hours.> The nonce and recipient's name are 
included to protect against a replay of a previous conversation by a bogus Authentication 
Service. These two values should be checked by the initiator to make sure that they are 
the same as those submitted to the Authentication Service. Since only the recipient can 
decrypt the credentials, and since only the Authentication Service (and the recipient) can 
encrypt the credentials, the recipient knows the initiator is authentic. What the recipient 
isn't sure ofis whether or not the credentials are a recording. 

The decrypted conversation key is used by the initiator to encrypt a time stamp, called a 
verifier. When the initiator sends its credentials to the recipient, a verifier is included. The 
recipient decrypts the verifier and determines if the time stamp is reasonably close to the 
current time. This allows the recipient to detect a replay. Only the initiator could encrypt 
the verifier (the time stamp) and only the recipient could decrypt it, since only these two 
parties know the conversation key. To be effective a verifier may be used only once. Any 
other alternative would compromise the authentication process by allowing recorded 
verifiers to be replayed. 

The logic of this process is as follows: the recipient receives, in a protected manner, a key 
(the conversation key) that only the initiator and recipient know; the receptionq( a proper 
verifier demonstrates that the sender knows the conversation key, and therefor~ must 'be 
the initiator; and the time stamp prevent!? a~ intruder from reusing the verifier. 

2~2.2 Some assumptions 

The authentication procedure is based on several assumptions. If any of these assumptions 
does not hold true, either the authentication process is compromised, or it cannot be 



Authentication Protocol Xerox System Integration Standard 2 

implemented. The first is the assumption that there exists a secure Authentication 
Service with which all clients and services can entrust a copy of their keys. For each client 
and service, only the client or service and the Authentication Service know the key. 
Secondly, it is assumed that the encryption algorithm is secure even if an intruder can 
obtain known plain-textlcypher-text pairs. And lastly, it is assumed that the initiator's 
and recipient's clocks are reasonably well synchronized, and that there is a reasonable 
upper bound on communication delays. 

2.3 Levels of security 

Different system elements have different capabilities. Some can efficiently perform en­
cryption while others cannot; still others must act on behalf of a client at the other end of 
an unsecured telephone line. To accommodate the security needs and capabilities of all, 
there are two different levels of security, called strong and simple. The goal of strong 
security is to make it, practically speaking, impossible for one user to impersonate an­
other, whereas simple security makes it merely difficult. Neither strong nor simple 
passwords are ever transmitted in the clear. This limits the amount of damage done if the 
user accidentally types his strong password in a situation that expects the simple pass­
word. In such cases the datum transmitted is a value which is easily derived from the 
password but which does not contain enough information to reconstruct the original 
password. 

The two levels of authentication are reflected throughout the Authentication Protocol. 
There are two levels of passwords, keys, credentials, and verifiers. 

2.4 Passwords 

Every user has two passwords, one for each level of security. A service has only one, a 
strong password. 

2.4.1 Passwords for a user 

Every user has two passwords, his strong and simple passwords. Which password the user 
must type depends on what sort of workstation he is using. If he is using a workstation 
powerful enough to perform encryption, then he should use his strong password. If he is 
using a workstation which is unable to perform encryption, or if he is using a remote 
terminal at the end of an unsecured telephone line, then he should use his simple pass­
word. It is up to the workstation software to make clear which password is required when 
the user logs on. 

When a user enters his password into a system element, it is encoded according to a 
specific algorithm, one for each type of password (see 2.5). The result is a key called, 
respectively, a strong key or a simple key. The passwords are never transmitted on the 
internet unencoded. The strong key and simple password are also registered with the 
Authentication Service. 

2.4.2 Passwords for a service 

A service has only one password, a strong password. The authentication procedure is 
arranged so that the service never needs a simple password to verify the authenticity of a 

7 



2 Overview 

client (to the correspondIng level of security, simple). Thus, simple passwords for a service 
are unneces~ary: 

2.5 Data protection 

There are two principal methods employed in the Authentication Protocol to protect 
confidential data-hashing and the National Bureau of Standards' Data Encryption 
Standard (DES). All verifiers and the strong credentials utilize one of these two methods. 
The details of each are described in Section 5. 

The transformation of a password intO a key is also described in Section 5. 

2.6 Credentials and verifiers 

8 

There are two levels of credentials and verifiers corresponding to the two levels of security. 
The structure and use of each are detailed below. 

2.6.1 Strong credentials and verifiers 

Strong credentials contain the fully qualified, distinguished name of the initiator (A), the 
expiration date and time of the credentials (T exp), and a strong conversation key (Ke). A 
·new strong conversation key is created by the Authentication Service for each request for 
credentials. It is a key in the same sense that the initiator and recipient have keys. The 
Authentication Service encrypts the concatenation of these three objects with the 
recipient's strong key (KSb). The verifier which accompanies a set of strong credentials is a 
time stamp (ti) xORed with the recipient's processor ID, and encrypted by the initiator with 
the conversation key Kc. The process for strong authentication is shown in Figure 2.1. 

A strong verifier may be used only once for each set of credentials; otherwise an eaves­
dropper could obtain a valid credentials-verifier pair. If the protocol specifies a verifier as 
part of a response, it would also be a strong verifier, but with a new time stamp. The 
computation of the value of the returned verifier is given in Section 5. 

i· 

. 2.6.2 Simple credentials and verifiers 

No interaction with an Authentication Service. is required to manufacture a set of simple 
credentials. The credentials are simply A's name (A), either its distinguished name or an 
alias.· (The distinguished name is recommended; a slight performance penalty may be 
associated with use of an alias in this context.) The verifier which accompanies a set of 
simple credentials is A's simple key, Ksia. The simple authentication process is shown in 
Figure 2.2. 

Unlike strong verifiers, simple verifiers are always the same for a given set of credentials. 
Since the credentials never have to be decoded by the initiator, this means that an 
eavesdropper may obtain a valid credentials-verifier pair and pose as the initiator 
indefinitely. Also, the returned verifier provides no assurance that B is not an imposter. 



Authentication Pr.>tocol Xerox System Integration Standard 2 

Legend 

A, B = the fully qualified names of the initiator, A, and recipient, B 

= the nonce 

KS a, KSb = the strong keys of A and B, respectively 

Kc the conversation key 

T exp = the expiration time for a set of credentials 

Ky[xJ the value x encrypted with the key Ky 

tj a time stamp obtained from the system clock at time i 

PIDx = 48-bit processor ID of X, padded after least significant 
bit with 16 bits of zero 

Figure 2.1 Strong authentication 

2.6.3 Summary 

Table 2.1 summarizes the credentials, verifiers, and conversation keys for the two levels of 
authentication. 

2.7 Privileged users 

The Authentication Protocol employs the notion of a privileged user. This user has special 
privileges with an Authentication Service. Such a user can act on behalf of any user in the 
same organization and domain (see the Clearinghouse Protocol [7]). After suitably 
authenticating itself a privileged user can register with or delete from the Authentication 
Service another user's strong key. The means by which privileged users are designated are 
dependent on the implementation and are not specified by this protocol. 

9 



2 Overview 

Legend 
A = the fully qualified name of the initiator, A 

KSia = A's simple key 

ok? = a boolean which indicates whether or not Ksi a is A's hashed password 

Figure 2.2 Simple authentication 

2.8 The Authentication database 

10 

Although it appears to clients as though there is only one Authentication Service per 
internet, the service is distributed over many servers. Each Authentication server has 
responsibility for some part of the entire Authentication database. The part of the 
database maintained by each Authentication server is called its local database. Parts of 
the Authentication database may be replicated on other servers. If credentials are 
required for A and B, and the keys for them are stored in different local databases, both 
local databases must be accessible to the Authentication Service before credentials can be 
generated. 

The distributed nature of the database has two ramifications concerned with its modi­
fication. First, when a key is changed, there may be an appreciable delay before all copies 
of the new key are made consistent. Clients must be able to properly contend with the 

T bl 21 S a e ummarvo f d t' I k cre en la s evs an d °fi ven lers 

Credentials Conversation Verifier Key 

Strong KSb[Kc, T exp, A] Kc KdtiE9PIDB] 

Simple A --- Ksi a 

-._._---------------------------- --------_.----------. 



Authentication Pr;!)tocol Xerox System Integration Standard 2 

database being transiently incorrect. Second, if two copies of a key are modified "simul­
taneously" by two clients, the Authentication Service will see to it that, after the updating 
transient has passed, all copies of the key will be that which corresponds to the most 
recent change. This means that all prior updates will be rejected. To users, the update 
which prevails will appear to be unpredictable. 

2.9 Guidelines for authenticating an initiator 

To complete the process of authentication, the initiator and recipient must check the 
credentials and verifier. Below are some guidelines for doing this. 

2.9.1 Checking strong credentials 

Encrypted strong credentials must be a multiple of 64 bits in length (see 3.2.0. Before 
decryption, the length of the credentials should be checked to see if it is of the required 
mUltiple. When decrypted, the credentials should have the structure described in the 
protocol, the padding bits should be zero, and each field of the initiator's name should have 
meaningful sizes (zero or greater, and less than or equal to the maximum) and content. 

The credentials should not have expired; i.e., the expiration time of the credentials should 
not be earlier than the current time. Also, the expiration time should be a reasonable time 
in the future; excessively large expiration times (more than several days) should be 
regarded with suspicion. 

The parity bits in the strong conversation key should be correct (see 3.5.0. 

When decrypted and xORed with the recipient's left-justified, zero-filled processor 10, the 
verifier should be within a reasonable interval-either way-of the current time (on the 
order ofa small number of minutes). 

The time stamps in the verifiers received should be strictly monotonically increasing for 
this set of credentials. 

2.9.2 Checking simple credentials 

The initiator should be a valid name; i.e., the lengths of the name fields should all be zero 
or greater, and less than or equal to the maximum. 

The user's simple key, as stored in its Clearinghouse entry, should match the verifier. 

2.10 Protection provided by the Authentication Service 

The threats that can be brought against the Authentication Protocol are listed below 
along with how much protection the protocol offers against each one of them. 

• Intruders may get information from client protocols by eavesdropping; that is, 
watching file or mail service interactions in order to steal files or mail. 

11 



2 

12 

Overview 

• There is no protection against an intruder modifying the argument of a Courier call. 
The Authentication Service interactions are secure, but existing client protocols are 
not. 

• A bogus Time Service could allow an expired credentials and its associated verifier 
sequence to be replayed. In order to do this the intruder needs to first build a bogus 
Time Service and then cause the recipient to reset his clock from this bogus Time 
Service. 

• Intruders cannot pose as an Authentication Service because they don't have the 
initiator's strong key. 

• Protocols which do not have reply verifiers in the results cannot prevent an 'intruder 
from posing as that kind of service. 

• There is no protection against intruders who have the computational power to "break" 
the DES encryption algorithm. The protocol does make an effort. to prevent an intru­
der from obtaining plain-textlcypher-text pairs. 

~~~ .. _. __ .. _ ...... __ ... -



3 

Remote procedures 

The Authentication Service implements the authentication operations as a Courier [81 
remote program. Courier is especially well suited for these operations since Courier 
handles the problems of reliable delivery across networks. 

Each procedure description includes a declaration of the procedure in Courier's standard 
notation, a description of the procedure's arguments and results, and occasionally an 
example of its use. 

The following definition gives the program and version numbers of Authentication and 
lists all other Courier-based protocols which are referenced from this program. 

Authentication: PROGRAM 14 VERSION 2 • 
BEGIN 

DEPENDS UPON 

END. 

Clearinghouse (2) VERSION 2. 
Time (15) VERSION 2; 

This indicates that Authentication is program number 1~. This document defines version 
2. Authentication references some types and constants that are defined in other protocols 
as shown in the above declaration. These protocols are documented in the Clearinghouse 
Protocol [71 and the Time Protocol [111. 

3.1 Encoded data 

There are two basic methods employed in the Authentication Protocol for protecting sensi­
tive data: the National Bureau of Standards' Data Encryption Standard, and a hashing 
algorithm. The National Bureau of Standards' Data Encryption Standard (DES) [1] is 
based on an invertible function which accepts as input parameters a 64-bit key and a 64-
bit block of plain text, and produces a 64-bit block of cipher text. The Authentication 
Protocol, in support of DES, defines two types: 

Key: TYPE. ARRAY 4 OF UNSPEOFIED; 

Block: TYPE. ARRAY 4 OF UNSPECIFIED; 

13 



3 Remote procedures 

A Key must have a particular form. The least significant bit of each octet'ofthe key acts as 
a parity bit (thus, the unconstrained data in a key consists of only 56 bits). Each bit is set 
so as to make the parity of the octet odd. 

The hashing algorithm is employed where there is either reduced computational power 
available or reduced security requirements. The type HashedPassword is defined in 
support of this algorithm: 

HashedPassword: TYPE == CARDINAL; 

Details of the algorithms employed in the Authentication Protocol to encode sensitive data 
and how these data types are used can be found in Section 5. 

3.2 Credentials 

There are two forms of credentials: strong and simple. Strong credentials contain data 
which has been encrypted using DES. This section describes the formats of these data 
structures when they are not encrypted. How these structures are encrypted and 
decrypted is addressed in Section 5. 

All credentials are defined as follows: 

Credentials: TYPE. RECORD [ 

type: CredentialsType, 
value: SEQUENCE OF UNSPECIFIED]; 

CredentialsType: TYPE = {simple{O). strong(1)}; 

To retain compatibility with the previous version of the Authentication Protocol the 
following variable is defined: 

simpleCredentials: CredentialsType = simple; 

3.2.1' Strong credentials 

Strong credentials are associated with a CredentialsType of strong. When the value 
component of Credentials is decrypted with the recipient's strong key, the result is an 
object of the following form in its standard representation: 

StrongCredentials: TYPE == RECORD [ 

conversationKey: Key, 
expirationTime: Time. Time, 
initiator: Clearinghouse. Name]; 

To properly encrypt strong credentials, the length of the record must be a multiple of 64 
bits. If a particular instance of StrongCredentials is not a multiple of 64 .bits, it is under­
stood that enough zero bits are appended to the instance to make it so. 

conversation Key is used by the initiator.; to encry'pt verifiers and by the recipient to 
decrypt them. expirationTime is the date and time after which the credentials will no 
longer be accepted. initiator is the name on which access control decisions will be based. 



Authentication Protocol Xerox System Integration Standard 3 

StrongCredentials is encrypted with the "Cipher Block Chaining with Checksum" mode of 
DES (see 5.2). The result is a series of Blocks. The value component of Credentials 
effectively encapsulates the Block. The sequence of IS-bit words that constitutes value is 
to be interpreted as a data object of type Block in its standard representation. 

3.2.2 Simple credentials-

Simple credentials are associated with a CredentialsType of simple. The value component 
of Credentials is unencrypted data of the following form: 

SimpleCredentials: TYPE = Clearinghouse.Name; 

The value component of Credentials effectively encapsulates SimpleCredentials. The 
sequence of I6-bit words that constitutes value is to be interpreted as a data object of type 
SimpleCredentials in its standard representation. 

3.3 Verifiers 

All types of verifiers are defined as: 

Verifier: TYPE = SEQUENCE 12 OF UNSPECIFIED; 

There are two forms of verifiers: strong and simple. There is no way to tell the type of a 
particular verifier in isolation. The type of a verifier is the same as the type of the 
credentials which it accompanies. 

3.3.1 Strong verifiers 

A Verifier, when associated with strong credentials, is data which has been encrypted with 
the "Electronic Code Book" mode of DES. When a strong verifier is decrypted with the 
conversation key from the accompanying credentials and xORed with the recipient's left­
justified, zero-filled processor 10, the result is an object of the following form: 

StrongVerifier: TYPE = RECORD [ 

timeStamp: Time. Time, 
ticks: LONG CARDINAL]; 

The timeStamp field is the time the verifier was created, derived from the clock of the 
initiator's system element. For a verifier to be acceptable, the timeStamp it contains must 
be close to the clock of the recipient's system element. This prevents an intruder from 
replaying an earlier conversation. The ticks field subdivides each second (the resolution of 
a Time. Time) to allow ~ultiple verifiers to be created per second. ticks increases mono­
tonically within a given second, but does not necessarily start at zero. 

When a strong verifier is specified in the protocol, the sequence of I6-bit words that 
constitutes a Verifier (that is, the encrypted StrongVerifier) is to be interpreted as a data 
object of type Block in its standard representation. 

15 



3 Remote procedures 

3.3.2 Simple verifiers 

A Verifier, when associated with simple credentials, is data which has been encoded with 
the hashing algorithm defined in the Authentication Protocol (see 5.1). A simple verifier 
has the following form: 

SimpleVerifier: TYPE = HashedPassword; 

This value is derived from the initiator's simple password. This value is computed by the 
initiator and checked by the recipient. Since simple verifiers do not change from call to 
call, simple credentials are susceptible to being replayed by an intruder who can 
eavesdrop on the network. 

When a simple verifier is specified, the 16-bit word that constitutes a Verifier is to be 
interpreted as a data object of type SimpleVerifier in its standard representation. 

3.4 Obtaining credentials 

16 

To obtain a set of strong credentials, the initiator calls the remote procedure: 

GetStrongCredentials: PROCEDURE [initiator, recipient: Clearinghouse. Name, 
nonce: LONG CARDINAL] 

RETURNS [credentialsPackage: SEQUENCE OF UNSPECIFIED] 

REPORTS [CaIlError] = 1; 

CredentialsPackage: TYPE = RECORD[ 

credentials: Credentials, 
nonce: LONG CARDINAL, 

recipient: Clearinghouse.Name, 
conversation Key: Key]; 

Arguments: initiator is the name ofthe initiator to be authenticated. recipient is the name 
of the recipient to whom the initiator wishes to prove his identity. nonce is a random 
number. Its inclusion protects against replays by a bogus Authentication service. 

It is occasionally necessary (for instance, in order to modify a strong key) to authenticate 
oneself to the Authentication Service. To do this the name of the Authentication Service 
must be known. Since any instance of the Authentication Service will suffice, the service 
is given a "well-known" name that will work with all instances. The well-known name of 
the Authentication Service is: 

Authentication Service: CHServers: CHServers 

See Appendix C for the well-known names of other services. 

Results: credentialsPackage, when decrypted using the initiator's strong key, is a record of 
the form CredentialsPackage. It contains: credentials encrypted with the recipient's strong 
key, the nonce value, the recipient's name, and the conversation key which is used to en­
crypt verifiers to go with these credentials. The client should verify that the nonce and 
recipient name are the same that were specified in the call. 

----~------~-~--- ---



Authentication Protocol Xerox System Integration Standard 3 

CheckSimpleCredentials requests the Authentication Service to verify that the initiator 
identified by the credentials has submitted the correct password. 

CheckSimpleCredentials: PROCEDURE [credentials: Credentials. verifier: Verifier] 
RETURNS [ok: BOOLEAN] 

REPORTS [Authentication Error. Call Error] = 2; 

Arguments: credentials and verifier must be the simple credentials and verifier of the 
client. 

Result: ok, if TRUE, indicates that the hashed password registered for the client is the same 
as that submitted as the verifier. 

3.5 Modifying keys 

In order to create credentials, the Authentication Service must know the keys of both of 
the parties involved. This section describes how the database of keys maintained by the 
Authentication Service may be added to, updated, and deleted from. 

3.5.1 Strong keys 

CreateStrongKey registers a strong key with the Authentication Service. Only a 
privileged user is allowed to create new strong keys. 

CreateStrongKey: PROCEDURE [credentials: Credentials. verifier: Verifier, 
name: Clearinghouse. Name. key: Block] 

REPORTS [Authentication Error. Call Error] = 3; 

Arguments: credentials and verifier must be the strong credentials and verifier of a 
privileged user. name specifies the owner of the key. It must be registered in the Clearing­
house so that it can be looked up by the Authentication Service. key is the strong key to be 
registered, encrypted using the ECB mode of DES and the conversation key contained in 
the credentials. 

ChangeStrongKey changes a user's strong key registered with an Authentication Service. 
Only the owner of a strong key may change it. The ability to change a strong key is 
determined by the way in which the internet is administered. Administrative rules may 
not allow strong keys to be changed by a remote procedure call in which case calling this 
procedure may cause an error to be reported. 

ChangeStrongKey: PROCEDURE [credentials: Credentials, verifier: Verifier, 
newKey: Block] 

REPORTS [AuthenticationError, CaliError] = 4; 

Arguments: credentials and verifier must be the strong credentials and verifier of the 
owner. newKey is the new strong key, encrypted using the ECB mode of DES, and the 
conversation key contained in the credentials. 

DeleteStrongKey deletes a user's strong key registered with an Authentication Service. 
Only the owner of a strong key or a privileged user may delete it. 

17 



3 Remote procedures 

DeleteStrongKey: PROCEDURE [credentials: Credentials, verifier: Verifier, 
name: Clearinghouse. Name] 

REPORTS [AuthenticationError, Call Error] = 5; 

Arguments: credentials and verifier must be the strong credentials and verifier of the 
owner or ofa privileged user. name specifies the owner of the key to be deleted. 

3.5.2 Simple keys 

CreateSimpleKey registers a simple key with the Authentication Service. Only a 
privileged user is allowed to create new simple keys. 

CreateSimpleKey: PROCEDURE [credentials: Credentials, verifier: Verifier, 
name: Clearinghouse. Name, key: HashedPassword] 

REPORTS [AuthenticationError, CallError] = 6; 

Arguments: credentials and verifier must be the strong credentials and verifier of a 
privileged user. name specifies the owner of the key. It must be registered in the 
Clearinghouse so that it can be looked up by the Authentication Service. key is the simple 
key to be registered, encoded using the hashing algorithm. 

ChangeSimpleKey changes a user's simple key registered with an Authentication Service. 
Only the owner of a simple key may change it. 

ChangeSimpleKey: PROCEDURE [credentials: Credentials, verifier: Verifier, 
newKey: HashedPassword] 

REPORTS [Authentication Error, Call Error] = 7; 

Arguments: credentials and verifier must be the strong credentials and verifier of the 
owner. newKey is the new simple key, encoded using the Authentication hashing 
algorithm. The ability to change a simple key is determined by the way in which the 
internet is administered. Administrative rules may not allow simple keys to be changed 
by a remote procedure call in which case calling this procedure may cause an error to be 
reported. 

DeleteSimpleKey deletes a user's simple key registered with an Authentication Service. 
Only the owner of a simple key or a privileged user may delete it. 

DeleteSimpleKey: PROCEDURE [credentials: Credentials, verifier: Verifier, 
name: Clearinghouse. Name] 

REPORTS [Authentication Error, CallError] = 8; 

Arguments: credentials and verifier must be the strong credentials and verifier of the 
owner or of a privileged tiser. name specifies the owner of the key to be deleted. 

3.6 Locating an Authentication server 

18 

There exists an Authentication operation that is not part of the Authentication Courier 
program. This operation, called BroadcastForServers, is used to locate an instance of the 
Authentication Service in the internet. It is invoked using the Packet Exchange Protocol 

-- --------- ----------

\ 
I 

\ 



Authentication Protocol Xerox System Integration Standard 3 

[9]. A broadcast is made on the designated network and each Authentication server on 
that network returns its network address. 

The packet used is a standard Packet Exchange packet. The destination and source socket 
number is 2110. The Packet Exchange Client Type has a value of2. The format of the body 
of the packet (the level 3 part) is shown in Figure 3.1. The word numbers are relative to 
the beginning of the level 3 part of the Packet Exchange packet. 

word 0 Lowest acceptable protocol version 

word 1 Highest acceptable protocol version 

word 2 0 

word 3 0 

word 4 
~ 

word 5 
Authentication Program Number = 14 -

word 6 Authentication Version Number = 2 

word 7 0 

I ..... r--------- 16 bits ---------.... , 

Figure 3.1 BroadcastForServers packet format 

The lowest and highest acceptable version numbers indicate how the results are to be 
encoded. The values in these fields correspond to versions of Courier. The results will be 
encoded according to the version of Courier contained in the highest acceptable protocol 
version. 

The result of the BroadcastForServers operation is contained in another Packet Exchange 
packet shown in Figure 3.2. This return packet is constructed so that the body of it is the 
same as Courier would return from a remote procedure call. (If the server cannot return 
results, because of an error or version mismatch, it will not respond to the broadcast.) The 
result is a Courier ReturnMessageBody which contains the network address of the 
responding Authentication server. This address is encoded the same as Courier would 
encode Clearinghouse.NetworkAddress (see the Clearinghouse Protocol [7]). 

19 



3 Remote procedures 

word 0 lowest acceptable protocol version 

word 1 Highest acceptable protocol version 

word 2 2 

word 3 

ReturnMessageBody 

last word I 
(S269) ~-----------------------------------------------~ 

1 ..... t----------16bits ---------... 1 

Figure 3.2 Response packet format 

20 



4 

Remote errors 

When a remote procedure completes successfully, it returns results as specified in the 
definition of the procedure. However, conditions can arise before or during execution of the 
procedure that make successful completion of the request impossible. For example, the 
client may have specified incorrect arguments in a remote procedure call, or some 
required resource may be unavailable. 

When such conditions occur, an error is reported to communicate to the client the nature 
of the problem. Each error encompasses an entire class of possible conditions and the 
specific problem is further described by the arguments of the error. For example, 
AuthenticationError indicates that the Authentication server could not complete the 
requested operation. The particular problem is specified by the argument to 
AuthenticationError, which is of type Problem. 

All remote errors are defined below. Each error definition includes a declaration of the 
error in Courier notation, and a description of its arguments. 

4.1 Authentication errors 

Authentication errors indicate that either the credentials or verifier was unacceptable. 
The exact reason for authentication failure is conveyed by the Problem parameter. 

AuthenticationError: ERROR [problem: Problem] = 2; 

Problem: TYPE = { 
credentialslnvalid(O), 
verifierlnvalid(1), 
verifierExpi red(2), 
verifierReused(3), 
credentialsExpi red( 4), 
i nappropriateCredentials( 5)}; 

credentialslnvalid indicates that the credentials were unacceptable. If the credentials 
were strong, this means the decryption failed. If the credentials were simple, it means that 
the name could not be found in the Clearinghouse. 

21 



4 Remote errors 

verifierlnvalid indicates that the verifier was unacceptable. If the verifier was strong, this 
means that the decryption failed; if simple, that the password (as looked up in the 
Clearinghouse) did not hash to the verifier. 

verifierExpired indicates that the strong verifier is riot recent enough. Verifiers more than 
a few minutes old are unacceptable. A bad or unsynchronized clock may cause good 
verifiers to appear to have expired. 

verifierReused indicates that the recipient has seen either the same strong verifier before 
or one generated more recently. To prevent replays, a verifier is invalid once it has been 
exposed on the internet. 

credentialsExpired indicates that the expiration date and time of the credentials has been 
exceeded. A bad or unsynchronized clock may cause good credentials to appear to have 
expired. 

inappropriateCredentials means that the credentials accompanying a remote procedure 
call were not of the proper strength to perform the desired operation; strong credentials 
were submitted for a simple credentials operation or vice-versa. For example, simple 
credentials are too weak for the CreateStrongKey operation. 

4.2 Calling errors 

22 

An operation may fail for the following reasons: a lack of resources, the service does not 
have the requested information, a communication failure, or a server crash. The rejection 
is reported as a CallError. 

CaliError: ERROR [problem: CaliProblem, whichArg: Which] = 1; 

Which: TYPE = {notApplicable{O). initiator(1), recipient(2), client(3)}; 

The argument problem describes the problem in greater detail. The argument whichArg 
indicates which argument caused the error. 

CaliProblem: TYPE = { 
tooBusy{O), 
accessRightslnsufficient(1 ), 
keysUnavailable(2), 
strongKeyDoesNotExist(3), 
simpleKeyDoesNotExist(4), 
strongKeyAlreadyRegistered(5), 
simpleKeyAlreadyRegistered(6), 
domainForNewKeyUnavailable(7), 
domainForNewKeyUnknown(8). 
badKey(9), 
badName(10), 
databaseFull(11 ), 
other(12)}; 

tooBusy means that the service is processing so many other client requests that it 
presently cannot handle the operation. The client should pause a short while and retry the 
operation, or try the operation on some other server. accessRightslnsufficient means that 

-----------------------



Authentication Protocol Xerox System Integration Standard 4 

the client did not have sufficient access rights to complete the operation. For example, this 
error could be reported if a non-privileged user attempted to create a key. This error is also 
reported when, as the result of internet administrative rules, no user is allowed to change 
his strong key. 

keysUnavailable indicates that the required Authentication server is down or not cur­
rently available via the internet. The keysUnavailable error may also occur when a 
ChangeStrongKey or ChangeSimpleKey operation is attempted, and the server in which 
the key is to be changed is down or currently unavailable. In both cases the name of the 
entity whose key is unavailable is indicated by whichArg. 

The errors strongKeyDoesNotExist and simpleKeyDoesNotExist indicate that the key 
necessary to create a set of credentials for the initiator (strong key for strong credentials, 
simple key for simple) is not registered with the Authentication Service. These errors may 
also be returned by the ChangeStrongKey and ChangeSimpleKey operations. In all of 
these cases the name of the entity whose key is not registered is indicated by whichArg. 

The errors strongKeyAlreadyRegistered and simpleKeyAlreadyRegistered may occur 
when a CreateStrongKey or CreateSimpleKey operation is attempted, and that key 
already exists. The errors domainForNewKeyUnavaiiable and domainForNewKey­
Unknown may occur when a CreateStrongKey or CreateSimpleKey operation is attempted 
and the server on which the new key would be stored is down, unavailable, or unknown. In 
all of these cases the name of the entity whose key is to be registered is indicated by 
whichArg. 

badKey is reported when the client attempts to add a key with bad parity bits to the 
database (via CreateStrongKey or ChangeStrongKey). badName implies a bad Clearing­
house name supplied to a create key operation. databaseFull indicates that the 
Authentication database has no more room to store data. 

The error other exists so that new servers and procedures can be developed in a staged 
fashion; this value should never be reported by a correctly functioning server conforming 
to this protocol. 

23 



4 Remote errors 

24 



5 

Algorithms 

Certain algorithms are employed in the Authentication Protocol to protect data trans­
ferred over the internet. These algorithms, which specify both how data is encoded and 
how it is decrypted, are described in this chapter. Also, the algorithms for computing a 
conversation key and a returned verifier are defined. 

5.1 Hashing algorithm 

The source for a hashed password will normally be a user-supplied sequence of characters 
called a password. Such a password may contain any character in the Xerox Character 
Encoding Standard [5] except those in the Xerox Rendering Code Standard [10]. A 
HashedPassword must be computed from the password in the following fashion: 

a) the following character substitution is made in the password: if the character is an 
upper-case ISOI ASCII character in the range "A" through "Z" in character set 0 of the 
Encoding Standard, it is replaced with the corresponding lower-case character; 
otherwise the character is unchanged; 

b) every character is mapped to a I6-bit code as defined by the Encoding standard; 

c) the resulting sequence of numbers is interpreted as a multiple-precision, unsigned, 
binary integer whose most significant bit is the left-most bit of the first character 
code, and whose least significant bit is the right-most bit of the last character code; 

d) the value for a HashedPassword is the remainder when this integer is divided by 
65,357. 

Example: 

If the password is "Temp," the corresponding value for a HashedPassword is: 

Hash["Temp"} = Hash["temp"} 
= (["t"}*248 + ["e"}*232 + ["m"J*216 + ["p"] ) mod 65,357 
= ( 116*248 + 101*232 + 109*216 + 112) mod 65,357 
= 18,335 

The reader should not anticipate that disclosure of a hashed password is a significantly 
less serious security concern than disclosure of the password itself. For any given value of 

25 



5 Algorithms 

HashedPassword, it is computationally easy to find a string which hashes to that value. 
The hashing function is intended to prevent complete disclosure of the unhashed password 
in cases where the user accidentally enters his strong password by mistake. 

5.2 DES encryption 

26 

The building block of the National Bureau of Standards' Data Encryption Standard (DES) 
[1] is an invertible function which accepts a 56-bit key and a 64-bit block of plain text and 
produces a 64-bit block of cipher text. 

The output of this function depends equally on every bit of the key and every bit of the 
input. Changing one bit of the key or of the input will, on the average, cause half of the 
bits in the output to change. This function, in its simplest form, is called the Electronic 
Code Book (ECB) mode of DES. It is used in the Authentication Protocol to encrypt 
timestamps for strong verifiers, and to encrypt strong keys in the CreateStrongKey and 
ChangeStrongKey operations. 

The basic Electronic Code Book mode of DES may be improved for pieces of plain text 
longer than 64 bits by feeding back the previous block's cipher text and xORing it with the 
plain text of the next block before encryption. This is a simple, reversible operation which 
makes duplicate plain text blocks produce different cipher text blocks. This mode of DES, 
called cipher block chaining (CBC) and described in the National Bureau of Standards' 
Data Encryption Standard [1], is shown in Figure 5.1. In the Authentication Protocol the 
initialization vector is always zero. The inverse of this function is easily derived. 

Initialization 
Vector 

I 

I 

PlainText 

CipherText 

0. = ECB form of DES Encryption 

Figure 5.1 Standard cipher block chaining 

I 

I 

The Authentication Protocol uses a variant of the standard cipher block chaining mode in 
which the XOR sum of plain text blocks 1 through n-1 is XORed with plain text block n 

--~~------------- . -.--~.------.---



Authentication Protocol Xerox System Integration Standard 5 

before encryption. This makes it possible to detect tampering with the cipher text. This 
mode of DES, called cipher block chaining with checksum (CBCC), is shown in Figure 5.2. 

Initialization 
Vector 

I 

0= ECB form of DES Encryption 

PlainText 

CipherText 

Figure 5.2 Cipher block chaining with checksum 

5.3 Algorithm for computing a strong key 

I 

I 

As mentioned in Chapter 2, a user's strong password is converted by his system element to 
a strong key. So that the user may use this same password in authenticated conversations 
initiated at various devices, it is convenient if all these devices use the same algorithm to 
manufacture the strong key. The algorithm is described below. 

A strong password may contain any character in the Xerox Character Encoding Standard 
[5] except those in the Xerox Rendering Code Standard [10]. A DES encryption Key is 
computed from the password in the following fashion: [Note: steps a) and b) describe 
exactly the same transformation as steps a) and b) in the hashing algorithm defined in 
5.1.1 

a) the following character substitution is made in the password: if the character is an 
upper-case ISO/ASCII character in the range "A" through "Z" in character set 0 of the 
Encoding Standard, it is replaced with the corresponding lower-case character; other­
wise the character is unchanged; 

27 



5 Algorithms 

b) every character is mapped to a 16-bit code as defined by the Encoding standard; 

c) the resulting sequence of numbers is assembled into a series of 64-bit blocks [bl, b2, ... , 
bn-l. bnl as shown in Figure 5.3. If the number of characters in the password is not a 

Character Character Character Character Character Character 
code 1 code 2 code 3 code 4 code m-l codem 

zeros 

________ Block 1 _____ Block n _____ ...a 

Figure 5.3 Decomposing a password into blocks 

mUltiple offour, block bn is filled with a sufficient number of zeros, placed to the right 
of the least-significant bit of the last character code, to bring the block length to 64 
bits; 

d) Let the function E[k, d] indicate encryption using the ECB mode of DES where k is the 
key and d is the data to be encrypted. Then the following algorithm is applied 
iteratively until i = n (I.e., until all the blocks ofthe password have been processed): 

ko = 0 
ki = E[ki-l, bil 

e) The final output of this process, kn, is parity adjusted by viewing it as a series of octets 
and setting the least-significant bit of each octet to the appropriate value to make each 
octet have odd parity. 

It is recommended that passwords contain at least 4 characters. 

Example: 

If the password is "Cat," the corresponding value for a Key is (expressed in octets): 

Key["Cat"] = Key["cat"] 
= SetOddParity[E[O, (["c"1*248 + ["a"]*232 + ["t"]*216 + 0)]] 
= SetOddParity[E[O, (99*248 + 97*232 + 116*216 + 0)]] 
= SetOddParity[[1428, 3368, 3328, 3148, 1738, 2248, 2318, 408]] 
= [1428,3378,3328,3158,1728,2248,2308,408] 

5.4 Algorithm for computing returned verifier 

28 

Some protocols require that a verifier be returned with the results of a remote operation. 
In order for the initiator to validate the results it is necessary that it know how the 
returned strong verifier is computed. Assume the decrypted value of the verifier sent to 
the recipient is as follows: timeStamp = t, and ticks = k. The value the recipient should 
send back is computed as follows: 

ifk ;;:: 232_1 then set timeStamp +-t+ 1, and ticks +-0 
ifk < 232_1 then set timeStamp +- t, and ticks +- k + 1 



Authentication Protocol Xerox System Integration Standard 5 

Then, 16 binary zeros are appended to the recipient's processor ID (after the least signifi­
cant bit), and this number is xORed with the verifier record to produce a value that will be 
encrypted. 

29 



5 Algorithms 

30 



A 

Appendix A 
References 

The following documents supplement this protocol specification. 

[1] National Bureau of Standards. The Data Encryption Standard. Federal Information 
Processing Standards Publication (FIPS PUB) 46; January 1977; National Technical 
Information Service, Springfield, V A. 
This reference defines the basic DES encryption algorithm. 

[2] National Bureau of Standards. DES Modes of Operation. Federal Information 
Processing Standards Publication (FIPS PUB) 81; 1980; National Technical 
Information Service, Springfield, VA. 
This reference discusses the various modes of using the DES encryption algorithm. 

[3] National Bureau of Standards. Guidelines for Implementing and Using the NBS Data 
Encryption Standard. Federal Information Processing Standards Publication (FIPS 
PUB) 74; 1981 April; National Technical Information Service, Springfield, VA. 
This reference provides guidelines for using the DES encryption algorithm. 

[4] Needham, R. A.; Schroeder, M. D. Using Encryption for Authenticating in Large 
Networks of Computers. Communications of the Association ofCornputing Machinery 
21,12; 1978 December; pp. 995-999. 
This paper is the original design specification for the Authentication Protocol. 

[5] Xerox Corporation. Character Encoding Standard. Xerox System Integration 
Standard. Stamford, Connecticut; 1983 May; XSIS 058305. 
This reference defines the character set used for computing hashed passwords and 
strong keys. 

[6] Xerox Corporation. Clearinghouse Entry Standard. Xerox System Integration 
Standard. Stamford, Connecticut. In preparation. 
This reference defines the structure of the property values for names. In particular, it 
defines the property which determines whether a name represents a privileged person. 

[7] Xerox Corporation. Clearinghouse Protocol. Xerox System Integration Standard. 
Stamford, Connecticut; 1983 August; XSIS 078308. 
This reference defines the structure of user names which are used for initiator, 
recipient, and key owner names. 

31 



A 

32 

References 

[8] Xerox Corporation. Courier: The Remote Procedure Call Protocol. Xerox System 
Integration Standard. Stamford, Connecticut; 1981 December;XSIS 038112. 
This reference defines the Courier language, in terms of which the· Authentication 
Protocol is defined. 

[91 Xerox Corporation. Internet Transport Protocols. Xerox System Integration Standard. 
Stamford, Connecticut; 1981 December; XSIS 028112. . 
This reference defines the Packet Exchange Protocol which is used to locate an 
Authentication server. 

[10] Xerox CorpOration. Rendering CodeStand~rd. Xerox System Integration Standard. 
Stamford, Connecticut. In preparation. . 
Along with [51, this reference defines the character set used fot passwords. 

[11] Xerox Corporation. Time Protocol. Xerox System Integration Standard. Stamford, 
Connecticut; 1982 October; XSIS 088210. 
This reference defines the Time Standard upon which the Authentication Protocol 
relies for the definition of the format of time quantities. 



B 

AppendixB 
Program declaration 

The complete declaration of the Authentication Protocol is given below. 

Authentication: PROGRAM 14 VERSION 2 = 
BEGIN 

DEPENDS UPON 

Clearinghouse (2) VERSION 2, 
Time (15) VERSION 2; 

-- TYPES SUPPORTING ENCODING--

Key: TYPE = ARRAY 4 OF UNSPECIFIED; --least significant bit of each octet is an odd parity bit--

Block: TYPE = ARRAY 4 OF UNSPECIFIED; -- cipher text or plain text block --

HashedPassword: TYPE = CARDINAL; 

-- TYPES DESCRIBlNG CREDENTIALS AND VERIFIERS --

CredentialsType: TYPE = {simple(O), strong (1)}; 

-- To retain compatibility with the previous version of the Authentication Protocol, the 
following variable is defined. --
simpleCredentials: CredentialsType = simple; 

Credentials: TYPE = RECORD [type: CredentialsType, value: SEQUENCE OF UNSPECIFIED]; 

CredentialsPackage: TYPE = RECORD[ 

credentials: Credentials, 
nonce: LONG CARDINAL, 

recipient: Clearinghouse.Name, 
conversationKey: Key]; 

--Instances of the following type must be a multiple of64 bits, padded with zeros -­
StrongCredentials: TYPE = RECORD [ 

conversationKey: Key, 
expirationTime: Time.Time, 
initiator: Clearinghouse. Name]; 

33 



B 

34 

Program declaration 

SimpleCredentials: TYPE = Clearinghouse.Name; 

Verifier: TYPE = SEQUENCE 12 OF UNSPECIFrED; 

StrongVerifier: TYPE = RECORD [timeStamp: Time. Time, ticks: LONG CARDINAL); 

SimpleVerifier: TYPE = HashedPassword; 

-- PROCEDURES --

-- Strong Authentication,--

GetStrongCredentials: PROCEDURE [initiator, recipient: Clearinghouse.Name, 
nonce: LONG CARDINAL] 

RETURNS [credentialsPackage: SEQUENCE OF UNSPECIFIED] 

REPORTS [Call Error] = 1; 

CreateStrongKey: P~OCEDURE [credentials: Credentials, verifier: Verifier, 
name: Clearinghouse. Name, key: Block) 

REPORTS [Authentication Error, CallError] = 3; 

ChangeStrongKey: PROCEDURE [credentials: Credentials, verifier: Verifier, 
newKey: Block] 

REPORTS [Authentication Error , Call Error) = 4; 

DeleteStrongKey: PROCEDURE [credentials: Credentials, verifier: Verifier, 
name: Clearinghouse.Name] 

REPORTS [Authentication Error, CallError] = 5; 

-- Simple Authentication--

CheckSimpleCredentials: PROCEDURE [credentials: Credentials, verifier: Verifier] 
RETURNS [ok: BOOLEAN] 

REPORTS [Authentication Error, Call Error] = 2; 

CreateSimpleKey: PROCEDURE [credentials: Credentials. verifier: Verifier, 
name: Clearinghouse. Name, key: HashedPassword] 

REPORTS [AuthenticationError, CallError] = 6; 

ChangeSimpleKey: PROCEDURE [credentials: Credentials, verifier: Verifier, 
newKey: HashedPassword] 

REPORTS [AuthenticationError, CallError] = 7; 

DeleteSimpleKey: PROCEDURE [credentials: Credentials, verifier: Verifier, 
name: Clearinghouse.Name] 

REPORTS [AuthenticationError. CallError) = 8; 

--ERRORS --

AuthenticationError: ERROR [problem: Problem) = 2; 
Problem: TYPE = { 

credentialslnvalid(O), -- decryption failed -­
verifierlnvalid(1), -- decryption failed --

~--- .~~-~--~ ~~ ~~~.----~~--~-~-~----------



Authentication Protocol Xerox System Integration Standard 

verifierExpired(2), -- the verifier was too old --
verifierReused(3), -- the verifier has been used before --
credentialsExpired(4), -- the credentials have expired -­
inappropriateCredentials(S)}; -- need other kind of credentials to talk to recipient--

CaliError: ERROR [problem: CaliProblem, whichArg: Which] = 1; 
Which: TYPE = {notApplicable(O), initiator(1), recipient(2), client(3)}; 
CaliProblem: TYPE = { 

tooBusy(O), -- server is too busy to service this request -­
accessRightslnsufficient(1), -- operation prevented by access controls -­
keysUnavailable(2), -- the server which holds the required key was inaccessible -­
strongKeyDoesNotExist(3), -- a strong key critical to this operation has not been 

registered --
simpleKeyDoesNotExist(4), -- a simple key critical to this operation has not been 

registered --
strongKeyAlreadyRegistered(S), -- cannot create a strong key for an entity which 

already has one --
simpleKeyAlreadyRegistered(6), -- cannot create a simple key for an entity which 

already has one --
domainForNewKeyUnavailable(7), -- cannot create a new key because the domain to 

hold it is inaccessible --
domainForNewKeyUnknown(8), -- cannot create a new key because the domain to 

hold it is unknown --
badKey(9), -- bad key passed to CreateStrongKey or ChangeStrongKey -­
badName(10), -- bad name passed to CreateStrongKey or ChangeStrongKey -­
databaseFull(11), -- no more data can be added to the Authentication database -­
other(12)} ; 

END. -- of Authentication 

B 

35 



B Program declaration 

36 



C 

AppendixC 
Well-known service names 

It is occasionally necessary to authenticate oneself to a distributed service, such as the 
Clearinghouse or Authentication Service, where the specific instance of the service is not 
important. To avoid having to give each instance of the distributed service a different 
name (necessary for authentication), the distributed services are given "well-known" 
names that can be used to reference any instance of that service. The following well­
known names are defined for the corresponding distributed services: 

Authentication: Authentication Service: CHServers:CHServers 
Clearinghouse: Clearinghouse Service: CHServers:CHServers 
Mail: Mail Service: CHServers:CHServers 

37 



c Well-known service names 

38 



D 

AppendixD 
Example 

To show how the Authentication Protocol may be employed, an extended example is given 
below. 

Suppose a client whose user's name is George:Xerox:Xerox, wishes to authenticate himself 
to a File Service whose name is Manila:Xerox:Xerox in order to be granted access to a 
particular file. First, the client would locate an Authentication server. This is done exactly 
the same as is described for locating a Clearinghouse in the Clearinghouse Protocol 
(Appendix E) [7J. Next, the client would call the Authentication Service to get some strong 
credentials. He supplies a random number (63749) as the nonce parameter. 

GetStrongCredentials[initiator: ["XeroxD "Xerox" "George"]. 
recipient: ["Xerox" "Xerox" "Manila"]. nonce: 63149 ] 

The Authentication Service responds with a set of credentials and a conversation key: 

RETURNS[ credentials:[type: strong. value: [ ... encrypted StrongCredentials, nonce, 
Manila:Xerox:Xerox, and conversation key ... ]]] 

The client can decrypt the credentials.value using George's strong key. Using the 
decrypted key, the client then encrypts a verifier. Suppose the current time is 479 and the 
client elects to set the ticks to 10. Then the record: 

strongVerifier: [timeStamp: 419. ticks: 10] 

would be xORed with the processor ID of Manila:Xerox:Xerox, padded with zeros, and 
encrypted using the decrypted conversation key. These credentials would then be passed 
on to the File Service (using the Filing Protocol): 

Logon[credentials: [ ... encrypted StrongCredentials ... J. 
verifier: [ ... encrypted [timeStamp: 479, ticks: 10J ... J] 

The File Service first checks to see that the credentials and verifier are well formed; that 
is, that they are a multiple of 64 bits in length. Then the File Service uses its strong key to 
decrypt the credentials which would produce a record containing the conversation key, the 
time the credentials expire, and the name of the initiator: 

39 



D 

40 

Example 

[conversation Key: ... key .... 
expirationTime: ... hours later than 479 .... 
initiator: ["Xerox" "Xerox" "George"] I 

The File Service checks that the credentials are well-formed: it is a multiple of 64 bits in 
length, the padding bits are zero, and the various fields are well-formed. Then it confirms 
that the current time does not exceed the expiration time, and that the conversation key is 
well-formed: the parity bits are correct. Then the verifier is decrypted using the conver­
sation key. Since this is the first call from George, the time and ticks in the verifier are 
recorded for the next interaction with the client. At this point the File Service is fairly 
certain that it is communicating with George:Xerox:Xerox. It can use the name to check its 
access list to see if George is allowed to access this service. 

The File Service computes the verifier to be returned; in this case it would be: 

returnedVerifier: [timeStamp: 479. ticks: 111 

It then XORS it with its own processor ID padded with zeros and encrypts this record with 
the conversation key and returns the results of the logon, namely: 

RETuRNs[session: [token: [41 B, 3BI. 
verifier: [ ... encrypted [timeStamp: 479, ticks: 11J ... 1] ] 

George now decrypts verifier using the conversation key and checks that ticks is one larger 
than was sent. George is now reasonably sure that he is communicating with the File 
Service Manila:Xerox:Xerox. 

The next procedure call that George makes on the File Service, the File Service will check 
to make sure that the new verifier has a time or ticks larger than the previous one. 



Xerox Corporation 
Stamford. Connecticut 06904 

XEROX®is a trademark of 
XEROX CORPORATION 

Printed in U.S.A. 610P72586 


