
XEROX Services 8.0 Programmer's Guide

Filing
Programmer's Manual

November 1984

PRELIMINARY

Xerox Corporation
Office Systems Division
3450 Hillview Avenue
Palo Alto, California 94304

..

ii

Table of contents

1 Introduction 1-1

1.1 Filing and the services architecture 1-1
1.2 U sing Filing 1-2
1.3 Organization ofthe Filing Programmer's Manual 1-2

2 Overview 2-1

2.1 Clients, the file system, and file service 2-1
2.2 Users, authentication, and sessions 2-1
2.3 Volumes and services 2-2
2.4 Files, content, and attributes 2-3
2.5 Directories. 2-4
2.6 Handles and controls 2-4
2.7 Creating, deleting, and accessing files 2-5
2.8 Enumerating and locating files in directories 2-5
2.9 Bulk data transfer . 2-5
2.10 Serializing and deserializing files 2-6

3 File/session operations. 3-1

3.1 Sessions 3-1
3.1.1 Session handles 3-1
3.1.2 Establishing a session 3-2
3.1.3 Logoff . 3-3
3.1.4 Probe 3-3
3.1.5 The default session. 3-4
3.1.6 The default service. 3-4

3.2 Naming, opening, and closing files . 3-5
3.2.1 Naming 3-5
3.2.2 Opening 3-6
3.2.3 Simpler forms of Open . 3-8
3.2.4 Close 3-8

iii

Table of contents

3 File/session operations (CONTINUED)

3.3 Handles and controls 3-9
3.3.1 Locks 3-9
3.3.2 Timeouts 3-10
3.3.3 Access. 3-11
3.3.4 Retrieving and changing controls 3-11

3.4 Creating and deleting files. 3-13
3.4.1 Create. 3-13
3.4.2 Deleting files 3-13

3.5 Finding and listing files within directories . 3-14
3.5.1 Scopes. 3-14
3.5.2 Locating files 3-18
3.5.3 Listing files 3-18

3.6 Copying files 3-19
3.7 Moving files 3-20
3.8 Bulk data transfer operations 3-21

3.8.1 Single file operations 3-22
3.8.2 Subtree operations, serialized files. 3-24

3.9 Macro operations 3-26
3.9.1 Child operations 3-26
3.9.2 Pathname operations 3-27

3.10 Errors 3-29
3.10.1 Access errors 3-30
3.10.2 Argument errors 3-31
3.10.3 Authentication errors 3-32
3.10.4 Clearinghouse errors 3-33
3.10.5 Connection errors 3-34
3.10.6 Handle errors 3-35
3.10.7 Insertion errors 3-36
3.10.8 Service errors 3-37
3.10.9 Range errors 3-37
3.10.10 Session errors 3-38
3.10.11 Space errors 3-38
3.10.12 Transfer errors. 3-38
3.10.13 Undefined errors 3-39

4 Segment/content operations 4-1

4.1 Finding and listing segments of a file 4-1
4.2 Adding, deleting, and moving segments 4-2
4.3 Accessing and modifying segment sizes 4-3
4.4 Mapping 4-4
4.5 Errors. 4-6

iv

Filing Programmer's Manual

5 Positionable stream operations 5-1

5.1 Creating the file stream 5-1
5.2 Getting and setting the length of the stream 5-2
5.3 Miscellaneous operations 5-3

6 Attributes 6-1

6.1 Attribute model 6-1
6.2 Classes of attributes 6-1

6.2.1 Interpreted vs. uninterpreted 6-1
6.2.2 Environment vs. data 6-2
6.2.3 Primary vs. derived 6-2

6.3 Attribute descriptions . 6-3
6.3.1 Identityattributes . 6-3
6.3.2 File attributes . 6-5
6.3.3 Activity attributes . 6-8
6.3.4 Size attributes . 6-10
6.3.5 Access attributes 6-10
6.3.6 Directory attributes 6-12
6.3.7 Extended attributes 6-15

6.4 Assigned types. 6-15
6.4.1 Type ranges 6-16
6.4.2 Defined types 6-16

6.5 Retrieving attribute values 6-18
6.6 Modifying attribute values. 6-20

6.6.1 ChangeAttributes 6-20
6.6.2 UnifyAccessLists 6-21

6.7 Manipulating attribute values . 6-21
6.7.1 Copying/freeing 6-23
6.7.2 Encoding/decoding. 6-24

6.8 Summary of attribute b~ha viors 6-25

7 Pathname parsing operations 7-1

7.1 Path name separators and other special characters. 7-1
7.1.1 Service name separators 7-1
7.1.2 Pathname component separators 7-1
7.1.3 Characters for version number constants 7-2
7.1.4 Wildcard characters 7-2
7.1.5 The escape character 7-3

7.2 The default domain and organization 7-3
7.3 Parsing qualified pathnames 7-3
7.4 Appending VPNs to Strings. 7-5
7.5 Allocation and deallocation of VPNs 7-6

7.5.1 Copying VPNs 7-6
7.5.2 Freeing VPNs 7-6

7.6 Errors. 7-7

v

Table of contents

8 System configuration and administration 8-1

8.1 Global file system variables 8-1
8.1.1 Protocol versions 8-1
8.1.2 Membership status 8-2
8.1.3 Miscellaneous operations 8-3
8.1.4 Errors. 8-4

8.2 Volumes 8-4
8.2.1 Opening and closing volumes 8-5
8.2.2 The system volume. 8-6
8.2.3 Initializing volumes 8-6
8.2.4 Volume attributes. 8-7
8.2.5 Volume name 8-7
8.2.6 Volume scavenging 8-9
8.2.7 Errors. 8-15

Tables

6.1 Add. Delete. SetSizelnBytes. SetSizelnPages 6-26
6.2 ChangeA ttributes 6-27
6.3 Copy. 6-28
6.4 Copyln 6-29
6.5 CopyOut, MakeWritable, Move. 6-30
6.6 Create 6-31
6.7 Create (NSFileStream) 6-32
6.8 Delete 6,-33
6.9 Deserialize 6-34
6.10 Map 6-35
6.11 Move. 6-36
6.12 Open. 6-37
6.13 Replace 6-38
6.14 Retrieve 6-39
6.15 Serialize 6-40
6.16 SetLength 6-41
6.17 Store . 6-42
6.18 UnifyAccessLists 6-43

VI

1

Introduction

The Filing Programmer's Manual [12] is a reference for programmers who are familiar
with the Mesa programming language. It defines and describes the interfaces and
structure of Filing, a software package that allows programmer access to assorted local
and remote network services in the Xerox 8000 Network Systems environment.

This manual is primarily intended for the designers and implementors of client programs
of Filing. It provides sufficient information to allow programmers to understand the
available Filing facilities, and to write procedure calls in the Mesa language to invoke the
facilities. In particular, for each Filing facility, this manual lists the procedure names,
parameters, results, data type of each argument, and possible signals (errors, etc.) which
can be generated. This information is captured in the Mesa DEFINITIONS modules which are
part of each release.

Differences between the descriptions provided and the. released versions of Filing are
noted in the documentation which accompanies each release. This document describes the
version of Filing released in Services 8.0.

1.1 Filing and the services architecture

A service is an entity (software or hardware) that accepts and responds to submitted
requests for some type of service. Ordinarily, it accepts these requests from the
communications network; the requests are encoded according to protocols at various
levels. A service need not be implemented in Mesa on a Mesa processor, as long as it can
accept and respond to appropriately-encoded requests. Likewise, the client making the
requests need not be a Mesa program as long as the requests conform to the appropriate
protocols.

Because the interaction between clients and services at the network level is somewhat
involved, software packages are supported that allow a Mesa client to interact with a
service using ordinary Mesa procedure calls. Although such a software package has
traditionally been called a service client, it will be referred to here as an agent to avoid
confusion with the package's client. The agent takes care of the details of encoding
requests and decoding replies in a piece of software known as the stub. In addition, the
agent may perform some local processing that is related to, but separate from, the
interaction with the remote service. This local processing may be extensive or minimal.
For example, for filing applications, the local processing allows interaction with files

1-1

1 Introduction

stored on the local disk, and transfer of information between the local disk and remote
services.

Figure l.1 shows a network with a client system and a server system attached. The client
system contains several agents, one for each service that the client needs to talk to, and
some common facilities associated with more than one agent. Conceptually, the collection
of agents together with these common facilities make up the Filing release. (Note:
Currently .• only the agent for filing applications is part of the Filing release.)

ff, filing agent

I / printing agent

/ I common facilities

..... --/...,..."""!/'-+-..
/ I CLIENT SYSTEM

.......
........ - - "---. Filing

SERVER SYSTEM

Figure l.1 Client and server

1.2 Using Filing

In order to make use of the facilities described in this document, the programmer's
configuration must include one or more of the software packages released in Filing-the
specific packages required depend on the interfaces used. The documentation accom­
panying each release lists the interfaces exported by each package, the interfaces required
by each package, any special considerations involved in using the package, and where the
package is located.

1.3 Organization of the Filing Programmer's Manual

1-2

The rest of this manual describes the standard interfaces to Filing in terms of the Mesa
data types and procedures used by client programs. In the implementation, these types
and procedures are embodied in one or more Mesa interfaces (DEFINITIONS modules) made
available to programmers of client software. The manual describes mechanisms that
manipulate files on local disk volumes, and that communicate with file systems on remote
system elements (such as file servers). Facilities are provided to initialize and maintain
volumes, to create, delete, and manipulate files and directories, and to access the
attributes and contents of files.

2

Overview

This section describes the facilities of NSFiling, the file system component of the 8000
series product line. It is a manual and a reference guide for use by programmers and
clients who wish to interact with the product file system.

File system software structures data on the disks of the 8000 series product line. It
supports multiple clients and mediates conflicting requests automatically. The file system
provides facilities for the creation, deletion, and maintenance of filing volumes and files
(local and remote). Each permanent file on a volume resides in a tree-structured hierarchy
maintained by the file system.

2.1 Clients, the file system, and file service

The file system is a software entity that accepts and responds to locally-submitted filing
requests. A file service is a remote file system that handles filing requests. A client is an
entity that submits requests to the file system (or service). A client mayor may not be
operating on behalf of a human being. All interaction between a client and the file system
is initiated by the client. The file system never spontaneously interacts with a client.

Requests submitted by the filing client are distinguished as local or remote. A request is
remote if one of the operands (a file) is not local to the hardware on which the file system
executes. Fulfilling a remote filing request requires interaction with a file service. In most
cases, this interaction is accomplished with no additional effort by the client. The file
system initiates the interaction with the remote file service on behalf of the client and
reports results in a manner similar to a local request. Because of this similarity, the
descriptions given in this manual apply equally to both local requests and remote
requests.

2.2 Users, authentication, and sessions

A client always interacts with the file system on behalf of a user. The user may be a
human being, or some other entity such as a file system or another service. In any event,
the user has a user name that distinguishes him from other users.

Before making use of file system facilities, a client must log on. To do this, the client
presents its identity to the file system. The client presents the user name to obtain this
identity from the Authentication Service. The system responds by establishing a session

2-1

2 Overview

and returning a session handle which is used to identify the client (and the state of the
interaction) in future requests. The Authentication Protocol [2] describes the format and
the nature of the interaction with the Authentication Service.

The client may choose to log on directly to a particular file service, and use the session to
interact solely with that service. This type of session is called a directed session. For
convenience, the file system also allows the client to log on without specifying a particular
file service with which he wishes to interact, and to defer specification of a service to the
time when he submits a filing request for interaction with that service. This kind of
session is called a distributed session, and may be used to interact with a variety of file
services without requiring the client to log on to each one explicitly. The file system logs
on, on behalf of the client, to each service with which interaction is desired, using the
identity supplied at the initial Logon.

Once established, a session encapsulates the state of the client with respect to its
interaction with the file system. For example, the session keeps track of files that are
open, locks that are held, and the identity of the user on whose behalf the client is
operating. The session handle is included in all subsequent requests in order to identify
the client and its state. When interaction is complete, the client logs off This terminates
the session, freeing any allocated resources and invalidating the session handle. The
client must log on again before any further interaction may occur.

For the convenience of the client, a session may be designated as the default session. The
default session is a session distinguished by the client for use in operations requiring a
session where none is specified in the request. In one mode of use, the client may log on,
distinguish the session as the default session, and avoid the use of session handles until it
is necessary to log off.

Sessions may vary greatly in duration. In some patterns of use a session is established to
perform a single operation and then terminated. In others, a session may last a very long
time even though it is largely inactive. The local file system never terminates a session; a
remote file service reserves the right to terminate a session any time a procedure call is
not in progress. This might occur if a session remains inactive for a long period, or if the
system element supporting the file service has to be shut down.

Only clients who interact directly with a remote file service by using a directed session
need to be concerned with the possible termination of the session. A client who logs on
without directing the session to a particular file service is freed from this concern.

There may be several sessions simultaneously in existence for the same user regardless of
whether they were established by the same client.

2.3 V olumes and services

2-2

In the file system sense, a volume is a logical group of disk pages which contains a wholly
self-contained tree of files and the internal data structures needed to describe it. Such a
volume is not necessarily related to a physical volume, such as a disk pack; a physical
volume may contain several file system volumes, or a file system volume may span several
physical volumes.

A single file system may manage a number of volumes on a given system element. To
facilitate user identification of the volume containing a file of interest, the volume is given

Filing Programmer's Manual 2

a name. This name conforms to the 'specifications of Clearinghouse names and is often
registered in the Clearinghouse so that network users may identify the volume. In order to
make transparent the concept of multiple filing volumes located at a single system
element, each volume is referred to by clients as an individual file service. A client
identifies the service of interest by specifying its name and, if known, its system element
address. Usually. specification of the name of the service is sufficient, since the file system
will perform any interaction with the Clearinghouse which is necessary to obtain the
system el~ment address of the service.

A volume must be opened to become available as a service and closed before it may be
dismounted. The NSVolumeControl interface contains operations to open, close and
initialize local volumes (see §8.2). More than one volume may be open at a time, thus
making multiple services available at the same system element. Operations that deal
with several files may operate between services on the same system element, just as they
may operate between services on different system elements.

One service (local or remote) may be distinguished as the default service; this service is
assumed in operations in which no service i~ specified or implied. For example, if a parent
directory is specified in NSFile.Create, the service on which the directory resides is implied;
however, if no such directory is specified and no service is specified in the attribute list,
the default &ervice is assumed. The default service may be changed at any time via
NSFile.SetOefaultService (see §3.1.6).

2.4 Files, content, and attributes

The file system stores and operates on files. A file is a body of data that has been grouped
and provided to the file system for the purpose of short- or long-term storage. Every file is
temporary or permanent. A permanent file resides in a directory and exists until it is
explicitly deleted. A temporary file does not reside in a directory; it exists only until it is
closed by all sessions that have opened it.

A file consists of two types of information, content and attributes. The content of a file is
the data actually contained within the segments of the file. Usually, the content is the
file's reason for existence. The content of a file is obtained or modified only by explicit
action.

The content of a file is organized into a set of segments. A segment is an independently­
addressed, growable region of a file. A file may potentially have many segments. Every
file has at least one segment. This segment is distinguished by the file system as the
default segment. The client manages segments and their content with the use of the
NSSegment interface (see section 4).

The content of a file may also be accessed and modified using a positionable stream
mechanism provided by the NSFileStream interface (see section 5). [In Services 8.0, only
the content oflocal files may be accessed using NSSegment and NSFileStream. The content
of remote files may be accessed only in bulk, using the bulk data transfer operations (see
§3.8).]

Attributes are data items that identify the file, describe its content, or are in some other
way associated with the file. Attributes vary widely in purpose, structure, and behavior.
Some attributes have a particular meaning to the file system; specifying such an attribute
results in a defined behavior in the file system. These attributes are said to be interpreted.

2-3

2 Overview

All other attributes are' uninterpreted. Such attributes, if specified, are associated with the
file, and are returned unchanged when requested.

Every attribute is identified by its attribute type. The interpretation and behavior of all
interpreted attributes is defined by the file system. A client may also define attributes
that are useful in a particular application. All such client-defined attributes are
uninterpreted.

A number of procedures accept arbitrary attributes. However, not all attributes are
allowed in all contexts. Information on where an attribute is allowed, the behavior when it
is specified, and the default behavior when it is unspecified, is given in §6.8.

Attributes may be obtained or modified by explicit action. In addition, attributes are
obtained when a directory is listed and interpreted attributes are implicitly modified by
many procedures. Attributes are described in detail in Attributes (see section 6).

2.5 Directories

Every file is either a directory or a non-directory. A directory is a special type of file which
can reference other files. A directory also has all of the characteristics ofa non-directory in

. that it can have content and attributes. However, a directory cannot be temporary.

Within a filing volume, files exist in a hierarchical structure. Every permanent file
resides at some level in this hierarchy: The files directly referenced by a directory are its
children. The descendants of a directory include its children and the children of its
descendants. The directory which directly references a file is that file's parent. The
ancestors of a file include its parent and the parents of its ancestors. Each volume has a
single root file. This file is unique in that it has no parent and is an ancestor of all other
permanent files on the volume.

2.6 Handles and controls

2-4

To manipulate a file, a client must open that file. The file is then said to be open within the
session, and remains open until the session ends or the file is explicitly closed. Opening a
file marks it as "in use" (so that other clients cannot delete it, for example), and indicates
that the file is ~o be used in some way in the near future. Closing a file clears this "in use"
mark and indicates that access to the file is no longer needed.

When a file is created or when an existing file is opened, the file system returns a handle.
The structure of a handle is private to the implementation. This handle is presented by the
client in subsequent operations to identify the file to the file system, and remains valid
either until the session ends or the file is closed using the handle. A handle is relative to a
session and so cannot be used in conjunction with any session other than the one used to
obtain it.

A client may wish to explicitly specify certain characteristics of his intended use of a file
handle. These characteristics are called controls. For example, a client may obtain a share
lock to stipulate that no other clients are allowed to modify the file while it is in use. Or, a
client may specify that he be notified immediately if the file is in use in a way that
conflicts with his own use, rather than waiting for access to the file. Controls persist only
as long as a handle exists; they are lost when the handle is used to close the file.

Filing Programmer's Manual 2

If a file is opened several times, several handles result. Each handle is distinct and the file
remains open within the session until the session ends or all handles have been presented
in requests to close the· file. Controls applied to a file are associated with a particular
handle. If several handles for the same file exist, a change to the controls of one handle
does not affect the others. Also, locks obtained on multiple handles to a file within the
same session do not conflict with one another. However, the effective lock for a file in a
given session is the most restrictive one obtained for that file within the session.

2.7 Creating, deleting, and accessing files

.A number of procedures are provided for creating new files, deleting files that are no
longer needed, and modifying files in various ways.

A file can be created without storing its content. A file can also be created and filled with
data transferred to the file system by the client. Finally, a file can be created that is a copy
of an existing file.

An existing file may be deleted. The attributes of a file may be accessed or modified, and
the content of a file may be accessed or replaced. In addition, a file may be moved to
another directory.

Since directories are also files, all of these procedures may be applied to directories as well
as non-directories. When directories are copied, moved, or deleted, all descendants are
copied, moved, or deleted as well.

2.8 Enumerating and locating files in directories

Several file system procedures enumerate files in a directory, and perform some action
when files are encountered that satisfy client-specified criteria. The procedures differ in
the action taken. If the client lists files in a directory, the attributes of each file that
satisfies the criteria are furnished to the client. Ifthe client attempts to find a file, the first
file that satisfies the criteria is opened and a handle is returned.

The arguments that describe how enumeration is to proceed and the criteria to be satisfied
are scopes. Scopes include the direction of enumeration (first-to-Iast or last-to-first), a
condition on the attributes of the files, the maximum number of files that. may satisfy the
condition, the depth or number of levels of the file system hierarchy to be searched, and
the desired order of enumeration.

2.9 Bulk data transfer

The file system supports stream-based access in bulk to the content of files. Usually, these
. facilities are used to transfer files between system elements, but they may be used in any

situation in which sequential access to the content of a file is desired. Each of the stream­
based filing operations relies on the bulk data transfer mechanism supported by
NSDataStream (see Common Facilities Programmer's Manual, section 3). Random access
to local files is provided by a separate positionable stream mechanism, NSFileStream (see
section 5).

2-5

2 Overview

2.10 Serializing and deserializing files

2-6

A subtree of files, consisting of a file and all its descendants, can be a useful entity with
which to work; file system operations are designed to make it easy to operate on such
subtrees. However, there are times when it is useful to encapsulate all of the information
within such a subtree so that the information can be stored or manipulated outside the file
system.

A serialized file is a series of eight-bit bytes that encapsulates a file's content, its
attributes and its descendants (including their content and attributes), The file system
provides a procedure that serializes a file, producing such a series of bytes, and another
procedure that deserializes the series of bytes, reconstructing the file's content, attributes,
and descendants.

3

File/session operations

NSFile: DEFINITIONS = ... ;

NSFile contains operations that manipulate files on local file services and that
communicate with remote file services. Facilities are provided to create, delete and
manipulate files and directories, and to access the attributes and content of files.

3.1 Sessions

A session encapsulates the state of interaction between a client and the file system on a
particular system element. A session begins when a client logs on to make use of Filing,
and is completed when the client logs off A client may establish more than one session at
any given time.

Two types of sessions are supported, directed and distributed sessions. A session is directed
if the client specifies an explicit file service at Logon (thereby directing the session to that
file service), otherwise it is distributed. Directed sessions are mainly used to initiate file
system operations directly on a remote file service, perhaps even without the presence of a
local file system. A directed session may also be used to access a local file service.
Distributed sessions are used to initiate operations on any number of file services, both
local and remote, with the same session handle.

When the client establishes a distributed session and initiates an operation on a
particular file service, the file system automatically establishes a directed session to that
file service (if one is not already active) on behalf of the client. This session is called an
auxiliary session, and is transparent to the client. Creation of an auxiliary session is
required because a session applies only to the file service for which it was created. To
accomplish the directed Logon, the file system must possess sufficient information about
the client's identity; if not enough information is available, the operation on the specified
file service is not allowed.

3.1.1 Session handles

A session handle is used to identify and refer to the state of interaction between a client
and the file system. A session handle is included as a parameter in almost all other calls to
file system procedures. The value of a session handle remains the same throughout the life
of the session. At any given instant in time, a session handle may be involved in at most
one filing operation, so that consecutive requests to the file system using the same session

3-1

3

3-2

File/session operations

handle are always executed consecutively and not concurrently. The exceptions to this
rule are the list and bulk data transfer operations, whose call-back procedures are
permitted to call other Filing operations with the same session handle.

NSFile.Session: TYPE [2];

The constant null Session is provided for defaulting of the session argument in those
operations requiring a session. When sp.ecified by the client, this constant implies use of
the default session (see below). .

NSFile.nuIlSession: NSFile.Session • [LONG[NIL]];

3.1.2 Establishing a session

NSFile.Logon and NSFile.LogonDirect are used to initiate a session. The client supplies the
file system with his identity which has been obtained from the Authentication Service.
The file system creates a session and returns a handle identifying the new session.

Note: During LogonDirect, the file system validates the supplied identity with the
authentication service. This validation is not done immediately when using Logon, but is
done the first time the file system establishes an auxiliary session directed to a particular
file service.

LogonDirect is used to initiate a session with a particular file service.

Identity: TYPE. Auth.ldentityHandle;

NSFile.LogonDirect: PROCEDURE [identity: Identity, service: Service]
RETURNS [Session];

Arguments:

Results:

Errors:

identity provides authentication information about the client who
wishes to establish a session; service identifies the file service with
which a session is to be established.

The session handle for the new session is returned.

NSFile.Error is raised with the following error types: authentication,
clearingHouse and service; Courier. Error may also be raised.

The service specified during LogonDirect identifies the particular file service to which
filing requests are to be directed. If the system element address of the service is not
supplied by the client, the file system uses the supplied name of the service to obtain the
system element address from the clearinghouse.

NSFile.Service: TYPE • LONG POINTER TO ServiceRecord;

NSFile.ServiceRecord: TYPE = RECORD [
name: NSName.NameRecord,
systemElement: SystemElement ~ nuIlSystemElement];

NSFile.SystemElement: TYPE = System.NetworkAddress;

Filing Programmer's Manual 3

NSFile.nuIiSystemElement: NSFile.SystemElement = System.nuIiNetworkAddress;

NSFile.localSystemElement: READONL Y NSFile.SystemElement;

NSFile.nuliSystemElement is used in a ServiceRecord when the client wants the file system
to determine the network address of the service. NSFile.localSystemElement is the network
address for the system element on which the local file system executes.

Logon is used to 'initiate a session which may be used to access files on a variety of file
services.

NSFile.Logon: PROCEDURE [identity: Identity] RETURNS [Session];

Arguments:

Results:

Errors:

3.1.3 Logoff

identity provides authentication information about the client who
wishes to establish a session.

The session handle for the new session is returned.

NSFile.Error is raised with the following error types: authentication and
service; Courier.Error may also be raised.

NSFile.Logoff is used to end a session. The file system verifies that the request is valid,
closes all file handles still open in the session, destroys the session, releases any allocated
resources, and invalidates the session handle.

NSFile.Logoff: PROCEDURE [session: Session ~ nuIiSession);

Arguments:

Results:

Errors:

3.1.4 Probe

session refers to the session that is to be ended; if no session is
specified, the default session is assumed.

The session ends; session is no longer a valid session handle.

NSFile.Error is raised with the following error types: authentication,
service, and session; Courier.Error may also be raised.

NSFile.Probe registers interest in a session directed at a remote file service. A client who
wishes a session to remain in existence through some period of inactivity may call Probe
to prevent Filing from terminating the session due to inactivity. This operation has no
effect on distributed sessions or sessions directed at a local file service.

NSFile.Probe: PROCEDURE [session: NSFile.Session) RETURNS [probeWithin: CARDINAL];

Arguments:

Results:

session refers to the session that is to be probed.

probeWithin is expressed in seconds. Under normal conditions, the
session will not be terminated unless it remains inactive more than

3-3

3

3-4

File/session operations

Errors:

3.1.5 The default session

this number of seconds. If session is a distributed session, the value
LAST[CARDINAL) is returned to indicate the session will not time out.

NSFile.Error is raised with the following error types: authentication and
session; Courier. Error may also be raised.

For the convenience of local clients, the file system maintains a default session. The
default session is any session distinguished by the client via NSFile.SetOefaultSession. In
calls to file system operations requiring a session handle, if no session is specified, the
default session is used; if no session has been distinguished as the default session.
NSFile.Error[[session[sessionlnvalidJ]] is reported.

NSFile.SetOefaultSession: PROCEDURE [session: NSFile.Session);

Arguments:

Results:

Errors:

session refers to the session that is to be distinguished as the default
session.

The session becomes the default session.

None.

The operation GetOefaultSession returns the session handle for the current default
session; if no session has been distinguished as the default, NSFile.nuliSession is returned.

NSFile.GetOefaultSession: PROCEDURE RETURNS [NSFile.Session);

Arguments: None.

Results: The returned session identifies the default session.

Errors: None.

3.1.6 The default service

Since Logon does not establish a session with a particular service, the service to be
accessed must be specified in each subsequent operation with that session. The client may
also distinguish one service as the default service, to be used if a service is not explicitly
specified in a call to a Filing operation. The default service is global to a system element
and is not session-specific.

The current value of the default service is given by NSFile.defaultService.

NSFile.defaultService: NSFile.Service;

NSFile.SetOefaultService sets the default service. It overwrites any previous value of the
default service.

NSFile.SetOefaultService: PROCEDURE [service: Service];

Filing Programmer's Manual 3

Arguments: service specifies the default service to be used in the absence of an
explicit service specification.

Results: NSFile.defaultService is set to service. Subsequent calls to filing
operations which lack an explicit service specification will be directed
to this service (for any distributed session).

Errors: None.

The service passed to SetDefaultService should always be completely resolved, i.e., it
should have both the service name and system element address filled in. If the system
element address is left nullSystemElement, then the file system will assume the service is
local and will substitute local System Element.

3.2 Naming, opening, and closing files

In order to operate on a particular file, the client must specify the file's location and open
it. This establishes the client's intent to make use of the file in some way and guarantees
the file's existence until the client closes the file, relinquishing access to it. A variety of
means are supported to specify the location and identity of a file.

3.2.1 Naming

A file is most commonly located or named by specifying a reference to its location. A
Reference to a file includes the -name and network location of the file service containing it
(service), and a designation of the file within the specified (or implied) service (fileID).

NSFile.Reference: TYPE = RECORD[
filelD: 10, service: Service];

NSFile.Service: TYPE = LONG POINTER TO ServiceRecord;
NSFile.ServiceRecord: TYPE = RECORD [

name: NSName.NameRecord,
systemElement: System Element ~ nuIlSystemElement];

NSFile.nuIiService: Service = LONG [NIL];

NSFile.nuIlReference: Reference = [nuIIlD, nuIlService];

Supplying the null Service within a reference implies the defaultService. A Reference may
be used to name a file only when using a distributed session since, for a directed session,
the service is implicit. If filelD is null, the root file of the specified (or implied) service is
implied. Note that file identifiers are relative to a particular service and are not
guaranteed to be unique across services.

The file system will look up a service name in the Clearinghouse if its system element
address is not specified. To minimize repetitive lookups, it maintains a cache of service
records in which the system element is resolved. In order to allow clients the ability to
compare services (and thus references) for equality, the file system also caches pointers to
the cached service records. Thus a client who obtains all of its service pointers from the file
system's cache need not compare the individual fields of two service records to determine if
they are equal, but can compare the service pointers directly for equality. To receive a

3-5

3

3-6

File/session operations

pointer to a service from the file system's cache, the client uses the operation
NSFile.MakeReference. The service field of the returned reference refers to the appropriate
cached value, and can be compared for equality against any other service pointer which
has been obtained from the file system. The corresponding service record is the property of
the file system and the client should make no attempt to free it.

NSFile.MakeReference: PROCEDURE [fileID: 10, service: Service +- nullService]
RETURNS [reference: Reference];

Arguments:

Results:

Errors:

service is the file service on which the file resides; filelD is the
designation of the file on the service.

A reference for the file is returned. The service field of the reference
points into the file system's service cache, and storage for the
corresponding service record should not be freed by the client.

None.

The second means of naming a file involves the name and version attributes of the file.
Every permanent file on a volume is uniquely identified within its parent directory by its
name/version attribute pair. In those contexts where a directory-relative specification of a
file is allowed, the name and version attribute combination may be used.

Finally, a pathname may be used to identify a file in those file system operations which
accept a pathname argument. The path name gives a hierarchical list of directories in the
path to the file. The pathname may be relative to a specified starting directory or to the
root file of the service. The syntax of path names and the separator characters are defined
in Section 7.

3.2.2 Opening

In· order to examine or manipulate a file, a client must first open the file, thereby
obtaining a handle for it. While a handle exists, no other handle can be used to delete or
move that file.

NSFile.Open: PROCEDURE [
attributes: AttributeList, directory: Handle +- null Handle,
controls: Controls +- [], session: Session +- nuliSession]
RETURNS [file: Handle];

Arguments:

Results:

attributes identifies the file as described below; directory specifies a
starting directory in which to look for the file (it may be the null
handle); controls specifies the controls to be applied to the new handle;
session is the client's session handle.

file is the file handle for the file being opened. It remains valid until
session ends or the file is closed using the handle.

Filing Programmer's Manual 3

Errors: NSFile.Error may be raised with the following types: access,
attributeType, attributeValue, authentication, clearingHouse,
handle, service, session, and undefined; Courier.Error may also be
raised.

A file is opened by specifying a list of attributes that identify the file, plus an optional
working directory. Only certain interpreted attributes may be specified, and of these, at
most one of name, pathname, or filelD may be specified. If extended attributes are
specified, a remote file system may treat them unpredictably; therefore, they should be
avoided.

When opening a file, the client may specify controls for the resulting handle (see §3.3).

The interpreted attributes that may be specified on Open are:

service

filelD

parentlD

name

version

pathname

This attribute specifies the file service on which the file resides. This
attribute may only be specified when using a distributed session,
since for a directed session the service is implicit. If omitted Ot· a
value of null Service is specified and directory is null, the file is
assumed to reside on the defaultService. If this attribute is specified
and directory is non-null, then the directory must be on the specified
service.

This attribute is a fixed-size identifier for the file which is unique on
the specified (or implied) service. A nulllD may not be specified.

This attribute specifies the filelD for the parent of the desired file.
This attribute is optional; if specified and directory is non-null, then
the specified parentlD must match the directory's filelD. [f a null
parentlD is specified, then the specified file must have no parent (it is
either a temporary file or a service root file).

The string name of the file is specified using the name attribute; a
lookup is performed either in the specified directory or the specified
parentlD; parentlD must name a directory on the specified or implied
service, [f version is not specified, the highest-version file with this
name is opened.

The version attribute indicates the version number of the file. This
may be specified only if either name or path name is also specified. If
omitted, the file with the highest version is opened. If specified with a
pathname, a version number in the last component of the pathname
will supersede this value.

The pathname attribute is a string gIVmg a hierarchical list of
directories. in the path to the file. If specified and directory (or
parentlD) is null, then the pathname is assumed to be relative to the
root file of the specified (or implied) service. [f specified and directory
(or parenti D) is non-null, the pathname is assumed to be relative to
directory, and the first name in the path must be an immediate
descendant of directory.

3-7

3

3-8

File/session operations

If name, pathname, and filelD are all omitted, the root file of the specified (or implied)
service is opened.

3.2.3 Simpler forms of Open

Many clients do not need the full generality of Open; for such clients, the simpler
operations OpenByReference, OpenByName, and OpenChild are provided. Each reports
the same classes of errors as Open.

NSFile.OpenByReference: PROCEDURE [
reference: Reference, controls: Controls +- n.
session: Session +- null Session]
RETURNS [file: Handle];

A Reference (see §3.2.1) is a convenient data structure containing al~ the information
needed to uniquely identify a file. A file's reference can be obtained by calling
GetReference (see §6.5). If service is null, the file is expected to reside on the
defaultService. If filelD is null, the root file of the specified (or implied) service is opened.
This operation may only be used with a distributed session, since with a directed session
the service is implicit.

NSFile.OpenByName: PROCEDURE [
. directory: Handle, path: String, controls: Controls +- [J.

session: Session +- nuliSession]
RETURNS [Handle];

OpenByName opens a descendant of the specified directory with the given pathname. If
the directory is null, the pathname is assumed relative to the root file of the service
implied by the session. The path name may contain the name of the service on which the
file resides, in which case the rest of the pathname is assumed to be relative to the root file
of that service, and the specified directory must be null. For details on the syntax of
pathnames and qualified pathnames (i.e., pathnames which contain a service name)(see
Section 7).

NSFile.OpenChild: PROCEDURE [
directory: Handle. id: 10, controls: Controls +- [J, session: Session +- nullSession]
RETURNS [Handle];

OpenChiid opens the child of the specified directory with the given filelD.

3.2.4 Close

NSFile.Close: PROCEDURE [file: Handle, session: Session +- nuIlSession];

Arguments:

Results:

Errors:

file is the handle to be closed; session is the client's session handle.

file is no longer a valid handle.

NSFile.Error can be raised with the following types: authentic:;ation,
handle, session, and undefined; Courier. Error may also be raised.

Filing Programmer's Manual 3

A client should close a file when the client no longer needs to operate on it. Closing a tile
releases any lock associated with that handle, and may allow the file to be moved or
deleted. If the file is temporary, it is deleted when the last handle to it is closed.

All file handles in a session are automatically closed when the session is logged off.

3.3 Handles and controls

A file handle is a means of identifying an open file to file system operations. It is returned
by operations which open or create files and is normally used to complete access to a file
during Close.

NSFile.Handle: TYPE = [2];

NSFile.nuIiHandle: Handle = [LONG[NILIl;

The special constant null Handle is a reserved value of Handle used to imply various
options in file system operations in which it may be specified. Consult the individual
operations for further details.

NSFile.Controls: TYPE = RECORD [
lock: Lock.- none.
timeout: Timeout.- defaultTimeout.
access: NSFile.Access .-fuIiAccess];

NSFile.ControIType: TYPE = MACHINE DEPENDENT (lock(O). timeout(1). access(2)};

Every file handle is subject to parameters known as controls which specify the nature of
file access using that handle. Three types of controls are currently defined: locks,
timeouts, and access. Controls are always specified when a file is opened, and can
subsequently be changed with the ChangeControls operation.

3.3.1 Locks

A lock on a file is a restriction on the use of the file by other sessions. A client might
specify a lock to prevent certain types of access to the file while operating on it.

NSFile.Lock: TYPE = MACHINE DEPENDENT {none(O). share(1). exclusive(2)};

A none lock prevents other sessions from deleting or moving the file, as well as preventing
the same session from deleting or moving the file except with this handle.

A share lock prevents other sessions from acquiring an exclusive lock, as well as providing
the protections of the none lock above.

An exclusive lock prevents other sessions from acquiring a share or exclusive lock, as well
as providing the protections of the none lock above.

Share and exclusive locks only restrict file access through other sessions, not through
other handles in the same session. A client may simultaneously hold several handles to
the same file, some of which carry share locks while others carry none or exclusive locks.

3-9

3

3-10

File/session operations

Access to a file from another session is limited by the most restrictive lock in place on the
file.

An open file may never be deleted if there are other open handles to the file. Thus, no
matter what kind of lock is in place on an open file, the client is assured that the file will
not "disappear" unexpectedly.

A none lock should be used when the client simply wants to guarantee the file's continued
existence. It provides no special locking of the file. A none lock may be acquired at any
time regardless of what other locks are held on the file, and only ensures that the file will
not be moved or deleted.

A share lock should be used when the client is reading, but not modifying a file. A share
lock prevents other sessions from modifying the file in any way, (including changing its
attributes, adding children, etc.) and prevents them from acquiring an exclusive lock.

An exclusive lock should be used when the client wishes to modify a file. An exclusive lock
prevents other sessions from reading or modifying a file, and from acquiring either an
exclusive lock or a share lock.

While executing an NSFile procedure, the file system internally acquires the locks that it
needs to ensure correct and consistent execution of that procedure, and releases them
before the procedure returns. The client never needs to explicitly acquire locks unless it
wants to prevent modification or examination of a file by clients using other sessions
between calls to NSFile procedures.

In operations defined in NSSegment (see Section 4) and NSFileStream (see Section 5)
which access the content of a file, the file system does· not acquire internal locks to
preserve the integrity of the file's content. To ensure adequate protection of files when
using the operations in these interfaces, the client should acquire the appropriate lock
when opening the file.

3.3.2 Timeouts

When a process requests a lock that is unavailable (either explicitly with Open and
ChangeControls, or implicitly within an NSFile, NSFileStream, or NSSegment procedure),
the process is delayed until the lock becomes available or the file handle's timeout expires,
whichever comes first. If the lock becomes available, it is acquired and execution
continues. If the timeout expires, the error NSFile.Error[[access[filelnUse]]] is reported.

NSFile.Timeout: TYPE = Process.Seconds;

A timeout value is expressed in seconds. The timeout associated with a handle applies to
any request to acquire a lock on that handle. If a timeout of zero is specified, the file
system does not wait. In this case if the requested lock is unavailable, an error is
immediately reported. Conversely, a very large timeout may ca'use the file system to wait
a very long time for a lock to become available. Such timeouts should be used with care.

NSFile.defaultTimeout: Timeout = lAsT[Timeout);

If defaultTimeout is specified, an implementation-dependent default (which may be set
using NSFileControl.SetDefaultTimeout, §8.1.3) is applied. When the current timeout value

Filing Programmer's Manual 3

is requested from the file service, it is this actual timeout value, rather than the constant
defaultTimeout, which is returned.

3.3.3 Access

NSFile.Access: TYPE = PACKED ARRAY AccessType Of BooleanFalseDefault;

NSFile.AccessType: TYPE = MACHINE DEPENDENT {
read(O), write(1), owner(2), add(3), remove(4)};

Access determines what operations are allowed for a particular file handle. An Access is a
set of bits, each of which enables a particular form of access to a file:

read

write

owner

add

remove

The client may read the file's contents and attributes. If the file is a
directory, the cFent may also list its children and search for files in the
directory.

The client may change the file's contents and data attributes, and may
delete. the file. If the file is a directory, the client may also change
environment attributes and access lists of the directory's children.

The client may change the file's access list.

If the file is a directory, the client may add children to it (using Create,
Copy, Move, Store, or Deserialize).

If the file is a directory, the client may remove children from it (using Move
or Delete).

The access actually available to a client is the logical AND of the access last specified in
Open or ChangeControls, and the access allowed by the file's access control list (see
§6.3.5). This ANDed value is the one returned when an access value is requested via
GetControls.

Note: The returned value may be more restrictive than the value last specified, but will
never be less restricti ve.

3.3.4 Retrieving and changing controls

NSfile.ControISelections: TYPE = PACKED ARRAY ControlType Of BooleanFalseDefault;

NSfile.aIlControISelections: ControlSelections = ALL(TRUE];

NSfile.noControISelections: ControlSelections = []; -- ALL[FALSE]

A ControlSelections is used to specify a set of controls of interest during GetControls and
ChangeControls. The currently effective controls on a file handle are obtained by calling
GetControls.

3-11

3

3-12

File/session operations

NSFile.GetControls: PROCEDURE [
file: Handle. controlSelections: ControlSelections ~ aliControlSelections.
session: Session ~ nuliSession]
RETURNS [controls: Controls];

Arguments:

Results:

Errors:

file is the file handle of interest; controlSelections identifies the types
of control items that are desired; session is the client's session handle.

A Controls record containing the desired control· items is returned.
Fields which were not requested have undefined values and should not
be accessed.

NSFile.Error is raised with the types: access, authentication, handle,
session, and undefined; Courier.Error may also be raised.

Only the values bf the specific controls requested in controlSelections are returned. Since
different controls are obtained with varying degrees of difficulty, the client should request
only those controls that it needs. In particular, requesting access may cause a time­
consUIping access list evaluation, potentially requiring communication with a
Clearinghouse.

The controls on a file handle may be changed by calling ChangeControls.

NSFile.ChangeControls: PROCEDURE [
file: Handle, controlSelections: ControlSelections, controls: Controls,
session: Session ~ null Session];

Arguments:

Results:

Errors:

file is the file handle whose controls are to be modified;
controlSelections identifies the types of control items to be changed;
controls is a record containing the control items to be changed; session
is the client's session handle.

The controls specified by controlSelections are changed to the values
supplied.

NSFile.Error is raised with the following types: access, authentication,
controlValue, handle, session, and undefined; Courier.Error may also be
raised.

Only the controls specified in controlSelections are actually changed; other fields In

controls are ignored.

Filing Programmer's Manual 3

3.4 Creating and deleting files

The operations described in this section allow clients to create and delete files. Permanent
or temporary files may be created or deleted; a temporary file remains only until all
handles to it within the session creating it are closed or until the session ends.

3.4.1 Create

A file may be created by calling NSFile.Create. This procedure creates a new file with
unspecified contents. The new file may either be temporary or contained in a directory.

Create is particularly useful for creating directories and for creating local files whose
contents will subsequently be initialized by NSFileStream (see Section 5) or NSSegment
(see Section 4) operations. NSFile.Store is usually a more appropriate operation for creating
remote non-directory files (see §3.8).

NSFile.Create: PROCEDURE [
directory: Handle. attributes: AttributeList ..- nullAttributeList.
controls: Controls..- n. session: Session..- null Session]
RETURNS [file: Handle];

Arguments:

Results:

Access:

Errors:

directory is a file handle for the directory into which the created file is
placed (the null handle may be specified, in which case a temporary
file is created on the service specified or implied by attributes and
session); attributes specifies the characteristics of the new file;
controls specifies the controls to be applied to the returned handle;
session is the client's session handle.

file is a file handle for the newly-created file. It remains valid until
session ends or the file is closed using the handle.

Create requires add access to directory.

NSFile.Error is raised with the following types: access. attributeType.
attributeValue, authentication, clearingHouse, handle, insertion,
service, session, space, and undefined; Courier. Error may also be raised.

The file system acquires an exclusive lock on directory while creating the file.

3.4.2 Deleting files

NSFile.Delete deletes an existing file. The file is closed and deleted, freeing the resources
allocated to the file and removing any association with a directory. If the file is a directory,
all descendants are also deleted.

NSFile.Delete: PROCEDURE [file: Handle. session: Session ..- nuIiSession];

Arguments: file is a file handle for the· file to be deleted; session is the client's
session handle.

3-13

3 File/session operations

Results:

Access:

Errors:

file arid any descendants are deleted, freeing their resources. Errors
may cause partial deletion to occur (Le., some, but not all, descendants
are deleted).

Remove access to file's parent; write access to file (and each
descendant).

NSFile.Error is raised with the following types: access, authentication,
handle, session, and undefined.

•

The file system must be able to acquire an exclusive lock on the parent offile. There must
be no other handles in order to delete the file in session or any other session. Furthermore,
none of the file's descendants may be open in session or any other session. If the latter
condition is violated, Delete may fail part way through with NSFile.Error [[access
[filelnUse))) or NSFile.Error[[access[fileOpen]]].

Delete requires remove access to the parent of file, and write access to file and all its
descendants. If write access cannot be obtained to a descendant, the delete may fail part
way through with NSFile.Error [[access[accessRightslndeterminate])] or NSFile,Error[[access
[accessRightslnsufficientJ]].

If Delete returns normally, the file handle is invalidated. If it raises any error, the file
remains open and the file handle is still valid.

3.5 Finding and listing files within directories

3-14

The client may examine the files in a directory using NSFile.List or NSFile.Find. Scope
information describes the files of interest and how they are to be examined. A qualified file
satisfies the constraints of client scope information. Depending on the specific procedure,
either the attributes of qualified files are returned to the client, or the first qualified file is
opened.

3.5.1 Scopes

Scope items determine what files in a directory are of interest to the client and how they
are to be examined. The client may specify the order of consideration, the direction _ of
listing or searching, which files are to be examined, the depth in the file system hierarchy
to be spanned in the search, and (in the case of listing) the maximum number of files.
Scope-type parameters are effective only in the procedure to which they are arguments.

NSFile.ScopeType: TYPE. MACHINE DEPENDENT{
count(O), direction(1), filter(2), ordering(3)};

NSFile.Scope: TYPE = RECORD [
coullt: CARDINAL Eo- LAST[CARDINAL],
direction: Direction Eo- forward,
filter: Filter Eo- nuliFilter,
ordering: Ordering Eo- nuliOrdering,
depth: CARDINAL Eo-1];

Filing Programmer's Manual 3

scope.count specifies the maximum number of files the client wishes to see. The file
system attempts to locate scope.count number of files satisfying all scope constraints and
terminates the search when that number has been found or no further files remain for
consideration. A defaulted value of scope.count implies that the client wishes to consider
all qualified files.

NSFile.Direction: TYPE = MACHINE DEPENDENT {forward(O). backward(1)};

scope.direction specifies whether enumeration of the directory is to proceed from
beginning to end or from end to beginning. The actual order of files within a directory is
determined by the ordering attribute (see §6.3.6).

If the direction is forward, enumeration begins with the first file in the ordering. If the
direction is backward, enumeration begins with the last file. Direction affects both listing
(files are listed in the specified direction) and searching (the first encountered file that
matches the specified criteria is returned).

scope.filter specifies a condition that distinguishes files of interest in the directory under
consideration. The condition is one of: the constants TRUE or FALSE; a relation between an
attribute and a constant (a filter condition); or a logical combination of conditions.

NSFile.FilterType: TYPE = MACHINE DEPENDENT{
-- relations --
less(O). lessOrEqual(1). equal(2). notEqual(3). greaterOrEqual(4). greater(S).
-- logical --
and(6). or(7). not(8).
-- constants -­
none(9). all(10).
-- patterns-­
matches(11)};

NSFile.Filter: TYPE = MACHINE DEPENDENT RECORD [
var: SELECT type: FilterType FROM

less. lessOrEqual. equal. notEqual. greaterOrEqual. greater = > [
attribute: Attribute. interpretation: Interpretation Eo- none].
-- interpretation ignored if attribute not 'extended'

matches = > [attribute: Attribute].
and. or = > [list: LONG DESCRIPTOR FOR ARRAY OF Filter].
not = > [filter: LONG POINTER TO Filter].
none. all = > n.
ENDCASE];

NSFile.lnterpretation: TYPE = MACHINE DEPENDENT {
none(O). boolean(1). cardinal(2), longCardinal(3). integer(4).
longlnteger(5), string(6). time(7)};

A filter whose value is matches n is satisfied if the corresponding string attribute of a file
satisfies the string pattern of the filter. Two wildcard characters are defined: * (asterisk)
and # (pound sign). The * character matches zero or more characters within a string
attribute; # matches any single character. Wildcard characters meant to be interpreted
literally within the pattern must be escaped by quoting them with' (apostrophe).

3-15

3

3-16

File/session operations

A filter whose value is and [filtert, filter2, ... , filtern] is satisfied only if all of filteq, filter2,
... , filtern are satisfied.

A filter whose value is or [filterl, filter2, ... , filtern] is satisfied when at least one of filterl,
fi1ter2, ... , filtern is satisfied.

A filter whose value is not filter is satisfied when filter is not satisfied.

A filter whose value is none [J is never satisfied, while a filter whose value is all [] is
always satisfied.

All other filters are relations between a constant attribute value and the corresponding
attribute of a file. Each of these filters is satisfied if the file's attribute satisfies the
specified relation, when interpreted in an appropriate way and compared to the constant
value given in the filter.

Example: Consider only those files having a name of "Monthly Status Report," not placed
in the directory by "Upper Management" of the XYZ Company.

[and [
[equal [[name ["Monthly Status Report"]]]] •
[not [

[equal [[filedBy ["Upper Management:Headquarters: XYZ Company"]])]
]]

]]

The interpretation component of a filter provides the file system with the information it
needs to properly compare the attribute in the file with the specified constant value. The
file system needs this information only for extended attributes. For attributes that the file
system interprets, the standard interpretation is used; in this case any specified
interpretation is ignored. Attribute values with a given interpretation are compared as
follows:

none

boolean

cardinal

longCardinal

integer

longlnteger

Values are compared word by word, starting with the first.
Corresponding sixteen-bit words are compared as though they were of
type CARDINAL, starting with the first, until an unequal pair is found.
The relationship of this unequal pair is considered to be the
relationship of the two attributes. If the attributes are equal up to the
length of the shorter, the longer attribute is considered to be greater.

A value of TRUE is greater than FALSE.

Values are compared as unsigned sixteen-bit numbers.

Values are compared as unsigned thirty-two-bit numbers.

Values are compared as signed sixteen-bit numbers.

Values are compared as signed thirty-two-bit numbers.

Filing Programmer's Manual 3

string Values are compared using NSString.CompareStrings. Case is ignored.

time Values are compared as points in a linear time span where a later time
is considered to be greater than an earlier time. Because of the time
encoding, this comparison is not the same as for longCardinal.

Note: To find which of two times comes first, apply System.SecondsSinceEpoch to each;
this gives the number of seconds that each is after the system epoch. Finally, compare the
results to determine which is the later time. Refer to Pilot Program,mer's Manual [261 for
further details.

If the value of an attribute is not a valid representation of a value of the stated
interpretation, that attribute is considered to be less than any attributes that are valid
representations.

Note: In Services 8.0, scope.interpretation is not implemented. It is always ignored.

If no filter is specified,-null Filter is assumed.

NSFile.nuIlFilter: Filter = [all[]];

Not all attributes are supported within filters. Attributes within filters are restricted to:
backedUpOn, created By, createdOn, filedBy, filedOn, modifiedBy, modifiedOn, name,
position, readBy, readOn, type, and version. Use of other attribute types causes
NSFile.Error[[scopeValue[unimplemented. filter]]] to be raised.

Scope. ordering specifies the desired enumeration or search ordering to be used. If the
value of Scope.ordering is not equal to NSFile.defaultOrdering or the current value of the
directory's ordering attribute, NSFile.Eri'or [[scopeValue[unimplemented. ordering]]] is
reported. If the current value of the directory's ordering attribute is desired as the order of
enumeration, null Ordering should be used.

NSFile.nuIlOrdering: extended Ordering = [extended[key: 0));

Note: The value of nullOrdering is not a valid value for the ordering attribute of a
directory; therefore, it may not be used in any other context.

scope.depth specifies the number of levels in the file system hierarchy which the
enumeration should span. If the depth is 1 (the default), then only the immediate
descendants of the directory are enumerated. If the depth is 2, then if an immediate
descendant of the directory is itself a directory, its immediate descendants will be
enumerated as well. And so on for increasing depth values. For convenience, a constant,
NSFile.aIlDescendants, is defined which indicates that all the levels of the file system
hierarchy should be traversed in the enumeration.

NSFile.aIlDescendants: CARDINAL = LAST [CARDINAL];

In Services 8.0, the depth and the filter portions of the scope are independent of each other.
In other words, for a depth > 1, the descendants of a directory will be enumerated only if
the directory itself satisfies the specified filter requirement. Therefore the depth field is
most useful in enumerating whole or partial subtrees of files without specifying a filter.

3-17

3

3-18

File/session operations

3.5.2 Locating files

Find is called to locate and open a particular file in a directory. The file system enumerates
the directory's children in the specified direction and order and opens the first file that
meets the specified filter criteria; it reports NSFile.Error[[access[fileNotFound]]] if no such
file can be found.

NSFile.Find: PROCEDURE [
directory: Handle, scope: Scope +- H, controls: Controls +- [],
session: Session +- nuliSession)
RETURNS [file: Handle);

Arguments:

Results:-

Access:

Errors:

3.5.3 Listing files

The directory to be searched is given by directory; scope specifies
characteristics of the enumeration and the search criteria; controls
specifies the controls to be applied to the new handle; session is the
client's session handle.

file refers to the file that was found and opened.

Read access is required to directory.

NSFile.Error is raised with the following types: access, authentication,
controlType, controlValue, handle, scopeTypeError, scopeValue,
session, and undefined; Courier. Error may also be raised.

list enumerates the files .in a directory, returning selected attributes of each. The file
system enumerates the directory in the specified direction and order and invokes the
client-supplied procedure for each file that meets the specified criteria.

NSFile.List: PROCEDURE [
directory: Handle, proc: AttributesProc, selections: Selections,
scope: Scope +- [], clientOata: LONG POINTER +-NIL, session: Session +- nuIiSession);

Arguments:

Access:

Errors:

The directory to be searched is given by directory; proc is a procedure
specified by the client (see below); selections specifies the set of
attributes to be returned for each file; scope specifies characteristics of
the enumeration and the search criteria; clientData is a pointer to
client data which will be passed to proc along with the attributes
specified by selections; session is the client's session handle.

Read access is required to directory.

NSFile.Error is raised with the following types: access, attributeType,
authentication, connection, handle, scopeType, scopeValue, session;
Courier. Error may also be raised.

The client is free to modify the contents ofdirectory during list; however, the effect of such
modifications on the behavior of the remaining operation is undefined. For example, if the
entire contents of a directory are deleted after the first file is listed, continuation of the list
may produce none, some, or all of the deleted entries.

Filing Programmer's Manual 3

NSFile.AttributesProc: TYPE = PROCEDURE [
attributes: Attributes, c1ientData: LONG POINTER]
RETURNS [continue: BOOLEAN +- TRUE];

An AttributesProc is a client procedure supplied to List for the purpose of returning
attribute values of files within the given scope. Since different attributes are obtained
with varying degrees of difficulty, the client should request only the attributes that are
needed. For each file within the scope, proc is called with attributes, a pointer to an
attributes record. This record "and its attached structures belong to the file system, and
may not be deallocated by the client; any data which is to be preserved must be copied by
the client before returning. The c1ientData pointer supplied to List by the client is also
passed to proc. Enumeration may be interrupted by returning FALSE from proc. The client
may raise signals during execution of proc; if the signal is not one of the standard filing
errors, the client may not log off until the signal is unwound.

3.6 Copying files

Copy creates a file which is a copy of an existing one. If the existing file has descendants,
they are copied as well. The file system creates a set of files which are copies of the
specified file and all of its descendants, and inserts the new structure into the specifi"ed
directory. A file cannot be copied into itself or any of its descendants.

NSFile.COpy: PROCEDURE [
file: Handle, destination: Handle. attributes: AttributeList +- nul/AttributeList.
controls: Controls +- [], session: Session +- nul/Session]
RETURNS [newFiie: Handle];

Arguments:

Results:

Access:

Errors:

file is a file handle for the file to be copied; destination.is a file handle
for the directory into which the copy is to be placed (the null handle
may be specified); attributes specifies the characteristics of the new
file and overrides those of the original file; controls specifies the
controls to be applied to the returned handle; session is the client's
session handle.

newFile is a file handle for the newly-created file.

Copy requires add access to destination, and read access to file and all
of its descendants.

NSFile.Error may be raised with the following types: access,
attributeType, attributeValue, authentication, clearingHouse,
connection, handle, insertion, service, session, space, transfer, and
undefined.

If destination is nul/Handle, a temporary copy is made which is deleted by invoking
NSFile.Delete or when all handles to it are closed. Since temporary directories are not
allowed, NSFile.Error[[handle[nuI/Disal/owed]]] is raised if file is a directory and
destination is nul/Handle.

3-19

3 File/session operations

The file system acquires a share lock for each file while copying it, and holds a share lock
for each directory while enumerating and copying its children. However, it does not obtain
a share lock on all descendants offile before starting to copy any of them; therefore, if a file
is inserted in or deleted from some descendant of file while Copy is executing, the copy
mayor may not reflect the change.

3.7 Moving files

3-20

Move changes the directory structure of the file system. A specified file is moved into a
specified directory. If the file was previously a child of another directory, it is removed
from that directory. If the file was temporary, it becomes permanent. If the file has
descendants, they are moved as well (Le., they remain descendants of the file). A file may
not be moved into itself or any ofits descendants.

NSFile.Move: PROCEDURE [

file: Handle, destination: Handle, attributes: AttributeList nullAttributeList. '
session: Session nullSession];

Arguments:

Results:

Access:

Errors:

file is a file handle for the file to be moved (it must be the session's only
file handle for this file unless the file is temporary); 'destination is a
file handle for the directory into which the file is to be placed (the null
handle cannot be specified); attributes modifies the characteristics of
the file; session is the client's session handle.

file is moved to the new location.

The file system must be able to acquire an exclusive lock on file,
destination, and the parent of file (if one exists). In addition, if file is
permanent, there must be no other open handles for file in session or
any other session. The file system does not acquire locks to any
descendant of file; if such a descendant is open, its chain of ancestors
may be changed without warning.

NSFile.Error is raised with the following types: access, attributeType.
attributeValue, authentication. handle. insertion. session, space, and
undefined.

Note: Move between different services is equivalent to Copy followed by Delete;
therefore, all notes applying to these operations also apply in this case.

Since only one session handle is specified, the Move and Copy operations can be used to
move or copy files across different services only when a distributed session is used. When a
directed session is used, these operations may only be used to move or copy files within the
same service. To Move or Copy across services using directed sessions, 'one should use the
Serialize and Deserialize operations (followed by Delete, when moving a file) to achieve
the data transfer (see §3.B.2).

Filing Programmer's Manual 3

3.8 Bulk data transfer operations

Bulk data transfer operations in NSFile provide a means for clients to read or write the
entire contents of a file or subtree of files sequentially. Each makes use of the
NSDataStream abstraction, and therefore allows clients to pair two NSFile bulk data
transfer operations or an NSFile bulk data transfer operation with a non-NSFile operation.
Adherence to NSDataStream conventions permits the transfer of data between otherwise
independent software entities.

Each bulk data transfer operation accepts one of the types NSFile.Sink or NSFile.Source as a
parameter. Operations which expect to receive data from the client (NSFile.Store,
NSFile.Replace, NSFile.Deserialize) must be supplied an NSFile.Source as a parameter.
Operations which expect to send data to the client (NsFile.Retrieve, NSFile.Serialize) must be
supplied an NSFile.Sink as a parameter. By selecting the appropriate variant (proc, stream
or none) of the type required by an operation, the client controls exactly how the data
stream is determined.

NSFile.Sink: TYPE = NSDataStream.Sink;
NSDataStream.Sink: TYPE = RECORD [

SELECT type: * FROM
proc = > [proc: PROCEDURE [NSDataStr~am.SourceStream 1],
stream = > [stream: NSDataStream.SinkStream],
none = > [],

ENDCASE1;

NSFile.Source: TYPE = NSDataStream.source;
NSDataStream.Source: TYPE = RECORD [

SELECT type: * FROM
proc = > [proc: PROCEDURE [NSDataStream.SinkStream]],
stream = > [stream: NSDataStream.SourceStream],
none = > n,

ENDCASE];

The proc variant allows the client to be provided with a data stream. The client provides a
procedure which is called at most once with the data stream on which the data is to be sent
or received. After all of the data is sent or received, the client deletes the data stream (by
invoking Stream.Delete) and then returns. At a point prior to deleting the data stream, the
client may also elect to abort it using NSDataStream.Abort. This indicates that the data was
not completely sent or received. Signals and errors may be raised from within the client's
procedure and caught by the procedure which called the bulk data transfer operation;
however, the client's procedure is still required to delete the data stream in an UNWIND
catch phrase. If the NSFile bulk data transfer operation raises an error prior to sending or
receiving the first byte of data, the client's procedure mayor may not be called. If it is
called, the error is as though it occurred during data transfer and the client is notified of
the problem by the error NSDataStream.Aborted which is raised on the next (or first) Stream
operation invoked by the client.

The stream variant allows the client to supply a data stream to an operation. This data
stream is one typically received from another operation called previously with a proc
variant of an NSDataStream.Sink or NSDataStream.Source. This first operation, however, need
not be an NSFile operation. By using the proc variant in one bulk data transfer operation
and supplying the resulting data stream in a stream variant to another bulk data transfer

3-21

3

3-22

File/session operations

operation, the client routes data directly from one 'operation to another. If one of the
operations is a remote operation and the other is local, then the data will be transferred
along the Courier connection of the remote operation. If both are remote operations to
distinct system elements, then data is transferred along a connection joining those system
elements (a third-party transfer).

Note: In Services 8.0, direct third party transfers are not implemented; instead, data is
transferred via the two already-established Courier connections with the data being
relayed on the client machine. This has no effect, however, on the client of Filing.

The none variant of an NSFile.Sink is used to request that the data be discarded. This might
be useful for a client who wishes to determine if he has sufficient access to any indicated or
implied files without actually performing the transfer. The none variant of an
NSFile.Source indicates that the client has no data to send. It has the same effect as if the
client immediately deleted his data stream, but eliminates any overhead incurred in
establishing the data stream.

The content of a file which has more than one segment is always sent on a data stream
using segment encoding. Single segment files in certain' situations also use segment
encoding. The segment encoding consists of a 512-byte index followed by the content of
each of the segments, in asce~ding order, each padded with zeros to fill an integral number
of 512-byte pages. The index consists of a Segmentlndex, serialized using standard
Courier serialization padded with zeros to fill 512 bytes. Segmentlndex is provided here
for explanatory purposes although it does not currently appear in any, Mesa interface.

Segmentlndex: TYPE == LONG DESCRIPTOR FOR ARRAY OF SegmentlndexEntry;

SegmentlndexEntry: TYPE == RECORD [segmentNumber:CARDINAL, length: LONG CARDINAL];

Segment encoding is employed by Retrieve and Serialize for each file that has more than
one segment or that is distinguished as a segmented file type (see §8.1.3). Segment
encoding is assumed by Replace, Store and Deserialize for each file received which has one
of the client-specified segmented file types. During subtree operations, Serialize and
Deserialize, segment encoding is employed or not employed independently for each file in
the subtree offiles.

3.8.1 Single tile operations

Retrieve, Replace, and Store operate on single files. Data the client sends or receives on
the data stream constitute the content portion of the file, represented as an uninterpreted
series of 8-bit bytes or as a segmented file using the segment encoding described above. No
attribute or descendant information is included. Except when segment encoding is
employed, the length of the file is exactly the number of bytes transferred.

Replace replaces the content of an existing file with the data received from the specified
source. The previous content is discarded, and the file and segment lengths are set to
reflect the data received.

NSFile.Replace: PROCEDURE [
file: Handle, source: Source, attributes: AttributeList +- nullAttributeList,
session: Session +- nullSessionl;

Filing Programmer's Manual 3

Arguments:

Results:

Access:

Errors:

file is a file handle for the file whose content is being replaced; source
specifies the source that is to supply the new content of the file in
accordance with NSDataStream conventions; attributes specifies
characteristics of the resulting file; session is the client's session
handle.

The content ofthe file is changed to the supplied data.

Write access is required to file.

NSFile.Error is raised with the following types: access, attributeType,
attributeValue, authentication, connection, handle, session, space,
transfer, undefined.

Retrieve transfers the content of an existing file to the specified sink.

NSFile.Retrieve: PROCEDURE [file: Handle, sink: Sink, session: Session Eo- nuIiSession];

Arguments:

Results:

Access:

Errors:

file is a file handle for the file whose content is being retrieved; sink
specifies the sink that is to receive the content of the file in accordance
with NSDataStream conventions; session is the client's session handle.

None.

Read access is required to file.

NSFile.Error is raised with the following types: access, authentication,
connection, handle, session,transfer, undefined.

Store creates a file with a specified content. A new file is created with the specified
attributes in the specified directory, and is filled with data received from the specified
source.

NSFile.Store: PROCEDURE [
directory: Handle, source: Source, attributes: AttributeList Eo- nullAttributeList,
controls: Controls Eo- [], session: Session Eo- nuliSession]
RETURNS [file: Handle];

Arguments:

Results:

Access:

directory is a file handle for the directory into which the new file is to
be placed (the null handle may be specified, implying a temporary file);
source specifies the source that is to supply the content of the file in
accordance with NSDataStream conventions; attributes specifies the
characteristics of the new file; controls specifies the controls to be
applied to the resulting handle; session is the client's session handle.

file is a file handle for the newly-created file.

Add access is required to directory (ifit is not the null handle).

3-23

3

3-24

t'ile/session operations

Errors: NSFile.Error is raised with the following types: access, attributeType,
attributeValue, authentication, clearingHouse, connection,
controlType, controlValue, handle, insertion, service, session, space,
transfer, undefined.

3.8.2 Subtree operations. serialized files

At times, it is useful to compress all of" the information contained in a file and its
descendants into a series of eight-bit bytes in order to transfer it to another system
element, store it on some other medium, or manipulate it in some other way. The format of
data in this series of bytes is the serialized file format. Serializing a file produces a series
of bytes which contains all of the information in the file and its descendants; deserializing
such a series of bytes recreates a file and its descendants.

Procedures in this section transfer a serialized file to a sink or from a source using the
NSDataStream mechanism.' The data may be thought of as a single Courier object (i.e.,
encoded according to the Courier conventions) oftype SerializedFile. However, neither the
following definitions nor the corresponding Courier descriptions actually appear in any
Mesa interface. This is done because it is more desirable to process the information on the
data stream sequentially than to do so all at once, thereby avoiding the allocation of a very
large Mesa data structure.

SerializedFile: TYPE = RECORD [version: LONG CARDINAL, file: SerializedTree];

currentVersion: LONG CARDINAL = 2;

SerializedTree: TYPE = RECORD [
attributes: NSFile.AttributeList,
content: RECORD [data: SeriesOfUnspecified, lastBytelsSignificant: BOOLEAN],
children: LONG DESCRIPTOR FOR ARRAY OF SerializedTree);

SeriesOfUnspecified: TYPE == RECORD [
SELECT type: * FROM
nextBlock = > RECORD [

block: LONG DESCRIPTOR FOR ARRAY OF UNSPECIFIED,
restOfStream: LONG POINTER TO SeriesOfUnspecified],

lastBlock == > LONG DESCRIPTOR FOR ARRAY OF UNSPECIFIED];

A serialized file begins with a version number to distinguish it from other versions of the
serialized file format. The representation of each file within the serialization consists of its
attributes, its content, and all of its children. The attribute list contains attributes that
apply to the file, in arbitrary order. The sequence of children corresponds to their order
within the original directory.

The content of a file is represented as a series of sixteen-bit words followed by an
indication of whether the last byte of the last word is significant (that is, whether the
length in bytes is even). [f not, the last byte has the value zero and should be ignored. The
type SeriesOfUnspecified partitions the content of a file into variable-sized blocks. The
concatenation of the ARRAY OF UNSPECIFIED fields makes up the content of the file. This
content, as described above, may either be an uninterpreted series of bytes or a segment
encoding.

Filing Programmer's Manual 3

Note: BlOCK boundaries are insignificant; that is, they carry no information. Blocks within
the serialization of a file are unrelated to and should not be confused with the blocks sent
or received on a data stream, or the unit of storage on any physical storage medium.

The bulk data transfer operations which operate on a subtree of files are Serialize and
Deserialize.

Serialize encodes all of the information of a file and its descendants into a series of bytes
according to the serialized file format above (including its attributes, content, and
descendants).

NSFile.Serialize: PROCEDURE [file: Handle, sink: Sink, session: Session ..- nuIiSession];

Arguments:

Results:

Access:

Errors:

file is a file handle for the file which is being serialized; sink specifies
the sink that is to receive the serialization in accordance with
NSDataStream conventions; session is the client's session handle.

None.

Read access is required to file and all its descendants.

NSFile.Error is raised with the following types: access, authentication,
connection, handle, session, transfer, undefined.

Deserialize reconstructs a file and its descendants from a serialized representation. A new
file is created in the specified directory; its attributes, content and descendants are
constructed from the serialized file and a file handle for the file is returned. During
deserialization, some attributes (for example, numberOfChildren) are ignored because the
attribute duplicates information implicit in the rest of the data. It does not replace the
existing file. Rather than reporting an error, Deserialize ignores attributes in the
serialized file that are not allowed to be specified. Attributes that are not specified are
given default values.

NSFile.Deserialize: PROCEDURE [
directory: Handle, source: Source, attributes: AttributeList ..- nullAttributeList,
controls: Controls ..- [], session: Session..- nuliSession]
RETURNS [file: Handle];

Arguments:

Results:

Access:

directory is a file handle for the directory into which the file is to be
placed (the null handle may be specified only if the subtree being
deserialized is a non-directory); source specifies the source that is to
supply the file in accordance with NSDataStream conventions;
attributes specifies the characteristics of the new file (overriding
corresponding attributes specified in the serialized file); controls
specifies the controls to be applied to the returned handle; session is
the client's session handle.

file is a file handle for the newly-created file.

Add access is required to directory (ifit is not the null handle).

3-25

3 File/session operations

. Errors: NSFile.Error is raised with the following types: access, attributeType,
attributeValue, authentication, clearingHouse, connection,
controlType, controlValue, handle, insertion, service, session, space,
transfer, undefined.

3.9 Macro operations

3-26

For convenience, the file system provides macro operations which execute common
sequences of NSFile operations. There are two categories of such operations: child,
operations and pathname operations.

3.9.1 Child operations

A client might wish to operate on a child of a directory without the bother of opening the
child. Child operations implement a limited set of operations on children, identified
uniquely by their filelO attribute:

OpenChild opens the child of directory with the given id, using the specified controls.
Calling this operation is equivalent to calling NSFile.Open with an attribute list containing
the single attribute filelO.

NSFile.OpenChild: PROCEDURE [
directory: Handle, id: 10, controls: Controls ~ [], session: Session ~ nullSession]
RETURNS [Handle];

CopyChild copies the child of directory with the given id, inserting the copy into
destination. The filelO attribute of the copy is returned.

NSFile.CopyChild: PROCEDURE [
directory: Handle. id: 10, destination: Handle.
attributes: AttributeList ~ nullAttributeList, session: Session ~ nu"Session]
RETURNS [10];

MoveChild moves the child of directory with the given id into destination.

NSFile.MoveChild: PROCEDURE [
directory: Handle. id: IQ, destination: Handle,
attributes: AttributeList ~ nuliAttributeList, session: Session ~ nu"Session);

OeleteChild deletes the child of directory with the given id.

NSFile.OeleteChild: PROCEDURE [directory: Handle, id: 10, session: Session ~ nu"Session];

GetAttributesChild fills in attributes with the selected attributes of the child of directory
with the given id.

NSFile.GetAttributesChild: PROCEDURE [
directory: Handle, id: 10, selections: Selections, attributes: Attributes,
session: Session ~ nuIlSession];

Filing Programmer's Manual 3

ChangeAttributesChiid changes the specified attributes of the child of directory with the
given id.

NSFile.ChangeAttributesChild: PROCEDURE [
directory: Handle, id: 10, attributes: AttributeList, session: Session +- nuIlSession];

ReplaceChild replaces the contents of the child of directory with the given id from the
supplied source.

NSFile.ReplaceChild: PROCEDURE [
directory: Handle,· id: 10, source: Source, attributes: AttributeList +-

nullAttributeList,
session: Session +- nuIlSession];

RetrieveChild retrieves the contents of the child of directory with the given id to the
supplied sink.

NSFile.RetrieveChild: PROCEDURE [
directory: Handle, id: 10, sink: Sink. session: Session +- nuIlSession];

All child operations may raise NSFile.Error or Courier.Error with any parameter that might
result from calling NSFile.Open or the underlying operation (Copy, Move, etc.).

3.9.2 Pathname operations

A client may wish to operate on a file by specifying a pathname rather than identifying it
by its filelO or explicitly opening the file and its ancestors. Path name operations
implement a limited set of operations on files identified by their pathnames.

The pathname specified may be the absolute pathname for the file (in which case it is
relative to the root file of the service implied by the session), or it may be relative to the
specified directory. If the pathname does not end with a version number, the file with the
highest version number is used (except in OeleteByName, in which the file with the lowest
version number is deleted).

Remote files may be accessed by specifying the qualified pathname for the file, i.e., a
path name containing the name of the service on which the file resides. In this case, the
specified directory must be null, or NSFile.Error [handle[nullRequired]J is raised.

The pathname operations use the operations defined in section 7, to parse qualified
pathnames. See this section for complete details on pathname syntax, as well as some
examples of both qualified and service-relative pathnames.

OpenByName opens a file with the specified pathname relative to the specified directory,
using the specified controls.

NSFile.OpenByName: PROCEDURE [
directory: Handle. path: String. controls: Controls +- n.
session: Session +- nullSession] RETURNS [Handle];

3-27

3

3-28

File/session operations

CopyByName copies a file with a specified pathname relative to the specified directory.
inserting the copy into destination, and closing the copy. The filelO attribute of the copy is
returned.

NSFile.CopyByName: PROCEDURE [
directory: Handle, path: String, destination: Handle,
attributes: AttributeList +- nullAttributeList, sessio,,: Session +- nuliSession]
RETURNS [10];

MoveByName moves a file with a specified pathname relative to the specified directory
into destination.

NSFile.MoveByName: PROCEDURE [
directory: Handle. path: String, destination: Handle,
attributes: AttributeList +- nullAttributeList, session: Session +- nuIiSession);

OeleteByName deletes a file with a specified pathname relative to the specified directory.
If the pathname does not include a version number, the file with the lowest version
number is deleted.

NSFile.OeleteByName: PROCEDURE [
directory: Handle, path: String, session: Session +- nuIiSession);

GetAttributesByName fills attributes with the selected attributes of a file with a specified
pathname relative to the specified directory.

NSFile.GetAttributesByName: PROCEDURE [
directory: Handle, path: String. selections: Selections, attributes: Attributes,
session: Session +- nuIiSession);

ChangeAttributesByName changes the specified attributes of a file with a specified
pathname relative to the specified directory.

NSFile.ChangeAttributesByName: PROCEDURE [
directory: Handle, path: String. attributes: AttributeList.
session: Session +- nuIiSession);

ReplaceByName replaces the contents of a file having a specified pathname relative to a
specified directory with data from the supplied source.

NSFile.ReplaceByName: PROCEDURE [
directory: Handle, path: String. source: Source,
attributes: AttributeList +- nullAttributeList, session: Session +- nuIiSession);

RetrieveByName retrieves the contents of a file having a specified pathname relative to a
specified directory to the designated sink.

NSFile.RetrieveByName: PROCEDURE [
directory: Handle, path: String, sink: Sink, session: Session +- nuIiSession];

3.10 Errors

Filing Programmer's Manual 3

When a Filing operation is unable to complete successfully, it reports this fact by raising
one of the Mesa errors, NSFile.Error or Courier. Error. These errors are used to report any
condition that makes continued execution of a procedure impossible. For example, the
client may have specified incorrect arguments to a procedure, or some required resource
may be unavailable.

Note: Courier.Error may be raised by any filing operation when one of the operands is a
remote file or a remote file service is implied. Operations on local files only raise
NSFile.Error. Consult Pilot Programmer's Manual [26] for further details about Courier.Error.

NSFile.Error: ERROR [error: ErrorRecord);

NSFile.ErrorRecord: TYPE = RECORD [SELECTerrorType: ErrorType FROM
access = > [problem: AccessProblem).
attributeType. attributeValue = > [

problem: ArgumentProblem. type: AttributeType.
extendedType: ExtendedAttributeType E- LAsT[ExtendedAttributeType).

authentication = > [problem:AuthenticationProblem).
clearingHouse = > [problem:ClearinghouseProblem).
connection = > [problem: ConnectionProblem).
controlType, controlValue = > [problem: ArgumentProblem, type: ControIType],
handle = > [problem: HandleProblem].
insertion = > [problem: InsertionProblem).
range = > [problem: ArgumentProblem),
scopeType, scopeValue = > [problem: ArgumentProblem. type: ScopeType].
service = > [problem: ServiceProblem).
session = > [problem: SessionProblem].
space = > [problem~ SpaceProblem).
transfer = > [problem: TransferProblem).
undefined = > [problem: UndefinedProblem).
ENDCASE);

NSFile.ErrorType: TYPE = {
access. attributeType. attributeValue. authentication, clearingHouse. connection,
controlType, controlValue. handle. insertion, range, scopeType. scopeValue.
service. session, space. transfer. undefined};

The argument to NSFile.Error is a variant record, each arm of which defines a subclass
(NSFile.ErrorType) of error conditions. The specific problem is described by the fields of the
particular variant. For example, an ErrorType of handle indicates that something is
wrong with a file handle specified in the arguments of a procedure. The particular problem
with the file handle is specified by the problem field which is of type HandleProblem.

When an exceptional condition arises during execution of a procedure, the file system
makes every effort to undo the effects of the partial execution so that the file system
appears to the client as though the procedure had never been called. However, the file
system does not guarantee that such effects can always be reversed. Therefore, when an
error is raised, the client must be prepared for the possibility that the procedure was
partially executed. In any event, no files are lost unless deletion was requested.

3-29

3

3-30

File/session operations

3.10.1 Access errors

NSFile.ErrorRecord: TYPE = RECORD [SELECT errorType: ErrorType FROM
access = > [problem: AccessProblem1 •... 1;

NSFile.AccessProblem: TYPE = MACHINE DEPENDENT {
accessRightslnsufficient(O), accessRightslndetermi nate(1). fi leChanged(2),
fileDamaged(3). filelnUse(4), fileNotFound(5). fileOpen(6),
fileNotLocal(7)};

An errol' of type access may be raised by any procedure that requires access to a file. It
indicates that access to the file is not possible. The inaccessible file is not necessarily the
one whose handle was specified as an argument to the procedure call because some
procedures operate on additional files. For example, Delete deletes the descendants of a
specified file as well as the file itself.

The argument problem describes the problem in greater detail.

accessRightslnsufficient

accessRightslndeterminate

fileChanged

fileDamaged

filelnUse

. fileNotFound

fileOpen

fileNotLocal

The user does not have the access rights (NSFile.Access)
needed to satisfy the request, either because the access list
does not grant that access or because a handle's controls do
not permit that access. .

The file system could not determine whether the user has
the access rights needed to satisfy the request; e.g., a
Clearinghouse containing group-membership information
is inaccessible.

While the procedure was executing, the file changed in
such a way that execution could not continue; this
condition can occur during List if the ordering of the
directory changes.

A file was found to be internally damaged in some way, but
not badly enough to require shutdown of the file system.

Even after expiration of a timeout, the file system could
not acquire a lock needed to satisfy the request. A
conflicting lock on a handle to the file exists within
another session.

A file was not found in the context in which it was
expected.

During an attempt to move or delete a file, another file
handle for the file was found to exist in the same session.

An attempt was made to access a non-local file with an
operation which is implemented only for local files.
NSFileStream and NSSegment operations may never be
called with remote files.

Filing Programmer's Manual 3

3.10.2 Argument errors

There are argument error classes for several types of Filing procedure arguments:
attributes, controls, and scopes. A given argument error may be raised by any procedure
that has an argument of the corresponding type. For each argument type, there are two
error classes. The type-related error indicates that specifying that attribute (control,
scope) type resulted in a problem; the value-related error indicates that the attribute
(control, scope) type was legitimate, but the specified value caused a problem.

NSFile.ErrorRecord: TYPE == RECORD [SELECT errorType: ErrorType FROM
.•.• attributeType. attributeValue == > [

problem: ArgumentProblem. type: AttributeType.
extended Type : ExtendedA ttri bute Type +- LAsT[ExtendedA ttri bute Type]] •... J;

An error of type attributeType is raised when an attribute type specified in an
NSFile.AttributeList or NSFile.ExtendedSelections causes a problem. An error of type
attributeValue is raised when an attribute value specified in an NSFile.AttributeList causes
a problem. The argument type indicates the type of the offending attribute or the type of
the offending attribute value. If type has the value extended, then the argument
extendedType indicates the type of the offending extended attribute or the type of the
offending extended attribute value.

NSFile.ErrorRecord: TYPE == RECORD [SElECT errorType: NErrorType FROM
...• controlType. controlValue == > [

problem: ArgumentProblem, type: ControIType], ...];

Errors of type controlType and controlValue are not currently raised by a correctly
functioning file system.

NSFile.ErrorRecord: TYPE == RECORD [SELECTerrorType: ErrorType FROM
...• scopeType. scopeValue = > [problem: ArgumentProblem. type: ScopeType)];

NSFile.ScopeType: TYPE = MACHINE DEPENDENT {count(O), direction(1). filter(2). ordering(3)};

Errors oftype scope Type are not currently raised by a correctly functioning file system.

An NSFile.Error of type scopeValue (with problem equal to unimplemented) may be raised
if a designated scope's filter or ordering value is not implemented by the file system
containing the supplied file handle. The argument type indicates the type of the offending
scope value.

In each of the above error classes, the argument problem describes the problem in greater
detail.

3-31

3

3-32

File/session operations

NSFile.ArgumentProblem: TYPE = {
iliegal(O), disallowed(1), unreasonable(2), unimplemented(3), duplicated(4),
missing(S)};

illegal

disallowed

unreasonable

unimplemented

duplicated

missing

3.10.3 Authentication errors

The attribute, control, or scope value is never allowed; for
instance, a name attribute of length zero, a string
attribute with an invalid string format, a string attribute
whose length is greater than NSFile.maxNameLe·ngth, an
invalid position, or a filter containing an invalid string or
position.

The attribute type or value is sometimes allowed, but is
never allowed by this remote procedure.

The attribute type or value is sometimes allowed by the
procedure raising the error, but not in the context in which
it was supplied; for example, it may conflict with other
arguments.

The value is not supported by this implementation of the
file system; this condition can only occur for certain values
of the filter scope, ordering scope, and the ordering
attribute, but never occurs for types.

The attribute type is specified more than once m an
NSFile.AttributeList or NSFile.ExtendedSelections.

The attribute type is missing in a context in which it is
required; this condition can occur for certain attribute
types in NSFile.Open, for example.

An NSFile.Error of type authentication may be raised by NSFile.Logon, NSFile.LogonDirect,or
by any procedure that accepts an argument of type NSFile.Session. It indicates that there is
a problem communicating with the authentication service, that there is a problem with
the supplied identity, or a problem with the identity of the remote service.

NSFile.ErrorRecord: TYPE = RECORD [SELECT errorType: E"rrorType FROM
... , authentication = > [problem:AuthenticationProblemJ, ... J;

NSFile.AuthenticationProblem: TYPE = {
cannotReachAS, credentialsTooWeak, keysUnavailable, other,
simpleKeyDoesNotExist, strongKeyDoesNotExist, tooBusy};

cannotReachAS

credentialsTooWeak

The Authentication Service cannot be reached.

Stronger credentials are required for interaction with the
desired service.

Filing Programmer's Manual 3

keysUnavailable

other

simpleKeyDoesNotExist

strongKeyDoesNotExist

tooBusy

The Clearinghouse serving the domain in which the client
identity or service identity is registered is unavailable.

An unanticipated error in authentication occurred.

If the supplied client identity was validated by the client
prior to Logon, then this indicates that the service being
accessed is not registered with a simple key. If the client
identity was not vaiidated prior to Logon, then this could
also indicate that the client identity is not registered with
a simple key.

If the supplied client identity was validated by the client
prior to Logon, then this indicates that the service being
accessed is not registered with a strong key. If the client
identity was not validated prior to Logon, then this could
also indicate that the client identity is not registered with
a strong key.

The authentication service is currently too busy to serve
the authentication request.

The reader should consult Authentication Protocol [2] for further explanation of
authentication problem types.

3.10.4 Clearinghouse errors

An NSFile.Error of type clearingHouse may be raised by NSFile.LogonDirect, or by any
procedure that accepts a reference or an attribute list which may contain a service
attribute. It indicates that there is a problem communicating with the Clearinghouse
Service, that there is a problem with a supplied Clearinghouse name of a service, or that
the Clearinghouse entry for a service was not found.

NSFile.ErrorRecord: TYPE = RECORD [SELECTerrorType: ErrorType FROM
...• clearingHouse = > [problem:ClearinghouseProblemJ J;

NSFile.ClearinghouseProblem: TYPE = {
notAllowed. rejectedTooBusy. allDown. iIIegalOrgName. illegalDomainName.
illegalLocalName. noSuchOrg. nOSuchDomain. noSuchLocal, other,
wasUpNowDown};

notAllowed

rejectedTooBusy

allDown

A clearinghouse operation was prevented by access
controls.

The Clearinghouse service is too busy to service the
current Clearinghouse request.

The Clearinghouse server was unavailable and was needed
for the operation.

3-33

3

3-34

File/session operations

iIIegalOrgName

iIIegalDomainName

iIIegalLocalName

noSuchOrg

noSuchDomain

nOSuchLocal

other

wasUpNowDown

The organization portion of the supplied Clearinghouse
name has illegal length or illegal characters.

The domain portion of the supplied Clearinghouse name
has illegal length or illegal characters.

The local portion of the supplied Clearinghouse name has
illegal length or illegal characters.

The specified organization does not exist.

The specified domain does not exist in the specified
organization.

The specified local name does not exist in the specified
domain.

An unanticipated error in Clearinghouse interaction
occurred.

The Clearinghouse became unavailable during the course
of the operation.

The reader should consult Clearinghouse Protocol [8] for further explanation of
Clearinghouse problem types.

3.10.5 Connection errors

An NSFile.Error of type connection may be raised by any procedure that accepts an
argument of type NSFile.Sink or NSFile.Source. It indicates a problem in establishing the
connection for transfer of bulk data in a third-party transfer (see §3.8).

[Note: Because direct third-party transfers are not implemented In Services 8.0,
connection problems are not reported.]

NSFile.ErrorRecord: TYPE = RECORD [SELECT errorType: ErrorType FROM
•.• , connection = > [problem: ConnectionProblemJ, ... J;

NSFile.ConnectionProbJem: TYPE = MACHINE DEPENDENT {
-- communication problems
noRoute(O), noResponse(1), transmissionHardware(2), transportTimeout(3),
-- resource problems
tooManyLocaIConnections(4), tooManyRemoteConnections(5),
--remote program implementation problems
missingCourier(6), missingProgram(7), missingProcedure(8), protocoIMismatch(9),
parameterlnconsistency(10), invalidMessage(11), returnTimedOut(12),
-- miscellaneous
otherCaIlProbJem(177777B) };

Filing Programmer's Manual 3

The argument problem describes the problem in greater detail.

noRoute No route to the other party could be found.

noResponse The other party never answered.

transmission Hardware Some local transmission hardware was inoperable.

transportTimeout The other party responded but the connection was broken.

tooManyLocalConnections No additional connection is possible.

tooManyRemoteConnections The other party rejected the connection uttempt.

missingCourier The other party had no Courier implementation.

missingProgram The other party did not implement the bulk data program.

missingProcedure The other party did not implement the procedure.

protocol Mismatch The two parties have no Courier version in common.

parameterlnconsistency A protocol violation occurred in parameters.

invalid Message A protocol violation occurred in message format.

returnTimedOut The procedure call never returned.

otherCallProblem Some other protocol violation during a call.

3.10.6 Handle errors

An NSFile.Error of type handle may be raised by any procedure that takes an argument of
type NSFile.Handle. It indicates a problem with a supplied file handle.

NSFile.ErrorRecord: TYPE .. RECORD [SELECT errorType: ErrorType FROM
, ...• handle = > [problem: HandleProblemJ J;

NSFile.HandleProblem: TYPE = MACHINE DEPENDENT {
invalid(O). nuIlDisallowed(1). directoryRequired(2) obsolete (3). nuIlRequired(4)};

The argument problem describes the problem in greater detail.

invalid

nullDisallowed

An invalid file handle was specified; it may be a handle
that was already closed in the current session or it may be
a valid file handle in another session.

The null handle was specified as a value for an argument
that requires a valid handle to a file.

3-35

3

3-36

File/session operations

di rectoryRequi red

obsolete

null Required

3.10.7 Insertion errors

A handle to a non-directory was specified as a val ue for an
argument to a procedure (e.g., NSFile.List, NSFile.Store) that
requires a handle to a directory.

A handle for a non-local file is no longer valid because of a
communication failure between the client's machine and
the machine containing the file. The client should close the
obsolete file handle and reopen it. This error can happen
for non-local files only.

A non-null file handle was specified as an argument where
a null handle should have been specified. This error will
occur when calling a pathname operation (like
NSFile.OpenByName) with a qualified pathname and a non­
null directory handle.

An NSFile.Error of type insertion may.be raised by any procedure that inserts a file into a
directory whether the file being inserted is a new file or is being moved from elsewhere. It
indicates that the directory could not accommodate the file. It may also be raised by
NSFile.ChangeAttributes if the file's new name or version number cannot be accommodated.

NSFile.ErrorRecord: TYPE = RECORD [SELECTerrorType: ErrorType FROM
...• insertion = > [problem: InsertionProbleml •.•.];

NSFile.lnsertionProblem: TYPE = {
positionUnavai lable(O). fileNotUnique(1). looplnHierarchy(2)};

The argument problem describes the problem in greater detail.

positionUnavailable

fileNotUnique

looplnHierarchy

The directory is ordered by position, and the density of files
in the area surrounding the specified position is so great
that no point for insertion is available; the directory must
be reorganized (as described in §6.3.6).

The directory already contains a file with the same name
(if the directory's childrenUniquelyNamed attribute is
TRUE) or the same name and version (if the directory's.
childrenUniquelyNamed attribute is FALSE). This error will
also be raised if the file system finds that it must assign a
value of LAST [CARDINAL] to a file because there already
exists a file of the same name with the highest legal
version number (Le., LAST [CARDINAL] - 1).

The directory is the same as, or a descendant of, the file
being moved or copied.

Filing Programmer's Manual 3

3.10.8 Service errors

An NSFile.Error of type service may be raised by LogonDirect, Logoff, or Open, and when
creating a temporary file using Create, Copy, Deserialize, or Store. It indicates that the
file system encountered a problem while attempting to create or destroy a session, possibly
on a remote file service.

NSFile.ErrorRecord: TYPE = RECORD [SELECT errorType: ErrorType FROM
...• service = > [problem: ServiceProblem] •...];

NSFile.ServiceProblem: TYPE = MACHINE DEPENDENT { .
cannotAuthenticate(O). serviceFull(1). serviceU navai lable(2). sessionl nUse(3).
serviceUnknown(4)};

The argument problem describes the problem in greater detail.

cannotAuthenticate

serviceFull

serviceUnavailable

sessionlnUse

serviceUnknown

3.10.9 Range errors

The specified file service is unable to determine whether
the user's credentials are valid; this could occur if the file
service needs to contact some service that is unavailable.

This operation would cause the number of sessions on the
specified file service to exceed an implementation­
dependent limit.

The remote file service is currently unavailable for use by
new clients.

The client may not log off because another NSFile
procedure is still executing in the session. This can occur if
the client attempts to log off within a call-back procedure
(a source data stream procedure, a sink data stream
procedure, AttributesProc, or from a separate process).

The specified file service is unknown. This error is raised if
there is no open volume at the specified system element
having the specified service name.

An NSFile.Error of type range is used to report errors on remote random access operations.
Since random access to remote files is not implemented in Services 8.0, this error is not
currently raised.

NSFile.ErrorRecord: TYPE = RECORD [SELECTerrorType: ErrorType FROM
..•• range = > [problem: ArgumentProblemJ J;

See §3.10.2 for a description of ArgumentProblem types.

3-37

3

3-38

File/session operations

3.10.10 Session errors

An NSfile.Error of type session may be raised by any procedure which accepts a session
handle argument. It indicates that the session handle is invalid.

NSfile.ErrorRecord: TYPE • RECORO [SELECT errorType: ErrorType FROM
•••• session. > [problem: SessionProblem), ••• J;

NSFile.SessionProblem: TYPE. MACHINE DEPENDENT {sessionlnvalid(O)};

There is currently only one session problem type, sessionlnvalid. It indicates that the
passed session handle is not valid: The client may have already called Logoff or the
session may have been forcibly terminated by the file system.

3.10.11 Space errors

An NSFile.Error of type space may be reported by any procedure that must allocate physical
space for the storage of information. It indicates that the request for space could not be
satisfied.

NSfile.ErrorRecord: TYPE • RECORD [SELECT errorType: ErrorType FROM
...• space. > [problem: SpaceProblemJ •..• J;

NSfile.SpaceProblem: TYPE • MACHINE DEPENDENT {
allocationExceeded(O). attributeAreaFull(1). mediumFull(2)};

The argument problem describes the problem in greater detail.

allocation Exceeded

attributeAreaFull

mediumFull

3.10.12 Transfer errors

The space required by the procedure caused some
ancestor's subtree size limit to be exceeded.

There was not enough space in the attribute area to satisfy
the request; the limits described in §6.3.7 would have been
exceeded.

There was not enough space on the appropriate file service
to satisfy the request.

An NSFile.Error of type transfer may be reported by any procedure that sends data to a sink
or receives data from a source. It indicates that a problem occurred during the transfer.

NSfile~ErrorRecord: TYPE. RECORD [SELECT errorType: ErrorType fROM
...• transfer. > [problem: TransferProblem]];

NSfile.TransferProblem: TYPE. MACHINE DEPENDENT {
aborted(O). checksumlncorrect(1), formatlncorrect(2) •.
noRendezvous(3). wrongDirection(4)};

Filing Programmer's Manual 3

The argument problem describes the problem in greater detail.

aborted

checksumlncorrect

formatl ncorrect

noRendezvous

wrong Direction

3.10.13 Undefined errors

The sink or source's procedure aborted the transfer, or the
bulk data transfer was aborted by the party at the other
end of the sink or source's stream. If the party aborting the
transfer is another NSFile operation, it reports an
NSFile.Error or Courier. Error describing the nature of the
problem.

After transfer of a file's content to a sink, the checksum
computed over the data did not match the file's stored
checksum attribute, or after transfer of a file's content
from a source, the checksum computed over the data did
not match the checksum attribute specified in the
attribute list to the operation.

The bulk data received from the source did not have the
expected format; for instance, Deserialize only accepts files
in the serialized file format.

The identifier from the other party never appeared.

The other party wanted to transfer the data in the wrong
direction.

An NSFile.Error of type undefined may be reported by any procedure. It indicates that an
implementation-dependent problem occurred that could not be reported by another error.
This error is normally reported only when the local or remote file service is
malfunctioning. The client has no way of recovering from undefined errors.

NSFile.ErrorRecord: TYPE = RECORD [SELECT errorType: ErrorType FROM
... , undefined = > [problem: UndefinedProblem], ...];

The argument problem describes the problem in greater detail and is uninterpretable.

NSFile.UndefinedProblem: TYPE = CARDINAL;

3-39

3 File/session operations

3-40

4

•

Segment/content operations

NSSegment: DEFINITIONS ... ;

Every file is divided into segments, which are simply disjoint, independently-growable
sections of a file. Every segment has a unique identifier associated with it, its 10. All files
are created with a default segment (defaultID), which is always present and cannot be
renumbered or deleted.

NSSegmentJD: TYPE = CARDINAL;
NSSegment.defaultID: 10 = 0;
NSSegment.nuIIlD: 10 = LAST [10];

NSSegment provides procedures useful in operating on the segments of a file.

Note: NSSegment operations may operate on local files only. Any attempt to operate on a
remote file will cause NSFile.Error [access[fileNotlocal] to be raised.

4.1 Finding and listing segments of a file

FindUnused is called to discover an unused segment in a file.

NSSegment.FindUnused: PROCEDURE [
file: NSFile.Handle, startlD: 10 ~ defaultlD, session: Session ~ nuliSession]
RETURNS [10];

Arguments:

Results:

Errors:

file refers to the handle of a file in which an unused segment is to be
found; startlD specifies a minimum value for the identifier of the
unused segment (and need not describe an existing segment); session
is the client's session handle.

The returned 10 refers to the first unused segment whose segment
identifier is greater than or equal to startlD.

NSSegment.Error [noSuchSegment], and NSSegment.Error
[tooManySegments] may be raised.

GetNext enumerates the set of segments comprising a file.

4-1

4 Segment/content operations

NSSegment.GetNext: PROCEDURE [
file: NSFile.Handle. currentSegment: lOr session: Session +- nullSession] RETURNS [10];

Arguments:

Results:

file identifies the file whose segments are to be enumerated;
(urrentSegment identifies the segment from which the enumeration is
to proceed; session is the client's session handle.

The returned 10 refers to the segment after (urrentSegment in the
enumeration. ..

GetNext is a stateless enumerator. To begin the enumeration, the caller specifies either
nulllD (in which case defaultlD is included in the enumeration) or defaultlD. The
enumeration is complete when nulllD is returned.

Errors: NSSegment.Error [noSuchSegment] may be raised.

4.2 Adding, deleting, and moving segments

4-2

The client may add segments to a file by using NSSegment.Add.

NSSegment.Add: PROCEDURE [
file: NSFile.Handle. segment: 10. size: PageCount. session: Session +- null Session];

Arguments:

Errors:

file refers to the handle of a file to which a new segment is to be added;
segment is an identifier for the new segment; size is the new segment
size in pages; session is the client's session handle.

NSSegment.Error[invalidSegmentIO],
NSSegment.Error[segmentAl readyExists],
NSSegment.Error[tooManySegments], and
NSFile.Error[[space[mediumFull]]] may be raised.

The maximum number of non-default segments that may be added to a file is defined by
the read-only constant, maxNumberOfSegments.

NSSegment.maxNumberOfSegments: READONLY CARDINAL;

The client may remove any segment (except the default) by calling NSSegment.Delete.

NSSegment.Delete: PROCEDURE [
file: NSFile.Handle.segrrient: 10, session: Session +- nuIlSession];

Arguments:

Errors:

file identifies the file fr~m which a segment is to be removed; segment
is the identifier of the segment to be deleted; session is the client's
session handle.

NSSegment.Error[illegaIForDefault], and
NSSegment.Error[noSuchSegment] may be raised.

It is also possible for a client to change the segment identifier associated with a particular
segment (except the default). This is done by invoking NSSegment.Move.

Filing Programmer's Manual 4

NSSegment.Move: PROCEDURE [
file: NSFile.Handle, oldSegment. newSegment: 10, session: Session ~ nuliSession);

Arguments: file identifies the file which contains the segment of interest:
old Segment is the segment's current identifier; newSegment is the
segment's new identifier; session is the client's session handle.

Errors: NSSegment.Error[illegaIForoefault),
NSSegment.Error[invalidSegmentlo),
NSSegment.Error[noSuchSegmentl. and
NSSegment.Error[segmentAlreadyExists) may be raised.

No error is raised if oldSegment and newSegment are the same, provided that the
segment actually exists and is not the default segment.

NumberOfSegments returns the total number of segments in a file, including the default
segment. Thus calling NumberOfSegments always returns a result greater than or equal
to one.

NSSegment.NumberOfSegments: PROCEDURE [
file: NSFile.Handle, session: Session ~ nullSession] RETURNS [CARDINAL];

Arguments: file refers to the file handle of-interest; session is the client's session
handle.

Results: The result represents the total number of segments comprising file.

4.3 Accessing and modifying segment sizes

The client may obtain the size of an existing segment with GetSizelnBytes or
GetSizelnPages and change the size of a segment with SetSizelnBytes or SetSizelnPages.

NSSegment.ByteCount: TYPE = LONG CARDINAL;
NSSegment.PageCount: TYPE = LONG CARDINAL;

NSSegment.GetSizelnBytes: PROCEDURE [
file: NSFile.Handle, segment: 10 ~ defaultlO, session: Session ~ nuliSession)
RETURNS [ByteCount];

Arguments: file is the handle of a file which contains the segment of interest;
segment is the identifier of a segment whose size in bytes is to be
determined; session is the client's session handle.

Results: The returned ByteCount is the size of the specified segment.

Errors: NSSegment.Error[noSuchSegment] may be raised.

NSSegment.SetSizelnBytes: PROCEDURE [
file: NSFile.Handle, bytes: ByteCount, segment: 10 ~ defaultlo,
session: Session ~ nuIlSession];

4-3

4 Segment/content operations

Arguments:

Errors:

file is the handle of a file which contains the segment of interest; bytes
is the new size which the segment is to have (must be a multiple of 512
if not the default segment); segment is the identifier of a segment
whose size is to be changed; session is the client's session handle.

NSSegment.Error[noSuchSegment] and NSFile.Error[[space[mediumFull]]]
may be raised.

NSSegment.GetSizelriPages: PROCEDURE [
file: NSFile.Handle, segment: 10 oE- defaultlO, session: Session oE- nuliSessionl
RETURNS [PageCount);

Arguments:

Results:

Errors:

fi"le is the handle of a file which contains the segment of interest;
segment is the identifier of the segment· whose size is to be
determined; session is the client's session handle.

The returned PageCount is the size ofthe specified segment in pages.

NSSegment.Error[noSuchSegmentl may be raised.

NSSegment.SetSizelnPages: PROCEDURE [
file: NSFile.Handle. pages: PageCount, segment: 10 oE- defaultlO,
session: Session oE- nuIiSession);

Arguments:

Errors:

file is the handle of a file which contains the segment of interest; pages
is the new size which the segment is to have; segment is the identifier
of the segment whose size is to be changed; session is the client's
session handle.

NSSegment.Error[noSuchSegmentl. and
NSFile.Error[[space[mediumFullJ)] may be raised.

4.4 Mapping

4-4

NSSegment provides a number of procedures to map file segments to Pilot spaces and to
transfer data between file segments and spaces.

NSSegment.Map: PROCEDURE [
origin: Origin, access: NSFile.Access oE-NSFile.readAccess.
usage: Space. Usage oE- Space.unknownUsage,
life: space.Life oE- file,
swapUnits: Space.SwapUnitOption oE- space.defaultSwapUnitOption,
session: Session oE- nuliSession]
RETURNS [mapUnit: Space.lnterval];

NSSegment.MapAt: PROCEDURE [
at: space.lnterval, origin: Origin, access: NSFile.Access oE-NSFile.readAccess,
usage: Space. Usage oE-Space.unknownUsage,
life: Space. Life oE- file,
swapUnits: Space.SwapUnitOption oE- space.defaultSwapUnitOption,

Filing Programmer's Manual

session: Session ~ nuliSession]
RETURNS [mapUnit: Space.lnterval];

NSSegment.Copyln: PROCEDURE [
pointer:LONG POINTER, origin: Origin, session: Session ~ nuliSession)
RETURNS [countRead: PageCount);

NSSegment.CopyOut: PROCEDURE [
pointer:LONG POINTER, origin: Origin. session: Session ~ nuliSession)
RETURNS [countWntten: PageCount);

NSSegment.MakeWritable: PROCEDURE [
interval: space.lnterval, file: NSFile.Handle, segment: 10 ~defaultIO,
session: Session ~ nuIiSession);

4

These procedures have the same semantics as the corresponding procedures of the Pilot
Space interface, and raise the same errors, with the following exceptions:

• Instead of a Space.Window, the NSSegment version of Map, MapAt, Copyln, and
CopyOut require an NSSegment.Origin, defined as follows:

NSSegment.Origin: TYPE = RECORD [
file: NSFile.Handle, base: PageNumber,
count: PageCount, segment: 10 ~ defaultIO);

• Map and MapAt take an NSFile.Access parameter to determine whether writing is to be
permitted in the mapped space. If access[read) is FALSE, NSFile.Error[[access
[accessRightslnsufficient]]] is raised.

• MakeWritable accepts an NSFile.Handle and an NSSegment.lO as well as a space.lnterval.

GetBase obtains the page number of the base of the window that is mapped to a given
space (i.e., the number returned equals origin.base, if origin was the NSSegment.Origin
mapped to the given space).

NSSegment.GetBase: PROCEDURE [
pointer:LONG POINTER, session: Session ~ nuliSession] RETURNS [PageNumber];

NSSegment.PageNumber: TYPE = LONG CARDINAL;

Arguments:

Results:

Errors:

pointer is the long pointer to the space interval of interest; session is
the client's session handle.

the returnedPageNumber is the base of the window mapped to the
space interval specified by pointer.

Space.Error[invalidParameters] may be raised.

4-5

4 Segment/content operations

4.5 Errors

Any NSSegment operation may raise the following error. In addition, some operations
may raise other signals, which are docu~ented with each operation.

NSSegment.Error: ERROR [type: ErrorType);

NSSegment.ErrorType: TYPE = {
iIIegalForDefault, improperByteCount, invalidSegmentlD,
nOSuchSegment. segmentAl readyExists, tooManySegments};

The argument type describes the problem in greater detail:

iIIegalForDefault

improperByteCount

invalidSegmentlD

noSuchSegment

segmentAlreadyExists

The default segment cannot be moved or deleted.

A byte count was specified for a non-default segment that
was not a mUltiple of 512.

The specified segment identifier is not valid.

No segment with the specified identifier was found.

A specified segment identifier is already in use.

tooManySegments An attempt was made to exceed the maximum number of
segments allowed per file.

4-6

5

Positionable stream operations

NSFileStream: DEFINITIONS ... ;

The NSFileStream interface provides a positionable stream mechanism whetOeby the
content of local files may be randomly accessed and modified. Once an NSFileStream.Handle
is created for a file, the operations provided by the Pilot Stream interface may be used to
manipulate the stream. In particular, the operation Stream.SetPosition may be used to
access data at any byte position in the stream. See the Pilot Programmer's Manual [26) for
a detailed description of the Stream facility.

Note: In Services 8.0, the NSFileStream facility may be used to access the content of local
files only.

5.1 Creating the file stream

To access the content of a file via a positionable file stream, the client must first obtain a
Handle for the stream using the Create operation.

NSFileStream.Handle: TYPE = RECORD [Stream.Handle];

NSFileStream.Create: PROCEDURE [
file: NSFile.Handle, doseOnDelete: BOOLEAN +- TRUE.
options: Stream.lnputOptions +- Stream.defaultlnputOptions,
session: NSFile.Session]
RETURNS [fileStream: Handle];

Arguments:

Results:

Access:

file is a handle for the file for which the stream is to be created. If
doseOnDelete is TRUE then the file is closed automatically when the
stream is deleted. options give the stream input options as defined by
the Pilot Stream interface, and session is the client's session handle.

A stream handle is created for file and returned as fileStream. The
client must call Stream.Delete to release the stream when he is through
accessing it.

Create requires read access to file. If data is to be modified via the
stream, the client should also have write access to file.

5-1

5 Position able stream operations

Errors: NSFile.Error is raised with type handle or session if the client file handle
or session handle are invalid. NSFile.Error [access[fileNotLocal)) is
raised iffite is not a local file.

Once the client has obtained a file stream handle for a file, he may operate on the content
of the file using any of the operations defined in the Pilot S.tream facility for which he has
the proper access. Operations which modify the contents of the file require both read and
write access to the file. Note that the controls the client specified for the file when opening
it remain in effect when accessing the content of the file via the file stream, and are .used
to determine the client's access to the file.

Any operation performed on the file stream which writes data to the stream may cause
NSFile.Error to be raised with type space[mediumFul1] if the operation would cause the
amount of free space on the volume to be exceeded, or space[aliocationExceeded] if the
subtreeSizeLi mit of an ancestor of the file would be exceeded by performing the operation.

Note: The NSFileStream mechanism may be used to access only the default segment of a
file. Content of segments other than the default may be accessed only by the NSSegment
facility (see section 4).

When the client is through accessing the file stream, he must call Stream. Delete to release
the resources allocated to the stream. If the client specified that the file should be closed
upon deletion of the file stream, then the file is closed and the corresponding file handle is
no longer valid. The client should make no attempt to close the file or otherwise operate on
it in any way using NSFile operations until the file stream for that file is deleted.

5.2 Getting and setting the length of the stream

5-2

The GetLength operation allows the client to obtain a count of the data bytes in a file
stream. Note that this length is not necessarily equal to the size of the underlying file. (If
the client is appending data to a file stream, for example, the actual size of the file may be
smaller than the number of data bytes in the file stream until the stream is deleted.) The
client may insure equivalence between the data in the file and the data in the stream at
any time by calling the operation Stream.SendNow.

NSFileStream.GetLength: PROCEDURE [
fileStream: Handle] RETURNS [lengthlnBytes: LONG CARDINAL];

Arguments: fileStream is the stream handle whose length is desired.

Results: lengthlnBytes is the number of data bytes in fileStream.

Access: GetLength requires read access to the file underlying fileStream.

Errors: None.

NSFileStream.SetLength may be used to set the length of data bytes in the file stream. This
length may be set to a value smaller than the curr~nt length, thereby truncating the
stream (and the underlying file). The file may be extended by setting the length of the file
stream to a value larger than the current value. This truncation or extension of the file
takes place immediately.

F~ling Programmer's Manual 5

NSFileStream.SetLength: PROCEDURE [fileStream: Handle,lengthlnBytes: LONG CARDINAL);

Arguments:

Results:

Access:

Errors:

fileStream is the file stream handle whose length is to be set,
lengthlnBytes is the number of data bytes to which the length should
be set.

The number of data bytes in fileStream is set to lengthlnBytes. The
size of the underlying file is also set to lengthlnBytes.

SetLength requires both read and write access to the file underlying
fileStream.

NSFile.Error may be raised with type space[mediumFull] if this would
cause the amount of free space on the volume to be exceeded, or
space[aliocationExceeded) if the subtreeSizeLimit of an ancestor of the
file would be exceeded.

5.3 Miscellaneous operations

The NSFile.Handle underlying a file stream may be obtained using the procedure
NSFileStream.FileFromStream. This handle is the same one used to create the file stream and
is valid only in the session used to create the stream.

NSFileStream.FileFromStream: PROCEDURE [
fileStream: Handle) RETURNS [file: NSFile.Handle);

Arguments:

Results:

Errors:

fileStream is the stream handle whose underlying NSFile.Handle is to be
obtained. .

file is a copy of the handle for the file from which fileStream was
created.

None.

The client may determine if he is positioned past the last byte of the data in the file stream
by calling the operation NSFileStream.EndOf.

NSFileStream.EndOf: PROCEDURE [fileStream: Handle) RETURNS [atEnd: BOOLEAN);

Arguments:

Results:

Errors:

fileStream is the handle for the stream to be checked.

atEnd is returned as TRUE if the file stream is positioned past the last
byte of the data, and FALSE if not.

None.

5-3

5. Positionable stream operations

5-4

6

Attributes

An attribute is a data item that is associated with a file. Any information associated with a
file which is not a part of the file's content is contained in the file's attribu~~s. Attributes
may help to identify the file so that it can be distinguished from other files, to describe the
structure or behavior of the file, to record information about certain events in the life of
the file, or to perform any other desired function.

6.1 Attribute model

Every attribute has an attribute type which identifies the attribute. Certain types are
defined and supported by the file system. Additional types may be defined by the client.
Types to be defined in this way must be allocated from ranges assigned by the manager of
Filing. A client or application is the type owner of attribute types within an assigned
range.

Not every attribute is meaningful for all files. For example, directory-related attributes
have no meaning for files that are not directories. Su·ch attributes may not be specified
when they are inappropriate, and for non-directory files these attributes always have
default values when examined.

The file system imposes a limit on the total amount of attribute data which may be stored
in a single file. This limit is 32,768 sixteen-bit words.

6.2 Classes of attributes

Since attributes serve a wide variety of purposes, they exhibit a variety of behaviors.
However, certain classifications are helpful in pointing out similarities between
attributes.

6.2.1 Interpreted vs. uninterpreted

Many attributes have a particular meaning to the file system, and specifying such an
attribute results in a defined behavior. These attributes are said to be interpreted. All
other attributes are uninterpreted, or client-defined (also called extended attributes).

6-1

6

6-2

Attributes

Most interpreted attributes are normally maintained by the file system: the value of an
interpreted attribute may change even when it has not been specified during a procedure
call, as a side-effect of that procedure. Various restrictions are imposed on the use of an
interpreted attribute in certain procedures. In general a client cannot always expect an
interpreted attribute to remain unchanged during arbitrary procedure calls.

Uninterpreted attributes are defined by the client. An uninterpreted attribute should
have an established data type defined by the client, but the file system does not know what
this data type is and therefore cannot enforce it. When an uninterpreted attribute is
specified during a procedure call, it is stored with the file. The values of uninterpreted
attributes do not change except when they are changed explicitly by a client.
U ninterpreted attributes may be passed to any procedure that accepts attributes. The
value of an uninterpreted attribute is always exactly the value to which it was explicitly
set by the client.

6.2.2 Environment vs. data

An environment attribute describes the relationship of a file to its environment such as its
name or parent directory. A data attribute describes aspects of the file that are contained
entirely within the file. This distinction is useful because it determines many of the
differences in attribute behavior. For example, the name and parentlD of a file are
environment attributes, while sizelnBytes is a data attribute.

Data attributes are tightly bound to a file. They may.be thought of as extensions of the
file's content. Data attributes are always carried along wnen a file is moved, copied, or
deserialized. They may not be explicitly changed during procedures which change the
file's environment but not the file itself. In addition, data attributes may not be used to
identify a file when opening it.

Environment attributes are much more loosely bound to a file. Environment attributes
may be thought of as part of the file's parent directory. It is common to want the values of
these attributes to change when a file's context changes, as in moving, copying, or
deserializing. Some environment attributes may be used to identify a file when opening it.
For example, filelD, name, and version are environment attributes. An uninterpreted
attribute may be considered a data or an environment attribute depending on the client's
use of the attribute.

6.2.3 Primary vs. derived

A primary attribute is an attribute that carries information for which the attribute is the
only source; name and ordering are primary attributes.

A derived attribute carries information that is derived from other characteristics of the
file. For example, numberOfChildren records the number of children in a directory, and
sizelnBytes records the length of a file's default segment.

Filing Programmer·s Manual 6

6.3 Attribute descriptions

This section defines each attribute supported by NSFiling. Each definition provides a
description of the meaning and purpose of the attribute, the Mesa definition, significant
values of the attribute type, a description of those values, and a statement of where the
attribute may legally be specified.

NSFile.AttributeType: TYPE = MACHINE DEPENDENT{
-- protocol-documented
checksum(O), childrenUniquelyNamed(1), createdBy(2), createdOn(3),
fileID(4), isDirectory(5), isTemporary(6), modifiedBy(7), modifiedOn(8),
name(9), numberOfChiidren(10), ordering(11), parentID(12), position(13),
readBy(14), readOn(15), sizelnBytes(16), type(17), version(18),
-- protocol-undocumented
accessList(19), defaultAccessList(20), pathname(21) ,
--locally interpreted
service(22), backedUpOn(23), filedBy(24), filedOn(25), sizelnPages(26),
subtreeSize(27). subtreeSizeLimit(28),
-- other
extended(29)};

AttributeType enumerates the attributes supported by the file system.

6.3.1 Identity attributes

Identity attributes serve to identify a file. They are the attributes that would typically be
used to.specify a file when operating on it.

NSFile.Attribute: TYPE = RECORD [...• filelD = > [value: 10], ...];

NSFile.lD: TYPE [5];

filelD The filelD attribute unambiguously and uniquely identifies a file
within a service. It is not unique over all space and time, but only
within a given service.

NSFile.nuIlID: 10 = [nuIIlDRepresentation];

NSFile.nuIllDRepresentation: ARRAY [O .. SIZE[IDJ) OF UNSPECIFIED = [0, O. O. 0.0];

The filelD attribute names a file within a service independent of its parent directory. The
value for a given file is guaranteed to remain constant as long as the file remains on the
same service. The filelD of a file cannot be explicitly changed by the client. The
distinguished value of this attribute, nuli/O, is never assigned to any file.

NSFile.Attribute: TYPE = RECORD [...• service = > [value: Service], ... J;

NSFile.Service: TYPE = LONG POINTER TO ServiceRecord;

6-3

6

6-4

Attributes

NSFile.ServiceRecord: TYPE = RECORD [
name: NSName.NameRecord,
systemElement: SystemElement +- nuIiSystemElement);

NSFile.SystemElement: TYPE = System.NetworkAddress;

service The service attribute records the physical location of a file. This
value consists of two parts: the name of the service and the
network address for the processor where the file physically resides. .
Both parts are needed to identify the physical location of the file
since more than one file service can be located on a given system
element.

NSFile.nuIiService: Service +- LONG [NIL];
NSFile.defaultService: READONLY Service;

For convenience, the client can set a defaultService to be used in operations where an
explicit service is not specified or where the nuliService is specified. The defaultService is
set using NSFile.SetDefaultService (see §3.1.6).

NSFile.localSystemElement: READONL Y System Element;

NSFile.nuIiSystemElement: SystemElement = System.nuIiNetworkAddress;

The read-only variable, localSystemElement contains the value of the systemElement
portion of the service attribute for all files on local services. The special constant value,
nuliSystemElement may be used in those contexts where the system element address of a
service is to be filled in by the file system. When nuliSystemElement is specified, the file
system will look up the name of the service in the Clearinghouse to obtain its system
element address.

NSFile.String: TYPE = NSString.String;

NSFile.Attribute: TYPE = RECORD [0 0 0, name = > [value: String], .. 0];

name The name attribute is the human-sensible name assigned to the
file. This name may be used to specify the file during filing
operations, or it may merely be a human-sensible description.

The name of a file is not necessarily unique within its parent. However, the name-version
pair is always unique within a parent. No name attribute may have zero length. It is also
recommended that it not contain any of the reserved characters: , (comma), (,), t, !, *, #, '
(apostrophe). Capitalization is ignored when names are compared.

NSFile.Attribute: TYPE = RECORD [000' pathname = > [value: String], 0 • 0];

pathname The pathname attribute of a file is the concatenation of the name
and version attributes of each of that file's ancestors, beginning
with the root file of the service on which the file resides. The name
of each file is separated from the version number by the
NSFileNameoversionSeparator, and name-version pairs in the
pathname are separated from each other by the

Filing Programmer"s Manual 6

NSFileName.nameVersionPairSeparator. (See section 7 for full
details on pathname syntax.)

The pathname attribute of a file may be used during by-name operations (such as
NSFile.OpenByName) as a specification of the file of interest.

NSFile.Attribute: TYPE = RECORD [... , version = > [value: CARDINAL], •..];

version The version attribute distinguishes files having the same name
attribute within a directory. The name-version pair is always
unique across all children of a directory.

This attribute may be specified by the client whenever a file is added to a directory, for
example, during NSFile.Create. Ordinarily, however, it is omitted, and the new file is
assigned a version number by the file system. If there are files in the specified directory
with the same name as the new file, the assigned version number is one greater than the
highest version number associated with any of those files. If there are no such files, a
version number of one is assigned.

When used to identify a file, if lowestVersion or highestVersion is specified, the file to be
accessed is the one within the directory having the specified name and the lowest or
highest version number, respectively.

NSFile.highestVersion: CARDINAL = LAST[CARDINAL];

NSFile.lowestVersion: CARDINAL. 0;

Because an error is reported when the client attempts to create a file with a non-unique
name-version pair, a client may not specify either lowestVersion or highestVersion when
creating a file. Within a filter, lowestVersion and highestVersion may be specified but
only when the order of enumeration (in procedures Find or List) is by the name attribute.

Note: In Services 8.0, the constants lowestVersion and highestVersion are not allowed
within filters.

6.3.2 File attributes

File attributes describe basic characteristics of a file. Generally, they are attributes that
govern the interpretation of the file, or that describe the file's relationship with its parent
directory.

NSFile.Attribute: TYPE = RECORD [... , checksum = > [value: LONG CARDINAL], ...];

checksum The checksum attribute of a file helps to verify the validity of the
content of the file. It is intended to detect file damage that may
occur while the file is stored by the file system.

The file system computes' a checksum whenever the content of a file is transferred. This
occurs in Store, Retrieve, Replace, Serialize, and Deserialize. When the content is
transferred, the computed value is saved in the checksum attribute. If the client has

6-5

6

6-6

Attributes

specified a value for the attribute, it is compared to the computed value and an error is
reported if there is a mismatch.

A checksum is a ones-complement, add-and-cycle sum computed over the sixteen-bit
words comprising a file's content. It is calculated by initializing it to zero and for each
successive data word, adding the word to the sum (using ones-complement addition),
performing a left cycle of the result. If an odd number of bytes is involved, a last byte of
zero is assumed for purposes of the checksum computation. If the result is the ones­
complement value minus zero (177777B), it is converted to plus zero (OB) to avoid conflict
with the unknownChecksum value.

NSFile.unknownChecksum: CARDINAL = Checksum.nuIiChecksum;

If the checksum is not known because, for example, it was never computed after a file's
content was initialized or changed, the value of the checksum attribute is set to
unknownChecksum. The client may also set this value explicitly via ChangeAttributes
(see §6.6.1). Any computed value of checksum is always considered to match
unkn6wnChecksum. It is permissible for the client to set the value of the checksum
attribute to unknownChecksum to avoid checksum validation.

NSFile.Attribute: TYPE = RECORD [0 •• ,type = > [value: Type], 0 0 •];

NSFile.Type: TYPE = LONG CARDINAL;

. type The type attribute of a file describes the nature of the conte~t or
attributes of the file in order to communicate to potential users
how the file is to be interpreted.

A client or application may define types for files of his own that he wishes to distinguish.
Types to be defined in this manner must be allocated from ranges assigned by the
manager of Filing. A number of defined types can be found in the NSAssignedTypes
interface (see §6.4). Clients are encouraged to use these types to identify files that have the
specified characteristics in order to promote information sharing.

The file system interprets neither the type nor the content of a file. In particular, the type
attribute may not be used to determine whether a file is a directory or a non-directory.
This information is determined by the isDirectory attribute.

NSFile.Attribute: TYPE = RECORD [0 0 0, isDirectory = > [value: BOOLEAN], 000];

isDirectory The isDirectory attribute of a file indicates whether the file is a
directory or a non-directory. Certain procedures may not be
applied to a file that is a non-directory. Directories cannot be
temporary files.

NSFile.Attribute: TYPE = RECORD [00.' isTemporary = > [value: BOOLEAN], ...];

isTemporary The isTemporary attribute of a file indicates whether the file is
temporary or permanent. A temporary file is a file which is not a
directory and which has no parent directory. Such a file is deleted
when all file handles to it are closed. A permanent file resides in a

Filing Programmer's Manual 6

directory and is not deleted until there is an explicit request to do
so.

NSFile.Attribute: TYPE = RECORO [... , parentlO = > [value: 10] •...];

parenti 0 The parentlD attribute of a file is equal to the filelD attribute of the
file's parent. For temporary files and the root file, this attribute
always has the value nuHlO.

NSFile.Attribute: TYPE = RECORD [... , position = > [value: Position], ... J;

NSFile.Position: TYPE. Words;

position The position attribute of a file specifies a file's position within its
parent directory. It may be used to indicate starting and ending
points for listing and locating files in a directory, or to specify the
insertion point when creating a file in a directory that is ordered
by position.

A position defines a point within the linear span of a directory at which there is at most
one file. A position value remains valid even if the file to which it applies is moved or
deleted. The position then refers to the point where the file resided. However, a position
value is tied to the ordering of the directory into which it points. It cannot be used after the
directory has been reordered (by changing its ordering attribute) and it cannot be used to
specify a position within any other directory.

The value of a position is uninterpretable by the client. Because the internal structure of
positions is private, the client may not compare positions, not even for equality.

Positions exist in several flavors. Each is dependent on the ordering on which it is based
and may not be applied to any other ordering. For the purpose of this description assume
the sort order to mean the ordering defined by a directory's ordering attribute.

The operation NSFile.GetAttributes returns a position applicable to the sort order of a file's
parent (a default ordering or an alternate ordering). NSFile.list returns positions
corresponding to the ordering specified or implied by its scope.ordering argument (which
may differ from the sort order of the directory being listed). Only positions applicable to
the sort order of a directory are allowed in attribute list arguments to other NSFile
operations; within scope.filter (to List or Find), only positions derived from the ordering
specified or implied by scope.ordering are allowed.

NSFile.firstPosition.lastPosition: READONLY Position;

NSFile.firstPositionRepresentation: ARRAY [0 .• 0] OF UNSPECIFIED = [0];

NSFile.lastPositionRepresentation: ARRAY [0 .. 0] OF UNSPECIFIED = [1777778];

Two special values of position identify distinguished points within a directory. The
constant firstPosition specifies a point before the first file in the directory and lastPosition
specifies a point after the last file. The first and last files within a directory are
determined by the directory's ordering attribute.

6-7

6

6-8

Attributes

6.3.3 Activity attributes

Activity attributes record the date and time of significant events in the life of a file and the
name of the user on whose behalf an event occurred. The name of a user is derived or
implied by information supplied in establishing' a session; times are obtained from Pilot
and the system hardware.

NSFile.Time: TYPE = System.GreenwichMeanTime;

NSFile.nuIiTime: Time = System.gmtEpoch;

NSFile.nuIiString: String = NSString.nuIiString;

The special constants nullTime and nullString are used to denote that a particular event
has not yet occurred.

For performance reasons the file system does not necessarily change these times and
names exactly when the related event occurs. Rather, it may cache changes for later
application or group several changes together. The file system guarantees that if an event
occurs during a session then the times and names will be updated appropriately sometime
during that session. The file system also guarantees that explicitly-requested changes to
times and names, where allowed, occur immediately.

NSFile.Attribute: TYPE = RECORD [0 0 o. backedUpOn = > [value: Time], 0 ••];

backedUpOn The backedUpOn attribute of a file records the time at which the
file was last backed up.

When a new file is created, the backedUpOn attribute is set to nuliTime and is changed
only by explicit action (via ChangeAttributes). The file system does not maintain this
attribute.

NSFile.neverBackup: Time = [LAST[CARDINAL]];

The client may set the value of the backedUpOn attribute of a file to the constant
NSFile.neverBackup. This indicates that the file should never be backed up when the
backup process is run on a file service.

NSFile.Attribute: TYPE = RECORD [00 o. createdBy = > [value: String], 0 • 0];

created By The createdBy attribute of a file records the name of the user who
created the file's content. It is the name of the user who last
modified the content of the file.

lethe client does not specify this attribute during Create, Store, or Replace, the file system
sets it to the name of the current user. However, since the attribute is intended to be the
name of the creator of the content of the file (rather than the physical file itself), it is
strongly recommended that all clients maintain this name with the file and specify it
when transferring the file.

NSFile.Attribute: TYPE = RECORD [0 ••• createdOn = > [value: Time]. 0 ••];

Filing Programmer's Manual 6

createdOn The created On attribute of a file records the time of creation of the
file's content. This attribute is used to maintain the generation
time of the file in order to determine the relative age of similar
files.

If the client does not specify this attribute during Create, Store, or Replace, the file system
sets it to the current date and time. However, since the attribute is intended to be the time
of creation of the content of the file (rather than the ph·ysical file itselfl, it is strongly
recommended that all clients maintain this time with the file and specify it when
transferring the file.

NSFile.Attribute: TYPE = RECORD [•• 0' filedBy = > [value: String], 000];

filedBy The filedBy attribute of a file records the name of the user who
inserted the file into its parent directory. For temporary files and
the root file, this attribute always has the value nuliString.

NSFile.Attribute: TYPE = RECORD [000, filedOn = > [value: Time], 0.0];

filedOn The filed On attribute of a file records the time at which the file
was inserteci into its parent directory. For temporary files and the
root file, this attribute always has the value nuliTime.

NSFileoAttribute: TYPE = RECORD [0 0 0, modifiedBy = > [value: String], . 0 •];

modifiedBy The modifiedBy attribute of a file records the name of the last user
who changed the file's content or attributes.

When a new file is created, the modifiedBy attribute is set to the name of the current user.
Subsequently, the file system maintains the attribute.

NSFile.Attribute: TYPE = RECORD [.0., modifiedOn = > [value: Time], 0 0 •];

modifiedOn The modifiedOn attribute of a file records the time at which the
file's content or attributes were last changed.

When a new file is created, the modifiedOn attribute is set to the current time.
Subsequently, the file system maintains the attribute.

NSFile.Attribute: TYPE = RECORD [0 0 0, read By = > [value: String], 0 0 0];

readBy The read By attribute of a file records the name of the user who last
examined the content of the file.

When a new file is created, the readBy attribute is set to nuliString to indicate that the file
has never been read. Subsequently, the file system maintains the attribute.

NSFile.Attribute: TYPE = RECORD [00., readOn = > [value: Time], 000];

readOn The readOn attribute records the time at which the content of the
file was last examined.

6-9

6

6-10

Attributes

When a new file is created, the readOn attribute is set to nuliTime to indicate that the file
has never been read. Subsequently, the file system maintains the attribute.

6.3.4 Size attributes

Size attributes record the logical size of a file.

NSFile,Attribute: TYPE .. RECORD [•.• , sizelnBy'tes .. > [value: LONG CARDINAL], •••];

sizelnBytes The sizelnBytes attribute records the number of client-visible
bytes in a file. This attribute cannot be explicitly changed by the
client but is implicitly modified by operations which change the
size of the file.

NSFile.Attribute: TYPE .. RECORD [••• , sizelnPages .. > [value: LONG CARDINAL], .••];

sizelnPages The sizelnPages attribute records the number of client-visible
pages in a file. This attribute cannot be explicitly chapged by the
client but is implicitly modified by operations which change the
size of the file.

These two attributes are not independent sizes; they are merely two ways of looking at the
same attribute. In most cases, there is a straightforward arithmetic relationship between
them.

Note: If a file contains segments other than the default segment, sizelnBytes is the
number of bytes in the default segment, while sizelnPages is the total number of pages in
all segments. Therefore, the two attributes are not arithmetically related in this case.

6.3.5 Access attributes

Access attributes specify the access restrictions of a file. Only users represented within a
file's access list are granted access to the file and then only with the specified permissions.

NSFile.Attribute: TYPE .. RECORD [•.. , access List = > [value: AccessList], ..•];

NSFile.AccessList: TYPE .. MACHINE DEPENDENT RECORD [
entries(O): AccessEntries E-NIL,
defaulted(3): BOOLEAN E-FALSE];

NSFile.AccessEntries: TYPE .. LONG DESCRIPTOR FOR ARRAY OF AccessEntry;

NSFile.AccessEntry: TYPE .. MACHINE DEPENDENT RECORD (
key(O): String, type(4): AccessEntryType, access(S): Access];

NSFile.AccessEntryType: TYPE .. {individual, alias, group, other};

NSFile.Access: TYPE .. PACKED ARRAY AccessType OF BooleanFalseDefault;

Filing Programmer's Manual 6

NSFile.AccessType: TYPE = MACHINE DEPENDENT {

-- all files -- read(O), write(1), owner(2),
-- directories -- add(3), remove(4)};

accessList The access List attribute specifies who may access a file and in
what ways. The access granted a particular session with respect to
the file is the union of the permissions specified in all entries
containing a key representing the sessio.n.

NSFile.Attribute: TYPE = RECORD [••• , defaultAccessList = > [value: AccessList], ...];

defaultAccessList The defaultAccessList attribute applies only to directories and
specifies the access for files having explicitly defaulted access lists
within the directory. For non-directories, this attribute always has
the value [NIL, TRUE] .

An access list is comprised of a set of typed key/access permission pairs. If a session's user
can be identified with the key portion of an entry (classified by the given type) then the
permissions specified by the entry are granted to the session.

When a file is created it receives defaulted values for both its access lists or those specified
by the client, if supplied. When a file is inserted into a directory, the file receives access
lists as specified by the client; if an access list or default access list is not specified during
the insertion, the respective access list remains unchanged. Access lists of descendants of
the inserted file are not affected by the insertion.

The access granted a particular session with respect to a file is the union of the
permissions specified in all entries containing a key representing the session. If the access
list for a file has no entries (empty), no access to the file is allowed to anyone (except those
that are privileged to bypass access controls). If the accessList attribute of a file is
explicitly defaulted, access to the file is determined by the defaultAccessList attribute of
the file's parent directory.

The file system does not determine which keys of access list entries represent a session.
The client must provide a control procedure for this purpose; in general, an individual key
matches if the key is equal to the session's name, an alias matches if the session's name is
implied by it, a group matches if the session's name is a group member, and the meaning
of other is unspecified. A group entry with a null key string signifies world, which would
normally represent all users, although it need not (again depending on the control
procedure provided by the client; see §8.1.2 for further details).

When the access list of a file must be determined, the accessList attribute stored directly
with the file is retrieved. If this value has been defaulted, then the defaultAccessList
attribute of the file's parent directory is retrieved. If the defaultAccessList attribute of the
parent is defaulted, the parent's access list is used. The method of determining the access
list of the parent is the same as for the original file; this process proceeds recursively until
a non-defaulted list is encountered or the root file of the service is reached. If the access list
of the root file must be obtained and none is present, the single-entry list ["", group,
fullAccess] is assumed. Note that in the absence of any access lists on files of a volume,
full Access is normally granted.

6-11

6

6-12

Attributes

read

write

add

remove

owner

Granting read access allows a client to: examine the contents and
attributes of a file; list a directory and examine the attributes of its
children (list); copy the file; search a directory (during Find).

Granting write access allows a client to: modify the content and data
attributes of the file; modify the environment attributes of a
directory's children; delete the file (remove permission for the parent is
als? required).

This permission applies only to directories. It allows the client to insert
new files into the directory.

This permission applies only to directories. It allows the client to
remove children from the directory (write permission for the child is
also required).

Granting owner access allows a client to modify the access lists of a file
(write permission to the file's parent directory also allows this).

The ability to modify a file's access attributes is subject to the access granted the client by
the access list previously in effect for the file. Note that owner access to a file or write
access to the file's parent is required to modify a file's access attributes.

Changes to access list values, whether by ChangeAttributes or UnifyAccesslists, take
immediate effect for all file handles within the client's session and all new handles
acquired by the client's session or other new sessions. Effects of access list changes caused
by one session are not guaranteed to affect clients of other existing sessions until those
sessions end.

NSFile.fuIlAccess: Access .. ALL[TRUE];

NSFile.noAccess: Access .. ALL£];

NSFile.readAccess: Access .. [read: TRUE];

The access permission constants fuliAccess, noAccess, and readAccess are provided for the
convenience of the client in defining access list entries.

6.3.6 Directory attributes

Directory attributes apply only to directory files. They describe useful characteristics of a
directory. In nOh-directories, directory attributes always have default values.

NSFile.Attribute: TYPE" RECORD [... , childrenUniquelyNamed .. > [value: BOOLEAN], ..•];

childrenUniquelyNamed The childrenUniquelyNamed attribute specifies whether
the children of a directory are constrained to have distinct
name attributes.

When this attribute is TRUE, no two children of the directory may have the same name
attribute, and the file system rejects any attempt to add a file with the same name
attribute as an existing file within the directory. When this attribute is FALSE, this

Filing Programmer's Manual 6

restriction is not enforced .. In this case, files having the same name attribute are
distinguished by their version attributes. Comparison of name attributes is described in
§3.5.1.

The childrenUniquelyNamed attribute of a directory may be changed from TRUE to FALSE at
any time. The value of childrenUniquelyNamed may be changed from FALSE to TRUE as long
as no two children of the directory have the same name attribute; otherwise,
NSFile.Error[[attributeValue[unreasonable, childrenUniquelyNamedJ)] is raised.

NSFile.Attribute: TYPE = RECORD [. 0 0' numberOfChildren = > [value: CARDINAL], .. 0];

numberOfChildren The numberOfChildren attribute maintains a count of the children
in a directory. Note that it is not a count of the directory's
descendants.

NSFile.Attribute: TYPE = RECORD [0 0 0, ordering = > [value: Ordering], ...];

NSFile.Ordering: TYPE = MACHINE DEPENDENT RECORD [
var{O): SELEcTtype(O): OrderingType FROM

key = > [
key(1): AttributeType,
ascending(3): BOOLEAN +-TRUE,
dummy1(2): CARDINAL +- 0 -- padding -­
dummy2(4): CARDINAL +- 0],

extended = > [
key(1): ExtendedAttributeType,
ascending(3): BOOLEAN +-TRUE,
interpretation(4): Interpretation +- none],

ENDCASE];

NSFile.OrderingType: TYPE = MACHINE DEPENDENT {key(O}, extended(1)};

NSFile.lnterpretation: TYPE = MACHINE DEPENDENT{
none(O), boolean(1}, cardinal(2}, longCardinal(3), integer(4),
longlnteger(S), string(6), time(7)};

ordering The ordering attribute specifies the order of enumeration offiles in
a directory during filing operations.

Except when ordering by position (described below), the placement of files in a directory is
determined by the relative values of a particular attribute. The key component of an
ordering specifies which attribute is to be the basis of the ordering; ascending determines
whether ordering is to be in ascending order of the attribute, and interpretation (in the
case of extended orderings) specifies how the file system should interpret the attribute for
purposes of comparison.

For extended orderings, if a file's attribute value is not a valid representation of the type
specified by interpretation, then the file is placed before those files that have valid values.
The comparison rules for various interpretations are described in §3.5.1.

[Note: In Services 8.0, orderings based on extended attributes are not supported.]

6-13

6

6-14

Attributes

The behavior of a directory is somewhat different when the specified key is the position
attribute. In all other cases, the relative placement of files is determined entirely by the
valu.e of the specified attribute. When ordering is by position, however, the relative
placement of files is explicitly determined by the client. When adding a file to a directory
with a position ordering, the client specifies the position at which the file should reside.

NSFile.ascendingPositionOrdering: key Ordering = [
key[key: position. ascending: TRUE]];

NSFile.descendingPositionOrdering: key Ordering = [
key[key: position, ascending:FALsE]];

The two constants, ascendingPositionOrdering and descendingPositionOrdering, are
used to specify an ordering by position. If ordering is by ascending position, a file that is
added without specifying its position is placed at the end of the directory. If ordering is by
descending position, a file that is added without specifying its position is placed at the
beginning ofthe directory. Otherwise. there is no difference between these values.

When the ordering attribute of a directory is changed to an ordering by position, the.
relative placement offiles in the directory is not affected. In other words, when changing to
an ordering by position, the files are initially placed according to their placement in the
previous ordering. Subsequent additions need not conform to the previous ordering.

Mter a number of additions at the same point within a directory ordered by position, the
density of files may become ioo great to allow further additions. When this condition
occurs, the operation attempting to insert a file raises the error,
[insertion[positionUnavailable]]. The client should call ChangeAttributes specifying an
ordering that is the same as the current ordering. This action redistributes the files
without changing their relative placement. The current implementation allows for several
hundred insertions at the same point of a directory ordered by position before this
condition occurs.

NSFile.defaultOrdering: key Ordering = [key[key: name, ascending: TRUE]];

NSFile.nuliOrdering: extended Ordering = [extended[key: 0]];

If the. ordering attribute is not specified during the creation of a directory,
defaultOrdering is used. When the ordering attribute has this value, or the corresponding
value with ascending equal to FALSE, ordering of the directory is actually based on
ascending or descending values of first, the name attribute, and second, the version
attribute, rather than just the name attribute alone. The nullOrdering constant is used
during filtering (see §3.5.1).

NSFile.Attribute: TYPE = RECORD [. 0 0' subtreeSize = > [value: LONG CARDINAL], 0 o.];

sLibtreeSize The subtreeSize attribute records the number of client-visible
pages allocated to a file and all files it directly or indirectly
contains. This total does not include internal data structures such
as attributes and directory structures.

Note: For non-directory files, the subtreeSize attribute is equivalent to the sizelnPages
attribute.

Filing Programmer·s Manual 6

NSFile.Attribute: TYPE = RECORD [.•. , subtreeSizeLimit = > [value: LONG CARDINAL], ...];

subtreeSizeLimit The subtreeSizeLimit attribute records the maximum
number of client-visible pages which may be allocated to a
directory and all files it directly or indirectly contains.

An operation is rejected if it would cause the value of a directory's subtreeSize attribute to
exceed the limit given by that directory's subtreeSizeLimit attribute. The client is
permitted to change the value of this attribute so that it is smaller than the current val ue
of the directory's subtreeSize attribute.

NSFile.nuIiSubtreeSizeLimit: LONG CARDINAL = LAST[LONG CARDINAL];

When a directory is created and no subtreeSizeLimit is specified, nuliSubtreeSizeLimit is
assumed. Use of this . constant implies that a directory has no cumulative limit on the
number of client-visible pages which may be allocated to it and its descendants.

6.3.7 Extended attributes

The extended attribute mechanism allows the client to define, store and retrieve attribute
values not directly supported by the interpreted attribute model. Values of extended
attributes supplied by the client are associated with a file and are returned upon request.
The file system never changes the value of an extended attribute except by explicit
request.

NSFile.Attribute: TYPE = RECORD [
... , extended = > [type: ExtendedAttributeType, value: Words], ...];

NSFile.ExtendedAttributeType: TYPE = LONG CARDINAL;

extended An extend~d attribute type and a value to be associated
with the type are defined by the client. The value of an
extended attribute is fJ.lways exactly the value to which it
was explicitly set by the client.

When an extended attribute is specified during a procedure call, it is stored with the file
but causes no other action. In particular, other attributes are unaffected except those that
indicate file activity (modifiedBy, modifiedOn) or position within a parent (position). The
values of extended attributes do not change except when they are changed explicitly by a
client. Extended attributes may be passed to any procedure that expects an attribute list.

The file system imposes a limit of 32,595 words on the total amount of extended attribute
data which may be stored with a single file. There is no limit imposed on the number of
extended attributes stored with a single file.

6.4 Assigned types

NSAssignedTypes: DEFINITIONS = ... ;

This section describes the type ranges and defined types found in the NSAssignedTypes
interface. An AssignedType is a 32-bit numeric quantity used to identify the type ofa file
or file attribute.

6-15

6

6-16

Attl'ibutes

NSAssignedTypes.AssignedType: TYPE = LONG CARDINAL;

Clients are encouraged to make use of types defined within this interface when possible to
promote information sharing.

6.4.1 Type ranges

The NSAssignedTypes interface defines ranges of type values for use by particular
applications and clients. Each range designates a set of attribute and file types assigned to
a given application (numerically these coincide). A client or application is the type owner
of all types within a range assigned to it. Normally an application will not make use of
types within any range not assigned to it unless by agreement with the type owner.
Ranges are assigned by the manager of Filing.

-- StandardTypes: TYPE = AssignedType [0 . .4096);
NSAssignedTypes.firstStandardType: AssignedType = 0;
NSAssignedTypes,lastStandardType: AssignedType = 4095;

-- Serv;cesATypes: TYPE = AssignedType [4096 .. 4352);
NSAssignedTypes.firstServicesAType: AssignedType = 4096;
NSAssignedTypes,lastServicesAType: AssignedType = 4351;

-- StarTypes: TYPE = AssignedType [4352 . .4608);
NSAssignedTypes.firstStarType: AssignedType = 4352;
NSAssignedTypes.lastStarType: AssignedType = 4607;

-- ServicesBTypes: TYPE = AssignedType [4608 .. 5120);
NSAssignedTypes.firstServicesBType: AssignedType = 4608;
NSAssignedTypes,lastServicesBType: AssignedType = 5119;

-- WS860Types: TYPE = AssignedType[5120 .. 5136);
NSAssignedTypes.firstWS860Type: AssignedType = 5120;
NSAssignedTypes.lastWS860Type: AssignedType = 5135;

-- WSFujiTypes: TYPE = AssignedType [5136 .. 5152);
NSAssignedTypes.firstWSFujiType: AssignedType = 5136;
NSAssignedTypes,lastWSFujiType: AssignedType = 5151;

Note: Because the current version of Mesa does not support subranges of LONG CARDINAL,
these ranges are given in terms of two defined constants: the first (or lowest) value in the
assigned range and the last (or highest) value in the assigned range.

6.4.2 Defined types

A number of constant type definitions are defined with NSAssignedTypes for the
convenience of the client. Each constant is used to identify either the type of a file or the
type of a file attribute.

NSAssignedTypes.AttributeType: TYPE = NSFile.ExtendedAttributeType;

NSAssignedTypes.FileType: TYPE = NSFile.Type;

Filing Programmer's Manual 6

The following constant definitions coincide with those defined by the Filing Protocoll131.
for file attributes (and those of NSFile). They are included to allow the client to create and
decode the serialized file format (see §3.S.2). Most clients will wish to use the Mesa
enumerated type, NSFile.AttributeType, when interacting with the file system.

-- Protocol-documented
NSAssignedTypes.checksum: AttributeType = 0;
NSAssignedTypes.childrenUniquelyNamed: AttributeType = 1;
NSAssignedTypes.createdBy: AttributeType = 2;
NSAssignedTypes.createdOn: AttributeType = 3;
NSAssignedTypes.fileID: AttributeType = 4;
NSAssignedTypes.isDirectory: AttributeType = 5;
NSAssignedTypes.isTemporary: AttributeType = 6;
NSAssignedTypes.modifiedBy: AttributeType = 7;
NSAssignedTypes.modifiedOn: AttributeType = 8;
NSAssignedTypes.name: AttributeType = 9;
NSAssignedTypes.numberOfChildren: AttributeType = 10;
NSAssignedTypes.ordering: AttributeType = 11;
NSAssignedTypes.parentID: AttributeType = 12;
NSAssignedTypes.position: AttributeType = 13;
NSAssignedTypes.readBy: AttributeType = 14;
NSAssignedTypes.readOn: AttributeType = 15;
NSAssignedTypes.sizelnBytes: AttributeType = 16;
NSAssignedTypes.type: AttributeType = 17;
NSAssignedTypes.version: AttributeType = 18;

Protocol-undocumented attributes are those attributes intended for eventual inclusion in
the filing protocol standard. They are not included in the definition of the filing standard
in its present form.

-- Protocol-undocumented
NSAssignedTypes.accessList: AttributeType = 19;
NSAssignedTypes.defaultAccessList: AttributeType = 20;
NSAssignedTypes.pathname: AttributeType = 21;

Locally-interpreted attributes are those attributes defined for the convenience of clients
running on the same system element as the file system. There is no intent to ever include
these attributes in the filing protocol standard. As such, these attributes are not available
for remote files.

-- Locally Interpreted

NSAssignedTypes.service: AttributeType = 22;
NSAssignedTypes.backedUpOn: AttributeType = 23;
NSAssignedTypes.filedBy: AttributeType = 24;
NSAssignedTypes.fi ledOn: A ttri bute Type = 25;
NSAssignedTypes.sizelnPages: AttributeType = 26;
NSAssignedTypes.subtreeSize: AttributeType = 27;
NSAssignedTypes.subtreeSizeLimit: AttributeType = 28;

-- Standard File Types
NSAssignedTypes.tUnspecified: FileType = firstStandardType;

6-17

6 Attributes

NSAssignedTypes.tDirectory: FileType = firstStandardType + 1;
NSAssignedTypes.tText: FileType = firstStandardType + 2;
NSAssignedTypes.tSerialized: FileType = firstStandardType + 3;
IiISAssignedTypes.tEmpty: FileType • firstStandardType + 4;

'rhe Filing Protocol [13] defines a number of commonly-used file types. Clients are
encouraged to use these types to identify files that have the specified characteristics in
order to promote information ~haring. However, the file system does not enforce the
specified semantics.

Files that have a format private to a single client or for which the format is unknown or
uninteresting are conventionally given type tUnspecified; files that are directories with
no additional semantics (and no content) are conventionally given type tDirectory; files
that are non-directories containing text conforming to the Character Encoding Standard
(except that no length information is in the content) are conventionally given type tText;
files that are non-directories containing the serialization of a file are conventionally given
type tSerialized; and non-directory files that have no content (only attribute information)
are conventionally given type tEmpty.

6.5 Retrieving attribute values

6-18

GetAttributes returns attributes of a specified file. The file system obtains the requested
attributes and returns them to the client. Since different attributes may be obtained with
varying degrees of difficulty, the client should request only those attributes that are
needed.

NSFile.GetAttributes: PROCEDURE [
file: Handle. selections: Selections. attributes: Attributes.
session: Session +- nullS.ession];

Arguments:

Results:

Access:

Errors:

The file whose attributes are desired is given by file; selections
specifies the attributes desired~ attributes refers to client storage to
which attribute values are copied; session is the client's session
handle.

The attributes record implied by attributes is filled with the requested
attribute values. Storage for variable-length and extended attributes
within this structure is allocated from Heap.systemZone and must be
freed by invoking NSFile.ClearAttributes (see §6.7.1) or FreeString,
FreeWords, etc.

Read access is required to file or file's parent directory.

NSFile.Error is raised with the following error types: access,
attributeType, authentication, handle, session, and undefined;
Courier.Error may also be raised.

Conceptually, every file has a value for every attribute. If an attribute is extended and has
never been set, then its value is Nil. By convention this is taken to mean the attribute is
not set and the attribute is said to be null. An extended attribute can be explicitly put in
this state by specifying a value of Nil.

Filing Programmer's Manual

NSFile.Selections: TYPE = RECORD [
interpreted: InterpretedSelections +- nolnterpretedSelections.
extended: ExtendedSelections +- noExtendedSelections);

6

NSFile.ExtendedSelections: TYPE = LONG DESCRIPTOR FOR ARRAY OF ExtendedAttributeType;

NSFile.lnterpretedSelections: TYPE = PACKED ARRAY AttributeType OF
BooleanFalseDefault; .

NSFile.aIlSelections: READONLY Selections;

NSFile.aIlExtendedSelections: READONLY ExtendedSelections;

NSFile.aIlExtendedSelectionsRepresentation: ... ;

NSFile.alllnterpretedSelections: InterpretedSelections = ALL[TRUE);

NSFile.noExtendedSelections: ExtendedSelections = NIL;

NSFile.nolnterpretedSelections: InterpretedSelections = ALL[FALSE);

NSFile.noSelections: READONLY Selections;

An NSFile.Selections is used to specify the attributes of interest during GetAttributes.
Requests for interpreted attributes and extended attributes are given by
selections.interpreted and selections.extended, respectively. It is an error to specify an
interpreted attribute type as an extended type within a Selections. Specifying
NSFile.allSelections for selections requests that all interpreted attributes and all non-NIL
extended attributes be returned. Extended attributes that are null are not returned in this
case. When specifying an explicit list of extended attribute types in selections, the order of
the extended attribute values within the result (attributes.extended) corresponds to the
order of the extended types within selections.extended. Extended attributes that are null
are returned in this case.

Two convenience operations, GetReference and GetType are provided to retrieve
frequently-used attributes. GetReference returns a Reference containing the two
attribute values of a file required to uniquely identify the file (filelD and service). GetType
returns the type of a specified file.

Note: The storage allocated to the ServiceRecord referenced by the service field of the
reference returned by GetReference is the property of the file system and should not be
deallocated by the client.

NSFile.GetReference: PROCEDURE [
file: Handle. session: Session +- nullSession]
RETURNS [reference: Reference];

NSFile.Reference: TYPE = RECORD [
filelD: 10. service: Service];

Arguments: The file for which a Reference is desired is given by file; session is the
client's session handle.

6-19

6

•

Attributes

Results:

Access:

Errors:

reference is returned, containing the required attribute values.

Read access is required to file or file's parent directory.

NSFile.Error is raised with the following error types: access,
authentication, handle, session, and undefined; Courier.Error may also
be raised.

NSFile.GetType: PROCEDURE [file: Handle. session: Session of- nuliSession] RETURNS [Type];

Arguments:

Results:

Access:

Errors:

The file whose type attribute is desired is given by file; session is the
client's session handle.

The value of file's type attribute is returned.

Read access is required to file orfile's parent directory.

NSFile.Error is raised with the following error types: access,
authentication, handle, session, and undefined; Courier. Error may also
be raised.

6.6 Modifying attribute values

6-20

Attributes may be modified implicitly by many procedures. They may also be modified by
explicit client action.

6.6.1 ChangeAttributes

ChangeAttributes modifies attributes of a specified file. The changes may have other
effects on the file depending on the attribute.

NSFile.ChangeAttributes: PROCEDURE [
file: Handle. attributes: AttributeList. session: Session of- nuIiSession];

Arguments:

Results:

Access:

Errors:

The file whose attributes are to be changed is given by file; attributes
specifies the attributes to be changed and their new values; session is
the client's session handle.

The attributes supplied by the client are used to update the attributes
offile.

Write access is required for file if only data attributes are changed;
write access to file's parent is required for environment attribute
changes. If access list attributes are changed, write access to file's
parent directory or owner access to file is required as well.

NSFile.Error is raised with the following error types: access,
authentication, handle, insertion, session, and undefined; Courier. Error
may also be raised.

Not all interpreted attributes may be modified by this operation. Some of these attributes
are maintained by the file system and cannot be changed by the client. Those which can be

Filing Programmer's Manual 6

modified are given in §6.B. The client is free to specify any extended attribute for update in
this operation.

6.6.2 UnifyAccessLists

Access attributes (accessList and defaultAccessList) may be modified for a given file or
directory using ChangeAttributes, but it is sometimes necessary to unify the effective
access lists of an entire subtree of files (i.e., modify the access lists so that all the tiles in
the subtree have the same effective access controls). UnifyAccessLists is used for this
purpose.

NSFile.UnifyAccessLists: PROCEDURE [
directory: Handle. session: Session +- null Session);

Arguments: The subtree of files whose access lists are to be unified is given by
directory; session is the client's session handle.

Results: The access List and defaultAccessList attributes of each descendant file
within the subtree rooted by directory are given defaulted values. The
cumulative effect is that all files within the subtree obtain the same
effective access controls as those in place for directory.

Access: Write access is required for directory.

Errors: NSFile.Error is raised with the following error types: access,
authentication, handle, session, and undefined; Courier. Error may also
be raised.

Changes to a file's access list attributes, whether by ChangeAttributes or
UnifyAccessLists, take immediate effect for all handles to the file within the client's
session and all new handles acquired by the client's session or other sessions. Access list
changes within one session are not guaranteed to affect clients of other existing sessions
until those sessions end.

6.7 Manipulating attribute values

The file system defines the structure and semantics of most file attributes. It also defines
the data structures, lists and records which are used to input or receive the attribute
values of a file. To assist the client in dealing with attribute values and these structures, a
number of operations are provided.

NSFile.AttributeList: TYPE = LONG DESCRIPTOR FOR ARRAY OF Attribute;

NSFile.Attribute: TYPE = MACHINE DEPENDENT RECORD [
var(O): SELEcTtype(O): AttributeType FROM

filelO. parentlO = > [value(1): 10).
checksum = > [value(1): CARDINAL].
type = > [value(1): Type].
position = > [value(1): Position).
service = > [value(1): Service].
ordering = > [value(1): Ordering],
accessList. defaultAccessList = > [value(1): AccessList].

6-21

6

6-22

Attributes

backedUpOn, createdOn, filedOn, modifiedOn, readOn = > [value(1): Time],
created By. filedBy, modifiedBy, name, pathname, readBy = > [value(1): String],

childrenUniquelyNamed, isDirectory, isTemporary = > [value(1): BOOLEAN],
version, numberOfChildren = > [value(1): CARDINAL],
sizelnBytes, sizelnPages, subtreeSize, subtreeSizeLimit = > [

value(1): LONG CARDINALI,

extended = > [type(1): ExtendedAttributeType, value(3): WordsI,
ENDCASE);

NSFile.nuIlAttributeList: AttributeList = NIL;

Many filing operations allow the client to specify combinations of attribute values to be
used during the operation. For example, during Create, the client may wish to specify the
name and sizelnPages attributes of the file to be created. Such attributes are always
supplied to the file system in the form of an AttributeList. It is an error to specify the same
attribute twice within an attribute list. Not all attribute combinations are allowed within
an attribute list; the set of legal combinations depends on the context. A value of
nullAttributeList may be specified to indicate that the file system should assign default
values for all attributes.

NSFile.AttributesRecord: TYPE = RECORD [
-- identity attributes
filelD: 10,
service: Service,
name, pathname: String.
version: CARDINAL,

-- file attributes
checksum: CARDINAL,
type: Type,
isDirectory, isTemporary: BOOLEAN,
parentlO: 10,
position: Position,

-- activity attributes
backedUpOn, createdOn, filedOn, modifiedOn, readOn: Time,
created By, filedBy, modified By, readBy: String.

-- size attributes
sizelnBytes, sizelnPages: LONG CARDINAL.

-- access attributes
accessList, defaultAccessList: AccessList,

-- directory attributes
ordering: Ordering,
childrenUniquelyNamed: BOOLEAN,
subtreeSizeLimit, subtreeSize: LONG CARDINAL,
numberOfChildren: CARDINAL,

Filing Programmer's Manual 6

-- extended attributes
extended: ExtendedA ttri buteList];

NSFile.Attributes: TYPE = LONG POINTER TO AttributesRecord;

When attribute values are retrieved from the file system, an AttributeList can be a
cumbersome data structure to work with. For this case, an AttributesRecord is used. The
client normally supplies the storage occupied by the AttributesRecord itself while the file
system allocates additional storage for values within the record as necessary (position or
name attributes, for example). It is the client's responsibility to ensure that additional
storage allocated in this way is freed properly using ClearAttributes (see below).

NSFile.ExtendedAttributeList: TYPE = LONG DESCRIPTOR FOR ARRAY OF extended Attribute;

Extended attributes are returned to the client via an ExtendedAttributeList structure.
This data structure is similar to an AttributeList except that all entries must be extended
attribute values (note that an AttributeList may contain extended attribute values as
well).

6.7.1 Copying/freeing

Attribute values, lists and records may be copied, manipulated, and subsequently freed by
the client. All storage is allocated from the system heap by these operations. It is the
client's responsibility to invoke the corresponding free operation after making a copy of an
attribute data structure.

NSFile.CopyAccessList: PROCEDURE [list: AccessList] RETURNS [AccessList];

NSFile.FreeAccessList: PROCEDURE [list: AccessList];

Access list attributes are copied and freed by the operations, CopyAccessList and
FreeAccessList, respectively.

NSFile.COpyWords: PROCEDURE [words: Words] RETURNS [Words];

NSFile.FreeWords: PROCEDURE [words: Words];

NSFile.Words: TYPE = LONG DESCRIPTOR FOR ARRAY OF UNSPECIFIED;

Variable-length attribute values (such as the position attribute) and extended attribute
values are copied and freed using CopyWords and FreeWords.

NSFile.CopyAttributes: PROCEDURE [attributes: Attributes] RETURNS [Attributes];

NSFile.FreeAttributes: PROCEDURE [attributes: Attributes];

NSFile.ClearAttributes: PROCEDURE [attributes: Attributes];

An AttributesRecord and embedded values it contains are copied using CopyAttributes
(note that this operation allocates a new record). Such a copy of an AttributesRecord is
freed using FreeAttributes (the embedded attribute values and the record itself are freed).

6-23

6

6-24

Attributes

ClearAttributes is used to allow the file system to free storage allocated to embedded
values within an AttributesRecord (such as during GetAttributes). The AttributesRecord

itself is not freed by ClearAttributes.

NSFile.CopyExtendedAttri butes: PROCEDURE [extendedAttri butes:
ExtendedA ttri buteList] RETURNS [ExtendedA ttri buteList];

NSFile.FreeExtendedAttri butes: PROCEDURE [extendedAttri butes:
ExtendedA ttributeList);

Lists of extended attribute values are copied and freed using CopyExtendedAttributes and
FreeExtendedAttributes, respectively.

NSFile.ClearAttributeList: PROCEDURE [attributeList: AttributeList];

In constructing an attribute list, the client may wish to include values for extended
attributes such as those returned by encoding operations (see below). In this case,
ClearAttributeList should be applied to the resulting list after the client is done with it to
free the encoded values within the list. Alternatively, the client may apply FreeWords to
each of the embedded values.

NSFile.FreeAttributeList: PROCEDURE [I ist:AttributeList];

NSFile.MergeAttributeLists: PROCEDURE [
listA, listS: AttributeList, suppressDuplicates: BOOLEAN +-FALSE]
RETURNS [mergedList: AttributeListl;

Two attribute lists are combined into a single list by the operation MergeAttributeLists.
The operation returns a list containing all attributes within listA and listS. If
suppressDuplicates is TRUE, duplicates within listS are ignored; if suppressDuplicates is
FALSE, duplicate attributes within listS cause NSFile.Error [[attributeType[duplicated, ...]] to
be raised. Attribute values within listA and listS are not validated, nor are detached
attribute values (words and strings) copied. The result of MergeAttributeLists must be
freed by the client by calling FreeAttributeList; attached data structures are not freed by
the operation.

6.7.2 Encoding/decoding

For extended attributes,. the semantics of the stored data are undefined; the client controls
the interpretation of the data. Although the meaning of the data is not known by the file
system, operations are provided to interpret an extended attribute value as a conventional
Mesa data type and to generate an extended attribute value from the representation of a
conventional Mesa data type.

NSFile.EncodeBoolean: PROCEDURE (b: BOOLEAN] RETURNS [Words];

NSFile.EncodeCardinal: PROCEDURE [c: CARDINAL] RETURNS [Words];

NSFile.EneodeLongCardinal: PROCEDURE [Ie: LONG CARDINAL] RETURNS [Words];

NSFile.Eneodelnteger: PROCEDURE [i: INTEGER] RETURNS[Words];

Filing Programmer's Manual 6

NSFile.EncodeLonglnteger: PROCEDURE [Ii: LONG INTEGER] RETURNS [Words];

NSFile.EncodeString: PROCEDURE [s: String] RETURNS [Words];

NSFile.EncodeReference: PROCEDURE [r: Reference] RETURNS [Words];

Each of these operations accepts a typed value as its argument and returns a value of
words such that applying the corresponding decoding operation will result in the original
value. The result of an encoding operation is normally used to construct an extended
attribute value. Storage is allocated from the system heap so the client must use
FreeWords or ClearAttributeList (see above) to free the encoded value.

NSFile.DecodeBoolean: PROCEDURE [Words] RETURNS [b: BOOLEAN];

NSFile.DecodeCardinal: PROCEDURE [Words] RETURNS [c: CARDINAL];

NSFile.DecodeLongCardinal: PROCEDURE [Words] RETURNS [Ie: LONG CARDINAL];

NSFile.Decodelnteger: PROCEDURE [Words] RETURNS [i: INTEGER];

NSFile.DecodeLonglnteger: PROCEDURE [Words] RETURNS [Ii: LONG INTEGER];

NSFile.DecodeString: PROCEDURE [Words] RETURNS [s: String];

NSFile.DecodeReference: PROCEDURE [Words] RETURNS [r: Reference];

Each of the above decoding operations interprets a supplied set of words as the requested
data type and returns this as a result. courier.Error[parameterlnconsistency] is reported
instead if the set of words cannot be interpreted as the given Mesa data type. The result of
calling DecodeString depends on the continued existence of its Words argument.

6.8 Summary of attribute behaviors

Tables on the following pages summarize the behavior of attributes during NSFile,
NSFileStream, and NSSegment operations. In all tables, a file's position attribute may be
changed if the parent is sorted by an activity attribute and that attribute is changed
(readOn or modifiedBy, for example).

Some operations have no effect on a file's attributes. In NSFile these include:
ChangeControls, Close, Find, GetAttributes, GetControls, List, Logoff, Logon,
LogonDirect, Open, and Probe. In NSSegment, FindUnused, GetBase, GetNext,
GetSizel n Bytes, GetSizelnPages, and NumberOfSegments have no effect on a file's
attributes. In NSFileStream, GetLength, EndOf, and FileFromStream have no effect on a
file's attributes. The activity attributes of a file whose content is accessed via Stream
operations executed on file stream for the file will be updated in a manner similar to the
NSSegment operations Copyln (reading data) and CopyOut (writing data).

The headings of each table column are interpreted as follows: "In List" specifies the
behavior of a given attribute if included in an attribute list argument to the operation;
"Behavior" within the same column heading specifies the behavior of the attribute if
omitted from the attribute list argument; "Behavior" in other contexts designates the
effect of the operation on the attribute.

6-25

6

6-26

Attributes

Summary of Attribute Behaviors

Table6.l

File

Attribute Behavior
accessList NC

BackedUpOn NC

checksum (1)

chiidrenUniquelyNamed NC'

createdBy (2)

createdOn (3)

defaultAccessList NC

extended NC

filed By NC

filedOn NC

filelD NC

isDirectory NC

isTemporary NC

modifiedBy (2)

modifiedOn (3)

name NC

numberOfChiidren NC

ordering NC

parentlD NC

pathname NC

position NC

readBy NC

readOn NC

service NC

sizelnBytes (4)

sizelnPages (5)

subtree Size (6)

subtree,5izeLimit NC

type NC

version NC

NC = No Change

Add, Delete, SetSizelnBytes, SetSizelnPages (NSSegment)

Notes:
(1) Set to NSFile.unknownChecksum.
(2) Session's user.
(3) Current time.
(4) Set (only for default segment).
(5) Set to appropriate value for current content.
(6) Set to new total content in subtree.

Filing Programmer's Manual

Summary of Attribute Behaviors

Table 6.2

Attribute In List Behavior
accessList set NC

backedUpOn set NC

checksum set NC

chiidrenUniquelyNamed set NC

createdBy set NC

createdOn set NC

defaultAccessList set NC

extended set NC

filed By illegal NC

filedOn illegal NC

filelD illegal NC

isDirectory illegal NC

isTemporarv illegal NC

modifiedBv illegal (1)

modifiedOn illegal (2)

name set . NC

numberOfChildren illegal NC

ordering set NC

parentlD illegal NC

pathname illegal (3)

position (5) (6)

readBy illegal NC

readOn illegal NC

service illegal NC

sizelnBy~es illegal NC

sizelnPages illegal NC

subtreeSize illegal NC

subtreeSizeLimit set NC

type set NC

version set NC

NC = No Change

ChangeAttributes
Notes:
(1) Session~s user.
(2) Current time.
(3) Appropriate to name of file and ancestors.
(4) Changes ifname or version changes.
(5) Specified point.
(6) Changes if key of parent's ordering is changed.
(7) Changes if ordering attribute is changed.

Descendants

Behavior
NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

(4)

(7)

NC

NC

NC

NC

NC

NC

NC

NC

NC

6

6-27

6 Attributes

Summary of Attribute Behaviors

Table 6.3

Source Source
File Descendants

Attribute Behavior Behavior
accessList NC NC

backedUpOn NC NC

checksum NC NC

childrenUniquelyNamed NC NC

createdB~ NC NC

createdOn NC NC

defaultAccesslist NC NC

extended NC NC

filedBy NC NC

NC NC

fileJD NC NC

isDiredorv NC NC

isTemoorary NC NC

I modifiedBv NC NC

m , .. , NC NC

In::lm .. Nr. . Nr.

n "'fChildren NC NC

lorderina NC NC

parentJD NC NC

pathname NC NC

pOSition NC NC

readBy (2) (2)

readOn (4) (4)

service NC NC

sizelnBytes NC NC

IsizelnPaaes NC NC

subtreeSize NC NC

subtreeSizeLimit NC NC

type NC NC

version NC NC

NC = No Change

Notes:
(I) Session's user ifin a directory; nunString otherwise.
(2) Session's user.
(3) Current time if in a directory; nullTime otherwise.
(4) Current time.
(5) System-assigned value.
(6) May be TRUE only if directory is null.
(7) TRUE only if directory is null.
(8) FALSE; directories are never temporary.
(9) Set to filelD of resulting parent, nulllD if temporary.
(10) Set to filelD of resulting parent.

Destination Resulting Resulting
Parent File Descendants

Behavior In List Behavior Behavior
NC set NC NC

NC set NC NC

NC illegal NC NC

NC illegal NC NC

NC illegal NC NC

NC illegal NC NC

NC set' NC NC

NC set NC NC

NC illegal (l) (2)

NG ill .. ",,, I (31 (4)

NC illegal (5) (5)

NC illerral NC NC

NC set (6) (7) (8)

(2) illerral (2) (2)

(4) ill"",al 141 14'

Nr. ""t. Nr. Nr.

incremented illegal NC NC

NC illerral NC NC

NC illegal (9) (10)

NC illegal ell> (11)

NC (12) (3) (14)

NC illegal nullString nullString

NC illegal nullTime nullTime

NC (15) (16) (16)

NC illegal NC NC

NC illerral NC NC
(17) illegal NC NC

NC set NC NC

NC illegal NC NC

NC set (18) NC

Copy

(11) Appropriate to name offile and ancestors.
(12) Specified point.
(13) Beginning, end, or other, depending on ordering

attribute of parent.
(14) Same relative point as original file.
(15) Must be consistent with service implied by destination parent.
(16) Same as parent or defaultService, if temporary.
(17) New total content in subtree.
(18) Next available version n\lmber for name.

6-28

Filing Programmer's Manual

Notes:
(1) Session's user.
(2) Current time.

Summary of Attribute Behaviors

Table 6.4

Attribute Behavior
accessList NC

BackedUpOn NC

checksum NC

childrenUniquelyNamed NC

createdBy NC

createdOn NC

defaultAccessList NC

extended NC

filedBy NC

filedOn NC

filelD NC

isDirectory NC

isTemporary NC

modifiedBy NC

modifiedOn NC

name NC

numberOfChildren NC

ordering NC

parentlD NC

pathname NC

position NC

readBy (1)

readOn (2)

service NC

sizelnBytes NC

sizelnPages NC

subtree Size NC

subtreesizeLimit NC

type NC

version NC

NC = No Change

Copyln (NSSegment)

6

6-29

6

6-30

Attributes

Summary of Attribute Behaviors

Table 6.5

Attribute Behavior

accessList NC

BackedUpOn NC

checksum" (1)

childrenUniquelyNamed NC

createdBy (2)

createdOn (3)

defaultAccessList NC

extended NC

filedBy NC

filed On NC

filelD NC

isDirectory NC

isTemporary NC

modifiedBy (2)

modifiedOn (3)

name NC

numberOfChiidren NC

ordering NC

parentlD NC

path name NC

position NC

readBy NC

readOn NC

service NC

sizelnBytes NC

size In Pages NC

subtreeSize NC

subtreeSizeLimit NC

type NC

version NC

NC = No Change

CopyOut, MakeWritable, Move (NSSegment)
Notes:
(1) Set to NSFile.unknownChecksum (unchanged for Move).
(2) Session's user.
(3) C~rrenttime.

Filing Programmer's Manual 6

Summary of Attribute Behaviors

Attribute
accessList

backedUpOn

checksum

chiidrenUniquelyNamed

created By

createdOn

defaultAccessList

extended

filedBy

filedOn

filetD

iSDirectorv

isTemporary

modifiedBv

modifiedOn

name

numberOfChildren

ordering

parenttD

pathname

position

readBv

readOn

service

sizelnBytes

sizelnPages

subtreeSize

subtreeSizeLimit

type

version

NC = No Change

Notes:
(1) Set to [defaulted: TRUE).
(2) Set to nuliChecksum.
(3) Session's user.
(4) Current time.

Table 6.6

Destination
Parent

Behavior
NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

13)

(4)

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

(18)

NC

NC

NC

Create

(5) Session's user ifin a directory, nullString otherwise.
(6) Current time ifin a directory, nullTime otherwise.
(7) System-assigned value.
(8) Must be TRUE only if directory is null.
(9) TRUE only if directory is null.
(10) "Anonymous" or system-dependent.
(11) Set to NSFile.defaultOrdering.
(12) Set to filelD of resulting parent,

nuJIID if temporary.

Resulting
File

In List Behavior
set (l)

set nuliTime

set (2)

set FALSE

set (3)

set (4)

set (1)

set empty

illegal (5)

illegal (6)

illegal (7)

set FALSE

set(8) (9)

illegal (3)

illegal (4)

set (10)

illegal o (zero)

set (11)

illegal (12)

illegal (13)

(14) . (15)

illegal nuliStrinq

illegal nuliTime

(16) (17)

set o (zero)

set O(zero)

illegal (2)

set (19)

set (20)

set (21)

(13) Appropriate to name of ancestors and file.
(14) Specified point.
(15) Beginning, end, or other, depending on ordering

attribute of parent.
(16) Must be consistent with service implied by

destination parent.
(17) Same as parent or defaultService, if temporary.
(18) New total content in subtree.
(19) Set to NSFile.nuIiSubtreeSizeLimit.
(20) NSAssignedTypes.tUnspecified.
(21) Next available version number for name.

6-31

6

6-32

Attributes

Summary of Attribute Behaviors

Table 6.7

Attribute Behavior
accessList NC

BackedUpOn NC

checksum NC

chiidrenUniquelyNamed NC

createdBy NC

createdOn NC

defaultAccessList NC

extended NC

filedBy NC

filedOn NC

filelD NC

isDirectory NC

isTemporary NC

modifiedBy NC

modifiedOn NC

name NC

numberOfChiidren NC

ordering NC

parentlD NC

pathname NC

position NC

readBy (1)

readOn (2)

service NC

sizelnBytes NC

sizelnPages NC

subtreeSize NC

subtreeSizeLimit NC

type NC

version NC

NC = No Change

Create (NSFileStream)

Notes:
(1) Session's user (iffile length non-zero, else no change).
(2) Current time Hffile length non-zero, else no change).

Filing Programmer's Manual

Summary of Attribute Behaviors

Notes:
(1) Session's user.
(2) Current time.
(3) New total content in subtree.

Table6.S

Attribute
accessList

BackedUpOri

checksum

chiidrenUniquelyNamed

createdBy

createdOn

defaultAccessList

extended

filedBy

filedOn

filelD

isDirectory

isTemporary

modifiedBy

modifiedOn

name

numberOfChildren

ordering

parentlD

pathname

position

readBy

readOn

service

sizelnBytes

sizelnpages

subtree Size

subtreeSizeLimit

type

version

NC = No Change

Delete

Parent

Behavior
NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

(ll

(2)

NC

decremented

NC

NC

NC

NC

NC

NC

NC

NC

NC

(3)

NC

NC

NC

6

6-33

6

6-34

Attributes

Summary of Attribute Behaviors

Table 6.9

Destination Resulting Resulting
Parent File Descendants

Attribute Behavior In List
accessList NC set

BackedUpOn NC set

checksum NC illegal

chiidrenUniquelyNamed NC illegal

createdBy NC illegal

createdOn NC illegal

defaultAccessList NC set

extended NC set

filed By NC illegal

filedOn NC illegal

filelD NC illegal

isDirectory NC illegal

isTemporary NC set(7)

modifiedBy (3) illegal

modifiedOn (5) illegal

name NC set

numberOfChildren incremented illegal

ordering NC illegal

parentlD NC illegal

pathname NC illegal

position NC (12)

readBy NC illegal

readOn NC illegal

service NC (15)

sizelnBytes NC illegal

sizelnPages NC illegal

subtree Size (18) illegal

subtreeSizeLimit NC set

type NC illegal

version NC set

NC = No Change

Deserialize
Notes:
(1) Appropriate to transferred content.
(2) Session's user if in a directory, nullString otherwise.
(3) Session's user.
(4) Current time ifin a directory, nullTime otherwise.
(5) Current time.
(6) System-assigned value.
(7) Must be FALSE if directory is not null.
(8) TRUE only if directory is null.
(9) FALSE; directories may never be temporary.
(10) Set to filelD of resulting parent.
(11) Appropriate to name of tile and ancestors.

Behavior Behavior
NC NC

NC NC

(ll (l)

NC NC

NC NC

NC NC

NC NC

NC NC

(2) (3) .
(4) (5)

(6) (6)

NC NC

(8) (9)

(3) (3)

(5) (5)

NC NC·

NC NC

NC NC

nO) (10)

(Ill (11)

(13) (13)

nullString nuliString

nullTime nuliTime

(16) (17)

NC NC

NC NC

NC NC

NC NC

NC NC

(19) NC

(12) Specified point.
(13) Beginning, end, or other, depending on ordering

attribute of parent.
(14) Same relative point as original file.
(15) Must be consistent with service implied by

destination parent.
(16) Same as parent or defaultService, if temporary.
(17) Same as parent.
(18) New total content in subtree.
(19) Next available version number for name.

Filing Programmer's Manual

Summary of Attribute Behaviors

Table 6.10

Attribute Behavior
accessList NC

BackedupOn NC

checksum (l)

chiidrenUniquelyNamed NC

createdBy (2)

createdOn (3)

defaultAccessList NC

extended NC

filedBy NC

filedOn NC

filelD NC

isDirectory NC

isTemporary NC

modifiedBy (2)

modifiedOn (3)

name NC

numberOfChildren NC

ordering NC

parentlD NC

pathname NC

position NC

readBy (4)

readOn (5)

service NC

sizelnBytes NC

sizelnpages NC

subtreeSize NC

subtreeSizeLimit NC

type NC

version NC

NC = No Change

Map (NSSegment)

Notes:
. (1) Set to NSFile.unknownChecksum if write access.
(2) Session's user, if write access requested.
(3) Current time, if write access requested.
(4) Session's user.
(5) Currenttime.

6

6-35

6

6-36

Attributes

Summary of Attribute Behaviors

Table 6.11

Source Destination

Attribute
accessList

backedUpOn .

checksum

chiidrenUniquelyNamed

createdBy

createdOn

defaultAccessList

extended

filedBy

filedOn

filelD

isDirectory

isTemporary

modifiedBy

modifiedOn

name

numberOfChildren

ordering

parentlD

pathname

position

readBy

readOn

service

sizelnBytes

size In Pages

subtree Size
subtreeSizeLimit

type

version

NC = No Change

Notes:
(1) Session's user.
(2) Current time.
(3) Must be FALSE.

Parent

Behavior
NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC
(1)

(2)

NC

decremented

NC

NC

NC

NC

NC

NC

NC

NC

NC

(9)

NC

NC

NC

(4) Set to filelD of resulting parent.
(5) Appropriate to name of tile and ancestors.
(6) Specified point.

Parent

Behavior
NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC
(1)

(2)

NC

incremented

NC

NC

NC

NC

NC

NC

NC

NC

NC

(9)

NC

NC

NC

Move

In List
set

set

illegal

illegal

illegal

illegal

set

set

illegal

illegal

illegal

illegal

set(3)

illegal

illegal

set·

illegal

illegal

illegal

illegal

(6)

illegal

illegal

illegal

illegal

illegal

illegal

set

illegal

set

(7) Beginning, end, or other, depending on ordering attribute of parent.
(8) Same as destination parent.
(9) New total content of subtree.
(10) Next available version number for name.

File

Behavior
NC

NC

NC

NC

NC

NC

NC

NC

(ll
(2)

NC

NC

FALSE
(1)

(2)

NC

NC

NC

(4)

(5)

(7)

NC

NC
(8)

NC

NC

NC

set

NC
(10)

Descendants

Behavior
NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

(5)

NC

NC

NC

(8)

NC

NC

NC

NC

NC

NC

Filing Programmer's Manual

Summary of Attribute Behaviors

Table 6.12

Resulting
File

Attribute In List
accessList illegal

backedUpOn illegal

checksum illegal

childrenUniquelyNamed illegal

createdBy

createdOn

defaultAccessList

extended

filedBy

filedOn

filelD

isDirectory

isTemporarv

modifiedBy

modifiedOn

name_
numberOfChildren

ordering

parEmtlD

pathname

position

readBy

readOn

service

sizelnBvtes

sizelnPages

subtreeSize

5ubtreeSizeLimit

type

version

NC = No Change

Notes:
(1) File with this value is opened.
(2) The filelD of directory to search.

illegal

illegal

illegal

ignored

illegal

illegal

(1)

illel{al

illegal

illel{al

illegal

(lJ

illegal

illegal

(2)

(1)

illegal

illegal

illegal

(ll

illegal

illegal

illegal

illegal

illegal

(3)

Open

Behavior
NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

(3) File with this value is opened; name or pathname must also be specified.

6

6-37

6

6-38

Attributes

Summary of Attribute 'Behaviors

Table 6.13

Parent

Attribute Behavior
accessList .

backedUpOn

checksum

chiidrenUniquelyNamed

createdBy

createdOn

defaultAccessList

extended

filedBy

filedOn

filelD

isDirectorv

isTemporarv

modifiedBv

modifiedOn

nam@

numberOfChiidren

ordering

IparentlD

1 Dathname

1 position

'readBv

readOn

service

sizelnBvtes

sizelnPages

subtreeSize

subtreeSizeLimit

type

version

NC = No Change

Notes:
(1) Set to appropriate value for current content.
(2) Session's user ..
(3) Current time.

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

Nr.

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

(6)

NC

NC

NC

Replace

(4) Set to value appropriate for transferred content.
(5) Number of bytes transferred.
(6) New total content in subtree.

File

In List Behavior
illegal NC

illegal NC

set (l)

illegal NC

set (2)

set (3)

illegal NC

ignored NC

illegal NC

illel!"al NC

illeaal NC

illel!"al NC

illel!"al NC

illel!"al (2)

illegal (3)

illealll Nr.

illel!"al NC

illel!"al NC

illel!"al NC

illel!"al NC

illegal NC

illel!"al NC

illegal NC

illel!"al NC

(4) (5)

(4) (5)

illegal <ll

illegal NC

illegal NC

illegal NC

Filing Programmer's Manual

Summary of Attribute Behaviors

Notes:
(1) Set if previously unknown.
(2) Session's user.
(3) Current time.

Table 6.14

Attribute
accessList

BackedUpOn

checksum

childrenUniquelyNamed

createdBy

createdOn

defaultAccessList

extended

filed By

filedOn

filelD

is Directory

isTemporary

modified By

modified On

name

numberOfChildren

ordering

parentlD

pathname

position

readBy

readOn

service

sizelnBytes

sizelnPages

subtreeSize

subtreeSizeLimit

type

version

NC = No Change

Retrieve

Source
File

Behavior
NC

NC

(1)

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

(2)

(3)

NC

NC

NC

NC

NC

NC

NC

6

6-39

6

6-40

Attributes

Summary of Attribute Behaviors

Table 6.15

Source
File

Attribute Behavior
accesslist NC
backedUpOn NC
checksum (l)

chiidrenUniquelyNamed NC
createdBy

createdOn

defaultAccesslist

extended

filedBy

filedOn

°filelD

isDirectory

isTemPOrarv

modifiedBy

modifiedOn

name

numberOfChildren

ordering

iparentlD

Ipathname

1J)_osition

readBy

readOn

service

sizelnBytes

sizelnPages

subtree Size

subtreeSizelimit

type

version

NC = No Change

Notes:
(1) Set if previously unknown.
(2) Session's user.
(3) Current time.

NC
NC
NC
NC
NC
NC

NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
(2)

(3)

NC
NC
NC
NC
NC
NC
NC

Serialize

Source
Descendants

Behavior
NC
NC
(1)

NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
(2)

(3)

NC
NC
NC
NC
NC
NC
NC

Filing Programmer's Manual

Summary of Attribute Behaviors

Table 6.16

File

Attribute Behavior
accessList NC

BackedUpOn NC

checksum (1)

childrenUniquelyNamed NC

created By (2)

createdOn (3)

defaultAccessList NC

extended NC

filedBy NC

filedOn NC

filelD NC

isDirectory NC

isTemporary NC

modifiedBy (2)

modifiedOn (3)

name NC

numberOfChiidren NC

ordering NC

parentlD NC

pathname NC

position NC

read By NC

readOn NC

service NC

sizelnBytes (4)

sizelnPages (5)

subtreeSize (6)

subtreeSizeLimit NC

type NC

version NC

NC = No Change

SetLength (NSFileStream)

Notes:
(1) Set to NSFile.unknownChecksum.
(2) Session's user.
(3) Current time.
(4) Set (affects only default segment).
(5) Set to appropriate value for current content.
(6) Set to new total content in subtree.

6

6-41

6-42

Attributes

Summary of Attribute Behaviors

Attribute
accessList

backedUpOn

checksum

chiidrenUniquelyNamed

createdBy

createdOn

defaultAccessList

extended

filedBy

filedOn

filelD

isDirectory

isTemDorarv

modified By

modifiedOn

·name

numberOfChiidren

orderina

R.arentlD

·pathname

~osition

readBy

readOn

service

sizelnBytes

sizelnPages

subtree Size

subtreeSizeLimit

type

version

NC = No Change

Notes:
(l) Set to (defaulted: TRUE].
(2) Appropriate value for current content.
(3) Session's user.
(4) Current time.

Table 6.17

Destination
Parent

Behavior
NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC
(3)

(4)

NC

incremented

NC

NC

NC

NC

NC

NC

NC

NC

NC

(20)

NC

NC

NC

Store

(5) Session's user ifin a directory, null String otherwise.
(6) Current time ifin a directory, nullTime otherwise.
(7) System-assigned value.
(8) Must he FALSE if directory is not null.
(9) TRUE if directory is nulL
(10) "Anonymous" or system-dependent.
(11) Set to NSFile.defaultOrdering.
(2) Set to filelD of resulting parent.
(13) Appropriate to name of ancestors and file.

Resulting
File

In List Behavior
set (1)

set nullTime

set (2)

set FALSE

set (3)

set (4)

set (1)

set empty

illegal (5)

illel{al (6)

illeeal (7)

set FALSE.

set(8) (9)

illel{al (3)

illeeal (4)

set (10)

illeeal o (zero)

set (11)

illegal (12)

illel{al (13)

(14) (15)

illeeal nullStrina

illegal 'nullTime

<I6) (17)

<I8) (19)

(18) (19)

illegal (2)

set (21)

set (22)

set (23)

(14) Specified point.
(15) Beginning, end, or other, depending on ordering

attribute of parent.
(16) Must be consistent with service implied by

destination parent.
(17) Same as parent or defaultService. iftemporary.
(18) Number of bytes transferred.
(19) Set to value appropriate to transferred content.
(20) New total content in subtree.
(21) Set to NSFile.nuIlSubtreeSizeLimit.
(22) NSAssignedTypes.tUnspecified.
(23) Next available version number for name.

Filing Programmer's Manual

Summary of Attribute Beha viors

Table 6.18

File

Attribute Behavior
accessList NC
backedUpOn NC
checksum NC
childrenUniquelyNamed NC
createdBy NC
createdOn NC
defaultAccessList NC
extended NC
filedBy NC
filedOn NC
filelD NC
isDirectory NC
isTemporary NC
modifiedBy NC
modifiedOn NC

nam" NC

numberOfChiidren NC
ordering NC

IparentlD NC
lpathname NC
I position NC
readBy NC
read On NC
service NC
sizelnBytes NC
sizelnPages NC
subtreeSize NC
subtreeSizeLimit NC
type NC
version NC

NC = No Change
UnifyAccessLists

Notes:
(1) Set to [defaulted: TRUE).
(2) Session's user if modified.
(3) Current time if modified.

Descendants

Behavior
(1)

NC
NC
NC
NC
NC
(1)

NC
NC
NC
NC
NC
NC
(2)

(3)

NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC

6

6-43

6 Attributes

6-44

7

Pathname parsing operations

NSFileName: DEFINITIONS •.. ;

The pathname attribute of a file gives a list of the names and versions of the file's
ancestors, listed in hierarchical order, ending with the name and version of the file itself.
It is thus relative to the file service on which the file resides. A qualified pathname for a
file contains the name of the service which contains the file as well as the file's service­
relative pathname.

The NSFileName interface provides routines for splitting qualified pathnames into their
service name and service-relative components and routines for merging these components
into a qualified pathname string. This interface also defines the standard delimiters for
pathname components.

7.1 Pathname separators and other special characters

Parsing of pathname strings is based on the separators defined in this section.

7.1.1 Service name separators

Service names are enclosed by the leftServiceSeparator and the rightServiceSeparator to
delimit them from the service-relative portion of the pathname.

NSFileName. Character: TYPE = NSString.Character;

NSFileName.leftServiceSeparator: Character = [0, SOB]; -- '(, the left parenthesis
NSFileName.rightServiceSeparator: Character = [0,51 B]; -- '), the right parenthesis

Service names conform to the specifications of Clearinghouse names whose components
are delimited by NSName.separatorCharacter, i.e., (:).

7.1.2 Path name component separators

NSFileName.nameVersionPairSeparator: Character = [0, 57B]; -- '/ , the diagonal slash
NSFileName.versionSeparator: Character = [0,41 B]; -- 'f, the exclamation point

7-1

7

7-2

Pathname parsing operations

In the service-relative portion of a pathname, the name of a file is separated from the
version number of the file by the versionSeparator .. Name-version pairs in the pathname
are delimited from each other by the nameVersionPairSeparator. A pathname supplied to
the file system need not contain explicit version numbers for each of the files listed; where
not specified explicitly an appropriate default for the version number is supplied by the
file system.

Following are some examples of path names:

(File Service: Unit 1 :Acme)TemplateS/Financial Forms/Expense Report!2
This is a qualified pathname for a file on the file service named "File Service: Unit
l:Acme." The file's name is "Expense Report" and version number is 2, its parent's
name is "Financial Forms," and its parent's parent's name is "Templates." Since no
version is specified for the files "Templates" and "Financial Forms," their version
numbers are defaulted by the file system.

Templates/Financial Forms/Expense Report!2
This is a service-relative pathname. This pathname will name the same file as the
pathname in the above example if it is presented to the same service as that named
there.

7.1.3 Characters for version number constants

The version number constants NSFile.lowestVersion and NSFile.highestVersion can be
represented explicitly in pathnames using the characters defined below.

NSFileName.lowestVersion: Character = [0,558]; -- '-, the minus sign
NSFileName.highestVersion: Character = [0,538]; -- '+ , the plus sign

The following is an example of a pathname which uses these constants:

(File service:Unit 1 :Acme)TemplateS/Financial Forms!-/Expense Report! +
This is a path name for a file on the file service "File Service:Unit l:Acme." The file is
the one with the highest version number of files named "Expense Report" contained in
the directory whose name is "Financial Forms" and which has the lowest version of
files with the same name contained in the directory named "Templates." Since no
version is specified for the file "Templates," its version number is defaulted by the file
system.

7.1.4 Wildcard characters

NSFileName.matchSingleChar: Character = [0,438]; -- '#, the pound sign
NSFileName.matchMultipleChars: Character = [0,528]; -- '* I the asterisk

Wildcard characters can be used in file names or pathnames for pattern matching in
filters. matchSingleChar means match a single character and matchMultipleChars means
match zero or more characters. For a more detailed description of pattern matching in
filters, see §3.5.1.

Filing Programmer's Manual 7

7.1.5 The escape character

NSFileName. escapeChar: Character = [0.478]; -- ", the apostrophe

The name of a file is permitted to contain any of the pathname separator characters or
wildcard characters. To indicate that such a character should be interpreted as part of the
file's name and not as a special character, this character must be preceded by the
escapeChar when written in 'a pathname. If the escapeChar is itself a character in a file
name, it too must be preceded by the escapeChar when written in a pathname.

The following is an example of a pathname which includes an escapeChar :

(File Service:Unit 1 :Acme)TemplatesNacation'/Holiday Planning Form
This is the path name for a file on file service "File Service:Unit l:Acme." The file's
name is "Vacation/Holiday Planning Form," and is contained in the directory called
"Templates."

7.2 The default domain and organization

The client may set the default domain and organization to be used during parsing when
either of these fields are omitted from the service portion of a pathname by calling
SetDefaultDomainAndOrg. Calling this operation sets defaultDomain and defaultOrg to
the specified values (these are initially set to null strings). These defaults are global to a
system element and not session-relative.

NSFileName.defaultDomain. NSFileName.defaultOrg : READONLY String;

NSFileName.SetDefaultDomainAndOrg: PROCEDURE [domain. org:String);

Arguments: domain and org indicate the defaults to be used whenever these fields
are omitted from the service portion of a qualified pathname.

Results: NSFileName.defaultDomain is set to domain and NSFileName.defaultOrg
is set to ~rg.

Errors: None.

7.3 Parsing qualified pathnames

A VirtualPathname contains both the components of a qualified pathname for a file: the
service name and the local, or service-relative, portion of a pathname.

NSFileName.VirtuaIPathname. VPN: TYPE = LONG POINTER TO VPNRecord;

NSFileName. VPNRecord: TYPE = RECORD [
pathname: String.
service: Service);

NSFileName.Service: TYPE = NSFile.Service;
NSFileName.String: TYPE = NSString.String;
NSFileName.nuIiString: String = NSString.nuIiString;

7-3

7

7-4

Pathname parsing operations

VPNFieldsFromString di vides a string containing a well-formed pathname (which mayor
may not contain a service name) into a VPNRecord. Division of the service name (if
specified) into an NSName.Name is done using NSName routines which use
NSName.separatorCharacter, Le., (:) to delimit the fields of the service name. The client is
responsible for freeing storage allocated for the pathname portion of destination (the
space allocated to the service portion of destination is managed by the file system and th'e
client should not attempt to free it); ClearVPN or FreeVPNFields can be used to free the
pathname portion and nullify the. service portion of destination.

NSFileName.VPNFieldsFromString: PROCEDURE [
Z: UNCOUNTED ZONE. s: String. destination: VPN);

Arguments:

Results:

Errors:

z is the zone from which the fields of the VPNRecord are to be allocated,
s is the string to be parsed as a VPN, and destination is the pointer to
the client's VPNRecord which will contain the results of parsing s.

The fields of destination are filled with the results of parsing s into its
service and path name component parts. When s is missing a service
name, or contains a service name which is missing domain and
organization parts, the missing parts are filled into destination
according to the conventions described below.

NSFileName.Error [invalidSyntax), may be raised.

If the domain and organization fields are both omitted from the service name of a
pathname, VPNFieldsFromString will fill in those fields in the following manner. If the
NSName.separatorCharacter is included after the local field of the service name, the domain
and organization are set to defaultOomain and defaultOrg. If the
NSName.separatorCharacter is omitted after the local field of the service name, the domain
and organization are set to nuliString. When the file system is presented with a service
name having null domain and organization parts, it interprets this to mean that the
service is local.

The following examples illustrate this distinction:

(File Service:)TemplateS/Financial Forms/Expense Report
The presence of the colon (:) after the local portion of the file service name indicates
that the defaults defaultOomain and defaultOrg are to be used to fill in the domain
and organization fields of the service name.

(Fi I i ng)System Fi I eS/FontS/CI assi cFont
The absence of the colon (:) after the local portion of the file service name indicates
that the service is local, and that null strings should be used to fill in the domain and
organization fields of the service name.

If the left and right service separators are included in a pathname, but the service name is
not specified, then VPNFieldsFromString returns NSFile.defaultService as vpn.service. If
neither a service name nor the service separators are included, then VPNFieldsFromString
returns NSFile.nuliService as vpn.service.

Filing Programmer's Manual 7

The following examples illustrate this distinction:

OSystem Fi I esiFontsiClassi c Font
This is a qualified pathname which names a file on the default service.

System Fi les/FontsiClassicFont
This path name is not a qualified pathname, but a service-relative pathname. The

. service on which the file resides is not indicated by the pathname.

VPNFromString is like VPNFieldsFromString except the VPNRecord is also allocated from
the specified zone. The client is responsible for freeing allocated memory using FreeVPN.

NSFileName.VPNFromString: PROCEDURE [z: UNCOUNTED ZONE. 5: String] RETURNS [vpn: VPN);

7.4 Appending VPNs to Strings

CopyVPNToString copies the fields of a VPN into a String which it allocates from a
specified zone, separating the components of the VPN by the defined separators. The
separator used between fields of service names is the NSName.separatorCharacter, i.e., (:).

NSFileName.CopyVPNToString: PROCEDURE [
Z: UNCOUNTED ZONE. vpn: VPN. extra: CARDINAL]
RETURNS [5: String];

.Arguments:

Results:

Errors:

Z is the zone from which 5 is to be allocated, vpn is the VPN whose fields
are to be copied to s. extra refers to additional characters to be
allocated to 5 beyond those needed to convert vpn to a string.

The fields of vpn are concatenated together with the appropriate
delimiters to form the string 5; 5 is allocated to be the proper size from
z.

None.

AppendVPNToString is likeCopyVPNToString except that it appends the fields of a VPN to
a preallocated String.

NSFileName.AppendVPNToString: PROCEDURE [
5: String. vpn: VPN. resetLengthFirst: BOOLEAN)
RETURNS [newS: String];

Arguments:

Results:

Errors:

5 is the pre-allocated String to which the fields of vpn are to be
appended, re5etLengthFirst indicates if the length of s should be set to
zero before the fields ofvpn are appended.

The fields ofvpn are appended to 5.

NSString.StringBoundsFault can be raised.

7-5

7 Pathname parsing operations

7.5 Allocation and deallocation ofVPNs

7-6

This section defines operations for copying VPNs and for freeing VPNs which have been
allocated by NSFileName operations.

7.5.1 CopyingVPNs

CopyVPNFields copies a source VPN to a destination VPN, allocating the fields of
destination from a specified zone. The client is responsible for freeing the allocated
memory; ClearVPN can be used for this purpose.

NSFileName.CopyVPNFields: PROCEDURE [
z: UNCOUNTED ZONE. source. destination: VPN);

Arguments:

Results:

Errors:

z is the zone from which the fields of destination are to be allocated,
source is the VPN to be copied, destination is the destination of the
copy.

source is copied to destination. The fields of destination are allocated
fromz.

None.

CopyVPN is like CopyVPNFields except the copied VPNRecord is also allocated from the
zone. FreeVPN can be used to deallocate the VPNRecord and its fields.

NSFileName.CopyVPNFields: PROCEDURE [z: UNCOUNTED ZONE. vpn: VPN] RETURNS [VPN);

7.5.2 Freeing VPNs

ClearVPN and FreeVPNFields free the pathname portion of vpn and set VPNRecord of vpn
to [nuliString. NSFile.nuIiService].

NSFileName. ClearVPN. FreeVPNFields: PROCEDURE [z: UNCOUNTED ZONE. vpn: VPN);

Arguments:

Results:

Errors:

z is the zone from which the fields of vpn have been allocated, vpn is
the VPN whose fields are to be deallocated:

The pathname portion of vpn is freed and the fields of vpn are set to
[nuIiString. NSFile.nuIiService]

None.

FreeVPN is like ClearVPN and FreeVPNFields except the VPNRecord is also freed.

NSFileName. FreeVPN:PROCEDURE [z: UNCOUNTED ZONE. vpn: VPN] ;

7.6 Errors

Filing Programmer's Manual 7

When an NSFileName operation is unable to complete successfully, it reports this fact by
raising the error, NSFileName.Error.

NSFileNameError: ERROR [type: ErrorType];

NSSegment.ErrorType: TYPE = {invalidSyntax};

The argument type describes the problem in greater detail:

invalidSyntax Unable to complete parsing of a pathname due to one of the
following errors in syntax:

• The supplied pathname was zero in length:

• The service name specified in the pathname was an invalid NSName.Name.

• The leftServiceSeparator was encountered at the beginning of a pathname, but the
rightServiceSeparator was never encountered.

• The service name portion of the pathname had a local name, domain name, or org
name which exceeded the maximum length allowed for it as specified in NSName.

7-7

7 Pathname parsing operations

7-8

8

System configuration
and administration

8.1 Global file system variables

NSFileControl defines variables and procedures that set certain file system characteristics
and defaults for use by other software on the same processor.

NSFileControl: DEFINITIONS = ... ;

The interface offers several facilities. The first, protocol versions, provides a way for the
system's control module to indicate which versions of the filing protocol are exported by
the file service running on the system. The second, group membership status, is a facility
used by the system's control module to find out whether a session's client is a member of a
particular group. Finally, miscellaneous operations provide other information global to the
file system.

8.1.1 Protocol versions

The file service running on a system may support one or a number of versions of the Filing
Protocol. To make these versions of the protocol available or unavailable to network
clients, the procedures ExportProtocol and UnexportProtocol are defined. These
procedures accept a Version Range as an argument. All versions of the protocol within the
specified range are then made available/unavailable.

NSFileControl.Version: TYPE = CARDINAL;

NSFileControl.VersionRange: TYPE = RECORD [low, high: Version];

The constant aliVersions is defined which the client uses to indicate that he wishes all
possible versions ofthe Filing Protocol to be exportedlunexported.

NSFileControl.allVersions: VersionRange = [low: LAsT[Version], high: LAsT[Version]];

The range of versions of the Filing Protocol which could be exported by calling
ExportProtocol is indicated by the range protocolVersions.

NSFileControl.protocoIVersions: READONLY VersionRange;

8-1

8

8-2

System configuration and administration

NSFileControt.ExportProtocol: TYPE = PROCEDURE [
version: Version Range +- aIiVersions];

Arguments:

Results:

Errors:

version specifies the version(s) of the Filing Protocol to be made
available to network clients.

The version(s) of the Filing Protocol specified by version are made
available to network clients. This operation permits this system
elemenUo respond to Filing requests.

NSFileContr~I.Error may be raised with the following types:
duplicateExport or versionlnvalid.

Note: Before calling ExportProtocol, the file system must be started by calling
NSFileControl.Start (see §8.1.3).

NSFileControt.UnexportProtocol: TYPE = PROCEDURE [
version: Version Range +- aIiVersions);

Arguments:

Results:

Errors:

8.1.2 Membership status

version specifies the version(s) of the Filing Protocol to be made
unavailable to network clients.

The version(s) of the Filing Protocol specified by version are made
unavailable to network clients.

NSFileControl.Error may be raised with the following types:
noSuchExport or versionlnvalid.

A MembershipProc is a procedure provided by the system's control module to determine
the membership status of a session's user with respect to an instance of a class of a
specified type. The type, MembershipStatus, defines the possible outcomes of the
membership evaluation.

NSFileControt.MembershipProc: TYPE = PROCEDURE [
key: NSString.String. type: NSFile.AccessEntryType. session: NSFile.Session]
RETURNS [status: MembershipStatus);

Arguments:

Results:

key identifies an instance of the class for which the client's
membership status is requested (e.g., "Filing Implementors:OSBU
Nouth:Xerox"); type identifies the class of key (e.g., group); session
refers to the client's session.

status indicates whether the client is a member of the specified class
with the given type.

NSFileControl.MembershipStatus: TYPE = (member. notAMel'!'ber. cannotDetermine};

Filing Progl'ammer's Manual 8

During startup, the system's control module may designate the MembershipProc to be
used in determining a client's membership status. This is done by calling
RegisterMembershipProc. If the system's control module does not specify a particular
MembershipProc, then the default, defaultMembershipProc, is assumed.

NSFileControl.RegisterMembershi pProc: PROCEDURE [membershi pProc: Membershi pProc];

Arguments: membershipProc is the procedure to be used in determining
membership status.

Results: None.

Errors: None.

The default MembershipProc, defaultMembershipProc, returns a status of member if
type is individual and key exactly matches the full name of the logged on user. It returns
cannotDetermine if type is group and returns notAMember otherwise.

NSFileControl.defaultMembershipProc: MembershipProc;

8.1.3 Miscellaneous operations

The following items in NSFileControl are included for convenience. They pertain to
characteristics of all file services on the local system element.

The default timeout is the timeout, in seconds, actually used on this machine when a local
or network client specifies an NSFile.Controls containing the constant
NSFile.defa ultTi meout.

NSFileControl.defa ultTi meout: REAOONL Y NSFile. Ti meout;

The default timeout is initially 60 seconds. It can be changed by calling
NSFileControl.SetDefau ItTi meout.

NSFileControl.SetDefa U ItTi meout: PROC [ti meout: NSFile. Ti meout];

The default name is the name given to any file created on the local system element by
NSFile.Create or NSFile.Store when no name is specified in the attribute list in the operation.

NSFileControl.defaultName: REAOONLY NSString.String;

The default name is initially "Anonymous." It can be changed by calling
NSFileControl.SetDefaultName.

NSFileControl.SetDefaultName: PROC [name: NSString.String];

This procedure copies the passed string, so the storage for name may be released after the
operation returns.

Files transmitted using the Filing protocol and stored on file servers are understood to
have a content which is a single contiguous sequence of bytes, rather than multiple
contiguous sequences of bytes (segments). A file which has more than one segment when
stored in the local file system must be compressed into a single segment before it is

8-3

8 System configuration and administration

transferred to a remote file system. When this compressed file is later received from a
remote file system, it is decomposed into a multi-segment file only if it has one of the file
types which the client has distinguished as a segmented file type. The client may specify a
maximum of five distinguished file types by successive calls on the operation
NSFileControl.DistinguishSegmentedFileType.

NSFileControl.Disti nguishSegmented Fi leType: PROCEDURE [type: NSFile. Type];

The operation NSFileControl.lsSegmentedFileType can be used to determine whether a file
type has been distinguished.

NSFileControl.lsSegmentedFileType [type: NSFile.Type] RETURNS [BOOLEAN];

The procedure NSFileControl.Start is provided for the client who wishes to initialize Filing's
exported variables before making use offile system operations. The procedure has no other
effect, and redundant calls are ignored.

NSFileControl.Start: PROCEDURE;

8.1.4 Errors

The protocol version operations (ExportProtocol and UnexportProtocol) may raise
NSFileControl.Error.

NSFileControl.Error: ERROR [type: ErrorType);

NSFileControl.ErrorType: TYPE = {
duplicateExport. versionlnvalid. noSuchExport};

ErrorType gives more detailed information as to the nature of the problem.

duplicateExport

versionlnvalid

noSuchExport

An attempt was made to export a version of the protocol which is
already exported.

Export of an unknown version of the protocol was requested.

An attempt was made to unexport a version of the protocol which is
already unexported or which was never exported.

8.2 Volumes

8-4

NSVolumeControl: DEFINITIONS .•. ;

The NSVolumeControl interface contains variables and procedures used to manage the
local file system's volumes.

Local files may be located on one or more disjoint Pilot volumes, each of which represents
an independent, complete file system. Each Filing volume has its own q>ot file which
resides on that volume. All descendants of a root file reside on the same volume, and all
non-temporary Filing files on a volume are descendants ofthat volume's root file.

Filing Programmer's Manual 8

Each Filing volume corresponds to a distinct NSFile.Service. The volume must be opened to
make the corresponding service available for client use. Every volume is given a name,
which is also the name of the corresponding service. Network clients use this name to
identify the service, so the name conforms to the specifications for Clearinghouse names.
The name of the volume is available to the client of NSVolumeControl through the
operation GetName. The file system requires that the local field of a volume name be
unique among the local names of all the open volumes on the same system element.

All of the operations in this interface identify a volume by its Pilot logical volume lD
rather than its name. If the name of the volume is known (Le., -the name of the
corresponding service is known), the volume 10 can be obtained via the operation GetiD.

The root file's filelD can be obtained by calling NSVolumeControl,GetAttributes.
Alternatively, a volume's root file can be opened by passing a reference to
NSFile.OpenByReference in which the service corresponding to the volume is specified and
the filelD is NSFile.nuIlID, or by passing an attribute list to NSFile.Open which contains the
service corresponding to the volume but does not contain a filelD, a name, or a pathname.

8.2.1 Opening and closing volumes

The operation NSVolumeControl.Open makes the files on the specified volume accessible.

NSVolumeControl.Open: PROCEDURE [volume: volume.lD];

Arguments:

Errors:

volume is the volume to be opened. It is a Pilot volume which may be
open or closed.

If the volume is already open as a Filing volume, NSVolumeControl,Error
[alreadyOpen] is raised. If volume is not a known Pilot volume,
NSVolumeControl.Error [notMounted] is raised. If volume is a known
Pilot volume but does not appear to be a valid Filing volume,
NSVolumeControl.Error [invalidVolume] is raised. If the volume appears
to be damaged, NSVolumeControl.Error [needsScavenging] is raised; the
client must call NSVolumeControl.Scavenge before trying to open the
volume again. If the volume was created by an incompatible version of
Filing, NSVolumeControl.Error [incompatibleVolume] is raised; such a
volume must be scavenged before it is opened. If there is already an
open volume with the same local name as the volume being opened,
NSVolumeControl.NameNotUnique is raised.

The operation NSVolumeControl.Close is called when the client no longer wants access to a
Filing volume.

NSVolumeControl.Close: PROCEDURE [volume: Volume.lD];

Arguments:

Errors:

volume is the volume to be closed.

A volume may be closed only if no sessions to its corresponding service
exist; if such sessions exist, NSVolumeControl.Error [sessionsExist] is
raised. If the volume to be closed is not open, NSVolumeControl.Error
[notOpen] is raised.

8-5

8

8-6

System configuration and administration

Note: Closing a Filing volume other than the system volume also causes the underlying
Pilot volume to be closed.

8.2.2 The system volume

The system volume is the Pilot volume containing the running boot file. It need not
actually be a valid or open Filing volume.

NSvolumeControl.systemVolume: READONLY volume.lD;
•

8.2.3 Initializing volumes

A Pilot volume which does not already contain a Filing file system can be initialized as a
Filing volume by calling NSVolumeControl.lnitialize.

NSVolumeControl.lndexAttributes: TYPE = RECORD [
size: LONG CARDINAL...,. 100.
pagelncrement: LONG CARDINAL +-100,
percentlncrement: Percent +- 20);

NSVolumeControl.Percent: TYPE = [0 .. 100);

NSVolumeControl.lnitialize: PROCEDURE [
volume: Volume.IO. index: IndexAttributes +- [J, root: NSFile.AttributeList +-NIL);

Arguments:

Errors:

volume is the volume to be initialized; index specifies certain
attributes of the volume's B-tree index file; root specifies attributes of
the root file to be created.

NSFile.Error may be raised with arguments identical to those raised by
NSFile.Create. In addition, NSVolumeControl.Error [alreadyOpen) is raised
if volume names an open Filing volume; NSVolumeControl.Error
[alreadylnitialized) is raised if the passed Pilot volume already
contains a Filing file system; NSVolumeControl.Error [notMounted) is
raised if volume does not name a known Pilot volume;
NSVolumeControl.Error [needsScavenging] is raised if the Pilot volume
needs scavenging. NSVolumeControl.NameNotUnique is raised if there is
already an open volume having the same loc.al name as that specified
for the volume being initialized. NSVolumeControl.Error
[nameLengthlimit] is raised if the length of the specified name exceeds
NSName.maxLocal Length.

The volume may be an open or closed Pilot volume; it may not be an open Filing volume.
There must not already be a Filing file system on the volume.

Initializing a Filing volume allocates a data structure called the B-tree index file, which is
used to maintain the volume's directory structure. This file is invisible to clients (except
fo~ the space overhead it consumes), but certain attributes of the volume's B-tree index file
can be passed in the parameter index. Currently, they cannot be subsequently changed by
clients after the volume is initialized.

Filing Programmer's Manual 8

size is the initial size in pages of the index file. pagelncrement and percentlncrement
control the growth of the index file: if the size of the index file must be increased, it is
increased either by a fixed amount or by a percentage of its current size, whichever is
larger.

The client may specify an attribute list for the root file by passing a non-Nil value of root.
All attributes that may be specified for NSFile.Create may be specified here, except service.
However, the default values of attributes that are not specified are somewhat different:

isDirectory defaults to TRUE (it may be specified as FALSE, but this is not very useful)

childrenUniquelyNamed defaults to TRUE

name defaults to the name of the corresponding Pilot logical volume. The local name of the
volume (and thus of its corresponding service) is initialized to this value. This name must
be unique among the local names of all open volumes on the same system element. To set
the full Clearinghouse name of the volume, the client must call Change Name after
initializing the volume.

created By defaults to the string "Initialization."

In addition, the modifiedBy attribute (which may not be specified) is given the initial
value of the string "Initialization"; the filedOn and filedBy attributes are null.

8.2.4 Volume attributes

NSVolumeControl.GetAttributes is used to obtain the attributes of an open Filing volume.

NSVolumeControl.GetAttributes: PROCEDURE [volume: Volume.lD]
RETURNS [used, available: lONG CARDINAL, index: IndexAttributes, root: NSFile.lD];

Arguments:

Results:

Errors:

8.2.5 Volume name

volume is the volume of interest.

used is the number of Pilot disk pages in use. Since it includes
overhead, it will be larger than the subtreeSize attribute of the
volume's root file. available is the number of free pages on the volume;
however, there is no guarantee that a file of this size can actually be
created. root is the NSFile.lD for the volume's root file. index contains
data about the volume's B-tree index file; currently, the index
attributes cannot be changed by clients after a volume is initialized.

NSVolumeControl.Error [notOpen] is raised if volume is not an open
Filing volume.

The NSName.Name of an open Filing volume can be obtained using
NSVolumeControl.GetName. Clients ·of Filing operations use this name to identify the
corresponding service.

8-7

8

8-8

System configuration and administration

NSVolumeControl.GetName: PROCEDURE [Z: UNCOUNTED ZONE. volume: VolumeJD)
RETURNS [volumeName: NSName.Name);

Arguments:

Results:

Errors:

volume is the volume of interest, Z is the zone from which storage for
the volume name will be allocated.

volumeName is the NSName.Name of volume (and hence of its
corresponding service). Storage is allocated for both the name record
and· the strings from the z, thus. NSName.FreeName must be used by the
client to deallocate that storage.

NSVolumeControl.Error [notOpen] is raised if volume IS not an open
Filing volume.

NSVolumeControl.GetlD may be used to obtain the ID of a volume given its NSName.Name (i.e.,
the name of its corresponding service).

NSVolumeControl.GetID: PROCEDURE [
volumeName: NSName.Name, ignoreOrgAndDomain: BOOLEAN +- FALSE]

RETURNS [volume: Volume.lD);

Arguments:

Results:

Errors:

volumeName is the name of the volume whose ID is of interest. If
ignoreOrgAndDomain is TRUE, then the organization and domain
fields of volumeName are ignored in the lookup, and only the local
name is considered.

The ID of the volume having the given NSName.Name is returned as
volume.

NSVolumeControl.Error [volumeNotFound) is raised if volumeName does
not name an open Filing volume.

The NSName.Name of an open Filing volume (and hence of its corresponding service) can be
changed using NSVolumeControl.ChangeName.

NSVolumeControl.ChangeName: PROCEDURE [
volume: volume.lD. volumeName: NSName.Name);

Arguments:

Results:

Errors:

volume is the volume whose name is to be changed, volumeName is
the new name of the volume. .

The name of volume is changed to volumeName.

NSVolumeControl.Error [notOpen] is raised if volume is not an open
Filing volume; NSVolumeControl.Error [invalidName] is raised if
volumeName is not a valid volume name (e.g., it has a null local
component, or is an invalid NSName.Name); NSVolumeControl.Error
[nameLengthLimit] is raised if the length of one of the fields of
volumeName exceeds the corresponding limit.·
NSVolumeControl.NameNotUnique is raised if there is already another
open volume with volumeName.

Filing Programmer's Manual 8

8.2.6 Volume scavenging

The operation NSVolumeControl.Scavenge is invoked to repair a Filing volume whose
structure has been damaged. It can also be invoked to convert a Filing volume from an
older, incompatible format. (The Pilot logical-voiume scavenger is invoked automatically
as the first part of this operation.)

NSvolumeControl.ScavengerOptions: TYPE = RECORD [
rootType: NSFile.Type,
index: IndexAttributes.
orphanDirectoryName: NSString.String,
orphanDirectoryType: NSFile.Type];

Scavenger options is used to specify the options to be used during scavenging of a volume.
The field rootType specifies the type of the volume's root file; ifthe scavenger does not find
such a file, it creates a new one; index provides parameters for the index file (see §8.2.3 for
interpretation of IndexAttributes); orphanDirectoryName and orphanDirectoryType
specify attributes of an orphan directory, if one is needed. An orphan directory is a
directory into which the scavenger places orphan files; that is, permanent files whose
parent file cannot be determined. If an orphan directory is needed, it is created in the root
of the file system with the specified name and type.

NSVolumeControl.Scavenge: PROCEDURE [
volume: volume.lD, options: ScavengerOptions, logVolume: Volume.lD]
RETURNS [logFile: File.File];

Arguments:

Results:

Errors:

volume is the volume to be scavenged. It may not be the system
volume and may be open. After scavenging, the volume is closed.
options specifies the options for the scavenge; logVolume indicates the
Pilot logical volume on which the scavenger log is created; it must be
open if it is not the same as the volume being scavenged.

logFile is the permanent Pilot file which is created on logVolume; it
contains a description of all files and problems found by the scavenger.

If the log generated by the Pilot scavenger 1S invalid,
NSVolumeControl.Error [badPiiotLog] is raised. If volume is the system
volume, NSVolumeControl.Error [cannotScavengeSystemVolume] is
raised. If the log file cannot be written, NSVolumeControl.Error
[cannotWriteLog] is raised. If logVolume differs from volume and is
not an open Pilot logical volume, NSVolumeControl.Error
[logVolumeNotOpen] is raised. If the Pilot scavenge was completed
but the scavenged volume could not be opened, NSVolumeControl.Error
[piiotScavengeFailed] is raised. If the Pilot scavenge could not be
completed, NSVolumeControl.Error [pilotScavengerError] is raised. If
volume is not a known Pilot logical volume, NSVolumeControl.Error
[unknownPilotVolume] is raised. If the volume is being converted
from an older, incompatible format, and there is insufficient space to

. complete the conversion, NSVolumeControl.Error
[insufficientSpaceForConversion] is raised. If the Pilot conversion
revealed that the volume was in an inconsistent state prior to the start
of conversion, then NSVolumeControl.Error [runPreviousScavenger] is

8-9

8

8-10

System configuration and administration

raised. If the volume in unable to complete conversion to the new
format, then NSVolumeControl.Error [votumeConversionFaited] is raised.

In addition to putting the scavenge~ log on 10gVolume, the scavenger also creates the data
files it needs for scavenging on 10gVolume. These data files always occupy at least 166
disk pages, and occupy more space if the volume being scavenged contains more than 830
files. For volumes with more than 830 files, the amount of space required by the
scavenger's data files is given by the equation:

size of data files (in pages) = 2 x (number of files on volume + 10)

The format of the log file which the scavenger generates is described by the type
NSVolumeControl.Log. The log is made up of an NSVolumeControl.Header followed by one or
more NSVolumeControl.Entrys. The fields of header identify the volume that was scavenged
(volume), the time that the volume was scavenged (date), whether the scavenge was
incomplete (incomplete), whether the file system was repaired (repaired) and the number
offiles found in the file system (numberOfFiles). There is one Entry for each file in the file
system. The entry indicates the file's ID (file), type (type) and name (name), the number of
problems with the file (numberOfProblems), and an array describing the problems
(problems). When no problems exist for a file, numberOfProblems is zero and the name

and problems fields of the Entry are omitted. .

Note: Currently, repaired is used to indicate the presence of problems within the log file;
if TRUE, at least one problem is reported there. Also, the implementation never reports
incomplete scavenges.

The size of the scavenger log depends on the number of files on the volume being
scavenged, since every file has an entry in the log. The size of the log also increases as the
number of files with problems increases. The scavenger log always occupies at least 10
disk pages, regardless of the total number of files or the number of files with problems.
Since the size of the scavenger log and the size of the scavenger's data files are both
proportional to the number of files on the volume, scavenging a larger capacity volume
will generally require more free space on 10gVolume than scavenging a small~r capacity
volume.

NSVolumeControl.Log: TYPE = MACHINE DEPENDENT RECORD [
header(O): Header, firstEntry(slzE[Header]): Entry]; -- other entries follow

NSVolumeControl.HeaderPointer: TYPE = LONG POINTER TO Header;
NSVolumeControl.Header: TYPE = MACHINE DEPENDENT RECORD (

volume(O): volume.lD,
date(S): System.GreenwichMeanTime,
incomplete(7:0 .. 14), repaired(7:1S .. 1S): BOOLEAN.
numberOfFiles(8}: LONG CARDINAL);

NSVolumeControl.EntryPointer: TYPE = LONG POINTER TO Entry;
NSVolumeControl.Entry: TYPE = MACHINE DEPENDENT RECORD [

file(O): NSFile.lD,

type(S): NSFile.Type,
numberOfProblems(7): LONG CARDINAL
-- name: StringBody,

Filing Programmer's Manual

-- problems: ProblemArray
];

NSVolumeControl.StringBody: TYPE = MACHINE DEPENDENT RECORD [
length(O): CARDINAL. bytes(1): PACKED ARRAY [0 .. 0) OF Environment.Byte];

NSVolumeControl.ProblemArray: TYPE = ARRAY [0 .. 0) OF Problem;
NSVolumeControl.ProblemType: TYPE = MACHINE DEPENDENT{

changedToDirectory(O). duplicatePage(1) .. dupl icateSegmentID(2).
fileDeleted(3). illegaIAttributeValue(4). illegaIAttributeValueForNonDirectory(5).
illegaISegmentID(6). invalidAttributeValue(7). leaderExtensionDeleted(8).
leaderExtensionMissing(9). leaderExtensionReinserted(10).
leaderExtensionWrongType(11). looplnHierarchy(13). missingPages(14).
orphanFile(15). orphanLeaderExtension(16). orphanPage(17).
orphanSegment(18). segmentDeleted(19). segmentMissing(20).
segmentRei nserted(21). segmentWrongType(22). stri ngTooLong(24).
tooManySegments(25). unreadablePages(26). variableAttributesBad(27).
wrongNumberOfChildren(28). wrongSegmentID(29).
wrongSizel nBytes(30). wrongSizel nPages(31). newRootCreated(33).
orphanDirectoryCreated(34). (256)};

NSVolumeControl.ProblemPointer: TYPE = LONG POINTER TO Problem;
NSVolumeControl.PrOblem: TYPE = MACHINE DEPENDENT RECORD [

trouble(O): SELECT problemType(0:O .. 15): ProblemType FROM
changedToDirectory. duplicatePag~. fileDeleted. leaderExtensionDeleted.

leaderExtensionMissi ng. leader Extension Rei nserted.
leaderExtensionWrongType. newRootCreated.
orphanDirectoryCreated. orphanPage.
variableAttributesBad = > n.

duplicateSegmentlD. iliegalSegmentlD = > [
old(1): NSSegment.ID. changedTo(2): NSSegment.lD],

iIIegalAttributeValue, iIIegalAttributeValueForNonDirectory = > [
old(1): NSFile.Attribute].

invalidAttributeValue, stringTooLong = > [type(1): NSFile.AttributeType].
looplnHierarchy,orphanFile = > [oldParent(1): NSFile.lD],
missingPages, unreadablePages = > [

first(1): File.PageNumber, count(3): File.PageCount],
orphanLeaderExtension = > [id(1): NSFile.lD],
orphanSegment = > [id(1): NSFile.lD, segment(6): NSSegment.lD],
segmentDeleted, segmentMissing. segmentReinserted,

segmentWrongType = > [segment(1): NSSegment.lD),
tooManySegments = > [oldCount(1): CARDINAL].
wrongNumberOfChildren = > [old(1): CARDINAL, changedTo(2): CARDINAL].
wrongSegmentlD = > [inEntry(1): NSSegment.lD, inFile(2): NSSegment.lD],
wrongSizelnBytes, wrongSizelnPages = > [

old(1): LONG CARDINAL, changedTo(3): LONG CARDINAL].
ENDCASE);

8

The set of problems detected by the Filing scavenger is given by ProblemType. The
following describes the nature of each problem and the corrective action taken by the
scavenger:

8-11

8

8-12

System configuration and administration

[Note: In Services 8.0, the scavenger does not report looplnHierarchy problems. I

changedToDirectory

duplicatePage

duplicateSegmentlD

fileDeleted

illegalAttributeValue

invalidAttributeValue

A file (A), has been changed from a non-directory
to a directory because another file (B) claimed to
be contained within it. After scavenging, file A is
a directory and contains file B.

During scavenging several disk pages were
discovered that claimed to be the same page of a
file; the scavenger arbitrarily chooses one of these
pages as being valid and the others are deleted.

The contents of the segment directory within a
file indicated two segments with the same
identifier (which must be unique for all segments
of a file); one of the two is modified to the value
indicated to make it unique.

No corrective action was taken to save a file
because of other problems encountered, so the file
was deleted; in all cases, at least one other
problem will accompany this one.

The value encountered by the scavenger for the
given attribute did not represent a semantically
legal value (e.g., times greater than today); the
value of the attribute is reset to a default (legal)
value.

The value encountered by the scavenger for this
attribute did not represent a semantically valid
value (e.g., strings with illegal characters); the
value of the attribute is reset to a default (valid)
value.

iIIegalAttributeValueForNonDirectory The reported attribute contained a value not
allowed for a file which is not a directory; the
value of such an attribute is reset to a default
(legal) value.

iIIegalSegmentlD An entry of the segment directory within a file
contained an invalid value for a segment
identifier; the scavenger changes the bad value to
a valid and unique one.

leaderExtensionDeleted Because of other problems, the leader extension of
a file had to be deleted.

leaderExtensionMissing A file indicated that it had an extended leader but
none was found; the indication of an extended
leader is reset for this file.

Filing Programmer's Manual

I eaderExtensionRei nserted

leaderExtensionWrongType

looplnHierarchy

missingPages

newRootCreated

orp~anDirectoryCreated

orphanFile

orphanLeaderExtension

orphanPage

orphanSegment

segmentDeleted

segmentMissi ng

segmentReinserted

8

A leader extension file was detached from its
primary file and was reattached by the scavenger.

The leader extension file indicated by the content
of a file leader was not of the proper type; the bad
leader extension file is deleted and the file leader
is changed to indicate that the leader is no longer

.extended.

A file was encountered which claimed to be a
child of one of its descendants; the loop is broken.

After reconstructing the mapping of files to the
pages representing their content, the indicated
pages were not found; each such page is
reinitialized with null values.

No root file of the specified type was found, so a
new root file was created.

An orphan directory was created to hold one or
more orphan files.

A file was encountered which had no valid parent;
such a file is inserted in the orphan folder.

A leader extension file was found for which no file
could be found;· the leader extension file is
deleted.

During scavenging, a disk page was encountered
which did not appear to belong to any file but
appeared to contain data; the contents of the page
are lost.

No file could be found that contained a valid
segment entry for the indicated segment and the
file designated within the segment was not a
valid file; the orphaned segment is deleted.

Because of other reported problems, it was
necessary to delete the indicated segment.

The segment directory of a file indicated a
segment file which could not be located; the entry
for such a segment is deleted from the segment
directory.

The indicated segment was reinserted into the
segment directory of a file.

8-13

8

8-14

System configuration and administration

segmentWrongType

stringTooLong

tooManySegments

unreadablePages

variableAttributesBad

wrongNumberOfChildren

wrongSegmentlD

wrongSizelnBytes

wrongSizelnPages

The file designated by the content of a segment
directory entry was not of the proper type; the
entry is removed and the file is deleted.

The value of a string attribute exceeded the
maximum allowable length for string values; the
value is truncated to a length not exceeding the
allowable maximum.

The segment directory of a file contained too
many entries; the count of entries is reduced to
the maximum allowed and extraneous entries are
ignored.

Certain pages representing the content of a file
could not be read from the disk; an attempt is
made to rewrite the contents of each such page to
allow them to be read, but if this fails the file
containing the pages will be lost.

The storage area for variable-length attributes
(e.g., string attributes such as name or extended
attributes) was ill-formed and could not be
recovered; previous values for these attributes
are lost, and they are given default values.

The number of children indicated for a directory
disagreed with the actual number found by
scavenging; the value of this attribute is set to the
correct value.

The segment identifier within a segment
directory entry did not agree with that contained
within the segment; the identifier' within the
segment directory entry is changed to agree with
the segment.

The stored value for the size of the file in bytes did
not agree with the actual number of bytes found;
the value of this attribute is set to the actual
number of bytes found.

The stored value for the size of the file in pages
did not agree with the actual number of pages
found; the value of this attribute is set to the
actual number of pages found.

Problems relating to files that do not exist or have been deleted are logged under a special
Entry whose filelD is nulllD. If present, this entry is always the last in the log and its
numberOfProblems is non-zero.

Filing Programmer's Manual 8

8.2.7 Errors

NSVolumeControl.Error: ERROR [type: ErrorType);

NSVolumeControl.ErrorType: TYPE = {
alreadylnitialized. alreadyOpen. badPilotLog. cannotScavengeSystemVolume,
cannotWriteLog, hardwareBroken. incompatibleVolume, invalidVolume.
insufficientSpaceForConversion, invalidName.logVolumeNotOpen. needsSc~venging.
noFileSystem, notMounted. notOpen. pilotScavengeFailed, pilotScavengerError,
runPreviousScavenger, sessions Exist, volumeConversionFailed. volumeNotFound};

Items of NSVolumeControl.ErrorType describe problems that can result from
NSVolumeControloperations.

alreadylnitialized

al readyOpen

badPilotLog

cannotScavengeSystemVolume

cannotWriteLog

incompatibleVolume

invalidVolume

insufficientSpaceForConversion

invalidName

logVolumeNotOpen

The volume specified in Initialize already has a
Filing file system, so no new file system was
created.

'l'he volume specified in NSVolumeControl.Open was
already opened as a Filing volume.

'l'he log generated by the Pilot scavenger was
invalid making it impossible for Scavenge to
complete.

Scavenge may not be run "on the system volume.

Scavenge was unable to write the scavenger log.

The specified volume has a Filing file system
from an incompatible release of Filing. If it has a
file system from the previous release of Filing,
Scavenge may be used to convert the file system
into a valid file system.

The specified volume does not appear to have a
Filing file system.

There is not sufficient free space on the volume
being scavenged to perform conversion from an
old volume format.

The specified volume name is not valid (e.g., it
has a null local component, or is not a valid
NSName.Name).

The volume designated in Scavenge for the log
file must be an open Pilot volume if it is not the
volume being scavenged.

8-15

8

8-16

System configuration and administration

nameLengthLimit

needsScavenging

noFileSystem

notMounted

notOpen

piiotScavengeFailed

pi lotScavengerError

runPreviousScavenger

sessions Exist

vol umeNotFound

The length of one of the fields of the specified
volume name exceeds the corresponding limit for
NSName.Names.

The speCified volume is damaged and must be
scavenged before it may be opened.

No Filing structures were found on the volume
being scavenged and no Filing file system was
created by Scavenge.

The specified Pilot logical volume could not be
found on anyon-line physical volume.

The specified Filing volume was not open.

The Pilot scavenger completed, but was unable to
repair the volume. Consequently, the Filing
volume cannot be opened or scavenged.

The Pilot scavenger did not run to completion.

When converting a volume from an old format,
the pilot conversion phase revealed that the
volume was in an inconsistent state prior to
starting the conversion. The previous version of
the Pilot scavenger should be run on the volume
before proceeding with conversion to the new
format.

The specified volume cannot be closed because of
existing sessions to its corresponding service.

There is no open volume having the specified
name.

Note: In Services 8.0, NSvolumeControl.Error[noFileSystem] is not raised.

If a volume is being opened, or the name of a volume is being initialized or changed, then
NSVolumeControl.NameNotUnique is raised if there is already an open Filing volume with
the same local name.

NSVolumeControl.NameNotUnique: ERROR [name: NSName.Name);

The storage allocated to name belongs to the file system and should not be deallocated by
the client.

A

Appendix A
References

[1] Authentication Programmer's Manual, Version 8.0, November 1984.

[2] Authentication Protocol, XSIS 098404; April 1984. Xerox System Integration
Standard; Stamford, Connecticut.
[AUTHENTICATION: Describes the Authentication protocol and Courier program.]
[PRINTING: (optional) Defines the hashing algorithm used for the releaseCode
argument to Print. An implementation of the hashing algorithm is contained in the
NSName interface. I

[3] Bulk Data Transfer (Appendix F to Courier), XSIS 038112, Addendum la, April
1984. Xerox System Integration Standard; Stamford, Connecticut.
[PRINTING: (optional) Defines the protocol used for the transmission of the Interpress
file. An implementation of it is provided by the NSDataStream ~nterface.]

[4] Character Code Standard, XSIS 058404, April 1984. Xerox System Integration
Standard; Stamford, Connecticut.
[FILING: (optional) Defines the representation and encoding of characters and
sequences of characters. A programmer will be concerned with this document only if
the details of internal string format are required.]

[5] Clearinghouse Entry Formats, XSIS 168404, April 1984. Xerox System
Integration Standard; Stamford, Connecticut.
[CLEARINGHOUSE: (optional) Describes the well-known property ID's and their
associated data formats.]

[6] Clearinghouse Functional Specification, Version 8.0, July 1984.
[AUTHENTICATION: Describes the Authentication functional specification, in addition
to that of the Clearinghouse.]

[7] Clearinghouse Programmer's Manual, Version 8.0, November 1984.
[AUTHENTICATION: Describes the Clearinghouse, an example of a client of the
Authentication Service. I

A-I

A

A-2

References

[8] Clearinghouse Protocol, XSIS 078404, April 1984. Xerox System Integration
Standard; Stamford, Connecticut.
[AUTHENTICATION: Describes the Clearinghouse, an example of a client of the
Authentication Service. 1
[CLEARINGHOUSE: (optional) Describes the Clearinghouse Service remote program
protocol. Would be of interest to anyone \Yho must implement their own
Clearinghouse stub but is not required reading for clients of the Mesa stub.]

[9] Common Facilities Programmer's Manual, Version 8.0, November 1984.

[10] Courier: The Remote Procedure Call Protocol, XSIS 038112, December 1981.
Xerox System Integration Standard; Stamford, Connecticut.
[CLEARINGHOUSE: Describes the remote procedure call protocol and a machine­
independent representation for data.]
[PRINTING: (optional) Defines the transmission protocol for the procedures and
arguments supported by this interface.]

[11] External Communication Programmer's Manual, Version 8.0, November
1984.

[12] Filing Programmer's Manual,Version 8.0, November 1984.

[13] Filing Protocol, XSIS 108210, October 1982. Xerox System Integration Standard;
Stamford, Connecticut. NOTE: Xerox Private Data.
[FILING: (optional) Defines the protocol used for communication between connected
file systems. A programmer should refer to this document only if the details of file or
attribute serialization are needed, as when dealing with extended attributes or
serialized files.]

[14) Gateway Software Design Specification, Version 7.0, April 1981.

[15] Internet Transport Protocol, XSIS 028112, December 1981. Xerox System
Integration Standard; Stamford, Connecticut.
[CLEARINGHOUSE: Defines the various levels of the Internet protocols below Courier.l

[16] Interpress 82 Electronic Printing Standard, XSIS 048201, January 1982.
Xerox System Integration Standard; Stamford, Connecticut. NOTE: Xerox Private
Data.
[PRINTING: (optional) Defines the language and data encoding contained in the files
accepted as part of the Print procedure, transmitted via the bulk data transfer
protocol.]

[17] Interpress 82 Reader's Guide, XSIG 018404, April 1984. Xerox System
Integration Guide; Stamford, Connecticut.

[18] Interpress Electronic Printing Standard, Version 2.1, XSIS 048404, April
1984. Xerox System Integration Standard; Stamford, Connecticut.

[19) Interpress Programmer's Manual, Version 8.0, November 1984.

Services 8.0 Programmer's Guide A

[20) Introduction to Interpress, XSIG 038404, April 1984. Xerox System Integration
Guide; Stamford, Connecticut.
[INTERPRESS: A very useful aid to understanding the standard and creating
Interpress m]asters.

[21] Mailing Programmer's Manual, Version 8.0, November 1984.

[22] Mesa 6.0 Compiler Update, October 1980.
[EXTERNAL COMMUNICATION: (mandatory) Contains extensions to Mesa 5.]

[23]· Mesa Language Manual, Version 11.0, June 1984.
[EXTERNAL COMMUNICATION: (mandatory) Reference manual for the Mesa
programming language. 1

[24] OIS Architectural Principles, January 1976.

[251 PhoneNet Driver Programmer's Manual, Version 8.0, November 1984.

[26] Pilot Programmer's Manual, Version 11.0, May 1984.
[EXTERNAL COMMUNICATION: (mandatory) Reference manual for the Pilot operating
system (see especially section 30n Streams).]
[FILING: (optional) Reference manual for the Pilot operating system. A programmer
who uses segment mapping or stream operations should refer to this document. 1

[27] Print Service B.O (OS 5.0) Interpress Product Description.
[INTERPRESS: Describes the limits of the Interpress implementation provided by PS
8.0 servers.]

[28] Printing Programmer's Manual, Version 8.0, November 1984.

[29] Printing Protocol, XSIS 118404, April 1984. Xerox System Integration Standard;
Stamford, Connecticut.
[PRINTING: (optional) Defines the Gourier-based protocol which provides the standard
model upon which the implementation of this interface is based. 1

[30] Printing System Interface Standard.
Internal document, in the process of being released as a standard.
[INTERPRESS: Contains specific standards for font naming and other related issues.]

[311 Synchronous Point-to-Point Protocol.
Internal document, in the process of being released as a standard.
Version 3.0, November 1983.

[32] Time Protocol, XSIS 088404, April 1984. Xerox System Integration Standard;
Stamford, Connecticut.

A-3

A References

A-4

XEROX B

. AppendixB
Gateway Access Protocol (GAP)
Programmer's Manual

November 1984

PRELIMINARY

Xerox Corporation
Office Systems Division
3450 Hillview Avenue
Palo Alto, California 94304

ii

Appendix B consists of six pages that describe the changes between GAP version 3 and
GAP version 2, followed by the Specification for GAP version 2.

1 Introduction

Gateway Access Protocol
version 3 changes

This document Clescribes the changes to the Gateway Access Protocol (GAP), version 3.
The changes since version 2 relate primarily to four areas:

• Asynchronous virtual terminal circuits between system elements

• Access control for gateway resources

• SNAS270

• New foreign devices types to allow client setting of asynchronous flow control options

Since GAP is a Courier-based protocol, implementations of GAP may support multiple
versions. The changes described here allow such implementations. It is recommended that
all products supporting either the user or server side of GAP provide backwards
compatibility with version 2.

Greeters have been added to the architecture. A greeter is the initial switching point
through which external terminals establish GAP connections to network resources, such
as interactive network application gateways and server executives. The external terminal
user interacts with a greeter to specify the network resource of interest. The greeter
establishes the GAP connection and then becomes transparent to the terminal and
terminal user.

2 Overview of changes

2.1 TTY service

This new transport type was added to allow asynchronous virtual terminal connections to
services on the network. A TTY service is any system element that can present an
asynchronous terminal interface, in particular, a simple TTY-like interface. Some
examples are the Interactive Terminal Service, network services provided remote system
administration, Xerox Development executives, and networked host systems. An ID field
is passed to select the asynchronous terminal service on the server.

8-1

B-2

version 3 changes

2.2 Access control and authentication

To allow a GAP service implementation to restrict access to certain RS-232-C ports and
IBM3270 cluster ports, access control and authentication information has been added to
the Create procedure. The format of this information is defined by the Authentication
Protocol Specification. Clients may use any level of authentication. Clients using strong
authentication will need to obtain the resource's Clearinghouse name.

2.3 Setting flow control parameters during Create

Some RS-232-C hardware implementations allow a user to change the type of flow control
supported when Create is called. To enable flow control information to be passed in the
Create call, two new foreign device types were added, newTty and newTtyHost. These new
types differ from tty and ttyHost only in the addition of a flow control parameter.

2.4 3270 Read modified support

Controls readModifiedAII3210 and readBuffer3210 have been added to support 3270 Read
commands. Support for these controls was actually added before GAP version 3; however,
not all GAP version 2 services support them.

2.5 SNA 3270 support

)'hese new transport types' sdlcTerminal, polledBSCPrinter. and sdlcPrinter have been
added. Only sdlcTerminal is fully supported by GAP 3.0. sdlcTerminal is the transport type
used when networked workstations access an SNA 3270 gateway. Data for SNA 3278
terminal emulations running on workstations is encoded on the sequenced packet protocol
connection in a manner almost identical to BSC 3270 terminals. The only difference is the
treatment of SSCP-LU session exchanges. Data flowing on the SSCP-LU session is
marked with SPP packet subtype sscpData and character coded, rather than 3270 data
stream. [Note: Gateways supporting sdlcTerminal may also support polledBSCTerminal as
a backward compatibility measure. Such a gateway would convert data on the SSCP-LU
session from character coded to a 3270 datastream.] New controls, puActive and
pulnactive, have been added to indicate when the SNA PU-SSCP session is active.

2.6 Additional error reasons

serviceTooBusy, serviceNotFound, userNotAuthenticated, and userNotAuthorized were
added to handle conditions arising from the new TTY Service and access control.

2.7 Simplified termination

To terminate the data transfer phase of a session, the two sides of the connection exchange
cleanup attention packets and then follow the close protocol described in §7.5 of Internet
Transport Protocol [15]. Upon completion of the close protocol, the sequenced packet
protocol connection is passed back to the Courier implementation for possible reuse by
another session.

Gateway Access Protocol

2.8 Reset and Delete procedures

These procedures are not being used now, but have been left in the protocol for future use.

3 Procedures removed

3.1 GAP callback protocol

The procedures in this protocol were used to reserve ports. This capability has been
removed from the protocol since its functionality is now performed by greeters.

3.2 Reserve and IAmStiliHere procedures

The functionality of these procedures was also replaced by greeters. These procedures
have been removed from the protocol.

3.3 UseMediumForOISCP procedure

No client ever used this procedure remotely, so it has been removed from the protocol.

4 Creating a session in GAP 3

With the removal of the reserving functionality from GAP, Create becomes the main
procedure. Here is the Courier definition of the Create procedure. Other definitions are
included only if they have changed since GAP 2. [UNDERLINED BOLD is used to
indicate changes].

Create: PROCEDURE [

sessionParameterHandle: SessionParamObject,
transportList: SEQUENCE OF TransportObject,
createTimeout: WaitTime,
credentials: Credentials,
verifier: Verifier]
RETURNS [session: SessionHandle]
REPORTS [

badAddressFormat,
controllerAI readyExists, control I erDoesNotExist,
dialingHardwareProblem,
iliegalTransport, inconsistentParams,
mediumConnectFailed,
noCommunicationHardware, noDialingHardware,
terminalAddresslnUse, terminalAddresslnvalid,
tooManyGateStreams, transmissionMediumUnavailable,
serviceTooBusy. userNotAuthenticated, userNotAuthorized,
serviceNotFound] = 2;

Credentials: TYPE = ... - See Authentication specification

Verifier: TYPE = ... -- See Authentication specification

B-3

B-4

version 3 changes

SessionParameterObject: TYPE = CHOICE OF {

xerox800(O) = > NUll,

xerox850(1), xerox860(2) = > [pollProc: UNSPECIFIED],

system6(3), cmcll(4), ibm2770{S), ibm2770Host(6), ibm6670(7), ibm6670Host(8)
= > [sendBlocksize, receiveBlocksize: CARDINAL],

ibm3270(9), ibm3270Host(1 0) = > NULL,

oldTtyHost(11) ,oldTty(12) = > [
charLength: CharLength,
parity: Parity,
stopBits: StopBits,
frameTimeout: CARDINAL), -- milliseconds

other(13) = > NULL,

unknown(14) = > NULL,

ibm2780(1S), ibm2780Host(16), ibm3780(17}, ibm3780Host(18}~
sendBlocksize. receiveBlocksize: CARDINAL],

siemens91S0(19}, siemens9750Host(20) = > NULL,
ttyHost(21),tty(22) = > [

charLength: CharLength,
parity: Parity,
stopBits: StopBits.
frameTimeout: CARDINAL]' -- milliseconds,
flowControl: FlowControl}j

FiowControl: TYPE = RECORD[
type: {none(O), xOnXOff(1)},
xOn: UNSPECIFIED,
xOff: UNSPECIFIED];

TransportObject: TYPE = CHOICE OF {

r5232c(0) '" > [
commParams: CommParamObject,
preemptOthers, preemptMe: ReserveType,
phoneNumber: STRING,

line: CHOICE OF {

alreadyReserved = > [resource: Resource],
reserveNeeded = > [lineN umber: CARDINALI}],

bsc(1) = > [
19calTerminallD: STRING,

localSecuritylD: STRING,

Ii neControl: Li neControl,
authenticateProc: UNSPECIFIED,

bid Reply: Bid Reply.
sendLineHoldingEOTs: ExtendedBoolean.
expectLi neHoldi ng EOTs: ExtendedBoolean]'

teletype(2) = > NULL,

polledBSCController(3), sdIcController(S), polledSDLEEolltl ollel - > [
.. not supported via GAP. Used by local service to initialize driver 1.

polledBSCTerminal(4), sdlcTerminal(6}, polledSDLETel millal = > [
hostControllerName: STRING,

terminalAddre5s: TerminalAddress]'
service(?) = > [

id: LONG CARDINAL),

Gateway Access Protocol

unused(S) = > NULL,
polledBseprinter(9), sdIcPrinter(10) = > [

hosteontrolierName: STRING,
printerAddress: TerminalAddress]};

BidReply: TYPE = {wack{O), nack(1), default(2)};

ExtendedBoolean: TYPE = {true(O),false(1), default(2)};

DeviceType: TYPE = {undefined(O}' terminal(1), printer(2)};

eommParamObject: TYPE = RECORD [-- Only change is tag position

accessDetail: CHOICE OF (

directeonn = > l
duplex: {full(O}, half(1)},
lineType: LineType,
lineS peed LineSpeed],

dialeonn = > [
duplex: {full(O), half(1)},
IineType: LineType,
lineSpeed LineSpeed,
dialMode: {manual(O), auto(1)},
dialerNumber: CARDINAL,

retryCount: CARDINAL};

LineSpeed: TYPE = {

bpsSO(O), bps7S(1), bps 110(2), bps 13SpS(3), bps1S0(4),
bps300(S), bps600(6), bps 1200(7), bps2400(8), bps3600(9),
bps4800(1 0), bps7200(11), bps9600(12), bps19200(13),
bps28800(14), bps3S400(15). bps48000(16), bpsS6000(17),
bps57600(18)};

Line Type: TYPE = { -- Note this type incorrectly defined in some GAP 2_0 documentation

bitSyncrhnous(O), byteSynchronous(1), asynchronous(2), autoRecognition(3)}j

The field phoneNumber specifies the phone number for a Direct Distance Dial (DDD)
network. Some additional values were defined to allow all possible digits to be dialed and
all dialer functionality to be used. The phone number is a string of ASCII characters (31
characters maximum) from the set

o 1 23456789 * # < > = ABC D E F [A-F are new for version 3.0]
representing the digits to be dialed. The character < represents Tandem Dial, the
character> represents Delay, and the character = represents EON (End-Of-Number). The
Tandem Dial or Delay digit may appear at any place in the string as required by the
telephone exchanges being accessed. Tandem Dial causes the Dialerto await the next Dial
Tone before dialing subsequent digits while the Delay digit causes the Dialer to wait six (6)
seconds before dialing subsequent digits. (The Delay digit is designed to be used in place of
Tandem Dial on Dialers that cannot detect Dial Tone.) The EON digit, if present, must be
the last digit in the string. This digit causes the Dialer to transfer control to the Modem.
The Modem then has the responsibility for detecting Answer Tone. In the absence of the
EON digit, transfer is made automatically upon detection and processing of Answer Tone.

8-5

version 3 changes

An empty string is specified if dialing is to be performed manually or not at all. The
characters A, B, C, D, E, and F allow the client to dial codes above 9 that particular dialers
may use to enable special non-standard function. A = 10, B = 11, C = 12, D = 13, E = 14, and
F=15.

5 New generic controls

The following SPP packet subtypes hav~ been added:

sscpData = 3428

readModifiedAII3270 = 344"

read3270 = 3458

6 New status values

The following SPP attention bytes have been added:

puActive = 347!!

pulnactive = 3508

B-6

XEROX

Gateway Access Protocol (GAP)
Specification

Version 5.0 (Protocol Version 2)
February 1983
Revised July 1984

Xerox Corporation
Office Systems Division
Systems Development Department
Palo Alto, California 94304

11

Table of contents

1 Introduction 1-1

1.1 Goals 1-1
1.2 Definition of terms . 1-2

2 Overview 2-1

2.1 Sessions 2-1
2.2 Types of foreign systems 2-1
2.3 Transport service 2-2

2.3.1 The transports . 2-2
2.3.2 The physical transmission medium. 2-3

2.4 Sending/receiving data and controls during a session 2-3
2.5 Terminating the session 2-3

3 Client interface 3-1

3.1 Reset 3-1
3.2 Creating a session 3-1

3.2.1 Session parameters 3-2
3.2.2 Defining ,the transport . 3-3
3.2.3 Connection establishment 3-8

3.3 Reserve 3-9
3.4 Transferring sessions 3-11
3.5 Deleting a session 3-11
3.6 Freeing inactive resources. 3-11
3.7 GAPCallBack protocol 3-12

3.7.1 ReserveComplete 3-12
3.7.2 Poll 3-13
3.7.3 Authenticate 3-13

4 Remote errors. 4-1

Lll

IV

Table of contents

5 Data transfer with the foreign system

5.1 Data transfer
5.2 Controls

5.2.1 Classes of generic controls .
5.2.2 Generic controls

5.3 Status
5.4 Data errors.
5.5 Termination

Appendix

A

A.t
A.2

References

Mandatory references
Informational references

5-1

5-1
5-1
5-1
5-2
5-5
5-6
5-6

A-I

A-I
A-t

1.1 Goals

1

Introduction

This document describes the Gateway Access Protocol (GAP). The Gateway Access Protocol
provides remote access to the transport service supporting communication with foreign
systems. A foreign system is any hardware or software entity that does not implement the
Xerox Network Systems (NS) Internet Transport Protocols. The Gateway Access Protocol •
provides at least a reliable transport across the communication medium connecting the
foreign system to the system element providing the transport service. Additional
functions may be provided depending on the foreign system.

The goals for the Gateway Access Protocol are:

1) Move information over distances.

Moving information over distances is the traditional role of a communication facility. Tpe
transport service must provide a model· of transport services that allows transmission of
information across many types of transmission media, both virtual and real, configured in
a variety of topologies.

2) Support many user and application models of communication.

The list of possible user and application communication models is quite long. Examination
of a few applications reveals how they are similar. Electronic mail applications suggest a
document transfer communication model. Remote access to a data base system often
suggests a transaction-oriented model. Interface to a foreign EDP system could suggest an
interactive communication model. In gross terms, the variables that capture the
differences of each of these models are the unit of data transfer and the frequency of
transmission activity in each direction. To support many communication models, a
protocol must provide flexible control of the unit of data transfer and the frequency of
transmission.

The above communication models are independent of the content of the data. The content
of data passed between a GAP server and a foreign system is extremely application­
dependent and of little interest to the transport service. Thus, the Gateway Access
Protocol provides information transcription, but not information translation. Information
transcription means transferring information from one system to another, performing
necessary blocking and unblocking as required by the limitations of the communicators.

l-1

1 Introduction

The Gateway Access Protocol does not provide information translation, which includes
format changes on the information or any changes that would affect presentation of the
information to the client.

3) Resolve disparities among the communication methods used by foreign systems.

Two complimentary strategies are used to resolve the differences in foreign system
communication methods. First, where possible, the most standard communication
conventions are used. If many foreign systems communicate using convention (protocol) A,
then convention A is supported. It is assumed that no modification of a foreign system is
possible or should be necessary (beyond the amount needed to operate the device locally) in
order to communicate with it. Foreign systems will not be altered to conform to NS
Internet communication conventions; rather, the GAP server must adapt to the
conventions of communication defined by the foreign systems. The Gateway Access
Protocol provides adaptation to foreign protocols.

The second strategy is to isolate those communication characteristics of a foreign system
that are device-specific. Of those characteristics, the ones which can be altered by a local
user of the foreign system may be specified by the Gateway Access Protocol client. Other
characteristics will be considered to be constant. •

1.2 Definition of terms

auto-recognition

controls

data

generic controls

information transcription

information translation

foreign system

1-2

Auto-recognition is the ability to identify the foreign
correspondent through a combination of hardware and
software, thus allowing more flexible use of a single line.
This capability is not provided by all GAP servers since the
necessary hardware may not exist.

Controls are directives passed over transmission media for
the establishment, maintenance, and "termination of
communication channels.

Data is a sequence of bits transferred between end users of a
logical communication channel; sometimes called text.

Generic controls are a set of universal device- and protocol­
independent directives that can be mapped into/from real
device or protocol controls.

Information transcription is the transfer of information from
one physical system to another, often requiring reblocking.

Information translation is the altering of information
contained in one format by expressing it in another format.

A foreign system is a hardware/software entity that
communicates using conventions other than internet
communication protocols.

GAP Specification

protocol

protocol layering

session

transmission medium

transport

transport service

1

A protocol is a set of conventions, particularly the allowed
formats and sequences of communication, between two
communicators.

Protocol layering is a technique of hierarchically structuring
protocols such that the protocol at layer n uses the protocol
at layer n-l as a transmission service without knowing the
details of its operation. It allows convenient partitioning,
independence of activities between layers, and the sharing
of common services among different served protocols.

A session is an association between a GAP client and the
foreign system, by which the exchange of information is
managed.

The transmission medium is the lowest level physical
transport mechanism, e.g., leased lines, DDD circuit, and
the Ethernet; also, a virtual transport mechanism.

A transport is an entity that implements one layer of a
transport service. The entity usually corresponds to the
implementation of one layer of protocol.

A transport service is a set of functions offered via an
interface that provides transparent transfer of data between
a client and a correspondent at the same level. A transport
service may be made up of many levels of transport.

1-3

1 Introduction

1-4

2

Overview

The Gateway Access Protocol (GAP) is built" upon the Courier and Sequenced Packet
Protocols. The Courier Protocol provides the procedure-like interface used to set up the
session with the foreign system. After the session has been established, the Sequenced
Packet Protocol provides reliable, fy.ll-duplex transmission of data, methods for passing
control information (packet subtypes), and an out-of-band signalling mechanism
(attention bytes).

[In several places references are made to current limitations or to possible future developments and extensions to

the models and features discussed. Such references appear in this font.]

2.1 Sessions

A session is a cooperative association between the GAP client and a foreign system. It is
the umbrella of communication management under which information exchange occurs. A
client can be either the active o.r passive participant in the session. When a client is the
active participant, the session begins when the foreign system accepts an attempt to start
the session. When a client is passive, a session begins when a foreign system actively tries
to start a session with a waiting (listening) GAP client.

To start a session, the following questions must be answered by either the GAP server or
its client: What is the type of the foreign system? Where is it? What are its unique
communication needs? What transport services are to be used? How are the chosen
transport services used?

2.2 Types of foreign systems

Foreign system types generally correspond to product names. Associated with each type is
a set of static characteristics that describes the behavior of the foreign system. A few of the
static characteristics are: variations in the use of a protocol (e.g., timeouts), how the
foreign system supports setting of its own communication parameters (e.g., set or
exchanged remotely during session establishment or set by the operator), and the code set
used (if only one is supported).

2-1

2 Overview

Currently, communication with the following foreign system types is supported: Xerox
850 IPS, Xerox 860 IPS, IBM Communicating Magnetic Card (CMC) II Typewriter, IBM
Office System 6, IBM 3270 hosts, and Teletype-compatible terminals and hosts. The IBM

2770 and IBM 6670 are support.ed experimentally, being treated exactly like an IBM Otl'ice System 6.

2.3 Transport service

2-2

GAP allows communication over a layered transport service. A transport service has n
levels of virtual transports layered above some physical transmission medium transport.
A transport service offers a communication facility that is transparent to its clients, that
is, the client does not need to know the details of how the transport service provides the
communication facility.

The client is responsible for defining the transports to be used in providing the transport
service. This includes providing access information and other transport-dependent
information. The GAP server is' responsible for making the transports and transmission
medium cooperate. It also makes the transports conform to any static device-specific
conventions, such as timeouts and block sizes.

2.3.1 The transports

A transport is a single layer of a transport service. It usually implements a protocol. A
protocol is a set of conventions, especially the formats and allowed exchanges, used by
communicating correspondents. A transport satisfies the layering requirement by
providing an interface to an entity that implements a set of functions. The functions are
usually related to data and control exchange and session management. A transport can be
viewed as communicating with transport entities in the foreign system. [In the future a

transport may communicate with transport entities somewhere in interconnected transmission media.]

. For the simplest -cases, there are only two transports: a block transport and a physical
transmission medium transport. For example, when communicating with an IBM Office
System 6, there is a Binary Synchronous (sSC) transport and an RS-232-C transmission
medium transport. The BSC transport can be thought of as logically exchanging blocks
with a BSC transport in the IBM Office System 6. The RS-232-C transport can be thought
of as logically exchanging bits with a similar entity in the IBM Office System 6. The client
must define the appropriate transport parameters, as well as the hierarchical relationship
among them.

[Further layering of transports will occur for one of two reasons. First, the foreign system might be a

sophisticated EDP machine that uses layering of transports for modularity, portability, ease of implementation,

etc. The more common layering will result when there is a concatenation of transmission media with

intermediate access procedures and/or protocols required.]

The transport service model is complicated by the fact that the lowest· level transmission medium may itself be

concatenated with other physical media. An example of this is access to a foreign system which is a host on a

packet-switched network. First there is dial up through the Direct Distance Dialing (DOD) network to an access

node on a packet-switched network. The access node may require further access information to complete the

connection to a foreign system. Finally, communication with a process on the foreign system may require using a

BSC transport. When concatenation of transmission media occurs, transports are used to handle each level of

media that requires protocol interaction.

GAP Specification 2

2.3.2 The physical transmission medium

In the model of a layered transport service, the physical transmission medium is the
lowest level communication facility provided. The GAP server is directly connected to the
medium. To describe a transmission medium transport, the client provides transport­
specific access information, parameters that are used for resolving contention for the
transmission medium interface, and information about how to use the medium. The only
transmission medium currently supported by the GAP server is an RS-232-C controller
port.

For RS-232-C ports, the access information is a telephone number. Dedicated or leased
lines require no transmission medium access information.

RS-232-C port reservation is supported by allowing clients to specify reservation
priorities. The reservation parameters allow clients to reserve a communication medium
exclusively or to reserve use of the medium for low priority activity which can be
preempted for higher priority use.

2.4 Sending/receiving data and controls during a session

Once the transport service has been configured .and a session has begun, the client can
exchange data and control the interaction with the foreign system. Client data and control
information is sent and received by the client over the Courier system data stream. Client
data and control information is neither sent nor received when there is a Courier remote
procedure call outstanding.

Controls are directives or commands that are exchanged by communicating entities to
support smooth, orderly, and reliable information exchange. A foreign system may be
capable of exchanging a variety of controls. The controls supported by GAP are those that
affect the flow of data and the management of the session.

Controls are needed for stopping the output of a verbose sender. They are needed for
interrupting the sender so that the receiver can change recording media; likewise, for
resuming transmission. For alternating communication, a control allows the sender to
inform the receiver that it can now send.

To provide a uniform way of sending and receiving controls, GAP defines a set of universal
or generic controls to and from which most foreign system-specific controls can be mapped.
The client sends and receives generic controls using packet subtypes and the Attention
facility of the Sequenced Packet Protocol.

2.5 Terminating the session

GAP allows two kinds of session termination by the client. The client may abruptly
terminate the session by deleting the session. This method may result in lost data and
possibly abnormal operation of more primitive foreign systems. Alternatively, the client
may terminate the session gracefully before deleting the session, which will result in the
orderly termination of a session and no lost data.

2-3

2 Overview

2-4

3.1 Reset

3

Client interface

The remote procedures and errors defined below comprise a Courier remote program called
GAP.

GAP: PROGRAM 3 VERSION 2;

Reset frees all sessions and resources that are assigned to the system element making the
call.

Reset: PROCEDURE = 0;

3.2 Creating a session

To create a session, the client calls Create. If successful, Create returns a handle that is
used in subsequent calls to identify that particular session.

Create: PROCEDURE [

sessionParameterHandle: SessionParamObject.
transportList: SEQUENCE OF TransportObject.
createTimeout: WaitTime]
RETURNS [session: SessionHandle]
REPORTS [

badAddressFormat.
controllerAlreadyExists. controllerDoesNotExist.
dialingHardwareProblem.
illegalTransport, i nconsistentParams,
mediumConnectFailed.
noCommunicationHardware. noDialingHardware,
termi nalAddresslnUse. termi nalAddressl nval id.
tooManyGateStreams. transmissionMediumUnavailable

1=2;

SessionHandle: TYPE = ARRAY 2 OF UNSPECIFIED;

3-1

3

3-2

Client interface

sessionParameterHandle specifies a set of device-specific session characteristics (see
§3.2.1). transportList is an array descriptor describing each of the layers of the transport
(see §3.2.2). createTimeout specifies an activation timeout. If createTimeout seconds
elapse before the session has been created, the error mediumConnectFailed is reported.

WaitTime: TYPE = CARDINAL; -- in sees

infiniteTime: WaitTime = LAST(CARDINALI;

If a new session cannot be created due to lack of some system resource, the error
tooManyGateStreams is reported. A session is terminated and its session handle
invalidated by calling Delete (see §3.5).

3.2.1 Session parameters

A SessionParameterObject describes a set of device-specific session characteristics.

SessionParameterObject: TYPE = CHOICE OF {

xerox800 = > NULL.

xerox850. xerox860 = > (poIiProc: UNSPECIFIED].

system6. cmel •• ibm2770. ibm2770Host. ibm6610. ibm6610Host = > (
send8locksize. receiveBlocksize: CARDINAL),

ibm3210. ibm3210Host = > NULL,

ttyHost, tty = > [
charLength: CharLength.
parity: Parity.
stopBits: StopBits.
frameTimeout: CARDINALI. -- milliseconds

other = > NUll.

unknown = > NULL};

The designator of a SessionParameterObject specifies the foreign device type. unknown
and other are reserved for testing new devices. The text Host in the device type indicates
that the GAP client is communicating with a host as though it were the foreign device type
named rather than communicating with the device type named. For example,
ibm3210Host indicates the client is communicating with a host machine as though it were
an IBM 3270 terminal while ibm3210 indicates that the client is communicating with an
IBM 3270 terminal.

Note: Foreign device types ofibm2770, ibm2770Host, ibm6670. and ibm6670Host are treated exactly as though

the foreign device type were system6. Although we believe this to be correct, actual testing with these devices has

not occurred.

If the foreign device is a xerox850 or xerox860, the field poliProc specifies a handle to be
passed to the client when a file poll is received. The handle is passed to the client by the
GAP server calling the procedure FilePoll on the client's system element using the
GAPCallback protocol (see §3.7). If poliProc is equal to NopPoliProc, then all polls are
negatively acknowledged without notifying the client.

NopPoliProc: UNSPECIFIED::: OB;

GAP Specification 3

Warning: Polling for files requires that the client implement the GAPCallback protocol
and support multiple Sequenced Packet connections. If this is not possible, the client
should always set poliProc to NopPoliProc which will cause the GAP server to negatively
acknowledge any poll requests without attempting to call the client.

If the foreign device is a system6, cmell, ibm2770, ibm2770Host, ibm6670, or
ibm6670Host, the field blockSize specifies the maximum block size for sending and
receiving. IfblockSize is zero, the maximum block size supported by the device is used.

If the foreign device is a tty, charLength specifies the length of a character (excluding
parity, start and stop bits), parity specifies the parity type, and stopBits specifies the
number of stop bits. frameTimeout is used to determine when input data should be
returned to the client. When receiving data, if the time between successive characters is
more than frameTimeout milliseconds, then the data received so far is returned to the
client.

CharLength: TYPE = (five(O), six(1), seven(2), eight(3)};

Parity: TYPE = (none(O), odd(1), even(2), one(3}, zero(4)};

StopBits: TYPE = (one(O), two(1)};

3.2.2 Defining the transport

The transport service is described by an ARRAY OF TransportObject with element zero of the
array specifying the lowest layer, the physical transmission medium transport.

TransportObject: TYPE = CHOICE OF (

rs232c = > [
commParams: CommParamObject,
preemptOthers, preemptMe: ReserveType,
phoneNumber: STRING.

line: CHOICE OF (

alreadyReserved = > [reSource: Resourcel.
reserveNeeded = > [lineNumber: CARDINAL])].

bsc = > [
localTerminallD: STRING.

localSecuritylD: STRING.

lineControl: LineControl,
authenticateProc: UNSPECIFIEDI.

teletype = > NUll.

polledBSCController, polledSDLCControlier = > [
hostControlierName: STRING.

controlierAddress: Controller Address,
portsOnController: CARDINALI.

polledBSCTerminal, polledSDLCTerminal = > [
hostControlierName: STRING.

terminalAddress: TerminaIAddress)};

3-3

3

3-4

Client interface

Currently, only the following transport services are supported:

1) a two-level transport service whose first level is an rs232c transport and whose second
level is either a bsc, teletype, or polledBSCControlier transport,

2) a one-level polledBSCTerminal transport.

Note: All variants other than rs232c, bsc, teletype, polledBSCController, and polledBSCTerminal are currently

unimplemented.

3.2.2.1 RS-232·C transport

The rs232c TransportObject describes a transport layer implementing a transducer that
supports RS-232-C lines:

TransportObject: TYPE = CHOICE OF {

rs232c = > [
commParams: CommParamObject.
preemptOthers, preemptMe: ReserveType.
phoneNumber: STRING.

line: CHOICE OF {

.... };
alreadyReserved = > [resource: Resource).
reserveNeeded = > [lineNumber: CARDINAL]}] •

commParams holds RS-232"-C transmission medium parameters. The error
inconsistentParams is generated if the parameters in commParamObject are invalid.

CommParamObject: TYPE = RECORD [

duplex: {full(O), half(1)},
lineType: LineType.
lineSpeed LineSpeed.
accessDetail: CHOICE OF {

directConn = > NULL.

dialConn = > [
dial Mode: {manual(O). auto(1)}.
dialerNumber: CARDINAL.

retryCount: CARDINAL};

LineType: TYPE = {
bitSynchronous(O). byteSynchronous(1). asynchronous(2). autoRecognition(3)};

LineSpeed: TYPE = {
bps50(O). bps75(1). bps110(2). bps135p5(3). bps150(4).
bps300(5), bps600(6), bps1200(7), bps2400(8), bps3600(9),
bps4800(10), bps7200(11), bps9600(12)};

The duplex, lineType, and lineSpeed fields are used to create the RS-232-C channel. The
netAccess and dial Mode fields relate to the network access mode, and dialerCount and

GAP Specification 3

retryCount are used if auto-dialing is specified. Dialing retries are made if a line is busy or
there is no answer.

The two fields, preemptOthers and preemptMe, serve to establish a priority between
contending RS-232-C channel clients. The state of the channel will be either available,
waiting for a connection, or active. When a channel is available then a reserve attempt will
always succeed. Otherwise, the success of the reservation will depend on the relative
priorities of the current "owner" of the channel and the client trying to reserve it.

ReserveType: TYPE = (preemptNever(O), preemptAlways(1), preemptlnactive(2)};

The following matrix defines the result of reserving the channel given the values of the
owner's preemptMe and the reserver's preemptOthers:

Owner's preemptMe

Never If Inactive Always

Never Fail Fail Fail
Reserver's
preempt- If Inactive Fail Preempt Preempt
Others (if inactive)

Always Fail Preempt Preempt

The field phoneNumber specifies the phone number for a Direct Distance Dial (DDD)
network. For the local RS-232-C/RS-366 port on an 8000 server, it is a string of ASCII

characters (31 characters maximum) from the set
0123456789*#< > =

representing the digits to be dialed. The character < represents Tandem Dial, the
character> represents Delay, and the character = represents EON (End-Of-Number). The
Tandem Dial or Delay digit may appear at any place in the string as required by the
telephone exchanges being accessed. Tandem Dial causes the Dialer to await the next Dial
Tone before dialing subsequent digits while the Delay digit causes the Dialer to wait six (6)
seconds before dialing subsequent digits. (The Delay digit is designed to be used in place of
Tandem Dial on Dialers that cannot detect Dial Tone.) The EON digit, if present, must be
the last digit in the string. This digit causes the Dialer to transfer control to the Modem.
The Modem then has the responsibility for detecting Answer Tone. In the absence of the
EON digit, transfer is made automatically upon detection and processing of Answer Tone.
An empty string is specified if dialing is to be performed manually or not at all.

For a port on a Xerox 873 Communication Interface Unit speaking either a Racal-Vadic or
Ventel specific protocol, phoneNumber is a string of ASCII characters (29 characters
maximum) from the set

0123456789*#<
The Xerox 873 is responsible for waiting for a Dial Tone between the Tandem Dial digit
and the subsequent digit, even if Tandem Dialing is not supported by its dialing hardware.
When hardware assist is not available, a delay of six (6) seconds is used. The options Delay
and EON are not supported.

line specifies the RS-232-C line number. The alreadyReserved choice is used when the
client has already reserved the line using Reserve (see §3.3).

3-5

3

3-6

Client interface

If no RS-232-C hardware exists or if the client selects an invalid line number, the error
noCommunicationHardware is reported. If the channel is active and reservation
(preemption) fails, the error transmissionMediumUnavailable is reported.

3.2.2.2 BSC transport

The bsc TransportObjed describes a transport level which supports the transfer of data
using point-to-point BSC protocol to and from the following types of communicating word
and data processing systems: Xerox 800, Xerox 850, Xerox 860, IBM Office System 6, IBM
CMC-II, IBM 2770, and IBM 6670. The error inconsistentParams is reported if the foreign
device is not a device supported by this transport.

TransportObjed: TYPE = CHOICE OF {

bsc = > [
localTerminallD: STRING.

localSecuritylD: STRING.

lineControl: LineControl,
authenticateProc: UNSPECIFIED) •

. };

localTerminaliD and localSecuritylD are used for authentication at the CFD (or transport
node on the path to th~ CFO). Specification of localTerminallD or localSecuritylD implies
that an exchange of this information should be attempted when the connection is being
established. Either or both fields can be elided by providing an empty string.

lineControl is used to determine whether the Gateway client or the CFD is to have priority
when contending for control of the BSC connection. The setting of lineControl must be
opposite of that on the CFD.

LineControl: TYPE = {primary(O), secondary(1)};

Note: lineControl must be set to secondary when communicating with a Xerox 850.

The authenticateProc field specifies a handle to be passed to the client by the GAP server
whenever any request for authentication of terminal or security information is received
from the CFD. The handle is passed to the client by the GAP server calling the procedure
Authenticate on the client's system element using the GAPCallback protocol (see §3.7). If
authenticateProc is equal to NopAuthenticateProc, all terminal and security information
is positively acknowledged without calling the client.

NopAuthenticateProc: UNSPECIFIED = 08;

Warning: Authenticating terminal and security identification requires that the client
implement the GAPCallback protocol and support multiple sequenced packet connections.
If this is not possible, the client should always set authenticateProc to
NopAuthenticateProc which will cause the GAP server to positively acknowledge any
authentication requests without attempting to call the client.

GAP Specification 3

3.2.2.3 Teletype transport

The teletype TransportObject describes a transport which allows communication with
teletype-like terminal over asynchronous lines.

TransportObject: TYPE = CHOICE OF {

teletype = > NUll,

.... };

The errQr inconsistentParams is reported if the foreign device specified in the session
parameters is not a device supported by this transport. Currently, only ttyHost and tty are
supported.

3.2.2.4 PolledBSCController transport

The polledBSCController TransportObject describes a transport implementing a
controller which communicates using the polled BSC protocol. Currently, the only device
type supported for this transport is ibm3270Host.

TransportObject: TYPE = CHOICE OF (

polledBSCController = > [
hostControllerName: STRING,

controllerAddress: ControllerAddress,
portsOnController: CARDINAL) •

.... };

ControllerAddress: TYPE = CARDINAL;

hostControllerName specifies a name for the controller. The name 1S formed by
concatenating the following substrings into a single string:

the local name of the port (from the Clearinghouse Service RS232CPort entry)
a colon (:)
the domain name of the port (from the Clearinghouse Service RS232CPort entry)
a colon (:)
the local name of the port (from the Clearinghouse Service RS232CPort entry)
a pound sign (#)

the controller number (from the Clearinghouse Service IBM3270Host entry) expressed in
octal

a capital B (B)

If a controller with that name already exists, the remote error controlierAlreadyExists is
reported. controllerAddress specifies the controller's address. portsOnController specifies
the number of terminals this controller supports.

3-7

•

3

3-8

Client interface

3.2.2.5 PolledBSCterminal transport

The polledBSCTerminal TransportObject describes a transport implementing a terminal
which communicates through a previously created polledBSCController transport.
Currently, the only device type supported for this transport is ibm3270Host. This
transport level must be the only one in the transport list. All other transport levels are
provided by the controller specified in hostControlierName.

TransportObject: TYPE = CHOICE OF (

polledBSCTerminal = > [
hostControlierName: STRING.

terminalAddress: TerminaIAddress) •
.... };

TerminalAddress: TYPE = CARDINAL;

unspecifiedTerminalAddress: TerminalAddress = LAST [CARDINAL);

..

hostControllerName specifies the name of a previously created polledBSCControlier
transport. Case (upper/lower) is significant. If no controller with that name exists, the
remote errorcontrolierDoesNotExist is reported. terminalAddress specifies the terminal's
address. IfterminalAddress is unspecifiedTerminalAddress, the terminal will be assigned
any available address. If the terminal address is already in use or is not in the range
specified by portsOnControlier during controller creation, the errors
terminalAddresslnUse and terminalAddresslnvalid are reported, respectively.

3.2.3 Connection establishment

Each layer of the transport service may have its own connection establishment
conventions. The client has no direct knowledge of these conventions or of the actual
"handshaking" that occurs during connection establishment. The client need only provide
enough addressing information and the authentication procedure(s) necessary to complete
the connection(s).

A client may be either the active or passive correspondent, that is, a client may either
initiate a connection or wait for initiation by the CFD. The use of GAP varies slightly
depending on which the client chooses. To give examples of the different possible
situations that arise during connection establishment, five cases of connections are
considered below:

If the client is the caller, one of the following scenarios occurs:

1) Caller using a dedicated (leased) line

In this case the line is always available and the modems are usually powered up. The
algorithm allows the delayed powering up of the modem. The client sets the
phoneNumber field to an empty string in the description of the RS-232-C transport. Since
auto-dialing is not required, Create returns immediately. The client may await reception
of the attention byte mediumUp to determine when the modems have been powered up
and the line is ready. Data transfer operations will be accepted but will be blocked until

GAP Specification 3

the line is ready. A client may set a timeout for the datu transfer operation if indefinite
waiting is inappropriate.

2) Culler using manuul dial

The algorithm is very similar to O. The only difference. is that the action required to
complete the connection is manual dialing .

. 3) Culler using auto-dial

The client passes a phone number in the phoneNumber field of the description of the RS-
232-C transport. Create returns after the circuit has been successfully established. The
error mediumConnectFailed is reported if dialing fails because of no answer or a busy
phone. If no dialing hardware exists or the dialing hardware is malfunctioning, the error
noDialingHardware or dialingHardwareProblem is reported, respectively.

If the client is a listener, one of the following scenarios occurs:

4) Listener using a dedicated line

The algorithm is very similar to 1). The phoneNumber field of the description of the RS-
232-C transport layer is an empty string. Notification of the listen being satisfied (the
other end has sent data or a control) is the completion of a data transfer operation. To
abort a listen, Delete is called. A listen may also be performed using Reserve.

5) Listener using a dialed line.

Same as case 4).

3.3 Reserve

In some situations, the GAP client may wish to simply reserve many RS-232-C lines and
await line activation or auto-recognition. This is accomplished by using Reserve. Reserve
creates the RS-232-C channel and notifies the client when the event ca"BackType occurs
by calling the remote procedure ReserveComplete on the client's system element using
the GAPCaliback protocol (see §3.7).

Reserve: PROCEDURE [

transport: TransportObject.
completionProcedure: UNSPECIFIED,

ca"BackType: CallBackTypel
RETURNS [resource: Resourcel
REPORTS [

buglnGAPCode. gapCommunicationError. gapNotExported.
iIIegalTransport. inconsistentParams. noCommunicationHardware.
tooManyGateStreams. transmissionMediumUnavailable

1=4;

Resource: ARRAY 2 OF UNSPECIFIED;

Ca"BackType: TYPE = {ca"OnAutoRecognition. ca"OnActive. dontCa"};

3-9

3

3-10

Client interface

If caliBackType is dontCall, the client is never notified.

If caliBackType is caliOnActive, the client is notified when the connection becomes active
or the connection is aborted. For RS-232-C lines, Gateway software defines becoming
active as the RS-232-C signal Dataset Ready becoming TRU E.

If caliBackType is caliOnAutorecognition, the client is notified when auto-recognition
occurs. Auto-recognition is the ability to identify the foreign system type through a
combination of hardware and software, thus allowing more flexible use of a single line.
Auto-recognition is not offered in all implementations, since the necessary hardware may
not exist on the system element providing the RS-232-C transport.

Reserve reports a subset of the errors reported by Create.

After a Reserve, the client must either free the resource by calling AbortReserve, use the
resource in a subsequent Create, or pass the resource to the NS Router using
UseMediumForOISCP.

If the client desires to abort a Reserve either before or after the completion procedure has
been called, AbortReserve is called:

AbortReserve: PROCEDURE [resource: Resource) = 5;

The client may use the resource in a Create call by using the alreadyReserved choice of the
rs232c TransportObject:

TransportObject: TYPE = CHOICE OF {

rs232c = > [
commParams: CommParamObject,
preemptOthers. preemptMe: ReserveType.
phoneNumber: STRING.

line: CHOICE OF {

alreadyReserved = > [resource: Resource]}] •
.... };

The client may pass the resource to the NS Router by calling UseMediumForOISCP. After
calling UseMediumForOISCP, the client no longer has control over the resource.

UseMediumForOISCP: PROCEDURE [transport: TransportObject) = 8;

GAP Specification 3

3.4 Transferring sessions

Some applications require that a session be transferred to another client. For example, a
client communicating with a teletype may wish to act only as a simple executive,
determining which service the teletype desires to use and then transferring the session to
another system element that implements the service. GAP allows this using the
procedures Transfer and Obtain.

Transfer is used by the owner of the session to indicate that the session handle is to be
passed to another client. Transfer -may be called only after the termination protocols
defined in §5.5 have been followed to idle the session.

Transfer: PROCEDURE [session: Session Handle] REPORTS [inconsistentParams) = 6;

After Transfer returns, the owner of session must pass it to the new client using a private
protocol. The new client then obtains ownership of the session by calling Obtain:

Obtain: PROCEDURE [session: SessionHandle) REPORTS [inconsistentParams] = 7;

After Obtain returns, the new client is the owner of the session and can send and receive
data and controls.

Warning: Obtain and Transfer al'e unimplemented in Version 2 and always report the error unimplemented.

3.S· Deleting a session

A session is deleted by calling Delete:

Delete: PROCEDURE [session: SessionHandlel = 3;

3.6 Freeing inactive resources

Since the resources allocated by GAP are non-sharable, GAP servers timeout and free
inactive resources. [n most cases, the GAP server can use Sequenced Packet connection
errors as an indication that a resource is inactive. However, when an RS-232-C port is
reserved using Reserve, this is not a valid indication of inactivity. Instead, any resource
allocated by Reserve is freed after n minutes unless the IAmStillHere remote procedure
has been called by the system element owning the resource. This rule is in effect until the
resource is either freed, passed to the NS Router, or used in a subsequent Create procedure.

IAmStillHere: PROCEDURE [resource: Resourcel = 1;

Note: n is currently set to be 6 minutes and it is recommended that the client call
IAmStillHere for each reserved resource every 2 minutes.

Note: Only RS-232-C resources allocated by Reserve timeout after n minutes. Thus, any
client that never calls Reserve need never call1AmStillHere.

3-11

3 Client interface

3.7 GAPCaliBack protocol

3-12

Some of the GAP remote procedures return information that may not be not immediately
available. Rather than having a remote procedure call be outstanding for a long period of
time, GAP "calls back" to the client using the GAPCaliBack protocol. To use the protocol,
the client must implement a Courier server and must support multiple Sequenced Packet
connections. Clients not wishing to implement either of these may still use the GAP
protocol, but must not use any of the features requiring the GAPCaliBack protocol. These
facilities are: ..
1) Authentication of security and terminal identifications. A' client not implementing

the GAPCaliBack protocol may still communicate with systems using security and
terminal identifications, but cannot authenticate them.

2) Responding positively to file polls from Xerox 850s and Xerox 860s. A client not
implementing the GAPCaliBack protocol may still communicate with a Xerox 850 or
Xerox 860, but any file poll received will be negatively acknowledged.

3) Using Reserve except when callBackType is specified as dontCal1.

The remote procedures and errors defined below comprise a Courier, remote program called
GAPCall Back:

GAPCaIiBack: PROGRAM 12 VERSION 2;

3.7.1 ReserveComplete

ReserveComplete is called when the event described by caliBackType occurs or the
resource is freed using AbortReserve. caliBackType is specified during the Reserve call.

ReserveComplete: PROCEDURE [

resource: Resource.
caliBackProcedure: UNSPECIFIED.

results: ReserveResultsl = 0;

ReserveResults: TYPE = CHOICE Call BackType OF (

caliOnAutoRecognition = > [outcome(1): AutoRecognitionOutcomel.
caliOnActive = > [success: BOOLEAN).

dontCall = > NULL};

AutoRecognitionOutcome: TYPE = CARDINAL;

resource identifies the resource. caliBackProcedure is the handle specified during the
Reserve call. The client must not make any GAP procedure calls until it has returned
Courier results for this procedure. If callBack is caliOnAutoRecognition, outcome
indicates the results of auto-recognition. If callBack is caliOnActive, success is TRUE if the
line became active and FALSE if the resource was freed by the client calling AbortReserve.

GAP Specification

3.7.2 Poll

Poll is called when a file poll is received from a Xerox 850 or Xerox 860.

Poll: PROCEDURE [

. poliProc: UNSPECIFIED, poliString: STRING]

RETURNS IPoliResults: BOOLEAN] = 1;

3

The field pollProc is the handle passed during the Create call. The field pollString is the
file name requested by the foreign device. The client indicates via the poll Results BOOLEAN

whether it is prepared to send that file as soon as possible.

3.7.3 Authenticate

Authenticate is called to allow the client to authenticate any terminal or security
information passed from the foreign device during connection establishment.

Authenticate: PROCEDURE [

authenticateProc: UNSPECIFIED, idString: IDString]

RETURNS lauthenticateResults: BOOLEAN) = 2;

authenticateProc is the handle specified during the Create call. iDString indicates
whether a foreign terminal or security ID is to be authenticated. The client indicates via
the authenticateResults BOOLEAN whether it accepts the foreign terminal or security ID.
The client must not make any GAP procedure calls until·it has returned Courier results for
this procedure. For efficient utilization of the transport medium, it is important that this
procedure return the result of the authentication as quickly as possible.

IDString: TYPE = CHOICE OF {

remoteTerminallD = > STRING.

securitylD = > STRING};

3-13

3 Client interface

3-14

•

4

Remote errors

. The following remote ERRORS are generated by the GAP remote procedures:

0 unimplemented
1 noCommunicationHardware
2 illegalTransport
3 mediumConnectFailed
4 badAddressFormat
5 noDial i ngHardware
6 dialingHardwareProblem
7 transmissionMediumUnavailable
8 i nconsi stentParams
9 tooManyGateStreams
10 buglnGAPCode
11 gapNotExported
12 gapCommunicationError
13 control I erAI readyExists
14 controllerDoesNotExist
15 terminalAddresslnUse
16 terminalAddresslnvalid

badAddressFormat 4

The specified phoneNumber contains either invalid characters or too may characters.

buglnGAPCode 10

A non-recoverable error occurred due to a possible bug in the GAP code.

controllerAlreadyExists 13

A controller with the name hostControllerName already exists. This error is reported
when a controller is created.

controllerDoesNotExist 14

A controller with the name hostControllerName does not exist. This error is reported
when a terminal is created.

4-1

4

4-2

Re~ote errors

dialingHardwareProblem 6

During auto-dialing, an error occurred that prevented its successful completion. This
usually indicates a hardware failure ofthe auto-dialer.

gapCommunicationError 12

A communication error occurred when communicating with the server.

gapNotExported 11

GAP is npt exported by the remote system element at this time.

iIIegalTransport 2

The specified transport is illegal or unimplemented.

inconsistentParams 8

The parameters specified are in error or the particular feature requested is not
implemented.

mediumConnectFailed 3

The physic'al connection cannot be made with the non-OIS system. This error indicates a
dialing failure such as busy or no answer.

noCommunicationHardware 1

Hardware for the specified communication line does not exist.

noDial ing Ha rdware 5

The client specified auto-dialing but auto-dialing hardware did not exist.

termi nalAdd resslnUse 15

The terminal address of terminalAddress' is already m use or all possible terminal
addresses are already in use.

terminalAddresslnvalid 16

The terminal address specified in terminalAddress is not in the range valid for the
controller.

tooManyGateStreams 9

The procedure failed due to lack of some resource. The client should try again later.

transmissionMedi umUnavailable 7

The communication line cannot be reserved. The client should try again later.

unimplemented o
The procedure called is unimplemented.

5

Data transfer
with the foreign system

5.1 Data transfer

Once 6eate has returned or the client has obtained the session via Obtain, the client uses
the NS Sequenced Packet Protocol to communicate with the non-OIS system. Since
Courier and the client share the same network data stream, the client must not have any
Courier procedure calls outstanding during data transfer. [n addition, when terminating
or transferring a session, all data transfer operations must be quiesced before calling
Delete or Transfer (see §5.5).

5.2 Controls

The client controls the foreign system and/or the transport through a set of generic
controls. Generic controls mayor may not translate into controls that are meaningful for
the current session.

5.2.1 Classes of generic con troIs

The Sequenced Packet Protocol can be thought of as creating two independent duplex
information channels. One channel is used mostly for transmitting data, while the other is
used for transmitting attentions. There are three classes of generic controls: in-band, out­
of-band, and out-of-band with mark. They differ in their use of the two information
channels.

An in-band control is sent on the data channel and arrives in order relative to data. [t is
serialized with respect to the data sequence, because its position in the sequence indicates
the relative time it was generated. Since it cannot bypass data, an in-band control will be
delayed if there is congestion. An in-band control is identified via the packet subtype field.
The transition from none to some other packet subtype value and back is the event that
indicates the arrival of a control in the data sequence.

An out-of-band control arrives on the attention channel independently of the data
channel. The attention channel is a separate, expeditious channel that is not affected by
congestion of the data stream. The attention byte facility of the Sequenced Packed
Protocol is used to represent out-of-band controls.

5-1

5

5-2

Data transfer with the foreign system

An out-of-band with mark control is composed of both an out-of-band control and an in­
band mark. The out-of-band control is used to bypass any congestion in the data stream.
The in-band mark is used to locate the position relative to the data at which the control
was generated. The mark provides synchronization (i.e., that the aborting condition is
synchronized with respect to the sender of the abort). An out-of-band with mark control is
represented via the attention byte facility for the out-of-band control and the packet
subtype field for the mark.

5.2.2 Generic controls

The following are the packet subtypes which represent generic controls:

3008 none
3018 interrupt
3028 resume
3038 audibleSignal
3048 areYouThere
3058 iAmHere
3068 abortGetTransaction
3078 abortPutTransaction
3108 endOfTransaction
3118 yourTurnToSend
3128 disconnect.
3138 transparentDataFollows
3148 endOfTransparentData
3158 abortMark
3208 cleanup
3318 remoteNotResponding
3328 remoteNotReceiving
3338 excessiveRetransmissions
3348 chain3270 (3270 emulation only)
3358 unchained3270 (3270 emulation only)
3368 readModified3270 (3270 emulation only)
3378 status3270 (3270 emulation only)
3408 testRequest3270 (3270 emulation only)

abortGetTransaction 3068 [Out-of-band with mark!

Immediately stop the transaction being received. The beginning of the next transaction is
designated by the in-band mark abortMark.

abortMark 3158 [In-band]

Marks a transaction boundary in conjunction with an abortGetTransaction or an
abortPutTransaction.

abortPutTransaction 3078 [Out-of-band with mark]

. Stop the current outgoing transaction immediately and resume at the next transaction
boundary, as designated by the in-band mark abortMark.

GAP Specification 5

areYouThere 3048 [Out-of-band 1

Elicit a response confirming that the foreign device/process is operational.

audibleSignal 3038 [Out-of-bandl

Send an audible signal. For some word processors, this is a signal to "go to voice".

cleanup 3208 [In-band, Out-of-band]

No more data will be transferred ov'er this channel during this session. Processes receiving
this control should terminate. A client wishing to terminate should generate this control
on the out-of-band channel only.

disconnect 3128 [In-band I

Perform a graceful disconnect on alltransport services. This takes effect only after all data
has been delivered and either a) a disconnect acknowledgement is received, b) the physical
connection is broken, or c) there is no response for some protocol-dependent time. An
immediate disconnect is achieved by deleting the stream.

endOfTransaction 3108 [In-band!

Delimit a transaction. It is generally only with transports (e.g., BSC for IBM Office
System6) that mix transaction management with line control.

endOfTransparentData 3148 [In-band!

The following data comply with the normal restrictions of the transport and do not need
special framing. This indicates a return to the restrictions in effect at stream creation
time.

excessiveRetransmissions 3338 [Out-of-band with mark]

A data transfer was attempted many times and not accepted by the foreign system. The
o~tgoing transaction is stopped immediately and resumed at the next transaction
boundary, as designated by the in-band mark abortMark. The excessiveRetransmissions
control should never be generated by the GAP client.

iAmHere 3058 [Out-of-band]

Response to the areYouThere control confirming that the foreign device/process is
operational.

interrupt 301 8 [Out-of-band!

Temporarily halt both processing and output as quickly as possible. Perhaps, depending
on device, wait for a resume control before continuing.

none 3008 [In-band!

This is the normal condition. The transition from none to some other packet subtype value
and back is the the event that indicates the control in the data sequence.

remoteNotResponding 331 8 [Out-of-band with mark 1

The foreign system has stopped communicating. The outgoing transaction is stopped
immediately and resumed at the next transaction boundary, as designated by the in-band

5-3

5

5-4

Data transfer with the foreign system

mark abortMark. The remoteNotResponding control should never be generated by the
GAP client.

resume 3028 [Out-of-band]

Resume processing where you were when interrupted.line control, although it can be used
on other transports to make sure a particular group of data has been transferred
successfully. Reception of this control must be acknowledged by generating the
endOfTran$actionAck control.

transparentDataFollows 3138 [In-band]

The following data may contain bytes which require special framing. It is used only with
transports (e.g., BSC for IBM Office System 6) that have restrictions on the data which is
contained in a normal record. These restrictions are in effect when the stream is created.

yourTurnToSend 311 8 [In-banc.O

Tell the receiver that it may send now. This control is used only in alternating-mode
transports (e.g., BSC).

chain3219 334& . [In-band]

The data following is a chain of coIliluands for an IBM S2'i'9 leI minal. Cf'he packet
COlltailliIlg tile eiid of the C01IilltdIld cltain sltould Itava the EIZd-of-illeSsage bit set

unchained3270 3358 [In-band]

The data following is a nOll-chained sequence of one or more command§ for an IBM 3270
termina~. The packet containing the end of the command should have the End-of-message
bit set.

readModified3270 3368 [In-bandl

The data following is read modified data from an IBM 3270 terminal. The packet
containing the end of the read modified data should have the End-of-message bit set.

status3270 3378 [In-band!

The data following is status from an IBM 3270 terminal. The packet containing the end of
the status should have the End-of-message bit set.

testRequest3270 . 3408 [In-bandl

The data following is test request data from an IBM 3270 terminal. The packet containing
the end of the test request data should have the End-of-message bit set.

5.3 Status

GAP Specification 5

Status about the session is also returned to the client using the attention byte facility of
the Sequenced Packet Protocol. The following status values are defined:

3218 mediumUp
3228 mediumDown
3238 ourAccesslDRejected
3248 weRejectedAccesslD
3258 noGetForData
3268 unsupportedProtocol Feature
3278 unexpectedRemoteBehavior
3308 unexpectedSoftwareFailure
3418 configurationMismatch3270
3708 hostPolling3270
3718 hostNotPolling3270

mediumDown 3228

The transmission medium has gone from the up to the down state. This indicates that the
connection to the foreign system has terminated.

mediumUp 3218

The transmission medium has gone from the down to the up state. This indicates that the
connection to the foreign syste.m is operational.

noGetForData 3258

The foreign system is sending data and the client is not reading data. If possible the
Gateway software will use flow control to prevent loss of data.

ourAccessl DRej ected 3238

The foreign system rejected our security id.

unsupported Protocol Feature 3268

The foreign system used some protocol feature that is currently unsupported (e.g., an RVI

received from a Xerox 800).

unexpectedRemoteBehavior 3278

The foreign system did something unusual that did not follow documented protocols.

unexpectedSoftwareFailure 3308

The software encountered an unrecoverable software error.

weRejectedAccesslD 3248

Either we rejected the security identification from the foreign system or the foreign
system did not send a security identification when it was required.

5-5

5 Data transfer with the foreign system

configurationMismatch3270 341 8 [3270 emulation only)

Gateway Software determined that the parameters describing the IBM 3270 controller did
not match those of the host. For example, the number of terminals defined may be
different.

hostNotPolli ng3270 3718 [3270 emulation only)

The 3270 host has not polled our controller for at least 2 minutes.

hostPolling3270 3708 [3270 emulation only)

The 3270 host, which had not been polling our controller, is now polling our controller.

5.4 Data errors

"i "
: Certain transports such as the TeletypeTransport cannot recover from data transmission

errors in a graceful manner and instead return these errors to the client using packet
.. subtypes. The following packet subtypes fall into this category:

garbledReceiveData 3178

A framing error occurred on all ch~racters in this packet.

parityError 3168

A parity error occured on all characters in this packet.

Note: Generally, packets with these two subtypes will contain only a single character.

5.5 Termination

5-6

After all the data in a session has been transferred, the connection is passed back to
Courier and the session is either deleted or passed to another owner by calling the Courier
remote procedures Delete or Transfer. However, before the connection is passed back to
Courier, the close protocol described in §7.5 of Internet Transport Protocols [151 should be
followed. The close protocol is always initiated from the client side; the server never
initiates it.

A

Appendix A
References

Mandatory references are those documents which should be studied before or in
conjunction with this protocol specification. Informational references are those documents
which provide additional useful information.

A.I Mandatory references

Courier: The Remote Procedure Call Protocol, December 1981, XSIS 038112.

Internet Transport Protocols, December 1981, XSIS 028112.

A.2 Informational references

DWP (Xerox 850) Performance Specification, S 782-300, Chapter 3.8 [March 1978].

Xerox 860 IPS Program Specification, S 804.300.15, from OPD Engineering [March 1978].

Office System 6 Programmer's Guide for Communicating with: IBM 61450; 61440, 61430
Information Processors, G544-1003 [June 1977].

IBM 3270 Information Display System Component Description, GA27-2749-9 [August
1979).

A-I

A References

A-2

