
XEROX Services Software

Services 8.0
Programmer's Guide

November 1984
Filed as: [XNS:OSBU North] < Services> 8.0 > Doc> Programmer's Guide> '"

Xerox Corporation
Office Systems Division
3450 Hillview Avenue
Palo Alto, California 94304

Services Software

Notice

This manual is the current release of the Xerox Development Environment (XDE) and may be revised by Xerox

without notice. No representations or warranties of any kind are made relative to this manual and use thereof,

including implied warranties of merchantability and fitness for a particular purpose or that any utilization

thereof will be free from the proprietary rights of a third party. Xerox does not assume any responsibility or

liability for any errors or inaccuracies that may be contained in the manual or have any liabilities or obligations

for any damages, including but not limited to special, indirect or consequential damages, arising out of or in

connection with the use of this manual or products or programs developed from its use. No part of this manual.

either in whole or part, may be reproduced or transmitted mechanically or electronically without the written

permission of Xerox Corporation.

XEROX®, Interpress®, Xerox Network System,
and NS are trademarks of XEROX CORPORATION.

Copydght© 1984 by Xerox Corporation.
All Rights Reserved.

Preface

The Services 8.0 Programmer's Guide comprises nine separate manuals written to aid in
programming in the Xerox Development Environment (XDE). This document describes
programming interfaces in XDE workstation products for accessing the Xerox Network
Services.

Comments and suggestions on this document and its use are encouraged. The form at the
back of the guide has been prepared for this purpose. Please address communications to:

Xerox Corporation
Office Systems Division
XDE Technical Documentation, MIS 37-18
3450 Hillview Avenue
Palo Alto, California 94304

iii

lV

Table of contents

Common Facilities Programmer's Manual

1 Introduction

2 NSDataStream

3 NSName.

4 NSString.

Authentication Programmer's Manual

1

2

3

Introduction .

Interfaces .

Standard authentication scenario

Clearinghouse Programmer's Manual

1

2

3

A

B

Introduction

Concepts

Interface

List of operations.

CHCommonLookups.mesa

Mailing Programmer's Manual

1 Introduction

2 Mail transport.

3 Inbasket

4 Mail attributes

5 Mail stream

1-1

2-1

3-1

4-1

1-1

2-1

3-1

1-1

2-1

3-1

A-I

B-1

1-1

2-1

3-1

4-1

5-1

v

vi

Table of contents

Printing Programmer's Manual

1

2

3

Introduction

Interface

NSPrint interface

Print Service 8.0 Interpress (Client) Programmer's Manual

1

2

Introduction

Interface

Phone Net Driver Programmer's Manual

1

2

3

Introduction

Interface

U sage example

External Communication Programmer's Manual

1 Introduction

2 Overview

3 Client interface

4 Performance criteria

5 Status and exception processing.

6 Reliability and maintainability

7 Multinational requirements

A RS-232-C communication parameters

B Foreign device considerations

1-1

2-1

3-1

1-1

2-1

1-1

2-1

3-1

1-1·

2-1

3-1

4-1

5-1

6-1

7-1

A-I

8-1

Services 8.0 Programmer's Guide

Filing Programmer's Manual

1 Introduction

2 Overview.

3 File/session operations.

4

5

6

7

8

Segment/content operations

Positionable stream operations

Attributes .

Pathname parsing operations

System configuration and administration.

Appendices

A References.

B Gateway Access Protocol (GAP) Specification

1-1

2-1

3-1

4-1

5-1

6-1

7-1

8-1

A-I

B-1

Vll

VUl

XEROX Services 8.0 Programmer's Guide

Common Facilities.
Programmer's Manual

November 1984

PRELIMINARY

Xerox Corporation
Office Systems Division
3450 Hillview Avenue
Palo Alto, California 94304

ii

•

Table of contents

1 Introd uction 1-1

1.1 Overview 1-1
1.2 NSDataStream 1-1
1.3 NSName 1-1
1.4 NSString 1-2

2 NSDataStream 2-1

2.1 Clients who actively send or receive data 2-2
2.2 Clients negotiating bulk data transfers between two other parties 2-4
2.3 Implementors oflocal bulk data transfer operations 2-5
2.4 Implementors of remote bulk data transfer operations . 2-6
2.5 NSDataStream operations 2-10

3 NSName. 3-1

3.1 Network object naming 3-1
3.1.1 Names and name records 3-1
3.1.2 Basic operations 3-2
3.1.3 Comparison and equivalence 3-4
3.1.4 Conversion. 3-5
3.1.5 Errors. 3-6

3.2 Parameter serialization 3-7
3.2.i Serialization of arbitrary structures 3-7

4 NSString. 4-1

4.1 Strings, substrings, and Mesa strings 4-1
4.2 Basic operations 4-2
4.3 Scanning, comparison, and equivalence 4-5
4.4 Conversion. 4-7
4.5 Serialization 4-9
4.6 Errors 4-9

111

Table of contents

•

lV

1

•

Introduction

Certain facilities are made available which are useful in conjunction with more than one
service:

• a data stream facility

• an object naming and authentication facility

• a common string format facility

1.1 Overview

This document describes facilities which are useful in conjunction with more than one
service. The mechanisms introduced are strings, a package that manipulates sequences of
characters encoded according to the Xerox Character Code Standard [4]; data streams, a
package that allows location-independent transmission of large data items according to
the Xerox Bulk Data Transfer Protocol [3]; and names, a package that manipulates
network object names and related data items.

1.2 NSDataStream

Section 2 describes the data stream facilities provided by NSDataStream. It begins with an
overview of data streams, and continues with a description for clients of the interface, a
description for implementors of bulk data transfer operations, and a description for stub
writers of interfaces containing bulk data transfer operations.

1.3 NSName

Section 3 describes the NSName mechanism, a facility that allows manipulation of the
data structures used to name objects in the 8000 NS systems. Since many services deal
with objects, and those objects must be identified in requests to those services, this facility
is used in many contexts.

1-1

1 Introduction

1.4 NSString

1-2

Section 4 describes the NSString facility. NSString provides a set of operations to
manipulate sequences of characters encoded according to the Xerox Character Code
Standard [4].

..

•

2

NSDataStream

NSDataStream: DEFINITIONS ... ;

This section describes the data stream facilities provided by NSDataStream. It begins with
an overview of data streams, and continues with a description for clients of the interface, a
description for implementors of bulk data transfer operations, and a description for stub
writers of interfaces containi.ng bulk data transfer operations.

Some of the key features ofthe data stream mechanism are:

• Bulk data transfer occurs during data transfer operations-between the procedure
call and the return-rather than after the operation is finished, as it was in the past.
This allows operations to return results based on the successful data transfer (e.g., file
handles) and allows for better status reporting, using the full generality of Mesa
errors to report to the initiator of a data transfer specific problems that occur. When
the transfer occurs between two system elements, it always occurs on a connection
used by a Courier remote procedure call.

• Direct, third-party transfers are supported. A client 0"0 one system element can
initiate bulk data transfer between two other system elements simply by making two
remote procedure calls, one to each system element. The NSDataStream mechanism
will automatically establish a connection between the two parties.

• Clients of bulk data transfer operations have the option to provide or be provided with
a data stream for the data transfer. A data stream may be requested in one bulk data
transfer operation and then supplied to another. This allows two independent
functions (one providing data, such as retrieving a file, and one accepting data, such
as printing a document) to be combined without either having more knowledge of the
other than that they support NSDataStream conventions.

A data stream, referenced via an NSDataStream.Handle, is a half duplex, non-positionable
stream designed for transfer of bulk data (e.g., files). Data streams have the built-in
capabilities for aborting a transfer by the sender or the receiver, and for linking sending
and receiving processes independent of geographic location.

NSDataStream.Handle: TYPE = RECORD [Stream.Handle);

2-1

2 NSDataStream

Data streams come in two varieties: SinkStream, on which data may be sent, and
SourceStream, on which data may be received. A data stream is compatible with a Pilot
stream in that an NSDataStream.Handle may be passed as a Stream. Handle to Stream
ope.rations. The converse is not true; arbitrary streams may not be supplied to operations
which expect a data stream. Thus, it is improper for a client ever to use a Mesa record
constructor to obtain an NSDataStream.Handle from an arbitraty Stream.Handle. Similarly, it
is improper to use a Mesa record constructor to obtain a SinkStream or a SourceStream
from an NSDataStream.Handle.

NSDataStream:SinkStream: TYPE = RECORD [Handle];

NSDataStream.SourceStream: TYPE = RECORD [Handle];

Clients of data stream operations fall into one of two categories: those who actively send or
receive data, and those who negotiate a transfer between two other parties. Senders and
receivers may be further classified into (1) those who send or receive data-typically
structured data-using enumeration call-back procedures as in NSFile.List, and (2) those
who send or receive data-typically unstructured data-using stream primitives
(PutBlock, PutByte, GetBlock, GetByte, etc.).

2.1 Clients who actively send or receive data

2-2

Clients of the first type, those who actively send or receive data using enumeration
procedures, are shielded from all stream aspects of the data transfer. They receive (send)
Mesa re.cords as arguments (results) through repeated invocations of the supplied call­
back procedure, and are given the option of terminating the enumeration any time by a
boolean continuation result.

The following is an example of a client who receives data using enumeration:

NSFile.List[...• ListData, ... ! NSFile.Error = > REJECT];

ListData: PROCEDURE [attributes: NSFile.Attributes]
RETURNS [continue: BOOLEAN +-TRUE) =
BEGIN
continue +- ProcessAttributes[attributes);
END; -- of ListData

Senders using Stream primitives (PutBlock, PutByte, etc.) will acquire an
NSDataStream.SinkStream from a data transfer operation in the appropriate interface
(NSFile, Telepress, etc.), and will generate and transmit blocks of data using those
primitives. The SinkStream can be acquired by supplying a parameter which is a proc
variant of an NSDataStream.Source to the data transfer operation. The supplied call-back
procedure is invoked once, at a time before data transfer begins.

NSDataStream.Source: TYPE = RECORD [
SELECT type: * FROM
proc = > [proc: PROCEDURE [SinkStream)).
stream = > [stream: SourceStream).
none = > n.
ENDCASE];

Common Facilities Programmer's Manual 2

Similarly, receivers using Stream primitives (GetBlock, GetByte, etc.) acquire an
NSDataStream.SourceStream from a data transfer operation in the appropriate interface and
receive and process blocks of data. The SourceStream is acquired by supplying a
parameter which is a proc variant of an NSDataStream.Si nk to t}1e data transfer operation.

NSDataStream.Sink: TYPE = RECORD [
SELECT type: * FROM
proc = > [proc: PROCEDURE [SourceStream]).
stream = > [stream: SinkStrE!am].
none = > n. •
ENDCASE];

NSDataStream.Abort: PROCEDURE [stream: Handle];

NSDataStream.Aborted: ERROR;

Within the call-back procedure which makes up the proc variant of a Sink or Source, the
client should do the following:

1) Use the stream primitives. A SinkStream should be used to send data, and a
SourceStream should be used to receive data. The receive procedures associated with a
SinkStream and the send procedures associated with a SourceStream are not
implemented. The client should not change the subsequence type of the stream, nor
expect to be notified of a subsequence type change. The streams are not positionable.

2) Abort the data stream on errors. If the sender is unable to provide, or the receiver is
unable to process, any or all of the data, the data stream may be aborted. This is done
using the procedure NSDataStream.Abort, and has the effect that the next stream
primitive (including Stream.Delete) employed by the other end of the data stream will
result in the error NSDataStream.Aborted. Both the sender and the receiver may abort a
data transfer, and both must be prepared to accept the Aborted error on all stream
operations. Both the party that aborts a data stream and the party that receives the
abort must call Stream. Delete (step 3).

3) Delete the data stream. Stream.Delete must be called by the sender to indicate the end
of data or to acknowledge a receiver abort, and by the receiver to acknowledge the
endOfStream completion status or a sender abort. [fStream.Delete raises the Aborted
error, it need not be retried.

4) Return from the call-back procedure or raise an error. If an exceptional condition
arises in the client's procedure, an error may be signaled and caught by a catch phrase
in a procedure further up the call chain. The client's procedure is still required to
delete the stream and, prior to the deletion, may choose to abort the stream as well.
The stream must be deleted by the client's call-back procedure before it returns or
raises an error.

2-3

2 NSDataStream

The following is an example of a client who sends data using stream primitives:

NSFile.Store[•••• [proc [SendData]] •••• ! NSFile.Error == > ... J;

SendData: PROCEDURE [sinkDS: NSDataStream.SinkStream] ==

BEGIN.
UNTIL finished DO

Stream.PutBlock[sinkDS •..• ! NSDataStream.Aborted == > EXIT]
ENDLOOP;

Stream.Delete[sinkDS ! NSDataStream.Aborted == > CONTINUE]
END; -- of Send Data

The following is an example of a client who receives data using stream primitives:

NSFile.Retrieve[•••• [proc [GetData]] •.• .! NSFile.Error == > ... J;

GetData: PROCEDURE [sourceDS: NSDataStream.SourceStream] ==

BEGIN
UNTIL finished DO

[••• J +-Stream.GetBlock[sourceDS ! NSDataStream.Aborted == > EXIT];
ENDLOOP;

Stream.Delete[sourceDS ! NSDataStream.Aborted == > CONTINUE)
END; -- of GetData

2.2 Clients negotiating bulk data transfers between two other parties

2-4

Clients negotiating transfers between two other parties do so in the same manner,
regardless of the location of the two parties. Both parties may be on the same local or
remote system element (as in a file conversion); one may be local and the other remote (as
in a file retrieval); or they may be on distinct remote system elements (as in a file service
to print service file copy).

In each case, the client calls one bulk data transfer operation requesting a data stream by
specifying a call-back procedure, and then uses that data stream as an argument in
another bulk data transfer operation invoked from within the call-back procedure.
Neither bulk data transfer operation returns while the data transfer is in progress, and
each is able to return results after the transfer has completed, or to raise a Mesa error if
the transfer cannot be completed. By supplying the data stream to the second bulk data
transfer operation, the client no longer has any obligation (or privilege) to delete, abort, or
operate on the data stream in any way. The stream is deleted by the bulk data transfer
operation, even if that operation terminates with an error.

When one party in the bulk data transfer encounters a problem, it will abort the data
stream it is using. The client discovers this in two ways. The party that encountered the
problem will raise a Mesa error to indicate the exact nature of the problem. The party
receiving the abort indication will catch the NSDataStream.Aborted error and may choose to
raise an error specific to the operation or return normally, with the understanding that
the· other party will do the real error notification. NSFile, for example; raises the error
NSFile.Error[[transfer [aborted))) to indicate that a transfer was aborted. The client must
take special action (e.g., CONTINUE) when the second operation raises an error such as this,
since the first operation must be allowed to raise the more descriptive error.

Common Facilities Programmer's Manual

The following is an example of a client who negotiates a transfer:

NSFile.Retrieve[... , [proc [SendData]], ... ! NSFile.Error = > ...];

SendData: PROCEDURE [sourceDS: NSDataStream.SourceStream] =
BEGIN
NSFile.Store[... , [stream [sourceDS)), ... !

NSFile.Error = > IF error = [transfer [aborted]] THEN CONTINUE]
END; -- of SendData

2.3 Implementors oflocal bulk data transfer operations

2

Implementors of local bulk data transfer operations operate on data streams in much the
same way that clients do. They may use stream primitives to send or receive data, or to
pass a data stream to another bulk data transfer operation. The primary difference
between these local implementors and their clients is the manner in which the data
stream is acquired.

NSDataStream.Couple: TYPE = [sink: SinkStream, source: SourceStream];

Bulk data transfer operations should define a parameter which is an NSDataStream.Source
or an NSDataStream.Sink. This allows a client to provide a data stream, choose to be provided
with one in a specified call-back procedure, or provide a null data stream indicating that
no transfer should occur. Every bulk data transfer operation should implement all three
options. When the data stream is provided, that data stream should be used. When the
data stream is requested, a data stream Couple should be created. A Couple consists of two
matched data streams, a SinkStream and a SourceStream. The data streams are matched
in that data sent on the SinkStream may be received from the SourceStream. One of these
data streams should be used by the implementor, and the other should be provided to the
client in the specified call-back procedure.

NSDataStream.OperateOnSink: PROCEDURE [sink: Sink, operation: PROCEDURE [SinkStream]];

NSDataStream.OperateOnSource: PROCEDURE [
source: Source, operation: PROCEDURE [SourceStream]];

The implementor may make use of the operations OperateOnSink and OperateOnSource
to acquire a data stream on which to operate and to perform the actions described above.
These operations will act differently for each of the variants of Sink or Source. For a
stream variant, the stream is supplied directly to operation. For a proc variant, a Couple
is created; one half of the couple is supplied to a forked operation, while the other is
supplied to the client's procedure. The operation, therefore, may not raise any errors or
signals (because it is a forked process) and must instead return normally and raise any
errors after OperateOnSink or OperateOnSource has returned. For a none variant, a Nil
SinkStream or SourceStream is supplied to operation. The implementor should recognize
this value and, without passing it to any Stream or NSDataStream operation, should treat
a NIL SinkStream as a request to discard the data and a NIL SourceStream as though it gives
an immediate end of stream indication.

2-5

2 NSDataStream

The following is an example implementation of a local bulk data transfer operation:

NSFile.Store: PROCEDURE [.... source: Source] ==
BEGIN
outcome: Status +- normal;
StoreProc: PROCEDURE [sourceDS: NSDataStream.SourceStream] ==

BEGIN
IF source OS .. [NIL] THEN RETURN;
UNTIL finished DO

[...] +- Stream.GetBlock[sourceDS ! NSDataStream.Aborted == >
{outcome +- aborted; EXIT}];

IF problemEncounteredProcessingData THEN {
NSDataStream.Abort[sourceDS]; outcome +- error; EXIT}

ENDLOOP;
Stream.Delete[sourceDS !

NSDataStream.Aborted == > {outcome +- aborted; CONTINUE}]
END;

NSDataStream.OperateOnSource [source. StoreProc];
IF outcome # normal THEN ERROR ..• -- errors are raised after OperateOnSource returns
END; - of Store

2.4 Implementors of remote bulk data transfer operations (stub writers)

2-6

Implementors of remote bulk data transfer operations provide their clients the same
flexibility as local implementors. The operations may have Source or Sink parameters for
unstructured data, allowing the client to select how the data stream is determined, or may
have enumeration call-back procedure parameters which are called repetitively with
structured data.

In the Source or Sink approach, OperateOnSink and OperateOnSource are used to
determine the data stream in the client stub in a similar manner to a local operation. The
difference lies in how the data stream transcends physical machine boundaries to be
supplied as a parameter to a bulk data transfer operation local to a server.

This is done by having the client stub check in the data stream using NSDataStream.Register.
In exchange, the client stub receives a Ticket which can be passed as an argument in a
remote procedure call using DescribeTicket as the Courier.Description.

NSDataStream.Ticket: TYPE [11];

NSDataStream.Descri be Ticket: Courier .Descri ption;

NSDataStream.Register: PROCEDURE [
stream: Handle, forUseAt: Courier.SystemElement. cH: Courier.Handle.
uselmmediateTicket: BOOLEAN +-TRUE] RETURNS [Ticket];

The server stub, upon receiving the ticket, uses the ticket to reclaim the data stream using
OpenSink or OpenSource. This ticket system is very much like the baggage check system
of an airline. Small data structures can be passed as parameters to a remote operation or
returned as results, just as small possessions can be carried onto the plane and stored
beneath the seat. Large data structures are passed via streams which are checked in, in
exchange for a ticket, and then later exchanged for a data stream (bl,lt only at the

Common Facilities Programmer's Manual 2

destination system element). This resembles large baggage, which is checked in exchange
for a claim check redeemable only at the destination.

NSDataStream.OpenSink: PROCEDURE [ticket: Ticket. cH: Courier.Handle] RETURNS [SinkStream];

NSDataStream.OpenSource: PROCEDURE [ticket: Ticket. cH: Courier.Handle]
RETURNS [SourceStream];

In reality, the ticket mechanism deletes one data stream and creates a filter over a
network stream at the destination. The network stream used is either one employed by
Courier for the remote operation itself, or it is one established between two system
elements using an operation from the BulkDataTransfer remote program. If the client is to
be a party in the transfer rather than an idle third party, the client stub may decide for
each Sink or Source parameter (there may be several for a single procedure) whether the
transfer should occur on the Courier connection of the operation, or on another network
stream. At most one of the Sink or Source parameters can make use of a single network
stream. The client stub indicates which network stream to use by specifying a boolean
argument, uselmmediateTicket, to the Register operation. This argument is ignored if the
client is not one of the parties in the bulk data transfer using the Sink or Source. If the
uselmmediateTicket boolean is TRUE, the client stub should also supply the procedure
NSDataStream.AnnounceStream as the streamCheckoutProc argument to Courier.Call. This
will allow Courier to provide NSDataStream with its network stream at a time after the
arguments have been transmitted, when the client can expect to make use of the network
stream.

One should notice that third-party transfers, such as trarisfers between two servers as
controlled by a workstation, are supported by this design without additional effort by the
client or stub writer. Each Register operation waits until intentions have been stated for
the other half of the data stream couple, either by a matching Register operation or by an
explicit or implicit AssertLocal operation (see §2.5). When intentions of both halves have
been stated, it is known what two system elements are to participate in the bulk data
transfer and the appropriate connection can be established. Thus, in the case of two remote
procedure calls with matching data streams, a network stream is established between two
other system elements. One system element can, therefore, receive data directly from
another without knowing the other's protocol.

The following is an example client stub implementation of a remote bulk data transfer
operation:

NSFile.Store: PROCEDURE [...• source: Source •...• session: Session]
RETURNS [file: Handle] =
BEGIN
outcome: Status +- normal;
StoreProc: PROCEDURE [sourceDS: NSDataStream.SourceStream] =

BEGIN ENABLE ANY = > {outcome +- error; CONTINUE}; -- catch possible errors
arguments.source +- NSDataStream.Register[

sourceDS. DetermineSystemElement[session]. cH. TRUE];
[] +-Courier.Call [

cH •...• [arguments. StoreArgumentsDescription] •...•
FALSE. NSDataStream.AnnounceStream! Courier. Error = >
, NSDataStream.CanceITicket[arguments.source. cH]];

file +- results. file

2-7

2

2-8

NSDataStream

END;
NSDataStream.OperateOnSOurce [source, StoreProc);
IF outcome # normal THEN ERROR ...
END; -- of Store

StoreArgumentsDescription: Courier.Description •
BEGIN OPEN notes;
parameters: LONG POINTER TO StoreArguments • noteSize[

size: slzE[StoreArguments));

noteParameters[@parameters.source. NSDataStream.Descri beTicket);

END;

The following is an example server stub implementation of a remote bulk data transfer
operation:

Dispatch: Courier. Dispatcher -. [cH: Courier. Handle, procedureNumber: CARDINAL,
arguments: Courier.Arguments, results: Courier. Results}-- =-

BEGIN
arguments[...] ;

SELECT procedureNumber FROM

store. >
BEGIN
OPEN arg: LOOPHOLE[argumentList. POINTER TO StoreArguments).

res: LOOPHOLE[resultList, POINTER TO StoreResults];
sourceDS: NSDataStream.SourceStream +-

NSDataStream.OpenSource[arg.source, cH ! NSDataStream.Error = > NSFile.Error[...))
res.file +- NSFile.Store[.•• , [stream [sourceDS)) •.•• J
END;

ENDCASE;

results[...];
END;

The other method of bulk data transfer provides the client with an enumeration operation.
This method is essentially the same as the Source/Sink method, with the addition of a
layer of software over both the client and server side. The software layer serializes a Mesa
record at the server and reestablishes the Mesa record from the transmitted data for the
client. All the client rules regarding direct use of stream primitives apply. In particular,
the data stream must be deleted by both the client and server stubs, even in the event of an
error raised by the client's enumeration procedure.

Common Facilities Programmer's Manual 2

The following is an example client stub implementation of a remote bulk data transfer
operation using an enumeration procedure:

NSFile.List: PROCEDURE [
.•. , proc: AttributesProc, "'r session: Session] =
BEGIN
ListProc: PROCEDURE [sourceDS: NSDataStream.SourceStream] =

BEGIN
UNTIL finished DO

[...] Eo-Stream.GetBlock[sourceDSr .. .1 NSDataStream.Aborted = > EXIT];
IF NOT proc [! UNWIND = >

{NSDataStream.Abort[sourceDS]; Stream.Delete[sourceDS]}] THEN EXIT
ENDLOOP;

Stream.Delete[sourceDS ! NSDataStream.Aborted = > CONTINUE]
END; -- of ListProc

ListByStream[... , sink: [proc [ListProc]J, "'r session: Session!
NSDataStream.Aborted = > CONTINUE]

END; -- of List

ListArgumentsDescription: Courier.Description =
BEGIN OPEN notes;
parameters: LONG POINTER TO ListArguments = noteSize[size: slzE[ListArguments]];

noteParameters[@parameters.sinkr NSDataStream.Descri be Ticket];

END;

ListByStream: PROCEDURE [... , sink: Sink, ... , session: Session] ..
BEGIN
outcome: Status Eo- normal;
ListByStreamProc: PROCEDURE [sinkDS: NSDataStream.SinkStream] =

BEGIN ENABLE ANY = > {outcome Eo- error; CONTINUE}; -- catch possible errors
arguments.sink Eo- NSDataStream.Register[

sinkDSr DetermineSystemElement[session], cH, TRUE];
[] Eo-Courier.Call [

cH, ... , [arguments, ListArgumentsDescription]r ... ,
FALSE r NSDataStream.AnnounceStream! Courier. Error = >

NSDataStream.CanceITicket[arguments.sink, cH]];
END;

NSDataStream.OperateOnSink [sink, ListByStreamProc];
IF outcome # normal THEN ERROR ...
END; -- of ListByStream

2-9

2 NSDataStream

The following is an example server stub implementation of a remote bulk data transfer
operation using enumeration:

Dispatch: Courier. Dispatcher .- [cH: Courier. Handle, procedureNumber: CARDINAL,
arguments: Courier.Arguments, results: Courier. Results] -- =

BEGIN
arguments[•..];

SELECT procedureNumber FROM

list = >
BEGIN
OPEN arg: LOOPHOLE[argumentList. POINTER TO ListArgumentsl.

res: LOOPHoLE[resultList. POINTER TO ListResultsJ;
sinkDS: NSDataStream.SinkStream +- NSDataStream.OpenSink[arg.sink. cH !

NSDataStream.Error • > NSFile.Error[...]];
ListByStream[.••• sink: sinkDS]
END;

ENDCASE;

results[...];
END;

ListByStream: PROCEDURE [.... sink: SinkDataStream •... J =
BEGIN
ListProc: PROCEDURE [... J RETURNS [continue: BOOLEAN +-TRUE] =

BEGIN ENABLE UNWIND = > NSDataStream.Abort[sink);

Stream.PutBlock[sink._ .. .1 NSDataStream.Aborted = >
{continue +-FALSE; CONTINUE}]

END;
NSFile.List(.... ListProc ! UNWIND = >

Stream.Delete[sink! NSDataStream.Aborted = > CONTINUE]];
Stream.Delete[sink! NSDataStream.Aborted = > CONTINUE]
END; -- of ListByStream

2.5 NSDataStream operations

2-10

The Abort operation aborts a data stream. If the data stream is a SinkStream, this
indicates that the sender is unable to supply the remainder of the data and suggests to the
receiver that the data is incomplete. The receiver may choose to discard all data already
received. If the data stream is a SourceStream, the receiver is unable to accept and process
any more data. This instructs the sender to stop sending data immediately. Repeated
aborts of the same data stream are ignored.

The process operating on the other half of the data stream is notified of an aborted data
stream on the next Stream operation (PutBlock. Put Byte. GetBlock. GetByte. Delete, etc.).
The error occurs on Stream.Delete in the situation where the receiver aborts the data
stream after all of the data is received. In this situation, the next operation by the sender
will be to delete the data stream, which raises the Aborted error. The Delete operation
will have completed, however; so the sender is no longer required to delete the data stream

Common Facilities Programmer's Manual 2

again. In all other situations, it is necessary to delete a data stream after aborting it or
being notified of an abort.

NSDataStream.Abort: PROCEDURE [stream: Handle];

Arguments:

Results:

Errors:

stream is a data stream which may either be a SinkStream or a
SourceStream.

The data stream is aborted.

None.

The AssertLocal operation is called by the holder of a data stream when it is known that
Stream operations (PutBlock, GetBlock, etc.) will be performed on the data stream. It
should not be called if the data stream is to be passed to an operation on another system
element. AssertLocal differs from sending or receiving an empty block only in that it
returns immediately if the data stream is not yet established as a local or network stream.
Performing any Stream operation implies AssertLocal , and thus a client is not required to
use this operation. It is primarily useful in situations where extensiv~ computation is
likely to occur in preparation for sending or receiving data. Invoking AssertLocal allows
the establishment of the data stream as a local or network stream to proceed in parallel
with the client's preparatory computation. Repeated calls to AssertLocal are ignored.

NSDataStream.AssertLocal: PROCEDURE [stream: Handle];

Arguments:

Results:

Errors:

stream is a data stream, either a SinkStream or a SourceStream.

Subsequent use of the data stream may only occur on the local system
element.

None.

CreateCouple creates a pair of coupled data streams such that data sent on couple.sink
can be retrieved from couple.source. Each data stream must eventually be deleted with
Stream.Delete or exchanged for a ticket using Register (see below>.

NSDataStream.CreateCouple: PROCEDURE RETURNS [Couple];

Arguments: None.

Results: A couple of data streams.

Errors: NSDataStream.Error [tooManyLocaIConnections].

The OperateOnSink and OperateOnSource operations are called by client stubs and local
implementations of bulk da~a transfer operations. They invoke the specified operation
with a data stream argument derived from the specified Sink or Source. If the Sink or
Source is a proc variant, the procedure is called and operation is forked with a matching
data stream. If the Sink or Source was a none variant, a Nil data stream is supplied to
operation.

2-11

2

2-12

NSDataStream

NSDataStream.OperateOnSink: PRDCEDURE [sink: Sink, Dperation: PROCEDURE (SinkStream]];

NSDataStream.OperateOnSource: PROCEDURE [
source: Source, operation: PROCEDURE [SourceStreaml1;

Arguments:

Results:

Errors:

sink or source is an argument to a bulk data transfer operation;
operation is a procedure to be called or forked, ~epending on the
nature of sink or source.

None.

None.

Register is called by client stub implementations. It asserts that a data stream will be used
on a specified system element. The ticket obtained may be passed as an argument to a
remote procedure call, where the server stub may exchange it for a network data stream
using OpenSink or OpenSource. Register assumes all rights to the data stream; the client
need not delete the data stream and may not use the data stream after applying Register.
Tickets which are not redeemed should be passed to Cance~Ticket by the client stub. A NIL
stream may be registered to suppress the data transfer in what would have been a bulk
data transfer operation.

NSDataStream.Ticket: TYPE [11];

NSDataStream.Register: PROCEDURE [
stream: Handle. forUseAt: Courier.SystemElement. cH: Courier.Handle.
uselmmediateTicket: BOOLEAN +-TRUE) RETURNS (Ticket];

Arguments:

Results:

Errors:

stream is a data stream which has not previously been supplied to any
NSDataStream or Stream operation; forUseAt indicates the system
element at which the returned ticket will be redeemed; cH is the
Courier handle for the connection on which the remote operation will
occur; uselmmediateTicket indicates whether the Courier connection
associated with cH should be used-it is ignored if the matching data
stream is not asserted local.

The resulting ticket may be used by the client stub as an argument to a:
remote procedure.

NSDataStream.Error[tooManyTi ckets]. Courier .Error.

The OpenSink and OpenSource operations are called by server stubs, and establish
network data streams in exchange for tickets provided to client stubs by the Register
operation. Streams returned by these operations must be deleted with Stream.Delete when
data transfer is complete.

NSDataStream.OpenSink: PROCEDURE [ticket: Ticket. cH: Courier.Handle] RETURNS [SinkStream);

NSDataStream.OpenSOurce: PROCEDURE [ticket: Ticket. cH: Courier.Handle]
RETURNS [SourceStream);

Common Facilities Programmer's Manual 2

Arguments:

Results:

Errors:

ticket is a ticket received by the client stub; cH is the Courier handle
received by the server stub's Dispatcher and is only used if the ticket is
an immediate ticket.

A data stream which is a filter over a network stream.

NSDataStream.Error [IocaIEndlncorrect'tooManyLocaIConnedions).

The CancelTicket operation is called by client stubs when it becomes evident that a ticket
returned from Register will not be redeemed by a server stub. This will be the case if a
problem occurs after the Register operation but before the remote procedure call is
initiated, or if there is a problem initiating a remote procedure call. Once the server stub's
Dispatcher is called, the server stub is expected to redeem the ticket, even in the event of
an error.

NSDataStream.CanceITicket: PROCEDURE [ticket: Ticket. cH: Courier .Handle);

Arguments:

Results:

Errors:

ticket is a ticket received from Register and cH is the Courier handle
supplied to Register.

The ticket may no longer be redeemed.

None.

The AnnounceStream operation is called by the client stub to indicate the appropriate
time to use the network stream previously in use by Courier. This must occur after
arguments of a remote procedure are transmitted and before the results are returned. The
most common use of this procedure is to pass it to Courier.Call as the streamCheckoutProc.
Courier will then call its streamCheckoutProc at the proper time. AnnounceStream will
have no effect if no immediate ticket was issued for the specified Courier handle. This
operation will not return until the data stream is deleted.

NSDataStream.AnnounceStream: PROCEDURE [cH: Courier.Handle];

Arguments: cH is the Courier handle for the remote operation in progress.

Results: None.

Errors: None.

2-13

2 NSDataStream

2-14

3

NSName

NSName: DEFINITIONS = ... ;

This section describes the NSName mechanism, a facility that allows manipulation of the
data structures used to name objects in the 8000 NS systems. Since many services deal
with objects, and those objects must be identified in requests to those services, this facility
is used in many contexts.

NSName provides two facilities. The first, network object naming, defines types used to
name objects, and operations to manipulate names and convert them to other forms. The
second, parameter serialization, consists of procedures which help represent general data
structures according to the remote procedure calling protocol.

3.1 Network object naming

The network architecture defines a number of objects. File services, users, and
distribution lists are all examples of objects. All objects are named in a consistent way so
that they can be referenced in messages between systems. A name consists of three parts:
an organization, which is the highest level in the naming hierarchy; a domain, which is a
subdivision of an organization; and a local name, which actually identifies the object. Each
part is unique relative to the next-higher part.

3.1.1 Names and name records

A name is represented most often as a record containing three strings, which correspond to
the three parts of the name, or by a pointer to that record.

NSName.Name: TYPE = LONG POINTER TO NameRecord;

NSName.NameRecord: TYPE = RECORD [org: Organization, domain: Domain, local: Local];

NSName.Organization: TYPE = NSString.String +-NSString.nuIiString;
NSName.Domain: TYPE .. NSString.String +-NSString.nuIiString;
NSName.Local: TYPE .. NSString.String +- NSString.nuIiString;

NSName.nuIiNameRecord: NSName.NameRecord = [];

3-1

3

3-2

NSName

The components of a name are restricted in length. Clients must not create any name that
does not respect these limits, though not all procedures in this interface enforce them.

NSName.maxOrgLength: CARDINAL = 20;
NSName.maxDomainLength: CARDINAL = 20;
NSName.maxLocaILength: CARDINAL = 40;

Sometimes it is useful for allocation purposes to provide name storage which is local to a
procedure. This is facilitated by the following TYPE:

NSName.NameStore: TYPE = RECORD (
record; NSName.NameRecord.
org: PACKED ARRAY (o .. maxOrgLength] OF Environment.Byte
domain: PACKED ARRAY [o .. maxDomainLength] OF Environment.Byte
local: PACKED ARRAY [O •• maxLocaILength] OF Environment.Byte

In some applications of names, a special meaning of "wild card" is attached to the asterisk
character. Although it is defined in this interface for convenience, it has no special
m~aning to the operations within NSName.

NSName.wildCard: CHARACTER = '*;
NSName.wildCardCharacter: NSString.Character = [0, [wildCard]];
NSName.wildCardString: NSString.String;

Although most names appear as the Name or NameRecord type, there are some cases in
which it is more convenient to deal with a single string. In this case, the three parts of the
name are included in the string in the order local name, domain, and organization. Each is
distinguished by the separator character defined below. The total length of the string is
limited by the component maximum lengths (previously defined) and the overhead of
character set changes and separators. An example of such a name is "DragonSeed:OSD
West:Xerox," where "DragonSeed" is the local name, "OSD West" is the domain, and
"Xerox" is the organization.

NSName.separator: CHARACTER = ':;
NSName.separatorCharacter: NSString.Character = [0, [separator]];

NSName.hierarchicaILevels: CARDINAL = 3;
NSName.characterSetChangeOverhead: CARDINAL = 2;
NSName.maxFullNameLength: CARDINAL = .

maxLocalNameLength + maxDomainNameLength + maxOrgNameLength +
(characterSetChangeOverhead + 1) * (hierarchicalLevels ·1);

3.1.2 Basic operations

An empty name is allocated by calling MakeNameFields, which allocates the component
strings of an existing name record, or MakeName, which allocates both the record and the
strings.

NSName.MakeNameFields: PROCEDURE [
z: UNCOUNTED ZONE, destination: Name, orgSize: CARDINAL Eo- maxOrgLength,
domainSize: CARDINAL Eo- maxDomainLength, localSize: CARDINAL Eo- maxLocaILength];

Common Facilities Programmer's Manual 3

Arguments:

Results:

Errors:

destination refers to the name record in which strings are to be
allocated; orgSize, domainSize, and local Size specify the lengths of the
allocated strings (in bytes); all storage is allocated from z.

None.

None.

NSName.MakeName: PROCEDURE [
z: UNCOUNTED ZONE, orgSize, domainSize, localSize: CARDINAL] RETURNS [Name];

Arguments:

Results:

Errors:

orgSize, domainSize and localSize specify the lengths of the allocated
strings (in bytes); all storage is allocated from z.

The allocated Name is returned.

None.

A name may also be created by copying an existing one. CopyNameFields copies the source
into an already-allocated destination, allocating any strings that· are not already
allocated, while CopyName creates a new name that is a copy of the source.

NSName.CopyNameFields: PROCEDURE [z: UNCOUNTED ZONE, source, destination: Name];

Arguments:

Results:

Errors:

source is the name to be copied; destination is the name intended to
hold the copy; z is used to allocate any of the components of destination
that are not already allocated.

None.

NameTooSmall is raised if an already-allocated component of
destination is too small.

NSName.CopyName: PROCEDURE [z: UNCOUNTED ZONE, name: Name] RETURNS [Name];

Arguments: name is the name to be copied; all storage is allocated from z.

Results: The allocated Name is returned.

Errors: None.

Storage allocated by the preceding operations must be freed by the client. FreeNameFields
(which may also be called as ClearName) frees only the component strings of a name, and
is therefore suitable for freeing names allocated by MakeNameFields or CopyNameFields,
while FreeName frees both the component strings of a name and its name record, and is
therefore suitable for freeing namesallocated by MakeName or CopyName.

NSName.FreeNameFields, ClearName: PROCEDURE [z: UNCOUNTED ZONE, name: Name];

Arguments: name is the name to be freed; storage is assumed to be allocated from z.

Results: None.

3-3

3

3-4

NSName

Errors: None.

NSName.FreeName: PROCEDURE [z: UNCOUNTED ZONE. name: Name];

Arguments: name is the name to be freed; storage is assumed to be allocated from z.

Results: None.

Errors: None.

Local storage can be initialized for the components of an NSName.Name using
InitNameRecord, which operates on objects of the type NameStore. The advantage is that
after the termination of a procedure call, any storage related to the NameStore object is
automatically freed.

NSName.lnitNameStore: PROCEDURE [store: LONG POINTER TO NameStore};

Arguments:

Results:

Errors:

store is a pointer to a NameStore object which gets initialized. The
store. record field is set to store.org, store.domain, and store.local.
The store.org, store.domain, and store.locallengths are set to zero.

None.

None.

3.1.3 Comparison and equivalence

Names may be compared for equality or order. The sort order defined for strings is used,
ignoring case. The org component of a name is the most significant and local is least
significant.

NSName.CompareNames: PROCEDURE [
n1. n2: Name. ignoreOrg. ignoreDomain. ignoreLocal: BOOLEAN E-FALSE)
RETURNS [NSString.Relation];

Arguments:

Results:

Errors:

n1 and n2 are the names to be compared; if ignoreOrg, ignoreDomain,
or ignoreLocal is TRUE, the corresponding component is skipped during
the comparison.

The appropriate NSString.Relation (less, equal, or greater) is returned.

None.

NSName.EquivalentNames: PROCEDURE [n1, n2: Name) RETURNS [BOOLEAN) • INLlNE ... ;

Arguments: n1 and n2 are the names to be compared.

Results: TRUE is returned if the two names are equivalent, ignoring case.

Errors: None.

Common Facilities Programmer's Manual 3

3.1.4 Conversion

It is sometimes useful to interconvert the single-string form of a name and the three-part
form. AppendNameToString converts a three-part name to a single-string name by
appending the organization, domain, and local name (in that order) to the string,
separated by the separator character.

NSName.AppendNameToString: PROCEDURE [
s: NSString.String, name: Name, resetLengthFirst: BOOLEAN E-FALSE]
RETURNS [newS: NSString.String];

Arguments:

Results:

Errors:

s is the destination string; name is the name to be appended; if
resetLengthFirst is TRUE, then the length of s is set to zero, effectively
clearing any previous contents.

newS is the resultant string.

NSString.StringBoundsFault is raised ifs has insufficient length.

Single-string names may be converted to three-part names by means of several
procedures, depending on the type of allocation desired by the client. In all cases, the
string is divided at the separator characters, and any missing components (which are
assumed to be the trailing ones) are completed from the name clientDefaults. For example,
a string containing no separator characters is assumed to have a local name, but no
domain or organization; therefore these are taken from clientOefaults.

NameFieldsFromString takes an existing name and fills in the components, allocating any
which are not already allocated, in a manner similar to CopyNameFields.
NameFromString allocates a new name record and components. SubdivideName does no
allocation, but instead passes the converted name to a client-supplied procedure, which
must copy the information it needs before returning. Storage allocated in the first two
operations must be freed as described in §3.1.2.

NSName.NameFieldsFromString: PROCEDURE [
Z: UNCOUNTED ZONE, s: NSString.String, destination: Name, clientOefaults: Name E- NIL];

Arguments:

Results:

Errors:

s is the string to be converted; the resultant components are copied into
destination; unspecified components in s are filled in from
clientDefaults; Z is used to allocate any of the components of
destination that are not already allocated.

None.

NameTooSmall is raised if an already-allocated component of
destination is too small. Error may be raised with the argument
tooManySeparators.

NSName.NamefromString: PROCEDURE [
Z: UNCOUNTED ZONE, s: NSString.String, clientOefaults: Name E- NIL]
RETURNS [Name]; ,

3-5

3

3-6

NSName

Arguments:

Results:

Errors:

s is the string to be converted; unspecified components in s are taken
from clientDefaults; the new name is allocated using z.

The newly-created Name is returned.

Error may be raised with the argument tooManySeparators.

NSName.SubdivideName: PROCEDURE [
s: NSString.String, callBack: PROCEDURE [Name], clientDefaults: Name +- NIL];

Arguments:

Results:

Errors:

3.1.5 Errors

s is the string to be converted; unspecified components in s are taken
from clientDefaults; the new name is passed to the client's procedure
callBack, and is not valid after callBack returns.

None.

Error may be raised with the argument tooManySeparators.

Two errors are defined by NSName.NameTooSmall reports the condition that an already­
allocated name had a component that was of insufficient length to accommodate the
characters to be inserted. The required string lengths, in bytes, are given by the
arguments. The operation may be continued by resuming the signal, supplying a new
name with sufficient space.

NSName.NameTooSmall: SIGNAL[
oldName: Name, orgLenNeeded. domainLenNeeded, localLenNeeded: CARDINAL]
RETURNS [newName: Name];

All other exceptional conditions are reported via Error.

NSName.Error: ERROR [type: ErrorType];

The argument type describes the problem in greater detail.

NSName.ErrorType: TYPE = {tooManySeparators};

tooManySeparators More than two separators were found in the string.

Common Facilities Programmer's Manual 3

3.2 Parameter serialization

This section contains operations to serialize various data structures according to the
Courier remote procedure calling protocol.

3.2.1 Serialization of arbitrary structures

The following operations allow arbitrary data stru(!tures to be serialized or deserialized.
EncodeParameters takes an UNCOUNTED ZONE and aCourier.Parameters (containing a pointer
to the data structure and a description of that structure) and returns an allocated array of
words, which contains the Courier representation of the data structure. This array should
be freed using FreeEncodedParameters. DecodeParameters takes zones for short and long
poi~ters, an array of words, and a Courier. Parameters (containing a pointer to an
uninitialized data structure and a description of that structure), and fills in the structure
from the array of words. The size of an encoding may be determined without actually
creating the encoding by calling SizeOfSerializedData. Refer to the Courier section of Pilot
Programmer's Manual [26] for more information on the use of these types and operations.

NSName.EncodeJ)arameters: PROCEDURE [z: UNCOUNTED ZONE, parameters: Courier.Parameters)
RETURNS [LONG DESCRIPTOR FOR ARRAY OF UNSPECIFIED];

Arguments:

Results:

Errors:

parameters refers to and describes the data structure to be encoded;
the encoding will be allocated from z.

A descriptor for an array containing the encoding is returned.

Courier. Error may be raised; refer to Pilot Programmer's Manual [26].

NSName.DecodeParameters: PROCEDURE [
z: UNCOUNTED ZONE, mdsZone: MDSZone,
enCOding: LONG DESCRIPTOR FOR ARRAY OF UNSPECIFIED, parameters: Courier.Parameters];

Arguments:

Results:

Errors:

encoding contains the Courier representation of the data structure;
parameters refers to and describes the data structure to be filled from
the encoding; the MDS and non-MDS nodes in the decoded structure
will be allocated from mdsZone and z, respectively.

None.

Courier. Error may be raised; refer to Pilot Programmer's Manual [26].

FreeEncodedParameters: PROCEDURE [
z: UNCOUNTED ZONE, encoding: LONG DESCRIPTOR FOR ARRAY OF UNSPECIFIED);

Arguments:

Results:

Errors:

encoding contains the structure to be freed, which is assumed to be
allocated from z.

None.

None.

3-7

3

3-8

NSName

NSName.SizeOfSerializedData: PROCEDURE [parameters: Courier.Parameters]
RETURNS [sizelnWords: CARDINAL];

Arguments:

Results:

Errors:

parameters refers to and describes the data structure.

sizelnWords is the. number of words that would be occupied by the
encoded form of the data structure.

Courier. Error may be raised; refer to Pilot Programmer's Manual [26].

4

NSString

NSString: DEFINITIONS = ... ;

NSString provides a set of operations to manipulate sequences of characters encoded
according to the Xerox Character Code Standard [4].

4.1 Strings, substrings, and Mesa strings

A network string (an NSString.String) is a run-encoded sequence of characters represented as
a series of bytes. The current length of a string is given by its length; the maximum
permitted length in bytes is expressed by maxlength, while actual storage for the string
body is referenced by bytes.

NSString.String: TYPE = RECORD [
bytes: LONG POINTER TO PACKED ARRAY OF Environment.Byte.
length: CARDINAL +- 0.
maxlength: CARDINAL +- 0);

Because network strings are defined as record structures, any operation which would
change one of the record fields must return a String as a result. Normal use requires that
the result of an NSString operation be assigned to one of the arguments to capture these
changes. For this reason, a majority of NSString operations return a String as a result.

A substring describes a portion of a string. It is comprised of a base string, an offset from
the beginning of the base string and a designation of the substring length. The string upon
which a substring is defined is given by base; offset defines the beginning of the substring
as an offset in logical characters from the beginning of base. bytes; and length specifies the
number oflogical characters following offset to be included in the substring.

NSString.SubString: TYPE = LONG POINTER TO SubStringDescriptor;

NSString.SubStringDescriptor: TYPE = RECORD [base: String. offset. length: CARDINAL];

The type, MesaString, is defined to distinguish conventional Mesa strings from those
supported by NSString. Although similar in makeup, a String may not be constructed
directly from the representation of a Mesa string. A number of operations within the

4-1

4 NSString

interface support the use of Mesa strings with network strings and conversion between the
two types.

NSString.MesaString: TYPE = LONG STRING;

The constant nullString defines the value of an empty string.

NSString.nuIlString: String = String[NIL,O];

The type, Character, defines a representation for encoded characters. It is used to permit
clients access to the representation of logical characters within network strings (see
below).

NSString.Character: TYPE = MACHINE DEPENDENT RECORD [chset, code: Environment.Byte];

NSString.Characters: TYPE = LONG DESCRIPTOR FOR ARRAY OF Character;

4.2 Basic operations

4-2

Basic operations to create, copy, and free strings are supplied by the procedures
MakeString, FreeString, and CopyString, respectively.

MakeString is used to initialize a String and its string body, allocating storage for the body
from a client-specified zone.

NSString.MakeString: PROC [z: UNCOUNTED ZONE, bytes: CARDINAL] RETURNS [String];

Arguments:

Results:

Errors:

z specifies a client-designated zone from which the string bQdy of the
result is to be allocated; bytes indicates the desired string body length.

The returned String has a maxlength at least as great as bytes, a
length of zero, and a string body of sufficient length to hold maxlength
bytes.

Heap.Error[insufficientSpace] is raised if not enough storage is
provided by the designated heap.

FreeString is used to deallocate storage of a string such as allocated by MakeString.

NSString.FreeString: PROC [z: UNCOUNTED ZONE,S: String];

Arguments:

Results:

Errors:

Z specifies the zone from which the string body of s was allocated; s
designates the string to be freed.

Storage allocated to the string body of 5 is returned to z.

None.

CopyString produces a copy of a specified string, allocating the string body for its result
from a specified zone.

NSString.CopyStri ng: PROC [z: UNCOUNTED ZONE, s: Stri ng] RETURNS [Stri ng];

Common Facilities Programmer's Manual 4

Arguments:

Results:

Errors:

z specifies the zone from which the string body of the copy is to be
allocated; s designates the string to be copied.

A copy ofs is returned.

Heap.Error[insufficientSpace] is raised if not enough storage IS

provided by the designated heap.

LogicalLength returns the number of logical characters in a specified string. Note that
because of encoding, this result is not directly related to the number of bytes in the body of
the argument string.

NSString.LogicaILength: PROC [s: String] RETURNS [CARDINAL];

Arguments:

Results:

Errors:

s specifies the string of interest.

A count of the logical characters in s is returned.

NSString.lnvalidString is raised if s is not a properly encoded network
string.

WordsForString returns the number of words required to represent a given number of
string bytes.

NSString.WordsForString: PROC [bytes: CARDINAL] RETURNS [CARDINAL];

Arguments: bytes specifies the number of string bytes.

Results: A count of words required to represent bytes bytes is returned.

Errors: None.

AppendCharacter, AppendString, and AppendSubString respectively attempt to append a
specified character, string, or substring to a specified string. Each operation returns an
updated string as a result (the string body of the argument is updated).

NSString.AppendCharacter: PROC [to: String, from: Character] RETURNS [String);

NSString.AppendString: PROC [to: String, from: String] RETURNS [String];

NSString.AppendSubString: PROC [to: String, from: SubString] RETURNS [String];

Arguments:

Results:

Errors:

to specifies the string to which a character, string, or substring is to be
appended; from specifies the character, string, or substring to be
appended.

Each operation returns an updated String (with appropriately revised
length) as a result.

NSString.lnvalidString is raised if to is not a properly encoded network
string; NSString.StringBoundsFault is raised if to is not sufficiently long
to hold the appended result.

4-3

4

4-4

NSString

AppendToMesaString attempts to append the characters of a network string to a
conventional Mesa string.

NSString.AppendToMesaString: PROC [to: MesaString. from: String);

Arguments:

Results:

Errors:

to specifies the Mesa string to which the network string from is to be
appended.

to is updated appropriately.

NSString.lnvalidString is raised if from is not a properly encoded
network string; String.StringBoundsFault is raised if to is not
sufficiently long to hold the appended result.

ExpandString produces the sequence of logical characters from the encoded bytes of a
network string.

NSString.ExpandString: PROCEDURE [z: UNCOU1IJTED ZONE, 5: String] RETURNS [Characters];

Arguments:

Results:

Errors:

Z specifies the zone from which the result is to be allocated; 5 is the
string whose characters are desired.

A descriptor for the set of characters comprising s is returned.

NSString.lnvalidString is raised if 5 is not a properly encoded network
string; Heap.Error[insufficientSpace] is raised if z cannot supply the
necessary storage.

FreeCharacters is used to free storage allocated by calling ExpandString.

NSString.FreeCharacters: PROCEDURE [z: UNCOUNTED ZONE, c: Characters);

Arguments: z specifies the zone from which storage for c was allocated.

Results: Storage allocated to c is returned to z.

Errors: None.

TruncateString returns the longest valid string having a length less than or equal to the
lesser of a specified maximum and the length of an argument string.

NSString.TruncateString: PROC [5: String, bytes: CARDINAL] RETURNS [String];

Arguments:

Results:

Errors:

s is the string to be truncated; bytes specifies a limit to the maximum
length of the result in bytes (the result cannot exceed the length of s
either).

A truncated string is returned as a result; note that the result refers to
the same storage as that addressed by s.

NSString.lnvalidString is raised if s is not a properly encoded network
string.

Common Facilities Programmer's Manual 4

4.3 Scanning, comparison, and equivalence

Because network strings are encoded, special means are provided to search for a
designated character within a network string, to compare network strings, and to test
them for equivalence.

Operations which establish the relationship of two network string values with respect to
each other return a result of type Relation. The values of Relation have the obvious
interpretation.

NSString.Relation: TYPE = {less, equal, greater};

ScanForCharacter searches a specified string for a designated character from a given
starting point.

NSString.ScanForCharacter: PROC [c: Character, s: String, start: CARDINAL +- 0]
RETURNS [CARDINAL];

Arguments:

Results:

Errors:

c is the character being sought; 5 is the string being searched; start
specifies the logical character ofs with which the search should begin.

The returned value is the logical character index of the first occurrence
of c after the starting point. Failure to find the character is indicated
by returning LAST[CARDINAL].

NSString.lnvalidString is raised ifs is not a valid string.

CompareStrings, CompareSubStrings, and CompareStringsAndStems are used to
compare network string values. Each'returns a relation as a result indicating the sorted
relationship of their string or substring arguments, with the case of characters optionally
ignored during the comparison.

NSString.CompareStrings: PROC [s1, s2: String, ignoreCase: BOOLEAN +- TRUE]
RETURNS [Relation];

NSString.CompareSubStrings: PROC [s1, 52: SubString, ignoreCase: BOOLEAN +- TRUE]
RETURNS [Relation];

NSString.CompareStringsAndStems: PROC [51, 52: String, ignoreCase: BOOLEAN +-TRUE]
RETURNS [relation: Relation, equalStems: BOOLEAN];

Arguments: 51 and 52 are the strings (or substrings> to be compared; ignoreCase
specifies if the case of characters is to be ignored during the
comparison.

Results:

Errors:

The sorted relationship of s1 and 52 is returned; equalStems is TRUE if
both are equal up to the length of the shorter.

NSString.lnvalidString is raised ifs1 or 52 are not valid strings.

4-5

4

4-6

NSString

CompareStringsTruncated is used to compare network strings when one or both values are
truncated, optionally ignoring the case of individual characters during the comparison.

NSString.CompareStri ngsTruncated: PROC [
51,52: String, trunc1, trunc2: BOOLEAN Eo-FALSE. ignoreCa5e: BOOLEAN Eo- TRUE]
RETURNS [Relation];

Arguments:

Results:

Errors:

51 and 52 are the optionally truncated strings to be compared; trunc1
and trunc2 indicate the respective truncated state of the strings to- be
assumed during the comparison; ignoreCa5e specifies if the case of
characters is to be ignored during the comparison.

relation specifies the sorted relationship of the two strings taking into
account assumptions regarding truncation and case. A truncated
string is compared as if every character after the last provided is a
wildcard character (matches all other characters).

NSString.lnvalidString is raised if 51 or 52 are not valid strings.

A portion of a network string is deleted via the operation DeleteSubString.

NSString.DeleteSubString: PROC [5: SubString1 RETURNS [String];

Arguments:

Results:

Errors:

5 describes the portion of the string to be deleted.

The substring specified by 5 is deleted from its parent string.

NSString.lnvalidString is raised if the string referred to by 5 is not a valid
string.

EqualCharacter is used to compare a designated character to a specific logical character of
a network string.

NSString.EqualCharacter: PROC [c: Character, 5: String, index: CARDINAL]
RETURNS [BOOLEAN];

Arguments:

Results:

Errors:

c is the character to be compared; 5 is the string containing the
character with which c is compared; index identifies the logical
character of 5 to be compared.

TRUE is returned if c is equal to the specified logical character of s, FALSE
otherwise.

None.

The following operations provide convenient, abbreviated interfaces to corresponding
string comparison operations (defined above). Each operation may raise the same errors
and returns comparable results as the string comparison operations.

NSString.EqualString, EqualString5: PROC [51,52: String] RETURNS [BOOLEAN];

NSString.EqualSubString, EqualSubString5: PROC [s1, 52: SubString1 RETURNS [BOOLEAN];

Common Facilities Programmer's Manual

NSString.EquivalentString. EquivalentStrings: PRoc[s1, 52: String] RETURNS [BOOLEAN];

NSString.EquivalentSubString, EquivalentSubStrings: PROC [s1, s2: SubString]
RETURNS [BOOLEAN];

4.4 Conversion

4

A ~et of routines is provided by NSString to convert numbers to network strings, network
strings to numbers, Mesa strings to network strings, and to manipulate the case of
individual characters.

Each of the following routines appends the string representation of a specified numeric
argument to a designated network string. The result of each operation is an updated
network string (referring to storage ofthe argument string).

NSString.Append Oeci mal: PROC [5: Stri ng. n: INTEGER] RETURNS [Stri ng];

NSString.AppendOctal: PROC [5: String. n: UNSPECIFIED] RETURNS [String];

NSString.AppendLongNumber: PROC [s: String, n: LONG UNSPECIFIED, radix: CARDINAL ~ 10]
RETURNS [String];

NSString.Append LongOecimal: PROC [s: Stri ng. n: LONG INTEGER] RETURNS [Stri ng];

. NSString.AppendNumber: PROC [5: String, n: UNSPECIFIED, radix: CARDINAL ~ 10]
RETURNS [String];

Arguments: s is the network string to which a number is to be appended; n is the
numeric quantity to be appended; radix is the desired radix of the
result.

Results: The result is an updated String referring to the storage of the
argument string.

Errors: NSString.lnvalidString is raised if s is not a properly encoded string;
NSString.StringBoundsFault is raised if S is not long enough to hold the
result.

Each of the following operations attempts to interpret a network string value as a specific
numeric type, returning the converted value as a result.

NSString.StringToOecimal: PROC [s: String] RETURNS [INTEGER];

NSString.StringToOctal: PROC [5: String] RETURNS [UNSPECIFIED] ;

NSString.StringToLDngNumber: PROC [5: String. radix: CARDINAL ~ 10]
RETURNS [LONG UNSPECIFIED];

NSString.StringToNumber: PROC [s: String. radix: CARDINAL ~ 10] RETURNS [UNSPECIFIED];

4-7

4

4-8

NSString

Arguments:

Results:

Errors:

s is the ne~work string whose value is to be numerically interpreted;
radix is the radix to be used in the conversion.

The characters of s are interpreted with the given radix and the
numeric value is returned.

NSString.lnvalidNumber is raised ifs cannot be interpreted as a string of
the desired radix; NSString.lnvalidString is raised if s is not a properly
encoded network string.

StringFromMesaString is provided to allow network strings to be generated from
conventional Mesa strings.

NSString.StringFromMesaString: PROC [s: MesaString] RETURNS [String];

Arguments:

Results:

Errors:

s is a conventional Mesa string to be converted to a network string.

The resulting String contains the same bytes as s; data of the Mesa
string is not copied, so the validity of the result depends on the
continued existence of the Mesa string.

None.

UpperCase ~nd LowerCase provide the client a convenient means to obtain the uppercase
and lowercase representation of a character encoding, respectively'.

NSString.UpperCase, LowerCase: PROC [c: Character] RETURNS [Character];

Arguments:

Results:

Errors:

c is the character whose corresponding uppercase or lowercase
representation is desired.

The uppercase or lowercase representation of c is returned.

None.

ValidAsMesaString produces a boolean result indicating the validity of interpreting the
contents of its argument string as a Mesa string.

NSString.ValidAsMesaString: PROC [5: String] RETURNS [BOOLEAN];

Arguments:

Results:

Errors:

s is the string whose validity as a Mesa string is to be tested.

TRUE is returned if 5 can be validly interpreted as a Mesa string (all
characters are valid Mesa characters).

NSString.invalidString is raised if s is not a properly encoded network
string.

Common Facilities Programmer's Manual 4

Well Formed produces a boolean result indicating the validity of a given string us a
network string.

NSString.WeIlFormed: PROC [s: String] RETURNS [BOOLEAN];

Arguments:

Results:

Errors:

s is the string whose validity as a network string is to be tested.

TRUE is returned if 5 is a properly encoded network string, FALSE
otherwise.

None.

4.5 Serialization

4.6 Errors

Certain clients, such as protocol implementors, have the need to serialize and deserialize
network strings. For this reason, the Courier description DescribeString is provided.

NSString.Descri beStri ng: Courier .Descri ption;

When using DescribeString to deserialize a string, the maxlength field may not be set to
the correct value. It is only guaranteed to have a value greater than or equal to the length
of the resulting String. The maxlength field may, of course, be set by the client after
deserialization to match the length field.

NSString operations which interpret network strings as numbers may raise the error
InvalidNumber if the characters of the string cannot validly be interpreted in the desired
format.

NSString.lnvalidNumber: ERROR;

Any NSString procedure which accepts a network string argument may raise the error
InvalidString if the string is not a properly encoded network string.

NSString.lnvalidString: ERROR;

StringBoundsFault is raised during append operations when the destination string body is
too short to hold the appended result. If the client wishes to continue the operation in such
a case, he must provide a new, larger string, whose contents are identical to those of the
old string prior to the call which raised the signal.

NSString.StringBoundsFault: SIGNAL [old: String. increaseBy: CARDINAL]
RETURNS [new: String];

4-9

4 NSString

4-10

XEROX Services 8.0 Programmer's Guide

Authentication
Programmer's Manual

November 1984

PRELIMINARY

Xerox Corporation
Office Systems Division
3450 Hillview A venue
Palo Alto, California 94304

ii

Table of contents

1 Introduction 1-1

1.1 Definition ofterrps . 1-1
1.2 Encryption and security 1-2
1.3 Strong and simple authentication 1-2
1.4 Strong authentication algorithm 1-3
1.5 Simple authentication algorithm 1-4
1.6 Passwords and keys 1-4
1.7 Authentication's clients 1-4

2 Interfaces 2-1

2.1 Credential and verifier declarations 2-1
2.2 Other types and constants 2-2
2.3 Errors. 2-2
2.4 Identities 2-3
2.5 Initiator 2-5
2.6 Recipient 2-6
2.7 Key and password administration 2-8

2.7.1 Access controls. 2-8
2.7.2 Strong keys 2-8
2.7.3 Simple keys 2-9

2.8 Other utilities . 2-10
2.9 AuthSession.mesa . 2-12

3 Standard authentication scenario 3-1

3.1 Identities 3-1
3.2 Initiator 3-1
3.3 Recipient 3-1
3.4 Levels. 3-2
3.5 Sample code 3-2

3.5.1 Initiator 3-2
3.5.2 Recipient 3-4

iii

Table of contents

iv

1

Introduction

This document describes the stub interfaces of the Authentication Service (AS). It is
intended as a reference for the designers and implementors of client programs. It provides
sufficient information to allow programmers to understand ~nd use the facilities available
through the public interface Auth.mesa, as well as the friends' level interface
AuthSession.mesa.

Section 1, Introduction, is an overview of what the Authentication Service is all about.
Section 2, Nuts and bolts, is a description of the authentication stub interfaces. Section 3,
Standard authentication scenario, describes the intended use of th~ interface functions.
More detailed information about the Authentication protocol and the description of the
Authentication Courier program can be found in Authentication Protocol [2]. For
information on the Authentication functional specification, see the Clearinghouse
Functional Specification [6].

1.1 Definition of terms

Authentication Service

authentication server

authentication stub

authentication client

or simply AS. The distributed service supplied by a set of
cooperating authentication servers.

a server machine running Authentication Service software;
one instance of the Authentication Service, or, the software
running on such a machine.

a piece of software running in the client's machine which acts
as an agent for accessing the Authentication Service. The stub
may interact with one or more authentication servers to
perform a given function for the client. The stub supplies all
the Mesa interfaces described in this document.

a piece of software which calls the functions provided by the
authentication stub. Authentication clients can be, and often
are, stubs or servers of other services.

I-I

1 Introduction

1.2 Encryption and security

The function of Authentication is to certify that the two parties of a conversation are who
they claim to be. In order to do this we must securely distribute information about the
participants in the conversation. Because the communication paths of a distributed
system are easy to tap, any information which is to be securely distributed must be
encrypted. However, the cost of software encryption is prohibitively high. [Not including
the key preprocessing overhead, our optimized implementation of the Data Encryption
Standard (DES) takes eleven milliseconds to encrypt one eight byte block.] Until
hardware support of encryption is available, it is not feasible to encrypt all data flowing
over the Internet. A major constraint on the design of the authentication scheme is that it
not rely on the encryption of large amounts of data.

1.3 Strong and simple authentication

1-2

There are several classes of devices which may be attached to the Xerox office information
system. First, there are the 8000 series of workstations and network servers. The software
implemented on these machines has available. to it a powerful processor, a large amount of
memory, and a high speed rigid disk. The second class of devices includes smaller
workstations, such as the Xerox 860, which have a micro-processor, less memory, and
floppy disks. Fi-nally, there are devices such as simple terminals, with no processing power
available at all. The authentication scheme must allow all of these devices to participate
in activities on the Ethernet. It is not permissible, for example, to require that a "smart"
typewriter implement a complex protocol or encryption algorithm in order to talk to the
Interactive Terminal Service. On the other hand, we must notallow the existence of simple
machines to thwart our attempt to provide a reasonable level of security for the users of
more powerful machines. This problem is addressed by defining two levels of
authentication, referred to as strong and simple Authentication.

Each user has two different keys; a strong and a simple key. The strong key is used on a
machine which implements the strong authentication scheme. The simple key is used
when logging in through some device which is incapable of providing strong
authentication. A service provides some subset of its full set of privileges to a user logged
in with a simple key. For example, she might be able to read and send mail but not delete
it from the mail server. [The precise subset of privileges provided to a user with simple
authentication is determined by the implementors of each service.] Essentially, a service
will trust only so far a user logged in with a simple key, because simple keys can be stolen
more easily than strong ones.

A machine which implements strong authentication will never reveal that key by
transmitting it over the network. A machine which implements simple authentication
does not make the same guarantee. Therefore a user who inadvertently types her strong
password instead of her simple password may be revealing the strong key to an
eavesdropper (e.g., when a user at a dumb terminal dials into the network through a
Communications Interface Unit). It is the user's responsibility to guard the strong
password and avoid typing it when the simple one is required. In a proper implementation,
a service will not accept the strong key when the simple one is needed.

Authentication Programmer's Manual 1

1.4 Strong authentication algorithm

All users are registered with the Authentication Service, along with their stl'Ong and
simple keys. A given user's keys are known only to that user and the Authentication
Service.

There are three parties involved in the authentication protocol: the initiator, who initiates
the proceedings; the recipient, the party with whom the initiator wishes to communicate;
and the Authentication Service (AS). Typically, the initiator is a stub for some service, and
the recipient is a server for that service.

When the initiator wishes to communicate with some recipient, she obtains an object from
the AS which she uses to identify herself to that recipient, much as a traveler uses her
passport to identify herself to authorities at the border of each country she wishes to enter.
This object is called the client's credentials. (Note: Unlike a traveler, whose one passport
is good in many different countries, a client must have a set of credentials for each
recipient with whom she wishes to interact.) The client presents her credentials with
every call to the recipient. The credentials contain data encrypted in such a way that it is
comprehensible to only that particular recipient.

Contained within the credentials is the identity of the initiator and a special conversation
key. The conversation key is generated by the AS and returned to the initiator in a secure
fashion at the time the credentials are obtained. If encryption hardware were available,
the conversation key would be used to encrypt all information flowing between the
initiator and the recipient. Since such hardware is not ayailable at this time, every
message which flows between the initiator and the recipient includes a unique sequence
number (actually, the system time) encrypted with the conversation key. This encrypted
value is called the verifier. (The overhead required to encrypt the small, fixed length
sequence number is much lower than that required to encrypt the entire message.) In
addition, whatever encryption of information is cost effective will be done with this key.
Notice that anyone can steal a set of credentials but only the proper service can decrypt
them to obtain the conversation key. The conversation key is thus known only to the
initiator and the recipient.

Without the conversation key, it is impossible to generate a valid verifier. Since a verifier
may not be reused, the initiator and the recipient always know that a message containing
a valid verifier came from the other. Also notice that the recipient can decrypt the
credentials and the verifier without recourse to the AS. The recipient's portion of the
strong Authentication protocol is entirely local to the recipient.

Credentials expire. This prevents an intruder who somehow obtains a set of credentials
and the conversation key from using those credentials indefinitely. The lifetime of a set of
credentials is determined by the Authentication Service; typically, that time is between a
few hours and a few days. A set of credentials may be used in any number of calls to the
recipient until it expires. A verifier may be used in exactly one call to the recipient; a fresh
verifier must be computed for each message to be sent. A verifier will expire shortly after
it has been created.

1-3

1 Introduction

1.5 Simple authentication algorithm

For simple Authentication, credentials and verifiers are passed in the same manner that
they are for strong Authentication, with two major differences: nothing is encrypted and
the credentials and verifier are created without the aid of the Authentication Service. For
simple Authentication, the credentials are the name of the initiator, and the verifier is her
simple key. (Note that the credentials/verifier pair is constant both for different messages
to a single recipient and for different recipients.) To validate the credentials and verifier,
the recipient contacts the AS, which checks whether the verifier (simple key) matches the
credentials (initiator's name).

1.6 Passwords and keys

As far as the Authentication protocols are concerned, there is no such thing as a password.
National Bureau of Standards Data Encryption Standard (DES) encryption keys are the
only things which are used by the Authentication machinery. This key is a bit
cumbersome for human beings to remember and type, however. Therefore, we supply a
function which converts a character string into a DES key. This allows users to deal with
mnemonic passwords. This function is defined in Authentication Protocol [2].

Passwords should be chosen carefully. Unfortunately, the passwords that 'are easiest to
remember are often easiest to guess or to crack. A password needs to be long enough to foil
an exhaustive search for it. A password with eleven or twelve characters is probably long
enough. Remember that an intelligent password search will search a space of likely
passwords. Two such spaces, for example, are all combinations of one to five letters, or all
words in a dictionary. The password should also be difficult to guess. Your name, your
boyfriend's name, and your street address all make very bad passwords.

1.7 Authentication's clients

1-4

The Authentication Service provides a standardized protocol permitting secure
communication. Taking advantage of this protocol is the responsibility of the actual
parties of a conversation. The Authentication Service provides credentials and verifiers,
and procedures for creating and checking them. The enforcement of the Authentication
protocol is done by the actual communicators. It is they who must acquire credentials and
verifiers, send them with every message, and check them on every receipt.

2

Interfaces

This chapter describes the Authentication stub interfaces, Auth.mesa and
AuthSession.mesa. Most of this section describes Auth.mesa; the interface to
Au~hSession.mesa is described at the end.

Although the internal algorithms for strong and simple authentication differ in several
respects, the authentication stub supports both styles with the same interface.

Auth: Definitions = ... ;

2.1 Credential and verifier declarations

Credentials: TYPE = MACHINE DEPENDENT RECORD [

flavor: PRIVATE Flavor,
value: LONG DESCRIPTOR FOR ARRAY OF UNSPECIFIED];

For historical reasons the flavor field is private. The operation GetFlavor may be used to
extract this field.

Flavor: TYPE • MACHINE DEPENDENT{

simple CO), -- 'Trust me!" authentication.
strong (1), -- Good authentication.
unknown (LAST[CARDINAL)};

Verifier: TYPE = LONG DESCRIPTOR FOR ARRAY OF UNSPECIFIED;

nuliCredentials: Credentials = [simple, NIL];

A nuliCredentials value represents the absence of credentials. It is not the same as a set of
simple credentials for the null initiator name.

nuliVerifier: Verifier = NIL;

A nuliVerifier value represents the absence of a verifier. It is not the result of encoding a
nullHashedPassword.

2-1

2 Interfaces

. 2.2 Other types and constants

2.3 Errors

2-2

HashedPas$word: TYPE .. CARDINAL;

A HashedPassword is the key derived from a simple password.

nuliHashedPassword: HashedPassword .. 0;

Key: TYPE .. PACKED ARRAY [0 .. 3] OF UNSPECIFIED;

A Key is the key derived from a strong password. This is a DES encryption key. These keys
are four words long, and contain 56 data bits and eight parity bits.

null Key: Key .. ALL[O];

A nuliKey value represents the absence of a key. A nuliKey has incorrect parity, and so is
not a legal key.

nullHostNumber: System.HostNumber .. System.nuIiHostNumber;

AuthenticationError: ERROR [reason: AuthenticationProblem);

An AuthenticationError indicates a problem with the credentials or verifier. These ar~
raised by Authenticate and its variants.

AuthenticationProblem: TYPE .. MACHINE DEPENDENT {
credentialslnvalid(O).
verifierlnvalid(1).
verifierExpired(2).
verifierReused(3).
credentialsExpired(4).
inappropriateCredentials(5).
(LAST[CARDINAL))};

-- The verifier expired in transit.
-- An intruder could be re-using this verifier.
"- The credentials have expired.
-- You passed strong and it wanted simple or vice versa.

For simple credentials: credentialslnvalid indicates that the initiator's name is not
registered in the Clearinghouse or that the credentials are improperly formed.
verifierlnvalid indicates that the simple key stored with the AS is not the same as that in
the verifier. inappropriateCredentials indicates that simple credentials are not allowed in
this context. The other problems do not apply to simple credentials.

For strong credentials: credentialslnvalid indicates that the credentials could not be
successfully decrypted (which could indicate that the recipient has incorrectly registered
her key with the AS). verifierlnvalid indicates that the verifier is complete trash or
hopelessly out of date. (Currently, a verifier is hopelessly out of date if its date is two or
more days in the past or ten or more minutes in the future.) verifierExpired indicates that
the verifier is older than the acceptable clock discrepancy. verifierReused could indicate
that an intruder is attempting to reuse a verifier but more likely indicates that the
initiator is using a given verifier more than once. (If it occurs, look for places in your
lowest level communications code where an operation is retried without computing a fresh
verifier.) credentialsExpired indicates that the credentials are too old and fresh ones

Authentication Programmer's Manual 2

should be obtained from the AS. inappropriateCredentials indicates that strong
credentials are not allowed in this context. Note that AuthenticationError is raised in the
recipient, not the initiator. The initiator must be notified by the recipient.

CaliError: ERROR [reason: Call Problem, whichArg: WhichArg];

CaliProblem: TYPE = MACHINE DEPENDENT {

tooBusy(O).
cannotReachAS(1),
keysUnavailable(2),
strongKeyDoesNotExist(3),
simpleKeyDoesNotExist(4),
badKey(S),
-- The following problems may occur during CreateStrongKey
". and CreateSimpleKey operations:
accessRightslnsufficient(6),
strongKeyAI readyRegistered(7),
simpleKeyAI readyRegistered(8).
domainForNewKeyUnavailable(9),
domainForNewKeyU nknown(10).
badNameForNewKey(11).
databaseFull(12),
-- The following problem is a catch-all:
other(13).
(I.AST[CARDINAL])} ;

WhichArg: TYPE = MACHINE DEPENDENT {

initiator(1).
recipient(2).
(LAST[CARDINAL])};

A Call Error indicates a problem with a call to the Authentication Service. whichArg
indicates which argument caused the error in cases where there might be some ambiguity.
For example, if reason is keysUnavailable and whichArg is recipient. this indicates that
the recipient's keys (as opposed to the initiator's keys) were not available. The AS stores
its keys in the Clearinghouse, so many of these errors reflect problems with the
Clearinghouse.

OrphanConversation: ERROR;

Raised only by Refresh. See §2.5 for the circumstances under which this error is raised.

2.4 Identities

An IdentityHandle (or "identity" for short> contains the client's name, password, strong
key, and simple key. Note: A server generally has neither a password nor a simple key.
An identity for a server will thus have null values for these fields. An identity is used
anywhere the client's name and/or password are required, such as when she initiates a
conversation or examines a set of credentials received from someone else. An
IdentityHandle also contains a list of all the active conversations created using this

2-3

2

2-4

Interfaces

identity and a cache of inactive conversations which may be recycled. Identities are
monitored records and thus may be shared by multiple processes.

IdentityHandle: TYPE = LONG POINTER TO IdentityObject;
IdentityObjed: TYPE;

Makeldentity: PROCEDURE [
myName: NSName.Name.
password: NSString.Stri ng.
Z: UNCOUNTED ZONE,
style: Flavor +-strong,
dontCheck: BOOLEAN +- FALSE]

RETURNS [identity: IdentityHandle);

MakeStrongldentityUsingKey: PROCEDURE [
myName: NSName.Name,
myKey: Key,
Z: UNCOUNTED ZONE,
dontCheck: BOOLEAN +-FALSE]

RETURNS [identity: IdentityHandle);

Makeldentity creat'es an IdentityObject, and returns an IdentityHandle for it. All
conversations initiated using this identity will use the flavor of credentials indicated by
style. The password provided here should be the one appropriate for the given style. If
dontCheck is TRUE then myName and password are not checked for validity at this time.
This is useful in contexts where it is necessary to create an IdentityHandle even if the
Authentication Service is unavailable. For example, services and workstations should not
fail to boot due to the lack of an authentication server. If dontCheck is FALSE, the AS is
contacted during the evaluation of this procedure cali" and CallError may be raised. Two of
the most common Call Errors are strongKeyDoesNotExist, which indicates that the client's
strong key is not registered in the Clearinghouse, and badKey, which indicates that the
key registered in the Clearinghouse is not the same as the one derived from the password
passed to Makeldentity (e.g., the user typed his password wrong), Clients should create
the strongest identity appropriate for the application. If the identity is to be passed to one
of the credentials checking operations (e.g., Authenticate, ExtractCredentialsDetails, etc.)
then its style must be strong. The identity should be freed by Freeldentity.

MakeStrongldentityUsingKey is similar to Makeldentity, but it takes a key instead of a
password. It is needed so that servers, which have keys but no passwords, may make
identities for themselves. This operation may only be used to make strong identities.

Freeldentity: PROCEDURE [
identityPtr: LONG POINTER TO IdentityHandle,
Z: UNCOUNTED ZONE];

Frees the storage associated with an IdentityHandle. All conversations with identityPtr t
as their owning identity will become orphan conversations. Freeldentity is a noop if
identityPtr t is NIL. identityPtr t is smashed to NIL.

Authentication Programmer's Manual 2

2.5 Initiator

A ConversationHandle (or "conversation" for short) contains information relevant to a
conversation with a specific recipient: the recipient's name, the conversation key, the
credentials, and the last verifier generated in this conversation. Since credentials can
expire, it is possible to cause new credentials to be injected into an established
conversation using Refresh.

Verifiers must arrive at their destination in the exact order that they were produced. (This
is because the verifier replay prevention machinery uses the fact that verifiers have an
ordering sequence; the recipient assumes that all verifiers prior to the current one have
been previously exposed to the network.) Because the scheduling of Mesa processes is not
predictable, it is imperative that multiple processes do not share a conversation.
Otherwise, verifiers could arrive out of order and be rejected.

ConversationHandle: TYPE = LONG POINTER TO ConversationObject;
ConversationObject: TYPE;

Initiate: PROCEDURE [
identity: IdentityHandle,
recipientsName: NSName.Name.
recipientsHostNumber: System.HostNumber ~ nuliHostNumber,
z: UNCOUNTED ZONE]

RETURNS [conversation: ConversationHandle);

This operation creates a ConversationHandle. It the identity style is strong, then a set of
credentials may need to be fetched from the AS. (The cache of conversations associated
with the identity often makes this unnecessary.) If the identity style is strong and the
client wishes to supply the host number of the recipient, he may do so at this time, and not
have to supply the host address later when he makes calls to CheckOutNextVerifier. This
operation may raise Call Error. The conversation should be freed by Terminate. identity is
the owning identity of the conversation created.

Terminate: PROCEDURE [
conversationptr: LONG POINTER TO Conversation Handle,
z: UNCOUNTED ZONE);

Terminate frees storage associated with this authentication conversation. There should be
no checked out credentials or verifiers when Terminate is called, although there is no way
for the current implementation to enforce that. Terminate is a noop if conversationptr t is
NIl. conversationptr i is smashed to NIL.

Refresh: PROCEDURE [conversation: ConversationHandle);

This causes new credentials to be retrieved from the Authentication Service and stored in
the conversation Handle. If the conversation is an orphan, then OrphanConversation will
be raised. CaliError may also be raised. Refresh will fail if the AS is unavailable, or the
password for the conversation's owning identity has been changed. Refresh can be done
within a stub, transparently to its clients.

2-5

2 Interfaces

CheckOutCredsAndNextVerifier: PROCEDURE [
conversation: ConversationHandle, .
recipientsHostNumber: System.HostNumber ~ nuliHostNumber]

RETURNS [creds: Credentials, verifier: Verifier];

CheckOutCredentials: PROCEDURE [
conversation: Conversation Handle]

RETURNS [creds: Credentials];

CheckOutNextVerifier: PROCEDURE [
conversation: ConversationHandle,
recipientsHostNumber: System.HostNumber ~ nuliHostNumber]

RETURNS [verifier: Verifier];

CheckOutCredsAndNextVerifier returns the conversation credentials and a fresh verifier.
CheckOutCredentials just returns the conversation credentials. CheckOutNextVerifier
returns only a fresh verifier. The credentials for a particular conversation are invariant.

Warning: To avoid excess storage allocation, copying and freeing,
CheckOutCredsAndNextVerifier, CheckOutCredentials and CheckOutNextVerifier return
pointers to data structures owned by the conversation; these pointers will become invalid
when the conversation is terminated. The credentials and verifier returned by these
functions should not be freed.

ReplyVerifierChecks: PROCEDURE [
conversation: ConversationHandle, verifierToCheck: Verifier]

RETURNS [verifierOK: BOOLEAN);

This operation is invoked on the initiator's side of a conversation. It confirms that
verifierToCheck is the proper response to the last verifier created within this conversation.
This operation always returns TRUE if conversation is not a strong conversation.

2.6 Recipient

2-6

Authenticate: PROCEDURE [
recipient: IdentityHandle,
credentialsToCheck: Credentials,
verifierToCheck: Verifier.
z: UNCOUNTED ZONE ~NIL]

RETURNS [initiator: NSName.Name);

AuthenticateWithExpiredCredentials: PROCEDURE [
recipient: IdentityHandle.
credentialsToCheck: Credentials.
verifierToCheck: Verifier,
z: UNCOUNTED ZONE ~ NIL]

RETURNS [initiator: NSName.Name);

AuthenticateAndReply: PROCEDURE [
recipient: IdentityHandle.
credentialsToCheck: Credentials.
verifierToCheck: Verifier.

A u then tication Programmer's Man ual 2

Z: UNCOUNTED ZONE]
RETURNS [initiator: NSName.Name, replyVerifier: Verifier];

Authenticating strong and simple credentials are slightly different operations. For strong
authentication, the recipient must decrypt the credentials using her strong key. This
reveals the initiator's name and the conversation key. The conversation key is then used
to decrypt the verifier. Strong Authenticate is done entirely locally. For simple
authentication, the recipient asks the AS whether the simple key in the verifier belongs to
the initiator specified by the credentials. The recipient must contact the AS to do simple
authentication. Consequently, CaliError can be raised by simple Authenticate.

Authenticate checks the validity of the given credentials and verifier.
AuthenticationError is raised if there is anything amiss; if Authenticate returns normally
then the credentials were acceptable. z is an optional heap. If z is supplied and the
credentials were acceptable, the initiator's name is extracted from the credentials and
returned, using space allocated from z. If z is defaulted to NIL, then it is assumed that the
caller is not interested in the initiator's name and no storage is allocated (and the initiator
returned is NIL). recipient is the identity of the receiver of the credentials (i.e., the service
receiving the credentials). recipient must be a strong-style identity.

AuthenticateWithExpiredCredentials is similar to Authenticate but will tolerate
credentials which have expired. This is specifically for use in session-based protocols (e.g.,
Filing) in which the session may continue to live after the expiration date of the
credentials and it is deemed an acceptable security risk to keep the session alive in this
case. The AuthSession.AuthenticateWithExpiredCredentials operation is preferred over this
operation for performance reasons; the AuthSession version does not bother to recheck
simple credentials, since they were checked at the beginning of the session and rechecking
them is expensive and unnecessary.

AuthenticateAndReply is similar to Authenticate but a reply verifier is computed. Note
that z is not optional; it is used to allocate storage for replyVerifier, which the client must
return using FreeVerifier. AuthSession.NextReplyVerifier operation is preferred in session­
based protocols for the performance reasons noted above.

GetFlavor: PROCEDURE [creds: Credentials]
RETURNS [flavor: Flavor];

This operation returns the flavor of credentials. Access control decisions should be based
partially on the credential's flavor.

FreeVerifier: PROCEDURE [
verifierPtr: LONG POINTER TO Verifier, z: UNCOUNTED ZONE];

This operation frees the verifier pointed to by verifierPtr and smashes nullVerifier into
verifierPtr t. It will tolerate nuliVerifiers. Use FreeVerifier to free verifiers returned by
AuthenticateAndReply.

Warning: Do not use FreeVerifier to free
CheckOutCredsAndNextVerifier, or CheckOutNextVerifier.

verifiers returned by

2-7

2 Interfaces

2.7 Key and password administration

2-8

2.7.1 Access controls

The AS stores keys in the Clearinghouse's database. Therefore, these operations are
subject to the Clearinghouse's access control restrictions, reflect Clearinghouse problems,
etc. A strong identity must be passed to all of these routines, as they modify the
Clearinghouse database. Both strong and simple keys can only be created or deleted by an
administrator for the domain of name. CreateStrongKey, DeleteStrongKey,
CreateSimpleKey and DeleteSimpleKey are the procedures subject to this restriction.
ChangeMyPasswords, ChangeStrongKey and ChangeSimpleKey in contrast, modify the
keys of the identity identity. Note also that Refresh will fail after any of these three
operations.

2.7.2 Strong keys

ChangeMyPasswords: PROCEDURE [
identity: IdentityHandle.
newPassword: NSString.String,
z: UNCOUNTED ZONE.
changeStrong. changeSimple: BOOLEAN Eo- TRUE];

This operation changes the client's strong and/or simple keys in the AS database. It may
raise Call Error. The identity is altered to reflect the new value of the .keys. To be really
secure, passwords should be at least twelve characters long. The zone z is not used for
anything and may be NIL.

CreateStrongKey: PROCEDURE[
identity: IdentityHandle.
name: NSName.Name.
newStrongKey: Key];

This operation adds the new strong key newStrongKey to the AS database. It may raise
CallError. name must already exist in the Clearinghouse.

ChangeStrongKey: PROCEDURE [
identi~: IdentityHandle.
newStrongKey: Key];

This operation replaces the strong key for identity in the AS database. with
newStrongKey. It may raise Call Error. The identity is changed to reflect the new value of
the key. AuthenticationError[inappropriateCredentials] is raised if identity is not a strong
identity. Conversations and identities created after this operation will need to use the new
key. Existing conversations are not affected, except that Refresh will fail.

DeleteStrongKey: PROCEDURE [
identity: IdentityHandle.
name: NSName.Name);

Authentication Programmer's Manual 2

This operation deletes the strong key for name. It may raise Call Error. After this
operation, name has no strong key, and so can't create new conversations or identities.
Existing conversations will continue to work, except that Refresh will fail.

PasswordStringToKey: PROCEDURE [password: NSString.String]
RETURNS [key: Key];

This operation computes a DES key from a password string according to the algorithm
described in the Authentication Protocol [2]. Case is ignored for characters in character set
zero.

GetRandomKey: PROCEDURE RETURNS [key: Key];

This operation makes a random strong key. It is useful for making up keys for servers,
which have keys but no passwords.

2.7.3 Simple keys

CreateSimpleKey: PROCEDURE [
identity: IdentityHandle.
name: NSName.Name.
newSimpleKey: HashedPassword];

This operation adds the new simple key newSimpleKey to the AS database. It may raise
Call Error. name must already exist in the Clearinghouse.

ChangeSimpleKey: PROCEDURE [
identity: IdentityHandle.
newSimpleKey: HashedPassword];

This operation replaces the simple key of identity in the the AS database with
newSimpleKey. It may raise CaliError. name must already exist in the Clearinghouse. The
identity is changed to reflect the new value of the key. Authenticate will fail for
conversations created before this operation.

DeleteSimpleKey: PROCEDURE [
identity: IdentityHandle. name: NSName.Name);

This operation deletes the simple key for name. It may raise Call Error. Authenticate will
fail for conversations created before this operation.

HashSimplePassword: PROCEDURE [password: NSString.String]
RETURNS [hashed Password : HashedPassword];

This operation turns a password string into a hashedPassword according to the password­
hashing algorithm described in the Authentication Protocol [2]. Case is ignored for
characters in character set zero.

2-9

!! Interfaces

2.8 Other utilities

2-10

DescribeCredentials: Courier.Description;
DescribeVerifier: Courier.Description;

These operations are supplied for the implementors of protocols which use authentication.
Note that Key and HashedPassword do not require description routines.

ConversationProc: TYPE'. PROCEDURE [
thisConversation: ConversationHandle]

RETURNS [stop: BOOLEAN +- FALSE];

A ConversationProc must be supplied to the EnumerateConversations operation.

EnumerateConversations: PROCEDURE [
identity: IdentityHandle.
eachConv: ConversationProc];

This operation is used to enumerate all the active conversations attached to an
IdentityHandle. eachConv is called once for each conversation belonging to the identity. It
is permissible to Terminate conversations from within the callback proc.

CheckSimpleCredentials: PROCEDURE [
creds: Credentials,
verifier: Verifier] ,

RETURNS [ok: BOOLEAN];

This operation calls the AS to check the given simple credentials. It may raise CallError.
CheckSimpleCredentials is the guts of simple Authenticate.

FetchStrongCredentials: PROCEDURE [
initiator. recipient: NSName.Name.
initiatorsStrongKey: Key.
Z: UNCOUNTED ZONE]

RETURNS [creds: Credentials. conversation Key: Key];

This operation calls the Authentication Service directly to get a bare set of credentials.
(Note: It is not clear what use this will be without some means of creating a conversation
containing it.) The client is responsible for freeing creds. FetchStrongCredentials is the
guts of strong Initiate.

FreeCredentials: PROCEDURE [
credsPtr: LONG POINTER TO Credentials.
z: UNCOUNTED ZONE];

This operation frees the credentials pointed to by credsPtr and smashes nullCredentials
into credsPtr t . It will tolerate nullCredentials.

Warning: Do not use FreeCredentials to free credentials returned by
CheckOutCredsAndNextVerifier, or CheckOutCredentials.

GetConversationDetails: PROCEDURE [conversation: Conversation Handle]
RETURNS [

Authentication Programmer's Manual

recipient: NSName.Name.
recipientsHostNumber: System.HostNumber.
creds: Credentials.
conversation Key: Key,
owner: IdentityHandle];

2

This operation extracts information buried in the conversation. If the conversation style is
simple, conversation Key will be the null Key. Because the return values recipient and
owner point to internal data structures which are owned by the conversation, this
operation should be used with care. In particular, the recipient should be copied before it is
passed to any other operation in this interface.

GetldentityDetails: PROCEDURE [identity: IdentityHandlej
RETURNS [

name: NSName.Name.
password: NSString.String,
style: Flavor];

This operation extracts information buried in the identity. Because the return values
name and password point to internal data structures which are owned by the identity,
this operation should be used with care.

ExtractHashedPassword: PROCEDURE [simpleVerifier: Verifier]
RETURNS [hashedPassword: HashedPassword];

This operation extracts the initiator's hashed password from the verifier. It should only be
passed simple verifiers. AuthenticationError[verifierlnvalid] is raised ifsimpleVerifier is a
strong verifier.

ExtractCredentialsDetails: PROCEDURE [
recipientsKey: Key.
credentialsToCheck: Credentials.
z: UNCOUNTED ZONE NIL]

RETURNS [
flavor: Flavor.
conversationKey: Key.
-- conversationKey is uninteresting if
-- credentialsToCheck aren ~ strong.
expirationTime: Svstem.GreenwichMeanTime.
"- expiration Time is uninteresting if
-- credentialsToCheck aren ~ strong.
initiator: NSName.Name.
badCredentials: BOOLEAN];

This operation extracts the salient data from a set of strong or simple credentials. If z is
supplied then the initiator's name is extracted from the credentials and returned, using
storage allocated from z. It is up to the client to return this storage. If z is not supplied, no
storage is allocated ~nd the initiator returned is NIL. If nuliCredentials are passed to
ExtractCredentialsDetails then the initiator returned is NIL and no storage is allocated. If
badCredentials is TRUE then none of the other returned values are meaningful and no
storage is allocated.

2-11

2 Interfaces

CopyCredentials: PROCEDURE [
credentials: Credentials,
Z: UNCOUNTED ZONE]

RETURNS [newCopy: Credentials];

This operation makes a copy of the given credentials allocating space from z. The client
should return the storage when she's done using the FreeCredentials operation.

Copyldentity: PROCEDURE [
identity:,ldentityHandle,
z: UNCOUNTED ZONE]

RETURNS [newCopy: IdentityHandle);

..

This operation makes a copy of the given identity allocating space from z. The client
should return the storage using the Freeldentityoperation.

EqualCredentials: PROCEDURE [creds1, creds2: Credentials]
RETURNS [equal: BOOLEAN];

This operation efficiently compares credentials (of all flavors) for equality.

2.9 AuthSession.mesa

2-12

AuthSession contains authentication operations for session-based services. A session­
based protocol IS one in which information about the transaction in progress is preserved
from one call on the service to another. There is an initial call of the session, and a number
of subsequent calls. This makes possible a number of efficiencies. In particular, when
doing simple authentication with such a session, the simple credentials can be checked
only at the initial call, and not on subsequent calls. This is valuable, as authenticating
simple credentials requires contacting the Authentication Service, and so is expensive.

InitialAuthenticate: PROCEDURE [
recipient: Auth.ldentityHandle,
credentialsToCheck: Auth.Credentials
verifierToCheck: Auth.Verifier
z: UNCOUNTED ZONE]

RETURNS [initiator: NSName.Name. replyVerifier: Auth. Verifier];

This operation authenticates the credentials and computes a reply verifier,
InitialAuthenticate is meant to be used at the start of a session. It checks both strong and
simple credentials. The client is responsible for freeing initiator and replyVerifier. Z must
be a valid heap.

AuthenticateWithExpiredCredentials: PROCEDURE [
recipient: Auth.ldentityHandle,
credentialsToCheck: Auth.Credentials,
verifierToCheck: Auth.Verifier,
z: UNCOUNTED ZONE +- NIL]

RETURNS [replyVerifier: Auth.Verifier);

Authentication Programmer's Manual 2

This operation is identical to Auth.AuthenticateWlthExpiredCredentials except that simple
credentials are not checked-they were presumably checked at the beginning of the
session with InitialAuthenticate.

NextReplyVerifier: PROCEDURE [

recipient: Auth.ldentityHandle,
credentialsToCheck: Auth.Credentials,
verifierToCheck: Auth.Verifier,
Z: UNCOUNTED ZONE +- Nil]

RETURNS [replyVerifier: Auth.Verifier];

This operation is identical to Auth.AuthenticateAndReply except that simple credentials
are not checked.

2-13

2 Interfaces

2-14

3

•

Standard authentication scenario

3.1 Identities

Both the initiator and the recipient have an IdentityHandle which contains their name,
password, and other information. Before either initiating a conversation or checking a set
of credentials received from someone else, the client must assert her identity. This is
usually done with Makeldentity in the initiator which is a stub, and
MakeStrongldentityUsingKey in the recipient which is a server. Identities are monitored
records, and so can be shared among multiple processes. Freeldentity is used to free the
identity.

3.2 Initiator

The initiator must create a conversation with Initiate for each recipient with whom she
wishes to interact. The conversation contains the credentials and such things as the last
verifier created for this conversation (to avoid handing out duplicate verifiers) and the
conversation key. In every message the initiator sends the recipient, she includes a set of
credentials and a verifier. These are obtained from CheckOutCredsAndNextVerifier. The
authenticity of the recipient's response is checked with ReplyVerifierChecks. Terminate is
used to free the conversation obtained through Initiate. It is possible for a set of credentials
to expire in the middle of a conversation. In this case, the initiator may invoke the Refresh
operation to cause a new set of credentials to be obtained from the Authentication service
(avoiding the need to create an entirely new conversation). Conversations may not be
shared by more than one process.

3.3 Recipient

Authentication is the process of evaluating a given set of credentials and verifier to
determine:

1) Are the credentials valid?
2) Is the verifier any good?
3) Have the credentials expired? (strong only)
4) Has the verifier been used before? (strong only), and
5) [f we accept these credentials as genuine, to whom do they belong?

3·1

3 Standard authentication scenario

In order to evaluate a set of credentials, one must have the identity of the recipient
specified by the initiator when she created the conversation. In particular, evaluation of a
set of strong credentials requires knowledge of the recipient's strong key. For this reason,
the various authentication operations aU require the caller to pass the identity of the
recipient (e.g. the identity of the service evaluating the credentials.)

The recipient uses Authenticate or one of its variants to authenticate the credentials and
verifier contained in messages from the initiator. For a session-based protocol, the
recipient uses AuthSession.lnitialAuthenticate for the initial call, and

- ..
AuthSession.NextReplyVerifier on subsequent calls., The level of privilege a service grants
should be based on the flavor of the credentials, as given by GetFlavor.

3.4 Levels

Typically, CheckOutCredsandNextVerifier, ReplyVerifierChecks, and Refresh are used by
the initiating stub, transparently to the clients of this stub. Authenticate also is done at a
low level of the recipient. Makeldentity and Freeldentity can be done at a very high level,
as the identity can be shared.

3.5 Sample code

3-2

The Clearinghouse Service is a good example of a use of the authentication protocol.
Information on the clearinghouse can be found in Clearinghouse Protocol [8J, and the
Clearinghouse Programmer's Manual [7].

This example is not of a session-based use of authentication. A session-based use is very
similar. The initiator would make a distinction between the initial call to the recipient
and subsequent ones. The recipient would use InitialAuthenticate to authenticate the
credentials and verifier in the original call, and NextReplyVerifier to authenticate
subsequent calls.

3.5.1 Initiator

BEGIN -- scope for catching Auth.CallError
-- Makeldentity, Initiate and Refresh can raise Auth.CallError

ENABLE Auth.CaliError = > {
ReportAuthCall Error[reason, whichArg];
Auth. Freeldentity[@me, zj];
Auth.Terminate[@conversation, z];
EXIT };

Z: UNCOUNTEDZONEEo-Eo- ... ;
-- create the identity handle

userName: NSName.Name Eo- ... ;
userPassword: NSString.String Eo- ... ;
me: Auth.ldentityHandle Eo- Auth.Makeldentity[userName, userPassword, z, strong];

-- create the conversation
recipient: NSName.Name Eo- ... ;
recipientsHostNumber: System.HostNumber Eo- ... ;
conversation:Auth.ConversationHandle

Eo- Au~h.lnitiate[me, recipient, recipientsHostNumber, z];
-- the credentials. verifier and reply verifier

Authentication Programmer's Manual

ereds: Auth.Credentials;
verifier, replyVerifier: Auth.Verifier;

-- rc is the reason for AuthenticationErrors raised in the recipient
-- (and reported back to the initiator)

re: ... ;
-- counters for retrying after AuthError
-- We tolerate this stuff happening once, as that's probably ok.

verifierlnvalidRetrys: CARDINAL 1;
verifierExpiredRetrys: CARDINAL 1;

Q

verifierReusedRetrys: CARDINAL 1;
eredentialsExpiredRetrys: CARDINAL 1;

-- this must be done for each remote call. Note that creds never changes.
DO

(ereds, verifier] Auth.CheekOutCredsAndNextVerifier[eonversation];
(replyVerifier, re] RemoteCall(ereds, verifier, ...];

-- check for AuthenticationProblem reported by recipient
IF re.ok THEN EXIT;
SELECT re.eode FROM

verifierlnvalid = > {
IF verifierlnvalidRetries = 0 THEN EXIT;
verifierlnvalidRetries verifierlnvalidRetries· 1 };

verifierExpired = > {
IF verifierExpiredRetries = 0 THEN EXIT;
verif!erExpiredRetries ~ verifierExpiredRetries • 1 };

verifierReused • > {
IF verifierReusedRetries = 0 THEN EXIT;
verifierReusedRetries verifierReusedRetries - 1 };

eredentialsExpired = > {
IF credentials Expired Retries = 0 THEN EXIT;
Auth.Refresh[eonversation ! Auth.OrphanConversation = > EXIT];
eredentialsExpiredRetries eredentialsExpiredRetries· 1 };

ENDCASE = > EXIT;
ENDLOOP;
IF -Auth.ReplyVerifierCheeks[eonversation, replyVerifier] THEN

ERROR MyAuthError[verifierlnvalid];

3

-- free the conversation. This is done when the initiator no longer wishes to talk to the
recipient.
Auth.Terminate[eonversation, z];

-- free the identity. This is done when the initiator no longer wishes to talk to anybody.
Auth.Freeldentity[@me, z];
END;

3-3

3

3-4

Standard authentication scenario

3.5.2 Recipient

-- create the identity handle (dontCheck is TRUE)
serverName: NSName.Name Eo- .. , ;

serverKey: Auth.Key Eo- ... ;

me :Auth.ldentityHandle Eo- Auth.Ma keStrongldentityUsi ngKey
Eo- [serverName. serverKey, z, TRUE];
-- the credentials, verifier and reply verifier

creds: Auth.Credentials; •
verifier. replyVerifier: Auth. Verifier;

-- rc is the reason for AuthenticationErrors raised in the recipient
-- (and reported back to the initiator)
-- the name of the initiator (returned by Authenticate)

initiator: NSName.Name;
-- this is done for every message from an initiator

-- receive creds and verifier as part of message
[creds, verifier] Eo- RemoteReceive[...];

-- this server only accepts strong credentials
IF Auth.GetFlavor[creds] # strong THEN {

fe.ok Eo- FALSE; rc.code Eo- inappropriateCredentials;
rRemoteReply[replyVerifier, rc, ...] };
-- Authenticate raises Auth.AuthenticationError ifsomething's wrong here

[initiator, replyVerifierl Eo- Auth.AuthentieateAndReply[me, ereds. verifier. Z

! Auth;AuthenticationError = > { re.ok Eo- FALSE; rc.code Eo- reason}];
RemoteReply[replyVerifier, re •...];

-- the initiator and reply Verifier returned by AuthenticateAndReply must be freed
NSName.FreeName[z, initiator];
Auth.FreeVerifier[@replyVerifier, z];

XEROX Services 8.0 Programmer's Guide

Clearinghouse
Programmer's Manual

November 1984

PRELIMINARY

Xerox Corporation
OfticeSystems Division
3450 Hillview A ven ue
Palo Alto, California 94304

ii

Table of contents

1 Introduction 1~1

1.1 Organization of the document 1-1
1.2 Definition of terms . 1-2

2 Concepts 2-1

2.1 Names. 2-1
2.1.1 Three part names 2-1
2.1.2 How to pick an organization name 2-2
2.1.3 How to pick a domain name 2-2
2.1.4 How to pick a local name 2-2

2.2 Aliases. 2-3
2.3 Wildcards. 2-3
2.4 Defaults 2-4
2.5 Property lists 2-5

2.5.1 Values. 2-5
2.5.2 Groups. 2-5

2.6 Group operations 2-6
2.7 The implications of distribution 2-7
2.S Helpful hints 2-S

2.S.1 Distinguished names, aliases, and capitalization 2-S
2.S.2 Getting started. 2-S

3 Interface 3-1

3.1 Name declarations. 3-1
3.2 ReturnCodes and errors 3-2
3.3 Common parameters 3-3
3.4 Names and aliases . 3-4
3.5 Enumeration 3-5
3.6 Property lists 3-5
3.7 Value properties 3-6
3.S Group properties 3-7

HI

Table of contents

3 Interface (CONTINUED)

3.9 Domains and organizations 3-8
3.10 Access control 3-9
3.11 Utilities 3-12

Appendices

A List of operations. A-I

A.l N ames and aliases . A-I
A.2 Enumeration A-I
A.3 Property lists A-I
A.4 Value properties A-I
A.5 Group properties A-2
A.6 Domains and organizations A-2
A.7 Access control . A-2

B CHCommonLookups.mesa . B-1

Figure

2.1 IsMember/lsMemberClosure example 2-6

iv

1

Introduction

This document describes the concepts and software interfaces of the Clearinghouse
Service. It is intended as a reference for the designers and implementors of client
programs, such as Star Workstation software and the other Services, which run on
machines which support Mesa. It provides sufficient information to allow programmers to
understand and use the facilities available through the interfaces CH.mesa and
MoreCH .mesa.

The Clearinghouse Service is a distributed service; the services it provides are
implemented by a set of one or more cooperating instances of the Clearinghouse software
running on different server machines in potentially scattered locations. Since the client
interacts with the Clearinghouse Service through a' piece of software running on his own
machine called the Clearinghouse Stub, the details of how the Clearinghouse Service is
implemented are largely irrelevant.

Throughout this document, when speaking of the distributed Clearinghouse System as a
whole, we shall refer to it as either "the Clearinghouse System" or simply "the
Clearinghouse" (capital C). Individual instances will be referred to as "a clearinghouse
service" or simply "a clearinghouse" (small C).

The Clearinghouse allows names to be registered and managed within a global,
hierarchical name space. Associated with each name registered in the Clearinghouse may
be one or more chunks of data stored in a property list indexed by propertyIDs from a set of
well-known properties. In general, the Clearinghouse does not care about the form or
structure of the data it manages. However, in order to supp~rt lists of names for mailing
and access control, the Clearinghouse supports the special data type group, Special
functions are provided to make group manipulation and membership checking operations
efficient.

1.1 Organization of the document

This document has two major sections. Section 2 describes the concepts, philosophy, and
facilities of the Clearinghouse. Section 3 describes the nuts and bolts of the Mesa
interfaces (CH.mesa and MoreCH.mesa) to the Clearinghouse facilities.

1-1

1 Introduction

1.2 Definition of terms

Clearinghouse System

clearinghouse service

clearinghouse stub

fully qualified name

distinguished name

alias

organization nante

domain name

local name

pattern

property list

propertylD

1-2

or simply Clearinghouse (capital C). The distributed service
supplied by a set of cooperating clearinghouse servers.

or simply clearinghouse (small c). A server machine running
Clearinghouse Service software; one instance of the
Clearinghouse Service.

a piece of software running in the client's machine which acts
as an agent for the Clearinghouse Service. The stub may
interact with one or more clearinghouse servers to perform a
given function for the client. The stub supplies the Mesa
interfaces CH.mesa and MoreCH.mesa, described in this
document.

a name consisting of three parts: the organization name, the
domain name, and the local name. A fully qualified name is
not necessarily a distinguished name; it could be an alias.
Sometimes referred to as a three part name. Generally this
term implies that the name does not contain any wildcards.
N ames are always presented to the clearinghouse in fully
qualified form.

the official, full name of an object registered 10 the
Clearinghouse (Le., as opposed to an alias).

a "nickname" for some distinguished name. When the
distinguished name is deleted, the alias is automatically
deleted as well.

the most significant field of a fully qualified name.

the second most significant field of a fully qualified name.

the least significant field of a fully qualified name.

a variant of a fully-qualified name which may contain
wildcard characters in one or more fields. Depending on the
context, the other fields of the name mayor may not be
significant.

the sequence of (propertyID, valueOrGroup) pairs which is
attached to a name. A property list may be empty.

or simply "property." This is a well-known number used as a
hook on which to hang data in the property list of a name. For
example, all Print Services currently stored in the
Clearinghouse have an entry associated with the property
CHPIDs.pS(= 10001).

Clearinghouse Programmer's Manual 1

value

group

raw data stored in a property list. The Clearinghouse knows
nothing of the structure of values (as opposed to groups).

structured (as opposed to "raw") data stored in a property list
and consisting of a sequence of elements. Elements may be
fully qualified names or patterns. Groups are used for access
control and mailing lists.

1-3

1 Introduction

1-4

2

Concepts

A good understanding of the underlying philosophy of a system is an aid to the clients of
that system. This section describes the whys of the Clearinghouse and discusses its
underlying architecture. To aid readability, the details of use appear in section 3.

2.1 Names

Everyone agrees that names are a good way to talk about things unambiguously. If you
had only one print service then you could say: "the printer is broken" and everyone would
know what you meant. If you had ten print services, then you would have to say something
like: "the printer in the back corner of room 206B is broken." But if your printers all had
names, you could simply say: "Old Reliable is down again."

Now suppose you have 10,000 print services in locations scattered across three continents,
owned and operated by many different groups and organizations, with new ones being
added every day. Because networking makes them all accessible, you would like to be able
to talk about anyone of these 10,000 print services and have the person or machine you
are talking to not be confused. In short, you would like names that are globally unique.
How can you accomplish this? You might leave it to luck and write your software to
handle ambiguous names when they crop up, as they most certainly will. Or you might put
someone in an office somewhere to register all names and make sure that there were no
duplicates (as, for example, the FCC does for radio and television station call letters). That
person would be pretty busy.

2.1.1 Three part names

The Clearinghouse takes a different approach. By dividing the entire name space into a
three level hierarchy and establishing different rules for the assignment of names at each
level, it allows names to be chosen locally, and yet remain globally unique. To this encl, a
Clearinghouse name has three components:

Clearinghouse Name :: = < Local name> < Domain name> < Organization Name>

where the < Organization name> part is the "most significant" part. Here are the rules:

2-1

2

2-2

Concepts and !-,eligion

2.1.2 How to pick an organization name

Organization names are assigned by a central administration to organizations:
corporations, universities, governments, etc. Other than using Xerox protocols, these
organizations may have little or nothing to do with each other. The intent of the
organization name is to avoid name conflicts when multiple computer networks are
connected together. It is therefore important that our customers play by the rules and
register their organization names with a Central Organization Name Administration
(currently provided by the Xerox BSG Software Marketing Group). Withfn a given
organization, everyone should use the same organization name, although very large
customers may encompass several organization names. (Within the Xerox family, for
example, are subsidiaries like Versatec, and foreign affiliates like Rank Xerox and Fuji
Xerox, which all have different organization names.)

2.1.3 How to pick a domain name

Domain names are assigned by some mechanism internal to a given organization. For
example, these names could be imposed by an organization-wide domain naming
administration, or proposed by individual system administrators. What is essential is that
they be unique within the organization to avoid name conflicts among domains.

There is more to assigning domain names than meets the eye, however. It turns out to be
very difficult to change a domain name once it gets established because it becomes
embedded in a great many things which are not understood by the Clearinghouse: file
drawer names, access control lists, desktop names, mail messages, entries in people's
private distribution lists, and so on. Changing the domain name after a certain point
causes a massive upheaval which effects many people both inside and outside the domain
being re-named. It can be weeks or even months before the last tremors die away. Because
of this, and because of the tendency of bureaucracies to reorganize themselves frequently,
it is unwise to try to make domains reflect organizational boundaries. Experience with the
Grapevine mail system inside Xerox suggests that it is much more satisfactory to have
domain names reflect geographic boundaries.

2.1.4 How to pick a local name

Local names are assigned by a mechanism internal to a given domain. The Clearinghouse
will not let you register two objects of the same type (e.g., two users) under the same name.
(The Clearinghouse does not actually prohibit using the same name for multiple objects of
different types. For example, the name "Gutenberg:OSBU North:Xerox" may refer to both
a Print service and a File service. However, it is generally preferable to avoid duplication
since it leads to ambiguity and potential confusion.)

Local names must be unique within their domain-the Clearinghouse guarantees this.
But in addition to being unique, you often want names in the Clearinghouse to have
associations with things or people in the real world. There is one case worth special
mention: the registration of users in the Clearinghouse.

It makes sense for the users' names in the Clearinghouse to be similar or identical to the
everyday names of these users. You might start by registering just first names, such as
"Dave," "Bob," and "John," in the Clearinghouse. These names are short, easy to type, and
unambiguous-as long as your user community remains small. That is the catch: user

Clearinghouse Programmer's Manual 2

communities hardly ever stay small. As soon as someone else named "John" joins the
community, you have a problem. You could call the newcomer "JohnT" to distinguish him
from "John," but this is not entirely satisfactory because Clearinghouse names are used
for addressing mail. The person sending mail to "JohnT," (who might be far away and not
intimate with John's co-workers), might simply guess that he should address his mail
message to "John" instead of "JohnT." How is he to know that there are two "John"s
working there? The result of this is that "John" often gets puzzling messages which were
actually intended for "JohnT" while "J.ohnT" misses important mail. In this situation, it is
probably best to change the original John's name also (to "JohnS," perhaps) and eliminate
the name "John" entirely, since it has become misleading to the people using the system
(though not to the Clearinghouse).

For these reasons, it is better to plan ahead and put more distinguishing information into
users names right from the beginning. Full first and last names should be considered the
bare minimum, and middle initials (or even full middle names) should generally be
registered as well, especially for those users with common last names. If all your users
have names like "David T. Kearns" instead of "Dave")'ou will seldom have name conflicts
and, if this convention is followed fairly consistently, even far away mail users stand a
good chance of being able to correctly guess how to address mail to someone.

2.2 Aliases

Long names, while descriptive, are cumbersome to type. Imagine typing "Patrick Michael
McGillicutty" every time you logged in! For this reason, the Clearinghouse provides
aliases. An alias is a nickname for some object registered in the Clearinghouse. Of course,
the Clearinghouse still remembers the object's real name, henceforth referred to as its
distinguished name. The object may have many aliases, but only one distinguished name.
When the object is deleted, not only does its distinguished name disappear, but so do all its
aliases.

Aliases must be unique "names" within a given domain (Le., you cannot create an alias
"Joe" if there is an existing alias or name ",Joe"). Most of the Clearinghouse operations
which take a name will accept either a distinguished name or an alias; these operations
always return the distinguished name of their operand, so the client knows the real name
of the object he is dealing with. Since aliases are much more subject to change than
distinguished names, it is recommended that distinguished names be used anytime a
name is embedded in a "long-lived" data structure (e.g., the access list of a file drawer).

Aliases are also useful for providing indirect action or procedure. For example, "Best
Printer" could be an alias for the print service whose print engine was producing the best
output on a given day.

Note: An alias may point to a distinguished name in another domain.

2.3 Wildcards

The Clearinghouse will do elementary pattern matching on names. The wildcard
character is the ~SCII/ISO asterisk (*). This is a special character which may not appear
in a normal name, but may be used to construct a pattern. The wildcard character matches
any sequence of zero or more characters. For example:

2-3

2 Concepts and religion

*
cat
c*t
*c****t*
i*t
a*r*k
*M*D*B*

matches
matches
matches
matches
matches
matches
matches

(anything)
cat (only)
cat, coot, chalet, ...
cat, coot, chalet, accent, practical...
it, insert, ...
aardvark, asterisk, ...
Jean-Marie R. de La Beaujardiere, ...

Lookup operations and the Enumerate operation will accept patterns containing wildcards
in the local name field. Various other operations (e.g., EnumerateDomains) will accept
variations on this theme. Patterns that are group elements may contain wildcards in any
combination of fields. The exact handling of patterns depends on the operation being
performed, as follows:

The Enumerate operation returns all the distinguished names in the given domain that
match the pattern. The EnumerateAliases. operation returns all the aliases in the given
domain that match the pattern. (Note: There is a special wildcard-like property type
which "matches" all property types, so ·you can find out about all names in a domain
matching a certain pattern, regardless of associated properties.)

The Lookup operations return information about only a single name (the first name they
find that matches the pattern). This mayor may not be the name you wanted, but in any
case, the distinguished name that matched is returned. Note that the Lookup operations
(unlike Enumerate) check for aliases as well as distinguished names that match the
pattern, and if they find such an alias, will return the corresponding distinguished name.
This means that the distinguished name which is returned need not itself match the
pattern. For example, if "John Smith" is a user with an alias "Jack," a
LookupValueProperty of users with the pattern "J*k" may return "John Smith."

The IsMember or IsMemberClosure operations are used to search a group for a specific
name, so these operations do not accept patterns as arguments (asterisks in the sought-for
name have no special significance; they are treated as normal characters, not as
wildcards). The group being searched, on the other hand, may contain one or more
patterns, and the operation will return TRUE if such a pattern matches the sought-for
name. (Note: This means that in the IsMember operations, the actual name is the
argument and the pattern is in the database-just the reverse of the situation with the
Enumerate and Lookup operations.)

2.4 Defaults

2-4

In certain circumstances, it is desirable to fill in default values for the domain and/or
organization components of a three-part name. (For example, when a user is sending mail
to several other users in the same domain.) All such defaulting mechanisms must be
supplied by the clients of the Clearinghouse. The Clearinghouse itself deals only in fully
qualified names, and never under any circumstances provides default domain or
organization names. Because the Clearinghouse Service is designed to be distributed and
replicated (see §2.7) the identity of the specific server providing access to the distributed
database at any given time is completely transparent and does not constitute a sound basis
for defaulting of partially qualified names.

Clearinghouse Programmer's Manual 2

2.5 Property lists

The Clearinghouse maps names into property lists. A property list is a list of zero or more
(propertyID, ualueOrGroup) pairs. This allows a number of different attributes to be
attached to a name. For example, the name "Hans Christian Andersen:PARC:Xerox"
might have associated with it the property list:

{(userDescription, <string», (mailbox, <name>)}

which allows a client to look at the description field for Hans and find out the name of the
mail server that his mailbox is on.

2.5.1 Values

As far as the Clearinghouse is concerned, the values of userDescription and mailbox are
simple sequences of bytes with no internal structure. It is up to the client to interpret this
raw data.

Note: Typically, values are Mesa records in Courier serialized form. (The details of
Courier serialized data standards are in Courier: The Remote Procedure Call Protocol
[10].) When extracting data from the Clearinghouse, the interpretation of a value (Le.,
what Courier description routine should be used to deserialize that data) is determined by
the propertyID with which the value is associated. There is no way for the Clearinghouse
to enforce this convention; the client reading the data must assume that whoever stored it
followed the rules.

A propertyID is really a LONG CARDINAl. There is a whole set of "well-known" propertyID's
which are listed, along with the format (in Courier notation) of the data they are used to
store, in Clearinghouse Entry Formats [5]. The Mesa interfaces CHPIDs.mesa and
CHEntries.mesa together contain the same information.

2.5.2 Groups

The property list of a name may include properties of a different flavor, called groups. A
value is raw data (to the Clearinghouse), whereas a group has structure. A group contains
an arbitrarily large number of elements, where each element has the form of a
Clearinghouse name. Often, group elements really are names, but they may also be illegal
0t: non-existent names or patterns containing wildcards in one or more fields. The
Clearinghouse itself knows the internal structure of groups and supports special group
manipulation operations such as Add Member and DeleteMember. Since the
Clearinghouse must guarantee that the data structures used to store groups are
maintained consistently, it will not allow clients to manipulate groups as values (Le., raw
data) Qr vice versa.

2-5

2 Concepts and religion

2.6 Group operations

2-6

The Clearinghouse supports an interesting operation called IsMember (and its cousin
IsMemberClosure). These operations take an element and an existing group, and tell you
if the element is in the group or matches a pattern which is an element of the group. This
is handy, especially for supporting access control. To illustrate these operations, consider
two groups:

John:OSBU North:Xerox,

"Lyon*:OSBU North:Xerox,

GroupB:OSBU North:Xerox,

*:OSBU South:Xerox

Randy:OSBU North:Xerox,

Brenda:":Xerox,

"Wobber: OSBU North:Xerox,

GroupC:OSBU Bayshore:Xerox

Another group,
not shown here

Figure 2.1 IsMember/lsMemberClosure example

If we do an IsMember operation, only group A will be searched for the element in question.
If we do an IsMemberClosure operation, the groups searched are (not necessarily in this
order): GroupA, any group whose name appears in GroupA (in this case, GroupB), any
group whose name appears in any group whose name appears in Group A (in this case,
GroupC), and so on. IsMemberClosure will not attempt to recur on a pattern (so it will not
recur on every group in "OSBU South:Xerox"). For example:

IsMember["John:OSBU North:Xerox", GroupA] TRUE

IsMember["Brenda:OSBU North:Xerox", GroupAl = FALSE

IsMemberClosure["Brenda:OSBU North:Xerox", GroupAl = TRUE

IsMember["Mark:OSBU South:Xerox", GroupAl = TRUE

IsMemberClosure["GroupC:OSBU Bayshore:Xerox", GroupAl = TRUE

IsMemberClosure["Brenda:Training:Xerox", GroupAJ = TRUE

Clearinghouse Programmer's Manual

IsMemberClosure["Brenda:OSBU North:Xerox," GroupAl = TRUE

IsMember["J*:OSBU North:Xerox," GroupAl = FALSE

2.7 The implications of distribution

2

As stated previously, the Clearinghouse really is a distributed service. The Clearinghouse
Service is provided by a cooperating set of clearinghouse servers. This leads to two
important design principles.

• It should not matter which clearinghouse server the stub initially contacts; it will
eventually get the data it wants (if that data is available).

• Every clearinghouse server must know about all other clearinghouse servers.

The first principle allows the Clearinghouse Service to continue to be "available" when
one or more of the clearinghouse servers are not available (down or incommunicado),

. albeit crippled because the data stored on the unavailable server(s) will not be accessible.
The second principle is sort of a corollary to the first. Why? Because if there is a
clearinghouse server X which serves the domain "dx:ox" and X is not known to any other
clearinghouse, then when a stub talking to one of these other clearinghouses tries to look
up a name in "dx:ox" it fails and reports the client that the domain "dx:o,c" does not exist.
This is wrong, of course. If the stub happened to talk to the server X, the operation would
succeed. However, our first assumption was that it should not matter which server the
stub talked to.

The Clearinghouse Service works fairly hard to insure that these two principles are not
violated. When a change is made to one copy of a replicated domain, the clearinghouse on
which the copy is made mails updates of this event to all other clearinghouses that serve
the domain. To handle situations in which these update messages are lost, each
clearinghouse periodically runs a background process which compares the various servers'
copies of domains to verify that these copies are consistent with one another. Note that
there will always be a transition period when some servers do not yet know of a change to
a domain, or the addition of a domain or organization. When the dust clears, all copies of
domains will be consistent and all will be well, but meanwhile (and this can be a few
minutes or up to several days if the internetwork is experiencing persistent
communication problems), the effect can be a baffling set of irreproducible symptoms. For
instance, sometimes when you look up something it works, and sometimes it fails and you
are told that the object or domain does not exist, even though you know that it does. The
problem may be there one minute and gone the next and may occur on some machines and
not on others. If this seems to be happening, don't panic. Just call your nearest
Clearinghouse administrator (who will probably tell you politely to wait until the problem
fixes itself).

2-7

2 Concepts and religion

2.8 Helpful hints

2-8

This section is a collection of potentially useful information that has no other logical
home.

2.8.1 Distinguished names, aliases, and capitalization

Every Clearinghouse operation which takes a name will, if the client supplies a place to
put it, return the distinguished name of its operand. This information is basically "free,"
since it gets passed in the protocol no matter what. It can be used to get the distinguished
name for what might be an alias, for resolving patterns, and for fixing up capitalization of
a name so that it matches the name's "official" capitalization (as stored in the
Clearinghouse). For example, say you are writing a program that requires the user to
logon. Whatever he types, you look in the Clearinghouse for a user of that name. The
LookupValue will return the distinguished name of the user, if it can find him. This
distinguished name could be used to find the user's mail folder or desktop and could be
kept around for use in authenticating the user to other services.

2.8.2 Getting started

The Clearinghouse stub operations are exported through the interfaces CH.mesa and
MoreCH.mesa. CHPIDs.mesa defines the well-known PropertyID's. CHEntries.mesa
contains the Mesa definitions and Courier descriptions of the values which are associated
with the well-known PropertyID's. CHCommonLookups.mesa defines procedures that are
sometimes useful for doing a few, simple clearinghouse lookups. The configuration
CHStub.bcd contains nearly everything you need; you also need various name
manipulation routines which are exported by Filing.bed.

Note: The Mesa 11.0 development environment is bound with earlier, type-incompatible
versions of the Clearinghouse stub and Filing stub. Typically one must load a second
version of these stubs before importing the OS 5.0 version of the Clearinghouse interfaces.

3

Interface

This section describes the Clearinghouse stub interface, CH.mesa.

CH: Definitions = ... ;

3.1 Name declarations

Name: TYPE = NSName.Name;
NameRecord: TYPE = NSName.NameRecord;

OrgName: TYPE = NSName.Organization;
DomainName: TYPE = NSName.Domain;
LocalName: TYPE = NSName.Local;

wildCard: CHARACTER = NSName.wildCard; -- (NSString.Character equivalent to ASCII '*)

separator: CHARACTER = NSName.separator; -- (NSString.Character equivalent to ASell ':)
maxOrgNameLength: CARDINAL = NSName.maxOrgLength; -- = 20 bytes
maxDomainNameLength: CARDINAL = NSName.maxDomainLength; -- = 20 bytes
maxLocalNameLength: CARDINAL = NSName.maxLocaILength; -- = 40 bytes

The Clearinghouse naming scheme is a three level hierarchy. The three fields of a name,
local Name, domainName, and orgName, have maximum lengths of
maxLocalNameLength, °maxDomainNameLength, and maxOrgNamelength bytes
respectively. Clients sometimes encode names as strings in which the three parts of a
name are concatenated together separated by separator characters. The wildCard
character is used in constructing patterns.

Note: These lengths are in bytes, not NSString.Characters. The maximum length string of
NSString.Characters allowed in each field is variable, depending upon how that string gets
encoded into bytes. For each NSString.Character, the worst case requires three bytes and the
best requires only one.

Pattern: TYPE = LONG POINTER TO NamePattern;
NamePattern: TYPE = NameRecord;

A Pattern is a name in which the use of wildcards is permitted. The Clearinghouse allows
wildcards in the "least significant" field of a name in most operations. That means
wildcards are generally allowed only in the local Name field except in the operations

3-1

3 Interface

EnumerateDomains and EnumerateOrganizations, where wildcards are allowed in the
domain and organization fields, respectively. Wildcards are neuer allowed in operations
which modify the Clearinghouse database (Add, Change, or Delete operations).

Note: When a pattern is used in any lookup operation, the "first" match is chosen. This
may not be the first alphabetically, and it may be different if the operation is repeated. In
searching for a name matching the pattern, lookup considers both distinguished names
and aliases. If a matching alias is found, the alias is de referenced and the operation is
performed on the object to which it points. In any case, the distingName parameter is
always filled in with the full. distinguished name which was chosen (which need not itself
match the pattern-i.e., if an alias was matched and dereferenced.)

Element: TYPE = LONG POINTER TO ThreePartName;
ThreePartName: TYPE = NameRecord;

An Element is similar to a name in that it consists of three string fields with the same
length restrictions as names. An Element, however, is not necessarily a name which
actually exists in the Clearinghouse and it may contain wildcards in any or all fields.
Some fields may be left empty. Elements are the constituents of groups.

3.2 ReturnCodes and errors

3-2

ReturnCode: TYPE = MACHINE DEPENDENT RECORD [

code: Code.
which: ParameterGrouping);

A ReturnCode is returned by every Clearinghouse operation. The interpretation of the
ReturnCode is based upon code; the which field, which is not always significant, provides
additional information in certain contexts. These other fields are described first:

ParameterGrouping: TYPE = MACHINE DEPENDENT {

first(1).
second(2).
(LAST[CARDINAL)) };

In cases where code indicates a problem with a name (e.g., iIIegallocaIName)', the which
field of the ReturnCode indicates which of the names passed to the operation was bad. For
example, if the AddAlias operation returned with a code of iliegallocalName, then which
would indicate whether the parameter name or the parameter newAliasName contained
the bad local name.

Code: TYPE = MACHINE DEPENDENT {

done(O).-- operation succeeded
-- code collection one - "operational problems"

notAliowed(1).-- operation prevented by access controls
rejectedTooBusy(2).-- server is too busy to service this request
aIlDown(3).-- remote CHServer was down and it was needed for this operation
(4).-- user will never see this code (operationRejectedUseCourier)
badProtocol(5).-- protocol violation (e.g., Name too big in streaming operation)

-- code collection two - "naming problems"
iIIegaIPropertyID(10).-- the specified PropertylD violates the protocol
illegalOrgName(11).-- has illegal length or illegal characters

Clearinghouse Programmer's Manual

illegal Domai nName(12),-- has illegal length or illegal characters
iIIegaILocaIName(13),-- has illegal length or illegal characters
noSuchOrg(14),-- the specified organization does not exist
noSuchDomain(15),-- the specified domain does not exist in the organization
nOSuchLocal(16),-- the specified local does not exist in the domain

-- code collection three - "PropertylD errors"
propertyIDNotFound(20),-- the name exists, but .the PropertylD does not
wrongPropertyType(21),-- you. wanted a Group, but it was a Value, or vise versa

-- code collection four- "update problems"

3

noChange(30),-- the specified operation would not change the database
outOfDate(31),-- operation ignored - more recent info was in database
overflowOfName(32),-- the specified name has too much data associated with it
overflowOfDataBase(33),-- the database has run out of room

-- code collection five - other problems
(50),-- user will never see this code (wrongServer)
--authentication problems .
credentialslnvalid(60),
(61).-- user should never see this code (verifierlnvalid)
(62), -- user should never see this code (verifierExpired)
(63), -- user should never see this code (verifierReused)
(64).-- user should never see this code (credentialsExpired)
credentialsTooWeak(65),
wasUpNowDown(70),-- the remote service disappeared while streaming data;

-- the user has an incomplete answer to his query.
(LAST[CAROINAL}) };

Most of these codes are self-explanatory. Any call may return allDown, which indicates
that no servers for the given domain are available, or rejectedTooBusy, which indicates
that the server is overloaded. noChange is returned when the requested modification did
not change the database. For example. attempts to delete something which is not there or
attempts to add something which already exists will fail and return noChange. outOfDate
indicates that there has been a race to modify some item in a given domain and this call
lost. This is because timestamps are used to break ties and distributed clocks are never
completely synchronized. outOfDate can usually occur only when a domain is replicated.
or when adding a domain or organization that was deleted within the past 30 days;
otherwise, it probably indicates that the server has a bad clock. The total space for a single
property list is bounded (see §3.6); if you try to make a given property list too large, you
will get overflowOfName.

3.3 Common parameters

ConversationHandle: TYPE = RECORO[

conversation: Auth .ConversationHandle,
address: LONG POINTER TO System.NetworkAddress +- NIL];

All Clearinghouse operations require a ConversationHandle. These operations extract
credentials and a verifier from conversation. conversation and they in turn are used to
validate the identity of the client. A handle allowing conversation with any clearir;tghouse
may be obtained by the procedure MakeConversationHandle. ·The field address allows
calls to be directed to a particular clearinghouse. It is intended to be used to monitor

3-3

3 Interface

clearinghouse performance and to detect inconsistencies in replicated databases. Most
clients will use the default value for address.

Many operations also take the parameter distingName. This client-supplied Name which
is an output parameter to be filled in by the operation with the distinguished name of its
operand. If the name supplied is too small, NSName.NameTooSmali is raised. If the client
does not care about the distinguished name, it may pass NIL.

3.4 Names and aliases

3-4

LookupDistinguishedName: PROCEDURE [
conversation: ConversationHandle, name: Pattern, distingName: Name]

RETURNS [rc: ReturnCode];

name may contain wildcards in the lo~alName field or it may be an alias. distingName is
filled in with the associated distinguished name.

AddDistinguishedName: PROCEDURE [
conversation: ConversationHandle, name: Name, distingName: Name]

RETURNS [rc: ReturnCode];

Adds name to the Clearinghouse as a distinguished name. The initial property list for
name is nil. Note that name must not already exist in its domain, either as a
distinguished name or as an alias. Naturally, name may not be a pattern.

DeleteDistinguishedName: PROCEDURE [
conversation: ConversationHandle, name: Name, distingName: Name]

RETURNS [rc: ReturnCode];

name may not be an alias or pattern. name is removed from the Clearinghouse database
along with all its aliases and its property list, ifthese exist. May return [noChange, first].

LookupAliasesOfName: PROCEDURE [
conversation: ConversationHandle,
name: Pattern, eachAlias: NameStreamProc, distingName: Name]

RETURNS [rc: ReturnCode);

As usual with lookups, name may contain wildcards in the local Name field or it may be an
alias. Calls eachAlias for each alias of the distinguished name associated with name.

AddAlias: PROCEDURE [
conversation: ConversationHandle,
name, newAliasName, distingName: Name]

RETURNS [rc: ReturnCode];

name may not be an alias or pattern, and must refer to an existing name. newAliasName
must be a Name which does not already exist in this domain. It becomes an alias for the
distinguished name associated with name.

Clearinghouse Programmer's Manual

DeleteAlias: PROCEDURE [conversation: ConversationHandle,
aliasName, distingName: Name)

RETURNS [rc: ReturnCode);

3

Removes the alias aliasName from the Clearinghouse. distingName is filled in with the
distinguished name for which aliasName was an alias.

3.5 Enumeration

NameStreamProc: TYPE = PROCEDURE [currentName: Element];

A procedure of this type must be supplied by the client in Enumerate and
EnumerateAliases operations. currentName is owned by the stub and is only valid within
the scope of the NameStreamProc. The names are enumerated in alphabetical order.

Enumerate: PROCEDURE [conversation: ConversationHandle,
name: Pattern, pn: PropertylD, eachName: NameStreamProc]

RETURNS (rc: ReturnCode];

name is a pattern, possibly containing wildcards in its local Name field. Enumeration is
only allowed within a single domain; wildcards in the domain and organization fields of
name are not allowed. For each name in the domain which matches name and has pn in
its property list, each Name is called. To enumerate everything in a domain which has a
given property, use the pattern "*,, in the localName field of name. To enumerate all the
names in a domain which match a particular pattern, regardless of type, let pn =
unspecified (see §3.6).

EnumerateAliases: PROCEDURE [conversation: ConversationHandle,
name: Pattern, eachAlias: NameStreamProc)

RETURNS [rc: ReturnCode);

name is a pattern, possibly containing wildcards (e.g., "*") in its local Name field. For each
alias matching name in the domain, eachAlias is called.

3.6 Property lists

PropertylD: TYPE = LONG CARDINAL;
notUsable: PropertylD = LAsT[PropertyID);
unspecified: PropertylD = 0;

notUsable and unspecified are reserved values of PropertylD. unspecified is the
"wildcard" of Property IDs.

Properties: TYPE = LONG DESCRIPTOR FOR ARRAY OF PropertylD;

A name may have associated with it at m~st 250 properties.

GetProperties: PROCEDURE [conversation: ConversationHandle,
name: Pattern,distingName: Name, heap: UNCOUNTED ZONE]

RETURNS [rc: ReturnCode, properties: Properties);

3-5

3 Interface

GetProperties returns a list of all the properties associated with name. The client must
supply a heap, from which storage is allocated for the Properties returned. The client is
responsible for freeing properties when she is through with it.

DeleteProperty: PROCEDURE [conversation: ConversationHandle,
name: Name. pn: PropertylD. distingName: Name]

RETURNS [rc: ReturnCode];

The property pn and its associated value or group are removed from the property list of
name. name is not automatically deleted if this makes the property list empty. This same
operation is used for deleting both group and value properties.

3.7 Value properties

3-6

Buffer: TYPE = LONG POINTER TO BufferArea;
BufferArea: TYPE == MACHINE DEPENDENT RECORD [

maxlength(O): CARDINAL [0 .. maxBufferSize],
length(1): CARDINAL [0 .. maxBufferSize],
data(2): SEQUENCE COMPUTED CARDINAL OF WORD];

A Buffer is used to pass values to and from the Clearinghouse. The Clearinghouse doesn't
know or care about the internal structure ofthe data. See Utilities, §3.11, for some handy
routines for managing buffers. length and maxlength are in words.

maxBufferSize: CARDINAL == 500; -- in words

BufferTooSmall: SIGNAL [offender: Buffer.lengthNeeded: CARDINAL] --in words
RETURNS [newBuffer: Buffer];

BufferTooSmall will be raised by LookupValueProperty if the Buffer supplied by the client
is too small. offender is the offending Buffer.

LookupValueProperty: PROCEDURE [

conversation: ConversationHandle,
name: Pattern, pn: PropertylD. buffer: Buffer, distingName: Name]

RETURNS [rc: ReturnCode];

Retrieves the value property associated with pn in the property list of name. The value is
returned in buffer.data and buffer.length is filled in. May raise BufferTooSmali if the
buffer supplied by the client is not large enough to hold the value.

AddValueProperty: PROCEDURE [conversation: ConversationHandle,
name: Name, pn: PropertylD, rhs: Buffer. distingName: Name]

RETURNS [rc: ReturnCode];

Adds a value property to the property list of name with the PropertyID pn and a value of
rhs (rhs comes from "right hand side"). Returns rc.code of noChange if pn is already a
property of name. In this case, ChangeValueProperty must be used.

ChangeValueProperty: PROCEDURE [

conversation: ConversationHandle,

Clearinghouse Programmel"s Manual

name: Name, pn: PropertylD, newRhs: Buffer, distingName:Name]
RETURNS [rc: ReturnCode];

3

Used to change a value property once it exists. The old value of the property is replaced by
newRhs.

3.8 Group.properties

NameStreamProc: TYPE = PROCEDURE [currentName: Element];

A procedure of this type must be supplied by the client in the LookupGroupProperty
operation. currentName is owned by the stub and is only valid within the scope of the
NameStreamProc.

LookupGroupProperty: PROCEDURE [

conversation: ConversationHandle,
name: Pattern, pn: PropertylD, eachElement: NameStreamProc, distingName: Name]

RETURNS [rc: ReturnCode];

name must have a group property pn. eachElement is called once for each element of the
group.

EnumerateNewGroupElements: TYPE = PROCEDURE [NameStreamProc];

A procedure of this type may be supplied by the client in the AddGroupProperty operation
if he wishes to specify the initial contents of the new group.

AddGroupProperty: PROCEDURE [conversation: ConversationHandle,
name: Name, pn: PropertylD,
elementEnumerator: EnumerateNewGroupElements +- NIL, distingName: Name]

RETURNS [rc: ReturnCode];

Adds a group property to the property list of name with the PropertyID pn.
elementEnumerator is used to supply the client with a NameStreamProc which he must
call for each element he wishes to place in the new group. The NameStreamProc supplied
in the elementEnumerator callback is not valid after the callback returns. If the client
does not supply an elementEnumerator, an empty group will be added.

AddGroupMember: PROCEDURE [conversation: ConversationHandle,
element: Element, name: Name, pn: PropertyJD, distingName: Name]

RETURNS [rc: ReturnCode];

Adds element to the group property pn of name. The group must already exist.

DeleteGroupMember: PROCEDURE [conversation: ConversationHandle.
element: Element, name: Name, pn: PropertylD. distingName: Name]

RETURNS [rc: ReturnCode];

Removes element from the group property pn of name. The group is otherwise untouched.
The resulting group may be empty.

3-7

3 Interface

AddSelf: PROCEDURE [conversation: ConversationHandle,
name: Name, pn: PropertylD, distingName: Name]

RETURNS [rc: ReturnCode];

Identical to AddGroupMember but the element added to the group is the distinguished
name of the initiator derived from conversation.

DeleteSelf: PROCEDURE [conversation: Conversation Handle,
name: Name, pn: PropertylD, distingName: Name]

RETURNS [rc: ReturnCode);

Identical to DeleteGroupMember but the element removed from the group is the
distinguished name ofthe initiator derived from conversation.

IsMember: PROCEDURE [conversation: ConversationHandle,·
element: Element, name: Pattern, pn: PropertylD, distingName: Name]

RETURNS [rc: ReturnCode, isMember: BOOLEAN];

Returns isMember = TRUE if element is a member of the group property pn of name. In
this operation, the members of the group are treated as patterns; they may contain
wildcards which cause them to match element.

Note: Wildcard characters which appear in element are treated as ordinary characters
with no special significance.

IsMemberClosure: PROCEDURE [conversation: ConversationHandle,
element: Element, name: Pattern, pn: PropertylD, distingName: Name,
pn2: PropertylD +- unspecified]

RETURNS [rc: ReturnCode, isMember: BOOLEAN];

This is a recursive version of IsMember and works as follows: element is sought in the
group property pn of name. Ifit is found, iSMember = TRUE is returned immediately. Ifit is
not found, each of the non-pattern elements of the group property pn of name is treated as
a name which has a group property pn2 which must also be searched for element. If this
level fails, each of the elements of each of those groups (if they really are groups) is
searched for element (via pn2), and so forth until either element is found or there are no
groups left to search. If pn2 is defaulted, then pn2 = pn. Because groups are often nested,
most clients should use IsMemberClosure instead ofisMember.

3.9 Domains and organizations

3-8

NameStreamProc: TYPE = PROCEDURE [currentName: Element];

A procedure of this type must be supplied by the client in EnumerateOrganizations and
EnumerateDomains operations. currentName is owned by the stub and is only valid
within the scope of the NameStreamProc.

EnumerateOrganizations: PROCEDURE [

conversation: ConversationHandle,
orgPattern: Pattern, eachOrg: NameStreamProc]

RETURNS [rc: ReturnCode);

Clearinghouse Programmer's Manual 3

Enumerates all the organizations in the known universe and calls eachOrg once for each
organization which matches orgPattern. When eachOrg is called, the orgName field of
currentName contains an organization name and the other two fields are identical to the
corresponding fields of orgPattern.

Note: The orgName field of orgPattern may (and probably will) contain wildcards. The
domainName and local Name fields of orgP~ttern are ignored.

EnumerateDomains: PROCEDURE [conversation: ConversationHandle,
name: Pattern, eachDomain: NameStreamProc]

RETURNS [rc: ReturnCode];

Enumerates all the domains in the organization specified by the orgName field of name
and calls eachDomain once for each domain which matches the domain Name field of
name. When eachDomain is called, the domainName field of currentName contains a
domain name and the other two fields ate identical to the corresponding fields of name.

Note: The orgName field of name must contain a valid organization name (no wildcards
allowed). The domainName f'i;eld of name may contain wildcards and the local Name field
is ignored.

EnumerateNearbyDomains: PROCEDURE [

conversation: ConversationHandle,
eachDomain: NameStreamProc]

RETURNS [rc: ReturnCode];

Returns, via eachDomain, a motley assortment of domains which the stub considers to be
"nearby." When eachDomain is called, the orgName field of currentName contains an
organization name, the domainName field contains a domain name, and the localName
field is identical to the local Name field of name.

Warning: Domains in assorted organizations may be returned.

Warning: This is an unpredictable operation whose results depend on factors which may
change from one moment to the next. It is not recommend for general use.

3.10 Access control

One may associate a list of names with organizations, domains and properties, for the
purpose of specifying who may have various kinds of access to those organizations,
domains and properties. Access lists governing the modification of a database and the
addition and removal of oneself to or from groups may be constructed, and these kinds of
access are enforced by the Clearinghouse. Access lists governing who may read objects of a
domain are accommodated by the interfaces, but read access is not enforced; this means
that lists of this flavor are ignored by the Clearinghouse. Operations are provided for
adding elements to a list, removing elements from a list, determining the contents of a list,
and determining if a name is a member of a list.

These lists of names have many of the characteristics of groups. They may contain
patterns, names of indi viduals, names of groups, and any other name that may be included
in a standard group. All of the IsMemberOf* Access procedures are closure operations,
behaving very much like IsMemberClosure. The most notable difference between these

3-9

3

3-10

Interface

lists and groups is that the lists may only be referenced through the procedures described
in this section. Access lists may not be referenced by name.

Access control lists may be empty, and if they are, their contents are inferred. Queries of
an empty list are automatically redirected at the corresponding list at the next higher
level of the name hierarchy. For example, if one looks up the administrators list for some
property, and that access list is empty, then the administrators list for the domain will be
returned. Likewise, if the' administrators list for the domain is empty, then the
administrators list for the organization will be returned. There is no higher level than the
organization. Therefore, if the list of administrators of an organization is empty, then the
list will appear empty, and no one may administer the organization. Although an empty
access list appears to have the same content as the corresponding access list at the next
higher level of the hierarchy, deleting an element from an empty access list does not alter
the contents of the next higher list.

Note: There is, unfortunately, no easy way of determining if an access list is empty and its
contents inferred.

Administrators. of an organization may create and delete domains of that organization.
Administrators of a domain may add and delete objects of that domain. Administrators of
a property may modify the value of that property. In addition, administrators may modify
the administrator lists they are member~ of. Self controllers of a group property may add
themselves to or remove themselves from that group. Administrators of a group property
are always considered self controllers of that property, and may modify the self controllers
list.

The procedures and types described in this section are defined in the interface
MoreCH.mesa. All other referenced types are defined in the interface CH.mesa. It is
expected that MoreCH.mesa will eventually be folded into CH.mesa.

The name parameters of these procedures may not be patterns.

ACLFlavor: TYPE = MACHINE DEPENDENT{

readers(O), value(1), administrators(2), selfControllers(3), (LAST[CARDINAL])};

Parameters of type ACLFlavor indicate the kind of access that is of interest. readers
indicates interest in the right of individuals to read objects of the database. value is
present because of implementation considerations, and may not be specified by clients.
administrators indicates interest in the right of individuals to modify objects of the
database. self Controllers indicates interest in the right of individuals to add themselves to
or remove themselves from a particular group property.

LookupPropertyAccess: PROCEDURE [

conversation: Conversation Handle, name: Name, pn: PropertylD, ad: AClFlavor,
eachElement: NameStreamProc, distingName: Name]
RETURNS [rc: ReturnCode];

each Element is called once for each element of the access list of flavor ad that is associated
with the property pn of name.

IsMemberOfPropertyAccess: PROCEDURE [

conversation: Conversation Handle, element: Element, name: Name,

Clearinghouse Programmer's Manual

pn: PropertylD, ad: ACLFlavor, distingName: Name,
pn2: PropertylD ~ unspecified]
RETURNS [rc: ReturnCode, isMember: BOOLEAN];

3

Returns isMember = TRUE if element is a member of the access list of fla vor acl associated
with the property pn of name. Members of the list are treated as patterns; they may
contain wildcards which cause them to match element. This is a closure operation, and so
the remarks about IsMemberClosure apply to this procedure ..

LOokupDomainAccess: PROCEDURE [

conversation: ConversationHandle, domain: Name. acl: ACLFlavor.
each Element: NameStreamProe]
RETURNS (re: ReturnCode];

eaehElement is called once for each element of the access list of flavor acl that is associated
with the domain domain. Only the org and domain fields of domain are inspected.

IsMemberOfDomainAecess: PROCEDURE [

conversation: Conversation Handle, element: Element, domain: Name.
acl: ACLFlavor. pn2: PropertylD Eo- unspecified]
RETURNS [rc: ReturnCode. isMember: BOOLEAN];

Returns iSMember = TRUE ifelement is a member of the access list of flavor acl associated
with the domain domain. Only the org and domain fields of domain are inspected.
Members of the list are treated as patterns; they may contain wildcards which cause them
to match element. This is a closure operation, and so the remarks about IsMemberClosure
apply to this procedure.

LookupOrgAecess: PROCEDURE [

conversation: ConversationHandle, org: Name, acl: ACLFlavor,
eaehElement: NameStreamProc]
RETURNS [rc: ReturnCode];

eaehElement is called once for each element of the access list of flavor acl that is associated
with the organization ~rg. Only the org field of org is inspected.

IsMemberOfOrgAccess: PROCEDURE [

conversation: ConversationHandle, element: Element, org: Name, acl: ACLFlavor,
pn2: PropertylD ~ unspecified]
RETURNS [re: ReturnCode, isMember: BOOLEAN];

Returns isMember = TRUE if element is a member of the access list of flavor acl associated
with the organization org. Only the org field of domain is inspected. Members of the list
are treated as patterns; they may contain wildcards which cause them to match element.
This is a closure operation, and so the remarks about IsMemberClosure apply to this
procedure.

AddPropertyAeeessMember: PROCEDURE [

conversation: Conversation Handle, element: Element, name: Name,
pn: PropertylD, ad: ACLFlavor, distingName: Name]
RETURNS [re: ReturnCode];

3-11

3 Interface

element is added verbatim to the specified access control list of the property pn of name.
Calls specifying acl = readers will return rc = [badProtocol, first] ..

DeletePropertyAccessMember: PROCEDURE [
conversation: ConversationHandle, element: Element, name: Name,
pn: PropertylD, acl: AClFlavor, distingName: Name}
RETURNS [rc: ReturnCode};

This is the inverse of AddPropertyAccessMember.

AddDomainAccessMember: PROCEDURE [
conversation: Conversation Handle, element: Element, domain: Name,
acl: AClFlavor]
RETURNS [rc: ReturnCode];

element is added verbatim to the specified access control list of domain.

DeleteDomainAccessMember: PROCEDURE [
conversation: ConversationHandle, element: Element. domain: Name.
acl: ACLFlavor]
R~TURNS [rc: ReturnCode);

This is the inverse of AddDomainAccessMember.

AddOrgAccessMember: PROCEDURE [
conversation: ConversationHandle, element: Element, org: Name, acl: AClFlavor]
RETURNS [rc: ReturnCode);

element is added verbatim to the specified access control list of org.

DeleteOrgAccessMember: PROCEDURE [
conversation: ConversationHandle, element: Element, org: Name, acl: ACLFIavor]
RETURNS [rc: ReturnCode];

This is the inverse of AddOrgAccessMember.

3.11 Utilities

3-12

MakeConversationHandle: PROCEDURE [identity: Auth.ldentity, heap: UNCOUNTED ZONE]
RETURNS [
conversation: ConversationHandle, ok: BOOLEAN, authCallError: Auth.CaIlProblem];

Creates a ConversationHand.le that allows conversation with any clearinghouse. ok =
FALSE if there was a problem while attempting to obtain the conversation handle from the
authentication software, and in this case authCallError indicates what that problem was.

FreeConversationHandle: PROCEDURE [
conversation: LONG POINTER TO Conversation Handle, heap: UNCOUNTED ZONE];

Deallocates the storage for conversation t , and sets conversation.conversation to NIL.

Clearinghouse Programmer's Manual 3

FreeProperties: PROCEDURE [properties: LONG POINTER TO Properties. heap: UNCOUNTED ZONE];

Deallocates the storage for properties f and sets BAsE[properties f] to NIl.

MakeRhs: PROCEDURE [maxlength: CARDINAL[O .. maxBufferSize], heap: UNCOUNTED ZONE]
RETURNS [rhs: Buffer];

Allocates a Buffer from heap with the given maxlength, and with length set to zero.

SerializelntoRhs: PROCEDURE [parms: Courier.Parameters, heap: UNCOUNTED ZONE]
RETURNS [rhs: Buffer];

Uses Courier to serialize parms, allocating a Buffer large enough to hold them from heap.

ScopedSerializelntoRhs: PROCEDURE [
parms: Courier.Parameters, callback: PROCEDURE [Buffer]];

Like SerializelntoRhs, but the client must supply the procedure callback, which is called
with the resulting Buffer. The Buffer is valid only inside callback; the storage for it is
allocated and freed by the stub.

FreeRhs: PROCEDURE [rhs: Buffer, heap: UNCOUNTED ZONE];

MakeRhs and SerializelntoRhs both return Buffers allocated from the client-supplied
heap. This operation may be used to return such Buffers to the client's heap.

DeserializeFromRhs: PROCEDURE [
parms: Courier.Parameters, heap: UNCOUNTED ZONE, rhs: Buffer]
RETURNS [succeeded: BOOLEAN];

Uses Courier to deserialize parms from rhs. Uses heap to allocate any disjoint data
required to store the results of the deserialization. Naturally, the client is responsible for
freeing any data allocated in the de serialization process by calling Courier.Free.

DeserializeFromBlock: PROCEDURE [
parms: Courier.Parameters. heap: UNCOUNTED ZONE, blk: Environment.Block]
RETURNS [succeeded: BOOLEAN];

Like DeserializeFromRhs, but gets the data to be deserialized from blk.

3-13

3 Interface

3-14

A

Appendix A
List of operations

This appendix is a simple list of all Clearinghouse Service operations available to the
client, arranged into logical categories.

A.I Names and aliases

LookupDisti nguishedName
AddDistinguishedName
DeleteDistinguishedName
LookupAliasesOfName
AddAlias
DeleteAlias

A.2 Enumeration

Enumerate
EnumerateAliases

A.3 Property lists

GetProperties
DeleteProperty

A.4 Value properties

LookupValueProperty
AddValueProperty
ChangeValueProperty

A-I

A List of operations

A.S Group properties

lookupGroupProperty
AddGroupProperty
AddGroupMember
DeleteGroupMem ber
AddSelf
DeleteSelf
IsMember
IsMemberClosure

A.6 Domains and organizations

EnumerateOrganizations
EnumerateDomai ns
EnumerateNearbyDomains

A.7 Access control

A-2

lookupOrgAccess
LookupDomainAccess
LookupPropertyAccess

IsMemberOfOrgAccess
IsMemberOfDomainAccess
IsMemberOfPropertyAccess

AddOrgAccessMember
AddDomainAccessMember
AddPropertyAccessMember

DeleteOrgAccessMember
DeleteDomainAccessMember
DeletePropertyAccessMember

B

AppendixB
CHCommonLookups.mesa

CHCommonLookups.mesa provides utilities that support several common forms of
Clearinghouse entry lookups. These utilities are not the most efficient way to do these
lookups and are decidedly suboptimal for many applications. In several instances storage
is allocated and freed twice and data is copied twice. With the exception of
LookupAddress, all the utilities share a 500 word buffer used in dese~ializing the results
of Clearinghouse calls. Because of this shared buffer, these utilities cannot run
concurrently. Sophisticated ,:!sers of the Clearinghouse are better off using the CH.mesa
interface and doing their own storage management.

CHCommonLookups: Definitions = ... ;

In each of the following procedures, the success of lookups can be determined by
examining rc.Code and succeeded. If rc.Code is done and succeeded is TRUE, then
everything went well with the lookup. If succeeded is FALSE, then something went wrong
when deserializing the data. For example, if the value of pid is not a string in
LookupStringProperty, succeeded will be FALSE. If rc.Code is not done, consult the return
code to find out what went wrong.

LookupAddress PROCEDURE [
conversation: cH.ConversationHandle. name: CH.Name]
RETURNS [rc: cH.ReturnCode, address: System.NetworkAddress, succeeded: BOOLEAN];

Looks up the address list associated with name and returns the nearest address. This is
the only utility that uses a private buffer and can run concurrently with the other
utilities.

LOokupStringProperty: PROCEDURE [
conversation: cH.ConversationHandle, name: cH.Name, pid: cH.PropertyID.
heap:UNCOUNTED ZONE]
RETURNS [rc: cH.ReturnCode, stringProperty: NSString.String. succeeded: BOOLEAN];

Looks up the string that is associated with the property pid in the property list for name
and returns the string. heap is used to allocate storage for the returned string.

B-1

B

B-2

CHCommonLookups.mesa

LookupNameProperty: PROCEDURE [
conversation: cH.ConversationHandle, name: cH.Name, pid: cH.PropertylD,
heap:UNCOUNTED ZONE]
RETURNS [rc: cH.ReturnCode, nameProperty: NSName.Name, succeeded: BOOLEAN];

Looks up the name that is associated with the property pid in the property list for name
and returns that name. heap is used to allocate storage for the returned name.

LookupAnyValueProperty: PROCED'URE [
conversation: cH.ConversationHandle, name: cH.Name,
parameters: Courier.Parameters, pid: cH.PropertylD, heap: UNCOUNTED ZONE]
RETURNS [rc: cH.ReturnCode, succeeded: BOOLEAN];

Looks up the value of the property that is associated with the property pid in the property
list for name. heap is used to allocate storage for the returned data. If succeeded is TRUE,
then the client is responsible for any storage that was allocated during the lookup.
Courier. Free will need to be called by the client to free space allocated by Co.urier.

XEROX Services 8.0 Programmel"s Guide

Mailing
Programmer's Manual

November 1984

PRELIMINARY

Xerox Corporation
Office Systems Division
3450 Hill view A yen ue
Palo Alto, California 94304

ii

Table of contents

1 Introduction 1-1

2 Mail transport. 2-1

2.1 Message envelopes. 2-2
2.2 Posting slot access . 2-5
2.3 Delivery slot access 2-6

2.3.1 Locating a delivery slot 2-6
2.3.2 Delivery slot operation. 2-7

2.4 Transport errors 2-9
2.4.1 Access errors 2-10
2.4.2 Authentication errors 2-11
2.4.3 Connection errors 2-11
2.4.4 Location errors. 2-13
2.4.5 Session errors . 2-13
2.4.6 Service errors . 2-14
2.4.7 Transfer errors. 2-14
2.4.8 Undefined errors 2-15

3 Inbasket 3-1

3.1 Standard message format 3-1
3.2 Finding an inbasket server. 3-3
3.3 Inbasket sessions 3-3

3.3.1 Creating and deleting sessions. 3-3
3.3.2 Inbasket state . 3-4
3.3.3 Inbasket caching 3-6

3.4 Inbasket operations 3-6
3.4.1 Locate . 3-6
3.4.2 ChangeStatus 3-7
3.4.3 Retrieve 3-7
3.4.4 Delete 3-8
3.4.5 List. 3-8

lil

lV

Table of contents

3 Inbasket (CONTINUED,

3.5

4

4.1
4.2
4.3

4.4
4.5

5

5.1
5.2
5.3

Inbasket errors.
3.5.1 Contents type errors
3.5.2 Invalid index errors

Mail attributes

Message attributes.
Envelopes.
Attribute encoding and decoding
4.3.1 Decoding .
4.3.2 Encoding .
Encoding and decoding standard format messages .
Signals and errors

Mail stream

Message posting
Message retrieval
Mail stream errors.

Figures

2.1
3.1

Mail transport system
Standard format message

3-9
3-9
3-9

4-1

4-2
4-4
4-5
4-5
4-6
4-7
4-8

5-1

5-1
5-2
5-3

2-1
3-2

1

•

Introduction

This document describes the Mailing Stub, a collection of programs which implements the
client portion of the Xerox NS Mailing Protocols. The Mailing Stub provides the necessary
facilities for Mesa clients to make full use of the 8000 NS Mail Service. In this capacity, it
acts as agent software for the Mail Service in much the same way that Filing allows its
clients to make use of the NS File Service. The Mailing Stub is often similar to Filing in its
usage of certain Mesa constructs, and this document makes frequent reference to the
Filing Programmer's Manual (12).

Collectively, all 8000 NS Mail Services on an internet form a single mail transport system
capable o(supporting the exchange of electronic mail among the users of that internet. A
message is a unit of electronic mail, consisting of two parts: envelope and content. The
message envelope contains whatever information is necessary to route the message to its
eventual destination(s), including a list of intended recipients. Message content is simply
undiscriminated data. No attempt is made by the mail transport system to interpret it.

The Mail Service relies heavily on the existence of the 8000 NS Clearinghouse Service.
Each potential message recipient must be identifiable by a single NSName.Name as
registered in the Clearinghouse database. (NSName.Name is described in detail in §3.2.1 of
the Common Facilities Programmer's Manual [9).) In addition, a mailbox must exist for
that recipient on some Mail Service. A mailbox is a logical container which acts as the end
repository for messages destined for a given recipient within the mail transport system.
Each mailbox is associated with one and only one fully-distinguished recipient name and
can be identified either by that name or by some valid alias. To complete the
Clearinghouse information necessary for a valid message recipient, the mailbox location
must also be registered with the database; this is done by the mail server when a mailbox
is added.

The facilities described in this section are logically separated into four groups.
MailTransport provides a set of user procedures for making use of the basic mail transport
mechanism. Inbasket makes available a more sophisticated and useful way of examining
mail at the Mail Service. MailAttributes and MaiiStream allow standard message contents
to be interpreted and facilitate operations on standard message contents for clients of
Filing and Mesa development environment file systems.

1-1

1 In trod uction

1-2

2

Mail transport

This section describes the Mail Transport facility. This facility provides a set of procedures
for posting and accepting delivery of messages at the Mail Service.

MailTransport: DEFINITIONS = ... ;

Communication with the mail transport system takes place through two queues, or slots:

C:CiPie~

posting slot delivery slot

Figure 2.1 Mail transport system

At the posting slot, the client provides a message, complete with envelope (recipient)
information. When 'posting is complete, that message has been written to stable storage at
the Mail Service, and the client can proceed with other activities. The mail transport
system, in its background processing loop, then 'completes the task of distributing the
message to the mailboxes of the specified recipients. Messages are obtained from the
transport system at the delivery slot. When a message passes through the delivery slot, it
becomes the property of the recipient.

2 1

2 Mail transport

Both posting and delivery slots are actually queues. A client accepting mail at the delivery
slot has no choice but to take the message currently at the head of the queue. As the
message passes through the delivery slot, it is dequeued and flushed from the mail system.
This mode of operation is convenient for certain types of clients. The fact that all messages
must be processed in order matters little to programs that automatically receive and
process mail. Such programs typically deal with known message formats; messages that
cannot be interpreted can be discarded. Human users of the Mail Service do not fit this
model well, since most user agent programs cannot understand all message formats.
Furthermore, it can prove useful for different user agents to be able to examine the same
mailbox without taking possession of all the mail it contains. Such clients can make good
use of the Inbasket facility which allows mail to be examined while remaining at the Mail
Service. The Inbasket facility is discussed in section 3 of this document.

2.1 Message envelopes

2-2

The message envelope contains information needed by the mail transport system to
deliver a message to its destination mailboxes. The following definitions will be useful in
describing envelope data.

Message recipients and mailboxes are identified by name. All such names must be fully­
qualified.

MailTransport.Name: TYPE = NSName.Name;
MailTransport.NameRecord: TYPE = NSName.NameRecord;
MaiITransport.NameList: TYPE = LONG DESCRIPTOR fOR ARRAY OF NameRecord;

As a message passes through the posting slot, the mail transport system tags it so that it is
uniquely identified. Each message is given two such tags: a postmark to identify the place
(server name) and time (in seconds) of posting, and a unique SO-bit quantity known as a
message id.

MailTransport.Postmark: TYPE = RECORD [server: Name. time: Time];
MaiiTransport.Time: TYPE = System.GreenwichMeanTime;

MaiITransport.MessageID: TYPE [5];

All messages that pass through the mail transport system must carry information on how
the message content should be interpreted. This information is stored in the envelope as
the message contents type. Since the mail transport system never interprets content, there
is no guarantee that contents type matches actual message format. It is the responsibility
of client programs to be able to handle malformed content encodings.

MailTransport.ContentsType: TYPE = LONG CARDINAL;

There are currently five specified contents types, the two most common of which are
ctSerializedFile and ctUnspecified. Messages of type ctSerializedFile should be encoded as
Courier objects of type NSFile.SerializedFile. This encoding scheme provides a general­
purpose mechanism for representing trees of files, each file containing both attributes and
data. It is described in detail in §3.8.2 of the Filing Programmer's Manual [121.

. Mailing Programmer's Manual

MaiITransport.ctSerializedFile: ContentsType = 0;
MaiITransport.ctUnspecified: ContentsType = 1;

2

It is expected that most clients of th~ mail transport system will use ctSerializedFile as the
standard message contents type. Later portions of this section describe utilities provided
by the Mailing Stub to facilitate the handling of messages of this type. Non-standard
contents types are allowed, to promote exchange of data encoded according to private
client requirements. This best suits applications in which automated systems wish to
exchange data through the mail transport system. It is important that message traffic of
thi~ sort be kept disjoint from 'standard format traffic since the message content will he
essentially uninterpretable. Contents type ranges are administered by convention and can
be reserved for specific applications upon request. Three such reserved types (which
should only be used by their creators) are ctNull, ctClearinghouseUpdate, and
ctMSlnterserver.

MaiITransport.ctNull: ContentsType = LAsT[ContentsType);
MaiITransport.ctClearinghouseUpdate: ContentsType = 2;
MaiITransport.ctMSlnterserver: ContentsType = 3;

The data type MailTransport.Envelope defines the client-visible portion of the message
envelope. This information is kept in the mailbox along with each message and can be
examined when the client accepts delivery from the mail transport system.

MaiiTransport.Envelope: TYPE = LONG POINTER TO EnvelopeRecord;

MaiiTransport.EnvelopeRecord: TYPE = RECORD [
postmark: Postmark,
messagelD: MessagelD,
contentsType: ContentsType,
contentsSize: LONG CARDINAL,
originator: Name,
problem: Problem];

postmark and messagelD are identification tags assigned during posting; contents Type is
the contents type of the message; contentsSize is the size in bytes of the message content;
originator is the authenticated name of the sender; if problem is not Nil, then this is a
returned message which could not be delivered by the mail transport system.

The constant nullEnvelope defines null values for all envelope components.

MaiiTransport.nuIlEnvelope: EnvelopeRecord = ... ;
Occasionally, the mail transport system is unable to deliver a message that was
successfully posted (e.g., the recipient name is no longer valid). If this occurs, the message
is returned to its sender (determined by the name embedded in the Auth.ldentityHandle
provided to the Post cam, and a Problem is indicated in the message envelope.

MaiITransport.Problem: TYPE = LONG POINTER TO ProblemRecord;

MaiITransport.ProblemRecord: TYPE = MACHINE DEPENDENT RECORD [
undeliverables(O): Undeliverables,

. returnedEnvelope(3): ReturnedEnvelope);

2-3

2

..

2-4

Mail transport

MaiITransport.Undeliverables: TYPE = LONG DESCRIPTOR FOR ARRAY OF UndeliveredName;

MailTransport. UndeliveredName: TYPE = MACHINE DEPENDENT RECORD [
reason(O): UndeliveredNameType.
name(1): NameRecord];

UndeliveredNameType: TYPE == MACHINE DEPENDENT {
noSuchRecipient(O). cantValidateNow(1). iIIegalName(2). refused(3),
noAccessToDL(4), timeou1(S). noDLsAlJowed(6), messageTooLong(7)};

There are seven types of UndeliveredNameType:

noSuchRecipient The message could not be delivered to the recipient because the
recipient does not exist or does not have a mailbox.

cantValidateNow The message could not be delivered to the recipient because there was
no Clearinghouse available for name validation. [Not used in OS5.1

illegal Name

refused

nOAccessToDL

timeout

nODLsAllowed

The recipient is not a valid Name.

The message Y'as refused at the recipient's delivery slot. This appears
only in a Re1urnedEnvelope.

The sender does not have access to send to this distribution list. [Not
used in OS5.]

Indicates that the mail transport system gave up trying to forward the
message to a distant Mail Service. For example, a destination Mail
Service might be down for an extended period. This appears only in a
ReturnedEnvelope.

Occurs only if alJowDLRecipients = FALSE while posting and indicates
that the recipient name represents a distribution list.

messageTooLong The message could not be delivered to the recipient because the
message was too long for the destination Mail Service. This appears
only in a ReturnedEnvelope.

MaiiTransport.ReturnedEnvelope: TYPE = [3];

The following procedure is provided for examination of returned envelopes:

MaiiTransport.DecodeReturnedEnvelope: PROCEDURE [
encoding: ReturnedEnvelope. envelope: Envelope]
RETURNS [ok: BOOLEAN];

encoding is the returned envelope to be examined; envelope points to a client-allocated
EnvelopeRecord.

Storage allocated by DecodeReturnedEnvelope must be freed using:

MaiITransport.ClearEnvelope: PROCEDURE [env: Envelope];

Mailing Programmer's Manual 2

2.2 Posting slot access

MailTransport.Post is the procedure by which mail is passed through the posting slot. This
procedure performs several functions. First, a Mail Service capable of accepting mail is
located. Second, the recipients of the message are validated by the Mail Service. This
validation is successful only if each recipient is correctly registered in the Clearinghouse
database. [Note: The Mail Service attempts to validate all recipients. In certain unlikely
cases this validation is impossible and invalid names might be accepted. In such cases, the
message will ultimately be returned with a. ProblemRecord.] Finally, the Mail Service
forms an envelope using the specified arguments, and both envelope and content are
written to stable storage.

MaiiTransport.Post: PROC [
identity: Auth.ldentityHandle.
recipients: NameList. postlflnvalidNames. allowDLRecipients: BOOLEAN.
contentsType: ContentsType. contents: NSDataStream.Source]
RETURNS [undeliverables: Undeliverables];

Arguments:

Results:

Errors:

identity provides authentication information about the client who
wishes to post a message (see Authentication Programmer's Manual [1]
for details on authentication); recipients describes a list of fully:
qualified recipient names (duplicate names or aliases that resolve to
duplicate names are ignored); postlflnvalidNames allows messages to
be sent even if invalid names exist in recipients, otherwise this
condition results in an error; allowDLRecipients allows messages to be
sent to recipient names which represent distribution lists, otherwise
this condition results in an error; contentsType describes the format of
the message content; contents specifies the source that is to supply the
message content in accordance with NSDataStream conventions (see
section 2 of Common Facilities Programmer's Manual [9]).

The message content provided by contents is addressed to recipients
and posted. If postlflnvalidNames is TRUE, then undeliverables
describes the recipients which were found to be invalid; otherwise it is
NIL.

If postlflnvalidNames or allowDLRecipients is FALSE, then
MailTransport.lnvalidRecipients may be raised. MailTransport.Error may be
raised with the following error types: authentication. connection,
location, service. transfer. Courier.Error may also be raised.

Note: Clients of Filing will typically use this operation in conjunction with NSFile.Serialize,
which serves to encode a subtree of files into Filing serialized file (standard message)
format. See §3.S.2 of Filing Programmer's Manual [12] for more detail on this operation.

The client has the option of allowing message posting to proceed, even if some of the
intended recipients are not valid. If the client declines this option, the existence of invalid
recipients is reported by the error InvalidRecipients.

MailTransport.lnvalidRecipients: ERROR [nameList: Undeliverablesl;

2-5

2 Mail transport

If the client chose to suppress the InvalidRecipients error, a list of invalid recipients is
returned as a result of the MailTransport.Post call. In this case, the following procedure must
be used to free the underlying storage.

MaiiTransport.FreeUndeliverables : PROCEDURE [invalidNames: Undeliverables];

2.3 Delivery slot access

2-6

The delivery slot protocol provides a method of accessing a .mailbox. It allows clients to do
two things at the delivery slot: poll for presence of mail, and retrieve existing mail in a
FIFO (First In, First Out) manner. Mail retrieval is done within the context of a session. A
delivery slot session begins with a call to BeginDelivery and ends with a call to
EndDelivery. The DeliveryHandle returned by BeginDelivery encapsulates state
information about the session. Operations on DeliveryHandle should be performed
sequentially; simultaneous calls on a single handle are not allowed. A DeliveryHandle can
become invalid at any time. This is most likely ifthe destination mail server is stopped or
ifthe session is inactive for some length of time.

MaiiTransport.DeliveryHandle: TYPE = [2];
nullHandle: DeliveryHandle = LOOPHOLE[LONG[NILIl ;

2.3.1 Locating a delivery slot

MaiiTransport.Location: TYPE = LONG POINTER TO READONL Y LocationRecord;
MailTransport. LocationRecord: TYPE = RECORD [

type: MailboxType,
serverName: Name,
addr: System.NetworkAddress);

MaiiTransport. MailboxType: TYPE = { primary, secondary};

MaiITransport.GetLocation: PROCEDURE [
identity: Auth.ldentityHandle, mailbox: Name, type: MailboxType ~ primary]
RETURNs[Location) ;

Arguments:

Results:

Errors:

identity provides authentication information about the client who
seeks the mailbox location (see Authentication Programmer's Manual
[1] for details on authentication); mailbox is a fully qualified name or
alias identifying the mailbox sought; type indicates whether the
primary or secondary mailbox location is desired.
[Note: Secondary mailboxes are not implemented in OS5.1

The clearinghouse is queried to find the name and address of the
server which holds the requested inbasket or delivery slot.

MailTransport.Error may be raised with the type location. Courier. Error
may also be raised.

GetLocation allocates storage which must be freed with a call to FreeLocation.

MaiiTransport.FreeLocation: PROCEDURE [Ioc: Location];

Mailing Programmer's Manual 2

2.3.2 Delivery slot operations

A typical delivery slot session would consist of a call to BeginDelivery, multiple calls to the
triplet DeliverEnvelope, DeliverContent, Acknowledge[acknowledge], and the
concluding call to EndDelivery. Acknowledge can be called after DeliverEnvelope-for
instance, in the case of refusal or to abort when the space required by content size is not
available-but this is not the normal case. Each call to DeliverEnvelope must be followed
by a call to DeliverContent or Acknowledge. An improper sequence of operations will
result in the MailTransport error handle[wrongState]. .

2.3.2.1 BeginDelivery

BeginDelivery is used to initiate a delivery slot session at the delivery slot specified. This
access is exclusive and locks out all other clients who might try to access that same
mailbox with this or any other protocol.

MaiITransport.BeginDelivery: PROCEDURE [
identity: Auth.ldentityHandle, deliverySlot: Name, loc:Location NIL]
RETURNS [handle: DeliveryHandle];

Arguments:

Results:

Errors:

2.3.2.2 DeliverEnvelope

identity provides authentication information about the client who
wishes to establish a session (see Authentication Programmer's
Manual [11 for details on authentication); deliverySlot is a fully
qualified name or alias identifying the mailbox which is to be
examined; loc identifies the Mail Server which holds the mailbox. If
loc is defaulted, the clearinghouse will be queried to locate the server
holding the primary mailbox in question.

handle is the identifier to be used for further reference to this delivery
slot session.

All MailTransport.Errors may be raised except connection and transfer.
Courier. Error may also be raised.

DeliverEnvelope retrieves the envelope of the message at the top of the delivery slot queue
implied by handle. This operation is legal only directly after BeginDelivery and following
any subsequent Acknowledge.

MaiITransport.DeliverEnvelope: PROC [handle: DeliveryHandle. envelope: .Envelope]
RETURNS [empty: BOOLEAN];

Arguments:

Results:

handle must be a valid session handle; envelope points to a client­
allocated EnvelopeRecord where the message envelope will be stored.

If empty is TRUE, then the delivery slot has no messages queued and
envelope does not represent a valid message. Storage is allocated for
envelope fields which must be freed with MaiITransport.ClearEnvelope.

2-7

2

2-8

Mail transport

Errors:

2.3.2.3 DeliverContent

MailTransport.Error may be raised with the following error types:
authentication, handle, service, undefined. Courier. Error may also be
raised.

DeliverContent retrieves the contents of the message at the top of the delivery slot queue
implied by handle. This operation is legal only directly after DeliverEnvelope.

MaiiTransport.DeliverContent: PROC [handle: DeliveryHandle, contents: NSDataStream.Sink);

Arguments:

Results:

Errors:

2.3.2.4 Acknowledge

handle must be a valid session handle; contents describes a sink for
the incoming data (see section 2 of Common Facilities Programmer's
Manual [9]).

None.

MaiiTransport.Error may be raised with the following error types:
authentication, handle, service, transfer, undefined. Courier. Error may
also be raised.

The operation Acknowledge indicates the desired disposition of the message at the top of
the delivery slot queue. An er.ror will result if that message's envelope has not been
previously examined within the context of the specified DeliveryHandle. This operation is
legal following either DeliverEnvelope or DeliverContent.

MaiITransport.DeliveryAckType: TYPE = MACHINE DEPENDENT {
acknowledge(O), refuse(1), abort(2) };

abort

acknowledge

refuse

The message at the head of the queue will remain at the top of the
queue; it will be the first message available to any subsequent
DeliverEnveJope call.

The message at the head of the queue is considered to have been
received and is deleted from the mailbox.

The message at the head of the queue will be returned to its originator
with the UndeliverableNameType: refused.

MaiiTransport.Acknowledge: PROCEDURE [handle: DeliveryHandle, reply: DeliveryAckType];

Arguments:

Results:

Errors:

handle must be a valid session handle; reply indicates the desired
disposition of the message.

None.

MaiiTransport.Error may be raised with the following error types:
authentication, handle, service, undefined. Courier.Error may also be
raised.

•

Mailing Programmer's Manual 2

2.3.2.5 End Delivery

End Delivery terminates the session initiated by a previous BeginDelivery. This operation
is valid at any time in the session.

MaiITransport.EndDelivery: PROCEDURE [handle: DeliveryHandle] ;

Arguments:

Results:

Errors:

2.3.2.6 Poll

handle represents the session to be terminated.

None.

MaiiTransport.Error may be raised with the following error types:
authentication. handle. service. undefined. Courier. Error may also be
raised.

Poll allows the client to query the specified delivery slot as to whether mail exists.

MaiITransport.Poll: PROCEDURE [
identity: Auth.ldentityHandle. deliverySlot: Name. loc: Location ~ NIL]
RETURNS [mailExists. isPrimary: BOOLEAN];

Arguments:

Results:

Errors:

identity provides authentication information about the client who
wishes to poll the mailbox (see Authentication Programmer's Manual
[1] for details on authentication); deliverySlot is a fully qualified name
or alias identifying the mailbox which is to be examined; loc identifies
the Mail Server which holds the mailbox. If loc is defaulted, the
clearinghouse will be queried to locate the server holding the primary
mail?ox in question.

If mailExists is TRUE, then there is mail in the mailbox; isPrimary
indicates whether the mailbox is a primary or secondary mailbox.
[Note: isPrimary will always be TRUE as secondaries are not
implemented in OS5.1

MaiiTransport.Error may be raised with the following error types: access.
authentication. location, service. undefined. Courier. Error may also be
raised.

2.4 Transport errors

When a mail transport operation is unable to complete successfully, it reports this fact by
raising one of the Mesa errors, MaiiTransport.Error or Courier. Error. These errors are used to
report any condition that makes continued execution of a procedure impossible. For
example, the client may have specified incorrect arguments to a procedure, or some
required resource may be unavailable.

Note: Courier.Error may be raised by any MailTransport operation. Consult Pilot
Programmer's Manual [261 for further details about Courier. Error.

2-9

2

•

2-10

Mail transport

MaiITransport.Error: ERROR [error: ErrorRecord];

MaiITransport.ErrorRecord: TYPE = RECORD [SELECTerrorType: ErrorType FROM
access. = > [problem: AccessProblem],
authentication = > [problem: AuthenticationProblem},
connection = > [problem: ConnectionProbleml.
handle = > [problem: SessionProblem].
location = > [problem: LocationProblem],
service = > [problem: ServiceProblem],
transfer = > ["roblem: TransferProblem],
undefined = > [problem: UndefinedPrDblem],
ENDCASE);

MaiITransport.ErrorType: TYPE = (
access,authentication, connection, handle, location, service, transfer, undefined};

The argument to MaiiTransport.Error is a variant record, each arm of which defines a
subclass (MaiITransport.ErrorType) of error conditions. The specific problem is described by
the fields of the particular variant.

2.4.1 Access errors

A MailTransport.Error of type access may be raised by any procedure that requires access to a
mailbox. It indicates that access to the mailbox in question is currently not possible.

MaiiTransport.ErrorRecord: TYPE = RECORD [SELECT errorType: ErrorType FROM
access = > [problem: AccessProblem), ••. J;

MaiITransport.AccessProblem: TYPE = MACHINE DEPENDENT {
accessRightslnsufficient(O), accessRightslndeterminate(1), mailboxBusy(2),
noSuchMailbox(3), mailboxNamelndeterminate(4)};

The argument problem describes the problem in greater detail.

accessRightslnsufficient The user does not have the access rights needed to perform
the requested operation.

Mailing Programmer's Manual 2

accessRightsl ndeterm i nate The mail service could not determine whether the user has
the access rights needed to satisfy the request; for example,
the clearinghouse service is unavailable to determine
membership in a group.

mailboxBusy The specified mailbox is open in a way which prevents the
desired access.

nOSuchMailbox The specified mailbox was not found on the mail service:

mailboxNamelndeterminate Themail service was not able to contact the clearinghouse
service to determine the location of the mailbox.

2.4.2 Authentication errors

A MaiiTransport.Error of type authentication may be raised by any procedure.

MailTransport.ErrorRecord: TYPE = RECORD [SELECT errorType: ErrorType FROM
..• , authentication = > [problem: NSName.AuthenticationProblem], ...];

NSName.AuthenticationProblem: TYPE = {
badNamelnldentity. badPwdlnldentity. tooBusy, cannotReachAS.
cantGetKeyAtAS. credsExpiredPleaseRetry. authFlavorTooWeak, other};

badNamelnldentity

badPwdlnldentity

tooBusy

cannotReachAS

cantGetKeyAtAS

credsExpiredPleaseRetry

authFlavorTooWeak

other

2.4.3 Connection errors

There is something wrong with the name in the identity
handle (e.g., it might not exist in the clearinghouse).

The password in the identity handle does not match the
name in the identity handle.

The authentication service is too busy to handle the
request.

Cannot make the necessary contact with the
authentication service.

The authentication service cannot get the necessary key
(e.g., the clearinghouse with the relevant information
could be down or the entry might not exist in the
clearinghouse.

The mail service's credentials had expired; the operation
should be successful if tried a second time.

Requested authentication flavor is too weak.

Strange or unknown authentication problem.

A MailTransport.Error of type connection may be reported by any procedure that sends data
to a sink or receives data from a source. It indicates a problem in establishing the

2-11

2

2-12

Mail transport

connection for transfer of bulk data in a third-party transfer (see §3.8 of Filing
Programmer's Manual [12]).

[Note: Because direct third-party transfers are not implemented in OS5, connection
problems are not reported.]

MaiiTransport.ErrorRecord: TYPE = RECORD [SELECT errorType: ErrorType FROM
...• connection = > [problem: ConnectionProblem] };

MaiiTransport.ConnectionProblem: TYPE = MACHINE DEPENDENT {
-- communication problems
noRoute(O). noResponse(1). transmissionHardware(2). transportTimeout(3).
-- resource problems
tooManyLocalConnections(4). tooManyRemoteConnections(S).
--remote program implementation problems
missingCourier(6). missingProgram(7). missingProcedure(8). protocoIMismatch(9).
parameterlnconsistency(10). invalidMessage(11). returnTimedOut(12).
-- miscellaneous
otherCaIiProblem(177777B) };

The argument problem describes the problem in greater detail.

noRoute No route to the other party could be found.

noResponse The other party never answered.

transmissionHardware Some local transmission hardware was inoperable.

transportTimeout The other party responded but the connection was broken.

tooManyLocalConnections No additional connection is possible.

tooManyRemoteConnections The other party rejected the connection attempt.

missingCourier The other party had no Courier implementation.

missingProgram The other party did not implement the bulk data program.

missi ngProcedure The other party did not implement the procedure.

protocol Mismatch The two parties have no Courier version in common.

parameterl nconsistency A protocol violation occurred in parameters.

invalidMessage A protocol violation occurred in message format.

returnTi medOut The procedure call never returned.

otherCaliProblem Some other protocol violation during a call.

Mailing Programmer's Manual 2

2.4.4 Location errors

A MailTransport.Error of type location may be raised by any procedure that requires the
Mailing Stub to locate network resources. This can happen either when locating a mail
drop for message posting, or when performing a Clearinghouse query to determine the
location of a mailbox.

MaiITransport.crrorRecord: TYPE = RECORD [SELECT errorType: ErrorType FROM
... , location = > [problem: LocationProblem], ...];

MaiiTransport.LocationProblem: TYPE = {
noCHAvailable. nOSuchName. noMailboxForName, noLocationFound. noMailDropUp

};

The argument problem describes the problem in greater detaiL

noCHAvaiiable

noSuchName

noMailboxForName

noLocationFound

noMailDropUp

2.4.5 Session errOf!S

A Clearinghouse query failed because a needed
Clearinghouse Service was not available.

The mailbox name does not exist (or is no good) in the
Clearinghouse.

The Clearinghouse is up but there is no mailbox for the
specified name.

The Clearinghouse database contains inconsistent
information with respect to the location of the mailbox in
question.

No Mail Service was available for message posting.

A MailTransport.Error of type session indicates that the Mail Service encountered a problem
while using a particular MailTransport.DeliveryHandle or (nbasket.Session.

MaiiTransport.ErrorRecord: TYPE = RECORD [SELECT errorType: ErrorType FROM
... , session = > [problem: SessionProblem] •... J;

MaiiTransport.SessionProblem: TYPE = MACHINE DEPENDENT {
handJelnvalid(O). wrongState(1) };

These errors relate to the state of a delivery slot or inbasket session. The argument
problem describes the problem in greater detail.

handlelnvalid

wrongState

The specified handle is not valid at the server.

The operation requested is currently illegal within the
context of the session.

2-13

2

2-14

Mail transport

2.4.6 Service errors

A MaiiTransport.Error of type service indicates that the Mail Service encountered a problem
due to the unavailability of some resource.

MaiITransport.ErrorRecord: TYPE = RECORD [SELECT errorType: ErrorType FROM
"'r service = > [problem: ServiceProblemJ, .•.];

MaiiTransport.Serviceproblem: TYPE = MACHINE DEPENDENT {
cannotAuthenticate(O), serviceFull(1), serviceUnavaiiable(2). mediumFull(3) };

The argument problem describes the problem in greater detail.

cannotAuthenticate

serviceFuli

serviceUnavailable

mediumFuli

2.4.7 Transfer errors

The Mail Service is unable to determine whether the user's
credentials are valid; this could occur if the Mail Service
needs to contact some service that is unavailable.

An implementation-dependent limit concerning the
activity of the Mail Service has been exceeded.

The Mail Service is unavailable for use by new clients.

Occurs during message posting. The Mail Service disk
storage capacity is not sufficient to successfully post this
message.

A MailTransport.Error of type transfer may be reported by any procedure tha:t sends data to a
sink or receives data from a source. It indicates that a problem occurred during the
transfer.

MaiITransport.ErrorRecord: TYPE = RECORD [SELECT errorType: ErrorType FROM
•.•• transfer = > [problem: TransferProbleml •.•. J;

MaiiTransport.TransferProblem: TYPE = MACHINE DEPENDENT {
aborted(O). noRendezvous(3). wrongDirection(4) };

The argument problem describes the problem in greater detail.

aborted

noRendezvous

wrongDi recti on

The sink or source's procedure aborted the transfer, or the
bulk data transfer was aborted by the party at the other
end of the sink or source's stream.

The identifier from the other party never appeared.

The other party wanted to transfer the data in the wrong
direction.

Mailing Programmer's Manual 2

2.4.8 Undefined errors

A MailTransport.Error of type undefined may be reported by any procedure. It indicates that
an implementation-dependent problem occurred that could not be reported by another
error. This error is normally l'eported only when a particular Mail Service is
malfunctioning. The client has no way of recovering from undefined errors.

MaiITransport.ErrorRecord: TYPE = RECORD [SELECT errorType: ErrorType FROM
....• undefined = > [problem: UndefinedProblem)];

The argument problem describes the problem in greater detail and is uninterpretable.

MailTransport.UndefinedProblem: TYPE = CARDINAL;

2-15

2 Mail transport

2-16

3

Inbasket

This section describes the Mailing Stub Inbasket facility, through which clients are able to
examine, retrieve, and delete electronic mail that has accumulated at an 8000 NS Mail
Service. It is intended to facilitate the task of user agents, those programs responsible for
displaying mail to human users.

Inbasket: DEFINITIONS = ... ;

For the purposes of this section, an inbasket is a mailbox as viewed through the Inbasket
facility. While the delivery slot facilities described in the previous section allow mailboxes
to be viewed only as FIFO queues, an inbasket is a mailbox viewed as a container. The
contained elements can be accessed at random and the container itself can be viewed
simultaneously by several clients. While each client of this facility can choose its own
usage pattern, the eventual goal is to allow mail to accumulate at the Mail Service rather
than at the local storage of the mail client. This yields two important benefits. A single
mailbox can be viewed equally by all Mail Service clients, and there need only be one
shared copy of any given message for multiple recipients at a Mail Service. The intent of
I"basket is to provide the functionality to make the Mail Service a logical extension of the
user agent.

Inbaskets are identified by name. Such names must be fully qualified.

Inbasket.Name: TYPE = NSName.Name;

3·.1 Standard message format

As stated in the previous section, a message's content will be considered to be in standard
message format if encoded as a NSFiJe.SerializedFi Ie. This encoding format allows a subtree
of Filing files to be expressed in a serial fashion, each file consisting of attributes and data.
An attribute is a data item that is associated with a file. Any information associated with a
file which is not a part of the file's content is contained in the file's attributes. It is
expected that most standard format messages will be single files. Nevertheless, the
encoding format provides the needed flexibility for clients that wish to send and receiv~
entire subtrees. (Serialized files, attributes, and file content are described in detail in
section 3 of Filing Programmer's Manual [12J.)

The Mailing Stub defines and manages a set of attributes that are generally applicable to
Filing files. These attributes correspond to properties normally associated with electronic

3-1

3 Inbasket

mail such as message subject, addresses, and sender. Some of these attributes are Filing
extended attributes which are encoded and decoded directly by the mailing stub. Other
attributes correspond directly to Filing interpreted attributes. For example, the
mailSubject attribute maps directly to the Filing name attribute. Mail attributes are
discussed in section 4.

Although SerializedFile format allows entire subtrees to be encoded, the primitives
provided by the mailing stub that deal with attributes apply only to the root node of any
such subtree. The attributes a~d contents of that root node will be referred to as the
message attributes and message body. Messages may possess attributes which are not
understood by the Mailing Stub. No attempt will be made to interpret such attributes.
Similarly, there is no restriction on message body format. It should be remembered,
however, that the Mail Service is not a conversion service. In order for useful information
to flow, attribute and content format must be understood by both sender and recipient.

The following is a graphical depiction of a standard message format.

Contents type:
Originator:
Postmark Time:

Server:

ctSerializedFile
Jane Doe:OSBU:Xerox
October 31, 1984, 0100 PST
PostOffice:OSD West:Xerox

Figure 3.1 Standard message format

Mailing Programmer's Manual 3

3.2 Finding an inbasket server

The inbasket associated with anyone Clearinghouse name can legitimately reside on only
one Mail Service. The name of this Mail Service and the network address of the server
which houses it are registered in the Clearinghouse database. The MaiiTransport
procedure GetLocation can be used to retrieve this information from the Clearinghouse
database.

It is not necessary for every client to determine its inbasket server address. Every
Inbasket procedure that requires a MaiiTransport.Location will accept NIL and subsequently
do the required server location. MailTransport.GetLocation is provided to eliminate the
unnecessary overhead associated with repetitive Clearinghouse queries. Its use is
recommended for clients that need to check inbaskets frequently.

Note: Inbaskets can reside on any Mail Server and may be moved at will. Any cached
information should be rechecked in the event of a failure.

(The association between a name and its inbasket location is denoted by the existence of a
mailboxes property for that name which the Mail Service adds to the Clearinghouse
database. This property is interpreted as the name of the Mail Service holding the
inbasket in question.)

3.3 Inbasket sessions

A session encapsulates the state of interaction between an Inbasket client and the target
Mail Service. A session begins when a client logs on and is completed when the client logs
off. A session handle is used to identify and refer to the state information underlying a
session. At any time, a session handle may be involved in at most one inbasket operation.
A session handle may become invalid at any time. Typically, this will happen only when
the target mail service is stopped, or when the session has been inactive for a long period of
time.

Inbasket.Session: TYPE [2];

The constant null Session is provided for client convenience.

Inbasket.nullSession: Session = [LONG[NIL]] ;

3.3.1 Creating and deleting sessions

Logon is used to initiate a session to a given mail service. Inbasket sessions provide access
to one and only one inbasket which must be specified when the session is created. The
client can optionally acquire exclusive access to the named in basket or permit the
existence of other simultaneous sessions.

Inbasket.Logon: PROCEDURE [
identity: Auth.ldentityHandle. inbasket: Name.
cacheCheck: CacheVerifier nullCacheVerifier.
allowSharing: BOOLEAN FALSE.loc: MailTransport.Location NIL]
RETURNS [session: Session. cacheStatus: CacheStatus];

3-3

3

3-4

Inbasket

Arguments:

Results:

Errors:

identity provides authentication information about the client who
wishes to log on (see Authentication Programmer's Manual [1] for
details on authentication); inbasket is a name or an alias describing
the inbasket which is to be examined; cacheCheck is a CacheVerifier
which the client can optionally use to verify the state of a locally
cached inbasket (see §3.3.3 for details); if allowSharing is TRUE, more
than one such session involving the named inbasket will be allowed to
coexist, otherwise exclusive access is assumed; loc identifies the Mail
Service to which a session is desired; if NIL is specified, the Mailing
Stub will query the Clearinghouse to determine the network address of
the Mail Service corresponding to inbasket.

session is a session handle which can be used for further operations on
the inbasket just opened; cacheStatus is the result of a local cache
validity check which is performed using the cacheCheck argument.

MaiiTransport.Error is raised with the following error types: access,
authentication, location, and service. Courier.Error may also be raised.

Logoff is used to terminate a session. The mail system verifies that the request is valid,
invalidates the session, and frees any allocated resources ..

Inbasket.Logoff: PROCEDURE [session: Session] RETURNS [CacheVerifier];

Arguments:

Results:

Errors:

3.3.2 In basket state

session denotes the session to be terminated.

cacheVerifier is a token that can be passed to the next Logon call for
purposes of verifying a local cache.

MaiiTransport.Error is raised with the error type handle.

An existing session embodies a consistent set of inbasket state information. This
information remains consistent over the life of the session, even if the inbasket is shared
with another session. This message specific information is totally separate from that kept
by the Mail Transport system.

Inbasket.State: TYPE = MACHINE DEPENDENT RECORD [
lastlndex(O): Index,
newCount(1): CARDINAL,
isPrimary(2): BOOLEAN,
isPrimaryUp(3): BOOLEAN];

The single most important state data is the range of valid indices by which messages can
be referenced. Valid indices for any given session range from [1 • .Iastlndex]: The mapping
between indices and messages remains constant over the life of a session. This is true even
if the entire contents of the inbasket are deleted by another simultaneous session. The
deleted messages become invisible with respect to new sessions, but always remain within
the view of an existing session. lastlndex may increase at any time as messages are added
to the inbasket, but will never decrease as viewed through a single session.

Mailing Programmer's Manual 3

Inbasket.lndex: TYPE = CARDINAL;
Inbasket.lndexRange: TYPE = MACHINE DEPENDENT RECORD [first. last: Index];
Inbasket.nullindex: Index = 0;

The newCount field of Inbasket.State describes the number of messages with a message
status of new (§4.2 describes the intended values and interpretations of the defined
message state values). Note: The iSPrimary and isPrimaryUp fields are currently always
TRUE and will be used in a future release.

The following procedure can be used for checking the inbasket state embodied by a
session. It serves the additional purpose of maintaining activity on the session to prevent
its deletion due to prolonged inactivity. (Any in basket operation which takes a session
handle as an argument serves to prolong the session, but this is the most efficient.)

Inbasket.MaiICheck: PROCEDURE [session: Session]
RETURNS [state: State. checkAgainWithin: CARDINAL];

Arguments:

Results:

Errors:

session must be a valid session handle.

state is the Inbasket.State associated with the argument session handle;
checkAgainWithin indicates the time (in seconds) remaining until
session will become invalid due to inactivity.

MaiiTransport.Error may be raised with the following error types:
authentication. handle. service. Courier. Error may also be raised.

It is also possible to examine the state of an inbasket from outside a session using the
procedure MailPol1. The state returned is similar to that resultingfromlnbasket.MaiICheck,
but since no session is involved, this state is only a temporary hint. Since the inbasket
client must subsequently log on to do useful work, there is always a window of time during
which the in basket state might change.

Inbasket.MaiIPolI: PROCEDURE [
identity: Auth.ldentityHandle. inbasket: Name.loc: MailTransport.Location ~NIL]
RETURNS [State);

Arguments:

Results:

Errors:

identity provides authentication information about the client who
wishes to log on (see Authentication Programmer's Manual [11 for
details on authentication); inbasket is a name or an alias describing
t~e inbasket which is to be examined; loc identifies the mail service to
which a session is desired. If NIL is specified the Mailing Stub will query
the Clearinghouse to determine the network address of the mail
service corresponding to inbasket.

The Inbasket.State associated with the specified mailbox is returned.

MailTransport.Error may be raised with the following error types: access.
authentication. location. service. Courier. Error may also be raised.

Note: The OS5 mail service does not perform access control checking or authentication on
incoming MailPolI calls. However, the client should not rely on the continuation of this
policy in future releases.

3-5

3 Inbasket

3.3.3 Inbasket caching

[Note: Inbasket caching is not implemented in OS5.J

A client may choose to maintain a cached copy of all or part of an inbasket over more than
one session. In order to do this, there must be some way to check the validity of the cached
copy with respect to the actual inbasket at the mail service. This is done by means of the
CacheVerifier.

Inbasket.CacheVerifier: TYPE [4];

Inbasket.nuIiCacheVerifier: CacheVerifier = ... ;
A client keeping a cache will at some time be forced to build it from scratch by
enumerating the state of the inbasket (see §3.4.5). Once this is done, the cache is in synch
. with the state of the real inbasket. It is assumed that the client can continuously update
this cache so as to mirror the operations performed during the course of a session. Upon
terminating the session, the Mail Service returns a 64-bit cache 'verifier to the client. Since
we are assuming that the cache is valid at the termination of the session, this cache
verifier can be used as an argument to the next session establishment to determine if the
state of the real inbasket has changed.

Inbasket.CacheStatus: TYPE = MACHINE DEPENDEN·T {correct(O), incomplete(1), invalid(2}};

Inbasket.Logon returns a CacheStatus as a result along with the session handle. Its value
will be based on the state of the inbasket as compared with its state when the argument
cache verifier was issued. correct implies that the inbasket state is the same and that the
cache is valid; incomplete suggests that new messages have arrived; and invalid means
that the cache must be rebuilt.

3.4 Inbasket operations

3-6

This section describes the operations provided for examining and manipulating the
contents of inbaskets within the context of a session.

3.4.1 Locate

Any inbasket can be scanned for the first occurrence of a message of a particular message
status. This might be useful, for example, in finding the first unread message.

Inbasket.Locate: PROCEDURE [session: Session, status: MessageStatus] RETURNS [Index];

Arguments:

Results:

Errors:

session is a valid session handle; status is the message status to be
searched for.

The index of the first message with the specified message status.

MailTransport.Error may be raised with the following error types:
authentication, handle, service. Courier. Error may also be raised.

Mailing Programmer's Manual 3

3.4.2 ChangeStatus

The inbasket client can change the message status of any range of messages.

Inbasket.ChangeStatus: PROCEDURE [
session: Session. range:lndexRange. status: MaiIAttributes.MessageStatus);

Arguments:

Results:

Errors:

3.4.3 Retrieve

session is a valid session handle; range is an Index Range specifying .
the messages to be affected; status is the new value for the message
status of the affected messages.

None.

MaiiTransport.Error may be raised with the following error types:
authentication. session. service. Inbasket.lnvalidlndex and Courier. Error
may also be raised.

The contents of any message can be retrieved at will. The retrieval operation also returns
the message transport envelope along with whatever inbasket information is stored with
the message.

It is assumed that inbasket clients will typically be prepared to handle only one message
contents type during message retrieval. This is a useful assumption if the bulk data sink is
to be some operation like NSFile.Deserialize which decodes the incoming serialized data on
the fly. To make this possible, Inbasket.Retrieve requires that the client specify an
expectedContentsType. An error will be raised if the actual type does not match the
expected one. If the client does not care to specify an expected type, the constant
MaiiTransport.nullContentsType may be used to suppress the contents mismatch error.

Inbasket.Retrieve: PROCEDURE [
session: Session. message:lndex. expectedContentsType: MaiiTransport.ContentsType.
contents: NSDataStream.Sink. envelope: MailAttributes.Envelope);

Arguments:

Results:

Errors:

session is'a valid session handle; message is the index of the desired
message; expectedContentsType defines the message format which
the client expects to receive; contents describes a sink for the incoming
data; envelope points to a client-allocated EnvelopeRecord where the
message envelope will be stored.

The contents of the specified message are retrieved to contents. The
message envelope is returned within the referent of envelope.

MailTransport.Error may be raised with the following error types:
authentication. connection, handle. service. transfer. The Inbasket
errors ContentsTypeMismatch and Invalidlndex may be raised;
Courier. Error may also be raised.

3-7

3

3-8

Inbasket

Note: Filing clients expecting to encounter standard format messages will typically use
this operation in conjunction with NSFile.Deserialize, which serves to decode such messages
into a subtree of Filing files. See §3.8.2 of Filing Programmer's Manual [12] for more detail
on this operation.

!nbasket.Retrieve allocates storage in the course of providing envelope information. This
storage must be freed with a call to MaiiAttributes.ClearEnvelope.

3.4.4 Delete

Any range of messages may be deleted.

!nbasket.Delete: PROCEDURE [session: Session, range: IndexRange);

Arguments:

Results:

Errors:

3.4.5 List

session is a valid session handle; rarige is an IndexRange specifying
the messages to be deleted. .

None.

MaiiTransport.Error may be raised with the following error types:
authentication, handle. service. Inbasket.Jnvalidlndex and Courier.Error
may also be raised.

!nbasket.List makes it possible for a client to enumerate and examine the properties of
messages within an inbasket. This procedure gives special status to standard format
messages by interpreting contents so as to allow message attributes to be returned in the
enumeration. If a non-standard format message is present in an inbasket, no attempt at
interpretation will be made and the message will (correctly) appear to have no attributes.
Since all messages have an envelope; message properties can then be considered to be a
summation ofthe information contained in both envelope and attributes.

!nbasket.List: PROCEDURE [
session: Session, range: IndexRange,

selections: MaiIAttributes.Selections, proc: ListProc];

Arguments:

Results:

Errors:

session is a valid session handle; range is an IndexRange specifying
the messages to be enumerated; selections determines the message
properties the client is interested in examining; listProc is a client
specified procedure to be called for each message in the enumeration.

None.

MailTransport.Error may be raised with the following error types:
authentication. handle, service. Inbasket.lnvalidlndex and Courier. Error
may also be raised.

Mailing Programmer's Manual 3

The client must provide a procedure to be called for each element of the inbasket
enumeration. This procedure must be of the following type:

Inbasket.ListProc: TYPE = PROCEDURE [msg: Index, props: MaiIAttributes.MailProperties]
RETURNS [continue: BOOLEAN +-TRUE];

msg is the index of the current message; props is a pointer to a record which contains the
relevant property information .. The client can terminate the enumeration by returning
with continue set to FALSE.

3.5 Inbasket errors

When an inbasket operation is unable to complete successfully, it reports this fact by
raising one of the Mesa errors, MaiITransport.Error, Inbasket.ContentsTypeMismatch,
Inbasket.Jnvalidlndex, or Courier. Error. These errors are used to report any condition that
makes continued execution of a procedure impossible (e.g., the client may have specified
incorrect arguments to a procedure, or some required resource may be unavailable).

3.5.1 Contents type errors

Inbasket.ContentsTypeMismatch: ERROR [correctType: MaiITransport.ContentsType];

The error ContentsTypeMismatch may be raised by Inbasket.Retrieve. It is raised if the
expected contents type specified in the Inbasket.Retrieve call does not match the actual
contents type of the message. The parameter correctType denotes the actual contents type
in the message envelope.

3.5.2 Invalid index errors

Inbasket.Jnvalidlndex: ERROR [badlndex: Index];

The error Invalidlndex may be raised by any procedure which takes an Inbasket.lndex or
Inbasket.lndexRange as an argument. The parameter badlndex describes the index found to
be in valid or out of range. Indices of messages that have been de leted wi thin a session take
on special semantics. Reference to a deleted message will cause an error only if the
procedure in question takes a single Index as an argument. Procedures such as
Inbasket.List, which operate on an IndexRange, will simply skip over deleted messages.

3-9

3 Inbasket

3-10

4

Mail attributes

This section describes MailAttributes, a facility which describes the standard message
format and allows clients of a Xerox 8000 NS Filing file system to attach message
attributes to files which can then later be used as standard format messages.

MailAttributes: DEFINITioNS = ... ;

Since message attributes are really Filing attributes, the procedures described in this
section act as a translation facility between Filing and Mailing Stub attribute
interpretations. For the most part, this involves encoding the Mesa representation of
message properties into Filing extended attributes, and vice versa. In certain cases,
message properties correspond to Filing interpreted attributes. In these cases a direct
mapping is made.

When a message is retrieved from the Mail Service, envelope information is returned as a
result of the retrieval. Since the message envelope contains useful information that the
client might want to retain, the-attribute encoding and decoding procedures provide for
encoding and decoding this envelope information which will then be stored along with the
attributes for future reference.

MailAttributes makes no direct use of the Filing file system, but is designed to be used in
conjunction with those Filing procedures that read and write file attributes. For more
information concerning Filing attributes and the available operations to manipulate
them, see section 5 of Filing Programmer's Manual [12].

The following definitions will be used throughout:

MaiIAttributes.Name: TYPE = NSName.Name;
MaiIAttributes.NameList: TYPE = MaiITransport.NameList;
MaiiAttributes.String: TYPE = NSString.String;
MaiIAttributes.Words: TYPE = LONG DESCRIPTORFORARRAY OF UNSPECIFIED;

4-1

4 Mail Attributes

4.1 Message attributes

4-2

The following attributes are supported by the Mailing Stub. Each definition provides a
description of the meaning and purpose of the attribute and its Mesa definition. Unless
otherwise noted in the definition, each attribute is implemented as a Filing extended
(uninterpreted) attribute.

Attribute: TYPE .. RECO'RD [
.- end to end message attributes settable by client
var: SELECT type: AttributeType FROM

mailAnswerTo. mailCopies. mailFrom, mailTo .. > [value: NameList).
mailinReplyTo, mail Note. maiiSubject .. > [value: String],
mailBodySize. mailBodyType • > [value:LONGCARDINAL),
ENDCASE);

AttributeList: TYPE'. LONG DESCRIPTOR FOR ARRAY OF Attribute;

AttributeType: TYPE .. {
maiIA,:,swerTo, mailCopies, mailFrom, maillnReplyTo,
mailNote. mail Subject, mailTo, mailBodySize. mailBodyType };

Message attributes fall into two categories: mandatory and optional. The following
attributes are mandatory and should be defined for all standard format messages.

MaiIAttributes.Attribute: TYPE. RECORD [.•. , mailFrom • > [value: NameList), ...];

mail From The mailFrom attribute is a list of fully-qualified name(s)
which the message originator can use to identify the
sender(s) of the message. The sender named by this
attribute should not be confused with the originator
specified in the message envelope by the message
transport system.

MaiiAttributes.Attribute: TYPE. RECORD [...• mailTo = > [value: NameListJ, ..•];

maitTo The maitTo attribute is a list of fully-qualified names
which indicate the primary recipients of the message.
Additional message recipients can be indicated in the
mailCopies attribute. Remember that the mail transport
system does not interpret message contents. Therefore,
there is no direct relationship between the maitTo and
mailCopies fields and the actual recipients of the message.
It is the responsibility of the client to maintain that
correspondence.

MaiIAttributes.Attribute: TYPE. RECORD [•.. , mailSubject • > [value: String], ...];

mailSubject The maiiSubject attribute is a String which contains the
subject of the message. This attribute is synonymous with

. the Filing interpreted attribute name and must therefore
satisfy the constraints which apply to that attribute.

Mailing Programmer's Manual 4

MaiIAttributes.Attribute: TYPE = RECORD [... , mailBodySize = > [value:LONG CARDINAL], ...];

Inbasket.nuIlBodySize: LONG CARDINAL = LAST (LONG CARDINAL I;

mailBodySize The root node of every standard message consists of
message attributes and message body. mailBodySize
records the number of client-visible bytes in a file. This
attribute is synonymous with the Filing 'interpreted
attribute sizelnBytes.

MaiIAttributes.Attribute: TYPE = RECORD [... , mailBodyType = > [value: LONG CARDINAL J, .
. . J;
MailAttributes.null BodyType: LONG CARDINAL = NSAssignedTypes, tU nspecified;

mailBodyType The root node of every standard message consists of
message attributes and message body. 'mailBodyType
describes the format of the data in the message body. This
attribute is synonymous with the Filing interpreted
attribute type.

The following attributes are optional. They need not be present in all standard format
messages.

Inbasket.Attribute: TYPE = RECORD [,. " mailAnswerTo = > [value: NameList],. , ,];

mailAnswerTo The mailAnswerTo attribute is a list of fully-qualified
names which identify recipients to whom replies to the
message should be sent. This field can be used by client
software to fill in the to field of the reply message.

Inbasket.Attribute: TYPE = RECORD [•. ,' mailCopies = > [value: NameList], ...];

mailCopies The mailCopies attribute lists any additional recipients of
the message.

Inbasket.Attribute,: TYPE = RECORD [, , " maillnReplyTo = > [value: String], ...];

maillnReplyTo The maillnReplyTo attribute is a String which identifies
the message to which this message is a response. This field
is often filled in by client software when the user chooses to
answer a given message.

Inbasket.Attribute: TYPE = RECORD [• , " mailNote = > [value: String], •••];

mailNote The mailNote attribute can contain text in addition to or
instead of the message body. This attribute is typically
used to hold some comment about the message, such as a
note as to its importance or a brief description of its
contents.

4-3

4 Mail Attributes

The following data types are provided for returning decoded message properties to the
client. There is a field in an AttributesRecord corresponding to each possible message
attribute type.

MaiIAttributes.Attributes: TYPE = LONG POINTER TO AttributesRecord;

MaiIAttributes.AttributesRecord: TYPE = RECORO [
-- these map to filing extended attributes:
answerTo: Namelist,
copies: NameUst,

from: NameUst.
to: NameList.
inReplyTo: String.
note: String,
-- these map to filing interpreted attributes:
subject: String,
BodySize: LONG CARDINAL.
bodyType: LONG CARDINAL];

The following constant describes null values for all message properties:

MaiiAttributes.nuilAttributesRecord: AttributesRecord ;

4.2 Envelopes

4-4

In addition to the message attributes information, the Mail Transport system and
Inbasket mechanism have message specific information which is passed to the client in a
MaiIAttributes.Envelope.

MaiiAttributes.Envelope: TYPE = LONG POINTER TO EnvelopeRecorc:i;
MaiIAttributes.EnvelopeRecord: TYPE. RECORD [

transport: MailTransport.EnvelopeRecord, inbasket: InbasketEnvelopeRecord];

MailAttributes.lnbasketEnvelopeRecord: TYPE = MACHINE DEPENOENT RECORD [
status:(O) MessageStatus);

MaiIAttributes.nuilEnvelopeRecord: EnvelopeRecord •..• ;

Each mess'age has a message status which describes whether it has been 'seen' by the
intended recipient. The message status is totally under control of the client. Here are the
intended interpretations for the defined values.

MaiIAttributes.MessageStatus: TYPE = MACHINE DEPENDENT {
new(O). known(1). received(2). (256B)};

new '
known
received

The message is newly delivered and unknown to the recipient.
The recipient knows of the existence of this message.
The recipient has seen the contents of this message.

The following procedure is provided for freeing storage allocated for envelope storage:

MaiIAttributes.ClearEnvelope: PROCEDURE [envelope: Envelope];

Mailing Programmer"s Manual 4

4.3 Attribute encoding and decoding

These types and procedures are provided to interconvert Mailing and Filing attribute
types. Allowance is made for the envelope information to be stored along with the
attributes in a single encoded format.

MaiIAttributes.FileAttributeList: TYPE = NSFile.AttributeList;
MaiIAttributes.FileSelections: TYPE = NSFile.Selections;

MaiIAttributes.BooleanFalseDefault: TYPE = BOOLEAN FALSE;

The structure MailAttributes.Selections allows a client to specify a set of message properties.

MaiiAttributes.Selections: TYPE = RECORD (
envelope: BOOLEAN TRUE,
attributes: PACKED ARRAY AttributeType OF BooleanFalseDefault);

envelope indicates a desire to examine the MailAttributes.Envelope containing both the
mail transport and in basket envelopes. attributes includes a BOOLEAN value for each
message attribute supported by the Mailing Stub. A value of TRUE indicates that the client
desires to examine the property so specified.

4.3.1 Decoding

In order to decode the message properties associated with a Filing file, the client must be
able to discern those Filing attributes which are used for storing message properties.
Given a selection of desired message attributes, the following routine returns the selection
of corresponding Filing attributes.

MaiiAttributes.MapSelections: PROCEDURE [
selections: MaiIAttributes.Selections. mergeWith: FileSelections []]
RETURNS [FileSelections];

Arguments: selections specifies a desired set of message properties; mergeWith
specifies a set of Filing attributes that can be merged into the results.

Results:

Errors:

The resulting NSFile.Selections describes a set of Filing attributes that
correspond to the specified message properties.

None.

The results returned by MapSelections must be freed by the client using:

MailAttributes.FreeFi leSelections: PROCEDURE [selections: Fi leSelections];

Typically, a client will call MapSelections to obtain a selection of Filing attributes
corresponding to the message properties to be decoded. The resultant attribute selection
can then be used to invoke a Filing operation to actually read the file attributes. Filing
returns these attribute values using the Mesa structure NSFile.AttributesRecord, from
which DecodeProperties can extract whatever message properties are present. Filing

4-5

4

4-6

Mail Attributes

attributes that do not correspond to message properties will be ignored. The envelope
information is also extracted for the client.

MaiiAttributes.MaiIProperties: TYPE = LONG POINTER TO MailPropertiesRecord;
MaiiAttributes.MaiJPropertiesRecord: TYPE = RECORD[

env: EnvelopeRecord. attrs: AttributesRecord);

MaiIAttributes.DecodeProperties: PROCEDURE [
fAttrs: NSFile.Attributes. props: MaiIAttributes.MaiIProperties];

Arguments:

Results:

Errors:

fAttrs points to a NSFile.AttributesRecord which should contain the
Filing attributes to be decoded; attributes must point to a client­
allocated MailPropertiesRecord where the results of the decoding will
be stored.

The message properties contained in filingAttr are decoded and
returned within the referent of props.

MailAttributes.Bad Envelope and MaiiAttributes.MalformedAttri buteo

Caution: Partial results will not be returned for attributes that cannot be deserialized
(e.g., malformed attributes). In these cases, a NIL value for the attribute in question will be
returned.

Attribute decoding allocates storage so as to return results to the client. This storage must
be freed with the following procedure:

MaiIAttributes.ClearProperties: PROCEDURE [props: MaiIProperties);

To save storage space, the following procedure may be called to eliminate duplicate
domain and organization names in an attributes record:

MaiIAttributes.UnqualifyAttributeNames: PRoc[attributes: Attributes, defaultName: Name);

4.3.2 Encoding

Message attributes and envelope can be encoded into Filing attributes with
EncodeProperties. The resulting NSFile.AttributeList can be subsequently passed to a Filing
procedure such as NSFile.ChangeAttributes for writing the encoded attributes to a file.

MaiIAttributes.EncodeProperties: PROCEDURE [
attrList: AttributeList, env: MaiiAttributes.Envelope Eo- NIL. defaultName: Name Eo- NIL]
RETURNS [FileAttributeList);

Arguments:

Results:

attrList describes an array of Mail Attributes. Attri bute to be encoded along
with the env information; defaultName is used to qualify any names
in attrList that are not fully qualified.

A descriptor for array of NSFile.Attribute is returned. This array
represents the Filing attribute encoding of the arguments attrList and
env.

Mailing Programmer's Manual 4

Errors: MailAttributes.BadEnvelope and MaiIAttributes.lllegaIAttribute.

The client might choose to eliminate some set of message properties from permanent
storage. The following procedure returns an NSFile.AttributeList which can be used for this
purpose. Only Filing extended attributes are affected.

MailAttributes.EncodeNil: PROCEDURE [selections: Inbasket.Selections]
RETURNS [FileAttributeList];

Arguments: selections describes a set of message properties to be eliminated.

Results: A descriptor for array of NSFile.Attribute is returned. Each element of
this array is a NIL extended attribute corresponding to a selected
message property.

Errors: None.

The following procedure must be used to free any FileAttributeList returned by a
MailAttributes operation. It should not be used for lists allocated by other facilities.

MaiiAttributes.FreeFileAttributes: PROCEDURE [list: FileAttributeListl;

4.4 Encoding and decoding standard format messages

The following procedures provide a stream filter facilitating creation and interpretation of
serialized files which are in standard message format.

MaiIAttributes.SeriaIStream: TYPE = Stream.Handle;
MaiiAttributes.SeriaIStreamDirection: TYPE = {send. receive};

MaiIAttributes.MakeSerializer: PROCEDURE [
source: Stream.Handle. direction: SerialStreamDirection]

RETURNS [SeriaIStream];

Arguments: source is the stream which will be encapsulated in the SerialStream;
direction indicates whether data is to be sent or retrieved on the
stream.

Results:

Errors:

source will be encapsulated in the necessary format to make it a
serialized file. The caller must do SendNow on the SerialStream to
terminate the file if direction is send.

None.

The following procedures can be optionally used with a SerialStream to get/put mailing
attributes. If they are called, they must be called immediately after MakeSerializer and
before any other get/put on the SerialStream.

MailAttributes.ReceiveAttri butes: PROC [source: SerialStream. attributes:
MaiiAttributes.A ttri butes);

4-7

4 Mail Attributes

Arguments:

Results:

Errors: .

attributes points to a client-allocated AttributesRecord which will be
filled in with the attributes on source.

The attributes on the stream are deserialized and put in attributes,
and the client need only get his message content to complete the
transfer of information.

MalformedAttribute and NotASerializedFile may be raised.

MaiiAttributes.SendAttributes: PROCEDURE [

dest: SerialStream. attributesList: MaiiAttributes.AttributeList, defauftName: Name E­

NILI;

Arguments:

Results:

Errors:

The attributes described by attributesList will be serialized and put to
dest; defaultName will be used to qualify any unqualified names in
attributesList.

The attributes are serialized, and the client need only put his message
content and call SendN ow to complete the transfer of information.

lffegalAttribute and NotASerializedFile may be raised.

4.5 Signals and errors

4-8

MaiiAttributes.NotASerializedFile: ERROR;

This error may be raised by all of the Serialized File filter operations mentioned in §4.4
except puts to the SerialStream.

MaiiAttributes.BadEnvelope: SIGNAL;

This signal indicates unsuccessful decoding/encoding of the envelope. It is raised by
EncodeProperties and DecodeProperties. If resumed while decoding, a null Envelope will
be returned. It is not a good idea to resume it while encoding as the envelope will be left
uninitialized.

MaiiAttributes.lllegalAttribute: SIGNAL;

This signal indicates unsuccessful encoding of an attribute and is raised by
EncodeProperties. It makes no sense to resume this signal (doing so is a no-op).

MaiiAttributes.MalformedAttribute: SIGNAL [type: AttributeType, words: Words);

This signal indicates a serialization error during attribute decoding. It is raised by
DecodeProperties and ReceiveAttributes. If resumed, the attribute will be assigned some
appropriate null value.

5

Mail stream

This section describes MailStream, a facility which allows clients to post and receive
standard format messages using unformatted data streams.

MailStream: DEFINITIONS = ... ;

As described in §3.1, standard message format allows subtrees of files to be expressed in a
serial fashion, each file consisting of attributes and data. MailStream is a conversion
utility which builds single node standard format messages, given message attributes and
a stream of unformatted data. Conversely, it provides a mechanism to parse the root-level
element of an incoming serialized tree into attributes and data. This function is useful
within operating environments that do not provide operations for handling serialized file
format. It is important to note that only root nodes are handled; the remainder of any
incoming tree is ignored.

5.1 Message posting

MailStream.Send is used for posting messages. It calls MailTransport.Post and so the
arguments and argument syntax are similar. Clients of the Send operation provide a
StreamProc in which their stream manipulations are done. Putting data to the stream
provided within the StreamProc will cause that data, along with the specified attributes,
to be posted as a standard format message. The client is not responsible for the deletion of
the stream handle provided within the StreamProc. A TRUE return from this procedure will
cause the entire posting operation to be canceled.

MaiiStream.StreamProc: TYPE = PROCEDURE [
stream: Stream.Handle] RETURNS [aborted: BOOLEAN];

MaiIStream.Send: PROCEDURE [
identity: Auth.ldentityHandle, recipients: MaiITransport.NameList.
postlflnvalidRecipients. allowDLRecipients: BOOLEAN,
attributes: MaiIAttributes.AttributeList, sendProc: StreamProc]
RETURNS [invalidNames: MaiITransport.Undeliverables];

5-1

5 Mail stream

Arguments:

Results:

Errors:

identity provides authentication information which is used to validate
the sender; recipients is a list of those to whom the message is to be
delivered; postlflnvalidRedpients determines whether the message
will be delivered to the valid recipients in the event that any invalid
recipients are specified, otherwise this condition results in an error.
aliowDLRecipients allows the message to be sent to recipients whjch
represent distribution lists, otherwise this condition results in an
error. The attributes are sent along with the message body and will be
associated with the message file, but are not inspected by the mail
transport system. The client puts the message body to the stream in
postProc.

A single level standard format message, consisting of the argument
attributes and the data put to the stream within postProc, is addressed
to recipients and posted. The contents type of the resultant message
will be dSerializedFile. If postlflnvalidRecipients is TRUE, all names in
recipients which are not valid will be returned in InvalidNames.

If either postlflnvalidRecipients or aliowDLRecipients is FALSE, then
MailTransport.lnvalidRecipients may be raised. MailTransport.Error may be
raised with the following error types: authentication, connection,
location, service, transfer. Courier. Error may also be raised.

5.2 Message retrieval

5-2

MailStream.Retrieve is used for retrieving messages. It calls Inbasket.Retrieve and therefore
has a similar argument structure. Clients of this operation also provide a StreamProc in
which their stream manipulations are done. Getting data from the stream provided·will
return the de serialized data content of the message body in an unspecified format. The
client is not responsible for the deletion of the stream handle provided within the
StreamProc. Returning TRUE from this procedure causes the retrieval to be canceled.

MaiIStream.Retrieve: PROCEDURE [
session: Inbasket.Session. message: Inbasket.lndex, retrieveProc: StreamProc];

Arguments:

Results:

Errors:

session is obtained by doing an Inbasket.Logon; message is a number
that specifies which message in the inbasket is to be retrieved. The
client gets the message body from the stream in retrieveProc.

The message body of the specified message can be read from the stream
handle provided within retrieveProc.

MailStream.FormatError will be raised if the message is not correctly
encoded in standard message format. Inbasket.ContentsTypeMismatch
indicates that the message being retrieved is not of contents type
dSerializedFile. Inbasket.lnvalidlndex may be raised. The following
types of MailTransport.Error may be raised: access, connedion. handle.
service, transfer. Courier.Error may also be raised.

Mailing Programmer's Manual 5

5.3 Mail stream errors

In general, MailStream allows all errors raised by underlying transport and inbasket
operations to pass through to the client. In addition, FormatError may be raised during
message retrieval if the message is of contents type ctSerializedFile, but is not really in
standard message format.

MailStream. FormatError: ERROR;

5-3

5 Mail stream

5-4

XEROX Services 8.0 Programmer's Guide

Printing
Programmer's Manual

November 1984

PRELIMINARY

Xerox Corporation
Office Systems Division
3450 Hillview Avenue
Palo Alto, California 94304

II

Table of contents

1 Introduction 1-1

1.1 Overview 1-1
1.2 Definition of Terms 1-1

2 Interface 2-1

2.1 Basic types. 2-1
2.2 Freeing storage 2-2
2.3 Print 2-3

2.3.1 Print request status 2-4
2.3.2 Printer status 2-5
2.3.3 Printer properties 2-6

2.4 Errors. 2-7

3 NSPrint interface 3-1

iii

Table of contents

IV

1

Introduction

This document describes NSPrint, the interface to the Mesa implementation of the
Printing Protocol.

1.1 Overview

NSPrint: DEFINITIONS =

BEGIN .•.

NSPrint provides a Mesa interface to the Courier-based Printing Protocol [29], which, in
turn, provides a standard method of transmitting an Interpress [18] master to a Print.
Service. This interface defines the procedures and data structures required for full
compliance with the standard which, together with Bulk Data Transfer Protocol [3],
provides all that is necessary t~ communicate with a Print Service that also supports the
Printing Protocol.

1.2 Definition of terms

This section defines some common terms used in printing in general and in this document
in particular.

Banner sheet (or break page) the sheet produced by the printer to identify the request
and to separate one print request from the next. It may be
optional or not provided at all on some printers.

Interpress master (also, master) the file which contains the imaging instructions for
producing the printed results. The encoding conforms to
the Interpress standard as defined in lnterpress
Electronic Printing Standard [18].

Media the material (and size) upon which the image is to be
printed. The only choice is paper with various sizes which
conform to standard sizes, or a specific size in
millimeters.

Printer the Print Service which provides the Courier export of
NSPrint.

1·1

1 Introduction

Printer Properties

Printer Status

Print Request or job

1-2

the more-or-Iess static capabilities and enabled options of
the printer and the total inventory of the media that is
available, including that accessible only through
operator intervention.

the current state of the various subsystems comprising
Print Service and the media which is immediately
available. The spooler is the subsystem which processes
the Print calls, the formatter is the subsystem which
converts the Interpress master into a form suitable for
marking, and the printer is the marking engine.

the attributes, options and interpress master sent to the
printer via the Print procedure. This job is uniquely
identified by the RequestlD returned by Print.

2

Interface

Thefollowing sections describe all aspects of the NSPrint interface.

2.1 Basic types

The following are the definitions of Mesa TYPES used in two or more procedures.

Time: TYPE = LONG CARDINAL;

Time should contain a value consistent with System.GreenwichMeanTime (and [32]).

String: TYPE = NSString.String;

String.bytes format and characters should conform to the OIS Character set.

RequestlD: TYPE = System.UniversaIlD;

Defines a document transmitted via Print. It is returned at the successful completion of
Print and is used in calls to GetPrintRequestStatus (to the same host).

Media: TYPE = LONG DESCRIPTOR FOR ARRAY OF Medium;

Medium: TYPE = MACHINE DEPENDENT RECORD [
var{O): SELECTtype(O): MediumType FROM
paper = > [paper(1): Paper],
ENDCASE];

MediumType: TYPE = MACHINE DEPENDENT {paper(O)};

Mediumlndex: TYPE = CARDINAL[O .. 1);
Paper: TYPE = MACHINE DEPENDENT RECORD [
var(O): SELECTtype(O): PaperType FROM
unknown = > [), --illegal argument, possible result
knownSize = > [knownSize(1): PaperSize],
otherSize = > [otherSize(1): PaperDimensions],
ENDCASE];

2-1

2 Interface

PaperType: TYPE == MACHINE DEPENDENT {unknown(O), knownSize, otherSize(2)};

Paperlndex: TYPE == CARDINAl[0 .. 3);

PaperSize: TYPE == MACHINE DEPENDENT {
dontUse(O) --the protocol defines this enumeration as starting at 1 !--,
us Letter, usLegal, aO, a1, a2. a3, a4, as, a6, a7, a8, a9,
isoBO, isoB1, isoB2. isoB3, isoB4, isoB5, isoB6, isoB7, isoB8, i50B9, isoB10,
jisBO, ji5B1, jisB2, ji5B3, jisB4, ji5BS, jisB6, ji5B7, jisB8, jisB9,
jisB10(34)};

PaperDimensions: TYPE == MACHINE DEPENDENT RECORD [
length(O), width(1): CARDINAL]; --units are millimeters

The Media array is used for two purposes: (1) It is used by the client to specify the medium
on which a print request is to be rendered; and, (2) it is used by the print service to return
status information about the media available for printing.

Media is an array that defines the size(s) of output media. When Media is the result of a
status procedure, the array contains either the single item unknown (indicating that the
print service cannot determine the media sizes), or one hundred or less other items
indicating the sizes of media on which the print service can print.

Medium is used as an argument to Print (via PrintOptions). As such, it may not contain
the item unknown.

The various choices of knownSize specify standard medium sizes. The specific sizes
assigned to each are given in [29], Table 1.

The otherSize variant allows the specification of sizes of media other than those contained
in knownSize. The components width and length are specified in millimeters. When
otherSize occurs as an argument to Print, it indicates the size of medium on which the
client wishes the master to be printed. If length is zero, the client is not specifying a length
(for example, for a printer that has a roll of paper); at the discretion of the print service,
the length may be as long as the document, or some other length chosen by the print
service. When an element of otherSize is returned to the client as the result of a status
request, a length of zero indicates that the print service can produce a page of variable
length and with the specified width.

2.2 Freeing storage

2-2

Because certain returned arguments require arbitrary storage to be allocated by the
NSPrint implementation, the interface provides procedures to free that storage once those
arguments have been absorbed by the client. The argument storage is considered short
term and is allocated out of Heap.systemZone.

FreeString: PROCEDURE [string: LONG POINTER TO String];

FreeMedia: PROCEDURE [media: LONG POINTER TO Media];

FreePrinterProperties: PROCEDURE [printerProperties: LONG POINTER TO PrinterProperties);

2.3 Print

Printing Programmer's Guide 2

FreePrinterStatus: PROCEDURE [printerStatus: LONG POINTER TO PrinterStatus];

FreeRequestStatus: PROCEDURE [requestStatus: LONG POINTER TO RequestStatus];

The Print procedure provides the mechanism for transporting the job parameters and the
Interpress master to the printer and returns a RequestlD. The RequestlD can be used
subsequently in calls to GetPrintRequestStatus at the same systemElement.

PrintAttributes: TYPE = LONG DESCRIPTOR FOR ARRAY OF PrintAttribute;

PrintAttribute: TYPE = MACHINE DEPENDENT RECORD [
var(O): SELEcTtype(O): PrintAttributeType FROM
printObjectName = > [printObjectName(1): String ~ [NIL. o. 0]].
printObjectCreateDate = > [printObjectCreateDate(1): Time ~ 0],
senderName = > [senderNameO): String ~ [NIL, 0, 0]].
ENDCASE);

PrintOptions: TYPE = LONG DESCRIPTOR FOR ARRAY OF PrintOption;

PrintOption: TYPE = MACHINE DEPENDENT RECORD [
var(O): SELECTtype(O): PrintOptionType FROM
printObjectSize = > [prin~ObjectSize(1): LONG CARDINAL +- 0],
recipientName = > [recipientName(1): String ~ [NIL, 0]].
message = > [message(1): String +- [NIL. 011,
copyCount = > [copyCount(1): CARDINAL+-1],
pagesToPrint = > [pagesToPrint(1): PagesToPrint ~ [0, 0]],
mediumHint = > [mediumHint(1): Medium ~ [paper[[knownSize[usLetter]]]l1,
priorityHint = > [priorityHint(1): PriorityHint ~ norma!],
releaseKey = > [releaseKey(1): CARDINAL~LAST[CARDINAL]],
staple = > [staple(1): BOOLEAN +-FALSE],
twoSided = > [twoSided(1): BOOLEAN +-FALSE],
ENDCASE];

PrintAttributes provides the basic information identifying the document to be printed.
printObjectName is the human-sensible name of the master to be printed.
printObjectCreateDate is the time of creation of the master. senderName is the name of
the requester of the print service.

PrintOptions provides the parameters needed for further describing the job and indicating
how the job is to be printed. Note that some options (Le., priorityHint and releaseKey) may
not be implemented on all printers. recipientName gives the name of the person for whom
the printed document is intended and will default to PrintAttributes[senderName[]].
message is a human-sensible string associated with the specified print request.
copyCount specifies the number of copies to be printed. pagesToPrint specifies the range of
pages to be printed. beginningPageNumber specifies the first page of the master to be
printed; endingPageNumber specifies the last page. pagesToPrint[[1, 1777778)) will print
all pages within a document; the beginning page must be 1. mediumHint indicates the
medium on which the printed document is to be rendered and cannot have the value
unknown. This argument acts as a hint in that an implementation may dispose of a
request (reject it or use a different medium) as it sees fit, if the specified medium is not

2-3

2

2-4

Interface

available. priorityHint suggests to the print service the execution priority that should be
given to the request. releaseKey is a datum that must be presented to the print service in
order to release a held request. It is hashed password or other text string (see [1)); a value
other than LAST(CARDINAL] may result in the document being held at the printer until a
matching release key is entered. staple specifies whether or not the document is to be
stapled together. twoSided specifies whether or not the document is to be printed on both
sides of the paper ..

Unsupported or disabled options can incur an Error[(invalidPrintParameters(]]].

Print: PROCEDURE [
master: NSDataStream.Source,
printAttributes: PrintAttributes,
printOptions: PrintOptions.
system Element: System Element]
RETURNS [printRequestlD: RequestID];

master is the NSData~tream.Source handle for the Interpress master. system Element is
the host address of the print service. RequestlD is returned after the successful call is
completed. Print can incur an Error([busy .. courier[]]].

2.3.1 Print request status

The GetPrintRequestStatus procedure provides the mechanism for obtaining status on an
outstanding print request via the printRequestlD provided by the issuing systemElement.

RequestStatus: TYPE = LONG DESCRIPTOR FOR ARRAY OF RequestStatusComponent;

RequestStatusComponent: TYPE = MACHINE DEPENDENT RECORD [
var{O): SELEcTtype(O}: RequestStatusType FROM
status = > [status{1}: Status].
status Message = > [statusMessage(1}: String],
ENDCASE);

Status: TYPE = MACHINE DEPENDENT {
pending(O). inProgress. completed. completedWithWarnings. unknown. rejected.
aborted. canceled. held(8)};

GetPrintRequestStatus: PROCEDURE (
printRequestlD: RequestlD, systemElement: System Element]
RETURNS [status: RequestStatus];

systemElement is the host address of the printer which originally issued the RequestlD.
Call FreeRequestStatus when the status has been absorbed. GetPrintRequestStatus can
incur an Error[systemError •. courier(]].

RequestStatus indicates that processing of the request is in one of the following states:
pending - has not begun; inProgress.,.. is in progress; completed - has completed normally;
completedWithWarning - has completed but warnings were generated; unknown - is
unknown to the print service; rejected - was not accepted into the marking phase because
of errors in the master; aborted - was aborted because of problems discovered during

Plinting Programmer's Guide 2

formatting or marking; canceled - was queued for printing and subsequently canceled (by
human intervention); and held - has been held for processing at a later time.

status Message is a human-sensible message typically describing some aspect(s) of the
status of the print request. In particular, warnings and error messages would be found in
this string. The default value is the empty string.

2.3.2 Printer"status

The GetPrinterStatus procedure provides the mechanism for obtaining status of the
printer.

PrinterStatus: TYPE = LONG DESCRIPTOR FOR ARRAY OF PrinterStatusComponent;

PrinterStatusComponent: TYPE = MACHINE DEPENDENT RECORD [
var(O}: SELECTtype(O}: PrinterStatusType FROM
spooler = > [spooler(1}: Spooler],
formatter = > [formatter(1}: Formatter],
printer = > [printer(1): Printer],

media = > [media(1): Media],
ENDCASE];

PrinterStatusType: TYPE = MACHINE DEPENDENT {
spooler(O}, formatter, printer, media(3)};

PrinterStatuslndex: TYPE = CARDINAL[O.A);

Spooler: TYPE = MACHINE DEPENDENT {available(O}, busy, disabled, full(3)};

Formatter: TYPE = MACHINE DEPENDENT {available(O), busy, disabled(2)};

Printer: TYPE = MACHINE DEPENDENT {
available(O}, busy, disabled, needsAttention, needsKeyOperator(4)};

GetPrinterStatus: PROCEDURE [systemElement: SystemElement]
RETURNS [status: PrinterStatus];

system Element is the host address of the printer. Call FreePrinterStatus when the status
has been absorbed. GetPrinterStatus can incur an Error[systemError .. courier[]].

The state of the spooling, formatting, and marking phases of printing are indicated by,
respectively, spooler, formatter, and printer. Each of these phases can be in any of the
following states: available, indicating that the phase is ready to accept input (the spooler
can accept masters, the formatter can begin decomposition, or the printer can start
marking); busy, indicating that that phase is currently busy and cannot accept input, but
that this is a transient condition lasting a comparatively short time (a subsequent status
request will probably find that phase available); and disabled, indicating that the phase is
unavailable and cannot accept input, and that this condition will probably last a long
time.

2-5

2

2-6

Interface

Additional states are defined for some phases:

[spooler[full]] indicates that the spooling queue is full.

[printer[needsAttention]] indicates that the marking engine is not now marking due to
some difficulty that human intervention can relieve. The human need not be specially
trained to resolve this type of difficulty. [printer[needsKeyOperator)) indicates that the
marking engine is not now marking due to some difficulty that human intervention can
relieve. In this case, the human should be trained in the marking engine's operation.

media enumerates those media that are available ("on-line") to the print service at the
time ofthe status request. In this context, available indicates that no human intervention
is required in order to print on the indicated media.

2.3.3 Printer properties

The GetPrinterProperties procedure provides the mechanism for obtaining the current
properties of the printer.

PrinterProperties: TYPE = LONG DESCRIPTOR FOR ARRAY OF PrinterProperty;

PrinterProperty: TYPE = MACHINE DEPENDENT RECORD [
var(O): SELECTtype(O): PrinterPropertyType FROM
media = > [media(1): Media].
staple = > [staple(1): BOOLEAN].
twoSided = > [twoSided(1): BOOLEAN].
ENDCASE];

GetPrinterProperties: PROCEDURE [system Element: SystemElement]
RETURNS [properties: PrinterProperties];

systemElement is the host address of the printer. Call FreePrinterProperties when the
status has been absorbed. GetPrinterProperties can incur an Error[systemError .. courier[]].

media indicates the media that can be made available by the print service. These media
need not be immediately available, but the print service must be able to provide them.
There is no default value; the print service must return some value of Media.

staple indicates the availability of document stapling. The default value is FALSE.

twoSided indicates the availability oftwo-sided printing. The default value is FALSE.

2.4 Errors

Printing Programmer's Guide

Error: ERROR [why: ErrorRecord);

ErrorRecord: TYPE = RECORD [

SELECT errorType: ErrorType FROM

busy, insufficientSpoolSpace, invalidPrintParameters, masterTooLarge,
mediumUnavailable, serviceUnavailable, spoolingDisable.d, spoolingQueueFull,
system Error, tooManyClients = > [J,
undefinedError = > [undefined: UndefinedProblem),
transferError = > [transfer: TransferProblem).
connectionError = > [connection: ConnectionProblem).
courier = > [courier: Courier.ErrorCode),
ENDCASE);

ErrorType: TYPE = MACHINE DEPENDENT {

2

busy(O), insufficientSpoolSpace, invalidPrintParameters. masterTooLarge.
mediumUnavailable. serviceUnavailable. spoolingDisabled. spoolingQueueFull,

systemError, tooManyClients. undefinedError, connectionError. transferError(12),
courier};

TransferProblem: TYPE = MACHINE DEPENDENT {

aborted(O), formatlncorrect(2), noRendezvous. wrongDirection(4)};

Conne~ionProblem: TYPE = MACHINE DEPENDENT {

noRoute(O), noResponse, transmissionHardware, transportTimeout,
tooManyLocalConnections, tooManyRemoteConnections,
missingCourier, missingProgram. missingProcedure, protocol Mismatch,
parameterlnconsistency, invalidMessage, returnTimedOut(12)
--otherCaIlProblem(LAsr[CARDINAL})--};

UndefinedProblem: TYPE = CARDINAL;

The Print Service will return Error when a given procedure cannot be completed. The
ErrorRecord returned by Error will describe the specifics of the problem. The following
describes the ErrorTypes contained in ErrorRecord.

busy - the print service is occupied with some activity that prevents it from accepting a
print request ..

insufficientSpoolSpace - the print service does not have enough space to store the
specified master when the print request is made.

invalidPrintParameters - the call on Print is made with inconsistent arguments.

masterTooLarge - the master is too large for the print service to accept.

mediumUnava!lable - the medium specified in a print request is unavailable.

serviceUnavailable - the print service is unable to process any Printing requests (because
of local conditions) and will probably be unavailable for a long period of time. If the
condition is only transient, the print service should report Busy.

2-7

2

2-8

Interface

spoolingDisabled - the call on Print is made when the print service is not queuing print
requests.

spoolingQueueFull- the print service does not have enough space in its spooling queue to
accept a new print request.

systemError - the print service has discovered itself in an inconsistent state.

tooManyClients - the print service cannot open another connection to a client. A later call
on the print service may succeed.

undefinedError is intended to be used only in the following two circumstances: (l)while
testing systems under development before the entire protocol is implemented, and (2) as a
last resort when the implementation is on the verge of failure. This error should never be
reported by an operational Printing implementation. The argument undefined returns a
implementation-dependent val ue.

transferError may be reported by the Print procedure to indicate that a problem occurred
during bulk data transfer. It will further specify either aborted (the bulk data transfer
was aborted by the sender), formatlncorrect (the bulk data received from the source did
not have the expected format), noRendezvous (the sender never appeared), or
wrongDirection (the other party wanted to transfer the data in the wrong direction).

connection Error may be reported by the Print procedure to indicate that a problem
occurred during Bulk Data transfer. It will further specify either noRoute (route to the
other party could not be found), noResponse (other party never answered),
transmissionHardware (local transmission hardware is inoperable), transportTimeout
(other party responded but later failed to respond), tooManyLocalConnections (additional
connection is possible), tooManyRemoteConnections (other party rejected the connection
attempt), missingCourier (other party has no Courier implementation), missingProgram
(other party does not implement the Bulk Data program), missingProcedure (other party
does not implement a Bulk Data procedure), protocol Mismatch (two parties have no
Courier version in common), parameterlnconsistency (protocol violation occurred in
parameters), invalidMessage (protocol violation occurred in message format), or
returnTimedOut (procedure call never returned).

courier - procedure call incurred a Courier error. The specific error is returned as a
Courier .ErrorCode.

3

NSPrint interface

--NSPrint.mesa
--Mesa interface to Printing protocol.

--Copyright (C) Xerox Corporation 1982. All rights reserved.

DIRECTORY
Courier USING [ErrorCode].
NSDataStream USING [Source],
NSString USING [String],
System USING [NetworkAddress. UniversallD];

NSPrint: DEFINITIONS =
BEGIN

--TYPES
Time: TYPE = LONG CARDINAL;
String: TYPE = NSString.String;

RequestlD: TYPE = System.UniversallD;
SystemElement: TYPE = System.NetworkAddress;

Media: TYPE = LONG DESCRIPTOR FOR ARRAY OF Medium;
Medium: TYPE = MACHINE DEPENDENT RECORD [
var(O): SELECTtype(O): MediumType FROM
paper = > [paper(1): Paper],
ENDCASE];

MediumType: TYPE = MACHINE DEPENDENT {paper(O)};
Mediumlndex: TYPE = CARDINAL[O •• 1);
Paper: TYPE = MACHINE DEPENDENT RECORD [
var(O): SELECTtype(O): PaperType FROM
unknown = > []. --illegal argument, possible result
knownSize = > [knownSize(1): PaperSize],
otherSize = > [otherSize(1): PaperDimensions],
ENDCASE];

PaperType: TYPE = MACHINE DEPENDENT {unknown(O), knownSize, otherSize(2)};
Paperlndex: TYPE = CAROINAL[O •• 3);
PaperSize: TYPE = MACHINE DEPENDENT {

3 -I

3 NSPrint Interface

dontUse(O) -- the protocol defines this enumeration as starting at 1! --,
us letter, uslega/, aO,a1,a2, a3,a4, a5,a6,a7,a8,a9,
isoBO, isoB1, isoB2, isoB3, isoB4, isoB5, isoB6, isoB7, isoB8, isoB9, isoB10,
jisBO, jisB1, jisB2, jisB3, jisB4, jisB5, jisB6, jisB7, jisB8, jisB9,
jisB10(34)};

PaperDimensions: TYPE = MACHINE DEPENDENT RECORD [
/ength(O). width(1): CARDINAL]; --units are millimeters

PrintAttributes: TYPE = LONG DESCRIPTOR FOR ARRAY OF PrintAttribute;
PrintAttribute: TYPE = MACHINE DEPENDENT RECORD [
var(O): SELECTtype(O): PrintAttributeType FROM
printObjectName :I > [printObjectName(1): String +- [NIL. 0, O}],
printObjectCreateDate :I > [printObjectCreateDate(1): Time +- 0],
senderName :I > [senderName(1): String +- [NIL, 0, 0)),
ENDCASE];

PrintAttributeType: TYPE = MACHINE DEPENDENT {
printObjectName(O), printObjectCreateDate, senderName(2)};

PrintAttributeslndex: T'fPE = CARDINAL[O .• 3);

PrintOptions: TYPE = LONG DESCRIPTOR FOR ARRAY OF PrintOption;
PrintOption: TYPE = MACHINE DEPENDENT RECORD [
var(O): SELECTtype(O): PrintOptionType FROM
printObjectSize :I> [printObjectSize(1): LONG CARDINAL +- 0],
recipientName :I > [recipient~ame(1): String +- [NIL, 0]),
message :I > [message(1): String +- [NIL, 0]],
copyCount = > [copyCount(1): CARDINAL+-1],
pagesToPrint :I> [pagesToPrint(1): PagesToPrint +- [0, 0]],
mediumHint :I> [mediumHint(1): Medium +- [paper[[knownSize[usletter]]]]J,
priorityHint :I> [priorityHint(1): PriorityHint +- normal],
releaseKey = > [releaseKey(1): CARDINAL +- LAST[CARDINAL]],
staple :I > [staple(1): BOOLEAN +- FALSE],
twoSided :I> [twoSided(1): BOOLEAN +-FALSE],
ENDCASE];

PrintOptionType: TYPE = MACHINE DEPENDENT {
printObjectSize(O), recipientName. message, copyCount, pagesToPrint,
mediumHint, priorityHint, releaseKey, staple, twoSided(9)};

PrintOptlonslndex: TYPE = CARDINAL[O •. 10); .
PagesToPri nt: TYPE = MACHINE DEPENDENT RECORD [

beginningPageNumber(O), endingPageNumber(1): CARDINAL];
PriorityHint: TYPE = MACHINE DEPENDENT {Iow(O), normal, high(2)};

PrinterProperties: TYPE = LONG DESCRIPTOR FOR ARRAY OF PrinterProperty;
PrinterProperty: TYPE = MACHINE DEPENDENT RECORD [
var(O): SELEcTtype(O): PrinterPropertyType FROM
media :I> [media(1): Media],
staple :I > [staple(1): BOOLEAN],
twoSided = > [twoSided(1): BOOLEAN],
ENDCASE];

PrinterPropertyType: TYPE = MACHINE DEPENDENT {
media(O), staple, twoSided(2)};

PrinterPropertieslndex: TYPE = CARDINAL[0 .. 3);

Services 8.0 Programmer's Guide

PrinterStatus: TYPE = LONG DESCRIPTOR FOR ARRAY OF PrinterStatusComponent;
PrinterStatusComponent: TYPE = MACHINE DEPENDENT RECORD [
var(O): SELEcTtype(O): PrinterStatusType FROM
spooler = > [spooler(1): Spooler],
formatter = > [formatter(1): Formatter],
printer = > [printer(1): Printer],
media = > [media(1): Media],
ENDCASE];

PrinterStatusType: TYPE = MACHINE DEPENDENT {
spooler(O). formatter, printer, media(3)};

PrinterStatuslndex: TYPE = CARDINAL[O .. 4);
Spooler: TYPE = MACHINE DEPENDENT {available(O), busy, disabled, full(3)};
Formatter: TYPE = MACHINE DEPENDENT {avaiJable(O), busy, disabled(2)};
Printer: TYPE = MACHINE DEPENDENT {
available(O), busy, disabled, needsAttention, needsKeyOperator(4)};

RequestStatus: TYPE = LONG DESCRIPTOR FOR ARRAY OF RequestStatusComponent;
RequestStatusComponent: TYPE = MACHINE DEPENDENT RECORD [
var(O): SELEcTtype(O): RequestStatusType FROM
status = > [status(1): Status],
statusMessage = > [statusMessage(1): String])
ENDCASE];

RequestStatusType: TYPE = MACHINE DEPENDENT {status(O), statusMessage(1)};
RequestStatuslndex: TYPE = CARDINAL[O .. 2);
Status: TYPE = MACHINE DEPENDENT {
pending(O), inProgress, completed, completedWithWarnings, unknown, rejected,
aborted, canceled, held(8)};

ConnectionProblem: TYPE = MACHINE DEPENDENT {
noRoute(O), noResponse, transmissionHardware, transportTimeout,
tooManyLocalConnections, tooManyRemoteConnections,
missingCourier, missingProgram, missingProcedure, protocol Mismatch,
parameterlnconsistency, invalidMessage, returnTimedOut(12)
--otherCaIlProblem(LAsr[cARDINAL})--};

ErrorType: TYPE = MACHINE DEPENDENT {
busy(O), insufficientSpoolSpace, invalidPrintParameters, masterTooLarge,

3

medium Unavailable, serviceUnavailable, spoolingDisabled, spoolingQueueFull,
systemError, tooManyClients, undefinedError, connection Error, transferError(12),

courier};

TransferProblem: TYPE = MACHINE DEPENDENT {
aborted(O), formatlncorrect(2), noRendezvous, wrongDirection(4)};

UndefinedProblem: TYPE = CARDINAL;

3-3

3

3-4

NSPrint Interface

--ERRORS
Error: ERROR [why: ErrorRecord];
ErrorRecord: TYPE = RECORD [

SELECT errorType: ErrorType FROM

busy, insufficientSpoolSpace. invalidPrintParameters. masterTooLarge.
mediumUnavaifable. serviceUnavailable, spoolingDisabled, spoolingQueueFull.
system Error, tooManyClients == > [],
undefinedError == > [undefined: UndefinedProblem],
transferError == > [transfer: TransferProblem],
connectionError == > [connection: ConnectionProblem],
courier == > [courier: Courier.ErrorCode],
ENDCASE];

--PROCEDURE MODELS
Print: PROCEDURE [

master: NSDataStream.Source,
printAttri butes: Pri ntAttributes,
printOptions: PrintOptions,
system Element: System Element]
RETURNS [printRequestJD: RequestID);

GetPrinterProperties: PROCEDURE [systemElement: SystemElement]
RETURNS [properties: PrinterProperties];

GetPrinterStatus:- PROCEDURE [system Element: SystemElement]
RETURNS [status: PrinterStatus];

GetPrintRequestStatus: PROCEDURE [

printRequestlD: RequestlD, systemElement: SystemElement]
RETURNS [status: RequestStatus];

FreeString: PROCEDURE [string: LONG POINTER TO String);
FreeMedia: PROCEDURE [media: LONG POINTER TO Media];
FreePrinterProperties: PROCEDURE [printerProperties: LONG POINTER TO PrinterProperties);
FreePrinterStatus: PROCEDURE [printerStatus: LONG POINTER TO PrinterStatus];
FreeRequestStatus: PROCEDURE [requestStatus: LONG POINTER TO RequestStatus];

END.

XEROX Services 8.0 Programmer's Guide

Print Service 8.0 Interpress (Client)
Programmer's Manual

November 1984

PRELIMINARY

Xerox Corporation
Office Systems Division
3450 Hillview Avenue
Palo Alto, California 94304

11

Table of contents

1 Introduction 1-1

1.1 Overview 1-1
1.2 Notation and terminology 1-2

2 Interface 2-1

2.1 Basic TYPES. 2-1
2.2 The header and bodies . 2-2
2.3 Declaring fonts. 2-3
2.4 Imager Variable operators. 2-4
2.5 Current position operators. 2-5
2.6 Frame operators 2-5
2.7 Vector operators 2-5
2.8 Body operators. 2-6
2.9 Transformation operators 2-6
2.10 Instancing : 2-7
2.11 Stack operators 2-8
2.12 Operator operators. 2-8
2.13 Mask operators. 2-8
2.14 Pixel arrays 2-10
2.15 Sampled masks 2-10
2.16 Support procedures. 2-10

iii

Table of contents

iv

1

Introduction

This document describes Interpress, the interface to the Mesa implementation of an aid to
producing Interpress masters.

1.1 Overview

This document describes the public types and procedures of the Interpress client interface,
the implementation for which provides a useful aid in generating lnterpress masters (per
lnterpress Electronic Printing Standard [18]). It does not provide a syntax or composition
service-it is up to the client program to make calls on Interpress in the proper sequence.
Thus, clients of this interface are expected to be familiar with the lnterpress Electronic
Printing Standard [18] and to understand the syntax and grammar of that standard.
Interpress does provide syntactically correct arguments and operators within the scope of
the procedure calls, but the appropriate sequence of operators and the overall correctness
of the master is the responsibility of the client.

Interpress: DEFINITIONS = ...

Interpress provides many "high-level" procedures which represent readily-encoded
Interpress arguments, operators, and constructs. The calling program is free to intermix
calls to these procedures since. each call to Interpress is atomic, having no side effects
besides the token output to the supplied stream. As previously stated, it is the client's
responsibility to make calls on Interpress that will result in a correct lnterpress master.

Although this interface is released as part of the Print Service software, the facilities
provided are independent of the Interpress language support implemented on a particular
print server. The ~lient should consult Print Service B.O (OS 5.0) Interpress Product
Description [27] for specific limitations which should be observed when creating Interpress
masters for Print Service 8.0 printers.

1-1

1 Introduction

1.2 Notation and terminology

1-2

In this document, the word "Interpress" is used to define both the interface and the
standard. To avoid confusing the two in plain text, Interpress the interface will appear in
boldface while lnterpress the standard [18] will appear as italicized text.

Frequent reference will be made to Interpress operators, bodies, stack, frame, Imager
Variables, and other terms defined in lnterpress Electronic Printing Standard [18]. The
operator names appear in this text as SMALL CAPITAL words. The Imager Variables and other
Interpress language components appear in this text as italicized words (Le.,
sequenceldentifier) in the sans-serif font.

An lnterpress master is a file which starts with a valid header and an lnterpress BEGIN

token, ends with an lnterpress END token, and in other respects obeys the syntax defined in
lnterpress Electronic Printing Standard [18].

2

Interface

The procedural interface, Interpress, provides macro-level procedures similar to those
suggested in the Interpress Electronic Printing Standard [18] and Introduction to
Interpress [20]. Interpress supplies the Mesa TYPES, constructs, and constants specific to
the Interpress language as well as the client procedures. Interpress does not provide all
the constructs and operators defined by the standard and may provide some which by
.themselves are not useful or which are not supported by the product print servers. It is
anticipated that as product print servers implement more of the language, this interface
will expand to more precisely reflect the standard and to provide more facilities to support
the creation of valid Interpress masters. The PRIVATE procedures and TYPEs defined in
Interpress are not documented here.

The client must provide the file or other stream for the data. (It is not recommended,
because of the potentially lengthy creation time, to provide a stream to the printer itself.)

All fonts defined must conform to the Xerox Printing System Interface Standard [30).
Character strings must contain character codes which conform to the Xerox Character
Code Standard [4].

The following text assumes that the client program makes exclusive use of the Interpress
interface high-level procedures and will not otherwise write onto the furnished stream.
Thus statements like "End Master must be the last call in the creation of a master"
assumes that the client program will not write the Interpress END token via the low-level
procedures or directly onto the output stream ..

2.1 Basic TYPEs

ImagerVariable: TYPE = MACHINE OEPENOENT{ -- from Table 4.1 of [181
--Persistent, restored by DOSA VEALL
DCScpx{O). DCScpy(1).
correctMX(2). correctMY(3).
--Non-Persistent, restored by DOSA VE and DOSAVEALL
T(4).
prioritylmportant(S).
mediumXSize(6). mediumYSize(7).
fieldXMin(8). fieldYMin(9).
fieldXMax(10). fieldYMax(11).
showVec(12).

2 1

2 Interface

color(13).
nolmage(14),
strokeWidth(15).
strokeEnd(16),
underl ineStart(17).
amplifySpace(18),
correctPass(19), correctSh ri n k(20),
correctTX(21), correctTY(22)
};

Defines the Imager Variables for ISet and IGet.

Stroke End : TYPE = MACHINE DEPENDENT{ -- from §4.8.2 of [18]
square{O), butt(1), round(2)};

Defines the argument for SetStrokeEnd.

CharSet: TYPE = [0 .. 256);-- the character set index

Defines the character set range in [6] for the argument to Show.

Rational: TYPE = RECORD [num: LONG INTEGER. den: LONG CARDINAL);

Defines a rational number. den equal to zero is illegal.

2.2 The header and bodies

2-2

The following procedures define the boundaries of specific parts ofthe Interpress skeleton.

AppendHeader: PROC [sH: Stream.Handle];

All Interpress masters must begin with this call. The prescribed herald, which is used by
the Interpress printer to determine file validity and version, is written onto the sH stream.

BeginMaster: PROC [sH: Stream. Handle] == INLINE •••

BeginMaster follows MakeHerald, writing the lnterpress BEGIN token onto the stream.
There must be exactly one BeginMaster call per master.

EndMaster: PROC [sH: Stream.Handle] == INLlNE •••

End Master must be the last call in the creation of a master, following the completion of all
bodies and closure of the current page. It writes the Interpress END token onto the stream.

BeginPreamble: PROC [sH: Stream.Handle];
.

BeginPreamble should be called once preceding all page body calls. For maximum printer
efficiency, all fonts referenced in the document should be declared in the preamble. It
writes the "{" token onto the stream.

Print Service 8.0 Interpress (Client) Programmer's Guide 2

EndPreamble: PROC [sH: Stream.Handle];

EndPreamble should be called once following the completion of the preamble and
preceding all page body calls. It writes the "}" token onto the stream.

BeginPage: PROC [sH: Stream.Handle];

BeginPage is called at the start of each page. It writes the "{" token onto the stream.

EndPage: PROC [sH: Stream.Handle];

EndPage is called at the end of each page. It writes the "}" token onto the stream.

BeginBody: PROC [sH: Stream.Handle];

BeginBody is called to begin a new body or context. It writes the "{" token onto the stream.

EndBody: PROC [sH: Stream.Handle];

End Body is called at the end of a body or context. It writes the "}" token onto the stream.

OpenBrace: PROC [sH: Stream.Handle];

OpenBrace may be called to begin a new body or context. It writes the "{" token onto the
stream.

CloseBrace:PROC [sH: Stream.Handle];

CloseBrace is called at the end of a body or context. It writes the "}" token onto the stream.

Note that BeginPreamble, BeginPage, BeginBody and OpenBrace all result in the same
token being inserted onto the stream-these separate procedures are provided to add

. semantic clarity to user programs. The same is true for EndPreamble, EndPage, EndSody.
and CloseBrace.

2.3 Declaring fonts

The following procedures are used to define the fonts used within an lnterpress master.

DefineFont: PROC [sH: Stream.Handle.
flndex: CARDINAL, font: LONG STRING. scalea. scalee: Rational];

DefineFont is used to declare a specific size of the given font. It is a composite procedure
which calls FindFont and ScaleAndModifyFont, and then outputs the flndex FSET tokens.

ScaleAndModifyFont: PROC [sH: Stream.Handle. scalea. scalee: Rational];

ScaleAndModifyFont results in the output of the arguments and SCALE (or SCALE2) and
MODIFYFONT tokens. If scalea = scalee, then SCALE is output; otherwise SCALE2 is output.

2-3

2 Interface

FindFont: PRoc[sH: Stream. Handle, font: LONG STRING];

Fi ndFont outputs the parsed and encoded font string followed by a FI NDFONT.

font is the string which contains the font name and must conform with the font naming
convention in the Xerox Printing System Interface Standard [30]. Substrings are
separated by spaces which are then encoded as Interpress vectors of sequence/dentifiers.
Thus the call:

FindFont[sH, "Xerox XC1-1-0 Modern-Bold-Italic"];

would result in the following sequence in the master:

<Xerox> <XC1-l-0> <Modern-Bold-Italic> 3 MAKEVEC FINDFONT.

ModifyFont: PROC [sH: Stream.Handle] = INLlNE ...

ModifyFont outputs the MODIFY FONT token.

SetFont: PRoc[sH: Stream.Handle, n: CARDINAL] = INLINE ...

SetFont outputs the n SETFONT sequence.

2.4 Imager Variable operators

2-4

"The following procedures result in the output of the respective Imager Variable operators,
preceded by the specified argument(s).

ISet: PROC [sH: Stream.Handle, i: ImagerVariable] = INLINE ...

ISet outputs the operator which causes the value from the top of the stack to be stored in
the i variable.

IGet: PROC [sH: Stream.Handle, i: ImagerVariable] = INLINE ...

IGet outputs the operator which causes the value in the i variable to be placed on the top of
the stack.

SetGray: PROC [sH: Stream.Handle. value: Rational] = INLINE ...

SetStrokeEnd: PROC [sH: Stream.Handle, n: StrokeEnd];

SetStrokeWidth: PROC [sH: Stream.Handle, n: LONG INTEGER};

SetCorrectMeasure: PROC [sH: Stream.Handle, x, y: Rational] = INLINE ...

SetCorrectTolerance: PROC [sH: Stream.Handle, x, y: Rational] = INLINE ...

Space: PRoc[sH: Stream.Handle, x: Rational] = INlINE ...

SetAmplifySpace: PROC [sH: Stream.Handle, amp: Rational];

• !

Print Service 8.0 Interpress (Client) Programmer's Guide 2

These procedures result in the output of the operators which cause the value(s) supplied to
be stored in the respective Imager Variable.

2.5 Current position operators

The following procedures result in the output of the respective Cllrrent position operator
tokens, preceded by the specified argument(s), which cause the imaging coordinates to
change accordingly. The arguments are in the master coordinate system.

SetXY: PROC [sH: Stream.Handle, x, y: LONG INTEGER] = INLINE •••

SetXYRel: PROC [sH: Stream.Handle, x, y: LONG INTEGER] = INLINE ...

SetXRel: PROC [sH: Stream.Handle, x: LONG INTEGER] = INLINE •••

SetYRel: PROC [sH: Stream.Handle, y: LONG INTEGER] = INLINE ...

These procedures result in the output of the operators which cause the current position,
DCScpx, DCScpy, to be modified by converting the master coordinate(s) supplied using the
current transformation T.

GetCP: PROC [sH: Stream.Handle] ~ INLINE ...

GetCP outputs the operator which causes the current position (x,y) from DCScpx, DCScpy to
be placed on the stack.

2.6 Frame operators

These procedures result in the output of the respective frame operators, preceded by the
specified frame index argument.

FSet: PROC [sH: Stream.Handle, n: INTEGER] = INLINE ••.

FSet outputs the operator which causes the value from the top of the stack to be stored in
the nth frame vector.

FGet: PROc[sH: Stream.Handle, n: INTEGER] = INLINE ...

FGet outputs the operator which causes the value in the nth frame vector to be placed on
the top ofthe stack.

2.7 Vector operators

The following procedures result in the output of the respective vector operators, preceded
by the specified a{gument(s).

MakeVec: PRoc[sH: Stream.Handle, n: INTEGER] = INLINE .••

MakeVecLU: PRoc[sH: Stream.Handle, upper, lower: INTEGER] = INLINE ...

2-5

G

2 Interface

2.8 Body operators

The following procedures result in the output of the respective body operator and primitive
body tokens (i.e., CORRECT, {and }).

BeginCorrectBody: PRoc[sH: Stream.Handle] = INllNE •••

BeginCorrectBody writes the CORRECT { tokens onto the stream. The CORRECT operator
. executes the literals within the { ... }, correcting the masks associated with the contained·

SHOW operator. •

EndCorrectBody: PROC [sH: Stream.Handle] = INLINE '0'

EndCorrectBody writes the} token onto the stream.

BeginMakeSimpleCO: PROC [sH: Stream.Handle] = INlINE ...

BeginMakeSimpleCO writes the MAKESIMPLECO { tokens onto the stream.

EndMakeSimpleCO: PROC [sH: Stream.Handle] = INlINE •••

EndMakeSimpleCO writes the} token onto the stream.

BeginDoSaveSimpleBody: PROC [sH: Stream.Handle] = INlINE ...

BeginDoSaveSimpleBody writes the DOSAVESIMPLEBODY { tokens onto the stream.

EndDoSaveSimpleBody: PRoc[sH: Stream.Handle] = INlINE ...

EndDoSaveSimpleBody writes the} token onto the stream.

2.9 Transformation operators

2-6

lnterpress provides a linear transformation mechanism for mapping coordinates measured
in one coordinate system into coordinates in another system, such as mapping from the
master coordinate system to the Interpress coordinate system. The following procedures
output the respective lnterpress transformation operators.

Translate: PROC [sH: Stream.Handle. x. y: Rational];

Translate outputs the values and operator which creates a transformation on the stack
which maps the medium origin from the Interpress default of the lower left-hand corner to
x, y. Thus, Translate[sH, [0, 1], [pageheight, 1]] would create a transformation for
mapping the default origin to the upper left-hand corner of the medium (where
pageheight would be a value in the master coordinate system and would result in x
ori~nted "up").

Rotate: PRoc[sH: Stream.Handle. a: INTEGER];

Rotate outputs the value and operator which creates a transformation on the stack which
causes the coordinate axes to rotate by the angle a (measured clockwise). Thus, Rotate[sH,
90] would create a transformation for rotat,ing the default origin to the upper left-hand

Print Service 8.0 Intel'press (Client) Programmer's Guide 2

corner of the medium with the x axis oriented along the "long" axis of the medium and the
y axis oriented along the "short" axis.

Scale: PRoe [sH: Stream.Handle. 5: Rational] = INLINE ,.,

Scale outputs the value and operator which creates a transformation on the stack which
converts (scales) the coordinates used in the master to those used in lnterpress (meters).
Thus, Scale[sH, [1, 100000]] would create a transformation for causing subsequent master
coordinates to be interpreted as 10-5 meters.

Scale2: PROC[sH: Stream.Handle. SX, sy: Rational] = INLINE l"

Scale2 outputs the values and operator which create a transformation on the stack which
can cause the axis to shift orientation, or reflect the image about an axis. Thus, Scale2[sH,
[-1, 1], [1, 1]] would create a transformation for reflecting the image about the y axis. The
scaling provided in Scale can also be included here; thus Scale2[sH, [-1, 100000), [1,
100000]] would create a transformation for causing subsequent master coordinates to be
interpreted as 10-5 meters and for reflecting the image about the y axis.

Concat: PRoe[sH: Stream.Handle] = INLINE ...

Concat outputs the operator which causes transformations on the stack to be
concatenated, with the results left on the stack.

ConcatT: PROe [sH: Stream.Handle] = INLINE ...

ConcatT outputs the operator which causes the transformation on the top of the stack to be
concatenated with the Imager Variable T and the results stored back into T.

Move: PRoe[sH: Stream.Handle] = INLINE ...

Move outputs the operator which modifies the T Imager Variable so that the origin of the
coordinate system maps to the current position.

Trans: PRoe[sH: Stream.Handle] = INLlNE ...

Trans outputs the operator which modifies the T Imager Variable so that the origin of the
coordinate system maps to the ro.unded current position.

2.10 Instancing

Show: PRoe [sH: Stream.Handle, s: Environment.Block, cs: CharSet E- 0] = INLINE '"

Show results in the output of the bytes in s as a sequenceString followed by the SHOW

operator. The bytes in s should conform to the character codes and encoding defined in
Character Code Standard [41 and are preceded by cs in accordance with that standard if a
non-zero value is supplied.

ShowAndXRel: PROc[sH: Stream.Handle, s: Environment.Block] = INLINE ...

ShowAndXRel results in the output of the bytes in s as a sequenceString followed by the
SHOWANDXREL operator. The first byte and alternate byte thereafter in s should conform to

2-7

2 Interface

the character codes and encoding defined in Character Code Standard [4J. The second byte
and alternate byte thereafter is treated as an argument to SETXREL (modulo 256 and biased
by 128).

2.11 Stack operators

The following procedures output operators which manipulate the Interpress stack.

Pop: PRoc[sH: Stream.Handle] = INLINE ••• '

Copy: PRoc[sH: Stream.Handle, depth: INTEGER] = INLINE •••

Duplicate:PRoc[sH: Stre,am.Handle] = INLINE •••

Roll: PRoc[sH: Stream.Handle, depth, moveFirst: INTEGER] = INLINE •••

Exchange: PRoc[sH: Stream.Handle] = INLINE •••

Mark: PRoc[sH: Stream.Handle, n: INTEGER] = INLINE •••

UnMark: PRoc[sH: Stream. Handle, n: INTEGER] = INLINE .••

UnMarkO: PRoc[sH: Stream.Handle, n: INTEGER] = INLINE ..•

Count: PROc[sH: Stream.Handle, n: INTEGER] = INLINE •.•

Nop: PROc[sH: Stream.Handle, n: INTEGER] = INLINE .••

2.12 Operator operators

The following procedures output operators which apply to an lnterpress composed operator
on the stack.

Do: PRoc[sH: Stream.Handle] = INLINE •••

DoSave: PRoc[sH: Stream. Handle] = INLINE •••

DoSaveAII: PRoc[sH: Stream.Handle] = INLINE '"

2.13 Mask operators

2-8

The following procedures output lnterpress mask operators useful for creating graphical
images. The geometrical shapes created are defined in terms of segments, trajectories and
outlines.

MoveTo: PROC [sH: Stream.Handle, x, y: LONG INTEGER] = INLINE •••

MoveTo outputs the coordinates and operator which defines the starting point for a
trajectory which is left on the stack.

Print Service 8.0 Interpress (Client) Programmel"s Guide 2

LineTo: PROC [sH: Stream. Handle, x, y: LONG INTEGER] = INLINE •••

LineToX: PROC [sH: Stream.Handle, x: LONG INTEGER] = INLINE ...

LineToY: PROC [sH: Stream.Handle, y: LONG INTEGER] = INLINE ...

These procedures output the coordinates and operator for an extension point for a
trajectory on the stack, the execution of whi(!h results in the push of the new trajectory
onto the Interpress stack.

•
MakeOutline: PROC [sH: Stream.Handle. n: LONG INTEGER] = INLINE ...

MakeOutline outputs the operator which takes n trajectories off the stack and creates an
outline which is placed back onto the stack.

MaskFiII: PROC [sH: Stream.Handle] = INLlNE ...

MaskFili outputs the operator which takes an outline off the stack and creates a mask,
where the outer· perimeter of the outline defines the boundary of the mask to be drawn on
the image. Also note Wrap-fill conventions (Figure 4.5 in Interpress Electronic Printing
Standard [18]).

MaskStroke: PROC [sH: Stream. Handle] = INLINE ...

MaskStroke outputs the operator which takes a single trajectory off the stack and uses it
to define the center-line of the stroke whose width is specified by the strokeWidth Imager
Variable and endpoints defined by strokeEnd. The result is laid on the page image.

MaskVector: PROC [sH: Stream.Handle. xl. yl. x2, y2: LONG INTEGER];

MaskVector outputs the xl, yl, x2 and y2 arguments followed by the MASKVECTOR token
(convenience operator) to define a stroke whose trajectory is a single line segment.

MaskRectangle: PROC [sH: Stream. Handle. x, y. w, h: LONG INTEGER];

MaskRectangle outputs the x, y, w. (width) and h (height) arguments followed by the
MASKRECTANGLE token to define an arbitrary rectangle mask whose sides are parallel to the
coordinate axes.

StartUnderline: PROC [sH: Stream.Handle] = INLINE ...

StartUnderline outputs the STARTUNDERLINE token which causes the current position to be
stored in the underlineStart Imager Variable.

MaskUnderline: PROC [sH: Stream.Handle. dy, h: INTEGER] = INLINE ...

MaskUnderline takes the under/ineStart Imager Variable as an ongm and draws a
rectangle of height h to the current position (parallel to the x axis) with the top a distance
dy below the current position.

2-9

2 Interface

MaskTrapezoidX: PROC [sH: Stream.Handle. x1. y1. xl. x3. y3. x4: LONG INTEGER];

MaskTrapezoidX outputs the x1. y1. x2. x3. y3 and x4 arguments followed by the
MASKTRAPEZOIDX token to define a trapezoid aligned with the x axis.

MaskTrapezoidY: PROC [sH: Stream.Handle. x1. y1, yl. x3, y3. y4: LONG INTEGER];

MaskTrapezoidY outputs the x1. y1. y2. x3, y3 and y4 arguments followed by the
MASKTRAPEZOIDY token to define a tl'apezoid aligned with the y axis .

•
2.14 Pixel arrays

BitmapHandle: TYPE = LONG POINTER TO Bitmap;

Bitmap: TYPE = RECORD [
sre: Environment.BitAddress.
sreBpl: INTEGER. -- bits per line
width. height: CARDINAL]; -- in bits

AppendPaekedPixelVeetor: PROC [sH: Stream. Handle, bh: BitmapHandle);

AppendPackedPixelVector outputs the bh structure as a packedPixelArray.

MakePixelArray: PROC [sH: Stream.Handle];

AppendPackedPixelVector outputs the MAKEPIXELARRA Y token.

2.15 Sampled masks

MaskPixel: PROC [sH: Stream.Handle) = INLINE •••

MaskPixel outputs the MASKPIXEL token.

2.16 Support procedures

2-10

The following procedures output encoded Interpress sequences. They are useful for
inserting arbitrary values into the Interpress master in conjunction with other operators.

Appendlnteger: PROCEDURE[sH: Stream.Handle, n: LONG INTEGER);

AppendShortlnteger: PROCEDURE[sH: Stream.Handle. n: INTEGER];

AppendRational: PROCEDURE[sH: Stream.Handle. r: Rational];

These all output the specified data in the appropriate format.

XEROX

•

Services 8.0 Programmer's Guide

Phone Net Driver
Programmer's Manual

November 1984

PRELIMINARY

Xerox Corporation
Office Systems Division
3450 Hillview Avenue
Palo Alto, California 94304

11

•

Table of contents

1 Introduction 1-1

2 Interface 2-1

2.1 TYPES 2-1
2.2 Signals and errors . 2-1
2.3 Procedures. 2-2

3 Usage example 3-1

iii

Table of contents

c

tV

1

Introduction

This document describes PhoneNet, the interface to the Mesa implementation of the
Synchronous Point-to-Point Protocol [31J. It describes the public types and procedures of
the PhoneN et client interface, the implementation which allows workstations to function
as Remote Workstations, connected to an internet via a synchronous point-to-point
connection such as a phone line.

PhoneNet: DEFINITIONS = .. ,

This interface is released as part of the Internetwork Routing Service software. The
implementation for use with Remote Workstations is RWPhoneNetConfig.bcd.

1-1

1 Introduction

1-2

•

2.1 TYPEs

2

Interface

EntityCiass: TYPE = MACHINE DEPENDENT{ -- from Table 3.2 of [311
internetworkRouter (O).

dusterRouter (1). -- spec says "cluster system element"
siu (2). -- spec says "interfacing system element"
remoteHost (3) -- (Remote workstation) spec says "terminal system element"
};

Where remoteHost should be used by a remote workstation.

Negotiation: TYPE = {
active. passive};

Where

active

passive

indicates that the phone net driver sh~uld actively create a connection with
the far end.

indicates that the phone net driver should await a connection attempt from
the far end.

In most cases, active mode should be used. If both system elements that wish to use the
Protocol to communicate use the passive mode of operation, the communication attempt
will fail. For more information, see §3.5 of[3l].

2.2 Signals and errors

ClusternetNotlnitialized: ERROR; -- ourEntityClass = clusterRouter, but
-- clusternet driver not initialized

InvalidLineNumber: ERROR; -- referring to an unknown line

IIlegalEntityClass: ERROR; -- (ourEntityClass = siu) not allowed

2-1

2 Interface

2.3 Proced ures

2-2

The PhoneNet interface includes two procedures. Procedure Initialize is used to start
PhoneNet usage of a specific RS232C channel (see §6.5.3 of [26] for more information).
Procedure Destroy is used to end PhoneNet usage of the RS232C channel. The channel
may then be used for other purposes (such as testing).

Initialize: PROCEDURE [lineNumber: CARDINAL, channel: RS232C~ChanneIHandle.
commParams: RS232C.CommParamHandle,
negotiationMode: Negotiation,
hardwareStatsAvailable: BOOLEAN,

-- true if the head can report stats. E.g. would be false for CIU
-- ports since CIU can't report stats

clientData: LONG UNSPECIFIED +- 0,
ourEntityClass: EntityClass.
-- we can't be a siu entity

clientHostNumber: System.HostNumber +- System.nullHostNumber
-- the host number that we can give out to those who lack. default means
-- we don't have one to give out

];
-- REPORTS ClusternetNotlnitialized, lIfegalEntityClass

The RS232C channel must have been created before the Initialize procedure is called.

The hardwareStatsAvailable parameter is only used for Network Management by the
phone net driver.

The clientHostNumber parameter is used when communIcating with devices that do not
possess their own 48-bit host number. If this parameter is used, the host number supplied
must be unique in all space. It cannot be the same as the host number of any instance of
Pilot, etc. This parameter can be defaulted when communicating with an Internetwork
Routing Service or with a Shared Interface Unit (81u).

Destroy: PROCEDURE [lineNumber: CARDINAL];

-- REPORTS InvalidLineNumber

3

Usage example

The following usage example can be used to start up a Remote Workstation that can be
connected to an internet by using either an Internetwork Routing Service (IRS) or a
Shared Interface Unit (SIU).

BEGIN

-- 1) Create a RS232C channel:

channelHandle: RS232C.ChanneIHandle;
-- save the channelHandle for use when destroying the channel

commParams: RS232C.CommParamObject;
IineNumber: CARDINAL = 0; -- 0 is the local port

-- the linenumber is also used when destroying the phonenet driver

commParams.duplex +- < half or full>; -- depends on the modem!
commParams.lineType +- bitSynchronous;
commParams.lineSpeed +- <line speed of the modem if known. Use 2400 if the line
speed isn't

known>;
commParams.accessDetaii +- directConn[];

channel Handle +- RS232C.Create[
lineNumber, @commParams, preemptAlways, preemptNever];

-- 2) initialize the phonenet driver

PhoneNet.lnitialize[\ineNumber, channel Handle, @commParams,
active, TRUE, 0, remoteHost, System.nuIiHostNumber);

-- and you're done

END;

3-1

3

3-2

Usage example

The following usage example can be used to stop the PhoneNet driver to allow RS232C
hardware testing, or for some other purpose.

BEGIN

-- 1) First stop the phonenet driver (the client of the channel)
PhoneNet.Destroy[lineNumber); -- often takes 10 seconds (Pilot Comm feature)

-- 2) Next destroy the RS232C channel itself
RS232C.Delete[channeIHandle);
-- use the channel handle that was returned in the RS232C.Create call

--done.
END;

XEROX Services 8.0 Programmer's Guide

External Communication
Programmer's Manual

November 1984

PRELIMINARY

Xerox Corporation
Office Systems Division
3450 Hillview Avenue
Palo Alto, California 94304

11

Table of contents

1 Introduction 1-1

l.1 Organization of the document 1-2
l.2 Definition of terms . 1-2

2 Overview 2-1

2.1 Communicating with foreign devices and systems 2-1
2.l.1 The client interface . 2-2
2.l.2 Sessions. . 2-3
2.l.3 U sing the transport service during a session 2-5
2.l.4 Terminating the session 2-5

2.2 Relationship to other network service software. 2-6
2.2.1 Client Program 2-6
2.2.2 Client Device Filters . 2-7

3 Client interface 3-1

3.1 Creating a foreign device stream 3-1
3.l.1 Session parameters. 3-2
3.l.2 Defining the transport . 3-2
3.l.3 Connection establishment 3-6

3.2 Data transfer . 3-7
3.3 Control transfer 3-8

3.3.1 Classes of generic controls . 3-8
3.3.2 List of generic controls . 3-9
3.3.3 Stream operations for generic controls • 3-11
3.3.4 Applicability of generic controls 3-11

3.4 Altering data transfer timeouts . 3-12
3.5 Destroying a foreign device stream. 3-12

iii

Table of contents

4 Performance criteria 4-1

4.1 Delay and throughput . 4-1
4.2 Security and data protection 4-1

5 Status and exception processing. 5-1

5.1 Status via Stream.WaitAttention 5-1
5.2 Data errors via SubSequence Types 5-2
5.3 Sources of exception generation 5-2
5.4 Signals and errors • 5-2

6 Reliability and maintainability 6-1

7 Multinational requirements 7-1

Appendices

A RS-232-C communication parameters A-I

B Foreign device considerations B-1

B.1 TTY terminal emulation B-1
B.L1 Data transfer considerations B-1
B.1.2 Use of controls . B-1
B.1.3 Authentication. B-2
B.1.4 Device parameter setting B-2
B.1.5 Clearinghouse entries . B-2

B.2 IBM 3270 terminal emulation • B-2
B.2.1 Data transfer considerations B-2
B.2.2 Use of controls . B-3
B.2.3 Authentication. B-4
B.2.4 Device para!Deter setting B-4
B.2.5 Clearinghouse entries . B-4

lV

1

Introduction

This document describes the functionality exported by the External Communication
Service (ECS) and the virtual terminal circuit capability of the Gateway Access Protocol
(GAP). The description is intended primarily for designers and implementors of client
programs, i.e., communications applications such as Star TTY emulation. It provides
sufficient information to allow those programmers to understand the facilities available
and to write procedure calls in the Mesa language to invoke them. In particular, for each
function, this document lists the calling sequences and the possible signals which can be
generated.

The ECS exports a set of functions that enables a uniform method of communicating
between Xerox Network Systems (NS) elements and foreign devices and systems over a
variety of communication media. The facility provides a consistent method of establishing
a communication channel and of managing the flow of data and communication controls
on that channel. However, the content of the data is highly device-dependent and is the
responsibility of the client program. See References for device-specific documentation.

The virtual terminal circuit capability of the GAP protocol enables virtual teletype-like
sessions between two Xerox Network Systems elements. Virtual terminal circuits are
used by the Interactive Terminal Service and the Services executive (for remote system
administration) to export user interface functionality to the Internet.

The .stub configuration, GateStubConfig. provides Mesa procedures that allow access to
these functions. This configuration exports the Mesa interface, GateStream. GateStream
is an interface that describes a superset of the functionality described above. This
document will describe those portions of the GateStream interface that are provided by the
stub.

1-1

1 Introduction

1.1 Organization of the document

Section 2 presents an overview of the facilities available using the stub. Section 3 is the
most important section for client programmers; it presents the procedure declarations and
data types required to make use of the stub via the GateStream interface. Section 4
discusses performance criteria. Section 5 presents the features provided for handling
exceptional· situations. Not currently available are section 6 (Reliability and
maintainability) and section 7 (Multinational requirements).

This manual has two appendices: Appendix A describes the RS-232-C communication
parameters, and Appendix B presents some device-specific recommendations and
precautions.

1.2 Definition of terms

1-2

address of a foreign deuice The address of a foreign device is a transport-dependent
data structure that defines the location and access
information for the foreign device within its domain
(network). Examples of parts of an address are a phone
number in a telephone network.

communicating foreign deuice A communicating foreign deuice is a device or system that
can communicate with NS Internet system elements using
conventions other than the NS Internet Transport
Protocols.

connection A connection is a real or virtual association between two
correspondents that allows the orderly exchange of data
and controls according to some protocol.

controls Controls are directiv€s passed over transmission media for
the establishment, maintenance, and termination of
communication channels.

data Data is a sequence of bits transferred between end users of
a logical communication channel; sometimes called text.

generic controls Generic controls are a set of universal device- and protocol­
independent directives that can be mapped into/from real
device or protocol controls.

information transcription Information transcription is the transfer of information
from one physical system to information on a different
physical system.

information translation Information translation is the altering of information
contained in one format by expressing it in another format.

protocol A protocol is a set of conventions, particularly the allowed
formats and sequences of communication, between two
communicators.

External Communication Programmer's Manual 1

protocol layering

serVlce

session

stub

transmission medium

transport

transport service

Protocol layering is a technique of hierarchically
structuring protocols such that the protocol at layer n uses
the protocol at layer n-l as a transmission service without
knowing the details of its operation. It allows convenient
partitioning, independence of activities between layers,
and the sharing of common services among different
served protocols.

A service is software that provides a function to clients on
the Internet. One example is the External Communication
Service that provides terminal emulation capabilities to
workstations on the Internet.

A session is an association between a client and the foreign
device, by which the exchange of information is managed.

A stub is software that provides access to features exported
by services. This document describes a stub that allows
access to ECS and virtual terminal circuit functionality.

The transmission medium is the lowest level physical
transport mechanism, e.g., leased lines, ODD circuit, and
the Ethernet; also, a virtual transport mechanism.

A transport is an entity that implements one layer of a
transport service. The entity usually corresponds to the
implementation of one layer of protocol.

A transport service is a set of functions offered via an
interface that provides transparent transfer of data
between a client entity and a correspondent at the same
level. A transport service may be made up of many levels of
transport.

1-3

1 Introduction

1-4

2

Overview

The purpose of this section is twofold. The first purpose is to give background and to
establish a model of communication with foreign devices and systems (see §2.1). This
should be of interest to both the programmer and those interested in the scope of the
facilities offered. The second purpose is to give an architectura.l overview of the software
which implements those facilities. A description is given of the way the software fits into
the general structure of NS Software. Also, the structure and functions of a hypothetical
client are outlined in §2.2. This should give client programmers context in which to design
higher level client structures.

2.1 Communicating with foreign devices and systems

The Gateway Access Protocol (GAP) defines a set offunctionality that provides a uniform
method of communicating between NS Internet system elements and foreign devices and
systems over a variety of communication media. A communicating foreign device is any
device or system that does not implement the NS Internet Transport Protocols (defined in
Internet Transport Protocol [15]). While the foreign device does not communicate via NS
Internet Transport conventions, it usually communicates with other devices using a
reasonably standard convention.

Before explaining the details of the model in the next sections, a little motivation for that
model is in order. The goals for our model are the following:

1) Move information over distances

Moving information over distances is the traditional role of a communication facility. A
model of transport services must be provided that allows transmission of information
across many types of transmission media, both virtual and real, configured in a variety of
topologies.

2) Support a variety of models of communication

The list of possible user and application communication models is quite long. Electronic
mail applications suggest a document transfer communication model. Remote access to a
data base system often suggests a transaction-oriented model. Interface to a remote EDP
system suggests an emulation communication model.

2-1

2

2-2

Overview

The communication model is independent of the content of the data. The content of data
passed between an NS Internet system element and a foreign device is extremely
application dependent. Information transcription is supported, but not information
translation. Information transcription means transferring information from one system to
another, performing necessary blocking and unblocking as required by the limitations of
the communicators. Information translation includes format changes on the information
or any changes that would affect presentation of the information to the client.

3) Resolve disparities among the communication methods used by foreign devices and
systems

Two complementary strategies are used to resolve the differences in foreign device
communication methods. First, where possible, the most standard communication
conventions are used. If many foreign devices communicate using convention (protocol) A,
then convention A is supported. Our model assumes that no modification of a foreign
device is necessary in order to communicate with it. Foreign devices will not be altered to
conform to NS Internet communication conventions, rather NS Internet system elements
must adapt to the conventions of communication defined by the foreign device.

The second strategy is to isolate those communictltion characteristics of a foreign device
that are device-specific. Of those characteristics, if they can be altered by a local user of
the foreign device, then the client is allowed to specify them. Otherwise, they are
considered to be constant for that foreign device.

2.1.1 The client interface

The communication model is supported by presenting a flexible client interface. The
essence of the interface is the foreign device stream. A foreign device stream is a Pilot
stream. Therefore, it offers the following features: full duplex transmission of variable­
size blocks, methods for passing control information via Pilot Stream Subsequence Types,
an out-of-band signaling mechanism via the Pilot Stream Attention feature, and excellent
control of block size differences. Also, client stream filters can be prefixed to the foreign
device stream, giving a simple method for building higher level interfaces to foreign
device communication.

Clients create foreign device streams via the MESA interface GateStream. GateStream is
EXPORTed by a variety of configurations, desi.gned to meet varying client needs. Some of
these configurations assume that they reside on the same processor as the communication
hardware, while others are able to communicate via the Gateway Access Protocol (GAP)
with another machine running another configuration which EXPORTs the GAP protocol
(Le., is able to accept remote calls on the GateStream interface). The document limits itself
to describing one of the Gateway configurations, the Gateway Access Protocol Stub:

GateStubConfig This configuration, called the stub, exports GateStream to allow
remote access to ECS functionality. Debugging symbols are
located in GateStubConfig.symbols. GateStubConfig should be
explicitly started by including it in the CONTROL statement.

External Communication Programmer's Manual 2

2.1.2 Sessions

A session is a cooperative association between a stub client and a foreign device. A session
is the umbrella of communication management under which information exchange occurs.

A client can be either the active or passive participant in the session. When a client is the
active participant, the session begins when the foreign device accepts from the client an
attempt to start. a session. When a client is the passive participant, the session begins
when a foreign device tries to start a session with the waiting (listening) client.

To start a session, the following questions must be answered: What is the type of the
foreign device? Where is it? What are the unique communication needs of this foreign
device? What transport services are to be used? How are the chosen transport services
used?

2.1.2.1 Types offoreign devices and systems

Foreign device types generally correspond to product names. Each type has a set of static
characteristics that describes the behavior of the foreign device. A few of the static
characteristics are variations in the use of a protocol (e.g., timeouts), how the foreign
device supports setting of its own communication parameters (e.g., set or exchanged
remotely during session establishment or set by the foreign device operator), and the
codeset (if one only is supported) used by the foreign device. Knowledge of foreign device
static characteristics is kept internally, unavailable to the client.

Communication with the following' foreign device types is supported: IBM 3278-2 and
teletype terminals (both real and virtual). Both BSC and SN A protocols are supported for
IBM 3278-2 terminals.

2.1.2.2 Session-oriented communication parameters

The client is responsible for providing session-oriented, device-specific communication
information. This information corresponds to the dynamic foreign device communication
parameters, i.e., those that can be set by the local operator of a foreign device and/or those
that can be set remotely by a correspondent. Examples are parity, character length, and
echo source.

For most foreign device types, there is very little remote setting of the operating
parameters; rather, the client is responsible for knowing how the foreign device has been
set up and for conforming to its settings. For instance, the client must know (and inform
the stub) of the parity being used by an asynchronous dial-in host.

2.1.2.3 Transport service

A model of a layered transport service has been chosen. A transport service has n levels of
virtual transports layered above some physical transmission medium transport. The
model is used by both the client, in selecting the transport service, and the service
software, in configuring it. A transport service offers a communication facility that is
transparent to its clients, that is, the client does not need to know the details of how the
transport service provides the communication facility.

2-3

2

2-4

Overview

The client is responsible for defining the transports to be used in providing the transport
service. As will be discussed below, this includes providing access information and other
transport-dependent information. The software is responsible for making the transports
and transmission medium cooperate. It also makes the transports conform to any static
device-specific conventions, such as timeouts and block sizes.

2.1.2.3.1 The transports

A transport is a single layer of transport service. It usually implements a protocol. A
protocol is a set of conventions, especially the formats and allowed exchanges, used by
communicating correspondents. A transport satisfies the layering requirement by
providing an interface to an entity that implements a set of functions. The functions are
usually related to data and control exchange and connection management. A transport
can be viewed as communicating with transport entities in the foreign device.

For the simple case there will be two transports, a block transport and a physical
transmission medium transport. For example, when an NS Internet system element dials
an asynchronous host, there is a teletype transport and an RS-232-C transmission
medium transport. The teletype transport can be thought of as logically exchanging data •
with a teletype transport in the remote host. The RS-232-C channel can be thought of as
logically exchanging bits with a similar entity in the remote host. The client must define
the appropriate transport parameters, as well as the hierarchical relationship among
them.

A connection is often required between entities that implement a transport. Connections
between transports are analogous to sessions between a stub client and the application
entity of the foreign device. The connection is usually made to a logical access point, which
is the address or name of the transport entity as defined by the transports that
communicate with one another. (Actually, if the access information helps in routing
decisions, it is an address. If not, it is probably a name.)

In summary, for each level of transport, the client must give transport-specific access
information and other parameters. This information comprises a transport object. The
client places the transport objects into an ordered list to define the layering relationship
among transports and a transmission medium.

2.1.2~3.2 The physical transmission medium

In the model of a layered transport service, the physical transmission medium is the
lowest level communication facility provided. The system element is directly connected to
the medium. The transmission medium interface is simply a unique transport-there is
only one. It is the lowest level transport, and it corresponds to a physical resource. To
describe a transmission medium transport, the client provides transport-specific access
information, parameters that are used for resolving contention for the transmission
medium interface, and information about how to use the medium. The only transmission
medium that is supported on current NS Internet system elements are RS-232-C
Controller ports.

External Communication Programmer's Manual 2

For the RS-232-C compatible media, the access information is a telephone number.
Dedicated or leased lines require no transmission medium access information.

RS-232-C channel reservation is supported by allowing clients to specify reservation
priorities. The reservation parameters allow clients to reserve a communication medium
exclusively or to reserve use of the medium for low priority activity which can be
preempted by higherpriority use.

The RS-232-C medium-specific information includes line speed, duplex selection, and
synchronous/asynchronous selection.

2.1.3 Using the transport service during a session

Once the transport service has been selected and a session has begun, the client can
exchange data anp control the interaction with the foreign device.

2.1.3.1 Sending/receiving data

The Pilot Stream facility defines the set of data transfer operations available. A timeout
can be associated with every operation. Timeouts default to infinity when the foreign
device stream is created and can be altered for subsequent operations by a special call.

2.1.3.2 Control during a session

Controls are directives or commands that are exchanged by communicating entities to
support smooth, orderly, and reliable information exchange. A foreign device may be
capable of exchanging a variety of controls. The controls supported are those that affect
the flow of data and the management of the session.

Controls are needed for stopping the output of a verbose sender. They are needed for
interrupting the sender so that the receiver can change recording media; likewise, for
resuming transmission. For alternating communication, a control allows the sender to
inform the receiver that it can now send.

To provide a uniform way of sending and receiving controls, the a set of universal or
generic controls is defined from/to which most foreign device-specific controls can be
mapped. The stub client sends/receives generic controls through the Pilot Stream
Subsequence Type and Attention features (see Pilot Programmer's Manual [261, §3.l).

2.1.4 Terminating the session

The GateStream interface allows for two kinds of session termination by the client. The
client may abruptly terminate the session by deleting the foreign device stream. This
method may result in lost data and possibly abnormal operation of more primitive foreign
devices. The client may choose to terminate the session gracefully by waiting for some
indication of termination from the foreign device side and then terminating the session.

2-5

2 Overview

2.2 Relationship to other network service software

2-6

It is important to understand the relationship of this software to other kinds of software
found in an NS Internet system element. There are two major categories ofNS software:

MeSA-Pilot

Clients

MeSA is the programming language in which all NS software is written.
Every MeSA program requires a small amount of system software to
support it at runtime; this is included automatically and invoked when
the various MeSA language features are used. Pilot is· the operating
system which manages the hardware resources of an NS Internet system
element. This is written in MeSA and its facilities are explicitly invoked
by means of procedure calls in client programs.

Client software performs the product-specific NS functions. These
programs are written in MeSA and may call upon both Pilot and
functionality exported by Services for support. Services software is one
class of client software. The External Communication Service, a client of
Pilot, supports use of RS-232-C ports for TTY and 3270 emulation. The
stub, which provides remote access to ECS and virtual terminal circuit
functionality is also a client of Pilot.

The structure of a hypothetical stub client communicating with an ECS is considered
below. Two modules are described, the Client Program and Client Device Filters. This is
an example only and is given to provide more context in which to design higher levels of
software.

2.2.1 Client Program

The Client Program is probably modularized in some way to provide a set of common
functions that could be performed for all devices/processes. It utilizes its own set of Client
Device Filters and a foreign device stream to communicate with the target device.

The ECS runs on the preferred access system element, the system element from which the
transmission medium interface controller is accessed. Using the stub, the Client Program
calls upon the ECS remotely from the preferred access system element to create the
foreign device stream. The ECS registers information using the Clearinghouse Service to
aid the remote client in locating the correct system element.

There is an instance of a stream for every non-NS Internet device communicating with the
local system element. After obtaining the device stream handle, the client communicates
with the foreign device through the standard Stream interface, as described in the Pilot
Programmer's Manual [26]. The client can configure a longer stream (pipeline) by
prefixing Client Device Filters to the foreign device stream.

External Communication Programmer's Manual 2

2.2.2 Client Device Filters

Client Device Filters will perform some of the functions that are necessary to support
high-level transactions with a foreign device.

Examples of possible Client Device Filters are:

• Translation of format information

Many transactions with non-NS Internet devices will involve transforming a document
from one medium and/or format to another. The format control is usually embedded in the
text itself. Since most systems choose different formatting conventions and control
characters, format control translation must be done. Some format transformations may
require examining the entire document; thus, a filter may not always be appropriate.

• Data and control translation

Data type conversion, such as EBCDIC to ASCII, could be provided in a client filter.

General-purpose code translation, including the ability to discard a code, could be
provided. An example would be the redefinition of an attention key; another, the ignoring
of DEL (the most likely noise character) on an asynchronous line.

• Encryption/de-encryption of text

Encryption of transmitted text, i.e., non-controls, could be handled at this level to provide
end-to-end document encryption. However, encryption of other protocol information or
device-specific controls could not be supported at this level.

• Data compression

2-7

2 Overview

2-8

3

Client interface

This section describes a subset GateStream functionality available from the
GateStubConfig configuration.

3.1 Creating a foreign device stream

A foreign device stream is created using the Create procedure:

GateStream.Create: PROCEDURE [
service: System.NetworkAddress of- System.nuIiNetworkAddress,
sessionParameterHandle: SessionParameterHandle,
transportList: LONG DESCRIPTOR FOR ARRAY OF TransportObject,
createTimeout: WaitTime of- infiniteTime,
conversation: Auth.Conversation of- NIL]
RETURNS [stream: Stream.Handle];

service specifies the system element exporting the functionality. Local use is indicated by
setting service to System.nuIlNetworkAddress. sessionParameterHandle specifies a set of
device-specific session characteristics (see §3.1.1). transportList is an array descriptor
describing the layers of the transport (see §3.1.2). createTimeDut specifies the activation
timeout. If createTimeout seconds elapse before the stream has been created, the ERROR

Error with reason mediumConnectFailed is generated.

GateStream.WaitTime: TYPE = CARDINAL; -- in secs

GateStream.infiniteTime: WaitTime = LAST[CARDINAL);

conversation specifies a handle used to identify the user for network management,
accounting, and access control. Specifying NIL passes no user identification.

The ERROR Error is generated if the Create fails. reason gives the failure reason.
unimplemented is the reason if communication with the specified foreign device has not
been implemented. If the stream cannot be created due to lack of some system resource,
the reason is tooManyGateStreams. If the Create failed due to inability to authenticate
the user (either invalid authentication parameters or Authentication/Clearinghouse
Service failure), the reason is userCannotBeAuthenticated. If the user is not in the
authorized group to use the resource, the reason is userNotAuthorized.

3-1

3

3-2

Client interface

3.1.1 Session parameters

A SessionParameterHandle pointing to a SessionParameterObject describes a set of
device-specific session characteristics.

GateStream.SessionParameterHandle: TYPE = LONG POINTER TO SessionParameterObject;

GateStream.SessionParameterObject: TYPE = MACHINE DEPENDENT RECORD [
variantPart(O): SELECT foreignDevice(O): ForeignDevice FROM

ttyHost. tty = > [
charLength(1): RS232c.CharLength,
parity(2): RS232C.Parity.
stopBits(3): RS232C.StopBits,
frameTimeout(4): CARDINAL]. -- milliseconds

ibm3270Host = > NULL,
ENDCASE];

The variant tag field of the SessionParameterObject specifies the foreign device type. The
word Host in a device name indicates that the Gateway Software client is communicating.
with a host as though it were the foreign device type named rather than communicating
with the foreign device named. Thus, ttyHost indicates the client is communicating with a
host machine as though it were a teletype, while tty indicates that the client is
communicating with a teletype.

If the foreign device is a tty or ttyHost, charLength specifies the length of a character
(excluding parity, start and stop bits), parity specifies the parity type, and stopBits
specifies the number of stop bits. frameTimeout is used to determine when input data
should be returned to the client. When receiving data, if the time between successive
characters is more than frameTimeout milliseconds, then the data received so far is
returned to the client.

If the foreign device is unimplemented, the ERROR Error with reason unimplemented is
generated.

3.1.2 Defining the transport

The transport service is described by an ARRAY OF TransportObject with element zero of the
array specifying the lowest layer, the physical transmission medium transport.

GateStream.TransportObject: TYPE = MACHINE DEPENDENT RECORD [
transport(O): SELECT transportType(O): Transport FROM

rs232c = > [
commParams(1): LONG POINTER TO RS232c.CommParamObject.
preemptOthers(3). preemptMe(4): RS232C.ReserveType,
phoneNumber(5): LONG STRING
line(7): Line].

teletype = > NULL,

polledBSCTerminal, sdlcTerminal = > [
hostControlierName(1): LONG STRING,

External Communication Programmer's Manual

terminaIAddress(3): TerminaIAddress],

service = > [
id(1): LONG STRING],

ENDCASE];

3

Only one- and two-level transport services are implemented. If the transport service is
one-level, then that level must be a polledBSCTerminal or sdlcTerminal TransportObject.
In two-level transports, the first level, the physical transmission medium transport, must
be either an rs232c TransportObject which supports physical RS-232-C lines or a service
TransportObject which supports virtual circuits. The second level, the block transport,
must be a teletypeTransportObject.

If a transport specifies an illegal transport, the ERROR Error with reason iIIegalTransport is
generated.

3.1.2.1 RS-232-C transport

The rs232c variant of TransportObject describes a transport layer implementing a
transducer that supports physical RS-232-C lines. This transport is a possible bottom
layer in two-layer transports.

GateStream.TransportObject: TYPE = MACHINE DEPENDENT RECORD [
transport(O): SELECT transportType(O): Transport FROM

rs232c = > [
commParams(1): LONG POINTER TO RS232c.CommParamObject,
preemptOthers(3), preemptMe(4): RS232c.ReserveType,
phoneNumber(5): LONG STRING
line(7): SELECT reserve(6): ReserveType FROM

reserveNeeded = > [lineNumber(7): CARDINAL],
alreadyReserved = > [resource(7): Resource],
ENDCASE],

ENDCASE];

commParams is a pointer to a data structure that holds RS-232-C transmission medium
parameters (see Appendix A). The ERROR Error with reason inconsistentParams is
generated ifthe parameters pointed to by commParamHandle are invalid.

RS232C.CommParamObject: TYPE = ... (see Appendix A)

The two fields, preemptOthers and preemptMe, serve to establish a priority between
contending RS-232-C channel clients. The state of the channel will be either available,
waiting for a connection, or active. When a channel is available, then a reserve attempt
will always succeed. Otherwise, the success of the reservation will depend on the relative
priorities of the current "owner" of the channel and the client trying to reserve it.

RS232cReserveType: TYPE = {preemptNever, preemptAlways, preemptlnactive};

3-3

3

3-4

Client interface

The following matrix defines the result of reserving the channel given the values of the
owner's preemptMe and the reserver's preemptOthers:

Owner's preemptMe

Never If Inactive Always

Never Fail Fail Fail
Reserver's
preempt- If Inactive Fail Preempt* Preempt
Others

Always Fail Preempt Preempt

* Preempt ifinactive

The field phoneNumber specifies the phone number for a Direct Distance Dial (DDD)
network. For the local RS-232-C/RS-366 port on an 8000 server, it is a string of ASCII
characters (31 characters maximum) from the set

o 1 2 345 6 7 89 ABC D E F * # < > =
representing the digits to be dialed. The character < represents Tandem Dial, the
character> represents Delay, and the character = represents EON (End-Of-Number).
The Tandem Dial or Delay digit may appear at any place in the string as required by the
telephone exchanges being accessed. Tandem Dial causes the dialer to await the next Dial
Tone before dialing subsequent digits while the Delay digit causes the dialer to wait six (6)

seconds before dialing subsequent digits. (The Delay digit is designed to be used in place of
Tandem Dial on dialers that cannot detect Dial Tone.) The EON digit, if present, must be
the last digit in the string. This digit causes the Dialer to transfer control to the Modem.
The Modem then has the responsibility for detecting Answer Tone. In the absence of the
EON digit, transfer is made automatically upon detection and processing of Answer Tone.
An empty string is specified if dialing is to be performed manually or not at all. The
characters A-F allow sending the BCD digit codes for 10-15.

For a port on a Xerox 873 Communication Interface U nit speaking either a Racal-Vadic or
Vente I specific protocol, phoneNumber is a string of ASCII characters (29 characters
maximum) from the set

0123456789*# <
The Xerox 873 is responsible for waiting for a dial tone between the Tandem Dial digit and
the subsequent digit, even if Tandem Dialing is not supported by its dialing hardware.
When hardware assist is not available, a delay of six (6) seconds is used. The options Delay
and EON are not supported.

line: TYPE ,. MACHINE DEPENDENT RECORD [
line(O): SELECT reserve(O): ReserveType FROM

reserve Needed ,. > [lineNumber(1): CARDINAL],
... J,
ENDCASE].

The variant record line specifies the RS-232-C line number. Only the reserve Needed
variant is supported by remotely via the stub. If no RS-232-C hardware exists or if the
cli~nt selects an invalid line number, the ERROR Error with reason
nOCommunicationHardware is generated. If the channel is active and reservation
(preemption) fails, ERROR Error with reason transmissionMediumUnavailable is generated.

External Communication Programmer's Manual 3

3.1.2.2 Service transport

The service variant of TransportObject describes a transport which defines a virtual
terminal circuit. The client is not be communicating over a physical RS-232-C line when
using this transport; instead, this transport allows communicating with services that
provide a virtual teletype interface to the internet. Examples are the Xerox Development
Environment Remote Executive, the Services Remote Executive, and the Interactive
Terminal Service. When using this transport, the second layer of the transport is always
teletype.

GateStream.TransportObject: TYPE = MACHINE DEPENDENT RECORD [
transport(O): SELECT transportType(O): Transport FROM

service = > rid: LONG CARDINAL],

ENDCASE];

id identifies a particular service on the remote system element. Some standard identifiers
are defined in the definitions file TTYServiceTypes.

The ERROR Error with reason serviceTooBusy is generated if the service specified reports it
is too busy to accept additional connections. serviceNotFound is reported if the service
cannot oe located on the remote system element.

3.1.2.3 Teletype transport

The teletype variant of TransportObject describes a transport which allows
communication with teletype-like terminals over asynchronous lines. This is' the
transport used at the second level when the bottom level is either rs232c or service.

GateStream.TransportObject: TYPE = MACHINE DEPENDENT RECORD [
transport(O): SELECT transportType(O): Transport FROM

teletype = > NULL,

ENDCASE];

The ERROR Error with reason unimplemented is generated if the foreign device specified in
the session parameters is not a device supported by this transport.

3.1.2.4 PolledBSCTerminal and sdlcTerminal transports

The polledBSCTerminal and sdlcTerminal variants of TransportObject describe an IBM
3278 terminal which communicates with a host via a virtual controller provided by the
ECS. When using these transports, no other levels are required since they will have been
previously defined by the ECS System Administrator.

GateStream.TransportObject: TYPE = MACHINE DEPENDENT RECORD [
transport(O): SELECT transportType(O): Transport FROM

polledBSCTerminal, sdlcTerminal = > [
hostControllerName(1): LONG STRING,

3-5

3

3-6

Client interface

deviceAddress(3): OeviceAddress],

ENDCASE];

The hostControlierName string used to bind the terminal to a previously created virtual
controller on the ECS. The field deviceAddress specifies the terminal's address. If
unspecifiedTerminalAddress is specified, the terminal will be assigned any available
terminal address on the controller.

GateStream.OeviceAddress: TYPE = CARDINAL;

GateStream.unspecifiedOeviceAddress: TerminalAddress = ... ;

If the controller specified by hostContrDilerName cannot be found, the ERROR Error is
generated with a reason of controlierOoesNotExist. If the terminal address specified is in
use or is invalid, the ERROR Error is generated with reasons of terminalAddresslnUse and
terminalAddresslnvalid respectively.

3.1.3 Connection establishment

Each layer of the transport service may have its own connection establishment
conventions. The client has no direct knowledge of these conventions nor of the actual
handshaking that occurs during connection establishment. The client need only provide
enough addressing information and the authentication procedure(s) necessary to complete
the connection(s).

A client may be either the active or passive correspondent, i.e., it may either initiate a
connection or wait for initiation by the foreign device. Use varies slightly depending on
which the client chooses. To give examples of the different possible situations that arise
during connection establishment, five cases of RS-232-C connections are considered below:

1) Caller using a dedicated (leased) line

In this case the line is always available and the modems are usually powered up. The
algorithm allows the delayed powering up of the modem. The client sets the
phoneNumber .field to an empty string in the description of the RS-232-C transport. Since
auto-dialing is not required, Create returns immediately. The client may await reception
of the attention byte mediumUp to determine when the modems have been powered up
and the line is ready. Data transfer operations will be accepted but will be blocked until
the line is ready. A client may set a timeout for the data transfer operation if indefinite
waiting is inappropriate.

2) Caller using manual dial

The algorithm is very similar to 1). The only difference is that the action required to
complete the connection is manual dialing.

External Communication Programmer's Manual 3

3) Caller using auto-dial

The client passes a phone number in the phoneNumber field of the description of the RS-
232-C transport. Gateway Software calls the Dialup facility of Pilot to perform the dialing
operation. Create returns after the circuit has been successfully established. The ERROR
Error, with reason mediumConnectFailed is generated if dialing fails because of no
answer, busy phone or activation timeout. If no dialing hardware exists or the dialing
hardware is malfunctioning, the ERROR Error, with reason noDialingHardware or
dialingHardwareProblem is generated, respectively.

4) Listener using a dedicated line

The algorithm is very similar to 1). The phoneNumber field of the description of the RS-
232-C transport layer is an empty string. Notification of the listen being satisfied (the
other end has sent data ·or a control) is the completion of a data transfer operation. To
abort a listen, Stream.Delete is called.

5) Listener using a dialed line

Same as case 4).

3.2 Data transfer

Once a session has been created and connection setup has been successfully completed, the
features provided by the Pilot stream interface are available for transferring data with the
device. (See Pilot Programmer's Manual [26] for additional semantics on stream
operations.) The client is responsible for the exact sequence of operations. In general, no
throughput improvement is gained by having multiple Gets or multiple Puts outstanding;
rather, it is more efficient to have one operation outstanding with a large input or output
block.

If the client is not able to keep up with the rate of arriving data, internal buffering and
protocol flow control prevent the loss of data. Likewise, on output, the client may not keep
the transport service busy sending. Transport protocol procedures prevent the remote
device from complaining during periods of idleness.

Stream.GetBlock: This procedure reads a block of data from the foreign device stream
sequence, per the Pilot Programmer's Manual (26). The procedure Stream.SetlnputOptions
controls how GetBlock terminates and what SIGNALS it generates, per the Pilot
Programmer's Manual [261. Possible SIGNALS are Stream.LongBlock, Stream.TimeOut, and
Stream.SSTChange. Possible ERRORs are GateStream.DeviceOperationAborted,
Stream.ShortBlock, and ABORTED.

Stream.GetByte: This procedure gets the next byte from the input stream. It is equivalent to
a call upon Stream.GetBlock, specifying a block containing one byte. Receiving data one
byte at a time often makes inefficient use of the transmission bandwidth. Buffering of
input is performed to allow for speed mismatch between the device and the consuming
client. If a client's Gets lag excessively behind arriving data, the flow control the device
will be throttled if this is possible. Possible SIGNAlS are Stream.TimeOut, Stream.SSTChange,
and ABORTED.

3-7

3 Client interface

Stream.PutBlock: This procedure adds a block of data to the stream sequence, per the Pilot
Programmer's Manual [26]. The endPhysicalRecord parameter is the means by which the
size of blocks can be influenced. When endPhysicalRecord is TRUE, the software guarantees
not to transmit any bytes of a subsequent block in the same block as the bytes included in
and preceding this block. It has the same effect as a call to Stream.PutBtock with
endPhysicaJRecord FALSE, followed by a call to Stream.SendNow. Further decomposition of
blocks will be performed as required by protocol~ and device~specific limitations. Possible
SIGNAL:;> are Stream.TimeOut and ABORTED. .

Stream.PutByte: A call on this procedure is equivalent to a call upon Stream.PutBlock,
specifying a block containing one byte. Bytes will be buffered until either the maximum
device frame size is exceeded or the client calls Stream.SendNow. Possible SIGNALS are
Stream.TimeOut and ABORTED.

Stream.Send·Now: This procedure sends the currently buffered output, per the Pilot
Programmer's Manual [26]. Possible SIGNALS are Stream.TimeOut and ABORTED.

3.3 Control transfer

3-8

This section describes how the client can control the foreign device and/or the transport
through a set of generic controls. Generic controls mayor may not translate into controls
that are meaningful for the current s~ssion.

3.3.1 Classes of generic controls

The Pilot stream can be thought of as two independent duplex information channels. One
channel is used mostly for transmitting data, while the other is used for transmitting
attentions. There are three classes of generic controls: in-band, out-of-band, and out-of­
band with mark. They differ in their use of the two information channels.

3.3.1.1 In-band

An in-band control is sent on the data channel of the stream and arrives in order relative
to data. It is serialized with respect to the data sequence, because its position in the
sequence indicates the relative time it was generated. Since it cannot bypass data, an in­
band control will be de'layed if there is congestion in the stream.

An in-band control is sent via the Stream.SetSST procedure. The control is the SST
argument. The transition from a SST of GateStream.none to some other generic value is the
event that indicates the arrival of a control in the data sequence. The client must call
Stream.5etSST twice, once for the control desired and once to reset the SST to none. It is the
client's responsibility that no data be sent between the two calls to SetSST.

Note: While making two calls to SetSST is bothersome, it preserves the feature of using
SSTs to label data. A client filter may need to use SSTs for format conversion and/or parsing
of stream data. With the method suggested, the client can send generic controls and data
labelling SSTs, with no ambiguity. One way to think of sending in-band controls is that the
data to be transmitted is always labeled with a none control. A generic control is sent so
that it never labels data; rather, the control occurs between data blocks and is serialized
with respect to it.

External Communication Programmer's Manual 3

Completion of data transfer operations and calls to SetSST from separate processes are
serialized as much as possible; however, the client must ensure that the calls are initiated
in the correct order. The SST change takes affect only after all previously initiated Puts
have been processed. No side effect of the in-band control will cause anything to bypass
previously sent data. Completion of the call indicates that all previous data operations and
in-band controls have completed, and that the control will be sent as soon as the transport
permits.

An in-band control is receiVed as the SST result of the Stream Get procedures. By
definition, the control takes effect at the end of the data. It does not label the data. An in­
band control may be returned either with or without data. If the client does not have a
Stream Get outstanding when a control is received, the control is saved until the next Get
operation is performed.

3.3.1.2 Out-of-band

An out-of-band control arrives on the attention channel independently of the data.
channel. The attention channel is a separate, expeditious channel that is not affected by
congestion of the data stream.

The Stream.SendAttention procedure is used to send out-of-band controls. The control is the
byte argument. Completion of the call indicates that the control will be sent as soon as the
transport permits. All transports do not expedite generic out-of-band controls equally.

The Stream.WaitAttention procedure is used to receive out-of-band controls. The control'is
the result. A separate process is usually delegated by the client to wait for out-of-band
controls.

Note: Stream.WaitAttention is also used to receive Gateway status SSTs (see §5.1).

3.3.1.3 Out-of-band with mal'k

An out-of-band with mark control is composed of both an out-of-band control and an in­
band mark. The out-of-band control is used to bypass any congestion in the data stream.
The in-band mark is used to locate the position relative to the data at which the control
was generated. The mark provides synchronization, for example, that the aborting
condition is synchronized with respect to the sender of the abort. In some cases, the out-of­
band control and the in-band mark are generated by opposite sides of the stream.

3.3.2 List of generic controls

AbortGetTransaction [Out-of-band-w/mark 1

GateStream.abortGetTransaction: Stream.SubSequenceType = .. ,;
Immediately stop the transaction being received and resume at the next transaction
boundary, as designated by the in-band mark AbortMark. The out-of-band portion of this
control may be gener~ted by either side of the stream. However, since
AbortGetTransaction always aborts the client's Get,the in-band mark is not generated by
the client, but by the stub.

3-9

3

3-10

Client interface

AbortMark [In-band)

GateStream.endOfTransaction: Stream.SubSequenceType ,. ... ;

Marks a transaction boundary in conjunction with an AbortGetTransaction or an
AbortPutTransaction control.

AbortPutTransaction [Out-of-band-w/markl

GateStteam.abortPutTransaction: Stream.SubSequenceType ,. ... ;

Stop the current outgoing transaction immediately and resume at the next transaction
boundary, as designated by the in-band mark AbortMark. The out-of-band portion of this
control may be generated by either side of the stream. However, since
AbortPutTransaction always aborts the client's Put, the in-band mark must be generated
by the client.

Interrupt [Out-of-bandl

GateStream.interrupt: Stream.SubSequenceType ,. ... ;

Temporarily halt both processing and output as quickly as possible.

None [In-bandl

GateStream.none: Stream.SubSequenceType ,. ... ;

U sed to return the stream to normal, indicating data is to follow.

UnchainedCommand [3270 emulation only] [In-bandl

GateStream.unchained3270: Stream.SubSequenceType ,. ... ;

The following data is an unchained IBM 3270 command from the host application
program. The end of the data is marked by endRecord.

ReadModifiedData [3270 emulation orily) [In-band)

GateStream.readModified3270: Stream.SubSequenceType ,. ... ;

The following data is read modified data from an IBM 3270 terminal. The end of the data
is marked by end Record.

SSCPData [3270 emulation only] [In-band]

GateStream.sscpData: Stream.SubSequenceType ,. ... ;

The following data is SSCP data in character-oriented format. The end of the data is
marked by end Record. The control is only used when the transport is sdlcTerminal.

External Communication Programmet"s Manual 3

3.3.3 Stream operations for generic controls

The following stream operations support sending and receiving of generic controls:

Stream.SetSST: Generic control functions are passed by the client as subsequence types.
SetSST is used to generate in-band controls or the in-band mark for out-of-band with mark
controls.

Stream.SetlnputOptions: To be notified of the receipt of generic controls via a SIGNAL, the
client must indicate that an SSTChange SIGNAL is to be generated whenever a control
sequence corresponding to a generic control is encountered on input.

If so designated, arrival of a control that maps into a generic control will result in the
generation of the following SIGNAL:

Stream.SSTChange: SIGNAL [sst: Stream.SubSequenceType, nextlndex: CARDINAL];

The client must take care to synchronize receipt of the SIGNAL and the receipt of stream
blocks. For ease of synchronization it is better to receive the subsequence type as a result
of a Stream Get procedure.

Stream.SendAttention: An out-of-band control is sent as the attention byte. SendAttention
is also used to send the out-of-band portion of an out-of-band with mark control.

Stream.WaitAttention: Out-of-band controls are received as the result of this procedure.

Note: Stream.WaitAttention is also used to receive Gateway status SSTs (see §5.1).

3.3.4 Applicability of generic controls

Some devices do not support transmission and/or receipt of some of the generic controls.
The table below indicates when a control is not applicable (NA), supported for
sending/receiving (8R), supported for sending only (8), receiving only (R), and not
implemented (NI).

CONTROLS

Interrupt
Abort Get Transaction
Abort Put Transaction
Unchained Command
Read Modified Data
SSCP Data

DEVICES

ttyHost ibm3270

8RI
NI
NI
NA
NA
NA

NA
R
8
R
8
8R

I Send only for Xerox 873. The Xel"Ox 8000 can both send and receive an Interrupt o~ the local port.

3-11

3 Client interface

3.4 Altering data transfer timeouts

Altering the timeout for subsequent stream data transfer operations is accomplished
using the field setTimeout in the Stream object. The default timeout set for data transfer
operations is infinite time; thus, timeouts are initially disabled.

3.5 Destroying a foreign device stream

3-12

A stream is deleted using Stream.Delete. This call immediately terminates a session with a
foreign device. No efforts to prevent data loss will be made nor will the foreign device be
notified via protocol exchange. Deletion releases all resources associated with the session,
including the transmission medium connection.

No operations may be pending on the stream when Stream.Delete is called. To aid the client
in aborting pending stream operations prior to a Stream.Delete, the client can use the Pilot
Process aborting mechanism (Process.Abort) to force waiting processes to return in a timely
manner. Aborted processes will raise the signal ABORTED.

Most stream procedures also raise the signal ABORTED if the remote side terminates the
connection. Stream.Get calls return endOfStream if the remote host terminates the
connection. Either of these should be used as an indication that the stream should be
terminated.

4

Performance criteria

4.1 Delay and throughput

It is very difficult to characterize"performance. This is primarily due to the fact that the
configuration of a foreign device stream varies so greatly. Not only do devices
communicate using different line speeds, but protocol overhead will vary depending on the
packaging of data.

Increasing throughput results in lowered transmission medium cost and better utilization
of the system element. Here are some general guidelines for clients that will lead to
maximum throughput:

• Use the largest buffers possible for data transfer operations.

• Attempting to match client buffer sizes with foreign device medium block sizes may
seem appropriate, but it is discouraged. The extra protocol overhead and client context
switching incurred using small blocks offsets the advantage of eliminating block
fragmentation.

• If possible, set up the foreign device to use the local storage medium with the highest
throughput. For instance, reading to or writing from a floppy disk is better than a
magnetic card. Never transmit to paper.

4.2 Security and data protection

Authentication of remote foreign devices is provided to the extent that protocols allow
such authentication. The ECS also provides access control lists for each teletype
emulation line or IBM 3270 terminal.

No other security precautions are implemented by the ECS. Data passed is encapsulated
according to the conventions of standard protocols. Certain bit patterns are not allowed
within the frames of some protocols. If encryption is used on the contents of a data frame
while using an all text protocol, the encrypted text must not contain any characters
reserved for protocol framing.

Protocol framing is never encrypted.

4-1

4 Performance criteria

4-2

5

Status and exception processing

5.1 Status via Stream.WaitAttention

In addition to generic controls from the foreign device, the client may also receive status
information from Stream.WaitAttention. The following Stream.SubSequenceTypes
represent status to the client:

mediumDown

The transmission medium has gone from an up to a down condition.

mediumUp

The transmission medium has gone from a down to an up condition.

noGetForData .

The foreign device is sending data for which there is no corresponding client Stream.Get. If
the foreign device is ttyHost, all internal buffers are full and any additional data received
before the next Stream. Get is lost. For other foreign devices, the ECS will continue to
receive data from the foreign device until all internal buffers are full and then will not
accept new data from the foreign device until a Stream. Get is done by the client. If the client
is not prepared to Get the data, the stream should be deleted as there is no recovery;
otherwise, a Stream.Get should be issued.

configurationMismatch3270 [3270 emulation only]

Gateway Software determined that the parameters describing the IBM 3270 controller did
not match those of the host. For example, the number of terminals defined may be
different.

hostNotPolling3270 [3270 emulation only]

The 3270 host has not polled our controller for at least 2 minutes.

hostPolling3270 [3270 emulation only]

The 3270 host, which had not been polling our controller, is now polling our controller.

5-1

5 Status and exception processing

5.2 Data errors via SubSequenceTypeS

For certain devices such as teletypes, data errors cannot be retried by the ECS and must be
passed to tlW client. This is done by using the two Stream.SubSequenceTypes described
below. In each case, the character on which the error occurred is the final character in the
block returned to the client:

garbledReceiveData

The final character in the block was received with a framing error.

parityError

The final character in the block was received with a parity error.

5.3 Sources of exception generation

During the establishment and lifetime of a foreign device streajIl, there are many sources
of exception generation. Fortunately, many of the errors that occur can be generalized and
result in identical interpretation by the client. The guideline used in determining SIGNALs
to raise is that the client must have enough information to inform a user that some
corrective measure must be made to the device and/or the communication equipment.

5.4 Signals and errors

5-2

The following SIGNALS and ERRORS are generated by the stub. Client recovery actions
accompany each exception condition.

GateStream.Error: ERROR [reason: GateStream.ErrorReason);

reason is one of the following ErrorReasons:

badAddressFormat

The phone number specified has an invalid format. No recovery; client bug.

buglnGAPCode

A non-recoverable protocol error occurred during the Delete call. No recovery.

dialingHardwareProblem

The dialing hardware is malfunctioning. No recovery; fix hardware or try manual dial.

gapCommunicationError

The system element specified in the parameter service could not be contacted. Possible
client error (wrong server selected) or try again later (server is down).

gapNotExported

The Gateway Access Protocol is not exported at this time by the system element specified
in the parameter service. Possible client error (wrong server selected) or try again later
(service not currently running on the server).

External Communication Programmer's Manual 5

iliegalTransport

The transport specified is not supported. No recovery; client problem.

inconsistentParams

The parameters pointed to by commParams were rejected by the RS-232-C channel as
unimplemented. No recovery.

mediumConnectFailed

The ECS is unable to connect to the foreign device. For example, when auto-dialing, this
indicates the remote phone number was busy, did not answer, or the activation timeout
occurred. Try again later.

noCommunicationHardware

No RS-232-C hardware exists or the RS-232-C line specified is invalid. No recovery; choose
another server.

noDialingHardware

No auto-dialing hardware exists. No recovery; try manual dial or chooses another server.

tooManyGateStreams

One of the resources needed to make the connection is exhausted. Try again later.

transmissionMedi umUnavai lable

The transmission medium is currently in use by someone else. Try later or try a higher
preemptOthers priority.

unimplemented

1) The foreign device specified is not implemented.

2) The procedure called is not implemented. No recovery; client problem.

controlierDoesNotExist [3270 emulation only]

The controller host name specified during an IBM 3270 terminal creation does not match
one of the virtual controllers available on the ECS. Make sure a controller has been
created or choose another name and try again.

deviceAddresslnUse [3270 emulation only]

During an IBM 3270 terminal creation, the terminal address specified or all terminals are
in use at this time. Try again later when terminal is available.

deviceAddresslnvalid [3270 emulation only]

The terminal address specified during an IBM 3270 terminal creation is not in the range
supported by the controller. Probable client error. Choose another terminal address which
is in the correct range and try again.

5-3

5

5-4

Status and exception processing

serviceTooBusy [service transport only]

The remote service rejected the connection, probably because there were too many other
users. Try again later when the service is no so busy.

userNotAuthorized

The client is not in the authorized group. Try another port or terminal which allows access
by your group or have access list changed to allow access to the port or terminal you wish
to use.

userNotAuthenticated

The client did not specify authentication parameters, (conversation = NIL), the
authentication parameters were invalid, or an Authentication/Clearinghouse failure
prevents the verification of the authentication parameters.

serviceNotFound [service transport only]

The service type identified by service is not available on this system element. Possible
client error (the system element specified is not of the correct type) or try again later (the
service is not running at this time).

networkTransmissionMediumDown
networkTransmissionMediumUnavailable
networkTransmissionMediumNotReady
networkNoAnswerOrBusy
noRouterToGAPServi ce
gapServiceNotRespondi n9

These are mappings of Courier errors that can occur when the connection to the remote
system element is being established. Possible client error (incorrect service address
specified) or try again later (if connection is temporarily down).

courierProtocol Mismatch

The server does not support the compatible versions of Courier. Possible client error
(install the correct version of the software) or try another server (which runs the correct
version of the software).

gapVersionMismatch [service transport only J

The server does not support the versions of the protocol that you wish to use. Possible
client error (install the correct version of the software) or try another server (which runs
the correct version of the software).

External Communication Programmer's Manual 5

The following Stream SIGNALS and ERRORS are generated. See Pilot Programmer's Manual
[26] for semantics on these SIGNALs and ERRORS:

Stream.SSTChange: SIGNAL [sst: Stream.SubSequenceType, nextlndex: CARDINAL];

Stream.TimeOut: SIGNAL [nextlndex: CARDINAL];

Stream.LongBlock: SIGNAL [nextlndex: CARDINAL];

Stre~m.ShortBlock: ERROR;

Stream.EndOfStream: ERROR;

ABORTED: SIGNAL;

5-5

5 Status and exception processing

5-6

6

Reliability and maintainability

[TBD]

6-1

7

Multinational requirements

[TBD]

7-1

A

Appendix A
RS-232-C communication parameters

Thers232c variant of a GateStream.TransportObject contains commParams as a field.
commParams is a pointer to a communication medium description, of type
RS232C.eommParamObject, a record that defines the settings for the communication
equipment. The duplex, lineType, and IineSpeed fields are used to create the RS-232-C
channel. The netAccess and dial Mode fields relate to the network access mode, and
dialereount and retryeount are used if auto-dialing is specifie~. Dialing retries are made
if a line is busy or there is no answer. See Pilot Programmer's Manual [26] for further
information.

RS232C.eommParamObject: TYPE = RECORO [
duplex: RS232c.Duplexity.
lineType: RS232c.LineType.
lineSpeed: RS232c.LineSpeed.
accessDetail: SELECT netAccess: RS232c.NetAccess FROM

directeonn = > NULL.

];

dialeonn = > [
dial Mode: RS232c.DiaIMode.
dialerNumber: CARDINAL.
retryeount: RS232c.Retryeount].

ENDCASE

RS232c.Duplexity: TYPE = {full. half}; --hardware (modem)

RS232c.NetAccess: TYPE = {directeonn. dialeonn};

RS232c.DiaIMode: TYPE = {manual. auto};

A-l

A RS-232-C communication parameters

A-2

B

AppendixB
Foreign device considerations

The ECS attempts to provide a uniform interface for communicating with a wide variety of
foreign devices. While the interface may be uniform, there are aspects of it that do not
apply to some foreign devices or that do not have obvious mappings into the unique
operations of a particular device. In some cases, the ECS client must translate the
operations that apply to a foreign device into the more generic operations provided by the
Gateway Software interface. This appendix lists known device-specific peculiarities and
discusses how to use Gateway Software features to handle them.

B.I TTY termjnal emulation

B.1.1 Data transfer considerations

Communication in TTY terminal emulation mode is assumed to be in an interactive mode.
That is, the user is sending and receiving data without the model of transferring a large
amount of data such as a document in a single direction. .

When receiving data in TTY terminal emulation mode, the ECS will fill the client's buffer
with as much data as is available from the remote device at the time the Get is done. If no
data exists, the ECS will wait until some arrives. Thus, it is possible for Gets to return
with only partially filled buffers. This should be considered normal and should not be
treated as an error.

B.1.2 Use of controls

TTY terminal emulation supports only the Interrupt control.

Interrupt

The Interrupt control is used to send a BREAK. If a BREAK is received, an Interrupt control is
generated.

B-1

B Foreign device considerations

B.1.3 Authentication

The ECS provides access control on a per physical port basis. If unlimited access is
specified, the client need not supply authentication information (conversation :II: NIL).

However, it is recommended that this information always be provided for network
management and future accounting uses.

The ECS will accept either strong or weak authentication credentials. When generating
strong authentication credentials, the remote name is the RS-232~C Port Clearinghouse
entry that describes the RS-232-C being used.

B.l.4 Device parameter setting

The remote host may be set to send asynchronous data at speeds from 50 to 19200 baud,
with no, even, or odd parity, and with data length of 5 to 8 bits.

B.1.5 Clearinghouse entries

The ECS registers all RS-232-C ports available for teletype emulation. The format of these
Clearinghouse entries is defined in the file CHEntries and CHPIDs.

B.2 IBM 3270 terminal emulation

B-2

B.2.1 Data transfer considerations

Communication in IBM 3270 terminal emulation mode is assumed to be in an interactive
mode. That is, the user is sending and receiving data without the model of transferring a
large amount of data such as a document in a single direction. The terminal emulated is
an IBM 3278-2.

Data transfer varies depending on whether polledBSCTerminal or, sdlcTerminal has been
specified as the top transport layer.

IfpolledBSCTerminal is specified:

1) The virtual controller may be one that communicates with the foreign device (IBM
host) using either the SSC or SNA protocols. Allowing a transport of
polledBSCTerminal when using a virtual controller that communicates using SN A is
provided for backward-compatibility with workstations that do not understand SNA
character-oriented data.

2) The client receives IBM 3270 data stream commands from the ECS. If the host uses
SNA protocols, the ECS converts character-oriented data on the SSCP-LU session into
equivalent field-oriented data stream commands. Each command is preceded by the
in-band mark UnchainedCommand. The end of the command is marked by
end Record. Each command is treated as a transaction; thus, an AbortGetTransaction
control aborts one command. The data returned to the client begins with the ESC

character of the command.

External Communication Programmer's Manual B

3) The client sends IBM 3270' terminal read modified data. The data is preceded by the
in-band mark ReadModifiedData. The end of the data is marked by endRecord. If the
host uses SNA protocols, the ECS converts field-oriented read modified data into
character-oriented data when sending on the SSCP-LV session.

If sdlcTerminal is specified:

1) . The virtual controller must be one that communicates with the foreign device (IBM
host) using the SNA protocol.

2) The client receives data on the LV-LV session as IBM 3270 data stream commands.
Each command is preceded by the in-band mark UnchainedCommand. The end of the
command is marked by endRecord. A command is treated as a transaction; thus, an
AbortGetTransaction control aborts one command. The data returned to the client
begins with the ESC character of the command.

3) The client receives data on the SSCP-LV session as character-oriented data. The data
is preceded by the in-band mark SSCPData. The end of the character-oriented data is
marked by endRecord. .

4) The client sends IBM 3270 read modified data on the LV-LV session. The data type is
preceded by the in-band mark ReadModifiedData. The end of the read modified data is
marked by endRecord.

5) The client sends character-oriented data on the SSCP-LV session. The data type is
preceded by the in-band mark SSCPData. The end of the data is marked by endRecord.

B.2.2 Use of controls

UnchainedCommand [Gateway Software to Client]

The data following is an unchained IBM 3270 command. An AbortGetTransaction aborts
the entire command transaction.

ReadModifiedData [Client to Gateway Software]

The data following is read modified data from a terminal.

SSCPData [Client to/from Gateway Software]

The data following is SSCP data in character-oriented format. This control is only used
when the transport is sdlcTerminal.

8-3

B

B-4

Foreign device considerations

B.2.3 Authentication

The ECS provides access control on a per device (terminal/printer) basis. If unlimited
access is specified, the client need not provide authentication information (conversation
= NIL). However, it is recommended that this information always be provided for network
management and possible future accounting purposes.

The ECS will accept either strong or weak authentication credentials. When generating.
strong authentication credentials, the remote name is the IBM 3270 Host Clearinghouse
entry describing the virtual controller.

B.2.4 Device parameter setting

The remote host may be set to send synchronous data at speeds from 50 to 9600 baud,
either half- or full-duplex. The number of devices sYSGENed into the host system should be
equal to the number specified by the ECS System Administrator.

B.2.5 Clearinghouse entries

To aid the stub client in locating virtual 3270 controllers, each ECS registers its virtual
controllers in the Clearinghouse. The format of the entries can be found in CHEntries and
CHPIDs.

When naming a particular virtual controller, the hostControllerName is formed by
concatenating the following substrings ihto a single string:

1) the local name of the port (from the Clearinghouse Service IBM 3270 Host entry),

2) a pound sign (#),

3) the controller number expressed in octal (from the Clearinghouse Service
IBM3270Host entry),

4) a capital B (8).

For example, to specify a virtual controller with an IBM 3270 Host entry name of
PaloAltoHost:OSBU North:Xerox and a controller number of 5, the name passed as the
hostControllerName would be:

PaloAltoHost#58

