
HUMB1.E
Reference Manual

Xerox Special Information Systems

XEROX

Xerox Special Information Systems

HUMBLETM V2.0
Reference Manual

Kurt W. Piersol
August 1987

Xerox Special Information Systems
Vista Laboratory
250 North Halstead Street
P.O. Box 5608
Pasadena, CA 91107-0608
(818) 351-2351

Smalltalk-SO TM License Versions 1 and 2.

XEROX

Copyrigh~ 1985, 1986, 19S7 by Xerox Corporation. All rights reserved.

XEROXfJ and the Xerox product names identified herein are trademarks of

XEROX CORPORATION. 8/87

1. Introduction

1.1. What IS HUMBLE? 1

1.2. Background Reading 2

1.3. Examples 2

2. Knowledge Bases 3

3. HUMBLE Entities 4

3.1. The Structure of Entitles 4

3.1.1. Entity Type Definitions 7

3.1.1.1. The Type Above Specification 8

3.1.1.2. The Prompts 8

3.1.1.3. The Parameter List 9

3.1.1.4. The Main Parameter List 9

3.2. Parameters 10

3.2.1. The Uncertainty System 11

3.2.2. Parameter Definitions 12

3.2.2.1 Describes 12

3.2.2.2. Parameter Types 12

32.2.2 1 YN Parameters 13

3.2.2.2.2 MV Parameters 13

·3.2.22.3. Number Parameters 13

3.2.2.2.4. String Parameters 14

3.2.2.2.5. E numerated Parameters 14

3.2.2.3. Prom pting 15

3.2.2.3.1 The Text ofthe Prompt 15

3.2.2.3.2. The Prompt Flag 16

3.2.2.4 Explanation 17

3.2.2.5 Remarks 17

3.2.2.6 Altering the Order In which Deducing Rules are Fired 17

3.2.2.7. The Change Block 18

3.3 The Scope of Parameters 19

4 HUMBLE Rules 21

4 1 Introduction 21

4.2 BaSICS 21

4.2. i. HUMBLE Rules and Smalltalk - 80 21

4.2.2. The Structure of a HUMBLE Rule 22

4.2.3. Rule Statements 23

4.2.3.1 If-Then-ElseStatements 23

4.2.3.1.1. The Premise 23

4.2.3.1.2. The Action 24

4.2.3.121. Making Conclusions 24

4.2.3.1.2.2. Evaluating Other Statements 25

4.2.3.1.2.3 FIring Other Rules 26

4.2.3.1.24. Setting New Goals 27

4.2.3.2 If - Any, If - All, and If - None Statements 27

4.3. Rule Execution 29

4.4. Syntax BNF 30

4.4.1. BNF Conventions 30

4.4.2. Syntax BNF 31

4.4.3. Special Boolean Operations 33

4.4.4. Smalltalk Escape Sequences 35

4.5. Example Rules 36

4.5.1. Typical Rules 36

4.5.2. Searching Rules 37

4.5.3. Nested Rules 38

4.6. Error Messages During Compilation 38

5 The HUMBLE Manager 42

5.1. Introduction 42

5.2. Adding and Removing Knowledge Bases 43

5.3. Editing Knowledge Bases 43

5.4. Consulting Knowledge Bases 43

5.4.1 Controlling Output During a Consultation 44

5.4.2. Tracing Execution DUring a Consultation 45

5.5. Saving Knowledge Bases 45

5.6. Listing Knowledge Bases 45

6. The HUMBLE Knowledge Base Editor 47

6.1 Window Description 47

6.1.1 The Entity Type List 47

6.1.2. The Parameter Definition List 48

6.1.3. The Rule List 49

6.1.4. The Editor Pane 50

6.1.4.1. Basic Editing 50

6.1.4.2. Rules - -:> 50

6.1.4.3. Actions--:> 52

7. The HUMBLE Graphic Utility 53

7.1 The Graphic Display 53

7.2. Editing Elements 53

7.3. Testing your Knowledge Base, using Find/Execute 53

8. The HUMBLE Listener Window 54

8.1. Introduction 55

8.2. Beginning a Consultation 55

8.3. Explaining Results 55

8.4. Explaining Text 56

8.5. Examining Alternative Conclusions 56

8.6. Examining Entities 57

9. Example and Tutorial: Building a HUMBLE Knowledge Base 58

9.1. The Problem 58

9.2 The Entities and Parameters 58

9.3 The Rules 61

94 A Sample Consultation 64

9.5. A Refinement 65

10. The HUMBLE Programmer's Interface 67

10.1. Introduction 67

10.2 Required Reading 67

10.3. The KnowledgeBasesGlobal 68

10.4. Individual Knowledge Bases 69

10.4.1. E)(ecuting the Rules 70

1 OA.l.l. Backward Chaining 70

10.4.1.2. Forward Chaining 71

10.4.2. Inspecting the Entities 71

10.4.2.1. E)(amlning Entities 72

10.4.2.1.1 Sub-Entitles 72

10A.2.1.2. Accessing the Parameters 73

10.4.2.1.3. Accessing the Entity Type 74

10.4.2.1.4. Other Useful Information 74

10.4.2.2. E)(aminlng Parameters 75

10.4.2.2.1 Accessing the Hypotheses 75

1042.22 Accessing the Parameter Definition 77

10.4.23 E)(amlnlng Hypotheses 78

10.4.3. Resetting a Knowledge Base 78

10.44 E)(plalnlng Conclusions 79

10.4.5 examining Alternatives 79

10A.6. Redirecting Output 80

10.47 Redirecting Input 80

10.4.8. Tracing E)(ecutlon 81

10.4.9. Initializing the Entitles 81

10.5 Altering a Certainty Mode: ~n

10.5.1 Combination Mes> ;des 83

10.5.2. Certainty ConstaT", 84

11 USing HUMBLE In Popular E)(per' Systems Architectures 85

11 1 Simulations 86

11.1.1 MazeMaster: a Hu:rlble Simulation Tutonal 87

11.1.2. The MazeMaster Object Classes 87

11.1.3. The MazeMaster Connection 88

11.1.4. What We Were Trying to Say 89

11.2. Blackboard Systems 89

11.2.1. The Blackboard Concept 89

11.2.2. H UMBLE Knowledge Bases as Knowledge Sources 90

11.3 Smalitalk - 80 and Frame Based Systems 91

11.3.1 The Frame Concept 91

11.3.2. Humble Knowledge Bases within Frames 92

10 Introduction

1.1. What is HUMBLE?

Before delving into the specifics of creating an expert system
using HUMBLE, it might be wise to at least get a starting set of
vocabulary in place. A HUMBLE know ledge base is a set of rules
about some set of entities which you have defined. The entities
define what sort of things, or ideas you will be making logical
conclusions about, while the rules define what sorts of
conclusions are permissible.

A knowledge base can be anything from a set of ten rules about
where you like to go to lunch to a set of a thousand rules about
how to decide whether a patient has anthrax or cholera. Rules
can be written on just about any subject it is possible to think
logically about.

One of the features common to most expert systems is an ability
to reason in a logical manner about data which is uncertain.
HUMBLE supports this feature too. Data in a HUMBLE
knowledge base (this part of a knowledge base is often called the
fact base), as well as rules, can have certainty factors attached to
them, to indicate that the data or rule mayor may not be
absolutely correct. These certainty factors allow HUMBLE to be
applied to data in real world situations.

Once a HUMBLE knowledge base has been created, a user can
ask it for answers, and in turn be asked questions by HUMBLE.
In these cases, HUMBLE will use its rules and information to
come up with appropriate questions which it can use to get the
data needed for an answer. It will then be able to explain its
answer in English, giving the user a chance to evaluate the
results.

1.2. Background Reading

There are a few books and articles which would be useful to read
and understand before delving into this manual. The book Rule
Based Expert Systems, edited by Buchanan & Shortliffe, gives a
lot of background material and technical information on expert
systems of the sort which HUMBLE can build. If you are
unfamiliar with using Smalltalk, by all means read
Smalltalk -80: The Interactive Programming Environment by
Goldberg.

1.3. Examples

During the remainder of this manual, references will
occasionally be made to a knowledge base called ROX. This is
provided with HUMBLE and is a working example of one kind
(the most common kind) of HUMBLE knowledge base. It may
prove useful to have a copy of 'ROX.listing' handy as you read (it
should appear as an appendix to this document). The listing will
appear strange at first, but don't worry. It will become clear as
you read further.

2

2. Knowledge Bases

In HUMBLE, the stored expertise in an expert system resides in
a knowledge base. The topic on which the expert system is
written is often referred to as the problem domain, or simply the
domain. A knowledge base has two main parts, the static
knowledge and the dynamic knowledge. Each of these two parts
has a number of terms which are often used to describe it.

The dynamic knowledge, for instance, contains all of the
information which changes from one consulation with the
system to another. As such, it is often called the fact base (the
term we will use most often in this manual), or the working
memory. The fact base contains a number of entities, which will
describe in detail a little later. This part of a knowledge base is
strictly temporary.

The other part, the static knowledge, is a collection of all the
information about the domain which doesn't change. Included in
the static knowledge are descriptions of what sorts of entities can
exist in the fact base, as well as how to use the information in
fact base to make inferences and thus create new information.
This description of what sorts of inferences are permissible is
called the rule base. Each rule describes under what conditions a
given conclusion can be drawn. The collection of definitions for
entity types serves as a framework in which some part of the
world can be described, and therefore have rules written about it.

3

30 HUMBLE Entities

Entities are the objects about which HUMBLE will make
inferences. Each entity in the system is a representation of some
thing or concept in the real world. As such, they serve as the
context in which rules are evaluated, much as natural laws in
the real world operate on objects and ideas. Defining the entities
about which your knowledge base will reason·is probably at least
as important as defining the rules it will use. By designing your
entities poorly, you can make the task of completing your
knowledge base very difficult indeed.

It makes sense, then, to consider your entity types very carefully
before you start to write rules. Try to map out a clear and
complete description of the area of knowledge you wish to
capture. There are probably clear divisions in your problem, and
it will go much easier if you try to determine what they are.
There is no need to map out exactly what the rules are at this
stage, but you should at least get some framework of entity types
in mind, one in which you can express your rules. This extra
time in the beginning will pay huge dividends later.

Don't be intimidated, though. If you don 't get your framework
exactly right, you can always change it later. Minor or
mid - sized changes can be accomplished in HUMBLE relatively
easily, but major changes can take a great deal of time,
especially if many rules have already been created. So get a good
rough framework set up, and then refine it as you add rules.

3.1. The Structure of Entities

As mentioned earlier, HUMBLE rules operate on entities. These
entities fall into categories, called entity types. It is up to you to
define the entity types which make sense for the topic your
expert system will cover.

Entities are characterized by Parameters, which describe how
entities of the same type differ from one another. For instance,
an automobile entity might have parameters for: color, model,
maker, options, etc .. Parameters are described in greater detail a

4

little later on. The parameters which entities of a given type will
possess are specified in the entity type definition.

Along with parameters, an entity can hold other entities. These
entities, called sub - entities, have their own sets of parameters
and sub-entities, and so on. If you have had some experience
with computers, you might notice that this follows a classical
pattern of storing and retrieving data, called a tree.
Sub - entities are a good way of breaking a problem into
independent, but similar subsections. The entire structure,
including the top entity and its sub-entities, and their
sub - entities in turn, is called an entity tree. The place an entity
holds in an entity tree is determined by a specification in its
entity type definition. Knowing the place an entity holds in the
tree is important when it comes time to write rules. The primary
reason for this is that a rule can only have access to parameters
in the entity it will execute against or one above the entity in the
tree. More on this concept later.

Jo..IRI'L· .. ~ ... l:~E-l

l ... {odel
Seating
Range

Fuel Ca.pacity

A concrete example may be easiest to understand. Suppose you
are building an expert system which will determine probable
faults in an airplane. It would be reasonable to make the top
entity type an airplane. Assuming that there is more than one
engine, it would be useful to run the same set of rules on each
engine independently of the others. This is exactly the situation
where sub - entities are useful. You would create an engine
entity type, and specify that it was part of the airplane entity
type. Lets say that you also have a set of rules which can
determine whether a given rotor within an engine has worn out.
You might want to create an entity type for rotors, and specify

5

that a rotor is a part of an engine entity. An example of an entity
tree created from these sorts of entities might look like this.

An Entity Tree

6

3.1.1. Entity Type Definitions

As noted above, entity type definitions are descriptions of how
entities of a given type will behave. The typical template for an
entity type definition which HUMBLE's Editor provides looks
like:

EntityTypeName
typeAbove: anEntityType
createPrompt: Are there any <entity>s to consider?
addPrompt: Are there any other <entity>s to consider?
assumePrompt: I am creating an <entity>
defaultName: <entity>
parameters: #0
mainParameters: #0

Each line of the template defines some part of the behavior this
type of entity will exhibit. A typical example, from ROX, looks
like this:

Mineral
typeAbove: Rock
createPrompt: Are there any identifiable minerals in the

rock
addPrompt: Are there any other minerals in the rock
assumePrompt: I am creating one mineral of the rock
defaultName: MINERAL
parameters: #(mineraIName amount)
mainParameters: #(mineraIName amount)

A rotor entity in the airplane example might look like this:

Rotor
typeAbove: Engine
createPrompt: Are there any rotors which may have

defects?
addPrompt: Are there any other rotors to consider?
assumePrompt: I am creating a rotor
defaultName: ROTOR

7

parameters: #(numberOfBlades hourslnUse rotorDefective

mainParameters: #(rotorDefective)

301.1.1. The Type Above Specification

typeAbove: is the line which specifies the place in an entity tree
which this type of entity can occupy. In the example given
previously, the definition for the engine entity type would have a
line saying:

typeAbove: airplane.

The definition for the rotor entity type has a line with:
typeAbove: engine.

The entity type for airplane is a special case, because it is the
type of entity that should exist at the top of the entity tree.
Because there is no type above it in an entity tree, it will have a
line specifying:

typeAbove: nil.

An Entity Tree Path

3.1.1.2. The Prompts

Entity type definitions have three lines devoted to prompting the
user, the create Prompt, addPrompt, and assumePrompt.
Each of the three might be used during the creation of an Entity,
depending on the specific information given during a
consultation.

8

The create Prompt is used when a rule being fired implies that
some entity of a given type may exist. HUMBLE will look to see
if any have been created so far, and if not it will use the
create Prompt to ask the user whether one of that type of entity
exists.

The add Prompt is used only in situations where the
createPrompt has successfully been used to create the first of a
given type of entity. The addPrompt is then used to determine
if there are any more of that type of entity to be considered.

The assumePrompt is used when the rules imply that there
must be at least one of-this type of entity. It simply informs the
user that an entity has been created, so that he will not be
surprised when asked about it.

In any case, the defaultName line is used to produce a name for
the new entity. The standard practice is to create the name by
appending a number to the default name. For instance, in ROX
the default name for Rock entities is ROCK. Therefore, the first
entity created of that type is named ROCK-1.

3.1.1.3. The Parameter List

This is a list of all parameters which are associated with this
entity type. You needn't worry about filling in this line, since
the editor takes care ofthat detail for you. It appears mostly as a
convenience, to provide an easy cross reference. Whenever
HUMBLE is given a parameter definition, it will automatically
add its name to the line of the appropriate entity type definition.
Unfortunately, HUMBLE does not protect you from altering this
list. Doing so is probably a good way to introduce errors into
your knowledge base, and so should be avoided.

3.1.1.4. The Main Parameter List

The main Parameters line specifies which parameters you
consider essential. Whenever an entity is created, each
parameter on the main parameters list is immediately

9

determined by HUMBLE, in the order specified in the list. This
is used for telling a knowledge base what parameters must be
filled in for an entity to make any sense at all. It is also a nice
way of causing the system to ask certain questions right at the
start in a certain order.

To place a parameter on the main parameters list, just copy it
from the parameter list and add it between the parentheses of
the main parameter list.

3.2. Parameters

The Parameters of an entity are where the real information
about that entity lies. If you are computer oriented, you can
think of an entity as a collection of parameters added to a
collection of pointers to where it can find more parameters. Each
parameter is some relatively small bit of data about the entity.
Different parameters can he of differing types: Strings,
N umbers, etc.

Deciding what parameters are appropriate for any particular
entity type is probably the major problem expert system
designers face. A good representation will make completing
your task easy, but a bad one can make it impossible. Our
recommendation is to first write down some rules on paper to get
a sense of what kind of things you are expressing- ~'. the rules.
Then use that information to design a set of param; ters for your
entity. Think about each parameter and decide if j. might not be
better represented as a sub- entity. A little work Ii ;;e this at the
beginning will help a lot in creating your expert syst em.

10

3.2.1. The Uncertainty System

Every parameter in a HUMBLE knowledge base can contain
data which is uncertain. What this means is that each value may
have some attached value which indicates how strongly
HUMBLE believes that the value is the correct one for that
parameter. HUMBLE uses these attached values to mimic the
sort of reasoning a human expert performs in similar situations.

HUMBLE deals with uncertain data by attaching a certainty
factor to each bit of data in the fact base. These certainty factors,
in a standard HUMBLE knowledge base, are numbers ranging
from - 1.0 to 1.0. The system takes these factors into account
whenever it draws a conclusion or makes a test. A 1.0 indicates
absolute certainty that the value is the correct one. -1.0
indicates that it is absolutely certain that the value is not the
correct one for whatever parameter it is associated with. 0.0
indicates a complete lack of knowledge.

-1.0 -0.2 0.0 0.2 1.0

HUMBLE decides that it is safe to declare a test true whenever
the certainty of the result is either greater than 0.2 (for true). In
general, 0.2 and - 0.2 are called the cutoff certainties, because
they represent the point where HUMBLE feels safe in making
positive or negative declarations about the value of a parameter
or the validity of a test.

These certainties are constantly considered during a
consultation with HUMBLE. The exact algorithms are not
necessarily of interest here, but in general they behave just as
you might expect them to. If a conclusion depends on two factors
which are uncertain, then the conclusion will be even less
certain than either of the two factors considered. If several rules

11

support the same value, then the certainties add together to
create a greater certainty.

HUMBLE supports the ability to have several different potential
values for each parameter in the fact base simultaneously. Each
of these potential values is referred to as a hypothesis. The best
hypothesis is the hypothesis with the greatest certainty attached
to it.

3.2.2. Parameter Definitions

Parameter definitions are the description you must create to
define a parameter. The template for a parameter definition,
which HUMBLE's Editor window produces, looks like:

ParameterDefinitionName
describes: anEntityType
type: YN,String,Number, MV, or #(array of possible values)
prompt: What is the value of parameter for & ?
promptFlag: askFirst, askLast, or nil
explanation: "Not yet explained"
remark: "Not Yet Commented"
changeBlock: [:parameter IJ

Each line of the template defines some part of the behavior this
type of parameter will exhibit. The following sections will define
each line in detail.

3.2.2.1. Describes

This line of the definition indicates which type of Entity this
parameter is associated with.

3.2.2.2. Parameter Types

The type line of a parameter definition specifies what sort of
parameter this is, YN (yes/no), MV (multi-value), Number, or
String. This is probably going to be dictated by the nature of the
thing you are describing. Each type has a different set of

12

characteristics and uses, described in the sections which follow.

3.2.2.2.1. YN Parameters

YN Parameters are yes/no parameters. They represent some
facet of an entity which is either true or false. An example might
be whether or not a switch is on, whether or not a dog has fleas,
or whether or not the patient survived.

A typical example of this sort of parameter is the parameter
fossiliferous in the ROX example knowledge base.

3.2.2.2.2. MV Parameters

MV parameters are parameters which can hold more than one
value. In many respects they are like keeping a simple list of
things. Some examples of MV parameters might be: the list of
diseases a patient has contracted in the past, The list of problems
with an automobile, or perhaps the names of all employees in
some small company.

Essentially, all you can do with an MV parameter is to either add
some element to the list or test whether something is already in
the list.

A typical example of this sort of parameter is the parameter
attributes in the ROX example knowledge base.

3.2.2.2.3. Number Parameters

Number parameters contain a single number. You can do any of
the standard numeric operations on number parameters.

It is difficult to use them to calculate values as you would in a
standard programming language. I'll try to explain. First of all,
HUMBLE is a system which deals with uncertainty. The
approach to uncertainty which HUMBLE takes requires the
system to consider ALL of the possible values for a parameter
and then choose among them once all of the evidence is in. It is
this very feature, which allows HUMBLE to mimic human

13

reasoning about uncertain data, which prevents it from being
effectively used for computation. If you try to make the
conclusion:

Ais:A +

assuming A is now 5, in an uncertain system, it will now have
two possibilities: that A is 5, and that A is 6. See the problem?
You will probably have to attempt to add 1 more than once in
order for the system to have enough evidence to actually believe
A to be 6. This makes it very difficult indeed to perform
predictable mathematical computation using uncertain
parameters. If you feel a deep need to do this sort of
computation, there are ways to do it outside of the certainty
mechanism. See section 4.4.4: 'Smalltalk Escape Sequences', for
more information on how to go about this.

A typical example of this sort of parameter is the parameter
grain Size in the ROX example knowledge base.

3.2.2.2.4. String Parameters

String parameters contain a single string of characters. They
are usually used as names or adjectives for the entity.

Other than the usual tests, (such as >, <, =, > =, < =),
HUMBLE allows you to concatenate strings together. You use
the comma C.) operator to do this. As with Numbers, rules which
do many concatenations can be difficult to predict.

A typical example of this sort of parameter is the parameter
name in the ROX example knowledge base.

3.2.2.2.5. Enumerated Parameters

Enumerated parameters are a special case of String and Number
Parameters. An enumerated parameter is specified by giving an
array of possible values which the parameter can take. The
array must be either all numbers or all strings.

14

For example, the line:

type: #('a' 'b' 'c' 'dO)

specifies that this parameter can only .have string values of 'a',
'h', 'e', or 'd'. Other than this specification of possible values, they
are just like any other String or N umber parameter.

A typical example of this sort of parameter is the parameter class
in the ROX example knowledge base.

3.2.2.3. Prompting

There comes a time when a HUMBLE knowledge base needs to
ask the user a question in order to obtain the value of some
parameter. Two parts of a parameter definition control how this
is done. The prompt: and promptFlag: lines of the definition
control the text of the prompt and the order in which information
is sought, respectively.

3.2.2.3.1. The Text of the Prompt

The text of the prompt is set using the prompt: section. This
piece of the definition is essentially a string phrased exactly as
you would want the system to ask the question. You can,
however, also add some program information into the question
by using the & character.

For instance, the following line in a parameter definition
(assuming the parameter was part of an entity called
PATIENT-1):

prompt: What is the temperature of &?

would produce the question:

What is the temperature of PATIENT - 1?

15

If you want to plug in the value of some parameter as part of the
question, you can place the name of the desired parameter
immediately after the & character. If our first example is
changed to:

prompt: What is the temperature of &patientName?

the result might be:

What is the temperature of 'Phillip Davis'?

assuming, of course, that the name of the patient was indeed
Phillip Davis.

3.2.2.3.2. The Prompt Flag

Whenever HUMBLE is asked to ascertain the value of some
parameter, about the first thing HUMBLE does is check the
value of this flag.

If the flag is set to askFirst, the system will try to get the user to
answer what the value is, and will only try to infer it if the user
says he doesn't know. This is usually, but not exclusively, used
in the case where the parameter is for input only.

If the flag is set to askLast, the system will attempt to deduce
the value, and ask the user only if it cannot infer the answer
itself.

If the flag is set to nil, then the system will attempt to deduce the
value, and if it cannot find a reasonable value it will simply
chalk up the parameter as having an unknown value. The nil
flag specifies that the user should never be asked the value of
this parameter. It is often used in the case of internal
parameters, where the user is never going to be interested in the
value of that parameter.

16

302.2.4. Explanation

The explanation: line allows the system developer to input
some explanatory text about this parameter. Treat this as if you
were defining your parameter as a word in a dictionary. It may
be useful to decribe what makes this parameter interesting or
important. This line is used by the explain function of the
Listener window to explain selected pieces of text. The section on
using that window will describe this feature in more detail.

3.2.2.5. Remarks

Remarks are very similar to explanations, and are reserved as
comments for the parameter. You should note anything unusual
about the parameter and how you are using it, so that someone
else who reads your knowledge base can understand what you
did. No part of the standard HUMBLE window setup uses this
line.

3.2.2.6. Altering the Order in which Deducing
Rules are Fired

The deducingRules: line lists all of the rules which this
parameter might fire in order to deduce its own value. They are
listed left to right in the order in which they will be evaluated. If
you are unsatisfied with the order HUMBLE chooses for them,
(and usually the exact ordering makes no difference to the final
answer) you can change the order by moving the rules around in
the list with copy/cut/paste editing.

If you decide the order yourself, you should be careful of what are
technically termed recursive rules. A recursive rule is a rule that
makes a conclusion about some parameter it checks in its
premise. An example of such a rule might be:

17

if: petType = 'dog' & (breed mightBe: 'Labrador')
then: [

if: furColor = 'black'
then: [breed is: 'Labrador' withCertainty: 0.2].
J.

Notice that the parameter breed appears in both the premise and
in the action block. As with most rules of this sort, this rule is
used to follow up a specific piece of information and thereby
make it more certain.

These recursive rules should be at the end of the list, rather than
the beginning, or they will introduce very odd behavior.
HUMBLE does not at present protect you from introducing this
sort of error while altering the order of rules, so this feature is
strictly caveat emptor.

Note Observant readers may have noticed that the
deducingRules: line does not appear in the standard parameter
definition template. This is not an oversight. A brand new
parameter definition should not have any deducing rules
associated with it, so we didn ~ give anyone the chance to
introduce an error during the creation of a parameter definition.

3.2.2.7. The Change Block

The change block is an advanced feature for Smalltalk
programmers. If you aren't a Small talk programmer, you can
either ignore or remove entirely the changeBlock: line of the
parameter definition. Thenjust skip the rest of this section.

If you are a Small talk programmer, you can use the change block
to activate some piece of Small talk code whenever the best
hypothesis about some parameter has changed. The contents of
the change block will be executed whenever this occurs. Your
change block should accept one argument, the actual parameter
which has changed. You can send it any messages you like, but
use only the argument and any global variables from within the
change block. You can make mincemeat of your system by
trying to modify parameters from within the change block, so be

18

VERY sure you want to do it before attempting that sort of thing.
The change block is useful for a number of things, but is mainly
intended to aid with animation or other similar interface
problems.

3.3. The Scope of Parameters

In order to avoid confusing the rules, HUMBLE allows them
access to parameters only from certain parts of the entity tree. A
rule can only access data in the entity it is evaluating in and any
above it in the entity tree. This is a very hard concept to explain
if you haven't had some experience with it, so don't be dismayed
if this section sounds like gibberish the first time you read it.

Think of the example entity tree we discussed earlier, that of an
airplane entity and the engine sub-entities it contained.
Suppose HUMBLE is trying to execute a rule which will
determine if one of the engines is malfunctioning. Obviously,
the decision made by HUMBLE should only be based on
information about that specific engine, not one of the other
engines. This need to isolate data is the reason that a rule can
only access data in the entity it is executing against and those
above it in the entity tree.

The question which is probably occurring to you right about now
is how to determine what type of entity a rule will execute
against. The answer is that HUMBLE chooses what sort of
entity a rule will execute in by choosing the entity type which:

1. Has one of the parameters you referred to in the rule.
2. Is lowest in the entity tree structure.

Thus, if a given rule in the airplane example refers to
parameters in both an engine entity and a rotor entity, it would
choose to evaluate the rule against the rotor entity. On the other
hand, of the rule were altered so that it no longer referred to any
parameters in a rotor entity, the rule would be evaluated against
an engine entity instead.

Most of the time, this limitation is not apparent to the user, but
occasionally HUMBLE will gripe about a rule you are trying to
accept, saying: 'You are attempting to set parameters in separate

19

branches of an entity tree. This is not allowed.'. This simply
means that you are trying to write a rule which would need to be
'executing against two places at once' on the entity tree in order
to have access to all the data you specified, and that it cannot
accept any rule which would require that. The thing to do here is
to rewrite the rule so that it uses only parameters available in a
single path of the tree, or to modify your entity tree structure so
that it can execute the rule.

20

4. HUMBLE Rules

4.1. Introduction

The essence of any rule based system is, of course, the set of rules
which compose the major part of any knowledge base. These
rules are created using the HUMBLE knowledge base editor,
and are in many respects rather similar to Smalltalk - 80 code.
This manual makes the assumption that you are a minimally
competent Small talk programmer, and understand the basic
elements of creating Small talk expressions and statements. If
you aren't at least roughly familiar with Smalltalk code, I urge
you to take the time to create a few small methods in
Small talk - 80.

4.2. Basics

This section attempts to describe the basic elements of writing
rules in HUMBLE. Be sure you have read the chapter on
HUMBLE entity trees before reading this chapter, since it will
use concepts explained in that chapter.

4.2.1. HUMBLE Rules and Smalltalk-80

The rule syntax of HUMBLE, although reasonably easy to use, is
most definitely not Smalltalk-80 code. However, some of the
same constraints apply to HUMBLE rules that apply to
Smalltalk code. Deep within HUMBLE, the rules you create are
converted into actual Small talk code which is stored as a block.
Therefore, expressions are evaluated in the standard Smalltalk
order: unary, then binary, then keyword messages are evaluated
left to right. If-then statements and similar constructions can
be considered to be keyword messages.

21

4.2.2. The Structure of a HUMBLE Rule

There are three major parts to any HUMBLE rule. These are the
name, the translation, and the statements. The template
HUMBLE provides for making a new rule looks like:

RuleName
"translation - this should explain the rule's premise and

conclusions, so that the explanation output makes sense"
rule statements

The name appears in bold face on the first line of the rule. This is
the name which the rule is stored under in the knowledge base.
This name can be used during forward chaining to locate the rule
to fire next. It is also the name by which the rule can be selected
for editing in the editor window, and is generally a convenient
handle for locating the rule. You can do as you like with the rule
names: some prefer to use rather bland and uninformative
names, ruch as ruleOOl, rule002, etc. These are okay, but I
suspect that you will find it preferable to make the names as
informati ve as possible. You can make them as long as you like,
but they must be a single long string of characters without
spaces. The typical Small talk convention on such things is to use
capital Ltters to delineate individual words, such as
ruleCheckingTemperature or checkForPhaneriticBiotite. I urge
you to use the more informative names, as it will vastly enhance
the readability of your rules.

Immediately after the name, the section of text in quotes and
appearing in italics is the translation. The translation is
primarily used by the explanation mechanism to indicate why
particular conclusions have been drawn. Use this section to
provide a plain English translation of the rule you are writing.
The translation serves the dual purpose of a comment and an
element of an explanation.

The statements come after the translation, and are the real
substance of the rule. Depending on what statements you place
in this section, HUMBLE will make different kinds of inferences.

In the next few sections, we will explore the various
possibilities.

22

4.2.3. Rule Statements

4.2.3.1. If-Then - Else Statements

The typical HUMBLE statement follows the form:

if: (<premise>)
then: [<action>].

The term premise is a good one to remember, as it will appear
again and again in this document. The premise is the test in the
statement which decides whether the action part of the
statement should be executed. Similarly, the action of a
statement describes what HUMBLE should do whenever the
premise is considered to be true.

If desired, an else clause can be added to the statement to specify
an action when the premise is considered to be false. These
statements follow the form:

if: (<premise>)
then: [<action>]
else: [<alternate action>].

4.2.3.1.1. The Premise

The premise is either the value of a YN parameter or the result
of a test on some other sort of parameter. For instance,
crystalline is a YN parameter in the example knowledge base
ROX. The premise of some statement might very well be:

(crystalline)

This would mean that you want the statement to take action
only when the value of crystalline is considered to be yes (or
true). Another sort of premise might well check to see that color,
a numeric parameter, is less than 50. This would be expressed
as:

23

(color < 50)

This statement would only take action when the value of color is
less than 50. It is just as feasible to test the value of one
parameter against another, as long as they are of the same type.
The premise:

(color < computedMinimum)

would specify that the statement should only take action when
the value of color is less than the value of the parameter named
computedMinimum.

4.2.3.1.2. The Action

The action is the part of the statement you want to occur
whenever the premise is considered to be true. The actions you
can take are quite varied. Conclusions can be drawn, further
statements evaluated, other rules fired, and new goals can be set
up. Each of the next four sections explains one of these
acti vities.

4.2.3.1.2.1. Making Conclusions

One of the most likely things which you might want to do in the
action of a statement is to make some conclusion. A simple
conclusion follows the following form:

<parameter> is: <value>.

This tells the system that the value of the specified parameter is
certainly the specified value. For instance:

breed is: 'Labrador Retriever'.

sets the value of parameter breed to be the string 'Labrador
Retriever'. Since everything in HUMBLE is uncertain, what

24

this conclusion is actually saying is that "I am as certain that
breed is 'Labrador Retriever' as I am that the premise is true".

In some cases, the conclusion being made is not as certain as the
premise, and in this case a conclusion can follow the form:

<parameter> is: <value> withCertainty: <certainty>.

This type of conclusion means that this conclusion does not
always hold, even if the premise is certainly true, but that it can
be made with a confidence of < certainty> . In standard
HUMBLE, these certainties run from -1.0 (absolute disbelieO
to 1.0 (absolute certainty). By using a negative certainty, you
are telling HUMBLE that the specified parameter probably
doesn ~ have the value specified. Negative certainties are often
forgotten as options when writing statements, but often make
the difference between a very accurate and effective knowledge
base and a rather poor one.

4.2.3.1.2.2. Evaluating Other Statements

A nested statement is a statement with one or more If statements
inserted into one of its action blocks. These statements are useful
for doing several sorts of things. The most useful one of these is
to controi what parameters have values determined for them. In
many cases, if no good answer has appeared, a backward
chaining system like HUMBLE will check a number of rather
useless possibilities. The easiest way to prevent this checking is
to nest statements so that particular premises are not evaluated
unless some precondition is met. An example of a rule with a
nested statement is:

25

phaneriticColor
"if the rock is phaneritic

then

gabbro

diorite"

if the color > = 50 then the rock is possibly a

if the color < 20 then the rock is possibly a granite
if the 20 < = color < 50 then the rock may be a

if: aphanitic not
then: [

if: color> = SO
then: [name is: 'gabbro' withCertainty: 0.4].
if: color < 20
then: [name is: 'granite' withCertainty: 0.4].
if: color> = 20 & (color < SO)
then: [name is: 'diorite' withCertainty: 0.4]]

Notice that this is a nested rule which checks aphanitic (a YN
parameter), to see whether it is false. If it is, then it will
evaluate three nested If -Then statements, taking what action
is appropriate.

It is perfectly permissible to use any of the other kinds of
statements (described later) in a nested statement.

4.2.3.1.2.3. Firing Other Rules

Another action often taken is the execution of another rule. This
sort of thing can be accomplished in two rather different ways in
HUMBLE. The standard way in which a rule is executed is as
part of HUMBLE's attempt to find out the value of a parameter.
This is called backward chaining.

The other method of firing a rule is to use a forward chain
specification. This is a directive to HUMBLE to execute a rule
immediately. Forward chain specifications follow the form:

{@ruleName}.

26

For example, let's say that you wish to execute a certain rule
called consistencyChecks, whenever certain conditions are
reached. The rule might look something like this:

checkConsistencyWhenNeeded
"If certain conditions are met

then fire the consistency checks"

if: certainConditions
then: [{@consistencyChecks}].

It is perfectly permissible to mix forward chain specifications,
conclusions, and nested If - Thens as needed in the action of a
rule.

4.2.3.1.2.4. Setting New Goals

It is very seldom the case that you need to find out the value of a
parameter before HUMBLE would normally do it on its own.
However, you can specify this as part of an action simply by
inserting the parameter name followed by a period, such as:

parameter.

This can be used to good effect if for some reason you want the
rules to explore some indirectly related subject which HUMBLE
might normally not even consider at all based on the evidence it
has received. This feature is not normally of interest to any but
the most advanced expert system builders.

4.2.3.2. If - Any, If - All, and If - None Statements

In the discussion of entity trees, the concept of sub - entities was
put forth as a method of breaking a problem down into parts.
Obviously, breaking a problem down in this way is of little use if
the individual parts cannot be tested and have conclusions made
about them. If-Any, If-All, and If-None constructions are
used to test the sub-entities of the entity against which a rule is
executing. This is a difficult concept, but once you see a few rules

27

which use this sort of construction it will begin to make sense.

These rules have an extended sort of premise, which must specify
two parts. There is still a premise similar to the one used in
simple If-Then - Else statements, but there is also a
specification of what sorts of entities should be tested this way.
The actual rule looks like:

if Any: <entity type name>
has: [<premise>]
then: [<action>].

This statement does the following: ''Search all of my
sub -entities for entities of the specified type. Once these are
found, test each one against the specified premise, and if the
premise is considered to be true then take the action in the context
of the sub-entity". Notice that during the premise and action
parts of the statement the context in which the rule is executing
has changed to be that of the sub - entity under consideration.
This sort of rule is called a context switching rule for this reason.
The switch is only temporary, only occurring for the duration of
the rule's firing.

There are two other forms of this type:

and

ifAIIOf: <entity type name>
have: [<premise>]
then: [<action>].

ifNoneOf: <entity type name>
have: [<premise>]
then: [<action>].

These statements are a little different, since they only switch the
context of execution during the testing of the premise. In other
words, the frrst statement means: ''Search all of my sub - entities
for entities of the specified type. Once these are found, test each
one against the specified premise, and if the premise is considered
to be true for each and elJery one of the sub -entities then take the
action ".

28

The second statement can be translated as: ''Search all of my
sub -entities for entities of the specified type. Once these are
found, test each one against the specified premise, and if the
premise is considered to be false for each and everyone of the
sub -entities then take the action".

The action blocks of these statements are exactly similar to the
action blocks of simple If-Then - Else statements. The premise
part is also exactly the same.

4.3. Rule Execution

HUMBLE is one of a general class of expert system tools which
use backward chaining as the primary method of directing the
evaluation of rules. When HUMBLE is asked (by a user) to find
out the value of some particular parameter in some entity, it will
find what rules can help deduce that value and fire them in
order. In most cases, each of these rules will need to know the
value of other parameters in order to make a decision, so before it
decides about the first rule it will attempt to find out the value of
those other parameters. Each of those other parameters has a set
of rules which may help deduce it, and so HUMBLE attempts to
find out the value by firing those rules. Each of those rules may
need to find out parameters, and so on. This process is referred to
as backward chaining or goal directed inferencing. When the
user requests the value of some parameter, finding that value
becomes the goal of the inference engine. In the process of
satisfying the goal, the system may realize it needs more
information and set up new goals to get that information. Thus,
the present goal directs that system to fire the appropriate rules
in the correct order.

It means, in simplest terms, that HUMBLE guarantees the
correct order of rule firing based on what the rules say. You
needn't specify any particular order in advance.

There are ways to alter the order in which HUMBLE would
otherwise fire rules. The deducingRules line of the parameter
definition is a list of what order the rules are to be fired in to find

29

out that particular parameter. By changing the order of that
list, you can change the order of execution.

Placing forward chain specifications is also a way of telling
HUMBLE to execute a rule at a certain point.

4.4. Syntax BNF

This section provides a formal specification of HUMBLE's rule
language as a reference. It is probably not useful to read this
section word for word. Use it as a reference guide, if you need
specifics about some point of the rule language.

The representation used here is a variant of Backus-Naur (or
Backus-Normal) form (BNF). For those reading this manual
unfamiliar with the concept, it is a formal specification language
for certain types of grammar. If you can't read it, just ignore this
section or get someone to explain it to you (it's well worth
knowing). As usual, this sort of representation is precise but
almost totally unreadable. Therefore, a number of examples will
be given later on.

4.4.1. BNF Conventions

The entities separated by the '" symbol are one of a number of
acceptable alternatives. '< number> , < string>' would mean
that either a number or string was acceptable at this point.

Any entity followed by a '*' means that repetition of the entity 0
or more times is acceptable.

Entities appearing in italics between" (double quote) symbols
are explanatory comments.

An example knowledge base can be found in the file 'ROX.kb'.

30

4A.2. The BNF

< literal> : = < number> I < string> I true I false I (< escape>)

< entityType > : = < string> "the name of one of your
pre - defined entity types"

< parameter> : = < string> "the name of one of your parameter
definitions "

< comment> : = "< string> "

<value> := <literal> I <parameter>

<op> : = + I - I * I I I II "integer divide"l \\ "modulo"l
, ''comma is a string concatenation operation "I raisedTo:

<expression>:= «value> <op> <value»I <value>

<escape>:= '«' <anysmalltalkcode> '»'
"example: < <Transcript show: Hi There!'> >"

<binaryBooleanOp> := < I> I < = I> = I = 1-= I
"section following explains the following alternatives"

definitelyls: I definitelyIsNot: I
isNotDefinitely: I isNotDefinitelyNot: I
isEqualTo: I isNotEqualTo: I
isNotKnownToBe: I
mightBe: I mightNotBe:

<unaryBooleanOp>:= isKnown ''certainty >0.2"1
isNotKnown''certainty < = 0.2"1
isDefinite "certainty = 1.0"1
isNotDefinite ''certainty < 1.0"

<booleanConjunction> := & '1ogicaland"l
I '1 character is logical or"

31

< booleanClause > : =
(< expression> < binaryBooleanOp > < expression>) I
(< expression> < unary BooleanOp >) I
(< specialBooleanExpression >)

< booleanExpression > : =
(< booleanClause > < booleanConjunction >

< boolean Clause >)

< premise> : =
< booleanExpression > < < booleanConjunction >

< booleanExpression > > *

< specialBooleanExpression > : =
(anyOf: < entityRType > have: [<premise> J) 1

(all Of: <entityRType> have: [<premise>])

<conclusion> :=
< parameter> is: < expression>. "complete certainty "1
< parameter> is: < expression> withCertainty:

<number>.

<if-then-rule-form> := if: <premise> then:
[< concl usion > * J.

<if-all-rule-form> :=
if All Of: < entityType >
ha ve: [< premise> 1
then: [<statement>*J.

''Explicit context switch during execution of the premise block. "

<if-any-rule-form > :=
ifAnyOf: <entityType>
have: [<premise> J
then: [<statement>*].

''Explicit context switch during execution of the permise block and
the action block. The action block statements are applied in the
context of each entity of the specified type which meets the
conditions set in the premise block"

32

<if-none-rule-form> : =
ifNoneOf: <entityType>
have: [<premise>]
then: [<statement>*].

"Explicit context switch during execution of the premise block. "

< ruleStatement > : =
< if-then - rule - form> I
< if - all- rule - form> I
< if - any - rule - form> I
< if - none - rule - form> I
<escape>

<forwardChain> : = {@rulename}.

< statement> : =
< rule Statement > I
<conclusion> I
< forwardChain >

< rule> : = < rule name > < comment> < statement> *

4.4.3. Special Boolean Operations

For purposes of defining the results of these fune ions, use the
following reference clause:

A <booleanOp> B
A and B may be either literals or parameters. In the case of
literals, assume each has a best hypothesis equal to the literal's
value, and a certainty of l. The phrase 'best hypothesis of A
equal to best hypothesis of B' means more specifically: "find the
value of the best hypothesis ofB, then find the best hypothesis of
A with that same value". These definitions deal with the
standard HUMBLE certainty model.

definitely Is: best hypothesis of A that is equal to best
hypothesis ofB has certainty = l.0

definitelyIsNot: best hypothesis of A that is equal to best
hypothesis ofB has certainty = -l.0

33

isN otDefinitely: best hypothesis of A that is equal to best
hypothesis ofB has 0.2 < certainty < 1.0

isNotDefinitelyNot: best hypothesis of A that is equal to best
hypothesis ofB has - 0.2 > certainty> -1.0

isEgualTo: best hypothesis of A equal to best hypothesis of B
has certainty > 0.2 Note: isEqualTo and = are distinct
operators. = implies that the best hypotheses of the two are equal,
while isEqualTo: implies only that some hypothesis is reasonably
certain and equal

isN otEgualTo: best hypothesis of A that is equal to best
hypothesis ofB has certainty < - 0.2

isNotKnownToBe: best hypothesis of A that is equal to best
hypothesis ofB has Icertaintyl < 0.2

mightBe: best hypothesis of A that is equal to best hypothesis of
B has certainty> - 0.2

mightNotBe: best hypothesis of A that is equal to best
hypothesis ofB has certainty < 0.2

Programmer s note: The certainty figures mentioned here are not
hardwired, but are instead related to the certainty constants set up
in whatever certainty model HUMBLE is using in this particular
knowledge base. See section 10.5: 'Altering a Certainty Model', for
more information on these constants and how to alter them.

34

4.4.4. Smalltalk Escape Sequences

It is often the case that a rule language will simply be
inconvenient to use in certain cases. HUMBLE and similar
systems have notable problems in the case of complex algebraic
calculations. In order to ease the burden of those needing special
behavior, HUMBLE implements an 'escape' to Smalltalk,
allowing Smalltalk-80 code to be imbedded in any HUMBLE
rule.

By placing a '< <' into the source text of any HUMBLE rule, you
signal the rule processor to place the text up to a '> >' into the
finished rule verbatim, with the exception of parameter
references. Parameter references are still translated during
escape sequences, since they are a very convenient shorthand for
retrieving values out ofthe fact base.

A rule using a Small talk escape sequence might look like this:

stabilityAlert
"if the system shows a

immediate alert by using
mechanism"

if: systemStability < 0.3
then: [

< < Transcript cr;
dangerously low!'.

Transcript cr;
printString. > >

1.

very low stability, make an
the Smalltalk - 80 transcript

show: 'Alert: System stability

show: systemStabi I ity

Calculations made in escape sequences are not subject to the
certainty calculations which HUMBLE generally performs
automatically, and probably never will be. In many cases, this is
precisely why they are used. However, if you are going to try to
plug them back into HUMBLE, you should read the
programmer's manual (chapter 10) for information about
interactions between HUMBLE and Smalltalk-80.

35

4.5. Example Rules

A number of example rules follow, with some explanation of
what should be going on when the rule is fired.

4.5.1. Typical Rules

Here are a few typical rules:

systolicPressureCheck

0.4.].

"if the patient's systolic pressure is high
then his condition is possibly critical"
if: (systolicPressure > 120)
then: [condition is: 'critical' withCertainty:

In this rule, the premise checks the parameter systolicPressure
against the literal 120. if systolicPressure is greater, then
conclude that parameter condition is now 'critical', with the rather
low certainty ofOA.

soilAcidity
"litmus> 50% blue indicates high soil acidity

and poor lime content"

0.8.]

if: (acidityCutoff < = litmusColor)
then: [soilAcidity is: 'high'.

limeContent is: 'poor' withCertainty:

else: [soilAcidity is: 'acceptable'.
limeContent is: 'acceptable'

withCertainty: 0.8.1.

This rule checks the color of litmus paper (parameter litmusColor)
against the parameter acidityCutoff If the test indicated high
acidity, the parameter soilAcidity is set as well as the parameter
limeContent. Note that this rule uses an else clause.

36

4.5.2. Searching Rules

Certain rules are searching rules, which make conclusions about
any sub - entity which meets a specified criterion. An example:

olivineCheck

- 0.5.].

"if this rock contains olivine
then it is very likely a gabbro,

it is unlikely to be a granite,
and it is unlikely to be a diorite"

ifAnyOf: Mineral
have: [mineralName = 'olivine']
then: [name is: 'gabbro' withCertainty: 0.8.

name is: 'diorite' withCertainty: - 0.5.
name is: 'granite' withCertainty:

This rule checks whether olivine is present among a rock s
minerals. If any of the sub -entities of type Mineral have
parameter mineralName set to 'olivine', then the system makes
conclusions about what sort of rock this one is likely to be. During
execution, the context is switched to execute in each Mineral entity,
both for the premise and the conclusions. Note the negative
certainty in one conclusion, indicating that the system believes
that the rock is not diorite or gabbro.

37

405.3. Nested Rules

In some cases, for efficiency's sake, it is desirable to nest rules.
HUMBLE allows this sort of rule and will take the necessary
steps to see that certainty information is properly maintained for
conclusions made by the nested rules. Here is an example:

siltstoneCheck
"if the rock is sedimentary, small grained, and

gritty to the tongue
then it is probably a siltstone"
if: (class = 'sedimentary' & (grainSize < =

0.1 »)
then: [

if: gritty
then: [name is: 'siltstone' withCertainty:

0.8.].
] .

If more than one if-then is placed as part of an action block,
then the result is an implied forward chain, since the nested
statements will be executed in sequence as they appear in the
rule.

4.6. Error Messages During Compilation

HUMBLE can catch a number of common errors during
compilation of its rules. The error message will appear right in
the rule itself, along with an error pointing to the spot where
HUMBLE detected that something was wrong. A list of these
follows, including some explanations of what may have gone
wrong.

A rule cannot forward chain to itself

A forward chain specification specifying the rule being compiled
as the rule to be executed is illegal. HUMBLE would not execute
the forward chain in any case.

38

have: expected

HUMBLE was processing a special boolean or searching rule and
expected a have: keyword. Check for missing colons.

is: expected

HUMBLE was processing an assertion and expected to see an is:
keyword at this point. A missing colon can cause this.

Missing close bracket for condition block

HUMBLE has found what it believes is the end of a condition
block, but no closing bracket (']' character). Often, this is caused
by a poorly formed expression.

Missing closing parenthesis

HUMBLE has found what it believes is the end of a
parenthesized expression, but no closing parenthesis. Often, this
is caused by a poorly formed expression.

Missing open bracket for condition block

Some statement with an condition block was being processed,
but the open bracket ('[' character) was forgotten at the
beginning of the condition block.

Missing open bracket for action block

Some statement with an action block was being processed, but
the open bracket ('[' character) was forgotten at the beginning of
the action block.

39

Missing period or close bracket

This can mean many things, but is most often caused by
misspelling withCertainty: when making an assertion as part of
an action block.

No rule

This one is simple. HUMBLE couldn't detect anything which
looked like the beginning of a statement. Often, this means you
left a colon off of the first word in the statement.

Nonexistent rule:

A forward chain specification specified a nonexistent rule for
execution. A spelling error is the likely cause here.

Only numbers can be negated

A unary negative sign has appeared in front of something
besides a number literal. This is not allowed. To negate a
parameter's value, use the unary operation negated.

Parameter name, literal value, or escape sequence
expected

HUMBLE was looking for a parameter name, literal, or escape
sequence and found something else. Check for misspellings.

Statement expected

This is much like the no rule message, meaning that HUMBLE
was expecting to see a statement and didn't recognize the
beginning of any type of statement it understood. Check for
missing colon characters on your first word.

40

then: expected

H umble was processing an if: statement, believed it had found
the end of the condition, and didn't find a then: keyword. A
missing colon or a poorly formed condition may have caused the
error.

Test expected

HUMBLE was processing a condition and expected to see a test.
This error may be the result of misspelling, missing colons, or a
poorly formed boolean expression.

Test is valid only after a parameter name

A test was used that is only valid if it is used directy after a
parameter name. You will need to rewrite the expression or
choose a different test.

Undefined entity type

While processing a searching rule, HUMBLE found something
else where it was expecting an Entity Type name. check for
misspellings.

Undefined parameter name

HUMBLE was looking for a parameter name and found
something else. Check for misspellings.

41

5. The HUMBLE Manager

5.1. Introduction

The HUMBLE Manager window is the top level interface to the
collection of knowledge bases you have loaded into your image.
It serves as the place to load, save, list, remove, and generally
control the behavior of your knowledge bases.

42

5.2. Adding and Removing Knowledge Bases

When the Manager window first appears on screen, it will have
an empty list. In order to add a knowledge base to the list, you
use the middle - button command add. The system will respond
to the add command with a prompter asking you for the name of
the knowledge base you would like to add. HUMBLE is provided
with an example knowledge base called 'ROX'. HUMBLE
locates the file containing theknowledge base by finding a file
with the knowledge base's name followed by '.kb' (ROX, for
instance, can be found in the file named 'ROX.kb'). If no such file
exists on the local disk, HUMBLE creates a new empty
knowledge base with that name. If there is a file, though,
HUMBLE will read the contents and attempt to create a
knowledge base. It may take considerable time for a knowledge
base to be loaded, at least as long as it would take to file in an
equal amount of Small talk code.

A knowledge base can be removed from the list by selecting it
with the left button, and then using the middle - button remove
command. This will remove the knowledge base from local
memory, but not the stored disk file. It is left to the user to delete
any disk files from his disk by using the file list or some similar
technique.

5.3. Editing Knowledge Bases

Any knowledge base in the Manager's list may be edited by
selecting it with the left button and using the middle button edit
command. This will open a HUMBLE knowledge base Editor on
the selected knowledge base. See the section on using the
know ledge base editor for a detailed description of how to use the
window.

5.4. Consulting Knowledge Bases

In order to consult a knowledge base, select the base on the
Manager's list and then use the interact command from the
middle button menu. This will open a HUMBLE Listener
window on the knowledge base. The section on Listener windows

43

goes into detail about how to use the Listener to consult with
your knowledge base.

There are, however, some kinds of output which are controlled
from the Manager window. Information about which rules,
goals, and conclusions are being evaluated can be sent directly to
the Listener window or to a trace file. These features are of
small interest to the casual user, but the builder of an expert
system can find them invaluable for debugging his rules.
Without a trace or watch running, it is impossible to tell which
rules are being executed and making conclusions. The series of
commands allowing control of this output are described in the
next two sections.

5.4.1. Controlling Output During a Consultation

One of the options available to you is the ability to watch the
execution of HUMBLE as a part of your consultation. The
commands watch - - > goals, watch - - > rules, and watch
- - > conclusions all turn on display of certain information.

Watch - - > goals will tell HUMBLE to notify the Listener
whenever HUMBLE has a new parameter which it must find
out. Such parameters are often referred to as goals. A notice will
appear as part of the consultation that HUMBLE is now
attempting to find out the value of some parameter. A second
notice will appear when HUMBLE is satisfied that it has found
out as much as it can about that value.

Watch - - > rules tells the system to notify the user when a
rule is fired. A notice will be sent to the Listener for each rule
fired during a consultation.

The watch - - > conclusions command informs HUMBLE
that it should notify the user of each conclusion made by a rule.
A notice is sent to the Listener window that some conclusion has
been drawn.

44

The command watch - - > nothing tells the system to stop
sending notices about goals, rules, or conclusions. It is the only
way presently available to turn off these functions once they
have been activated. If you want to turn off just one of the three,
you must turn them all off using this command and then
reactivate only the desired outputs.

5.4.2. Tracing Execution During a Consultation

Tracing is very similar to the commands for watching, except
that the results are written to a file instead of showing up as part
of the consultation. The commands trace - - > goals, trace
- - > rules, and trace - - > conclusions are all similar to
the equivalent watching commands. When activated, the first of
these commands activated may prompt for a file name to which it
should. write the trace information. This file remains open until
the trace - - > nothing command is given, which
automatically closes the file. Just as in the case of watch - - >
nothing, trace - - > nothing is the only way to deactivate the
trace outputs once they have been activated.

5.5. Saving Knowledge Bases

Any knowledge base in the Manager list can be saved to the disk
by selecting it and using the middle - button save command.
This will write to the disk a file which HUMBLE can use at a
later time or on another machine to recreate your knowledge
base.

5.6. Listing Knowledge Bases

HUMBLE can produce listings of knowledge bases which are on
the Manager window's list. To create a listing, select the
know ledge base using the left button and then use the middle
button list command. This will produce a disk file in ASCII
called by the knowledge base's name followed by '.listing' (ROX
would produce a listing called 'ROX.listing').

45

The listing provides a human readable file describing the
knowledge base. The file lists all entity types, parameter
definitions (with rule cross references), rules (with entity type
cross references), and a set of metrics about the knowledge base
which mayor may not be interesting.

46

6. The HUMBLE Knowledge Base Editor

6.1. Window Description

A HUMBLE Editor window has four smaller areas within it
which are traditionally called panes. Each of these panes
controls some different aspect of the knowledge base. The
diagram below shows the overall layout of the Editor window.

Entity Ust
Pane

Parameter
Ust Pane

Editor Pane

6.1.1. The Entity Type List

Rule Ust
Pane

The entity type list pane contains a list of all types of entities
which the knowledge base knows how to make inferences about.

47

By selecting one of the entity types in the list, a description is
created in the editor pane. The description is directly editable.
Read the section on "Entity Type Definitions" for a complete
explanation of this description and how to change it. Another
side effect of choosing an entity type from the list is that the
parameter list now contains the list of parameters describing
that entity.

There are two menu functions: add new and remove. Add new
is used to create a template for a new entity type, which you can
then fill in and accept; More information on editing is found a
few sections further on, in "The Editor Pane". Remove removes
the selected entity type from the knowledge base.

The edit command will bring the definition of the entity type
back to the editor pane if it has been replaced by one of the
parameters or rules associated with that parameter name.

6.1.2. The Parameter Definition List

The parameter definition list usually contains all of the
parameters describing the currently selected entity type from
the entity type list. Any particular parameter definition can be
displayed by selecting it from the list. This will allow editing of
the description. A side effect of selecting a parameter definition
is to bring up a list of every rule which tests or makes a
conclusion about the selected parameter. As is the case with the
entity type pane, the command add new will bring up a
template to fill in to produce a new parameter definition. The
remove command will remove a parameter definition from the
knowledge base.

The definition command can be used to redisplay the parameter
definition in the editor pane. This will perform the same
operations as selecting that particular parameter definition from
the list.

The show - > all command circumvents the organization
features of the editor window, and allows you to see, select, and
edit every parameter definition for every entity type in a single

48

list. The show - > ask first command allows the user to see a
list of all parameters of the selected entity type which have the
prompt flag askFirst. As one might expect, show - > ask last
and show - > ask never return lists of the parameters with
prompt flags askLast and nil, respectively. The standard list (all
parameters of the entity type selected) can be obtained by using
the show - > standard command.

As with the Entity Type List pane, the edit command will bring
the definition of~he selected parameter to the editor pane.

The graph command will produce a view in the HUMBLE
graphic utility of the backward chaining order of the deducing
rules for this parameter.

6.1.3. The Rule List

The rule list usually contains all of the rules referring to the
currently selected parameter definition from the parameter
definition list. The text of the rule can be obtained by selecting
one from the list. This will allow editing of the rule. Just like
the entity type pane, the command add new will bring up a
template to fill in to make a new rule. The remove command
will remove a rule from the knowledge base.

The show - > all command circumvents the organization
features of the editor window, and allows you to see, select, and
edit every rule for every entity type in a single list. The
commands show - > referring and show - > deducing will
display the list of rules referring to the selecting parameter, or
deducing it, respectively. Show - > standard will display the
standard list which appears when a parameter definition is
selected, all rules referring to or deducing the value of that
parameter.

Two commands are supplied for searching the rules for numbers
or strings. They are, quite predictably, search for - > number
and search for - > string. They return the list of ruleseither
referring to or deducing. the value of the selected parameter
definition which contain the number or string being searched
for.

49

6.1.4. The Editor Pane

6.1.4.1. Basic Editing

This manual assumes you have been using Small talk for a while,
so we won't go into too much detail on the finer points of editing.
Suffice it to say that the editor pane of the HUMBLE knowledge
base editor is a standard Smalltalk-80 text window, and that
recognizable commands will work pretty much as you expect
them to. If you have never been exposed to editing in Small talk,
go and read chapters 1-3 of Smalltalk -80: The Interactive
Programming Environment by Adele Goldberg. This will give
you a basic familiarity with the Small talk - 80 interface.

The following two sections will describe the specialized
commands available in this window which will help you create
and edit rules.

6.1.4.2. Rules - - >

One of the features included in HUMBLE is a class called
TreeMenu, which allows menus which have sub-menus
attached to the side. The middle button menu of the editor
window is such a menu. There are two places where the user can
slide to the left of his selection to get more selections, both of
which end with the '- - >' string.

The Rules - - > menu has a list of templates for rule
statements. Each of these is a blank form which you can use to
fill in the overall form of some sort of statement in a HUMBLE
rule. Essentially, they are the skeleton form of the main
statements types in HUMBLE. They are mainly self
explanatory.

50

Here is a list of them along with the text they produce

If then produces:

if: ()
then: [].

If then else produces:

if: ()
then: []
else: [].

If any then produces:

if Any:
has: []
then: (J.

If all then produces:

if All Of:
has: []
then: [].

If none then produces:

ifNoneOf:
has: []
then: [].

51

6.1.4.3. Actions - - >

The Actions - - > submenu is used to fill in the action block of
a statement. Each of the choices will produce a skeleton version
of the action type specified. You can then easily fill in the
skeleton and have a complete action. This section may not make
much sense to you if you haven't read the chapter on "HUMBLE
Rules". Just keep this section in mind when it comes time to
create your own rules.

Conclusion produces:

<parameter> is: <aValue> withCertainty: <0.0>.

You are expected to replace <parameter> with a parameter
name which exists in your knowledge base, <aValue> with
either some literal or a parameter name, and <0.0> with
whatever certainty you care to assign to the conclusion being
made.

Forward chain produces:

{@ruleName}.

Simply replace ruleName with the name of one of your own rules
to specify a forward chain.

Escape produces:

< < some Smalltalk code > >

Replace some Smalltalk code with some piece of Smalltalk code
which performs some desired action. As noted in the chapter on
"HUMBLE Rules", you can use parameter names just as if they
were Small talk instance variables in these expressions.

52

7. The HUMBLE Graphic Utility

7.1. The Graphic Display

HUMBLE's graphic display follows a fairly common format. The
display consists of a number of rectangular nodes representing
rules and parameters in HUMBLE's static knowledge structure.
Each node is connected to other nodes via arrows, which point in
the direction of backward chaining.

So, as you may have guessed, the graphic display shows the path
of traversal through the rules whenever some rule is to be
executed or some parameter found out. Rules and parameters
appearing toward the top of the graph will be executed/found
first, with those lower (vertically, not structurally) on the
display being executed later.

If you have a large graph, it may be of interest to spawn a
smaller subset of the graph. This is easily accomplished by
pointing at any node in the graph and using the middle button
graph command. This will generate a new graph with the
indicated element as the root node.

7.2. Editing Elements

HUMBLE's graphic utility allows editing of any node which
appears. Selecting any node and using the edit command will
generate a window exactly like the Editor Pane of the HUMBLE
Knowledge Base Editor. It works in exactly the same way.

7.3. Testing your Knowledge Base(Find/Execute)

The find/execute command in the graphic utility provides a way
to test parts of your knowledge base. By selecting.a node and
using the find/execute command, the user can cause HUMBLE
to begin a backward chaining session right out of the graphic
utility. It is probably a good idea to have a HUMBLE Listener
window open at the time, otherwise you might not see much.

53

80 The HUMBLE Listener Window

8.1. Introduction

The HUMBLE Listener window is the basic interface by which a
consultation can be run against a HUMBLE knowledge base.
The style of interaction is based roughly on a transcript or
listener window style, with the responses of the knowledge base
being appended to the end of the transcript. The typical
consultation involves little typing, instead relying on mouse
selection as much as possible.

if the ract is either

1. not crystalline or

2. crstyal1ine with roundeci

then the rocl, is se(11memary

There is suggestive evidenCE: (0,8)

'secHmentary'.

[3.] There is suggestive evidence (0.

'seclimen tary',

Since rule ''brecciaChel:k' tells us

54

agaIn
undo
copy
cut

8.2. Beginning a Consultation

How a consultation is started depends largely on what sorts of
entities and rules compose your knowledge base. If yours is
mostly a backward chaining knowledge base, then the way to

.start a consultation is to type the parameter name you are
interested in, select it with the mouse, and then use the middle
button find out command. This will cause the knowledge base
to ask the appropriate questions and return a result.

If the knowledge base is mostly forward chaining, there is
probably a rule which starts the entire process. Type the name of
this rule, select it with the mouse, and use the middle button
execute command to fire that rule. The knowledge base will
return a printout of the fact base (or working memory, if you
prefer) when it is finished.

8.3. Explaining Results

The results of any consultation appear as a series of statements
in the listener window. These statements are usually of the
form:

There is < <strong, suggestive, poor, etc. > > evidence
(< < certainty> >) that the < < parameter> > of
< <entity> > is < <a value> >.

For instance, a Statement from ROX might be:

There is suggestive evidence (0.4) that the name of
'ROCK-I' is 'gabbro'.

You can ask the system to explain any of these statements by
selecting it and giving the middle button command why. You
can select the entire statement or just that part that includes the
entity and parameter names. For that matter, you can simply
type the entity name (surrounded by , characters) followed by the
parameter name, select what you have typed, and give the why
command (from the middle button menu, as usual). The phrase:

55

'ROCK - l' name

would serve just as well as the entire statement above.

The two parts (entity name and parameter name) are all that is
needed to uniquely identify the parameter you want to have
explained.

8.4. Explaining Text

The meaning of a piece of text generated by HUMBLE can be
partially defined using the· explain command. This command
scans the selected text for parameter names, then writes a table
of the parameter names followed by their explanations
(explanations are created in the editor window as part of the
parameter definition).

8.5. Examining Alternative Conclusions

Alternative conclusions are often as important as the final
answer given by a knowledge base. In HUMBLE, the
alternatives command is used to generate a list of all
alternatives for a giver 3tatement. To use the command, select a
piece of text with the name of an entity and a parameter name,
just like the selection ;leeded to use the explain command. Then
give the middle button alternatives command. This command
will write to the liste!ler a list of all the hypotheses made about
that parameter, along with their certainties, in the usual form.
For example, ROX might give the following set of alternatives.

There is suggestive evidence (0.4) that the name of
'ROCK -I' is 'gabbro'.

There is weakly suggestive evidence (-0.210526) that the
name of 'ROCK -I' is not 'granite'.

There is poor evidence (0.048) that the name of 'ROCK - I' is
'diorite'.

Once the alternatives have been written, any of them can be
explained by selecting them and using the explain command.
Be sure to include the value in your selection, otherwise you will

- 56

receive an explanation of the most likely alternative (best
hypothesis) rather than the one which interests you. A typed
string such as

'ROCK - l' name 'diorite'

would give the same explanation as

There is poor evidence (0.048) that the name of 'ROCK - l' is
'diorite'.

when selected for use by the explain command.

8.6. Examining Entities

At any point you can select the name of any entity and use the
print it command to get a printout of it. This command is used
exactly as in any other Smalltalk window by the Listener, with
the exception that is the selection happens to match the name of
an entity it will write a printout of that entity to the Listener
window. Otherwise, it will act exactly as the standard Smalltalk
printIt, and attempt to compile and execute the selected text as
Small talk - 80 code.

57

9. Example and Tutorial: Building a
HUMBLE Knowledge Base

You have just read several chapters devoted to giving you the
details of building a HUMBLE knowledge base, so now it's time
for a general overview. We will go through the steps necessary
to build a simple (very simple!) knowledge base on a rather silly
subject, in order to integrate all of the information from the
preceeding chapters into an integrated whole.

9.1. The Problem

It's always a problem deciding where to have lunch with a large
group of people. Everyone seems to dislike some particular
place. With a sufficiently large number of persons and choices
for lunch, it can take most of the lunch hour just to decide where
to go, let alone actually get there and be served. In response to
this problem, one of the programmers here at XSIS suggested we
build a small knowledge base to decide where to go to lunch,
given who would be going along. This seemed like an ideal
example, since the stucture of the rules wouldn't be very
complex, but it would use a number of the main features of
HUMBLE.

9.2. The Entities and Parameters

As noted earlier, the flrst thing to do is flgure out what sort of
entities and parameters are going to be needed for this
knowledge base. The rules are probably going to be something
like "If Kurt is going along, then we should go to Robin's". This
looks simple enough, and already implies a number of things.

First we have the concept of Kurt going along. This means that
we have some group going to lunch, which may have more than
one person, and which mayor may not have Kurt as one of its
components. This probably implies that we have at least two
sorts of entities: LunchParty entities and Person entities. A
LunchParty is composed of Person entities. This is a nice, simple
example of an entity tree one level deep.

58

Person entities, in the example, probably need to have a
parameter called Name, since the prototypical rule uses the
name to discriminate among persons.

Another concept suggested by the proto - rule above is that the
LunchParty is eventually going somewhere. This is probably a
case for having a parameter to hold this destination. Let's call it
Destination.

Another sort of rule we may want to write is: "If Kurt is going
along and it is Friday, then we should go to Spring Garden".
This proto-rule suggests that we want to have some idea of
what day of the week it is. Clearly, another parameter is useful.
We'll call it DayOfrheWeek.

This looks like a good initial starting point for writing some real
rules. The first step in creating the knowledge base is to get the
Manager window on screen, then add a new know ledge base to
it. Let's call the new knowledge base LUNCH. After adding the
new knowledge base, select it and use the edit command to bring
up a HUMBLE knowledge base Editor.

Now, let's define the entity types we have just discussed. Use the
add new command in the entity list pane of the editor. This will
bring up the usual template. Fill it in for each of the entity types
we decided on, LunchParty and Person. My entity definitions
looked like this:

LunchParty
typeAbove: nil
create Prompt: Are there any lunch parties planned?
addPrompt: Are there any other lunch parties?
assumePrompt: I am creating a lunch party
defaultName: PARTY
parameters: #0
mainParameters: #0

59

Person
typeAbove: LunchParty
createPrompt: Are there any persons going along?
addPrompt: Are there any other persons in the group?
assumePrompt: I am creating a person
defaultName: PERSON
parameters: #0
mainParameters: #0

Now that we have the entity types defined, we should add the
parameter definitions for the parameters we discussed. Again,
we use the add new command, but this time in the parameter
definition list pane. My definitions looked like this:

Destination
describes: LunchParty
type: String
prompt: What is the destination of & ?
promptFlag: askLast
explanation: "The destination is the place to eat I should

recommend"
remark: "Standard string parameter used to store the

final destination of the lunch party"
changeBlock: [:parameter 11

DayOIThe Week
describes: LunchParty
type: #('Monday' 'Tuesday' 'Wednesday' 'Thursday'

'Friday' 'Saturday' 'Sunday')
prompt: What day of the week is it?
promptFlag: askFirst
explanation: "DayOITheWeek describes which day of

the week the party is going out to lunch."
remark: "Enumerated string parameter for days of the

week"
changeBlock: [:parameter \l

60

Name
describes: Person
type: String
prompt: What is the name of & ?
promptFlag: askFirst
explanation: "Name is just what you might think, the

name of a person"
remark: "Standard string parameter holding person's

name"
changeBlock: [:parameter 11

Name is so important to the setup we have here that it should be
put on the main parameter list of the Person entity type. This
insures that the system will immediately find out the name of
the person, which it will certainly always need.

Not too bad so far, eh? Now that we have the entities and
parameters defined, we can write some of the actual rules. We
needed to set up the entities and parameters first, so that the
rules would have something to talk about. The set we have
described can represent the problem pretty well.

9.3. The Rules

The rules we considered earlier gave us a good framework on
which to base our expert system. Now we can consider what an
actual rule should look like. First of all, we should think about
how we are going to express "If Kurt is going along" as a premise
for a rule, in terms of the entities and parameters we have just
defined. Now that we have a description of the entities involved,
we would probably phrase our first proto - rule something like
"If one of the Persons in the LunchParty has the name Kurt,
then the Destination of the LunchParty is probably Robin's".
This rule could be expressed in HUMBLE's rule language as:

Kurt
'1f Kurt is going along then we should go to Robin s"

if: (anyOf: Person have: [Name = 'Kurt'])
then: [Destination is: 'Robins' withCertainty: 0.6].

61

Now let's consider the second proto-rule, which says that "If
Kurt is going along and it is Friday, then we should go to Spring
Garden". We could add this consideration to the existing rule,
ending up with something like:

Kurt
"If Kurt is going along then we should go to Robin s, or

the Spring Garden on Friday"

if: (anyOf: Person have: [Name = 'Kurt'])
then: [

if: DayOfrhe Week = 'Friday'
then: [Destination is: 'Spring Garden' withCertainty: 0.7]
else: [Destination is: 'Spring Garden' with Certainty: - 0.1].

Destination is: 'Robins' withCertainty: 0.6].

Notice that we have put an if-then - else clause, so that Spring
Garden is a preferred destination only on Friday. This was not
implied in the original proto - rule, but it seemed appropriate
given my tastes. Lastly, we can assume that Kurt may have
other preferences as well. You may have noticed that I gave
Spring Garden a negative certainty on days which are not
Friday. This is a good technique to use in general for these rules,
for specifying places that the person the rule is describing does
not wish to eat at. In fact, it will serve as the general system for
ranking alternatives. Eventually, the rule might look like:

Kurt
''Kurt likes Robin s, Acapulco, Kabuki, Steer&Stein,

Panda, or the Spring Garden on Friday. He dislikes Numero
U no, Yamaha, and most especially the Good Earth. "

if: (anyOf: Person have: [Name = 'Kurt'])
then: [

if: DayOfI'he Week = 'Friday'
then: [Destination is: 'Spring Garden' withCertainty: 0.7]
else: [Destination is: 'Spring Garden' withCertainty: - 0.11.

Destination is: 'Robins' withCertainty: 0.6 .

62

Destination is: 'N umero Uno' withCertainty: - 0.5.
Destination is: 'Yamaha' withCertainty: - 0.3.
Destination is: 'Good Earth' withCertainty: - 0.7.
Destination is: 'Kabuki' withCertainty: 0.5.
Destination is: 'Acapulco' withCertainty: 0.5.
Destination is: 'Steer & Stein' withCertainty: 0.5.
Destination is: 'Panda' withCertainty: 0.5).

Once we have developed one of these rules, we can see how
virtually all of the others are going to go. We can create a
separate rule for each and every person the system will know
about. Get some friends together, substitute your own favorites
for our restaurants, and then use the listener window to consult
your new knowledge base. Here are a couple of other rules which
were part of our local LUNCH knowledge base.

Cathy
''Cathy likes Hughes Market, Robin s, Steer & Stein,

Acapulco, and Yamaha. She dislikes Spring Garden, Numero
U no, Good Earth, Fuddruckers, and Panda. "

if: (anyOf: Person have: [Name = 'Cathy'))
then: [Destination is: 'Spring Garden' withCertainty:

-0.1.

Rae

Destination is: 'Hughes Market' withCertainty: 0.75.
Destination is: 'Numero Uno' withCertainty: - 0.5.
Destination is: 'Yamaha' withCertainty: 0.3.
Destination is: 'Good Earth' withCertainty: -0.7.
Destination is: 'Acapulco' withCertainty: 0.3.
Destination is: 'Steer & Stein' withCertainty: 0.5.
Destination is: 'Panda' withCertainty: - O.l.
Destination is: 'Robins' withCertainty: 0.75.
Destination is: 'Fuddruckers' withCertainty: - 0.5.
].

"Rae likes Hughes Market, Robin s, Steer & Stein, Acapulco,
Spring Garden, Reubens, Kabuki, Numero Uno, and Panda. He
dislikes Yamaha, Good Earth, Fuddruckers. "

if: (anyOf: Person have: [Name = 'Rae'))
then: [Destination is: 'Spring Garden' withCertainty: 0.5.

Destination is: 'Hughes Market' withCertainty: 0.5.
Destination is: 'Numero Uno' withCertainty: 0.5.

63

Destination is: 'Yamaha' withCertainty: - 0.3.
Destination is: 'Good Earth' withCertainty: - 0.9.
Destination is: 'Kabuki' withCertainty: 0.5.
Destination is: 'Acapulco' withCertainty: 0.7.
Destination is: 'Steer & Stein' withCertainty: 0.6.
Destination is: 'Panda' withCertainty: 0.5.
Destination is: 'Robins' withCertainty: 0.7.
Destination is: 'Reubens' withCertainty: 0.6.
Destination is: 'Fuddruckers' withCertainty: -0.5.
].

9.4. ;A Sample Consultation

Now that we have a knowledge base, let's run a sample
consultation. To do this, we need to first get a Listener window
open by using the interact command in the Manager window.
This will produce a Listener window.

Since our knowledge base is geared toward finding out the value
of Destination, this is what we should ask it for. Type the word
'Destination' into the Listener window, select it, and then use the
find out command from the middle button menu. This will start
up HUMBLE, which will begin to ask questions. Although these
questions will appear as pop- up menus and confirmers, we will
display them here in a transcript form. italic text indicates the
questions and output from HUMBLE.

I am creating a LunchParty, which we will call PARTY -1
Are there any persons going along?
yes
I am creating a person, which we will call PERSON -1
What is the name of PERSON -1?
Kurt
Are there any other persons in the group?
yes
I am creating a person, which we will call PERSON -2
What is the name of PERSON -2?
Rae
Are there any other persons in the group?
no
Given all the evidence, I can conclude that,

There is strong evidence (0.88) that the Destination of

64

'PARTY -1 'is 'Robins~

U sing the alternatives command yields:

There is poor evidence (0.0) that the Destination of
'PARTY -1 'is not 'Numero Uno~

There is suggestive evidence (-0.75) that the Destination of
'PARTY -1 'is not 'Fuddruckers~

There is strong evidence (-0.97) that the Destination of
'PAR TY -1 ' is not Good Earth '.

There is suggestive evidence (0.75) that the Destination of
'PARTY -1 'is 'Panda~

There is strong evidence (0.85) that the Destination of
'PARTY -1 'is 'Acapulco~

There is suggestive evidence (-0.51) that the Destination of
'PARTY -1 'is not 'Yamaha~

There is suggestive evidence (0.75) that the Destination of
'PARTY -1 'is 1(abuki~

There is suggestive evidence (0.75) that the Destination of
'PARTY -1 'is 'Hughes Market~

There is suggestive evidence (0.444444) that the Destination
of'P ARTY -1 'is 'Spring Garden ~

There is strong evidence (0.88) that the Destination of
'PARTY -1 'is 'Robins~

There is suggestive evidence (0.6) that the Destination of
'PARTY -1 ' is 'Reubens'.

There is suggestive evidence (0.8) that the Destination of
'PARTY -1 ' is 'Steer & Stein '.

9.5. A Refinement

If you have gone to the trouble of creating your own knowledge
base, you will have noticed that it will always give the same
answer for a given group. This is as it should be, given the rules
you have already implemented. However, there is a way to
refine it a little more.

Suppose we wanted to add a rule saying "If someone has eaten at
a given place, he doesn't want to eat there again, so don't go
there". We can implement such a rule by doing two things. First,

65

we must add a new parameter to Person, so that HUMBLE can
keep track of where the person last ate. We will probably want
to put this parameter on the main parameter list, so that the
system always asks about the last place where this person ate.
Let's call it LastDestination. My definition looked like this:

LastDestination
describes: Person
type: String
prompt: Where did &Name (&) last eat?
promptFlag: askFirst
explanation: "LastDestination describes where a person

last had lunch"
remark:
changeBlock:

Notice that I used the value of Name as part of the prompt, so
that the question could be more clear. Once we know that every
person has some LastDestination, we can write a rule saying:

DontEatAtSamePlaceTwice
"if someone ate at the selected place before,

then that is a less likely choice"

if Any: Person has: [Destination isKnown & LastDestination
_= tI]

then: [Destination is: LastDestination withCertainty:
-0.6].

This is a very powerful rule, since it will go through every person
entity and make it less likely that their LastDestination will be
today's Destination. This is also a recursive rule, so by definition
it will execute only after all of the other evidence is in.

This relatively simple addition will greatly modify the behavior
of your expert system, and make it a lot more useable.

66

10. The HUMBLE Programmer's Interface

10.1. Introduction

This chapter is probably of very little interest to anyone but a
Smalltalk programmer. If you don't feel that you fit into this
category and don't plan to ever be a Smalltalk programmer, then
by all means ignore this chapter. I assure you, I won't even feel
hurt. As long as you don't tell me.

It is very seldom the case that a given expert system shell will
have a particularly good user interface for any particular
problem. In light of this, The design of HUMBLE includes a vast
array of messages usable by outside programs, which will allow
you to completely replace the standard humble window set with
your own custom interface.

"Oh no," you say. "I'd have to be a Smalltalk programmer
who understands the inner structure of HUMBLE to do that."
Wrong. Sort of. You will need to be a Small talk programmer. It
would be helpful to understand the internal structure of
HUMBLE, but it is not absolutely necessary. HUMBLE was
designed to allow programs other than the standard ones to
access HUMBLE's logic engine for their own nefarious purposes.
This chapter will attempt to provide enough working
understanding to enable you to utilize HUMBLE from within
your own programs.

It should be noted here that the code of HUMBLE has been
copyrighted by Xerox, and that even though it is provided to you
for your use, Xerox will jealously guard its rights to it.
Therefore, if you use any of the code in any way in any part of
your program or programs, you will certainly have to come to
some agreement with Xerox about distribution.

10.2. Required Reading

If you are going to attempt to use this chapter, let me recommend
that you either read or be familiar with:

67

A. Goldberg. Smalltalk -80: The Interactive Programming
Environment. Addison- Wesley, Reading, MA 1984.

A. Goldberg and D. Robson. Smalltalk ":"'80: The Language
and its Implementation. Addison - Wesley, Reading, MA 1983.

Also of interest, though not required:

Buchanan and Shortliffe (eds.). Rule Based Expert Systems:
The MYCIN experiments of the Stanford Heuristic Programming
Project. Addison- Wesley, Reading, MA 1984.

The Goldberg books are essential to doing even simple programs
in Smalltalk. The knowledge of how to do simple Small talk
applications is essential if you want to make any use of this
section. The assumption made in this chapter is that you are a
fairly accomplished Smalltalk-80 programmer, capable of
producing windows, using files, and have a good overall
understanding of the basic Small talk system classes.

Since HUMBLE is in many respects similar to MYCIN, the
Buchanan and Shortliffe book is fine general reading on this
type of expert system.

10.3. The KnowledgeBases Global

KnowledgeBases is a system global. In other words, you can call
it by name and send messages to it. There are a number of useful
messages it will respond to, and you can find out exactly how
they work by looking at class HumbleManager in class
category XSIS- HUMBLE - Manager. However, to save you a
lot of effort, I'll explain a few of them right a way.

Far and away the most useful of these messages to the
programmer is the 'baseNamed:' message. An example of its use
might be:

kb ~ KnowledgeBases baseNamed: 'ROX'.

68

In this example, the variable kb is set to be a knowledgebase
named 'ROX', which KnowledgeBases has returned in response
to the message. Once you have a knowledge base in a variable,
you are ready to send it a variety of messages. We'll discuss
those messages a little later.

Some other useful messages are:

allBases - return a collection of all known knowledge
bases in the System

filelnBase - KnowledgeBases will prompt you for a name,
then load the named knowledge base from disk.

edit: - by passing a knowledge base name (string) as the
argument, the system will open a standard editor on the
knowledge base with that name. i.e. KnowledgeBases edit:
'ROX'.

interactWith: - by passing a knowledge base name (string)
as the argument, the system will open a standard listener
window on the knowledge base with that name. i.e.
KnowledgeBases interactWith: 'ROX'.

remove: - by passing a knowledge base nale (string) as
the argument, KnowledgeBases will remove the knowledge base
with that name from the system. i.e. KnowledgeEases remove:
'ROX'.

As you can see, the KnowledgeBases global is a good general way
to interact with knowledge bases by name. It is suggested that
any interactions you may perform with knowledge bases as
objects be done through the agency of this global, just so that
everything remains organized and accessible.

10.4. Individual Knowledge Bases

Each individual knowledge base has a number of tailorable
parameters which make it flexible and easy to interact with.

69

The exact code can be found in class KnowledgeBase, in class
category XSIS - HUMBLE - Interpreter. The complete
description of the interactions involved will take several
sections. Each one will hopefully cover some area of interest.

1004.1. Executing the Rules

As HUMBLE is a rule - based system, there is probably some
utility in knowing how to execute rules in HUMBLE from
outside programs. HUMBLE supports both forward and
backward chaining, and the method by which chaining is
invoked is different for each chaining direction.

1004.1.1. Backward Chaining

Backward chaining occurs in a relatively automatic fashion at
all times during HUMBLE execution, whenever a reference to a
Parameter is made. This process can be initiated by sending the
message findOut: aParameterName to a knowledge base. The
knowledge base will find the parameter definition with the
corresponding name, create any needed entities, and then use
backward chaining to discover the most likely value for that
parameter. It will finally return the actual parameter created
for you to examine within whatever object is sending the
message.

When the knowledge base object receives this message, it does
not automatically reset the knowledge base's fact base. This is to
handle the case where an expert system needs to make further
inferences about a given set of information. To reset it, send the
message initEntities to the knowledge base. To reset the
counters used to make up default entity names, send the
initEntityTypes message to the knowledge base.

It is instructive to look at how the listener window interacts with
its knowledge base.

70

10.4.1.2. Forward Chaining

As mentioned in the chapter on HUMBLE rule syntax,
HUMBLE rules can forward chain by simply adding a forward
chain

construction to some part of a rule. However, it may not be
obvious how to start execution on such a knowledge base.

A knowledge base can be sent the message rules which will
return the collection of rules in the knowledge base. This
collection is a dictionary, which will return rules by name to the
programmer. That rule can then be sent the message execute,
which will fire the rule. For example, lets say you have created a
knowledge base named 'Rhombus', which can be started by
executing the rule named 'startUp'. The code to begin execution
of this set of rules might look like:

«KnowledgeBases baseNamed: 'Rhombus') rules at:
#startUp) execute.

Notice that #startUp is a Symbol, not a string. The knowledge
base uses Symbol instances as keys for efficiency's sake.

Typically, someone interested in starting up a knowledge base in
this fashion has his initial rule simply fire off a number of other
rules in sequence. Remember if you create a totally forward
chained set of rules you still may have an unusual order of
execution, since HUMBLE tries to backward chain at all times.
Properly written forward chained rules, though, should never
have any ambiguities which would induce backward chaining.
Use only ask First parameters if you feel compelled to use purely
forward chaining, to insure that backward chaining never occurs
other than to obtain parameter values.

10.4.2. Inspecting the Entities

Obviously, if you can't inspect the fact base a knowledge base
produces, then it is of very little interest. HUMBLE allows
inspection of its fact base at every level. Since the fact base data

71

structure is quite complex, though, it there are a fairly large
number of methods which must be explained.

10.4.2.1. Examining Entities

Entities, as mentioned in earlier sections, are the objects about
which HUMBLE reasons. In many respects, they resemble a
subroutine execution context as well, and in fact are referred to
as contexts in many expert systems of similar architecture. The
basic structure of an entity includes two major elements, a list of
parameters and a list of sub - entities.

The message primaryEntity is understood by members of class
KnowledgeBase, and it returns the topmost entity in the fact
base. This single entity is the key to all of the other entities in
the fact base, since by definition all other entities are a part of it.

... .:...IRPL-Al~E·-l

10.4.2.1.1. Sub - Entities

Once you have the primary Entity, it is very likely that you will
want to 'walk the entity tree' to find the specific entities you are
interested in.

One can access the sub-entities of an Entity by a number of
techniques. The simplest is to send an entity the message
allSubEntities. This will return an OrderedCollection
containing all of the sub-entities, of whatever type, the receiver
contains.

72

Since every Entity has a type, it may also be of interest to ask for
only certain types. allSubEntitiesOIType: aString will return
an OrderedCollection of only those subEntities with a given
type. Note that this message may well return only an empty
collection.

Each Entity has a list of parameters, and it may be of interest to
search for entities which have a certain parameter name among
their parameters. allSubEntitiesWithParameter: aString
will return an ordered collection with all of the appropriate
sub - entities.

10.4.2.1.2. Accessing the Parameters

The primary method of accessing a particular parameter is to
send an Entity the message parameterNamed: aSymbol. This
will return the actual parameter object for scrutiny. See the
later section on examining paramders for more information on
what information is available in a given parameter.

The entire set of parameters can be returned as a dictionary by
sending any Entity the message parameters. The keys of the
dictionary are the names of the parameters contained within.

73

10.4.2.1.3. Accessing the Entity Type

Every Entity has a pointer to its EntityType contained in the
instance variable type. The message type will return it for
examination. There are numerous pieces of information in the
EntityType which might be of interest.

The prompts associated with entities of this type can be returned
by the messages add Prompt, assumePrompt, and
create Prompt.

The EntityType above this one in the entity tree can be retrieved
by sending an EntityType the message typeAbove. The types
below can be retrieved as an OrderedCollection by the message
typesBelow.

An Entity Tree

10.4.2.1.4. Other Useful Information

Some other things which might at some point be of interest are
the messages conclusionSet and superEntity. The
conclusion Set message will return an OrderedCollection
containing the names of all the rules which have executed in the
context of this Entity. The other message, superEntity, will
return the entity above this one in the fact base's entity tree.

74

10.4.2.2. Examining Parameters

The Parameters of an Entity are where the real information
about that entity lies. A parameter is a relatively complex sort
of object, certainly far more complex than a simple variable. As
mentioned in the previous section on "Looking at Parameters",
you can get to an individual parameter by sending the message
parameterNamed: aSymbol to an Entity. The entire set can
be obtained by sending the message parameters to an Entity.

Once you have the parameter you are interested in, you are
probably interested mainly in the best hypothesis about that
parameter. The message bestHypothesis will return it to you
directly. The value message will return the value of the best
hypothesis, certainty returns its certainty, and reason returns
its reason.

10.4.2.2.1. Accessing the Hypotheses

Examining the set of hypotheses which has been asserted about
a parameter is a relatively complex activity. A member of class
Parameter holds all of its hypotheses in a dictionary structure.
The keys of this dictionary are the values of the hypotheses
asserted. The dictionary values corresponding to those keys are
themselves dictionaries, with keys #combined and #all. The
value in #combined is the overall level of certainty associated
with that value. The values keyed by #all are
OrderedCollections, each of which holds all hypotheses with
val ue similar to the dictionary key in chronological order of
assertion.

75

This, of course, makes very little sense when described verbally.
Here is a printout of a typical case from the ROX knowledge
base. Executing the code -

«KnowledgeBases baseNamed:' 'ROX') primaryEntity
parameterNamed: #name) hypotheses

might yield:

Dictionary (
'granite' - > Dictionary (

combined - > 'granite' (0.939968)
a11- > Ordered Collection (

'granite' (0.4)
'granite' (0.56)
'granite' (0.56)
'granite' (0.32)
'granite' (0.24)))

'diorite' - > Dictionary (
combined - > 'diorite' (0.65728)
a11- > Ordered Collection (

'diorite' (0.4)
'diorite' (0.32)
'diorite' (0.16»)

'gabbro'- > Dictionary (
combined - > 'gabbro' (- 0.64)
all- > Ordered Collection (

'gabbro' (- 0.4)
'gabbro' (0.56)
'gabbro' (- 0.56)
'gabbro' (- 0.4))))

In this case, three possible values for parameter name have been
asserted, and each one has been asserted several times. The
Dictionaries contain sets of similar hypotheses, keyed by their
values. Each dictionary contains a combined certainty and an
OrderedCollection of hypotheses. Each Ordered Collection
contains a chronological history of the assertions made. In this
example, both 'granite' and 'diorite' became more certain, while
'gabbro' became less certain as rules were executed. See the
section on "Examining Hypotheses" to get more information on
what can be examined in the individual hypotheses.

76

10.4.2.2.2. Accessing the Parameter Definition

A ParameterDefinition contains a wealth of information about a
specific parameter. By sending any parameter the message
definition, the programmer can obtain the parameter definition
corresponding to that parameter. Once you have the
ParameterDefinition object, you can send it a number of
different messages:

changeBlock - return the block of code this parameter should
execute when its best hypothesis has changed. This is not meant
for use by programmers from outside the knowledge base.

deductionRules - return the list of rules this parameter will
fire if it must deduce its own value.

entityType - return the entity type of which this parameter is
a part.

explanation - return the explanation string associated with
this parameter. This is now used by the explain functon of the
listener window.

knowledgeBase - return the knowledgeBase of which this
parameter definition is a part.

parameterName - return the parameter name, the key under
which this type of parameter is stored in an entity.

prompt - return the string used to create a prompt when this
parameter must ask its value from the user.

promptFlag - return either #askFirst, #askLast, or nil. This
value flags the order in which the inference engine attempts to
deduce or ask the value of a parameter.

referringRules - return a list of all rules which test this
parameter.

77

remark - return this parameter definition's remark string.
Used as a comment for parameter definitions at present.

type - return what sort of parameter this is, one of: class
String, class Number, #YN, #MV.

10.4.2.3. Examining Hypotheses

Each individual hypothesis has a certain amount of limited
intelligence about itself which may possibly be of interest to the
programmer. It is most likely that the value of the hypothesis is
of primary interest, and sending a hypothesis the message value
will return this value to you.

In some cases, certainty values are also useful information, and
the message certainty will return whatever certainty the
hypothesis has to you.

The last message likely to be of interest is the reason method.
During execution, HUMBLE rules tell any hypotheses they
compute or produce that the reason for the hypothesis is a
symbol corresponding to the name of the executing rule. This
symbol is used to produce the explanations from the listener
window. The section on "Explaining Conclusions" explains what
message accomplishes explanations, and it will not be explained
here. However, it may be an instructive part of the code to
examine for those wishing to create their own explanation
facilities.

10.4.3. Resetting a Knowledge Base

In order to handle the case where an expert system needs to
make further inferences about a given set of information, the
KnowledgeBase will not automatically reset whenever it is
queried. If you are going to use a knowledge base with new data,
it is your responsibility to reset the knowledge base to clear out
old information.

78

To reset a knowledge base's fact base, send the message
initEntities to the knowledge base. To reset the counters used to
make up default entity names, send the initEntityTypes
message to it. The standard code used in HUMBLE (using the
old standby example 'Rhombus') is:

(KnowledgeBases baseNamed: 'Rhombus')
initEntities; initEntityTypes.

10.4.4. Explaining Conclusions

The message explain: aParameterName in: anEntityName
value: value, when sent to a knowledge base, will return a
string containing an explanation of the reasoning behind the
assertion that the parameter named aParameterName in the
entity named anEntityName has the value value.

The explanation generator chains backwards to explain the
reasoning from the simplest data elements involved. This is the
message that the Listener window uses to generate its
explanations.

This message is also a n excellent example of how to go about
extracting informati(l \ from the knowledge base. It may be
instructive to look 1 this message as an example of the
techniques discussed in the section on "Inspecting the Entities".

10.4.5. Examining Alternatives

The message alternatives For: aParameterName in:
anEntityName will return a string with the printed form of all
the hypotheses created for that specific parameter. The Listener
window uses this message to generate the alternatives for some
parameter selected. Any application can take advantage of the
same capacity.

79

10.4.6. Redirecting Output

Output from a HUMBLE consultation may be directed to any
Stream in Small talk - 80. To do this, just use the
outputStream: message. For instance,

(KnowledgeBases baseNamed: 'ROX') outputStream:
(FileStream newFileNamed: 'ROX.output')

will direct the output of the knowledge base named 'ROX' into a
disk file called 'ROX.output'. There are a number of uses for this
facility which come to mind. For instance, a Listener window
similar to the standard HUMBLE might display any output
directly to the screen. By sending output to a file, it is possible to
easily capture explanations or printouts of entities in a
knowledge base into disk files for later use or auditing.

The Listener window is a nice example of how to hook the output
of a knowledge base to a TextCollector subclass. (TextCollectors,
by the way, are the Small talk equivalent of a transcript window.
The system global Transcript is one.) As is usual, you are urged
to go and read the code in the classes in class category
XSIS - HUMBLE - Listener to see some example code.

10.4.7. Redirecting Input

Input to a HUMBLE knowledge base can also be redirected.
When a HUMBLE knowledge base needs to ask the user a
question, it uses an intermediary object called an Interrogator
to ask the question.

On the surface, this simply means that the knowledge engineer
can create his own tailored questioning interface, but there are
deeper implications. Since there are essentially no constraints
on exactly what an Interrogator does, it can even avoid asking
the user questions altogether. Instead of asking questions, it
could read a database or data structure to glean answers. Some
combination is possible. The possibilities are limited solely by
the programmer's imagination and skill with Smalltalk.

80

I suggest making whatever class of interrogator object you need
a subclass of class Interrogator. Look carefully at each of the
messages implemented in class Interrogator and rewrite them in
the subclass to do what you wish. In many cases, you will be able
to leave them exactly as they are.

When you ha ve a new type of interrogator ready to be pI ugged in,
use the interrogator: message in class KnowledgeBase to tell
your knowledge base what object to use to make interrogations.

10.4.8. Tracing Execution

A trace facility exists in HUMBLE, which will write trace
information to a stream specified by the annotation Stream:
message. This points the knowledge base to a stream either in
memory or a disk file. The system then notes the state of the
traceFlags instance variable, and writes to the file based on its
state.

There are three possible types of events that can be traced: goal
creation, rule firing, and conclusion creation. The messages
which turn tracing on or off for these events are:

traceGoals: aBoolean "trace any goal's creation if
aBoolean is true"

traceRules: aBoolean "trace any rule's execution if
aBoolean is true"

traceConclusions: aBoolean "trace any conclusion if
aBoolean is true"

Note that these messages are used both to activate and
deactivate their respective types of tracing.

10.4.9. Initializing the Entities

In many cases, it is desirable to initialize the entities in a
knowledge base before inferences are made, simply because
much of the information is already known. Rather than asking
the user, it is much more desirable to have the information ready

81

and waiting when rules ask for it. This is, unfortunately, not as
simple a task as some of the other ones we have discussed.

The difficulty is that the structure of the fact base in HUMBLE
is rather complicated. In order to help overcome this, a special
message has been provided which will set the parameters of an
entity from a dictionary which has been created in some fashion.
The following example uses this message, called
setParamsFromDict: to initialize a knowledge base.

I rox rock dict I
"obtain the knowledge base from the

KnowledgeBases global"
rox - KnowledgeBases baseNamed: 'ROX'.

"reset the entities, then create a new blank entity.
The createlnstanceForlnjection message produces a new

entity, but does not automatically attempt to find out
the main parameters. "

rox initEntities; initEntityTypes.
rock +- (rox entityTypes at: #Rock)

createInstanceFor Injection.

"build a dictionary offield names (as symbols) and values.
Notice that parameter class is receiving an uncertain value,
while the rest are absolutely certain."
dict - Dictionary new.
dict at: #class put: (Hypothesis new: 'igneous' certainty: 0.7).
dict at: #color put: 5.
dict at: #fossiliferous put: false.
dict at: #calcareous put: false.
dict at: #porphyritic put: false.

"initialize the blank entity from the dictionary"
rock setParamsFromDict: dict.

"initiate a consultation"
rox find Out: #name in: rock.

82

10.5. Altering a Certainty Model

As advertised, HUMBLE has a modular certainty system which
can be altered to suit the user's needs. Essentially, there are
eight messages to produce which define how HUMBLE will deal
with certainty. The first step is to create a subclass of class
Hypothesis, which is the class which defines certainty and other
behaviors for data in HUMBLE.

Once you have a subclass produced, you must define several new
methods for the subclass, those dealing with certainty. The next
two sections will describe exactly what messages need to be
defined. One can create any of a number of differing certainty
models as needed. The actual implementation of any model is
left as an exercise for the reader.

Once the subclass has been completed, it remains to tell the
knowledge base that it should use a non-standard certainty
model. This can be accomplished by sending a knowledge base
the message hypothesisType: aHypothesisSubclass. The
argument should be that actual class, not an instance of it. From
then on, even when it is saved to the disk, the knowledge base
will automatically use the new class, with its new certainty
model, for all calculations.

The next two sections cover the messages you will need to
implement in two groups of four. The first deals with the
operations on certainty factors, the second with the constants
associated with your model.

10.5.1. Combination Messages

HUMBLE expects instances of your Hypothesis subclass to be
able to respond to the following messages:

combineCertaintyWith: aHypothesisCollection
This message should set the certainty of the receiver to be the
combined certainty of the receiver and aHypothesis. This is the
message used ~hen HUMBLE must combine the results of two
or more inference chains which lead to a similar conclusion.

83

The hypothesis collection which is passed is the standard
parameter hypothesis dictionary. (see Section 10.4.2.2.1:
Accessing the Hypotheses) You should feel free to add new
structure to this dictionary if you desire, but be certain to leave
the existing structures intact. The present structure contains
information about every hypothesis for a parameter, so it should
be possible to add just about any sort of certainty model 'you
desire.

maxCertaintyOf: aHypothesis and: anotherHypothesis
This message should return a value equal to the certainty the
most certain hypothesis, aHypothesis or anotherHypothesis.

minCertaintyOf: aHypothesis and: anotherHypothesis
This message should return a value equal to the certainty the
least certain hypothesis, aHypothesis or anotherHypothesis.

productCertaintyOf: aHypothesis and: anotherHypothesis
This message should return a value which reflects a certainty of
which both aHypothesis and anotherHypothesis partake. In the
present certainty model, this is used to determine the certainty
of the result of a binary operation. It does this by multiplying
the two certainties together.

10.5.2. Certainty Constants

HUMBLE also expects your Hypothesis subclass to be able to
respond to the following messages on both the class and instance
sides:

max Certainty
return the value associated with absolute positive certainty

minCertainty
return the value associated with absolute negative certainty

cutoffCertainty
return the certainty value at which it is considered safe to
declare that the a parameter has this value. This is the cutoff

84

point above which a rule will decide to activate its action block.

eu toffN egativeCertain ty
return the certainty value at which it is considered safe to
declare that the parameter does not have this value.

unknownCertainty
return the certainty value which deontes a total lack of evidence
one way or the other.

85

11. Using HUMBLE in Popular Expert
Systems Architectures

11.1. Simulations

Simulations are one of the primary areas in which HUMBLE
was designed to be ·useful. A typical simulation program has
areas where rule based behavior could be useful, but these are
generally hardcoded into the simulation code since the work
necessary to implement a rule based system is often quite
extensive. Small talk has long been known as a good language in
which to write simulations, since an object oriented style is well
suited to discrete simulations, and it is then very easy to extend
the simulations by subc1assing.

HUMBLE includes a tutorial example, MazeMaster, which
highlights the methods required to hook rule based behavior into
a Small talk simulation.

11.1.1. MazeMaster: a Humble Simulation Tutorial

MazeMaster is a tutorial program designed to help you
understand how to hook HUMBLE into simulations in
Small talk - 80. The simulation in MazeMaster is a simple mouse
and maze simulation, with a mouse trying to run around a small
maze, avoid running into the cat, and finding and eating the
cheese.

What makes MazeMaster interesting is that the mouse can be
attached to a HUMBLE knowledge base, which will serve as the
mouse's 'brain'. Altering rules in the knowledge base will alter
the behavior of the mouse. Be aware that the 'brain' in the
HUMBLE knowledge base is very simple, and in fact using
HUMBLE at all for this is a fantastic level of overkill (and
overhead). A simple left-hand-wall algorithm for maze
navigation could be implemented in the mouse trivially and be
many times faster. Please remember, though, that this is a
tutorial, and meant to avoid burdening you with a complex

86

simulation and massively intelligent mouse when the real point
is how to get HUMBLE hooked into a simulation.

11.1.2. The MazeMaster Object Classes

MazeMaster defines three new object classes: Maze, Mouse, and
MazeMaster. Each defines a limited part of the maze simulation.

Class Maze, as might be expected, describ~s the shape and
contents of the Maze in which the mouse will maneuver. It is
essentially a two dimensional array of locations, each of which
has some sort of contents. The possible contents are 'wall', 'open',
'cat', and 'cheese'. The maze knows how large it is, and can tell
any outside object the contents of some location in the maz"e. The
maze also knows how to display itself.

Class MazeMaster describes the objects which know how to run
the simulation. A mazemaster knows which maze and mouse
will participate in the simulation, and contains the basic rules of
the simulation and a timing clock. The rules are quite simple:

1. If the mouse is in the same location as a wall
he has slammed into the wall and killed himself.

2. If the mouse is in the same location as a cat
he has been eaten.

3. If the mouse is in the same location as a cheese
he can eat the cheese and is declared to have won.

4. If one hundred clicks of the clock have passed without
the mouse eating the cheese, the mouse starves to death.

The run and runKB messages in class MazeMaster run the clock
and enforce the rules of the simulation.

Class Mouse is the most complex of the three classes. In its
simplest form, a mouse knows how to be told where to move, how
to look forward, backward, to the left and right. The mouse is
quite myopic, and can only see one space in any direction. A
mouse knows how to ask a user where it should move next. It
also knows how to display itself. Class Mouse also has a set of
methods which allow it to be attached to a HUMBLE knowledge
base rather than asking a user for instruction.

87

11.1.3. The MazeMaster Connection

Class Mouse is capable of being hooked into a HUMBLE
knowledge base. To do this, the instances of the class all know
how to act as a proper HUMBLE Interrogator object. Although
not a subclass of class Interrogator, class Mouse has all of the
necessary protocols to act just like one. To Small talk - 80, this is
just as good as being the real thing.

Three messages had to be defined in order to pull off this
charade. Each mouse had to know how to respond to the
messages oneOf:, moreOf:, and request:. These are the three
messages by which a HUMBLE knowledge base interacts with
its interrogator object. Notice the difference between these
messages in class Mouse and their equivalents in class
Interrogator. The message oneOf: is how HUMBLE asks if any
of a single type of entity exists in the real world. Since we are
dealing with a limited case in MazeMaster, where there is
always one and only one mouse, this can always return true.
Similarly moreOf: will always return false, since there will only
be one mouse at any time.

The message request: was a little more difficult. The request:
message is used by HUMBLE to ask for the value of a
parameter, which is passed as an argument to request:. This
parameter always has a definition, which contains the
parameter's name. Therefore, the easiest method of returning all
needed parameters was to make a message for each parameter
name, and then tell the mouse to execute each message
whenever the knowledge base asked for its value. Thus, there
are a set of methods implemented in class Mouse which
correspond exactly to the names of the parameters for the Mouse
entity type in the knowledge base named 'Mouse'. The code of the
request: message therefore just looks up the parameter name,
turns it into a symbol, and then tells itself to perform the method
with that symbol as its selector. This is all a lot simpler than it
sounds right now, so don't be alarmed.

88

11.1.4. What We Were Trying to Say

The point of providing this example was to make clear how to
connect HUMBLE's knowledge base objects to other working
systems in Sma.1ltalk-80. The idea was not to suggest that
HUMBLE knowledge bases' are the perfect way to control all
aspects of a simulator. Instead, they are probably most useful
when a simulator has 'fuzzy' aspects to it, that is to say that
elements of the simulation have limited or perhaps incorrect
data being passed to them. Only in such cases will the overhead
of adding a HUMBLE rule based system to the simulation be
justified.

11.2. Blackboard Systems

A blackboard system is a way of coordinating a number of
seperate knowledge bases and other sources of information, thus
using them all to help solve a particular problem. The
blackboard serves as a central. repository of information, which
many different sorts of problem solving units can access.
HUMBLE knowledge bases can be easily attached to a
blackboard system built in Small talk - 80.

11.2.1. The Blackboard Concept

A blackboard system is generally composed of a number of parts,
which can be devided into three main categories: the 'big cheese',
the blackboard, and the knowledge sources. Each category
complements the others, allowing a modular and convenient
approach to solving complex problems.

The 'big cheese' is the master control section of the blackboard
system. The cheese selects which knowledge source will now
attempt to act on some information on the blackboard. Often, it
will query the knowledge sources about whether they think they
can help produce a solution given the knowledge present on the
blackboard. The cheese declares the problem solved or
unsolvable, and therefore always ends the problem solving
session.

89

The blackboard itself is simply a clearinghouse for information.
All of the knowledge sources have some access to the blackboard,
it serves as a source of inputs and outputs to the various
knowledge sources. The blackboard is often arranged in a
hierarchy, although the reasons for this are not clear in most
papers published about such systems.

The 'knowledge sources' can be literally anything. One
knowledge source might be a human operator, another a large
database, yet another a knowledge base, and still another a
simple computation routine. Anything that can provide input
into the solution process is a knowledge source.

This structure has proven highly successful in cases which
require varied approaches in different parts of the problem. It
has the disadvantage of not being as profficient at explaining
itself as a pure rule based system, but is far more
computationally flexible. As may be obvious, object-oriented
systems are almost ideal for building blackboard systems.
HUMBLE knowledge bases can easily serve as knowledge
sources in a Small talk based blackboard system.

11.2.2. HUMBLE Knowledge Bases as Knowledge
Sources

HUMBLE knowledge bases can be attached to a blackboard
system in much the same way as they can be attached to a
simulation (In fact, a simulation can be viewed as a special case
of the blackboard idea). The steps to accomplish this attachment
are as follows:

1. Build an interrogator which can read the blackboard. This
should pose no particular problem, being almost exactly the
same sort of procedure as was used in the MazeMaster system.

2. Build an interface which can take the output of a
HUMBLE knowledge base and insert it into the blackboard. This
is more interesting. The case in MazeMaster was simple, since
we were going to immediately apply the decision the brain
knowledge base reached in the simUlation. This will not always

90

be the case in a general blackboard system. The best way to get
the information back to the blackboard is to have the big cheese
take the results, perform the insertion, and then use the fact that
it has just received new data to select the next knowledge source.

Further, the ability of each HUMBLE knowledge base to have a
separate certainty model, unique to the problem it is trying to
solve, make HUMBLE knowledge bases a particularly flexible
addition to a blackboard system.

11.3. Smalltalk - 80 and Frame Based Systems

Frame based systems are a popular method of building large and
complex expert syste-ms. They provide a number of advantages
which strict rule - based systems have been unable to provide.
HUMBLE knowledge bases can be added to a Smalltalk-80
based frame system with relative ease, using techniques similar
to those used to attach them to simulators and blackboard
systems.

11.3.1. The Frame Concept

Now, the biggest surprise of all. Smalltalk-80 is a frame based
system already! Really.

If you take a look at the concept of frames and slots, you'll find
that they very much resemble objects and instance variables.
Building a frame based system for Small talk - 80 is somewhat
like building a basic arithmetic package to run in Fortran - 77.
You simply don't need to do it. Objects and frames are literally
almost the same idea. The minor differences in the systems are
usually matters of emphasis. Smalltalk- 80 tends to emphasize
general programming, rather than convenient shorthands for
expert system creation.

While the emphases are different, it is relatively easy to provide
a number of the most important conveniences for yourself. One
of the ones that is most useful is a global name table for objects
you are using as frames. Small talk provides a convenient global
name table, the object named Small talk (as opposed to the entire
system, which is also generically called Smalltalk). This object,

91

which is a member of class System Dictionary , is where the
system looks up the names of classes and certain special objects
in the system. By adding a dictionary to Small talk, we can get a
special name table for frames which we can clear out as needed
without disturbing the rest of the system. The code might look
like this:

Smalltalk at: #Frames put: Dictionary new.

Whenever a new frame is created, simply execute code like the
following to add it to the name table:

Frames at: frameName put: newFrame

where newFrame and frameName are the new frame and its
name, respectively. This sort of dictionary, the Smalltalk system
dictionary, and pool variables can all provide fast access to frame
objects in any frame based system you are building.

Other aspects of the system can be convenient as well. A typical
activity in a frame system involves changing the class of a frame
as more information is gained. This is most easily performed in
Smalltalk using the become: message. Be careful, though, since
the become: message cuts both ways. If you tell something to
become: nil or tell nil to become: some other ohjed, you will
almost certainly crash your system. This is gene1'" ~ ly considered
undesirable.

11.3.2. Humble Knowledge Bases within Ft-ames

Since HUMBLE knowledge bases are objects just like anything
else in Smalltalk, they can easily occupy slots in any frame
system you create. Thus, it is easy for a particular frame to keep
a rule - based system available for its internal use. Also, many
frames could share the same knowledge base. HUMBLE
knowledge bases could then be used:

1. As a decision mechanism for deciding the next frame to
examine.

92

2. As a way of filling in slots in the frame. Results of
HUMBLE knowledge bases could be used to fill in slots in frames
as needed.

Further, various parts of HUMBLE, such as class Hypothesis,
are perfectly capable of being used as part of a frame mechanism,
since they don't directly depend on being part of a HUMBLE
knowledge base for their operation. This could allow the easy
creation of a system to store uncertain values within frames,
given a little ingenuity.

93

Appendix A. Glossary

Term Definition

Knowledge Base The place where the expertise which
composes an expert system is stored by
HUMBLE.

Fact Base The part of a knowledge base which stores
temporary information. Information which
is useful only during the present
consultation resides in the fact base.
Sometimes called a working memory.

Rule

Entity

Entity Type

Parameter

A description of some action to be taken or
conclusion to be drawn when certain
conditions are to be met. Usually describes
some conclusion which can be made if
specified conditions are met.

A component of the fact base. An entity is a
formal representation of some thing or
idea in the real world, about which rules
can be written.

A description of how a certain class of entity
should be constructed and behave. To a

Smalltalk programmer, this is much like a
class definition for an object.

This is a value which describes some aspect
of an entity. Parameters are the means by
which entities of the same type can be
distinguished from one another.

Premise

Action

Uncertainty

Conclusion

YN Parameter

MV Parameter

BNF

Forward Chaining

The part of a rule statement which HUMBLE
must test for truth in order to decide
whether the action is to be taken.

The part of a rule statement which makes
conclusions, fires other rules, or ·evaluates
other statements. The action occurs only
when the premise is true.

The system of val ues attached to every data
element indicating HUMBLE's level of belief
in that datum.

A possible action in a rule statement. A
conclusion is an assertion of new
information based on existing information
in the fact base.

A YN parameter is a parameter which
supports only yes or no (true/false) values.
It has slightly more specialized behavior
compared to a normal parameter.

An MV parameter is a parameter which
supports any number of simultaneous
values. Unlike a standard parameter, it
does not assume that there is only one
correct value for itself.

Backus - Naur Form. A widely used
notation scheme used to precisely describe
the syntax of a computer language.

A method of directing the order of rule
execution. Forward chaining leaves control
of the order strictly in the hands of the user.

2

Backward Chaining

Change Block

Entity Tree

Escape

Hypothesis

Mai n Parameters

A method of directing the order of rule
execution. Backward chaining places
control of the order of execution with the
inference engine. The structure of the rules
themselves dictates the order in which they
will be fired.

The Change Block is a block of
Smalltalk - 80 code associated with a
parameter. It is automatically executed by
HUMBLE whenever the best hypothesis of
that parameter has changed.

An Entity Tree is a collection of related
entities. Each entity is either at the top of
the tree or is a part of another entity. The
entity tree has implications for how rules
work and what data they can access.

An Escape is a small section of ordinary
Smalltalk - 80 code imbedded in a rule. This

allws the system implementor to add
functionality not originally designed into
HUMBLE.

A potential value for a parameter. A
hypothesis has a suggested value, a level of
certainty, and some information used to
produce explanations.

Every entity type has a list of parameters
considered so essential that the system
should attempt to find out their value
immediately upon creation. This list is ailed
the main parameter list.

3

Nested Statements

Recursive Rules

Statement

Working Memory

Rule Base

HUMBLE allows statements in a rule to
evaluate more statements as part of their
action. Such statements are called nested,
since they resemble nested if - thens
common to ordinary programming.

Some rules test values in the premise that
the later make conclusions about in the
action. These are called recursive rules.
HUMBLE permits them, with certain
restrictions on when they should be fired.

A part of a HUMBLE rule which tests some
premise and then takes some action. Similar
to a statement in an ordinary programming
language.

The part of a knowledge base which stores
temporary information. Information which
is useful only during the present
consultation resides in the fact base.
Sometimes called a fact base.

The collection of rules, entity types, and
parameter definitions in a knowledge base.

4

Appendix B. ROX Listing

ROX, a HUMBLE knowledge base
as of 10 June 1986 9:38:10 am

Entity Types

Rock
typeAbove: nil
createPrompt: Are there any Rocks to consider?
addPrompt: Are there any other Rocks?
assume Prompt: I am creating a Rock
defaultName: ROCK
parameters: #(class name texture fabric color grainSize aphanitic

grain Shape crystalline gritty fossiliferous soft porphyritic calcareous
attributes)

mainParameters: #(name)

Mineral
typeAbove: Rock
createPrompt: Are there any identifiable minerals in the rock?
addPrompt: Are there any other identifiable minerals in the rock?
assumePrompt: I am creating one mineral of the rock
defaultName: MINERAL
parameters: #(mineraIName amount)
mainParameters: #(mineraIName amount)

Parameter Definitions

amount
describes: ~ineral
type: Number
prompt: What percentage (1-100) of &mineralName is there?
promptFlag: askFirst
explanation: "The percentage ofthis mineral which exists in the

rock"
remark: ""
deducingRules: #0
changeBlock:

Associated Rules,'
rules which infer amount -
rules which test amount -

phaneriticKSpar
phaneriticPlag
phaneriticPyroxene
phaneriticQuartz

aphanitic
describes: Rock
type: YN
prompt:
promptFlag' nil

None!

explanation: "a rock classification indicating an igneous rock with
large grains"

remark: ''''
deducingRules: #(phaneriticCheck aphaniticCheck)
changeBlock:

Associated Rules:
rules which infer aphanitic -

aphaniticCheck
phaneriticCheck

rules which test aphanitic -
aphaniticColor

phaneriticBiotite
phaneriticColor
phaneriticKSpar
phaneriticOlivine
phaneriticPlag
pha neriticPyroxene
pha neriticQ uartz

attributes
describes: Rock
type: MV
prompt: -
promptFlag: nil
explanation: "the various attributes of the rock"
remark: ''''
deducingRules: #0
change Block:

Associated Rules:
rules which infer attributes -
rules which test attributes -

calcareousCheck
fossiliferousCheck

calcareous
describes: Rock
type: YN

None!

prompt: Does & bubble with dilute HCL?
promptFlag: askFirst
explanation: "a rock classification indicating the presence of calcium

carbonate in the rock"
remark: ""
deducingRules: #0
changeBlock:

Associated Rules:
rules which infer calcareous -
rules which test calcareous -

calcareousC heck
chemicalSedCheck

class
describes: Rock

None!

type: #('igneous' 'metamorphic' 'sedimentary')
prompt: What is the class of &?
promptFlag: askLast
explanation: "the rock's general classification; igneous, sedimentary,

or metamorphic"
remark: "The ordering of rules is important here, for the sake of a

more natural flow"
deducingRules: #(sedimentaryCheck calcareousCheck

fossiliferousCheck metamorphicCheck igneousCheck weldedCheck
stretchedCheck)

changeBlock:

Associated Rules:
rules which infer class -

calcareous Check
fossiliferousC heck
igneousCheck
metamorphicC heck
sedimentaryCheck
stretchedCheck
weldedCheck

rules which test class -
aphaniticC heck
brecciaCheck
chemicalSedCheck
conglomerateCheck
gneissCheck
metaSedCheck
phaneriticC heck
porphyriticCheck
sandstoneC heck
schistCheck
shaleCheck
siltstoneCheck
stretchedCheck
weldedCheck

color
describes: Rock
type: Number
prompt: What is the percent black (I -100) of & ?
promptFlag: askFirst
explanation: "what percentage ofthe rock is black material"
remark: ""

deducingRules: #()
changeBlock:

Associated Rules:
rules which infer color - None!
rules which test color -

aphaniticColor
phaneriticColor

crystalline
describes: Rock
type: YN
prompt: Do you think & is crystalline?
promptFlag: askFirst
explanation: "whether the rock is composed of noticeable crystals"
remark: ,m

deducingRules: #0
changeBlock:

Associated Rules:
rules which infer crystalline -
rules which test crystalline -

igneousCheck
metamorphicCheck
sedimentaryC heck

fabric
describes: Rock

None!

type: #('fine' 'medium' 'coarse' 'none')
prompt: What sort or layering is in & ?
promptFlag: askFirst
explanation: "a classification indicating coarseness oflayering"
remark:
deducingRules: #0
changeBlock:

Associated Rules:
rules which infer fabric -
rules which test fabric -

gneissCheck
igneousCheck
metamorphicC heck
schistCheck

None!

fossiliferous
describes: Rock
type: YN
prompt: Does & contain any fossils?
promptFlag: askFirst
explanation: "whether the rock contains any fossils"
remark: ,m

deducingRules: #0
changeBlock:

Associated Rules:
rules which infer fossiliferous - None!
rules which test fossiliferous -

fossiliferousCheck

grainShape
describes: Rock
type: #('rounded' 'angular' 'stretched' 'fused')
prompt: Which best describes the grain shape for & ?
promptFlag: askFirst
explanation: "the shape of a the grains the rock is composed of"
remark: .. "
deducingRules: #0
changeBlock:

Associated Rules:
rules which infer grainShape -
rules which test grainShape -

brecciaCheck
conglomerateCheck
metaSedCheck
sedimentaryCheck
stretchedCheck
weldedCheck

grainSize
describes: Rock
type: Number

None!

prompt: How big are the grains/crystals (in mm.) of & ?
promptFlag: askFirst
explanation: "the size in millimeters ofindividual grains in the rock

(see also porphyritic)"

remark: ""
deducing Rules: #0
change Block:

Associated Rules:
rules which infer grainSize -
rules which test grainSize -

aphaniticCheck
brecciaCheck
conglomerateCheck
metaSedCheck
phaneriticCheck
sandstoneCheck
shaleCheck
siltstoneCheck

gritty
describes: Rock
type: YN
prompt: Is & gritty on the tongue?
promptFlag: askFirst

None!

explanation: "A rather odd classification used to distinguish
sandstone from siltstone. The user tests this by placing the rock against
his tongue and reporting the resulting feel"

remark:
deducingRules: #0
change Block:

Associated Rules:
rules which infer gritty -
rules which test gritty -

shaleCheck
siltstoneCheck

mine raIN arne
describes: Mineral

None!

type: #('quartz' 'plagioclase' 'potassium feldspar' 'biotite' 'hornblende'
'pyroxene' 'olivine')

prompt: What is the name of & ?
promptFlag: askFirst
explanation: "What sort of mineral this is"
remark: ''''
deducingRules: #0

changeBlock:

Associated Rules:
rules which infer mineralName -
rules which test mineralName -

phaneriticBiotite
phaneriticKSpar
phaneriticOliuine
phaneriticPlag
phaneriticPyroxene
phaneriticQuartz

name
describes: Rock
type: String
prompt: What is the name of & ?
promptFlag: nil

None!

explanation: "the scientific name for the type of rock this entity is "
remark: ""
deducingRules: #(brecciaCheck schistCheck phaneriticKSpar

phaneriticQuartz chemicalSedCheck phaneriticOlivine
conglomerateCheck shaleCheck metaSedCheck sandstoneCheck
phaneriticPyroxene phaneriticBiotitephaneriticColor siltstoneCheck
aphaniticColor phaneriticPlag weldedCheck gneissCheck)

change Block:

Associated Rules:
rules which infer name -

aphaniticColor
brecciaCheck
chemicalSedCheck
conglomerateCheck
gneiss Check
metaSedCheck
phane riticB iotite
phaneriticColor
phaneriticKSpar
phaneriticOlivine
phaneriticPlag
phaneriticPyroxene
phaneriticQuartz
sandstoneCheck
schistCheck

shaleCheck
siltstoneCheck
weldedCheck

rules which test name -
porphyriticCheck

porphyritic
describes: Rock
type: YN
prompt: Does & contain any significantly larger crystals?
promptFlag: askFirst
explanation: "whether the rock has any particularly large crystals"
remark: ""
deducingRules: #0
changeBlock:

Associated Rules:

soft

rules which infer porphyritic -
rules which test porphyritic -

porphyriticCheck

describes: Rock
type: YN

None!

prompt: Can you easily scratch & with a penny?
promptFlag: askFirst
explanation: "can the rock be scratched by a penny or soft metal

easily"
remark: 'III
deducingRules: #0
changeBlock:

Associated Rules:
rules which infer soft -
rules which test soft -

igneousCheck
metamorphicCheck

texture
describes: Rock

None!

type: # ('crystaline , 'clastic' 'chemical' 'glassy')
prompt: What is the texture of & ?
promptFlag: nil

explanation: "an internal parameter; crystaline, clastic, chemical,
glassy"

remark: ''''
deducingRules: #(sedimentaryCheck metamorphicCheck

igneousCheck)
changeBlock:

Associated Rules:
rules which infer texture -

igneousCheck
metamorphicC heck
sedimentaryC heck

rules which test texture -
chemicalSedCheck

Rules

aphaniticCheck
"if the rock is igneous and very fine grained

then it is aphanitic"
if: (class = 'igneous' & (grainSize < = 0.5»
then: [aphanitic is: true]

"Executes in the context of Rock entities"

aphaniticColor
"if the rock is aphanitic

then
if color> 50 then the rock is a basalt,
if color < 30 then the rock is a dacite
if 50> color > = 30 then the rock is andes ite "

if: aphanitic
then: [if: color> = 50

then: [name is: 'basalt' withCertainty: 0.8].
if: color < 30
then: [name is: 'dacite' withCertainty: 0.8).
if: color> = 30 & (color < 50)
then: [name is: 'andesite' withCertainty: 0.8]]

"Executes in the context of Rock entities"

brecciaCheck
"ifthe rock is sedimentary and has large angular clasts

then the rock is a breccia"
if: (class = 'sedimentary' & (grainSize > = 2) & (grainShape =

'angular'))
then: [name is: 'breccia' withCertainty: 0.8]

"Executes in the context of Rock entities"

calcareousCheck
"ifthe rock contains calcite then it is a calcareous rock,

and almost always sedimentary"
if: calcareous
then:[class is: 'sedimentary' withCertainty: 0.8.

attributes has: 'calcium carbonate component']
"Executes in the context of Rock entities"

chemicalSedCheck
"if the rock is sedimentary and chemically deposited (texture =

'chemical?
then

if it is calcareous
then rock is a limestone,
otherwise it is evaporite"

if: class = 'sedimentary'
then: [

if: (texture = 'chemical' & calcareous)
then: [name is: 'limestone' withCertainty: 0.9].
if: (texture = 'chemical' & calcareous not)
then: [name is: 'evaporite' withCertainty: 0.9]]

"Executes in the context of Rock entities"

conglomerateCheck
"if the rock is sedimentary and has large rounded clasts

then it is a conglomerate"
if: (class = 'sedimentary' & (grainSize > = 2) & (grainShape =

'rounded'))
then: [name is: 'conglomerate' withCertainty: 0.8J

"Executes in the context of Rock entities"

fossiliferousCheck
'(my rock which contains some fossils is fossiliferous,

and almost always either sedimentary or metamorphic"
if: fossiliferous

then: [class is: 'sedimentary' withCertainty: 0.4.
class is: 'metamorphic' withCertainty: 0.4.
attributes has: 'contains fossils']

"Executes in the context of Rock entities"

gneissCheck
"the rock is metamorphic,

and has either medium or coarse layering
then it is a gneiss"

if: (class = 'metamorphic' & (fabric = 'medium'l (fabric = 'coarse')))
then: [name is: 'gneiss' withCertainty: 0.8]

"Executes in the context of Rock entities"

igneousCheck
"if the rock is crystaline with no layering (fabric is 'none?

then
if the rock is soft the class of rock is sedimentary

with a chemical texture
otherwise it is an igneous rock of crystalline texture"

if: crystalline & (fabric = 'none')
then: [

if: soft
then: [class is: 'sedimentary' withCertainty: 0.8.

texture is: 'chemical']
else: [class is: 'igneous' withCertainty: 0.8.

texture is: 'crystalline')]
"Executes in the context of Rock entities"

metamorphicCheck
"if the rock is crystaline, with some sort of layering or foliation

then a soft rock is sedimentary with a chemical texture,
but a hard rock is metamorphic"

if: (crystalline & (fabric - = 'none') & (soft not))
then: [class is: 'metamorphic' withCertainty: 0.8].
if: (crystalline & (fabric -:. 'none') & (soft))
then: [class is: 'sedimenta·y' withCertainty: 0.8.

texture is: 'chemi·al']
"Executes in the context ofRo·:k entities"

metaSedCheck
"if the rock is a metamorphic rock with stretched grain

then
if the grains are larger than4mm

then the rock is probably a meta -conglomerate
if the grains are smaller than O.5mm

then the rock is probably a slate
if the grains are larger than O.5mm but smaller than 4mm

then the rock is probably a meta -sandstone"
if: (class = 'metamorphic' & (grainShape = 'stretched,))
then: [

if: (grainSize > = 4.0)
then: [name is: 'meta-conglomerate' withCertainty: 0.81.
if: (grainSize < 0.5)
then: [name is: 'slate' withCertainty: 0.8].
if: (grainSize > = 0.5 & (grainSize < 4.0»
then: [name is: 'meta- sandstone' withCertainty: 0.8}]

"Executes in the context of Rock entities"

--'-----
phaneriticBiotite

"the rock is phaneritic and biotite is present
then the rock may be either a granite or diorite

but is probably not a gabbro"
if: aphanitic not
then: [

if: (anyOf: Mineral have: [mineralName = 'biotite'])
then: [name is: 'granite' withCertainty: 0.3.

name is: 'diorite' withCertainty: 0.2.
name is: 'gabbro' withCertainty: -0.5]]

"Executes in the context of Rock entities"

phaneriticCheck
"if the rock is igneous and rather large grained

then it is phaneritic (not aphanitic) "
if: (class = 'igneous' & (grainSize > 0.5»
then: [aphanitic is: false]

"Executes in the context of Rock entities"

phaneriticColor
"if the rock is phaneritic

then
if the color> =50 then the rock is possibly a gabbro
if the color < 20 then the rock is possibly a granite
if the 20 < = color < 50 then the rock may be a diorite"

if: aphanitic not
then: [

if: color> = 50
then: [name is: 'gabbro' withCertainty: 0.4].
if: color < 20
then: [name is: 'granite' withCertainty: 0.4].
if: color> = 20 & (color < 50)
then: [name is: 'diorite' withCertainty: 0.4]]

"Executes in the context of Rock entities"

phaneriticKSpar
"ifthe rock is phaneritic

then ifpotassium feldspar is present in quantities> 15%
the rock is probably a granite or less probably a diorite

and any amount of pottasium feldspar means
that it is probably not a gabbro"

if: aphanitic not
then: [

if: (anyOf: Mineral
have: [mineralName = 'potassium feldspar' & (amount>

15)])
then: [name is: 'granite' withCertainty: 0.7J.

if: (anyOf: Mineral
have: [mineralName = 'potassium feldspar' & (amount> =

15)])
then: [name is: 'diorite' withCertainty: 0.4].

if: (anyOf: Mineral
have: [mineralName = 'potassium feldspar'])

then: [name is: 'gabbro' withCertainty: - o. 7J]
"Executes in the context of Rock entities"

phaneriticOlivine
"the rock is phaneritic and olivine is present

then the rock is probably a gabbro,
and is probably not a diorite or a granite"

if: aphanitic not
then: [

if: (anyOf: Mineral have: (mineralName = 'olivine'])
then: [name is: 'gabbro' withCertainty: 0.8.

name is: 'diorite' withCertainty: - 0.5.
name is: 'granite' with Certainty: - 0.5]]

"Executes in the context of Rock entities"

p han eriticPlag
"the rock is phaneritic and the amount ofplagoiclase is

< 30%

then the rock may be a granite
between 30 and 70%

then the rock may be a diorite
<60%

then the rock may be a gabbro"
if: aphanitic not
then: [

if: (anyOf: Mineral have: [mineraIName = 'plagioclase' &
(amoqnt < 30)])

then: [name is: 'granite' withCertainty: 0.7].

if: (anyOf: Mineral have: [mineralName = 'plagioclase' &
(amount> = 30) & (amount < 70)])

then: [name is: 'diorite' withCertainty: 0.7).

if: (anyOf: Mineral have: [mineralName = 'plagioclase' &
(amount < 60)])

then: [name is: 'gabbro' withCertainty: 0.71.

"Executes in the context of Rock entities"

phaneriticPyroxene
"ifthe rock is phaneritic

and the percentage of pyroxene > 15%
then the rock is probably a gabbro

if the percentage is < = 10%
then the rock is probably a diorite

but any amount of pyroxene means that it is probably not a
granite"

if: aphanitic not
then: [

if: (anyOf: Mineral have: [mineral Name = 'pyroxene' & (amount
> 15)])

then: [name is: 'gabbro' withCertainty: 0.81.
if: (anyOf: Mineral have: [mineral Name = 'pyroxene' & (amount

< = 10)])
then: [name is: 'diorite' withCertainty: 0.5].
if: (anyOf: Mineral have: [mineralName = 'pyroxene'])
then: [name is: 'granite' withCertainty: -0.51.1

"Executes in the context of Rock entities"

phaneriticQuartz

"ifthe rock is phaneritic
then if the percentage of quartz is > 10%

then the rock is possibly a granite or diorite
but if any quartz at all is present then it is probably not a gabbro"

if: aphanitic not
then: [

if: (anyOf: Mineral have: [mineralName = 'quartz' & (amount
> = 10)])

then: [name is: 'granite' withCertainty: 0.5.
name is: 'diorite' withCertainty: 0.5].

if: (anyOf: Mineral have: [mineralName = 'quartz'])
then: [name is: 'gabbro' withCertainty: - 0.5]]

"Executes in the context of Rock entities"

porphyriticCheck
"ifthe rock is igneous and has some large crystals,

then it is a porphyritic rock"
if: (class = 'igneous')
then: [

if: name isKnown & porphyritic
then: [attrinutes includes: 'porphyritic']]

"Executes in the context of Rock entities"

sandstoneCheck
"ifthe rock is sedimentary, and only somewhat small grained,

then it is a sandstone"
if: (class = 'sedimentary' & (grainSize < 2) & (grainSize > 0.1))
then: [name is: 'sandstone' withCertainty: 0.8]

"Executes in the context of Rock entities"

§chistCheck
"ifthe rock is metamorphic and finely layered

then it is a schist"
if: (class = 'metamorphic' & (fabric = 'fine'))
then: [name is: 'schist' withCertainty: 0.8]

"Executes in the context of Rock entities"

sedimentaryCheck
"ifthe rock is either

1. not crystalline or
2. crstyalline with rounded grains

then the rock is sedimentary and clastic "
if: (crystalline not)
then: [class is: 'sedimentary' withCertainty: 0.8.

texture is: 'clastic'].
if: (crystalline & (grainShape = 'rounded'))
then: [class is: 'sedimentary' withCertainty: 0.9.

texture is: 'clastic']
"Executes in the context of Rock entities"

shaleCheck
"ifthe rock is sedimentary, small grained, and not gritty

then it is a shale"
if: (class = 'sedimentary' & (grainSize < = 0.1»
then: [

if: gritty not
then: [name is: 'shale' withCertainty: 0.8])

"Executes in the context of Rock entities"

siltstoneCheck
'any rock that is sedimentary, small grained, and gritty to the tongue

is a siltstone"
if: (class = 'sedimentary' & (grainSize < = 0.1»
then: [

if: gritty
then: [name is: 'siltstone' withCertainty: O.S]}

"Executes in the context of Rock entities"

stretchedCheck
"the rock appears sedimentary but has stretched grains

then it is not sedimentary but is instead metamorphic"
if: (class = 'sedimentary' & (grainShape = 'stretched'»
then: [class is: 'sedimentary' withCertainty: -0.9.

class is: 'metamorphic' withCertainty: 0.9.]
"Executes in the context of Rock entities"

weldedCheck
"ifthe rock appears sedimentary but has fused grains

then it is not sedimentary but is instead igneous
and is probably a welded tuff"

if: (class = 'sedimentary' & (grainShape = 'fused'))
then: [class is: 'sedimentary' withCertainty: - 0.9.

class is: 'igneous' withCertainty: 0.95.
name is: 'welded tuff' withCertainty: 0.8]

"Executes in the context of Rock entities"

Rule Metrics

Total Number of Entity Types: 2
Total Number of Rules: 27
An Average Rule Tests 2.48148 Parameters
An Average Rules Makes Conclusions About 1.11111 Parameters
Total Number of Parameter Definitions: 17
2 parameters with 1 associated rules, 12%
5 parameters with 2 associated rules, 29%
1 parameters with 3 associated rules, 6%
3 parameters with 4 associated rules, 18%
2 parameters with 6 associated rules, 12%
1 parameters with 8 associated rules, 6%
1 parameters with 10 associated rules, 6%
1 parameters with 19 associated rules, 6%
1 parameters with 21 associated rules, 6%

[ndex

lddPrompt: 3.1.1, 3.1.1.2, 9.2, 10.4.2.1.3
lllBases: 10.3
1llSubEntities: 10.4.2.1.1
lllSubEntitiesOIType: 10.4.2.1.1
allSubEntitiesWithParameter: 10.4.2.1.1
alternative: 4.4.1, 4.4.2, 8.5, 9.3, 9.4, 10.4.5
annotation Stream: 10.4.8
assumePrompt: 3.1.1, 3.1.1.2, 9.2, 10.4.2.1.3
backward chaining: 4.2.3.1.2.2, 4.2.3.1.2.3, 4.3, 8.2, 10.4.1, 10.4.1.1,
10.4.1.2
bestHypothesis: 10.4.2.2
BNF: 4.4
certainty: 1.1, 3.2.1, 3.2.2.2.3, 4.2.3.1.2.1, 4.4.2, 4.4.3, 4.4.4, 4.5.1,
4.5.2, 4.5.3, 6.1.4.3, 8.3, 9.3, 10.4.2.2, 10.4.2.2.1, 10.4.2.3, 10.4.9,
10.5, 10.5.1, 10.5.2
changeBlock: 3.2.2, 3.2.2.7, 9.2, 9.5, 10.4.2.2.2
consultation: 3.1.1.2, 3.2.1, 5.4.1, 5.4.2, 8.1, 8.2, 8.3, 9.4, 10.4.6,
10.4.9
context: 3, 4.2.3.2, 4.4.2, 4.5.2, 10.4.2.1, 10.4.2.1.4
createPrompt: 3.1.1, 3.1.1.2, 9.2, 10.4.2.1.3
deducing rules: 3.2.2.6
deductionRules: 10.4.2.2.2
defaultName: 3.1.1, 3.1.1.2, 9.2
definitely Is: 4.4.2, 4.4.3
definitelyIsNot: 4.4.2, 4.4.3
describes: 2, 3.2.2, 4.2.3.1, 9.2, 9.5
edit: 1.2, 3.1.1.3, 3.2.2.6, 4.1, 4.2.2, 5.3, 6.1.1, 6.1.2, 6.1.3, 6.1.4.1,
6.1.4.2, 8.4, 9.2, 10.3
Editor: 3.1.1, 3.2.2, 5.3, 6.1, 6.1.1, 9.2
entity: 2, 3, 3.1, 3.1.1, 3.1.1.1, 3.1.1.2, 3.1.1.3, 3.1.1.4, 3.2, 3.2.2.2.1,
3.2.2.2.4, 3.2.2.3.1, 3.3, 4.2, 4.2.3.2, 4.3, 4.4.1, 4.4.2, 4.5.2, 5.6, 6.1.1,
6.1.2, 6.1.3, 8.3, 8.5, 8.6, 9.2, 9.5, 10.4.1.1, 10.4.2.1, 10.4.2.1.1,
10.4.2.1.3, 10.4.2.1.4, 10.4.2.2, 10.4.2.2.2, 10.4.3, 10.4.4, 10.4.9
entity tree: 3.1, 3.1.1.1, 3.3, 4.2, 4.2.3.2, 9.2, 10.4.2.1.1, 10.4.2.1.3,
10.4.2.1.4
entity type: 2, 3,3.1,3.1.1,3.1.1.1,3.1.1.3,3.2,3.3,4.2.3.2,4.4.2,
5.6, 6.1.1, 6.1.2, 6.1.3, 9.2, 10.4.2.2.2
entityType: 4.4.2, 10.4.2.2.2, 10.4.9
enumerated: 3.2.2.2.5

escape: 4.4.4
example: 1.3, 3.1, 3.1.1, 3.1.1.1, 3.2.2.2.1, 3.2.2.2.2, 3.2.2.2.3,
3.2.2.2.4, 3.2.2.2.5, 3.2.2.3.1, 3.2.2.6, 3.3, 4.2.3.1.1, 4.2.3.1.2.2,
4.2.3.1.2.3, 4.4, 4.4.1, 4.5, 4.5.2, 4.5.3, 5.2, 8.5, 9.1, 9.2, 10.3,
10.4.1.2, 10.4.2.2.1, 10.4.3, 10.4.4, 10.4.6, 10.4.9
execute: 3.1, 3.2.2.7, 3.3, 4.2.3.1, 4.2.3.1.2.3, 4.3, 4.5.2, 4.5.3, 5.4,
8.2, 8.6, 9.5, 10.4.1, 10.4.1.2, 10.4.2.1.4, 10.4.2.2.1, 10.4.2.2.2
explain: 1.1, 3.2.2, 3.2.2.2.3, 3.2.2.4, 3.3, 4.2, 4.2.2, 4.2.3.1.2, 4.4,
4.4.2, 8.3, 8.4, 8.5, 10.3, 10.4.2, 10.4.2.2.2, 10.4.2.3, 10.4.4
fact base: 1.1, 2, 3.2.1, 4.4.4, 8.2, 10.4.1.1, 10.4.2, 10.4.2.1,
10.4.2.1.4, 10.4.3, 10.4.9
fileInBase: 10.3
find Out: 10.4.1.1, 10.4.9
forward chaining: 4.2.2, 8.2, 10.4.1.2
goal: 4.2.3.1.2, 4.3, 5.4, 5.4.1, 5.4.2, 10.4.8
hypotheses: 4.4.3, 8.5, 10.4.2.2.1, 10.4.2.3, 10.4.5
hypothesisType: 10.5
if: 1.1, 1.2, 3, 3.1, 3.1.1, 3.1.1.1, 3.1.1.2, 3.1.1.4, 3.2, 3.2.1, 3.2.2.2,
3.2.2.2.1, 3.2.2.2.3, 3.2.2.2.4, 3.2.2.2.5, 3.2.2.3.2, 3.2.2.4, 3.2.2.6,
3.2.2.7, 3.3, 4.2.2, 4.2.3.1, 4.2.3.1.1, 4.2.3.1.2.1, 4.2.3.1.2.2, 4.2.3.1.2.3,
4.2.3.1.2.4, 4.2.3.2, 4.3, 4.4, 4.4.2, 4.4.3, 4.4.4, 4.5.1, 4.5.2, 4.5.3,
5.4.1, 6.1, 6.1.4.2, 6.1.4.3, 8.2, 8.3, 9.3, 9.5, 10.1, 10.2, 10.4.1,
10.4.1.2, 10.4.2, 10.4.2.1.1, 10.4.2.2.2, 10.4.5, 10.4.8, 10.4.9, 10.5,
10.5.1
if All: 4.2.3.2, 4.4.2, 6.1.4.2
if Any: 4.2.3.2, 4.4.2, 4.5.2, 6.1.4.2, 9.5
ifNone: 4.2.3.2, 4.4.2, 6.1.4.2
initEntities: 10.4.1.1, 10.4.3, 10.4.9
initEntityTypes: 10.4.1.1, 10.4.3, 10.4.9
interactWith: 10.3
interrogator: 10.4.7
isEqual: 4.4.2, 4.4.3
isN otDefinitely: 4.4.2, 4.4.3
isNotDefinitelyNot: 4.4.2, 4.4.3
isNotEqualTo: 4.4.2, 4.4.3
isNotKnownToBe: 4.4.2, 4.4.3
knowledge base: 1.1, 1.3, 2, 3, 3.1.1.3, 3.1.1.4, 3.2.1, 3.2.2.2.1,
3.2.2.2.2, 3.2.2.2.3, 3.2.2.2.4, 3.2.2.2.5, 3.2.2.3, 3.2.2.5, 4.1, 4.2.2,
4.2.3.1.1, 4.2.3.1.2.1, 4.4.1, 4.4.3, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 6.1,
6.1.1, 6.1.2, 6.1.3, 6.1.4.1, 6.1.4.3, 8.1, 8.2, 8.5, 9, 9.1, 9.2, 9.3, 9.4,
9.5, 10.3, 10.4, 10.4.1.1, 10.4.1.2, 10.4.2, 10.4.2.2.1, 10.4.2.2.2, 10.4.3,
10.4.4, 10.4.6, 10.4.7, 10.4.8, 10.4.9, 10.5
knowledgeBase: 10.4.2.2.2
KnowledgeBases: 10.3, 10.4.1.2, 10.4.2.2.1, 10.4.3, 10.4.6, 10.4.9

Listener: 3.2.2.4, 5.4, 5.4.1, 8.1, 8.6, 9.4, 10.4.4, 10.4.5, 10.4.6
listing: 1.3, 5.6
lunch: 1.1, 9.1, 9.2, 9.5
main Parameters: 3.1.1, 3.1.1.4, 9.2
Manager: 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 9.2, 9.4, 10.3
mightBe: 3.2.2.6, 4.4.2, 4.4.3
mightNotBe: 4.4.2, 4.4.3
MV: 3.2.2, 3.2.2.2, 3.2.2.2.2, 10.4.2.2.2
nested: 4.2.3.1.2.2, 4.2.3.1.2.3, 4.5.3
number: 2, 3.1.1, 3.1.1.2, 3.2.1, 3.2.2.2.3, 3.2.2.2.5, 3.2.2.7,
4.2.3.1.2.2, 4.4, 4.4.1, 4.4.2, 4.5, 9.1, 9.2, 10.3, 10.4, 10.4.1.2, 10.4.2,
10.4.2.1.1, 10.4.2.2.2, 10.4.6, 10.5
outputStream: 10.4.6
parameter: 3.1, 3.1.1, 3.1.1.3, 3.1.1.4, 3.2, 3.2.1, 3.2.2, 3.2.2.1,
3.2.2.2, 3.2.2.2.1, 3.2.2.2.2, 3.2.2.2.3, 3.2.2.2.4, 3.2.2.2.5, 3.2.2.3,
3.2.2.3.1, 3.2.2.3.2, 3.2.2.4, 8.2.2.5, 3.2.2.6, 3.2.2.7, 3.3, 4.2.3.1.1,
4.2.3.1.2.1, 4.2.3.1.2.2, 4.2.3.1.2.3, 4.2.3.1.2.4, 4.3, 4.4.2, 4.4.3, 4.4.4,
4.5.1, 4.5.2, 5.4.1, 5.6, 6.1.1, 6.1.2, 6.1.3, 6.1.4.3, 8.2, 8.3, 8.4, 8.5,
9.2, 9.3, 9.5, 10.4, 10.4.1.1, 10.4.1.2, 10.4.2.1, 10.4.2.1.1, 10.4.2.1.2,
10.4.2.2, 10.4.2.2.1, 10.4.2.2.2, 10.4.4, 10.4.5, 10.4.9, 10.5.1, 10.5.2
parameter definition: 3.1.1.3, 3.2.2, 3.2.2.2, 3.2.2.3, 3.2.2.3.1,
3.2.2.6, 3.2.2.7, 4.3, 4.4.2, 5.6, 6.1.2, 6.1.3, 8.4, 9.2, 10.4.1.1,
10.4.2.2.2
parameterName: 10.4.2.1.2, 10.4.2.2, 10.4.2.2.1, 10.4.2.2.2
parameterNamed: 10.4.2.1.2, 10.4.2.2, 10.4.2.2.1
primaryEntity: 10.4.2.1, 10.4.2.2.1
prompt: 3.1.1.2, 3.2.2, 3.2.2.3, 3.2.2.3.1, 5.2, 5.4.2, 9.2, 9.5, 10.3,
10.4.2.1.3, 10.4.2.2.2
promptFlag: 3.2.2, 3.2.2.3, 9.2, 9.5, 10.4.2.2.2
reason: 1.1, 3, 3.1, 3.2.1, 3.2.2.2.3, 3.2.2.3.2, 3.3, 4.2.1, 4.2.3.1.2.4,
4.2.3.2, 4.4.3, 10.4.2.1, 10.4.2.2, 10.4.2.3, 10.4.4
referringRules: 10.4.2.2.2
remark: 3.2.2, 9.2, 9.5, 10.4.2.2.2
remove: 3.2.2.7, 5.1, 5.2, 6.1.1, 6.1.2, 6.1.3, 10.3
Ft()JC: 1.3, 3.1.1, 3.1.1.2, 3.2.2.2.1, 3.2.2.2.2, 3.2.2.2.3, 3.2.2.2.4,
3.2.2.2.5, 4.2.3.1.1, 4.4.1, 5.2, 5.6, 8.3, 8.5, 10.3, 10.4.2.2.1, 10.4.6,
10.4.9
rule: 1.1, 2, 3, 3.1, 3.1.1.2, 3.2, 3.2.1, 3.2.2.2.4, 3.2.2.6, 3.3, 4.1, 4.2,
4.2.1, 4.2.2, 4.2.3.1.2, 4.2.3.1.2.2, 4.2.3.1.2.3, 4.2.3.1.2.4, 4.2.3.2, 4.3,
4.4, 4.4.2, 4.4.4, 4.5, 4.5.1, 4.5.2, 4.5.3, 5.4, 5.4.1, 5.4.2, 5.6, 6.1.2,
6.1.3, 6.1.4.1, 6.1.4.2, 6.1.4.3, 8.2, 9.1, 9.2, 9.3, 9.5, 10.4.1, 10.4.1.2,
10.4.2.1.4, 10.4.2.2.1, 10.4.2.2.2, 10.4.2.3, 10.4.8, 10.4.9, 10.5.2
rule base: 2, 4.1
setParamsFromDict: 10.4.9

Smalltalk: 1.2, 3.2.2.2.3, 3.2.2.7, 4.1, 4.2.1, 4.2.2, 4.4.4, 5.2, 6.1.4.1,
6.1.4.3, 8.6, 10.1, 10.2, 10.4.6, 10.4.7
statement: 4.1, 4.2.1, 4.2.2, 4.2.3.1, 4.2.3.1.1, 4.2.3.1.2, 4.2.3.1.2.1,
4.2.3.1.2.2, 4.2.3.2, 4.4.2, 4.5.3, 6.1.4.2, 6.1.4.3, 8.3, 8.5
string: 3.2.2.2.4, 3.2.2.2.5, 3.2.2.3.1, 4.2.2, 4.2.3.1.2.1, 4.4.1, 4.4.2,
6.1.4.2, 8.5, 9.2, 10.3, 10.4.1.2, 10.4.2.2.2, 10.4.4, 10.4.5
superEntity: 10.4.2.1.4
trace: 5.4, 5.4.2, 10.4.8
type: 2, 3, 3.1, 3.1.1, 3.1.1.1, 3.1.1.2, 3.1.1.3, 3.2, 3.2.2, 3.2.2.1,
3.2.2.2, 3.2.2.2.5, 3.3, 4.2.3.1.1, 4.2.3.1.2.1, 4.2.3.2, 4.4, 4.4.2, 4.5.2,
5.6, 6.1.1, 6.1.2, 6.1.3, 6.1.4.2, 6.1.4.3, 8.2, 8.3, 8.5, 9.2, 9.5, 10.2,
10.4.2.1.1, 10.4.2.1.3, 10.4.2.2.2, 10.4.7, 10.4.8
typeAbove: 3.1.1, 3.1.1.1, 9.2, 10.4.2.1.3
typesBelow: 10.4.2.1.3
watch: 5.4, 5.4.1, 5.4.2
working memory: 2, 8.2
YN~ 3.2.2, 3.2.2.2, 3.2.2.2.1, 4.2.3.1.1, 4.2.3.1.2.2, 10.4.2.2.2

Xerox Special Information Systems
Vista Laboratory
250 North Halstead Street
P.O. Box 5608
Pasadena, CA 9 11 07-0608

Copyright lC> 1985. 1986. 1987 by Xerox Corporation. All rights reserved.
XEROX® and the Xerox product names identified herein are trademarks of XEROX CORPORATION.

