
Documentation User's Guide, Overview,
and Master Index

MAINSAIL~ Documentation User's Guide

MAINSAIL Overview

Master Index

24 March 1989

Copyright (c) 1981,1983,1984,1985,1986,1987,1989, by XIDAK, Inc., Menlo Park, California.

The software described herein is the property of XIDAK. Inc., with all rights reserved, and is a confidential trade secret
of XIDAK. The software described herein may be used only under license from XIDAK.

MAlNSAIL is a registered trademark ofXIDAK, Inc. MAlNDEBUG, MAlNEDIT, MAINMEDIA. MAlNPM,
Structure Blaster, roB, and SQUT are trademarks of XIDAK, Inc.

CONCENTRIX is a trademark of Alliant Computer Systems Corporation.

Amdahl, Universal Time-Sharing System, and UTS are trademarks of Amdahl Corporation.

Aegis, Apollo, DOMAIN, GMR, and GPR are trademarks of Apollo Computer Inc.

UNIX and UNIX System V are trademarks of AT&T.

DASHER, DGIUX. ECLIPSE, ECLIPSE MV /4000, ECUPSE MV /8000, ECLIPSE MV /10000, and ECLIPSE
MV /20000 are trademarks of Data General Corporation.

DEC, PDP, TOPS-10, TOPS-20, V AX-H. V AX. MicroV AX. MicroVMS, ULTRIX-32. and V AX/VMS are
trademarks of Digital Equipment Corporation.

EMBOS and ELXSI System 6400 are trademarks of ELXSI, Inc.

The KERMIT File Transfer Protocol was named after the star of THE MUPPET SHOW television series. The name is
used by permission of Henson Associates, Inc.

HP-UX and Vectra are trademarks of Hewlett-Packard Company.

Intel is a trademark of Intel Corporation.

CLIPPER, CLIX, Intergraph, InterPro 32, and InterPro 32C are trademarks of Intergraph Corporation.

System/370, VM/SP CMS, and CMS are trademarks of International Business Machines Corporation.

MC68000, M68000, MC68020, and MC68881 are trademarks of Motorola Semiconductor Products Inc.

ROS and Ridge 32 are trademarks of Ridge Computers.

SPARC, Sun Microsystems, Sun Workstation, and the combination of Sun with a numeric suffix are trademarks of Sun
Microsystems, Inc.

WINrrcp is a trademark of The Wollongong Group, Inc.

WY·50, WY-60, WY-75, and WY-lOO are trademarks ofWyse Technology.

Some XIDAK documentation is published in the typefaces "Tunes" and "Helvetica", used by permission of Apple
Computer, Inc., under its license with the Allied Corporation. Helvetica and Times are trademarks of the Allied
Corporation, valid under applicable law.

The use herein of any of the above trademarks does not create any right, title, or interest in or to the trademarks.

-ii-

Table or Contents

1. Documentation Overview
1.1. Introductory Documents and Language Documentation
1.2. MAINSAil.. Environment Documentation. . . .
1.3. System-Specific Documentation.
1.4. Additional Documents Available from XIDAK
1.5. Online Documentation 0

1.6. Recommended Reading Order '. . .

I. MAINSAIL(R) Overview

2. Introduction . . 0 • •

II. The MAINSAIL Language

3. Introduction to the MAINSAIL Language.

4. Basic Concepts
4.1. Character Set
4.2. Comments
4.3. Compiletime Evaluation
4.4. Low-Level Storage Manipulation
4.5. Log and Command Files. .

5. Data Types.
5.1. Boolean .
5.2. Integer and Long Integer.
5.3. Real and Long Real.
5.4. Bits and Long Bits
5.5. String
5.6. Pointer.
5.7. Address
5.8. Charadr
5.9. Conversion .

6. Expressions
6.1. Constants.
6.2. Variables. . .
6.3. Procedure Expression .

- iii -

.

1
1
1
2
2
2
2

7

8

9

10

12
12
12
12
12
12

13
13
13
13
13
13
14
14
14
15

16
16
16
16

6.4. Substrings
6.5. If Expression
6.6. Assignment Expression .
6.7. Universal Operations ...
6.8. Comparison Operations .
6.9. Arithmetic Operations .
6.10. Bitwise Operations .
6.11. String Operations. . . .
6.12. Operator Precedence .
6.13. Dotted Operators .

7. Statements.
7.1. Assignment Statement
7.2. Expression Statement.
7.3. Procedure Statement .
7.4. Return Statement.
7.5. Begin Statement.
7.6. If Statement.
7.7. Case Statement
7.8. Iterative Statement
7.9. Done Statement . . .
7.10. Continue Statement .
7.11. Empty Statement

8. Declarations
8.1. Scope of Identifiers..
8.2. Simple Variable Declarations.
8.3. "OWN" Qualifier

9. Arrays
9.1. Array Declarations. .
9.2. Array Allocation. . .
9.3. Array Initialization. .
9.4. Accessing an Array Element .
9.5. Array Variables . . .

10. Classes and Records .
10.1. Records.
10.2. Classes.
10.3. Record Allocation and Disposal
10.4. Classified Pointers.
10.5. Unclassified Pointers.
10.6. Accessing Fields of Records. .
10.7. Explicit Classes in Field Variables .
10.8. Prefix Classes

- iv-

17
17
17
17
18
18
18
19
19
20

21
21
21
21
21
21
22
22
22
23
23
23

24
24
24
24

25
25
25
26
26
26

27
27
27
27
28
28
28
28
28

11. Procedures
11.1. Procedure Declarations. .
11.2. Procedure Calls. . .
11.3. Procedure Parameters .
11.4. Optional Arguments. . .
11.5. Repeatable Arguments. .
11.6. Forward Procedures. . .
11.7. Compiletime Libraries . .
11.8. Inline Procedures . .
11.9. Generic-Procedures .

12. Modules
12.1. Module Allocation and Communication
12.2. Module Syntax.
12.3. Combining Module Declarations in One File ..
12.4. Objmod Libraries. .

13. Macros
13.1. "DEFINE". . .
13.2. Macro Constants . .
13.3. Interactive Define and Redefine
13.4. Macro Calls

14. Compiler Directives and Conditional Compilation. .
14.1. "MESSAGE"
14.2. "SOURCEFILE"
14.3. Checking, Arithmetic Checking, and Optimization.
14.4. "!FC", "THENC", "$EFC", "ELSEC", and "ENDC"
14.5. "DCL"
14.6. "DSP"
14.7. "$TYPEOF", "$CLASSOF", "$ISCONSTANT" ..
14.8. Scanning Directives
14.9. "NEEDBODY" and "NEEDANYBODIES"
14.10. "$DIRECTIVE" Directives.

15. Intmods. .

16. Exceptions
16.1. Handle Statement. .
16.2. Handling Exceptions.
16.3. Propagating Exceptions
16.4. Information about the Current Exception.
16.5. Nested Exceptions.

-v-

30
30
30
30
31
31
31
31
32
32

34
35
36
37
37

38
38
39
39
39

40
40
40
40
41
41
41
41
41
42
42

43

44
44
45
45
46
46

17. Coroutines
17.1. Coroutine Implementation
17.2. Coroutines and Exceptions . . . •

18. Files
18.1. File I/O.
18.2. Text Files .
18.3. TerminalI/O. .
18.4. Memory Files and Data Sinks

19. Areas ..••....
19.1. Advantages of Areas.
19.2. Area Facilities
19.3. Area Caveats

20. System Procedures, Macros, and Variables.
20.1. System Procedures, Variables, and Macros Summary ..

21. Sample MAINSAil... Code . 0 • • • • 0 • • • • • • •

III. The MAINSAil... Environment. .

22. The MAINSAil... Compiler . . .
22.1. Code Generators
22.2. Disassemblers • . 0 • • •

22.3. Foreign Language Interface.

23. MAINDEBUG, the MAINSAIL Debugger. .

24. MAINEDIT, a Portable Text Editor

25. MAINPM, the MAINSAIL Performance Monitor . .

26. The MAINSAil... Structure Blaster

27. MAINSAIL STREAMS

IV. Master Index

28. Master Index

- vi-

47
47
48

50
50
50
51
51

52
52
52
52

54
54

67

73

74
74
74
74

79

82

92

94

96

97

98

17-1.
21-1.
21-2.
25-1.
25-2.

List of Examples

Generator/Processor Coroutines
HSHMOD Declarations . . .
HSHMOD Source Text. . . .
Timing and Statement Counts Table. .
Source Text with Statement Counts .

List of Tables

1.6-1. Reading Order for New MAINSAIL Programmers
1.6-2. Introductory MAINSAIL Documents and Language Documentation
1.6-3. Documentation on the MAINSAIL Environment (Combined in the "MAINSAIL

Tools User's Guides", File Name "toolu.doc")
1.6-4. System-Dependent MAINSAIL Documentation (Combined in the "MAINSAIL

System-Specific User's Guides", File Name "osu.doc"). . .
6.12-1. Operator Precedence.
20.1-1. System Procedures, Macros, and Variables Summary .
22-1. MAINSAIL Compiler Subcommands
22.1-1. Computer Systems on Which MAINSAIL Is Supported
23-1. Debugging Command Summary
24-1. Available Display Modules
26-1. Selected Structure Blaster Procedure Headers .

- vii-

48
67
68
92
93

3
4

5

6
19
54
75
78
80
83
95

- viii-

1. Documentation Overview

XIDAK, Inc., has organized the documentation on its MAINSAIL language and MAINSAIL
programming environment into a series of manuals and guides. The present guide is intended
both for the new user of MAINSAIL who wishes to learn how to use MAINSAIL and wants to
know what to read first, and also for the experienced MAINSAil... user who needs a specific
piece of information and wishes to know what manual to consult.

A summary of the MAINSAIL documentation is provided in Tables 1.6-2, 1.6-3, and 1.6-4.

1.1. Introductory Documents and Language Documentation

The documents listed in Table 1.6-2 are designed to provide information to the new user of
MAINSAil... and to serve as references on the MAINSAIL language.

If you do not know anything about MAINSAIL, but are familiar with other programming
languages and systems, you should consult the "MAINSAIL Overview". It provides a high
level view of the facilities available from MAINSAIL.

If you have access to a computer that runs MAINSAIL and wish to begin writing MAINSAIL
code right away, you should follow the examples in the "MAINSAIL Tutorial", The first part
of the "MAINSAIL Tutorial" assumes a minimum of previous programming experience,
although it may be of interest to experienced programmers as well. The second part of the
"MAINSAIL Tutorial" provides details on MAINSAIL's implementation and suggestions for
making programs written in MAINSAIL as maintainable, efficient, and portable as possible.

The "MAINSAIL Language Manual" is a thorough but concise reference on the syntax and
semantics of the MAINSAIL language. It is intended for the experienced programmer who
wishes to know the precise definition of a feature of MAINSAIL. If you are just learning about
MAINSAIL, you will find the "MAINSAil... Language Manual" makes more sense after you
have read the "MAINSAIL Overview" or the "MAINSAIL Tutorial".

1.2. MAINSAIL Environment Documentation

The guides in Table 1.6-3 describe various programs written in MAINSAIL that constitute the
MAINSAIL programming environment (often called "the MAINSAIL environment" or "the
MAINSAIL system"). These are utilities that are useful in writing MAINSAIL programs;
some of them (e.g., MAINEDIT, the text editor) may be used to accomplish tasks unrelated to
MAINSAIL programming.

- 1 -

1.3. System-Specific Documentation

The guides listed in Table 1.6-4 provide information specific to the use of MAINSAIL on
particular operating systems. They discuss those details of MAINSAIL that depend on the host
system. Since MAINSAIL is designed for portability, these guides are small. They tell how to
invoke MAINSAIL on the given operating system, and explain system-dependent features of
MAINSAIL, such as MAINSAIL's interaction with the file system and MAINSAIL's handling
of system-dependent exceptions.

1.4. Additional Documents Available from XIDAK

On most releases of MAINSAIL, XIDAK. issues a release note that describes any changes since
the previous release note.

If you are considering the purchase of a MAINSAIL system or any of its components, you
should request a copy of the most recent "XIDAK. Product Catalog" from XIDAK.. From time
to time, XIDAK also issues product data sheets and other information of interest to potential
purchasers of MAINSAIL. These do not contain any technical information that is not also
available in the standard documents listed in this guide.

1.5. Online Documentation

With each standard MAINSAIL system, XIDAK. includes current versions of its documentation
on the distribution medium. The file names under which the documents appear are listed in
quotes in Tables l.6-2, l.6-3, and l.6-4.

1.6. Recommended Reading Order

If you are using MAINSAIL for the first time, you should read the documents in Table 1.6-1 in
the order shown.

The "MAINSAIL Overview" describes the MAINSAIL language and MAINSAIL environment
to the new user. The operating-system-specific user's guide describes how to invoke
MAINSAIL on your system. You need to know how to invoke MAINSAIL before starting the
tutorial. The first part of the tutorial guides you step-by-step through the writing of some
simple MAINSAIL programs and the use of a number of the MAINSAIL utilities.

MAINEDIT, the MAINSAIL compiler, MAINEX, CONF, MODLIB, and MAINDEBUG are
among the most important components of the MAINSAIL environment. The tutorial provides
an introduction to each of these, but more information is found in the appropriate user's guides.

-2-

1. MAINSAIL Overview (skim)

2. Operating-system-specific user's
guide for your system (skim)

3. MAINEDIT User's Guide (if you are
using MAINEDIT)

4. MAINSAIL Tutorial (first half)

5. MAINSAIL Compiler User's Guide, first
two chapters

6. MAINSAIL Utilities User's Guide,
chapters on MAINEX, CONF, and MODLIB

7. MAINDEBUG User's Guide (if you are
using MAINDEBUG)

9. MAINSAIL Tutorial (second half)

Table 1.6-1. Reading Order for New MAINSAIL Programmers

The second part of the tutorial contains suggestions for the construction of efficient, portable
MAINSAIL programs and for sophisticated use of the tools in the MAINSAIL environment. It
is of interest to the programmer who has mastered the basics of the MAINSAIL language.

-3-

Title ("File Name")
MAINSAIL Documentation
User's Guide, MAINSAIL
Overview, and Master Index
("ms lov . doc")

MAINSAIL Tutorial
("mtut .doc")

MAINSAIL Language Manual
("mlanm. doc")

Function
Gives an overview of the
other documents. Summary
of the main features of the
MAINSAIL language and
programming environment,
intended as an overview for
those evaluating MAINSAIL or
using it for the first time.
Master index to all MAINSAIL
documents.

Step-by-step instructions for
and examples of writing
MAINSAIL programs, and tips
for writing good MAINSAIL
code.

Comprehensive reference on
the MAINSAIL language.

Table 1.6-2. Introductory MAINSAIL Documents and Language Documentation

-4-

Title
MAINSAIL Compiler User's
Guide

MAINDEBUG User's Guide

MAINEDIT User's Guide

MAINKERMIT User's Guide

MAINPM User's Guide

MAINSAIL Structure Blaster
User's Guide

MAINSAIL STREAMS User's
Guide

MAINSAIL Utilities User's
Guide

Function
Describes the MAINSAIL
compiler and related
utilities, including the
MAINSAIL disassemblers.

Describes the MAINSAIL
portable source-level
debugger.

Describes the MAINSAIL
full-screen text editor.

Describes a MAINSAIL
implementation of the KERMIT
file transfer program

Describes the MAINSAIL
performance monitor, which
allows the programmer to
determine where the
inefficiencies in a program.
lie

Describes the routines used
for fast, simple input/output
of MAINSAIL data structures

Describes STREAMS, a package
for portable distributed
applications

Describes miscellaneous (but
important) components of the
MAINSAIL environment

Table 1.6-3. Documentation on the MAINSAIL Environment (Combined in the "MAINSAIL
Tools User's Guides", File Name "toolu.doc")

- 5-

The following operating-system-specific MAINSAIL user's
guides are available as of March, 1989:

Title
Aegis MAINSAIL User's Guide

VM/SP eMS MAINSAIL User's Guide

UNIX MAINSAIL User's Guide

VAX/VMS MAINSAIL User's Guide

Table 1.6-4. System~Dependent MAINSAIL Documentation (Combined in the "MAINSAIL
System-Specific User's Guides", File Name "osu.doc")

-6-

MAINSAIL ® Overview

24 March 1989

2. Introduction

The "MAINSAll.. Overview" summarizes the features of the MAINSAll.. language; the
MAINSAll.. compiler; MAINDEBUG, the MAINSAll.. debugger; MAINEDIT, the
MAINSAll.. text editor; MAINPM, the MAINSAll.. performance monitor; the MAINSAll..
Structure Blaster; and MAINSAIL STREAMS. These components, together with a number of
utility programs, make up the MAINSAll.. system, a powerful, highly portable programming
environment supported and marketed by XIDAK, Inc. .

The MAINSAIL programming environment provides a complete set of tools to support the
entire software development cycle. Since these tools are themselves written in MAINSAll..,
they operate identically on every computing system on which MAINSAll.. is supported.
Programmers, once trained to use these tools, can move their program development from one
computing system to another without having to learn new tools each time they move.

MAINSAll.. is a sophisticated language primarily intended for large projects. Its flexible
structure encourages a high-level, object-oriented programming style. Large MAINSAIL
software systems are easier to write and maintain than systems written in other commercially
available programming languages, both because of the variety of tools provided to support
large-system development and because of the inherent clarity and power of the language itself.

The "MAINSAIL Overview" is recommended reading for new users of MAINSAIL and for
potential purchasers of XIDAK products. The MAINSAll.. language is described in detail in
the tlMAINSAll.. Language Manual~' and the "MAINSAIL Tutorial"; other XIDAK products
have their own user's guides. Consult the "MAINSAll.. Documentation User's Guide and
Master Index" or a current "XIDAK Product Catalog" for more information on XIDAK's
documentation products.

The features of the language and other components of the system are not described
exhaustively in this document; only the most commonly used facilities have been covered.

-8-

The MAINSAIL Language

3. Introduction to the MAINSAIL Language

MAINSAll... was originally developed at Stanford University under the auspices of the SUNlEX
Computer Project by the founders of XIDAK, Inc. It is an ALGOL-like programming language
derived from the SAll... programming language. SAIL was developed at the Artificial
Intelligence Laboratory of Stanford University. MAINSAIL retains some of the most popular
features of SAIL, such as variable-length strings and garbage collection, but eliminates all the
machine-dependent characteristics of SAIL. .

MAINSAIL was specifically designed to provide true source-level portability. The entire
MAINSAll... compiler and the bulk of the runtime system are written in MAINSAIL,
minimizing the effort required by XIDAK to move MAINSAIL to a new processor or operating
system. MAINSAIL's unprecedented level of portability allows'XIDAK to guarantee a
uniform programming environment across all MAINSAIL implementations.

MAINSAll... is an extremely powerful programming language offering features not found in
other popular programming languages such as C, Pascal, Modula-2, or Ada. Independently of
its complete portability, MAINSAIL is an outstanding choice for most programming tasks,
even those that are not intrinsically portable.

MAINSAll... provides a complete I/O interface that supports sequential and random access to
files of text or data. Terminal interaction is also part of the I/O interface.

MAINSAIL provides a very powerful module facility similar to the "class" concept of
SIMULA. Modules are both the unit of compilation and the unit of execution. They can be
used as packaging devices or for the implementation of abstract data types. Modules can be
embedded in data structures by means of pointers. and multiple copies of a module can be
dynamically allocated and deallocated.

Other powerful features include dynamic arrays and records. all subject to the automatic
storage reclamation strategy known as "garbage collection", which is usually available only in
very-high-Ievellanguages, such as LISP.

Unlike most commercially available programming languages, MAINSAIL programs are not
statically linked. A statically linked language requires all code that might be used in a
particular execution to be loaded when any program written in that language begins execution.
In MAINSAIL, object modules are loaded as needed; in a large system, this may result in far
less code being in memory if much of the code is needed only occasionally. The code
constituting a MAINSAIL "program" is therefore determined dynamically.

- 10-

MAINSAIL Language

MAINSAIL was designed to simplify the management and maintenance of large programming
projects involving many programmers. The compiler and runtime system provide extensive
facilities for incremental development of components and subsequent integration of
components into a complete system.

MAINSAIL is a "natural" programming language; programmers can program the way they
think. Programmers need not revert to programming "tricks" or obscure coding techniques to
get their jobs done. MAINSAIL's clear, clean syntax makes it easy to understand MAINSAIL
programs. This dramatically reduces the resources required for both program development and
program maintenance.

MAINSAIL is a broad-spectrum programming language. Its utility spans the range of
applications, from systems programming, such as compilers and text editors, through scientific
and technical applications, to business and financial applications. MAINSAIL runs on a
diverse set of processors, from mainframes to microprocessors. Great care has been taken to
provide a language definition that supports compatible implementations across such a wide
range of machines. An approach that uses the same compiler, runtime system, and support'
software across all implementations is the key to such compatibility.

- 11 -

MAINSAIL Language

4. Basic Concepts

4.1. Character Set

MAINSAIL does not specify the exact character set of the machines on which it runs. Instead~
guarantees are given that must hold for all character sets under which MAINSAIL is
implemented. System procedures are provided to complement these assumptions. Predefined
string constants are provided for horizontal tab, end-of-line~ and end-of-page characters.

4.2. Comments

A comment starts with "#" and extends to the end of a line. Several methods are available for
commenting out a large body of text; for example, a directive is provided to skip entire pages.

4.3. Compiletime Evaluation

Most expressions consisting entirely of constant operands are evaluated at compiletime. The
compiler uses variable-length string representations in performing such evaluation so that any
host machine limitations do not affect the precision of arithmetic results.

4.4. Low-Level Storage Manipulation

Storage is measured in "storage units" and "character units". Storage units are independent of
the byte or word size of the processor on which MAINSAIL executes. Character units are
always eight-bit bytes. A number of predefined identifiers specify the characteristics of the
target processor, permitting low-level code to be written in a highly portable fashion.

4.5. Log and Command Files

A command file (cmdFile) and a logging file (logFile) are utilized for standard input and
output These files are normally associated with "TIY", which represents primary input and
output (usually the user's terminal), but may be redirected to other files so that a program can
utilize any file for what appears to the program as terminal-oriented I/O.

- 12-

MAINSAIL Language

5. Data Types

There are eleven MAINSAIT.. data types. Each data type includes a "zero" value, referred to as
"Zero", which is represented in memory as an all-zero bit pattern.

5.1. Boolean

True or false. Boolean Zero is false.

5.2. Integer and Long Integer

An integer is guaranteed (at least) the range -32767 through 32767 (representable in 16 bits). A
long integer is guaranteed (at least) the range -2147483647 through +2147483647
(representable in 32 bits). (Long) integer Zero is O.

5.3. Real and Long Real

A real is guaranteed a fraction of at least 6 full decimal digits, and the exponent is guaranteed
to range at least from 1.0E-38 to 1.0E+38. For a long real, the fraction is guaranteed to consist
of at least 11 full decimal digits, and the exponent range is at least as large as that of a real.
(Long) real Zero is 0.0.

5.4. Bits and Long Bits

These data types are for representing sequences of bits. A bits consists of (at least) 16 bits and
a long bits consists of (at least) 32 bits. These data types may take part in bit operations such as
masking, shifting and testing. (Long) bits Zero has all bits equal to O-bit.

5.5. String

A string represents a variable-length sequence of characters. A string variable is implemented
as a descriptor that gives the current length (number of characters) of the string, and the
location of the first character. MAINSAil.. guarantees that a string may contain up to 32766

- 13 -

MAINSAIT.. Language

characters. The characters themselves usually reside in an area of memory known as "string
space", where they are subject to a storage reclamation method known as "garbage collection".

A string constant is a sequence of characters enclosed in double quotes. A double quote is
made part of a string constant by using two double quotes. String Zero is tIft, the string with no
characters.

5.6. Pointer

A pointer is a data type for referencing dynamically allocated objects such as records or
modules. These dynamically allocated objects are subject to garbage collection. Pointer Zero
is nullPointer, which points to no object.

5.7. Address

Address is a data type for representing arbitrary memory addresses. An address can reference
all data types. To access individual characters, the data type "charadr" must be used. Address
Zero is nullAddress.

A classified address variable, e.g., "a" declared as "ADDRESS(c) a", can be used in field
variables of the form aJ, where f is a field of the class c. This allows a class to be used as a
storage template placed over memory starting at the address contained in "a".

Memory is viewed as a linear sequence of addressable cells ("storage units"). Addresses are
ordered with respect to the relative position of the referenced cells. This order is used when
comparing addresses.

5.8. Charadr

Charadr ("character address") is a data type for representing the location of a character.
Charadr is distinct from address since some machines address words that may contain several
characters. Charadr Zero is nullCharadr. Charadr provides a more primitive handling of
characters than the string data type.

Charadr and address are used only by programs manipulating the contents of memory in a low
level fashion; many applications do not use address and charadr at all.

- 14-

MAINSAIL Language

5.9. Conversion

There is no implicit data type conversion; instead, explicit system procedures are provided for
data type conversions.

- 15-

MAINSAIL Language

6. Expressions

An expression provides the means of accessing and computing values.

6.1. Constants

Constants are the predefined values for each data type, e.g., "FALSE", "37", or "3.14159".
They may be represented symbolically as macro constants.

6.2. Variables

There are five kinds of variables:

• (Non-own) local variable: allocated dynamically upon procedure entry and
deallocated upon procedure exit; accessible only within declaring procedure.

• Own variable: allocated dynamically upon module allocation and deallocated upon
module deallocation; accessible only within module (and only within procedure if
declared within procedure).

• Interface variable: allocated the same as an own variable; accessible within declaring
module and from other modules.

• Subscripted variable: element of an array. All arrays are dynamically allocated.

• Field variable: field of a record, data section, or storage template. All records, data
sections, and scratch memory are dynamically allocated.

6.3. Procedure Expression

A procedure expression is a procedure call used as an expression. The invoked procedure must
be typed, i.e., declared as returning a value.

- 16-

MAINSAIL Language

6.4. Substrings

"s[i TO j]" is the string consisting of characters i through j of the string s. "s[i FOR j]" is the
string consisting of characters i through i+j-1 of s. The integer expressions i or j may contain
the keyword "INF", which stands for the length of s.

6.5. If Expression

An If Expression selects among several possible values. It has the general form:

IF el THEN vI
EF e2 THEN v2

EL .vn

where "EF" abbreviates "ELSE IF", and "EL" abbreviates "ELSE". The "EF" clauses may be
omitted. All the vi must be of the same type, and this type is the type of the If Expression.

6.6. Assignment Expression

An Assignment Expression has the form "v := e", where v is a variable and e is an expression
of the same data type as v. The result is the value of e. "_" may be used in place of ":=".

6.7. Universal Operations

The following operations apply to all data types:

NOT e IF e THEN FALSE ELSE TRUE
v := e assignment expression
el OR e2 IF el THEN TRUE EF e2 THEN TRUE EL FALSE
el AND e2 IF NOT e1 THEN FALSE EF e2 THEN TRUE EL FALSE
el = e2 equal
el NEQ e2 not equal (n<>" may be used for NEQ)

e2 is evaluated only if necessary for "OR" and "AND".

- 17-

MAINSAIL Language

6.8. Comparison Operations

The following operations apply only to those data types that have an ordering, i.e., (long)
integer, Oong) real, string, address, and charadr:

el < e2 less than
el LEQ e2 less than or equal ("<=" may be used for LEQ)
el > e2 greater than
el GEQ e2 greater than or equal (">=" may be used for GEQ)
el MIN e2 minimum
el MAX e2 maximum

6.9. Arithmetic Operations

The following operations apply to (long) integer and (long) real, except as otherwise specified.
Both arguments must be the same type except as otherwise indicated for "1\":

- e negative of e
el A e2 exponentiation (allowed type. combinations:

iAi, l'A' ~ ~, rAi, lrAi, rAr, lr"'r)
el + e2 sum
el - e2 difference
el * e2 product
el / e2 (long) real quotient
el DIV e2 (long) integer quotient (discard remainder)
el MOD e2 (long) integer modulus (remainder)

,.**" may be used in place of "1\".

6.10. Bitwise Operations

The following operations apply to (long) bits. Both arguments must be the same type, except
that e2 is an integer for "Sm." and "SHR":

- 18-

MAINSAIL Language

e1 TST e2
e1 NTST e2
e1 TSTA e2
e1 NTSTA e2
e1 IOR e2
el XOR e2
e1 MSK e2
e1 CLR e2
el SHL e2
e1 SHR e2
el ! e2

TRUE if any 1-bit in e2 is a 1-bit in e1
TRUE if no 1-bit in e2 is a 1-bit in e1
TRUE if all I-bits in e2 are I-bits in el
TRUE if not all 1-bits in e2 a~e 1-bits in el
inclusive or
exclusive or
Clear any bits in e1 that are O-bits in e2
Clear any bits in el that are l-bits in e2
shift left ("«" may be used in place of SHL)
shift right ("»" may be used in place of SHR)
= el lOR e2, except ! has higher precedence

6.11. String Operations

The following operation applies to strings:

el & e2 concatenation: the string made up of the
characters of e1 followed by the charcters of e2

6.12. Operator Precedence

Table 6.12-1 shows the precedence of the operators. Operators on the same line have equal
precedence.

OR (least precedence -- least binding)
AND
NOT

NEQ < LEQ > GEQ TST NTST TSTA NTSTA
.=
MIN MAX

+ - (binary) lOR XOR MSK CLR

* / & DIV MOD SHL SHR

- (unary) (most precedence -- most binding)

Table 6.12-1. Operator Precedence

- 19-

MAINSAIL Language

Operators of equal precedence are associated from left to right (except for assignment). The
order of evaluation of the operands is in general not specified. The precedence of ":=" was
chosen so that it could be used in expressions without the need for parentheses in most common
cases.

6.13. Dotted Operators

The expression "v .op e" is a short form of "v := v op e", except that v is evaluated just once.
For example:

v[i .+ 1] .+ 5

adds 5 to vU], where j = i + 1; in addition, i is incremented. Almost all operators can be
"dotted" this way.

- 20-

MAINSAIL Language

7. Statements

This chapter describes eleven of the thirteen MAINSAIL statements; the other two, the Init and
Handle Statements, are described in Chapters 9 and 16, respectively.

7.1. Assignment Statement

An Assignment Statement has the form of an Assignment Expression, except that it occurs as a
statement rather than as an expression.

7.2. Expression Statement

An Expression Statement is a dotted expression used as a statement; e.g., "i.- 1" is a statement
that decrements i.

7.3. Procedure Statement

A Procedure Statement has the form of a Procedure Expression. except that the procedure may
be untyped. If it is typed, the result is discarded.

7 ~4. Return Statement

A Return Statement has the form "RETURN" for an untyped procedure, and "RETURN(e)" for
a typed procedure. where the expression "e" is of the same type as declared for the procedure.
It causes immediate termination of the procedure's execution, returning the specified value.

7.5. Begin Statement

A Begin Statement has the form "BEGlN sl; ... ; sn END", where the si are statements. It is a
means of grouping a list of statements into a single statement A name can be given to a Begin
Statement by inserting a string constant after the "BEGIN", in which case the same name must
be inserted after the matching "END".

- 21 -

MAINSAIL Language

7.6. If Statement

An If Statement has the general fonn:

IF e1 THEN sl
EF e2 THEN s2

EF en THEN sn
EL s

The "EF" and "EL" lines can be.omitted. "EF" abbreviates "ELSE IF", and "EL" abbreviates
"ELSE" (the longer forms can be used). An "ELSE" ("EL") or "EF" matches with the
innermost unmatched "IF" or "EF".

7.7. Case Statement

A Case Statement is illustrated by:

CASE e OFB
[01]

[02 TO 03]
[c 4] [c5 TO c 6]
[]

END

sl;
s2;
s3;
s4;

"e" is an integer expression, the ci are integer constants, and the si are statements. "OFB" is an
abbreviation for "OF BEGIN", which may be used instead. If e has the value cl, sl is
executed. If e is between c2 and c3, inclusive, s2 is executed. If e is c4 between c5 and c6. s3
is executed. Otherwise, s4 is executed. In general, any number of case selectors may be
utilized for a given statement, as two are shown for s3. The catchall "[]" case may be omitted,
in which case an error occurs if no statement is selected. Only the selected si is executed. si
may be a Begin Statement, i.e., a list of statements to be executed.

7.8. Iterative Statement

An Iterative Statement has the general form:

FOR i ;= e1 UPTO e2
(FOR-clause)

WHILE e3 DO s
(WHILE-clause)

- 22-

MAINSAIL Language

UNTIL e4
(UNTIL-clause)

where i is an integer variable, el and e2 are (long) integer expressions, e3 and e4 are any
expressions, s is any statement, and "UPTO" may be replaced with "DOWNTO" ~ Any of the
clauses may be omitted; thus, there are eight possible forms (ignoring the distinction between
"UPTO" and "DOWNTO").

"DO sIt alone means repeatedly execute s until some action terminates the Iterative Statement,
most likely a Done or Return Statement or an exception. "UPTO" increments i by 1, and
"OOWNTO" decrements i by 1. e3 is evaluated before each iteration, and e4 after each
iteration. e2 is evaulated just once, before any iterations. An "UNTIL" is matched with the
innermost unmatched "00". A name may be given to the Iterative Statement by placing a
string constant after "00", "00 BEGIN" or "OOB" (an abbreviation for "DO BEGIN"). In the
latter two cases, the same name must be placed after the matching "END". Such a name may
be used by the Done or Continue Statement as described below.

7.9. Done Statement

A Done Statement has the form "DONE", or:

DONE "c"

where "c" is the name of an enclosing Iterative Statement The referenced Iterative Statement
is terminated; in the absence of "c", the innermost enclosing Iterative Statement is terminated.

7 .10. Continue Statement

A Continue Statement has the form of the Done Statement, except that "CONTINUE" replaces
"DONE". The referenced Iterative Statement is continued (tests in the clauses are performed,
and if they pass, the iterated statement is re-started) as if the iterated statement had terminated
normally.

7.11. Empty Statement

The Empty Statement consists of nothing at all. It serves as a place holder in certain situations;
for example, it allows superfluous semicolons between statements.

- 23-

MAINSAIL Language

8. Declarations

Identifiers must be declared before they are referenced.

8.1. Scope of Identifiers

An identifier declared within a procedure is accessible only within that procedure. An identifier
declared outside any procedure is accessible within procedures in the same module that follow
the declaration, except those that redeclare it.

8.2. Simple Variable Declarations

A simple variable declaration has the form "type vI, ... , vn", where the vi are identifiers, and
type is the name of a data type. In addition, the type keywords "POINTER" and "ADDRESS"
may be followed by a parenthesized class name.

8.3. "OWN" Qualifier

The "OWN" qualifier specifies that a local variable is to be allocated as if it were declared in
the outer block. This means that it is allocated and deallocated along with the module data,
rather than upon procedure entry and exit. This allows a procedure to have a private variable
that can retain information across procedure calls.

- 24-

MAINSAIL Language

9. Arrays

9.1. Array Declarations

An array declaration has one of the fonns:

type ARRAY(11 TO ul, ... , 1m TO urn) vl, ... , vn

or:

type LONG ARRAY(11 TO ul, ... , 1m TO urn) vl, ... , vn

For reasons of efficiency MAINSAll.. supports two sizes of array. Short arrays can use only
integer subscripts while long arrays can use either long integer or integer subscripts. Subscript
calculations for short arrays are perfonned with integer arithmetic; long array subscript
calculations are performed with long integer arithmetic. Since long integer arithmetic is slower
than integer arithmetic on some systems, short arrays permit greater runtime efficiency, but
cannot be as large as long arrays.

Ii and ui specify the bounds of the ith dimension. Up to three dimensions are allowed. Each Ii
or ui is either a (long) integer constant, with Ii LEQ ui, or "*" to indicate that the bound is not
known at the point of declaration (it must be given when the array is allocated),

The data type and/or the parenthesized bounds list may be omitted, in which case the array
cannot be used for element access. It may still be used as a parameter or assigned to or
compared with some other array.

The array Zero is nullArray.

9.2. Array Allocation

It is the programmer's responsibility to allocate an array before an element is accessed.
MAINSAll.. differs in this respect from most languages. which automatically allocate and
deallocate arrays according to the context in which the array is declared.

An array is allocated by "new(a,ll.ul, ln.un)", where a is the array to be allocated. and the li
and ui are expressions for the bounds. Bounds that can be detennined from the array

- 25-

MAINSAll.. Language

declaration may be omitted. An array may be allocated any number of times. Each new
allocation replaces the old one; no elements are copied. All elements of a newly allocated array
are initialized to Zero.

MAINSAIL's explicit array allocation permits a program to decide dynamically when to
allocate arrays and how large each must be. For example, a procedure can allocate arrays of a
size dependent upon input data. Many arrays can be declared, only some of which are actually
allocated during a given program execution.

Arrays may be explicitly deallocated. or the programmer may allow the garbage collector to
free the storage occupied by unused arrays.

9.3. Array Initialization

The Init Statement may be used to initialize an array. JOe array must already have been
allocated. The general fonn of the Init Statement is:

INIT v (el, 000' en)

where v is the array to be initialized, and the ci are constant expressions of v's type.

9.4. Accessing an Array Element

An array element is accessed by a variable of the form "a[i]", "a[i,j]", or "a[ij,k]", depending
on the number of dimensions of the array a. i, j, and k are (long) integer expressions that must
be within the bounds declared for the corresponding dimensions.

9.5. Array Variables

An array variable is implemented as a pointer to the array's elements. Array variables may be
assigned, passed as parameters, and compared. In each case, only the array variable itself (Le.,
the pointer to the array elements) takes part in the operation. Thus, a single array's elements
may be pointed to by many array variables.

- 26-

MAINSAIL Language

10. Classes and Records

10.1. Records

A record is a data structure that differs from an array in that its components, called fields. may
be of differing data types and are accessed by name instead of by subscripts.

Records are dynamically allocated; the programmer does not declare records. and there is no
way to ~eate a record at compiletime. Just "classes", which give templates for the structure of
records created. at runtime, and pointers. which point to records, are declared. All records are
allocated during program execution under direct control of the program.

10.2. Classes

Each record is an instance of a programmer-declared class that serves as a template describing
the various fields of the record. The most common form of a class declaration is:

CLASS v (declarations of fields of class)

Class declarations may occur only in the outer declarations of a module. The fields of a class
can be variables of any data type. The order in which they occur in the class declaration is the
order in which they occur in memory. Thus, a class can be a template to be overlayed on an
already-existing data structure, such as might be created by a procedure in some other language
and passed to MAINSAIL.

Classes are also used to describe module interfaces; such classes may include procedure fields.

10.3. Record Allocation and Disposal

Any number of new records of a class may be created at runtime by calls to the system
procedure "new". "p:= new (c) " allocates a record that conforms to the class c and sets the
pointer p to reference the record. All the fields of the newly allocated record are cleared.

The storage occupied by a record pointed to by p is freed by "dispose(p)". Records no longer
pointed to by any pointer are automatically disposed by the MAINSAIL garbage collector.

- 27-

MAINSAIL Language

Arrays and module data sections may also be disposed.

10.4. Classified Pointers

A pointer p can be declared as "POINTER(c) pIt to indicate that it will point only to records of
class "c". Such a pointer is a "classified pointer". The compiler ensures that classified pointers
are not mistaken1y used to refer to records in other classes.

10.5. Unclassified Pointers

The class in a pointer variable declaration may be omitted if the pointer is to be used for an
unknown class, or for several different classes. The programmer must be especially careful
when using unclassified pointers since class checking is not provided for them.

10.6. Accessing Fields of Records

A field f of a record of a class c pointed to by a pointer p, declared as "POINTER(c) pIt, is
accessed by the field variable "p.f'. "p" is the base part, and "f' the field part.

The base part may itself be a field variable. For example, "p.q.f' has the base part "p.q", where
q is a pointer field of the record pointed to by p. Base parts may also be subscripted variables
(e.g., "a[i].f'), procedure calls (e.g., "proc(parms).f'), or parenthesized pointer expressions
(e.g., "(p:= q).f').

10.7. Explicit Classes in Field Variables

The variable "p:c.f', where p is a pointer expression, c is a class and f is a field of c, provides a
means of explicitly specifying the class of a pointer at the point of use as a base part.

10.8. Prefix Classes

A class can inherit its initial fields from a previously declared class, called its "prefix class".
The form of a declaration for such a class is:

CLASS (cl) c2 (declarations for additional fields)

In this case c 1 is the prefix class. If c 1 's declaration were:

- 28-

MAINSAIL Language

CLASS cl (INTEGER i,j,k)

then the effect on c2 would be the same as:

CLASS c2 (INTEGER i,j,k; declarations for additional fields)

Two classes are "refuted" if one is a prefix class of the other or if they are the same class.
Pointer assignments and argument-parameter matching are allowed only between related
classes.

MAINSAIL's prefix classes playa role similar to that of Pascal's "variant records", though
prefix classes are a simpler concept and require no runtime overhead. Prefix classes allow
classes that share some fields to have these common fields "abstracted out" into a separate
class. Procedures that manipulate pointers to a prefix class cannot mistakenly access fields of
prefixed classes. .

- 29-

MAINSAIL Language

11. Procedures

11.1. Procedure Declarations

The basic fonn of a procedure declaration is:

type PROCEDURE v (declarations list for parameters);
procedure body

"type" is present only if the procedure is to return a value; the parameter list may be omitted if
there are no parameters. The procedure body is either a statement, or a list of local variable
declarations followed by a list of statements, all within a "BEGIN"-"END" pair. Procedures
cannot be statically nested; i.e., a procedure body cannot contain a procedure. The initial
values of the local variables are not defined, except for uses and modifies parameters, as
described below.

11.2. Procedure Calls

A procedure call has the form "p(el, ... ,en)", where p is a procedure, and the ei are arguments.
The order of evaluation of the ei is not specified. If p has no arguments, the parenthesized list
may be omitted. Any procedure may be invoked recursively.

11.3. Procedure Parameters

There are thr~e kinds of parameters, distinguished in the parameter declarations by the
qualifiers "USES", "PRODUCES", and "MODIFIES". A uses parameter (the default) is
initialized by the value of the argument. A produces parameter is not initialized by its
argument, but instead sends its final value back to the argument (which must be a variable)
when the procedure returns. A modifies parameter has the charcteristics of both uses and
produces parameters, Le., is initialized by the argument and sends its value back to the
argument

A parameter behaves like a local variable inside the body of the procedure. In particular,
modifies and produces parameters are not passed as the address of the corresponding
arguments, as is the case for the "reference" and "name" parameters of ALGOL or FORTRAN.

- 30-

MAINSAIL Language

11.4. Optional Arguments

Trailing parameters may be qualified with "OPTIONAL" to indicate that their arguments may
be omitted in procedure calls, in which case the compiler passes Zero values of the appropriate
data type. This allows little-used parameters to be left out of most calls.

11.5. Repeatable Arguments

Trailing parameters of an untyped procedure may be qualified with "REPEATABLE" to
indicate that a call may give several sets of arguments for the repeatable group of parameters.
The compiler acts as if several calls had been explicitly made, with argumen~ before the
repeated ones computed just once, and passed for each call. This allows constructs such as
"write(f,a,b,c)", which is equivalent to:

write(f,a); write(f,b); write(f,c)

except that f may be evaluated just once.

11.6. Forward Procedures

A procedure must be declared before it can be called. However, if two procedures call each
other, a vicious circle results since each must be declared before the other. To get around this
problem, one of the procedures is first given a "forward" declaration, which is like a nonnal
declaration except it is qualified with "FORWARD", and just the procedure header (not the
body) is given. Later the procedure is declared as usual; the compiler automatically figures out
that a previously declared forward procedure is now being given a body. Calls to the procedure
may appear at any point after the forward declaration.

11.7. Compiletime Libraries

A related use of forward procedure declarations is to specify the name of the file that contains
the complete procedure declaration. This is done by "FORW ARD(t)" where fis a string
constant for the name of the file. If at the end of compilation the procedure has been called, but
no body has been declared for it, the compiler automatically compiles the file f, expecting to
encounter the procedure's declaration.

This mechanism allows the creation of "compiletime libraries" that contain full procedure
declarations for commonly used procedures and are automatically accessed by the compiler to

- 31 -

MAINSAil.. Language

obtain bodies of called procedures. In most cases, however, intmods are a better way of
organizing a set of procedures; see Chapter 15.

11.8. InUne Procedures

Procedures or procedure calls may be marked with the keyword "INLINE", which causes the
procedure or particular call to be expanded inline. This avoids the usual procedure call
overhead at the expense of producing more code. It is appropriate to declare small, frequently
called procedures inline, since the procedure call overhead may represent a substantial fraction
of the execution time of the procedure.

11.9. Generic Procedures

A generic procedure allows a single identifier to represent several procedures. A particular one
is chosen in a procedure call as determined by the data types of the arguments. This is a
convenience to the programmer in that it allows the same name to be used for related
procedures.

An example of a generic procedure declaration is:

GENERIC PROCEDURE P "pl,p2, ... ,pn"

where the pi are procedure identifiers. Whenever "p" is used in a procedure call, the compiler
acts as if "p 1" had been used instead, except that if some" error" occurs (e.g., argument
parameter type mismatch), the compiler "backs up" and acts as if p2 had been used instead of
pl. If another "error" occurs, the compiler proceeds to p3, and so forth, until a pi is found that
causes no error (the compiler complains if no such pi is found).

The generic mechanism can be combined with repeatable arguments to provide a quite general
procedure calling capability with no execution time overhead. For example, the generic system
procedure "write" allows any number and any type of arguments to be written to several
different kinds of files, or to a string, or to memory, all based on the generic and repeatable
mechanisms.

Generic procedures (including predefined system procedures) may be extended by the user.
For example, if a generic procedure is originally declared as:

GENERIC PROCEDURE P "a,b,c"

then the declaration:

- 32-

MAINSAIL Language

GENERIC PROCEDURE P "x,y,z"

is concatenated with the original declaration, so that the effect is as if p had been declared as:

GENERIC PROCEDURE P "x,y,z,a,b,c"

- 33 -

MAINSAIL Language

12. Modules

Modules are used to divide a program into small, manageable units that are separately compiled
and manipulated during execution. A program is a collection of modules, some of which are
contributed by the programmer, and others by MAINSAIL's runtime system.

Many instances of a module may exist, and modules may be manipulated by code that knows
only a limited amount about the module. These capabilites permit an "object-oriented" style of
programming, in which each instance of a MAINSAIL module is treated as an object.

MAINSAIL's approach to modules goes well beyond that found in other algorithmic
programming languages, and provides the programmer with previously unavailable
capabilities, such as dynamic linking and loading, which have a profound effect on program
organization and portability.

Unlike most programming languages, MAINSAIL does not utilize a "link" step prior to
execution. Instead, the modules are brought into memory as needed during execution and
MAINSAIL provides all the facilities for intermodule communication. The programmer need
never specify what modules make up a program; a program is an open-ended collection of
modules the identity of which need not be determined until execution time. The runtime
selection of modules provides a degree of flexibility lacking in statically linked systems. It also
frees MAINSAIL from any dependence on machine-specific linkers, with their attendant
restrictions and peculiarities.

Only the currently executing module need be in memory; MAINSAIL automatically swaps
modules in and out of memory during execution. It tries to keep a "working set" of modules in
memory. Modules are compiled into position-independent code so that they may reside
anywhere in memory, and may even be moved about in memory during execution.

+----------+
IINTERFACE I
I (PUBLIC) I

+----------+
I PRIVATE
I
+----------+

MODULE 1

+----------+
IINTERFACE I
I (PUBLIC) I

+----------+
I PRIVATE
I
+----------+

MODULE 2

+----------+
IINTERFACE I
I (PUBLIC) I

+----------+
I I
I PRIVATE I
I I
+----------+

MODULE 3

- 34-

MAINSAIL Language

+----------+
IINTERFACE I
I (PUBLIC) I
+----------+
I
I PRIVATE
I
+----------+

MODULE n

A module is written according to the following general layout:

+------------------------+
BEGIN "modNam"

+--------------------+
I outer
I declarations 1

+--------------------+
+--------------------+
I procedure 1 I

+--------------------+

+--------------------+
I outer
I declarations n

+--------------------+
+--------------------+
I procedure n I
+--------------------+
END "modNam"

+------------------------+
"modNam" gives the name of the module, which must be an identifier of six characters or
fewer. Since the runtime system uses a module's name to identify it, every module in a
program must have a unique name.

The "outer declarations" declare variables to be accessible throughout the remainder of the
module, but not in any other modules. The outer declarations of a module m must include
declarations for all modules referenced by mo' In addition, m must declare itself if it has any
interface fields.

12.1. Module Allocation and Communication

Modules communicate through "interface fields" t which are the variables and procedures of
each module that the programmer declares to be accessible from other modules. The interface
fields of a module are analogous to the interface fields of a record. Data (non-procedure)
interface fields reside in a data structure called a "data section". Data sections exist in "bound"
and "nonbound" forms.

- 35 -

MAINSAIL Language

Nonbound data sections are allocated by means of the procedure "new". Nonbound data
section interface fields are always accessed with explicit pointers; the syntax used is identical to
that for records. A module may have more than one nonbound data section.

Bound data sections are allocated by means of "bind". The interface field of a bound data
section may be accessed by name (with no module or pointer prefix) if the reference is
unambiguous; bound data sections may also be accessed with explicit pointers. A module may
not have more than one bound data section at any given time. Bound data sections allow the
programmer to write code without knowing the name of the module in which an interface
variable or procedure actually resides, so that a system of many modules can be reconfigured
with minimal source code changes.

Data sections contain the outer and local own variables of a module as well as the interface
fields, but only the interface variables are accessible from outside the module.

When a module's data section is allocated with "bind" or "new", the interface and own
variables in the data section are cleared, and the initial procedure is invoked. MAINSAIL
automatically allocates a bound data section the first time one of its interface procedures is
called, if it has not already been allocated.

At the end of program execution, MAINSAIL automatically invokes the final procedures
associated with any active modules and then closes any open files.

12.2. Module Syntax

The most common fonn of a module declaration is:

MODULE v (declarations of interface fields)

where v is the module's name. Interface fields may be variables and/or procedures, in any
order. The declaration of an interface procedure gives only the header. It serves as a forward
declaration for the procedure. The procedure body must be given within the module v, where
the procedure is declared as usual.

A module's fields can also be supplied by means of a class, with a declaration such as
"MODULE(c) m (additional fields)", where c is a class that specifies the first fields of m's
interface and the parenthesized list of additional field declarations is optional.

Each module may contain at most one typeless and parameterless "initial procedure" that is to
be called whenever a data section for the module is allocated. This procedure is qualified with
the keyword "INITIAL". A module invoked from the MAINSAIL executive leads to execution
of an entire program by executing the module's initial procedure. Thus, initial procedures play

- 36-

MAINSAIL Language

two roles: one is to perform any kind of initialization for a module, and the other is to lead to
execution of what the user views as a program. As far as the MAINSAIL runtime system is
concerned, a program is just a set of modules that are brought into memory and initialized.

Each module may contain a single typeless and parameterless "final procedure" that is
automatically invoked when the module is disposed. This procedure is qualified with the
keyword "FINAL It.

12.3. Combining Module Declarations in One File

The outer declarations of a module m include declarations for all modules accessed by m. A
module must be declared identically (up to the last interface field accessed) in all modules that
access any of its interface fields.

To ensure consistent module declarations, and to save retyping and updating the declarations in
every module of a program, all module declarations for a related group of modules can be put
in a single file, and that file included in the compilation of all the modules by means of the
"SOURCEFILE" compiler directive. Alternatively, the declarations may be stored in a
compiler symbol table file (an intmod) for faster processing at compiletime. MAINSAIL's
compiler directives have been chosen to provide flexibility in the construction of the source text
for large programs.

12.4. Objrnod Libraries

An objmod (object module) library is a file that contains object modules. A librarian program,
MODLIB, is provided for maintaining objmod libraries. Any number of objmod libraries may
be open for execution. MAINSAIL automatically searches all open libraries to find a module.
If a module is not found in any objmod library, a file name is formed from the name of the
module, and an attempt is made to obtain the object module from that file. If that file cannot be
opened, MAINSAIL may ask the user during execution where the module resides.

A means is provided for indicating what file contains an object module, and for dynamically
associating the "true" module name for a "dummy" module name, thereby allowing programs
to be written without knowledge of the specific physical module that provides a given service.

- 37-

MAINSAIL Language

13. Macros

A macro allows an identifier to represent either a constant or arbitrary text. Each occurrence of
the macro identifier (a macro call) is replaced by the compiler with the associated constant or
text specified when the macro was defined.

13.1. "DEFINE"

The form of a simple macro definition is:

DEFINE vI = macroBodyl, ... , vn = macroBodyN;

where the vi are identifiers and macro bodies are constants or "bracketed text", e.g., "[xxx]"
where "xxx" is arbitrary text.

The form of a definition for a macro with parameters is:

DEFINE v(vI, ... , vn) = [text];

where the macro identifier v is followed by a parenthesized list of parameter identifiers (the vi)
that may be used within the bracketed text. Subsequent occurrences of v (i.e., macro calls) are
followed by a parenthesized list of arguments, much like a procedure call. Each occurrence of
the identifier vi within the bracketed text (even within string constants and comments) is
replaced with the corresponding argument text.

A macro definition may occur virtually anywhere in a program, even in the midst of an
expression, for example. However, a macro definition cannot occur in the midst of another
definition, except within bracketed text.

Macro calls may be used anywhere, even in subsequent macro definitions.

"REDEFINE" is used to change the body of a previously defined macro. For example,
"DEFINE n = 0; ... REDEFINE n = n + I" does compiletime counting.

- 38-

MAINSAIL Language

13.2. Macro Constants

Macro constants (constants used as macro bodies) may be constants of any data type. Defining
a macro identifier to be equal to a constant (or constant expression) allows a meaningful name
to be used in the program text instead of a "bare" constant. If the value of the constant
expression needs to be changed, then only the macro definition has to be changed instead of all
occurrences of the constant expression.

13.3. Interactive Define and Redefine

A macro definition may omit the "=" and subsequent macro body, in which case the compiler
prompts for the macro body. Such interactive definitions allow the programmer to make
limited contributions to the source text during compilation, in lieu of having to edit the source
text just prior to compilation. For example, "DEFINE debugOption;" prompts with "DEFINE
DEBUGOPTION =" during compilation. The user types in a value "v", and the compilation
proceeds as if it had instead encountered "DEFINE debugOption = v;".

13.4. Macro Calls

A "macro call" is the occurrence of a macro identifier at any point in a program after it has been
defined. It directs the compiler to scan the body of the macro as if it appeared in place of the
macro call.

If the macro was defined with parameters, a parenthesized list of macro arguments separated
with commas may appear after the macro identifier. The macro arguments replace all
occurrences of the corresponding parameter identifiers in the macro body.

- 39-

MAINSAIL Language

14. Compiler Directives and Conditional Compilation

A compiler directive indicates which source text is to be compiled or conveys infonnation to
the compiler that is used while compiling the program.

A compiler directive may occur wherever a declaration or statement may occur (except that
"BEGINSCAN" must be the first thing on a page), and must be terminated with a semicolon.

14.1. "MESSAGE"

"MESSAGE c" writes the string constant "c" onto a new line of 10gFile during compilation.

14.2. "SQURCEFILE"

"SOURCEFIT...E c" directs the compiler to compile the file with name "c" as if it appeared in
place of the directive. Sourcefile nesting may occur to any level. The name "c" can be
obtained interactively; e.g.:

DEFINE f; SOURCEFILE f;

prompts the user for the name of the source file, then uses the string constant macro f in the
source file directive .

. 14.3. Checking, Arithmetic Checking, and Optimization

Checking directs the compiler to emit code to check certain conditions at runtime that cannot
be determined at compiletime. Arithmetic checking directs the compiler to emit code to check
for (long) integer overflows, if such code is necessary. Optimization directs the compiler to
make efforts to produce the best code it knows how (at the expense of a longer compilation
time).

Directives are provided to control checking, arithmetic checking, and optimization at the
module level as well as on a per-procedure or even per-expression basis.

- 40-

MAINSAIL Language

14.4. "IFC", "THENC", "$EFC", "ELSEC", and "ENDe"

The conditional compilation fonn:

IFC c THENC textl $EFC c2 THENC text2 ELSEC text3 ENDC

where c is an expression evaluated at compiletime, causes the compiler to compile textl and
ignore text2 and text3 if c is non-Zero. If c is Zero and c2 non-Zero, then text2 is compiled and
text! and text3 ignored. If c and c2 are both Zero, text3 is compiled and textl and text2
ignored. There may be zero, one, or many "$EFC ci THENC texti" parts, and "ELSEC text3"
may be omitted. IFC's may be nested to any depth. .

"$CASEC" and "$DOC" provide compiletime analogues of Case and Iterative Statements, just
as "IFC" is analogous to the If Statement.

14.5. "DCL"

"DCL(<identifier>)" is true if the identifier has been declared or defined and false otherwise.
"DCL" is useful in conjunction with conditional compilation.

14.6. "DSP"

"DSP(c.f)" returns the offset in storage units to field "f' of class "c".

14.7. "$TYPEOF", n$CLASSOF", "$ISCONSTANT"

"$TYPEOF(x)" returns the type code for the expression x. "$CLASSOF(x)" returns the class
name of the expression x. "$ISCONST ANT(x) " returns true if and only if the expression x is
constant, i.e., can be evaluated at compiletime. All three are pseudo-procedures evaluated at
compiletime, and all three discard the expression x without actually evaluating it.

14.8. Scanning Directives

The scanning directives are "BEGINSCAN", "SKIPSCAN", and "DONESCAN".
"SKIPSCAN" and "BEGINSCAN" may be followed by string constant names. "SKIPSCAN"
specifies that source text is to be skipped up to the next appropriately named "BEGINSCAN"
directive. "BEGINS CAN" is used to mark places in the source text where a "SKIPSCAN"

- 41 -

MAINSAIL Language

search may tem ; ate. "DONES CAN" causes the compiler to terminate compilation of the
current file as if ld-of-file had been reached.

These directive~ .llowessentially arbitrary use of text files as repositories of fragments of
source text that 0 "scooped up" during the compilation of many different modules. When
combined with ~ ,; flexible conditional compilation directives, the programmer can piece
together a progr il in almost any manner from any number of files, in accordance with options
specified interac vely during compilation.

14.9. "NEE~ BODY" and "NEEDANYBODIES"

The compiletim pseudo-procedures "NEEDBODY" and "NEEDANYBODIES" are used in
conjunction wit:"' me "FORWARD" qualifier to determine whether a forward procedure needs a
body, i.e., has b 'n Called but has not yet been given a declaration containing the procedure
body. Theyare 'pically used in compiletime libraries to ensure that the compiler sees just
those procedure ,'or which bodies are needed.

The form "NEE BODY(id)" is true if id is the name of a procedure that has been declared
"FORWARD", d has appeared in a procedure call, but has not been declared with a body.

"NEEDANYBC)IES(c)" is true if there are any procedure bodies in the file "e" that need to be
compiled.

The form "NEE ANYBODIES" is equivalent to "NEEDANYBODIES(c)" where c is the
name of the file :at caused the current automatic sourcefile.

14.10. "$DI ECTIVE" Directives

"$DIRECTIVE ;s a directive that takes a string argument. The string argument begins with a
keyword that ft; -.:tions as a directive. "$DIRECTIVE" is used for a number of directives with
miscellaneous 1 . :lctions; many of them allow compiler subcommands to be inserted into the
source text of a lOdule.

-42 -

MAINSAIL Language

15. Intmods

Intmods allow the compiler's symbol table for a module to be preserved. The symbols in it
may be used in the compilation of other modules or by MAINSA.a system programs such as
MAINDEBUG and MAINPM. When the symbols are used in a compilation, an intmod may
contain symbols used by many modules. Such an intmod replaces a "header" file, which would
be recompiled once for each module that uses its symbols, with a module compiled just once to
produce the intmod. A header file is a file that contains definitions and declarations (e.g., of
classes and modules) of use to several modules.

An intmod is produced for a module in which the compiler encounters the "SA YEON"
directive. The form of the "SA YEON" directive is "SA YEON cIt, where "c" is a string constant
expression for the name of the intmod on which the symbol table is to be saved

The "RESTOREFROM mIt directive may be used to make an intmod m "visible" to another
module, meaning that the symbols in it can be used in the other module (the symbols
themselves are also said to be visible). Symbols that are not visible can be used only with a
special qualifier of the fonn:

<intmod name>$<symbol name>

Directives exist to specify that only certain symbols in an intmod should be made visible
(usable without the qualifier) to modules that make the intmod visible, thereby providing
information hiding. For example, if only certain procedures from an intmod are to be visible,
the programmer may still include supporting procedures in the intmod without making the
identifiers for those procedures visible in other modules (possibly conflicting with identifiers
from the other module).

Identifiers from an intmod may be outer declarations of the intmod (variables, classes, modules,
macros, etc.) and procedures. The procedures are incorporated into the using module only if
they are called.

- 43-

MAINSAIL Language

16. Exceptions

An exception is an unusual or erroneous condition that occurs during a program's execution.
When an exception occurs, it may cause the execution of a statement called an exception
handler. A handler may, for some exceptions, repair the error and resume execution at the
place where the exception occurred, or it may recover from the error by aborting the execution
of one or more nested statements (including procedure invocations), or it may propagate the
exception to another handler. If there is no handler for an exception, the MAINSAIL runtime
system reports an error by calling the system procedure errMsg.

Exceptions are divided into two categories: those predefined by MAINSAIL and those known
only to user programs. User exceptions must be explicitly caused by the user program by
means of the system procedure $raise; predefined exceptions are caused by MAINSAIL.

16.1. Handle Statement

A Handle Statement associates an exception handler with a statement in the program (called the
handled statement) and executes the handled statement. If an exception occurs during the
execution of the handled statement, that statement's execution is interrupted and the handler is
executed. If no exception occurs, the handler is ignored.

The general form of the Handle Statement is:

$HANDLE s1 $WITH s2

in which sl and s2 are statements. The statement sl is the handled statement and s2 is the
handler.

When a Handle Statement is executed, its statement sl is initiated. If an exception occurs
during sl's execution (which may entail several levels of procedure calls), and the exception
has not been handled by another Handle Statement initiated during sl 's execution, then sl 's
execution is suspended and the exception handler s2 is executed. Otherwise, s2 is ignored.

A handler can either recover from an exception and allow the program's execution to continue
or it can propagate the exception to another exception handler. In the first case, the handler is
said to have handled the exception.

-44 -

MAINSAIL Language

16.2. Handling Exceptions

There are two ways a handler can allow a program's execution to continue:

• If the exception that occurred was caused by a call to the system procedure $raise, the
handler can resume execution at the place where the exception occurred by calling
the system procedure $raiseReturn. This terminates the handler's execution. When
sl terminates after its execution is resumed, s2 is ignored. If the exception that
occurred was not caused by a call to $raise, a runtime error occurs if $raiseReturn is
called to continue from the exception.

• The handler can terminate the Handle Statement's execution in one of three ways:

1. It can resume execution at the statement following the Handle Statement, if
any, by having control fallout of the handler.

2. If the Handle Statement is contained within an Iterative Statement, the
handler can terminate the Handle Statement's execution and either repeat or
terminate the execution of the Iterative Statement by means of a Continue
or Done Statement.

3. The handler can terminate the Handle Statement's execution and return
from the procedure containing the Handle Statement by means of a Return
Statement.

When a handler terminates the execution of its Handle Statement, the handled statement sl, the
execution of which was suspended by the occurrence of the exception, is aborted, along with all
other statements initiated as a result of sl 's execution (and all procedures thus invoked). When
a procedure is aborted in this manner, if it contains any active handled statements, MAINSAIL
raises the predefined exception $abortProcedureExcpt and executes the handlers associated
with the handled statements. This gives each procedure a chance to do any cleaning up that
might be necessary before it is aborted.

16.3. Propagating Exceptions

If a handler is unable to handle an exception, it can propagate the exception to the next handler
by calling the system procedure $raise with no arguments. If there is no next handler within the
user program, the MAINSAIL runtime system reports an error by calling the system procedure
errMsg.

-45 -

MAINSAIL Language

16.4. Information about the Current Exception

A handler can obtain the name of the current exception by calling the system macro
$exceptionName. Other information about the current exception is available by calling
$exceptionSUingAJgl,$exceptionStringAJg2,$exceptionPoinrerAJg,$exceptionBi~,and

$exceptionCoroutine.

16.5. Nested Exceptions

Exceptions can be nested. If an exception occurs during a handler's execution, the handler's
execution is suspended and a handler for the new exception is searched for and initiared, as
described above. If the new handler resumes execution at the place where the new exception
occurred, the previous exception is restored to being the current exception and the execution of
its handler continues. If the new handler aborts the execution of i~ Handle S tarement and that
Handle Statement caused the execution of the previous handler's Handle Statement, the
execution of the previous handler's Handle Statement is also aborred.

- 46-

MAINSAIL Language

17. Coroutines

A "coroutine" is a context that preserves the state of a procedure so that its execution may be
"resumed" at the preserved state by a procedure in some other coroutine. System procedures
are provided to create, resume, and kill coroutines.

A coroutine may be thought of as a "thread of execution" that progresses independently of other
threads of execution in an interleaved fashion. Thus, a coroutine executes for a while and then
explicitly resumes some other coroutine. That new coroutine executes for a while, and then
explicitly resumes another coroutine, perhaps the one that resumed it. Coroutines must
explictly resume other coroutines; i.e., coroutines do not execute in parallel, and there is no
automatic timer interrupt that causes resumption of coroutines. However, user or system
procedures may resume coroutines in such a way as to give the illusion of parallel execution.

Example 17-1 shows a use of coroutines. generateNextNode generates a node in some data
structure, and processNextNode processes the node.

The procedure processNextNode first creates a coroutine for the generator. The arguments
indicate the data section and procedure name where the first resumption is to start.
processNextNode then uses the returned pointer to resume the coroutine to get each node, and
finally to kill it. There can be any number of procedures like processNextNode that use
generateNextNode. generateNextNode sets the outer variable nextNode to point to the next
node, and then resumes the coroutine in which processNextNode is running. Outer or interface
variables must be used for communication among coroutines, since $resumeCoroutine does not
have any parameters for intercoroutine communication.

17.1. Coroutine Implementation

A coroutine consists of a stack to hold the procedure frames and a record of the predeclared
class $coroutine, which contains information about the coroutine.

A tree structure is imposed on coroutine records based on a parent-child relationship. Each
coroutine record has a link Sup that points to its parent coroutine record, i.e., the coroutine that
created it. The link $down points to the first-created (oldest) child. $right points to the next
younger sibling, and $left points to the next older sibling.

The Sup, $down, $left, and $right links are "structural" links in that they depend on the order of
coroutine creation. In addition, $coroutine records are maintained on a "dynamic" list by

- 47-

MAINSAIL Language

POINTER (node) nextNodei
POINTER ($coroutine) processCoroutine;

PROCEDURE generateNextNode;
BEGIN

DOB
nextNode :=
$resumeCoroutine(processCoroutine);

END;
END;

PROCEDURE processNextNode;
BEGIN
POINTER ($coroutine) p;

processCoroutine := $thisCoroutine;
p := $createCoroutine(thisDataSection,"generateNextNode");
DOB

$resumeCoroutine(p);
... use nextNode here
END;

$killCoroutine(p);

END;

Example 17-1. Generator/Processor Coroutines

means the $prev and $next links. Each time a coroutine is resumed, it is moved to the head of
this list. The head of the list is pointed to by the predeclared variable $thisCoroutine, so that
$thisCoroutine points to the record for the currently executing coroutine, and
"$thisCoroutine.$next" points to the coroutine that most recently resumed the current one.

17.2. Coroutines and Exceptions

A parameter to $raise may be used to initiate handling of an exception in a coroutine other than
the current one.

-48 -

MAINSAIL Language

Exceptions not handled in a child coroutine are propagated to the coroutine's ancestors; first to
its parent, then its grandparent, and so on, until the root coroutine "MAINSAIL" is reached.
$raiseReturn erases traces of the current exception in all affected coroutines and resumes the
coroutine from which the exception was raised.

- 49-

MAINSAIL Language

18. Files

A file is an ordered series of data with a beginning position, a current position, and possibly an
ending position. A file may reside on some external medium (e.g., an operating·system's file
structure) that is not defined by MAINSAIL or under MAINSAIL's complete control.

Some files may exist independently of the execution of a program, so that a program can create
a file that can later be accessed by another program. Thus, files can provide continuity from
one program execution to another.

Every file has a name, which is represented in a MAINSAIL program as a string.

MAINSAIL distinguishes between "text files" and "data files". A text file is composed of
character units, a data file of storage units. MAINSAIL also distinguishes two methods of
access to a file: sequential and random. The current position in a sequential file is updated to
point to the next datum as each datum is read or written, in order, starting from the beginning.
The current position of a random file may be explicitly changed to be anywhere within the file
by means of the procedure "setPos".

18.1. File VO

System procedures are provided for opening, closing, deleting, and renaming files, for reading
from a file, and for writing to a file.

Before a file can be used by a program, it must be "opened" by a call to the system procedure
"open" .. Arguments to the open procedure specify the file name and indicate how the file is to
be accessed (sequentially or randomly, for input and/or output, etc.). A file is "closed" by a call
to the system procedure "close" to indicate that it will no longer be used by the program, unless
opened again.

A file is referenced in a MAINSAIL program with a pointer returned by the open procedure.
The pointer belongs to one of the predeclared classes "textFile" or "dataFile".

18.2. Text Files

When a (long) integer, (long) real, or (long) bits value is written to a text file (with the system
procedure "write"), an automatic conversion is made to the appropriate string representation of

- 50-

MAINSAIL Language

that value, and then the string is written to the file. MAINSAIL does not insert any additiorial
characters such as blanks or tabs, so that the user has full control over the layout of the file.

When the non-string data types are read from a text file (with the system procedure "read"), a
scan for an appropriate string representation takes place, and when found, a conversion is made
to the appropriate internal representation.

A string is read from a file by using "read", which gets the next line; "fldRead", which reads a
string of a specified width; or "scan", which employs a scan table to break on a specified set of
characters.

18.3. Terminal 110

"TIY" is the file name associated with the user's terminal, or with the operating-system
dependent standard input. "ttyRead" and "ttyWrite" are system procedures used for explicit
communication with "TIY". ttyRead reads a line typed by the user, and ttyWrite writes a
string to the tenninal.

18.4. Memory Files and Data Sinks

Files maintained in memory may be accessed with any name beginning with "MEM>" (except
that the ">" character may be replaced with another character on some operating systems). A
data sink file may be accessed with a name beginning with "NUL>". Data written to such a file
are discarded; on input, a data sink file always acts as if end-of-file had been reached.

- 51 -

MAINSAIL Language

19. Areas

Areas provide a method for precise control of memory management. Data structures (records,
arrays, data sections, and string text) may be grouped into areas, and the memory management
of each area controlled separately. Areas are appropriate for programs that deallocate large
conglomerations of data at a time. Careless use of areas, however, can cause bugs that are very
difficult to track. Programs can be written without reference to areas; the use of areas is purely
an optimization.

19.1. Advantages of Areas

An area can contain a single large, complex data structure. When the data structure is no
longer needed, the entire area can be disposed. The disposal of an entire area has several
advantages over individually disposing each chunk (record, array, or data section) in it:

• It is faster.

• Entire pages become free, rather than individual chunks (the memory manager makes
better use of free pages than of free chunks).

• It is easy to be sure that entire data structure has been freed.

An area may also be marked as not subject to garbage collection. This is useful if no garbage is
being generated in the data structures in the area, since garbage collections can be shorter.

19.2. Area Facilities

Procedures are provided to allocate areas, clear them (remove all data from them), and
deallocate them. Parameters are provided to most procedures that allocate chunks or string text
to specify the area into which the data are to go. If the area parameters are omitted, data
automatically go into the common area, $defaultArea.

19.3. Area Caveats

To avoid bugs that are difficult to track and reproduce, the programmer must be careful about
the following:

- 52-

MAINSAIL Language

• A pointer or string referencing data in a disposed area is said to be "dangling" .. Use
of a dangling pointer or string has undefined effects:

• A program must not pass to a system procedure or macro or assign to a system
variable any pointer or string referencing data in an area that is to be disposed or
cleared before MAINSAIL exits.

Because these rules are not always easy to follow, the use of areas is recommended only for
experienced programmers writing programs in which the benefits of areas are really needed.

- 53 -

MAINSAIL Language

20. System Procedures, Macros, and Variables

Predefined procedures, macros, and variables provide services that support the execution of
MAINSAIL programs. Much of the power of MAINSAIL comes from the large number of
system procedures.

20.1. System Procedures, Variables, and Macros Summary

Table 20.1-1 contains a summary of all MAINSAIL system procedures, variables, and macros.

open
$reOpen
close
$closedFile

open a file
open a file with new open bits
close a file
determine whether a file has been closed

$createUniqueFile

$devModBrk
$devModBrkStr

$delete
$ rename

$CopyFile

$truncateFile

getPos
setPos
relPos
$getEofPos

create file with unique name

device module name break character
string consisting of $devModBrk

delete a file
rename a file

copy (part of) one file to another-

truncate a file to given length

get file position
set file position
set relative file position
get end-of-file position of byte-stream
file

Table 20.1-1. System Procedures, Macros, and Variables Summary (continued)

- 54-

MAINSAIL Language

eof

$gotValue

read
write

true when positioned at or beyond
end-of-file
determine if actually read last value;
better way of checking for end-of-file

read values
write values

$storageUnitRead
read a number of data efficiently from a
file

$storageUnitWrite
write a number of data efficiently to a
file

$characterRead read a number of characters efficiently
from a file

$characterWrite write a number of characters efficiently
to a file

$pageRead
$pageWrite

cRead

cWrite

read a page of data from a file
write a page of data to a ~ile

read a character from file, string, or
charadr
write characters to file, string, or
charadr

$clearFileCache uncache all or part of file
$queryFileCacheParms

information about file cache
$setFileCacheParms

$concat
$dup
reRead

reWrite

control file cache

concatenate strings (same as n&n operator)
perform mUltiple concatentations
reverse character read (from the end of
a string)
reverse character write (to the beginning
of a string)

Table 20.1-1. System Procedures, Macros, and Variables Summary (continued)'

- 55-

MAINSAIL Language

fldRead
fldWrite

ttyRead
ttyWrite
ttycWrite

$removeBoolean
$removeBits
$removelnteger
$removeReal

confirm
cmdMatch
errMsg

cmdFile
logFile

read a string field
write a string field

read a line from "TTY"
write values to "TTY"
write characters to "TTY"

parse boolean string
parse bits string
parse integer string
parse real string

get yes/no confirmation
match a command (command recognition)
raise an exception and/or write a message
and get a ~esponse

standard input file
standard output file

enterLogicalName
establish logical file name

lookUpLogicalName
find logical file name

$setSearchPath set file searchpath

$globalLookup
$globalEnter
$globalRemove

look up global symbol
enter global symbol
remove global symbol

$registerException
register an exception name so that it can
be raised in response to an errMsg prompt

$deRegisterException

$newException

$raise
$raiseReturn

undo $registerException

assign a unique exception name

raise an exception
terminate an exception handler

Table 20.1-1. System Procedures, Macros, and Variables Summary (continued)

- 56-

MAINSAIL Language

$exceptionBits return infor.mation about current exception
$exceptionName return name of current exception
$exceptionCoroutine

return raising coroutine of current
exception

$exceptionPointerArg
return pointer argument of current
exception

$exceptionStringArgl, $exceptionStringArg2

scanSet
$scanSet
scanRel

scan

return a string argument of current
exception

set up scan bit
set up scan integer
release scan bits or integers

scan a file or string according to a
scan specification

$removeLeadingBlankSpace, $removeTrailingBlankSpace
remove blank space from string

$removeWord remove non-blank chars from string

$formParagraph fill and justify string

Table 20.1-1. System Procedures, Macros, and Variables Summary (continued)

- 57-

MAINSAIL Language

$cvbo
evi
evli
evr
evlr
evb
evlb
evs
cvp
eva
evc
cvAry
evcs

cvu
cvl

$length

first
last

length

compare

equ

isLowerCase

isUpperCase

isAlpha

convert to boolean
conve,rt to integer
convert to long integer
convert to real
convert to long real
convert to bits
convert to long bits
convert to string
convert to pointer
convert to address
convert to charadr
convert to array
convert a character code
single-character string
convert to upper case
convert to lower case

length of result of cvs

to a

first character of a string
last character of a string

number of characters in a string

-1, 0 or 1 as result of (optionally
"caseless") comparison of two strings

checks (optionally "caseless") equality
of two strings

true if argument is a lowercase letter
("a" through "z")
true if argument is an uppercase letter
("A" through "Z")
true if argument is a letter ("A" through
"Z" or "a" through "z")

Table 20.1-1. System Procedures, Macros, and Variables Summary (continued)

- 58 -

MAINSAIL Language

next Alpha

prevAlpha

iSNul

copy

clear

newUpperBound

alphabetically next character after
argument character
alphabetically previous character before
argument character

true if argument is a "null" character

copy a record, array, memory, or
characters
clear a record, array, memory, or
characters

adjust the upper bound of a
one-dimensional array

$adrOfFirstElement

new
$newRecords
dispose

bind
unBind

$canFindModule

$isBound

$invokeModule

get the address of the first element of an
array

allocate a record, array, or data section
allocate multiple records
dispose of a record, array, data section,
or module

bind a module
unbind a module

whether a module can be allocated without
error
whether a module is already bound

invoke a module the way MAINEX does

$useProgramInterface
true if bound because an interface
procedure called

$programName name under which MAINSAIL was invoked
$getCommandLine get program arguments
$setCommandLine set program arguments

Table 20.1-1. System Procedures, Macros, and Variables Summary (continued)

- 59-

MAINSAIL Language

thisDataSection return poi'nter to current data section
$moduleName return name of module, given data section

pointer

$searchCallChain

$writeCalls

$fieldInfo

$className
$classInfo

$dscrPtr
$classDscrFor

$isArray

$createClassDscr

$createRecord

openLibrary
closeLibrary

setMociName
relMociName

setFileName
relFileName

exit
fastExit

$setExitCode

find caller from particular module

show call stack of coroutine

return information about a record or
data section field
ret'urn name of class of a pointer
return names and types of record or
data section fields
class descriptor for pointer
class descriptor for a given class

true if pointer points to an array

create a new class at runtime
create a record given a class descriptor

open a module library file
close a module library file

set a module name association
release a module name association

set a module file name association
release a module file name association

orderly exit from MAINSAIL
fast exit from MAINSAIL

set exit code for operating system

Table 20.1-1. System Procedures, Macros, and Variables Summary (continued)

- 60-

MAINSAIL Language

floor

ceiling

truncate

abs

bMask
IbMask

sin
cos
tan
Scot
aSin
aCos
aTan
$atan2
sinh
cosh
tanh
exp
In
log
sqrt

$log2

$hash

largest (long) integer not exceeding a
(long) real
smallest (long) integer not exceeded by a
(long) real
truncate a (long) real to a (long) integer

absolute value ofa (long) integer or
(long) real
form a bits mask (sequence of I-bits)
form a long bits mask (sequence of I-bits)

(long) real sine
(long) real cosine
(long) real tangent
(long) real cotangent
(long) real arcsine
(long) real arccosine
(long) real arctangent
(long) real two-argument arctangent
(long) real hyperbolic sine
(long) real hyperbolic cosine
(long) real hyperbolic tangent
(long) real exponential
(long) real natural logarithm
(long) real base-IO logarithm
(long) real square root

truncated base 2 logarithm of constant

compute hash code

size size of a class or data type
$ioSize size of data type when written to file
$bitsPerStorageUnit

bits in a storage unit
$bitsPerChar bits in a character unit

$typeName name of a type, given type code

Table 20.1-1. System Procedures, Macros, and Variables Summary (continued)

- 61 -

MAINSAIL Language

displace
displacement,

eol
eop
tab
$nulChar

displace a pointer, address, or charadr
IDisplacement

distance from one address or charadr to
another

end-of-line string
end-of-page string
tab string
null character

$pageSize storage units per page
$charsPerPage character units per page
$charsPerStorageUnit

(x) Load
cLoad
store

newString

$getToTop
$getlnArea

newPage
pageDispose

character units per storage unit

load a value (of type x) from an address
load a character from a charadr
store a value into an address or charadr

make a string from a charadr and an
integer (length)

put a string at top of string space
put a string in an area's string space

get some pages
dispose of pages

newScratch get some scratch space
$newScratchChars

get some scratch space measured in chars
scratchDispose dispose of scratch space

$date
$time
$dateAndTime
$setTheDate

get the date
get the time
get the date and time simultaneously
set the date, if necessary

Table 20.1-1. System Procedures, Macros, and Variables Summary (continued)

- 62-

MAINSAIL Language

$assembleDate

$assembleTime

convert year-month-date combination into
standard representation
convert hour-minute-second combination
into standard representation

$assembleDateAndTime
combined $assembleDate and $assembleTime

$disassembleDate
convert standard representation into
year-month-date combination

$disassembleTime
convert standard representation into
hour-minute-second combination

$disassembleDateAndTime
$disassembleDate and $disassembleTime

$dateToStr convert date representation to string
$timeToStr convert time representation to string
$dateAndTimeToStr

combined $dateToStr and $timeToStr
$strToDate convert string to date representation
$strToTime convert string to time representation
$strToDateAndTime

combined $strToDate and $strToTime
$removeDateAndTime

parse date and time string

$addToDateAndTime
add two dates and times

$dateAndTimeDifference
subtract two dates and times

$dateAndTimeCompare

$dateFormat
$timeFormat

compare two dates and times

whether date is GMT, local, or difference
whether time is GMT, local, or difference

$convertDateAndTime
convert GMT time to local or vice versa

$t imeSubcommands Set
whether GMT conversion info available

Table 20.1-1. System Procedures, Macros, and Variables Summary (continued)

- 63-

MAINSAIL Language

$cpuTime get system-dependent CPU time for current
program

$cpuTimeResolution
number of $cpuTime units per second

$timeout pause for specified period

$userID return the system-dependent user ID, if
available

$cpuIO return the system-dependent CPU 10, if
available

$currentDirectory

$homeDirectory
$directory
$filelnfo

$modulelnfo

name of system-dependent current working
or connected directory or catalog
home directory or catalog of current user
list files in a directory
return information about a file

information about objmod

$collect perform a garbage collection
$checkConsistency

$addMemMngModule

verify that MAINSAIL data structures are
in order

specify module to invoke before memory
management operations

$removeMemMngModule
undo $addMemMngModule

$collectLock used to prevent/permit garbage collections

$overheadPercentExitValue
used to prevent thrashing

Table 20.1-1. System Procedures, Macros, and Variables Summary (continued)

- 64-

MAINSAIL Language

$areaOf
$clearArea
$clearStrSpc
$defaultArea

deter.mine area of pointer or string
empty an area
empty an area's string space
default area

$disposeArea reclaim an area
$disposeDataSecslnArea

dispose only data sections in area
$findArea find area with given title
$inArea deter.mine if pointer or string in given

area
$newArea allocate area

$createCoroutine
create a coroutine

$resumeCoroutine
continue or start execution in a coroutine

$killCoroutine get rid of a coroutine
$killedCoroutine

$moveCoroutine
$findCoroutine

$thisCoroutine

deter.mine whether a coroutine has been
killed
move coroutine to another point in tree
return a pointer to a coroutine record,
given its name
current coroutine

$majorVersion, $minorversion
get MAINSAIL version number

$maxChar maximum character code
$maxInteger maximum integer
$maxLongInteger maximum long integer
$minlnteger minimum integer
$minLongInteger minimum long integer

Table 20.1-1. System Procedures, Macros, and Variables Summary (continued)

- 65-

MAINSAIL Language

$platformNameAbbreviation, $platformNameFull,
$platfOrmNumber

identify target platform
$ systemNameAbbreviat ion, $systemNameFull, $systemNumber

identify target operating system
$processorNameAbbreviation, $processorNameFull,

$processorNumber
identify target processor

$attributes attributes of target system

$charSet character set of target operating system

$preferredRadix "natural" radix for addresses, etc.

$compileTimeValue
information about current compilation

$thisFileName file name currently being compiled

$clrConfigurationBit
clear bit governing runtime system

$clrSystemBit clear bit governing runtime system
$setConfigurationBit

set bit governing runtime system
$setSystemBit set bit governing runtime system
$tstConfigurationBit

$tstSystemBit
examine bit governing runtime system
examine bit governing runtime system

Table 20.1-1. System Procedures, Macros, and Variables Summary (end)

- 66-

MAINSAIL Language

21. Sample MAINSAIL Code

The code for a subset of the MAINSAIL utility HSHMOD is shown in Example 21-2. A
program uses HSHMOD by creating a separate HSHMOD data section for each hash table.
The header declarations for this subset of HSHMOD are shown in Example 21-1. The
declarations for the full HSHMOD are stored in the MAINSAIL system source library, and
may be picked up by a user program with:

REDEFINE $scanName = "hshHdr"; SOURCEFILE "(sys~em library)";

* prefix class for hashed records
CLASS hashedRecord (

STRING key;
POINTER (hashedRecord) link;

) ;

* explicit class so user can classify pointers to it
CLASS hshCls (

) ;

PROCEDURE hashInit
PROCEDURE hashEnter

(OPTIONAL INTEGER tableSize) ;
(POINTER (hashedRecord) p);

POINTER (hashedRecord)
PROCEDURE hashLookUp (STRING key);
POINTER (hashedRecord)
PROCEDURE hashRemove (STRING key);
POINTER (hashedRecord)
PROCEDURE hashNext (POINTER (hashedRecord) p);

MODULE (hshCls) hshMod;

Example 21-1. HSHMOD Declarations

- 67-

MAINSAIL Language

BEGIN "hshMod"

#: this module maintains a general-purpose hash table

REDEFINE $scanName = "hshHdr"; it pick up interface
SOURCEFILE "(system library)"; it declarations

DEFINE
numCharsToHash
defaultTableSize

INTEGER numberOfHashLists;

4,
131;

POINTER (hashedRecord) ARRAY(O TO *) hashList;

#:

* * * * * * * * #:

* #:

0

1

2

3

+-------+
I

+-------+

+-------+
I I
+-------+
I I
+-------+

#: +-------+

---> linked list
whose keys

---> linked list
whose keys

---> linked list
whose keys

---> linked list
whose keys

of all records
hash to 0

of all records
hash to 1

of all records
hash to 2

of all records
hash to 3

PROCEDURE hashInit (OPTIONAL INTEGER tableSize);
BEGIN
IF tableSize LEO 0 THEN tableSize := defaultTableSize;
new(hashList,O,tableSize - 1);
numberOfHashLists := tableSize;
END;

Example 21-2. HSHMOD Source Text (continued)

- 68-

MAINSAIL Language

INTEGER PROCEDURE hash (STRING key);
BEGIN
INTEGER h,i,ji

'* s hashes to
'* (length(s) + 3 * charI + 5 * char2 +
'* 7 * char3 + 9 * char4)
'* MOD numberOfHashLists

'* '* where chari represents ith character of s

h := length(keY)i i := h MIN numCharsToHashi j := 1;
WHILE i .- 1 GEQ 0 DO h .+ cRead(key) * (j .+ 2);
RETURN(h MOD numberOfHashLists) END;

POINTER (hashedRecord) PROCEDURE search
(STRING key;

BEGIN

PRODUCES OPTIONAL INTEGER hashValue;
PRODUCES OPTIONAL POINTER(hashedRecord)

beforeTarget);

POINTER (hashedRecord) target;

'* general-purpose search procedure

IF NOT hashList THEN hashlniti * automatic initialization
hashValue := hash(key);
beforeTarget := NULLPOINTERi
target := hashList[hashValue]i
WHILE target AND target.key NEQ key DOB

beforeTarget := target; target := target.link END;
RETURN (target) END;

Example 21-2. HSHMOD Source Text (continued)

- 69-

MAINSAIL Language

PROCEDURE hashEnter (POINTER (hashedRecord) p);
BEGIN * enter p at front of its hash list
INTEGER h;
IF NOT hashList THEN hashInit;
IF p THENB

h :- hash(p.key); p.link :- hashList[h];
hashList[h] := pEND

EL errMsg(nhashEnter: argument is NULLPOINTERn) END;

POINTER (hashedRecord) PROCEDURE hashLookUp (STRING key);
RETURN(search(key»; * return record with given key * (Zero if not found)

POINTER (hashedRecord) PROCEDURE hashRemove (STRING key) i

BEGIN # remove record with given key
INTEGER hi
POINTER (hashedRecord) target,beforeTarget;
IF target :- search(key,h,beforeTarget) THEN

IF beforeTarget THEN beforeTarget.link :- target. link
EL hashList[h] :- target.link;

RETURN (target) END;

POINTER (hashedRecord) PROCEDURE hashNext
(POINTER (hashedRecord) p);

BEGIN
OWN INTEGER hi
POINTER (hashedRecord) qi

generate next record in hashList (successive calls
starting with p - NULLPOINTER will generate all records, * then NULLPOINTER)

Example 21-2. HSHMOD Source Text (continued)

-70 -

MAINSAIL Language

IF NOT P THEN h := -1
EF q := p.link THEN RETURN(q)
EL h := hash(p.k~y);
DOB IF h .+ 1 GEQ numberOfHashLists THEN

RETURN(NULLPOINTER);
IF p := hashList[h] THEN RETURN(p) END END;

END "hshMod"

Example 21-2. HSHMOD Source Text (end)

-71 -

MAINSAIL Language

-72 -

MAINSAIL Language

The MAINSAIL Environment

22. The MAINSAIL Compiler

The MAINSAll... compiler translates MAINSAll... source text into ready-to-run object modules.
The compiler has a full set of subcommands governing characteristics of the output object
module. Compiler subcommands are listed in Table 22-1.

22.1. Code Generators

The MAINSAll... compiler uses a separate code generator for each hardware architecture. Each
code generator module is of the same class and is dynamically selected and bound during the
execution of the compiler. Since each code generator is written in MAINSAIL, any code
generator can be used on any computing system. This provides for universal cross
compilation.

The platforms on which MAINSAll... runs at the time of this writing are shown in Table 22.1-1.
XIDAK is constantly adding new systems to the list.

22.2. Disassemblers

Corresponding to each code generator, XIDAK supplies a disassembler capable of producing a
text file that shows the original MAINSAll... source text interspersed with a mnemonic listing of
the machine code generated by the compiler. This permits the user to evaluate the quality of
the code emitted by the compiler and to compare the relative efficiency of different constructs.

22.3. Foreign Language Interface

MAINSAIL programmers can easily interface to code written in other programming languages
through the facility called the Foreign Language Interface (FLD. The programmer supplies the
FLI with a description of the foreign entry points, and the FLI automatically generates interface
code that is linked with a MAINSAIL bootstrap and the foreign object module.

-74 -

MAINSAll... Compiler

Subcommand
ABORT
ACheck

ACHECKALL
ALIST
Check

CHECKALL
CMDLINE s

DEBUG

FLDXREF {f}

FLI s
GENcode
GENINLINES
INCREMENTAL

ININTLIB f
INOBJFILE f
INOBJLIB f

ITFXREF { f}

LOG
MODTIME
MONITOR

OPtimize
OPtimize p

OPTIMIZEALL

Description
Abort this compilation
Set default to emit code to catch

arithmetic overflow, etc.
ACHECK unconditionally
Allow disassembly
Set default to emit code to catch

subscript errors, etc.
CHECK unconditionally
Add s to the end of the cmdLine list

(nonsticky)
Make this module debuggable, and turn on

INCREMENTAL

Write field cross reference {to file f
(nonsticky) }

Generate code for foreign interface s
Generate code
Generate bodies for inline procs
Allow output to be incrementally

recompiled
Input intmod is in library f
Input objmod is in file f (nonsticky)
Input objmod is in library f

Write interface cross reference {to file
f (nonsticky)}

Show log info
Measure time spent in this module
Turn on PER{MOD,PROC,STMT} and

{MOD,PROC}TIME
Set default to optimize all procs
Optimize procs p = pl p2 ... pn

(nonsticky)
Optimize all procs

Table 22-1. MAINSAIL Compiler Subcommands (continued)

-75 -

MAINSAIL Compiler

OUTINTFILE f
OUTINTLIB f
OUTOBJFILE f
OUTOBJLIB f
PERMOD

PERPROC

PERSTMT
PROCS

PROCTIME
RECOMPILE P

REDEFINE x Y
RESPONSE
RPC {C}

SAVEON {f}

SLIST {f}

SUBCOMMAND s
TARGET s

UNBOUND
it s

Output intmod to file f (nonsticky)
Output intmod to library file f
Output objmod to file f (nonsticky)
Output objmod to library file f
Count total statements executed in the

module
Count total statements executed in each

proc
Count times each statement is executed
Show names of procs as they are parsed and

generated

Measure time spent in each proc
Recompile procs p = pl p2 ... pn

(nonsticky)
Do $GLOBALREDEFINE x = [y];
Get user response to error messages
generate code for remote procedure call

{in C}
Create intmod containing all compiler

info {save on file f}
Write source listing {to file f

(nonsticky) }
Execute MAINEX subcommand s
Generate for target system s

Nonbound-invocation module
A comment (s is ignored)

Table 22-1. MAINSAIL Compiler Subcommands (continued)

-76 -

MAINSAIL Compiler

NOACheck Turn off ACHECK
NOACHECKALL' Turn off ACHECKALL
NOALIST Turn off ALIST
NOCheck Turn off CHECK
NOCHECKALL Turn off CHECKALL
NODEBUG Turn off DEBUG and INCREMENTAL
NOFLDXREF Turn off FLDXREF
NOGENcode Turn off GENCODE
NOGENINLINES Turn off GENINLINES
NO INCREMENTAL Turn off INCREMENTAL
NOININTLIB Turn off ININTLIB
NOINOBJLIB Turn off INOBJLIB
NOITFXREF Turn off ITFXREF
NO LOG Turn off LOG
NOMONITOR Turn off PER{MOD,PROC,STMT} and

{MOD, PROC} TIME
NOOPtimize Turn off OPTIMIZE
NOOPtimize p Do not optimize proc(s) p, where p

pl pn
NOOPTIMIZEALL Turn off NOOPTIMIZEALL
NOOUTINTLIB Turn off OUTINTLIB
NOOUTOBJLIB Turn off OUTOBJLIB
NOPROCS Turn off PROCS
NOREDEFINE Remove all global definitions
NOREDEFINE x Remove global definition(s) of x,

x = xl ... xn
NORESPONSE Turn off RESPONSE
NORPC Turn off RPC
NOSAVEON Turn off SAVEON
NOSLIST Turn off SLIST
NOUNBOUND turn off UNBOUND

For backward compatibility:

LIBRARY f
OUTPUT {f}
NOLIBRARY
NOOUTPUT

Same as GENCODE, OUTOBJLIB f
Same as GENCODE {, OUTOBJFILE f}
Same as NOOUTOBJLIB
Same as NOGENCODE

Table 22-1. MAINSAIL Compiler Subcommands (end)

-77 -

MAINSAIL Compiler

where

Platform
Abbrev.
aeg
aix
alnt

ems
hp20

hp38

hpux
ip32e

ipsc2

ix20

ixfpa

ixpri
sun2

sun3

sun38

sun4
ultrx
vms
xcms

Processor
M68000
System/370
M68000

System/370
MC68020/

MC68881
80386

M68000
Interpro

32C
80386

MC68020/
MC68881

MC68020/
Weitek

PRISM
M68000

MC68020/
MC68881

80386

Platform Name
Apollo's Aegis on Motorola M68000
IBM's AIX on IBM System/370
Alliant's CONCENTRIX on Motorola

M68000
IBM's VM/SP CMS on IBM System/370
HP's HP-UX on Motorola

MC68020/MC68881
SCO's XENIX on HP Vectra with

Intel 80386
HP's HP-UX on Motorola M68000
Intergraph's System V UNIX on

Interpro 32C
Intel's iPSC/2 System V UNIX on

Intel 80386
Apollo's DOMAIN/IX on Motorola

MC68020/MC68881
Apollo's DOMAIN/IX on Motorola

MC68020/Weitek FPA
Apollo's DOMAIN/IX on Apollo PRISM
Sun Mierosystems' SunOS on

Motorola M68000
Sun Microsystems' SunOS on

Motorola MC68020/MC68881
Sun Microsystems' SunOS on Intel

80386
SPARC Sun Microsystems' SunOS on SPARC
VAX-11 DEC's ULTRIX-32 on VAX-11
VAX-11 DEC's VAX/VMS on VAX-11
System/370 IBM's VM/XA SP CMS on IBM

XA System/370

Table 22.1-1. Computer Systems on Which MAINSAIL Is Supported

-78 -

MAINSAIL Compiler

23. MAINDEBUG, the MAINSAIL Debugger

MAINDEBUG is a source-level debugger for MAINSAIL programs. The programmer
interacts with the MAINSAIL source text by using a cursor to indicate the location of
breakpoints.

MAINDEBUG can operate in either line-oriented or display-oriented mode. The display
oriented mode is integrated with MAINEDIT, so that single-keystroke commands move the
terminal cursor over source text statements as they are executed The display-oriented
debugger keeps the source text in one or more windows and displays program output in a
separate window.

When a program generates an error (e.g., an array subscript error), the debugger can be
dynamically invoked to point at the offending statement. It can then be used to examine the
call stack and the values of variables so that the cause of the error can be determined.

MAINDEBUG's command processor is highly flexible because it invokes the MAINSAIL
compiler to process all expressions specified in commands. The debugger is also able to
interpret MAINSAIL statements on the fly; this is useful, for example, to examine the effect of
a procedure called with a certain set of arguments. A breakpoint can be placed at the beginning
of the procedure. and then the procedure can be called by interpreting the call from the
debugger. The user can then step through the procedure.

A summary ofMAINDEBUG commands is shown in Table 23-1.

-79 -

MAINDEBUG

A ary,11,u1,12,u2,13,u3

{+}B{@{m.}i}{[cond]}{:cmds}

{n}{.i}C

{n} .C

.D d1; ... ; dn

E {m}

.F p,f1,f2, ...

H e1,e2, .. .
.H p1,p2, .. .

{l}I

. I i1, i2, ...

{n}J

K n
M
Mm

-M m

.M P

{n}N

show array slice
ary[ll TO u1, ...]

set break at cursor
{or mod m, iUnit i}

continue {at iUnit i},
till nth break

continue at cursor, till
nth break

compile defs or dcls
d1; ... ;dn

execute MAINSAIL exec
{or module m}

V p.fl,p.f2, ... (p can
be unclassified)

hex values of e1,e2, ...
hex values of objects at

p1, p2, ...
display {abbreviated}

debug info
display info about

identifiers
step n times, jump into

procs

break when count = n
set to break context
open module m (m can be

a file name)
close m's intmod and

dispose m's objmod
open module with data

section p
move to nth caller from

current proc

Table 23-1. Debugging Command Summary (continued)

- 80-

MAINDEBUG

{n}-N

in} .N

{n}-.N
o n

OC s
OI s
OL s

{-lOP s

Q
+Q

R

R@m.i

move to nth callee from
current proc

move to where exception
was raised

undo .N command n times
cursor to iUnit n,

current module
open coroutine s
open intmod library s
open objmod library s
set {clear} options s

quit (exit the program)
exit MAINDEBUG
remove break at cursor
remove break at module m,

iUnit i
remove all breaks
step n times, do not

enter procs
{+}T{@{m.}i}{[cond]}{:cmds} same as B, except set

temp break

R@@
{n}S

V e1,e2, ... values of e1,e2, ...

• V p1,p2,... values of objects at
p1, p2, ...

XM a examine memory at
address a

XS s1; ... ;sn execute statements

<ECM>
s1; ... ; sn

enter MAINEDIT
command mode

Table 23-1. Debugging Command Summary (end)

- 81 -

MAINDEBUG

24. MAINEDIT, a Portable Text Editor

MAINEDIT is a portable, display,.oriented text editor that supports simultaneous editing of
multiple files in multiple windows. It supports different keystroke interpreters, or front ends,
including emulators for the popular vi and EDT text editors. MAINEDIT uses a set of "display
modules", each of the same class, to support a number of different display terminals. XIDAK
can implement a display module for a new terminal easily and rapidly.

The first MAINEDIT front end was MAINED, which includes commands that take full
advantage ofMAINEDIT's multiple,.buffer, rilUltiple-window capabilities. The front ends that
emulate other text editors lack some these commands, since they were not present in the
original text editors; however, a MAINEDIT user can invoke any front end's commands from
any other front end, so the MAINED buffer and window commands may be used from the
other editor emulators.

Some of the other features of MAINED include:

• An "Again" command, which repeats the last command.

• Deletion, recovery, and copying of characters, words, lines, or pages.

• Execution of any MAINSAll... program within a MAINEDIT window.

• An "Undo" command, which undoes the last command.

• An "Abort" key, which aborts the current command or macro execution.

• A keyboard macro facility, which allows the user to invoke a series of commands
with a single command character or macro name.

MAINEDIT display modules are currently available for the display terminals listed in Table
24-1.

- 82-

MAINEDIT

MQdule
AM48
AM60
AT386
BIGSUN

BORRO
D400
D460
D460C
DATAME
EWY100
FBORRO
FRAME
FFRAME
HEATH
HP300H
HPTERM
LINDPY
SUN
SUN3
SUN46
TELEVI
TVI9S0
TRMCAP

VISSSO
VT100
VT102
VT102M
WY43
WYSO
WYS043
WY7S

Terminal (s)
48-line Ann ArbQr AmbassadQr
60-line Ann ArbQr AmbassadQr
IBM PC/AT and cQmpatibles
Sun Microsystems workstation, arbitrary

number Qf lines
Apollo Computer workstation
Data General DASHER
Data General D410/460
Data General D410/460, 132 columns
Datamedia 3000, Telemedia
ELXSI-modified Wyse 100
Apollo Computer workstation
ApollQ CQmputer wQrkstation
ApQllQ Computer workstatiQn
Heath (or Zenith) H-19
large-screen Hewlett-Packard terminal
Hewlett-Packard terminals
any terminal; line-oriented
Sun MicrQsystems wQrkstatiQn
Sun MicrQsystems windQw
Sun MicrQsystems wQrkstatiQn, 46 lines
TelevideQ (except mQdel 950)
TelevideQ model 950
any terminal for which infQrmatiQn is

available in a UNIX-style database
Visual 550
VT100
VT102 (VT100 with insert and delete)
VT102 (imperfect emulatQrs)
Wyse WY-60
Wyse WY-SO
Wyse WY-SO, 43-line mQde
Wyse WY-7S

Table 24-1. Available Display Modules

- 83-

MAINEDIT

A complete summary of MAINED commands follows:

Command Mode

nA
QA
+nA
Q+A
-nA
-QA

do
do
do
do
do
do

last
last
last
last
last
last

command again, count = n, original modifier
command again, original count and modifier
command again, count = n, n+" modifier
command again, original count, n+n modifier
command again, count = n, n_n modifier
command again, original count, ,,_n modifier

(n_n direction
(n+n direction

is towards beginning of file)
is towards end of file)
current window .A anchor

+.A anchor at bottom
-.A
n.A
+n.A
-n.A
•• A

Q •• A

Q+ .. A

Q- •• A

anchor at top
anchor, change size to n rows
anchor at bottom, change size to n rows
anchor at top, change size to n rows
unanchor current window
unanchor all windows
unanchor all windows at bottom of screen
unanchor all windows at top of screen

- 84-

MAINEDIT

B break line, remove spaces
nB break line, indent n spaces
QB break line, leave spaces
-B break line, remove spaces, leave cursor
-nB break line, indent n spaces, leave cursor
-QB break line, leave spaces, leave cursor
.Bs edit buffer s, use current window if not on
+.Bs edit buffer s, new window at bottom if not
n.Bs same as " .Bs", except n-row window
+n.Bs same as "+.Bs", except n-row window
-.Bs edit buffer s, new window at top if not on
-n.Bs same as "- .Bs", except n-row window
--{n} .Bs

overlay (n-row) window at top
++{n} .Bs

overlay (n-row) window at bottom
.. {n }Bs

screen
on screen

screen

edit s, making window l/mth of screen, where m is the
number of windows; but no window is allowed to be
smaller than n lines

Q.Bs
Q •• Bs
+Q .. Bs
-Q .. Bs

change bufferName of current buffer to s
change command front end to s
change command and view front ends to s
kill front end s

nC[CIWILIP]
QC[CIWILIP]
-nC[CIWILIP]
-QC[CIWILIP]
n.C
Q.C
eM

copy n objects at and after
copy all objects at and after
copy n objects before
copy all objects before
center n lines at and after
center all lines at and after·
push savedMode onto mode stack

nD[CIWILIP] delete n objects at and after
QD[CIWILIP] delete all objects at and after
-nD[CIWILIP] delete n objects before
-QD[CIWILIP] delete all objects before
(".D" copies text into delete buffer, but does not delete it;
" .. D" deletes text, but does not copy it into the delte buffer)

E escape to caller, if any
QEs execute module s (dispose-bind-unbind)
.E show name of currently executing module
Q.E show names of all executing modules

- 85-

MAINEDIT

F
+F
QF

prompt to save altered buffers, then continue

-QF
.Fs
+.Fs
n.Fs
+n.Fs
-.Fs
-n.Fs
--{n} .Fs

change autoSaveLimit (0 means no autoSave reminder)
If a program invoked with "QE" is running, raise the
exception $abortProgramExcpt; otherwise, exit from
MAINEDIT, continuation not allowed
prompt to save altered buffers, then pause
edit file s, use current window if not on screen
edit file s, new window at bottom if not on screen
same as ".Fs", except n-row window
same as "+.Fs", except n-row window
edit file s, new window at top if not
same as "-.Fs", except n-:t;:'ow window

on screen

overlay (n-row) window at top
++ {n} .Fs

overlay (n-row) window at bottom
.. {n}Fs edit s, making window l/mth of screen, where m is the

number of windows; but no window is allowed to be
smaller than n lines

Q.Fs

G
-G
p.lG
.G
.lG
pG
+nG

change fileName of current buffer to s

go to first line of next page
go to first line of previous page
go to page p, line 1
go to first line of current page
go to line 1 of current page
go to first line of page p
first line of current page + n

-nG first line of current page - n
(start with "Q" to set mark ("@" command) before going)

nH
QH
-nH
-QH

I

lIB
nICc
QICc
lIF
nIL
QIL
. I
n.r

undo previous n changes
undo all changes on current line
redo next n changes
redo all changes on current line

enter insert mode
insert a buffer (name is asked)
insert n c's (n required)
insert c's to right margin
insert a file (name is asked)
insert n blank lines (n required)
insert blank lines to end of window
insert blank line, enter insert mode
insert blank line, indent n spaces, enter insert mode

- 86-

MAINEDIT

nJ join next to current line, n separating spaces
QJ join next to current line, leave spaces
-nJ join current to previous line, n separating spaces
-QJ join current to previous line, leave spaces
.J fill current paragraph to right margin of

window
n.J fill n lines
+.J fill and justify to right margin of window
-.J fill starting at cursor column
Q.J fill all remaining paragraphs in buffer
.mJ fill to right margin (justify) n column m
nQ.J fill next n paragraphs
(All modifiers may be combined; i.e., nQ+-.m.J means fill next n
paragraphs from cursor column, justifying to column m) .

nK delete (kill) n characters at and to right
QK delete all characters at and to right
-nK delete n characters to left
-QK delete all characters to left
.K prompt to kill each buffer (prompts to save)
Q.K kill one buffer (prompts for name)
.. K kill a character without copying into delete buffer

nL[CIWIL] make n objects lower case
QL[CIWIL] make all objects lower case

nM[CIWILIP] move current object n further
QM[CIWILIP] move current object to end
-nM[CIWILIP] move current object n before
-QM[CIWILIP] move current object to start
.M[CIWIL] mark the appropriate delete buffer

ON refresh message line
nN refresh n lines at and below in current window
-nN refresh n lines above in current window
QN refresh entire screen
Q.N refresh current window

o
nOCc
QOCc
.0
-.0
.O?

enter overstrike mode
overstrike n c's (n required)
overstrike c's to right margin
set editor option
clear editor option
show option ~ettings

- 87-

MAINEDIT

P insert page mark above

Q emphasize the command

R[CIWILIP]
nR[CIWILIP]
QR[CIWILIP]
(" .R" means

RM
.RM
QRM

nSc skip
+Sc skip
-nSc skip
-+Sc skip
QnSc skip
Q+Sc skip
-QnSc skip
Q+Sc skip
(a "cn-line
A <sp>-line

recall and insert group of objects
recall and insert n objects
recall and insert all objects to mark

leave in delete buffer)
pop mode stack into curMode
set curMode to top of mode stack (not popped)
set curMode to savedMode

right to nth occurrence of character "c"
over c's
left to nth occurrence of character "c"
left over c's·
down to nth "c"-line
down to next line not starting with C
up to nth "c"-line
up to next line not starting with c

is a line with first visible char equal to "e".
is one with no visible characters.)

Ts<eol> search right and all lines down for s ...
T<eol> search right and all lines down for last target(s)
nTs<eol> search right and n-l lines down for s
QTr<eol>s ... <eol><eol>

search right and all lines down for r or s or
QnTr<eol>s ... <eol><eol>

search right and n-l lines down for r or s or
(-T searches left and up)
(qualifying with "+" wraps around buffer beginning or end)
(qualifying with "QQ" makes into a line search)
("{-}.T" is an "identifier" search, i.e. the target cannot be
bordered by an alphabetic or digit)

u

v
Q •• Vs

same as "L", except convert to upper case

give character position, prompt for new one
change view front end to s

- 88-

MAlNEDIT

w
nW
QW
-w
-nW
-QW
n.W
-n.W

nX
-nX
QnX
-QnX

nY
-nY
QY
QnY
+QY
+QnY
-QY
-QnY
n.Y
-n.Y
Q.Y
-Q.Y

scroll up 4/5 of a window
scroll up n lines
scroll up all lines
scroll down 4/5 of a window
scroll down n lines
scroll down all lines
move current line to line n from top of window
move current line to line n from bottom of window

move to column n of window (x-coordinate)
move to window width - n + 1
put right margin at column n (from line origin)
put left margin at column n (from line origin)

move to row n of window (y-coordinate)
move to row n of window, count from bottom up
set current window to maximum size
set number of window rows to n (n 0 kills window)
expand window to bottom of screen
expand window n rows
synonym for QOY
contract window n rows
move cursor to nth next window on screen
move cursor to nth previous window on screen
move cursor to bottommost window on screen
move cursor to topmost window on screen

Z same as "S", except delete skipped objects
(".Z" means do not delete, but put into delete buffer;

n •• z" m~ans delete, but do not put into delete buffer)

n<bs>
Q<bs>

move left n columns
move to left margin

n<tab> move cursor to nth next tab stop
-n<tab> move cursor to nth previous tab stop
Q<tab> set tab stops

n<lf>
Q<lf>

move down n rows
move to last row

<abort> abort current command, enter command mode

n<eol> move to left margin of nth next line
-n<eol> move to left margin of nth previous line

- 89-

MAINEDIT

n<sp> move right n columns
Q<sp> move to last column
(equivalent to ">")

'n
'Bn
'Hn
'On

insert
insert
insert
insert

character
character
character
character

n (move left n words

with
with
with
with

decimal code "n"
binary code "n"
hexadecimal code "n"
octal code "n"

n. (move to one past end of nth word to left
Q(move to first visible character of line

n) move right n words
n.) move to one past end of (n-1) st word to right
Q) move to after end of line

invoke named macro

Ix . •• I define x to be ... , where x is a macro name
(... is carried out as it is typed in)

n<
Q<

Q=
+Q=

n>
Q>

.@
@

Q@

n\
Q\

Q"

n
Q

move left n columns
move to first column

show line info
show buffer info
show buffer info with front end info

move right n columns
move' to last column

set mark to current location
go to marked location
set mark, go to previously marked location

move down n rows
move to bottom row of window

move up n rows
move to top row of window

move left n columns
move to left margin

- 90-

MAINEDIT

n.+v<eol> An := An + v
n.-v<eol> An := An - v
-n.-v<eol> An .= v - An
n.*v<eol> An := An * v
n. /v<eol> An := An / v
-n./v<eol> An .= v / An
n.""v<eol> An := An .,., v (raise An to the power v)
-n.""v<eol> An := v

.,.,
An (raise v to the power in An)

n. v<eol> An := v (and set An's format to v's)
n.= Display value of accumulator n
Q.= Display value of all active accumulators

Overstrike Mode

<bs>, move left 1 column, except end of previous line

<tab>
<If>
<eol>

if at left margin
overstrike spaces to next tab stop
move down 1 row
move to left margin of next line

Insert Mode

<bs>
<tab>
<If>
<eol>

move left 1 column
insert spaces to next tab stop
move down 1 row
break line, move cursor to start of new line
delete character to left, except join current line to
previous line if at left margin (like "-QJ" command)

- 91 -

MAINEDIT

25. MAINPM, the MAINSAIL Performance Monitor

MAINPM is a performance monitor for MAINSAIL programs. Once a MAINSAIL program is
functionally correct, MAINPM can be used to isolate performance problems. MAINPM lets
the programmer examine the time used by a program in different degrees of granularity, based
on module, procedure, or statement Program execution can also be sampled with periodic
interrupts. Consumption of string and chunk (array, record, and data section) space can be
monitored. MAINPM can produce both deep and shallow information as well as a source
listing annotated with statement counts.

Sample MAINPM output is shown in Examples 25-1 and 25-2.

NAME SHALLOW TIME DEEP TIME STMT COUNT
(mod or mod.proc) (seconds) (%) (seconds) (%)
----------------- --------- --------- ----------
NUMBER. FIBONACCI 45.057 99.64 45.057 99.64 485570
NUMBER.F .003 .01 .003 .01 22
NUMBER.INITPROC .002 .00 45.169 99.89 9
NUMBER.IFACTORIAL .000 .00 .000 .00 12

Total execution time: 45.221 seconds

Example 25-1. Timing and Statement Counts Table

- 92-

MAINPM

STATEMENT COUNTS

SOURCE FILE: number

BEGIN "number"

LONG INTEGER PROCEDURE iFactorial (INTEGER n) ;
BEGIN
LONG INTEGER total;
INTEGER i;

1 total := 1L;
1 FOR i := 2 UPTO n DO
9 total * cvli(i);
1 RETURN(total)

END;

LONG INTEGER PROCEDURE f (INTEGER n); * Return n factorial.
11 IF n = 0 THEN

1 RETURN (lL)
10 ELSE RETURN(cvli(n) * f(n - 1»;

LONG INTEGER PROCEDURE fibonacci (INTEGER n);
242785 IF n LEQ 1 THEN
121393 RETURN(cvli(n»
121392 ELSE RETURN(fibonacci(n - 2) + fibonacci(n - 1»;

INITIAL PROCEDURE;
BEGIN

1 ttyWrite("10 factorial computed recursively is If,
f (10) , eol) ;

1 ttyWrite("10 factorial computed iteratively is ",
iFactorial(10),eol);

1 ttyWrite("The 25th Fibonacci number is ",
fibonacci(25),eol)

END;

END "number"

Example 25-2. Source Text with Statement Counts

- 93-

MAINPM

26. The MAINSAIL Structure Blaster

The MAINSAIL Structure Blaster allows an arbitrary MAINSAIL data structure to be written
to or read from a file with a single procedure call. The file I/O is performed as efficiently as the
underlying operating system permits.

The Structure Blaster may be used to "checkpoint" a data structure at a given point in a
program's execution, or may function as a data base primitive. In addition, since a facility is
provided to translate a structure from one machine's format to another, a data structure built on
one machine may be shipped to another (presumably faster) machine for processing by another
MAINSAIL program, then shipped back to the originating machine.

The headers of some of the Structure Blaster procedures are shown in Table 26-1.
$strocture Write writes a structure to a file; $structureRead reads a structure from a file;
$stroctureDispose frees up the memory occupied by a structure; and $structureCopy makes a
copy of a structure. In each case, the parameter "root" is a pointer to the (arbitrary) structure on
which the operation is to be performed.

Facilities are also provided to write a human-readable form of a structure to a text file (or to
allow a user to enter a structure as text and have it "compiled" by the Structure Blaster).

- 94-

Structure Blaster

LONG INTEGER
PROCEDURE

POINTER
PROCEDURE

PROCEDURE

POINTER
PROCEDURE

$structureWrite
(POINTER (dataFile) f;
POINTER rooti
OPTIONAL LONG INTEGER

startPageOrPos;
MODIFIES OPTIONAL

POINTER($strucInfo)
strucInfo;

OPTIONAL BITS ctrlBits);.

$structureRead
(POINTER (dataFile) f;
OPTIONAL LONG INTEGER

startPageOrPos,
numPagesOrSize;

PRODUCES OPTIONAL LONG INTEGER
actualNumPagesOrSize;

OPTIONAL BITS ctrlBits;
OPTIONAL POINTER($area) area);

$structureDispose
(MODIFIES POINTER rooti
OPTIONAL BITS ctrlBits);

$structureCopy
(POINTER root;
OPTIONAL BITS ctrlBits;
OPTIONAL POINTER($area) area);

Table 26-1. Selected Structure Blaster Procedure Headers

- 95-

Structure Blaster

27~ MAINSAIL STREAMS

STREAMS is a collection of facilities for distributed applications, process and device control,
and enhancements to the functionality of MAINSAIL coroutines. At present~ STREAMS is
still under development, so not all facilities are implemented on all systems where they could
be, and some interface changes may still be made.

The main high-level function provided by STREAMS is the RPC (remote procedure call)
package. RPC allows interprocess communication to look like calls to an ordinary MAINSAIL
module. It requires the programmer to write an "RPC server", a module that provides a set of
functions (each implemented as an interface procedure), and compile it with a special compiler
subcommand to produce two modules that are both compiled with the regular compiler. The
two modules transmit and receive the server interface procedure arguments between processes;
one runs in the server process, and the other in the process (the "RPC client") that invokes the
server functions.

The STREAMS package includes the Scheduler, which allows one coroutine to run while
another blocks. Each coroutine looks like an ordinary sequential MAINSAlL application;
coroutines are rescheduled automatically when the perform I/O operations. In conjunction with
RPC, the Scheduler allows a MAINSAIL application to be distributed among a number of
processes to achieve coarse-grain parallel processing; this allows programmers to take
advantage of multi-processor systems and high-speed networks to speed up their applications.

STREAMS also provides a large set of procedures for low-level I/O and server management
Typically, programmers use this level of STREAMS only to control special devices (like
terminals), since the RPC mechanism is a better way of performing most server functions than

-low-level STREAMS facilities.

- 96-

STREAMS

Master Index.
24 March 1989

28. Master Index

The MAINSAIL master index combines the separate indices in each MAINSAIL document
into one large index. It lists an abbreviation for the relevant document name as well as the page
in the document with each index entry. At the beginning of the index is the list of documents
covered, including title, abbreviation, and date of issue.

Because MAINSAIL documents are updated from time to time, the page number in the master
index may not coincide exactly with the page number in the document if th~ index and
document were issued on different dates. The date of any document may be found on its cover
page.

If you find that a topic you wish to look up is not listed in the master index, you may send a
"User Change Request" (UCR) form to XIDAK asking that the topic be covered in the
documentation. UCR forms are available from XIDAK upon request. For more urgent
problems, XIDAK's customer service personnel may be contacted by telephone.

- 98-

Master Index

Abbreviations:
KSTRMU = STREAMS and MAINKERMIT User's Guides

(24 March 1989)
M1 = MAINSAIL Language Manual Part I

(24 March 1989)
M2 = MAINSAIL Language Manual Part II

(24 March 1989)
MEDTU = MAINEDIT User's Guide

(24 March 1989)
MTUT1 = MAINSAIL Tutorial, Part I

(24 March 1989)
MTUT2 = MAINSAIL Tutorial, Part II

(24 March 1989)
TOOLU = MAINSAIL Tools User's Guides

(24 March 1989)

! Ml 34, 37; MTUTl 98

"
command TOOLU 92
searching in debugger MTUT2 46

Ml 8; MTUTl 34; TOOLU 32, 301
#DOWN TOOLU 82
#LEFf TOOLU 82
#NEXT TOOLU 82
#PREV TOOLU 82
#RIGHT TOOLU 82
#UP TOOLU82

$ M19, 120
prefix in identifiers MTUTI10

& M2 60; MTUT2 5, 19
(string concatenation) MTUT115

, command MEDTU 40; TOOLU 92

- 99-

(M131,39
and) MTUTI 19
command MEDTU 23; TOOLU 92
commands MEDTU 30

(service protocol table) KSTRMU 64, 115

) M131, 39
command MEDTU 23; TOOLU 92
commands MEDTU 30

* M134, 61;"MEDTU 8,10,25; MTUT119, 98; TOOLU 12
prompt TOOLU 279

** M1240

+ M1 34; MEDTU 28; MTUTI 19,98
+P command MEDTU 73
+Q command TOOLU 63

,command MEDTU 75

- Ml 33,34; MEDTU 28; MTUTI 19,97,98
-M command TOOLU 80

. M176
in dotted operations M140

.! MTUTl128

.& MTUT1128

.* MTUT1128
command MEDTU 79

.+ MTUT1128
command MEDTU 79

.- MTUT1128
command MEDTU 79

./ MTUT1128
command MEDTU 79

.= command MEDTU 79

." MTUTI 128
command MEDTU 79

._ command MEDTU 79

.A commands MEDTU 58

.B commands MEDTU 59, 62

.C commands MEDTU 46

.CLR MTUTl 128

.D command TOOLU 74

.DIV MTUTI 128

- 100-

.F commands MEDTU 59, 62

.H command TOOLU 77

.lOR MTUTI 128
J commands MEDTU 50
.K commands :rvmDTU 62
.M command TOOLU 79
.MAX MTUTI 128
.MIN MTUTI 128
.MOD MTUTI 128
.MSK MTUTI 128
.N command TOOLU 81
.0 commands :rvmDTU 82
.SHL MTUTI 128
.SHR MTUTI 128
.V command TOOLU 77, 87
.XOR MTUTI 128

/ MI 34; MTUTI 98
command :rvmDTU 74; TOOLU 64

: Ml 78; MEDTU 25, 84
:= Ml 43, 80; MTUTI 28, 122

; MIlO

< Ml 34; MTUTl 98
(less than) MTUTI 31
and> in syntax desciptions KSTRMU 1; Ml 4; TOOLU I, 52, 122, 150, 188
command MEDTU 23; TOOLU 92
commands MEDTU 30
for strings Ml 33

« M1240
<= M1240
<> M1240
<abort> MEDTU 2, 69; TOOLU 56
<bs> MEDTU 2, 30

as macro ID MEDTU 75
 MEDTU 2, 30
<DELE1EDPAGES> MEDTU 42
<ecm> MEDTU 2, 22; TOOLU 57
<eol> MEDTU 2, 30

as macro ID MEDTU 75
to line-oriented debugger TOOLU 64

<esc> MEDTU 2
<If> MEDTU 2, 30

- 101-

as macro ID MEDTU 75
<sp> MEDTU 2, 30
<suppress-output> key MEDTU 71
<tab> MEDTU 2, 30, 72, 83

as macro ID MEDTU 75

= Ml 34,67,132; MTUT116, 30,98
command MEDTU 10,71; TOOLU 65
for strings M1 33

> Ml 34; MTUTI 98
(greater than) MTUT131
command MEDTU 23; TOOLU 92
commands MEDTU 30
for strings M1 33
in stream names KSTRMU 19
prompt TOOLU281

>= M1240
» M1240

? command TOOLU 64

@
command TOOLU 63
commands MEDTU 33

[M148, 150
and] in command descriptions MEDTU 3
and] in macro text MTUT2 47
and] in syntax desciptions KSTRMU 2; Ml 4; TOOLU 2, 52, 122, 150, 188

\ TOOLU 12,59,285
command MEDTU 23
commands MEDTU 30
in text forms TOOLU 157

] M148, 150

" Ml 34
command MEDTU 23
commands MEDTU 30

_ M1240
_final procedure KSTRMU 46
_init procedure KSTRMU 45

-102 -

{ M1 240; TOOLU 62
and } in command descriptions MEDW 3
and } in syntax desciptions KSTRMU 2; M1 4; TOOLU 2, 52, 122, 150, 188

in command descriptions MEOTU 3
in syntax desciptions KSTRMU 2; M1 4; TOOLU 2, 52, 122, 150, 188

M1 240; TOOLU 62

11 command TOOLU 78
liB command MEOTU 39
lIP command MEDTU 39

A
command TOOLU 66
commands MEOW 69

$a20 M1221
abbreviation

of buffer names MEOW 26
of keyword MTUT1 32
platform name M1 222; M2 199
processor name M1221; M2 201
system name M1223; M2 258

ABORT compiler subcommand TOOLU 17
abort MEOTU 2
aborting

a command MEOTU 69
terminal output MEDTU 71

$abortProcedureExcpt M1 173,224; M2 16; MTUT1 273,292
in dying coroutines M2 156

$abortProgramExcpt M1 175, 224; M2 16; MTUT1 273; TOOLU 63
abs M217
absolute value (abs) M2 17
$acceptClient KSTRMU 60
accumulators MEOTU 79
ACHECK

"$DIRECTIVE" directive M1 168
compiler subcommand TOOLU 17

ACHECKALL
"$DIRECTlVE" directive M1 168
compiler subcommand TOOLU 17

ACKER example module MTUT1 84
Ackermann's function MTUT1 83
aCos M217

- 103-

adaptable RPC clients KSTRMU 36
ADD

INTLm command TOOLU 234
MODLIB command TOOLU 311

ADDDAT A LIB command TOOLU 263
addition of date and time M2 20
$addMemMngModule M2 18,221
ADDNUMexamplemodule MTUT1314
ADDRESS M1 22
address MTUT1284; MTUT21

classified M174
examining contents of TOOLU 88
invalid M1 22
of an array M2 21
RPC parameter KSTRMU 26,27
space MTUT1 292
unaligned M122
unclassified M175

addressCode Ml 220
ADDTEXT Lm command TOOLU 263
$addToDateAndTime M220; MTUT2 46
$adrOtFirstElement M2 21
advanced STREAMS KSTRMU 6, 10
$aeg Ml 222,223
again command MEDTU 69
$aix M1222
aligned address M122
alignment

of addresses MTUT1 284, 289; MTUT2 45
of chunks M181
of storage units M122
of Structure Blaster structures TOOLU 152

allocation
efficient M1 206
of areas M2 177
of array M1 62; M2 174; MTUT1 159
of data section Mllll; M2 174
of module M1l11; M2 33,153,174
of multiple records M2 180
of record Ml 74; M2 71,174; MTUTll49

$allYearDigits M2 21
bit M2l00

$almostOutOtMemoryExcpt Ml 224; M2 22
$alnt M1222
aLoad M2161
$altErase KSTRMU 109
altering an existing file MTUTl118

- 104-

alterOK M2 23; MTUT1 118
bit KS1RMU 51; M2 192, 224

$AL WAYS M1 98; MTUT2 6
$ALWAYSINLINE M198
AM48 module :MEDTU 134
AM60 module :MEDTU 134
Ambassador MEDTU 134
ancestry of coroutines M1 181
anchoring a window MEDTU 56
AND M1 34; MTUT1 31, 98, 123
angle of ray with x -axis M2 28
$aos M1223
Apollo Computer, display module for :MEDTU 135
append M223

bit M2231
arbitrary characters, inserting MEDTU 40
arccosine (aCos) M2 17
arcsine (as in) M2 24
arctangent

aTan M228
$atan2 M228

$area M1 208; M2 2
area M1206

allocation M2 177
clearing M2 43
clearing string space of M2 43
disposing M2 112
finding M2 129
pointer or string in M2 23, 148

$areaAttr TOOLU 180
$areaOf M1 207; M2 23
$arg M1 138; MTUTI 190
argument

macro Ml137
optional Ml 90
order of evaluation M1 93
procedure Ml 86,87,89,90,93
repeatable M190
to FLI procedures TOOLU 47

arguments, command line M2 137; :MEDTU 7
arithmetic

checking Ml168
error MTUT1273
functions MEDTU 79
operators MTUT119
overflow M2 24, 125

$arithmeticChecked bit M2 171

- 105-

$arithmeticExcpt Ml 224; M2 24
ARRAY M161
array MTUTI 158

address offirst element M2 21
allocation Ml 62; M2 174; MTUTI 159; MTUT2 47
assignment Ml 66
bounds Ml 61,69
changing size of MTUTI 172
clearing Ml 66; M2 41
comparison Ml 67
conversion M2 75
copying M2 62
declaration Ml 61
dimerisions M161
disposal Ml 62; M2 111
element access Ml 65
examining slices of TOOLU 66
initialization Ml 62, 66; MTUTI 167
long MTUTI 172
name M169
new upper bound M2 183
parameter Ml 94
pseudo-fields M169
reordering by parallel index array TOOLU 349
reversing TOOLU 349
size of M2 247
slice TOOLU 66
subscript error M2 257
unit TOOLU 160
variable-bounded M161; MTUTl170

$arrayType M170
arrow keys MEDTU 133
ary _alloc_status KSTRMU 44
ary _dims KSTRMU 44
ary _firscelem KSTRMU 44
ary_Ibl KSTRMU 44
ary _lb2 KSTRMU 44
ary _lb3 KSTRMU 44
ary _type KSTRMU 44
ary_ubl KSTRMU 44
ary_ub2 KSTRMU 44
ary _ub3 KSTRMU 44
ASCII MTUT240
$ascii Ml 226
aSin M2 24
$assembleDate M2 25
$assembleDateAndTime M2 26

- 106-

$assembleTime M2 27
Assignment

Expression Ml 31; MTUTI 122
Statement Ml 43; MTUT1 28

assignment M1 80
compatibility M1 42; MTUT1 154

asynchronous
execution simulation KSTRMU 76
interrupt catching KSTRMU 90

AT386 module MEDTU 137
aTan M228
$atan2 M228
attribute in text form TOOLU 158
$attributes M2 29
attributes, system M2 29
automatic sourcefile Ml158
autosave limit MEDTU 73

B
command TOOLU 68
commands MEDTU 48

B@ command TOOLU 73
back end MEDTU 4
back end, specifying MEDTU 64
BACKEND keyword MEDTU 16
backspace KSTRMU 105
BANDB example module MTUT1 102
base

2 logarithm M2 165
file (LIB) TOOLU 244
of bits constant Ml 18

baSic
commandMEDTU 29
STREAMS KSTRMU 6

batch editing MEDTU 148
baud

rate MEDTU6
TTY KSTRMU 8, 105

BAUDRATE keyword MEDTU 14
$becomeServer KSTRMU 24
BEGIN M145
Begin Statement Ml 45; MTUTI 29
$BEGINC Ml 152
BEGINSCAN Ml 156; MTUT2 54
BIGSTR example module MTUTI 29

- 107-

·
BIGSUN module :MEDTU 138
binary Ml 18; M2 29

bit M2 76, 82, 90, 219
search for bugs MTUT2 36
tree MTUTI 154

bind M1 111; M2 29
bindable module M2 33
binding a module MTUTI 198
$bindService KSTRMU 60, 74
BINTR2 example module MTUTl 293
BINTRE example module MTUTl 155
bit

clearing (CLR) Ml 34, 37; MTUTl 98
masking (MSK) Ml 34, 37; MTUTI 98
vectors MTUTl 91

bit mask (bMask, IbMask) M2 31, 158
bit shifting operators (Sm...., SHR) Ml 34; MTUTI 98
bit testing operators (TST, TSTA, NTST, NTSTA) M134; MTUT198
BITS Ml17
bits MTUTl 91

guaranteed range MTUT2 45
string parse M2 219

bitsCode Ml 220
$bitsPerChar M2 30; MTUTI 285
$bitsPerStorageUnit MIll; M2 31; MTUT1131, 285
bitwise operations (lOR, XOR, MSK, CLR) M137
BKWRD2 example module MTUTI 319
BKWRDS example module MTUTI 72
blank space, removing M2 221, 223
bLoad M2l6l
$block KSTRMU 16, 63, 92, 103
block copying M2 62
blocking

I/O KSTRMU12
in RPC calls KSTRMU 24
on I/O MTUT1319

bMask M2 31
body, procedure M184
boLoad M2 161
BOOLEAN MIlS
boolean MTUT130
booleanCode Ml 220
BOOlFILENAME CONF command TOOLU 197
bootstraps, making TOOLU 193
border :MEDTU 84
BORRO module :MEDTU 135
bound

- 108-

data section M1 106; MTUT1 196
modules M2153
modules (as invoked from MAINEX) TOOLU 279

bounds of array M1 69
bracketed

text M1 134; MTUT1 178
text macro MTUT2 47

break M2 32
bit M2231
character (scan) M2 228
on procedure count TOOLU 78
TTY KSTRMU 8, 108

breaking
line in MAINEX subcommand TOOLU 285
lines :MEDTU 48

breakpoint TOOLU 55
at specified offset TOOLU 73
commands TOOLU 68, 86
conditions TOOLU 68
continuing from TOOLU 73
in invoked procedure TOOLU 83
permanent TOOLU 68
removing TOOLU 84
removing at specified offset TOOLU 84
temporary TOOLU 86
temporary, at specified offset TOOLU 86
where to set TOOLU 69

breakpoints
displaying list of TOOLU 77
removing all TOOLU 85

$briefFormat M2 33,264
bit M299

BS (backspace) key MEDTU 2
$bsFormat M2129
BSrvtNT example module MTUT1 236
bubble sort TOOLU 341
bucket, hash MTUT1 133
buffer MEDTU 3

delete :MEDTU 42
deleting MEDTU 62
end MEDTU25
inserting MEDTU 39
listing status of MEDTU 63
RPC parameter KSTRMU 26, 27

buffer names
abbreviated MEDTU 26
changing :MEDTU 62

- 109-

buffers, moving among :MEDTU 59
bugs

binary search for MTUT2 36
tracking collection-influenced MTUT2 34

$BUILTIN M2 2
byte MIll; MTUT1 284

C
calling (from) TOOLU 19, 40
command TOOLU 73
commands MEDTU 46
LIB mode TOOLU 254
RPC KSTRMU 40

cache
(of files) MTUT2 12; TOOLU 213
of files Ml195

CALC example module MTUTI 77
call

chain TOOLU 190
macro Ml137
procedure Ml 86, 87, 90, 99
stack TOOLU 80

call chain, searching M2 235
CALLS module TOOLU 54. 190
$canFindModule M2 33
$cannotFallOut M2 33

bit M2206
$cannotReturn M2 34

bit M2 118. 206
$canonicalHostName KSTRMU 60
carriage retUrn KSTRMU 99, 106
CASE M148
Case Statement M148; MTUT1129
case

conversion commands :.MEDTU 49
sensitivity in file name MTUT2 42
sensitivity in file names Ml 225
upper and lower M1 3, 6; MEDTU 20

Case Statement, breakpoint on TOOLU 70
$CASEC Ml149
$caseIndexExcpt M1 224; M2 34
caseless string comparison M2 56, 117
catch-all

selector (0) M1 48
selector in $CASEC M1 150

- 110-

CD LIB command TOOLU 255
ceiling M2 34
centering lines :MEDTU 46
chain, comparison Ml 38
chained comparison MTUTI 183
character M16

address (charadr) M123
and string system procedures MTUTI 59
as integer constant (e.g., 'A') M115
code ~1 14,54
search TOOLU 92
set M236
set assumptions MTUT2 40
set guarantees Ml 6
set translation M1214
string MTUT114
unit MTUTI 106, 284
units of scratch space M2 182
units per page M2 37
units per storage unit M2 37

character code, maximum M2 167
character unit, size in bits M2 30
$characterRead M2 35; MTUTI 295; MTUT2 8
characters

reading from a file M2 35
writing to a file M2 36

$characterWrite M2 36; MTUTI 295; MTUTI 8
CHARADR Ml 23
charadr MTUTI 284; MTUT2 1

examining contents of TOOLU 88
RPC parameter KSTRMU 26, 27

charadrCode M1220
$charSet M2 36
$charslnArea bit TOOLU 168, 173
$charsPerPage M2 37; MTUT1291
$charsPerStorageUnit M2 37; MTUTI 285
CHECK MII64

tt$DIRECTIVEtt directive Ml 165
compiler subcommand TOOLU 18

CHECKALL
tt$DIRECTIVEtt directive Ml 165
compiler subcommand TOOLU 18

CHECKCONSISTENCY MAINEX subcommand TOOLU 288
$checkConsistency M2 37
$checked bit M2 171
CHECKING Ml 164
child process KSTRMU 5, 9, 65, 67

- 111-

chunk M1206
alignment Ml 81
information about TOOLU 304
unit TOOLU 158

CLASS M173
class MTUTI 144

declaration Ml 73
descriptor M2 114
explicit specification MTUTl 223
explicitly specified in field variable Ml 78
forward Ml 74
information (field names and types) M2 '38
name M239
prefix M178
related Ml 80
unit TOOLU 159
with procedure fields MillO

class creation, dynamic M2 69
class descriptor, creation M2 69
$classCode Ml 154, 220
$classDscr M2 38, 69, 114
$classDscrFor M2 38
classified

address Ml 74
pointer Ml 74; MTUTI 145

$classlnfo M2 38; MTUTI 298
$className M2 39; MTUTI 298
$CLASSOF Ml 155
cleaning

up after a procedure Ml 174; M2 16
up after a procedure or program MTUTI 273

-clear M241; MTUTi'289
pending I/O KSTRMU 8

$clearArea Ml 207; M2 43
$clearFileCache M2 45
$clearStream KSTRMU 101
$clearStrSpc Ml 207; M2 43
client KSTRMU 58

process KSTRMU 5
RPC KSTRMU 21,32

client/server rendezvous KSTRMU 74
cLoad M2 45, 161
close M246
closed procedure call M198
$closedFile M2 47
CLOSEEXELIB MAINEX subcommand TOOLU 288
CLOSEF module TOOLU 191

- 112-

CLOSEINTLIB MAINEX subcommand TOOLU 288
closeLibrary M2 47
CLOSEOBJLIB MAINEX subcommand TOOLU 288
$closeStream KSTRMU 18
closing a file Ml191; M2 46, 47; MTUTl 107
$clp MI221
CLR Ml 34, 37; MTUTI 98
$clrConfigurationBit M2 48
$clrSystemBit M2 49
CM command MEDTU 77
CMDFILE MAINEX subcommand TOOLU 289
cmdFile Ml 193; M2 49; MTUTI 107

and STREAMS KSTRMU 12
redirection MTUT2 44
redirection from MAINEX TOOLU 289

$cmdFileEofExcpt Ml 193,224; M2 49; MTUTI 273
CMDLINE compiler subcommand TOOLU 18
CMDLOG (special buffer) MEDTU 86
cmdMatch M2 50; MTUTI168
CMPSTR example module MTUTI 49
$cms MI 222,223
CMSBITS CONF command TOOLU 202
$collect M2 54; MTUTI 297
$collectableChkSpc M2 54

bit MI209; M2 178
$collectableStrSpc M2 55

bit MI 209; M2 178
$collectLock M2 55; MTUTI 297
COLLECTMEMORYPERCENT MTUT2 12

CONF command TOOLU 197
COLORS example module MTUTI 35
command

front end MEDTU 17
line M2 137, 236
line arguments MEDTU 7
mode MEDTU 21
summary TOOLU 64

command syntax, of MAINSAIL utilities TOOLU 188
commands, MAINPM TOOLU 125
COMMANDSTRING CONF command TOOLU 197
comment MTUTI34

in compiler subcommands TOOLU 32
in MAINEX subcommands TOOLU 301

comments MI 8
common data representation among machines MI 213; TOOLU 321
$compactableChkSpc M2 56

bit MI 209; M2 178

- 113-

compare M2 56; MTUTI 125; MTUT2 4
$compareIntmods M2 57; TOOLU 229
$compareObjmods M2 57; TOOLU 320
comparing data structures TOOLU 167
comparison

chain MTUTI 183
chains M138
of date and time M2 95
with Zero MTUT2 7

comparison operators (=, NEQ, <, LEQ, >, GEQ) Ml 34; MTUTI 98
compatibility of data types or classes MTUTI 154
COMPIL MTUTI 6

module TOOLU 6
compilation

date and time M2 59
date of module M2 170
selective MTUT2 54

$compile M2 57; TOOLU 49
compiler

directives Ml 143
errors M2 58
invoking from a program TOOLU 49
subcommands TOOLU 12

compiler subcommand, DEBUG TOOLU 53
COMPILETIME M2 2
compiletime

evaluation MIlO; M2 2; MTUT2 6
evaluation of operators MI 32
libraries MTUTt83
library MTUT2 50
pseudo-procedures M132

$compileTime Value M2 57
compound identifier Ml 120
$compressed TOOLU 166

bit TOOLU 169, 179
compressed

text form of structure TOOLU 150
text forms TOOLU 156, 166

$concat M2 60
concatenation M119, 34; MTUT198; MTUT25

macro MTUT1189
of strings M2 60, 115; MTUTI 15

CONCHK MTUTI 4
module TOOLU 192
using to track bugs MTUT2 37

conditional
commands to MAINEX TOOLU 225

- 114-

compilation M1 143, 148; MTUT1 184
CONF

module Ml13; TOOLU 193
multiline commands MTUT2 47

configuration
bit M2236
parameters TOOLU 193

CONFIGURATIONBITS CONF command TOOLU 38, 198
CONFIRM LIB command TOOLU 266
confirm M2 60; MTUT1 133
CONNECT Lffi command TOOLU 255
connection KSTRMu 58
connserver KSTRMU 45
consistency

of memory M2 37; TOOLU 192
of module interfaces M1 113; TOOLU 288

constant
definition M1 27
macro MTUT116, 177

consumer-producer problems MTUTI 299
CONTEXT keyword :MEDTU 12
context

debugger TOOLU 54
debugger, coroutine TOOLU 81
debugger, current breakpoint TOOLU 79
debugger, displaying TOOLU 77, 78
debugger, exception TOOLU 81
debugger, iUnit TOOLU 81
debugger, module TOOLU 79
debugger, procedure TOOLU 80

continuation line in MAINEX subcommand TOOLU 285
CONTINUE Ml 54
Continue Statement M154; MTUT1 71
$CONTINUEC Ml 152
continuing from a breakpoint TOOLU 73
CON1ROL key :MEDTU 3
control

characters :MEDTU 10,40
characters (on message line) MEDTU 8
section MII06, 116; M2 29,111, 174,271; MTUT2 11
sequence :MEDTU 74

CON1ROLINFO MAINEX subcommand TOOLU 289
$controlInfoBit M2 246
controlling terminal KSTRMU 104
conversion

between data types MTUT1 95
in general Ml 14,25

- 115-

of character to string (cvcs) M2 78
of date and time to string M2 97
of date to string M2 98
of string to date M2 254
of string to date and time M2 255
of string to time M2 256
of time to string M2 263
to address (cva) M2 73
to array (cvAry) M2 75
to bits (cvb) M2 75
to boolean ($cvbo) M2 77
to charadr (cvc) M2 77
to integer (cvi) M2 79
to long bits (cvlb) M2 81
to long integer (cvli) M2 83
to long real (cvlr) M2 85
to lower case (cvl) M2 80
to pointer (cvp) M2 86
to real (cvr) M2 87
to string (cvs) M2 88
to upper case (cvu) M2 91

conversions, table of allowed Ml 26
$convertDateAndTime Ml 198; M2 61
converting

data image to text form TOOLU 169, 184
text form to data image TOOLU 184
text form to structure image TOOLU 176
to upper or lower case MEDTU 49

cooperating
child process KSTRMU 9,16,68
child test KSTRMU 110

Coordinated Universal Time Ml 198; M2 26, 61, 97, 106,255
COPFIL example module MTUTI 109
COPIER MTUTI 117

module TOOLU 203
COpy

INTLIB command TOOLU 234
LIB command TOOLU 263
MODLIB command TOOLU 311

copy MTUTI 289
of memory or record or array elements M2 62

$copyFile M2 64
copying

a data structure TOOLU 168
files M2 64
text MEDTU 46

COROUT example module MTUTI 305

- 116-

coroutine Ml·179; MTUTI 299
ancestry Ml 181
as treated by errMsg M2 118
call chain of current TOOLU 190
creation Ml 180; M2 70
current M2 260
exception in Ml 183; MTUTI 346
finding given a name M2 130
killing Ml 180; M2 156, 157; TOOLU 204
most recent resumer Ml 181 .
moving in tree M2 173
resuming Ml 180; M2 225; TOOLU 204
scheduled KSTRMU 75
scheduler MTUTI 314
service KSTRMU 25
stack MTUTI 305
starting M2 225
that raised current exception M2 121
utilities TOOLU 204

$coroutineExcpt Ml 224; M2 64
coroutines

and the "I" command TOOLU 77
and the ''1'' command TOOLU 78
and the "S" command TOOLU 85
opening with the "OC" command TOOLU 81
sharing data KSTRMU 76

cos M265
cosh M2 65
cosine (cos) M2 65
Scot M2 66
cotangent M2 66
count break TOOLU 78
$countingPerModule bit M2 171
$countingPerProc bit M2 171
$countingPerStmt bit M2 171
COUNTR example module MTUTI 130
COUNTS command TOOLU 128
counts MEDTU 3, 28

in debugger commands TOOLU 64
CP LIB command TOOLU 263
CPU

ID M266
time M267

CPU ID, in object module TOOLU 350
$cpuID M266
$cpuTime M2 67
$cpuTimeResolution M2 67

- 117-

cRead M2 68; MTUTI 58, 288; MTUT2 15
$cReadStream KSTRMU 100
CREATE

INTLffi command TOOLU 235
LIB command TOOLU 260
MODLIB command TOOLU 311

create M2 69
bit KSTRMU 51; M2 192

$createClassDscr M2 69; MTUTI 298
$createCoroutine M2 70; MTUT1299
$createDate field of $filelnfoCls M2 127
$createRecord M2 71; MTUTI 298
$createRendezvousName KSTRMU 73
$createTime field of $fiieInfoCls M2 127
$createUniqueFile M2 72
creating a text file MEDTU 5
creation

of coroutine M1180; M2 70
of record of unknown class M2 71

cross-compilation Ml 7; TOOLU 31
cross-CONF TOOLU 200
cross-INTLIB TOOLU 238
cross-MODLIB TOOLU 315
cross-reference listing TOOLU 23, 369
cross-reference listings, merging TOOLU 36
CRTHDR example module MTUTI 323
CSUBCOMMANDS MAINEX subcommand TOOLU 289
CTRL key MEDTU 3
CTRL-C KSTRMU 9, 87, 105
CTRL-D KSTRMU94, 105
CTRL-Q KSTRMU 105
CTRL-S KSTRMU 105
CTRL-Z KSTRMU 94, 105
current

coroutine M2 260
exception M2 121, 122, 123
file (of debugger context) TOOLU 57
file name M2 59, 262
line number M2 59
module name M2 59
page number M2 59
procedure name M2 59

current character, word, line, and page MEDTU 24
current coroutine, call chain of TOOLU 190
current exception, information about MTUT1281
current window, status line MEDTU 9
$currentDirectory KSTRMU 65; M2 73

- 118-

cursor 11EDTU 10,24
movement ~DTU 23, 30; TOOLU 90
movement with arrow keys ~DTU 133

cursor movement, among buffers ~DTU 59
cva M2 73; MTUTI 95
cvAry M2 75
cvb M2 75; MTUTI 95
$cvbo M2 77
cvc M2 77; MTUTI 95,289
cvcs M2 78; MTUTI 58; MTUT2 18
cvi M2 79; MTUTI 95
cvl M2 80; MTUTI 58; MTUT2 18
cvlb M2 81; MTUT195
cvli M2 83; MTUTI 95
cvlr M2 85; MTUT1 95
cvp M2 86; MTUTI 95

. cvr M2 87; MTUT1 95
cvs M2 88; MTUTI 95; MTUT2 18

length of resulting string M2 159
cvu M2 91; MTUTI 58; MTUT2 18
cWrite M2 92; MTUT1 60, 288; MTUT2 19
$cWriteStream KSTRMU 100

D
command TOOLU 90
commands ~DTU 24, 42

0400 module ~DTU 141
D460 module ~DTU 142
0460C module MEDTU 142
DARWIN example module MTUTI 327
data

file M1 189; MTUT1 106
portable format (PDF) Ml 213; TOOLU 321
section MilOS. 106, 110
section allocation M1 111; M2 174
section disposal M1 111; M2 111
section of current module M2 260
sections and the Structure Blaster TOOLU 154
sink TOOLU 303
stucture image TOOLU 150
type code M1 11
type conversion M 1 25
types M114

data file
editing MEDTU 131

- 119-

viewing TOOLU 210
data image, converting to text fonn TOOLU 169, 184
data section

bound MI108
examining TOOLU 87
module name for M2 172
size of M2 247

data structure
examining or editing TOOLU 156
manipulating arbitrary TOOLU 150

data-type-aligned address M122
dataFile, predeclared class M1187
$dataImage TOOLU 171
DATAME module MEDTU 143
Datamedia 3000 MEDTU 143
dataSec unit TOOLU 162
$date M2 94; TOOLU 171
date M1 198; M2 94

and time M2 94
and time addition M2 20
and time arithmetic MTUT2 46
and time difference M2 96
conversion from string M2 254, 255
conversion to string M2 97, 98
of file modification M2 127
of module compilation M2 170
of structure creation TOOLU 171
standard representation M2 94

date and time
compilation M2 59
removing from string M2 222

$dateAndTime M2 94
$dateAndTimeCompare M2 95
$dateAndTimeDifference M2 96; MTUT2 46
$dateAndTimeToStr M2 97
$dateFormat M2 98
$dateToStr M2 98
DATMGR back end MEDTU 4, 131
DCL Ml154

of forward class Ml 74
deadlock, semaphore KSTRMU 80
deallocation, efficient M1206
DEBUG

(module) TOOLU 53
compiler subcommand TOOLU 18, 53

$debugBit bit M2 171
$debugExec M2 100; TOOLU 114

-120 -

debuggable module TOOLU 53
debugger

and source text confusion MTUT2 33
command syntax TOOLU 57
context TOOLU 54
displaying structure MTUT2 39
invoking from a program TOOLU 114
options TOOLU 83
variable TOOLU 74

debugger context
coroutine TOOLU 81
current breakpoint TOOLU 79
displaying TOOLU 77, 78
exception TOOLU 81
iUnit TOOLU 81
module TOOLU 79
procedure TOOLU 80

debugger example
display interface TOOLU 102
line-oriented interface TOOLU 94

debugging
an RPC module KSTRMU 22
collection-influenced bugs MTUT2 34

declaration M1 57
array M161
class M173
generic procedure M199
module M1 107
of debugger variables TOOLU 74
outer M1105, 107
procedure M184
qualifiers Ml 59
simple variable M1 59
variable MTUT117

declarations file (for use with SOURCEFILE directive) MTUT1 209
deep usage TOOLU 122
$def Ml159
default

baud rate MEDTU 14
data section Ml 108
display module MEDTU 13
file MEDTU 12
page and line MEDTU 12
window width MEDTU 15

DEFAULTACHECK "$DIRECflVE" directive M1168
$defaultArea M1 208; M2 2, 100
DEFAUL TPROTOCOL service protocol table entry KSTRMU 117

- 121-

DEFINE Ml 132; MTUTI 16
LIB command TOOLU 256

DEFINETIMEZONE MAINEX subcommand Ml 201; TOOLU 289
defining

a macro MEDTU 74
as consecutive integers Ml 159

deinitialize PDFMOD TOOLU 325
delayed recompilation of erroneous procedure TOOLU 8
DELETE

INTLm command TOOLU 235
key MEDTU2
LIB command TOOLU 264
MODLIB command TOOLU 312

$delete M2 103
delete KSTRMU 105; M2 102

bit KSTRMU 51,77; M246, 192,226; TOOLU 168, 179
buffer MEDTU 42

DELETEDPAGES MEDTU 42
deleting MEDTU 24, 42

a file M2 103
buffer MEDTU 62
files TOOLU 206
pages MEDTU 42

DELFll.. module TOOLU 206
DELTA example module MTUTI 30
DELTA2 example module MTUTl42
$deregisterException M2 103
$descendantKilledExcpt M1184, 224; M2 104, 156; MTUT2 49
descendants, waiting for KSTRMU 78
detail of MAINPM statistics TOOLU 129
device

module M1185, 192
modules TOOLU 303
prefix Ml192

device module, LIB TOOLU 242
$devModBrk M2104
$dev ModBrkStr M2 104
DEVOWL example module MTUTI 290
$dgux M1222
difference of date and time M2 96
differences

between files (utility) TOOLU 276, 368
between times MTUT2 46

$dimension Ml 70
dimension M161
$diposeDataSecslnArea M1207
direct

- 122-

access to data section MTUT1213
access to interface field MillO
access to modules Ml 107
arguments TOOLU 59

direction of MAINED commands MEDTU 28
$DIRECTIVE MII44
directive

BEGINS CAN Ml 156
CHECK M1164
CHECKING Ml 164
DCL M1154
$DIRECfIVE Ml 144
DONESCAN Ml 156
DSP M1147
ENCODE Ml 145; TOOLU 45
$LEGALNOTICE M1148
MESSAGE Ml 143
NOCHECK Ml 164
RESTOREFROM Ml 122
SA VEON Ml 122
SKIPS CAN Ml 156
SOURCEFILE Ml 143

directives, compiler Ml 143
DIRECTORY

INTLIB command TOOLU 235
LIB command TOOLU 257
MODLIB command TOOLU 312

$directory M2 105
directory

current M2 73
files in M2 105
home M2147
whether a file is M2 129

directory structure, LIB TOOLU 245
DIRMOD example module MTUT1218
$disablelnterrupts KSTRMU 87
DISASM module TOOLU 33
$disassembleDate M2 106
$disassembleDateAndTime M2 106
$disassembleTime M2 107
disassembly listing TOOLU 33
discard M2 108

bit M2 219, 221,222,231
$discardOutput KSTRMU 109
displace M2 108
displacement

between addresses or charadrs M2 110, 158

- 123-

to a field of a class or module (DSP) Ml 147
display module MEDTU 6, 133; MTUTI 248
display module, default MEDTU 13
display-oriented

debugger interface TOOLU 56
interface TOOLU 102

display-oriented debugger interface, switching to TOOLU 63
displaying

arrays TOOLU 66
contents of address TOOLU 88
memory locations TOOLU 88 .
objects TOOLU 87
source text TOOLU 91
structure in debugger MTUT2' 39 .
values TOOLU 86

DISPLAYMODULEkeyword MEDTU 13
disposal

efficient Ml 206
of array Ml 62; M2 111
of data section Ml1ll; M2 111
of module M1l11; M2 111
of record Ml 74; M2 111

dispose M2 111; MTUTI 292; MTUT2 2
improper use MTUT2 34
of bound data sections TOOLU 209

dispose_array KSTRMU 46
$disposeArea M1207; M2 112
$disposeDataSecslnArea M2 112
$disposedDataSecExcpt Ml 111,224; M2 113
$disposeSemaphore KSTRMU 78
DISPSE module TOOLU 209
distributed applications KSTRMU 4
DIV M134;MTUTI 19,98
division by zero M2 24: MTUTI 273
division operators (j, DIV, MOD) Ml 34; MTUTl 98
DL command MEDTU 25
DNGN example module MTUTI 229
DO Ml 51; MTUTI 36
DOB Ml 51; MTUTI 32
$DOC M1152
doCommandsInFile TOOLU 251
doCommandslnString TOOLU 251
DONE M154
Done Statement M154; MTUTI 71
$DONEC Ml 152
DONESCAN Ml 156

compiler directive MTUT1209

-124 -

$doNotClear M2 113, 179
$doNotIncludeTimeZone M2 113

bit M299
$doNotMatch M2 114

bit M2216
DONOTPROMPTFORBAUDRATE keyword MEDTU 14
DONOTPROMPTFORDISPLAYMODULE keyword MEDTU 13
$doNotRaise M2 114

bit M2119
DONOTUPDATEEPARMS keyword MEDTU 15
dotted

operator MTUTI 128
operators Ml 40, 43

DOWNTO M151
DROP LIB command TOOLU 264
$dscrPtr M2114; MTUT1298
DSP M1147; M2115
DSPBUG example module MTUT2 36
DSTCONNECT LIB command TOOLU 255
DSTENDRULE MAINEX subcommand M1201; TOOLU 291
DSTNAME MAINEX subcommand Ml 201; TOOLU 300
DSTOFFSETMAINEX subcommand M1201; TOOLU291
DSTSTARTRULE MAINEX subcommand Ml 201; TOOLU 291
dungeon game example MTUTI 225
$dup M2115
duplicating text MEDTU 46
DVIEW module TOOLU 210
dynamic creation of classes M2 69
dynamically sized arrays M1 61; MTUTI 170

E
command TOOLU 74
commands MEDTU 87
in margin of window MEDTU 25

EATER example module MTUT1 343
EB M146; MTUTI 32
EBCDIC MTUT2 40
$ebcdic M1226
echo

of cmdFile and logFile Ml 194
of TTY KSTRMU 6, 105

ECHOCMDFILE MAINEX subcommand TOOLU 292
$echoCmdFile M2 237; TOOLU 198
ECHOIFREDIRECTED MAINEX subcommand TOOLU 293
$echolfRedirected M2 237; TOOLU 198

- 125 -

ecological simulation MTUTI 322
EDIT module :MEDTU 5
editing

a data file MEDTU 131
a data structure TOOLU 156
a text file ~DTU 5
commands (in debugger) TOOLU 90
in batch :MEDTU 148
line KSTRMU 105

editor :MEDTU 1; MTUT14
EDITORPARMSFILEkeyword ~DTU 12
EF MI29,46; MTUT132
$EFC Ml 148;MTUTI 184
efficiency MTUT2 1

determining with MAINPM TOOLU 122
RPC KSTRMU 39

efficient
allocation and deallocation M 1 206
allocation of records M2 180
file I/O M2 197, 198
I/O of structures TOOLU 151
string comparison MTUT1 125; MTUT2 4

EL M129,46; MTUT132
element of array MTUTI 158
ELSE Ml 29,46; MTUTI 31
ELSEC Ml 148; MTUTI 184
ELSEX module TOOLU 225
$elx M1221
ELXSI System 6400 procedure calling standard, calling (from) TOOLU 19
ELXSI System 6400 procedures, calling (from) TOOLU 40
$emb MI 222,223
emphasis ~DTU 29
Empty Statement Ml 55; MTUTI 130
empty area Ml 208
$enableInterrupt KSTRMU 89
$enableInterrupts KSTRMU 9, 87
ENCODE Ml 145; TOOLU 45
END M145,48

breakpointon TOOLU70, 71
end

of buffer :MEDTU 25
offile(eot) M2116

end-of-file M1191; MTUTI 107; MTUT2 41
onstream KSTRMU94
on TrY KSTRMU 105; Ml 192

end-of-line MIlO; MTUTI 14
and stream KSTRMU 99

-126 -

and TTY KSTRMU 106
ENDC Ml 148, 149, 152; MTUTI 184
ENDX module TOOLU 225
ENTER

key MEDTU2
MAINEX subcommand MTUT2 45; TOOLU 293

enter command mode MEDTU 2, 22
enterLogicalName M2 115; MTUTI 111; MTUT245
eof M1191; M2116; MTUT241
$eoflndicator KSTRMU 109
eol Ml 7; M2 116; MTUTI 14

and TTY KSTRMU 106
eop Ml 7; M2 117; MTUTI 15
$eos KSTRMU93, 103

on socket KSTRMU 56
on TIY KSTRMU 105

eparms
file MEDTU 5, 12,20
file for MAINEDIT MTUT1114

eparms file, changing MEDTU 16
equ M2 117; MTUTI 125; MTUT2 4
equate, macro Ml 132, 135
$erase KSTRMU 109
ERREXC example module MTUTI 282
errMsg M2 118; MTUTI 133

and exceptions MTUTI 281
and scheduling KSTRMU 76
registered exceptions M2 103,215
response abbreviations Ml 176

Error response: M2 118; MTUTI 8
$error KSTRMU 63;93, 103
error

definition Ml 3
STREAMS KSTRMU 16

errorOK M2 120
bit KSTRMU 19,25,51, 73, 79, 102, 108; M2 20,25,26,27,31,46,52,62,69, 71, 73, 94,

95,96,99,103,105,106,107,129,147,156,170,173,179, 181, 192,193, 197,204,
224,226,235,242,254,255,256,261,264,266,271,274; TOOLU 168, 169, 170,
171,173,175,176,179

errors MTUTI 8
compiler M2 58

ESCAPE key MEDTU 2
escape mode MEDTU 21,22,87; TOOLU 57
evaluation

compiletime MTUT2 6
of procedure arguments MTUTI 49

EWYI00 module MEDTU 144

- 127-

examining
a data structure TOOLU 156
arrays TOOLU 66
contents of address TOOLU 88
memory locations TOOLU 88
objects TOOLU 87
structure in debugger MTUT2 39
values TOOLU 86

exception M1170
cannot fall out M2 206
cannot return M2 206
current M1173
current, infonnation about MTUTI 281
during another exception Ml 173
efficient recognition of MTUT2 8
for operation M141
in coroutine Ml 183; MTUTI 346
infonnation about current M2 121, 122, 123
must propagate M2 206
naming M1174; M2 178
nested MTUTI 273
predefined Ml 224
raised by errMsg MTUT1281
raising M2 205; MTUTI 269
registering Ml 178
return if no handler M2 206
returning from Ml 172; M2 207
stack MTUTI 276
tracking infinite loop with MTUT2 38

$exceptionBits M1173; M2121; MTUTI 281
$exceptionCoroutine M2 121
$exceptionName M1173; M2122; MTUT1281
$exceptionPointerArg Ml 173; M2 122; MTUTI 281; MTUT2 8
exceptions MTUTI 266; TOOLU 63, 81

and the FLI TOOLU 47
automatic and predefined MTUTI 273
implementation MTUT2 23

$exceptionStringArgl Ml 173; M2 122; MTUTI 281
$exceptionStringArg2 M1173; M2 123; MTUT1281
$excludeSeconds M2 123

bit M2264
exclusive or (XOR) Ml 34, 37; MTUTl 98
EXCPTI sample module MTUTI 270
EXCPT2 sample module MTUTI 271
$executableBootName KSTRMU 67
EXECUTE

command TOOLU 127

-128 -

LIB command TOOLU 268
$executeIntlibCommands M2 123; TOOLU 241
$executeModlibCommands M2 123; TOOLU 318
$executeStampCommands M2 124; TOOLU 361
executing

modules from MAINED MEDTU 86
statements TOOLU 88

execution
access TOOLU 307
of specified module TOOLU 74

$exeFileFirst M2 237
exeList Ml 129; MTUTI 246
exeSearch Ml 128
exhausting memory M2 22
EXIT LIB command TOOLU 268
exit M2 124
exiting TOOLU 63

CONF TOOLU 201
MAINED MEDTU 21
MAINEDIT MEDTU 11,67

exp M2124
expiration date, of object module TOOLU 350
explicit

class M178
class specification MTUTI 223
module pointers MIllO

exponent M116; M2125
bit M289

$exponentExcpt M1224; M2 125
exponential (exp) M2 124
exponentiation Ml 34; MTUTI. 98
Expression Statement Ml 43; MTUTI 127
expression, displaying value of TOOLU 86
expressions Ml 27
EXPUNGE LIB command TOOLU 264
extension of generic procedures MI103
EXTRACT

F

INTLffi command TOOLU 237
LIB command TOOLU 263
MODLIB command TOOLU 312

command TOOLU 90
commands MEDTU 67

falling

- 129-

out of a handler Ml 172; MTUTI 269, 272
out of a typed procedure MTUTI 273

FALSE Ml 15; MTUT1 30
fast I/O of structures TOOLU 151
fastExit M2 125
fatal M2126

bit M2 119, 121
FBORRO module tvlEDTU 135
FCC TOOLU 38, 199

example TOOLU 40
featherweight process KSTRMU 5
FFRAME module tvlEDTU 135
field MTUT1 144

class M173
information procedure ($fieldInfo) M2 126
interface Ml 105, 107, 108, 110
read from PDF source TOOLU 325
record M171
variable Ml 71, 76, 78, 79, 108, 110

field base
most recently used TOOLU 66
next to most recently used TOOLU 66

field variables, generic procedures Ml 115
$fieldInfo M2 126
fields of records and data sections, examining TOOLU 87
file M1185

access M1 189
association with buffer rvIEDTU 3
base (LIB) TOOLU 244
cache M1 195; MTUT2 12; TOOLU 213

. closing M1 191; M2 46, 47
closing utility TOOLU 191
comparison utility TOOLU 276, 368
containing multiple modules M1 116
data M1189
data type size M2 152
deleting TOOLU 206
editing tvlEDTU 5
formats TOOLU 203
host TOOLU 244
I/O MTUTI 106
information M2 127
input and output Ml 189
inserting rvIEDTU 39
library (LIB) TOOLU 244
maintaining in memory TOOLU 303
merging TOOLU 334

- 130-

name M1185; ~DTU2; MTUTllll
name syntax MTUT2 41
opening Ml 190; M2 190
organization M1189
position MTUT1131
predeclared class Ml 187
random access MTUT2 42
remote KSTRMU 50
renaming TOOLU 339
RPC KSTRMU 50
searchpath M2 244
selection MEDTU 59
simultaneous open MTUT2 43
system MTUTI 106
text MI 188
version TOOLU 246
whether is directory M2 129

file handles, limit MTUT2 43
file name

case MTUT2 42
case sensitivity M1225
changing ~DTU 62
current M2 59, 262
intmod and objmod Ml 127
logical MTUT2 45
unique M2 72

file positioning (getPos, relPos, setPos) M2 141,218,242
$fileAttr field of $filelnfoCls M2 129
FILEINFO MAINEX subcommand TOOLU 294
Sfilelnfo M2 127
SfilelnfoBit M2 246
SfileNamesAreCaseSensitive M1225
files

multiple :MEDTU 59
multiple opens ~DTU 93

SfillBuffer bit KSTRMU 96
filling

paragraphs M2 135
text MEDTU 50

FILMRG module TOOLU 216
filter, character stream MTUT1300
FINAL M1114
final

procedure Ml 114
procedure caveat MTUT248

$findArea Ml 207; M2 129
$findCoroutine M2 130

- 131 -

first M2 130; MTUTI 60; MTUT2 15
fixed M2 131

bit M289
$fixFormat M2 129
flag MTUTI 91
fldRead M2 131; MTUT2 18
fldWrite M2 132
FLDXREF compiler subcommand TOOLU 19
FLI Ml 145; TOOLU 38

and exceptions TOOLU 47
and garbage collection TOOLU 40, 47
compiler subcommand TOOLU 19
parameters and data types TOOLU 47
target M2 58

FLIexample
FCC TOOLU40
:MEC TOOLU 44

floating point number M1 16
floor M2 133
$flow KSTRMU 107
flow control KSTRMU 105
$ftushStream KSTRMU 97, 101
FOR

in Iterative Statement M151
in substring specification M1 28

FOR-clause MTUT127
$FORC M1152
Foreign Language Interface Ml 145; TOOLU 19,38, 199
foreign

module MTUT1247
strings'MTUTl297

$foreignCodeStartsExecution TOOLU 38, 198
FOREIGNMODULES CONF command TOOLU 38, 199
format

of a file M2 129
of date M298
of structure TOOLU 171
of time M2 262

formatted M2 134
bit M2 90, 219

formatting paragraphs M2 135
$fonnParagraph M2 135
FORTRAN, calling (from) TOOLU 19,40
FORTRAN77, calling (from) TOOLU 19,40
FORWARD M196
forward

class M174

-132 -

procedures MTUTI 76
FRAME module MEDTU 135
frame pointer MTUT2 24
free list MTUT2 2
front end MEDTU 4
front end, specifying MEDTU 64
FRONTEND keyword MEDTU 4. 16
full platform name M2 199
full-duplex TIY KSTRMU 6, 104, 111
$fullPathName field of $filelnfoCls M2 127
$fullPathNames M2 136

bit M2105
fully qualified LIB file name TOOLU 245
FVIEWexample module M1217

G
command MEDTU 25; TOOLU 90
commands MEDTU 30

gaps in memory TOOLU 306
garbage

collection Ml12. 20, 22, 23, 41,65, 74,206; M2 2.37.250; MTUTl144. 292.297;
MTUT2 1,2,12,13,46; TOOLU 197,304

collection (of data sections) M2 30
collection (tracking) TOOLU 296
collection and $noCollectablePtrs M2 184
collection and $noCollectableStrs M2 185
collection and $noCompactablePtrs M2 185
collection and $storageUnit I/O MTUT1 296
collection and FLI TOOLU 40
collection and the FLI TOOLU 47
collector errors MTUT2 34

garbage collection
controlling M1 13
inducing M2 54
inhibiting M2 55
interception M2 18.221
statistics TOOLU 306
string MTUT2 21

gateway, stream KSTRMU 128
GCCHP module TOOLU 213
GENCODE compiler subcommand TOOLU 21
generateMultipleQuickSort M2 137; TOOLU 346
generateQuickSort M2 137; TOOLU 345
GENERIC Ml 99
generic

- 133 -

procedure extension MII03
procedures MTUTl 85
procedures as field variables Ml 115

GENINLINES compiler subcommand TOOLU 21
gensrv installation KSTRMU 115
GEQ M1 34; MTUT1 98

(greater or equal) MTUTI 31
for strings M1 33

$getBaudRate KSTRMU 108
$getCommandLine M2137
$getEotpos M2 140
$getHosts KSTRMU 60
$getInArea Ml 20,207; M2 140; MTUTI 297
getPos M2141; MTUTl132
$getProtocols KSTRMU 60
$getSubcommands M2 141; TOOLU 302
$getToTop M2 143
global

cache (of files) TOOLU 213
symbol table M2 143

$globalEnter M2 143
globalLeftBorder MEDTU 84
$globalLookup M2 143
$globallyCached bit M2 205, 238
$GLOBALREDEFINE Ml 123, 146
$globalRemove M2 143
globalRightBorder MEDTU 84
$globalSymbol M2143
GMT M1198; M2 26,61.97,106,255
$gmt M2144

bit M2 25, 26, 27, 94, 95, 97, 107, 129,254,255,256,261
GMTOFFSET MAINEX subcommand M1 201; TOOLU 294
$GMTtoLocalTime M2145

bit M2 26, 255
$gotValue Ml 191; M2 145; MTUTI 107; MTUT2 41
Greenwich Mean Time M1198; M2 26,61,97,106,255
GTPL example module MTUT1 236
guaranteed range MTUTI 19

H
command TOOLU 77
commands MEDTU 70

half-duplex TTY KSTRMU 6, 17, 104, 111
$halfDuplex M1225
$HANDLE Ml 171; MTUT1 268

- 134-

Handle Statement Ml 171; MTUTI 268
handle limit on files MTUT2 43 '
Handle Statement, code for MTUT2 23
Handle Statements, nested MTUTI 276
$HANDLEB Ml 171
handler

falling out of Ml 172; MTUTI 272
nested MTUTI 273
search for MTUT2 26

hard deletion of LIB file TOOLU 247
hardcopy tenninals and MAINEDIT ~DTU 148
HARDDELETE LIB command TOOLU 265
HASBODY, $compileTimeValue argument M2 59
$hasFile Versions Ml 225
$hasFinalProc bit M2 171
$hash M2146
hash

code MTUTl133
table MTUTI 163, 213
table utility TOOLU 219

hashEnter M2 147; TOOLU 220, 221
hashInit M2147; TOOLU 220, 221
hashLoad M2 147; TOOLU 220,223
hashLookup M2 147; TOOLU 220,221
hashLookupNext M2 147; TOOLU 220, 223
hashLookupNextInit M2 147; TOOLU 220, 223
hashNext M2 147; TOOLU 220, 222
hashRemove M2 147; TOOLU 220, 222
hashRemoveRecord M2 147; TOOLU 220, 223
hashStore M2147; TOOLU 220,223
$hasInitialProc bit M2 171
HEADER LIB command TOOLU 269
header, procedure Ml 84; MTUT141
HEATH module ~DTU 145
Heath H-19 MEDTU 145
help for debugger commands TOOLU 64
hex M2146

bit M2 76, 82,90,200,219
hexadecimal M118

object values TOOLU 77
values TOOLU 77

$hisHostName KSTRMU 57
$homeDirectory M2 147
Hoops! MEDTU 70
host machine TOOLU 4
HOSTNAME service protocol table entry KSTRMU 116
$hostName KSTRMU 63

- 135-

HOSTPROTOCOL service protocol table entry KSTRMU 116
$hp20 M1222
HP300H module MEDTU 147
$hp38 M1222
HPTERM module MEDTU 147
$hpux M1222
HSHMOD MTUTl 213

module M2 147; TOOLU 219
HSHMOD module, source text MTUTI 215
hyperbolic

cosine (cosh) M265
sine (sinh) M2 247
tangent (tanh) M2 260

$hyphenateDate M2147
bit M299

I
command TOOLU 77
commands MEDTU 38

I/O MTUTII06
clearing KSTRMU 8
low-level stream KSTRMU 92
scheduled KSTRMU 75

$i38 M1221
$ibm M1221
identifier Ml 233; MTUTl 9

definition Ml 9
qualified Ml 120
reserved Ml 9
scope Ml 58
search MEDTU 34
visibility Ml 121

IF M129, 46
If

Expression Ml 29; MTUTl 121
Statement Ml 46; MTUTI 31

IFe Ml 148; MTUTl 184
IFFY example module MTUTI 32
IFX module TOOLU 225
ignore-count breakpoint TOOLU 69, 73
$ignoreMe bit M2 280
illegal, definition Ml 3
iLoad M2161
$image bit KSTRMU 96, 99
$irnageType TOOLU 171, 174

- 136-

implicit module pointer M1 106, 109
in-place sort TOOLU 341
inaccessible data structure M1 12
$inArea M1 207; M2 148
$includeTimeZone M2 148

bit M299
$includeWeekday M2149

bit M299
inclusive or (1, lOR) M1 34,37; MTUTI 98
INCREMENTAL compiler subcommand TOOLU 21
incremental recompilation TOOLU 10
index

array M165
sort TOOLU 342

indirect
access to data section MTUTl196
access to interface field Ml 108
access to modules M1 107
arguments TOOLU 60

INF MI 29; MTUTI 124
infinite loop, tracking MTUT2 38
infix order MTUT1 154
INFO command TOOLU 130
information MEDTU 63

about memory usage TOOLU 304
inherited fields M1 78
ININTLIB compiler subcommand TOOLU 22
INIT MI62
Init Statement M162; MTUT1167
INITIAL Ml 113
initial procedure Ml 113; MTUTI 10
initialization

of areas M2 177
of arrays M1 62, 66
of local variables Ml 85

INITIALIZE (special macro) MEDTU 77
initialize PDFMOD TOOLU 326
$initializeStreams KS1RMU 15
INITIALSTATICPOOLSIZE MTUT2 12

CONF command TOOLU 200
$initRand M2 149; TOOLU 336
$initsRand M2 149; TOOLU 336
INLINE Ml 98; MTUT2 6
inline procedures MTUT2 6
$inlinesHaveBodies bit M2 171
INOBJFILE compiler subcommand TOOLU 22
INOBJLIB compiler subcommand TOOLU 22

- 137-

input M2149; MTUT1106
bit KSlRMU 19,51, 101; M2 192
from a file M1 189

insert mode MEDTU 21, 22, 38
inserting

blank lines MEDTU 38
characters (I commands) MEDTU 38
files and buffers (I commands) MEDTU 39

$insertLeft M2 150, 173
insertModeDefault MEDTU 85
$insertRight M2 150, 173
installation, server KSlRMU 115
instance procedures MTUT1 85
INTCOM module TOOLU 228
IN1EGER MilS
integer MTUT119

maximum M2 167
square root example MTUT1 37
string parse M2 220

integerCode Ml 220
intemctive

child KSTRMU 70
macro equate Ml 135; MTUTI 185

interface
consistency checking Ml 113; TOOLU 288
field MilOS, 107; MTUTI 196
field access M1 108, 110
procedure access Ml 111
RPC module KS1RMU 26
variable M1 108, 110
variable access M1111

in.termodule call MTUT2 8
interpreting statements TOOLU 88
interprocess

communication KSlRMU 4
communication stream KSTRMU 11
procedure calls KSTRMU 21

$interrupt KSTRMU 109
interrupt KSlRMU 9. 87

character KSTRMU 105
interrupt character, reading KSTRMU 7
$interruptsEnabled KSTRMU 87
$intFileFirst M2 237
INTLIB

module TOOLU 230
program interface TOOLU 241

intList M1 129

- 138-

intmod M1119, 127; MTUT1350; TOOLU 53
close TOOLU 80
comparison TOOLU 228
converting source library to MTUT2 51
filename M1127
infonnation about M2 151
libraries and debugger TOOLU 82
library M1 127; TOOLU 230
search rules M1 128
STREAMS KSTRMU 15
supporting M1 120

intmod library, opening with the "01" command TOOLU 82
$intmodInfo M2 151
intSearch Ml 128
invalid

address M1 22; MTUT1 289; MTUT2 45
exponent M2 125

$invokeModule M1 117; M2 151; TOOLU 279
invoking

a module M2 151; TOOLU 74, 279
module with arguments M2 137
modules from MAINED MEDTU 86

lOR Ml 34,37; MTUT1 98
$ioSize M1 216; M2 152; MTUTI 142
$ip32c M1 222
IPC stream KSTRMU 11
$ipsc2 M1 222
isAlpha M2152; MTUT161
$isArray M2 153
$isaTty KSTRMU 16, 110
$isBound M2153
$isDirectory M2 129
$isHalIDuplex KSTRMU 16
$isLocked KSTRMU 78
isLowerCase M2 154; MTUT161
isNul M2154
$isScheduled KSTRMU 8, 16
isUpperCase M2 155; MTUT1 61
Iterative Statement M1 51; MTUT1 26,36
iterative variable MTUT127
Iterative Statement, breakpoint on TOOLU 70
ITFI example module MTUTI 199
ITF2 example module MTUT1 200
ITFXREF compiler subcommand TOOLU 23
iUnit TOOLU 54, 81

breakpoint at TOOLU 73
$ix20 M1222

- 139-

$ixfpa M1222
$ixpri Ml 222

J
command TOOLU 78
commands MEDTU 48

joining lines :MEDTU 48
jumping into procedures TOOLU 78
justifying text MEDTU 50

K
command :MEDTU 24; TOOLU 78
commands :MEDTU 42

KEEP LIB command TOOLU 266
keepNul M2 155

bit KSTRMU 51; M2 64, 132, 192; TOOLU 173, 176
Kennit tenninal emulator KSTRMU 80
KERMODNAME CONF command TOOLU 200
kernel, MAINSAIL module TOOLU 200
KEY example module MTUTI 236
keyboard

interrupt KSTRMU 9, 87
macros MEDTU 74

$keyboardInterruptExcpt KSTRMU 9, 87
keys, special MEDTU 2
keyword M19, 123,233; MTUT19

abbreviation MTUT132
kill command on UNIX MTUT2 38
KILLCO module TOOLU 204
$ki1ICoroutine M2 156; MTUTI 299
$killedCoroutine M2 157
killing

a coroutine Ml 180; M2 156, 157
text MEDTU 42

$killServerExcpt KSTRMU 37

L
command TOOLU91
commands MEDTU 49

LAMP example module MTUTI 236
last M2 157; MTUTI 60; MTUT2 15
$lastError KSTRMU 63
$lastInputError KSTRMU 16, 94
$lastOutputError KSTRMU 16, 94
$Ib! M170

- 140-

lbl M170
$lb2 M170
Ib2 M170
$lb3 M170
Ib3 M170
IbLoad M2 161
IbMask M2 158; MTUT244
IDisplacementM2 158
leaving

MAINED MEDTU 21
MAINEDIT :MEDTU 11

left-right scrolling MEDTU 55
legal notice directive ($LEGALNOTlCE) M1148
$LEGALNOTICE Ml 148
LEGALNOTICE MODLIB command TOOLU 314
$length M2 159
length M2 159; MTUTI 60
LEQ Ml 34; MTUTI 98

(less or equal) MTUTI 31
for strings M1 33

LIB TOOLU 242
LIB EX TOOLU 242

example TOOLU 270
LIBRARY compiler subcommand TOOLU 23
library

compiletime MTUT2 50
file (LIB) TOOLU 244
intmod MTUT1 350; TOOLU 230
module M1127; M2 47, 193
module, system TOOLU 202
objmod MTUTI 246; TOOLU 307
objmod (opening from MAINEX) TOOLU 297
opening with the ItOL It command TOOLU 82

liLoad M2 161
limit on file handles MTUT2 43
LINCOM module TOOLU 276
LINDPY module :MEDTU 148
$line bit KSTRMU 96, 99,100
line

debugger interface TOOLU 90
editing KSTRMU 105
search MEDTU 34

line number, current M2 59
line-oriented debugger interface TOOLU 55, 94
line-oriented debugger interface, switching to TOOLU 63
$lineErase KSTRMU 109
LINEFEED key MEDTU 2

- 141-

linefeed KSTRMU 99, 106
SlinefeedKey KSTRMU 109
SlineOrientedDebug M2 237
link step, absence of Ml 105
LIST

command TOOLU 130
example module MTUTI 150

In M2161
load MTUT1 286

a character from a charadr (cLoad) M2 45
from an address M2 161

local
call MTUT28
declarations M1 58
variable M1 58, 84; MTUT1 45

local variable, initialization M185
localLeftBorder MEDTU 84
localRightBorder MEDTU 84
SlocalTime M2 164

bit M2 25,26,27,94,95,97, 107.254,255,256,261
"SlocalTimeToGMT M2 164

bit M2 26, 255
Slock KSTRMU 78
locking data structures KSTRMU 76, 78
LOG

compiler subcommand TOOLU 24
INTLIB command TOOLU 237
MODLIB command TOOLU 314

log M2 165
log file, server KSTRMU 37
$log2 M2165
logarithm

base2 M2165
base e (In) M2 161
base ten (log) M2 165

LOGFILE MAINEX subcommand TOOLU 294
10gFile M1 193; M2 166; MTUT1 107

and STREAMS KSTRMU 12
redirecting from MAINEX TOOLU 294
redirection MTUT2 44

LOGIC example module MTUT1 33
LOGIC2 example module MTUT1 43
logical

file name MTUT2 42, 45
file names Ml190; M2 115, 166
name MTUT1 111

logical names

-142 -

establishing from MAINEX TOOLU 293
looking up from MAINEX TOOLU 294

logical operators (AND, OR, NOT) Ml 34; MTUTI 98
LONG

BITS M117
INTEGER Ml 15
REAL M116

long
array MTUTI 172
arrays M161, 65
bits MTUT191
integer MTUTl 89
MAINEX subcommand line TOOLU 285
real MTUTI 90

long bits, guaranteed range MTUT2 45
long integer, maximum M2 168
longBitsCode M1220
longIntegerCode Ml 220
longRealCode Ml 220
LOOKUP MAINEX subcommand TOOLU 294
lookUpLogicalName M2 166
lookupLogicalName MTUTI 111
LOOPS example module MTUTI 38
low-level

data types MTUTI 284; MTUT2 1
PDF procedures M2 198; TOOLU 321
stream I/O KSTRMU 92

lower case, converting to MEDTU 49
lparms TOOLU 247
lrLoad M2 161
LS LIB command TOOLU 257

M
command (with argument) TOOLU 79
command (with no argument) TOOLU 79
commands MEDTU 47

$m20 M1221
$m68 M1221
MACRO keyword MEDTU 14
macro MEDTU 74; MTUTI 16; TOOLU 64, 65

and modes MEDTU 77
argument Ml 137
body Ml 132, 134
bracketed text MTUT1178; MTUT2 47
call M1137

- 143-

common errors MTUTI 193
concatenation MTUT1189
constant M1132; MTUT116, 177
declaration Ml 132
definition Ml 132, 133
equate Ml 132
ID keys MEDTU 133
parameter Ml 132, 137
recursive MTUT1187
special MEDTU 77
stored in eparms MEDTU 14

macro equate, interactive Ml 135
macro parameter, repeatable MTUTI 190
MAINDEBUG, invoking from a program TOOLU 114
MAINED MEDTU 1

front end MEDTU 4
MAINEDIT MEDTU 1; MTUTI 4; TOOLU 56

batch mode MEDTU 148
eparms file MTUTI 114
hardcopy terminals MEDTU 148

MAINEX M2 151; MTUTI 4; TOOLU'279
conditional commands to TOOLU 225
subcommands M2 141; TOOLU 281,302,363

MAINEX subcommands' reading from a file TOOLU 289, 300
MAINKERMIT terminal emulator KSTRMU 80
MAINPM MTUT2 1; TOOLU 24, 25, 27, 28

module TOOLU 123
MAINSAIL

address space MTUT1292
monitor TOOLU 304

$mainsailExec M2 166; TOOLU 301
MAINVI MEDTU 1

front end MEDTU 4
$majorVersion M2 167
MAKE Lm command TOOLU 262
MAKEMODULENOTVISmLE n$DIRECflVE" directive Ml 120
MAKEMODULEVISIBLE "$DIRECTIVE" directive Ml 120
MAKENOTVISIBLE "$DIRECTlVE" directive Ml 120
MAKEVISIBLE n$DIRECTIVE" directive Ml 120
MAP MAINEX subcommand TOOLU 295
map of scheduled coroutines KSTRMU 80
$mapAtMemlnfoBit M2 246
margins MEDTU 25
marked location MEDTU 33
$markedArea TOOLU 180
MA TMUL example module MTUTI 173
matrix multiplication MTUTI 172

- 144-

MAX Ml 34; MTUTI 98
$maxChar Ml 6; M2 167; MTUTI 289
maximum

character code M2 167
integer M2 167
long integer M2 168

$maxInteger M2 167
$maxLongInteger M2 168
MAX:MEMORYSIZE MTUT2 12

CONF command TOOLU 200
maze program exercise MTUT1175
MEC TOOLU38
. example TOOLU 44
MEDT MEDTUI

front end MEDTU 4
MEM device module TOOLU 303
MEMINFO MAINEX subcommand TOOLU 296
$memInfoBit M2 246
MEMMAP MTUTI 292
$memMngModule M2 18,221
memory

allocation quanta TOOLU 200
examining TOOLU 88
exhausting M2 22
files TOOLU 303
information about TOOLU 304
limit on TOOLU 200
management M112, 206; MTUTI144, 284; MTUT212; TOOLU 304
maps TOOLU 295
stream KSTRMU 11~ 114
unit Ml 11

memory management, controlling M113
MEMSTR STREAMS module KSTRMU 79, 114
merging files TOOLU 334
:MESSAGE Mf 143

compiler directive MTUTI 185
message line MEDTU 8
MIN Ml 34; MTUTI 98
$minlnteger M2168
$minLongInteger M2 169
$minorVersion M2169
MINSIZETOALLOCA TE CONF command TOOLU 200
MKDIR LIB command TOOLU 262
MM module TOOLU 304
MOD Ml 34; MTUTI 98
mode MEDTU 21

and macros MEDTU 77

-145 -

as displayed in status line 11EDTU 9
parameter MIIOI

MODIFIES MI 90; MTUT1 44
$modifyDate field of $fileInfoCls M2 127
$modifyTime field of $fileInfoCls M2 127
MODLIB

module TOOLU 307
program interface TOOLU 318

modList TOOLU 232, 309
MODTI11E compiler subcommand TOOLU 24, 123
MODULE MIlOS

command TOOLU 129
module MTUT1196, 213

allocation M1111; M2 174
can find M2 33
date of compilation M2 170
declaration MI 107
disposal M1 111; M2 111
file name association M2 217
format MIlOS
invoking M2 151
invoking from MAINED MEDTU 86
invoking from MAINEX TOOLU 279
libraries and debugger TOOLU 82
library M1 127; M2 193; MTUT1 246
library (closing) M2 47
library (opening from MAINEX) TOOLU 297
linkage MI III
name association M2 218, 239
name of M2 172
names MIlOS
of debugger context TOOLU 79
search rules M1 128; MTUTI 246
size M1 lOS; M2 170
source vs. object MTUT1 196
swapping M1116; MTUT1208; MTUT211
version M2 170
visibility M 1 120

module library
intmod TOOLU 230
objmod TOOLU 307
system TOOLU 202

module name, current M2 59
moduie name association, establishing from MAINEX TOOLU 299,300
module pointer, implicit MII06, 109
module swapping, tracking TOOLU 301
$moduleCode M1 154, 220

- 146-

$modulelnfo M2 170
$moduleName M2 172
MONITOR compiler subcommand TOOLU 25, 123
MONITORAREA command TOOLU 132
monitoring, performance M2 58
MONITORLIB command TOOLU 132
MONITORMODULE command TOOLU 132
most recently used field base TOOLU 66
MOVE

INTLm command TOOLU 238
MODLIB command TOOLU 314

$moveCoroutine M2 173
moving

text MEDTU 47
the cursor MEDW 23

MS_ADDRESSCODE KSTRMU 43
MS_BITSCODE KSTRMU 43
MS_BOOLEANCODE KSTRMU 43
MS_CHARADRCODE KSTRMU 43
ms_exception KSTRMU 46
MS_INTEGERCODE KSTRMU 43
MS_LONGBITSCODE KSTRMU 43
MS_LONGINTEGERCODE KSTRMU 43
MS_LONGREALCODE KSTRMU 43
MS_REALCODE KSTRMU 43
MS_STRINGCODE KSTRMU 43
msgMe M2118, 173

bit M2ll9
msgMyCaller M2 118, 174

bit M2119
MSK Ml 34, 37; MTUTI 98
$msTimeout KSTRMU 77
MULEXC example module MTUTI 277
multidimensional arrays MTUTI 172
multiple

buffers into one file MEDTU 64
file open MTUT2 43
files MEDTU 59, 93
modules in one source file Ml 116; MTUT2 54
opens of the same file M1190
sort TOOLU 346
windows MEDTU 55

multiple processes, simulating MTUTI 299
multiple records, allocation of M2 180
multiplication operator (*) Ml 34; MTUTI 98
multiprocessor program KSTRMU 81
multitasking KSTRMU 75

- 147-

mutual recursion MTUT1 76
MV LIB command TOOLU 264
$mv M1221
$mvux M1222
MYHOST service protocol table entry KSTRMU 115
$myHostName KSTRMU 57, 60

N
command TOOLU 80
commands MEDTU 72

n in command descriptions :MEDTU 3, 28
$name KSTRMU 16, 78
name M170

of array M1 69
of class M2 39
of file Ml187

named .

Begin Statement M1 45
Case Statement Ml 49
Iterative Statement M1 53
macro MEDTU 74
statement MTUTI 29

NAMEDMACRO keyword MEDTU 14
names, module MIlOS
natural logarithm (In) M2 161
NC LIB mode TOOLU 254
NEEDANYBODIES M1 158
NEEDBODY Ml 158

vs. HASBODY M2 59
NEQ Ml 34, 67; MTUTl 98

(not equal) MTUTI 31
for strings Ml 33

nested
exception MTUT1273
exceptions Ml 173
Handle Statements MTUT1276
handler MTUT1 273

NET device module KSTRMU 130, 133
NETSTR KSTRMU 65, 128
network

distributing application across KSTRMU 81
protocol module KSTRMU 58

new M1207; M2174; MTUT1149, 159
array Ml 62; M2 174
data section M2 174

- 148-

module M2 174
record Ml 74; M2 174

$newArea M1207; M2177
newestVersion KSTRMU 36
$newException M2 178
newPage M2 179
$newRecords M2180; MTUT2 2
$newRemoteModule KSTRMU 24
newScratch M2 181; MTUTI 288
$newScratchChars M2 182; MTUTI 289
$newSemaphore KSTRMU 78
newString Ml 20; M2 182; MTUTI 297
newUpperBound M2183; MTUT1172
next to most recently used field base TOOLU 66
nextAlpha M2 186
NICHTS example module MTUTI 185
NIHIL example module MTUTI 187
NOACHECK

"$DIRECTlVE" directive Ml 168
compiler subcommand TOOLU 17

NOACHECKALL
"$DIRECTlVE" directive Ml 168
compiler subcommand TOOLU 17

$noAutoCmdFileSwitching Ml 193; M2 237; TOOLU 198
NOCHECK Ml 164

"$DIRECTlVE" directive Ml 165
compiler subcommand TOOLU 18

NOCHECKALL
"$DIRECTlVE" directive Ml 165
compiler subcommand TOOLU 18

NOCHECKCONSISTENCY MAINEX subcommand TOOLU 288
$noCheckConsistency M2 246
NOCO example module MTUTI 300
$noCollectablePtrs M2 184

bit Ml 210; M2 178
$noCollectableStrs M2 185

bit Ml 210; M2 178
$noCompactablePtrs M2185

bit Ml 210; M2 178
NOCONFIRM LIB command TOOLU 266
NOCONTROLINFO MAINEX subcommand TOOLU 289
NOCOUNTS subcommand TOOLU 128
node, computer KSTRMU 4
NODEBUG compiler subcommand TOOLU 18
NOECHOCMDFILE MAINEX subcommand TOOLU 292
NOECHOIFREDIRECTED MAINEX subcommand TOOLU 293
NOFILEINFO MAINEX subcommand TOOLU 294

- 149-

NOFLDXREF compiler subcommand TOOLU 19
$noFlow KSTRMU 107
NOGENCODE compiler subcommand TOOLU 21
NOGENINLINES compiler subcommand TOOLU 21
$noHandler M2 186

bit M2206
NOINCREMENTAL compiler subcommand TOOLU 21
NOININTLIB compiler subcommand TOOLU 22
NOINOBJLIB compiler subcommand TOOLU 22
$nolnterrupt KSTRMU 107

bit KSTRMU 89
NOITFXREF compiler subcommand TOOLU 23
$noLegaiNotice bit M2 170
NOLffiRARY compiler subcommand TOOLU 23
NOLOG

compiler subcommand TOOLU 24
INTLffi command TOOLU 238
MODLIB command TOOLU 314

NOMEMINFO MAINEX subcommand TOOLU 296
NOMONITOR compiler subcommand TOOLU 25, 123
NOMONITORAREA command TOOLU 132
NOMONITORLIB command TOOLU 132
NOMONITORMODULE command TOOLU 132
non-blocking I/O KSTRMU 12
non-compressed text forms TOOLU 156
non-data-type-aligned addres Ml 22
non-deterministic bugs MTUT2 34
nonbound data section Ml 106, 108; MTUTI 213
nonbound-invocation module Ml 117; TOOLU 31
$nonPaged bit TOQLU 169, 171, 173, 175, 176, 179
$nonRecursive M2 187

bit M2 156, 173,226
nonRecursiveDebug TOOLU 83
nonsticky compiler subcommands TOOLU 12
NOOPTIMIZE

"$DIRECTlVE" directive Ml 161
compiler subcommand TOOLU 25

NOOPTIMIZEALL "$DIRECTIVE" directive M1161
NOOUTOBJLIB compiler subcommand TOOLU 26
NOOUTPUT compiler subcommand TOOLU 27
NOPROC example module MTUTI 40
NOPROCS compiler subcommand TOOLU 28
NOREDEFINE compiler subcommand TOOLU 29
NORESPONSE

compiler subcommand TOOLU 30
MAINEX subcommand TOOLU 297

noResponse M2 187,246

-150 -

I

I

I

I

bit M252, 119, 121
NOSA YEON compiler subcommand TOOLU 30
NOSLIST compiler subcommand TOOLU 30
NOSW APINFO MAINEX subcommand TOOLU 301
NOT M1 33; MTUTI 97
NOT ARGET compiler subcommand TOOLU 31
NOTIMING subcommand TOOLU 128
$noTranslate M2 187

bit M2 35, 36
NOUNBOUND compiler subcommand TOOLU 31
NOUNEXECUTED subcommand TOOLU 128
NOUPDATE

IN1Lm command TOOLU 239
MODLIB command TOOLU 316

NOVERBOSE LIB command TOOLU 266
NTST M1 34; MTUTI 98
NTSTA Ml 34; MTUTI 98
NTTY device module KSTRMU 12, 104
NUL device module TOOLU 303
$nulChar Ml 7; M2 188
null

character KSTRMU 108; Ml 7; M2 188
string M119

NULLADDRESS Ml 23; MTUTl 288
NULLARRAY M161
$nullArrayExcpt Ml 224; M2 188
$lJullCallExcpt Ml 224; M2 188
NULLCHARADR M123; MTUT1288
NULLPOINTER Ml 22; MTUTI 146
$nullPointerExcpt M1224; M2 189
$numArgs M1138;MTUT1190
number of PDF characters in host data TOOLU 322
numbers, manipulating MEDTU 79
numeric operators (+, -. *, I. DIV, MOD) Ml 34; MTUT198
$numPagesOrSize TOOLU 171
NUMS example module MTUTIII0
NV LIB mode TOOLU 254

o
command TOOLU 81
commands MEDTU 36

OBJCOM module TOOLU 319
object

module MTUT16, 196
of command MEDTU 29

- 151-

object-oriented programming MTUT1213
objects, display in hexadecimal TOOLU 77
$objFileFirst M2 237
objList Ml 129
objmod M1127; MTUTI6, 196

comparison TOOLU 319
dispose TOOLU 80
file name M1 127
information about M2 170
library Ml 127; MTUTI 246; TOOLU 307
library (opening from MAINEX) TOOLU 297
search rules M1128

objSearch M1 128
OCcommand TOOLU81
octal Ml 18; M2 189

bit M2 76,82,90,200,219
$octet bit KSTRMU 96, 99,100
octet KSTRMU 95
OF M148
OFB M148
01 command TOOLU 82
OL command TOOLU 82
oldestVersion KSTRMU 36
omit M2190

bit M2231
$onesComplement M1 225
Oops! MEDTU70
OP command TOOLU 83
open M2190

coroutine ("0C" command) TOOLU 81
file MTUT1 107
procedure call M198
simultaneous MTUT2 43

OPENEXELIB MAINEX subcommand TOOLU 297
opening

a file M1190; M2 190
a file for PDF I/O M1 215
a Structure Blaster file TOOLU 153

OPENINTLIB MAINEX subcommand TOOLU 297
OPENLIBRARY MAINEX subcommand TOOLU 297
openLibrary M2 193
OPENMODULE n$DIRECTlVE" directive M1 120
OPENOBJLIB MAINEX subcommand TOOLU 297
$openStream KSTRMU 18
operating

system attributes M2 29
system number M2 259

-152 -

operating system, definition Ml 3
operating system name

abbreviation M2 258
full M2 258

operators
dotted Ml 40,43
precedence M138
tables M132

optimization Ml 161
OPTIMIZE

"$DIRECfIVE" directive Ml 161
compiler subcommand TOOLU 25

OPTIMIZEALL "$DIRECTIVE" directive M1161
$optimized bit M2 171
OPTIONAL M1 90; MTUTI 55
$optionalFirstEol KSTRMU 103
options MEDTU 82

debugger TOOLU 83
OR M1 34; MTUTI 31,98, 123
order

of evaluation Ml 27
of evaluation of operands Ml 38
of evaluation of procedure arguments Ml 93; MTUT149

$OSDSize field of $fileInfoCls M2 127
OSMEMORYPOOLSIZE CONF command TOOLU 200,306
out of memory exception M2 22
outer

declaration Ml 58, 105, 107; MTUTI 61
variable M158, 105

OUTINTFILE compiler subcommand TOOLU 26
OUTINTLIB compiler subcommand TOOLU 26
OUTOBJFILE compiler subcommand TOOLU 26
OUTOBJLIB compiler subcommand TOOLU 26
OUTPUT compiler subcommand TOOLU 27
output M2195; MTUTI106

bit KSTRMU 19,51,101; M2 192
to a file Ml 189

overflow Ml 14,26
arithmetic M2 24,.125; MTUTI 273
stack Ml 103; M2 249

$overheadPercentExitValue M2 195
$overheadTooHighExcpt Ml 224; M2 195
overlays, automatic Ml 116
overstrike mode MEDTU 21, 22, 36
overstrikeModeDefault MEDTU 85
overstriking characters (0 commands) MEDTU 36

- 153-

OWN Ml60
own variable MI 60; MTUTI 83

P command MEDTU 25; TOOLU 91
$pl TOOLU66
$p2 TOOLU66
$packet bit KSTRMU 96, 99
page MTUTI 291

map MTUTI 292
marks MEDTU 10,30,39,42,45
of text MEDTU 10

page number, current M2 59
page size

in character units M2 37
in storage units M2 197

pageDispose M2196; MTUT1292
PAGEMAP LIB command TOOLU 269
$pageRead M2 197; MTUTI 295; MTUT2 8
pages, deletion and recovery MEDTU 42
$pageSize M2 197; MTUTI 291
PAGESUMMARY LIB command TOOLU 269
$pageWrite M2 198; MTUTI 295; MTUT2 8
paragraph, filling M2 135
parallel processing KSTRMU 81
parameter MTUT1 44

macro Ml 132, 137; MTUTI 181
mode MI101
ofFLI procedures TOOLU 47
procedure M1 87,89,94
qualifiers MI89

$parent KSTRMU 9,15,68,110
parentheses Ml 39; MTUTI 19

in expressions Ml 38
parse

bits string M2219
integer string M2 220
real string M2 222

$parseHostServiceName KSTRMU 60
Pascal, calling (from) TOOLU 19,40
passing a procedure argument MTUT144
passwords, in object modules TOOLU 350
path name of a file M2 127
PDP MTUTI 142

character translation M 1 214
data in RPC call KSTRMU 27

- 154-

device prefix M1215
file data type size M2 152
I/O M1214
image KSTRMU 26
low-level procedures M2 198; TOOLU 321
structure image TOOLU 150

$pdf M2199
bit KSTRMU 51; M1215; M2 192; TOOLU 153,172,175,179

PDF 1/0
opening for Ml 215
positions in file M1216

pdfBoRead M2198; TOOLU 331
pdfBoWrite M2 198; TOOLU 332
pdtbRead M2 198; TOOLU 331
pdfbWrite M2 198; TOOLU 332
pdfCharRead M2198; TOOLU 322
pdf Chars M2 198; TOOLU 322
pdfCharWrite M2 198; TOOLU 323
pdfcRead M2 198; TOOLU 324
pdfcWrite M2 198; TOOLU 324
pdfDelnit M2198; TOOLU 325
pdtFldRead M2 198; TOOLU 325
$pdflmage TOOLU 171
pdflnit M2 198; TOOLU 326
pdfiRead M2 198; TOOLU 331
pdfiWrite M2198; TOOLU 332
pdtLbRead M2 198; TOOLU 331
pdtLbWrite M2198; TOOLU 332
pdtLiRead M2 198; TOOLU 331
pdtLiWrite M2 198; TOOLU 332
pdtLrRead M2 198; TOOLU 331
pdtLrWrite M2198; TOOLU 332
PDFMOD M2 198; TOOLU 321

charadr read procedures TOOLU 331
charadr write procedures TOOLU 332
deinitializing TOOLU 325
initializing TOOLU 326
number of PDF characters in host data TOOLU 322
read character from PDF source TOOLU 324
read characters from PDF source TOOLU 322
read field from PDF source TOOLU 325
read value from PDF source TOOLU 326
write character to PDF destination TOOLU 324
write characters to PDF destination TOOLU 323
write value to PDF destination TOOLU 329

pdfRead M2 198; TOOLU 326
pdfrRead M2 198; TOOLU 331

- 155 -

pdfrWrite M2 198; TOOLU 332
pdfWrite M2 198; TOOLU 329
performance

monitoring M2 58; TOOLU 122
monitoring compiler subcommands TOOLU 24, 25, 27, 28

PERMOD compiler subcommand TOOLU 27, 123
PERPROC compiler subcommand TOOLU 27, 123
PERSTMT compiler subcommand TOOLU 27, 123
PLANT example module MTUTI 343
PLA1FORM CONF command TOOLU 200
platform

definition Ml 3
name abbreviation Ml 222; M2 199
number M2 200

platform name, full M2 199
$platformNameAbbreviation M2 199
$platformNameFull M2 199
$platformNumber M2 200
PLAYER example module MTUTI 236
PLISTexampie module MTUT1163
pLoad M2 161
PL TFRM example module MTUTI 236
PMERGE module TOOLU 334
POINTER Ml 22
pointer MTUTI 144

area of M2 23, 148
classified Ml 74
classifying in expression MTUT1223
safe and unsafe assignment M 1 80
unclassified Ml 75; MTUTI 244

pointerCode M1220
$poll KSTRMU 92, 103
pool

as memory TOOLU 200
static page TOOLU 200

POPACHECK U$DIRECTlVE" directive Ml 168
POPCHECK U$DIRECTIVE" directive Ml 165
Sport KSTRMU 60, 63
port KSTRMU 58

in rendezvous KSTRMU 74
server KSTRMU 25

portability
of images and text forms TOOLU 154
of string constants Ml 7

Portable
Data Format MTUTI 142
Data Format (PDF) Ml 213; TOOLU 321

- 156-

portable structure image TOOLU 150
porting a structure TOOLU 156
positions in file opened for PDF I/O Ml 216
precedence

of assignment operator MTUTI 122
of operators Ml 38

predeclared identifier MTUT158
predefined exception Ml 224
preferred radix TOOLU 62
$preferredRadix M2 200; MTUTI 288; TOOLU 62
prefix class Ml 78; MTUTI 154, 223
prefixed class MTUTI 223
prey Alpha M2 200
$pri M1221
primary

I/O KSTRMU 104
input and output Ml 191

$privatelyCached bit M2 205, 238
PRNTCO module TOOLU 204
PROCEDURE Ml 84

command TOOLU 129
Procedure

Expression M128
Statement Ml 44; MTUTI 42

procedure MTUTI 40
argument Ml 87, 89
body M184
call MI86,87,90,99
calls M128, 44
declaration M184
field of a class MillO
generic M199
header M184
inline M198
parameter Ml 87, 89, 94
parameter qualifier Ml 89
qualifiers Ml 95
recompilation of TOOLU 10
statement counts TOOLU 128
typed M186
untyped Ml 86

procedure arguments, evaluation MTUT149
procedure call

interprocess KSTRMU 21
local vs. intermodule MTUT2 8

procedure name, current M2 59
proceed M2 201

- 157 -

bit M2231
process KSTRMU 5

communication KSTRMU 21
control KSTRMU 69
rendezvous KSTRMU 5, 73

processes, simulating multiple MTUTI 299
processor

attributes M2 29
definition Ml 3
name abbreviation MI 221; M2 201
number M2 202

processor name, full M2 202
$processorNameAbbreviation M2 201
$processorNameFull M2 202
$processorNumber M2 202
PROCS

compiler subcommand TOOLU 28
example module MTUTI 41

PROCTIME compiler subcommand TOOLU 28, 123
producer-consumer problems MTUTI 299
PRODUCES MI 89; MTUT1 44
program MTUTI 7, 196

arguments M2 137
composition Ml lOS

$programInterface M2 202
bit M231

$programName M2 203
prompt M2 203

bit M2192
debugger TOOLU 83

propagating
an exception MTUTI 269
exceptions MI 172

propagating an exception, implementation MTUT2 29
proportionalWindowsMode MEDTU 85
protocol

for server port KSTRMU 25
module KSTRMU 58
version in RPC KSTRMU 32, 33

$protocolName KSTRMU 57
pseudo-fields of arrays MI69
pseudo-procedures MI32
pseudo-random number generator M2 149,207,249; TOOLU 336
pseudo-terminal KSTRMU 11, 111
PTY stream KSTRMU II, 111
PTYPRO KSTRMU 10, 65

STREAMS module KSTRMU III

- 158-

$tty in child KSTRMU 104
PUSHACHECK "$DIRECTIVE" directive M1 168
PUSHCHECK "$DIRECTIVE" directive Ml165
PWD LIB command TOOLU 255

Q
command TOOLU 63
modifier (emphasis) MEDTU 29

Q= command MEDTU 63
QDIRECTORY

INTLm command TOOLU 238
MODLIB command TOOLU 315

QF command MEDTU 21
qualified identifier M1 120
qualifiers M1 59, 95
$queryFileCacheParms M7 204
$queueCoroutine KSTRMU 77
quicksort TOOLU 341
QUIT

command TOOLU 131
CONF command TOOLU 201
INTLm command TOOLU 233
LIB command TOOLU 268
MODLIB command TOOLU 311

quitting TOOLU 63
MAINED MEDTU 21
MAINEDIT MEDTU 11

$quoteNext KSTRMU 109
QUOTES example module MTUTI 87

R
command TOOLU 84
commands MEDTU 44

R@ command TOOLU 84
R@@ command TOOLU 85
radix, preferred M2 200
$raise M2 205; MTUTI 269

with no arguments Ml 172
$raiseReturn M1172; M2 207; MTUT1 269

implementation MTUT2 29
raising

an exception M2 205; MTUTI 269
coroutine M2 121

$ranCIs TOOLU 336
$rand M2 207; TOOLU 336

- 159-

random M2 207
access to file MTUT2 42
access to files MTUT1131
bit KSTRMU 51; M2192
file access Ml 189
number generator M2149t 207t 249; TOOLU 336

ranget guaranteed M114
$ranMod TOOLU 336
ray t angle with x -axis M2 28
rcRead M2 208; MTUTI 60; MTUT2 15
rcWrite M2 209; MTUTI 61; MTUT2 20
$rdg M1221
re-entrant procedure caveat KSTRMU 76
READ

INTLm command TOOLU 238
LIB command TOOLU 268
MODLIB command TOOLU 315

read Ml 7; M2 210; MTUTI 26t 106t 131 t 288; MTUT2 18
a character from the end of a string (rcRead) M2 208
a field from a file or string M2 131
character from PDP source TOOLU 324
characters from PDP source TOOLU 322
field from PDP source TOOLU 325
from "TTY" (ttyRead) M2 268
value from PDP source TOOLU 326

read a character from a charadrt string, or file (cRead) M2 68
read from filet string, or memory M2 210
read-only buffer MEDTU 84; TOOLU 57
READER example module MTUTI 18
reading

characters from a file M2 35
storage units from a file M2 250

readOnly MEDTU 84
$readStream KSTRMU 95
REAL M116
real MTUTI 90

string parse M2 222
realCode Ml 220
rearranging text MEDTU 47
recalling text MEDTU 42, 44
recognition of buffer names MEDTU 26
recompilation

incremental TOOLU 10
of erroneous procedure TOOLU 8

RECOMPILE compiler subcommand TOOLU 10, 28
record MTUT1144

allocation Ml 74; M2 71, 174, 180; MTUTI 149

-160 -

copying M2 62
definition Ml 71
disposal Ml 74; M2 111
examining TOOLU 87
field access Ml 76, 78, 79
size of M2 247
unit TOOLU 159

records. allocation of multiple M2 180
recovering pages MEDTU 42
recursion MTUT172
recursive

descent MTUTI 76
macro MTUTl 187
macros MEDTU 75
multiplication example MTUTI 74
procedure invocation Ml 95,96

recursive descent, errors and exceptions MTUTI 266
recursiveDebug TOOLU 83
REDEFINE Ml 133; MTUT2 54

compiler subcommand TOOLU 29
redirecting cmdFile and 10gFile MTUT2 44
redirection

of cmdFile and 10gFile MTUTI 115
of 1/0 in MAINEDIT MEDTU 148
of standard input and output Ml193, 194

refreshing the screen MEDTU 72
registered exceptions M2 103, 118,215
$registerException M1178; M2 215; MTUTI 281
related classes Ml 80
release of control section Ml111; M2 111,271
relFileName M2 217
relModName M2218
relPos M2 218; MTUT1132
Remote Procedure Calls KSTRMU 21
remote

file KSTRMU 50
module execution in child KSTRMU 29
module interface KSTRMU 26

$remoteModuleCls KSTRMU 22, 26, 36
$remoteModuleDefaults KSTRMU 26
$removeBits M2 219
$removeBoolean M2 220
$removeDateAndTime M2 222
$removelnteger M2 220
$removeLeadingBlankSpace M2 221
$removeMemMngModule M218, 221
$removeReal M2 222

- 161 -

$removeTrailingBlankSpace M2 223
$removeWord M2223
removing

a breakpoint TOOLU 84
a breakpoint at a specified offset TOOLU 84
all breakpoints TOOLU 85

RENAME LIB command TOOLU 264
$rename M2 223
renaming

a file M2 223
files TOOLU 339

rendezvous KSTRMU 5, 73,114
$reOpen M2 224 '
reorder M2 225; TOOLU 349
REPEATABLE M190; MWT155
repeata1?le macro parameter Ml 138; MTUTI 190
repeated execution of commands MEDTU 74
repetition of previous command MEDTU 69
replication M1 62
report file TOOLU 130
report file~ format TOOLU 140
$reportA11Versions M2 225

bit M2105
repository of shared data M2 143
$reprint KSTRMU 109
REPTST example module MTUT1 57
$reschedule KSTRMU 77
reserved

identifiers M1 9, 233
word MTUT19

RESPONSE
compiler subcommand TOOLU 30
MAINEX subcommand TOOLU 297

RESTORE CONF command TOOLU 201
RESTOREFROM M1 122; MTUT1 350; MTUT2 51

whether possible M2 59
restricted access to module TOOLU 350
$resumeCoroutine M2 225; MTUT1 299

and MAINDEBUG TOOLU 85
resumer of a coroutine, most recent M1 181
resuming

a coroutine M1 180; M2 225
a handled statement MTUTI 269

retain M2 226
bit M2231

RETURN M145
key MEDTU2

- 162-

~

~

~

I

I

I

I

I

I

Return Statement M145; MTUT148, 71
$returnExcpt Ml 224; M2 227
$returnIfNoHandler M2 227

bit M2206
returning from an exception Ml 172; M2 207
$retumKey KSTRMU 109
Reverse Polish Notation MTUTI 63
reverse M2 227; TOOLU 349
$reverseDateAndMonth M2 228

bit M299
rLoad M2161
RM .

commands MEDTU 77
LIB command TOOLU 264

RNMFIL module TOOLU 339
$ros M1222
RPC KSTRMU 21

buffer KSTRMU 26, 27
efficiency KSTRMU 39
execution in child KSTRMU 29
file KSTRMU 50
for C KSTRMU 40
module interface KSTRMU 26
protocol version KSTRMU 32, 33
server/client KSTRMU 21,32

RPC compilation, whether is M2 58
RPC module, debugging KSTRMU 22
rpc_clearjump KSTRMU 46
rpc_registerjump KSTRMU 46
RPCSRV server module KSTRMU 32, 38
RPN example module MTUTI 64
RS-232 stream KSTRMU 11
RSMCO module TOOLU 204
runtime

S

creation of classes M2 69
efficiency MTUT2 1

command TOOLU 85
commands MEDTU 32

safe assignment of pointers Ml 80
$sAJg Ml 138;~1 190
SAVE

CONFcommand TOOLU201
LIB command TOOLU 266

- 163 -

save reminders MEDTU 73
SA YEON Ml 122; MTUTI 350; MTUT2 51

compiler subcommand TOOLU 30
saving files MEDTU 11,21,67
scan M2 228; MTUTI 126; MTUT2 18

bits M2233
fast MTUTI 289
integers M2 234

scanning compiler directives M1156
scanRel M2 232
$scanSet M2 234
scanSet M2 233
SCHED example module MTUTI 315
scheduled

coroutine KSTRMU 5,12,75
TTY KSTRMU8

$scheduledCoroutineMap KSTRMU 80
Scheduler KSTRMU 12, 75
scheduler, coroutine MTUT1314
scheduling of I/O KSTRMU 12
SCOMAP module KSTRMU 80
scope

ofdechuation MTUTI 19,61
of identifiers Ml 58

scratch space M2 181, 182
scratchDispose M2 234; MTUTl 288
screen

format :MEDTU 8
refresh MEDTU 72

scrolling MEDTU 23, 30, 35
left-right MEDTU 55

search
for character TOOLU 92
for string TOOLU 92
rules for module MTUTI 246
rules for modules Ml 128

$searchCallChain M2 235
searching MEDTU 33
SEARCHPATH MAINEX subcommand TOOLU 297
searchpath MTUT2 42

for files M2 244
security, of object modules TOOLU 350
selecting a file MEDTU 59
selector M148

for $CASEC Ml 150
$semaphore KSTRMU 78
semaphore KSTRMU 76

- 164-

deadlock KSTRMU 80
semicolons MIlO
sequence, defining with $def Ml 159
sequential file access Ml 189
server KS'IRMU 58

generic (RPCSRV) KSTRMU 38
installation KSTRMU 115
log file KS'IRMU 37
process KS'IRMU 5
RPC KSTRMU 21, 32

server.1og KSTRMU 37
server/client rendezvous KSTRMU 74
$serverName KSTRMU 57
SERVICE KS'IRMU 58

service protocol table entry KSTRMU 117
service KSTRMU 58

coroutine KSTRMU 25
protocol table KSTRMU 64, 115

service version, RPC KSTRMU 33
$serviceName KSTRMU 63
$setBaudRate KSTRMU 108
$setCommandLine M2 236
$setConfigurationBit M2 236
$setExitCode M2 237
SETFILE MAINEX subcommand TOOLU 299
$setFileCacheParms M2 238
setFileName M2 239; MTUTI 246
setModName M2 239
SETMODULE MAINEX subcommand TOOLU 300
setPos M2 242; MTUT1132

caveat MTUT244
$setSearchPath M2 244
$setSystemBit M2 245
$setTheDate M2 245
setting

the date (if date not provided) M2 245
up a structure TOOLU 174

SETUP example module MTUTI 114
several modules in one source file M1116
shallow usage TOOLU 122
shared

data M2143
data among tasks KSTRMU 76

$shareStrings bit TOOLU 168, 179
shell KSTRMU 112

as child process KSTRMU 10
starting with PTYPRO KSTRMU 66

-165 -

writing KSTRMU 90
shift overflow MTUT2 45
SHL Ml 34; MTUTI 98
short arrays Ml 61, 65
short-army rule Ml 68
short-circuit evaluation MTUTI 123
SHOW CONF command TOOLU 201
SHR Ml 34; MTUTI 98
sign bit MTUT2 44
signal, tracking infinite loop with MTUT2 38
SIMPLE example module MTUTI 6
simple

variable Ml 27
variable declaration MI59

simulation. ecological MTUTI322
simultaneous

file open MTUT2 43
opens of the same file Ml 190
remote procedure calls KSTRMU 81

sin M2 247
SINES example module MTUTI 92
single step TOOLU 85
single step, on procedure return TOOLU 70
sinh M2 247
site.cmd KSTRMU 117
size

of a class MTUTI 285
of a data type MTUTI 285
of a file M2 127
of data type in file M2 152
of module M2 170
of modules MII05
of structure TOOLU 171
system procedure M2 247

skip to character or line ~DTU 32
SKIPSCAN Ml 156; MTUT2 54
slices of array TOOLU 66
SLIST compiler subcommand TOOLU 30
sLoad M2 161
SMSQRT example module MTUTI 320
socket stream KSTRMU 11.56
SOCPRO KSTRMU 65

stream module KSTRMU 9
$tty in child KSTRMU 104

soft deletion of LIB file TOOLU 247
SOFTDELETE LIB command TOOLU 265
sort M2 249; TOOLU 342

-166 -

sorting M2 137
package TOOLU 341

source
file containing multiple modules Mll16
file with multiple modules MTUT2 54
libraries MTUTI 83
library MTUT2 50
module MTUTII96

SOURCEFILE Ml143
compiler directive MTUT1209

sourcefile
automatic M1 158
whether possible M2 59

sourcefiling file name M2 59
$spa MI221
SPACE

bar MEDTU2
command TOOLU 132

spaces MIlO
SPECIAL M22
special keys MEDTU 2
speed of terminal MEDTU 6
$spix M1222
sqrt M2 249
SQRTS example module MTUT1 37
SQUARE example module MTUTI 27
square root (sqrt) M2 249
$sRand M2 249; TOOLU 336
SRCCONNECT LIB command TOOLU 255
SRTMOD TOOLU341
SRVINF module KSTRMU 133
stack

as data structure MTUTI 63
frames MTUT2 24
in coroutine MTUT1305
in exception MTUT1 276
overflow M1 103; M2 249
pointer MTUT2 24
size MTUT2 12
unwinding MTUT2 24

stacking exceptions M1 173
$stackOverflowExcpt M1 224; M2 249
STACKSIZE CONF command TOOLU 201
STAMP

module TOOLU 350
program interface TOOLU 361

standard input and output

-167 -

MAINSAIL Ml 193
operating system M1191

START example module MTUTI 236
starting a coroutine M2 225
$stutOutput KSTRMU 109
STATEMENTcommand TOOLU 129
statement Ml 43; MTUTI 26

executing TOOLU 88
static page pool TOOLU 200
statistics file TOOLU 124, 131
STATUS LIB command TOOLU 269
status

line MEDTU9
obtaining MEDTU 63,71

STDNAME MAINEX subcommand Ml 201; TOOLU 300
stepping

into procedures TOOLU 78
over procedures TOOLU 85

sticky compiler subcommands TOOLU 12
stickyTabs MEDTU 83
$stopOutput KSTRMU 109
storage

template access Ml 76
unit Ml 11; M2 247; MTUTI 106,284
units per page M2 197

storage unit
in character units M2 37
size in bits M2 31

storage units
reading from a file M2 250
writing to a file M2 251

$storageUnitRead M2 250; MTUT1295; MTUT2 8
and collections MTUT2 46

$storageUnitWrite M2 251; MTUTI 295; MTUT28
and collections MTUT2 46

store M2 252; MTUTI 287
$strArea M1208
STRCHK module TOOLU 184
$stream KSTRMU 16
stream KSTRMU 5

clearing KSTRMU 101
end-of-line KSTRMU 99
flushing KSTRMU 101
gateway KSTRMU 128
memory KSTRMU 114
opening and closing KSTRMU 18

stream I/O, low-level KSTRMU 92

- 168-

STREAMS KSTRMU 4; MTUT1 299
and MAINVI MEDTU 107
intmod KS1RMU 15

STRHDR KSTRMU 15
S~G ~1 19;~1 19
string MTUT1 14

and character system procedures MTUT1 59
areaof ~ 23,148
comparison ~1 33; ~ 56, 117; MTUTl125; MTUTI 4
concatenation ~1 19, 34; ~ 60, 115; MTUT1 15,98
constant MTUT2 18
descriptor ~1 20; MTUT2 13
implementation MTUT2 12
length ~ 159
maximum length ~119
search TOOLU 92
space ~1 20, 22; ~TUT1 297; MTUT2 1,4, 13

string space
clearing ~ 43
getting a string into ~ 140, 143
top MTUT217

stringCode ~1220
strong typing MTUTI 21
$strToDate ~ 254
$strToDateAndTime ~ 255
$strToTime ~ 256
STRTXT module TOOLU 184
$struclnfo TOOLU 174
Structure Blaster MTUT2 10; TOOLU 150
structure

comparing TOOLU 167
converting image to text form TOOLU 169, 184
converting text form to data image TOOLU 184
converting text form to image TOOLU 176
copying TOOLU 168
displaying in debugger MTUT2 39
disposing TOOLU 170
examining or editing TOOLU 156
image TOOLU 150
information TOOLU 171
manipulating arbitrary TOOLU 150
reading TOOLU 172
setting up TOOLU 174
translating or porting TOOLU 156
writing TOOLU 177

$structureCompare ~ 257; TOOLU 167
$structureCopy ~ 257; TOOLU 168

-169 -

· $structureDataToText M2 257; TOOLU 169
$structureDispose M2 257; TOOLU 170
$structureInfo M2 257; TOOLU 171
$structureRead M2 257; TOOLU 172
$structureSetUp M2 257
$structureSetup TOOLU 174
$structureTextToData M2 257; TOOLU 176
$structureUnSetUp M2 257; TOOLU 177
$structureWrite M2 257; TOOLU 177

in debugger MTUT2 39
stub, RPC KSTRMU 22
SUBCMD module TOOLU 363
SUBCOMMAND compiler subcommand TOOLU 31
SUB COMMANDS

CONF command TOOLU 202
MAINEX subcommand TOOLU 300

subcommands
compiler TOOLU 12
MAINEX M2 141; TOOLU 281,302,363

subscript Ml 65; MTUTI 159
subscripted variable Ml 65
$subscriptExcpt Ml 224; M2 257
SUBSTR example module MTUTI 62
substring Ml 28,29; MTUTI 123; MTUT2 16
subtraction of date and time M2 96
$success KSTRMU 93
SUMS example module MTUTI 73
SUN module :MEDTU 150
Sun Workstation :MEDTU 150
Sun Microsystems, display module for MEDTU 138
$sun2 M1222
SUN3 module MEDTU 150
$sun3 M1222
$sun38 Ml 222
$sun4 M1222
SUN46 module MEDTU 150
supporting intmod Ml 120
suppressHerald bit TOOLU 251
suppressing terminal output MEDTU 71
$sw38 M1222
$swapBit M2 246
SW APINFO MAINEX subcommand TOOLU 301
swapping

of modules M1116; MTUT1208; MTUT2 11
tracking TOOLU 301

switch, LIB TOOLU 254
symbol

-170 -

global M2 143
table M1119
visibility M1 121

SYMT AB example module MTUTI 135
synchronizing scheduled coroutines KSTRMU 78
syntax

MAINDEBUG commands TOOLU 57
of LIB file name TOOLU 245
of utility commands TOOLU 188

system
attributes M2 29
bit M2245
name abbreviation M1 223; M2 258
number M2 259
procedure MTUT1 58
procedures and macros summary M2 3
shell as child process KSTRMU 10

system name~ full M2 258
$systemExcept MTUTl 281
$systemExcpt M1 176~ 224; M2 258
SYSTEMLIBNAME CONF command TOOLU 202
$systemNameAbbreviation M2 258
$systemNameFull M2 258
$systemNumber M2 259
$systemSupportsScheduling KSTRMU 10,16
$systemSupportsTimeout KSTRMU 11
$systemSupportsTimeouts KSTRMU 16
systemWrittenOn text form attribute TOOLU 158

T
command TOOLU 86
commands MEDTU 33

T@ command TOOLU 86
TAB key MEDTU 2
tab Ml 7, 10; M2 259; MTUTI 15

inserting before MEDTU 83
special treatment of MEDTU 10
stops MEDTU 72

table
hash MTUTl133
of allowed data type conversions M1 26

tables of operations Ml 32; MTUTI 96
tan M2259
tangent (tan) M2259
tanh M2 260

- 171-

TARGET
compiler subcommand TOOLU 31
INTLIB command TOOLU 238
MOOLm command TOOLU 315

target
definition Ml 3
machine TOOLU 4

task
scheduled KSTRMU 75
scheduling KSTRMU 12

TDB KSTRMU 133
Telemedia MEOTU ,143
TELEVI module :MEOTU 151
Televideo MEOTU 151
template, access M176
temporary breakpoint TOOLU 86
tenncap data base :MEOTU 152
tenninal

echo KSTRMU 105
emulator example KSTRMU 80
I/O Ml191
interrupt KSTRMU 9, 87
speed :MEOTU 6

tenninal interrupt character, reading KSTRMU 7
tenninal output, suppressing MEOTU 71
TETRA example module MTUTl 90
$text bit KSTRMU 96, 99,100
text

editor MEOTU 1; MTUTI 4
file Ml188; MTUTII06
fonn of structure TOOLU 150, 156
search MEOTU 33

text file, viewing TOOLU 365
textFile, predeclared class Ml 187
textual substitution MTUTI 178
THEN Ml 29,46
THENB Ml 46; MTUTl 32
THENC Ml 148; MTUTI 184
THENX TOOLU 225
this

file name M2 59
line number M2 59
module name M2 59
page number M2 59
procedure name M2 59

$thisCoroutine M2 260
$thisCoroutine.$next MTUT2 48

- 172-

thisDataSection M2 260; MTUTI 244
$thisFileName M2 262
thrashing~ preventing M2195
$time M2 261; TOOLU 171
time Ml198

addition M2 20
arithmetic MTUT2 46
conversion from string M2 255, 256
conversion to string M2 97, 263
difference M2 96
of day M2 94, 261
of file modification M2 127
of module compilation M2 170
of structure creation TOOLU 171
removing from string M2 222
standard representation M2 94
zone M1 198; M2 61
zone subcommands M2 262

time-sharing, simulating MTUT1 299
$timeDifference M2 261

bit M227
$timedOut KSTRMU 63, 93, 103
$timeFormat M2 262
$timeout M2 263

and STREAMS KSTRMU 12
timeout, STREAMS KSTRMU 11, 92
$timerDspl TOOLU 137
$timerPtr TOOLU 137
$timeSubcommandsSet M2 262
$timeToStr M2 263
TIMING subcommand TOOLU 128
$timingPerModule bit M2 171
$timingPerProc bit M2 171
title of area Ml 208
TO

in array declaration Ml 61
in Case Statement selector M1 48
in substring specification M128

top of string space MTUT2 17
$totalPagesOrSize TOOLU 174
TOYED example module MTUTI 249
translating a structure TOOLU 156
translation to/from PDF characters M1214
TRIANG example module MTUTI 28
triangular numbers MTUTI 28
TRMCAP module :MEDTU 152
TRUE Ml 15; MTUTI 30

- 173-

truncate M2 265
$truncateFile M2 265
TST M1 34; MTUT1 98
TSTA M1 34; MTUT1 98
$tstConfigurationBit M2266
$tstSystemBit M2 267
TTY Ml191; MTUTl117

break KSTRMU 108
echo KSTRMU 105
end-of-file KSTRMU 105
end-of-line KSTRMU 106
file and STREAMS KSTRMU 12
interrupt KSTRMU 9, 87
stream KSTRMU 6, 104

$tty KSTRMU 6, 15, 104
TTY interrupt character, reading KSTRMU 7
ttycWrite M2 267; MTUTI 117
$ttyEofExcpt Ml 192,224; M2 267
ttyRead M1191; M2 268; MTUT1117; MTUT218

and ttyWrite and STREAMS KSTRMU 12
TTYSTR STREAMS module KSTRMU 104
ttyWrite M1191; M2 269; MTUT1117
TVI950 module MEDW 151
TVIEW module TOOLU 365
$twelveHour M2 270

bit M2264
two's complement M1225
two-argument arctangent M2 28
$ two YearDigits M2 270

bit M2100
TXTMGR back end MEDTU 4
type code MIll, 220; M2 270; MTUT1131
typed procedure Ml 86; MTUTI 48
$typeName M2 270
$TYPEOF Ml 154

U
command TOOLU 91
commands MEDTU 49

$ua20 M1223
$ubl M170
ubI M170
$ub2 M170
ub2 M170
$ub3 M170

- 174-

ub3 Ml70
$uclp Ml223
UCRSYS KSTRMU 133
$udg M1223
$ui38 M1223
$uibm M1223
$ultrx Ml 222
$um20 M1223
$um68 M1223
$umv M1223
,unaligned address M122
unBind M2 271
unbinding a module M2 271

, $unbindService KSTRMU 60
UNBOUND

"$DIRECfIVE" directive Ml 117
compiler subcommand Mlll7; TOOLU 31

$unbound bit M2 171
$unboundModuleExcpt Ml 111, 224; M2 272
$unBuffered bit TOOLU 153
$unbuffered M2 272; MTUTI 295; MTUT2 8

bit KSTRMU 96, 99, 100; M2 35, 36, 132, 192
unbuffered I/O for Structure Blaster TOOLU 153
$unbufferedEol KSTRMU 109
unclassified

pointer MTUT1154, 244
pointer or address M175

UNDEFINE LIB command TOOLU 256
undefined, definition Ml 3
UNDELETE L~B command TOOLU 264
undeleting MEDTU·42

text MEDTU 44
underflow Ml 14,26

arithmetic M2 24; MTUTI 273
undoing commands MEDTU 70
UNEXECUTED subcommand TOOLU 128
unexecuted

entities TOOLU 128
procedures TOOLU 141
statements TOOLU 142

uninitialized
local variable MTUT2 37
variables Ml 85

unique file name M2 72
unit in text form TOOLU 158
UNIX

termcap data base MEDTU 152

- 175-

tracking infinite loops on MTUT2 38
UNIXBITS CONF command TOOLU 202
unkilling text ?v1EDTU 42
$unlock KSTRMU 78
$unmarkAllAreas TOOLU 180
unqualified identifier M1123
unsafe assignment of pointers Ml 80
unspecified, definition MI 3
UNTIL MI51
UNTIL-clause MTUTI 36
untyped procedure Ml 86
unwinding the stack MTUT2 24
UPDATE

IN1Lm command TOOLU 239
MODLIB command TOOLU316

UPDATEBAUDRATE keyword MEDTU 14
UPDATEDISPLA YMODULE keyword MEDTU 13
upper case, converting to ?v1EDTU 49
upperCase M2 272; MTUTI 125

bit M2 52, 56, 117,231
$upri M1223
UPrO M151
$urdg M1223
USEED example module MTUTI 264
useKeyWord M2 273 .

bit M2 52, 216
useMemFiles TOOLU 252
$useOriginalFileName M2 103, 273

bit M2 lOS, 129,192,224
$useProgramInterface M2 273; MTUTI 248
user identification M2 274
user-defined sort ordering TOOLU 345
$userID KSTRMU 65; M2 274
USES Ml 89; MTUTI 44
$uspa M1223
UTe Ml 198; M2 26, 61, 97, 106, 255
$uts5 MI222
$uvax MI223
$uw38 M1223
$uxa M1223

V
command ?v1EDTU 31; TOOLU 77, 86
LIB mode TOOLU 254

valid address Ml 22; MTUTI 289; MTUT2 45

-176 -

values, display in hexadecimal TOOLU 77
$varFormat M2 129
variable

debugger TOOLU 74
declaration MTUTI 17
definition Ml 27
field Ml 71, 76, 78, 79, 108, 110
initialization M185
interface M1 108, 110

, local M1 58, 84
outer M158, 105
own Ml60
simple M127
subscripted M1 65

variable-bounded arrays M161; MTUT1170
$vax MI221
VAX-II Calling Standard, calling (from) TOOLU 19,40
vector unit TOOLU 161
VERBOSE LIB command TOOLU 266
$version TOOLU 171
version

number M2 167, 169
of file TOOLU 246
of MAINSAIL M2 58
of module M2 170
of structure TOOLU 154, 159, 171
$remoteModuleCls field KSTRMU 36
RPC protocol KSTRMU 32, 33

view front end MEDTU 17
viewing a data structure TOOLU 156
virtual code space MI116
VIS550 display module MEDTU 153
visibility, module and identifier Ml 120
visiting a file MEDTU 59
$vms M1222, 223
VT100 module MEDTU 154
VTI02 module MEDTU 154
VT102M module MEDTU 154

W
command TOOLU91
commands MEDTU 23, 35

$w38 M1221
$waitForDescendants KSTRMU 78
warning M2 275

- 177-

bit M2 119, 121; TOOLU 173, 176
WHILE M151
WHILE-clause MTUT1 36
white space, removing M2 221, 223
window MEDTU 3, 55

anchoring MEDTU 56
size MEDTU 55
status line of MEDTU 9

windowing MEDTU 23, 30,35
windowUserLogString TOOLU 252
WINDOWWIDTH keyword MEDTU 15
$WITH Ml171; MTUT1268
$WITHB Ml171
WITHCO example module MTUTI 302
word M1 11; MTUTI 284

removing from string M2 223
$wordErase KSTRMU 109
wordWrap MEDTU 84
WRDCOM module TOOLU 368
write M2 275; MTUT1 26, 106, 131,288; MTUT2 5, 19

a character to "TTY" (ttycWrite) M2 267
a character to the front of a string (rcWrite) M2 209
a field to a file or string (fldWrite) M2 132
character to PDF destination TOOLU 324
characters to PDF destination TOOLU 323
to "TTY" (ttyWrite) M2 269
value to PDF destination TOOLU 329

write a character to a file, string, or memory (cWrite) M2 92
write to a file, string, or memory address M2 275
WRITE2 example module MTUT1 16
WRITE3 example module MTUTI 17
WRITE4 example module MTUTI 17
$writeCalls M2 279
WRITER example module MTUT1 15
$writeStream KSTRMU 98
$writeStreamBreak KSTRMU 108, 113

. $writeStreamInterrupt KSTRMU 113
writing

characters to a file M2 36
storage units to a file M2 251

WRONG example module MTUTI 96
WY43 module MEDTU 155
WY50 module MEDTU 155
WY5043 module MEDTU 155
WY75 module MEDTU 155
Wyse

WY-I00 MEDTU 144

- 178-

WY-50 MEDTU 155
WY-60 :MEDTU 155
WY-75 ~DTU 155

X commands :MEDTU 30, 55
$xa M1221
$xcms Ml 222, 223
XM command TOOLU 88
XON/XOFF KSTRMU 105
XOR Ml 34, 37; MTUTI 98
XREF module TOOLU 369
XRFMRG module TOOLU 36
XS command TOOLU 88

y commands ~DTU 3D, 55

Z commands MEDTU 43
zapping text ~DTU 43
Zenith H-19 MEDTU 145
Zero M114

comparison with MTUT2 7
of a data type MTUTI 83, 93

zero, division by M2 24; MTUT1 273
zero-length files MII90
zone, time Ml 198; M2 61

- 179-

XIDAK, Inc., 530 Oak Grove Avenue, MIS 101, Menlo Park, CA 94025 , (415) 324-8745

