= -
\
\

///,m

MAINSAIL"®
Language Manual, Part I:

Syntax and Semantics

24 March 1989

Riknk

Copyright (c) 1979, 1983, 1984, 1985, 1986, 1987, 1989, by XIDAK, Inc., Menlo Park, Califomia.

The software described herein is the property of XIDAK, Inc., with all rights reserved, and is a confidential trade secret
of XIDAK. The software described herein may be used only under license from XIDAK.

MAINSAIL is a registered trademark of XIDAK, Inc. MAINDEBUG, MAINEDIT, MAINMEDIA, MAINPM,
Structure Blaster, TDB, and SQL/T are trademarks of XIDAK, Inc.

CONCENTRIX is a trademark of Alﬁant Computer Systems Corporation.

Amdahl, Universal Time-Sharing System, and UTS are trademarks of Amdahl Corporation.
Aegis, Apollo, DOMAIN, GMR, and GPR are trademarks of Apollo Computer Inc.

UNIX and UNIX System V are trademarks of AT&T.

DASHER, DG/UX, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/8000, ECLIPSE MV/10000, and ECLIPSE
MV/20000 are trademarks of Data General Corporation.

DEC, PDP, TOPS-10, TOPS-20, VAX-11, VAX, MicroVAX, MicroVMS, ULTRIX-32, and VAX/VMS are
trademarks of Digital Equipment Corporation.

EMBOS and ELXSI System 6400 are trademarks of ELXSI, Inc.

The KERMIT File Transfer Protocol was named after the star of THE MUPPET SHOW television series. The name is
used by permission of Henson Associates, Inc.

HP-UX and Vectra are trademarks of Hewlett-Packard Company.

Intel is a trademark of Intel Corporation.

CLIPPER, CLIX, Intergraph, InterPro 32, and InterPro 32C are trademarks of Intergraph Corporation.
System/370, VM/SP CMS, and CMS are trademarks of Intemational Business Machines Corporgtion.
MC68000, M68060, MC68020, and MC68881 are trademarks of Motorola Semica;ductor Products Inc.
ROS and Ridge 32 are trademarks of Ridge Computers.

SPARC, Sun Microsystems, Sun Workstation, and the combination of Sun with a numeric suffix are trademarks of Sun
Microsystems, Inc.

WIN/TCP is a trademark of The Wollongong Group, Inc.

WY-30, WY-60, WY-75, and WY-100 are trademarks of Wyse Technology.

Some XIDAK documentation is published in the typefaces "Times" and "Helvetica", used by pemmission of Apple
Computer, Inc., under its license with the Allied Corporation. Helvetica and Times are trademarks of the Allied
Corporation, valid under applicable law.

The use herein of any of the above trademarks does not create any right, title, or interest in or to the trademarks.

-1i-

1.

Table of Contents

Inroduction
11, Version
12. TheDesignof MAINSAIL.
1.3. TerminologyandSymbols
1.4. Conventions Used in This Document.
14.1. UserInteraction
142. SyntaxDescriptions.
143. TemporaryFeatures.

Basic LanguageConcepts
21. CharacterSet
22. Comments
23. Identifiers
2.4. Use of Semicolons and Formatters.
2.5. Compiletime Evaluation.
2.6. Storage Unitsand CharacterUnits
27. TypeCodes.
2.8. Garbage Collections and Memory Management
29. omdFileandlogFile

3.2. IntegerandLongInteger.
33. RealandLongReal.
34, BitsandLongBits
35. Sting L0000 e
3.5.1. Low-Level String Manipulation
3.5.2. String Constants and Garbage Collection . .
3.6. Pointer
37. Addresso,
38, Charadr

41, ConstantS. v v v v e e e e e

4.3. ProcedureExpression.
44, Substrings g
44.1. "INF"
45, IfExpression v v« . .
4.6. AssignmentExpression
4.7. Compiletime Pseudo-Procedures

............

ooooooooooooo

............

............

oooooooooooo

............

oooooooooooo

............

............

oooooooooooo

oooooooooooo

............

.............

............

oooooooooooo

............

.............................

............

 BXPIESSIONS e e e e e e e e e e e e e e e e e e e

............

............

............

............

............

............

[0 A S L I

O 00 N\

10
10
11
11
12
13

14
15
15
16
17
19
20
22
22
22
23
25

27
27
27
28
28
29
29
31
32

4.8.

48.1.
4.8.2.
4.83.
484,
48.5.
4.8.6.

4.9.

5. Statements

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.
5.11.

6. Declarations

6.1.
6.2.
6.3.
6.4.

7. Arrays

7.1
7.2.
7.3.
74.
1.5.
7.6.
1.7.
7.8.
1.9.
7.10.

8. Classes and Records

8.1.

8.1.1.

8.2.
8.3.
84.
8.5.

Operators and Operations
String Comparison
Bitwise Operations e e
ComparisonChains
Operator Precedence
DottedOperators
Garbage Collection

Assignment Compatibility

DoneStatement
Continue Statement
Empty Statement

Record Allocationand Disposal
Classified Pointers and Addresses
Unclassified Pointers and Addresses

................

Assignment Statement
ExpressionStatement
Procedure Statement ¢ ot e e e e e e e e e e
Retum Statement.
BeginStatement,
IfStatement.

ooooooooooooooo

Scope of Identifiers.
Simple Variable Declarations.

Qualifiers.
"OWN" Qualifier

Array Declarations
Array Allocation.
ArmayDisposal
Array Initialization
Accessing an Array Element
ClearinganArmay
Array Assignment
ArrayComparison
The Short-ArrayRule

ArmayPseudo-Fields.

............

Records

oooooooooooo

.............
.............
.............
.............
.............
.............

ooooooooooooo

ooooooooooooo
ooooooooooooo

ooooooooooooo
oooooooooooooo
ooooooooooooo
.............
.............
.............
.............

e ¢ e o e e s ¢ e e s e
.............
.............
.............

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............

ooooooooooooo

.............
.............
.............
.............
.............
.............

.............

32
33
37
38
38
40
41
42

43
43
43

45
45
46
48
51
54
54
55

57
58
59
59

61
61
62
62
62
65

67
68
69

71
71
72
73
74
74
75

8.6. Accessing Ficlds of Records and Storage Templates.
8.7. ExplicitClassesinField Variables.
88 PrefixClasses v v 4ttt v e e e e e e e e e e e e e
88.1. AccessingPrefixFields
89. RelatedClasses ¢ ¢ v v v v v v v e e e e e e e
8.10. "Safe" and "Unsafe" Assignmentof Pointers
8.11. AlignmentofChunks

9, Procedures et e e e e e e e e e e e e e e e e e
9.1. Procedure Declarations ¢ .. e 00 e 0.
92. ProcedureCalls ¢ & v v i e e e e e e
9.3. TypedandUntypedProcedures
94. ParameterstoProcedureso 0.
9.5. ParameterQualifiers 0000 .
9.5.1. "USES". . . . i i e
952. "PRODUCES" o o i i i e e e e e e e e e e e
9.53. "MODIFIES" & i i e i e e e e e e e e e e e e e e
9.54. "OPTIONAL" ¢ i i i et e e e e e e e e v
955. "REPEATABLE". & ¢ v v v i i e et e e e e
9.6. Order of Argument Evaluation

...................

9.7. ArmayParameters 0 0 e e e e e e e e e e
9.8. Procedure Qualifiers 0.
99. RECUISION « v ¢ v 4 v o v o v e e v e e e e e e e e
9.10. ForwardProcedures ¢« v v v v v e e e e e e
9.10.1. "FORWARD" for MutualRecursion.
9.102. "FORWARD" for Source Library Declarations
911, InlineProcedures « v ¢ ¢ v et e e e e e e e
9.12. GenericProcedures0 e e e e e e
9.12.1. Sample Generic SystemProcedure L.
9.12.2. Generic Procedure Instance Selection Algorithm
9.123. Generic ProcedureExtension.
913, StackOverflow ¢ ¢« v v i e e e e e
10. ModulesandDataSections « . « v ¢ v 4 v e 0. . .
10.1. Bound and Nonbound Data Sections

102. ModuleDeclaration 000 e .
10.3. Indirect AccesstoInterfaceFields
104. ClasseswithProcedures v « v v v o v o o .
10.5. Direct AccesstoInterfaceFields
10.6. Module Allocationand Disposal
10.7. EstablishingModuleLinkage
10.8. Intermodule Consistency Checking
109. ImitialProcedure« ¢ . i e e e e e e
10.10. FinalProcedure v v v v v 4 4 e e e e e
10.11. Generic Procedures as Field Variables
10.12. Control Sections and Module Swapping.

76
78
78
79
80
80
80

86
86
87
89
89
89

90
93

95
95
96
96
97
98
99
101
101
103
103

105
106
107
108
110
110
111
111
113
113
114
115
116

10.13. Compilation of Several ModulesinOneFile. 116

10.14. Nonbound-InvocationModules 117
0 R 110 119
11.1. IntmodDirectives. v v« vt i v v v e e e 119
11.1.1. Opening Intmods and AccessingSymbols. 120
11.12. Module Visibility L. C e . 120
11.1.3. Individual Symbol Visibility 121
11.2. Visibility from SupportingIntmods 122
11.3. "RESTOREFROM"and"SAVEON" 122
114. Unqualified IdentifierSearchRules 123
11.5. Useof SymbolsfromanIntmod 124
11.6. IntmodSearchRules., 124
11.7. ChanginganIntmod 124
11.8. SampleUseofIntmods. v o .. 126
12, Objmods, Intmods, Libraries, and SearchRules 127
12.1. Objmod andIntmodFileNames 127
-12.2. Objmod and Intmod SearchRules 128
13 MAaCIOS v v v v v v v e e e e e e e e e e e e e e e e e 132
13.1.. "DEFINE". & i i e e e e e e e e e e e e e 132
132. "REDEFINE" e e e e e e e e e e 133
133, BracketedText ¢ v i i e e e e e e e e e 134
13.4. Interactive Definition 135
135. MacroCalls v v v v v e e e e e e e e e 137
136, MacroArgumentS.« v v v e o 4 e et e e e e 137
13.6.1. Repeatable Macro Parameters, $numArgs, $arg, and $sArg. 138
13.7. Determining Whether a Macro Argument Has BeenOmitted 141
13.8. Bracketed Textin ConstantExpressions 141
14, Compiler Directives and Conditional Compilation 143
14.1. "MESSAGE". e e e e e e e e e e e 143
142, "SOURCEFILE" i ¢ v i i i i e e e et e e e 143
14.3. "CHECK","NOCHECK",and "CHECKING" 144
144. "$DIRECTIVE" i v v v v i e e e i e e e e u 144
14.5. "SAVEON"and "RESTOREFROM" 145
146. "ENCODE" ¢ v i v v e e e e e e e e e e e e 145
147, "$GLOBALREDEFINE" ¢ v v v v v v e v v e v 146
14.8. "DSP" . . e e e e e e e e e e e e e e e e e e e 147
149. "SLEGALNOTICE"« ¢ v v v v e v o o e e e e o 148
14.10. Conditional Compilation: "IFC", "THENC", "$EFC", "ELSEC", and "ENDC" 148
14.11. "$CASEC": CompiletimeCase « « v . . . 149
14111, Selectors v v v v h e e e e e e e e e e e e e e e 150
14.11.2, Selector MatchingRules 150
14.11.3. Delimitersof Selected Text 150
14.12. "$BEGINC" i v s e e e e e e e e e e 152

14.13. "$DOC", "$DONEC", "$CONTINUEC", "$FORC"; Compiletime Iteration 152

14.13.1. "$DOCiteratedTextENDC" 152
14.13.2. "$DONEC"and "$CONTINUEC" 152
14133, "SFORC" ¢t v v v it e e e e e e e e e e e e e e 153
1414, "DCL". e i e e e e e e e e e e e e e e e 154
14.15. "STYPEOF" i« v v ettt e et e e e e 154
14.16. "SCLASSOF"t i v i v e e e e e e e e e e e e e e 155
14.17. "$ISCONSTANT" e e e e e e e e e 155
14.18. ScanningDirectives o 00w e w0 156
14.19. "NEEDBODY"and "NEEDANYBODIES" 158

. 1420. S$compileTimeValue 159
1421, $def. L e e e e e e e e e e e e 159
15. OptimizationandChecking « . . ¢ v . o 0. . 161
151, Optimization. ¢ v v v v vt e e e e e e e 161
15.1.1. $compileTimeValue("OPTIMIZE") 163
152, Checking i i e e e e e e e e e e e e e 164

15.2.1. $compileTimeValue("CHECKINGSTATUS"),
$compileTime Value("LOCALCHECKINGSTATUS"), and "CHECKING" 167

153, ArithmeticChecking. v v v v v v v 168
16 Bxceptions i vt .t e e e e e e e e e e e e e e e e e 170
16.1. HandleStatement ¢ ¢ ¢ v 4 e v e e 171
16.2. HandlingExceptions. ¢ v ¢ v e 4 v w4 e e 172
16.3. PropagatingExceptions00 0. 172
16.4. Information about the CurrentException. 173
16.5. Nested Exceptions. e e e e e e e e e e e e e e e e e 173
16.6. AbortingProcedures. 0 0 e u e e e e e 173
16.7. Exception Naming Conventions 174
16.8. Predefined Exceptions « ¢ ¢ 4 v v 0 b e e e e e e e 175
16.9. errMsgResponse Abbreviations 0. 176
16.9.1. Sample Use of Registered Exceptions 178
17. Coroutines v v v v v v b e e e e e e e e e e e e e 179
17.1. Coroutine Implementation 181
17.2, Coroutinesand Exceptions 183
18. Files i i e e e e e e e e e e e e e e e e e e 185
181, FileNames v v v v v v v v e e e e e 185
18.2. The Classes file, textFile,anddataFile 187
183. TextFiles & & o v v v i i e e e e e e e e e e 188
184. DataFiles ¢ v o v v i v e e e e e 189
185. ImputandOutput ¢ v v v e e e e 189
18.6. Sequentialand Random Access+ . . o 0 0o e . 189
187. OpeningaFile v v v v v v v v v 190
188. ClosingaFile 191
189. End-of-File ¢ . i o v v v e e e 191

18.10.
18.11.
18.12.
18.13.
18.14.

18.15.

‘Terminal I/O and Primary InputandOutput
DeviceModules ¢ v v v v v b i e e e e e
cmdFile and logFile and MAINSAIL Standard Input and Output.
erorOKandFilel/O
cmdFileandlogFileEchoing
CachingofFiles ¢ ¢ i v v v v o v v

18.15.1. Introduction & & v v v i e e e e e e e e e e e e
18.152. FileCacheProcedures v ¢ v v v v v v v ..

18.16.

PartialDataReads « & v v v v v v v e v v e

19. DateandTimePFacilities « ¢ ¢ v v v e e e v« v « .

19.1.
19.2.
19.3.
194.

19.5.

Representationof Datesand Times
Information Required by MAINSAIL
GMT Conversions and $timeSubcommandsSet
Conversion Caveats at the Start and End of Daylight Savings Time (or Other
AdjustedTime) ¢ i v i v e e e e
MAINEX Time Subcommand Values Appropriate to the Forty-Eight

Contiguous UnitedStates v v v v v v v v ..

20, ATEAS e

20.1.
20.2.

20.2.1.

ExamplesandMotivation.
AreaFacilities 00000 oo
Allocation, Clearing,andDisposal

20.2.2. Specifying Memory Management Attributesofan Area

20.3.

21. Portable Data Format (PDF)

21.1.
21.2.
21.3.
214.
21.5.
21.6.

AreaCaveatS. v e e e e e e e e e e e e e e e e

ooooooooooooooooooooo

Introduction e e e e e e e e e e e e .

Opening aFilefor PDFYYO
Positions in aFileOpenedfor PDFI/O
$ioSize L e e e e e e e e e e e e e e e
PDFExample v . v v v v v v v v e e e e e e

- viii -

191
192
193
194
194
195
195
196
197

198
198
200
202

202
202

206
206
207
208
208
211

213
213
214
215
216
216
216

Appendices

A, TypeCodes it i v it e e e e e e e e e e e e e e 220
B. Target Platform, Operating System, and Processors. 221
C. PredefinedExceptionNames ¢ . ¢ v v v v v v o 224
D. TargetSystemAttributes« e e e e 225
E. CharacterSetIdentifierso 000 226
F. PDF Character Set TranslationTables 227
F.1. Translation between the ASCII and PDF CharacterSets 227
F.2. Translation between the EBCDIC and PDF Character Sets 227
G. ReservedIdentifiers v 0o et 233
H. Predefined Non-Reserved Identifiers without Dollar Signs 235
L Synonyms & i i it e e e e e e e e e e e e e e e 240
Jo ReStrictionS. v v v v v v e e e e e e e e e e e e e e 241
J.1. Portable Data Type Ranges and Data Structure Size Limits 241
J.2. Interface ProceduresinaModule e 241
J3. Local VariableLimitations+ o v o v o0 241
J4. StringConstantsinaModule 0oL, 241
JS5. SizeofaProcedure 000 e e o 242
J6. Numberof CasesinaCaseStatement. 242
J.7. Uninitialized Variables v .00 243
J8. InitStatementCounts & « & ¢ ¢ v e e e e e e .. 243
J9. InitStatementConstants ¢ . . ¢ 4 e e e e e 0. e 243
J.10. copyandclear Addresses o v e e e e e e e e e 243
JJ11. FOR-ClauseLimitValues.« v .. 243
K. Modules Shippedina Standard System 244
List of Examples
14.1-1. HowUserInputlsDistinguished 4

142-1. SyntaxofaMailing Address. ¢« . ¢
22-1. SampleComment. ¢ ¢ v 4 e b et e e e
23-1. Legalldentifiers ¢ ¢ ¢« i 0 b e e e e e e e e
232, Dllegalldentifiers ¢« « ¢ ¢ i i v 0 e e e
33-1. RealConstants. v v v v v v v v o v o o 0 o o 0w e
332. LongRealContants. v v v v v v v o o s s o o o o o
35-1. StringConstants 4 e e i e e e e e e e e e e e
44-1. SubstringExamples. 000 e e e
441-1. Useof "INF". o v v v v it vt et e e e
4.5-1. If Expression Used in Assignment Statement
452, IfExpressionsUsedasOperands
46-1. AssignmentExpression
482-1. BitwiseOperations v v v o v v e e .
4.84-2. Precedence of the Assignment Operator in Expressions and Statements . . .
485-1. DottedOperators « ¢ ¢« v v 4 e v 0 0 e e e e
5.2-2. Examples of Expression Statements
54-1. ExamplesofReturnStatements ¢ ¢ ¢« ¢ v v 0 0 . .
5.6-1. I StatementwithinanIf Statement.
5.6-2. Abbreviations Used in If Statements
57-1. SampleCaseStatement 0. 0. ..
5.7-2. ThreeFormsforSelectors
5.7-3. Less Efficient Form Equivalent to a Case Statement
5.7-4. ChoiceofaSelector. v v v v v v e e e e e
5.7-5. Use of an Empty Statement in a Case Statement
5.7-6. Inefficient Case Statement
5.8-2. EightPossibleForms
5.8-4. Sample Iterative Statement
59-1. SampleUseof "DONE" ¢« v v v v v v v v v v v
5.10-1. Iterative Statement with a Continue Statement
5.10-2. Iterative Statement with If Statement instead of a Continue Statement

5.11-1. Example of an Empty Statement
6-1. Where DeclarationsMayOccur v 000
64-1. SampleUseofalocalOwnVariable.
7.2-1. Specifying Array Bounds to the Procedure "new”
74-1. Init Statement for a One-Dimensional Array
74-2. HowArraysAreStored o ¢ v v v v v 0.
7.4-3. Init Statement for a Two-Dimensional Array
74-4. Array arr3 as a Matrix
74-5. Use of Replications
7.7-2. ArayDeclarations4 e e e e e e e e e e e
79-3. Examples of the Short-ArrayRule
8.1-1. ARecordwithThreeFields.
81-2. FeldVariables. v o v v v v v v
8.2-1. SampleClassDeclaration
84-1. Classes ReferringtoEachOther
84-2. UseofaClassified Address.,
8.5-1. Useofan UnclassifiedPointer.

ooooooooooooo

.....................

oooooooooooooo

..............

.......................

........................

8.6-1. The Use of Field Variables

8.8.1-1.

8.9-1. Related Classes

8.10-1.

.....................

PrefixClassesand Pointers « v ¢ ¢« v ¢ ¢« ¢« v o « &

.........................

Examples of Safe and Unsafe Assignments

9.1-2. TwoProcedureBodyForms
9.2-2. Procedure DeclarationandCalls.
9.3-1. ExampleofaTypedProcedure
94-1. Parametersand ATguments e e e e e e e s

9.5.3-1.
9.54-1.
9.54-2.
9.55-1.
9.5.5-2.

9.6-1. Calls of Which the Results Are Not Well-Definied
9.7-1. Use of an Array Parameter
9.7-2. A Modifies Array Parameter

Example Using Parameter Qualifiers
Use of Optional Argument « « v v v o v o o .
Use of Optional Arguments, Omitting All Arguments.

Use of Repeatable Argument e e e e
Interaction of "OPTIONAL" and "REPEATABLE" Qualifiers

......
oooooooooooo
.....................

9.9-1. A Recursive Calculation of FibonacciNumbers.
99-2. InfiniteRecursion. ¢ . ¢ t i e e v e e e e e

9.10.1-1.

10.2-1.
10.2-2.
10.2-3.
104-1.
10.5-1.
109-1.
10.10-1.
11.5-1.

11.8-1.
11.8-2.
13.2-1.
13.3-1.
134-1.
13.8-1.
13.8-2.
14.6-1.
14.7-1.

14.8-1.
14.10-1.
14.15-2.
14.16-1.
16.5-1.
16.6-1.
16.7-2.
16.9-1.
16.9-2.

Exampleof ForwardProcedure
A Module That Does Not Explicitly Declare Itself
Sample Module Declaration 0.
A Module That Declares Only a Prefix of Another’s Interface.
Sample Module Declaration UsingaClass
Accessing Data Section Fields:withaPointer
Default Name of the Initial Procedure

Default Name of the Final Procedure
The Compiler Is Not Confused by Procedures of the Same Name in the Wrong
Module e e e e e e e e
A Source File Compiled toProduceanIntmod.
AModuleUsinganIntmod
Useof "REDEFINE". ¢ v v v v v v v v v v
Example of Bracketed Text e e e e e e e e e e
Using Various Forms of MacroEquate.
Bracketed TextOperands o+ . ..
Concatentation of Bracketed Text and StringConstants
Useof the "ENCODE" Directive « ¢« o« v o v o
Generating an Aribitrary Number of Empty Modules with
"$GLOBALREDEFINE" ¢ . v v v v v e .
Useof "DSP" v i it e e e e e e e e e e e e e e e

NestedIFC’S i v v i v e e e e e e e e e e e

Sample "STYPEOF" Values v v v v v v v v o v o s

Sample "SCLASSOF" Values ¢ v oo ..
Sample Nested Handle Statements
Sample Procedure NeedingCleanup.
A Sample ExceptionName
Phrasesina Sample ertMsgResponse
Sample ExpectedResponseso .

77
79
81
82
85
87
87
88

91
91
92
93
93

94
95

97
108
108
109
110
112
114
115

125
126
126
134
135
136
142
142
146

147
147
149
155
156
173
174
175
176
177

16.9-3. Valid and Invalid Abbreviations 177

169.1-1, A Sample Call to $registerException 178
17-2. Generator/Processor Coroutines « v v ¢ v o v 0 o0 4 . . . 180
17.1-1. CoroutineTree v & ¢ v v v v v e e e e e e e 182
18.2-1. TheField nameoftheClassfile 188
21.6-1. Data-Format-IndependentI/O 217
List of Tables
1.3-1, Abbreviations v v v v . v v v e e e e e e e e e e e e 2
2.1-1. MAINSAIL Minimum CharacterSet e e e e e e e e e e 6
2.1-2. Character-Set-Independent System Procedures 8
271, TypeCodes e e e e e e e e e e e e 12
3.1-1. BooleanOperators « « v ¢« ¢ v o . . . e e e e 15
3.2-1. IntegerandLongIntegerOperators. 15
3.2-2. System Procedure for Integerand LongInteger 16
3.3-3. RealandLongRealOperators. ¢« v v v v v v . . 17
3.3-4. System Procedures forRealand LongReal 17
34-1. BitsandLongBitsOperators ¢ ¢« « v v 4 e w ... 18
34-2. System Procedures forBitsandLongBits 18
35-2. StringOperators e e e e e e e e e e e e e 20
3.5-3. SystemProceduresforString, 21
3.6-1. PointerOperators. « « ¢ v v v Ve e e e e e e e e 22
37-1. AddressOperators 4 4 v 4 e e e e e e e e e e .. 23
3.7-2. System Proceduresfor Addresses 24
38-1. CharadrOperators v v v v v v v e e e e e e e 24
3.8-2. System ProceduresforCharadrs 25
39-1. AllowedConversions ¢ v v 4 e e e e e e e e 26
48-1. UnaryOperationS. . . . v v ¢« o v ¢ ¢« v 4 o o 0 0 v e e e e 33
48-2. BinaryOperations00 e e e e 34
4.8.3-1. Operators Permitted in ComparisonChains 38
484-1. PrecedenceofOperators v v 4 e e 0. 39
5.2-1. Expression StatementFormat 44
5.8-1. Form of Iterative Statement. e e 51
5.8-3. ExplanationofForms 52
7.7-1. Array ArgumentsandParameters, 67
7.9-1. Multidimensional Subscript Calculation 68
79-2. Short-ArrayRule.o 0. o 68
7.10-1. ArrayPseudo-Fields 70
8.11-1. TypicalDataTypeSizes« v v o .. 83
9.1-1. Formatof a Procedure Declaration 84
92-1. ProcedureCallFormats « v v v v v v v v .. 86
10-1.. AMAINSAILModule v v v v v vt e e e e e w 106

- Xii-

12.2-1. MAINEX Search List Subcommands Summary
14.11.2-1. "$CASEC" Selector MatchingRules
14.15-1. Type Codes As Returned by "$STYPEOF"
15.1-1. Effects of Optimization Directives outside Any Procedure Body or Specified as
aCompilerSubcommand
15.1-2. Effects of Optimization Directives insideaProcedurep
15.2-1. Effects of Optimization Directives outside Any Procedure Body or Specified as
aCompilerSubcommand
15.2-2. Effects of Checking Directives inside a Procedure
16-1. System Procedures, Variables, and Macros for Exceptions
16.7-1. General Form of Exception String.
17-1. System Procedures, Macros, and Variables for Coroutines
18-1. System ProceduresforFiles.
19-1. System Procedures and Macros for DateandTime
19.5-1. MAINEX Time Subcommand Values for the Contiguous United States . .
19.5-2. Subcommands Defining the Names of the Time Zones in the Forty-Eight
Contiguous United States
19.5-3. Subcommands for the Eastern Time Zone: from the Atlantic Seaboard West
through Michigan, Eastern Kentucky, Eastern Tennessee, Georgia, and Florida
ExclusiveofthePanhandle
19.5-4. Subcommands for Indiana except Parts of the Extreme West
19.5-5. Subcommands for the Central Time Zone: Wisconsin, Illinois, Parts of Extreme
Western Indiana, Western Kentucky, Western Tennessee, Alabama, the Florida
Panhandle, Mississippi, Louisiana, Arkansas, Missouri, Iowa, Minnesota,
Eastern North Dakota, Eastern South Dakota, Eastern Nebraska, Kansas except
Parts of the Extreme West, Oklahoma, and Texas except the Extreme West .
19.5-6. Subcommands for the Mountain Time Zone: Western North Dakota, Western
South Dakota, Western Nebraska, Parts of Extreme Western Kansas, Extreme
Western Texas, New Mexico, Colorado, Wyoming, Montana, Southern Idaho,
Parts of Extreme Eastern Oregon,andUtah
19.5-7. SubcommandsforArizona
19.5-8. Subcommands for the Pacific Time Zone: -Northern Idaho, Washington, Oregon
except Parts of the Extreme East, Nevada, and California
21.1-1. Portable Data Format (PDF) Representationof Data
21.3-1. File I/O Procedures for Which PDFI/OIsSupported
216-2. HowtoRunFVIEW
A-1. TypeCodes v v v v v v e e e e e e e e e
B-3. TargetProcessors ¢ v v v v v 0 e v e e e e e e e e e e
B-1. TargetPlatforms. ¢ . v v o v oo e
B-2. TargetSystems v v v v v v v e e e e e e e e e e
C-1. PredefinedExceptions« v ¢ o v v v e w e e e e
D-1. Target System Attribute BitValues
E-1. SupportedCharacterSets « . « v v v v v v oo e
F.2-1. PDFto EBCDIC Character Set Translation Table
F.2-2. EBCDIC to PDF Character Set Translation Table
G-1. ReservedIdentifiers 0000 oL
H-1. Non-Reserved Identifiers without Dollar Signs.

- Xiii -

131
151
154

162
162

166
166
170
175
179
186
199
202

203

203
204

204

204
205

205
213
215
219
220
221
222
223
224
225
226
228
229
233
235

I-1.

MAINSAIL Synonyms ¢ v ¢« v 4 o o o o o s o o o o o o s

J.1-1. Portable Data Type Ranges and Data Structure Size Limits

K-2.
K-1.

Objmods Shipped in Runtime-Only MAINSAIL Systems
Standard MAINSAIL SystemObjmods

- Xiv -

240
242

245

1. Introduction

This document is the definitive reference on MAINSAIL, a computer programming language
supported and marketed by XIDAK, Inc. This manual is intended not to teach the MAINSAIL
language, but rather to answer the questions of programmers who already have some
knowledge of MAINSAIL. New users of MAINSAIL should consult the "MAINSAIL
Documentation User’s Guide and Master Index", which lists documents available from XIDAK
on MAINSAIL and the MAINSAIL environment. The "MAINSAIL Overview" and the
"MAINSAIL Tutorial" provide information of particular interest to the new user.

MAINSAIL system procedures, macros, and variables are described in Chapter 1 of part IT of
the "MAINSAIL Language Manual”, which should be consulted for information on unfamiliar
identifiers in this manual,

1.1. Version

This version of the "MAINSAIL Language Manual" is current as of Version 12.10 of
MAINSAIL. It incorporates the "Runtime System Version 5.10 Release Note" of October,
1982; the "MAINSAIL Language Version 7.4 Release Note" and the "Runtime System Version
7.4 Release Note" of May, 1983; the "MAINSAIL Language Release Note, Version 8" of
January, 1984, the "MAINSAIL Language Release Note, Version 9" of February, 1985; the
"MAINSAIL Language Release Note, Version 10" of March, 1986; and the "MAINSAIL
Language Release Note, Version 11" of July, 1987.

1.2, The Design of MAINSAIL

MAINSAIL is a programming system designed for the development of portable software, i.e.,
programs that can be transported in source form with no alterations (unless implied by the
nature of the program) among all implementations. The programmer is not prevented from
writing programs that are machine-dependent, but the language design is based on constructs
that can be implemented on a variety of machines, so that the need for machine-dependent
constructs is minimized. To provide a basis for portability it has been necessary to develop
facilities beyond those normally associated with a programming language; for example,
MAINSAIL provides its own intermodule linkage and module loading.

MAINSAIL is a large language. It provides a number of data types, data structuring
mechanisms, and system procedures. Efficient execution and the capability to develop large
software products quickly were more important considerations in the development of the
language than keeping the language small.

XIDAK reserves the right to upgrade MAINSAIL from release to release. New data types, data
structures, keywords, system procedures, system macros, and system variables may be
introduced at each MAINSAIL release. Insofar as XIDAK deems feasible, such enhancements
will be upward-compatible with previous versions of MAINSAIL,

Sizes and layouts of data types and data structures, values of system macro constants, and other
system-dependent information may change from release to release and vary from system to
system. For portability (both among different releases and different computers), these
quantities should be specified symbolically using the features provided in the MAINSAIL
language, and never hardwired into a program.

1.3. Terminology and Symbols

Abbreviations used throughout the manual are shown in Table 1.3-1. These abbreviations are
often used to stand for variables of the data type being abbreviated.

bo BOOLEAN

i INTEGER

1i LONG INTEGER

r REAL .

1r LONG REAL

b BITS

1b LONG BITS

s STRING

a ADDRESS

c CHARADR ("c" sometimes abbreviates "character"™)
p POINTER

n Numeric (INTEGER, LONG INTEGER, REAL, LONG REAL)
v,v0,... Variables

e,e0, ... Expressions

c,c0,... Constant expressions

s8,80,... Statements

Table 1.3-1. Abbreviations

In descriptions, the forms "(long) integer”, "(long) bits", and "(long) real” mean "integer and/or
long integer", "bits and/or long bits", and "real and/or long real", respectively.

MAINSAIL keywords (e.g., "BEGIN", "END") are written in all upper case in this manual,
though this is not necessary in MAINSAIL programs. MAINSAIL does not distinguish
identifiers or keywords on the basis of case.

"Compiletime" refers to actions that take place while a program is being compiled. "Runtime”
refers to actions that take place while a program is being executed.

MAINSAIL implementations are categorized according to "processor”, "operating system", and
"platform"”. A processor is characterized by a particular instruction set; one or more operating
systems may run on computers containing a given processor. In XIDAK terminology, two
implementations of MAINSAIL run on different operating systems if code for the two systems
must be compiled differently (even if the instruction sets are the same, operating-system-
dependent logic may have to be different). Platform is a narrower category than "operating
system"; i.e., every operating system includes one or more platforms. Although identical code
is generated for all modules compiled for the same operating system, two different platforms
within the same operating system may require different installation procedures or bootstraps, or
may make slightly different operating system calls at runtime. The current lists of processors,
operating systems, and platforms are given in Appendix B.

The "target system" (or "target processor”, "target operating system", or "target platform") is
the computer system for which a MAINSAIL program is compiled, i.e., the system on which it
is to run.

"Error" refers to a situation or language construct that by default generates an error message
(either at compiletime or at runtime). "Illegal” refers to some language constructs that generate
errors at compiletime. "Undefined" refers to a situation or language construct that is unsafe or
not logically correct, but that may or may not generate an error message. Programs making use
of an undefined construct or situation may not work the same way from one MAINSAIL
version or implementation to another. "Unspecified" refers to the result of a situation or
operation that does not generate an error and is not logically incorrect, but that may vary from
situation to situation or from implementation to implementation. For example, in operations
that round numbers, the direction of rounding is often unspecified.

MAINSAIL often chooses to leave a construct undefined or unspecified for efficiency
considerations. On MAINSAIL implementations, the fastest form of an operation provided by
the underlying hardware or operating system is usually used, regardless of whether it provides
error condition checks or high precision,

Some error messages can be suppressed; €.g., the "NOCHECK" compiler directive prevents
certain situations from generating error messages. Suppressing error messages with the
"NOCHECK" directive transforms the affected error situations into undefined situations.

1.4. Conventions Used in This Document

1.4.1. User Interaction

Throughout the examples in this document, characters typed by the user are underlined.
"<eol>" symbolizes the end-of-line key on a terminal keyboard; this key is marked "RETURN"
or "ENTER" on most keyboards. In Example 1.4.1-1, "Prompt:" is written by the computer;
the user types "response” and then presses the end-of-line key.

Prompt: response<eol>

Example 1.4.1-1. How User Input Is Distinguished

1.4.2. Syntax Descriptions

Specifications of syntax often contain descriptions enclosed in angle brackets ("<" and ">").
Such descriptions are not typed literally, but are replaced with instances of the things they
describe. For example, a specification of the syntax of the address on an envelope might appear
as in Example 1.4.2-1.

<name of addressee>
<street number> <street name>
<town or city name>, <state abbreviation> <zip code>

Example 1.4.2-1. Syntax of a Mailing Address

Optional elements in command or syntax descriptions are often enclosed in curly brackets ("{"
and "}"). For example, a string of characters specified as "{A}B{C}" could have any one of
the forms "B", "BC", "AB", and "ABC". Alternatives may be enclosed in square brackets (or
curly brackets, if all alternatives are optional) and separated by vertical bars ("I"); "[AIBIC]"
means "A", "B", or "C"; "{AIB}" means "A", "B", or nothing.

1.4.3. Temporary Features

Temporary features that have not acquired a final form are marked as follows:

TEMPORARY FEATURE: SUBJECT TO CHANGE

Temporary features are subject to change or removal without notice. Programmers who make
use of temporary features must be prepared to modify their code to accommodate the changes
in them on each release of MAINSAIL. It is recommended that code that makes use of
temporary features be as isolated from normal code as possible and thoroughly documented.

2. Basic Language Concepts

2.1. Character Set

MAINSAIL does not specify the exact character set of the system on which it runs; however, it
is guaranteed that a unique character corresponds to each of the characters shown in Table
2.1-1. MAINSAIL cannot guarantee the graphics associated with each character, but they are
chosen to approximate those shown.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz
0123456789

space (blank)

tab (horizontal tab)

eol (end-of-line)

eop (end-of-page)
$nulChar (null character)

Table 2.1-1. MAINSAIL Minimum Character Set

Associated with each character is an integer code. Character codes range from 0 to the
predefined constant $maxChar, which has the value 255, since MAINSAIL characters occupy
eight bits each. In this manual the term "character” is often used to mean "character code”.
The following may be assumed about the ordering of character codes:

o ’A’ through *Z’ are alphabetically ordered, but not necessarily contiguous.

* "a’ through ’z’ are alphabetically ordered, but not necessarily contiguous.

« 0’ through 9’ are numerically ordered and contiguous.
Although lowercase letters are guaranteed to have character codes, some peripherals may not
provide lower case. It is recommended that portable programs not depend on upper/lower case

distinctions. For example, a program that reads commands from a terminal should not use "A"
for one command and "a" for another.

The three identifiers "tab", "eol”, and "eop” are predefined by MAINSAIL as string constant
macros.

The exact effect of a tab is peripheral-dependent, but it usually positions to the next horizontal
tab stop. MAINSAIL does not define tab stops since the peripherals on which tabs have an
effect may not be under MAINSAIL’s control. Tab stops are often defined to be every fourth
or eighth column. The tab character has the code 9 on ASCII systems and 5 on EBCDIC
systems.

eol ("end-of-line") is a one-character string that indicates the end of a line of text. When
written to a file it terminates a line, so that the next character is written at the start of the next
line. The eol character typically has the code 10 on ASCII systems and 37 on EBCDIC
systems (it is possible that other values may be encountered).

‘When reading a line from a text file with the system procedure "read”, MAINSAIL searches for
an end-of-line by searching for eol. The eol character is discarded. All characters up to the
end-of-line sequence make up the line as produced by "read".

eop ("end-of-page") is a single-character string that indicates the end of a page of text. When
printed to a file it terminates a page (the next character is written at the top of the next page).
The eop character has the code 12 on ASCII and EBCDIC systems.

Each implementation specifies a "null character" that is by default ignored (discarded) when
encountered in a text input file, The null character code is given by $nulChar. The null
character code for an ASCII or EBCDIC character set is the code 0. See Section 1.259 of part
II of the "MAINSAIL Language Manual" for further information about the treatment of null
characters in a text input file,

The MAINSAIL compiler translates character codes (e.g., in string constants) from the host
character set (the one used by the compiler) to the target character set (the one used by the
compiled program). Unique characters on the host machine are translated to unique characters
on the target machine, provided that the host characters are among those shown in Table 2.1-1,
Other characters are used at the programmer’s risk; if a character cannot be translated to the
target character set, a compiletime error occurs. Characters in comments are not translated to
the target character set; they affect only the portability of the source text itself.

Table 2.1-2 shows the system procedures provided to complement the minimal assumptions
guaranteed above. The argument to each is an integer character code.

-1 is used in several situations to represent "no character”, since no character code can be -1
(codes are guaranteed nonnegative). For example, “first(s)" returns the character code of the
first character of the string s; if s is empty (i.e., contains no characters), then "first(s)" is -1.

isLowerCase (i) True if i is the code for one of

a...z.

isUpperCase (i) True if i is the code for one of
A...Z.

isAlpha (i) True if i is the code for one of

a...zA...Z.

isNul (i) "isNul(i)"™ is true if i is the code
for the null character, $nulChar.

prevAlpha (i) Code of the alphabetically previous
character (same case) before the one
with code i. Undefined if i is not
the code for one of b...zB...Z.

nextAlpha (i) Code of the alphabetically next
character (same case) after the one
with code i. Undefined if i is not
the code for one of a...yA...Y.

cvl(i) If 1 is the code for one of A...Z,
then the result is the code for the
corresponding lowercase letter;

otherwise it is i itself.

cvu (i) If i is the code for one of a...z,
then the result is the code for the
corresponding uppercase letter;
otherwise it is i itself.

Table 2.1-2. Character-Set-Independent System Procedures

2.2. Comments

A comment is used for documentation in MAINSAIL source code. A comment starts with the
character "#" and extends to the end of the line; when the compiler comes upon "#", it ignores
the remainder of the line. A comment may begin anywhere on a line. See Example 2.2-1.

af[l] := 0; # clear first element

Example 2.2-1. Sample Comment

A large body of text may be "commented out” in three ways:
1. Insert "#" at the start of every line.

2. Use conditional compilation: "IFC FALSE THENC ignoredText ENDC" (see
Section 14.10).

3. Use "SKIPSCAN" and "BEGINSCAN" to skip pages (see Section 14.18),

2.3. Identifiers

An identifier is (an optional dollar sign followed by) a letter followed by any number of letters
and digits. The letters and digits must be contiguous (e.g., no intervening spaces).

In comparing identifiers, the compiler does not distinguish between upper- and lowercase
letters; e.g., it considers the identifiers "typecode”, "typeCode", and "TYPECODE" to be
identical. There is no "break" character for identifiers; programmers with access to lower case
may use a mixture of lower and upper case to show the structure of identifiers. For example,
"sizeOfArray" is more understandable than "sizeofarray" or "SIZEOFARRAY".

Certain identifiers ("keywords" such as "BEGIN", "END", and "ARRAY") are "reserved" and
cannot be declared or defined by the programmer. A list of the reserved identifiers is given in
Appendix G. .

Certain other identifiers (e.g., "tab", "create", "delete") are predefined by MAINSAIL and
cannot be declared by the programmer.

"$" is the initial character of certain predefined and predeclared identifiers used by the
MAINSAIL runtime system. This avoids conflicts with the programmer’s identifiers, which
must not begin with "$". When XIDAK creates a new predefined identifier, it begins with "$".
A user declaration of an identifier beginning with "$" has undefined consequences.

Examples of legal identifiers are shown in Example 2.3-1.

Examples of illegal identifiers are shown in Example 2.3-2.

i,j,k,1,m,n # common integer identifiers

makedsets

aVerylongIdentifier # same as AVERYLONGIDENTIFIER
Example 2.3-1. Legal Identifiers

array # reserved identifier

5th # starts with a number

cost-in-$ # "$" and "-" cannot be used

Example 2.3-2. Illegal Identifiers

2.4. Use of Semicolons and Formatters

Semicolons separate (rather than terminate) declarations and statements. They terminate
compiler directives, procedure headers, and macro definitions.

Usually any number of formatters (e.g., spaces, tabs, and ends-of-line) may separate syntactic
units. When in doubt, consult the description of the language construct in question.

2.5. Compiletime Evaluation

The compiler evaluates boolean, (long) integer, (long) bits, and string operations with constant
operands at compiletime. A call to a system procedure declared with qualifier
"COMPILETIME" is evaluated at compiletime if all the arguments are constants. The term
"constant expression” refers to an expression that can be evaluated at compiletime.

All compiletime arithmetic is carried out on string representations (with a very large number of
digits) so that the capabilities of the computer on which the compiler is running do not affect
the results. Integer arithmetic operations that overflow and (long) bits operations that discard
bits to the left may therefore not have the same result at compiletime as they would have had if
the operations had been performed on the target at runtime.

String operations evaluated at compiletime produce the same result that would have been
produced if they had been evaluated at runtime; i.e., they act on strings as translated to the
target character set, rather than as on the host machine.

-10 -

If an expression contains constant subexpressions, the subexpressions should be enclosed in
parentheses to ensure that they are evaluated at compiletime. For example, "i +2 + 4", where i
is not evaluated at compiletime, should be written as "i + (2 + 4)" to ensure that the addition of
2 and 4 is done at compiletime. It might otherwise be treated as "(i + 2) + 4", which involves
two additions during execution.

2.6. Storage Units and Character Units

A storage unit is the basic measure for the amount of memory required by the various data
types. For example, a storage unit may represent a "byte" or "word", although these concepts
are not used by MAINSAIL. Every storage unit contains a processor-dependent number of
bits, given by the predefined constant $bitsPerStorageUnit.

Data files and memory in which values of the MAINSAIL data types are stored are viewed as
linear sequences of storage units. Storage units are employed in situations requiring a measure

of memory or file size without regard to data type, .g., as an argument to the system procedure
setPos for a data file.

The system procedure "size" can be used to determine the number of storage units occupied by
a particular data type or record. The procedure $ioSize can be used to determine how many
storage or character units a data type occupies in a given data file. "DSP" returns the offset in
storage units from the start of a record to a field in the record.

Text files and memory in which characters are stored may be viewed as linear sequences of
"character units”. Character units are employed when a file or memory position must be
specified as the number of characters it contains, e.g., as an argument to the system procedure
setPos for a text file. A character unit is always eight bits.

Character units do not necessarily coincide with storage units, but storage units are always an
integral multiple of character units. The number of bits per character unit (eight) is defined as
$bitsPerChar, so the number of character units per storage unit is given by
"$bitsPerStorageUnit DIV $bitsPerChar".

2.7. Type Codes

Each data type is assigned an integer type code that is used in various ways in MAINSAIL,
e.g., as an argument to the compiletime system procedure "size".

Predefined integer constants for the type codes are shown in Table 2.7-1.

-11-

Each of these identifiers is a predefined
integer constant:

booleanCode
integerCode
longIntegerCode
realCode
longRealCode
bitsCode
longBitsCode
stringCode
addressCode
charadrCode
pointerCode

For example:
size (integerCode)

is the number of storage units in an integer.

Table 2.7-1. Type Codes

2.8. Garbage Collections and Memory Management

The MAINSAIL runtime system automatically reclaims the space occupied by records, arrays,
and data sections (collectively known as "chunks") and by string text if the chunks or text
become inaccessible. A chunk is inaccessible if no accessible pointer (local variable or pointer
in an accessible chunk) references it; string text is inaccessible if no accessible string descriptor
references it. Garbage collections (and other memory management operations; "garbage
collections” is often used in this manual to denote a variety of memory management
operations) can move chunks and string text as well as deallocate them. This is usually

invisible to a program, since the referencing variables are automatically updated to point to the
moved data.

Variables of the types address and charadr are not updated during a garbage collection, even if
they point to structures that may be moved. The user ordinarily uses variables of these data
types to point into "scratch space” (or “static space"), i.e., areas of memory in which data are
not collected. Scratch space may be obtained by calhng the system procedure newPage or the
system procedure newScratch.

-12 -

Constructs that may trigger garbage collections are noted in this manual.

Since garbage collections may take a great deal of time, the programmer may wish to prevent
collections if he or she knows that few inaccessible data are being generated. This may be
accomplished by incrementing the system variable $collectLock (although doing this may
cause MAINSAIL to run out of memory if inaccessible data are in fact being generated). The
system procedure $collect causes a collection to be performed, even when $collectLock is non-
zero. Collections can also be prevented (or reduced in scope or frequency) indirectly by calling
the system procedure "dispose” to deallocate data structures explicitly whenever possible.

Frequency of garbage collection can be controlled by using the utility CONF to set various
parameters in a MAINSAIL bootstrap; see the "MAINSAIL Utilities User’s Guide" for details.
2.9. cmdFile and logFile

cmdFile and logFile are files associated by default with a MAINSAIL execution’s primary

input and primary output (usually terminal input and terminal output), respectively. They are
described in Section 18.12,

-13-

3. Data Types

This chapter describes MAINSAIL’s eleven data types: boolean, integer, long integer, real,
long real, bits, long bits, string, pointer, address, and charadr. Arrays, records, and data
sections, which are "data structures” rather than "data types” in MAINSAIL terminology, are
described in Chapters 7, 8, and 10, respectively.

Associated with each data type is a set of values and a set of operations that may be performed
on the values. The set of values associated with each data type includes a value called the
"Zero" of the data type. The memory representation of the Zero of every data type consists
entirely of 0-bits.

There is no implicit data type conversion in MAINSAIL. For example, if i is an integer
variable and r a real variable, then "i + r" is an illegal expression. Conversion procedures are
provided to convert arguments to another data type. They are discussed in Section 3.9. "cvi",
for example, is a procedure that converts its argument to an integer; "i + cvi(r)" is a legal
expression.

The difference between the data types integer, real, and bits and their corresponding "long”
types is the guaranteed "range” of values. For example, an integer in a portable program may
have a value between -32767 and 32767, inclusive, while a long integer may have a value
between -2147483647 and 2147483647, inclusive. Some machines can easily support both
ranges, while others can support the long ranges only through the use of "software packages";

the programmer should employ the long forms only when necessary, since they may be less
efficient.

A program that generates a value outside of the machine-dependent range of its data type
behaves in an undefined fashion. Overflow and underflow are not necessarily caught; see the
appropriate operating-system-dependent MAINSAIL user’s guide for details.

It is an error to use a constant that cannot be represented on the target machine, e.g., an integer
that is too large.

For each data type discussed in this chapter, a list of the operators that may be used with values
of the data type is given. All operators are described in more detail in Section 4.8. Each data
type description also includes a brief description of some of the system procedures that may be
used with it. Complete system procedure descriptions are given in Chapter 1 of part II of the
"MAINSAIL Language Manual".

XIDAK reserves the right to create new MAINSAIL data types, and to enhance any system
procedure, macro, or variable to handle such new data types.

-14 -

3.1. Boolean

Boolean values are the logical values true and false. The booleah constants are "TRUE" and
"FALSE". The boolean Zero is "FALSE".

The operators shown in Table 3.1-1 may be used with boolean expressions.

OR AND NOT = NEQ :=

Table 3.1-1. Boolean Operators

3.2. Integer and Long Integer

Integer and long integer are data types for representing mathematical whole numbers. An
integer is guaranteed the range -32767 to 32767; a long integer, -2147483647 to 2147483647.

An integer constant is composed of an optional minus sign ("-") followed by decimal digits ("0"
through "9"). Some examples are: "1874", "-53", and "0".

A long integer constant is like an integer constant except that it must be immediately followed
by the letter "L" (or lowercase "1"), e.g., "1874L", "-53L", "OL", or "298752341".

A character enclosed in single quotes represents the integer constant of which the value is the
target-machine character code of the enclosed character. For example, ’A’ represents the
integer constant that is the character code of the letter "A" on the target machine. Character
codes are discussed in Section 2.1.

The integer Zero is "0", and the long integer Zero is "OL" (or "01").

The operators shown in Table 3.2-1 may be used with (long) integer expressions.

OR = LEQ = + DIV
AND NEQ > MIN - (unary & binary) MOD
NOT < GEQ MAX * ~

Table 3.2-1. Integer and Long Integer Operators

-15-

The system procedure shown in Table 3.2-2 may operate on (long) integer expressions.

abs absolute value of a (long) integer

Table 3.2-2. System Précedure for Integer and Long Integer

3.3. Real and Long Real

Real and long real are data types for representing "floating point” numbers. A floating point
number consists of a fraction and a power-of-ten exponent; the value of the number is the
product of the fraction and ten to the power of the exponent. For areal, the fraction is
guaranteed to have at least six full decimal digits of significance. The exponent is guaranteed a
range wide enough that at least one number less than or equal to ten to the minus 38th power
(1.0E-38) can be represented as a real, and at least one number greater than or equal to ten to
the plus 38th power (1.0E+38) can be represented as a real. For a long real, the fraction is
guaranteed to consist of at least 11 full decimal digits, and the exponent range is guaranteed to
be at least as large as that of a real exponent.

A real constant is like an integer constant except that it has either a decimal point, an exponent,
or both. An exponent immediately follows the last digit (or the decimal point if it is last), and
is the letter "E" (or "e") immediately followed by an integer. A nonnegative exponent may be
separated from "E" by "+". Some real constants are shown in Example 3.3-1.

1874.56

-.78E-3 (= -.00078)
0.
1E3 (= le3 = 1lE+3 = 1.E3 = 1.E+3

1000.)

Example 3.3-1. Real Constants

A long real constant is like a real constant except that it must be immediately followed by the
letter "L" (or lowercase "1"), as in Example 3.3-2.

The real Zero is "0.", and the long real Zero is "0.L" (or "0.1").

The operators listed in Table 3.3-3 may be used with real and long real expressions.

-16 -

12387658.5L
-.57E28L
0.0L (= 0.L)

Example 3.3-2. Long Real Contants

= LEQ = + . /
NEQ > MIN - (unary & binary) ~
< GEQ MAX *

Table 3.3-3. Real and Long Real Operators

The system procedures shown in Table 3.3-4 may be used with real and long real expressions.
Trigonometric functions such as sin, cos, and log are also provided; see Chapter 1 of part II of
the "MAINSAIL Language Manual".

abs
ceiling

floor

truncate

absolute value of a (long) real

smallest (long) integer not exceeded by a (long)
real

largest (long) integer not exceeding a (long)
real

truncate a (long) real to a (long) integer

Table 3.3-4. System Procedures for Real and Long Real

3.4. Bits and Long Bits

Bits and long bits are data types for representing sequences of bits. The difference is that a bits
consists of (at least) 16 bits and a long bits consists of (at least) 32 bits. Bits may take part in
bit operations such as masking, shifting, and testing.

A bit has two states, 0 and 1, sometimes called "0-bit" and "1-bit" or "clear” and "set". To
cause a bit to enter the 0 state is to "clear" it; to cause it to enter the 1 state, to "set" it.

-17 -

A bits constant is a sequence of characters preceded by a single quote and a letter that indicates
the base: "B" (or "b") for binary (base 2), "O" (or "0") for octal (base 8), or "H" (or "h") for
hexadecimal (base 16). The base letter may be omitted for octal; i.e., octal is the default.

Each binary character ("0" or "1") represents a single bit. Each octal character ("0" through
"7") represents three bits (000 through 111). Each hexadecimal character ("0" through "9", "A"
through "F") represents four bits (0000 through 1111). The lowercase letters "a" through "f",
like "A" through "F", can be used to represent the bit patterns 1010 through 1111 in
hexadecimal constants.

The bits for each character are concatenated to obtain the bits of the constant. For example,
"B101011", ""O53" (or just "’53") and ""H2B" all represent the same bit sequence 101011
(ignoring leading zeros).

Other examples of bits constants are "’573", "'B10111", and ""H82A3".

A long bits constant is like a bits constant except that it must be immediately followed by the
letter "L" (or lowercase "1"), e.g., "’743L" (= 'B111100110L = "H1D6L = *h1d6]I).

The bits Zero is "*0" (or equivalently "*B0" or "’O0" or ""H0"); the long bits Zero is the bits
Zero followed by "L" (or lowercase "1"), e.g., "’OL".

Bits are numbered from right to left starting with zero.

The operators shown in Table 3.4-1 may be used with bits and long bits expressions.

OR = NTST = MSK SHR
AND NEQ TSTA IOR CLR !
NOT TST NTSTA XOR SHL

Table 3.4-1. Bits and Long Bits Operators

The system procedures shown in Table 3.4-2 may operate on bits and long bits expressions.

bMask form a bits mask (sequence of 1-bits)
1bMask form a long bits mask (sequence of 1-bits)

Table 3.4-2. System Procedures for Bits and Long Bits

-18-

3.5. String
String is a data type for representing and manipulating sequences of characters.

A string is a variable-length sequence of characters. MAINSAIL automatically keeps track of
how many characters are in a string. A string may contain up to 32766 characters, although
long strings may result in serious inefficiencies when used in certain operations.

A string constant is a sequence of characters enclosed in double quotes. Some examples are
shown in Example 3.5-1. A double quote is represented in a string constant with two double
quotes. Each pair of double quotes stands for one double quote inside the string. For example,
the last string in Example 3.5-1 contains two embedded quotes. It contains 23 characters; the
two extra double quotes are not retained as part of the string constant, since they are only
indicators to the compiler.

"Hello"

"She is 12 years old"

"The umbrella cost $2.50"
"He cried ""Wolf!"" again."

Example 3.5-1. String Constants
A string constant may extend across line and page boundaries; the characters that indicate the
boundaries are part of the constant. For example, the string:

"This is a string constant that extends
across a line boundary in the source text”

has an embedded eol. It could also be written:

"This is a string constant that extends " & eol &
"across a line boundary in the source text"

The concatentations are performed at compiletime, since all the strings involved are constants.

The string Zero (sometimes called the "null string") is "". It is the string consisting of no
characters.

"&" is the concatenation operator. "s1 & s2" is the string consisting of the characters of s1
immediately followed by the characters of s2. Thus, if s1 has the value:

-19 -

"This is "
and s2 has the value:
"a concatenated string"
then the expression "s1 & s2" has the value:
"This is a concatenated string"
Substrings are described in Section 4.4, and string comparison in Section 4.8.1.

The operators shown in Table 3.5-2 may be used with string expressions.

OR = LEQ = &
AND NEQ > MIN
NOT < GEQ MAX

Table 3.5-2. String Operators

The system procedures shown in Table 3.5-3 may operate on string expressions.

3.5.1. Low-Level String Manipulation

Strings are represented in memory as "string descriptors”, composed of a length and a character
address. String descriptors usually point to characters stored in a region of memory called
"string space”. The characters stored in string space are subject to garbage collection if they
become inaccessible (i.e., no string descriptor points to them). The characters of a string
allocated in scratch space or created by a foreign language procedure do not reside in string
space. The user who needs to move such a string into MAINS AIL’s string space may do so by
means of the system procedure $getInArea.

Most programs that do not call foreign language procedures do not need to manipulate strings
or string descriptors explicitly with newString or $getinArea.

More complete information on the MAINSAIL string implementation, along with suggestions
for efficient use of strings, may be found in the "MAINSAIL Tutorial".

-20-

length

cvu
cvl

compare

equ
first
last

read
write

cRead
cWrite

rcRead

rcWrite

$dup
scan
scanSet
$scanSet

scanRel

newString

$SgetInArea

number of characters in a string

convert a string to upper case
convert a string to lower case

return -1, 0, or 1 to indicate comparison of
two strings (see Section 4.8.1). Can be

made to treat upper and lower case identically,
i.e., a "caseless" comparison

returns true if two string arguments are equal.
Like "compare", can do a caseless comparison

first character of a string
last character of a string

reads a value from a string
writes a value to a string

reads a character from a string
writes a character to a string

reads a character from the end of a string
(reverse cRead)
writes a character to the front of a string
(reverse cWrite)

reduplicate a string (concatenate with itself)

scans a string according to a scan
specification '

sets up scan bits to be used with scan

sets up scan integers to be used with scan
releases scan bits or integers used with scan

create a string descriptor from a charadr and
a length

ensure that a string is in MAINSAIL’s string
space

Table 3.5-3. System Procedures for String

-21-

3.5.2. String Constants and Garbage Collection

The first time each string constant in a module is used, its characters may be copied into string
space. This can trigger a garbage collection. Subsequent uses of the same string constant (in
the same module) use the previously copied characters, and so do not cause a collection.

3.6. Pointer

Pointer is a data type for referencing records or data sections. Pointers are frequently
"classified", i.e., associated with a particular class, as described in Section 8.4.

The only pointer constant is "NULLPOINTER", which is the pointer Zero. A nullPointer
references no record or data section.

The operators in Table 3.6-1 may be used with pointer expressions.

OR AND NOT = NEQ :=

Table 3.6-1. Pointer Operators

3.7. Address

Address is a data type for representing the location of a storage unit in memory. Addresses
may be used for loading and storing values of any data type to and from memory. Individual
characters are usually loaded and stored by means of the data type charadr.

Address is a "low-level" data type; many user programs can be written without the use of
addresses. -

Not every address representable on a processor is a valid MAINSAIL address; e.g., on some
implementations of MAINSAIL, an address that is not a multiple of the size of the smallest
data type is considered "unaligned" (or "non-data-type-aligned") and is invalid. Portable
programs must therefore compute addresses as linear combinations of exact multiples of the
sizes of MAINSAIL data types. Furthermore, during any particular execution of MAINSAIL,
some addresses may be invalid for reading or writing because the storage units they reference
are protected by the operating system. The use of an invalid address is undefined. Storage
units in regions of memory allocated by the system procedures newScratch and newPage are
always valid for reading or writing. Storage units in regions of memory allocated by the

-22.

system procedure "new" are also valid for reading and writing, provided that invalid values
(e.g., pointers not pointing to a valid MAINSAIL data structure) are not stored into a
MAINSAIL data structure. Storing into other parts of memory is undefined, since it may
overwrite MAINSAIL runtime data structures.

The address of a collectable MAINSAIL data structure may change if a garbage collection
occurs; an address variable is not updated in such a case. Collectable data are normally
referenced with the pointer and string data types, which are updated when a garbage collection
occurs.

Addresses may be classified like pointers; see Section 8.4.

The only address constant is "NULLADDRESS", which is the address Zero.

Addresses are ordered with respect to the relative position of the referenced storage units in
memory. It is this order that is used when comparing addresses, or using "MIN" or "MAX" on
an address.

The operators shown in Table 3.7-1 may be used with address expressions.

OR AND NOT = NEQ <
LEQ > GEQ = MIN MAX

Table 3.7-1. Address Operators
System procedures used in operations with addresses are shown in Table 3.7-2.

3.8. Charadr

Charadr ("character address") is a data type for representing the address of a character unit in
memory. Data other than characters are usually loaded and stored by means of the address data

type.

Charadr is a "low-level" data type; many user programs can be written without the use of
charadrs.

As with addresses, there may be charadr values at which the effect of performing a load or store
is undefined; see Section 3.7.

The only charadr constant is "NULLCHARADR", which is the charadr Zero.

-23.

clear

copy

(x) Load
store

displace

displacement,

newPage
pageDispose

newScratch

scratchDispose
read

write

clears storage units of memory

copies storage units from one memory
location to another

loads a value (of data type x) from memory
stores a value into memory
returns an address that is displaced n

(one of its arguments) storage units from
another address

1Displacement

computes the distance between two
addresses

gets some memory pages
disposes of pages obtained with newPage

returns the address of some memory for
"scratch space"

disposes of scratch space
reads a value from an address

writes a value to an address

Table 3.7-2. System Procedures for Addresses

The operators shown in Table 3.8-1 may be used with charadr expressions.

OR
LEQ

AND NOT NEQ <
> GEQ i= MIN MAX

Table 3.8-1. Charadr Operators

-2 -

System procedures used in operations with charadrs are shown in Table 3.8-2.

clear clears character units of memory

copy copies characters from memory starting at one
charadr to memory starting at another charadr

cLoad loads a character from memory

store stores a character into memory

cRead reads a character from memory

cWrite writes a character to memory

displace returns a charadr that is displaced n (one
of its arguments) characters from another
charadr

displacement computes the distance between two charadrs

newString makes a string (descriptor) from a charadr
and an integer (length)

Table 3.8-2. System Procedures for Charadrs

3.9. Conversion Procedures

A conversion procedure converts from one data type to another. For example, if the value of
the real variable r is 8., then "cvi(r)" has the integer value 8, where "cvi” is the convert-
to-integer procedure. MAINSAIL does not provide implicit data type conversion; the
programmer is responsible for using conversion procedures where necessary.

A conversion procedure for converting a value of type x to type y is provided for each x-y
combination for which the box is marked in Table 3.9-1. The data type abbreviations listed in
Table 1.3-1 are used in Table 3.9-1.

For detailed descriptions of the conversion procedures, see Chapter 1 of part IT of the
"MAINSATL Language Manual".

-25-

MAINSAIL does not guarantee to catch underflow or overflow in conversions. The effect is

undefined of calling one of the MAINSAIL system routines that converts a string to numeric

value (e.g., read, cvi, cvli, cvr, cvlr) if the numeric value is outside the range supported by the

Processor.

L e B s e Eaatat Tt BT e

x\
TSSOSO NSO 1M 1O 1 VRIS MR M SR SRS SRS

]

| 1b

b

1r

r

1i

|

-

e T s s STt I S

e T T S e Gl ST S

T S e e S S e

1r
e S B et S et Sttt St TS

s T S R i Sttt T S B

*

1b
R Y S —

s Eaaat e s TarTTl SRR S

i S e e s P Tt T T S S SRR

s e S it et R

P
T T

* means the conversion procedure "cvy" is available and

converts values of data type x to data type y.

Table 3.9-1. Allowed Conversions

-26 -

4. Expressions

An expression provides the means of accessing and computing values.

An expression can be a constant, a variable, a call to a typed procedure (a Procedure
Expression), a substring, an If Expression, an Assignment Expression, a compiletime pseudo-
procedure, or a combination built up with operators and parentheses. Unless otherwise stated,
the order of evaluation of the components of an expression is unspecified.

4.1. Constants

A "constant" represents a value known when the program is written. See Chapter 3 for the

exact format of each data type’s constants. Symbolic constants may be defined as described in
Chapter 13.

4.2, Variables

A "variable" provides access to a data value, Variables are used rather than constants when the
programmer knows that a value will be needed in a given computation but does not know in
- advance what the value will be,

The data type and other attributes of a variable are given in the variable’s declaration; see
Chapter 6.

The value of a variable may be changed by an Assignment Statement (Section 5.1), by an
Assignment Expression (Section 5.2), or by a dotted operator (Section 4.8.5), or when used as a
procedure argument corresponding to a modifies or produces parameter (Section 9.5).

A variable is either a simple variable, a subscripted variable, or a field variable.

A simple variable is an identifier associated with a single value that may be changed during
program execution as governed by its data type. For example, if n is an integer variable, it may
be assigned integer values during program execution.

Subscripted variables are used to access the elements of an array (see Section 7.5) and field

variables are used to access the fields of a record (see Section 8.6) and the interface fields of a
module (see Section 10.3).

.27 -

4.3. Procedure Expression

A Procedure Expression is a procedure call used in an expression. Procedures are described in
Chapter 9, procedure calls in Section 9.2. A procedure used in a Procedure Expression must be
a typed procedure (see Section 9.3); i.e., it must return a value. Section 5.3 explains the
difference between a procedure call in an expression and a procedure call as a statement.

A call to a typed procedure in an expression invokes execution of the procedure body and then
uses the value it returns in place of the procedure call in the expression.

4.4. Substrings

A substring of a string s is a sequence of zero or more contiguous characters of s. For example,
"pur”, "rp", "e", "", and "purple” are substrings of "purple"”, but "prp" is not.

A substring of a string s is specifed by:
s[el TO e2] or s[el FOR e2]

where el and e2 are integer expressions. el is the start position. e2 is the stop position in the
"TO" form, and the length in the "FOR" form. The characters of a string are numbered from
left to right, the first position being number one. If el is less than one, then the effect is the
same as if one were used for el, and if e2 is greater than the length of s, the effect is the same
as if the length of s were used for 2. See Example 4.4-1.

If:
s = "yellow"
then:
S[1 TO 4] = s[l1 FOR 4] = s[-3 TO 4] = "yell",
s[4 TO 6] = s[4 FOR 3] = "low", and
s[7 FOR 1] = "" (since s doesn’t have a 7th character).

Example 4.4-1. Substring Examples

A substring cannot be assigned a value, since it is not a variable.

-28 -

The s in "s[el TO/FOR ¢2]" may be a string variable, a string constant, a parenthesized string
expression, or a call to a string procedure. If s is a string constant, and both el and e2 are
integer constant expressions, then the substring is evaluated at compiletime.

4.4.1. "INF"

"INF" may be used anywhere within substring brackets as an integer that represents the length
of the string of which the substring is being taken. See Example 4.4.1-1,

If
s = "brown"
then

s[1 TO INF - 1] = s[l] TO length(s) - 1] = s[1 TO 4] =
"brow". B

Example 4.4.1-1. Use of "INF"

"INF" stands for “infinity". It gives the rightmost character position, no matter what the length
of the string.

"INF" is evaluated at compiletime if the string is a constant. In this case the length returned is |
the same as that that would have been obtained at runtime.
4.5. If Expression

An If Expression provides a choice among several expressions. The form of an If Expression
is:

IF el THEN e2 ELSE e3
where el, €2, and e3 are expressions. If Expressions may be nested, e.g.,
IF el THEN e2

ELSE IF e3 THEN e4
ELSE e5

-29 .

MAINSAIL provides the abbreviations "EF" for "ELSE IF" and "EL" for "ELSE". They allow
alignment of conditions in If Expressions for clarity. Thus, the example above could be written
as: ‘

IF el THEN e2
EF e3 THEN e4
EL e5

In an If Expression, each possible "result expression” following "THEN" is preceded by a
"condition expression” following "IF" or "EF". The condition expressions are evaluated one by
one (starting with the first) until one evaluates to a non-Zero value, Its associated result
expression becomes the value of the If Expression, and no further condition expressions are
evaluated. If all condition expressions evaluate to Zero, the expression after the final "ELSE"
(or "EL") becomes the value of the If Expression. Unselected result expressions are not
evaluated. '

All the result expressions must be "assignment compatible” with one another; i.e., they must
evaluate to the same data type (see Section 4.9 for a definition of assignment compatibility).
For example, if €2 above were an integer expression, then e4 and e5 would also have to be

integer expressions. Conversion procedures (see Section 3.9) may be used to convert an
expression to the proper data type.

The overall data type of the If Expression is the same as that of the result expressions.

The result expressions may be arrays. For purposes of assignment compatibility, the
expression is considered to have the characteristics (type, dimension, bounds, etc.) of the first
result array expression (e2 in the above example). e4 and e5 must be assignment compatible
with e2.

A sample use of anIf Expression used in an Assignment Statement is shown in Example 4.5-1.

var := IF i1 < 0 THEN k
EF 1 = 0 THEN k + 1
EL k * 10

is equivalent to the If Statement
(see Section 5.6):

IF i < 0 THEN var :=
EF i = 0 THEN var :
EL var := k * 10

[
~ ~
+
=

Example 4.5-1. If Expression Used in Assignment Statement

-30-

If Expressions are not evaluated at compiletime.

‘When an If Expression is used as an operand, it must be enclosed in parentheses; see Example
45-2, :

result := a + (IF b > 10 THEN c¢ ELSE d)

CASE i := (IF j THEN k ELSE m) OFB ...

Example 4.5-2. If Expressions Used as Operands

4.6. Assignment Expression

An Assignment Expression assigns a value to a variable and then uses that value as the value of
the expression. The value may be an array. See Example 4.6-1,

IF i := j + 2 THEN s...
is equivalent to

i :=3j + 2; IF i THEN s...

Example 4.6-1. Assignment Expression

An expression that would depend on whether the variable on the left or the expression on the
right of the ":=" is evaluated first is undefined. Thus, "i := 0; a[i] := (i := 2)" may assign to
"a[0]", assign to "a[2]", give an error message, or produce undefined behavior. It is the
programmer’s responsibility to avoid Assignment Expressions that are affected by the order of
evaluation of the variable and the expression.

If the variable assigned to is changed before the assigned value is utilized, the result of the
Assignment Expression is undefined. For example, the results of the expressions "(v :=3) > (v
:=0)" and "(a[i] := 4) > (i := 0)" are undefined. It is the programmer’s responsibility to avoid
undefined expressions.

-31-

4.7. Compiletime Pseudo-Procedures

"DCL", "NEEDBODY", "NEEDANYBODIES", "CHECKING", "$TYPEOF", "$CLASSOF",
and "SISCONSTANT" are compiletime pseudo-procedures used primarily with conditional
compilation. Chapter 14 describes these compiletime pseudo-procedures.

"DSP" is a compiletime pseudo-procedure that returns the offset of a field in a record; see
Section 14.8.

ScompileTimeValue is a compiletime procedure that provides a number of miscellaneous
compiletime values; see Section 1.69 of part II of the "MAINSAIL Language Manual".

4.8. Operators and Operations
Tables 4.8-1 and 4.8-2 summarize the operators that may appear in MAINSAIL expressions.
The second column of each table gives data type information in the general format:

tl, ..., tn -> t

ti gives the allowed data types for the ith operand (the leftmost operand is number one) by
listing the possible data type abbreviations (see Table 1.3-1) for the ith operand, separated by
dashes. t is the data type of the result.

For example, in the "shift right" operation "e1 SHR e2", el is the first operand, "SHR" is the
operator, and e2 is the second operand. From Table 4.8-2, it can be seen that the first operand
must be a (long) bits, the second must be an integer, and the result of "el SHR ¢2" is of the
same data type as the first operand (i.e., a (long) bits).

"n" (standing for "numeric") is an abbreviation for "i-li-r-lr", and "all" is an abbreviation for
"bo-n-b-Ib-s-a-c-p-array”.

If all ti must be the same data type, then only tl is given. For example, in the "test” operation
"el TST e2", the first and second operands (el and €2) must both be the same data type, either
bits or long bits. If the result value t has the same data type as all the operands, then "-> t" is
omitted. For example, in the concatenation operation "el & e2", both operands must be strings
and the result is also a string.

In the tables, "e", "el", and "e2" stand for expressions and "v" for a variable.

The operations shown in the Table 4.8-2 are evaluated at compiletime if all the operands are
evaluated at compiletime, except in the following cases:

-32-

Operation Data Types Description of Result

NOT e all -> bo IF e THEN FALSE ELSE TRUE

(if e is non-2Zero the result
is FALSE, otherwise it is
TRUE)

- e n negation of e

Table 4.8-1. Unary Operations

« Any operands are of type (long) real.
« String comparisons other than "=" and "NEQ".

= String "MIN" and "MAX".

4.8.1. String Comparison

The relational operators ("=", "NEQ", ">", "<", "GEQ", "LEQ") compare strings based on their
lengths and the characters they contain rather than on the contents of their string descriptors.

Two strings are compared according to the following definition:
1. If both strings are the null string, they are equal.
2. If one string is null and the other is not, then the non-null string is greater.

3. If both strings are non-null, and their first characters differ, then the string with the
numerically greater first character code is greater.

4. If both strings are non-null, and their first characters are the same, then their

comparison is the same as the comparison of the strings with the first character of
each removed.

Because the uppercase and lowercase letters are alphabetically ordered (see Section 2.1), this
algorithm produces an alphabetical ordering for strings that are either all uppercase or all
lowercase; e.g., "ABC" is less than "ABD" or "ABCD". Strings with the same length and
sequence of characters are equal. The null string is less than any other string.

-33-

Operation Data Types

el

el

el

el

el

el

el

el

el

= e . all

OR e2 all,all -> bo
AND e2 all,all -> bo.
= e2 all -> bo

NEQ e2 all -> bo

< e2 n-s-a-c -> bo
LEQ e2 n-s-a-c -> bo
> e2 n-s-a-¢ =-> bo
GEQ e2 n-s-a-c -> bo

TST e2 b-1b -> bo

D iotd £ Resul

Assign e to v. The result is
the value assigned. See
Section 4.6. e and v

must be assignment compatible
(see Section 4.9).

IF el THEN TRUE

EF e2 THEN TRUE

EL FALSE

(e2 is evaluated only if el is
FALSE)

IF NOT el THEN FALSE

EF e2 THEN TRUE

EL FALSE

(e2 is evaluated only if el is
TRUE)

TRUE if el is equal to e2.
TRUE if el is not equal to e2.

TRUE if el is less than e2.
See Section 4.8.1
regarding string comparsions.

TRUE if el is less than or
equal to e2.

TRUE if el is greater than e2.
See Section 4.8.1
regarding string comparsions.

TRUE if el is greater than or
equal to e2.

TRUE if any 1l-bit in e2 is a
1-bit in el. Same as (el MSK
e2) NEQ ’0. TST stands for
"test"™.

Table 4.8-2. Binary Operations (continued)

-34-

el

el

el

el

el

el

el

el

el

el

el

el

NTST e2

TSTA e2

NTSTA e2

MIN e2

MAX e2

+ e2

- e2

IOR e2

XOR e2

MSK e2

CLR e2

b-1b ->

b-1lb ->

b-1b ->

n-s-a—-c¢

n-s-a-c

b-1b

b-1b

bo

bo

bo

TRUE if no 1l-bit in e2 is a
1-bit in el. Same as NOT (el
TST e2). NTST stands for "not
test™.

TRUE if all 1-bits in e2 are
l1-bits in el. Same as (el MSK
e2) = e2. TSTA stands for
"test all".

TRUE if not all 1l-bits in e2
are 1l-bits in el. Same as NOT
(el TSTA e2). NTSTA stands
for "not test all".

Minimum of el and e2.
Maximum of el and e2.
Sum of el and e2.
Difference of el and e2.

"Inclusive or" of el and e2.
See Section 4.8.2.

"Exclusive or" of el and e2.
See Section 4.8.2.

"Mask" el with e2; i.e., clear
any bits in el that are

0-bits in e2. See

Section 4.8.2.

"Clear" e2 from el, i.e.,
clear any bits in el that are
l-bits in e2. See '
Section 4.8.2.

Same as el IOR e2, except has
higher priority (see
Section 4.8.4).

Table 4.8-2. Binary Operations (continued)

-35.-

el * e2
el / e2

el DIV e2

el MOD e2

el SHL e2

el SHR e2

el & e2

i-1i

b,i -> b
1b,i -> 1b

b,i -> b
1b,i -> 1b

Product of el and e2.
Quotient (real) of el and e2.

Quotient (integer) of el and
e2. The remainder is
discarded. Undefined if el
is negative or e2 is not
positive.

Remainder of el divided by e2.
Same as el - e2 * (el DIV e2).
Undefined if el is negative or
e2 is not positive. MOD
stands for modulus, another
name for remainder.

el shifted left by e2 bits;
leftmost €2 bits are lost.
0-bits are brought in from the
right. Undefined if e2 < 0 or
GEQ the number of bits in the
data type of el. At
compiletime, an error may
occur if a 1-bit is lost at
the left (this is subject to
change) .

el shifted right by e2 bits.
0-bits are brought in from the
left. Undefined if e2 < 0 or
GEQ the number of bits in the
data type of el.

el concatenated with e2; the
string consisting of the
characters of el immediately
followed by the characters of
e2,

Table 4.8-2. Binary Operations (continued)

-36 -

el ~ e2 i,i -> i el raised to the power e2. If

li,i-> 1i el is an integer or long

r,i ->r integer, undefined if e2 is
lr,i => 1r negative. If e2 is not a

r,r =>r positive integer, undefined if
lr,r -> 1r el negative. Undefined if el

and e2 both zero.

Table 4.8-2. Binary Operations (end)

Strings of mixed case may be compared in a "caseless” comparison by means of the upperCase
option to the system procedure compare or equ.

4.8.2. Bitwise Operations

"IOR", "XOR", "MSK", and "CLR" perform bitwise operations on (long) bits.

Let a be a (long) bits value, and ai denote the ith bit of a; similarly for b, bi and ¢, ci. In the
computation "¢ := a op b", ci is related to ai and bi as shown in Example 4.8.2-1.

ci

Example 4.8.2-1. Bitwise Operations

In words:
« "aJOR b" has a 1-bit only where either a or b has a 1-bit.
* "a XOR b" has a 1-bit only where exactly one of a or b has a 1-bit.

» "a MSK b" has a 1-bit only where both a and b have 1-bits.

-37-

« "a CLR b" has a 1-bit only where a has a 1-bit and b does not.

4.8.3. Comparison Chains
A comparison chain is a sequence of the form:
el opl e2 op2 e3 op3 ... en-1 opn en

where the ei are expressions and the opi any of the operators in Table 4.8.3-1. Sucha
comparison chain is equivalent to the expanded form:

(el opl e2) AND (e2 op2 e3) AND (e3 op3 ...)
{en-1 opn en)

except that the intermediate ¢i (i.e., the ei other than el and en) are evaluated just once.

= NEQ < LEQ >
GEQ TST TSTA NTST NTSTA

Table 4.8.3-1. Operators Permitted in Comparison Chains

A chain may be composed of any combination of data types and operators, provided that the
expanded form is valid. The chain is effectively enclosed in parentheses, with AND’s inserted
at the "shared" expressions. Thus, "NOT el =2 TST 3" is equivalent to "NOT ((el = ¢2)
AND (e2 TST e3))", except that e2 is evaluated once.

Consistent with the evaluation of AND, only as many ei are evaluated as necessary to
determine the value of "el op1 e2 op2 €3 ...". For example, in "el < e2 = e3", e3 is evaluated

only if "el < 2" is true (otherwise the entire expression is false, so there is no reason to
proceed any further).

A comparison chain is undefined if its expanded form is undefined; e.g., "1 > v> (v:=2)"is
undefined since "v > (v := 2)" is undefined.

4.8.4. Operator Precedence

Table 4.8.4-1 shows the precedence of the operators. Operators on the same line have equal
precedence.

-38 -

OR (least precedence -- least binding)
AND
NOT

= NEQ < LEQ > GEQ TST NTST TSTA NTSTA

MIN MAX
+ - (binary) IOR XOR MSK CLR
* [/ & DIV MOD SHL SHR

] ~
.

- (unary) (most precedence -- most binding)

Table 4.8.4-1. Precedence of Operators

Operators of equal precedence are associated from left to right; e.g., "a + b + ¢" is equivalent to
"(a+b) + c", with two exceptions:

1. Assignments are associated right to left, so that "a := b :=¢" is associated as "a := (b
=c)".

2. Comparison chains are associated as described in Section 4.8.3. For example,"a<b
< c" is associated as "a <b AND b < ¢" rather than "(a<b)<c"or"a<(b<c)."

No exception is made for "A" (exponentiation), as in some other programming languages; i.e.,
"aAbAc"isequivalentto "(aAb)Ac", not"aA (bAc)".

Since the order of evaluation of the operands of an operator is usually not specified, the
programmer must be careful to avoid expressions that could depend on the order of evaluation.
For example, in "p(a) + q(b)", where p and q are procedures, it is not specified which of p and q
is called first. If it is important that p be called first, then a separate statement must be used to
force the evaluation order, e.g., "t := p(a); ... t + q(b)".

The precedence of the assignment operator is illustrated in Example 4.8.4-2. The precedence
of the assignment operator is slightly different in expressions and Assignment Statements.

The order in which subexpressions of an expression are evaluated may be explicitly specified
with parentheses. The expression enclosed in the innermost set of parentheses is evaluated
first. For example, in "((a + b) * ¢)", "a + b" is evaluated, then its result multiplied by c.

Parentheses may enclose any MAINSAIL expression, whether or not they are required in order

to change the operator precedence that would prevail in the absence of parentheses. Redundant
parentheses may be used to make source code easier to read.

-39-

IF v := el OR e2 THEN ...
is equivalent to:

IF (v := el) OR e2 THEN ..
NOT equivalent to:

IF v := (el OR e2) THEN ...
But the statement:

v := el OR e2;
is equivalent to:

v := (el OR e2);

Example 4.8.4-2. Precedence of the Assignment Operator in Expressions and Statements

4.8.5. Dotted Operators

Most operators may be preceded by a dot (".") to indicate that the value computed by the
operator is to be assigned to the leftmost operand of the "dotted operator”. The leftmost
operand of the operator must be a variable. The result of the operation is the same as for the
corresponding non-dotted operator.

The expression "v .op ", (where "v" is a variable, "op" is one of the binary operators that may
be dotted, "e" is an expression, and "v := v op e" is well defined) is equivalent to the
Assignment Expression "v := v op e", except that:
1. ".op" has the same precedence as "op".
2. If v is a non-simple variable (i.e., a subscripted or field variable), then the location of
v within its data structure is evaluated just once. The evaluation of v and e must not
affect this calculation; otherwise, the effects are undefined.

".- v" is a short form of "v := - v", except that if v is a non-simple variable, then the location of
v within its data structure is evaluated just once.

See Example 4.8.5-1.

-40 -

If i, j, and k are simple variables, a is a
one-dimensional integer array, and proc is an
integer procedure, then:

i +1 is equivalent to i :=41i + 1
- i is equivalent to i := - i
i+ 3 *k is equivalent to 1 :=1i + j * k
a[proc] .+ i is equivalent to j := proc; al[j] := alj] + i

since proc is called just once.

All operators more binding than the assignment
operator (see Section 4.8.4) may be dotted:

MIN MAX

+ - (binary) IOR XOR MSK CLR
* / & DIV MOD SHL SHR
] A

- (unary)

Example 4.8.5-1. Dotted Operators

A dotted operator has the same precedence as its corfesponding non-dotted operator. An
expression "v .op e" containing a dotted operator is undefined if e contains an operator that is
evaluated after op; e.g., "a .* b + c" is undefined, since "+" has a lower precedence than "*".

An expression containing a dotted operator is undefined if its equivalent Assignment
Expression is undefined; e.g., "(v .+ 5) = (v := 2)" is undefined. Itis the programmer’s
responsiblity to avoid the use of such expressions.

Dotted operators can be used in Expression Statements (Section 5.2).

4.8.6. Garbage Collection

A garbage collection may occur during the concatenation operation ("&" or ".&"). It may also
occur during exponentiation operation ("A" or ".A") if the exponent is a real (but not if it is an
integer). Other operators cannot trigger garbage collections unless an exception occurs. An
exception may occur if an operation overflows or a division by zero is attempted, provided that
MAINSALIL intercepts the exception; see the appropriate operating-system-specific user’s guide
for details,

-41-

Other MAINSAIL language constructs that may trigger collections are the Init Statement and
many system procedures; see Chapter 1 of part II of the "MAINSAIL Language Manual",

4.9. Assignment Compatibility

Two expressions are said to be "assignment compatible” if the following conditions are
satisfied:

1. The expressions must be of same data type.

2. If either is an array, then both must be arrays. If both arrays are typed, then they
must be of the same data type. If both arrays have dimensions, then they must have
the same number of dimensions. If both are pointer arrays, then the pointer classes
must be "related" as described in Section 8.9. If corresponding array bounds are
declared as constants, they must be the same constant. The rules of Section 7.7 must
be obeyed when one array is short and one long.

3. If either is a module, then both must be modules.

4, If either is a class, then both must be classes.

5. If the expressions are modules, classified pointers, or classified addresses, their
classes must be "related” as explained in Section 8.9.

-42-

5. Statements

A statement performs an action or directs the flow of control. This chapter describes eleven of
the thirteen MAINSAIL statements: Assignment, Expression, Procedure, Return, Begin, If,
Case, Iterative, Done, Continue, and Empty. The other two statements are the Init Statement
for initializing arrays (see Section 7.4) and the Handle Statement for handling exceptions (see
Chapter 16).

Semicolons are used to separate (rather than terminate) statements.

5.1. Assignment Statement

An Assignment Statement gives a value to a variable. The form of an Assignment Statement is
"v := ¢" where "v" is a variable, "e" is an expression, and ":=" is the assignment operator. The
value of the expression e is assigned to the variable v. For example, "i := 8" is an Assignment
Statement that assigns the value 8 to the variable i.

"_" (the underbar or left axfow character) may be used in place of ":=".
v and e must be "assignment compatible” as explained in Section 4.9.

The order of evaluation of v and e is not defined, so avoid Assignment Statements for which the -
order might make a difference. For example:

i :=0; afi] =1 .+ 1
could assign the value 1 to either "a[0]" or "a[1]", since the value of i is changed to 1 by "i .+
1", but it is not defined which value of i (the one before or after the change) is used to evaluate
"a[i]". It is the programmer’s responsiblity to avoid such undefined Assignment Statements.

The precedence of the assignment operator is slightly different in expressions and Assignment
Statements; see Example 4.8.4-2.

5.2. Expression Statement
An Expression Statement is a dotted expression used as a statement (see Section 4.8.5). It
computes a value and assigns that value to the leftmost operand, which must be a variable. In

Table 5.2-1, "v" is a variable, "op" is one of the operators that may be dotted (see Section
4.8.5), and "e" is an expression.

-43 -

v .op e has the same effect as vV := VvV op e
- v has the same effect as v = -V

Table 5.2-1. Expression Statement Format

An Expression Statement is undefined if the expression composing it is undefined; see Section
485.

Assume i and j are simple variables.

Statement Effect

.~ ali} Negate a[i]. More efficient than a[i] :=
- a[i].
i +3*2 Same as i =i + j * 2.

i .+ 3 .2 same as i :=4i + (J =3 * 2),

Example 5.2-2. Examples of Expression Statements

5.3. Procedure Statement

A Procedure Statement is a procedure call (see Section 9.2). It invokes execution of the body
of the called procedure. Procedures are described in Chapter 9.

A procedure used as a statement may be either typed or untyped; if typed, its value is discarded.
A procedure used in an expression must be a typed procedure (see Section 9.3); its return value
is used in the expression.

For example, the system procedure cRead is an integer procedure that returns the character
code (see Section 2.1) of the first character of its string argument, and removes that character
from the string. A sample call to cRead in an expression is:

i := cRead(s)

which removes the first character from s and puts its code into i. If it is desired to remove the
first character from s without recording its value, then a Procedure Statement may be used:

-44 -

cRead (s)

5.4. Return Statement
A Return Statement returns from a procedure (see Chapter 9). The format is:
RETURN
for an untyped procedure (see Section 9.3), or:
RETURN (e)

for a typed procedure, where the value of the expression e is returned as the value of the
procedure.

A Return Statement is not necessary in untyped procedures (Section 9.3); an untyped procedure
automatically returns upon completion of the execution of the procedure body. However, a
Return Statement can be used in an untyped procedure to provide a convenient "early return”,
much as the Done Statement (see Section 5.9) provides termination of an Iterative Statement
(see Section 5.8). A Return Statement is necessary in typed procedures, since it provides the
mechanism for returning a value. A runtime error occurs if a typed procedure reaches its final
"END" without the execution of some "RETURN(e)".

The expression returned as the value of a typed procedure must be assignment compatible (see
Section 4.9) with the data type of the procedure. '

Example 5.4-1 shows typed and untyped procedures with Return Statements,

5.5. Begin Statement
A Begin Statement allows a group of statements to be treated as a single statement.

The format of a Begin Statement is the word "BEGIN" followed by a sequence of statements
(separated with semicolons) followed by the word "END™:

BEGIN sl1l; ...; sn END

A string constant may follow "BEGIN" to give a name to the Begin Statement, in which case
the same string constant must also follow the "END":

BEGIN "name"™ sl; ...; sn END "name"

-45-

An untyped procedure with a Return Statement:

PROCEDURE p;

BEGIN

INTEGER i;

IF i > 0 THEN RETURN;

END

A typed procedure with Return Statements:
INTEGER PROCEDURE p;
BEGIN
INTEGER i, j;
IF 1 > 0 THEN RETURN(O0);

RETURN (j) END

Example 5.4-1. Examples of Return Statements

The compiler issues a warning if it finds different string constants (ignoring upper and lower
case distinctions) after a "BEGIN" and its matching "END". This check helps catch
mismatched "BEGIN"-"END" pairs.

Declarations are not allowed in Begin Statements.

5.6. If Statement

An If Statement selects one of several statements for execution depending on the values of
specified expressions.

The simplest form of If Statement is "IF e THEN s" where "e" is an expression and "s" is a
statement. s can be a Begin Statement, that is, a list of statements enclosed in a "BEGIN"-
"END" pair. If e evaluates to a non-Zero value, the statement s is executed. For example, "IF i
THEN j := 2" assigns j the value 2 if and only if i is not zero. Similarly, "IFi =1 THEN j :=2"
assigns j the value 2 if and only if i is equal to one (for in that case the expression "i = 1" is
true, which is the boolean non-Zero).

-46 -

The other form of If Statement is "IF e THEN s1 ELSE s2". If e evaluates to a non-Zero value,
then s1 is executed. Otherwise (if e evaluates to Zero), s2 is executed. For example, the
statement "IF i = 1 THEN j := 2 ELSE k := 3" assigns j the value 2 if i has the value one, in
which case the statement "k := 3" is not executed. Otherwise (if i does not equal one), k is
assigned the value 3, and the statement "j := 2" is not executed.

Any statement in an If Statement can be an If Statement. Thus, an If Statement may look as
shown in Example 5.6-1.

IF el THEN sl
ELSE IF e2 THEN s2
ELSE IF e3 THEN s3
ELSE s4

The expressions el, e2, and e3 are evaluated one by one
until one of them evaluates to a non-Zero value; its
associated statement (sl, s2, or s3, respectively) is then
executed, and no further expressions are evaluated. If
all the expressions evaluate to Zero, the statement
following the final "ELSE" (s4) is executed.

Example 5.6-1. If Statement within an If Statement

MAINSAIL provides the abbreviations "EF" for "ELSE IF", "EL" for "ELSE", "EB" for
"ELSE BEGIN", and "THENB" for "THEN BEGIN". The first three abbreviations allow
alignment of conditions in If Statements for clarity, as in Example 5.6-2.

IF el THEN sl
EF e2 THEN s2
EF e3 THEN s3
EL s4

Example 5.6-2. Abbreviations Used in If Statements

There is never a semicolon before an "ELSE", since semicolons are used to separate statements,
and "ELSE" is not the beginning of a statement.

-47 -

An "ELSE" ("EL") or "EF" is matched with the innermost unmatched "IF" or "EF". In the
following statement, the "ELSE" is matched with the second "IF", and the "EL" is matched
with the first "IF":

IF el THEN
IF e2 THEN sl ELSE s2
EL ...

If there were no "ELSE s2" above, the "EL" would instead be matched with the second "IF". A
Begin Statement could be used as shown below to match the "EL" with the first "IF":

IF el THEN
BEGIN IF e2 THEN sl END
EL ...

This might also be written as follows, using "THENB":

IF el THENB IF e2 THEN sl END
EL ...

5.7. Case Statement

A Case Statement uses an integer index to select one of several statements for execution. The
simplest form of a Case Statement is shown in Example 5.7-1, where e (the index) is an integer
expression, the si are statements and the ci (the selectors) are integer constant expressions. A
semicolon separates a statement from the bracketed selector for the next statement, A
semicolon may appear between the last statement sn and the "END", but it is not necessary.

CASE e OF BEGIN

[cl] sl;

[c2] s2;

[cn] sn # semicolon optional here
END

Example 5.7-1. Sample Case Statement

Each statement is preceded by one or more selectors that specify what values of the index are to
select that statement. A statement is selected if any of its selectors is satisfied. There are three
forms for the selectors (Example 5.7-1 shows only the simplest form of selector); see Example
5.7-2.

.48 -

Selector Coxxesponding Statement Is Selected If
[c] index = c.

[cl TO c2] cl LEQ index LEQ c2; i.e., the index is
between cl and c2. The compiler gives an
error message if cl exceeds c2.

[1] no other statement would otherwise be
selected (catch-all selector).

Example 5.7-2. Three Forms for Selectors

The Case Statement shown in Examplé 5.7-1 has the same effect as (but is usually more
efficient than) the Assignment and If Statements in Example 5.7-3.

t := e; # t is an integer variable
IF t = ¢l THEN sl
EF t = c2 THEN 82
EF t = cn THEN sn

Example 5.7-3. Less Efficient Form Equivalent to a Case Statement

MAINSAIL provides the abbreviation "OFB" for "OF BEGIN". A string constant may follow
the "BEGIN" (or "OFB"), in which case the same string constant must also follow the "END".
The compiler issues a warning if these string constants do not match (ignoring upper and lower
case distinctions). This check helps catch mismatched "BEGIN"-"END" pairs, just as for the
Begin Statement (see Section 5.5).

The first statement with a satisfied selector is selected for execution. This is illustrated in
Example 5.7-4.

A runtime error occurs if the index selects no statement and there is no "[]" catch-all selector.
A runtime error would result if num had the value 9 in the Case Statement "ex1" in Example
5.7-4. All expected values of the index must be specified in some selector, which can be the
catch-all selector "[]". An Empty Statement can be used for those cases in which no action

-49 -

CASE num OFB "ex1l"

[3] sl;

[1 TO 7] 82; 8l (and not s82) is executed
[8] ' s3 when num has the value 3.
END "exl1"

CASE num OFB "ex2"

[1 TO 7] sl;

[3] s2; s2 could never be selected

[8] s3 since num = 3 would select sl.
END "ex2"

Example 5.7-4. Choice of a Selector

should be taken. If "ex1" should do nothing whenever num has a value outside of the range 1
through 8, for example, it could be written as shown in Example 5.7-5.

CASE num OFB

[3] sl;

{1 T0 7] 82;

(81 s3;

{] # catch-all selector: do nothing
END

Example 5.7-5. Use of an Empty Statement in a Case Statement

There can be no more than one catch-all selector in a Case Statement; the catch-all selector
matches the same values no matter where it is placed in the Case Statement.

For each Case Statement, the compiler creates a branch table with m entries, where m =
<maximum ci> - <minimum ci> + 1 (where ci ranges over all the selector bounds). If m is
much greater than the number of cases with specified statements (that is, if the cases are spread
sparsely over a wide range), the table results in a significant space overhead. The Case
Statement shown in Example 5.7-6 would produce a table with 3000 entries. In this case, it
would be better to use an If Statement.

-50 -

CASE num OFB

[1] [20] j = 3;

[980] k := 8;

[3000] BEGIN j := 7; k := 9 END
END

Example 5.7-6. Inefficient Case Statement

5.8. Iterative Statement

An Iterative Statement specifies a statement that is to be repeatedly executed until some
condition terminates the iteration. The form of an Iterative Statement is shown in Table 5.8-1,
where i is a simple local (long) integer variable, el and e2 are (long) integer expressions, €3
and e4 are any expressions, s is any statement, and "UPTO" may be replaced with
"DOWNTO". i, el, and e2 must all be of the same data type, either integer or long integer.

FOR i := el UPTO e2 WHILE e3 DO s DNTIL e4d
(FOR-clause) (WHILE-clause) (UNTIL-clause)

Table 5.8-1. Form of Iterative Statement

The FOR-clause, WHILE-clause, and UNTIL-clause are optional clauses surrounding the
required part "DO s". Thus, there are eight possible forms (ignoring the distinction between
"UPTO" and "DOWNTO") depending on whether each clause is included or not, as shown in
Example 5.8-2.

"DO s" alone repeatedly executes s until something in s terminates the Iterative Statement, such
a Done Statement (see Section 5.9), a Return Statement (see Section 5.4), or an exception (see
Chapter 16). The other forms are explained in Table 5.8-3. To get the equivalent forms for
"DOWNTO", replace "LEQ" with "GEQ", ".+" with ".-" and "UPTO" with "DOWNTO" on the
righthand side of Table 5.8-3.

"DOB" is equivalent to "DO BEGIN".

In accordance with Table 5.8-3, the second expression (¢2) in a FOR-clause is evaluated just
once, before the iterations begin. Furthermore, the use of the largest (long) integer as €2 in an

-51-

DO s

DO s UNTIL e4

WHILE e3 DO s

WHILE e3 DO s UNTIL e4

FOR := el UPTO e2 DO s

FOR := el UPTO e2 DO s UNTIL e4

FOR := el UPTO e2 WHILE e3 DO s

FOR := el UPTO e2 WHILE e3 DO s UNTIL e4

T

Example 5.8-2. Eight Possible Forms

Form Equivalent Form

DO s UNTIL e4 DOB s8; IF e4 THEN DONE END

WHILE e3 DO s DOB IF NOT e3 THEN DONE; s END

WHILE e3 DO s UNTIL e4 WHILE e3 DOB

s; IF e4 THEN DONE END

FOR i1 := el UPTO e2 DO s i::=el; t := e2;
WHILE i LEQ t DOB

s; i .+ 1(L) END

UNTIL e4d s; IF e4 THEN DONE END

FOR i := el UPTO e2
WHILE e3 DO s

FOR i := el UPTO e2 DOB
IF NOT e3 THEN DONE; s END

FOR i1 := el UPTO e2
WHILE e3 DO 8 UNTIL e4d

FOR i := el UPTO e2 WHILE e3
DOB s; IF e4 THEN DONE END

|
|
|
I
|
|
I
I
I
|
|
FOR i := el UPTO e2 DO s | FOR i := el UPTO e2 DOB
|
|
I
|
|
|
|
+

Table 5.8-3. Explanation of Forms

"UPTO" FOR-clause or of the most negative (long) integer in a "DOWNTO" FOR-clause is
undefined. Such forms may result in (possibly undetected) arithmetic overflow.

-52-

In accordance with Table 5.8-3, the value of the iterative variable after the Iterative Statement
terminates is one greater (for "UPTO") or one less (for "DOWNTO") than €2, unless the
Iterative Statement is terminated early (e.g., by means of a Done Statement), or unless the
iterative variable is explicitly modified within the loop.

FOR-clause increments or decrements other than 1 or 1L are not provided. To get the effect of
some other increment e, use the equivalent form shown above with ".+ e" in place of ".+ 1(L)",
where e is the desired increment.

A sample Iterative Statement with a FOR-clause is shown in Example 5.8-4.

FOR i := 1 UPTO 3 DO
ttyWrite("i is ",i,"; i squared is ",i * i,"." & eol)

writes to primary output:

is 1; i squared is 1.

is 2; i squared is 4.
is 3; i squared is 9.

(TR

Example 5.8-4, Sample Iterative Statement

A string constant may follow "DO" to give a name to the Iterative Statement. This name may
then be used in a Done Statement (see Section 5.9) or a Continue Statement (see Section 5.10)
within s. If an Iterative Statement is not given a name in this manner, but s (the iterated
statement) is a named Begin Statement or Case Statement, then s’s name is used as the name of
the Iterative Statement.

An "UNTIL" is matched with the innermost unmatched "DO". In the following, the "UNTIL"
in "UNTIL el" is matched with the "DO" in "DO s1", and the last "UNTIL" is matched with
the first "DO™:

DO
DO sl UNTIL el
UNTIL ...

If there were no "UNTIL el" above, a Begin Statement (see Section 5.5) could be used as
shown below to match "UNTIL ..." with the first "DO™:

DOB

DO sl END
UNTIL ...

-53-

5.9. Done Statement

A Done Statement terminates an Iterative Statement and must occur within an Iterative
Statement. The form of a Done Statement is:

DONE

which terminates the innermost enclosing Iterative Statement, regardless of its name (if any),
or:

DONE ¢
which terminates the innermost Iterative Statement with name ¢ (see Section 5.8), where c is a

string constant expression. To terminate an Iterative Statement means that the iterations are
stopped, and execution continues with the statement following the Iterative Statement (if any).

sum := 0;

DOB ttyWrite("Next integer (type 0 to stop): "):
IF NOT t := cvi(ttyRead) THEN DONE;
sum .+ t END;

ttyWrite (*The sum is ", sum,eol)

Example 5.9-1. Sample Use of "DONE"

A sample use of "DONE" is shown in Example 5.9-1. This Iterative Statement keeps typing
"Next integer (type 0 to stop):" to the terminal, adding all the numbers input from the terminal.
When the end of the list is signified by an input of "0", the Done Statement terminates the
Iterative Statement, and the sum is written to the terminal.

5.10. Continue Statement

A Continue Statement "continues" an Iterative Statement. This means that the current iteration
is stopped as if the statement being iterated had completed, and then the usual increments,
decrements and tests are applied prior to the next iteration (if any). For example, if the Iterative
Statement has an UNTIL-clause, execution continues with the UNTIL-clause test (which may
or may not terminate the Iterative Statement).

-54 -

The form of a Continue Statement is:
CONTINUE
which continues the innermost enclosing Iterative Statement, regardless of its name (if any), or:
CONTINUE c

which continues the innermost Iterative Statement with name c, where ¢ is a string constant
expression.

An Iterative Statement with a "CONTINUE" in it can look like the one in Example 5.10-1,
where s1 and s2 are statements and e is an expression. Whenever the If Statement finds e to be
non-Zero, the current iteration terminates (s2 is not executed) and a new iteration is begun.

DOB sl; IF e THEN CONTINUE; s2 END

Example 5.10-1, Iterative Statement with a Continue Statement

The If Statement may be a more convenient means of controlling execution than the Continue
Statement; for example, the Iterative Statement with a Continue Statement of Example 5.10-1
could also be written as in Example 5.10-2.

DOB sl; IF NOT e THEN s2 END

Example 5.10-2. Iterative Statement with If Statement instead of a Continue Statement

5.11. Empty Statement

The Empty Statement consists of nothing at all.

An Empty Statement is allowed wherever any statement may occur.

For example, a semicolon between the final statement and the "END" of a Begin Statement is
not required, since semicolons are used to separate statements, not to terminate them.

Nevertheless, a semicolon is accepted there by the compiler; the semicolon indicates that an
Empty Statement follows the semicolon. Therefore:

-55-

has the same effect as:

The Empty Statement can also be used, for example, for those cases in which no action is to be
taken in a Case Statement, as in Example 5.11-1, in which an Empty Statement follows the "[1"

catch-all selector.

BEGIN sl; s2; s3; END

BEGIN sl; s2; s3 END

CASE i OFB
(0]
[1 TO 4]
[5]
(1
END

j o= 1i;
BEGIN j := i + k; k .MAX i END;
j = (i + k) DIV 3;

Empty Statement: do nothing

Example 5.11-1. Example of an Empty Statement

-56-

6. Declarations

A declaration presents an identifier to the compiler so that the compiler recognizes the identifier
until it reaches the end of the scope of the declaration. A declaration associates with an
identifier attributes such as its data type, structure (e.g., array or class), and/or qualifiers that
govern its use. All identifiers must be declared before they are referenced, except that class
identifiers may be referenced before they are declared under certain circumstances.

The attributes supplied by a declaration do not change; unless the identifier is redeclared, they
are associated with the identifier for the remainder of the compilation, and they may not be
changed at runtime, '

Things that may be declared are simple variables, array variables, procedures, classes, and
modules. Any declaration may occur as an "outer declaration”, i.e., a declaration between the
initial "BEGIN" and final "END" of a module outside of any procedure within the module. In
addition, simple variables and array variables may be declared within a procedure after the
initial "BEGIN" of a procedure and before the first statement in the procedure; such
declarations are called "local declarations"”, since they are local to the procedure.

Macros are considered to be "defined” rather than declared. A macro definition both declares
the macro identifier to the compiler and gives it a value. Macro definitions may appear where
ordinary declarations may not, See Chapter 13 for a complete discussion of macros.

Declarations are separated from one another with semicolons. A declaration followed bya
statement in a procedure body (see Section 9.1) is separated from the statement with a
semicolon. See Example 6-1.

An empty declaration consists of nothing at all and may occur wherever other declarations may
occur. Empty declarations permit extra semicolons to appear in program text to make it easier
to read. :

This chapter describes simple variable declarations, the scope of identifiers, and qualifiers that
may be used in declarations to provide additional information about the entities being declared.
Array declarations are described in Section 7.1, procedure declarations in Section 9.1, class
declarations in Section 8.2, and module declarations in Section 10.2.

-57-

BEGIN "modNam"

<class declaration>; # outer declaration

; # empty declaration

PROCEDURE p; # (outer) procedure declaration
BEGIN

<variable declaration>; # local variable

a class, module, or procedure declaration is illegal
here inside the procedure

<statements of procedure body>

the scope of the local declarations for p ends here
END;

<module declaration>; # outer declaration

<class declaration>; # outer declaration

<procedure declaration>; # procedure declaration; may
contain local declarations

<variable declaration>; # outer declaration
<procedure declaration> # outer declaration

END "modNam"

Example 6-1. Where Declarations May Occur

6.1. Scope of Identifiers

A module’s "outer declarations” associate each declared identifier with an entity (variable,

procedure, class, or module) that can be accessed throughout the rest of the module. Variables

declared among a module’s outer declarations are referred to as "outer variables”.

Each entity declared in an outer declaration must have a unique name among all entities
declared in outer declarations in the same module,

-58 -

An entity declared with an identifier v inside a procedure cannot be accessed outside the
procedure. Such an entity is said to be "local” to the procedure, and variables declared locally
are called "local variables”. If the identifier v is also declared in the outer declarations, the v
accessed within the procedure is the one declared in the procedure. When the end of the
procedure body occurs, all locally declared entities such as v "disappear”, and if v had been
declared in the outer declarations, the outer v is once again visible throughout the rest of the
module.

Each entity declared in a local declaration must have a unique name within the procedure.

6.2. Simple Variable Declarations

A simple variable declaration declares one or more variables. The values of the variables may
be used during program execution as governed by their data type. The general form of a simple
declaration is:

type vl, ..., vn

where the vi are identifiers, and type is "BOOLEAN", "INTEGER", "LONG INTEGER",
"REAL", "LONG REAL", "BITS", "LONG BITS", "STRING", "POINTER", "ADDRESS", or
"CHARADR". "ADDRESS" and "POINTER" may be followed by a parenthesized class name
as described in Section 8.4.

For example, "INTEGER i,t,num" declares three variables (i, t, and num) that may be assigned
integer values.

The qualifier "OWN" may precede a variable declaration, in which case the effect is as
described in Section 6.4,

6.3. Qualifiers

A qualifier is used in a declaration to provide additional information about the entity being
declared.

If any qualifiers are used in a declaration, they precede all other parts of the declaration. When
more than one qualifier is used, the order of the qualifiers themselves is unimportant.

The "OWN" qualifier (described below) may be used only in simple variable and array
declarations.

The following qualifiers may be used only in procedure declarations: "FORWARD",

"INITIAL", "FINAL", "GENERIC", "COMPILETIME", "INLINE", "SPECIAL", and
"$ALWAYS". They are described in Section 9.8.

-59-

The following qualifiers may be used only in procedure parameter declarations: "USES",
"PRODUCES", "MODIFIES", "OPTIONAL", and "REPEATABLE". They are described in
Section 9.5.

6.4. "OWN" Qualifier

An "own variable" is a variable of which the value is retained until the data section of the
module in which it is declared is deallocated (see Section 10.6). All outer variables are
therefore own variables. The values of local variables declared without the "OWN" qualifier
are lost when the associated invocation of the procedure in which they are declared is
terminated. '

A local variable declared with the "OWN" qualifier retains its value from execution to
execution of the procedure, like an outer variable, but its identifier may not be used in the

source text outside the procedure in which it is declared. Such local variables are referred to as
"local own variables”.

Own variables are initialized to Zero when the data section they are in is allocated. Local
variables are not automatically initialized; use of their values before they are explicitly
initialized has undefined effects.

PROCEDURE p;
BEGIN

OWN INTEGER n;
n .+ 1;

END

Example 6.4-1. Sample Use of a Local Own Variable

In Example 6.4-1, n counts how many times the procedure p has been called. If n’s declaration
were not qualified with "OWN?", its value would be lost whenever the procedure was exited. n
could have been declared outside the procedure, but that would obscure the fact that it is used
only within the procedure.

Declaring an outer variable with the "OWN" qualifier is legal but has no effect on the way the
variable is treated.

7. Arrays
An array is a collection of values, or "elements”, all of the same data type, wliich are accessed
by subscripts (described below).

MAINSAIL arrays differ from similar data structures in many other languages in that they must
be explicitly allocated at runtime, as described in Section 7.2.

7.1. Array Declarations
The form of an array declaration is:
type ARRAY (11l TO ul, ..., 1lm TO um) vl, ..., vn

or:

type LONG ARRAY (11 TO ul, ..., lm TO um) vl, ..., vn
. where type is the data type of the arrays, li and ui specify the lower and upper bounds,
respectively, of the ith dimension, and the vi are the identifiers of the arrays being declared.
The first form above declares a "short array”, the second a "long array".
Each li or ui is either a (long) integer constant expression, with li less than or equal to ui, or an
asterisk ("*"). li and ui must be integers, not long integers, if the array is a short array. If one
is a long integer, both must be long integers. The asterisk indicates that the bound is not known
at the point of declaration. A single "*" may be used in place of "* TO *",
The data type and/or the parenthesized bounds list rhay be omitted from the array declaration,
in which case the array cannot be used for element access. Such a "typeless” or
"dimensionless" array may be passed as a parameter (see Section 9.7) or be assigned to or
compared with some other array (see Sections 7.7 and 7.8).
MAINSAIL supports arrays of up to three dimensions. The number of dimensions is the
number of "bound pairs” specified in parentheses after the word "ARRAY™ in the array
declaration.

"NULLARRAY" specifies the Zero array. Itis typeless and dimensionless.

-61 -

7.2. Array Allocation

It is the programmer’s responsibility to allocate an array before an attempt is made to access its
elements. This is accomplished with the system procedure "new". The general form of a call
to new for array allocation is:

new(v,1l1l,ul,...,1ln,un)

where v is the array variable to be allocated, and li ahd ui are (long) integer expressions for the
lower and upper bounds of the ith dimension. new clears (sets to Zero) all the elements of the
newly allocated array.

Any bound declared as a constant may be omitted from new (in which case all remaining
arguments must also be omitted) as long as all subsequent bounds were also declared as
constants; the compiler fills in the missing bounds from the information given in the
declaration. The compiler issues an error message if some bound is declared as a constant, but
the corresponding argument to new is specified as some other value. See Example 7.2-1.

An array may be allocated any number of times, though usually it is allocated just once. Each
call to new replaces the old array; no elements are copied. A one-dimensional array’s upper
bound may be changed during program execution by use of the system procedure
newUpperBound, which does copy the values to the reallocated array. The system procedure
"copy" may be used to copy elements from one array to another.

7.3. Array Disposal

The system procedure "dispose” is used to deallocate arrays. "dispose(arrl)" allows the storage
associated with arrl to be immediately reused. It is not necessary to dispose an array explicitly,
since an array that becomes inaccessible is automatically collected by the MAINS AIL garbage

collector; however, disposing of arrays no longer in use may improve program performance.
The programmer must not use a disposed array in any way (unless it has been re-allocated with

new).
7.4. Array Initialization

The Init Statement may be used to initialize an array. The array must be allocated with new
before it is initialized. Untyped arrays cannot be initialized with the Init Statement.

The form of the Init Statement is:

INIT v (cl, ..., cn)

-62 -

If arrl is declared as:
INTEGER ARRAY(1 TO *) arrl

and n is an integer expression, then
these calls to new are legal:

new(arrl,1,10)
new(arrl,1,n)

and these are illegal:

new(arrl,n, 20)
new(arrl)

But if arrl were declared:
INTEGER ARRAY (1 TO 15) arrl
then:
new(arrl)
would be legal and equivalent to:

new(arrl,1,15)

Example 7.2-1. Specifying Array Bounds to the Procedure "new"

where v is an array variable and the ci are initialization specifiers. The simplest form of
initialization specifier is a constant expression of v’s data type. The ith initialization value
(after application of any replications, as described below) initializes the ith element of v. See
Example 7.4-1.

STRING ARRAY (1 TO 3) cnds;

new(cmds); INIT cmds ("view","clear","next");

Example 7.4-1. Init Statement for a One-Dimensional Array

-63 -

The programmer is responsible for ensuring that multidimensional arrays are properly
initialized. Arrays are stored with the last dimensions varying most rapidly. For example, a
two-dimensional array is stored by rows (first row immediately followed by second row, and so
forth). See Example 7.4-2. A two-dimensional array is initialized in Example 7.4-3. Example
7.4-4 shows what the initialized array arr3 of Example 7.4-3 would look like when viewed as a
matrix.

An array declared as
type ARRAY(1 TO 3, 1 TO 4) a
has its elements stored in the order

al1,1], all,21, al1,31, all,41, af2,1], al2,2],
al2,3], al2,41, al3,1], al3,21, al3,31, al3,4].

Example 7.4-2. How Arrays Are Stored

INTEGER ARRAY (1 TO 3, 1 TO 4) arr3;

new(arr3); INIT arx3 (2,8,7,5,3,9,8,7,1,3,5,7);

Example 7.4-3. Init Statement for a Two-Dimensional Array

col l col 2 col 3 col 4

S S +
row 1 | 2 8 7 5 |
row 2 | 3 9 8 7 |
row 3 | 1 3 5 7 |

o e +

Example 7.4-4. Array arr3 as a Matrix

An error occurs if there are more initialization values than elements of v. There may be fewer
initialization values than elements of v, in which case any elements for which an initial value is
not specified are set to the proper Zero value.

-64 -

‘An array may be initialized with the Init Statement many times. The Init Statement is executed
each time it is encountered.

An initialization specifier may consist of a bracketed integer constant expression (“replication”)
followed by an initialization value. The replication specifies the number of consecutive
elements the initialization value is to initialize. If the replication is less than or equal to zero,
the initialization value is ignored. See Example 7.4-5.

INTEGER ARRAY (1 TO 4, 1 TO 2) arr4;

new (arr4) ;
INIT arr4 ([3] 8, [2] 7, 9, [2] 6)

would initialize arr4 as shown below:

Fmmm +
row 1 | 8 8 |
row 2 | 8 7 |
row 3 | 7 9 |
row 4 | 6 6 |

B +

Example 7.4-5. Use of Replications

A garbage collection may occur during the execution of an Init Statement.

It is common to allocate and initialize an array in the initial procedure (see Section 10.9) and
deallocate it in the final procedure (see Section 10.10).

7.5. Accessing an Array Element

An array element is accessed with a "subscripted variable”, i.e., an array variable or
parenthesized expression followed by a bracketed list of (long) integer expressions. There is
one subscript for each dimension of the array, and the subscripts are separated by commas, e.g.,
"alel]", "a[el,e2]", "a[el,e2,e3]".

All the subscripts of a short array must be integers. The subscripts of a long array may be
integers or long integers and need not be the same data type as used for the corresponding
bounds in the declaration.

-65 -

To refer to the eighth element of a one-dimensional array "a" with a lower bound of one, the
subscripted variable "a[8]" is used ("a[8L]" may be used instead if a is a long array). If a two-
dimensional array "b" with both lower bounds equal to one is viewed as a matrix, "b[8,3]" is
the element in the eighth row and third column.

Each subscript must be within the bounds declared for its dimension (see Section 7.1). If
checking is in effect (see Section 14.3), an error message is issued at runtime if, for any
subscript, this is not the case.

An array must be allocated before an attempt is made to access its elements (or pseudo-fields;
see Section 7.10). If checking is in effect an error message is issued at runtime if the
subscripted variable has not been allocated.

7.6. Clearing an Array

The system procedure "clear” can clear (set to Zero) any number of elements of an array. For
" example, if an array called arrl has 50 elements, then "clear(arr1)” clears the entire array, and
"clear(arr1,20)" clears the first 20 elements of arrl.

An array is automatically cleared when it is allocated by new.

7.7. Array Assignment

One array may be assigned to another if they are assignment compatible (see Section 4.9), i.e.,
if they are of the same data type (except that either could be untyped) and dimension (except
that either could be dimensionless), and corresponding constant bounds are the same. A short
array may be assigned to a long array, but a long array may not be assigned to a short array.
Array assignment does not copy elements. Instead, both arrays are made to point to the same
data structure, and so refer to the same elements.

The conversion procedure "cvAry(a,b)" converts a long array a to a short array b. The effect is
undefined if a does not satisfy the short-array rule of Section 7.9. The conversion is purely
syntactic; no elements are copied and no storage is allocated, so a and be continue to reference
the same elements.

Table 7.7-1 shows the rules for short and long array parameters. The rules are derived by
viewing an argument arg passed to a parameter parm as an assignment "parm := arg" if parm is
a uses parameter, "arg := parm"” if parm is a produces parameter, and both if parm is a modifies
parameter.

An array is really a pointer to a data structure, and can be manipulated as a pointer.
Information in the declaration of an array such as the type, dimensions, and bounds is necessary

Argument = Parameter = = When Allowed

short array short array always

short array long array uses parameter
long array short array produces parameter
long array long array always

Table 7.7-1. Array Arguments and Parameters

only if the array is to be allocated, or if elements of the array are to be accessed, in the scope of
the declaration.

It is the programmer’s responsibility to ensure that an array assignment makes sense. Itis

possible to write syntactically correct array assignments that are logically invalid and therefore
have undefined effects.

ARRAY arrl;
INTEGER ARRAY (1 TO 6) arr3:
INTEGER ARRAY (1 TO 2,1 TO 3) arr4;

Example 7.7-2. Array Declarations

In Example 7.7-2, arr1 is assignment compatible with both arr3 and arr4, but arr3 and arr4 are
not assignment compatible with each other, since they have different dimensions. The
following assignments are accepted by the compiler since each assignment involves assignment

compatible arrays:

arrl := arr3; arr4 := arrl
The effect is the same as assigning arr3 to arr4, which would be invalid since arr3 and arr4 are
not assignment compatible. The effect of the statements above is therefore undefined. In

particular, this approach does not allow the same array to be accessed as both a one- and a two-
dimensional array, since the data structures to which the array pointers point are different.

7.8. Array Comparison

Two arrays may be conipa:ed with the relational operators "=" and "NEQ". Short arrays may
be compared with long arrays.

-67 -

The arrays are considered equal if and only if they are the same pointer, and thus share the
same elements. In other words, an array comparison compares just the pointers. To check
whether two distinct arrays have the same element values, use an Iterative Statement (Section
5.8) to compare corresponding elements one by one.

7.9. The Short-Array Rule

The short-array rule is used to determine whether a particular set of array bounds is allowed for
a short array, or whether a long array must be declared instead. The rule is determined by the
manner in which subscript calculations are performed, and is independent of the size of the
elements of the array. The relevant parts of the subscript calculations for multidimensional
arrays are shown in Table 7.9-1. The calculation is performed from left to right; i.e., firsti is
multiplied by e2, then j is added, then the result is multiplied by e3, and finally k is added.

ali,3): (1 * e2) + 3
ali,j, k): ((i *e2) + j) *e3 + &k

(ei is the number of elements in dimension i)

Table 7.9-1. Multidimensional Subscript Calculation

The short-array rule, which is used to determine whether an array can be declared as a short
array, is given in Table 7.9-2.

The bounds must be in the range -32767 to 32767,
inclusive.

The subscript calculation must not overflow the range
-32767 to 32767, inclusive, at any step for any valid
subscripts.

Table 7.9-2. Short-Array Rule

The short-array rule is easily applied by first using all lower bounds in place of i, j, and k in
Table 7.9-1, and then using all upper bounds. If neither calculation overflows the range, then
the array may be declared as a short array. If none of the bounds is negative, then only the
upper bound calculation need be performed.

-68 -

An error message is given when the short-array rule is violated:
+ At compiletime, when a short array is declared, based on any constant bounds.

* Atruntime, when a short array is allocated with the MAINSAIL system procedure
new or newUpperBound.

The long-array rule states that a long array must satisfy the same rules as the short array except
that the range -2147483647 to 2147483647, inclusive, is used in place of -32767 to 32767,
inclusive. This rule is not enforced; violations produce undefined results.

If an array variable is made not to satisfy the rule implied by its declaration, access to its
elements is undefined, since it may cause (possibly undetected) overflow during the subscript
calculation, with indeterminate results.

Short arrays should be used whenever possible due to the potential performance penalty
incurred by long arrays on some machines, especially for multidimensional arrays.

Some examples of the application of the short-array rule are given in Example 7.9-3.

Bounds Short-Array Rule Short OK
1 TO 10000,1 TO 3 10000 * 3 + 3 = 30003 yes
1 TO 10000,1 TO 4 10000 * 4 ..., (overflow) no
1 TO 180,1 TO 180 180 * 180 + 180 = 32580 ves
1 T0 181,1 TO 181 181 * 181 + 181 = 32942 no
1 TO 10000,2001 TO 2003 10000 * 3 + 2003 = 32003 yes
1 TO 10000,3001 TO 3003 10000 * 3 + 3003 = 33003 no
© =1000 TO -1,-32 TO -1 -1000 * 32 + =32 = -32032 yes
-1000 TO -1,-832 TO -801 -1000 * 32 + -832 = -32832 no
-10000 TO ~1,301 TO 304 ~-10000 * 4 ... (overflow) no
1 TO 31,1 TO 31,1 TO 31 (31*31+31) *31 + 31 = 30783 vyes
1l TO 32,1 TO 32,1 TO 32 (32*%32+32)*32 + 32 = 33824 no

Example 7.9-3. Examples of the Short-Array Rule

7.10. Array Pseudo-Fields

The bounds and name of an array are available as "pseudo-fields” of the array. Syntactically,
the pseudo-fields of an array a are accessed by means of a "pseudo-field variable" of the form
"a.<pseudo-field name>". The pseudo-fields available are shown in Table 7.10-1. The value of

-69 -

the integer pseudo-fields is undefined if the corresponding long integer pseudo-field cannot be
represented as an integer.

Reference to the pseudo-fields representing second- and third-dimensional bounds generates a
compiletime error message for a one-dimensional array, and reference to the pseudo-fields
representing third-dimensional bounds generates an error for a two-dimensional array.
Reference to any bound pseudo-field generates an error for a dimensionless array.

Field D ripti
name string name of the array

1bl integer lower bound of 1lst dimension
ubl integer upper bound of 1lst dimension
1b2 integer lower bound of 2nd dimension (if any)
ub2 integer upper bound of 2nd dimension (if any)
1b3 integer lower bound of 3rd dimension (if any)
ub3 integer upper bound of 3rd dimension (if any)

$1bl long integer lower bound of 1st dimension
Subl long integer upper bound of 1st dimension
$1b2 long integer lower bound of 2nd dimension (if any)
$ub2 long integer upper bound of 2nd dimension (if any)
$1b3 long integer lower bound of 3rd dimension (if any)-
Sub3 long integer upper bound of 3rd dimension (if any)
SarrayType

type code of array’s data type
$dimension

number of dimensions of array

Table 7.10-1. Array Pseudo-Fields

-70 -

8. Classes and Records

8.1. Records

A record is a data structure of which the components (called "fields") may be of differing data
types and are accessed by field names.

For example, a record with three fields, a string named "str", an integer named "base”, and
another integer named "val", may be imagined as three adjacent boxes, the first holding the
value of field str, the second holding the value of base, and the third holding the value of val. If
str = "hello", base = 53, and val = 28, then the record may be picured as shown in Example
8.1-1.

e e +

p ———=> | "hello" | STR
R ittt +
| 53 | BASE
B it e T +
| 28 | VAL
B ettt T P +

Example 8.1-1. A Record with Three Fields

A field of arecord is accessed by means of a "field variable" (as described in Section 8.6),
which is a pointer to the record followed by a period and the field name. If p points to the
record described in Example 8.1-1, then "p.str”, "p.base”, and "p.val" have the values shown in
Example 8.1-2,

p.str = "hello"
p.base = 53
p.val = 28

Example 8.1-2. Field Variables

-71-

Records are not created at compiletime. Classes may be created at compiletime or at runtime,
and function as templates for records, which must be allocated at runtime. Pointers are used to
access records once they have been created.

8.1.1. The Layout of Fields within a Record

A knowledge of the order in which fields of a MAINSAIL record are stored is necessary in
order to pass a classified pointer or address to a foreign language (see the description of the
Foreign Language Interface in the "MAINSAIL Compiler User’s Guide"), since the fields of
the foreign record must be located at the same offsets from the start of the record as the
corresponding MAINSAIL fields. The order of the fields of a MAINSAIL record is, however,
subject to change, and code that depends upon this order should be avoided in contexts other
than the passing of records to a foreign language.

At present, consecutively declared fields of a class are stored in consecutive memory locations
within each record of that class. Each field occupies exactly the number of storage units given
by "size(typeCode)", where typeCode is the integer type code for the field’s data type; no
padding or packing is done. For example, if a class is declared as:

CLASS xyz (
INTEGER i;
POINTER (xyz) p;
LONG INTEGER 1li;
)

and, on the machine where the record is stored:

size (integerCode) = 2
size (pointerCode) = 4
size (longIntegerCode) = 4

then:

the field i is stored at offset 0 from the start of the record
the field p is stored at offset 2 from the start of the record
the field 1i is stored at offset 6 from the start of the record

XIDAK reserves the right to change this layout of record fields.

-72-

8.2. Classes

A class describes records, data sections, or storage templates for accessing regions of static
memory. Only record classes and storage templates are descnbed here; the use of classes for
data sections is described in Section 10.4.

Classes may be created at runtime (with the system procedure $createClassDscr), but are
usually created by compiletime declarations. The most common form of a class declaration is:

CLASS v (<declarations of fields of class>)

where v is an identifier for the name of the class, and the field declarations are separated with
semicolons. The field declarations have the form of simple or array variable declarations or

empty declarations, as described in Chapter 6. An example of a class declaration is given in
Example 8.2-1.

CLASS mix (STRING s; INTEGER val,i; STRING t)

declares a class called "mix" that has four fields:
a string, followed by two integers, followed by another
string.

Example 8.2-1. Sample Class Declaration

Cléss declarations may occur only in the outer declarations of a module (see Chapter 10); i.c.,
they may not occur within procedures.

The fields of a class can be of any data type. The order in which they occur in the class
declaration is the same as the address order in which they are stored in records belonging to
that class.

A field name must not be the same as the name of another field in the same class or the same as
the class name. It may have the same name as a local or outer variable or the field of another
class. No confusion can occur, since whenever a field name is used in a field variable, it is
preceded by a pointer that determines its class.

A class ¢ can obtain its initial fields from another class pc by means of a declaration of the
form:

CLASS (pc) ¢ (<declarations of additional fields>)

-73 -

pe is called a "prefix class” of c, as discussed in Section 8.8.

8.3. Record Allocation and Disposal

Any number of new records of a class may be created at runtime by calls to the system
procedure "new" or "$createRecord”. new initializes to Zero the fields of the record it creates,.
and returns a pointer to the record. A call to new such as "p := new(c)" creates a record
belonging to the class ¢ and assigns the pointer to the newly created record to p.

The system procedure "dispose™ disposes of existing records when they are no longer needed.
Thus, "dispose(p)" disposes of the record pointed to by p. It is not necessary to dispose records
explicitly, since a record that becomes inaccessible (no longer pointed to by any pointer) is
automatically collected by the MAINSAIL garbage collector; however, disposing of records no

longer in use may improve program performance. The programmer must not use a pointer
referencing a disposed record in any way.

8.4. Classified Pointers and Addresses

If a pointer is to be used only to access records of a particular class (the most common case),
the name of the class may appear, enclosed in parentheses, following the word "POINTER" in
the pointer variable declaration. Pointers so declared are called "classified". For example,

"POINTER(list) p" declares a pointer variable p to reference records that belong to the class
called "list".

The compiler ensures that classified pointers are not mistakenly used to refer to records of
unrelated classes (see Section 8.9).

A pointer declaration can use a class that has not yet been declared (sometimes called a
"forward class"). This allows each of two classes to contain a pointer field to the other. For
example, the declarations of Example 8.4-1 declare two classes, a and b, each of which has a

pointer field for referencing records belonging to the other class. (Note that when a is declared,
"b has not yet been declared.)

If the fields of a class are not referenced in a module, and the class is not used as the prefix
class of another class in the module, then the class does not have to be declared in the module.

"DCL" returns false if given a forward class name if its class declaration has not yet been
encountered.

Like pointers, addresses may be classified. Classified addresses are not usually used to refer to
records allocated by the system procedure new, but rather to provide a template for storage in
scratch space allocated by the programmer with the system procedure newScratch,
$newScratchChars, or newPage. Syntactically, a classified address declaration looks like a

-74 -

CLASS a (POINTER(b) ptr; INTEGER i; ...);

CLASS b (POINTER(a) q; STRING str; ...)

Example 8.4-1. Classes Referring to Each Other

classified pointer declaration, except that the word "ADDRESS" replaces the word
"POINTER". The rules for assignment compatibility that apply to classified pointers also apply
to classified addresses. Example 8.4-2 shows the use of a classified address.

CLASS ¢ (INTEGER i; BITS b; ADDRESS(c) 1link);
ADDRESS (c¢) a,list;
POINTER (dataFile) f;

Create a linked list in scratch space
list := NULLADDRESS;

DOB a := newScratch(size(c)):;
read(f,a.i,a.b); a.link := list; list := a;
. END;

Example 8.4-2. Use of a Classified Address

8.5. Unclassified Pointers and Addresses

An unclassified pointer or address is useful when a pointer may refer to records of different
classes or an address to different storage templates at different times. An unclassified pointer
or address declaration omits the parenthesized class name following the keyword "POINTER"
or "ADDRESS". For example, "POINTER q" declares a pointer variable q that can be used to
point to records of any class, since unclassified pointers are considered to be related (see
Section 8.9) to all pointers in all classes.

The programmer must be especially careful when using unclassified pointers since class
checking is not provided for them; the security of the language can be violated, as in the last
statement shown in Example 8.5-1.

The effect of the last two statements in Example 8.5-1 would be the same as that of the
previous statement "p1 := p2". That is, they effectively assign a pointer (p2) that can access

=75 -

POINTER(cl) pl; # assume class cl is not related to
POINTER(c2) p2; # class c2
POINTER p;
pl := p2; # compiler reports a class
compatibility error
p := p2;
pl := p; # invalid, but compiler does not
report an error

Example 8.5-1. Use of an Unclassified Pointer

records belonging to class c2 to a pointer (p1) that can access records belonging to an unrelated
class c1. The consequences of using a pointer that has been made to point to a class unrelated

to its declaration are undefined. It is the programmer’s responsibility to avoid such use of
unclassified pointers.

Unclassified addresses are more common than unclassified pointers, since a variety of system
procedures operate on unclassfied addresses.

8.6. Accessing Fields of Records and Storage Templates

A field of a record or storage template is accessed by means of a "field variable”, which has the
form "p.f" where p is called the "base part” and f the "field part". The base and field parts are
separated by a period, which need not be immediately adjacent to either part; e.g., "p.f" could
be written "p . f".

The base part must be a classified pointer or address of which the associated class contains a
field named by the field part. The base part may be a simple pointer or address variable, an
element of a pointer or address array, another field variable, a procedure call, or a parenthesized
pointer or address expression. As a special case, it may be an array variable, in which case the
field part must be one of the special pseudo-fields described in Section 7.10.

The field part is the name of a field of the record pointed to by the pointer base part or the

storage template pointed to by the address base part. The field name must have been declared
to be a field of the class associated with the base part.

-76-

Data section fields are accessed by means of field variables, as with records; however, a data
section field name may be a procedure name if the class contains procedure fields (see Section
10.3).

CLASS c2 (INTEGER num; STRING name; BOOLEAN fin);
CLASS c¢3 (POINTER(c2) p):
CLASS c4 (POINTER(c3) PROCEDURE proc (INTEGER 1))

POINTER(c2) p;
POINTER(c3) q:
POINTER(c4) «r;
INTEGER t;

p := new(c2); # new initializes the fields of the record
to Zero, i.e., p.num = 0, p.name = "",
and p.fin = FALSE

Change the fields of the record pointed_to by p:
p.num := t; p.name := "MAXIMUM"; p.fin := TRUE;

q := new(c3):;
qg.p := p; # This is legal and unambiguous; "g.p" now
refers to the same record as "“p".

Change the fields of the record pointed to by p again,
this time going through q:
qg.p.num .+ 4; g.p.name .& " 2"; q.p.fin := FALSE;

..

Now change both g and p:
P := (g := r.proc(t)).p;

Example 8.6-1. The Use of Field Variables

The data type of a field variable is the data type of the field part. The data type of "p.num" in
Example 8.6-1 is integer.

=77 -

The programmer must ensure that the base part is not Zero (i.e., not nulﬂ’mnter or
nullAddress). If checking is in effect (see Section 14.3), code is output for each field variable
to generate an error if a base part is nullPointer (no check is made for nullAddress).

‘When the base part of a field variable is itself a field variable, the base part is evaluated first;
i.e., constructs such as "p.f.g.h" are evaluated as "((p.f).g).h".

8.7. Explicit Classes in Field Variables

A class name may be specified explicitly in a field variable by following the base part with a
colon followed by the class identifier. That is, if the class "c" has a field "f", and "p" isa
pointer or address, then "p:c.f" is a legal field variable. For example, "p:c2.num" could have
been used in place of "p.num"” in Example 8.6-1. However, since the compiler knows from p’s
declaration that p is a pointer for referencing records belonging to the class ¢2, specifying ":c2"
is redundant and unnecessary.

Explicitly specifying a class name is required when an unclassified pointer or address is used as
the base part of a field variable, since the base part of a field variable must be a classified

pointer or address. Specifying a class has the effect of temporarily classifying an unclassified
pointer or address.

Sometimes the programmer may want to specify a class different from the class declared for
the pointer or address, in which case the pointer or address is used as if it belongs to the
specified class. The specified class is usually related (as described in Section 8.9) to the
pointer’s or address’s class. See Section 8.8.1. The effects of overriding a pointer’s class are
undefined if the field accessed does not exist in the record referenced.

An explicit class may be specified with a pointer or address even if it is not used as a field
variable. For example, if a file f is declared as:

POINTER(file) £;
then it is permissible to say:
read (f:textFile, ...)

to force the generic mechanism to select a textFile form of read.

8.8. Prefix Classes

A class can "inherit" its initial fields from a previously declared class, called its "prefix class”.
The form of a declaration for such a class is:

-78 -

CLASS (prefixClass) id (<declarations of additional fields>)

where id is the name of the class being declared (the "prefixed class") and prefixClass is the
name of its prefix class. The parenthesized declaration list after id may be omitted if there are
no additional fields.

The prefix class contributes its fields to the prefixed class. For example, the declarations:

CLASS cl (INTEGER i; STRING s);
CLASS(cl) c2 (REAL r);

declare two classes, c1 and c2. c1 does not have any prefix classes. c2, a prefixed class, hasa
prefix class, c1, and has three fields: an integer i, a string s, and a real r. The first two fields are
inherited from cl.

Prefix classes permit several related classes to have their initial fields "abstracted out” into a
separate class so that records in each of the related classes can be manipulated by procedures or
statements that access just the initial fields of the common prefix class.

A prefix class may itself have a prefix class. For example, given the declarations:
CLASS a (...);

CLASS(a) b (...);

CLASS(b) ¢ (...);

a has no prefix classes, a is the only prefix class of b, and ¢ has two prefix classes,aand b. The

fields of c are the fields of a followed by the additional fields contributed by b’s and c’s
declarations.

8.8.1. Accessing Prefix Fields

Given these declarations:

CLASS cl (INTEGER f);
CLASS (cl) c2 (STRING 8):;
POINTER(cl) pl;
POINTER(c2) p2;

these field variables are valid:

Example 8.8.1-1. Prefix Classes and Pointers (continued)

=79 -

pl.f p2.f p2.s
and this is invalid:

pl.s

Example 8.8.1-1. Prefix Classes and Pointers (end)

A pointer or address to a prefixed class may be used without an explicit class to access the

fields of its prefix classes. In Example 8.8.1-1, pl can access fields only in c1, whereas p2 can
access fields in both c1 and ¢2.

If the programmer knows that p1 points to a record that has all of ¢2’s fields, then the field
variable "pl:c2.s" can be used to access the field s; thus, the information provided in class
declarations may be overridden. Accessing fields not present in the record referenced produces
undefined results.

8.9. Related Classes

Two classes are said to be "related” if one is a prefix class of the other or if they are the same
class. Two pointers are said to be assignment compatible (see Section 4.9) if their classes are
related or if one or both of them are unclassified. See Example 8.9-1.

8.10. "Safe" and "Unsafe" Assignment of Pointers

An assignment of the form "p := q", where p’s class is a prefix class of q’s, is considered to be a
"safe” assignment, but an assignment in the opposite direction, i.e., "q := p", is considered
"unsafe”. Both are legal since the classes of the pointers are related, but the latter allows the
programmer subsequently to write syntactically correct but logically invalid field variables, and
the assignment itself may sometimes be logically incorrect. This "loophole" in MAINSAIL
covers those cases where "safe" assignments are too restrictive. See Example 8.10-1.

8.11. Alignment of Chunks

TEMPORARY FEATURE: SUBJECT TO CHANGE

-80-

CLASS a (...);
CLASS (a) bl (...):
CLASS (a) b2 (...);
CLASS (bl) c (...):

Each class is related to itself.
In addition,

a 1is related to bl, b2, and c,
bl is related to a and ¢,

b2 is related to a,

¢ 1is related to a and bl,

bl is not related to b2,

b2 is not related to c.

Example 8.9-1. Related Classes

Chunks (i.e., records, arrays, and data sections) are currently aligned to a multiple of a system-
dependent number of storage units, usually at least the size of an address. This means that
appropriate arrangement of fields within a record can, on some processors, reduce the access
time to some of the fields.

Typical cases include the VAX-11, IBM System/370, and M68000, on which memory is
organized into eight-bit bytes, and where the MAINSAIL data types have the sizes shown in
Table 8.11-1. All these processors permit a 4-byte quantity to be fetched from an address that
is 2-byte-aligned (i.e., they do not require it to be 4-byte-aligned); however, on at least some
models of all of these processors, it is slower to fetch a 4-byte quantity from such an address
than from one that is 4-byte-aligned.

For example, if a record of the class:
CLASS c (
INTEGER 1i;

LONG INTEGER ii;
)

is aligned on a 4-byte boundary, then the field ii is fetched from a non-4-byte-aligned address.
A better arrangement of ¢ would be:

-81-

CLASS a (STRING name;
CLASS(a) b (INTEGER val)

POINTER (a) pa:;
POINTER (b) pb;
POINTER (c) pc:;
pa := new(b);

pb := pa; pb.val := 0;

pa new(a) ;

pb := pa; pb.val := 0;

pc := new(c);

pa pc; pb := pa;

pb.val := 0;

INTEGER num) ;

.
’

3k = I ¥ e e e

#+*

#* e A W

CLASS(a) ¢ (STRING sample):;

Legal

Valid, since pa points to a
record of class b

Also legal, replaces previous
record pointed to by pa

Invalid; pa points to a record
of class a. There is no "val"
field in the record. Execution
of these statements will have
undefined consequences.

Legal

Invalid. The effect is the same
as that of "pc.val := 0", which
the compiler would flag as an
error.

Example 8.10-1. Examples of Safe and Unsafe Assignments

CLASS ¢ (
LONG INTEGER ii;
INTEGER 1i;

):

since ii is now on a 4-byte boundary (i need be aligned only to a 2-byte boundary).

A rule of thumb that ensures optimal field access on all processors for which MAINSAIL has
been implemented so far is to declare string and long real fields of a class first (in any order),

-82-

Rata type Size

boolean 2 bytes
integer 2 bytes
long integer 4 bytes
real 4 bytes
long real 8 bytes
bits 2 bytes
long bits 4 bytes
string 8 bytes
address 4 bytes
charadr 4 bytes
pointer 4 bytes

Table 8.11-1. Typical Data Type Sizes

followed by long integer, real, long bits, address, charadr, and pointer fields (in any order), and
finally boolean, integer, and bits fields (in any order). In the case of prefix classes, it may be
convenient to add a padding field if the size of the class is not a multiple of 4 bytes on the
typical processors, so that the first new field of a prefixed class is 4-byte-aligned.

The alignment of records and the size of data types are subject to change, so this strategy may
not always result in optimal field access. XIDAK is also considering the possibility of
introducing padding fields into a record automatically to ensure that all data types are properly
aligned; however, it may not prove feasible to add such fields.

-83-

9. Procedures

A procedure associates an executable unit (the "procedure body") with an identifier so that later

occurrences of the identifier can be used in a procedure call to cause the procedure body to be
executed.

9.1. Procedure Declarations

The form of a procedure declaration (header and body) is shown in Table 9.1-1.

A procedure with parameters is declared:
qualifiers type PROCEDURE v
(declaration list for parameters):
procedure body

A procedure without parameters may be declared:

qualifiers type PROCEDURE v;
procedure body

or:

qualifiers type PROCEDURE v ();
procedure body

"type" is omitted if the procedure is untyped, and
"qualifiers™ if the procedure has no qualifiers.

Table 9.1-1. Format of a Procedure Declaration

In Table 9.1-1, the identifier v is name of the procedure, and the parenthesized list of parameter
declarations appears only if the procedure has parameters (see Section 9.4). The type (e.g.,
"INTEGER") is present if and only if the procedure returns a value. In this case the procedure

is said to be a "typed" procedure (see Section 9.3) and must return a result with a Retumn
Statement (see Section 5.4).

A procedure body may have two forms:

1. A statement.

2. The keyword "BEGIN" followed by an optional list of local declarations (see Section
6.1) followed by a list of statements separated by semicolons followed by the
keyword "END", :

See Example 9.1-2. The di cannot include a procedure declaration; that is, procedures cannot
be statically nested. The di may not include class or module declarations either. The
"BEGIN"-"END" pair in the second form of procedure may be given a name with a string
constant as described in Section 5.5.

For purposes of name scoping, the parameters of a procedure are also considered to be local
variables of the procedure. Parameters may be declared to be "uses”, "modifies”, or
"produces”; uses and modifies parameters are initialized by the corresponding argument, and
modifies and produces variables set the value of the corresponding argument variable. The
initial values of local variables are undefined, except that uses and modifies parameters are
initialized by their arguments (see Section 9.5). It is the programmer’s responsibility to ensure
that local variables and produces parameters are initialized before their values are accessed (for
this purpose, a produces parameter is considered to be "accessed” on procedure return (unless it
is an omitted optional parameter)); otherwise, the consequences are undefined.

A procedure body may look like:

S

or:
BEGIN
di; ... dm; # declarations
sl; ... sn # statements (";" after sn would be OK)
END

where the di are declarations and the si are statements.

Example 9.1-2. Two Procedure Body Forms

-85 -

9.2. Procedure Calls

A procedure call causes execution of the procedure body. It can also entail transfer of

argument values to and from the procedure, and the transfer of a result value from the
procedure.

The form of a procedure call is shown in Table 9.2-1.

A procedure with parameters is called with:
p(el,...,en)

A procedure without parameters is called with:
p:

or:

pO:

Table 9.2-1. Procedure Call Formats

In Table 9.2-1, p is the procedure to be called and the ei are the arguments. The order of
evaluation of the ei is not specified (see Section 9.6). See Section 9.4 for further explanation of
arguments. Example 9.2-2 shows sample procedure declarations and calls.

9.3. Typed and Untyped Procedures

Procedures are either "typed” or "untyped". If a data type name does not precede the word
"PROCEDURE" in the declaration, then the procedure is said to be "untyped". Untyped
procedures do not return values. They may be called only as statements, not in expressions, as
described in Sections 4.3 and 5.3.

If a data type name (e.g., "INTEGER") precedes the word "PROCEDURE" in the procedure
declaration, then the procedure is said to be "typed". When a typed procedure is called, it must
return a value of its declared data type with a Return Statement (see Section 5.4). In the typed
procedure shown in Example 9.3-1, p1 returns either 0 or j depending on the value of i at the If
Statement.

-86-

Suppose p2 is declared as:

PROCEDURE p2 (INTEGER i; STRING str);
BEGIN

END
Then sample calls for p2 are (assuming j is an

integer and s a string):

P2(3,8); p2(j + 3,"error"); p2(10,s & "xxx")

Example 9.2-2. Procedure Declaration and Calls

INTEGER PROCEDURE pl;
BEGIN
INTEGER i, 3;

IF i > 0 THEN RETURN(O0);

RETURN () END

Example 9.3-1. Example of a Typed Procedure

Typed procedures may be called either in an expression or as a statement, depending on
whether or not the returned value is to be used. A call to a typed procedure in an expression
uses the returned value in the expression. When a typed procedure is called as a statement, the
returned value is discarded. Typed procedures called as statements are called for the actions
they perform rather than the results they return.

Section 5.3 shows a typed procedure that is called either in an expression or asa Procedure
Statement, depending on whether or not the returned value is needed.
9.4. Parameters to Procedures

As shown in Table 9.1-1, a parenthesized list of parameter declarations (separated with
semicolons) may follow the procedure name in the procedure declaration. The parameter

-87-

declarations specify the characteristics of arguments passed to and from the procedure when it
is called.

A parameter is cither a simple variable (Section 6.2), an array (array parameters are discussed
in Section 9.7), a module (Section 10.2), or a class (Section 8.2). The programmer cannot
declare procedures with module or class parameters; such parameters are used only by system
procedures. The "OWN" qualifier cannot be used in parameter declarations.

An argument specified in a procedure call must be "assignment compatible” with the
corresponding parameter in the procedure declaration; i.e., they must have the same data type.
See Section 4.9 for a definition of assignment compatibility. See Example 9.4-1.

Except for procedures with parameters declared with the "OPTIONAL" or "REPEATABLE"
qualifiers (see Section 9.5), the number of arguments in a procedure must be the same as the
number of parameters in the procedure declaration.

If the procedure prockEx is declared as:
PROCEDURE procEx (INTEGER i,3j; STRING s)

and k and m are integer variables, sl a string variable,
and r a real variable, then:

procEx(k,m,sl)
prociEx(1,8,"go")
procEx(k,k,sl)
procEx{(m,7,sl)

are all legal procedure calls, but:

procEx(r,m, sl)
procEx(k,2.7,"go")
procEx(k,m, r)
procEx (k)
procEx(k,m,sl, r)

are all illegal.

Example 9.4-1. Parameters and Arguments

-88 -

9.5. Parameter Qualifiers

There are five parameter qualifiers: "USES", "PRODUCES", "MODIFIES", "OPTIONAL",
and "REPEATABLE".

"USES", "PRODUCES", and "MODIFIES" do not affect the use of a parameter within a
procedure, but indicate whether the parameter is initialized by the argument ("USES" and
"MODIFIES"), and whether the parameter value is transmitted back to the argument upon
completion of the procedure ("PRODUCES" and "MODIFIES").

Any parameter (whether uses, modifies, or produces) may be used within a procedure as if it
were a normal local variable; i.e., its value may be both examined and modified. The parameter
qualifiers specify only whether a parameter is initialized by an argument, and whether its final
value is sent back to the argument.

"OPTIONAL" and "REPEATABLE" do not affect the use of a parameter within a procedure,
but govern how many arguments may be given for the parameter in the procedure call.

9.5.1. "USES"

A uses parameter is passed the value of the argument; i.e., the argument value initializes the
parameter,

The procedure uses the value of the argument, but does not otherwise access the argument.
Thus any changes to the parameter (which is a local variable) have no effect on the argument.
Parameters declared with no qualifier are uses parameters.

9.5.2. "PRODUCES"

A produces parameter passes its value back to the argument upon return from the procedure,
but is not initialized by the argument value. The argument is assigned the value of the
parameter upon procedure return. The argument must be a variable, except that if the
parameter is declared "OPTIONAL", it can be omitted (see Section 9.5.4). In this case the
returned value is discarded.

Since produces parameters are not automatically initialized, they should be assigned a value
before they are accessed.

-89 -

9.5.3. "MODIFIES"

A modifies parameter combines the effect of uses and produces parameters. It is passed the

value of the argument, and also passes its value back to the argument upon return from the
procedure.

The argument corresponding to a modifies parameter must be either a variable or, if the
parameter is declared "OPTIONAL", an omitted argument. If the argument is omitted, the Zero
of the appropriate data type is passed to the procedure (if the parameter is uses or modifies),
and the returned value is discarded.

A procedure "proc" that uses an integer value,
produces a real value, modifies the value of a string
argument and returns a bits would have the header:

BITS PROCEDURE proc
(INTEGER i; PRODUCES REAL r; MODIFIES STRING s)

where it is understood that i is a uses parameter,
since "USES" is the default.

Example 9.5.3-1. Example Using Parameter Qualifiers

9.54. "OPTIONAL"

A parameter may be qualified with "OPTIONAL" to indicate that its argument may be omitted
in procedure calls. All parameters following an optional parameter must also be declared
"OPTIONAL". If the corresponding argument is omitted, the compiler substitutes the Zero
value of the appropriate data type instead. See Example 9.5.4-1.

An optional argument may be omitted only if all subsequent arguments are also omitted. If all
of a procedure’s parameters are optional and all the arguments are omitted in a procedure call,

the argument parentheses may also be omitted as if the procedure had no declared parameters.
See Example 9.5.4-2.

9.5.5. "REPEATABLE"

The last one or more parameters of an untyped procedure may be qualified with
"REPEATABLE" to indicate that a call may give more than one set of arguments ("repeated

-90-

Given the declaration:
PROCEDURE p (INTEGER vl1; OPTIONAL INTEGER v2)
the call: p(e)

is treated as: p(e,0)

Example 9.5.4-1. Use of Optional Argument

Given the declaration:
PROCEDURE p2 (OPTIONAL INTEGER i; OPTIONAL REAL r)
the call: p2

is treated as: p2(0,0.)

Example 9.5.4-2. Use of Optional Arguments, Omitting All Arguments

arguments") for the repeatable parameters. The compiler treats a call to a procedure with
repeatable parameters as a series of calls, each expansion call with one set of the repeated
arguments passed for the repeatable parameters.

All parameters following a repeatable parameter must also be repeatable. If the last n
parameters of a procedure are declared repeatable (but not optional), then each expansion call
to the procedure passes n more arguments for the repeatable parameters, in addition to the non-
repeated arguments that are evaluated once (except for simple variables passed as modifies or
produces arguments) and passed each time.

Before expanding the call to a procedure with repeatable parameters, non-variable non-repeated
arguments are evaluated and stored as temporaries. The stored values of these arguments are
used on each expansion call, so that such arguments are evaluated only once. Any variable
non-repeated arguments may or may not be re-evaluated on each expansion call. In particular,
the use of non-simple variables as produces or modifies non-repeated arguments has undefined
results. Simple variables as produces or modifies non-repeated arguments are re-evaluated on
each expansion call. Each repeated argument is evaluated immediately before the expansion
call on which it is used.

-91-

Optional repeatable arguments are governed by the rule that an optional argument is assumed
omitted only if all arguments have been used; see Example 9.5.5-2.

Repeatable parameters are forbidden in declarations of typed procedures.

With the declaration:

PROCEDURE p (INTEGER vl1l; REPEATABLE REAL v2)
the call: ple,el, ..., en)
is treated as: ple,el); ... p(e,en)

or, if e is evaluated only once, as:
t :=e; p(t,el); ... p(t,en)

With the declaration:

PROCEDURE drawline (REPEATABLE INTEGER x1,yl,x2,y2);
draw line from (x1,yl) to (x2,y2)

the call:
drawlLine(1,2,3,4,100,200,300,400,1i,3,k,1)

draws three lines.

If a procedure has the header:

PROCEDURE foo
(POINTER (device) gp; REPEATABLE REAL x,Y);/

the call:
foo(gp,x1,yl,x2,y2,%3,y3);
is equivalent to:
foo(gp,x1,yl); fool(gp,x2,y2); foolgp,x3,y3):

where gp may be evaluated just once.

Example 9.5.5-1. Use of Repeatable Argument

-92 .

Given the declaration:

PROCEDURE p
(REPEATABLE INTEGER i; OPTIONAL REPEATABLE REAL r);

the calls:
p(l1,2.0);
p(3,4.0,5,6.0);
P(7:8-0,9):

are legal, but:

p(10,11,12.0);

is not.

Example 9.5.5-2. Interaction of "OPTIONAL" and "REPEATABLE" Qualifiers

9.6. Order of Argument Evaluation

The order in which the arguments to modifies and produces parameters and the procedure result
are assigned values upon return from a procedure call is unspecified. Calls in which the same
variable is used for more than one such assigned value have undefined results. See Example
9.6-1.

If v is passed for a modifies or
produces parameter, then

v :=pl..c,Vyeod)
and
Pl.eeerVyeearVyeaas)

assign undefined values to v.

Example 9.6-1. Calls of Which the Results Are Not Well-Defined

-03.

9.7. Array Parameters

An array parameter is a reference to the argument array; i.e., the argument array variable (a
pointer) is assigned to the parameter. The assignment does not copy the elements; the array
parameter points to the same array elements as the argument array. Any changes made to the
elements of the parameter within the procedure are made to the argument array elements.

The "USES", "PRODUCES", and "MODIFIES" qualifiers apply to the array variable itself
rather than to the elements of the array. For example, a modifies array parameter is initialized
to point to the argument array and upon return the array parameter is assigned to the argument
array. The procedure may have assigned a different array to the parameter.

In Example 9.7-1, the procedure "aryPrint" prints the values of the first n (where nisa
parameter) elements of the one-dimensional integer array (with a lower bound of 1) specified as
its first argument.

PROCEDURE aryPrint (INTEGER ARRAY{(l TO *) a; INTEGER n);

BEGIN

INTEGER i;

FOR 1 := 1 UPTO n DO write(logFile,a([i],eol)
END

Example 9.7-1. Use of an Array Parameter

The array parameter declaration "INTEGER ARRAY(1 TO *) a" signifies that the first
argument of any call to the procedure aryPrint must be a one-dimensional integer array of
which the lower bound is declared as 1. The assignment compatability checking done by the
compiler (see Section 4.9) attempts to ensure that each argument conforms to these
requirements.

In Example 9.7-2, the procedure doubleSize increases the upper bound of the array ary by a
factor of two. ary must be a modifies parameter; otherwise, the argument to doubleSize would
be unaffected.

PROCEDURE doubleSize (MODIFIES ARRAY (1l TO *) ary):
newUpperBound (ary,2 * ary.ubl);

Example 9.7-2. A Modifies Array Parameter

-94 -

9.8. Procedure Qualifiers

One or more procedure qualifiers may be used in a procedure declaration to provide additional
information about the procedure being declared. The qualifiers must precede the data type
name (in a typed procedure) or the keyword "PROCEDURE" (in an untyped procedure). The
order of the qualifiers is unimportant, except as noted.

The procedure qualifiers are "FORWARD", "INITIAL", "FINAL", "GENERIC",
"COMPILETIME", "INLINE", "SPECIAL", "$BUILTIN", and "SALWAYS".

"COMPILETIME", "$BUILTIN", and "SPECIAL" apply only to system procedures; the
programmer cannot use them. They are described in Sections 1.1, 1.2, and 1.3 of part II of the
"MAINSAIL Language Manual”.

"INITIAL" and "FINAL" are explained in Sections 10.9 and 10.10.

"FORWARD" and "GENERIC" are described in Sections 9.10 and 9.12.

"SALWAYS" and "INLINE" are explained in Section 9.11.

9.9. Recursion

Any procedure may be invoked recursively, i.e., called again before it has returned from a
previous call. Each invocation creates a new copy of the non-own local variables; i.e., any
existing non-own locals are not affected.

Recursion may occur when a procedure calls itself, or when it calls another procedure that
causes it to be called. A recursive calculation of Fibonacci numbers appears in Example 9.9-1.
The procedure fibonacci calls itself. Mutual recursion is shown in Example 9.10.1-1.

LONG INTEGER PROCEDURE fibonacci (LONG INTEGER i);
RETURN (

IF i LEQ 1L THEN i

EL fibonacci(i - 2L) + fibonacci(i - 1L)):;

Example 9.9-1. A Recursive Calculation of Fibonacci Numbers

Recursive procedures that are called too many times before returning may cause a stack
overflow. See Section 9.13. In particular, a procedure that calls itself unconditionally on each

-95-

invocation produces an "infinite recursion” (see Example 9.9-2); calling such a procedure
always results in a stack overflow.

No special qualifier is required in MAINSAIL to allow a procedure to be invoked recursively.

PROCEDURE p;
jo

Example 9.9-2. Infinite Recursion

9.10. Forward Procedures
The keyword "FORWARD" serves two functions:

1. It permits a procedure to be called before its body has been seen. This makes
possible mutual recursion between procedures, or a convenient ordering of

procedures if the programmer does not want to remember which procedures were
declared before which.

2. It can indicate the source file in which the body of a procedure may be found.

9.10.1. "FORWARD" for Mutual Recursion

A procedure must be declared before it can be called. If two procedures call each other, one of
the procedures must first be given a "forward" procedure declaration, which is like a normal
procedure declaration except that it is qualified with "FORWARD", and just the procedure
header (not the body) is given. Later, the procedure is declared as usual (the "FORWARD"
qualifier is not used, and a body is given); the compiler automatically figures out that the later
declaration redeclares the previous forward procedure. The type of the result and parameter
types and qualifiers must be the same in the forward declaration as in the body declaration, but
the parameter names may differ. Calls to the procedure may appear at any point after the
forward declaration. See Example 9.10.1-1.

An interface procedure declaration (see Section 10.2) for the current module serves as a
forward declaration of the procedure. There is no need to provide a separate forward
declaration in the event that calls are made to an interface procedure before its body has been
declared, provided that the module declaration has been seen.

-96 -

FORWARD PROCEDURE p (INTEGER 1i);

PROCEDURE g (REAL x);
BEGIN

P(l),

“END;

PROCEDURE p (INTEGER 1i);
BEGIN

a(l.4);

END;

Example 9.10.1-1. Example of Forward Procedure

If a forward procedure is not called (i.e., the compiler does not encounter it in a call), the
forward declaration is ignored; i.e., no error message is issued if the body of the procedure
declared forward is never encountered. This rule does not apply to interface procedures, since
they may be called from outside the module, and must therefore always be given a body.
9.10.2. "FORWARD" for Source Library Declarations

A related use of "FORWARD" is to indicate the file in which the procedure (header and body)
is declared. In this case the form is:

FORWARD (c) PROCEDURE p (...)
where c is a string constant expression giving the name of the file that contains p’s full
declaration. If at the end of compilation the procedure has been called, but no body has been
declared for it, the compiler automatically compiles the indicated file, expecting to encounter
p’s declaration; an error occurs if it does not.
For example, if the following forward procedure declaration is given:

FORWARD ("1ib") PROCEDURE p (...)

and p is called, but a body is not declared for it, the compiler compiles the file named "lib" in
order to get p’s declaration. "lib" may employ the compiletime pseudo-procedures

-97-

"NEEDBODY" and "NEEDANYBODIES" (see Section 14.19) and conditional compilation
(Section 14.10) to ensure that the compiler "sees” only those procedure bodies that are actually
needed. The compiler repeatedly compiles all files declared to contain forward procedures until
either all necessary procedure bodies have been obtained, or it detects an infinite loop.

The compiletime system procedure $thisFileName is useful for declaring forward procedures in
the current file.

9.11. Inline Procedures

A procedure call may be implemented either by passing its arguments to the procedure and
calling the procedure, or by expanding the procedure call inline. Calls implemented by the first
method are called "closed" procedure calls; calls implemented by the second, "inline" calls,
The semantics of using an inline call are the same as if a closed call had been used instead.

Using an inline call has the advantage of eliminating the overhead of a call and return. Often
the arguments to the call can be substituted directly for their corresponding parameters, which
eliminates the overhead of copying procedure arguments. Also, constant folding can
sometimes be done on constant arguments that are directly substituted for their parameters, for
further improvements in the generated code (such improvements may be made even if the
"OPTIMIZE" compiler option is not specified).

The main disadvantage of an inline call is that it may consume more code space if it is
expanded many times. Inline procedures nested several layers deep may make a module so
large that the MAINSAIL compiler runs out of memory attempting to compile it. Also, the
debugger is unable to jump into a procedure at an inline call, and it is unable to set breakpoints,
single-step, or examine local variables within a procedure with no closed body. If all callsto a
procedure are expanded inline, then no closed body is generated for the procedure.

The programmer controls which calls are done inline by means of the keyword "INLINE",
"INLINE" may be used either in a procedure declaration, in which case all calls to that
procedure are affected, or at a given call, in which case only that call is affected. The keywords
used at a given call to a procedure override the keywords used in the procedure’s declaration,
but only for that call.

"$ALWAYS INLINE" (the two keywords used together) indicates that calls to a procedure
should be inline, regardless of what compiler options are in effect. "SALWAYS", if present,
must immediately precede "INLINE". The macro "SALWAYSINLINE" (one word) is defined
for convenience to be "SALWAYS INLINE".

A procedure declared "INLINE" but not "SALWAYSINLINE" indicates that calls to the
procedure are to be inline unless the procedure is compiled debuggable, in which case the calls
should be closed so that the procedure can be debugged. A procedure declared
"$ALWAYSINLINE" is compiled inline even if compiled debuggable.

.98 -

If a procedure is not declared "INLINE", calls to it are closed.

If "SALWAYSINLINE" or "INLINE" is used in a procedure declaration, it appears before the
procedure header, where other procedure qualifiers would appear. The order of the procedure
qualifiers is unimportant, except that "SALWAYS", if present, must appear immediately before
"INLINE". Examples of the use of "SALWAYSINLINE" and "INLINE" as procedure
qualifiers are:

INLINE BOOLEAN PROCEDURE eof (POINTER(file) f);

COMPILETIME S$SALWAYSINLINE BITS PROCEDURE bMask
(INTEGER lowBit,highBit);

"$ALWAYSINLINE" and "INLINE" may appear in the declaration of a procedure’s body
without also appearing in a forward or interface declaration for the procedure.

If"SALWAYSNLINE" and "INLINE" are used in a call, they appear immediately before the
name of the procedure being called, e.g.:

INLINE eof (f)
SALWAYSINLINE bMask (0,n)

The compiler rarely disregards the programmer’s instructions on whether to make a given call
inline or closed. The exception is for recursive calls, If a recursive call is designated as inline,
then the compiler cannot keep expanding the procedure’s body indefinitely. Instead, if it is
expanding one or more calls inline and encounters another call to one of the procedures of
which bodies are currently being expanded, it forces the call to be closed. This has the effect of
reducing the number of closed calls made to the recursive procedure without unduly increasing
the module’s code size.

Only small procedures, or procedures called just once, should be called inline to avoid the
generation of excessive code.

9.12. Generic Procedures

A generic procedure allows a single identifier to represent several procedures (the "instance
procedures” of the generic procedure). On each call to a generic procedure (a "generic call”), a
call to one or more of the instance procedures is generated. The instance procedure is selected
at compiletime based on the data types and number of the arguments to the generic call. A
single generic name can thus be used for several related procedures with different parameter
declaration lists.

.99

For example, the single procedure name "new" provides a number of related services (it
allocates new records, new arrays, and new data sections). "new" is actually a generic
procedure, so that its arguments determine which of its instances is used in a particular call.

A generic procedure is not really a procedure since it has no procedure body and no parameters
of its own,; it is more like a special kind of macro than a procedure (macros are described in
Chapter 13). The declaration of a generic procedure must appear in the outer declarations of
each module that calls it.

The form of a generic procedure declaration is:
GENERIC PROCEDURE id exp

where id is an identifier and exp is a string constant expression containing a list of procedure
names separated by commas, e.g.,

GENERIC PROCEDURE p "pl,p2, ..., pn"

There is nothing special about the pi; i.e., they are normal procedures declared elsewhere as if
they did not appear in a generic declaration. A procedure may appear in any number of generic
declarations.

When p is used in a procedure call, the compiler acts as if p1 had been used instead, except that
if some "error" occurs (¢.g., a parameter of pl is a different data type from that of the
corresponding argument in the procedure call), the compiler "backs up" and acts as if p2 had
been used instead of p1. If another "error” occurs, the compiler proceeds to p3, and so forth,

until a pi is found that causes no error. The compiler produces an error message if no such pi is
found.

Any pi may itself be a generic procedure, thereby recursively invoking the generic mechanism,
except that the effect of including p in its own instance list is undefined. Any pi may also be of
the form "m.f" where m is a module and f is an interface procedure of that module. The form
"m.f" is described in Section 10.3.

The pi need not have been declared when the generic declaration is encountered, since the
string constant in the generic declaration is not examined until p is used in a procedure call. In
fact, if while processing a generic call the compiler finds a pi that has not yet been declared, it
proceeds to the next pi.

A generic procedure may be used as a field, i.e., may be preceded by a pointer or module
identifier and a period; see Section 10.11.

-100 -

9.12.1. Sample Generic System Procedure

Many of the system procedures are generic. For example, cos, the procedure that computes the
cosine of its argument in radians, is declared as (except that XIDAK reserves the right to use
different instance names from “rCos" and "IrCos"):

GENERIC PROCEDURE cos "rCos,lrCos™
and the headers of the procedures rCos and 1rCos are:

REAL PROCEDURE rCos (REAL r)
LONG REAL PROCEDURE 1lrCos (LONG REAL r)

When the identifier "cos" occurs in a procedure call, either rCos or IrCos is invoked, depending
on the data type of the argument. For example, "cos(1.4)" results in "rCos(1.4)". The compiler
first tries to process "cos(8.76582L)" as "rCos(8.76582L.)", but an error occurs, since the
parameter to rCos must be real, but the argument 8.76582L is a long real. The compiler then
tries "IrCos(8.76582L)", which compiles without error, so IrCos is the instance procedure
selected.

XIDAK reserves the right to change the instance procedure names of generic system
procedures at any time without notice. Programmers must never make explicit use of an
instance name of a generic system procedure.

9.12.2. Generic Procedure Instance Selection Algorithm

‘When the compiler encounters a generic identifier, it searches the associated procedure
declarations for one with parameters that "match” the arguments in the generic call.

For each instance procedure in the generic instance list, starting with the first, the compiler
determines whether the procedure has been declared; if not, it skips to the next instance.
Otherwise, it compares the parameters one by one with the corresponding arguments in the
generic call until either:

« it finds an assignment compatibility error (see Section 4.9) or mode error between a
parameter and the corresponding argument, or

e it runs out of arguments, or
* it runs out of parameters.

A mode error occurs if anything other than a variable is passed for a modifies or produces
parameter.

-101 -

If there is an assignmént compatibility or mode error, the compiler knows that the procedure it
is checking is inappropriate, and so it goes on to check the next instance.

If there are more parameters than arguments, the compiler checks the "extra" parameters to see
if they are declared "OPTIONAL". If so, an appropriate instance procedure has been found,
and a call to that procedure, with all the given arguments plus appropriate Zero values for the
optional parameters, is generated. If the "extra" parameters are not optional, then the procedure
being checked is inappropriate, and so the compiler goes on to check the next instance
procedure.

If it runs out of parameters and there are not any more arguments, the compiler has found the

appropriate procedure, so it stops its search and generates a call to the current instance
procedure.

If it runs out of parameters but there are more arguments in the generic call, the compiler
checks the last parameters of the current instance procedure. If they are not repeatable
parameters, the compiler rejects the procedure as inappropriate, and goes on to check the next
instance, If the last parameters are repeatable, then an appropriate procedure has been found; a
call to the procedure, with all the arguments compared so far, is generated. Then a new generic
call is processed (starting from the beginning of the instance procedure list), this time with all
the arguments of the generic call resulting from the last step except for the last ones compared
(the one matching the repeatable parameters).

The compiler issues an error message if it searches all the procedures and doesn’t find any that
are appropriate to call.

The order in which the procedure names are given in the generic procedure declaration is
important, since it determines the order in which the procedures are checked. For example, if
the generic procedure gen were declared:
GENERIC PROCEDURE gen "procl,proc2,proc3”™

and procl, proc2, and proc3 were declared:

PROCEDURE procl (REPEATABLE INTEGER i);

PROCEDURE proc2 (REPEATABLE REAL r);

PROCEDURE proc3 (INTEGER i; REPEATABLE REAL r);
then proc3 would never be called, since any combination of integer or real parameters would
match with procl or proc2. However, if proc3 appeared first in the generic declaration, then
the call:

gen(l,2.0,3.0)

-102 -

would call proc3 twice, first with arguments 1 and 2.0, then with arguments 1 and 3.0. The
call:

gen(1,2,3,4.0,5.0,6.0)

would call procl twice, first with an argument of 1, then an argument of 2, and then call proc3
three times, with argument pairs 3, 4.0; 3, 5.0; and 3, 6.0. The call:

gen(1.0,2,3.0,4,5.0)

would call proc2 with an argument of 1.0, then proc3 with arguments 2 and 3.0, then procl
with an argument of 2, and finally proc3 with arguments 4 and 5.0.

The results are undefined if the generic mechanism is used in conjunction with repeatable
parameters to generate more than one instance call with a single generic call if any of the
instances is a typed procedure.
9.12.3. Generic Procedure Extension
A generic procedure may be extended (i.e., may have new instances added to its instance list)
by redeclaring it. The instances in the new declaration are added to the front of the instance list
from previous declarations. For example, if a procedure p is originally declared as:

GENERIC PROCEDURE p "a,b,c"
then if p is subsequently redeclared as:

GENERIC PROCEDURE p "x,y,z"

the effect is as if p had been declared as:

GENERIC PROCEDURE p "x,y,z,a,b,c"

9.13. Stack Overflow

Stack overflow may occur if too many procedure calls are simultaneously active, or if
procedures with too many local variables are called. Stack overflow is not necessarily detected
by MAINSAIL. Its effects are undefined, although on some systems, the predefined
$stackOverflowExcpt can make a stack overflow easier to recognize.

On some operating systems, the MAINSAIL utility "CONF" allows the user to set the initial

coroutine’s stack size. On such systems, if a stack overflow occurs in a program, it may be
necessary to build a MAINSAIL bootstrap with a larger stack size in order to run the program

-103 -

successfully. The stack sizes of coroutines other than the initial coroutine may be set with the
system procedure $createCoroutine.

See the appropriate operating-system-dependent MAINSAIL user’s guide for more
information.

-104 -

10. Modules and Data Sections

A module is the smallest separately compilable unit of MAINSAIL code. A MAINSAIL
program is composed of one or more modules, some of which may be contributed by the
programmer and some by the MAINSAIL runtime system.

Modules communicate at runtime through "interface fields", which are the variables and
procedures of each module declared by the programmer to be accessible from other modules.

A module is written in the general form shown in Table 10-1. The outer declarations sections
may be empty; see Chapter 6.

"modNam" is the name of the module, enclosed in double quotes, and must be an identifier of
six characters or fewer. The name is used in the declaration of the module, if the module is
explicitly declared (see Section 10.2). Since the runtime system uses a module’s name to
identify it, every module in a program must have a unique name. The programmer’s choice of
module names must not conflict with the names of standard runtime modules.

The "outer declarations” declare all identifiers (except those predefined by MAINSAIL) that are
to be accessible from the point of declaration to the end of the module, but not from any other
modules. The outer declarations of a module m must include declarations of all modules
referenced by m. In addition, m must declare itself if it has any interface fields. Module
declarations are described in Section 10.2.

A module cannot contain another module; i.e., modules cannot be nested. All modules are on
equal footing; there is no explicitly declared "main" or "controlling” module, though the
module first given control during a particular execution might be considered the "main" module
for that execution.

The division of a program into modules is entirely up to the programmer. MAINSAIL has no
portable rule by which to determine when a module is too large, but each machine on which
MAINSAIL is implemented may place an upper limit on the size of a module it can execute. If
such a limit exists, it may be found in the appropriate operating-system-specific MAINSAIL
user’s guide.

Unlike most programming languages, MAINSAIL does not use a "link" step prior to execution.
Instead, the modules are brought into memory as needed during execution. The MAINSAIL
runtime system provides all the facilities for intermodule communication. The programmer
need never specify beforehand what modules make up a program; a program is an open-ended
collection of modules the identity of which is not determined until execution time. The
dynamic binding of modules provides a degree of flexibility lacking in statically linked
systems.

- 105 -

BEGIN "modNam"
i +
| outer |
| declarations 1 |
e ittt T +
e +
| procedure 1 |
e +
e +
| outer]
| declarations 2 |
et +
R it +
| procedure 2]
R e D E T +
R D DT E e +
| outer I
| declarations n |
ettt +
e +
| procedure n |
B T it +
e +
| outer |
| declarations n+l |
e e L +
END "modNam"

Table 10-1. A MAINSAIL Module

The MAINSAIL runtime system automatically verifies that module interfaces are consistent
with one another when linkage between modules is established. See Section 10.8.

10.1. Bound and Nonbound Data Sections

Own variables (including interface variables) of a module are stored in a data structure called a
"data section”, After an object module (the compiled form of a module) has been brought into

- 106 -

memory for execution, it is referred to as a "control section”. Each control section may be
associated with at most one "bound data section” and zero or more "nonbound data sections"”.
Bound data sections are created by means of the system procedure "bind"; nonbound data
sections are created by several forms of the system procedure "new". Bound and nonbound
data sections are identical in format, but the interface fields of a bound module can be accessed
"indirecty" as described below.

Data sections differ from records in that each data section is associated with a control section.
A procedure field may be accessed by means of a pointer to a data section, but not by means of
a pointer to a record; modules may contain procedures, but records may not.

Interface fields associated with bound data sections may be accessed by means of implicit
module pointers; such access is called "indirect access”. Interface fields associated with either
bound or nonbound data sections may be accessed by means of explicitly declared pointers to
the data sections; such access is called "direct access".

10.2. Module Declaration

Modules communicate by means of “interface fields", i.e., those variables and procedures
specified by the programmer (in module declarations) as accessible by other modules. Interface
data fields are called "interface variables" and are own variables (see Section 6.4); i.e., they
reside in the data section of the module (see Section 10.6).

The outer declarations of a module m must include, in any order (except that interface variables
must be declared before use, and interface procedures must be declared as interface procedures
before their bodies appear), declarations for all modules of which interface fields are indirectly
accessed by m. In addition, m itself must be declared if it has any interface fields, even if they
are not referenced within m, because the compiler must know the interface fields of the module
it is compiling. If m has no interface fields, its declaration may be omitted, in which case the
compiler declares it automatically as a module with no interface fields; see Example 10.2-1.

The most common form of a module declaration is:
MODULE v (<declarations of interface fields>)

where v is the module’s name. Interface fields may be variables and/or procedures, in any
order. The declaration of an interface procedure gives only its header. It serves as a forward
declaration (see Sections 9.10 and 14.19) for the procedure. The procedure body must be given
within the module v, where the procedure is declared as usual. Interface variables of v are
declared only in v’s module declaration; they are not redeclared in v after the module
declaration has been seen.

A sample module declaration is shown in Example 10.2-2. The sample declares a module
named "parse” with several interface fields.

-107 -

BEGIN "m"
outer declarations # not including one for m

—
is equivalent to

BEGIN "m"

outer declarations
MODULE m;

END " m"

Example 10.2-1. A Module That Does Not Explicitly Declare Itself

MODULE parse (

INTEGER val, lineNum, index;

STRING token, line;

INTEGER ARRAY (1 TO 10) order;

PROCEDURE getToken;

STRING PROCEDURE msgTxt (INTEGER page,msgNum) ;

)

Example 10.2-2. Sample Module Declaration

A module m that accesses fields of a module n need declare only a prefix of n’s interface if it
does not access all of n’s fields. No error occurs (see Section 10.8), provided that m’s view of
n matches a prefix of n’s view of itself. See Example 10.2-3.

10.3. Indirect Access to Interface Fields

An interface field f of a module m may be indirectly accessed with the field variable "m.f"
(which may also be written "(m).f"). As described below, the simpler form "f" may often be
used. The interface field is associated with the module’s bound data section. Because of the
syntactic simplicity of indirect access, a module’s bound data section may be thought of as its
"default" data section (the one used when no explicit pointer is used).

- 108 -

If the module n has two fields, and is declared in
n as:

MODULE n (INTEGER fieldl; PROCEDURE field2):

and the module m uses only the first field (fieldl) of n,
then n may be declared in m as:

MODULE n (INTEGER fieldl):;

Example 10.2-3. A Module That Declares Only a Prefix of Another’s Interface

The term "field variable" is used for both interface procedures and interface variables.

For every module m declared by means of the keyword "MODULE" in a module n (and
actually used in n), n maintains a hidden "implicit module pointer" to m’s bound data section.
It is this implicit module pointer that is used in indirect access to interface fields of m.

For example, if m1 is declared as:
MODULE ml (STRING name,quest; INTEGER val; PROCEDURE findval)

then the interface fields of m1 can be indirectly accessed as the field variables "m1.name”,
"ml.quest”, "m1l.val", and "m1.findVal". The interface variables of m1 may be altered by other
modules; i.e., there are no "protected” or "read-only" fields.

"m.f" can be written as "f" if m is the current module, or if m is the only module declared in the
current module with a field named f. In either case, the compiler effectively provides the "m."
prefix. The compiler generates the same code regardless of whether or not the abbreviated
form is used (i.e., there is no efficiency penalty or advantage for including the "m.").

As an example, many of the MAINSAIL system procedures (see Chapter 1 of part II of the
"MAINSAIL Language Manual") are interface fields of various system modules. The
programmer need not know the names of the runtime modules. To call a system procedure, the
programmer specifies only the procedure name. All the system procedures have been given
unique names, and hence the compiler can figure out the module name. If the programmer
declares an interface variable with the same name as a system procedure, the name of the
system procedure alone may no longer suffice to produce an unambiguous reference. System
procedure names must not be explicitly prefixed with their module names, since XIDAK
reserves the right to change the module in which a system procedure resides.

-109 -

10.4. Classes with Procedures
The fields of a module can be supplied using a class, with a declaration such as:
MODULE(c) m

where c is a class name. The module declaration may declare the module to be of a prefixed
class by adding extra fields to an existing class, in the form:

MODULE (c) m (declarations of additional fields)

The declaration of the module PARSE of Example 10.4-1 is equivalent to the declaration of
Example 10.2-2.

CLASS parseCls (

INTEGER val, lineNum, index;

STRING token, line;

INTEGER ARRAY (1 TO 10) order;

PROCEDURE getToken;

STRING PROCEDURE msgTxt (INTEGER page,msgNum) ;

)

MODULE (parseCls) parse;

Example 10.4-1. Sample Module Declaration Using a Class

10.5. Direct Access to Interface Fields

An explicit pointer to a module’s data section may be declared if the interface of the module is
declared as a class. Allocation of a record of a class ¢ by means of "new(c)", where ¢ contains
procedure fields, results in a record in which the procedure fields are not valid; the compiler
issues a warning message if such an allocation is performed. The effect of calling a procedure
in c using such a record is undefined. Procedure as well as variable interface fields may be
accessed with the pointer only if a data section of the class is allocated instead of a record.

Access by means of an explicit pointer to fields associated with a data section is referred to as

"direct access" to the data section. Both bound and nonbound data sections may be directly
accessed.

-110-

The system procedure "bind" and some forms of the system procedure "new" allocate data
sections instead of records. These forms specify the name of the object module to be
associated with the data section. The module must have the interface specified by the class of
the pointer used to access its data section; otherwise, the effects of accessing fields with the
pointer is undefined.

Example 10.5-1 shows field variables that are valid if a pointer points to a data section of a
given class.

10.6. Module Allocation and Disposal

The allocation of a module is the allocation and clearing of its data section and the invocation
of its initial procedure, if it has an initial procedure (see Section 10.9). A module may be
allocated by a call to bind or new, as shown in Example 10.5-1. An indirectly accessed module
may be automatically allocated, as described in Section 10.7.

When a data section is disposed (see Section 1.127 of part II of the "MAINSAIL Language
Manual"), MAINSAIL automatically invokes the module’s final procedure, if there is one.
When a module is disposed, MAINSAIL disposes all the data sections for that module, then
releases the control section for the module (so that if a new data section is allocated for the
module, the search for the module’s control section proceeds from scratch as described in
Section 12.2). At the end of a MAINSAIL execution, MAINSAIL normally executes the final
procedures associated with all data sections and then closes any open files.

The exception $disposedDataSecExcpt is raised when an attempt is made to return to a
procedure invocation associated with a disposed data section.

‘When a module is unbound (see Section 1.370 of part II of the "MAINSAIL Language
Manual"), the bound data section is disposed, but the control section is not released.

10.7. Establishing Module Linkage

A module m may at any time call an interface procedure in another module n. However, m can
indirectly access an interface variable in n only if a bound data section already exists for n.
When a bound data section for n is created, implicit module pointers to n in all modules that
use n are initialized. If a module m is allocated and a bound data section for n exists, m’s
implicit module pointer to n is initialized. When the implicit module pointer from m to n is
initialized, m is said to "have linkage to" n.

If checking is in effect, MAINSAIL raises the exception $unboundModuleExcpt if an attempt
is made to access an interface variable of a module to which linkage is not yet established (i.e.,
for which no bound data section exists).

-111-

CLASS parseCls (

INTEGER val, lineNum, index;
- STRING token, line;
INTEGER ARRAY (1l TO 10) order;
PROCEDURE getToken;
STRING PROCEDURE msgTxt (INTEGER page,msgNum) ;

)
POINTER(parseCls) p:;

If there exists a module PARSE of parseCls, p may be made
to point to the bound data section of PARSE by means of:

bind ("PARSE") ;

P
or, if PARSE is declared in a module declaration:
p := bind(parse);

The call to bind allocates the bound data section if it
has not already been allocated.

p may be made to point to a nonbound data section of
‘PARSE by means of:

p := new("PARSE");

or, 1f PARSE is declared in a module declaration (like
"MODULE (parseCls) parse"):

p := new(parse);

The call to new always allocates a new nonbound data
section.

If p is made to point to a data section of the class
parseCls, the follwing directly accessed field variables
are valid: ’

Example 10.5-1. Accessing Data Section Fields with a Pointer (continued)

-112-

.val
.lineNum
.index
.token
.line
.order
.getToken
msgTxt(...)

‘D' 's'D'T'CTT

Example 10.5-1. Accessing Data Section Fields with a Pointer (end)

In the future, MAINSAIL may support automatic establishment of linkage upon interface data
access; this has not been done so far because of execution overhead considerations.

10.8. Intermodule Consistency Checking

If a module A indirectly accesses a module B, the compiler requires that A include a module
declaration for B and that B include a module declaration for itself. When A gets linkage to B,
MAINSAIL checks these module declarations for consistency. A module inconsistency is
detected if A’s view of B is not a prefix of B’s view of itself. If the interfaces are inconsistent,
an error occurs.

The consistency check verifies that the declarations of corresponding interface variables and
procedures are compatible. Corresponding interface variables must have the same data type; if
the variables are arrays, they must have the same bounds and must be either both short arrays or
both long arrays. Corresponding interface procedures must have equivalent declarations;
corresponding parameters must be of the same data type, and must be both uses, both modifies,
or both produces. It is not checked that corresponding identifiers have the same name or that
corresponding pointers have the same class.

10.9. Initial Procedure

Each module may contain a single typeless and parameterless procedure that is to be called
 whenever a data section for the module is allocated. This procedure is qualified with
"INITIAL", in accordance with the syntax described in Section 9.8. The initial procedure may
also be called explicitly.

The "top level” module of a program (the one specified to the MAINSAIL executive as the
module to gain control first) must have an initial procedure, or it returns immediately without

-113 -

performing any action. The execution of the top level module’s initial procedure leads to
execution of the entire program.

A module need not have an initial procedure. When a module not intended to be used as a top
level module has an initial procedure, it usually performs initialization of the module’s outer
and interface variables.

The programmer does not have to give the initial procedure a name, in which case the compiler
supplies the name "initialProc". See Example 10.9-1.

INITIAL PROCEDURE;
BEGIN ... END

is equivalent to

INITIAL PROCEDURE initialProc;
BEGIN ... END

Example 10.9-1, Default Name of the Initial Procedure

The "INITIAL" qualifier need be specified only in a procedure declaration that includes a
procedure body; i.e., it does not have to be given in forward or interface field declarations.

However, if it is given in a forward or a field declaration, it must also be given in the body
declaration.

10.10. Final Procedure

Each module may contain a single typeless and parameterless procedure that is automatically
invoked when the module is disposed. This procedure is qualified with "FINAL", in
accordance with the syntax described in Section 9.8. The final procedure may also be called
explicitly.

Final procedures are often used to dispose of arrays and modules that are no longer needed, to
release scan bits, or to close files that should not be left open. A final procedure often "undoes"
the work of the initial procedure.

The programmer does not have to give the final procedure a name, in which case the compiler
supplies the name "finalProc", as in Example 10.10-1.

-114-

FINAL PROCEDURE;
BEGIN ... END

is equivalent to

FINAL PROCEDURE finalProc;
BEGIN ... END

Example 10.10-1. Default Name of the Final Procedure

The "FINAL" qualifier need be specified only in a procedure declaration that includes a
procedure body; i.e., it does not have to be given in forward or interface field declarations.
However, if it is given in a forward or a field declaration, it must also be given in the body
declaration.

When a MAINSAIL execution terminates, all data sections are disposed, and all open files are
closed. The order in which data sections are disposed is unspecified. The programmer must
not access a data field of another module in a final procedure without first ensuring that the
other module is bound. The programmer must not perform I/O to a file in a final procedure
without ensuring that the file is open. Bugs that are difficult to track may occur because of
dependencies on the order of execution of final procedures.

10.11. Generic Procedures as Field Variables
Generic procedures may be used as field variables; i.e., in p.f or m.f (p is a pointer and m a
module), f may be a generic procedure name. The generic name is substituted according to the
usual rules (see Section 9.12) for f. For example, given the declarations:

CLASS cl (PROCEDURE pl (INTEGER 1i)):;

PROCEDURE p2 (REAL r);

CLASS c¢3 (PROCEDURE p3 (STRING 8)):;

GENERIC PROCEDURE p "pl,p2,p3";

POINTER(cl) ptrl;
POINTER (c3) ptr3;

the code:

-115-

ptrl.p(2);
p(2.0);
ptr3.p("2")

would be equivalent to:

ptrl.pl(2);
p2(2.0);
ptr3.p3(™2")

10.12. Control Sections and Module Swapping

Whenever a data section is allocated for a module, the corresponding objmod is brought into
memory if necessary; an objmod brought into memory for execution is called a "control
section”. Only the currently executing module’s control section need be in memory;
MAINSAIL automatically swaps out control sections for which there is not enough memory.
This may be thought of as an "automatic overlay” facility. MAINSAIL attempts to keep the
most recently used control sections in memory, MAINSAIL does not swap out any data
structures other than control sections; thus, MAINSAIL supports "virtual code space” but not
"virtual data space”.

‘When a control section that was obtained from an individual objmod file is first removed from
memory, it is written to a "swap file". When a control section obtained from a currently open
objmod library is removed from memory, it is not written to the swap file, since it may be read
back in from the objmod library.

10.13. Compilation of Several Modules in One File

More than one source module can appear in the same file. If no text (other than blank, tab, end-
of-page and end-of-line characters) appears between the final "END" of one module and the
"BEGIN" of the following module, the modules are compiled just as if they were separated into
different files and each file compiled separately.

Symbols that are defined between the "END" of one module and the "BEGIN" of the next (with
"DEFINE" or "REDEFINE") normally belong to the PRECEDING module, not the following.
The compilation of a new module does not begin until its "BEGIN" is seen (if something other
than "BEGIN" or a macro definition or compiler directive is seen, it is treated as end-of-file).
Compiling a file with the following contents therefore gets an error:

-116 -

REDEFINE moduleName = "“firstM";
BEGIN moduleName

END moduleName

REDEFINE moduleName = "“second":;

BEGIN moduleName
END moduleName

since the second definition of moduleName belongs to the first module; when the second
"BEGIN" is seen, the compilation of the second module is begun, and the previous definition of
moduleName is forgotten. The use of "moduleName" therefore results in a compiler error
message.

Symbols MAY be defined after the initial "BEGIN" of a module. The above could be rewritten
as:

REDEFINE moduleName = “firstM";

BEGIN moduleName
END moduleName

BEGIN REDEFINE moduleName = "second";
moduleName
END moduleName

This would produce two modules, FIRSTM and SECOND, without error. The

"$GLOBALREDEFINE" directive could also be used in place of "REDEFINE" in the original
example to make it compile correctly.

10.14. Nonbound-Invocation Modules

TEMPORARY FEATURE: SUBJECT TO CHANGE

A module may be a "nonbound-invocation module", meaning that when $invokeModule is
called it creates a nonbound data section rather than a bound data section (if the module’s data
section is allocated with "bind" or by indirect access of an interface procedure, a bound data
section is created, as usual). This allows several invocations of a module to coexist, provided
that they are created by $invokeModule.

-117 -

A module is specified to be nonbound-invocation module with the compiler subcommand
"UNBOUND". This subcommand may be used in a "$DIRECTIVE" directive; i.e., a module
containing:

SDIRECTIVE "“UNBOUND";
is specified to be a nonbound-invocation module.

In the MAINSAIL compiler, the module COMPIL is a nonbound-invocation module (all the
other compiler modules are also allocated as nonbound data sections, created with new). If,
during a compilation, the compiler is invoked (e.g., with a call to $invokeModule, or at an
"error response” prompt, or from MAINEX or MAINEDIT, all of which use $invokeModule),
anew instance of the compiler is created which does not interfere with any other instance. If a
bound data section of COMPIL were used, then a second invocation of the compiler would
destroy the first, since both would be using the bound instance of COMPIL.

XIDAK is considering other, more flexible, approaches to allowing simultaneous invocations
of the same program.

-118-

11. Intmods

Intmods are compiler symbol table files created by compiling MAINSAIL modules. The
symbols defined in intmods may be used in the compilation of other modules or by MAINSAIL
system programs like MAINDEBUG or the MAINS AIL disassembler.
An intmod contains several kinds of information, including:

* outer symbols

* local symbols

» procedure parse trees (a parse tree is a representation of the statements and
expressions in the procedure)

» procedure instruction maps (instruction maps relate objmod offsets to source code)

* additional information allowing the debugger to examine variables and call
procedures

The outer symbols may be used by other modules that "open” the intmod during compilation.
The other contents of an intmod are for MAINSAIL system programs.

An intmod is generated (or updated) during a module’s compilation only when a compiler
option is in effect that requires information to be stored in the intmod. By default, no intmod is
generated. Any of the following options cause an intmod to be generated (or updated):

Opt i Inf £ St i in Int i

ALIST instruction maps

DEBUG instruction maps, symbol tables, debug information
INCREMENTAL parse trees for inline procedures, symbol tables
MONITOR instruction maps (needed by PERSTMT)

PERSTMT instruction maps ‘

SAVEON parse trees for all procedures, symbol tables

In each case, only information required by the options is put into the intmod.

11.1. Intmod Directives

Several directives are provided for dealing with intmods:

-119-

SDIRECTIVE "OPENMODULE s";

SDIRECTIVE "MAKEMODULEVISIBLE ml ... mn";
$DIRECTIVE "MAKEMODULENOTVISIBLE ml ... mn";
SDIRECTIVE “MAKEVISIBLE sl,...,sn";
SDIRECTIVE "MAKENOTVISIBLE sl,...,sn";
RESTOREFROM "s";

SAVEON "s";

11.1.1. Opening Intmods and Accessing Symbols

In the "$DIRECTIVE" directive "OPENMODULE s", s is the name of a module or intmod file;
the intmod must have been made with the "SAVEON" option in effect. The named intmod is
opened, along with any "supporting modules”, i.e., intmods that were open when the
"SAVEON" that created the intmod was done.

Identifiers from intmods may be specified using the syntax:
<intmod module name>$<identifier>

For example, an identifier "id" from an intmod FOO is specified using the compound, or
qualified, identifier "foo$id". "fooS$id" refers to the "id" in the intmod FOO, even if there is
also an "id" in the current module or in another open intmod. The compound identifier is
considered a single identifier for purposes of macro substitution; i.e., if a macro "bar" has been
defined, or if "bar" is a macro parameter, its definition is not expanded in "bar$id" or
"mod$bar". Whenever a compound identifier is found, the compiler automatically opens the
specified module if it is not already open; e.g., if "baz$xxx" is encountered and BAZ is not an
open module, the compiler acts as if it had seen:

SDIRECTIVE "OPENMODULE baz";

11.1.2.- Module Visibility

The "$DIRECTIVE" directive "MAKEMODULEVISIBLE" makes identifiers in one or more
open modules "visible", i.e., accessible without the need for qualification by the module-name-
and-dollar-sign prefix (the modules themselves are also said to be visible). The mi are module
names (never file names). Each module is opened, if not already open, as by
"OPENMODULE" (so each intmod must have been made with the "SAVEON" option in
effect). The identifiers in a visible module can still be qualified, if desired. The effect of
making a module visible can be undone by the "$DIRECTIVE" directive
"MAKEMODULENOTVISIBLE". These two directives can be used any number of times for
the same module, alternately making it visible, then invisible.

-120-

11.1.3. Individual Symbol Visibility

The individual symbol visibility directives provide a way to control the visibility of individual
symbols in an intmod. These directives are useful only if the intmod is saved. Only those
symbols individually visible are made visible in another module by
"MAKEMODULEVISIBLE".

Each intmod has a "visibility default" that can have one of the two values "visible" and
"invisible". At the start of compilation a module’s visibility default is initialized to "visible".
This default applies to all symbols not explicitly marked by "MAKEVISIBLE" or
"MAKENOTVISIBLE".

-The "$DIRECTIVE" directive "MAKEVISIBLE s1,....sn" does the following:

« If the visibility default is "visible" then change it to "invisible" and clear the visibility
list.

¢ Add the symbols sl, ..., sn to the visibility list.
The "$DIRECTIVE" directive "MAKENOTVISIBLE sl,...,sn" does the following:

« If the visibility default is "invisible" then change it to "visible" and clear the visibility
list.

» Add the symbols sl, ..., sn to the visibility list.
These directives are not available as compiler subcommands.
The symbols si may be the names of identifers declared or defined anywhere in the outer block
of the current module. An si may also be of the form <class name>.<field> or <module
name>.<field>, assuming the field is declared in the current module. There is no way to affect
the visibility of individual symbols from other intmods.
The si are not processed until the compiler has read the entire module, so the si may refer to
identifiers declared after the visibility directive. A visibility directive can appear in a procedure
body, but it cannot refer to symbols local to the procedure.
After the compiler has read the entire module, each referenced symbol on the visibility list is
"marked", so that the intmod contains the marked symbols. The visibility default is stored in
the intmod.

When an intmod is made visible, only the following outer symbols are actually visible:

-121-

« If the visibility default stored in the intmod is "visible", then all symbols are visible
except those on the visibility list.

« If the visibility default stored in the intmod is "invisible", then no symbols are visible
except those on the visibility list.

A symbol can always be used with a compound identifier, e.g., "modNam$symbolName", even
if "symbolName" is not visible.

All symbols in the current module are always visible, regardless of the symbol visibility
directives.

If a symbol x from an intmod B is visible in a module A, then A cannot declare or define x
without a module prefix, since the definition from B would conflict. However, x may be
declared in A as "a$x". If a programmer wishes to redeclare a predefined identifier, e.g.,
"integerCode", in a module FOO, he or she must use the form "foo$integerCode". After the
point of definition in FOO, "integerCode" refers to foo$integerCode, not the system macro
integerCode.

11.2. Visibility from Supporting Intmods

Symbols from an intmod C used by an intmod B used by the current module A have the same
visibility as they had at the end of the compilation of B, regardless of any individual symbol
directives in B. For example, if all symbols in C are visible at the end of the compilation of B,
and B is currently visible in A, then all symbols in C are currently visible in A. This is true
regardless of the status of B’s visibility list, e.g., even if no symbols from B are visible.

11.3. "RESTOREFROM" and "SAVEON"
The directive:
RESTOREFROM "s";

where s is a module name or file name, first performs:

SDIRECTIVE "OPENMODULE s","MAKEMODULEVISIBLE m";
where m is the name of the module in the intmod specified by s. In addition, all modules that
were open or visible when the "SAVEON" for m occurred ("supporting modules for m") are
also made open or visible, i.c., are restored to their status at the time of the "SAVEON". By
contrast, "MAKEMODULEVISIBLE" makes only the specified modules visible; it makes sure

that modules that were open when the specified intmods were made are open, but does not
make them visible, regardless of whether or not they were visible when the intmod was made.

-122-

The directive:
SAVEON “s*;

makes an intmod with the "SAVEON" option in effect for the current module, when the
compilation is complete (saving a partial module is not possible). The intmod contains all the
information required to support the "OPENMODULE" directive. s is the name of the file on
which the saveon is stored. s may be omitted, i.e.:

SAVEON;
in which case a default file name is used, based on the name of the module being compiled (or
the intmod is put in an intmod library if the appropriate compiler subcommands are in effect;
see the "MAINSAIL Compiler User’s Guide" for details).
The compiler does not permit an intmod to be opened unless it was created with the
"SAVEON" option in effect. An intmod created in the absence of "SAVEON" does not contain
enough information to support its use by the compiler, although it may be usable by other tools
such as the debugger and disassembler.
Typically, a "SAVEON" directive occurs in a "definitional module", one for which no code is
generated and which is used only as a repository of definitions and declarations. The
MAINSAIL language does not make a distinction between a definitional module and an

"executable module", one for which code is generated and executed. An executable module
can serve as a definitional module, or vice versa.

11.4. Unqualified Identifier Search Rules
The MAINSAIL compiler searches for an unqualified identifier in the following order:

1. It searches the MAINSAIL keywords.

2. It searches the symbols defined in the current procedure, if compiling a procedure
body.

3. It searches the outer identifiers of the current module.

4. It searches visible intmods, in the order most recently made visible to least recently
made visible.

5. It searches the global symbol table (in which symbols defined by
"$GLOBALREDEFINE" reside).

-123 -

The first identifier found by searching in the above order is the one used by the compiler. No
warning is given if the same identifier occurs in another open intmod. Compilation may
become slower as more intmods are made visible, since there are more symbol tables to be
searched. For this reason, it may be a good idea to keep as many identifiers as possible in a
single intmod, if the identifiers are to be used without qualification. There is no compilation
slow-down if several intmods are opened but not made visible, and all references to identifiers
in the intmods are qualified; however, this puts the burden on the user of remembering each
identifier’s declaring module, which may not be convenient.

11.5. Use of Symbols from an Intmod

Interface procedures and variables from an open intmod are processed as intermodule
references, as usual. Referenced non-interface procedures and outer variables from an open
intmod are "copied” out of the intmod; i.e., the procedures are compiled into the current module
as if they were forward procedures, and the outer variables are treated as if they were declared
in the current module. Macros from an open intmod are expanded in the usual way.

Procedures called by procedures copied into the current module are also copied into the current
module. The compiler remembers the module in which it found each procedure, so that the
procedures that would have been called at the point of compilation in the original intmod are
called, not procedures of the same name in the current module. See Example 11.5-1,

Procedures extracted from definitional modules are more quickly compiled than forward

procedures, since the source text has already been parsed and converted into the compiler’s
internal representation.

11.6. Intmod Search Rules

When searching for an intmod, MAINSAIL looks in the specified file name, if processing a
compiler directive that specifies a file name. If processing a directive that specifies a module
name, or if looking for an intmod for some program other than the compiler, it follows the
search rules described in Section 12.2. If unsuccessful, it tries treating the given name as a file
name instead of a module name, and attempts to open the named file. If it still does not find the
intmod, and the module it is looking for is a supporting module (a module used during
compilation by some other module), it last attempts to find the intmod file under the file name
specified when it was used during compilation (which may be different from the file name
actually used, e.g., if a logical file name or searchpath was in effect).

11.7. Changing an Intmod

If an intmod is remade, all intmods that reference it must also be remade; otherwise, undefined
errors may result when the changed intmod is opened.

-124 -

If a module A contains:
BEGIN "a"
SAVEON;

PROCEDURE pl;
<body for pl>

PROCEDURE p2;
BEGIN ... pl; ... END;

END "a"
and a module B contains:
BEGIN "b"
RESTOREFROM "a“;

PROCEDURE pl:
<body for B’s pl>

INITIAL PROCEDURE;
BEGIN ... p2; ... END;

END ” b "
then the call to p2 in B’s initial procedure calls the
procedure p2 copied from A, i.e., a$p2, which calls the
procedure pl copied from A, i.e., a$pl, rather than the
pl in B, since a$pl, not b$pl, would have been called at
the point where p2’s body was encountered when it was
compiled (in module A).

Example 11.5-1. The Compiler Is Not Confused by Procedures of the Same Name in the

Wrong Module '

If the date on an intmod is older than the date on one of its supporting intmods, a message is
issued when the supporting intmod is opened, the system program opening the intmod enters a
dialogue to confirm that the supporting intmod really should be used. If the date on the
supporting intmod file is wrong (e.g., if the file has been copied, or the system clock is
inaccurate), but the contents are correct, the supporting intmod should be used; but if the

-125-

supporting intmod actually has been changed since it was used in the compilation of the first
intmod or objmod, undefined errors may result.

11.8. Sample Use of Intmods

An intmod may be used as an alternative to "header" files, i.e., sourcefiled files containing
declarations common to several modules (see Section 14.2). Declarations from intmods are
processed more quickly by the compiler than header files.

. Suppose that several modules each require three "header” files "hdrl", "hdr2", and "hdr3" as
sourcefiles. Each of the modules could use the "SOURCEFILE" directive to obtain the
information in the header files, with each header file being recompiled. But it would be more
efficient (assuming the header files are not being changed) to compile the header files once and
then save the state of the symbol table. Each module could then restore the symbols from the
saved intmod, thereby giving the effect of having just compiled the header files.

A convenient way to create the saved file is to compile a file with the contents shown in
Example 11.8-1. Each of the modules would then be written as shown in Example 11.8-2.

BEGIN "hdxr"
SAVEON;

SOURCEFILE "hdrl";
SOURCEFILE "hdr2";
SOURCEFILE "hdr3";
END "hdr"

Example 11.8-1. A Source File Compiled to Produce an Intmod

BEGIN "modNam"
RESTOREFROM "hdr®;

END "modNam"

Example 11.8-2. A Module Using an Intmod

-126 -

12. Objmods, Intmods, Libraries, and Search Rules

MAINSAIL uses two types of compiled modules, objmods (object modules) and intmods
(intermediate modules).

The MAINSAIL compiler, by default, outputs the executable form of a MAINSAIL module
into a file (an "objmod file") of which the name is formed from the name of the module
compiled. '

Intmods are not executable. They contain information used during compilation of other
modules or used by MAINSAIL system programs. See Chapter 11 for more details.

Both objmods and intmods may be stored into libraries, files containing several modules.
Objmods are stored into objmod libraries, and intmods into intmod libraries; either type of
library may be referred to as a "module library". Modules may be compiled directly into
module libraries (see the "MAINSAIL Compiler User’s Guide") or added to module libraries
with the utilities MODLIB and INTLIB (see the "MAINSAIL Utilities User’s Guide").

MAINSAIL may exécute either directly from objmod files or from objmod libraries. Objmod
libraries have several advantages over objmod files:

» When a system consists of several modules, putting them into a library eliminates the
need for individual objmod files, thus reducing clutter in the file system.

= An objmod library opened for execution is opened just once. Each module that does
not reside in an objmod library is individually opened during execution when it is
first accessed. Opening a file is a time-consuming operation on many systems.
 Sometimes it is necessary to discard modules from memory in order to make more
room. A module that does not reside in memory must first be written to a "swap" file
(see Section 10.12) before its space is used. A module that resides in a module
library open for execution need not be written to the swap file.
More information on module libraries may be found in the "MAINSAIL Utilities User’s
Guide".
12.1. Objmod and Intmod File Names

The default intmod file name has the form:

-127-

<1lst 3 characters of $systemNameAbbreviation>-int:<module name>
For example, a module FOO compiled for a VAX-11 UNIX system (where
$systemNameAbbreviation is "uvax") is compiled into an intmod file named "uva-int:foo". A
searchpath is usually set up for intmod file names. Bootstraps distributed by XIDAK specify a

searchpath (see the "MAINSAIL Utilities User’s Guide" for a description of the MAINEX
"SEARCHPATH" subcommand) of the form:

SEARCHPATH *-int:* *2-*1_ int
unless otherwise noted in the system-specific documentation; consult the system-specific
MAINSAIL user’s guide for information. This searchpath would map "uva-int:foo" into "foo-
uva.int", where the intmod for FOO would be stored.
The default objmod file name has the form:
<lst 3 characters of $systemNameAbbreviation>-obj:<module name>
For example, a module BAR compiled for an M68000 UNIX system (where

$systemNameAbbreviation is "um68") is compiled into an objmod file named "umé6-obj:bar”.

A searchpath is usually set up for objmod file names. Bootstraps distributed by XIDAK specify
a searchpath of the form:

SEARCHPATH *-obj:* *2-*1_obj
unless otherwise noted in the system-specific documentation; consult the system-specific
MAINSAIL user’s guide for information. This searchpath would map "um6-obj:bar" into "bar-
um6.obj", where the objmod for BAR would be stored.
These file names and searchpaths are subject to change; those shown are correct for the current
release, unless otherwise documented in the system-specific MAINSAIL user’s guide.
12.2. Objmod and Intmod Search Rules
There are three types of searches that MAINSAIL makes to find an intmod or objmod:

« intSearch: an intmod search.

* objSearch: a non-executable objmod search, or just "objmod search”, as when
recompiling or disassembling.

« exeSearch: an executable objmod search, or just "executable search”, as when
executing or debugging a module.

- -128-

A search is always for a particular target system. For example, an executable search is always
for the host system. A cross-compilation requires intmods and objmods for the system for
which the compilation is done.

The distinction between objmod searches and executable searches allows one version of an
objmod to be executing while another version (possibly for a different target system) is used for
another purpose, such as incremental recompilation.

By default, all searches first look in all open libraries (intlibs for intmods, objlibs for objmods),
more recently opened libraries first, and then try to open a file with the default name, as
described in Section 12.1. This search order may be reversed with the MAINEX "INTFILE",
"OBJFILE", or "EXEFILE" subcommand. The MAINSAIL system objlib is initially open for
exeSearches.

An unsuccessful library search is always immediately followed by a foreign module search in
the case of exeSearches. The foreign module table is constructed with the aid of the Foreign
Language Interface; see the "MAINSAIL Compiler User’s Guide".
Each type of search is governed by a separate list:

 The intList governs intmod searches.

« The objList governs non-executable objmod searches.

* The exeList governs executable objmod searches (in conjunction with the module-
to-module association list; see below).

Each entry on one of these lists indicates that a particular intmod or objmod is to be found in a
particular file or library (or that the objmod is really another objmod, in the case of the module-
to-module association list). The lists are empty unless an entry is specifically created (normally
by a MAINEX subcommand, or by a MAINEX subcommand passed to $getSubcommands, as
described in the "MAINSAIL Utilities User’s Guide"). In the absence of any entries, a default
search occurs, which is often sufficient; the lists are used only to indicate exceptions to the
default search mechanism. If a list indicates that a module is in a particular library, then when
a search is made for that module, the indicated library is automatically opened if necessary.

Each entry on the lists contains the following information:
e the module name,
« the file name in which it is to be found,
« whether the file is a library or a file that contains just one module,

« and the target system to which the entry applies.

-129-

An exeSearch first checks the module-to-module-assocation list, as made by calling the
procedure "setModName" from a MAINSAIL module or by specifying the MAINEX
"SETMODULE" subcommand (see the "MAINSAIL Utilities User’s Guide"). After the
module-to-module substitution is made, if any, an exeSearch behaves like the other two types
of search (there is no equivalent of the module-to-module association list for intSearches and
objSearches). Each type of search checks its list to see whether the target module has an entry
(for the target system), and if so, insists on finding the intmod or objmod in the file or library

specified by the entry. A list can have at most one entry with a given module name and target
system.

For each type of search, MAINEX subcommands are provided to add an entry to the list,
remove an entry from the list, print (part of) the list, and to alter the normal order of search
(libraries before files or vice versa). These subcommands are described in detail in the
"MAINSAIL Utilities User’s Guide"; they are summarized in Table 12.2-1.

-130-

Command
INTFILE

OBJFILE

EXEFILE

INTLIB

OBJLIB

EXELIB

Arguments Description

m{=£f} .
m{=f}

m{=f}

m{=£} ...

m{=f}

m{=£f} ...

INTDEFAULT m ...

OBJDEFAULT m ...

EXEDEFAULT m ...

INTSHOW
OBJSHOW
EXESHOW
INTFILE
OBJFILE
EXEFILE
INTLIB

OBJLIB

EXELIB

intSearch:
file £
objSearch:
file £
exeSearch:
file £
intSearch:
intlib £
objSearch:
objlib £
exeSearch:
objlib £
intSearch:
intmod
objSearch:
objmod
exeSearch:
objmod

get m’s
get m’s
get m’'s
get m’s
get m’'s
get m's
default
default

default

show entries {for
show entries {for
show entries {for

intSearch:
intlibs
objSearch:
objlibs
exeSearch:
objlibs
intSearch:
files
objSearch:
files
exeSearch:
files

search

search

search

search

search

search

intmod from
objmod from
objmod from
intmod from
objmod from
objmod from
search for m's
search for m’s
search for m’s
m ...} in intlList
m ...} in objList
m ...} in exelist
files before
files before
files before
intlibs before

objlibs before

objlibs before

Table 12.2-1. MAINEX Search List Subcommands Summary

-131-

13. Macros

A macro allows an identifier to represent either a constant or arbitrary text. Each occurrence of
the macro identifier (a "macro call") is replaced by the compiler with the associated constant or
text that was specified when the macro was defined. This chapter describes macro definitions
and macro calls.

13.1. "DEFINE"

A macro equate associates an identifier (the "macro name" or the "macro") with text or a
constant expression (the "macro body") that is substituted by the compiler for subsequent
occurrences of the identifier ("macro calls"). A macro definition consists of the keyword
"DEFINE" (or the keyword "REDEFINE"; see Section 13.2) followed by a series of one or
more macro equates, as follows:

DEFINE macroEquatel,macroEquate2, ...,macroEquateN;
The form of a simple macro equate is:
v = macroBody
where v is an identifier and macroBody is a constant or "bracketed text" (Section 13.3).

If macroBody is a constant, the identifier defined is called a "macro constant". macroBody may
be a constant expression of any data type. For example:

DEFINE maxNum = 10;

defines the identifier maxNum to be 10, During compilation, any subsequent occurrences of
maxNum in the module are replaced with the constant 10 (as if the number 10 appeared instead
of maxNum).
The form of a macro equate with parameters is:

v(vl, ..., vn) = [bracketed text]
where the macro identifier v is followed by a parenthesized list of parameter identifiers (the vi)
that may be used within the bracketed text (vn may optionally be preceded by the keyword

"REPEATABLE"; see Section 13.6.1). Subsequent occurrences of v (i.e., macro calls) are
followed by a parenthesized list of arguments, much like a procedure call. Each occurrence of

-132-

the identifier vi within the bracketed text (even within string constants and comments) is
replaced with the corresponding argument text. Macro arguments are described in Section
13.5.

A form of macro equate that involves compiletime interaction with the programmer is
described in Section 13.4. ' '

A macro definition may occur almost anywhere in a program, even in the midst of an
expression, for example. A macro definition cannot occur in the midst of another definition,
except within bracketed text.

Macro identifiers may be used anywhere, even in subsequent macro definitions. For example,
if upperLimit is defined as:

DEFINE upperLimit = 100;

then a subsequent macro definition:

DEFINE threeTimesUpperLimit = 3 * upperLimit;
is equivalent to:

DEFINE threeTimesUpperLimit = 3 * 100;

A macro definition within a procedure body defines new macros that are accessible only within
the body of the procedure. After the end of the procedure body, any earlier definitions (or
declarations) of the macro identifiers are again in effect.
13.2. "REDEFINE"
"REDEFINE" may be used to change the body of a previously defined macro,
In a macro definition headed by "DEFINE", each identifier defined must not have been
previously defined. This restriction is not applied to macro definitions headed by
"REDEFINE". Macro identifiers in macro definitions headed by "REDEFINE" are given new
bodies whether the identifiers were previously defined or not.
A "REDEFINE" within a procedure body may change the body of a macro defined outside the
procedure body. The new macro body remains in effect throughout the rest of the module (or

until a new "REDEFINE" of the macro is encountered).

"REDEFINE" may be used to increment a counter as shown in Example 13.2-1. The macro x
is defined to be O originally. Whenever a call to the macro def occurs, x is redefined to have a

-133-

DEFINE
x = 0,
def(y) = [REDEFINE x = x + 1; DEFINE y = x;];

Example 13.2-1. Use of "REDEFINE"

value one greater than its previous value, and the argument to def is defined to have this new
value of x. Thus the macro calls:

def (casel)

def (case2)

def (case3)
result in casei being defined as i. $def is a more sophisticated, pre-defined version of def; see
Section 14.21.
13.3. Bracketed Text
Bracketed text is a sequence of characters enclosed in matching brackets ("[" and "}"). Itis
used in a macro body to define a macro as almost arbitrary text. The characters are taken just

as is when building the bracketed text; e.g., macro calls are not expanded and compiler
directives are ignored.

The use of bracketed text is shown in Example 13.3-1.
Brackets may appear within the text if they are matched; i.e., each left bracket must be
followed by a matching right bracket, and each right bracket must be preceded by a matching
left bracket.
A macro constant definition such as:

DEFINE bound = 100;
could be written with the same effect using bracketed text as:

DEFINE bound = [100];

but the former is more efficiently compiled.

-134 -

The macro definition

DEFINE verOk = [testSkill(2 * skNum,5,15)];
allows a programmer to use

verOk
to stand for

testSkill (2 * skNum,5,15)

throughout the scope of the definition.

Example 13.3-1. Example of Bracketed Text

13.4. Interactive Definition

A macro equate may omit the "=" and subsequent macro body, in which case the compiler
prompts for and reads a line from cmdFile and uses this line to define the body of the macro.
For example:
DEFINE v1, ..., vn;
causes the compiler to write to logFile for each identifier vi:
DEFINE Vi =

(where Vi is uppercase for vi). It then reads a line from cmdFile. The text:

DEFINE Vi = <line read from cmdFile>;

is then compiled as if it had appeared in the source file.

Another option is to supply a string constant expression that is written to logFile in place of
"DEFINE Vi=". Anexample is:

DEFINE vl ¢cl, ..., vn cn;

-135-

where the ci are string constant expressions. In this case, for each vi, the compiler writes ci
instead of the standard "DEFINE Vi = " message.

For example, when the compiler encounters:
DEFINE maxNumInput,debug "debugging version (TRUE or FALSE)? ";

it first types:

DEFINE MAXNUMINPUT =
If the user types "10", for example, the effect is the same as if:

DEFINE maxNumInput = 10;
had occurred in the program.
The compiler then types:
debugging version (TRUE or FALSE)?

to which the user replies either "TRUE" or "FALSE". If "TRUE" is typed, for example, the
effect is the same as if:

DEFINE debug = TRUE;

had occurred in the program. Thus, this form of macro definition allows the programmer to
interact with the compilation.

Any mixture of the various forms of macro equate can occur with the same macro definition, as
shown in Example 13.4-1.

REDEFINE
debug = TRUE,
callFoo (i) = [foo(i,1)],
version,
compileAllModules
"Compile all modules (TRUE or FALSE): ",
upperBound = 10;

Example 13.4-1. Using Various Forms of Macro Equate

It is possible to have an interactive define of a macro header that contains parameters, e.g.:

-136-

DEFINE xxx(yyy) "xxx(yyy): ";

‘When the compiler prompts for the definition of this macro, the user’s response must be
bracketed text.

13.5. Macro Calls

A "macro call" is the occurrence of a macro identifier at any point in a program after it has been
defined. It directs the compiler to scan the body of the macro as if it appeared in place of the
macro call.

If the macro was defined with parameters (see Section 13.1), a parenthesized list of macro
arguments (see Section 13.6) separated with commas may appear after the macro identifier.
Fewer arguments may be supplied than parameters, in which case the compiler supplies no text
(i.e., acts as if an empty pair of brackets were supplied) for each unspecified argument. No
parentheses are needed if no arguments are specified.

The macro arguments replace all occurrences of the corresponding parameter identifiers in the
macro body, as in Example 13.2-1.

13.6. Macro Arguments

Most macro arguments may consist of the intended text with no special delimiters. But if the
macro argument is a text "fragment” (e.g., if it contains unmatched parentheses), then it must be
enclosed in brackets. An argument with unmatched brackets is not allowed.

The text of each macro argument starts with the first character (other than the "white space”
characters space, tab, eol, or eop) following the previous terminating comma (or the opening
left parenthesis of the argument list).

If the first character of a macro argument is not a left bracket, then the text of the argument is
terminated with the next comma (or the closing right parenthesis) except that nesting counts are
kept of parentheses and brackets; the argument text does not terminate until each nesting count
is zero. That is, each time a left parenthesis (bracket) is encountered, the parenthesis (bracket)
nesting count is incremented by one and each time a right parenthesis (bracket) is encountered,
the appropriate count is decremented by one. The macro argument scan does not terminate
until both counts are zero and a comma or right parenthesis is encountered. Trailing characters
such as space, tab, eol, and eop are removed from the argument text. Comments are discarded;
i.e., if "#" is encountered, the remainder of the line is removed from the argument text.

String constants are treated as a unit; i.e., when a double quote is found, the compiler

immediately scans for the end of the string constant (as described in Section 3.5). Parentheses,
commas, or brackets that occur in the string constant are not specially processed.

-137-

Commas may appear within properly nested parentheses, brackets, or string constants.

If the first character of a macro argument is a left bracket ("["), then the argument is the
sequence of characters up to the next matching right bracket (a nesting count, as described
above, is kept for brackets, and the argument text terminates when the count is zero). This
allows almost arbitrary text to be used as a macro argument; i.e., no attention is paid to
parentheses, commas, string quotes, or comments within square brackets.

13.6.1. Repeatable Macro Parameters, $numArgs, $arg, and $sArg

The last parameter of a macro may be declared repeatable:

DEFINE foo(a,b,REPEATABLE v) = [...];

In a call to such a macro, the arguments that correspond to the repeatable parameter are treated
as if they had been enclosed in square brackets, i.e., as if they were a single argument:

foo(i,j, k,1,m,n) => foo(i,Jj, k,1,m,n])

Each occurrence of the repeatable parameter in the macro body is replaced by the bracketed
text. Thus, an occurrence of "v" in foo’s body expands to "k,l,m,n".

Usually, however, it is desired to deal with one at a time of the arguments passed to the
repeatable parameter, not with all of them at once.

Three special-purpose macros are provided for accessing the individual arguments o