
Language Manual, Volume I

MAINSAIL@

Language Manual, Part I:

Syntax and Semantics

24 March 1989

Copyright (c) 1979, 1983, 1984, 1985, 1986, 1987, 1989, by XIDAK, Inc., Menlo Park, Califomia.

The software desaibed herein is the property of XIDAK, Inc., with all rights reserved, and is a confidential trade secret
of XIDAK. The software desaibed herein may be used only under license from XIDAK.

MAINSAIL is a registered trademark ofXIDAK, Inc. MAINDEBUG, MAINEDIT, MAINMEDIA, MAINPM,
Structure Blaster, roB, and SQUT are trademarks of XIDAK, Inc.

CONCENTRIX is a trademark of Alliant Computer Systems Corporation.

Amdahl, Universal Time-Sharing System, and UTS are trademarks of Amdahl Corporation.

Aegis, Apollo, DOMAIN, GMR, and GPR are trademarks of Apollo Computer Inc.

UNIX and UNIX System V are trademarks of AT&T.

DASHER, DG/UX, ECLIPSE, ECLIPSE MV /4000, ECUPSE MV /8000, ECLIPSE MV /10000. and ECLIPSE
MV {lOOOO are trademarks of Data General Corporation.

DEC,PDP, TOPS-lO, TOPS-20, VAX-H, VAX,MicroVAX,MicroVMS, ULTR1X-32,and VAXNMS are
trademarks of Digital Equipment Corporation.

EMBOS and ELXSI System 6400 are trademarks of ELXSI, Inc.

The KERMIT File Transfer Protocol was named after the star of THE MUPPET SHOW television series. The name is
used by pennission of Henson Associates, Inc.

HP-UX and Vectra are trademarks of Hewlett-Packard Company.

Intel is a trademark of Intel Corporation.

CLIPPER. CLIX. Intergraph. InterPro 32, and InterPro 32C are trademarks of Intergraph Corporation.

System/370, VM/SP CMS. and CMS are trademarks of International Business Machines Corporation.

MC68000. M68000. MC68020. and MC68881 are trademarks of Motorola Semiconductor Products Inc.

ROS and Ridge 32 are trademarks of Ridge Computers.

SPARC, SWl Microsystems. SlDl Workstation. and the combination of SWl with a numeric suffix are trademarks of Sun
Microsystems, Inc.

WINtrCP is a trademark of The Wollongong Group. Inc.

WY-5d. WY-60, WY-75. and WY-lOO are trademarks ofWyse Technology.

Some XIDAK documentation is published in the typefaces "Times" and "Helvetica". used by pennission of Apple
Computer, Inc., Wlder its license with the Allied Corporatioo. Helvetica and Times are trademarks of the Allied
CotpOration, valid lDlder applicable law.

The U$e herein of any of the above trademarks does not create any right. title. or interest in or to the trademarks.

-ii-

Table 01 Contents

1. Introduction
1.1. Version
1.2. The Design of MAINSAil.. .
1.3. Terminology and Symbols
1.4. Conventions Used in This Document.
1.4.1. User Interaction . .
1.4.2. Syntax Descriptions.
1.4.3. Temporary Features .

2. Basic Language Concepts .
2.1. Character Set .
2.2. Comments
2.3. Identifiers
2.4. Use of Semicolons and Fonnatters
2.5. Compiletime Evaluation.
2.6. Storage Units and Character Units
2.7. Type Codes.
2.8. Garbage Collections and Memory Management
2.9. cmdFile and logFile

3. Data Types.
3.1. Boolean
3.2. Integer and Long Integer. . .
3.3. Real and Long Real.
3.4. Bits and Long Bits
3.5. String.
3.5.1. Low-Level String Manipulation . . . '. .
3.5.2. String Constants and Garbage Collection
3.6. Pointer.
3.7. Address
3.8. Charadr
3.9. Conversion Procedures

4. Expressions . .
4.1. Constants. .
4.2. Variables.
4.3. Procedure Expression .
4.4. Substrings . .
4.4.1. "INF"
4.5. If Expression
4.6. Assignment Expression . .
4.7. Compiletime Pseudo-Procedures

- iii-

1
1
1
2
4
4
4
5

6
6
8
9

10
10
11
11
12
13

14
15
15
16
17
19
20
22
22
22
23
25

27
27
27
28
28
29
29
31
32

4.8. Operators and Operations
4.8.1. String Comparison .
4.8.2. Bitwise Operations .
4.8.3. Comparison Chains.
4.8.4. Operator Precedence
4.8.5. Dotted Operators. .
4.8.6. Garbage Collection .
4.9. Assignment Compatibility ..

5. Statements
5.1. Assignment Statement
5.2. Expression Statement.
5.3. Procedme Statement
5.4. Return Statement ..
5.5. Begin Statement. . .
5.6. If Statement. . . .
5.7. Case Statement . .
5.8. Iterative Statement.
5.9. Done Statement
5.10. Continue Statement
5.11. Empty Statement .

6. ~Urrations
6.1. Scope of Identifiers. .
6.2. Simple Variable Declarations.
6.3. Qualifiers.
6.4. "OWN" Qualifier

7. Arrays
7.1. Array Declarations. .
7.2. Array Allocation. .
7.3. Array Disposal ..
7.4. Array Initialization. .
7.5. Accessing an Array Element.
7.6. Clearing an Array
7.7. Array Assignment . .
7.8. Array Comparison . .
7.9. The Short-Array Rule.
7.10. Array Pseudo-Fields.

8. Classes and Records
8.1. Records
8.1.1. The Layout of Fields within a Record. .
8.2. Classes.
8.3. Record Allocation and Disposal. . .
8.4. Classified Pointers and Addresses . .
8.5. Unclassified Pointers and Addresses .

- iv-

32
33
37
38
38
40
41
42

43
43
43
44
45
45
46
48
51
54
54
55

57
58
59
59
60

61
61
62
62
62
65
66
66
67
68
69

71
71
72
73
74
74
75

8.6. Accessing Fields of Records and Storage Templates.
8.7. Explicit Classes in Field Variables. .
8.8. Prefix Classes.
8.8.1. Accessing Prefix Fields
8.9. Related Classes
8.10. "Safe" and "Unsafe" Assignment of Pointers
8.11. Alignment of Chunks

9. Procedures.
9.1. Procedure Declarations .
9.2. Procedure Calls
9.3. Typed and Untyped Procedures .
9.4. Parameters to Procedures
9.5. Parameter Qualifiers
9.5.1. "USES".
9.5.2. "PRODUCES".
9.5.3. "MODIFIES".
9.5.4. "OPTIONAL"
9.5.5. "REPEATABLE"..
9.6. Order of Argument Evaluation
9.7. Array Parameters
9.8. Procedure Qualifiers
9.9. Recursion
9.10. ForwardProcedures
9.10.1. "FORWARD" for Mutual Recursion ..
9.10.2. "FORWARD" for Source Library Declarations
9.11. Inline Procedures
9.12. Generic Procedures
9.12.1. Sample Generic System Procedure
9.12.2. Generic Procedure Instance Selection Algorithm .
9.12.3. Generic Procedure Extension.
9.13. Stack Overflow. . . .

10. Modules and Data Sections .
10.1. Bound and Nonbound Data Sections
10.2. Module Declaration .
10.3. Indirect Access to Interface Fields
10.4. Classes with Procedures
10.5. Direct Access to Interface Fields .
10.6. Module Allocation and Disposal .
10.7. Establishing Module Linkage
10.8. Intermodule Consistency Checking .
10.9. Initial Procedure
10.10. Final Procedure
10.11. Generic Procedures as Field Variables
10.12. Control Sections and Module Swapping. .

-v-

76
78
78
79
80
80
80

84
84
86
86
87
89
89
89
90
90
90
93
94
95
95
96
96
97
98
99

101
101
103
103

105
106
107
108
110
110
III
III
113
113
114
115
116

10.13. Compilation of Several Modules in One File. .
10.14. Nonbound-Invocation Modules ..

11. Intmods. . . •
11.1. Intmod Directives.
11.1.1. Opening Intmods and Accessing Symbols
11.1.2. Module Visibility
11.1.3. Individual Symbol Visibility. . .
11.2. Visibility from Supporting Intmods .
11.3. "RESTOREFROM" and "SA VEON"
11.4. Unqualified Identifier Search Rules .
11.5. Use of Symbols from an Intmod .
11.6. Intmod Search Rules
11.7. Changing an Intmod.
11.8. Sample Use of Intmods.

12. Objmods, Intmods, Libraries, and Search Rules .
12.1. Objmod and Intmod File Names . .

. 12.2. Objmod and Intmod Search Rules

13. Macros.•
13.1. "DEFINE".
13.2. "REDEFINE"
13.3. Bracketed Text
13.4. Interactive Definition
13.5. Macro Calls
13.6. Macro Arguments.
13.6.1. Repeatable Macro Parameters, $numArgs, $arg, and $sArg.
13.7. Determining Whether a Macro Argument Has Been Omitted .
13.8. Bracketed Text in Constant Expressions . . .

14. Compiler Directives and Conditional Compilation. .
14.1. "MESSAGE".
14.2. "SOURCEFILE"
14.3. "CHECK", "NOCHECK", and "CHECKING"
14.4. "$DIRECTlVE"
14.5. "SA VEON" and "RESTOREFROM"
14.6. "ENCODE"
14.7. "$GLOBALREDEFINE"
14.8. "DSP"
14.9. "$LEGALNOTICE".
14.10. Conditional Compilation: "IFC", "THENC", "$EFC", "ELSEC'i

, and "ENDC"
14.11. "$CASEC": Compiletime Case.
14.11.1. Selectors
14.11.2. Selector Matching Rules.
14.11.3. Delimiters of Selected Text.
14.12. "$BEGINC"

- vi-

116
117

119
119
120
120
121
122
122
123
124
124
124
126

127
127
128

132
132
133
134
135
137
137
138
141
141

143
143
143
144
144
145
145
146
147
148
148
149
150
150
150
152

14.13. "$DOC", "$OONEC", "$CONTINUEC", "$FORC": Compiletime Iteration
14.13.1. "$DOC iteratedTextENDC" ..
14.13.2. "$DONEC" and "$CONTINUEC"
14.13.3. "$FORC".
14.14. "DCI}'
14.15. "$TYPEOF"
14.16. "$CLASSOF".
14.17. "$ISCONSTANT" ..
14.18. Scanning Directives
14.19. "NEEDBQDY" and "NEEDANYBODIES"

. 14.20. $compileTimeValue .
14.21. $def.

15. Optimization and Checking.
15.1. Optimization.
15.1.1. $compileTimeValue("OPrIMIZE").
15.2. Checking
15.2.1. $compileTimeValue("CHECKINGSTATUS"),

$compileTimeValue("LOCALCHECKINGSTATUS"), and "CHECKING"
15.3. Arithmetic Checking.

16. Exceptions
16.1. Handle Statement ..
16.2. Handling Exceptions. .
16.3. Propagating Exceptions
16.4. Information about the Current Exception. .
16.5. Nested Exceptions.
16.6. Aborting Procedures.
16.7. Exception Naming Conventions . .
16.8. Predefined Exceptions
16.9. errMsg Response Abbreviations
16.9.1. Sample Use of Registered Exceptions • .

17. Coroutines
17.1. Coroutine Implementation
17.2. Coroutines and Exceptions

18. Files.
18.1. File Names
18.2. The Classes file, textFile, and dataFile .
18.3. Text Files
18.4. Data Files
18.5. Input and Output
18.6. Sequential and Random Access
18.7. Opening a File
18.8. Closing a File
18.9. End-of-File .

- vii-

152
152
152
153
154
154
155
ISS
156
158
159
159

161
161
163
164

167
168

170
171
172
172
173
173
173
174
175
176
178

179
181
183

185
185
187
188
189
189
189
190
191
191

18.10. Tenninall/O and Primary Input and Output • . . . • • . • •
18.11. Device Modules. •
18.12. cmdFile and logFile and MAINSAIL Standard Input and Output. .
18.13. errotOK and File I/O • . . .
18.14. cmdFile and logFile Echoing.
i8.1s. Caching of Files
18.15.1. Introduction. •
18.15.2. File Cache Procedures. .
18.16. Partial Data Reads

19. Date and Time Facilities .
19.1. Representation of Dates and Times • .
19.2. Information Required by MAINSAIL
19.3. GMT Conversions and $timeSubcommandsSet
19.4. Conversion Caveats at the Start and End of Daylight Savings Time (or Other

Adjusted Time)
19.5. MAINEX Time Subcommand Values Appropriate to the Forty-Eight

Contiguous United States.

20. Areas
20.1. Examples and Motivation.
20.2. Area Facilities
20.2.1. Allocation, Clearing, and Disposal
20.2.2. Specifying Memory Management Attributes of an Area .
20.3. Area Caveats.

21. Portable Data Format (PDF)
21.1. Introduction
21.2. PDF I/O.
21.3. Opening a File for PDF I/O .
21.4. Positions in a File Opened for PDF I/O
21.5. $ioSize.
21.6. PDF Example

- viii-

191
192
193
194
194
195
195
196
197

198
198
200
202

202

202

206
206
207
208
208
211

213
213
214
215
216
216
216

Appendices

A. Type Codes

B. Target Platform, Operating System, and Processors .. ' .

C. Predefined Exception Names

D. Target System Attributes .

E. Character Set Identifiers

F. PDF Character Set Translation Tables
F.t. Translation between the ASCn and PDF Character Sets .
F.2. Translation between the EBCDIC and PDF Character Sets .

G. Reserved Identifiers

H. Predefined Non-Reserved Identifiers without Dollar Signs . . .

I. Synonyms . • •

J. Restrictions.
J .1. Portable Data Type Ranges and Data Structure Size Limits .
J .2. Interface Procedures in a Module
J .3. Local Variable Limitations. .
J.4. String Constants in a Module . .
J.5. SizeofaProcedure
J.6. Number of Cases in a Case Statement.
J.7. Uninitialized Variables .
J.8. Init Statement Counts
J.9. Init Statement Constants. . .
J.I0. copy and clear Addresses . .
J.11. FOR-Clause Limit Values. .

K. Modules Shipped in a Standard System

List of Examples

1.4.1-1. How User Input Is Distinguished.

- ix-

220

221

224

225

226

227
227
227

233

235

240

241
241
241
241
241
242
242
243
243
243
243
243

244

4

1.4.2-1. Syntax of a Mailing Address.
2.2-1. Sample Comment.
2.3-1. Legal Identifiers
2.3-2. nlegal Identifiers. .
3.3-1. Real Constants. . .
3.3-2. Long Real Cootants. • . . .
3.5-1. String Constants . .
4.4-1. Substring Examples.
4.4.1-1. Use of "INF". . .
4.5-1. If Expression Used in Assignment Statement .
4.5-2. If Expressions Used as Operands
4.6-1. Assignment Expression
4.8.2-1. Bitwise Operations
4.8.4-2. Precedence of the Assignment Operator in Expressions and Statements .
4.8.5-1. Dotted Operators
5.2-2. Examples of Expression Statements
5.4-1. Examples of Return Statements . . .
5.6-1. If Statement within an If Statement.
5.6-2. Abbreviations Used in If Statements
5.7-1. Sample Case Statement
5.7-2. Three Forms for Selectors
5.7-3. Less Efficient Form Equivalent to a Case Statement .
5.7-4. Choice of a Selector.
5.7-5. Use of an Empty Statement in a Case Statement. .
5.7-6. Inefficient Case Statement . .
5.8-2. Eight Possible Fonns
5.8-4. Sample Iterative Statement.
5.9-1. Sample Use of "DONE"
5.10-1. Iterative Statement with a Continue Statement.
5.10-2. Iterative Statement with If Statement instead of a Continue Statement
5.11-1. Example of an Empty Statement ..
6-1. Where Declarations May Occur.
6.4-1. Sample Use of a Local Own Variable.
7.2-1. Specifying Array Bounds to the Procedure "new" .
7.4-1. Init Statement for a One-Dimensional Array .
7.4-2. How Arrays Are Stored
7.4-3. Init Statement for a Two-Dimensional Array .
7.4-4. Array 80'3 as a Matrix .
7.4-5. Use of Replications
7.7-2. Array Declarations
7.9-3. Examples of the Short-Array Rule .
8.1-1. A Record with Three Fields. .
8.1-2. Field Variables.
8.2-1. Sample Class Declaration
8.4-1. Classes Referring to Each Other. .
8.4-2. Use of a Classified Address. .
8.5-1. Use of an Unclassified Pointer. . .

-x-

4
9

10
10
16
17
19
28
29
30
31
31
37
40
41
44
46
47
47
48
49
49
50
50
51
52
53
54
55
55
56
58
60
63
63
64
64
64
65
67
69
71
71
73
75
75
76

8.6-1. The Use ofField Variables ..
8.8.1-1. Prefix Classes and Pointers .
8.9-1. Related Classes . . • . . .
8.10-1. Examples of Safe and Unsafe Assignments .
9.1-2. Two Procedure Body Forms
9.2-2. Procedure Declaration and Calls. . .
9.3-1. Example of a Typed Procedure .
9.4-1. Parameters and Arguments.
9.5.3-1. Example Using Parameter Qualifiers
9.5.4-1. Use of Optional Argument
9.5.4-2. Use of Optional Arguments, Omitting All Arguments.
9.5.5-1. Use of Repeatable Argument
9.5.5-2. Interaction of "OPTIONAL" and "REPEATABLE",Qualifiers
9.6-1. Calls of Which the Results Are Not Well-Defined .
9.7-1. UseofanArrayParameter
9.7-2. A Modifies Array Parameter
9.9-1. A Recursive Calculation of Fibonacci Numbers. .
9.9-2. Infinite Recursion.
9.10.1-1. Example of Forward Procedure
10.2-1. A Module That Does Not Explicitly Declare Itself .
10.2-2. Sample Module Declaration
10.2-3. A Module That Declares Only a Prefix of Another's Interface. . .
10.4-1. Sample Module Declaration Using a Class
10.5-1. Accessing Data Section Fields, with a Pointer
10.9-1. Default Name of the Initial Procedure
10.10-1. Default Name of the Final Procedure
11.5-1. The Compiler Is Not Confused by Procedures of the Same Name in the Wrong

11.8-1.
11.8-2.
13.2-1.
13.3-1.
13.4-1.
13.8-1.
13.8-2.
14.6-1.
14.7-1.

Module.
A Source File Compiled to Produce an Intmod.
A Module Using an Intmod
Use of "REDEFINE".
Example of Bracketed Text , .
Using Various Fonns of Macro Equate .
Bracketed Text Operands
Concatentation of Bracketed Text and String Constants .
Use of the "ENCODE" Directive
Generating an Aribitrary Number of Empty Modules with
"$GLOBALREDEFINE" .

14.8-1. Use of "DSP".
14.10-1. Nested IFC's
14.15-2. Sample "$TYPEOF" Values
14.16-1. Sample "$CLASSOF" Values .
16.5-1. Sample Nested Handle Statements
16.6-1. Sample Procedure Needing Cleanup.
16.7-2. A Sample Exception Name
16.9-1. Phrases in a Sample errMsg Response . .
16.9-2. Sample Expected Responses.

- xi-

77
79
81
82
85
87
87
88
90
91
91
92
93
93
94
94
95
96
97

108
108
109
110
112
114
115

125
126
126
134
135
136
142
142
146

147
147
149
155
156
173
174
175
176
177

16.9-3. Valid and Invalid Abbreviations . . • .
16.9.1-1. A Sample Call to $registerException. .
17-2. Generator/Processor Coroutines ...
17.1-1. Coroutine Tree
18.2-1. The Field name of the Class file
21.6-1. Data-Format-Independent I/O . . .

List of Tables

1.3-1. Abbreviations
2.1-1. MAINSAa Minimum Character Set. . . .
2.1-2. Character-Set-Independent System Procedures
2.7-1. Type Codes.
3.1-1. Boolean Operators
3.2-1. Integer and Long Integer Operators.
3.2-2. System Procedure for Integer and Long Integer. .
3.3-3. Real and Long Real Operators.
3.3-4. System Procedures for Real and Long Real
3.4-1. Bits and Long Bits Operators
3.4-2. System Procedures for Bits and Long Bits. .
3.5-2. String Operators
3.5-3. System Procedures for String.
3.6-1. Pointer Operators.
3.7-1. Address Operators
3.7-2. System Procedures for Addresses
3.8-1. Charadr Operators
3.8-2. System Procedures for Charadrs .
3.9-1. Allowed Conversions
4.8-1. Unary Operations.
4.8-2. Binary Operations
4.8.3-1. Operators Permitted in Comparison Chains .
4.8.4-1. Precedence of Operators . .
5.2-1. Expression Statement Format ..
5.8-1. Form of Iterative Statement. . .
5.8-3. Explanation of Forms
7.7-1. Array Arguments and Parameters
7.9-1. Multidimensional Subscript Calculation .
7.9-2. Short-Array Rule.
7.10-1. Array Pseudo-Fields
8.11-1. Typical Data Type Sizes
9.1-1. Format of a Procedure Declaration. .
9.2-1. Procedure Call Formats
10-1. A MAINSAIL Module.

- xii-

177
178
180
182
188
217

2
6
8

12
15
15
16
17
17
18
18
20
21
22
23
24
24
25
26
33
34
38
39
44
51
52
67
68
68
70
83
84
86

106

12.2-1. MAINEX Search List Subcommands Summary
14.11.2-1. "$CASEC" Selector Matching Rules
14.15-1. Type Codes As Returned by "$TYPEOF"
15.1-1. Effects of Optimization Directives outside Any Procedure Body or Specified as

a Compiler Subcommand .
15.1-2. Effects of Optimization Directives inside a Procedure p
15.2-1. Effects of Optimization Directives outside Any Procedure Body or Specified as

a Compiler Subcommand
15.2-2. Effects of Checking Directives inside a Procedure p
16-1. System Procedures, Varlables, and Macros for Exceptions
16.7-1. General FOnD of Exception String.
17 -1. System Procedures, Macros, and Variables for Coroutines .
18-1. System Procedures for Files.
19-1. System Procedures and Macros for Date and Time.
19.5-1. MAINEX Time Subcommand Values for the Contiguous United States.
19.5-2. Subcommands Defining the Names of the Time Zones in the Forty-Eight

Contiguous United States .
19.5-3. Subcommands for the Eastern Time Zone: from the Atlantic Seaboard West

through Michigan, Eastern Kentucky, Eastern Tennessee, Georgia, and Florida
Exclusive of the Panhandle •

19.5-4. Subcommands for Indiana except Parts of the Extreme West
19.5-5. Subcommands for the Central Time Zone: Wisconsin, Illinois, Parts of Extreme

Western Indiana, Western Kentucky, Western Tennessee, Alabama, the Florida
Panhandle, Mississippi, Louisiana, Arkansas, Missouri, Iowa, Minnesota,
Eastern North Dakota, Eastern South Dakota, Eastern Nebraska, Kansas except
Parts of the Extreme West, Oklahoma, and Texas except the Extreme West .

19.5-6. Subcommands for the Mountain Time Zone: Western North Dakota, Western
South Dakota, Western Nebraska, Parts of Extreme Western Kansas, Extreme
Western Texas, New Mexico, Colorado, Wyoming, Montana, Southern Idaho,
Parts of Extreme Eastern Oregon, and Utah.

19.5-7. Subcommands for Arizona
19.5-8. Subcommands for the Pacific Time Zone: -Northern Idaho, Washington, Oregon

except Parts of the Extreme East, Nevada, and California
21.1-1. Portable Data Format (PDF) Representation of Data
21.3-1. File I/O Procedures for Which PDP I/O Is Supported
21.6-2. How to Run FVIEW .
A-I. Type Codes
B-3. Target Processors
B-1. Target Platforms.. . . .
B-2. Target Systems
C-l. Predefined Exceptions
0-1. Target System Attribute Bit Values ..
E-1. Supported Character Sets
F.2-1. PDF to EBCDIC Character Set Translation Table .
F.2-2. EBCDIC to PDF Character Set Translation Table .
G-l. Reserved Identifiers
H-l. Non-Reserved Identifiers without Dollar Signs.

- xiii -

131
151
154

162
162

166
166
170
175
179
186
199
202

203

203
204

204

204
205

205
213
215
219
220
221
222
223
224
225
226
228
229
233
235

1-1. MAINSAIL Synonyms
J.I-t. Portable Data Type Ranges and Data Structure Size Limits
K-2. Objmods Shipped in Runtime-Only MAINSAIL Systems .
K-l. Standard MAINSAll.. System Objmods

- xiv-

240
242
244
245

1. Introduction

This document is the definitive reference on MAINSAIL, a computer programming language
supported and marketed by XIDAK, Inc. This manual is intended not to teach the MAINSAIL
language, but rather to answer the questions of programmers who already have some
knowledge of MAINSAIL. New users of MAINSAIL should consult the "MAINSAIL
Documentation User's Guide and Master Index", which lists documents available from XIDAK
on MAINSAIL and the MAINSAIL environment. The "MAINSAll... Overview" and the
"MAINSAIL Tutorial" provide infonnation of particular interest to the new user.

MAINSAIL system procedures, macros, and variables are described in Chapter 1 of part II of
the "MAINSAIL Language Manual" , which should be consulted for information on unfamiliar
identifiers in this manual.

1.1. Version

This version of the "MAINSAIL Language Manual" is current as of Version 12.10 of
MAINSAIL. It incorporates the "Runtime System Version 5.10 Release Note" of October,
1982; the "MAINSAIL Language Version 7.4 Release Note" and the "Runtime System Version
7.4 Release Note" of May, 1983; the "MAINSAIL Language Release Note, Version 8" of
January, 1984; the "MAINSAIL Language Release Note, Version 9" of February, 1985; the
"MAINSAIL Language Release Note, Version 10" of March, 1986; and the "MAINSAIL
Language Release Note, Version 11" of July, 1987.

1.2. The Design of MAINSAIL

MAINSAIL is a programming system designed for the development of portable software, i.e.,
programs that can be transported in source form with no alterations (unless implied by the
nature of the program) among all implementations. The programmer is not prevented from
writing programs that are machine-dependent, but the language design is based on constructs
that can be implemented on a variety of machines, so that the need for machine-dependent
constructs is minimized. To provide a basis for portability it has been necessary to develop
facilities beyond those normally associated with a programming language; for example,
MAINSAIL provides its own intermodule linkage and module loading.

MAINSAIL is a large language. It provides a number of data types, data structuring
mechanisms, and system procedures. Efficient execution and the capability to develop large
software products quickly were more important considerations in the development of the
language than keeping the language small.

-1-

XIDAK reserves the right to upgrade MAINSAIL from release to release. New data types, data
structures. keywords. system procedures. system macros. and system variables may be
introduced at each MAINSAIL release. Insofar as XIDAK deems feasible, such enhancements
will be upward-compatible with previous versions of MAINSAll...

Sizes and layouts of data types and data structures, values of system macro constants, and other
system-dependent information may change from release to release and vary from system to
system. For portability (both among different releases and different computers), these
quantities should be specified symbolically using the features provided in the MAINSAIL
language, and never hardwired into a program.

1.3. Terminology and Symbols

Abbreviations used throughout the manual are shown in Table 1.3-1. These abbreviations are
often used to stand for variables of the data type being abbreviated.

bo BOOLEAN
i INTEGER
li LONG INTEGER
r REAL
lr LONG REAL
b BITS
lb LONG BITS
s STRING
a ADDRESS
c CHARADR ("c" sometimes abbreviates "character")
P POINTER
n Numeric (INTEGER, LONG INTEGER, REAL, LONG REAL)
v,vO, ... Variables
e,eO, ... Expressions
c,cO, ... Constant expressions
s,sO, ... Statements

Table 1.3-1. Abbreviations

In descriptions, the forms "(long) integer", "(long) bits", and "(long) real" mean "integer and/or
long integer", "bits and/or long bits", and "real and/or long real", respectively.

-2-

MAINSAIL keywords (e.g., "BEGIN", "END") are written in all upper case in this manual,
though this is not necessary in MAINSAIL programs. MAINSAIL does not distinguish
identifiers or keywords on the basis of case.

"Compiletime" refers to actions that take place while a program is 'being compiled "Runtime"
refers to actions that take place while a program is being executed.

MAINSAIL implementations are categorized according to, "processor", "operating system", and
"platform". A processor is characterized by a particular instruction set; one or more operating
systems may run on computers containing a given processor. In XIDAK terminology, two
implementations of MAINSAIL run on different operating systems if code for the two systems
must be compiled differently (even if the instruction sets are the same, operating-system­
dependent logic may have to be different). Platform is a narrower category than "operating
system"; i.e., every operating system includes one or more platforms. Although identical code
is generated for all modules compiled for the same operating system, two different platforms
within the same operating system may require different installation procedures or bootstraps, or
may make slightly different operating system calls at runtime. The current lists of processors,
operating systems, and platforms are given in Appendix B.

The "target system" (or "target processor", "target operating system", or "target platform") is
the computer system for which a MAINSAIL program is compiled, i.e., the system on which it
is to run.

"Error" refers to a situation or language consttuct that by default generates an error message
(either at compiletime or at runtime). "Illegal" refers to some language constructs that generate
errors at compiletime. "Undefined" refers to a situation or language construct that is unsafe or
not logically correct, but that mayor may not generate an error message. Programs making use
of an undefined construct or situation may not work the same way from one MAINSAIL
version or implementation to another. "Unspecified" refers to the result of a situation or
operation that does not generate an error and is not logically incorrect, but that may vary from
situation to situation or from implementation to implementation. For example, in operations
that round numbers, the direction of rounding is often unspecified.

MAINSAIL often chooses to leave a construct undefined or unspecified for efficiency
considerations. On MAINSAIL implementations, the fastest form of an operation provided by
the underlying hardware or operating system is usually used, regardless of whether it provides
error condition checks or high precision.

Some error messages can be suppressed; e.g., the "NOCHECK" compiler directive prevents
certain situations from generating error messages. Suppressing error messages with the
"NOCHECK" directive transforms the affected error situations into undefined situations.

- 3-

1.4. Conventions Used in This Document

1.4.1. User Interaction

Throughout the examples in this document, characters typed by the user are underlined.
"<eo1>" symbolizes the end-of-line key on a terminal keyboard; this key is marked "RETURN"
or "ENTER" on most keyboards. In Example 1.4.1-1, "Prompt:" is written by the computer;
the user types "response" and then presses the end-of-line key.

Prompt: response<eol>

Example 1.4.1-1. How User Input Is Distinguished

1.4.2. Syntax Descriptions

Specifications of syntax often contain descriptions enclosed in angle brackets ("<" and ">").
Such descriptions are not typed literally, but are replaced with instances of the things they
describe. For example, a specification of the syntax of the address on an envelope might appear
as in Example 1.4.2-1.

<name of addressee>
<street number> <street name>
<town or city name>, <state abbreviation> <zip code>

Example 1.4.2-1. Syntax of a Mailing Address

Optional elements in command or syntax descriptions are often enclosed in curly brackets (" {"
and ") "). For example, a string of characters specified as "{ A) B {C) " could have anyone of
the forms "B", "BC", "AB", and "ABC". Alternatives may be enclosed in square brackets (or
curly brackets, if all alternatives are optional) and separated by vertical bars ("I"); "[AlBIC]"
means "A", "B",or "C"; "(AlB)" means "A", "B",ornothing.

-4-

1.4.3. Temporary Features

Temporary features that have not acquired a final form are marked as follows:

TEMPORARY FEATURE: SUBJECT TO CHANGE

Temporary features are subject to change or removal without notice. Programmers who make
use of temporary features must be prepared to modify their code to accommodate the changes
in them on each release of MAINSAIL. It is recommended that code that makes use of
temporary features be as isolated from normal code as possible and thoroughly documented.

-5-

2. Basic Language Concepts

2.1. Character Set

MAINSAIL does not Specify the exact character set of the system on which it runs; however, it
is guaranteed that a unique character corresponds to each of the characters shown in Table
2.1-1. MAINSAIL cannot guarantee the graphics associated with each character, but they are
chosen to approximate those shown.

ABCDEFGH I JKLMNOP QRS TUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789
!"t$&' (*+ /
< = > ? [] A @ \ % ' ~

space (blank)
tab (horizontal tab)
eol (end-of-line)
eop (end-of-paqe)
$nulChar (null character)

Table 2.1-1. MAINSAIL Minimum Character Set

Associated with each character is an integer code. Character codes range from 0 to the
predefined constant $maxChar, which has the value 255, since MAINSAIL characters occupy
eight bits each. In this manual the term "character" is often used to mean "character code".
The following may be assumed about the ordering of character codes:

• 'A' through 'Z' are alphabetically ordered, but not necessarily contiguous.

• 'a' through 'z' are alphabetically ordered, but not necessarily contiguous.

• '0' through '9' are numerically ordered and contiguous.

Although lowercase letters are guaranteed to have character codes, some peripherals may not
provide lower case. It is recommended that portable programs not depend on upper/lower case
distinctions~ For example, a program that reads commands from a terminal should not use "A"
for one command and "a" for another.

-6-

The three identifiers "tab", "eol", and "eop" are predefined by MAINSAIL as stting constant
macros.

The exact effect of a tab is peripheral-dependent, but it usually positions to the next horizontal
tab stop. MAINSAIL does not define tab stops since the peripherals on which tabs have an
effect may not be under MAINSAIL's control. Tab stops are often defined to be every fourth
or eighth column. The tab character has the code 9 on ASCII systems and 5 on EBCDIC
systems.

eol ("end-of-line") is a one-character string that indicates the end of a line of text When
written to a file it tenninates a line, so that the next character is written at the start of the next
line. The eol character typically has the code 10 on ASCn systems and 37 on EBCDIC
systems (it is possible that other values may be encountered).

When reading a line from a text file with the system procedure "read", MAINSAIL searches for
an end-of-line by searching for eol. The eol character is discarded. All characters up to the
end-of-line sequence make up the line as produced by "read".

eop ("end-of-page") is a single-character string that indicates the end of a page of text When
printed to a file it tenninates a page (the next character is written at the top of the next page).
The eop character has the code 12 on ASCII and EBCDIC systems.

Each implementation specifies a "null character" that is by default ignored (discarded) when
encountered in a text input file. The null character code is given by $nuIChar. The null
character code for an ASCII or EBCDIC character set is the code O. See Section 1.259 of part
II of the "MAINSAn. Language Manual" for further infonnation about the treatment of null
characters in a text input file.

The MAINSAIL compiler translates character codes (e.g., in string constants) from the host
character set (the one used by the compiler) to the target character set (the one used by the
compiled program). Unique characters on the host machine are translated to unique characters
on the target machine, provided that the host characters are among those shown in Table 2.1-1.
Other characters are used at the programmer's risk; if a character cannot be translated to the
target character set, a compiletime error occurs. Characters in comments are not translated to
the target character set; they affect only the portability of the source text itself.

Table 2.1-2 shows the system procedures provided to complement the minimal assumptions
guaranteed above. The argument to each is an integer character code.

-1 is used in several situations to represent "no character", since no character code can be -1
(codes are guaranteed nonnegative). For example, "first(s)" returns the character code of the
first character of the string s; if s is empty (i.e., contains no characters), then "first(s)" is -1.

-7-

isLowerCase(i)

isUpperCase(i)

isAlpha(i)

isNul(i)

prevAlpha(i)

nextAlpha(i)

cvl (i)

cvu(i)

True if i is the code for one of
a." •• z.

True if i is the code for one of
A ••• Z.

True if i is the code for one of
a ••• zA ••• Z •

"isNul(i)" is true if i is the code
for the null character, $nulChar.

Code of the alphabetically previous
character (same case) before the one
with code i. Undefined if i is not
the code for one of b ... zB ... Z.

Code of the alphabetically next
character (same case) after the one
with code i. Undefined if i is not
the code for one of a ... yA ..• Y.

If i is the code for one of A .•. Z,
then the result is the code for the
corresponding lowercase letter;
otherwise it is i itself.

If i is the code for one of a ... z,
then the result is the code for the
corresponding uppercase letter;
otherwise it is i itself.

Table 2.1-2. Character-Set-Independent System Procedures

2.2. Comments

A comment is used for documentation in MAINSAll.. source code. A comment starts with the
character "#" and extends to the end of the line; when the compiler comes upon "#", it ignores
the remainder of the line. A comment may begin anywhere on a line. See Example 2.2-1.

- 8-

all] := 0; t clear first element

Example 2.2-1. Sample Comment

A large body of text may be "commented out" in three ways:

1. Insert tI#" at the start of every line.

2. Use conditional compilation: "IFC FALSE THENC ignoredText ENDC" (see
Section 14.10).

3. Use "SKIPSCAN" and "BEGINSCAN" to skip pages (see Section 14.18).

2.3. Identifiers

An identifier is (an optional dollar sign followed by) a letter followed by any number of letters
and digits. The letters and digits must be contiguous (e.g .• no intervening spaces).

In comparing identifiers. the compiler does not distinguish between upper- and lowercase
letters; e.g., it considers the identifiers "typecode", "typeCode", and "TYPECODE" to be
identical. There is no "break" character for identifiers; programmers with access to lower case
may use a mixture of lower and upper case to show the structure of identifiers. For example,
"sizeOfArray" is more understandable than "sizeofarray" or "SIZEOF ARRAY".

Certain identifiers ("keywords" such as "BEGIN", "END", and "ARRA yII) are "reserved" and
cannot be declared or defined by the programmer. A list of the reserved identifiers is given in
Appendix O.

Certain other identifiers (e.g., "tab", "create". "delete") are predefined by MAINSAIL and
cannot be declared by the programmer.

"$" is the initial character of certain predefined and predeclared identifiers used by the
MAINSAIL runtime system. This avoids conflicts with the programmer's identifiers, which
must not begin with "$". When XIDAK creates a new predefined identifier, it begins with "$".
A user declaration of an identifier beginning with "$" has undefined consequences.

Examples of legal identifiers are shown in Example 2.3-1.

Examples of illegal identifiers are shown in Example 2.3-2.

-9-

i,j,k,l,m,n
make4sets
aVeryLongldentifier

* common integer identifiers

* same as AVERYLONGIDENTIFIER

Example 2.3-1. Legal Identifiers

array
5th
cost-in-$

* reserved identifier
* starts with a number
t "$" and "-" cannot be used

Example 2.3-2. Illegal Identifiers

2.4. Use of Semicolons and Formatters

Semicolons separate (rather than terminate) declarations and statements. They terminate
compiler directives, procedure headers, and macro definitions.

Usually any number of formatters (e.g., spaces, tabs, and ends-of-line) may separate syntactic
units. When in doubt, consult the description of the language construct in question.

2.5. Compiletime Evaluation

The compiler evaluates boolean, (long) integer, (long) bits, and string operations with constant
operands at compiletime. A call to a system procedure declared with qualifier
"COMPILETIME" is evaluated at compiletime if all the arguments are constants. The term
"constant expression" refers to an expression that can be evaluated at compiletime.

All compiletime arithmetic is carried out on string representations (with a very large number of
digits) so that the capabilities of the computer on which the compiler is running do not affect
the results. Integer arithmetic operations that overflow and (long) bits operations that discard
bits to the left may therefore not have the same result at compiletime as they would have had if
the operations had been performed on the target at runtime.

String operations evaluated at compiletime produce the same result that would have been
produced if they had been evaluated at runtime; i.e., they act on strings as translated to the
target character set, rather than as on the host machine.

- 10-

If an expression contains constant subexpressions, the subexpressions should be enclosed in
parentheses to ensure that they are evaluated at compiletime. For example, "i + 2 + 4", where i
is not evaluated at compiletime, should be written as "i + (2 + 4)" to ensure that the addition of
2 and 4 is done at compiletime. It might otherwise be treated as "(i + 2) + 4", which involves
two additions during execution.

2.6. Storage Units and Character Units

A storage unit is the basic measure for the amount of memory required by the various data
types. For example, a storage unit may represent a "byte" or "word", although these concepts
are not used by MAINSAIL. Every storage unit contains a processor-dependent number of
bits, given by the predefined constant $bitsPerStorageUnit.

Data files and memory in which values of the MAINSAIL data types are stored are viewed as
linear sequences of storage units. Storage units are employed in situations requiring a measure
of memory or file size without regard to data type, e.g., as an argument to the system procedure
setPos for a data file.

The system procedure "size" can be used to detennine the number of storage units occupied by
a particular data type or record. The procedure $ioSize can be used to determine how many
storage or character units a data type occupies in a given data file. "DSP" returns the offset in
storage units from the start of a record to a field in the record.

Text files and memory in which characters are stored may be viewed as linear sequences of
"character units". Character units are employed when a file or memory position must be
specified as the number of characters it contains, e.g., as an argument to the system procedure
setPos for a text file. A character unit is always eight bits.

Character units do not necessarily coincide with storage units, but storage units are always an
integral multiple of character units. The number of bits per character unit (eight) is defined as
$bitsPerChar, so the number of character units per storage unit is given by
"$bitsPerStorageUnit DIV $bitsPerChar".

2.7. Type Codes

Each data type is assigned an integer type code that is used in various ways in MAINSAIL,
e.g., as an argument to the compiletime system procedure "size".

Predefined integer constants for the type codes are shown in Table 2.7-1.

- 11 -

Each of these identifiers is a predefined
integer constant:

booleanCode
integerCode
longlntegerCode
realCode
longRealCode
bitsCode
longBitsCode
stringCode
addressCode
charadrCode
pointerCode

For example:

size (integerCode)

is the number of storage units in an integer.

Table 2.7-1. Type Codes

2.8. Garbage Collections and Memory Management

The MAINSAIL runtime system automatically reclaims the space occupied by records, arrays,
and data sections (collectively known as "chunks") and by string text if the chunks or text
become inaccessible. A chunk is inaccessible if no accessible pointer (local variable or pointer
in an accessible chunk) references it; string text is inaccessible if no accessible string descriptor
references it Garbage collections (and other memory management operations; "garbage
collections" is often used in this manual to denote a variety of memory management
operations) can move chunks and string text as well as deallocate them. This is usually
invisible to a program, since the referencing variables are automatically updated to point to the
moved data.

Variables of the types address and charadr are not updated during a garbage collection, even if
they point to structures that may be moved. The user ordinarily uses variables of these data
types to point into "scratch space" (or "static space"), i.e., areas of memory in which data are
not collected. Scratch space may be obtained by calling the system procedure newPage or the
system procedure new Scratch.

- 12-

Constructs that may trigger garbage collections are noted in this manual.

Since garbage collections may take a great deal of time, the programmer may wish to prevent
collections if he or she knows that few inaccessible data are being generated. This may be
accomplished by incrementing the system variable $collectLock (although doing this may
cause MAINSAIL to run out of memory if inaccessible data are in fact being generated). The
system procedure $collect causes a collection to be performed, even when $collectLock is non­
zero. Collections can also be prevented (or reduced in scope or frequency) indirectly by calling
the system procedure "dispose" to deallocate data structures explicitly whenever possible.

Frequency of garbage collection can be controlled by using the utility CONF to set various
parameters in a MAINSAIL bootstrap; see the "MAINSAIL Utilities User's Guide" for details.

2.9. cmdFile and logFile

cmdFile and logFile are files associated by default with a MAINSAIL execution's primary
input and primary output (usually terminal input and teoninal output), respectively. They are
described in Section 18.12.

- 13 -

3. Data Types

This chapter describes MAINSAIL's eleven data types: boolean, integer, long integer, real,
long real, bits, long bits, string, pointer, address, and charadr. Arrays, records, and data
sections, which are "data structures" rather than "data types" in MAINSAIL terminology, are
described in Chapters 7, 8, and 10, respectively.

Associated with each data type is a set of values and a set of operations that may be performed
on the values. The set of values associated with each data type includes a value called the
"Zero" of the data type. The memory representation of the Zero of every data type consists
entirely of O-bits.

There is no implicit data type conversion in MAINSAIL. For example, if i is an integer
variable and r a real variable, then "i + r" is an illegal expression. Conversion procedures are
provided to convert arguments to another data type. They are discussed in Section 3.9. "cvi",
for example, is a procedure that converts its argument to an integer; "i + cvi(r)" is a legal
expression.

The difference between the data types integer, real, and bits and their corresponding "long"
types is the guaranteed "range" of values. For example, an integer in a portable program may
have a value between -32767 and 32767, inclusive, while a long integer may have a value
between -2147483647 and 2147483647, inclusive. Some machines can easily support both
ranges, while others can support the long ranges only through the use of "software packages";
the programmer should employ the long forms only when necessary, since they may be less
efficient.

A program that generates a value outside of the machine-dependent range of its data type
behaves in an undefined fashion. Overflow and underflow are not necessarily caught; see the
appropriate operating-system-dependent MAINSAIL user's guide for details.

It is an error to use a constant that cannot be represented on the target machine, e.g., an integer
that is too large.

For each data type discussed in this chapter, a list of the operators that may be used with values
of the data type is given. All operators are described in more detail in Section 4.8. Each data
type description also includes a brief description of some of the system procedures that may be
used with it Complete system procedure descriptions are given in Chapter 1 of part II of the
"MAINSAIL Language Manual".

XIDAK reserves the right to create new MAINSAIL data types, and to enhance any system
procedure, macro, or variable to handle such new data types.

-14 -

3.1. Boolean

Boolean values are the logical values true and false. The boolean constants are "1RUEtI and
''F ALSEtt. The boolean Zero is ttp ALSEtt.

The operators shown in Table 3.1-1 may be used with boolean expressions.

OR AND NOT NEQ :=

Table 3.1-1. Boolean OperatOrs

3.2. Integer and Long Integer

Integer and long integer are data types for representing mathematical whole numbers. An
integer is guaranteed the range -3.2767 to 32767; a long integer, -2147483647 to 2147483647.

An integer constant is composed of an optional minus sign (tt -tI) followed by decimal digits (tlOtl
through tt9tt). Some examples are: tt1874tt , tt_53tt , and ttOtt.

A long integer constant is like an integer constant except that it must be immediately followed
by the letter ttLtt (or lowercase ttl tt), e.g., tt1874Ltt, tt-53L'\ ttOLtt, or tt298752341".

A character enclosed in single quotes represents the integer constant of which the value is the
target-machine character code of the enclosed character. For example, 'A' represents the
integer constant that is the character code of the letter tt Att on the target machine. Character
codes are discussed in Section 2.1.

The integer Zero is ttOtt, and the long integer Zero is ttOLtt (or ttOltt).

The operators shown in Table 3.2-1 may be used with (long) integer expressions.

OR
AND
NOT

NEQ
<

LEQ
>
GEQ

MIN
MAX

+
- (unary & binary)

*

Table 3.2-1. Integer and Long Integer Operators

- 15 -

DIV
MOD

The system procedure shown in Table 3.2-2 may operate on (long) integer expressions.

abs absolute value of a (long) integer

Table 3.2-2. System Procedure for Integer and Long Integer

3.3. Real and Long Real

Real and long real are data types for representing "floating point" numbers. A floating point
number consists of a fraction and a power-of-ten exponent; the value of the number is the
product of the fraction and ten to the power of the exponent. For a real, the fraction is
guaranteed to have at least six full decimal digits of significance. The exponent is guaranteed a
range wide enough that at least one number less than or equal to ten to the minus 38th power
(1.0E-38) can be represented as a real, and at least one number greater than or equal to ten to
the plus 38th power (1.0E+38) can be represented as a real. For a long real. the fraction is
guaranteed to consist of at least 11 full decimal digits, and the exponent range is guaranteed to
be at least as large as that of a real exponent.

A real constant is like an integer constant except that it has either a decimal point, an exponent,
or both. An exponent immediately follows the last digit (or the decimal point if it is last), and
is the letter "E" (or "e") immediately followed by an integer. A nonnegative exponent may be
separated from "E" by "+". Some real constants are shown in Example 3.3-1.

1874.56
-.78E-3 (= -.00078)
O.
1E3 (= le3 = lE+3 = 1.E3 1.E+3

Example 3.3-1. Real Constants

1000.)

A long real constant is like a real constant except that it must be immediately followed by the
letter "L" (or lowercase "1"), as in Example 3.3-2.

The real Zero is "0.", and the long real Zero is "O.L" (or "0.1").

The operators listed in Table 3.3-3 may be used with real and long real expressions.

- 16-

OR
AND

NOT
NEQ
<

12387658.5L
-.57E28L
O.OL (= O.L)

Example 3.3-2. Long Real Contants

LEO
>
GEQ

:=
MIN
MAX

+
- (unary & binary)

*

Table 3.3-3. Real and Long Real Operators

/

The system procedures shown in Table 3.3-4 may be used with real and long real expressions.
Trigonometric functions such as sin, cos, and log are also provided; see Chapter 1 of part II of
the "MAINSAIL Language Manual".

abs absolute value of a (long) real
ceiling smallest (long) integer not exceeded by a (long)

real
floor largest (long) integer not exceeding a (long)

real
truncate truncate a (long) real to a (long) integer

Table 3.3-4. System Procedures for Real and Long Real

3.4. Bits and Long Bits

Bits and long bits are data types for representing sequences of bits. The difference is that a bits
consists of (at least) 16 bits and a long bits consists of (at least) 32 bits. Bits may take part in
bit operations such as masking, shifting, and testing.

A bit has two states, 0 and 1, sometimes called "O-bit" and "I-bit" or "clear" and "set". To
cause a bit to enter the 0 state is to "clear" it; to cause it to enter the 1 state, to "set" it

- 17-

A bits constant is a sequence of characters preceded by a single quote and a letter that indicates
the base: "B" (or "b") for binary (base 2), "0" (or "0") for octal (base 8), or "H" (or "h") for
hexadecimal (base 16). The base letter may be omitted for octal; i.e., octal is the default.

Each binary character ("0" or "1 ") represents a single bit. Each octal character ("0" through
"7") represents three bits (000 through 111). Each hexadecimal character ("0" through "9", "A"
through "F") represents four bits (0000 through 1111). The lowercase letters "a" through "f',
like "A" through "F", can be used to represent the bit patterns 1010 through 1111 in
hexadecimal constants.

The bits for each character are concatenated to obtain the bits of the constant. For example,
"'BIOIOll", '''053'' (or just "'53") and "'H2B" all represent the same bit sequence 101011
(ignoring leading zeros).

Other examples of bits constants are "'573", "'BIOll1", and "'H82A3".

A long bits constant is like a bits constant except that it must be immediately followed by the
letter "L" (or lowercase "1"), e.g., "'743L" (= 'B 111100110L = 'HID6L = 'hld61).

The bits Zero is "'0" (or equivalently "'BO" or "'00" or "'HO"); the long bits Zero is the bits
Zero followed by "L" (or lowercase "I"), e.g., "'OL".

Bits are numbered from right to left starting with zero.

The operators shown in Table 3.4-1 may be used with bits and long bits expressions.

OR
AND

NOT
NEQ
TST

NTST
TSTA
NTSTA

:=
lOR
XOR

MSK
CLR
SHL

Table 3.4·1. Bits and Long Bits Operators

SHR

The system procedures shown in Table 3.4-2 may operate on bits and long bits expressions.

bMask
IbMask

form a bits mask (sequence of l-bits)
form a long bits mask (sequence of l-bits)

Table 3.4-2. System Procedures for Bits and Long Bits

- 18-

3.5. String

String is a data type for representing and manipulating sequences of characters.

A string is a variable-length sequence of characters. MAINSAIL automatically keeps track of
how many characters are in a string. A string may contain up to 32766 characters, although
long strings may result in serious inefficiencies when used in certain operations.

A string constant is a sequence of characters enclosed in double quotes. Some examples are
shown in Example 3.5-1. A double quote is represented in a string constant with two double
quotes. Each pair of double quotes stands for one double quote inside the string. For example,
the last string in Example 3.5-1 contains two embedded quotes. It contains 23 characters; the
two extra double quotes are not retained as part of the string constant, since they are only
indicators to the compiler.

"Hello"
"She is 12 years old"
"The umbrella cost $2.50"
"He cried ""Wolf!'''' again."

Example 3.5-1. String Constants

A string constant may extend across line and page boundaries; the characters that indicate the
boundaries are part of the constant. For example, the string:

"This is a string constant that extends
across a line boundary in the source text"

has an embedded eo1. It could also be written:

"This is a string constant that extends " & eol &
"across a line boundary in the source text"

The concatentations are performed at compiletime, since all the strings involved are constants.

The string Zero (sometimes called the "null string") is "". It is the string consisting of no
characters.

"&" is the concatenation operator. "sl & s2" is the string consisting of the characters of sl
immediately followed by the characters of s2. Thus, if s 1 has the value:

- 19-

"This is "

and s2 has the value:

"a concatenated string"

then the expression "sl & s2" has the value:

"This is a concatenated string"

Substrings are described in Section 4.4, and string comparison in Section 4.8.1.

The operators shown in Table 3.5-2 may be used with string expressions.

OR
AND

NOT
NEQ
<

LEQ
>
GEQ

:=
MIN
MAX

Table 3.5-2. String Operators

&

The system procedures shown in Table 3.5-3 may operate on string expressions.

3.5.1. Low-Level String Manipulation

Strings are represented in memory as "string descriptors", composed of a length and a character
address. String descriptors usually point to characters stored in a region of memory called
"string space". The characters stored in string space are subject to garbage collection if they
become inaccessible (i.e., no string descriptor points to them). The characters of a string
allocated in scratch space or created by a foreign language procedure do not reside in string
space. The user who needs to move such a string into MAINSAIL's string space may do so by
means of the system procedure $getInArea.

Most programs that do not call foreign language procedures do not need to manipulate strings
or string descriptors explicitly with newString or $getInArea.

More complete information on the MAINSAIL string implementation, along with suggestions
for efficient use of strings, may be found in the "MAINSAIL Tutorial".

- 20-

length

cvu
cvl

compare

equ

first
last

read
write

cRead
cWrite

rcRead

rCWrite

$dup

scan

scanSet
$scanSet
scanRel

newString

number of characters in a string

convert a string to upper case
convert a string to lower case

return -1, 0, or 1 to indicate comparison of
two strings (see Section 4.8.1). Can be
made to treat upper and lower case identically,
i.e., a "caseless" comparison

returns true if two string arguments are equal.
Like "compare", can do a caseless comparison

first character of a string
last character of a string

reads a value from a string
writes a value to a string

reads a character from a string
writes a character to a string

reads a character from the end of a string
(reverse cRead)
writes a character to the front of a string
(reverse cWrite)

reduplicate a string (concatenate with itself)

scans a string according to a scan
specification
sets up scan bits to be used with scan
sets up scan integers to be used with scan
releases scan bits or integers used with scan

create a string descriptor from a charadr and
a length

$getInArea ensure that a string is in MAINSAIL's string
space

Table 3.5-3. System Procedures for String

- 21 -

3.5.2. String Constants and Garbage Collection

The first time each string constant in a module is used, its characters may be copied into string
space. This can trigger a garbage collection. Subsequent uses of the same string constant (in
the same module) use the previously copied characters, and so do not cause a collection.

3.6. Pointer

Pointer is a data type for referencing records or data sections. Pointers are frequently
"classified", i.e., associated with a particular class, as described in Section 8.4.

The only pointer constant is "NULLPOINTER", which is the pointer Zero. A nullPointer
references no record or data section.

The operators in Table 3.6-1 may be used with pointer expressions.

OR AND NOT NEQ :=

Table 3.6-1. Pointer Operators

3.7. Address

Address is a data type for representing the location of a storage unit in memory. Addresses
may be used for loading and storing values of any data type to and from memory. Individual
characters are usually loaded and stored by means of the data type charadr.

Address is a "low-level" data type; many user programs can be written without the use of
addresses.

Not every address representable on a processor is a valid MAINSAIL address; e.g., on some
implementations of MAINSAIL, an address that is not a multiple of the size of the smallest
data type is considered "unaligned" (or "non-data-type-aligned") and is invalid. Portable
programs must therefore compute addresses as linear combinations of exact multiples of the
sizes of MAINSAIL data types. Furthermore, during any particular execution of MAINSAIL,
some addresses may be invalid for reading or writing because the storage units they reference
are protected by the operating system. The use of an invalid address is undefined. Storage
units in regions of memory allocated by the system procedures newScratch and newPage are
always valid for reading or writing. Storage units in regions of memory allocated by the

- 22-

system procedure "new" are also valid for reading and writing, provided that invalid values
(e.g., pointers not pointing to a valid MAINSAll... data structure) are not stored into a
MAINSAll.. data structure. Storing into other parts of memory is undefined, since it may
overwrite MAINSAIL runtime data structures.

The address of a collectable MAINSAIL data structure may change if a garbage collection
occurs; an address variable is not updated in such a case. Collectable data are normally
referenced with the pointer and string data types, which are updated when a garbage collection
occurs.

Addresses may be classified like pointers; see Section 8.4.

The only address constant is "NULLADDRESS", which is the address Zero.

Addresses are ordered with respect to the relative position of the referenced storage units in
memory. It is this order that is used when comparing addresses, or using "MIN" or "MAX" on
an address.

The operators shown in Table 3.7-1 may be used with address expressions.

OR
LEQ

AND

>
NOT
GEQ :=

NEQ
MIN

Table 3.7-1. Address Operators

<
MAX

System procedures used in operations with addresses are shown in Table 3.7-2.

3.8. Charadr

Charadr ("character address") is a data type for representing the address of a character unit in
memory. Data other than characters are usually loaded and stored by means of the address data
type.

Charadr is a "low-level" data type; many user programs can be written without the use of
charadrs.

As with addresses, there may be charadr values at which the effect of performing a load or store
is undefined; see Section 3.7.

The only charadr constant is "NULLCHARADR", which is the charadr Zero.

-23-

clear

copy

(x) Load

store

displace

clears storage units of memory

copies storage units from one memory
location to another

loads a value (of data type x) from memory

stores a value into memory

returns an address that is displaced n
(one of its arguments) storage units from
another address

displacement, lDisplacement

newPage

pageDispose

newScratch

computes the distance between two
addresses

gets some memory pages

disposes of pages obtained with newPage

returns the address of some memory for
"scratch space"

scratchDispose disposes of scratch space

read reads a value from an address

write writes a value to an address

Table 3.7-2. System Procedures for Addresses

The operators shown in Table 3.8-1 may be used with charadr expressions.

OR
LEQ

AND

>
NOT
GEQ :=

NEQ
MIN

Table 3.8-1. Charadr Operators

- 24-

<
MAX

System procedures used in operations with charadrs are shown in Table 3.8-2.

clear

copy

cLoad

store

cRead

cWrite

displace

clears character units of memory

copies characters from memory starting at one
charadr to memory starting at another charadr

loads a character from memory

stores a character into memory

reads a character from memory

writes a character to memory

returns a charadr that is displaced n (one
of its arguments) characters from another
charadr

displacement computes the distance between two charadrs

newString makes a string (descriptor) from a cnaradr
and an integer (length)

Table 3.8-2. System Procedures for Charadrs

3.9. Conversion Procedures

A conversion procedure converts from one data type to another. For example, if the value of
the real variable r is 8., then "cvi(r)" has the integer value 8, where "cvi" isthe convert­
to-integer procedure. MAINSAIL does not provide implicit data type conversion; the
programmer is responsible for using conversion procedures where necessary.

A conversion procedure for converting a value of type x to type y is provided for each x-y
combination for which the box is marked in Table 3.9-1. The data type abbreviations listed in
Table 1.3-1 are used in Table 3.9-1.

For detailed descriptions of the conversion procedures, see Chapter 1 of part II of the
"MAINSAIL Language Manual".

- 25-

MAINSAIL does not guarantee to catch underflow or overflow in conversions. The effect is
undefined of calling one of the MAINSAIL system routines that converts a string to numeric
value (e.g., read, cvi, cvli, CVf, cvlr) if the numeric value is outside the range supported by the
processor.

\y +----+----+----+----+----+----+----+----+----+----+
x\ 1 i 1 Ii 1 r 1 lr 1 b 1 Ib 1 s 1 a 1 c 1 p 1

+----+----+----+----+----+----+----+----+----+----+----+
1 i I * 1 * 1 * 1 * 1 * 1 * 1 * 1 1 1 1
+----+----+----+----+----+----+----+----+----+----+----+
1 Ii 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 1 1
+----+----+----+----+----+----+----+----+----+----+----+
Ir 1* 1* 1* 1* 1 1 1* 1 1 1 1
+----+----+----+----+----+----+----+----+----+----+----+
1 lr 1 * 1 * 1 * 1 * 1 1 1 *
+----+----+----+----+----+----+----+----+----+----+----+
Ib 1* 1* 1 1 1* 1* 1* 1 1 1 1
+----+----+----+----+----+----+----+----+----+----+----+
1 lb 1 * 1 * I 1 1 * 1 * 1 * 1 * 1 * I 1
+----+----+----+----+----+----+----+----+----+----+----+
1 s I * I * I * I * 1* 1 * 1 * 1 ,I * I 1
+----+----+----+----+----+----+----+----+----+----+----+
la 1 1* 1 1 I 1* 1 1* 1* 1* I
+----+----+----+----+----+----+----+----+----+----+----+
I c I I I I I I * I 1 * I * I I
+----+----+----+----+----+----+----+----+----+----+----+
I p I I I 1 1 1 1 1 * 1 1 * 1
+----+---~+----+----+----+----+----+----+----+----+----+

* means the conversion procedure "cvy" is available and
converts values of data type x to data type y.

Table 3.9-1. Allowed Conversions

- 26-

4. Expressions

An expression provides the means of accessing and computing values.

An expression can be a constant, a variable, a call to a typed procedure (a Procedure
Expression), a substring, an If Expression, an Assignment Expression, a compiletime pseudo­
procedure. or a combination built up with operators and parentheses. Unless otherwise stated,
the order of evaluation of the components of an expression is unspecified.

4.1. Constants

A "constant" represents a value known when the program is written. See Chapter 3 for the
exact format of each data type's constants. Symbolic constants may be defined as described in
Chapter 13.

4.2. Variables

A "variable" provides access to a data value. Variables are used rather than constants when the
programmer knows that a value will be needed in a given computation but does not know in
advance what the value will be.

The data type and other attributes of a variable are given in the variable's declaration; see
Chapter 6.

The value of a variable may be changed by an Assignment Statement (Section 5.1), by an
Assignment Expression (Section 5.2), or by a dotted operator (Section 4.8.5), or when used as a
procedure argument corresponding to a modifies or produces parameter (Section 9.5).

A variable is either a simple variable, a subscripted variable, or a field variable.

A simple variable is an identifier associated with a single value that may be changed during
program execution as governed by its data type. For example, if n is an integer variable, it may
be assigned integer values during program execution.

Subscripted variables are used to access the elements of an array (see Section 7.5) and field
variables are used to access the fields of a record (see Section 8.6) and the interface fields of a
module (see Section 10.3).

- 27-

4.3. Procedure Expression

A Procedure Expression is a procedure call used in an expression. Procedures are described in
Chapter 9, procedure calls in Section 9.2. A procedure used in a Procedure Expression must be
a typed procedure (see Section 9.3); i.e., it must return a value. Section 5.3 explains the
difference between a procedure call in an expression and a procedure call as a statement.

A call to a typed procedure in an expression invokes execution of the procedure body and then
uses the value it returns in place of the procedure call in the expression.

4.4. Substrings

A substring of a string s is a sequence of zero or more contiguous characters of s. For example,
"pur", "rp", "e", "", and "purple" are substrings of "purple", but "prp" is not.

A substring of a string s is specifed by:

s[e1 TO e2] or s[e1 FOR e2]

where el and e2 are integer expressions. el is the start position. e2 is the stop position in the
"TO" form, and the length in the "FOR" form. The characters of a string are numbered from
left to right, the first position being number one. If el is less than one, then the effect is the
same as if one were used for el, and if e2 is greater than the length of s, the effect is the same
as if the length of s were used for e2. See Example 4.4-1.

If:

s = "yellow"

then:

s[1 TO 4]
s[4 TO 6]
s[7 FOR 1]

s[1 FOR 4] = s[-3 TO 4] = "yell",
s[4 FOR 3] = "low", and
"" (since s doesn't have a 7th character) .

Example 4.4-1. Substring Examples

A substring cannot be assigned a value, since it is not a variable.

- 28-

The s in "s[el TO/FOR e2l" may be a string variable, a string constant, a parenthesized string
expression, or a call to a string procedure. If s is a string constant, and both el and e2 are
integer constant expressions, then the substring is evaluated at compiletime.

4.4.1. "INFtt

"INF" may be used anywhere within substring brackets as an integer that represents the length
of the string of which the substring is being taken. See Example 4.4.1-1.

If

s = "brown"

then

s[l TO INF - 1]
"brow".

s[l TO length(s) - 1]

Example 4.4.1-1. Use of "JNF"

s[l TO 4]

"INF" stands for "infinity". It gives the rightmost character position, no matter what the length
of the string.

"INF" is evaluated at compiletime if the string is a constant. In this case the length returned is
the same as that that would have been obtained at runtime.

4.5. If Expression

An If Expression provides a choice among several expressions. The form of an If Expression
is:

IF e1 THEN e2 ELSE e3

where e 1, e2, and e3 are expressions. If Expressions may be nested, e.g.,

IF e1 THEN e2
ELSE IF e3 THEN e4
ELSE e5

- 29-

MAINSAIL provides the abbreviations "EF" for "ELSE IF" and "EL"·for "ELSE". They allow
alignment of conditions in If Expressions for clarity. Thus, the example above could be written
as:

IF e1 THEN e2
EF e3 THEN e4
EL e5

In an If Expression, each possible "result expression" following "THEN" is preceded by a
"condition expression" following "IF" or "EF". The condition expressions are evaluated one by
one (starting with the first) until one evaluates to a non-Zero value. Its associated result
expression becomes the value of the If Expression, and no further condition expressions are
evaluated. If all condition expressions evaluate to Zero, the expression after the final "ELSE"
(or tiEL") becomes the value of the If Expression. Unselected result expressions are not
evaluated.

All the result expressions must be "assignment compatible" with one another; i.e., they must
evaluate to the same data type (see Section 4.9 for a definition of assignment compatibility).
For example, if e2 above were an integer expression, then e4 and e5 would also have to be
integer expressions. Conversion procedures (see Section 3.9) may be used to convert an
expression to the proper data type.

The overall data type of the If Expression is the same as that of the result expressions.

The result expressions may be arrays. For purposes of assignment compatibility, the
expression is considered to have the characteristics (type, dimension, bounds, etc.) of the first
result array expression (e2 in the above example). e4 and e5 must be assignment compatible
with e2.

A sample use of an If Expression used in an Assignment Statement is shown in Example 4.5-1.

var := IF i < 0 THEN k
EF i 0 THEN k + 1
EL k * 10

is equivalent to the If Statement
(see Section 5.6) :

IF i < 0 THEN var := k
EF i = 0 THEN var := k + 1
EL var := k * 10

Example 4.5-1. If Expression Used in Assignment Statement

- 30-

If Expressions are not evaluated at compiletime.

When an If Expression is used as an operand, it must be enclosed in parentheses; see Example
4.5-2.

result := a + (IF b > 10 THEN c ELSE d)

CASE i := (IF j THEN k ELSE m) OFB ...

Example 4.5-2. If Expressions Used as Operands

4.6. Assignment Expression

An Assignment Expression assigns a value to a variable and then uses that value as the value of
the expression. The value may be an array. See Example 4.6-1.

IF i := j + 2 THEN s ...

is equivalent to

i := j + 2; IF i THEN s ...

Example 4.6-1. Assignment Expression

An expression that would depend on whether the variable on the left or the expression on the
right of the ":=" is evaluated first is undefined. Thus, "i := 0; a[i] := (i:= 2)" may assign to
"a[O]", assign to "a[2]", give an error message, or produce undefined behavior. It is the
programmer's responsibility to avoid Assignment Expressions that are affected by the order of
evaluation of the variable and the expression.

If the variable assigned to is changed before the assigned value is utilized, the result of the
Assignment Expression is undefined. For example, the results of the expressions "(v := 3) > (v
:= 0)" and "(a[i] := 4) > (i:= 0)" are undefined. It is the programmer's responsibility to avoid
undefined expressions.

- 31 -

4.7. Compiletime Pseudo-Procedures

"DCL", "NEEDBODY", "NEEDANYBODIES", "CHECKING", "$TYPEOF", "$CLASSOF",
and "$ISCONSTANT" are compiletime pseudo-procedures used primarily with conditional
compilation. Chapter 14 describes these compiletime pseudo-procedures.

"DSP" is a compiletime pseudo-procedure that returns the offset of a field in a record; see
Section 14.8.

$compileTime Value is a compiletime procedure that provides a number of miscellaneous
compiletime values; see Section 1.69 of part II of the "MAINSAIL Language Manual".

4.8. Operators and Operations

Tables 4.8-1 and 4.8-2 summarize the operators that may appear in MAINSAll., expressions.

The second column of each table gives data type infonnation in the general format:

tl, ... , tn -> t

ti gives the allowed data types for the ith operand (the leftmost operand is number one) by
listing the possible data type abbreviations (see Table 1.3-1) for the ith operand, separated by
dashes. t is the data type of the result.

For example, in the "shift right" operation tIel SHR e2''. el is the first operand, "SHR" is the
operator, and e2 is the second operand. From Table 4.8-2, it can be seen that the first operand
must be a (long) bits, the second must be an integer, and the result of tIel SHR e2" is of the
same data type as the first operand (i.e., a (long) bits).

"n" (standing for "numeric") is an abbreviation for "i-li-r-lr", and "all" is an abbreviation for
"bo-n-b-lb-s-a-c-p-array" .

If all ti must be the same data type, then only t1 is given. For example, in the "test" operation
"el TST e2", the first and second operands (el and e2) must both be the same data type, either
bits or long bits. If the result value t has the same data type as all the operands, then "-> t" is
omitted. For example, in the concatenation operation tIel & e2", both operands must be strings
and the result is also a string.

In the tables, "e", "eI", and "e2" stand for expressions and "v" for a variable.

The operations shown in the Table 4.8-2 are evaluated at compiletime if all the operands are
evaluated at compiletime, except in the following cases:

- 32-

Operation Data Types

NOT e all -> bo

- e n

Description of Result

IF e THEN FALSE ELSE TRUE
(if e is non-Zero the result
is FALSE, otherwise it is
TRUE)

negation of e

Table 4.8-1. Unary Operation~

• Any operands are of type (long) real.

• String comparisons other than "=" and "NEQ".

• String "MIN" and "MAX".

4.8.1. String Comparison

The relational operators ("=", "NEQ", ">", "<", "GEQ", "LEQ") compare strings based on their
lengths and the characters they contain rather than on the contents of their string descriptors.

Two strings are compared according to the following definition:

1. If both strings are the null string, they are equal.

2. If one string is null and the other is not, then ,the non-null string is greater.

3. If both strings are non-null, and their first characters differ, then the string with the
numerically greater first character code is greater.

4. If both strings are non-null, and their first characters are the same, then their
comparison is the same as the comparison of the strings with the first character of
each removed.

Because the uppercase and lowercase letters are alphabetically ordered (see Section 2.1), this
algorithm produces an alphabetical ordering for strings that are either all uppercase or all
lowercase; e.g., "ABC" is less than "ABD" or "ABCD". Strings with the same length and
sequence of characters are equal. The null string is less than any other string.

- 33-

Operation

v := e

e1 OR e2

e1 AND e2

e1 e2

e1 NEQ e2

e1 < e2

e1 LEQ e2

e1 > e2

e1 GEQ e2

e1 TST e2

Data T~es Description of Result

all Assign e to v. The result is
the value assigned. See
Section 4.6. e and v
must be assignment compatible
(see Section 4.9).

all, all -> bo IF e1 THEN TRUE
EF e2 THEN TRUE
EL FALSE
(e2 is evaluated only if e1 is
FALSE)

all, all -> bo IF NOT e1 THEN FALSE
EF e2 THEN TRUE
EL FALSE
(e2 is evaluated only if e1 is
TRUE)

all -> bo TRUE if e1 is equal to e2.

all -> bo TRUE if e1 is not equal to e2.

n-s-a-c -> bo TRUE if e1 is less than e2.
See Section 4.8.1
regarding string comparsions.

n-s-a-c -> bo TRUE if e1 is less than or
equal to e2.

n-s-a-c -> bo TRUE if e1 is greater than e2.
See Section 4.8.1
regarding string comparsions.

n-s-a-c -> bo TRUE if e1 is greater than or
equal to e2.

b-lb -> bo TRUE if any 1-bit in e2 is a
1-bit in e1. Same as (e1 MSK
e2) NEQ '0. TST stands for
"test".

Table 4.8-2. Binary Operations (continued)

- 34-

el NTST e2 b-Ib -> bo

el TSTA e2 b-Ib -> bo

el NTSTA e2 b-Ib -> bo

el MIN e2 n-s-a-c

el MAX e2 n-s-a-c

el + e2 n

el - e2 n

el lOR e2 b-Ib

el XOR e2 b-Ib

el MSK e2 b-Ib

el CLR e2 b-Ib

el e2 b-Ib

TRUE if no l-bit in e2 is a
l-bit in el. Same as NOT (el
TST e2). NTST stands' for "not
test" .

TRUE if all l-bits in e2 are
l-bits in el. Same as (el MSK
e2) = e2. TSTA stands for
"test all".

TRUE if not all l-bits in e2
are l-bits in el. Same as NOT
(el TSTA e2). NTSTA stands
for "not test all".

Minimum of el and e2.

Maximum of el and e2.

Sum of el and e2.

Difference of el and e2.

"Inclusive or" of el and e2.
See Section 4.8.2.

"Exclusive or" of el and e2.
See Section 4.8.2.

"Mask" el with e2; i.e., clear
any'bits in el that are
Q-bits in e2. See
Section 4.8.2.

"Clear" e2 from el, i.e.,
clear any bits in el that are
l-bits in e2. See
Section 4.8.2.

Same as el lOR e2, except has
higher priority (see
Section 4.8.4).

Table 4.8-2. Binary Operations (continued)

- 35 -

el * e2

el / e2

el DIV e2

el MOD e2

el SHL e2

el SHR e2

el & e2

n

r-lr

i-Ii

i-Ii

b,i -> b
lb,i -> lb

b,i -> b
lb,i -> lb

s

Product of el and e2.

Quotient (real) of el and e2.

Quotient (integer) of el and
e2. The remainder is
discarded. Undefined if el
is negative or e2 is not
positive.

Remainder of el divided by e2.
Same as el - e2 * (el DIV e2) .
Undefined if el is negative or
e2 is not positive. MOD
stands for modulus, another
name for remainder.

el shifted left by e2 bits;
leftmost e2 bits are lost.
O-bits are brought in from the
right. Undefined if e2 < 0 or
GEQ the number of bits in the
data type of el. At
compilet ime, an error may
occur if a l-bit is lost at
the left (this is subject to
change) .

el shifted right by e2 bits.
O-bits are brought in from the
left. Undefined if e2 < 0 or
GEQ the number of bits in the
data type of el.

el concatenated with e2; the
string consisting of the
characters of el immediately
followed by the characters of
e2.

Table 4.8-2. Binary Operations (continued)

- 36-

e1 " e2 i,i -> i
li,i-> Ii
r,i -> r
lr,i -> lr
r,r -> r
lr,r -> lr

e1 raised to the power e2. If
e1 is an integer or long
integer, undefined if· e2 is
negative. If e2 is not a
positive integer, undefined if
e1 negative. Undefined if e1
and e2 both zero.

Table 4.8-2. Binary Operations (end)

Strings of mixed case may be compared in a "caseless" comparison by means of the upperCase
option to the system procedure compare or equ.

4.8.2. Bitwise Operations

"lOR", "XOR", "MSK", and "CLR" perform bitwise operations on (long) bits.

Let a be a (long) bits value, and ai denote the ith bit of a; similarly for b, bi and c, ci. In the
computation ftc := a op b", ci is related to ai and bi as shown in Example 4.8.2-1.

ci
ai bi 1 lOR XOR MSK CLR

-------+------------------
0010 0 0 0
0111 1 0 0
1 0 1 1 1, 0 1
1111 0 1 0

Example 4.8.2-1. Bitwise Operations

In words:

• "a lOR btl has a I-bit only where either a or b has a I-bit

• "a XOR btl has a I-bit only where exactly one of a or b has a I-bit.

• "a MSK btl has a I-bit only where both a and b have I-bits.

- 37-

• "a CLR btl has a I-bit only where a has a I-bit and b does not

4.8.3. Comparison Chains

A comparison chain is a sequence of the form:

el opl e2 op2 e3 op3 ... en-l opn en

where the ei are expressions and the opi any of the operators in Table 4.8.3-1. Such a
comparison chain is equivalent to the expanded form:

(el opl e2) AND (e2 op2 e3) AND (e30p3 ...) ...
(en-l opn en)

except that the intermediate ei (i.e., the ei other than el and en) are evaluated just once.

GEQ
NEQ
TST

<
TSTA

LEQ
NTST

>
NTSTA

Table ,4.8.3-1. Operators Permitted in Comparison Chains

A chain may be composed of any combination of data types and operators, provided that the
expanded form is valid. The chain is effectively enclosed in parentheses, with AND's inserted
at the "shared" expressions. Thus, "NOT el = e2 TST e3" is equivalent to "NOT «el = e2)
AND (e2 TST e3»" , except that e2 is evaluated once.

Consistent with the evaluation of AND, only as many ei are evaluated as necessary to
determine the value of "el opl e2 op2 e3 ... ". For example, in "el < e2 = e3", e3 is evaluated
only if "el < e2" is true (otherwise the entire expression is false, so there is no reason to
proceed any further).

A comparison chain is undefined if its expanded form is undefined; e.g., "I > v > (v := 2)" is
undefined since "v> (v:= 2)" is undefined.

4.8.4. Operator Precedence

Table 4.8.4-1 shows the precedence of the operators. Operators on the same line have equal
precedence.

- 38-

OR
AND

NOT

(least precedence -- least binding)

NEQ < LEQ > GEQ TST NTST TSTA NTSTA

MIN MAX
+ - (binary) lOR XOR MSK CLR
* / & DIV MOD SHL SHR

- (unary) (most precedence -- most binding)

Table 4.8.4-1. Precedence of Operators

Operators of equal precedence are associated from left to right; e.g., Ita + b + cit is equivalent to
"(a + b) + c", with two exceptions:

1. Assignments are associated right to left, so that "a:= b:= cIt is associated as "a:= (b
:=c)".

2. Comparison chains are associated as described in Section 4.8.3. For example, "a < b
< cit is associated as "a < b AND b < cit rather than It(a < b) < cIt or Ita < (b < c).1t

No exception is made for ItAIt (exponentiation), as in some other programming languages; i.e.,
"a A b A cit is equivalent to "(a A b) A cit, not Ita A (b A c) It .

Since the order of evaluation of the operands of an operator is usually not specified, the
programmer must be careful to avoid expressions that could depend on the order of evaluation.
For example, in "p(a) + q(b)", where p and q are procedures, it is not specified which ofp and q
is called first. If it is important that p be called first, then a separate statement must be used to
force the evaluation order, e.g., "t:= p(a); ..• t + q(b)".

The precedence of the assignment operator is illustrated in Example 4.8.4-2. The precedence
of the assignment operator is slightly different in expressions and Assignment Statements.

The order in which subexpressions of an expression are evaluated may be explicitly specified
with parentheses. The expression enclosed in the innermost set of parentheses is evaluated
first. For example, in "«a + b) * c)", "a + btl is evaluated, then its result multiplied by c.

Parentheses may enclose any MAINSAIL expression, whether or not they are required in order
to change the operator precedence that would prevail in the absence of parentheses. Redundant
parentheses may be used to make source code easier to read.

- 39-

IF v := e1 OR e2 THEN ...

is equivalent to:

IF (v := e1) OR e2 THEN ...

NOT equivalent to:

IF v := (e1 OR e2) THEN ...

But the statement:

v := e1 OR e2;

is equivalent to:

v := (e1 OR e2);

Example 4.8.4-2. Precedence of the Assignment Operator in Expressions and Statements

4.8.5. Dotted Operators

Most operators may be preceded by a dot (". It) to indicate that the value computed by the
operator is to be assigned to the leftmost operand of the "dotted operator". The leftmost
operand of the operator must be a variable. The result of the operation is the same as for the
corresponding non-dotted operator.

The expression "v .op elf, (where "v" is a variable, "op" is one of the binary operators that may
be dotted, "e" is an expression, and "v:= v op elf is well defined) is equivalent to the
Assignment Expression "v := v op e", except that:

1. ".op" has the same precedence as "op".

2. Ifv is a non-simple variable (i.e., a subscripted or field variable), then the location of
v within its data structure is evaluated just once. The evaluation of v and e must not
affect this calculation; otherwise, the effects are undefined.

".- v" is a short fonn of "v := - v", except that if v is a non-simple variable, then the location of
v within its data structure is evaluated just once.

See Example 4.8.5-1.

- 40-

i
-

i

If i, j, and k are simple variables, a is a
one-dimensional integer array, and proc is an
integer procedure, then:

.+ 1 is equivalent to i := i + 1
i is equivalent to i := - i

.+ j * k is equivalent to i := i + j * k
a [proc] .+ i is equivalent to j := proci a [j] :=

since proc is called just once.

All operators more binding than the assignment
operator (see Section 4.8.4) may be dotted:

MIN MAX

a [j]

+
*

- (binary)
/ &

lOR
DIV

XOR
MOD

MSK
SHL

CLR
SHR

- (unary)

Example 4.8.5-1. Dotted Operators

+ i

A dotted operator has the same precedence as its corresponding non-dotted operator. An
expression "v .op e" containing a dotted operator is undefined if e contains an operator that is
evaluated after op; e.g., "a . lit b + c" is undefined, since" +" has a lower precedence than It lit It •

An expression containing a dotted operator is undefined if its equivalent Assignment
Expression is undefined; e.g., "(v .+ 5) = (v := 2)" is undefined. It is the programmer's
responsiblity to avoid the use of such expressions.

Dotted operators can be used in Expression Statements (Section 5.2).

4.8.6. Garbage Collection

A garbage collection may occur during the concatenation operation ("&" or ".&"). It may also
occur during exponentiation operation ("1\" or" .1\") if the exponent is a real (but not if it is an
integer). Other operators cannot trigger garbage collections unless an exception occurs. An
exception may occur if an operation overflows or a division by zero is attempted, provided that
MAINSAIL intercepts the exception; see the appropriate operating-system-specific user's guide
for details.

- 41 -

Other MAINS All.. language constructs that may trigger collections are the lnit Statement and
many system procedures; see Chapter 1 of part II of the "MAINSAil... Language Manual".

4.9. Assignment Compatibility

Two expressions are said to be "assignment compatible" if the following conditions are
satisfied:

1. The expressions must be of same data type.

2. If either is an array, then both must be arrays. If both arrays are typed, then they
must be of the same data type. If both arrays have dimensions, then they must have
the same number of dimensions. If both are pointer arrays, then the pointer classes
must be "related" as described in Section 8.9. If corresponding array bounds are
declared as constants, they must be the same constant The rules of Section 7.7 must
be obeyed when one array is short and one long.

3. If either is a module, then both must be modules.

4. If either is a class, then both must be classes.

5. If the expressions are modules, classified pointers, or classified addresses, their
classes must be "related" as explained in Section 8.9.

-42 -

5. Statements

A statement perfonns an action or directs the flow of control. This chapter describes eleven of
the thirteen MAINSAIL statements: Assignment, Expression, Procedure, Return, Begin, If,
Case, Iterative, Done, Continue, and Empty. The other two statements are the Init Statement
for initializing arrays (see Section 7.4) and the Handle Statement for handling exceptions (see
Chapter 16).

Semicolons are used to separate (rather than tenninate) statements.

5.1. Assignment Statement

An Assignment Statement gives a value to a variable. The form of an Assignment Statement is
"v := e" where "v" is a variable, "e" is an expression, and ":=" is the assignment operator. The
value of the expression e is assigned to the variable v. For example, "i := 8" is an Assignment
Statement that assigns the value 8 to the variable i.

"_" (the underbar or left arrow character) may be used in place of ":=".

v and e must be "assignment compatible" as explained in Section 4.9.

The order of evaluation of v and e is not defined, so avoid Assignment Statements for which the
order might make a difference. For example:

i :- 0; a[i] :- i .+ 1

could assign the value 1 to either "a[O]" or "a[l]", since the value of i is changed to 1 by "i .+
1", but it is not defined which value of i (the one before or after the change) is used to evaluate
"a[i]". It is the programmer's responsiblity to avoid such undefined Assignment Statements.

The precedence of the assignment operator is slightly different in expressions and Assignment
Statements; see Example 4.8.4-2.

5.2. Expression Statement

An Expression Statement is a dotted expression used as a statement (see Section 4.8.5). It
computes a value and assigns that value to the leftmost operand, which must be a variable. In
Table 5.2-1, "v" is a variable, "op" is one of the operators that may be dotted (see Section
4.8.5), and "e" is an expression.

-43 -

v .op e
- v

has the same effect as
has the same effect as

v := v op e

v := - v

Table 5.2-1. Expression Statement Format

An Expression Statement is undefined if the expression composing it is undefined; see Section
4.8.5.

Assume i and j are simple variables.

Statement
- a[i]

i .+ j * 2

Effect
Negate a[i]. More efficient than a[i] :=
- a[i].

Same as i := i + j * 2.

i .+ j .* 2 Same as i := i + (j := j * 2).

Example 5.2-2. Examples of Expression Statements

5.3. Procedure Statement

A Procedure Statement is a procedure call (see Section 9.2). It invokes execution of the body
of the called procedure. Procedures are described in Chapter 9.

A procedure used as a statement may be either typed or untyped; if typed, its value is discarded.
A procedure·used in an expression must be a typed procedure (see Section 9.3); its return value
is used in the expression.

For example, the system procedure cRead is an integer procedure that returns the character
code (see Section 2.1) of the first character of its string argument, and removes that character
from the string. A sample call to cRead in an expression is:

i := cRead(s)

which removes the first character from s and puts its code into i. If it is desired to remove the
first character from s without recording its value, then a Procedure Statement may be used:

-44 -

cRead(s)

5.4. Return Statement

A Return Statement returns from a procedure (see Chapter 9). The fonnat is:

RETURN

for an untyped procedure (see Section 9.3), or:

RETURN (e)

for a typed procedure, where the value of the expression e is returned as the value of the
procedure.

A Return Statement is not necessary in untyped procedures (Section 9.3); an untyped procedure
automatically returns upon completion of the execution of the procedure body. However, a
Return Statement can be used in an untyped procedure to provide a convenient "early return",
much as the Done Statement (see Section 5.9) provides tennination of an Iterative Statement
(see Section 5.8). A Return Statement is necessary in typed procedures, since it provides the
mechanism for returning a value. A runtime error occurs if a typed procedure reaches its final
"END" without the execution of some "RETURN(e)" .

The expression returned as the value of a typed procedure must be assignment compatible (see
Section 4.9) with the data type of the procedure.

Example 5.4-1 shows typed and untyped procedures with Return Statements.

5.5. Begin Statement

A Begin Statement allows a group of statements to be treated as a single statement.

The fonnat of a Begin Statement is the word "BEGIN" followed by a sequence of statements
(separated with semicolons) followed by the word "END":

BEGIN sl; ... ; sn END

A string constant may follow "BEGIN" to give a name to the Begin Statement, in which case
the same string constant must also follow the "END":

BEGIN "name" sl; ... ; sn END "name"

- 45-

An untyped procedure with a Return Statement:

PROCEDURE Pi
BEGIN
INTEGER i;

IF i > 0 THEN RETURNi

END

A typed procedure with Return Statements:

INTEGER PROCEDURE p;
BEGIN
INTEGER i,ji

IF i > 0 THEN RETURN(O);

RETURN (j) END

Example 5.4-1. Examples of Return Statements

The compiler issues a warning if it finds different string constants (ignoring upper and lower
case distinctions) after a "BEGIN" and its matching "END". This check helps catch
mismatched "BEGIN"-"END" pairs.

Declarations are not allowed in Begin Statements.

5.6. If Statement

An If Statement selects one of several statements for execution depending on the values of
specified expressions.

The simplest form of If Statement is "IF e THEN s" where "e" is an expression and "s" is a
statement. s can be a Begin Statement, that is, a list of statements enclosed in a "BEGIN"­
"END" pair. If e evaluates to a non-Zero value, the statement s is executed. For example, "IF i
THEN j := 2" assigns j the value 2 if and only if i is not zero. Similarly, "IF i = 1 THEN j := 2"
assigns j the value 2 if and only if i is equal to one (for in that case the expression "i = 1" is
true, which is the boolean non-Zero).

-46 -

The other form of If Statement is "IF e THEN sl ELSE 81". If e evaluates to a non-Zero value,
then sl is executed. Otherwise (if e evaluates to Zero), s2 is executed. For example, the
statement "IF i = 1 THEN j := 2 ELSE k := 3" assigns j the value 2 if i has the value one, in
which case the statement "k := 3" is not executed. Otherwise (if i does not equal one), k is
assigned the value 3, and the statement "j := 2" is not executed.

Any statement in an If Statement can be an If Statement. Thus, an If Statement may look as
shown in Example 5.6-1.

IF e1 THEN sl
ELSE IF e2 THEN 52
ELSE IF e3 THEN 53
ELSE s4

The expressions e1, e2, and e3 are evaluated one by one
until one of them evaluates to a non-Zero value; its
associated statement (sl, s2, or s3, respectively) is then
executed, and no further expressions are evaluated. If
all the expressions evaluate to Zero, the statement
following the final "ELSE" (s4) is executed.

Example 5.6-1. If Statement within an If Statement

MAINS~ provides the abbreviations "EF" for "ELSE IF", "EL" for "ELSE", "EB" for
"ELSE BEGIN", and "THENB" for "THEN BEGIN". The first three abbreviations allow
alignment of conditions in If Statements for clarity, as in Example 5.6-2.

IF e1 THEN sl
EF e2 THEN s2
EF e3 THEN s3
EL s4

Example 5.6-2. Abbreviations Used in If Statements

There is never a semicolon before an "ELSE", since semicolons are used to separate statements,
and "ELSE" is not the beginning of a statement.

-47 -

An tlELSE" ("EL") or "EF" is matched with the innermost unmatched "IF" or "EF". In the
following statement, the "ELSE" is matched with the second "IF", and the "EL" is matched
with the first "IF":

IF e1 THEN
IF e2 THEN 81 ELSE 82

EL

If there were no "ELSE s2" above, the "EL" would instead be matched with the second "IF". A
Begin Statement could be used as shown below to match the tiEL" with the first "IF":

IF e1 THEN
BEGIN IF e2 THEN 81 END

EL ...

This might also be written as follows, using "THENB":

IF e1 THENB IF e2 THEN 81 END
EL

5.7. Case Statement

A Case Statement uses an integer index to select one of several statements for execution. The
simplest form of a Case Statement is shown in Example 5.7-1, where e (the index) is an integer
expression, the si are statements and the ci (the selectors) are integer constant expressions. A
semicolon separates a statement from the bracketed selector for the next statement A
semicolon may appear between the last statement sn and the "END", but it is not necessary.

CASE e OF BEGIN
[e1] sl;
[e2] 82;

[en] 8n * semicolon optional here
END

Example 5.7-1. Sample Case Statement

Each statement is preceded by one or more selectors that specify what values of the index are to
select that statement. A statement is selected if any of its selectors is satisfied. There are three
forms for the selectors (Example 5!7-1 shows only the simplest form of selector); see Example
5.7-2.

-48 -

Selector
[c]

Cor .. esponding Statement Is Selected If
index = c.

[c1 TO c2] c1 LEQ index LEQ c2; i.e., the index is
between c1 and c2. The compiler gives an
error message if c1 exceeds c2.

[] no other statement would otherwise be
selected (catch-all selector) .

Example 5.7-2. Three Forms for Selectors

The Case Statement shown in Example 5.7-1 has the same effect as (but is usually more
efficient than) the Assignment and If Statements in Example 5.7-3.

t := e; * t is an integer variable

IF t c1 THEN sl
EF t c2 THEN s2

EF t cn THEN sn

Example 5.7-3. Less Efficient Form Equivalent to a Case Statement

MAINSAIL provides the abbreviation "OFB" for "OF BEGIN". A string constant may follow
the "BEGIN" (or "OFB "), in which case the same string constant must also follow the "END".
The compiler issues a warning if these string constants do not match (ignoring upper and lower
case distinctions). This check helps catch mismatched "BEGIN"-"END" pairs, just as for the
Begin Statement (see Section 5.5).

The first statement with a satisfied selector is selected for execution. This is illustrated in
Example 5.7-4.

A runtime error occurs if the index selects no statement and there is no "[l" catch-all selector.
A runtime error would result if num had the value 9 in the Case Statement "exl" in Example
5.7-4. All expected values of the index must be specified in some selector, which can be the
catch-all selector "0". An Empty Statement can be used for those cases in which no action

-49 -

CASE nwn OFB "ex1"
[3] sl;
[1 TO 7] s2; sl (and not s2) is executed
[8] s3 when nwn has the value 3.
END "ex1"

CASE nwn OFB "ex2"
[1 TO 7] sl;
[3] s2; s2 could never be selected
[8] s3 since nwn = 3 would select sl.
END "ex2"

Example 5.7-4. Choice of a Selector

should be taken. If "exl" should do nothing whenever num has a value outside of the range 1
through 8, for example, it could be written as shown in Example 5.7-5.

CASE nwn OFB
[3]
[1 TO 7]
[8]
[]

END

sl;
82;
s3; * catch-all selector: do nothing

Example 5.7-5. Use of an Empty Statement in a Case Statement

There can be no more than one catch-all selector in a Case Statement; the catch-all selector
matches the same values no matter where it is placed in the Case Statement.

For each Case Statement, the compiler creates a branch table with m entries, where m =
<maximum ci> - <minimum ci> + 1 (where ci ranges over all the selector bounds). If m is
much greater than the number of cases with specified statements (that is, if the cases are spread
sparsely over a wide range), the table results in a significant space overhead The Case
Statement shown in Example 5.7-6 would produce a table with 3000 entries. In this case, it
would be better to use an If Statement.

- 50-

j := 3;
k := 8;

CASE num OFB
[1] [20]
[980]
[3000]
END

BEGIN j := 7; k := 9 END

Example 5.7-6. Inefficient Case Statement

5.8. Iterative Statement

An Iterative Statement specifies a statement that is to be repeatedly executed until some
condition terminates the iteration. The form of an Iterative Statement is shown in Table 5.8-1,
where i is a simple local (long) integer variable, el and e2 are (long) integer expressions, e3
and e4 are any expressions, s is any statement, and "UPTO" may be replaced with
"DOWNTO". i, el, and e2 must all be of the same data type, either integer or long integer.

FOR i ;= e1 UPTO e2
(FOR-clause)

WHILE e3 DO s
(WHILE-clause)

Table 5.8-1. Form of Iterative Statement

UNTIL e4
(UNTIL-clause)

The FOR-clause, WHILE-clause, and UNTIL-clause are optional clauses surrounding the
required part "DO s". Thus, there are eight possible forms (ignoring the distinction between
"UPTO" and "DOWNTO") depending on whether each clause is included or not, as shown in
Example 5.8,-2.

"DO sIt alone repeatedly executes s until something in s terminates the Iterative Statement, such
a Done Statement (see Section 5.9), a Return Statement (see Section 5.4), or an exception (see
Chapter 16). The other forms are explained in Table 5.8-3. To get the equivalent forms for
"OOWNTO", replace "LEQ" with "GEQ", ".+" with ".-" and "UPTO" with "OOWNTO" on the
righthand side of Table 5.8-3.

"OOB" is equivalent to "DO BEGIN".

In accordance with Table 5 .8-3, the second expression (e2) in a FOR -clause is evaluated just
once, before the iterations begin. Furthermore, the use of the largest (long) integer as e2 in an

- 51 -

DO s
DO S UNTIL e4
WHILE e3 DO S

WHILE e3 DO S UNTIL e4
FOR i :== e1 UPTO e2 DO S

FOR i :== e1 UPTO e2 DO S UNTIL e4
FOR i := e1 UPTO e2 WHILE e3 DO S

FOR i := e1 UPTO e2 WHILE e3 DO S UNTIL e4

Example 5.8-2. Eight Possible Forms

Form Equivalent Form

-------------------------+-------------------------------
DO S UNTIL e4 DOB S; IF e4 THEN DONE END

WHILE e3 DO S

WHILE e3 DO s UNTIL e4

FOR i := e1 UPTO e2 DO S

FOR i := e1 UPTO e2 DO S

UNTIL e4

FOR i := e1 UPTO e2
WHILE e3 DO S

DOB IF NOT e3 THEN DONE; S END

WHILE e3 DOB
S; IF e4 THEN DONE END

i := e1; t := e2;
WHILE i LEO t DOB

S; i .+ l(L) END

FOR i :- e1 UPTO e2 DOB
S; IF e4 THEN DONE END

FOR i := e1 UPTO e2 DOB
IF NOT e3 THEN DONE; s END

FOR i := e1 UPTO e2 FOR i := e1 UPTO e2 WHILE e3
WHILE e3 DO s UNTIL e4 DOB S; IF e4 THEN DONE END

-------------------------+-------------------------------

Table 5.8-3. Explanation of Forms

"UPTO" FOR-clause.or of the most negative (long) integer in a "DOWNTO" FOR-clause is
undefined. Such forms may result in (possibly undetected) arithmetic overflow.

- 52-

In accordance with Table 5.8-3, the value of the iterative variable after the Iterative Statement
terminates is one greater (for "UPTO") or one less (for "DOWNTO") than e2, unless the
Iterative Statement is tenninated early (e.g., by means of a Done Statement), or unless the
iterative variable is explicitly modified within the loop.

FOR -clause increments or decrements other than I or IL are not provided. To get the effect of
some other increment e, use the equivalent form shown above with ".+ e" in place of ".+ I(L)",
where e is the desired increment.

A sample Iterative Statement with a FOR-clause is shown in Example 5.8-4.

FOR i := 1 UPTO 3 DO

i is
i is
i is

ttyWrite("i is ",i,"; i squared is ",i * i,"." & eol)

writes to primary output:

1;
2;
3;

i squared is 1.
i squared is 4.
i squared is 9.

Example 5.8-4. Sample Iterative Statement

A string constant may follow "DO" to give a name to the Iterative Statement. This name may
then be used in a Done Statement (see Section 5.9) or a Continue Statement (see Section 5.10)
within s. If an Iterative Statement is not given a name in this manner, but s (the iterated
statement) is a named Begin Statement or Case Statement, then s's name is used as the name of
the Iterative Statement

An "UNTIL" is matched with the innermost unmatChed "DO". In the following, the "UNTIL"
in "UNTIL el" is matched with the "DO" in "DO sl", and the last "UNTIL" is matched with
the first "DO":

DO
DO sl UNTIL e1

UNTIL ...

If there were no "UNTIL el" above, a Begin Statement (see Section 5.5) could be used as
shown below to match "UNTIL ... " with the first "00":

DOB
DO sl END

UNTIL ...

- 53-

5.9. Done Statement

A Done Statement terminates an Iterative Statement and must occur within an Iterative
Statement. The form of a Done Statement is:

DONE

which terminates the innermost enclosing Iterative Statement, regardless of its name (if any),
or:

DONE c

which terminates the innermost Iterative Statement with name c (see Section 5.8), where c is a
string constant expression. To terminate an Iterative Statement means that the iterations are
stopped, and execution continues with the statement following the Iterative Statement (if any).

sum := 0;

DOB ttyWrite(nNext integer (type 0 to stop): n);
IF NOT t :- cvi(ttyRead) THEN DONE;
sum .+ tEND;

ttyWrite(nThe sum is n,sum,eol)

Example 5.9-1. Sample Use of "DONE"

A sample use of "DONE" is shown in Example 5.9-1. This Iterative Statement keeps typing
"Next integer (type 0 to stop):" to the terminal, adding all the numbers input from the terminal.
When the end of the list is signified by an input of "0", the Done Statement terminates the
Iterative Statement, and the sum is written to the terminal.

5.10. Continue Statement

A Continue Statement "continues" an Iterative Statement. This means that the current iteration
is stopped as if the statement being iterated had completed, and then the usual increments,
decrements and tests are applied prior to the next iteration (if any). For example, if the Iterative
Statement has an UNTIL-clause, execution continues with the UNTIL-clause test (which may
or may not terminate the Iterative Statement).

- 54-

The form of a Continue Statement is:

CONTINUE

which continues the innermost enclosing Iterative Statement, regardless of its name (if any), or:

CONTINUE c

which continues the innermost Iterative Statement with name c, where c is a string constant
expression.

An Iterative Statement with a "CONTINUE" in it can look like the one in Example 5.10-1,
where sl and s2 are statements and e is an expression. Whenever the If Statement finds e to be
non-Zero, the current iteration terminates (s2 is not executed) and a new iteration is begun.

DOB 81; IF e THEN CONTINUE; 82 END

Example 5.10-1. Iterative Statement with a Continue Statement

The If Statement may be a more convenient means of controlling execution than the Continue
Statement; for example, the Iterative Statement with a Continue Statement of Example 5.10-1
could also be written as in Example 5.10-2.

DOB 51; IF NOT e THEN 52 END

Example 5.10-2. Iterative Statement with If Statement instead of a Continue Statement

5.11. Empty Statement

The Empty Statement consists of nothing at all.

An Empty Statement is allowed wherever any statement may occur.

For example, a semicolon between the final statement and the "END" of a Begin Statement is
not required, since semicolons are used to separate statements, not to terminate them.
Nevertheless, a semicolon is accepted there by the compiler; the semicolon indicates that an
Empty Statement follows the semicolon. Therefore:

- 55-

BEGIN 81; 82; 83; END

has the same effect as:

BEGIN 81; 82; 83 END

The Empty Statement can also be used, for example, for those cases in which no action is to be
taken in a Case Statement, as in Example 5.11-1, in which an Empty Statement follows the "0"
catch-all selector.

CASE i OFB
[0]
[1 TO 4]

[5]
[]

END

j := i;
BEGIN j := i + k; k .MAX i END;
j := (i + k) DIV j; * Empty Statement: do nothing

Example 5.11-1. Example of an Empty Statement

- 56-

6. Declarations

A declaration presents an identifier to the compiler so that the compiler recognizes the identifier
until it reaches the end of the scope of the declaration. A declaration associates with an
identifier attributes such as its data type, structure (e.g., array or class), and/or qualifiers that
govern its use. All identifiers must be declared before they are referenced, except that class
identifiers may be referenced before they are declared under certain circumstances.

The attributes supplied by a declaration do not change; unless the identifier is redeclared, they
are associated with the identifier for the remainder of the compilation, and they may not be
changed at runtime.

Things that may be declared are simple variables, array variables, procedures, classes, and
modules. Any declaration may occur as an "outer declaration", i.e., a declaration between the
initial "BEGIN" and final "END" of a module outside of any procedure within the module. In
addition, simple variables and array variables may be declared within a procedure after the
initial "BEGIN" of a procedure and before the first statement in the procedure; such
declarations are called "local declarations", since they are local to the procedure.

Macros are considered to be "defined" rather than declared. A macro definition both declares
the macro identifier to the compiler and gives it a value. Macro definitions may appear where
ordinary declarations may not. See Chapter 13 for a complete discussion of macros.

Declarations are separated from one another with semicolons. A declaration followed by a
statement in a procedure body (see Section 9.1) is separated from the statement with a
semicolon. See Example 6-1.

An empty declaration consists of nothing at all and may occur wherever other declarations may
occur. Empty declarations permit extra semicolons 'to appear in program text to make it easier
to read.

This chapter describes simple variable declarations, the scope of identifiers, and qualifiers that
may be used in declarations to provide additional information about the entities being declared.
Array declarations are described in Section 7.1, procedure declarations in Section 9.1, class
declarations in Section 8.2, and module declarations in Section 10.2.

- 57-

BEGIN "modNam"

<class declaration>; * outer declaration

; * empty declaration

PROCEDURE p; * (outer) procedure declaration
BEGIN
<variable declaration>; * local variable

* a class, module, or procedure declaration is illegal * here inside the procedure

<statements of procedure body> * the scope of the local declarations for p ends here
END;

<module declaration>; t outer declaration

<class declaration>; * outer declaration

<procedure declaration>; * procedure declaration; may * contain local declarations

<variable declaration>; * outer declaration

<procedure declaration> * outer declaration

END "modNam"

Example 6-1. Where Declarations May Occur

6.1. Scope of Identifiers

A module's "outer declarations" associate each declared identifier with an entity (variable,
procedure, class, or module) that can be accessed throughout the rest of the module. Variables
declared among a module's outer declarations are referred to as "outer variables".

Each entity declared in an outer declaration must have a unique name among all entities
declared in outer declarations in the same module.

- 58-

An entity declared with an identifier v inside a procedure cannot be accessed outside the
procedure. Such an entity is said to be "local" to the procedure, and variables declared locally
are called "local variables". If the identifier v is also declared in the outer declarations, the v
accessed within the procedure is the one declared in the procedure. When the end of the
procedure body occurs, all locally declared entities such as v "disappear", and if v had been
declared in the outer declarations, the outer v is once again visible throughout the rest of the
module.

Each entity declared in a local declaration must have a unique name within the procedure.

6.2. Simple Variable Declarations

A simple variable declaration declares one or more variables. The values of the variables may
be used during program execution as governed by their data type. The general form of a simple
declaration is:

type vl, ... , vn

where the vi are identifiers, and type is "BOOLEAN",·"IN1EGER", "LONG INTEGER",
"REAL", "LONG REAL", "BITS", "LONG BITS", "SlRING", "POINTER", "ADDRESS", or
"CHARADR". "ADDRESS" and "POINTER" may be followed by a parenthesized class name
as described in Section 8.4.

For example, "INTEGER i,t,num" declares three variables (i, t, and num) that may be assigned
integer values.

The qualifier "OWN" may precede a variable declaration, in which case the effect is as
described in Section 6.4.

6.3. Qualifiers

A qualifier is used in a declaration to provide additional information about the entity being
declared.

If any qualifiers are used in a declaration, they precede all other parts of the declaration. When
more than one qualifier is used, the order of the qualifiers themselves is unimportant.

The "OWN" qualifier (described below) may be used only in simple variable and array
declarations.

The following qualifiers may be used only in procedure declarations: "FORWARD",
"INITIAL", "FINAL", "GENERIC", "COMPILETIME", "INLINE", "SPECIAL", and
"$ALWAYS". They are described in Section 9.8.

- 59-

The following qualifiers may be used only in procedure parameter declarations: "USES",
"PRODUCES", "MODIFIES", "OPTIONAL", and "REPEATABLE". They are described in
Section 9.5.

6.4. "OWN" Qualifier

An "own variable" is a variable of which the value is retained until the data section of the
module in which it is declared is deallocated (see Section 10.6). All outer variables are
therefore own variables. The values of local variables declared without the "OWN" qualifier
are lost when the associated invocation of the procedure in which they are declared is
terminated.

A local variable declared with the "OWN" qualifier retains its value from execution to
execution of the procedure. like an outer variable. but its identifier may not be used in the
source text outside the procedure in which it is declared. Such local variables are referred to as
"local own variables".

Own variables are initialized to Zero when the data section they are in is allocated. Local
variables are not automatically initialized; use of their values before they are explicitly
initialized has undefined effects.

PROCEDURE Pi
BEGIN
OWN INTEGER ni

n .+ 1i

END

Example 6.4-1. Sample Use of a Local Own Variable

In Example 6.4-1, n counts how many times the procedure p has been called. Ifn's declaration
were not qualified with "OWN", its value would be lost whenever the procedure was exited. n
could have been declared outside the procedure, but that would obscure the fact that it is used
only within the procedure.

Declaring an outer variable with the "OWN" qualifier is legal but has no effect on the way the
variable is treated.

- 60-

7. Arrays

An array is a collection of values, or "elements", all of the same data type, which are accessed
by subscripts (described below).

MAINSAIL arrays differ from similar data structures in many other languages in that they must
be explicitly allocated at runtime, as described in Section 7.2.

7.1. Array Declarations

The form of an array declaration is:

type ARRAY(1l TO ul, ... , 1m TO urn) vl, ... , vn

or:

type LONG ARRAY(1l TO ul, ... , 1m TO urn) vl, ... , vn

where type is the data type of the arrays, Ii and ui specify the lower and upper bounds,
respectively, of the ith dimension, and the vi are the identifiers of the arrays being declared.
The first form above declares a "short arraylt, the second a "long array".

Each Ii or ui is either a (long) integer constant expression, with Ii less than or equal to ui, or an
asterisk ("*It). Ii and ui must be integers, not long integers, if the array is a short array. If one
is a long integer, both must be long integers. The asterisk indicates that the bound is not known
at the point of declaration. A single "lIe" may be used in place of "* TO *".

The data type and/or the parenthesized bounds list may be omitted from the array declaration,
in which case the array cannot be used for element access. Such a Ittypeless" or
"dimensionless" array may be passed as a parameter (see Section 9.7) or be assigned to or
compared with some other array (see Sections 7.7 and 7.8).

MAINSAIL supports arrays of up to three dimensions. The number of dimensions is the
number of "bound pairs" specified in parentheses after the word It ARRAY" in the array
declaration.

"NULLARRA Y" specifies the Zero array. It is typeless and dimensionless.

- 61 -

7.2. Array Allocation

It is the programmer's responsibility to allocate an array before an attempt is made to access its
elements. This is accomplished with the system procedure "new". The general form of a call
to new for array allocation is:

new(v,ll,ul, ... ,In,un)

where v is the array variable to be allocated, and li and ui are Oong) integer expressions for the
lower and upper bounds of the ith dimension. new clears (sets to Zero) all the elements of the
newly allocated array.

Any bound declared as a constant may be omitted from new (in which case all remaining
arguments must also be omitted) as long as all subsequent bounds were also declared as
constants; the compiler fills in the missing bounds from the information given in the
declaration. The compiler issues an error message if some bound is declared as a constant, but
the corresponding argument to new is specified as some other value. See Example 7.2-1.

An array may be allocated any number of times, though usually it is allocated just once. Each
call to new replaces the old array; no elements are copied. A one-dimensional array's upper
bound may be changed during program execution by use of the system procedure
newUpperBound, which does copy the values to the reallocated array. The system procedure
"copy" may be used to copy elements from one array to another.

7.3. Array Disposal

The system procedure "dispose" is used to deallocate arrays. "dispose(arrl)" allows the storage
associated with arrl to be immediately reused. It is not necessary to dispose an array explicitly,
since an array that becomes inaccessible is automatically collected by the MAINSAIL garbage
collector; however, disposing of arrays no longer in use may improve program performance.
The programmer must not use a disposed array in any way (unless it has been re-allocated with
new).

7.4. Array Initialization

The Init Statement may be used to initialize an array. The array must be allocated with new
before it is initialized. Untyped arrays cannot be initialized with the Init Statement.

The form of the Init Statement is:

INIT v (cl, ... , cn)

- 62-

If arr1 is declared as:

INTEGER ARRAY(l TO *) arr1

and n is an integer expression, then
these calls to new are legal:

new(arrl,l,lO)
new(arrl,l,n)

and these are illegal:

new(arr1,n,20)
new (arr1)

But if arr1 were declared:

INTEGER ARRAY(l TO 15) arr1

then:

new (arr1)

would be legal and equivalent to:

new(arr1,1,15)

Example 7.2-1. Specifying Array Bounds to the Procedure "new"

where v is an array variable and the ci are initialization specifiers. The simplest fonn of
initialization specifier is a constant expression of v's data type. The ith initialization value
(after application of any replications, as described below) initializes the ith element of v. See
Example 704-1.

STRING ARRAY(l TO 3) cmds;

new(cmds)i INIT cmds ("view","clear","next")i

Example 7 A-I. Init Statement for a One-Dimensional Array

-63 -

The programmer is responsible for ensuring that multidimensional arrays are properly
initialized. Arrays are stored with the last dimensions varying most rapidly. For example, a
two-dimensional array is stored by rows (first row immediately followed by second row, and so
forth). See Example 7.4-2. A two-dimensional array is initialized in Example 7.4-3. Example
7.4-4 shows what the initialized array arr3 of Example 7.4-3 would look like when viewed as a
matrix.

An array declared as

type ARRAY(l TO 3, 1 TO 4) a

has its elements stored in the order

a[l,l], a[1,2], a[1,3], a[1,4], a[2,1], a[2,2],
a[2,3], a[2,4], a[3,1], a[3,2], a[3,3], a[3,4].

Example 7.4-2. How Arrays Are Stored

INTEGER ARRAY(l TO 3, 1 TO 4) arr3;

new(arr3); INIT arr3 (2,8,7,5,3,9,8,7,1,3,5,7);

Example 7.4-3. Init Statement for a Two-Dimensional Array

row 1
row 2
row 3

col 1 col 2 col 3 col 4

+---------------------------------+
I 2 8 7 5 I
I 3 9 871
113 5 7 I

+---------------------------------+

Example 7.4-4. Array arr3 as a Matrix

An error occurs if there are more initialization values than elements of v. There may be fewer
initialization values than elements of v, in which case any elements for which an initial value is
not specified are set to the proper Zero value.

- 64-

An array may be initialized with the Init Statement many times. The Init Statement is executed
each time it is encountered.

An initialization specifier may consist of a bracketed integer constant expression ("replication")
followed by an initialization value. The replication specifies the number of consecutive
elements the initialization value is to initialize. If the replication is less than or equal to zero,
the initialization value is ignored. See Example 7.4-5.

INTEGER ARRAY(l TO 4, 1 TO 2) arr4i

new(arr4)i
INIT arr4 ([3] 8, [2] 7, 9, [2] 6)

would initialize arr4 as shown below:

col 1 col 2

+---------------+
row 1 I 8 8
row 2 I 8 7
row 3 I 7 9
row 4 I 6 6

+---------------+

Example 7.4-5. Use of Replications

A garbage collection may occur during the execution of an Init Statement

It is common to allocate and initialize an array in the initial procedure (see Section 10.9) and
deallocate it in the final procedure (see Section 10.10).

7.5. Accessing an Array Element

An array element is accessed with a "subscripted variable", i.e., an array variable or
parenthesized expression followed by a bracketed list of (long) integer expressions. There is
one subscript for each dimension of the array, and the subscripts are separated by commas, e.g.,
"a[el]", "a[el,e2]" , "a[el,e2,e3]".

All the subscripts of a short array must be integers. The subscripts of a long array may be
integers or long integers and need not be the same data type as used for the corresponding
bounds in the declaration.

- 65 -

To refer to the eighth element of a one-dimensional array "a" with a lower bound of one, the
subscripted variable "a[8]" is used ("a[SL]" may be used instead if a is a long array). If a two­
dimensional array "b" with both lower bounds equal to one is viewed as a matrix, "b[8,3]" is
the element in the eighth row and third column.

Each subscript must be within the bounds declared for its dimension (see Section 7.1). If
checking is in effect (see Section 14.3), an error message is issued at runtime if, for any
subscript, this is not the case.

An array must be allocated before an attempt is made to access its elements (or pseudo-fields;
see Section 7.10). If checking is in effect an error message is issued at runtime if the
subscripted variable has not been allocated.

7.6. Clearing an Array

The system procedure "clear" can clear (set to Zero) any number of elements of an array. For
example, if an array called arrl has 50 elements, then "clear(arrl)" clears the entire array, and
"clear(arrl,20)" clears the first 20 elements of arrI.

An array is automatically cleared when it is allocated by new.

7.7. Array Assignment

One array may be assigned to another if they are assignment compatible (see Section 4.9), i.e.,
if they are of the same data type (except that either could be untyped) and dimension (except
that either could be dimensionless), and corresponding constant bounds are the same. A short
array may be assigned to a long array, but a long array may not be assigned to a short array.
Array assignment does not copy elements. Instead, both arrays are made to point to the same
data structure, and so refer to the same elements.

The conversion procedure "cvAry(a,b)" converts a long array a to a short array b. The effect is
undefined if a does not satisfy the short-array rule of Section 7.9. The conversion is purely
syntactic; no elements are copied and no storage is allocated, so a and be continue to reference
the same elements.

Table 7.7-1 shows the rules for short and long array parameters. The rules are derived by
viewing an argument arg passed to a parameter parm as an assignment "parm := arg" if parm is
a uses parameter, "arg:= parm" ifparm is a produces parameter, and both ifparm is a modifies
parameter.

An array is really a pointer to a data structure, and can be manipulated as a pointer.
Information in the declaration of an array such as the type, dimensions, and bounds is necessary

- 66-

Argument
short array
short array
long array
long array

Parameter
short array
long array
short array
long array

When Allowed
always
uses parameter
produces parameter
always

Table 7.7-1. Array Arguments and Parameters

only if the array is to be allocated, or if elements of the array are to be accessed, in the scope of
the declaration.

It is the programmer's responsibility to ensure that an array assignment makes sense. It is
possible to write syntactically correct array assignments that are logically invalid and therefore
have undefined effects.

ARRAY arrl;
INTEGER ARRAY(l TO 6) arr3;
INTEGER ARRAY(l TO 2,1 TO 3) arr4;

Example 7.7-2. Array Declarations

In Example 7.7-2, arrl is assignment compatible with both arr3 and arr4, but arr3 and arr4 are
not assignment compatible with each other, since they have different dimensions. The
following assignments are accepted by the compiler since each assignment involves assignment
compatible arrays:

arr1 := arr3; arr4 := arrl

The effect is the same as assigning arr3 to arr4, which would be invalid since arr3 and arr4 are
not assignment compatible. The effect of the statements above is therefore undefined. In
particular, this approach does not allow the same array to be accessed as both a one- and a two­
dimensional array, since the data structures to which the array pointers point are different.

7.8. Array Comparison

Two arrays may be compared with the relational operators "=" and "NEQ". Short arrays may
be compared with long arrays.

- 67-

The arrays are considered equal if and only if they are the same pointer, and thus share the
same elements. In other words, an array comparison compares just the pointers. To check
whether two distinct arrays have the same element values, use an Iterative Statement (Section
5.8) to compare corresponding elements one by one.

7.9. The Short-Array Rule

The short-array rule is used to determine whether a particular set of array bounds is allowed for
a short array, or whether a long array must be declared instead. The rule is determined by the
manner in which subscript calculations are performed, and is independent of the size of the
elements of the array. The relevant parts of the subscript calculations for multidimensional
arrays are shown in Table 7.9-1. The calculation is performed from left to right; i.e., first i is
multiplied by e2, then j is added, then the result is multiplied by e3, and finally k is added.

a[i,j]: (i * e2) + j

a[i,j,k]: ((i * e2) + j) * e3 + k

(ei is the number of elements in dimension i)

Table 7.9-1. Multidimensional Subscript Calculation

The short-array rule, which is used to detennine whether an array can be declared as a short
array, is given in Table 7.9-2.

The bounds must be in the range -32767 to 32767,
inclusive.

The subscript calculation must not overflow the range
-32767 to 32767, inclusive, at any step for any valid
subscripts.

Table 7.9-2. Short-Array Rule

The short-array rule is easily applied by first using all lower bounds in place of i, j, and k in
Table 7.9-1, and then using all upper bounds. If neither calculation overflows the range, then
the array may be declared as a short array. If none of the bounds is negative, then only the
upper bound calculation need be performed.

- 68-

An error message is given when the short-array rule is violated:

• At compiletime, when a short array is declared, based on any constant bounds.

• At runtime, when a short array is allocated with the MAINSAIL system procedure
new or newUpperBound.

The long-array rule states that a long array must satisfy the same rules as the short array except
that the range -2147483647 to 2147483647, inclusive, is used in place of -32767 to 32767,
inclusive. This rule is not enforced; violations produce undefined results.

If an array variable is made not to satisfy the rule implied by its declaration, access to its
elements is undefined, since it may cause (possibly undetected) overflow during the subscript
calculation, with indeterminate results.

Short arrays should be used whenever possible due to the potential performance penalty
incurred by long arrays on some machines, especially for multidimensional arrays.

Some examples of the application of the short-array rule are given in Example 7.9-3.

Bounds
1 TO 10000,1 TO 3
1 TO 10000,1 TO 4
1 TO 180,1 TO 180
1 TO 181,1 TO 181
1 TO 10000,2001 TO 2003
1 TO 10000,3001 TO 3003
-1000 TO -1,-32 TO -1
-1000 TO -1,-832 TO -801
-10000 TO -1,301 TO 304
1 TO 31,1 TO 31,1 TO 31
1 TO 32,1 TO 32,1 TO 32

Short-Array Rule Short OK
yes 10000 * 3 + 3 - 30003

10000 * 4 ... (overflow)
180 * 180 + 180 = 32580

no
yes

181 * 181 + 181 = 32942 no
10000 * 3 + 2003 32003 yes
10000 * 3 + 3003 = 33003 no
-1000 * 32 + -32 = -32032 yes
-1000 * 32 + -832 = -32832 no
-10000 * 4 .00 (overflow) no
(31*31+31)*31 + 31 30783 yes
(32*32+32)*32 + 32 = 33824 no

Example 7.9-3. Examples of the Short-Array Rule

7.10. Array Pseudo-Fields

The bounds and name of an array are available as "pseudo-fields" of the array. Syntactically,
the pseudo-fields of an array a are accessed by means of a "pseudo-field variable" of the form
"a. <pseudo-field name>". The pseudo-fields available are shown in Table 7.10-1. The value of

- 69-

the integer pseudo-fields is undefined if the corresponding long integer pseudo-field cannot be
represented as an integer~

Reference to the pseudo-fields representing second- and third-dimensional bounds generates a
compiletime error message for a one-dimensional array, and reference to the pseudo-fields
representing third-dimensional bounds generates an error for a two-dimensional array.
Reference to any bound pseudo-field generates an error for a dimensionless array.

~ D~~QriJ2tiQn
name string name of the array
lb1 integer lower bound of 1st dimension
ub1 integer upper bound of 1st dimension
lb2 integer lower bound of 2nd dimension (if any)
ub2 integer upper bound of 2nd dimension (if any)
lb3 integer lower bound of 3rd dimension (if any)
ub3 integer upper bound of 3rd dimension (if any)
$lb1 long integer lower bound of 1st dimension
$ub1 long integer upper bound of 1st dimension
$lb2 long integer lower bound of 2nd dimension (if any)
$ub2 long integer upper bound of 2nd dimension (if any)
$lb3 long integer lower bound of 3rd dimension (if any)
$ub3 long integer upper bound of 3rd dimension (if any)
$arrayType

type code of array's data type
$dimension

number of dimensions of array

Table 7.10-1. Array Pseudo-Fields

-70 -

8. Classes and Records

8.1. Records

A record is a data structure of which the components (called "fields") may be of differing data
types and are accessed by field names.

For example, a record with three fields, a string named "str", an integer named "base", and
another integer named "val", may be imagined as three adjacent boxes, the first holding the
value of field str, the second holding the value of base, and the third holding the value of val. If
str = "hello", base = 53, and val = 28, then the record may be picured as shown in Example
8.1-1.

+-----------------+
P ----> I "hello" I STR

+-----------------+
I 53 I BASE

+-----------------+
I 28 I VAL

+-----------------+

Example 8.1-1. A Record with Three Fields

A field of a record is accessed by means of a "field variable" (as described in Section 8.6),
which is a pointer to the record followed by a period and the field name. If p points to the
record described in Example 8.1-1 t then "p.stt", "p.base", and "p. val" have the values shown in
Example 8.1-2.

p.str = "hello"
p.base = 53
p.val = 28

Example 8.1-2. Field Variables

-71 -

Records are not created at compiletime. Classes may be created at compiletime or at runtime,
and function as templates for records, which must be allocated at runtime. Pointers are used to
access records once they have been created.

8.1.1. The Layout of Fields within a Record

A knowledge of the order in which fields of a MAINSAIL record are stored is necessary in
order to pass a classified pointer or address to a foreign language (see the description of the
Foreign Language Interface in the "MAINSAIL Compiler User's Guide"), since the fields of
the foreign record must be located at the same offsets from the start of the record as the
corresponding MAINSAIL fields. The order of the fields of a MAINSAll... record is, however,
subject to change, and code that depends upon this order should be avoided in contexts other
than the passing· of records to a foreign language.

At present, consecutively declared fields of a class are stored in consecutive memory locations
within each record of that class. Each field occupies exactly the number of storage units given
by "size(typeCode)", where typeCode is the integer type code for the field's data type; no
padding or packing is done. For example, if a class is declared as:

CLASS xyz (

) ;

INTEGER i;
POINTER (xyz) Pi
LONG INTEGER Ii;

and, on the machine where the record is stored:

then:

size (integerCode) = 2
size (pointerCode) = 4
size (longIntegerCode) 4

the field i is stored at offset 0 from the start of the record
the field p is stored at offset 2 from the start of the record
the field Ii is stored at offset 6 from the start of the record

XIDAK. reserves the right to change this layout of record fields.

-72 -

8.2. Classes

A class describes records, data sections, or storage templates for accessing regions of static
memory. Only record classes and storage templates are described here; the use of classes for
data sections is described in Section 10.4.

Classes may be created at runtime (with the system procedure $createClassDscr), but are
usually created by compiletime declarations. The most common form of a class declaration is:

CLASS v «declarations of fields of class»

where v is an identifier for the name of the class, and the field declarations are separated with
semicolons. The field declarations have the form of simple or array variable declarations or
empty declarations, as described in Chapter 6. An example of a class declaration is given in
Example 8.2-1.

CLASS mix (STRING Si INTEGER val,ii STRING t)

declares a class called "mix" that has four fields:
a string, followed by two integers, followed by another
string.

Example 8.2-1. Sample Class Declaration

Class declarations may occur only in the outer declarations of a module (see Chapter 10); i.e.,
they may not occur within procedures.

The fields of a class can be of any data type. The order in which they occur in the class
declaration is the same as the address order in which they are stored in records belonging to
that class.

A field name must not be the same as the name of another field in the same class or the same as
the class name. It may have the same name as a local or outer variable or the field of another
class. No confusion can occur, since whenever a field name is used in a field variable, it is
preceded by a pointer that determines its class.

A class c can obtain its initial fields from another class pc by means of a declaration of the
form:

CLASS (pc) c «declarations of additional fields»

-73 -

pc is called a "prefix class" of c, as discussed in Section 8.8.

8.3. Record Allocation and Disposal

Any number of new records of a class may be created at runtime by calls to the system
procedure "new" or "$createRecord". new initializes to Zero the fields of the record it creates,.
and returns a pointer to the record. A call to new such as "p := new(c)" creates a record
belonging to the class c and assigns the pointer to the newly created record to p.

The system procedure "dispose" disposes of existing records when they are no longer needed.
Thus, "dispose(p)" disposes of the record pointed to by p. It is not necessary to dispose records
explicitly, since a record that becomes inaccessible (no longer pointed to by any pointer) is
automatically collected by the MAINSAIL garbage collector; however, disposing of records no
longer in use may improve program perfonnance. The programmer must not use a pointer
referencing a disposed record in any way.

8.4. Classified Pointers and Addresses

If a pointer is to be used only to access records of a particular class (the most common case),
the name of the class may appear, enclosed in parentheses, following the word "POINTER" in
the pointer variable declaration. Pointers so declared are called "classified". For example,
"POINTER(list} pIt declares a pointer variable p to reference records that belong to the class
called "list".

The compiler ensures that classified pointers are not mistakenly used to refer to records of
unrelated classes (see Section 8.9).

A pointer declaration can use a class that has not yet been declared (sometimes called a
"forward class"). This allows each of two classes to contain a pointer field to the other. For
example, the declarations of Example 8.4-1 declare two classes, a and b, each of which has a
pointer field for referencing records belonging to the other class. (Note that when a is declared,
b has not yet been declared.)

If the fields of a class are not referenced in a module, and the class is not used as the prefix
class of another class in the module, then the class does not have to be declared in the module.

"DCL" returns false if given a forward class name if its class declaration has not yet been
encountered.

Like pointers, addresses may be classified. Classified addresses are not usually used to refer to
records allocated by the system procedure new, but rather to provide a template for storage in
scratch space allocated by the programmer with the system procedure newScratch,
$newScratchChars, or newPage. Syntactically, a classified address declaration looks like a

-74 -

CLASS a (POINTER (b) ptr; INTEGER i; ...);

CLASS b (POINTER (a) q; STRING str; ...)

Example 8.4-1. Classes Referring to Each Other

classified pointer declaration, except that the word "ADDRESS" replaces the word
"POINTER". The rules for assignment compatibility that apply to classified pointers also apply
to classified addresses. Example 8.4-2 shows the use of a classified address.

CLASS c (INTEGER i; BITS b; ADDRESS (c) link);
ADDRESS (c) a,list;
POINTER (dataFile) f;

* Create a linked list in scratch space
list :- NULLADDRESS;
DOB a := newScratch(size(c»;

read(f,a.i,a.b); a.link :- list; list := a;
... END;

Example 8.4-2. Use of a Classified Address

8.5. Unclassified Pointers and Addresses

An unclassified pointer or address is useful when a pointer may refer to records of different
classes or an address to different storage templates at different times. An unclassified pointer
or address declaration omits the parenthesized class name following the keyword "POINTER"
or "ADDRESS". For example, "POINTER q" declares a pointer variable q that can be used to .
point to records of any class, since unclassified pointers are considered to be related (see
Section 8.9) to all pointers in all classes.

The programmer must be especially careful when using unclassified pointers since class
checking is not provided for them; the security of the language can be violated, as in the last
statement shown in Example 8.5-1.

The effect of the last two statements in Example 8.5-1 would be the same as that of the
previous statement "pI := p2". That is, they effectively assign a pointer (P2) that can access

-75 -

POINTER(cl) pI;
POINTER (c2) p2;
POINTER p;

pI := p2;

p := p2;
pI := p;

* assume class cl is not related to * class c2

* compiler reports a class
f compatibility error

* invalid, but compiler does not * report an error

Example 8.5-1. Use of an Unclassified Pointer

records belonging to class c2 to a pointer (p 1) that can access records belonging to an unrelated
class c 1. The consequences of using a pointer that has been made to point to a class unrelated
to its declaration are undefined. It is the programmer's responsibility to avoid such use of
unclassified pointers.

Unclassified addresses are more common than unclassified pointers, since a variety of system
procedures operate on unclassfied addresses.

8.6. Accessing Fields of Records and Storage Templates

A field of a record or storage template is accessed by means of a "field variable", which has the
form "p.f' where p is called the "base part" and f the "field part". The base and field parts are
separated by a period, which need not be immediately adjacent to either part; e.g., "p.f' could
be written "p . f'.

The base part must be a classified pointer or address of which the associated class contains a
field named by the field part. The base part may be a simple pointer or address variable, an
element of a pointer or address array, another field variable, a procedure call, or a parenthesized
pointer or address expression. As a special case, it may be an array variable, in which case the
field part must be one of the special pseudo-fields described in Section 7.10.

The field part is the name of a field of the record pointed to by the pointer base part or the
storage template pointed to by the address base part. The field name must have been declared
to be a field of the class associated with the base part.

-76 -

Data section fields are accessed by means of field variables, as with records; however, a data
section field name may be a procedure name if the class contains procedure fields (see Section
10.3).

CLASS c2 (INTEGER num; STRING name; BOOLEAN fin);
CLASS c3 (POINTER(c2) p);
CLASS c4 (POINTER(c3) PROCEDURE proc (INTEGER i»;

POINTER(c2) p;
POINTER(c3) q;
POINTER(c4) r;
INTEGER t;

p := new(c2); t new initializes the fields of the record
t to zero, i.e., p.num = 0, p.name = "",
t and p.fin = FALSE

t Change the fields of the record pointed to by p:
p.num :- t; p.name :- "MAXIMUM"; p.fin := TRUE;

q := new(c3);
q.p := p; t This is legal and unambiguous; "q.p" now

t refers to the same record as "p".

* Change the fields of the record pointed to by p again,
t this time going through q:
q.p.num .+ 4; q.p.name .& " 2"; q.p.fin := FALSE;

* Now change both q and p:
p := (q := r.proc(t» .p;

Example 8.6-1. The Use ofField Variables

The data type of a field variable is the data type of the field part. The data type of "p.num" in
Example 8.6-1 is integer.

-77 -

The programmer must ensure that the base part is not Zero (i.e., not nullP$~ or
nullAddress). If checking is in effect (see Section 14.3), code is oUtputfOl<each field variable
to generate an error if a base part is nullPointer (no check is made for nullAddress).

When the base part of a field variable is itself a field variable, the base part is evaluated first;
i.e., constructs such as "p.f.g.h" are evaluated as "«P.t).g).h".

8.7. Explicit Classes in Field Variables

A class name may be specified explicitly in a field variable by following the base part with a
colon followed by the class identifier. That is, if the class "c" has a field "f', and "p" is a
pointer or address, then "p:c.f' is a legal field variable. For example, "p:c2.num" could have
been used in place of "p.num" in Example 8.6-1. However, since the compiler knows from p's
declaration that p is a pointer for referencing records belonging to the class c2, specifying ":c2"
is redundant and unnecessary.

Explicitly specifying a class name is required when an unclassified pointer or address is used as
the base part of a field variable, since the base part of a field variable must be a classified
pointer or address. Specifying a class has the effect of temporarily classifying an unclassified
pointer or address.

Sometimes the programmer may want to specify a class different from the class declared for
the pointer or address, in which case the pointer or address is used as if it belongs to the
specified class. The specified class is usually related (as described in Section 8.9) to the
pointer's or address's class. See Section 8.8.1. The effects of overriding a pointer's class are
undefined if the field accessed does not exist in the record referenced.

An explicit class may be specified with a pointer or address even if it is not used as a field
variable. For example, if a file f is declared as:

POINTER (file) fi

then it is permissible to say:

read(f:textFile, ...)

to force the generic mechanism to select a textFile form of read

8.8. Prefix Classes

A class can "inherit" its initial fields from a previously declared class. called its "prefix class".
The form of a declaration for such a class is:

-78 -

CLASS (prefixClass) id «declarations of additional fields»

where id is the name of the class being declared (the "prefixed class") and prefixClass is the
name of its prefix class. The parenthesized declaration list after id may be omitted if there are
no additional fields.

The prefix class contributes its fields to the prefixed class. For example, the declarations:

CLASS cl (INTEGER ii STRING S)i

CLASS (cl) c2 (REAL r)i

declare two classes, c 1 and c2. c 1 does not have any prefix classes. c2, a prefixed class, has a
prefix class, c1, and has three fields: an integer i, a string s, and a real r. The first two fields are
inherited from cl.

Prefix classes permit several related classes to have their initial fields "abstracted out" into a
separate class so that records in each of the related classes can be manipulated by procedures or
statements that access just the initial fields of the common prefix class.

A prefix class may itself have a prefix class. For example, given the declarations:

CLASS a (...);
CLASS (a) b (...);
CLASS (b) c (...);

a has no prefix classes, a is the only prefix class of b, and c has two prefix classes, a and b. The
fields of c are the fields of a followed by the additional fields contributed by b's and c's
declarations.

8.8.1. Accessing Prefix Fields

Given these declarations:

CLASS
CLASS (cl)

cl (INTEGER f);
c2 (STRING s);

POINTER(cl) pI;
POINTER(c2) p2;

these field variables are valid:

Example 8.8.1-1. Prefix Classes and Pointers (continued)

-79 -

pl.f p2.f p2.s

and this is invalid:

pl.s

Example 8.8.1-1. Prefix Classes and Pointers (end)

A pointer or address to a prefixed class may be used without an explicit class to access the
fields of its prefix classes. In Example 8.8.1-1, pi can access fields only in cl, whereas p2 can
access fields in both c 1 and c2.

If the programmer knows that pi points to a record that has all of c2's fields, then the field
variable "pl:c2.s" can be used to access the field s; thus, the information provided in class
declarations may be overridden. Accessing fields not present in the record referenced produces
undefined results.

8.9. Related Classes

Two classes are said to be "related" if one is a prefix class of the other or if they are the same
class. Two pointers are said to be assignment compatible (see Section 4.9) if their classes are
related or if one or both of them are unclassified. See Example 8.9-1.

8.10. "Safe" and "Unsafe" Assignment of Pointers

An assignment of the form "p := q", where p's class is a prefix class of q's, is considered to be a
"safe" assignment, but an assignment in the opposite direction, i.e., "q := p", is considered
"unsafe". Both are legal since the classes of the pointers are related, but the latter allows the
programmer subsequently to write syntactically correct but logically invalid field variables, and
the assignment itself may sometimes be logically incorrect. This "loophole" in MAINSAIL
covers those cases where "safe" assignments are too restrictive. See Example 8.10-1.

8.11. Alignment of Chunks

TEMPORARY FEATURE: SUBJECT TO CHANGE

- 80-

CLASS
CLASS (a)

CLASS (a)
CLASS (bI)

a (. ..);
bI (...);
b2 (...);
c (•••) ;

Each class is related to itself.
In addition,

a is related to bI, b2, and
bI is related to a and c,
b2 is related to a,
c is related to a and bI,
bI is not related to b2,
b2 is not related to c.

Example 8.9-1. Related Classes

c,

Chunks (i.e., records, arrays, and data sections) are currently aligned to a multiple of a system­
dependent number of storage units, usually at least the size of an address. This means that
appropriate arrangement of fields within a record can, on some processors, reduce the access
time to some of the fields.

Typical cases include the V AX-II, IBM System/370, and M68000, on which memory is
organized into eight-bit bytes, and where the MAINSAIL data types have the sizes shown in
Table 8.11-1. All these processors permit a 4-byte quantity to be fetched from an address that
is 2-byte-aligned (Le., they do not require it to be 4-byte-aligned); however, on at least some
models of all of these processors, it is slower to fetch a 4-byte quantity from such an address
than from one that is 4-byte-aligned.

For example, if a record of the class:

CLASS c (
INTEGER i;
LONG INTEGER ii;

) ;

is aligned on a 4-byte boundary, then the field ii is fetched from a non-4-byte-aligned address.
A better arrangement of c would be:

- 81 -

CLASS a (STRING name; INTEGER nwn) ;
CLASS (a) b (INTEGER val) ;
CLASS (a) c (STRING sample) ;

POINTER(a) pai
POINTER (b) pbi
POINTER (c) pc;

pa := new(b);

pb := pa; pb.val := 0;

pa := new(a)i

pb :== pai pb.val :== 0;

pc := new(c)i

pa := pc; pb := pa;

pb.val := 0;

f Legal

* Valid, since pa points to a

* record of class b

f Also legal, replaces previous
f record pointed to by pa

* Invalid; pa points to a record

* of class a. There is no "val"

* field in the record. Execution

* of these statements will have
f undefined consequences.

* Legal

* Invalid. The effect is the same * as that of "pc.val := 0", which * the compiler would flag as an * error.

Example 8.10-1. Examples of Safe and Unsafe Assignments

CLASS c (

) i

LONG INTEGER ii;
INTEGER i;

since ii is now on a 4-byte boundary (i need be aligned only to a 2-byte boundary).

A rule of thumb that ensures optimal field access on all processors for which MAINSAIL has
been implemented so far is to declare string and long real fields of a class first (in any order),

- 82-

~ata t~~ .s.ia
boolean 2 bytes
integer 2 bytes
long integer 4 bytes
real 4 bytes
long real 8 bytes
bits 2 bytes
long bits 4 bytes
string 8 bytes
address 4 bytes
charadr 4 bytes
pointer 4 bytes

Table 8.11-1. Typical Data Type Sizes

followed by long integer, real, long bits, address, charadr, and pointer fields (in any order), and
finally boolean, integer, and bits fields (in any order). In the case of prefix classes, it may be
convenient to add a padding field if the size of the class is not a multiple of 4 bytes on the
typical processors, so that the first new field of a prefixed class is 4-byte-aligned.

The alignment of records and the size of data types are subject to change, so this strategy may
not always result in optimal field access. XIDAK is also considering the possibility of
introducing padding fields into a record automatically to ensure that all data types are properly
aligned; however, it may not prove feasible to add such fields.

- 83-

9. Procedures

A procedure associates an executable unit (the "procedure body") with an identifier so that later
occurrences of the identifier can be used in a procedure call to cause the procedure body to be
executed.

9.1. Procedure Declarations

The form of a procedure declaration (header and body) is shown in Table 9.1-1.

A procedure with parameters is declared:

qualifiers type PROCEDURE v
(declaration list for parameters);

procedure body

A procedure without parameters may be declared:

or:

qualifiers type PROCEDURE v;
procedure body

qualifiers type PROCEDURE v ();
procedure body

"type" is omitted if the procedure is untyped, and
"qualifiers" if the procedure has no qualifiers.

Table 9 .1-1. Format of a Procedure Declaration

In Table 9.1-1, the identifier v is name of the procedure, and the parenthesized list of parameter
declarations appears only if the procedure has parameters (see Section 9.4). The type (e.g.,
"INTEGER ") is present if and only if the procedure returns a value. In this case the procedure
is said to be a "typed" procedure (see Section 9.3) and must return a result with a Return
Statement (see Section 5.4).

- 84-

A procedure body may have two forms:

1. A statement.

2. The keyword "BEGIN" followed by an optional list of local declarations (see Section
6.1) followed by a list of statements separated by semicolons followed by the
keyword "END".

See Example 9.1-2. The di cannot include a procedure declaration; that iSt procedures cannot
be statically nested. The di may not include class or module declarations either. The
"BEGIN" -"END" pair in the second form of procedure may be given a name with a string
constant as described in Section 5.5.

For purposes of name scopingt the parameters of a procedure are also considered to be local
variables of the procedure. Parameters may be declared to be "uses" t "modifies" t or
"produces"; uses and modifies parameters are initialized by the corresponding argumentt and
modifies and produces variables set the value of the corresponding argument variable. The
initial values of local variables are undefinedt except that uses and modifies parameters are
initialized by their arguments (see Section 9.5). It is the programmerts responsibility to ensure
that local variables and produces parameters are initialized before their values are accessed (for
this purposet a produces parameter is considered to be "accessed" on procedure return (unless it
is an omitted optional parameter»; otherwise, the consequences are undefined.

A procedure body may look like:

s

or:

BEGIN
d1i
sl;
END

dmi
sn

:It declarations
:It statements ("i" after sn would be OK)

where the di are declarations and the si are statements.

Example 9.1-2. Two Procedure Body Forms

- 85-

9.2. Procedure Calls

A procedure call causes execution of the procedure body. It can also entail transfer of
argument values to and from the procedure, and the transfer of a result value from the
procedure.

The form of a procedure call is shown in Table 9.2-1.

A procedure with parameters is called with:

p (e1, ..• , en)

A procedure without parameters is called with:

Pi

or:

POi

Table 9.2-1. Procedure Call Formats

In Table 9.2-1, P is the procedure to be called and the ei are the arguments. The order of
evaluation of the ei is not specified (see Section 9.6). See Section 9.4 for further explanation of
arguments. Example 9.2-2 shows sample procedure declarations and calls.

9.3. Typed and Untyped Procedures

Procedures are either "typed" or "untyped". If a data type name does not precede the word
"PROCEDURE" in the declaration, then the procedure is said to be "untyped". Untyped
procedures do not return values. They may be called only as statements, not in expressions, as
described in Sections 4.3 and 5.3.

If a data type name (e.g., "INTEGER") precedes the word "PROCEDURE" in the procedure
declaration, then the procedure is said to be "typed". When a typed procedure is called, it must
return a value of its declared data type with a Return Statement (see Section 5.4). In the typed
procedure shown in Example 9.3-1, pi returns either 0 or j depending on the value of i at the If
Statement

- 86-

Suppose p2 is declared as:

PROCEDURE p2 (INTEGER i; STRING str);
BEGIN

END

Then sample calls for p2 are (assuming j is an
integer and s a string):

p2(j,s); p2(j + 3,"error"); p2(lO,s & "xxx")

Example 9.2-2. Procedure Declaration and Calls

INTEGER PROCEDURE pl;
BEGIN
INTEGER i,j;

IF i > 0 THEN RETURN(O);

RETURN (j) END

Example 9.3-1. Example of a Typed Procedure

Typed procedures may be called either in an expression or as a statement, depending on
whether or not the returned value is to be used. A call to a typed procedure in an expression
uses the returned value in the expression. When a typed procedure is called as a statement, the
returned value is discarded. Typed procedures called as statements are called for the actions
they perform rather than the results they return.

Section 5.3 shows a typed procedure that is called either in an expression or as a Procedure
Statement, depending on whether or not the returned value is needed.

9.4. Parameters to Procedures

As shown in Table 9.1-1, a parenthesized list of parameter declarations (separated with
semicolons) may follow the procedure name in the procedure declaration. The parameter

- 87-

declarations specify the characteristics of arguments passed to and from the procedure when it
is called.

A parameter is either a simple variable (Section 6.2), an array (array parameters are discussed
in Section 9.7), a module (Section 10.2), or a class (Section 8.2). The programmer cannot
declare procedures with module or class parameters; such parameters are used only by system
procedures. The "OWN" qualifier cannot be used in parameter declarations.

An argument specified in a procedure call must be "assignment compatible" with the
corresponding parameter in the procedure declaration; i.e., they must have the same data type.
See Section 4.9 for a definition of assignment compatibility. See Example 9.4-1.

Except for procedures with parameters declared with the "OPTIONAL" or "REPEATABLE"
qualifiers (see Section 9.5), the number of arguments in a procedure must be the same as the
number of parameters in the procedure declaration.

If the procedure procEx is declared as:

PROCEDURE procEx (INTEGER i,ji STRING s)

and k and m are integer variables, sl a string variable,
and r a real variable, then:

procEx(k,m,sl)
procEx(1,8,"go")
procEx(k,k,sl)
procEx (m, 7, sl)

are all legal procedure calls, but:

procEx (r,m, sl)
procEx(k,2.7,"go")
procEx (k,m, r)
procEx(k)
procEx(k,m,sl,r)

are all illegal.

Example 9.4-1. Parameters and Arguments

- 88-

9.5. Parameter Qualifiers

There are five parameter qualifiers: "USES", "PRODUCES", "MODIFIES", "OPTIONAL",
and "REPEATABLE".

"USES", "PRODUCES", and "MODIFIES" do not affect the use of a parameter within a
procedure, but indicate whether the parameter is initialized by the argument ("USES" and
"MODIFIES"), and whether the parameter value is transmitted back to the argument upon
completion of the procedure ("PRODUCES" and "MODIFIES ").

Any parameter (whether uses, modifies, or produces) may be used within a procedure as if it
were a normal local variable; i.e., its value may be both examined and modified. The parameter
qualifiers specify only whether a parameter is initialized by an argument, and whether its final
value is sent back to the argument.

"OPTIONAL" and "REPEAT ABLE" do not affect the use of a parameter within a procedure,
but govern how many arguments may be given for the parameter in the procedure call.

9.5.1. "USES"

A uses parameter is passed the value of the argument; i.e., the argument value initializes the
parameter.

The procedure uses the value of the argument, but does not otherwise access the argument.
Thus any changes to the parameter (which is a local variable) have no effect on the argument.
Parameters declared with no qualifier are uses parameters.

9.5.2. "PRODUCES"

A produces parameter passes its value back to the argument upon return from the procedure,
but is not initialized by the argument value. The argument is assigned the value of the
parameter upon procedure return. The argument must be a variable, except that if the
parameter is declared "OPTIONAL", it can be omitted (see Section 9.5.4). In this case the
returned value is discarded.

Since produces parameters are not automatically initialized, they should be assigned a value
before they are accessed.

- 89-

9.5.3. "MODIFIES"

A modifies parameter combines the effect of uses and produces parameters. It is passed the
value of the argument, and also passes its value back to the argument upon retmn from the
procedure.

The argument corresponding to a modifies parameter must be either a variable or, if the
parameter is declared "OPTIONAL", an omitted argument. If the argument is omitted, the Zero
of the appropriate data type is passed to the procedure (if the parameter is uses or modifies),
and the returned value is discarded.

A procedure "proc" that uses an integer value,
produces a real value, modifies the value of a string
argument and returns a bits would have the header:

BITS PROCEDURE proc
(INTEGER i; PRODUCES REAL r; MODIFIES STRING s)

where it is understood that i is a uses parameter,
since "USES" is the default.

Example 9.5.3-1. Example Using Parameter Qualifiers

9.5.4. "OPTIONAL"

A parameter may be qualified with "OPTIONAL" to indicate that its argument may be omitted
in procedure calls. All parameters following an optional parameter must also be declared
"OPTIONAL". If the corresponding argument is omitted, the compiler substitutes the Zero
value of the appropriate data type instead. See Example 9.5.4-1.

An optional argument may be omitted only if all subsequent arguments are also omitted. If all
of a procedure's parameters are optional and all the arguments are omitted in a procedure call,
the argument parentheses may also be omitted as if the procedure had no declared parameters.
See Example 9.5.4-2.

9.5.5. "REPEATABLE"

The last one or more parameters of an untyped procedure may be qualified with
"REPEATABLE" to indicate that a call may give more than one set of arguments ("repeated

- 90-

Given the declaration:

PROCEDURE P (INTEGER vli OPTIONAL INTEGER v2)

the call: pee)

is treated as: p(e,O)

Example 9.5.4-1. Use of Optional Argument

Given the declaration:

PROCEDURE p2 (OPTIONAL INTEGER i; OPTIONAL REAL r)

the call: p2

is treated as: p2 (0,0.)

Example 9.5.4-2. Use of Optional Arguments, Omitting All Arguments

arguments") for the repeatable parameters. The compiler treats a call to a procedure with
repeatable parameters as a series of calls, each expansion call with one set of the repeated
arguments passed for the repeatable parameters.

All parameters following a repeatable parameter must also be repeatable. If the last n
parameters of a procedure are declared repeatable (but not optional), then each expansion call
to the procedure passes n more arguments for the repeatable parameters, in addition to the non­
repeated arguments that are evaluated once (except for simple variables passed as modifies or
produces arguments) and passed each time.

Before expanding the call to a procedure with repeatable parameters, non-variable non-repeated
arguments are evaluated and stored as temporaries. The stored values of these arguments are
used on each expansion call, so that such arguments are evaluated only once. Any variable
non-repeated arguments mayor may not be re-evaluated on each expansion call. In particular,
the use of non-simple variables as produces or modifies non-repeated arguments has undefined
results. Simple variables as produces or modifies non-repeated arguments are re-evaluated on
each expansion call. Each repeated argument is evaluated immediately before the expansion
calion which it is used.

- 91 -

Optional repeatable arguments are governed by the rule that an optional argument is assumed
omitted only if all arguments have been used; see Example 9.5.5-2.

Repeatable parameters are forbidden in declarations of typed procedures.

with the declaration:

PROCEDURE P (INTEGER vl; REPEATABLE REAL v2)

the call: p (e, e 1 , ... , en)

is treated as: p (e, e l); ... p (e, en)

or, if e is evaluated only once, as:
t := e; p (t,el); ... p (t,en)

with the declaration:

PROCEDURE drawLine (REPEATABLE INTEGER xl,yl,x2,y2); * draw line from (xl,yl) to (x2,y2)

the call:

drawLine(l,2,3,4,lOO,200,300,400,i,j,k,l)

draws three lines.

If a procedure has the header:

PROCEDURE foo
(POINTER (device) gp; REPEATABLE REAL x,y);

the call:

foo(gp,xl,yl,x2,y2,x3,y3);

is equivalent to:

foo(gp,xl,yl); foo(gp,x2,y2); foo(gp,x3,y3);

where gp may be evaluated just once.

Example 9.5.5-1. Use of Repeatable Argument

-92 ..

Given the declaration:

PROCEDURE P
(REPEATABLE INTEGER i; OPTIONAL REPEATABLE REAL r);

the calls:

p(1,2.0) ;
p(3,4.0,S,6.0);
p(7,8.0,9);

are legal, but:

p(lO,11,12.0) ;

is not.

Example 9.5.5-2. Interaction of "OPTIONAL" and "REPEATABLE" Qualifiers

9.6. Order of Argument Evaluation

The order in which the arguments to modifies and produces parameters and the procedure result
are assigned values upon return from a procedure call is unspecified. Calls in which the same
variable is used for more than one such assigned value have undefined results. See Example
9.6-1.

If v is passed for a modifies or
produces parameter, then

v := p(. .. ,v, ...)

and

p(••• ,v, ... ,v, ...)

assign undefined values to v.

Example 9.6-1. Calls of Which the Results Are Not Well-Defined

- 93-

9.7. Array Parameters

An array parameter is a reference to the argument array; i.e., the argument array variable (a
pointer) is assigned to the parameter. The assignment does not copy the elements; the array
parameter points to the same array elements as the argument array. Any changes made to the
elements of the parameter within the procedure are made to the argument array elements.

The "USES", "PRODUCES", and "MODIFIES" qualifiers apply to the array variable itself
rather than to the elements of the array. For example, a modifies array parameter is initialized
to point to the argument array and upon return the array parameter is assigned to the argument
array. The procedure may have assigned a different array to the parameter.

In Example 9.7-1, the procedure "aryPrint" prints the values of the first n (where n is a
parameter) elements of the one-dimensional integer array (with a lower bound of 1) specified as
its first argument.

PROCEDURE aryPrint (INTEGER ARRAY(l TO *) ai INTEGER n)i
BEGIN
INTEGER ii
FOR i := 1 UPTO n DO write(logFile,a[i],eol)
END

Example 9.7-1. Use of an Array Parameter

The array parameter declaration "INTEGER ARRA Y(I TO *) a" signifies that the first
argument of any call to the procedure aryPrint must be a one-dimensional integer array of
which the lower bound is declared as 1. The assignment compatability checking done by the
compiler (see Section 4.9) attempts to ensure that each argument conforms to these
requirements.

In Example 9.7-2, the procedure doubleSize increases the upper bound of the array ary by a
factor of two. ary must be a modifies parameter; otherwise, the argument to doubleSize would .
be unaffected.

PROCEDURE doubleSize (MODIFIES ARRAY(l TO *) arY)i
newUpperBound(ary,2 * ary.ubl)i

Example 9.7-2. A Modifies Array Parameter

- 94-

9.8. Procedure Qualifiers

One or more procedure qualifiers may be used in a procedure declaration to provide additional
information about the procedure being declared. The qualifiers must precede the data type
name (in a typed procedure) or the keyword "PROCEDURE" (in an untyped procedure). The
order of the qualifiers is unimportant, except as noted.

The procedure qualifiers are "FORWARD", "INITIAL", "FINAL", "GENERIC",
"CO~ILETIME", "INLINE", "SPECIAL", "$BVILTIN", and "$ALWAYS".

"CO~ILETIME", "$BUILTIN", and "SPECIAL" apply only to system procedures; the
programmer cannot use them. They are described in Sections 1.1, 1.2, and 1.3 of part II of the
"MAINSAIL Language Manual".

"INITIAL" and "FINAL" are explained in Sections 10.9 and 10.10.

"FORWARD" and "GENERIC" are described in Sections 9.10 and 9.12.

"$AL WAYS" and "INLINE" are explained in Section 9.11.

9.9. Recursion

Any procedure may be invoked recursively, i.e., called again before it has returned from a
previous call. Each invocation creates a new copy of the non-own local variables; i.e., any
existing non-own locals are not affected.

Recursion may occur when a procedure calls itself, or when it calls another procedure that
causes it to be called. A recursive calculation of Fibonacci numbers appears in Example 9.9-1.
The procedure fibonacci calls itself. Mutual recursion is shown in Example 9.10.1-1.

LONG INTEGER PROCEDURE fibonacci (LONG INTEGER i);
RETURN (

IF i LEQ lL THEN i
EL fibonacci(i - 2L) + fibonacci(i - lL»;

Example 9.9-1. A Recursive Calculation of Fibonacci Numbers

Recursive procedures that are called too many times before returning may cause a stack
overflow. See Section 9.13. In particular, a procedure that calls itself unconditionally on each

- 95-

invocation produces an "infinite recursion" (see Example 9.9-2); calling such a procedure
always results in a stack overflow.

No special qualifier is required in MAINSAIL to allow a procedure to be invoked recursively.

PROCEDURE Pi
Pi

Example 9.9-2. Infinite Recursion

9.10. Forward Procedures

The keyword "FORW ARD" serves two functions:

1. It permits a procedure to be called before its body has been seen. This makes
possible mutual recursion between procedures, or a convenient ordering of
procedures if the programmer does not want to remember which procedures were
declared before which.

2. It can indicate the source file in which the body of a procedure may be found.

9.10.1. "FORWARD" for Mutual Recursion

A procedure must be declared before it can be called. If two procedures call each other, one of
the procedures must first be given a "forward" procedure declaration, which is like a normal
procedure declaration except that it is qualified with "FORW ARD", and just the procedure
header (not the body) is given. Later, the procedure is declared as usual (the "FORWARD"
qualifier is not used, and a body is given); the compiler automatically figures out that the later
declaration redeclares the previous forward procedure. The type of the result and parameter
types and qualifiers must be the same in the forward declaration as in the body declaration, but
the parameter names may differ. Calls to the procedure may appear at any point after the
forward declaration. See Example 9.10.1-1.

An interface procedure declaration (see Section 10.2) for the current module serves as a
forward declaration of the procedure. There is no need to provide a separate forward
declaration in the event that calls are made to an interface procedure before its body has been
declared, provided that the module declaration has been seen.

- 96-

FORWARD PROCEDURE P (INTEGER i);

PROCEDURE q (REAL x);

BEGIN

'p(l) ;

END;

PROCEDURE P (INTEGER i);
BEGIN

q(1.4);

END;

Example 9.10.1-1. Example of Forward Procedure

If a forward procedure is not called (i.e., the compiler does not encounter it in a call), the
forward declaration is ignored; i.e., no error message is issued if the body of the procedure
declared forward is never encountered. This rule does not apply to interface procedures, since
they may be called from outside the module, and must therefore always be given a body.

9.10.2. " FORWARD" for Source Library Declarations

A related use of "FORW ARD" is to indicate the file in which the procedure (header and body)
is declared. In this case the form is:

FORWARD (c) PROCEDURE P (...)

where c is a string constant expression giving the name of the file that contains p's full
declaration. If at the end of compilation the procedure has been called, but no body has been
declared for it, the compiler automatically compiles the indicated file, expecting to encounter
p's declaration; an error occurs if it does not

For example, if the following forward procedure declaration is given:

FORWARD (" lib") PROCEDURE P (•.•

and p is called, but a body is not declared for it, the compiler compiles the file named "lib" in
order to get p's declaration. "lib" may employ the compiletime pseudo-procedures

- 97-

"NEEDBODY" and "NEEDANYBODIES" (see Section 14.19) and conditional compilation
(Section 14.10) to ensure that the compiler "sees" only those procedure bodies that are actually
needed. The compiler repeatedly compiles all files declared to contain forward procedures until
either all necessary procedure bodies have been obtained, or it detects an infinite loop.

The compiletime system procedure $thisFileName is useful for declaring forward procedures in
the current file.

9.11. Inline Procedures

A procedure call may be implemented either by passing its arguments to the procedure and
calling the procedure, or by expanding the procedure call inline. Calls implemented by the first
method are called "closed" procedure calls; calls implemented by the second, "inline" calls.
The semantics of using an inline call are the same as if a closed call had been used instead.

Using an inline call has the advantage of eliminating the overhead of a call and return. Often
the arguments to the call can be substituted directly for their corresponding parameters, which
eliminates the overhead of copying procedure arguments. Also, constant folding can
sometimes be done on constant arguments that are directly substituted for their parameters, for
further improvements in the generated code (such improvements may be made even if the
"OPTIMIZE" compiler option is not specified).

The main disadvantage of an inline call is that it may consume more code space if it is
expanded many times. Inline procedures nested several layers deep may make a module so
large that the MAINSAIL compiler runs out of memory attempting to compile it. Also, the
debugger is unable to jump into a procedure at an inline call, and it is unable to set breakpoints,
single-step, or examine local variables within a procedure with no closed body. If all calls to a
procedure are expanded inline, then no closed body is generated for the procedure.

The programmer controls which calls are done inline by means of the keyword "INLINE".
"INLINE" may be used either in a procedure declaration, in which case all calls to that
procedure are affected, or at a given call, in which case only that call is affected. The keywords
used at a given call to a procedure override the keywords used in the procedure's declaration,
but only for that call.

"$ALW AYS INLINE" (the two keywords used together) indicates that calls to a procedure
should be inline, regardless of what compiler options are in effect. "$AL WAYS", if present,
must immediately precede "INLINE". The macro "$AL W A YSINLINE" (one word) is defined
for convenience to be "$AL WAYS INLINE".

A procedure declared "INLINE" but not "$AL W A YSINLINE" indicates that calls to the
procedure are to be inline unless the procedure is compiled debuggable, in which case the calls
should be closed so that the procedure can be debugged. A procedure declared
"$AL W A YSINLINE" is compiled inline even if compiled debuggable.

- 98-

If a procedure is not declared "INLINE", calls to it are closed.

If "$AL W A YSINLINE" or "INLINE" is used in a procedure declaration, it appears before the
procedure header, where other procedure qualifiers would appear. The order of the procedure
qualifiers is unimportant, except that "$AL WAYS" , if present, must appear immediately before
"INLINE". Examples of the use of "$AL W A YSINLINE" and "INLINE" as procedure
qualifiers are:

INLINE BOOLEAN PROCEDURE eof (POINTER(file) f);

COMPILETIME $ALWAYSINLINE BITS PROCEDURE bMask
(INTEGER lowBit,highBit);

"$ALWAYSINLINEtt and ttINLINEtt may appear in the declaration ofaprocedure's body
without also appearing in a forward or interface declaration for the procedure.

If "$AL W A YSNLINE" and ttINLINE" are used in a call, they appear immediately before the
name of the procedure being called. e.g.:

INLINE eof(f)

$ALWAYSINLINE bMask(O,n)

The compiler rarely disregards the programmer's instructions on whether to make a given call
inline or closed. The exception is for recursive calls. If a recursive call is designated as inline,
then the compiler cannot keep expanding the procedure's body indefinitely. Instead, if it is
expanding one or more calls inline and encounters another call to one of the procedures of
which bodies are currently being expanded, it forces the call to be closed. This has the effect of
reducing the number of closed calls made to the recursive procedure without unduly increasing
the module's code size.

Only small procedures, or procedures called just once, should be called inline to avoid the
generation of excessive code.

9.12. Generic Procedures

A generic procedure allows a single identifier to represent several procedures (the "instance
procedures" of the generic procedure). On each call to a generic procedure (a ttgeneric call"), a
call to one or mote of the instance procedures is generated. The instance procedure is selected
at compiletime based on the data types and number of the arguments to the generic call. A
single generic name can thus be used for several related procedures with different parameter
declaration lists.

- 99-

For example, the single procedure name "new" provides a number of related services (it
allocates new records, new arrays, and new data sections). "new" is actually a generic
procedure, so that its arguments determine which of its instances is used in a particular call.

A generic procedure is not really a procedur~ since it has no procedure body and no parameters
of its own; it is more like a special kind of macro than a procedure (macros are described in
Chapter 13). The declaration of a generic procedure must appear in the ouler declarations of
each module that calls it.

The form of a generic procedure declaration is:

GENERIC PROCEDURE id exp

where id is an identifier and exp is a string constant expression containing a list of procedure
names separated by commas, e.g.,

GENERIC PROCEDURE P "pl,p2, ... , pn"

There is nothing special about the pi; i.e., they are normal procedures declared elsewhere as if
they did not appear in a generic declaration. A procedure may appear in any number of generic
declarations.

When p is used in a procedure call, the compiler acts as if pI had been used instead, except that
if some "error" occurs (e.g., a parameter of pi is a different data type from that of the
corresponding argument in the procedure call), the compiler "backs up" and acts as if p2 had
been used instead of pl. If another "error" occurs, the compiler proceeds to p3, and so forth,
until a pi is found that causes no error. The compiler produces an error message if no such pi is
found.

Any pi may itself be a generic procedure, thereby recursively invoking the generic mechanism,
except that the effect of including p in its own instance list is undefined. Any pi may also be of
the form "m.f' where m is a module and f is an interface procedure of that module. The form
"m.r' is described in Section 10.3.

The pi need not have been declared when the generic declaration is encountered, since the
string constant in the generic declaration is not examined until p is used in a procedure call. In
fact, if while processing a generic call· the compiler finds a pi that has not yet been declared, it
proceeds to the next pi.

A generic procedure may be used as a field, i.e., may be preceded by a pointer or module
identifier and a period; see Section 10.11.

-100 -

9.12.1. Sample Generic System Procedure

Many of the system procedures are generic. For example, cos, the procedure that computes the
cosine of its argument in radians, is declared as (except that XIDAK reserves the right to use
different instance names from "rCos" and "lrCos"):

GENERIC PROCEDURE cos "rCos,lrCos"

and the headers of the procedures rCos and lrCos are:

REAL PROCEDURE rCos (REAL r)
LONG REAL PROCEDURE lrCos (LONG REAL r)

When the identifier "cos" occurs in a procedure call, either rCos or lrCos is invoked, depending
on the data type of the argument. For example, "cos(1.4)" results in "rCos(1.4)". The compiler
first tries to process "cos(8.76582L)" as "rCos(8.76582L)", but an error occurs, since the
parameter to rCos must be real, but the argument 8.76582L is a long real. The compiler then
tries "lrCos(8.76582L)", which compiles without error, so lrCos is the instance procedure
selected.

XIDAK reserves the right to change the instance procedure names of generic system
procedures at any time without notice. Programmers must never make explicit use of an
instance name of a generic system procedure.

9.12.2. Generic Procedure Instance Selection Algorithm

When the compiler encounters a generic identifier, it searches the associated procedure
declarations for one with parameters that "match" the arguments in the generic call.

For each instance procedure in the generic instance list, starting with the first, the compiler
detennines whether the procedure has been declared; if not, it skips to the next instance.
Otherwise, it compares the parameters one by one with the corresponding arguments in the
generic call until either:

• it finds an assignment compatibility error (see Section 4.9) or mode error between a
parameter and the corresponding argument, or

• it runs out of arguments, or

• it runs out of parameters.

A mode error occurs if anything other than a variable is passed for a modifies or produces
parameter.

- 101 -

If there is an assignment compatibility or mode error, the compiler knows that the procedure it
is checking is inappropriate. and so it goes on to check the next instance.

If there are more parameters than arguments. the compiler checks the "extra" parameters to see
if they are declared "OPTIONAL". If so. an appropriate instance procedure has been found.
and a call to that procedure, with all the given arguments plus appropriate Zero values for the
optional parameters. is generated. If the "extra" parameters are not optional, then the procedure
being checked is inappropriate. and so the compiler goes on to check the next instance
procedure.

If it runs out of parameters and there are not any more arguments, the compiler has found the
appropriate procedure, so it stops its search and generates a call to the current instance
procedure.

If it runs out of parameters but there are more arguments in the generic call, the compiler
checks the last parameters of the current instance procedure. If they are not repeatable
parameters, the compiler rejects the procedure as inappropriate. and goes on to check the next
instance. If the last parameters are repeatable, then an appropriate procedure has been found; a
call to the procedure. with all the arguments compared so far, is generated. Then a new generic
call is processed (starting from the beginning of the instance procedure list), this time with all
the arguments of the generic call resulting from the last step except for the last ones compared
(the one matching the repeatable parameters).

The compiler issues an error message if it searches all the procedures and doesn·t find any that
are appropriate to call.

The order in which the procedure names are given in the generic procedure declaration is
important, since it determines the order in which the procedures are checked. For example, if
the generic procedure gen were declared:

GENERIC PROCEDURE gen "procl,proc2,proc3"

and procl, proc2, and proc3 were declared:

PROCEDURE procl (REPEATABLE INTEGER i); ...
PROCEDURE proc2 (REPEATABLE REAL r); ...
PROCEDURE proc3 (INTEGER i; REPEATABLE REAL r); ...

then proc3 would never be called, since any combination of integer or real parameters would
match with proc 1 or proc2. However. if proc3 appeared first in the generic declaration, then
the call:

gen(1,2.0,3.0)

- 102-

would call proc3 twice, first with arguments 1 and 2.0, then with arguments 1 and 3.0. The
call:

gen(1,2,3,4.0,5.0,6.0)

would call procl twice, first with an argument of 1, then an argument of 2, and then call proc3
three times, with argument pairs 3,4.0; 3, 5.0; and 3, 6.0. The call:

gen(1.O,2,3.O,4,S.O)

would call proc2 with an argument of 1.0, then proc3 with arguments 2 and 3.0, then procl
with an argument of 2, and finally proc3 with arguments 4 and 5.0.

The results are undefined if the generic mechanism is used in conjunction with repeatable
parameters to generate more than one instance call with a single generic call if any of the
instances is a typed procedure.

9.12.3. Generic Procedure Extension

A generic procedure may be extended (i.e., may have new instances added to its instance list)
by redeclaring it. The instances in the new declaration are added to the front of the instance list
from previous declarations. For example, if a procedure p is originally declared as:

GENERIC PROCEDURE P "a,b,c"

then if P is subsequently redeclared as:

GENERIC PROCEDURE P "x,y,z"

the effect is as if p had been declared as:

GENERIC PROCEDURE P "x,y,z,a,b,c"

9.13. Stack Overflow

Stack overflow may occur if too many procedure calls are simultaneously active, or if
procedures with too many local variables are called. Stack overflow is not necessarily detected
by MAINSAil... Its effects are undefined, although on some systems, the predefined
$stackOverflowExcpt can make a stack overflow easier to recognize.

On some operating systems, the MAINSAil.. utility "CONF" allows the user to set the initial
coroutine's stack size. On such systems, if a stack overflow occurs in a program, it may be
necessary to build a MAINSAIL bootstrap with a larger stack size in order to run the program

- 103-

successfully. The stack sizes of coro~tines other than the initial coroutine may be set with the
system procedure $createCoroutine.

See the appropriate operating-system-dependent MAINSAIL user's guide for more
information.

-104 -

10. Modules and Data Sections

A module is the smallest separately compilable unit of MAINSAIL code. A MAINSAa
program is composed of one or more modules, some of which may be contributed by the
programmer and some by the MAINSAIL runtime system.

Modules communicate at runtime through "interface fields", which are the variables and
procedures of each module declared by the programmer to be accessible from other modules.

A module is written in the general form shown in Table 10-1. The outer declarations sections
may be empty; see Chapter 6.

"modNam" is the name of the module, enclosed in double quotes, and must be an identifier of
six characters or fewer. The name is used in the declaration of the module, if the module is
explicitly declared (see Section 10.2). Since the runtime system uses a module's name to
identify it, every module in a program must have a unique name. The programmer's choice of
module names must not conflict with the names of standard runtime modules.

The "outer declarations" declare all identifiers (except those predefined by MAINSAIL) that are
to be accessible from the point of declaration to the end of the module, but not from any other
modules. The outer declarations of a module m must include declarations of all modules
referenced by m. In addition, m must declare itself if it has any interface fields. Module
declarations are described in Section 10.2.

A module cannot contain another module; i.e., modules cannot be nested. All modules are on
equal footing; there is no explicitly declared "main" or "controlling" module, though the
module first given control during a particular execution might be considered the "main" module
for that execution.

The division of a program into modules is entirely up to the programmer. MAINSAIL has no
portable rule by which to determine when a module is too large, but each machine on which
MAINSAIL is implemented may place an upper limit on the size of a module it can execute. If
such a limit exists, it may be found in the appropriate operating-system-specific MAINSAIL
user's guide.

Unlike most programming languages, MAINSAIL does not use a "link" step prior to execution.
Instead, the modules are brought into memory as needed during execution. The MAINSAa
runtime system provides all the facilities for intermodule communication. The programmer
need never specify beforehand what modules make up a program; a program is an open-ended
collection of modules the identity of which is not determined until execution time. The
dynamic binding of modules provides a degree of flexibility lacking in statically linked
systems.

-105 -

BEGIN "modNam"
+--------------------+
I outer I
I declarations 1 I
+--------------------+
+--------------------+
I procedure 1 I
+--------------------+
+--------------------+
I outer
I declarations 2
+--------------------+
+--------------------+
I procedure 2
+--------------------+

+--------------------+
I outer I
I declarations n I
+--------------------+
+--------------------+
I procedure n I
+--------------------+
+--------------------+
I outer I
I declarations n+l I
+--------------------+
END "modNam"

Table 10-1. A MAINSAll... Module

The MAINS All... runtime system automatically verifies that module interfaces are consistent
with one another when linkage between modules is established. See Section 10.8.

10.1. Bound and Nonbound Data Sections

Own variables (including interface variables) of a module are stored in a data structure called a
"data section". After an object module (the compiled form of a module) has been brought into

-106 -

memory for execution, it is referred to as a "control section". Each control section may be
associated with at most one "bound data section" and zero or more "nonbound data sections" .
Bound data sections are created by means of the system procedure "bind"; nonbound data
sections are created by several forms of the system procedure "new". Bound and nonbound
data sections are identical in format, but the interface fields of a bound module can be accessed
"indirecty" as described below.

Data sections differ from records in that each data section is associated with a control section.
A procedure field may be accessed by means of a pointer to a data section, but not by means of
a pointer to a record; modules may contain procedures, but records may not.

Interface fields associated with bound data sections may be accessed by means of implicit
module pointers; such access is called "indirect access". Interface fields associated with either
bound or nonbound data sections may be accessed by means of explicitly declared pointers to
the data sections; such access is called "direct access".

10.2. Module Declaration

Modules communicate by means of "interface fields", i.e., those variables and procedures
specified by the programmer (in module declarations) as accessible by other modules. Interface
data fields are called "interface variables" and are own variables (see Section 6.4); i.e., they
reside in the data section of the module (see Section 10.6).

The outer declarations of a module m must include, in any order (except that interface variables
must be declared before use, and interface procedures must be declared as interface procedures
before their bodies appear), declarations for all modules of which interface fields are indirectly
accessed by m. In addition, m itself must be declared if it has any interface fields, even if they
are not referenced within m, because the compiler must know the interface fields of the module
it is compiling. If m has no interface fields, its declaration may be omitted, in which case the
compiler declares it automatically as a module with no interface fields; see Example 10.2-1.

The most common fonn of a module declaration is:

MODULE v «declarations of interface fields»

where v is the module's name. Interface fields may be variables and/or procedures, in any
order. The declaration of an interface procedure gives only its header. It serves as a forward
declaration (see Sections 9.10 and 14.19) for the procedure. The procedure body must be given
within the module v, where the procedure is declared as usual. Interface variables of v are
declared only in v's module declaration; they are not redeclared in v after the module
declaration has been seen.

A sample module declaration is shown in Example 10.2-2. The sample declares a module
named "parse" with several interface fields.

- 107-

BEGIN "rn"
outer declarations

END "rn"

is equivalent to

BEGIN "rn"
outer declarations

MODULE rn;
END "rn"

t not including one for rn

Example 10.2-1. A Module That Does Not Explicitly Declare Itself

MODULE parse
INTEGER
STRING
INTEGER ARRAY(l TO 10)
PROCEDURE
STRING PROCEDURE
)

val,lineNurn,index;
token,line;
order;
get Token;
rnsgTxt (INTEGER page,rnsgNum);

Example 10.2-2. Sample Module Declaration

A module m that accesses fields of a module n need declare only a prefix of n's interface if it
does not access all ofn's fields. No error occurs (see Section 10.8), provided that m's view of
n matches a prefix ofn's view of itself. See Example 10.2-3.

10.3. Indirect Access to Interface Fields

An interface field f of a module m may be indirectly accessed with the field variable "m.f'
(which may also be written "(m).f'). As described below, the simpler form "f' may often be
used The interface field is associated with the module's bound data section. Because of the
syntactic simplicity of indirect access, a module's bound data section may be thought of as its
"default" data section (the one used when no explicit pointer is used).

- 108-

If the module n has two fields, and is declared in
n as:

MODULE n (INTEGER fieldl; PROCEDURE field2);

and the module m uses only the first field (fieldl) of n,
then n may be declared in mas:

MODULE n (INTEGER fieldl);

Example 10.2-3. A Module That Declares Only a Prefix of Another's Interface

The term "field variable" is used for both interface procedures and interface variables.

For every module m declared by means of the keyword "MODULE" in a module n (and
actually used in n), n maintains a hidden "implicit module pointer" to m's bound data section.
It is this implicit module pointer that is used in indirect access to interface fields of m.

For example, if m 1 is declared as:

MODULE ml (STRING name, quest; INTEGER val; PROCEDURE findVal)

then the interface fields ofml can be indirectly accessed as the field variables "m1.name",
"m1.quest", "m1.val", and "m1.findVal". The interface variables ofml may be altered by other
modules; i.e., there are no "protected" or "read-only" fields.

"m.f' can be written as "f' if m is the current module, or if m is the only module declared in the
current module with a field named f. In either case, the compiler effectively provides the "m."
prefix. The compiler generates the same code regardless of whether or not the abbreviated
form is used (i.e., there is no efficiency penalty or advantage for including the "m.").

As an example, many of the MAINSAIL system procedures (see Chapter 1 of part II of the
"MAINSAIL Language Manual") are interface fields of various system modules. The
programmer need not know the names of the runtime modules. To call a system procedure, the
programmer specifies only the procedure name. All the system procedures have been given
unique names, and hence the compiler can figure out the module name. If the programmer
declares an interface variable with the same name as a system procedure, the name of the
system procedure alone may no longer suffice to produce an unambiguous reference. System
procedure names must not be explicitly prefixed with their module names, since XIDAK
reserves the right to change the module in which a system procedure resides.

- 109-

10.4. Classes with Procedures

The fields of a module can be supplied using a class, with a declaration such as:

MODULE (c) m

where c is a class name. The module declaration may declare the module to be of a prefixed
class by adding extra fields to an existing class, in the form:

MODULE (c) m (declarations of additional fields)

The declaration of the module PARSE of Example 10.4-1 is equivalent to the declaration of
Example 10.2-2.

CLASS parseCls
INTEGER
STRING
INTEGER ARRAY(l TO 10)
PROCEDURE
STRING PROCEDURE
) ;

MODULE (parseCls) parse;

val,lineNum,index;
token, line;
order;
get Token;
msgTxt (INTEGER page,msgNum);

Example lOA-I. Sample Module Declaration Usmg a Class

10.5. Direct Access to Interface Fields

An explicit pointer to a module's data section may be declared if the interface of the module is
declared as a class. Allocation of a record of a class c by means of "new(c)" , where c contains
procedure fields, results in a record in which the procedure fields are not valid; the compiler
issues a warning message if such an allocation is performed. The effect of calling a procedure
in c using such a record is undefined. Procedure as well as variable interface fields may be
accessed with the pointer only if a data section of the class is allocated instead of a record.

Access by means of an explicit pointer to fields associated with a data section is referred to as
"direct access" to the data section. Both boUnd and nonbound data sections may be directly
accessed.

- 110-

The system procedure "bind" and some fonns of the system procedure "new" allocate data
sections instead of records. These forms specify the name of the object module to be
associated with the data section. The module must have the interface specified by the class of
the pointer used to access its data section; otherwise, the effects of accessing fields with the
pointer is undefined.

Example 10.5-1 shows field variables that are valid if a pointer points to a data section of a
given class.

10.6. Module Allocation and Disposal

The allocation of a module is the allocation and clearing of its data section and the invocation
of its initial procedure, if it has an initial procedure (see Section 10.9). A module may be
allocated by a call to bind or new, as shown in Example 10.5-1. An indirectly accessed module
may be automatically allocated, as described in Section 10.7.

When a data section is disposed (see Section 1.127 of part n of the "MAINSAll.. Language
Manual"), MAINSAIL automatically invokes the module's final procedure, if there is one.
When a module is disposed, MAINSAIL disposes all the data sections for that module, then
releases the control section for the module (so that if a new data section is allocated for the
module, the search for the module's control section proceeds from scratch as described in
Section 12.2). At the end of a MAINSAIL execution, MAINSAIL normally executes the final
procedures associated with all data sections and then closes any open files.

The exception $disposedDataSecExcpt is raised when an attempt is made to return to a
procedure invocation associated with a disposed data section.

When a module is unbound (see Section 1.370 of part n of the "MAINSAIL Language
Manual"), the bound data section is disposed, but the control section is not released.

10.7. Establishing Module Linkage

A module m may at any time call an interface procedure in another module n. However, m can
indirectly access an interface variable in n only if a boWld data section already exists for n.
When a bound data section for n is created, implicit module pointers to n in all modules that
use n are initialized. If a module m is allocated and a bound data section for n exists, m's
implicit module pointer to n is initialized. When the implicit module pointer from· m to n is
initialized, m is said to "have linkage to" n.

If checking is in effect, MAINSAIL raises the exception $unboundModuleExcpt if an attempt
is made to access an interface variable of a module to which linkage is not yet established (i.e.,
for which no bound data section exists).

- 111 -

CLASS parseCIs
INTEGER
STRING
INTEGER ARRAY(l TO 10)
PROCEDURE
STRING PROCEDURE
) ;

POINTER (parseCls) p;

val,lineNum,index;
token, line;
order;
get Token;
msgTxt (INTEGER page,msgNum);

If there exists a module PARSE of parseCls, p may be made
to point to the bound data section of PARSE by means of:

p : = bind ("PARSE") ;

or, if PARSE is declared in a module declaration:

p := bind(parse);

The call to bind allocates the bound data section if it
has not already been allocated.

p may be made to point to a nonbound data section of
PARSE by means of:

p . = new ("PARSE") ;

or, if PARSE is declared in a module declaration (like
"MODULE (parseCls) parse"):

p := new(parse);

The call to new always allocates a new nonbound data
section.

If P is made to point to a data section of the class
parseCls, the follwing directly accessed field variables
are valid:

Example 10.5-1. -Accessing Data Section Fields with a Pointer (continued)

- 112-

p.val
p.lineNum
p.index
p.token
p.line
p.order
p.getToken
p .msgTxt (...)

Example 10.5-1. Accessing Data Section Fields with a Pointer (end)

In the future, MAINSAIL may support automatic establishment of linkage upon interface data
access; this has not been done so far because of execution overhead considerations.

10.8. Intermodule Consistency Checking

If a module A indirectly accesses a module B, the compiler requires that A include a module
declaration for B and that B include a module declaration for itself. When A gets linkage to B,
MAINSAIL checks these module declarations for consistency. A module inconsistency is
detected if A's view of B is not·a prefix of B' s view of itself. If the interfaces are inconsistent,
an error occurs.

The consistency check verifies that the declarations of corresponding interface variables and
procedures are compatible. Corresponding interface variables must have the same data type; if
the variables are arrays, they must have the same bounds and must be either both short arrays or
both long arrays. Corresponding interface procedures must have equivalent declarations;
corresponding parameters must be of the same data type, and must be both uses, both modifies,
or both produces. It is not checked that corresponding identifiers have the same name or that
corresponding pointers have the same class.

10.9. Initial Procedure

Each module may contain a single typeless and parameterless procedure that is to be called
whenever a data section for the module is allocated. This procedure is qualified with
"INITIAL", in accordance with the syntax described in Section 9.8. The initial procedure may
also be called explicitly.

The "top level" module of a program (the one specified to the MAINSAIL executive as the
module to gain control first) must have an initial procedure, or it returns immediately without

-113 -

performing any action. The execution of the top level module's initial procedure leads to
execution of the entire program.

A module need not have an initial procedure. When a module not intended to be used as a top
level module has an initial procedure, it usually performs initialization of the module's outer
and interface variables.

The programmer does not have to give the initial procedure a name, in which case the compiler
supplies the name "initialProc". See Example 10.9-1.

INITIAL PROCEDURE;
BEGIN ... END

is equivalent to

INITIAL PROCEDURE initialProc;
BEGIN ... END

Example 10.9-1. Default Name of the Initial Procedure

The "INITIAL" qualifier need be specified only in a procedure declaration that includes a
procedure body; i.e., it does not have to be given in forward or interface field declarations.
However, if it is given in a forward or a field declaration, it must also be given in the body
declaration.

10.10. Final Procedure

Each module may contain a single typeless and parameterless procedure that is automatically
invoked when the module is disposed. This procedure is qualified with "FINAL", in
accordance with the syntax described in Section 9 .S. The final procedure may also be called
explicitly.

Final procedures are often used to dispose of arrays and modules that are no longer needed, to
release scan bits, or to close files that should not be left open. A final procedure often "undoes"
the work of the initial procedure.

The programmer does not have to give the final procedure a name, in which case the compiler
supplies the name "finalProc", as in Example 10.10-1.

- 114-

FINAL PROCEDURE;
BEGIN ... END

is equivalent to

FINAL PROCEDURE finalProc;
BEGIN ... END

Example 10.10-1. Default Name of the Final Procedure

The "FINAL" qualifier need be specified only in a procedure declaration that includes a
procedure body; i.e., it does not have to be given in forward or interface field declarations.
However, if it is given in a forward or a field declaration, it must also be given in the body
declaration.

When a MAINSAIL execution terminates, all data sections are disposed, and all open files are
closed. The order in which data sections are disposed is unspecified. The programmer must
not access a data field of another module in a final procedure without first ensuring that the
other module is bound. The programmer must not perform I/O to a file in a final procedure
without ensuring that the file is open. Bugs that are difficult to track may occur because of
dependencies on the order of execution of final procedures.

10.11. Generic Procedures as Field Variables

Generic procedures may be used as field variables: i.e., in p.f or m.f (p is a pointer and m a
module), f may be a generic procedure name. The generic name is substituted according to the
usual rules (see Section 9.12) for f. For example, given the declarations:

the code:

CLASS c1 (PROCEDURE p1 (INTEGER i»;

PROCEDURE p2 (REAL r);

CLASS c3 (PROCEDURE p3 (STRING s»;

GENERIC PROCEDURE P "p1,p2,p3";

POINTER(c1) ptr1;
POINTER (c3) ptr3;

- 115 -

would be equivalent to:

ptrl.p (2) ;
p(2.0);
ptr3 . p ("2")

ptrl.pl(2);
p2(2.0);
ptr3 .p3 ("2")

10.12. Control Sections and Module Swapping

Whenever a data section is allocated for a module, the corresponding objmod is brought into
memory if necessary; an objmod brought into memory for execution is called a "control
section". Only the currently executing module's control section need be in memory;
MAINSAIL automatically swaps out control sections for which there is not enough memory.
This may be thought of as an "automatic overlay" facility. MAINSAIL attempts to keep the
most recently used control sections in memory. MAINSAIL does not swap out any data
structures other than control sections; thus, MAINSAIL supports "virtual code space" but not
"virtual data space".

When a control section that was obtained from an individual objmod file is first removed from
memory, it is written toa "swap file". When a control section obtained from a currently open
objmod library is removed from memory, it is not written to the swap file, since it may be read
back in from the objmod library.

10.13. Compilation of Several Modules in One File

More than one source module can appear in the same file. If no text (other than blank, tab, end­
of-page and end-of-line characters) appears between the final "END" of one module and the
"BEGIN" of the following module, the modules are compiled just as if they were separated into
different files and each file compiled separately.

Symbols that are defined between the "END" of one module and the "BEGIN" of the next (with
"DEFINE" or "REDEFINE") normally belong to the PRECEDING module, not the following.
The compilation of a new module does not begin until its "BEGIN" is seen (if something other
than "BEGIN" or a macro definition or compiler directive is seen, it is treated as end-of-file).
Compiling a file with the following contents therefore gets an error:

- 116-

REDEFINE moduleName

BEGIN moduleName
END moduleName

REDEFINE moduleName

BEGIN moduleName
END moduleName

"firstM";

"second";

since the second definition of moduleName belongs to the first module; when the second
"BEGIN" is seent the compilation of the second module is begunt and the previous definition of
moduleName is forgotten. The use of "moduleName" therefore results in a compiler error
message.

Symbols MAY be defined after the initial "BEGIN" of a module. The above could be rewritten
as:

REDEFINE moduleName "firstM";

BEGIN moduleName
END moduleName

BEGIN REDEFINE moduleName
moduleName

END moduleName

"second";

This would produce two modulest FIRSTM and SECONDt without error. The
"SQLOBALREDEFINE" directive could also be used in place of "REDEFINE" in the original
example to make it compile correctly.

10.14. Nonbound-Invocation Modules

TEMPORARY FEATURE: SUBJECT TO CHANGE

A module may be a "nonbound-invocation module". meaning that when $invokeModule is
called it creates a nonbound data section rather than a bound data section (if the module t s data
section is allocated with "bind" or by indirect access of an interface proceduret a bound data
section is created, as usual). This allows several invocations of a module to coexistt provided
that they are created by $invokeModule.

- 117-

A module is specified to be nonbound-invocation module with the compiler subcommand
"UNBOUND". This subcommand may be used in a "$DIRECTIVE" directive; i.e., a module
containing:

$DlRECTIVE "UNBOUND";

is specified to be a nonbound-invocation module.

In the MAINSAIL compiler, the module COMPIL is a nonbound-invocation module (all the
other compiler modules are also allocated as nonbound data sections, created with new). If,
during a compilation, the compiler is invoked (e.g., with a call to $invokeModule, or at an
"error response" prompt, or from MAINEX or MAINEDIT, all of which use $invokeModule),
a new instance of the compiler is created which does not interfere with any other instance. If a
bound data section of COMPIL were used, then a second invocation of the compiler would
destroy the first, since both would be using the bound instance of COMPIL.

XIDAK is considering other, more flexible, approaches to allowing simultaneous invocations
of the same program.

- 118-

11. Intmods

Intmods are compiler symbol table files created by compiling MAINSAIL modules. The
symbols defined in intmods may be used in the compilation of other modules or by MAINSAIL
system programs like MAINDEBUG or the MAINSAIL disassembler.

An intmod contains several kinds of information, including:

• outer symbols

• local symbols

• procedure parse trees (a parse tree is a representation of the statements and
expressions in the procedure)

• procedure instruction maps (instruction maps relate objmod offsets to source code)

• additional information allowing the debugger to examine variables and call
procedures

The outer symbols may be used by other modules that "open" the intmod during compilation.
The other contents of an intmod are for MAINSAa system programs.

An intmod is generated (or updated) during a module's compilation only when a compiler
option is in effect that requires information to be stored in the intmod. By default, no inbnod is
generated. Any of the following options cause an intmod to be generated (or updated):

Option
ALIST
DEBUG
INCREMENTAL
MONITOR
PERSTMT
SAVEON

Information Stored in Intrnod
instruction maps
instruction maps, symbol tables, debug information
parse trees for inline procedures, symbol tables
instruction maps (needed by PERSTMT)
instruction maps
parse trees for all procedures, symbol tables

In each case, only information required by the options is put into the intmod.

11.1. Intmod Directives

Several directives are provided for dealing with intmods:

-119 -

$DlRECTlVE "OPENMODULE S";
$DlRECTIVE "MAKEMODULEVISIBLE ml ... mn";
$DlRECTlVE "MAKEMODULENOTVISIBLE ml ... mn";
$DlRECTlVE "MAKEVISIBLE sl, ... ,sn";
$DlRECTlVE "MAKENOTVISIBLE sl, ... ,sn";
RESTOREFROM "s";
SAVEON "s";

11.1.1. Opening Intmods and Accessing Symbols

In the "$DIRECTIVE" directive "OPENMODULE s", s is the name of a module or intmod file;
the inunod must have been made with the "SA VEON" option in effect. The named intmod is
opened, along with any "supporting modules", i.e., intmods that were open when the
"SA VEON" that created the inunod was done.

Identifiers from intmods may be specified using the syntax:

<intmod module name>$<identifier>

For example, an identifier "id" from an intmod FOO is specified using the compound, or
qualified, identifier "fooSid". "foo$id" refers to the "id" in the inunod Foo, even if there is
also an "id" in the current module or in another open intmod. The compound identifier is
considered a single identifier for purposes of macro substitution; i.e., if a macro "bar" has been
defined, or if "bar" is a macro parameter, its definition is not expanded in "bar$id" or
"mod$bar". Whenever a compound identifier is found, the compiler automatically opens the
specified module if it is not already open; e.g., if "baz$xxx" is encountered and BAZ is not an
open module, the compiler acts as if it had seen:

$DlRECTlVE "OPENMODULE baz";

11.1.2.- Module Visibility

The "$DIRECTIVE" directive "MAKEMODULEVISffiLE" makes identifiers in one or more
open modules "visible", i.e., accessible without the need for qualification by the module-name­
and-dollar-sign prefix (the modules themselves are also said to be visible). The mi are module
names (never file names). Each module is opened, if not already open, as by
"OPENMODULE" (so each intmod must have been made with the "SA VEON" option in
effect). The identifiers in a visible module can still be qualified, if desired. The effect of
making a module visible can be undone by the "$DIRECTIVE" directive
"MAKEMODULENOTVISmLE". These two directives can be used any number of times for
the same module, alternately making it visible, then invisible.

-120 -

11.1.3. Individual Symbol Visibility

The individual symbol visibility directives provide a way to control the visibility of individual
symbols in an intmod. These directives are useful only if the intmod is saved. Only those
symbols individually visible are made visible in another module by
"MAKEMODULEVISIBLE" .

Each intmod has a "visibility default" that can have one of the two values "visible" and
"invisible". At the start of compilation a module's visibility default is initialized to "visible".
This default applies to all symbols not explicitly marked by "MAKEVISIBLE" or
"MAKENOTVISIBLE" .

The "$DIRECTIVE" directive "MAKEVISIBLE sl, ... ,sn" does the following:

• If the visibility default is "visible" then change it to "invisible" and clear the visibility
list

• Add the symbols sl, ... , sn to the visibility list

The "$DIRECTIVE" directive "MAKENOTVISIBLE sl, ... ,sn" does the following:

• If the visibility default is "invisible" then change it to "visible" and clear the visibility
list.

• Add the symbols sl, ... , sn to the visibility list

These directives are not available as compiler subcommands.

The symbols si may be the names of identifers declared or defined anywhere in the outer block
of the current module. An si may also be of the form <class name>.<field> or <module
name>.<field>, assuming the field is declared in the current module. There is no way to affect
the visibility of individual symbols from other intmods.

The si are not processed until the compiler has read the entire module, so the si may refer to
identifiers declared after the visibility directive. A visibility directive can appear in a procedure
body, but it cannot refer to symbols local to the procedure.

After the compiler has read the entire module, each referenced symbol on the visibility list is
"marked", so that the intmod contains the marked symbols. The visibility default is stored in
the intmod.

When an intmod is made visible, only the following outer symbols are actually visible:

- 121-

• If the visibility default stored in the intmod is "visible", then all symbols are visible
except those on the visibility list.

• If the visibility default stored in the intmod is "invisible", then no symbols are visible
except those on the visibility list.

A symbol can always be used with a compound identifier, e.g., "modNam$symbolName", even
if "symbolName" is not visible.

All symbols in the current module are always visible, regardless of the symbol visibility
directives.

If a symbol x from an intmod B is visible in a module A, then A cannot declare or define x
without a module prefix, since the definition from B would conflict. However, x may be
declared in A as "a$x". If a programmer wishes to redeclare a predefined identifier, e.g.,
"integerCode", in a module Foo, he or she must use the form "foo$integerCode". After the
point of definition in Foo, "integerCode" refers to foo$integerCode, not the system macro
integerCode.

11.2. Visibility from Supporting Intmods

Symbols from an intmod C used by an intmod B used by the current module A have the same
visibility as they had at the end of the compilation of B, regardless of any individual symbol
directives in B. For example, if all symbols in C are visible at the end of the compilation of B,
and B is currently visible in A, then all symbols in C are currently visible in A. This is true
regardless of the status of B' s visibility list, e.g., even if no symbols from B are visible.

11.3. "RESTOREFROM" and "SAVEON"

The directive:

RESTOREFROM "s";

where s is a module name or file name, first performs:

$DlRECTlVE "OPENMODULE s","MAKEMODULEVISIBLE mIt;

where m is the name of the module in the intmod specified by s. In addition, all modules that
were open or visible when the "SA VEON" for m occurred ("supporting modules for m") are
also made open or visible, i.e., are restored to their status at the time of the "SA VEON". By
contrast, "MAKEMODULEVISIBLE" makes only the specified modules visible; it makes sure
that modules that were open when the specified intmods were made are open, but does not
make them visible, regardless of whether or not they were visible when the intmod was made.

- 122-

The directive:

SAVEON "s";

makes an intmod with the "SA VEON" option in effect for the current module, when the
compilation is complete (saving a partial module is not possible). The intmod contains all the
information required to support the "OPENMODULE" directive. s is the name of the file on
which the saveon is stored. s may be omitted, Le.:

SAVEON;

in which case a default file name is used, based on the name of the module being compiled (or
the intmod is put in an intmod library if the appropriate compiler subcommands are in effect;
see the "MAINSAIL Compiler User's Guide" for details).

The compiler does not permit an intmod to be opened unless it was created with the
"SA VEON" option in effect. An intmod created in the absence of "SA VEON" does not contain
enough information to support its use by the compiler, although it may be usable by other tools
such as the debugger and disassembler.

Typically, a "SA VEON" directive occurs in a "definitional module", one for which no code is
generated and which is used only as a repository of definitions and declarations. The
MAINSAIL language does not make a distinction between a definitional module and an
"executable module", one for which code is generated and executed. An executable module
can serve as a definitional module, or vice versa.

11.4. Unqualified Identifier Search Rules

The MAINSAn... compiler searches for an unqualified identifier in the following order:

1. It searches the MAINSAll... keywords.

2. It searches the symbols defined in the current procedure, if compiling a procedure
body.

3. It searches the outer identifiers of the current module.

4. It searches visible intmods, in the order most recently made visible to least recently
made visible.

5. It searches the global symbol table (in which symbols defined by
"$GLOBALREDEFINE" reside).

-123 -

The first identifier found by searching in the above order is the one used by the compiler. No
warning is given if the same identifier occurs in another open intmod. Compilation may
become slower as more intmods are made visible, since there are more symbol tables to be
searched. For this reason, it may be a good idea to keep as many identifiers as possible in a
single intmod, if the identifiers are to be used without qualification. There is no compilation
slow-down if several intmods are opened but not made visible, and all references to identifiers
in the intmods are qualified; however, this puts the burden on the user of remembering each
identifier's declaring module, which may not be convenient.

11.5. Use of Symbols from an Intmod

Interface procedures and variables from an open intmod are processed as intermodule
references, as usual. Referenced non-interface procedures and outer variables from an open
intmod are "copied" out of the intmod; i.e., the procedures are compiled into the current module
as if they were forward procedures, and the outer variables are treated as if they were declared
in the current module. Macros from an open intmod are expanded in the usual way.

Procedures called by procedures copied into the current module are also copied into the current
module. The compiler remembers the module in which it found each procedure, so that the
procedures that would have been called at the point of compilation in the original intmod are
called, not procedures of the same name in the current module. See Example 11.5-1.

Procedures extracted from definitional modules are more quickly compiled than forward
procedures, since the source text has already been parsed and converted into the compiler's
internal representation.

11.6. Intmod Search Rules

When searching for an intmod, MAINS All.. looks in the specified file name, if processing a
compiler directive that specifies a file name. If processing a directive that specifies a module
name, or if looking for an intmod for some program other than the compiler, it follows the
search rules described in Section 12.2. If unsuccessful, it tries treating the given name as a file
name instead of a module name, and attempts to open the named file. If it still does not find the
intrnod, and the module it is looking for is a supporting module (a module used during
compilation by some other module), it last attempts to find the intmod file under the file name
specified when it was used druing compilation (which may be different from the file name
actually used, e.g., if a logical file name or searchpath was in effect).

11.7. Changing an Intmod

If an intmod is remade, all intmods that reference it must also be remade; otherwise, undefined
errors may result when the changed intmod is opened.

-124 -

If a module A contains:

BEGIN "a"

SAVEON;

PROCEDURE pl;
<body for pl>

PROCEDURE p2;
BEGIN ... pl; ... END;

END "a"

and a module B contains:

BEGIN "b"

RESTOREFROM "a";

PROCEDURE pl;
<body for B's pl>

INITIAL PROCEDURE;
BEGIN ... p2; ... END;

END "b"

then the call to p2 in B's initial procedure calls the
procedure p2 copied from A, i.e., a$p2, which calls the
procedure pl copied from A, i.e., a$pl, rather than the
pl in B, since a$pl, not b$pl, would have been called at
the point where p2's body was encountered when it was
compiled (in module A) .

Example 11.5-1. The Compiler Is Not Confused by Procedures of the Same Name in the
Wrong Module

If the date on an intmod is older than the date on one of its supporting intmods, a message is
issued when the supporting intmod is opened, the system program opening the intmod enters a
dialogue to confirm that the supporting intmod really should be used. If the date on the
supporting intmod file is wrong (e.g., if the file has been copied, or the system clock is
inaccurate), but the contents are correct, the supporting intmod should be used; but if the

- 125-

supporting intmod actually has been changed since it was used in the compilation of the first
intmod or objmod, undefined errors may result.

11.8. Sample Use of Intmods

An intmod may be used as an alternative to "header" files, i.e., sourcefiled files containing
dec1arations common to several modules (see Section 14.2). Declarations from intmods are
processed more quickly by the compiler than header files.

, Suppose that several modules each require three "header" files "hdrl", "bdr2", and "hdr3" as
sourcefiles. Each of the modules could use the "SOURCEFILE" directive to obtain the
information in the header files, with each header file being recompiled. But it would be more
efficient (assuming the header files are not being changed) to compile the header files once and
then save the state of the symbol table. Each module could then restore the symbols from the
saved intmod, thereby giving the effect of having just compiled the header files.

A convenient way to create the saved file is to compile a file with the contents shown in
Example 11.8-1. Each of the modules would then be written as shown in Example 11.8-2.

BEGIN "hdr"
SAVEON;
SOURCEFILE "hdrl";
SOURCEFILE "hdr2";
SOURCEFILE "hdr3";
END "hdr"

Example 11.8-1. A Source File Compiled to Produce an Intmod

BEGIN "modNam"
RESTOREFROM "hdr";

END "modNam"

Example 11.8-2. A Module Using an Intmod

-126 -

12. Objmods, Intmods, Libraries, and Search Rules

MAINSAIL uses two types of compiled modules, objmods (object modules) and inbnods
(intermediate modules).

The MAINSAIL compiler, by default, outputs the executable fonn of a MAINSAIL module
into a file (an "objmod file") of which the name is fonned from the name of the module
compiled.

Intmods are not executable. They contain infonnation used during compilation of other
modules or used by MAINSAIL system programs. See Chapter 11 for more details.

Both objmods and intmods may be stored into libraries, files containing several modules.
Objmods are stored into objmod libraries, and intmods into intmod libraries; either type of
library may be referred to as a "module library". Modules may be compiled directly into
module libraries (see the "MAINSA~ Compiler User's Guide") or added to module libraries
with the utilities MODLIB and INTLm (see the "MAINSAIL Utilities User's Guide").

MAINSAIL may execute either directly from objmod files or from objmod libraries. Objmod
libraries have several advantages over objmod files:

• When a system consists of several modules, putting them into a library eliminates the
need for individual objmod files, thus reducing clutter in the file system.

• An objmod library opened for execution is opened just once. Each module that does
not reside in an objmod library is individually opened during execution when it is
first accessed. Opening a file is a time-consuming operation on many systems.

• Sometimes it is necessary to discard modules'from memory in order to make more
room. A module that does not reside in memory must first be written to a "swap" file
(see Section 10.12) before its space is used. A module that resides in a module
library open for execution need not be written to the swap file.

More information on module libraries may be found in the "MAINSAIL Utilities User's
Guide".

12.1. Objmod and Intmod File Names

The default intmod file name has the form:

-127 -

<1st 3 characters of $systemNameAbbreviation>-int:<module name>

For example, a module FOO compiled for a V AX-II UNIX system (where
SsystemNameAbbreviation is "uvax") is compiled into an intmod file named "uva-int:foo". A
searchpath is usually set up for intmod file names. Bootstraps distributed by XIDAK specify a
searchpath (see the "MAINSAIL Utilities User's Guide" for a description of the MAINEX
"SEARCHP A TH" subcommand) of the form:

SEARCHPATH *-int:* *2-*1.int

unless otherwise noted in the system-specific documentation; consult the system-specific
MAINSAIL user's guide for information. This searchpath would map "uva-int:foo" into "foo­
uva.int", where the intmod for FOO would be stored.

The default objmod file name has the form:

<1st 3 characters of $syste~ameAbbreviation>-obj:<module name>

For example, a module-BAR compiled for an M68000 UNIX system (where
$systemNameAbbreviation is "um68") is compiled into an objmod file named "um6-obj:bar".
A searchpath is usually set up for objmod file names. Bootstraps distributed by XIDAK specify
a searchpath of the form:

SEARCHPATH *-obj:* *2-*1.obj

unless otherwise noted in the system-specific documentation; consult the system-specific
MAINSAIL user's guide for information. This searchpath would map "um6-obj:bar" into "bar­
um6.obj", where the objmod for BAR would be stored.

These file names and searchpaths are subject to change; those shown are correct for the current
release, unless otherwise documented in the system-specific MAINSAIL user's guide.

12.2. Objmod and Intmod Search Rules

There are three types of searches that MAINSAIL makes to find an intmod or objmod:

• intSearch: an intmod search.

• objSearch: a non-executable objmod search, or just "objmod search", as when
recompiling or disassembling.

• exeSearch: an executable objmod search, or just" executable search", as when
executing or debugging a module.

- 128-

A search is always for a particular target system. For example, an executable search is always
for the host system. A cross-compilation requires intmods and objmods for the system for
which the compilation is done.

The distinction between objmod searches and executable searches allows one version of an
objmod to be executing while another version (possibly for a different target system) is used for
another purpose, such as incremental recompilation.

By default, all searches first look in all open libraries (intlibs for intmods, objlibs for objmods),
more recently opened libraries first, and then try to open a file with the default name, as
described in Section 12.1. This search order may be reversed with the MAINEX "INTFILE" ,
"OBJFILE", or "EXEFILE" subcommand. The MAINSAIL system objlib is initially open for
exeSearches.

An unsuccessful library search is always immediately followed by a foreign module search in
the case of exeSearches. The foreign module table is constructed with the aid of the Foreign
Language Interface; see the "MAINSAIL Compiler User's Guide".

Each type of search is governed by a separate list:

• The intList governs intmod searches.

• The objList governs non-executable objmod searches.

• The exeList governs executable objmod searches (in conjunction with the module­
to-module association list; see below).

Each entry on one of these lists indicates that a particular intmod or objmod is to be found in a
particular file or library (or that the objmod is really another objmod, in the case of the module­
to-module association list). The lists are empty unless an entry is specifically created (normally
by a MAINEX subcommand, or by a MAINEX subcommand passed to $getSubcommands, as
described in the "MAINSAIL Utilities User's Guide"). In the absence of any entries, a default
search occurs, which is often sufficient; the lists are used only to indicate exceptions to the
default search mechanism. If a list indicates that a module is in a particular library, then when
a search is made for that module, the indicated library is automatically opened if necessary.

Each entry on the lists contains the following information:

• the module name,

• the file name in which it is to be found,

• whether the file is a library or a file that contains just one module,

• and the target system to which the entry applies.

-129 -

An exeSearch first checks the module-to-module-assocation list, as made by calling the
procedure "setModName" from a MAINSAll.. module or by specifying the MAINEX
"SETMODULE" subcommand (see the "MAINSAIL Utilities User's Guide"). Mter the
module-to-module substitution is made, if any, an exeSearch behaves like the other two types
of search (there is no equivalent of the module-to-module association list for intSearches and
objSearches). Each type of search checks its list to see whether the target module has an entry
(for the target system), and if so, insists on finding the intmod or objmod in the file or library
specified by the entry. A list can have at most one entry with a given module name and target
system.

For each type of search, MAINEX subcommands are provided to add an entry to the list,
remove an entry from the list, print (part of) the list, and to alter the normal order of search
(libraries before files or vice versa). These subcommands are described in detail in the
"MAINSAIL Utilities User's Guide"; they are summarized in Table 12.2-1.

-130 -

Command
INTFILE

OBJFILE

EXEFILE

INTLIB

OBJLIB

EXELIB

Arguments
m{=f}

m{=f}

m{=f}

m{=f}

m{=f}

m{=f}

INTDEFAULT m

OBJDEFAULT m

EXEDEFAULT m

INTSHOW
OBJSHOW
EXESHOW
INTFILE

OBJFILE

EXEFILE

INTLIB

OBJLIB

EXELIB

{m ••• }

{m ••• }

{m ••• }

Description
intSearch: get m's intmod from

file f
objSearch: get m's objmod from

file f
exeSearch: get m's objmod from

file f
intSearch: get m's intmod from

intlib f
objSearch: get m's objmod from

objlib f
exeSearch: get m's objmod from

objlib f
intSearch: default search for m's

intmod
objSearch: default search for m's

objmod
exeSearch: default search for m's

objmod
show entries {for m .•. } in intList
show entries {for m ..• } in objList
show entries {for m ... } in exeList
intSearch: search files before

intlibs
objSearch: search files before

objlibs
exeSearch: search files before

objlibs
intSearch: search intlibs before

files
objSearch: search objlibs before

files
exeSearch: search objlibs before

files

Table 12.2-1. MAINEX Search List Subcommands Summary

- 131-

13. Macros

A macro allows an identifier to represent either a constant or arbitrary text. Each occurrence of
the macro identifier (a "macro call") is replaced by the compiler with the associated constant or
text that was specified when the macro was defined. This chapter describes macro definitions
and macro calls.

13.1. "DEFINE"

A macro equate associates an identifier (the "macro name" or the "macro") with text or a
constant expression (the "macro body") that is substituted by the compiler for subsequent
occurrences of the identifier ("macro calls"). A macro definition consists of the keyword
"DEFINE" (or the keyword "REDEFINE"; see Section 13.2) followed by a series of one or
more macro equates, as follows:

DEFINE macroEquate1,macroEquate2, ... ,macroEquateN;

The form of a simple macro equate is:

v == macroBody

where v is an identifier and macroBody is a constant or "bracketed text" (Section 13.3).

If macroBody is a constant, the identifier defined is called a "macro constant". macroBody may
be a constant expression of any data type. For example:

DEFINE maxNum = 10;

defines the identifier maxNum to be 10. During compilation, any subsequent occurrences of
maxNum in the module are replaced with the constant 10 (as if the number 10 appeared instead
ofmaxNum).

The form of a macro equate with parameters is:

v(v1, ... , vn) = [bracketed text]

where the macro identifier v is followed by a parenthesized list of parameter identifiers (the vi)
that may be used within the bracketed text (vn may optionally be preceded by the keyword
"REPEATABLE"; see Section 13.6.1). Subsequent occurrences of v (i.e., macro calls) are
followed by a parenthesized list of arguments, much like a procedure call. Each occurrence of

- 132-

the identifier vi within the bracketed text (even within string constants and comments) is
replaced with the corresponding argument teXL Macro arguments are described in Section
13.5.

A form of macro equate that involves compiletime interaction with the programmer is
described in Section 13.4.

A macro definition may occur almost anywhere in a program, even in the midst of an
expression, for example. A macro definition cannot occur in the midst of another definition,
except within bracketed text.

Macro identifiers may be used anywhere, even in subsequent macro definitions. For example,
if upperLimit is defined as:

DEFINE upperLimit - 100;

then a subsequent macro definition:

DEFINE threeTimesUpperLimit 3 * upperLimit;

is equivalent to:

DEFINE threeTimesUpperLimit - 3 * 100;

A macro definition within a procedure body defines new macros that are accessible only within
the body of the procedure. After the end of the procedure body, any earlier definitions (or
declarations) of the macro identifiers are again in effect.

13.2. "REDEFINE"

"REDEFINE" may be used to change the body of a previously defined macro.

In a macro definition headed by "DEFINE", each identifier defined must not have been
previously defined. This restriction is not applied t~ macro definitions headed by
"REDEFINE". Macro identifiers in macro definitions headed by "REDEFINE" are given new
bodies whether the identifiers were previously defined·or noL

A "REDEFINE" within a procedure body may change the body of a macro defined outside the
procedure body. The new macro body remains in effect throughout the rest of the module (or
until a new "REDEFINE" of the macro is encountered).

"REDEFINE" may be used to increment a counter as shown in Example 13.2-1. The macro x
is defined to be 0 originally. Whenever a call to the macro def occurs, x is redefined to have a

-133 -

DEFINE
x
def(y)

0,
[REDEFINE x - x + 1; DEFINE y - x;];

Example 13.2-1. Use of "REDEFINE"

value one greater than its previous value, and the argument to def is defined to have this new
value of x. Thus the macro calls:

def (easel)
def(ease2)
def (ease3)

result in casei being defined as i. $def is a more sophisticated, pre-defined version of def; see
Section 14.21.

13.3. Bracketed Text

Bracketed text is a sequence of characters enclosed in matching brackets ("[" and "]"). It is
used in a macro body to define a macro as almost arbitrary text The characters are taken just
as is when building the bracketed text; e.g., macro calls are not expanded and compiler
directives are ignored.

The use of bracketed text is shown in Example 13.3-1.

Brackets may appear within the text if they are matched; i.e., each left bracket must be
followed by a matching right bracket, and each right bracket must be preceded by a matching
left bracket.

A macro constant definition such as:

DEFINE bound = 100;

could be written with the same effect using bracketed text as:

DEFINE bound - [100];

but the former is more efficiently compiled.

-134 -

The macro definition

DEFINE verOk = [testSkill(2 * skNum,5,15)];

allows a programmer to use

verOk

to stand for

testSkill(2 * skNum,5,15)

throughout the scope of the definition.

Example 13.3-1. Example of Bracketed Text

13.4. Interactive Definition

A macro equate may omit the "=" and subsequent macro body. in which case the compiler
prompts for and reads a line from cmdFile and uses this line to define the body of the macro.
For example:

DEFINE vl, ... , vn;

causes the compiler to write to 10gFile for each identifier vi:

DEFINE vi =

(where Vi is uppercase for vi). It then reads a line from cmdFile. The text:

DEFINE vi - <line read from cmdFile>;

is then compiled as if it had appeared in the source file.

Another option is to supply a string constant expression that is written to 10gFile in place of
"DEFINE Vi = ". An example is:

DEFINE vl el, ... , vn en;

- 135-

where the ci are string constant expressions. In this case, for each vi, the compiler writes ci
instead of the standard "DEFINE Vi = " message.

For example, when the compiler encounters:

DEFINE maxNumInput,debug "debugging version (TRUE or FALSE)? ";

it first types:

DEFINE MAXNUMINPUT =

If the user types "10", for example, the effect is the same as if:

DEFINE maxNumInput = 10;

had occurred in the program.

The compiler then types:

debugging version (TRUE or FALSE)?

to which the user replies either "TRUE" or "FALSE". If "TRUE" is typed, for example, the
effect is the same as if:

DEFINE debug = TRUE;

had occurred in the program. Thus, this form of macro definition allows the programmer to
interact with the compilation.

Any mixture of the various forms of macro equate can occur with the same macro definition, as
shown in Example 13.4-1.

REDEFINE
debug
caIIFoo(i)

TRUE,
[foo(i,l)],

version,
compileAllModules

"Compile all modules (TRUE or FALSE): WI,
upperBound = 10;

Example 13.4-1. Using Various Forms of Macro Equate

It is possible to have an interactive define of a macro header that contains parameters, e.g.:

- 136-

DEFINE xxx(yyy) "xxx (yyy) : "i

When the compiler prompts for the definition of this macro, the user's response must be
bracketed text.

13.5. Macro Calls

A "macro call" is the occurrence of a macro identifier at any point in a program after it has been
defined. It directs the compiler to scan the body of the macro as if it appeared in place of the
macro call.

If the macro was defined with parameters (see Section 13.1), a parenthesized list of macro
arguments (see Section 13.6) separated with commas may appear after the macro identifier.
Fewer arguments may be supplied than parameters, in which case the compiler supplies no text
(i.e., acts as if an empty pair of brackets were supplied) for each unspecified argument. No
parentheses are needed if no arguments are specified.

The macro arguments replace all occurrences of the corresponding parameter identifiers in the
macro body, as in Example 13.2-1.

13.6. Macro Arguments

Most macro arguments may consist of the intended text with no special delimiters. But if the
macro argument is a text "fragment" (e.g., if it contains unmatched parentheses), then it must be
enclosed in brackets. An argument with unmatched brackets is not allowed.

The text of each macro argument starts with the first character (other than the "white space"
characters space, tab, eol, or eop) following the previous tenninating comma (or the opening
left parenthesis of the argument list).

If the first character of a macro argument is not a left bracket, then the text of the argument is
terminated with the next comma (or the closing right parenthesis) except that nesting counts are
kept of parentheses and brackets; the argument text does not terminate until each nesting count
is zero. That is, each time a left parenthesis (bracket) is encountered, the parenthesis (bracket)
nesting count is incremented by one and each time a right parenthesis (bracket) is encountered,
the appropriate count is decremented by one. The macro argument scan does not terminate
until both counts are zero and a comma or right parenthesis is encountered. Trailing characters
such as space, tab, eol, and eop are removed from the argument text. Comments are discarded;
i.e., if "#" is encountered, the remainder of the line is removed from the argument text.

String constants are treated as a unit; i.e., when a double quote is found, the compiler
immediately scans for the end of the string constant (as described in Section 3.5). Parentheses,
commas, or brackets that occur in the string constant are not specially processed.

- 137-

Commas may appear within properly nested parentheses, brackets, or string constants.

If the first character of a macro argument is a left bracket (" [It), then the argument is the
sequence of characters up to the next matching right bracket (a nesting count, as described
above, is kept for brackets, and the argument text terminates when the count is zero). This
allows almost arbitrary text to be used as a macro argument; i.e., no attention is paid to
parentheses, commas, string quotes, or comments within square brackets.

13.6.1. Repeatable Macro Parameters, $numArgs, $arg, and $sArg

The last parameter of a macro may be declared repeatable:

DEFINE foo(a,b,REPEATABLE v) = [...];

In a call to such a macro, the arguments that correspond to the repeatable parameter are treated
as if they had been enclosed in square brackets, i.e., as if they were a single argument

foo (i, j, k, l,m, n) => foo (i, j, [k, l,m, n])

Each occurrence of the repeatable parameter in the macro body is replaced by the bracketed
text Thus, an occurrence of "v" in foo's body expands to "k,l,m,n".

Usually, however, it is desired to deal with one at a time of the arguments passed to the
repeatable parameter, not with all of them at once.

Three special-purpose macros are provided for accessing the individual arguments of a
repeatable parameter:

• "SnumArgs(v)" is the number of arguments passed to repeatable parameter v. For
example, in the call to foo above, "$numArgs(v)" is 4 since [k,l,m,n] was passed to v.

• "Sarg(v,i)" is the ith argument passed to repeatable parameter v (the first argument is
numbered one). For example, "Sarg(v,3)" above is m, since m was the third
argument in the [kJ,m,n] passed to v. If i is less than lor greater than the number of
arguments passed to v, Sarg expands to no characters, i.e., D.

• "SsArg(v,i)" is like "$arg(v,i)" except that it expands to a string constant containing
the text that "Sarg(v,i)" would have returned ([] is treated as '"'). For example,
"SsArg(v,3)" above would be the string constant "m".

SsArg is useful when the text of a macro is to be used as if it were a string constant. With a
normal parameter, the effect can be obtained as follows:

DEFINE print(a) = [ttyWrite("a" & eol)];

- 138-

Thus:

print (Hello)

causes "Hello<eol>" to be written. If the parameter a were made repeatable with the same
macro body:

DEFINE print (REPEATABLE a) = [ttyWrite("a" & eol)];

the effect of "print(x,y,z)" is not the same as "print(x); print(y); print(z)" since the former writes
"x,y,z<eol>" while the latter writes "x<eol>y<eol>z<eol>". The following:

DEFINE print (REPEATABLE a) = [ttyWrite("$arg(a,i)" & eol)];

writes n$arg(x,y ,z,i)<eol>", since $arg is not recognized inside a string constant Use $sArg to
get the desired behavior for print:

DEFINE print (REPEATABLE a) =
[$FORC i = 1 UPTO $numArgs(a) $DOC

ttyWrite($sArg(a,i) & eol) ENDC];

In this form, "print(x,y,z)" writes "x<eol>y<eol>z<eol>".

In fact, $numArgs, $arg, and $sArg are implemented in a way that allows them to be used with
non-repeatable parameters:

• $numArgs really just counts how many macro arguments it has. For example,
"$numArgs(a,b,c)" is 3.

• These macros see their arguments after any macro parameters of enclosing macros
have been expanded. When used as above, "$numArgs(v)" expands to
n$numArgs(k,I,m,n)", since v is [k,l,m,n].

• $arg really just selects its ith argument, where i is its last argument; similarly for
$sArg. For example, "$arg(a,b,c,2)" is b. If i is less than 1 or greater than the
number of preceding arguments, $arg expands to [] and $sArg expands to "". Thus
"$arg(a,b,c,O)" is [] and "$sArg(a,b,c,4)" the null string.

• If $arg (or $sArg) has just one argument, it behaves as if there were a second
argument (the index) with value 1; i.e., the first (and only) argument is selected.

A repeatable macro argument is really just a convenience so the programmer does not have to
enclose the repeated arguments in brackets. This allows the syntax of a macro to look like that
of a procedure, so that the programmer need not know which is really being called. Defining
fooas:

- 139-

DEFINE foo(a,b,c) [...] ;

and then invoking it as:

foo (i, j, [k, l,m,n])

has the same effect as the above example using a repeatable parameter and no brackets in the
call. In particular, $numArgs, $arg, and $sArg can be used to "look inside" any bracketed
arguments, not just those declared repeatable.

For example:

MODULE xProcs
DEFINE defProc(t,p) = [t PROCEDURE p] & [Proc (t parm);];
$FORC j = 1 UPTO 4 $DOC

) ;

expands to:

REDEFINE
x = $arg([INTEGER,i], [LONG INTEGER,li], [REAL,r],

[LONG REAL,lr],j);
defProc($arg(x,1),$arg(x,2» ENDC

MODULE xProcs (
INTEGER PROCEDURE iProc (INTEGER parm);
LONG INTEGER PROCEDURE liProc (LONG INTEGER parm);
REAL PROCEDURE rProc (REAL parm);
LONG REAL PROCEDURE lrProc (LONG REAL parm);
) ;

The following is an example ofa "compiletime case expression":

DEFINE pdfChrs(a) =
[cvli($arg(pdfBoChars,pdfiChars,pdfLiChars,pdfrChars,

pdfLrChars,pdfbChars,pdfLbChars,
pdfiChars + length(a),pdfaChars,pdfcChars,
MESSAGE "pdfChrs: unexpected type"; 0,
$TYPEOF(a»)];

Using a parameter a in string quotes ("a") fails if a's argument contains undoubled string
quotes; $sArg provides a safe, general way to convert an ordinary macro argument into a string
constant:

DEFINE foo(a,b) [... write(f,$sArg([a],l» ...];

-140-

is like:

DEFINE foo (a,b) = [••• write (f, "a") ...];

except that the latter is incorrect if the argument to "a" contains undoubled suing quotes. The
argument a was enclosed in brackets when used as the argument to $sArg because a alone
could expand to what appears to be several macro arguments.

13.7. Determining Whether a Macro Argument Has Been Omitted

A bracketed macro parameter identifier used in the governing expression of an "IFe" can be
used within a macro definition to determine whether or not the macro parameter is empty (i.e.,
has been omitted), assuming that the argument passed for the parameter is syntactically correct
(if it is not omitted). For example, consider a macro designed to assert a condition that issues a
message if the condition is false. It has a default message but allows that message to be
overridden. The macro could be defined as:

DEFINE assert{condition,msg)
BEGIN
IF NOT (condition) THEN
IFC [msg] THENC errMsg(msg)
ELSEC errMsg{"Assertion failed") ENDC END];

in which case the calls:

assert (x y);
assert(i > 20,"i is too small")

expand to:

BEGIN IF NOT (x y) THEN errMsg("Assertion failed") END;
BEGIN IF NOT (i > 20) THEN errMsg("i is too small") END

assert may not work if msg contains, e.g., unmatched "[" or 'T', since the parameters are
expanded before the macro bodies are parsed.

13.8. Bracketed Text in Constant Expressions

Bracketed text can be used in constant expressions as an operand of "NOT", "ANO", "OR",
"=", "NEQ", and "&". In the cases of "=", "NEQ", and "&", one operand may be bracketed text
and the other bracketed text or a string constant This use of bracketed .text is useful with
macro arguments.

- 141 -

DEFINE
ml(a,b) [IFC NOT [a] OR NOT [b] THENC

MESSAGE "Missing argument"; ENDC
] ,

m2(a,b) [IFC [a] - [b] THENC ELSEC ENDC] ,

m3(a,b) [IFC [a] "b" THENC ELSEC ENDC] ;

Example 13.8-1. Bracketed Text Operands

DEFINE a = [id] & "1";

has the same effect as:

DEFINE a = [idl];

(unless the definition occurs within a macro body, and
"id" is a macro parameter for which text is substituted;
the substitution is made in the first case but not the
second). This capability is useful when macro bodies are
built up from other macros.

Example 13.8-2. Concatentation of Bracketed Text and String Constants

In Example 13.8-1, the use of "b" in the definition of m3 instead of [b) fails if the argument b
contains unpaired double quotes (e.g., if it is or contains a string constant, although it could be
repaired with $sArg as described above). The use of [b) in m2 fails if b is a source text
fragment containing unmatched square brackets (whereas "b" would work in that case if the
argument contained no unpaired double quotes).

-142-

14. Compiler Directives and Conditional Compilation

A compiler directive indicates which source text is to be compiled or conveys information to
the compiler that is used while compiling the program.

A compiler directive may occur wherever a declaration or statement may occur (except that
"BEGINSCAN" must be the first thing on a page), and must be terminated with a semicolon.

14.1. "MESSAGE"

"MESSAGE" is a compiler directive that writes a string at compiletime to a new line of 10gFile.

The form of a "MESSAGE" directive is "MESSAGE c;" where c is a string constant
expression, or "MESSAGE c,c2;", where c is an arbitrary string constant expression and c2 is
one of "error" or "warning" (case is ignored). c is written to logFile when the "MESSAGE"
directive is encountered during compilation; if c2 is present, then c is included in a warning
message if c2 is "warning" or an error message if c2 is "error". For example, to give a
compiletime error message if the character set is unknown:

IFC $charSet - $ascii THENC .. .
$EFC $charSet - $ebcdic THENC .. .
ELSEC MESSAGE "Unknown char set","error"i ENDC

14.2. "SOURCEFILE"

"SOURCEFn...E" directs the compiler to compile another file as if it appeared in place of the
directive.

The form of a "SOURCEFILE" directive is "SOURCEFILE c;" where c is a string constant
expression that specifies a file name. "SOURCEFILE" causes the compiler to save the state of
the current source file (that is, the one it is currently compiling) and then begin compiling the
file named by c, as if its text had appeared in place of the directive. When compilation of the
file c is complete, compilation resumes immediately following the "SOURCEFILE" directive.

A file that was itself obtained with "SOURCEFILE" may also use "SOURCEFILE" to get
additional files; i.e., SOURCEFll...E's may be nested.

A sourcefile name may be read from cmdFile by means of an interactive define (see Section
13.4):

- 143-

DEFINE defFile "Name of file with definitions: ";
SOURCEFILE defFile;

The "SOURCEFILE" directive may be used to maintain a set of declarations common to a
number of modules in a single file that is sourcefiled by all of them.

14.3. "CHECK", "NOCHECK",and "CHECKING"

"CHECK", "NOCHECK", and "CHECKING" govern the generation of code to check certain
conditions at runtime that cannot be determined at compiletime. They are described in detail in
Chapter 15.

14.4. "$DffiECTIVE"

The directive "$DIRECTlVE" permits certain compiler subcommands and other directives to
be specified inside the source text for a module. Its format is:

$DIRECTIVE sl, ... ,sn;

where the si are string constants that are the names of compiler subcommands (followed by
arguments, if applicable). The case of the the compiler subcommands in si does not matter.
The subcommands currently accepted by "$DIRECTIVE" are:

ABORT ACHECK ACHECKALL ALIST CHECK CHECKALL CLOSEINTLIB
CLOSEOBJLIB CMDLINE DEBUG GENCODE GENINLINES INCREMENTAL
INOBJFILE INOBJLIB LOG MODTIME MONITOR OPENINTLIB OPENOBJLIB
OPTIMIZE OPTIMIZEALL OUTINTFILE OUTINTLIB OUTOBJFILE
OUTOBJLIB PERMOD PERPROC PERSTMT PROCS PROCTlME REDEFINE
RESPONSE SAVEON UNBOUND NOACHECK NOACHECKALL NOALIST NOCHECK
NOCHECKALL NODEBUG NOGENCODE NOGENINLINES NO INCREMENTAL
NOINOBJLIB NOMONITOR NOOPTIMIZE NOOPTIMIZEALL NOOUTINTLIB
NOOUTOBJLIB NOPROCS NOREDEFINE NORESPONSE NOSAVEON NOUNBOUND
LIBRARY OUTPUT NOLIBRARY NOOUTPUT

The "$DIRECTIVE" directives that are not compiler subcommands are:

MAKEMODULENOTVISIBLE MAKEMODULEVISIBLE MAKENOTVISIBLE
MAKEVISIBLE OPENMODULE PUSHACHECK PUSHCHECK POPACHECK
POP CHECK

"MAKEMODULENOTVIsmLE", "MAKEMODULEVISIBLE", "MAKENOTVISIBLE",
"MAKEVISIBLE", and "OPENMODULE" are described in detail in Chapter 11.

- 144-

"PUSHACHECK", "POPACHECK", "PUSHCHECK" and "POPCHECK" are described in
detail in Chapter 15.

"$DIRECTIVE" directives apply only to the current module, Le., are not sticky.

The directives:

$DlRECTlVE "CHECK";

and:

$DIRECTlVE "NOCHECK";

are equivalent to:

CHECK;

and:

NOCHECK;

respectively.

The current setting of many "$DIRECTIVE" directives can be examined with the system
procedure $compileTime Value. -

14.5. "SA VEON" and "RESTOREFROM"

"SA VEON" and "RESTOREFROM" allow symbols from an intmod to be used during a
compilation; see Chapter 11.

14.6. "ENCODE"

The "ENCODE" directive is used with the Foreign Language Interface (FLI, described in the
"MAINSAIL Compiler User's Guide") to supply target-dependent names to be written to the
generated assembly language file in place of the MAINSAIL procedure identifiers. The FLI
ordinarily uses some transformation (as specified in the appropriate operating-system-specific
MAINSAIL user's guide) of a MAINSAIL procedure name as the foreign procedure name. In
some cases the foreign name cannot be derived from the default transformation. The
"ENCODE" directive allows the programmer to supply an arbitrary string as the foreign
procedure name.

The form of the "ENCODE" directive is:

-145 -

ENCODE p1 sl, ... , pn sn;

where the pi are interface procedure identifiers and the si are string constants. The string si is
used as the foreign procedure name corresponding to pi when pi is compiled with the FLI
compiler.

In Example 14.6-1, "streamPutRec" is the MAINSAIL procedure identifier used for the foreign
procedure "stream_Put$Rec". The FLIcode generator outputs "stream_Put$Rec" to the
assembly file as the name of the foreign procedure.

ENCODE streamPutRec "stream_Put$Rec";

Example 14.6-1. Use of the "ENCODE" Directive

The FLI is further described in the "MAINSAIL Compiler User's Guide" .

14.7. "$GLOBALREDEFINE"

Sometimes it is useful to carry over information from one compilation to the next (within the
same compiler session). This can be accomplished with the keyword "$GLOBALREDEFINE",
which introduces a "global macro definition". The syntax and semantics of
"$GLOBALREDEFINE" are just like those of "REDEFINE", except that the defined identifiers
are entered into a "global symbol table" that persists from one compilation to the next in the
same invocation of the compiler. A macro defined in one module can be accessed in a
subsequently compiled module.

If an identifier has been defined in a global definition, then a "DEFINE" or "REDEFINE" of the
identifier defines or redefines a non-global (local to the current module or procedure)
occurrence of the identifier. Subsequent references to the identifier (within the scope of the
non-global definition) reference the non-global definition. If the non-global definition is local
to a procedure, then after the body of that procedure the global definition is once more visible.

Compiler subcommands are available for doing global redefinitions and also removing
identifiers from the global symbol table.

The module shown in Example 14.7-1 compiles into an indefinite number of empty modules
named FOOl, FOO2, FOO3, etc.

-146 -

IFC NOT DCL(modNum) THENC
$GLOBALREDEFINE modNum = 1;
ELSEC
$GLOBALREDEFINE modNum = modNum + 1;
ENDC

$GLOBALREDEFINE modName "foo" & cvs(modNum);

BEGIN modName

END modName

SOURCEFILE $thisFileName;

Example 14.7-1. Generating an Aribitrary Number of Empty Modules with
"$GLOBALREDEFINE"

14.8. "DSP"

"DSP" is a compiletime pseudo-procedure that returns as an integer the displacement to a field
of a class or module. It takes a single argument of the form "class.field" or "module. field" . See
Example 14.8-1. XIDAKreserves the right to change the layout of record fields in memory.

CLASS cell
(POINTER(cell) left, right;
STRING name;
INTEGER value)

Suppose pointers and integers each require 1 storage unit,
and strings require 2. Then:

DSP(cell.left) is 0
DSP(cell.right) is 1
DSP(cell.name) is 2
DSP(cell.value) is 4

Example 14.8-1. Use of "DSP"

- 147-

14.9. "$LEGALNOTICE"

The "$LEGALNOTICE" directive causes a "legal notice" to be put into the objmod and/or
intmod for the module being compiled. A legal notice is typically a legal notification such as a
copyright or trade secret paragraph. The compiler directive:

$LEGALNOTICE s;

where s is any string constant expression, is used to specify a legal notice. Only the first
"$LEGALNOTICE" text encountered in a module's source text is put into the output file(s).
"$LEGALNOTICE" texts from referenced intmods are not put into the object file; it must
appear in the source file when it is compiled. A semicolon is required after s.

14.10. Conditional Compilation: "IFC", "THENC", "$EFC", "ELSEC",
and "ENDC"

Conditional compilation allows the programmer to specify under what conditions indicated
parts of the source file are to be compiled or ignored.

The conditional:

IFC c THENC textl ENDC

causes the compiler to compile textl if c (a constant expression evaluable at compiletime; see
Section 2.5) is non-Zero, and to ignore textl otherwise. textl is any source text that is valid
(e.g., statement(s), declaration(s), macro definition(s» where the conditional appears.
"THENC" separates the condition c from the text to be conditionally compiled, and "ENDC"
marks the end of that text.

A sample conditional is:

IFC dODebug THENC ttyWrite("current value is ",val); ENDC

The "ttyWrite ... " is compiled if doDebug is non-Zero; otherwise, it is ignored.

The general conditional form is:

-148 -

IFC e1 THENC text1
{$EFC e2 THENC text2

{$EFC e3 THENC text3

{$EFC em THENC textm}}}
{ELSEC textn}
ENDC

The ci are constant expressions evaluable at compiletime. If c 1 is non-Zero, then textl is
compiled; otherwise, if c2 is present and non-Zero, then text2 is compiled; otherwise, if c3 is
present and non-Zero, then text3 is compiled, etc. If none of the ci is non-Zero, and "ELSEC"
is present, then textn is compiled. The texti that are not compiled are ignored.

"Ignored" text is really scanned (except that macros are not expanded, and compiler directives
are ignored) but not parsed, which means that basic constructs such as constants must be
properly constructed, and IFC's, $EFC's, ELSEC's, and ENDC's must be properly matched.
Otherwise, the text need not be syntactically correct.

IFC's may be nested to any depth. That is, constructs such as that shown in Example 14.10-1
are allowed. The "c" in "IFC", "$EFC", "THENC", "ELSEC", and tlENDC" stands for
"conditionaltl.

IFC e1 THENC

IFC e2 THENC text1 ELSEC text2 ENDC

ELSEC text3 ENDC

Example 14.10-1. Nested IFC's

In Example 14.10-1, if c 1 is Zero, then text3 is compiled (the rest of the conditional is scanned,
but not parsed). If cl and c2 are both non-Zero, then textl is compiled. If cl is non-Zero but
c2 is Zero, then text2 is compiled.

14.11. "$CASEC": Compiletime Case

"$CASEC" provides for compiletime case selection, and is useful as a shorthand for some
forms of "IFC" directives. The syntax is similar to that of the Case Statement:

- 149-

$CASEC x OF
[xl]
[x2 TO x3]
[x4] [x5]
[]

ENDC

textl
text2
$BEGINC text3 ENDC
text4

"OFB" may be used in place of "OF" (it does not take a matching "END"); "OFB" and "OF"
are therefore exactly equivalent in this context.

14.11.1. Selectors

The case selection expression x is a constant expression of any data type; it need not be an
integer as it would for a Case Statement All the expressions used in the case selectors (the xi)
must be of the same data type as x' s.

The bracketed selectors are evaluated in the order encountered, and as soon as one occurs that
matches (see Section 14.11.2) the selection expression, the corresponding text is gathered into a
string (and so must not exceed the maximum string length), the remainder of the "$CASEC"
directive (down to the terminating ItENDCIt) is discarded, and then the gathered text is
compiled. The selected text is terminated by a "bare" left bracket (see Section 14.11.3) or
ItENDCIt.

The catch-all selector "0" matches any selection expression. All selections after it are ignored,
so it should come last (this differs from the treatment of the catch-all selector in the Case
Statement).

14.11.2. Selector Matching Rules

A selector of the form "[a]It matches x if "x = alt
, i.e., if x and a evaluate to the same value.

A selector of the form "[a TO b]" matches x depending on the data type of x, a, and b (all must
be the same type) according to the rules shown in Table 14.11.2-1.

14.11.3. Delimiters of Selected Text

The selected text (the texti above) is arbitrary text to be compiled. If it contains a "bare" left
bracket ("[It or" (It), i.e., not inside of a string constant (It ... [... It), character constant C['), or
comment (# ••• [... <001», the left bracket (and optionally surrounding text) must be enclosed in a
"$BEGINC" -"ENDC" pair. For example:

-150 -

Type of x,a,b
boolean

(long) integer
(long) real
string

(long) bits

pointer
address
charadr

[a TO bl matches x if
(IF a THEN 1 EL 0) LEQ (IF x THEN 1 EL 0)

LEQ (IF b THEN 1 EL 0)

a LEQ x LEQ b

cvli(a) LEQ cvli(x) LEQ cvli(b)

always matches since the only constant for
these types is Zero. $CASEC's of these
types are not very useful

The above computations are carried out using the host
machine characteristics; avoid "$CASEC" if cross-compiling
with non-portable values for x or any xi.

Table 14.11.2-1. n$CASEC" Selector Matching Rules

$CASEC i OF
[. ..]
[bitsCode] $BEGINC b := bAry[k]; ENDC
[...]
ENDC

This causes the compiler not to treat the left bracket as the start of the next selector. If the
"$BEGINC" -"ENDC" pair had been left out of the above example, the compiler would have
gathered fIb := bAry" as the text corresponding to [bitsCode], and considered [k] to be the next
selector (with just ";" as its selected text), which would probably have caused a syntax error.

The gathering of the selected text applies to the text AFfER any macro parameters have been
replaced with their arguments. If any of the text contains macro parameters which could
possibly be passed an argument with a bare left bracket, the text (or at least each such macro
parameter) must be enclosed in a "$BEGINC"-"ENDC" pair (it never hurts to enclose the text
in a "$BEGINC"-"ENDC" pair).

- 151 -

14.12. "$BEGINC"

Matched "$BEGINC"-"ENDC" pairs are useful within the selected text governed by
"$CASEC". In other places, matched "$BEGINC"-"ENDC" pairs are permitted, but have no
effect.

14.13. "$DOC", "$DONEC", n$CONTINUEC", n$FORcn:
Compiletime Iteration

14.13.1. "$DOC iteratedText ENDC"

Text between "$DOC" and its terminating "ENDC" is repeatedly compiled until the loop is
terminated, e.g., by "$ooNEC". The compiler gathers the iterated text into a single string, and
hence it cannot exceed the maximum string length. The user must take care to avoid putting
the compiler into an infinite loop. .

14.13.2. "$DONEC" and "$CONTINUEC"

"$OONEC" and "$CONTINUEC" are the compiletime analogues of the Done and Continue
Statements.

"$OONEC" may be used in a "$OOC" body to terminate the iterations. The compiler discards
the remainder of the loop body and resumes compilation beyond the "ENDC" matching the
terminated "$DOC".

"$CONTINUEC" may be used in a "$DOC" body to continue with the next iteration. The
compiler resumes compilation at the top of the loop body (imm~tely after the "$DOC").

By default, "$OONEC" and "$CONTINUEC" apply to the innermost "$DOC" loop. A string
constant name may be associated with a "$DOC" and used by "$DONEC" or "$CONTINUEC"
within the "$DOC" body to terminate or continue the named loop. For example:

$DOC("outer") •..
$DONEC ("outer") ...
$CONTlNUEC("outer")
ENDC

The name must be enclosed in parentheses, and the left parenthesis must immediately follow
the keyword (with no intervening text, not even white space; otherwise, the parenthesized name
is considered part of the iterated text). Unlike END's associated with named DO's, a name
cannot be associated with a matching "ENDC". Specifying the null string is equivalent to not

·152 -

specifying a name, so if used with a "$DONEC" or "$CONTINUEC", it specifies the innermost
loop.

Examples:

DEFINE i = 1;
$DOC write(f,i); REDEFINE i = i + 1;

IFC i > 5 THENC $DONEC ENDC ENDC

DEFINE i 1;
$DOC ("outer")

$DOC write(f,i); REDEFINE i = i + 1;
IFC i > 5 THENC $DONEC("outer") ENDC ENDC

... ENDC

14.13.3. "$FORC"

In the form:

$FORC var = start UPTO/DOWNTO stop $DOC ... ENDC

var is an iteration identifier that is redefined as described below, start is a (long) integer
constant expression, and stop is a constant expression of the same type as start.

Each form is expanded by the compiler to an "equivalent" form, as shown below:

SFORC yar = start UPTO stop spac cCc ENQC
REDEFINE var = <start-1>; * ($FORC expansion)
$DOC REDEFINE var = var + 1; * ($FORC expansion)

IFC var > stop THENC $DONEC ENDC * ($FORC expansion)
... ENDC

SFORC yar = start POWHTO stop Spoc cc ENDC
REDEFINE var = <start+1>; * ($FORC expansion)
$DOC REDEFINE var = var - 1; * ($FORC expansion)

IFC var < stop THENC $DONEC ENDC * ($FORC expansion)
... ENDC

If start and stop are long integers, the compiler uses" 1L" in place of "1" .

The expanded form is compiled in place of the original text. Any errors in the expanded form
show the expanded text as if it were in the source file. The comments are included to help the

- 153 -

user recall that the text has been created by the compiler, should the text be shown in an error
message.

The first example of the previous section can be rewritten as follows:

$FORC i = 1 UPTO 5 $DOC write(f,i); ENDC

An example using "$FORC", n$CONTINUEC", n$OONEC" and nested loops:

$FORC i = 1 UPTO 2 $Doc(noutern)
$FORC j 1 UPTO 5 $DOC

ENDC

14.14. "DeL"

IFC j DIV 2 THENC $CONTINUEC; ENDC

IFC ... THENC $DONEC ("outer") ENDC
ENDC

"DCL" is a compiletime pseudo-procedure. "DCL(identifier)n is true if the identifier has been
declared or defined (by the programmer, or as a standard MAINSAll... identifier), and false
otherwise. "DCL" is useful in conjunction with conditional compilation. For example:

IFC NOT DCL(switch) THENC DEFINE switch = FALSE; ENDC

If switch has been declared or defined then "DEFINE switch = FALSE;" is ignored; otherwise,
it is compiled.

14.15. "$TYPEOF"

"$TYPEOF(x)" returns the integer constant type code (one of the values shown in Table
14.15-1) of the expression, class name, or module name x. The compiler parses x, determines
the type of the result, then discards the resulting parse information (x is not actually evaluated).

booleanCode
longRealCode
addressCode
$moduleCode

integerCode
bitsCode
charadrCode

longIntegerCode realCode
longBitsCode stringCode
pointerCode $classCode

Table 14.15-1. Type Codes As Returned by n$TYPEOF"

- 154-

CLASS cIs (STRING s; POINTER (c) link);
MODULE
INTEGER
POINTER (cIs)

Expression
$TYPEOF(t)
$TYPEOF(t + u)
$TYPEOF(p)
$TYPEOF(p.s)
$TYPEOF(p.link)
$TYPEOF(sin(l.»
$TYPEOF (cIs)
$TYPEOF(m)

m;
t,u;
p;

Result
integerCode
integerCode
pointerCode
stringCode
pointerCode
realCode
$classCode
$moduleCode

t increment an integer or long integer
DEFINE inc (a)

[a .+ IFC $TYPEOF(a) = integerCode THENC 1
ELSEC lL ENDC];

Example 14.15-2. Sample "$TYPEOF" Values

If x is an array, "$TYPEOF(x)" is the base type of the array, i.e., the type of the elements (0 if
untyped). If x is a class or module name, "$TYPEOF" returns $classCode or $moduleCode,
respectively.

14.16. "$CLASSOF"

n$CLASSOF(x)" returns the string constant class name (upper case) for the expression x if x
evaluates to a classified pointer or address; otherwise, it returns the null string. The compiler
parses x as an expression, determines the class name of the result (if a classified pointer or
address), then discards the resulting parse information (x is not actually evaluated).

14.17. n$ISCONSTANT"

n$ISCONST ANT(x)" returns true if and only if the expression x evaluates to a constant. The
compiler parses x as an expression, determines whether it evaluates to a constant, then discards
the resulting parse information (x is not actually evaluated).

- 155-

CLASS cIs (STRING s; POINTER (C) link);
MODULE m;
INTEGER t,u;
POINTER (cIs) p;

Expression
$CLASSOF(t)
$CLASSOF(t + u)
$CLASSOF(p)
$CLASSOF(p.s)
$CLASSOF(p.link)
$CLASSOF(sin(l.»

Result
"" (null string)
,It,

"CLS"
""
"C"

""

CLASS reel (... ; POINTER(reel) nextReel);
CLASS rec2 (... ; POINTER (rec2) nextRec2);

DEFINE nextRee(p) = * make it work for reel and rec2
[p := IFC $CLASSOF(p) = "RECl" THENC p.nextRecl

ELSEC p.nextRec2 ENDC];

Example 14.16-1. Sample "$CLASSOF" Values

For example, suppose calls to the local procedure fooProc (one argument) are desired to be
inline if the argument is a constant Define foo as below, then use "foo" instead of "fooProc":

DEFINE foo(x) =
[IFC $ISCONSTANT(x) THENC INLINE ENDC

fooProc(x) ENDC];

14.18. Scanning Directives

The scanning directives are "BEGINSCAN", "SKIPSCAN", and "OONESCAN".

"SKIPSCAN" allows the compiler to skip quickly over pages in the source file. The fonn of a
"SKIPSCAN" directive is:

SKIPSCAN C;

where c is a string constant "scan name". This directive causes the compiler to begin skipping
pages until it finds one that starts with the keyword "BEGINS CAN" followed by the same scan

-156 -

name. Compilation then resumes on that page. Pages are delimited by eop characters (see
Section 2.1). Upper and lower case are not distinguished in examining the scan name.

If c is Zero. i.e .• if:

SKIPSCAN "";

is encountered. the compiler stops at the next "BEGINSCAN c". regardless of the value of c.

Macros are not expanded within text skipped over by "SKIPSCAN". and compiler directives
(other than a matching "BEGINSCAN") are ignored.

"BEGINS CAN" serves as a stopping point for a "SKIPSCAN" search.

The form of a "BEGINS CAN" directive is:

BEGINSCAN c;

where c is a string constant "scan name". It is used by the "SKIPSCAN" search to determine
whether or not the search should stop at this "BEGINS CAN " .

"BEGINSCAN" must appear as the very first text on a page. not even preceded by blank or tab;
this allows the "SKIPSCAN" search to be fast since it need examine only the first line of each
page. The compiler ignores the "BEGINSCAN" directive except during a "SKIPSCAN"
search.

If c is Zero, the "BEGINS CAN" directive stops any "SKIPSCAN" search; i.e.:

BEGINSCAN "". I

stops any "SKIPSCAN" search.

"DONESCAN" terminates compilation of the current file as if the end of the file were reached.
It may be used to return from a sourcefile of a file that is being used as a repository for several
sources.

The form of a "DONESCAN" directive is:

DONESCAN;

The scanning directives may be used to compile modules selectively in a file that contains more
than one module. That is. proper use of the scanning directives can direct the compiler to
compile just some of the modules in the file. depending on which ones are specified by the user.

- 157-

14.19. "NEEDBODY" and "NEEDANYBODIES"

The compiletime pseudo-procedures "NEEDBODY" and "NEEDANYBODIES" are used in
conjunction with the "FORWARD" qualifier (see Section 9.10) to determine whether a forward
procedure needs a body, i.e., has been called but has not yet been given a declaration containing
the procedure body. "NEEDBODY" may also be used to determine whether an interface
procedure (whether called or not) needs a body.

The form:

NEEDBODY (id)

is true if and only if id is the name of a procedure that either has been declared forward and has
appeared in a procedure call or is an interface procedure, but has not been declared with a body.

"NEEDANYBODIES" has two forms, one followed by a parenthesized file name, and one not.
The form:

NEEDANYBODIES(C)

where c is a string constant expression for a file name, is true if and only if some procedure p
was declared with the qualifier "FORWARD(c)", and "NEEDBODY(p)" is currently true. In
other words, "NEEDANYBODIES(c)" tells whether there are any procedure bodies in the file c
that need to be compiled.

The form:

NEEDANYBODIES

is equivalent to:

NEEDANYBODIES(c)

where c is the name of the file that caused the current automatic sourcefile as explained in
Section 9.10. The implied c is the "top-level" file that was sourcefiled, not necessarily the
current file (additional "SOURCEFILE" directives may occur in the top-level file).

The $compileTimeValue argument "HASBODY" may be used to determine whether a
proce4ure has been given a body, regardless of how the procedure was declared.

- 158-

14.20. $compileTimeValue

$compileTime Value is a compiletime procedure that provides a number of miscellaneous
compiletime facilities. It is described in detail in Section 1.69 of part II of the "MAINSAIL
Language Manual".

14.21. $def

The macro $def is an aid to defining a consecutive sequence of (long) integers, or a sequence of
(long) bits each shifted one more bit to the left than the previous value. "$def(a,v)" redefines a
to be v, and then:

• if v is a (long) integer, redefines v to be "v + 1(L)"

• if v is a (long) bits, redefines v to be "v S~ 1"

The user must define v's starting value before using $def.

Example:

* define a = 1, b

DEFINE v 1;
$def(a,v)
$def(b,v)
$def(c,v)
$def(d,v)

2, c 3, d 4

The second argument, v, may be omitted, in which case the identifier $defV at is used in place
of v. $defV al is an identifier which has been set aside for this purpose. In this case, the user
must initialize $defVal with "REDEFINE" since it may already be defined at the start of
compilation. It is expected that most uses of $def will omit the second argument and use
$defVal; the second argument would be useful, however, if multiple sequences need to be
defined in parallel.

Example:

-159 -

* define a = '1, b = '2, c = '4, d '10

REDEFINE $defVal '1;
$def (a)
$def (b)
$def (c)

$def (d)

"REDEFINE" allows the type of a macro to be changed; for example, if $defVal is defined to
be an integer constant, then:

REDEFINE $defVal - 'lL;

changes it to be a long bits constant.

There is nothing "magic" about $def; i.e., it could just as easily be provided by the user. $def is
defined as follows:

DEFINE
$def (a, v)

[IFC [v] THENC
REDEFINE

a = v,
v - IFC $TYPEOF(v) - integerCode THENC v + 1

$EFC $TYPEOF(v) = lonqInteqerCode THENC
v + lL

ELSEC v SHL 1 ENDC;
ELSEC

REDEFINE

ENDC] ;

a = $defVal,
$defVal

IFC $TYPEOF($defVal) = inteqerCode THENC
$defVal + 1

$EFC $TYPEOF($defVal) = longIntegerCode
THENC $defVal + 1L

ELSEC $defVal SHL 1 ENDC;

The exact definition of $def is subject to change; the above is presented only as an example.

-160 -

15. Optimization and Checking

Optimization and checking govern the quality of object code produced and the amount of
checking of various runtime error conditions. Facilities are provided to optimize or check
whole modules or individual procedures, and to check parts of procedures. The facilities for
arithmetic checking parallel the standard checking facilities.

IS.I. Optimization

Optimization causes the compiler to use a variety of code improvement strategies to emit better
code for MAINSAIL objmods. Optimized code takes longer to compile than non-optimized
code, but usually runs faster, sometimes significantly faster. Optimization may be governed by
compiler subcommands (see the "MAINSAIL Compiler User's Guide") or, with finer control,
by directives in a source module.

At any point in a module, the current default optimization status, optimizeStatus, is given by:

$compileTimeValue("OPTIMIZE")

It may have one of four values at any given point in a compilation:

"OPTIMIZE"
"OPTIMIZEALL"

"NOOPTIMIZE"
"NOOPTIMIZEALL"

Each of these four values is also a "$DIRECTNE" directive. An optimization directive has
different effects depending on whether it is specified as a compiler subcommand, in a module
outside a procedure body, or within a procedure body. See Tables 15.1-1 and 15.1-2.

At the start of each compilation optimizeStatus is set according to the compiler subcommands
in effect (the initial default is "NOOPTIMIZE").

Once "OPTIMIZEALL" or "NOOPTIMIZEALL" is in effect, any compiler directives that set
optimizeStatus are ignored. This allows an "OPTIMIZEALL" or "NOOPTIMIZEALL"
subcommand to override any directives in the source text.

After the compiler parses the entire module, it does the following for each procedure for which
a body is to be compiled into the module:

• If optimizeStatus is "OPTIMIZEALL", mark it to be optimized (and ignore the lists).

- 161 -

"$DIRECTIVE" Directive
or Subcommand
OPTIMIZEALL
NOOPTIMIZEALL
OPTIMIZE
NOOPTIMIZE
OPTIMIZE pl ... pn

NOOPTIMIZE pl ... pn

Effect

optimizeStatus := nOPTIMIZEALL"
optimizeStatus .= "NOOPTIMIZEALL"
optimizeStatus := "OPTIMIZE"
optimizeStatus := "NOOPTIMIZE"
add the pi to the list of procs to

be. optimized, and if necessary,
remove them from the list of
procs not to be optimized

add the pi to the list of procs
not to be optimized, and if
necessary, remove them from the
list of procs to be optimized

Table 15.1-1. Effects of Optimization Directives outside Any Procedure Body or Specified as a
Compiler Subcommand

"SDIRECTIVE" Directive Effect
OPTIMIZEALL error (not allowed inside a

procedure)
NOOPTIMIZEALL error (not allowed inside a

procedure)
OPTIMIZE same as "OPTIMIZE pit
NOOPTIMIZE same as "NOOPTIMIZE p"
OPTIMIZE pl ... pn same as outside p
NOOPTIMIZE pl ... pn same as outside p

Table 15.1-2. Effects of Optimization Directives inside a Procedure p

• If optimizeStatus is "NOOPTIMIZEALL" then mark it not to be optimized (and
ignore the lists).

• If optimizeStatus is anything else:

• If it is on the list of procedures to be optimized, mark it to be optimized.

-162 -

• If it is on the list of procedures not to be optimized, mark it not to be
optimized.

• If it is on neither list, don't mark it (or don't change the marking if it has
been brought in from an inUnod and is already marked).

An inUnod records each procedure's marking. The default value of optimizeStatus used during
an incremental recompilation of a procedure is the marked value of the procedure, if the
procedure is marked; otherwise, the value of optimizeStatus as of the end of the original
compilation is the default.

When code is generated for a procedure, it is not optimized if the procedure is debuggable.
Otherwise, it is optimized or not, as marked; if unmarked, it is optimized if and only if the
value of optimizeStatus at the end of the module was "OPTIMIZE".

At present, a procedure expanded inline is optimized if and only if the procedure in which it is
expanded is optimized. This is subject to change.

IS.l.l. $compileTime Value(" OPTIMIZE")

As noted above, the current value of optimizeStatus is given by:

$compileTimeValue("OPTIMIZE")

The expression:

$compileTimeValue("OPTIMIZE p")

where p is a procedure name, yields the value given by:

IF optimizeStatus = "OPTIMIZEALL" OR
optimizeStatus NEQ "NOOPTIMIZEALL" AND

«p is on the list of procs to be optimized> OR
<p is not on the list of procs not to be

optimized> AND optimizeStatus = "OPTIMIZE"»
THEN "TRUE" EL ""

The value of "$compileTimeValue("OPTIMIZE p")" does not necessarily indicate whether p
really will be optimized since the value can vary from one point in the module to another as the
values it depends on vary.

MODLIB and INTLIB directory commands display the "0" option if the value of
optimizeStatus at the end of the compilation was "OPTIMIZE" or "OPTIMIZEALL".

- 163-

15.2. Checking

The standard checking directives cause the compiler to emit code to issue error messages for
certain runtime conditions that cannot be determined at compiletime. This causes more code to
be generated, and thus results in slower execution. Sections of code on which such checking is
performed are said to have "checking in effect". It can be very difficult to track bugs in code
where checking is not in effect; error messages are suppressed, and the error condition has
undefined effects.

The conditions checked when checking is in effect are that:

1. Array subscripts are within bounds.

2. An array used in a subscripted variable is not Zero.

3. A pointer used as the base part of a field variable is not Zero.

4. Linkage has been established to a module of which an interface variable is indirectly
accessed (see Section 10.7).

Checking is controlled by the directives "CHECK" and "NOCHECK", the compiletime pseudo­
procedure "CHECKING", and by several "$DIRECTIVE" directives.

Checking status is governed by two values, checkingStatus and localCheckingStatus, which
interact to determine what code is checked and what is not. Checking is specifiable at the
expression level. checkingStatus governs checking throughout a module, whereas the
directives affecting the value of localCheckingStatus apply only within a procedure.

Checking directives may surround a subscripted variable, preceding the array expression and
following the closing square bracket, e.g.:

IF CHECK; a[i] NOCHECK; THENB ...

(in which case only "a[i]" is checked) or a field variable, preceding the pointer or module and
following the last field, e.g.:

IF NOCHECK; p.f.g CHECK; THENB ...

(in which case only "pJ.g" is not checked). The effect of a checking directive placed within a
subscripted or field variable (e.g., "a NOCHECK; [i] CHECK;") is undefined. Checking
directives may appear anywhere in the source between subscripted variables or field variables;
it is often convenient to place them between statements or procedures.

- 164-

checkingS tatus indicates the default for checking. It can have one of four values at any given
point in a compilation:

"CHECK"
"CHECKALL"

"NOCHECK"
"NOCHECKALL"

Each of these four values is also a "$DIRECTIVE" directive. At the start of each compilation
checkingStatus is set according to any compiler subcommands in effect (the initial default is
"CHECKtI

).

localCheckingStatus indicates the current local (to a procedure) default for checking. It can
have one of three values at any given point in a procedure:

"CHECK" "NOCHECK" ""

localCheckingStatus is set to the null string at the start of compilation and at the end of each
procedure (so it is always '"' outside of a procedure).

As a compilation proceeds, individual expressions as well as the procedures containing them
may be marked with a checking status. Each expression is marked when encountered with the
current value of localCheckingStatus:

• The expression is marked to be checked if localCheckingStatus is "CHECK" •

• The expression is marked not to be checked if localCheckingStatus is "NOCHECK".

• The expression is not marked if localCheckingStatus is the null string.

Procedures are marked if they contain "CHECKALL" or "NOCHECKALL" (the last value
specified is the value used, if conflicting directives are specified), or if checkingStatus is
"CHECKALL" or "NOCHECKALL" at the end of the module, as described below.
checkingStatus determines, at the end of the compilation, how code is generated for unmarked
procedures and expressions. .

A checking directive has different effects depending on whether it is specified as a compiler
subcommand, in a module outside a procedure body, or within a procedure body. See Tables
15.2-1 and 15.2-2. The directives "CHECK" and "NOCHECK" are equivalent to
tt$DIRECTIVE("CHECKtt)" and "$DlRECTIVE(ttNOCHECK")tt, respectively.

There is a stack of localCheckingStatus values, the locaICheckingStatus stack, that is cleared at
the beginning of each procedure. It may be used within a procedure to preserve the
localCheckingStatus; the recommended way to set or clear checking temporarily within a
procedure body without affecting later code is:

- 165-

"$DlRECTlVE" Directive
or SubcOmmand
CHECKALL
NOCHECKALL
CHECK
NOCHECK
DEFAULTCHECK

PUSHCHECK

POPCHECK

Effect

checkingStatus := "CHECKALL"
checkingStatus := "NOCHECKALL"
checkingStatus := "CHECK"
checkingStatus := "NOCHECK"
no effect as directive; not

allowed as subcommand
no effect as directive; not

allowed as subcommand
no effect as directive; not

allowed as subcommand

Table 15.2-1. Effects of Optimization Directives outside Any Procedure Body or Specified as a
Compiler Subcommand

"SPIRECTlVE" pirective
CHECKALL
NOCHECKALL

CHECK
NOCHECK
DEFAULTCHECK
PUSHCHECK

POP CHECK

Effect
mark this procedure to be checked
mark this procedure not to be

checked
localCheckingStatus := "CHECK"
localCheckingStatus := "NOCHECK"
localCheckingStatus :- ""
push localCheckingStatus onto

stack
pop stack into localCheckingStatus

Table 15.2-2. Effects of Checking Directives inside a Procedure p

$DlRECTlVE "PUSHCHECK","{NO}CHECK";
<code to be affected by above "CHECK" or "NOCHECK">
$DlRECTlVE "POPCHECK";

It is an error to use "POPCHECK" if the localCheckingStatus stack is empty.

Once checkingStatus is set to "CHECKALL" or "NOCHECKALL" t any compiler directives
that set checkingStatus are ignored. This allows a "CHECKALL" or "NOCHECKALL"
subcommand to override any directives in the source text.

-166-

Before code is generated for the module, the following occurs:

• If checkingStatus is "CHECKALL", mark each procedure to be checked.

• If checkingStatus is "NOCHECKALL", mark each procedure not to be checked.

Code is generated for each procedure according to its marking, or, if the procedure is
unmarked, code is generated for the individual expressions in accordance with their markings.
If neither the expression nor its procedure is marked, then the value of checkingStatus
determines whether checking is performed; checking is performed if checkingStatus is
"CHECK", not performed if it is "NOCHECK".

The marking of procedures and expressions is recorded in intmods, so that if a procedure is
pulled in from an intmod, it is marked as it was when originally compiled. The final value of
checkingStatus is recorded in an intmod and is used as the initial value of checkingStatus if the
intmod is used for incremental recompilation.

Inline procedures are marked just like closed procedures. When an inline procedure is
expanded during code generation, the checking code generated in the inline procedure is
independent of the checking status of the calling procedure.

15.2.1. $compileTime Value(tt CHECKINGST ATUStt),
$compileTimeValue(" LOCALCHECKINGST ATUS"), and" CHECKING"

checkingS tatus is returned by:

$compileTimeValue("CHECKINGSTATUS")

localCheckingStatus is returned by:

$compileTimeValue("LOCALCHECKINGSTATUS")

The compiletime pseudo-procedure "CHECKING" returns the value given by:

checkingStatus = "CHECKALL" OR
checkingStatus NEQ "NOCHECKALL" AND

«current procedure is marked to be checked> OR
<current procedure is not marked not to be checked> AND

(localCheckingStatus "CHECK" OR
localCheckingStatus "" AND checkingStatus = "CHECK"»

if in a procedure, or:

-167 -

checkingStatus = "CHECKALL" OR
checkingStatus NEQ "NOCHECKALL" AND checkingStatus "CHECK"

outside of a procedure.

"CHECKING" does not necessarily indicate whether checking is done at the point of call since
checkingS tatus can change before the end of the compilation, and only its final value affects the
generated code.

MODLIB and INTLIB directory commands show the "C" option if the final value of
checkingStatus is "CHECK" or "CHECKALL".

15.3. Arithmetic Checking

Arithmetic checking enables the generation of extra code to detect arithmetic overflow in (long)
integer operations. On some processors, no extra code is required to detect certain kinds of
(long) integer overflow; on such machines, an overflow exception may be generated whether or
not the "ACHECK" subcommand was in effect when the overflowing code was compiled.
Where extra instructions are required to detect overflow, arithmetically checked code may be
significantly larger and slower.

Arithmetic checking facilities exactly parallel the standard runtime checking facilities, except
that:

• "CHECK" in "$DIRECflVE" directives and $compileTimeValue arguments is
replaced by "ACHECK",

• the default for arithmetic checking is "NOACHECK",

• and there are no equivalents of the non-$DIRECTIVE directives "CHECK" and
"NOCHECK" or of the "CHECKING" compiletime pseudo-procedure.

Specifically, the "$DIRECTIVE" directives for arithmetic checking are:

ACHECKALL
ACHECK
DEFAULTACHECK
PUSHACHECK

NOACHECKALL
NOACHECK

POPACHECK

Arithmetic checking directives may apply to individual expressions. The effect is undefined
unless the expression affected is surrounded by parentheses:

IF $DIRECTIVE "ACHECK"; (a .+ b) $DIRECTIVE "NOACHECK";
THENB ...

-168 -

MODLIB and INTLm directory commands show the "A" option if the final value of
acheckingStatus is "ACHECK" or "ACHECKALL".

-169 -

16. Exceptions

An exception is an unusual or erroneous condition that occurs during a program's execution.
When an exception occurs, it causes the execution of a statement called an exception handler
(see Section 16.1). A handler may, for some exceptions, repair the error and resume execution
at the place where the exception occurred, or it may recover from the error by aborting the
execution of one or more nested statements (including procedure invocations). or it may
propagate the exception to another handler. If there is no handler for an exception, the
MAINSAIL runtime system reports an error by calling the system procedure errMsg.

Table 16-1 lists system procedures, variables, and macros for dealing with exceptions.

Identifier
$raise
$raiseReturn

$exceptionName
$exceptionPointerArg

$exceptionStringArgl

$exceptionStringArg2

$exceptionCoroutine

$exceptionBits

$newException

errMsg

$registerException

$deregisterException

Function
Raise an exception
Return from $raise, if possible

Name of current exception
Pointer argument to $raise for
current exception
First string argument to $raise
for current exception
Second string argument to $raise
for current exception
Raiser coroutine of current
exception
Bits describing current exception

New name for an exception

Write an error message and/or
raise an exception
Register an exception so that it
can be raised from errMsg
Undo $registerException

Table 16-1. System Procedures, Variables, and Macros for Exceptions

In order to be an exception, a condition must have been caused by the operations being
performed when the condition occurred. Asynchronous interrupts and events occurring in other

-170 -

tasks or processes are not considered to be exceptions, and are not dealt with by the
MAINS~ exception mechanism.

Exceptions are divided into two categories: those predefined by MAINS~ (see Section 16.8)
and those known only to user programs. User exceptions must be explicitly caused by the user
program by means of the system procedure $raise; predefined exceptions are caused by
MAINSAIL.

Exceptions are denoted by strings. Section 16.7 describes conventions supported by
MAINSAIL to help ensure that exception names are unique.

A program can "register" its exceptions with MAINSAIL using the system procedure
$registerException. The system procedure errMsg allows a user, in response to the "Error
response:" prompt, to obtain a list of the exceptions that have been registered and to raise any
registered exception.

By default, the system procedure errMsg raises a predefined exception before writing its
message to 10gFile. This may cause the execution of a handler that recovers from the exception
by aborting the call to errMsg, in which case the message is not written to 10gFile. If no such
handler is found, the message is written as if no exception had been raised.

16.1. Handle Statement

A Handle Statement associates an exception handler with a statement in the program (called the
handled statement) and executes the handled statement If an exception occurs during the
execution of the handled statement, that statement's execution is interrupted and the handler is
executed. If no exception occurs, the handler is ignored.

The general form of the Handle Statement is:

$HANDLE 81 $WITH 82

where s 1 and s2 are statements. The statement s 1 is the handled statement and s2 is the
handler.

The abbreviations "$HANDLEB" for "$HANDLE BEGIN" and "$WITHB" for "$WITH
BEGIN" are provided.

When a Handle Statement is executed, its statement sl is initiated. If an exception occurs
during sl 's execution (which may involve several levels of procedure calls), and the exception
has not been handled by another Handle Statement initiated during sl 's execution, then sl 's
execution is suspended and the exception handler s2 is executed. Otherwise, s2 is ignored.

- 171 -

A handler can either recover from an exception and allow the program's execution to continue
(unless the exception disallows it), or it can propagate the exception to another exception
handler. In the first case, the handler is said to have handled the exception.

16.2. Handling Exceptions

There are two ways a handler can allow a program's execution to continue:

• If the exception that occurred was caused by an explicit call to the system procedure
$raise, the handler can resume execution at the place where the exception occurred by
calling the system procedure $raiseReturn. This terminates the handler's execution.
When s 1 terminates after its execution is resumed, s2 is ignored. If the exception that
occurred was not caused by an explicit call to $raise, a runtime error occurs if
$raiseRetum is called to continue from the exception.

• The handler can terminate the Handle Statement's execution in one of three ways:

1. It can resume execution at the statement following the Handle Statement, if
any, by having control fallout of the handler.

2. If the Handle Statement is contained within an Iterative Statement, the
handler can terminate the Handle Statement's execution and either repeat or
terminate the execution of the Iterative Statement using a Continue or Done
Statement.

3. The handler can terminate the Handle Statement's execution and return
from the procedure containing the Handle Statement by means of a Return
Statement.

When a handler terminates the execution of its Handle Statement, the handled statement sl, of
which the execution was suspended by the occurrence of the exception, is aborted, along with
all other statements initiated as a result of sl 's execution (and all procedures thus invoked).
When a procedure is aborted in this manner, if it contains any active handled statements,
MAINSAll... raises the predefined exception $abortProcedureExcpt and executes the handlers
associated with the handled statements. This gives each procedure a chance to do any
"cleaning up" that might be necessary before it is aborted; see Section 16.6.

16.3. Propagating Exceptions

If a handler is unable to handle an exception, it can propagate the exception to the next handler
by calling the system procedure $raise with no arguments. The next handler is the handler
associated with the most recently executed Handle Statement the sl part of which began
execution before the current Handle Statement and which has not yet completed. If there is no

-172 -

next handler within the user program, the MAINSAIL runtime system reports an error by
calling the system procedure errMsg.

16.4. Information about the Current Exception

A handler can obtain the name of the current exception by calling $exceptionName. The
current exception is the exception that occurred most recently for which no handler has yet
been found or for which the handler is still executing. Other information about the exception
(e.g., whether or not the handler can resume execution at the place where the exception
occurred) can be obtained by calling $exceptionBits.

When an exception is caused by means of the system procedure $raise, more information about
the exception can be passed by means of the parameters exceptionStringArgl,
exceptionStringArg2, and exceptionPointerArg. A handler can access the values passed for
these parameters as $exceptionStringArgI, $exceptionStringArg2, and $exceptionPointerArg,
respectively.

16.5. Nested Exceptions

Exceptions can be nested. If an exception occurs during a handler's execution, the handler's
execution is suspended and a handler for the new exception is searched for and initiated, as
described above. If the new handler resumes execution at the place where the new exception
occurred, the previous exception is restored to being the current exception and the execution of
its handler continues. If the new handler aborts the execution of its Handle Statement (as
shown in Example 16.5-1), the execution of the previous handler's Handle Statement is also
aborted.

$HANDLE
$HANDLE $raise("first exception")
$WITH $raise("second exception")

$WITH; * Abort both Handle statements

Example 16.5-1. Sample Nested Handle Statements

16.6. Aborting Procedures

Immediately before MAINSAIL aborts the execution of one or more procedures, it raises the
predefined exception denoted by the identifier $abortProcedureExcpt. This exception differs
from other exceptions in the following ways:

- 173-

• MAINSAll.. initiates handlers only in procedures that are about to be aborted. When
the exception is propagated to a handler in a procedure that is not being aborted,
MAINSAll.. intercepts it, marks it as handled, and finishes aborting the procedures'
execution.

• MAINSAll.. requires each handler for this exception to propagate the exception to the
next handler. If a handler attempts to handle the exception either by calling the
system procedure $raiseReturn or by terminating the execution of its Handle
Statement, a runtime error occurs.

• It is an error for the user to raise $abortProcedureExcpt explicitly.

If a procedure must perform certain actions to "clean up" after itself before it is aborted, such as
closing files, disposing of arrays or modules, or releasing scan bits, it should contain a handler
that catches the exception denoted by $abortProcedureExcpt, does the required cleaning up, and
propagates the exception to the next procedure being aborted, as shown in Example 16.6-1.

PROCEDURE compiler;
BEGIN
POINTER (textFile) inputFile;

inputFile := NULLPOINTER;
$ HANDLE

WHILE open(inputFile,"compile: ",input!prompt!errorOk)
DOB compileModule(inputFile); close (inputFile) END

$WITHB
IF $exceptionName = $abortProcedureExcpt THEN

IF inputFile THEN close(inputFile);
$raise END END;

Example 16.6-1. Sample Procedure Needing Cleanup

16.7. Exception Naming Conventions

In systems composed of separately developed modules, two distinct exceptions may mistakenly
be denoted by the same string. To help avoid such conflicts, MAINSAIL supports a convention
whereby each string denoting an exception is assumed to consist of one or more "phrases"
separated by colons. Table 16.7-1 illustrates the general form of such a string, in which each si
is a phrase.

-174 -

"51 : 52: .•. : 5n"

Table 16.7-1. General Form of Exception String

According to this convention, the last phrase describes the actual exception and the first phrases
serve to distinguish the exception from other exceptions having the same last phrase.
Typically, the first phrases would contain the name of the company owning the rights to the
system in which the exception is embedded, or the name of a product of the company, as
illustrated in Example 16.7-2.

"MAINSAIL compiler: Abort compilation"

Example 16.7-2. A Sample Exception Name

All predefined exceptions begin with the substring "MAINSAIL". Programmers should avoid
choosing exception names that begin with that substring.

The system procedure $newException returns a string consisting of a unique decimal integer
followed by a colon. To avoid conflicts with names created from strings returned by
$newException, users should avoid choosing an exception name that begins with a decimal
integer and a colon unless that prefix was obtained by calling $newException.

16.8. Predefined Exceptions

Predefined exceptions are exceptions known to MAINSAIL. A predefined exception may
occur as a result of an operation other than a call to the system procedure $raise. The strings
denoting predefined exceptions can be referred to by means of identifiers defined by
MAINSAIL.

The predefined exceptions and the identifiers by which they are known are given in Appendix
c.

When the exception denoted by $abortProgramExcpt is raised and no other handler handles it,
execution of the current program is aborted and control passes to the MAINSAIL component
that initiated it, e.g., the MAINSAIL executive, MAINEDIT, MAINDEBUG, or MAINPM.

-175 -

The exception denoted by $systemExcpt includes all errors not covered by the other predefined
exceptions, in which case the specific error is described by the strings returned by
$exceptionStringArgl and $exceptionStringArg2.

The exceptions denoted by $abortProgramExcpt and $systemExcpt are the only predefined
exceptions that may be handled by resuming execution at the place where the exception
occurred.

The exception denoted by $abortProgramExcpt is the only predefined exception that is
registered.

XIDAK reserves the right to create new predefined exceptions. MAINSAll.. programmers
should be aware that system predefined exceptions, or undocumented exceptions used
internally by the MAINSAll.. runtime system, may be raised by many MAINSAll.. constructs.
Exception handlers must therefore be written to check that they are actually handling the
exceptions they expect to handle. Issuing a $raiseReturn or terminating a handler on an
undocumented exception has undefined effects; an unrecognized exception should always be
propagated by calling $raise with no arguments.

16.9. errMsg Response Abbreviations

In response to the errMsg "Error response:" prompt, distinctions between upper and lower case
letters are ignored when comparing a specified response to one of the expected responses.

Responses may be abbreviated, but an abbreviation must be unambiguous. A response's text is
divided into "phrases" separated by colons. By convention, the last phrase describes the action
to be taken as a result of the response. Any preceding phrases serve to distinguish the response
from other responses having the same last phrase, as illustrated in Example 16.9-1.

The response "MAINSAIL: Abort program" consists
of the phrases "MAINSAIL" and "Abort program".

Example 16.9-1. Phrases in a Sample errMsg Response

Responses may be abbreviated by omitting leftmost phrases (and the colons that follow them).
The phrases present may be abbreviated by omitting trailing words and, within the words
present, by omitting trailing characters. A blank or tab between words in a specified response
is equivalent to any number of blanks or tabs in an expected response.

If a specified response is an abbreviation for more than one expected response, then:

-176 -

• If the specified response exactly matches one of the expected responses, it is assumed
to denote the expected response it exactly matches.

• If a phrase in the specified response exactly matches a corresponding phrase in only
one expected response and none of its other phrases exactly matches the
corresponding phrases in any of the other expected responses, then the specified
response is assumed to denote the one expected response.

• Otherwise, the specified response is ambiguous, in which case errMsg writes to
logFile the expected responses for which the specified response is an abbreviation
and reads another response from cmdFile.

Example 16.9-3 illustrates valid and invalid abbreviations for the set of expected responses
shown in Example 16.9-2.

a p

m c:

m:a

abort

m

MAINSAIL: Abort program
MAINSAIL compiler: Abort compilation
Abort

Example 16.9-2. Sample Expected Responses

denotes "MAINSAIL: Abort program".

denotes "MAINSAIL compiler: Abort compilation".

ambiguous abbreviation. It is an abbreviation
for both "MAINSAIL: Abort program" and
"MAINSAIL compiler: Abort compilation".

denotes "Abort". It is also an abbreviation for
each of the other expected responses, but is
assumed to denote "Abort" since "abort" and
"Abort" match exactly.

invalid abbreviation; there is no response the
rightmost phrase of which begins with "m" or "M".

Example 16.9-3. Valid and Invalid Abbreviations

-177 -

16.9.1. Sample Use of Registered Exceptions

Suppose a program is controlling the execution of several processes by some undisclosed
means and wants to allow a user to kill any of them from errMsg by typing "kill p", where p is
the name of the process, or to kill the current process by typing just "kill". Then it could
register the exception "KILL" as follows:

$registerException
("KILL","Kill process p",useKeyWord,"p");

$registerException
("KILL","Kill current process",$doNotMatch);

If errMsg is called and the user types "1", errMsg displays:

KILL P
KILL

Kill process p
Kill current process

There are two instances of the exception "KILL", but the second one (the one registered with
$doNotMatch set) is used only by errMsg when it displays the registered exceptions.

If the user types "k main<eol>", "k" matches the exception "KILL" and "main" is set aside as
the response's argument. errMsg raises the exception "KILL" and passes "main" as the $raise
argument exceptionStringArgl. The program is expected to have a handler for the exception
"KnL" and gets the name of the process to be killed by calling $exceptionStringArg 1. If the
user types just "k", "" is passed as the $raise argument exceptionStringArgl.

Example 16.9.1-1 illustrates a call to $registerException.

$registerException(nDEBUG", "to enter the debugger")

Example 16.9.1-1. A Sample Call to $registerException

In order for an exception to be raised from errMsg, it must have been registered; exceptions
that are not to be raised from errMsg need not be registered.

The system procedure $deregisterException causes an exception to be no longer registered.

-178 -

17. Coroutines

A "coroutine" is a context that preserves the state of a procedure so that its execution may be
"resumed" at the preserved state by a procedure in· some other coroutine. System procedures
are provided to create, resume, and kill coroutines. MAINSAIL puts no limit on the number of
coroutines, other than the limits implied by the size of memory on the target system. A "stack"
is allocated for each coroutine to provide storage for the coroutine's procedure "frames". A
procedure frame contains the storage for parameters and local non-own variables.

Table 17-1 lists system procedures, macros, and variables that deal with coroutines.

Identifier
$createCoroutine
$osdStackPages
$resumeCoroutine

$killCoroutine
$killedCoroutine

$moveCoroutine

$findCoroutine

$thisCoroutine
$exceptionCoroutine

Function
create a coroutine
default coroutine stack size
continue or start execution in a
coroutine
get rid of a coroutine
dete~ine whether a coroutine has
been killed
change location of coroutine in
coroutine tree
return a pointer to a coroutine
record, given its name
current coroutine
coroutine in which an exception
occurred

Table 17-1. System Procedures, Macros, and Variables for Coroutines

A coroutine may be thought of as a "thread of execution" that progresses independently of other
threads of execution in an interleaved fashion. Thus, a coroutine executes for a while and then
explicitly resumes some other coroutine. That new coroutine executes for a while, and then
explicitly resumes another coroutine, perhaps the one that resumed it. Coroutines must
explicitly resume other coroutines; i.e., coroutines do not execute in parallel, and there is no
automatic resumption of coroutines. However, a program may resume coroutines in such a
way as to give the illusion of parallel execution.

- 179-

A coroutine is created by means of a call to $createCoroutine. The data section and the name
of the procedure (the "initializing procedure") in which the new coroutine is to start execution
are specified in the call. A call to $resumeCoroutine is used to transfer execution to the new
coroutine; the new coroutine may then use $resumeCoroutine to transfer control to the original
(or any other) coroutine. When a coroutine determines that another coroutine will no longer be
used, it may kill the other coroutine with a call to $kilICoroutine, provided that the coroutine is
not itself or one of its ancestors. A coroutine may kill itself by specifying the delete bit in a call
to $resumeCoroutine.

The exception $coroutineExcpt is raised if a coroutine attempts to return from its initializing
procedure. The initializing procedure must terminate by calling $resumeCoroutine.

Example 17-2 shows a use of coroutines. The procedure generateNextNode generates a node
in some data structure, and the procedure processNextNode processes the node.

POINTER (node) nextNodei
POINTER ($coroutine) generator,processori

PROCEDURE generateNextNodei
BEGIN

DOB
nextNode := ... ,
$resumeCoroutine(processor)i

ENDi
ENDi

PROCEDURE processNextNodei
BEGIN

processor := $thisCoroutinei
generator := $createCoroutine

(thisDataSection,"generateNextNode")i
DOB

$resumeCoroutine(generator)i
... use nextNode here ...
ENDi

$killCoroutine(generator)i

ENDi

Example 17-2. Generator/Processor Coroutines

-180-

The procedure processNextNode in the processor coroutine first creates a coroutine for the
generator. The arguments indicate the data section and procedure name where the first
resumption is to start. processNextNode then uses the returned pointer to resume the coroutine
to get each node, and finally to kill it There can be any number of procedures like
processNextNode that use generateNextNode. generateNextNode sets the outer variable
nextNode to point to the next node, and then resumes the processor coroutine (in an application
where the generator coroutine could be resumed from several other coroutines, the application
would have to keep track of which coroutine the generator was to resume).

Coroutines must transmit data to one another by means of outer or interface variables, since
there is no way to pass parameters into or out of a coroutine using, e.g., $resumeCoroutine.

Coroutines provide stacks for procedure frames, but do not create new data sections for
modules; i.e., procedures executing in different coroutines may access the same data section. If
a separate data section is desired, it must be explicitly created with the system procedure "new"
and the newly created data section specified as an argument to $createCoroutine.

17.1. Coroutine Implementation

A coroutine consists of a stack to hold the procedure frames and a record of the predeclared
class $coroutine that contains information about the coroutine.

A tree structure is imposed on coroutine records based on a parent-child relationship. Each
coroutine record has a link "$up" that points to its parent coroutine record, i.e., the coroutine
that created it. The link "$down" points to the first-created (oldest) child. $right points to the
next younger sibling, and $left points to the next older sibling. Example 17.1-1 shows a
coroutine tree, where the letters represent coroutine records, the vertical bars represent the Sup
and $down links, and the dashes represent the $left and $right links. Only the Sup links for the
oldest children are shown; nodes c, d, e, and f have Sup links to node a, h to f, j to g, and p, q,
and r to 1. a's Sup link is nullPointer since it is the root coroutine; this coroutine is called
"MAINSAIL" and is created when the MAINSAIL runtime system initializes itself.

The Sup, $down, $left, and $right links are "structural" links in that they depend on the order of
coroutine creation (unless coroutines have been moved about in the coroutine tree, e.g., with
the system procedure $moveCoroutine). In addition, $coroutine records are maintained on a
"dynamic" list by means of the $prev and $next links. Each living coroutine appears exactly
once on this list. Each time a coroutine is resumed, it is moved to the head of the list The
head of the list is pointed to by the predeclared variable $thisCoroutine, so that $thisCoroutine
points to the record for the currently executing coroutine, and "$thisCoroutine.$next" points to
the coroutine that most recently resumed the current one, if that coroutine is still living (this
may not be a coroutine within the current application, however; creation of coroutines by the
MAINSAIL runtime system and searches for exception handlers also reorder the dynamic
coroutine list). The list is thus ordered from most recently resumed to least recently resumed

- 181 -

a

b--c--d--e--f
I I I I

m n k g--h
I I
1 i--j
I
Q--p--q--r

Example 17.1-1. Coroutine Tree

(where a search for a handler in a coroutine is considered a resumption of the coroutine); newly
created but not yet resumed coroutines are put at the tail of the list.

The $coroutine record includes the following fields of interest to the user:

• $name: the name of the coroutine

• $prev: a pointer to the dynamically "previous" coroutine

• $next: a pointer to the dynamically "next" coroutine

• Sup: a pointer to the parent coroutine

• $down: a pointer to the oldest child coroutine

• $left: a pointer to the left (next older) sibling coroutine

• $right: a pointer to the right (next younger) sibling coroutine

• $userHook: an unclassified pointer reserved for a user program to point to some data
structure associated with the $coroutine record.

Modifying fields other than $userHook or accessing undocumented fields of a $coroutine
record has undefined effects.

- 182-

17.2. Coroutines and Exceptions

Unhandled exceptions are propagated up the coroutine tree through the Sup link, so that a
coroutine can handle exceptions in itself and its descendants but not, for example, in its siblings
or ancestors.

If an exception is mised in a coroutine (the "raisee coroutine"), any active handlers in the raisee
coroutine are given control as usual. If none of them handles the exception, the exception is
simulated in the raisee coroutine's parent to give an opportunity for active handlers there to
handle the exception. If the exception is still not handled, the exception is simulated in the
raisee coroutine's grandparent (all traces of the simulated exception in the parent are erased),
and so forth. This propagation continues until either the exception is handled, or a $raiseReturn
occurs in the coroutine to which the exception has been propagated, or there is no handler in the
root node "MAINSAIL".

The system macro $exceptionCoroutine returns a pointer to the "raiser coroutine" (the
coroutine in which $raise was called) for the current exception (different from the raisee
coroutine only if the exceptionCoroutine argument to $raise denoted a coroutine other than the
raiser coroutine).

$raiseReturn in a coroutine to which the exception has been propagated first erases any trace of
the propagated exception, then resumes the raiser coroutine (which may have already been
resumed several times by various handlers). If $raiseRetum is not allowed by the original
exception (e.g., implicit exception such as divide-by-zero or $raise with $cannotRetum set in
ctrlBits), an error occurs if the raiser coroutine is ever resumed, whether by $raiseRetum or by
$resumeCoroutine. The program should kill the raiser coroutine if it can never be resumed.

If the exception is handled, procedures are aborted in the handling coroutine as usual, and
execution continues in the handling coroutine. The raiser coroutine is not killed, but is left in a
such a state that, if resumed, it continues from the call to $raise as if $raiseReturn had been
called from a handler. Thus, execution can be resumed from a call to $raise handled by a
handler in a different coroutine from the raiser coroutine. An error occurs if the raiser
coroutine is resumed but the exception does not allow a $raiseRetum.

The use of $resumeCoroutine to resume a coroutine that propagated the current exception
(before it is handled) has undefined effects.

The progmmmer should be careful to kill coroutines that will never be resumed in order to free
the space occupied by the coroutines.

If $raiseRetum or an argumentless call to $raise occurs in some coroutine other than the raisee
coroutine or the one to which the exception has been propagated, then that $raiseReturn or
$raise applies only to the active exception in its coroutine (an error if there is no such

- 183-

exception); i.e., exceptions are maintained on a per-coroutine basis except for the propagation
described above.

When a coroutine is killed, $descendantKilledExcpt is raised in its ancestors to inform the
coroutines that their descendant has died.

- 184-

18. Files

A file is an ordered series of data with a beginning position, a current position, and possibly an
ending position. A file may reside on some external medium (e.g., an operating system's file
structure) that is not defined by MAINSAIL or under MAINSAIL's complete control.

Some files may exist independently of the execution of a program, so that a program can create
a file that can later be accessed by another program. Thus, files can provide continuity from
one program execution to another.

Every file has a name, which is represented in a MAINSAIL program as a string. The
correspondence between files and strings may not be one-to-one.

MAINSAIL distinguishes between "text files" and "data files". A text file is composed of
character units, a data file of storage units. MAINSAIL also distinguishes two methods of
access to a file: sequential and random. The current position in a sequential file is updated to
point to the next datum as each datum is read or written, in order, starting from the beginning.
The current position of a random file may be explicitly changed to be anywhere within the file.

Before a file can be used by a program, it must be "opened" by a call to the system procedure
"open". Arguments to the open procedure specify the file name and indicate how the file is to
be accessed (sequentially or randomly, for input and/or output, etc.).

A file is "closed" by a call to the system procedure "close" to indicate that the program no
longer intends to use it (unless the program reopens the file later).

A file is referenced in a MAINSAIL program by means of a pointer returned by the open
procedure. The pointer belongs to one of the predeclared classes "textFile" and "dataFile".

The system procedures shown in Table 18-1 may be used to manipulate files.

18.1. File Names

The format of a file name is machine-dependent. Different operating systems impose different
limits on the length of a system-dependent file name and on the characters a file name may
contain.

The MAINSAIL device module delimiter (see Section 18.11) may be different on different
operating systems.

- 185-

Procedure
open
close
$ reOpen

Function
open a file
close a file
open same file pointer with different bits

$createUniqueFile
create a file with a unique name

$delete delete a file
$ rename rename a file

read read a value from a file
write write a value to a file

cRead read a character from a file
cWrite write a character to a file

$CopyFile copy (part of) one file to another

$truncateFile
truncate a file to a given length

$storageUnitRead
read a number of data from a file

$storageUnitWrite
write a number of data to a file

$characterRead
read a number of characters from a file

$characterWrite
write a number of characters to a file

$pageRead read whole pages of data from a file
$pageWrite write whole pages of data to a file

setPos
getPos
relPos

eof

$gotValue

set a file position
get the current file position
set a relative file position

true if the file pointer is at or beyond the
end of the file
true if last read was successful; better way
of determining end-of-file

Table 18-1. System Procedures for Files (continued)

-186 -

scan

fldRead
fldWrite

ttyRead
ttyWrite
ttycWrite

$filelnfo

scan a file as directed by scan specifications

read a string with specified width from a file
write a string with specified width to a file

read a line from the terminal or primary input
write values to the terminal or primary output
write characters to the terminal or primary
output

return information about a file

Table 18-1. System Procedures for Files (end)

On every operating system, the name "TTY" (case is not distinguished) refers to the operating­
system-dependent primary input or output file, usually the user's terminal. "TTY" is a text file
that may be opened either for sequential input or sequential output

Identifiers (other than "TTY") of six or fewer characters are guaranteed to be valid operating­
system-dependent file names on any system. It is not guaranteed whether the operating system
distinguishes case; e.g., "ABC" and "abc" mayor may not refer to distinct operating system
files. The $attributes bit $fileNamesAreCaseSensitive is set if the operating system treats files
names of different case as names of different files.

18.2. The Classes file, textFile, and dataFile

A file is manipulated as a pointer to one of two p~eclared classes "textFile" or "dataFile" ~
The pointer is initialized by a call to the system procedure open. The predeclared class "file" is
a prefix class of both textFile and dataFile.

The only fields of the class file available to a user program are the fields "name" and
"$strArea". $strArea is described in Chapter 20. name is set to be the name specified to the
open procedure (or the substituted name if a logical name or searchpath substitution occurs)
when the file is opened; see Example 18.2-1. The name may be further changed by some
device modules to reflect the "real" name of the file opened; the documentation for any device
module that modifies the name field explains the modifications made. The effect of altering
this field or of accessing other fields of the classes file, textFile, and dataFile is not defined.

- 187 -

if outFile is a pointer declared as

POINTER (textFile) outFile

and a file named "RESULT" is opened as

open (outFile, "RESULT", ...)

then

outFile.name "RESULT"

Example 18.2-1. The Field name of the Class file

18.3. Text Files

A text file contains only characters.

When (long) integer, (long) real, or (long) bits data are written to a text file (with the system
procedure "write"), an automatic conversion is made to the appropriate string representation of
those data, and then the string is written to the file. For example, if r is a real variable with
value 123.8, and f is a text file, then "write(f,r)" converts the number 123.8 to the string" 123.8"
and writes the string to the file. Only the five characters of the string representation are written;
i.e., MAINSAIL does not automatically write any spaces or end-of-line characters to separate
numbers.

A string is written to a text file by writing its characters into the file. For example,
write(f,"a4$") writes the three characters of the string "a4$" into the text file f. An eol is not
automatically appended; eol may be explicitly written to a text file like any other string.

When the non-string data types are read from a text file (by means of the system procedure
"read"), a scan for an appropriate string representation takes place, and when found, a
conversion is made to the appropriate internal representation. For example, if i is an integer
variable, then "read(f,i)" causes a scan of the file referenced by f for a proper string
representation of an integer (that is, one or more digits, possibly preceded by "_tt). If the digits
found are "123", then the number 123 is assigned to the integer variable i. The scan skips over
characters that do not form part of the numeric representation.

A string may be read from a text file using read, fldRead, or scan.

-188 -

18.4. Data Files

A data file is used for storing data in a machine-dependent internal ("binary") format. That is, a
data file consists of boolean, (long) integer, (long) real and/or (long) bits data stored in a
compact form identical to the internal representation within the computer.

Since no conversion to string is necessary, input and output of boolean, (long) integer, (long)
real, and (long) bits values to data files are usually more efficient than to text files.

Characters stored in data files are stored as integers, one character per integer. This
representation is often less compact than that used in a text file. See Sections 1.82 and 1.104 of
part II of the "MAINSAa Language Manual".

18.5. Input and Output

If a file is opened for input, data may be read from the file; if a file is opened for output, data
may be written to the file.

A file opened for sequential access may be opened for either input or output, but not both at
once. A file opened for random access may be opened for input or output or both.

18.6. Sequential and Random Access

When a file is created and opened for sequential access, it can be opened only for output. Each .
write to a sequential file appends to the current end of the file, starting with the first position in
the file.

When a file already exists and is opened for sequential access, it can be opened only for input
(unless the entire file is replaced). Each read from the file obtains data starting from the current
position (starting with the beginning position of the file) and then sets the file pointer to the
position following the data read, as determined by the data type being read.

A random file allows access to any position within the file, as specified by the positioning
procedures setPos, relPos, and getPos. The positioning may be interspersed with normal
sequential reads and/or writes. A random file is like a sequential file except that it may allow
both reads and writes, an existing file can be altered without replacing the entire file, and the
position within the file can be controlled by explicit positioning procedures.

A file opened for random output is automatically extended if the current position is set to be
beyond the end of the file.

-189 -

Not all file formats allow random access. An error message is generated when a random open
is attempted on a file that does not permit random access.

The contents of unwritten locations in a random access file are Zero.

Some operating system file systems have separate file organizations for sequential and random
files. It may not be possible to open a sequentially organized file for random access.
MAINSAIL guarantees to use the random file organization only if a file is opened for random
access when it is originally created.

18.7. Opening a File

A file is opened by specifying the file name and how the file is to be used (for input or output,
accessed sequentially or randomly, etc.) to the system procedure open. For example:

open (inFile, "notes", input)

opens the file named "notes" for sequential text input. input is a predefined bits constant used
by the open procedure. The open procedure produces as its first argument a pointer belonging
to one of the predeclared classes "textFile" or "dataFile". That pointer is used for subsequent
references to the file. For example, if s is a string variable, then:

read(inFile,s)

reads the next line from the file "notes" into the string s.

A file name can be specified during execution. If an error occurs while a file is being opened,
then by default, MAINSAIL prompts for and reads a new file name from cmdFile. The
"prompt" bit may also be specified as described in Section 1.259 of part II of the "MAINSAIL
Language Manual".

The same file may be opened more than once (i.e., several calls to open may be made for the
same file, resulting in several different file pointers referring to the same file), provided that
none of the file pointers is opened for write access; otherwise, the effects are undefined.

Some operating systems do not permit the creation of a zero-length file. Thus, if a file is
opened for create access but no data are written to it before it is closed, the file is not
guaranteed to exist after it is closed.

File names may be logical names. A real file name is substituted for a logical file name when
the file is opened.· Logical file names allow redirection of specified files and the use of system­
independent file name forms. Logical names are established by a call to enterLogicalName and
examined by a call to lookUpLogicalName.

-190 -

Any string may be used as a logical file name. XIDAK's own logical file names are written
enclosed in parentheses. To avoid conflict with XIDAK logical names, it is suggested that each
organization adopt its own convention; e.g., XYZ Corporation might choose names like:

XYZ:main library

Logical file names may contain spaces, although some XIDAK utilities use space as a separator
character. Real file names must be specified to such utilities if the corresponding logical file
name contains a space.

18.8. Closing a File

A file is closed with the system procedure "close". This causes the file to be disengaged from
the runtime and operating systems, if necessary. It is good practice to close files as soon as I/O
no longer needs to be performed on them, since open files may occupy scarce resources.

MAINSAIL automatically closes all files that remain open at the end of a MAINSAIL
execution.

18.9. End-of-File

Many file systems organize files as fixed-size blocks, and remember only the number of blocks
in a file, so that the exact end-of-file position (that is, the last position in the file to which a
value was written) cannot be determined. Some types of files (e.g., terminals on some
operating systems) may not have end-of-file positions. The system procedure eof returns true if
the current file position is beyond the end of the file, and may return true if the current file
position is at the end of the file, depending on the file organization and operating system.
$gotValue is a better test of end-of-file position, since on files where end-of-file is detected
exactly, $gotValue always becomes false after the first read beyond end-of-file is attempted.
Portable programs should not rely on eof or $gotValue, if possible, since operating systems
may not record the end-of-file position of a file exactly.

18.10. Terminal I/O and Primary Input and Output

The system procedures ttyRead, ttyWrite, and ttyc Write are used for explicit communication
with the primary input and output files (the operating-system-dependent standard input and
output files). These files are established by most operating systems before MAINSAIL is
invoked. On most operating systems, these files correspond by default to the user's keyboard
and terminal screen. Both the primary input file and the primary output file have the
MAINSAIL file name "TTY". ttyRead reads a line from "TTY", ttyWrite writes a string to
"TrY", and ttycWrite writes individual characters to "TrY".

- 191 -

Terminal input and output may have operating-system-dependent characteristics; consult the
appropriate operating-system-dependent MAINSAIL user's guide.

Most operating systems provide editing commands (e.g., a backspace key to correct mistakes)
that may be applied to a line before it is entered from a keyboard, but MAINSAIL does not
guarantee that this is the case.

If an end-of-file is detected by nyRead, and no text was read by the invocation of ttyRead
before the end-of-file, then the exception $ttyEotExcpt is raised. If it is not handled and
$raiseReturn is not called, then MAINSAIL exits with the message:

Eof on TTY: exiting

This helps avoid infinite loops in batch jobs that mistakenly loop while reading beyond the end
of the batch script. To deal explicitly with a terminal end-of-file in a program, do something
like the following:

$HANDLE s := ttyRead
$WITHB

IF $exceptionName NEQ $ttyEofExcpt THEN $raise;
s := nn END; * and fallout of handler

lS.l1. Device Modules

A file name used ina MAINSAIL program may indicate a "device module" to be used for file
manipulation. If a device module is not specified, a default module appropriate for the
operating system is used.

The device module name is specified as a part of the file name. It is separated from the rest of
the file name with the device module break character, $devModBrk. For example, if
$devModBrk is the character ">", the file name "foo>s" specifies that the device module FOO
be used with the file "s".

Some device modules accept special file name syntax; refer to the documentation on the device
module (e.g., the descriptions of "MEM" and "NUL" in the "MAINSAIL Utilities User's
Guide ") for details.

Some files use a prefix that looks syntactically like a device module prefix, but is in fact
mapped to a module of another name. This is transparent to the user of the device module.
The terms "device prefix" and "device module" are used interchangeably.

-192 -

18.12. cmdFile and logFile and MAINSAIL Standard Input and Output

cmdFile (command file) and 10gFile (logging file) are the standard input and output files used
by the MAINSAIL runtime system and by most MAINSAIL utilities (e.g., the MAINSAIL
compiler). cmdFile is a text input file, and 10gFile is a text output file. Both files are initially
opened to "TIY".

cmdFile and logFile are the "standard" input and output, i.e., the main medium of interaction
(or simulated interaction) with the user, as established within MAINSAIL. They are distinct
from "TTY", which is "primary" input and output, i.e., the main medium of interaction with the
user, as established by the operating system when MAINSAIL is invoked from the operating
system level. H "TIY" is redirected, it must be done at the operating-system level; however,
cmdFile and 10gFile can be redirected within MAINSAIL.

cmdFile and logFile are used to "redirect" the MAINSAIL standard input or output stream by
opening some other text input file as cmdFile, or by opening some other text output file as
10gFile. For example, a program may use the calls:

open(cmdFile,"Command file: ",prompt!input);
open(logFile,"Logging file: ",prompt!create!output)

to allow the user to specify the files to use for MAINSAIL standard input and output

MAINEX provides subcommands to redirect cmdFile and logFile; see the "MAINSAIL
Utilities User's Guide".

The system procedures ttyRead, ttyWrite, and ttycWrite communicate directly with "TTY", and
cannot be redirected by MAINSAIL.

Closing cmdFile or 10gFile has the effect of reopening it to "lTY". When end-of-file is
reached on cmdFile, the following occurs unless the configuration bit
$noAutoCmdFileSwitching is set (see the description of CONF in the "MAINSAIL Utilities
User's Guide"):

1. The predefined exception $cmdFileEofExcpt is raised.

2. If the exception is handled, execution proceeds with no change to the status of
cmdFile.

3. If the exception is not handled:

• If cmdFile is "lTY", MAINSAIL exits.

• Otherwise, cmdFile is closed and reopened to "lTY".

- 193-

18.13. errorOK and File I/O

The errorOK bit suppresses most file I/O error messages. Errors that may produce error
messages even when the errorOK bit is set when a file I/O procedure is called include:

• Invalid open bits, e.g., the create bit set without the output bit

• A file closed twice, or I/O attempted on a closed file.

• An invalid format prefix, e.g., a "V AR" prefix for a file opened for random output.

• A file that cannot be closed.

• Buffered I/O attempted on an unbuffered file.

• Unable to perform a read or write on an open file not at end-of-file.

18.14. cmdFile and logFiIe Echoing

TEMPORARY FEATURE: SUBJECT TO CHANGE

The configuration bit $echoIfRedirected (value 'H80) causes input to cmdFile to be echoed to
"ITY" if cmdFile or 10gFile is not the file "ITY", and output to 10gFile to be echoed to "ITY"
iflogFile is not the file "ITY". The configuration bit $echoCmdFile (value 'Hl(0) always
echoes cmdFile to logFile.

The file "TrY" is the MAINSAIL file "TTY". If operating-system-dependent standard input is
redirected for a MAINSAIL process, MAINSAIL still considers that the operating-system­
dependent standard input is the MAINSAIL file "TTY". The $echoItRedirected bit does not
take effect unless 10gFile and cmdFile are redirected from within MAINSAIL.

There are some instances when input routines look one character ahead to determine that an
input operation has terminated. This character is then input the next time a read occurs from
the file. In such cases, the character is echoed twice, once when it was used in the one­
character lookahead, and once when it was actually read. This can occur at present (if f is
cmdFile) for "read(f,x)", where x is a (long) integer, (long) real or (long) bits, and for
"scan(f, ... ,proceed ...)". This bug may be fixed in a future release.

-194 -

IS. IS. Caching of Files

TEMPORARY FEATURE: SUBJECT TO CHANGE

18.15.1. Introduction

The file cache is a temporary feature that permits greater control of I/O. Facilities provided by
the file cache include:

• the ability to specify that a file not be cached

• the ability to cache non-bytestream files opened for random access

• the ability to cache buffers privately for a particular file

• the ability to remove all of a file· s buffers from the cache

• the ability to control whether or not dirty buffers are written when removed from the
cache

• more efficient buffer lookup

The file cache improves I/O performance for buffered random access files; sequential files are
not cached.

A file cache is a collection of file buffers that are maintained in memory rather than on a
device. All such buffers are referred to as cached buffers. Since information which resides in
memory can be accessed faster than information which resides on a device. I/O performance is
improved.

A buffered random access file can be globally cached. privately cached. or not cached, except
that if its buffer size is not the same as the size of the buffers in the global cache, it cannot be
globally cached. The global cache reuses buffers among all globally cached files while a
private cache reuses only a particular file's cached buffers. A buffered random access file is
automatically globally cached if its buffer size is the same as the size of the buffers in the
global cache; otherwise, it is automatically privately cached

The major benefit of the global cache is that it does not force an application to predict file
usage. Which buffers reside in the global cache is dynamically adjusted to file usage; Le., more
buffers are cached for more heavily-accessed files, and fewer buffers are cached for less

-195 -

heavily-accessed files. A private cache is meant for use only for key files that are very heavily
used and for files with a buffer size other than that of the buffers in the global cache. An
application program should therefore normally let bytestteam files be globally cached.

All buffers (including the current buffer) for a cached file reside in a hash table associated with
that file. The hash function is based on the file position. All buffers except the current buffer
also reside in a list ordered from most-recently-used to least-recently-used, subsequently
referred to as an LRU list. The cache parameters requestedMinCacheSize and
requestedMaxCacheSize refer to the size of the LRU list (a file can be cached even though
requestedMaxCacheSize is Zero, since requestedMaxCacheSize refers to the LRU list and the
current buffer is cached but does not reside in the LRU list).

A cached file is implicitly updated when a cached buffer is reused and when the file is closed.
It can be explicitly updated by calling a procedure which clears the cache.

Maintenance of a cache is governed by three parameters: 1) the requested minimum number of
buffers, 2) the requested maximum number of buffers, and 3) the requested cache hit percent.
Default parameters for the global cache are defined in the MAINSAIL system module but can
be altered programmatically. Default values for private cache parameters are local to the file
cache module and are usoo if private cache parameter values are not provided by the
application program. The number of buffers in the LRU list is kept between the requested
minimum and maximum size whenever possible; the LRU list size may be smaller than the
requested minimum size but is not allowed to grow larger than the requested maximum size.

When a request for a new buffer is made, the cache is searched (this is a hash table lookup). If
the requested buffer is found, it becomes the file's current buffer. If it is not found, either a
new cache entry is created, the least-recently-used cache entry is reused, or the file's current
buffer is reused. Which action is taken is governed by the file cache parameters.

18.15.2. File Cache Procedures

The procedures $queryFileCacheParms, $setFileCacheParms, and $clearFileCache may be used
to manipUlate the file cache.

$queryFileCacheParms returns information about the cache, optionally associated with a
particular file.

$setFileCacheParms sets the parameters for the cache, optionally associated with a particular
file.

$clearFileCache removes some or all of a file's buffers from the LRU list, optionally writes
dirty buffers, and optionally uncaches the file.

-196-

18.16. Partial Data Reads

TEMPORARY FEATURE: SUBJECT TO CHANGE

A partial data read is an input operation where the number of storage units remaining in the file
is less than the size of the data type being read; i.e., if the size of a long bits is four bytes and
only three bytes remain in the file f, then:

read(f,bb)

where bb is a long bits variable, causes a partial data read.

When a partial data read occurs, an error message is issued. The user can handle the error and
obtain information about what happened. In particular, the errMsg call that occurs if a data
read gets only part of a data type is:

errMsg($partialDataRead,
"of" & cvs(i) & " chars from file" & f.name,msgMyCaller);

where $partialOataRead = "partial data read".

To handle partial data read errors, put a Handle Statement around any suspect read. In the
handler, check for:

$exceptionName = $systemExcpt AND
$exceptionStringArgl = $partialDataRead

If this is true, then "cvi($execptionStringArg2)" is the number of characters actually read, and
the last "word" in $exceptionStringArg2 is the file Dame (if the file name contained no spaces).
In order to obtain the partial datum, the handler must call $raiseReturn, which will cause the
error message not to be printed, and then the read will return the partial datum in the produces
variable (left or right justified depending upon the host machine's characteristics).
"$gotValue(f)" will be false and the file will be positioned immediately after the characters that
were read (if possible; on processors where storage units are larger than character units, the
position may be rounded down to the nearest storage unit).

-197 -

19. Date and Time Facilities

MAINSAIL provides a large set of procedures for obtaining dates, times, and CPU times in
various formats and for performing arithmetic on date and time values. The system procedures
shown in Table 19-1 may be used to manipulate files. An additional facility for timing
MAINSAIL programs for performance analysis purposes is MAINPM, described in the
"MAINPM User's Guide".

19.1. Representation of Dates and Times

MAINSAIL numeric dates and times are represented as long integers. They may be local dates
and times, Greenwich Mean Time (or GMT; also known as Coordinated Universal Time) dates
and times, or date and time differences (intervals). The three possibilities are distinguished by
being represented by values located in three different parts of the long integer range.

Local dates and times can be used, e.g., by programs that want to print out the current date and
time. GMT dates and times are useful for timestamping data that may be shipped across time
zone boundaries. Date and time differences represent a length of time, e.g., the amount of time
a program took to run (as would be recorded in a benchmark). Local and GMT dates and times
are called "absolute", since a date/time pair represents a single well-defined moment in time.

Absolute dates are represented as:

the number of days since 17 November 1858

added to an appropriate bias (there is one bias value for GMT dates and another for local
dates); absolute times are represented as:

the number of seconds since midnight

added to the same bias as for dates.

The guaranteed date range is from 1 January, 32,766 B.C. to 31 December, 32,766 A.D.,
according to the Gregorian calendar (which is the calendar now in use in all Western countries
and, for secular purposes, in most other countries as well; it is extrapolated for MAINSAIL's
purposes backwards or forwards to the limiting dates of the guaranteed range even though it
was not actually used anywhere until 1582 A.D., and mayor may not be in use in 32,766 A.D.).

The absolute time of day range is from 0:00:00 to 23:59:59 on a 24-hour clock.

-198 -

Procedure Function
$date Return current date
$time Return current time of day
$dateAndTime

Return current date and time of day

$dateToStr Convert numeric date to string
$timeToStr Convert numeric time to string
$dateAndTimeToStr

Convert numeric date/time pair to string
$strToDate Convert string to numeric date
$strToTime Convert string to numeric time
$strToDateAndTime

Convert string to numeric date/time pair

$assembleDate
Make numeric date from day, month, year

$assembleTime
Make numeric time from hour, minute, second

$assembleDateAndTime
Make numeric date/time pair from components

$disassembleDate
Convert numeric date to day, month, year

$disassembleTime
Convert numeric time to hour, minute, second

$disassembleDateAndTime
Convert numeric date/time pair to components

$convertDateAndTime

$dateFormat

$timeFormat

Convert date/time pair from local to GMT or
vice versa

Whether numeric date is local, GMT, or
difference

Whether numeric time is local, GMT, or
difference

Table 19-1. System Procedures and Macros for Date and Time (continued)

- 199-

$addToDateAndTime
Date and time addition

$dateAndTimeDifference
Date and time subtraction

$dateAndTimeCompare
Date and time comparison

$timeSubcommandsSet

$setTheDate

See if MAINSAIL date/time parameters available
(required on many systems for correct GMT)

Set the date if unavailable from the operating
system

$cpuTime Return CPU time used by current process
$cpuTimeResolution

Ticks per second for $cpuTime

$timeout Suspend execution for specified time

Table 19-1. System Procedures and Macros for Date and Time (end)

Differences are absolute numbers with no bias; e.g., a date difference of 23L represents 23
days, and a time difference of 23L represents 23 seconds. Subtractions may produce a negative
difference if the presumed later date or time is actually the earlier. The guaranteed range of
date and time differences is large enough to accommodate the subtraction of the earliest
guaranteed absolute date or time from the latest or vice versa.

The procedures $dateFormat and $timeFormat may be used to determine the format (i.e., local,
GMT, difference, or invalid) of any date or time value.

19.2. Information Required by MAINSAIL

The following information needs to be available to MAINSAIL in order to return GMT values
and convert local dates and times to GMT and vice versa:

• The offset to Greenwich Mean Time of standard time in the current time zone.

- 200-

• Whether the local time zone is susceptible to daylight savings time (or some other
form adjusted time), and if so how large the adjusttnent is (usually one hour. at least
. in the United States in recent years).

• The rules for the starting and ending dates and times of local daylight savings time. if
applicable. In the United States in recent years. these rules are of the fonn:

2 am on <nth/last> Sunday of <month>

• The string name of the current time zone, both for standard and daylight savings
times.

This information can be made available to the MAINSAil.. runtime system by issuing the
appropriate MAINEX subcommands. It is intended that the subcommands be set once, at
MAINSAIL installation, in a file called "site.cmd" on the MAINSAil.. directory. This file, if it
exists t is read by MAINSAIL each time it is initialized.

The MAINEX subcommands may not be required on those operating systems that provide
sufficient time zone information to user programs. At present, no operating system provides as
much information as the MAINEX subcommands, although some operating systems do provide
part of the information.

The MAINEX time subcommands are documented in full in the "MAINSAIL Utilities User's
Guide"; here is a summary:

• "GMTOFFSET": Specify the offset of the (standard) local time zone from GMT.

• "DSTOFFSET": Specify the offset from GMT of the local time zone adjusted for
daylight savings time (if applicable).

• "STDNAME" and "DSTNAME": Specify name (usually an abbreviation) used for
local time zone during standard and (if applioable) daylight savings time.

• "DSTSTARTRULE" and "DSlENDRULE": Specify the dates and times when
daylight savings time (or whatever the adjustment is called locally) starts and ends (if
applicable).

• "DEFINETIMEZONE": Define the names and offsets from GMT of other time
zones to be recognized by $strToDateAndTime (if desired).

If the MAINEX subcommands are not given, the local date and time facilities continue to work
correctly; however, procedures that accept or return GMT values may not work correctly. The
boolean procedure $timeSubcommandsSet is provided to allow a program to deal with this
situation.

- 201-

19.3. GMT Conversions and $timeSubcommandsSet

Any procedure that does a conversion (explicit or implicit) from GMT to local time or vice
versa acts as if local time were Greenwich Mean Time if the GMT MAINEX subcommands
have not been issued and the operating system does not provide the required information. This
is the same behavior produced if all subcommand values are set to Zero.

The procedure $timeSubcommandsSet returns true if and only if if any of the relevant
MAINEX subcommands has been issued; if it returns true, then GMT conversions may be
expected to be successful. If no subcommands describing the local time zone are given,
$timeSubcommandsSet returns false, and any procedure attempting to convert from GMT to
local time or vice versa returns the value it would have returned in the Greenwich Mean Time
zone unless the operating system also provides the information.

19.4. Conversion Caveats at the Start and End of Daylight Savings Time
(or Other Adjusted Time)

It is not specified which of the two possible GMT times is returned by any procedure that
converts (implicitly or explicitly) from local to GMT times during the ambiguous ttansition
period from daylight savings time to standard time. If the conversion is from GMT to local
time,however, it is always possible to determine the correct local time if the correct time zone
and daylight savings time algorithm are provided by the appropriate MAINEX subcommands.

19.5. MAINEX Time Subcommand Values Appropriate to the Forty-Eight
Contiguous United States

For the time zones of the contiguous United States, the appropriate MAINEX subcommand
values are shown in Table 19.5-1.

lime ZQne ~MIQEESE:I SIDNAM~ ;oSTNAME
Eastern 18000 EST EDT
Central 21600 CST CDT
Mountain 25200 MST MDT
Pacific 28800 PST PDT

Table 19.5-1. MAINEX Time Subcommand Values for the Contiguous United States

-202-

The subcommands shown in Table 19.5-2 should be given everywhere that the standard time
zone abbreviations for the forty-eight contiguous United States are used. Additional
subcommands may be desirable if other time zone abbreviations are commonly referred to.

DEFINETlMEZONE EST 18000
DEFINETIMEZONE EDT 14400
DEFINETlMEZONE CST 21600
DEFINETlMEZONE CDT 18000
DEFINETlMEZONE MST 25200
DEFINETlMEZONE MDT 21600
DEFINETlMEZONE PST 28800
DEFINETlMEZONE PDT 25200

Table 19.5-2. Subcommands Defining the Names of the Time Zones in the Forty-Eight
Contiguous United States

"DSTOFFSET 3600" should be specified where daylight savings time is used, and
"DSTOFFSET 0" where it is not. As of 8 July 1986, the following should be specified where
daylight savings time is in effect (and will be ignored if it is not, i.e., if "DSTOFFSET 0" is
set):

DSTSTARTRULE April Sunday 1 2:00
DSTENDRULE October Sunday 5 2:00

Complete sample sets of time zone subcommands for the forty-eight contiguous United States
(except for those shown in Table 19.5-2) are shown in Tables 19.5-3, 19.5-4, 19.5-5, 19.5-6,
19.5-7, and 19.5-8. These subcommands should appear in a file "site.cmd" on the MAINSAa
directory, which should be created when a new version of MAINSAIL is installed.

GMTOFFSET 18000
DSTOFFSET 3600
STDNAME EST
DSTNAME EDT
DSTSTARTRULE April Sunday 1 2:00
DSTENDRULE October Sunday 5 2:00

Table 19.5-3. Subcommands for the Eastern Time Zone: from the Atlantic Seaboard West
through Michigan, Eastern Kentucky, Eastern Tennessee, Georgia, and Florida Exclusive of the

Panhandle

- 203-

GMTOFFSET 18000
DSTOFFSET 0
STDNAME EST

Table 19.5-4. Subcommands for Indiana except Parts of the Extreme West

GMTOFFSET 21600
DSTOFFSET 3600
STDNAME CST
DSTNAME COT
DSTSTARTRULE April Sunday 1 2:00
DSTENDRULE October Sunday 5 2:00

Table 19.5-5. Subcommands for the Central Time Zone: Wisconsin, Illinois, Parts of Extreme
Western Indiana, Western Kentucky, Western Tennessee, Alabama, the Florida Panhandle,

Mississippi, Louisiana, Arkansas, Missouri, Iowa, Minnesota, Eastern North Dakota, Eastern
South Dakota, Eastern Nebraska, Kansas except Parts of the Extreme West, Oklahoma, and

Texas except the Extreme West

GMTOFFSET 25200
DSTOFFSET 3600
STDNAME MST
DSTNAME MDT
DSTSTARTRULE April Sunday 1 2:00
DSTENDRULE October Sunday 5 2:00

Table 19.5-6. Subcommands for the Mountain Time Zone: Western North Dakota, Western
South Dakota, Western Nebraska, Parts of Extreme Western Kansas, Extreme Western Texas,

New Mexico, Colorado, Wyoming, Montana, Southern Idaho, Parts of Extreme Eastern
Oregon, and Utah

- 204-

GMTOFFSET 25200
DSTOFFSET 0
STDNAME MST

Table 19.5-7. Subcommands for Arizona

GMTOFFSET 28800
DSTOFFSET 3600
STDNAME PST
DSTNAME PDT
DSTSTARTRULE April Sunday 1 2:00
DSTENDRULE October Sunday 5 2:00

Table 19.5-8. Subcommands for the Pacific Time Zone: Northern Idaho, Washington, Oregon
except Parts of the Extreme East, Nevada, and California

- 205-

20. Areas

Areas provide a method for more precise control of memory management. Correct explicit use
of areas is relatively complex, and requires considerable care in order to avoid introducing bugs
that may be difficult to track. Programmers need not understand areas in order to write correct
programs, and programs that do not allocate significant amounts of memory will not benefit
from explicit use of areas. This chapter may therefore be considered optional reading for
programmers not involved in writing such programs.

An "area" is a dynamically growing collection of "chunks" (collectable data structures, i.e.,
records, arrays, and data sections) and string text, which can be treated as a unit An area can
be disposed, which immediately causes all of the area's memory (an integral number of pages)
to be released; this simplifies the task of the MAINSAIL runtime system's memory manager,
which can more efficiently reclaim free pages than "free chunks" (unallocated or deallocated
memory from which chunks may be allocated) or inaccessible text in string space. The
memory management algorithms applied to an area can be explicitly specified by a program, so
that unnecessary memory management does not take place. In some programs, the explicit use
of areas can substantially improve the efficiency of memory management; however, bugs
introduced by the improper use of areas can be very difficult to track.

20.1. Examples and Motivation

The exact details of memory management and the MAINSAIL compiler implied by this section
are subject to change, although the explanation of the advantages of areas is expected to be
broadly applicable to future releases of MAINSAIL.

An area could contain a data structure, such as a linked-list structure, that is built up, processed,
and then no longer needed. If all of the structure's data are allocated in a single area, disposing
the area when the structure is no longer needed frees all the memory used by the structure in a
single operation. This has several advantages over individually disposing each chunk:

• It is faster.

• Entire pages become free, rather than individual chunks.

• It is easy to be sure that entire data structure has been freed.

If the chunks are disposed individually, they are put on free lists (based on size). Even if two
free chunks are contiguous, they are not coalesced until a chunk garbage collection occurs.
Disposing a large number of chunks results in a large number of free chunks, rather than free

- 206-

pages. If another data structure consisting of chunks of the same size is built up soon
afterward, then the free chunks are reallocated, and the free lists have played their role well.
However, if different-sized chunks or non-chunk objects (e.g., string space, control sections,
file buffers, etc.) are needed, the free chunks are wasting space, and a garbage collection is
needed to coalesce the chunks and free the pages consisting only of free chunks. Freeing an
entire area immediately frees all the pages, making them available for any kind of use.

An area can also be used as a "bag" containing unrelated chunks and data sUuctures, all of
which should be disposed at the same time. A "program" (e.g., the MAINSAIL compiler) can
allocate all its chunks in the same area, then dispose the area when it is finished; this reclaims
the whole "bag". This is an especially convenient way to clean up when an exception occurs
that causes a program to abort. The MAINSAIL compiler disposes several areas when a
compilation is aborted; in this way, the code to deallocate all current data structures can be
simple and does not need to understand in detail any of the data structures.

20.2. Area Facilities

Any number of areas can be created during a MAINSAil.. execution. Facilities are provided for
allocating chunks and string text in specified areas. System procedures are provided to:

• create and specify attributes of an area ($new Area)

• clear an area ($clearArea)

• clear the string space part of an area ($clearStrSpc)

• dispose of an area ($disposeArea)

• dispose only the data sections in an area ($disposeDataSecslnArea)

• allocate a chunk in a specified area (new)

• use a specified area for string text (various procedures)

• determine whether a pointer or string references an area ($inArea)

• determine which area is referenced by a pointer or string ($areaOt)

• get a chunk or string text into an area ($getinArea)

• find an area with a specified title ($findArea)

- 207-

20.2.1. Allocation, Clearing, and Disposal

An area is specified by a pointer to a record of the class $area, which contains information
about an area. $new Area, which creates areas, returns a pointer to the $area record for the
newly created area, which is "empty" (it actually contains the $area record itself and some
supporting data structures). A name (or "title") maybe given to an area when it is created, to
help identify the area in various situations during execution.

An area automatically grows to accommodate new chunks and string text. The memory pages
occupied by an area are typically not contiguous. There is a single default area, $defaultArea
(with the title "Default area"), into which all chunks and string text are put unless explicitly
specified otherwise (so that programs that make no explicit use of areas use only $defaultArea).
Another area, entitled "Dscr area" , contains all chunk descriptors. Other areas may be created
by the MAINSAIL runtime system or utilities. The effect of disposing or clearing any system
areas is undefined. The titles of the system areas are subject to change.

Clearing an area returns it to its state immediately after allocation (i.e., empty except for the
$area record and supporting structures). This is useful when the current contents of an area are
no longer needed, but more data are to be put into the area. It is slightly more efficient than
disposing and reallocating the area; also, if several pointers are pointing at the $area record, all
of them would have to be made to point to the new $area record if the old area were disposed
and then re-allocated (since the $area record is also disposed when the area is disposed). The
string space part of an area can be cleared separately with $clearStrSpc.

Most system procedures that generate string text can be given an $area parameter to specify the
area into which the text is to be put. Alternately, in the case of a file, the file record's $strArea
field can be set to an area that is to receive input text by default:

STRING Si
POINTER (textFile) f;
POINTER ($area) myAreai

f.$strArea := myArea;
read(f,s); * input text goes into myArea

20.2.2. Specifying Memory Management Attributes of an Area

Chunk collections, chunk compactions, and string collections are performed only on areas with
memory management attributes permitting these operations. The memory management
attributes of an area are established when the area is allocated by $new Area.

Chunk collection of an area is useful when many chunks become inaccessible, i.e., when many
chunks are not referenced by any accessible pointer. Chunk compaction is useful when chunks

- 208-

become fragmented by a mixture of free and allocated chunks, and such fragmentation causes
inefficient use of memory due to the inability to find free chunks to satisfy allocation requests
(if all chunks in an area are the same size, fragmentation is not a problem). Suing collection
(which marks all accessible text, then compacts it within sUing space) is useful when there is a
lot of inaccessible sUing text, i.e., text not referenced by any accessible sUing descriptor (the
charadr and length that represent a sUing). Each of these operations can take quite some time
in a large address space, and can be particularly slow when virtual memory must be swapped in
from disk, since they involve an essentially random pattern of many memory accesses. It saves
time to avoid collections and compactions that do not reclaim much space.

By default, when an area is allocated, it is not marked as collectable or compactible. The
assumption is that an area managed by a single program typically does not contain enough
tt garbage tt, or become sufficiently fragmented, to justify the time spent collecting or
compacting. It is expected that the programmer knows enough about the anticipated use of the
area to know whether this assumption holds. For example, an area used to build up a binary
tree, process it, and then dispose it may never contain any garbage, or even any free chunks. If
the assumption that collections and compactions are unnecessary in an area does not hold, the
area could build up enough garbage to cause the MAINSAll... execution to abort due to lack of
memory.

The programmer can control the memory management attributes of an area by specifying the
following predefined long bits constants for $new Area's attr argument

attr Bit
$collectableChkSpc
$compactableChkSpc
$collectableStrSpc

Description
collect area's chunks
compact area's chunks
collect area's string text

For example, $defaultArea is allocated as if by the call:

$newArea(nDefault area",
$collectableChkSpc!$compactableChkSpc!$collectableStrSpc)

Even if an area A is not marked $collectableChkSpc or $compactableChkSpc, all the pointers it
contains must be examined when one or more other areas are being chunk collected or
compacted in order to determine whether A has any pointers into any of the collected or
compacted areas (each chunk that A references must be marked as accessible). Likewise, for
string collections, all A's strings must be examined to determine whether they reference string­
collected areas. However, the programmer may know that a particular area contains no
pointers into any area that could be chunk collected or chunk compacted, or no string variable
referencing text in any area that could be suing collected. In this case, the area need not be
examined at all when a collection or compaction takes place (provided the area is not itself
collectable or compactible); this may be specified in attr bits to $new Area, which may result in
significantly faster collections and compactions. For example, suppose an area contains a
symbol table that consists of records in which all the pointer and string fields reference chunks

- 209-

and string text in the same area. A garbage collection or compaction can safely ignore the area,
assuming the area itself is marked so as not to take part in the collection or compaction. As
another example, an area may consist entirely of records with no string fields, and thus there is
never a need to examine the area when collecting strings.

The following predefined long bits constants for $new Area's attr argument are provided for
indicating this kind of information:

attr Bit
$noCollectableptrs

$noCompactablePtrs

$noCollectableStrs

Description
this area contains no pointers into
$collectableChkSpc areas, and hence
its ptrs need not be examined when
collecting chunks

this area contains no pointers into
$compactableChkSpc areas, and hence
its ptrs need not be examined when
compacting chunks

this area contains no string dscrs
into $collectableStrSpc areas, and
hence its string descriptors need
not be examined when collecting
strings

Be very careful when specifying these bits; if the conditions specified by the bits do not hold,
effects are undefined and the resulting bugs can be strange, unpredictable, and delayed, and
thus difficult to track down.

An area that contains a data section must not be marked $noCollectablePtrs or
$noCompactablePtrs.

-210-

20.3. Area Caveats

Read this section carefully before making use of areas!

When an area is disposed or cleared, all pointers and strings outside the area that reference data
inside the area are "dangling", i.e., reference invalid data (when just the string space part of the
area is cleared, only strings referencing the area are dangling). The effects of using a dangling
pointer or string are undefined, just as in the case of a dangling pointer that points to a chunk
that has been individually disposed. The MAINSAIL memory manager has been designed to
ignore dangling pointers and strings; in particular, the garbage collector does not fail if it
encounters a dangling pointer or string.

A program must not use a dangling pointer or string. Whenever a chunk or string text is
allocated in an area. the programmer mustbe certain that it does not outlive the area. i.e. that
the program does not attempt to reference the chunk or string text after the area has been
disposed.

Special care must be taken when putting string text into an area, to avoid dangling strings.
Consider the following:

read(f,myArea,s); * read line from f, put text into myArea
open(g,s, ...); * open file g with name in s
$disposeArea(myArea); * dispose of myArea

The open routine may store s into the field "g.name". When myArea is disposed, "g. name"
becomes a dangling string, which may cause I/O errors to the file g, or may result in
unintelligible error messages regarding g, or may produce some other failure. One might think
that "open" should copy s into the default area before assigning it to "g.name", but this kind of
copying would have to occur in thousands of places in the MAINSAIL runtime system.
Instead, the rule is established that a program must never pass to a system procedure or macro
or assign to a system variable a string or pointer referencing data allocated in an area that will
be disposed before the MAINSAIL execution terminates. Put a string into an area only if its
use is so restricted that no reference can occur to the string's text after the area is disposed. A
string passed to a MAINSAIL system procedure or macro may be referenced by the runtime
system at any later point in the execution (e.g., you must assume that "g.name" above may be
referenced even after g is closed).

Dangling pointers may produce bugs as difficult to track as those produced by dangling strings,
but are perhaps easier to manage conceptually, since the programmer always explicitly
allocates and deallocates chunks, so the problems of dangling chunks exist even when areas are
not used if the programmer ever calls "dispose".

In summary. the safety rules for areas are:

- 211 -

1. Do not use a pointer or string referencing data in a disposed or cleared area, or a
string referencing data in an area of which the string space has been cleared.

2. Do not pass to a system procedure or macro or assign to a system variable any pointer
or string referencing data in an area that is to be disposed or cleared before
MAINSAIL exits.

- 212-

21. Portable Data Format (PDF)

21.1. Introduction

Distributed processing involves the sharing of data across different kinds of machines. The use
of a common data representation avoids each machine having to cope with the data
representation of every other kind of machine. MAINSAIL's portable data format (PDF) is
provided for this purpose.

The term "PDF data" refers to data formatted according to PDF. Table 21.1-1 shows the PDF
representation for each MAINSAIL data type. The characters composing the PDF data
representation are not human-readable.

"PDF text", "PDF characters" , and "PDF strings" are just like host text, characters, and strings
except that the characters are translated to the PDF character set. This translation does nothing
if the host and PDF character sets are identical, as they are on many ASCII machines; see
AppendixF.

Data I~~ ~ f~[~R~~~~ntat1Qn
BOOLEAN 2 TRUE is integer 1; FALSE is integer 0
INTEGER 2 2's-complement
LONG INTEGER 4 2's-complement
REAL 4 IEEE floating point
LONG REAL a IEEE floating point
BITS 2 16 bits
LONG BITS 4 32 bits

Chars is the number of a-bit characters (bytes).

All values are stored with the high-order byte first
("big-endian" representation).

PDF characters are represented as ASCII characters.

Appendix F gives the character set translation
between host character sets and the PDF character set.

Table 21.1-1. Portable Data Format (PDF) Representation of Data

- 213-

PDP text and data can be manipulated in the following ways:

• A file can be opened in such a way that reads and writes automatically use PDP (see
Section 21.2).

• PDP text and data can be written to, and read from, strings or scratch memory. These
facilities are provided by an intmod, POFMOO, described in detail in the
"MAINSAIL Utilities User's Guide".

• The Structure Blaster can read and write structure images in a format that uses PDP.
This facility is described in detail in the "MAINSAIL Structure Blaster User's
Guide".

21.2. PDF I/O

The MAINSAIL I/O system allows an application program to store and retrieve PDP data from
a file with the conversion between host data and PDP data carried out automatically by the
reads and writes. The application program need not be aware that such conversions are taking
place.

When a data file is opened for PDP I/O, all data read as individual MAINSAIL data type values
from the file are interpreted as PDP data and all data written to the file individual MAINSAIL
data type values are written as PDF data. Values read as characters or text are interpreted as
PDP characters, and values written as characters or text are written as PDP characters. Data
written en masse as storage units or pages undergo no change. If the PDP data format is the
same as the host data format for all data types and the host character set is the same as the PDP
character set, then host and PDF data files are treated identically.

When a datum is read from or written to a data file opened for PDP I/O, the effect is undefined
of reading or writing a value outside the MAINSAIL guaranteed range for the datum's data
type.

When a text file is opened for PDP I/O, all data read as individual MAINSAIL data type values
from the file. are read by scanning for the appropriate string representation and all data written
to the file as individual MAINSAIL data type values are written as strings. The strings are in
the PDP character set rather than the host character set. Values read as characters or text are
interpreted as PDP characters, and values written as characters or text are written as PDP
characters. If the host character set is the same as the PDP character set, then host and PDP
text files are treated identically.

When text is interpreted as PDP characters on input, it is translated to the host character set;
when text in the host character set is written as PDF characters, a translation is also performed.
A program reading and writing PDP files may therefore be written to deal only with the host
character set, provided that it uses a subset of the character set that has PDF equivalents.

- 214-

Some of the I/O procedures provide a way to suppress the translation that normally takes place.

The choice of whether or not to perform PDF I/O on a file is made at execution time when the
file is opened. By default, the host format is used. PDF I/O is specified by including additional
information in the file name as described below.

21.3. Opening a File for PDF 110

A file with a name starting with the device prefix "PDF" is opened for PDF I/O. Alternately,
the bit $pdf m~y be specified in the openBits parameter to "open", which forces a file to be
opened for PDF I/O whether its name contains the "PDF" device prefix or not.

A file opened for PDF I/O is sometimes referred to as a "PDF file".

"PDF" must appear in the file name before any other device prefix specifications, e.g., where
the $devModBrk character is ">", "POF>LIB(foo.lib»/baz".

Table 21.3-1 lists the procedures for which PDF I/O is supported; i.e., if the file is opened for
PDF I/O, then all forms of these procedures access the data in the file as PDF text (for character
and string operations and for text files) or PDF data (for non-character, non-string operations on
data files). Character and string operations are considered to be cRead, cWrite, ftdRead,
fldWrite, scan, and the string fonns of read and write.

read
write

cRead $characterRead
cWrite $characterWrite

fldRead
fldWrite

scan

Table 21.3-1. File I/O Procedures for Which PDF I/O Is Supported

For data files, $pageRead, $page Write, $storageUnitRead, and $storageUnitWrite read or write
the requested amount of data without modification or translation.

By default, $characterRead and $characterWrite translate characters read from or written to
PDF files. This translation can be suppressed by setting the $noTranslate bit in ctrffiits (an
optional bits parameter to both $characterRead and $characterWrite).

-215 -

21.4. Positions in a File Opened for PDF 110

When a file is opened for PDF I/O, all file positions are in tenns of character units; i.e., the
units used for positioning by relPos and setPos are character units, and the positions returned by
getPos and $getEotpos are character positions.

21.5. $ioSize

An application that does not know how data are fonnatted in a file must be careful when
positioning within the file. For example, if a data file has been opened for PDF I/O, positions
are character units; otherwise, they are storage units. Even if a storage unit is equal to a
character unit, the sizes of host data and PDF data may differ. $ioSize is provided to simplify
the writing of such applications.

"$ioSize(f,x)", where x is a MAINSAIL data type code, returns the size of x based on the
format of the data in a data file f. For example, if f contains host data, "$ioSize(f,x)" returns the
same value as "size(x)" , but if f contains PDF data, "$ioSize(f,x)" returns the same value as
"pdf Chars(x) " (see the description ofPDFMOD in the "MAINSAIL Utilities User's Guide").

$ioSize returns 0 if f is a text file since there is no fixed size for the string representation of a
data type.

21.6. PDF Example

PDF is designed so that as many programs as possible can be written to operate on either PDF
data or host data without any special logic to handle the two different cases; in other words, as
many procedures as possible "do the right thing" for each case.

Example 21.6-1 shows a sample program FVIEW that displays data in a file. It is written to
work independently of the fonnat of the data in the file. Table 21.6-2 shows how to run
FVIEW.

- 216-

BEGIN "fView"

* fview is an interactive program that lets the user * view the contents of a file.

* * The use of $ioSize when positioning makes the program * independent of the type of data stored in the file.

INTEGER iSize;

PROCEDURE examine (POINTER (dataFile) d);
BEGIN
INTEGER t;
LONG INTEGER 1;
BITS b;
1 : = getPos (d) ;
fldWrite(logFile,cvs(1),8,' '); write(logFile,"/ ");
read(d,t); b := cvb(t);
write (logFile,t," ''',b," 'H",cvs(b,hex),eol);
setPos(d, (getPos(d) - cvli(iSize» MAX OL) END;

INITIAL PROCEDURE;
BEGIN
INTEGER
LONG INTEGER
STRING
POINTER (dataFile)

write (logFile,

t,lastCmd,cmd;
tt;
s;
d;

"File viewer (1 for help)" & eol &
"File to view: ");

read(cmdFile,s); open(d,s,random!input);
iSize := $ioSize(d,integerCode); examine(d); lastCmd := 0;

DOB write(logFile,"FVIEW>"); read(cmdFile,s);
CASE cmd := cvu(first(s» OFB

[' Q'] DONE;

Example 21.6-1. Data-Format-Independent I/O (continued)

- 217-

[-1] BEGIN
IF NOT relPos(d,iSize,errorOK) THEN

write (logFile,
"Cannot position beyond end of file"
& eol);

examine (d) END;

['0' TO '9'] BEGIN
tt :== cvli(s);
IF NOT setPos(d,cvli(cvlb(tt»,errorOK) THEN

write (logFile,
"Cannot position beyond end of file"
& eol);

examine (d) END;

[''''] BEGIN
IF getPos(d) THEN relPos(d,- iSize,errorOK);
examine (d) END;

[, +'] [' -'] BEG IN
IF length(s) == 1 THEN cWrite(s,'1');
t := cvi(s) * iSize;
IF NOT relPos(d,t,errorOK) THEN

write (logFile,
"Cannot position beyond end of file"
& eol);

examine (d) END;

[' ?']
write (logFile,

"n Examine position n" & eol &
"eol Step forward through file" & eol &
"" Step backward through file" & eol &
"+n Forward n integers" & eol &
"-n Backward n integers" & eol &
"Q Quit" & eol);

[] write(logFile,"Type ? for help" & eol);
END;

lastCmd :== cmd END;

Example 21.6-1. Data-Format-Independent I/O (continued)

- 218-

close (d) END;

END "fView"

Example 21.6-1. Data-Format-Independent I/O (end)

How to use FVIEW to examine a file that contains host
data:

*fview<eol>
File viewer (1 for help)
File to view: fview.dat<eol>
<FVIEW displays the contents of fview.dat; fview.dat
contains host data>

How to use FVIEW to examine a file that contains PDF
data:

*fyiew<eol>
File viewer (1 for help)
File to view: pdf>fview.dat<eol>
<FVIEW displays the contents of fview.dat; fview.dat
contains PDF data>

Table 21.6-2. How to Run FVIEW

- 219-

Appendix A. Type Codes

The type code identifiers and their values are listed in Table A-I.

The programmer must use the identifiers rather than the associated values, since XIDAK
reserves the right to change the values. If necessary t values may be examined with
MAINDEBUG.

Type Code Identifier
booleanCode
integerCode
longIntegerCode
realCode
longRealCode
bitsCode
longBitsCode
stringCode
addressCode
charadrCode
pointerCode

Two identifiers have more limited
use than the above:

$classCode
$moduleCode

Table A-I. Type Codes

- 220-

Appendix B. Target Platform, Operating System, and
Processors

The target platform names, abbreviations, and numbers are listed in Table B-1; the target
operating systems in Table B-2, and the target processors in Table B-3.

The lists of platforms, operating systems, and processors change frquently without notice from
release to release. XIDAK regularly adds support for new platforms and drops support for old
platforms, depending on customer demand. The name and abbreviation strings associated with
each processor, operating system, and platform are subject to change as manufacturers change
the names of their products. Some of the names included in the list may not be ~ercially
available implementations of MAINSAIL; indeed, some platforms may be implementations for
which support has already been dropped or for which a MAINSAIL implementation is only
proposed.

The programmer must use the identifiers rather than the associated values, since XIDAK
reserves the right to change the values. If necessary, the values may be examined using
MAINDEBUG.

Nymb~r ~l:a;;:~~. [yll Haam~
$a20 a20 Apollo MC68020/FPA
$clp clp CLIPPER
$elx elx ELXSI System 6400
$i38 i38 Intel 80386
$ ibm ibm IBM System/370
$m20 m20 MC68020/MC68881
$m68 m68 M68000
$mv mv ECLIPSE MV
$pri pri PRISM
$rdg rdg Ridge 32
$spa spa SPARC
$vax vax VAX-II
$w38 w38 Intel 80386/WTL 1167
$xa xa IBM System/370 Extended Architecture

Table B-3. Target Processors

- 221-

Number
$aeg
$aix
$alnt

$ems
$dgux

$emb
$hp20

$hp38

$hpux
$ip32e

$ipse2

$ix20

$ixfpa

$ixpri
$mvux

$ros
$spix
$sun2

$sun3

$sun38

$sun4·
$sw38

$ultrx
$uts5

$ vms
$xcms

Abbrev. OS Num.
aeg $aeg
aix $uxa
alnt $um68

ems
dgux

emb
hp20

hp38

hpux
ip32e

ipse2

ix20

ixfpa

ixpri
mvux

ros
spix
sun2

sun3

sun38

sun4
sw38

ultrx
uts5

vms
xems

$ems
$udg

$emb
$um20

$ui38

$um68
$uclp

$ui38

$um20

$ua20

$upri
$umv

$urdg
$urdg
$um68

$um20

$ui38

$uspa
$uw38

$uvax
$uibm

$ vms
$xems

Full Name
Apollo's Aegis on Motorola M68000
IBM's AIX on IBM System/370
Alliant's CONCENTRIX on Motorola

M68000
IBM's VM/SP CMS on IBM System/370
Data General's DG/UX on Data

General ECLIPSE MV
ELXSI's EMBOS on ELXSI System 6400
HP's HP-UX on Motorola

MC68020/MC68881
SCO's XENIX on HP Veetra with

Intel 80386
HP's HP-UX on Motorola M68000
Intergraph's System V UNIX on

Interpro 32C
Intel's iPSC/2 System V UNIX on

Intel 80386
Apollo's DOMAIN/IX on Motorola

MC68020/MC68881
Apollo's DOMAIN/IX on Motorola

MC68020/Weitek FPA
Apollo's DOMAIN/IX on Apollo PRISM
Data General's MV/UX on Data

General ECLIPSE MV
Ridge's ROS on Ridge 32
Bull's SPIX on Ridge 32
Sun Mierosystems' SunOS on

Motorola M68000
Sun Microsystems' SunOS on

Motorola MC68020/MC68881
Sun Mierosystems' SunOS on

Intel 80386
Sun Mierosystems' SunOS on SPARC
Sun Mierosystems' SunOS on

Intel 80386/WTL 1167
DEC's ULTRIX-32 on VAX-11
Amdahl's System V UNIX on IBM

System/370
DEC's VAX/VMS on VAX-11
IBM's VM/XA SP CMS on IBM

System/370

Table B-1. Target Platforms

- 222-

Hymb~;r;: ~br~v. ~ Fyll Ngm~
$aeg aeg $m68 Aegis
$aos aos $mv AOS/VS
$ems ems $ ibm VM/SP CMS
$emb emb $elx EMBOS
$ua20 ua20 $a20 Apollo MC68020/FPA UNIX
$uelp uelp $elp CLIPPER UNIX
$udg udg $mv ECLIPSE DG/UX
$ui38 ui38 $i38 Intel 80386 UNIX
$uibm uibm $ ibm IBM System/370 UNIX
$um20 um20 $m20 MC68020/MC68881 UNIX
$um68 um68 $m68 M68000 UNIX
$umv umv $mv ECLIPSE MV UNIX
$upri upri $pri PRISM UNIX
$urdg urdg $rdg Ridge 32 UNIX
$uspa uspa $spa SPARC UNIX
$uvax uvax $vax VAX-11 UNIX
$uw38 uw38 $w38 Intel 80386/WTL 1167 UNIX
$uxa uxa $xa IBM System/370 Extended

Architecture UNIX
$ vms vms $vax VAX/VMS
$xems xems $xa VM/XA SP CMS

Table B-2. Target Systems

- 223-

Appendix C. Predefined Exception Names

The predefined exception name identifiers and their values are shown in Table C-l.

The programmer must use the identifiers rather than the associated values, since XIDAK.
reserves the right to change the values.

Identifier: Exception string

$abortProgramExcpt: "MAINSAIL: Abort program"
$abortProcedureExcpt: "MAINSAIL: Abort procedure"
$systemExcpt: "MAINSAIL: System exception"
$stackOverflowExcpt: "MAINSAIL: Apparent stack overflow"
$arithmeticExcpt: "MAINSAIL: Arithmetic error"
$exponentExcpt:

"MAINSAIL: IntegerOrLongInteger 1'\ i: i < 0"
$subscriptExcpt: "MAINSAIL: Subscript error"
$nuIIAr,rayExcpt: "MAINSAIL: NULLARRAY access"
$nuIIPointerExcpt: "MAINSAIL: NULLPOINTER data access"
$nuIICallExcpt: "MAINSAIL: NULLPOINTER call"
$unboundModuleExcpt: "MAINSAIL: Unbound MODULE access"
$caseIndexExcpt: "MAINSAIL: Case index error"
$returnExcpt: "MAINSAIL: Fell out of a typed procedure"
$coroutineExcpt: "MAINSAIL: Fell out of coroutine"
$cmdFileEofExcpt: "MAINSAIL: cmdFile eof"
$descendantKilledExcpt:

"MAINSAIL: Coroutine descendant killed"
$disposedDataSecExcpt:

"MAINSAIL: Return to disposed dataSec"
$ttyEofExcpt: "MAINSAIL: tty eof"

The following are considered temporary features:

$almostOutOfMemoryExcpt: "MAINSAIL: Almost out of memory"
$overheadTooHighExcpt: "MAINSAIL: Overhead too high"

Table C-l. Predefined Exceptions

-224 -

Appendix D. Target System Attributes

This appendix describes the bits that may be set in the system macro $attributes. Their values
are shown in Table D-l. The programmer must use the identifiers rather than the associated
values, since XIDAK reserves the right to change the values. If necessary, values may be
examined with MAINDEBUG.

Bit
$fileNamesAreCaseSensitive
$halfDuplex
$hasFileVersions
$onesComplement

Table D-l. Target System Attribute Bit Values

$fileNamesAreCaseSensitive is set if case is distinguished on operating system file names, as
on UNIX; case is considered to be distinguished if it is possible, for examplet for "Foo" and
"foo" to refer to different files.

$haltDuplex is set if full-duplex terminal 110 is not supported.

$hasFileVersions is set if the target file system supports file version numberst as on V AX/VMS.

$onesComplement is set if negative integers are represented in ones' -complement form (the
two's-complement form is far more common).

- 225-

Appendix E. Character Set Identifiers

The character sets supported are shown in Table E-l. The identifiers denote possible values of
the system macro $charSet.

The programmer must use the identifiers rather than the associated values, since XIDAK
reserves the right to change the values. If necessary, the values may be examined with
MAINDEBUG.

Character Set
ASCII
EBCDIC

Identifier
$ascii
$ebcdic

Table E-l. Supported Character Sets

- 226-

Appendix F. PDF Character Set Translation Tables

F.l. Translation between the ASCII and PDF Character Sets

The ASCII character set is used as the PDF character set. Thus, no character set translation is
necessary on machines that use the ASCII character set, except possibly for eol.

The PDF eol character is linefeed (LF, ASCII 10). Translation between the host eol character
and the PDF eol character is done if the host eol character is not linefeed; the host linefeed
character is also translated to PDF eol in this case. When converting from PDF to the host

-character set, PDF eol is always translated to the host eol.

A file converted from an ASCII host character set to PDP and back to the ASCII host character
set thus remains unchanged only if the host eol is PDP eol or the original file contained no host
linefeed characters. For portable text files, therefore, avoid writing linefeed into an ASCII text
file if linefeed is not the host eol character.

F .2. Translation between the EBCDIC and PDF Character Sets

Table F.2-1 shows how MAINSAIL translates characters from the PDF character set to the
EBCDIC character set.

Table F.2-2 shows how MAINSAIL translates characters from the EBCDIC character set to the
PDP character set EBCDIC characters that have no corresponding ASCII equivalent translate
to character code O.

- 227-

-----------------+------------------+-------------------
Char PDF EBCDIC I Char PDF EBCDIC I Char PDF EBCDIC

-----------------+------------------+-------------------
NUL 0 0 I + 43 78 I V 86 229
SOH 1 1 I , 44 107 I W 87 230
STX 2 2 I - 45 96 I X 88 231
ETX 3 3 I 46 75 I Y 89 232
EOT 4 55 I / 47 97 I Z 90 233
ENQ 5 45 I 0 48 240 I [91 173
ACK 6 46 I 1 49 241 I \ 92 224
BEL 7 47 I 2 50 242 I] 93 189
BS 8 22 I 3 51 243 I " 94 95
HT 9 5 I 4 52 244 I 95 109 -
LF 10 37 I 5 53 245 I

, 96 121
VT 11 11 I 6 54 246 I a 97 129
FF 12 12 I 7 55 247 I b 98 130
CR 13 13 I 8 56 248 I c 99 131
SO 14 14 I 9 57 249 I d 100 132
SI 15 15 I : 58 122 I e 101 133
DLE 16 16 I ; 59 94 I f 102 134
DC1 17 17 I < 60 76 I g 103 135
DC2 18 18 I = 61 126 I h 104 136
DC3 19 19 I > 62 110 I i 105 137

DC4 20 60 I ? 63 111 I j 106 145
NAK 21 61 I @ 64 124 I k 107 146
SYN 22 50 I A 65 193 I 1 108 147
ETB 23 38 I B 66 194 I m 109 148
CAN 24 24 I C 67 195 I n 110 149
EM 25 25 I D 68 196 I 0 111 150
SUB 26 63 I E 69 197 I P 112 151
ESC 27 39 I F 70 198 I q 113 152
FS 28 28 I G 71 199 I r 114 153
GS 29 29 I H 72 200 I s 115 162

Table F.2-1. PDF to EBCDIC Character Set Translation Table (continued)

- 228-

RS 30 30 I I 73 201 I t 116 163
US 31 31 I J 74 209 1 u 117 164
SPACE 32 64 I K 75 210 I v 118 165
! 33 90 I L 76 211 I w 119 166
" 34 127 I M 77 212 I x 120 167

* 35 123 I N 78 213 I y 121 168
$ 36 91 I 0 79 214 I z 122 169
% 37 108 I P 80 215 I { 123 192
& 38 80 I Q 81 216 I I 124 106 , 39 125 I R 82 217 I } 125 208
(40 77 I S 83 226 I - 126 161
) 41 93 I T 84 227 I DEL 127 7

* 42 92 I U 85 228 I
-----------------+------------------+-------------------

Table F.2-1. PDF to EBCDIC Character Set Translation Table (end)

-----------------+------------------+-------------------
Char EBCDIC PDF I Char EBCDIC PDF I Char EBCDIC PDF

-----------------+------------------+-------------------
NUL 0 0 CU2 43 0 86 0
SOH 1 1 44 0 67 0
STX 2 2 ENQ 45 5 S8 0
ETX 3 3 ACK 46 6 89 0
PF 4 0 BEL 47 7 90 33
HT 5 9 48 0 $ 91 36
LC 6 0 49 0 * 92 42
DEL 7 127 SYN 50 22 93 41
GE 8 0 51 0 94 59
RLF 9 0 PN 52 0 t A 95 94

Table F.2-2. EBCDIC to PDF Character Set Translation Table (continued)

- 229-

SMM 10 0 I RS 53 0 I - 96 45
VT 11 11 I UC 54 0 I / 97 47
FF 12 12 I EOT 55 4 I 98 0
CR 13 13 I 56 0 I 99 0
SO 14 14 I 57 0 I 100 0
SI 15 15 I 58 0 I 101 0
DLE 16 16 I CU3 59 0 I 102 0
DC1 17 17 I DC4 60 20 I 103 0
DC2 18 18 I NAK 61 21 I 104 0
TM 19 19 I 62 0 I 105 0

RES 20 0 I SUB 63 26 I I 106 124
NL 21 0 I SPACE 64 32 I , 107 44
BS 22 8 I 65 0 I % 108 37
IL 23 0 I 66 0 I 109 95 -CAN 24 24 I 67 0 I > 110 62
EM 25 25 I 68 0 I ? 111 63
CC 26 0 I 69 0 I 112 0
CU1 27 0 I 70 0 I 113 0
IFS 28 28 I 71 0 I 114 0
IGS 29 29 I 72 0 I 115 0

IRS 30 30 73 0 116 0
IUS 31 31 cent 74 0 117 0
DS 32 0 . 75 46 118 0
SOS 33 0 < 76 60 119 0
FS 34 0 (77 40 120 0

35 0 + 78 43 , 121 96
BYP 36 0 I 79 124 : 122 58
LF 37 10 & 80 38 # 123 35
ETB 38 23 81 0 @ 124 64
ESC 39 27 82 0 , 125 39

40 0 83 0 = 126 61
41 0 84 0 " 127 34

SM 42 0 85 0

-----------------+------------------+-------------------

Table F.2-2. EBCDIC to PDF Character Set Translation Table (continued)

- 230-

-----------------+------------------+-------------------
Char EBCDIC PDF I Char EBCDIC PDF I Char EBCDIC PDF

-----------------+------------------+-------------------
128 0 I 171 0 I 0 214 79

a 129 97 I 172 0 I P 215 80
b 130 98 I [173 91 I Q 216 81
c 131 99 I 174 0 I R 217 82
d 132 100 I 175 0 I 218 0
e 133 101 I 176 0 I 219 0
f 134 102 I 177 0 I 220 0
g 135 103 I 178 0 I 221 0
h 136 104 I 179 0 I 222 0
i 137 105 I 180 0 I 223 0

138 0 I 181 0 I \ 224 92
139 0 I 182 0 I 225 0
140 0 I 183 0 I S 226 83
141 0 I 184 0 I T 227 84
142 0 I 185 0 I U 228 85
143 0 I 186 0 I V 229 86
144 0 I 187 0 I w 230 87

j 145 106 I 188 0 I X 231 88
k 146 107 I] 189 93 I y 232 89
1 147 108 I 190 0 I z 233 90

m 148 109 I 191 0 I 234 0
n 149 110 I { 192 123 I 235 0
0 150 111 I A 193 65 I 236 0
P 151 112 I B 194 66 I 237 0
q 152 113 I C 195 67 I 238 0
r 153 114 I D 196 68 I 239 0

154 0 I E 197 69 I 0 240 48
155 0 I F 198 70 I 1 241 49
156 0 I G 199 71 I 2 242 50
157 0 I H 200 72 I 3 243 51

Table F.2-2. EBCDIC to PDP Character Set Translation Table (continued)

- 231-

158 0 I 201 73 I 4 244 52
159 0 202 0 I 5 245 53
160 0 203 0 I 6 246 54

IV 161 126 204 0 I 7 247 55
s 162 115 205 0 I 8 248 56
t 163 116 206 0 I 9 249 57
u 164 117 207 0 I I 250 0
v 165 118 } 208 125 I 251 0
w 166 119 J 209 74 I 252 0
x 167 120 K 210 75 I 253 0
y 168 121 L 211 76 I 254 0
z 169 122 M 212 77 I EO 255 0

170 0 N 213 78 I
-----------------+------------------+-------------------

Table F.2-2. EBCDIC to PDF Character Set Translation Table (end)

- 232-

Appendix G. Reserved Identifiers

A reserved identifier (or "keyword") is one that is part of MAINSAIL's syntax, and cannot be
declared or defined by the programmer. The reserved'identifiers are shown in T~ble 0-1.
Identifiers beginning with dollar signs should never be declared by the programmer, whether
they appear in this list or not.

$ ALWAYS $BEGINC $BUILTIN
$CASEC $CLASSOF $CONTINUEC
$DIRECTIVE $DOC $DONEC
$EFC $EXPR $FORC
$GLOBALREDEFINE $ HANDLE $ HAND LEB
$ ISCONSTANT $KINDOF $LEGALNOTICE
$ SHARED $STMT $STMTB
$THISFILENAME $TYPEOF $UNDCL
$WITH $WITHB ADDRESS
AND ARRAY BEGIN

BEGINSCAN BITS BOOLEAN
CASE CHARADR CHECK
CHECKING CLASS CLR
COMPILETIME CONTINUE DCL
DEFINE DIV DO
DOB DONE DONE SCAN
DOWNTO DSP EB
EF EL ELSE
ELSEC ENCODE END
ENDC FALSE FINAL

.~

Table 0-1. Reserved Identifiers (continued)

- 233-

FOR FORWARD GENERIC
GEQ IF IFC
INF INIT INITIAL
INLINE INTEGER lOR
LEQ LONG MAX
MESSAGE MIN MOD
MODIFIES MODULE MSK
NEEDANYBODIES NEED BODY NEQ
NOCHECK NOT NTST
NTSTA NULLADDRESS NULLARRAY

NULLCHARADR NULLPOINTER OF
OFB OPTIONAL OR
OWN POINTER PROCEDURE
PRODUCES REAL REDEFINE
REPEATABLE RESTOREFROM RETURN
SAVEON SHL SHR
SKIPSCAN SOURCEFILE SPECIAL
STRING THEN THENB
THENC TO TRUE
TST TSTA USES

UNTIL UPTO WHILE
XOR

Table 0-1. Reserved Identifiers (end)

- 234-

Appendix H. Predefined Non-Reserved Identifiers without
Dollar Signs

The identifiers in Table H-l are predefined by MAINSAIL but do not begin with the dollar sign
character. Not all of these identifiers are intended for use by the programmer, but the
programmer must avoid declaring an identifier with a name that conflicts with one listed in
Table H-l.

AAREAD AAWRITE ABS
ACLEAR ACOPY ACOS
ADDRESSCODE ADISPLACE AD I SPLACEMENT
ALCLEAR ALCOPY ALDISPLACE
ALDISPLACEMENT ALOAD ALTEROK
APPEND ARYCLEAR ARYCOPY
ARYDISPOSE ASIN AS TORE
ATAN BAREAD BAWRITE
BDREAD BOWRITE BFSCAN
BINARY BIND BITSCODE

BLOAD BMASK BOAREAD
BOAWRITE BOLOAD BOOLEANCODE
BOSTORE BREAK BSREAD
BSSCAN BSTORE BSWRITE
BTREAD BTTYWRITE BTWRITE
CALOAD CAREAD CAS TORE
CAWRITE CCLEAR CCLOAD
CCOpy CCREAD CCSTORE
CCWRITE COISPLACE CD I SPLACEMENT
CEILING CFREAD CFWRITE

Table H-l. Non-Reserved Identifiers without Dollar Signs (continued)

- 235-

CHARADRCODE CLASSSIZE CLCLEAR
CLCOPY CLEAR CLOAD
C~OSE CLOSELIBRARY CMDFILE
CMDMATCH COMPARE CONFIRM
COPY COS COSH
CREAD CREATE CSREAD
CSWRITE CVA CVAC
CVALB CVALI CVAP
CVARY CVARYP CVB
CVBI CVBLB CVBLI

CVBS CVC CVCA
CVCL CVCS CVCU
CVI CVIB CVILB
CVILI CVILR CVIR
CVIS CVL CVLB
CVLBA CVLBB CVLBI
CVLBLI CVLBS CVLI
CVLIA CVLIB CVLII
CVLILB CVLILR CVLIR
CVLIS CVLR CVLRI

CVLRLI CVLRR CVLRS
CVP CVPA CVR
CVRI CVRLI CVRLR
CVRS CVS CVSB
CVSC CVSI CVSL
CVSLB CVSLI CVSLR
CVSR CVSU CVU
CWRITE DATAFILE DATAOPEN
DELETE DISCARD DISPLACE
DISPLACEMENT DISPOSE ENTERLOGICALNAME

Table H-l. Non-Reserved Identifiers without Dollar Signs (continued)

- 236-

EOF EQU ERRMSG
ERROROK EXIT EXP
EXPONENT FASTEXIT FATAL
FILE FIRST FIXED
FLDREAD FLDWRITE FLOOR
FORMATTED GETPOS HEX
lABS I ARE AD IAWRITE
IDREAD IDWRITE I LOAD
INPUT INTEGERCODE ISALPHA
ISLOWERCASE ISNUL ISREAD

ISTORE ISUPPERCASE ISWRITE
I TREAD ITTYWRITE ITWRITE
KEEP NUL LAST LBAREAD
LBAWRITE LBDREAD LBDWRITE
LBLOAD LBMASK LBSREAD
LBSTORE LBSWRITE LBTREAD
LBTTYWRITE LBTWRITE LDISPLACEMENT
LENGTH LIABS LIAREAD
LIAWRITE LIDREAD LIDWRITE
LILOAD LISREAD LISTORE

LISWRITE LITREAD LITTYWRITE
LITWRITE LN LOG
LOGFILE LONGBITSCODE LONGINTEGERCODE
LONGREALCODE LOOKUP LOG ICALNAME LRABS
LRACOS LRAREAD LRASIN
LRATAN LRAWRITE LRCEILING
LRCOS LRCOSH LRDREAD
LRDWRITE LREXP LRFLOOR
LRLN LRLOAD LRLOG
LRSIN LRSINH LRSQRT

Table H-l. Non-Reserved Identifiers without Dollar Signs (continued)

- 237-

LRSREAD LRSTORE LRSWRITE
LRTAN LRTANH LRTREAD
LRTRUNCATE LRTTYWRITE LRTWRITE
MODBIND MODDISPOSE MODUNBIND
MSGME MSGMYCALLER NEW
NEWARRAY NEWDATASECTION NEWPAGE
NEWRECORD NEWSCRATCH NEWSTRING
NEWUPPERBOUND NEXTALPHA NORESPONSE
OCTAL OMIT OPEN
OPENLIBRARY OUTPUT PAGEDISPOSE

PAREAD PAWRITE PCLEAR
PCOPY PDISPLACE PDISPOSE
PLOAD POINTERCODE PREVALPHA
PROCEED PROMPT PSTORE
RABS RACOS RANDOM
RARE AD RASIN RAT AN
RAWRITE RCEILING RCOS
RCOSH RCREAD RCWRITE
RDREAD RDWRITE READ
REALCODE RELFILENAME RELMODNAME

RELPOS RETAIN REXP
RFLOOR RLN RLOAD
RLOG RSIN RSINH
RSQRT RSREAD RSTORE
RSWRITE RTAN RTANH
RTREAD RTRUNCATE RTTYWRITE
RTWRITE SAREAD SAWRITE
SBINO SCAN SCANREL
SCANSET SCRATCHDISPOSE SDISPOSE
SETFILENAME SETMODNAME SETPOS

Table H-l. Non-Reserved Identifiers without Dollar Signs (continued)

- 238-

SFREAD SFSCAN SFWRITE
SIN SINH SIZE
SLOAD SNEWDATASECTION SQRT
SSREAD SSSCAN SSTORE
SSWRITE STORE STRINGCODE
STTYWRITE SUNBIND TAB
TAN TANH TEXTFILE
TEXTOPEN THI SDATASECT ION TRUNCATE
TTYCWRITE TTYREAD TTYWRITE
TYPESIZE UNBIND UPPERCASE

USEKEYWORD WARNING WRITE

Table H-l. Non-Reserved Identifiers without Dollar Signs (end)

- 239-

Appendix I. Synonyms

Table I-I shows synonymous forms supported by the MAINSAll.. compiler. In the case of
curly brackets, the compiler does not require that curly brackets be matched only by curly
brackets and square brackets only by square brackets; e.g., if a is a one-dimensional array and i
an integer, "a(i]" and "a[i} " are legal and equivalent. .

Usual Form
:=

NEQ
LEQ
GEQ
SHL
SHR
[

]
DOB
EL
EF
EB
THENB
OFB
$HANDLEB
$WITHB

Synonymous Form

**
<>
<=
>=
«
»
{

}

DO BEGIN
ELSE
ELSE IF
ELSE BEGIN
THEN BEGIN
OF BEGIN
$HANDLE BEGIN
$WITH BEGIN

Table 1-1. MAINSAIL Synonyms

-240-

Appendix J. Restrictions

This appendix lists restrictions on· sizes of MAINSAIL objects and values allowed in
operations. It is not a complete list. Each operating-system-dependent MAINSAIL user's
guide may contain additional implementation-dependent restrictions. The operating-system­
dependent MAINSAIL user's guide also lists the size of the data types on that implementation.

J.1. Portable Data Type Ranges and Data Structure Size Limits

The portable ranges of the MAINSAIL data types and size limits of the MAINSAIL data
structures are shown in Table J .1-1. The limits listed are inclusive. The sizes listed for strings
and arrays are subject to the availability of sufficient memory to contain the data structure.

A class or module may have no more than 4095 entries, where an entry is a series of fields all
of the same data type. The data section size includes all own variables, not just interface
variables, and possibly hidden variables not declared by the programmer as well.

J.2. Interface Procedures in a Module

A limit as low as 1600 interface procedures per module may be imposed. A compiler error
message is issued if the limit is exceeded.

J.3. Local Variable Limitations

A limit as low as 255 parameters and local variabl6s per procedure may be imposed. A
compiler error message is generated if this limit is exceeded. Temporaries generated by the
compiler are counted in the limit.

J .4. String Constants in a Module

The number of different string constants allowed in a module is 4095. A string constant may
be no longer than 16383 characters (string variables may be up to 32766 characters).

-241-

Type or
Structure
Boolean
Integer
Long Integer
Real
Long Real
String
Short Array

one dimension
two or three

dimensions
Long Array

one dimension
two or three

dimensions
Record
Data Section
Class or

Module

Portable Range
TRUE or FALSE
-32767 to +32767
-2147483647 to +2147483647
1.0E-38 to 1.0E+38, six decimal digits
1.0E-38 to 1.0E+38, eleven decimal digits
o to 32766 eight-bit characters

bounds -32767 to +32767

see Section 7.9

bounds -2147483647 to +2147483647

see Section 7.9
up to 32767 storage units
up to 16383 storage units

up to 4095 entries

Table] .1-1. Portable Data Type Ranges and Data Structure Size Limits

J.S. Size of a Procedure

Each implementation may place an upper limit on the size of a procedure. Such limits are
usually reasonably large, but not necessarily lavish. It is difficult to translate such limits into a
quantity readily observable by the programmer, e.g., number of statements.

J.6. Number of Cases in a Case Statement

A Case Statement may contain any number of selectors in the range -32767 to 32767, provided
the maximum procedure size is not exceeded.

- 242-

J.7. Uninitialized Variables

Operations using the values of uninitialized variables have undefined results. Especial care is
required for (long) real values, since some bit patterns may not represent valid (long) real
values.

J .8. Init Statement Counts

Init Statement bracketed counts are limited only by the range of an integer.

J.9. Init Statement Constants

The total number of different constants in an Init Statement (where a number of consecutive
elements specified by a bracketed count are considered to be a single constant, not different
constants) may not exceed 32767 for non-string arrays. For string arrays, the different
constants in an Init Statement may not total more than 16383 characters.

J.IO. copy and clear Addresses

The instances of the generic procedures clear and copy that deal with addresses must take a
number of storage units that is a multiple of the size of the smallest data type on the host
machine. The effect of specifying other values is not defined.

J.II. FOR-Clause Limit Values

The largest (long) integer must not be used as a limit value in an "UPTon FOR-clause, nor the
most negative (long) integer as a limit value in a "OOWNTO" FOR-clause.

- 243-

Appendix K. Modules Shipped in a Standard System

Table K-l lists the objmods that may be shipped in a standard MAINSAIL system (i.e., all
modules contained in the union of all XIDAK products). The list may include some modules
not shipped in every system, and may not contain modules shipped in some systems. Table
K-2 shows objmods shipped in runtime-only systems (the union of all such systems offered by
XIDAK). Users should avoid creating modules with the same name as a MAINSAIL system
module. All the standard module names are subject to change. In a future release, XIDAK will
introduce facilities to make it easier for users to avoid name conflicts with system modules.

Modules marked with an asterisk are maintenance utilities intended for XIDAK use or "non­
critical" utilities described in the "MAINSAIL Utilities User's Guide". They may be deleted
from well-debugged systems shipped for runtime-only purposes without adverse effect.
Modules marked with a plus sign are display modules (primarily for use with MAINEDIT), and
may be deleted if no program that uses the display modules is to be run.

ADR* AM60+ ARYMOD AT386+ BIGSUN+ CALLS * CBK
CLOSEF* CONCHK* CONF COPIER CVRLR D100+ D400+
D460+ D460C+ DATAME+ DATDIO DATE* DATTIO DELFIL
DIR DISK DISPSE DTIMOD DVIEW ELSEX ENCMOD
ENDX ERRMOD FILCCH FILDIF* FILMOD FILMRG* FNDPRC*
GCCHP GENTBL HEATH+ HP300H+ HPTERM+ HSHMOD IFX
INTLIB INTSCH KERMOD KILLCO LIB LIBEX LINCOM
LINDPY+ LRMATH MAINEX MEM MEMDPY+ MM* MODLIB
NUL OPENF* PACK* PATSCN* PDFDIO PDFMOD PDFTIO
PMERGE PRMAP* PRNTCO PRNTRE* PRTREE* RAISE RANMOD

RECIO RECMOD REMTAB* RMATH RNMFIL RSMCO SRTMOD
STAMP STRHDR SUBCMD SUN+ SUN3+ SUN46+ SUNSCR
SYS TARGET TELEVI+ TOHEX* TREEIO TRMCAP TRNCAT*
TTY TVI925+ TVI950+ TVIEW TXTDIO TXTTIO UM2CNF
UNPACK* UTYMOD VIS200+ VIS550+ VT100+ VT102+ VT102M+
WRDCOM WY43+ WY50+ WY5043+ WY75+ XREF XRFMRG

Table K-2. Objmods Shipped in Runtime-Only MAINSAIL Systems

- 244-

A20D A20G ADR* AEGCNF AEGFCG AEGFPG AEGTCG
AEGTPG AM60+ ARYMOD AT386+ BCSTR BIGSUN+ CALLS *
CBK CLOSEF* CLPD CLPG CMPHDR CMSCNF CMSF7G
CMSFAG CMSFFG CMST7G CMSTAG CMSTFG COMPIL CONCHK*
CONF COPIER CVRLR D100+ D400+ D460+ D460C+
DATAME+ DATDIO DATE* DATMGR DATTIO DEBUG DELFIL
DIR DISASM DISK DISPSE DPYEXE DTIMOD DVIEW
E29 ED9 EDIT ELSEX ELXD ELXG EMBCNF
EMBFEG EMBTEG ENCMOD ENDX ERRMOD FCSTR FILCCH
FILDIF* FILMOD FILMRG* FNDPRC* GCCHP GENTBL HEATH+

HP300H+ HPTERM+ HPTRAN HSHMOD I38D I38G 196D
I96G IBMO IBMG IFX INTERP INTLIB INTMGR
INTSCH ITFXRF IXTRAN KERMOD KILLCO LIB LIBEX
LINCOM LINDPY+ LRMATH M20D M20G M68D M68G
MAINED MAINEX MAINPM MAINVI MEDT MEM MEMDPY+
MM* MODLIB MVD MVG NUL NULMGR OPENF*
OPT PACK* PAKMOD PASSl PASS2 PATS PATSCN*
PDFBLT PDFDIO PDFMOD PDFTIO PMERGE PRMAP* PRNTCO
PRNTRE* PRTREE* RAISE RANMOD RDGD RDGG RECIO
RECMOD RECOM REMTAB* RMATH RNMFIL RSMCO SCRFIL

SCSTR SPAD SPAG SRTMOD STAMP STRBLT STRCHK
STRHDR STRTXT SUBCMO SUN+ SUN3+ SUN46+ SUNSCR
SYS TARGET TELEVI+ TM9 TOHEX* TREEIO TRMCAP
TRNCAT* TTY TVI925+ TVI950+ TVIEW TXTDIO TXTMGR
TXTTIO UA2CNF UA2FPG UA2FXG UA2TPG UA2TXG UCLCNF
UCLFCG UCLTCG UDGCNF UDGTCG UI3CNF UI3FCG UI3TCG
UI9CNF UI9FCG UI9TCG UIBCNF UIBFCG UIBTCG UM2CNF
UM2FCG UM2FHG UM2FPG UM2FXG UM2TCG UM2THG UM2TPG
UM2TXG UM6CNF UM6FAG UM6FCG UM6FFG UM6FHG UM6TAG
UM6TCG UM6TFG UM6THG UMVCNF UMVTCG UNPACK * UPDDPY

URDCNF URDFCG URDTCG USPCNF USPFCG USPTCG UTYMOD
UVACNF UVAFCG UVAFVG UVATCG UVATVG UXACNF UXAFCG
UXATCG V10BLT VAXD VAXG VIS200+ VIS550+ VMSCNF
VMSFCG VMSFVG VMSTCG VMSTVG VT100+ VT102+ VT102M+
WRDCOM WY43+ WY50+ WY5043+ WY75+ XAD XAG
XCMCNF XCMF7G XCMFAG XCMFFG XCMT7G XCMTAG XCMTFG
XREF XRFMRG

Table K-l. Standard MAINSAIL System Objmods

-245 -

! 34,37

8

$ 9, 120

(31,39

) 31,39

* 34,61
** 240

+ 34

- 33,34

.76
in dotted operations 40

/ 34

: 78
:= 43,80

; 10

< 34
and > in syntax desciptions 4
for strings 33

« 240
<= 240
<> 240

= 34,67,132
for strings 33

> 34
for strings 33

>= 240
» 240

Index

-246-

[48,150
and] in syntax desciptions 4

] 48, 150

1\ 34

240

(240
and) in syntax desciptions 4

I in syntax desciptions 4

)240

$a20 221
abbreviation

platform name 222
processor name 221
system name 223

$abortProcedureExcpt 173, 224
$abo~gnuriExcpt 175,224
ACHECK "$DIRECTIVE" directive 168
ACHECKALL "$DIRECTIVE" directive 168
ADDRESS 22
address

classified 74
invalid 22
unaligned 22
unclassified 75

addressCode 220
$aeg 222,223
$aix 222
aligned address 22
alignment

of chunks 81
of storage units 22

allocation
efficient 206
of array 62
of data section 111
of module 111
of record 74

$almostOutOfMemoryExcpt 224

-247 -

$alnt 222
$ALWAYS 98
$AL W A YSINLINE 98
ancestry of coroutines 181
AND 34
$aos 223
$area 208
area 206
$areaOf 207
$arg 138
argument

macro 137
optional 90
order of evaluation 93
procedure 86, 87, 89, 90, 93
repeatable 90

arithmetic checking 168
$arithmeticExcpt 224
ARRAY 61
array

allocation 62
assignment 66
bounds 61, 69
clearing 66
comparison 67
declaration 61
dimensions 61
disposal 62
element access 65
initialization 62, 66
name 69
parameter 94
pseudo-fields 69
variable-bounded 61

$arrayType 70
$ascii 226
Assignment

Expression 31
Statement 43

assignment 80
compatibility 42

automatic sourcefile 158

base of bits constant 18
BEGIN 45

- 248-

Begin Statement 45
$BEGINC 152
BEGINS CAN 156
binary 18
bind III
bit

clearing (CLR) 34, 37
masking (MSK) 34, 37

bit shifting operators (SHL, SHR) 34
bit testing operators (TST, TSTA, NTST, NTSTA) 34
BITS 17
bitsCode 220
$bitsPerStorageUnit 11
bitwise operations (lOR, XOR, MSK, CLR) 37
body, procedure 84 -
BOOLEAN 15
booleanCode 220
bound data section 106
bounds of array 69
bracketed text 134
byte 11

cache of files 195
call

macro 137
procedure 86,87,90,99

CASE 48
Case Statement 48
case

sensitivity in file names 225
upper and lower 3, 6

$CASEC 149
$caseJndexExcpt 224
catch-all

selector (0) 48
selector in $CASEC 150

chain, comparison 38
character 6

address (charadr) 23
as integer constant (e.g., 'A') 15
set guarantees 6
set translation 214

CHARADR 23
charadrCode 220
CHECK 164

- 249-

"$DIRECI'IVE" directive 165
CHECKALL "$DIRECI'IVE" directive 165
CHECKING 164
chunk 206

alignment 81
CLASS 73
class

declaration 73
explicitly specified in field variable 78
forward 74
prefix 78
related 80
with procedure fields 110

$classCode 154,220
classified

address 74
pointer 74

$CLASSOF 155
cleaning up after a procedure 174
$clearArea 207
$clearStrSpc 207
closed procedure call 98
closing a file 191
$clp 221
CLR 34,37
cmdFile 193
$cmdFileEotExcpt 193, 224
$cms 222, 223
$collectableChkSpc bit 209
$collectableStrSpc bit 209
comments 8
common data representation among machines 213
$compactableChkSpc bit 209
comparison chains 38
comparison operators (=, NEQ, <, LEQ, >, GEQ) 34
compiler directives 143
compiletime

evaluation 10
evaluation of operators 32
pseudo-procedures 32

compound identifier 120
concatenation 19, 34
conditional compilation 143, 148
CONF module 13
consistency of module interfaces 113
constant, definition 27
CONTINUE 54

- 250-

Continue Statement 54
$CONTINUEC 152
controlsection 106,116
conversion, in general 14,25
conversions, table of allowed 26
$convertDateAndTime 198
Coordinated Universal Time 198
coroutine 179

ancestry 181
creation 180
exception in 183
killing 180
most recent resumer 181
resuming 180

$coroutineExcpt 224
creation of coroutine 180
cross-compilation 7

data
file 189
portable format (PDF) 213
section 105,106,110
section allocation 111
section disposal 111
type code 11
type conversion 25
types 14

data section, bound 108
data-type-aligned address 22
dataFile, predeclared class 187
date 198
DCL 154

of forward class 74
dea1location, efficient 206
declaration 57

array 61
class 73
generic procedure 99
module 107
outer 105, 107
procedure 84
qualifiers 59
simple variable 59

$def 159
default data section 108

- 251-

DEFAULTACHECK tI$DIRECI'IVEtI directive 168
$defaultArea 208
DEFINE 132
DEFINETIMEZONE MAINEX subcommand 201
defining as consecutive integers 159
$descendantKilledExcpt 184,224
device

module 185, 192
prefix 192

$dgux 222
$dimension 70
dimension 61
$diposeDataSecsInArea 207
direct

access to interface field 110
access to modules 107

$DIRECTIVE 144
directive

BEGINS CAN 156
CHECK 164
CHECKING 164
DCL 154
$DIRECTIVE 144
DONESCAN 156
DSP 147
ENCODE 145
$LEGALNOTICE 148
:MESSAGE 143
NOCHECK 164
RESTOREFROM 122
SAVEON 122
SKIPSCAN 156
SOURCEFILE 143

directives, compiler 143
displacement to a field of a class or module (DSP) 147
disposal

efficient 206
of array 62
of data section 111
of module 111
of record 74

$disposeArea 207
$disposedDataSecExcpt 111, 224
DIV 34
division operators (j, DIY, MOD) 34
00 51
DOB 51

- 252-

$DOC 152
DONE 54
Done Statement 54
$DONEC 152'
DONESCAN 156
dotted operators 40, 43
DOWNTO 51
DSP 147
DSTENDRULE MAINEX subcommand 201
DSTNAME MAINEX subcommand 201
DSTOFFSET MAINEX subcommand 201
DSTSTARTRULE MAINEX subcommand 201
dynamically sized arrays 61

EB 46
$ehedic 226
echo, of cmdFile and logFile 194
EF 29,46
$EFC 148
efficient allocation and deallocation 206
EL 29,46
ELSE 29,46
ELSEC 148
$elx 221
$emb 222, 223
Empty Statement 55
empty area 208
ENCODE 145
END 45,48
end-of-file 191

on TTY 192
end-of-line 10
ENDC 148, 149, 152
eof 191
eol 7
eop 7
equate, macro 132, 135
errMsg response abbreviations 176
error, definition 3
exception 170

current 173
during another exception 173
for operation 41
in coroutine 183
naming 174

- 253-

predefined 224
registering 178
returning from 172

$exceptionBits 173
$exceptionName 173
$exceptionPointerArg 173
$exceptionSbingAIgl 173
$exceptionSbingArg2 173
exclusive or (XOR) 34,37
exeList 129
exeSearch 128
explicit

class 78
module pointers 110

exponent 16
$exponentExcpt 224
exponentiation 34
Expression Statement 43
expressions 27
extension of generic procedures 103

falling out of a handler 172
FALSE 15
field

class 73
interface 105, 107, 108, 110
record 71
variable 71,76,78,79,108,110

field variables, generic procedures 115
file 185

access 189
cache 195
closing 191
containing multiple modules 116
data 189
input and output 189
name 185
opening 190
organization 189
predeclared class 187
text 188

filename
case sensitivity 225
intmod and objmod 127

$fileNamesAIeCaseSensitive 225

- 254-

FINAL 114
final procedure 114
$findArea 207
FLI 145
floating point number 16
FOR

in Iterative Statement 51
in substring specification 28

$FORe 152
Foreign Language Interface 145
FORWARD 96
forward class 74
FVIEWexamplemodule 217

garbagecollection 12,20,22,23,41,65,74,206
garbage collection, controlling 13
GENERIC 99
generic

procedure extension 103
procedures as field variables 115

GEQ 34
for strings 33

$getl~ 20,207
$GLOBALREDEFINE 123,146
GMT 198
GMTOFFSET MAlNEX subcommand 201
$gotValue 191
Greenwich Mean Time 198

$haltDuplex 225
$HANDLE 171
Handle Statement 171
$HANDLEB 171
handler, falling out of 172
$hasFile Versions 225
header, procedure 84
hexadecimal 18
$hp20 222
$hp38 222
$hpux 222

$i38 221
$ibm 221
identifier 233

definition 9

-255 ..

qualified 120
reserved 9
scope 58
visibility 121

IF 29,46
If

Expression 29
Statement 46

IFe 148
illegal, definition 3
implicit module pointer 106, 109
inaccessible data structure 12
$inArea 207
inclusive or (!, lOR) 34,37
index, array 65
indirect

access to interface field 108
access to modules 107

INF 29
inherited fields 78
INIT 62
loit Statement 62
INITIAL 113
initial procedure 113
initialization

of arrays 62, 66
of local variables 85

INLINE 98
input from a file 189
INTEGER 15
integerCode 220
interactive macro equate 135
interface

consistency checking 113
field 105, 107
field access 108, 110
procedure access 111
variable 108, 110
variable access 111

intList 129
intmod 119, 127

file name 127
library 127
search rules 128
supporting 120

intSearch 128
invalid address 22

- 256-

$invokeModule 117
lOR 34,37
$ioSize 216
$ip32c 222
$ipsc2 222
Iterative Statement 51
$ix20 222
$ixfpa 222
$ixpri 222

keyword 9, 123, 233
killing a coroutine 180

$Ibl 70
lbl 70
$lb2 70
Ib270
$lb3 70
Ib3 70
legal notice directive ($LEGALNOTICE) 148
$LEGALNOTICE 148
LEQ 34

for strings 33
library, module 127
link step, absence of 105
local

declarations 58
variable 58, 84

local variable, initialization 85
10gFile 193
logical file names 190
logical operators (AND, OR, NOT) 34
LONG

BITS 17
INTEGER 15
REAL 16

long arrays 61, 65
10ngBitsCode 220
10nglntegerCode 220
10ngRea1Code 220

$m20 221
$m68 221
macro

argument 137

- 257-

body 132,134
call 137
constant 132
declaration 132
definition 132,133
equate 132
parameter 132, 137

macro equate, interactive 135
MAKEMODULENOTVISmLE "$DIRECTIVE" directive 120
MAKEMODULEVISIBLE "$DIRECTIVE" directive 120
MAKENOTVISIBLE "$DIRECTlVE" directive 120
MAKEVISIBLE "$DIRECTIVE" directive 120
MAX 34
$maxChar 6
memory

management 12, 206
unit 11

memory management, controlling 13
:MESSAGE 143 .
MIN 34
MOD 34
mode, parameter 101
MODIFIES 90
MODULE 105
module

allocation 111
declaration 107
disposal 111
format 105
library 127
linkage 111
names 105
search rules 128
size 105
swapping 116
visibility 120

module pointer, implicit 106, 109
$moduleCode 154, 220
MSK 34,37
multiple

modules in one source file 116
opens of the same file 190

multiplication operator (*) 34
$mv 221
$mvux 222

- 258-

name 70
of array 69
of file 187

named
Begin Statement 45
Case Statement 49
Iterative Statement 53

names, module 105
NEEDANYBODIES 158
NEEDBODY 158
NEQ 34,67

fer strings 33
nested exceptions 173
new 207

array 62
record 74

$newArea 207
newString 20
NOACHECK "$DIRECTIVE" directive 168
NOACHECKALL "$DIRECTIVE" directive 168
$noAutoCmdFileSwitching 193
NOCHECK 164

"$DIRECfIVE" directive 165
NOCHECKALL "$DIRECTIVE" directive 165
$noCollectablePtrs bit 210
$noCollectableStrs bit 210
$noCompactablePtrs bit 210
non-data-type-aligned addres 22
nonbound data section 106, 108
nonbound-invocation module 117
NOOPTIMIZE "$DIRECTIVE" directive 161
NOOPTIMIZEALL "$DIRECTIVE" directive 161·
NOT 33
NTST 34
NTSTA 34
$nulChar 7
null

character 7
string 19

NULLADDRESS 23
NULLARRAY 61
$nullArrayExcpt 224
$nullCallExcpt 224
NULLCHARADR 23
NULLPOINTER 22
$nullPointerExcpt 224

- 259-

$numArgs 138
numeric operators (+, -, *, /, DIV, MOD) 34

objList 129
objmod 127

file name 127
library 127
search rules 128

objSearch 128
octal 18
OF 48
OFB 48
$onesComplement 225
open procedure call 98
opening

a file 190
a file for PDF I/O 215

OPENMODULE "$DIRECTlVE" directive 120
operating system, definition 3 .
operators

dotted 40, 43
precedence 38
tables 32

optimization 161
OPTIMIZE "$DIRECTIVE" directive 161
OPTIMIZEALL "$DIRECTIVE" directive 161
OPTIONAL 90
OR 34
order

of evaluation 27
of evaluation of operands 38
of evaluation of procedure arguments 93

outer
declaration' 58, 105, 107
variable 58, 105

output to a file 189
overflow 14,26

stack 103
$overheadTooHighExcpt 224
overlays, automatic 116
OWN 60
own variable 60

parameter
macro 132, 137

-260-

mode 101
procedure 87, 89, 94
qualifiers 89

parentheses 39
in expressions 38

PDF
character translation 214
device prefix 215
I/O 214

$pdfbit 215
PDFI/O

opening for 215
positions in file 216

platform
definition 3
name abbreviation 222

POINTER 22
pointer

classified 74
safe and unsafe assignment 80
unclassified 75

pointerCode 220
POPACHECK "$DIRECTIVE" directive 168
POPCHECK "$DIRECTIVE" directive 165
portability of string constants 7
Portable Data Format (PDF) 213
positions in file opened for PDF I/O 216
precedence of operators 38
predefined exception 224
prefix class 78
$pri 221
primary input and output 191
PROCEDURE 84
Procedure

Expression 28
Statement 44

procedure
argument 87, 89
body 84
call 86,87,90,99
calls 28,44
declaration 84
field of a class 110
generic 99
header 84
inline 98
parameter 87, 89, 94

- 261 -

parameter qualifier 89
qualifiers 95
typed 86
untyped 86

processor
definition 3
name abbreviation 221

PRODUCES 89
program composition 105
propagating exceptions 172
pseudo-fields of arrays 69
pseudo-procedures 32
PUSHACHECK n$DIRECTIVE" directive 168
PUSHCHECK "$DIRECTIVE" directive 165

qualified identifier 120
qualifiers 59,95

$raise with no arguments· 172
$raiseRetum 172
random file access 189
range, guaranteed 14
$rdg 221
read 7
REAL 16
realCode 220
record

allocation 74
definition 71
disposal 74
field access 76, 78, 79

recursive procedure invocation 95,96
REDEFINE 133
redirection of standard input and output 193, 194
$registerException 178
related classes 80
release of control section 111
REPEATABLE 90
repeatable macro parameter 138
replication 62
reserved identifiers 9, 233
RESTOREFROM 122
resumer of a coroutine, most recent 181
resuming a coroutine 180
RETURN 45

- 262-

Return Statement 45
$retumExcpt 224
returning from an exception 172
$ros 222

safe assignment of pointers 80
$sArg 138
SAVEON 122
scanning compiler directives 156
scope of identifiers 58
search rules for modules 128
selector 48

for $CASEC 150
semicolons 10
sequence, defining with $def 159
sequential file access 189
several modules in one source file 116
SHL 34
short arrays 61, 65
short-array rule 68
SHR 34
simple

variable 27
variable declaration 59

simultaneous opens of the same file 190
size of modules 105
SKIPSCAN 156
source file containing multiple modules 116
SOURCEFILE 143
sourcefile, automatic 158
$spa 221
spaces 10
$spix 222
stack overflow 103
stacking exceptions 173
$stackOverflowExcpt 224
standard input and output

MAINSAIL 193
operating system 191

statement 43
STDNAME MAINEX subcommand 201
storage

template access 76
unit 11

$strArea 208

- 263-

STRING 19
string

comparison 33
concatenation 19, 34
descriptor 20
maximum length 19
space 20,22

stringCode 220
subscript 65
subscripted variable 65
$subscriptExcpt 224
substring 28,29
$sun2222
$sun3222
$sun38 222
$sun4222
supporting intmod 120
$sw38 222
swapping of modules 116
symbol

table 119
visibility 121

system name abbreviation 223
$systemExcpt 176, 224

tab 7,10
table of allowed data type conversions 26
tables of operations 32
target, definition 3
template, access 76
terminalI/O 191
text file 188
textFile, predeclared class 187
THEN 29,46'
THENB 46
THENC 148
time 198

zone 198
title of area 208
TO

in array declaration 61
in Case Statement selector 48
in substring specification 28

translation to/from PDP characters 214
TRUE 15

- 264-

TST 34
TSTA 34
TTY 191
$ttyEoflExcpt 192,224
ttyRead 191
ttyWrite 191
two's complement 225
type code 11, 220
typed procedure 86
$TYPEOF 154

$ua20 223
$ubl 70
ubI 70
$ub2 70
ub2 70
$ub3 70
ub3 70
$uclp 223
$udg 223
$ui38 223
$uibm 223
$ultrx 222
$um20 223
$um68 223
$umv 223
unaligned address 22
UNBOUND

"$DIRECfIVE" directive 117
compiler subcommand 117

$unboundModuleExcpt 111, 224
unclassified pointer or address 75
undefined, definition 3
underflow 14,26
uninitialized variables 85
unqualified identifier 123
unsafe assignment of pointers 80
unspecified, definition 3
UNTIL 51
untyped procedure 86
$upri 223
UPTO 51
$urdg 223
USES 89
$uspa 223

- 265-

UTe 198
$uts5 222
$uvax 223
$uw38223
$uxa 223

valid address 22
varia hIe

definition 27
field 71, 76, 78, 79, 108, 110
initialization 85
interface 108, 110
local 58,84
outer 58, 105
own 60
simple 27
subscripted 65

variable-bounded arrays 61
$vax 221
virtual code space 116
visibility, module and identifier 120
$vms 222, 223

$w38 221
WHILE 51
$WITH 171
$WITHB 171
word 11

$xa 221
$xcms 222, 223
XOR 34,37

Zero 14
zero-length files 190
zone, time 198

- 266-

XIDAK, Inc., 530 Oak Grove Avenue, MIS 101, Menlo Park, CA 94025 , (415) 324-8745

