
Language Manual, Volume II

MAINSAIL~

Language Manual, Part II:

System Procedures, Macros, and Variables

24 March 1989

Copyright (c) 1979, 1983, 1984, 1985, 1986, 1987. 1989. by XIDAK. Inc .• Menlo Park. California.

The software described herein is the property of XIDAK, Inc., with all rights reserved. and is a confidential trade secret
ofXIDAK. The software described herein may be used only under license from XIDAK.

MAINSAIL is a registered trademark ofXIDAK. Inc. MAINDEBUG. MAINEDIT. MAINMEDIA. MAINPM.
Structure Blaster. roB. and SQIJT are trademarks of XIDAK. Inc.

CONCEN1RlX is a trademark of Alliant Computer Systems Corporation.

Amdahl. Universal Time-Sharing System. and UTS are trademarks of Amdahl Corporation.

Aegis. Apollo. DOMAIN. GMR. and GPR are trademarks of Apollo Computer Inc.

UNIX and UNIX System V are trademarks of AT&T.

DASHER. DGIUX. ECLIPSE. ECUPSE MV/4000. ECUPSE MV/8000. ECLIPSE MVIlOOOO, and ECLIPSE
MV /20000 are trademarks of Data General COJporation.

DEC. PDP. TOPS-I0. TOPS-20, V AX-II. V AX. MicroV AX. MicroVMS. ULTRIX-32. and VAXNMS are
trademarks of Digital Equipment Corporation.

EMBOS and ELXSI System 6400 are trademarks of ELXSI. Inc.

The KERMIT File Transfer Protocol was named after the star of THE MUPPET SHOW television series. The name is
used by pennission of Henson Associates, Inc.

HP-UX and Vectra are trademarks of Hewlett-Packard Company.

Intel is a trademark of Intel Corporation.

CLIPPER. CLIX. Intergraph. InterPro 32. and InterPro 32C are trademarks of Intergraph Corporation.

System/370. VM/SP CMS. and CMS are trademarks of Intemational Business Machines Corporation.

MC68000. M68000. MC68020. and MC68881 are trademarks of Motorola Semiconductor Products Inc.

ROS and Ridge 32 are trademarks of Ridge Computers.

SP ARC. Sun Microsystems. Sun Workstation. and the combination of Sun with a numeric suffix are trademarks of Sun
Microsystems. Inc.

WIN/TCP is a trademark of The Wollongong Group. Inc.

WY-50. WY-60. WY-75. and WY-lOO are trademarks ofWyse Technology.

Some XIDAK documentation is published in the typefaces "Times" and "Helvetica". used by pennission of Apple
Computer. Inc .• under its license with the Allied Corporation. Helvetica and Times are trademarks of the Allied
Corporation. valid under applicable law.

The use herein of any of the above trademarks does not create any right, title. or interest in or to the trademarks.

- ii-

Table of Contents

1. System Procedures, Macros, and Variables ...
1.1. The "COMPILETIME" Procedure Qualifier .
1.2. The "$BUILTJN" Procedure Qualifier
1.3. The "SPECIAL" Procedure Qualifier. . . .
1.4. Area Facility Declarations
1.5. System Procedures, Variables, and Macros Summary
1.6. $abortProcedureExcpt.
1. 7. $abortProgramExcpt
1.8. abs
1.9. aCos
1.10. $addMemMngModule.
1.11. $addToDateAndTime
1.12. $adrOtFirstElement. .
1.13. $aUYearDigits
1.14. $almostOutOfMemoryExcpt.
1.15. alterOK.
1.16. append
1.17. $areaOf
1.18. $arithmeticExcpt
1.19. aSin
1.20. $assembleDate.
1.21. $assembleDateAndTime
1.22. $assembleTime.
1.23. aTan
1.24. $atan2 . . .
1.25. $attributes. .
1.26. binary . .
1.27. bind
1.28. $bitsPerChar.
1.29. $bitsPerStorageUnit. .
1.30. bMask . . .
1.31. break.
1.32. $brietFormat. . .
1.33. $canFindModule
1.34. $cannotFalIOut. .
1.35. $cannotReturn
1.36. $caselndexExcpt
1.37. ceiling
1.38. $characterRead. .
1.39. $characterWrite.
1,40. $charSet. . .
1,41. $charsPerPage . .

- iii -

1
2
2
2
2
3

16
16
17
17
18
20
21
21
21
23
23
23
24
24
25
26
27
28
28
29
29
29
30
31
31
32
33
33
33
34
34
34
35
36
36
37

1.42. $charsPerStomgeUnit
1.43. $checkConsistency
1.44. $classDscrFor
1.45. $classInfo. . . .
1.46. $className . . .
1.46.1. $className of a Data Section
1.47.
1,48.

clear
$clearArea . . •
$clearS trSpc. .
$clearFileCache.
cLoad. . . .
close
$closedFile .
close Library .

. 1.49.
1.50~

1.51.
1.52.
1.53.
1.54.
1.55.
1.56.
1.57.
1.58.
1.59.
1.60.
1.61.
1.62.
1.63.
1.64.
1.65.
1.66.
1.67.
1.68.
1.69.
1.70.
1.71.
1.72.
1.73.
1.74.
1.75.
1.76.
1.77.
1.78.
1.79.
1.80.
1.81.
1.82.
1.83.
1.84.
1.85.
1.86.
1.87.

$cb1:onfigurationBtt.
$clrSystemBit
cmdFile
$cmdFileEotExcpt
cmdMatch
$collect
$collectableChkSpc .
$collectableStrSpe .
$collectLock. ! •

$compactableChlcSpc
compare
$compareIntmods. . . .
$compareObjmods •
$compile
$compileTime Value .
$concat
confirm
$convertDateAndTime. .
copy
$copyFile .. .
$coroutineExcpt
cos ..
cosh ..
$cot ...
$cpuID .
$cpuTime ..
$cpuTimeResolution .
cRead
create
$createClassDscr .
$createCoroutine .
$createRecQrd • .
$createUniqueFile .

- iv-

37
37
38
38
39
40
41
43
43
44
45
46
47
47
48
48
49
49
50
54
54
55
55
56
56
57
57
57
57
60
60
61
62
64
64
65
65
66
66
67
67
68
69
69
70
71
72

1.88. $currentDirectory . 73
1.89. cva. · 73
1.90. cvAry. 75
1.91. cvb. 75
1.92. $cvbo. · 77
1.93. cvc. 77
1.94. cvcs · 78
1.95. cvi. 79
1.96. cvl. 80
1.97. cvlb 81
1.98. cvli 83
1.99. cvlr 85
1.100. cvp 86
1.101. cvr 87
1.102. cvs 88
1.103. cvu 91
1.104. cWtite . 92
1.105. $date 94
1.106. $dateAndTime. 94
1.107. $dateAndTimeCompare . 95
1.108. $dateAndTimeDifference 96
1.109. $dateAndTimeToStr 97
1.110. $dateFormat 98
1.111. $dateToStr 98
1.112. $debugExec . . 100
1.113. $defaultArea 100
1.114. delete 102
1.115. $delete . 103
1.116. $deregisterException 103
1.117. $descendantKilledExcpt . 104
1.118. $devModBrk 104
1.119. $devModBrkStr . ; 104
1.120. $directory 105
1.121. $disassembleDate 106
1.122. $disassembleDateAndTime 106
1.123. $disassembleTime 107
1.124. discard. 108
1.125. displace 108
1.126. displacement 110
1.127. dispose. 111
1.128. $disposeArea 112
1.129. $disposeDataSecslnArea. 112
1.130. SdisposedDataSecExcpt . 113
1.131. $doNotClear 113
1.132. $doNotIncludeTimeZone 113
1.133. $doNotMatch . 114
1.134. $doNotRaise 114

-v-

1.135. $dscrPtr 114
1.136. DSP. 115
1.137. $dup. 115
1.138. enterLogicalName 115
1.139. eof 116
1.140. eol 116
1.141. eop · 117
1.142. equ · 117
1.143. errMsg. 118
1.144. errotOK 120
1.145. $exceptionBits . 121
1.146. $exceptionCoroutine · 121
1.147. $exceptionName. 122
1.148. $exceptionPointerArg. 122
1.149. $exceptionStringArg 1 . 122
1.150. $exceptionStringArg2. 123
1.151. $exc1udeSeconds. 123
1.152. $executeIntlibCommands 123
1.153. $executeModlibCommands 123
1.154. $executeStampCommands . 124
1.155. exit. 124
1.156. exp 124
1.157. exponent. 125
1.158. $exponentExcpt . 125
1.159. fastExit 125
1.160. fatal. 126
1.161. $fieldInfo . 126
1.162. $fileInfo 127
1.163. $findArea. 129
1.164. $findCoroutine 130
1.165. first . 130
1.166. fixed. 131
1.167. fldRead 131
1.168. fldWrite 132
1.169. floor. 133
1.170. formatted. 134
1.171. $formParagraph . 135
1.172. $fullPathNames . 136
1,173. generateMultipleQuickSort . 137
1.174. generateQuickSort . 137
1,175. $getCommandLine . 137
1.176. $getEofPos . 140
1.177. $getInArea . 140
1.178. getPos . 141
1,179. $getSubcommands . 141
1,180. $getToTop 143
1,181. The Global Symbol Table Procedures 143

- vi-

1.182. $gmt 144
1.183. $GMTtoLocalTime . 145
1.184. $gotValue 145
1.185. $hash 146
1.186. hex 146
1.187. $homeDirectory . 147
1.188. HSHMOD Procedures 147
1.189. $hyphenateDate . 147
1.190. $inArea 148
1.191. $includeTimeZone . 148
1.192. $includeVVeekday 149
1.193. $initRand. 149
1.194. $initsRand 149
1.195. input 149
1.196. $insertLeft 150
1.197. $insertRight. 150
1.198. $intmodInfo. 150
1.199. $invokeModule 151
1.200. $ioSize. 152
1.201. isAlpha 152
1.202. $isArray . 153
1.203. $isBound. 153
1.204. isLowerCase 154
1.205. isNul 154
1.206. isUpperCase 155
1.207. keepNul 155
1.208. $killCoroutine . 156
1.209. $killedCoroutine . 157
1.210. last 157
1.211. IbMask. 158
1.212. lDisplacement . 158
1.213. length . 159
1.214. $length. 159
1.215. In. 161
1.216. The Load Procedures . 161
1.217. $localTime . 164
1.218. $localTimeToGMT . 164
1.219. log 165
1.220. $log2 165
1.221. 10gFile. 166
1.222. lookUpLogicalName 166
1.223. $mainsailExec . 166
1.224. $majorVersion. 167
1.225. $maxChar 167
1.226. $maxlnteger 167
1.227. $maxLonglnteger 168
1.228. $minlnteger . 168

- vii-

1.229. $minLonglnteger. 169
1.230. $minorVersion 169
1.231. $moduleInfo 169
1.232. $moduleName . 172
1.233. $moveCoroutine . 173
1.234. msgMe. 173
1.235. msgMyCaller . 174
1.236. new. 174
1.237. $newArea 177
1.238. $newException 178
1.239. newPage .. 179
1.240. $newRecords 180
1.241. newScratch . 181
1.242. $newScratchChars . 182
1.243. newString 182
1.244. newUpperBound . 183
1.245. $noCollectablePtrs . 184
1.246. $noCollectableStrs . 185
1.247. $noCompactablePtrs 185
1.248. nextAlpha 186
1.249. $noHandler . 186
1.250. $nonRecursive. 187
1.251. noResponse . 187
1.252. $noTranslate 187
1.253. $nulChar . . 188
1.254. $nullArrayExcpt . 188
1.255. $nullCallExcpt 188
1.256. $nullPointerExcpt 189
1.257. octal. 189
1.258. omit. 190
1.259. open. 190
1.260. openLibrary . 193
1.261. output. 195
1.262. $overheadPercentExitValue and $overheadTooHighExcpt 195
1.263. pageDispose 196
1.264. $pageRead 197
1.265. $pageSize 197
1.266. $page Write . 198
1.267. PDF Low-Level Procedures 198
1.268. $pdf. 199
1.269. $platformNameAbbreviation . 199
1.270. $platformNameFull. 199
1.271. $platformNumber 200
1.272. $preferredRadix . 200
1.273. prevAlpha 200
1.274. proceed 201
1.275. $processorNameAbbreviation. 201

- viii -

1.276.
1.277.
1.278.
1.279.
1.280.
1.281.
1.282.
1.283.
1.284.
1.285.
1.286.
1.287.
1.288.
1.289.
1.290.
1.291.
1.292.
1.293.
1.294.
1.295.
1.296.
1.297.
1.298.
1.299.
1.300.
1.301.
1.302.
1.303.
1.304.
1.305.
1.306.
1.307.
1.308.
1.309.
1.310.
1.311.
1.312.
1.313.
1.314.
1.315.
1.316.
1.317.
1.318.
1.319.
1.320.
1.321.
1.322.

$processorNameFull .
$processorNumber .
$programlnterface .
$programName ..
prompt.
$queryFileCacheParms
$raise
$raiseReturn
$rand .
random
reRead ..
reWrite
read ...
$registerException
relFileName.
relModName
relPos ...
$removeBits
$removeBoolean .
$removelnteger
$removeLeadingBlankSpace ..
$removeMemMngModule .
$removeDateAndTime . .
$removeReal
$removeTrailingBlankSpace . .
$removeWord.
$rename
$reOpen
$reportAllVersions. .
reorder
$resumeCoroutine
retain
$returnExcpt . .
$returnlfNoHandler.
reverse
$reverseDateAndMonth .
scan ...
scanRel ..
scanSet .
$scanSet .
scratchDispose
$searchCallChain
$setCommandLine .
$setConfigurationBit
$setExitCode . . .
$setFileCacheParms
setFileName

- ix-

202
202
202
203
203
203
205
207
207
207
208
209
210
215
217
218
218
219
220
220
221
221
222
222
223
223
223
224
225
225
225
226
227
227
227
228
228
232
233
234
234
235
235
236
237
238
239

1.323. setModName 239
1.324. setPos . 242
1.325. $setSearchPath 243
1.326. $setSystemBit. 244
1.327. $setTheDate 245
1.328. sin 247
1.329. si9h . 247
1.330. size. . 247
1.331. sort . 249
1.332. sqrt . 249
1.333. $sRand. 249
1.334. $stackOverftowExcpt . 249
1.335. $storageUnitRead 250
1.336. $storageUnitWrite . 251
1.337. store. 252
1.338. $strToDate . . 254
1.339. $strToDateAndTime 255
1.340. $strToTime . 256
1.341. Structure Blaster Procedures 257
1.342. $subscriptExcpt 257
1.343. $systemExcpt . 258
1.344. $systemNameAbbreviation . 258
1.345. $systemNameFull 258
1.346. $systemNumber . 259
1.347. tab 259
1.348. tan 259
1.349. tanh . 260
1.350. $thisCoroutine. 260
1.351. thisDataSection 260
1.352. $time 261
1.353. $timeDifference . 261
1.354. $timeFormat 262
1.355. $timeS ubcommandsSet . 262
1.356. $thisFileName . 262
1.357. $timeout . 263
1.358. $timeToStr . 263
1.359. truncate 265
1.360. $truncateFile 265
1.361. $tstConfigurationBit 266
1.362. $tstSystemBit . 267
1.363. ttycWrite . 267
1.364. $ttyEofExcpt 267
1.365. ttyRead 268
1.366. ttyWrite 269
1.367. $twelveHour 270
1.368. $two YearDigits 270
1.369. $typeName . 270

-x-

1.370.
1.371.
1.372.
1.373.
1.374.
1.375.
1.376.
1.377.
1.378.
1.379.
1.380.

unBind
$unboundModuleExcpt . .
$unbuffered. .
upperCase
useKeyWord
$useOriginalFileName
$useProgramInterface. .
$userID
warning ...
write . . .
$writeCalls .

List of Examples

1.10-3. Garbage Collection Interception Module. .
1.30-2. Use of bMask . .
1.37-2. Use of ceiling.
1.45-2. Use of $classInfo
1.46.1-1. Behavior of $className with Data Section Arguments.
1.47-2. Use of clear for an Array
1.49-2. Use of $clearStrSpc.
1.51-2. Use of cLoad.
1.52-2. Use of close
1.54-2. Use of closeLibrary
1.59-3. Use of cmdMatch
1.59-4. Use of useKeyWord Option with cmdMatch
1.65-2. Use of compare. . . .
1.71-2. Use of confirm
1.73-2. Use of copy
1.84-2. Use of $createClassDscr
1.86-2. Use of $createRecord.
1.89-2. Use of cva . .
1.91-2. Use of cvb. .
1.93-2. Use of cve . .
1.94-2. Use of cvcs
1.95-2. Use of cvi . .
1.96-2. Use of evl ...
1.97-2. Use of cvlb . .
1.98-2. Use of cvli. .
1.99-2. Use of cvlr .
1.100-2. Useofcvp
1.102-4. Use of cvs
1.103-2. Use of cvu

.....

- xi-

271
272
272
272
273
273
273
274
275
275
279

19
32
35
39
41
43
44
46
47
48
51
53
57
61
63
70
72
74
76
78
79
80
81
83
84
86
87
91
92

1.104-2.
1.104-3.
1.111-4.
1.119-2.
1.125-2.
1.126-2.
1.142-2.
1.161-2.
1.165-2.
1.168-2.
1.169-2.
1.175-2.
1.177-2.
1.178-2.
1.201-2.
1.204-2.
1.206-2.
1.210-2.
1.213-2.
1.216-2.
1.231-2.
1.236-2.
1.239-2.
1.241-2.
1.244-2.
1.248-2.
1.259-4.
1.273-2.
1.286-2.
1.287-2.
1.288-2.
1.288-3.
1.290-2.
1.292-2.
1.312-3.
1.314-2.
1.322-2.
1.323-2.
1.324-2.
1.330-2.
1.358-3.
1.359-2.
1.365-2.
1.366-2.
1.379-2.
1.380-2.

Use of the File and String Forms of e Write.
Use of the Charadr Form of eWrite.
Sample $dateToStr Output Formats
Use of $devModBrkStr
Use of displace. . .
Use of displacement.
Useofequ
Use of $fieldInfo. .
Use of first . .
Use of fldWrite
Use of floor
Examples of the Use of Command Line. .
Use of $getInArea .
Use of getPos. . . .
Use of isAlpha. . .
Use of isLowerCase .
Use of isUpperCase .
Use of last
Use of length
Use of the Load Procedures.
Use of $modulelnfo. .
Useofnew
Use of newPage . ..
Use ofnewSerateh .
Use of newUpperBound . .
Use of nextAlpha. .
Useofopen
Use of prev Alpha. .
Use of reRead
Use of reWrite . . .
Integers Read from emdFile
Useofread
Use of relFileName .
Use ofrelPos ..
Useofsean
Use of seanSet. . . .
Use of setFileName .
Use of setModName
Use of setPos . . .
Use of size
Sample $timeToStr Output Formats
Use of truncate.
Use of ttyRead.
Use ofttyWrite
Use of write
Sample $writeCalls Output .

- xii-

93
93

101
105
109
110
118
127
130
133
134
139
141
142
153
154
155
158
159
163
172
177
180
182
184
186
194
201
208
209
215
216
218
219
232
233
241
243
244
248
264
265
268
269
280
281

List of Figures

1.281-2. Infonnation Produced by $queryFileCacheParms .
1.321-2. Actions Taken by $setFileCachePanns

List of Tables

1.5-1. System Procedures t Macros t and Variables Summary
1.6-1. $abortProcedureExcpt.
1.7-1. $abortProgramExcpt
1.8-1. abs (Generic)
1.9-1. aCos (Generic). . . .
1.10-1. $addMemMngModule .
1.10-2. The Class$memMngModule
1.11-1. $addToDateAndTime
1.12-1. $adrOtFirstElement
1.13-1. $a11YearDigits
1.14-1. $almostOutOfMemoryExcpt.
1.15-1. alterOK.
1.16-1. append
1.17-1. $areaOf (Generic).
1.18-1. $arithmeticExcpt
1.19-1. aSin (Generic)
1.20-1. $assembleDate
1.21-1. $assembleDateAndTime
1.21-2. $assembleDateAndTime ctrlBits Bits
1.22-1. $assembleTime.
1.23-1. aTan (Generic)
1.24-1. $atan2 (Generic)
1.25-1. $attributes. .
1.26-1. binary. . . .
1.27 -1. bind (Generic)
1.28-1. $bitsPerChar.
1.27-2. Valid Bits for bind ctrlBits
1.29-1. $bitsPerStorageUnit
1.30-1. bMask . . .
1.31-1. break.
1.32-1. $brietFormat. . .
1.33-1. $canFindModule
1.34-1. $cannotFa110ut. .
1.35-1. $cannotReturn . .

- xiii -

205
240

3
16
16
17
17
18
18
20
21
21
22
23
23
23
24
24
25
26
26
27
28
28
29
29
29
30
31
31
31
32
33
33
33
34

1.36-1. $caselndexExcpt 34
1.37-1. ceiling (Generic) 34
1.38-1. $characterRead . 35
1.39-1. $characterWrite . 36
1.40-1. $charSet. 36
1.41-1. $charsPerPage 37
1.42-1. $charsPerStorageUnit 37
1.43-1. $checkConsistency 37
1.44-1. $classDscrFor 38
1.45-1. $classlnfo 38
1.46-1. $className 39
1.47-1. clear (Generic) 41
1.48-1. $c1earArea . 43
1.49-1. $clearStrSpc 43
1.50-1. $c1earFileCache . 45
1.51-1. cLoad. 45
1.52-1. close 46
1.53-1. $closedFile . 47
1.54-1. closeLibrary 47
1.55-1. $clrConfigurationBit . 48
1.56-1. $clrSystemBit 49
1.57-1. cmdFile . 49
1.58-1. $cmdFileEofExcpt . 49
1.59-1. cmdMatch . 50
1.59-2. Predefined Bits Constants for the cmdMatch ctrlBits Parameter . 52
1.60-1. $collect 54
1.61-1. $collectableChkSpc 54
1.62-1. $collectableStrSpc . 55
1.63-1. $collectLock . 55
1.64-1. $compactableChkSpc 56
1.65-1. compare. 56
1.69-1. $compileTime Value . 57
1.70-1. $concat 60
1.71-1. confirm 60
1.72-1. $convertDateAndTime 61
1.73-1. copy (Generic) 62
1.74-1. $copyFile 64
1.75-1. $coroutineExcpt . 64
1.76-1. cos (Generic) . 65
1.77-1. cosh (Generic) 65
1.78-1. Scot (Generic) 66
1.79-1. $cpuID 66
1.80-1. $cpuTime 67
1.81-1. $cpuTimeResolution . 67
1.82-1. cRead (Generic) . 68
1.83-1. create . 69
1.84-1. $createClassDscr 69

- xiv-

1.85-1. $createCoroutine
1.86-1. $createRecord
1.87-1. $createUniqueFile (Generic) .
1.88-1. $currentDirectory
1.89-1. cva (Generic).
1.90-1. cv Ary (Generic)
1.91-1. cvb (Generic)
1.92-1. $cvbo.
1.93-1. cvc (Generic)
1.94-1. cvcs
1.95-1. cvi (Generic) .
1.96-1. cvl (Generic) .
1.97-1. cvlb (Generic)
1.98-1. cvli (Generic) .
1.99-1. cvlr (Generic).
1.100-1. cvp (Generic)
1.101-1. cvr (Generic)
1.102-1. cvs (Generic)
1.102-2. Valid Bits for form in the (Long) Real Form of cvs
1.102-3. Valid Bits for form in the (Long) Bits Forms of cvs
1.103-1. cvu (Generic)
1.104-1. cWrite (Generic)
1.105-1. $date.
1.106-1. $dateAndTime
1.107 -1. $dateAndTimeCompare .
1.108-1. $dateAndTimeDifference
1.109-1. $dateAndTimeToStr
1.110-1. $dateFormat.
1.111-1. $dateToStr
1.111-2. Predefined Bits Constants for $dateToStr ctrlBits
1.111-3. Predefined Bits Constants for $dateToStr ctrlBits2.
1.113-1. $defaultArea
1.114-1. delete
1.115-1. $delete.
1.116-1. $deRegisterException. .
1.117 -1. $descendantKilledExcpt.
1.118-1. $devModBrk .
1.119-1. $devModBrkStr ..
1.120-1. $directory.
1.121-1. $disassembleDate
1.122-1. $disassembleDateAndTime ..
1.123-1. $disassembleTime
1.124-1. discard.
1.125-1. displace (Generic) . . .
1.126-1. displacement (Generic)
1.127-1. dispose (Generic). .
1.128-1. $disposeArea

- xv-

70
71
72
73
73
75
75
77
77
78
79
80
81
83
85
86
87
88
89
90
91
92
94
94
95
96
97
98
98
99

100
100
102
103
103
104
104
104
105
106
106
107
108
108
110
111
112

1.129-1.
1.130-1.
1.131-1.
1.132-1.
1.133-1.
1.134-1.
1.135-1.
1.137-1.
1.138-1.
1.139-1.
1.140-1.
1.141-1.
1.142-1.
1.143-1.
1.143-2.
1.143-3.
1.143-4.
1.144-1.
1.145-1.
1.146-1.
1.147-1.
1.148-1.
1.149-1.
1.150-1.
1.151-1.
1.155-1.
1.156-1.
1.157-1.
1.158-1.
1.159-1.
1.160-1.
1.161-1.
1.162-1.
1.162-2.
1.163-1.
1.164-1.
1.165-1.
1.166-1.
1.167-1.
1.168-1.
1.169-1.
1.169-3.
1.170-1.
1.171-1.
1.172-1.
1.175-1.
1.176-1.

$disposeDataSecslnArea.
$disposedDataSecExcpt
$doNotClear.
$doNotIncludeTimeZone. .
$doNotMatch
$doNotRaise
$dscrPtr
$dup.
enterLogicalName
eof
eol
eop
equ
errMsg.
Arguments to $raise When Called from errMsg. .
Predefined Bits Constants for errMsg ctrlBits .
Valid Responses to "Error response:" Prompt.
errorOK
$exceptionBits.
$exceptionCoroutine
$exceptionName.
$exceptionPointerArg
$exceptionStringArgl
$exceptionStringArg2.
$excludeSeconds..
exit
exp (Generic) . .
exponent.
$exponentlExcpt
fastExit.
fatal.
$fieldlnfo.
$fileInfo (Generic) and $fileInfoCls
$fileInfoCls Fields
$findArea
$findCoroutine. .
first
fixed
fldRead (Generic) .
fldWrite (Generic)
floor (Generic).
Rounding Directions for (Long) Real to (Long) Integer Conversion Procedures
formatted.
$formParagraph
$fullPathNames . .
$getCommandLine .
$gedEofPos

- xvi-

112
113
113
113
114
114
114
115
115
116
116
117
117
118
118
119
120
120
121
121
122
122
122
123
123
124
124
125
125
125
126
126
127
128
129
130
130
131
131
132
133
134
134
135
136
137
140

1.177-1. $getInArea (Generic) . . 140
1.178-1. getPos 141
1.180-1. $getToTop 143
1.181-1. Global Symbol Table Procedures . 144
1.182-1. $gmt. 144
1.183-1. $GMTtoLocalTime . 145
1.184-1. $gotValue. 145
1.185-1. $hash 146
1.186-1. hex 146
1.187-1. $homeDirectory 147
1.189-1. $hyphenateDate 147
1.190-1. $inArea (Generic) 148
1.191-1. $includeTimeZone 148
1.192-1. $includeWeekday 149
1.195-1. input. 149
1.196-1. $insertLeft 150
1.197-1. $insertRight. 150
1.198-1. $intmodInfo . 151
1.199-1. $invokeModule 151
1.200-1. $ioSize. . 152
1.201-1. isAlpha. 152
1.202-1. $isArray 153
1.203-1. $isBound . 153
1.204-1. isLowerCase 154
1.205-1. isNul. 154
1.206-1. isUpperCase . · 155
1.207-1. keepNul 155
1.208-1. $killCoroutine (Generic) . 156
1.209-1. $killedCoroutine . · · 157
1.210-1. last · 157
1.211-1. IbMask. · 158
1.212-1. IDisplacement (Generic) .

" · · 158
1.213-1. length 159
1.214-1. $length (Generic) . · . 159
1.215-1. In (Generic) . · . 161
1.216-1. The Load Procedures · 161
1.217-1. $localTime 164
1.218-1. $localTimeToGMT . 164
1.219-l. log (Generic) 165
1.220-1. $log2 165
1.221-1. 10gFile . · 166
1.222-1. lookUpLogicalName 166
1.224-1. $majorVersion . . 167
1.225-1. $maxChar. · 167
1.226-1. $maxInteger . · 167
1.227-1. $maxLongInteger. 168
1.228-1. $minlnteger . 168

- xvii-

1.229-1. $minLonglnteger . 169
1.230-1. $minorVersion . 169
1.231-1. $modulelnfo. 170
1.232-1. $moduleName . 172
1.233-1. $moveCoroutine (Generic) . 173
1.234-1. msgMe. 173
1.235-1. msgMyCaller 174
1.236-1. new (Generic) . 174
1.237-1. $newArea. 177
1.237-2. $newArea attr Bits 178
1.238-1. $newException 178
1.239-1. new Page (Generic) . 179
1.240-1. $newRecords (Generic) 180
1.241-1. newScratch (Generic) . 181
1.242-1. $newScratchChars (Generic) 182
1.243-1. newString. 182
1.244-1. newUpperBound (Generic) . 183
1.245-1. $noCollectablePtrs 184
1.246-1. $noCollectableS trs 185
1.247-1. $noCompactablePtrs 185
1.248-1. nextAlpha. 186
1.249-1. $noHandler . 186
1.250-1. $nonRecursive . 187
1.251-1. noResponse . 187
1.252-1. $noTranslate 187
1.253-1. $nulChar . 188
1.254-1. $nullArrayExcpt . 188
1.255-1. $nullCallExcpt . 188
1.256-1. $nullPointerExcpt 189
1.257-1. octal. 189
1.258-1. omit. 190
1.259-1. open (Generic) . 190
1.259-3. Possible Combinations of openBits Bits Constants . 191
1.259-2. Predefined Bits Constants for openBits 192
1.260-1. openLibrary . 193
1.261-1. output 195
1.262-1. $overheadPercentExitValue 195
1.262-2. $overheadTooHighExcpt. 196
1.263-1. pageDispose (Generic). 196
1.264-1. $pageRead 197
1.265-1. $pageSize. 197
1.266-1. $pageWrite . 198
1.268-1. $pdf. 199
1.269-1. $platformNameAbbreviation 199
1.270-1. $platformN ameFull . 199
1.271-1. $platformNumber 200
1.272-1. $preferredRadix 200

- xviii -

1.273-1. prevAlpha 200
1.274-1. proceed. 201
1.275-1. $processorNameAbbreviation. 201
1.276-1. $processorNameFull 202
1.277-1. $processorNumber 202
1.278-1. $programlnterface 202
1.279-1. $programName 203
1.280-1. prompt. 203
1.281-1. $queryFileCacheParrns 204
1.282-1. $raise 205
1.282-2. Predefined Bits Constants for $raise ctrlBits 206
1.282-3. Predefined Bits Constants for $raise resultBits 206
1.283-1. $raiseReturn . 207
1.285-1. random. 207
1.286-1. reRead . 208
1.287-1. reWrite (Generic) . 209
1.288-1. read (Generic) . 210
1.289-1. $registerException 215
1.290-1. relFileNarne. 217
1.291-1. relModNarne 218
1.292-1. relPos 218
1.293-1. $removeBits . 219
1.294-1. $removeBoolean . 220
1.295-1. $removelnteger 220
1.296-1. $removeLeadingBlankSpace 221
1.297-1. $removeMemMngModule . 221
1.298-1. $removeDateAndTime 222
1.299-1. $removeReal 222
1.300-1. $removeLeadingBlankSpace 223
1.301-1. $removeWord . 223
1.302-1. $renarne 223
1.303-1. $reOpen 224
1.304-1. $reportAIIVersions . 225
1.306-1. $resumeCoroutine (Generic) 225
1.307-1. retain 226
1.308-1. $returnExcpt 227
1.309-1. $retumItNoHandler . 227
1.311-1. $reverseDateAndMonth 228
1.312-1. scan (Generic) . 228
1.312-2. Predefined Bits Constants for scan etrlBits . 231
1.313-1. seanRel (Generic) 232
1.314-1. scanSet. 233
1.315-1. $scanSet 234
1.316-1. seratchDispose (Generic) . 234
1.317-1. $searehCalIChain. 235
1.318-1. $setCommandLine . 236
1.319-1. $setConfigurationBit 236

- xix-

1.319-2. Configuration Bit Identifiers 237
1.320-1. $setExitCode 237
1.321-1. $setFileCacheParms. 238
1.322-1. setFileName . 239
1.323-1. setModName 239
1.324-1. setPos 242
1.325-1. $setSearchPath . 244
1.326-1. $setSystemBit . 245
1.327-1. $setTheDate . 245
1.326-2. System Bit Identifiers . 246
1.328-1. sin (Generic) 247
1.329-1. sinh (Generic) . . 247
1.330-1. size (Generic) 247
1.332-1. sqrt (Generic) 249
1.334-1. $stackOverftowExcpt . 249
1.335-1. $storageUnitRead 250
1.336-1. $storageUnitWrite 251
1.337-1. store (Generic) . 252
1.338-1. $strToDate 254
1.339-1. $strToDateAndTime 255
1.339-2. $strToDateAndTime ctrlBits Bits 256
1.340-1. $strToTime . 256
1.342-1. $subscriptExcpt 257
1.343-1. $systemExcpt 258
1.344-1. $systemNameAbbreviation . 258
1.345-1. $systemNameFull 258
1.346-1. $systemNumber 259
1.347-1. tab 259
1.348-1. tan (Generic) 259
1.349-1. tanh (Generic) . 260
1.350-1. $thisCoroutine . 260
1.351-1. thisDataSection 260
1.352-1. $time 261
1.353-1. $timeDifference 261
1.354-1. $timeFormat. 262
1.355-1. $timeSubcommandsSet 262
1.357-1. $timeout 263
1.358-1. $timeToStr 263
1.358-2. Predefined Bits Constants for $timeToStr ctrlBits . 264
1.359-1. truncate (Generic) 265
1.360-1. $truncateFile 265
1.361-1. $tstConfigurationBit 266
1.362-1. $tstSystemBit 267
1.363-1. ttycWrite . 267
1.364-1. $ ttyEofExcpt 267
1.365-1. uyRead. 268
1.366-1. ttyWrite 269

- xx-

1.367-1. $twelveHour 270
1.368-1. $two YearDigits 270
1.369-1. $typeName 270
1.369-2. MAINSAIL Data Type Codes and Corresponding Names. 271
1.370-1. unBind (Generic) . 271
1.371-1. $unboun~oduleExcpt 272
1.372-1. $unbuffered . 272
1.373-1. upperCase 272
1.374-1. useKeyWord 273
1.375-1. $useOriginalFileName . 273
1.376-1. $useProgramlnterface . 273
1.377-1. $userID 274
1.378-1. warning 275
1.379-1. write (Generic). 275
1.380-1. $writeCalls 279

- xxi-

- xxii -

1. System Procedures, Macros, and Variables

System procedures and macros provide services that support the execution of MAINSAIL
programs. System variables are accessible from any module; they are interface variables of
runtime modules to which every module is guaranteed to have linkage.

Sections 1.1, 1.2, and 1.3 describe the procedure qualifiers "COMPILETIME", 11$BUILTIN",
and "SPECIAL". These qualifiers apply only to system procedures (the programmer cannot use
them) and are described to help the user understand the system procedure declarations.

Section 1.5 gives a summary of the system procedures, macros, and variables. The remaining
sections give the procedure, macro, and variable descriptions in alphabetic order, except that
the load procedures (named "xLoad", where x is a data type abbreviation) are grouped together
under lIL". The complete headers of the procedures are specified, providing sufficient
information (e.g., about parameters) for a programmer to know how to call the procedures.

Macro declarations are shown as if they were procedures, except that "<macro>" is used
instead of "PROCEDURE". "COMPILETIME" is shown before the declaration of macros
evaluated at compiletime; other macros should be assumed to be evaluated at runtime. XIDAK
reserves the right to replace macros with equivalently declared variables or procedures and vice
versa without notice.

System variables are marked with the comment "# system variable".

Many of the system procedures are generic. In the procedure descriptions, only the generic
names are listed. XIDAK reserves the right to change the instance procedure names without
notice. XIDAK may also change a procedure that is not a generic into a generic procedure
without notice. In the description of a generic procedure, the instances of the procedure are
listed in the order in which they appear in the generic declaration.

Type codes are listed in Appendix A of part I of the "MAINSAIL Language Manual".

The "USES", "PRODUCES", and "MODIFIES" parameter qualifiers are described in Section
9.5 of part I of the "MAINSAIL Language Manual". "OPTIONAL" is discussed in Section
9.5.4 of part I of the "MAINSAIL Language Manual", and "REPEATABLE" in Section 9.5.5
of part I of the "MAINSAIL Language Manual".

Some procedures may have optional parameters that are not mentioned in the procedure
descriptions. If the user specifies a non-Zero value for such a parameter, the effect is
undefined.

- 1 -

When a procedure description refers to "the only valid bits" in a bits parameter b, only the bits
specified should ever be set in b. Setting bits not mentioned in the description has undefined
consequences.

Macros and the procedures qualified with "$BUlLTIN" cannot trigger a garbage collection, nor
can those qualified with "CO:MPILETI~" when all their arguments are constants, except as
noted in the description. It may be assumed (unless otherwise noted in the description) that any
other system procedures and macros may cause a collection to occur before returning.

If an error or an exception occurs during a call to a procedure or macro, a garbage collection
may occur regardless of whether the procedure's or macro's description says it cannot trigger a
collection.

1.1. The tI COMPILETIME" Procedure Qualifier

A call to a procedure qualified with "COMPILETI~" is evaluated by the compiler at
compiletime if all the arguments are constants.

For example, the system procedure "length" is declared as:

$BUILTIN COMPILETIME INTEGER PROCEDURE length (STRING s)

Writing "length("abc")" has the same effect as writing "3" into the program since the compiler
evaluates it.

1.2. The" $BUIL TIN" Procedure Qualifier

Calls to a procedure qualified with "$BUIL TIN" usually generate efficient inline code
sequences. XIDAK reserves the right to change any built-in procedure to a non-built-in
procedure or to change a non-built-in to an built-in procedure without notice.

1.3. The" SPECIAL" Procedure Qualifier

Calls to a procedure qualified with "SPECIAL" require some sort of special attention from the
compiler. Such procedures have properties that cannot be duplicated by the ordinary user.

1.4. Area Facility Declarations

In all system procedures with an optional "POINTER($area) " parameter, the parameter defaults
to $defaultArea if omitted. The destination area specified for a string operation is used if the

-2-

operation generates new text; otherwise, the result text mayor may not be in the specified area.
For example:

ss := cvu(s,myArea)

puts the text into my Area if any characters are converted to uppercase; if no characters change
case, then the text referenced by ss may refer to the same area as the text referenced by s. To
ensure that text for a string is in a particular area, use $getlnArea.

1.5. System Procedures, Variables, and Macros Summary

Table 1.5-1 contains a summary of all MAINSAIL system procedures, variables, and macros.

open
$ reOpen
close
$closedFile

open a file
open a file with new open bits
close a file
determine whether a file has been closed

$createUniqueFile

$devModBrk
$devModBrkStr

$delete
$ rename

$CopyFile

$truncateFile

getPos
setPos
relPos
$getEofPos

create file with unique name

device module name break character
string consisting of $devModBrk

delete a file
rename a file

copy (part of) one file to another

truncate a file'to given length

get file position
set file position
set relative file position
get end-of-file position of byte-stream
file

Table 1.5-1. System Procedures, Macros, and Variables Summary (continued)

- 3 -

eof

$gotValue

read
write

true when positioned at or beyond
end-of-file
determine if actually read last value;
better way of checking for end-of-file

read values
write values

$storageUnitRead
read a number of data efficiently from a
file

$storageUnitWrite
write a number of data efficiently to a
file

$characterRead read a number of characters efficiently
from a file

$characterWrite write a number of characters efficiently
to a file

$pageRead
$pageWrite

cRead

cWrite

read a page of data from a file
write a page of data to a file

read a character from file, string, or
charadr
write characters to file, string, or
charadr

$clearFileCache uncache all or part of file
$queryFileCacheParms

information about file cache
$setFileCacheParms

$concat
$dup
reRead

reWrite

fldRead
fldWrite

control file cache

concatenate strings (same as "&" operator)
perform multiple concatentations
reverse character read (from the end of
a string)
reverse character write (to the beginning
of a string)

read a string field
write a string field

Table 1.5-1. System Procedures, Macros, and Variables Summary (continued)

-4-

ttyRead
ttyWrite
ttycWrite

$removeBoolean
$removeBits
$ remove Integer
$removeReal

confirm
cmdMatch
errMsg

cmdFile
logFile

enterLogicalName

read a line from "TTY"
write values to "TTY"
write characters to "TTY"

parse boolean string
parse bits string
parse integer string
parse real string

get yes/no confirmation
match a command (command recognition)
raise an exception and/or write a message
and get a response

standard input file
standard output file

establish logical file name
lookUpLogicalName

find logical file name
$setSearchPath set file searchpath

$globalLookup
$globalEnter
$globalRemove

look up global symbol
enter global symbol
remove global symbol

$registerException
register an exception name so that it can
be raised in response to an errMsg prompt

$deRegisterException

$newException

$raise
$raiseReturn

undo $registerException

assign a unique exception name

raise an exception
terminate an exception handler

Table 1.5-1. System Procedures, Macros, and Variables Summary (continued)

- 5-

$exceptionBits return information about current exception
$exceptionName return name of current exception
$exceptionCoroutine

return raising coroutine of current
exception

$exceptionPointerArg
return pointer argument of current
exception

$exceptionStringArgl, $exceptionStringArg2

scanSet
$scanSet
scanRel

scan

return a string argument of current
exception

set up scan bit
set up scan integer
release scan bits or integers

scan a file or string according to a
scan specification

$removeLeadingBlankSpace, $removeTrailingBlankSpace
remove blank space from string

$removeWord remove non-blank chars from string

$formParagraph fill and justify string

$cvbo convert to boolean
cvi convert to integer
cvli convert to long integer
cvr convert to real
cvlr oonvert to long real
cvb convert to bits
cvlb convert to long bits
cvs convert to string
cvp convert to pointer
cva convert to address
cvc convert to charadr
cvAry convert to array
cvcs convert a character code to a

single-character string
cvu convert to upper case
cvl convert to lower case

Table 1.5-1. System Procedures, Macros, and Variables Summary (continued)

-6-

$length

first
last

length

compare

equ

isLowerCase

isUpperCase

iSAlpha

next Alpha

prevAlpha

isNul

copy

clear

newUpperBound

length of result of cvs

first character of a string
last character of a string

number of characters in a string

-1, 0 or 1 as result of (optionally
"caseless") comparison of two strings

checks (optionally "caseless") equality
of two strings

true if argument is a lowercase letter
("a" through "z")
true if argument is an uppercase letter
("A" through "Z")
true if argument is a letter ("A" through
"Z" or "a" through "z")

alphabetically next character after
argument character
alphabetically previous character before
argument character

true if argument is a "null" character

copy a record, array, memory, or
characters
clear a record, array, memory, or
characters

adjust the upper bound of a
one-dimensional array

$adrOfFirstElement
get the address of the first element of an
array

Table 1.5-1. System Procedures, Macros, and Variables Summary (continued)

-7 -

new
$newRecords
dispose

allocate a record, array, or data section
allocate multiple records
dispose of a record, array, data section,
or module

bind bind a module
unBind unbind a module

$canFindModule whether a module can be allocated without
error

$isBound whether a module is already bound

$invokeModule invoke a module the way MAINEX does

$useProgramInterface
true if bound because an interface
procedure called

$programName name under which MAINSAIL was invoked
$getCommandLine get program arguments
$setCommandLine set program arguments

thisDataSection return pointer to current data section
$moduleName return name of module, given data section

pointer

$searchCallChain

$writeCalls

$fieldInfo

$className
$classInfo

$dscrPtr
$classDscrFor

$isArray

find caller from particular module

show call stack of coroutine

return information about a record or
data section field
return name of class of a pointer
return names and types of record or
data section fields
class descriptor for pointer
class descriptor for a given class

true if pointer points to an array

Table 1.5-1. System Procedures, Macros, and Variables Summary (continued)

-8-

$createClassDscr

$createRecord

openLibrary
closeLibrary

setModName
relModName

setFileName
relFileName

exit
fastExit

$setExitCode

floor

ceiling

truncate

abs

bMask
lbMask

create a new class at runtime
create a record given a class descriptor

open a module library file
close a module library file

set a module name association
release a module name association

set a module file name association
release a module file name association

orderly exit from MAINSAIL
fast exit from MAINSAIL

set exit code for operating system

largest (long) integer not exceeding a
(long) real
smallest (long) integer not exceeded by a
(long) real
truncate a (long) real to a (long) integer

absolute value of a (long) integer or
(long) real
form a bits mask (sequence of l-bits)
form a long bits mask (sequence of l-bits)

Table 1.5-1. System Procedures, Macros, and Variables Summary (continued)

-9-

sin (long) real sine
cos (long) real cosine
tan (long) real tangent
Scot (long) real cotangent
aSin (long) real arcsine
aCos (long) real arccosine
aTan (long) real arctangent
$atan2 (long) real two-argument arctangent
sinh (long) real hyperbolic sine
cosh (long) real hyperbolic cosine
tanh (long) real hyperbolic tangent
exp (long) real exponential
In (long) real natural logarithm
log (long) real base-lO logarithm
sqrt (long) real square root

$log2 truncated base 2 logarithm of constant

$hash compute hash code

size size of a class or data type
$ioSize size of data type when written to file
$bitsPerStorageUnit

bits in a storage unit
$bitsPerChar bits in a character unit

$typeName name of a type, given type code

displace displace a pointer, address, or charadr
displacement, lDisplacement

eol
eop
tab
$nulChar

distance from one address or charadr to
another

end-of-line string
end-of-page string
tab string
null character

$pageSize storage units per page
$charsPerPage character units per page
$charsPerStorageUnit

character units per storage unit

Table 1.5-1. System Procedures, Macros, and Variables Summary (continued)

- 10-

(x) Load
cLoad
store

newString

$getToTop
$getlnArea

newPage
pageDispose

load a value (of type x) from an address
load a character from a charadr
store a value into an address or charadr

make a string from a charadr and an
integer (length)

put a string at top of string space
put a string in an area's string space

get some pages
dispose of pages

newScratch get some scratch space
$newScratchChars

get some scratch space measured in chars
scratchDispose dispose of scratch space

$date
$time
$dateAndTime
$setTheDate

$assembleDate

$assembleTime

get the date
get the time
get the date and time simultaneously
set the date, if necessary

convert year-month-date combination into
standard representation
convert hour-minute-second combination
into standard representation

$assembleDateAndTime
combined $assembleDate and $assembleTime

$disassembleDate
convert standard representation into
year-month-date combination

$disassembleTime
convert standard representation into
hour-minute-second combination

$disassembleDateAndTime
$disassembleDate and $disassembleTime

Table 1.5-1. System Procedures, Macros, and Variables Summary (continued)

- 11 -

$dateToStr convert date representation to string
$timeToStr convert time representation to string
$dateAndTimeToStr

combined $dateToStr and $timeToStr
$strToDate convert string to date representation
$strToTime convert string to time representation
$strToDateAndTime

combined $strToDate and $strToTime
$removeDateAndTime

parse date and time string

$addToDateAndTime
add two dates and times

$dateAndTimeDifference
subtract two dates and times

$dateAndTimeCompare
compare two dates and times

$dateFormat
$timeFormat

whether date is GMT, local, or difference
whether time is GMT, local, or difference

$convertDateAndTime
convert GMT time to local or vice versa

$timeSubcommandsSet
whether GMT conversion info available

$cpuTime get system-dependent CPU time for current
program

$cpuTimeResolution
number of $cpuTime units per second

$timeout pause for specified period

$userID return the system-dependent user ID, if
available

$cpuID return the system-dependent CPU ID, if
available

Table 1.5-1. System Procedures, Macros, and Variables Summary (continued)

- 12-

$currentDirectory

$homeDirectory
$directory
$fileInfo

$moduleInfo

name of system-dependent current working
or connected directory or catalog
home directory or catalog of current user
list files in a directory
return information about a file

information about objmod

$collect perform a garbage collection
$checkConsistency

$addMemMngModule

verify that MAINSAIL data structures are
in order

specify module to invoke before memory
management operations

$removeMemMngModule
undo $addMemMngModule

$collectLock used to prevent/permit garbage collections

$overheadPercentExitValue

$areaOf
$clearArea
$clearStrSpc
$defaultArea

used to prevent thrashing

determine area of pointer or string
empty an area
empty an area's string space
default area

$disposeArea reclaim an area
$disposeDataSecsInArea

dispose only data sections in area
$findArea find area with given title
$inArea determine if pointer or string in given

area
$newArea allocate area

Table 1.5-1. System Procedures, Macros, and Variables Summary (continued)

- 13 -

$createCoroutine
create a coroutine

$resumeCoroutine
continue or start execution in a coroutine

$killCoroutine get rid of a coroutine
$killedCoroutine

$moveCoroutine
$findCoroutine

$thisCoroutine

determine whether a coroutine has been
killed
move coroutine to another point in tree
return a pointer to a coroutine record,
given its name
current coroutine

$majorVersion, $minorVersion
get MAINSAIL version number

$maxChar maximum character code
$maxInteger maximum integer
$maxLongInteger maximum long integer
$minInteger minimum integer
$minLonglnteger minimum long integer

$platformNameAbbreviation, $platformNameFull,
$platformNumber

identify target platform
$ systemNameAbbreviat ion, $systemNameFull, $systemNumber

identify target operating system
$processorNameAbbreviation, $processorNameFull,

$processorNurnber
identify target processor

$attributes attributes of target system

$charSet character set of target operating system

$preferredRadix "natural" radix for addresses, etc.

$compileTimeValue
information about current compilation

$thisFileName file name currently being compiled

Table 1.5-1. System Procedures, Macros, and Variables Summary (continued)

- 14-

$clrConfigurationBit
clear bit governing runtime system

$clrSystemBit clear bit governing runtime system
$setConfigurationBit

set bit governing runtime system
$setSystemBit set bit governing runtime system
$tstConfigurationBit

$tstSystemBit
examine bit governing runtime system
examine bit governing runtime system

Table 1.5-1. System Procedures, Macros, and Variables Summary (end)

- 15 -

1.6. $abortProcedureExcpt

* system variable
STRING $abortProcedureExcpti

Table 1.6-1. $abortProcedureExcpt

$abortProcedureExcpt is a predefined exception that is raised when the execution of a
procedure is aborted, as described in Section 16.6 of part I of the "MAINSAIL Language
Manual". $abortProcedureExcpt should be caught by all procedures that must clean up after
themselves in some way.

1.7. $abortProgramExcpt

* system variable
STRING $abortProgramExcpti

Table 1.7-1. $abortProgramExcpt

$abortProgramExcpt is a predefined exception that is raised to abort a program.
$abortProgramExcpt is registered (with $registerException) at the start of a MAINSAIL
execution, so it can be raised by giving an appropriate reply to the "Error response:" prompt. It
is handled by falling out of the handler by MAINEX, MAINEDIT, MAINDEBUG, and other
system programs that operate as command interpreters, and should be so handled by user
programs that allow the invocation of arbitrary modules. $abortProgramExcpt basically means
to abort the current program and return to the level of command interpreter from which it was
invoked.

See also Section 16.8 of part I of the "MAINSAIL Language Manual".

- 16-

1.8. abs

$BUILTIN COMPILETIME
INTEGER
PROCEDURE

$BUILTIN
REAL
PROCEDURE

abs

abs

$BUILTIN COMPILETIME
LONG INTEGER
PROCEDURE

$BUILTIN
LONG REAL
PROCEDURE

abs

abs

(INTEGER v);

(REAL v);

(LONG INTEGER v);

(LONG REAL v);

Table 1.8-1. abs (Generic)

abs returns the absolute value of a (long) integer or (long) real.

1.9. aCos

REAL
PROCEDURE

LONG REAL
PROCEDURE

aCes (REAL r);

aCes (LONG REAL r);

Table 1.9-1. aCos (Generic)

aCos returns the arccosine of its argument, which is in radians.

- 17 -

1.10. $addMemMngModule

TEMPORARY FEATURE: SUBJECT TO CHANGE

PROCEDURE $addMemMngModule
(POINTER dataSec);

Table 1.10-1. $addMemMngModule

The user may write a module that provides procedures to be invoked at the start and end of a
garbage collection (garbage collections are not signaled through the exception mechanism,
since the exception mechanism itself can trigger garbage collections),

A garbage collection interception module's class must have the predeclared class
$memMngModule as its prefix class; see Table 1.10-2.

CLASS $memMngMod~le (
PROCEDURE $startOfMemMng;
PROCEDURE $endOfMemMng;

) ;

Table 1.10-2. The Class $memMngModule

The user indicates that a module of the class $memMngModule is to be a garbage collection
interception module by calling $addMemMngModule. dataSec is the data section of the
module. $addMemMngModule locks the data section in memory so that it is not swapped out
and is therefore resident when called.

Immediately before a collection starts, $startOfMemMng in each garbage collection
interception module is called. Procedures are called in the order of most recently added module
(with $addMemMngModule) to least recently added.

Immediately after a garbage collection terminates, $endOfMemMng is called in each garbage
collection module, in the same order as for $startOfMemMng.

- 18-

To prevent an infinite recursion, $collectLock is incremented before calls to $startOfMemMng
and $endOfMemMng. Therefore, the user risks an "Insufficient memory: exiting" termination
of MAINSAIL if a call to $startOfMemMng or $endOfMemMng allocates any data, either
directly or indirectly through any system facilities that allocate data.

A module is removed from the list of garbage collection interception modules by means of a
call to $removeMemMngModule.

Example 1.10-3 shows a sample garbage collection interception module. The module shown
should be bound from a program, not invoked from MAINEX; otherwise, the final procedure
will execute immediately, removing the module from the list of garbage collection interception
modules.

BEGIN "mmMsg"

MODULE ($memMngModule) mmMsgi

INITIAL PROCEDUREi
$addMemMngModule(thisDataSection)i

FINAL PROCEDUREi
$removeMemMngModule(thisDataSection)i

Assume ttyWrite cannot trigger a collection (true in
line-oriented mode in the present version of MAINSAIL) :

PROCEDURE $startOfMemMngi
ttyWrite("Doing memory management ... " & eol)i

PROCEDURE $endOfMemMngi
ttyWrite("Done with memory management." & eol);

END "mmMsg"

Example 1.10-3. Garbage Collection Interception Module

- 19-

1.11. $addToDateAndTime

BOOLEAN
PROCEDURE $addToDateAndTime

(LONG INTEGER date,time;
LONG INTEGER daysToAdd,

secondsToAdd;
PRODUCES LONG INTEGER

newDate,newTime;
OPTIONAL BITS ctrlBits);

Table 1.11-1. $addToDateAndTime

$addToDateAndTime performs addition on a date and time. new Date and newTime are the
resulting date and time after daysToAdd and secondsToAdd have been added to date and time,
respectively.

daysToAdd and secondsToAdd are interpreted as date and time differences (even if they fall
outside the normal date and time difference range). The absolute value of secondsToAdd may
exceed one day, and daysToAdd and secondsToAdd need not have the same sign.

date and time may be an absolute (GMT or local) date and time, or they may be a date and time
difference. new Date and newTime have the same format (GMT, local, or difference) as date
and time.

If either date or time is invalid, or if date and time do not have the same format, an error occurs,
false is returned, and both new Date and newTime are set to OL.

The only valid ctrlBits bit is errorOK. Unless it is specified, an error message is generated for
erroneous input values.

The standard MAINSAIL date and time formats are described in Section 19.1 of part I of the
"MAINSAIL Language Manual". Adding a number of days to a given date or adding a number
of seconds to a given time of day may be accomplished by means of the long integer "+"
operator.

- 20-

1.12. $adrOfFirstElement

ADDRESS
<macro> $adrOfFirstElement

(ARRAY a);

Table 1.12-1. $adrOtFirstElement

$adrOtFirstElement returns the address of the first element (the element stored at the lowest
memory address) of a. If a garbage collection occurs, a may be moved so that the value
returned by $adrOtFirstElement before the collection is no longer correct. The effect is
undefined if a is nullArray.

1.13. $allYearDigits

COMPILETIME
LONG BITS
<macro> $allYearDigits;

Table 1.13-1. SallYearDigits

$allYearDigits is a bit that specifies that all digits of a year are to be included in the output of
the procedure to which it is passed. It may be passed to SdateToStr and $dateAndTimeToStr.

1.14. $almostOutOfMemoryExcpt

TEMPORARY FEATURE: SUBJECT TO CHANGE

The predefined exception SalmostOutOfMemoryExcpt is raised when the maximum allowable
memory is exhausted. The maximum allowable memory is the value specified to CONF's
"MAXMEMORYSIZE" command when the current bootstrap was built, unless the integer
variable SallowedMemoryPercent is in the range 1 to 99, inclusive, in which case the maximum

- 21 -

system variable
STRING $almostOutOfMemoryExcpt;

Table 1.14-1. $almostOutOfMemoryExcpt

allowable memory is the specified percentage of the "MAXMEMORYSIZE" value. The user
program may set $allowedMemoryPercent as desired.

When the $almostOutOfMemoryExcpt exception is raised, $allowedMemoryPercent is
automatically increased to 100 so that the rest of memory is available for MAINSAIL to handle
the exception. If MAINSAIL runs out of memory while attempting to handle
$almostOutOtMemoryExcpt, it exits to the operating system after printing a message to "TIY".

The user's handler may reduce the value of $allowedMemoryPercent, if desired, but if reduced
to a value less than the fraction of memory already consumed by MAINSAIL, memory is not
somehow "given back" to the operating system.

Since there is no way at present for the user ~o ensure that the handling of
$almostOutOtMemoryExcpt does not cause MAINSAIL to request more memory from the
operating system, repeated catching of $almostOutOfMemoryExcpt is not guaranteed to work.

When $a1mostOutOfMemoryExcpt is raised, $exceptionStringArgl is:

cvs($allowedMemoryPercent)

and $exceptionStringArg2 is:

cvs«the number of pages needed»

These strings may be located in scratch space instead of string space, so they must be copied if
they are to be remembered after any subsequent raises of $almostOutOfMemoryExcpt.

- 22-

1.15. alterO K

COMPILETIME
BITS
<macro> alterOK;

Table 1.15-1. alterOK

alterOK is a bit that specifies that the target file may be deleted without prompting. It may be
passed to $createUniqueFile. open. $rename. and $reOpen.

1.16. append

COMPILETIME
BITS
<macro> append;

Table 1.16-1. append

append is a bit that specifies that a scan breaking character is to be appended to the scan result.
It may be passed to scan.

1.17. $areaOf

$ALWAYSINLINE
POINTER ($area)
PROCEDURE $areaOf (POINTER p) ;

Table 1.17-1. $areaOf (Generic) (continued)

- 23-

$ALWAYSINLINE
POINTER ($area)
PROCEDURE $areaOf (STRING s);

Table 1.17-1. $areaOf (Generic) (end)

$areaOf returns a pointer to the area containing the chunk pointed to by p or containing the text
of s. The result is nullPointer if p or s is Zero and undefined if p or s is dangling.

1.18. $arithmeticExcpt

* system variable
STRING $arithmeticExcpt;

Table 1.18-1. $arithmeticExcpt

$arithmeticExcpt is a predefined exception that is raised when a (long) integer or (long) real
overflow, underflow, or division by zero is detected by MAINSAIL. It may also be raised for
certain other conditions, such as invalid floating point formats. On many systems, some or all
of these conditions go undetected by MAINS All... , so $arithmeticExcpt is not raised. On some
systems, conditions that go undetected by default can be checked for by compiling modules
with the "ACHECK" compiler subcommand.

1.19. aSin

REAL
PROCEDURE

LONG REAL
PROCEDURE

aSin (REAL r);

aSin (LONG REAL r);

Table 1.19-1. aSin (Generic)

- 24-

aSin returns the arcsine of its argument, which is in radians.

1.20. $assembleDate

LONG INTEGER
PROCEDURE $assembleDate

(INTEGER year;
OPTIONAL INTEGER month, day;
OPTIONAL BITS ctrlBits);

Table 1.20-1. $assembleDate

$assembleDate returns a MAINSAIL date given the year, month, and day.

year must not be 0, and must include the century (e.g., a value of 84 refers to the year 84 A.D.,
not to 1984 A.D.). If month and day are zero, they default to 1; otherwise, month must be
between 1 (January) and 12 (December), inclusive, and day must be between 1 and 31,
inclusive. An error occurs if a non-existent day of the month is specified, e.g., the 31st of June
or the 29th of February in a non-leap year. If such an input value is detected, OL is returned.

The valid ctrlBits bits are $localTime, $gmt, and errorOK.

If $localTime is specified (or if neither $localTime nor $gmt is specified), the input values are
interpreted as a local date and returned in local date format. If $gmt is specified, a GMT format
date is returned.

Unless errorOK is specified, an error message is generated for erroneous input values.

The standard MAINSAIL date and time formats are described in Section 19.1 of part I of the
"MAINSAIL Language Manual".

- 25-

1.21. $assembleDateAndTime

PROCEDURE $assembleDateAndTime
(INTEGER year;
OPTIONAL INTEGER month, day,

hour,minute,second;
PRODUCES LONG INTEGER date, time;
OPTIONAL BITS ctrlBits);

Table 1.21-1. $assembleDateAndTime

$assembleDateAndTime produces a MAINSAIL date and time given a year, month, day, hour,
minute and second. If month and day are not specified, they default to 1. The restrictions on
the year, month, day, hour, minute, and second are the same as for $assembleDate and
$assembleTime; date and time are set to OL if erroneous values are detected.

Valid ctrlBits are errorOK, $localTime, $gmt, $localTimeToGMT, and $GMTtoLocaITime.
Of the latter four bits, at most one can be specified; they are interpreted as shown in Table
1.21-2.

Bit
$localTime
$localTimeToGMT
$GMTtoLocalTime
$ gmt

Input Parameters
Interpreted as
Local time
Local time
GMT
GMT

Output Format
for date and time
Local format
GMT format
Local format
GMT format

Table 1.21-2. $assembleDateAndTime ctrlBits Bits

If none of these four bits is specified, $localTime is assumed. The caveats described in Section
19.3 of part I of the "MAINSAIL Language Manual" regarding conversion between local time
and GMT apply if $localTimeToGMT is set.

Unless errorOK is specified, an error message is generated for erroneous input values.

- 26-

1.22. $assembleTime

LONG INTEGER
PROCEDURE $assembleTime

(INTEGER hour;
OPTIONAL INTEGER minute,second;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL BOOLEAN

success);

Table 1.22-1. $assembleTime

$assembleTime returns a MAINSAIL time given the hour, minute, and second.

hour must be between 0 and 23, inclusive, and minute and second between 0 and 59, inclusive.
All other values generate an error. If an erroneous input value is detected, OL is returned and
success is set to false. Note that OL is also a valid return value if $timeDifference is set in
ctrlBits and the time difference is zero seconds.

The valid ctrffiits bits are $localTime, $gmt, $timeDifference, and errorOK.

If $localTime is specified (or if neither $localTime nor $gmt is specified), the input values
interpreted as a local time and returned in local time format. If $gmt is specified, a GMT
format time is returned. If $timeDifference is specified, hour, minute, and second are treated as
a time difference; i.e., the value returned is:

cvli(hour) * 3600L + cvli(minute) * 60L + cvli(second)

Unless errorOK is specified, an error message is generated for erroneous input values.

The standard MAINSAIL date and time formats are described in Section 19.1 of part I of the
"MAINSAIL Language Manual".

- 27-

1.23. aTan

REAL
PROCEDURE

LONG REAL
PROCEDURE

aTan (REAL r);

aT an (LONG REAL r);

Table 1.23-1. aTan (Generic)

aTan returns the arctangent of its argumentt which is in radians.

1.24. $atan2

REAL
PROCEDURE

LONG REAL
PROCEDURE

$atan2 (REAL y, x) ;

$atan2 (LONG REAL y, x) ;

Table 1.24-1. $atan2 (Generic)

$atan2 returns the angle, in radianst with respect to the positive x-axis of a ray from the origin
to a point with coordinates (Xs). Angles increase counterclockwise. The value returned is
between minus pi and pi. If x and y are both positivet then "$atan2(y,x)" returns the same value
as "atan(y / x)".

The effect is undefined if both x and y are zerot since such values do not define a ray with
respect to the origin.

- 28-

1.25. $attributes

COMPILETIME
LONG BITS
<macro> $attributes;

Table 1.25-1. $attributes

Bits are set in $attributes depending on characteristics of the target processor/operating system
combination. Bits of interest to the user are described in Appendix D of part I of the
"MAINSAIL Language Manual".

1.26. binary

COMPILETIME
BITS
<macro> binary;

Table 1.26-1. binary

binary is a bit that specifies that a binary string representation is input to or output from the
procedure to which it is passed. It may be passed to cvb, cvlb, cvs, and $removeBits.

1.27. bind

SPECIAL
POINTER
PROCEDURE bind (MODULE mi

OPTIONAL BITS ctrlBitsi
OPTIONAL POINTER($area) area);

Table 1.27-1. bind (Generic) (continued)

- 29-

POINTER
PROCEDURE bind (STRING moduleName;

OPTIONAL BITS ctrlBits;
OPTIONAL POINTER($area) area);

Table 1.27-1. bind (Generic) (end)

If a bound data section is not already allocated for the module indicated by its argument, "bind"
allocates a bound data section for it. In any case, bind returns a pointer to the bound data
section. The control section is brought into memory, if necessary; it is found as described in
Section 12.2 of part I of the "MAINSAIL Language Manual".

The pointer returned is of the class associated with the module m.

In the string form of bind, moduleName is the name of the module to be bound. This allows
for those cases in which the name of the module to be bound has not been declared in the
program (e.g., it may be obtained from the user). The returned pointer is unclassified since the
compiler does not know the class of the anonymous module.

area is the area in which the bound data section is allocated.

Inaccessible bound data sections are not reclaimed by the garbage collector; bound data
sections must be explicitly disposed. Inaccessible nonbound data sections, however, are
collected.

The predefined valid bits constants for ctrlBits are shown in Table 1.27-2.

The procedure "new" (see Section 1.236) may be used to allocate non-bound data sections.

A related procedure, unBind, is described in Section 1.370.

1.28. $bitsPerChar

COMPILETIME
INTEGER
<macro> $bitsPerChar;

Table 1.28-1. $bitsPerChar

- 30-

Bit Meaning
$programInterface Cause the boolean macro

$useProgramInterface, if

errorOK

called in the bound module's
initial procedure before any
other procedure is called, to
return true (see Section 1.376) .

Return nullPointer if the module's
control section cannot be bound instead
of issuing an error message.

Table 1.27-2. Valid Bits for bind ctrlBits

$bitsPerChar is the number of bits in a character unit. It is always 8.

1.29. $bitsPerStorageUnit

COMPILETIME
INTEGER
<macro> $bitsPerStorageUnit;

Table 1.29-1. $bitsPerStorageUnit

$bitsPerStorageUnit is the system-dependent number of bits in a storage unit.

1.30. bMask

COMPILETlME
BITS
PROCEDURE bMask (INTEGER lowBit,highBit);

Table 1.30-1. bMask

- 31 -

bMask makes a "bit mask", which is a contiguous sequence of I-bits embedded within O-bits.

bMask returns a bits that consists of I-bits in the bit positions from 10wBit to highBit, and
O-bits everywhere else. The bits are numbered from right to left starting with O.

Ifb is a bits with all bits equal to I-bit, then the result is the same as "(b SHL 10wBit) CLR (b
SHL ChighBit + I»". The result is undefined if either 10wBit or highBit is less than 0 or greater
than or equal to the number of bits in a bits, and the result is '0 if 0 LEQ highBit < 10wBit.

IbMask (see Section 1.211) provides the same function for long bits.

A garbage collection cannot occur during a call to bMask.

1.31. break

bmask(3,8)
bmask(O,O)
bmask (1, 0)

'B111111000
'B1
, 0

Example 1.30-2. Use ofbMask

COMPILETIME
BITS
<macro> break;

Table 1.31-1. break

break is a bit that specifies that the scanning is to stop when one of the scan control characters
is reached. It may be passed to scan.

- 32-

1.32. $briefFormat

COMPILETIME
BITS
<macro> $briefFormat;

Table 1.32-1. $brietFormat

$briefFormat is a bit that specifies that a brief date or time string is to be output. It may be
passed to $dateAndTimeToStr, $dateToStr, and $timeToStr.

1.33. $canFindModule

BOOLEAN
PROCEDURE $canFinciModule

(STRING modName);

Table 1.33-1. $canFindModule

$canFindModule returns true if a call to "bind" or "new" would succeed for modName.

1.34. $cannotFallOut

COMPILETIME
BITS
<macro> $cannotFallOut;

Table 1.34-1. $cannotFallOut

$cannotFallOut is a bit that specifies that a handler for the exception in question is not allowed
to fallout. It may be passed to $raise and tested in $exceptionBits.

- 33 -

1.35. $cannotReturn

COMPILETIME
BITS
<macro> $cannotReturn;

Table 1.35-1. $cannotReturn

$cannotReturn is a bit that specifies that a handler for the exception in question is not allowed
to call $raiseReturn. It may be passed to $raise and tested in $exceptionBits. It is set in a call
to $raise made from errMsg if the fatal bit is set in the call to errMsg.

1.36. $caseIndexExcpt

* system variable
STRING $caseIndexExcpt;

Table 1.36-1. $caseIndexExcpt

$caselndexExcpt is a predefined exception that is raised when a Case Statement index does not
match any of the Case Statement's selectors.

1.37. ceiling

INTEGER
PROCEDURE ceiling

LONG INTEGER
PROCEDURE ceiling

(REAL v);

(LONG REAL v);

Table 1.37-1. ceiling (Generic)

- 34-

ceiling returns the smallest (long) integer greater than or equal to v.

See Table 1.169-3 for a table contrasting ceiling, cvi, floor, and truncate.

1.38. $character Read

LONG INTEGER

ceiling(10 .5) 11
ceiling(-10.5) -10

Example 1.37-2. Use of ceiling

PROCEDURE $characterRead
(POINTER (textFile) fi
LONG INTEGER numCharacters;
CHARADR memCharadri
OPTIONAL BITS ctrlBits);

Table 1.38-1. $characterRead

$characterRead is the text file counterpart to $storageUnitRead, which works only on data files.

$characterRead reads up to numCharacters characters into memory at memCharadr.
$characterRead does not filter out null characters; i.e., it acts as if the file had been opened with
the keepNul bit set. If end-of-file occurs before numCharacters characters have been read,
fewer than numCharacters are read; the number actually read is returned. The effect is
undefined if at least numCharacters characters' worth of scratch memory is not allocated at
memCharadr. If the file is opened for PDF I/O, the characters by default are translated from the
PDF to the host character set

The only valid ctrlBits bit is $noTranslate. If it is set and f is open for PDF I/O, no character
translation from PDF to the host character set is done.

$characterRead may be called for an unbuffered file (a file opened with the $unbuffered bit set).

- 35 -

1.39. $characterWrite

PROCEDURE $characterWrite
(POINTER (textFile) f;
LONG INTEGER numCharacters;
CHARADR memCharadr);

Table 1.39-1. $characterWrite

$characterWrite is the text file counterpart to $storageUnitWrite, which works only on data
files.

$characterWrite writes numCharacters characters from memory starting at memCharadr to f.
The effect is undefined if inaccessible memory is specified. If the file is opened for PDF I/O,
the characters by default are translated from the host to the PDF character set.

The only valid ctrlBits bit is $noTranslate. If it is set and f is open for PDF I/O, no character
translation from the host to the PDF character set is done.

$characterWrite may be called for an unbuffered file (a file opened with the $unbuffered bit
set).

1.40. $charSet

COMPILETIME
INTEGER
<macro> $charSet;

Table 1.40-1. $charSet

$charSet is the operating-system-dependent character set. Predefined values for $charSet are
described in Appendix E of part I of the "MAINSAIL Language Manual".

- 36-

1.41. $charsPer Page

COMPILETIME
INTEGER
<macro> $charsPerPagei

Table 1.41-1. $charsPerPage

$charsPerPage returns the operating-system-dependent number of character units per page
(equal to n$charsPerStorageUnit * $pageSizelt

).

1.42. $charsPerStorageUnit

COMPILETIME
INTEGER
<macro> $charsPerStorageUniti

Table 1.42-1. $charsPerStorageUnit

$charsPerStorageUnit returns the operating-system-dependent number of character units per
storage unit.

1.43. $checkConsistency

STRING
PROCEDURE $checkConsistencYi

Table 1.43-1. $checkConsistency

$checkConsistency traverses memory in the same way a garbage collection would, but it
performs no collection. If it finds any inconsistencies in MAINSAIL's data structures, it
returns a string error message. If it finds no inconsistency, it returns the null string.

- 37 ..

Inconsistencies are frequently introduced when a pointer is used to modify the field of a
disposed object (see Section 1.127), although other things can cause inconsistencies as well.

Strategically located calls to $checkConsistency may be used to determine where an
inconsistency first appeared. The MAINSAIL utility MM provides a way to invoke
$checkConsistency; see the "MAINSAIL Utilities User's Guide".

1.44. $classDscrFor

SPECIAL
POINTER($classDscr)
PROCEDURE $classDscrFor

(CLASS c);

Table 1.44-1. $classDscrFor

$classDscrFor returns the class descriptor for c. It is currently implemented by looking in a
table to see if there is already a class descriptor for c, and if not it creates one for it and stores it
in the table. Since $classDscrFor involves a search, if a given class descriptor pointer is to be
used often, it is more efficient to do "p:= $classDscrFor(c)" and reuse p than to call
$classDscrFor repeatedly. This procedure returns the same pointer as "$dscrPtr(new(c »", but
no new record of the class needs to be allocated.

1.45. $classInfo

BOOLEAN
PROCEDURE $classInfo (POINTER p;

PRODUCES OPTIONAL STRING
className,fieldNames,
fieldTypes;

PRODUCES OPTIONAL
POINTER ($classDscr) q;

OPTIONAL POINTER($area) area);

Table 1.45-1. $classlnfo

- 38 -

p is a pointer to a record, class descriptor, or data section. If p is invalid, false is returned;
otherwise, true is returned, and the produces parameters are set className is set to the name
(all upper case) of the associated class (i.e., to the same value returned by "$className(p),,).
fieldNames is set to the non-procedure field names (all upper case) separated by eol' s,
fieldTypesto the field type codes separated by eol's. q is set to the class descriptor for p (the
class descriptor for p may be obtained more efficiently by calling $dscrPtr). A unique class
descriptor exists for each class currently in use. area specifies the destination area for any
string text generated.

CLASS c
(INTEGER i; REAL X; STRING s; POINTER (c) link);

p := new(c);
$fieldInfo(p,className,fieldNames,fieldTypes);

The produces parameters are set as follows:

className = "C"
fieldNames "I<eol>X<eol>S<eol>LINK"
fieldTypes = "2<eol>4<eol>8<eol>11"

(2 = integerCode, 4 = realCode, 8 = stringCode,
11 = pointerCode)

<eol> indicates an embedded end-of-line string.

Example 1.45-2. Use of $classlnfo

1.46. $className

STRING
PROCEDURE $className (POINTER p);

Table 1.46-1. $className

P is a pointer to a record, class descriptor, or data section. The name of the associated class is
returned. If there is no associated class (e.g., p is nullPointer), the null string is returned. The
effect ifp points to a data section is described in Section 1.46.1.

- 39-

Class descriptor pointers may be obtained with $createClassDscr, $ciasslnfo, or $dscrPtr.

Since class names need not be unique within a MAINSAIL program, the correct way to
determine whether two records are of the same class is to compare their class descriptor
pointers (as returned by $dscrPtr).

1.46.1. $className of a Data Section

TEMPORARY FEATURE: SUBJECT TO CHANGE

The behavior of "$className(p)" if p points to a data is complicated and subject to change.

Let P point to a data section for some module M:

• If M has no interface data fields, $className returns the null string.

• Otherwise:

• If M has interface data fields that were not declared in some prefix class for
M, then $className returns the module name, i.e., "M". What really
happens is that the compiler creates a "dummy" class with name "M".

• Otherwise, M must have a prefix class that contributed the data field(s), say
a class C; $className returns the name of the prefix class, i.e., "C".

See Example 1.46.1-1.

It is not obvious that $className should behave this way, so the behavior is subject to change.
The reasoning behind this approach is that $className returns the name of the class that
describes the interface data fields of the data section. If there are no interface data fields, then it
returns null string; otherwise, it returns the name of the actual class if all the data fields came
from a class; otherwise, it returns the name of the dummy class created by the compiler to
describe the fields declared for the module, and the compiler happens to give this class the
name of the module.

-40 -

Given the declarations:

MODULE m (PROCEDURE faa);

MODULE n (INTEGER i; ...);

CLASS c (INTEGER j; ...);

MODULE (c) a (PROCEDURE faa);

MODULE (c) P (INTEGER i; ...)i

CLASS d (PROCEDURE bar);

MODULE (d) q (PROCEDURE faa);

then:

if p points to a
data section for;

M

then "$className(p)"
returns;

N

o
P
Q

""
"N"
"c"
"P"

""

Example 1.46.1-1. Behavior of $className with Data Section Arguments

1.47. clear

$BUILTIN
PROCEDURE clear (ADDRESS dst;

INTEGER n) ;

$BUILTIN
PROCEDURE clear (CHARADR dst;

INTEGER n) ;

Table 1.47-1. clear (Generic) (continued)

- 41 -

$BUILTIN
PROCEDURE clear (ADDRESS dst i

LONG INTEGER n)i

$BUILTIN
PROCEDURE clear (CHARADR dsti

LONG INTEGER n)i

PROCEDURE clear (POINTER p) i

PROCEDURE clear (LONG ARRAY dsti
OPTIONAL INTEGER n) i

PROCEDURE clear (LONG ARRAY dsti
OPTIONAL LONG INTEGER n) ;

Table 1.47-1. clear (Generic) (end)

"clear" is used to clear storage units, characters, a record, a data section, or an array.

The address forms of clear set the contents of n storage units starting with dst to Zero. dst must
be an aligned address and n must be a multiple of the size of a MAINSAIL data type;
otherwise, the effect is undefined.

The charadr forms of clear set the n character positions starting with dst to the character code O.

The effect of the address and charadr forms of clear is undefined if dst is Zero.

The pointer form of clear clears the record or data section pointed to by p; nothing happens if p
is nullPointer. Each field of the record pointed to by P is set to Zero. Clearing a data section
has the effect of clearing the interface, outer, and own variables. It is not specified whether
implicit module pointers are cleared (see Section 10.7 of part I of the "MAINSAIL Language
Manual").

The array forms of clear set the first n elements of the array dst to Zero (nothing happens if dst
is Zero). n is determined as follows:

m := IF NOT n .MAX 0 THEN <number of elements in array>
ELSE n MIN <number of elements in array>

If n is Zero in an address or charadr form of clear or negative in any form of clear, nothing is
cleared.

-42 -

A garbage collection cannot occur during a call to clear unless the object to be cleared is a data
section.

INTEGER ii
INTEGER ARRAY(O TO 1000) arYi

FOR i := 0 UPTO 1000 DO ary[i] ,= 0;

* could be written as clear(ary)

Example 1.47-2. Use of clear for an Array

1.48. $clear Area

PROCEDURE $clearArea (REPEATABLE POINTER($area) area);

Table 1.48-1. $clearArea

$clearArea clears area, i.e., sets it to its state immediately after allocation, thereby freeing most
of the memory occupied by area.

1.49. $clearStrSpc

PROCEDURE $clearStrSpc
(POINTER($area) area);

Table 1.49-1. $clearStrSpc

$clearStrSpc clears only the string space part of area. area's string space is cleared (converted
to empty string space, not free pages); the effects of subsequently accessing the text of strings
referencing area at the time $clearStrSpc was called are undefined.

- 43-

. One use of $clearStrSpc is shown in Example 1.49-2. The contents of a large array of real
numbers are to be written to a file in a particular format (no exponent, six digits after the
decimal point). Calling cvs many times to write a number in this fonnat uses a lot of string
space, but each string is used just once; it is created, written to the file, and then never used
again. The code in Example 1.49-2 clears the string space of the area "Foo" after every
hundredth string written, so that no more than a hundred numbers' worth of string space is in
use at any time. $clearStrSpc executes fairly quickly, so it is not unreasonable to call it after
every hundredth string is computed.

INTEGER i;
LONG INTEGER ii;

. POINTER($area) myArea;
REAL LONG ARRAY(lL TO 100000L) rAry;
POINTER (textFile) f;

area := $newArea("Foo",$noCollectablePtrs!
$noCompactablePtrs!$noCollectableStrs,2000L);

i := 0;
FOR ii := 1L UPTO 100000L DOB

write(f,cvs(rAry[ii],fixed!'6,myArea),eol);
IF i .+ 1 = 100 THENB

i := 0; $clearStrSpc(myArea) END END;
$disposeArea(myArea);

Example 1.49-2. Use of $clearStrSpc

1.50. $c1earFiIeCacbe

TEMPORARY FEATURE: SUBJECT TO CHANGE

$clearFileCache removes some or all of f's buffers from the file cache LRU list, optionally
writes dirty buffers, and optionally uncaches f. f's current buffer is altered if necessary, as
described below. If f is nullPointer, an error occurs and $clearFileCache returns FALSE. No
action is taken and $clearFileCache returns true if f is not cached.

$clearFileCache removes from the LRU list all of f's buffers of which the buffer boundary is
greater than or equal to pos. Dirty buffers removed from the LRU list are written if the delete
bit is not set in ctrIBits.

- 44-

BOOLEAN
PROCEDURE $clearFileCache

(POINTER(file) f;
OPTIONAL BITS ctrlBits;
OPTIONAL BOOLEAN unCacheFile;
OPTIONAL LONG INTEGER pos);

Table 1.50-1. $clearFileCache

If pos is not on a buffer boundary and falls within a cached buffer, the remainder of the buffer
is cleared and it is marked as dirty. If pos is equal to the butpos of the current buffer, the buffer
is cleared and marked as not dirty. In either case, if the buffer is dirty and the delete bit is not
set in ctrlBits, it is written before it is altered. The buffer remains cached.

If pos is nonZero, then unCacheFile is ignored. Otherwise, if unCacheFile is true, f is uncached
(the current buffer is removed from the cache and f's cache is disposed 01). IfunCacheFile is
false, the current buffer remains cached.

Valid ctrlBits are errorOK and delete. An error message is generated if an error occurs and
errorOK is not specified.

1.51. cLoad

$BUILTIN
INTEGER
PROCEDURE cLoad (CHARADR c;

OPTIONAL INTEGER dspl);

Table 1.51-1. cLoad

cLoad loads a character from a charadr. Another form of cLoad, which loads a charadr from an
address, is described in Section 1.216.

cLoad loads a character from the location given by "displace(c,dsplr', where dspl is a
displacement in characters.

The effect is undefined if c is Zero or if "displace(c,dspl)" is undefined. See Example 1.51-2.

- 45-

INTEGER ii
ADDRESS a;
CHARADR Ci

c := cLoad(a); # loads a charadr from location given by a
i := cLoad(c); # loads a character from character location

given by c

1.52. close

PROCEDURE

Example 1.51-2. Use of cLoad

close (MODIFIES POINTER(file) fi
OPTIONAL BITS closeBits);

Table 1.52-1. close

"close" closes (and optionally deletes) a file.

f is closed according to directives in closeBits, and then set to nullPointer.

The only valid predefined bits constants for closeBits are delete and errorOK. If delete is
specified, it indicates that the file should be deleted. The delete bit can also be specified to open
(Section 1.259), in which case the file is deleted when closed regardless of whether the delete
bit is specified io close.

The errorOK bit suppresses an error message if delete is specified and the file cannot be
deleted.

A file that was opened at some point during program execution should always be closed before
execution is complete. MAINSAIL automatically closes all files that are open at the end of
program execution; however, closing a file may free up resources (e.g., memory or operating­
system-dependent file handles) associated with an open file, so it is best to close a file as soon
as it is no longer needed.

Closing cmdFile or 10gFile has the effect of reopening it to "TTY".

- 46-

POINTER (dataFile) f;

open(f,"Input file: ",create!random!output!prompt);

close(f,delete); # never again need f

1.53. $c1osedFile

BOOLEAN
<macro>

Example 1.52-2. Use of close

$closedFile (POINTER(file) f);

Table 1.53-1. $closedFile

The macro $closedFile returns true if and only if the file f has been closed by a call to close.

1.54. closeLibrary

PROCEDURE closeLibrary
(STRING fileName);

Table 1.54-1. closeLibrary

closeLibrary closes the library file (see Chapter 12 of part I of the "MAINSAIL Language
Manual") with the name fileName, thereby eliminating it from taking part in module searches
(unless opened again).

Modules already obtained from the library are not affected by the library's being closed. Thus,
it is possible to open a library, obtain a module from the library, close the library, and then
continue to use the module. The runtime system preserves a copy of the module until it is
disposed.

-47 -

Example 1.54-2 calls a procedure p in a module m, assuming that the file "myLib" is an objmod
library that contains m.

MODULE m (PROCEDURE p)i

openLibrary ("myLib") i

bind(m);
closeLibrary ("myLib") i

Pi

Example 1.54-2. Use of closeLibrary

1.55. $clrConfigurationBit

TEMPORARY FEATURE: SUBJECT TO CHANGE

<macro> $clrConfigurationBit
(BITS b)i

Table 1.55-1. $clrConfigurationBit

$clrConfigurationBit clears various bits that control MAINSAIL execution. The bits are
documented in detail under $setConfigurationBit.

1.56. $clrSystemBit

TEMPORARY FEATURE: SUBJECT TO CHANGE

$clrSystemBit clears various bits that control MAINSAIL execution. The bits are documented
in detail under $setSysteinBit.

- 48-

<macro> $clrSystemBit
(BITS b);

Table 1.56-1. $clrSystemBit

1.57. cmdFiIe

system variable
POINTER (textFile) cmdFilei

Table 1.57-1. cmdFile

cmdFile is MAINSAa' s standard input file. cmdFile and logFile are described in Section
18.12 of part I of the "MAINSAa Language Manual".

1.58. $cmdFiIeEofExcpt

system variable
STRING $cmdFileEofExcpti

Table 1.58-1. $cmdFileEotExcpt

$cmdFileEotExcpt is a predefined exception that is raised when the end of cmdFile is reached
unless the configuration bit $noAutoCmdFileSwitching is set, as described in Section 18.12 of
part I of the "MAINSAIL Language Manual".

-49 -

1.59. cmdMatch

INTEGER
PROCEDURE cmdMatch (STRING ARRAY(*) cmdSi

OPTIONAL STRING promptStringi
OPTIONAL BITS ctrlBitsi
PRODUCES OPTIONAL STRING S)i

Table 1.59-1. cmdMatch

cmdMatch is a standard means of presenting a menu of commands to the user and recognizing
the user's choice or displaying the choices in response to a "?" prompt

cmdMatch matches a string (the match string) against the elements of cmds, and returns the
index of the element that matches. The default case (in which ctrffiits is '0) is described first; it
can be altered by setting various bits in ctrlBits.

promptString is written to 10gFile. A string is then read from cmdFile into s. The match string
is s.

A caseless comparison (see Section 4.8.1 of part I of the "MAINSAIL Language Manual") is
done between the match string and the elements of cmds (starting with the first) until either the
match string is matched or all elements have been examined.

If the match string exactly (ignoring upper and lower case distinctions) matches a command,
then that command is taken as the target command, and no further commands are examined.

If the match string matches an initial part of exactly one command, then that command is taken
as the target command.

If the match string matches an initial part of more than one command, " ... ambiguous" is written
to 10gFile and a new match string is read from cmdFile.

If the match string matches no command, " ... invalid" is written to 10gFile unless the first
character of the match string is "?" , in which case the valid commands are written, one per line
(the null string is written as "<eol>"). A new match string is read from cmdFile, and the
matching process begins again.

- 50-

If the ctrlBits parameter to cmdMatch has both noResponse and errorOK set, and promptString
is "?", the list of possible responses is written to logFile, as usual, and the value for
"ambiguous" (one greater than the upper bound of the cmds array) is returned.

The valid predefined bits constants shown in Table 1.59-2 may be set in ctrlBits to alter the
behavior of cmdMatch.

Example 1.59-3 shows how a comment may be put after lbe part of the command that is to take
part in the match.

STRING ARRAY(l TO 3) commands;

IF NOT commands THENB
new(commands);
INIT commands

END;

(

"NO HERALD
"NO PAGES
"COUNT
) ;

do not put a herald on each page",
do not print page numbers",
do not print: just count pages",

eommandIndex :- emciMatch(eomrnands,"command: ");

"command: " is written to logFile, and cmciMatch gets a
reply from cmdFile.

If "e", "C", "co", or "count" is typed, eomrnandIndex is
set to 3.

If "no" is typed, " ... ambiguous" is written to logFile,
and a new command is read from cmdFile.

If "pages" is typed, " ... invalid" is written to logFile,
and a new command is read from cmdFile.

If "?" is typed, the commands are typed, each on a new
line, then a new command is read from cmdFile.

Example 1.59-3. Use of cmdMatch

- 51 -

errorOK If the match string is ambiguous or invalid,
no message is written to logFile. An index
one greater than the upper bound (if the match
string is ambiguous) or one less than the
lower bound (if it is invalid) of cmds is
returned.

noResponse Do not write the prompt String to logFile or
read the match string from cmdFilei instead
use the promptString as the match string.

useKeyWord The first word (non-blank, non-tab characters
delimited by blanks or tabs) is removed from
the match string and is used as the match
string; the remainder of the match string,
leading blanks and tabs removed, is put into
s. Matches are attempted with the first word
of each element of cmds. If no match occurs
and errorOk (or noResponse) is set, the
original match string is produced in s. This
bit might be used, for example, for match
strings of the form:

upperCase

<keyword><blanks><parameters>

for which <keyword> is used as the match
string, and <parameters> is produced in s.

The cases of letters in the commands in the
cmds array are to be used to determine the
minimum unambiguous abbreviations for
commands. The part of the command sufficient
to cause a string to match (if it would
otherwise be ambiguous) should be uppercase,
and the remainder of the command lowercase.

Table 1.59-2. Predefined Bits Constants for the cmdMatch ctrlBits Parameter

Example 1.59-4 shows a use of the useKeyWord option. If the user types the line "pages 5",
cmdIndex is set to 1 and s is "5". Thus the "5" does not take part in the matching process, but
is produced in the final argument.

- 52-

STRING ARRAY(l TO 2) cmds;
INTEGER ni

STRING s;

new(cmds)i INIT cmds ("PAGES","COPIES");

cmdIndex :== cmdMatch(cmds,"command: ",useKeyWord,s);
n := cvi(s);

Example 1.59-4. Use of useKeyWord Option with cmdMatch

As an example of the use of the upperCase bit, if two cmds elements are:

Closelibrary
CLOSEINTLIB

then "Cit matches ItCLOSELIBRARylt instead of being ambiguous, as it would be if upperCase
were not set. The effect of following lowercase letters with uppercase letters in a command
element (e.g., "ClosELibRARylt) is undefined.

In detail, the rules for upperCase are:

• if the match string is exactly the same as a cmds element, ignoring case, that element
is taken to match, as usual, else

• if the match string is a prefix of only one cmds element, ignoring case, that element is
taken to match, as usual, else

• the cmds element is chosen of which the match string matches at least the entire
uppercase prefix; if several such such elements exist, the first one with the longest
uppercase prefix is chosen from them;

• if no element matches according to the above criteria, the match string is considered
ambiguous or invalid according to the usual rules.

So, in the case of the cmds elements "Closelibrarylt and "CLOSEINTLIB", ItCLIt , "CLO" ,
ItCLOS", and "CLOSE" also all match ItCLOSELmRARylt. In the case of the cmds elements:

ABc
Abc

"Alt matches "Abc" and "AB" matches "ABclt . In the case of the cmds elements:

- 53-

CHeck
CHECKALL

"c" is ambiguous; "CH", "CHE", "CHEC", and "CHECK" all match "CHeck".

1.60. $collect

PROCEDURE $collect (OPTIONAL INTEGER
kindOfCollection);

Table 1.60-1. $collect

The procedure $collect causes a garbage collection to occur.

If kindOfCollection is equal to stringCode, only strings are collected. If equal to pointerCode,
only non-strings (arrays, records, and data sections) are collected. IfkindOfCollection is Zero,
all collectable data are collected.

1.61. $collectableChkSpc

COMPILETIME
LONG BITS
<macro> $collectableChkSpc;

Table 1.61-1. $collectableChkSpc

$collectableChkSpc is a bit that specifies that an area's chunks are to be collected in automatic
garbage collections. It may be passed to $new Area.

- 54-

1.62. $coIlectableStrSpc

COMPILETIME
LONG BITS
<macro> $collectableStrSpc;

Table 1.62-1. $collectableStrSpc

$collectableChkSpc is a bit that specifies that an area's strings are to be collected in automatic
garbage collections. It may be passed to $newArea.

1.63. $coIlectLock

* system variable
INTEGER $collectLock;

Table 1.63-1. $collectLock

No automatic collection occurs if $collectLock is non-zero (collections may still be triggered
explicitly with $collect). Customarily, $collectLock is incremented by one before a section of
code in which collections are not to occur, then decremented by one afterwards. Assignment of
a specific value to $collectLock without saving the previous value is undefined, since
$collectLock may have a non-zero value even in ordinary user code.

If the programmer is not careful to redecrement $collectLock, collections may be locked out
indefinitely, which may cause the MAINSAIL execution to run out of memory.

- 55-

1.64. $compactableChkSpc

COMPILETIME
LONG BITS
<macro> $compactableChkSpci

Table 1.64-1. $compactableChkSpc

$compactableChkSpc is a bit that specifies that an area's chunks may be compacted (Le.,
moved around) in automatic garbage collections. It may be passed to $new Area.

1.65. compare

INTEGER
PROCEDURE compare (STRING r,si

OPTIONAL BITS ctrlBits) i

Table 1.65-1. compare

"compare" returns an integer that represents the comparison ofr and s.

compare returns -1 if r is less than s, 0 if r is equal to s, or 1 if r is greater than s. String
comparison is discussed in Section 4.8.1 of part I of the "MAINSAil... Language Manual" .

A single valid bits constant, upperCase, may be set in ctrlBits. If set, it means to ignore
distinctions between upper- and lowercase letters in the strings when doing the comparison.
"compare(r,s,upperCase)" returns the same value as "compare(cvu(r),cvu(s))" but is more
efficient.

In Example 1.65-2, the first form is more efficient since only a single comparison takes place.
In the second form two implicit calls to compare are generated, one for "<" and one for "=".

- 56-

CASE compare(r,8) OFB [-1] 81; [0] 82; [1] 83 END

i8 equivalent to

IF r < 8 THEN 81
EF r = 8 THEN 82
EL 83

Example 1.65-2. Use of compare

1.66. $compareIntmods

Two intmods can be compared using the procedure $compareIntmods. This feature is
documented in detail under INTCOM in the "MAINSAIL Utilities User's Guide".

1.67. $cornpareObjmods

Two objmods can be compared using the procedure $compareObjmods. This feature is
documented in detail under OBJCOM in the "MAINSAIL Utilities User's Guide".

1.68. $cornpile

$compile is a system procedure that invokes the MAINSAIL compiler. This feature is
documented in detail in the "MAINSAIL Compiler User's Guide".

1.69. $compileTimeValue

SPECIAL COMPILETIME
STRING
PROCEDURE $compileTimeValue

(STRING valueName);

Table 1.69-1. $compileTimeValue

- 57 -

The argument of the compiletime procedure $compileTime Value must be a string constant that
consists of a keyword, possibly followed by arguments if the keyword takes arguments. Case
is not distinguished in the keywords.

For each of the following keywords, the result is "TRUE" if the compiler option is in effect,
else the null string:

ALIST DEBUG FLDXREF GENCODE GENINLINES INCREMENTAL ITFXREF
MODTIME PERMOD PERPROC PERSTMT PROCS PROCTIME RECOMPILE
RESPONSE SAVEON SLIST UNBOUND

The effects of the following keywords are described in Chapter 15 of part I of the "MAINSAIL
Language Manual":

OPTIMIZE CHECKINGSTATUS LOCALCHECKINGSTATUS ACHECKINGSTATUS
LOCALACHECKINGSTATUS

$compileTimeValue("MONITOR") is "TRUE" if and only if:

$compileTimeValue("PERMOD") AND
$compileTimeValue("PERPROC") AND
$compileTimeValue("PERSTMT") AND
$compileTimeValue("PROCTIMEn) AND
$compileTimeValue("MODTIME")

$compiIeTimeValue(ItVERSION") returns a string in the form:

<majorVersion>.<minorVersion>

representing the current MAINSAIL version, e.g., 1t12.101t.

$compiIeTimeValue(ItFLI") is the FLI specification given to the ItFLllt subcommand (e.g.,
ItTC", Itpplt) if the current compilation is for an FLI, or the null string if the current compilation
is not an FLI compilation.

$compileTime Value("RPCIt) returns:

""
"C"
"MAINSAIL"

if the compilation is not an RPC compilation
if the compilation is a C RPC compilation
if the compilation is a MAINSAIL RPC compilation

$compileTimeValue(ItERRORSIt) is ItTRUE" if any errors have occurred in the current
compilation, the null string otherwise.

- 58 -

$compileTimeValue(ITHISFILENAME") is the name of the current source file, i.e., is
equivalent to $thisFileName.

$compileTimeValue("SOURCEFILE") returns the name of the file that sourcefiled the current
file, if it was sourcefiled; otherwise, it returns the null string.

$compileTimeValue("SOURCEFILE <file name>") returns "TRUE" if the named file can be
opened as a text file; otherwise, it returns the null string. This is useful to know whether or not
the current file is being used as a sourcefile, and could be used for deciding, e.g., whether to
compile a header (if being sourcefiled) or a module (if being compiled as a top-level file).

$compileTimeValue("THISMODULENAME") is the uppercase name of the module being
compiled, or the null string if the initial "BEGIN" and module name of a module have not yet
been encountered.

$compileTimeValue(tlTHISPROCEDURENAMEtI
) is the name of the procedure currently

being compiled, or the null string if a procedure body is not being compiled.

$compileTime Value("THISPAGENUMBERIt) is the current source file page number (where
pages are delimited by eop characters).

$compileTime Value("THISLINENUMBER It) is the current source file line number (relative to
the start of the current page).

$compileTimeValue("DATEANDTIl\1EIt) is the current date and time in the format:

dd-mm-yy hh:mm:ss

$compileTimeValue(ltDATEANDTIl\1EIt) recomputes the date and time for each call.

$compileTimeValue(ltRESTOREFROM <file or module name>It) returns "TRUEIt if it is
possible to perform a restorefrom from the named file or module, otherwise the null string. No
restorefrom is actually done.

$compileTimeValue(ltHASBODY <procedure>It) is ItTRUEIt if <procedure> is the name of a
procedure of which the body has been parsed during this compilation, the null string otherwise.
The test:

NOT $compileTimeValue("HASBODY <procedure>")

differs from:

NEEDBODY«procedure»

- 59-

in that the latter is true only if the procedure has been declared as forward and called (or is an
interface procedure of the current module), but not given a body; the former is true if and only
the procedure has not been given a body, regardless of whether it has been declared as forward
or called.

1.70. $concat

COMPILETIME
STRING
PROCEDURE $concat (STRING r,s;

OPTIONAL POINTER($area) area);

Table 1.70-1. $concat

The procedure $concat performs the operation specified by the MAINSAIL string
concatenation operator, "&"; i.e.:

$concat(r,s) = r & s

area is the destination area for the resulting string. $concat needs to be used instead of "&"
only if area is specified.

1.71. confirm

BOOLEAN
PROCEDURE confirm (OPTIONAL STRING msg,val);

Table 1.71-1. confirm

confirm gets a yes-no confirmation from cmdFile.

msg is first written to 10gFile. If val is not "", it is written to 10gFile, preceded and followed by
a blank. Then "(Yes or No):" is written to 10gFile. The user may respond with "yes" (or "y")
for yes, "no" (or "n") for no (case is not distinguished), or "?" for a help message. confirm
returns true if the response is yes, false if the response is no, and reprompts if the response is
"?".

- 60-

In Example 1.71-2, if the user types "y<eol>" or fly <eol> '\ true is returned. If the user types
"n<eol>" or "N<eol>", false is returned. Otherwise, a message is written to logFile, and the
user is reprompted until a valid response is obtained.

IF confirm ("OK to delete", f. name) THEN •..

The following is written to logFile
if f.name = "WORKSHEET":

OK to delete WORKSHEET (Yes or No) :

Example 1.71-2. Use of confirm

1.72. $convertDateAndTime

BOOLEAN
PROCEDURE $convertDateAndTime

(LONG INTEGER inputDate,inputTime;
PRODUCES LONG INTEGER

outputDate,outputTime;
OPTIONAL BITS ctrlBits);

Table 1.72-1. $convertDateAndTime

$convertDateAndTime converts a local date and time to GMT or vice versa, depending on the
format of the input date and time. A date or time difference is not a valid input to
$convertDateAndTime. True is returned if and only if no error occurs.

If inputDate and inputTime are in local time format, $convertDateAndTime converts a local
date and time, represented by inputDate and inputTime, to a Greenwich Mean Time date and
time, represented by outputDate and outputTime. It takes into account whether daylight
savings time is, was, or will be in effect at the local date and time; however, it is not specified
which GMT date and time is returned for the (ambiguous) local date and time during the
transition between daylight and standard time.

If inputDate and inputTime are in GMT format, $convertDateAndTime converts a Greenwich
Mean Time date and time, represented by inputDate and inputTime, to a local date and time,

- 61 -

represented by outputDate and outputTime. It takes into account whether daylight savings time
is, was, or will be in effect locally at the resulting local date and time.

The conversion may make an incorrect adjustment for daylight savings time if the current
algorithm for daylight savings time is not, was not, or will not be that in effect at the time
represented by inputDate and inputTime (e.g., due to incorrect values specified in the
MAINSAIL bootstrap or a change in statutes governing daylight savings time). The conversion
may fail if$timeSubcommandsSet is false and the date is too close to the earliest or latest day
the operating system can represent (e.g., 1 January 1970 on UNIX).

errorOK may be set in ctrlBits. If errorOK is set, any error messages that might be generated
by invalid input values are suppressed.

1.73. copy

$BUILTIN
PROCEDURE copy (ADDRESS src,dst;

INTEGER n) ;

$BUILTIN
PROCEDURE copy (CHARADR src,dst;

INTEGER n) ;

$BUILTIN
PROCEDURE copy (ADDRESS src,dst;

LONG INTEGER n);

$BUILTIN
PROCEDURE copy (CHARADR src,dst;

LONG INTEGER n);

PROCEDURE copy (POINTER src,dst);

PROCEDURE copy (LONG ARRAY src,dst;
OPTIONAL INTEGER n);

PROCEDURE copy (LONG ARRAY src,dst;
OPTIONAL LONG INTEGER n) ;

Table 1.73-1. copy (Generic)

- 62-

copy is used to copy storage units, characters, a record, or an array.

The pointer form of copy copies the record pointed to by src to the record pointed to by dst.
The number of storage units copied is determined by the smaller of the two records. The effect
is undefined if src and dst are not class compatible. It is an error if src or dst is a pointer to a
data section.

The array forms of copy copy the first m elements of the src array to the first m elements of the
dst array. The two arrays must be of the same data type. m is determined as follows:

ml := elementsInSrcArray MIN elementsInDstArraYi
m := IF NOT n .MAX O(L) THEN ml ELSE n MIN mli

The address forms of copy copy n storage units from memory starting at src to memory starting
at dst. src and dst must be aligned addresses and n must be a multiple of the size of a
MAINSAil.. data type; otherwise, the effect is undefined.

The charadr forms of copy copy n characters from memory starting at src to memory starting at
dst.

Neither src nor dst may be Zero for any form of copy. For the pointer and array forms, this
situation generates an error; for the address and charadr forms, the result is undefined.

If n is Zero or negative in any form of copy, no data movement takes place.

In the address and charadr forms, the effect is undefined if the somce and destination areas of
memory overlap.

A garbage collection cannot occur during a call to copy.

CLASS c (BITS b,Ci STRING S)i
POINTER (c) p,qi

p := new(c)i q := new(c)i

p.b := q.bi p.c := q.Ci p.s := q.Si

i could be accomplished with: copy(q,p)

Example 1.73-2. Use of copy

- 63-

1.74. $copyFile

PROCEDURE $copyFile (POINTER (file) src,dst;
OPTIONAL LONG INTEGER copyLen) ;

Table 1.74-1. $copyFile

$copyFile copies a portion of the file src to the file dst. It is an error if src is not open for input
or dst is not open for output. No operation is performed if src equals dst.

The amount of data to be copied is measured in characters if src and dst are text files and in
storage units if they are data files. It is computed as "IF NOT copyLen THEN <end-of-file
position of src> - <current position of src> ELSE copyLen MIN «end-of-file position of src> -
<current position of src»". $copyFile copies the amount of data to be copied, starting at the
current positions of src and dst. It is more efficient than calling $storageUnitRead and
$storageUnitWrite or $characterRead and $characterWrite to store the data to be copied in a
temporary area.

If the files are text files and keepNul was not set in the. open bits for src, null characters are
discarded during the copy. In this case, the actual number of characters copied to dst is
copyLen minus the number of null characters discarded. $copyFile of a text file is more
efficient if keepN ul was· set when src was opened.

1.75. $corootineExcpt

* system variable
STRING $coroutineExcpt;

Table 1.75-1. $coroutineExcpt

$coroutineExcpt is a predefined exception that is raised when the end of a coroutine's
initializing procedure is reached without calling $resumeCoroutine.

- 64-

1.76. cos

REAL
PROCEDURE

LONG REAL
PROCEDURE

cos (REAL r);

cos (LONG REAL r);

Table 1.76-1. cos (Generic)

cos returns the cosine of its argument, which is in radians.

1.77. cosh

REAL
PROCEDURE

LONG REAL
PROCEDURE

cosh (REAL r);

cosh (LONG REAL r);

Table 1.77-1. cosh (Generic)

cosh returns the hyperbolic cosine of its argument, which is in radians.

- 65-

1.7S. $cot

REAL
PROCEDURE

LONG REAL
PROCEDURE

Scot (REAL r);

Scot (LONG REAL r);

Table 1.78-1. Scot (Generic)

Scot returns the cotangent of its argument, which is in radians.

1.79. $cpuID

STRING
PROCEDURE $cpuID;

Table 1.79-1. $cpuID

The CPU ID of the machine on which MAINSAIL is running is returned as a string, if it is
available. If unavailable, the null string is returned. The CPU ID is unavailable on many
operating systems; see the appropriate operating-system-specific user's guide for details.

On some operating systems, a configuration bit can be set to cause MAINSAIL to call a user­
defined procedure for $cpuID. The user defines a procedure $a1ternateCpuID in an FLI module
called $aCpuID; this mechanism is documented in detail in the operating-system-specific user's
guides for the systems on which it is supported.

- 66-

1.80. $cpuTime

LONG INTEGER
PROCEDURE $cpuTime;

Table 1.80-1. $cpuTime

$cpuTime returns the number of CPU time units used by the current process.
$cpuTimeResolution is the number of $cpuTime units per second and is operating-system­
dependent. If the operating system has no notion of per-process CPU time, this procedure
returns the elapsed (wall clock) time.

It is unspecified whether this measurement incllldes operating system overhead on behalf of the
process. However, if the operating system provides measures of CPU time both including and
excluding time spent by the operating system, the former value is returned.

Programs may not assume that the first call to $cpuTime returns the value OL. In addition, it is
possible that the CPU timer may wrap around during the execution. On most systems such
wraparound is quite rare.

The accuracy of $cpuTime is not guaranteed to be better than one second.

1.81. $cpuTimeResolution

LONG INTEGER
<macro> $cpuTimeResolution;

Table 1.81-1. $cpuTimeResolution

$cpuTimeResolution returns the operating-system-dependent number of CPU time units per
second. The value returned by $cpuTime is measured in CPU time units.

- 67-

1.82. cRead

$BUILTIN
INTEGER
PROCEDURE

INTEGER
PROCEDURE

$BUILTIN
INTEGER
PROCEDURE

INTEGER
PROCEDURE

cRead (MODIFIES STRING S)i

cRead (POINTER(textFi~e) f);

eRead (MODIFIES CHARADR e)i

eRead (POINTER{dataFile) f);

Table 1.82-1. cRead (Generic)

cRead returns the character code of either the current character in an input file, or the first
character of a string, or the character addressed by a charadr. After the character is obtained,
the file is positioned to the next character, or the character is removed from the string, or the
charadr is displaced by one character. In the case of a data file, characters are stored one per
character unit, as in a text file.

In the file forms, if the file is opened for PDF I/O, the character may be translated from the PDF
to the host character set

-1 is returned by the string and file forms if the string is ttll or the end of the file has been
reached. cRead from nullCharadr is undefined.

Example:

i : = cRead (f)

reads the current character from textFile f and puts its code into i. f is then positioned to the
next character.

- 68-

1.83. create

COMPILETIME
BITS
<macro> create;

Table 1.83-1. create

create is a bit that specifies that the output file is new, i.e., is to be created (completely replacing
any existing file by the same name). It may be passed to $createUniqueFile, open, and
$reOpen.

1.84. $createClassDscr

POINTER ($classDscr)
PROCEDURE $createClassDscr

(STRING className,fieldNames,
fieldTypes;

OPTIONAL BITS ctrlBits);

Table 1.84-1. $createClassDscr

$createClassDscr creates a class descriptor from the information given by the arguments, and
returns a pointer to it. This class descriptor pointer can be used to allocate records with
$createRecord. The fields of the class $classDscr are not documented. classN ame is the name
of the class (the effect is undefined if it is not a valid MAINSAIL identifier), fieldNames is the
field names separated by eol' s, and fieldTypes is the field data types separated by eol' s, just like
the corresponding values returned by $classlnfo; the effect is undefined if more than one eol
occurs between values, or at the start or end of either string. className and fieldNames are
converted to upper case befor being stored in the class descriptor. className and fieldNames
may be the null string, but fieldTypes must consist of a valid sequence of data type codes.
Possible errors are an invalid fieldType and too many fieldNames. If an error occurs,
nullPointer is returned and an error message is generated unless ctrlBits has the predefined bit
errorOK set. errorOK is the only valid ctrlBits bit.

The class descriptor of a pointer is returned by $dscrPtr.

- 69-

Example 1.84-2 shows how a new class descriptor can be created. In this case, a new class
descriptor is created from an existing one by changing the first field to be of the integer data
type.

STRING s;
POINTER($classDscr) cd;
POINTER p,q; * assume p points to the class descriptor
$classInfo(p,className,fieldNames,fieldTypes) ;
read(fieldTypes,s); * discard first type code
cd := $createClassDscr(* give it a different

"INTEGER" & className, * name to distinguish it
fieldNames, * assume that we know it has more than one field
cvs(integerCode) & eol & fieldTypes);

q := $createRecord(cd); * allocate record of new class

Example 1.84-2. Use of $createClassDscr

1.85. $createCoroutine

POINTER ($coroutine)
PROCEDURE $createCoroutine

(POINTER initDataSec;
STRING initProcName;
OPTIONAL STRING coroutineName;
OPTIONAL INTEGER stackPages;
OPTIONAL BITS ctrlBits;
OPTIONAL POINTER($coroutine)

parent) ;

Table 1.85-1. $createCoroutine

$createCoroutine is used to create a new coroutine. If successful, it allocates a stack and a
$coroutine record and returns a pointer to the record. The class $coroutine is described in
Chapter 17 of part I of the "MAINSAIL Language Manual". The $coroutine pointer can be
used to resume or kill the coroutine or access the fields of the $coroutine record.
$createCoroutine does not start the coroutine executing; it just allocates and initializes the

-70 -

coroutine. A subsequent call to $resumeCoroutine is used to transfer control to it and have it
start executing.

initDataSec points to the data section to be used when the coroutine is first resumed. This
pointer can be obtained from the MAINSAIL system procedure bind, new, or thisDataSection.

initProcName is the name of the procedure where execution is to start when the coroutine is
first resumed. The procedure must be typeless and parameterless, and must be in a module for
which initDataSec is a data section. MAINSAIL does not check whether the named procedure
is in fact typeless and parameterless; violation of this rule results in undefined behavior.

coroutineName is the name (which is converted to upper case) to be given to the coroutine. It
can be any string, except that it must not be the same as the name for any existing coroutine. If
the argument is omitted, the next name from the sequence "coroutine 1 ", "coroutine2" ,
"coroutine3", ... is used.

The name of the root coroutine is "MAINSAIL".

stackPages is the number of pages to be allocated for the stack. If omitted, the default specified
in the bootstrap is used. It is difficult to estimate how large the stack should be; if a coroutine
involves a deeply nested set of procedure calls, or a deep level of recursion, then the default
stack size may not be sufficient. If a stack does overflow, the program may fail in some
undefined manner.

The only valid ctrlBits bit is errorOK, which indicates that if an error is detected (e.g.,
coroutineName is already assigned), then no error message is to be generated. In any case, an
error causes nulIPointer to be returned.

parent specifies the parent coroutine of the new coroutine. If parent is Zero, the coroutine is
created as a child of the current coroutine.

1.86. $createRecord

POINTER
PROCEDURE $createRecord

(POINTER Pi
OPTIONAL POINTER ($area) area);

Table 1.86-1. $createRecord

-71 -

P is a pointer to a record, class descriptor, or data section. If p is invalid, an error message is
generated and nullPointer returned. Otherwise, a record is allocated with the data fields
described by the associated class descriptor, and a pointer to the record is returned. The record
is allocated in area.

An example of the use of $createRecord is to allocate a record of the same class as another
record of which the class is not known at compiletime, as shown in Example 1.86-2.

POINTER p,q;
... p gets set to a record of an unknown class ...
q := $createRecord(p);

Example 1.86-2. Use of $createRecord

1.87. $createUniqueFile

BOOLEAN
PROCEDURE

BOOLEAN
PROCEDURE

$createUniqueFile
(PRODUCES POINTER (textFile) f;
BITS openBits);

$createUniqueFile
(PRODUCES POINTER (dataFile) f;
BITS openBits);

Table 1.87-1. $createUniqueFile (Generic)

$createUniqueFile creates a uniquely named file. This is useful for temporary files created by
several instances of the same program on the same file directory. If successful, it returns true,
with f equal to the newly opened file (opened with openBits, as described for the system
procedure "open", except that create is always set and prompt is ignored); otherwise, it returns
false, and f is Zero.

Between the time a unique file name is found and the time that the file is created, it is possible
for some other process to create a file with the same name. The probability of this happening is
small but increases with the number of processes creating files on the same directory.

-72 -

Unique file names are presently of the form "z<number>.tmp", where <number> is an integer
of up to five digits. This format is subject to change.

1.88. $eurrentDireetory

STRING
PROCEDURE $currentDirectory

(OPTIONAL BITS etr1Bits;
PRODUCES OPTIONAL STRING msg);

Table 1.88-1. $currentDirectory

If the operating system has a notion of a current working or connected directory or catalog, this
procedure returns its name. If there is no such notion, or if it is not possible to determine the
current working directory from a program, is returned. Consult the appropriate operating­
system-specific MAINSAIL user's guide for details. If an error occurs, msg is set to a string
describing the error, and if errorOK is not set in ctrlBits, an error message is issued. errorOK is
the only valid bit in ctrlBits.

1.89. eva

$BUILTIN
ADDRESS
PROCEDURE eva (POINTER p);

$BUILTIN
ADDRESS
PROCEDURE eva (CHARADR e);

$BUILTIN
ADDRESS
PROCEDURE eva (LONG INTEGER 1);

Table 1.89-1. cva (Generic) (continued)

-73 -

$BUILTIN
ADDRESS
PROCEDURE eva

$BUILTIN COMPILETIME
ADDRESS
PROCEDURE eva

(LONG BITS b) i

(ADDRESS a)i

Table 1.89-1. cva (Generic) (end)

cva converts to address.

The long integer and long bits forms return the address represented by 1 or b. This is a
machine-dependent conversion; the same integer or long bits value may not correspond to a
valid address on every machine.

The charadr form returns the address of the storage unit containing the character addressed by
c. The address may be rounded down to the next lower data-type-aligned address (i.e.,
"cvc(cva(c»" may return a charadr less than c). The bit pattern of the resulting address is not
necessarily the same as that of c, since the formats of charadrs and addresses may differ. If cis
nullCharadr, cva returns nullAddress.

The pointer form returns the address of the object referenced by p. If pis nullPointer, the result
is nullAddress. The object referenced by p is subject to garbage collection; its address may
change after the call to cva.

ADDRESS ai

POINTER Pi

a := displaee(eva(p),size(integerCode))

Example 1.89-2. Use of cva

Example 1.89-2 assigns to a the address that is displaced by the number of storage units in an
integer from the address of the object referenced by p.

The address form of cva returns its argument.

-74 -

1.90. cvAry

$BUILTIN
PROCEDURE

$BUILTIN
PROCEDURE

cvAry

cvAry

(POINTER p;
PRODUCES ARRAY a);

(LONG ARRAY a;
PRODUCES ARRAY b);

Table 1.90-1. cvAry (Generic)

cv Ary converts a long array, or a pointer to an array element chunk, to an array.

The pointer form converts an element chunk (as produced by cvp) back into an array. The
conversion is syntactic only; no actual copying or moving of elements is performed.

The long array form converts a long array into a short array. No actual copying or moving of
elements is performed. The effect is undefined if a does not satisfy the short-array rule, as
described in Section 7.9 of part I of the tlMAINSAIL Language Manualtl .

A short array may be converted to a long array by means of an assignment statement; i.e., a
short array is implicitly converted to a long array.

1.91. cvb

$BUILTIN COMPILETIME
BITS
PROCEDURE

BITS
PROCEDURE

cvb

cvb

(INTEGER i);

(STRING s;

OPTIONAL BITS radix);

Table 1.91-1. cvb (Generic) (continued)

-75 -

$BUILTIN COMPILETIME
BITS
PROCEDURE cvb

$BUILTIN COMPILETIME
BITS
PROCEDURE cvb

$BUILTIN COMPILETIME
BITS
PROCEDURE cvb

(LONG BITS b);

(LONG INTEGER i);

(BITS b)j

Table 1.91-1. cvb (Generic) (end)

cvb converts to bits.

The (long) integer forms convert i to the bit pattern for its binary representation, truncated on
the left if necessary; i.e .• if i is nonnegative, "cvs(cvb(i),binary)" produces the string that is the
standard mathematical base-two representation for i's value. If i is a negative constant, the
compiler issues an error message; but this is subject to change.

The long bits form discards high-order bits if there are fewer bits in a bits than in a long bits on
the target system.

The bits form returns its argument.

"b:= cvb(s)" produces the same result as "r:= s; read(r,b)", where r is a temporary string
variable. The valid bits for radix are binary, hex, and octal (octal is assumed if radix is not
specified); s is assumed to contain a value in the specified radix unless s contains an explicit
radix specifier ("'B", "'H", "'a", or '"'' (the latter is equivalent to "'a"», in which case the
explicit radix specifier overrides the radix bit.

cvb(97) '141
cvb('723L) '723
cvb("Location '134 in error.") '134

Example 1.91-2. Use of cvb

-76 -

1.92. $evbo

BOOLEAN
PROCEDURE $evbo (STRING s);

Table 1.92-1. $cvbo

$cvbo scans s for the string representation "lRUE" or "FALSE". Case is ignored As soon as
one of these string representations is found or there are no more characters in the source string,
the scan stops. $cvbo returns true if the characters "lRUE" were found in the source string;
otherwise, it returns false.

The characters "TRUE" or "FALSE" need not be preceded or followed by a blank, tab, or end
of line.

1.93. eve

$BUILTIN
CHARADR
PROCEDURE eve (STRING s);

$BUILTIN
CHARADR
PROCEDURE eve (ADDRESS a);

$BUILTIN
CHARADR
PROCEDURE eve (LONG BITS bb);

$BUILTIN
CHARADR
PROCEDURE eve (CHARADR e);

Table 1.93-1. cvc (Generic)

cvc converts to charadr.

-77 -

The string form returns the charadr that addresses the first character of s. If s is in string space
and a garbage collection occurs, the charadr that addresses the first character of s may change.
If s is Zero, nullCharadr is returned.

The address form returns the charadr of the first character in the storage unit addressed by a. If
a is nullAddress, nullCharadr is returned.

The long bits form returns a charadr with the same bit pattern as bb. The effect is undefined if
bb is not a valid charadr bit pattern. The effect is undefined on machines where the size of a
charadr and the size of a long bits differ.

The charadr form returns its argument

STRING S;
CLASS stringDser (CHARADR e; INTEGER 1);
POINTER (stringDser) Pi

p := new(stringDser);
p.e .= eve(s)i
p.l := length(s)i

Example 1.93-2. Use of cvc

In Example 1.93-2, the string variable s contains the same information as the record pointed to
by p, though s's representation is machine-dependent and may be more compact than
stringDscr records. s may also be subject to garbage collection if its characters are located in
string space; the fields of the record are not updated if s is moved.

1.94. eves

STRING
PROCEDURE eves (INTEGER chari

OPTIONAL POINTER($area) area)i

Table 1.94-1. cvcs

cvcs converts a character code to the string that consists of the single character with the code
char. area specifies the destination area for the resulting string.

-78 -

1.95. cvi

cvcs(65) "A" 41= assuming the ASCII character set
41= in which 65 is the code for "A"

Example 1.94-2. Use of cvcs

$BUILTIN COMPILETIME
INTEGER
PROCEDURE cvi

INTEGER
PROCEDURE cvi

$BUILTIN
INTEGER
PROCEDURE cvi

$BUILTIN COMPILETIME
INTEGER
PROCEDURE cvi

$BUILTIN COMPILETIME
INTEGER
PROCEDURE

$BUILTIN
INTEGER
PROCEDURE

cvi

cvi

$BUILTIN COMPILETIME
INTEGER
PROCEDURE cvi

(BITS b)i

(STRING S)i

(REAL x) i

(LONG INTEGER i)i

(LONG BITS b) i

(LONG REAL x) i

(INTEGER i) i

Table 1.95-1. cvi (Generic)

cvi converts to integer.

-79 -

The long integer fonn converts to a different internal format, if necessary. Overflow is not
necessarily detected.

The integer form returns its argument.

The (long) real forms round x to the nearest integer. If x is exactly halfway between two
integers (Le., has a fraction of 0.5), the direction of rounding is unspecified.

The (long) bits forms convert b to the integer with the corresponding bit pattern, truncated on
the left if necessary. If b is a constant bit pattern representing a negative number, the compiler
issues an error message; but this is subject to change.

If s is a string, "i := cvi(s)" has the same result as "r := s; read(r,i)" , where r is a temporary
string variable.

See Table 1.169-3 for a table contrasting ceiling, cvi, floor, and truncate.

cvi(1876L)
cvi(10.4)
cvi(-10.6)
cvi(10.5)
cvi('234)

1876
10
-11

- 10 or 11 (unspecified)

cvi("There are 10 errors")
156
10

1.96. cvl

$BUILTIN
INTEGER
PROCEDURE

COMPILETIME
STRING
PROCEDURE

cvl

cvl

Example 1.95-2. Use of cvi

(INTEGER cha r) ;

(STRING s;
OPTIONAL POINTER($area) area);

Table 1.96-1. cvl (Generic)

- 80-

cvl converts a character or string to lower case.

The string form converts a string to all lower case (i.e., the uppercase letters "A" through "Z"
are converted to the corresponding lowercase letters "a" through "z", and other characters are
unchanged).

If char is the code of an uppercase letter, then the integer form returns the code of the
corresponding lowercase letter. Otherwise, "cvl(char)" ~ equal to char.

area specifies the destination area for the resulting string.

1.97. cvlb

cvl ("ABc")
cvl("A2$")

cvl('M')
cvl('n')

"abc"
"a2$"

'm'
, n'

Example 1.96-2. Use of cvl

$BUILTIN COMPILETIME
LONG BITS
PROCEDURE cvlb

$BUILTIN COMPILETIME
LONG BITS
PROCEDURE cvlb

$BUILTIN COMPILETIME
LONG BITS
PROCEDURE

LONG BITS
PROCEDURE

cvlb

cvlb

(BITS b) i

(INTEGER i);

(LONG INTEGER i);

(STRING Si

OPTIONAL BITS radix);

Table 1.97-1. cvlb (Generic) (continued)

- 81 -

$BUILTIN
LONG BITS
PROCEDURE

$BUILTIN
LONG BITS
PROCEDURE

cvlb

cvlb

$BUILTIN COMPILETIME
LONG BITS
PROCEDURE cvlb

(ADDRESS a);

(CHARADR c) ;

(LONG BITS bb);

Table 1.97-1. cvlb (Generic) (end)

cvlb converts to long bits.

The (long) integer forms convert i to the bit pattern for its binary representation, sign-extending
on the left if necessary. If i is a negative constan~ the compiler issues an error message; but
this is subject to change.

The bits form converts to a different format, if necessary. If there are more bits in the long bits
data type than in the bits data type, the extra leftmost bits are cleared.

The charadr form returns a long bits with the same bit pattern as c. The effect is undefined on
machines where the size of a charadr and the size of a long bits differ (at present, the sizes of
charadr and long bits are the same on all MAINSAIL implementations).

The long bits form returns its argument.

If s is a string, "b:= cvlb(s)" has the same result as "r:= s; read(r,b)", where r is a string
temporary variable. The valid bits for radix are binary, hex, and octal (octal is assumed if radix
is not specified); s is assumed to contain a value in the specified radix unless s contains an
explicit radix specifier CUB", "'H", "'Olt, or Ittlt (the latter is equivalent to IttO"», in which case
the explicit radix specifier overrides the radix bit.

The address form returns the bit pattern of a.

- 82-

1.98. cvli

evIb (123)
evIb (' 123)
evIb("The bits are '456")

...

Example 1.97-2. Use of cvlb

$BUILTIN COMPILETIME
LONG INTEGER
PROCEDURE evIi

LONG INTEGER
PROCEDURE evIi

$BUILTIN COMPILETIME
LONG INTEGER
PROCEDURE evIi

$BUILTIN
LONG INTEGER
PROCEDURE evIi

$BUILTIN COMPILETIME
LONG INTEGER

(INTEGER i);

(STRING s);

(BITS b);

(REAL x);

'173L
, 123L
'456L

PROCEDURE evIi (LONG BITS b);

$BUILTIN
LONG INTEGER
PROCEDURE

$BUILTIN

evIi

LONG INTEGER
PROCEDURE evIi

(LONG REAL x);

(ADDRESS a);

Table 1.98-1. cvli (Generic) (continued)

- 83 -

$BUILTIN COMPILETIME
·LONG INTEGER
PROCEDURE cvli (LONG INTEGER ii);

Table 1.98-1. cvli (Generic) (end)

cvli converts to long integer.

The integer form converts to a different internal format, if necessary; the result has the same
mathematical value as i.

The long integer form returns its argument.

The (long) real forms round x to the nearest long integer. If x is exactly halfway between two
long integers (Le., has a fraction of 0.5), the direction of rounding is unspecified.

The (long) bits forms convert b to the long integer with the corresponding bit pattern, zero­
filling on the left if necessary. If b is a constant bit pattern representing a negative number, the
compiler issues an error message; but this is subject to change.

If s is a string, "i := cvli(s)'t has the same result as "r := s; read(r,i)", where r is a temporary
string variable.

The address form returns the long integer corresponding to the bit pattern of a.

cvli(10)
cvli(310.5)
cvli(-310.5)
cvli('130)
cvli ("Result: 1087")
cvli(NULLADDRESS)

10L
310L or 311L (unspecified)
-310L or -311L (unspecified)
88L
1087L
OL

Example 1.98-2. Use of cvli

- 84-

1.99. cvlr

$BUILTIN COMPILETIME
LONG REAL
PROCEDURE cvlr

$BUILTIN COMPILETIME
LONG REAL
PROCEDURE

LONG REAL
PROCEDURE

cvlr

cvlr

$BUILTIN COMPILETIME
LONG REAL
PROCEDURE cvlr

$BUILTIN COMPILETIME
LONG REAL
PROCEDURE cvlr

(INTEGER x) ;

(REAL x);

(STRING s);

(LONG INTEGER x);

(LONG REAL x);

Table 1.99-1. cvlr (Generic)

cv lr converts to long real.

The (long) integer forms convert x to a long real with an equivalent mathematical value,
provided that the value of x can be represented exactly as a long real value; otherwise, the
result is rounded or truncated in an unspecified direction.

The real form converts to a different internal format, if necessary.

The long real form returns its argument.

If s is a string, "x:= cvlr(s)" has the same effect as "r:= s; read(r,x)", where r is a temporary
string variable.

- 85 -

cvlr(l)
cvlr("The value is 123.1234E-23")

1.L
123.1234E-23L

Example 1.99-2. Use of cvlr

1.100. cvp

$BUILTIN
POINTER
PROCEDURE

$BUILTIN
POINTER
PROCEDURE

cvp

cvp

$BUILTIN COMPILETIME
POINTER
PROCEDURE cvp

(ADDRESS a);

(LONG ARRAY a);

(POINTER p) ;

Table 1.100-1. cvp (Generic)

cvp converts to pointer.

The address fonn converts an address to a pointer. The result is undefined unless the address
either is nullAddress or points to a chunk allocated by the MAINSAIL runtime system; in the
fonner case the result is nullPointer.

The array form returns a pointer to a's element chunk. The fonn of an element chunk is not
documented and is subject to change without notice. If a is nullArray, nullPointer is returned.

The pointer fonn returns its argument

cv Ary may be used to convert a pointer to an element chunk to an array.

- 86-

1.101. cvr

INTEGER ARRAY(l TO 8) ai

POINTER Pi

p := cvp(a)i * p points to a's element chunk

Example 1.100-2. Use of'cvp

$BUILTIN COMPILETIME
REAL
PROCEDURE cvr

$BUILTIN COMPILETIME
REAL
PROCEDURE

REAL
PROCEDURE

cvr

cvr

$BUILTIN COMPILETIME
REAL
PROCEDURE cvr

$BUILTIN COMPILETIME
REAL
PROCEDURE cvr

(INTEGER x) i

(LONG REAL x);

(STRING s);

(LONG INTEGER x);

(REAL x) i

Table 1.101-1. cvr (Generic)

cvr converts to real.

The (long) integer forms convert x to a real with an equivalent mathematical value, provided
that the value of x can be represented exactly as a real value; otherwise, the result is rounded or
truncated in an unspecified direction.

- 87-

The long real form converts x to a real with an equivalent mathematical value, provided that the
value of x can be represented exactly as a real value. If x has too great a magnitude to be
represented as a real, the result is undefined; overflow is not necessarily detected. If x does not
have too great a magnitude to be represented as a real, but cannot be represented exactly as a
real, it is.rounded or truncated in an unspecified direction.

The real form returns its argument.

If s is a string, "x := cvr(s)" has the same effect as "r := s; read(r,x)" , where r is a temporary
string variable.

1.102. cvs

STRING
PROCEDURE cvs (BOOLEAN V;

OPTIONAL POINTER ($area) area) ;

COMPILETIME
STRING
PROCEDURE cvs (INTEGER i;

OPTIONAL POINTER ($area) area) ;

STRING
PROCEDURE cvs (BITS b;

OPTIONAL BITS form;
OPTIONAL POINTER ($area) area) ;

STRING
PROCEDURE cvs (REAL X;

OPTIONAL BITS form;
OPTIONAL POINTER ($area) area) ;

COMPILETIME
STRING
PROCEDURE cvs (LONG INTEGER i;

OPTIONAL POINTER($area) area);

Table 1.102-1. cvs (Generic) (continued)

- 88-

STRING
PROCEDURE

STRING
PROCEDURE

evs

evs

$BUILTIN COMPILETIME
STRING
PROCEDURE evs

(LONG REAL x;
OPTIONAL BITS for.m;
OPTIONAL POINTER ($area) area);

(LONG BITS-b;
OPTIONAL BITS for.m;
OPTIONAL POINTER($area) are~).;

(STRING s);

Table 1.102-1. cvs (Generic) (end)

cvs converts to string.

The boolean form of cvs returns "TRUE" if the boolean value is true and "FALSE" if it is false.

The (long) integer forms convert to the string that is the constant representation qf., except that
the long integer form does not append "L".

The (long) real forms create the string that is the constant representation of x, except that the
long real form does not append "L". The optional "fonn" argument gives the programmer
some control over the format. The rightmost 8 bits of form, i.e., "cvi(form MSK 'HFF)",
specify the number of digits to follow the decimal point. Roundoff or addition of tJJ!iling z~ros
is used to make the proper number of fraction digits. The two valid predefined bits constants
that may be set in form are shown in Table 1.102-2.

Bit Name
fixed
exponent

Meaning
do not use an exponent
do use an exponent

Table 1.102-2. Valid Bits for form in the (Long) Real Form of cvs

The exponent is always the letter "E" followed by at least two digits (with a leading "0" if the
magnitude of the exponent is less than 10). A nonnegative exponent is separated from "E" with

- 89-

tI + tI. All digits go after the decimal point in the exponent form if the rightmost 8 bits of form
are not set.

If neither fixed nor exponent is specified (this is the default), an attempt is made to give the
simplest representation; "form MSK 'HFF" is not used The width of the r~sulting §triIll~ i~ not
the same for every possible value.

When forming the default representation, roundoff occurs at the last significant digit if ther@ w@
any fraction digits (this helps prevent values like ".9999999" for 1). No exponeqt ap~M in
the result string if the decimal point would fall immediately ~fore, within, or immediately after
the significant digits; otherwise, an exponent is used.

If "form MSK 'HFF" is Zero, and exponent is specified. the numbvr Qf fraction digits i~ taken
to be the number of significant digits in x, minus one,

The (long) bits forms create the string that is the constant repl"csentauon of b, ~x:cept th~t the
long bits form does not append "L". The form argument give~ the progr~rner ~me control
over the format. The four valid bits constants predefined for form are shown in Tt\bl~ LI02",3.
The octal format is used if neither binary nor hex is specified.

Bit Name
binary
octal
hex
formatted

Meaning
output in base 2
output in base 8
output in base 16
precede constant with sin~le quote and
base letter, as in program text

Table 1.102-3. Valid Bits for form in the (Long) Bits Forms of cvs

The string form returns its argument

area specifies the destination area for the resulting string.

- 90-

cvs(123)
cvs(456L)

cvs(123.456)
cvs(123.456,exponent!'4)
cvs(.123456E3,fixed!'4)

cvS('H123)
cvs('H123,formatted)
cvs('H123,binary)
cvS('H123,formatted!binary)
cvs ('H123,hex)
cvs('H123,formatted!hex)

"123"
"456"

"123.456"
".1235E+03"
"123.4560"

"443"
"'0443"
"100100011"
"'B100100011"
"123"
'" H123"

Example 1.102-4. Use of cvs

1.103. cvu

$BUILTIN
INTEGER
PROCEDURE

COMPILETIME
STRING
PROCEDURE

cvu

cvu

(INTEGER char);

(STRING S;
OPTIONAL POINTER($area) area);

Table 1.103-1. cvu (Generic)

cvu converts a character or string to upper case.

The string form converts a string to all upper case (i.e., the lowercase letters "a" through "z" are
converted to the corresponding uppercase letters "A" through "Z", and other characters are
unchanged). area specifies the destination area for the resulting string.

If char is the code of a lowercase letter, then the integer form returns the code of the
corresponding uppercase letter. Otherwise, "cvu(char)" is equal to char.

- 91 -

cvu("aBc") "ABC"
cvu("a2$") = "A2$"
cvu (' a') , A'
cvu('M') 'M'

IF rand s are string variables, then:

IF cvu (r) cvu(s) THEN
IF cvu(r) < cvu(s) THEN

are more efficiently written as:

IF equ(r,u,upperCase) THEN ...
IF compare(r,u,upperCase) < 0 THEN

1.104. cWrite

PROCEDURE

PROCEDURE

$BUILTIN
PROCEDURE

PROCEDURE

PROCEDURE

Example 1.103-2. Use of cvu

cWrite

cWrite

cWrite

cWrite

cWrite

(MODIFIES STRING s;
REPEATABLE INTEGER char);

(POINTER (textFile) f;
REPEATABLE INTEGER char);

(MODIFIES CHARADR C;
REPEATABLE INTEGER char);

(MODIFIES STRING s;
POINTER ($area) area;
REPEATABLE INTEGER char);

(POINTER (dataFile) f;
REPEATABLE INTEGER char);

Table 1.104-1. cWrite (Generic)

- 92-

cWrite writes a character to a file, a string, or a charadr.

The file fonns put a character into the current character position in an output file f and update
the current position to be the next position in the file. In the case of a data file, characters are
stored one per character unit, as in a text file. If the file is opened for PDF 110, the character
may be translated to the PDF character set.

The string forms append the character to the end of s. IQ the area fonn, area specifies the
destination area for the resulting string.

cWrite(f,'a',' ',98)

has the same effect as "write(f,"a b")" if the character
set is ASCII, since 98 is ASCII for "b". Portable
programs cannot assume the ASCII character set.

cWrite(s,'a',' ',98)

has the same effect as s .& "a btl.

Example 1.104-2. Use of the File and String Fonns of cWrite

The charadr form puts the character with code char into the character location given by its
charadr argument. The charadr is then positioned to the next character location. The effect is
undefined if the charadr is nullCharadr. Example 1.104-3 writes the character "b" to the
character location c.

CHARADR c;

cWrite (c, 'b')

Example 1.104-3. Use of the Charadr Form of cWrite

- 93-

1.105. $date

LONG INTEGER
PROCEDURE $date (OPTIONAL BITS ctrlBits);

Table 1.105-1. $date

$date returns the current date.

The valid predefined bits constants for ctrlBits are $localTime, $gmt, and errotOK.

If $localTime is specified (or if neither $localTime nor $gmt is specified), the local date is
returned, if available. If $gmt is specified, the GMT date is returned, if available.

If errorOK is specified and the date is not provided by the operating system and has not been
set with $setTheDate, OL is returned. If errorOK is not specified, the user is prompted for the
date if not provided by the operating system and not set with $setTheDate.

$dateAndTime should be used if both date and time are to be obtained for the same instant.
Otherwise, a wraparound can occur at midnight.

The standard MAINSAIL date and time formats are described in Section 19.1 of part I of the
"MAINSAIL Language Manual".

1.106. $dateAndTime

PROCEDURE $dateAndTime
(PRODUCES LONG INTEGER date, time;
OPTIONAL BITS ctrlBits);

Table 1.106-1. $dateAndTime

$dateAndTime returns the current date and the time. If possible, it obtains both the date and
time at the same instant to guard against the wraparound at midnight that might occur if they
were obtained individually.

- 94-

The valid predefined bits constants for ctrlBits are $localTime, $gmt, and errorOK.

If $localTime is specified (or if neither $localTime nor $gmt is specified), the local date and
time are returned, if available. If $gmt is specified, the GMT date and time are returned, if
available.

If errorOK is specified and the date or time is not available, OL is returned for the unavailable
value or values. If errorOK is not specified and the date and/or time is unavailable, the user is
prompted for the date and/or time.

1.107. $dateAndTimeCompare

INTEGER
PROCEDURE $dateAndTimeCompare

(LONG INTEGER dl,tl,d2,t2;
OPTIONAL BITS ctrlBits);

Table 1.107-1. SdateAndTimeCompare

SdateAndTimeCompare compares two dates and times.

If the two dates and times are absolute (GMT or local, but they need not be the same format;
i.e., the start time may be GMT and the stop time local or vice versa, provided time conversion
is available), $dateAndTimeCompare returns -1 if the time represented by the date dl and the
time t1 is before the time represented by the date d2 and the time t2, 0 if the two times are the
same, and 1 if the second time is after the first If the two dates and times are differences,
$dateAndTimeCompare returns -1 if the interval represented by the number of days dl and the
number of seconds tl is less than the interval represented by the number of days d2 and the
number of seconds t2, 0 if the two intervals are the same, and 1 if the second interval is greater
than the first

If input values are invalid or of incompatible formats, -2 is returned and, unless the ctrlBits bit
errorOK is set, an error message is issued.

The standard MAINSAIL date and time formats are described in Section 19.1 of part I of the
"MAINSAIL Language Manual".

- 95-

1.108. $dateAndTimeDifference

BOOLEAN
PROCEDURE $dateAndTimeDifference

(LONG INTEGER startDate,startTime;
LONG INTEGER stopDate,stopTime;
PRODUCES LONG INTEGER

dateDif,timeDif;
OPTIONAL BITS ctrlBits);

Table 1.108-1. $dateAndTimeDifference

$dateAndTimeDifference produces the difference between two MAINSAIL date-time pairs.

startDate, startTime, stopDate, and stopTime must be valid MAINSAIL dates and times; they
may be absolute (GMT or local) dates and times or date and time differences.

If the times are absolute (they need not be the same format; i.e., the start time may be GMT and
the stop time local or vice versa, provided time conversion is available), the start time is
startTime on startDate, and the stop time is stopTime on stopDate. If the times are time
differences, the start time is simply subtracted from the stop time. The difference between the
start time and the stop time is dateDif days plus timeDif seconds in time difference format (so
that the magnitude of timeDif is always less than one day). dateDif and timeDif have the same
signs, unless one is zero and the other is not. If the start time is before the stop time (if inputs
are absolute) or less than the stop time (if inputs are differences), the difference is positive; if
after or greater, it is negative.

$dateAndTimeDifference returns false if any of the argument dates and times is invalid or in an
incompatible format, true otherwise.

The only valid ctrlBits bit is errorOK. Unless it is specified, an error message is generated for
erroneous input values.

The standard MAINSAIL date and time formats are described in Section 19.1 of part I of the
"MAINSAIL Language Manual". Subtracting one date from another in the same format or
subtracting one time of day from another in the same format may be accomplished by means of
the long integer "-" operator~

- 96-

1.109. $dateAndTimeToStr

STRING
PROCEDURE $dateAndTimeToStr

(LONG INTEGER date, time;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL STRING

dateStr,timeStr,zoneStr;
OPTIONAL POINTER($area) strArea;
OPTIONAL LONG BITS ctrlBits2);

Table 1.109-1. $dateAndTimeToStr

$dateAndTimeToStr converts a MAINSAIL date and time to a string. date and time may be in
local time, GMT time, or time difference format By default, a local time string is returned.

If ctrlBits is not specified, the output format of $dateAndTimeToStr is the same as the output
formats of $dateToStr and $timeToStr, separated by a space; e.g.:

$dateAndTimeToStr(d,t) = $dateToStr(d) & " " & $timeToStr(t)

except that if a time zone name appears in the string, $dateAndTimeToStr appends it only once
to the end of the string, or if a plus or minus precedes a time difference string, it is included in
the string only once.

dateStr, timeStr, and zoneStr are the date, time, and time zone name substrings, respectively, of
the returned string. Some settings of ctrIBits may cause dateStr and timeStr to be different
from those that would be returned by $dateToStr and $timeToStr, and these strings may not be
correctly parsed if passed to $strToDate or $strToTime.

ctrlBits and ctrIBits2 bits valid for $dateToStr and $timeToS tr are also valid for
$dateAndTimeToStr, with the same effects. In addition, $localTime and $gmt may be specified
in ctrIBits. If $localTime or $gmt is specified, a local time or GMT string is returned,
respectively. The caveats described in Section 19.3 of part I of the "MAINSAIL Language
Manual" regarding conversion between local time and GMT apply if date and time are in local
format and $gmt is set or vice versa.

- 97-

1.110. $dateFormat

BITS
PROCEDURE $dateFor.mat (LONG INTEGER date);

Table 1.110-1. $dateFonnat

$dateFonnat returns $gmt if its argument is a GMT date, $localTime if its argument is a local
date, $timeDifference if its argument is a date difference, or '0 if its argument is not a valid
date value.

1.111. $dateToStr

STRING
PROCEDURE $dateToStr (LONG INTEGER date;

OPTIONAL BITS ctrlBits;
OPTIONAL POINTER($area) area;
OPTIONAL LONG BITS ctrlBits2);

Table 1.111-1. $dateToStr

$dateToStr produces a string from a MAINSAIL date, which may be an absolute (local or
GMT) date or a date difference. area specifies the destination area for the resulting string.

The default format for $dateToStr if date is an absolute date is "<date> <month> <year> <B.C.
if applicable> <GMT if applicable>", e.g., "4 July 1776", "15 March 44 B.C.", "29 February
1988 GMT". The string "A.D." is appended to the output string if the year is between 1 A.D.
and 99 A.D., inclusive, so that the string is not mistaken for an abbreviation of a year in the
current century. "GMT" is added to the string if date is in GMT format unless the ctrlBits bit
$doNotIncludeTimeZone is set

Date differences are converted by default to the format:

{-}<d> day{s}

The "-" is irtcluded if date is negative.

- 98-

The null string is returned if an invalid input value is detected.

The predefined bits constants shown in Table 1.111-2 are valid in ctrlBits; those shown in
Table 1.111-3 in ctrlBits2.

Bit
$includeWeekday

Meaning
The day of the week precedes the
date and is separated from it by a
comma and a space.

$reverseDateAndMonth The month field precedes the date.
The date is separated from the year
by a comma and a blank unless
$hyphenateDate is set.

$hyphenateDate The month field is abbreviated to
three letters, and only the last two
digits of the year are given (unless
$allYearDigits is specified in
ctrIBits2). The date, month, and
year fields are separated from each
other by a hyphen (minus) character
rather than a space.

$doNotIncludeTimeZone If date is in GMT format, suppress
the default addition of "GMT" to the
returned string.

$includeTimeZone

$briefFormat

errorOK

If date is in local format, append
the local time zone name, if known.

If date is a date difference,
convert it to "[+I-]<d>d", e.g.,
"+23d" (23 days), "-4d" (4 days,
negative). A zero difference has
a plus sign ("+Od").

No error message is given if an
invalid input value is detected.

Table 1.111-2. Predefined Bits Constants for $dateToStr ctrlBits

Example 1.111-4 shows the possible output string formats.

- 99-

w.t.
$allYearDigits

$twoYearDigits

Meaning
The number of digits in the year is
always exactly as many digits as
required to represent the year,
regardless of the value of ctrlBits.

The year is always displayed with
two digits (the last two digits of
the year), padding or truncating as
necessary, regardless of the value
of ctrlBits.

Table 1.111-3. Predefined Bits Constants for $dateToStr ctriBits2

The standard MAINSAIL date and time formats are described in Section 19.1 of part I of the
"MAINSAIL Language Manual".

1.112. $debugExec

$debugExec invokes MAINDEBUG from a program (if MAINDEBUG is installed). This
feature is documented in detail in the "MAINDEBUG User's Guide".

1.113. $defaultArea

* system variable
POINTER ($area) $defaultAreai

Table 1.113-1. $defaultArea

$defaultArea is the default area for all operations involving storage allocation or use; see
Chapter 20 of part I of the "MAINSAIL Language Manual" for details.

-100-

For a sample date of 9 August 1982, Greenwich Mean Time,
the following string representations are possible:

$includeWeekday

clear
clear
clear
clear
clear
clear
clear
clear
set
set
set
set
set
set
set
set

$hyphenateDate

clear
clear
clear
clear
set
set
set
set
clear
clear
clear
clear
set
set
set
set

$reverseDateAndMonth
$doNotlncludeTimeZone

Resulting string

clear clear "9 August 1982 GMT"
clear set "9 August 1982"
set clear "August 9, 1982 GMT"
set set "August 9, 1982"
clear clear "9-Aug-82 GMT"
clear set "9-Aug-82"
set clear "Aug-9-82 GMT"
set set "Aug-9-82"
clear clear "Monday, 9 August 1982 GMT"
clear set "Monday, 9 August 1982"
set clear "Monday, August 9, 1982 GMT"
set set "Monday, August 9, 1982"
clear clear "Monday, 9-Aug-82 GMT"
clear set "Monday, 9-Aug-82"
set clear "Monday, Aug-9-82 GMT"
set set "Monday, Aug-9-82"

For a sample date of 8 March 1989, local time, the
following string representations are possible if
$dateToStr is called in the Pacific Standard Time zone
(PST) :

$includeWeekday
$hyphenateDate

$reverseDateAndMonth
$includeTimeZone

Resulting string

Example 1.111-4. Sample $dateToStr Output Formats (continued)

- 101 -

clear clear clear clear "8 March 1989"
clear clear clear set "8 March 1989 PST"
clear clear set clear "March 8, 1989"
clear clear set set "March 8, 1989 PST"
clear set clear clear "8-Mar-89"
clear set clear set "8-Mar-89 PST"
clear set set clear "Mar-8-89"
clear set set set "Mar-8-89 PST"
set clear clear clear "Wednesday, 8 March 1989"
set clear clear set "Wednesday, 8 March 1989 PST"
set clear set clear "Wednesday, March 8, 1989"
set clear set set "Wednesday, March 8, 1989 PST"
set set clear clear "Wednesday, 8-Mar-89"
set set clear set "Wednesday, 8-Mar-89 PST"
set set set clear "Wednesday, Mar-8-89"
set set set set "Wednesday, Mar-8-89 PST"

For a time difference of 23L (23 days), the following
string representations are possible:

$briefFormat

clear
set

Resulting string

"23 days"
"+23d"

Example 1.111-4. Sample$dateToStrOutputFormats (end)

1.114. delete

COMPILETIME
BITS
<macro> delete;

Table 1.114-1. delete

delete is a bit that specifies that a file is to be deleted or a coroutine to be killed. It may be
passed to close, $createUniqueFile, open, $resumeCoroutine, and $reOpen.

- 102-

1.IIS. $delete

BOOLEAN
PROCEDURE $delete (STRING fileName;

OPTIONAL BITS ctrlBits);

Table 1.115-1. $delete

$delete deletes the file named fileName.

If the file cannot be deleted, $delete writes an error message to 10gFile and requests a new file
name from cmdFile. If a blank line is read from cmdFile, $delete returns false. Otherwise, it
again tries to delete the named file. If the bit errorOK is set in ctrlBits and the file cannot be
deleted, $delete returns false without writing an error message or reading a new file name. If a
file is successfully deleted, $delete returns true. If $useOriginalFileName is set in ctrffiits, no
logical name lookup or application of searchpaths is done; the file name specified is used.

The effect of $delete is undefined if the specified file is open (by MAINSAIL or some other
program).

1.116. $deregister Exception

PROCEDURE $deregisterException
(REPEATABLE STRING exceptionName);

Table 1.116-1. $deRegisterException

$deregisterException removes the exception denoted by exceptionName from the list of
exceptions registered by means of $registerException. If no exception by that name is
currently registered, an error message is issued. Distinctions between upper- and lowercase
letters are ignored when comparing exceptionName to the strings denoting the registered
exceptions.

- 103-

1.117. $descendantKilledExcpt

f system variable
STRING $descendantKilledExcpt;

Table 1.117-1. $descendantKilledExcpt

$descendantKilledExcpt is a predefined exception that is raised in a coroutine's ancestors when
the coroutine is killed to infonn the coroutines that their descendant has died. It is described in
more detail under $killCoroutine.

1.118. $devModBrk

COMPILETIME
INTEGER
<macro> $devModBrk;

Table 1.118-1. $devModBrk

$devModBrk is the character used to separate a device module name from the rest of a file
name, if the file name contains an explicit device module specification (see Section 18.11 of
part I of the "MAINSAIL Language Manual"). Its value varies from operating system to
operating system, but is usually'>'; consult the appropriate operating-system-dependent
MAINSAIL user's guide.

1.119. $devModBrkStr

COMPILETIME
STRING
<macro> $devModBrkStri

Table 1.119-1. $devModBrkStr

-104 -

$devModBrkStr is the string constant consisting of the single character $devModBrk; see
Section 1.118.

To open a memory file using the standard device module MEM
(as described in the "MAINSAIL Utilities User's Guide"):

open(f,"MEM" & $devModBrkStr,create!input!output!random)i

1.120. $directory

BOOLEAN
PROCEDURE

Example 1.119-2. Use of$devModBrkStr

$directory (PRODUCES STRING ARRAY(l TO *)
diri

OPTIONAL STRING directoryNamei
OPTIONAL BITS ctrlBits) i

Table 1.120-1. $directory

$directory finds the list of files contained in the directory named directoryName and places one
file name in each element of dire directoryName is expected to be in the same format as
returned by $currentDirectory. If it is the null string, $currentDirectory is used. $directory
returns false if it find or read the directory named directoryName, true otherwise. The array dir
is nullArray if there are no files in the directory. directoryName may contain a device module
prefix, if appropriate.

If the operating system considers that subdirectories of a directory are files in that directory, the
names of the subdirectories are also included in dir.

Valid ctrlBits are errorOK, $reportAllVersions, $fullPathNames, and $useOriginalFileName.
If $fullPathNames is set, dir contains full path names, Le., file names that may be used from
any directory; normally it contains only relative path names, Le., file names that may be used
when directoryName is the current directory. The $reportAlIVersions bit is ignored except on
operating systems or device modules that maintain multiple numbered versions of files. On
such systems or devices, only the most recent version of a file is included by default in the dir
array, and the version number is not returned as part of a file name. If $reportAlIVersions is

-105 -

set, however, all existing versions of a file are included, and the version number is included in
the file name. If $useOriginalFileName is set, no logical name lookup or application of
searchpaths is done; directoryName is used as specified. errorOK suppresses any system­
dependent error message that might otherwise occur.

1.121. $disassembleDate

PROCEDURE $disassembleDate
(LONG INTEGER date;
PRODUCES INTEGER year;
PRODUCES OPTIONAL INTEGER

month,day;
OPTIONAL BITS ctrlBits);

Table 1.121-1. $disassembleDate

$disassembleDate returns the year, month, and day given an absolute (local or GMT) date.

If an illegal input value is detected, 0 is returned for year, month, and day.

The only valid ctrlBits bit is errorOK. Unless it is specified, an error message is generated for
erroneous input values.

The standard MAINSAIL date and time formats are described in Section 19.1 of part I of the
"MAINSAIL Language Manual".

1.122. $disassembleDateAndTime

PROCEDURE $disassembleDateAndTime
(LONG INTEGER date,time;
PRODUCES INTEGER year;
PRODUCES OPTIONAL INTEGER

month,day,hour,minute,second;
OPTIONAL BITS ctrlBits);

Table 1.122-1. $disassembleDateAndTime

-106-

$disassembleDateAndTime produces a year, month, day, hour, minute, and second given a
MAINSAIL date and time. date and time may be in local time or GMT format. By default,
local values are produced if date and time are in local format, and GMT values if date and time
are in GMT format

If invalid values are passed for date and time, the output values are all set to O.

Valid ctrlBits bits are errorOK, $localTime, and $gmt. ell'orOK suppresses any error messages
that might be printed. $localTime and $gmt cause the produced values to be local time and
GMT values, respectively, regardless of the input value format. The caveats described in
Section 19.3 of part I of the "MAINSAIL Language Manual" regarding conversion between
local time and GMT apply if date and time are in local format and $gmt is set or vice versa.

1.123. $disassembleTime

PROCEDURE $disassembleTime
(LONG INTEGER time;
PRODUCES INTEGER hour;
PRODUCES OPTIONAL INTEGER

minute, second;
OPTIONAL BITS ctrlBits);

Table 1.123-1. $disassembleTime

$disassembleTime returns the hour, minute, and second if given an absolute (local or GMT)
time, or the number of hours, minutes, and seconds if given a time difference.

If an illegal input value is detected, -1 is returned for hour, minute, and second.

The only valid ctrlBits bit is errorOK. Unless it is specified, an error message is generated for
erroneous input values.

The standard MAINSAIL date and time formats are described in Section 19.1 of part I of the
"MAINSAIL Language Manual".

- 107-

1.124. discard

COMPILETIME
BITS
<macro> discardi

Table 1.124-1. discard

discard is a bit that specifies that characters are to be discarded in various sorts of text scan. It
may be passed to $removeBits, $removeDateAndTime, $removeInteger, $removeReal, and
scan.

1.125. displace

$BUILTIN
ADDRESS
PROCEDURE

$BUILTIN
ADDRESS
PROCEDURE

$BUILTIN
ADDRESS
PROCEDURE

$BUILTIN
CHARADR
PROCEDURE

displace

displace

displace

displace

(POINTER Pi
INTEGER n)i

(POINTER Pi
LONG INTEGER

(ADDRESS ai
INTEGER n) ;

(CHARADR Ci

INTEGER n) i

Table 1.125-1. displace (Generic) (continued)

- 108-

n)i

$BUILTIN
ADDRESS
PROCEDURE displace (ADDRESS a;

LONG INTEGER n) ;

$BUILTIN
CHARADR
PROCEDURE displace (CHARADR c;

LONG INTEGER n) ;

Table 1.125-1. displace (Generic) (end)

"displace" computes an address or charadr as a displacement from a pointer, address, or
charadr.

The address forms return an address that is displaced n storage units from a.

The pointer forms return an address that is displaced n storage units from p (Le., "displace(p,n)"
is equivalent to "displace(cva(p),n)").

The charadr forms return a charadr that is displaced n characters from c.

n may be positive or negative. If the resulting address or charadr would be less than the lowest
representable address or charadr, or greater than the highest representable address or charadr,
the result is undefined; i.e., a program may not assume that addresses "wrap around" at Zero.

A garbage collection cannot occur during a call to displace.

INTEGER i;
STRING s;
CHARADR c;

s := "xyz";
c := displace(cvc(s),2);
i .= cLoad(c); * i is 'z'

Example 1.125-2. Use of displace

-109 -

1.126. displacement

$BUILTIN
INTEGER
PROCEDURE

$BUILTIN
INTEGER
PROCEDURE

displacement
(ADDRESS a,b);

displacement
(CHARADR a, b) ;

Table 1.126-1. displacement (Generic)

"displacement" computes the distance between two addresses or charadrs.

The address form returns the number of storage units from address a to address b.

The charadr form returns the number of character units from charadr a to charadr b.

If a is beyond b, the result is negative. If there is a possibility that the distance is larger than
can be represented as an integer, lDisplacement should be used; the use of displacement when
the distance between a and b is larger than can be represented as an integer is undefined.

INTEGER ii
ADDRESS a,b;
INTEGER ARRAY(l TO 100) arYi

IF NOT ary THEN new(ary); * assume a is the address of the first element of ary
b := a;
FOR i := 1 UPTO 100 DO read(b,ary[i]);
i := displacement(a,b);

* i = 100 * size(integerCode)

Example 1.126-2. Use of displacement

- 110-

1.127. dispose

PROCEDURE dispose (MODIFIES REPEATABLE POINTER p) ;

PROCEDURE dispose (MODIFIES REPEATABLE ARRAY a);

PROCEDURE dispose (MODIFIES REPEATABLE LONG ARRAY
a) ;

PROCEDURE dispose (REPEATABLE MODULE m);

PROCEDURE dispose (REPEATABLE STRING s);

Table 1.127-1. dispose (Generic)

It dispose It frees the memory occupied by a record, data section, array, or module so that the
storage can be immediately reallocated for some other purpose. This freeing of memory is
referred to as It disposing" the data structure that occupies the memory.

The pointer form may be used to dispose a record; "the array form disposes an array.

The pointer form may also be used to dispose a data section. If p points to a data section, the
final procedure (if any) of the corresponding module is executed before the memory is freed. If
P points at the bound data section, it is unbound; i.e., the effect is the same as if unBind had
been called for the module.

The module and string forms dispose all of the data sections of the module m or the module
named by s. As with the pointer form, the final procedure of the module is executed before the
memory associated with each data section is freed. In addition, any runtime system data
structures associated with the module are disposed, and the control section of the module is
released; i.e., the association of the module with the control section is broken, so that the next
time the module is bound or newed, the standard search procedure for modules is followed.

A disposed record, data section, or array must not later be referenced. The argument to the
pointer and array forms is modified to Zero to prevent it from being used for future references.
If there are other pointers to the disposed object, the results of using them are undefined. Such
a bug can be exceedingly difficult to track.

If p, a, or s is Zero, dispose does nothing.

- 111 -

The storage for any data sections, records, and arrays that become inaccessible is eventually
reclaimed by the garbage collector. Explicit use of dispose is a more efficient alternative, but
may lead to bugs that are difficult to track if a pointer to the disposed object is accidentally
used.

1.128. $disposeArea

PROCEDURE $disposeArea
(MODIFIES REPEATABLE

POINTER ($area) area);

Table 1.128-1. $disposeArea

$disposeArea disposes area. All memory occupied by chunks or string text in area is freed;
subsequent reference to the chunks or text has undefined effects.

1.129. $disposeDataSecsInArea

LONG INTEGER
PROCEDURE $disposeDataSecsInArea

(POINTER ($area) area);

Table 1.129-1. $disposeDataSecsInArea

$disposeDataSecsInArea disposes all data sections in area. It returns the number of data
sections disposed. If the final procedure of any of the disposed data sections creates new data
sections in the area, the procedure may fail by issuing a fatal error message.

- 112-

1.130. $disposedDataSecExcpt

* system variable
STRING $disposedDataSecExcpt;

Table 1.130-1. $disposedDataSecExcpt

$disposedDataSecExcpt is a predefined exception that is raised when a procedure attempts to
return to a procedure in an instance of a module that has been disposed.

1.131. $doNotClear

COMPILETIME
BITS
<macro> $doNotClear;

Table 1.131-1. $doNotClear

$doNotClear is a bit that specifies that allocated memory is not to be initially cleared. It may
be passed to newPage.

1.132. $doNotIncludeTimeZone

COMPILETIME
BITS
<macro> $doNotIncludeTimeZone;

Table 1.132-1. $doNotIncludeTimeZone

$doNotIncludeTimeZone is a bit that specifies that a time zone string is not to be included in an
output date or time string. It may be passed to $dateAndTimeToStr, $dateToStr, and
$timeToStr.

- 113-

1.133. $doNotMatch

COMPILETIME
BITS
<macro> $doNotMatch;

Table 1.133-1. $doNotMatch

$doNotMatch is a bit that specifies that an exception is ignored when errMsg searches for a
registered exception to raise. It may be passed to $registerException.

1.134. $doNotRaise

COMPILETIME
BITS
<macro> $doNotRaise;

Table 1.134-1. $doNotRaise

$doNotRaise is a bit that specifies that an exception is not to be raised. It may be passed to
errMsg.

1.135. $dscrPtr

POINTER ($classDscr)
<macro> $dscrPtr (POINTER p) ;

Table 1.135-1. $dscrPtr

$dscrPtr returns the class descriptor associated with p. A unique class descriptor, of the class
$classDscr, exists for each class in memory. The fields of $classDscr are not documented.

- 114-

If P is nullPointer or danglingt the effect is undefined.

1.136. DSP

The compiletime pseudo-procedure "DSP" returns an integer displacement to a field of a class
or module; it is described in detail in Section 14.8 of part I of the "MAINSAIL Language
Manual".

1.137. $dup

$ALWAYSINLINE COMPILETIME
STRING
PROCEDURE $dup (STRING Si

INTEGER ni
OPTIONAL POINTER ($area) area)i

Table 1.137-1. $dup

$dup returns s concatenated with itself n times (the new text is placed in area if area is
specified). For example:

$dup(n"''',50)

returns a string of 50 dashes. fldWrite may be used to pad a string to a specified length; see
Section 1.168.

If s and n are constants t and area is omittedt $dup is computed at compiletime.

1.138. enterLogicalName

PROCEDURE enterLogicalName
(STRING logicalName,trueName);

Table 1.138 .. 1. enterLogicalName

... 115 ...

enterLogicalName establishes or removes a logical file name. If trueName is not the null
string, then after the call to enterLogicalName, whenever 10gicalName is passed as a file name
to the procedure open, the file named true Name is actually opened. If trueName is the null
string, any logical file name association for logicalName is removed.

For example, after executing:

enterLogicalName ("parameters", "src:parms.txt")

the call to open:

open(f,"parameters", ...)

attempts to open the file tlsrc:parms.txttl instead of the file tlparameterstl.

1.139. eof

BOOLEAN
PROCEDURE eof (POINTER(file) f);

Table 1.139-1. eof

eof (end-of-file) returns true when the file pointer is positioned at or beyond the end of the file
f. The preferred method of determining the end-of-file position of a file is $gotValue (see
Section 1.184).

The programmer is advised not to rely on eof or $gotValue, but rather to design files that
indicate their own end-of-file, e.g., by some special data value; some operating systems do not
permit MAINSAll.., to ascertain the end-of-file position exactly.

1.140. eol

COMPILETIME
STRING
<macro> eol;

Table 1.140-1. eol

- 116-

eol is the one-character end-of-line string.

1.141. eop

COMPILETIME
STRING
<macro> eopi

Table 1.141-1. eop

eop is the string consisting of the end-of-page character.

1.142. equ

COMPILETIME
BOOLEAN
PROCEDURE equ (STRING r,si

OPTIONAL BITS ctrlBits)i

Table 1.142-1. equ

equ checks the equality of its two string arguments.

"equ(r,s)" is equivalent to "r = S"; i.e., it returns true if the strings have the same value and false
if not.

A single valid bits constant, upperCase, is defined for use with ctrlBits. If present, it means
ignore upper !lower case distinctions when checking the arguments for equality. The effect is as
if both arguments were converted to upper case before the check. This option is more efficient
than first converting to upper case with cvu or scan and then checking for equality. See
Example 1.142-2.

- 117-

IF equ(r,s,upperCase) THEN

has the same effect as (but is more efficient than)

IF cvu(r) = cvu(s) THEN

1.143. err Msg

BOOLEAN
PROCEDURE

Example 1.142-2. Use of equ

errMsg (OPTIONAL STRING msg,val;
OPTIONAL BITS ctrlBits);

Table 1.143-1. errMsg

errMsg raises an exception. If no handler handles the exception, a message is written to 10gFile
and a response obtained from cmdFile.

If $doNotRaise is not set in ctrlBits, errMsg raises the predefined exception denoted by
$systemExcpt by calling $raise with the arguments shown in Table 1.143-2. In the case of fatal
errors, it sets the $cannotReturn bit in the call to $raise; otherwise, if no handler handles the
exception, control returns to errMsg and errMsg writes the message specified by its arguments.

errMsg returns false if a handler handling the $systemExcpt exception calls $raiseReturn, in
which case no message is written to 10gFile and no response read from cmdFile. Otherwise, the
message is written, and errMsg returns true.

$raise($systemExcpt,msg,val,NULLPOINTER,
$returnIfNoHandler!ctrlBits)

Table 1.143-2. Arguments to $raise When Called from errMsg

- 118-

When the message is written, "ERROR:" is written to 10gFile, followed by the string msg. If
val is not "" it is written after the message, preceded by a blank. Finally, "Error response:" is
written on a new line to signify that a response is requested; valid responses appear in Table
1.143-4. Other responses may be shown if the appropriate exceptions have been registered by
means of $registerException. Section 16.9 of part I of the "MAINSAIL Language Manual"
explains how errMsg responses may be abbreviated.

Valid predefined bits constants for ctrlBits are shown in Table 1.143-3.

Bit
$doNotRaise

warning

fatal

noResponse

msgMe

msgMyCaller

Effect
Do not call $raise; just write the message.

Write "WARNING:" instead of "ERROR:" before
the message. Do not get a response.

Write "FATAL:" instead of "ERROR:" before
the message. Do not allow execution to
continue.

Do not get a response.

Write the name of the module that called
errMsg and the decimal offset within the
module'S control section at which the call
to errMsg occurred. If the invoking
coroutine is not the root coroutine
"MAINSAIL", its name is written as well.

Write the name of the module that called
the module that called errMsg and the
decimal offset within the module'S control
section at which the call to the procedure
that called errMsg occurred. If the
invoking coroutine is not the root coroutine
"MAINSAIL", its name is written as well.

Table 1.143-3. Predefined Bits Constants for errMsg ctrlBits

- 119-

<eol> Continue execution (invalid if fatal error) .

QUIT Exit MAINSAIL.

MAINSAIL: Abort program
Exit the current program.

EXECUTE mlf Execute module m or module in file f.

CALLS C

DEBUG

@

11

1

Show (on 10gFile) a list of the calls (most
recent first) in coroutine c. If c is
omitted, the call chain for the current
coroutine is shown, i.e., the call sequence
that led to the call to errMsg. For each
procedure call made, the module in which the
call was made is shown, followed by the
decimal offset of the call in the module.

Enter MAINDEBUG, the MAINSAIL debugger.

Enter MAINEDIT, the MAINSAIL editor (no effect
if MAINEDIT is already running) .

Rewrite the error message and the "Error
response:" prompt.

Show a list of valid responses.

Table 1.143-4. Valid Responses to "Error response:" Prompt

1.144. errorOK

COMPILETIME
BITS
<macro> errorOK

Table 1.144-1. errorOK

- 120-

errorOK is a bit that indicates that an error message is to be suppressed. It may be passed to
most system procedures that accept a controlling bits parameter.

1.145. $exceptionBits

BITS
<macro> $exceptionBits;

Table 1.145-1. $exceptionBits

$exceptionBits returns information about the current exception. All bits that can be specified to
$raise may be tested in $exceptionBits; see Table 1.282-2. In addition, the bits warning, fatal,
and noResponse may be tested; these bits are set if $raise was called from errMsg and the bits
were set in the call to errMsg. If there is no current exception, $exceptionBits returns Zero.

1.146. $exceptionCoroutine

POINTER ($coroutine)
<macro> $exceptionCoroutine;

Table 1.146-1. $exceptionCoroutine

$exceptionCoroutine returns a pointer to the raiser coroutine for the current exception (different
from the raisee coroutine only if the exceptionCoroutine argument to $raise denoted a coroutine
other than the raiser coroutine). If there is no current exception, $exceptionCoroutine returns
nullPointer. In the case of $abortProcedureExcpt, $exceptionCoroutine returns the coroutine in
which the original exception occurred.

- 121-

1.147. $exceptionName

STRING
<macro> $exceptionName;

Table 1.147-1. $exceptionName

$exceptionName returns the name of the current exception. If there is no current exception,
$exceptionName returns the null string.

1.148. $exceptionPointerArg

POINTER
<macro> $exceptionPointerArg;

Table 1.148-1. $exceptionPointerArg

$exceptionPointerArg returns the value that was passed as the argument exceptionPointerArg
to the system procedure $raise when the current exception was raised. If there is no current
exception, $exceptionPointerArg returns nullPointer.

1.149. $exceptionStringArgl

STRING
<macro> $exceptionStringArgl;

Table 1.149-1. $exceptionStringArgl

$exceptionStringArgl returns the value that was passed as the argument exceptionStringArgl
to the system procedure $raise when the current exception was raised. If there is no current
exception, $exceptionStringArgl returns the null string.

- 122-

1.150. $exceptionStringArg2

STRING
<macro> $exceptionStringArg2;

Table 1.150-1. $exceptionStringArg2

$exceptionStringArg2 returns the value that was passed as the argument exceptionStringArg2
to the system procedure $raise when the current exception was raised. If there is no current
exception, $exceptionStringArg2 returns the null string.

1.151. $excludeSeconds

COMPILETIME
BITS
<macro> $excludeSeconds;

Table 1.151-1. $excludeSeconds

$excludeSeconds is a bit that specifies that seconds are not to be included in the output string.
It may be passed to $dateAndTimeToStr and $timeToStr.

1.152. $executeIntIibCommands

INTLIB can be controlled from a user program by calling the procedure
$executeIntlibCommands. This feature is documented in detail under INTLIB in the
"MAINSAIL Utilities User's Guide".

1.153. $executeModlibCommands

MODLIB can be controlled from a user program by calling the procedure
$executeModlibCommands. This feature is documented in detail under MODLm in the
"MAINSAIL Utilities User's Guide".

- 123-

1.154. $executeStampCommands

STAMP can be controlled from a user program by calling the procedure
$executeStampCommands. This feature is documented in detail under STAMP in the
"MAINSAIL Utilities User's Guide".

1.155. exit

PROCEDURE exit (OPTIONAL STRING msg);

Table 1.155-1. exit

"exit" writes msg (if non-Zero) to logFile. The final procedures associated with all data
sections are executed (in an unspecified order), and any open files and libraries are closed
MAINSAIL then returns control to the operating system from which it was invoked.

fastExit provides a quicker (less orderly) exit

1.156. exp

REAL
PROCEDURE

LONG REAL
PROCEDURE

exp (REAL x);

exp (LONG REAL x);

Table 1.156-1. exp (Generic)

exp returns the exponential e to the xth power, where e is the base of the natural logarithms.

- 124-

1.157. exponent

COMPILETIME
BITS
<macro> exponent;

Table 1.157-1. exponent

exponent is a bit that specifies that the output string is to include an exponent. It may be passed
to cvs.

1.158. $exponentExcpt

system variable
STRING $exponentExcpti

Table 1.158-1. $exponentExcpt

$exponentExcpt is a predefined exception that is raised when a (long) integer is raised to power
less than zero.

1.159. fastExit

PROCEDURE fastExit (OPTIONAL STRING msg)i

Table 1.159-1. fastExit

fastExit writes msg (if non-Zero) to 10gFile, then terminates the MAINSAIL session; i.e.,
MAINSAIL returns control to the operating system from which it was invoked.

exit provides a more orderly exit.

- 125-

1.160. fatal

COMPILETIME
BITS
<macro> fatal;

Table 1.160-1. fatal

fatal is a bit that specifies that an error message is fatal. It may be passed to errMsg and tested
in $exceptionBits. It is set in a call to $raise made from errMsg if the fatal bit is set in the call
to errMsg.

1.161. $fieldInfo

BOOLEAN
PROCEDURE $fieldInfo (POINTER p;

STRING fieldName;
PRODUCES OPTIONAL INTEGER

type,dspl);

Table 1.161-1. $fieldInfo

p is a pointer to a record, class descriptor, or data section. fieldName is the name of a field. If
p is invalid (e.g., nullPointer) , false is returned. Otherwise, the field names in the associated
class descriptor are searched, and if fieldName is found (comparison is caseless), type is set to .
the data type code for the field (e.g., integerCode), dspl is set to the displacement in storage
units from the start of the record (first field) to the start of the named field, and true is returned.
If there is no field by the name fieldName, false is returned.

$fieldInfo can be used to get or change the value of a field given a pointer and a string with the
name of the field, as illustrated in Example 1.161-2.

$fieldInfo makes a linear search of the string that contains the field names to look for the
argument fieldName. If there are many fields, and the lookup is done often, it is more efficient
to call $classInfo once to get all the required information, and store this information in a more
rapidly accessible data structure (e.g., a bash table based on field name).

-126 -

ttyWrite(s," = ");
IF $fieldInfo(p,s,type,dspl) THEN

CASE type OFB
[booleanCode]

ttyWrite(IF boLoad(cva(p),dspl) THEN "TRUE"
EL "FALSE");

[integerCode]
ttyWrite(iLoad(cva(p),dspl»;

[longIntegerCode]
ttyWrite(liload(cva(p),dspl»;

[pointerCode]
ttyWrite("''',lbload(cva(p),dspl»;

END
EL ttyWrite("<invalid pointer or field name>");
ttyWrite(eol)

Example 1.161-2. Use ofSfieldlnfo

1.162. $fileInfo

CLASS $filelnfoCls (
STRING $fullPathName,;
LONG INTEGER $OSDSize;

) ;

LONG INTEGER $createDate,$createTime,
$modifyDate,$modifyTime;

POINTER ($fileInfoCls)
PROCEDURE $fileInfo (POINTER (file) f;

OPTIONAL BITS ctrlBits;
OPTIONAL POINTER($fileInfoCls)

fi) ;

Table 1.162-1. Sfilelnfo (Generic) and $filelnfoCls (continued)

- 127-

POINTER($fileInfoCls)
PROCEDURE $fileInfo (STRING fileName;

OPTIONAL BITS ctrlBits;
OPTIONAL POINTER($fileInfoCls)

fi) ;

Table 1.162-1. $filelnfo (Generic) and $filelnfoCls (end)

$filelnfo returns information about a file, given its name or an open file pointer to it.
NullPointer is returned if the requested file cannot be found or if no information about the file
can be obtained. Fields unavailable from the operating system are Zero, except that $OSDsize
is -IL if unavailable, since OL is a possible file length. The meanings of the fields of
$filelnfoCls are as shown in Table 1.162-2.

Field
$fullPathName

$OSDSize

$createDate,
$createTime

$modifyDate,
$modifyTime

Meaning
A full, unambiguous file name for the
file. Suitable for passing to the system
procedure open. On systems that permit
it, the correspondence between full path
names and files is one-to-one.

System-dependent file size.

Time file was created, if available.

Time file was last modified, if
available.

Table 1.162-2. $filelnfoCls Fields

If the fileName argument to $filelnfo includes a device prefix, a device prefix is included in
$fullPathName; otherwise, no device prefix appears in $fullPathName. If the device prefix in
fileName specifies the format of a disk file (e.g., "BS", "V AR", "FIX"), the device prefix in
$fullPathName is changed if the actual format of the file is different from that specified; e.g., if
fileName is "bs>foo", the prefix for $fullPathName may be "var" if foo is actually a V AR-
format file. .

-128 -

If fi is Zero, a new record is allocated and a pointer to it returned (if $fileInfo is successful;
otherwise, $filelnfo returns nullPointer). If fi is non-Zero, the record it points to is filled in and
returned if $filelnfo is successful.

The exact value of $OSDSize is dependent on the operating system. It does not have any
predictable relationship to the MAINSAIL end-of-file position. $OSDSize is intended to be
used by programs that need to organize a list of files in approximate order of size.

The valid ctrlBits bits are errorOK, $useOriginalFileName, and $gint. errorOK suppresses any
system-dependent error message that might otherwise occur. If $useOrigina1FileName is set,
no logical name lookup or application of searchpaths is done; fileName is used as specified. If
$gmt is set, $createDate, $createTime, $modifyDate, and $modifyTime are returned in GMT
format instead of local time format, if available.

TEMPORARY FEATURE: SUBJECT TO CHANGE

In the present release, a long bits field, $fileAttr, is included in $filelnfoCls. The following bits
are used in $fileAttr:

$bsFormat
$fixFormat
$varFormat
$isDirectory

At most one of $bsFormat, $fixFormat, $varFormat, and $isDirectory can be set in $fileAttr.
$bsFormat, $fixFormat, and $varFormat indicate byte-stream, fixed-length-record, and
variable-length-record text and data files, respectively (for operating systems that support
record-structured files, the MAINSAIL facilities used to access them are described in the
appropriate system-specific documentation). $isDirectory is set if the file is a directory. If the
attributes of the file cannot be determined (or if $fileAttr has not yet been implemented on the
host operating system), none of these bits is set in $fileAttr.

1.163. $findArea

POINTER ($area)
PROCEDURE $findArea (STRING title);

Table 1.163-1. $findArea

-129 -

$findArea returns the area with title title. If more than one such area exists, it is not specified
which area is returned. If no such area exists, it returns nullPointer.

1.164. $findCorootine

POINTER ($coroutine)
PROCEDURE $findCoroutine

(STRING coroutineName);

Table 1.164-1. $findCoroutine

$findCoroutine returns a pointer to the $coroutine record for the coroutine with the indicated
name (case is ignored). NullPointer is returned if there is no such coroutine.

1.165. first

$BUILTIN COMPILETIME
INTEGER
PROCEDURE first

Table 1.165-1. first

(STRING s);

first returns the character code for the first character of a string.

If sis"", -1 is returned. -1 is not a valid character code.

first ("abc") = 'a'
first ('''') = -1

97 # assuming the ASCII character set

Example 1.165-2. Use of first

- 130-

1.166. fixed

COMPILETIME
BITS
<macro> fixed;

Table 1.166-1. fixed

fixed is a bit that specifies that no exponent is to appear in the output string. It may be passed
to cvs.

1.167. f1dRead

STRING
PROCEDURE

STRING
PROCEDURE

STRING
PROCEDURE

fldRead

fldRead

fldRead

(POINTER(textFile) f;
INTEGER width;
OPTIONAL POINTER($area) area);

(POINTER(dataFile) f;
INTEGER width;
OPTIONAL POINTER($area) area);

(MODIFIES STRING s;
INTEGER width);

Table 1.167-1. ftdRead (Generic)

ftdRead reads a field from an input file or a string. A field is a string with the specified width.

If width is less than one, 1111 is returned.

If requested characters lie beyond the end of the file or string, only those characters (if any)
obtained before the end of the file or string are returned.

- 131 -

The textFile form may be called for an unbuffered file (a file opened with the $unbuffered bit
set). ftdRead does not filter out null characters from an unbuffered file; i.e., it acts as if the file
had been opened with the keepNul bit set. If the file is opened for PDP I/O, the characters may
be translated from the PDP to the host character set

Por example, "s:= ftdRead(inFile,15)" reads the next 15 characters from inFile. If only 10
characters remain in the file, then the string consisting of those 10 characters is returned.

In the textFile and dataFile forms, area specifies the destination area for the resulting string.

Characters in a data file are stored as described in Sections 1.82 and 1.104.

1.168. f1dWrite

PROCEDURE fldWrite (POINTER (textFile) dsti
STRING Si
INTEGER w,fillChar);

PROCEDURE fldWrite (POINTER (dataFile) dst;
STRING Si
INTEGER w,fillChar)i

PROCEDURE fldWrite (MODIFIES STRING dsti
STRING Si

INTEGER w,fillChar;
OPTIONAL POINTER($area) area)i

Table 1.168-1. ftdWrite (Generic)

ftdWrite writes a string of the specified width w to a file or string destination dst. The string
written is composed of s and enough fill characters to make the length of the string written
equal to w. The character code of the fill character is given by fillChar.

Normally, fill characters are put before s, so that when ftdWrite is used to produce columns, the
right margin of the column is aligned. For example, a fillChar of ' , results in s right-justified
in a field of blanks.

Use the negative of the desired fill character to have fill characters written after s.

If s exceeds the field width w, a string consisting of w asterisks (the n*n character) is written.

- 132-

In the string form, area specifies the destination area for the resulting string. In the file forms, if
the file is opened for PDF I/O, the characters may be translated from the host to the PDF
character set

Characters in a data file are stored as described in Sections 1.82 and 1.104.

$dup may be used to create a string by concatenating a given string several times; see Section
1.137.

1.169. floor

If s = "ABCDEF", then

fldWrite(f,s,lO,' ')

writes " ABCDEF" to f.

fldWrite(f,s,12,- , .')

writes "ABCDEF " to f.

Example 1.168-2. Use offidWrite

INTEGER
PROCEDURE

LONG INTEGER
PROCEDURE

floor (REAL x);

floor (LONG REAL x);

Table 1.169-1. floor (Generic)

"floor" returns the largest (long) integer less than or equal to x.

Table 1.169-3 shows the directions on the real number line in which the conversion procedures
from (long) real to (long) integer "move" their arguments (there is no movement if the
argument is an integral value).

- 133-

floor(10.5) 10
floor(-10.5) -11

Example 1.169-2. Use offtoor

floor <------ <------

ceiling ------> ------>

truncate ------> <------

cvi <-----> <----->

----------------------------+----------------------------
negative 0 positive

floor(-10.5) -11 floor(10.5) 10
ceiling(-10.5) -10 ceiling(10.5) 11
truncate(-10.5) -10 truncate(10.5) 10
cvi(-10.4) -10 cvi(10.4) 10
cvi(-10.6) -11 cvi(10.6) 11

The values of "cvi(-10.5)" and "cvi(10.5)" are
unspecified; they may be -10 or -11, and 10 or 11,
respectively.

Table 1.169-3. Rounding Directions for (Long) Real to (Long) Integer Conversion Procedures

1.170. formatted

COMPILETIME
BITS
<macro> formatted;

Table 1.170-1. formatted

-134 -

formatted is a bit that specifies that an input or output string representation of a (long) bits
begins with a single quotet as in program text. It may be passed to cvs and $removeBits.

1.171. $formParagraph

TEMPORARY FEATURE: SUBJECT TO CHANGE

STRING
PROCEDURE $formParagraph (STRING s;

OPTIONAL INTEGER
rightMargin,
firstLineIndent;

OPTIONAL STRING ctrlChars;
OPTIONAL BITS ctrlBits);

Table 1.171-1. $formParagraph

$fonnParagraph returns a "filled" form of a string s, i.e., an s with as many words as possible
on each line subject to the constraint that no line be longer than a specified maximum number
of characters.

"Blank characters" are blanks, tabs, and end-of-line and end-of-page characters. A "word" is a
sequence of non-blank characters. Lines are formed from the words in s (retaining the order of
the words); words are separated from each other by a single blank character, except as noted
below.

The first line starts with (firstLinelndent MAX 0) blanks. Subsequent lines start with (­
firstLinelndent MAX 0) blanks. If firstLinelndent is less than zero, all but the first line are
indented.

Lines (counting indentation) can have at most rightMargin characters. Each line contains as
many words as can fit. If a word is longer than a line can be, it is put on a line by itself. The
lines are separated by <eol> characters.

If not specified, rightMargin defaults to 72.

If append is set in ctrffiits, the "two-blank heuristic" is used:

- 135 -

• if two consecutive words occupy the same line,

• and the first word ends in a period,

• and the second word does not start with a lowercase letter,

• then the two words are separated by two blanks rather than one blank (this may result
in the second word being pushed onto the next line).

The first character of ctrlChars is an alias for space that is used to force two words to be on the
same line. For example, if the first character in ctrlChars is '@' then "United@States" results
in "United States" being on the same line. If the first character of ctrlChars is space (or
ctrlChars is Zero), then there is no space alias.

The second character of ctrlChars is an alias for period that is used to circumvent the two-blank
heuristic in a specific instance. For example, if the second character in ctrlChars is '%', then
for the string "i.e% John", $formParagraph replaces the'%' with '.' and puts one space before
John, whereas for the string "i.e. John", $formParagraph would have put two spaces before
John. If the second character of ctrlChars is space (or ctrlChars is shorter than two characters),
then there is no period alias.

The behavior is undefined if the space alias and the period alias are the same (non-blank)
character.

This procedure is considered a temporary feature and may be changed or enhanced in the
future.

1.172. $fullPathNames

COMPILETIME
BITS
<macro> $fullPathNames;

Table 1.172-1. $fullPathNames

$fullPathNames is a bit that specifies that full path names of files are to be included in the
output. It may be passed to $directory.

-136 -

1.173. generateMulti pleQuickSort

generateMultipleQuickSort is a macro provided by the sorting package, SRTMOD, which is
documented in detail in the "MAINSAIL Utilities User's Guide".

1.174. generateQuickSort

generateQuickSort is a macro provided by the sorting package, SRTMOD, which is
documented in detail in the "MAINSAIL Utilities User's Guide".

1.175. $getCommandLine

TEMPORARY FEATURE: SUBJECT TO CHANGE

BOOLEAN
PROCEDURE $getCommandLine

(PRODUCES STRING S)i

Table 1.175-1. $getCommandLine

Many operating systems allow the user to invoke a program using a command line, which can
specify information other than just the program name. For example, a command line "foo a b
cIt could mean to execute the program foo with arguments a, b, and c. $getCommandLine gives
a program access to command arguments, which may have been set by the operating system or
by a MAINSAIL program.

A command line can be specified in three ways:

• At the operating system level, when MAINSAIL is invoked

• At the MAINEX "*" prompt

• During program execution, using $setCommandLine

In the first case, MAINS AlL alters the command line if necessary to put it into a more portable
form:

- 137-

• On some operating systems, the program name is part of the command line, i.e., "foo"
in the example above. In this case, MAINSAIL removes the program name (and any
blank space after it) from the command line. In the example, the command line
would be altered to be just "a b c". Thus the name of the program is not available in
the command line formed by MAINSAIL (it may be available as $programName).

• On some operating systems, the command line is parsed and broken into a sequence
of arguments before MAINSAIL has access to it. In this case, MAINSAIL
concatenates the arguments, separated by a single blank, into a string that becomes
the command line. For example, if the command line typed to the operating system
were "foo a b c",Le., with several blanks separating the arguments, and the operating
system broke this into a program name and three arguments a, b, and c, MAINSAIL
would form the string "a b cIt as the command line.

• The exact rules for the formation of the command line information provided by the
operating system into a single command line string by MAINSAIL is provided in
each system-specific MAINSAIL user's guide if not covered by the above points.

• The resulting command line is concatenated onto the end of the
"COMMANDSTRING" value specified in the MAINSAIL bootstrap file. This value
is the null string unless a value was specified for the "COMMANDSTRING"
command when CONF was used to make the bootstrap. If the resulting concatenated
string is non-Zero, MAINEX executes module(s), one for each line in the command
string (interpreting the frrst word of the line as the module name, and the rest of the
line as the module's arguments), until the command string is exhausted and then
returns to the operating system. In this case, the MAINSAIL banner and the
MAINEX "*" prompt are not displayed.

In the second case, MAINSAIL removes the first word (presumably the module or file name to
be invoked), and any blank space that follows it, and sets the command line to what remains.
This means that the user cannot specify to the "*" prompt a file name containing embedded
blanks, since the components of the file name after the first word would be treated as part of the
command line rather than as part of the file name.

The MAINSAIL runtime system makes the operating system's command line arguments
visible to a MAINSAIL program by calling the system procedure $setCommandLine.
$setCommandLine sets the command line to its argument (which may be the null string), with
leading and trailing blanks and tabs removed, and also sets an internal boolean variable to true
to indicate that the command line is set.

$getCommandLine is used by a program to examine the command line. $getCommandLine
examines the internal boolean variable maintained by $setCommandLine. If it is true, then
$getCommandLine sets its argument to the command line, sets the boolean variable to false to
indicate that the command line is no longer set, and returns true. If the boolean variable is

- 138-

false, then $getCommandLine sets its argument to the null string and returns false. The new
procedure $removeWord may be useful in parsing command lines.

If several calls are made to $getCommandLine without any intervening calls to
$setCommandLine, the first one will obtain the command line, and subsequent ones will not. If
a particular access to the command line does not need to process all of it, call
$setCommandLine with the unprocessed part to make it available to the next call to
$getCommandLine.

$getCommandLine should be called first thing in a module's initial procedure. MAINSAIL
system calls may cause an arbitrary amount of work to be done, possibly including the
invocation of other modules that change the remembered command line.

Example 1.175-2 shows some examples of the command line mechanism.

(1) mainsa foo<eol>

MAINSAIL is invoked and executes the module FOO. The
command line is the null string. The MAINSAIL herald
is not displayed. When module FOO terminates,
MAINSAIL exits to the operating system.

(2) mainsa foo a b c<eol>

Same as (1), except that the command line is "a be".

(3) mainsa<eol>
*foo a b c<eol>

Same as (2) except that the MAINSAIL herald is
displayed and MAINSAIL returns to the "*" prompt if
FOO terminates normally.

Example 1.175-2. Examples of the Use of Command Line

$invokeModule uses only the first word of its string argument as the name of the module to
invoke; the remainder of the string is used to set the command line.

The definition of $getCommandLine is intended to allow a program to distinguish between an
operating system that does not support command line arguments (the first call to
$getCommandLine returns false) and an operating system that does support command line

- 139-

arguments, but where no arguments were provided for the current program ($getCommandLine
returns true but sets its argument to the null string).

Several XIDAK utility programs examine the command line, as desribed in the "MAINSAIL
Utilities User's Guide" and the "MAINSAIL Compiler User's Guide". The command line
syntaxes described therein are subject to change.

1.176. $getEofPos

LONG INTEGER
PROCEDURE $getEofPos (POINTER(file) f);

Table 1.176-1. $getEofPos

$getEofPos returns a value greater than or equal to the current end-of-file position of f (in
character units if f is a text file or a file open for PDF 110, storage units otherwise). The result
of $getEofPos is undefined if f is not a byte stream file (a file that can be opened for random
output) with a definite ending position.

1.177. $getlnArea

STRING
PROCEDURE

POINTER
PROCEDURE

$getInArea (STRING S;
OPTIONAL POINTER($area) area);

$getInArea (POINTER p;
OPTIONAL POINTER($area) area);

Table 1.177-1. $getInArea (Generic)

$getInArea does nothing if s or p is Zero or if $inArea is true of its arguments; otherwise, it
copies the characters of s or the chunk pointed to by p into area, and returns the string
descriptor or pointer referencing the copied data. If s is a string, then "$getInArea(s,a)" is
equivalent to:

- 140-

IF $inArea(S,a) THEN s EL $getToTop(s,a)

If area is omitted, $defaultArea is used. This is useful, for example, when a suing has been
created in static space and the user wishes to have the string collected like a normal
MAINSAIL suing, or if the static space is to be reused to allocate a new string. For example, if
a foreign language procedure returns a string with length len at charadr ch, $getInArea can be
used in conjunction with the procedure newString as in Example 1.177-2. The resulting string
s is a string in MAINSAIL string space that is subject to MAINSAIL string collection.

INTEGER len; CHARADR Chi STRING S;

t foreignProcedure creates a string at ch with length len
foreignProcedure(ch,len);
s := $getInArea(newString(ch,len»;

Example 1.177-2. Use of$getInArea

1.178. getPos

LONG INTEGER
PROCEDURE getPos (POINTER (file) f);

Table 1.178-1. getPos

getPos returns the current position of f (in character units if f is a text file or a file open for PDP
I/O, storage units otherwise).

1.179. $getSubcommands

$getSubcommands allows a program to process a series of MAINEX subcommands.
$getSubcommands is documented in detail in the "MAINSAIL Utilities User's Guide".

- 141-

INTEGER
LONG INTEGER
POINTER (textFile)

c,j,k;
pos,savePos;
f;

open(f,"results",create!random);

* Suppose you are writing characters to f and you come to * a point where you know another character is needed, * but you don't yet know its value and you need to * write out other characters before you will know its * value. You can save the position at which this * character belongs,

savePos := getPos(f);

* temporarily write out an "x", say, as a place holder,

cWrite(f,'x');

* and then continue writing out other characters, e.g.,

write(f,"abc");

* until you know the value of the original character, * say c, so you can replace the "x" written in its place
* with the proper value. Save the current position in f, * position back to the position for the character c, write
* out the desired character, and position back to where * you were to continue writing more characters:

pos := getPos(f);
setPos(f,savePos); cWrite(f,c);
setPos(f,pos);

Example 1.178-2. Use of getPos

- 142-

1.180. $getToTop

STRING
PROCEDURE $getToTop (STRING s;

OPTIONAL POINTER($area) area);

Table 1.180-1. $getToTop

The procedure $getToTop copies the characters of a string the top of area's string space. A
better way to ensure that a string is in a given area (whether at the top of string space or not) is
$getInArea (see Table 1.177-1).

1.181. The Global Symbol Table Procedures

MAINSAIL supports a method of establishing records that are visible to every module in the
current execution. The records are established using a string key. A key should be chosen to
be unique; it should be long and descriptive, including at least the name of the program or
system using it.

Each record established by a user program is prefixed by the class $globaISymbol:

CLASS $globalSymbol (STRING $key);

The procedures shown in Table 1.181-1 are used to manipUlate the global symbol table.
$globalLookup returns the record with $key equal to key, or nullPointer if no such record
exists. $globalEnter enters the record pointed to by p into the global symbol table. The effect
is undefined if p.$key is the key of a record already in the global symbol table; call
$globalLookup before entering p to ensure that p's key is unique. $globalRemove removes and
returns the record with $key equal to key; if no such record exists, it returns nullPointer.

Suppose a module M has a large number of data sections that wish to share some data under the
symbol:

M: shared data

In the initial procedure of M, declare:

CLASS ($globalSymbol) mSharedData (... extra fields ...);
POINTER (mSharedData) p;

- 143-

POINTER ($globalSymbol)
PROCEDURE $globalLookUp

(STRING key);

PROCEDURE $globalEnter
(POINTER ($globalSymbol) p);

POINTER ($globalSymbol)
PROCEDURE $globalRemove

(STRING key);

Table 1.181-1. Global Symbol Table Procedures

If the first data section of M is to establish the field values, and all subsequent data sections to
use those values, the code would look something like:

IF NOT P := $globalLookup("M: shared data") THENB
p := new(mSharedData)i p.$key .= "M: shared data";
... set other fields of p ...
$globalEnter(p) END;
use fields of p ...

Interface fields of a bound data section provide a more efficient (but sometimes less
convenient) repository for data shared among many modules.

The symbol table manipulated by the global symbol table procedures is not related to the global
symbol table in which entries are made by the directive "$GLOBALREDEFINE".

1.182. $gmt

COMPILETIME
BITS
<macro> $gmt;

Table 1.182-1. $gmt

$gmt is a bit that specifies that Greenwich Mean Time (GMT) date(s) and/or time(s) are input
to or output from the procedure to which it is passed. It may be passed to $assembleDate,

- 144-

$assembleTime, $date, $dateAndTime, $dateAndTimeToStr, $strToDate, $strToDateAndTime,
$strToTime, and $time. It may be returned by $dateFormat and $timeFormat to indicate the
format of the long integer date or time argument.

1.183. $GMTtoLocalTime

COMPILETlME
BITS
<macro> $GMTtoLocalTime;

Table 1.183-1. $GMTtoLocalTime

$GMTtoLocalTime is a bit that specifies that a conversion from Greenwich Mean Time (GMT)
to local time is to be performed. It may be passed to $assembleDateAndTime and
$strToDateAndTime.

1.184. $gotValue

BOOLEAN
<macro> $gotValue (POINTER(file) f);

Table 1.184-1. $gotValue

$gotValue returns true if the last read from the file f returned a value; i.e., if end-of-file was not
encountered during the last read from the file f.

$gotValue is a less ambiguous (and more efficient) test for end-of-file than eof. $gotValue
returns false only when a read is attempted beyond end-of-file; eof may return true when a read
is attempted beyond end-of-file or immediately before such a read is attempted. Both
$gotValue and eof suffer from the drawback that some operating systems do not permit
MAINSAIL to ascertain the end-of-file position exactly. Where possible, the programmer
should design files that indicate their own end-of-file, e.g., by some special data value.

$gotValue may become true or false after a call to the textFile or dataFile form of read. It is
not affected by other input procedures (even if end-of-file is encountered) since those

- 145 -

procedures (which include fldRead, cRead, scan, $storageUnitRead, and $pageRead) return a
distinctive value when they encounter end-of-file.

1.185. $hash

INTEGER
PROCEDURE $hash (STRING key;

INTEGER buckets);

Table 1.185-1. $hash

$hash is a general-purpose hash function that generates an integer in the range 0 to buckets - 1
based on key (the effect is undefined if buckets is less than one). The algorithm differs from
that used by HSHMOD, and is subject to change from release to release of MAINSAll..,.

$hash is not a module interface procedure, so calls to it may be usefully prefixed with
"INLINE" or "$AL WA YSINLINE"; this may be advisable when fast hashing is important.
The code for $hash is not completely trivial, however, so this expansion should not be made too
many times per module, or it will take up a lot of space.

1.186. hex

COMPILETIME
BITS
<macro> hex;

Table 1.186-1. hex

hex is a bit that specifies that a hexadecimal string representation is input to or output from the
procedure to which it is passed. It may be passed to cvb, cvlb, cvs and $removeBits. It may be
returned by $preferredRadix.

- 146-

1.187. $homeDirectory

STRING
PROCEDURE $homeDirectory

(OPTIONAL BITS ctrlBits;
PRODUCES' OPTIONAL STRING msg);

Table 1.187-1. $homeDirectory

If the operating system defines a notion of "home directory", $homeDirectory returns its name;
consult the appropriate system-specific MAINSAIL user's guide for details. If an error occurs,
the null string is returned, msg is set to a string describing the error, and if errorOK is not set in
ctrlBits, an error message is issued. errorOK is the only valid bit in ctrlBits.

1.188. HSHMOD Procedures

The HSHMOD procedures provide a set of facilities for constructing hash tables of records.
HSHMOD is documented in detail in the "MAINSAa Utilities User's Guide".

1.189. $hyphenateDate

COMPILETlME
BITS
<macro> $hyphenateDate;

Table 1.189-1. $hyphenateDate

$hyphenateDate is a bit that specifies that a hyphenated date string is to be output It may be
passed to $dateAndTimeToStr and $dateToStr.

- 147-

1.190. $inArea

BOOLEAN
PROCEDURE

BOOLEAN
PROCEDURE

$inArea (STRING Si
OPTIONAL POINTER($area) area)i

$inArea (POINTER Pi
OPTIONAL POINTER($area) area)i

Table 1.190-1. $inArea (Generic)

$inArea returns true if and only if the text referenced by s or the chunk pointed to by p is in
area ($defaultArea if area is not specified). The effect is undefined if s or p is dangling.

1.191. $includeTimeZone

COMPILETIME
BITS
<macro> $includeTimezonei

Table 1.191-1. $includeTimeZone

$includeTimeZone is a bit that specifies that a time zone string is to be included in the output of
the procedure to which it is passed. It may be passed to $dateAndTimeToStr and $dateToStr.

-148 -

1.192. $includeWeekday

COMPILETIME
BITS
<macro> $includeWeekday;

Table 1.192-1. $includeWeekday

$includeWeekday is a bit that specifies that the day of the week is to be included in the output
string. It may be passed to $dateAndTimeToStr and $dateToStr.

1.193. $initRand

$initRand is used to initialize One of the pseudo-random number generation algorithms
provided by $ranMod, which is documented in detail in the "MAINSAIL Utilities User's
Guide".

1.194. $initsRand

$initsRand is used to initialize one of the pseudo-random number generation algorithms
provided by $ranMod, which is documented in detail in the "MAINSAil.. Utilities User's
Guide". .

1.195. input

COMPILETlME
BITS
<macro> input;

Table 1.195-1. input

input is a bit that specifies that input operations are to be allowed on the file that is being
opened. It may be passed to $createUniqueFile, open, and $reOpen.

- 149-

1.196. $insertLeft

COMPILETIME
BITS
<macro> $insertLeft;

Table 1.196-1. $insertLeft

$insertLeft is a bit that specifies that a coroutine is to be inserted into a coroutine tree to the left
of another coroutine. It may be passed to $moveCoroutine.

1.197. $insertRight

COMPILETIME
BITS
<macro> $insertRiqht;

Table 1.197-1. $insertRight

$insertRight is a bit that specifies that a coroutine is to be inserted into a coroutine tree to the
right of another coroutine. It may be passed to $moveCoroutine.

1.198. $intmodInfo

TEMPORARY FEATURE: SUBJECT TO CHANGE

$intmodInfo is analogous to $moduleInfo, except it works on intmods or intmod libraries
instead of objmods or objmod libraries, and cmdLine has the form of arguments to INTLIB 's
"DIRECTORY" command instead of MODLIB's. See the description of $moduleInfo for more
details.

The $legalNoticeStr bit is never set in $moduleRec.$cmpBits for an intmod.

-150 -

BOOLEAN
PROCEDURE $intmodInfo (STRING cmdLinei

PRODUCES POINTER($moduleRec)
modListi

OPTIONAL BITS ctrlBits)i

Table 1.198-1. $intmodlnfo

1.199. $invokeModule

BOOLEAN
PROCEDURE $invokeModule

(STRING moduleOrFileNameAndArgsi
OPTIONAL BITS ctrlBitsi
PRODUCES OPTIONAL LONG INTEGER

bindCpuTime);

Table 1.199-1. $invokeModule

$invokeModule invokes the module (i.e., binds then disposes its data section, like MAINEX)
named by the first (blank-or tab-delimited) word of moduleOrFileN ameAndArgs (or contained
in the file named by the same word) with the arguments composing the remainder of
moduleOrFileNameAndArgs (arguments are discussed in more detail under the entry for
$getCommandLine). It returns false if a bound data section already exists for the module or if
the module cannot be invoked.

The first word of moduleOrFileNameAndArgs is assumed to be a file name if it is not a valid
module identifier. The file name may contain a device module specification. The first word of
moduleOrFileNameAndArgs may be terminated with a comma, in which case MAINEX
subcommands are read from cmdFile (see the "MAINSAIL Utilities User's Guide").

The valid ctrlBits bits are the same as for bind, with the same meanings.

If the call to bind was successful (Le., if $invokeModule returns true), bindCpuTime is set to
the number of CPU time units (see the description of $cpuTimeResolution) used by the call to
bind; this time includes the execution of the initial procedure of the module.

- 151-

When an unhandled exception causes the initial procedure of a module invoked with
$invokeModule to be aborted, $invokeModule unbinds the module.

1.200. $ioSize

INTEGER
<macro> $ioSize (POINTER (file) f;

INTEGER t yp) ;

Table 1.200-1. $ioSize

"$ioSize(f,x)", where x is a MAINSAn... data type code, returns the size of x based on the
format of the data in f. For example, if f contains host data, "$ioSize(f,x)" returns the same
value as "size(x)", but if f contains PDF data, "$ioSize(f,x)" returns the same value as
"pdf Chars(x) " (see the description ofPDFMOD in the "MAINSAIL Utilities User's Guide").

$ioSize returns 0 if f is a text file since there is no fixed size for the string representation of a
data type.

The result of $ioSize is undefined if the type code is not boolean, (long) integer, (long) real, or
(long) bits.

1.201. isAlpba

$BUILTIN
BOOLEAN
PROCEDURE isAlpha (INTEGER cha r) ;

Table 1.201-1. isAlpha

isAlpha returns true if and only char is the character code for an alphabetic character, i.e., one
of the uppercase letters "A" through "Z" or one of the lowercase letters "a" through "z".
isAlpha is independent of the underlying character set

- 152-

1.202. $isArray

isAlpha (' b')
isAlpha (' M')

isAlpha (' i')
isAlpha (' 9')

TRUE
TRUE
FALSE
FALSE

Example 1.201-2. Use of is Alpha

INLINE
BOOLEAN
PROCEDURE $isArray (POINTER p) ;

Table 1.202-1. $isArray

$isArray returns true if and only if its argument is an array pointer (e.g., as returned by the
array form of cvp).

1.203. $isBound

BOOLEAN
PROCEDURE $isBound (STRING modName);

Table 1.203-1. $isBound

$isBound returns true if a bound data section exists for the module named modName.

modName is a true module name, not a dummy module name as established by setModName;
e.g., if the dummy name "ABC" has been established for a module DEF, and the module DEF
is bound but no module named ABC is bound, "$isBound("ABC")" returns false.

- 153-

1.204. isLowerCase

$BUILTIN
BOOLEAN
PROCEDURE isLowerCase (INTEGER char);

Table 1.204-1. isLowerCase

isLowerCase returns true if and only if char is the character code for a lowercase letter, i.e., one
of the lowercase letters "a" through "z". isLowerCase is independent of the underlying
character set.

1.205. isNuI

isLowerCase('b') TRUE
isLowerCase('M') FALSE
isLowerCase('*') = FALSE
isLowerCase('9') FALSE

Example 1.204-2. Use of isLowerCase

$BUILTIN
BOOLEAN
PROCEDURE isNul (INTEGER char);

Table 1.205-1. isNul

isNul returns true if and only if char is the null character $nulChar. See Section 1.259 for
further information about the treatment of null characters in an input file.

- 154-

1.206. isUpperCase

$BUILTIN
BOOLEAN
PROCEDURE isUpperCase (INTEGER char);

Table 1.206-1. isUpperCase

isUpperCase returns true if and only if char is the character code for an uppercase letter, i.e.,
one of the uppercase letters "A" through "Z". isUpperCase is independent of the underlying
character set

1.207. keepNul

isUpperCase (' b')
isUpperCase (, M')
isupperCase (, 4f:')
isUpperCase('9')

FALSE
TRUE
FALSE
FALSE

Example 1.206-2. Use of is UpperCase

COMPILETIME
BITS
<macro> keepNul;

Table 1.207-1. keepNul

keepNul is a bit that specifies that null characters are not to be discarded from input operations
on a file. It may be passed to $createUniqueFile, open, and $reOpen.

- 155-

1.208. $killCoroutine

BOOLEAN
PROCEDURE

BOOLEAN
PROCEDURE

$killCoroutine
(POINTER ($coroutine) p;
OPTIONAL BITS ctrlBits);

$killCoroutine
(STRING coroutineName;
OPTIONAL BITS ctrlBits);

Table 1.208-1. $killCoroutine (Generic)

$killCoroutine is used to "kill" (deallocate) a coroutine and, by default, all of its descendants
(i.e., all the coroutines that make up the subtree rooted at the argument coroutine). In each
coroutine to be killed, $abortProcedureExcpt is first raised to allow the coroutine to clean up
after itself. Then each dying coroutine's stack is deallocated and its $coroutine record is taken
off all lists and marked as killed. An attempt to resume a killed coroutine is an error. The
$coroutine record is reclaimed by the garbage collector when it becomes inaccessible.

$descendantKilledExcpt is raised in the ancestors of a killed coroutine to infonn the coroutines
that their descendant has died. The exception must be propagated with $raise; it may not be
handled with $raiseReturn or by falling out of a handler. $exceptionPointerArg points to the
$coroutine record of the dead coroutine, in which $abortProcedureExcpt has already been
raised, but of which the $coroutine record has not been unlinked from the coroutine tree.

The root coroutine to be killed can be specified either by name or by a pointer to its $coroutine
record.

It is an error to kill the invoking coroutine or any of its ancestors; $resumeCoroutine must be
used to kill the invoking coroutine.

Valid ctrlBits bits are errorOK and $nonRecursive. errorOK suppresses any error messages. If
an error occurs, false is returned, otherwise true. If $nonRecursive is specified, $killCoroutine
does not kill the specified coroutine's children, but replaces the dying coroutine in the coroutine
tree with its children (the left-to-right order of the children is preserved). For example, if the
coroutine tree looks like (in part):

- 156-

then:

produces the tree:

A - B - C - D - E

I
F - G - H

$killCoroutine ("C", $non,Recursive)

A - B - F - G - H - D - E

1.209. $killedCoroutine

BOOLEAN
<macro> $killedCoroutine

(POINTER ($coroutine) p)i

Table 1.209-1. $ki1ledCoroutine

$killedCoroutine returns true if and only if the coroutine record pointed to by p represents a
coroutine that has been killed with $killCoroutine.

1.210. last

$BUILTIN COMPILETIME
INTEGER
PROCEDURE last

Table 1.210-1. last

(STRING s) i

"last" returns the character code for the last character of a string.

If s is "", -1 is returned. -1 is not a valid character code.

- 157 -

last ("abc") = 'c'
last("") = -1

99 * assuming the ASCII character set

Example 1.210-2. Use of last

1.211. IbMask

COMPILETIME
LONG BITS
PROCEDURE IbMask (INTEGER lowBit,highBit);

Table 1.211-1.lbMask

IbMask makes a "bit mask", which is a contiguous sequence of I-bits embedded within O-bits.
IbMask is analogous to bMask, except that its result is a long bits instead of a bits. See Section
1.30 for a description of bMask.

A garbage collection cannot occur during a call to IbMask ..

1.212. IDisplacement

$BUILTIN
LONG INTEGER
PROCEDURE

$BUILTIN
LONG INTEGER
PROCEDURE

IDisplacement
(ADDRESS a, b) ;

IDisplacement
(CHARADR a, b) ;

Table 1.212-1.IDisplacement (Generic)

- 158-

IDisplacement computes the distance between two addresses or charadrs.

The address form returns the number of storage units from address a to address b.

The charadr form returns the number of characters from charadr a to charadr b.

If a is beyond b, the result is negative.

A garbage collection cannot occur during a call to lDisplacement

1.213. length

$BUILTIN COMPILETIME
INTEGER
PROCEDURE length (STRING s);

Table 1.213-1. length

length returns the number of characters in a string.

1.214. $Iength

INTEGER
PROCEDURE

INTEGER
PROCEDURE

length ("abc") = 3
lengthen") = 0

Example 1.213-2. Use of length

$length (BOOLEAN v);

$length (INTEGER v) ;

Table 1.214-1. $length (Generic) (continued)

-159 -

INTEGER
PROCEDURE $length (LONG INTEGER v);

INTEGER
PROCEDURE $length (REAL v;

OPTIONAL BITS format);

INTEGER
PROCEDURE $length (LONG REAL v;

OPTIONAL BITS format) ;

INTEGER
PROCEDURE $length (BITS Vi

OPTIONAL BITS format);

INTEGER
PROCEDURE $length (LONG BITS v;

OPTIONAL BITS format);

Table 1.214-1. $length (Generic) (end)

$length returns the length of the string representation of v, as specified by format, if applicable.
Specifically:

$length(v)

returns the same value as:

length(cvs(v»

and:

$length(v,format)

the same as:

length(cvs(v,format»

The difference is that $length does not put characters into string space, and so is more efficient
than the equivalent forms calling length and cvs. However, if the string is actually needed
later, it is more efficient to call cvs; i.e., instead of:

-160-

do:

1.215. In

$Iength (v, ...) ; , ... ; s : = evs (v, ...); <use s>

Iength(s := cvs(v, ... »;

REAL
PROCEDURE

LONG REAL
PROCEDURE

In

In

<use s>

(REAL x);

(LONG REAL x);

Table 1.215-1. In (Generic)

In returns the logarithm base e of x, where e is the base of the natural logarithms.

It is an error if x is less than or equal to zero.

1.216. The Load Procedures

$BUILTIN
BOOLEAN
PROCEDURE

$BUILTIN
INTEGER
PROCEDURE

boLoad

iLoad

(ADDRESS a;
OPTIONAL INTEGER dspl);

(ADDRESS a;
OPTIONAL INTEGER dspl);

Table 1.216-1. The Load Procedures (continued)

- 161-

$BUILTIN
LONG INTEGER
PROCEDURE liLoad (ADDRESS a;

OPTIONAL INTEGER dspl);

$BUILTIN
REAL
PROCEDURE rLoad (ADDRESS a;

OPTIONAL INTEGER dspl) ;

$BUILTIN
LONG REAL
PROCEDURE lrLoad (ADDRESS a;

OPTIONAL INTEGER dspl);

$BUILTIN
BITS
PROCEDURE bLoad (ADDRESS a;

OPTIONAL INTEGER dspl);

$BUILTIN
LONG BITS
PROCEDURE IbLoad (ADDRESS a;

OPTIONAL INTEGER dspl);

$BUILTIN
STRING
PROCEDURE sLoad (ADDRESS a;

OPTIONAL INTEGER dspl);

$BUILTIN
POINTER
PROCEDURE pLoad (ADDRESS a;

OPTIONAL INTEGER dspl) ;

$BUILTIN
ADDRESS
PROCEDURE aLoad (ADDRESS a;

OPTIONAL INTEGER dspl);

Table 1.216-1. The Load Procedures (continued)

- 162-

$BUILTIN
CHARADR
PROCEDURE cLoad (ADDRESS a;

OPTIONAL INTEGER dspl)i

Table 1.216-1. The Load Procedures (end)

load is used to load a value from a memory address.

"v := xLoad(a,d)" loads a value of type x from the memory location given by "displace(a,d)",
where d is a displacement in storage units. If "displace(a,d)" is undefined, then "xLoad(a,d)" is
also undefined. The string form loads only a string descriptor; the characters of the string are
not referenced.

The effect is undefined if a is nullAddress.

Another form of cLoad, which loads a character from a charadr, is described in Section 1.51.

REAL Yi
CLASS c (REAL X; POINTER (c) link);
POINTER (c) p,qi

p := new (c) ;

Y .= rLoad(cva(p»i * same as Y := p.x
q := pLoad(cva(p),DSP(c.link» * same as q := p.link

Example 1.216-2. Use of the Load Procedures

-163 ~

1.217. $localTime

COMPILETIME
BITS
<macro> $localTime;

Table 1.217-1. $localTime

$localTime is a bit that specifies that local date(s) and/or time(s) are input to or output from the
procedure to which it is passed. It may be passed to $assembleDate, $assembleTime, $date,
$dateAndTime, $dateAndTimeToStr, $strToDate, $strToDateAndTime, $strToTime, and
$time. It may be returned by $dateFormat and $timeFormat to indicate the format of the long
integer date or time argument.

1.218. $localTimeToGMT

COMPILETIME
BITS
<macro> $localTimeToGMT;

Table 1.218-1. $localTimeToGMT

$localTimeToGMT is a bit that specifies that a conversion from local time to Greenwich Mean
Time (GMT) is to be performed. It may be passed to $assembleDateAndTime and
$strToDateAndTime.

- 164-

1.219. log

REAL
PROCEDURE

LONG REAL
PROCEDURE

log (REAL x);

log (LONG REAL x);

Table 1.219-1. log (Generic)

log returns the logarithm base ten of x.

It is an error if x is less than or equal to zero.

1.220. $log2

COMPILETIME
INTEGER
<macro>

COMPILETIME
LONG INTEGER

$log2

<macro> $log2

(INTEGER x);

(LONG INTEGER x);

Table 1.220-1. $log2

$log2 returns the logarithm base 2, truncated if necessary to the next lower whole number, of x.
If x is not a constant, a compiletime error occurs. The effect of $log2 is undefined if x is not
positive.

- 165-

1.221. logFile

system variable
POINTER (textFile) logFile;

Table 1.221-1.logFile

10gFile is MAINSAIL's standard output file. cmdFile and 10gFile are described in Section
18.12 of part I of the "MAINSAll.. Language Manual".

1.222. lookUpLogicalName

STRING
PROCEDURE lookUpLogicalName

(STRING logicalName);

Table 1.222-1. lookUpLogicalName

lookUpLogicalName returns the true file name associated with the logical name logicalName.
A logical name association may be established by means of enterLogicalName. The null string
is returned if no true file name is associated with logicalName.

1.223. $mainsailExec

The MAINSAll.. executive, MAINEX, can be invoked from a user program by calling the
procedure $mainsailExec. This feature is documented in detail under MAINEX in the
"MAINSAIL Utilities User's Guide".

- 166-

1.224. $majorVersion

* system variable
INTEGER $majorVersion;

Table 1.224-1. $majorVersion

The value of $majorVersion is the major part of the MAINSAIL version number. For example,
if running version 12.10 of MAINSAIL, $majorVersion is 12.

The effect of altering $majorVersion is undefined.

1.225. $maxChar

COMPILETIME
INTEGER
<macro> $maxChar;

Table 1.225-1. $maxChar

$maxChar is the maximum valid value of a character code, equal to "(2 A $bitsPerChar - 1)". It
is always equal to 255, since characters occupy eight bits.

1.226. $maxInteger

COMPILETIME
INTEGER
<macro> $maxInteger;

Table 1.226-1. $maxlnteger

- 167-

$maxInteger is the operating-system-dependent maximum allowed integer value. Attempting
to create an integer value larger than $maxInteger may lead to overflow, which has undefined
effects.

1.227. $maxLonglnteger

COMPILETIME
LONG INTEGER
<macro> $maxLongInteger;

Table 1.227-1. $maxLonglnteger

$maxLongInteger is the operating-system-dependent maximum allowed long integer value.
Attempting to create a long integer value larger than $maxLonglnteger may lead to overflow,
which has undefined effects.

1.22S. $minInteger

COMPILETIME
INTEGER
<macro> $minInteger;

Table 1.228-1. $minlnteger

$minlnteger is the operating-system-dependent minimum allowed integer value. Attempting to
create an integer value smaller than $minlnteger may lead to overflow, which has undefined
effects.

- 168-

1.229. $minLonglnteger

COMPILETIME
LONG INTEGER
<macro> $minLonglnteger;

Table 1.229-1. $minLongInteger

$minLongInteger is the operating-system-dependent minimum allowed long integer value.
Attempting to create a long integer value smaller than $minLongIntege may lead to overflow,
which has undefined effects.

1.230. $minor Version

system variable
INTEGER $minorVersion;

Table 1.230-1. $minorVersion

The value of $minorVersion is the minor part of the MAINSAIL version number. For
example, if running version 12.10 of MAINSAIL, $minorVersion is 10.

The effect of altering $minorVersion is undefined.

1.231. $modulelnfo

TEMPORARY FEATURE: SUBJECT TO CHANGE

$moduleInfo is used from a program to obtain information about one or more objmods, which
may reside either in individual files or in libraries. The information is returned as a linked list
of records of the class $moduleRec, described below. The records are sorted in ascending
order by module name.

- 169-

BOOLEAN
PROCEDURE $moduleInfo (STRING cmdLine;

PRODUCES POINTER ($moduleRec)
modList;

OPTIONAL BITS ctrlBits);

Table 1.231-1. $moduleInfo

cmdLine can have the same form as the arguments to MODLm's "DIRECTORY" command,
namely "libName{=fileName} {modList}". libName can be "*" to indicate that no library is
involved, i.e., that modList specifies object modules in individual files. modList is a possibly
empty list of module specifications separated by blanks. A module specification can have any
one of three forms:

moduleName
fileName
moduleName=fileName

name of a module
name of file (if not a valid module name)
module in specified file

The last two forms are used when libName = "*". The only reason to use the last form is if the
fileName would appear to be a valid module name. If a libName is given and modList is
omitted, then information is provided for all modules in the library.

ctrlBits can specify errorOK to suppress error messages, and $noLegalNotice may be set in a
call to $moduleInfo to suppress fetching of the legal notice from each module (this speeds up
the call significantly). A result of FALSE indicates that an error occurred (e.g., a file could not
be opened).

Fields of $moduleRec include:

- 170-

STRING

STRING

LONG INTEGER

LONG INTEGER
LONG INTEGER
LONG INTEGER
INTEGER
INTEGER
LONG BITS
STRING
POINTER ($moduleRec)

$dirName

$modName

$startPage

$numPages
$compileDate
$compileTime
$majorVersion
$minorVersion
$cmpBits
$legalNoticeStr
$next

name recorded in the
directory, if in a
library
actual name of the
module, usually the
same as $dirName
start page if in a
library
number of pages
date compiled
time compiled
major version
minor version
see below
legal notice string
link to next record

Predefined long bits constants for $modBits are:

$hasInitialProc the module has an initial procedure
$hasFinalProc the module has a final procedure
$inlinesHaveBodies "INLINE" procedures were given bodies
$arithmeticChecked compiled with the "ACHECK" option
$checked compiled with the "CHECK" option
$debugBit compiled with the "DEBUG" option
$optimized compiled with the "OPTIMIZE" option
$countingPerModule compiled with the "PERMOD" option
$countingPerProc compiled with the "PERPROC" option
$countingPerStmt compiled with the "PERSTMT" option
$timingPerModule compiled with the "MODTIME" option
$timingPerProc compiled with the "PROCTIME" option
$unbound compiled with the "UNBOUND" option

See Example 1.231-2.

- 171-

PROCEDURE printModuleslnLibrary (STRING libraryFileName)i
BEGIN
POINTER ($moduleRec) p,qi
IF NOT $modulelnfo(libraryFileName,p) THEN RETURN;
write (logFile,

"Modules in library file ",libraryFileName,eol)i
WHILE q := p DOB

write(logFile,p.$modName,eol)i
p := p.$nexti dispose(q) ENDi

END;

Example 1.231-2. Use of$moduleInfo

1.232. $moduleName

STRING
PROCEDURE $moduleName (POINTER Pi

OPTIONAL POINTER($area) area);

Table 1.232-1. $moduleName

If p points to a data section, $moduleName returns the uppercase name of the associated
module. Otherwise, $moduleName returns the null string. area specifies the destination area
for the resulting string.

- 172-

1.233. $moveCoroutine

BOOLEAN
PROCEDURE

BOOLEAN
PROCEDURE

$moveCoroutine
(POINTER ($coroutine)

cor'outine, newParent;
OPTIONAL BITS ctrlBits);

$moveCoroutine
(STRING coroutine,newParent;
OPTIONAL BITS ctrlBits);

Table 1.233-1. $moveCoroutine (Generic)

$moveCoroutine moves coroutine in the coroutine tree so that newParent becomes its parent (or
sibling if $insertLeft or $insertRight is specified) (the coroutines are specified by a pointer to
the $coroutine record in the pointer form and by name in the string form). It is an error if either
coroutine is Zero. Valid ctrffiits bits are errorOK, $nonRecursive, $insertLeft, and
$insertRight. errorOK suppresses error messages. $nonRecursive means that coroutine's
children should not be moved along with it, but promoted in the coroutine tree to become
children of coroutine's parent (as if $killCoroutine had been called on coroutine with the
$nonRecursive bit set; see Section 1.208). If $insertLeft or $insertRight is set (the effect is
undefined if both are set), then coroutine is inserted in the tree to the left or right, respectively,
of parent, instead of being made a child of parent $moveCoroutine returns true if successful,
false otherwise.

1.234. msgMe

COMPILETIME
BITS
<macro> msgMe;

Table 1.234-1. msgMe

msgMe is a bit that specifies that the caller of errMsg is to be indicated along with the error
message. It may be passed to errMsg.

- 173-

1.235. msgMyCaller

COMPILETIME
BITS
<macro> msgMyCalleri

Table 1.235-1. msgMyCaller

msgMe is a bit that specifies that the caller of the caller of errMsg is to be indicated along with
the error message. It may be passed to errMsg.

1.236. new

SPECIAL
POINTER
PROCEDURE

SPECIAL
PROCEDURE

SPECIAL
PROCEDURE

new

new

new

(CLASS Ci
OPTIONAL POINTER($area) area)i

(PRODUCES LONG ARRAY(*) ai

OPTIONAL LONG INTEGER 11,uli
OPTIONAL POINTER($area) areai
OPTIONAL STRING aryNamei
OPTIONAL INTEGER typeCode)i

(PRODUCES LONG ARRAY(*,*) ai

OPTIONAL LONG INTEGER
11,ul,12,u2i

OPTIONAL POINTER($area) area,
OPTIONAL STRING aryName;
OPTIONAL INTEGER typeCode)i

Table 1.236-1. new (Generic) (continued)

- 174-

SPECIAL
PROCEDURE new (PRODUCES LONG ARRAY(*,*,*) a;

OPTIONAL LONG INTEGER
11,ul,12,u2,13,u3;

OPTIONAL POINTER ($area) area;
OPTIONAL STRING aryName;
OPTIONAL INTEGER typeCode);

SPECIAL
PROCEDURE new (PRODUCES LONG ARRAY(*) a;

OPTIONAL INTEGER 11,ul;
OPTIONAL POINTER ($area) area;
OPTIONAL STRING aryName;
OPTIONAL INTEGER typeCode);

SPECIAL
PROCEDURE new (PRODUCES LONG ARRAY(*,*) a;

OPTIONAL INTEGER 11,ul,12,u2;
OPTIONAL POINTER ($area) area;
OPTIONAL STRING aryName;
OPTIONAL INTEGER typeCode);

SPECIAL
PROCEDURE new (PRODUCES LONG ARRAY(*,*,*) a;

OPTIONAL INTEGER
11,ul,12,u2,13,u3;

OPTIONAL POINTER($area) area;
OPTIONAL STRING aryName;
OPTIONAL INTEGER typeCode);

SPECIAL
PROCEDURE new (PRODUCES ARRAY (*) a;

OPTIONAL INTEGER 11,ul;
OPTIONAL POINTER ($area) area;
OPTIONAL STRING aryName;
OPTIONAL INTEGER typeCode);

Table 1.236-1. new (Generic) (continued)

- 175 -

SPECIAL
PROCEDURE

SPECIAL
PROCEDURE

SPECIAL
POINTER
PROCEDURE

POINTER
PROCEDURE

new

new

new

new

(PRODUCES ARRAY(*,*) a;
OPTIONAL INTEGER 11,ul,12,u2;
OPTIONAL POINTER($area) area;
OPTIONAL STRING aryName;
OPTIONAL INTEGER typeCode);

(PRODUCES ARRAY(*,*,*) a;
OPTIONAL INTEGER

, 11,ul,12,u2,13,u3;
OPTIONAL POINTER($areQ) area;
OPTIONAL STRING aryName;
OPTIONAL INTEGER typeCode);

(MODULE m;
OPTIONAL BITS ctrlBits;
OPTIONAL POINTER($area) area);

(STRING moduleName;
OPTIONAL BITS ctrlBits;
OPTIONAL POINTER($area) area);

Table 1.236-1. new (Generic) (end)

new is used to allocate new records, arrays, or data sections (collectively referred to as
"chunks"). area specifies the area in which the newly allocated chunk is to be put.

The class form creates a new record of the class c and returns a pointer to it. All fields of the
record are initialized to Zero. The returned pointer is of class c.

The module and string forms of new create a new nonbound data section for the module m or
the module named by the string moduleName and return a pointer to it. All storage within the
data section is cleared. The module's initial procedure (if any) is invoked befote returning. In
the module form, the returned pointer is of the same class as the module; in the string form, it is
unclassified. The control section associated with the allocated data section is found as
described in Section 12.2 of part I of the "MAINSAIL Language Manual".

-176 -

The valid bits for ctrlBits in the module and string forms are the same as for the system
procedure "bind". They are shown in Table 1.27-2, and apply to a module allocated by new in
the same way as to a module allocated by bind.

The (long) array forms create new array elements for a (long) array and initialize the element
values to Zero. Ii and ui are the lower and upper bounds of the ith dimension, respectively. If a
bound of the array being allocated was declared as a constant, the compiler checks that the
corresponding argument is the same constant. Any bound declared as a constant may be
omitted, as long as all subsequent arguments are also omitted; omitted bounds are filled in by
the compiler.

aryName gives the name of the array, and typeCode the type of the array. The compiler checks
that typeCode is the same as the type of the array argument, unless the array argument is
untyped. In practice, the programmer rarely specifies aryName or typeCode. If the array name
is omitted, the compiler substitutes the name of the identifier used as the first argument. If
typeCode is omitted, the compiler substitutes the type code for the type declared for the array;
an error occurs if the array is untyped and typeCode is omitted.

CLASS circle (INTEGER xCoord,yCoord,radius);
POINTER(circle) ARRAY(*) ary;
INTEGER i;

new(ary,m,n); # create an array with bounds m TO n
FOR i := m UPTO n DaB

ary[i] := new(circle); # create a circle record
ary[i] .xCoord := ary[i] .yCoord := 10 * i;
ary[i] . radius := 100 END;

Example 1.236-2. Use of new

1.237. $new Area

POINTER ($area)
PROCEDURE $newArea (STRING title;

OPTIONAL LONG BITS attr;
OPTIONAL LONG INTEGER

strSpcChars);

Table 1.237-1. $new Area

- 177-

$new Area returns a pointer to a new area. As described in Chapter 20 of part I of the
"MAINSAil.. Language Manual", title is the area's title, and attr the area's attributes; valid attr
bits are shown in Table 1.237-2.

attr Bit
$collectableChkSpc
$compactableChkSpc
$collectableStrSpc
$noCollectableptrs

$noCompactablePtrs

$noCollectableStrs

Description
collect area's chunks
compact area's chunks
collect area's string text
this area contains no pointers
into $collectableChkSpc areas
this area contains no pointers
into $compactableChkSpc areas
this area contains no string dscrs
into $collectableStrSpc areas

Table 1.237-2. $newArea attr Bits

If attr is not specified, the default is that collections and compactions do NOT occur in the
allocated area.

strSpcChars specifies the size in characters of string space, in characters, to allocate (if string
space is needed); it should be specified only if an unusually small amount of string space (on
the order of 2000 characters or less) is expected to be required (specifying a large strSpcChars
if a lot of string space is needed has undesirable effects; it is better to take the default in this
case). Extra string space·is allocated as needed, so strSpcChars need not be exact

1.238. $newException

STRING
PROCEDURE $newException;

Table 1.238-1. $newException

$newException returns a string consisting of a unique decimal integer followed by a colon.
The string may be concatenated to the front of another string describing an exception to
produce a unique exception name, or may be used as an exception name by itself. To avoid
conflicts with names created in these ways, users should avoid choosing an exception name that

- 178-

begins with a decimal integer and a colon unless that prefix was obtained by calling
$newException.

Values returned by $newException may vary from execution to execution of the same program.

1.239. newPage

ADDRESS
PROCEDURE

ADDRESS
PROCEDURE

newPage

newPage

(OPTIONAL LONG INTEGER numPages;
OPTIONAL INTEGER pageCode;
OPTIONAL BITS ctrlBits);

(OPTIONAL INTEGER numPages;
OPTIONAL INTEGER pageCode;
OPTIONAL BITS ctrlBits);

Table 1.239-1. newPage (Generic)

MAINSAIL divides memory into fixed-sized pages. newPage allocates and returns the address
of a page for a program's use.

newPage returns the address of the first of numPages consecutive free pages, and marks them
busy. If numPages is less than or equal to zero, one page is allocated. pageCode should be 0;
other values are for system use, and the effect of their use in a user program is undefined

The size of a page is the machine-dependent value $pageSize, which is the number of storage
units in a page.

The only valid ctrlBits are errorOK and $doNotClear. If the pages cannot be allocated, an error
occurs unless ctrffiits has errorOK set, in which case nullAddress is returned. The pages are
cleared unless $doNotClear is set (for efficiency), in which case their contents are initially
unspecified.

pageDispose is used to release pages.

- 179-

ADDRESS a;
a := newPage;

pageDispose(a)

Example 1.239-2. Use of newPage

1.240. $newRecords

POINTER
PROCEDURE

POINTER
PROCEDURE

BOOLEAN
PROCEDURE

$newRecords (POINTER p;
STRING linkFieldName;
LONG INTEGER numRecords;
OPTIONAL BITS ctrlBits;
OPTIONAL POINTER($area) area);

$newRecords (POINTER p;
INTEGER linkFieldDspl;
LONG INTEGER numRecords;
OPTIONAL BITS ctrlBits;
OPTIONAL POINTER($area) area);

$newRecords (POINTER p;
POINTER LONG ARRAY(*) ary;
OPTIONAL LONG INTEGER numRecords;
OPTIONAL BITS ctrlBits;
OPTIONAL POINTER($area) area);

Table 1.240-1. $newRecords (Generic)

$newRecords may be used to allocate more than one record at a time. If there are many records
to be allocated, $newRecords is more efficient than repeated calls to new. The pointer forms of
$newRecords return a pointer to the first record in the allocated linked list of records. The
records allocated are ofp's class. numRecords records are allocated; in the array form, if
numRecords is less than or equal to OL, one record is allocated for each element of the array.

-180 -

The string fonn links the records together through a pointer link field of name linkFieldName
in each record. The array fonn sets the elements of ary to point to the allocated records,
starting at the lower bound of ary. Any unused elements are unaffected. The integer fonn
allows the link field to be specified by its offset in the record rather than by the name of the
field. It is more efficient than the string fonn.

The only valid ctrlBits bit is errorOK; if set, an error message is suppressed if space cannot be
allocated for the records. An error occurs and a Zero val~e is returned if:

• P is Zero.

• P does not point to a valid record.

• linkFieldName is not the name of a pointer field in p's class.

• ary is Zero.

• Space cannot be allocated for the records.

• numRecords is greater than the number of elements in ary.

area specifies the area in which the newly allocated records are put.

1.241. newScratch

ADDRESS
PROCEDURE

ADDRESS
PROCEDURE

newScratch (INTEGER n);

newScratch (LONG INTEGER n);

Table 1.241-1. newScratch (Generic)

newScratch returns the address of an area of memory of n storage units, the contents of which
are initially cleared. An error occurs if the space cannot be allocated or if n is not positive.

scratchDispose is used to dispose of scratch space.

- 181 -

ADDRESS a;
a := newScratch(2); * get two storage units of scratch space

Example 1.241-2. Use of new Scratch

1.242. $newScratchChars

CHARADR
PROCEDURE $newScratchChars

CHARADR
PROCEDURE

(INTEGER chars) ;

$newScratchChars
(LONG INTEGER chars);

Table 1.242-1. $newScratchChars (Generic)

$newScratchChars allocates enough scratch memory to contain chars characters. The contents
are initially clear. An error occurs if the storage cannot be allocated.

1.243. newString

$BUILTIN
STRING
PROCEDURE newString (CHARADR C;

INTEGER n);

Table 1.243-1. newString

newString is used to create a string descriptor.

- 182-

newS tring returns a string of length n of which the first character is at the location given by c.
The string so created is not subject to garbage collection if it is not in MAINSAIL's string
space, e.g., if it is in storage allocated by a call to newPage or newScratch. If it is desired to
reuse the storage to create new strings or to make the string subject to garbage collection, the
procedure $getInArea should be used.

If c is nullCharadr or n less than or equal to 0, the result is '"'.

For example, "t := newString(cvc(s),length(s))" is equivalent to "t := s"; i.e., the string
descriptor for t is a copy of the string descriptor for s.

1.244. newUpperBound

SPECIAL
PROCEDURE

SPECIAL
PROCEDURE

SPECIAL
PROCEDURE

newUpperBound
(MODIFIES ARRAY(*) a;
INTEGER ni

OPTIONAL POINTER($area) area);

newUpperBound
(MODIFIES LONG ARRAY(*) a;
INTEGER n;
OPTIONAL POINTER ($area) area);

newUpperBound
(MODIFIES LONG ARRAY(*) a;
LONG INTEGER ni
OPTIONAL POINTER ($area) area);

Table 1.244-1. newUpperBound (Generic)

newUpperBound adjusts the upper bound of a one-dimensional array.

A new array is allocated with lower bound the same as a's lower bound and upper bound given
by n. newUpperBound then copies as many elements from a as will fit into the new array; if
the new array is larger, the extra elements are initialized to Zero. The old array a is disposed,
and the newly allocated array replaces it.

- 183 -

It is an error if a is nullArray, if n is less than a's lower bound, or if a was declared with a
constant upper bound.

area specifies the area in which the new (copied) array is put, which need not be the same as the
area in which the array was originally located. If area is not sepecified. the copied array is
allocated in the same area as the old one.

IF i > currentBound THEN
newUpperBound(a,currentBound := i)

Example 1.244-2. Use of new Upper Bound

1.245. $noCollectablePtrs

COM1?ILETIME
LONG BITS
<macro> $noCollectablePtrs;

Table 1.245-1. $noCollectablePtrs

$noCollectablePtrs is a bit that specifies that an area will have no pointers into areas where
chunks are collected. This saves time during garbage collections because the collector does not
have to examine pointers into other areas, but if there is indeed a pointer into an area that is
collected, the result is undefined. This bit may be passed to $new Area.

An area that will contain a data section must not be marked $noCollectablePtrs.

-184 -

1.246. $noCollectableStrs

COMPILETIME
LONG BITS
<macro> $noCollectableStrs;

Table 1.246-1. $noCollectableStrs

$noCoUectableStrs is a bit that specifies that an area will have no string descriptors pointing
into areas where strings are collected. This saves time during garbage collections because the
collector does not have to examine string descriptors into other areas, but if there is indeed a
descriptor pointing into an area that is collected, the result is undefined. This bit may be passed
to $new Area.

1.247. $noCompactablePtrs

COMPILETIME
LONG BITS
<macro> $noCompactablePtrs;

Table 1.247-1. $noCompactablePtrs

$noCompactablePtrs is a bit that specifies that an area will have no pointers into areas where
chunks are compacted (i.e., moved around). This saves time during compactions because the
compactor does not have to update pointers into other areas, but if there is indeed a pointer into
an area that is compacted, the result is undefined. This bit may be passed to $new Area.

An area that will contain a data section must not be marked $noCompactablePtrs.

- 185-

1.248. nextAlpba

$BUILTIN
INTEGER
PROCEDURE nextAlpha (INTEGER char);

Table 1.248-1. nextAlpha

nextAlpha returns the character code of the alphabetically next character (same case) after that
with character code char. It is undefined if char is not the character code for one of the
lowercase letters "at! through "y" or for one of the uppercase letters "A" through "yt!.
nextAlpha is independent of the underlying character set.

1.249. $noHandler

nextAlpha('y') = 'z'
nextAlpha('M') = 'N'
nextAlpha('Z') is undefined

Example 1.248-2. Use of nextAlpha

COMPILETIME
BITS
<macro> $noHandler;

Table 1.249-1. $noHandler

$noHandler is a bit that indicates that an exception returned because $returnItNoHandler was
set in the call to $raise for the exception and no handler handled it. It can be produced by
$raise.

- 186-

1.250. $nonRecursive

COMPILETIME
BITS
<macro> $nonRecursive;

Table 1.250-1. $nonRecursive

$nonRecursive is a bit that specifies that the descendants of a coroutine are not killed along
with the coroutine. It may be passed to $killCoroutine, $moveCoroutine, and
$resumeCoroutine.

1.251. noResponse

COMPILETIME
BITS
<macro> noResponsei

Table 1.251-1. noResponse

noResponse is a bit that specifies that no response is to be read from cmdFile. It may be passed
to cmdMatch and errMsg. It may be tested in $exceptionBits; it is set if $raise was called from
a call to errMsg with the noResponse bit set

1.252. $noTranslate

COMPILETIME
BITS
<macro> $noTranslate;

Table 1.252-1. $noTranslate

-187 -

$noTranslate is a bit that suppresses translation to or from the PDF character set. It may be
passed to $characterRead and $characterWrite.

1.253. $nulChar

COMPILETIME
INTEGER
<macro> $nulChari

Table 1.253-1. $nulChar

$nulChar is the character code for the null character.

1.254. $nullArrayExcpt

* system variable
STRING $nullArrayExcpt;

Table 1.254-1. $nullArrayExcpt

$nullArrayExcpt is a predefined exception that is raised when a nullArray error (nullArray used
for element or pseudo-field access) occurs in code with runtime checking enabled (see Section
15.2 of part I of the "MAINSAIL Language Manual").

1.255. $nullCallExcpt

* system variable
STRING $nullCallExcpti

Table 1.255-1. $nullCallExcpt

- 188-

$nullCallExcpt is a predefined exception that is raised when a nullPointer call error (nullPointer
used for procedure field access) occurs in code with runtime checking enabled (see Section
15.2 of part I of the "MAINSAIL Language Manual").

1.256. $nuIlPointerExcpt

* system variable
STRING $nullPointerExcpt;

Table 1.256-1. $nulIPointerExcpt

$nullPointerExcpt is a predefined exception that is raised when a nullPointer error (nulIPointer
used for data field access) occurs in code with runtime checking enabled (see Section 15.2 of
part I of the "MAINSAIL Language Manual").

1.257. octal

COMPILETIME
BITS
<macro> octal;

Table 1.257-1. octal

octal is a bit that specifies that an octal string representation is input to or output from the
procedure to which it is passed. It may be passed to cvb, cvlb, cvs, and $removeBits. It may
be returned by $preferredRadix.

- 189-

1.258. omit

COMPILETIME
BITS
<macro> omit;

Table 1.258-1. omit

omit is a bit that specifies that no result string is to be returned. It may be passed to scan.

1.259. open

BOOLEAN
PROCEDURE

BOOLEAN
PROCEDURE

open

open

(PRODUCES POINTER (textFile) f;
STRING fileName;
BITS openBits;
OPTIONAL LONG INTEGER fileSize)i

(PRODUCES POINTER (dataFile) f;
STRING fileName;
BITS openBits;
OPTIONAL LONG INTEGER fileSize);

Table 1.259-1. open (Generic)

"open" is used to "open" a file, i.e., to make the file available for input and/or output. The
predeclared classes textFile and dataFile are explained in Section 18.2 of part I of the
"MAINSAIL Language Manual".

A file with the name fileName is opened in accordance with the bits specified in openBits. If
the file is successfully opened, a pointer to the file is produced in f (which is used for later
access to the file) and the open procedure returns true. If the file is not successfully opened, f is
set to nullPointer, and the procedure returns false.

It is an error if fileName is the null string (unless the "prompt" bit is set in openBits).

- 190-

fileSize specifies the size of the file as the number of characters if a text file, and the number of
storage units otherwise. It is relevant only if the file is being created, and only for certain file
formats. The MAINSAIL runtime system extends a file open for output if data are written
beyond the end of the file; therefore, fileSize need never be specified.

The bits constants shown in Table 1.259-2 are valid for openBits. PDF I/O is described in
detail in Chapter 21 of part I of the "MAINSAIL Language Manual".

If random is specified, but neither input nor output, then both input and output are assumed. If
output is specified, but not random, then create is assumed. That is, a sequential file opened for
output has to be a file that does not already exist; specifying create would be redundant
information.

The pennissible combinations of input, output, random, and create (after the default rules have
been applied) are shown in Table 1.259-3.

(sequential) input
create (sequential) output

random input
random output

create random output
random input and output

create random input and output

Table 1.259-3. Possible Combinations of openBits Bits Constants

If errorOK is not set and the file cannot be opened, an error message is issued and the user may
type either:

• a new file name to be used, or

• <eol> to specify the same file name, or

• =<file name>, in which case the user is prompted whether or not to enter <file name>
as a logical name for the original file name. If the user answers affirmatively, the
logical name is established and the original file name is tried again.

- 191 -

create

random

input

output

prompt

keepNul

delete

alterOK

errorOK

Create a new file. If this bit is not set, it
is an error if the file does not already exist.

Allow random access. If this bit is not set,
it is an error to attempt to call relPos or
setPos for the file. This bit should also be
set if the same file is to be closed and
reopened for random access in the future.

Allow read access.

Allow write access.

fileName is really a prompt to be written to
logFile. After writing the prompt, read the
fileName from cmdFile.

Each implementation has a "null" character that
is normally discarded when read from a text
file. keepNul means do not discard any null
characters from this file.

Delete the file when it is closed.

Permission is normally requested from cmdFile
when an existing file is deleted or altered.
alterOK suppresses the request for permission
and performs the operation silently (unless an
error occurs and errorOK is not set).

If the operating system is unable to carry out
the open as requested, an error message is by
default written to logFile and a new file name
read from cmdFile. If errorOK is set, the error
message is suppressed, f is set to nullPointer,
and open returns false.

Table 1.259-2. Predefined Bits Constants for openBits (continued)

- 192-

$unbuffered

$pdf

Do not allocate a buffer for the file (this bit
may be ignored for some file types, e.g., memory
files, which are necessarily buffered). Input
and output must be performed by means of
$pageRead, $pageWrite, $storageUnitRead,
$storageUnitWrite, $characterRead,
$characterWrite, fldRead (textFile form only)
and the MAINSAIL Structure Blaster. The
procedures setPos, getPos, relPos, and close may
also be called for an unbuffered file, but the
use of other I/O procedures (e.g., read, write,
scan, etc.) generates an error. If large
amounts of data are to be read or written at
once, the use of the $unbuffered bit may result
in a substantial speed increase for I/O. If the
file is being created, the random bit should be
set if the $unbuffered bit is set to ensure that
unbuffered I/O can be performed on the file.

Open the file for PDF I/O.

$useOriginalFileName
Do not look up logical names or use a
searchpath; use the file name specified.

Table 1.259-2. Predefined Bits Constants for openBits (end)

1.260. openLibrary

BOOLEAN
PROCEDURE openLibrary (STRING fileName;

OPTIONAL BITS ctrlBits);

Table 1.260-1. openLibrary

openLibrary opens the MAINSAIL objmod library file named fileName. After the library has
been opened, it takes place in executable objmod searches. The only valid ctrlBits bit is

- 193 -

POINTER (textFile) f;

open(f,"notes",input);

Open the file named "notes" for text input (it must
already exist). Use f for subsequent references to the
file.

POINTER (textFile) f;

open(f,"Output file: ",create!random!output!prompt);

The prompt is written to logFile, and then a fileName is
read from cmdFile. A new file is created for random text
output. Only write access is allowed. If creation of the
new file requires that an existing file be deleted,
permission must be obtained before proceeding.

Example 1.259-4. Use of open

errorOK. If errorOK is set, false is returned if the library cannot be opened. Otherwise, a
message is written to logFile, and a new library name read from cmdFile.

Libraries are searched in order from most recently opened to least recently opened. If two
libraries contain a module with the same name, the one in the more recently opened library is
found by a module search.

An open library file remains open during execution until closeLibrary is called for the library.
If the same library name is given to a subsequent call to openLibrary, the library file is not
actually opened again. On an operating system where file names are not case sensitive (i.e.,
where "$attributes NTST $fileNamesAreCaseSensitive" is true), library names are compared
caselessly.

- 194-

1.261. output

COMPILETIME
BITS
<macro> output;

Table 1.261-1. output

output is a bit that specifies that output operations are to be allowed on the file that is being
opened. It may be passed to $createUniqueFile, open, and $reOpen.

1.262. $overheadPercentExitValue and $overheadTooHighExcpt

TEMPORARY FEATURE: SUBJECT TO CHANGE

When MAINSAIL runs low on memory, it may perfonn garbage collection and module
swapping more and more frequently, until the program spends virtually all of its time on
memory management and none on useful work. This behavior is known as "thrashing". To
detect thrashing, the system variable $overheadPercentExitValue is provided.

system variable
INTEGER $overheadPercentExitValue;

Table 1.262-1. $overheadPercentExitValue

A program may set $overheadPercentExitValue to any value in the range 1 to 100, inclusive (a
value of 0 disables $overheadPercentExitValue checking). When MAINSAIL attempts to
allocate memory and the percentage of time spent in memory management exceeds the value,
the exception $overheadTooHighExcpt is raised. If the exception is handled, MAINSAa
continues execution (the handler may free up some memory, or modify
$overheadPercentExitValue); otherwise, MAINSAIL exits. Before the
$overheadTooHighExcpt is raised, MAINSAIL sets the value of $overheadPercentExitValue to
O. The user program must explicitly set $overheadPercentExitValue to a non-zero value to
have the exception raised again (assuming the program handles the exception).

- 195-

system variable
STRING $overheadTooHighExcpt;

Table 1.262-2. $overheadTooHighExcpt

When $overheadTooHighExcpt is raised, $exceptionStringArgl is
cvs($overheadPercentExitValue) before it was set to 0; $exceptionStringArg2 is
cvs(numPages), where numPages is the number of pages that need to be allocated. If the
program handles the exception, and sets $overheadPercentExitValue to a non-zero value, the
exception will not be raised again for the particular allocation of numPages that just caused it to
be raised, but it could be raised for subsequent allocations.

Once the overhead percent reaches a certain value, it may take some time for it to decrease
significantly, so the handler of $overheadTooHighExcpt should probably not set
$overheadPercentExitValue back to its original value since this is likely to cause the exception
to be raised again very soon (unless the handler freed a large amount of memory, or the
program runs for a significant amount of time before needing much more memory).

1.263. pageDispose

PROCEDURE pageDispose (ADDRESS pageAdr;
OPTIONAL LONG INTEGER numPages);

PROCEDURE pageDispose (ADDRESS pageAdr;
OPTIONAL INTEGER numPages);

Table 1.263-1. pageDispose (Generic)

pageDispose disposes of pages obtained with newPage.

pageDispose releases numPages pages starting at the page that contains pageAdr (Le., pageAdr
need not be the address of the start of the page). Nothing happens if pageAdr is nullAddress.

-196 -

1.264. $pageRead

LONG INTEGER
PROCEDURE $pageRead (POINTER (dataFile) f;

ADDRESS memAdr;
LONG INTEGER startPage;
OPTIONAL LONG INTEGER numPages;
OPTIONAL BITS ctrlBits)i

Table 1.264-1. $pageRead

$pageRead reads numPages pages of data from f to the address memAdr, starting at page
startPage in the file (the first page is numbered zero). If numPages is less than or equal to zero,
one page is read.

Unless f is opened for random access, $pageRead succeeds only if the file is positioned at the
start of the page to be read; otherwise, an error message is given.

The only valid ctrlBits bit is errorOK. If not set, an error occurs if $pageRead cannot read the
amount of data requested. The value returned by $pageRead is the number of storage units
read.

$pageRead may be especially efficient if the file was opened with the $unbuffered bit.

$storageUnitRead and $characterRead are other procedures used to read large amounts of data
from a file with a single procedure call.

1.265. $pageSize

COMPILETIME
INTEGER
<macro> $pageSize;

Table 1.265-1. $pageSize

$pageSize is the operating-system-dependent number of storage units per page. A page is the
amount of memory returned by newPage, or read by $pageRead, or written by $pageWrite.

- 197-

1.266. $pageWrite

PROCEDURE $pageWrite (POINTER (dataFile) f;
ADDRESS memAdr;
LONG INTEGER startPage;
OPTIONAL LONG INTEGER numPages);

Table 1.266-1. $pageWrite

$pageWrite writes numPages pages of data from the address memAdr to f, starting at page
startPage in the file (the first page is numbered zero). IT numPages is less than or equal to zero,
one page is written.

Unless f is opened for random access, $pageWrite succeeds only if the file is positioned at the
start of the page to be written; otherwise, an error message is given.

$pageWrite may be especially efficient if the file was opened with the $unbuffered bit.

$storageUnitWrite and $characterWrite are other procedures used to write large amounts of
data to a file with a single procedure call.

1.267. PDF Low-Level Procedures

The following procedures are provided by the POFMOO package, which allows low-level
manipulation of POP data in memory and which is documented in detail in the "MAINSAIL
Utilities User's Guide":

pdfBoRead
pdfbWrite
pdfCharWrite
pdfDeInit
pdfiRead
pdfLbWrite
pdfLrRead
pdfrRead

pdfBoWrite
pdfCharRead
pdfcRead
pdfFldRead
pdfiWrite
pdfLiRead
pdfLrWrite
pdfrWrite

-198 -

pdfbRead
pdf Chars
pdfcWrite
pdfInit
pdfLbRead
pdfLiWrite
pdf Read
pdf Write

1.268. $pdf

COMPILETIME
BITS
<macro> $pdf;

Table 1.268-1. $pdf

$pdf is a bit that specifies that PDF (portable Data Format) I/O is to be performed on the file
being opened. It may be passed to $createUniqueFile, open, and $reOpen.

1.269. $platformNameAbbreviation

STRING
<macro> $platformNameAbbreviation;

Table 1.269-1. $platformNameAbbreviation

$platformNameAbbreviation is the abbreviation for the name of the target platform.
Abbreviations are shown in Table B-1 of part I of the "MAINSAIL Language Manual".

1.270. $platformNameFull

STRING
<macro> $platformNameFull;

Table 1.270-1. $platformNameFull

$platformNameFull is the full name of the target platform. Platform names are shown in Table
B-1 of part I of the "MAINSAIL Language Manual".

- 199-

1.271. $platformNumber

INTEGER
<macro> $platformNumber;

Table 1.271-1. $platformNumber

$platformNumber is the number the target platform. Platform numbers are shown in Table B-1
of part I of the "MAINSAIL Language Manual". Unlike $systemNumber, $platformNumber is
evaluated at runtime, not at compiletime, and so cannot govern conditional compilation.

1.272. $preferredRadix

COMPILETIME
BITS
<macro> $preferredRadix;

Table 1.272-1. $preferredRadix

$preferredRadix is the target system's "natural" radix (usually the radix used in the
manufacturer's documentation and/or instruction-level debugger) for representing (long) bits,
address, charadr, and pointer values. Possible values for $preferredRadix are hex and octal.

1.273. prey Alpha

$BUILTIN
INTEGER
PROCEDURE prevAlpha (INTEGER cha r) ;

Table 1.273-1. prevAlpha

- 200-

prey Alpha returns the character code of the alphabetically previous character (same case) to
that with character code char. It is undefined if char is not the character code for one of the
lowercase letters "b" through "z" or for one of the uppercase letters "B" through "Z".
prey Alpha is independent of the underlying character set.

1.274. proceed

prevAlpha('z') 'y'
prevAlpha (' b') , a'·
prevAlpha('B') 'A'
prevAlpha('A') is undefined

Example 1.273-2. Use of pre vAl ph a

COMPILETIME
BITS
<macro> proceed;

Table 1.274-1. proceed

proceed is a bit that specifies that the scanning is to stop when a character that is not one of the
scan control characters is reached. It may be passed to scan.

1.275. $processorNameAbbreviation

STRING
<macro> $processorNameAbbreviation;

Table 1.275-1. $processorNameAbbreviation

$processorNameAbbreviation is the abbreviation for the name of the target processor.
Abbreviations are shown in Table B-3 of part I of the "MAINSAIL Language Manual".

- 201-

1.276. $processorNameFull

STRING
<macro> $processorNameFull;

Table 1.276-1. $processorNameFull

$processorNameFull is the full name of the target processor. Processor names are shown in
Table a-3 of part I of the "MAINSAIL Language Manual".

1.277. $processorN umber

COMPILETIME
INTEGER
<macro> $processorNumber;

Table 1.277-1. $processorNumber

$processorNumber is the number the target processor. Processor numbers are shown in Table
B-3 of part I of the "MAINSAIL Language Manual".

1.278. $programInterface

COMPILETIME
BITS
<macro> $programInterface;

Table 1.278-1. $programInterface

$programlnterface is a bit that specifies that $useProgramlnterface is to be true at the start of
the initial procedure of the invoked module. It may be passed to bind, $invokeModule, and
new.

- 202-

1.279. $programName

TEMPORARY FEATURE: SUBJECT TO CHANGE

f system variable
STRING $programName;

Table 1.279-1. $programName

$programName is set to the name of the currently executing MAINSAIL bootstrap file or the
string typed by the user in the command that invoked MAINSAIL, if available from the
operating system; otherwise, it is set to the null string. The effect of modifying $programName
is undefined.

1.280. prompt

COMPILETIME
BITS
<macro> prompt;

Table 1.280-1. prompt

prompt is a bit that specifies that the given file name is to be used as a prompt for a file name
rather than as a file name. It may be passed to open.

1.281. $queryFileCacheParms

TEMPORARY FEATURE: SUBJECT TO CHANGE

- 203-

BOOLEAN
PROCEDURE $queryFileCacheParms

(POINTER(file) f;
OPTIONAL PRODUCES LONG BITS

attributes;
OPTIONAL PRODUCES LONG INTEGER

requestedMinSize,
requestedMaxSize,
currentSize;

OPTIONAL PRODUCES INTEGER
requestedHitPercent,
currentHitPercent;

OPTIONAL BITS ctrlBits);

Table 1.281-1. $queryFileCacheParms

$queryFileCacheParms returns information about the cache associated with the file f, except
that if f is nullPointer, then information about the global cache is returned. If f is not
nullPointer and f cannot be cached, e.g., if it is a sequential, unbuffered, or mapped disk file, an
error occurs and $queryFileCacheParms returns false.

If f is a globally cached file or if f is nullPointer, information about the global cache is returned.
If f is a privately cached file, information about the private cache is returned. If f is not cached,
all produces parameters are set to Zero and $queryFileCacheParms returns true. Figure 1.281-2
shows the produces parameters and their meaning.

The only valid ctrlBits is errorOK. An error message is generated if an error occurs and
errorOK is not specified.

- 204-

attributes

requestedMinSize

requestedMaxSize

currentSize

If f is not nullPointer, then
attributes returns information about
how the file is cached, i.e.,
globally cached (the predefined bit
$globallyCached is set), privately
cached (the predefined bit
$privatelyCached is set), or not
cached (attributes is Zero).

the requested minimum number of
buffers in the LRU list

the requested maximum number of
buffers in the LRU list

the current number of buffers in the
LRU list

requestedHitPercent the requested hit percent

currentHitPercent the current hit percent

Figure 1.281-2. Information Produced by $queryFileCachePanns

1.282. $raise

PROCEDURE $raise (OPTIONAL STRING exceptionName,
exceptionStringArgl,
exceptionStringArg2;

OPTIONAL POINTER
exceptionPointerArg;

OPTIONAL BITS ctrlBitsi
PRODUCES OPTIONAL BITS

resultBits;
OPTIONAL POINTER($coroutine)

raiseeCoroutine);

Table 1.282-1. $raise

- 205-

$raise either causes the occurrence of an exception or propagates the current exception,
depending on the value of exceptionName.

If exceptionName is not the null string, $raise causes an occurrence of the exception denoted by
exceptionName. In this case, exceptionStringArgl, exceptionStringArg2, and
exceptionPointerArg are assumed to contain extra information about the exception that a
handler can access by means of the system procedures $exceptionStringArgl,
$exceptionStringArg2, and $exceptionPointerArg.

Table 1.282-2 shows the valid predefined bits constants for ctrlBits. To require that control
eventually be returned to the current point, an exception may be raised with the ctrlBits
$cannotFallOut!$returnItNoHandler.

Bit
$cannotReturn

$returnIfNoHandler

$cannotFallOut

Meaning
Do not permit a call to
$raiseReturn for this exception.
The exception must be handled by
falling out of a handler.

If no handler handles the
exception, ignore the exception
and return from $raise.

Error occurs if handler attempts
to handle the exception by falling
out (or terminates with Done,
Continue, or Return Statement) .

Table 1.282-2. Predefined Bits Constants for $raise ctrffiits

Table 1.282-3 shows the valid predefined bits constants for resultBits.

Bit
$noHandler

Meaning
Control returned from $raise because
$returnIfNoHandler was set in ctrlBits
and there was no handler.

Table 1.282-3. Predefined Bits Constants for $raise resultBits

- 206-

If exceptionName is the null string, the current exception is propagated to another handler and
the parameters exceptionStringArgl, exceptionStringArg2, exceptionPointerArg, and ctrffiits
are ignored. If there is no current exception, a system exception is raised.

raiseeCoroutine indicates the coroutine in which the exception should first be raised (the "raisee
coroutine"). A Zero value denotes the current coroutine (the "raiser coroutine").

The exception may be either a user exception or a predefined exception.

1.283. $raiseReturn

PROCEDURE $raiseReturn;

Table 1.283-1. $raiseReturn

$raiseReturn terminates the execution of the current exception's handler and continues
execution at the place where the current exception occurred. If no exception is active, an error
occurs and a system exception is raised. If the current exception was not caused by means of
an explicit call to the system procedure $raise, another exception is raised. Calls to
$raiseReturn may appear outside the text of a handler, i.e., within a procedure called by a
handler. All active procedures invoked as a result of a handler's execution are terminated by a
call to $raiseReturn.

1.284. $rand

$rand returns the next pseudo-random number produced by one of the algorithms in $ranMod,
which is documented in detail in the "MAINSAIL Utilities User's Guide".

1.285. random

COMPILETIME
BITS
<macro> random;

Table 1.285-1. random

- 207-

random is a bit that specifies that random I/O is to be allowed on the file that is being opened.
It may be passed to $createUniqueFile, open, and SreOpen.

1.286. reRead

$BUILTIN
INTEGER
PROCEDURE reRead (MODIFIES STRING s);

Table 1.286-1. rcRead

rcRead ("reverse cRead") returns the character code of the last character of the string s, and
then removes that character from the string.

If s is "", -1 is returned. -1 is not a valid character code.

INTEGER t; STRING s;
s := "abc";
t := rcRead(s);

• Now t = 'c', s = "ab"

STRING PROCEDURE reverse (STRING s);
BEGIN * reverse characters of s
STRING r;
r .= "". o ,

WHILE s DO cWrite(r,rcRead(s));
RETURN (r) END

Example 1.286-2. Use of rcRead

-208 -

1.287. reWrite

PROCEDURE rCWrite (MODIFIES STRING Si

REPEATABLE INTEGER char)i

PROCEDURE rCWrite (MODIFIES STRING Si

POINTER ($area) area;
REPEATABLE INTEGER char)i

Table 1.287-1. rcWrite (Generic)

rcWrite ("reverse cWrite") concatenates the character char onto the front of the string s. In the
area form, area specifies the destination area for the resulting string.

s := "bc"; rcWrite(s,'a')i # s = "abc"

The "reverse" procedure of Example 1.286-2
could also be written with "rcWrite" replacing
"cWrite" and "cRead" replacing "rcRead":

STRING PROCEDURE reverse (STRING s);
BEGIN # reverse characters of s
STRING r;
r := "";

WHILE s DO rcWrite(r,cRead(s»;
RETURN(r) END

Example 1.287-2. Use ofrcWrite

- 209-

1.288. read

PROCEDURE read (MODIFIES STRING S;
PRODUCES REPEATABLE BOOLEAN v) ;

PROCEDURE read (POINTER (textFile) f;
PRODUCES REPEATABLE BOOLEAN v) ;

PROCEDURE read (POINTER (dataFile) f;
PRODUCES REPEATABLE BOOLEAN v) ;

$BUILTIN
PROCEDURE read (MODIFIES ADDRESS a;

PRODUCES REPEATABLE BITS v);

PROCEDURE read (MODIFIES STRING S;
PRODUCES REPEATABLE BITS v) ;

PROCEDURE read (POINTER (dataFile) f;
PRODUCES REPEATABLE BITS v) ;

PROCEDURE read (POINTER (textFile) f;
PRODUCES REPEATABLE BITS v) ;

PROCEDURE read (POINTER (dataFile) f;
PRODUCES REPEATABLE INTEGER v) ;

PROCEDURE read (POINTER (textFile) f;
PRODUCES REPEATABLE INTEGER v) ;

PROCEDURE read (MODIFIES STRING S;
PRODUCES REPEATABLE INTEGER v);

$BUILTIN
PROCEDURE read (MODIFIES ADDRESS a;

PRODUCES REPEATABLE INTEGER v) ;

PROCEDURE read (POINTER (dataFile) f;
PRODUCES REPEATABLE LONG BITS v);

Table 1.288-1. read (Generic) (continued)

- 210-

PROCEDURE read (POINTER (textFile) f;
PRODUCES REPEATABLE LONG BITS v);

PROCEDURE read (MODIFIES STRING S;
PRODUCES REPEATABLE LONG BITS v);

$BUILTIN
PROCEDURE read (MODIFIES ADDRESS a;

PRODUCES REPEATABLE LONG BITS v);

PROCEDURE read (POINTER (dataFile) f;
PRODUCES REPEATABLE LONG INTEGER

v) ;

PROCEDURE read (POINTER (textFile) f;
PRODUCES REPEATABLE LONG INTEGER

v) ;

PROCEDURE read (MODIFIES STRING S;
PRODUCES REPEATABLE LONG INTEGER

v);

$BUILTIN
PROCEDURE read (MODIFIES ADDRESS a;

PRODUCES REPEATABLE LONG INTEGER
v);

PROCEDURE read (POINTER (dataFile) f;
PRODUCES REPEATABLE LONG REAL v);

PROCEDURE read (POINTER (textFile) f;
PRODUCES REPEATABLE LONG REAL v);

PROCEDURE read (MODIFIES STRING S;
PRODUCES REPEATABLE LONG REAL v);

$BUILTIN
PROCEDURE read (MODIFIES ADDRESS a;

PRODUCES REPEATABLE LONG REAL v);

PROCEDURE read (POINTER (dataFile) f;
PRODUCES REPEATABLE REAL v) ;

Table 1.288-1. read (Generic) (continued)

- 211-

PROCEDURE read (POINTER (textFile) fi
PRODUCES REPEATABLE REAL v) ;

PROCEDURE read (MODIFIES STRING Si

PRODUCES REPEATABLE REAL v);

$BUILTIN
PROCEDURE read (MODIFIES ADDRESS a;

PRODUCES REPEATABLE REAL v);

$BUILTIN
PROCEDURE read (MODIFIES ADDRESS a;

PRODUCES REPEATABLE STRING v) ;

PROCEDURE read (POINTER (textFile) f;
PRODUCES REPEATABLE STRING s) ;

PROCEDURE read (MODIFIES STRING Si

PRODUCES REPEATABLE STRING v);

$BUILTIN
PROCEDURE read (MODIFIES ADDRESS a;

PRODUCES REPEATABLE POINTER v) ;

$BUILTIN
PROCEDURE read (MODIFIES ADDRESS a;

PRODUCES REPEATABLE ADDRESS v);

$BUILTIN
PROCEDURE read (MODIFIES ADDRESS a;

PRODUCES REPEATABLE CHARADR v) ;

$BUILTIN
PROCEDURE read (MODIFIES ADDRESS a;

PRODUCES REPEATABLE BOOLEAN v) ;

PROCEDURE read (POINTER (dataFile) f;
PRODUCES REPEATABLE STRING s) ;

PROCEDURE read (POINTER (textFile) f;
POINTER ($area) area;
PRODUCES REPEATABLE STRING s) ;

Table 1.288-1. read (Generic) (continued)

- 212-

PROCEDURE read (POINTER (dataFile) f;
POINTER($area) area;
PRODUCES REPEATABLE STRING s);

Table 1.288-1. read (Generic) (end)

read reads values from an input file, a string, or a memory location.

The forms that read a boolean, (long) integer, (long) real, or (long) bits from a text file or string
use a scan for the proper constant representation. As soon as the scan finds what could be the
start of a constant of the desired type, it begins forming the value. All characters involved in
the scan are removed from the source string or text file. Characters not involved in the scan are
not removed; e.g., if the characters involved in the scan occur immediately before an eol, the
eol is left in the source.

The forms of read that read a boolean from a text file or string scan for the string representation
"TRUE" or "FALSE". Case is ignored. As soon as one of these string representations is found,
or there are no more characters in the source string or text file, the scan stops. All scanned
characters are removed from the source string or text file. The boolean value produced is true if
the characters "TRUE" were found in the source; otherwise, it is false. The characters "TRUE"
or "FALSE" need not be preceded or followed by a blank, tab, or end of line.

Numeric «long) integer and (long) real) and (long) bits scans ignore dots, single quotes, and
minuses that are not associated with valid digits. For example, if the string:

"These ' and - and . are ignored; the value read is 2"

is scanned for a numeric or bits, the "2" is found, and the symbols "''', "-", and "." are ignored
since they are not associated with valid digits.

The ilL" that follows long constants as written in a source program is not used by the scan. For
example, if the string:

"123L 456"

is scanned for a (long) integer, 123 is returned, and the string becomes:

"L 456"

A (long) integer scan looks for one or more digits, possibly preceded by "-". For example, if
the string:

- 213-

"123. 456"

is scanned for an integer, 123 is returned, and the string becomes:

ft. 456"

On the other hand, if it were scanned for a real, then 123. would be returned, and the string
would become:

" 456"

A (long) real scan accepts an integer constant. For example, if the string:

"123 456."

is scanned for a real, 123. is returned, and the string becomes:

" 456."

A bits scan accepts the standard representation, i.e., Ilttl optionally followed by a base letter,
then digits. It also accepts a sequence of octal digits not preceded by Iltll. For example, if the
string:

"1238 '456"

is scanned for a bits, '123 is returned, and the string becomes:

"8 ' 456"

The effect is undefined of reading a (long) integer or (long) real from a string or text file if the
text scanned represents a value outside the MAINSAIL guaranteed range.

A string read from a string or file returns the next line by scanning for eol (end-of-line), which
is then discarded. Characters in a data file are stored as described in Sections 1.82 and 1.104.
If the file is opened for PDF I/O, characters may be translated to the host character set In the
area forms, area specifies the destination area for the resulting string.

Data types other than string read from a data file are removed from the file; Le., the file position
is updated to be immediately beyond the values read. This means that, in reading a non-string
variable from a text file, the remainder of the line on which the value occurs is left in the file;
see Example 1.288-2.

In all reads from a file or string, the result is Zero if no value is found when reading from the
file or string (Le., if end-of-file or end-of-string is encountered).

- 214-

The following code fragment:

INTEGER i; STRING s;

read (cmdFile,i) : read(cmdFile,s);

given the input line (read from cmdFile) :

16<eol>

sets i to the value 16, leaving the <eol> in cmdFile,
unread. The next call to the textFile/string for.m of read
scans up to the (still unread) eol, discards it, and
therefore sets s to the value "H. Only one line is read
from cmdFile for both calls to read, since the first call
does not exhaust the input line.

Example 1.288-2. Integers Read from cmdFile

After reading from an address, the address is displaced to the location immediately following
that from which the value was read. The result is undefined if the address is nullAddress, or if
"displace(a,size«data type of v»)" is undefined.

1.289. $registerException

PROCEDURE $registerException
(STRING exceptionName;
OPTIONAL STRING comment;
OPTIONAL BITS ctrlBits;
OPTIONAL STRING arg);

Table 1.289-1. $registerException

$registerException "registers" the exception denoted by exceptionName; i.e., it adds the
exception to the list of exceptions known to the system procedure errMsg. Distinctions
between upper and lower case letters are ignored when comparing exceptionName to the
strings denoting the previously registered exceptions.

- 215-

INTEGER ii REAL ri BITS bi

read(inFile,i,r,b)

reads an integer into i, a real into r, and a bits into b.
If inFile is a text file, the file is scanned for the
string representationsi if it is a data file, the proper
number of storage units are input.

STRING Si INTEGER height,weighti

s := "Height is 70 inches, weight 150 pounds."i
read(s,height,weight)

The read picks the first two integers out of s, thereby
shortening s. height becomes 70, weight 150, and s
" pounds.".

ADDRESS a; INTEGER i; REAL r;

read(a, i, r)

reads an integer and a real starting at memory location a,
and updates a to the value given by

displace (a,size (integerCode) + size(realCode»

Example 1.288-3. Use of read

The string passed as the parameter comment is used only by errMsg. In response to "?",
errMsg lists the registered exceptions to 10gFile with a description in the right margin of the
effect of raising each exception. The description listed for an exception is the string that was
passed as the comment parameter when the exception was registered.

Valid ctrlBits bits are useKeyWord and $doNotMatch.

If useKeyWord is set, then when the exception is specified in a response to errMsg, extra
phrases in the response and extra words in the phrase preceding the extra phrases are ignored
during the matching process and are instead set aside as an argument to the response. When
errMsg raises the specified registered exception, that argument is passed as the argument
exceptionStringArgl to $raise.

- 216-

If $doNotMatch is set, the exception is ignored when errMsg searches for a registered
exception to raise. Exceptions with $doNotMatch set are listed in response to "?" in errMsg,
but cannot be raised from errMsg, except by explicitly invoking the module RAISE to do so
(see the "MAINSAIL Utilities User's Guide" for a description of RAISE). When an exception
is registered more than once, no "duplicate registered exception" error is given if either the new
instance or all previous instances of the exception were registered with $doNotMatch set.
When an exception is deregistered, all instances of the exception are deregistered.

The same exception can be registered more than once without setting the $doNotMatch bit, if
the subsequent calls to $registerException have the same arguments as the first call that did not
set the $doNotMatch bit. In comparing string arguments, a caseless comparison is done.

An exception is removed from the list of registered exceptions only when $deregisterException
has been called for that exception at least as often as $registerException was called without
setting the $doNotMatch bit (Le., a count is kept, incremented by $registerException and
decremented by $deregisterException, and the exception is considered deregistered when the
count reaches zero).

It is an error to try to register an exception that has the same name as another registered
exception, if neither one was registered with the $doNotMatch bit set, and any of their
corresponding arguments to $registerException are not equal.

arg is used only when listing the registered exceptions in response to "?,. in errMsg. If arg is
not Zero, then a blank followed by arg is written after the exception name. Usually arg is a
string referred to in the $registerException comment argument.

1.290. relFiIeName

PROCEDURE relFileName (STRING modName);

Table 1.290-1. relFileName

relFileName releases a module file name association previously established for modName by
setFileName. It is an error if modName is not a valid module name, i.e., a one- to six-character
identifier. No error occurs if no module file name association was established for modName.

- 217-

MODULE m (PROCEDURE p)i

setFileName("m","f");
Pi # calls P in m contained in file f

unBind ("m"); relFileName ("m") ;
Pi # calls P in m contained in default file

Example 1.290-2. Use of relFiIeName

1.291. relModName

PROCEDURE relModName (STRING dummyName)i

Table 1.291-1. relModName

relModName releases a module name association previously established for dummyName by
setModName. It is an error if modName is not a valid module name, i.e., a one- to six­
character identifier. No error occurs if no module name association was established for
dummyName.

1.292. relPos

BOOLEAN
PROCEDURE relPos (POINTER(file) fi

INTEGER n;
OPTIONAL BITS ctrIBits);

Table 1.292-1. relPos

relPos provides relative positioning within a random file.

- 218-

"relPos(f,n,ctrIBits)" is equivalent to "setPos(f,getPos(t) + cvli(n),ctrlBits)".

relPos is restricted to integer ranges.

scan(f," ",omit); 41= skip to next blank in file f
relPos(f,2); t ignore blank and next character

1.293. $removeBits

STRING
PROCEDURE

Example 1.292-2. Use ofrelPos

$removeBits (MODIFIES STRING s;
OPTIONAL BITS ctrlBits);

Table 1.293-1. $removeBits

$removeBits reads a bits representation from the beginning of s. $removeBits returns the null
string if s does not begin with a valid string representation of a bits value; otherwise, it removes
the longest prefix of s that represents a valid bits string (as if the procedure "read" had been
called to read a bits value from s).

The valid ctrlBits bits are discard, formatted, binary, octal, and hex. If discard is set, initial
blanks and tabs are removed from s before looking for the bits value. If formatted is set, the
null string is returned if the bits value in s does not begin with the single quote ("''') character.
If binary, octal, or hex is set, a string representing a value in the corresponding radix is
removed unless overridden by an initial '''B'', "'0", or "'H".

If s does not begin with a valid bits string representation (following blanks and tabs if discard is
set), s is not altered.

- 219-

1.294. $removeBoolean

STRING
PROCEDURE $removeBoolean

(MODIFIES STRING S;
OPTIONAL BITS ctrlBits);

Table 1.294-1. $removeBoolean

$removeBoolean reads a boolean string representation from the beginning of s.
$removeBoolean returns the null string if s does not begin with either "1RUE" or "FALSE"
(case is ignored). Otherwise, it removes the character representation from s. The boolean
string representation in s need not be followed by a blank, tab, or end-of-line; i.e.,
$removeBoolean looks for and removes from s only the characters "1RUE" or "FALSE".

The only valid ctrlBits bit is discard. If set, initial blanks and tabs are removed from s before
looking for the boolean string representation.

If s does not begin with a valid boolean string representation (following blanks and tabs if
discard is set), s is not altered.

1.295. $removelnteger

STRING
PROCEDURE $removeInteger

(MODIFIES STRING Si

OPTIONAL BITS ctrlBits)i

Table 1.295-1. $removelnteger

$removelnteger reads an integer representation from the beginning of s. $removelnteger
returns the null string if s does not begin with a valid string representation of an integer value;
otherwise, it removes the longest prefix of s that represents a valid integer string (as if the
procedure "read" had been called to read an integer value from s).

- 220-

The only valid ctrlBits bit is discard. If set, initial blanks and tabs are removed from s before
looking for the integer value.

If s does not begin with a valid integer string representation (following blanks and tabs if
discard is set), s is not not altered.

1.296. $removeLeadingBlankSpace

PROCEDURE $removeLeadingBlankSpace
(MODIFIES STRING s);

Table 1.296-1. $removeLeadingBlankSpace

$removeLeadingBlankSpace removes leading tab and blank characters from s.

1.297. $removeMemMngModule

TEMPORARY FEATURE: SUBJECT TO CHANGE

PROCEDURE $removeMemMngModule
(POINTER dataSec) ;

Table 1.297-1. $removeMemMngModule

$removeMemMngModule unlocks a garabge collection interception module from memory so
that it can be swapped out. More detail may be found at the description of
$addMemMngModule.

- 221 -

1.298. $removeDateAndTime

STRING
PROCEDURE $removeDateAndTime

(MODIFIES STRING S;
OPTIONAL BITS ctrlBits);

Table 1.298-1. $removeDateAndTime

$removeDateAndTime reads a date and time string from the beginning of s. If s begins with a
valid substring representing a datet timet or date followed by timet $removeDateAndTime
removes the substring from s and returns it. Otherwiset $removeDateAndTime does not alter s
and returns the null string.

The only valid ctrlBits bit is discard. If set, initial blanks and tabs are removed from s before
searching for the date and/or time string.

1.299. $removeReal

STRING
PROCEDURE $removeReal (MODIFIES STRING S;

OPTIONAL BITS ctrlBits);

Table 1.299-1. $removeReal'

$removeReal reads a real representation from the beginning of s. $removeReal returns the null
string if s does not begin with a valid string representation of a real value; otherwiset it removes
the longest prefix of s that represents a valid real string (as if the procedure "read" had been
called to read a real value from s).

The only valid ctrlBits bit is discard. If set, initial blanks and tabs are removed from s before
looking for the real value.

If s does not begin with a valid real string representation (following blanks and tabs if discard is
set), s is not altered.

-222 -

1.300. $removeTrailingBlankSpace

PROCEDURE $removeTrailingBlankSpace
(MODIFIES STRING s);

Table 1.300-1. $removeLeadingBlankSpace

$removeTrailingBlankSpace removes trailing tab and blank characters from s.

1.301. $removeWord

STRING
PROCEDURE $removeWord (MODIFIES STRING s);

Table 1.301-1. $remove Word

$removeWord first removes leading tab and blank characters from s. It then removes all
characters up to the next tab or blank (or end of string); these characters constitute the "word".
It then removes any additional leading tab or blank characters from s, and returns the word.

1.302. $rename

BOOLEAN
PROCEDURE $ rename (STRING oldFileName,newFileName;

OPTIONAL BITS ctrlBits);

Table 1.302-1. $rename

$rename renames the existing file with the name oldFileName to have the name newFileName.
The rename fails and an error is generated if oldFileName and newFileName do not use the
same MAINSAIL device module (see Section 18.11 of part I of the "MAINSAIL Language
Manual"), or if newFileName is the null string.

- 223-

The only valid ctrlBits bits are errorOK, alterOK, and $useOriginalFileName. If errorOK is
specified and the rename fails, $rename returns false. If errorOK is not specified and the
rename fails, a prompt is written to 10gFile and oldFileName is read from cmdFile. If it is the
null string, false is returned. Otherwise, another prompt is written to 10gFile and newFileName
is read from cmdFile. $rename then attempts the rename again.

If alterOK is specified on a system without file version numbers (Le., on a system where the
$hasFileVersions bit is not set in $attributes), $rename attempts to delete the file with the name
newFileName if it exists before renaming the file with the name oldFileName. $rename fails if
such a deletion fails or if a file with the name newFileName exists and alterOK is not specified.
On systems with file version numbers, alterOK is ignored; $rename attempts to create a new
version of the file named newFileName.

If $useOriginalFileName is set, no logical name lookup or application of searchpaths is done;
oldFileName and newFileName are used as specified.

Calling $rename with the name of an open file (as oldFileName or newFileName) has
undefined effects on the program that has the file open.

1.303. $reOpen

BOOLEAN
PROCEDURE $reOpen (POINTER(file) f;

BITS openBits);

Table 1.303-1. $reOpen

$reOpen closes f, then reopens it (using f.name and the same file record) with the specified
openBits (all bits described under open except "prompt" are valid). It returns true if the reopen
was successful, false otherwise. This is useful, e.g., if a file opened read-only needs to be
updated; it can be reopened with output set in openBits. The same file record is used, so there
is no need to track down all pointers to it as there would be if individual calls to open and close
were made. $reOpen also provides a way to reposition to the beginning of a sequentially
opened file, since $reOpen always repositions the file to position OL.

- 224-

1.304. $reportAIlVersions

COMPILETIME
BITS
<macro> $reportAllVersions;

Table 1.304-1. $reportAllVersions

$reportAllVersions is a bit that specifies that all existing versions of a file are included in the
output (applicable only where a file may have multiple versions). It may be passed to
$directory .

1.305. reorder

reorder reorders the elements of an array according to the contents of a parallel index array. It
is one of the procedures provided by the sorting package, SRTMOD, which is documented in
detail in the "MAINSAIL Utilities User's Guide".

1.306. $resumeCoroutine

BOOLEAN
PROCEDURE

BOOLEAN
PROCEDURE

$resumeCoroutine
(OPTIONAL POINTER($coroutine) p;
OPTIONAL BITS ctrlBits);

$resumeCoroutine
(STRING coroutineName;
OPTIONAL BITS ctrlBits);

Table 1.306;.1. $resumeCoroutine (Generic)

$resumeCoroutine is used to switch context from the current coroutine to another coroutine,
and resume execution of the other coroutine where it last left off (usually at a call to
$resumeCoroutine). If the coroutine has not yet been resumed (i.e., it has been created, but not
yet given control), it invokes the procedure (the "initializing procedure") specified when the

- 225-

coroutine was created with $createCoroutine, using the data section given at the same time.
The context of the current coroutine is stored in the $coroutine record, to be used when it is
next resumed. Control returns from $resumeCoroutine when the resuming coroutine is itself
next resumed. If the coroutine being resumed is the same as the resuming coroutine, then
control returns immediately, with no overall effect

The exception $coroutineExcpt is raised if a coroutine attempts to return from its initializing
procedure. The initializing procedure must tenninate by means of a call to $resumeCoroutine.

If P is Zero in the pointer form of $resumeCoroutine, $thisCol'Outine.$next is resumed (it is an
error if $thisCoroutine.$next is Zero).

The string form of $resumeCoroutine is equivalent to
U$resumeCoroutine($findCoroutine(coroutineName) ,ctrIBits) " .

The only valid ctrlBits bits are delete, errorOK, and $nonRecursive.

delete indicates that the current coroutine (and its subtree) is to be killed before resuming the
target coroutine; see Section 1.208. It is an error to kill the target coroutine in this way; Le.,
this option cannot be specified if the target coroutine is in the subtree rooted at the current
coroutine.

The errorOK bit in ctrlBits is used to suppress error messages. In any case, if an error occurs,
$resumeCoroutine returns false, without resuming the coroutine. A value of true means that the
target coroutine was successfully resumed, and that the original coroutine has now itself been
resumed from the coroutine given by U$thisCoroutine.$next".

$nonRecursive is pennitted only if the delete bit is set. The children of the current coroutine
replace it in the coroutine tree, as if the current coroutine were killed by $ki1ICoroutine with
$nonRecursive set; see Section 1.208.

1.307. retain

COMPILETIME
BITS
<macro> retain;

Table 1.307-1. retain

retain is a bit that specifies that the break character is to be retained in the scanned string. It
may be passed to scan.

- 226-

1.308. $returnExcpt

t system variable
STRING $returnExcpti

Table 1.308-1. $returnExcpt

$retumExcpt is a predefined exception that is raised when the end of a typed procedure is
reached without executing a Return Statement.

1.309. $returnltNoHandler

COMPILETIME
BITS
<macro> $returnIfNoHandleri

Table 1.309-1. $retumItNoHandler

$returnItNoHandler is a bit that specifies that exception processing should tenninate as if
$raiseReturn had been called if no handler handles the exception. It may be passed to $raise
and tested in $exceptionBits.

1.310. reverse

reverse reverses the order of elements in an array. It is one of the procedures provided by the
sorting package, SRTMOD, which is documented in detail in the "MAINSAIL Utilities User's
Guide".

- 227-

1.311. $reverseDateAndMonth

COMPILETIME
BITS
<macro> $reverseDateAndMonth;

Table 1.311-1. $reverseDateAndMonth

$reverseDateAndMonth is a bit that specifies that the month is to precede the day in the output
date string. It may be passed to $dateAndTimeToStr and $dateToStr.

1.312. scan

STRING
PROCEDURE

STRING
PROCEDURE

STRING
PROCEDURE

scan

scan

scan

(MODIFIES STRING source;
STRING scanCtrl;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL INTEGER brkChr;
OPTIONAL POINTER($area) area);

(MODIFIES STRING source;
BITS scanCtrl;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL INTEGER brkChr;
OPTIONAL POINTER($area) area);

(POINTER (textFile) source;
STRING scanCtrl;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL INTEGER brkChr;
OPTIONAL POINTER($area) area);

Table 1.312-1. scan (Generic) (continued)

- 228-

STRING
PROCEDURE

STRING
PROCEDURE

STRING
PROCEDURE

STRING
PROCEDURE

STRING
PROCEDURE

STRING
PROCEDURE

scan

scan

scan

scan

scan

scan

(POINTER (textFile) source;
BITS scanCtrl;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL INTEGER brkChr;
OPTIONAL POINTER($area) area);

(MODIFIES STRING source;
INTEGER scanCtrl;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL INTEGER brkChr;
OPTIONAL POINTER($area) area);

(POINTER (textFile) source;
INTEGER scanCtrl;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL INTEGER brkChr;
OPTIONAL POINTER($area) area);

(POINTER (dataFile) source;
STRING scanCtrli
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL INTEGER brkChr;
OPTIONAL POINTER($area) area);

(POINTER (dataFile) source;
BITS scanCtrl;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL INTEGER brkChr;
OPTIONAL POINTER($area) area);

(POINTER(dataFile) source;
INTEGER scanCtrli
OPTIONAL BITS ctrlBitsi
PRODUCES OPTIONAL INTEGER brkChr;
OPTIONAL POINTER($area) area);

Table 1.312-1. scan (Generic) (end)

- 229-

A file or string (the "source") is scanned as directed by scanCtrl and ctrlBits. area specifies the
destination area for the resulting string.

Characters (the "scanned characters") are removed from the source while or until anyone of a
set of characters (the "scan characters") is encountered in the source. The scanned characters
are returned as the result string. Thus, scan allows the programmer to scan up to (or over) any
one of a set of characters.

scanCtrl indicates what scan characters are to guide the scan. There are three ways to specify
the scan characters:

1. scanCtrl can be a string that directly gives the scan characters; every character in the
string is a scan character.

2. scanCtrl can be a bits obtained from scanSet. The scan characters are those in the
string that was used as the argument to scanSet. scanCtrl may also have the value of
several such bits lOR'd together (see Example 1.314-2), in which case the scan
characters are taken from the string that is the concatenation of the corresponding
arguments to scanSet. At most fifteen such sets may be in use at the same time, so
the use of $scanSet is preferred if the values need not be lOR' d together.

3. scanCtrl can be an integer obtained from $scanSet. The scan characters are those in
the string that was used as the argument to $scanSet.

The bits and integer forms of scanCtrl are more efficient for scan characters that are used
repeatedly, since the string form involves some overhead that depends on the length of
scanCtrl.

brkChr is the "break character", the character that causes the scan to terminate ("break"). The
break character is often useful for determining the action following a scan.

In the file forms, if the file is opened for PDF I/O, the characters read from the file may be
translated from the PDF to the host character set

The valid predefined bits constants that may be set in ctrlBits are shown in Table 1.312-2.

End-of-source breaks the scan, with the result string equal to the string scanned up to the end­
of-source, and brkChr equal to -1. -1 is not a valid character code.

- 230-

How to use the scan characters:

break

proceed

The scan characters are to break the scan.
.AII other characters are proceed characters.
This is the default.

The scan characters cause the scan to
proceed. All other characters are break
characters.

What to do with the break character (it is always put into
brkChr) :

retain

append

discard

Stays in source, not put into result string.
This is the default.

Becomes last character of result string
(removed from source) .

Discarded (removed from source, not put into
result string).

Characteristics of result string:

omit Discard characters instead of putting them
into the result string (which is "", even if
append is set). This option may result in a
significant savings in execution time and
string space.

upperCase Source characters are converted to upper
case before they are checked for breaking
the scan and put into the result. The break
character is the original character taken
from the string (i.e., not converted to
upper case). It is more efficient to use
the upperCase option with compare than with
scan if its only purpose is to provide a
caseless comparison.

Table 1.312-2. Predefined Bits Constants for scan ctrlBits

- 231 -

WHILE s DOB
scan(s,letters,omit!upperCase);
ttyWrite(scan(s,lettersAndDigits,

proceed!upperCase),eol) END;

scans s for all identifiers, and writes each to tty
(assuming letters and lettersAndDigits are bits assigned
values as in Example 1.314-2).

s := scan(f,".")

s is assigned all characters from the current position of
f up to the first period. The period is retained as the
next character of the file, and is not put into s.

Example 1.312-3. Use of scan

1.313. scanRel

PROCEDURE scanRel (REPEATABLE BITS scanBits);

PROCEDURE scanRel (REPEATABLE INTEGER scanInteger);

Table 1.313-1. scanRel (Generic)

scanRel releases the I-bits in scanBits so they may be reused by scanSet or releases the
scanlnteger so that it may be reused by $scanSet. The integer form gives an error if scanlnteger
was not assigned by $scanSet; the bits form has an undefined result if scanBits contains bits not
assigned by scanSet.

-232 -

1.314. scanSet

BITS
PROCEDURE scan Set (STRING scanChars);

Table 1.314-1. scanSet

scanSet is used to associate characters with a bit that can be used with the procedure "scan".

The bits value returned by scanSet has a single I-bit. This bit is associated with the characters
of scanChars when used by scan.

Fifteen bits are available as scan bits.

BITS letters,digits,lettersAndDigits;

letters := scanSet("ABCDEFGHIJKLMNOPQRSTUVWXYZ");
digits :- scanSet("0123456789");

lettersAndDigits := letters!digits

scan can use "letters" for scanning letters, "digits" for
scanning digits, and "lettersAndDigits" for scanning
letters and digits.

Example 1.314-2. Use of scanSet

$scanSet provides integers that may be used with scan. Only one integer may be used at a time
with scan, but over 32000 of them are available.

- 233-

1.315. $scanSet

INTEGER
PROCEDURE $scanSet (STRING scanChars);

Table 1.315-1. $scanSet

scanSet is used to associate characters with an integer that can be used with the procedure
"scan".

This integer value returned by $scanSet is associated with the characters of scanChars when
used by scan.

Over 32000 integers are available as scan integers.

scanSet provides bits that may be used with scan. More than one bits may be used at a time
with scan, but only fifteen of them are available.

1.316. scratchDispose

PROCEDURE scratchDispose
(MODIFIES REPEATABLE ADDRESS a);

PROCEDURE scratchDispose
(MODIFIES REPEATABLE CHARADR c) ;

Table 1.316-1. scratchDispose (Generic)

scratchDispose is used to dispose of scratch space obtained with newScratch (the address form)
or $newScratchChars (the charadr form). The argument a or c is set to Zero. The result is
undefined if the storage at a or c was not obtained by a call to newScratch or
$newScratchChars, respectively.

MAINSAIL automatically keeps track of the size of scratch space allocations.

- 234-

1.317. $searchCallChain

POINTER
PROCEDURE $searchCallChain

(STRING moduleName;
OPTIONAL BITS ctrlBits);

Table 1.317-1. $searchCallChain

$searchCallChain searches the procedure call chain of the current coroutine (Le., the current
procedure's caller, its caller, and so on back to the initializing procedure of the coroutine) for a
procedure invocation associated with the module named moduleName. If such a procedure
invocation is found, $searchCallChain returns a pointer to the data section from which the most
recent such call was made; otherwise, $searchCallChain returns nullPointer. The only valid
ctrlBits bit is errorOK, which suppresses an error message if no call from moduleName is
found.

For example, consider two unbound modules A and B. If A knows it was created by B, and
that B is therefore in the call chain of A's initial procedure, and B contains some interface fields
to which A needs access, A may find B' s data section with:

$searchCallChain("B")

Without $searchCallChain, it would be necessary for B to make a pointer to itself available in a
known place before allocating A, or to provide a special initialization procedure in A to which
B could pass a pointer to itself.

1.318. $setCommandLine

TEMPORARY FEATURE: SUBJECT TO CHANGE

$setCommandLine allows a program to set the command arguments for another module to s.
This procedure is described in greater detail under the entry for $getCommandLine.

- 235-

PROCEDURE $setCommandLine
(OPTIONAL STRING s);

Table 1.318-1. $setCommandLine

1.319. $setConfigurationBit

TEMPORARY FEATURE: SUBJECT TO CHANGE

<macro> $setConfigurationBit
(BITS b);

Table 1.319-1. $setConfigurationBit

$setConfigurationBit sets various bits, called configuration bits, that control MAINSAIL
execution. The possible arguments and their meanings are shown in Table 1.319-2. cmdFile
and logFile echoing is described in Section 18.14 of part I of the "MAINSAIL Language
Manual".

Only the bits shown in Table 1.319-2 should be changed at runtime. Changing other
configuration bits from a program has undefined effects. Users must reference bits by identifier
only, not by value, since their values may change in future releases. Some bits may become
obsolete. Some system bits (see the description of $setSystemBit) may become configuration
bits or vice versa. The type(s) of the configuration and/or system bits are subject to change;
e.g., they may become long bits.

- 236-

Configuration Bit
$intFileFirst
$objFileFirst
$exeFileFirst

Meaning
Change the default search order
from libraries first to files
first for the specified search.

$noAutoCmdFileSwitching See the description of CONF in the
"MAINSAIL Utilities User's Guide".

$echoCmdFile
$echoIfRedirected

$lineOrientedDebug

Control cmdFile and logFi~e
echoing.

Use the line-oriented interface
for MAINDEBUG even when invoked
from MAINEDIT (value '10).

Table 1.319-2. Configuration Bit Identifiers

1.320. $setExitCode

<macro> $setExitCode
(LONG BITS bb);

Table 1.320-1. $setExitCode

At any time during MAINSAIL execution, "$setExitCode(bb)" can be used to set the
MAINSAIL exit code to bb, where bb is a long bits value. When MAINSAIL exits, the value
of the exit code is passed back to the operating system if it is possible to do so.

Two portable exit codes, $successExitCode and $failureExitCode, are defined for each
operating system and can be used to portably return success or failure, respectively. These exit
codes are defined according to the convention used by each system to determine whether or not
a process terminates normally. Other values passed to $setExitCode have system-dependent
meanings; the correspondence between MAINSAIL and as values is described in the system­
dependent MAINSAIL user's guides for those operating systems that support exit codes.

By default, MAINSAIL exits with the code $successExitCode.

- 237-

1.321. $setFileCacheParms

BOOLEAN
PROCEDURE

TEMPORARY FEATURE: SUBJECT TO CHANGE

$setFileCacheParms
(POINTER(file) f;
OPTIONAL LONG BITS attributes;
OPTIONAL BITS ctrlBits;
OPTIONAL BOOLEAN setDefaultParms;
OPTIONAL BOOLEAN setParms;
OPTIONAL LONG INTEGER

requestedMinSize;
OPTIONAL LONG INTEGER

requestedMaxSize;
OPTIONAL INTEGER

requestedHitPercent);

Table 1.321-1. $setFileCachePanns

$setFileCacheParms sets the parameters for the cache associated with the file f. If the input
parameters are invalid or if f cannot be cached, an error occurs and $setFileCacheParms returns
false.

If f is nullPointer, the global cache parameters are set and $setFileCachePanns returns true.

IF f is not nullPointer, $setFileCacheParms examines the attributes parameter and r s current
attributes to determine which cache parameters to set. Figure 1.321-2 shows the possible
combinations of these variables and the actions taken by $setFileCacheParms.

attributes specifies how the file is to be cached, i.e., $globallyCached or $privatelyCached. If
not specified, the way the file is cached remains unchanged.

If setDefaultParms is true, the file cache parameters are to be set to their default values. If
setParms is true, the file cache parameters are set to the values specified by requestedMinSize,
requestedMaxSize, and requestedHitPercent. If neither setDefaultPanns nor setParms is true,
the file cache parameters remain 'unchanged.

- 238-

requestedMinSize and requestedMaxSize are the requested minimum and maximum number of
buffers in the LRU list, respectively. requestedMinSize and requestedMaxSize must be non­
negative integers and requestedMinSize must be less than or equal to requestedMaxSize.
requestedHitPercent must be an integer between 0 and 100.

$setFileCacheParms retwns true if it successfully set the file cache parameters.

The only valid ctrlBits is errorOK. An error message is generated if an error occurs and
errorOK is not specified.

1.322. setFileName

PROCEDURE setFileName (STRING modName,fileName);

Table 1.322-1. setFileName

setFileName is used to form or remove an association between a module name and the name of
the file that contains the executable form of the module.

It is an error if modName is not a valid module name, i.e., a one- to six-character identifier.
modName is the actual name of the module, not a dummy name as established by
setModName. If fileName is the null string, any association for modName is removed;
otherwise, fileName specifies the name of a file containing the executable fonn of the module,
and must be a valid host system file name. The file must contain only a single module; it
cannot be a module library.

setFileName provides the ability to override the default name of a file on which the module is
assumed to reside. In addition, it can utilize the full syntax of host file names, rather than just
the syntax of module names, and thus can specify characteristics such as the directory on which
the file resides.

1.323. setModName

PROCEDURE setModName (STRING dummyName,actualName);

Table 1.323-1. setModName

- 239-

f's current attributes
attributes
global

global

private

private

parameter
global
or Zero

private

private
or Zero

global

Actiones) Taken
The global cache parameters are
set and the global cache LRU list
is adjusted so that it does not
exceed requestedMaxSize.

All of f's cached buffers are
written if dirty and are removed
from the global cache. All
buffers except f's current buffer
are disposed. f is privately
cached with the specified cache
parms.

f's private cache parameters are
set and the private cache LRU
list is adjusted so that it does
not exceed requestedMaxSize.

All of f's cached buffers are
written if dirty and the private
cache is disposed (including
all of f's cached buffers except
the current buffer). f is
globally cached. The global cache
parameters are set and the global
cache LRU list is adjusted so
that it does not exceed
requestedMaxSize.

Figure 1.321-2. Actions Taken by $setFileCacheParms (continued)

- 240-

not cached If the attributes parameter is
nonZero, then f is cached
according to the specified value.
If the attributes parameter is
Zero, then f is globally cached if
its buffer size is the same as
the size of buffers in the global
cache; otherwise, f is privately
cached. The appropriate cache
parameters are set. If f is
globally cached, then the global
cache LRU list is adjusted so
that it does not exceed
requestedMaxSize.

Figure 1.321-2. Actions Taken by $setFileCacheParms (end)

MODULE m (PROCEDURE p);

setFileName ("m",
IF someCondition THEN "filel" ELSE "file2");

p; # Call procedure p in module m

Assuming the call to p causes m to be bound, m is
obtained from "filel" if someCondition is true, otherwise
from "file2".

Example 1.322-2. Use of setFileName

setModName is used to form or remove an association between a dummy name (dummyName)
for a module and the actual name (actualName) of a module. It is an error if dummyName and
actualName are not valid module names, i.e., one- to six-character identifiers, unless
actualName is the null string.

Whenever a data section is to be allocated for a module m (for which no data section yet
exists), the current list of associations is searched to determine if m is a dummy name. If so,
the corresponding actual name is used as the name of the module for which the control section
is found. It is not checked whether the actual name is itself a dummy name; i.e., the actual

- 241-

name must in fact be the name of a module. Thus, a module can use a dummy module name to
make references to a module the actual name of which is not known, provided that a
setModName call has associated the dummy name with the actual name.

It is not specified whether module name associations (as established by setModName) have any
effect on any data section for a given module if another data section for the same module
already exists.

If setModName is issued for a dummy name that is already associated with an actual name,
then the new association replaces the old one.

The association set up by "setModName(dummyName,actualName)" can be released by
"reIModName(dummyName)" or "setModName(dummyName,"")".

1.324. setPos

BOOLEAN
PROCEDURE (POINTER(file) f;

OPTIONAL LONG INTEGER n;
OPTIONAL BITS ctrlBits);

Table 1.324-1. setPos

setPos sets the position within a file opened for random access to n.

The units used for positioning are characters for text files and files open for PDF I/O, storage
units for data files not open for PDF I/O. The first position in a file is position 0, the next
position 1, and so forth.

If the specified position n is greater than the end-of-file position or negative, setPos returns
false. In this case it also gives an error message unless the errorOK bit is set in ctrlBits.
errorOK is the only valid ctrlBits bit.

Example 1.324-2 shows how an array that is too large for memory may be maintained as a
random file.

Specifying a constant numeric value other than OL for a data file position is machine­
dependent For portability, all file positions in data files should be specified as multiples of
sizes of the MAINSAIL data types using $ioSize. For example, to position to the second
integer in a data file, use "setPos(f,cvli($ioSize(f,integerCode)))".

- 242-

<module a>

ttyWrite(nTarget machine: ");
setModName(ncodGen",ttyRead)i

<module b is invoked>

relModName(ncodGenn); '* release the association

<module b>

MODULE codGen (... PROCEDURE addGen (...); ...);

addGen(...)i '* Assume codGen has not been bound at
'* this point; the call to addGen binds i~

The actual module referenced by the call to addGen, in
module b, is determined by what the user types in response
to the inquiry in module a. This allows module b to
access an anonymous module, of which only the interface
characteristics are known. Anonymous modules of which the
interfaces are known may also be accessed by explicit
pointers, but explicit pointers are syntactically
clumsier; however, explicit pointers may be required if
it is necessary to execute simultaneously two different
programs needing separate copies of the same module.

Example 1.323-2. Use of setModName

1.325. $setSearchPath

TEMPORARY FEATURE: SUBJECT TO CHANGE

The procedure $setSearchPath allows a user program to get the effect of the MAINEX
"SEARCHPATH" subcommand (see the "MAINSAIL Utilities User's Guide tl

). Forexample,
the effect of the subcommand

- 243-

* simulate an array on disk

DEFINE
liIntegerSize
hugeArySize

cvli(size(integerCode»,
20001L * liIntegerSize;

* simulate INTEGER ARRAY(O TO hugeArySize - 1) hugeAry
POINTER (dataFile) hugeArYi
open (hugeAry, "hugeAry",create!random!alterOk,hugeArySi ze)i

* simulate hugeAry[li] := n
setPos(hugeAry,li * liIntegerSize); write(hugeAry,n);

* simulate n := hugeAry[li]
setPos(hugeAry,li * liIntegerSize); read(hugeAry,n);

Example 1.324-2. Use of setPos

PROCEDURE $setSearchPath
(STRING pattern,path);

Table 1.325-1. $setSearchPath

SEARCHPATH source:* *.msl /9.0/*.msl

may be obtained from a MAINSAIL program with

$setSearchPath("source:*","*.msl/9.0/*.msl");

The searchpath syntax may change in future releases.

1.326. $setSystemBit

TEMPORARY FEATURE: SUBJECT TO CHANGE

- 244-

<macro> $setSystemBit
(BITS b);

Table 1.326-1. $setSystemBit

$setSystemBit sets various bits, called system bits that control MAINSAIL execution. The
possible arguments and their meanings are shown in Table 1.326-2.

Only the bits shown in Table 1.326-2 should be changed. Changing other system bits from a
program has undefined effects. Users must reference bits by identifier only, not by value, since
their values may change in future releases. Some bits may become obsolete. Some
configuration bits (see the description of $setConfigurationBit) may become system bits or vice
versa. The type(s) of the configuration and/or system bits are subject to change; e.g., they may
become long bits.

1.327. $setTheDate

BOOLEAN
PROCEDURE $setTheDate (LONG INTEGER date);

Table 1.327-1. $setTheDate

If the operating system does not provide the date, $setTheDate sets MAINSAIL's internal date
to the value specified by date.

$setTheDate returns false if the date is available from the operating system, true otherwise.

If the date is not provided by the operating system and $setTheDate has been called, $date and
$dateAndTime return the value specified instead of prompting for the current date.

The standard MAINSAIL date and time formats are described in Section 19.1 of part I of the
"MAINSAIL Language Manual".

- 245-

System Bit
$swapBit

$memInfoBit

$mapAtMemInfoBit

$noCheckConsistency

$fileInfoBit

$controlInfoBit

noResponse

Meaning
Write swapping information to
"TTY" as if the MAINEX "SWAP INFO"
subcommand had been given.

Write memory management
information to "TTY" as if the
MAINEX "MEMINFO" subcommand had
been given.

Write memory maps as if the
MAINEX "MAP" subcommand (with no
arguments) had been given.

Do not perform interface
consistency checking when modules
are bound, as if the MAINEX
"NOCHECKCONSISTENCY" subcommand
had been given.

Write file information to "TTY" as
if the "FILEINFO" subcommand had
been given.

Write coroutine and exception
information to "TTY" as if the
"CONTROLINFO" subcommand had been
given.

Responses are not requested from
errMsg as if the "NORESPONSE"
MAINEX or compiler subcommand had
been given.

Table 1.326-2. System Bit Identifiers

- 246-

1.328. sin

REAL
PROCEDURE

LONG REAL
PROCEDURE

sin (REAL r);

sin (LONG REAL r);

Table 1.328-1. sin (Generic)

sin returns the sine of its argument, which is in radians.

1.329. sinh

REAL
PROCEDURE

LONG REAL
PROCEDURE

sinh (REAL r);

sinh (LONG REAL r);

Table 1.329-1. sinh (Generic)

sinh returns the hyperbolic sine of its argument, which is in radians.

1.330. size

COMPILETIME
INTEGER
PROCEDURE size (INTEGER typeCode) ;

Table 1.330-1. size (Generic) (continued)

- 247-

$BUILTIN SPECIAL
INTEGER
PROCEDURE size

LONG INTEGER
PROCEDURE size

(CLASS c);

(POINTER p) ;

Table 1.330-1. size (Generic) (end)

size computes the number of storage units in a data type or class.

The integer form returns the number of storage units required by the data type with type code
typeCode (see Section 2.7 of part I of the "MAINSAIL Language Manual").

The class form returns the number of storage units required by the data fields in a record of the
class c. Procedure fields play no part in the size. The class form is always evaluated at
compiletime.

In the pointer fonn, p points to a record, array, or data section. The size of the record, array, or
data section, in storage units, is returned. In the case of the data section, the size of the entire
data section, not just the data interface fields, is returned. If p is Zero, OL is returned; if p is not
valid, an error message is issued.

These procedures produce machine-dependent results, since the sizes of the data types and the
interpretation of storage units vary across implementations.

$ioSize should be used instead of size to compute the sizes of data types written to data files.

A garbage collection cannot occur during a call to size.

i := size(integerCode);

i is set to the the number of storage units
required by an integer.

Example 1.330-2. Use of size

- 248-

1.331. sort

sort is one of the procedures provided by the sorting package, SRTMOD, which is documented
in detail in the "MAINSAIL Utilities User's Guide".

1.332. sqrt

REAL
PROCEDURE

LONG REAL
PROCEDURE

sqrt (REAL x);

sqrt (LONG REAL x);

Table 1.332-1. sqrt (Generic)

sqrt returns the square root of x. It is an error if x is less than zero.

1.333. $sRand

$sRand returns the next pseudo-random number produced by one of the algorithms in
$ranMod, which is documented in detail in the "MAINSAIL Utilities User's Guide".

1.334. $stackOverflowExcpt

* system variable
STRING $stackOverflowExcpt;

Table 1.334-1. $stackOverftowExcpt

$stackOverflowExcpt is a predefined exception that is raised on systems where stack overflow
can be usefully caught when a procedure stack overflow occurs (see Section 9.13 of part I of
the "MAINSAIL Language Manual"). Usually a little extra stack is held in reserve for the
handling the exception, but not much, so no deep procedure recursion should occur while

- 249-

handling $stackOverftowExcpt. A stack overflow in a coroutine in which $stackOverftowExcpt
has already been raised has undefined effects, since the stack reserve has already been used up.

Stack overflows on machines that do not raise $stackOverflowExcpt also have undefined effects
and frequently cause a program to hang.

1.335. $storageUnitRead

LONG INTEGER
PROCEDURE $storageUnitRead

(POINTER (dataFile) fi
LONG INTEGER numStorageUnitsi
POINTER ptrBasei
OPTIONAL LONG INTEGER dspli
OPTIONAL ADDRESS adrBase)i

Table 1.335-1. $storageUnitRead

$storageUnitRead reads numStorageUnits storage units of data from the data file f to an address
computed as "displace(IF adrBase THEN adrBase EL cva(ptrBase),dspl)". An error occurs if
both adrBase and ptrBase are Zero. The number of storage units read is returned.

If adrBase is non-Zero, the effect is undefined if "displace(adrBase,dspl)" does not lie within an
area of scratch space obtained with newScratch or newPage or if the area does not contain at
least numStorageUnits of space beyond the computed address. If adrBase is Zero, the effect is
undefined if ptrBase does not point to a valid MAINSAIL data structure or if the data structure
is smaller than numStorageUnits storage units.

For large amounts of data, $storageUnitRead is more efficient than a series of calls to the
procedure "read".

Garbage collections may occur during a call to $storageUnitRead or $storageUnitWrite.
Therefore, converting an array to an address before reading data into it or writing data from it
by means of these procedures has undefined effects. The proper way to do a $storageUnitRead
of n element~ of type t from a file f into an array ary (starting at the first element) is to convert it
to pointer:

$storageUnitRead(f,n * cvli(size(tCode»,cvp(ary),
IDisplacement(cva(cvp(ary»,$adrOfFirstElement(ary»)

- 250-

where tCode is the type code for type t, i.e., one of integerCode, 10ngIntegerCode, bitsCode,
etc.

$pageRead and $characterRead are other procedures used to read large amounts of data from a
file with a single procedure call.

1.336. $storageUnitWrite

PROCEDURE $storageUnitWrite
(POINTER (dataFile) f;
LONG INTEGER numStorageunits;
POINTER ptrBase;
OPTIONAL LONG INTEGER dspl;
OPTIONAL ADDRESS adrBase);

Table 1.336-1. $storageUnitWrite

$storageUnitWrite writes numStorageUnits storage units of data to the data file f from an
address computed as "displace(IF adrBase THEN adrBase EL cva(ptrBase),dspl)" . An error
occurs if both adrBase and ptrBase are Zero.

If adrBase is non-Zero, the effect is undefined if "displace(adrBase,dspl)" does not lie within an
area of scratch space obtained with new Scratch or newPage or if the area does not contain at
least numStorageUnits of space beyond the computed address. If adrBase is Zero, the effect is
undefined if ptrBase does not point to a valid MAINSAIL data structure or if the data structure
is smaller than numStorageUnits storage units.

For large amounts of data, $storageUnitWrite is more efficient than a series of calls to the
procedure "write".

$pageWrite and $characterWrite are other procedures used to write large amounts of data to a
file with a single procedure call.

- 251 -

1.337. store

$BUILTIN
PROCEDURE store (CHARADR c;

INTEGER v;
OPTIONAL INTEGER dspl);

$BUILTIN
PROCEDURE store (ADDRESS ai

INTEGER v;
OPTIONAL INTEGER dspl) i

$BUILTIN
PROCEDURE store (ADDRESS a;

ADDRESS v;
OPTIONAL INTEGER dspl) ;

$BUILTIN
PROCEDURE store (ADDRESS a;

POINTER v;
OPTIONAL INTEGER dspl) ;

$BUILTIN
PROCEDURE store (ADDRESS ai

BITS Vi
OPTIONAL INTEGER dspl)i

$BUILTIN
PROCEDURE store (ADDRESS ai

STRING Vi
OPTIONAL INTEGER dspl) i

$BUILTIN
PROCEDURE store (ADDRESS ai

REAL v;
OPTIONAL INTEGER dspl)i

$BUILTIN
PROCEDURE store (ADDRESS ai

LONG INTEGER Vi
OPTIONAL INTEGER dspl) ;

Table 1.337-1. store (Generic) (continued)

- 252-

$BUILTIN
PROCEDURE

$BUILTIN
PROCEDURE

$BUILTIN
PROCEDURE

$BUILTIN
PROCEDURE

store (ADDRESS a;

LONG REAL Vi
OPTIONAL INTEGER

store (ADDRESS a;

LONG BITS V;
OPTIONAL INTEGER

store (ADDRESS a;

BOOLEAN V;
OPTIONAL INTEGER

store (ADDRESS a;
CHARADR V;
OPTIONAL INTEGER

Table 1.337-1. store (Generic) (end)

store is used to store a value into a memory or character address.

dspl);

dspl) ;

dspl) i

dspl)i

The forms in which an address is the first parameter store the value v into the memory location
given by "displace(a,dspl)". If "displace(a,dspl)" is undefined, the effect of store is undefined.
The form in which a charadr is the first argument stores the character code v at the character
address given by "displace(c,dspl)". If "displace(c,dspl)" is undefined, the effect of store is
undefined.

The effect is undefined if a or c is Zero.

- 253-

1.338. $strToDate

LONG INTEGER
PROCEDURE $strToDate (STRING Si

PRODUCES OPTIONAL STRING remSi
OPTIONAL BITS ctrlBitsi
PRODUCES OPTIONAL BOOLEAN

success)i

Table 1.338-1. $strToDate

$strToDate produces a MAINSAIL date given a string. The date specified may be in any of the
formats produced by $dateToStr.

A two-digit year is generally assumed to be a year in the current century; a year in the first
century may be specified by terminating the date string with "A.D."; e.g., "17 A.D." represents
the year 17, not 1917.

s need only start with a valid date string. remS is that part of s that remains after the part
containing the date string has been removed.

If s does not begin with a valid date, OL is returned, success is set to false, and the value of
rernS is unspecified. OL is a valid return value if the string represents a date difference, so
success must be examined if an invalid date difference string may be input.

The valid ctrlBits bits are $localTime, $gmt, and errorOK.

If$localTime is specified (or if neither $localTime nor $gmt is specified), the string is
interpreted as a local date and returned in local date format. If $gmt is specified, a GMT format
date is returned.

Unless errorOK is specified, an error message is generated for erroneous input values.

The standard MAINSAIL date and time formats are described in Section 19.1 of part I. of the
"MAINSAIL Language Manual".

- 254-

1.339. $strToDateAndTime

BOOLEAN
PROCEDURE $strToDateAndTime

(STRING s;
PRODUCES LONG INTEGER date,time;
PRODUCES OPTIONAL STRING remS;
OPTIONAL BITS ctrlBits);

Table 1.339-1. $strToDateAndTime

$strToDateAndTime produces a MAINSAIL date and time given a string. The date and time
may be specified in any of the formats output by $dateAndTimeToStr. If the string includes a
time zone name, it must be "GMT", the name of the local standard or daylight savings time
zone, or a time zone defined to MAINSAIL with the "DEFINETIMEZONE" MAINEX
subcommand (see the description of MAINE X in the "MAINSAIL Utilities User's Guide"). If
the string does not have the format of a time difference and no time zone is included in the
string, local time is assumed by default (either daylight savings or standard time, depending on
the date part of the string). $strToDateAndTime returns true if successful.

s need only start with a valid date and time string. remS is that part of s that remains after the
part containing the time string has been removed.

If s does not begin with a valid date and time, false is returned, and the value of remS is
unspecified.

Valid ctrlBits bits are errorOK, $localTime, $locaITimeToGMT, $GMTtoLocalTime, and
$gmt. errorOK suppresses error messages for invalid input values. The other four values are
ignored if the string has the format of a time difference; otherwise, at most one of the four bits
may be specified, and the bits have the effects shown in Table 1.339-2.

$localTime is the default if none of the four bits is specified. If a time zone name is included in
s, it overrides the assumption about the time zone specified by the ctrlBits bit.

- 255-

Input String Output Format
Sit Int~~~~~t~d a~ fQr dat~ and tim~
$localTime Local time Local format
$localTimeToGMT Local time GMT format
$GMTtoLocalTime GMT Local format
$ gmt GMT GMT format

Table 1.339-2. $strToDateAndTime ctrlBits Bits

1.340. $strToTime

LONG INTEGER
PROCEDURE $strToTime (STRING Si

PRODUCES OPTIONAL STRING remSi
OPTIONAL BITS ctrlBitsi
PRODUCES OPTIONAL BOOLEAN

success)i

Table 1.340-1. $strToTime

$strToTime produces a MAINSAIL time given a string. The time specified may be in any of
the formats produced by $timeToStr. In addition, if s represents a time difference, the hours
specified may exceed 24 and the minutes and seconds 60; e.g., "+45:75:75" means a time
difference of 46 hours, 16 minutes, and 15 seconds.

s need only start with a valid time string. remS is that part of s that remains after the part
containing the time string has been removed.

If s does not begin with a valid time, OL is returned, success is set to false, and the value of
rernS is unspecified. OL is a valid return value if the string represents a time difference, so
success must be examined if an invalid time difference string may be input.

The valid ctrlBits bits are $localTime, $gmt, and errorOK.

If $localTime is specified (or if neither $localTime nor $gmt is specified), the string is
interpreted as a local time and returned in local time format. If $gmt is specified, a GMT
format time is returned.

- 256-

Unless errorOK is specified, an error message is generated for erroneous input values.

The standard MAINSAIL date and time formats are described in Section 19.1 of part I of the
"MAINSAIL Language Manual".

1.341. Structure Blaster Procedures

The Structure Blaster provides a number of procedures that operate on an entire data structure
at once (i.e., all chunks and strings accessible from a given pointer). The Structure Blaster is a
separate product, and is documented in detail in the "MAINSAIL Structure Blaster User's
Guide".

$structureCompare compares two structures. $structureCopy copies an entire structure.
$structureDataToText translates a structure into a human-readable text form for examination,
porting to another system, or editing. $structureDispose disposes an entire structure.
$structureInfo returns information about a structure written to a file. $structureRead reads a
structure from a file into memory. $structureSetUp does preliminary processing for
$structure Write. $structureTextToData translates a text form into a data structure.
$structureUnSetUp undoes $structureSetUp, if the structure is not to be written after all.
$structureWrite writes an entire structure to a file.

1.342. $subscriptExcpt

* system variable
STRING $subscriptExcpt;

Table 1.342-1. $subscriptExcpt

$subscriptExcpt is a predefined exception that is raised when a subscript error (out-of-range
array subscript) occurs in code with runtime checking enabled (see Section 15.2 of part I of the
"MAINSAIL Language Manual").

- 257-

1.343. $systemExcpt

system variable
STRING $systemExcpt;

Table 1.343-1. $systemExcpt

$systemExcpt is a predefined exception that is raised by errMsg. See Section 16.8 of part I of
the "MAINSAIL Language Manual" and Section 1.143. $systemExcpt can be caught to handle
various error conditions, but the programmer should be aware that MAINSAIL system error
messages are subject to change.

1.344. $systemNameAbbreviation

STRING
<macro> $systemNameAbbreviation;

Table 1.344-1. $systemNameAbbreviation

$systemNameAbbreviation is the abbreviation for the name of the target operating system.
Abbreviations are shown in Table B-2 of part I of the "MAINSAIL Language Manual".

1.345. $systemNameFull

STRING
<macro> $systemNameFull;

Table 1.345-1. $systemNameFull

$systemNameFull is the full name of the target operating system. Operating system names are
shown in Table B-2 of part I of the "MAINSAIL Language Manual".

- 258-

1.346. $systemNumber

COMPILETIME
INTEGER
<macro> $systemNumberi

Table 1.346-1. $systemNumber

$systemNumber is the number the target operating system. Operating system numbers are
shown in Table B-2 of part I of the "MAINSAIL Language Manual".

1.347. tab

COMPILETIME
STRING
<macro> tab;

Table 1.347-1. tab

tab is the string consisting of the tab character.

1.348. tan

REAL
PROCEDURE

LONG REAL
PROCEDURE

tan (REAL r);

tan (LONG REAL r) i

Table 1.348-1. tan (Generic)

tan returns the tangent of its argument, which is in radians.

- 259-

1.349. tanh

REAL
PROCEDURE

LONG REAL
PROCEDURE

tanh (REAL r);

tanh (LONG REAL r);

Table 1.349-1. tanh (Generic)

tanh returns the hyperbolic tangent of its argument, which is in radians.

1.350. $thisCoroutine
",.

system variable
POINTER ($coroutine) $thisCoroutine;

Table 1.350-1. $thisCoroutine

$thisCoroutine points to the current coroutine. Explicitly altering $thisCoroutine has undefined
effects.

1.351. thisDataSection

$BUILTIN
POINTER
PROCEDURE thisDataSection;

Table 1.351-1. thisDataSection

thisDataSection returns a pointer to the data section of the module from which it is called.

- 260-

1.352. $time

LONG INTEGER
PROCEDURE $time (OPTIONAL BITS ctrlBits)i

Table 1.352-1. $time

$time returns the current time of day.

The valid predefined bits constants for ctrlBits are $localTime, $gmt, and errotOK.

If $localTime is specified (or if neither $localTime nor $gmt is specified), the local time is
returned, if available. If $gmt is specified, the GMT time is returned, if available.

If the predefined bits constant errorOK is specified and the time is not provided by the
operating system, OL is returned. If errorOK is not specified, the user is prompted for the time
if it is not provided by the operating system.

$dateAndTime should be used if both date and time are to be obtained for the same instant.
Otherwise, a wraparound can occur at midnight.

The standard MAINSAIL date and time formats are described in Section 19.1 of part I of the
"MAINSAIL Language Manual".

1.353. $timeDifference

COMPILETIME
BITS
<macro> $timeDifferencei

Table 1.353-1. $timeDifference

$timeDifference is bit that specifies that a time difference (rather than an absolute time) is to be
output. It may be passed to $assembleTime. It may be returned by $dateFormat and
$timeFormat to indicate the format of the long integer date or time argument.

- 261 -

1.354. $timeFormat

BITS
PROCEDURE $timeFormat (LONG INTEGER time);

Table 1.354-1. $timeFormat

$timeFormat returns $gmt if its argument is a GMT time, $localTime if its argument is a local
time, $timeDifference if its argument is a time difference, or '0 if its argument is not a valid
time value.

1.355. $timeSubcommandsSet

BOOLEAN
PROCEDURE $timeSubcommandsSet;

Table 1.355-1. $timeSubcommandsSet

$timeSubcommandsSet returns true if and only if any of the MAINE X time zone subcommands
has been issued. These subcommands are necessary for correct processing of GMT dates and
times. It is presumed that all time zone subcommands have been issued with correct values if
any of them have been issued. The operating system may provide part of the information
normally provided by the subcommands, but the subcommands override the operating system if
the subcommands are set. See Section 19.3 of part I of the "MAINSAIL Language Manual" for
additional information.

1.356. $thisFileName

The compiletime string pseudo-procedure $thisFileName returns the name of the current source
file, i.e., of the file containing the call to $thisFileName. This can be especially useful to
specify the location of a forward procedure:

FORWARD ($thisFileName) PROCEDURE ...

- 262-

since this use of the II FORW ARD" directive works even if the source file containing it is
renamed.

1.357. $timeout

PROCEDURE $timeout (LONG 'INTEGER seconds);

Table 1.357-1. $timeout

$timeout pauses for approximately the number of seconds specified. On some operating
systems, it is necessary to implement $timeout with a loop that waits until the time has elapsed;
on such systems, $timeout may consume a good deal of CPU time.

1.358. $timeToStr

STRING
PROCEDURE $timeToStr (LONG INTEGER time;

OPTIONAL BITS ctrlBits;
OPTIONAL POINTER($area) area);

Table 1.358-1. $timeToStr

$dateToStr produces a string from a MAINSAIL time of day, which may be an absolute (local
or GMT) time or a time difference. area specifies the destination area for the resulting string.

The default format for $timeToStr if time is an absolute time is "<hour>:<minute>:<second>",
where <hour> is measured on a 24-hour clock, e.g., "22: 16:09", "0:44:00". The <minute> and
<second> fields always occupy exactly two digits, even if they are zero; the <hour> field may
occupy one or two digits, depending on its value.

Time differences are converted by default to the format:

{-}<h> hour{s} <m> minute{s} <s> second{s}

The "_" is included if time is negative.

- 263-

The null string is returned if an invalid input value is detected.

The predefined bits constants shown in Table 1.358-2 are valid. Example 1.358-3 shows some
sample output values.

The standard MAINSAIL date and time formats are described in Section 19.1 of part I of the
"MAINSAIL Language Manual".

Bit
$twelveHour

$excludeSeconds

$briefFormat

errorOK

Meaning
A twelve-hour clock is used. The time
is followed by " A.M." or " P.M.", as
appropriate. Midnight is given as
"12" rather than "0".

The time is truncated to the minute.

If time is a time difference, convert
it to "[+I-]<h>:<m>:<s>", e.g.,
"+02:17:03", "-00:01:55". A zero
difference has a plus sign
("+00: 00: 00") .

No error message is given if an
invalid input value is detected.

Table 1.358-2. Predefined Bits Constants for $timeToStr ctrlBits

For sample times of 0:00:17 and 15:46:54, the following
string representations are possible:

StwelveHour SexcludeSeconds Resulting strings
clear clear "0:00:17" "15:46:54"
clear set "0:00" "15:46"
set clear "12:00:17 A.M." "3:46:54 P.M."
set set "12:00 A.M." "3:46 P.M."

Example 1.358-3. Sample $timeToStr Output Formats

- 264-

1.359. truncate

$BUILTIN
INTEGER
PROCEDURE truncate

$BUILTIN
LONG INTEGER

(REAL v);

PROCEDURE truncate (LONG REAL v);

Table 1.359-1. truncate (Generic)

truncate returns the (long) integer obtained by discarding v's fraction; i.e., it rounds towards
zero.

See Table 1.169-3 for a table contrasting ceiling, cvi, floor, and truncate.

1.360. $truncateFile

BOOLEAN
PROCEDURE

truncate(10.5) 10
truncate (-10.5) -10

Example 1.359-2. Use of truncate

$truncateFile
(POINTER (file) f;
LONG INTEGER fileSize;
OPTIONAL BITS ctrlBits);

Table 1.360~ 1. $truncateFile

- 265-

$truncateFile truncates the file f, if possible. It returns true if the file is truncated, false
otherwise. An error occurs if f is not open for random output. fileSize is the requested size in
characters if f is a text file and in storage units if f is a data file.

If the operating system does not support file truncation, then the file size is not changed,
$truncateFile returns false, and no error message is issued. If the operating system supports file
truncation, then f is truncated so that its end-of-file position is as close to the requested size as
possible and $truncateFile returns true. The end-of-file position of f may be larger than the
requested size, but never smaller.

An error occurs if f is a sequential file, if f is opened for input only, or if the operating system's
file truncation procedure returns an error. In the first two cases, an error message is written to
10gFile regardless of the setting of the errorOK bit in ctrlBits.

The only valid ctrlBits is errorOK, which suppresses any operating system error message that
might otherwise occur.

$truncateFile does not change the current MAINSAIL file position. If the current MAINSAIL
file position is beyond the end-of-file position of the truncated file, then the file position is set as
if a setPos beyond the end-of-file had been done. The end-of-file position is not changed until
data are written beyond the end-of-file.

1.361. $tstConfigurationBit

TEMPORARY FEATURE: SUBJECT TO CHANGE

BOOLEAN
<macro> $tstConfigurationBit

(BITS b);

Table 1.361-1. $tstConfigurationBit

$tstConfigurationBit examines various bits that control MAINSAIL execution. The bits are
documented in detail under $setConfigurationBit.

- 266-

1.362. $tstSystemBit

TEMPORARY FEATURE: SUBJECT TO CHANGE

BOOLEAN
<macro> $tstSystemBit

(BITS b);

Table 1.362-1. $tstSystemBit

$tstSystemBit examines various bits that control MAINSAIL execution. The bits are
documented in detail under $setSystemBit.

1.363. ttycWrite

PROCEDURE ttycWrite (REPEATABLE INTEGER char);

Table 1.363-1. ttyc Write

ttycWrite writes the character with code char to the file "TTY".

For example, "ttycWrite('c')" writes the letter "c" to the primary output file. The effect is the
same as that of "ttyWrite("c")" .

1.364. $tty EofExcpt

system variable
STRING $ttyEofExcpt;

Table 1.364-1. $ttyEotExcpt

- 267-

$ttyEofExcpt is a predefined exception that is raised when the end of "TTY" is reached in a call
to ttyRead, as described in Section 18.10 of part I of the "MAINSAIL Language Manual" .

1.365. ttyRead

STRING
PROCEDURE ttyRead (OPTIONAL POINTER($area) area);

Table 1.365-1. ttyRead

tty Read reads a new line from the file "TTY". area specifies the destination area for the
resulting string.

The character or characters that terminate the input line (e.g., eol) are discarded.

STRING Si

INTEGER t,u;

s := ttyRead; :If read next line from "TTY"
read(s,t,u); :If read integers from s into t and u

:If (see Section 1.288)

Example 1.365-2. Use of ttyRead

Example 1.365-2 gets two integers from the same terminal input line. The user must realize
that two integers are to be typed on the same line.

- 268-

1.366. ttyWrite

PROCEDURE ttyWrite (REPEATABLE STRING V)i

PROCEDURE ttyWrite (REPEATABLE BOOLEAN V)i

PROCEDURE ttyWrite (REPEATABLE INTEGER v);

PROCEDURE ttyWrite (REPEATABLE BITS v) i

PROCEDURE ttyWrite (REPEATABLE REAL v) ;

PROCEDURE ttyWrite (REPEATABLE LONG INTEGER v) ;

PROCEDURE ttyWrite (REPEATABLE LONG BITS v) i

PROCEDURE ttyWrite (REPEATABLE LONG REAL v) ;

Table 1.366-1. ttyWrite

ttyWrite converts its argument to a string representation if it is not a string, and then writes the
string to the file "TTY". The conversions performed are the same as performed by the system
procedure "write".

ttyWrite(eol & "i and j are ",i," and ",j,"." & eol)

If i = 10 and j = 11, the fO'12'owing is written to tty on a
new line:

i and j are 10 and 11.

Example 1.366-2. Use of ttyWrite

- 269-

1.367. $twelveHour

COMPILETIME
BITS
<macro> $twelveHouri

Table 1.367-1. $twelveHour

$twelveHour is a bit that specifies that a twelve-hour clock (instead of the usual twenty-four­
hour clock) is to be used in forming the output string. It may be passed to $dateAndTimeToStr
and $timeToStr.

1.368. $two YearDigits

COMPILETIME
LONG BITS
<macro> $twoYearDigits;

Table 1.368-1. $twoYearDigits

$two YearDigits is a bit that specifies that only the last two digits of a year are to be included in
the output of the procedure to which it is passed. It may be passed to $dateToStr and
$dateAndTimeToStr.

1.369. $typeName

STRING
PROCEDURE $typeName (INTEGER typeCode;

OPTIONAL BITS ctrlBits)i

Table 1.369-1. $typeName

- 270-

The procedure $typeNarne returns a string type name corresponding to a type code typeCode.
The correspondence between type codes and names is shown in Table 1.369-2. The only valid
ctrlBits bit is errorOK. If not specified, an error message is issued if typeCode is not a valid
MAINSAIL type code. The null string is returned for invalid MAINSAIL type codes.

T2:12~ ~QQe Name
booleanCode BOOLEAN
integerCode INTEGER
longIntegerCode LONG INTEGER
realCode REAL
longRealCode LONG REAL
bitsCode BITS
longBitsCode LONG BITS
stringCode STRING
addressCode ADDRESS
charadrCode CHARADR
pointerCode POINTER

Table 1.369-2. MAINSAIL Data Type Codes and Corresponding Names

1.370. unBind

PROCEDURE unBind (REPEATABLE MODULE m);

PROCEDURE unBind (REPEATABLE STRING modName);

Table 1.370-1. unBind (Generic)

unBind undoes the effect of a call to "bind"; i.e., it executes the final procedure (if any) of the
module m or the module named modName, and then disposes the module's bound data section
(see Section 1.127). Unlike the system procedure "dispose", unBind does not release the
module's control section. unBind has no effect if the module does not have a bound data
section.

The linkage of any modules that have established linkage to the module is broken.

- 271 -

The string form generates an error if modName is not a valid module name, i.e., a one- to six­
character identifier.

1.371. $unboundModuleExcpt

* system variable
STRING $unboundModuleExcpt;

Table 1.371-1. $unboundModuleExcpt

$unboundModuleExcpt is a predefined exception that is raised when an interface data field of
an unallocated bound module is accessed in code with runtime checking enabled (see Section
15.2 of part I of the tlMAINSAIL Language Manualtl).

1.372. $unbuffered

COMPILETIME
BITS
<macro> $unbuffered;

Table 1.372-1. $unbuffered

$unbuffered is a bit that specifies that unbuffered I/O is to be allowed on the file that is being
opened. It may be passed to $createUniqueFile, open, and $reOpen.

1.373. upperCase

COMPILETIME
BITS
<macro> upperCase;

Table 1.373-1. upperCase

- 272-

upperCase is a bit that specifies that case is ignored in the processed text. It may be passed to
cmdMatch, compare, equ, and scan.

1.374. useKeyWord

COMPILETIME
BITS
<macro> useKeyWord;

Table 1.374-1. useKeyWord

useKeyWord is a bit that specifies processing based on individual words instead of a whole
string. It may be passed to cmdMatch and $registerException.

1.375. $useOriginalFiIeName

COMPILETIME
BITS
<macro> $useOriginalFileName;

Table 1.375-1. $useOrigina1FileName

$useOriginaiFileName is a bit that suppresses transformation of a file name through logical file
names and searchpaths. It may be passed to $createUniqueFile, $delete, $directory, $filelnfo,
open, $rename, and $reOpen.

1.376. $useProgramlnterface

BOOLEAN
<macro> $useProgramInterface;

Table 1.376-1. $useProgramInterface

- 273-

$useProgramlnterface is true if and only if the initial procedure of the current module m is
being invoked for one of the following reasons:

• An interface procedure is being called.

• "bind(m,b)" or tlnew(m,b)tI was called, where b has the $programlnterface bit set.

Because of the way it is implemented, $useProgramInterface must be used only in the initial
procedure of the module, before it makes any procedure calls; otherwise, the use of
$useProgramlnterface is undefined.

Normal uses of bind and new within the MAINSAIL runtime system do not set the
$programInterface bit. For example, when a module is invoked from MAlNEX, the bit is not
set, so that $useProgramInterface is false if queried by the module's initial procedure.

1.377. $user ID

STRING
PROCEDURE $userID (OPTIONAL BITS ctrlBits);

Table 1.377-1. $userID

The user ID of the current user is returned, if possible. The fonn of the user ID is described in
each operating-system-dependent MAINSAIL user's guide.

If the operating system does not provide a user ID, a prompt is written to 10gFile and a user
name read from cmdFile. After the user is prompted once, the user ID is remembered and
returned on all subsequent calls to $userId.

The only valid ctrlBits bit is errorOK; if set, the null string is returned without dialogue if the
user ID is unavailable.

- 274-

1.378. warning

COMPILETIME
BITS
<macro> warning;

Table 1.378-1. warning

warning is a bit that specifies that an error message is just warning. It may be passed to errMsg
and tested in $exceptionBits. It is set in a call to $raise made from errMsg if the warning bit is
set in the call to errMsg.

1.379. write

PROCEDURE write

PROCEDURE write

PROCEDURE write

PROCEDURE write

PROCEDURE write

PROCEDURE write

PROCEDURE write

(MODIFIES STRING s;
REPEATABLE BOOLEAN V)i

(MODIFIES STRING S;
POINTER($area) areai
REPEATABLE BOOLEAN v)i

(POINTER (textFile) f;
REPEATABLE BOOLEAN bo);

(POINTER (dataFile) f;
REPEATABLE BOOLEAN bo);

(POINTER (dataFile) dsti
REPEATABLE BITS V)i

(POINTER (textFile) dsti
REPEATABLE BITS v);

(MODIFIES STRING dst;
REPEATABLE BITS v);

Table 1.379-1. write (Generic) (continued)

- 275-

$BUILTIN
PROCEDURE write (MODIFIES ADDRESS dst;

REPEATABLE BITS v);

PROCEDURE write (POINTER (dataFile) dst;
REPEATABLE INTEGER v);

PROCEDURE write (POINTER (textFile) dst;
REPEATABLE INTEGER v);

PROCEDURE write (MODIFIES STRING dst;
REPEATABLE INTEGER v);

$BUILTIN
PROCEDURE write (MODIFIES ADDRESS dst;

REPEATABLE INTEGER v);

PROCEDURE write (POINTER (dataFile) dst;
REPEATABLE LONG BITS v);

PROCEDURE write (POINTER (textFile) dst;
REPEATABLE LONG BITS v) ;

PROCEDURE write (MODIFIES STRING dst;
REPEATABLE LONG BITS v) ;

$BUILTIN
PROCEDURE write (MODIFIES ADDRESS dst;

REPEATABLE LONG BITS v);

PROCEDURE write (POINTER (dataFile) dst;
REPEATABLE LONG INTEGER v) ;

PROCEDURE write (POINTER (textFile) dst;
REPEATABLE LONG INTEGER v) ;

PROCEDURE write (MODIFIES STRING dst;
REPEATABLE LONG INTEGER v) ;

$BUILTIN
PROCEDURE write (MODIFIES ADDRESS dst;

REPEATABLE LONG INTEGER v) ;

Table 1.379-1. write (Generic) (continued)

- 276-

PROCEDURE write (POINTER (dataFile) dsti
REPEATABLE LONG REAL v);

PROCEDURE write (POINTER (textFile) dst;
REPEATABLE LONG REAL v) ;

PROCEDURE write (MODIFIES STRING dst;
REPEATABLE LONG REAL v) ;

$BUILTIN
PROCEDURE write (MODIFIES ADDRESS dsti

REPEATABLE LONG REAL v) ;

PROCEDURE write (POINTER (dataFile) dst;
REPEATABLE REAL v);

PROCEDURE write (POINTER (textFile) dsti
REPEATABLE REAL v) ;

PROCEDURE write (MODIFIES STRING dst;
REPEATABLE REAL v) ;

$BUILTIN
PROCEDURE write (MODIFIES ADDRESS dst;

REPEATABLE REAL v);

$BUILTIN
PROCEDURE write (MODIFIES ADDRESS dst;

REPEATABLE STRING v) ;

PROCEDURE write (POINTER (textFile) dsti
REPEATABLE STRING v) ;

PROCEDURE write (MODIFIES STRING dsti
REPEATABLE STRING v);

$BUILTIN
PROCEDURE write (MODIFIES ADDRESS dsti

REPEATABLE POINTER v);

Table 1.379-1. write (Generic) (continued)

- 277-

$BUILTIN
PROCEDURE write (MODIFIES ADDRESS dst;

REPEATABLE ADDRESS v);

$BUILTIN
PROCEDURE write (MODIFIES ADDRESS dst;

REPEATABLE CHARADR v) ;

$BUILTIN
PROCEDURE write (MODIFIES ADDRESS dst;

REPEATABLE BOOLEAN v) ;

PROCEDURE write (MODIFIES STRING s;
POINTER ($area) area;
REPEATABLE INTEGER v) ;

PROCEDURE write (MODIFIES STRING 5;
POINTER ($area) area;
REPEATABLE LONG INTEGER v) ;

PROCEDURE write (MODIFIES STRING s;
POINTER($area) area;
REPEATABLE REAL v) ;

PROCEDURE write (MODIFIES STRING s;
POINTER ($area) area;
REPEATABLE LONG REAL v) ;

PROCEDURE write (MODIFIES STRING s;
POINTER ($area) area;
REPEATABLE BITS v) ;

PROCEDURE write (MODIFIES STRING 5;
POINTER($area) area;
REPEATABLE LONG BITS v) ;

PROCEDURE write (MODIFIES STRING r;
POINTER($area) area;
REPEATABLE STRING s) ;

PROCEDURE write (POINTER (dataFile) dati
REPEATABLE STRING v);

Table 1.379-1. write (Generic) (end)

- 278-

"write" writes the value v to dst, which may be an output file, string, or memory address.

The forms that write a boolean, (long) integer, (long) real, or (long) bits to a text file or a string
automatically convert to a string representation, which is the same as the default format
produced by cvs. A string is written to a text file, data file, or string as the sequence of its
characters.

If dst is a string, the string representation of v is concatenated onto the end of dst.

After writing to an address, the address is displaced to the location immediately following that
to which the value was written. The effect is undefined jf the address is nullAddress or if
"displace(dst,size«data type of v»)" is undefined.

The form that writes a string to an address writes the machine-dependent string descriptor of v
to dst, i.e., stores the string descriptor at dst and displaces a by the size of a string descriptor.

In the forms that write a string to a file, if the file is opened for PDP I/O, characters may be
translated to the PDF character set.

In the area forms, area specifies the destination area for the resulting string.

1.380. $writeCalls

TEMPORARY FEATURE: SUBJECT TO CHANGE

PROCEDURE $writeCalls (OPTIONAL POINTER(textFile) f;
OPTIONAL fOINTER($coroutine) p;
OPTIONAL BITS ctrlBits);

Table 1.380-1. $writeCalls

The code that handles the "CALLS" response to errMsg is available as the procedure
$writeCalls.

f is the file to which the list of callers is written. If f is nullPointer, logFile is assumed. p is the
coroutine the call chain of which is to be listed. If p is nullPointer, the current coroutine is
assumed.

- 279-

INTEGER i,j; REAL r; BITS b;
ADDRESS a; STRING s;

write (outFile,i,r,b)

writes an integer, real, and bits to outFile.
If outFile is a text file, a conversion to a
string representation takes place.

write(s,i," ",j)

has the same effect as

s := s & cvs(i) & " " & cvs(j)

write(a,i,r,b)

writes an integer, real, and bits to memory locations
starting at address a. a is updated to have the value
given by "displace(a,size(integerCode) + size(realCode) +
size(bitsCode»".

Example 1.379-2. Use of write

The only valid ctrlBits bit is $ignoreMe. If this bit is set, $writeCalls's immediate caller is not
included in the call list (used only if the current coroutine's call chain is being listed).

A sample output from $writeCalls is shown in Example 1.380-2.

- 280-

MQDULE DE~IMAL QFFSET PRQQ~DUBE (most recently called 1st)
we 50 INITIALPRoe
KERMOD 19290 $NEWDATASEC
KERMOD 20066 $LBBIND
MAINEX 3592 $INVOKEMODULE
MAINEX 2128 EXECUTEMODULE
MAINEX 2540 $MAINSAILEXEC
KERMOD 38434 RUNMAINSAIL
KERMOD 28504 INITIALPRoe

Example 1.380-2. Sample $writeCalls Output

- 281 -

& 60

abbreviation
platform name 199
processor name 201
system name 258

$abortProcedureExcpt 16
in dying coroutines 156

$abortProgramExcpt 16
abs 17
absolute value (abs) 17
aCos 17
addition of date and tirne 20
$addMemMngModule 18,221
address of an array 21
$addToDateAndTirne 20
$adrOfFirstElernent 21
allocation

of areas 177
of array 174
of data section 174
of rnodule 33, 153, 174
of rnultiple records 180
of record 71, 174

$allYearDigits 21
bit 100

$almostOutOtMernoryExcpt 22
aLoad 161
alterOK 23

bit 192,224
angle of ray with x-axis 28
append 23

bit 231
arccosine (aCos) 17
arcsine (as in) 24
arctangent

aTan 28
$atan2 28

$area 2
area

allocation 177
clearing 43

Index

- 282-

clearing string space of 43
disposing 112
finding 129
pointer or string in 23, 148

$areaOf 23
arguments, command line 137
arithmetic overflow 24, 125
$arithmeticChecked bit 171
$arithmeticExcpt 24
array

address of first element 21
allocation 174
clearing 41
conversion 75
copying 62
disposal 111
new upper bound 183
size of 247
subscript error 257

aSin 24
$assembleDate 25
$assembleDateAndTime 26
$assembleTime 27
aTan 28
$atan2 28
$attributes 29
attributes, system 29

base 2 logarithm 165
binary 29

bit 76, 82,90,219
bind 29
bindable module 33
bit mask (bMask, IbMask) 31, 158
bits string parse 219
$bitsPerChar 30
$bitsPerStorageUnit 31
blank: space, removing 221, 223
bLoad 161
block copying 62
bMask 31
boLoad 161
bound modules 153
break 32

bit 231

- 283-

character (scan) 228
$brietFormat 33, 264

bit 99
$bsFormat 129
$BUILTIN 2

call chain, searching 235
$canFindModule 33
$cannotFallOut 33

bit 206
$cannotReturn 34

bit 118,206
$caselndexExcpt 34
caseless string comparison 56, 117
ceiling 34
character

set 36
units of scratch space 182
units per page 37
units per storage unit 37

character code, maximum 167
character unit, size in bits 30
$characterRead 35
characters

reading from a file 35
writing to a file 36

$characterWrite 36
$charSet 36
$charsPerPage 37
$charsPerStorageUnit 37
$checkConsistency 37
$checked bit 171
class

descriptor 114
information (field names and types) 38
name 39

class creation, dynamic 69
class descriptor, creation 69
$classDscr 38, 69, 114
$classDscrFor 38
$classlnfo 38
$className 39
cleaning up after a procedure 16
clear 41
$clearArea 43

- 284-

$clearFileCache 45
$clearStrSpc 43
cLoad 45,161
close 46
$closedFile 47
closeLibrary 47
closing a file 46, 47
$clrConfigurationBit 48
$clrSystemBit 49
cmdFile 49
$cmdFileEotExcpt 49
cmdMatch 50
$collect 54
$collectableChkSpc 54

bit 178
$collectableStrSpc 55

bit 178
$collectLock 55
command line 137,236
$compactableChkSpc 56

bit 178
compare 56
$comparelntmods 57
$compareObjmods 57
comparison of date and time 95
compilation

date and time 59
date of module 170

$compile 57
compiler errors 58
COMPILETIME 2
compiletime evaluation 2
$compileTime Value 57
$concat 60
concatenation of strings 60, 115
configuration bit 236
confirm 60
consistency of memory 37
control section 29,111,174,271
$controlInfoBit 246
conversion

of character to string (cvcs) 78
of date and time to string 97
of date to string 98
of string to date 254
of string to date and time 255
of string to time 256

- 285-

of time to string 263
to address (cva) 73
to array (cvAry) 75
to bits (cvb) 75
to boolean ($cvbo) 77
to charadr (cvc) 77
to integer (cvi) 79
to long bits (cvlb) 81
to long integer (cvli) 83
to long real (cvlr) 85
to lower case (cvl) 80
to pointer (cvp) 86
to real (cvr) 87
to string (cvs) 88
to upper case (cvu) 91

$convertDateAndTime 61
Coordinated Universal Time 26,61,97, 106,255
copy, of memory or record or array elements 62
$copyFile 64
copying files 64
coroutine

as treated by errMsg 118
creation 70
current 260
finding given a name 130
killing 156, 157
moving in tree 173
resuming 225
starting 225
that raised current exception 121

$coroutineExcpt 64
cos 65
cosh 65
cosine (cos) 65
Scot 66
cotangent 66
$countingPerModule bit 171
$countingPerProc bit 171
$countingPerStmt bit 171
CPU

ID 66
time 67

$cpuID 66
$cpuTime 67
$cpuTimeResolution 67
cRead 68
create 69

- 286-

bit 192
$createClassDscr 69
$createCoroutine 70
$createDate field of $filelnfoCls 127
$createRecord 71
$createTime field of $filelnfoCls 127
$createUniqueFile 72
creation

of coroutine 70
of record of unknown class 71

current
coroutine 260
exception 121, 122, 123
file name 59, 262
line number 59
module name 59
page number 59
procedure name 59

$currentDirectory 73
cva 73
cvAry 75
cvb 75
$cvbo 77
eve 77
cvcs 78
evi 79
cvl 80
cvlb 81
evli 83
evlr 85
cvp 86
evr 87
cvs 88

length of resulting string 159
cvu 91
cWrite 92

data
section allocation 174
section disposal 111
section of current module 260

data section
module name for 172
size of 247

$date 94

- 287-

date 94
and time 94
and time addition 20
and time difference 96
conversion· from string 254t 255
conversion to string 97 t 98
of file modification 127
of module compilation 170
standard representation 94

date and time
compilation 59
removing from string 222

$dateAndTime 94
$dateAndTimeCompare 95
$dateAndTimeDifference 96
$dateAndTimeToStr 97
$dateFormat 98
$dateToStr 98
$debugBit bit 171
$debugExec 100
$defaultArea 2t 100
$delete 103
delete 102

bit 46, 192t 226
deleting a file 103
$deregisterException 103
$descendantKilledExcpt l04t 156
$devModBrk 104
$devModBrkStr 104
difference of date and time 96
$directory 105
directory

current 73
files in 105
home 147
whether a file is 129

$disassembleDate 106
$disassembleDateAndTime 106
$disassembleTime 107
discard 108

bit 219,221,222,231
displace 108
displacement between addresses or charadrs 110, 158
disposal

of array 111
of data section 111
of module 111

- 288-

of record 111
dispose 111
$disposeArea 112
$disposeDataSecslnArea 112
$disposedDataSecExcpt 113
division by zero 24
$doNotClear 113, 179
$doNotIncludeTimeZone 113

bit 99
$doNotMatch 114

bit 216
$doNotRaise 114

bit 119
$dscrPtr 114
DSP 115
$dup 115
dynamic creation of classes 69

$echoCmdFile 237
$echoltRedirected 237
efficient

allocation of records 180
file I/O 197, 198

end of file (eot) 116
enterLogicalName 115
eof 116
eol 116
eop 117
equ 117
errMsg 118

registered exceptions 103,215
Error response: 118
errorOK 120

bit 20,25,26,27,31,46,52,62,69,71,73,94,95,96,99,103, 105, 106,107, 129, 147,
156,170,173,179,181,192, 193, 197,204,224,226,235,242,254,255,256,261,
264,266,271,274

errors, compiler 58
exception

cannot fall out 206
cannot return 206
information about current 121, 122, 123
must propagate 206
naming 178
raising 205
return if no handler 206

- 289-

returning from 207
$exceptionBits 121
$exceptionCoroutine 121
$exceptionName 122
$exceptionPointerArg 122
$exceptionSbingArgl 122
$exceptionStringArg2 123
$excludeSeconds 123

bit 264
$executelntlibCommands 123
$executeModlibCommands 123
$executeStampCommands 124
$exeFileFirst 237
exhausting memory 22
exit 124
exp 124
exponent 125

bit 89
$exponentlExcptl25
exponentml(exp) 124

fastExit 125
fatal 126

bit 119, 121
field infonnation procedure ($fieldInfo) 126
$fieldInfo 126
file

closing 46, 47
data type size 152
information 127
opening 190
searchpath 244
whether is directory 129

file name
current 59,262
unique 72

file positioning (getPos, relPos, setPos) 141,218,242
$fi1eAttr field of $fileInfoCls 129
$filelnfo 127
$fileInfoBit 246
filling paragraphs 135
$findArea 129
$findCoroutine 130
first 130
fixed 131

- 290-

bit 89
$fixFormat 129
fldRead 131
fldWrite 132
FLI target 58
floor 133
format

ofa file 129
of date 98
of time 262

formatted 134
bit 90,219

formatting paragraphs 135
$fonnParagraph 135
full platform name 199
$fullPathName field of $filelnfoCls 127
$fullPathNames 136

bit 105

garbage
collection 2, 37, 250
collection (of data sections) 30
collection and $noCollectablePtrs 184
collection and $noCollectableStrs 185
collection and $noCompactablePtrs 185

garbage collection
inducing 54
inhibiting 55
interception 18,221

generateMultipleQuickSort 137
generateQuickSort 137
$getCommandLine 137
$getEofPos 140
$getInArea 140
getPos 141
$getSubcommands 141
$getToTop 143
global symbol table 143
$globalEnter 143
$globalLookup 143
$globallyCached bit 205,238
$globalRemove 143
$globalSymbol 143
G1ff 26,61,97,106,255
$gmt 144

- 291-

bit 25,26,27,94,95,97, 107, 129,254,255,256,261
$GMTtoLocalTime 145

bit 26,255
$gotValue 145
Greenwich Mean Time 26,61,97,106,255

HASBODY, $compileTimeValue argument 59
$hasFinaIProc bit 171
$hash 146
hashEnter 147
hashlnit 147
hashLoad 147
hashLookup 147
hashLookupNext 147
hashLookupNextInit 147
hashNext 147
hashRemove 147
hashRemoveRecord 147
hashS tore 147
$haslnitiaIProc bit 171
hex 146

bit 76, 82,90,200,219
$homeDirectory 147.
HSHMOD module 147
hyperbolic

cosine (cosh) 65
sine (sinh) 247
tangent (tanh) 260

$hyphenateDate 147
bit 99

$ignoreMe bit 280
iLoad 161
$inArea 148
$inc1udeTimeZone 148

bit 99
$inc1udeWeekday 149

bit 99
initialization of areas 177
$initRand 149
$initsRand 149
$inlinesHaveBodies bit 171
input 149

bit 192
$insertLeft 150, 173

- 292-

.. $insertRight 150~ 173
integer

maximum 167
string parse 220

$intFileFirst 237
intmod~ information about 151
$intmodInfo 151
invalid exponent 125
$invokeModule 151
invoking

a module 151
module with arguments 137

$ioSize 152
isAlpha 152
$isArray 153
$isBound 153
$isDirectory 129
isLowerCase 154
isNul 154
isUpperCase 155

keepNul 155
bit 64, 132~ 192

$killCoroutine 156
$killedCoroutine 157
killing a coroutine 156, 157

last 157
IbLoad 161
IbMask 158
IDisplacement 158
$length 159
length 159
library, module 47, 193
liLoad 161
line number, current 59
$lineOrientedDebug 237
In 161
load

a character from a charadr (cLoad) 45
from an address 161

$localTime 164
bit 25,26,27,94,95,97,107,254,255,256,261

$localTimeToGMT 164
bit 26,255

- 293-

log 165
$log2 165
logarithm

base 2 165
base e (In) 161
base ten (log) 165

logFile 166
logical file names 115, 166
long integer, maximum 168
lookUpLogicalName 166
low-level PDF procedures 198
lrLoad 161

MAlNEX 151
subcommands 141

$mainsailExec 166
$majorVersion 167
$mapAtMemlnfoBit 246
$maxChar 167
maximum

character code 167
integer 167
long integer 168

$maxlnteger 167
$maxLongInteger 168
$memlnfoBit 246
$memMngModule 18,221
memory, exhausting 22
$minlnteger 168
$minLonglnteger 169
$minorVersion 169
$modifyDate field of $filelnfoCls 127
$modifyTime field of $filelnfoCls 127
module

allocation 174
can find 33
date of compilation 170
disposal 111
file name association 217
invoking 151
library 193
library (closing) 47
name association 218, 239
name of 172
size 170

- 294-

version 170
module name, current 59
$modulelnfo 170
$moduleName 172
monitoring, performance 58
$moveCoroutine 173
msgMe 118, 173

bit 119
msgMyCaller 118, 174

bit 119
multiple records, allocation of 180

name of class 39
natural logarithm (In) 161
NEEDBODY vs. HASBODY 59
new 174

array 174
data section 174
module 174
record 174

$new Area 177
$newException 178
newPage 179
$newRecords 180
newScratch 181
$newScratchChars 182
newS tring 182
newUpperBound 183
nextAlpha 186
$noAutoCmdFileSwitching 237
$noCheckConsistency 246
$noCollectablePtrs 184

bit 178
$noCollectableStrs 185

bit 178
$noCompactablePtrs 185

bit 178
$noHandler 186

bit 206
$noLegalNotice bit 170
$nonRecursive 187

bit 156, 173, 226
noResponse 187, 246

bit 52, 119, 121
$noTranslate 187

- 295-

bit 35,36
$nulChar 188
null character 188
$nullArrayExcpt 188
$nullCallExcpt 188
$nullPointerExcpt 189

$objFileFirst 237
objmod, information about 170
octal 189

bit 76, 82,90, 200, 219
omit 190

bit 231
open 190
opening a file 190
openLibrary 193
operating

system attributes 29
system number 259

operating system name
abbreviation 258
full 258

$optimized bit 171
$OSDSize field of $filelnfoCls 127
out of memory exception 22
output 195

bit 192
overflow

arithmetic 24, 125
stack 249

$overheadPercentExit Value 195
$overheadTooHighExcpt 195

page number, current 59
page size

in character units 37
in storage units 197

pageDispose 196
$pageRead 197
$pageSize 197
$pageWrite 198
paragraph, filling 135
parse

bits string 219
integer string 220

- 296-

real string 222
path name of a file 127
PDF

file data type size 152
low-level procedures 198

$pdf 199
bit 192

pdfBoRead 198
pdfBoWrite 198
pdfbRead 198
pdfbWrite 198
pdfCbarRead 198
pdfCbars 198
pdfCbarWrite 198
pdfcRead 198
pdfcWrite 198
pdtDelnit 198
pdtFldRead 198
pdfInit 198
pdfiRead 198
pdfiWrite 198
pdfLbRead 198
pdfLbWrite 198
pdfLiRead 198
pdfLiWrite 198
pdfLrRead 198
pdfLrWrite 198
PDFMOD 198
pdtRead 198
pdfrRead 198
pdfrWrite 198
pdfWrite 198
performance monitoring 58
platform

name abbreviation 199
number 200

platform name. full 199
$platformNameAbbreviation 199
$platformNameFull 199
$platformNumber 200
pLoad 161
pointer, area of 23, 148
$preferredRadix 200
prev Alpha 200
$privatelyCacbed bit 205, 238
procedure name, current 59
proceed 201

- 297-

bit 231
processor

attributes 29
name abbreviation 201
number 202

processor name, full 202
$processorNameAbbreviation 201
$processorN ameFull 202
$processorNumber 202
program arguments 137
$programlnterface 202

bit 31
$programName 203
prompt 203

bit 192
pseudo-random number generator 149,207,249

$queryFileCacheParms 204

radix, preferred 200
$raise 205
$raiseReturn 207
raising

an exception 205
coroutine 121

$rand 207
random 207

bit 192
number generator 149,207,249

ray, angle with x-axis 28
rcRead 208
rcWrite 209
read 210

a character from the end of a string (rcRead) 208
a field from a file or string 131
from "TTY" (ttyRead) 268

read a character from a charadr, string, or file (cRead) 68
read from file, string. or memory 210
reading

characters from a file 35
storage units from a file 250

real string parse 222
record

rulocation 71, 174, 180
copying 62

- 298-

disposal 111
size of 247

records, allocation of multiple 180
registered exceptions 103, 118,215
$registerException 215
release of control section 111, 271
relFileName 217
relModName 218
relPos 218
$removeBits 219
$removeBoolean 220
$removeDateAndTime 222
$removelnteger 220
$removeLeadingBlankSpace 221
$removeMemMngModule 18,221
$removeRea1 222
$removeTrailingBlankSpace 223
$removeWord 223
$rename 223
renaming a file 223
$reOpen 224
reorder 225
$reportAllVersions 225

bit 105
repository of shared data 143
RESTOREFROM, whether possible 59
$resumeCoroutine 225
resuming a coroutine 225
retain 226

bit 231
$retumExcpt 227
$retumltNoHandler 227

bit 206
returning from an exception 207
reverse 227
$reverseDateAndMonth 228

bit 99
rLoad 161
RPC compilation, whether is 58
runtime creation of classes 69

scan 228
bits 233
integers 234

scanRel 232

- 299-

$scanSet 234
scanSet 233
scratch space 181, 182
scratchDispose 234
$searchCallChain 235
searchpath for files 244
$setCommandLine 236
$setConfigurationBit 236
$setExitCode 237
$setFileCacheParms 238
setFileName 239
setModName 239
setPos 242
$setSearchPath 244
$ setS ystemB it 245
$setTheDate 245
setting the date (if date not provided) 245
shared data 143
sin 247
sinh 247
size

of a file 127
of data type in file 152
of module 170
system procedure 247

sLoad 161
sort 249
sorting 137
sourcefile, whether possible 59
sourcefiling file name 59
SPECIAL 2
sqrt 249
square root (sqrt) 249
$sRand 249
stack overflow 249
$stackOverflowExcpt 249
starting a coroutine 225
storage

unit 247
units per page 197

storage unit
in character units 37
size in bits 31

storage units
reading from a file 250
writing to a file 251

$storageUnitRead 250

- 300-

$storageUnitWrite 251
store 252
string

area of 23, 148
comparison 56, 117
concatenation 60, 115
length 159

string space
clearing 43
getting a string into 140, 143

$strToDate 254
$strToDateAndTime 255
$strToTime 256
$structureCompare 257
$structureCopy 257
$structureDataToText 257
$structureDispose 257
$structurelnfo 257
$structureRead 257
$structureSetUp 257
$structureTextToData 257
$structureUnSetUp 257
$ structure Write 257
subcommands, MAlNEX 141
$subscriptExcpt 257
subtraction of date and time 96
$swapBit 246
symbol, global 143
system

attributes 29
bit 245
name abbreviation 258
number 259
procedures and macros summary 3

system name, full 258
$systemExcpt 258
$systemNameAbbreviation 258
$systemNameFull 258
$systemNumber 259

tab 259
tan 259
tangent (tan) 259
tanh 260
this

- 301 -

file name 59
line number 59
module name 59
page number 59
procedure name 59

$thisCoroutine 260
thisDataSection 260
$thisFileName 262
thrashing, preventing 195
$time 261
time

addition 20
conversion from string 255,256
conversion to string 97, 263
difference 96
of day 94,261
of file modification 127
of module compilation 170
removing from string 222
standard representation 94
zone 61
zone subcommands 262

$timeDifference 261
bit 27

$timeFormat 262
$timeout 263
$timeSubcommandsSet 262
$timeToStr 263
$timingPerModule bit 171
$timingPerProc bit 171
truncate 265
$truncateFile 265
$tstConfigurationBit 266
$tstSystemBit 267
ttycWrite 267
$ttyEofExcpt 267
ttyRead 268
ttyWrite 269
$twelveHour 270

bit 264
two-argument arctangent 28
$twoYearDigits 270

bit 100
type code 270
$typeName 270

- 302-

unBind 271
unbinding a module 271
$unbound bit 171
$unboundModuleExcpt 272
$unbuffered 272

bit 35, 36, 132, 192
underflow, arithmetic 24
unique file name 72
upperCase 272

bit 52,56, 117,231
useKeyWord 273

bit 52,216
$useOriginalFileName 103,273

bit 105, 129, 192,224
$useProgramlnterface 273
user identification 274
$userID 274
lJTC 26,61,97,106,255

$varFormat 129
version

number 167, 169
of MAINSAIL 58
of module 170

warning 275
bit 119, 121

white space, removing 221,223
word, removing from string 223
write 275

a character to "TIY" (ttycWrite) 267
a character to the front of a string (rc Write) 209·
a field to a file or string (fldWrite) 132
to "TIY" (ttyWrite) 269

write a character to a file, string, or memory (cWrite) 92
write to a file, string, or memory address 275
$writeCalls 279
writing

characters to a file 36
storage units to a file 251

zero, division by 24
zone, time 61

- 303-

XIDAK, Inc., 530 Oak Grove Avenue, MIS 101, Menlo Park, CA 94025 , (415) 324-8745

