
System-Specific User's Guides

MAINSAIL®

System-Specific User's Guides

24 March 1989

Copyright (c) 1982.1983. 1984. 1985.1986.1987. 1989. by XIDAK. Inc .• Menlo Park. California.

The software described herein is the propeny of XIDAK. Inc .• with all rights reserved. and is a confidential trade secret
of XIDAK. The software described herein may be used only under license from XIDAK.

MAINSAIL is a registered trademark of XIDAK. Inc. MAlNDEBUG. MAINEDIT. MAINMEDIA. MAlNPM.
Stmcture Blaster. IDB. and SQUf are trademarks of XIDAK. Inc.

CONCEN1R1X is a trademark of Alliant Computer Systems COtpOration.

Amdahl. Universal Time-Sharing System. and UTS are trademarks of Amdahl CotpOration.

Aegis. Apollo. DOMAIN. GMR. and GPR are trademarks of Apollo Computer Inc.

UNIX and UNIX System V are trademarks of AT&T.

DASHER. DG/UX. ECLIPSE, ECLIPSE MV 14000. ECUPSE MV 18000. ECLIPSE MV 110000. and ECLIPSE
MV /20000 are trademarks of Data General Corporation.

DEC. PDP. TOPS-10. TOPS-20. VAX-H. VAX. MicroVAX. MicroVMS. UL1RIX-32.and VAX/YMS are
trademarks of Digital Equipment COtpOration.

EMBOS and ELXSI System 6400 are trademarks of ELXSI. Inc.

The KERMIT File Transfer Protocol was named after the star of THE MUPPET SHOW television series. The name is
used by pennission of Henson Associates. Inc.

HP-UX and Vectra are trademarks of Hewlett-Packard Company.

Intel is a trademark of Intel Corporation.

CLIPPER, CLIX, Intergraph, InterPro 32, and InterPro 32C are trademarks of Intergraph Corporation.

System/370, VM/SP CMS, and CMS are trademarks of International Business Machines Corporation.

MC68000, M68000, MC68020, and MC68881 are trademarks of Motorola Semiconductor Products Inc.

ROS and Ridge 32 are trademarks of Ridge Computers.

SPARC, SWl Microsystems, SWl Workstation, and the combination of Sun with a numeric suffix are trademarks of Sun
Microsystems, Inc.

WINrrcp. is a trademark of The Wollongong Group. Inc.

WY-50. WY-60, WY-75. and WY-l00 are trademarks ofWyse Technology.

Some XIDAK documentation is published in the typefaces "Times" and "Helvetica", used by pennission of Apple
Computer, Inc., under its license with the Allied Corporation. Helvetica and Times are trademarks of the Allied
Corporation, valid under applicable law.

The use herein of any of the above trademarks does not create any right, title. or interest in or to the trademarks.

- ii-

Table of Contents

1. System-Specific User's Guides.
1.1. Conventions Used in This Document.
1.1.1. User Interaction . .
1.1.2. Syntax Descriptions.
1.1.3. Temporary Features.

I. Aegis MAINSAIL(R) User's Guide

2. Introduction
2.1. Version

3. General Operation .
3.1. Invoking MAINSAIL. .

4. CONF, the MAINSAIL Configurator
4.1. Errors from the Aegis "bind" Command

5. Memory Usage under Aegis
5.1. Mapped Libraries
5.2. GCCHP and the Disk File Cache
5.3. LAS Utility. . . .
5.4. Aegis Stack Size. .

6. Aegis System Calls
6.1. Making a System Call. .
6.2. Parameter Passing .
6.3. Common Pitfalls. . .

7. Foreign Language Interface
7.1. Output File Names. .
7.2. Data Types.
7.3. Foreign Call Compiler Example.
7.4. MAINSAIL Entry Compiler Example
7.5. $foreignCodeStartsExecution.

8. Terminal I/O
8.1. Line-Oriented Mode . .
8.2. Aegis and MAINEDIT

- iii-

1
1
1
1
3

5

6
6

7
7

8
9

10
10
10
11
11

12
12
13
15

18
18
18
22
25
32

35
35
35

9. File I/O
9.l. Disk I/O
9.2. Disabling Aegis Mapping
9.3. MAINSAll... and Aegis Links .
9.4. MAINSAil.. and the Serial Ports.

10. System Information Procedures
10.l. $homeDirectory
10.2. Command Line and $programName.
10.3. Exit Codes .
10.4. $currentDirectory .
10.5. $directory (for Aegis Disk Files) .
10.6. $fileInfo (for Aegis Disk Files) .
10.7. $userID .
10.8. $cpuID .

II. Aegis Faults .
11.1. Determining Which Faults to Catch .

12. M68000 and MC68020 Processor-Dependent Information.
12.1. M68000 vs. MC68020 Code Generation.
12.2. Procedure Size .
12.3. M68000 Data Types .
12.4. Miscellaneous Information
12.5. Program Counter at Processor Exception .

II. VM/SP CMS and VM/XA SP CMS MAINSAIL(R) User's Guide.

13. Introduction.
13.1. Version. . .

14. General Operation
14.1. Invoking MAINSAIL
14.2. Intmod and Objmod File Names

15. CONF, MAINSAIL Configurator .
15.1. STACKSIZE Command
15.2. VM/SP CMS-Specific Information .
15.3. VM/XA SP CMS-Specific Information

16. System Calls.
16.1. Introduction
16.2. SVC System Calls.
16.2.1. SVC System Call Example

- iv-

36
36
36
38
38

40
40
40

. 40
40
40
40
41
41

42
42

45
45
45
45
46
46

49

50
50

51
51
51

52
52
52
53

57
57
57
58

16.3. CMSCALL System Call
16.3.1. CMSCALL System Call Example.
16.4. Diagnose System Call
16.4.1. Diagnose Call Example

17. Foreign Language Interface.
17.1. MAINSAIL to FORTRAN Compilers.
17.1.1. Data Types.
17.2. Foreign Language Interface Example, MAINSAIL to FORTRAN IV
17.3. Foreign Language Interface Example, MAINSAIL to FORTRAN 77 ..
17.4. FORTRAN to MAINSAIL Compilers.
17.4.1. Data Types ~
17.5. Foreign Language Interface Example, FORTRAN IV to MAINSAIL
17.6. Foreign Language Interface Example, FORTRAN IV to MAINSAIL,

$foreignCodeStartsExecution
17.7. Foreign Language Interface Example, FORTRAN 77 to MAINSAIL ..
17.8. Foreign Language Interface Example, FORTRAN 77 to MAINSAIL,

$foreignCodeStartsExecution
17.9. Caveats.
17.10. FORTRAN IV and FORTRAN 77 Compatibility .

18. Program Exceptions ..
18.1. Introduction . .
18.2. $spm
18.3. Example of Calling $spm .

19. File System . . .
19.1. File Names .
19.2. File Formats.
19.2.1. Sequential Text Input File Formats
19.2.2. Sequential Text Output File Formats. .
19.2.3. Sequential Data File Formats. . .
19.2.4. Random File Formats
19.2.5. Converting Between File Formats ..

20. System Information Procedures .
20.1. $currentDirectory.
20.2. $homeDirectory
20.3. $directory (for CMS Disk Files) .
20.4. $fileInfo (for CMS Disk Files). .
20.5. $userld.
20.6. $cpuId
20.7. Command Line.
20.8. $programName. .
20.9. Exit Codes. . .
20.10. $environment. .

-v-

61
62
63
63

65
65
65
67
73
80
80
82

88
91

97
100
100

101
101
101
102

103
103
103
103
104
105
106
106

107
107
107
107
107
108
108
108
108
108
109

21. Character Set

22. Tenninal I/O. .

23. MAINEDIT,MAINSAILEditor.

24. Suggested VM/SP CMS and VM/XA SP CMS Terminal Characteristics .

25. IBM System/370 and System/370 Extended Architecture Processor-Dependent
Information . . 0 • • • • • • • • • 0 • • •

25.1. Procedure Size 0 • 0

25.2. System/370 Data Types . .
25.3. Miscellaneous Information

26. Miscellaneous Information . .
26.1. Configuration String Location
26.2. Disk Full Message.
26.3. Running MAINSAIL from a CMS EXEC File. .

III. UNIX MAINSAIL(R) User's Guide

27. Introduction.
27.1. Version.

28. General Operation
28.1. Installation Assumptions .
28.2. Invoking MAINSAIL .
28.3. Object Module File Names

29. CONF, MAINSAIL Configurator
29.1. "UNIXBITS"
29.2. Flavor-Specific CONF Commands .
29.2.1. "SIGPC".
29.3. OS Memory Pool
29.4. General Use

30. MAINSAIL and the UNIX File System .
30.1. File Deletion.
30.2. MAINEDIT and Links. . .
30.3. Protection Mode of Files ..
30.4. Disk Full . .

31. UNIX STREAMS

- vi-

110

111

112

113

114
114
114
114

116
116
116
116

119

120
120

121
121
121
121

122
122
122
122
123
123

124
124
124
124
125

126

32. System Information Procedures
32.1. $currentDirectory.
32.2. $homeDirectory
32.3. $directory (for UNIX Disk Files) .
32.4. Command Line and $programName.
32.5. $fileInfo (for UNIX Disk Files)
32.6. $userID.
32.7. $cpuID.
32.8. Exit Codes. .
32.9. $environment

33. Foreign Language Interface
33.1. FLI Compilers
33.2. Data Types
33.3. Caveat
33.4. MAINSAIL Foreign Call Compiler Example
33.5. MAINSAIL Entry Compiler Example. .

34. CLIPPER Processor-Dependent Information.
34.1. Procedure Size
34.2. CLIPPER Data Types
34.3. Miscellaneous Information

35. Intel 80386 Processor-Dependent Information
35.1. Procedure Size
35.2. Intel 80386 Data Types. .
35.3. Miscellaneous Information

36. IBM System/370 and System/370 Extended Architecture Processor-Dependent
Information

36.1. Procedure Size
36.2. System/370 Data Types .
36.3. Miscellaneous Information

37. M68000 and MC68020 Processor-Dependent Information.
37.1. M68000 vs. MC68020 Code Generation. .
37.2. Procedure Size
37.3. M68000 Data Types.
37.4. Miscellaneous Information
37.5. Program Counter at Processor Exception ..

38. PRISM Processor-Dependent Information
38.1. Procedure Size
38.2. PRISM Data Types
38.3. Miscellaneous Information

- vii-

127
127
127
127
127
127
127
128
128
128

129
129
129
131
131
137

144
144
144
145

146
146
146
147

148
148
148
148

150
150
150
150
151
151

153
153
153
154

39. SPARC Processor-Dependent Information ..
39.1. Procedure Size
39.2. SPARC Data Types
39.3. Miscellaneous Information .

40. VAX-II Processor-Dependent Information
40.1. Procedure Size
40.2. VAX-II Data Types.
40.3. Miscellaneous Information

IV. V AXNMS MAINSAIL(R) User's Guide . .

41. Introduction. .
41.1. . Version. . .

42. General Operation
42.1. Installation Assumptions .
42.2. Invoking MAINSAIL .
42.3. Default Intmod and Objmod Searchpaths.

43. MAINSAIL Configurator, CONF
43.1. V AXNMS Stack Size .

44. Uniform System Caller .
44.1. Using $sysCall . . .
44.1.1. $sysCall Parameters
44.1.2. System Service Entry Vector Addresses
44.2. $sysCall Example.

45. File System
45.1. Sequential Text Input File Formats .
45.2. Sequential Text Output File Formats
45.3. Sequential Data File Formats . . .
45.4. Random File Fonnats
45.5. Converting Between File Formats

46. System Information Procedures .
46.1. $currentDirectory. .
46.2. $homeDirectory
46.3. Command Line. .
46.4. $programName. . .
46.5. $directory (for V AXNMS Disk Files) .
46.6. $filelnfo (for VAXNMS Disk Files)
46.7. $userID.

- viii -

155
155
155
156

157
157
157
158

181

182
182

183
183
183
183

184
185

186
186
187
189
189

193
193
194
194
194
195

196
196
196
196
196
197
197
197

46.8. $cpuID.
46.9. Exit Codes.

47. Shared Module Libraries .
47.1. Global Section Installation
47.2. Example of Creating a Global Section ..
47.3. Caveat

48. Foreign Language Interface .
48.1. FLI Compiler Output File Names. .
48.2. VAX-II Procedure Calling Standard
48.2.1. Passing Parameters .
48.2.2. String Parameters .
48.2.3. Array Parameters .
48.2.4. Caveat.
48.3. C Procedure Calling Standard
48.4. Identifiers Containing It$ or It_It
48.5. Foreign Language Interface Example . .
48.6. MAINSAIL Entry Compiler. . . .
48.7. MAINSAIL Entry Compiler Example. .

49. VAX-II Processor-Dependent Information
49.1. Procedure Size
49.2. VAX-II Data Types
49.3. Miscellaneous Information .

50. Miscellaneous ..
50.1. CTRL-C ..
50.2. Event Flags
50.3. Exceptions. .

- ix-

197
198

199
199
200
200

202
202
202
203
203
204
204
204
205
205
215
215

221
221
221
222

223
223
223
223

Appendices

A. Flavor-Dependent Features of UNIX MAINSAIL
A.I. Object Module File Name Extensions for Available UNIX Flavors.
A.2. FLI Considerations for Available UNIX Flavors
A.2.I. C Alignment Considerations
A.3. Program Exceptions
A.4. MAINEDIT
A.4.I. BIGSUN and "mainsab". .
A.4.2. InterPro 32C Display Module. .
A.S. Terminal Handling. .
A.5.1. BSD Systems ...
A.S.2. System V Systems .
A.5.3. ioctl from Programs.

B. Flavor-Dependent Configuration on UNIX
B.I. Standard Configuration Files for Available UNIX Flavors
B.2. Producing a Bootstrap on Each Flavor of UNIX

List of Examples

1.1.1-1. How User Input Is Distinguished.
1.1.2-1. Syntax of a Mailing Address.
3.1-1. Creating the Link it_mil and Invoking MAINSAIL. 0 ••••

4-1. Using CONF to Make a Bootstrap
6.1-1. Calling GPR_$MOVE.
6.1-2. Calling PFM_$CLEANUP. .
6.1-3. Calling MS_$REMAP. . . .
6.2-1. Useful Macros.
6.2-2. Calling GPR_$SET_BITMAP. .
6.3-1. How to Pass a MAINSAIL BOOLEAN to Pascal .
6.3-2. Calling GPR_$TEXT
6.3-3. Calling GPR_$PlXEL_BLT
7.3-2. Compiling FLI Modules
7.3-3. Compiling the Pascal File and Running CONF . .
7.3-4. Linking and Running an FLI Module .
7.4-5. Pascal to MAINSAIL Example
7.5-1. Pascal Main Program (in ttcal1.pastt)
7.5-2. MAINSAIL Module Called from Pascal (in ttmslmod.msltt) ..
7.5-3. Calling MAINSAIL from a Pascal Main Program.

-x-

159
159
161
162
163
165
165
165
165
166
167
167

168
168
170

1
2
7
8

13
13
13
14
14
15
16
17
22
26
26
29
32
33
33

9.1-1. Converting Between File Formats .
9.4-2. Copying a File to a Serial Port. . .
15.2-4. CONF Session
15.3-4. CONF Session
16.4.1-1. Invoking the Pseudo Timer Diagnose Instruction .
17.2-4. MAINSAIL to FORTRAN IV Example
17.3-4. MAINSAIL to FORTRAN 77 Example
17.5-5. FORTRAN IV to MAINSAIL Example
17.6-1. FORTRAN IV to MAINSAIL Example, $foreignCodeStartsExecution. . .
17.7-5. FORTRAN 77 to MAINSAIL Example
17.8-1. FORTRAN 77 to MAINSAIL Example, $foreignCodeStartsExecution .
18.3-1. Calling $spm.
26.2-1. Disk Full User Interaction Example.
33.4-4. MAINSAIL to C Example.
33.5-5. C to MAINSAIL Example.
A.2.1-2. Using C Struct Information.
A.2.1-I. Passing C Struct Information Back to MAINSAIL.
B.2-1. Making a Bootstrap for IBM's AIX on IBM System/370 ..
B.2-2. Making a Bootstrap for Alliant's CONCENlRIX on Motorola M68000 .
B.2-3. Making a Bootstrap for HP's HP-UX on Motorola MC68020/MC68881 .
B.2-4. Making a Bootstrap for SCO's XENIX on HP Vectra with Intel 80386
B.2-5. Making a Bootstrap for HP's HP-UX on Motorola M68000.
B.2-6. Making a Bootstrap for Intergraph's System V UNIX on Interpro 32C
B.2-7. Making a Bootstrap for Intel's iPSC/2 System V UNIX on Intel 80386
B.2-8. Making a Bootstrap for Apollo's DOMAIN/IX on Motorola

MC68020~C68881 .
B.2-9. Making a Bootstrap for Apollo's DOMAIN/IX on Motorola MC68020/Weitek

FPA
B.2-10. Making a Bootstrap for Apollo's DOMAIN/lX on Apollo PRISM.
B.2-11. Making a Bootstrap for Sun Microsystems' SunOS on Motorola M68000. .
B.2-12. Making-a Bootstrap for Sun Microsystems' SunOS on Motorola-

MC68020~C68881
B.2-13. Making a Bootstrap for Sun Microsystems' SunOS on Intel 80386
B.2-14. Making a Bootstrap for Sun Microsystems' SunOS on SPARC ..
B.2-15. Making a Bootstrap for DEC's ULTRIX-32 on VAX-II
43-1. Making a New Bootstrap.
44.1.1-3. Class for V AX-ll String Descriptors.
44.1.1-4. Allocating Space for V AX-ll String Descriptors .
44.2-3. MACRO Program Using $SETIMR and $WAITFR.
44.2-4. Finding the System Services' Addresses
44.2-5. Calling $SETIMR and $W AITFR from MAINSAIL
45.5-1. COPIER Example.
47.2-1. Creating a Global Section.
48.4-1. Calling a Routine with "$" in Its Name.
48.5-1. Sample FORTRAN Subroutine
48.5-2. Sample FLI Module
48.5-3. MAINSAIL Module Calling FORTRAN Module

- xi-

37
39
54
56
64
70
76
85
88
93
97

102
117
134
140
163
164
171
171
172
172
173
173
174

175

175
176
176

177
177
178
179
184
188
188
190
191
191
195
200
205
206
206
207

48.5-4.
48.5-5.
48.5-7.
48.5-8.
48.7-1.
48.7-3.
48.7-4.
48.7-5.

Using the Foreign Language Interface .
Sample C Subroutine.
MAINSAIL Module Calling C Example . .
Using the C Foreign Language Interface
MAINSAIL Module to Be Called by C. . .
FLI Module to Invoke C Call
MAINSAIL Code to Start C Execution.
Using the MAINSAIL Entry Compiler. .

List of Figures

7.3-1. Declarations for FCC Example
7.4-1. Pascal Procedure That Calls MAINSAIL Procedure proc 1
7.4-2. MAINSAIL Module MSMOD Called by Pascal Procedure callms
7.4-3. MAINSAIL Foreign Language Interface Module TOPAS
7.4-4. MAINSAIL Module CALPAS That Calls Pascal Procedure callms .
9.4-1. Directing Standard I/O to the Serial Line
11.1-1. How to Specify Which Fault to Catch
15.2-3. Relationship between CMSBITS and FORTRAN Initialization Routines
15.3-3. Relationship between XCMSBITS and FORTRAN Initialization Routines. .
16.2-1. Procedure Header for SVC System Calls
16.2.1-1. Assembly Language to Expand CMS Macro TAPECI'L ..
16.2.1-2. Macro Expansion for CMS Macro TAPECTL . .
16.2.1-4. Macro Expansion for CMS Macro FSSTATE
16.3-1. Procedure Header for CMSCALL System Call
16.4-1. Header for Diagnose Call
17.2-1. MAINSAIL Module CALFIV That Calls FORTRAN IV Subroutine PROCI
17.2-2. MAINSAIL Foreign Language Interface Module TOFIV
17.2-3. FORTRAN IV Subroutine PROCI Called by MAINSAIL
17.3-1. MAINSAIL Module CALF77 That Calls FORTRAN 77 Subroutine PROCI .
17.3-2. MAINSAIL Foreign Language Interface Module T0F77 :
17.3-3. FORTRAN 77 Subroutine PROCI Called by MAINSAIL
17.5-1. FORTRAN IV Subroutine CALLMS That Calls MAINSAIL Procedure procl
17.5-2. MAINSAIL Module MSMOD Called by FORTRAN IV Subroutine CALLMS
17.5-3. MAINSAIL Foreign Language Interface Module TOFIV
17.5-4. MAINSAIL Module CALFIV That Calls FORTRAN IV Subroutine CALLMS
17.7-1. FORTRAN 77 Subroutine CALLMS That Calls MAINSAIL Procedure procl
17.7-2. MAINSAIL Module MSMOD Called by FORTRAN 77 Subroutine CALLMS
17.7-3. MAINSAIL Foreign Language Interface Module T0F77
17.7-4. MAINSAIL Module CALF77 That Calls FORTRAN 77 Subroutine CALLMS
18.2-1. Procedure Header for Procedure $spm
18.2-2. Correspondence between Program Mask Bits and Interrupts
24-1. Suggested CMS Terminal Characteristics

- xii-

208
210
212
213
215
217
217
219

23
27
28
28
29
38
44
53
55
58
59
59
61
61
63
68
69
70
74
75
76
83
84
84
85
91
92
92
93

101
102
113

33.4-1. MAINSAIL Module CALLC That Calls C Procedure procl
33.4-2. C Procedure procl.•.•.....
33.4-3. MAINSAIL Foreign Language Interface Module TOC . .
33.5-1. C Procedure That Calls MAINSAIL Procedure procl ...
33.5-2. MAINSAIL Module MSMOD Called by C Procedure callms. .
33.5-3. MAINSAIL Foreign Language Interface Module TOC
33.5-4. MAINSAIL Module CALLC That Calls C Procedure callms . .
44.1-1. $sysCall<n> Declaration
44.1.1-1. Passing an Address to a System Service
44.1.1-2. Passing VAX-II String Descriptors to System Services
44.1.2-1. . Finding a System Service Entry Vector Address
44.2-2. $W AITFR Parameters
44.2-1. $SETIMR Parameters
47.3-1. Installing a Global Section.
48.2.2-1. V AX-ll String Descriptor Used by DEC .

List of Tables

1-1. Supported Platforms
7.2-1. MAINSAIL and Pascal Parameter Types . .
7.2-2. MAINSAIL and FORTRAN Parameter Types
11-1. Aegis Faults Intercepted by MAINSAIL. . .
12.3-1. M68000 Data Types
15.2-1. VM/SP CMS-Specific CONF Command . . .
15.2-2. Currently Available CMSBITS Values
"15.3-1. VM/XA SP CMS-Specific CONF Commands. .
15.3-2. Currently Available XCMSBITS Values ...
16.2.1-3. Code to Invoke Procedure $svc for CMS Macro TAPECfL. .
16.3.1-1. Sample Code That Invokes CMSCALL
17.1.1-1. Mapping FORTRAN IV Data Types to MAINSAIL Data Types When Using

theFCC
17.1.1-2. Mapping FORTRAN 77 Data Types to MAINSAIL Data Types When Using

theFCC
17.4.1-1. Mapping FORTRAN IV Data Types to MAINSAIL Data Types When Using

theMEC
17.4.1-2. Mapping FORTRAN 77 Data Types to MAINSAIL Data Types When Using

theMEC
19.2.1-1. Input Translation Rules for Text Files
19.2.1-2. Default Device Prefixes for Sequential Text Input.
19.2.2-1. Device Prefixes for Sequential Text Output
21-1. EBCDIC Codes Used by MAINSAIL.
25.2-1. IBM System/370 Data Types.
29-1. UNIX-Specific CONF Commands

- xiii -

131
133
134
138
139
139
140
186
187
188
189
189
190
201
203

2
19
20
43
46
52
53
54
55
60
62

66

67

81

82
104
104
105
110
115
122

30.3-1. Default Protection Mode 124
33.2-1. MAINSAIL Data Types and Qualifiers . 130
34.2-1. CLIPPER Data Types 144
35.2-1. Intel 80386 Data Types . 146
36.2-1. IBM System/370 Data Types. 149
37.3-1. M68000 Data Types . 151
38.2-1. PRISM Data Types 153
39.2-1. SP ARC Data Types 155
40.2-l. VAX-II Data Types. 157
A.I-1. UNIX Object Module File Name Extensions. 160
A.2-l. Flavor-Dependent FLI Characteristics 161
A.3-1. Standard UNIX Signals Caught by MAINSAIL 164
A.5-l. BSD and System V UNIX Flavors. 165
B.l-1. Standard UNIX Configuration File Names. 169
45.1-1. Input Translation Rules for Text Files . 193
45.1-2. Default Device Prefixes for Sequential Text Input 193
45.2-1. Device Prefixes for Sequential Text Output . 194
47.1-1. GBLSEC Commands. 199
48.5-6. FLI Module Used to Interface to Code in Example 48.5-5 211
48.7-2. C Code to Call a MAINSAIL Module . 216
49.2-1. VAX-II Data Types 221
50.3-1. Exception Conditions Caught by MAINSAIL . 224

- xiv-

1. System-Specific User's Guides

This document contains descriptions of system-specific features of MAINSAn.. on all operating
systems on which MAINSAIL is available as of March, 1989.

Implementations exist for all the operating systems for which MAINSAIL is described in this
document The current support level of MAINSAIL on each supported platform is shown in
Table 1-1; consult a current "XIDAK. Product Catalog" for more information.

1.1. Conventions Used in This Document

1.1.1. User Interaction

Throughout the examples in this document, characters typed by the user are underlined.
"<eo!>" symbolizes the end-of-line key on a terminal keyboard; this key is marked "RETURN"
or "EN1ER" on most keyboards. In Example 1.1.1-1, "Prompt:" is written by the computer;
the user types "response" and then presses the end-of-line key.

Prompt: response<eol>

Example 1.1.1-1. How User Input Is Distinguished

1.1.2. Syntax Descriptions

Specifications of syntax often contain descriptions enclosed in angle brackets ("<" and ">").
Such descriptions are not typed literally, but are replaced with instances of the things they
describe. For example, a specification of the syntax of the address on an envelope might appear
as in Example 1.1.2-1.

Optional elements in command or syntax descriptions are often enclosed in curly brackets (" ("
and ") "). For example, a string of characters specified as "(A) B {C}" could have anyone of
the forms "B", "BC", "AB", and "ABC". Alternatives may be enclosed in square brackets (or
curly brackets, if all alternatives are optional) and separated by vertical bars ("Itt); "[AIBIC]"
means "A", "B", or "C"; "(AlB)" means "A", "B'" or nothing.

- 1 -

Platform
Abbrey.
aeg
aix
alnt

cms
hp20

hp38

hpux
ip32c

ipsc2

ix20

ixfpa

ixpri
sun2

sun3

sun38

sun4
ultrx
vms
xcms

Platform Name
Apollo's Aegis on Motorola M68000
IBM's AIX on IBM System/370
Alliant's CONCENTRIX on Motorola

M68000
IBM's VM/SP CMS on IBM System/370
HP's HP-UX on Motorola

MC68020/MC68881
SCO's XENIX on HP Vectra with Intel

80386
HP's HP-UX on Motorola M68000
Intergraph's System V UNIX on

Interpro 32C
Intel's iPSC/2 System V UNIX on

Intel 80386
Apollo's DOMAIN/IX on Motorola

MC68020/MC68881
Apollo's DOMAIN/IX on Motorola

MC68020/Weitek FPA
Apollo's DOMAIN/IX on Apollo PRISM
Sun Microsystems' SunOS on Motorola

M68000
Sun Microsystems' SunOS on Motorola

MC68020/MC68881
Sun Microsystems' SunOS on Intel

80386
Sun Microsystems' SunOS on SPARC
DEC's ULTRIX-32 on VAX-ll
DEC's VAX/VMS on VAX-ll
IBM's VM/XA SP CMS on IBM System/370

Extended Architecture

Table 1-1. Supported Platforms

<name of addressee>
<street number> <street name>

Support
Level

custom
custom
custom

custom
standard

custom

custom
custom

custom

standard

custom

custom
custom

standard

custom

standard
standard
standard
custom

<town or city name>, <state abbreviation> <zip code>

Example 1.1.2-1. Syntax of a Mailing Address

-2-

1.1.3. Temporary Features

Temporary features that have not acquired a final form are marked as follows:

TEMPORARY FEATURE: SUBJECT TO CHANGE

Temporary features are subject to change or removal without notice. Programmers who make
use of temporary features must be prepared to modify their code to accommodate the changes
in them on each release of MAINSAIL. It is recommended that code that makes use of
temporary features be as isolated from normal code as possible and thoroughly documented.

- 3-

-4-

Aegis MAINSAIL User's Guide

Aegis MAINSAIL ®

User's Guide
24 March 1989

2. Introduction

This document describes the MAINSAIL implementation for Aegis, the Apollo operating
system for the M68000-based Apollo Domain computer. It describes only Aegis-specific
MAINSAIL features. It assumes that the reader is familiar with the "MAINSAIL Language
Manual" and other machine-independent documentation.

2.1. Version

This version of the "Aegis MAINSAIL User's Guide" is current as of Version 12.10 of
MAINSAIL. It incorporates the "Aegis MAINSAIL Version 5.9 Release Note" of October,
1982; the "Aegis Version 7.4 Release Note" of May, 1983; the "Aegis MAINSAIL Release
Note, Version 8" of January, 1984; the "Aegis MAINSAIL Release Note, Version 9" of
February, 1985; the "Aegis MAINSAIL Release Note, Version 10" of March, 1986; and the
"Aegis MAINSAIL Release Note, Version 11" of July, 1987.

-6-

Aegis MAINSAIL User's Guide

3. General Operation

3.1. Invoking MAINSAIL

In order to run a MAINSAIL program, the Aegis link "m" must be defined in the naming
directory to be the MAINSAIL directory. Example 3.1-1 shows how to define this link and run
MAINSAIL. It assumes that the MAINSAIL directory is "/foo/bar/mainsail". If the link is
already defined, the "crI" command is not needed.

$ crl -m /foo/bar/mainsail<eol>
$ -m/mainsa<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

Example 3.1-1. Creating the Link "-m" and Invoking MAINSAIL

MAINSAIL begins execution and types a herald identifying itself and the version of
MAINSAIL being used. It then types "*" as a prompt and waits for input. The n*" prompt and
possible responses to it are described in the MAINEX section of the "MAINSAIL Utilities
User's Guide".

-7 -

Aegis MAINSAIL User's Guide

4. CONF, the MAINSAIL Configurator

This chapter assumes familiarity with the CONF section of the "MAINSAIL Utilities User's
Guide".

The default CONF parameters are normally kept in the file II -m/aeg.cnf'. Aegis systemwide
changes should always be made to this file.

The output of CONF running under Aegis for Aegis is an Aegis executable binary file. When
run under another operating system, Aegis CONF produces an assembly language file, which
may be assembled using the Aegis assembler. The Aegis assembler must be obtained by
special agreement with Apollo. In the example, the output file is called "mainsa.bin" and is the
Aegis-dependent part of the MAINSAIL bootstrap. In order to run the new bootstrap, it must
be bound with the file "-m/m.bin", which contains the portion of the bootstrap independent of
the configuration values specified.

Example 4-1 shows a sample session with CONF and how to assemble and link the resulting
bootstrap. Default values are restored from the file "-m/aeg.cnf' and the bootstrap is written to
the file "mainsa.bin".

$ ~m/mainsa<eol>
MAINSAIL (R) version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file -m/aeg.cnf
CONF: <eol>
Bootstrap written in file MAINSA.BIN
*<eol>
$ bind mainsa.bin -m/m.bin -bin mainsa<eol>
All globals are resolved.
$ mainsa<eol>

(mainsa executes)

Example 4-1. Using CONF to Make a Bootstrap

- 8-

Aegis MAINSAIL User's Guide

4.1. Errors from the Aegis" bind" Command

The Aegis binder (invoked by the shell's ttbind" command) may give "unresolved global"
errors if the list of Aegis system calls known to the MAINSAIL Uniform System Caller (see
Chapter 6) contains calls not known to the binder. This can happen if the MAINSAIL Uniform
System Caller is more up-to-date than the version of Aegis under which MAINSAIL is
running, or if an Aegis system call library is not installed (the "GM_$" library is usually not
installed by default; issue the command:

$ inlib Ilib/gmrlib<eol>

to correct this). Unresolved global errors from the binder are completely harmless unless a
program actually attempts to use the unresolved system call, in which case the operating system
error "reference to undefined global" is generated.

- 9-

Aegis MAINSAIL User's Guide

5. Memory Usage under Aegis

MAINSAil..' s use of the Aegis address space is complicated by the fact that Aegis allocates
memory that is not directly under MAINSAil..' s control. The part of the address space directly
under MAINSAIL's control is limited to the size specified by CONF's "MAXMEMORYSIZE"
command, and is contained in that part of memory displayed by MAINEX's "MAP"
subcommand (except that free pages at the high and low ends of the normal MAINSAIL
address space may not be displayed). Refer to the "MAINSAIL Utilities User's Guide" for
more information on CONF and MAINEX. Mapped disk I/O buffers, mapped libraries, the
MAINSAIL kernel, the MAINSAIL bootstrap, and a variety of things mapped by the operating
system are not stored within the part of the address space under MAINSAIL's direct control.

5.1. Mapped Libraries

MAINSAIL module libraries under Aegis may be mapped or unmapped. Mapped libraries
result in substantial execution efficiencies but may consume a great deal of memory. To
specify that a library file is to be mapped, precede the file name with an asterisk in the call to
openLibrary. For example:

openLibrary("*foo.lib")

maps all of "foo.lib" into the MAINSAIL process's address space, while:

openLibrary("foo.lib")

!lses a less efficient form of I/O to read individual modules from "foo.lib".

5.2. GCCHP and the Disk File Cache

The utility GCCHP may be used to set the file cache size for non-REC random disk I/O. Aegis
MAINSAIL does not use the standard caching mechanism when mapping files is enabled (the
default), so GCCHP functions differently from the way it is described in the "MAINSAIL
Utilities User's Guide". Only the "requestedMaxSize" parameter is used by the Aegis disk
module. This parameter is measured in IK pages. Since buffers tend to be 32 pages long, the
value for requestedMaxSize should be a multiple of 32. The amount of buffer space allocated
for sequential disk I/O is not directly controllable by the user, although a maximum of 64 pages
is mapped for each sequential non-REC file.

- 10-

Aegis MAINSAIL User's Guide

5.3. LAS Utility

An Aegis-specific utility, LAS, invokes the Aegis LAS command from within MAINSAll...
This command shows the contents of the Aegis address space and is sometimes useful in
debugging. Information on the format of LAS output may be found in the Apollo manuals,
which are not supplied by XIDAK.

XIDAK will support the LAS module only as long as Apollo supports the LAS command.

5.4. Aegis Stack Size

The initial coroutine "MAINSAIL" on Aegis uses the system stack, which is quite large; the
configuration "STACKSIZE" parameter is ignored when the initial coroutine is allocated.

- 11 -

Aegis MAINSAIL User's Guide

6. Aegis System Calls

Aegis system calls are Pascal procedure calls. The Uniform System Caller is available as an
alternative method to the Foreign Language Interface for making an Aegis system call.

The Uniform System Caller allows Aegis system calls to be included in a MAINSAIL program
without going through all the steps necessary to use the Foreign Language Interface. To call an
Aegis system call with the Uniform System Caller, theuser makes a call with the appropriate
parameters to the Aegis-specific system procedure "$sysCall", "$lbSysCall", or "$aSysCall".

XIDAK attempts to keep the list of Aegis system calls callable through the Uniform System
Caller up-to-date; however, Apollo adds new system calls from time to time, and the newest
Aegis calls may not yet have been installed in MAINSAIL. Uninstalled calls must be made
through the Foreign Language Interface (see Chapter 7).

6.1. Making a System Call

A system call is made in one of three ways depending on the type of the return value of the
system call, if any. If the system call returns a Pascal pointer value (a MAINSAIL address),
use "$aSysCall". If the call's return value is something other than a Pascal pointer or Pascal
double, use "$lbSysCall". If a system call returns a Pascal double, treat the return value as an
implicit extra "V AR" parameter at the end of the Pascal parameter list. If the call is an untyped
Pascal procedure, use n$sysCall". n$sysCall", "$lbSysCall", and "$aSysCall" take n + 1
parameters, where n is the number of parameters in the Pascal calling sequence of the system
call. The first parameter is used to determine which system call is being made; it is an identifier
formed by taking the Apollo name for the system call and removing all the occurrences of the
characters "_" and "$" and then adding "$" to the front and the word "Call" to the end. For
example, GPR_$PIXEL_BL T becomes "$gprPixeIBltCall". The remaining parameters are the
addresses of the parameters being passed to the Apollo system call.

For example, assume a call is to be made to GPR_$MOVE. This call has three parameters and
no return value. Assume there are three address variables called II al ", II a2", and II a3 ", which
have been set up to point to the parameters as Pascal expects them. Example 6.1-1 shows the
call to this procedure.

"$sysCall" was used (rather than "$aSysCall" or n$lbSysCall") because GPR_$MOVE does not
return a value. An example of a system call that does return a value is PFM_$CLEANUP.

- 12-

Aegis MAINSAIL User's Guide

$sysCall($gprMoveCall,al,a2,a3);

Example 6.1-1. Calling GPR_$MOVE

This call returns a non-address value, so it uses "$lbSysCall", as in Example 6.1-2. The status
record returned by PFM_$CLEANUP is 32 bits and can be mapped to a MAINSAIL long bits.

Ib "= $lbSysCall($pfmCleanupCall,al);

Example 6.1-2. Calling PFM_$CLEANUP

An example of a call that returns an address value is MS_$REMAP. MS_$REMAP, therefore,
requires the use of "$aSysCall". The call is shown in Example 6.1-3.

al := $aSysCall($msReMapCall,a2,a3,a4,aS,a6);

Example 6.1-3. Calling MS_$REMAP

6.2. Parameter Passing

To pass a value to a system routine, the value must be stored in memory and the address of the
value passed to the uniform system caller. Likewise, to receive a value from a system call, a
place in memory must be allocated for the return value and then upon return from the call the
value must be loaded from memory. To simplify the process of loading and restoring the
parameters, macros like those in Example 6.2-1 are helpful.

These macros and the address variable "a" must be declared in any module that uses them.
"startParms" should be called before each system call to initialize "a", which functions as a
pointer into the scratch page. "put" is used with input and input-output parameters and "skip" is
used with output parameters. Example 6.2-2 shows a "wrapper procedure" for

- 13 -

Aegis MAINSAIL User's Guide

DEFINE
startParms

[BEGIN a := <address of scratch space> END],
put (what, where) =

[BEGIN where := a; write (a, (what» END],
skip (howMany,where)

[BEGIN where := a;
a := displace (a, (howMany» END];

Example 6.2-1. Useful Macros

GPR_$SET_BITMAP, which presents a simpler MAINSAIL calling sequence than invoking
the Unifonn System Caller directly.

LONG BITS PROCEDURE gprSetBitMap
(LONG INTEGER bitMapDesc) ;

BEGIN
ADDRESS a,al,a2;

startParms;
put(bitMapDesc,al);

skip(size(longBitsCode),a2);

$sysCall
($gprSetBitMapCall,al,a2);

RETURN(lbLoad(a2»;

END;

To use the above macros,
there must always be an
ADDRESS variable called
"a". The other variables
can have any name.

Load bitMapDesc into
memory at address al.
Allocate a location in
memory for the status to
be written to at address
a2. Call GPR_$SET_BITMAP.
Retrieve the value at a2
(the status) and use this
as the return value.

Example 6.2-2. Calling GPR_$SET _BITMAP

- 14-

Aegis MAINSAIL User's Guide

As used in these examples, Pascal parameters of types corresponding to the MAINSAIL types
integer, long integer, real, long real, bits, long bits, pointer, address, and charadr each
correspond to exactly one invocation of the "put" and "skip" macros. The amount of space to
skip with the "skip" macro is based on the size of the MAINSAIL type corresponding to the
Pascal type of the output parameter (see Table 7.2-1). It may be convenient to use the
MAINSAIL procedure "size" as documented in the "MAINSAIL Language Manual".

6.3. Common Pitfalls

Boolean variables are not represented the same in MAINSAIL as they are in Pascal. Pascal
uses a byte that is all O's for FALSE and all 1 's for TRUE. MAINSAIL uses a 16-bit word that
is 1 for TRUE and 0 for FALSE. Example 6.3-1 shows how to pass a MAINSAIL BOOLEAN
"bo" as an input parameter to Pascal.

put (IF bo THEN -1 EL O,aI)

Example 6.3-1. How to Pass a MAINSAIL BOOLEAN to Pascal

Since the M68000 uses twos' -complement form to represent negative numbers, this sets all the
bits in the byte at "al" (as well as at "al + 1").

String parameters are also represented differently between MAINSAIL and Pascal. Follow the
format used in Example 6.3-2.

There are many ways to pass records and arrays, one of which is shown in Example 6.3-3. The
second parameter of GPR_$PIXEL_BL T is a two-dimensional array with a total of four
elements. In this example each element of the array is passed to the MAINSAIL wrapper
procedure as a separate parameter. When a MAINSAIL array corresponds to a Pascal array,
$adrOfFirstElement may be used to find the address of the start of the MAINSAIL array.

- 15 -

Aegis MAINSAIL User's Guide

LONG BITS PROCEDURE gprText (STRING text);
BEGIN
ADDRESS a,al,a2,a3;
startParms;
store(a,cvc(text»;

al := aLoad(a);

put(length(text),a2) ;

* Convert the string to a * CHARADR and store it at * location "a". * Convert the stored CHARADR * into the address "al". * The APOLLO system calls * need to be passed the * length of the string.
skip(size(longBitsCode),a3);
$sysCall($gprTextCall,al,a2,a3);
RETURN(lbLoad(a3»;
END;

Example 6.3-2. Calling GPR_$TEXT

- 16-

Aegis MAINSAIL User's Guide

LONG BITS PROCEDURE gprPixelBlt (
LONG INTEGER
INTEGER

INTEGER
BEGIN

sourceBitmapDesc;
xSource,ySource,
windowWidth,windowHeight;
xDest,yDest);

ADDRESS a,al,a2,a3,a4,ax;

startParms;
put(sourceBitmapDesc,al);
put(xSource,a2);

put (ySource, ax) ;
put(windowWidth,ax);
put(windowHeight,ax);

put(xDest,a3);

* GPR_$PIXEL_BLT has 4 * parameters. ax is just * a placeholder.

* The first element of the

* * * * * * * * =IF

Pascal array (the
address to be given to
GPR_$PIXEL_BLT) .
The next three
parameters are the next
three array elements,
stored in consecutive
locations.
This is a 2-element

=IF put (yDest, ax) ;
skip(size(longBitsCode),a4);
$sysCall($gprPixelBltCall,al,a2,a3,a4);
RETURN(lblLoad(a4»i

array done as above.

END;

Example 6.3-3. Calling GPR_$PIXEL_BL T

- 17 -

Aegis MAINSAIL User's Guide

7. Foreign Language Interface

This chapter contains Aegis-specific information for the MAINSAIL Foreign Language
Interface (FLI). Refer to the "MAINSAIL Compiler User's Guide" for a general description of
the FLI.

Both the Foreign Call Compiler ("FCC") and MAINSAIL Entry Compiler ("MEC") are
available for Aegis.

The default transformation used to derive a Pascal procedure name from its MAINSAIL
procedure name (as declared in a module compiled by one of the FLI compilers) is to strip off
the leading "$" character, if any, from the MAINSAIL name, and use the resulting string as the
name of the Pascal routine. In the case of the MAINSAIL-to-Pascal compiler, this is the name
of the external routine called by MAINSAIL; in the case of the Pascal-to-MAINSAIL compiler,
it is the name to be used by Pascal in calling MAINSAIL. With either compiler, it is possible
to override the default name by using the "ENCODE" directive.

On Aegis, FORTRAN uses the same calling convention as Pascal, so the Pascal FLI is used to
interface to both languages; Le., use the compiler subcommand "FLI TP" or "FLI FP" when
interfacing to Aegis FORTRAN.

7.1. Output File Names

The default output file name for an Aegis FLI compiler is "<module name>.BIN" if running on
Aegis, or "<module name>.ASM" if running on another system.

7.2. Data Types

MAINSAIL parameter types are mapped into Pascal parameter types according to Table 7 .2-1.
MAINSAIL parameter types are mapped into FORTRAN parameter types according to Table
7 .2-2. These mappings apply both to the FCC and to the ~C.

The MAINSAIL procedure declaration corresponding to the Pascal routine may return any type
but string, pointer, or array. A typed MAINSAIL procedUre maps into a Pascal FUNCTION of
the appropriate type.

- 18 -

Aegis MAINSAIL User's Guide

MAINSAIL parameter
USES BOOLEAN

MODIFIES or PRODUCES BOOLEAN

USES INTEGER or BITS

MODIFIES or PRODUCES INTEGER or
BITS

USES REAL

MODIFIES or PRODUCES REAL

USES LONG REAL

MODIFIES or PRODUCES LONG REAL

USES STRING

MODIFIES STRING

PRODUCES STRING

Pascal parameter
non-VAR boolean

VAR boolean

non-VAR integerl6

VAR integerl6

non-VAR single

VAR single

non-VAR double

VAR double

ARRAY OF char, integer16

VAR ARRAY OF char,
VAR integer16

VAR POINTER to ARRAY OF
char, VAR integer16

USES POINTER VAR or non-VAR RECORD

MODIFIES or PRODUCES POINTER not allowed

USES ARRAY VAR or non-VAR ARRAY

MODIFIES or PRODUCES ARRAY not allowed

USES ADDRESS or CHARADR non-VAR pointer

MODIFIES or PRODUCES ADDRESS or
CHARADR VAR pointer

Table 7.2-1. MAINSAIL and Pascal Parameter Types (continued)

- 19 -

Aegis MAINSAIL User's Guide

"VAR" is equivalent to "OUT" or "IN OUT" in Aegis
Pascal parameter qualifications; "non-VAR" means "IN" or
no parameter qualifier.

Table 7.2-1. MAINSAIL and Pascal Parameter Types (end)

MAINSAIL parameter
BOOLEAN, INTEGER, or BITS

REAL

LONG REAL

USES or MODIFIES STRING

PRODUCES STRING

USES POINTER

MODIFIES or PRODUCES POINTER

USES ARRAY

MODIFIES or PRODUCES ARRAY

ADDRESS or CHARADR

FORTRAN parameter
INTEGER*2

REAL*4

REAL * 8

CHARACTER*n, INTEGER*2

INTEGER*4 (pointer to
character array),
INTEGER*2

no corresponding data type

not allowed

array

·not allowed

INTEGER*4 (pointer)

Table 7.2-2. MAINSAIL and FORTRAN Parameter Types

A single MAINSAIL string parameter corresponds to ~ Pascal parameters. Both Pascal
parameters (an array or array pointer parameter and an integer16 parameter) must be declared
in the Pascal procedure header so that Pascal can figure out the length of the MAINSAIL string.
Only one string parameter appears in the MAINSAIL procedure header. In Pascal, the
character array (or array pointer) must be declared first, immediately followed by the integer16

- 20-

Aegis MAINSAIL User's Guide

length. For Pascal routines returning strings as a pointer to a character array and a length, use a
MAINSAIL produces string variable.

In the case of a MAINSAIL uses string (or a MAINSAIL modifies string not constructed with a
call to the MAINSAIL system procedure "newS tring") the Pascal routine must not modify the
contents of the array, which may actually be in MAINSAIL's string space. For a Pascal routine
that uses a Pascal V AR ARRA Y to return a character string, use a MAINSAIL modifies string
argument, where the string was constructed with the MAINSAIL procedure "newString". The
charadr passed to newString should point into empty memory (e.g., memory obtained by a call
to newScratch), and the length of the string should be the same as the length of the Pascal array.
A MAINSAIL uses string must also be allocated in scratch space. A string in MAINSAIL
string space should be passed as a MAINSAIL modifies string to foreign code, but the foreign
code must not actually modify a string in MAINSAIL string space. Pascal must not access or
modify characters in the array beyond the end of a MAINSAIL uses or modifies string. A
MAINSAIL modifies string may be the null string when it is passed, but the Pascal routine
must not access the array part or change the length part in this case. Pascal can detect a null
string by observing that the integer16length is O.

If a MAINSAIL pointer or address parameter is classified. care must be taken to ensure that
analogous fields in the Pascal record type are at the same offset as the MAINSAIL fields,
especially if the Pascal record type is a packed record. Refer to Apollo's Pascal reference
manuals for descriptions of how Pascal arranges data structures in memory, and to Chapter 12
in this document for the corresponding information about MAINSAIL.

If a MAINSAIL pointer is passed it must not be nullPointer.

Pascal may modify the contents of an array, even if it was passed as a uses parameter from
MAINSAIL. Care must be taken not to access any value outside the bounds of the MAINSAIL
array, since Pascal cannot automatically check the bounds of the MAINSAIL array. It is never
legal to pass a MAINSAIL nullArray to Pascal. A MAINSAIL boolean array must be treated
as an array of integer16 in Pascal (or an INTEGER*2 array in FORTRAN), where 0 represents
false and 1 represents true, since the representation of booleans differs among the three
languages.

If a MAINSAIL array is passed to Pascal as a non-V AR array, the MAINSAIL array must be at
least as large as the Pascal array is declared to be. Pascal copies non-V AR arrays on procedure
entry; if the MAINSAIL structure is smaller than the Pascal structure, and the MAINSAIL
structure is located near the end of the memory MAINSAIL has acquired from Aegis, then an
access violation may result as Pascal attempts to copy the structure.

FORTRAN multidimensional arrays are stored differently from MAINSAIL and Pascal arrays.
In FORTRAN, the leftmost subscript of a multidimensional array varies most rapidly. In
MAINSAIL and Pascal, the rightmost subscript varies most rapidly.

- 21 -

Aegis MAINSAIL User's Guide

7.3. Foreign Call Compiler Example

Suppose that a MAINSAIL module FOOSUB is to call a Pascal procedure PROCI. Figure
7.3-1 shows the module FOOSUB, the Pascal subroutine PROC1, and the "dummy"
MAINSAIL module FLISUB that defines this foreign procedure.

Examples 7.3-2 and 7.3-4 show the steps necessary before the module FOOSUB can be run.

Compile FOOSUB for Aegis with the MAINSAIL
compiler.

Compile FLISUB with the "FLI TP" (FLI to Pascal) compiler
subcommand:

$ -m/mainsa<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*compil<eol>

MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (? for help): flisub.msl,<eol>
> fli tp<eol>
> <eol>
Opening intmod. for $SYS ... ·

flisub.msl 1
Output for FLISUB on flisub.bin
Intmod for FLISUB not stored

compile (? for help): <eol>

Example 7.3-2. Compiling FLI Modules

- 22-

Aegis MAINSAIL User's Guide

MAINSAIL module FOOSUB (in "foosub.msl"):

BEGIN "fooSubn

CLASS el (INTEGER ii LONG REAL rr)i

MODULE fliSub
PROCEDURE proel (PRODUCES INTEGER ii

INTEGER j,ki

) ;

INITIAL PROCEDURE;
BEGIN
BOOLEAN bOi
INTEGER i,j,k,len;
STRING S;
POINTER(el) Pi
ADDRESS (cl) a;

MODIFIES STRING Si
MODIFIES BOOLEAN bOi
BOOLEAN ARRAY(l TO 2) arYi
POINTER (el) Pi
CHARADR e; INTEGER len;
MODIFIES ADDRESS (el) a);

BOOLEAN ARRAY(l TO 2) arYi
s := "Hello there"; bo := TRUEi
new(arY)i ary[l] := TRUE; ary[2] := FALSE;
p -= new(cl)i p.i := 1; p.rr := 2.0L;
c := eve(s); len := length(s);
a := eva(p);
procl(i,1,2,s,bo,ary,p,e,len,a);
ttyWrite(ni = ",i,eol &

END;

"bo = ",IF bo THEN "TRUE" EL "FALSE",eol &
"a.i = ",a.i,"; a.rr = ",a.rr,eol);

END "fooSub"

Figure 7 .3-1. Declarations for FCC Example (continued)

- 23 -

Aegis MAINSAIL User's Guide

MAINSAIL "dummy" module FLISUB (in "flisub.msl"):

BEGIN "fliSub"

MODULE fliSub

) i

PROCEDURE procl (PRODUCES INTEGER ii
INTEGER j,k;
MODIFIES STRING Si

MODIFIES BOOLEAN bOi
BOOLEAN ARRAY (1 TO 2) ary;"
POINTER(cl) Pi
CHARADR c; INTEGER leni
MODIFIES ADDRESS (c1) a);

PROCEDURE procl (PRODUCES INTEGER i;
INTEGER j,ki
MODIFIES STRING Si

MODIFIES BOOLEAN bo;
BOOLEAN ARRAY(l TO 2) arYi
POINTER(c1) p;
CHARADR Ci INTEGER len;
MODIFIES ADDRESS(cl) a)ii

END "fliSub"

Pascal subroutine PROCl (in "psub.pas"):

TYPE
charArray = ARRAY[1 .. 32767] OF char;
charArrayPtr = ~charArray;
int16Array = ARRAY[l .. 2] OF integer16;
c1 = RECORD

i: integer16;
rr: doublei

ENDi
clPtr = ~Cli

Figure 7.3-1. Declarations for FCC Example (continued)

- 24-

Aegis MAINSAIL User's Guide

PROCEDURE proel (VAR i: integer16; j,k: integer16;
VAR eh: eharArray;
VAR len: integer16;
VAR bo: boolean;
ary: int16Array;
p: el;
eh2: eharArrayPtr;
len2: integer16;
VAR a: elPtr);

VAR n: integer16;
BEGIN

END;

i := j + k;
write In ('String parameter is:');
FOR n := 1 TO len DO write(eh[n]); writeln;
bo := NOT bo;
{ Swap the boolean array elements:
n : = a ry [1]; a ry [1] : = a ry [2]; a ry [2] . = n;
writeln('p.i = ',p.i,'; p.rr = , ,p.rr);
writeln('Seeond string parameter is:');
FOR n := 1 TO len2 DO write(eh2 A [n]); writeln;
new(a); a.i := p.i; a.rr := p.rr;

Figure 7.3-1. Declarations for FCC Example (end)

7.4. MAINSAIL Entry Compiler Example

Suppose that the Pascal procedure callms is to call the MAINSAIL procedure procl. Figures
7.4-1, 7.4-2, 7.4-3, and 7.4-4 show the Pascal procedure callms, the MAINSAIL module
MSMOD that contains the procedure procl, the MAINSAIL FLI module TOPAS, and the
MAINSAIL module CALPAS that calls the Pascal procedure callms, respectively. Example
7.4-5 shows how to compile and run callms.

- 25-

Aegis MAINSAIL User's Guide

Compile the Pascal file "psub.pas" with the Pascal
compiler (PAS command from the Aegis shell) to produce
the object file "psub.bin".

Run the MAINSAIL utility CONF.

$ -m/mainsa<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file -m/aeg.cnf
CONF: foreignmodule flisub<eol>
CONF: <eol>
Bootstrap written in file MAINSA.BIN

Example 7.3-3. Compiling the Pascal File and Running CONF

Link the new bootstrap with the FLI code and the Pascal
object module into an executable bootstrap called "X":

$ bind mainsa.bin ~m/m.bin flisub.bin psub,bin -bin x<eol>

Run the MAINSAIL module FOOSUB:

$ x<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*foosub<eol>

(FOOSUB executes, calling the Pascal routine)

Example 7.3-4. Linking and Running an FLI Module

- 26-

Aegis MAINSAIL User's Guide

Pascal module (in file "callms.pas"):
MODULE callms_module;

FUNCTION proc1 (i1,i2: integer32; VAR bo: integer16):
integer32;

EXTERN;

PROCEDURE callms;
{

MAINSAIL proc1 does the following:
(1) Adds its first two arguments and returns

the result
(2) Sets bo to be TRUE

VAR bo: integer16;
result,li1,li2: integer32;

BEGIN
bo := 0; li1 := 1; li2 := 2;
result := procl(li1,li2,bo);
writeln('Result is ',result);
IF bo = 0 THEN

writeln("FAILURE: bo should be nonZero");
END;

Figure 7.4-1. Pascal Procedure That Calls MAINSAIL Procedure procl

- 27-

Aegis MAINSAIL User's Guide

MAINSAIL Module MSMOD (in file "msmod.msl"):

BEGIN "msMod"

MODULE msMod (
LONG INTEGER PROCEDURE procl (

) ;

LONG INTEGER
PRODUCES BOOLEAN

lil,li2;
bo);

LONG INTEGER PROCEDURE procl (
LONG INTEGER lil,li2;
PRODUCES BOOLEAN bo);

~EGIN

bo := TRUE;
RETURN(lil + li2);
END;

END "msMod"

Figure 7.4-2. MAINSAIL Module MSMOD Called by Pascal Procedure callms

MAINSAIL Module TOPAS (in file "topas.msl"):

BEGIN "toPas"

MODULE toPas (PROCEDURE callMs);

PROCEDURE callMs;;

END "toPas"

Figure 7.4-3. MAINSAIL Foreign Language Interface Module TOPAS

- 28-

Aegis MAINSAIL User's Guide

MAINSAIL Module CALPAS (in file "calpas.msl") :

BEGIN "calPas"

MODULE toPas (PROCEDURE callMs);

INITIAL PROCEDURE;
callMs;

END "caIPas"

Figure 7.4-4. MAINSAIL Module CALP AS That Calls Pascal Procedure callms

(1) Compile MSMOD and CALPAS with the Aegis MAINSAIL
compiler. Compile MSMOD with the MEC from Pascal (by
specifying the compiler subcommand "fli fp"). Compile
TOPAS with the FCC to Pascal (by specifying the
compiler subcommand "fli tp") .

$ mainsa<eol>
MAINSAIL (R) Version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*compil<eol>

MAINSAIL (R) Compiler
. Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (? for help): msmod.msl<eol>

msmod.msl 1 ...

compile (7 for help): calpas.msl<eol>

calpas.msl

Example 7.4-5. Pascal to MAINSAIL Example (continued)

- 29-

Aegis MAINSAIL User's Guide

compile (1 for help): msmod.msl,<eol>
>fli fp<eol>
><eol>

msmod.msl 1 ...

compile (? for help): topas.msl,<eol>
>fli tp<eol>
><eol>

topas.msl

compile (? for help): <eol>
*<eol>

(control returns to the Aegis shell)

(2) Make a new MAINSAIL bootstrap that declares TOPAS to
be a foreign module.

$ mainsa<eol>
MAINSAIL (R) Version 12.10 (1 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file ~m/aeg.cnf
CONF: bootfilename mec.bin<eol>
CONF: foreignmodules<eol>
FOREIGNMODULES is

Should be:
=<eol>
TOPAS<eol>
<eol>
CONF: ~
Bootstrap written in file mec.bin
*<eol>

(control returns to the Aegis shell)

Example 7.4-5. Pas~al to MAINSAIL Example (continued)

- 30-

Aegis MAINSAIL User's Guide

(3) Compile the Pascal code with the Pascal compiler.

$ pas callms<eol>

(4) Bind the new MAINSAIL bootstrap.

$ bind mec.bin msmod.bin topas.bin callms.bin -m/m.bin
-bin mec<eol>

(5) Run the new executable MAINSAIL bootstrap and call
the foreign procedure.

$ mec<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*calpas<eol>
Result is
*<eol>

3

Example 7.4-5. Pascal to MAINSAIL Example (end)

- 31 -

Aegis MAINSAIL User's Guide

7.5. $foreignCodeStartsExecution

If a foreign-language program initiates execution instead of MAINSAIL, the configuration bit
$foreignCodeStartsExecution must be set in the MAINSAIL bootstrap. Consult the description
of the FLI in "MAINSAIL Compiler User's Guide" and the description ofCONF in the
"MAINSAIL Utilities User's Guide" for details.

Example 7.5-1 shows a Pascal program that calls the MAINSAIL module of Example 7.5-2.
The steps necessary to compile, configure, link, and execute the program are shown in Example
7.5-3 ('10 is the $foreignCodeStartsExecution bit). When a foreign module calls a MAINSAIL
module, there is no need for a "fake" module that imitates the foreign module's interface; it is
the MAINSAIL module called from the foreign language that is compiled with the rvrnC.

PROGRAM call;

VAR i,j: integer;

FUNCTION mslProc (i,j: integer16): integer16;
EXTERN;

BEGIN
i := 33;
j := 17;
writeln('mslProc(i,j) is ',mslProc(i,j»;
END.

Example 7.5-1. Pascal Main Program (in "call.pas")

- 32-

Aegis MAINSAIL User's Guide

BEGIN "msIMod"

MODULE mslMod (
INTEGER PROCEDURE mslProc (INTEGER i,j);

) ;

INTEGER PROCEDURE mslProc (INTEGER i,j);
RETURN(i + j);

END "msIMod"

Example 7.5-2. MAINSAIL Module Called from Pascal (in "mslmod.msl")

$ -m/mainsa<eol>
MAINSAIL (R) version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*compil<eol>

MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (? for help): mslmod.msl<eol>
Opening intmod for $SYS ...

mslmod.msl 1
Objmod for MSLMOD stored on mslmod-aeg.obj
Intmod for MSLMOD not stored

compile (? for help): mslmod.msl,<eol>
> fli fp<eol>
> <eo 1>
Opening intmod for $SYS ...

Example 7.5-3. Calling MAINSAIL from a Pascal Main Program (continued)

- 33 -

Aegis MAINSAIL User's Guide

mslmod.msl 1
Opening intmod for $SYS ...
Output for MSLMOD stored on MSLMOD.BIN
Intmod for MSLMOD not stored

compile (? for help): <eol>
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file -m/aeg.cnf
CONF: bootfilenaroe fli<eol>
CONF: configurationbits<eol>
CONFIGURATIONBITS is 'HO, should be: '10<eol>
CONF:
Bootstrap written in file FLI.BIN
*<eol>
$ pas call<eol>
No errors, no warnings, Pascal Rev 6.1413
$ bind call.bin fli bin mslmod.bin -m/m.bin -bin fli<eol>
All globals are resolved.
$ fli<eol>
msIProc(i,j) is 50
$

Example 7.5-3. Calling MAINSAIL from a Pascal Main Program (end)

- 34-

Aegis MAINSAIL User's Guide

8. Terminal I/O

8.1. Line-Oriented Mode

In the line-oriented mode of operation, MAINSAIL buffers terminal output until:

1. A linefeed character «eo1» is output,

2. The output buffer is full, or

3. A terminal read occurs.

In each case, the buffer is output as a line to the terminal. Thus, output characters are not seen
on the terminal until one of the above events occurs.

8.2. Aegis and MAINEDIT

The display modules BORRO, FRAME, FBORRO, and FFRAME are used with the Aegis
bitmap display. These display modules are documented in the appendices to the "MAINEDIT <

User's Guide".

- 35 -

Aegis MAINSAIL User's Guide

9. File I/O

9.1. Disk 110

MAINSAIL Supports several disk file formats under Aegis: UASC (standard Aegis format for
text files), REC (old Aegis record-structured text file format), UNDEF (Aegis HDRU byte
stream format)t OBJ (Aegis object file forma4 identical for all practical purposes to UNDEF}t
and NIL (non-stream disk file format). The default format for new text files created by
MAINSAIL is UASC; for new data files it is UNDEF. Data files and random output files may
not be in REC format. When MAINSAIL replaces an existing filet the new file is in the default
format unless the format is explicitly specified.

To specify a format (RECt for example) to be used for a file FOO, use the syntax "REC>FOO"
for the file name parameter to the MAINSAIL procedure "open". "HDRU>" is accepted as a
synonym for "UNDEF>" in such a format specification. "V AR>" is a synonym for "REC>",
and "BS>" is a synonym for "UASC>" for a text file, or for "HDRU>" for a data file.

Consider the case in which a file "FOO" is a UASC text file created with the Apollo editor, and
you wish to copy it to REC format file. The MAINSAIL module COPIER can be run as shown
in Example 9.1-1. Refer to the "MAINSAIL Utilities User's Guide" for a complete description
of COPIER. Example 9.1-1 also shows the reverse process. In the first part of the example,
"FOD.NEW" is in REC format because the format has been explicitly specified. In the second
part of the example, "FOO" is a UASC file because the default for new sequential text files is
the UASC format.

Although it is possible to perform random access input on a REC file, it is not possible to
perform random output on such a file. Explicitly specifying the REC device prefix for a
random output file results in an error.

9.2. Disabling Aegis Mapping

TEMPORARY FEATURE: SUBJECT TO CHANGE

The $disableAegisMapping configuration bit (value 'H8(00) prevents Aegis MAINSAIL from
employing mapping calls for disk I/O. Instead, Aegis stream calls are used. Users may desire

- 36-

Aegis MAINSAIL User's Guide

Copying a UASC file to REC format file.

$ -m/mainsa<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*copier<eol>
Input file: foo<eol>
Output file: rec>foo.new<eol>
Input file: ~
*<eol>

Copying a REC format file to a UASC file (assume
a file called "faa" does not presently exist) .

$ -m/mainsa<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*copier<eol>
Input file: foo.new<eol>
Output file: foo<eol>
Input file: ~
*<eol>

Example 9.1-1. Converting Between File Formats

to set this bit because the Aegis operating system contains a bug which causes Aegis to run out
of memory after enough mapped I/O has taken place.

After Apollo fixes the bug in Aegis and the versions of Aegis with the bug become obsolete,
the $disableAegisMapping configuration bit will be eliminated.

- 37 -

Aegis MAINSAIL User's Guide

9.3. MAINSAIL and Aegis Links

Aegis standard utilities do not permit a file to be created or deleted if it is referred to using a
link pointing to the file. MAINSAIL also obeys this convention and gives an error if a link
name is given in an open with the create or delete bit set. If it is necessary to create or delete a
file, specify the name of the file, not the name of a link pointing to the file.

9.4. MAINSAIL and the Serial Ports

It is possible to run MAINSAIL on an ordinary computer terminal connected to one of the
serial ports available on the back of the Apollo cabinet. Make sure the terminal is correctly
connected and use the Apollo shell's TCTL command in order to configure the serial line to the
appropriate baud rate. parity. and so on. If you do not give the "-ECHO" switch to TCTL. your
keystrokes will not echo as you type them to MAINSAIL. Also, many terminals attempt to
send XON and XOFF to the Apollo, so that both the "-SYNC" and "-INSYNC" TCTL
commands should usually be in effect.

When the terminal and serial line have been correctly configured, run MAINSAIL, directing
standard input and standard output to the serial line. Figure 9.4-1 shows how this is done using
port 2.

$ -m/mainsa </dev/sio2 >/dev/sio2<eol>

Figure 9.4-1. Directing Standard I/O to the Serial Line

If the MAINSAIL editor is available for the type of terminal you are using, it may be run over
the serial line. It is also possible to use the serial line to run a debugging session for a program
that borrows the Apollo bitmap display, since the MAINSAIL debugger can communicate with
the user over the serial line.

MAINSAIL can use the serial lines as regular sequential input and output files. Example 9.4-2
shows how to copy a text file "FOO" to serial line 2. The prefix "SIO>" is required for SIO line
files.

- 38 -

Aegis MAINSAIL User's Guide

*copier
Input file: foo<eol>
Output file: sio>/dev/sio2<eol>

*

Example 9.4-2. Copying a File to a Serial Port

- 39 -

Aegis MAINSAIL User's Guide

10. System Information Procedures

10.1. $homeDirectory

$homeDirectory returns the string provided by PM_$GET_HOME_TXT.

10.2. Command Line and $programName

$programName is set to the first element of the argument vector returned by
PGM_$GET_ARGS. The command line is formed from the remaining elements, separated by
spaces.

10.3. Exit Codes

The exit code is converted to a two·byte integer and passed to PGM_$SET_SEVERITY before
MAINSAIL exits. $successExilCode is PGM_$OK COL) and $failureExitCode is
PGM_$ERROR ('3L).

10.4. $currentDirectory

$currentDirectory returns the name of the cUrrent working directory, as given by
NAME_$GET_ WDIR.

10.5. $directory (for Aegis Disk Files)

$directory returns a list of files as given by NAME_$READ _DIR. $reportAllVersions is
ignored.

10.6. $filelnfo (for Aegis Disk Files)

$filelnfo fills in the fields of $filelnfoClass as follows:

• $fullPathName is obtained from NAME_$GET_PATH.

- 40-

Aegis MAINSAIL User's Guide

• $OSDSize is the number of 1024-byte blocks occupied by the file.

• $createDate, $createTime, $modifyDate, and $modifyTime are as shown in an Aegis
directory listing.

10.7. $userID

$userID returns the ID of the current user as a string of the form It<name>.<project>.<org>lt.

10.S. $cpuID

$cpuID returns a string that is the node ID in hexadecimal.

- 41 -

Aegis MAINSAIL User's Guide

11. Aegis Faults

The faults intercepted by MAINSAIL as of March, 1989 are shown in Table 11-1. This list is
subject to revision as Apollo defines new faults.

11.1. Determining Which Faults to Catch

TEMPORARY FEATURE: SUBJECT TO CHANGE

If you wish MAINSAIL to intercept an Aegis fault not on the default list, you may write a
foreign language procedure tlcatchFault". The MAINSAIL declaration and corresponding
Pascal code for catchFault are shown in Figure 11.1-1.

Call catchFault with the bit pattern of the fault status code corresponding to each fault which
you want MAINSAIL to intercept. The return value from catchFault is the error status from
pfm_$establish_fauIChandler.

- 42-

Aegis MAINSAIL User's Guide

Hex Code
00040004
00040005
00120001
00120002
00120003
00120004
00120005
00120006
00120007
00120008
00120009
0012000A
0012000B
00120011
00120016
00120017

0012001C
0012001D
00120023
00120025
00120026
00240000
03030009
05090000
09010004
09010005
09010006
09010007
09010008
0901000A
0901000B
0901000C
0901000D

Fault: Standard Aegis Error Message
MST manager: reference to illegal address
MST manager: reference to out-of-bounds address
fault handler: odd address error
fault handler: illegal instruction
fault handler: integer divide by zero
fault handler: CHK instruction trapped ...
fault handler: arithmetic overflow
fault handler: privileged instruction violation
!ault handler: invalid SVC code
fault handler: invalid SVC procedure name
fault handler: undefined TRAP instruction
fault handler: unimplemented instruction
fault handler: protection boundary violation
fault handler: access violation
fault handler: invalid user-generated fault ...
fault handler: fault in user-space interrupt

handler for pbu device
fault handler: unimplemented SVC
fault handler: invalid stack format
fault handler: floating point divide by zero
fault handler: floating point operand error
fault handler: floating point overflow
PEB manager: all faults
loader: reference to undefined global
floating point manager: all faults
AUX: illegal instruction fault
AUX: trace trap fault
AUX:" rOT instruction fault
AUX: EMTinstruction fault
AUX: floating point exception fault
AUX: bus error fault
AUX: segmentation violation fault
AUX: bad argument to system call fault
AUX: broken pipe fault

Table 11-1. Aegis Faults Intercepted by MAINSAIL

- 43 -

Aegis MAINSAIL User's Guide

The MAINSAIL catchFault declaration:

LONG BITS PROCEDURE catchFault (LONG BITS faultCode)i

The Pascal code for catchFault:

%INCLUDE '/sys/ins/base.ins.pas'i
%INCLUDE '/sys/ins/pfm.ins.pas'i

FUNCTION PascalFaultHandler (IN rec: pfm_$fault_rec_t):
pfm_$fh_func_val_ti EXTERN;

FUNCTION catchFault (fault: integer32): status_$ti
VAR

pfmHandle: pfm_$fh_handle_ti
status: status_$ti

BEGIN
pfmHandle := pfm_$establish_fault_handler

(fault, [],addr(PascalFaultHandler),status);
catchFault := status;
ENDi

Figure 11.1-1. How to Specify Which Fault to Catch

- 44-

Aegis MAINSAIL User's Guide

12. M68000 and MC68020 Processor-Dependent
Information

This chapter describes M68000 Family-specific information.

12.1. M68000 vs. MC68020 Code Generation

XIDAK's M68000 code generator produces code that runs on the entire line of processors
supporting Motorola's M68000 Family architecture, including the MC68000, MC68010, and
MC68020. The M68000 code generator does not take advantage of any of the special
instructions available on the latter two processors. The MC68020-specific code generators
produce code that runs more efficiently on the MC68020 and the accompanying floating point
processors included by various manufacturers with the MC68020 (the supported floating point
processors at present are the Motorola MC68881 and the Weitek FPA). Code produced for the
MC68020 does not run on earlier processors in the M68000 Family.

Except where otherwise specified. features described for the M68000 apply to the MC68020 as
well.

12.2. Procedure Size

There is no well-defined limit for the size of a procedure on the M68000. However, the
compiler almost always successfully compiles procedures under 32K bytes in length, and may
handle larger procedures. depending on the code. Procedures longer than approximately 32K
bytes are not guaranteed to work, and such procedures may compile correctly on one machine
and not on another.

12.3. M68000 Data Types

Refer to Table 12.3-1. A storage unit on the M68000 is one byte (8 bits).

- 45-

Aegis MAINSAIL User's Guide

Data type
boolean
integer

long integer

real

long real

bits
long bits
string

address

charadr
pointer

Representation
1 word (2 bytes)
Standard M68000 integer format (1 word, 2
bytes)
Standard M68000 long integer format
(1 longword, 4 bytes)
Depends on operating system, usually
1 longword (4 bytes)
Depends on operating system, usually
2 longwords (8 bytes)
1 word (2 bytes)
1 longword (4 bytes)
2 longwords (8 bytes): first longword
(low address) is length, second longword
(high address) is charadr of first
character
Standard M68000 address: 1 longword
(4 bytes)
Same as address
Same as address

Table 12.3-1. M68000 Data Types

12.4. Miscellaneous Information

The standard representation for boolean FALSE is all bits clear, and the standard for boolean
TRUE is low-order bit set, all other bits clear. However, in forms such as "IF <boolean
variable> THEN .,,", <boolean variable> is considered to be TRUE if any bits are set.

String variables have both the length and charadr component equal to Zero for the string Zero
(no characters).

12.5. Program Counter at Processor Exception

The location of an M68000 processor exception as reported by the early M68000 CPU's may
be as much as four bytes beyond the code which actually produced the error. This may lead

-46 -

Aegis MAINSAIL User's Guide

MAINDEBUG to position incorrectly on certain M68000 processor exceptions. The MC68020
does not have this problem.

- 47-

Aegis MAINSAIL User's Guide

- 48-

VM/SP eMS MAINSAIL User's Guide

VM/SP eMS and VM/XA SP eMS MAINSAIL~

User's Guide

24 March 1989

13. Introduction

This document describes the MAINSAIL implementations for VM/SP CMS and VM/XA SP
CMS. VM/SP CMS is the IBM operating system for the IBM System/370 and compatible
processors; VM/XA SP CMS is the IBM operating system for the IBM System/370 Extended
Architecture and compatible processors. This document describes only VM/SP CMS-specific
and VM/XA SP CMS-specific MAINSAll.. features. It assumes that the reader is familiar with
the "MAINSAIL Language Manual" and other machine-independent documentation.

13.1. Version

This version of the "VM/SP CMS and VM/XA SP CMS MAINSAIL User's Guide" is current
as of Version 12.10 of MAINSAIL. It incorporates the "VM/CMS Version 5.10 Release Note"
of October, 1982; the "VM/CMS Version 7.4 Release Note" of May, 1983; the "CMS
MAINSAIL Release Note, Version 8" of January, 1984; the "VM/SP CMS MAINSAIL
Release Note, Version 9" of February, 1985; the "VM/SP CMS MAINSAIL Release Note,
Version 10" of March, 1986; and the "VM/SP CMS MAINS All.. User's Guide" and "VM/SP
CMS MAINSAIL Release Note, Version 11" of July, 1987.

"VM/SP eMS and VM/XA SP eMS" are sometimes shortened to "eMS", or the two different
names to "eMS" and "XCMS", respectively (when the context is clear).

In examples of interaction with CMS, the "." character terminates each prompt. This character
appears on ASCII terminals when a terminal input request is made; it does not appear on 3270
terminals.

- 50-

VM/SP CMS MAINSAIL User's Guide

14. General Operation

14.1. Invoking MAINSAIL

To run a MAINSAIL program, first invoke MAINSAIL by typing "mainsa<eol>". MAINSAIL
begins execution and types a herald identifying itself and the version of MAINSAIL being
used. It then types "*" as a prompt and waits for input. The "*" prompt and possible responses
to it are described in the MAINEX section of the "MAINSAIL Utilities User's Guide".

14.2. Intmod and Objmod File Names

On CMS and XCMS, the searchpaths for intmod and objmod file names in bootstraps
distributed by XIDAK are:

SEARCHPATH *-int:* *2.*lint
SEARCHPATH *-obj:* *2.*lobj

Thus, for example, the default intmod and objmod file names for a module FOa compiled for
eMS on eMS are "foo.cmsint" and "foo.cmsobj" and the default intmod and objmod file names
for a module FOO compiled for XCMS on XCMS are "foo.xcmint" and "foo.xcmobj".

- 51 -

VM/SP CMS MAINSAIL User's Guide

15. CONF, MAINSAIL Confignrator

This chapter assumes familiarity with the CONF section of the "MAINSAIL Utilities User's
Guide".

15.1. ST ACKSIZE Command

On both CMS and XCMS, the fIST ACKSIZE" command applies to the stack size for the initial
coroutine ("MAINSAIL") as well as to the stack size for each new coroutine. The standard
configuration file automatically defines a default value for this parameter.

15.2. VMlSP CMS-Specific Information

In addition to the machine-independent commands described in the CONF section of the
"MAINSAIL Utilities User's Guide", the CMS implementation of MAINSAIL provides the
additional command shown in Table 15.2-1.

CONF Command
CMSBITS

Meaning
Set eMS-specific attributes.

Table 15.2-1. VM/SP CMS-Specific CONF Command

The "CMSBITS" command allows the user to specify CMS-specific attributes. The values
currently available are shown in Table 15.2-2. The "CMSBITS" values '2 and '4 are used
together to govern which, if any, FORTRAN initialization routine is called from the boot if
there are foreign modules. Figure 15.2-3 shows the relationship between these "CMSBITS"
values and the FORTRAN initialization routine called.

The default CONF parameters are normally kept in the file "CMS CNF". Systemwide changes
should always be made to this file.

The output of CONF is a System/370 assembly language file that is assembled to make a new
bootstrap. Before the bootstrap can be assembled, the CMS command "GLOBAL MACLm

- 52-

VM/SP CMS MAINSAIL User's Guide

Foreign
Module(s)
Sg~Q;i.f;i.~Q
No
Yes
Yes
Yes

Value
'2
, 4

Meaning
Interface to FORTRAN 77
Do not initialize FORTRAN

Table 15.2-2. Currently Available CMSBITS Values

FORTRAN IV
CMSBITS CMSBITS Init
Value '2 Value ' 4 Routine
SI2~Qifi~Q S12~Qifi~Q ~gll~Q,

NIA NIA No
NIA Yes No
No No Yes
Yes No No

The initialization routines called are "IBCOM#"
FORTRAN IV) and "VFEIN#" (for FORTRAN 77) .

FORTRAN 77
Init
Routine
~gll~Q

No
No
No
Yes

(for

Figure 15.2-3. Relationship between CMSBITS and FORTRAN Initialization Routines

DMSSP CMSLIB OSMACRO" must be given to define the standard CMS and OS macro
simulation macro libraries.

Example 15.2-4 shows a sample session with CONF and how to assemble and link the resulting
bootstrap. Default values are restored from the file "CMS CNF" and the bootstrap is written to
the file "MAINSA ASSEMBLE". Note that the CMS "GLOBAL" statement is needed in order
to assemble the bootstrap, and that it must be assembled with the "NO ALIGN" option.

15.3. VM!XA SP eMS-Specific Information

In addition to the machine-independent commands described in the CONF section of the
"MAINSAIL Utilities User's Guide", the XCMS implementation of MAINSAIL provides the
additional commands shown in Table 15.3-1.

- 53 -

VM/SP CMS MAINSAIL User's Guide

.mainsa<eol>
MAINSAIL (R) Version 12.10 (1 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file CMS.CNF
CONF: .bootfilename mainsa.assemble<eol>
CONF: .<eol>
Bootstrap written in file FIX>MAINSA.ASSEMBLE
*.<eol>

(Control returns to CMS)

.global maclib dmssp cmslib osmacro<eol>

.assemble mainsa (noalign<eol>

.load mainsa <clear<eol>

.genmod mainsa <all<eol>

.mainsa<eol>

(MAINSAIL is invoked)

Example 15.2-4. CONF Session

CONF COmmand
XCMSBITS

Meaning
Set XCMS-specific attributes.

Table 15.3-1. VM/XA SP CMS-Specific CONF Commands

The "XCMSBITS" command allows the user to specify XCMS-specific attributes. The values
currently available are shown in Table 15.3-2. The "XCMSBITS" values' 1 and '2 are used
together to govern which, if any, FORTRAN initialization routine is called from the boot if
there are foreign modules. Figure 15.3-3 shows the relationship between these "XCMSBITS"
values and the FORTRAN initialization routine called.

- 54-

VM/SP eMS MAINSAIL User's Guide

Value Meaning
'1 Interface to FORTRAN 77
'2 Do not initialize FORTRAN

Table 15.3-2. Currently Available XCMSBITS Values

FORTRAN IV FORTRAN 77
Foreign XCMSBITS XCMSBITS Init Init
Module(s) Value '1 Value '2 Routine Routine
SQ~Qifi~Q SQ~Qifi~Q SQ~Qifi~Q ~gll~Q ~all~Q

No N/A N/A No No
Yes N/A No No No
Yes No No Yes No
Yes Yes No No Yes

The initialization routines called are "IBCOM#" (for
FORTRAN IV) and "VFEIN#" (for FORTRAN 77) .

Figure 15.3-3. Relationship between XCMSBITS and FORTRAN Initialization Routines

The default CONF parameters are normally kept in the file "XCMS CNF". Systemwide
changes should always be made to this file.

The output of CONF is a System/370 assembly language file that is assembled to make a new
bootstrap. Before the bootstrap can be assembled, the CMS command "GLOBAL MACLm
DMSSP CMSLIB OS MACRO " must be given to define the standard CMS and OS macro
simulation macro libraries.

Example 15.3-4 shows a sample session with CONF and how to assemble and link the resulting
bootstrap. Default values are restored from the file "XCMS CNF" and the bootstrap is written
to the file "MAINSA ASSEMBLE". Note that the CMS "GLOBAL" statement is needed in
order to assemble the bootstrap, and that it must be assembled with the "NOALIGN" option.
The amode and rmode options in the "GENMOD" command are necessary for the resulting
bootstrap to run in 31-bit mode. These options may be omitted, in which case the resulting
bootstrap will run in 24-bit mode.

- 55 -

VM/SP CMS MAINSAIL User's Guide

.mainsa<eol>
MAINSAIL (R) Version 12.10 (1 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file XCMS.CNF
CONF: .bootfilename mainsa.assemble<eol>
CONF: .<eol>
Bootstrap written in file FIX>MAINSA.ASSEMBLE
*.<eol>

(Control returns to CMS)

.global maclib dmssp cmslib osmacro<eol>

.hasm mainsa (noalign<eol>

.load mainsa (c1ear<eol>

.genmod mainsa (amode 31 rmode 24<eo1>

.mainsa<eol>

(MAINSAIL is invoked)

Example 15.3-4. CONF Session

In order to make use of the 31-bit address capability of XCMS, the virtual machine size must
be greater than 16M. Use the CMS "DEFINE STORAGE" command to set the virtual machine
size.

It is important that the virtual machine size be larger than the value of the MAINSAIL
"MAXMEMORYSIZE" CONF parameter. This is to ensure that MAINSAIL does not allocate
all of the available memory and is important because certain CMS routines called by
MAINSAIL may themselves allocate memory. If MAINSAIL has allocated all of the available
memory, all CMS procedures that attempt to allocate memory will fail.

On XCMS, memory is allocated from high addresses to low addresses. Thus, the
$memoryGrowsDown bit (bit 'HI) in the CONF "CONFIGURA TIONBITS" parameter must
be set.

- 56-

VM/SP CMS MAINSAIL User's Guide

16. System Calls

16.1. Introduction

The SVC System Calls provide access to the SVC 202 and SVC 203 instructions from
MAINSAIL. Since VM/SP CMS system macros are invoked through the SVC 202 instruction,
the SVC System Calls provide a way to invoke system macros from MAINSAIL. The SVC
System Calls are available on CMS but not on XCMS.

The CMSCALL System Call provides access to the CMSCALL macro from MAINSAIL. The
CMSCALL macro invokes a CMS command, CMS function, EXEC, or user MODULE. Refer
to the "VM/XA SP CMS Application Program Development Reference" for more information
about the CMSCALL macro. The CMSCALL System Call is available on XCMS but not on
CMS.

The Diagnose Call provides access to the diagnose instruction from MAINSAIL. The
Diagnose Call is available both on CMS and on XCMS.

The SVC System Calls, the CMSCALL System Call, and the Diagnose Call should be avoided
if possible since the resulting code is CMS-dependent or XCMS-dependent. If it is necessary
that an application program use these capabilities, the code that does so should be isolated so
that it can easily be changed when the program is ported.

16.2. SVC System Calls

System calls of SVC types 202 and 203 are currently supported. CMS macros that expand to
either an SVC 202 or an SVC 203 call can be invoked directly from MAINSAIL. Other SVC
types are not presently supported but may be supported upon request.

The procedure headers for the SVC System Calls are shown in Figure 16.2-1. For the $svc202
call, parrnString is the charadr of the tokenized parameter list and ePList is the charadr of the
extended parameter list. The user is responsible for the information in these lists. value is the
value to be placed in the high-order byte of GPR1. Two procedures, $svc203a and $svc203b,
are provided for SVC 203 calls. If the SVC 203 call expects a parameter list, use $svc203a; if
the SVC 203 call expects its parameters to be in registers, use $svc203b.

- 57 -

VM/SP CMS MAINSAIL User's Guide

GENERIC
PROCEDURE

INTEGER
PROCEDURE

INTEGER
PROCEDURE

INTEGER
PROCEDURE

$svc

$svc202

$svc203a

$svc203b

"$svc202,$svc203a,$svc203b";

(CHARADR par.mString;
OPTIONAL INTEGER value;
OPTIONAL CHARADR ePList) ;

(INTEGER SVCCode;
CHARADR par.mString);

(INTEGER SVCCode;
OPTIONAL LONG BITS ROIn;
OPTIONAL LONG BITS R1In;
OPTIONAL LONG BITS ROOut;
OPTIONAL LONG BITS R10ut) ;

Figure 16.2-1. Procedure Header for SVC System Calls

16.2.1. SVC System Call Example

This section describes how to use the SVC System Calls to invoke a CMS macro.

Suppose that a program needs to invoke the CMS macro T APECTL. Refer to the "mM
VM/370 System Programmer's Guide" for more information about this macro. The format of
the parameter list expected must first be determined. To do this, write a short assembly
language program that invokes the macro, as shown in Figure 16.2.1-1. Assemble this program
an~ examine the macro expansion in the listing file produced. The macro expansion for
TAPECTL is shown in Figure 16.2.1-2. MAINSAIL must set up this parameter list before
calling $svc. Table 16.2.1-3 shows one way to do this.

- 58-

VM/SP CMS MAINSAIL User's Guide

PRINT GEN
BALR 15,0
USING *,15
TAPECTL REW,TAP1,MODE=(9,6250)
BR 14
END

Figure 16.2.1-1. Assembly Language to Expand CMS Macro TAPECTL

TAPECTL REW,TAP1,MODE=(9,6250)
+ CNOP 0,4
+ BAL 1,DMSOOO1A
+ DC CL8'TAPEIO'
+ DC CL8'REW'
+ DC CL4' TAP1'
+ DC BLl'110l0011' ,AL3(O)
+ DC 2F'O'
+DMSOOOIA SVC 202

Figure 16.2.1-2. Macro Expansion for CMS Macro TAPECTL

- 59 -

VM/SP CMS MAINSAIL User's Guide

PROCEDURE callTapectl;
BEGIN
INTEGER i;
CHARADR c,svcBuffer;
c := svcBuffer := $newScratchChars(32);
cWrite(c,'T','A','P','E' ,'I','O','
cWrite(c,'R' ,'E','W',' ',' ','
cWrite(c,'T' ,'A' ,'P' ,'1');
cWrite(c,cvi('HD3),O,O,O);
cWrite(c,O,O,O,O,O,O,O,O);
IF i := $svc(svcBuffer) THEN

, , ,
, , , , , ,

,) ;

,) ;

errMsg("TAPECTL: REW function error ",cvs(i»;
scratchDispose(svcBuffer) END;

Table 16.2.1-3. Code to Invoke Procedure $svc for CMS Macro TAPECTL

Some CMS system macros return data in registers RO and/or Rl. For example, the macro
FSST A TE returns the address of the file status table (FST) in register R 1. The macro
expansion for FSSTATE is shown in Figure 16.2.1-4. After the SVC instruction is executed,
register R 1 is loaded with a pointer to the FST, located at offset 28 from the beginning of the
parameter list passed to the supervisor call. MAINSAIL code that invokes this SVC 202 call
will have set up a buffer and passed its address to the procedure $svc. After $svc has been
invoked, the MAINSAIL statement:

a := cva(lbLoad(svcBufAdr,28»;

can be used to obtain the address of the the FST.

- 60-

VM/SP CMS MAINSAIL User's Guide

FSSTATE (R3),FORM=E
+ CNOP 0,4
+ BAL 1,DMS0170A
+ DC CL8'ESTATE'
+ DC CL8' ,
+ DC CL8' ,
+ DC CL8 f ,
+ DC CL2' ,
+ DC CL2' ,
+ DC AL4(0)
+DMS0170A EQU *
+ MVC 8 (18, 1) , 0 (R3)
+ SVC 202
+ DC AL4(*+8)
+ L 1,28(,1)

Figure 16.2.1-4. Macro Expansion for CMS Macro FSSTATE

16.3. CMSCALL System Call

The procedure header for the CMSCALL System Call is shown in Figure 16.3-1. pList and
epList are the charadrs for the tokenized parameter list and extended parameter list,
respectively. The user is responsible for the information in these lists. callTyp, uFlags,
doCopy, doModify, and fence specify values for the CALLTYP, UFLAGS, COPY, MODIFY,
and FENCE arguments in the CMSCALL macro.

INTEGER
PROCEDURE $crnsCall (CHARADR pList,epList;

INTEGER callTyp,uFlagsi
BOOLEAN doCopy,doModify,fence);

Figure 16.3-1. Procedure Header for CMSCALL System Call

- 61 -

VM/SP CMS MAINSAIL User's Guide

16.3.1. CMSCALL System Call Example

The example shown in Table 16.3.1-1 invokes CMSCALL to execute a CMS or CP command.

INTEGER PROCEDURE executeCmsOrCpCmd (STRING S)i

BEGIN
INTEGER i;
CHARADR c;
OWN CHARADR scratchBufi * s contains the tokenized command string
IF NOT scratchBuf THEN

scratchBuf := $newScratchChars($pageSize)i
c := scratchBuf;
copy(cvc(s),c,length(s»; c := displace(c,length(s»;
FOR i := 1 UPTO 8 DO cWrite(c,cvi('HFF»i
RETURN (

$cmsCall(
scratchBuf,NULLCHARADR,O,O,TRUE,FALSE,TRUE»;

END;

PROCEDURE doListCmd (OPTIONAL STRING diskName) ;
BEGIN
INTEGER i;
STRING r,si
s := "LISTFILE* * " . ,
r := IF NOT diskName THEN "A" EL cvu(r);

. cWrite(s,cRead(r»;
cWrite(s,IF r THEN cRead(r) EL ' ')i

write(s," (EXEC ") i

IF i := $executeCmsOrCpCmd(s) THENB

END;

Table 16.3.1-1. Sample Code That Invokes CMSCALL

- 62-

VM/SP CMS MAINSAIL User's Guide

16.4. Diagnose System Call

The Diagnose Call allows the execution of the diagnose instruction from MAINSAIL.

The procedure header for the Diagnose Call is shown in Figure 16.4-1. diagnoseCode is the
code indicating the diagnose routine to be executed. Rxln, RxPluslIn, Ryln, RyPluslIn, and
R15 are input parameters for the diagnose instruction. Register assignment is handled by the
Diagnose Caller. Most diagnose instructions require only some of the parameters. Those not
required can either be passed as 'OL or be omitted if none of the following parameters is coded.
RxOut, RyOut, RyPlusl0ut, and completionCode are the diagnose output parameters.
completionCode is the value of register 15 after execution of the diagnose instruction. The
condition code is returned as the procedure result and should be checked only if the diagnose
instruction sets the condition code.

INTEGER
PROCEDURE $diagnose (

INTEGER
OPTIONAL LONG BITS
OPTIONAL LONG BITS
OPTIONAL LONG BITS
OPTIONAL LONG BITS
OPTIONAL LONG BITS
PRODUCES OPTIONAL
PRODUCES OPTIONAL
PRODUCES OPTIONAL
PRODUCES OPTIONAL

LONG
LONG
LONG
LONG

diagnoseCode;
RxIn;
RxPluslIn;
RyIn;
RyPluslIn;
R15;

BITS RxOut;
BITS RyOut;
BITS RyPluslOut;
INTEGER completionCode);

Figure 16.4-1. Header for Diagnose Call

16.4.1. Diagnose Call Example

Suppose that a program needs to execute the diagnose instruction for the pseudo timer
(diagnose code 12). Rxln must be the address of a 32-byte area on a doubleword boundary
where the date and time infonnation is stored. Refer to the "IBM VM/370 System
Programmer's Guide" for more information about this diagnose instruction.

- 63-

VM/SP CMS MAINSAIL User's Guide

Example 16.4.1-1 shows how the storage area may be created and how the diagnose call is
invoked.

BEGIN
ADDRESS a;

DEFINE
pseudoTimer 12;

* a must be on a double word boundary. Allocate 5
*doublewords (the pseudo timer uses only 4) and then
* adjust the address by displacing by the length of a
* doubleword - 1 and and then rounding down (clearing the
* low order bits) .
IF NOT a THEN

a := cva(cvlb(displace(newScratch(S * 8),7)) CLR '7L);
* $diagnose returns date and time at address a as follows:
* mm/dd/yy
* hh:mm:ss
* virtual cpu time * total cpu time
$diagnose(pseudoTimer,a);
END;

Example 16.4.1-1. Invoking the Pseudo Timer Diagnose Instruction

- 64-

VM/SP eMS MAINSAIL User's Guide

17. Foreign Language Interface

This chapter contains CMS-specific infonnation for the MAINSAIL Foreign Language
Interface (FLI). Refer to the "MAINSAIL Compiler User's Guide" for a general description of
theFLI.

17.1. MAINSAIL to FORTRAN Compilers

There are two MAINSAIL-to-FORTRAN compilers; one interfaces to FORTRAN IV, the other
to FORTRAN 77 (VS FORTRAN). Both forms of FORTRAN are available on CMS; only
FORTRAN 77 is available on XCMS. These compilers may also be used to interface to
assembly language that follows the FORTRAN calling convention.

The default output file name for the MAINSAIL-to-FORTRAN compilers is
"FIX(80»<module name>.assembler" when compiling on CMS and tI<module name>.asm"
when cross-compiling from another operating system.

17.1.1. Data Types

FORTRAN IV parameters are mapped into MAINSAIL parameters as shown in Table
17.1.1-1.

- 65-

VM/SP CMS MAINSAIL User's Guide

FQRTRAN
LOGICAL*l

INTEGER*2

INTEGER*4

REAL*4

REAL*8

LOGICAL*l array

array

MAINSAIL
BOOLEAN

INTEGER or BITS

LONG INTEGER,
LONG BITS

REAL

LONG REAL

STRING

ARRAY or ADDRESS

Representation Passed
byte

halfword

fullword

fullword

doubleword

address of first
character

address of first
element

Table 17.1.1-1. Mapping FORTRAN IV Data Types to MAINSAIL Data Types When Using
the FCC

FORTRAN 77 parameters are mapped into MAINSAIL parameters as shown in Table 17.1.1-2.

- 66-

VM/SP eMS MAINSAIL User's Guide

FQRTRAN MAINSAIL
LOGICAL*l BOOLEAN

INTEGER*2 INTEGER or BITS

INTEGER*4 LONG INTEGER,
LONG BITS

REAL * 4 REAL

REAL * 8 LONG REAL

LOGICAL*l array CHARADR

CHARACTER*n STRING

array ARRAY or ADDRESS

Representation Passed
byte

halfword

fullword

fullword

doubleword

address of first
character

address of first
character, length
of string

address of first
element

Table 17.1.1-2. Mapping FORTRAN 77 Data Types to MAINSAIL Data Types When Using
the FCC

Pointer variables may not be passed to FORTRAN. Modifies and produces parameters of the
types string and array are also not allowed.

Uses arguments are passed to FORTRAN by value; modifies and produces arguments are
passed by value result. Produces arguments are initialized to Zero.

17.2. Foreign Language Interface Example, MAINSAIL to FORTRAN IV

Suppose that the MAINSAIL module CALFIV is to call the FORTRAN IV subroutine PROC1.
Figures 17.2-1 t 17.2-2t and 17.2-3 show the module CALFIV t the MAINSAIL FLI module
TOFIV, and the FORTRAN IV subroutine PROCl t respectively. Example 17.2-4 shows how
to compile and run CALFIV.

- 67-

VM/SP CMS MAINSAIL User's Guide

MAINSAIL Module CALFIV (in file CALFIV MSL) :

BEGIN "calFiv"

MODULE toFiv (
PROCEDURE proc1

) :

PRODUCES LONG INTEGER
LONG INTEGER
PRODUCES BOOLEAN
REAL ARRAY(l TO 2)
STRING
PRODUCES INTEGER

INITIAL PROCEDURE:
BEGIN
INTEGER
LONG INTEGER

sLen:
tt:

STRING s;
REAL ARRAY(l TO 2) rAry:

tt;
uu,vv;
bo:
rAry:
s:
sLen) ;

* FORTRAN IV subroutine PROC1 does the following: * (1) adds uu and vv and returns the result in tt * (2) sets bo to be TRUE * (3) swaps the 1st and 2nd elements of rAry * (4) computes the length of s and returns the * result in sLen
new (rAry) : rAry[l] := 1.0: rAry[2] := 2.0:
s := "This is a string" & cvcs(O):
proc1(tt,lL,2L,bo,rAry,s,sLen):
write (logFile,

END;

"tt: ",tt,eol &
"bo: ",IF bo THEN "TRUE" EL "FALSE" & eol &
"rAry[l]: ",rAry[l], " rAry[2]: ",rAry[2],eol &
Its: ",s,eol &
"sLen: ",sLen,eol);

END "calFiv"

Figure 17.2-1. MAINSAIL Module CALFIV That Calls FORTRAN IV Subroutine PROCI

- 68-

VM/SP CMS MAINSAIL User's Guide

MAINSAIL Module TOFIV (in file TOFIV MSL) :

BEGIN "toFiv"

MODULE toFiv (
PROCEDURE·procl

PRODUCES LONG INTEGER
LONG INTEGER

tt;
uu,VVi
bOi
rAry;
Si

sLen)i
) ;

PRODUCES BOOLEAN
REAL ARRAY(l TO 2)
STRING
PRODUCES INTEGER

PROCEDURE procl (
PRODUCES LONG INTEGER
LONG INTEGER
BOOLEAN
REAL ARRAY (1 TO 2)
STRING
PRODUCES INTEGER

END "toFiv"

tt;
uu,VV;
bOi
rArYi
Si

sLen)ii

Figure 17.2-2. MAINSAIL Foreign Language Interface Module TOFIV

- 69-

VM/SP eMS MAINSAIL User's Guide

FORTRAN IV subroutine PROC1 (in file FIV FORTRAN) :

SUBROUTINE PROC1 (TT,UU,VV,RARY,S,SLEN)
INTEGER*2 SLEN
INTEGER*4 TT,UU,VV
LOGICAL*l BO
REAL*4 RARY(2),TEMP
LOGICAL*l S(512)
TT = UU + vv
BO = .TRUE.
TEMP = RARY(l)
RARY(l) = RARY(2)
RARY(2) = TEMP
SLEN = 0

100 CONTINUE
IF (.NOT. S(SLEN+1» GOTO 150
SLEN = SLEN + 1
GOTO 100

150 CONTINUE
RETURN
END

Figure 17.2-3. FORTRAN IV Subroutine PROC1 Called by MAINSAIL

(1) Compile CALFIV with the MAINSAIL CMS compiler.
Compile TOFIV with the FCC to FORTRAN I~ (by
specifying the compiler subcommand "fli tf") .

. mainsa<eol>
MAINSAIL (R) Version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.compil<eol>

Example 17.2-4. MAINSAIL to FORTRAN IV Example (continued)

-70 -

VM/SP CMS MAINSAIL User's Guide

MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (7 for help): .calfiv.msl<eol>

calfiv.msl1 ...

compile (7 for help): .tofiv.msl,<eol>
>fli tf<eol>
><eol>

tofiv.msl 1 ...

compile (? for help): .<eol>
*.<eol>
(control returns to CMS)

(2) Make a new MAINSAIL bootstrap that declares TOFIV to
be a foreign module. NOTE: The foreign module names
are converted to uppercase, as the CMS assembler
accepts only uppercase characters .

. mainsa<eol>
MAINSAIL (R) Version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file CMS.CNF
CONF: .bootfilename fcc<eol>
CONF: .foreignmodules TOFIV<eol>
CONF: .~
Bootstrap written in file FIX>fcc.assemble
*.<eol>
(control returns to CMS)

(3) Compile the FORTRAN IV code with FORTRAN IV
compiler.

Example 17.2-4. MAINSAIL to FORTRAN IV Example (continued)

-71 -

VM/SP eMS MAINSAIL User's Guide

(4) Assemble and link the new MAINSAIL bootstrap. The
"global maclib" command makes available all macro
libraries required to assemble the MAINSAIL
bootstrap. NOTE: the MAINSAIL bootstrap and all FLI
interface code MUST be assembled with the (NOALIGN
option. The "global txtlib" command makes available
the FORTRAN IV initialization routine called by
MAINSAIL .

. global maclib dmssp cmslib osmacro<eol>

.assemble fcc (noalign<eol>

.assemble tofiv (noalign<eol>

.global txtlib fortmod2<eol>

.load fcc tofiy fiv (clear reset msent<eol>

.genmod fcc (all<eol>

(5) Run the new executable MAINSAIL bootstrap and call
the foreign procedure .

. fcc<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.calfiv<eol>

Example 17.2-4. MAINSAIL to FORTRAN IV Example (end)

-72 -

VM/SP eMS MAINSAIL User's Guide

17.3. Foreign Language Interface Example, MAINSAIL to FORTRAN 77

Suppose that the MAINSAIL module CALF77 is to call the FORTRAN 77 subroutine PROCI.
Figures 17.3-1, 17.3-2, and 17.3-3 show the module CALF77, the MAINSAIL FLI module
T0F77, and the FORTRAN 77 subroutine PROel, respectively. Example 17.3-4 shows how
to compile and run CALF77.

-73 -

VM/SP CMS MAINSAIL User's Guide

MAINSAIL Module CALF77 (in file CALF77 MSL) :

BEGIN "calF77"

MODULE toF77 (
PROCEDURE proc1

) ;

PRODUCES LONG INTEGER
LONG INTEGER
PRODUCES BOOLEAN
REAL ARRAY(l TO 2)
STRING
PRODUCES INTEGER

INITIAL PROCEDURE;
BEGIN
INTEGER
LONG INTEGER

sLen;
tt;

STRING s;
REAL ARRAY(l TO 2) rAry;

tt;
uu,vv;
bo;
rAry;
s;
sLen) ;

* FORTRAN 77 subroutine proc1 does the following: * (1) adds uu and vv and returns the result in tt * (2) sets bo to be TRUE * (3) swaps the 1st and 2nd elements of rAry * (4) computes the length of s and returns the * result in sLen
new(rAry); rAry[l] := 1.0; rAry[2] := 2.0;
s := "This is a string" & cvcs(O);
proc1(tt,lL,2L,rAry,s,sLen) ;
write (logFile,

END;

"tt: ",tt,eol &
"bo: ",IF bo THEN "TRUE" EL "FALSE" & eol &
"rAry[l]: ",rAry[l], " rAry[2]: ",rAry[2],eol &
liS: ",s,eol &
"sLen: ",sLen,eol);

END "calF77"

Figure 17.3-1. MAINSAIL Module CALF77 That Calls FORmAN 77 Subroutine PROCI

-74 -

VM/SP CMS MAINSAIL User's Guide

MAINSAIL Module TOF77 (in file TOF77 MSL) :

BEGIN "toF77"

MODULE toF77 (
PROCEDURE procl

PRODUCES LONG INTEGER
LONG INTEGER

tti
UU,VVi

bOi

rArYi
Si

sLen)i
) i

PRODUCES BOOLEAN
REAL ARRAY(l TO 2)
STRING
PRODUCES INTEGER

PROCEDURE procl (
PRODUCES LONG INTEGER
LONG INTEGER
BOOLEAN
REAL ARRAY(l TO 2)
STRING
PRODUCES INTEGER

END "toF77"

tti

UU,VVi

bOi

rArYi
Si

sLen) ii

Figure 17.3-2. MAINSAIL Foreign Language Interface Modul~ T0F77

-75 -

VM/SP eMS MAINSAIL User's Guide

FORTRAN 77 subroutine PROC1 (in file F77 FORTRAN) :

SUBROUTINE PROC1 (TT,UU,VV,RARY, S, SLEN)
INTEGER*2 SLEN
INTEGER*4 TT,UU,VV
LOGICAL*l BO
REAL*4 RARY(2) ,TEMP
CHARACTER S*(*),ZERO
TT = UU + VV
BO = . TRUE.
TEMP = RARY (1)
RARY(l) = RARY(2)
RARY(2) = TEMP
ZERO = CHAR(O)
SLEN = 0

100 CONTINUE
IF (S(SLEN+1:SLEN+l) .EQ. ZERO) GOTO 150
SLEN = SLEN + 1
GOTO 100

150 CONTINUE
RETURN
END

Figure 17.3-3. FORTRAN 77 Subroutine PROC1 Called by MAINSAIL

. (1)· Compile CALF77 with the MAINSAIL CMS compiler.
Compile TOF77 with the FCC to FOR~RAN 77 (by
specifying the compiler subcommand "fli t7") .

. mainsa<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.compil<eol>

Example 17.3-4. MAINSAIL to FORTRAN 77 Example (continued)

-76 -

VM/SP CMS MAINSAIL User's Guide

MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (7 for help): .calf77.msl<eol>

calf77.msll ...

compile (7 for help): .tof77.msl,<eol>
>fli t7<eol>
>~

tof77.msll ...

compile (7 for help): .<eol>
*.<eol>

(control returns to CMS)

(2) Make a new MAINSAIL bootstrap that declares TOF77 to
be a foreign module and declares that FORTRAN 77 code
is to be called (by specifying "cmsbits '2").
The CMSBITS command is necessary in order that
MAINSAIL invoke the correct FORTRAN initialization
routine. NOTE: The foreign module names are
converted to ~ppercase, as the CMS assembler accepts
only uppercase characters.

Exampie 17.3-4. MAINSAIL to FORTRAN 77 Example (continued)

-77 -

VM/SP eMS MAINSAIL User's Guide

.mainsa<eol>
MAINSAIL (R) Version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file CMS.CNF
CONF: .bootfilenarne fcc<eol>
CONF: .foreignmodules TOF77<eol>
CONF: .cmsbits '2<eol>
CONF: .<eol>
Bootstrap written in file FIX>fcc.assemble
*.<eol>

(control returns to CMS)

(3) Compile the FORTRAN 77 code with the FORTRAN 77
compiler.

(4) Assemble and link the new MAINSAIL bootstrap. The
"global mac lib" command makes available all macro
libraries required to assemble the MAINSAIL
bootstrap. NOTE: The MAINSAIL bootstrap and all FLI
interface code MUST be assembled with the (NOALIGN
option. The "global txtlib" command makes available
the FORTRAN 77 initialization routine called by
MAINSAIL. The "global loadlib" command makes
available FORTRAN 77 routines required at runtime .

. global maclib dmssp cmslib Osmacro<eol>

.assemble fcc (noalign<eol>

.assemble tof77 (noalign<eol>

.global txtlib vsf2fort<eol>"

.global loadlib vsf2Ioad<eol>

.load fcc tof77 £77 (clear reset msent<eol>

On CMS, do:

.genmod fcc (all<eol>

Example 17.3-4. MAINSAIL to FORTRAN 77 Example (contiriued)

-78 -

VM/SP eMS MAINSAIL User's Guide

On XCMS, do:

.genmod fcc (amode 31 rmode 24<eol>

(5) Run the new executable MAINSAIL bootstrap and call
the foreign procedure .

. fcc<eol>
MAINSAIL (R) Version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.calf77<eol>

Example 17.3-4. MAINSArr... to FORTRAN 77 Example (end)

-79 -

VM/SP eMS MAINSAIL User's Guide

17.4. FORTRAN to MAINSAIL Compilers

There are two FORTRAN-to-MAINSAIL compilers; one interfaces to FORTRAN IV. the other
to FORTRAN 77 (VS FORTRAN)~ Both forms of FORTRAN are available on CMS; only
FORmAN 77 is available on XCMS. These compilers may also be used to interface to
assembly language that follows the FORTRAN calling conventions.

The default output file name for the FORTRAN-to-MAINSAIL compilers is
"FIX(80»<module name>.assembler" when compiling on CMS and "<module name>.asm"
when cross-compiling from another operating system.

The $foreignCodeStartsExecution option has been implemented for both FORTRAN IV to
MAINSAIL and FORmAN 77 to MAINSAIL on CMS, and FORTRAN 77 to MAINSAIL on
XCMS.

17.4.1. Data Types

FORTRAN IV parameters are mapped into MAINSAIL parameters as shown in Table
17.4.1-1.

- 80-

VM/SP CMS MAINSAIL User's Guide

MAINSAIL FQB!RAN Bsn;a;:e~en:ta:t ion Ea~~ed.
BOOLEAN LOGICAL*l byte

INTEGER or BITS INTEGER*2 halfword

LONG INTEGER, INTEGER*4 fullword
LONG BITS

REAL REAL*4 fullword

LONG REAL REAL*8 doubleword

CHARADR LOGICAL*l array address of first
character

ADDRESS array address of first
element

Table 17.4.1-1. Mapping FORmAN IV Data Types to MAINSAIL Data Types When Using
theMEC

FORmAN 77 parameters are mapped into MAINSAIL parameters as shown in Table 17.4.1-2.

- 81 -

VM/SP CMS MAINSAIL User's Guide

MAINSAIL
BOOLEAN

INTEGER or BITS

LONG INTEGER,
LONG BITS

REAL

LONG REAL

CHARADR

ADDRESS

STRING

FQRTRAN
LOGICAL*l

INTEGER*2

INTEGER*4

REAL * 4

REAL*8

LOGICAL*l array

array

CHARACTER*n

R~Qr~~~ntgtiQn Pg~~~Q.
byte

halfword

fullword

fullword

doubleword

address of first
character

address of first
element

address of first
character, length
of string

Table 17.4.1-2. Mapping FORTRAN 77 Data Types to MAINSAIL Data Types When Using
theMEC

Pointer and array variables may not be passed from FORTRAN to MAINSAIL. String
parameters may not be passed from FORTRAN IV to MAINSAIL but may be passed from
FORTRAN 77 to MAINSAIL. Modifies and produces parameters of the types pointer, string,
charadr, and address are also not allowed and the MAINSAIL procedure cannot produce a
pointer, string, or array.

17.5. Foreign Language Interface Example, FORTRAN IV to MAINSAIL

Suppose that the FORTRAN IV subroutine CALLMS is to call the MAINSAIL procedure
procl. Figures 17.5-1, 17.5-2, 17.5-3, and 17.5-4 show the FORTRAN IV subroutine
CALLMS, the MAINSAIL module MSMOD that contains procedure proc 1, the MAINSAIL
FLI module TOFIV, and the MAINSAIL module CALFIV that calls the FORTRAN IV
subroutine CALLMS. Example 17.5-5 shows how to compile and run CALLMS.

- 82-

VM/SP CMS MAINSAIL User's Guide

FORTRAN IV code for CALLMS (in file CALLMS FORTRAN) :

C

SUBROUTINE CALLMS
INTEGER*4 LI1,LI2,RESULT,PROC1
LOGICAL*l BO
EXTERNAL PROC1

C MAINSAIL PROC1 DOES THE FOLLOWING:
C (1) ADDS ITS FIRST TWO PARAMETERS AND RETURNS
C THE RESULT
C (2) SETS BO TO BE .TRUE.
C

BO = .FALSE.
LI1 = 1
LI2 = 2
RESULT = PROC1(LI1,LI2,BO)
WRITE(6,1000) RESULT
IF (RESULT .NE. 3) WRITE(6,1010)
IF (.NOT. BO) WRITE (6, 1020)

1000 FORMAT(' Result is ',I6)
1010 FORMAT(' FAILURE: Incorrect result')
1020 FORMAT(' FAILURE: BO should be .TRUE.')

RETURN
END

Figure 17.5-1. FORTRAN IV Subroutine CALLMS That Calls MAINSAIL Procedure procl

- 83 -

VM/SP CMS MAINSAIL User's Guide

MAINSAIL Module MSMOD (in file MSMOD MSL) :

BEGIN "msMod"

MODULE msMod (
LONG INTEGER PROCEDURE procl (

LONG INTEGER lil,li2;
PRODUCES BOOLEAN bo);

) ;

LONG INTEGER PROCEDURE procl (
LONG INTEGER lil,li2;
PRODUCES BOOLEAN bo);

BEGIN
bo := TRUE;
RETURN(lil + li2);
END;

END "msMod"

Figure 17.5-2. MAINSAIL Module MSMOD Called by FORTRAN IV Subroutine CALLMS

MAINSAIL Module TOFIV (in file TOFIV MSL) :

BEGIN "toFiv"

MODULE toFiv (PROCEDURE callMs);

PROCEDURE callMs;;

END "toFiv"

Figure 17.5-3. MAINSAIL Foreign Language Interface Module TOPlV

- 84-

VM/SP CMS MAINSAIL User's Guide

MAINSAIL Module CALFIV (in file CALFIV MSL) :

BEGIN "calFiv"

MODULE toFiv (PROCEDURE callMs)i

INITIAL PROCEDURE;
callMsi

END "calFiv"

Figure 17.5-4. MAINSAIL Module CALFIV That Calls FORTRAN IV Subroutine CALLMS

(1) Compile MSMOD and CALFIV with the MAINSAIL CMS
compiler. Compile MSMOD with the MEC from FORTRAN IV
(by specifying the compiler subcommand "fli ff").
Compile TOFIV with the FCC to FORTRAN IV (by
specifying the compiler subcommand "fli tf") .

. mainsa<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 19B6, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.compil<eol>

MAINSAIL (R) .Compiler
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (? for help): .msmod rnsl<eol>

msmod . ms 1 1 ...

compile (? for help): .calfiv.msl<eol>

calfiv.msll ...

Example 17.5-5. FORTRAN IV to MAINSAIL Example (continued)

- 85 -

VM/SP CMS MAINSAIL User's Guide

compile (1 for help): .msmod,msl,<eol>
>.fli ff<eol>
>.<eol>

msmod.msl 1 ...

compile (1 for help): .tofiv,msl,<eol>
>.fli tf<eol>
>.<eol>

tofiv.msl 1 ...

compile (1 for help): .~
*.<eol>

(control returns to CMS)

(2) Make a new MAINSAIL bootstrap that declares TOFIV to
be a foreign module. NOTE: The foreign module names
are converted to uppercase, as the CMS assembler
accepts only uppercase characters .

. mainsa<eol>
MAINSAIL (R) Version 12.10 (1 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file CMS.CNF
CONF: .bootfilename mec<eol>
CONF: .foreignmodules TOFIV<eol>
CONF: .<eol>
Bootstrap written in file FIX>mec.assemble
*.~

(control returns to CMS)

(3) Compile the FORTRAN IV code with FORTRAN IV
compiler.

Example 17.5-5. FORTRAN IV to MAINSAIL Example (continued)

- 86-

VM/SP eMS MAINSAIL User's Guide

(4) Assemble and link the new MAINSAIL bootstrap. The
"global maclib" command makes available all macro
libraries required to assemble the MAINSAIL
bootstrap. NOTE: The MAINSAIL bootstrap and all FLI
interface code MUST be assembled with the (NOALIGN
option. The "global txtlib" command makes available
the FORTRAN IV initialization routine called by
MAINSAIL .

. global maclib dmSSp cmslib osmacro<eol>

.assemble mec (noalign<eol>

.assemble msmod (noalign<eol>

.assemble tofiv (noalign<eol>

.global txtlib fortmod2<eol>

.load mec msmod tofiv callms <clear reset msent<eol>

.genmod mec (all<eol>

(5) Run the new executable MAINSAIL bootstrap and call
the foreign procedure .

. mec<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.calfiv<eol>
Result is 3
*.<e01>

Example 17.5-5. FORTRAN IV to MAINSAIL Example (end)

- 87 -

VM/SP eMS MAINSAIL User's Guide

17.6. Foreign Language Interface Example, FORTRAN IV to MAINSAIL,
$foreignCodeStartsExecution

Suppose that the FORTRAN IV program CALLMS is to call the MAINSAIL procedure procl
and that execution starts in the FORTRAN IV code. The FORTRAN IV program CALLMS is
the same as that shown in Figure 17.5-1 except that the SUBROUTINE statement is omitted.
The MAINSAIL module MSMOD that contains the procedure procl is the same as that shown
in Figure 17.5-2. Example 17.6-1 shows how to compile and run CALLMS.

(1) Compile·MSMOD with the MAINSAIL CMS compiler. Compile
MSMOD with the MEC from FORTRAN IV (by specifying the
compiler subcommand "fli ff") .

. mainsa<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.compil<eol>

MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (? for help): .msmod,msl<eol>

msmod.msl 1 ...

compile (? for help): .msmod,msl,<eol>
>.fli ff<eol>
>.<eol>

msmod.msl 1 ...

compile (? for help): .<eol>
*.<eol>

Example 17.6-1. FORTRAN IV to MAINSAIL Example, $foreignCodeStartsExecution
(continued)

- 88 -

VM/SP eMS MAINSAIL User's Guide

(control returns to CMS)

(2) Make a new MAINSAIL bootstrap that declares that
execution starts in foreign code (by specifying
"configurationbits '10") .

. mainsa<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file CMS.CNF
CONF: .bootfilename mec<eol>
CONF: .configurationbits '10<eol>
CONF: .<eol>
Bootstrap written in file FIX>mec.assemble
*.<eol>

(control returns to CMS)

(3) Compile the FORTRAN IV code with the FORTRAN IV
compiler.

(4) Assemble and link the new MAINSAIL bootstrap. The
"global maclib" command makes available all macro
libraries required to assemble the MAINSAIL
bootstrap. NOTE: The MAINSAIL bootstrap and all FLI
interface code MUST be assembled with the (NOALIGN
option. The "global txtlib" command makes available
the FORTRAN IV initialization routine called by
MAINSAIL .

. global maelib dmssp emslib osmaero<eol>

.assemble mee (noalign<eol>

.assemble msmod (noalign<eol>

.global txtlib fortmod2<eol>

.load mee msmod callms

.genmod mec (all<eol>

Example 17.6-1. FORTRAN IV to MAINSAIL Example, $foreignCodeStartsExecution
(continued)

- 89-

VM/SP CMS MAINSAIL User's Guide

(5) Run the executable file "mec" .

. mec<eol>
Result is 3

(control returns to eMS)

Example 17.6-1. FOR'IRAN IV to MAINSAIL Example, $foreignCodeStartsExecution (end)

- 90-

VM/SP eMS MAINSAIL User's Guide

17.7. Foreign Language Interface Example, FORTRAN 77 to MAINSAIL

Suppose that the FORTRAN 77 subroutine CALLMS is to call the MAINSAIL procedure
procl. Figures 17.7-1, 17.7-2, 17.7-3, and 17.7-4 show the FORTRAN 77 subroutine
CALLMS, the MAINSAIL module MSMOD that contains procedure procl, the MAINSAIL
FLI module T0F77, and the MAINSAIL module CALF77 that calls the FORTRAN 77
subroutine CALLMS. Example 17.7-5 shows how to compile and run CALLMS.

FORTRAN subroutine CALLMS (in file CALLMS FORTRAN) :

C

SUBROUTINE CALLMS
INTEGER*4 LI1,LI2,RESULT,PROC1
LOGICAL*l BO
CHARACTER*24 Sl,S2
EXTERNAL PROC1

C MAINSAIL PROC1 DOES THE FOLLOWING:
C (1) ADDS ITS FIRST TWO PARAMETERS AND RETURNS
C THE RESULT
C (2) COMPARES Sl AND S2; SETS TO .TRUE. IF THE
C STRINGS ARE EQUAL AND TO .FALSE. IF THE
C STRINGS ARE NOT EQUAL
C

LI1 = 1
LI2 = 2
BO .TRUE.
Sl = 'First string to compare'
S2 = 'Second string to compare'
RESULT = PROC1(LI1,LI2,Sl,S2,BO)
WRITE(6,1000) RESULT
IF (RESULT .NE. 3) WRITE(6,1010)
IF (BO .EQV .. TRUE.) WRITE(6,1020)

1000 FORMAT(' Result is ' ,I6)
1010 FORMAT(' FAILURE: Incorrect result')
1020 FORMAT(' FAILURE: String compare failed')

RETURN
END

Figure 17.7-1. FORTRAN 77 Subroutine CALLMS That Calls MAINSAIL Procedure proc 1

- 91 -

VM/SP CMS MAINSAIL User's Guide

MAINSAIL Module MSMOD (in file MSMOD MSL) :

BEGIN "msMod"

MODULE msMod (
LONG INTEGER PROCEDURE proc1 (

LONG INTEGER li1,li2;
STRING
PRODUCES BOOLEAN

) ;

sl,s2;
bo);

LONG INTEGER PROCEDURE proc1 (
LONG INTEGER li1,li2;
STRING
PRODUCES BOOLEAN

BEGIN

sl,s2;
bo) ;

bo := IF sl NEQ s2 THEN FALSE EL TRUE;
RETURN(li1 + li2);
END;

END "msMod"

Figure 17.7-2. MAINSAIL Module MSMOD Called by FORTRAN 77 Subroutine CALLMS

MAINSAIL Module TOF?? (in file TOF?? MSL) :

BEGIN "toF??"

MODULE toF?? (PROCEDURE callMs);

PROCEDURE callMs;;

END "toF??"

Figure 17.7-3. MAINSAIL Foreign Language Interface Module T0F77

- 92-

VM/SP CMS MAINSAIL User's Guide

MAINSAIL Module CALF77 (in file CALF77 MSL):

BEGIN "caIF77"

MODULE toF77 (PROCEDURE callMs);

INITIAL PROCEDUREi
callMsi

END "caIF77"

Figure 17.7-4. MAINSAIL Module CALF77 That Calls FORTRAN 77 Subroutine CALLMS

(1) Compile MSMOD and CALF77 with the MAINSAIL CMS
compiler. Compile MSMOD with the MEC from FORTRAN 77
(by specifying the compiler subcommand "fli f7") .
Compile TOFIV with the FCC to FORTRAN 77 (by
specifying the compiler subcommand "fli t7") .

. mainsa<eol>
MAINSAIL (R) Version 12.10 (1 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.compil<eol>

MAINSAIL (R) Compiler
Copyright (c) 1984; 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (1 for help): .msmod.msl<eol>

msmod.msl 1 ...

compile (1 for help): .calf77.msl<eol>

calf77.msl 1 ...

Example 17.7-5. FORTRAN 77 to MAINSAIL Example (continued)

- 93 -

VM/SP CMS MAINSAIL User's Guide

compile (? for help): .msmod.msl,<eol>
>.fli f7<eol>
>.<eol>

msmod.msl 1 ...

compile (? for help): .tof77.msl,<eol>
>.fli t7<eol>
>.<eol>

tof77.msl1 ...

compile (7 for help): .<eol>
*.<eol>

(control returns to CMS)

(2) Make a new MAINSAIL bootstrap that declares TOF77 to
be a foreign module and declares that FORTRAN 77
code is to be called (by specifying "cmsbits '2").
The CMSBITS command is necessary in order that
MAINSAIL invoke the correct FORTRAN initialization
routine. NOTE: The foreign module names are
converted to uppercase, as the CMS assembler accepts
only uppercase characters .

. mainsa<eol>
MAINSAIL (R) Version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file CMS.CNF
CONF: .bootfilename mec<eol>
CONF: .foreignmodules TOF77<eol>
CONF: .cmsbits '2<eo1>
CONF: .<eol>
Bootstrap written in file FIX>mec.assemble
*.<eo1>

Example 17.7-5. FORTRAN 77 to MAINSAIL Example (continued)

- 94-

VM/SP eMS MAINSAIL User's Guide

(control returns to CMS)

(3) Compile the FORTRAN 77 code with the FORTRAN 77
compiler.

(4) Assemble and link the new MAINSAIL bootstrap. The
"global maclib" command makes available all macro
libraries required to assemble the MAINSAIL
bootstrap. NOTE: The MAINSAIL bootstrap and all FLI
interface code MUST be assembled with the (NOALIGN
option. The "global txtlib" command makes available
the FORTRAN 77 initializati6n routine called by
MAINSAIL. The "global loadlib" command makes
available FORTRAN 77 routines required at runtime .

. global maclib dmssp cmslib osmacro<eol>

.assemble mec (noalign<eol>

.assemble msmod (noalign<eol>

.assemble tof77 (noalign<eol>

.global txtlib vsf2fort<eol>

.global loadlib vsf2Ioad<eol>

. load mec mamod tof77 callms (clear reset msent<eol>

On CMS, do:

.genmod mec (all<eol>

On XCMS, do:

.genmod mec (amode 31 rmode 24<eol>

(5) Run the new executable MAINSAIL bootstrap and call
the foreign procedure.

Example 17.7-5. FORTRAN 77 to MAINSAIL Example (continued)

- 95 -

VM/SP eMS MAINSAIL User's Guide

.mec<eol>
MAINSAIL (R) Version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.calf77<eol>
Result is 3
*.<eol>

Example 17.7-5. FORTRAN 77 to MAINSAIL Example (end)

- 96-

VM/SP eMS MAINSAIL User's Guide

17.8. Foreign Language Interface Example, FORTRAN 77 to MAINSAIL,
$foreignCodeStartsExecution

Suppose that the FORTRAN 77 program CALLMS is to call the MAINSAIL procedure proc1
and that execution starts in the FORTRAN 77 code. The FORTRAN 77 program CALLMS is
the same as that shown in Figure 17.7-1 except that the SUBROUTINE statement is omitted.
The MAINSAIL module MSMOD that contains procedure proc 1 is the same as that shown in
Figure 17.7-2. Example 17.8-1 shows how to compile and run CALLMS.

(1) Compile MSMOD with the MAINSAIL CMS compiler. Compile
MSMOD with the MEC from FORTRAN 77 (by specifying the
compiler subcommand "fli f7") .

. mainsa<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*.compil<eol>

MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (? for help): .msmod.msl<eol>

msmod.msl 1 ...

compile (? for help): .msmod.msl,<eol>
>.fli f7<eol>
>.<eol>

msmod.msl 1 ...

compile (? for help): .<eol>
*.<eol>

Example 17.8-1. FORTRAN 77 to MAINSAIL Example, $foreignCodeStartsExecution
(continued)

- 97-

VM/SP CMS MAINSAIL User's Guide

(control returns to CMS)

(2) Make a new MAINSAIL bootstrap that declares that
execution starts in foreign code (by specifying
"configurationbits '10") and declares that
FORTRAN 77 code is being used (by specifying
"cmsbits '2"). The "CMSBITS" command is necessary in
order that MAINSAIL invoke the correct FORTRAN
initialization routine .

. mainsa<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo park, California, USA.
*.conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file CMS.CNF
CONF: .bootfilename mec<eol>
CONF: .configurationbits '10<eol>
CONF: .cmsbits '2<eol>
CONF: .~
Bootstrap written in file FIX>mec.assemble
*.<eol>

(control returns to CMS)

(3) Compile the FORTRAN 77 code with the FORTRAN 77
compiler.

(4) Assemble and link the new MAINSAIL bootstrap. The
"global mac lib" command makes available all macro
libraries required to assemble the MAINSAIL
bootstrap. NOTE: The MAINSAIL bootstrap and all FLI
interface code MUST be assembled with the (NOALIGN
option. The "global txtlib" command makes available
the FORTRAN 77 initialization routine called by
MAINSAIL. The "global loadlib" command makes
available FORTRAN 77 routines required at runtime.

Example 17.8-1. FORTRAN 77 to MAINSAIL Example, $foreignCodeStartsExecution
(continued)

- 98-

VM/SP eMS MAINSAIL User's Guide

.global maelib dmssp emslib osmaero<eol>

.assemble mee (noalign<eol>

.assemble msmod (noalign<eol>

.global txtlib vsf2fort<eol>

.global loadlib vsf2load<eol>

.load mee msmod eallms

On CMS, do:

.genmod mee (all<eol>

On XCMS, do:

.genmod mee (amode 31 rmode 24<eol>

(5) Run the executable file "mee" .

. mee<eol>
Result is 3

(control returns to eMS)

Example 17.8-1. FORTRAN 77 to MAINSAIL Example, $foreignCodeStartsExecution (end)

- 99-

VM/SP CMS MAINSAIL User's Guide

17.9. Caveats

MAINSAIL stores arrays in row-major form whereas FORTRAN stores them in column-major
form; the user must take this into consideration for multidimensional arrays.

If FORTRAN violates the boundaries of a MAINSAIL array parameter, or if it changes the
characters of a string parameter, the results are unpredictable.

17.10. FORTRAN IV and FORTRAN 77 Compatibility

Within one MAINSAIL session, either FORTRAN IV or FORTRAN 77 routines can be
invoked, but not both.

- 100-

VM/SP eMS MAINSAIL User's Guide

18. Program Exceptions

18.1. Introduction

Under VM/SP eMS and VM/XA SP eMS, a user program may enable or disable interrupts
resulting from certain program exceptions. Program exceptions for which the interrupt
mechanism may be enabled or disabled are fixed point overflow, decimal overflow, exponent
underflow, and significance.

All program exceptions that cause an interrupt and for which the interrupt is enabled are
trapped by the MAINSAIL error handling mechanism and reported to the user. The
MAINSAIL bootstrap automatically enables interrupts caused by fixed point overflow, decimal
overflow, and exponent underflow. The interrupt caused by significance is not enabled, since
the code generated for "cvr" and "cvlrlt can potentially cause this program exception.

18.2. $spm

A MAINSAIL program running under eMS or XCMS may directly specify whether or not a
program exception should cause an interrupt by invoking the procedure $spm. The procedure
header for $spm is shown in Figure 18.2-1. $spm issues an SPM (Set Program Mask)
instruction with the data passed in the parameter programMask. This instruction sets both the
condition code and the program mask bits of the current PSW (Program Status Word). Bits 2
and 3 (0 is the high-order bit) must contain the condition code and bits 4 through 7 the program
mask. Figure 18.2-2 shows the correspondence between the program mask bits and interrupts.
A "0" indicates that the interrupt is disabled; a It 1" indicates that it is enabled. Refer to the
"System/370 Principles of Operation" for more information.

PROCEDURE $spm (LONG BITS programMask);

Figure 18.2-1. Procedure Header for Procedure $spm

- 101 -

VM/SP eMS MAINSAIL User's Guide

Bit
4

5
6
7

Interrupt
Fixed point overflow
Decimal overflow
Exponent underflow
Significance

Figure 18.2-2. Correspondence between Program Mask Bits and Interrupts

18.3. Example of Calling $spm

Example 18.3-1 shows how to call $spm. The $spm call shown disables the fixed point
overflow program exception. Decimal overflow, exponent underflow, and significance remain
enabled; if any of these occurs, an interrupt is generated and an error reported by the
MAINSAIL error handling mechanism.

PROCEDURE disableFixedPointOverflow;
$spm('H07000000L);

Example 18.3-1. Calling $spm

- 102-

VM/SP CMS MAINSAIL User's Guide

19. File System

19.1. File Names

VM/SP CMS and VM/XA SP CMS MAINSAIL file names use a single dot rather than spaces
to separate the various file name components. For example, the CMS file name of the form:

<file name> <file type> <file mode>

is specified to MAINSAIL as:

<file name>.<file type>.<file mode>

Since CMS file names must have a file type, MAINSAIL appends" .MDAT A" if <file type> is
not specified. If <file mode> is omitted, MAINS All.. uses the file mode "A" if the file is being
created, otherwise "*".

Lowercase characters in a file name are converted to upper case before they are seen by CMS.

19.2. File Formats

MAINSAIL correctly processes CMS fixed and variable files. The standard MAINSAIL view
of a text file is a stream of bytes, with lines separated by <eol> (for EBCDIC, <eol> = linefeed
= 37 decimal). This format is called the "byte stream" format MAINSAIL uses the CMS fix
file format with record size 2048 for byte stream files.

19.2.1. Sequential Text Input File Formats

The input records of a text file are automatically translated by the MAINSAIL runtime system
into the MAINSAIL byte stream format, which is then made available to the user's program.
Thus, the user program need not concern itself with the CMS concept of records except to
ensure that the proper translation is applied. Table 19.2.1-1 describes the translation algorithm
for each device prefix.

- 103 -

VM/SP CMS MAINSAIL User's Guide

Device Prefix
BS

Translation Algorithm
Byte stream file: Fixed-length records.
No translation takes place.

FIX

VAR

Fixed-length records: Trailing blanks are
discarded and <eol> is appended.

Variable-length records: <eol> is
appended.

Table 19.2.1-1. Input Translation Rules for Text Files

If no device prefix is specified, the device prefix used depends on the CMS file format, as
shown in Table 19.2.1-2. MAINSAIL fails to open a file if the device prefix is explicitly
specified and there is a conflict between it and the format of the existing file.

eMS Format
FIX(n), n 2048
FIX(n), n NEQ 2048
VAR

peyice Prefix Used
BS
FIX
VAR

Table 19.2.1-2. Default Device Prefixes for Sequential Text Input

19.2!2. Sequential Text Output File Formats

For a file opened for sequential output, the standard MAINSAIL runtime system recognizes the
prefixes shown in Table 19.2.2-l. Here, "n" indicates an optional record size.

- 104-

VM/SP CMS MAINSAIL User's Guide

Device Prefix
BS

FIX(n)

VAR(n)

Output Format
Fixed-length records of size 2048. Byte
stream format. The output stream is
packed into the records with no
translation. This is the most efficient
format for MAINSAIL, but is not understood
by eMS text processing utilities since
there is no relationship between lines and
records.

Fixed-length records of size n, default
n = 80. A new output record is started
when either n bytes are output or an
<eol> character is output. In the latter
case the <eol> is discarded and the record
is padded with blanks to make it n bytes.

Variable-length records of maximum size n,
default n = 132. A new output record is
started when either n bytes are output or
an <eol> character is output. In the
latter case the <eol> is discarded.
Records are not padded with blanks.

Table 19.2.2-1. Device Prefixes for Sequen.tial Text Output

If a device prefix is specified, the file is created according to the device specification. If a
device prefix is not specified, the device prefix "V AR(132»" is used; i.e., the default format for
sequential text output files is V -format with a maximum record length of 132.

19.2.3. Sequential Data File Formats

Any data file can be opened for sequential input Sequential output data files must be either
byte stream or fixed format (the default is byte stream).

- 105 -

VM/SP eMS MAINSAIL User's Guide

19.2.4. Random File Formats

Any text file can be opened for random input. Random text output files must be byte stream
format (fixed-length records of 2048 bytes). Random data output files can be either byte stream
or fix format (the default is byte stream).

19.2.50 Converting Between File Formats

The MAINSAIL utility module COPIER can be used to convert between file formats by
explicitly specifying the device module for the output file. Refer to the "MAINSAIL Utilities
User's Guide" for a complete description of this utility.

- 106-

VM/SP eMS MAINSAIL User's Guide

20. System Information Procedures

All file names returned by the file information procedures are MAINSAll.. file names; i.e., It." is
included between <file name> and <file type>, and between <file type> and <file mode>, and
the file name is converted to lower case.

20.1. $currentDirectory

$currentDirectory always returns "A", meaning- the A disk.

20.2. $homeDirectory

$homeDirectory always returns "A", meaning the A disk.

20.3. $directory (for CMS Disk Files)

$directory returns a list of all files on the minidisk specified by directoryName. If
directoryName is omitted, the It Alt disk is assumed.

If $fullPathNames is specified, the file mode is returned as part of the file name; otherwise it is
omitted.

$reportAllVersions is ignored.

20.4. $filelnfo (for CMS Disk Files)

$fileInfo returns information from the FST for the specified file. The extended format FSCB is
used.

The file mode is included in p.$fullPathName. p.$osdSize is set to the alternate number of
records times the record length. p.ScreateDate and p.$createTime are both set to OLe
p.$modifyDate and p.$modifyTime are set from the alternate date and time infonnation.

- 107 -

VM/SP CMS MAINSAIL User's Guide

20.5. $userId

$userld executes the diagnose instruction with code '0 and returns as a string the user
identification information returned by that instruction.

20.6. $cpuId

$cpuld returns a string of length ten that contains the CPU serial number followed by the CPU
model number.

20.7. Command Line

MAINSAIL obtains the command line from CMS when it is invoked. The command line
provided by CMS may be in one of two forms, depending on how MAINSAIL is invoked. If
MAINSAIL is invoked by typing a program name at the CMS prompt, then CMS provides the
command line in the form of an extended parameter list. If MAINSAIL is invoked from within
a CMS EXEC file, then eMS provides the command line in the form of a tokenized parameter
list. MAINSAIL determines the form of the command line provided by eMS. If it is in the
form of an extended parameter list, then MAINSAIL does not modify the string obtained from
eMS. If it is in the form of a tokenized parameter list, then MAINSAIL puts one space
between each token. In either case, the command line does not include the name of the
program invoked.

20.8. $programName

$programName is set to be the first argument in the parameter list or extended parameter list.

20.9. Exit Codes

On eMS, the $successExitCode is defined to be 'OL and $failureExitCode is defined to be 'IL.
The exit code is returned in register 15 when MAINSAIL exits.

- 108-

VM/SP CMS MAINSAIL User's Guide

20.10. $environment

TEMPORARY FEATURE: SUBJECT TO CHANGE

MAINSAIL provides access to operating system dependent environment parameters. CMS
MAINSAIL defines a system variable:

INTEGER $environment;

which is the value of the high order byte of general purpose register 1 (GPR1) upon entry to
MAINSAIL. The meaning of these values is described in "VM/SP System Programmer's
Guide tI. For example, if $environment is 13, it means that MAINSAIL was invoked from an
CMS EXEC file with" &CONTROL MSG" in effect.

- 109-

VM/SP CMS MAINSAIL User's Guide

21. Character Set

The EBCDIC character set is used. Table 21-1 shows EBCDIC codes used by MAINSAIL.

Character
null character, $nulChar
(typically ignored in
text input files)

tab (horizontal tab)

eol (end-of-line)

eop (end-of-page)

left square bracket

right square bracket

EBCDIC Code (decimal)
o (nul)

5 (ht)

37 (linefeed)

12 (formfeed)

173* (print chain left
bracket for standard
EBCDIC character set)

189* (print chain right
bracket for standard
EBCDIC character set)

* MAINSAIL software also treats cent sign and vertical
bar (character codes 74 and 79) as left square
bracket and r:f.ght square bracket, respecti ve.ly ..

Table 21-1. EBCDIC Codes Used by MAINSAIL

- 110-

VM/SP CMS MAINSAIL User's Guide

22. Terminal 1/0

VM/SP CMS and VM/XA SP CMS MAINSAIL support I/O from both ASCII and IBM 3270
terminals. In both cases, output is buffered until (1) an <eo!> character (linefeed) is output, (2)
the output buffer is full, or (3) a terminal read occurs. In each case, the buffer is output as a
line to the terminal. Thus, output characters are not seen on the terminal until one of the above
events occurs. The size of the output buffer depends on the terminal being used.

- 111 -

VM/SP eMS MAINSAIL User's Guide

23. MAINEDIT, MAINSAIL Editor

The MAINSAll... editor is available on VM/SP CMS and VM/XA SP CMS. Refer to the
"MAINEDIT User's Manual" for a complete description of the editor.

Since CMS is half-duplex, the user interaction is different from that on full-duplex systems.
The cursor is placed either at the top or at the bottom of the screen whenever the editor is
waiting for input. The actual cursor position in the text is marked in a terminal-dependent
fashion; inverse video and bright mode are commonly used.

Commands are entered on the input line and are seen by the editor only when <eol> has been
typed. Any number of commands can be entered on the input line. When <eol> is typed, all
commands on the input line are processed and the screen is updated.

In general, entering a response to a prompt requires a terminating <eol>. In this case, it is
necessary to type an additional <eol> (the first <eol> is not seen by the editor since it just
terminates input).

Executing recursive macros and searches can be aborted by pressing the A 1TN key once and
then typing <abort> key followed by <eo1>. In order to use this feature, the terminal mode
must be set to VM; i.e., pressing the A TfN key once should send an interruption to the virtual
machine and place the virtual machine in VM READ status. The command "CP TERMINAL
MODE VM" sets the terminal mode to VM; VM is the default terminal mode.

In order that the screen be updated properly, the terminal LINESIZE setting must be OFF.
When the editor is invoked, it automatically detects and remembers the current terminal
LINESIZE setting and then sets it to OFF. Upon exit, the terminal LINESIZE setting is
restored to its original value. If the editor is abnormally t~rminated, the terminal LINESIZE is
not restored. In this case, use the "CP TERMINAL LINESIZE" command to restore the
desired LINESIZE setting.

- 112-

VM/SP CMS MAINSAIL User's Guide

24. Suggested VM/SP CMS and VM/XA SP CMS Terminal
Characteristics

Some of the default characters used by the CMS "TERMINALtt command are also used by
MAINSAIL. For example, the default CMS terminal ESCAPE character is "n, which is used
by MAINSAIL to delimit strings. With this default, it is necessary to type '''''' in order that ''''
be entered into a file. Problems such as these can be eliminated with the CMS commands
shown in Figure 24-1.

cp term chardel <BS>
cp term linedel <~U>
cp term escape off
cp term linend -

(backspace key)
(control-U)

Figure 24-1. Suggested CMS Terminal Characteristics

- 113-

VM/SP CMS MAINSAIL User's Guide

25. IBM System/370 andSystem/370 Extended
Architecture Processor-Dependent Information

This chapter describes information specific to the IBM System/370 IBM System/370 Extended
Architecture processors. The two processors are nearly identical except that the Extended
Architure has a larger address space. Except where otherwise noted, features described for the
System/370 apply to both processors.

25.1. Procedure Size

The size of a procedure is limited to 20K bytes on the System/370.

25.2. System/370 Data Types

Refer to Table 25.2-1. A storage unit on the System/370 is one byte (8 bits).

25.3. Miscellaneous Information

The standard representation for boolean FALSE is all bits clear, and the standard for boolean
TRUE is low-order bit set, all other bits clear. However, in forms such as "IF <boolean
variable> THEN ... ", <boolean variable> is considered to be TRUE if any bits are set

String variables have both the length and charadr component equal to Zero for the string Zero
(no characters).

-114 -

VM/SP eMS MAINSAIL User's Guide

Data type
boolean
integer

long integer

real

long real

bits
long bits
string

address

charadr
pointer

Representation
1 half word (2 bytes)
Standard System/370 integer format
(1 half word, 2 bytes)
Standard System/370 long integer format
(1 word, 4 bytes)
Standard System/370 single precision
floating point format (1 word, 4 bytes)
Standard System/370 double precision
floating point format (1 double word, 8
bytes)
1 half word (2 bytes)
1 word (4 bytes)
2 words (8 bytes): first word (low
address) is length, second word (high
address) is charadr of first character
Standard System/370 address (1 word, 24
bits right aligned, with the high-order
byte clear)
Same as address
Same as address

Table 25.2-1. IBM System/370 Data Types

- 115-

VM/SP eMS MAINSAIL User's Guide

26. Miscellaneous Information

26.1. Configuration String Location

Because of the way that the garbage collector currently works, strings must reside above the
address 32K. If a string does not reside above 32K, then the garbage collector will get
"confused" with unpredictable results. If you load your MAINSAIL boot anywhere below
32K, you must make sure that the strings in the CONF record are above 32K.

26.2. Disk Full Message

If MAINSAIL runs out of disk space, it prints the message "Disk full. Find some space, then
continue" and then prints the "Error Response:" prompt. At this point, the user may delete one
or more files using the utility module DELFIL. A directory listing may be obtained by
invoking the utility module CMSDIR. This module is VM/SP CMS-specific and is, therefore,
available only when running under VM/SP CMS, not VM/XA SP CMS.

If one or more files have been deleted, type <eol> in response to this prompt MAINSAIL
automatically reissues the write macro. If enough space has been made available, MAINSAIL
continues execution with no further "disk full" errors.

Example 26.2-1 shows the user interaction when the "disk full" error message is given.

26.3. Running MAINSAIL from a CMS EXEC File

MAINSAIL can be run from a CMS EXEC file. In this case, input to MAINSAIL is stacked
via the EXEC Control Statements &ST ACK and &BEGSTACK-&END.

The &BEGST ACK control statement is the preferred method of stacking non-empty input lines
because the lines between the &BEGSTACK and &END statements are not processed by the
EXEC interpreter and are therefore passed unmodified to MAINSAIL. Use the &ST ACK
control statement to stack a null input line.

CMS EXEC files that invoke MAINSAIL and stack input should be CMS V -format files. If the
EXEC file is a CMS F-format file, then all stacked lines are right-padded with blanks and such
input is not always desirable. MAINSAIL cannot in general strip all trailing blanks from input

- 116-

VM/SP CMS MAINSAIL User's Guide

(MAINSAIL is executing module A)

Error for file foo.dat

ERROR: FSWRITE: 13 - Disk is full. Find some space then
continue.

Execute CMSDIR for a directory listing and DELFIL to
delete files.

Error Response: .e cmsdir<eol>
Type <eol> to see the directory listing.
Type <eol> to continue after the directory listing has

been displayed .
. <eol>

(Directory Listing is Displayed)

.<eol>
Error Response: .e delfil<eol>
Next file to be deleted (just eol to stop): .bar.dat<eol>
Next file to be deleted (just eol to stop): .~
Error Response: .<eol>

(MAINSAIL continues executing module A)

Example 26.2-1. Disk Full User Interaction Example

lines because it can make no assumptions about how the input is going to be interpreted by a
user program; i.e., the user program may require one or more trailing blanks in response to a
prompt

- 117-

VM/SP eMS MAINSAIL User's Guide

- 118-

UNIX MAINSAIL User's Guide

UNIX MAINSAIL ®

Use.r's Guide
24 March 1989

27. Introduction

This document describes the MAINSAIL implementation for UNIX, the AT&T portable
operating system, and other UNIX-compatible operating systems. This document describes
only UNIX -specific MAINSAIL features. It assumes that the reader is familiar with the
"MAINSAIL Language Manual" and other machine-independent MAINSAIL documentation.

27.1. Version

This version of the "UNIX MAINSAIL User's Guide" is current as of Version 12.10 of
MAINSAIL. It incorporates the "UNIXV AX MAINSAIL Version 5.10 Release Note" of
September, 1982; the "Unix Version 7.4 Release Note" of May, 1983; the "UNIX MAINSAIL
Release Note, Version 8" of January, 1984; the "UNIX MAINSAIL Release Note, Version 9"
of February, 1985; the "UNIX MAINSAIL Release Note, Version 10" of March, 1986; and the
"UNIX MAINSAIL Release Note, Version 11" of July, 1987.

The different UNIX platforms are referred to as "flavors" of UNIX. In flavor-independent
examples of interaction with the UNIX shell, the percent sign ("%") is shown as the shell
prompt. In flavor-specific examples, the shell prompt used by the particular UNIX flavor is
shown. Common UNIX shell prompts include the dollar sign ("$"), the percent sign ("%"), and
the pound sign ("#").

- 120-

UNIX MAINSAIL User's Guide

.. ' 28. General Operation

28.1. Installation Assumptions

It is assumed that the MAINSAIL files have been installed on a directory called the
"MAINSAIL directory". The examples in this document assume that this directory is named
"/usr/mainsail/12.10". This naming convention is only a suggestion; the MAINSAIL directory
may have any name. Substitute the name of the MAINSAIL directory on your system· for the
string "/usr/mainsail/12.10" wherever it appears in the examples.

It is assumed that once the MAINS AIL bootstrap has been created, it is placed in the standard
directory for executable files (usually "/usr/bin") so that users do not need to type the full path
name of the MAINSAIL bootstrap each time they run MAINSAIL. If this assumption is not
satisfied, the discussion below must be modified accordingly; i.e., the full path name of the
MAINSAIL bootstrap must be typed each time MAINSAIL is invoked.

28.2. Invoking MAINSAIL

To run a MAINSAIL program type "mainsa<eol>" to the shell. MAINSAIL begins execution
and types a herald identifying itself and the version of MAINSAIL being used. It then types
"*" as a prompt and waits for input. The "*" prompt and possible responses to it are described
in the MAINEX section of the "MAINSAIL Utilities User's Guide".

28.3. Object Module File Names

The object module file name for a module compiled for UNIX is constructed by converting the
module name to lower case and appending to it the appropriate flavor-dependent prefix, as
shown in Table A.l-l; as described in Appendix A, this file name is usually mapped to a
different one through a searchpath. Use of the MAINSAIL compiler is described in the
"MAINSAIL Compiler User's Guide".

- 121 -

UNIX MAINSAIL User's Guide

29. CONF, MAINSAIL Configurator

The MAINSAIL configuration module, CONF, is described in the "MAINSAIL Utilities User's
Guide". In addition to the target-independent commands described therein, all UNIX versions
of CONF provide the additional commands shown in Table 29-1.

CONF Command
UNIXBITS

Meaning
Set UNIX-specific attributes.

Table 29-1. UNIX-Specific CONF Commands

29.1. "UNIXBITS"

This command is used to identify the UNIX flavor to the MAINSAIL runtime system. The
standard configumtion file automatically defines the value of this parameter correctly for the
current version of MAINSAIL on the host system. Unless otherwise specified, this value ID.llSt
be used. If an incorrect "UNIXBITS" value is given, MAINSAIL may not run at all.

If you maintain your own configuration files, you must update the "UNIXBITS" values in them
when you move to a new version of MAINSAIL or another flavor of UNIX.

29.2. Flavor-Specific CONF Commands

29.2.1. "SIGPC"

The CONF command "SIGPC" is required on some UNIX flavors. Its parameter is the offset to
the error PC in the UNIX stack frame when a UNIX signal is intercepted (if the error PC is not
available in portable C code). The "SIOPC" parameter must be correctly specified; otherwise,
signals cannot be correctly intercepted. The correct value for each system is specified in the
default configuration parameters file for each system. Always use this value when making a
bootstrap for any flavor of UNIX MAINSAIL for which a "SIOPC" value appears in the default
configuration file.

- 122-

UNIX MAINS~AIL User's Ouide

29.3. OS Memory Pool

" The OS memory pool, as specified by the CONF command "OS:MEMORYPOOLSIZE", is
implemented for UNIX. The specified amount of memory is first allocated with "malloc", then
deallocated, to provide a pool of memory to be used by C library and FLI procedures that
allocate memory using malloc. This avoids unused static pages in MAINSAIL's memory map.

29.4. General Use·

The default CONF parameters are normally kept in a standard configuration file on the
MAINSAIL directory. Table B.l-l in Appendix B gives the name of the standard
configuration file for each available UNIX flavor. UNIX systemwide changes should always be
made to this file. The CONF "SAVE" and "RESTORE" commands can be used to make
personal configuration files.

The output of CONF under UNIX is an assembly language file. This file must be assembled
and linked to make a UNIX executable file. Section B.2 in Appendix B shows how to run
CONF to make an executable MAINSAIL bootstrap from the output of CONF for each
available UNIX flavor.

UNIX CONF appends ".S" to the output file name if it does not already end in ".s".

- 123-

UNIX MAINSAIL User's Guide

30. MAINSAIL and the UNIX File System

30.1. File Deletion

On UNIX, when an existing file is opened for create access, the old version of the file is
immediately truncated to length zero whether or not it is currently open. Any program that has
the file currently open will therefore start reading data from the new (zero-length) version of
the file without receiving any warning that the data it was reading have disappeared.

30.2. MAINEDIT and Links

When MAINEDIT deletes an existing file and replaces it with a new version, it does not break
links; i.e., every file to which the updated file was a link is also updated.

30.3. Protection Mode of Files

The disk module propagates the protection mode of a file when replacing an existing file. If the
file does not exist, then MAINSAIL attempts to use the protection of the parent directory. If
this information is not ascertainable, then the default protection modes shown in Table 30.3-1
are used.

File type
textFile
dataFile

~ Group
rw- r--
rwx r-x

Table 30.3-1. Default Protection Mode

~
r--
r-x

If the current umask value (as set by the shell command Itumasklt) is non-zero, the protection
specified by MAINSAIL may not be the same as the protection actually given to the file. See
the UNIX documentation on It umask" for details.

- 124-

UNIX MAINSAIL User's Guide

30.4. Disk Full

If a write to a file fails because space on the device is exhausted. the resulting error message is
not fatal. The user may free up space on the device (e.g., with the MAINSAIL utility module
DELFIL) and continue; the write operation is reattempted.

- 125 -

UNIX MAINSAIL User's Guide

31. UNIX STREAMS

Child processes created with SOCPRO are in the same process group as the parent. This
should prevent children from staying around after the parent dies unexpectedly.

If the child's primary I/O is a lTY, the child is placed in its own private process group, so that
if a CTRL-C is passed to the child, the parent does NOT get interrupted. This is reasonable for
using a PTY as it would be used in a shell.

If the child's primary I/O device is NOT a TTY, e.g., is a pipe or socket as it would be for
SOCPRO, the child is left in the parent's process group so that when the parent dies, the child
receives the same signals that the parent received (e.g., SIGQUIn.

- 126-

UNIX MAINSAIL User's Guide

32. System Information Procedures

32.1. $currentDirectory

$currentDirectory returns the full path name of the current directory (". "). Symbolic links are
expanded; i.e., even if a symbolic link was originally specified in the system call that connected
to the current directory, the full directory name is returned. On some flavors, it is required that
every directory in the current path be readable.

32.2. $homeDirectory

$homeDirectory returns the value of the "HOME" environment variable.

32.3. $directory (for UNIX Disk Files)

$directory returns the names of the files in the specified directory. If $fu1IPathName is set, the
directory name and a slash character are prefixed to each file name. $reportAllVersions is
ignored. The files "." and It .. II are not included in the directory listing.

32.4. Command Line and $programName

$programName is set to the first element of the argument vector argv. The command line is
formed from the remaining eLements, separated by spaces.

32.5. $fileInfo (for UNIX Disk Files)

Since UNIX does not provide the creation date and time of a file, $filelnfo sets the fields
$createDate and $createTime of the class $filelnfoCls to OLe

32.6. $user ID

$userID calls cuserid or getpwuid, if available; otherwise, it returns the user name found in
"/etc/passwd" for the current user 10, as given by the UNIX caliltgetuidlt .

- 127-

UNIX MAINSAIL User's Guide

32.7. $cpuID

At presen4 $cpuID returns the null suing on every available flavor of UNIX.

On UNIX, if $cpuID would return the null string, it checks to see if $useAlternateCpuID
(,H2oo) is set in the configuration bits. If so, then it returns whatever is produced by the FLI
procedure $aIternateCpuID. This procedure must be provided by the user in an FLI module
called $aCpuID, declared as follows:

MODULE $aCpuID

INTEGER
PROCEDURE $alternateCpuID

(CHARADR buf; INTEGER bufSize);

) i

$alternateCpuID returns a null-terminated string no longer than bufSize at buf. $aCpuId should
be compiled with the appropriate Foreign Call Compiler and linked with a MAINSAIL
bootstrap in which the 'H200 bit was set in the "CONFIGURATIONBITS" command.

32.8. Exit Codes

The return code on UNIX is the value passed to the system call "exit". $successExitCode is
'OL and $failureExitCode is a long bits value in which every bit is set

32.9. $environment

The UNIX environment pointer array "environ" is made available to MAINSAIL programs on
UNIX as the string array $environment, declared as:

STRING ARRAY(l TO *) $environmenti

Each string in the array has the form "name::value". More information may be found in part 5
of the UNIX manuals under "environ".

- 128-

UNIX MAINSAIL User's Guide

33. Foreign Language Interface

This section contains UNIX-specific information for the MAINSAIL Foreign Language
Interface (FLI). Refer to the "MAINSAIL Compiler User's Guide" for a general description of
the FLI.

33.1. FLI Compilers

The Foreign Call Compiler (FCC) is used to call foreign procedures from MAINSAIL~ The
MAINSAIL Entry Compiler (MEC) is used to call MAINSAIL procedures from a foreign
language. Under UNIX, the FCC interfaces to C and is available on all available flavors of
UNIX. The:MEC also interfaces to C and is available for the flavors listed in Appendix A. If
the foreign language to be called does not conform to the C calling conventions, then the
standard FLI compilers cannot be used. Contact XIDAK if you wish an interface between such
a language and UNIX MAINSAIL.

The compiler subcommands required to specify the FLI's to and from C are "FLI TC" and "FLI
FC", except as documented in Appendix A.

The default output file name for the MAINSAIL FLI compilers is "<module name, converted to
lower case>.s".

33.2. Data Types

Table 33.2-1 shows how to map C data types.to MAINSAIL data types on UNIX operating
systems. The byte sizes shown are ustial for C implementations on byte-addressable machines,
although it is possible that users may encounter a dialect of C with data types of sizes other
than those shown in Table 33.2-1; if so, the following discussion must be modified accordingly.

Uses parameters are passed by value. Modifies and produces parameters are passed by
reference. The C "*" operator may be used when declaring modifies and produces parameters.

Uses parameters of types string and pointer can be passed from MAINSAIL to C. Parameters
of types pointer and string cannot be passed from C to MAINSAIL. Modifies and produces
parameters of types string and pointer are not allowed.

- 129-

UNIX MAINSAIL User's Guide

C type
short

long

pointer

float

double

char array

array

MAINSAIL type
BOOLEAN, INTEGER,
BITS

LONG INTEGER,
LONG BITS,

POINTER, ADDRESS

REAL

LONG REAL

STRING, CHARADR

ARRAY

Representation Passed
2 bytes

4 bytes

4 bytes

4 bytes

8 bytes

address of first
character*

address of
first element

* Refer to discussion concerning strings in this section

Table 33.2-1. MAINSAIL Data Types and Qualifiers

MAINSAIL strings can be directly passed to C, i.e., the parameter is declared using the
MAINSAll. string data type. C expects strings to be terminated with a null byte; "cWrite(s,O)"
can be used to append a null byte to the MAINSAIL string s.

When a pointer is passed to C, the C structure and the MAINSAIL class ~ust be declared such
that the data in the structure are accessed correctly by both languages. Some flavors of UNIX
have data alignment requirements that affect the location of members in C; structures; see
Appendix A for more information.

Array parameters are passed to C by passing the address of the first element of the array. The
Foreign Call Compiler generates code to convert each MAINSAIL array parameter to the
address of its first element MAINSAIL stores arrays in row-major form. If the foreign
language does not follow this convention, care must be taken with the indices.

A MAINSAIL nullArray is passed to C as a Zero address. C must check that the address is
non-Zero before accessing any array elements if there is a possibility that a MAINSAIL
nullArray has been passed.

- 130-

UNIX MAINSAIL User's Guide

The MAINSAIL representation of a boolean should be translated into C as a short, with 0
representing MAINSAIL FALSE and 1 representing MAINSAIL TRUE.

33.3. Caveat

When dealing with collectable data types (strings, pointers, and arrays), care must be taken not
to violate the data boundaries. Overwriting the wrong parts of these structures may cause
MAINSAIL to crash in ways that are difficult to trace. If, for example, a garbage collection
link is destroyed, MAINSAIL may run until a collection is triggered, at which point the results
are unpredictable.

Appendix A lists other restrictions and caveats for specific UNIX flavors.

33.4. MAINSAIL Foreign Call Compiler Example

Suppose that the MAINSAIL module CALLC calls the C procedure "procl lt
• Figures 33.4-1,

33.4-2, and 33.4-3 show the module CALLC, theC procedure proc1, and the MAINSAIL FLI
module TOC, respectively. Example 33.4-4 shows how to compile and run CALLC.

Module CALLC (in file "calle.msl"):

BEGIN "ealIC"

MODULE toC (
PROCEDURE procl (

PRODUCES INTEGER
INTEGER

) ;

PRODUCES CHARADR
POINTER(el)
STRING
BOOLEAN ARRAY(l TO 2)

CLASS cl (LONG INTEGER lil,li2);

i;
j, k;
c;
Pi
s;
ary);

Figure 33.4-1. MAINSAIL Module CALLC That Calls C Procedure procl (continued)

- 131 -

UNIX MAINSAIL User's Guide

INITIAL PROCEDUREi
1!> BEGIN

INTEGER
STRING
POINTER (cl)

ii
Si
Pi

CHARADR C,CCi

BOOLEAN ARRAY(l TO 2) arYi
C procedure procl does the following:
(1) adds j and k and returns the result in i
(2) creates a string and returns the address of its
first character in c
(3) swaps the values of the fields of CLASS c1
(4) prints the value of s
(5) sets ary[l] to be FALSE
p := new(cl)i p.li1 := 1Li p.li2 .= 2L;
s := "Hello there!" & cVCS(O)i
new (ary) ; ary[l] := ary[2] := TRUE;
proc1(i,1,2,c,p,s,ary);
ttyWrite("i = ",i,eol);
i := 0; cc := c; WHILE cRead(cc)
ttyWrite(

"String returned by procl
"p.lil = ",p.li1,"; p.li2
" a ry [1] = a ry [2]: ",

DO i .+ 1;

",newString(c,i),eol &
",p.li2,eol &

IF ary[l] = ary[2] THEN "TRUE" EL "FALSE",eol);
END;

END "callC"

Figure 33.4-1. MAINSAIL Module CALLC That Calls C Procedure procl (end)

- 132-

UNIX MAINSAIL User's Guide

C procedure procl (in file "cproc.c n):

procl (i,j,k,c,p,s,ary)
short *i;
short j,k;
char **c;
struct {int lil,li2;} *p;
char S[]i
short arY[]i
{

int tempi
*i = j + ki
c = "Bye for now ... "; / New value for string */
temp = p->lili p->lil = p->li2i p->li2 = tempi
printf("String is %s\n",s);
ary[l] = 0;
}

Figure 33.4-2. C Procedure proc1

- 133-

UNIX MAINSAIL User's Guide

MAINSAIL Module TOC (in file "toc.msl"):

BEGIN "toC"

MODULE toC (
PROCEDURE proc1 (

PRODUCES INTEGER
INTEGER
PRODUCES CHARADR
POINTER (cl)
STRING

ii
j, k;

Ci

Pi

BOOLEAN ARRAY(l TO 2)
Si

aryl i

) i

PROCEDURE proc1 (
PRODUCES INTEGER
INTEGER
PRODUCES CHARADR
POINTER (cl)
STRING
BOOLEAN ARRAY(l TO 2)

END "toC"

i;
j, k;

Ci

Pi
s;
aryl i

Figure 33.4-3. MAINSAIL Foreign Language Interface Module TOe

(1) Compile CALLC with the MAINSAIL UNIX compiler.
Compile TOC with the FCC to C (by specifying the
compiler subcommand "fli tc" on most UNIX systems;
see Appendix A for exceptions) .

% mainsa<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*compil<eol>

Example 33.4-4. MAINSAIL to C Example (continued)

- 134-

UNIX MAINSAIL User's Guide

MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, 1986,1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (? for help): callc.msl<eol>
Opening intmod for $SYS ...

callc .msl 1 ...

Objmod for CALLC on callc-xxx.obj
Intmod for CALLC not stored

compile (? for help): toc.msl,<eol>
>fli tc<eol>
><eol>
Opening intmod for $SYS ...

toc .msl 1 ...

Output for TOC on toc.s
Intmod for TOC not stored

compile (? for help): <eol>
*<eol>

(control returns to the UNIX shell)

(2) Make a new MAINSAIL bootstrap that declares Toe to be
a foreign module. The foreign module names must be
uppercase on all flavors of UNIX except ULTRIX-32,
on which the foreign module names must be lowercase.
UNIX assemblers are case-sensitive.

Example 33.4-4. MAINSAIL to C Example (continued)

-135 -

UNIX MAINSAIL User's Guide

% mainsa<eol>
MAINSAIL (R) Version 12.10 (1 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file

/usr/mainsail/12.10/xxx.cnf
CONF: bootfilename fcc,s<eol>
CONF: foreignmodules<eol>
FOREIGNMODULES is

Should be:
=<eol>
TOC<eol>
<eol>
CONF: <eo 1>
Bootstrap written in file fcc.s
*<eol>

(control returns to the UNIX shell)

(3) Compile the C code with the C compiler.

% cc -c cproc,c<eol>

(4) Assemble and iink the new MAINSAIL bootstrap. The
commands shown are typical of some UNIX flavors,
but do not apply to all UNIX flavors. Consult
Appendix B for details about how to
make MAINSAIL bootstraps.

% cc -0 fcc lusr/mainsail/12 10/m,0\<eol>
fcc,s toc,s cproc,o<eot>

(5) Run the new executable MAINSAIL bootstrap and call
the foreign procedure.

Example 33.4-4. MAINSAIL to C Example (continued)

- 136-

UNIX MAINSAIL User's Guide

% fcc<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*callc<eol>

Example 33.4-4. MAINSAIL to C Example (end)

33.5. MAINSAIL Entry Compiler Example

At present, the ability to invoke MAINSAIL from a C main program (referred to as foreign
code starts execution) is not supported on all flavors of UNIX. Appendix A lists the UNIX
flavors which support this feature.

Suppose that the C procedure callms is to call the MAINSAIL procedure proc!. Figures
33.5-1,33.5-2,33.5-3, and 33.5-4 show the C procedure callms, the MAINSAIL module
MSMOD that contains the procedure proc!, the MAINSAIL FLI module TOC, and the
MAINSAIL module CALLC that calls the C procedure callms, respectively. Example 33.5-5
shows how to compile and run callms.

- 137-

UNIX MAINSAIL User's Guide

C program (in file "callms.c"):

callms ()
{

/* MAINSAIL procl does the following:

*/

(1) Adds its first two arguments and returns
the result

(2) Sets bo to be TRUE

short bo;
int result,lil,li2;
bo = 0; ,IiI = 1; li2 = 2;
result = procl(lil,li2,&bo);
printf (nResult is %d\nn, result) ;
if (bo == 0) {printf(nFAILURE: bo should be nonZero\nn);}
}

Figure 33.5-1. C Procedure That Calls MAINSAIL Procedure proc1

- 138-

UNIX MAINSAIL User's Guide

MAINSAIL Module MSMOD (in file "msmod.msl"):

BEGIN "msMod"

MODULE msMod (
LONG INTEGER PROCEDURE proel (

LONG INTEGER lil,li2;
PRODUCES BOOLEAN bo);

) ;

LONG INTEGER PROCEDURE procl (
LONG INTEGER
PRODUCES BOOLEAN

BEGIN
bo := TRUE;
RETURN(lil + li2);
END;

END "msMod"

lil,li2;
bo);

Figure 33.5-2. MAINSAIL Module MSMOD Called by C Procedure callms

MAINSAIL Module TOC (in file "toe.msl"):

BEGIN "toC"

MODULE toC (PROCEDURE eaIIMs);

PROCEDURE calIMs;;

END "toC"

Figure 33.5-3. MAINSAIL Foreign Language Interface Module TOC

- 139-

UNIX MAINSAIL User's Guide

MAINSAIL Module CALLC (in file "callc.msl"):

BEGIN "caIIC"

MODULE toC (PROCEDURE callMs)i

INITIAL PROCEDUREi
callMsi

END "caIIC"

Figure 33.5-4. MAINSAIL Module CALLC That Calls C Procedure callms

(1) Compile MSMOD and CALLC with the UNIX MAINSAIL
compiler. Compile MSMOD with the MEC from C (by
specifying the compiler subcommand "fli fe") .
Compile TOC with the FCC to C (by specifying the
compiler subcommand "fli tc"). The subcommands
"fli fc" and "fli tc" may be different on some UNIX
flavors; see Appendix A.

% mainsa<eol>
MAINSAIL (R) Vers"ion 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*compil<eQI>

MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (? for help): msmod.msl<eol>
Opening intmod for $SYS ...

msmod.msl 1 ...

Example 33.5-5. C to MAINSAIL Example (continued)

- 140-

UNIX MAINSAIL User's Guide

compile (7 for help): callc.msl<eol>
Opening intmod for $SYS ...

callc .msl ...

compile (7 for help): msmod.msl,<eol>
>fli fc<eol>
><eol>
Opening intmod for $SYS ...

msmod.msl 1 ...

compile (7 for help): toc.msl,<eol>
>fli tc<eol>
><eol>
Opening intmod for $SYS ...

toc.msl

compile (7 for help): <eol>
*<eol>

(control returns to the UNIX shell)

(2) Make a new MAINSAIL bootstrap that declares Toe to be
a foreign module. The foreign module names must be
uppercase on all flavors of UNIX except ULTRIX-32,
on which the foreign module names must be lowercase.
UNIX assemblers are case-sensitive.

Example 33.5-5. C to MAINSAIL Example (continued)

- 141 -

UNIX MAINSAIL User's Guide

% mainsa<eol>
MAINSAIL (R) Version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file

/usr/rnainsail/12.10/xxx.cnf
CONF: bootfilename roec.s<eol>
CONF: foreignmodules<eol>
FOREIGNMODULES is

Should be:
=<eol>
TOC<eol>
<eol>
CONF: <eol>
Bootstrap written in file mec.s
*<eol>

(control returns to the UNIX shell)

(3) Compile the C code with the C compiler.

% cc -c callms c<eol>

(4) Assemble and link the new MAINSAIL bootstrap. The
commands shown are typical of some UNIX flavors,
but do not apply to all UNIX flavors. Consult
Appendix B for details about how to
make MAINSAIL bootstraps.

% ce -0 mee /usr/mainsail/12,lO/m,0\<eol>
mee,s msmod,s toc s eallms 0<eo1>

(5) Run the new executable MAINSAIL bootstrap and call
the foreign procedure.

Example 33.5-5. C to MAINSAIL Example (continued)

- 142-

UNIX MAINSAIL User's Guide

% mec<eol>
MAINSAIL (R) Version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*callc<eol>
Result is 3
*<eol>

Example 33.5-5. C to MAINSAIL Example (end)

- 143-

UNIX MAINSAIL User's Guide

34. CLIPPER Processor-Dependent Information

This chapter describes CLIPPER -specific information.

34.1. Procedure Size

There is no well-defined limit for the size of a procedure on the CLIPPER. However, the
compiler almost always successfully compiles procedures under 64K bytes in length that
contain no Case Statements for which code exceeds 32K bytes in length. The compiler may
handle procedures larger than 64K bytes, depending on the code. Procedures longer than
approximately 64K bytes are not guaranteed to work, and such procedures may compile
correctly on one machine and not on another.

34.2. CLIPPER Data Types

Refer to Table 34.2-1. A storage unit on the CLIPPER is one byte (8 bits).

Data type
boolean
integer
long integer
real
long real
bits
long bits
string

address
charadr
pointer

Representation
1 word (4 bytes)
1 word (4 bytes)
1 word (4 bytes)
CLIPPER single precision (4 bytes)
CLIPPER double precision (8 bytes)
1 word (4 bytes)
1 word (4 bytes)
2 words (8 bytes): first word (low
address) is length, second word (high
address) is charadr of first character
1 word (4 bytes)
1 word (4 bytes)
1 word (4 bytes)

Table 34.2-1. CLIPPER Data Types

- 144-

UNIX MAINSAIL User's Guide

34.3. Miscellaneous Information

The standard representation for boolean FALSE is all bits clear, and the standard for boolean
TRUE is low-order bit set, all other bits clear. However, in forms such as "IF <boolean
variable> THEN ... ", <boolean variable> is considered to be TRUE if any bits are set.

String variables have both the length and charadr component equal to Zero for the string Zero
(no characters).

- 145-

UNIX MAINSAIL User's Guide

35. Intel 80386 Processor-Dependent Information

This chapter describes Intel 80386-specific information.

35.1. Procedure Size

There is no well-defined limit for the size of a procedure on the Intel 80386. However, the
compiler almost always successfully compiles procedures under 64K bytes in length that
contain no Case Statements for which code exceeds 32K bytes in length. The compiler may
handle procedures larger than 64 K bytes, depending on the code. Procedures longer than
approximately 64 K bytes are not guaranteed to work, and such procedures may compile
correctly on one machine and not on another.

35.2. Intel 80386 Data Types

Refer to Table 35.2-1. A storage unit on the Intel 80386 is one byte (8 bits).

Data type
boolean
integer
long integer
real
long real
bits
long bits
string

address
charadr
pointer

Representation
1 word (2 bytes)
1 word (2 bytes)
1 doubleword (4 bytes)
Intel 80386 single prec~s~on (4 bytes)
Intel 80386 double precision (8 bytes)
1 word (2 bytes)
1 doubleword (4 bytes)
2 doublewords (8 bytes): first doubleword
(low address) is length, second doubleword
(high address) is charadr of first
character
1 doubleword (4 bytes)
1 doubleword (4 bytes)
1 ~oubleword (4 bytes)

Table 35.2-1. Intel 80386 Data Types

o 146-

UNIX MAINSAIL User's Guide

35.3. Miscellaneous Information

The standard representation for boolean FALSE is all bits clear, and the standard for boolean
TRUE is low-order bit set, all other bits clear. However, in forms such as "IF <boolean
variable> THEN ... It, <boolean variable> is considered to be TRUE if any bits are set.

String variables have both the length and charadr component equal to Zero for the string Zero
(no characters).

- 147 -

UNIX MAINSAIL User's Guide

36. IBM System/370 and System/370 Extended
Architecture Processor-Dependent Information

This chapter describes information specific to the IBM System/370 IBM System/370 Extended
Architecture processors. The two processors are nearly identical except that the Extended
Architure has a larger address space .. Except where otherwise noted, features described for the
System/370 apply to both processors.

36.1. Procedure Size

The size of a procedure is limited to 20K bytes on the System/370.

36.2. System/370 Data Types

Refer to Table 36.2-1. A storage unit on the System/370 is one byte (8 bits).

36.3. Miscellaneous Information

The standard representation for boolean FALSE is all bits clear, and the standard for boolean
TRUE is low-order bit set, all other bits clear. However. in forms such as "IF <boolean
variable> THEN ... ", <boolean variable> is considered to be TRUE if any bits are set.

String variables have poth PIe length and charadr component equal to Zero for the string Zero
(no characters).

-148 -

UNIX MAINSAIL User's Guide

Data type
boolean
integer

long integer

real

long real

bits
long bits
string

address

charadr
pointer

Representation
1 half word (2 bytes)
Standard System/370 integer format
(1 half word, 2 bytes)
Standard System/370 long integer format
(1 word, 4 bytes)
Standard System/370 single precision
floating point format (1 word, 4 bytes)
Standard System/370 double precision
floating point format (1 double word, 8
bytes)
1 half word (2 bytes)
1 word (4 bytes)
2 words (8 bytes): first word (low
address) is length, second word (high
address) is charadr of first character
Standard System/370 address (1 word, 24
bits right aligned, with the high-order
byte clear)
Same as address
Same as address

Table 36.2-1. IBM System/370 Data Types

- 149-

UNIX MAINSAIL User's Guide

37. M68000 and MC68020 Processor-Dependent
Information

This chapter describes M68000 Family-specific information.

37.1. M68000 vs. MC68020 Code Generation

XIDAK's M68000 code generator produces code that runs on the entire line of processors
supporting Motorola's M68000 Family architecture, including the MC68000, MC68010, and
MC68020. The M68000 code generator does not take advantage of any of the special
instructions available on the latter two processors. The MC68020-specific code generators
produce code that runs more efficiently on the MC68020 and the accompanying floating point
processors included by various manufacturers with the MC68020 (the supported floating point
processors at present are the Motorola MC68881 and the Weitek FPA). Code produced for the
MC68020 does not run on earlier processors in the M68000 Family.

Except where otherwise specified, features described for the M68000 apply to the MC68020 as
well.

37.2. Procedure Size

There is no well-defined limit for the size of a procedure on the M68000. However, the
compiler almost always successfully compiles procedures under 32K bytes in length, and may
handle larger procedures, depending on the code. Procedures longer than approximately 32K
bytes are not guaranteed to work, and such procedures may compile correctly on one machine
and not on another.

37.3. M68000 Data Types

Refer to Table 37.3-1. A storage unit on the M68000 is one byte (8 bits).

- 150-

UNIX MAINSAIL User's Guide

Data type
boolean
integer

long integer

real

long real

bits
long. bits
string

address

charadr
pointer

Representation
1 word (2 bytes)
Standard M68000 integer format (1 word, 2
bytes)
Standard M68000 long integer format
(1 longword, 4 bytes)
Depends on operating system, usually
1 longword (4 bytes)
Depends on operating system, usually
2 longwords (8 bytes)
1 word (2 bytes)
1 longword (4 bytes)
2 longwords (8 bytes): first longword
(low address) is length, second longword
(high address) is charadr of first
character
Standard M68000 address: 1 longword
(4 bytes)
Same as address
Same as address

Table 37.3-1. M68000 Data Types

37.4. Miscellaneous Information

The standard representation for boolean FALSE is all bits clear, and the standard for boolean
, TRUE is low-order bit set, all other bits clear. However, in forms such as "IF <boolean

variable> THEN ... ", <boolean variable> is considered to be TRUE if any bits are set.

String variables have both the length and charadr component equal to Zero for the. string Zero
(no characters).

37.5. Program Counter at Processor Exception

The location of an M68000 processor exception as reported by the early M68000 CPU's may
be as much as four bytes beyond the code which actually produced the error. This may lead

- 151 -

UNIX MAINSAIL User's Guide

MAINDEBUG to position incorrectly on certain M68000 processor exceptions. The MC68020
does not have this problem.

- 152-

UNIX MAINSAIL User's Guide

38. PRISM Processor-Dependent Information

This chapter describes PRISM-specific information.

38.1. Procedure Size

There is no well-defined limit for the size of a procedure on the PRISM. However, the
compiler almost always successfully compiles procedures under 64K bytes in length. The
compiler may handle procedures larger than 64K bytes, depending on the code. Procedures
longer than approximately 64K bytes are not guaranteed to work, and such procedures may
compile correctly on one machine and not on another.

38.2. PRISM Data Types

Refer to Table 38.2-1. A storage unit on the PRISM is one byte (8 bits).

Data type
boolean
integer
long integer
real
long real
bits
long nits
string

address
charadr
pointer

Representation
1 long word (4 bytes)
1 long word (4 bytes)
1 long word (4 bytes)
PRISM single precision (4 bytes)
PRISM double precision (8 bytes)
1 long word (4 bytes)
1 long w~rd (4 bytes)
2 long words (8 bytes): first long word
(low address) is length, second long word
(high address) is charadr of first
character
1 long word (4 bytes)
1 long word (4 bytes)
1 long word (4 bytes)

Table 38.2-1. PRISM Data Types

- 153-

UNIX MAINSAIL User's Guide

38.3. Miscellaneous Information

The standard representation for boolean FALSE is all bits clear, and the standard for boolean
TRUE is low-order bit set, all other bits clear. However, in forms such as "IF <boolean
variable> THEN ... ", <boolean variable> is considered to be TRUE if any bits are set

String variables have both the length and charadr component equal to Zero for the string Zero
(no characters).

- 154-

UNIX MAINSAIL User's Guide

39. SPARe Processor-Dependent Information

This chapter describes SP ARC-specific information.

39.1. Procedure Size

There is no well-defined limit for the size of a procedure on the SP ARC. However, the
compiler always successfully compiles procedures under 32K bytes in length, and may handle
larger procedures, depending on the code. Procedures longer than approximately 32K bytes are
not guaranteed to work, and such procedures may compile correctly on one machine and not on
another.

39.2. SPARCData Types

Refer to Table 39.2-1. A storage unit on the SPARC is one byte (8 bits).

Data type
boolean
integer
long integer
real

long real

bits
long bits
string

address
charadr
pointer

Representation
1 word (4 bytes)
1 word (4 bytes)
1 word (4 bytes)
SPARe Single Precision Fl'oating Point
Format (1 word, 4 bytes)
SPARe Double Precision Floating Point
Format (1 double word, 8 bytes)
1 word (4 bytes)
1 word (4 bytes)
2 words (8 bytes): first word (low
address) is length, second word (high
address) is charadr of first character
1 word (4 bytes)
1 word (4 bytes)
1 word (4 bytes)

Table 39.2-1. SP ARC Data Types

- 155 -

UNIX MAINSAIL User's Guide

39.3. Miscellaneous Information

The standard representation for boolean FALSE is all bits clear, and the standard for boolean
'!RUE is low-order bit set, all other bits clear. However, in forms such as "IF <boolean
variable> THEN ... ", <boolean variable> is considered to be TRUE if any bits are set.

String variables have both the length and charadr component equal to Zero for the string Zero
(no characters).

- 156-

UNIX MAINSAIL User's Guide

40. VAX-II Processor-Dependent Information

This chapter contains information about MAINSAIL that is specific to the VAX-II
implementations.

40.1. Procedure Size

There is no well-defined limit for the size of a procedure on the V AX-II. However, the
compiler may not compile procedures longer than 32K bytes, depending on the code.
Procedures longer than approximately 32K bytes are not guaranteed to work, and such
procedures may compile correctly on one machine and not on another.

40.2. VAX-II Data Types

Refer to Table 40.2-1. A storage unit on the VAX-II is one byte (8 bits).

Data Type
boolean
integer
long integer
real
long real
bits
long bits
string

address
charadr
pointer

Representation
1 word (2 bytes)
1 word (2 bytes)
1 longword (4 bytes)
single prec~s~on F_floating (4 bytes)
double precision D_floating (8 bytes)
1 word (2 bytes)
1 longword (4 bytes)
1 quadword (8 bytes)
low-address longword is length;
high-address longword is charadr of first
character
1 longword (4 bytes)
1 longword (4 bytes)
1 longword (4 bytes)

Table 40.2-1. VAX-II Data Types

- 157 -

UNIX MAINSAIL User's Guide

40.3. Miscellaneous Information

The standard representation for boolean FALSE is all bits clear, and the standard for boolean
TRUE is low-order bit set, all other bits clear. However, in constructs such as "IF <boolean
value> THEN ... ", <boolean value> is considered to be TRUE if any bits are set

String variables have both the length and charadr component equal to Zero for the string Zero
(no characters).

- 158-

UNIX MAINSAIL User's Guide

Appendix A. Flavor-Dependent Features of UNIX
MAINSAIL

Because different implementations of UNIX provide different facilities, MAINSAIL's view of
its host processor and operating system is slightly different on each type of UNIX system.
However, these differences do not ordinarily compromise the portability of MAINSAIL source
programs that are not dependent on features specific to a particular UNIX variety.

A.I. Object Module File Name Extensions for Available UNIX Flavors

Table A.l-llists the objmod and intmod logical file name prefixes for each available UNIX
flavor. The logical file names are normally mapped to actual file names with the searchpaths:

SEARCHPATH *-obj:* *2-*1.obj
SEARCHPATH *-int:* *2-*1.int

These searchpaths are specified in the default bootstraps and configuration files created when
MAINSAIL is installed, and may be replaced if desired.

- 159-

UNIX MAINSAIL User's Guide

Platform
Abbrev.
aix
alnt

hp20

hp3~

hpux

ip32c

ipsc2

ix20

ixfpa

ixpri

sun2

sun3

sun38

sun4

ultrx

Flavor Name
IBM's AIX on IBM System/370
Alliant's CONCENTRIX on

Motorola M68000
HP's HP-UX on Motorola

MC68020/MC6888I
SCO's XENIX on HP Vectra

with Intel 80386
HP's HP-UX on Motorola

M68000
Intergraph's System V UNIX

on Interpro 32C
Intel's iPSC/2 System V

UNIX on Intel 80386
Apollo's DOMAIN/IX on

Motorola MC68020/MC6888I
Apollo's DOMAIN/IX on

Motorola MC68020/Weitek
FPA

Apollo's DOMAIN/IX on
Apollo PRISM

Sun Microsystems' SunOS on
Motorola M68000

Sun Microsystems' SunOS on
Motorola MC68020/MC68881

Sun Microsystems' SunOS on
Intel 80386

Sun Microsystems' SunOS on
SPARC

DEC's ULTRIX-32 on VAX-II

Objmod
Prefix
uxa-obj:
um6-obj:

um2-obj:

ui3-obj:

um6-obj:

ucl-obj:

ui3-obj:

um2-obj:

ua2-obj:

upr-obj:

um6-obj:

um2-obj:

ui3-obj:

usp-obj:

uva-obj:

Table A.I-I. UNIX Object Module File Name Extensions

- 160-

UNIX MAINSAIL User's Guide

Intmod
Prefix
uxa-int:
um6-int:

um2-int:

ui3-int:

um6-int:

ucl-int:

ui3-int:

um2-int:

ua2-int:

upr-int:

um6-int:

um2-int:

ui3-int:

usp-int:

uva-int:

A.2. FLI Considerations for Available UNIX Flavors

Plat . Foreign Label
~ . ~ MEC Stgrt~ Prefix
aix TC FC yes no
alnt TA FA yes yes
hp20 TH FH yes yes
hp38 TC FC no no
hpux TH FH yes yes
ip32c TC FC yes yes
ipsc2 TC FC yes no
ix20 TX FX yes no
ixfpa TX FX yes no
ixpri TC FC yes no
sun2 TC FC yes yes
sun3 TC FC yes yes
sun38 TC FC yes no
sun4 TC FC yes yes
ultrx TC FC yes yes

Table A.2-1. Flavor-Dependent FLI Characteristics

Table A.2-1 shows flavor-dependent FLI characteristics for all supported flavors of UNIX. The
meanings of the columns are:

• "Plat. Abbr.": platform (flavor) abbreviation.

• "FCC", "rvtEC": compiler "FLI" subcommand arguments. The assemblers and C
compilers em many UNIX flavors have similar conventions. On the systems obeying
the most common conventions, the FLI Foreign Call Compiler compiler
subcommand is "FLI TC", and the MAINSAIL Entry Call Compiler compiler
subcommand is "FLI FC". On other flavors, the assembler and/or compiler requires
different conventions, so FLI abbreviations other than "TC" and "FC" must be used.

• "Foreign starts": "yes" if the $foreignCodeStartsExecution configuration bit is
supported (so that C may get control before MAINSAIL).

- 161 -

UNIX MAINSAIL User's Guide

• "Label prefix": "yes" if the default foreign label corresponding to a MAINSAIL
procedure is preceded by the "_" (underscore) character. On all systems~ the
MAINSAIL procedure name is converted to lowercase, whether the underscore is
prepended or not. The default label may be overridden with an "ENCODE" directive,
as described in the "MAINSAIL Compiler User's Guide".

A.2.1. C Alignment Considerations

On some systems, C has different alignment and data type considerations from MAINSAIL's.
If you wish to see an example of your C compiler's layout of a particular data structure,
disassemble a C program that accesses the components of the structure.

In particular, be careful of the following:

• On some systems, C aligns long word data items to full word boundaries. On such
systems, a C structure may require an integral number of fullwords, even if the actual
data do not occupy all of the last fullword. This must be taken into consideration
when defining a MAINSAIL class for a C structure. For example, if the data in a C
structure occupy 10 bytes. C uses and returns 12 bytes. of information. In this case,
the MAINSAIL class that describes this structure must be defined with an additional
padding field so that it occupies at least 12 bytes. In addition, the data in the C
structure do not necessarily occupy contiguous memory locations. For example, if
the C structure contains a short followed by a two longs, then the short occupies the
first two bytes of the structure and the next two bytes are unused. The MAINSAIL
class declaration must account for such alignment within the C structure.

• On some systems, C aligns double floating point data to the size of a double. On
such systems, a C structure may be padded to integral multiple of the size of a double
if the structure contains double data, and the field alignment and padding
considerations must be taken into account. In addition, the alignment requirement
presents a problem when passing long real arrays to C procedures. When
MAINSAIL creates a long real array, it does not ensure double alignment of the
elements, but the C procedure assumes double alignment. For this reason, long real
arrays cannot be directly passed to the C procedure. The MAINSAll.. program must
copy the array elements to an area such that the long real data are double aligned and
then to pass the address of this area to the C procedure.

• On some systems. MAINSAIL integers are 4 bytes, the size of C longs, instead of 2
bytes. the size of C shorts. To make this difference transparent to MAINSAIL
procedures that pass integer arguments to C procedures, the Foreign Call Compiler
generates code to convert MAINSAIL integers to C shorts by throwing away the
high-order two bytes of the MAINSAIL integer. This mechanism is used for all uses,

- 162-

UNIX MAINSAIL User's Guide

modifies, and produces integer parameters. Modifies and produces C short
parameters are sign-extended before they are passed back to the MAINSAIL caller.
A C short. therefore, MUST be mapped to the MAINSAIL integer data type. not a
bits, if it is treated as a signed integer.

MAINSAIL bits data are handled in the same manner as MAINSAIL integer data
except that modifies and produces bits parameters are zero-extended instead of sign
extended before being passed back to the MAINSAIL caller.

Because of the difference in data type sizes, care must be used when passing
MAINSAIL integer and bits arrays to a C procedure. In this case, MAINSAIL
accesses 4 bytes of information for each array element, whereas C accesses 2 bytes.
The MAINSAIL program must correctly store and retrieve information in integer and
bits arrays used by C procedures.

The best way to avoid portability problems with C structs is to call a C procedure that returns
information about the structs before constructing or passing a C struct to a C procedure. For
example. the C procedure in Example A.2.1-1 informs its caller of the size of the struct sand
the offsets of the s fields f1 and f2. The MAINSAIL procedure in Example A.2.1-2 uses this
information to construct a C struct in scratch memory with the f1 and f2 fields filled in, then
passes it to anotherCProcedure, which uses the struct sInfo and anotherCProcedure are called
through tHe C FLI (the FLI module is not shown).

LONG INTEGER sSize,flDsp,f2Dsp;
ADDRESS a;

sInfo(sSize,flDsp,f2DSp);
a := newScratch(sSize);
store (a, ... , flDsp); store (a, ... ,f2Dsp) ;
anotherCProcedure(a, ...);

Example A.2.1-2. Using C Struct Information

A.3. Program Exceptions

No UNIX MAINSAIL implementation currently detects stack overflow.

- 163-

UNIX MAINSAIL User's Guide

struct s {
short f1i
long f2i

} ;

sInfo(sSize,flDsp,f2DSp)
int *sSize,*flDsp,*f2DsPi

struct s SSi

sizeof(struct S)i *sSize
*flDsp
*f2Dsp

(int) &ss.fl - (int) &ss;
(int) &ss.f2 - (int) &ss;

anotherCProcedure(ss, ...)
struct s *ss;

Example A.2.1-1. Passing C Struct Information Back to MAINSAIL

Signals (other than arithmetic exceptions) that are ignored when MAINSAIL is invoked are
ignored by MAINSAIL; arithmetic signals are always intercepted. If the signals shown in
Table A.3-1 are not ignored, MAINSAIL catches them and issues a fatal error message if they
occur. Additional signals are intercepted as described in Section A.S.

SIGBUS
SIGILL
SIGSEGV

SIGEMT
SIGIOT
SIGSYS

SIGFPE
SIGPIPE
SIGTRAP

Table A.3-I. Standard UNIX Signals Caught by MAINSAIL

- 164-

UNIX MAINSAIL User's Guide

A.4. MAINEDIT

A.4.1. BIGSUN and "mainsab"

On Sun BSD 4.2 UNIX and SUN-4 UNIX, the bootstrap Itmainsablt is configured to run the
BIGSUN display module (user-created bootstraps must be linked with a special file, Itmb.olt

instead of Itm.olt, if they are to run the BIGSUN display module). Consult the "MAINEDIT
User's Guidelt for a detailed description of BIGS UN.

A.4.2. InterPro 32C Display Module

The display module for the terminal attached to the InterPro 32C is named "VTI02MIt . <ecm>
(Enter Command Mode) for this display module is <esc><esc> (the <esc> key pressed twice).

A.S. Terminal Handling

UNIX tenninal handling is divided into two main typ~s: BSD and System V. The
abbreviations for the platforms that fall into each of these categories are shown in Table A.S-l.

BSD S2:~:t~m v
alnt aix
ix20 hp20
ixfpa hp38
ixpri hpux
sun2 ip32c
sun3 ipsc2
sun38
sun4
ultrx

Table A.S-l. BSD and System V UNIX Flavors

- 165 -

UNIX MAINSAIL User's Guide

A.S.1. BSD Systems

On BSD systems, display modules use CBREAK instead of RAW mode. This has the
following implications:

1. Flow control characters (CTRL-S and CTRL-Q) are intercepted and processed by
UNIX.

2. SIGINT (usually CTRL-C) is intercepted by MAINSAIL, which asks for
confirmation from "/dev/tty". Responding with "y<eol>" terminates the MAINSAIL
process; "n<eol>" continues. The case of the response is not significant.

3. SIGTS1P (usually CTRL-Z or CTRL-Y) is intercepted by MAINSAIL, which resets
the terminal to cooked mode, then re-raises the signal. This usually causes the
MAINSAIL process to stop. If the process is resumed, it returns to the terminal
mode in effect before the signal was received, and resumes execution.

4. SIGQUIT (usually CTRL-\) is intercepted by MAINSAIL, which displays the prompt
"Yes? (? for help):". Among the options offered are:

? to see a list of options
T to see incremental CPU times

and continue
D to dump core and exit
E to exit without a dump
F to see open file descriptors
K to kill program with SEGV to

see which procedure is
executing (if lucky)

B to attempt to break at next
debuggable procedure

<eol> to continue the program

5. The "K" response to the prompt given when SIGQUIT is caught may be useful if
MAINSAIL is not in a critical section and can handle the error without dying; it can
then print a call stack or enter the debugger. This can be used to track down an
infinite loop. Using this response saves you the trouble of going to another terminal,
finding out the job number, and issuing a "kill" command to send the SEGV signal.

6. CBREAK mode clears the parity bit on terminal input characters, so that if a terminal
has a :META or EDIT key (which sets the parity bit), it is ignored.

- 166-

UNIX MAINSAIL User's Guide

A.S.2. System V Systems

On System V systems, UNIX intercepts and processes flow control characters. SIGINT
behaves as on BSD systems. There is no SIGTSTP on System V UNIX. The mode used does
not interfere with parity bits, so that META or EDIT keys may be used on such systems.

A.S.3. ioctl from Programs

MAINSAIL keeps track of what it believes to be the CWTent tenninal modes. It reads the
current values when MAINSAIL is initialized, and keeps track of changes by MAINSAIL
system software. User programs that call ioctI may confuse MAINSAIL's terminal handling if
they do not restore terminal modes before the next time MAINSAIL alters the tenninal mode.

The MAINSAIL STREAMS package provides facilities for terminal control that allow
programs to achieve the effect of ioctl portably without confusing the MAINSAIL runtime
system. See the "MAINSAIL STREAMS User's Guide" for details.

- 167 -

UNIX MAINSAIL User's Guide

Appendix B. Flavor-Dependent Configuration on UNIX

B.I. Standard Configuration Files for Available UNIX Flavors

The standard configuration file name for each flavor of UNIX is formed by appending" .cnft to
the lowercase platfonn abbreviation. Table B.1-1lists the name of the standard configuration
file for each available flavor of UNIX.

- 168-

UNIX MAINSAIL pser's Guide

Plat. Configuration
Abbr. FlavQr Nam~ Fil~·Name

aix IBM's AIX on IBM System/370 aix.cnf
alnt Alliant's CONCENTRIX on alnt.cnf

Motorola M68000
hp20 HP's HP-UX on Motorola hp20.cnf

MC68020/MC6888I
hp38 SCO's XENIX on HP Vectra hp38.cnf

with Intel 80386
hpux HP's HP-UX on Motorola hpux.cnf

M68000
ip32c Intergraph's System V UNIX ip32c.cnf

on Interpro 32C
ipsc2 Intel's iPSC/2 System V ipsc2.cnf

UNIX on Intel 80386
ix20 Apollo's DOMAIN/IX on ix20.cnf

Motorola MC68020/MC6888I
ixfpa Apollo's DOMAIN/IX on ixfpa.cnf

Motorola MC68020/Weitek
FPA

ixpri Apollo's DOMAIN/IX on ixpri.cnf
Apollo PRISM

sun2 Sun Microsystems' SunOS on sun2.cnf
Motorola M68000

sun3 Sun Microsystems' SunOS on sun3.cnf
Motorola MC68020/MC6888I

sun38 Sun Microsystems' SunOS on sun38.cnf
Intel 80386

sun4 Sun Microsystems' SunOS on sun4.cnf
SPARC

ultrx DEC's ULTRIX-32 on VAX-II ultrx.cnf

Table B.1-I. Standard UNIX Configuration File Names

- 169-

UNIX MAINSAIL User's Guide

B.2. Producing a Bootstrap on Each Flavor of UNIX

This section shows a sample session for each available flavor of UNIX in which a bootstrap
with default parameters is created. The output from CONF in each example is assumed to be
named "mainsa.s"; the finalbootstrap file is named "mainsail.

If the default configuration file includes foreign modules, these foreign modules must be
included in the foreign module list for every MAINSAIL bootstrap. For example, if the default
foreign module list contains:

UNISYS
BSDITF

then to add the foreign modules FOO and BAR to a MAINSAIL bootstrap, both UNISYS and
BSDIlF must be specified along with FOO and BAR. The "=" abbreviation allowed in
mulitiline CONF commands (see the "MAINSAIL Utilities User's Guide") may be used to do
this:

CONF: foreignmodules<eol>
FOREIGNMODULES is
UNISYS
BSDITF
Should be:
=<eo1>
FOO<eol>
BAR<eol>
<eol>

- 170-

UNIX MAINSAIL User's Guide

MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file

/usr/mainsail/12.10/aix.cnf
CONF: <eol>
Bootstrap written in file mainsa.s
*<eol>
% cc -0 mainsa mainsa.s /usr/mainsail/12~10/m.o<eol>

Example B.2-1. Making a Bootstrap for IBM's AIX on IBM System/370

MAINSAIL (R) version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file
/usr/mainsail/12.10/alnt.cnf
CONF: <eol>
Bootstrap written in file mainsa.s

*~
% cc -nxp -0 mainsa mainsa s /usr/mainsail/12.10/m.o<eol>

Example B.2-2., Making a Bootstrap for All~anfs CONCENTRIX on Motorola M68000

- 171 -

UNIX MAINSAIL User's Guide

MAINSAIL (R) Version 12.10 (1 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file

/usr/mainsail/12.10/hp20.cnf
CONF: <eol>
Bootstrap written in file mainsa.s
*<eol>
% cc -0 mainsa mainsa.s lusr/mainsail/12.10/m.o\<eol>

-1 bsdipc<eol>

Example B.2-3. Making a Bootstrap for HP's HP-UX on Motorola MC68020/MC68881

MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file

/usr/mainsail/12.10/hp38.cnf
CONF: <eol>
Bootstrap written in file mainsa.s

*~
% cc -0 mainsa mainsa.s /usr/mainsail/12.10/m.o<eol>

Example B.2-4. Making a Bootstrap for SCO's XENIX on HP Vectra with Intel 80386

- 172-

UNIX MAINSAIL User's Guide

MAINSAIL (R) Version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file

/usr/mainsail/12.10/hpux.cnf
CONF: <eol>
Bootstrap written in file mainsa.s
*<eol>
% cc -0 mainsa mainsa.s /usr/mainsail/12.10/m.o\<eol>

-1 bsdipc<eol>

Example B.2-5. Making a Bootstrap for HP's HP-UX on Motorola M68000

MAINSAIL (R) version 12.10 (7 for help)
Copyright (e) 1984, 1985, 1986, 1987, 1988, and 1989 by
'XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file

/usr/mainsail/12.10/ip32c.cnf
CONF: <eol>
Bootstrap written in file mainsa.s
*<eol>
% as -0 mainsa.o mainsa.s<eol>
% cc -0 mainsa mainsa.o /usr/mainsail/12.10/m.o<eol>

Example B.2-6. Making a Bootstrap for Intergraph's System V UNIX on Interpro 32C

- 173 -

UNIX MAINSAIL User's Guide

MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file

/usr/mainsail/12.10/ipsc2.cnf
CONF: <eol>
Bootstrap written in file mainsa.s
*<eol>
$ as -0 mainsa.o mainsa.s<eol>

There are two different ucc u commands, one for the
host bootstrap and one for the nodes. For the host:

$ cc -g -0 mainsa mainsa.o /usr/mainsail/12.10/hm.o\<eol>
-host<eol>

For the nodes:

$ cc -g -Q mainsa mainsa.Q /usr/mainsail/12.10/nm.Q\<eQl>
-node<eol>

Example B.2-7. Making a Bootstrap for Intel's iPSC/2 System V UNIX on Intel 80386

- 174-

UNIX MAINSAIL User's Guide

MAINSAIL (R) Version 12.10 (1 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file

/usr/mainsail/12.10/ix20.cnf
CONF: <eol>
Bootstrap written in file mainsa.bin
*<eol>
% ld -0 mainsa mainsa.bin lusr/mainsail/12.10/m.o<eol>

Example B.2-8. Making a Bootstrap for Apollo's DOMAIN/IX on Motorola
MC68020/MC68881

MAINSAIL (R) Version 12.10 (1 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file

/usr/mainsail/12.10/ixfpa.cnf
CONF: <eol>
Bootstrap written in file mainsa.bin
*<eol>
% ld -0 mainsa mainsa.bin lusr/mainsail/12.10/m.o<eol>

Example B.2-9. Making a Bootstrap for Apollo's DOMAIN/lX on Motorola MC68020/Weitek
FPA

- 175-

UNIX MAINSAIL User's Guide

MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file

/usr/mainsail/12.10/ixpri.cnf
CONF: <eol>
Bootstrap written in file mainsa.bin
*<eol>
% ld -0 mainsa mainsa,bin /usr/mainsail/12,10/m,0<eol>

Example B.2-10. Making a Bootstrap for Apollo's DOMAIN/lX on Apollo PRISM

MAINSAIL (R) version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file

/usr/mainsail/12.10/sun2.cnf
CONF: <eol>
Bootstrap written in file mainsa.s

*~
% cc -0 mainsa mainsa,s /usr/mainsail/12,10/m,0<eol>

Example B.2-11. Making a Bootstrap for Sun Microsystems' S unOS on Motorola M68000

- 176-

UNIX MAINSAIL User's Guide

MAINSAIL (R) Vers'ion 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file

/usr/mainsail/12.10/sun3.cnf
CONF: <eol>
Bootstrap written in file mainsa.s
*<eo·l>
% cc -omainsa mainsa.s /usr/mainsail/12.10/m.o<eol>

Example B.2-12. Making a Bootstrap for Sun Microsystems' SunOS on Motorola
MC68020/MC68881

MAINSAIL (R) version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from,file

/usr/mainsail/12.10/sun38.cnf
CONF: <eol>
Bootstrap written in file mainsa.s
*<eol>
% cc -0 mainsa mainsa.s /usr/mainsail/12.10/m.o<eol>

Example B.2-13. Making a Bootstrap for Sun Microsystems' SunOS on Intel 80386

- 177-

UNIX MAINSAIL User's Guide

MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file

/usr/mainsail/12.10/sun4.cnf
CONF: <eol>
Bootstrap written in file mainsa.s
*<eol>

There are two different "as" commands, one for UNIX
versions before 4.0 and one for 4.0 and after. For
versions before 4.0:

% as -P -0 mainsa,o mainsa,s<eol>

For 4.0 and after:

% as -0 mainsa,o mainsa.s<eol>

All versions of UNIX take the same "cc" command:

% cc -0 mainsa mainsa,o /usr/mainsail/12.10/m.o<eol>

Example B.2-14. Making a Bootstrap for Sun Microsystems' SunOS on SPARe

- 178-

UNIX MAINSAIL User's Guide

MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file

/usr/mainsail/12.10/ultrx.cnf
CONF: <eol>
Bootstrap written in file mainsa.s
*<eol>
% cc -0 mainsa mainsa,s lusr/mainsail/12,10/m,o<eol>

Example B.2-IS. Making a Bootstrap for DEC's ULTRIX-32 on VAX-II

- 179-

UNIX MAINSAIL User's Guide

- 180-

VAXNMS MAINSAIL User's Guide

VAX/VMS MAINSAIL ®

User's Guide

24 March 1989

41. Introduction

This document describes the MAINSAIL implementation for V AXNMS, the Digital
Equipment Corporation operating system for the V AX-II. It describes only V AXNMS
specific MAINSAIL features. It assumes that the reader is familiar with the "MAINSAIL
Language Manual" and other machine-independent documentation.

41.1. Version

This version of the "V AXNMS MAINSAIL User's Guide" is current as of Version 12.10 of
MAINSAIL. It incorporates the "VMS MAINSAIL Version 5.11 Release Note" of October,
1982; the "VMS Version 7.4 Release Note" of May, 1983; the "VAXNMS MAINSAIL
Release Note, Version 8" of January, 1984; the "VAXNMS MAINSAIL Release Note,
Version 9" of February, 1985; the "VAXNMS MAINSAIL Release Note, Version 10" of
March, 1986; and the "V AXNMS MAINSAIL Release Note, Version 11" of July, 1987.

- 182-

V AXNMS MAINSAIL User's Guide

42. General Operation

42.1. Installation Assumptions

This document assumes that a directory has been created that contains all of the MAINSAIL
system files for the current version of MAINSAIL, and that its name has been assigned to the
logical name "ms:". This assumption is automatically satisfied if MAINSAIL is installed
according to the directions contained in the release note that accompanies the MAINSAIL
distribution tape. Should MAINSAIL be installed in some other way, the instructions in this
document must be modified accordingly.

It is assumed in the examples in this document that the directory containing the MAINSAIL
system files is "[MAINSAIL.VMS.1210]".

42.2. Invoking MAINSAIL

To run MAINSAIL, type Itr ms:mainsa<eol>" to the VAXNMS command executive.
MAINSAIL begins execution and types a herald identifying itself and the version of
MAINSAIL being used. It then types "*" as a prompt and waits for input. The "*" prompt and
possible responses to it are described in the MAINEX section of the "MAINSAIL Utilities
User's Guide".

42.3. Default Intmod and Objmod Searchpaths

The default intmod and objmod searchpaths on V AXNMS are:

SEARCHPATH *-int:* *2*1.int
SEARCHPATH *-obj:* *2*1.obj

- 183 -

V AXNMS MAINSAIL User's Guide

43. MAINSAIL Configurator, CONF

The MAINSAil.. configuration module, CONF, is described in the "MAINSAIL Utilities User's
Guide".

Default CONF parameters are usually kept in the file "MS: VMS.CNF". V AXNMS
systemwide changes should always be made to this file.

The output of CONF for V AXNMS is a V AX-II assembly language file. This file must be
assembled and linked to make a new executable bootstrap.

Example 43-1 illustrates the use of CONF and shows the V AXNMS commands to assemble
and link the resulting bootstrap. Default values are restored from the file "MS:VMS.CNFIt and
the bootstrap is written to the file "MAINSA.MAR".

$ r mSimainsa<eol>
MAINSAIL (R) version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file ms:vms.cnf
CONF: <eol>
Bootstrap written in file mainsa.mar
*<eol>
$ macro mainsa<eol>
$ link mainsa<eol>
$ r mainsa<eol>

(MAINSAIL executes)

Example 43-1. Making a New Bootstrap

- i84-

V AXNMS MAINSAIL User's Guide

43.1. VAX/VMS Stack Size

The initial coroutine "MAINSAIL" on V AXNMS uses the system stack, which is quite large;
the configuration "STACKSIZE" parameter is ignored when the initial coroutine is allocted. It
is used by default when subsequent coroutines are allocated, however.

- 185-

V AXNMS MAINSAIL User's Guide

44. Uniform System Caller

Occasionally a programmer finds it necessary to calIon the operating system to perform a
special function for which there is no equivalent construct in MAINSAIL. This is done under
V AXNMS by means of the V AXNMS-dependent procedure n$sysCalI".

The procedure n$sysCall" performs a V AXNMS system service call. This procedure is, of
course, available only on machines running under V AXNMS. MAINSAIL code that uses
procedure "$sysCall" must not be considered portable. We recommend that you use this
procedure only when necessary, and isolate the V AXNMS-dependent code in a single place if
possible, to facilitate moving the program to a machine running under another operating
system.

44.1. Using $sysCall

$sysCall can be used to call any V AXNMS system service. The number of parameters
expected by the different system services varies from 0 to 16. There is a V AXNMS-dependent
MAINSAIL procedure, $sysCall<n>. for each group of system services that expects n
parameters, where n ranges from 0 to 16. $sysCall is a generic procedure representing the
procedures $sysCallO. $sysCalll •...• $sysCal116. Figure 44.1-1 shows the declaration of
procedure $sysCall<n>. sysCall is the address of the system service's entry vector, expressed
as a long bits. parm 1 through parm<n> are the parameters to the system service (if the system
service expects any parameters). also expressed as long bits.

If the system service returns control to the user program, the result of $sysCall is the status
code returned by the system service. A status code with the 'IL bit set indicates successful
completion; see the "V AXNMS System Services Reference Manual" for a description of other
status codes.

LONG BITS PROCEDURE $sysCall<n> (
LONG BITS sysCall,parml, ... ,parm<n»;

Figure 44.1-1. $sysCall<n> Declaration

- 186-

V AXNMS MAINSAIL User's Guide

44.1.1. $sysCall Parameters

All parameters expected by the system service must be specified in the call to $sysCall, even
those marked as optional in the "V AXNMS System Services Reference Manual". The
parameters must be specified in the order in which they are shown in the system services
manual.

It is the user's responsibility to convert the parameters properly to long bits. Passing pointers
and strings requires care that a MAINS AIL garbage collection does not occur between the time
the "eva" or "eve" is performed and the call to $sysCall is actually done.

Some system service parameters are passed by address. MAINSAIL has no construct for
obtaining the address of a local variable. If a system service expects one of its parameters to be
an address and the parameter's address is not otherwise available to you, follow the steps
shown in Figure 44.1.1-1.

1. Before the call to $sysCall, obtain a small amount of
memory for use as a temporary work area by calling the
MAINSAIL procedure "newScratch". Refer to the
"MAINSAIL Language Manual" for a description of
newScratch.

2. If the system service uses as an input parameter the
value(s) stored at the address, initialize the newly
allocated work area to the value(s) to be passed to
the system service.

3. Call $sysCall, passing the address of the work area
(converted to LONG BITS) as the address parameter.

4. If the system service uses the work area to return
result(s), copy the result(s) to another variable.

5. Dispose of the work area by calling the MAINSAIL
procedure "scratchDispose". Refer to the "MAINSAIL
Language Manual" for a description of scratchDispose.

Figure 44.1.1-1. Passing an Address to a System Service

- 187 -

V AX/VMS MAINSAIL User's Guide

Some system services require the address of a V AX-11 string descriptor, which can be obtained
by following the steps shown in Figure 44.1.1-2.

1. Include in your program a class declaration similar to
the one shown in Example 44.1.1-3.

2. Use newScratch to allocate space for the descriptor and
for the area the descriptor will point to, as shown in
Example 44.1.1-4. The identifier
"numberOfStorageUnits" denotes an integer the value of
which is the size in bytes of the area to be pointed
to by the descriptor.

Figure 44.1.1-2. Passing VAX-ll String Descriptors to System Services

CLASS ascidCls (
INTEGER leni
BITS classAndTypei
ADDRESS addr);

Example 44.1.1-3. Class for VAX-II String Descriptors

ADDRESS (ascidCls) vaxDscri

vaxDscr := newScratch(size(ascidCls»;
vaxDscr.len := numberOfStorageUnitsi
vaxDscr.addr := newScratch(numberOfStorageUnits);

Example 44.1.1-4. Allocating Space for VAX-II String Descriptors

- 188-

VAX/VMS MAINSAIL User's Guide

44.1.2. System Service Entry Vector Addresses

You can find the address of a system service's entry vector by following the steps shown in
Figure 44.1.2-1.

1. Write a short VAX-II assembly language program
referring to the symbol denoting the system service.

2. Assemble and link the program with the "DEBUG" option.

3. Run the program. The VAX/VMS debugger will be invoked.
Ask the debugger to display the value of the symbol
denoting the system service's entry vector address.
This is the symbol listed in the "VAX/VMS System
Services Reference Manual" in the description of the
particular system service, under the heading
"High-Level Language Format". The debugger will
display a hexadecimal address.

4. In your MAINSAIL program, define a similar symbol to be
the system service's entry vector address, and use the
symbol in the call to $sysCall.

Figure 44.1.2-1. Finding a System Service Entry Vector Address

44.2. $sysCall Example

Suppose that a MAINSAIL module needs to suspend its own execution for an arbitrary number
of seconds. It could do so by calling the $SETIMR and $W AITFR system services, the
parameters of which are described in Figures 44.2-1 and 44.2-2 (it could also do so portably by
calling the MAINSAIL system procedure $timeout).

efn Number of event flag for which to wait.

Figure 44.2-2. $W AITFR Parameters

- 189-

V AX/VMS MAINSAIL User's Guide

efn Number of event flag to set when time interval
expires.

dayTim Address of quadword containing time interval
expressed as a negative number in tenths of
microseconds.

astAdr Address of AST service routine to be called when
time interval expires; 0 for none.

reqldt Number denoting request identification; 0 for
none.

Figure 44.2-1. $SETINlR Parameters

Example 44.2-3 illustrates a short assembly language program that can be used to find out the
addresses of the $SETINlR and $W AITFR system services' entry vectors .

. ENTRY start,~M<>

$SETIMR_S efn=l,dayTim=start
$WAITFR_S efn=l
. END start

Example 44.2-3. MACRO Program Using SSETI1vlR and $W AITFR

Example 44.2-4 shows the commands to assemble and link the program, and to run the
V AXNMS debugger to find out the value of SYS$SETINlR, the address of $S ETINlR , sentry
vector, and SYS$W AITFR, the address of $W AITFR' s entry vector. The program is contained
in the file "SYSCAL.MAR".

The debugger showed that $SETINlR' s entry vector address is 'H80000220L and $W AITFR' s
is 'H80000278L. Example 44.2-5 contains a MAINSAIL procedure to call the $SETIMR and
$W AITFR system services using $sysCaU.

- 190-

VAX/VMS MAINSAIL User's Guide

$ macro/enable=debug syscal<eol>
$ link/debug syscal<eol>
$ r syscal<eol>

VAX-11 DEBUG Version 3.0
%DEBUG-I-INITIAL, language MACRO, module set to ' .MAIN.'
DBG>ev sys$setimr<eol>
80000220
DBG>ev sys$waitfr<eol>
80000278
DBG>exit<eol>
$

Example 44.2-4. Finding the System Services' Addresses

PROCEDURE wait (INTEGER secondsToWait); * Suspend the execution of the program for secondsToWait
:if seconds.
BEGIN
DEFINE

sysSeTimr 'H80000220L,
sysWaitFr 'H80000278L,
maxTimeInSecs 214,
longWordSize 4,
dayTimBufSize 8,
deltaTicksPerSec -lOOOOOOOL,
:if arbitrarily use event flag number 2:
efn 2;

INTEGER secsToWaitThisTime;
ADDRESS dayTim;

Example 44.2-5. Calling $SETIMR and $W AITFR from MAINSAIL (continued)

- 191 -

VAX/VMS MAINSAIL User's Guide

* Allocate space for the quadword to contain the time * interval to wait, and store a -1 in the high order
* longword.
dayTim := newScratch(dayTimBufSize);
store(dayTim,-lL,longWordSize);
* A time interval of more than 214 seconds requires more * than a longword to represent, so break long intervals * into 214-second chunks.
WHILE secondsToWait > 0 DOB * Calculate the length of time to wait this iteration * through the loop, and convert the time from seconds * to the delta time in tenths of microseconds, storing

* the result in the quadword's low order longword.
secsToWaitThisTime := secondsToWait MIN maxTimelnSecs;
store (dayTim,deltaTicksPerSec

* cvli(secsToWaitThisTime»; * Call the $SETIMR and $WAITFR system services.
$sysCall(sysSeTimr,cvlb(efn),cvlb(dayTim) ,'OL,'OL) ;
$sysCall(sysWaitFr,cvlb(efn»; * Calculate the remaining length of time to wait.
secondsToWait .- secsToWaitThisTime;
END; * Dispose of the quadword.

scratchDispose(dayTim);
END;

Example 44.2-5. Calling $SETIMR and $W AITFR from MAINSAIL (end)

- 192-

VAX/VMS MAINSAIL User's Guide

45. File System

MAINSAIL correctly processes V AXNMS variable (RMS) files and files with fixed-length
records and embedded line feeds delimiting lines (byte stream files). The standard MAINSAIL
view of a text file is a stream of bytes with lines separated by eol (eol = ASCII linefeed = 10
decimal).

45.1. Sequential Text Input File Formats

The input records of a record-oriented text file (RMS format) are automatically translated by
the MAINSAIL runtime system into the MAINSAIL byte stream format, which is then made
available to the user's program. Thus, the user program need not concern itself with the
V AXNMS concept of records except to ensure that the proper translation is applied. Table
45.1-1 describes the translation algorithm for each device prefix.

Device Prefix
BS

Translation Algorithm
Byte stream file. No translation takes
place.

VAR Variable-length records (RMS format).
eol is appended.

Table 45.1-1. Input Translation Rules for Text Files

If no device prefix is specified, the format of the V AX/yMS file determines which gevice
prefix is used. as shown in Table 45.1-2.

VAX/VMS Format
Unstructured
Variable (RMS)

Device Prefix Used
BS
VAR

Table 45.1-2. Default Device Prefixes for Sequential Text Input

- 193-

VAXNMS MAINSAIL User's Guide

45.2. Sequential Text Output File Formats

The behavior of the available device prefixes for a text file opened for sequential output is
shown in Table 45.2-1. Here, Itnlt indicates an optional record size.

Deyice Prefix
BS

BS(n)

VAR(n)

Output Format
Byte stream file.

Byte stream file, record size = n.

Variable-length records of maximum size
n, maximum supported n = 512 (VAX/VMS RMS
format). A new output record is started
when either n bytes are output or an
eol character is output. In the latter
case, the eol is discarded. Records
are not padded with blanks.

Table 45.2-1. Device Prefixes for Sequential Text Output

If a device prefix is specified, the file is created according to the device specification. If a
device prefix is not specified, then the device prefix ltv AR(512»1t is used; Le., the default
format for sequential text output files is V AXNMS RMS format with maximum record length
512 characters.

45.3. Sequential Data File Formats

Any data file can be opened for sequential input. Sequential output data files must be byte
stream format.

45.4. Random File Formats

Any file can be opened for random input. Random text output files must be byte stream format;
random data output files must be byte stream format.

- 194-

V AX/VMS MAINSAIL User's Guide

45.5. Converting Between File Formats

The MAINSAll.. utility module COPIER can be used to convert between file formats by
explicitly specifying the device prefix for the output file. Refer to the "MAINSAIL Utilities
User's Guide" for a complete description of this utility.

Example 45.5-1 shows how to use COPIER to convert an RMS file to a byte stream file.
COPIER copies the RMS format file "rmsFile" to the byte stream file "bsFile". The device
prefix "BS>" must be specified; otherwise, MAINSAIL creates a variable format file (the
default for sequential text output files).

MAINSAIL (R) version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*copier<eol>
Text File Copier
Input file (just <eo 1> to stop): rrnsFile<eol>
Output file: BS>bsFile<eol>
Input file (just <eol> to stop): <eol>

*

Example 45.5-1. COPIER Example

- 195-

V AXNMS MAINSAIL User's Guide

46. System Information Procedures

46.1. $cnrrentDirectory

$currentDirectory returns the name of the current directory, in square brackets, as obtained
from the V AXNMS system service $P ARSE.

46.2. $homeDirectory

$homeDirectory returns the string found by the system call $TRNLNM in the table
"LNM$JOB" under the logical name "SYS$LOGIN".

46.3. Command Line

The command line is returned by the V AXNMS library procedure LIB$GET _FOREIGN. In
order to specify a command line to DCL, you must use DCL to create a foreign command for
your MAINSAIL bootstrap, then invoke the bootstrap with the foreign command. For
example, for a bootstrap file "foo.exe", you must do:

$ foo ;== $foo,exe<eol>

The command "foo" can now be invoked with arguments, e.g.:

$ foo argl arg2 arg3<eol>

LIB$GET _FOREIGN converts all arguments to uppercase, so MAINSAIL would see the
command line arguments as "ARGI ARG2 ARG3".

46.4. $programName

The program name is unavailable on V AXNMS, so $programName is always the null string.

- 196-

VAX/VMS MAINSAIL User's Guide

46.5. $directory (for VAX/VMS Disk Files)

$directory makes use of the V AXNMS system services $P ARSE and $SEARCH. If
$reportAllVersions is set, all versions of files are returned; otherwise, only the most recent is
returned. If $fullPathNames is set, the directory specification is included in the file name.

46.6. $fileInfo (for VAXNMS Disk Files)

$filelnfo fills in all fields of $fileInfoCls.

46.7. $user ID

$userId returns the string that is the user name of the current user, trailing blanks removed.

46.8. $cpuID

On an 11n80, 11/785, or 8600, $cpuID returns the CPU serial number as a decimal string. The
serial number is obtained from the low-order 11 bits of the SID. On any other model, ScpuID
returns the null string.

On V AXNMS, if $cpuID would return the null string, it checks to see if $useAlternateCpuID
(,H200) is set in the configuration biLS. If so, then it returns whatever is produced by the FLI
procedure $alternateCpuID. This procedure must be provided by the user in an FLI module
called $aCpuID, declared as follows:

MODULE $aCpuID

INTEGER
PROCEDURE $alternateCpuID

(CHARADR buf; INTEGER bufSize);

) ;

$alternateCpuID returns a null-terminated string no longer than bufSize at buf. $aCpuld should
be compiled with the appropriate Foreign Call Compiler and linked with a MAINSAIL
bootstrap in which the 'H200 bit was set in the "CONFIGURATIONBITS" command.

- 197-

VAX/VMS MAINSAIL User's Guide

46.9. Exit Codes

When MAINSAIL exits, the value of the exit code is pased to SYS$EXIT. $successExitCode
is 'lL and $failureExitCode is 'OLe

- 198-

VAXNMS MAINSAIL User's Guide

47. Shared Module Libraries

V AX/VMS provides a method for several users to share a single copy of a file called a global
section. When a global section is in memory, new users of the section will access this copy
rather than reading a new copy of their own. If heavily used libraries (such as the file
"SYSTEM.LIB ") are made global sections, memory use and I/O overhead are reduced.

If a global section for a library has been installed, MAINSAIL automatically sets up access to
the global section when the library is opened.

47.1. Global Section Installation

Global sections are installed with the MAINSAIL module GBLSEC. Available GBLSEC
commands are listed in Table 47.1-1. Only enough of a command to make it uniquely
identifiable need be typed.

Command
CHECKGLOBALSECTION s

CREATEGLOBALSECTION f
DELETEGLOBALSECTION s

REP~ACEGLOBALSECTION f

Meaning
See if global section with name
sexists.
Create global section for file f.
Delete global section named s.
Note that this has no effect on
the file associated with it.
Replace global section for file
f. If a new version of a library
is created, the global section
must be updated with this command.

Table 47.1-1. GBLSEC Commands

A global section has associated with it both a file and a name. This name is a one- to fifteen
character case-sensitive string. When a global section is created with the
"CREATEGLOBALSECTION" command, the name is derived from the root of the specified
file name. For example, the global section name derived from "ms:system.lib" is "system", and
that derived from "MS:SYSTEM.LIB" is "SYSTEM". Note that since the global section name
is case-sensitive, "system" and "SYSTEM" are distinct global sections that reference the same

-,199 -

V AXNMS MAINSAIL User's Guide

file. When V AXNMS derives a global section name from a file name, it converts it to lower
case. For this reason, all file names should be entered in lower case.

47.2. Example of Creating a Global Section

MAINSAIL version x (? for help)
*gblsec<eol>
Next Command (? for help): check system<eol>
Section system does not already exists
<note: check case of sectionName>

Next Command (? for help): create ms;system.lib<eol>
Section system does not already exists
<note; check case of sectionName>

command succesfully completed.

Next Command (? for help): check system<eol>
Section system already exists
<note: check case of sectionName>

Next Command (? for help): check SYSTEM<eol>
Section SYSTEM does not already exists
<note: check case of sectionName>

Next Command (? for help); exit<eol>

*

Example 47.2-1. Creating a Global Section

47.3. Caveat

All global sections must be reinstalled if the system crashes.

Care must be taken when running more than one version of MAINSAIL. If a global section has
been made for "system.lib", that global section is used regardless of the bootstrap that is run.
Thus, the wrong runtime system may be used inadvertently. If "system.lib" is a global section

- 200-

V AXNMS MAINSAIL User's Guide

and several versions of MAINSAIL are in use at your installation, the global section must be
renamed. To do this, follow the steps shown in Figure 47.3-1 for each version of MAINSAIL
that is installed.

1. Edit the file "VMS.CNF", and change the name of the
system library ("ms: system. lib"). The new name should
have the version number embedded within it; e.g., use
"ms:sys88.lib" for version 8.8.

2. Using CONF and the new "VMS.CNF", create a new
bootstrap.

3. Rename "ms:system.lib" to the new name.

4. Assemble and link the new bootstrap as described in the
installation procedure.

5. Install the new system library as a global section.

Figure 47.3-1. Installing a Global Section

- 201-

V AXNMS MAINSAIL User's Guide

48. Foreign Language Interface

This chapter contains information about the MAINSAIL Foreign Language Interface (FLI)
specific to V AX/VMS. Refer to the "MAINSAIL Compiler User's Guide" for a general
description of the FLI.

Calls into and out of MAINSAIL are supported.

48.1. FLI Compiler Output File Names

The default name for the output file created by the FLI compilers is "<module name>.MAR".

48.2. VAX-II Procedure Calling Standard

The V AX/VMS Foreign Call Compiler for the V AX-II procedure calling standard is used to
call from MAINSAIL to foreign language procedures that confonn to the standard promoted by
DEC. AlI·compilers supported by DEC for the VAX-II produce procedure interfaces that
follow this standard.

The procedure calling standard governs:

• the way a procedure is called,

• the way it accesses its parameters,

• the way it returns to its caller,

• the way it returns a result (if it has one).

The standard does not govern whether parameters are passed by value or by address, nor does it
specify the amount of space occupied by parameters passed by value, although it does require
that each parameter passed by value occupy a multiple of 4 bytes. The choice of whether
parameters are passed by address or value and the amount of space occupied by value
parameters depends on the particular compiler being used. The VAX-II calling standard FLI
is invoked with the MAINSAIL compiler's "FLI TV" ("To Vax") subcommand.

- 202-

VAX/VMS MAINSAIL User's Guide

48.2.1. Passing Parameters

In calls from MAINSAIL to a foreign language procedure, modifies and produces parameters
are passed by address. Addresses occupy 4 bytes each. Uses parameters are passed by value,
and are padded if necessary to occupy a multiple of 4 bytes. The amount of space occupied by
a value (without padding) depends on the value's type. Section 49.2 describes the way values
of each data type are represented on the V AX-II.

Produces parameters are initialized to Zero before the call to the foreign language procedure is
made.

Values of any MAINSAIL data type may be passed as uses parameters to a foreign language
procedure. However, pointers. strings, and arrays may not be passed as produces parameters,
and neither pointers nor arrays may be passed as modifies parameters. Strings may be passed
as modifies parameters so that they will be passed by address, but they should not be modified
by the foreign language procedure.

48.2.2. String Parameters

VAX-II string descriptors promoted by DEC occupy 8 bytes each, and are represented as
shown in Figure 48.2.2-1.

+-------+-~-----+---------------+
I class I type length

+-------+-------+---------------+
address of first character

+-----------------------~-------+

Figure 48.2.2-1. VAX-II String Descriptor Used by DEC

The "class" field occupies one byte and indicates the kind of descriptor; zero means
"unspecified class".

The "type" field occupies one byte and indicates the data type of the string's components; zero
means "unspecified data type".

MAINSAIL string descriptors are identical in format to V AX-II string descriptors with class
and type fields both equal to zero.

- 203-

V AXNMS MAINSAIL User's Guide

If a string is passed as a uses parameter to a foreign language procedure. the siring's
MAINSAIL string descriptor is passed as the parameter. If the string is passed as a modifies
parameter, the address of the string descriptor is passed.

Many foreign language procedures that take a string parameter expect to be passed the address
of a VAX-II string descriptor, even though they do not modify the descriptor and thus need
only the descriptor's value. For this reason, the V AXNMS Foreign Calls Compiler allows
strings to be passed as modifies parameters to a foreign language procedure. The foreign
language procedure should not modify the string descriptor. If it does, then MAINSAIL may
crash or produce invalid results.

48.2.3. Array Parameters

When an array is passed as a uses parameter to a foreign language procedure, the address of the
array's first element is passed. Thus, the foreign language procedure may change the array's
elements, but it has no access to the array descriptor. If the array's upper bounds are not known
within the foreign language procedure, they should be passed explicitly as additional
parameters. A nullArray is passed as 0 (i.e., nullAddress).

48.2.4. Caveat

When dealing with values subject to garbage collection (Le., strings, records. and arrays), care
must be taken not to violate the data boundaries. Writing beyond the boundaries of these
structures may cau~e MAINSAIL LO crash. If, for example, a garbage collection link is
destroyed, MAINSAIL may run until a collection is triggered. at which point the results are
unpredictable.

48.3. C Procedure Calling Standard

The VMS to C FLI is identical to the V AX standard calling sequence with the following
exceptions:

1. Only the charadr portion of a string is passed to C. The caller must guarantee that the
string is null terminated.

2. Uses real parameters are converted to long real. This is because C passes only long
data types on the stack.

3. The default label for a C procedure is the MAINSAIL procedure name converted to
lower case and prefixed by "_" (underscore).

- 204-

YAX/VMS MAINSAIL User's Guide

4. The C FLI is invoked using the MAINSAIL compiler's "FLI TC" subcommand.

48.4. Identifiers Containing" $ or "_"

The identifier generated for a foreign call is the same as the procedure name, unless the
procedure name contains dollar signs or underscores. Dollar signs are suppressed by the FLI
compiler and underscores are not allowed in MAINSAIL identifiers. The "ENCODE" directive
to the compiler permits an arbitrary string to be used as the label for the foreign call. Example
48.4-1 shows how to call the routine "sys$setimr".

MODULE forCal (
PROCEDURE sysSetTimr;
) ;

ENCODE sysSetTimr "sys$setimr";

Example 48.4-1. Calling a Routine with "$" in Its Name

In the file "FORC AL. MAR " • the label "sys$setimr" is used for the call to the procedure
sysSetTimr.

V AXNMS system services may also be accessed by means of the V AXNMS-dependent
procedure $sysCall, described in Chapter 44.

48.5. Foreign Language Interface Example

Suppose that the MAINSAIL module FOOSUB is to call the FORTRAN subroutine FTNADD.
The text for FTNADD is in the file " FINS UB fl. Example 48.5-1 shows FTNADD, Example
48.5-2 shows the MAINSAIL FLI module that defines this foreign procedure, and Example
48.5-3 shows the MAINSAIL module FOOSUB.

- 205-

VAX/VMS MAINSAIL User's Guide

SUBROUTINE FTNADD (I,J,K)
C ADD J AND K, RETURNING THE RESULT IN I.

I = J + K
RETURN
END

Example 48.5-1. Sample FORTRAN Subroutine

BEGIN "fliSub"

All calls from MAINSAIL to FTNADD pass through
this FLI module.

FORTRAN expects to be passed the address of each
parameter, so the FLI declaration of ftnAdd·must
declare each parameter as either MODIFIES or
PRODUCES (PRODUCES only if the parameter's input
value is not used by the foreign procedure). A
FORTRAN integer occupies 4 bytes, the equivalent
of a MAINSAIL long integer on the VAX-ll.

MODULE fliSub
(PROCEDURE ftnAdd (PRODUCES LONG INTEGER i;

MODIFIES LONG INTEGER j,k»;

The body for every interface procedure in a
module must appear somewhere in that module:

PROCEDURE ftnAdd (PRODUCES LONG INTEGER i;
MODIFIES LONG INTEGER j,k);;

END "fliSub"

Example 48.5-2. Sample FLI Module

- 206-

V AX/VMS MAINSAIL User's Guide

BEGIN "fooSub"

MODULE fliSub
(PROCEDURE ftnAdd (PRODUCES LONG INTEGER i;

MODIFIES LONG INTEGER j,k»;

INITIAL PROCEDURE;
BEGIN
LONG INTEGER i,j,k;
j := lL; k := 2L;
ftnAdd(i,j,k);
ttyWrite("I = ",i,eol);
END;

END "fooSub"

Example 48.5-3. MAINSAIL Module Calling FORTRAN Module

Example 48.5-4 show the steps that must be taken in order to run FOOSUB. FOOSUB is
compiled with the MAINSAIL V AXNMS compiler. The module FLISUB is compiled with
the subcommand "FLI TV", and the resulting assembly language file, "FLISUB.MAR", is
assembled with the V AXNMS assembler. The FORTRAN subroutine FTNADD is compiled
with the V AXNMS FORTRAN compiler. A new bootstrap assembly language file,
"FLIMAINSA.MAR", is made by running the MAINSAIL utility module CONF, and the new
bootstrap is assembled. The new bootstrap is linked with the FLI code and the FORTRAN
object module to create an executable file, "FLIMAINSA.EXE". MAINSAIL is run by
invoking "FLIMAINSA.EXE", and FOOSUB is run.

- 207-

VAX/VMS MAINSAIL User's Guide

$ r ms;mainsa<eol>
MAINSAIL (R) Version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*compil<eol>
MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
compile (? for help): foosub<eol>
foosub 1 ...

Output for FOOSUB on foosubvrns.obj

compile (7 for help): flisub,<eol>
>fli tv<eol>
><eol>
flisub 1 ...

Output for FLISUB on FLISUB.MAR

Example 48.5-4. Using the Foreign Language Interface (continued)

- 208-

V AXNMS MAINSAIL User's Guide

compile (7 for help): <eol>
*<eol>
$ macro flisub<eol>
$ fortra ftnsub<eol>
$ r ms;mainsa<eol>
MAINSAIL (R) Version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file ms:vms.cnf
CONF: foreignmodu1e flisub<eol>
CONF: bootfilename flimainsa.mar<eol>
CONF: <eol>
Bootstrap written in file flimainsa.mar
*<eol>
$ macro flimainsa<eol>
$ link flimainsa,flisub,ftnsub<eol>
$ r flimainsa<eol>
MAINSAIL (R) version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*foosub<eol>
I = 3

*

Example 48.5-4. Using the Foreign Language Interface (end)

Example 48.5-5 and Table 48.5-6 show some code written in C and the FLI module used to
interface to it

- 209-

V AX/VMS MAINSAIL User's Guide

struct foo {
int xl;
float fI;
} ;

int csample (ar,ub,s,scale,r)
int ar[];
int Ubi
char *s;
float scale;
struct foo *r;
{

int i,tot;

/* print the string we passed in */
printf("The string is %s\n",s);
/* sum the elements of the array. Note that arrays are

all 0 origin in C */
tot = 0;
for (i = 0; i < Ubi i++) tot += «r->xl + ar[i]) / r->fl);
/* scale by our scaling factor */
tot *== scale;
return(tot);
}

Example 48.5-5. Sample C Subroutine

- 210-

V AX/VMS MAIN~AIL User's Guide

BEGIN "cexamp"

* ints in C are LONG INTEGERs in MAINSAIL. Since we are * using the C FLI, the string will automatically be * converted a CHARADR. REALs, although converted to LONG * REAL on the stack, are still passed in as REALs

CLASS fooCls (
LONG INTEGER xl;
REAL f1);

MODULE cexamp (
LONG INTEGER
PROCEDURE csample (LONG INTEGER ARRAY (0 TO *) ar;

LONG INTEGER Ubi
STRING s;
REAL scale;
POINTER(fooCls) r);

) ;

* VAX C will internally call the procedure "_csample", * so the following ENCODE directive is needed.

ENCODE csample "_csample";

LONG INTEGER
PROCEDURE csample (LONG INTEGER ARRAY (0 TO *) ar;

LONG INTEGER Ubi
STRING s;
REAL scale;
POINTER(fooCls) r);

END "cexamp"

Table 48.5-6. FLI Module Used to Interface to Code in Example 48.5-5

Example 48.5-7 shows MAINSAIL code that uses this procedure.

- 211-

VAX/VMS MAINSAIL User's Guide

BEGIN "cSub"

CLASS fooCls
LONG INTEGER Xli
REAL f1) i

MODULE cexamp
LONG INTEGER
PROCEDURE csample (LONG INTEGER ARRAY (0 TO *) ari

LONG INTEGER Ubi

) i

INITIAL PROCEDUREi
BEGIN

STRING Si

REAL scalei
POINTER (fooCls) r)i

LONG INTEGER ARRAY (0 TO *) totsi
LONG INTEGER vali
STRING Si

POINTER(fooCls) Pi

new(tots,l,SOO) ;
p := new(fooCls)i
p.xl := 10;
p.f1 := 2.0i

* the procedure initMyArray initializes the elements of * tots, and may change the .upper boundry.

initMyArray(tots);

* set the string we will pass in. Note that we must * null-terminate it.

s := "Array tots" & cVCS(O)i

* now call the C routine

Example 48.5-7. MAINSAIL Module Calling C Example (continued)

- 212-

V AXNMS MAINSAIL User's Guide

val := csample(tots,cvli(tots.ub1),s, .S,p);
write(logFile,"Value of csample is ",val,eol);
END;

END "cSub"

Example 48.5-7. MAINSAIL Module Calling C Ex~ple (end)

Example 48.5-8 shows the steps required to compile and link the C example. This example
assumes that the C code is in the file "cproc.c", the FLI module is "cexamp.msl", and the
module that invokes the C procedure is "csub.msl". The compiler subcommand to invoke the C
FLI is "FLI TC". The command:

define lnk$library sys$library:vaxcrtl.olb

is required by C.

$ r ms:mainsa<eol>
MAINSAIL (R) Version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*compil<eol>
MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
compile (? for help): csub.msl<eol>
csub.msl 1

Output· for CSUB on csubvms. obj

compile (7 for help): cexamp.msl.<eol>
>fli tc<eol>
><eol>
cexamp.msl 1

Example 48.5-8. Using the C Foreign Language Interface (continued)

- 213-

V AXNMS MAINSAIL User's Guide

Output for CEXAMP on CEXAMP.MAR

compile (1 for help): <eol>
*<eol>
$ macro csub<eol>
$ cc cproc<eol>
$ r ms:mainsa<eol>
MAINSAIL (R) Version 12.10 (1 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file ms:vms.cnf
CONF: foreignmodule cexamp<eol>
CONF: bootfilename flimainsa.mar<eol>
CONF: <eol>
Bootstrap written in file flimainsa.mar
*<eol>
$ define InkSlibrary sysSlibrary:vaxcrtl,olb<eol>
$ macro flimainsa<eol>
$ link flimainsa,cexamp,cproc<eol>
$ r flimainsa<eol>
MAINSAIL (R) Version 12.10 (1 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*csub<eol>
The string is Array tots
The value of csample is 24

*

Example 48.5-8. Using the C Foreign Language Interface (end)

- 214-

VAX/VMS MAINSAIL User's Guide

48.6. MAINSAIL Entry Compiler

MAINSAIL procedures can be invoked from foreign code by using the MAINSAIL Entry
Compiler (MEC). As with Foreign Call Compiler, entry to MAINSAIL can be made either
from the V AX-II standard calling convention, or from C. The V AX standard MEC is invoked
using the MAINSAIL compiler's tlFLI FV" (From V AX) subcommand. The C MEC is
invoked with the "FLI FC" subcommand.

If a foreign-language program initiates execution instead of MAINSAIL, the configuration bit
$foreignCodeStartsExecution must be set in the MAINSAIL bootstrap. Consult the description
of the FLI in "MAINSAIL Compiler User's Guide" and the description of CONF in the
"MAINSAIL Utilities User's Guide" for details. $foreigilCodeStartsExecution is supported for
both the "FV" and "FC" MAINSAIL entry compilers. Currently, the bootstrap produced by
CONF still has a transfer address even when $foreignCodeStartsExecution is set, which causes
the linker to complain about multiple transfer addresses. If the module in which control is to
originate is specified first in the "link" command list, it receives control first, as desired.

48.7. MAINSAIL Entry Compiler Example

This example uses the C entry compiler. Example 48.7-1 and Table 48.7-2 show a sample
MAINSAIL module that contains a procedure to be invoked from C and the C code that calls it.

BEGIN nmsproc"
this is file msproc.msl

MODULE msproc (
LONG INTEGER
PROCEDURE mproc (REAL a, b, C)i

) i

ENCODE mproc n_mproc"i

LONG INTEGER PROCEDURE mproc (REAL a, b, C)i

RETURN{cvli«a + b) / c»;

END "msproc"

Example 48.7-1. MAINSAIL Module to Be Called by C

- 215-

VAX/VMS MAINSAIL User's Guide

cproc () {
/* this is file cproc.c */
float a,b,c;
int i;
a = 15.0;
b 13.0;
c = 2.0;

i mproc(a,b,c);
printf(nThe value of mproc is %d\n",i);

Table 48.7-2. C Code to Call a MAINSAIL Module

- 216-

V AXNMS MAINSAIL User's Guide

A call is needed to start the C program. This code and the FLI module required to invoke the C
call are shown in Examples 48.7-4 and 48.7-3.

BEGIN "ccode"

* this is file ccode.msl

MODULE ccode (
PROCEDURE cproc;
) ;

PROCEDURE cproc;;

END "ccode"

Example 48.7-3. FLI Module to Invoke C Call

BEGIN "ccall"

* this is file ccall.msl

MODULE ccode (
PROCEDURE cproci
) ;

INITIAL PROCEDUREi
cproc;

END "ccall"

Example 48.7-4. MAINSAIL Code to Start C Execution

- 217 -

V AXNMS MAINSAIL User's Guide

To use the MEC, take the following steps:

1. The entry module, MSPROC, is compiled with the MAINSAIL compiler to produce
the MAINSAIL module.

2. The entry module is compiled with the "FLI FC" subcommand to the MAINSAIL
compiler, to produce the file "MSPROC.MAR", which contains the C entry code.

3. The module "CCODE" is compiled with the "FLI TC" subcommand, to produce the
C FLI to invoke the main C program.

4. The module "CCALL" is compiled with no subcommands to produce the main
MAINSAIL module.

5. CONF is run to produce a boot, "mecmainsa.mar", which knows about the CCODE
FLI.

6. The files "mecmainsa.mar", "msproc.mar", and "ccode.mar" are assembled with
MACRO.

7. The file "cproc.c" is compiled with the C compiler.

8. "mecmainsa". "msproc". "cproc". and "ccode" are linked.

9. Run "mecmainsa" and invoke the module "ccaU". C executes and calls back into
MAINSAIL.

This entire example is shown in Example 48.7-5. The line:

define lnk$library sys$library:vaxcrtl.olb

is required by C.

- 218-

V AXNMS MAINSAIL User's Guide

$ r ms:mainsa<eol>
MAINSAIL (R) Version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*compil<eol>
MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
compile (? for help): msproc.msl,<eol>
msproc .msl 1 ...

Output for MSPROC on MSPROCVMS.OBJ

compile (? for help): msproc.msl,<eol>
>fli fc<eol>
>~
msproc.msl 1

Output for MSPROC on MSPROC.MAR

compile (? for help): ccode.msl,<eol>
>fli tc<eol>
>~

eeode .msl 1 ...

Output for CCODE on CCODE.MAR

compile (? for help): ccall.msl,<eol>
>nofli<eol>
><eol>

ccall.msl 1

Output for CCALL on CCALLVMS.OBJ

Example 48.7-5. Using the MAINSAIL Entry Compiler (continued)

- 219-

VAXNMS MAINSAIL User's Guide

compile (1 for help): ~
*conf<eol>
MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file ms:vms.cnf
CONF: foreignmodule ccode<eol>
CONF: bootfilename mecmainsa.mar<eol>
CONF: <eol>
Bootstrap written in file mecmainsa.mar
*<eol>
$ macro msproc<eol>
$ macro ccode<eol>
$ macro roecmainsa<eol>
$ cc cproc<eol>
$ define lnkSlibrary sysSlibrary:vaxcrtl,olb<eol>
$ link mecmainsa,cproc,msproc,ccode<eol>
$ r mecmainsa<eol>
MAINSAIL (R) Version 12.10 (1 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*ccall<eol>
The value of mproc is 14

*

Example 48.7-5. Using the MAINSAIL Entry Compiler (end)

- 220-

VAX/VMS MAINSAIL User's Guide

49. V AX-ii Processor-Dependent Information

This chapter contains information about MAINSAIL that is specific to the VAX-II
implementations.

49.1. Procedure Size

There is no well-defined limit for the size of a procedure on the VAX-ll. However, the
compiler may not compile procedures longer than 32K bytes, depending on the code.
Procedures longer than approximately 32K bytes are not guaranteed to work, and such
procedures may compile correctly on one machine and not on another.

49.2. VAX-II Data Types

Refer to Table 49.2-1. A storage unit on the VAX-II is one byte (8 bits).

Data Type
boolean
integer
long integer
real
long real
bits
long bits
string

address
charadr
pointer

Representation
1 word (2 bytes)
1 word (2 bytes)
1 longword (4 bytes)
single precision F_floating (4 bytes)
double precision D_floating (8 bytes)
1 word (2 bytes)
1 longword (4 bytes)
1 quadword (8 bytes)
low-address longword is length;
high-address longword is charadr of first
character
1 longword (4 bytes)
1 longword (4 bytes)
1 longword (4 bytes)

Table49.2-l. VAX-II Data Types

- 221 -

V AX/VMS MAINSAIL User's Guide

49.3. Miscellaneous Infornlation

The standard representation for boolean FALSE is all bits clear, and the standard for boolean
TRUE is low-order bit set, all other bits clear. However, in constructs such as "IF <boolean
value> THEN ... ", <boolean value> is considered to be TRUE if any bits are set.

String variables have both the length and charadr component equal to Zero for the string Zero
(no characters).

- 222-

V AX/VMS MAINSAIL User's Guide

50. Miscellaneous

50.1. CTRL-C

MAINSAIL traps CTRL-C. It prompts with "Yes (? for help):". Possible answers are "q" to
quit MAINSAIL, "b" to enter the debugger at the next debuggable procedure, if possible, and
anything else to continue. MAINSAIL does not trap CTRL-Y.

50.2. Event Flags

EFN 0 is used for tenninal I/O.

50.3. Exceptions

The MAINSAIL error handler is designed to intercept all V AXNMS error exceptions. These
exceptions, and the V AXNMS symbolic name for each, are listed in Table 50.3-1. If, during
the execution of the error routine, another error exception occurs, the message "Error while
processing an error" is given, and exccution immediately terminates. More details on
exceptions can be found in the "V AXNMS System Services Reference Manual" supplied by
DEC.

- 223-

V AXNMS MAINSAIL User's Guide

SS$_ACCVIO
SS$_ARTRES
SS$_BREAK
SS$_CMODSUPR
SS$_CMODUSER
SS$_DECOVF
SS$_FLTDIV
SS$_FLTOVF
SS$_FLTUND
SS$_INTDIV
SS$_INTOVF
SS$_OPCCUS
SS$_OPCDEC
SS$_PAGRDERR

SS$ _RADRMOD
SS$_ROPRAND

Access Violation
Reserved Arithmetic Trap
Breakpoint Instruction Encountered
Change mode to Supervisor Encountered
Change mode to User Encountered
Decimal overflow
Floating/Decimal divide by zero
Floating Overflow
Floating Underflow
Integer divide by zero
Integer Overflow
Opcode reserved to Customer
Opcode reserved to Digital
Read error occured during during
an attempt to read a faulted disk page
Attempt to use a reserved addressing mode
Attempt to use a reserved operand

Table 50.3-1. Exception Conditions Caught by MAINSAIL

- 224-

V AX/VMS MAINSAIL User's Guide

XIDAK, Inc., 530 Oak Grove Avenue, MIS 101, Menlo Park, CA 94025 , (415) 324-8745

