
Tutorial, Volume I

MAINSAIL * Tutorial, Part I:

A Beginner's Guide to the MAINSAIL Language

24 March 1989

Copyright (c) 1984. 1985. 1986, 1987, 1989, by XIDAK. Inc .• Menlo Park, California.

The software described herein is the property of XIDAK. Inc .• with all rights reserved, and is a confidential trade secret
of XIDAK. The software described herein may be used only under license from XIDAK.

MAINSAIL is a registered trademark ofXIDAK, Inc. MAINDEBUG, MAINEDIT, MAINMEDIA. MAlNPM,
Structure Blaster, IDB, and SQUf are trademarks of XIDAK, Inc.

CONCEN1RIX is a trademark of Alliant Computer Systems Cotporation.

Amdahl, Universal Time-Sharing System, and UTS are trademarks of Amdahl Cotporation.

Aegis, Apollo, DOMAIN, GMR, and GPR are trademarks of Apollo Computer Inc.

UNIX and UNIX System V are trademarks of AT&T.

DASHER, DG/UX, ECllPSE, ECLIPSE MV/4000, ECUPSE MV/8000, ECLIPSE MV/l0000, and ECLIPSE
MV 120000 are trademarks of Data General Corporation.

DEC,PDP, TOPS-lO, TOPS-20, VAX-ll, VAX,MicroVAX, MicroVMS, ULTRIX-32, and VAXNMS are
trademarks of Digital Equipment Cotporation.

EMBOS and ELXSI System 6400 are trademarks of ELXSI, Inc.

The KERMIT File Transfer Protocol was named after the star of THE MUPPET SHOW television series. The name is
used by pennission of Henson Associates, Inc.

HP-UX and Vectra are trademarks of Hewlett-Packard Company.

Intel is a trademark of Intel Corporation.

CLIPPER, CLIX, Intergraph, InterPro 32, and InterPro 32C are trademarks of Intergraph Corporation.

System!370, VM/SP CMS, and CMS are trademarks of International Business Machines Corporation.

MC68000, M68000, MC68020, and MC68881 are trademarks of Motorola Semiconductor Products Inc.

ROS and Ridge 32 are trademarks of Ridge Computers.

SP ARC, Sun Microsystems, Sun Workstation, and the combination of Sun with a numeric suffix are trademarks of Sun
Microsystems, Inc.

WINrrcp is a trademark of The Wollongong Group, Inc.

WY -50, WY -60, WY-7S, and WY-IOO are trademarks of Wyse Technology.

Some XIDAK documentation is published in the typefaces "Times" and "Helvetica", used by permission of Apple
Computer, Inc., under its license with the Allied Corporation. Helvetica and Times are trademarks of the Allied
Corporation, valid under applicable law.

The use herein of any of the above trademarks does not create any right, title, or interest in or to the trademarks.

-ii-

Table of Contents

1. Introduction
1.1. Relevant Documentation. .
1.2. Tutorial Overview . . .
1.3. Conventions Used in This Document.

2. Writing and Running a Simple Program
2.1. Getting Started
2.2. Invoking a MAINSAIL Module. . .
2.3. Compiling and Executing a Simple Source Module .
2.4. Errors and the "Error Response:" Prompt .
2.5. An Analysis of the Module SIMPLE.
2.6. Errors in a Source File
2.7. Exercises.

3. Data Types, Variables, Constants, and Expressions: Strings and Integers .
3.1. Strings.
3.2. String Constants and String Constant Macros
3.3. String Variables
3.4. Declarations
3.5. Integer Constants, Variables, and Expressions
3.6. Strong Typing.
3.7. Exercises.

4. Iterative, Assignment, Begin, and If Statements, and the Boolean Data Type. . .
4.1. Statements
4.2. Iterative Statements with FOR-Clauses.
4.3. The Assignment Statement.
4.4. The Begin Statement
4.5. The Boolean Data Type . . .
4.6. The If Statement.
4.7. Contracted and Abbreviated Forms
4.8. Comments
4.9. Other Forms of the Iterative Statement
4.10. Exercises

.. ".

5. Introduction to Procedures; the Procedure and Return Statements
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.

Some Sample Procedures
Procedure Deciarations, Calls, Parameters, and Arguments
How a Procedure Call Works.
Typed Procedures and the Return Statement.
Order of Evaluation.
Exercises.

- iii -

1
1
1
2

4
4
4
5
8
8

11
13

14
14
14
17
19
19
21
24

26
26
26
28
29
30
31
32
34
36
39

40
40
41
44
48
49
52

6. More on Procedures, Characters, and Strings
6.1. Characters
6.2. Repeatable and Optional Parameters .
6.3. System Procedures ..
6.3.1. eRead
6.3 .2. cves
6.3.3. cvl and cvu.
6.3.4. cWrite
6.3.5. first
6.3.6. last
6.3.7. length
6.3.8. rcRead.
6.3.9. rcWrite.
6.3.10. isUpperCase, isLowerCase, and isAlpha .
6.3.11. String Processing Example
6.4. Scopes.
6.5. When to Use Outer Variables.
6.6. Exercises.

7 .. Even More on Procedures; the Done and Continue Statements
7.1. The Done, Continue, and Untyped Return Statements
7.1.1. The Done Statement.
7.1.2. The Continue Statement
7.1.3. The Untyped Return Statement ..
7.2. Recursion and Forward Procedures
7.2.1. A Procedure That Calls Itself . . .
7.2.2. Mutual Recursion and the "FORWARD" Qualifier.
7.3. Source Libraries
7.4. Own Variables ..
7.5. Generic Procedures.
7.6. Exercises.

8. More Data Types, Variables, Constants, and Expressions: Long Integer, Real, Long
Real, Bits, and Long Bits

8.1. More Data Types
8.1.1. Long Integers . . .
8.1.2. Reals and Long Rea1s .
8.1.3. Bits and Long Bits .
8.2. The Zero Value of a Data Type . .
8:3. Conversion Procedures
8.4. Reading Numeric Values from cmdFile.
8.5. Tables of Operations
8.6. Exercises.

9. Sequential Input and Output
9.1. Introduction to MAINSAIL I/O ..

- iv-

54
54
55
58
58
58
58
60
60
60
60
60
61
61
61
61
63
70

71
71
71
71
71
72
72
76
83
83
85
88

89
89
89
90
91
93
95
95
96

105

106
106

9.2. Text Files and Data Files
9.3. Opening, Closing, Reading, and Writing Files ...
9.4. File Names, Logical Names, and I/O Redirection ..
9.4.1. Logical Names.
9.4.2. Redirection of cmdFile and logFile.
9.5. The File "TIY" and the System Procedures ttyRead, ttyWrite, and ttycWrite .
9.6. alterOK
9.7. Exercises.

10. More on Expressions and Strings; the Expression, Case, and Empty Statements;
Random Access to Files

Procedure "BEGIN" and "END"
The If Expression.
The Assignment Expression .
Short-Circuit Evaluation .
Substrings.

10.1.
10.2.
10.3.
10.4.
10.5.
10.6.
10.7.
10.8.
10.9.
10.10.
10.11.
10.12.
10.13.
10.14.

String Comparison
The Procedure" scan" .
The Expression Statement.
The Case Statement . . .

The Empty Statement ..
Random File Access
PDFI/O
Restrictions on Files
Exercises

11. Records and Pointers
11.1. Records, Classes, and Pointers.
11.2. Allocation of Records
11.3. Using Pointers to Maintain a List.
11.4. Assignment Compatibility, Prefix Classes, and Unclassified Pointers. .
11.5. Using Pointers to Construct a Binary Tree
11.6. Exercises

12. Arrays; the System Procedure cmdMatch
12.1. Lists and Arrays
12.2. Sample Program with Arrays and Pointers .
12.3. The Init Statement.
12.4. The System Procedure cmdMatch
12.5. V ariable-Bounded Arrays.
12.6. Multidimensional Arrays.
12.7. newUpperBound .
12.8. Long Arrays .
12.9. Exercises

13. Macros; Conditional Compilation; Comparison Chains.
13.1. Macro Constants

-v-

106
107
111
111
115
117
118
119

121
121
121
122
123
123
125
126
127
129
130
131
142
142
143

144
144
149
149
154
154
157

158
158
163
167
168
170
172
172
172
175

177
177

13.2. Bracketed Text (Textual Substitution).
13.3. Macros with Parameters '
13.4. Comparison Chains
13.5. Conditional Compilation
13.6. Interactive Macro Equates and the "MESSAGE" Compiler Directive. .
13.7. Compiletime Equivalents of Iterative and Case Statements.. :...
13.8. Concatenation of Macros.
13.9. Repeatable Macro Parameters, $numArgs, $arg, and $sArg
13.10. Common Macro Errors .
13.11. Exercises.

14. Indirect Access to Modules; Bound Data Sections.
14.1. The Role of Modules
14.2. Binding a Module Explicitly.
14.3. Bound Modules. and How Example 14.2-3 Works
14.4. Module Swapping.
14.5. When Explicit Binding Is Necessary
14.6. Declarations Shared by Several Modules and the "SOURCEFILE" Compiler

Directive
14.7. Exercises

15. Direct Access to Modules; Nonbound Data Sections ..
15.1. The Nonbound Data Section.
15.2. HSHMOD Example of Nonbound Data Sections ..
15.3. Prefix Classes and Explicit Class Specifications .
15.4. Explanation of Example 15.2-4
15.5. Dungeon Game Example
15.6. String Forms of "bind" and "new"
15.7. thisDataSection and Unclassified Pointers
15.8. Exercises

16. More on Modules.
16.1. Toy Editor Example .
16.2. Module Search Rules
16.3. $useProgramInterface
16.4. The MAINSAIL Display Modules

17. Exceptions
Rationale behind Exceptions.
The Handle Statement

17.1.
17.2.
17.3.
17.4.
17.5.
17.6.
17.7.
17.8.

Exceptions Raised Automaticaliy and Predefined Exceptions .
Multiple Handlers and Multiple Exceptions. .
Information about the Current Exception.
errMsg and Exceptions.
Exceptions and Coroutines
Exception Caveats. . . .

- vi-

178
181
183
184
185
189
189
190
193
195

196
196
198
202
208
209

209
212

213
213
213
223
223
225
244
244
245

246
246
246
248
248

266
266
268
273
273
281
281
281
283

18. Low-Level Data Types; Memory Management .
18.1. Organization of Memory
18.1.1. Storage Units and Character Units. . . .
18.1.2. Loading, Storing, Reading, and Writing
18.1.3. Address Constants.
18.1.4. Loading and Storing Examples .
18.1.5. Copy and Clear
18.1.6. Alignment of Addresses..
18.1.7. Pages.
18.2. dispose.
18.3. High-Volume I/O
18.4. Control of Garbage Collection. . .
18.5. $getInArea and newString ..
18.6. Runtime Construction of Classes.

19. Coroutines
19.1. Rationale behind Coroutines . . .
19.2. Diagrammatic Example of Co routines .
19.3. Primitive Scheduler Example . .
19.4. Ecological Simulation Example
19.5. Coroutines and Exceptions
19.6. Exercises

20. Bootstraps, Libraries, and Intmods
20.1. Bootstraps.
20.1.1. Bootstrap Caveats
20.2. Objmod Libraries.
20.3. Intmods and Intmod Libraries
20.4. Foreign Language Modules ..
20.4.1. Special FLI Considerations
20.5. Bootstrap and Library Example

List of Examples

1.3-1. How User Input Is Distinguished
1.3-2. How Comments Are Separated from the Main Part of a Figure. .
1.3-3. S~tax of a Mailing Address
2.2-2. Running the Utility Module CONCHK
2.2-3. Ending a MAINEX Session.
2.3-2. Compiling "simple.msl" with the MAINSAIL Compiler
2.3-3. Executing the Compiled Module SIMPLE
2.4-1. An Error Message and Response.

- vii-

284
284
284
286
288
288
289
289
291
292
295
297
297
298

299
299
305
314
322
346
347

348
348
349
349
350
351
352
353

2
3
3
5
5
7
8
9

2.5-2. These Identifiers Are Not the Same.
2.6-2. Compilation Dialogue for a Source File Containing Errors
3.2-1. A Module That Writes Strings to 10gFile
3.2-2. Executing WRITER.
3.2-3. Some Valid String Constants
3.2-4. The Use of "&" to Concatenate Strings
3.2-5. A Simplified Version of WRITER ..
3.2-6. WRITER with String Macros
3.3-1. A Module Containing a String Variable ..
3.3-2. Execution of the Module READER . .
3.4-1. Error Message Issued for Undeclared Identifier. .
3.5-1. Some Valid Integer Constants.
3.5-2. Some Valid Integer Expressions.
3.5-3. A Program Using Integer Variables
3.6-1. Legal and Illegal Expressions.
4.2-2. Execution of the Module SQUARE
4.2-1. A Program Using an Iterative Statement with a FOR-Clause.
4.3-1. A Module Using the Assignment Statement
4.3-2. The Assignment Statement with Strings.
4.4-1. The Use of the Begin Statement.
4.6-2. Execution of IFFY
4.6-1. The Use of the If Statement.
4.6-3. Boolean Variables and the If Statement
4.7-1. Nested If Statements and Abbreviated Forms.
4.9-1. Finding an Integer Square Root
4.9-2. Adding Up Some Numbers.
4.10-1. A Sample Triangle
5.1-1. A Program with Only an Initial Procedure. .
5.1-2. A Program with Two Procedures
5.1-3. The Use of a Procedure
5.1-4. More Procedures.
5.3-1. A Procedure Declaration and Call
5.3-2. Before the Procedure Call
5.3-3. At the Time of the Procedure Call .
5.3-4. Upon Entry to "proc" . . .
5.3-5. At the End of "proc"
5.3-6. After Return from "proc".
5 .4-1. An Untyped Procedure and a Variable
5.4-2. Typed Procedures
5.5-1. Order of Evaluation Ambiguities.
6.1-1. Character Constants..
6.2-1. Optional Parameters.
6.2-2. Repeatable Parameters.
6.2-3. A Repeatable Optional Parameter .
6.2-4. Output from REPTST .
6.3.11-1. Getting a Substring.
6.4-1. Use of Outer Variables

- viii -

10
12
15
15
16
16
17
17
18
18
20
20
21
22
23
26
27
28
29
30
31
32
33
35
37
38
39
40
41
42
43
45
46
46
47
47
48
49
50
51
54
55
56
57
57
62
64

6.4-2. Execution of RPN
7.1.1-1. The Done Statement.
7.1.2-1. Use of the Continue Statement.
7.2.1-1. A Recursive Procedure to Perfonn Multiplication .
7.2.1-2. Invocation #1 of "mul" on Entry to the Procedure
7.2.1-3. Invocation #2 of "mul" on Entry to the Procedure
7.2.1-4. Invocation #3 of "mul" on Entry to the Procedure
7.2.1-5. Invocation #2 of "mul" upon Return from #3
7.2.1-6. Invocation #1 of "mul" upon Return from #2 .
7.2.2-1. The Grammar of CALC Commands.
7.2.2-2. Mutual Recursion.
7.2.2-3. Sample Execution of CALC.
7.4-1. An Own Variable Used to Keep Track of Recursion Depth
7.5-1. Instance Procedure Headers for "write" . . .
7.5-2. Selection of Instance Procedures for "write"
7.5-3. User-Defined Generic Procedures
8.1.1-1. Long Integers to Calculate Tetrahedral Numbers. .
8.1.1-2. The Execution of TElRA . .
8.1.2-1. Calculation of Sines.
8.1.3-1. Bits Constants
8.2-2. Using a String as the Controlling Expression of a WHILE-Clause.
8.4-1. The Wrong Way to Read an Integer from cmdFile. . .
8.5-3. Correspondence Between Bits and Boolean Operations.
8.5-4. Execution of BANDB.
9.3-2. Copying a Text File to 10gFile.-
9.3-3. The Use of Data Files
9.3-4. Sample Input and Output Files for NUMS.
9.4.1-2. Program Fragment That Uses Logical Names.
9.4.1-3. Execution ofPROG
9.4.1-4. A Module to Set Up Logical Name Correspondences. .
9.4.1-5. Execution ofPROG with Automatic Logical Name Substitution
9.4.1-6. Use of the MAINEX "ENTER" Subcommand
9.4.1-7. A Logical Name Substitution for MAINEDIT's "eparms" File .
9.4.2-1. A Sample Command File.
9.4.2-2. Use of the "CMDFILE" and ttLOGFILE" Subcommands
9.4.2-3. A Redirected 10gFile.
9.5-1. Use of COPIER and the File "TIY"
9 .6-1. Use of the alterOK Open Bit
10.2-1. An If Expression inside a Return S tatefllent .
10.3-1. Chain Assignments Using the Assignment Expression. . .
10.3-2. Precedence of the Assignment Operator in Expressions and Statements .
10.4-1. The Use of Short-Circuit Evaluation.
10.5-1. A Common Use of Substrings
10.6-1. The Procedure "compare" and the Comparison Operators
10.7-3. The Use of ttscan"
10.9-1. A Case Statement for String Comparison.
10.9-2. Use of a Case Statement

- ix-

68
72
73
74
74
74
75
75
76
77
77
82
84
85
86
87
90
91
92
92
94
96

102
104
109
110
110
112
113
114
114
115
115
116
116
116
117
118
122
122
123
124
124
125
128
129
130

10.10-1. The Use of an Empty Statement. . • .
10.11-4. The Use of a Random-Access Data File. .
11.1-1. A Pointer p Pointing to a Record r. .
11.1-2. A Sample Class Declaration
11.1-3. A Record of Class c
11.1-4. A Pointer Declared to Be of Class c .
11.1-5. Some Declarations and a Data Structure .
11.2-1. Building the Structure of Example 11.1-5 ..
11.3-1. Use of Pointers to Maintain a List of Records .
11.5-1. A Binary Tree of Strings
11.5-2. Use of Pointers to Construct a Binary Tree .
12.1-1. Sample Array Declarations
12.1-2. Newing Some Arrays.
12.1-3. Subscripted Variables
12.1-4. Array Assignment.
12.2-1. Use of an Array as a Hash Table
12.3-1. An Init Statement and Equivalent Assignment Statements .
12.4-2. The Use of cmdMatch
12.5-1. Allocation of a Variable-Bounded Array
12.6-1. Matrix Multiplication Using Variable-Bounded Two-Dimensional Arrays. .
12.9-1. A Sample Maze Input File.
12.9-2. Sample Output from the Maze Solver Program
13.1-1. A Macro Definition Containing Several Macro Equates
13.2-1. Bracketed Text Macros.
13.2-2. Macro Bodies Containing Macro Calls.
13.3-1. The Use of Macro Parameters . . .
13.3-2. A Macro to Define a Series of Values ..
13.3-3. A Macro Used Instead of a Procedure .
13.6-1. Interactive Macro Equates and "MESSAGE"
13.6-2. Compilation of the File of Example 13.6-1 .
13.6-3. Use of Recursive Macros and Interactive Definition. ...;
13.6-4. Use of Interactive Definition to Determine Whether Debugging Tests Are to Be

Performed.
13.7-1. Use of Compiletime Iteration
13.8-1. Macros That Create New Identifiers.
13.8-2. Concatenation of Bracketed Text and String Constants
13.10-2. Corrected Definitions of Macros. . .
13.10-1. Expansion-Context-Dependent Macros .
13.11-1. Expansion of "strDec1s(4)"
14.1-1. Two Modules in the Same Source File .
14.1-2. Compilation of the File of Example 14.1-1 .
14.2-1. The Module ITFI ..
14.2-2. The Module ITF2
14.2-3. Execution of ITF1.
14.3-1. Before Execution of ITFI or ITF2.
14.3-2. After the Allocation of ITFI 's Data Section.
14.3-3. After ITFI Binds ITF2

-x-

131
135
145
145
145
146
146
149
150
154
155
158
159
159
160
163
167
169
171
173
175
176
178
179
180
181
182
183
185
186
187

188
189
190
191
193
193
195
197
197
199
200
201
203
204
205

14.3-4.
14.3-5.
14.4-1.
14.6-1.
14.6-2.
14.6-3.
15.2-2.

After MAINEX Has Disposed ITFI.
After the Second Execution of ITFI Binds ITF2
Execution of ITFI with the "SW APINFO" MAINEX Subcommand
ITFI with the "SOURCEFILE" Directive..
ITF2 with the "SOURCEFILE" Directive.
The Sourcefiled File "decls"
Partial Declaration of HSHMOD and Associated Classes in the MAINSAIL
System Source Library

15.2-3. Partial Source Text for the MAINSAIL Utility Module HSHMOD .
15.2-4. A Module That Uses HSHMOD
15.4-1. The Three Separate HSHMOD Data Sections
15.5-1. The Sourcefiled Declaration File "dngn.dcl"
15.5-2. The Dungeon Top-Level Module DNGN.
15.5-3. The Modules in the Dungeon Other Than DNGN. .
15.5-4. An Execution of DNGN with the "SW APINFO" MAINEX Subcommand.
15.7-2. An Unclassified Pointer Variable . .
16.4-1. Toy Editor Program
16.4-2. A Module That Uses TOYED
17 .1-1. Recursive-Descent Parsing without Exceptions
17.1-2. Recursive-Descent Parsing with Exceptions. . .
17.2-1. Propagating an Exception with $raise
17.2-2. Resuming a Suspended Handled Statement with $miseReturn .
17.2-3. Falling Out of a Handler
17.3-1. Cleaning Up by Handling $abortProcedureExcpt .
17.4-1. Simultaneously Active Handle Statements
17.4-2. Two Simultaneously Active Handle Statements .
17.4-4. Output from Example 17.4-3.
17.4-3. Nested Handlers and Exceptions
17.4-5. Explanation of Example 17.4-3 with Stack Diagrams .
17.6-1. errMsg and $systemExcpt.
18.1.4-1. Using Addresses and Charadrs for a Fast String Scan
18.2-1. Binary Tree Program Modified to Clean Up after Itself
18.3-1. Use of $storageUnitRead
19.1-1. A Program without Coroutines. .
19.1-2. A Program with Coroutines .
19.2-1. Three Coroutines
19.2-2. Output from Example 19.2-1.
19.2-3. Explanation of Example 19.2-1 with S tack Diagrams
19.3-2. ADDNUM Scheduler Application
19.3-1. Primitive Scheduler Module. . . .
19.3-3. BKWRD2 Scheduler Application ..
19.3-4. SMSQRT Scheduler Application . .
19.3-5. Sample Execution of SCHED ...
19.4-1. CRTHDR, Ecological Simulation Intmod.
19.4-2. DARWIN, Ecological Simulation Executive Module
19.4-3. PLANT Critter
19 .4-4. EATER Critter

- xi-

206
207
208
210
211
211

214
215
218
224
226
229
236
242
244
249
264
267
268
270
271
272
274
274
275
276
277
278
282
290
293
296
300
302
305
308
309
314
315
319
320
321
323
327
343
343

20.3-1. A Module Compiled to Produce an Intmod .
20.5-1. Compiling Modules into a Library . . .
20.5·2. Building a ModuleLibrary . . . 0 • • •

20.5-3. Compiling the FLI Module MUSFLI . .
20.5-4. Making the Bootstrap for the Music Program
20.5-5. Linking and Running the Bootstrap

List of Exercises

2-1.
2-2.
2-3.
3-1.
3-2.
3-3.
4-1.
4-2.
5-1.
5-2.
5-3.
6-1.
6-2.
7-1.
7-2.
8-1.
8-2.
9-1.
9-2.
10-I.
10-2.
II-I.
11-2.
12-1.
12-2.
13-I.
14-1.
15-I.
19-1.
19-2.

- xii-

351
354
355
355
356
356

13
13
13
24
24
24
39
39
52
52
52
70
70
88
88

105
105
119
119
143
143
157
157
175
175
195
212
245
347
347

List of Figures

2.2-1. The MAINEX Banner and Prompt.
2.3-1. A Simple MAINSAIL Source File: ttsimple.msltt
2.5-1. Parts of the Module SIMPLE
2.6-1. A Version of ttsimple.msl" Containing an Error.
3.7-1. Replace ttxxxtt to Finish the Module
3.7-2. Which Are Legal Expressions?
5.6-1. Sample Code Fragments.
8.1.3-2. Bit Numbers in a Bits
9.3-1. The Declarations of ttopentt and "close"
9.4.1-1. Declarations of enterLogicalName and lookupLogicalName .
9.5-2. Declarations of ttyRead, ttycWrite, and ttyWrite
10.7-1. Declaration of the Procedure "scan".
10.7-2. Named Control Bits for "scan"
10.11-3. The Fonnat of Hash Lists and Records Used by SYMTAB
12.4-1. Declaration of cmdMatch
12.7-1. Declaration of new Upper Bound
15.2-1. Code to Pick Up HSHMOD Declaration • .
15.7-1. Declaration of thisDataSection

List of Tables

6.3-1. Some System Procedures for String and Character Manipulation
8.2-1. The Zeros of the MAINSAIL Data Types
8.3-1. Names of Conversion Procedures
8.5-1. Unary Operators
8.5-2. Binary Operators.
9.7-1. Interpretation of Data File Commands
10.8-1. Operators That May Be Dotted. . .
10.11-1. Names of the MAINSAIL Type Codes .
10.11-2. Declarations of setPos, relPos, and getPos .
16.2-1. Default Objmod File Names.

- xiii -

4
6

10
11
24
25
52
93

108
112
118
126
127
134
168
172
214
244

59
94
95
97
98

120
128
132
132
247

- xiv-

1. Introduction

This document is designed to teach the MAINSAIL programming language and the use of
some of the utilities in the MAINSAIL environment to someone with computer experience. It
is assumed that you have at least taken an introductory computer programming course in some
other language. This tutorial makes no attempt to explain the overall philosophy behind
computers and computer software, but rather concentrates on the specifics of writing programs
in MAINSAIL.

1.1. Relevant Documentation

If you have not already done so, you should consult the "MAINSAIL Documentation User's
Guide and Master Index" to see what documents are available on MAINSAIL and the
MAINSAIL environment. Before beginning this tutorial, you should read (or at least skim) the
"MAINSAIL Overview" and the operating-system-specific MAINSATI... user's guide for your
operating system.

If you wish to use MAINEDIT, the MAINSAIL text editor, while working through the
examples and exercises in this tutorial, you will need to read the "MAINEDIT User's Guide".
After reading the first several chapters of the tutorial, you should read the "MAINDEBUG
User's Guide" for instructions on the use of the MAINSAIL debugger. You will find
MAINDEBUG extremely useful as you write MAINSAIL programs of progressively greater
size and complexity.

1.2. Tutorial Overview

Chapters 2 through 20 constitute an introductory self-taught course in MAINSAIL
programming. If you have some experience with other ALGOL-style programming languages
(e.g., ALGOL, Pascal, Ada), you may want to skim or skip the first few chapters of the tutorial,
and any other material that seems familiar. Otherwise, it is strongly recommended that you
follow the directions by logging in, entering, compiling, executing, and modifying the sample
programs as directed while you read the text

C programmers will want to read the comparison between MAINSAIL and C in Appendix B of
part II of the "MAINSAIL Tutorial't.

The tutorial instructions assume you remain connected to the same file directory or catalog
while you work your way through the tutorial; if you change directories in the middle, the

- I -

MAINSAIL runtime system may be unable to find files produced by the compiler and left on
other directories. A discussion of search rules for these files appears in Chapter 16.

Chapter 1 of part II of the "MAINSAIL Tutorial" and subsequent chapters contain suggestions
for the more advanced MAINSAIL programmer. They tell how to make your programs more
efficient and more portable, and how to take advantage of all the features of the MAINSAIL
environment. Programmers who already know MAINSAIL well may prefer to go directly to
this part of the tutorial.

Every chapter has an introductory paragraph or two describing its contents. You may find these
introductions useful if you are searching for topics of interest

Answers to most exercises may be found in Appendix A of part II of the "MAINSAIL
Tutorial",

1.3. Conventions Used in This Document

Throughout the examples in this document, characters typed by the user (that's you) are
underlined. "<eol>" symbolizes the end-of-line key on a terminal keyboard; this key is marked
"RETURN" or "ENTER" on most keyboards. In Example 1.3-1, "Prompt:" is written by the
computer; the user types "response" and then presses the end-of-line key. "Prompt:" is an
example of a "prompt", i.e., something typed by a program to indicate how the user is to
respond.

Prompt: response<eol>

Example 1.3-1. How User Input Is Distinguished

Some figures in this tutorial contain comments separated from the rest of the figure by a line of
vertical bars ("I"). Such comments are not entered as part of sample files and do not appear in
sample dialogues when programs are actually run; they are present only as an explanation of
the main part of the figure. See Example 1.3-2.

Specifications of syntax often contain descriptions enclosed in angle brackets ("<" and ">").
Such descriptions are not typed literally, but are replaced with instances of the things they
describe. For example, a specification of the syntax of the address on an envelope might appear
as in Example 1.3-3.

-2-

This is the main
part of the figure.

This is a comment
on the right-hand
side of the
figure.

Example 1.3-2. How Comments Are Separated from the Main Part of a Figure

<name of addressee>
<street number> <street name>
<town or city name>, <state abbreviation> <zip code>

Example 1.3-3. Syntax of a Mailing Address

-3-

2. Writing and Running a Simple Program

This chapter uses some simple examples to show the steps involved in writing and executing a
simple MAINSAIL program.

2.1. Getting Started

It is assumed that you know how to log into your computer, and that an account has been set up
for you. The operating-system-specmc user's guide for your operating system tells how to run
MAINSAIL on your system. The instructions in the guide may be inaccurate if your
MAINSAIL system was installed in a non-standard way; if necessary, consult the person in
charge of MAINSAIL on your system for details.

It is also assumed that you know how to create a text file (a file is sometimes also called a "data
set") on your system. Creating a text file is usually done by means of a program called a "text
editor" (or just an "editor"). A text editor called MAINEDIT is part of the MAINSAIL
programming environment, and some examples of its use are given in this document. If
MAINEDIT is available on your system, you may wish to learn how to use it by reading the
"MAINEDIT User's Guide", which assumes no knowledge of programming in general or of
MAINSAIL in particular.

2.2. Invoking a MAINSAIL Module

Log in now and invoke MAINSAIL. You should see a banner and an asterisk ("*") prompt as
shown in Figure 2.2-1 (the number following the word "Version" may be different on your
system). The banner and prompt are written by a MAINSAIL utility called MAINEX, which is
described in detail in the "MAINSAIL Utilities User's Guide".

MAINSAIL (R) version 12.10 (7 for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

*

Figure 2.2-1. The MAINEX Banner and Prompt

MAINSAIL programs are composed of entities called "modules". One way to run (or "invoke"
or "execute") a MAINSAIL module is to type its name to the MAINEX asterisk prompt. The

-4-

utility module CONCHK is shipped with every standard MAINSAIL system; type "CONCHK"
(in upper or lower case) to the asterisk prompt now. The result should look as in Example
2.2-2. Don't worry about exactly what CONCHK does right at the moment; the important
thing is that you have just invoked CONCHK, it has printed the message "No inconsistencies
detected.", and then it has finished executing.

MAINSAIL (R) version 12.10 (? for help)
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.
*conchk<eol>
No inconsistencies detected.

*

Example 2.2-2. Running the Utility Module CONCHK

Note the second asterisk prompt in Example 2.2-2. When a module finishes executing, control
ordinarily returns to MAINEX, which prints an asterisk prompt to allow you to run another
module. If you wish to return to the operating system prompt, respond to the MAINEX asterisk
prompt by typing the end-of-line key, as shown in Example 2.2-3.

*<eo1>
(the operating system command
processor prints its own prompt here)

Example 2.2-3. Ending a MAINEX Session

In MAINSAIL, unlike many other languages, it is not necessary to return to the operating
system prompt after each program is executed (provided each program executed is a
MAINSAIL program). Any number of MAINSAIL programs may be run in a fOW by typing
the name of each module to be run to the MAINEX asterisk prompt.

2.3. Compiling and Executing a Simple Source Module

This section describes how to run a small program; the next section analyzes why the program
does what it does.

- 5 -

Create a text file called "simple.msl" with the contents shown in Figure 2.3-1. A text file with
human-readable program code in it is called a "source file". MAINSAIL source file names
customarily end in ".msl"; you may use a different name if you prefer, since the MAINSAIL
system makes no assumption about the names of MAINSAIL source files.

BEGIN "simple"

INITIAL PROCEDURE;
BEGIN
write (logFile, "Hello, world." & eol);
END;

END "simple"

Figure 2.3-1. A Simple MAINSAIL Source File: "simple.msl"

The source file "simple.msl" contains the source (also called "source code"), or textual fonn, of
an entire MAINSAIL module. The source code for a module may be referred to as a "source
module", or just as a "module", in which case context must distinguish it from an "object
module", which is described below. It is possible for a source file to contain more than one
module, or to contain only part of a module, but the case in which a source module is composed
of exactly one file is common for small modules.

In order to execute a MAINSAIL module that exists in source form, it must first be "compiled",
i.e., translated into a "machine language" form readable by the computer (but not by human
beings). Some programming languages (e.g., certain forms of BASIC) do not require a
compilation step, but rather execute source code directly (or nearly directly). Such languages
are called "interpreted languages"; MAINSAIL is called a "compiled language" because the
compilation step is required. A MAINSAIL compilation translates the source module into a
machine language file (the object module, usually called an "objmod") of which the name is
deri ved from the name of the source module. When you type the name of a module to the
MAINEX asterisk prompt, you are really telling MAINE X to search for the objmod with the
file name corresponding to the module name you have just typed (actually, some modules are
not contained in individual files, and there are ways of changing the default correspondence
between source and object module names, but these are discussed later).

To compile "simple.msl", you must invoke the MAINSAIL compiler, which is itself a
MAINSAIL module called COMPIL. COMPIL prints out a herald and a prompt ("compile (7
for help):"), then allows you to type the name of the first source file to be compiled. Perform
the steps shown in Example 2.3-2.

-6-

*compil<eol>

MAINSAIL (R) Compiler

COMPIL is the
module to run.

Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by
XIDAK, Inc., Menlo Park, California, USA.

compile (7 for help): simple.msl<eol>

Opening intmod for $SYS ...

simple.msl 1
Objmod for SIMPLE on simple-xyz.obj
Intmod for SIMPLE not stored

compile (7 for help): <eol>

*

"simple.msl"
(containing source
module SIMPLE) is
the first file to
compilee
"xyz" will be
replaced by a
different string
on your operating
system.

Example 2.3-2. Compiling "simple.msl" with the MAINSAIL Compiler

Whenever it compiles, the compiler issues the "opening intmod for $SYS ... " message; this
means it is looking up the standard symbols built into MAINSAIL. It then prints the names and
page numbers of all the source files it uses to produce the compiled version of the module, the
object module. Since the module SIMPLE is contained entirely within the file "simple.msl",
which has only one page, the MAINSAIL compiler prints "simple.msl 1". When it has finished
producing the object file, it writes a line showing the name of the module compiled
("SIMPLE") and the name of the objmod file ("simple-xyz.obj" is shown in Example 2.3-2; in
real life, the "xyz" part is replaced with some characters that vary from operating system to
operating system). If an intmod (another kind of file produced by the compiler) was not
requested (see Section 20.3 for a discussion of intmods), the compiler prints that the intmod
was not stored. The compiler then returns to the compiler prompt, to which you may enter
another source file name. Typing the end-of-line key to the compiler prompt tenninates the
execution of COMPIL.

To execute (or "run" or "invoke") the resulting object module, you need only type its name to
the MAINEX asterisk prompt Unlike many programming languages, MAINSAIL does not
require an explicit "link" or "bind" step following compilation. SIMPLE writes the line "Hello,
world.", then exits. See Example 2.3-3.

A module or collection of modules that performs some well-defined task is frequently referred
to as a "program". The MAINSAIL compiler and MAINEX do not distinguish between

-7-

*simple<eol>
Hello, world.

*

Example 2.3-3. Executing the Compiled Module SIMPLE

modules that constitute entire programs in and of themselves and those that are viewed as
fragments of programs. Indeed, the same module may sometimes be used in a fashion the
programmer views as "independent", or "program-like", and sometimes in a "dependent"
fashion. This is more fully explained in Chapter 16. Since SIMPLE by itself performs a
relatively well-defined task, it may be thought of as a program.

2.4. Errors and the" Error Response: tt Prompt

If you mistyped the contents of the file "simple.msl" when you created it, you may have gotten
an error message from the compiler. Such an error message ends with the prompt "Error
response:". Such error messages are commonly given by the MAINSAIL runtime system and
by MAINSAIL utility programs. The correct thing to do when such an error occurs is usually
to hit the <eoI> key (unless you know of something more appropriate to do, which may be the
case in some circumstances, particularly if the ~rror message itself instructs you to do
something different). In this case, the MAINSAIL program that issued the error message
usually continues, patching up the error as best it can.

You can cause MAINSAIL to issue an error message by trying to compile a file that is not a
valid MAINSAIL program. Try compiling a file named "xxx.msI" that contains just the line
"xxx". The result should look like Example 2.4-1.

2.5. An Analysis of the Module SIMPLE

The module SI1t1PLE has the parts shown in Figure 2.5-1. The extra blank lines and the line
break after "logFile," do not matter to the MAINSAIL compiler; the source code in Figure
2.5-1 is the "same" as the one in Figure 2.3-1 in the sense that if the two files were compiled
they would produce identical "simple-xyz.obj" files, -which means they would perform the same
actions when executed. A change in a source module that does not result in a change in the
actions performed by its objmod is said "not to alter the meaning" of the module. The
MAINSAIL compiler ignores extra blanks and ends of lines, except within identifiers or
numbers or between pairs of double quotes. Blanks or ends of lines are required to separate
two adjacent identifiers (words in a program), of course.

-8-

*compil<eol>

MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (7 for help): xxx.msl
Opening intmod for $SYS ...

xxx.msl 1

ERROR: file xxx.msl page 1 line 1 at ##
xxxii
Expected BEGIN
Error Response: ~

ERROR: file xxx.msl page 1 line 1 at ##
xxx##
Module END expected here
Error Response: <eol>

Objmod not generated
Intmod not stored

compile (7 for help): <eol>

*

Example 2.4-1. An Error Message and Response

The line labeled "Initial "BEGIN'''' is the first line of SIMPLE. Every source module begins
with the word "BEGIN" followed by the module name in double quotes. The word "BEGIN" is
a "keyword" or "reserved word"; Le., it plays a special role in the structure of MAINSAIL
source code. The words "INITIAL", "PROCEDURE", and "END" in Figure 2.5-1 are also
keywords. MAINSAIL has a number of keywords, which will be introduced in this tutorial as
they are encounted. Keywords are customarily written entirely in upper case, but may be
written in lower or mixed case.

The module name must be an "identifier", which means that it must consist entirely of letters
and digits, and its first character must be a letter (unlike some programming languages,
MAINSAIL does not consider the underbar ("_") to be a letter for the purpose of constructing
identifiers). Case is not distinguished in identifiers; the words "simple", "write", and "logFile",

-9-

BEGIN "simple"

INITIAL PROCEDURE;

BEGIN
write (logFile,

"Hello, world." & eol);
END;

END "simple"

Initial "BEGIN"

Initial procedure header

Initial procedure body

Final "END"

Figure 2.5-1. Parts of the Module SIMPLE

which are all identifiers, could be written as "Simple", "WRITE", and "logfile", respectively,
without changing the meaning of the module SIMPLE. Non-keyword identifiers are
customarily written in lower case, or in a mixture of upper and lower case so as to be easier to
read (e.g., "logFile" is written as it is because it is composed of the words "log" and "file").

Certain predefined identifiers (which will be encountered later) begin with a dollar sign ("$")
character. You must never create such an identifier in your own programs.

A module name is required to be no longer than six characters. This is a restriction not placed
on most identifiers; most identifiers created by the programmer may be as long as the
programmer desires, provided that no line of source code exceeds 32,766 characters. Some
programming languages ignore trailing characters in identifiers exceeding a certain length, but
in MAINSAIL every character in an identifier is significant. For example, the identifiers in
Example 2.5-2 are considered to be different identifiers by the MAINSAIL compiler.

this IsAVeryVeryLongIdentifierItIsLongIdentifierNumberl
this IsAVeryVeryLongIdentifierItIsLongIdentifierNumber2

Example 2.5-2. These Identifiers Are Not the Same

The line in Figure 2.5-1 labeled "Initial procedure header" signifies the beginning of what is
called the "initial procedure". The initial procedure contains code that is executed when a
module is invoked. A module mayor may not contain an initial procedure, but if a single
module is to be executed as a program, it must contain an initial procedure (otherwise it does
nothing when you try to run it). A module may contain at most one initial procedure, although
it may contain other sorts of procedures; procedures are described in more detail in Chapter 5.

- 10-

The "Initial procedure body" is what SIMPLE executes when it is run. The body begins with
the keyword "BEGIN" and ends with the keyword "END", followed by a semicolon. Between
the "BEGIN" and the "END" is a call to the procedure "write"; the word "write" is followed by
a pair of parentheses in which is enclosed a description of what to write and where to write it
"logFile" is where to write what is written; "Hello, world.", followed by an end-of-line ("&
eol"), is what is written. "logFile" is usually your terminal; i.e., things written to 10gFile appear
on your terminal screen. Much more will be explained about "write" in subsequent chapters;
for now, just accept that you may cause a program to print something to your terminal by
surrounding it with double quotes, preceding it with "write(logFile,", and following it with ");".
An end-of-line may be added to something in double quotes by means of "& eol".

The line labeled "Final "END'fII in Figure 2.5-1 terminates the source module. The module
name in quotes after the keyword "END" must be the same identifier as the module name after
the initial "BEGIN" . Every source module must have a final "END".

2.6. Errors in a Source File

When the MAINSAll... compiler compiles a module, it checks to make sure that the module
conforms to the rules for MAINSAIL text. If the module does not conform, the compiler prints
an error message to 10gFile, and waits for you to type a command indicating how to deal with
the error. A common response to the compiler error prompt is <eol>, which means to continue
the compilation as well as the compiler can. The compiler does not produce an objmod if it
encounters errors in the source text. A source file construct containing errors is said to be
"illegal".

As an example. alter "simple.msl" to look like the version shown in Figure 2.6-1. The closing
parenthesis following "write" has been removed.

BEGIN "simple"

INITIAL PROCEDURE;
BEGIN
write (logFile, "Hello, world." & eol;
END;

END "simple"

The closing
parenthesis is
missing.i

Figure 2.6-1. A Version of "simple.ms}" Containing an Error

Attempt to compile the erroneous version of "simple.ms!" by following the dialogue shown in
Example 2.6-2. The compiler marks the place where it thinks the error is with u##". It also

- 11 -

informs you of the page and line numbers in the source file where the error is. Compiler error
messages try to be as informative as possible, although the compiler may sometimes
misconstrue your intent Also, an error may confuse the compiler and cause it to issue error
messages beyond the point of the original error in source code that you feel is correct. It is
sometimes necessary to take compiler error messages with a grain of salt. In this case, the
compiler seems to have done pretty well; it says it was expecting to see a ")" in the file, and that
is just what is missing.

*compil<eol>

MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (7 for help): simple.msl<eol>
Opening intmod for $SYS ...

simple.msl 1

ERROR: file simple.msl page 1 line 5 at ##
write (logFile, "Hello, world." & eol;##
Expected)
Error Response: <eol>

Objmod for SIMPLE not generated
Intmod for SIMPLE not stored

compile (7 for help): <eol>

*

Example 2.6-2. Compilation Dialogue for a Source File Containing Errors

When a compiler error occurs, you must alter the source file so that it conforms to rules for
MAINSAIL code, then retry the compilation (actually, the compiler sometimes allows you to
fix up your module while you are compiling it, then continue; but this is a little complicated
until you have had some practice with the compiler. If you are really interested, you can look
up the details in the "MAINSAIL Compiler User's Guide").

- 12-

2.7. Exercises

Exercise 2·1.

Is "ABCDEFG" a legal module name? A legal identifier? How about "IX"?
"A_B_C"? "abc"?

Exercise 2·2.

Change the name of SIMPLE to be "byeBye", and have it print out "Bye, folks!"
instead of "Hello, world.".

Exercise 2·3.

Replace "PROCEDURE" in the file of Figure 2.3-1 with "PORCEDURE". See what
error message results when you try to compile the altered file.

- 13 -

3. Data Types, Variables, Constants, and Expressions:
Strings and Integers

This chapter introduces constants and variables, which are used to represent and record values
in a program. Values of the two data types "string" and "integer" are used as examples. It is
shown how variables and constants may be used to construct more complex expressions by
means of operators. The declaration of symbolic constants is also covered.

3.1. Strings

A character is represented in a computer as an integral number. The numbers that represent
valid characters are constrained by the operating system to fall within a certain range; the most
common range is 0 through 255 (which is the range of values assumed by MAINSAIL). The
character represented by each number may be discovered by transmitting the number to a
terminal or a printer; when the terminal or printer receives the number, it writes the
corresponding character. Some characters do not cause a terminal or printer to write anything;
such characters are called "non-printing". The range of valid character numbers and the
characters these numbers represent are referred to as the operating system's "character set" .
MAINSAIL runs only on operating systems on which the character set includes representations
for the upper- and lowercase letters, digits, spaces, tabs, ends of lines, and certain common
punctuation characters. For an exact list of the guaranteed characters, consult the "MAINSAIL
Language Manual".

A MAINSAIL string is a series of up to 32,766 characters. The characters may be any
character in the valid range, printing or non-printing (there is no rule, as in C and some other
programming languages, that a string is terminated by the character represented by the number
0). A string may contain no characters at all, in which case it is called the "null string". -

3.2. String Constants. and String Constant Macros

The program WRI1ER of Example 3.2-1 writes five strings to 10gFile. The first four strings are
all enclosed in pairs of double quotes. The fifth string is represented by the identifier "eol",
which is predefined by MAINSAIL to be the string that represents an end-of-line. When eol is
written to a terminal, the terminal ends the current line and starts a new line.

WhenWRI1ER is executed, the five calls to the procedure "write" are executed in sequence.
Create a file containing what is shown in Example 3.2-1 and compile it, then execute it (by
typing its name to the MAINEX asterisk prompt) to verify that the result looks as in Example
3.2-2.

- 14-

BEGIN "writer"

INITIAL PROCEDURE;
BEGIN
write(logFile,"This If);

write(logFile,"is");
write(logFile," a");
write(logFile,"sentence.");
write(logFile,eol);
END;

END "writer"

Example 3.2-1. A Module That Writes Strings to logFile

*writer<eol> ..
This is a sentence.

*

Example 3.2-2. Executing WRITER

Each of the five strings of Example 3.2-1 is a "string constant". A string constant may be
represented in a source file by the characters in the string enclosed in double quotes, or by an
identifier, as in the case of eol. If a string constant contains double quotes, the quotes inside the
string must be written twice. Example 3.2-3 shows some valid string constants. "tab" is
predefined by MAINSAIL to represent the character usually associated with the "TAB" key on
a terminal; "eop" is the character used to separate pages in a text file (it is this sort of page that
the MAINSAIL compiler counts when it prints page numbers during a compilation).

Strings may be joined ("concatenated") by placing an ampersand (" & ") between them. The text
of the first string followed by the text of the second string is the result of the concatenation; for
example:

"Hello, " & "there"
"xxx" & "."
"" & "ABC"
"Def" & ""

- 15 -

"Hello, there"
"xxx."
"ABC"
"Def"

n""Good morning,"" said Eva."
"abc"
"This is a sentence."
eol
tab
eep

""

If written to logFile,
the first string would
appear as:
"Good morning," said Eva.

This is the null string.

Example 3.2-3. Some Valid String Constants

(concatenating the null string with another string doesn't add any characters to the result). The
modules of both Example 3.2-4 and Example 3.2-5 write the same thing to logFile as the
module of Example 3.2-1. Two strings concatenated with the ampersand operator constitute a
"string expression"; a string expression is itself a string, and any string counts as a string
expression. If both of the strings in a concatenation are constants, the expression is a "string
constant expression".

BEGIN "write2"

INITIAL PROCEDURE;
BEGIN
write(logFile,"This " & "is" & " a " & "sentence." & eel);
END;

END "write2"

Example 3.2-4. The Use of "&" to Concatenate Strings

The user may define identifiers that represent string constants, just as eol, eop, and tab are
predefined by MAINSAIL. Such identifiers are called "macros". The user creates a string
constant macro by means of the keyword "DEFINE". A sample use of "DEFINE" is shown in
the module of Example 3.2-6, which does the same thing as the module WRITER of Example
3.2-1.

"DEFINE" may appear immediately after the "BEGIN" of the initial procedure (it may appear
other places as well, but that is a topic for later). In the macro definition of Example 3.2-6,
"DEFINE" is followed by the identifier to be defined, an equals sign ("="), a string constant or

- 16-

BEGIN "write3"

INITIAL PROCEDURE;
BEGIN
write(logFile,"This is a sentence." & eol);
END;

END "write3"

Example 3.2-5. A Simplified Version of WRI1ER

BEGIN "write4"

INITIAL PROCEDURE;
BEGIN
DEFINE stringToWrite = "This is a sentence." & eol;

write (logFile,stringToWrite) ;
END;

END "write4"

Example 3.2-6. WRITER with String Macros

string constant expression, and a semicolon. Other forms of macro definition will be discussed
as they are encountered.

3.3. String Variables

Create, compile, and execute the module READER shown in Example 3.3-1. The execution
should look something like Example 3.3-2.

The line reading "S1RING s;" in the module READER of Example 3.3-1 is called a "variable
declaration"; specifically, it is a "string variable declaration", since the variable is a string.
Unlike a constant, a variable's value is determined at execution time; a string constant's value
is known when the MAINSAIL compiler is invoked, so its value is said to be known at

- 17 -

BEGIN "reader"

INITIAL PROCEDURE;
BEGIN
STRING s;

write (logFile,
"Type something, end with <eol>: ");

read(cmdFile,s);

write (logFile,

END;

"The string you typed was
& s & """ " & e6l);

END "reader"

"""

Initial "BEGIN"

String variable
declaration

cmdFile is
terminal input

Note doubled
double quotes

Final "END"

Example 3.3-1. A Module Containing a String Variable

*reader<eol>
Type something, end with <eol>: haute cuisine<eol>
The string you typed was "haute cuisine".

*

Example 3.3-2. Execution of the Module READER

"compiletime". Like the identifier "eol", the identifier "s" represents a string; unlike eol,
however, s may take on a different value from execution to execution.

The value of s is determined in the line reading "read(cmdFile,s);". "read" is a procedure, like
"write". Like "write", "read" is followed by a pair of parentheses enclosing a series of things
separated by commas. The first thing in the series tells where to read from (the "source"); the
remaining things are variable identifiers (the "destinations"). The values of the variables in the
list are set according to what is read from the source. The source in this case is cmdFile, which
normally corresponds to your terminal keyboard, just as 10gFile corresponds to your terminal
screen. "read(cmdFile,s);" assigns to s the string that is the next line read from cmdFile (the
<eol> you type to terminate the line is discarded by this form of "read"). When you execute
READER, READER replies with whatever string you type.

- 18-

"STRING" is a keyword indicating the "data type" of the identifier that follows it MAINSAIL
permits operations on a number of different data types; it is not convenient to represent all data
as text strings.

3.4. Declarations

The lines reading:

STRING s;

in Example 3.3-1 and:

DEFINE stringToWrite = "This is a sentence." & eol;

in Example 3.2-6 are examples of "declarations". Every identifier (with an exception noted in
Chapter 11) in a MAINSAIL module must be declared before it is used. Each declaration has a
"scope", or part of the source text over which the identifier declared may be used; in the case of
a procedure. a declaration occurring immediately after the initial "BEGIN" has a scope
extending up to the final "END" of the procedure. Scopes are discussed in detail in Section 6.4.

If you remove the line reading "STRING s;" from Example 3.3-1. and try to compile the
resulting file (assume it is called "reader.mst"), you will get a compiler error message saying
that the identifier s has not been declared. The dialogue looks as shown in Example 3.4-1.
Note that an error message may be issued for each occurrence of the undeclared identifier.

3.5. Integer Constants, Variables, and Expressions

MAINSAIL has an "integer" data type, which may be used to represent whole numbers in the
range -32,767 to +32,767 (on some machines the range may actually be larger; ·32,767 to
+32,767 is tfle "guaranteed range"). Like strings. integers may be constants or variables. An
integer constant is represented by a series of digits (the characters in the set ("a", "1", "2", "3",
"4", "5", "6", "7", "8", "9"}) optionally preceded by a minus sign ("-"). Commas are not
permitted in integer constants (so "32767" is legal, but "32,767" is not). Some valid integer
constants are shown in Example 3.5-1.

Integer expressions may include (among others) the standard arithmetic operators "+", "-". "*"
(multiplication). and "DIV" (integer division, which rounds downwards (for positive operands);
most computer character sets do not have the standard division symbol (the one that looks like
a colon superimposed on a minus sign». Parentheses may be used in integer expressions to
force the operands to be evaluated in a particular order (they may also be used in expressions of
other types, including string expressions). "*,, and "DIV" subexpressions are usually evaluated
first within an expression, left to right; then "+" and "." subexpressions, left to right. Use

- 19 -

*cornpil<eol>

MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (1 for help): reader.msl<eol>
Opening intmod for $SYS ...

reader.msl 1

ERROR: filereader.msl page 1 line 8 at ##
read(cmdFile,s##);
Undeclared or ambiguous variable S
Error Response: <eol>

ERROR: file reader.msl page 1 line 12 at ##
& s## & """." & eol);

Undeclared or ambiguous variable S
Error Response: <eol>

Objmod for READER not generated
Intmod for READER not stored

compile (7 for help): <eol>

*

Example 3.4-1. Error Message Issued for Undeclared Identifier

22
-179
o
32767
-10000

Example 3.5-1. Some Valid Integer Constants

- 20-

parentheses if you have any doubt about the order of evaluation of an expression, or if you feel
that the expression is difficult to read without parentheses.

Examples of integer expressions appear in Example 3.5-2.

Suppose a, b, and c are integer macro constants, and
xy and z are integer variables. Then all of the
following are integer expressions:

1
(1)
1 + xy
1 + a + z
z * 2 + a DIV c
z * « 2 + a) D IV c)

Same as 1

Sum of the three integers
Same as (z * 2) + (a DIV c)
Not the same as previous expression

Note that xy is a single integer variable, not a product.

Example 3.5-2. Some Valid Integer Expressions

"write" may include integer expressions in the list of things to be written, and "read" may
include integer variables in the list of of things to be read. "read" may also use a string (instead
of cmdFile) as its source, in which case the characters read are removed from the front of the
string. Enter, compile, and execute the program shown in Example 3.5-3.

Note that the first "read(cmdFile,s)" sets the value of s; the following "read(s,i)" changes the
value of s by removing the part of s that represents an integer. The changed value of s is not
used before the value of s is set again by another "read(cmdFile,s)" and changed again by
another "read(s,i)".

3.6. Strong Typing

MAINSAIL does not permit an integer operation to be performed on strings or vice versa. The
operator II & II is strictly a string operator; both of its operands must be strings, and its result is a
string. The operators "+", "_", "*", and "DIV" may all be integer operators (they may operate
on other data types as well, as discussed in Chapter 8); when their operands are both integers,
their result type is an integer. Example 3.6-1 shows some expressions that are legal and some
that are illegal.

- 21 -

BEGIN "iVars"

INITIAL PROCEDURE;
BEGIN
INTEGER i,j;
STRING s;

write(logFile,"Type the first number: n);
read(cmdFile,s); read(s,i);
write(logFile,"Type the second number: If);

read(cmdFile,s); read(s,j);
write(logFile,"The sum of the two numbers is ",i + j,

eol & "The quotient of the two numbers is ",i DIV j,
eol);

END;

END "iVars"

Example 3.5-3. A Program Using Integer Variables

The rules that prevent the mixing of different data types in expressions are referred to as
"strong typing". This is an attribute of MAINSAIL, although some other languages (like C and
many dialects of BASIC) are not so rigorous about mixing data types.

- 22-

Assume a, b, and c are integer variables or constants, and
that s, t, and u are string variables or constants. Then
the following are legal integer expressions:

1
1 + (a * c)
(-4) * (-5)

The following are legal string expressions:

"Time"
("Time")
"Time " & (s & u)
"Time " & s & u

The following are illega,l because the types of the
operands and/or operators don't match:

"Five " + 4
"5" * b
22 & 6
("S" & t) & c

Example 3.6-1. Legal and Illegal Expressions

- 23-

3.7. Exercises

Exercise 3·1.

Replace "XXX" in Figure 3.7-1 with a string constant expression so that the module
writes the same thing to 10gFile as the module WRlTE4 of Example 3.2-6. Do not
use string quotes in the text that replaces "XXX".

BEGIN "writeX"

INITIAL PROCEDURE;
BEGIN
DEFINE strl
DEFINE str2

"This is a sentence.";
eol;

write(logFile,xxx);
END;

END "writeX"

Figure 3.7-1. Replace "xxx" to Finish the Module

Exercise 3·2.

Write a program that reads in three integers, then writes out the first one minus two,
the second times the third, and the third minus the first.

Exercise 3·3.

Which of the following expressions in Figure 3.7-2 are legal, and which illegal?
What are the types of the legal expressions?

- 24-

«(5)))

* 62
"Time" & " is " & " money."
eol + 4
tab & eop & eop

Figure 3.7-2. Which Are Legal Expressions?

- 25-

4. Iterative, Assignment, Begin, and If Statements, and the
Boolean Data Type

This chapter introduces statements, which are the smallest units of action in a MAINSAIL
program. A third data type, boolean, is also introduced. The boolean data type is used in a
variety of statements to direct the flow of control (sequence of actions) within a program.

4.1. Statennents

The actions of a program are prescribed by "statements". In each example module so far, the
text of the initial procedure following the declarations up to the terminating "END" of the
procedure has consisted entirely of statements. The statements are separated from each other
by semicolons.

The only statements encountered so far have been calls to the procedures "read" and "write";
these are instances of a-kind of statement called the "Procedure Statement", MAINSAIL
provides a variety of statement forms, of which the Procedure Statement is only one.

4.2. Iterative Statennents with FOR-Clauses

An Iterative Statement allows another statement to be executed repeatedly until some condition
is satisfied. One form of Iterative Statement is used in the program SQUARE of Example
4.2-1; enter, compile, and execute this program. The execution may look something like
Example 4.2-2.

*~Q;!J.g;r;;:~<~Ql>

How many squares do you want? 5<~Ql>
The square of 1 is 1.
The square of 2 is 4.
The square of 3 is 9.
The square of 4 is 16.
The square of 5 is 25.
*

Example 4.2-2. Execution of the Module SQUARE

- 26-

BEGIN "square"

INITIAL PROCEDURE;
BEGIN
INTEGER i,j;
STRING s;

write (logFile, "How many squares do you want? n);
read(cmdFile,s); read(s,i);
FOR j := 1 UPTO i DO

END;

write(logFile,"The square of ",j," is ",j * j,
" " & eol);

END "square"

Example 4.2-1. A Program Using an Iterative Statement with a FOR-Clause

The Iterative Statement with a FOR-clause of Example 4.2-1 causes the call to "write" to be
executed i times, where i is the number typed at execution time. On each execution of the loop
body, the "iterative variable" j is incremented by one; it starts at one, and the Iterative
Statement terminates when j becomes as large as i. The general format of an Iterative
Statement with a FOR-clause is:

FOR <integer iterative variable> .= <lower limit> UPTO
<upper limit> DO <statement to be repeated>

or, if the integer variable is to be decremented by one instead of incremented by one on each
execution:

FOR <integer iterative variable> .= <upper limit> DOWNTO
<lower limit> DO <statement to be repeated>

The statement to be repeated (also called the "iterated statement") is executed the number of
times given by:

«upper limit> - <lower limit» + 1

unless the upper limit is less than the lower limit, in which case the iterated statement is
skipped entirely.

MAINSAIL's FOR-clause does not provide increments and decrements other than one.

- 27-

4.3. The Assignment Statement

Until now the only means encountered to assign a value to a variable is to call the system
procedure "read" or to use the variable as an iteration variable in a FOR-clause. The value of a
variable may be set directly to the value of an expression by means of the Assignment
Statement. The form of an Assignment Statement is:

<variable> := <expression>

The variable's value is changed to be the value of the expression. The variable and the
expression must be of the same data type; e.g., a string expression may be assigned only to a
string variable, an integer expression only to an integer variable. Example 4.3-1 shows the use
of the Assignment Statement. Enter, compile, and execute this module, which computes
triangular numbers (the Nth triangular number is the sum of the integers 1 through N).

BEGIN "triang"

INITIAL PROCEDURE;
BEGIN
INTEGER i,count,sum;
STRING s;

write(logFile,"Which triangular number do you want'? n);
read(cmdFile,s); read(s,count);

sum := 0;
FOR i := 1 UPTO count DO sum := sum + i;

write(logFile,"The ",count,"th triangular number is ",
sum,eol);

END;

END "triang"

Example 4.3-1. A Module Using the Assignment Statement

Example 4.3-2 shows a module that asks for a number N, then prints out two-to-the-Nth-power
x's. If you execute this module, be careful not to give too large a value for'N; MAINSAIL may
not be able to create a string longer than 32,766 characters. You will get an error message from
the MAINSAIL runtime system if it attempts to create a string that is too long for it to handle.

- 28-

BEGIN "bigStr"

INITIAL PROCEDURE;
BEGIN
INTEGER i,count;
STRING s;

write(logFile,"N = If); read(cmdFile,s); read(s,count);
s := "x";
FOR i := 1 UPTO count DO s := s & s;
write(logFile,s,eol);
END;

END "bigStr"

Example 4.3-2. The Assignment Statement with Strings

4.4. The Begin Statement

The Begin Statement allows several statements to be grouped together and treated as a single
statement. This is useful in places where the rules of MAINSAIL syntax require a single
statement, but you wish to perform a series of actions. The Begin Statement consists of the
keyword "BEGIN" followed by a series of statements separated by semicolons followed by the
keyword "END".

For example, the keyword "DO" in an Iterative Statement must be followed by a single
statement (the iterated statement). The program of Example 4.4-1 uses Begin Statements as
iterated statements to cause a series of statements to be executed repeatedly. Before you enter,
compile, and execute this program, take a look at it. What does it do?

A string constant may follow the initial "BEGIN" of a Begin Statement, in which case the same
string constant must also follow the final "END" of the Begin Statement. The MAINSAIL
compiler issues a warning message if the string following an "END" differs from the string
following the corresponding "BEGIN" (the distinction between upper and lower case is ignored
in this check). This helps to catch misIl!atched 'tBEGIN"-"END" pairs, and helps to make a
program more legible. Naming a Begin Statement does not have any effect on the actions it
performs; it is mainly a convenience for the human reader, and is entirely optional.

- 29-

BEGIN "delta"

INITIAL PROCEDUREi
BEGIN
INTEGER i,j,counti
STRING Si

write (logFile, "Height: "); read(cmdFile,s); read(s,count);
FOR i := 1 UPTO count DO

BEGIN
FOR j := 1 UPTO i DO write(logFile,"**");
write(logFile,eol);
END;

FOR i := count - 1 DOWNTO 1 DO
BEGIN

END;

FOR j := 1 UPTO i DO write(logFile,"**");
write (logFile,eol) ;
END;

END "delta"

Example 4.4-1. The Use of the Begin Statement

String constants may also follow the initial "BEGIN" and final "END" of a procedure, in which
case they must match (except for case); see Example 4.6-1. Certain other statement forms may
be named; the rules may be found in the "MAINSAIL Language Manual".

Unlike some other languages derived from ALGOL, MAINSAIL does not allow declarations in
a Begin Statement.

4.5. The Boolean Data Type

The MAINSAIL data type boolean is designated by the keyword "BOOLEAN". It has only
two different values, true and false. The constants of the data type boolean are the keywords
"TRUE" and "FALSE".

A variety of operators produce boolean values. One of the most common is the equals sign
("="). The format is:

- 30-

<expression one> = <expression two>

Expression one must be of the same data type as expression two. If expression one has the
same value as expression two, the result is "TRUE"; otherwise, the result is "FALSE". Other
comparison operators are "NEQ" (not equal), "<" (less than), ">" (greater than), "LEQ" (less
than or equal), and "GEQ" (greater than or equal).

The operators "AND" and "OR" may each take two boolean operands (or sometimes operands
of other data types, as described in Section 8.5), and produce a boolean result. The result of an
"AND" operation is true if and only if both of its operands are true; the result of an "OR"
operation is true if either one of its operands is true. "NOT" takes a single boolean operand; its
result is false if its operand is true, and true if its operand is false.

Boolean expressions are frequently used in the If Statement and in certain forms of the Iterative
Statement. Examples of the boolean data type appear throughout the remainder of this tutorial.

4.6. The If St~tement

The simpler form of an If Statement is:

IF <expression> THEN <statement>

The expression is frequently of the data type boolean; other data types are possible, as
explained in Section 8.2. For the moment only If Statements governed by boolean expressions
will be considered. If the boolean expression is true, the statement is executed; if it is false, the
statement is skipped. Example 4.6-1 shows the use of this form of If Statement. The execution
of the module shown looks like Example 4.6-2. What happens if you answer something other
than "yes" or "no"?

*iffy<eol>
Say hello (yes or no)? yes<eol>
Hello.
*iffy<eol>
Say hello (yes or no)? no<eol>

*

Example 4.6-2. Execution of IFFY

The more general form of an If Statement is:

- 31 -

BEGIN "iffy"

INITIAL PROCEDURE;
BEGIN "If Statement example"
STRING s;

write (logFile,"Say hello (yes or no)? "); read(cmdFile,s);
IF s = "yes" OR s = "YES" THEN

write(logFile,"Hello." & eol);
END "If Statement example";

END "iffy"

Example 4.6-1. The Use of the If Statement

IF <expression> THEN <statement one>
ELSE <statement two>

If the expression is true, statement one is executed and statement two skipped; if it is false,
statement two is executed and statement one skipped.

Example 4.6-3 asks for the values of two boolean variables, then computes the values of some
logical expressions containing the variables. Note the positioning of the parentheses in the
statements that assign values to the variables a and b. In this example, the parentheses are
redundant (they are present to make the expressions easier to understand). The precedence of
the operators ":=", "=", and "OR" is described in the "MAINSAIL Language Manual", and also
discussed in Sections 8.5 and 10.3.

4.7. Contracted and Abbreviated Forms

If Statements may be nested; i.e., an If Statement may follow the "THEN" or "ELSE" of
another If Statement. An "ELSE" is matched with the innermost unmatched "IF"; for example,
a statement of the form:

IF a THEN IF b THEN c ELSE d

is equivalent to:

IF a THEN
BEGIN IF b THEN c ELSE d END

- 32-

BEGIN "logic"

INITIAL PROCEDURE:
BEGIN
BOOLEAN a,b,bo;
STRING s;

write(logFile,"A (T or F): ");
read(cmdFile,s);
a := (s = "T" OR s = "t");
write(logFile,"B (T or F): ");
read(cmdFile,s);
b := (s = "T" OR s = "t");

bo := a ORb;
write (logFile,"A OR B is ");
IF be THEN

write (logFile, "TRUE")
ELSE write(logFile,"FALSE");
write (logFile,eol) ;

be := NOT bo;

write (logFile,"A NOR B is ");
IF bo THEN

write (logFile, "TRUE")
ELSE write(logFile,"FALSE");
write (logFile,eol) ;

A becomes TRUE if "T" or
"t" was typed;

B likewise.

Another example of
boolean assignment

1 This could also be
1

1

1

1

1

I
I
1

1

1

1

-I

written "IF bo THEN
bo := FALSE

ELSE bo : = TRUE",
but the form shown is
simpler

This line could be
written (redundantly) as
"IF bo = TRUE THEN"

Example 4.6-3. Boolean Variables and the If Statement (continued)

- 33-

write (logFile, "NOT A is ");
IF NOT a THEN

write (logFile,"TRUE")
ELSE write(logFile,"FALSE");
write(logFile,eol);
END;

END "logic"

Example 4.6-3. Boolean Variables and the If Statement (end)

rather than to:

IF a THEN
BEGIN IF b THEN c END

ELSE d

If Statements following an "ELSE" may be used to process a series of choices. Since the
sequence "ELSE IF" is common in MAINSAIL programs, MAINSAIL provides the
abbreviation "EF". Other abbreviations are "THENB" for "THEN BEGIN", "EL" for "ELSE",
"EB" for "ELSE BEGIN", and "DOB" for "DO BEGIN". The abbreviations are completely
equivalent to their longer forms. The use of some abbreviations is shown in Example 4.7-1.
Note the use of the integer macro constants "red", "yellow", and "blue".

4.8. Comments

It is frequently important that programs be readable to people other than the original
yrogrammer. Aside from using names for constants, variables, and procedures that are
suggestive of the functions they perform, the most important means of making program text
readable is the use of comments.

MAINSAIL comments begin with the character "#" and are terminated by the end of a line. A
comment may appear anywhere except within string quotes, where the character "#" is treated
as a part of the string. The MAINSAIL compiler ignores the text in a comment; comments are
intended for the human reader only.

Examples of MAINSAIL text throughout the remainder of this document are liberally
commented. You are encouraged to follow suit in your own programs. It is an art to write
comments that are both concise and informative.

- 34-

BEGIN "colors"

INITIAL PROCEDURE;
BEGIN
DEFINE red = 1;
DEFINE yellow 2;
DEFINE blue = 4;

INTEGER color1,color2,totalColor;
STRING s;

write(logFile,"First paint color: "); read(cmdFile,s);
IF s "red" THEN colorl := red
EF s = "yellow" THEN colorl := yellow
EF s = "blue" THEN colorl := blue
EB write(logFile,s,": unknown color, red assumed" & eol);

colorl := red END;

write (logFile, "Second paint color: "); read(cmdFile,s);
IF s "red" THEN color2 := red
EF s = "yellow" THEN color2 := yellow
EF s = "blue" THEN color2 := blue
EB write(logFile,s,": unknown color, red assumed" & eol);

color2 := red END;

totalColor := color1 + color2;

write (logFile, "By mixing the two you get ");
IF totalColor red + red THEN write (logFile, "red")
EF totalColor = red + yellow THEN write (logFile, "orange")
EF totalColor = yellow + yellow THEN

write{logFile,"yellow")
EF totalColor red + blue THEN write (logFile, "purple")
EF totalColor = yellow + blue THEN write (logFile, "green")·
EF totalColor = blue + blue THEN write(logFile,"blue");
write (logFile,eol) ;

END;

END "colors"

Example 4.7-1. Nested If Statements and Abbreviated Forms

- 35 -

4.9. Other Forms of the Iterative Statement

The only form of the Iterative Statement encountered so far is the form with a FOR-clause.
The FOR-clause is actually one of three types of optional clauses that may accompany an
Iterative Statement. The other two clauses are the WlllLE-clause and the UNTIL-clause; each
uses an expression, usually of type boolean (rather than an integer counter like the FOR­
clause), to govern execution of the iterated statement.

The three clauses may all be present in the same Iterative Statement, or all three may be absent.
The form of an Iterative Statement with all three clauses is:

FOR <integer variable> := <integer expression one>
UPTO/DOWNTO <integer expression two>

WHILE <expression three>
DO <statement>
UNTIL <expression four>

The order is important; first the FOR-clause, then the WHILE-clause, then the keyword "DO",
the iterated statement, and finally the UNTIL-clause.

The simplest form of the Iterative Statement (with no clauses) is:

DO <statement>

This form of the Iterative Statement repeatedly executes the iterated statement until something
in the statement causes it to terminate, usually a Done Statement, Return Statement, or an
exception (all of which are described later).

The WHll..E-clause tests a condition (usually a boolean expression; other types of expressions
are possible and are explained in Section 8.2) before each execution of the iterated statement.
If the condition is true, the statement is executed; otherwise, the Iterated Statement terminates.

The UNTIL-clause tests a condition after each execution of the iterated statement; if the
condition is true, the Iterated Statement terminates. If it is false, the FOR-clause and WHILE­
clause tests, if they are present, are performed to determine whether another repetition of the
Iterated Statement is to be made.

An Iterative Statement containing only an UNTIL-clause will always execute its iterated
statement at least once, since the test does not occur until after the execution of the statement;
an Iterative Statement containing only a WlllLE-clause may skip its iterated statement entirely
if the condition of the WHILE-clause is false when the Iterative Statement is reached.

The use of WHILE- and UNTIL-clauses is shown in Examples 4.9-1 and 4.9-2.

- 36-

BEGIN "sqrts"

This program finds the integer square root of a number,
i.e., the largest integer the square of which is less
than or equal to the given number. The given number
is assumed to be nonnegative.

INITIAL PROCEDURE;
BEGIN
INTEGER num,i;
STRING s;

write (logFile, "Number: If); read(cmdFile,s); read(s,num);
i := 0;
WHILE i * i < num DO i := i + 1;

Now either i * i = num or i is too big by one, and
i * i > num.
IF i * i > num THEN i := i - 1;
write(logFile,"The integer square root of ",nurn," is ",

i,eol) ;
END;

END "sqrts"

Example 4.9-1. Finding an Integer Square Root

- 37-

BEGIN "loops"

* This program adds a series of integers entered from * cmdFile.

INITIAL PROCEDURE;
BEGIN
INTEGER i,sum;
STRING s,ss;

sum .= 0;
DOB write (logFile, "Next number «eol> to stop): ");

read(cmdFile,s); ss := s;
IF s NEQ nn THENB

read(s,i); sum := sum + i END END UNTIL ss
write (logFile, "Sum = ",sum,eol);
END;

END "loops"

Example 4.9-2. Adding Up Some Numbers

- 38-

""­I

4.10. Exercises

Exercise 4·1.

Write a program which asks for the height of a triangle, like Example 4.4-1, but
which prints the triangle oriented like that depicted in Example 4.10-1, which shows
what your triangle should look like when 5 is given for the height.

*

Example 4.10-1. A Sample Triangle

Exercise 4·2.

Write a program that repeatedly asks a question until the user answers with either
"yes" or "no". If some other answer (e.g., "maybe") is given, the program should
inform the user that only "yes" and "no" are acceptable answers, then ask the question
again. See Example 4.6-1.

- 39 -

5. Introduction to Procedures; the Procedure and Return
Statements

This chapter introduces procedures and the Return Statement, which terminates the execution
of a procedure. Procedures provide a convenient means of "encapsulating" a series of actions
so that a frequently used sequence of statements does not need to be written out in full each
time it is used. Macros provide a slightly different, and less frequently used, means of
achieving the same end; they are described in Chapter 13. Procedures may also be used to
calculate a value, like the "functions" of Pascal or C.

5.1. Some Sample Procedures

Some of the example programs encountered so far contain repeated sections of similar code.
Using procedures, a piece of code can be written only once, then invoked as needed from
different places in a program. A detailed explanation of the program examples in this section is
deferred until the next section, but the overall purpose of a procedure should be apparent when
the programs with procedures are compared with the versions without procedures.

The programs of Examples 5.1-1 and 5.1-2 produce the same output. Compare the two and see
if you can get a feeling for what is going on.

BEGIN "noProc"

* Write "Hello!" ten times.

INITIAL PROCEDURE;
BEGIN
INTEGER i;

FOR i := 1 UPTO 10 DO
write(logFile,"Hello!" & eol);

END;

END "noProc"

Example 5.1-1. A Program with Only an Initial Procedure

-40 -

BEGIN "procs"

-# Write "Hello!" ten times.

PROCEDURE writeHello; -# Procedure header for "writeHello"
BEGIN -# These three lines are
write(logFile,"Hello!" & eol); * the procedure body for
END; * "writeHello".

INITIAL PROCEDURE;
BEGIN
INTEGER i;

FOR i := 1 UPTO 10 DO
writeHello; * This is a call to "writeHello".

END;

END "procs"

Example 5.1-2. A Program with Two Procedures

Some of the example programs encountered so far could benefit from the introduction of
procedures. For example, Example 4.4-1 can be rewritten as shown in Example 5.1-3. The
procedure header of "writeAsterisks", unlike that of "writeHello" of Example 5.1-2, has a
parenthesized "parameter list".

Example 4.6-3 has been rewritten as Example 5.1-4. The original program has been altered to
be more sophisticated when prompting for an input. Note how much simpler and easier to read
the initial procedure has become in both Examples 5.1-3 and 5.1-4; the newly added procedures
are also compact and easy to follow. Procedures enhance the readability of a program by
breaking down complicated logic into easily understood pieces.

Enter, compile, and execute the programs of Examples 5.1-3 and 5.1-4.

5.2. Procedure Declarations, Calls, Parameters, and Arguments

The form of the header of a procedure declaration is:

- 41 -

BEGIN "delta2"

PROCEDURE writeAsterisks (INTEGER howMany); * Writes (howMany * 2) asterisks, then an end-of-line.
BEGIN
INTEGER i;

FOR i := 1 UPTO howMany DO write(logFile,"**");
write (logFile,eol) ;
END;

INITIAL PROCEDURE;
BEGIN
INTEGER i,count;
STRING s;

write (logFile, "Height: It); read(cmdFile,s); read(s,count);
FOR i .= 1 UPTO count DO writeAsterisks(i);
FOR i := count - 1 DOWNTO 1 DO writeAsterisks(i);
END;

END "delta2"

Example 5.1-3. The Use of a Procedure

<qualifiers, if any> <data type, if any> PROCEDURE
<procedure name> <parameter declaration list, if any>

All of the procedures of Examples 5.1-3 and 5.1-4 (except for the initial procedures) have a
parameter declaration lis4 which is the parenthesized list follow the procedure name; none of
them has a data type (procedures declared with a data type are explained in Section 5.4). One
procedure qualifier, "INITIAL", is already familiar; others are described in Sections 7.2 and
7.5.

.
A procedure call may be used as a statement; such a statement is called a Procedure Statement
Calls to "read" and "write" are examples of Procedure Statements. In Example 5.1-4, the
statements in the initial procedure that begin with "getValue" and "writeBoolean" are also
Procedure Statements; each of them calls the procedure named. When a procedure is called,
the statements in it are executed, and then control resumes immediately after the point at which
the procedure was called.

-42 -

BEGIN "10gic2"

PROCEDURE getValue (STRING name;
PRODUCES BOOLEAN bo); * Note that the "bo" in this procedure is completely * distinct from the variable "bo" in the initial * procedure.

BEGIN
BOOLEAN goodAnswerGiven;
STRING s;

* Insist on seeing an answer of either "T" or "F".
DOB write(logFile,name," (T or F): "); read(cmdFile,s);

goodAnswerGiven := TRUE; * Assume for the moment

END;

IF s = "T" OR s = "t" THEN bo .= TRUE
EF s = "F" OR s = "f" THEN bo := FALSE
EB goodAnswerGiven:= FALSE;

write(logFile,"""",s,""" is not a valid answer."
& eol) END END UNTIL goodAnswerGiven;

PROCEDURE writeBoolean (BOOLEAN value);
BEGIN
IF value THEN write (logFile, "TRUE" & eol)
EL write(logFile,"FALSE" & eol);
END;

INITIAL PROCEDURE;
BEGIN
BOOLEAN a,b,bo;

getValue("A",a); getValue("B",b);

bo := a OR bi
write(logFile,"A OR B is "); writeBoolean(bo);

bo := NOT bo;
write(logFile,"A NOR B is "); writeBoolean(bo);

Example 5.1-4. More Procedures (continued)

- 43-

write (logFile, "NOT A is "); writeBoolean(NOT a);
END;

END "logic2"

Example 5.1-4. More Procedures (end)

Parameters provide a way for procedures to consume and/or produce information. A parameter
list consists of a series of variable declarations enclosed in parentheses. Each declaration is
optionally preceded by one or more keywords called "parameter qualifiers", which describe
how the parameter is used.

An argument is to a procedure call as a parameter is to a procedure declaration. Arguments are
listed in parentheses following the name of the procedure called. Except in the case of
parameters qualified with the keywords "OPTIONAL" or "REPEATABLE" (described in
Section 6.2), there must be exactly one argument in the procedure call for each parameter in the
procedure declaration. The data type of each argument must be the same as the data type of the
parameter at the corresponding position.

Every procedure parameter is classified as either "uses", "modifies", or "produces", depending
on whether it was declared with the "USES", "MODIFIES", or "PRODUCES" parameter
qualifier (an example of the "PRODUCES" qualifier is shown in the declaration of the
procedure "getValue" in Example 5.1-4). Parameters declared with no qualifier are considered
to be uses parameters; the "USES" keyword is therefore always redundant, and is used only to
emphasize to a human reader that a parameter is not a produces or modifies. Uses and modifies
parameters constitute "input" parameters, and correspond to Ada's "in" and "in out" parameters,
respectively. Modifies and produces parameters are "output" parameters, corresponding to
Ada's "in out" and "out" parameters. Input parameters are set to the value of their
corresponding arguments when the procedure starts execution, and arguments corresponding to
output parameters have their values set to those of the parameters when the procedure finishes.

5.3. How a Procedure Call Works

The substitution of an argument for a parameter during the execution of a program is called
"passing the argument (as or for the parameter)". Within a procedure, parameters are treated
like variables local to the procedure. Uses and modifies arguments are evaluated, and then their
values are assigned to the procedure's parameters. When the procedure finishes execution, the
modifies and produces parameter values are copied back to the corresponding arguments
(which must be variables rather than non-variable expressions).

-44 -

Parameters are passed only by the above method, which is called "copy-restore" (meaning that
input argument values are copied into their corresponding parameters, and output parameter
values are restored into their corresponding arguments). Some other program languages
provide different parameter passing methods ("by reference" or "by name"), but MAINSAIL
does not support these.

Variables declared within a procedure are called "local variables" because they cannot be used
outside of the procedure (the MAINSAIL compiler gives an error message if you attempt to do
so). Different procedures may use different local variables with the same name, as is the case
with "bolt in Example 5.1-2. Data storage for local variables (and parameters) of a procedure is
by default "automatic" (re-allocated on each procedure call), as opposed to the "static"
allocation of many dialects of FORTRAN.

For example, consider the procedure declaration and call of Example 5.3-1. If variables are
imagined as boxes in which information is stored, then the situation before the call to "proc"
might look as in Example 5.3-2.

procedure declaration:

PROCEDURE proc (USES INTEGER ili
MODIFIES INTEGER i2i
PRODUCES INTEGER i3)i

BEGIN
INTEGER ii
i : = (il * 2) - l;
i3 .= il + i2;
i2 := i + 1;
il := i2;
END;

call:

proc(arglA + arglB,arg2,arg3);

arglA, arglB, arg2, and arg3 are all local
integer variables.

Example 5.3-1. A Procedure Declaration and Call

When the procedure call occurs, the parameters iI, i2, and i3 are allocated. The value "arglA +
arglB" is calculated and stored into iI, and the value of arg2 is copied into i2. The value of i3
is not set; i3 is said to be "uninitialized". See Example 5.3-3.

- 45 -

Assume the variables arg1A, arg1B, arg2, and
arg3 have the values 6, 11, -4, and 9,
respectively.

+---------------+
I 6 I arg1A

+---------------+
I 11 I arg1B

+---------------+
I -4 I arg2

+---------------+
I 9 I arg3

+---------------+

Example 5.3-2. Before the Procedure Call

+---------------+
I 17 (6 + 11) il

+---------------+
-4 i2

+---------------+
I <unknown> I i3

+---------------+
I 6 arg1A
+---------------+

11 arg1B

+---------------+
I -4 I arg2

+---------------+
I 9 I arg3
+---------------+

Example 5.3-3. At the Time of the Procedure Call

Control passes to the first statement of the procedure "proc". The local variable "i" of proc is
allocated; it is also uninitialized. See Example 5.3-4. The variables arglA, arglB, arg2, and
arg3 are not shown. They are local to the (now inactive) procedure that called proc, and are
therefore "invisible" while proc is executing.

- 46-

+---------------+
I <unknown> I i

+---------------+
17 i1

+---------------+
-4 i2

+---------------+
I <unknown> i3
+---------------+

Example 5.3-4. Upon Entry to "proc"

The arithmetic performed in proc sets the values of i, iI, i2, and i3 as shown in Example 5.3-5
by the time the end of the procedure is reached. As control leaves proc, the values of the local
variables (in this case, the value of i) are discarded.

+"---------------+
33 i

+---------------+
34 i1

+---------------+
34 i2

+---------------+
13 i3

+---------------+

Example 5.3-5. At the End of "proc"

Control returns to the point at which proc was called. The values of i2 and i3 are copied to

arg2 and arg3, respectively. iI, i2, and i3 are then discarded. The final result looks like
Example 5.3-6.

Note that the final statement of proc, "il := i2", has no effect, since the value of il is discarded
when the procedure returns.

Care must be taken not to use uninitialized local variables or produces parameters. For
example, if the body of proc had consisted entirely of the statement:

-47 -

+---------------+
6 arglA

+---------------+
I 11 I arglB
+-----------'----+
I 34 I arg2

+---------------+
I 13 I arg3

+---------------+

Example 5.3-6. After Return from "proe"

i2 := i3

then both i2 and i3 would have had unknown values upon exit from proc, and arg2 and arg3
would have been assigned unknown values. It is important to initialize any variable or
parameter of which the value is to be used subsequently.

5.4. Typed Procedures and the Return Statement

A typed procedure is declared with a data type name immediately preceding the keyword
"PROCEDURE". A typed procedure returns a value (by means of a Return Statement) that
may be used in an expression by its caller. The same effect could be achieved by using passing
a variable as a produces parameter to an untyped procedure, then using the variable in an
expression, but a typed procedure is often more convenient syntactically. For example, the
programs of Example 5.4-1 and Example 5.4-2 perform the same actions.

Like a call to an untyped procedure, a call to a typed procedure may be used as a Procedure
Statement, in which case the value returned by the typed procedure is discarded. Typed
procedures that perform some action but do not always return a value of interest to the
program, like the system procedure "open" (see Chapter 9), are often used in Procedure
Statements.

Every typed procedure must return a value of its declared type. It does this by means of a typed
Return Statement, the form of which is:

RETURN «expression»

The expression is of the procedure's declared data type. When a Return Statement is executed,
the procedure is immediately terminated, and the procedure returns the value of the expression.

- 48-

BEGIN "cmpStr"

PROCEDURE isSame (STRING str1,str2; PRODUCES BOOLEAN bo);
BEGIN
bo := (str1 = str2);
END;

INITIAL PROCEDURE;
BEGIN
BOOLEAN same;
STRING sl,s2;

write(logFile,"First string: "); read(cmdFile,sl);
write (logFile, "Second string: n); read(cmdFile,s2);
isSame(sl,s2,same);
IF same THEN write (logFile, "Same." & eol)
EL write (logFile, "Different." & eol);
END;

END "cmpStr"

Example 5.4-1. An Untyped Procedure and a Variable

The MAINSAIL runtime system issues an error message if a typed procedure reaches its final
"END" without executing a Return Statement.

A typed procedure call may be used as an expression; the value of the expression is the
procedure's returned value, as shown in Example 5.4-2.

5.5. Order of Evaluation

MAINSAIL does not specify the order in which procedure arguments are evaluated. For
example, consider the program fragment of Example 5.5-1. The call to p2 has two arguments,
which may be evaluated in either order. Even though the value of n is known to be 12
immediately before the call to p2, you cannot tell from looking at the program whether the call
to p2 will be equivalent to "p2(6,23)" (if the first argument is evaluated first) or "p2(6,12)" (if
the second argument is evaluated first).

- 49-

BEGIN "cmpStr"

STRING PROCEDURE getString (STRING promptString);
BEGIN
STRING s;

write(logFile,promptString); read(cmdFile,s);
RETURN(S);
END;

BOOLEAN PROCEDURE isSame (STRING strl,str2);
BEGIN
RETURN (str1
END;

str2) ;

INITIAL PROCEDURE;
BEGIN
STRING sl,s2;

sl := getString("First string: ");
s2 := getString("Second string: ");

IF isSame(sl,s2) THEN write(logFile,"Same." & eol)
EL write (logFile, "Different. II & eol);
END;

END "cmpStr"

Example 5.4-2. Typed Procedures

The MAINSAll... compiler may choose one order of evaluation for such a call in one version of
MAINSAIL, and a different order in another version. The MAINSAIL compiler does not issue .
an error message for procedure calls in which the order of evaluation is ambiguous, so it is your
responsibility to avoid writing code of this type.

- 50-

INTEGER PROCEDURE pI (MODIFIES INTEGER i);
BEGIN
i := 23;
RETURN (6) ;

END;

PROCEDURE p2 (INTEGER il,i2);

INTEGER n;
n := 12;
p2(pl(n),n); # This is ambiguous: pI (which changes the

value of n) may be called before the second
argument is evaluated, so that the new
value of n is passed for the second
argument. Alternatively, the second
argument may be evaluated first, in which
case the original value of n is used.

Example 5.5-1. Order of Evaluation Ambiguities

- 51 -

5.6. Exercises

Exercise 5-1.

Rewrite Example 4.7-1 to use procedures to avoid repeating a series of similar
statements.

Exercise 5·2.

Does the code fragment from Example 5.4-2 shown in the upper part of Figure 5.6-1
perform the same actions as the code fragment in the lower part? Explain.

Does this code:

STRING sl,s2;

sl := getString("First string: ");
s2 := getString("Second string: ");

IF isSame(sl,s2) THEN

do the same thing as this code:

IF isSame(getString("First string: "),
getString(IISecond string: "» THEN

Figure 5.6-1. Sample Code Fragments

Exercise 5·3.

Using typed procedures, write a program that prompts for a nonnegative integer, then
reports three facts about it:

• Whether it is odd or even.

• Whether it is prime.

- 52-

• Whether its square root is an integer.

- 53 -

6. More on Procedures, Characters, and Strings

This chapter describes a variety of facilities for manipulating strings and characters in
MAINSAIL. It describes the "OPTIONAL" and "REPEATABLE" parameter qualifiers, which
provide syntactic flexibility for procedure calls. Section 6.4 gives important information on the
scope of declarations.

6.1. Characters

Unlike some programming languages, MAINSAIL does not have a separate data type for
representing characters. Characters are represented by their integer character codes. Character
constants are formed by surrounding the selected character in single quotes (the '"'' character);
each character constant is really an integer constant See Example 6.1-1.

The following are valid character constants:

, A'
, a'
, ,
, , ,

Since character constants belong to the data type
integer, the following are valid integer expressions:

'0' + 4

'Z' - 'A'

(equal to '4', since the digits
are guaranteed to be contiguous)

(not necessarily equal to 25,
since the letters are not
guaranteed to be contiguous)

If the character set is ASCII, the following
boolean expressions are true:

, A' 65

'B' 'A' + 1
, , < '!'

Example 6.1-1. Character Constants

- 54-

!
6.2. Repeatable and Optional Parameters

~ The parameter qualifiers "OPTIONAL" and "REPEATABLE" are used for syntactic
convenience. They allow an argument in a procedure call to be omitted or to be repeated.

A procedure declaration with some optional parameters is shown in Example 6.2-1. Optional
parameters follow all non-optional parameters in a parameter list. When no argument is
specified corresponding to an optional parameter, the value 0 is passed if the data type is
integer, the null string if the data type is string, and false if the data type is boolean. These
values are called the "Zeros" of their respective data types (further described in Section 8.2).

A modifies or produces parameter may be declared optional, in which case the resulting value
is discarded if no corresponding argument appears in the procedure call.

If the header of p looks like:

PROCEDURE P (INTEGER ili
OPTIONAL INTEGER i2i
MODIFIES OPTIONAL STRING s;
OPTIONAL BOOLEAN bo);

then the call:

p (2)

is equivalent to:

S .= "". . ,
p(2,O,S,FALSE)

where s is a string variable the value of which is ignored
after the call to p. Also equivalent are:

s := "";
p(2,O,s)

and:

p(2,O)

Example 6.2-1. Optional Parameters

- 55 -

The last one or more parameters in a parameter list may be qualified with "REPEAT ABLE".
The repeatable parameters are called the "repeatable group". More than one group of
arguments may be passed for such a group of parameters. The procedure is reinvoked for each
group of arguments passed for a repeatable group of parameters; see Example 6.2-2.

If P has the header:

PROCEDURE P (INTEGER iI;
REPEATABLE INTEGER i2);

then the repeatable group of parameters is the single
parameter i2, and the call:

p(1,4,6,-8)

is equivalent to:

p(1,4);
p(1,6);
p(1,-8)

If P has the header:

PROCEDURE P (INTEGER iI,i2;
REPEATABLE STRING s;
REPEATABLE INTEGER i3);

then the repeatable group of parameters is sand i3, and
the call:

p(1,2,"three l ,3,"five",5,leight",8)

is equivalent to:

p(1,2,lthree",3) ;
p (1 , 2, "f i v~" , 5) ;
p(1,2,leight",8)

Example 6.2-2. Repeatable Parameters

A parameter may be both optional and repeatable. The output from the execution of the
program of Example 6.2-3 looks like Example 6.2-4.

- 56-

j

BEGIN "repTst"

PROCEDURE P (OPTIONAL REPEATABLE INTEGER i);
BEGIN
write(logFile,"I is ",i,eol);
END;

INITIAL PROCEDURE;
BEGIN
p; * Allowed because parameter is optional;

equivalent to "p(O)"
p (1) ;

p(5,6); * Allowed because parameter is repeatable
END;

END "repTst"

Example 6.2-3. A Repeatable Optional Parameter

*reptst<eol>
I is 0
I is 1
I is 5
I is 6

*

Example 6.2-4. Output from REPTST

A repeatable parameter may also be a modifies or produces parameter. Examples will be
encountered later.

- 57-

6.3. System Procedures

A number of identifiers, including the procedures "read" and "write" and the files "logFile" and
"cmdFile", are "predeclared" by MAINSAIL; i.e., they may be used in a module that does not
itself declare them. A "system procedure" is any predeclared procedure.

Unlike some languages for which partial or non-standard implementations exist, every
implementation of MAINSAIL is guaranteed to have every system procedure listed in the
"MAINSAIL Language Manual". You may use them all without fear of compromising the
portability of your programs.

This section introduces some of the more common system procedures used for string
processing. MAINSAIL is richly endowed with facilities for character and character string
manipulation. Table 6.3-1 lists the headers of some of these system procedures. The headers
shown are not necessarily the "real" headers, since some of the procedures are generic
(meaning they have several forms); at this point, however, just treat the procedures as if they
were declared as in Table 6.3-1. All system procedures are described more formally in the
"MAINSAIL Language Manual" .

6.3.1. eRead

The procedure cRead removes the first character from the string s and returns the character
code of that character. For example, after the statements:

s := "ABC";
ch := cRead(s)

are executed, s has the value "BC", and ch the value 'A'.

If the string is the null string, it is unchanged, and the character code returned is -1.

6.3.2. eves

The procedure cvcs returns a string consisting of the character that is its argument. For
example, "cvcs('X')" is equal to the string "X". .

6.3.3. evl and evu

These procedures return the lowercase and uppercase versions of their arguments, respectively.
The case of a string is changed by changing the case of every letter in the string; non-letter
characters are not affected. For example, "cvl(ItABC")" is equal to "abc"; "cvu("Hello,

- 58 -

INTEGER PROCEDURE eRead (MODIFIES STRING S)i

STRING PROCEDURE cves (INTEGER eharaeterCode) i

STRING PROCEDURE cvl (STRING S)i

INTEGER PROCEDURE evl (INTEGER eharaeterCode);

STRING PROCEDURE evu (STRING S)i

INTEGER PROCEDURE evu (INTEGER eharaeterCode)i

STRING PROCEDURE cWrite (MODIFIES STRING Si

REPEATABLE INTEGER char)i

INTEGER PROCEDURE first (STRING S)i

INTEGER PROCEDURE last (STRING S)i

INTEGER PROCEDURE length (STRING S)i

INTEGER PROCEDURE reRead (MODIFIES STRING S)i

PROCEDURE reWrite (MODIFIES STRING Si

REPEATABLE INTEGER char) i

BOOLEAN PROCEDURE isUpperCase (INTEGER eharacterCode);

BOOLEAN PROCEDURE isLowerCase (INTEGER eharaeterCode)i

BOOLEAN PROCEDURE isAlpha (INTEGER eharaeterCode) i

Table 6.3-1. Some System Procedures for String and Character Manipulation

there.")" is equal to "HELLO, THERE.". Integer arguments are treated in the obvious way;
e.g., "cvu('a')" is 'A'. These procedures are examples of generics; the compiler distinguishes
between the forms to use based on whether the argument is a string or an integer.

- 59-

6.3.4. cWrite

cWrite appends a character (or more than one, since its second argument is repeatable) to a
string. After executing:

s has the value" ABCxy".

6.3.5. first

s : = "ABC";
cWrite(s,'x','y')

The procedure "first" returns the character code of the first character of its string argument.
Unlike cRead, it does not remove the character from the string. For example, after the
statements:

s := "ABC";
ch := first(s)

are executed, s is unchanged, and ch has the value 'A'.

If the string is the null string, first returns -1.

6.3.(i. last

last returns the character code of the last character of a string, without removing it from the
string. The expression "last("ABC")" has the value 'C'.

If the string is the null string, last returns -1.

6.3.7. length

length returns the number of characters in a string. The expression "length("ABC")" has the
value 3.

6.3.8. reRead

rcRead returns the character code of the last character in a string. Unlike the procedure "last",
it removes the character from the string. The "r" in "rcRead" stands for "reverse"; i.e., rcRead
is the reverse of cRead, since it operates on the opposite end of the string.

- 60-

I If the string is the null string, it is unchanged, and the character code returned is -1.

6.3.9. reWrite

rcWrite prepends a character to the beginning of a string (being the "reverse" of cWrite, which
appends a character to the end).

6.3.10. isUpperCase, isLowerCase, and isAlpha

isUpperCase and isLowerCase return true if their arguments are the character codes for an
upper- or lowercase letter, respectively, and false otherwise (they always return false for non­
letters). isAlpha returns true if and only if its argument is a letter, i.e .• if isUpperCase or
isLowerCase is true of its argument.

6.3.11. String Processing Example

The program of Example 6.3.11-1 produces a substring of a given string, given the first and last
character positions in the string to include in the substring (this is not really necessary, since
MAINSAIL has a built-in substring mechanism, which is described in Section 10.5). Enter,
compile, and execute the module of Example 6.3.11-1.

6.4. Scopes

So far the only declarations and definitions encountered have been "local", i.e., confined to the
scope of a single procedure. When the MAINSAIL compiler reaches the end of a procedure, it
forgets that it has ever seen the locally defined identifiers.

An "outer" declaration may be used to create an identifier that is visible to all subsequently
declared procedures in the same module. Every procedure declaration is an outer declaration in
the sense that every following procedure may call it (preceding procedures may also call it
under some circumstances; see Section 7.2). Outer macros may be used by several procedures
in a module, and outer variables may be used instead of parameters to pass information among
procedures. Outer variables do not lose their values when a procedure exits; they persist as
long as the containing module does.

Outer declarations appear between the initial "BEGIN" and final "END" of a module, outside of
a procedure. Their format is exactly the same as that of local declarations. Outer macro
defintions, variable declarations, and procedure declarations may appear in any order, as long
as each identifier is declared before it is used.

- 61 -

BEGIN "subStr"

PROCEDURE convertPos (MODIFIES INTEGER i;
STRING s);

I is a string position. If negative, convert to
equivalent positive position; otherwise, don't change
it. See comment at procedure subString.
BEGIN
IF i < 0 THEN i := length(s) + i + 1;
If less than 1, it's before the beginning of the string:
IF i < 1 THEN i := 1;
END;

STRING PROCEDURE subString (STRING s;
INTEGER startPos,stopPos);

String positions are numbered starting at 1. If
startPos or stopPos is negative, it specifies a position
from the end of the string, which is position -1.
position 0 for either start or stop causes the null
string to be returned.
positions beyond the end (or beginning) of the string
are converted to the end (or beginning) of the string.
If stopPos is less than startPos, the null string is
returned.
BEGIN
INTEGER i;

IF startPos = 0 OR stopPos = 0 THEN RETURN("");
Convert positions to equivalent positive positions
convertPos(startPos,s); convertPos(stopPos,s);
Now remove extra trailing characters, if any
WHILE length(s) > stopPos DO

rcRead(s); # Remove and discard last character of s
Now remove initial characters, if any
FOR i := 1 UPTO startPos - 1 DO

cRead(s); # Remove and discard first character of s
RETURN(s);
END;

Example 6.3.11-1. Getting a Substring (continued)

- 62-

INITIAL PROCEDURE;
BEGIN
STRING s,t;
INTEGER start, stop;

DOB write(logFile,"String of which to take substring" &
" «eol> to quit): H);

END;

read(cmdFile,s);
IF s NEQ "" THENB

write (logFile, "Start position: H);
read(cmdFile,t); read(t,start);
write (logFile, "Stop position: H);
read(cmdFile,t); read(t,stop);
write (logFile, "Substring is """,

subString(s,start,stop),"""" & eol);
END END UNTIL s = "";

END "subStr"

Example 6.3.11-1. Getting a Substring (end)

In MAINSAIL, unlike Pascal and some other languages, procedures may not contain other
("nested") procedures.

Example 6.4-1 shows the use of some outer variables in a simple Reverse Polish Notation
calculator that performs only addition. Each line typed by the user may consist of unsigned
integers, plus signs, the command "s" (show the contents of the stack), and the commanq "Q"
(quit), separated from one another by spaces and tab characters. When it sees an integer, if
pushes it onto its "stack" of integers. When it sees a plus sign, it removes the top two integers
from the stack, adds them, and pushes the result back onto the stack, unless there are fewer than
two integers, in which case it gives an error message. When it sees an "S", it prints the contents
of the stack, bottom to top. When it sees a "Q", it stops. At the end of each command line, it
prints the value at the top of the stack, if any. Example 6.4-2 shows a sample execution.

6.5. When to Use Outer Variables

stack, stackDepth, and timeToQuit are the outer variables in Example 6.4-1. They could all
have been declared in the initial procedure instead, but then they would have had to be passed
as parameters to all the procedures that manipulate them. In the case of stack and stackDepth,

- 63 -

BEGIN "rpn"

BOOLEAN timeToQuit; * An outer variable; true if "Q" * command seen

STRING stack; * The stack of numbers.

INTEGER stackDepth; * How many numbers are on the stack

* now.

STRING PROCEDURE getCommand (MODIFIES STRING s); * Return the next thing on the command line. If it is * "Q" or the end of the line, return the null string. * If it is illegal, write an error message and return * the null string. * Remove the string read from s.
BEGIN
INTEGER Chi
STRING t,ui

WHILE first(s) = , , OR first(s) = first (tab) DO cRead(s);
Remove initial blanks and tabs, if any

t := 'It';

WHILE s NEQ "" AND

IF t

IF t

(first(s) NEQ' , AND first(s) NEQ first(tab» DO
cWrite(t,cRead(s»; * Add the next character to the * result string

"Q" THENB timeToQuit := TRUE; RETURN ("") END;'
"+,, OR t = "S" OR t = "" THEN RETURN(t)i

Example 6.4-1. Use of Outer Variables (continued)

- 64-

:# If it isn't "Q", "S", "+", or nothing, then it must be
~ :# an integer or illegal.
j u := t;

WHILE u DOB
ch := cRead(u);
:# Take advantage of the assumption that the digit
:# characters are contiguous (see the "MAINSAIL
:# Language Manual") .
IF ch < '0' OR ch > '9' THENB

write(logFile,"Illegal command ",t,eol);
RETURN (nn) END END;

RETURN(t); :# It was an integer
END;

PROCEDURE push (STRING s);
:# Add the integer in s to the top of the stack. The
:# integers are separated by the space character.
BEGIN
cWrite(stack,' ')i stack "= stack & Si

stackDepth := stackDepth + 1;
END;

STRING PROCEDURE stackTop (OPTIONAL BOOLEAN doNotPop) ;
:# Unless doNotPop is true, remove the top item from the
:# stack.
BEGIN
INTEGER Chi
STRING Si

Example 6.4-1. Use of Outer Variables (continued)

- 65 -

IF stackDepth < 1 THENB
write (logFile, "Stack empty."); RETURN ("") END;

S .= "". . ,
DOB ch := rcRead(stack);

IF ch NEQ ' , THEN rcWrite(s,ch);
END UNTIL ch = , ';

stackDepth := stackDepth - 1;
IF doNotPop THEN push(s); # Put it back onto the stack
RETURN (s) ;
END;

STRING PROCEDURE stringAdd (STRING s,t);
The strings sand t represent integers. Return the
string that represents their sum.
BEGIN
INTEGER i,j;
STRING u;
Take the easy way out by using "read" and "write".
Note that if i, j, or their sum is larger than 32,767,
this procedure may not work.
read(s,i); read(t,j); u := ""; write(u,i + j);
RETURN(u);
END;

Example 6.4-1. Use of Outer Variables (continued)

- 66-

PROCEDURE processCommand (STRING s);
-# If s = "+", pop the top two items from the stack, add
-# them, then push the result onto the stack. If s is
-# an integer, push it onto the stack.
BEGIN
STRING t,u;
IF s = "S" THEN write(logFile,"Stack:",stack,eol)
EF s = "+,, THENB

IF stackDepth < 2 THEN
write(logFile,"Cannot add; stack has only",

stackDepth," items." & eol)
EB t := stackTop; u := stackTop;

push(stringAdd(t,u» END END
EL push(s);
END;

INITIAL PROCEDURE;
BEGIN
STRING s,t;

timeToQuit :== FALSE; -# Haven't seen "Q" yet
stack := ""; stackDepth := 0; -# No numbers on stack yet

DOB write(logFile,"CALC: "); read(cmdFile,s);

END;

s := CVU(S)i -# Convert to upper case so as not to
i have to distinguish "Q"I"q", "S"I"s"

DOB t :== getCommand(s); -# getCommand returns the null
-# string at end of line or if
-# command "Q" seen

IF t NEQ I'"~ THEN processCommand(t);
END UNTIL t == "";

write(logFile,stackTop(TRUE),eol) ;
END UNTIL timeToQuit;

END "rpn"

Example 6.4-1. Use of Outer Variables (end)

this would be inconvenient, since nearly all the procedures manipulate them, and the same two
parameters would have to be passed over and over again.

- 67-

*rpn<eol>
CALC: s<eol>
Stack:
Stack empty.
CALC: 1 6<eol>
6
CALC: s<eol>
Stack: 1 6
6
CALC: +<eol>
7
CALC: B 13 + 22 + + s<eol>
Stack: 50
50
CALC: 16 s<eol>
Stack: 50 16
16
CALC: + wfkpe<eol>
Illegal command WFKPE
66
CALC: +<eo1>
Cannot add; stack has only 1 items.
66
CALC: Q<eol>
66

*

Example 6.4-2. Execution of RPN

Some philosophers of computer programming consider that is better, when possible, to use
local variables and pass parameters instead of sharing data among procedures using outer
variables. They think this makes it more obvious what data are consumed and produced by
each procedure, since all of the relevant input values and output variables appear in the
procedure call itself. Others feel that long lists of parameters passed over and over to different
procedures clutter the code and make programs difficult to read, and try to pass as much
information as possible in outer variables. The examples in this tutorial try to steer a middle
course; data shared among many procedures are represented in outer variables, whereas
information used primarily in a small number of procedures is passed around through
parameters.

Under these principles, timeToQuit in Example 6.4-1 might well have been declared in the
initial procedure and set by getCommand, since getCommand and the initial procedure are the

- 68-

only two procedures in which the variable timeToQuit appears. getCommand's procedure
header would have been changed to:

STRING PROCEDURE getCommand (MODIFIES STRING s;
PRODUCES BOOLEAN timeToQuit) ;

and its call in the initial procedure to:

getCommand(s,timeToQuit)

However, timeToQuit was made an outer variable with the idea that the program might
someday be expanded to have more conditions that required termination, and so procedures
other than getCommand might set timeToQuit. timeToQuit can also be viewed as a property of
the program as a whole, and therefore worthy of appearing in the declarations at the beginning
of the module, where a human reader trying to understand the program often starts.

- 69-

6.6. Exercises

Exercise 6-1.

Rewrite the procedure stringAdd in Example 6.4-1 to handle numbers larger than
MAINSAIL's maximum integer by doing the arithmetic on strings yourself instead of
calling "read" and "write". You need handle only nonnegative numbers.

Exercise 6·2.

Write a more sophisticated Reverse Polish Notation calculator than that of Example
6.4-1. Support negative and nonnegative integers of any length, subtraction,
multiplication, and division as well as addition. Also provide a way to clear the stack
(I.e., remove all the numbers from the stack).

-70 -

7. Even More on Procedures; the Done and Continue
Statements

This chapter describes the Done and Continue Statements, which are flow-of-control constructs
used within an iterated statement. It describes recursive procedures (procedures that call
themselves, directly or indirectly), own (static) variables, and the generic procedure construct,
which allows one identifier to represent more than one procedure.

7.1. The Done, Continue, and Untyped Return Statements

7.1.1. The Done Statement

The Done Statement may appear in the iterated statement part of an Iterative Statement When
it is executed, the innermost Iterative Statement is terminated (a named Iterative Statement may
be terminated from an Iterative Statement nested within it; see the procedure "search" in
Example 16.4-1). Example 7.1.1-1 shows the use of a Done Statement. It consists of just the
keyword "DONE".

7.1.2. The Continue Statement

Like the Done Statement, the Continue Statement appears in the iterated statement part of an
Iterative Statement Instead of terminating the iteration, however, a Continue Statement causes
control to skip to the end of the iterated statement If there is a FOR-clause, WHILE-clause,
and/or UNTIL-clause, the appropriate increments, decrements, and/or tests are performed, and
the iteration is restarted if the tests pass. Like the Done Statement, the Continue Statement may
operate on a named Iterative Statement See Example 7.1.2-1.

7 .1.3. The Untyped Return Statement

An untyped procedure may be terminated before it reaches the final "END" by means of an
untyped Return Statement, the form of which is:

RETURN

with no following parentheses. Examples will appear later.

-71 -

BEGIN "bkwrds"

STRING PROCEDURE backwards (STRING s);
Reverse the characters of s.
BEGIN
STRING t;

t ,= "". o ,

WHILE s NEQ "" DO cWrite(t,rcRead(s»;
RETURN(t);
END;

INITIAL PROCEDURE;
BEGIN
STRING s;

DOB write (logFile, "String to reverse «eol> to quit): ");
read (cmdFile, s); IF s = '''' THEN DONE;
write(logFile,backwards(s),eol) END;

END;

END "bkwrds"

Example 7.1.1-1. The Done Statement

7 .2. Recursion and Forward Procedures

It is sometimes useful to have a procedure call itself, or to call other procedures that call it.
This process is known as "recursion". Every MAINSAIL procedure may be recursive, i.e., may
call itself or call procedures that call it.

7.2.1. A Procedure That Calls Itself'

On a recursive procedure invocation, new copies of the procedure's parameters and local
variables are made, as described in Section 5.3. Consider the procedure of Example 7.2.1-1,
which performs integer multiplication by repeated addition (not a very fast method). In brief,

-72 -

BEGIN "sums"

* Sum the integers input from cmdFile, one on each line.
=If: Require that each integer be in a valid format.

BOOLEAN PROCEDURE validInteger (STRING s);
BEGIN
INTEGER Chi

IF first(s) = '-' THEN cRead(s); * May be initial "-"
WHILE s DOB

ch := cRead(s);
IF ch < '0' OR ch > '9' THEN RETURN(FALSE) END;

RETURN(TRUE); =If: If made it to here, must be OK
END;

INITIAL PROCEDURE;
BEGIN
INTEGER i,sum;
STRING s;

sum := 0;
DOB write(logFile,"Next integer «eol> to stop): ");

read(cmdFile,s); IF s = "" THEN DONE;

END;

IF NOT validInteger(s) THENB
write(logFile,s,": invalid integer" & eol);
CONTINUE END;

read"(s,i); sum := sum + i;
write (logFile, "Sum: ",sum,eol) END;

END "sums"

Example 7.1.2-1. Use of the Continue Statement

the call "mul(5,2)" returns "mul(5,1) + 5". In turn, "mul(5,1)" returns "mul(5,0) + 5";
"mul(5,0)" returns 0. Therefore, the call "mul(5,2)" returns (0 + 5) + 5, or 10, as desired.

Consider that the original call "mul(5,2)" is "invocation #1" of the procedure, as shown in
Example 7.2.1-2.

-73 -

INTEGER PROCEDURE mul (INTEGER i,j);
Calculate the product of i and j by repeated addition.
j must be nonnegative.
BEGIN
IF j - 0 THEN RETURN(O); # Zero times anything is zero
otherwise j > 0:
RETURN(mul(i,j - 1) + i); # (i * (j - 1» + i = j * i

Example 7.2.1-1. A Recursive Procedure to Perform Multiplication

+---------------+
I i = 5 I
+---------------+

j = 2 I
+---------------+

\
> Invocation #1

/

Example 7.2.1-2. Invocation #1 of "mul" on Entry to the Procedure

Invocation #1 finds that j is not zero, so it executes the second statement of the procedure,
which requires it to evaluate "mul(ij - 1)", i.e., "mul(5,1)". Invocation #1 now calls "mul" with
the arguments 5 and 1, resulting in invocation #2. See Example 7.2.1-3

+---------------+
i = 5

+---------------+
I j = 1 I
+---------------+

i = 5
+---------------+
I j = 2 I
+---------------+

\
> Invocation #2

/

\
> Invocation #1 (inactive)

/

Example 7.2.1-3. Invocation #2 of "mul" on Entry to the Procedure

-74 -

Invocation #2 again finds that j is not zero, so it too executes the second statement, which
requires it to evaluate "mul(5,O)", creating invocation #3. The situation then looks like
Example 7.2.1-4.

+---------------+
I i = 5 I

+---------------+
j = 0 I

+---------------+
i = 5 I

+---------------+
I j = 1 I

+---------------+
I i = 5 I

+---------------+
j = 2

+---------------+

\
> Invocation #3

/

\
> Invocation #2 (inactive)

/

\
> Invocation #1 (inactive)

/

Example 7.2.1-4. Invocation #3 of "mul" on Entry to the Procedure

Invocation #3 finds that j is zero, so it returns zero. The Return Statement immediately
terminates invocation #3 so that invocation #2 becomes active again. See Example 7.2.1-5.

+---------------+
i = 5 \

+---------------+ > Invocation #2
I j = 1 I' /
+---------------+

i = 5 I

+---------------+
j = 2

+---------------+

\
> Invocation #1 (inactive)

/

Example 7.2.1-5. Invocation #2 of "mul" upon Return from #3

Invocation #2, which was in the middle of evaluating the expression in the Return Statement,
receives the value 0 returned by invocation #3, and so calculates "0 + i", i.e., "0 + 5".
Invocation #2 therefore terminates, returning the value 5. Consequently, invocation #1
becomes active again. See Example 7.2.1-6.

-75 -

+---------------+
i = 5

+---------------+
I j = 2 I
+---------------+

\
> Invocation #1

/

Example 7.2.1-6. Invocation #1 of "mul" upon Return from #2

Invocation #1, which was also evaluating the expression in the middle of the Return Statement,
receives the value 5 returned by invocation #2. Therefore, it calculates and returns "5 + 5", i.e.,
1 0, as expected.

7.2.2. Mutual Recursion and the "FORWARD" Qualifier

Recursion may occur when two procedures call each other ("mutual recursion"). MAINSAIL
requires every procedure's declaration to appear in the source file prior to any calls to the
procedure. If procedure a calls procedure b, and b calls a, this poses a problem, since b must be
declared before a, but a must be declared before b. The "forward declaration" provides a
solution to this problem. An example is shown in Example 7.2.2-2, where the procedures
expression and value are given forward declarations.

The program CALC of Example 7.2.2-2 is an interactive calculator, like that of Example 6.4-1.
However, CALC accepts a more sophisticated syntax; a summary of its grammar is shown in
Example 7.2.2-1. The technique used in Example 7.2.2-2 to parse the grammar is called
"recursive descent", since it uses recursion in "descending" (breaking down) sentences of the
grammar.

Each line of CALC input must be a "command" in accordance with the rules of Example
7.2.2-1. A sample run is shown in Example 7.2.2-3.

The forward declaration of a procedure appears before the first call to a procedure. It is
composed of the keyword "FORWARD" followed by the header of the procedure. Unlike
Pascal, MAINSAIL requires that the full header of the procedure be given again when the full
procedure declaration (including the procedure body) appears. The full declaration is said to
"give the forward procedure a body".

-76 -

"=>" means "is defined as". Single quote marks are
placed around commands typed literally. Comments appear
in parentheses. Square brackets are used for grouping,
"!" appears between alternatives, and "*" indicates
zero or more repetitions of the preceding item.

command => ' S' (show all accumulators)
=> ' Q' (quit)
=> ' , (empty command line)
=> value (print the value)

value => assignment
=> expression

assignment => register ,=, value
(do the assignment and return the value assigned)

expression => term [[I +, term]

term => factor [['*' factor]

factor => unsignedInteger
=> register
=> I (' expression ')'

[' -' term]] *

[' I' factor]] *

An unsignedInteger is just an unsigned integer.

register => 'A' (there are three registers)
=> 'B'
=> ' C'

Example 7.2.2-1. The Grammar of CALC Commands

BEGIN "calc"

INTEGER a,b,c; * Values in the accumulators

Example 7.2.2-2. Mutual Recursion (continued)

-77 -

STRING PROCEDURE getToken (MODIFIES STRING s);
#: Remove the next thing from s.
BEGIN
INTEGER Chi
STRING t;

WHILE first(s) = , , OR first(s) = first(tab) DO cRead(s);
IF NOT s THEN RETURN ('It'); #: End of string
ch := cRead(s);
#: Everything but integers is one character:
IF ch < '0' OR ch > '9' THEN RETURN(cvcs(ch»i
#: Now it must be an integer:
t := cvcs(ch);
WHILE first(s) GEQ '0' AND first(s) LEQ '9' DO

cWrite(t,cRead(s»;
RETURN(t);
END;

PROCEDURE ungetToken (MODIFIES STRING s;
REPEATABLE STRING token);

#: Put token back at the front of s.
BEGIN
s := token & " " & s;
END;

BOOLEAN PROCEDURE validInteger (STRING s);
#: Returns true if s is an unsigned integer.
BEGIN
INTEGER Chi

IF NOT s THEN RETURN(FALSE);
WHILE s DOB

ch := cRead(s);
IF ch < '0' OR ch > '9' THEN RETURN(FALSE) END;

RETURN(TRUE); #: If made it to here, must be OK
END;

Example 7.2.2-2. Mutual Recursion (continued)

-78 -

FORWARD INTEGER PROCEDURE expression (MODIFIES STRING s);

INTEGER PROCEDURE factor (MODIFIES STRING s);
BEGIN
INTEGER i;
STRING t;

t := getToken(s);
IF t "A" THEN RETURN(a)
EF t "B" THEN RETURN(b)
EF t

EF t
"e" THEN RETURN(c)
"(" THENB

i := expression(s); t := getToken(s);
IF t NEQ ")" THEN

write(logFile,"Factor: missing ')'" & eol);
RETURN (i) END

EF validInteger(t) THENB read(t,i); RETURN (i) END
EB write (logFile, "Factor: illegal factor ",t,eol);

RETURN (0) END; * Treat garbage as a zero
END;

INTEGER PROCEDURE term (MODIFIES STRING s);
BEGIN
INTEGER product,i;
STRING t;

product := factor(s);
DOB t := getToken(s);

IF t = "*" THEN product := product * factor(s)
EF t = "I" THENB

i := factor(s);
IF i NEQ 0 THEN product := product DIV i
EB write(logFile,"Term: division by zero" & eol);

product := 0 END END * Give zero result
EB ungetToken(s,t); DONE END END;

RETURN (product) ;
END;

Example 7.2.2-2. Mutual Recursion (continued)

-79 -

INTEGER PROCEDURE expression (MODIFIES STRING s);
BEGIN
INTEGER sum;
STRING t;

sum := term(s);
DOB t := getToken(s);

IF t = "+" THEN sum := sum + term(s)
EF t = U_" THEN sum :== sum - term(s)
EB ungetToken(s,t); DONE END END;

RETURN (sum) ;
END;

FORWARD INTEGER PROCEDURE value (MODIFIES STRING s);

INTEGER PROCEDURE assignment (MODIFIES STRING s);
BEGIN
STRING regName;
INTEGER val;

regName := getToken(s); getToken(s); # Discard "="
val := value(s);
IF regName "An THEN a := val
EF regName = "B" THEN b := val
EF regName = "c" THEN c ,= val
EL write(logFile,"Assignment: illegal register name If,

regName,eol);
RETURN(val);
END;

INTEGER PROCEDURE value (MODIFIEB STRING s);
BEGIN
BOOLEAN isAssignment;
STRING t,u;

Example 7.2.2-2. Mutual Recursion (continued)

- 80-

t := getToken(s); u := getToken(s);
isAssignment := (u == "_");
ungetToken(s,u,t);
IF isAssignment THEN RETURN(assignment(s»
EL RETURN(expression(s»;
END;

BOOLEAN PROCEDURE doCommand (STRING s); * Return false if the command was "Q", true otherwise.
BEGIN
STRING t;

t := getToken(s);
IF t = "Q" THEN RETURN(FALSE);
IF t = "S" THEN

write(logFile,"A: ",a," B: ",b," C: ",c,eol)
EF t THENB

ungetToken(s,t); write(logFile,value(s),eol) END;
IF t := getToken(s) THEN * Something was left over

write (logFile, "Illegal token ",t,eol);
RETURN (TRUE) ;
END;

INITIAL PROCEDURE;
BEGIN
STRING s-;

* Set up the accumulators:
a := 0; b := 0; c := 0;

DOB write(logFile,"CALC command ('Q' to quit): n);
read(cmdFile,s) END UNTIL NOT doCommand(cvu(s»;

END;

END "calc"

Example 7.2.2-2. Mutual Recursion (end)

- 81 -

*QglQ<~Ql>

CALC command (' Q' to quit) : J<~QJ..>

3
CALC command (' Q' to quit) : ~<~Ql>

A: 0 B: 0 C: 0
CALC command (' Q' to quit) : g = Q = J<~Ql>
3
CALC command (' Q' to quit) : ~<~Ql>

A: 3 B: 3 C: 0
CALC command (' Q' to quit) : Q = Q + 9 L {a - l)<~Ql>

7
CALC command (' Q' to quit) : 2+2<~Ql>
4
CALC command (' Q' to quit) : ~<eQl>

Factor: illegal factor Z

0
CALC command (' Q' to quit) : ~<~Ql>

A: 3 B: 3 C: 7
CALC command (' Q' to quit) : g<eQJ..>
*

Example 7.2.2-3. Sample Execution of CALC

- 82-

7.3. Source Libraries

A procedure declared with the "FORWARD" qualifier need not be given a body if it is never
called This fact is used with a form of the "FORW ARD" qualifier that indicates the source file
name in which the procedure may be found to produce "source libraries" or "compiletime
libraries", files that contain procedures to be compiled into a module only if they are used by
the module.

Source libraries are explained in detail in Section 6.1 of part II of the "MAINSAIL Tutorial".

7.4. Own Variables

Although most variables declared within a procedure are allocated dynamically each time the
procedure is invoked, there is a type of variable called the "(local) own variable" that is not lost
from invocation to invocation of the procedure. The own variable persists like an outer
variable; the difference is that an own variable may be used only within the procedure where it
is declared. Example 7.4-1 shows how an own variable, depth, is used to prevent the depth of a
recursive procedure from exceeding a certain value. Another own variable, messageGiven,
ensures that the error message for a deep recursion is printed only once. The procedure "ack"
implements Ackermann's function.

The value of an own variable is initially the Zero for its data type. For an integer. this means
the value 0; for a boolean, the value false. See Section 8.2.

- 83 -

BEGIN "acker"

DEFINE maxDepth 100;

INTEGER PROCEDURE ack (INTEGER m,n);
41= Return zero if we've gone too deep.
BEGIN
INTEGER retVal;
OWN BOOLEAN messageGiven;
OWN INTEGER depth;

depth := depth + 1;
IF messageGiven THEN retVal := 0
EF depth GEQ maxDepth THENB

write (logFile, "Ack: depth GEQ ",maxDepth,eol);
messageGiven := TRUE; retVal := 0 END

EF m = 0 THEN retVal := n + 1
EF n = 0 THEN retVal := ack(m - 1,1)
EL retVal := ack(m - 1,ack(m,n - 1»;
depth := depth - 1; RETURN(retVal);
END;

INITIAL PROCEDURE;
BEGIN
INTEGER m,n,resulti
STRING s;

write(logFile,"m: "); read(cmdFile,s); read(s,m);
write(logFile,"n: "); read(cmdFile,s); read(s,n)i
result := ack(m,n);
write(logFile,"ack(",m,",",n,") = ",result,eol);
END;

END "acker"

Example 7.4-1. An Own Variable Used to Keep Track of Recursion Depth

- 84-

7.5. Generic Procedures

You may have been wondering how the procedures "read" and "write" manage to take
arguments of a variety of data types. The answer is that they are declared as "generic"
procedures.

A generic procedure declaration does not look like an ordinary procedure declaration; rather, it
has the form:

GENERIC PROCEDURE <generic name> <list of instance names>

The generic name is the name to be used when the procedure is called. A call using the generic
name is called a "generic call". Each generic call actually selects a call to one or more of the
instance procedures in the generic procedure declaration, based on the data types of the
arguments.

For example, we have seen that the procedure "write" may write either a string or an integer to
a text file. The generic procedure declaration of "write" looks (in part) like

GENERIC PROCEDURE write "itWrite,stWrite";

(there are actually many more instance procedures for "write" than just itWrite and stWrite).
The list of instance procedure names is just a string constant

The instance procedures itWrite and stWrite are declared as in Example 7.5-1.
"POINTER(textFile)" is the data type designator for a file; this form is explained more fully in
Chapters 9 and 11.

PROCEDURE itWrite
(POINTER (textFile) f; REPEATABLE INTEGER v);

PROCEDURE stWrite
(POINTER (textFile) f; REPEATABLE STRING v) ;

Example 7.5-1. Instance Procedure Headers for "write"

Because the last parameter to the instance procedures for "write" is repeatable, "write" accepts
as its arguments first a file, then a series of expressions that may be either integers or strings.
For each expression that is an integer, "write" calls itWrite; for each string, it calls stWrite. See
Example 7.5-2.

- 8S -

The generic call:

write(logFile,"The square of ",i," is ",i * i,eol)

results in the instance procedure calls (assume i is
an integer) :

stWrite(logFile,"Thesquare of ");
itWrite(logFile,i);
stWrite(logFile," is tV);

itWrite(logFile,i * i);
stWrite(logFile,eol)

Example 7.5-2. Selection of Instance Procedures for "write"

You should never call an instance procedure of a generic system procedure directly; you should
always use the generic name. XIDAK reserves the right to change the instance names of
generic system procedures without notice.

The exact algorithm used in the selection of generic procedures is fairly complicated to account
for some special cases, and may be found in the "MAINSAIL Language Manual".

A sample (and rather artificial) use of generic procedures is shown in Example 7.5-3.

- 86-

BEGIN "quotes"

PROCEDURE quoteNum (INTEGER i);
BEGIN
write(logFile,"""",i,"""",eol);
END;

PROCEDURE quoteString (STRING s);
BEGIN
write(logFile,"""" & s & """",eol);
END;

GENERIC PROCEDURE quote "quoteNum,quoteString";

INITIAL PROCEDURE;
BEGIN
INTEGER i;
STRING s;

DOB write(logFile,"A string «eol> to stop): ");
read(cmdFile,s); IF s = "" THEN DONE;
quote(s);

END;

write(logFile,"A number: "); read(cmdFile,s);
read(s,i); quote (i) END;

END "quotes"

Example 7.5-3. User-Defined Generic Procedures

- 87-

..

7.6. Exercises

Exercise 7·1.

Write a program that reads lines from cmdFile and translates them into Pig Latin,
terminating when a blank line is read. Pig Latin words are the same as their English
equivalents, except that words beginning with a vowel have "yay" appended to them,
and words beginning with one or more consonants have the consonants stripped from
the front and appended to the end, followed by "ay". For example, "oink" translates
to "oinkyay", "mud" to "udmay", "sty" to "ystay". If an English word starts with an
uppercase letter, its Pig Latin translation should also start with an uppercase letter
(you may assume that words are otherwise all lowercase). Be sure to do something
sensible with punctuation (don't throw it away).

Exercise 7·2.

Modify the calculator program of Example 7.2.2-2 to operate on hexadecimal
numbers of arbitrary precision, both positive and negative, rather than decimal
numbers limited to the maximum size of a MAINSAIL integer.

- 88-

8. More Data Types, Variables, Constants, and
Expressions: Long Integer, Real, Long Real, Bits, and

Long Bits

This chapter describes all of the "high-level" MAINSAIL data types (except pointer) that have
not yet been encountered, as well as such important concepts as the Zero of a data type and
conversion procedures. There are also tables listing all the unary and binary operators provided
by MAINSAIL.

8.1. More Data Types

The data types seen up to this point are boolean, integer, and string. The data types introduced
in this chapter are long integer, real, long real, bits, and long bits. The data type pointer, which
is used to manipulate array and record data structures, is described in Chapter 11. The
discussion of the last two data types, address and charadr, is deferred until Chapter 18.

The procedures "read" and "write" may be used with any of the data types described in this
chapter. They treat the other numeric and bits data types in a fashion analogous to the way they
treat integers. Complete descriptions of "read" and "write" may be found in the "MAINSAIL
Language Manual".

8.1.1. Long Integers

The data type long integer is designated by "LONG INTEGER". Long integer constants have
the same form as numeric integer constants except that they are followed by the letter "L" (or
lowercase "1"). The guaranteed range of long integers is -2,147,483,647 to +2,147,483,647, as
opposed to the -32,767 to +32,767 range of the integer dita type.

The operations tI+", "_", tllIc", and "DIV" all operate on long integers as well as integers. Long
integers and integers may not be mixed in the same arithmetic expression, however; e.g., "2L +
2" is illegal.

Like integers, long integers may be used in FOR-clauses. The iteration variable, lower limit,
and upper limit must all be of the same data type, i.e., all integers or all long integers.

The module TETRA of Example 8.1.1-1 prompts for the value of N, then uses long integers to
calculate the Nth tetrahedral number (the sum of the first N triangular numbers). Note that
when "read" reads a long data type from a file or a string, it does not expect a trailing "L". For
example, execution of TETRA looks as in Example 8.1.1-2.

- 89-

BEGIN "tetra"

LONG INTEGER PROCEDURE triang (LONG INTEGER ii);
BEGIN
LONG INTEGER jj,sumi

sum := OLi
FOR jj := lL UPTO ii DO sum := sum + jji
RETURN (sum) ;
END;

INITIAL PROCEDURE;
BEGIN
LONG INTEGER ii,jj,sumi
STRING s;

write(logFile,"Calculate what tetrahedral number? ");
read(cmdFile,s); read(s,ii); sum := OL;
FOR jj :- lL UPTO ii DO sum :- sum + triang(jj);
write(logFile,"The ",ii,"th tetrahedral number is ",sum,

eol) ;
END;

END "tetra"

Example 8.1.1-1. Long Integers to Calculate Tetrahedral Numbers

8.1.2. Reals and Long Reals

Reals and long reals represent floating point numbers. They use standard decimal notation,
with a period (". If) separating the integer part from the fractional part (the presence of the period
is what distinguishes a real or long real constant from an integer or long integer constant).
Long reals are distinguished from reals by the addition of an "L" at the end of the constant.
Adding an "E" followed by an integer N to a floating point number multiplies by ten-to-the-Nth
power, e.g., "1.0E-6L" is the long real fraction one one-millionth.

"+", "_", and "*" are implemented for reals and long reals as for integers and long integers. The
real and long real division symbol is "f', not "DIV".

- 90-

11
;

*tetra<eo1>
Calculate what tetrahedral number? 3<eol>
The 3th tetrahedral number is 10
*tetra<eo1>
Calculate what tetrahedral number? 100<eol>
The 100th tetrahedral number is 171700
*tetra<eol>
Calculate what tetrahedral number? 200<eo1>
The 200th tetrahedral number is 1353400

*

Example 8.1.1-2. The Execution of TETRA

A complete set of trigonometric functions is provided for real numbers. See Example 8.1.2-1.
A more complete specification of the real and long real data types may be found in the
"MAINSAIL Language Manual".

8.1.3. Bits and Long Bits

The data types bits and long bits are used to represent "bit vectors" or small sets of "flags" or
"bits" that may be either "set" or "clear". Each flag resembles a boolean variable in that it may
have only two values; the "set" or "1" value corresponds to the boolean "TRUE" and the "clear"
or "0" value to "F ALSEn. A bits or long bits value may also be thought of as a series of binary
digits (an unsigned binary number). A bits value may have up to 16 binary digits; a long bits,
up to 32 (these are the portably guaranteed ranges; some implementations may provide more
binary digits).

A bits constant is written as a single quote mark ("''') followed by a radix letter, "B", "0", or
"H", followed by a binary, octal, or hexadecimal number. The octal forms represent three
binary digits with each octal digit; the hexadecimal forms, four binary digits with each
hexadecimal digit. The octal digits "0" through "7" represent the binary sequences "000"
through "111"; the hexadecimal digits "0" through "9", "A" through "F" represent the binary
sequences "0000" through "1111". Leading zero digits may be omitted. The radix letter may
be omitted for octal values. See Example 8.1.3-1.

Long bits constants have the same format as bits constants except that they are followed by the
letter "L".

The bit positions in a bits or long bits may be numbered according to the powers of two they
represent if the bits or long bits is considered to be an unsigned integer; see Figure 8.1.3-2.

- 91 -

BEGIN "sines"

* The name of the MAINSAIL trigonometric sine procedure
* is "sin".

INITIAL PROCEDURE;
BEGIN
REAL r;
LONG REAL rr;
STRING s,t;

DOB write(logFile,
"Floating point number «eol> to stop): It);

read(cmdFile,s); IF s = "" THEN DONE;
t := Si read(s,r);
write(logFile,"Real sin(",r,") = ",sin(r),eol)i
read(t,rr)i
write(logFile,"Long real sin(",rr,") = ",sin(rr),eol)i
ENDi

ENDi

END "sines"

Example 8.1.2-1. Calculation of Sines

The forms on each line represent the same value.

Binary
'BO
'B110110
'B1111111111111111
'B0001101000101011

Octal
, 00 (' 0)
'066 (' 66)
'0177777 (' 177777)
'0015053 ('15053)

Example 8.1.3-1. Bits Constants

Hexadecimal
'HO
'H36
'HFFFF
'H1A2B

Descriptions of bits and long bits operations often refer to "corresponding bits" in two bits or
long bits values; corresponding bits are the bit positions with the same number in both values.

- 92-

<- LEFT RIGHT ->
(most significant in (least significant in
an unsigned integer) an unsigned integer)

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1151141131121111101 91 81 71 61 51 41 31 21 11 01
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

For example, in the bits value '027, the bits
numbered 0, 1, 2, and 4 are set. These bits may
also be referred to as the '1, '2, '4, and '20
(or 'HI0) bits, respectively.

Figure 8.1.3-2. Bit Numbers in a Bits

Examples of the use of the bits and long bits data types are deferred until Section 8.5, where the
bits and long bits operators are introduced.

8.2. The Zero Value of a Data Type

Every data type has a special value that is called its "Zero" value. The Zero value is used in
various ways. Table 8.2-1 lists the Zeros for all the MAINSAIL data types.

When a module starts execution, every own or outer variable initially has the Zero value of its
data type. Thus, for example, the line in the initial procedure of Example 7.2.2-2 that sets the
variables a, b, and c to the value 0 is unnecessary, since they already have that value at that
point. However, such an initialization is good form, since it makes it clear to the human reader
what is going on. .

Local variables (other than omitted optional uses and modifies parameters) are not initialized to
Zero. It is important to initialize local variables before they are used.

An expression of any data type listed in Table 8.2-1 may be used as the governing expression
of an If Statement, WIllLE-clause, or UNTIL-clause. The expression is treated like a false
boolean expression if it has the Zero value for its data type, and like a true boolean expression
if it has any other value. See E~ample 8.2-2.

- 93 -

boolean:
integer:
long integer:
real:
long real:
bits:
long bits:
string:
pointer:
address:
charadr:

FALSE
o
OL
0.0
O.OL
, 0

'OL
""
NULLPOINTER
NULLADDRESS
NULLCHARADR

Although "array" is not really
considered a separate data type,
it has a Zero of its own:

array: NULLARRAY

Table 8.2-1. The Zeros of the MAINSAIL Data Types

Assume sand t are string variables. Then
this statement:

WHILE s NEQ "" DO cWrite(t,cRead(s»

is equivalent to this statement:

WHILE s DO cWrite(t,cRead(s»

Both do the same thing as:

t := t & s; s := ""

Example 8.2-2. Using a String as the Controlling Expression of a WHILE-Clause

- 94-

8.3. Conversion Procedures

MAINSAIL is a strongly typed language that does not automatically convert expressions of one
data type into expressions of another. It is therefore necessary to have a way of explicitly
converting between data types. MAINSAIL provides a set of system procedures called
"conversion procedures" to perform this task.

The names of the conversion procedures are shown in Table 8.3-1. Each of the conversion
procedures takes a single argument, the expression to be converted, and returns a value, which
is the value of the argument "translated" into the desired data type. The exact effect of the
translations is described in the "MAINSAIL Language Manual", but the translations usually do
what you would expect; for example. "cvi(1.0)", "cvi(1L)", and "cvi('I)" are all equal to the
integer 1.

PrQQ~Q,yr~ ~Qnv~rt~ tQ
evi integer
evli long integer
evr real
evlr long real
evb bits
evlb long bits
evs string
eva address
eve eharadr
evp pointer

Table 8.3-1. Names of Conversion Procedures

The conversion procedures are generic, and provide most of the possible conversions from one
MAINSAIL data type to a different data type. There are some exceptions; for example, it is not
possible to convert directly from a bits to a real or vice versa. See the "MAINSAIL Language
Manual" for a table of allowed conversions.

8.4. Reading Numeric Values from cmdFile

Until now, reading an integer i from cmdFile has been accomplished by the sequence
"read(cmdFile,s); read(s,i)", where s is a string variable. Alternatively, "cvi(s)" may be used to
obtain the integer value of s. Like "read", cvi scans its string argument looking for a numeric
value, returning 0 if it finds nothing that looks like a number.

- 95 -

An integer could be read directly from cmdFile with the statement "read(cmdFile,i)", but this
has the undesirable property that the portion of the input line following the integer (including
the end-of-line character) remains unread from cmdFile. The next string read from cmdFile
therefore consists of the (possibly null) remainder of the line from which the integer was read.
Therefore, the most usual sequence to read an integer that appears by itself on a line of cmdFile
is "read(cmdFile,s); i := cvi(s)".

What does the program of Example 8.4-1 do? Try it out. Does it do what you would expect?

BEGIN "wrong"

INITIAL PROCEDURE;
BEGIN
INTEGER i;
STRING s;

write(logFile,"An integer: "); read(cmdFile,i);
write(logFile,"Your integer was ",i,eol,

"A string: It); read(cmdFile,s);
write(logFile,"Your string was """,s,"""" & eol);
END;

END "wrong"

Example 8.4-1. The Wrong Way to Read an Integer from cmdFile

8.S. Tables of Operations

The operators encountered so far include arithmetic operations for integer and real data types,
the concatenation operator for strings, comparison operators, and the boolean operators" AND",
"OR", and "NOT". In every example of a binary operator encountered so far, the data type of
the first operand has been the same as that of the second and (except for the comparison
operators) the same as the data type of the result In fact, the operators" AND", "OR", and
"NOT" may take operands of any data type; they treat any non-Zero value as if it were boolean
true and any Zero value as false. Other operators require or permit their operands to be of
different types. Every MAINSAIL operator is listed in this section, except for the assignment
operator, described in Section 10.3.

- 96-

The tables of operations in this section are adapted from those in the "MAINSAIL Language
Manual", which are in a slightly different format. The entry "arith." as a data type means
integer, long integer, real, or long real.

MAINSAIL's two unary operators are shown in Table 8.5-1. Each unary operator precedes its
operand in source text.

Operator
NOT

Operand Result
Data Type Data Type
any boolean

arith. same as
operand
type

Description of Result
true if the operand's
value is not the Zero of
its data type; false if
its value is Zero

arithmetic negation of
operand (operand is
subtracted from the Zero
of the appropriate data
type)

Table 8.5-1. Unary Operators

Table 8.5-2 explains all of the binary operators provided by MAINSAIL except the assignment
operator. Each binary operator appears in source text between its two operands. An operand
may be any expression of the appropriate data type.

Example 8.5-3 shows how the bits operation "lOR" may be considered as the boolean "OR" of
corresponding bits if each bit is viewed as a boolean value. Also, "MSK" is to "AND" as
"lOR" is to "OR", and "XOR" is to "NEQ" as "lOR" is to "OR". There is no primitive
MAINSAIL boolean operation directly corresponding to the bits operation "CLR".

Example 8.5-3 also illustrates the use of control bits in the use of the optional parameter to
"cvs" in order to print a bits value in binary, octal, or hexadecimal. See the "MAINSAIL
Language Manual" for a full description of cvs.

Example 8.5-4 shows a sample execution of the module of Example 8.5-3. Note how cvb
operates on a string containing a single quote character. Note also that the default radix for a
"write" to a text file of a bits or long bits value is octal.

- 97-

Data Type Data Type
of First of Second
Operand Operand Data Type

Operator (e1) (_e:..::2) __ _ of Result Description
boolean true if e1 has the

NEQ

<

LEQ

any

any

arith. ,
string,
address,
charadr

arith. ,
string,
address,
charadr

same as
e1

same as
e1

same as
e1

same as
e1

boolean

boolean

boolean

same value as e2

true if e1 does not
have the same value
as e2

for arithmetic data
types, true if e1's
value is less than
e2's. For address
and charadr, true
if e1 represents a
lower address than
e2. Strings are
compared character
by corresponding
character until a
difference is found
or one string runs
out; true if the
character code of
the first non­
matching character
of e1 is less than
the corresponding
character of e2, or
if e1 is shorter
than e2 and the
strings match up to
the end of e1

true if e1 < e2 or
e1 = e2. Stands
for "Less or EQual"

Table 8.5-2. Binary Operators (continued)

- 98-

> arith. , same as boolean true if e2 < el
string, el
address,
charadr

GEQ arith. , same as boolean true if el > e2 or
string, el el = e2. Stands
address, for "Greater or
charadr EQual"

OR any any boolean true if either el
is not the Zero of
its data type or e2
is not the Zero of
its type or neither
one is Zero

AND any any boolean false if either el
or e2 is the Zero
of its data type;
true if both are
non-Zero

TST bits, same as boolean true if any set bit
long bits el in el corresponds

to a set bit in e2.
Stands for "TeST"

NTST bits, same as boolean true if NOT el TST
long bits el e2

TSTA bits, same as boolean true if the bit
long bits el corresponding to

every set bit in e2
is set in el

NTSTA bits, same as boolean true if NOT el TSTA
long bits el e2

Table 8.5-2. Binary Operators (continued)

- 99-

IOR, bits, same as same as each bit in result
long bits e1 e1 is set if and only

if corresponding
bit is set in e1 or
e2 or both. Stands
for "Inclusive OR".
n!" has higher
precedence than
"lOR", but they .are
otherwise the same

XOR bits, same as same as each bit in result
long bits e1 e1 is set if and only

if corresponding
bit is set in e1 or
e2, but not both.
Stands for
"eXclusive OR"

MSK bits, same as same as each bit in result
long bits e1 e1 is set only if

corresponding bit
is set in both e1
and e2. Stands for
"MaSK"

CLR bits, same as same as each bit in result
long bits e1 e1 is set only if

corresponding bit
in e1 is set and
corresponding bit
in e2 is clear.
Stands for "CLeaR"

SHL bits, integer same as e1 shifted left
long bits e1 e2 positions; zeros

brought in from
right. Not defined
if e2 GEQ <number
of bits. in e1's
data type>

Table 8.5-2. Binary Operators (continued)

-100 -

SHR bits, integer same as e1 shifted right
long bits e1 e2 positions; zeros

brought in from
left. Not defined
if e2 GEQ <number
of bits in e1's
data type>

MIN arith. , same as same as the value of e1, if
string, e1 e1 e1 < e2; otherwise
address, the value of e2.
charadr Stands for

"MINimum"

MAX arith. , same as same as the value of e1, if
string, e1 e1 e1 > e2; otherwise
address, the value of e2.
charadr Stands for

"MAXimum"

+ arith. same as same as sum of e1 and e2
e1 e1

arith. same as same as difference of e1
e1 e1 and e2

* arith. same as same as product of e1 and
e1 e1 e2

DIV integer, same as same as e1 divided by e2.
long e1 e1 Integer quotient:
integer remainder is

discarded. Not
defined if e1 is
negative or e2 is
not positive

MOD integer, same as same as remainder of e1
long e1 e1 divided by e2.
integer Not defined if e1

is negative or e2
is not positive

Table 8.5-2. Binary Operators (continued)

- 101 -

I

&

real,
long real

arith.

string

same as
el

integer,
real

string

same as
el

same as
el

string

quotient of el and
e2

el raised to the
power e2. If e2
is real, then el
must be real or
long real

string
concatenation

Table 8.5-2. Binary Operators (end)

BEGIN "bAndB"

BITS PROCEDURE bitByBitIor (BITS bl,b2)i
BEGIN
BOOLEAN bitl,bit2;
INTEGER i;
BITS result;

result := 'HFFFFi * First assume all bits set
FOR i := 0 UPTO 15 DOB

bit1 := b1 TST ('1 SHL i); * Boolean for bit number i
bit2 := b2 TST ('1 SHL i);
IF NOT (bitl OR bit2) THEN * Result bit isn't set

result := result CLR ('1 SHL i) END;
RETURN(result)i
END;

PROCEDURE writeBits (BITS b);
BEGIN
write(logFile,b," (oct) ",cvs(b,hex)," (hex) If,

cvs(b,binary)," (bin)" & eol);
END;

Example 8.5-3. Correspondence Between Bits and Boolean Operations (continued)

-102 -

INITIAL PROCEDURE;
BEGIN
BITS bI,b2;
STRING s;

DOB write (logFile, "Bits value one «eol> to stop): H);
read(cmdFile,s);

END;

IF NOT s THEN DONE; # Equivalent to: IF s = ''''
bI := cvb (s) ;
write(logFile,"Bits value two: H);
read(cmdFile,s); b2 := cvb(s);

Truncate to sixteen bits, since some machines may
allow more bits:
bI := bI MSK 'HFFFF; b2 := b2 MSK 'HFFFF;

write (logFile, "lOR calculated bit by bit: H);
writeBits(bitByBitlor(bl,b2»;
write(logFile,"IOR calculated by MAINSAIL: ");
writeBits(bI lOR b2) END;

END "bAndB"

Example 8.5-3. Correspondence Between Bits and Boolean Operations (end)

- 103-

Bits value one «eol> to stop): 31<eol>
Bits value two: 13<eol>
IOR calculated bit by bit: 33 (oct) IB (hex) 11011 (bin)
IOR calculated by MAINSAIL: 33 (oct) IB (hex) 11011 (bin)
Bits value one «eol> to stop): 'HOl<eol>
Bits value two: 'H34<eol>
lOR calculated bit by bit: 65 (oct) 35 (hex) 110101 (bin)
IOR calculated by MAINSAIL: 65 (oct) 35 (hex) 110101 (bin)
Bits value one «eol> to stop): 'BII000<eol>
Bits value two: 'BOOOI0<eol>
IOR calculated bit by bit: 32 (oct) lA (hex) 11010 (bin)
IOR calculated by MAINSAIL: 32 (oct) lA (hex) 11010 (bin)
Bits value one «eol> to stop): <eol>

Example 8.5-4. Execution of BANDB

- 104-

8.6. Exercises

Exercise 8-1.

There is no single primitive boolean operation corresponding to the bits operation
"CLR" as "OR" corresponds to "lOR", "ANO" to "MSK", and "NEQ" to "XOR".
Construct a boolean expression describing the boolean operation performed on
corresponding bits in a "CLR" operation; i.e., fill in the following table:

The bit at position number n
of bits values b1 and b2 is
~~t in th~ ;r;;:~~l.llt Qf: if gnd Qnl~ if:
bl lOR b2 (bl SHR n TST ' 1) OR

(b2 SHR n TST ' 1)
bl MSK b2 (bl SHR n TST ' 1) AND

(b2 SHR n TST ' 1)
bl XOR b2 (bl SHR n TST ' 1) NEQ

(b2 SHR n TST ' 1)
bl CLR b2 <construct this expression>

Exercise 8-2.

Write a program that performs unsigned 16-bit addition using the bits data type. You
may not convert the bits to an integer and then perform the addition; you must do it
bit by bit. Be sure to give some indication if the operation overflows 16 bits.

- 105-

9. Sequential Input and Output

This chapter describes file input and output: opening, closing, reading, and writing files. Only
sequential input and output are discussed; random access to files is deferred until Section 10.11.

9.1. Introduction to MAINSAIL 110

Unlike many programming languages, MAINSAIL defines input and output in a complete and
portable manner. Most file input and output are performed by the system procedures "read"
and "write"; however, special forms of 1/0 exist for some purposes. For example, Section 1.15
of part II of the "MAINSAIL Tutorial" describes input and output of large amounts of data
from a single file with a single procedure call; the "MAINSAIL Structure Blaster User's Guide"
describes the Structure Blaster, which is used to store and retrieve MAINSAIL data structures
in an efficient manner.

9.2. Text Files and Data Files

A file is a collection of data organized serially; it has a well-defined beginning position, though
not all files have a well-defined ending position. Every operating system on which MAINSAIL
runs provides a system-dependent "file system"; in addition, MAINSAIL supports some files
that are independent of the operating system by means of special modules called "device
modules" (these special files are documented in the "MAINSAIL Utilities User's Guide"). On
some operating systems, MAINSAIL may support additional system-dependent device
modules; consult the appropriate operating-system-specific user's guide for details.

Every MAINSAIL file is either a "text file" or a "data file". The units of data in a text file are
"character units" (each of which is large enough to hold exactly one character); the units in a
data file are usually measured in IIstorage units" (each MAINSAIL data type occupies one or
more storage units); the units for data files opened for a type of I/O called "PDF I/O" ("Portable
Data Format"), however, are measured in character units like text files (see Section 10.12).
Text files are interpreted by reading the data into string and character (integer) variables; the
data in a data file are usually read into variables of the numeric or bits data types, although it is
also possible to interpret them as text Some files must be opened as text files, and others as
data; some may treated as either text or data.

The data type specifier for text files is "POINTER(textFile)"; that for data files is
"POINTER(dataFile)" . The type specifier "POINTER(file)" is used in the declarations of some
system procedure parameters to represent either a text or data file; however, the user should not
declare a variable to be a "POINTER(file)" (for reasons that will become clear later).

- 106-

"POINTER(textFile)" , "POINTER (dataFile)" , and "POINTER(file)" are actually instances of
the pointer data type, described in Chapter 11.

9.3. Opening, Closing, Reading, and Writing Files

Before the data in a file may be accessed, the file must be "open". A file may be opened by
calling the system procedure "open". "open" is a generic procedure that may operate on either
text or data files.

When a program finishes accessing the data in a file, it must close it by calling the system
procedure "close". If a program fails to close a file, the file is closed when MAINSAIL exits
(provided MAINSAIL exits normally). However, since closing a file may free up memory or
other resources associated with an open file, it is a good idea to close files as soon as you are
done with them.

When "open" is called, a program must specify whether it intends to use the file for input or for
output (or both; see Section 10.11). "write" may be called only for files open for output, "read"
only for files open for input.

The predeclared files "logFile" and "cmdFile" are text files that are opened before a user
program gains control. logFile is opened for output, cmdFile for input.

The declarations of "open" and "close" are shown in Figure 9.3-1. The file Iff' passed to "open"
is the variable declared by the user (or predeclared by MAINSAIL) that is used in subsequent
calls to "read", "write", and "close". The fileName parameter is the name of the file. The
openBits parameter specifies the type of access desired for the file; some of the applicable
predefined bits constants are "input", "create", "output", and "errorOK". The fileSize parameter
is rarely specified and can be ignored.

A program that opens a text file and copies the contents to 10gFile is shown in Example 9.3-2.

Note the use of the "!" in specifying both the "input" and "errorOK" bits to "open". The
openBits parameter could have been written "input lOR errorOK"; however, when several
named bits are specified in a bits parameter, it is customary to use "!" rather than "lOR". The
presence of the errorOK bit indicates that if "open" is unable to process the named file, it
should return false. If errorOK is not specified, "open" writes a message to 10gFile indicating
that the named file cannot be opened, and prompts repeatedly for a new file name until a file is
named that can be opened; if errorOK is not specified, "open" always returns true.

When the end of a text file is reached, "read" fails, since there are no more strings to read from
the file. "$gotValue(t)" returns false if the last attempted read from f failed, true otherwise.
$gotValue is the usual way to test for end-of-file. The $gotValue test is not precise; see Section
10.13.

- 107-

open is not really declared twice; it is
actually a generic procedure.

BOOLEAN PROCEDURE open
(PRODUCES POINTER (textFile)
STRING
BITS
OPTIONAL LONG INTEGER

BOOLEAN PROCEDURE open
(PRODUCES POINTER (dataFile)
STRING
BITS
OPTIONAL LONG INTEGER

f;
fileName;
openBits;
fileSize);

f;
fileName;
openBits;
fileSize);

PROCEDURE close (MODIFIES POINTER(file) f;
OPTIONAL BITS closeBits)

Figure 9.3-1. The Declarations of "open" and "close"

Example 9.3-3 shows a program that reads a data file, processes it, and writes the result to
another data file. The input data file contains a series of sets of long real numbers to be added.
Each set is preceded by an integer specifying the number of long reals. The program
terminates when it finds a set with zero long reals. Since "read" returns a Zero of the
appropriate data type whenever the end of file has been reached, this ensures that the program
will terminate if it accidentally reads beyond the end of the input file.

Example 9.3-3 illustrates the use of the open bits "create" and "prompt". "prompt" specifies
that the fileName parameter is actually a prompt to be written to 10gFile; the real file name is
then read from cmdFile. The "create" bit must be specified when opening a new file; the
"output" bit must be specified whenever the "create" bit is specified.

Example 9.3-4 shows what an input file to the program of Example 9.3-3 might look like, and
the resulting output file. The data files are shown diagrammatically because they would
presumably be illegible if interpreted as text files. The amount of storage occupied by each
data item is not proportional to the space allotted to it in the diagram; all integers take up the
number of storage units required to represent an integer, and all long reals the number of
storage units required to represent a long real. These numbers are dependent on the system on
which MAINSAIL is running; see Section 10.11.

-108 -

BEGIN "COpFil"

INITIAL PROCEDURE;
BEGIN
STRING s;
POINTER (textFile) inputFile;

write(logFile,"Input file name: "); read(cmdFile,s);
IF NOT open(inputFile,s,input!errorOK) THENB

* Open for input access; return false if can't open
write(logFile,"Unable to open file ",s,eol);
RETURN END; * "RETURN" terminates execution of the * initial procedure, and consequently of * the program

DOB read(inputFile,s);
IF NOT $gotValue(s) THEN DONE; * Have we reached the end of inputFile?
write (logFile,s,eol) END;

close(inputFile);
END;

END "copFil"

Example 9.3-2. Copying a Text File to logFile

- 109-

BEGIN "nums"

INITIAL PROCEDURE;
BEGIN
INTEGER i,count;
LONG REAL r,sum;
POINTER (dataFile) inFile,outFile;

open(inFile,"Input file: ",prompt!input);
open(outFile,"Output file: ",create!prompt!output); * Create a new file for output access
DOB read(inFile,count); IF NOT count THEN DONE;

sum := O.OL;
FOR i := 1 UPTO count DOB

read(inFile,r); sum := sum + rEND;
write (outFile, sum) END;

close(inFile); close(outFile);
write(logFile,"File processed." & eol);
END;

END "nums"

Example 9.3-3. The Use of Data Files

+-- start of input file

V

+---+------+------+-------+---+------+-------+---+
I 3 I 6. OL I 4. 2L I -1.8L I 2 I 1.lL I 9. 04L I 0 I
+---+------+------+-------+---+------+-------+---+

+-- start of output file
I
v

+------+--------+ '
I 8. 4L I 10.14L I
+------+--------+

Example 9.3-4. Sample Input and Output Files for NUMS

- 110-

9.4. File Names, Logical Names, and 110 Redirection

The MAINSAIL syntax for operating-system-dependent file names is described in the
operating-system-specific MAINSAIL user's guide for your system if it differs from the
operating system's standard syntax (it usually does not differ). MAINSAIL also makes some
guarantees about system-specific file names; these guarantees are described in the "MAINSAIL
Language Manual".

9.4.1. Logical Names

In general it is a bad idea to hardwire any file name into your programs. A program designed to
be portable should either prompt the user for the names of any files it needs or use a "logical
name", i.e., a file name that the program does not expect to be the real file name. Logical file
names often (but not always) have a format that would be illegal or unusual for an operating­
system-dependent file name.

Real file names may be substituted for logical names in one of three ways:

1. When a program fails to open a file using its logical name, an error message is (by
default) written to 10gFile. The user may then enter the real file name from cmdFile.

2. Before the program is executed, another program in the same MAINSAIL session
may establish a correspondence between the logical name and the real file name by
calling the procedure "enterLogicalName". When the file is opened, the
correspondence is found and the real file name automatically substituted for the
logical name.

3. The MAINEX "ENTER" subcommand may be given before the program is executed.
The "ENlER" subcommand causes MAINEX to call enterLogicalName with the
appropriate arguments.

The declarations of enterLogicalName and its companion procedure, lookupLogicalName,
appear in Figure 9.4.1-1. The 10gicalName parameter is a logical name; enterLogicalName
associates it with the real file name trueName, and 10okupLogicalName returns the associated
real file name, or the null string if there is no associated real file name.

Example 9.4.1-2 is a fragment of a program PROG that uses the logical names "[input file]"
and "[output file]". The" .name" suffix on a file variable provides a string that is the name
actually used when the file is opened (Le., the name after logical name substitutions have been
performed).

- 111 -

STRING
PROCEDURE lookUpLogicalName (STRING logicalName);

PROCEDURE enterLogicalName (STRING logicalName,trueName);

Figure 9.4.1-1. Declarations of enterLogicalName and 100kupLogicaIName

BEGIN "prog"

POINTER (textFile) inputFile,outputFile;

PROCEDURE processData; * Process the input file and write to the output file

INITIAL PROCEDURE;
BEGIN
open(inputFile,"[input file]",input);
write(logFile,"Opened ",inputFile.name,eol);
open (outputFile, " [output file]",create!output);
write(logFile,"Opened ",outputFile.name,eol);
processData;
close(inputFile)i close(outputFile)i
END;

END "prog"

Example 9.4.1-2. Program Fragment That Uses Logical Names

Assuming the operating system does not provide any files actually named "[input file]" and
"[output file]", execution ofPROG might begin as shown in Example 9.4.1-3. The user
substitutes the file name "in.dat" for "[input file]" and "out.dat" for "[output file]".

Instead of allowing a runtime error to occur and specifying the file names to a the "New file
name:" prompt, the user may first execute the module SETUP shown in Example 9.4.1-4 to set
up the desired logical name correspondences. The substitution set up by enterLogicalName

- 112-

*prog<eol>

Operating system error: file not found

ERROR: Cannot open «eol> to enter new file name)
[input file]

Error response: <eol>
New file name: in.dat<eol>
Opened in.dat

Operating system error: illegal file name

ERROR: Cannot open «eol> to enter new file name)
[output file]

Error response: <eol>
New file name: out.dat<eol>
Opened out.dat

Example 9.4.1-3. Execution ofPROG

endures until MAINSAIL returns to the operating system, whereas file names given in response
to a "New file name:" prompt are not subsequently substituted for the logical names that
produced the original error. For example, ifPROG were run again after the execution of
Example 9.4.1-3, MAINSAIL would once again be unable to open "[input file]" and "[output
file]" and would therefore issue error messages and prompt for new file names. If PROG were
run again after the "execution of Example 9.4.1-5, however, MAINSAIL would again
automatically substitute the file names established by SETUP, and no error message would be
issued.

MAINE X provides a facility that performs the function of the module SETUP of Example
9.4.1-4. The "ENTER" subcommand (like other MAINEX subcommands) may be specified in
response the ">" subcommand prompt if a line typed to the "*" prompt ends in a comma. The
"ENTER" subcommand sets up a.logical name correspondence by calling enterLogicalName;
the PROG logical names are set up in this way in Example 9.4.1-6.

"SEARCHP A TH" is a MAINEX subcommand that allows file name substitutions to be based
on a pattern. If many similar file name substitutions are to be made, "SEARCHP ATH" is better
than "ENTER".

- 113-

BEGIN "setUp"

INITIAL PROCEDURE;
BEGIN
STRING s;

write(logFile,"Correspondence for ""[input file]"": ");
read(cmdFile,s); enterLogicalName("[input file]",s);
write(logFile,"Correspondence for ""[output file]"": If);

read(cmdFile,s); enterLogicalName("[output file]",s);
END;

END "setUp"

Example 9.4.1-4. A Module to Set Up Logical Name Correspondences

*setup<eol>
Correspondence for "[input file]": in.dat<eol>
Correspondence for "[output file]": out.dat<eol>
*prog<eol>
Opened in.dat
Opened out.dat

Example 9.4.1-5. Execution ofPROG with Automatic Logical Name Substitution

MAINEX subcommands are described in the "MAINSAIL Utilities User's Guide".

Note that a logical name need not have an illegal or unusual file name format For example, the
MAINSAil.. text editor, MAINEDIT, attempts to open a file named "epanns" from which it
reads directions for setting up the text editing environment. Often such a file exists, but
sometimes you may, for example, want to use somebody else's text editing environment. In
such a case, you would do as shown in Example 9,4.1-7 (EDIT is the module that invokes
MAINEDIT).

- 114-

*prog,<eol>

>enter [input file] in.dat<eol>

>enter [output file] out.dat<eol>

><eol>

Opened in.dat
Opened out.dat

A blank line to the
">,, prompt terminates
subcommand mode.

Example 9.4.1-6. Use of the MAINEX "EN1ER" Subcommand

*edit,<eol>
>enter eparrns sOmeone-elses-eparms<eol>
><eol>

Example 9.4.1-7. A LogicalName Substitution for MAINEDIT's "eparms" File

The "ENTER" and "SEARCHPATH" subcommands'are frequently used in a MAINSAIL
bootstrap to set up logical names used by all the programs to be executed by that bootstrap; see
Chapter 20.

9.4.2. Redirection of cmdFile and 10gFile

The files cmdFile and logFile are normally associated with terminal input and output (or
whatever the operating system provides as the main input and output channels), respectively.
MAINEX provides subcommands to specify that cmdFile input is to be read from or logFile
output written to some other file. As soon as subcommand mode is exited, the "CMDFILE tI

and "LOGFILE" subcommands take effect. For example, assume a file "cmdtl contains what is

- 115-

shown in Example 9.4.2-1. The modules ACKER and CALC are those of Examples 7.4-1 and
7.2.2-2.

acker
3
3
calc
1 + 4 The blank line at the end

causes MAINSAIL to return
to the operating system
when the file's end is
reached.

a = b + 2
s
q

Example 9.4.2-1. A Sample Command File

The session of Example 9.4.2-2 shows the redirection of cmdFile and logFile. The resulting
logFile "log" appears in Example 9.4.2-3. Note that the commands (including end-of-line
characters) of "cmd" are not echoed into "log" (you may cause the contents of cmdFile to be
echoed to 10gFile; see the description of the "ECHOCMDFILE" and "ECHOIFREDlRECTED"
MAINEX subcommands in the "MAINSAIL Utilities User's Guide").

*.<eol>
>cmdfile cmd<eol>
>logfile log<eol>
><eol>
(the operating system command
processor prints its own prompt here)

Example 9.4.2-2. Use of the "CMDFILE" and "LOGFILE" Subcommands

*m: n: ack(3,3) = 61
*CALC command ('Q' to quit): 5
CALC command ('Q' to quit): 2
CALC command ('Q' to quit): A: 2 B: 0 C: 0
CALC command ('Q' to quit): *

Example 9.4.2-3. A Redirected 10gFile

- 116-

9.5. The File "TTY" and the System Procedures ttyRead, ttyWrite, and
ttycWrite

The files cmdFile and 10gFile are originally associated with your terminal by being opened with
the file name "TrY" (or "tty"). MAINSArr... recognizes this as a special file name. A text file
with the string "TTY" provided as the fileName parameter to "open" is associated with the
terminal keyboard if opened for input or with the terminal screen if opened for output (or
whatever the operating system provides in the way of primary input and output files).

For example, the MAINSAIL utility COPIER, which copies text files, may be made to display
a file on the user's terminal if "TTY" is specified for the output file name. See Example 9.5-1
and the description of COPIER in the "MAINSAIL Utilities User's Guide".

*copier<eol>
Text File Copier
Input file (just <eol> to stop): cmd<eol>
Output file: tty<eol>
acker
3
3
calc
1 + 4
a = b + 2
s
q

Input file (just <eol> to stop): <eol>

*

Example 9.5-1. Use of COPIER and the File "TrY"

The system procedures ttyRead, ttycWrite, and ttyWrite provide direct access to the file "TrY",
regardless of how cmdFile and 10gFile may have been redirected. Their declarations are shown
in Figure 9.5-2. ttyRead returns the next string typed from the terminal keyboard; ttycWrite
writes a single character to the terminal screen, and ttyWrite writes any of the values accepted
by "write" when it writes to a file or string.

Because ttyRead, ttycWrite, and ttyWrite cannot be redirected from the terminal within
MAINSAIL, it is usually preferable to use input from cmdFile and output to 10gFile. Example
16.4-1 contains a use of ttyRead and ttyWrite, since it is not expected that the interactive

- 117-

STRING PROCEDURE ttyRead;

PROCEDURE ttycWrite (REPEATABLE INTEGER char);

GENERIC PROCEDURE ttyWrite ...

Figure 9.5-2. Declarations of ttyRead, ttycWrite, and ttyWrite

display-oriented text editor program of that example would be invoked from a redirected
cmdFile.

9.6. alterOK

MAINSAIL guarantees not to replace an existing file without warning. Therefore, when a file
is opened with the "create" open bit and a file with the specified name already exists,
MAINSAIL ordinarily writes a message to 10gFile asking whether you really want to replace
the existing file, and awaits your reply from cmdFile (this dialogue does not take place on
operating systems that provide "version numbers" for files so that the creation of a new file
does not actually overwrite an old file of the same name). The open bit alterOK tells
MAINSAIL to suppress this dialogue and overwrite the named file without warning. alterOK
is often used when a temporary output file or log file is created. The program fragment of
Example 9.6-1 uses the alterOK bit in this way.

POINTER (textFile) inFile,outFile;

,open(inFile,"Input file: ",input!prompt);
open(outFile,inFile.name & ".log",create!output!alterOK);

Example 9.6-1. Use of the alterOK Open Bit

- 118-

9.7. Exercises

Exercise 9-1.

Add two commands to the program CALC of Example 7.2.2-2:

• The "F" command, which specifies the name of a file from which
subsequent commands are to be read. Commands read are to be echoed to
10gFile. When the end of the specified file is reached, commands are again
read from cmdFile (unless "Q" was encountered in the "F" file). The
format is "F <file name> ". Do not permit an "F" command to appear in an
"F" file.

• The "T" command, which specifies the name of a file to which subsequent
output is to be written. Output to the "T" file should also be written to
10gFile, and input (whether from cmdFile or from an "F' file) should be
echoed to the liT" file. The format is "T <file name>". If no file name is
given (i.e., the "T" is alone on a line), the "T" file, if any, should be closed
and subsequent output written only to 10gFile.

Exercise 9-2.

Write a calculator program that reads a data file composed of pairs of reals and bits.
The first value of the pair is a real; the second value, the bits, indicates what to do
with the real. Table 9.7-1 shows how the bits value is to be interpreted. The real
accumulator initially contains 0.0.

- 119-

Every bits command must have the '4 bit set. When a
bits value without this bit set is read, the program
should print the current value of the accumulator,
then stop.

The rightmost two bits of the bits value tell what
to do with the real value just read:

'0 add the real value to the accumulator
'1 subtract the real value from the

accumulator
'2 mUltiply the accumulator by the real

value
'3 divide the accumulator by the real

value

If the '10 bit is set, write the resulting accumulator
value to logFile. If the '20 bit is set (or both the
'10 and '20 bits are set), write the current
accumulator value ClI?-d the operation to be performed as
well as the resulting accumulator value.

Table 9.7-1. Interpretation of Data File Comma!:ds

- 120-

10. More on Expressions and Strings; the Expression,
Case, and Empty Statements; Random Access to Files

The expressions, statements, and system procedures introduced in this chapter are less
"fundamental" than those introduced in previous chapters. However, many of them provide
syntactic convenience that greatly contributes to the readability of MAINSAIL programs.

Random access to files is not a syntactic convenience, but rather an essential input/output
technique.

10.1. Procedure "BEGIN" and "END"

If a procedure consists of a single statement and has no local declarations, the "BEGIN" and
"END" bracketing the body of the procedure may be omitted. See Example 10.2-1.

10.2. The If Expression

The keyword "IF" may begin an expression as well as a statement. The fonn of an If
Expression is:

IF <expression one> THEN <expression two> ELSE
<expression three>

If expression one has a non-Zero value for its data type, the value of the If Expression is the
value of expression two; otherwise, it is the value of expression three. Expressions two and
three must have the same data type~ which need not be the same as the data type of expression
one.

If Expressions may be nested. The abbreviations "EF" and "EL" may be used in If
Expressions, just as in If Statements.

The procedure "ack" of Example 7.4-1 can be written to use an If Expression inside its Return
Statement, provided the code to check recursion qepth is removed. See Example 10.2-1;
compare the two versions of ack.

- 121 -

INTEGER PROCEDURE ack (INTEGER m,n) ;
RETURN (

IF NOT m THEN n + 1
EF NOT n THEN ack(m - 1,1)
EL ack(m - 1,ack(m,n - 1»);

Example 10.2-1. An If Expression inside a Return Statement

10.3. The Assignment Expression

An Assignment Expression has the same form as an Assignment Statement. The value of the
expression is the same as the value assigned to the variable on the left side of the assignment
operator and is of the same data type as that variable.

Assignment Expressions permit the use of "chain" or "multiple" assignments; see Example
10.3·1.

If a, b, and c are all integer variables, then:

a := b := c := 0

sets all three variables to have the value O.
The statement could also be written as:

a := (b := (c := 0»

Example 10.3-1. Chain Assignments Using the Assignment Expression

The precedence of the assignment operator in an Assignment Expression is not quite the same
as in an Assignment Statement. In the Assignment Statement, the assignment operator has a
lower precedence than any other operator; in an Assignment Expression, it has a higher
precedence than the comparison operators, "NOT", "ANO", and "OR". See Example 10.3-2. If
you find the precedence rules too confusing to remember, you may use redundant parentheses
to specify the order of evaluation of expressions.

- 122-

IF v := el OR e2 THEN ...

is equivalent to:

IF (v := el) OR e2 THEN ...

NOT equivalent to:

IF v := (el OR e2) THEN ...

But the statement:

v := el OR e2i

is equivalent to:

v .= (el OR e2) ;

Example 10.3-2. Precedence of the Assignment Operator in Expressions and Statements

10.4. Short-Circuit Evaluation

The operators "AND" and "OR" evaluate their second operands only if the first operand is non­
Zero or Zero, respectively. That is, the "AND" or "OR" expression is evaluated only far
enough to determine its value. If the first operand to "AND" is false, the entire expression is
necessarily false, so the second operand need not be evaluated; likewise, if the first operand to
"OR" is true, the entire expression is true, regardless of the value of the second operand. This
property of "AND'.' and "OR" is referred to as "short-circuit evaluation". See Example lOA-I.

The short-circuit evaluation of" AND" is particularly useful in connection with pointers; see
Example 11.3-1.

10.5. Substrings

A substring is a string expression which, as the name implies, is calculated as a sequence of
characters contained within another string. A substring is specified by giving the string of
which the substring is to be taken, the starting position, and the ending position in the form:

<string> [<start position> TO <end position>]

- 123 -

Assume a procedure "lookUp" should be called for a
string s only if s is not the null string. If s is
"", or if lookUp returns a Zero value, then action
A should be taken; otherwise, some other action B
should be taken. The code to do this looks like:

IF s AND lookUp(s) THENB
code for action B ... END

EB ... code for action A ... END

Note that lookUp is not called if s is ""

Example 10.4-1. The Use of Short-Circuit Evaluation

or the form:

<string> [<start position> FOR <number of characters>]

The string may be any string expression. The positions are integers; the first position in a string
is number one. The first form of substring specifies the end position absolutely; the second
specifies it relative to the start position. Example 10.5-1 shows an example of the second form.
Other examples of both forms appear in the "MAINSAIL Language Manual" and Example
16.4-1.

One way to see if a string begins with a certain
sequence of characters is to use 'a substring. The
following code checks to see whether a string s
begins with "new file" (ignoring case) :

IF cvu(s) [1 FOR length ("NEW FILE")] = "NEW FILE" ...

Example 10.5-1. A Common Use of Substrings

"INF" is a special integer expression that may appear only within substring brackets. It
represents the length of the string of which the substring is taken. For example. "s[1 TO INF -
2]" represents the string that is s with its last two characters removed.

-124 -

10.6. String Comparison

Strings may be (and frequently are) compared with the standard comparison operators "=",
"NEQ", ">", "<", "GEQ", and "LEQ". However, there are some circumstances in which it is
more efficient to call the system procedure "compare" or the system procedure "equ".

"compare(r,s)" , where rand s are strings, returns -1 if r < s, 0 if r = s, and 1 if r > s. If a
program needs to do something different in each of the three cases, compare may be called just
once, whereas at least two of the standard comparison operators would have to be called to
achieve the same end. See Example 10.6-1.

Assume rand s are strings and i an integer variable.
Then the code:

IF (i "= compare(r,s» < 0 THENB
... code for r < s. " . END

EF i = 0 THENB
code for r = s ... END

EB · . " code for r > s ... END

achieves the same thing as:

IF r < s THENB

· . " code for r < s ... END
EF r = s THENB

code for r = s. " . END
EB · .. code for r > s ... END

However, the first e~ample calls compare only once,
whereas the second example uses n<n once and n=" once.
Since "compare", "<", and n=" all result in approximately
the same execution overhead, the first example is more
efficient. If you feel that the second example is more
legible and that execution efficiency is not important,
then use the second form; otherwise, use the first form.

Example 10.6-1. The Procedure "compare" and the Comparison Operators

"compare(r,s,upperCase)" performs a caseless comparison by first converting rand s to upper
case. It is more efficient than doing the case conversion explicitly, i.e., than
"compare(cvu(r),cvu(s»" .

-125 -

The procedure equ checks for equality only. "equ(r,s)"returns true if "compare(r,s)" returns 0;
"equ(r,s,upperCase)" returns true if "compare(r,s,upperCase)" returns O. equ is not more
efficient than "=" unless the upperCase bit is specified. Most programmers prefer "=" to equ if
the upperCase option is not specified, since they feel the former is easier to understand.

Using equ, the code in Example 10.5-1 could be written more efficiently as:

IF equ(s[l FOR length("NEW FILE")],"NEW FILE", upperCase) ...

10.7. The Procedure "scan"

The procedure "scan" is used to remove a prefix of a string based on the characters in the string.
The form of "scan" in which the scanCtrl parameter is a string is the only form described here.
For some purposes, the forms in which the scanCtrl is an integer or a bits are more efficient;
these forms are described in the "MAINSAIL Language Manual". "scan" may be used to read
characters from a file as well as string; details may be found in the "MAINSAIL Language
Manual".

The declaration of the form of "scan" discussed here is shown in Figure 10.7-1.

STRING PROCEDURE scan (MODIFIES STRING source;
STRING scanCtrl;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL INTEGER brkChr)

"scan" is actually a generic procedure. Consult the
"MAINSAIL Language Manual" for details.

"Figure 10.7-1. Declaration of the Procedure "scan"

If neither optional parameter is specified, "scan" breaks the source string into two parts. It
looks for the first character in source that is the same as one of the characters in scanCtrl; this
character is called the "break character". The portion of source up to the break character is
returned by "scan"; the remainder of the string is left in the changed value of source. For
example, if the string variable s has the value:

"Hello, there"

then "scan(s," ,")" returns "Hello" and changes the value of s to:

- 126-

If, there"

The break character is returned in the parameter brkChr. In this case, the break character is ",".
If no character is found that matches a character in scanCtrl, "scan" returns the entire source
string, sets source to "", and returns -1 for brkChr.

The parameter ctrlBits may be used to specify the options shown in Figure 10.7-2. Other
options exist but are more rarely used; see the "MAINSAll.. Language Manual tt

•

Control Bit Name
proceed

discard

append

omit

Meaning
Instead of scanning up to a break
character that is in scanCtrl,
"scan" scans for the first
character NOT in scanCtrl.

Remove the break character from
source before returning.

Remove the break character from
source and append it to the
returned string.

Discard characters scanned; i.e.,
the result string is always "H.
This is more efficient if the
result string is not to be used.

Figure 10.7-2. Named Control Bits for ttscantt

Using ttscan", the procedure ttgetTokentt of Example 7.2.2-2 could be rewritten as shown in
Example 10.7-3. Note that the second call to ttscantt removes no characters from s and returns
the null string if s does not begin with a digit.

10.S. The Expression Statement

The Expression Statement, like the Assignment Statement, is a form that may be used either as
an expression or a statement The form of an Expression Statement is:

<variable> <dotted operator> <expression>

- 127-

STRING PROCEDURE getToken (MODIFIES STRING S)i

Remove the next thing from s.
BEGIN
STRING ti

scan(s," " & tab,proceed!omit)i # Remove leading blanks
and tabs

Everything but integers is one character:
RETURN (

IF NOT s THEN "" # End of string
EF t := scan(s,"0123456789",proceed) THEN t
EL cvcs(cRead(s»)i

ENDi

Example 10.7-3. The Use of "scan"

The variable and the expression must be of the same data type. The dotted operator is any of
the operators in Table 10.8-1, preceded by a dot (". ").

Operators on the same line have the same precedence.
The first line has the lowest (least binding) precedence,
the last line the highest:

MIN MAX
+ - (binary) lOR XOR MSK CLR
* / & DIV MOD SHL SHR

- (unary)

Table 10.8-1. Operators That May Be Dotted

An Expression Statement of the form "V .op e" is equivalent to the Assignment Statement (or
Assignment Expression) "V := v op e". The Expression Statement is used primarily for
syntactic convenience; however, it can also produce more efficient code if the variable v is not
a simple variable (e.g., an array element or field variable; see Chapter 11). Like its equivalent
Assignment Expression, the Expression Statement has the value of variable being assigned to
when used as an expression.

- 128-

As an example, "i .+ 1" is equivalent to "i := i + I", Numerous examples appear throughout the
remainder of this tutorial.

10.9. The Case Statement

The Case Statement is used to select one of series of statements based on the value of an integer
expression. If there are many expressions, it is usually more efficient (and more readable) to
use a Case Statement than an equivalent series of nested If Statements.

The Case Statement is introduced by:

CASE <integer expression> OFB

which is followed by case selectors, which are integer constant values or integer ranges in
brackets, intermixed with statements. If the integer expression has the value in a given selector,
the statement immediately following the selector is executed, and then the Case Statement is
terminated (unlike the "switch" statement ofC, in which the next statement is executed unless
the selected statement is terminated by a "break"). The Case Statement is terminated by the
keyword "END".

The If Statement outlined in Example 10.6-1 could be rewritten as a Case Statement as shown
in Example 10.9-1.

CASE compare (r,s) OFB
[-1] BEGIN

... code for r < s ... END;
[0] BEGIN

... code for r = s ... END;
[1] BEGIN

... code for r > s ... END;
END

Example 10.9-1. A Case Statement for String Comparison

A Case Selector consisting of an empty pair of brackets is called the "catch-all" or "default"
selector. The statement following the catch-all selector is executed if the selecting expression
does not match any of the other selectors. If there is no catch-all selector and the selecting
statement does not match any of the selectors, a runtime error occurs.

- 129-

The program of Example 10.9-2 counts the number of digits, white space characters, and other
characters in an input file. Note that since eol, tab, and eop are all one-character strings, the
first character of each is the same as its last character. For historical reasons, XIDAK
programmers usually use "last(eol)" but "first(tab)" or "first(eop)" to represent the characters in
these one-character strings.

BEGIN "countr"

INITIAL PROCEDURE;
BEGIN
INTEGER numDigits,numWhite,numOther;
POINTER (textFile) f;

nUmDigits := numWhite := numOther := 0;
open(f,"Input file: ",input!prompt);
DO CASE cRead(f) OFB

[-1] DONE; * -1 means end-of-file
[, 0' TO '9']

numDigits .+ 1;
[last (eol)] [' '] [first (tab)] [first (eop)]

numWhite .+ 1;
[] numOther .+ 1;
END;

close(f);
write (logFile, "Digits: ",numDigits,eol &

"White space characters: "/numWhite,eol &
"Other characters: ",numOther,eol &
"Total characters: ",
numDigits + numWhite + numOther,eol)i

END;

END "countr"

Example 10.9-2. Use of a Case Statement

10.10. The Empty Statement

The Empty Statement consists of nothing at all and performs no action. Empty Statements
have been used in the programming examples in this tutorial wherever a semicolon precedes an
"END". In the style used in this document, a semicolon precedes an "END" whenever the
"EN!)" is on the following line, and the semicolon is omitted whenever the "END" is on the

- 130-

same line. Since a semicolon always separates two statements, and no statement begins with
the keyword "END", there must be an Empty Statement between the semicolon and the "END" .
Example 10.10 .. 1 shows a program fragment that includes an Empty Statement.

IF j := process (i) THENB
write(logFile,"process(",i,") = ",j,eol); i .+ 1; * The Empty Statement is here. If the preceding * line did not end with a semicolon, there would * be no Empty Statement, but the meaning of the * program would be unchanged.
END

Example 10.10-1. The Use of an Empty Statement

The presence or absence of an Empty Statement does not affect the meaning of a program.
Empty Statements may appear in places other than before the keyword "END", but that is the
most common place for them. A simple rule to remember is that a semicolon may always
appear before the keyword "END", but is always optional.

10.11. Random File Access

Every datum written to or read from a file has a particular position in the file. File positions are
designated by long integers; the first position in a file is OLe In a text file, one character is
stored at each position; in a data file, one "storage unit" is stored at each position (except for
files opened for PDF I/O, explained below). The size of storage units varies from system to
system, but every MAINSAIL data type occupies an integral number of storage units. The
number of bits in a storage unit is available to a program as the integer constant
"$bitsPerStorageUnit" .

For every data type in MAINSAIL, a corresponding integer "type code" is predefined. The
names of the type codes appear in Table 1 0.11-1. The number of storage units occupied by a
value of a given data may be found by calling the procedure "size"; for example, the number of
storage units occupied by an integer is given by "size(integerCode)".

Storage units and data type sizes are explained in detail in Chapter 18.

The position on each "read" from or "write" to a file is incremented by the number of characters
or storage units read or written. When a file is opened for sequential access, this is the only
control you have over file positions. When a file is opened for random access, however, you

- 131 -

booleanCode
integerCode
longIntegerCode
realCode
longRealCode
bitsCode
longBitsCode
stringCode
addressCode
charadrCode
pointerCode

Table 10.11-1. Names of the MAINSAil... Type Codes

may explicitly record or change the current file position, so that the next "read" or "write"
occurs at a specified place in the file.

The procedures "setPos", "getPos", and "relPos" are used to manipUlate file positions. Their
declarations are shown in Table 10.11-2. setPos sets the current position of the file f to be n.
If, for some reason (e.g., the position specified is beyond the end of the file), it is not possible to
set the position to be n, setPos returns false; otherwise it returns true. In addition, if it returns
false and the bit errorOK is not set in the ctrlBits parameter, an error message is issued to
10gFile. getPos returns the current file position associated with f. "relPos(f,n)" is equivalent to
"setPos(f,getPos(t) + cvli(n))".

BOOLEAN PROCEDURE setPos (POINTER (file) f;
OPTIONAL LONG INTEGER n;
OPTIONAL BITS ctrlBits);

LONG INTEGER PROCEDURE getPos (POINTER(file) f)i

BOOLEAN PROCEDURE relPos (POINTER(file) f; INTEGER n;
OPTIONAL BITS ctrlBits);

Table 10.11-2. Declarations of setPos, relPos, and getPos

Example 10.11-4 shows a program that maintains a symbol table or primitive database as a data
file. Each record in the database has a string name and consists of a string that represents the

- 132-

data in the record (also called the "value" of the record). The records may be created or
examined by the user with commands read from cmdFile.

In order to speed lookup of the records within the file, each record name has associated with it
an integer "hash code". Records with similar hash codes are stored on the same list (or in the
same "hash bucket"); the whole data structure is called a "hash table". The purpose of a hash

~ table is to shorten searches for a given item through a data structure representing a set of items.
~ Instead of maintaining a single list through which to search, N (the "number of hash buckets")

lists are maintained, so that (if items are distributed evenly among the buckets) searches take
about lIN as long as through a single list. The hash bucket in which to store or search for a
given item is computed from some characteristic of the item (the item's "key") by a function
called a "hash function" (the procedure "hash" in Example 10.11-4). The best hash functions
produce values distributed evenly among the hash buckets when given a typical mixture of
keys.

The format of the file is shown in Figure 10.11-3.

The system procedure "confirm" writes its argument to 10gFile as a prompt and accepts a "yes"
or "no" answer from cmdFile. If the user types something other than "yes" or "no" (or an
abbreviation thereof). "confirm" reprompts until an acceptable answer is given. The procedure
"errMsg" writes an error message to 10gFile. then prompts with the standard "Error response:"
prompt. It is used by most MAINSAIL utilities to indicate an error condition. More detailed
descriptions of these procedures may be found in the "MAINSAIL Language Manual".

- 133-

The first thing in the file is an integer, which is the
number of hash buckets in the file.

The next thing in the file is the null record used to
terminate hash lists. 'It consists of a single long
integer, OLe An algorithm that traverses a hash list
may therefore terminate by checking whether the nextRec
field (which is the first field) of the record is OL; if
so, the current record is the null record and contains no
data.

The next thing in the file is the current end-of-file
position. New records are created at this position, i.e.,
they are added at the end of the file.

The next thing in the file is a series of N long integers,
where N is the number of hash buckets. Each long integer
is the file position of the first record in the
corresponding bucket. If a given hash bucket is empty,
the long integer is the position of the null record.

The next thing in the file is the data records themselves.

The information in each record is stored as the
following sequence of values:

+---------+---------+------------+---------+------------+
I nextRec I nameLen I name chars I dataLen I data chars I
+---------+---------+------------+---------+------------+
ne~tRec is a long integer, representing the file position
of the next record in this hash bucket. It points at the
null record if this is the last record in the list.

nameLen is the number of characters in the record name;
it is an integer.

name chars are the characters in the name of the record,
stored as individual integers.

dataLen and data chars are the length and characters of
the data string, respectively.

Figure 10.11-3. The Format of Hash Lists and Records used by SYMTAB

- 134-

BEGIN "symTab"

* Maintains a symbol table or primitive database in the * form of a random-access data file.
POINTER (dataFile) f; * The database file
INTEGER numBuckets; * How many buckets in the file

DEFINE numBucketsPos OL;
DEFINE nullRecordPos

numBucketsPos + cvli(size(integerCode»;
DEFINE eofPosPos =

nullRecordPos + cvli(size(longIntegerCode»;
DEFINE firstBucketPos =

eofPosPos + cvli(size(longIntegerCode»;

BOOLEAN PROCEDURE createNewDataBase (STRING name); * Return true if successful creation.
BEGIN
INTEGER i;
LONG INTEGER eofPos;
STRING s;

Example 10.11-4. The Use of a Random-Access Data File (continued)

- 135-

IF NOT confirm("Create new database file " & name) THEN
RETURN (FALSE) i

IF NOT open(f,name,create!input!output!random!errorOK)
THENB
errMsg("Couldn't create",name)i RETURN (FALSE) ENDi

setPos(f,nullRecordPos)i write(f,OL)i # Create null rec.
write(logFile,"Number of hash buckets to use in file ",

name," «eol> for 131): ") i # 131 is a good number
read(cmdFile,s)i
numBuckets := IF NOT s THEN 131 EL cvi(s);
IF numBuckets < 1 OR numBuckets > 1000 THENB

Sensible numBuckets?
errMsg("Bad number of buckets" & s,eol &

"Should be 1 - 1000"); RETURN (FALSE) END;
setPos(f,numBucketsPos); write(f,numBuckets); * Now initialize all the buckets to be empty:
setPos(f,firstBucketPos)i
FOR i := 1 UPTO numBuckets DO write(f,nullRecordPos);
eofPos :- getPos(f); setPos(f,eofPosPos);
write(f,eofPos); * eofPos is current end-of-file position
RE TURN (TRUE) ;
END;

INTEGER PROCEDURE hash (STRING S)i * Returns a value in the range a to numBuckets - 1
BEGIN
INTEGER h,i,j;
i := (h := length(s» MIN 4; j := 1;
WHILE (i .- 1) GEQ 0 DO·q .+ cRead(s) * (j .+ 2);
RETURN(h MOD numBuckets) END;

STRING PROCEDURE getString (INTEGER numChars) ;
* Read the next numChars integers from the file into a
* string.
BEGIN
INTEGER Chi
STRING Si

Example 10.11-4. The Use of a Random-Access Data File (continued)

- 136-

S .= nn. . ,
WHILE (numChars .- 1) GEQ 0 DOB

read(f,ch); cWrite(s,ch) END;
RETURN(s);
END;

LONG INTEGER PROCEDURE bucketPos (INTEGER hashCode) ;
Return the position of the start of the hash list with
hash code hashCode.
RETURN(firstBucketPos +

cvli(hashCode * size(longIntegerCode»);

BOOLEAN PROCEDURE lookup
(STRING recName; PRODUCES OPTIONAL STRING recVal);

Return true if record recName is found, or if recName
is nn (illegal record name)
BEGIN
INTEGER nameLen,valLen;
LONG INTEGER nextPos;

IF NOT recName THENB
errMsg(UNull record name"); recVal := u";
RETURN (TRUE) END; # Act as if we found it

* position to hash list for this record name:
setPos(f,bucketPos(hash(recName»); read(f,nextPos);
setP~s(f,nextPos); * Pos of first record in list
DOB read(f,nextPos);

END;

IF NOT nextPos THEN RETURN (FALSE) ; # End of this list
read (f, nameLen) ;
IF getString(nameLen) NEQ recName THENB

setPos(f,nextPos); CONTINUE END;
read(f,valLen); recVal := getString(valLen);
RETURN (TRUE) END;

Example 10.11-4. The Use of a Random-Access Data File (continued)

\

- 137 -

PROCEDURE writeRecord (STRING recName,recVal); * Write the new record at the current end-of-file * position.
BEGIN
LONG INTEGER eofPos,listPos;

setPos(f,eofPosPOS)i read(f,eofPos);
* Insert the record at the head of the hash list:
setPos(f,bucketPos(hash(recName»); * Overwrite the head of the list position:
read(f,listPos); relPos(f,- size(longIntegerCode»;
write(f,eofPos); setPos(f,eofPos);
write(f,listPos,length(recName»;
WHILE recName DO write(f,cRead(recName»;
write(f,length(recVal»;
WHILE recVal DO write(f,cRead(recVal»;
eofPos .= getPos(f); setPos(f,eofPosPos); write (f,eofPos) ;
END;

PROCEDURE createRecord (STRING s);
BEGIN
STRING recVal,t;

scan(s," " & tab,proceed!omit); * Remove leading blanks
IF lookup(s) THENB

errMsg("Record already exists:",s); RETURN END;
* Now read the record value from cmdFile:
write (logFile,

"Enter record value; end with blank line"- & eol);
recVal := "";
DOB read(cmdFile,t); IF NOT t THEN DONE;

write(recVal,t,eol); * Same as "recVal .& (t & eol)"
END;

writeRecord(s,recVal); * Now write it into the file
END;

Example 10.11-4. The Use of a Random-Access Data File (continued)

- 138-

1
J

PROCEDURE lookupRecord (STRING S)i

BEGIN
STRING recVali

scan{s," " & tab,proceed!omit)i # Remove leading blanks
IF NOT lookup(s,recVal) THEN errMsg("No such record:",s)
EL write(logFile,recVal)i
ENDi

PROCEDURE showRecords;
BEGIN
INTEGER i,nameLeni
LONG INTEGER nextPosi

FOR i := 0 UPTO numBuckets - 1 DOB
setPos(f,bucketPos(i»; read(f,nextPos);
setPos(f,nextPos)i # Pos of first record in list
DOB read(f,nextPos); IF NOT nextPos THEN DONE;

END;

read (f, nameLen) ;
write(logFile,getString(nameLen),eol)i
setPos(f,nextPos) END END;

Example 10.11-4. The Use of a Random-Access Data File (continued)

- 139-

BOOLEAN PROCEDURE processCommand (STRING s);
BEGIN
* Return false if s is the quit command, true otherwise.
* The commands are "Q" (quit), "C" (create a new record), * "s" (show names of all existing records), and "L" (look * up an existing record). "C" and "L" commands are
* followed by the record name.
s := cvu(s); * So we don't have to worry about case
CASE cRead(s) OFB

[-1] ; * Do nothing if blank line
['Q'] RETURN(FALSE);
['S'] showRecords;
['C'] createRecord(s);
['L'] 100kupRecord(s);
['?'] ['H'] write (logFile,

"Q
"s
tIC recName
"L recName
"7 or H

[] write (logFile,

to quit" & eol &

show names of all records" & eol &
create record recName" & eol &
look up record recName" & eol &
get this message" & eol);

"Invalid command (? for help)" & eol);
END;

RETURN (TRUE) ;
END;

INITIAL PROCEDURE;
BEGIN
STRING s;

DOB write (logFile, "Database file name: ");
read(cmdFile,s) END
UNTIL open(f,s,random!input!output!errorOK) OR

createNewDataBase(s); * Note use of short-circuit evaluation: * createNewDataBase is called only if open fails

setPos(f,numBucketsPos);
read(f,numBuckets); * Get the number of buckets

Example 10.11-4. The Use of a Random-Access Data File (continued)

- 140-

D08 write(logFile,"Command: "); read(cmdFile,s) END
UNTIL NOT processCornmand(s);

close(f) ;
END;

END "symTab"

Example 10.11-4. The Use of a Random-Access Data File (end)

- 141 -

10.12. PDF 110

By preceding a file name with "PDF" and the device module prefix character (defined as
$devModBrk, '>' on most systems), or by including the $pdfbit in the call to open, a file can
be opened for PDF, or "Portable Data Format", I/O. This format is used for interchange of data
among different processors. When a file is open for PDF I/O, the file positions are in terms of
character units instead of storage units. To allow a program to handle data files opened for
either normal I/O or PDF I/O, the procedure $ioSize should be used instead of size to position
within a data file.

$ioSize's procedure header looks like:

INTEGER PROCEDURE $ioSize (POINTER(file) fi INTEGER typ);

(Actually, $ioSize is a macro, not a procedure, but it acts as if it were a procedure declared with
the above header). $ioSize returns the number of storage or character units, as appropriate,
occupied by the data type with the type code typ in the file f, based on whether or not f is open
for PDF I/O.

Since the program of Example 10.11-4 uses size instead of $ioSize, it will not work if the
"PDF" device prefix is given in the database file name. To allow for this possibility, all
occurrences of "size" would have to be replaced in the module with appropriate calls to
$ioSize; for example, the body of the procedure bucketPos would be changed to:

RETURN(firstBucketPos +
cvli(hashCode * $ioSize(f,longlntegerCode»)i

10.13. Restrictions on Files

Some characteristics of files vary from system to system. For example, on some operating
systems it is not possible to determine the exact end position of a file, so that the system
procedure $gotValue should not be counted on to become false at exactly the last position to
which a program has written a file. You should read the system-specific MAINSAIL user's
guide for your system and the chapter on files in the "MAINSAIL Language Manual" for
further information.

-142 -

10.14. Exercises

Debugging tip for the following exercises: the MAINSAIL utilities TVIEW and DVIEW can
be used to examine the contents of text and data files, respectively. The MAINEDIT back end
DATMGR is also useful for examining a data file. This may help you figure out what's in your
symbol table files.

Exercise 10-1.

Modify the program of Example 10.11-4 to provide a command to delete a record.
Try to reuse the space occupied by the deleted record. You may have to change the
format of the information stored in the file in order to do this in an efficient manner.

Exercise 10-2.

Write a program that performs the same functions as that of Example 10.11-4, but
uses a random-access text file instead of a data file. If you use the null character code
in the file (0 on an ASCII or EBCDIC system), you must open the file with the
"keepNul" control bit; see the "MAINSAIL Language Manual".

- 143-

11. Records and Pointers

This chapter discusses the pointer data type, which is used to access records. Records are the
most common means of maintaining miscellaneous information in memory while a program is
running; such data structures as lists, trees, and arbitrary graphs are commonly built from
records.

The pointer data type is also used to access arrays (Chapter 12) and data sections (Chapter 15).
Records, arrays, and data sections are all subject to garbage collection and may be moved about
in memory during execution by MAINSAIL's memory management routines (but this is
usually invisible to a program).

11.1. Records, Classes, and Pointers

Until now, all information used by a program during its execution has had to be maintained
either in a file (which may continue to exist after the program completes) or in the outer or local
variables declared in the program. Data in a file are clumsier to access than data in named
variables (see Example 10.11-4). However, if a program is to deal with information of
unknown quantity and structure, it is not possible to create a named variable for every possible
datum that may be manipulated during the course of the program's execution.

Records provide a repository for data that can be accessed more easily than data in files,
although not so easily as data in named variables. A program may allocate as many records as
it needs during execution (within the constraints of the computer's memory size). Since
records are stored in the program's memory, they disappear at the end of a MAINSAIL
execution unless explicitly stored in a file (the Structure Blaster provides one convenient
technique for doing this; see the "MAINSAIL Structure Blaster User's Guide").

The pointer data type is used to access records. A pointer is so named because it "points" to a
record; Example 11.1-1 shows how a pointer p pointing to a record r is depicted graphically.

Every record may be thought of as containing zero or more variables, possibly of different data
types. Every record has a "class", or shape, telling which variables are present in the record
and in which order they occur. The variables are called "fields" of the record or of the record's
class. Each field is referred to by a name. The names of classes and of the fields they contain
are declared in "class declarations". For example, the class declared in Example 11.1-2 is
named "c" and has two integer fields named "inti" and "int2" and a string field named
"stringField". The semicolon preceding the closing parenthesis of a class declaration is
optional (such an optional semicolon is allowed in procedure parameter lists as well, although
no examples appear in this tutorial).

- 144-

P ----+
+----> +---------------+

I I
I r I
I I
+---------------+

Example 11.1-1. A Pointer p Pointing to a Record r

CLASS c (
INTEGER intl,int2;
STRING stringField; # This semicolon is optional

) ;

Example 11.1-2. A Sample Class Declaration

A record of the class c of Example 11.1-2 would be depicted diagrammatically as shown in
Example 11.1-3. Sometimes the data types or values of the fields are shown in the boxes in
addition to or instead of the field names ..

+-------------+
I intl

+-------------+
I int2

+-------------+
I stringField I
+-------------+

Example 11.1-3. A Record of Class c

Most pointers are "classified"; i.e., they are allowed to point to records of only one class. That
class is specified when the pointer is declared. Example 11.1-4 shows the declaration of a
pointer p declared to point to records of the class c of Example 11.1-2.

-145 -

POINTER(c) Pi

Example 11.1-4. A Pointer Declared to Be of Class c

At any given moment a pointer variable points either to a record (or a data section, as described
in Chapter 15) or to nothing at all; in the latter case the pointer is said to be (or to have the
value) "nullPointer". The keyword "NULLPOINTER" represents the value nullPointer;
performing the assignment "p := NULLPOINTER" causes a pointer variable p to have the
value nullPointer, i.e., to point to nothing. The value nullPointer is the pointer Zero.

Records may themselves contain fields that are pointers to other records. Example 11.1-5
shows some class and pointer declarations and a data structure built up with pointers and
records of the declared classes. "0" is used to depict a pointer that is nullPointer. The structure
of Example 11.1-5 contains records with pointers to each other and to themselves.

Note that there is no path in Example 11.1-5 from p or q to REC 6, i.e., there is no expression
of the form "p.n.f2.f3 ... " or "Q.n.f2.f3 ... " ("f' stands for "field") that points to REC 6. If there
is no path to REC 6 from some named variable, REC 6 is said to be "inaccessible". Such a
record is useless, because it can never be referred to from a program. The MAINSAIL garbage
collector eventually tracks down inaccessible records and reuses the space they occupy, so REC
6 is doomed.

Example 11.1-5 illustrates the exception to the rule that every identifier in MAINSAIL must be
declared before it is used. A class need not be declared before its name is used in other
declarations. The class declaration must appear, however, before any pointers of the class are
used to reference fields of records of the class. Example 11.1-5 also shows that a named
variable (e.g., the pointer p) may have the same name as the field of a class; furthermore, the
same field name may be used in different classes. The uses of such names are always
distinguishable by context.

CLASS cl (
STRING Si

) i

POINTER(c2) Pi # c2 need not have been declared at
this point

Example 11.1-5. Some Declarations and a Data Structure (continued)

- 146-

CLASS c2 (
POINTER(c1) p1;
POINTER(c2) p2;

) ;

POINTER(c2) p,q;
+--------------+
I

REC2 I REC 3
REC 1 +--> +-------------+ +--> +------+

P --> +------+ I I s = "Hello" I I p1 0 I

I p1 >-+--+-+ +-------------+ +------+
+------+ I I P >---------+--+ I p2 >-+--+
I p2 >-+--+ I +-------------+ I +------+
+------+ I I I

I +--------------+ +--------------+
+--------------+

REC 5 REC 6
REC 4 +--> +------+ +------+

+--> +------+ I p1 >-+--+ I p1 0 I
I p1 0 I +------+ +------+

+-+ +------+ I p2 0 I I p2 >-+--+
I p2 >-+----+ +------+ +------+

q -+ +------+

A field of a record is referred to by means of the pointer
to the record followed by a period (".") followed by the
field name. Therefore, the following statements are true
of the above diagram:

p.p1.s = "Hello", since p points to REC 1, and p.p1
points to REC 2, and the "s" field of REC 2 has the
value "Hello".

p.p2 = q, since both p.p2 and q point to REC 4; two
pointers are equal if and only if they point to the
same record.

Example 11.1-5. Some Declarations and a Data Structure (continued)

- 147-

q.p2.pl = p.pl, since q.p2 points to REC 5, so q.p2.pl
points to REC 2, which is also pointed to by p.pl.

p.pl.p = p.pl.p.p2, since p.pl.p points to REC 3, and
the p2 field of REC 3 points to REC 3.

Example 11.1-5. Some Declarations and a Data Structure (end)

- 148-

11.2. Allocation of Records

To create (or "allocate") a record, the system procedure "new" must be called. "new" is a
special procedure because it takes a parameter that is the name of a class (the ordinary user is
not able to declare a procedure with such a parameter). The structure of Example 11.1-5 could
have been built up by the statements of Example 11.2-1.

p := new(c2); * Allocate REC 1 and make p point to it
p.pl := new(cl); * Allocate REC 2; p.pl points to it
p.p2 := new(c2); * Allocate REC 4; p.p2 points to it
p.pl.s := "Hello"; * Field s of REC 2 gets value "Hello"
p.pl.p := new(c2); * Allocate REC 3; p.pl.p points to it
p.p2.pl := NULLPOINTER; * Zero pl field of REC 4
p.p2.p2 := new(c2); * Allocate REC 5; p.p2.p2 points to it
p.pl.p.pl := NULLPOINTERi * Zero pl field of REC 3
p.pl.p.p2 := p.pl.pi * p2 field of REC 3 points to REC 3
p.p2.p2.pl := p.pli * pl field of REC 5 points to REC 2
p.p2.p2.p2 := NULLPOINTER; * Zero p2 field of REC 5
q := new(c2); * Allocate REC 6, make q point to it
q.pl := NULLPOINTERi * pl field of REC 6 points nowhere
q.p2 := p.pl.p; * p2 field of REC 6 points to REC 3
q := p.p2; * Change q to point to REC 4; REC 6 now becomes * inaccessible, since no pointer points to it

Example 11.2-1. Building the Structure of Example 11.1-5

When "new" allocates a record, all of the record's fields are originally Zero. Thus, the
assignments with "NULLPOINTER" on the right-hand side in Example 11.2-1 are not really
necessary, although they make clearer what is going on.

Attempting to reference a field using a pointer that is Zero results in an error message from the
MAINSAIL runtime system.

11.3. Using Pointers to Maintain a List

The program of Example 11.3-1 maintains a list of records something like that of Example
1 0.11-4, although in Example 11.3-1 only one list is used; i.e., there are no hash buckets. The
user is allowed to enter a series of records, each with a name and a value, and to look up
records by name. Unlike the structure created in Example 10.11-4, the list of records

- 149-

disappears as soon as program execution completes, since the records are not preserved in a
file.

The program of Example 11.3-1 provides one command not provided by Example 10.11-4: a
command to delete a record. The space occupied by the record is reclaimed automatically by
the MAINSAIL runtime system, since the deleted records become inaccessible.

Class declarations may appear only among the outer declarations of a module; classes local to a
procedure are not allowed.

BEGIN "list"

CLASS ree (

) ;

STRING name, value;
POINTER(rec) next;

POINTER(rec) recList;

POINTER (rec) PROCEDURE lookup
(STRING name;
PRODUCES OPTIONAL POINTER(rec) previousRecord);

'* If no record found, return NULLPOINTER; if the record
'* found is not the first one on the list, set
'* previousReeord to point to the previous one, else
'* NULLPOINTER
BEGIN
POINTER (rec) p;

previousRecord := NULLPOINTER; p := reeList;
'* Note use of short-circuit evaluation: it would be an
'* error to refer to "p.name" if p were NULLPOINTER
WHILE P AND (p.name NEQ name) DOB

previousReeord .= p; p := p.next END;
RETURN (p) ;

END;

Example 11.3-1. Use of Pointers to Maintain a List of Records (continued)

- 150-

PROCEDURE showRecordsi
BEGIN
POINTER(rec) p;

p := recListi
WHILE p DOB write(logFile,p.name,eol); p .= p.next END;
ENDi

PROCEDURE createRecord (STRING S)i

Append the new record to the beginning of recList
BEGIN
STRING t;
POINTER(rec) p;

scan(s," " & tab,proceed!omit); # Remove leading blanks
IF lookup(s) THENB

errMsg("Record already exis~s:",S)i RETURN ENDi
Allocate the record:
p := new(rec)i p.name := Si

Now read the record value from cmdFile:
write (logFile,

"Enter record value; end with blank line" & eol);
DaB read(cmdFile,t); IF NOT t THEN DONE;

write(p.value~t,eol) END;
This is the standard way to add a new record to the
head of a list:
p.next := recList; recList := p;
END;

PROCEDURE lookupRecord (STRING s);
BEGIN
POINTER(rec) p;

scan(s," " & tab,proceed!omit); # Remove leading blanks
IF p := lookup(s) THEN write(logFile,p.value)
EL errMsg("No such record:",s);
END;

Example 11.3-1. Use of Pointers to Maintain a List of Records (continued)

- 151 -

PROCEDURE deleteRecord (STRING s);
BEGIN
POINTER (rec) p,priorToP;

scan(s," " & tab,proceed!omit); # Remove leading blanks
IF p := lookup (s,priorToP) THENB * Unlink p from the list

If priorToP is NULLPOINTER, it means p is the first
record on recList
IF priorToP THEN priorToP.next := p.next
EL recList := recList.next END

EL errMsg(nNo such record:'",s);
END;

Example 11.3-1. Use of Pointers to Maintain a List of Records (continued)

-152 -

BOOLEAN PROCEDURE processCommand (STRING s);
Return false if s is the quit command, true otherwise.
The commands are "Q" (quit), "C" (create a new record),
"s" (show names of all existing records), "L" (look
up an existing record), and "D" (delete a record).
"C", "D", and "L" commands are followed by the record
name.
BEGIN
s := cvu(s); # So we don't have to worry about case
CASE cRead(s) OFB

[-1] ; # Do nothing if blank line
['Q'] RETURN(FALSE);
['S'] showRecords;
['C'] createRecord(s);
['L'] 100kupRecord(s);
['D'] deleteRecord(s);
['?'] ['H'] write (logFile,

"Q to quit" & eol &
tIS show names of all records" & eol &
"C recName create record recName" & eol &-

"D recName delete record recName" & eol &
"L recName look up record recName" & eol &
"? or H get this message" & eol);

[] write (logFile,
"Invalid command (? for help)" & eol);

END;
RETURN (TRUE) ;
END;

INITIAL PROCEDURE;
BEGIN
STRING Si

DOB write (logFile, "Command: "); read(cmdFile,s) END
UNTIL NOT processCommand(s);

END;

END "list"

Example 11.3-1. Usc of Pointers to Maintain a List of Records (end)

- 153-

11.4. Assignment Compatibility, Prefix Classes, and Unclassified Pointers

The MAINSAIL compiler usually issues an error message if it finds a pointer of one class
assigned to a pointer of another class or passed as a parameter of another class. However, two
classes may share some common initial fields by means of a mechanism called a "prefix class".
If one class is a prefix class of another, then the two classes are considered "assignment
compatible"; i.e., pointers of one class may be assigned to or passed as pointers of the other.
Examples of prefix class declarations are deferred until Section 15.3; however, it is worth
noting here that the system procedure "close" (of which the parameter is declared as a
"POINTER(file)") accepts parameters declared as either "POINTER(textFile)" or
"POINTER(dataFile)" because the class "file" is a prefix class of both textFile and dataFile.
More information on prefix classes may be found in the "MAINSAIL Language Manual" and
in Section 15.3 of this tutorial.

An "unclassified" pointer is one declared without a parenthesized class name following the
keyword "POINTER". An unclassified pointer is assignment compatible with any other
pointer. An example appears in Section 15.7.

II.S. Using Pointers to Construct a Binary Tree

The program of Example 11.5-2 uses a data structure known as a binary tree to alphabetize a
series of strings. The strings are read in, one per line, from a file; as each is read, it is added to
the binary tree. The tree is maintained in such a way that if it is printed out in "infix order", the
result is an alphabetized list.

Each node in the tree consists of three fields: two pointers and a string. The "left" pointer
points to a subtree of strings alphabetically preceding the string field; the "right" field, to a
subtree of strings following the string field. See Example 11.5-1. Note that all the words on
the branch descending from the left of a given word alphabetically precede it; all those
descending from the right of a word follow it.

owl
/ \

cat zebra
/ \

ape fish
\

lemming

Example 11.5-1. A Binary Tree of Strings

- 154-

To maintain the tree in this alphabetical order, each new word must be added according to the
following algorithm:

1. Set the "current node" to be the root of the tree (e.g., the "owl" node in Example 11.5-
1).

2. If the current node is nullPointer, add the new word at the current node and stop.

3. If the new word alphabetically precedes the word at the current node, set the current
node to be the node down to the left; if it follows the current word, set the current
node to be the node down to the right. If the new word is the same as the word at the
current node, stop (Le., don't put it in the tree twice); otherwise, go back to step 2.

Printing the tree in infix order means printing the strings of the left subtree of each node (in
infix order), then the string at this node, then the strings of the right subtree (in infix order).
This is a recursive algorithm, and is implemented in Example 11.5-2 as a recursive procedure.
If you are unfamiliar with the notion of "infix order", you may be excused if you have to think
about this for a while to verify that it works.

Note that the tree constructed by this algorithm does not necessarily have the same shape if the
order of the input strings is altered; however, it always comes out in proper alphabetical order if
printed in infix order.

BEGIN "binTre"

* Use a binary tree to alphabetize the lines in a text * file.

CLASS bin

) ;

POINTER (bin) left, right;
STRING here;

POINTER (bin) root;

Example 11.5-2. Use of Pointers to Construct a Binary Tree (continued)

- 155-

PROCEDURE alphabetize (STRING s; MODIFIES POINTER (bin) p);
If P is nullPointer, create a node for it containing s.
If P is not nullPointer, add a node on the left subtree
if s precedes p.here, on the right subtree if it
follows. If it's the same as a node already there,
don't add it.
BEGIN
IF NOT P THENB * create the node

p :- new(bin)i p.here :- Si RETURN ENDi
CASE compare(s,p.here,upperCase) OFB

[-1] alphabetize(s,p.left);
[0] RETURN;
[1] alphabetize(s,p.right);
END;

END;

PROCEDURE infixPrint (POINTER (bin) p);
BEGIN
IF NOT P THEN RETURN;
infixPrint(p.left) ;
write(logFile,p.here,eol);
infixPrint(p.right) ;
END;

INITIAL PROCEDURE;
BEGIN
STRING s;
POINTER (textFile) f;

open(f,"Input file: ",input!prompt)i
DOB read(f,s); IF NOT $gotValue(f) THEN DONE;

IF s THEN alphabetize(s,root) END;
close(f) ;
infixPrint(root);
END;

END "binTre"

Example 11.5-2. Use of Pointers to Construct a Binary Tree (end)

- 156-

11.6. Exercises

Exercise 11-1.

Which records in Example 11.1-5 are accessible from p? Which from q? For each
record accessible from p, construct an expression beginning with p that points to the
record (e.g., Itp.p1.plt points to REC 3); do the same for q.

Exercise 11-2.

Write a program that sorts strings using a linear list rather than a binary tree. Which
algorithm would you expect to run faster?

- 157 -

12. Arrays; the System Procedure cmdMatch

This chapter describes the array, a random-access data structure. MAINSAIL arrays may have
one, two, or three dimensions. Like records, arrays are subject to garbage collection.

12.1. Lists and Arrays

The linked list constructed of records used in Chapter 11 is used to store a series of pieces of
information in memory. It is a satisfactory data structure when you want to find an item based
on some characteristic of the item, as in the program of Example 11.3-1, where a search is
based on the string "name" field of a record.

Items in a series of things are often accessed by number. To find the tenth item in a linked list,
you must start a search at the first item in the list and progress through the items one by one
until you reach the tenth. The MAINSAIL array data structure provides a more efficient (and
syntactically more convenient) means of accessing an item by number.

An array consists of a number of components (called "elements" or "array elements"), all of the
same data type. The elements may be of any MAINSAIL data type, but they may not
themselves be arrays (the array is not considered to be a data type). Some sample array
declarations appear in Example 12.1-1. The numbers in parentheses following the keyword
"ARRAY" are called "bounds"; the values preceding the keyword "TO" are lower bounds, and
those following are upper bounds.

INTEGER ARRAY(O TO 9) digitChars;
. # One integer for every digit

STRING ARRAY(l TO 100) strings; # 100 strings

CLASS xxx (

) ;

POINTER (xxx) next;
INTEGER value;

POINTER (xxx) ARRAY(l TO 20,-10 TO 10) yyy;
A two-dimensional array of 20 x 21 = 420 pointers

Example 12.1-1. Sample Array Declarations

- 158-

; Unlike most programming languages, MAINSAIL does not allocate arrays when they are
declared. Arrays are allocated by the system procedure "new" (a different form of "new" from
that described in Chapter 11). To allocate an array by means of "new" is called "to new" the
array (to allocate a record is also sometimes referred to as "to new" the record or the pointer
variable that points to it). The arrays of Example 12.1-1 are newed in Example 12.1-2. The
elements of an array are not accessible until after it has been newed; after the call to "new", all
the elements of the allocated array have the Zero value for their data type.

new(digitChars);
new(strings);
new (yyy) ;

Example 12.1-2. Newing Some Arrays

An array element is accessed by placing an integer (or two or three integers if the array is two­
or three-dimensional) in square brackets following the name of the array. The integer or
integers in brackets are called "subscripts", The array name and its bracketed subscript or
subscripts together constitute a "subscripted variable". Some sample uses of subscripted
variables using the arrays of Example 12.1-1 appear in Example 12.1-3.

digitChars[6] := '6'; * Element 6 of the array acquires * the value that is the character
* code for the digit "6"

INTEGER i; STRING Si
Look for the first null string in the array (note the
use of an Empty Statement as the iterated statement) :
FpR i := 1 UPTO 100 WHILE strings[i] DO;
i has the value 101 if no null string was found:
IF i > 100 THEN errMsg("No null string found")
EL strings[i] ,= Si # Replace the null string with s

INTEGER i,ji
A subscripted variable that is a pointer may be used
to access fields:
yyy[i,j] := yyy[j,yyy[i,j] ,value] ,next;

Example 12.1-3. Subscripted Variables

- 159-

An array variable is acwally a special sort of pointer variable. When the array is allocated, it
points at the data structure allocated by "new". When one array variable is assigned to another,
both array variables are then made to point to the same array; no copying of elements occurs.
If a change is made to an element of the array using one array variable, the changed value is
accessed when the element is examined using the other array variable; see Example 12.1-4.
Similarly, when an array is passed as an array parameter, no copying of elements occurs; only
the array pointer is actually passed.

An array variable with the array Zero value, nullArray (designated by the keyword
"NULLARRA Y"), points to no array.

As with records, the memory occupied by an array that has become inaccessible is recycled by
the MAINSAil.. runtime system.

INTEGER ARRAY(l TO 3) numbers,countersi

new (numbers) ;
;/; numbers now points to an allocated array. "new" sets
;/; all the elements of the allocated array to have the
;/; Zero value for their data type. counters points to
;/; no array; it is an outer variable and so initially
;/; has the value nullArray:
;/; numbers ----> +----------+ counters 0

o I
+----------+

o I
+--------~-+

o I
+----------+

Example 12.1-4. Array Assignment (continued)

- 160-

n umbe r s [2] : = -1 7 ;
* numbers ----> +----------+
* I 0 I * +----------+ * -17 I * +----------+
* 0 I * +----------+

counters := numbers;
* counters -+

* * numbers --+-> +----------+
* I 0 I

* * #

+----------+
-17 I

+----------+
o I

+----------+

counters 0

counters and numbers now point to the same array.

counters [3] :- 6;
counters -+

numbers --+-> +----------+
0 I

+----------+
-17 I

+--.--------+
6 I

+-------!--+

Note that "numbers(3]" now has the value 6 as well.

Example 12.1-4. Array Assignment (continued)

- 161 -

new(numbers)i * Make numbers point at a new, separate
* array; counters continues to point at * the original array:

counters -> +----------+
* #

* * #

*

o I
+----------+
I -17 I
+----------+

6 I
+----------+

numbers --> +----------+
o I

+----------+
I 0 I
+----------+

o I
+----------+

* "cQunters[3]" still has the value 6, but "numbers[3]" * now has the value O.

Example 12.1-4. Array Assignment (end)

- 162-

12.2. Sample Program with Arrays and Pointers

In Example 12.2-1, the program of Example 11.3-1 is adapted to use a hash table (see Section
10.11 for a discussion of hash tables). The hash table is maintained as an array of pointers.
The items are records of the class "rec", and their keys are their "name" fields; the hash
function is implemented by the procedure "hash tI •

BEGIN "pList"

DEFINE numBuckets 131; * Number of hash buckets

CLASS rec (

) ;

STRING name,value;
POINTER (rec) next;

POINTER (rec) ARRAY(O TO numBuckets - 1) hashTable;

INTEGER PROCEDURE hash (STRING s);
Returns a value in the range 0 to numBuckets - 1
BEGIN
INTEGER h,i,ji
i := (h := length(s» MIN 4; j := 1;
WHILE (i .- 1) GEQ 0 DO h .+ cRead(s) * (j .+ 2);
RETURN«h MAX 0) MOD numBuckets) END;

POINTER(rec) PROCEDURE lookup
(STRING name;
PRODUCES OPTIONAL POINTER(rec) previousRecord);

If no record found, return NULLPOINTERi if the record
found is not the first one on the list, set
previousRecord to point to the previous one, else
NULLPOINTER
BEGIN
POINTER (rec) p;

Example 12.2-1. Use of an Array as a Hash Table (continued)

- 163 -

previousRecord := NULLPOINTER; p := hashTable[hash(name)]i
Note use of short-circuit evaluation: it would be an
error to refer to "p.name" if p were NULLPOINTER
WHILE P AND (p.name NEQ name) DOB

previousRecord .= p; p := p.next END;
RETURN (p) ;
END;

PROCEDURE showRecordsi
BEGIN
INTEGER ii
POINTER (rec) Pi

FOR i := 0 UPTO numBuckets - 1 DOB
P := hashTable[i]i
WHILE p DOB

write(logFile,p.name,eol); p := p.next END END;
ENDi

PROCEDURE createRecord (STRING S)i * Append the new record to the beginning of its hash list
BEGIN
INTEGER i;
STRING t;
POINTER (rec) Pi

Example 12.2-1. Use of an Array as a Hash Table (continued)

-164 -

I scan(s," II & tab,proceed!omit); =#: Remove leading blanks
IF lookup(s) THENB

errMsg("Record already exists:",s); RETURN END;
=#: Allocate the record:
p := new(rec); p.name := s;
=#: Now read the record value from cmdFile:
write (logFile,

"Enter record value; end with blank line" & eol);
DOB read(cmdFile,t); IF NOT t THEN DONE;

write(p.value,t,eol) END;
=#: This is the standard way to add a new record to the
=#: head of a list:
p.next := hashTable[i := hashes)]; hashTable[i] := p;
END;

PROCEDURE 100kupRecord (STRING s);
BEGIN
POINTER (rec) Pi

scan(s," II & tab,proceed!omit); =#: Remove leading blanks
IF p := lookup(s) THEN write(logFile,p.value)
EL errMsg ("No such record: ", s) ;
END;

PROCEDURE deleteRecord (STRING s);
BEGIN
INTEGER i;
POINTER (rec) p,priorToP;

scan(s," " & tab,proceed!omit); =#: Remove leading blanks
IF p := lookup(s,priorToP) THENB =#: Unlink p from the list

=#: If priorToP is NULLPOINTER, it means p is the first
=#: record on its list
IF priorToP THEN priorToP.next := p.next
EL hashTable[i := hashes)] := hashTable[i] .next END

EL errMsg("No such record:",s);
END;

Example 12.2-1. Use of an Array as a Hash Table (continued)

- 165-

BOOLEAN PROCEDURE processCommand (STRING s);
* Return false if s is the quit command, true otherwise. * The commands are "Q" (quit), "C" (create a new record),
* "s" (show names of all existing records), "L" (look
* up an existing record), and "0" (delete a record). * "C", "D", and "L" commands are followed by the record

* name.
BEGIN
s := cvu(s); # So we don't have to worry about case
CASE cRead(s) OFB

[-1] ; # Do nothing if blank line
['Q'] RETURN(FALSE);
['S'] showRecords;
['C'] createRecord(s);
['L'] 100kupRecord(s);
['0'] deleteRecord(s);
['?'] ['H'] write (logFile,

"Q
"S
"C recName
"0 recName
"L recName
If? or H

[] write (logFile,

to quit" & eol &
show names of all records" & eol &
create record recName" & eol &
delete record recName" & eol &
look up record recName" & eol &
get this message" & eol);

"Invalid command (? for help)" & eol);
END;

RE TURN (TRUE) ;
END;

INITIAL PROCEDURE;
BEGIN
STRING s;

new(hashTable); # Allocate the array

DOB write (logFile, "Command: n); read(cmdFile,s) END
UNTIL NOT processCommand(s);

END;

END "pList n

Example 12.2-1. Use of an Array as a Hash Table (end)

- 166-

12.3. The Init Statement

The Init Statement may be used to initialize an array that has already been allocated. It is often
syntactically more convenient to use an Init Statement than to assign a value to each array
element with an Assignment Statement. There is usually no great difference in execution speed
between an Init Statement and multiple Assignment Statements.

The Init Statement consists of the keyword It INIT It , the name of the array being initialized, and
a series of constant values in parentheses. The values are assigned to the array elements, one
value per element, starting with the lowest subscript, until either the Init Statement list runs out
(in which case the remaining array elements are unaltered) or the highest array subscript is
reached (in which case an error message is issued). In the most common case, there are exactly
as many Init Statement constants as elements in the array.

Init Statement constants may be accompanied by a Itrepetitionlt, in which case more than one
array element receives the same value from the list. Consult the It MAINS AIL Language
Manual" for the rules governing repetitions and the use of Init Statements for two- and three­
dimensional arrays.

Example 12.3-1 shows an Init Statement and its equivalent Assignment Statements.

If an array a is declared as:

REAL ARRAY(-3 TO 3) a;

then the Init Statement:

INIT a (6.2,2.8E-10,-16.4,0.0,3.9,98.6,-11.0)

is equivalent to:

a[-3] .= 6.2;
a[-2] := 2.8E-10;
a[-1] := -16.4;
a [0] := 0.0;
a [1] := 3.9;
a[2] .= 98.6;
a[3] := -11.0

Example 12.3-1. An Init Statement and Equivalent Assignment Statements

- 167-

12.4. The System Procedure cmdMatch

The system procedure cmdMatch provides a facility that assists in the interpretation of
commands. It attempts to match the first part of a given string or a string read from 10gFile
with a string from an array of strings; if it finds a match in the array, it returns the index of the
matching array element. The declaration of cmdMatch is shown in Figure 12.4-1. The use of
"*" as an array bound indicates that anyone-dimensional string array may be passed for the
"commands" parameter; variable-bounded arrays are discussed in Section 12.5.

INTEGER PROCEDURE cmdMatch (STRING ARRAY(*) commands;
OPTIONAL STRING promptString;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL STRING s)

Figure 12.4-1. Declaration of cmdMatch

By default (Le., if ctrlBits is Zero), cmdMatch writes promptStting to 10gFile, and reads the
string s from cmdFile. If the string s is an unambiguous abbreviation for one of the elements of
the commands array, then the index of that element is returned. Otherwise, cmdMatch writes
an error message and reprompts. If the string read from cmdFile begins with "?", the list of
commands in the commands array is written to 10gFile, and cmdMatch reprompts.

Predefined bits that may be set in ctrlBits include errorOK (don't reprompt if no match; instead,
return an invalid index); noResponse (don't write to 10gFile or read from cmdFile; instead, use
promptStting as the match string); and useKeyWord (useful if a command line may consist of
several elements separated by blanks or tabs; it leaves the part after the first word parsed in the
string s). See the "MAINSAIL Language Manual" for details.

Example 12.4-2 shows how the procedure processCommands and the initial procedure of
Example 12.2-1 might be rewritten using cmdMatch.

- 168-

BOOLEAN PROCEDURE processCommand;
if: Return false if the "QUIT" command is given.
BEGIN
STRING s;
OWN STRING ARRAY(l TO 5) cmdsi if: Own array sticks around * from procedure invocation * to procedure invocation

IF NOT cmds THENB * Allocate only if not yet allocated
new(cmds); INIT cmds (

"QUIT quit",
"SHOW show the names of all records",
"CREATE recName
"DELETE recName
"LOOKUP recName

END;

create record named recName",
delete record named recName",
show the value of record recName");

CASE cmdMatch(cmds,"Command: ",useKeyWord,s) OFB
[1] RETURN(FALSE)i
[2] showRecordsi
[3] createRecord(cvu(s»;
[4] lookupRecord(cvu(S»i
[5] deleteRecord(cvu(S»i
END;

RETURN (TRUE) i

END;

INITIAL PROCEDURE;
BEGIN

new(hashTable); if: Allocate the array

DO UNTIL NOT processCommand; if: Note the use of an Empty

END;

if: Statement as the iterated * statement

Example 12.4-2. The Use of cmdMatch

- 169-

12-.5. Variable-Bounded Arrays

An asterisk ("*") may replace the lower bound or upper bound in an array declaration. It
signifies that the bound is not known at compiletime, and may be set or changed at runtime. If
both the lower and upper bound of a bound pair are unknown at compiletime, the entire bound
pair may be replaced by a single asterisk; i.e., "*" may replace "* TO *" ("*" is used this way in
Figure 12.4-1).

When a variable-bounded array is allocated with "new", the bounds to be used must be
specified. The bounds specified to "new" appear in the order: lower bound of first dimension,
upper bound of first dimension, lower bound of second dimension (specified only if the array
has at least two dimensions), upper bound of second dimension (only if two- or three­
dimensional), lower bound of third dimension (if three-dimensional), upper bound of third
dimension (if three-dimensional). If the array declaration contains a mixture of constant and
"*" bounds, the constant bounds must be specified to "new" as they appear in the array
declaration. See Example 12.5-1.

The upper bounds of the three dimensions of an array may be referred to with the array name
followed by ".ubI", ".ub2", and ".ub3"; the lower bounds with the array name followed by
II .lb 1", It .lb2" , and ".lb3". This is useful when the array bounds are not otherwise available.
Examples appear in Example 12.6-1.

- 170-

I

~

r

An array declared as:

INTEGER ARRAY(l TO *) ary

may be newed with:

new(ary,l,lO)

to give it ten elements. The bound parameter to "new"
need not be a constant if it corresponds to a "*" in the
declaration; if i were an integer variable:

new(ary,l,i)

would also be allowed. However, upper bounds must be
greater than lower bounds; otherwise, a runtime error
message is issued.

An array declared as:

REAL ARRAY(*,* TO 20) ary2

may be allocated with:

new(ary2,-4,4,0,20)

which would allocate an array of the same size and shape
as if ary2 had been declared as:

REAL ARRAY(-4 TO 4,0 TO 20) ary2

and:

new(ary2)

had been performed.

Example 12.5-1. Allocation of a Variable-Bounded Array

- 171 -

12.6. Multidimensional Arrays

Example 12.6-1 uses variable-bounded two-dimensional arrays to perform matrix
multiplication. The sizes of the matrices are read from an input file, so the array bounds cannot
be declared as constants within the program.

The rule for matrix multiplication is that two matrices, the first one m rows by n columns, the
second n rows by p columns, have as a product an m-row by p-column matrix. The product
element in row i at column j is the sum of the products of the elements of the ith row of the first
matrix and the corresponding elements of the jth column of the second matrix.

12.7. newUpperBound

The system procedure newUpperBound may be used to change the upper bound (increasing it
or decreasing it) of a one-dimensional array. Its declaration is shown i!l Figure 12.7-1. The
upper bound of the array a is changed to n; if the upper bound is increased, the new elements at
the end are given an initial value of Zero. A use of newUpperBound is shown in Example
16.4-1.

PROCEDURE newUpperBound (MODIFIES ARRAY(*) ai INTEGER n}i

Figure 12.7-1. Declaration of new Upper Bound

12.8. Long Arrays

Arrays may have long integer as well as integer subscriptsi such arrays are called "long arrays".
When array indices are large (Le .• when an array subscript calculation might produce an
intermediate result with a magnitude greater than 32767). a long array may be required. The
"MAINSAIL Language Manual" describes long array syntax and the circumstances under
which long arrays must be used instead of short arrays.

- 172-

BEGIN "matMul"

~ # Multiply two matrices with long real elements.

LONG REAL ARRAY(l TO *,1 TO *) a,b,prod;

PROCEDURE readMatrix
(PRODUCES LONG REAL ARRAY(l TO *,1 TO *) ary);

BEGIN
INTEGER rows,cols,i,j;
STRING s;

write (logFile, "Number of rows: It); read(cmdFile,s);
rows := cvi(s);
write(logFile,"Number of colums: "); read(cmdFile,s);
cols := cvi(s);
new(ary,l,rows,l,cols);
The elements are to be entered one row per line,
separated from each other on the line by spaces
FOR i := 1 UPTO rows DOB

END;

write(logFile,"Row #",i,": It); read(cmdFile,s);
FOR j := 1 UPTO cols DO read(s,ary[i,j]) END;

PROCEDURE printMatrix
(LONG REAL ARRAY(l TO *,1 TO *) ary);

BEGIN
INTEGER i,j;

FOR i := 1 UPTO ary.ubl DOB
FOR j := 1 UPTO ary.ub2 DO

Make each element occupy seven characters:
write(logFile,cvs(ary[i,j],fixed!'7)," n);

write (logFile,eol) END;
write(logFile~eol);

END;

Example 12.6-1. Matrix Multiplication Using Variable-Bounded Two-Dimensional Arrays
(continued)

- 173 -

PROCEDURE mUltiply
(LONG REAL ARRAY(l TO *,1 TO *) al,a2;
PRODUCES LONG REAL ARRAY(l TO *,1 TO *) result);

BEGIN
INTEGER m,n,p,i,j,k;
LONG REAL sum;

m := al.ubl; n := al.ub2; p := a2.ub2;
new(result,l,m,l,p); # m x p result
FOR i := 1 UPTO m DO FOR j := 1 UPTO P DOB

sum := O.OL;
FOR k := 1 UPTO n DO sum .+ (al[i,k] * a2[k,j]);
result[i,j] := sum END;

END;

INITIAL PROCEDURE;
BEGIN
write (logFile, "First matrix:" & eol);
readMatrix(a);
write (logFile, "Second matrix:" & eol);
readMatrix(b);
IF a.ub2 NEQ b.ubl THENB

Arrays cannot be multiplied unless they are of the
proper shape
errMsg("a.ub2 NEQ b.ubl"); RETURN END;

write (logFile, "First multiplicand matrix:" & eol);
printMatrix(a) ;
write (logFile, "Second multiplicand matrix:" & eol);
printMatrix (b) ;
multiply(a,b,prod) ;
write (logFile, "Product matrix:" & eol);
printMatrix(prod) ;
END;

END "matMul"

Example 12.6-1. Matrix Multiplication Using Variable-Bounded Two-Dimensional Arrays
(end)

- 174-

12.9. Exercises

Exercise 12·1.

Write a program that counts the number of occurrences of each character in an input
file. Example 10.9-2 groups characters into broad categories; in your program, give a
count for each character in the character set (unless no instances of the character were
found in the file, in which case don't mention the character in your output).
Character codes range from 0 through the predefined value $maxChar.

Exercise 12-2.

Write a program that solves mazes. The input file consists of lines of blanks and X's,
as shown in Example 12.9-1, with one "S" (start position) and one "E" (ending
position). A blank line terminates the maze input file. You may assume all lines are
the same length, but the number of lines and the length of the lines must be
determined by actually reading the file. You may also assume the input file contains
no tab characters. You should try to find a path from "S·· to uE" that passes only
through blank spaces (the X's represent walls). If no such path exists, YOll should
report so; otherwise, you should print the maze with the path marked by fl."
characters (if there is more than one path, you need not find all of them). The output
should look something like Example 12.9-2 (of course, other paths are possible for
the input given). The path must go horizontally or vertically only; i.e., you may not
squeeze diagonally between two X's.

XXXXXXXXXXXXXXXXXXXXXXXXXXX
S X X X X
XXXXXX XXXXX X XXXX XXXXX X
X X X E X X
X XXXX X XXX X X XXXXX X
X X X X X X X X X
X XXXXXX X XX XXXXX XXX X
X X X X X
XXXXXXXXXXXXXXXXXXXXXXXXXXX

Example 12.9-1. A Sample Maze Input File

- 175 -

XXXXXXXXXXXXXXXXXXXXXXXXXXX
s...... x x x x
XXXXXX.xxxxx x xxxx XXXXX x
x .X X E .. X X
x XXXX ... X xxx .X x XXXXX x
x X.X x x x x x x
x XXXXXX.X ... XX.XXXXX xxx x
x X ... X x x
XXXXXXXXXXXXXXXXXXXXXXXXXXX

Example 12.9-2. Sample Output from the Maze Solver Program

-176 -

13. Macros; Conditional Compilation; Comparison Chains

This chapter covers several important operations that may be performed by the MAINSAIL
compiler on its input source text at compiletime. Macros provide a very general mechanism for
textual substitution within programs. Conditional compilation allows selected pieces of
program text to be ignored by the compiler. Comparison chains are a syntactic convenience for
simplifying some expressions that contain comparison operators.

13.1. Macro Constants

A form of macro called a "macro constant" was introduced in Section 3.2. The form used there
was:

DEFINE <identifier> = <constant value>;

This definition contains a single "macro equate", which associates the value of the macro
constant with the identifier. The constant value can be a single constant of the appropriate data
type, or it may be an expression that can be evaluated at compiletime. Many operators and
"simple" procedures may be evaluated at compiletime, provided that their operands or
parameters are also evaluated at compiletime; such operators and procedures include "+", "-",
"*", and "DIV" (for integers and long integers), many conversion procedures, "cvl" and "cvu"
for strings, "first", "last", and a number of olhers. No operator or procedure with real or long
real operands, parameters, or result value is evaluated at compiletime. The rules determining
exactly which operations may be evaluated at compiletime are described in the "MAINSAIL
Language Manual".

A macro definition may contain a series of macro equates separated by ·commas. The whole
series, from the initial keyword "DEFINE" to the terminating semicolon, is referred to as a
single "macro definition", even though more than one macro may be defined; the part that
defines a single macro identifier is called a "macro equate". The macro equates in a single
macro definition may be of different data types, as shown in Example 13.1-1. The part of a
macro equate to the right of the equals sign is called the "macro body"; it is what the macro
identifier is subsequently used to represent

Using macro constants in a program instead of hardwiring the values they represent is good
programming practice. An identifier like "numberOtLetters" makes clear to a human reader
what "26" might fail to communicate. Also, if the value of a constant in a program needs to be
changed, only the definition need be changed if the constant is represented by a macro
identifier. Otherwise, for example, if an integer constant appears throughout a program in

- 177-

This macro definition includes four equates, and defines
the constants a, b, c, s, and SSe

DEFINE
a 1, # An integer macro constant
b a, # Another
c = a + b, # An expression (integer addition)

evaluated at compiletime
s = "Hi there!" & eol, # & is also evaluated at

compiletime
ss = cvu(s); # So is cvu

Example 13.1-1. A Macro Definition Containing Several Macro Equates

numeric form, then every instance of that number must be changed whenever the constant is to
be changed.

13.2. Bracketed Text (Textual Substitution)

A macro constant used in an expression may be thought of as being "replaced" with a constant
representing its value. For example. if a macro x is defined as:

DEFINE x = 2 + 2;

then the expression "5 * x" has the same value as "5 * 4"; i.e., the expression is evaluated as if
the string "4" replaced the string Itx" in the program text.

Macros may be defined to contain almost any text by means of the use of "bracketed text" .
Although macro constants are constrained to represent a valid constant value of a MAINSAIL
data type, bracketed text macro bodies may represent almost any string of characters. The
macro body of a bracketed text macro consists of the text to be represented by the macro
identifier enclosed in square brackets ("[It and "]"). See Example 13.2-1. Note that bracketed
text macro equates may be intermixed with macro constant equates in the same macro
definition. Section 5.18 of part II of the "MAINSAIL Tutorial" describes how to include
brackets in bracketed text.

.
Macros may contain occurrences of other macro identifiers (the occurrence of a macro
identifier that has already been defined is called a "macro call"). See Example 13.2-2. Note
that the order of definition of the macros in Example 13.2-2 does not matter; i.e., no error
occurs when the body of macro 1 is seen in the macro definition, even though it contains the
identifiers "macro2" and "macro3", which have not yet been defined. No processing is done on

- 178-

If abc, def, ghi, and jkl are defined as shown:

DEFINE
abc [i = 4],
def [IF] ,
ghi [THEN write(logFile,jkl)],
jkl "i is 4." & eol;

then the text:

def abc ghi

is "replaced with" (or "expands to") :

IF i = 4 THEN write(logFile,jkl)

which, since jkl has the value "i is 4." & eol, is
equivalent to:

IF i = 4 THEN write(logFile,"i is 4.~ & eol)

Example 13.2-1. Bracketed Text Macros

the text of a bracketed text macro at the point of definition; all processing is performed at the
point of the macro call.

- 179-

If macrol, macro2, macro3, and macro4 are defined as:

DEFINE
macrol
macro2
macro3
macro4

then the text:

macrol;

expands to:

[macro2 macro3],
[IF macro4 THEN],
[write(logFile,"Oops")],
[errorsSeen] ;

macro2 macro3;

which in turn e~pands to:

IF macro4 THEN write(logFile,"Oops");

which in its turn expands to:

IF errorsSeen THEN write(logFile,"Oops");

which cannot be further expanded, since it contains no
macro calls.

Example 13.2-2. Macro Bodies Containing Macro Calls

- 180-

13.3. Macros with Parameters

A bracketed text macro may have parameters, something like a procedure. The parameters to a
macro, however, do not need to have data types associated with them, since the substitution of
a macro argument for its corresponding parameter is a textual substitution performed at
compiletime, rather than the assignment of a value performed at runtime. Example 13.3-1
shows the definition of a macro with parameters along with the way the macro expands when it
is called.

If maxCount and isTooBig are defined as:

DEFINE
maxCount
isTooBig(x)

then:

100,
[(x> maxCount)];

IF isTooBig(i1) THEN errMsg("i1 too big")

expands to:

IF (i1 > maxCount) THEN errMsg("i1 too big")

which, since maxCount has the value 100, is
equivalent to:

IF (i1 > 100) THEN errMsg("i1 too big")

"i1" is substituted in the expansion of the macro
isTooBig wherever "x" appears in the macro body
definition.

Example 13.3-1. The Use of Macro Parameters

The keyword "REDEFINE" may be used to introduce a macro definition in which the
identifiers defined mayor may not already have been defined as macros ("DEFINE" gives an
error if you try to define a macro that has already been defined). If the macro identifiers have
already been defined, the new value replaces the old. If the macros have not already been
defined, "REDEFINE" acts just like "DEFINE".

- 181 -

Macro bodies may contain macro definitions. This fact may be used in conjunction with
"REDEFINE" to write a macro that defines a series of values, as shown in Example 13.3-2.
The technique of Example 13.3-2 may be used to get something like the effect of enumerated
types in Pascal and related languages, since MAINSAIL does not provide enumerated types
directly.

The following text:

DEFINE
startVal = 1,
color (xxx) =

[DEFINE xxx = startVal;
REDEFINE startVal = startVal + 1];

color (red) i

color(yellow)i
color(orange)i
color (green) i

color(blue)i
color(violet)i

defines the identifiers "red", "yellow", "orange",
"green", "blue", and "violet" to have the values
1, 2, 3, 4, 5, and 6, respectively. For example:

color(red)i

expands to:

DEFINE red = startVali
REDEFINE startVal = startVal + Ii

which is equivalent to:

DEFINE red = 1;
REDEFINE startVal 1 + 1;

This makes the value of startVal equal to 2, so that
when "color(yellow)" is encountered, the identifier
"yellow" is defined as 2, and "startVal" redefined as
3, etc.

Example 13.3-2. A Macro to Define a Series of Values

- 182-

Bracketed text macros in MAINSAIL may be used in place of short procedures (although inline
procedures are usually better for this purpose; see Section 1.9 of part II of the "MAINSAIL
Tutorial"). For example, the identifier "islnRange" of Example 13.3-3 may be used the same
way whether it is declared as a procedure or defined as a macro (except that the macro form
evaluates i twice. This is not important if i is a simple variable, but may be if, e.g., i is a
procedure call). A macro call usually takes up more space in an object module than a
procedure call, but is often faster at execution time.

For an integer i, "isInRange(i)" returns the same value
whether "isInRange" is declared as:

PROCEDURE isInRange (INTEGER i);
RETURN(i > 50 AND i < 100);

or defined as:

DEFINE isInRange(i) (i > 50 AND i < 100)];

Example 13.3-3. A Macro Used Instead of a Procedure

13.4. Comparison Chains

Comparisons chains may be used to make a series of comparisons more readable. For example,
in Example 13.3-3, "i > 50 AND i < 100" could be replaced with "50 < i < 100". In general, a
chain like "el op1 e2 op2 e3 op3 e4 ... " may replace "el op1 e2 AND e2 op2 e3 AND e3 op3
e4 ... ", where the ei represent expressions and opi comparison operators or bits test operators
("TST", "TSTA", "NTST", and "NTST A"). See the "MAINSAIL Language Manual" for more
details.

- 183-

13.5. Conditional Compilation

Conditional compilation may be used to skip over or select portions of program text based on
conditions that can be evaluated at compiletime. Text is selected with the "IFC" compiler
directive, the syntax for which is:

IFC <compiletime condition> THENC
<text to select if condition is true> ENDC

or:

IFC <compiletime condition> THENC
<text to select if condition is true>

ELSEC <text to select if condition is false> ENDC

or:

IFC <conditionl> THENC
<text to select if conditionl is true>

$EFC <condition2> THENC
<text to select if conditionl is false and condition2 true>

ELSEC <text to select if conditionl and condition2 are false>
ENDC

Any number of "SEFC" parts may appear, analogously to "EF" in an If Statement

These constructs are analagous to the runtime statement selectors:

IF <runtime condition> THENB
<code to execute if condition is true> END

and:

IF <runtime condition> THENB
<code to execute if condition is true>

EB <code to execute if condition is false> END

and:

IF <conditionl> THENB
<code to execute if conditionl is true>

EF <condition2> THENB
<code to execute if conditionl is false and condition2 true>

EB <code to execute if conditionl and condition2 are false> END

- 184 -

The text selected by an "IFC" need not be statements; declarations, expression or statement
fragments, macro definitions, or entire procedures are often surrounded by "IFC" and "ENDC".
Inside text that is not selected, IFC's, $EFC's, ELSEC's, and ENDC's must be properly

, matched.

13.6. Interactive Macro Equates and the "MESSAGE" Compiler
Directive

The MAINSAIL compiler can be made to prompt for a macro body during compilation. If,
instead of an equals sign and a macro body, a macro equate contains just a string constant
following the identifier to be defined, the string constant is written to 10gFile and the line read
from cmdFile is used as the macro body.

The "MESSAGE" compiler directive writes a message to logFile during a compilation. Its
format is:

MESSAGE <string constant expression>;

A compilation of the file of Example 13.6-1 produces a dialogue like that shown in Example
13.6-2. Note the use of the "NOGENCODE" compiler subcommand to suppress generation of
an object module. Compiler subcommands are described in the "MAINSAIL Compiler User's
Guide".

BEGIN "nichts"

DEFINE i "The integer i should be: ";

MESSAGE "i is " & cvs(i);

IFC i > 100 THENC
MESSAGE "i is more than a hundred";
ELSEC
MESSAGE "i is not too big";
ENDC

END "nichts"

Example 13.6-1. Interactive Macro Equates and "MESSAGE"

The example of Example 13.6-3 is a rather clever (and not very common) use of recursive
macros. It is a program that adds pairs of numbers at compiletime rather than at runtime.

- 185 -

*compil<eol>

MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (7 for help): nichts.msl,<eol>
> nogencode<eol>
> <eol>
Opening intmod for $SYS ...

nichts.msl 1
The integer i should be: 2<eol>

i is 2

i is not tOQ big

Objmod for NICHTS not generated
Intmod for NICHTS not stored

compile (7 for help): nichts.msl,<eol>
> nogencode<eol>
>~

Opening intmod for $SYS ...

nichts.msl 1
The integer i should be: 351<eol>

i is 351

i is more than a hundred

Objmod for NICHTS not generated
Intmod for NICHTS not stored

compile (7 for help): <eol>

*

Example 13.6-2. Compilation of the File of Example 13.6-1

Recursive macros must be used with caution, since an endless recursion may cause the
MAINSAIL compiler to go into an infinite loop trying to expand the macro.

- 186-

BEGIN "nihil"

DEFINE recursiveAdd
[REDEFINE il "First integer (0 to stop): n;
IFC il THENC
REDEFINE i2 "Second integer: ";
MESSAGE "Their sum is " & cvs(il + i2);
recursiveAdd
ENDC];

recursiveAdd * Call the recursive macro

END "nihil"

Example 13.6-3. Use of Recursive Macros and Interactive Definition

The program fragment of Example 13.6-4 uses interactive definition to determine whether a
macro called "assert" should perform a test or do nothing. Presumably the test should be
performed while the program is under development but can be removed once the program has
been debugged. This can be done by answering "FALSE" instead of "TRUE" to the
compiletime question; there is no need to edit the source file. Note how the macro parameter is
substituted even within string quotes in the macro body.

Under some conditions, a macro argument with an unusual format may need to be enclosed in
square brackets. See the "MAINSAIL Language Manual" for details.

- 187 -

DEFINE doDebugging
"Enable assertion testing (TRUE or FALSE): n;

IFC doDebugging THENC
DEFINE assert(condition)

[BEGIN IF NOT condition THEN
errMsg("Assertion failed: condition") END];

ELSEC * No code is generated for the empty macro body:
DEFINE assert(condition) = [];
ENDC

POINTER (someClass) p;

assert(p NEQ NULLPOINTER); * If P is NULLPOINTER and doDebugging was defined * as TRUE, then an error message will be generated * that says "Assertion failed: p NEQ NULLPOINTER".

Example 13.6-4. Use ~f Interactive Definition to Determine Whether Debugging Tests Are to
Be Performed

- 188-

13.7. Compiletime Equivalents of Iterative and Case Statements

Just as "IFC" provides a compiletime analogue of the runtime If Statement, so "$DOC" and
"$CASEC" provide compiletime analogues of the runtime Iterative and Case Statements. For
example, the repeated addition of Example 13.6-3 could be performed in an iterative instead of
recursive fashion as shown in Example 13.7-1. As with their runtime equivalents, compiletime
iteration is often easier to understand than recursion.

The "MAINSAIL Language Manual" contains complete details on compiletime constructs.

BEGIN "nihi12"

$DOC REDEFINE il "First integer (0 to stop): ";
IFC NOT il THENC $DONEC ENDC
REDEFINE i2 "Second integer: n;
MESSAGE "Their sum is " & cvs(il + i2); ENDC

END "nihi12n

Example 13.7-1. Use of Compile time Iteration

13.8. Concatenation of Macros

Pieces of bracketed text may be concatenated together like strings. This allows macros'to be
written that create new identifiers; see Example 13.8-1. This is a capability that is not used
very often in simple applications.

Bracketed text in macro definitions can be concatenated with string constants to produce even
more complicated effects; see the explanation in the ttMAINSAIL Language Manual" and
Example 13.8-2. Macro parameters are substituted even within strings, as shown in the
example with the strings "className" and "new(className);" in the body of newClassCode.

As may be apparent, overly clever use of macros can make MAINSAIL text nearly
indecipherable.

- 189-

If the macro newInteger is defined as:

DEFINE newInteger(x)

then the text:

newInteger(a) ;
newInteger (b) ;
newInteger(c) ;

expands to:

INTEGER aInt;
INTEGER bInt;
INTEGER cInt;

[INTEGER x] & [Int];

thereby declaring the new identifiers aInt, bInt, and
cInt.

A macro with two parameters may be used to create an
identifier out of the identifiers. For example, if the
macro newID is defined as:

DEFINE newID(partl,part2) [partl] & [part2];

then the text:

newID(abc,def)

expands to:

abcdef

Example 13.8-1. Macros That Create New Identifiers

13.9. Repeatable Macro Parameters, $numArgs, $arg, and $sArg

A few more macro constructs deserve mention, although there is not room to give a detailed
explanation here:

- 190-

It is possible to define a macro that defines an integer
code for a class and creates a list of statements that
allocate one pointer to each class on which the macro has
been called:

DEFINE
classCodeValue
allocationString
newClassCode(className)

1,

"" ,

DEFINE className] & [Code = classCodeValue;
REDEFINE classCodeValue = classCodeValue + 1;
REDEFINE allocationString = allocationString &

"className" & Ptr := new(className);"
& eol;

REDEFINE dOAllocations =
[] & allocationString];

Following the above declarations, the macro calls:

newClassCode(cl);
newClassCode(c2);
newClassCode(xyz) ;

have the effect of defining the identifiers "clCode" as 1,
"c2Code" as 2, and "xyzCode" as 3; they also create a
string allocationString with value:

clPtr := new(cl);
c2Ptr := new(c2) ;
xyzptr := new (xyz) ;

and a macro doAllocations, the body of which is identical
to the value of allocationString. The macro doAllocations
could be used in a statement, e.g.:

IF NOT allocationsDone THENB dOAllocations END;

Example 13.8-2. Concatenation of Bracketed Text and String Constants

• Macro parameters may be repeatable, using the keyword "REPEATABLE" as with
procedure parameters.

- 191 -

• $numArgs returns the number of arguments passed for a repeatable macro parameter,
or the number of items in a bracketed list (e.g., "$numArgs([a,b,c])" evaluates to 3).

• tI$arg(v,i)" is the ith argument passed to a repeatable parameter v, or if v is a
bracketed list, the ith element of the list. For example, "$arg([a,b,c],2)1t evaluates to
the text Itb".

• $sArg works like arg, except that it returns a string constant instead of text.

The "MAINSAIL Language Manual" explains these facilities more thoroughly.

-192 -

13.10. Common Macro Errors

It is easy to produce undesired effects through improper use of macros. Example 13.10-1
illustrates macros that may expand in the desired way in some contexts but not in others.

To avoid the errors of Example 13.10-1, use the following rules when writing a macro body:

1. A macro parameter used as the operand of an operator in the macro body should be
enclosed in parentheses to prevent unexpected interaction between the operator and
components of the macro argument

2. A macro body that consists of one or more statements should not contain a trailing
semicolon. The semicolon, if needed, should be supplied at the point of the macro
call.

3. A macro body that consists of two or more statements or is an I(Statement should be
turned into a single Begin Statement by enclosing the body in a ItBEGIN"_ItENDIt

pair.

The macros in Example 13.10-1 should be defined as in Example 13.10-2.

DEFINE
dbl (a)

doMsg(a)
rd(f,a)
checkA

[(a) *2],
[write(logFile,a)],
[BEGIN read(f,a); ttyWrite(a) END],
[BEGIN IF a TST c THEN d := e END];

Example 13.10-2. Corrected Definitions of Macros

Given the definitions:

DEFINE
dbl (a)

doMsg(a)
rd(f,a)
checkA

[a * 2],
[write(logFile,a);],
[read(f,a); ttyWrite(a)],
[IF a TST c THEN d := e];

Example 13.10-1. Expansion-Context-Dependent Macros (continued)

- 193 -

the following problems occur:

. The macro call "dbl(v + 1)" expands to:

v + 1 * 2

which is equivalent to:

v + (1 * 2)

rather than to the desired:

(v + 1) * 2

The macro call "IF b THEN doMsg("error") ELSE
expands to:

IF b THEN write(logFile,"error"); ELSE

which is syntactically incorrect because of the
semicolon before the "ELSE" .

. The macro call "IF b THEN rd(f,i)" expands to:

IF b THEN read(f,i); ttyWrite(i)

which does not have the desired effect, which is:

IF b THENB read(f,i); ttyWrite(i) END

"

. The macro call "IF b THEN checkA ELSE ... " expands
to:

IF b THEN IF a TST c THEN d := e ELSE ...

which has the undesired effect of matching the
"ELSE" with the ~econd instead of the first "IF".

Example 13.10-1. Expansion-Context-Dependent Macros (end)

- 194-

13.11. Exercises

Exercise 13·1.

Write a macro "strDecls" that takes an integer parameter N. When called, the macro
expands to a series of N string variable declarations. The identifiers declared are
"s }", "s2", ... , "s<N>" . For example, "strDecls(4)" should expand as shown in
Example 13.11-1.

You may want to use some of the keywords "$FORC", "$DONEC", and
"$CONTINUEC", which provide compiletime analogues to "FOR", "DONE", and
"CONTINUE".

STRING 31;
STRING 32;
STRING 33;
STRING 34;

Example 13.11-1. Expansion of "strDecls(4)"

- 195 -

14. Indirect Access to Modules; Bound Data Sections

This chapter describes modules, which are the basic MAINSAIL unit of compilation. Modules
permit separate compilation and information hiding; they are also a runtime data structure.
Modules often exist as bound data sections, which allows the names of module interface fields
to be used without an explicit module prefix. Access to modules with a module prefix or with
no prefix at all is called "indirect access" to modules; Chapter 15 describes uses of modules
accessed by means of pointers (direct access).

14.1. The Role of Modules

Every one of the sample programs shown so far has consisted of a single module. It has been
mentioned, however, that programs can consist of multiple modules. In fact, the sample
programs shown so far do make implicit use of the modules of the MAINSAIL runtime system,
since many system procedures reside in separate modules (rather than being compiled into a
user module that needs them). You can write modules that explicitly communicate with each
other or manipulate each other.

The MAINSAIL compiler outputs one object module (objmod) per source module; it cannot be
made to output a partial objmod (except in the case of incremental recompilation, as described
in the "MAINSAIL Compiler User's Guide"), so modules are referred to as the "unit of
compilation" .

More than one module may occur in a source file. When the MAINSAIL compiler compiles a
source file with more than one source module in it, it compiles the modules in the order in
which they appear in the file. It compiles each module from scratch; i.e., it does not remember
any definitions or deciarations encountered in previous modules in the same file. It is
customary to separate modules in the same file with an end-of-page (eop) character, which is a
separator character in MAINSAIL like the end-of-line character (or characters). If the file
shown in Example 14.1-1 were named "twomod.msl", its compilation would look like Example
14.1-2.

Every module has zero or more "interface fields", which are like the fields. of an ordinary
record, except that module interface fields may be procedure fields as well as data fields. The
modules encountered so far have not had any interface fields. Interface fields must be explicitly
declared in order to be accessible from other modules. The interface of a module must be
declared in the module itself and in any modules that use the interface fields; furthermore, the
interface declarations must match, or MAINSAIL reports an error when the modules are
brought into memory to be used.

, - 196-

BEGIN "mod1"

INITIAL PROCEDURE;
write(logFile,"Module 1" & eol);

END "mod1"
<page mark>
BEGIN "mod2"

INITIAL PROCEDURE;
write(logFile,"Module 2" & eol);

END "mod2"

Example 14.1-1. Two Modules in the Same Source File

*cornpi1<eol>

MAINSAIL (R) Compiler
Copyright. (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (? for help): twomod.msl<eol>
Opening intmod for $SYS ...

twomod.msl 1 2
Objmod ~or MODl stored on mod1-xyz.obj
Intmod for MODl not stored
Opening intmod for $SYS ...

Objmod for MOD2 stored on mod2-xyz.obj
Intmod for MOD2 not stored

compile (? for help): <eol>

*

Example 14.1-2. Compilation of the File of Example 14.1-1

- 197-

Module interface fields provide "information hiding". since other modules know no more about
a given module than what its interface declares to be available. In a large programming project,
the form and function of the interface fields of the various modules composing the project may
be specified early on, and the modules then developed separately in parallel. A program
composed of many small parts with well-defined interfaces is often easier to debug than a
single large, homogeneous program.

14.2. Binding a Module Explicitly

Before a module "indirectly" accesses (direct access is discussed in Chapter 15) a data interface
field of another module, it must ensure that the other module is "bound", i.e., available for use.
The simplest way to do this is to call the procedure "bind", which takes the module identifier of
the module to be bound as its argument Examples 14.2-1 and 14.2-2 show two modules, ITFI
and ITF2, which access each other's interface fields. These modules are shown residing in
separate source files; it does not in fact matter whether they reside in the same source file or
whether they are compiled at the same time, provided that both have been compiled by the time
either is executed.

As shown in Examples 14.2-1 and 14.2-2, the module declarations are similar to class
declarations. The name of the module follows the }ceyword "MODULE" and precedes a
parenthesized list of fields.

A field of a module need be prefixed by its module name and a period only if it is the same as a
local or outer identifier or interface field name of the current module, or if more than one
module outside the current module has a field of the same name. In Examples 14.2-1 and
14.2-2, all references to fields of other modules are unambiguous, a common case.

A MAINE X session in which ITFI is executed twice is shown in Example 14.2-3. Because of
the way binding works, the module does not execute the same way twice in a row; 11F2 is
already bound before the second execution.

- 198-

BEGIN "itfl"

MODULE itfl (
PROCEDURE procl (MODIFIES INTEGER i2);

) ;

MODULE itf2 (
INTEGER i2;
PROCEDURE proc2 (STRING whereFrom);

) ;

PROCEDURE procl (MODIFIES INTEGER i2);
=It Note that "i2" within this procedure refers to the
=It parameter, not to the interface variable of ITF2; to
=It access the latter here, you MUST say "itf2.i2"

- i2; =It Negate the integer

INITIAL PROCEDURE;
BEGIN
write (logFile, "ITFl: initial procedure" & eol);
bind(itf2);
itf2.i2 := 4; =It Could write just "i2 := 4", since there

=It are no other i2's declared
proc2("ITFl, before calling PROCl");

=It Could say "itf2.proc2" instead of just "proc2"
procl(i2); =It Could just as well say "itfl.procl(itf2.i2)"
itf2.proc2("ITFl, after calling PROCl");

=It Could say just "proc2" instead of "itf2.proc2"
write (logFile, "ITFl: end of init·ial procedure" & eol);
END;

END "itfl"

Example 14.2-1. The Module ITF1

- 199-

BEGIN "itf2"

MODULE itf2 (
INTEGER i2i
PROCEDURE proc2 (STRING whereFrom);

) ;

MODULE itfl (
PROCEDURE procl (MODIFIES INTEGER i2);

) ;

PROCEDURE proc2 (STRING whereFrom);
write (logFile, "Proc2, from ",whereFrom,

"; itf2.i2 = ",i2,eol);

INITIAL PROCEDURE;
BEGIN
write (logFile, "ITF2: initial procedure" & eol);
proc2("ITF2, before binding ITF1");
bind (it f 1) ;
i2 := -3; * Could write "itf2.i2 := -3"
procl(i2); * Could just as well say "itfl.procl(itf2.i2)"
proc2("ITF2, after calling PROC1");
write (logFile, "ITF2: end of initial procedure" & eol);
END;

END "itf2"

Example 14.2-2. The Module 11F2

- 200-

*itfl<eol>
ITFl: initial procedure
ITF2: initial procedure
Proc2, from ITF2, before binding ITFl; itf2.i2 0
Proc2, from ITF2, after calling PROCl; itf2.i2 3
ITF2: end of initial procedure
Proc2, from ITFl, before calling PROCl; itf2.i2 = 4
Proc2, from ITF1, after calling PROCli itf2.i2 = -4
ITFl: end of initial procedure
*itfl<eol>
ITFl: initial procedure
Proc2, from ITF1, before calling PROCl; itf2.i2 = 4
Proc2, from ITFl, after calling PROCl; itf2.i2 = -4
ITF1: end of initial procedure

*

Example 14.2-3. Execution of ITF1

- 201 -

14.3. Bound Modules, and How Example 14.2-3 Works

Every module that has been brought into memory during an execution has a "control section"
and zero or more "data sections". The control section consists of the data output by the
MAINSAIL compiler into the objmod, and contains (among other things) the machine
instructions that perform the actions of the statements in the module. A data section is
allocated when the control section is brought into memory (it may also be explicitly reallocated
thereafter; see Chapter 15), A data section contains (among other things) the outer, own, and
interface variables of the module.

Every data section contains hidden, unnamed "implicit module pointers" to every module of
which it references interface fields by means of indirect access, i.e., without prefixing the
interface field with a pointer. A runtime error results if a module (module A) tries to indirectly
access a data interface field of another module (module B) before module A's implicit module
pointer to B has been initialized. When A binds B, A's implicit module pointer to B is set to
point to B' s data section. Furthermore, if B is not presently bound, a data section (the "bound
data section") of B is allocated, and B' s initial procedure (if it exists) is executed.

When a module's data section is allocated, the MAINSAIL runtime system automatically
initializes any implicit module pointers in it that refer to modules that are already bound. If the
new data section is itself a bound data section, it also initializes implicit module pointers in
other modules to point to itself.

For every module in memory, there is exactly one control section and at most one bound data
section (the allocation of nonbound data sections, of which there may be none or more than
one, is discussed in Chapter 15). Unless the bound data section is explicitly removed from
memory by means of the system procedure "unbind" or the system procedure "dispose", it
remains in memory until the end of the MAINSAIL execution.

When MAINEX executes a module, it first checks to see whether it is already bound, and if so
issues an error message. Otherwise, it binds it, which causes the bound data section to be
allocated and the initial procedure to be executed; then, when the module's initial procedure
finishes executing, MAINEX calls "dispose" to remove the data section (but not the control
section) from memory. However, MAINEX does not unbind or dispose any module bound by
the executed module. Therefore, since the first execution of ITFI in Example 14.2-3 binds
ITF2, and does not unbind it, ITF2 remains bound (and its data section remains in existence)
after ITFI has finished executing. Therefore, the call "bind(itf2)" made during the second
execution of ITFI does not reallocate ITF2's data section, and does not execute ITF2's initial
procedure. That is why the messages printed out by ITF2' s initial procedure do not appear in
the second execution of ITFI.

Diagrammatically, the initial state of memory looks like Example 14.3-1 (there are other things
in memory, like procedures' local variables, which are not shown). Note that in real life,
control sections, data sections, and records of the bound module list may appear in any order in

- 202-

memory; they are not necessarily maintained contiguously. Also, the runtime system maintains
other data structures associated with modules as well as those shown, but the ones shown are
the only ones you need to know about in order to use modules correctly.

Control sections
+-------+ +-------+ +-------+
I runtime I I runtime I I runtime I
I module I I module I I module I
I control I I control I I control I
Isectionl I section I Isectionl
1#1 I 1#2 I I#n I
+-------+ +-------+ +-------+

Data sections
+---+---+ +---+---+ +---+---+
I runtime I I runtime I I runtime I
I module I I module I I module I
Idata I Idata I I data I
I section I I section I Isectionl
1#1 I 1#2 I I#n I
I (bound) I I (bound) I I (bound) I
+-------+ +-------+ +-------+

Example 14.3-1. Before Execution of ITF! or ITF2

After the first "itf1" command to MAINEX, ITF1's control section is read into memory, and its
data section is allocated. ITF1's implicit module pointer to ITF2 is initially Zero. See Example
14.3-2.

When ITF1 issues the call "bind(itf2)", ITF2's control section is brought into memory. ITF2's
implicit module pointer to I1Fl is initialized to point to ITF1's data section, since I1F1 is
already in memory; furthermore, since ITF2 is being allocated, I1Fl ' s implicit module pointer
to ITF2 is made to point to ITF2's data section. See Example 14.3-3. When a module A's
implicit module pointer to module B has been initialized, module A is said to "have linkage" to
module B. In Example 14.3-3, I1Fl and ITF2 have established linkage to each other.

ITF2's initial procedure executes, then control returns to I1Fl's initial procedure, which
finishes. Control then returns to MAINEX, which disposes I1F1's data section. After I1F1's
data section has been disposed, memory looks like Example 14.3-4. Note that the disposal of
the bound data section of ITFI causes all implicit module pointers to ITF1 to be set to Zero.

- 203-

Control sections
+-------+ +-------+ +-------+ +-------+
I runtime I I runtime I I runtime I
I module I I module I I module I IITFl
1#1 I 1#2 I I#n I I control I
I control I I control I • 0 •• CI • Icontroll I section I
Isectionl I section I I section I I I
+-------+ +-------+ +-------+ +-------+

" "

+---+---+
Data sections IITFl I

+---+---+ +---+---+ +---+---+ I data I
I runtime I I runtime I I runtime I I section I
I module I I module I I module I I (bound) I
1#1 I 1#2 I I#n I +-------+
Idata I Idata I I data I ImodPtr I
Isectionl I section I I section I Ito ITF21
I (bound) I I (bound) I I (bound) I I 0 I
+-------+ +-------+ +-------+ +-------+

Example 14.3-2. After the Allocation of ITF1's Data Section

At this point, ITF2 appears to be inaccessible; no runtime module has an implicit module
pointer to it. However, it is not subject to garbage collection, since bound data sections are not
collected. In Example 14.2-3, ITF2's control and data sections were still present in memory
when ITFI issued a "bind(itf2)" during its second execution. ITF2's data section was not
reallocated, and its initial procedure was not reexecuted; all the call to "bind" did was to set
ITF1's implicit module pointer to ITF2. Example 14.3-5 shows the situation after ITFI has
bound ITF2 during ITFl ' s second execution.

After ITFI executes the second time, its data section is disposed as before.

If "itf2" were typed to the MAINEX prompt after Example 14.2-3, MAINEX would issue an
error message because a bound data section for ITF2 is still in memory.

- 204-

Control sections
+-------+ +-------+ +-------+ +-------+ +-------+
I runtime I I runtime I I runtime I I I I I
I module I I module I I module I IITF1 I IITF2 1
1#1 I 1#2 I I#n I I control I I control I
Icontroll I control I I control I I section I I section I
Isectionl I section I Isectionl 1 1 I I
+-------+ +-------+ +-------+ +-------+ +-------+

+---+---+ +---+---+
Data sections IITF1 IITF2

+---+---+ +---+---+ +---+---+ Idata Idata
I runtime I I runtime I
Imodule 1 Imodule I
I #1 I I #2 I
I da t a I I da t a I
I section I Isectionl
I (bound) I I (bound) I
+-------+ +-------+

I runtime I I section I I section I
1 module I I (bound) 1 1 (bound) I
I#n I +-------+ +-------+
I data 1 I mociPtr I I modPtr I
I section I I to ITF2 I I to ITFll
I (bound) I I +---+>1 + I
+-------+ +-------+ +---+---+

I
+---------+

Example 14.3-3. After ITF1 Binds ITF2

- 205-

Control
+-------+ +-------+
I runtime I I runtime I
Imodule I Imodule I
I #1 I I #2 I
Icontroll I control I
I section I Isectionl
+-------+ +-------+

Data
+---+---+ +---+---+
I runtime I I runtime I
I module I I module I
1#1 I 1#2 I

sections
+-------+
I runtime I
Imodule I
I#n I
I control I
I section I

+-------+ +-------+
I I

IITF1 I I ITF2
I control I I control I
Isectionl I section I
I I I I

+-------+ +-------+ +-------+

+---+---+
sections IITF2 I

+---+---+ Idata I
I runtime I Isectionl
I module I I (bound) I
I#n I +-------+

Idata I Idata I I data I ImodPtr I
I section I I section I Isectionl Ito ITFll
I (bound) I I (bound) I I (bound) I I 0 I
+-------+ +-------+ +-------+ +-------+

Example 14.3-4. After MAINEX Has Disposed ITFI

- 206-

Control sections
+-------+ +-------+ +-------+ +-------+ +-------+
I runtime I I runtime I I runtime I I I
I module I 1 module 1 1 module 1 IITF1 1 IITF2
1#1 I 141=2 I 14I=n I I control I I control I
Icontroll I control I 1 control I Isectionl I section I
Isectionl 1 section 1 Isectionl 1 1 1 1
+-------+ +-------+ +-------+ +-------+ +-------+

+---+---+ +---+---+
Data sections IITF1 1 IITF2

+---+---+ +---+---+ +---+---+ Idata I Idata
I runtime I I runtime I I runtime I I section I Isectionl
1 module I I module 1 I module I 1 (bound) 1 I (bound) 1
I #1 I 141=2 I 14I=n I +-------+ +-------+
Idata I Idata I I data 1 ImodPtr 1 ImodPtr 1
I section I I section I I section I I to ITF2 I I to ITFll
I (bound) I I (bound) I I (bound) 1 I +---+>1 + I
+-------+ +-------+ +-------+ +-------+ +---+---+

+---------+

Example 14.3-5. After the Second Execution of ITF1 Binds ITF2

- 207-

14.4. Module Swapping

When the MAINSAil.. runtime system runs low on memory space, it may remove some control
sections from memory. It reads the control sections back in again if and when it needs to do so.
Module control section swapping takes place automatically; it is completely invisible to your
programs. Data sections and other data are never removed from memory in this fashion; if
your program runs low on memory, you must explicitly organize your program to write data to
a temporary file. See Section 2.1 of part II of the "MAINSAIL Tutorial tI for more details on
swapping.

In order to see when control sections of modules are brought into memory, you may give the
MAINEX subcommand "SWAPINFO". In Example 14.4-1, the executions of Example 14.2-3
are repeated with the "SW APINFO" subcommand given.

*itfl,<eol>
Enter subcoromands (? for help) .
>swapinfo<eol>
><eol>
Swapping in ITFl
Done swapping in ITFl
ITF1: initial procedure
Swapping in ITF2
Done swapping in ITF2
ITF2: initial procedure
Proc2, from ITF2, before binding ITF1; itf2.i2 0
Proc2, from ITF2, after calling PROC1; itf2.i2 3
ITF2: end of initial procedure
Proc2, from ITF1, before calling PROC1; itf2.i2 = 4
Proc2, from ITF1, after calling PROC1; itf2.i2 = -4
ITF1: end of initial procedure
*itfl<eol>
ITF1: initial procedure
Proc2, from ITF1, before calling PROC1; itf2.i2 = 4
Proc2, from ITF1, after calling PROC1; itf2.i2 = -4
ITF1: end of initial procedure

*

Example 14.4-1. Execution of ITF1 with the "SW APINFO" MAINEX Subcommand

- 208-

14.5. When Explicit Binding Is Necessary

Until now it has not been mentioned that calling a procedure in another module implicitly binds
that module. Explicit binding need occur only if a DATA (i.e., non-procedure) field of a
module is to be accessed before linkage is otherwise established to the module. This means
that the "bind(itfl)" that appears in the initial procedure of ITF2 in Example 14.2-2 is not really
necessary. The first access to ITFI in ITF2' s initial procedure is the call to procI, which
automatically binds ITF!. However, the "bind(itfl)" makes it clear to the reader what is going
on. It does not do any harm, and if the program is rewritten to access a data field of ITFI
before a procedure field. the "bind" will prevent an error from occurring.

14.6. Declarations Shared by Several Modules and the "SQURCEFILE"
Compiler Directive

The "SOURCEFILE" compiler directive causes the MAINSAIL compiler to continue the
current compilation in another file. The fonnat of the "SOURCEFILE" directive is:

SOURCEFILE <file name>;

Text is read from the named file (the "sourcefiled" file) as if the contents of the file had been
encountered instead of the "SOURCEFILE" directive. When the compiler is finished with the
sourcefiled file, it resumes compiling on the line following the "SOURCEFILE" directive.
"SOURCEFILE" directives may be nested; i.e., a sourcefiled file may contain other
"SOURCEFILE" directives.

The "DONESCAN" compiler directive causes the compiler to return from a sourcefiled file to
the original file; so does the end of the sourcefiled file. The fonnat of the "DONESCAN"
directive is:

DONESCANi

The modules of Examples 14.2-1 and 14.2-2 each declare both modules ITFI and ITF2. If a
change is made to either interface. the source text for both modules must be updated. It would
be more convenient to maintain the interface declarations in a single file, so that updates could
be made in only one place. Examples 14.6-1, 14.6-2, and 14.6-3 shows how the interface
declarations may be placed in a file called "decls" that is sourcefiled by the source files for the
modules ITFI and ITF2.

In a large programming project with many modules, all the module interface declarations are
usually maintained in a single file. Consider a program consisting of the modules A, B, C, D,
E, and F. Each has interface variables and procedures. If the module A is used by C, D, and F,
and a separate copy of A's interface declaration is maintained in the source modules for A, C,
D, and F, then any change to A's interface would have to be propagated to four places. As

- 209-

BEGIN "itfl"

SOURCEFILE "decls"; # Get interface declarations for
ITFl and ITF2

PROCEDURE procl (MODIFIES INTEGER i2);
t Note that "i2" within this procedure refers to the
t parameter, not to the interface variable of ITF2; to
t access the latter here, you MUST say "itf2.i2"

- i2; # Negate the integer

INITIAL PROCEDURE;
BEGIN
write (logFile, "ITF1: initial procedure" & eol);
bind(itf2);
itf2.i2 := 4; # Could write just "i2 := 4", since there

are no other i2's declared
proc2("ITF1, before calling PROC1");

Could say "itf2.proc2" instead of just "proc2"
procl(i2); # Could just as well say "itfl.procl(itf2.i2)"
itf2.proc2("ITF1, after calling PROC1");

t Could say just "proc2" instead of "itf2.proc2"
write (logFile, "ITF1: end of initial procedure" & eol);
END;

END "itfl"

Example 14.6-1. ITF1 with the "SOURCEFILE" Directive

anyone who has worked on a large programming project has observed, coordinating a group of
programmers to make mutually consistent changes in four places can be very difficult!
Therefore, the interfaces for all six modules should reside in a single common declarations file.
There is no penalty for declaring the interface of the module A in the module B if B does not
use A, so it does no harm to have B sourcefile the file in which A's interface is declared.

Even better than a common sourcefile for many purposes may be a common intmod; see
Section 20.3.

- 210-

BEGIN nitf2"

SOURCEFILE "decls"; =It Get interface declarations for
=It ITFI and ITF2

PROCEDURE proc2 (STRING whereFrom);
write (logFile, "Proc2, from ",whereFrom,

"; itf2.i2 = ",i2,eol);

INITIAL PROCEDURE;
BEGIN
write (logFile, "ITF2: initial procedure" & eol);
proc2(nITF2, before binding ITFl");
bind(itfl) ;
i2 := -3; =It Could write "itf2.i2 := -3"
procl(i2); =It Could just as well say "itfl.procl(itf2.i2)"
proc2(nITF2, after calling PROCl");
write (logFile, "ITF2: end of initial procedure" & eol);
END;

END "itf2 n

Example 14.6-2. ITF2 with the "SOURCEFILE" Directive

MODULE itfl (
~

PROCEDURE procl (MODIFIES INTEGER i2);
) ;

MODULE itf2 (
INTEGER i2;
PROCEDURE proc2 (STRING whereFrom);

) ;

Example 14.6-3. The Sourcefiled File "decls"

- 211 -

14.7. Exercises

Exercise 14-1.

Create a calculator program that can accept either Reverse Polish Notation or the
standard operator order. There should be two "top-level" modules, RPN and SID,
that implement the two orders; the user may choose either by typing its name to
MAINEX. Instead of performing arithmetic themselves, both RPN and STD should
call a common third module, ARITH, and pass it a data structure describing which
arithmetic operations to perform.

The MAINSAIL system procedure $removelnteger may be useful for removing an
integer from a string. $removeLeadingBlankSpace removes blanks and tab
characters from the beginning of a string.

- 212-

15. Direct Access to Modules; Nonbound Data Sections

This chapter describes the use of pointers to manipulate module data sections explicitly.
Access to fields of a module's data section by means of explcit pointers is called "direct access"
to the module. Explicit manipulation of data sections can result in an "object-oriented"
programming style.

15.1. The Nonbound Data Section

The modules of Chapter 14 were brought into memory by means of the procedure "bind",
which also created the data sections for the modules. The procedure "new" may also be used to
establish a control section for a module (if necessary) and create a corresponding data section.
Such a call to "new" results in a nonbound data section. Nonbound data sections must always
be accessed by means of an explicit pointer ("direct access"); i.e., the module field name must
be preceded by a pointer (not a module name, as declared with the keyword "MODULE") and a
period. Bound data sections were provided in MAINSAIL so that not all intermodule accesses
would require the use of an explicit data section pointer prefix; nonbound data sections are,
however, a more powerful facility.

Unlike "bind", "new" always creates a new data section. "bind" creates a new (bound) data
section only if no bound data section currently exists for the module; "new" creates a nonbound
data section whether or not there exists a bound data section or other nonbound data sections.
"new" returns a pointer to the new data section.

15.2. HSHMOD Example of Nonbound Data Sections

In order to classify properly a pointer to a data section with procedure interface fields, it is·
necessary to declare a class that contains procedure fields. Since "new" for a data section takes
a module name (the name of the module that provides the control section corresponding to the
data section) rather than a class name as its argument, it is useful to declare a module of the
class; see Example 15.2-2. The declarations of Example 15.2-2 are available to any
MAINSAIL program, since HSHMOD is a standard utility module; to pick up the declarations,
your program must include the code shown in Figure 15.2-1 (the real HSHMOD actually
includes a few facilities not shown here).

HSHMOD maintains a hash table by means of the procedures shown in Example 15.2-2.
HSHMOD is described in detail in the "MAINS An... Utility User's Guide"; the (partial) source
text for the utility module HSHMOD is shown in Example 15.2-3.

- 213 -

REDEFINE $scanName = "hshHdr";
SOURCEFILE "(system library)";

Figure 15.2-1. Code to Pick Up HSHMOD Declaration

prefix class for hashed records
CLASS hashedRecord

(STRING key; POINTER (hashedRecord) link);

explicit class so user can classify pointers to it
CLASS hshCls (

) ;

PROCEDURE hashInit (OPTIONAL INTEGER tableSize);
PROCEDURE hashEnter (POINTER (hashedRecord) p);

. POINTER (hashedRecord)
PROCEDURE hashLookUp (STRING key);
POINTER (hashedRecord)
PROCEDURE hashRemove (STRING key) ;
POINTER (hashedRecord)
PROCEDURE hashNext (POINTER (hashedRecord) p);

MODULE (hshCls) hshMod;
* This is the syntax for declaring a module interface
as a named class:
* MODULE«class name» <module name>

Example 15.2-2. Partial Declaration of HSHMOD and Associated Classes in the MAINSAIL
System Source Library

It is intended that each hash table kept by a program be maintained as a separate HSHMOD
data section. The module of Example 15.2-4 uses HSHMOD in this way; the three pointers
byName, byAdr, and byPhone each point to a separate HSHMOD data section.

- 214-

BEGIN "hshMOd"

this module maintains a general-purpose hash table

REDEFINE $scanName = "hshHdr"; # pick up interface
SOURCEFILE "(system library)"; # declarations

DEFINE
numCharsToHash
defaultTableSize

4,
131;

INTEGER numberOfHashLists;

POINTER (hashedRecord) ARRAY(O TO *) hashList;

"* #

"*
"* #

"* #

o

1

2

3

+-------+
I >-+----> linked list of all records
+-------+ whose keys hash to °

>-+----> linked list of all records
+-------+

>-+---->
+-------+
I >-+---->
+-------+

+-------+

whose keys hash to 1
linked list of all records

whose keys hash to 2
linked list of all records

whose keys hash to 3

PROCEDURE hashInit (OPTIONAL INTEGER tableSize);
BEGIN
IF tableSize LEQ ° THEN tableSize := defaultTableSize;
new(hashList,O,tableSize - 1);
nurnberOfHashLists .= tableS.ize;
END;

INTEGER PROCEDURE hash (STRING key);
BEGIN
INTEGER h,i,j;

Example 15.2-3. Partial Source Text for the MAINSAIL Utility Module HSHMOD
(continued)

- 215 -

#: s hashes to
#: (length(s) + 3 * charl + 5 * char2 +
#: 7 * char3 + 9 * char4)
#: MOD nurnberOfHashLists
#:
#: where chari represents ith character of s

h := length(key); i := h MIN numCharsToHash; j := 1;
WHILE i .- 1 GEQ 0 DO h .+ cRead(key) * (j .+ 2);
RETURN(h MOD numberOfHashLists) END;

POINTER (hashedRecord) PROCEDURE search
(STRING key;

BEGIN

PRODUCES OPTIONAL INTEGER hashValuei
PRODUCES OPTIONAL POINTER (hashedRecord)

beforeTarget) i

POINTER (hashedRecord) target;

#: general-purpose search procedure

IF NOT hashList THEN hashInit; #: automatic initialization

hashValue := hash(key);
beforeTarget := NULLPOINTERi
target := hashList[hashValue]i

WHI~E target AND target.key NEQ key DOB
beforeTarget .= target; target := target.link END;

RETURN (target) END;

Example 15.2-3. Partial Source Text for the MAINSAIL Utility Module HSHMOD
(continued)

- 216-

PROCEDURE hashEnter (POINTER (hashedRecord) p);
BEGIN * enter p at front of its hash list
INTEGER h;
IF NOT hashList THEN hashInit;
IF p THENB

h := hash(p.key); p.link := hashList[h];
hashList[h] := pEND

EL errMsg(nhashEnter: argument is NULLPOINTERn) END;

POINTER (hashedRecord) PROCEDURE hashLookUp (STRING key);
RETURN(search(key»; * return record with given key * (Zero if not found)

POINTER (hashedRecord) PROCEDURE hashRemove (STRING key) ;
BEGIN * remove record with given key
INTEGER h;
POINTER (hashedRecord) target,beforeTarget;

IF target := search (key,h,beforeTarget) THEN
IF beforeTarget THEN beforeTarget.link := target.link
EL hashList[h] := target.link;

RETURN (target) END;

POINTER (hashedRecord) PROCEDURE hashNext
(POINTER (hashedRecord) p);

BEGIN
INTEGER hi
POINTER (hashedRecord) q;

* generate next record in hashList (successive calls * starting with p = NULLPOINTER will generate all records,
* then NULLPOINTER)

Example 15.2-3. Partial Source Text for the MAINSAIL Utility Module HSHMOD
(continued)

- 217-

IF NOT P THEN h := -1
EF q .= p.link THEN RETURN(q)
EL h := hash(p.key);

DOB IF h .+ 1 GEQ numberOfHashLists THEN
RETURN(NULLPOINTER);

IF p := hashList[h] THEN RETURN(p) END END;

END "hshMod"

Example 15.2-3. Partial Source Text for the MAINSAIL Utility Module HSHMOD (end)

BEGIN "dirMod"

This module maintains a directory of "people" by name,
address and phone. The user may enter new people from
"TTY" or any file; remove people; change the
information about a person; retrieve information by
giving either a person's name, address or phone; and
save the people directory on a file ("TTY" for a
printout) in such a way that it can be later loaded and
used.

The hash module is used to store and retrieve the
information. Each person is stored as a record with
prefix class hashedRecord ,so it can be manipulated by
the hash module. The remaining fields are name, adr,
and phone. Every person is stored three times, once

'# each by name, adr, and phone. This is done by
utilizing three instances (separate data sections) of
HSHMOD, each of which maintains a separate haSh table.
This example is not optimized for saving space since
every person is represented by three nearly identical
person records (only the hashedRecord fields differ) .

REDEFINE $scanName = "hshHdr";
SOURCEFILE "(system library)"; # retrieve the declarations

Example 15.2-4. A Module That Uses HSHMOD (continued)

- 218-

CLASS (hashedRecord) person (STRING name,adr,phone);

POINTER (hshCls)
byName,
byAdr,
byPhone;

PROCEDURE dolnit;

stored by name
stored by address
stored by phone

BEGIN # use default table size (no need to call hashlnit)
byName := new(hshMod); byAdr := new(hshMod)i
byPhone := new(hshMod)i
END;

PROCEDURE dOFlushi
Discard current lists and reinitialize (discarded
data sections will be reclaimed by garbage collector,
since they become inaccessible)
BEGIN
byName := byAdr := byPhone := NULLPOINTER; dolnit;
END;

PROCEDURE doOneEntry
(POINTER (hshCls) p; STRING key,name,adr,phone);

BEGIN
POINTER (person) q;
q := new (person) i

q.key := key; q.name := name; q.adr .= adri
q.phone .= phone; p.hashEnter(q);
END;

PROCEDURE doEnter (STRING S)i

BEGIN
STRING name,adr,phone;
POINTER (person) Pi

s of form: name <tabs> address <tabs> phone

Example 15.2-4. A Module That Uses HSHMOD (continued)

- 219-

name := scan(s,tab,discard); scan (s,tab,proceed!omit) ;
adr:= scan(s,tab,discard); scan (s,tab,proceed!omit) ;
phone := s;

doOneEntry(byName,name,name,adr,phone);
doOneEntry(byAdr,adr,name,adr,phone);
doOneEntry(byPhone,phone,name,adr,phone);
END;

PROCEDURE doRestore (STRING fileName);
BEGIN
STRING
POINTER (textFile)
open(f,fileName,input);

s;
f;

DOB read(f,s); IF NOT s THEN DONE; doEnter(s) END;
close(f) END;

PROCEDURE doSave (STRING fileName);
BEGIN
STRING
POINTER (textFile)
POINTER (person)

s;
f;
p;

open(f,fileName,output); p := NULLPOINTER;

WHILE P := byName.hashNext(p) DO
write(f,p.name,tab,p.adr,tab,p.phone,eol);

close(f) END;

Example 15.2-4. A Module That Uses HSHMOD (continued)

- 220-

PROCEDURE doLookUp (POINTER (hshCls) p; STRING key) ;
BEGIN
POINTER (person) q;
IF NOT q := p.hashLookUp(key) THEN

ttyWrite("Not found" & eol)
EL ttyWrite(

"Name:" & tab, q.name, eol &
"Adr:" & tab, q.adr, eol &
"Phone:" & tab, q.phone,eol);

END;

PROCEDURE doRemove (STRING S)i

BEGIN
POINTER(person) p;
IF P := byName.hashLookUp(s) THENB

byName.hashRemove(p.name);
byAdr.hashRemove(p.adr);
byPhone.hashRemove(p.phone) END ENDi

PROCEDURE doChange (STRING s);
BEGIN
doRemove(scan(s,tab,discard»;
scan(s,tab,proceed!omit);
doEnter(s) END;

INITIAL PROCEDURE;
BEGIN
STRING s;

DEFINE
x 0,
def (name) [REDEFINE x = x + 1; DEFINE name

Example 15.2-4. A Module That Uses HSHMOD (continued)

- 221 -

x;] ;

def(restoreCase)
def(enterCase)
def(removeCase)
def(nameCase)
def(adrCase)
def(phoneCase)
def(changeCase)
def(saveCase)
def(flushCase)
def(exitCase)

STRING ARRAY(l TO x) commands;

doInit; new(commands);

INIT commands # must be kept in same order as def's
("RESTORE
"ENTER
"REMOVE
"NAME
"ADR
"PHONE
"CHANGE
"SAVE
"FLUSH",
"EXIT");

fileName",
name <tabs> adr <tabs> phone",
name" ,
name" ,
adr" ,
phone" ,
name <tabs> name <tabs> adr <tabs> phone",
fileName" ,

DO CASE cmdMatch(commands,"*",useKeyWord,s) OFB
[restoreCase] doRestore(s);

END;

[enterCase] doEnter(s);
[removeCase]
[nameCase]
[adrCase]
[phoneCase]
[changeCase]
[saveCase]
[flushCase]
[exitCase]
END;

doRemove(s) ;
doLookUp(byName,s) ;
doLookUp(byAdr,s) ;
doLookUp(byPhone,s);
doChange(s);
doSave(s) ;
dOFlush;
exit;

END "dirMod"

Example 15.2-4. A Module That Uses HSHMOD (end)

- 222-

15.3. Prefix Classes and Explicit Class Specifications

Example 15.2-4 contains an example of a prefix class declaration; the class "hashedRecord" is a
prefix class of the class "person". This means that the class "person" has all the fields of
hashRecord as well as the fields declared in person t s own declaration. The general form of a
prefixed class declaration is:

CLASS «prefix class» <class name> «additional fields»

Sometimes the programmer knows that a pointer variable is of a prefixed class even though it is
declared to be of the prefixed class t s prefix class. If you need to refer to a field of the prefixed
class that does not belong to the prefix classt you may use the form:

<pointer variable>:<prefixed class name>
.<prefixed class field>

An example of such explicit class specification appears in the procedure "processRoomCmd" of
Example 15.5-2. The programmer knows that the pointer "player.where" is of the class
"roomCls" t even though it is declared to be of roomCls's prefix class objectCls. Thereforet to
refer to player.wherets field "roomList" t the form "player.where:roomCls.roomList" is used.

Explicit class specifications may be used to specify any class for a pointer variablet even a class
that is incompatible with the actual class of the pointer. You must therefore be very careful in
using explicit class specifications; using a field that does not actually exist in the record pointed
to by a pointer can lead to bugs that are extremely difficult to track.

15.4. Explanation of Example 15.2-4

The three separate data sections created by the calls.to "new" in the procedure doInit of
Example 15.2-4 are all associated with the same control section. Whenever a procedure of
HSHMOD is called through one of the pointers byNamet byAdrt and byPhone t the same
procedure code is executed, but it operates on the data of only the appropriate data section. See
Example 15.4-t which shows separate copies of the HSHMOD outer variable "hashList"
maintained for each instance of HSHMOD. Separate copies of the variable
"numberOfRashLists" are also maintained but not shown.

When "by Adr.hashEnter" is called, only the copy of hashList in the data section pointed to by
by Adr is modified by the hashEnter procedure in HSHMOD; the copies of hashList for
byName and byPhone are not altered.

- 223-

Control sections'
+-------+ +-------+ +-------+ +-------+
I runtime I I runtime I
I module I I module I IDIRMOD I I HSHMOD I
1*1 I I*n I I control I I control I
I control I Icontroll Isectionl I section I
I section I I section I I I I I
+-------+ +-------+ +-------+ +-------+

+------1----------1-------------+-------+
I I I I I
I I I +>+----+-----+ I
I I I I I HSHMOD I
I I I I Idata I
I I +----+----+ I I section I

IData sections I IDIRMOD I I (nonbound) I I
+---+---+ I +---+---+ Idata I +----------+ I
I runtime I I I runtime I I section I IhashList >+---+
I module I I I module I I (bound) I +----------+ I
1*1 I I I*n I +---------+ I I
I data I I data I IbyName >-+-+ +-------+
I section I Isectionl +---------+
I (bound) I I (bound) I IbyAdr >-+-->+----+-----+
+-------+ +-------+ +---------+ I HSHMOD

+----+-----+<-----+< byPhonel Idata
I HSHMOD I +---------+ I section
I data I I (nonbound) I
I section I +----------+
I (nonbound) I +------------+<---+<hashListl
+----------+ IhashList fori +----------+

+-----+< hashListl IbyAdr I
I +----------+ +------------+
I
+->+--------------------+ +-------------------+<--+

IhashList for byPhonel IhashList for byNamel
+--------------------+ +-------~-----------+

Example 15.4-1. The Three Separate HSHMOD Data Sections

- 224-

15.5. Dungeon Game Example

Since hashList is an outer variable, not an interface variable, the forms ItbyName.hashList",
ItbyAdr.hashListlt

, and ItbyPhone.hashList" would not be valid in the module of Example
15.2-4. The variable IthashList" is hidden from modules other than HSHMOD. However,
when data interface fields of modules are declared, they may be accessed by means of pointers,
just like procedure interface fields. Data interface fields of data sections resemble fields of
records in both syntax and function.

The program of Examples 15.5-1, 15.5-2, and 15.5-3 makes extensive use of explicit pointers
to data sections to reference both procedure and data fields. The program is a simplified
"dungeon" game. In such a game, a player plays against the computer by moving from room to
room in the dungeon, accumulating treasure and fighting monsters. The example here is too
small to have either treasure or monsters, although some provision has been made for their
implementation.

Every object (player, room, or other item) in the game is implemented as a module; each
module is of a prefixed class of the common prefix class It objectCls". Because all of the objects
share common fields, many operations may be performed on any of the objects in the dungeon
without reference to its particular type or form; this is the essence of an "object-oriented"
programming style.

The module DNGN of Example 15.5-2 provides a number of "global" interface fields. Most of
these are utility procedures called by the objects in the dungeon to do things in a standard way;
some globally accessible data are also provided. DNGN is also the top-level module, i.e., the
one invoked by the user from MAINEX. DNGN calls the module GTPL (in Example 15.5-3)
to initialize the list of creatures in the dungeon. Each creature is given an initial location,
which has the effect of initializing the rooms in the dungeon. GTPL functions therefore as a
sort of "configuration" module; it is intended to be changed if a more sophisticated dungeon is
created. In this example, GTPL allocates only one creature, the player.

The game is designed so that each room module allocates the objects in the room. However,
rooms accessible from a given room are not allocated until they are first entered (or otherwise
needed). Rooms are allocated by calls to "bind" rather than calls to "new", since it is intended
that there be only one instance of each room, and that each room be globally accessible. In the
example shown, creatures and other objects are also all allocated by calls to "bind", although it
is easy to imagine an object or creature of which one would want many instances (gold coins or
goblins, perhaps). It would be more appropriate to allocate such objects by means of "new"
rather than "bind". The decision to use "new" or "bind" is left to the code of the room in which
the object is to appear, although "bindThings", which is the default version of the object
allocator provided by the module DNGN, uses "bind" rather than "new".

Commands are processed depending on context. First, the current room is allowed to examine
a command to determine whether it is applicable in the room. Most rooms call the DNGN

- 225-

procedure "processRoomCmdtl , which checks to see whether the given command matches any
of the commands to move the player to an adjacent room. If not, the objects in the room and
the objects carried by the player are given an opportunity to process the given command. If no
object processes the command, the command processor issues the message "I don't
understandtl .

DNGN is intended to be executed only once during a MAINEX session, since it makes no
attempt to unbind the modules bound during execution. An attempt could be made to keep
track of these modules and dispose them at the end of DNGN's initial procedure.

Example 15.5-1 shows the file "dngn.dcl", which is source filed by every module in the game.
The file contains the declarations of all common classes, modules, and macros. Example
15.5-2 shows the module DNGN, and Example 15.5-3 shows the rest of the modules in the
dungeon.

Rooms and portable items are both "objects"; each is
represented by a data section of the class objectCls.

CLASS objectCls (

) ;

BOOLEAN PROCEDURE processCmd (STRING s);
Returns true if was able to process the command
string.

STRING announcement,shortAnnouncement;
What to say if room is entered or object
encountered.

BOOLEAN encountered;
After first encounter, use shortAnnouncement

POINTER(objectCls) what,next;
Used to link object.s in the same place.

POINTER (objectCls) where;
Back pointer to place where object is

STRING name;
For debugging and getting/dropping objects

BOOLEAN illuminated;
Whether it gives off light

Example 15.5-1. The Sourcefiled Declaration File tldngn.dcltl (continued)

- 226-

CLASS roomListCls (

) ;

STRING roomName; * Module name of room
STRING cmdToGetThere; * Command used to get to it
POINTER (roomCls) roomPtr; * Used to avoid re-bind's: if initialized, don't * bind using string roomName just to get the * pointer to the bound data section
POINTER (roomListCls) nextRoom;

CLASS (objectCls) roomCls (* Prefixed class for rooms
POINTER (roomListCls) roomList; * Rooms accessible from this room

PROCEDURE doOnEntry; * Something to do upon entering the room
) ;

CLASS (objectCls) creatureCls (* Prefixed class for player * (and potential other

) ;

* creatures)
PROCEDURE doTurn; * Do one turn for the creature

PROCEDURE attack (INTEGER howHard); * Attack it

POINTER (creatureCls) nextCreature;

BOOLEAN dead; * Should be removed from creatureList
BOOLEAN realPlayer; * Quit when no real players left

CLASS (objectCls) thingCls
INTEGER weight, value;

* Prefixed class for portable
* items

) ;

MODULE dngn (* Utility procedures and global variables
PROCEDURE say (STRING s);
* Write s to 10gFile, followed by eol

BOOLEAN PROCEDURE isSameCmd (STRING s,t);
True if sand t are the same except for spacing and

* case

Example 15.5-1. The Sourcefiled Declaration File "dngn.dcl" (continued)

- 227-

BOOLEAN PROCEDURE processRoomCmd (STRING s);
Called by most room modules to process commands in
'a standard way

PROCEDURE enterRoom (POINTER (roomCls) p;
OPTIONAL BOOLEAN noPreviousRoom)i

Move to the specified room
noPreviousRoom is set if player.where is not
expected to be set, as may be the case when
initializing

BOOLEAN PROCEDURE processThingCmd
(STRING s; POINTER (objectCls) p);

Called by most portable item modules to process
commands in ~ standard way

PROCEDURE standardPlayerTurni
Standard command processor

BOOLEAN PROCEDURE contains (POINTER(objectCls) p,q);
Returns true if piS .next list contains q

PROCEDURE takeAwayFrom (POINTER(objectCls) p,q);
q is currently in p's .next list; remove it

PROCEDURE addTo (POINTER(objectCls) p,q);
put q into p.next's .next list

BOOLEAN PROCEDURE thereIsLight;
True if something in the surroundings is giving, off
enough light to see by.

PROCEDURE doLook (OPTIONAL BOOLEAN longAnnoucements)i
Describe the surroundings.

PROCEDURE doShoWi
List what the player is holding.

Example 15.5-1. The Sourcefiled Declaration File "dngn.dcl" (continued)

- 228-

) ;

PROCEDURE setUpRoom (POINTER (roomCls) p;
REPEATABLE STRING otherRoom);

Set up this room's roomList. Each otherRoom string
is of the form "<module name> <command>", where the
command is the command to get to the room named.

PROCEDURE bindThings (POINTER (roomCls) p;
REPEATABLE STRING thingName);

The specified things are placed in the room. The
thing names are the names of the appropriate
modules.

POINTER (creatureCls) creatureList, player;
player is the current creature on the creature list
(the creature whose turn it is). In this version,
player is the only creature on the list.
player.what is what the player is carrying;
player.where is the current room

MODULE gtpl (
PROCEDURE getPlayers;

Initialize the creature list
) ;

Assign values to standard fields (of this module) :
DEFINE setUp (n,a,s) = [

BEGIN
name := n; announcement := a;
shortAnnouncement := sEND];

Example 15.5-1. The Sourcefiled Declaration File "dngn.dcl" (end)

BEGIN "dngn"

SOURCEFILE "dngn.dcl";

Example 15.5-2. The Dungeon Top-Level Module DNGN (continued)

- 229-

PROCEDURE say (STRING s);
BEGIN
IF NOT player.realPlayer THEN ~ETURN;

* Don't say anything if phony player
write(logFile,s,eol);
END;

BOOLEAN PROCEDURE isSameCmd (STRING s,t);
BEGIN
WHILE s AND t DOB

scan(s," " & tab,proceed!omit);
scan(t," " & tab,proceed!omit);
IF scan(s," " & tab, upperCase) NEQ

scan(t," " & tab, upperCase) THEN RETURN(FALSE) END;
RETURN(NOT (s OR t»;
END;

BOOLEAN PROCEDURE processRoomCmd (STRING s);
BEGIN
POINTER (roomListCls) Pi
POINTER (thingCls) q;

Example 15.5-2. The Dungeon Top-Level Module DNGN (continued)

- 230-

First: is the command applicable to the current room?
p := player.where:roomCls.roomList;
WHILE p DOB

IF isSameCmd(s,p.cmdToGetThere) THENB
IF NOT p.roomPtr THEN p.roomPtr :=

bind(p.roomName); # Bind if not already bound
enterRoom(p.roomPtr); RETURN (TRUE) END;

P := p.nextRoom END;
Now is it applicable to any object in the room, or to
something being carried?
q := player.where.what; # list of things in room
WHILE q DOB

IF q.processCmd(s) THEN RETURN(TRUE)i q .= q.next END;
q := player.what; # list of things carried
WHILE q DOB

IF q.processCmd(s) THEN RETURN(TRUE); q .= q.next END;
Command not applicable to anything around:
RETURN(FALSE);
END;

PROCEDURE announce (POINTER(objectCls) Pi
OPTIONAL BOOLEAN longAnnouncement);

IF p.encountered AND NOT longAnnouncement THEN
say (p.shortAnnouncement)

EB say(p.announcement);
p.encountered := TRUE END;

Example 15.5-2. The Dungeon Top-Level Module DNGN (continued)

- 231 -

BOOLEAN PROCEDURE processThingCmd
(STRING s; POINTER (objectCls) p);

#: Standard things to do are "get" ("take") and "drop"
BEGIN
IF isSameCmd(s,"GET " & p.name)

OR isSameCmd(s,"TAKE " & p.name) THENB
IF p.where = player THEN

say ("You already have the " & p. name & "0")

EB takeAwayFrom(p.where,p); addTo(player,p)i
say("Gotteno") END;

RETURN (TRUE) END
EF isSameCmd(s,"DROP " & p.name) THENB

IF p.where NEQ player THEN
say("You don't have the" & p.name & ".")

EB takeAwayFrom(player,p); addTo(player.where,p);
s,ay ("Dropped. ") END;

RETURN (TRUE) END;
RETURN (FALSE) ;
END;

BOOLEAN PROCEDURE contains (POINTER(objectCls) p,q);
BEGIN
p := p.what;
WHILE p AND P NEQ q DO P := p.next;
RETURN(p NEQ NULLPOINTER);
END;

PROCEDURE takeAwayFrom (POINTER(objectCls) p,q);
remove q from p.what list
BEGIN
POINTER(objectCls) pp;

Example 15.5-2. The Dungeon Top-Level Module DNGN (continued)

- 232-

IF (pp := p.what) = q THENB
p.what := p.what.next; q.where := NULLPOINTER;
RETURN END;

WHILE pp AND pp.next NEQ q DO pp := pp.next;
IF NOT pp THEN

errMsg(q.name & " not found in",p.name,fatal);
pp.next := pp.next.next; q.where := NULLPOINTER;
END;

PROCEDURE addTo (POINTER (objectCls) p,q);
put q into piS .what list
BEGIN
q.where .= p; q.next := p.what; p.what .= q;
END;

BOOLEAN PROCEDURE thereIsLight;
BEGIN
POINTER (objectCls) p;

Is there light from the room?
IF player.where.illuminated THEN RETURN(TRUE);
Is there light from something in the room?
p := player.where.what;
WHILE p DOB

IF p.illuminated THEN RETURN(TRUE); p := p.next END;
Is there light from something the player is holding?
p := player.what;
WHILE p DOB

IF p.illuminated THEN RETURN (TRUE) ; P := p.next END;
RETURN (FALSE) ;
END;

PROCEDURE doLook (OPTIONAL BOOLEAN longAnnouncements);
BEGIN
BOOLEAN wroteExtraLine;
POINTER(objectCls) p;

Example 15.5-2. The Dungeon Top-Level Module DNGN (continued)

- 233-

IF NOT thereIsLight THENB say(nIt is dark."); RETURN END;
saY("")i announce(player.where,longAnnouncements) i

wroteExtraLine := FALSE; * If no announcement, don't add
p := player.where.what; * an extra line
WHILE p DOB

IF p.announcement THENB
IF NOT wroteExtraLine THEN say("n)i
wroteExtraLine := TRUE;
announce (p, longAnnouncements) END;

p "= p.next END;
END;

PROCEDURE enterRoom (POINTER (roomCls) p;
OPTIONAL BOOLEAN noPreviousRoom);

BEGIN
IF NOT noPreviousRoom THEN

takeAwayFrom(player.where,player)i
addTo(p,player); doLook; p.doOnEntry;
END;

PROCEDURE setUpRoom (POINTER (roomCls) p;
REPEATABLE STRING otherRoom);

BEGIN
POINTER (roomListCls) q;

q := new(roomListCls);
q.roomName := scan(otherRoom," " & tab);
scan(otherRoom," " & tab,proceed!omit)i
q.cmdToGetThere := otherRoom;
q.nextRoom := p.roomList; p.roomList := q;
END;

PROCEDURE bindThings (POINTER (roomCls) Pi
REPEATABLE STRING thingName) i

BEGIN
POINTER (thingCls) q;

Example 15.5-2. The Dungeon Top-Level Module DNGN (continued)

- 234-

i Perhaps should use "new" instead of "bind" if there
i might be more than one instance of the same object
i in the dungeon.
addTo(p,q .= bind(thingName»;
END;

PROCEDURE doShow;
BEGIN
POINTER (objectCls) p;

say("You are holding:");
p := player.what;
WHILE p DOB say(p.name); p .= p.next END;
END;

PROCEDURE standardPlayerTurn;
BEGIN
STRING s;

write(logFile,"» "); read(cmdFile,s);
IF isSameCmd(s,"QUIT") THENB

player.dead := TRUE; RETURN END
EF isSameCmd(s,"LOOK") THEN doLook(TRUE)
EF isSameCmd(s,"SHOW") THEN doShow
EF isSameCmd(s,"HELP") THEN

say ("
You are in a dungeon game. Commands like NORTH (to go
to the next room to the north) or GET KEY (if there is
a key around to get) will work. QUIT gets you out. LOOK
gives a complete description of your surroundings. SHOW
gives a list of what you are carrying.

You must find out more by experimentation.")
EF s AND NOT player.where.processCmd(s) THEN

say("I don't understand.");
IF player.dead THEN

say(eol & "You' died. So sorry.");
END;

Example 15.5-2. The Dungeon Top-Level Module DNGN (continued)

- 235-

BOOLEAN PROCEDURE getPlayerCommandsi
* Return false when no realPlayer creatures left
BEGIN
BOOLEAN realOneSeeni

player := creatureListi realOneSeen := FALSEi
WHILE player DOB

realOneSeen := realOneSeen OR player.realPlayer;
player.doTurni
IF player.dead THENB

IF player = creatureList THEN
creatureList := creatureList.nextCreature

EL player := playeronextCreature END;
player := player.nextCreature END;

RETURN (realOneSeen) ;
END;

INITIAL PROCEDURE;
BEGIN
getPlayers;
DO UNTIL NOT getPlayerCommands;
END:

END "dngn"

Example 15.5-2. The Dungeon Top-Level Module DNGN (end)

BEGIN "gtpl"

* Get player list * This module may be changed to reconfigure the game;
* could, for example, read a list of players from a file

SOURCEFILE "dngn.dcl"i

Example 15.5-3. The Modules in the Dungeon Other Than DNGN (continued)

- 236-

PROCEDURE getPlayersi
creatureList := bind("PLAYER")i # Only one player

END "gtpl"
<page mark>
BEGIN "player"

This module represents the player. It is mostly of
interest for its data fields rather than its procedure
fields.

SOURCEFILE "dngn.dcl"i
MODULE (creatureCls) playeri

BOOLEAN PROCEDURE processCmd (STRING S)i
RETURN(FALSE); # No commands operate on the player

PROCEDURE doTurn;
standardPlayerTurni

PROCEDURE attack (INTEGER howHard)i # Attack it
player.dead := TRUEi # Not prepared for attack

INITIAL PROCEDURE;
BEGIN'
name := "PLAYER";~ realPlayer := TRUEi
dngn.player := thisDataSection;
enterRoom(bind("START"),TRUE)i # Starting room
ENDi

END "player"
<page mark>
BEGIN "start"

Example 15.5-3. The Modules in the Dungeon Other Than DNGN (continued)

- 237-

t This is the starting room.
SOURCEFILE "dngn.dcl";
MODULE (roomCls) start;

BOOLEAN trapDoorOpen;
POINTER (thingCls) key;

DEFINE basicAnnouncement
"You are in the waiting room of a railway station. There
does not seem to be anyone behind the ticket counter. It
is raining heavily outside.
II.

f

BOOLEAN PROCEDURE processCmd (STRING s);
BEGIN
IF isSameCmd(s,"UNLOCK TRAPDOOR") OR

isSameCmd(s,"UNLOCK") OR
isSameCmd(s,"OPEN TRAPDOOR") THENB
IF contains(player,key) THENB

IF trapdoorOpen THEN
say("The trapdoor is already open.")

EB trapdoorOpen := TRUE;
say("The trapdoor is now open.");
announcement := basicAnnouncement & "

There is an open trapdoor in the floor.";
shortAnnouncement :=

"You are in the railway station waiting room. The
trapdoor is unlocked." END END

EL say("You do not have the key.");
RETURN (TRUE) END;

IF isSameCmd(s,"DOWN") AND NOT trapdoorOpen THENB
say("You cannot go down; the trapdoor is locked.");
RETURN (TRUE) END;

RETURN(processRoomCmd(s»;
END;

PROCEDURE doOnEntry;;
Nothing to do (note double semicolon; the procedure
body is an Empty Statement) .

Example 15.5-3. The Modules in the Dungeon Other Than DNGN (continued)

- 238-

INITIAL PROCEDURE;
BEGIN
setUp (" station" ,
basicAnnouncement & "
There is a trapdoor in the floor. It is locked.",
"You are in the railway station waiting room. The
trapdoor is locked.");
setUpRoom(thisDataSection,"PLTFRM OUT", "BSMNT DOWN");
bindThings(thisDataSection,"LAMP","KEY");
illuminated := TRUE; * Light comes in from the windows
key := bind("KEY");
END;

END "start"
<page mark>
BEGIN "lamp"

SOURCEFILE "dngn.dcl";
MODULE (thingCls) lamp;

BOOLEAN PROCEDURE processCmd (STRING s);
BEGIN
IF isSameCmd(s,"LIGHT LAMP") THENB

say("The lamp is now lit.");
illuminated := TRUE; RETURN (TRUE) END;

IF isSameCmd(s,"EXTINGUISH LAMP") THENB
say("The lamp is now out.");
illuminated := FALSE; RETURN (TRUE) END;

RETURN(processThingCmd(s,thisDataSection»;
END;

INITIAL PROCEDURE;
setUp (" lamp",
"There is a shiny brass lamp here.",
"There is a lamp here.");

END "lamp"
<page mark>
BEGIN "key"

Example 15.5-3. The Modules in the Dungeon Other Than DNGN (continued)

- 239-

SOURCEFILE "dngn.dcl";
MODULE (thingCls) key;

BOOLEAN PROCEDURE processCmd (STRING s);
RETURN(processThingCmd(s,thisDataSection»;

INITIAL PROCEDURE;
setUp ("key",
"There is a large old-fashioned key here.",
"There is a key here.");

END "key"
<page mark>
BEGIN "pltfrm"

* The railway station platform

SOURCEFILE "dngn.dcl";
MODULE (roomCls) pltfrm;

BOOLEAN PROCEDURE processCmd (STRING s);
RETURN(processRoomCmd(s»;

PROCEDURE doOnEntry;
BEGIN
say(eol &

"It is raining so hard out here that you drown!");
player.dead 0= TRUE;
END;

Example 15.5-3. The Modules in the Dungeon Other Than DNGN (continued)

- 240-

INITIAL PROCEDURE;
BEGIN
setUp ("platform" ,
"This is the railway platform. No train is in sight. It
is pouring rain. There is no place to go but back inside
the station.",
"This is the railway platform. It is pouring rain. There
is no place to go but back inside the station.");
illuminated := TRUE;
END;

END "pltfrm"
<page mark>
BEGIN "bsmnt"

The basement beneath the railway station waiting room

SOURCEFILE "dngn.dcl";
MODULE (roomCls) bsmnti

BOOLEAN PROCEDURE processCmd (STRING s);
RETURN(processRoomCmd(s»i

PROCEDURE doOnEntry;;

INITIAL PROCEDURE;
BEGIN
setUp ("basement",
"You are in a small cobwebby room. There is a flight of
stairs that leads up to a square of light.",
"You are in a small cobwebby room. There is a flight of
stairs that leads up to a square of light.");
setUpRoom(thisDataSection,"START UP");
END;

END "bsmnt"

Example 15.5-3. The Modules in the Dungeon Other Than DNGN (end)

- 241 -

A sample execution of the dungeon game with the "SW APINFO" subcommand is shown in
Example 15.5-4.

*dngn,<eol>
Enter subcommands (? for help) .
>swapinfo<eol>
><eol>
Swapping in DNGN
DNGN swapped in
Swapping in GTPL
GTPL swapped in
Swapping in PLAYER
PLAYER swapped in
Swapping in START
START swapped in
Swapping in LAMP
LAMP swapped in
Swapping in KEY
KEY swapped in

You are in the waiting room of a railway station. There
does not seem to be anyone behind the ticket counter. It
is raining heavily outside.

There is a trapdoor in the floor. It is locked.

Example 15.5-4. An Execution of DNGN with the "SW APINFO" MAINEX Subcommand
(continued)

- 242-

There is a large old-fashioned key here.
There is a shiny brass lamp here.
» get key<eol>
Gotten.
» get lamb<eol>
I don't understand.
» get lamp<eol>
Gotten.
» light lamp<eol>
The lamp is now lit.
» unlock trapdoor<eol>
The trapdoor is now open.
» down<eol>
Swapping in BSMNT
BSMNT swapped in

You are in a small cobwebby room. There is a flight of
stairs that leads up to a square of light.
» up<eol>

You are in the railway station waiting room. The
trapdoor is unlocked.
».out<eol>
Swapping in PLTFRM
PLTFRM swapped in

This is the railway platform. No train is in sight. It
is pouring rain. There is no place to go but back inside
the station.

It is raining so hard out here that you drown!

You died. So sorry.

*

Example 15.5-4. An Execution of DNGN with the "SW APINFO" MAINEX Subcommand
(end)

- 243-

15.6. String Forms of" bind" and "new"

As shown in Examples IS.S-2 and IS.S-3, "bind" may take a string argument instead of a
module identifier. The same is true of "new". This permits a module (module A) to bind
another module (module B) even though B is not declared in A. For example, the module
DNGN binds each room as the player enters it, using the string module name of the room as
supplied by the previous room. It would be inconvenient to have to include a separate module
declaration for every possible room that might be bound by DNGN.

Unlike the module identifier forms, the string forms of "bind" and "new" do not perform any
interface checking. Inconsistent interfaces can lead to bugs that are very difficult to track.
When you update the interface of a module, be sure to recompile all modules that use that
module.

15.7. thisDataSection and Unclassified Pointers

The dungeon game example makes extensive use of the system procedure "thisDataSection".
thisDataSection returns a pointer to the current data section. thisDataSection is an example of
an unclassified pointer; its value may be assigned to any pointer variable or passed as any
pointer parameter. The declaration of thisDataSection is shown in Figure IS.7-1.

POINTER PROCEDURE thisDataSectioni

Figure 15.7-1. Declaration of thisDataSection

Unclassified pointer variables may also exist; a sample declaration is shown in Example 15.7-2.
Such variables may be assigned to or from any other pointer. Just as with pointers to prefixed
classes, care must be made not to access fields that do not actually exist in a given record.

POINTER Pi * No parenthesized class name is used

Example IS.7-2. An Unclassified Pointer Variable

- 244-

IS.8. Exercises

Exercise 15-1.

Any number of enhancements to the dungeon game program can be imagined.
Among them are:

1. Keep track of bound data sections. disposing them all at the end of
DNGN's initial procedure.

2. Implement some creatures other than the player.

3. Devise a scoring mechanism and maintain a score for the player.

4. Create more rooms and more treasures. Some treasures may perform their
functions only in certain rooms or under certain circumstances.

5. Implement global commands (which take effect in any room).

6. You may want to maintain a list of dynamically created variables or
counters that are incremented on each turn. A module can call a utility
procedure to create a new variable or to look up an existing variable by
name.

7. Implement more sophisticated command parsing; e.g., "it" might be
understood to refer to the last object referenced.

8. How about allowing a train to stop at the station platform and take the
player somewhere?

- 245-

16. More on Modules

This chapter describes module search rules. An example of a module that may be invoked
either from MAINEX or from another module is shown. The MAINSAIL display modules are
discussed.

16.1. Toy Editor Example

This chapter contains a large sample module TOYED (in Example 16.4-1). TOYED uses most
of the concepts introduced some far, plus a few new ones.

By this point in the tutorial, you should be able to understand most of the material in the
"MAINSAIL Language Manual" without difficulty. Therefore, from this point on, system
procedures and other language constructs are not always explained when they are first
encountered in examples; you should look them up in the manual if they are unfamiliar.

16.2. Module Search Rules

Whenever a module's control section is established because the module is being bound or
newed, the following default search is used to find the control section:

1. Module-to-module associations are searched. There are several ways to make a
module-to-module association. It can be made from a MAINSAIL module by calling
the procedure "setModName" (see the "MAINSAIL Language Manual") or with the
MAINEX "SETMODULE" subcommand (see the "MAINSAIL Utilities User's
Guide"). A sample use of the procedure setModName is shown in Example 16.4-1.

2. The exeList (module-to-file associations) is searched. The exeList entries are made
from a MAINSAIL module by calling the procedure "setFileName" (see the
"MAINSAIL· Language Manual") or with the MAINEX "EXEFILE" or "EXELIB"
subcommand (see the "MAINSAIL Utilities User's Guide"). If an entry on the
exeList is found, the search terminates, and the module contained in the specified file
or objmod library is executed.

3. By default, objmod libraries opened for execution are searched (module libraries are
further described in Chapter 20). The MAINSAIL system objmod library is initially
open. User libraries can be opened from a MAINSAIL module by calling the
procedure "openLibrary" (see the "MAINSAIL Language Manual") or with the
MAINEX "OPENEXELIB" subcommand (see the "MAINSAIL Utilities User's

- 246-

Guide"). Open objmod libraries are searched in order of most recently opened to
least recently opened. If the module is found in an open library, the searcn
terminates, and the module is executed. If more than one module with the same
name exists, the first occurrence found is the one that is selected.

4. The foreign module table is searched. This table is a list of modules that have been
declared to be "foreign" (see Section 2004). A foreign module is one that has been
written in a language other than MAINSAIL. MAINSAIL supports invocation of
such modules through the Foreign Language Interface (see the "MAINSAIL
Compiler User's Guide" and the appropriate operating-system-dependent user's
guide). If a foreign module with the proper name is found. the search terminates. and
the module is executed.

5. If all of the above searches fail, MAINSAIL forms a file name from the module name
(see Table 16.2-1). If the resulting file exists, it is assumed to contain a MAINSAIL
object module. This module is executed.

An objmod file name for a particular system is made from a
module name by prefixing:

<1st 3 characters of $systemNameAbbreviation>-obj:

to the module name. The resulting name is typically'
transformed further by a "SEARCHPATH" entry (see the
"MAINSAIL Utilities User's Guide"):

SEARCHPATH *-obj:* *2-*1.obj

For example, a module BAR compiled for an M68000 UNIX
system (where $systemNameAbbreviation is. "um68") is
compiled into an objmod file named "um6-obj:bar". The
standard searchpath would map "um6-obj:bar" into
"bar-um6.obj".

Table 16.2-1. Default Objrnod File Names

If the "EXEFILE" MAINEX subcommand with no arguments is in effect, the file search is
made before the open library and foreign module searches.

- 247-

16.3. $useProgramlnterface

The boolean macro $useProgramlnterface may be used to determine whether a module should
be executed in an interactive ("program-like" or "independent") fashion, or in a "dependent"
fashion. $useProgramlnterface must be called only in a module's initial procedure, before the
module makes any procedure calls; otherwise, its value is unpredictable. $useProgramlnterface
is true if and only if the initial procedure is being invoked for one of the following reasons:

• An interface procedure is being called.

• "bind(m,b)" or "new(m,b)" was called, where the optional bits parameter b has the
$programlnterface bit set

Normal uses of "bind" and "new" within the MAINSAIL runtime system do not set the
$programInterface bit. For example, when a module is invoked from MAINEX, the bit is not
set, so that $useProgramInterface is false if queried by the module's initial procedure.

The module of Example 16.4-1 is set up so that it may be invoked in a "dependent" fashion
from another module. An invoking module, USEED, is shown in Example 16.4-2. USEED
maybe invoked from MAINEX, in which case it in turn calls TOYED, or it may be invoked
from TOYED by means of TOYED's "M" command.

16.4. The MAINSAIL Display Modules

The module of Example 16.4-1 uses the MAINSAIL "display modules". Most display
terminals accept special character sequences as display commands, e.g., to position the cursor
or insert or delete lines on the screen. The display modules permit a program to be independent
of a particular terminal type because ttc display functions are implemented as terminal­
independent display module interface procedures rather than as tenninal-dependent character
sequences. XIDAK supports a variety of display modules for different terminals; a list of the
supported terminals may be found in the "MAINEDIT User's Guide". The MAINSAIL display
modules are included as a standard part of every MAINSAIL system.

The interface declaration of the display modules is contained in the standard system source
library. You may include the interface declaration in your program by means of the following
code:

REDEFINE $scanName = "dpyHdr"; SOURCEFILE "(system library)";

Most of the display module interface procedures have names that are descriptive of what they
do; e.g., "setCursorOnScreen" positions the cursor, and "clearScreen" clears the display.

- 248-

XIDAK reserves the right to change the display module interface without notice. However, the
interface is not expected to change a great deal. If you wish to use the display modules in your
own program, you should contact XIDAK for information.

BEGIN "toyEd"

ToyEd is a "toy editor" that provides a full-screen
editing capability with commands such as delete
character and line, insert character, and text search.
It is meant to demonstrate many of the features of
MAINSAIL rather than to be a production editor.

The file to be edited is read into a string array, one
line per element. Tabs are converted to spaces on
input. Delete-line and insert-line move all elements
below the affected line up or down by one element.
Delete-character and insert-character build a new
string for the current line.

The screen update employs the display modules, which
are part of MAINEDIT. A separate display module is
provided for each terminal. The proper display module
is dynamically brought into memory when toyEd
starts execution. Execution starts in the initial
procedure, which dynamically determines which display
module to employ. It then prompts for the input file,
and calls the procedure executeCommands to process the
user commands. User keystrokes are processed
immediately upon entry, so t~at the screen is updated
as soon as a complete command is entered; the
keystrokes for the commands are not echoed.

The M command allows the user to invoke any MAINSAIL
module during the edit session. Control is returned to
the editor when the invoked module finishes.

ToyEd Command Summary

Example 16.4-1. Toy Editor Program (continued)

- 249-

#: Note: the MAINSAIL display modules return special codes
#: for arrow keys if they exist on the terminal. Every
#: terminal also has a special "enterCommandMode" key
#: that is used to enter command mode from overstrike or
#: insert mode.

#: Command Mode

#: ------------
#: C Copy line (push it onto delete stack)
#: D Delete line (and push it onto delete stack)
#: F Finish (save file and exit)
#: Gn Go to line n
#: I enter Insert mode
#: K delete (Kill) character
#: Ms execute Module s (dispose-bind-unbind)
#: N refresh screen (New screen)
#: 0 enter Overstrike mode
#: Q Quit without saving file
#: R Recover line (pop from delete stack)
#: Ts<CR> Text search right and all lines down for s
#: W scroll up one line (Window)
#: -w scroll down one line (Window)
#: <, , left arrow
#: move left one column
#: >, right arrow
#: move right one column
#: ", up arrow
#: move up one row
#: \, <If>, down arrow
if: move down one row
#: <cr> move to first column of next line

#: Overstrike Mode
#:
#:
#:
#:

<If> move down 1 row, enter command mode
<cr> move to first column of next line
, left arrow

move left 1 column
right arrow

move right one column
up arrow move up one row
down arrow move down one row

Example 16.4-1. Toy Editor Program (continued)

- 250-

#: Insert Mode

#: -----------
#: <If> move down 1 row, enter command mode
#: <cr> break line, move cursor to start of new line
#: delete character to left
#: left arrow move left 1 column
#: right arrow
#: move right one column
#: up arrow move up one row
#: down arrow move down one row

MODULE toyEd

) ;

#: The data structures are accessible from other
#: modules so that a module may set up the data
#: structure, then invoke TOYED to display and edit it

PROCEDURE executeCommands
(OPTIONAL STRING commands;
OPTIONAL BOOLEAN returnWhenExhausted);

INTEGER PROCEDURE setLastLine (INTEGER newLastLine) ;

STRING PROCEDURE msg
(OPTIONAL STRING promptString;
OPTIONAL BOOLEAN justPrompt);

PROCEDURE finish (OPTIONAL BOOLEAN dontWriteFile);

INTEGER
curLine, #: line index for current line
firstLineOnScreen, #: index for 1st line on screen
curCol; '#: current column (O-origin)

STRING ARRAY(O TO *)
line; #: major data structure

REDEFINE $scanName = "dpyHdr"; #: pick up standard display
SOURCEFILE "(system library)"; #: module stuff

MODULE (dpyCls) dpy;

Example 16.4-1. Toy Editor Program (continued)

- 251 -

BOOLEAN
executingAnotherModulei # M command has been invoked

INTEGER
lastLine;

DEFINE
firstRowOfScreen
firstColOfScreen
lineInc
error (m)
setCursor(r,c)

index for last line

0, # rows, columns on
0, * screen are O-origin
500, # arbitrary
[BEGIN msg(m,TRUE); ringBell END],
[dpy.setCursorOnScreen(

(r) - firstLineOnScreen + 1,c)];

* Set up for ASCII or EBCDIC character set ($charSet is * a predefined constant that may be examined by any * program)
IFC $charSet $ascii THENC
DEFINE

cr
lf
del

13,
10,
127;

ELSEC IFC $charSet
DEFINE

$ebcdic THENC

cr
lf
del

ELSEC
MESSAGE "Unknown character set";
ENDC ENDC

13,
37,
7;

CLASS stack (STRING line; POINTER(stack) link);

POINTER (stack)
deleteStack; * copied and deleted lines

FORWARD PROCEDURE scrollUp;
FORWARD PROCEDURE scrollDown;
FORWARD PROCEDURE insertLine;
FORWARD PROCEDURE refreshScreen;

Example 16.4-1. Toy Editor Program (continued)

- 252-

INTEGER PROCEDURE setLastLine (INTEGER newLastLine) ;
set the value of lastLine, increasing the line array in
size if necessary
BEGIN
IF newLastLine > line.ubI

THEN newUpperBound(line,newLastLine + lineInc);
RETURN(lastLine := newLastLine);
END;

PROCEDURE moveLeft;
IF curCol THEN setCursor(curLine,curCol - 1);

PROCEDURE moveRight;
IF curCol < lastColOfScreen THEN

setCursor(curLine,curCol .+ 1);

PROCEDURE moveUpi
IF curLine > 0 THENB

IF curLine = firstLineOnScreen THEN scrollDown;
setCursor(curLine .- 1,curCol) ENDi

PROCEDURE moveDowni
BEGIN
IF curLine = firstLineOnScreen + lastRowOfScreen - 1 THEN

scrollUpi
setCursor(curLine .+ 1,curCol)i
setLastLine(lastLine MAX curLine) ENDi

Example 16.4-1. Toy Editor Program (continued)

- 253-

PROCEDURE overStrikeChar (INTEGER char);
BEGIN
STRING s;
IF curCol GEQ lastColOfScreen THEN

error("Cannot overstrike here")
EB s := line[curLine];

WHILE length(s) < curCol DO cWrite(s,' ');
line [curLine] := s[l TO curCol] & cvcs(char) &

s[curCol + 2 TO INF];
dpy.overStrikeChar(char); curCol .+ 1 END END;

PROCEDURE insertChar (INTEGER char);
BEGIN
STRING s;
IF curCol GEQ lastColOfScreen THEN

error("Cannot insert here")
EB s := line[curLine];

WHILE length(s) < curCol DO cWrite(s,' ');
line [curLine] := s[l TO curCol] & cvcs(char) &

s[curCol + 1 TO INF];
dpy.insertChar(char); curCol .+ 1 END END;

PROCEDURE deleteChar;
BEGIN
DEFINE 5 = [line[curLine]];
dpy.de.leteChars (1);
s := s[l TO curCol] & s[curCol + 2 TO INF] END;

PROCEDURE copyLine;
BEGIN
POINTER(stack) p;
p := new(stack); p.link := deleteStack; deleteStack := p;
p.line := line[curLine]; moveDown END;

Example 16.4-1. Toy Editor Program (continued)

- 254-

PROCEDURE deleteLinei
BEGIN
INTEGER ii
POINTER (stack) Pi
P := new (stack) i p.link := deleteStacki deleteStack .= Pi
p.line := line[curLine];
FOR i := curLine UPTO lastLine - 1 DO

line[i] := line[i + 1];
line [lastLine] := ""; setLastLine(lastLine - 1);
dpy.deleteLines(l)i
dpy.setCursorOnScreen(lastRowOfScreen,O);
dpy.clearToEndOfLine;
dpy.overStrikeChars

(line[firstLineOnScreen + lastRowOfScreen - 1]);
setCursor(curLine,curCol := firstColOfScreen) END;

PROCEDURE breakLinei
BEGIN
STRING Si

S := line [curLine] [curCol + 1 TO INF];
line [curLine] := line [curLine] [1 TO curCol];
dpy.clearToEndOfLine; moveDown; insertLine;
IF line[curLine] := s THENB

dpy.overStrikeChars(s) ;
setCursor(curLine,curCol) ENDi

END;

STRING PROCEDURE popLinei
BEGIN
STRING s;
POINTER (stack) p;
IF NOT P := deleteStack THEN RETURN(n");
deleteStack := p.link; s := p.line; RETURN(s) END;

Example 16.4-1. Toy Editor Program (continued)

- 255-

PROCEDURE recoverLine;
BEGIN
insertLine;
dpy.overStrikeChars(line[curLine] := popLine);
setCursor(curLine,curCol := firstColOfScreen) END:

PROCEDURE insertLine;
BEGIN
INTEGER i;
FOR i := setLastLine(lastLine + 1) DOWNTO curLine DO

line[i] := line[i - 1];
line [curLine] := "":
setCursor(curLine,curCol := firstColOfScreen):
dpy.insertLines(l) END:

PROCEDURE scrollUp;
BEGIN
setLastLine(lastLine MAX

(firstLineOnScreen + lastRowOfScreen»;
dpy. setCursorOnScreen (firstRowOf Screen + 1,0);
dpy.deleteLines(l) ;
dpy.setCursorOnScreen(lastRowOfScreen,O):
dpy.overStrikeChars

(line[firstLineOnScreen + lastRowOfScreen]);
curLine .MAX (firstLineOnScreen .+ 1);
setCursor(curLine,curCol) END;

PROCEDURE scrollDown;
BEGIN
IF firstLineOnScreen = ° THEN RETURN;
dpy.setCursorOnScreen(firstRowOfScreen + 1,0);
dpy.insertLines(l):
dpy.overStrikeChars(line[firstLineOnScreen .- 1]);
curLine .MIN (firstLineOnScreen + lastRowOfScreen - 1);
setCursor(curLine,curCol) END;

Example 16.4-1. Toy Editor Program (continued)

- 256-

PROCEDURE goto
(OPTIONAL INTEGER lineOfBuffer,colOfScreen);

BEGIN
curLine := ° MAX lineOfBuffer MIN lastLine;
curCol := ° MAX colOfScreen MIN lastColOfScreen;
IF firstLineOnScreen LEQ curLine <

firstLineOnScreen + lastRowOfScreen THEN
setCursor (curLine, curCol)

EB firstLineOnScreen := curLine;
setLastLine(lastLine MAX

(firstLineOnScreen + lastRowOfScreen - 1»;
refreshScreen END;

END;

PROCEDURE refreshScreen;
BEGIN
INTEGER i;
dpy.clearScreen;
FOR i := firstRowOfScreen + 1 UPTO lastRowOfScreen DOB

dpy.setCursorOnScreen(i,O);
dpy.overStrikeChars

(line[firstLineOnScreen + i - 1]) END;
setCursor(curLine,curCol) END;

PROCEDURE search (STRING searchString)i
BEGIN
INTEGER
BITS
STRING
OWN STRING

i,t,u;
bi
Si

previousSearchString;

IF searchString THEN previousSearchString := searchString
EF NOT searchString := previousSearchString THEN RETURN;

u := length (searchString) ;
b := scanSet(cvu(searchString[1 FOR 1]»;

Example 16.4-1. Toy Editor Program (continued)

- 257-

FOR i := curLine UPTO lastLine DOB "out"
s : = line [i] ;
IF i = curLine THEN s := s[curCol + 2 TO INF];
WHILE length{s) GEQ u DOB

scan(s,b,uppercase!omit!retain,t);
IF s AND equ(searchString,s[l FOR u],upperCase)

THEN DONE "out"; it Note use of named loop
cRead{s) END END "out";

scanRel(b);
IF i > last Line THEN

error("Did not find """ & searchString & """")
EL goto(i,length(line[i]) - length(s» END;

PROCEDURE setupFile (OPTIONAL BOOLEAN noFile);
BEGIN
BOOLEAN
INTEGER
STRING

newFile;
ch,col;
r,s;

POINTER (textFile) f;

IF NOT noFile THEN
DO UNTIL

open(f,"File to edit: ",prompt !input !errorOk)
OR newFile : = confirm ("New file")
OR confirm{"Do you want to exit");

IF f THENB
setLastLine(-l);
DOB * expand tabs to spaces on input

read{f,r); IF NOT $gotValue{f) THEN DONE;
s := ""; col := 0;
WHILE r DOB

IF ch := cread{r) = first{tab) THEN
DO cWrite{s,' ')
UNTIL NOT (col .+ 1) MOD 8

EB cWrite{s,ch); col .+ 1 END END;
line[setLastLine{lastLine + 1)] := sEND;

c10se(f) END
EF NOT (newFi1e OR noFi1e) THEN exit;

Example 16.4-1. Toy Editor Program (continued)

- 258-

curLine := curCol := 0;
initializeT~rminal; refreshScreen END;

PROCEDURE finish (OPTIONAL BOOLEAN dontWriteFile);
BEGIN
INTEGER i;
POINTER (textFile) f;
STRING r,s;

IF NOT dontWriteFile THENB
f := NULLPOINTER;
r := s := "Output file (just eol for none): ";
WHILE s := msg(s) AND NOT

open(f,s,output!errorOk!alterOK) DO
s := "Could not open" & s & ". " & r;

IF f THENB
WHILE lastLine AND NOT line[lastLine] DO

setLastLine(lastLine - 1);
FOR i := 0 UPTO lastLine DO write(f,line[i],eol);
close(f) END END;

IF executingAnotherModule THEN RETURN;
Don't deinitialize terminal if may return to TOYED

dpy.clearScreen;
dpy.setCursorOnScreen

(firstRowOfScreen,firstColOfScreen) ;
delnitializeTerminal END;

Example 16.4-1. Toy Editor Program (continued)

- 259-

PROCEDURE executeModule (STRING rnoduleNarne);
BEGIN * The executed module may call back into TOYED
executingAnotherModule := TRUE;
dpy.clearScreen;
dpy.setCursorOnScreen

(firstRowOfScreen,firstCoIOfScreen);
dispose(moduleName); bind(moduleName); unBind(moduleName);
executingAnotherModule := FALSE;
refreshScreen END;

STRING PROCEDURE msg (OPTIONAL STRING promptString;
OPTIONAL BOOLEAN justPrompt);

BEGIN
INTEGER t,u;
STRING s;
dpy.setCursorOnScreen

(firstRowOfScreen,firstCoIOfScreen);
dpy.clearToEndOfLine;
dpy.overStrikeChars(prornptString);
IF NOT justPrompt THENB

u := length(prornptString); s := "";
DOB t := dpy.dpycRead;

IF t = dpy.dpyEol THEN DONE;
IF t NEQ del THENB

cWrite(s,t); u .+ 1;
dpy.overStrikeChar(t) END

EF s THENB
rcRead(s) ;
dpy.setCursorOnScreen

(firstRowOfScreen,u .- 1);
dpy.deleteChars(l) END END END;

setCursor(curLine,curCol); RETURN(s) END;

Example 16.4-1. Toy Editor Program (continued)

- 260-

PROCEDURE executeCommands
(OPTIONAL STRING commands;
OPTIONAL BOOLEAN returnWhenExhausted);

BEGIN
BOOLEAN minus;
INTEGER mode,t;

DEFINE
commandMode
insertMode
overStrikeMode

setMode(m)

1,
2,
3,

[msg(
IF mode := m == comrnandMode THEN "c"
EF mode == insertMode THEN "I"
EL "O",TRUE)];

mode := commandMode; minus :== FALSE;

DOB "outerLoop"
IF commands THEN t :== cRead(commands)
EF returnWhenExhausted THENB

setMode(commandMode); DONE END
EL t := dpy.dpycRead;

CASE mode OFB "outerCase"

Example 16.4-1. Toy Editor Program (continued)

- 261 -

[insertMode]
CASE t OFB

[cr]
[If]

[del]

breakLinei
BEGIN
moveDowni
setMode(commandMode) END;
IF curCol THENB

moveLefti deleteChar END;
[dpyLeft]

moveLeft;
[dpyRight]

moveRight;
[dpyUp] moveUp;
[dpyDown]

moveDown;
[dpyEnterCommandMode]

setMode(commandMode);
[] insertChar (t) ;
END;

[overStrikeMode]
CASE t OFB

[cr] BEGIN
moveDown;
goto (curLine, firstColOf Screen)
END;

[If] BEGIN moveDown;
setMode(commandMode) END;

[del] [dpyLeft]
moveLeft;

[dpyRight]
moveRight;

[dpyUp] moveUp;
[dpyDown]

moveDown;
[dpyEnterCommandMode]

setMode(commandMode) ;
[] overStrikeChar (t) ;
END;

Example 16.4-1. Toy Editor Program (continued)

- 262-

END;

[commandMode]
CASEcvu(t) OFB

[' C']
[' D']
[' F']
[' G']
[, I']

[' K']

[' M']
[' N']

[' 0']
[' Q']

copyLine;
deleteLine;
BEGIN finish; DONE END;
goto(cvi(msg("Line: H»~);

setMode(insertMode);
deleteChar;
executeModule(msg("Module: H»~;

refreshScreen;
setMode(overStrikeMode);
IF equ (msg ("Quit (Y or N): "),

"Y",upperCase) THERB
finish(TRUE); DONE END;

['R'] recoverLine;
['T'] search(msg("Search string: "»;
['W'] IF minus THEN scrollDown

ELSE scrollUp;
['-'] BEGIN minus 0= TRUE; CONTINUE END;
(' <,] [del] [dpyLeft]

moveLeft;
[' >,] [dpyRight]

moveRight;
[, A'] [dpyUp]

moveUp;
[cr] BEGIN

moveDown;
goto (curLine, firstColOfScreen)
END;

[' \'] [If] [dpyDown]
moveDown;

[dpyEnterCommandMode]
[] ringBell;
END;

END "outerCase";

minus := FALSE END "outerLoop";

Example 16.4-1. Toy Editor Program (continued).

- 263-

INITIAL PROCEDURE;
BEGIN
BOOLEAN useProgramInterface;

useProgramInterface := $useProgramInterface;
Must call $useProgramInterface first thing in the
initial procedure

ttyWrite("Display module: ");
setModNarne ("dpy", ttyRead) ;
new(line,O,lineInc);
* Ask for file name and continue only if called * interactively:
setUpFile(useProgramInterface);
IF NOT usePrograrnInterface THEN executeCommands END;

END "toyEd"

Example 16.4-1. Toy Editor Program (end)

BEGIN "useEd"

MODULE toyEd (
PROCEDURE executeCommands

(OPTIONAL STRING commands;
OPTIONAL BOOLEAN returnWhenExhausted);

INTEGER PROCEDURE setLastLine (,INTEGER newLastLine);

STRING PROCEDURE msg
(OPTIONAL STRING prornptString;
OPTIONAL BOOLEAN justPrompt);

PROCEDURE finish (OPTIONAL BOOLEAN dontWriteFile);

INTEGER
curLine, # line index for current line
firstLineOnScreen, * index for 1st line on screen
curCol; * current column (O-origin)

Example 16.4-2. A Module That Uses TOYED (continued)

- 264-

) ;

STRING ARRAY(O TO *)
line;

INITIAL PROCEDURE;

* major data structure

* Write 21 lines into the TOYED data structure. Set
the cursor at the fifth line, fourth column of the * buffer; put the third line of the buffer at the top
of the screen. Then call TOYED with the "N" command,
which displays the data structure. Then prompt the * user for a string and echo it back. Then execute * the ,,<It command, and continue executing TOYED commands
until TOYED exits ("Q" or "F" command) .

If USEED was invoked by means of the TOYED "M" command,
it will return to TOYED, and a second "Q" or "F" command * will be needed to exit from TOYED to MAINEX.
BEGIN
INTEGER i;

setLastLine(20);
FOR i := 0 UPTO 20 DO line[i] := "This is line" & cvs(i);
curLine := 5; firstLineOnScreen := 3; curCol := 4;
executeCommands(tlNtI,TRUE);
msg(tlyou said" & msg("Say something: "),TRUE);
executeCommands("<");
END;

END "useEd"

Example 16.4-2. A Module That Uses TOYED (end)

- 265-

17. Exceptions

Exceptions provide a mechanism for temporarily interrupting or permanently aborting the
normal flow of control in a program. The program may deal with the exception in a manner
determined at an earlier point in the program's execution, or it may choose not to deal with it at
all. Exceptions are generated automatically when many kinds of errors occur. If a program
chooses not to deal with an exception, the MAINSAIL runtime system usually calls the system
procedure errMsg to report that the exception has not been handled.

17.1. Rationale behind Exceptions

Imagine a program that parses a complicated input file (e.g., a compiler that parses a program).
The parser may be a recursive-descent parser (as in the program CALC of Example 7.2.2-2).
Complicated input languages require complicated recursive-descent parsers; at any given time,
such parsers may be many levels deep in procedure calls.

If an error occurs in the input file, the parser may become confused. It may be desirable to skip
subsequent input until some recognizable terminating token is found (e.g., an "END" in a
MAINSAIL source program), It is certainly possible for the procedure that recognizes the error
in the source to skip forward in the input to the terminating token; however, it is then also
desirable to abort all the procedures that were parsing things that were supposed to appear in
the input before that terminating token.

Without exceptions, some sort of failure code must be returned by a procedure that recognizes
that an error has occurred in the input, and examined by each calling procedure, until the
procedure is resumed that was trying to parse the construct ending with the terminating token to
. which the parser skipped. The code to do this can be complex and difficult to read. For
example, consider a procedure to parse the following partial grammar:

x => abc "end"
=> d "end"

That is, an item x is composed of the series of three items a, b, and c, followed by the keyword
"end", or composed of the single item d followed by the keyword "end". The procedure to
parse each item may return in one of three ways:

1. The item. may be parsed correctly.

2. An error may occur that requires that the parser skip to the keyword "endlt
•

- 266-

3. Some other sort of error may occur, requiring the calling procedure (the procedure to
parse the item x) to be aborted.

The code to parse an item x in the above grammar might look something like Example 17.1-1.
Although the task to be accomplished by the procedure parseX is not conceptually very
complicated, the code for parseX is complicated because of the bookkeeping required to keep
track of error codes.

<return code> PROCEDURE parseX;
BEGIN
<return code> errorCode;
IF <what'S in the input is the beginning of an a-item>

THENB CASE errorCode := parseA OFB
[<failure, skip to "end">] <skip to "end">;
[<success>]

CASE errorCode := parseB OFB
[<failure, skip to "end">]

<skip to "end">;
[<success>]

[] END

CASE errorCode := parseC OFB
[<failure, skip to "end">]

<skip to "end">;
[<success>]

END;

RETURN(IF checkFor("end") THEN
<success>

EL <missing "end" error»;
END;

EF <what's in the input is the beginning of ad-item>
THEN CASE errorCode .= parseD OFB

[<failure, skip to "end">] <skip to "end">;
[<success>] RETURN (

[] END

IF checkFor("end") THEN <success>
EL <missing "end" error»;

EL RETURN«some error code: don't see a-item or d-item»;
RETURN(IF <skipped to "end"> THEN <appropriate error code>

EL errorCode);
END;

Example 17.1-1. Recursive-Descent Parsing without Exceptions

- 267-

What the writer of the procedure parseX would really like to have done is something like:

If any error occurs in the following:

<parse a, b, and c, or parse
d, as appropriate>

then handle it in the following way:

<skip to "end" if we should,
otherwise pass the error on
to the calling procedure>

Exceptions provide a mechanism for doing exactly this. With exceptions, the procedure parseX
of Example 17.1-1 can be rewritten as shown in Example 17.1-2.

PROCEDURE parseX;
BEGIN
$HANDLE

IF <what's in the input is the beginning of an a-item>
THENB parseA; parseB; parseC END

EF <what's in the input is the beginning of ad-item>
THEN parseD

EL $raise«some error»
$WITH

IF $exceptionName = <failure, skip to "end"> THEN
<skip to "end">

EL $raise; * Propagate the exception
IF NOT checkFor("end") THEN $raise«missing "end"»;
END;

Example 17.1-2. Recursive-Descent Parsing with Exceptions

17.2. The Handle Statement

The form of the Handle Statement is:

$HANDLE <handled statement> $WITH <handler statement>

- 268-

"$HANDLEB tI and "$WITHB" are abbreviations for "$HANDLE BEGIN" and "$WITH
BEGIN", respectively.

If an exception occurs within the handled statement (or within any procedures invoked from the
handled statement), then the execution of the handled statement is temporarily suspended and
the handler statement (or just "handler") is executed. If no exception occurs within the handled
statement, the handler is ignored; i.e., after the handled statement terminates, control resumes at
the statement following the Handle Statement.

The most direct way to cause (raise) an exception is to call the system procedure $raise with at
least one argument:

$raise«exception name»

The exception name (the first argument to $raise) is any string.

A handler may deal with an exception in any of the following ways:

1. It can propagate (pass on) the exception to the next handler, if any, by calling the
system procedure $raise with no arguments. The handler should always do this if it
does not recognize the exception (as identified by $exceptionName).

2. It can resume the suspended handled statement by calling the system procedure
$raiseReturn.

3. If the end of the handler statement is reached (execution "falls out" of the handler)
and neither $raise nor $raiseReturn has been called (or if the handler is exited by
means of a Done, Continue, or Return Statement), then the execution of the
suspended handled statement is aborted. and execution resumes immediately
following the Handle Statement (or at the location implied by the Done, Continue, or
Return Statement).

The handler is said to have "handled" the exception if it deals with it in the second or third way
listed above.

The three ways to deal with an exception are illustrated by Examples 17.2-1, 17.2-2, and
17.2-3. The three modules differ only in the actions taken by the handlers in the Handle
Statements. The fatal error message in Example 17.2-1 is generated by the MAINSAIL
runtime system, which intercepts the exception after it is propagated by the call to $raise with
no arguments (the runtime system then also generates the exception "MAINSAIL: System
exception ").

- 269-

~ ..

The module:

BEGIN "excptl"

INITIAL PROCEDURE;
BEGIN
write(logFile,"Before Handle Statement." & eol);
$HANDLEB

write (logFile,
"About to raise an exception ... " & eol);

$raise("Exception!");
write (logFile,

"In handled statement, after exception."
& eol) END

$WITHB
write (logFile, "Intercepted e¥ception ",

$exceptionName,eol) ;
$raise END;

write (logFile, "After Handle Statement." & eol);
END;

END "excptl"

executes as follows:

*excptl<eol>
Before Handle Statement.
About to raise an exception ...
Intercepted exception Exception!
Intercepted exception MAINSAIL: System exception

FATAL: No handler for exception Exception!
In module EXCPT1 at offset 164 (decimal)
Error Response:

Example 17.2-1. Propagating an Exception with $raise

- 270-

The module:

BEGIN "excpt2"

INITIAL PROCEDURE;
BEGIN
write(logFile,"Before Handle Statement." & eol);
$HANDLEB

write (logFile,
"About to raise an exception ... " & eol);

$raise("Exception!");
write (logFile,

"In handled statement, after exception."
& eol) END

$WITHB
write (logFile, "Intercepted exception ",

$exceptionName,eol) ;
$raiseReturn END;

write(logFile,"After Handle Statement." & eol);
END;

END "excpt2"

executes as follows:

*excpt2<eol>
Before Handle Statement.
About to raise an exception ...
Intercepted exception Exception!
In handled statement, after exception.
After Handle Statement ..

Example 17.2-2. Resuming a Suspended Handled Statement with $raiseReturn

- 271 -

The module:

BEGIN "excpt3"

INITIAL PROCEDURE;
BEGIN
write (logFile, "Before Handle Statement." & eol);
$HANDLEB

write (logFile,
"About to raise an exception ... " & eol);

$raise("Exception!");
write (logFile,

"In handled statement, after exception."
& eo1) END

$WITH
write(logFile,"Intercepted exception It,

$exceptionName,eol) ; * Just fallout of handler; no $raise or
=It $raiseReturn.

write(logFile,"After Handle Statement." & eol);
END;

END "excpt3"

executes as follows:

Before Handle Statement.
About to raise an exception ...
Intercepted exception Exception!
After Handle Statement.

The call to write immediately after the call to $raise is
never reached, since the handled statement is aborted
when the handler terminates.

Example 17.2-3. Falling Out of a Handler

- 272-

17.3. Exceptions Raised Automatically and Predefined Exceptions

In a variety of circumstances, MAINSAa automatically raises an exception. Exceptions may
be raised automatically by:

• A MAINSAIL program error, e.g., an array subscript error, a nullPointer data access,
a case index error, falling out of a typed procedure without returning a value, etc.

• An arithmetic error, e.g., overflow, underflow, division by zero, etc. (the exceptions
signaled depend on the operating system; not all operating systems permit
MAINSAIL to intercept all arithmetic errors).

• End-of-file on cmdFile or on "TTY" during a call to ttyRead (see the descriptions of
$cmdFileEofExcpt and $ttyEofExcpt in the "MAINSAa Language Manual").

• The system procedure errMsg (see Section 17.6).

• Falling out of a handler of which the handled statement has invoked one or more
procedures. The invoked procedures, being part of the handled statement, are
aborted; the SabortProcedureExcpt exception is raised in each active (currently
executing) Handle Statement in the aborted procedures.

A list of the predefined exceptions and their significances may be found in the "MAINSAIL
Language Manual".

One predefined exception that is never raised automatically is the $abortProgramExcpt
exception. It is raised by the "MAINSAIL: Abort program" (or an abbreviation thereof; "a pit
usually suffices) response to the "Error response:" prompt When it is raised, the currently
executing MAINSAIL program is aborted, usually returning control to the program from which
the current program was invoked; first, however, each active handler in the program is given a
chance to handle $abortPfocedureExcpt (be sure to distinguish between $abortProgramExcpt
and $abortProcedureExcpt!). .

Handling $abortProcedureExcpt is usually the correct method of allowing a procedure or
program to clean up after itself if it is unexpectedly aborted. See the program fragment of
Example 17.3-1.

17.4. Multiple Handlers and Multiple Exceptions

More than one Handle Statement may be executing at any given time (e.g., if a Handle
Statement is contained inside another (see Example 17.4-1) or contained in a procedure called
by another). Furthermore, more than one exception may be active at a given time (e.g., if an
exception is raised from a handler that is handling another exception).

- 273-

PROCEDURE cleanUp;
BEGIN
<close files if open>
<dispose of data structures if necessary>
<unbind or dispose of modules>
<release scan bits or integers if any used>
END;

INITIAL PROCEDURE;
$HANDLEB <perform the actions of the program>; cleanUp END
$WITHB

IF $exceptionName = $abortProcedureExcpt THEN cleanUp;
$raise END;

Example 17.3-1. Cleaning Up by Handling $abortProcedureExcpt

In the code:

$HANDLEB

$HANDLEB

$HANDLE xxx
$WITH ...
... END

$WITH ...
... END

$WITH ...

three Handle Statements are executing when the statement
"xxx" is executed.

Example 17.4-1. Simultaneously Active Handle Statements

It is often the case that several Handle Statements are executing simultaneously. Multiple
Handle Statements might be used in a recursive-descent parser, for example, to implement

- 274-

skipping to terminating tokens of several different constructs in case of error, as in Example
17.1-2. For example, if the grammar parsed in Example 17.1-2 is expanded to:

x => abc "end"
=> d "end"

d => Y z "."

then it might be parsed by a program fragment resembling Example 17.4-2.

PROCEDURE parseD;
BEGIN
$HANDLEB

parseY; parseZ END
$WITH

IF $exceptionName :::: <failure, skip to "."> THEN
<skip to ".">

EL $raise; * Propagate the exception
IF NOT checkFor(".") THEN $raise«missing "."»;
END;

PROCEDURE parseX;
BEGIN
$HANDLE

IF <what's in the input is the beginning of an a-item>
THENB parseA; parseB; parseC END

EF <what's in the input is the beginning of ad-item>
THEN parseD

EL $raise«some error»
$WITH

IF $exceptionName = <failure, skip to "end"> THEN
<skip to "end">

EL $raise; * Propagate the exception
IF NOT checkFor("end") THEN $raise«missing "end"»;
END;

Example 17.4-2. Two Simultaneously Active Handle Statements

At the time the procedure parseY is called in Example 17.4-2, two Handle Statements are
active: the one in the procedure parseD, and the one in the procedure parseX. Since the
Handle Statement in parseD has been entered more recently, its handler will intercept any
exceptions before the handler in parseX. If the handler in parseD propagates an exception with

- 275-

~,:;",
f

an argumentIess call to $raise, the handler in parseX then receives control. In general, when an
exception is propagated, it is intercepted in the order of most recently to least recently entered
relevant Handle Statement.

Simultaneously active Handle Statements may be called "nested" Handle Statements; an
exception raised while another is being processed may be referred to as a "nested exception".
Example 17.4-3 shows a module that uses nested Handle Statements and nested exceptions;
Example 17.4-4 shows its output.

c: C exception
B1: C exception
D: D exception
B2: D exception
D: returned from D exception
B3: C exception
C: MAINSAIL: Abort procedure
D: D exception
A: D exception
D: MAINSAIL: Abort procedure

Example 17.4-4. Output from Example 17.4-3

Example 17.4-5 shows conceptual views of the procedure call stack at a series of moments
during the execution of Example 17.4-3. Moment 1 shows the entry into the procedure a.
Moment 2 shows the (handled) call to procedure b; moment 3, the (handled) call from b to c.
At moment 4, the Handle Statement in c is entered; at moment 5, the exception tIC exception"
has been raised, and the handler part of c's Handle Statement is entered. At this point, c writes
"C: C exception" to 10gFile. The handled part of c's Handle Statement has been suspended (as
indicated by "suspnd hndld stmt"). At moment 6, the call to $raise in c's handler has
propagated the exception "c exception" to b's (outer) Handle Statement, the handled part of
which is thereby suspended. At this point, b writes "B 1: C exception" to 10gFile. At moment
7, b calls d from b' s inner Handle Statement, and d enters the handled part of its Handle
Statement. At moment 8, dhas raised the exception ltD exception", and d's handler has
intercepted the exception. At this point, d writes "D: D exception" to 10gFile. At moment 9,
the call to $raise propagates the exception "D exception" to b, d's caller (not to c, which is not
in d's call chain, although it is shown on the stack between b and d). At this point, b writes
"B2: D exception" to 10gFile. Moment 10 looks like moment 7; the call to $raiseRetum in b
restores control to d's handled statement at the point where it was suspended. The call to
$raiseRetum handles the exception "D exception" so that it is no longer pending. At this point,
d writes "D: returned from D exception" to 10gFile. If another exception were raised at this
point from d's handled statement, the call stack would again go through states similar to
moments 8, 9, and 10.

- 276-

BEGIN "mulExc"

PROCEDURE d;
$HANDLEB

$raise("D exception");
write(logFile,"D: returned from D exception" & eol);
END

$WITHB
write(logFile,"D: ",$exceptionName,eol); $raise END;

PROCEDURE c;
$HANDLE $raise ("C exception")
$WITHB

write(logFile,"C: ",$exceptionName,eol); $raise END;

PROCEDURE b;
BEGIN
$HANDLE c
$WITHB

write (logFile, "Bl: ",$exceptionName,eol);
$HANDLE d

d;
END;

$WITHB
write (logFile, "B2: ",$exceptionName,eol);
$raiseReturn END;

write (logFile, "B3: ",$exceptionName,eol) END;

INITIAL PROCEDURE a;
$HANDLE b
$WITH write (logFile, "A: ",$exceptionName,eol);

END "mulExc"

Example 17.4-3. Nested Handlers and Exceptions

- 277-

+-----+
-> I a I

+-----+
1

+-----+
-> handled stmt

I c I
+-----+

handled stmt
I b I
+-----+

handled stmt
I a I
+-----+

4

+-----+
-> I b I

+-----+
handled stmt

I a I
+-----+

2

+-----+
<C exception>
-> handler

suspnd hndld stmt
I c I
+-----+

handled stmt
I b I
+-----+

handled stmt
I a I
+-----+

5

+-----+
-> I c I

+-----+
handled stmt

I b I
+-----+

handled stmt
I a I
+-----+

3

+-----+
suspnd hndld stmt

I c I
+-----+

<C exception>
-> handler

suspnd hndld stmt
I b I
+-----+

handled stmt
I a I
+-----+

6

Example 17.4-5. Explanation of Example 17.4-3 with Stack Diagrams (continued)

- 278-

+-----+
-> handled stmt

I d I
+-----+

+-----:+
<D exception>
-> handler

suspnd hndld stmt
I d I
+-----+

suspnd hndld stmt suspnd hndld stmt
I c I I c I
+-----+ +-----+

handled stmt
<C exception>

handler

handled stmt
<C exception>

handler
suspnd hndld stmt suspnd hndld stmt

I b I I b I
+-----+

handled stmt
I a I
+-----+

7

+-----+
-> handled stmt

I d I
+-----+

suspnd hndld stmt
I c I
+-----+

handled stmt

+-----+
handled stmt

I a I
+-----+

8

+-----+
suspnd hndld stmt

I c I
+-----+

<C exception> <C exception>
handler -> handler

suspnd hndld stmt suspnd hndld stmt
I b I I b I
+-----+

handled stmt
I a I
+-----+

10

+-----+
handled stmt

I a I
+-----+

11

+-----+
suspnd hndld stmt

I d I
+-----+

suspnd hndld stmt
I c I
+-----+

<D exception>
-> handler

suspnd hndld stmt
<C exception>

handler
suspnd hndld stmt

I b I
+-----+

handled stmt
I a I
+-----+

9

+-----+
<Abort procedure>

-> handler
suspnd hndld stmt

I c I
+-----+
I b I
+-----+

handled stmt
I a I
+-----+

12

Example 17.4-5. Explanation of Example 17.4-3 with Stack Diagrams (continued)

- 279-

+-----+
-> I b I

+-----+
handled stmt

I a I
+-----+

13

+-----+
suspnd hndld stmt

I d I
+-----+

b
+-----+

<D exception>
-> handler

suspnd hndld strnt
I a I
+-----+

16

+-----+
-> handled stmt

I d I
+-----+
I b I
+-----+

handled stmt
I a I
+-----+

14

+-----+
<Abort procedure>

-> handler
suspnd hndld stmt

I d I
+-----+

b
+-----+

a
+-----+

17

+-----+
<D exception>
-> handler

suspnd hndld stmt
I d I
+-----+
I b I
+-----+

handled stmt
I a I
+-----+

15

+-----+
-> a

+-----+
18

Example 17.4-5. Explanation of Example 17.4-3 with Stack Diagrams (end)

At moment 11, the procedure d has returned normally to its caller b, where control resumes in
the outer handler. The exception tIC exception" has not yet been handled, and is therefore still
pending. At this point, b writes "B3: C exception" to 10gFile. At moment 12, control falls out
of b's outer handler, thereby handling the exception "C exception". Since the procedure C is
still suspended, the exception "MAINSAIL: Abort procedure" ($abortProcedureExcpt) must be
raised within it. At this point, c writes tIC: MAINSAIL: Abort procedure" to logFile. At
moment 13, c has been aborted. At moment 14, b has made its call to d, and d enters its
handled statement. At moment 15, d has raised the exception "D exception", and thereby
entered its handler. At this point, d writes "D: D exception" to 10gFile. At moment 16, the call
to $raise in d propagates the exception "D exception" to the still active handler in a. At this
point, a writes "A: D exception" to 10gFile. At moment 17, control falls out of a's handler,
handling "D exception". $abortProcedureExcept is raised in d, and d writes nD: MAINSAIL:
Abort procedure" to 10gFile. At moment 18, d has been aborted, along with b, which had no
active Handle Statement, and therefore did not intercept $abortProcedureExcpt. At this point, a
returns normally to its caller.

- 280-

17.5. Information about the Current Exception

A handler can obtain the name of the current exception by calling $exceptionName. Other
information about the exception (e.g., whether or not the handler can resume execution at the
place where the exception occurred) can be obtained by calling $exceptionBits; consult the
description of $exceptionBits in the "MAINSAIL Language Manual".

When an exception is caused by means of the system procedure $raise, extra. information about
the exception can be passed by means of the parameters exceptionS tringArg 1,
exceptionStringArg2, and exceptionPointerArg. A handler can access the values passed as
these arguments by means of $exceptionStringArg1, $exceptionStringArg2, and
$exceptionPointerArg.

If, for efficiency. a handler does not want to perfonn string comparison on an exception name
to see which exception has occurred, it can compare the pointer passed in exceptionPointerArg;
see Section L14 of part II of the "MAINSAIL Tutorial".

17.6. err Msg and Exceptions

Whenever the system procedure errMsg is called, it raises the exception $systemExcpt
("MAINSAIL: System exception"). This allows any program currently running to examine the
error message and determine whether it should take some action. The program may decide to
prevent the error message from being displayed.

Before writing a message to 10gFile, errMsg raises the exception $systemExcpt, passing the
two string arguments to errMsg in exceptionStringArg1 and exceptionStringArg2. A handler
may examine these as shown in Example 17.6-1. If all handlers propagate the exception with
an argumentless call to $raise, the error message is written to 10gFile as usual, and errMsg
returns true. If a handler calls $raiseRetum, the error message is suppressed; errMsg assumes
th;lt appropriate action has been taken to handle the error condition, and returns false.

A program may define additional responses that are valid at the "Error response:" prompt by
calling $registerException. This is the mechanism whereby the MAINSAIL compiler defines
the "MAINSAIL: Abort compilation" response. See the description of $registerException in
the "MAINSAIL Language Manual".

17.7. Exceptions and Co routines

Exceptions in separate coroutines are handled as described in Section 19.5.

- 281 -

The module:

BEGIN nerrExc"

INITIAL PROCEDURE;
BEGIN
$ HANDLE

write(logFile,IF errMsg(nThis is an","error") THEN
"TRUE" EL "FALSE",eol)

$WITHB write(logFile,
n$exceptionName = ",$exceptionName,eol &
"$exceptionStringArgl = ",

$exceptionStringArgl,eol &
n$exceptionStringArg2 = ",

$exceptionStringArg2,eol);
$raise END;

$ HANDLE
write(logFile,IF errMsg(nThis is another","error")

THEN "TRUE" EL "FALSE",eol)
$WITHB write(logFile,

END;

"$exceptionName = ",$exceptionName,eol &
"$exceptionStringArgl = ",

$exceptionStringArgl,eol &
"$exceptionStringArg2 = ",

$exceptionStringArg2,eol);
$raiseReturn END;

END "errExc"

executes as follows:

$exceptionName = MAINSAIL: System exception
$exceptionStringArgl This is an
$exceptionStringArg2 = error

Example 17.6-1. errMsg and $systemExcpt (continued)

- 282-

ERROR: This is an error
Error Response: <eol>
TRUE
$exceptionName = MAINSAIL: System exception
$exceptionStringArgl This is another
$exceptionStringArg2 = error
FALSE

Example 17.6-1. errMsg and$systemExcpt (end)

17.8. Exception Caveats

XIDAK reserves the right to create new predefined exceptions. MAINSAIL programmers
should be aware that system predefined exceptions,' or undocumented exceptions used
internally by the MAINSAIL runtime system, may be raised by many MAINSAIL constructs.
Exception handlers must therefore be written to check that they are actually handling the
exceptions they expect to handle. Do not issue a $raiseReturn or terminate a handler on an
exception you don't recognize.

The proper format for a Handle Statement in a real program is thus always something like:

$HANDLE ...
$WITH

IF <check for exceptionl> THEN
... deal with exceptionl ...

EF <check for exception2> THEN
... deal with exception2 ...

EF <check for exceptionN> THEN
... deal with exceptionN ...

EL $raisei

That is, it should include a $raise for any exception it doesn't recognize.

- 283-

18. Low-Level Data Types; Memory Management

MAINSAIL provides two data types not described so far: address and charadr. Address and
charadr are used for direct manipulation of the contents of memory. Such manipulation is not
need by all programs; some programs require it because:

• higher-level facilities provided by MAINSAIL are not sufficiently efficient for the
task at hand, or

• a MAINSAIL program must interface with a foreign language, an operating system,
or a hardware~dependent special memory location, such as a memory-mapped I/O
register.

MAINSAIL also provides facilities that direct the course of memory management, which is
otherwise automatic. The most frequently used facility is the ability to dispose data structures,
i.e., explicitly recycle the memory they occupy.

IS. 1. Organization of Memory

Memory is organized in different ways on different processors. The type of memory is
generally classified according to the number of bits accessible at a given address. Many
processors organize memory as a series of eight-bit bytes; some processors instead address
words of 16, 32, or 64 bits (processors with other sizes have existed as well, but as explained
below, MAINSAIL runs only on processors where the word size is a multiple of eight bits). In
order to make it possible to write portable programs, MAINSAIL works with the abstract
notions of tlstorage unitstl and "character units", and provides ways of determining how many
bits each of th~se units contains.

18.1.1. Storage Units and Character Units

A storage unit is the amount of memory addressed by a MAINSAIL address; when the address
is incremented by one, it addresses the next storage unit (although on some machines, due to
alignment considerations imposed by the processor, it is not legal to load or store using certain
address values, e.g., odd addresses). A character unit is the amount of memory occupied by a
single character (as stored in a MAINSAIL string), which is the amount of memory addressed
by a MAINSAIL charadr. When the charadr is incremented by one, it addresses the next
character unit (there is no restriction on character alignments; each consecutive charadr may be
used to load or store a character).

- 284-

The character unit size on every machine that supports MAINSAIL is eight bits, and the storage
unit size is always an exact multiple of the character unit size.

Memory can be viewed as a contiguous, linear sequence of storage units or character units
(although if MAINSAIL is ever supported on a machine with a segmented address space,
memory will appear as several distinct linear segments). The storage units and character units
are superimposed on top of one another. On a typical eight-bit byte machine, the storage unit
and character unit coincide; each is eight bits:

c.u. c.u. c.u. c.u.
+--------+--------+--------+--------+
I 8 bits I 8 bits I 8 bits I 8 bits I
+--------+--------+--------+--------+

s.u. s.u. s.u. S.u.

On a typical 16-bit word machine (e.g., the Data General ECLIPSE MV), the storage unit is 16
bits (since incrementing an address by one accesses the next 16-bit word), and the chara~ter
unit is eight bits; therefore, there are two character units per storage unie

c.u. C.u. c.u. c.u.
+--------+--------+--------+--------+
I 8 bits I 8 bits I 8 bits I 8 bits I
I 16 bits I 16 bits I
+-----------------+-----------------+

s.u. s.u.

On the 64-bit Cray, if such a MAINSAIL implementation were ever written, eight eight-bit
characters would fit in one 64-bit storage unit.

The number of bits per storage unit on the target processor is given by the system macro
$bitsPerStorageUnit; the number of bits per character unit, by $bitsPerChar (which is always
8). $charsPerStorageUnit is the number of character units per storage unit, Le.,
$bitsPerStorageUnit DIV $bitsPerChar. '

MAINSAIL data types (boolean, (long) integer, (long) real, (long) bits, string, pointer, address,
and charadr) each occupy an integral number of storage units. As mentioned in Section 10.11,
the system procedure "size" returns the number of storage units occupied by each type.
Another form of size, which takes a class or pointer, returns the number of storage units
occupied by the fields of the class or by the record to which the pointer points. $ioSize returns
the number of character or storage units occupied by a data type in a data file.

- 285-

18.1.2. Loading, Storing, Reading, and Writing

Addresses and charadrs are frequently used for loading or storing values of individual data
types from or to memory. The address load procedure for each data type is named "xxLoad",
where xx is the prefix for the data type; the complete list of load procedures is:

boLoad boolean
iLoad integer
liLoad long integer
rLoad real
lrLoad long real
bLoad bits
lbLoad long bits
sLoad string
pLoad pointer
aLoad address
cLoad charadr

Each load procedure takes an address and optional integer offset (number of storage units) from
that address.

For example, assume an eight-bit-byte-organized memory contains hexadecimal eight-bit bytes
at the hex addresses shown:

'H4EFCA2 E2
'H4EFCA3 14
'H4EFCA4 06
'H4EFCAS 9A
'H4EFCA6 37
'H4EFCA7 00
'H4EFCA8 21
'H4EFCA9 CC

Assume also that the data type integer occupies two storage units (bytes), the data type long
bits occupies four storage units, higher-order bytes are stored at lower addresses, the address
variable a represents the address 'H4EFCA4, and the address variable aa represents the address
'H4EFCA6. Then:

iLoad(a)
iLoad(aa)
lbLoad(a)
iLoad(a,2)
iLoad(a,-2)
IbLoad(a,2)

cvi('H069A)
cvi('H3700)
'H069A3700L
iLoad(aa)
iLoad (aa, -4)
IbLoad(aa)

- 286-

cvi (' H37 0 0)
cvi (, HE214)
'H370021CCL

The address forms of store modify the contents of memory. store is generic; each instance
takes an address, the value to be stored, and an optional integer offset from the address. For
example. if the above memory layout is modified by:

store(a,cvi('H4567),-2)i
store(aa,'HFEDCBA98L)

then the new memory layout looks like:

'H4EFCA2 45
'H4EFCA3 67
'H4EFCA4 06
, H4EFCA5 9A
'H4EFCA6 FE
'H4EFCA7 DC
'H4EFCA8 BA
'H4EFCA9 98

Load and store forms also exist for characters; the only data type that may be loaded or stored
using a charadr is an integer (since integers are used to represent character codes). The charadr,
load is called "cLoad" (like the form that loads a charadr from an address); the charadr store
form is called "store". If characters are one byte, then, given the above (modified) memory
layout and a charadr c representing the charadr 'H4EFCA5:

cLoad(c)
cLoad(c,3)
cLoad(c,-2)

cvi (' H9A)
cvi (' HBA)
cvi('H67)

When the memory layout is modified by:

it becomes:

store(c,cvi('H01»i
store(c,cvi('H03),3)

'H4EFCA2 45
'H4EFCA3 67
'H4EFCA4 06
'H4EFCA5 01
'H4EFCA6 FE
'H4EFCA7 DC
'H4EFCA8 03
'H4EFCA9 98

- 287-

If several consecutive data are to be loaded or stored9 the address forms of read and write or the
charadr forms of cRead and cWrite may be used. read (or cRead) increments its address (or
charadr) parameter after each value loaded; write (or cWrite) increments after each value
stored. For example, if a initially represents the address 'H4EFCA2, then:

write(a,'H42C1,'H33991234L)

modifies the above memory layout to:

'H4EFCA2 42
'H4EFCA3 Cl
'H4EFCA4 33
'H4EFCAS 99
'H4EFCA6 12
'H4EFCA7 34
'H4EFCA8 03
'H4EFCA9 98

and modifies a to represent the address 'H4EFCA8. If c initially represents the charadr
'H4EFCA3, then:

i := cRead(c); j := cRead(c)

sets ito cvi(,HCl), j to cvi(,H33), and c to 'H4EFCA5.

18.1.3. Address Constants

There is no way to represent an address or charadr constant other than the Zero values,
designated by the keywords "NULLADDRESS" and "NULLCHARADR". When an address
value must be specified as a constant (which is rare; it is usually computed as an offset from the
address of a scratch area allocated with newScratch or newPage), it is usually. specified as:.

cva«long bits constant»

Likewise, when an address must be printed, it is converted to a long bits (with cvlb), and the
long bits converted to a string. Each processor has a radix in which addresses are customarily
printed; this radix is given by $preferredRadix, which should be used when a portable program
displays addresses.

18.1.4. Loading and Storing Examples

The procedure newScratch returns an address pointing to a region of cleared memory of the
size, in storage units, specified by its integer parameter. Such scratch space may be used for a

- 288-

variety of purposes. When a program has finished using scratch space, it must return it to the
MAINSAIL memory manager by means of the procedure scratchDispose; scratch space is not
reclaimed by the garbage collector.

$newScratchChars allocates the same kind of scratch space as newScratch, but measured in
character units.

The overhead for an array index operation in MAINSAIL is usually negligible when considered
in the context of the algorithm in which the array is used. In certain tight loops in code
compiled with array subscript checking on, however, it can be advantageous to load data from
an address rather than from an array, and avoid the subscript checking overhead. Likewise,
although the string fonns of cRead and cWrite from a string usually perfonn adequately, cRead
has to do a null string check that may not be necessary if the source string is known to be non­
null, and c Write has to ensure that the string to which the character is added is at the end of
MAINSAIL's string space (see Section 18.5) so that the new character can be appended.

The procedure deVowel of Example 18.1.4-1 uses a boolean pseudo-array implemented as an
address and charadr operations on strings to perfonn a fast string scan, removing vowels from
the source string to produce a result string. newString and $getInArea are described in Section
18.5. $maxChar is defined as the highest character code in the target system's character set.
The string fonn of cvc returns the first charadr at which the characters of its argument are
stored.

18.1.5. Copy and Clear

When a block of memory more than a few storage units long must be copied or cleared, the
most efficient way to do so is to call the built-in procedure copy or clear. For example:

copy(a,aa,30 * size{longlntegerCode»

is at least as efficient as (and certainly more succinct than):

aaa := ai aaaa := aai
FOR i := 1 UPTO 30 DOB

read(aaa,li); write(aaaa,ii) END

Forms of copy and clear that operate on arrays and records also exist; consult the "MAINSAIL
Language Manual" for more details.

18.1.6. Alignment of Addresses

It may not be possible to store or retrieve data at certain addresses. Some processors require
that only even addresses be used for data access; others require that addresses be multiples of

- 289-

BEGIN "deVowl"

ADDRESS vowelTbl;
CHARADR buf;
INTEGER bufLen;

STRING PROCEDURE deVowel (STRING s);
Compute a vowel-free version of s as fast as possible
BEGIN
INTEGER i,j,ch;
CHARADR c1,c2;
IF bufLen < length(s) THENB * buffer is not big enough

IF buf THEN scratchDispose(buf);
buf := $newScratchChars(bufLen := length(s» END;

c1 := cvc(s); c2 := buf; i := length(s); j := 0;
WHILE i .- 1 GEQ 0 DO

IF NOT boLoad(vowelTbl,
(ch := cRead(cl» * size(booleanCode» THENB
cWrite(c2,ch); j .+ 1 END;

RETURN($getInArea(newString(buf,j»);
END;

Example 18.1.4-1. Using Addresses and Charadrs for a Fast String Scan (continued)

- 290-

INITIAL PROCEDURE;
BEGIN
INTEGER i,ch;
STRING s;
ADDRESS a;
Initialize vowel table:
a := vowelTbl :=

newScratch(size(booleanCode) * ($maxChar + 1»;
$maxChar + 1 is the total number of characters in
the character set.

FOR i := 0 UPTO $maxChar DO
write(a,ch := cvu(i) = 'A' OR ch == 'E' OR ch == 'I'

OR ch = '0' OR ch = 'U');
DOB write (logFile, "String to de-vowel «eol> to quit): ");

read(cmdFile,s); IF NOT s THEN DONE;
write(logFile,deVowel(s),eol) END;

scratchDispos~(vowelTbl) ;
IF a := cva(buf) THEN scratchDispose(a);
END;

END "deVowl"

Example 18.1.4-1. Using Addresses and Charadrs for a Fast String Scan (end)

foUf. For this reason, addresses in portable programs should always be computed in terms of
linear combinations of the sizes of MAINSAIL data types, rather than specified with explicitly
integer constants.

When a charadr is converted to an address with the system procedure Itcvalt
, cva may round the

charadr down to the nearest correctly aligned address. Thus, Itcvc(cva(c»", where c is a
charadr, does not necessarily equal c.

18.1.7. Pages

MAINSAIL groups storage units into contiguous groups called pages. The number of storage
units in a page is usually a power of 2, and typically varies from 256 to 4096. The MAINSAIL
runtime system often performs file I/O in units of pages, so the page size is usually chosen to be
the same as the underlying operating system's disk page size, so as to optimize the data transfer
rate to and from disk. The number of storage units in a page is given by the system macro
$pageSize. $charsPerPage, the number of character units per page, is equal to
$charsPerStorageUnit * $pageSize.

- 291-

, ,

;~

Example 18.1.4-1 shows uses of the procedures newScratch and $newScratchChars for
obtaining scratch space. When large continuous blocks of memory must be obtained, it is often
convenient to request a number of pages rather than a number of storage or character units. In
such a case, the system procedure newPage may be called instead of newScratch or
$newScratchChars.

At any given time, the MAINSAIL runtime system recognizes certain portions of the
MAINSAIL process's address space as being under its control (usually because it explicitly
requested the memory from the operating system). These areas of memory are referred to as
being "within the MAINSAil.. page map" (because it is the portion of memory displayed by the
utility MEMMAP) or (more loosely) "within the MAINSAIL address space". The coarse
divisions of MAINSAIL's memory management algorithms are based on pages, which is why
MEMMAP prints out usage information on a per-page basis.

18.2. dispose

Chapter 14 introduced one use of the system procedure "dispose". Forms of dispose also exist
for records and arrays. "dispose(p)" , where p is a pointer to a record, or "dispose(ary)" , where
ary is an array, tells MAINSAIL to free the memory occupied by the record or array
immediately, instead of waiting for a garbagecoUection.

It is important to use dispose in programs that generate a lot of garbage in order to prevent too­
frequent garbage collections. But dispose is dangerous! Many, if not most, bugs that are
difficult to track are due to improper use of dispose, either disposing of a data structure that has
already been disposed or accessing a field or element of a disposed data structure. Section 4.2
of part II of the "MAINSAIL Tutorial" contains an extensive discussion of the techniques that
may be used to track such bugs.

Programs that clean up after themselves by disposing of data structures allocated during
execution should handle SabortProcedureExcpt (see Section 17.3) with a routine that performs
the clean-up, as shown in Example 17.3-1. In Example 18.2-1, the module of Example 11.5-2
is modified to dispose of the tree it constructs. The file pointer f has been moved to be an outer
variable. so as to be accessible both to the initial procedure and to the procedure cleanUp.

The Structure Blaster procedure $structureDispose provides a less efficient but very convenient
alternative to the procedure infixDispose in Example 18.2-1; see the "MAINSAIL Structure
Blaster User's Guide" for details. Alternatively, the entire structure could have been
maintained in an area, and the entire area disposed with $disposeArea, as described in the
"MAINSAIL Language Manual".

When scratch space (obtained with newPage or newScratch) is disposed, special procedures
must be called to free the space. scratchDispose is called for space acquired with newScratch;
pageDispose for space acquired with newPage.

- 292-

BEGIN "binTr2"

CLASS bin (
POINTER(bin) 1eft,right:
STRING here;

) ;

POINTER (bin) root;
POINTER (textFi1e) f;

PROCEDURE alphabetize (STRING s; MODIFIES POINTER (bin) p);
BEGIN
IF NOT P THENB * create the node

p := new(bin); p.here := s; RETURN END;
CASE compare(s,p.here,upperCase) OFB

[-1] alphabetize(s,p.left):
[0] RETURN;
[1] alphabetize(s,p.right);
END;

END;

PROCEDURE infixPrint (POINTER (bin) p);
BEGIN
IF NOT P THEN RETURN;
infixPrint(p.left);
write (logFile,p.here,eol) ;
infixPrint(p.right) ;
END;

PROCEDURE infixDispose (POINTER(bin~ p);
BEGIN
IF p.left THEN infixDispose(p.1eft);
IF p.right THEN infixDispose(p.right);
dispose(p); * Modifies p to NULLPOINTER
END;

Example 18.2-1. Binary Tree Program Modified to Clean Up after Itself (continued)

- 293-

PROCEDURE cleanUp;
BEGIN
IF f THEN close(f);
IF root THEN infixDispose(root);
END;

INITIAL PROCEDURE;
BEGIN
STRING s;

$HANDLEB
open(f,"Input file: ",input!prompt);
DOB read(f,s); IF NOT $gotValue(f) THEN DONE;

IF s THEN alphabetize(s,root) END;
infixPrint(root); cleanUp END

$WITHB

END;

IF $exceptionName = $abortProcedureExcpt THEN cleanUp;
$raise END;

END "binTr2"

Example 18.2-1. Binary Tree Program Modified to Clean Up after Itself (end)

- 294-

18.3. High-Volume 110

The procedures read and write are satisfactory methods of file I/O for most purposes. Some
applications, however, may need to read in large quantities of data at a time, usually for
efficiency; for example; it is more efficient to read in the contents of a SOOO-element integer
array all at once than to use a loop that reads one integer and stores it in the array on each
iteration.

The procedures $storageUnitRead and $storageUnitWrite or $characterRead and
$characterWrite may be used to read or write arbitrary quantities of data. $pageRead and
$pageWrite read and write an integral number of pages at a time. Each of these procedures
reads into or writes from scratch memory allocated with newPage or newScratch. Some uses of
$storageUnitRead are shown in Example 18.3-1.

When high-volue I/O is used on a file, it is often advantageous to set the $unbuffered bit when
the file is opened. Only certain I/O calls may be used when a file is opened $unbuffered,
however; consult the description of "open" in the "MAINSAIL Language Manual" for details.

- 295-

In order to read 5000 integers from a data file f into an
appropriately sized area of scratch space, assuming a is
an address variable (and that f is not opened for PDF I/O;
see Section 10.12) :

a := newScratch(5000 * size(integerCode»;
$storageUnitRead(f,cvli(5000 * size(integerCode»,

NULLPOINTER,OL,a);

In order to read the integers directly into an array ary:

new(ary,l,SOOO);
$storageUnitRead(f,cvli'(5000 * size (integerCode»,

cvp (ary) ,
IDisplacement(cva(cvp(ary»,

$adrOfFirstElement(ary») ;

where $adrOfFirstElement returns the address of the first
element of the array_ Don't do this:

new(ary,1,5000);
$storageUnitRead(f,cvli(5000 * size(integerCode»,

NULLPOINTER,OL,$adrOfFirstElement(ary»;

because a garbage collection might occur during the call
$storageUnitRead. ary could be moved around in memory,
and the address of first element changed; then the address
passed to $storageUnitRead would no longer be valid.
The address parameter of $storageUnitRead should be
specified only when reading into scratch space, and the
pointer parameter only when reading into a high-level data
structure (array, record, or data section) .

Example 18.3-1. Use of $storageUnitRead

- 296-

18.4. Control of Garbage Collection

The timing of garbage collections may be governed by modifying the system variable
$collectLock and calling the system procedure $collect. Collections are "locked out" (do not
occur automatically) whenever $collectLock has a non-zero value. Running with $collectLock
set can prevent unnecessary collections, but running for too long without collecting can cause
MAINSAIL to run out of memory if garbage is being generated.

18.5. $getInArea and newString

Most MAINSAIL strings are created (automatically) in a part of memory called "string space".
The system procedures that perform c Writes, concatenations, and other functions that extend a
string generally operate on strings in string space; they may copy their string arguments into
string space if they are not there already. Only strings located in string space can be collected
by the garbage collector.

It is possible to create strings not located in string space. This is useful, for example, when a
string is returned by the operating system or by a foreign procedure (which do not have access
to MAINSAIL's string space, and so cannot construct strings there), or when a string is
constructed (for whatever reason) in scratch space.

The procedure newString constructs a string given a charadr at which the characters are located
and a length for the string:

STRING PROCEDURE newString (CHARADR C; INTEGER len) ;

newString does not actually copy the characters anywhere; it just returns a string that points at
the characters at 19cation c. If the charadr points into scratch space or into an area returned by a
foreign procedure, it may be advisable to copy the characters into string space, so that the
scratch space or foreign area can be reused to construct more strings (otherwise, the new strings
would overwrite part or all of the previously constructed strings in the same location). The
procedure $getlnArea copies its string argument into string space:

STRING PROCEDURE $getInArea (STRING s);

(As implied by the name, string space is actually maintained on a per-area basis. Consult the
"MAINSAIL Language Manual" for details.) If a foreign procedure has returned a charadr c
and a length I for a string it is returning to MAINSAIL, the proper way to construct a
MAINSAIL string s in string space is:

s := $getInArea(newString(c,l);

- 297-

18.6. Runtime Construction of Classes

A class is typically declared in the source text of a program; i.e., the class is constructed by the
programmer before the program is compiled. Classes may, however, be built up at runtime; the
fields of a class may also be explicitly examined at runtime. The relevant procedures are
$classlnfo, $className, $createClassDscr, $createRecord, and $dscrPtr; consult the
"MAINSAIL Language Manual" for details.

- 298-

19. Coroutines

Coroutines provide a way of maintaining multiple threads of execution within a MAINSAIL
program. Coroutines do not execute simultaneously, but if properly orchestrated, can give the
impression of simultaneous execution (like multiple processes on a time-sharing operating
system).

Facilities are provided to initialize, resume (change the execution thread to that of another
coroutine), and kill coroutines. The procedures $createCoroutine, $resumeCoroutine, and
$killCoroutine are described in detail in the "MAINSAIL Language Manual".

The MAINSAIL STREAMS package provides some convenient facilities that schedule
coroutines automatically. See the "MAINSAIL STREAMS User's Guide" for details.

19.1. Rationale behind Coroutines

Coroutines are useful when a program must perfonn several complex tasks that are interleaved
with each other. It is difficult to this without coroutines, since the context of each task must be
saved when another task is resumed. In theory t it is possible to save any amount of context in
own or outer variables, but it is often inconvenient to do so. In particular, it may be convenient
for two tasks to resume each other from several different procedures; this is impossible without
coroutines.

Coroutines permit a cleaner formulation of prOducer-consumer algorithms than programs that
do not use coroutines, particularly if the production or consumption occurs at several different
points in the algorithm. Examples 19.1-1 and 19.1-2 show two programs that do the same

, thing. One uses coroutines;' the other does not. In this example, the program that uses
coroutines is actually longer than the one that does not; however, the individual initializing
procedures of the coroutines are simpler and more self-contained than the corresponding
procedures in the non-coroutine version.

The programs of Examples 19.1-1 and 19.1-2 each accept a stream of characters and must
modify them to produce an output stream according to the following rules, applied in the order
shown:

1. Every uppercase letter must be replaced by the caret character (""") followed by the
corresponding lowercase letter.

2. Every third pair of characters (that is, every pair of characters numbered 4 and 5
modulo 6, if the first character is numbered 0) must be reversed.

- 299-

3. After every seventh character, a blank must be inserted into the output stream.

The structure of the algorithm is a series of filters, each accepting and producing a stream of
characters. The module NOCO of Example 19.1-1 implements the first filter as the initial
procedure; subsequent filters are driven by the input, i.e., do not have top-level loops of their
own. By contrast, the bulk of each of the initia1izing procedures of the coroutines in the
module WITHCO of Example 19.1-2 is a loop, as if each initializing procedure were the initial
procedure of an independent module. Such an architecture is more appropriate if the order and
number of the procedures is subject to change; each can actually be implemented as an
independent module, and the filter can be restructured at runtime~

One way to think. of a coroutine is as a "generator" of values. For example, suppose a program
is to visit each node in an arbitrary graph structure and process the nodes in various ways. The
problem can be viewed as consisting of a "node generator" that provides a pointer to the next
node to be processed, and any number of "node processors" that process a node in various
ways. Suppose that the node generator is non-trivial; i.e., given a pointer to a node, it is not
obvious how to find the "next" node without remembering how the previous node was found.
The programmer would like to write the node generator once so that it can be used by any node
processor.

Coroutines provide a uniformly simple way to structure this task, which is otherwise difficult to
phrase in MAINSAIL, since when the node generator finds a node, it may be deeply nested in
logic that needs to continue in order to find the next node. If MAINSAIL provided procedures
as parameters, then the appropriate node processor could be passed as a procedure to the node
generator, so that the node generator could call the anonymous node processor whenever a
node was found, passing a pointer to the node as an argument. However, the node processor
may itself be non-trivial in that knowing how to process a node depends on how the previous
node was processed, so that entering the node processor at the start each time is inappropriate.
In this case the node generator and the node processor would like to "call" each other in such a
way that each can resume execution where it last left off. This is exactly what is provided by
coroutines.

BEGIN "noCo"

POINTER (textFile) f;

INTEGER PROCEDURE getChar;
RETURN(cRead(f»;

Example 19.1-1. A Program without Coroutines (continued)

- 300-

PROCEDURE putChar (INTEGER char);
cWrite(logFile,char) ;

PROCEDURE doPutChar2 (REPEATABLE INTEGER ch);
BEGIN
OWN INTEGER charNum;
putChar(ch);
IF NOT (charNum .+ 1) MOD 7 THEN putChar(' ');
END;

PROCEDURE doPutChar (INTEGER ch) ;
BEGIN
OWN INTEGER charNum,prevChar;
IF charNum MOD 6 = 4 THEN prevChar := ch
EF charNum MOD 6 = 5 THEN doPutChar2(ch,prevChar)
EL doPutChar2(ch);
charNum .+ 1;
END;

INITIAL PROCEDURE;
BEGIN
INTEGER Chi
open(f,"Input file: ",input!prompt);
DOB IF ch := getChar < 0 THEN DONE; .

IF isUpperCase(ch) THEN doPutChar(,A,);
doPutChar(cvl(ch» END;

close(f);
END;

END "noCo"

Example 19.1-1. A Program without Coroutines (end)

- 301 -

I·

BEGIN "withCo"

POINTER (textFile) f;
POINTER ($coroutine) co1,c02,c03;
INTEGER chBuf;

INTEGER PROCEDURE getChar;
RETURN(cRead(f»;

PROCEDURE putChar (INTEGER char);
cWrite(logFile,char);

PROCEDURE coPutChar (POINTER ($coroutine) CO;
INTEGER char);

t Put char into the buffer for co.
BEGIN
chBuf := char; $resumeCoroutine(co);
END;

INTEGER PROCEDURE coGetChar (POINTER ($coroutine) co);
Read the next character produced by co.
BEGIN
INTEGER Chi
IF chBuf < 0 THEN $resumeCoroutine(co)i
ch := chBuf; chBuf := -1;
RETURN (ch) ;
ENDi

Example 19.1-2. A Program with Coroutines (continued)

- 302-

PROCEDURE colProc;
BEGIN
INTEGER Chi
POINTER ($coroutine) parent;
parent := $thisCoroutine.$up;
DOB IF ch := getChar < 0 THEN DONE;

IF isUpperCase(ch) THEN coPutChar(co2"A,);
coPutChar(co2,cvl(ch» END;

$resumeCoroutine(parent) ;
END;

PROCEDURE co2Proc;
BEGIN
INTEGER i,ch;
DOB FOR i := 1 UPTO 4 DO coPutChar(co3,coGetChar(col»;

ch :- coGetChar(col);
cOPutChar(co3,coGetChar(col»;
coPutChar(co3,ch) END;

END;

PROCEDURE co3Proci
BEGIN
INTEGER i;
DOB FOR i := 1 UPTO 7 DO putChar(coGetChar(co2»;

putChar(' ') END;
END;

Example 19.1-2. A Program with Coroutines (continued)

- 303-

INITIAL PROCEDURE;
BEGIN
open(f,"Input file: ",input!prompt);
col := $createCoroutine(thisDataSection,"co1Proc");
co2 := $createCoroutine(thisDataSection,"c02Proc");
c03 := $createCoroutine(thisDataSection,"co3Proc");
$resumeCoroutine(co1);
$killCoroutine(col) ;
$killCoroutine(c02);
$killCoroutine(co3);
close(f);
END;

END "withCo"

Example 19.1-2. A Program with Coroutines (end)

- 304-

19.2. Diagrammatic Example of Coroutines

The module shown in Example 19.2-1 produces the output shown in Example 19.2-2. Example
19.2-3 shows stack diagrams of the various coroutines at the labeled points in Example 19.2-2.
There are three stacks, since each of the three corautines has a separate stack.

At point 1 in Examples 19.2-2 and 19.2-3, the coroutines Cl and C2 have been created, but not
initialized, since they have not been resumed for the first time. The procedure stacks of Cl and
C2 are therefore empty. At point 2, the initializing procedure, b, of Cl is called when Cl is
resumed. b then resumes the parent coroutine, returning control to c in the coroutine
MAINSAIL. c then resumes C2, which calls e, creating a stack frame for e in C2. e then
resumes Cl, which returns control to b. At point 6, b resumes its most recent resumer,
$thisCoroutine.$next, returning control to e, which returns to d. d resumes MAINSAIL, which
resumes C 1. in which b calls a. i being odd, a resumes C2, in which d resumes C 1 again,
returning control to a. After point 13, a makes a recursive call to itself, creating another stack
frame for a in C 1. a then calls itself again, then resumes d in C2; d calls e, which resumes C 1.
At point 18, a makes its final call to itself. The calls to a then unwind, and control returns to b.
b then calls e (this is a distinct invocation from the e still active in C2). When e resumes Cl
from C 1, at point 22, nothing happens; $thisCoroutine.$next is unchanged, so e reports that it
was resumed from C2 at point 23. At point 24, e returns to b, and b kills C2, and then commits
suicide by calling $resumeCoroutine with the delete bit set. At point 25, only the coroutine
MAINSAIL remains.

The use of $thisCoroutine.$next in this example depends on the fact that no exceptions were
raised (searching for an exception handler reorders the coroutine $next list) and no coroutines
created by the runtime system during the execution of the module of Example 19.2-1. A real
application should not depend on $next to determine which coroutine to resume next; it should
itself keep track of the order in which coroutines should be scheduled.

BEGIN "corout"

POINTER ($coroutine) parent,cl,c2;

STRING PROCEDURE resumer;
RETURN(IF $thisCoroutine.$next THEN

$thisCoroutine.$next.$name
EL "<no next coroutine>");

Example 19.2-1 .. Three Coroutines (continued)

- 305-

PROCEDURE e;
BEGIN
write (logFile, "In e, resuming cl" & eol);
$resumeCoroutine(cl) ;
write (logFile, "In e, back from coroutine ",resumer,eol);
END;

PROCEDURE d;
DOB write(logFile,"In d, calling e" & eol);

e;
write(logFile,"In d, back from e, resuming parent"

& eol);
$resumeCoroutine(parent);
write (logFile, "In d, back from coroutine ",

resumer,", resuming cl" & eol);
$resumeCoroutine(cl);
write(logFile,"In d, back from coroutine ",

resumer,eol) END;

PROCEDURE a (INTEGER i);
BEGIN
write(logFile,"In a, i =''',i,eol);
IF i MOD 2 THENB

write(logFile,"In a, resuming c2" & eol);
$resumeCoroutine(c2);
write(logFile,"In a, back from coroutine ",

resumer,eol) END;
IF i THENB

END;

write(logFile,"In a, calling a" & eol);
a(i-l);
write(logFile,"In a, back from a" & eol) END;

Example 19.2-1. Three Coroutines (continued)

- 306-

PROCEDURE b;
BEGIN
write (logFile, "In b, resuming parent" & eol);
$resumeCoroutine(parent);
write (logFile, "In b, back from coroutine ",

resumer,eol);
write (logFile, "In b, resuming resumer" & eol);
$resumeCoroutine($thisCoroutine.$next);
write (logFile, "In b, back from coroutine

resumer,eol);
write (logFile, "In b, calling a" & eol);
a (3) ;

write (logFile, "In b, back from a" & eol) ;
write (logFile, "In b, calling elf & eol);
e;
write (logFile, "In b, back from elf & eol);
$killCoroutine(c2);
$resumeCoroutine(parent,delete);
END;

INITIAL PROCEDURE c;
BEGIN
parent := $thisCoroutine;

" ,

c1 := $createCoroutine(thisDataSection,"b","c1");
c2 := $createCoroutine(thisDataSection,"d","c2");
DOB write(logFile,"In c, resuming c1" & eol);

END;

$resumeCoroutine(c1);
write(logFile,"In c, back from coroutine If,

resumer,eol) ;
IF $killedCoroutine(c2) THEN DONE;
write(logFile,"In c, resuming c2" & eol);
$resumeCoroutine(c2);
write(logFile,"In c, back from coroutine If,

resumer,eol) END
UNTIL $killedCoroutine(c1);

END "corout"

Example 19.2-1. Three Coroutines (end)

- 307-

(1) In c, resuming c1
(2) In b, resuming parent

In c, back from coroutine C1
(3) In c, resuming c2
(4) In d, calling e
(5) In e, resuming c1

In b, back from coroutine C2
(6) In b, resuming resumer
(7) In e, back from coroutine C1
(8) In d, back from e, resuming parent

In c, back from coroutine C2
(9) In c, resuming c1

In b, back from coroutine MAINSAIL
(10) In b, calling a

In a, i == 3
(11) In a, resuming c2
(12) In d, back from coroutine C1, resuming cl

In a, back from coroutine C2
(13) In a, calling a

In a, i == 2
(14) In a, calling a

In a, i = 1
(15) In a, resuming c2

In d, back from coroutine C1
(16) In d, calling e
(17) In e, resuming cl

In a, back from coroutine C2
(18) In a, calling a
(19) In a, i = 0
(20) In a, back from a

In a, back from a
In a, back from a
In b, back from a

(21) In b, calling e
(22) In e, resuming c1
(23) In e, back from coroutine C2
(24) In b, back from e
(25) In c, back from coroutine <no next coroutine>

Example 19.2-2. Output from Example 19.2-1

- 308-

Coroutine Coroutine Coroutine
MAINSAIL Cl C2

(parent coroutine)

+-----+
(1) -> c

+-----+ +-----+ +-----+

+-----+ +-----+
(2) I c I -> I b I

+-----+ +-----+ +-----+

+-----+ +-----+
(3) -> I C I b

+-----+ +-----+ +-----+

+-----+ +-----+ +-----+
(4) c b -> d

+-----+ +-----+ +-----+

+-----+
-> e

(5) +-----+ +-----+ +-----+
c I b I I d I

+-----+ +-----+ +-----+

+-----+
I e I

(6) +-----+ +-----+ +-----+
C -> b I d I

+-----+ +-----+ +-----+

+-----+
-> e

(7) +-----+ +-----+ +-----+
C b d

+-----+ +-----+ +-----+

+-----+ +-----+ +-----+
(8) C b -> d

+-----+ +-----+ +-----+

Example 19.2-3. Explanation of Example 19.2-1 with Stack Diagrams (continued)

- 309-

+-----+ +-----+ +-----+
(9) -> I c I I b I I d

+-----+ +-----+ +-----+

+-----+ +-----+ +-----+
(10) C -> I b I d I

+-----+ +-----+ +-----+

+-----+
-> a

(11) +-----+ +-----+ +-----+
I C I I b I d
+-----+ +-----+ +-----+

+-----+
a

(12) +-----+ +-----+ +-----+
C b -> d

+-----+ +-----+ +-----+

+-----+
-> a

(13) +-----+ +-----+ +-----+
C I b I I d I

+-----+ +-----+ +-----+

+-----+
-> I a I

+-----+
(14) a

+-----+ +-----+ +-----+
I C I I b I d
+-----+ +-----+ +-----+

Example 19.2-3. Explanation of Example 19.2-1 with Stack Diagrams (continued)

- 310-

+-----+
-> a

+-----+
I a

(15) +-----+
I a

+-----+ +-----+ +-----+
C b d

+-----+ +-----+ +-----+

+-----+
I a I
+-----+

a
(16) +-----+

a
+-----+ +-----+ +-----+
I c I I b I -> I d I
+-----+ +-----+ +-----+

+-----+
a

+-----+
I a I

(17) +-----+ +-----+
a -> e

+-----+ +-----+ +-----+
C b d

+-----+ +-----+ +-----+

+-----+
-> I a I

+-----+
a

(18) +-----+ +-----+
I a I I e

+-----+ +-----+ +-----+
I c I I b I I d I
+-----+ +-----+ +-----+

Example 19.2-3. Explanation of Example 19.2-1 with Stack Diagrams (continued)

- 311 -

+-----+
-> I a I

+-----+
I a I
+-----+

a
(19) +-----+ +-----+

I a I I e I
+-----+ +-----+ +-----+
I C I I b I I d I
+-----+ +-----+ +-----+

+-----+
-> I a I

+-----+
I a I

(20) +-----+ +-----+
a e

+-----+ +-----+ +-----+
C b d

+-----+ +-----+ +-----+

+-----+
I e

(21) +-----+ +-----+ +-----+
C -> b d

+-----+ +-----+ +-----+

+-----+ +-----+
-> e e

(22) +-----+ +-----+ +-----+
C b d

+-----+ +-----+ +-----+

+-----+ +-----+
-> e e

(23) +-----+ +-----+ +-----+
C b d I

+-----+ +-----+ +-----+

Example 19.2-3. Explanation of Example 19.2-1 with Stack Diagrams (continued)

- 312-

(24) +-----+
c

+-----+

+-----+
(25) -> c

+-----+

+-----+
-> I b

+-----+

+-----+
e

+-----+
d

+-----+

Example 19.2-3. Explanation of Example 19.2-1 with Stack Diagrams (end)

- 313-

19.3. Primitive Scheduler Example

If applications cooperate, they can be scheduled in such a way that several can run (apparently)
simultaneously. Each application can be run in a separate coroutine, and a special coroutine,
the scheduler, switches among them whenever the applications allow the scheduler to take
control.

In Example 19.3-1, the original (scheduling) coroutine of the module SCHED takes control
whenever any of its applications calls any of the module's interface procedures. Control is then
given to another application, after the requested task, if any, is performed. The applications
perform all terminal input and output through readInput and writeOutput, instead of reading or
writing directly from cmdFile or to 10gFile, in order to give the scheduler a chance to switch
between applications.

Some applications for the primitive scheduler are shown in Examples 19.3-2, 19.3-3, and
19.3-4. ADDNUM adds a series of numbers input from cmdFile. BKWRD2 reverses strings
read from cmdFile. SMSQRT prints out the square roots of the sums of the squares from one
to ten.

BEGIN "addNum"

MODULE sched (
STRING PROCEDURE readInputi
PROCEDURE writeOutput (REPEATABLE STRING S)i

PROCEDURE poll;
) i

INITIAL PROCEDURE;
BEGIN
INTEGER ii
STRING Si

i : = 0;
DOB writeOutput("Type a number «eol> to quit): ");

IF NOT s := readInput THEN DONE;
writeOutput("Sum so far = ",cvs(i .+ cvi(s»,eol) END;

END;

END "addNum"

Example 19.3-2. ADDNUM Scheduler Application

- 314-

BEGIN "sched"

MODULE sched (
STRING PROCEDURE readInput;
PROCEDURE writeOutput (REPEATABLE STRING s);
PROCEDURE poll;

) ;

CLASS coroutLstCls (
POINTER ($coroutine) co;
STRING applicationName,inBuffer,outBuffer;
POINTER dataSec;
BOOLEAN wantsInput;
POINTER (coroutLstCls) next,prev; # circular list

) ;

POINTER(coroutLstCls) coroutLst,curCorout;
POINTER ($coroutine) parent;

STRING PROCEDURE readInput;
* This is called from the application.
BEGIN
STRING s;
curCorout.wantsInput .= TRUE;
$resumeCoroutine(parent)i
s := curCorout.inBuffer; curCorout.inBuffer :=
RETURN (s) i

END;

PROCEDURE writeOutput (REPEATABLE STRING s); * This is called from the application.
BEGIN
curCorout.outBuffer .& Si
$resumeCoroutine(parent);
END;

"~I' • ,

Example 19.3-1. Primitive Scheduler Module (continued)

- 315 -

PROCEDURE poll;
* This is called from the application.
$resurneCoroutine(parent);

PROCEDURE runApplication; * This is each application coroutine's initializing * procedure.
BEGIN
$HANDLE

IF NOT curCorout.dataSec :=
new(curCorout.applicationName,errorOK) THEN
write(logFile,"Couldn't find module ",

curCorout.applicationName,eol)
$WITH

write (logFile,
"Aborted application ",curCorout.applicationName,
" because of exception ",$exceptionName,eol);

IF curCorout.dataSec THEN dispose(curCorout.dataSec);
$resumeCoroutine(parent,delete);

when done, coroutine dies
END;

STRING PROCEDURE doReadInput;
A more sophisticated scheduler would wait until it sees
some indication of the coroutine to which the user
wants to talk. In a window system, might require the
user to move the mouse into the current window, for
example. This is clearly a primitive and not very
user-friendly version.
BEGIN
STRING s;
read(cmdFile,s); RETURN(s);
END;

Example 19.3-1. Primitive Scheduler Module (continued)

- 316-

PROCEDURE doWriteOutput; * A more sophisticated scheduler would display the output * in such a way that it is apparent what application ~s * talking.
write(logFile,curCorout.outBuffer);

Example 19.3-1. Primitive Scheduler Module (continued)

- 317 -

INITIAL PROCEDURE;
BEGIN
STRING Si
POINTER (coroutLstCls) p,endP;
parent := $thisCoroutine;
DOB write(logFile,

"Application to run «eol> to end list): ");
read(cmdFile,s); IF NOT s THEN DONE;
P := new(coroutLstCls);
p.co := $createCoroutine

(thisDataSection,"runApplication");
p.applicationName := Si
IF coroutLst THENB

(p.next := coroutLst) .prev := Pi
(endP.next := p) .prev := endPi
coroutLst := pEND

EL coroutLst := p.next := p.prev := endP := pEND;
curCorout := coroutLst; * Strictly round-robin scheduling. Not very smart.
DOB $resumeCoroutine(curCorout.co);

END;

Assume we are resumed from the same coroutine (i.e., * curCorout.co). A more general scheduler would have
to handle the case where the application switched
* coroutines.
IF curCorout.outBuffer THENB

doWriteOutput; curCorout.outBuffer := "" END;
IF curCorout.wantsInput THENB

curCorout.inBuffer .& doReadInput;
curCorout.wantsInput := FALSE END;

IF $killedCoroutine(curCorout.co) THENB
IF curCorout.prev = curCorout THEN DONE;

no more coroutines if killing last one
curCorout.prev.next := curCorout.nexti
curCorout.next.prev := curCorout.prev END;

curCorout := curCorout.next END;

END "sched"

Example 19.3-1. Primitive Scheduler Module (end)

The scheduler as written has several substantial drawbacks:

- 318-

BEGIN "bkwrd2"

MODULE sched (

) i

STRING PROCEDURE readInputi
PROCEDURE writeOutput (REPEATABLE STRING S)i

PROCEDURE polli

INITIAL PROCEDUREi
BEGIN
STRING S,SSi
DOB writeOutput(nType in a string «eol> to stop): If);

IF NOT s := readInput THEN DONE;

END;

ss : = "";
WHILE s DO cWrite(ss,rcRead(s»);
writeOutput("Backwards string is ",ss,eol) END;

END "bkwrd2"

Example 19.3-3. BKWRD2 Scheduler Application

1. The input and output of the different applications are all intermingled (see Example
19.3-5). It is very hard to tell which application has printed a given output or is
currently requesting input.

2. The scheduler blocks on input from cmdFile. It should really test to see whether
there is any cmdFile input waiting, and if not" then run an application that does not
currently need any input.

3. The scheduler applications must be written in a particular format; they do not work as
stand-alone MAINSAIL programs.

4. The scheduler does not make any provision for exceptions in the applications (see
Section 19.5).

An improved scheduler is left as an exercise for the reader.

- 319-

BEGIN "srnSqrt"

MODULE sched (
STRING PROCEDURE readInput;
PROCEDURE writeOutput (REPEATABLE STRING s);
PROCEDURE poll;

) ;

INITIAL PROCEDURE;
BEGIN
REAL squareSurn,r;
squareSurn := r := 0.0;
WHILE r < 9.5 DOB

r .+ 1.0;
poll;
squareSum .+ r * r;
writeOutput("Square root of sum of squares (up to ",

cvs(r),") is ",cvs(sqrt(squareSurn)),eol) END;
END;

END "srnSqrt"

Example 19.3-4. SMSQRT Scheduler Application

- 320-

Application to run «eol> to end list): addnum<eol>
Application to run «eol> to end list): bkwrd2<eol>
Application to run «eol> to end list): smsqrt<eol>
Application to run «eol> to end list): <eol>
Type in a string «eol> to stop): Type a number «eol> to
quit): Square root of sum of squares (up to Hello'<eol>
43<eol>
IBackwards string is Sum so far =) is !011eH431

Type in a string «eol> to stop): Type a number «eol> to
quit): Time is rooney,<eol>
62<eol>
Square root of sum of squares (up to Backwards string is S
urn so far = 2.yenom si emiTI0S) is

2.23607Type in a string «eol> to stop): Type a number «e
01> to quit): <eol>
<eol>

Square root of sum of squares (up to 3) is 3.74166
Square root of sum of squares (up to 4) is 5.47723
Square root of sum of squares (up to 5) is 7.4162
Square root of sum of squares (up to 6) is 9.53939
Square root of sum of squares (up to 7) is 11.8322
Square root of sum of squares (up to 8) is 14.2829
Square root of sum of squares (up to 9) is 16.8819
Square root of sum of squares (up to 10) is 19.6214

Example 19.3-5. Sample Execution of SCHED

- 321 -

19.4. Ecological Simulation Example

In this section, a special-purpose scheduler is used to alternate among a variety of coroutines,
each of which represents a "critter" (an organism in a simple ecological simulation). The
program is designed so that the scheduling and most utility procedures are provided by a single
executive module, DARWIN. DARWIN does as much work as possible, so that the individual
critter modules are as simple to write as possible. Each critter is a module that is run in its own
coroutine. Scheduling is done whenever a critter calls into DARWIN; the critters themselves
do not contain any explicit calls to $resumeCoroutine or other coroutine procedures.

Coroutines greatly simplify the writing of critters; without coroutines, each critter would have
to be written as an interface procedure that is called by the executive and returns some sort of
code indicating the operation it wanted the executive to perform. To pass back the result of an
operation, the executive would have to use the same data structure for every possible operation
and pass it as a parameter to the critter's interface procedure. Context in the critter would have
to be maintained with own variables instead of local variables, since the values of local
variables would be lost between calls. Altogether, critters would look far less like "normal
programs" than they do in this coroutine-based example.

Example 19.4-1 shows the CRTHDR module that makes the inttnod (see Section 20.3) shared
by the executive and all critter modules. The DARWIN interface procedures are the utilities to
be used by all critters; they are described by comments in the CRTHDR and DARWIN source
files. The DARWIN source file is shown in Example 19.4-2. Sample critters are shown in
Examples 19.4-3 and 19.4-4; they are not very sophisticated, and better critters could certainly
be designed.

DARWIN is the module to run initially. It prompts for the name of a debugging file ("NUL>"
unless you want to see a log of all the operations undertaken by DARWIN), the size of the
display, a display module, and a list of critter modules to include in the simulation (give the
name of the same module more than once if you want to start off with more than one instance
of it). It then uses the MAINSAIL display module to blank the screen. Each critter is display
as a rectangle of four characters. The upper left character is the name of the critter; it is a
single letter, uppercase if the critter has lots of spare energy, lowercase if it has only a little
spare energy. The upper right character is usually".", but it is "<" if the critter is attacking
(think of it as an open mouth), and n>" if the critter is under attack. The lower left and lower
right characters are the number of teeth and shell units the creature has, respectively.

- 322-

I

!

I·

BEGIN "crtHdr" #" Header file for Darwinian critters

$DIRECTIVE "NOOUTPUT";
SAVEON;

DEFINE #" possible what.status values
emptyCell 1,
cellOutsideWorld 2,
critterCell 3,

Example 19.4-1. CRTHDR, Ecological Simulation Intmod (continued)

- 323-

* game parameters (costs are in energy units and are
* deducted from the critter's spareEnergy field)

energyForLegs 12,
Energy required to grow legs * (No more than one set of legs allowed)

energyForLeaves 9,
Energy required to grow leaves
(No more than one set of leaves allowed)

energyPerTooth 10,
* Energy required to grow teeth

maxTeeth 9,
No more than maxTeeth teeth allowed

energyPerShell 10,
* Energy required to grow a unit of shell

maxShell 9,
No more than maxShell units of shell allowed

birthCost 2,
Cost to reproduce

halfBirthEnergy 20, * Energy which, when given to an offspring,
gives it a 50-50 chance of survival

costs1ToMove 10,
Costs 1 unit to move a critter with this many
units of totalEnergy + teethAmount + shellAmount

attackCost 1,
Cost per attack on an adjacent critter

solarEnergyPerTurn 1,
Solar energy received each turn if has leaves

maxEnergy 255, * Can never accumulate more energy than this
approxTurnsPerUnitOfEnergyWhileResting

150,
Approximately this many turns, lose one unit * of energy if not doing anything else

attackExcpt "Attack by critter"; * Exception raised if under attack by another
critter to give chance to defend itself; * offset to critter in * $exceptionStringArg1 cvs(x offset), * $exceptionStringArg2 = cvs(y offset)

Example 19.4-1. CRTHDR t Ecological Simulation Intmod (continued)

- 324-

CLASS what (* Describes what is contained in a cell

INTEGER status;

* Remaining fields valid only if status critterCell:

) ;

INTEGER
critterName,
spareEnergy,

totalEnergy,

teethAmount,
shellAmount;

BOOLEAN
hasLeaves,
hasLegs;

* * * * * * *

* *

Critter's letter
How much spare energy critter
has
How much energy will provide if
eaten
How many teeth
How much shell

If has leaves
If has legs

MODULE darwin (

* Interfaces are utilities to be used by critters; * most procedures cause rescheduling. See also * comments in DARWIN module itself

BOOLEAN PROCEDURE addLegs; * Legs are required if critter is to move

BOOLEAN PROCEDURE addLeaves;
* Leaves allow critter to get energy from sun

BOOLEAN PROCEDURE addTeeth; * Teeth provide advantage in attacking

BOOLEAN PROCEDURE addShell; * Shell provides protection from attack

Example 19.4-1. CRTHDR, Ecological Simulation Intmod (continued)

- 325-

) ;

BOOLEAN PROCEDURE reproduce
(INTEGER xOffset,yOffset,initEnergYi
OPTIONAL STRING geneticStringi
PRODUCES OPTIONAL BOOLEAN childSurvived) i * Reproduce at xOffset,yOffset, giving the * child an initial value of initEnergy and * a "genetic string". The more initEnergy, * the greater the chance the child will * survive

STRING PROCEDURE myGeneticStringi
Can be used for simulating evolution

BOOLEAN PROCEDURE move (INTEGER xOffset,yOffset) ;
Returns true iff move legal; offsets must be * in range -1 to 1 (i.e., adjacent)

PROCEDURE lookAround
(MODIFIES POINTER (what) ARRAY(-2 TO 2,-2 TO 2)

whatIsAround) ; * Can see the 5 x 5 area immediately surrounding

BOOLEAN PROCEDURE attack (INTEGER xOffset,yOffset); * Can attack any adjacent critter

POINTER($ranCls) ranPtr;
For use in ran

POINTER (textFile) dbgfi
Debugging output file, if you want to see what
* is going on

STRING PROCEDURE cName (OPTIONAL POINTER(eWhat) p); * Returns the name of current critter for use
in debugging output. p should not be specified * when called from a critter.

Example 19.4-1. CRTHDR, Ecological Simulation Inttnod (continued)

- 326-

INTEGER PROCEDURE ran (INTEGER loBound,hiBound)i
To be used if critter wants a random number to help it
make decisions
RETURN (cvi (ranPtr.$rand MOD cvli(hiBound - loBound + 1»

+ loBound)i

END "crtHdr"

Example 19.4-1. CRTHDR, Ecological Simulation Intmod (end)

BEGIN "darwin"

RESTOREFROM "crtHdr"i

REDEFINE $scanName = "dpyHdr"; SOURCEFILE "msl:syslib";

INTEGER xMax,yMax;

CLASS (what) eWhat (# Extended what class

) i

INTEGER atX,aty; # Current coordinates

STRING modName,geneticStringi

POINTER modPtri

POINTER ($coroutine) coroutine;

POINTER (eWhat) prevCritter,nextCritter,
Circularly linked list
attackeei

BOOLEAN attacking,attacked;

LONG INTEGER critNumi

Exainple 19.4-2. DARWIN, Ecological Simulation Executive Module (continued)

- 327-

POINTER (eWhat) curCritter;

POINTER (eWhat) ARRAY (0 TO *,0 TO *) world;

POINTER ($coroutine) mainCoi

MODULE (dpyCls) dpy; * required by display module

* Debugging stuff

STRING PROCEDURE cName (OPTIONAL POINTER (eWhat) p)i

BEGIN
STRING Si

IF NOT P THEN P := curCritter;
s := "";
cWrite(s,IF p.spareEnergy > 10 THEN p.critterName

EL cvl(p.critterName),
IF p.attacking THEN ,<,
EF p.attacked THEN ,>,
EL , , . ,
p.teethAmount + '0',
p.shellAmount + '0');

RETURN(s & " = " & (IF p.coroutine THEN p.coroutine.$name
EL "<no coroutine>"»;

END;

* Display procedures

FORWARD PROCEDURE showAlli

Example 19.4-2. DARWIN, Ecological Simulation Executive Module (continued)

- 328-

PROCEDURE displayMessage (STRING s);
BEGIN
INTEGER ro,ch;
STRING ss;
clearScreen;
ro := 0;
WHILE s DOB

setCursorOnScreen(ro,O); read(s~ss);
overStrikeChars(ss); ro .+ 1 END;

setCursorOnScreen(lastRowOfScreen,O);
overStrikeChars(

"--- Hit D to debug, any other key to continue ___ H);
IF ch := dpycRead = 'd' OR ch = '0' THEN $debugExec;
showAll;
END;

PROCEDURE showAt (INTEGER x,y);
BEGIN
POINTER (eWhat) p;
p := world[x,y];
setCursorOnScreen(2 * y,2 * x);
IF p.status = emptyCell THEN overstrikeChars(" ")
EB overstrikeChar(

IF p.spareEnergy > 10 THEN p.critterName
EL cvl(p.critterName»;

overstrikeChar(IF p.attacking THEN ,<,
EF p.attacked THEN ,>,
EL '.') END;

setCursorOnScreen(2 * y + 1,2 * x);
IF p.status = emptyCell THEN overstrikeChars(" n)

EB overstrikeChar(p.teethAmount + '0');
overstrikeChar(p.shellAmount + '0') END;

dpyInfo(dumpScreenBuffer);
END;

PROCEDURE showCur;
showAt(curCritter.atX,curCritter.atY);

Example 19.4-2. DARWIN, Ecological Simulation Executive Module (continued)

- 329-

PROCEDURE showAll;.
BEGIN
INTEGER x,y;
clearScreen;
FOR x := 0 UPTO xMax DO FOR Y := 0 UPTO yMax DO

showAt(x,y);
END;

Utility procedures

INLINE PROCEDURE killCritter (POINTER (eWhat) p);
p.spareEnergy := -10000; # Mark as moribund

PROCEDURE checkCo;
IF $thisCoroutine NEQ curCritter.coroutine THENB

displayMessage
("$thisCoroutine NEQ curCritter.coroutine!");

killCritter(curCritter) END;

BOOLEAN PROCEDURE spendOk
(INTEGER energy;
OPTIONAL BOOLEAN addHalfToTotal);

BEGIN
IF curCritter.spareEnergy < energy THEN RETURN(FALSE);
curCritter.spareEnergy - energy;
curCritter.totalEnergy - energy;
showCur;
IF addHalfToTotal THEN # some expenditures are nutritive

curCritter.totalEnergy .+ energy DIV 2;
RETURN (TRUE) ;
END;

Example 19.4-2. DARWIN, Ecological Simulation Executive Module (continued)

- 330-

BOOLEAN PROCEDURE addLegs; * Add legs to the creature, if it has enough spare energy * and doesn't already have legs. Otherwise, don't change
i its energy and return false; return true iff legs added.
BEGIN
BOOLEAN bo;
checkCo;
bo := FALSE;
IF NOT curCritter.hasLegs AND spendOk(energyForLegs,TRUE)

THENB
write(dbgf,"Doing addLegs for ",cName,eol);
curCritter.hasLegs := bo := TRUE END;

showCur; $resumeCoroutine(mainCo);
RETURN(bo);
END;

BOOLEAN PROCEDURE addLeaves; * Like addLegs, true iff successful.
BEGIN
BOOLEAN bo;
checkCo;
bo := FALSE;
IF NOT curCritter.hasLeaves AND

spendOk(energyForLeaves,TRUE) THEN
write (dbgf, "Doing addLeaves for ",cName,eol);
curCritter.hasLeaves := bo := TRUE;

showCur; $resumeCoroutine(mainCo);
RETURN(bo);
END;

Example 19.4-2. DARWIN, Ecological Simulation Executive Module (continued)

- 331 -

BOOLEAN PROCEDURE addTeeth; * Like addLegs, true iff successful.
BEGIN
BOOLEAN bo;
checkCoi
bo := FALSE;
IF curCritter.teethAmount < maxTeeth AND

spendOk(energyPerTooth) THENB
write(dbgf,"Doing addTeeth for ",cName,eol);
curCritter.teethAmount .+ 1; bo := TRUE END;

showCur; $resumeCoroutine(mainCo);
RETURN (bo) ;
END;

BOOLEAN PROCEDURE addShell; * Like addLegs, true iff successful.
BEGIN
BOOLEAN bo;
checkCo;
bo := FALSE;
IF curCritter.shellAmount < maxShell AND

spendOk(energyPerShell) THENB
write(dbgf,"Doing addShell for ",cName,eol);
curCritter.shellAmount .+ 1; bo := TRUE END;

showCur; $resumeCoroutine(mainCo);
RETURN (bo) ;
END;

Example 19.4-2. DARWIN, Ecological Simulation Executive Module (continued)

- 332-

BOOLEAN PROCEDURE reproduce
(INTEGER xOffset,yOffset,initEnergy;
OPTIONAL STRING geneticString;
PRODUCES OPTIONAL BOOLEAN childSurvived); * Return true if spent the energy for reproduction; the * critter must have spare energy at least equal to * initEnergy + birthEnergy. The child is created with * initEnergy. The child mayor may not survive its first * turn: child survival is deter.mined at randomi the more * initial energy, the better chance of suriving. Survival * rate is 1/2 at initEnergy = halfBirthEnergy. * The genetic string is a special message passed from * parent to child and which the child may examine at any * time by calling myGeneticString.

childSurvived is true iff child survived. * Child must be created adjacent to parent.
BEGIN
BOOLEAN bOi
INTEGER x,.y i
REAL r;
POINTER (eWhat) Pi
checkCo;
bo := FALSEi
IF initEnergy > 0 AND

o LEQ x := curCritter.atX + xOffset LEQ xMax AND
o LEQ y := curCritter.atY + yOffset LEQ yMax AND
world[x,y] .status = emptyCel1 AND
spendOk(initEnergy + birthCost) THENB
write (dbgf, "Doing reproduce for ",cName," to If,

xOffset,",",iOffset," with ",initEnergy,
If; gene string = """,geneticString,"""",eol);

r := (cvr(initEnergy) / cvr(halfBirthEnergy» MIN 10.;
r := 2. A r; # r is big for high initial energies
IF ran(l,cvi(r» = 1 AND * Even if small energy, give 1/100 chance

ran(0,99) THENB
write (dbgf, "Child did not survive" & eol);
childSurvived := FALSE END

Example 19.4-2. DARWIN, Ecological Simulation Executive Module (continued)

- 333-

EB childSurvived:= TRUE;
write(dbgf,"Child survived!" & eol);
p := world[x,y]; p.status := critterCelli
p.critterName := curCritter.critterName;
p.spareEnergy :- p.totalEnergy .=

initEnergy MIN maxEnergy;
p.teethAmount := p.shellAmount := 0;
p.hasLeaves := p.hasLegs :- FALSE;
p.atX := Xi p.atY := Yi
p.modName := curCritter.modName;
p.geneticString :- geneticStringi
p.modPtr := NULLPOINTER;
p.coroutine := NULLPOINTER;
p.attacking := p.attacked := FALSE;
p.prevCritter := curCritter;
p.nextCritter := curCritter.nextCritter;
curCritter.nextCritter.prevCritter := Pi
curCritter.nextCritter := Pi bo := TRUEi
showAt(x,y) END END;

$resumeCoroutine(mainCo);
RETURN (bo) i

END;

STRING PROCEDURE myGeneticStringi
Return initial message from parent.
BEGIN
STRING Si
checkCo;
s := curCritter.geneticString;
$resumeCoroutine(mainCo) ;
RETURN(s);
END;

Example 19.4-2. DARWIN, Ecological Simulation Executive Module (continued)

- 334-

BOOLEAN PROCEDURE move (INTEGER xOffset,yOffset)i
Must move to an adjacent squarei i.e.,
abs(xOffset) LEQ 1 and abs(yOffset) LEQ 1.
Cost is (totalEnergy + teeth + shell) DIV costs1ToMove
plus one (the creature's weight takes energy to move
around) .
BEGIN
BOOLEAN bOi

INTEGER oX,oY,X,Yi
POINTER (eWhat) Pi
checkCoi
bo := FALSEi
IF (xOffset OR yOffset) AND abs(xOffset) LEQ 1 AND

abs(yOffset) LEQ 1 AND
o LEQ x .= (oX -= curCritter.atX) + xOffset LEQ xMax

AND

o LEQ y := (oY := curCritter.atY) + yOffset LEQ yMax
AND world[x,y] .status = ernptyCel1 AND
spendOk(

(curCritter. totalEnergy + c·urCritter. teethAmount +
curCritter.shellArnount) DIV costs1ToMove + 1)

THENB
write (dbgf, "Doing move for ",cName," to If,

xOffset,",",yOffset,eol)i
Exchange empty cell and critter's cell
p := world[x,Y]i
world[x,y] := curCritteri
curCritter.atX := Xi curCritter.atY := y;
world[oX,oY] := Pi
p.atX := oX; p.atY := oYi
bo := TRUEi
showAt(x,y); showAt(oX,oY) END;

$resumeCoroutine(mainCo);
RETURN (bo) ;
END;

Example 19.4-2. DARWIN, Ecological Simulation Executive Module (continued)

- 335-

PROCEDURE lookAround
(MODIFIES POINTER (what) ARRAY(-2 TO 2,-2 TO 2)

whatIsAround) ; * Allocate the array and its elements only if necessary,
and fill in with description of the 5 x 5 area
surrounding. what.status is cellOutsideWorld for cells * off the board. Note that records returned in the array
are what records, note the extended eWhat records used
internally by this module to keep track of additional * information about the cells. Thus the critter does
not have access to the internal form of the state info.
BEGIN
INTEGER i,j,x,y;
OWN POINTER(what) outside;
checkCo;
$resumeCoroutine(mainCo);
IF NOT outside THENB

outside := new(what);
outside.status :- cellOutsideWorld END;

IF NOT whatIsAround THEN new (whatIsAround) ;
FOR i :- -2 UPTO 2 DO FOR j :- -2 UPTO 2 DOB

IF NOT whatIsAround[i,j] THEN

END;

whatIsAround[i,j] := new(what);
IF 0 LEQ x := curCritter.atX + i LEQ xMax AND

o LEQ y := curCritter.atY + j LEQ yMax THEN
copy(world[x,y],whatIsAround[i,j])

EL whatIsAround[i,j] := outside END;

Example 19.4-2. DARWIN, Ecological Simulation Executive Module (continued)

- 336-

BOOLEAN PROCEDURE attack (INTEGER xOffset,yOffset) ; * Return true iff managed to eat the critter at the * specified offset from current critter. If eaten, * the critter disappears and its cell becomes empty, * and the eater acquires its totalEnergy. Note that the * attack may consume the attacker's energy even if * unsuccessful. The attack never has effect against * a shelled creature unless the attacker has teeth, but * is always successful against an unshelled creature. * An attack against a shelled creature serves only to * weaken the shell; enough attacks must be made to
* eliminate the shell before the creature can be eaten.
BEGIN
BOOLEAN bo,bo2;
INTEGER x,y,oX,oY;
BITS xx;
POINTER (eWhat) Pi
checkCo;
bo := bo2 := FALSE;
IF (xOffset OR yOffset) AND abs(xOffset) LEQ 1 AND

abs(yOffset) LEQ 1 AND
o LEQ x := (oX := curCritter.atX) + xOffset LEQ xMax

AND

o LEQ y := (oY := curCritter.aty) + yOffset LEQ yMax
AND (p := world[x,y]) . status = critterCel1 AND
spendOK(attackCost) THENB
write (dbgf, "Doing attack for ",cName," to If,

xOffset,",", yOffset, n (n, cName (p) , n) n, eol,
" Teeth = ",curCritter.teethAmount,

If; shell =:= ",p.sheIIAmount,": If);

bo2 := TRUE;
curCritter.attacking := p.attacked .= TRUE;
curCritter.attackee := p;
showCur; showAt(x,y);
$raise(attackExcpt,cvs(oX - x),cvs(oY - y),

NULLPOINTER, $cannotFaIIOut! $returnIfNoHandler, xx,
p.coroutine) ;

Example 19.4-2. DARWIN, Ecological Simulation Executive Module (continued)

- 337-

IF p.shellArnount AND
curCritter.teethArnount GEQ
ran(1,2 * p.shellArnount) THENB
p.shellArnount .- 1; * managed to injure
write (dbgf, "Injured, shell reduced to If,

p.shellArnount,eol) END
EF NOT p.shellArnount THENB * Defenseless creature. Yum yum!

write(dbgf,"Eaten!" & eol);
curCritter.spareEnergy .+ p.totalEnergYi
curCritter.totalEnergy .+ p.totalEnergYi
curCritter.spareEnergy .MIN maxEnergy;
curCritter.totalEnergy .MIN maxEnergy;
killCritter(p); bo := TRUE END

EL write(dbgf,"Uninjured." & eol);
showCur; showAt(x,y) END;

$resumeCoroutine(mainCo)i
IF bo2 THENB

curCritter.attacking := p.attacked := FALSE;
curCritter.attackee := NULLPOINTERi
showCur; showAt(x,y) END;

RETURN (bo) ;
END;

PROCEDURE startCurCritter;
BEGIN
curCritter.modPtr := new(curCritter.modName);
$resumeCoroutine(mainCo,delete);
END;

INITIAL PROCEDUREi
BEGIN
INTEGER x,y,critLetter;
STRING s;
POINTER (eWhat) p;

mainCo := $thisCoroutine;

Example 19.4-2. DARWIN, Ecological Simulation Executive Module (continued)

- 338-

open(dbgf,"Debugging file: ",create!prompt!output);

write (logFile,
"Number of columns «eol> for full screen width): ");

read(cmdFile,s);
IF NOT xMax := cvi(s) THEN xMax := $maxInteger;
write (logFile,

"Number of rows «eol> for full screen height): n);
read(cmdFile,s);
IF NOT yMax := cvi(s) THEN yMax := $maxInteger;

write (logFile, "Display module: n); read(cmdFile,s);
setModName("dpy",s);

initializeTerminal;
xMax .MIN «lastColOfScreen - 1) DIV 2);
yMax .MIN «lastRowOfScreen - 1) DIV 2);
deInitializeTerminal;
new(world,O,xMax,O,yMax);

ranPtr := new($ranMod);
ranPtr.$initRand($date,$time);

critLetter := 'A';
DOB write(logFile,

"Next critter to add to world «eol> to stop): ");
read(cmdFile,s); IF NOT s := cvu(s) THEN DONE;
IF NOT $canFindModule(s) THENB

write(logFile,"Couldn't find module ",s,eo1);
CONTINUE END;

DOB x := ran(O,xMax)i y := ran(O,yMax) END
UNTIL NOT world[x,y];

world[x,y] := p := new(eWhat)i
p.status := critterCell;
p.critterName := critLetter;

write(logFile,"The creature in module ",s,
" will be displayed with the letter ");

cWrite(logFile,critLetter);
write(logFile,eol);

Example 19.4-2. DARWIN, Ecological Simulation Executive Module (continued)

- 339-

critLetter .= nextAlpha(critLetter);
p.spareEnergy := p.totalEnergy := 18;
p.teethAmount := p.shellAmount := 0;
p.hasLeaves := p.hasLegs := FALSE;
p.atX := X; p.aty := y;
p.modName := s; p.geneticString := ""; * p.modPtr and .coroutine to be initialized when run
p.attacking := p.attacked := FALSE;
IF curCritter THENB

p.prevCritter := curCritter.prevCritter;
p.nextCritter := curCritter;
curCritter.prevCritter.nextCritter "= Pi
eurCritter.prevCritter := p END

EB eurCritter := p;
curCritter.prevCritter .=

eurCritter.nextCritter := pEND ENDi

* Finish initializing the world
FOR X := 0 UPTO xMax DO FOR Y := 0 UPTO yMax DO

IF NOT world[x,y] THEN
(world[x,y] :- new(eWhat» .status :=

emptyCell;

initializeTerminal; showAll;

eritNum := OLi * Now run the critters until none left
DOB $HANDLEB

write(dbgf,"Running ",eName,
"; spare energy = ",eurCritter.spareEnergy,
eol) ;

IF ran (1, approxTurnsPerUnitOfEnergyWhileResting)
= 1 THENB * Just sitting around requires some energy
eurCritter.spareEnergy - 1;
curCritter.totalEnergy .- 1;

write (dbgf, "Diminishing energy" & eol);

showCur END;

Example 19.4-2. DARWIN, Ecological Simulation Executive Module (continued)

- 340-

The critter is dead if its energy is negative
IF curCritter.spareEnergy < 0 THENB

write (dbgf, "Killing curCritter" & eol);

IF NOT $killedCoroutine(curCritter.coroutine)
THEN $killCoroutine(curCritter.coroutine);

dispose(curCritter.modPtr);
IF p := curCritter.attackee THEN

p.attacked := FALSE;
IF p := curCritter.nextCritter = curCritter

THEN DONE;
p.prevCritter := curCritter.prevCritteri
p.prevCritter.nextCritter := p;
(world[curCritter.atX,curCritter.aty] :=

new(eWhat» .status := emptyCelli
showCur;
Don't dispose curCritter, procedure attack
could still be using pointer to it
curCritter := Pi CONTINUE END;

IF curCritter.hasLeaves THENB # add solar energy

write(dbgf,"Adding solar energy" & eol);

curCritter.spareEnergy .+ solarEnergyPerTurni
curCritter.totalEnergy .+ solarEnergyPerTurni
curCritter.spareEnergy .MIN maxEnergy;
curCritter.totalEnergy .MIN maxEnergy;
showCur ENDi

IF NOT curCritter.coroutine THEN
curCritter.coroutine :=

$createCoroutine(thisDataSection,
"startCurCritter",
curCritter.modName & n n &

cvcs(curCritter.critterName) &
cvs(critNurn .+ 1L),

Smallish stack, so don't run out
of memory allocating coroutines
(4096 DIV $pageSize) MAX 1);

$resumeCoroutine(curCritter.coroutine) END

Example 19.4-2. DARWIN, Ecological Simulation Executive Module (continued)

- 341-

$WITH
IF $exceptionName = $systemExcpt OR

$exceptionNarne NEQ $descendantKilledExcpt AND
$exceptionBits TST $cannotReturn THENB * Don't show msg for $descendantKilledExcpt * here because it happens all the time

displayMessage(
"Critter" & cvcs(curCritter.critterName)

& " (" & curCritter.rnodNarne & "):" &
eol &

"Exception "& $exceptionName & eol &
$exceptionStringArgl & eol &
$exceptionStringArg2);

kilICritter(curCritter);
IF $exceptionBits TST $cannotFallOut THEN

$raise END
EL $raise;

curCritter := curCritter.nextCritter END;

displayMessage(nAll critters have died. End of world.");

clearScreen; deInitializeTerrninal;
unbind (dpy) ; relModName(ndpy");

END;

END "darwin"

Example 19.4-2. DARWIN, Ecological Simulation Executive Module (end)

- 342-

BEGIN "plant"

RESTOREFROM "crtHdr";

DEFINE
bestBirthEnergy

halfBirthEnergy MAX (energyForLeaves + 1);

POINTER (what) ARRAY (-2 TO 2,-2 TO 2) w;

INITIAL PROCEDURE;
BEGIN
BOOLEAN clearSpaceClose;
INTEGER x,y;
addLeaves;
DOB lookAround(w);

clearSpaceClose := FALSE;

END;

FOR x := -1 UPTO 1 DO FOR Y := -1 UPTO 1 DO
IF w[x,y] . status = emptyCell THEN

clearSpaceClose := TRUE;
IF clearSpaceClose AND

w[O,O] .spareEnergy >
birthCost + bestBirthEnergy THENB

DOB x := ran(-l,l); y := ran(-l,l) END
UNTIL (x OR y) AND w[x,y] . status = emptyCell;

reproduce (x,y,bestBirthEnergy) END END;

END "plant"

Example 19.4-3. PLANT Critter

BEGIN "eater"

RESTOREFROM "crtHdr";

Example 19.4-4. EATER Critter (continued)

- 343-

DEFINE
bestBirthEnergy

halfBirthEnergy MAX (energyForLegs + 1),
reserve

2 * attackCost;

POINTER (what) ARRAY (-2 TO 2,-2 TO 2) Wi

INTEGER PROCEDURE sgn (INTEGER i)i
RETURN(IF i > 0 THEN 1

EF i < 0 THEN -1
EL 0);

INITIAL PROCEDURE;
BEGIN
INTEGER x,y,tShell,tTotEn,tX,tY,eX,eY; * Target's shell, total energy, x, y, and empty x, y
POINTER (what) me,pi
addLegs;
DOB lookAround(w); me := w[O,O];

tX := tY := eX := eY := 0;
tShel1 := $maxInteger; tTotEn := - $maxInteger;

FOR x := -1 UPTO 1 DO FOR Y := -1 UPTO 1 DO * Search immediately adjacent spaces
IF (p := w[x,y]) . status = critterCel1 AND

p.critterName NEQ me.critterName AND * Go for less shell first, then more energy
(p.sheIIAmount < tShel1

OR p.shellAmount = tShel1 AND
p.totalEnergy > tTotEn) THENB
tX := x; tY := y;
tShel1 := p.shellAmounti
tTotEn := p.totalEnergy END

EF p.status = emptyCel1 THENB
o eX := x; eY := y END;

Example 19.4-4. EATER Critter (continued)

- 344-

ENDi

IF NOT (tX OR tY) THENB * Didn't find a creature adjacent, look farther
FOR x := -2 UPTO 2 DO FOR Y := -2 UPTO 2 DO

IF (p := w[x,y]) .status = critterCel1 AND
p.critterName NEQ me.critterName AND
(p.sheIIAmount < tShel1

OR p.shellAmount = tShell AND
p.totalEnergy > tTotEn) THENB
tX := Xi tY := Yi
tShel1 := p.shellAmounti
tTotEn := p.totalEnergy ENDi

IF tX OR tY THENB * Move towards target
move(sgn(tX),sgn(tY»; CONTINUE END END;

IF tX OR tY THEN attack(tX,tY);

* Now, should we try to reproduce, grow shell, or * grow teeth?

CASE ran(1,3) OFB
[1] IF me.spareEnergy > reserve + energyPerShell

AND me.shellAmount < maxShell THEN
addShell;

[2] IF me.spareEnergy > reserve + energyPerTooth
AND me.teethAmount < maxTeeth THEN
addTeeth;

[3] IF me.spareEnergy >

END END;

reserve + birthCost + bestBirthEnergy
AND (eX OR eY) THEN
reproduce(eX,eY,bestBirthEnergy);

END "eater"

Example 19.4-4. EATER Critter (end)

- 345-

19.5. Coroutines and Exceptions

When an exception occurs in a child coroutine, the exception propagates within the coroutine in
the usual fashion. If it is handled within the coroutine, then the coroutine's ancestors are not
affected. However, if a child coroutine does not handle an exception, then each of the
ancestors in turn is given an opportunity to handle it; the system macro $exceptionCoroutine
returns the coroutine in which the exception was originally raised. The "MAINSAIL Language
Manual" contains a more detailed description of exceptions in coroutines.

A program may run an application in a child coroutine, as in Example 19.3-10 Suppose that the
program wants to handle its own exceptions, but wants its ancestors to handle exceptions
generated by the application. The program's Handle Statements may look like:

$HANDLE
<code that may be running while a child is running>

$WITHB
IF $exceptionCoroutine NEQ $thisCoroutine

OR <exception isn't one we want to handle> THEN
$raisei

<handling code> ENDi

If desired, a parameter to $raise permits one coroutine to raise an exception in another; see the
"MAINSAIL Language Manual" for details. An ex.ample appears in the DARWIN executive
module of Example 19.4-2, where an exception is raised in a critter coroutine when the critter is
under attack.

- 346-

19.6. Exercises

Exercise 19-1.

Write a scheduler module and some applications that remedy the following defects of
Example 19.3-1 by using the MAINSAIL display modules:

• Intermingling of input and output Create a special region of the screen for
each application.

• Failure to handle exceptions in child coroutines. Abort only the child in
which the exception occurs.

The MAINSAIL STREAMS package can be used to overcome the problem of
blocking on tenninal input, but you need not use STREAMS in your answer to this
exercise.

Exercise 19-2.

Write a new critter that runs under the DARWIN executive module of Example
19.4-2. Critters that are superior to both exisiting modules should be easy enough to
write; test them by running them against the PLANT and EATER example modules
of Examples 19.4-3 and 19.4-4.

- 347-

20. Bootstraps, Libraries, and Intmods

MAINSAIL starts execution as a host system executable file called a "bootstrap". In order to
execute on an operating system, the bootstrap is constructed in accordance with the operating
system's conventions for executable files. The bootstrap is the only piece of MAINSAIL so
constructed; all MAINSAIL object modules are written in a format specific to MAINSAIL,
which has no relationship with the operating system's linkable or executable object file format.

Many MAINSAIL object modules may be stored together in a file called an "objmod library"
(or just a "library" when the context is clear). When a MAINSAll... execution starts, one of the
first thing it does is open the library where it expects to find certain crucial modules of the
runtime system (the "system library"). The system library is not the only objmod library that
may be used; programmers may group their own modules into libraries as well.

Intmods are repositories for symbols used by MAINSAIL system porgrams or shared among a
number of modules. For the latter purpose, they are often superior to sourcefiled header files or
source libraries.

20.1. Bootstraps

The standard MAINSAIL bootstrap is adequate for many purposes. However, users may
sometimes want to construct their own custom bootstraps for various reasons:

• To have MAINSAIL run an initial module rather than come up at the MAINEX
asterisk prompt.

• To specify different locations for the system library and kernel files·(the kernel file is
loaded by the bootstrap and provides many MAINSAIL system functions; the kernel
in tum opens and reads in the necessary modules from the system library).

• To specify a list of foreign object modules (linked with the bootstrap) to which
MAINSAIL is to have access through the Foreign Language Interface.

• To specify that MAINSAIL is to be invoked from a foreign language program.

• To specify initial MAINEX subcommands that govern the execution of subsequent
modules.

• To alter parameters governing memory usage and memory management; the most
important of these parameters are those governing the maximum memory that

- 348-

MAINSAIL may request from the operating system and the frequency of garbage
collection. Some operating systems may also allow the user to specify the size of the
initial coroutine's stack.

The MAINSAIL utility module CONF is used to build a bootstrap. The portable part of CONF
is described in the "MAINSAIL Utilities User's Guide"; operating-system-specific commands,
if any, are described in the guides for each operating system.

20.1.1. Bootstrap Caveats

On some systems, MAINSAIL requires certain parameters to be set correctly in the bootstrap in
order to run. For example, on UNIX, the "UNIXBITS" parameter must be set to the value
shipped in the system bootstrap configuration file and the "FOREIGNMODULES" parameter
must include all the modules listed in the system configuration file. If you use CONF's
"SAVE" command to create a UNIX parameters file, be sure not to use "RESTORE" to read the
file under a later version of MAINSAIL without making sure that the "UNIXBITS" and
"FOREIGNMODULES" parameters are compatible with the required values for the new
version of MAINSAIL.

20.2. Objrnod Libraries

Objmod libraries provide several advantages:

• When a module resides in an open library, MAINSAIL does not have to attempt to
open a new object file; it can read it from an already open file, saving the operating
system overhead for a file open (except when the "EXEFILE" MAINEX
subcommand is in effect; consult the "MAINSAIL Utilities User's Guide" for
details).

• Opening fewer files means consuming fewer operating system file handles. Some
operating systems impose an annoyingly low limit on the number of simultaneously
open files.

• When a module read from an open library is swapped (see Section 2.1 of part II of
the "MAINSAIL Tutorial"), the MAINSAIL runtime does not write it out into a
separate swap file, since it knows it can read it in again from the library.

Objmod libraries are typically opened towards the beginning of a MAINSAIL execution with
the "OPENEXELffi" MAINEX subcommand (which may be installed in a bootstrap) or with
the openLibrary system procedure. Once a library file is opened, it typically remains open until
the end of the execution (although it may be closed, if desired, with the closeLibrary system
procedure or the "CLOSEEXELIB" MAINEX subcommand).

- 349-

Objmod libraries are managed with an interactive utility, MODLIB, which is described in the
"MAINSAIL Utilities User's Guide".

The MAINSAIL compiler can compile directly into objmod libraries; consult the "MAINSAIL
Compiler User's Guide" for details.

Some operating systems provide a facility for "mapping" an objmod library, making it resident
in memory; consult the appropriate system-specific user's guide for details. Mapping libraries,
if available, can result in considerably faster access to modules within the library, at the
expense of making the memory occupied by the library unavailable for other purposes.

20.3. Intmods and Intmod Libraries

Intmods are files that may substitute for sourcefiled header files (files of definitions shared by
several modules). Intmods are also required by various MAINSAIL utility programs, and are
produced when certain compiler subcommands (e.g., "DEBUG", "ALIST", etc.) are in effect.
Intmods that can substitute for header files are made when the "SA VEON" source directive or
compiler subcommand is in use, and the symbols from an intmod may be made visible with the
"RESTOREFROM" source directive.

Intmods are made from complete modules; i.e., they save all the symbols in a module. As an
example, imagine that the lines reading:

SOURCEFILE "decls";

in Examples 14.6-1 and 14.6-2 were replaced with:

RESTOREFROM "decls";

An intmod made from a module DECLS could replace the sourcefiled file "decls" of Example
14.6-3. It would look like Example 20.3-1. The "SAVEON" directive at the end causes the
compiler to produce an intmod for DECLS.

Intmods have several advantages over header files:

• The compiler has already processed the declarations in an intmod file and translated
them into an internal form. It is faster to make an intmod visible than to read a
source file.

• Intmods may be used implicitly; an identifier "foo" from an intmod BAR may be
specified as "bar$foo" in a program. There is no need to issue a directive to open
BAR's intmod explicitly; the compiler looks for the intmod in a search analogous to
the search for executable objmods.

- 350-

BEGIN "decls"

MODULE itfl (
PROCEDURE procl (MODIFIES INTEGER i2)i

) i

MODULE itf2 (
INTEGER i2;
PROCEDURE proc2 (STRING whereFrom);

) ;

SAVEONi

END "decls"

Exainple 20.3-1. A Module Compiled to Produce an Intmod

• When an intmod is made visible, some of the symbols it contains may still be
invisible; directives exist to control visibility on a per-symbol basis. Sometimes a
visible symbol in a package of symbols needs to use some supporting variables or
procedures, but the supporting symbols would not be useful outside the package, and
so should not be visible outside it. This sort of information hiding is unavailable in a
source filed header file.

• Intmods may be grouped into library files analagous to objmod library files. This
prevents clutter in the file system and reduces the number of simultaneously open
files. Intmod libraries are managed with a utility called INTLIB, which is very
similar to MODLIB for objmod libraries.

More on intmods and intmod libraries may be found in the "MAINSAIL Language Manual"
and in the chapter on INTLIB in the "MAINSAIL Utilities User's Guide". Examples 19.4-2,
19.4-3, and 19.4~4 show modules that restore from a common intmod.

20.4. Foreign Language Modules

MAINSAIL can call routines in certain foreign (non-MAINSAIL) languages, and certain
foreign languages can call MAINSAIL procedures. A MAINSAIL module interface is used to
describe the foreign routines; a MAINSAIL module with interface procedure headers that
"simulate" the foreign procedure headers is compiled with special compiler subcommands, and
the resulting file (which is not a regular MAINSAIL objrnod file, but an operating-system-

- 351 -

specific assembly or linker file) is linked with a MAINSAIL bootstrap to allow MAINSAIL to
call the foreign language or vice versa (depending on which compiler subcommands were
given). The MAINSAIL Foreign Language Interface (FLI) is described in the "MAINSAIL
Compiler User's Guide" and in the appropriate operating-system-dependent user's guide.

The FLI is available only for certain language-operating system combinations, and in some
cases may be available only for calls from MAINSAIL to a foreign language (a "Foreign Call
Compiler", or FCC) or for calls from a foreign language to MAINSAIL (a "MAINSAIL Entry
Compiler", or MEC). If you require a combination that is not presently available, contact
XIDAK for information.

20.4.1. Special FLI Considerations

20.4.1.1. Strings

The method of passing MAINSAIL strings to a foreign language varies from language to
language. Some languages do not have any data structure corresponding to a MAINSAIL
string; in such a case, passing a MAINSAIL string to a foreign language is illegal.

In some cases, a string must be passed as a charadr (the location of the first character in the
MAINSAIL string); sometimes a null (zero) character must be appended to the string before the
charadr is computed.

In some cases, a single MAINSAIL string corresponds to two separate parameters to a foreign
language: one parameter indicates the location of the characters, the other the length of the
string.

A foreign language must not change characters of a string allocated in MAINSAIL string
space.

A foreign language must not attempt to access characters beyond the end of the MAINSAIL
string. The MAINSAIL string might be allocated near the end of the memory accessible to
MAINSAIL; accessing data beyond the end of the string might cause a (system-dependent)
memory violation.

When a foreign language allocates a string and passes it to MAINSAIL, it may be desirable to
use $getInArea in order to move the string into MAINSAIL string space. This is necessary if
the foreign language is likely to reuse the space in which it allocated the string, but the
MAINSAIL program wishes to continue referring to the string after the foreign language has
reused the space. By copying the string to MAINSAIL string space, the program may ensure
that the characters of the string will remain the same as long as a MAINSAIL string variable
points to them (the characters are collected when the string becomes inaccessible). The use of
$getInArea is necessary only if the space where the foreign string was allocated is to be reused;

- 352-

the MAINSAIL garbage collector is not confused by string variables that point outside
MAINSAIL string space.

20.4.1.2. Arrays

Arrays are usually passed as the address of the first element of the array to languages without
the concept of a dynamically sized array. Additional information must be passed if the foreign
language needs to determine the size of the array.

In some languages, there is no way to refer to an "unallocated" array. In such a case, passing a
MAINSAIL nullArray to the foreign language raises the exception $nullArrayExcpt

A foreign language must not access array elements outside of the array; as in the case of
characters beyond the end of a string, attempting to access such elements may cause a memory
violation.

20.5. Bootstrap and Library Example

Suppose a bootstrap is to be constructed for a music synthesis program. An FLI module,
MUSFLI, is required to access the sound generation software or hardware on the system; the
MAINSAIL modules for the music synthesis program are:

MUSMOD
NOTE
TIMBRE
SYNTH

It is desired to put the modules into a single objmod library for XYZ operating system (where
$systemNameAbbreviation is "xyz") and open this library in the MAINSAIL bootstrap.

Assuming the source files end in ".msl", the commands to compile the modules into a library,
"music-xyz.olb", are shown in Example 20.5-1. Alternatively, the library may be built from the
objmod files with the commands shown in Example 20.5-2.

The FLI module, MUSFLI, must be compiled (see Example 20.5-3). It must then (on most
systems) be assembled with the system assembler; in addition, the foreign language code
implementing MUSFLI must be compiled or assembled (not shown). It is assumed here that on
the XYZ operating system, the linker file for MUSFLI is "musfli.link", and for the foreign code,
"mus.link" .

The bootstrap file must be made to open "music-xyz.olb" and and to specify MUSFLI as a
foreign module (see Example 20.5-4). "=" is used to indicate that the multi-line parameters
"FOREIGNMODULES" and "SUBCOMMANDS" should start with their original values. The

- 353-

MAINSAIL (R) Compiler
Copyright (c) 19B4, 19B5, 19B6, 19B7, 19BB, and 19B9 by

XIDAK, Inc., Menlo park, California, USA.

compile (? for help): musmod,msl,<eol>
> outobjlib music-xyz,olb<eol>
> <eol>
Opening intmod for $SYS ...

musmod.msl 1 2 3 4 5 6 7 B 9 10 11
Created library music-xyz.olb
,Adding musmod to music-xyz.olb
Intmod for MUSMOD not stored

compile (? for help): note.msl<eol>
Opening intmod for $SYS ...

note.msl 1 2 3 4 5
Adding note to music-xyz.olb
Intmod for NOTE not stored

compile (? for help): timbre,msl<eol>
Opening intmod for $SYS ...

timbre.msl 1 2 3 4
Adding timbre to music-xyz.olb
Intmod for TIMBRE not stored

compile (? for help): synth.msl<eol>
Opening intmod for $SYS ...

synth.msl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Adding synth to music-xyz.olb
Intmod for SYNTH not stored

compile (? for help): <eol>

Example 20.5-1. Compiling Modules into a Library

CONF output must (on most systems) be assembled with the system assembler (not shown); it
is assumed the resuling linker file is "music. link" ,

- 354-

MAINSAIL (R) Objmod Librarian (? for help)
Copyright (c) 1984, 1985, 1986, and 1987 by XIDAK, Inc.,

Menlo Park, California, USA.

MODLIB: create music-xyz.olb<eol>
Created library music-xyz.olb
MODLIB: add music-xyz.olb musmod note timbre synth<eol>
Adding musmod to music-xyz.olb
Adding note to music-xyz.olb
Adding timbre to music-xyz.olb
Adding synth to music-xyz.olb
MODLIB: ~

Example 20.5-2. Building a Module Library

MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, and 1986 by XIDAK, Inc.,

Menlo Park, California, USA.

compile (? for help): musfli.msl,
> fli t<abbreviation for foreign language><eol>
>

musfli.msl 1
Object module for MUSFLI stored on musfli.<extension>

compile (? for help): <eo 1>

Example 20.5-3. Compiling the FLI Module MUSFLI

Example 20.5-5 shows a hypothetical linker command for the music bootstrap. Of course,
linkers vary a great deal from system to system; consult the appropriate system-dependent
MAINSAIL user's guide and, if necessary, the system linker manual for details.

- 355-

MAINSAIL (R) Bootstrap Configurator
Restoring configuration values from file

<system configuration file>
CONF: bootfilename music.<extension><eol>
CONF: foreignmodules<eol>
FOREIGNMODULES is
SYSMDl
SYSMD2
SYSMD3
Should be:
=<eol>
MUSFLI<eol>
<eol>
CONF: subcommands<eol>
SUBCOMMANDS is
SUBCOMMANDS <system subcommand file>
Should be:
=<eol>
openexelib music-xyz.o1b<eo1>
<eo1>
CONF: <eol>
Bootstrap written in file music.<extension>

Example 20.5-4. Making the Bootstrap for the Music Program

. as prompt:
link music.1ink musfli.1ink mus.link into music<eo1>
Linkage complete, no errors.
as prompt:
run music<eol>
<MAINSAIL executes>

Example 20.5-5. Linking and Running the Bootstrap

- 356-

! 98

34

$ prefix in identifiers 10

& (string concatenation) 15

(and) 19

* 19,98

+ 19,98

- 19,97,98

.! 128

.& 128

.* 128

.+ 128

.- 128

./ 128

.A 128

.CLR 128

.DIV 128

.lOR 128

.MAX 128

.WN 128

.MOD 128

.MSK 128

.SHL 128

.SHR 128

.XOR 128

/ 98

:=' 28,122

< 98
(less than) 31

= 16,30,98

Index

- 357-

> 98
(greater than) 31

abbreviation of keyword 32
$abortProcedureExcpt 273,292
$abortProgramExcpt 273
ACKER example module 84
Ackermann's function 83
ADDNUM example module 314
address 284

space 292
alignment of addresses 284, 289
allocation

of array 159
of record 149

altering an existing file 118
alterOK 118
AND 31,98,123
$arg 190
arithmetic

error 273
operators 19

array 158
allocation 159
changing size of 172
initialization 167
long 172
variable-bounded 170

Assignment
Expression 122
Statement 28

assignment compatibility 154

BANDB example module 102
Begin Statement 29
BIGSTR example module 29
binary tree 154
binding a module 198
BINTR2 example module 293
BINTRE example module 155
bit

clearing (CLR) 98
masking (MSK) 98
vectors 91

bit shifting operators (SHL, SHR) 98

- 358-

bit testing operators (TST, TSTA, NTST. NTSTA) 98
bits 91
SbitsPerChar 285
SbitsPerStorageUnit 131,285
BKWRD2 example module 319
BKWRDS example module 72
blocking on I/O 319
boolean 30
bound data section 196
bracketed text 178
BS~ example module 236
bucket, hash 133
byte 284

CALC example module 77
Case Statement 129
chained comparison 183
character

and string system procedures 59
code 14,54
string 14
unit 106, 284

ScharacterRead 295
ScharacterWrite 295
charadr 284
ScharsPerPage 291
ScharsPerStorageUnit 285
class 144

explicit specification 223
classified pointer 145
'Sclasslnfo 298
SclassName 298
cleaning up after a procedure or program 273
clear 289
closing a file 107
CLR 98
cmdFile 107
ScmdFileEofExcpt 273
cmdMatch 168
CMPSTR example module 49
Scollect 297
ScollectLock 297
COLORS example module 35
comment 34
compare 125

- 359-

comparison chain 183
comparison operators (=, NEQ, <, LEQ, >, GEQ) 98
compatibility of data types or classes 154
COMPIL 6
compiletime libraries 83
concatenation 98

macro 189
of strings 15

CONCHK 4
conditional compilation 184
confirm 133
constant macro 16, 177
consumer-producer problems 299
Continue Statement 71
conversion between data types 95
COPFIL example module 109
COPIER 117
copy 289
COROUT example module 305
coroutine 299

exception in 346
scheduler 314
stack 305

COUNlR example module 130
cRead 58, 288
$createClassDscr 298
$createCoroutine 299
$createRecord 298
CRTHDR example module 323
current exception, information about 281
cva 95
cvb 95
cvc 95,289
cvcs 58
cvi 95
cvl 58
cvlb 95
cvli 95
cvlr 95
cvp 95
cvr 95
cvs 95
cvu 58
cWrite 60,288

- 360-

DARWIN example module 327
data file 106
declaration, variable 17
declarations file (for use with SOURCEFILE directive) 209
DEFINE 16
DELTA example module 30
DELTA2 example module 42
DEVOWL example module 290
direct access to data section 213
DIRMOD example module 218
display module 248
dispose 292
DIV 19,98
division by zero 273
division operators (j, DIV, MOD) 98
DNGN example module 229
DO 36
DOB 32
Done Statement 71
DONESCAN compiler directive 209
dotted operator 128
$dscrPtr 298
dungeon game example 225
dynamically sized arrays 170

EATER example module 343
EB 32
ecological simulation 322
editor 4
EF 32
$EFC 184
efficient string comparison 125
EL 32
element of array 158
ELSE 31
ELSEC 184
Empty Statement 130
end-of-file 107
end-of-line 14
ENDC 184
enterLogicalName 111
eol 14
eop 15
eparms file for MAINEDIT 114
equ 125

- 361 -

ERREXC example module 282
errMsg 133

and exceptions 281
Error response: 8
errors 8
evaluation of procedure arguments 49
exception

current, information about 281
in coroutine 346
nested 273
raised by errMsg 281
raising 269
stack 276

$exceptionBits 281
$exceptionName 281
$exceptionPointer Arg 281
exceptions 266

automatic and predefined 273
$exceptionSuingArgl 281
$exceptionSuingArg2 281
exclusive or (XOR) 98
EXCPTI sample module 270
EXCP.T2 sample module 271
exeList 246
explicit class specification 223
exponentiation 98
Expression Statement 127

falling
out of a handler 269. 272
out df a typed procedure 273

FALSE 30
field 144
file

I/O 106
name 111
position 131
system 106

filter, character stream 300
first 60
flag 91
FOR-clause 27
foreign

module 247

- 362-

strings 297
forward procedures 76

garbage
collection 144, 292, 297
collection and $storageUnit I/O 296

generic procedures 85
GEQ 98

(greater or equal) 31
$getInArea 297
getPos 132
$gotValue 107
GTPL example module 236
guaranteed range 19

$HANDLE 268
Handle Statement 268
Handle Statements, nested 276
handler

falling out of 272
nested 273

hash
code 133
table 163,213

header,procedure 41
HSHMOD 213
HSHMOD module, source text 215

I/O 106
identifier 9
If

Expression 121
Statement 31

IFC 184
IFFY example module 32
inclusive or (!, lOR) 98
indirect access to data section 196
INF 124
infix order 154
Init Statement 167
initial procedure 10
input 106
instance procedures 85
integer 19

square root example 37

- 363-

interactive macro equate 185
interface field 196
intmod 350
invalid address 289
lOR 98
$ioSize 142
isAlpha 61
isLowerCase 61
isUpperCase 61
Iterative Statement 26, 36
iterative variable 27
ITFI example module 199
ITF2 example module 200

KEY example module 236
keyword 9

abbreviation 32
$killCoroutine 299

LA:MP example module 236.
last 60 .
length 60
LEQ 98

(less or equal) 31
library

intmod 350
objmod 246

LIST example module 150
load 286
local variable 45
logFile 107
LOGIC example module 33
LOGIC2 example module 43
logical name 111
logical operators (AND, OR, NOn 98
long

array 172
bits 91
integer 89
real 90

lookupLogicalName 111
LOOPS example module 38
low-level data types 284

- 364-

macro 16
bracketed text 178
common errors 193
concatenation 189
constant 16, 177
recursive 187

macro parameter, repeatable 190
MAINEDIT 4

eparrns file 114
MAINEX 4
MAINSAIL address space 292
MA TMUL example module 173
matrix multiplication 172
MAX 98
$maxChar 289
maze program exercise 175
MEMMAP 292
memory management 144,284
MESSAGE compiler directive 185
MIN 98
MOD 98
MODIFIES 44
module 196,213

library 246
search rules 246
source vs. object 196
swapping 208

MSK 98
MULEXC example module 277
multidimensional arrays 172
multiple processes, simulating 299
multiplication operator (*) 98
mutual recursion 76

named statement 29
NEQ 98

(not equal) 31
nested

exception 273
Handle Statements 276
handler 273

new 149,159
newScratch 288
$newScratchChars 289
newString 297

- 365-

newUpperBound 172
NICHTS example module 185
NIHIL example module 187
NOCO example module 300
nonbound data section 213
NOPROC example module 40
NOT 97
NTST 98
NTSTA 98
NULLADDRESS 288
NULLCHARADR 288
NULLPOINTER 146
$numArgs 190
numeric operators (+, -, *, I, DIV, MOD) 98
NUMS example module 110

object module 6, 196
object-oriented programming 213
objmod 6, 196

library 246
open file 107
OPTIONAL 55
OR 31, 98, 123
order of evaluation of procedure arguments 49
outer declaration 61
output 106
overflow, arithmetic 273
own variable 83

page 291
map 292

pageDispose 292
$pageRead 295
$pageSize 291
$pageWrite 295
parameter 44

macro 181
parentheses 19
passing a procedure argument 44
PDF 142
PLANT example module 343
PLAYER example module 236
PLISTexampie module 163
PL 1FRM example module 236
pointer 144

- 366-

classifying in expression 223
unclassified 244

Portable Data Format 142
I precedence of assignment operator 122

predeclared identifier 58
$preferredRadix 288
prefix class 154, 223
prefixed class 223
Procedure Statement 42

I procedure 40
procedure arguments, evaluation 49
processes, simulating multiple 299

I PROCS example module 41
producer-consumer problems 299
PRODUCES 44
program 7. 196
propagating an exception 269

QUOTES example module 87

$raise 269
$raiseReturn 269
raising an exception 269
random access to files 131
rcRead 60
rcWrite 61
read 26.106,131,288
READER example module 18
real 90
record 144

allocation 149
recursion 72
recursive

descent 76
macro 187
multiplication example 74

recursive descent, errors and exceptions 266
redirection of cmdFile and logFile 115
$registerException 281
relPos 132
REPEATABLE 55
repeatable macro parameter 190
REPTST example module 57
reserved word 9
RESTOREFROM 350

- 367-

$resumeCoroutine 299
resuming a handled statement 269
Return Statement 48, 71
Reverse Polish Notation 63
RPN example module 64

$sArg 190
SAVEON 350
scan 126

fast 289
SCHED example module 315
scheduler, coroutine 314
scope of declaration 19, 61
scratchDispose 288
search rules for module 246
setFileName 246
setPos 132
SETUP example module 114
SHL 98
short-circuit evaluation 123
SHR 98
SIMPLE example module 6
simulation, ecological 322
SINES example module 92
size

of a class 285
of a data type 285

SMSQRT example module 320
source

libraries 83
module 196

SOURCEFILE compiler directive 209
SQRTS example module 37
SQUARE example module 27
stack

as data structure 63
in coroutine 305
in exception 276

START example module 236
statement 26
storage unit 106, 284
$storageUnitRead 295
$storageUnitWrite 295
store 287
STREAMS 299

- 368-

STRING 19
string 14

and character system procedures 59
comparison 125
concatenation 15,98
space 297

strong typing 21
subscript 159
SUBSTR example module 62
substring 123
SUMS example module 73
swapping of modules 208
SYMT AB example module 135
system procedure 58
$systemExcept 281

tab 15
table, hash 133
tables of operations 96
TETRA example module 90
text

editor 4
file 106

textual substitution 178
THENB 32
THENC 184
thisDataSection 244
time-sharing, simulating 299
TOYED example module 249
TRIANG example module 28
triangular numbers 28
TRUE 30
TST 98
TSTA 98
TTY 117
ttycWrite 117
ttyRead 117
ttyWrite 117
type code 131
typed procedure 48

$unbuffered 295
unclassified 'pointer 154,244
underflow, arithmetic 273
UNTIL-clause 36

- 369-

upperCase 125
USEED example module 264
$useProgramInterface 248
USES 44

valid address 289
variable declaration 17
variable-bounded arrays 170

WHILE-clause 36
$WITH 268
WITHeO example module 302
word 284
write 26,106,131,288
WRITE2 example module 16
WRITE3 example module 17
WRITE4 example module 17
WRITER example module 15
WRONG example module 96

XOR 98

Zero of a data type 83, 93
zero, division by 273

- 370-

XIDAK, Inc., 530 Oak Grove Avenue, MIS 101, Menlo Park, CA 94025 , (415) 324-8745

