
XVME-983
Software Support
Library

P/N 74983-001C

© 1998 XYCOM, INC. Printed in the United States of America

Xycom Revision Record

Revision Description Date
A Manual Released 11/90
B Manual Updated 5/92
C Manual Updated 11/93

Trademark Information
Brand or product names are registered trademarks of their respective owners.
Windows is a registered trademark of Microsoft Corp. in the United States and other countries.

Copyright Information
This document is copyrighted by Xycom Incorporated (Xycom) and shall not be reproduced or copied
without expressed written authorization from Xycom.

The information contained within this document is subject to change without notice. Xycom does not
guarantee the accuracy of the information and makes no commitment to keeping it up to date.

xycom
Technical Publications Department
750 North Maple Road
Saline, MI 48176-1292
734-429-4971 (phone)
734-429-1010 (fax)

i

TABLE OF CONTENTS

CHAPTER TITLE PAGE

1 INTRODUCTION
1.1 Manual Structure 1-1
1.2 Overview 1-1
1.2.1 VMEbus Boards Supported with C Language Subroutines 1-2
1.2.2 VMEbus Boards Supported with MS-DOS Drivers 1-3
1.3 Library Organization 1-4
1.4 Installation 1-5
1.4.1 \EXAMPLES Directory 1-5
1.4.2 \INCLUDE Directory 1-8
1.4.3 \LIB Directory 1-8
1.4.4 \SERIAL Directory 1-9
1.5 Development Notes 1-9

2 XVME GENERAL PURPOSE LIBRARY
2.1 Introduction 2-1
2.2 Real Mode Window 2-1
2.3 Interrupts 2-2
2.4 General Purpose Routines 2-2
2.4.1 Initial XVME Library 2-3
2.4.2 Initialize XVME Library 2-4
2.4.3 Release the VMEbus 2-4
2.4.4 Access the VMEbus 2-5
2.4.5 Set Real Mode Window 2-5
2.4.6 Read VMEbus Memory Through The Real Mode Window 2-6
2.4.7 Write VMEbus Memory Through The Real Mode Window 2-7
2.4.8 Read VMEbus Memory In Protected Mode 2-8
2.4.9 Write VMEbus Memory In Protected Mode 2-9
2.4.10 Set Interrupt Vector 2-10
2.4.11 Read Interrupt Vector 2-10
2.4.12 Mask the Interrupt Controller 2-11
2.4.13 Disable VME Interrupts 2-11
2.4.14 Enable VME Interrupts 2-11
2.4.15 Set NMI Interrupt Vector 2-12
2.4.16 Read NMI Vector 2-12
2.4.17 Enable Auxiliary NMI 2-13
2.4.18 Disable Auxiliary NMI 2-13
2.4.19 Generate VMEbus Interrupt 2-14
2.4.20 Enable the Watchdog Timer 2-14
2.4.21 Disable the Watchdog Timer 2-15
2.4.22 Strobe the Watchdog Timer 2-15

Table of Contents

ii

CHAPTER TITLE PAGE

3 MODULE LIBRARY: DIGITAL I/O BOARDS
3.1 Introduction 3-1
3.2 XVME-200/290 Digital I/O Module 3-2
3.2.1 Initialize 3-2
3.2.2 Set the Counter Pre-Load Register 3-3
3.2.3 Set Port A Direction 3-3
3.2.4 Set Port B Direction 3-4
3.2.5 Set Port A Sub Mode 3-4
3.2.6 Set Port B Sub Mode 3-5
3.2.7 Read a Byte 3-5
3.2.8 Write a Byte 3-6
3.2.9 Interrupt Example 3-6
3.3 XVME-201 Digital I/O Module 3-7
3.3.1 Initialize 3-8
3.3.2 Set Port Direction 3-8
3.3.3 Set Port C Direction 3-9
3.3.4 Set the Counter Pre-Load Register 3-9
3.3.5 Read a Byte 3-10
3.3.6 Write a Byte 3-10
3.4 XVME-202 PAMUX Controller 3-11
3.4.1 Initialize 3-11
3.4.2 Read a Byte 3-12
3.4.3 Write a Byte 3-12
3.4.4 Reset 3-13
3.5 XVME-212 Digital Input Module 3-14
3.5.1 Initialize 3-14
3.5.2 Read a Byte 3-15
3.5.3 Write a Byte 3-15
3.5.4 Read a Word 3-16
3.5.5 Write a Word 3-16
3.5.6 Read Scan 3-17
3.5.7 Read Word Scan 3-18
3.5.8 Interrupt Disable 3-18
3.5.9 Read a Channel 3-19
3.5.10 Interrupt Example 3-19
3.6 XVME-220 Digital Output Module 3-20
3.6.1 Read a Channel 3-20
3.6.2 Read a Byte 3-21
3.6.3 Read a Word 3-21
3.6.4 Read All 3-22
3.6.5 Write a Channel 3-22
3.6.6 Write a Byte 3-23
3.6.7 Write a Word 3-23
3.6.8 Write All 3-24

XVME-983 Manual
November 1993

iii

CHAPTER TITLE PAGE

3.6.9 Reset 3-24
3.7 XVME-240 Digital I/O Module 3-25
3.7.1 Reset 3-25
3.7.2 Read a Byte 3-26
3.7.3 Read a Word 3-26
3.7.4 Write a Byte 3-27
3.7.5 Write a Word 3-27
3.7.6 Interrupt Example 3-28
3.8 XVME-244 Digital Output Module 3-29
3.8.1 Read a Channel 3-29
3.8.2 Read a Byte 3-30
3.8.3 Read a Word 3-30
3.8.4 Read All 3-31
3.8.5 Write a Channel 3-31
3.8.6 Write a Byte 3-32
3.8.7 Write a Word 3-32
3.8.8 Write All 3-33
3.8.9 Reset 3-33
3.9 XVME-260 Digital Output Module 3-34
3.9.1 Read a Channel 3-34
3.9.2 Read a Byte 3-35
3.9.3 Read a Word 3-35
3.9.4 Read All 3-36
3.9.5 Write a Channel 3-36
3.9.6 Write a Byte 3-37
3.9.7 Write a Word 3-37
3.9.8 Write All

4 MODULE LIBRARY: ANALOG I/O BOARDS
4.1 Introduction 4-1
4.2 XVME-500/590 Analog Input Module 4-2
4.2.1 Read a Byte 4-2
4.2.2 Write a Byte 4-3
4.2.3 Wait 4-3
4.2.4 Force an A/D Conversion 4-4
4.2.5 Set Interrupt 4-4
4.2.6 Set Conversion Mode 4-5
4.2.7 Reset 4-5
4.2.8 Analog to Digital 4-6
4.2.9 Set Gain Factor 4-7
4.2.10 Read Gain Factor 4-8
4.2.11 Interrupt Example 4-9
4.3 XVME-505/595 4-Channel Analog Output Module 4-10

Table of Contents

iv

CHAPTER TITLE PAGE

4.3.1 Channel Output 4-10
4.4 XVME-530 Analog Output Module 4-11
4.4.1 Read a Byte 4-11
4.4.2 Write a Byte 4-12
4.4.3 Reset 4-12
4.4.4 Wait 4-13
4.4.5 Channel Output 4-13
4.5 XVME-540 Analog I/O Module 4-14
4.5.1 Read a Byte 4-14
4.5.2 Write a Byte 4-15
4.5.3 Wait 4-15
4.5.4 Force an A/D Conversion 4-16
4.5.5 Set Interrupt 4-16
4.5.6 Set Conversion Mode 4-17
4.5.7 Reset 4-17
4.5.8 Analog to Digital 4-18
4.5.9 Set Gain Factor 4-18
4.5.10 Read Gain Factor 4-19
4.5.11 Channel Output 4-19
4.6 XVME-560 Analog I/O Module 4-20
4.6.1 Read a Byte 4-21
4.6.2 Write a Byte 4-21
4.6.3 Wait 4-22
4.6.4 Force an A/D Conversion 4-22
4.6.5 Set Interrupt 4-23
4.6.6 Set Conversion Mode 4-23
4.6.7 Reset 4-24
4.6.8 Analog to Digital 4-24
4.6.9 Set Gain Factor 4-25
4.6.10 Interrupt Example 4-26
4.7 XVME-566 High-Performance Analog Input Module 4-27
4.7.1 Read a Byte 4-27
4.7.2 Write a Byte 4-28
4.7.3 Write a Word 4-28
4.7.4 Set Sample Clock 4-29
4.7.5 Set Clock 4-29
4.7.6 Reset 4-30
4.7.7 Interrupt Example 4-31

XVME-983 Manual
November 1993

v

CHAPTER TITLE PAGE

5 MODULE LIBRARY: COUNTER MODULES
5.1 Introduction 5-1
5.2 XVME-203/293 Counter Module 5-2
5.2.1 Read a Byte 5-2
5.2.2 Write a Byte 5-3
5.2.3 Reset 5-3
5.2.4 Set Clock 5-4
5.2.5 Initialize Interrupt 5-4
5.2.6 Interrupt Example 5-5
5.3 XVME-230 Intelligent Counter Module 5-5
5.3.1 Read a Byte 5-6
5.3.2 Write a Byte 5-6
5.3.3 Build a Command Block 5-7
5.3.4 Build a Command Block with Operand Buffer 5-7
5.3.5 Execute Command Block 5-8
5.3.6 Interrupt Example 5-8

6 MODULE LIBRARY:
MS-DOS COMMUNICATION DRIVERS

6.1 Introduction 6-1
6.2 VMEbus Base Address Jumpers 6-1
6.3 Address Modifier Jumpers 6-1
6.4 CONFIG.SYS 6-2
6.4.1 File Name Field 6-2
6.4.2 Base Address Field (bbbb) 6-3
6.4.3 Channel Number (c) 6-3
6.4.4 Speed or Baud Rate (ss) 6-3
6.4.5 Parity (p) 6-3
6.4.6 Databits (d) 6-3
6.4.7 Stopbits (q) 6-3
6.5 Examples 6-4
6.6 Troubleshooting 6-4

7 XVME PC/AT INTERRUPT ROUTINES
7.1 Introduction 7-1
7.2 Auxiliary Non-maskable Interrupt 7-1
7.3 BERR 7-4
7.4 Watchdog Timer (WDT) 7-6

Table of Contents

vi

LIST OF TABLES

TABLE TITLE PAGE

2-1 Reserved Constants 2-3
3-1 Digital I/O Routine Matrix 3-1
4-1 Analog I/O Routine Matrix 4-1
5-1 Counter Command Matrix 5-1

1-1

Chapter 1 - INTRODUCTION

1.1 MANUAL STRUCTURE

This manual is designed to help you understand and use the Xycom XVME-983 MS-DOS Software Support
Library. Chapter 1 gives an overview of the package and directions on how to start using the library.
Chapters 2-8 each describe a set of routines for a specific category of XVME boards.

This outline of the manual structure will help you find the specific sections containing information relevant
to your system needs:

Chapter 1 Introduction
Chapter 2 XVME General Purpose Routines
Chapter 3 Module Library: Digital I/O Boards
Chapter 4 Module Library: Analog I/O Boards
Chapter 5 Module Library: Counter Modules
Chapter 6 Module Library: Bitbus Module
Chapter 7 Module Library: MS-DOS Communication Drivers
Chapter 8 XVME PC/AT Interrupt Routines

1.2 OVERVIEW

The XVME-983 MS-DOS Software Support Library (MS-DOS SSL) is a collection of routines designed to
provide a consistent, easy-to-use tool for developing application programs for Xycom VMEbus board
products. The routines in this library contain the low-level coding necessary to configure the supported
hardware modules and perform I/O. You spend less time and effort programming since you do not need to
write any module-specific codes or program any routines.

The XVME-983 MS-DOS SSL is distributed on one 3.5-inch, 1.44 Mbyte MS-DOS diskette. It runs on
Xycom VMEbus PC/AT processor modules (XVME-674, 677, 678 and 688). The README.DOC file
describes the contents of the disk and the location of specific files.

In addition to XVME module-specific routines, the SSL contains general purpose routines which, when run
on PC/AT processor modules, can access either Xycom or non-Xycom hardware. Real and Protected mode
routines provide access to VMEbus address spaces. There are also routines to set up, enable, and disable
interrupts and their respective handlers.

The SSL includes source code for all routines. Most routines in this package are written in C; a few are
written in assembly language. You can tailor these routines to the specific needs of your system.

Chapter 1 - Introduction

1-2

The SSL diskette contains:

• Object code libraries to be linked with application programs
• Device drivers for Xycom VME communication boards
• Sample programs for every VME board supported
• Source code and make files for all programs and libraries

The object code libraries contain routines needed to communicate with Xycom VME boards. The object
code libraries are available in all memory models supported by Microsoft C (version 7.0), Microsoft QuickC
(version 2.5), and Borland Turbo C++ (version 3.0). You can simply link in the memory model library
corresponding to your configuration to develop an application.

The device drivers for Xycom VME communication boards are compatible with MS-DOS version 3.0 or
higher. The drivers provide all the necessary facilities to use these boards as additional serial I/O modules.

The sample programs in the Software Support Library (SSL) use each of the defined library routines. The
SSL specifies all source files and make files needed to build any of the sample programs. You can use these
source files and make files to integrate the SSL into application programs written for your Xycom products.

Most sample programs in this manual were compiled using Microsoft C 7.0. The
\EXAMPLES\QCEXAMPL files explain how to use these routines with the Microsoft QuickC compiler;
the \EXAMPLES\TCEXAMPL files pertain to the Borland Turbo C++ compiler (Section 1.2.1). If you
want to recompile the example programs using Borland Turbo C++, you must refer to your compiler manual
and the information in the appropriate directory to achieve the same results.

1.2.1 VMEbus Boards Supported with C Language Subroutines

PC/AT Processors:

XVME-674 33 MHz 80486DX or 66 MHz 80486DX2 processor; 4, 16, or 32 Mbytes
DRAM; IDE hard disk and floppy disk controllers; two serial ports and
one parallel port

XVME-677 33 M;Hz 80486SX; 4, 16, or 32 Mbytes DRAM; IDE hard disk and floppy
disk controllers; Super VGA graphics controller; two serial ports; and one
parallel port.

XVME-678 25 MHz Cyrix 486SLC/e processor; 1 or 4 Mbytes DRAM; two RS-232C
serial ports; Super VGA controller; and 16-bit IDE hard drive controller

XVME-688 25 MHz 80386SX processor; 1 or 4 Mbytes DRAM; two serial ports; one
parallel port; Super VGA controller; and 80387SX math co-processor site

XVME-983 Manual
November 1993

1-3

Digital I/O:

XVME-200/29032-channel DIO with interrupts
XVME-201 48-channel DIO without interrupts
XVME-202 PAMUX controller
XVME-212 32-channel isolated digital input module with change-of-state detection
XVME-220 32-channel isolated digital output module
XVME-240 80-channel digital TTL I/O module
XVME-244 64-channel isolated digital I/O module
XVME-260 32-channel relay output module

Analog I/O:

XVME-500/59016SE/8DI-channel analog input
XVME-505/5954-channel analog output
XVME-530 8-channel isolated analog output module
XVME-540 32/16-channel analog input, 4-channel analog output, 12-bit A/D
XVME-560 64/32-channel analog input module
XVME-566 100 KHz, 32/16-channel analog input module

Counter Modules:

XVME-203/29310-channel counter
XVME-230 16-channel intelligent counter module

1.2.2 VMEbus Boards Supported with MS-DOS Drivers

Communication Modules:

XVME-400/4904-channel RS-232C serial I/O
XVME-401/4914-channel RS-422A/RS-485 serial I/O
XVME-428 Intelligent Peripheral Controller Module

Chapter 1 - Introduction

1-4

1.3 LIBRARY ORGANIZATION

Each library module name references the type and memory model of the compiler which it is designed to
support. The library names are all set up in this format:

XVME{compiler type}{memory model}.{library extension}

For example, XVMEMSCC.LIB is the XVME compact memory model library for the Microsoft C 7.0
compiler. The memory models and library extensions are compiler specific, as described below:

For Microsoft C 7.0

XVMEMSCS.LIB for small memory model
XVMEMSCC.LIB for compact memory model
XVMEMSCM.LIB for medium memory model
XVMEMSCL.LIB for large memory model
XVMEMSCH.LIB for huge memory model

For Microsoft QuickC 2.5

XVMEMQCS.LIB for small memory model
XVMEMQCC.LIB for compact memory model
XVMEMQCM.LIB for medium memory model
XVMEMQCL.LIB for large memory model

For Borland Turbo C++ 3.0

XVMEBTCT.LIB for tiny memory model
XVMEBTCS.LIB for small memory model
XVMEBTCC.LIB for compact memory model
XVMEBTCM.LIB for medium memory model
XVMEBTCL.LIB for large memory model
XVMEBTCH.LIB for huge memory model

XVME-983 Manual
November 1993

1-5

1.4 INSTALLATION

You do not have to load the SSL files onto the hard disk to run the routines, but we suggest you install the
files as directed in this chapter.

The directories on the XVME-983 SSL diskette are:

\EXAMPLES
\INCLUDE
\LIB
\SERIAL

The INSTALL.BAT file on the SSL diskette can be used to create these directories (and their
subdirectories) in a target directory and copy the files from the SSL diskette into these directories.

To install XVME983 on a hard disk directory, follow these steps (user input shown in boldface):

1. At the C:> prompt, type MD XVME983 to create the XVME983 directory.

2. Type CD XVME983 to get into the directory.

3. Put diskette into drive A.

4. Type A:INSTALL to run the install batch file.

Read the note in the section describing the \INCLUDE directory for additional installation instructions.

1.4.1 \EXAMPLES DIRECTORY

The \EXAMPLES directory contains example programs for Xycom XVME modules. This directory is
divided into the following subdirectories:

\EXAMPLES\ANALOG

NOTE
The information in the remainder of Chapter 1 is also found in a
README.DOC file on the diskette.

Chapter 1 - Introduction

1-6

ANALOG.xxx Menu-driven program that allows users to call each of the routines. Users
are prompted for the parameters for the routines. Help screens are
provided to describe the routines and their parameters. The routines
physically read and write to the XVME-5xx boards in the VMEbus.

X5xxDISP.xxx Modules linked into ANALOG.xxx for each of the XVME-5xx boards.
X5xxTEXT.H Include files for X5xxDISP.C files.
ALOG.MAK Make file for ANALOG.EXE.
X5xxINT.xxx Programs that show how to use the routines/boards with interrupts.
AINT.MAK Make and Link file for all X5xxINT.EXE programs.

\EXAMPLES\BITBUS
BITBUS.xxx A program that shows how to use the XVME-402 with interrupts.
BITPOLL.xxx A program that shows how to use the XVME-402 in polled mode.
BIT.MAK Make and Link file for BITBUS and BITPOLL.

\EXAMPLES\COUNTER
COUNTER.xxx Menu-driven program that lets users call each of the routines. Users are prompted

for the routine parameters. Help screens are provided to describe the
routines and their parameters. The routines physically read and write to
the XVME-2xx boards on the VMEbus.

X2xxDISP.xxx Modules linked into COUNTER.xxx for each of the XVME-2xx boards.
X2xxTEXT.H Include files for X2xxDISP.C files.
COUNT.MAK Make file for COUNTER.EXE.
X2xxINT.xxx Programs that show how to use the routines/boards with interrupts.
CINT.MAK Make and Link file for all X2xxINT.EXE programs.

\EXAMPLES\DIGITAL
DIGITAL.xxx Menu-driven program that lets users call each of the routines. Users are

prompted for the routine parameters. Help screens are provided to
describe the routines and their parameters. The routines physically read
and write to the XVME-2xx boards in the VME bus.

X2xxDISP.xxx Modules linked into DIGITAL.xxx for each of the XVME-2xx boards.
X2xxTEXT.H Include files for X2xxDISP.C files.
DIG.MAK Make file for DIGITAL.EXE.
X2xxINT.xxx Programs that show how to use the routines/boards with interrupts.
DINT.MAK Make and Link file for all X2xxINT.EXE programs.

\EXAMPLES\EDITMEM

 EDITMEM.XXX Menu-driven program that utilizes the general purpose memory transfer routines to
read and/or write data anywhere in memory.

XVME-983 Manual
November 1993

1-7

\EXAMPLES\INCLUDE

This directory contains include files used by the utility routines for the example programs. In order for the
make files and C programs to compile, the environmental variable INCLUDE should be set up to include
this directory. This is done by executing the following command (as long as XVME983 was created in the
root directory):

 SET INCLUDE=%INCLUDE%;c:\XVME983\EXAMPLES\INCLUDE

\EXAMPLES\INT

 ANMI.xxx A program that shows how to handle NMI interrupts.
BERR.xxx A program that shows how to handle BUS ERROR interrupts.

 WDTIMER.xxxA program showing how to handle interrupts from the watch-dog-timer.
 DUALPORT.xxx A program showing how to handle dual-port interrupts.

\EXAMPLES\QCEXAMPL\IDE(compiled with Microsoft QuickC 2.5)

QCEXAM.BATA batch file that shows how to invoke the QuickC interactive environment when
integrating the XVME-983 software support library.

\EXAMPLES\QCEXAMPL\CMDLINE

QCEXAM.BATA batch file that shows how to make a QuickC program in the non-interactive
environment when integrating the XVME-983 software support library.

\EXAMPLES\TCEXAMPL (compiled with Borland Turbo C++ 3.0)

TCEXAM.BAT A batch file that shows how to invoke the Turbo C interactive environment when
integrating the XVME-983 software support library.

\EXAMPLES\UTILS

This directory contains files which provide general support routines (i.e., window display, data entry) for the
example programs.

Chapter 1 - Introduction

1-8

1.4.2 \INCLUDE DIRECTORY

The \INCLUDE directory contains include files used by the library routines and the example programs. In
order for the make files and C programs to compile, the environmental variable INCLUDE should be set up
to include this directory. This is done by or executing the following command (as long as XVME983 was
created in the root directory):

SET INCLUDE=%INCLUDE%;c:\XVME983\INCLUDE

1.4.3 \LIB DIRECTORY

The \LIB directory contains the XVME-983 software support library. Included in the \LIB\SOURCES
subdirectory is the source code and make files necessary to recreate the libraries. This subdirectory contains
the following files:

BTCLIBS.BAT Batch file that builds the XVMEBTCx.LIB library files.
BUILDALL.BAT Batch file that builds all the XVMExxxx.xxx library files.
MQCLIBS.BAT Batch file that builds the XVMEMQCx.LIB library files.
MSCLIBS.BAT Batch file that builds the XVMEMSCx.LIB library files.

The \LIB\SOURCES directory is further divided into the following subdirectories:

 \LIB\SOURCES\ANALOG
 XVME5xx.xxx Support routines for each board.
 \BTCLIB\ANALLIB.MAK Make file for the support routines (Turbo C).
 \MQCLIB\ANALLIB.MAK Make file for the support routines (QuickC).
 \MSCLIB\ANALLIB.MAK Make file for the support routines (MSC).

 \LIB\SOURCES\COUNTER
XVME2xx.xxx Support routines for each board.
\BTCLIB\COUNTLIB.MAK Make file for the support routines (Turbo C).
\MQCLIB\COUNTLIB.MAK Make file for the support routines (QuickC).
\MSCLIB\COUNTLIB.MAK Make file for the support routines (MSC).

\LIB\SOURCES\DIGITAL
XVME2xx.xxx Support routines for each board.
\BTCLIB\DIGITLIB.MAK Make file for the support routines (Turbo C).
\MQCLIB\DIGITLIB.MAK Make file for the support routines (QuickC).
\MSCLIB\DIGITLIB.MAK Make file for the support routines (MSC).

XVME-983 Manual
November 1993

1-9

\LIB\SOURCES\XVME
XVME.C VMEbus general purpose routines.
P286MT.ASM 80286 protected mode memory transfer routine.
P386MT.ASM 80386 protected mode memory transfer routine.
NONANSI.ASM Rewritten C library routines that were not ANSI standard.
\BTCLIB\XVMELIB.MAK Make file for the support routines (Turbo C).
\MQCLIB\XVMELIB.MAK Make file for the support routines (QuickC).
\MSCLIB\XVMELIB.MAK Make file for the support routines (MSC).

1.4.4 \SERIAL DIRECTORY

The \SERIAL directory contains the files for the XVME-400 and 428 device drivers. This directory is
divided into subdirectories:

\SERIAL\X40X
X40X.SYS Device driver for XVME-400/401 boards.
\SOURCE Subdirectory containing C and assembly source code and a make file for the driver.

\SERIAL\X42X
X42X.SYS Device driver for XVME-428
\SOURCE Subdirectory containing C and assembly source code and a make file for the driver.

 1.5 DEVELOPMENT NOTES

Development was performed on a 80486 AT machine using DOS 5.0.

Development tools were as follows:

For Microsoft (R) C: Those supplied with version 7.0. CL.EXE, LINK.EXE, LIB.EXE,
MAKE.EXE, and MASM 5.1

For Microsoft (R) QUICKC: Those supplied with version 2.5. QC.EXE, QCL.EXE,
LINK.EXE, LIB.EXE, MAKE.EXE, and MASM 5.1

For Borland Turbo C++:Those supplied with Turbo C++ 3.0. TC.EXE, TCC.EXE, TLINK.EXE,
TLIB.EXE, MAKE.EXE, and TASM 2.0

2-1

Chapter 2 - XVME GENERAL PURPOSE LIBRARY

2.1 INTRODUCTION

These general purpose routines are designed to let users easily program Xycom's VMEbus PC/AT processor
modules (see Section 1.2.1). This chapter deals with two areas: transferring data to and from the VMEbus
address space and supporting VMEbus interrupts. These routines form the basis of all of the specialized
routines found in the XVME-983 MS-DOS Software Support Library.

2.2 REAL MODE WINDOW

Some of the general purpose routines use the Real Mode Window (RMW). The RMW provides a
mechanism for addressing the entire VMEbus memory space without the need to run the CPU in protected
mode. It is 64 Kbytes long and resides at addresses 0E0000-0EFFFF. The window can be configured, via
software, to address one of the following: VMEbus Short I/O, VMEbus Standard Address Space, VMEbus
IACK Space, or EPROM. You can also configure some PC/AT modules to address VMEbus Extended
Address Space. Refer to your PC/AT module manual to determine if you can access Extended Address
Space.

When the RMW is configured for VMEbus Short I/O, the 64 Kbyte Short I/O Address Space may be
accessed through the 64 Kbyte window. Any references to the RMW will map directly into the VMEbus
Short I/O Space.

When the RMW is configured for VMEbus Standard Address Space, the 64 Kbyte window may be used to
access any 64 Kbyte block of the VMEbus Standard Address space. In this mode, the 16 Mbyte Standard
Address Space is logically divided into 256 64 Kbyte blocks that are configured through software.

When the RMW is configured for VMEbus IACK, a byte read from specific locations in the RMW will
cause the PC/AT processor to perform a VMEbus IACK cycle. The data returned from the byte read will be
the status ID vector returned from the responding interrupter.

When the RMW is configured for EPROM, the lower 64 Kbytes of the PC/AT's EPROM will appear in the
window. This is the mode selected after reset. This mode is compatible with the IBM PC/AT architecture.

When the RMW is configured for VMEbus Extended Address Space, the 64 Kbyte window may be used to
access any 64 Kbyte block of the VMEbus Extended Address Space. In this mode, the 4 Gbyte Extended
Address Space is logically divided into 65,536 64 Kbyte blocks which are configured through software.

Chapter 2 - XVME General Purpose Library

2-2

2.3 INTERRUPTS

All Xycom VMEbus PC/AT processor modules are capable of handling interrupts on all seven VMEbus
interrupt levels. The XVME-674 and 677 also contain a VMEbus interrupter circuit. This local interrupter
allows the local CPU to generate a VMEbus interrupt on any of the seven VMEbus interrupt levels.

2.4 GENERAL PURPOSE ROUTINES

The routines in this section are designed to either process interrupts or transfer memory on any of Xycom
VMEbus PC/AT processor modules. Functions unique to a specific CPU are called out.

The parameters you use when implementing the general purpose routines must match the type expected by
the routine. If you pass an invalid parameter, the routine will operate erratically.

Parameters:

AccessType = 1 byte Address = 4 bytes
Block64K = 2 bytes BlockSize = 2 bytes
Buffptr = Pointer to 1st byte of data buffer CPU = 2 bytes
EnableFlag = 1 byte EndianType = 1 byte
IntHandler = 4 bytes IRQLevel = 1 byte
Level = 1 byte TimeOut = 1 byte
TransType = 1 byte Vector = 1 byte
VMELock = 1 byte

XVME-983 Manual
November 1993

2-3

Certain parameters for the general purpose routines have reserved constants, as shown in Table 2-1.

Table 2-1. Reserved Constants

Parameter Constants

AccessType IACK_ACCESS Interrupt acknowledge space
SHORT_IO_ACCESS Standard address space
PROM_ACCESS XVME-CPU ROM address space
EXTEND_ADDR_ACCESS Extended address space

EnableFlag DISABLE
ENABLE

EndianType BIGENDIAN 680X0 byte ordering
LITTLEENDIAN 80X86 byte ordering

TransType TRANSFER8 8 bits
TRANSFER16 16 bits
TRANSFER32 32 bits

VMELock LOCK Keep the VMEbus for entire blocksize transfer
UNLOCK Release and then re-acquire the VMEbus for

each TransType transfer within the blocksize

These constants are defined in the file \INCLUDE\XVMEDEFS.H.

Source Code Location: \LIB\SOURCES\XVME\XVME.C

2.4.1 Initial XVME Library

Syntax:
AutoInitLib()

Function:
Dynamically determines which XVME-CPU module is being used and initializes the XVME SSL.
This routine or the InitLib routine must be called initially for the library to function correctly.

Return Value:
Type of CPU module (674, 677, 678, or 688)

2.4.2 Initialize XVME Library

Syntax:
InitLib(CPU)

Chapter 2 - XVME General Purpose Library

2-4

Where:
CPU = Type of XVME CPU module (674, 677, 678, or 688)

Function:
This routine initializes the XVME SSL for a particular XVME CPU model. It must be called
initially with the appropriate CPU value for the library to function correctly.

Return Value:
None

2.4.3 Release the VMEbus

Syntax:
ReleaseVMEBus()

Function:
This routine releases the VMEBus from CPU control.

Return Value:
None

2.4.4 Access the VMEbus

Syntax:
LockVMEBus(TimeOut)

Where:
TimeOut = Amount of time to wait for the bus

Function:
This routine tries to gain access to the VMEbus within the specified time. The TimeOut value has a
resolution of 55 milliseconds (i.e., a value of 18 is approximately equal to one second). If the
routine receives a value of zero, it waits infinitely for the bus. A zero value is returned if the CPU
has successfully accessed the VMEbus. A non-zero value is returned if the TimeOut value expires
before gaining access to the VMEbus.

Return Value:
Zero if VMEbus has been accessed; non-zero if not

2.4.5 Set Real Mode Window

Syntax:
Set_RM_Window(AccessType,Block64K)

XVME-983 Manual
November 1993

2-5

Where:
AccessType = Type of VMEbus access desired

IACK_ACCESS - interrupt acknowledge space
SHORT_IO_ACCESS - short I/O space
STAND_ADDR_ACCESS - standard address space
PROM_ACCESS - XVME-CPU ROM address space
EXTEND_ADDR_ACCESS - extended address space
(XVME-674, 677)

Block64 = Which 64 Kbyte block to map in if standard or extended access is desired.

Function:
This routine maps the Real Mode Window (0xE0000 - 0xEFFFF) to the desired VMEbus address
space.

Return Value:
None

Chapter 2 - XVME General Purpose Library

2-6

2.4.6 Read VMEbus Memory Through The Real Mode Window

Syntax:
ReadVMEBusMemoryRM(Buffptr,TransType,EndianType,BlockSize,AccessType,Address,

VMELock)

Where:
Buffptr = A byte pointer to the local storage area
TransType = Type of data transfer

TRANSFER8 - 8 bits
TRANSFER16 - 16 bits
TRANSFER32 - 32 bits

EndianType = BIGENDIAN(680x0) or LITTLEENDIAN(80x86)
BlockSize = Number of bytes to read (1 to 64K)
AccessType = Type of VMEbus access

IACK_ACCESS - Interrupt Acknowledge Space
SHORT_IO_ACCESS - Short I/O Space
STAND_ADDR_ACCESS - Standard Address Space
PROM_ACCESS - XVME-CPU Local EPROM Space
EXTEND_ADDR_ACCESS - Extended Address Space

Address = Specifies starting address for the transfer (32-bit address)
VMELock = Set TRUE to lock the VMEbus for the entire BlockSize transfer. Else the

VMEBus will be locked and then released for each transfer within
BlockSize.

Function:
This routine reads a block of memory on the VMEbus through the Real Mode Window (0xE0000 -
0xEFFFF). This routine cannot be used to read the local dual-port memory on the PC/AT
processor.

Return Value:
Zero if successful; non-zero if not

XVME-983 Manual
November 1993

2-7

2.4.7 Write VMEbus Memory Through The Real Mode Window

Syntax:
WriteVMEBusMemoryRM(Buffptr,TransType,EndianType,

 BlockSize,AccessType,Address,VMELock)

Where:
Buffptr = A byte pointer to the local storage area
TransType = Type of data transfer

TRANSFER8 - 8 bits
TRANSFER16 - 16 bits
TRANSFER32 - 32 bits

EndianType = BIGENDIAN(680x0) or LITTLEENDIAN(80x86)
BlockSize = Number of bytes to write (1 to 64K)
AccessType = Type of VMEbus access

IACK_ACCESS - Interrupt Acknowledge space
SHORT_IO_ACCESS - Short I/O Space
STAND_ADDR_ACCESS - Standard Address Space
PROM_ACCESS - XVME-CPU EPROM Address Space
EXTEND_ADDR_ACCESS - Extended Address Space

Address = Specifies starting address for the transfer (32-bit address)
VMELock = Set TRUE to lock the VMEbus for the entire BlockSize transfer. Else the

VMEBus will be locked and then released for each transfer within
BlockSize.

Function:
This routine writes a block of memory out on the VMEbus through the Real Mode Window
(0xE0000 - 0xEFFFF). This routine cannot be used to write to local dual port memory.

Return Value:
Zero if successful; non-zero if not

Chapter 2 - XVME General Purpose Library

2-8

2.4.8 Read VMEbus Memory In Protected Mode

Syntax:
ReadVMEBusMemoryPM(Buffptr,TransType,EndianType,BlockSize,Address,VMELock)

where:
Buffptr = A byte pointer to the local storage area
TransType = Type of data transfer

TRANSFER8 - 8 bits
TRANSFER16 - 16 bits
TRANSFER32 - 32 bits

EndianType = BIGENDIAN(680x0) or LITTLEENDIAN(80x86)
BlockSize = Number of bytes to read (1 to 64K)
Address = Specifies starting address for the transfer (32-bit address)
VMELock = Set TRUE to lock the VMEbus for the entire BlockSize transfer. Else the

VMEBus will be locked and then released for each transfer within
BlockSize.

Function:
This routine reads a block of memory out on the VMEbus with the CPU in Protected Mode. This
routine can be used to read from local dual-port memory.

Return Value:
Zero if successful; non-zero if not

NOTE
This routine is not available for the XVME-678 or 688. These modules
cannot access the VMEbus in protected mode.

XVME-983 Manual
November 1993

2-9

2.4.9 Write VMEbus Memory In Protected Mode

Syntax:
WriteVMEBusMemoryPM(Buffptr,TransType,EndianType,BlockSize,Address,VMELock)

Where:
Buffptr = A byte pointer to the local storage area
TransType = Type of data transfer

TRANSFER8 - 8 bits
TRANSFER16 - 16 bits
TRANSFER32 - 32 bits

EndianType = BIGENDIAN(680x0) or LITTLEENDIAN(80x86)
BlockSize = Number of bytes to write (1 to 64K)
Address = Specifies starting address for the transfer (32-bit address)
VMELock = Set TRUE to lock the VMEbus for the entire BlockSize transfer. Else the

VMEBus will be locked and then released for each transfer within
BlockSize.

Function:
This routine writes a block of memory out on the VMEbus with the CPU in Protected Mode. This
routine can be used to write to local dual-port memory.

Return Value:
Zero if successful; non-zero if not

NOTE
This routine is not available for the XVME-678 or 688. These modules
cannot access the VMEbus in protected mode.

Chapter 2 - XVME General Purpose Library

2-10

2.4.10 Set Interrupt Vector

Syntax:
SetIntVect(IRQLevel, IntHandler)

Where:
IRQLevel = AT IRQ (0-15) level whose interrupt vector is to be replaced.
IntHandler = Address of user-defined interrupt handler

Function:
This routine sets the desired IRQ (0 - 15) vector to point to the user-defined interrupt handler. It
returns the IRQ vector that is being replaced so it can be restored at a later time if desired.

Return Value:
Address of original IRQ vector

2.4.11 Read Interrupt Vector

Syntax:
ReadIntVect(IRQLevel)

Where:
IRQLevel = AT IRQ (0-15) level whose interrupt vector is to be read

Function:
This routine returns the current interrupt vector for the desired IRQ (0 - 15) level.

Return Value:
Address of IRQ vector

2.4.12 Mask the Interrupt Controller

Syntax:
Mask8259(IRQLevel, EnableFlag)

Where:
IRQLevel = AT IRQ (8-15) level to mask.
EnableFlag = Flag (ENABLE/DISABLE) to enable or disable.

Function:
This routine sends the appropriate mask to the slave 8259 interrupt controller to enable or disable
the desired IRQ level.

Return Value:
None

XVME-983 Manual
November 1993

2-11

2.4.13 Disable VME Interrupts

Syntax:
DisableVMEInterrupts()

Function:
This routine disables the AT Auxiliary Maskable Interrupts used for VME interrupt levels 1-7 and
the dual-port interrupt.

Return Value:
None

2.4.14 Enable VME Interrupts

Syntax:
EnableVMEInterrupts()

Function:
This routine enables the AT Auxiliary Maskable Interrupts used for VME interrupt levels 1-7 and
the dual-port interrupt.

Return Value:
None

Chapter 2 - XVME General Purpose Library

2-12

2.4.15 Set NMI Interrupt Vector

Syntax:
SetNMIVect(IntHandler)

Where:
IntHandler = Address of user-defined interrupt handler.

Function:
This routine sets the NMI vector to point to the user-defined interrupt handler. It returns the NMI
vector that is being replaced so it can be restored at a later time if desired.

Return Value:
Address of the original NMI vector

2.4.16 Read NMI Vector

Syntax:
ReadNMIVect()

Function:
This routine returns the current NMI interrupt vector.

Return Value:
Address of the current NMI vector

XVME-983 Manual
November 1993

2-13

2.4.17 Enable Auxiliary NMI

Syntax:
EnableNMIInt()

Function:
This routine enables Auxiliary NMIs.

Return Value:
None

2.4.18 Disable Auxiliary NMI

Syntax:
DisableNMIInt()

Function:
This routine disables Auxiliary NMIs.

Return Value:
None

2.4.19 Generate VMEbus Interrupt

Syntax:
GenVMEBusInt(Level,Vector)

Where:
Level = VMEbus interrupt level (1-7)
Vector = Interrupt vector (0-255)

Function:
This routine generates a VMEbus interrupt on the specified level. An error value will be returned if
the XVME-CPU board cannot generate a VMEbus interrupt.

Return Value:
Zero if successful; non-zero if not

NOTE
This routine is not available on the XVME-678 or 688, as they do not have a
VMEbus Interrupter.

Chapter 2 - XVME General Purpose Library

2-14

2.4.20 Enable the Watchdog Timer

Syntax:
EnableWDTimer()

Function:
This routine enables the Watchdog Timer.

Return Value:
None

NOTE
This routine is not available on the XVME-678 or 688, as they do not have a
Watchdog timer.

XVME-983 Manual
November 1993

2-15

2.4.21 Disable the Watchdog Timer

Syntax:
DisableWDTimer()

Function:
This routine disables the Watchdog Timer.

Return Value:
None

2.4.22 Strobe the Watchdog Timer

Syntax:
StrobeWDTimer()

Function:
This routine retriggers the Watchdog Timer. This routine must be executed at least once every 150
ms to keep the Watchdog Timer from generating an Auxiliary NMI (if enabled).

Return Value:
None

NOTE
This function is not available on the XVME-678 or 688.

NOTE
This function is not available on the XVME-678 or 688.

Chapter 2 - XVME General Purpose Library

2-16

2.4.23 Reset the Watchdog Timer

Syntax:
ResetWDTimer()

Function:
This routine resets the Watchdog Timer after it has timed out.

Return Value:
None

NOTE
This function is not available on the XVME-678 or 688.

3-1

Chapter 3 - MODULE LIBRARY: DIGITAL I/O BOARDS

3.1 INTRODUCTION

Table 3-1. Digital I/O Routine Matrix
MODULE

Routine 200/290 201 202 212 220 240 244 260
CPLoad • •
Init • • • •
InitDisable •
Read • • • • • • • •
ReadAll • • •
ReadChannel • • •
ReadPort
Read2Ports
Read4Ports
ReadScan •
ReadWord • • • • •
ReadWordScan •
Reset • • • •
SetPortDir •
SetPortADir •
SetPortBDir •
SetPortCDir •
SetSubModeA •
SetSubModeB •
Write • • • • • • • •
WriteAll • • •
WriteChannel • • •
WriteWord • • • • •

200/290 201 202 212 220 240 244 260

Chapter 3 - Module Library: Digital I/O Boards

3-2

3.2 XVME-200/290 DIGITAL I/O MODULE

The XVME-200 is a Digital I/O Module consisting of a VMEbus interface, two 68230 PI/T chips, and TTL
buffers. The two PI/T chips provide 32 bits of digital I/O. The XVME-200 provides VMEbus interrupts
and makes the PI/T timer available to users. The XVME-290 is a 6U version of the XVME-200 with the
I/O routed to the VMEbus P2 connector.

The parameters used in the XVME-200/290 routines must match the type expected by the routine. If you
pass an invalid parameter, the routine will operate erratically.

Parameters:

ByteData = 1 byte Direction = 1 byte
PITNum = 1 byte Register = 2 byte
SubMode = 1 byte TimerVal = 4 bytes
X200Base = 2 bytes

Source Code Location: LIB\SOURCES\DIGITAL\XVME200.C

The routines in the following sections are available to the user in the XVME-983 Software Support Library.

3.2.1 Initialize

Syntax:
X200Init(X200Base)

Where:
X200Base = board address in VMEbus short I/O space

Function:
This function initializes Port C and Data Direction Registers on both PI/T chips to prevent
unintentional interrupts.

Return Value:
None

MS-DOS Software Support Library
November 1993

3-3

3.2.2 Set the Counter Pre-Load Register

Syntax:
X200CPLoad(X200Base,PITNum,TimerVal)

Where:
X200Base = Board address in VMEbus short I/O space
PITNum = Number of PI/T chip (0 or 1)
TimerVal = Value to write into register (24 bit)

Function:
This routine writes a value between 0 and 16,777,215 to the Counter Pre-Load Register of the
indicated PI/T chip.

Return Value:
None

3.2.3 Set Port A Direction

Syntax:
X200PortADir(X200Base,PITNum,Direction)

Where:
X200Base = Board address in VMEbus short I/O space
PITNum = Number of PI/T chip (0 or 1)
Direction = Sets port to either IN (0) or OUT (1)

Function:
This routine sets the data direction for Port A, as well as the transceiver direction, on the desired
PI/T chip.

Return Value:
None

Chapter 3 - Module Library: Digital I/O Boards

3-4

3.2.4 Set Port B Direction

Syntax:
X200PortBDir(X200Base,PITNum,Direction)

Where:
X200Base = Board address in VMEbus short I/O space
PITNum = Number of PI/T chip (0 or 1)
Direction = Sets port to either IN (0) or OUT (1)

Function:
This routine sets the Port B Data Direction, as well as the transceiver direction, on the desired PI/T
chip.

Return Value:
None

3.2.5 Set Port A Sub Mode

Syntax:
X200SubModeA(X200Base,PITNum,SubMode)

Where:
X200Base = Board address in VMEbus short I/O space
PITNum = Number of PI/T chip (0 or 1)
SubMode = Sets Sub Mode

0 = 0 or 0X
1 = 1
2 = 1X

Function:
This routine sets the Port A Sub Mode in the Port A control Register on the desired PI/T chip.

Return Value:
None

MS-DOS Software Support Library
November 1993

3-5

3.2.6 Set Port B Sub Mode

Syntax:
X200SubModeB(X200Base,PITNum,SubMode)

Where:
X200Base = Board address in VMEbus short I/O space
PITNum = Number of PI/T chip (0 or 1)
SubMode = Sets Sub Mode

0 = 0 or 0X
1 = 1
2 = X

Function:
This routine sets the Port B Sub Mode in the Port B control register on the desired PI/T chip.

Return Value:
None

3.2.7 Read a Byte

Syntax:
X200Read(X200Base,PITNum,Register)

Where:
X200Base = Board address in VMEbus short I/O space
PITNum = Number of PI/T chip (0 or 1)
Register = Address offset of register to Read

Function:
This routine reads and returns a byte from a desired register in the chosen PI/T chip. The XVME-
200/290 manual contains all of the register definitions and corresponding addresses.

Return Value:
Byte read from register

Chapter 3 - Module Library: Digital I/O Boards

3-6

3.2.8 Write a Byte

Syntax:
X200Write(X200Base,PITNum,Register,ByteData)

Where:
X200Base = Board address in VMEbus short I/O space
PITNum = Number of PI/T chip (0 or 1)
Register = Address offset of register to Read
ByteData = The byte value to be written

Function:
This routine writes a given byte to a desired register in the chosen PI/T chip. The XVME-200/290
manual contains all of the register definitions and corresponding addresses.

Return Value:
None

3.2.9 Interrupt Example

There are two types of interrupts on the XVME-200/290: port and timer. For your system to acknowledge
either type of interrupt, you must set your jumpers and/or switches as detailed below. You can also refer to
the XVME-200/290 manual for further details.

An example program for each type of interrupt can be found in the library. The file for the port interrupt
example is:

\EXAMPLES\DIGITAL\X200PINT.EXE

The file for the timer interrupt example is:

\EXAMPLES\DIGITAL\X200TINT.EXE

Port Interrupt Jumpers:

XVME-200: J1 and J2 are IN (handshake line H2 is an INPUT)
JA1 - JA3 configured to enable one of the VMEbus interrupt levels.

XVME-290: J1 and J2 are IN (handshake line H2 is an INPUT)
JA1 - JA3 configured to enable one of the VMEbus interrupt levels.

To cause an interrupt, ground line H2. An Interrupt Occurred message will appear on screen.

MS-DOS Software Support Library
November 1993

3-7

Timer Interrupt Jumpers:

XVME-290: JA1 - JA3 configured to enable on VMEbus interrupt level

XVME-200: JA1 - JA3 configured to enable on VMEbus interrupt level

An interrupt will occur approximately every 0.5 sec. A Timer Int n message will appear on the screen.

3.3 XVME-201 DIGITAL I/O MODULE

The XVME-201 is a Digital I/O Module consisting of a VMEbus interface, two 68230 PI/T chips, and TTL
buffers. The two PI/T chips provide 48 bits of digital I/O. The XVME-201 also makes the PI/T timer
available to the user. The XVME-201 is not capable of generating interrupts.

The parameters used in the routines for the XVME-201 must match the type expected by the routine. If you
pass an invalid parameter, the routine will operate erratically.

Parameters:

ByteData = 1 byte Direction = 1 byte
PITNum = 1 byte Register = 2 bytes
TimerVal = 4 bytes X201Base = 2 bytes

Source Code Location: \LIB\SOURCES\DIGITAL\XVME201.C

Chapter 3 - Module Library: Digital I/O Boards

3-8

The routines in the following sections are available to the user in the XVME-983 Software Support Library.

3.3.1 Initialize

Syntax:
X201Init(X201Base)

Where:
X201Base = Board address in VMEbus short I/O space

Function:
This function initializes the two PI/T chips to Mode 0, Submode 1X, and sets Port C by disabling
Timer and Port Interrupts.

Return Value:
None

3.3.2 Set Port Direction

Syntax:
SetPortDir(X201Base,PITnum,Direction)

Where:
X201Base = Board address in VMEbus short I/O space
PITNum = Number of PI/T chip (0 or 1)
Direction = Sets port to either IN or OUT

Function:
This routine sets the data direction for Port A, as well as the transceiver direction, on the desired
PI/T chip.

If Direction = 0 (IN): all pins on Ports A and B are set up as inputs, then the transceiver set to
input.

If Direction = 1 (OUT): the transceiver is set to output, then all pins on Ports A and B are set up as
outputs.

Return Value:
None

3.3.3 Set Port C Direction

Syntax:
X201PortCDir(X201Base,PITNum,Direction)

MS-DOS Software Support Library
November 1993

3-9

Where:
X201Base = Board address in VMEbus short I/O space
PITNum = Number of PI/T chip (0 or 1)
Direction = Sets port to either IN or OUT

Function:
This routine sets the Port C pins as either all inputs or all outputs.

If Direction = 0 (IN): All pins on Port C are set up as inputs and the transceiver set to input.
If Direction = 1 (OUT): The transceiver is set to output, then all pins on Port C are set up as

outputs.

Return Value:
None

3.3.4 Set the Counter Pre-Load Register

Syntax:
X201CPLoad(X201Base,PITNum,TimerVal)

Where:
X201Base = Board address in VMEbus short I/O space
PITNum = Number of PI/T chip (0 or 1)
TimerVal = Value to write into register (24 bit)

Function:
This routine writes a value between 0 - 16,777,215 to the Counter Pre-Load Register of the
indicated PI/T chip.

Return Value:
None

Chapter 3 - Module Library: Digital I/O Boards

3-10

3.3.5 Read a Byte

Syntax:
X201Read(X201Base,PITNum,Register)

Where:
X201Base = Board address in VMEbus short I/O space
PITNum = Number of PI/T chip (0 or 1)
Register = Address offset of register to Read

Function:
This routine reads and returns a byte from a desired register in the chosen PI/T chip. The XVME-
201 manual contains all of the register definitions and corresponding addresses.

Return Value:
Byte read from register

3.3.6 Write a Byte

Syntax:
X201Write(X201Base,PITNum,Register,ByteData)

Where:
X201Base = Board address in VMEbus short I/O space
PITNum = Number of PI/T chip (0 or 1)
Register = Address offset of register to Read
ByteData = The byte value to be written

Function:
This routine writes a given byte to a desired register in the chosen PI/T chip. The XVME-201
manual contains all of the register definitions and corresponding addresses.

Return Value:
None

MS-DOS Software Support Library
November 1993

3-11

3.4 XVME-202 PAMUX CONTROLLER

The XVME-202 PAMUX Interface Module is a single-high VMEbus compatible board that allows a
VMEbus master to communicate with a PAMUX I/O subsystem.

The parameters used in the routines for the XVME-202 must match the type expected by the routine. If you
pass an invalid parameter, the routine will operate erratically.

Parameters:

Bank = 1 byte
ByteData = 1 byte
X202Base = 2 bytes

Source Code Location: \LIB\SOURCES\DIGITAL\XVME202.C

The routines in the following sections are available to the user in the XVME-983 Software Support Library.

3.4.1 Initialize

Syntax:
X202Init (X202Base)

Where:
X202Base = Board address in VMEbus short I/O space.

Function:
This routine deactivates the reset line to enable the module.

Return Value:
None

Chapter 3 - Module Library: Digital I/O Boards

3-12

3.4.2 Read a Byte

Syntax:
X202Read (X202Base,Bank)

Where:
X202Base = Board address in VMEbus short I/O space
Bank = Bank register to read from (0-63)

Function:
This routine reads a byte value from the desired PAMUX bank. The XVME-202 manual contains
information on bank register parameters.

Return Value:
Byte read from bank

3.4.3 Write a Byte

Syntax: X202Write (X202Base,Bank,ByteData)

Where:
X202Base = Board address in VMEbus short I/O space
Bank = Bank register to write to
ByteData = The byte value to be written

Function:
This routine writes a byte value to the desired PAMUX bank. The XVME-202 manual contains
information on bank register definitions.

Return Value:
None

3.4.4 Reset

Syntax:
X202Reset (X202Base)

Where:
X202Base = Board address in VMEbus short I/O space

Function:
This routine asserts the reset line on the XVME-202 which in turn will reset the attached PAMUX
units.

Return Value:

MS-DOS Software Support Library
November 1993

3-13

None

Chapter 3 - Module Library: Digital I/O Boards

3-14

3.5 XVME-212 DIGITAL INPUT MODULE

The XVME-212 is a Digital Input Module consisting of a VMEbus interface with 32 isolated digital input
channels. The XVME-212 features a programmable scanner which can detect a change of state on any
input line and generate a VMEbus interrupt on any level when a change of state is detected.

The parameters used in the routines for the XVME-212 must match the type expected by the routine. If you
pass an invalid parameter, the routine will operate erratically.

Parameters:

Channel = 1 byte CRStatus = Pointer to 1st byte of data buffer
ByteData = 1 byte DRStatus = Pointer to 1st byte of data buffer
Port = 1 byte Register = 2 bytes
RegisterSet = 1 byte StartPort = 1 byte
WordData = 2 bytes X212Base = 2 bytes

Source Code Location: \LIB\SOURCES\DIGITAL\XVME212.C

The routines in the following sections are available to the user in the XVME-983 Software Support Library.

3.5.1 Initialize

Syntax:
X212Init(X212Base)

Where:
X212Base = Board address in VMEbus short I/O space

Function: This function will clear all of the Change Registers by reading all of the corresponding
Data Registers. The FAIL LED will go out and the PASS LED will light.

Return Value: None

MS-DOS Software Support Library
November 1993

3-15

3.5.2 Read a Byte

Syntax:
X212Read(X212Base,Register)

Where:
X212Base = Board address in VMEbus short I/O space
Register = Address offset of register to Read

Function:
This routine reads and returns a byte from a desired register. The XVME-212 manual contains all
of the register definitions and corresponding addresses.

Return Value:
The byte read at the desired register

3.5.3 Write a Byte

Syntax:
X212Write(X212Base,Register,ByteData)

Where:
X212Base = Board address in VMEbus short I/O space
Register = Address offset of register to Read
ByteData = The byte value to be written

Function:
This routine writes a given byte to a desired register. The XVME-212 manual contains all of the
register definitions and corresponding addresses.

Return Value: None

NOTE
Reading any Change Register stops the XVME-212 scanner.

Chapter 3 - Module Library: Digital I/O Boards

3-16

3.5.4 Read a Word

Syntax:
X212ReadWord(X212Base,Register)

Where:
X212Base = Board address in VMEbus short I/O space
Register = Address offset of first register to Read

Function:
This routine reads and returns a word (2 byte) value from two consecutive registers. The XVME-
212 manual contains all of the register definitions and corresponding addresses.

Return Value:
The word value read starting at the specified register

3.5.5 Write a Word

Syntax:
X212WriteWord(X212Base,Register,WordData)

Where:
X212Base = Board address in VMEbus short I/O space
Register = Address offset of register
WordData = The word value to be written

Function:
This routine writes a given word (two bytes) to a desired register. The XVME-212 manual contains
all of the register definitions and corresponding addresses.

Return Value:
None

MS-DOS Software Support Library
November 1993

3-17

3.5.6 Read Scan

Syntax:
X212ReadScan(X212Base,CRStatus,DRStatus,Port)

Where:
X212Base = Board address in VMEbus short I/O space
CRStatus = Pointer to a byte Where Change Register status can be stored
DRStatus = Pointer to a byte Where Data Register status can be stored
Port = One of four ports

0 = Port 1
1 = Port 2
2 = Port 3
3 = Port 4

Function:
This routine first reads the Change Register status for the specified port. This causes the XVME-
212 Scanner to stop. The routine then reads that same port's Data Register status. Reading the Data
Register status restarts the Scanner.

Return Value:
None

NOTE
All interrupts should be disabled during this routine to minimize the time that
the scanner is off.

Chapter 3 - Module Library: Digital I/O Boards

3-18

3.5.7 Read Word Scan

Syntax:
X212ReadWordScan(X212Base,CRStatus,DRStatus,StartPort)

Where:
X212Base = Board address in VMEbus short I/O space
CRStatus = Pointer to a word Where Change Register status can be stored
DRStatus = Pointer to a word Where Data Register status can be stored
StartPort = Identifies the first of four ports

If StartPort is: Data is read from:
0 Ports 1 and 2
1 Ports 2 and 3
2 Ports 3 and 4

Function:
This routine performs the same function as ReadScan, except that it reads two bytes.

3.5.8 Interrupt Disable

Syntax:
X212IntDisable(X212Base)

Where:
X212Base = Board address in VMEbus short I/O space

Function:
This function will disable the Interrupt Enable bit in the Status Control Register.

Return Value:
None

MS-DOS Software Support Library
November 1993

3-19

3.5.9 Read a Channel

Syntax:
X212ReadChannel(X212Base,Channel,RegisterSet)

Where:
X212Base = Board address in VMEbus short I/O space
Channel = Channel containing status information
RegisterSet = Indicates which register to read channel from

0 = Change Register
1 = Data Register

Function:
This routine reads a channel from a Data or Change Register and returns:
0 = Channel is low
1 = Channel is high

Return Value:
0 or 1

3.5.10 Interrupt Example

For your system to acknowledge interrupts generated by the board, you must set your jumpers and or
switches as detailed below. Please refer to the XVME PC/AT manual and the XVME-212 manual for
further details.

An example program for the use of these interrupts can be found in the library. The file for the example is
as follows:

\EXAMPLES\DIGITAL\X212INT.EXE

Jumpers:

XVME-212: Switch SW2 configured to enable one of the VMEbus interrupt levels.

An Interrupt Occurred message will appear on screen each time a change of state occurs on any one of the
32 input channels.

3.6 XVME-220 DIGITAL OUTPUT MODULE

The XVME-220 is a Digital Output Module consisting of a VMEbus interface with 32 isolated digital
output channels. All outputs are software readable and disabled whenever the module is reset. Open
collector outputs are provided to 30VDC and 100mA. Transient and Reverse bias protection is available on
all output channels.

The parameters used in the routines for the XVME-220 must match the type expected by the routine. If you

Chapter 3 - Module Library: Digital I/O Boards

3-20

pass an invalid parameter, the routine will operate erratically.

Parameters:

ByteData = 1 byte Channel = 1 byte
DWordData = 4 bytes Register = 2 bytes
Start = 2 bytes WordData = 2 byte
X220Base = 2 bytes

Source Code Location: \LIB\SOURCES\DIGITAL\XVME220.C

The routines in the following sections are available to the user in the XVME-983 Software Support Library.

3.6.1 Read a Channel

Syntax:
X220ReadChannel(X220Base,Channel)

Where:
X220Base = Board address in VMEbus short I/O space
Channel = Channel containing status information (0-31)

Function:
This routine reads a specified channel and returns:
0 = Channel is low
1 = Channel is high

Return Value:
0 or 1

MS-DOS Software Support Library
November 1993

3-21

3.6.2 Read a Byte

Syntax:
X220Read(X220Base,Register)

Where:
X220Base = Board address in VMEbus short I/O space
Register = Address offset of register or port to Read

Function:
This routine reads and returns a byte value from a register or port. The XVME-220 manual
contains all of the register definitions and corresponding addresses.

Return Value:
Byte value read from desired register

3.6.3 Read a Word

Syntax::
X220ReadWord(X220Base,Start)

Where:
X220Base = Board address in VMEbus short I/O space
Start = Address offset of first register or port to Read

Function:
This routine reads and returns a word value from two consecutive registers or ports. The XVME-
220 manual contains all of the register definitions and corresponding addresses.

Return Value:
The word value read starting at the specified register

Chapter 3 - Module Library: Digital I/O Boards

3-22

3.6.4 Read All

Syntax:
X220ReadAll(X220Base)

Where:
X220Base = Board address in VMEbus short I/O space

Function:
This routine reads and returns a four byte (2 word) value from all four output status registers. The
XVME-220 manual contains all of the register definitions and corresponding addresses.

Return Value:
The double word status of all four ports

3.6.5 Write a Channel

Syntax:
X220WriteChannel(X220Base,Channel,ByteData)

Where:
X220Base = Board address in VMEbus short I/O space
Channel = Channel to write status information (0-31)
ByteData = Information to configure output Channel

0 = Channel set low
1 = Channel set high

Function:
This routine sets a specified channel to the desired polarity

Return Value:
None

MS-DOS Software Support Library
November 1993

3-23

3.6.6 Write a Byte

Syntax:
X220Write(X220Base,Register,ByteData)

Where:
X220Base = Board address in VMEbus short I/O space
Register = Address offset of register or port to write
ByteData = The byte value to be written

Function:
This routine writes a given byte to a desired register or port. The XVME-220 manual contains all
of the register and port definitions and corresponding addresses.

Return Value:
None

3.6.7 Write a Word

Syntax:
X220WriteWord(X220Base,Start,WordData)

Where:
X220Base = Board address in VMEbus short I/O space
Start = Address offset of first register or port to write
WordData = The word value to be written

Function:
This routine writes a given word (two bytes) to two consecutive registers or ports. The XVME-220
manual contains all of the register and port definitions and corresponding addresses.

Return Value:
None

Chapter 3 - Module Library: Digital I/O Boards

3-24

3.6.8 Write All

Syntax:
X220WriteAll(X220Base,DWordData)

Where:
X220Base = Board address in VMEbus short I/O space
DWordData = The double word value to be written

Function:
This routine writes two words (four bytes) to all four configuration ports, configuring all 32 output
channels.

Return Value:
None

3.6.9 Reset

Syntax:
X220Reset(X220Base)

Where:
X220Base = Board address in VMEbus short I/O space

Function:
This routine sets all of the output port configuration registers to 0.

Return Value:
None

MS-DOS Software Support Library
November 1993

3-25

3.7 XVME-240 DIGITAL INPUT/OUTPUT MODULE

The XVME-240 is a Digital Input/Output Module that provides 80 TTL-level channels. Sixty-four of these
channels are organized as eight ports of 8 bits each. All of the ports can be programmed individually as
either input or output. The XVME-240 also provides eight edge-selectable inputs that can be programmably
masked to generate VMEbus interrupts. Eight flag outputs are also provided.

The parameters used in the routines for the XVME-240 must match the type expected by the routine. If you
pass an invalid parameter, the routine will operate erratically.

Parameters:

ByteData = 1 byte Register = 2 bytes
Start = 2 bytes WordData = 2 bytes
X240Base = 2 bytes

Source Code Location: \LIB\SOURCES\DIGITAL\XVME240.C

The routines in the following sections are available to the user in the XVME-983 Software Support Library.

3.7.1 Reset

Syntax:
X240Reset(X240Base)

Where:
X240Base = Board address in VMEbus short I/O space

Function:
This routine sets the interrupt mask to 0, sets the output flags as low, clears the interrupt latches,
and sets all ports as inputs. The PASS LED will be ON and the FAIL LED will be OFF

Return Value:
None

Chapter 3 - Module Library: Digital I/O Boards

3-26

3.7.2 Read a Byte

Syntax:
X240Read(X240Base,Register)

Where:
X240Base = Board address in VMEbus short I/O space
Register = Address offset of register or port to Read

Function:
This routine reads and returns a byte value from a register or port. The XVME-240 manual
contains all of the register definitions and corresponding addresses.

Return Value:
Byte value read from specified port or register

3.7.3 Read a Word

Syntax:
X240ReadWord(X240Base,Start)

Where:
X240Base = Board address in VMEbus short I/O space
Start = Address offset of first register or port to Read

Function:
This routine reads and returns a word (two byte) value from two consecutive registers or ports. The
XVME-240 manual contains all of the register definitions and corresponding addresses.

Return Value:
The word value read starting at the specified port or register

3.7.4 Write a Byte

Syntax:
X240Write(X240Base,Register,ByteData)

Where:
X240Base = Board address in VMEbus short I/O space
Register = Address offset of register or port to write
ByteData = The byte value to be written

Function:
This routine writes a given byte to a desired register or port. The XVME-240 manual contains all
of the register and port definitions and corresponding addresses.

MS-DOS Software Support Library
November 1993

3-27

Return Value:
None

3.7.5 Write a Word

Syntax:
X240WriteWord(X240Base,Start,WordData)

Where:
X240Base = Board address in VMEbus short I/O space
Start = Address offset of first register or port to write
WordData = The word value to be written

Function:
This routine writes a given word (two bytes) to two consecutive registers or ports. The XVME-240
manual contains all of the register and port definitions and corresponding addresses.

Return Value:
None

Chapter 3 - Module Library: Digital I/O Boards

3-28

3.7.6 Interrupt Example

The XVME-240 board will generate an interrupt whenever one of the eight edge-selectable inputs is
toggled.

For your system to acknowledge interrupts generated by the board, you must set your jumpers and or
switches as detailed below. Please refer to the XVME PC/AT manual and the XVME-240 manual for
further details.

An example program for the use of interrupts can be found in the Library. The file for the example is:

\EXAMPLES\DIGITAL\X240INT.EXE

Jumpers:

XVME-240: One of the interrupts must be enabled via switch S2.

An Interrupt Occurred message will appear on screen each time a change of state occurs on any one of the
edge-selectable inputs.

MS-DOS Software Support Library
November 1993

3-29

3.8 XVME-244 DIGITAL OUTPUT MODULE

The XVME-244 is a Digital Output Module consisting of a VMEbus interface with 64 isolated digital I/O
channels, 32 input channels, and 32 output channels. The inputs are arranged in four groups of eight each.
Each group is optically isolated from the others.

The parameters used in the routines for the XVME-244 must match the type expected by the routine. If you
pass an invalid parameter, the routine will operate erratically.

Parameters:

ByteData = 1 byte STATUS_REG = 129 (0x81)
DWordData = 4 bytes OUTPUT_REG = 130 (0x82)
Start = 2 bytes FILTERED_REG = 160 (0xA0)
X244Base = 2 bytes INPUT_REG = 192 (0xC0)
Channel = 1 byte
Register = 2 bytes
WordData = 2 byte

Source Code Location: \LIB\SOURCES\DIGITAL\XVME244.C

The routines in the following sections are available to the user in the XVME-983 Software Support Library.

3.8.1 Read a Channel

Syntax:
X244ReadChannel(X244Base,Channel,Type)

Where:
X244Base = Board address in VMEbus short I/O space
Channel = Channel containing status information (0-31)
Type = Register type (INPUT_REG, FILTERED_REG, or OUTPUT_REG)

Function:
This routine reads a specified channel and returns:
0 = Channel is low
1 = Channel is high

Return Value:
0 or 1

3.8.2 Read a Byte

Syntax:
X244Read(X244Base,Register,Type)

Chapter 3 - Module Library: Digital I/O Boards

3-30

Where:
X244Base = Board address in VMEbus short I/O space
Register = Address offset of register or port to Read
Type = Register type (STATUS_REG, INPUT_REG, FILTERED_REG, or

OUTPUT_REG)

Function:
This routine reads and returns a byte value from a register. The XVME-244 manual contains all of
the register definitions and corresponding addresses.

Return Value:
Byte value read from desired register

3.8.3 Read a Word

Syntax::
X244ReadWord(X244Base,StartReg,Type)

Where:
X244Base = Board address in VMEbus short I/O space
StartReg = Address offset of first register or port to Read
Type = Register type (INPUT_REG, FILTERED_REG, or OUTPUT_REG)

Function:
This routine reads and returns a word value from two consecutive registers. The XVME-244
manual contains all of the register definitions and corresponding addresses.

Return Value:
The word value read starting at the specified register

MS-DOS Software Support Library
November 1993

3-31

3.8.4 Read All

Syntax:
X244ReadAll(X244Base,Type)

Where:
X244Base = Board address in VMEbus short I/O space
Type = Register type (INPUT_REG, FILTERED_REG, or OUTPUT_REG)

Function:
This routine reads and returns a four byte (2 word) value from all four output status registers. The
XVME-244 manual contains all of the register definitions and corresponding addresses.

Return Value:
The double word status of all four ports

3.8.5 Write a Channel

Syntax:
X244WriteChannel(X244Base,Channel,Data)

Where:
X244Base = Board address in VMEbus short I/O space
Channel = Channel to write status information (0-31)
Data = Information to configure output Channel

0 = Channel set low
1 = Channel set high

Function:
This routine sets a specified channel to the desired polarity

Return Value:
None

Chapter 3 - Module Library: Digital I/O Boards

3-32

3.8.6 Write a Byte

Syntax:
X244Write(X244Base,Register,Type,Data)

Where:
X244Base = Board address in VMEbus short I/O space
Register = Address offset of register to write (0-3)
Type = Register type (STATUS_REG or OUTPUT_REG)
Data = The byte value to be written

Function:
This routine writes a given byte to a desired register or port. The XVME-244 manual contains all
the register definitions and corresponding addresses.

Return Value:
None

3.8.7 Write a Word

Syntax:
X244WriteWord(X244Base,StartReg,WordData)

Where:
X244Base = Board address in VMEbus short I/O space
StartReg = Address offset of first register to write (0 or 2)
WordData = The word value to be written

Function:
This routine writes a given word (two bytes) to two consecutive output registers. The XVME-244
manual contains all of the register and port definitions and corresponding addresses.

Return Value:
None

MS-DOS Software Support Library
November 1993

3-33

3.8.8 Write All

Syntax:
X244WriteAll(X244Base,LongData)

Where:
X244Base = Board address in VMEbus short I/O space
LongData = The double word value to be written

Function:
This routine writes two words (four bytes) to all four output registers, configuring all 32 output
channels.

Return Value:
None

3.8.9 Reset

Syntax:
X244Reset(X244Base)

Where:
X244Base = Board address in VMEbus short I/O space

Function:
This routine sets all of the output registers to 0.

Return Value:
None

Chapter 3 - Module Library: Digital I/O Boards

3-34

3.9 XVME-260 DIGITAL OUTPUT MODULE

The XVME-260 is a Digital Relay Output Module that provides 32 channels of relay output, 300 VDC
isolation, and transient suppression. The outputs are capable of switching either AC or DC loads. All
outputs are software readable and disabled whenever the module is set to run diagnostics. All relays return
to a Normally Open (NO) state when the module is reset for standard operation.

The parameters used in the routines for the XVME-260 must match the type expected by the routine. If you
pass an invalid parameter, the routine will operate erratically.

Parameters:

ByteData = 1 byte Channel = 1 byte
DWordData = 4 bytes Register = 2 bytes
Start = 2 bytes WordData = 2 bytes
X260Base = 2 bytes

Source Code Location: \LIB\SOURCES\DIGITAL\XVME260.C

The routines in the following sections are available to the user in the XVME-983 Software Support Library.

3.9.1 Read a Channel

Syntax:
ReadChannel(X260Base,Channel)

Where:
X260Base = Board address in VMEbus short I/O space
Channel = Channel containing status information (0-31)

Function:
This routine reads a specified channel and returns:
0 = Channel relay is open
1 = Channel relay is closed

Return Value:
0 or 1

MS-DOS Software Support Library
November 1993

3-35

3.9.2 Read a Byte

Syntax:
X260Read(X260Base,Register)

Where:
X260Base = Board address in VMEbus short I/O space
Register = Address offset of port register to Read

Function:
This routine reads and returns a byte value from a port register. The XVME-260 manual contains
all of the register definitions and corresponding addresses.

Return Value:
The inverted byte value read at the specified port register

3.9.3 Read a Word

Syntax:
X260ReadWord(X260Base,Start)

Where:
X260Base = Board address in VMEbus short I/O space
Start = Address offset of first register or port to Read

Function:
This routine reads and returns a word value from two consecutive port registers. The XVME-260
manual contains all of the register definitions and corresponding addresses.

NOTE
This routine will invert the bit read from the port register, showing the actual
state of the port.

Chapter 3 - Module Library: Digital I/O Boards

3-36

Return Value:
The inverted word value read starting at the specified port register

3.9.4 Read All

Syntax:
X260ReadAll(X260Base)

Where:
X260Base = Board address in VMEbus short I/O space

Function:
This routine reads and returns a four byte (2 word) value from all four port status registers. The
XVME-260 manual contains all of the register definitions and corresponding addresses.

Return Value:
The inverted double word value of all four port registers

3.9.5 Write a Channel

NOTE
This routine will invert the bits read from the port register, showing the actual
state of the port.

NOTE
This routine will invert the bits read from the port register, showing the actual
state of the port.

MS-DOS Software Support Library
November 1993

3-37

Syntax:
X260WriteChannel(X260Base,Channel,ByteData)

Where:
X260Base = Board address in VMEbus short I/O space
Channel = Channel to write status information
ByteData = Information to configure output channel (0-31)

0 = Channel set low
1 = Channel set high

Function:
This routine sets a specified channel relay to the desired position.

Return Value:
None

Chapter 3 - Module Library: Digital I/O Boards

3-38

3.9.6 Write a Byte

Syntax:
X260Write(X260Base,Register,ByteData)

Where:
X260Base = Board address in VMEbus short I/O space
Register = Address offset of register or port to write
ByteData = The byte value to be written

Function:
This routine writes a given byte to a desired register or port. The XVME-260 manual contains all
of the register and port definitions and corresponding addresses.

Return Value:
None

3.9.7 Write a Word

Syntax:
X260WriteWord(X260Base,Start,WordData)

Where:
X260Base = Board address in VMEbus short I/O space
Start = Address offset of first register or port to write
WordData = The word value to be written

Function:
This routine writes a given word (two bytes) to two consecutive registers or ports. The XVME-260
manual contains all of the register and port definitions and corresponding addresses.

Return Value:
None

MS-DOS Software Support Library
November 1993

3-39

3.9.8 Write All

Syntax
WriteAll(X260Base,DWordData)

Where:
X260Base = Board address in VMEbus short I/O space
DWordData = The double word value to be written

Function:
This routine writes two words (four bytes) to all four configuration ports, configuring all 32 output
channels. The XVME-260 manual contains all of the register and port definitions and
corresponding addresses.

Return Value:
None

4-1

Chapter 4 - MODULE LIBRARY: ANALOG I/O BOARDS

4.1 INTRODUCTION

Table 4-1. Analog I/O Routine Matrix
MODULE

Routine 500/595 505/595 530 540 560 566
ADRead • • •
ChanOut • •
Diag
ForceAD • • •
Int • • •
Output • • •
Read • • • •
ReadGain • •
Reset • • • •
SetCK •
SetGain • • •
SetMode • • •
SetSampCK •
Wait • • • •
WordWrite •
Write • • • •

500/595 505/595 530 540 560 566

Chapter 4 - Module Library: Analog I/O Boards

4-2

4.2 XVME-500/590 ANALOG INPUT MODULE

The XVME-500 is a complete, single-high VMEbus compatible Analog Input Module with 16 analog
input channels expandable to 32 channels. An programmable gain option is available. The XVME-590
is a 6U version of the XVME-500, with the I/O routed to the VMEbus P2 connector.

The parameters used in the routines for the XVME-500/590 must match the type expected by the routine.
 If you pass an invalid parameter, the routine will operate erratically.

Parameters:

ByteData = 1 byte Channel = 1 byte
GainFactor = 1 byte IntFlag = 1 byte
Mode = 1 byte Register = 2 bytes
X500Base = 2 bytes

Source Code Location: \LIB\SOURCES\ANALOG\XVME500.C

The routines in the following sections are available to the user in the XVME-983 Software Support
Library.

4.2.1 Read a Byte

Syntax:
X500Read(X500Base,Register)

Where:
X500Base = Board address in VMEbus short I/O space
Register = Address offset of register to Read

Function:
This routine reads and returns a byte from a desired register. The XVME-500/590 manual
contains all of the register definitions and corresponding addresses.

Return Value:
The byte read from the desired register

MS-DOS Software Support Library
November 1993

4-3

4.2.2 Write a Byte

Syntax:
X500Write(X500Base,Register,ByteData)

Where:
X500Base = Board address in VMEbus short I/O space
Register = Address offset of register to write
ByteData = The byte value to be written

Function:
This routine writes a given byte to a desired register. The XVME-500/590 manual contains all of
the register definitions and corresponding addresses.

Return Value:
None

Source Code\XVME500.C

4.2.3 Wait

Syntax:
X500Wait(X500Base)

Where:
X500Base = Board address in VMEbus short I/O space

Function:
This routine waits until the current analog-to-digital (A/D) conversion is completed before
allowing the program to continue.

Return Value:
None

Source Code\XVME500.C

Chapter 4 - Module Library: Analog I/O Boards

4-4

4.2.4 Force an A/D Conversion

Syntax:
X500ForceAD(X500Base)

Where:
X500Base = Board address in VMEbus short I/O space

Function:
This routine sets the A/D busy bit in the Status Control Register to initiate an analog-to-digital
conversion on the currently selected channel.

Return Value:
None

4.2.5 Set Interrupt

Syntax:
X500Int(X500Base,IntFlag)

Where:
X500Base = Board address in VMEbus short I/O space
IntFlag = Interrupt status

0 = Interrupts disabled
1 = Interrupts enabled

Function:
This routine sets the interrupt bit in the Status Control Register to either enable or disable the
interrupts.

Return Value:
None

MS-DOS Software Support Library
November 1993

4-5

4.2.6 Set Conversion Mode

Syntax:
X500SetMode(X500Base,Mode)

Where:
X500Base = Board address in VMEbus short I/O space
Mode = Conversion mode

0 = Set to Single Channel Mode
1 = Set to Sequential Channel Mode
2 = Set to Random Channel Mode
3 = Set to External Trigger Mode

Function:
This routine sets the module to one of four analog conversion modes.

Return Value:
None

4.2.7 Reset

Syntax:
X500Reset(X500Base)

Where:
X500Base = Board address in VMEbus short I/O space

Function:
This routine performs a software reset on the module. The A/D busy and the interrupt pending
bits in the Status/Control Register are reset.

Return Value:
None

Chapter 4 - Module Library: Analog I/O Boards

4-6

4.2.8 Analog to Digital

Syntax:
X500ADRead(X500Base)

Where:
X500Base = Board address in VMEbus short I/O space

Function:
This routine reads a word (two byte) value containing the A/D reading for a channel.

Return Value:
The word value containing the A/D reading for a channel

NOTE
If the module is in Single Channel or Sequential Mode, a new A/D
conversion will be initiated every time this routine is called.

MS-DOS Software Support Library
November 1993

4-7

4.2.9 Set Gain Factor

Syntax:
X500SetGain(X500Base,Channel,GainFactor)

Where:
X500Base = Board address in VMEbus short I/O space
Channel = Target of new gain setting (0-31)
GainFactor = Gain factor applied to converted signal

Range 1Range 2 Range 3
0 = 1 4 10
1 = 2 8 20
2 = 5 20 50
3 = 10 40 100

Function:
This routine sets the module to one of four gain factors in the current range setting.

Return Value:
None

NOTE
This routine is applicable to the XVME-500/590-2 and the
XVME-500/590-3 only. The gain factor on the XVME-500/590-1 is not
programmable.

NOTE
Select the range via jumpers on the board. Refer to the XVME-500/590
manual for details.

Chapter 4 - Module Library: Analog I/O Boards

4-8

MS-DOS Software Support Library
November 1993

4-9

4.2.10 Read Gain Factor

Syntax:
X500ReadGain(X500Base,Channel)

Where:
X500Base = Board address in VMEbus short I/O space
Channel = Channel number to read gain from (0-31)

Function:
This routine reads the module gain register and returns one of four factors in the current range
setting.

Return Value:
A byte containing the gain mode value (0-3)

NOTE
This routine is applicable to XVME-500/590-2 and XVME-500/590-3
only. The gain factor on the XVME-500/590-1 is hardware selectable.

NOTE
If the module is in Random Mode, an A/D conversion will be initiated for
the channel whose gain is to be read.

Chapter 4 - Module Library: Analog I/O Boards

4-10

4.2.11 Interrupt Example

For your system to acknowledge interrupts generated by the board, you must set your jumpers and or
switches as detailed below. Please refer to the XVME PC/AT manual and the specific Analog I/O
manual for further details.

An example program for the use of interrupts can be found in the library. The file for the example is:

\EXAMPLES\ANALOG\X500INT.EXE

Jumpers:

XVME-500: J10-12 configured to enable one of the VMEbus interrupt levels.

MS-DOS Software Support Library
November 1993

4-11

4.3 XVME-505/595 4-CHANNEL ANALOG OUTPUT MODULE

The XVME-505 is a powerful, single-high VMEbus-compatible I/O module that can perform 12-bit
digital-to-analog (D/A) conversions. The module can output D/A conversions over any of four
independently configured output channels. The XVME-595 is functionally the same as the XVME-505
in a 6U form factor, with the I/O routed to the VMEbus P2 connector.

Unipolar ranges include 0-5 VDC and 0-10 VDC. Bipolar voltages include ±5 VDC and ±10 VDC, and
the current range is 4-20 mA. All outputs go to 0 V (4 mA) state when the module is reset.

The parameters used in the routines for the XVME-505/595 must match the type expected by the routine.
 If you pass an invalid parameter, the routine will operate erratically.

Parameters:

Channel = 1 byte DacValue = 2 bytes
X505Base = 2 bytes

Source Code Location: LIB\SOURCES\ANALOG\XVME505.C

The following routine is available to the user in the XVME-983 Software Support Library.

4.3.1 Channel Output

Syntax:
X505Output(X505Base,Channel,DacValue)

Where:
X505Base = Board address in VMEbus short I/O space
Channel = Channel number whose output to program (0-3)
DacValue = 12 bit output value to write to channel output register

Function:
This routine writes a 12-bit value into a channel output register, causing a voltage output that
corresponds to the 12-bit value.

Return Value:
None

Chapter 4 - Module Library: Analog I/O Boards

4-12

4.4 XVME-530 ANALOG OUTPUT MODULE

The XVME-530 provides VMEbus systems with eight channels of digital-to-analog (D/A) conversion
capability. The eight analog outputs are optically isolated from the VMEbus system. The resolution of
each D/A conversion is 12 bits.

The parameters used in the routines for the XVME-530 must match the type expected by the routine. If
you pass an invalid parameter, the routine will operate erratically.

Parameters:

ByteData = 1 byte Channel = 1 byte
DacValue = 2 bytes Register = 2 bytes
X530Base = 2 bytes

Source Code Location: \LIB\SOURCES\ANALOG\XVME530.C

The routines in the following sections are available to the user in the XVME-983 Software Support
Library.

4.4.1 Read a Byte

Syntax:
X530Read(X530Base,Register)

Where:
X530Base = Board address in VMEbus short I/O space
Register= Address offset of register to Read

Function:
This routine reads and returns a byte from a desired register. The XVME-530 manual contains
all of the register definitions and corresponding addresses.

Return Value:
The byte read from the desired register

MS-DOS Software Support Library
November 1993

4-13

4.4.2 Write a Byte

Syntax:
X530Write(X530Base,Register,ByteData)

Where:
X530Base = Board address in VMEbus short I/O space
Register= Address offset of register to write
ByteData = The byte value to be written

Function:
This routine writes a given byte to a desired register. The XVME-530 manual contains all of the
register definitions and corresponding addresses.

Return Value:
None

4.4.3 Reset

Syntax:
X530Reset(X530Base)

Where:
X530Base = Board address in VMEbus short I/O space

Function:
This routine sets all eight channel outputs to 0 VDC (or 4 mA if in current mode) and turns the
green LED to ON and the red LED to OFF.

Return Value:
None

Chapter 4 - Module Library: Analog I/O Boards

4-14

4.4.4 Wait

Syntax:
X530Wait(X530Base)

Where:
X530Base = Board address in VMEbus short I/O space

Function:
This routine waits until the current D/A conversion is completed before allowing the program to
continue.

Return Value:
None

4.4.5 Channel Output

Syntax:
X530ChanOut(X530Base,Channel,DacValue)

Where:
X530Base = Board address in VMEbus short I/O space
Channel= Which output channel to program (0-7)
DacValue = 12-bit value determining what voltage value will be set

Function:
This routine sets the output channel to a specified voltage value

Return Value:
None

MS-DOS Software Support Library
November 1993

4-15

4.5 XVME-540 ANALOG INPUT/OUTPUT MODULE

The XVME-540 is a powerful VMEbus-compatible I/O module that can perform 12-bit A/D and D/A
conversions. The XVME-540 allows the dual capability of inputting A/D conversions on up to 32
different input channels and outputting D/A conversions over any of four different output channels. The
input signal gain is programmable over three ranges, and all outputs can be in the form of either voltage
or current.

The parameters used in the routines for the XVME-540 must match the type expected by the routine. If
you pass an invalid parameter, the routine will operate erratically.

Parameters:

ByteData = 1 byte Channel = 1 byte
DacValue = 2 bytes GainFactor = 1 byte
IntFlag = 1 byte Mode = 1 byte
Register = 2 bytes X540Base = 2 bytes

Source Code Location: LIB\SOURCES\ANALOG\XVME540.C

The routines in the following sections are available to the user in the XVME-983 Software Support
Library.

4.5.1 Read a Byte

Syntax:
X540Read(X540Base,Register)

Where:
X540Base = Board address in VMEbus short I/O space
Register = Address offset of register to Read

Function:
This routine reads and returns a byte from a desired register. The XVME-540 manual contains
all of the register definitions and corresponding addresses.

Return Value:
The byte read from the desired register

Chapter 4 - Module Library: Analog I/O Boards

4-16

4.5.2 Write a Byte

Syntax:
X540Write(X540Base,Register,ByteData)

Where:
X540Base = Board address in VMEbus short I/O space
Register = Address offset of register to Read
ByteData = The byte value to be written

Function:
This routine writes a given byte to a desired register. The XVME-540 manual contains all of the
register definitions and corresponding addresses.

Return Value:
None

4.5.3 Wait

Syntax:
X540Wait(X540Base)

Where:
X540Base = Board address in VMEbus short I/O space

Function:
This routine waits until the current A/D conversion is completed before allowing the program to
continue.

Return Value:
None

MS-DOS Software Support Library
November 1993

4-17

4.5.4 Force an A/D Conversion

Syntax:
X540ForceAD(X540Base)

Where:
X540Base = Board address in VMEbus short I/O space

Function:
This routine sets the A/D busy bit in the Status Control Register to initiate an A/D conversion on
the present channel.

Return Value:
None

4.5.5 Set Interrupt

Syntax:
X540Int(X540Base,IntFlag)

Where:
X540Base = Board address in VMEbus short I/O space
IntFlag = Interrupt status

0 = Interrupts disabled
1 = Interrupts enabled

Function:
This routine sets the interrupt bit in the Status Control Register to enable or disable the
interrupts.

Return Value:
None

Chapter 4 - Module Library: Analog I/O Boards

4-18

4.5.6 Set Conversion Mode

Syntax:
X540SetMode(X540Base,Mode)

Where:
X540Base = Board address in VMEbus short I/O space
Mode = Interrupt status

0 = Set to Single Channel Mode
1 = Set to Sequential Channel Mode
2 = Set to Random Channel Mode
3 = Set to External Channel Mode

Function:
This routine sets the module to one of four analog conversion modes.

Return Value:
None

4.5.7 Reset

Syntax:
X540Reset(X540Base)

Where:
X540Base = Board address in VMEbus short I/O space

Function:
This routine performs a software reset on the module. It also resets the A/D busy bit and the
interrupt pending bits in the Status/Control Register, turns the green LED to ON, and turns the
red LED to OFF.

Return Value:
None

MS-DOS Software Support Library
November 1993

4-19

4.5.8 Analog to Digital

Syntax:
X540ADRead(X540Base)

Where:
X540Base = Board address in VMEbus short I/O space

Function:
This routine reads a word (two byte) value containing the A/D reading for a channel.

Return Value:
The word value containing the A/D reading for a channel

4.5.9 Set Gain Factor

Syntax:
X540SetGain(X540Base,Channel,GainFactor)

Where:
X540Base = Board address in VMEbus short I/O space
Channel = Target of new gain setting (0-31)
GainFactor = Gain factor applied to converted signal

Range 1 Range 2 Range 3
0 = 1 4 10
1 = 2 8 20
2 = 5 20 50
3 = 10 40 100

Function:
This routine sets the module to one of four gain factors in the current range setting.

Return Value:

NOTE
Select the range via jumpers on the board. Refer to the XVME-540 manual
for details.

Chapter 4 - Module Library: Analog I/O Boards

4-20

None

MS-DOS Software Support Library
November 1993

4-21

4.5.10 Read Gain Factor

Syntax:
X540ReadGain(X540Base,Channel)

Where:
X540Base = Board address in VMEbus short I/O space
Channel = Channel number to read gain from (0-31)

Function:
This routine reads the module gain RAM and returns one of four factors in the current range
setting.

Return Value:
A byte containing the gain mode value (0-3)

4.5.11 Channel Output

Syntax:
X540ChanOut(X540Base,Channel,DacValue)

Where:
X540Base = Board address in VMEbus short I/O space
Channel = Which output channel to program (0-3)
DacValue = 12-bit value to write to channel output register

Function:
This routine writes a 12-bit value into a channel output register, causing a voltage output that
corresponds to the 12-bit value.

Return Value:
None

NOTE
An A/D conversion will be initiated for the channel whose gain is to be
read.

Chapter 4 - Module Library: Analog I/O Boards

4-22

4.6 XVME-560 ANALOG INPUT/OUTPUT MODULE

The XVME-560 is a powerful VMEbus-compatible I/O module that can perform 12-bit A/D conversions.
 The XVME-560 lets you input A/D conversions on up to 64 different input channels with programmable
gain.

The parameters used in the routines for the XVME-560 must match the type expected by the routine. If
you pass an invalid parameter, the routine will operate erratically.

Parameters:

Channel = 1 byte Data = 1 byte
GainFactor = 1 byte IntFlag = 1 byte
Mode = 1 byte Register = 2 bytes
X560Base = 2 bytes

Source Code Location: LIB\SOURCES\ANALOG\XVME560.C

The routines in the following sections are available to the user in the XVME-983 Software Support
Library.

MS-DOS Software Support Library
November 1993

4-23

4.6.1 Read a Byte

Syntax:
X560Read(X560Base,Register)

Where:
X560Base = Board address in VMEbus short I/O space
Register = Address offset of register to Read

Function:
This routine reads and returns a byte from a desired register. The XVME-560 manual contains
all of the register definitions and corresponding addresses.

Return Value:
The byte value read from the desired register

4.6.2 Write a Byte

Syntax:
X560Write(X560Base,Register,ByteData)

Where:
X560Base = Board address in VMEbus short I/O space
Register = Address offset of register to write
ByteData = The byte value to be written

Function:
This routine writes a given byte to a desired register. The XVME-560 manual contains all of the
register definitions and corresponding addresses.

Return Value:
None

Chapter 4 - Module Library: Analog I/O Boards

4-24

4.6.3 Wait

Syntax:
X560Wait(X560Base)

Where:
X560Base = Board address in VMEbus short I/O space

Function:
This routine waits until the current A/D conversion is completed before allowing the program to
continue.

Return Value:
None

4.6.4 Force an A/D Conversion

Syntax:
X560ForceAD(X560Base)

Where:
X560Base = Board address in VMEbus short I/O space

Function:
This routine sets the A/D busy bit in the Status Control Register to initiate an A/D conversion on
the present channel.

Return Value:
None

MS-DOS Software Support Library
November 1993

4-25

4.6.5 Set Interrupt

Syntax:
X560Int(X560Base,IntFlag)

Where:
X560Base = Board address in VMEbus short I/O space
IntFlag = Interrupt status

0 = Interrupts disabled
1 = Interrupts enabled

Function:
This routine sets the interrupt bit in the Status Control Register to enable or disable interrupts.

Return Value:
None

4.6.6 Set Conversion Mode

Syntax:
X560SetMode(X560Base,Mode)

Where:
X560Base = Board address in VMEbus short I/O space
Mode = Conversion mode

0 = Set to Single Channel Mode
1 = Set to Sequential Channel Mode
2 = Set to Random Channel Mode
3 = Set to External Trigger Mode

Function:
This routine sets the module to one of four analog conversion modes.

Return Value:
None

Chapter 4 - Module Library: Analog I/O Boards

4-26

4.6.7 Reset

Syntax:
X560Reset(X560Base)

Where:
X560Base = Board address in VMEbus short I/O space

Function:
This routine performs a software reset on the module. It also resets the A/D busy bit and the
interrupt pending bits in the Status/Control Register, turns the green LED to ON, and turns the
red LED to OFF.

Return Value:
None

4.6.8 Analog to Digital

Syntax:
X560ADRead(X560Base)

Where:
X560Base = Board address in VMEbus short I/O space

Function:
This routine reads a word (two byte) value containing the A/D reading for a channel.

Return Value:
The word value containing the A/D reading for a channel

MS-DOS Software Support Library
November 1993

4-27

4.6.9 Set Gain Factor

Syntax:
X560SetGain(X560Base,Channel,GainFactor)

Where:
X560Base = Board address in VMEbus short I/O space
Channel = Target of new gain setting
GainFactor = Gain factor applied to converted signal

0 = 1
1 = 2
2 = 4
3 = 8

Function:
This routine sets the module to one of four gain factors.

Return Value:
None

Chapter 4 - Module Library: Analog I/O Boards

4-28

4.6.10 Interrupt Example

For your system to acknowledge interrupts generated by the board, you must set your jumpers and/or
switches as detailed below. Please refer to the XVME PC/AT manual and the specific Analog I/O
manual for further details.

An example program for the use of interrupts can be found in the Library. The file for the example is:

\EXAMPLES\ANALOG\X560INT.EXE

Jumpers:

XVME-560: Switch bank 1 configured to enable one of the VMEbus interrupt levels.

MS-DOS Software Support Library
November 1993

4-29

4.7 XVME-566 HIGH-PERFORMANCE ANALOG INPUT MODULE

The XVME-566 is a high-performance VMEbus-compatible Analog Input Module. It converts data on
32 single-ended or 16 differential analog input channels and provides 12-bit resolution. These
conversions are performed at a rate of 100 KHz using a dual sample and hold architecture. The module
provides 64 Kbytes of dual-ported RAM. Gain RAM and a programmable sample clock are provided.
Sample sequences can be triggered by a trigger clock, an external trigger, or a software trigger.

The parameters used in the routines for the XVME-566 must match the type expected by the routine. If
you pass an invalid parameter, the routine will operate erratically.

Parameters:

ByteData = 1 byte ClockNum = 1 byte
ControlMode = 2 bytes HoldReg = 2 bytes
LoadReg = 2 bytes Period = 2 bytes
Register = 2 bytes WordData = 2 bytes
X566Base = 2 bytes

Source Code Location: LIB\SOURCES\ANALOG\XVME566.C

The routines in the following sections are available to the user in the XVME-983 Software Support
Library.

4.7.1 Read a Byte

Syntax:
X566Read(X566Base,Register)

Where:
X566Base = Board address in VMEbus short I/O space
Register = Address offset of register to read

Function:
This routine reads and returns a byte from a desired register. The XVME-566 manual contains
all of the register definitions and corresponding addresses.

Return Value:
The byte value read from the desired register

Chapter 4 - Module Library: Analog I/O Boards

4-30

4.7.2 Write a Byte

Syntax:
X566Write(X566Base,Register,ByteData)

Where:
X566Base = Board address in VMEbus short I/O space
Register = Address offset of register to write
ByteData = The byte value to be written

Function:
This routine writes a given byte to a desired register. The XVME-566 manual contains all of the
register definitions and corresponding addresses.

Return Value:
None

4.7.3 Write a Word

Syntax:
X566WordWrite(X566Base,Register,WordData)

Where:
X566Base = Board address in VMEbus short I/O space
Register = Address offset of register to Read
WordData = The word (two byte) value to be written

Function:
This routine writes a given word to a desired register. The XVME-566 manual contains all of
the register definitions and corresponding addresses.

Return Value:
None

MS-DOS Software Support Library
November 1993

4-31

4.7.4 Set Sample Clock

Syntax:
X566SetSampCK(X566Base,Period)

Where:
X566Base = Board address in VMEbus short I/O space
Period = The period (usec) that determines the sampling frequency

Function:
This routine programs the sample clock (STC counter 4) period that controls the A/D conversion
frequency.

Return Value:
None

4.7.5 Set Clock

Syntax:
X566SetCK(X566Base,ClockNum,ControlMode,LoadReg,HoldReg)

Where:
X566Base = Board address in VMEbus short I/O space
ClockNum = Identifies which of the five counter channels to program
ControlMode = Word (two byte) value used to program the counter mode
LoadReg = Word (two byte) value to store in counter's load register
HoldReg = Word (two byte) value to store in counter's hold register

Function:
This routine programs one of five counters by writing the user-supplied Control Mode into the
counter control register and by writing the desired values to the counter load and hold registers.

Return Value:

CAUTION
The period must be > 10 usec for 12-bit conversions and > 7 usec for eight-
bit conversions.

Chapter 4 - Module Library: Analog I/O Boards

4-32

None

MS-DOS Software Support Library
November 1993

4-33

4.7.6 Reset

Syntax:
X566Reset(X566Base)

Where:
X566Base = Board address in VMEbus short I/O space

Function:
This routine performs a software reset on the module, resetting the sequence controller. This
module is set to:

Continuous Mode
Sequential Mode
VMEbus Interrupts Disabled
Red LED to OFF
Green LED to ON
STC Channels 2, 4, 5 disabled

Return Value:
None

Chapter 4 - Module Library: Analog I/O Boards

4-34

4.7.7 Interrupt Example

For your system to acknowledge interrupts generated by the board, you must set your jumpers and/or
switches as detailed below. Please refer to the XVME PC/AT manual and the specific Analog I/O
manual for further details.

An example program for the use of interrupts can be found in the Library. The file for the example is:

\EXAMPLES\ANALOG\X566INT.EXE

Jumpers:

XVME-566: Switch bank 1 configured to enable one of the VMEbus interrupt levels.

5-1

Chapter 5 - MODULE LIBRARY: COUNTER MODULES

5.1 INTRODUCTION

Table 5-1. Counter Command Matrix
MODULE

Routine 203/293 230
BldCmdBlk •
BldCmdBlkBuf •
ExecCmd •
IntInit •
Read • •
Reset •
Read •
SetCK •
Write • •

203/293 230

Chapter 5 - Module Library: Counter Modules

5-2

5.2 XVME-203/293 COUNTER MODULE

The XVME-203 Counter Module is a single-high, VMEbus-compatible board using two AM9513A
timer/counter devices to provide a total of ten 16-bit counting channels. The timer/counter devices are fully
programmable and are capable of counting at a rate of up to 5 MHz. The XVME-203 can provide a
complete interrupt structure via eight interrupt channels. This interrupt structure allows for the selection of a
fixed interrupt vector for all eight channels or a separate vector for each individual channel.

The XVME-203 can also be used for quadrature detection. Advanced encoding circuitry permits the use of
up to four quadrature transducers simultaneously.

The parameters used in the routines for the XVME-203/293 must match the type expected by the routine. If
you pass an invalid parameter, the routine will operate erratically.

Parameters:

ClockNum = 1 byte CtrlReg = 2 bytes
ByteData = 1 byte HoldReg = 2 bytes
IntMask = 1 byte IREQVectors = Pointer to 1st byte of data buffer
LoadReg = 2 bytes Register = 2 bytes
X203Base = 2 bytes

Source Code Location: \LIB\SOURCES\COUNTER\XVME203.C

The routines in the following sections are available to the user in the XVME-983 Software Support Library.

5.2.1 Read a Byte

Syntax:
X203Read(X203Base,Register)

Where:
X203Base = Board address in VMEbus short I/O space
Register = Address offset of register to Read

Function:
This routine reads and returns a byte from a desired register. The XVME-203 manual contains all of
the register definitions and corresponding addresses.

Return Value:
The byte value read from the desired register

5.2.2 Write a Byte

Syntax:

MS-DOS Software Support Library
November 1993

5-3

X203Write(X203Base,Register,ByteData)

Where:
X203Base = Board address in VMEbus short I/O space
Register = Address offset of register to Write
ByteData = The byte value to be written

Function:
This routine writes a given byte to a desired register. The XVME-203 manual contains all of the
register definitions and corresponding addresses.

Return Value:
None

5.2.3 Reset

Syntax:
X203Reset(X203Base)

Where:
X203Base = Board address in VMEbus short I/O space

Function:
This routine resets all counters on STC A and B, enables eight-bit access to counters, turns off
quadrature detect circuitry, and resets the AM9519 interrupt controller

Return Value:
None

5.2.4 Set Clock

Syntax:
X203SetCK(X203Base,ClockNum,CtrlReg,LoadReg,HoldReg)

Where:
X203Base = Board address in VMEbus short I/O space
ClockNum = Identifies which of the clock channels to program (1-10)
CtrlReg = Word (two byte) value used to program the counter mode
LoadReg = Word (two byte) value to store in the counter's load register
HoldReg = Word (two byte) value to store in the counter's hold register

Function:
This routine programs the one of ten counters by writing the user-supplied Control Mode into the

Chapter 5 - Module Library: Counter Modules

5-4

counter control register and writing the desired values to the counter load and hold registers.

Return Value:
None

5.2.5 Initialize Interrupt

Syntax:
X203IntInit(X203Base,IntMask,IREQVectors)

Where:
X203Base = Board address in VMEbus short I/O space
IntMask= The byte value that determines which interrupts are enabled
IREQVectors = Array of eight 1 byte vectors corresponding to each interrupt line

Function:
This routine initializes the AM9519 interrupt controller as follows: mode register to individual
vectors, fixed priority, GINT active high, IREQs active low, and chip armed. Also, this routine
writes the IntMask value to the IMR and the IREQVectors array to the response memory.

Return Value:
None

5.2.6 Interrupt Example

For your system to acknowledge interrupts generated by the board, you must set your jumpers and/or
switches as detailed below. Please refer to the XVME PC/AT manual and the XVME-203 manual for
further details.

An example program for the use of interrupts can be found in the library. The file for the example is:

\EXAMPLES\COUNTER\X203INT.EXE

Jumpers:

XVME-203: Interrupts are enabled via the three least significant status control register bits in
the software. See the XVME-203 manual for more information.

5.3 XVME-230 INTELLIGENT COUNTER MODULE

The XVME-230 Intelligent Counter Module is a VMEbus-compatible intelligent I/O Module with a variety
of high-performance, high-level counting functions. The module's architecture features the Xycom 68000-
based I/O kernel, which significantly enhances performance by relieving the host processor of many time-
consuming functions.

MS-DOS Software Support Library
November 1993

5-5

The parameters used in the routines for the XVME-230 must match the type expected by the routine. If you
pass an invalid parameter, the routine will operate erratically.

Parameters:

BlkOff = 2 bytes BufAddr = 4 bytes
BufSize = 2 bytes ByteData = 1 byte
Command = 1 byte ILevel = 1 byte
IVect = 1 byte NextBlk = 2 bytes
OpBuf = Pointer to 1st byte of data buffer OpSize = 1 byte
Register = 2 bytes X230Base = 2 bytes

Source Code Location: LIB\SOURCES\COUNTER\XVME230.C

Chapter 5 - Module Library: Counter Modules

5-6

The routines in the following sections are available to the user in the XVME-983 Software Support Library.

5.3.1 Read a Byte

Syntax:
X230Read(X230Base,Register)

Where:
X230Base = Board address in VMEbus short I/O space
Register = Address offset of register to Read

Function:
This routine reads and returns a byte from a desired register. The XVME-230 manual contains all of
the register definitions and corresponding addresses.

Return Value:
The byte read from the desired register

5.3.2 Write a Byte

Syntax:
X230Write(X230Base,Register,ByteData)

Where:
X230Base = Board address in VMEbus short I/O space
Register = Address offset of register to Write
ByteData = The byte value to be written

Function:
This routine writes the given byte to the desired register. The XVME-230 manual contains all of the
register definitions and corresponding addresses.

Return Value:
None

5.3.3 Build a Command Block

Syntax:
X230BldCmdBlk(X230Base,BlkOff,Command,ILevel,IVect,NextBlk,OpSize,OpBuf)

Where:
X230Base = Board address in VMEbus short I/O space
BlkOff = Offset in short I/O memory Where block is to be built
Command = XVME-230 command to execute

MS-DOS Software Support Library
November 1993

5-7

ILevel = Interrupt level to use if interrupts enabled
IVect = Interrupt vector to use if interrupts enabled
NextBlk = Pointer to the next command block (0/ if none)
OpSize = Number of operands
OpBuf = Pointer to operand buffer to store within operand field

Function:
This routine builds a command block starting at the specified address, transfers the OpBuf contents
to the operand field of this block, and sets the response flag to non-zero.

Return Value:
None

5.3.4 Build a Command Block with Operand Buffer

Syntax:
X230BldCmdBlkBuf(X230Base,BlkOff,Command,ILevel,IVect,NextBlk,BufSize,BufAddr)

Where:
X230Base = Board address in VMEbus short I/O space
BlkOff = Offset in short I/O memory Where block is to be built
Command = Command to execute
ILevel = Interrupt level to use if interrupts enabled
IVect = Interrupt vector to use if interrupts enabled
NextBlk = Pointer to the next command block
BufSize= Size of operand buffer
BufAddr = Address of operand buffer to store within command block

Function:
This routine builds a command block with user-provided parameters starting at the specified
address. It is used for commands with more than five bytes worth of operand data.

Return Value:
None

5.3.5 Execute Command Block

Syntax:
X230ExecCmd(X230Base,BlkAddr,Channel)

Where:
X230Base = Board address in VMEbus short I/O space
BlkAddr = Address of the command block to use
Channel = Channel to command

Chapter 5 - Module Library: Counter Modules

5-8

Function:
This routine sets up and executes a previously built command block.

Return Value:
None

5.3.6 Interrupt Example

For your system to acknowledge interrupts generated by the board, you must set your jumpers and/or
switches as detailed below. Please refer to the XVME PC/AT manual and the XVME-230 manual for
further details.

An example program for the use of interrupts can be found in the Library. The file for the example is:

\EXAMPLES\COUNTER\X230INT.EXE

This example starts a counter to count four seconds, then generates an interrupt, at which time the program
terminates.

Jumpers:

XVME-230: User-programmable interrupt level and vector.

6-1

Chapter 6 - MODULE LIBRARY: MS-DOS COMMUNICATION DRIVERS

6.1 INTRODUCTION

This section describes the MS-DOS Communication Drivers included in the XVME-983 Software Support
Library. This makes it easier for the XVME CPU to use the XVME-400, XVME-401, or XVME-428 as an
additional serial I/O module.

The MS-DOS device drivers you need are in a file named X40X.SYS or X42X.SYS, depending on which
module you use. This name is for identification only and the installed software requires a different naming
convention. Details of the naming convention are found in Section 6.4.1.

The software is installed as part of the configuration information used by DOS and obtained from the DOS
file CONFIG.SYS. Modifying this file is discussed in Section 6.4.

In order for the XVME CPU and the serial I/O module to communicate with each other, there must be some
agreement as to the address modifiers that will be used. The pertinent settings are provided in the following
sections. For further details on addressing and configuration, please consult the XVME-400/401/428 and
XVME CPU manuals.

6.2 VMEbus BASE ADDRESS JUMPERS

Base address jumpers should be set to correspond to the base address field of the MS-DOS device command
in the CONFIG.SYS file. The base address jumpers on the XVME-428 are J4, J5, J7, and J8. The base
address jumpers on the XVME-400/401 are JA10 through JA15.

6.3 ADDRESS MODIFIER JUMPERS

Both the CPU and the Serial I/O Modules must be set to supervisor access mode (refer to the XVME CPU
manual). If the XVME-400/401 is used, jumpers J1 and J7 will be removed. On the XVME-428, jumper J3
will be removed.

Chapter 6 - Module Library: MS-DOS Communication Drivers

6-2

6.4 CONFIG.SYS

The CONFIG.SYS file on the system must be modified to contain the following line:

DEVICE=NAMEx.SYS bbbb,c,ss,p,d,q
Where:

NAMEx.SYS = File name
bbbb = Base address
c = Channel number
ss = Baud rate
p = Parity
d = Data bits
q = Stop bits

The various fields of this command line are explained in the following sections.

6.4.1 File Name Field

The field shown in the example above as NAMEx.SYS is the file name field. This is the actual name of the
file that DOS will attempt to load as it reads the CONFIG.SYS file. The following rules govern the format
of the file names. Be sure to copy the distribution file X42X.SYS or X40X.SYS to the new file name
before editing the CONFIG.SYS file.

• The file name must be a text string followed by a one- or two-digit integer. Examples are
COM3.SYS, XPORT6.SYS, and KOM1.SYS.

• Because of the way DOS treats device names such as COM1 and COM2, it is necessary to
provide alternate names for these installable files. If a file begins with the string KOM, it
will be converted into the string COM and treated as a replacement for the standard DOS
device.

• The name of the file, minus the .SYS extension, will be the name of the installed device.

• The trailing digits of the file name will be the INT 14H device number that the installed
device driver will use. That means that the device driver named KOM1.SYS and installed as
COM1 will respond to interrupts as device 0, replacing the standard DOS COM1 service. If
any name other than COM is used, the trailing digits are incremented in such a way that the
standard DOS COM1 and COM2 drivers are unaffected and the new drivers are installed
directly above them for INT 14H service. That means that the device driver installed as
XPORT0 will respond to the device code of 2, leaving device codes 0 and 1 as they normally
are.

MS-DOS Software Support Library
November 1993

6-3

6.4.2 Base Address Field (bbbb)

The base address corresponds directly to the base address that the XVME-42X or XVME-40X board is
jumpered to respond to. It is necessary to tell the installable device driver the base address of the board, so
that multiple boards may be installed in the system.

The 400/401 can be jumped from 0000H to FC00H on 1 Kbyte boundaries using jumpers JA10 through
JA15. The 428 can be jumped from 0000H to 3C00H on 1 byte boundaries using jumpers J4, J5, J7, and
J8.

6.4.3 Channel Number (c)

The XVME-400/401 each have four available serial data channels, while the XVME-428 has eight. This
parameter specifies which data channel is to be associated with this configuration command. It is the
responsibility of the user to make sure that each data channel is used only once. Channel numbers start at 0,
so the XVME-428 will have channels 0 through 7.

6.4.4 Speed or Baud Rate (ss)

This parameter, and the following parameters, correspond directly to the parameters used in the DOS
MODE command. For information about this command, see the DOS Commands section of the DOS
manual.

This parameter specifies the baud rate at which this channel is initialized to run. The following baud rates
are recognized: 110, 150, 300, 600, 1200, 2400, 4800, and 9600. Baud rates are represented by their first
two digits only, so the values you can enter for this parameter are 11, 15, 30, 60, 12, 24, 48, and 96.

6.4.5 Parity (p)

This parameter may take the value N (none), O (odd) or E (even).

6.4.6 Databits (d)

This parameter may be 7 or 8.

6.4.7 Stopbits (q)

This parameter may be 1 or 2.

6.5 EXAMPLES

From the preceding, it can be seen that the following are examples of valid commands.

Chapter 6 - Module Library: MS-DOS Communication Drivers

6-4

DEVICE=KOM1.SYS 3C00,0,9600,N,8,1

This command would cause the device driver to expect the board at short I/O address 3C00H. It would
assign channel 0 on the board to the normal DOS COM1 functions and initialize the channel at 9600 baud,
no parity, 8 data bits and 1 stop bit.

DEVICE=XPORT2.SYS 3000,2,4800,E,7,2

This command would assign channel 2 on the Serial I/O Module located at base address 3000H to the
device XPORT2 using INT 14H device assignment 4. It would initialize the channel at 4800 baud, even
parity, 7 data bits and 2 stop bits.

6.6 TROUBLESHOOTING

• Some versions of DOS do not make the distinction between a file named COM1.SYS and
the COM1: device. Since DOS always has COM1 and COM2 loaded, you should use
KOM1.SYS and KOM2.SYS so DOS can differentiate.

• In view of the above problem, always perform any file manipulation before editing the
CONFIG.SYS file. Do not remove a previously used DEVICE line from the CONFIG.SYS
file before making modifications.

• Each active I/O channel must have its own DEVICE line in the CONFIG.SYS file. Each
DEVICE line must have its own NAMEx.SYS file to be loaded. Remember that each
channel can only be used once.

7-1

Chapter 7 - XVME PC/AT INTERRUPT ROUTINES

7.1 INTRODUCTION

This chapter explains the following example programs available in the XVME-PC/AT software support
library: Interrupt Service Routines to handle ABORT, ACFAIL, SYSFAIL, BERR, and WDT interrupts.

7.2 AUXILIARY NON-MASKABLE INTERRUPT

This sample program sets up an interrupt handler for NMI. After the handler is set up, it waits until the
operator invokes an NMI by pressing the ABORT button, then the program ends. This program is in the
ANMI.C file on your XVME-983 diskette.

<stdio.h>
#include <dos.h>
#include <xvmedefs.h>
#include <vmeext.h>

#define ABORT_BIT8
#define ACFAIL2
#define ANMI_ENABLE0x10
#define SYSFAIL4
#define TIMER_BIT0x80
#define WDT_ENABLE1
#define WDT_TRIG0x35

extern void Invoke_NMI();

ULONG OldNMI;
VOID (interrupt far *OldNMIHandler)();
UBYTE AbortFlag;
UBYTE FailFlag;

Chapter 7 - XVME PC/AT Interrupt Routines

7-2

**
*

************ Function: Anmi ISR
************ Description: Interrupt handler for Auxiliary NMI

**
*
VOID interrupt far AnmiISR()
{
 UBYTE Mask;
 UBYTE Level;
 UBYTE Status;

 Status = Inp(STATUS_1);

 if((Status & ABORT_BIT)) {
 AbortFlag++;
 }
 else if(Status & (ACFAIL | SYSFAIL)) {
 FailFlag++;
 }
 else {
 OldNMIHandler = (void (interrupt far *)())OldNMI;
 (*OldNMIHandler)();
 }
 }

MS-DOS Software Support Library
November 1993

7-3

**
*

************ Function: main
************ Description: Sets up and enables the auxiliary NMI handler
************ and waits for the abort button to be presses

**
*

main()
{
 UBYTE Data;
 UBYTE Status;

 AbortFlag = FailFlag = 0;
 printf("\nPush the abort button to exit");
 OldNMI = SetNMIVect((ULONG)AnmiISR);
 EnableNMIInt();
 while(!AbortFlag) {
 if(FailFlag) {
 printf("\n SYSFAIL or ACFAIL occurred");
 FailFlag = 0;
 }
 }
 DisableNMIInt();
 printf("\nAbort Button was pushed");
 SetNMIVect(OldNMI);
}

Chapter 7 - XVME PC/AT Interrupt Routines

7-4

7.3 BERR

The program in this section sets up an interrupt handler for BERR. When the handler is set up, it tries to
read data out on the VMEbus to an illegal address; this causes a bus error (BERR). The program will end
when the bus error has been acknowledged. This program is in the BERR.C file on your XVME-983
diskette.

<stdio.h>
#include <dos.h>
#include <xvmedefs.h>
#include <vmeext.h>

#define BERR_BIT 1
#define BERR_RST 8
#define PORT_B 0x61

ULONG OldNMI;
VOID (interrupt far *OldNMIHandler)();
UBYTE BerrFlag=0;

**
*

************ Function: BerrISR
************ Description: Interrupt handler for Auxiliary NMI

**
*
VOID interrupt far BerrISR()
{
 UBYTE Mask;
 UBYTE Level;
 UBYTE Status;

 Status = Inp(STATUS_1);

 if(Status & BERR_BIT) {
 BerrFlag = 1;
 Status = Inp(PORT_B);
 Outp(PORT_B, Status | BERR_RST);
 Outp(PORT_B, Status);
 }
 else {
 OldNMIHandler = (void (interrupt far *)())OldNMI;
 (*OldNMIHandler)();
 }
}

MS-DOS Software Support Library
November 1993

7-5

**
*

************ Function: main
************ Description: Sets up and enables the Auxiliary NMI handler and
************ then purposely generates a Bus Error on the VMEbus
**
*
main()
{
 UBYTE Data;
 UBYTE input[80];
 UBYTE *stopstr;

 printf("\n\nEnter the type of XVME CPU board (681,682,683,686): ");
 gets(input);
 switch((UINT)strtoul(input, &stopstr, 10)){
 case 681:
 case 682:
 case 683:
 case 686:
 InitLib((UINT)strtoul(input, &stopstr, 10));
 break;
 default:
 InitLib(682);
 break;
 }
 OldNMI = SetNMIVect((ULONG)BerrISR);
 EnableNMIInt();
 ReadVMEBusMemoryRM(&Data,TRANSFER8,0,1,SHORT_IO_ACCESS,0x500L,0);
 while(!BerrFlag) {
 ;}
 printf("\nBERR has occurred");
 DisableNMIInt();
 SetNMIVect(OldNMI);
}

Chapter 7 - XVME PC/AT Interrupt Routines

7-6

7.4 WATCHDOG TIMER (WDT)

This example program sets up an interrupt handler for the watchdog timer, telling the timer to strobe until a
key is hit. After a key is hit, it will wait until the timer "times-ou 25 times before ending the program. This
program is in the WDTIMER.C file on your XVME-983 diskette.

<stdio.h>
#include <dos.h>
#include <xvmedefs.h>
#include <vmeext.h>

#define STATUS_2 0x33
#define TIMER_BIT 0x80
#define WDT_ENABLE 1
#define WDT_TRIG 0x35

UINT far *Head = (unsigned far *) 0x0000041A;
UINT far *Tail = (unsigned far *) 0x0000041C;

ULONG OldNMI;
VOID (interrupt far *OldNMIHandler)();
UBYTE TimerFlag = 0;
**
*
************ Function: TimerISR
************ Description: Interrupt handler for watchdog timer.
**
*
VOID interrupt far TimerISR()
{
 UBYTE Mask;
 UBYTE Level;
 UBYTE Status;

 DisableNMIInt();
 Status = inp(STATUS_2);

 if(!(Status & TIMER_BIT)) {
 TimerFlag++;
 ResetWDTimer();
 }
 else {
 OldNMIHandler = (void (interrupt far *)())OldNMI;
 (*OldNMIHandler)();
 }
 EnableNMIInt();
}

MS-DOS Software Support Library
November 1993

7-7

**
*

************ Function: main
************ Description: Enables the watchdog timer and strobes it until a key
************ is pressed. At that time strobing will cease and the
************ timer will be allowed to trigger 25 times before the
************ program stops. The interrupt handler will reset the
************ timer after each trigger.

**
*
main()
{
 UBYTE Data;
 UBYTE Status;

printf("\nThe watchdog timer has been enabled and is being retriggered. Press");
printf("\na key to quit retriggering the timer. The program will then stop after");

 printf("\nthe timer has triggered 25 times.\n");
OldNMI = SetNMIVect((ULONG)TimerISR);
ResetWDTimer();
while(*Head == *Tail) { /* While no keys are pressed */

StrobeWDTimer();
}
while(TimerFlag < 25) {
;}
DisableWDTimer();
SetNMIVect(OldNMI);
printf("\n25 watchdog timer interrupts have occurred since the key was pressed.");
*Tail = *Head; /* Get rid of the key */

}

I-1

INDEX

A General purpose routines (continued)
Address Modifier Jumpers 6-1
Analog I/O Boards 4-1
Analog I/O routine matrix 4-1
Auxiliary non-maskable

interrupts 7-1

B
Base address field 6-3
Baud rate 6-3
BERR 7-4

C
C Language subroutines

VMEbus boards supported 1-2
Channel number 6-3
CONFIG.SYS 6-1, 6-2

Base address field 6-3
Channel number 6-3
Databits 6-3
File name field 6-2
Parity 6-3
Speed or baud rate 6-3
Stopbits 6-3

Counter Command matrix 5-1
Counter modules 5-1

D
Databits 6-3
Digital I/O routine matrix 3-1

E
EPROM 2-1

G
General purpose routines 2-2

Access the VMEbus 2-5
Disable Auxiliary NMI 2-13
Disable the Watchdog Timer 2-15

Disable VME Interrupts 2-11

Enable Auxiliary NMI 2-13
Enable the Watchdog Timer 2-14
Enable VME Interrupts 2-11
Generate VMEbus Interrupt 2-14
Initial XVME Library 2-3
Initialize XVME Library 2-4
Mask the Interrupt

Controller 2-11
Parameters 2-2
Read Interrupt Vector 2-10
Read NMI Vector 2-12
Read VMEbus Memory In Protected

Mode 2-8
Read VMEbus Memory Through The Real

Mode Window 2-6
Release the VMEbus 2-4
Reserved constants 2-3
Reset the Watchdog Timer 2-16
Set Interrupt Vector 2-10
Set NMI Interrupt Vector 2-12
Set Real Mode Window 2-5
Strobe the Watchdog Timer 2-15
Write VMEbus Memory In Protected

Mode 2-9
Write VMEbus Memory Through The Real

Mode Window 2-7

I
IACK Space 2-1
Interrupt routines
XVME-200/290 3-6

XVME PC/AT 7-1
Interrupts, XVME PC/AT
Auxiliary Non-maskable 7-1
BERR 7-4
Watchdog timer 7-6

J
Jumpers
Address Modifier 6-1
VMEbus Base Address 6-1

Index

I-2

M
Manual structure 1-1
Matrices

Analog I/O routines 4-1
Counter Command 5-1
Digital I/O routines 3-1

MS-DOS Communication Drivers 6-1
Command examples 6-4
Troubleshooting 6-4
X40X.SYS 6-1
X42X.SYS 6-1

MS-DOS drivers
VMEbus boards supported 1-3

N
NAMEx.SYS 6-2

P
Parity 6-3

R
Real Mode Window 2-1
RMW, see Real Mode Window 2-1
Routines

General purpose 2-2
XVME-200/290 Digital I/O Module 3-2
XVME-201 Digital I/O Module 3-7
XVME-202 PAMUX Controller 3-11
XVME-212 Digital Input Module 3-14
XVME-220 Digital Output Module 3-20
XVME-240 Digital I/O Module 3-25
XVME-260 Digital Output Module 3-34

S
Short I/O 2-1
Speed 6-3
Standard Address Space 2-1
Stopbits 6-3

V
VMEbus Base Address Jumpers 6-1

W
Watchdog Timer 7-6

X
X40X.SYS 6-1
X42X.SYS 6-1
XVME PC/AT interrupt routines 7-1
XVME-200/290 Digital I/O Module 3-2
Timer interrupt jumper settings 3-6
Interrupts 3-6
Parameters 3-2
Port interrupt jumper settings 3-6

Source code location 3-2
XVME-200/290 Digital I/O Module routines 3-4
Initialize 3-2
Read a Byte 3-5
Set Port A Direction 3-3
Set Port B Direction 3-4
Set Port B Sub Mode 3-5
Set the Counter Pre-Load Register 3-3
Write a Byte 3-6
XVME-201 Digital I/O Module 3-7
Parameters 3-7

Source code location 3-7
XVME-201 Digital I/O Module routines
Initialize 3-8
Read a Byte 3-10
Set Port C Direction 3-9
Set Port Direction 3-8
Set the Counter Pre-Load Register 3-9
Write a Byte 3-10
XVME-202 PAMUX Controller 3-11
Parameters 3-11

Source code location 3-11
XVME-202 PAMUX Controller routines
Initialize 3-11
Read a Byte 3-12
Reset 3-13
Write a Byte 3-12
XVME-203/293 Counter Module 5-2
Jumper settings 5-5
Parameters 5-2
Source code location 5-2

XVME-983 Manual
November 1993

I-3

XVME-203/293 Counter Module routines
Initialize Interrupt 5-4
Interrupt example 5-5
Read a Byte 5-2
Reset 5-3
Set Clock 5-4
Write a Byte 5-3

XVME-212 Digital Input Module 3-14
Interrupts 3-19
Jumper settings 3-19
Parameters 3-14
Source code location 3-14

XVME-212 Digital Input Module routines
Initialize 3-14
Interrupt Disable 3-18
Read a Byte 3-15
Read a Channel 3-19
Read a Word 3-16
Read Scan 3-17
Read Word Scan 3-18
Write a Byte 3-15
Write a Word 3-16

XVME-220 Digital Output Module 3-20, 3-29
Source code location 3-20

XVME-220 Digital Output Module routines
Parameters 3-20
Read a Byte 3-21
Read a Channel 3-20, 3-29
Read a Word 3-21
Read All 3-22
Reset 3-24
Write a Byte 3-23
Write a Channel 3-22
Write a Word 3-23
Write All 3-24

XVME-230 Intelligent Counter Module 5-5
Jumper settings 5-8
Parameters 5-5
Source code location 5-5

XVME-230 Intelligent Counter Module routines
Build a Command Block 5-7
Build a Command Block with

Operand Buffer 5-7
Execute Command Block 5-8
Interrupt example 5-8
Read a Byte 5-6
Write a Byte 5-6

XVME-240 Digital I/O Module 3-25
Interrupts 3-28
Jumper settings 3-28
Parameters 3-25
Source code location 3-25
XVME-240 Digital I/O Module routines
Read a Byte 3-26
Read a Word 3-26
Reset 3-25
Write a Byte 3-27
Write a Word 3-27
XVME-244 Digital Output Module
Parameters 3-29
Source code location 3-29
XVME-244 Digital Output Module routines
Read a Byte 3-30
Read a Channel 3-29
Read a Word 3-30
Read All 3-31
Reset 3-33
Write a Byte 3-32
Write a Word 3-32
Write All 3-33
XVME-260 Digital Output Module 3-34
Parameters 3-34
Source code location 3-34
XVME-260 Digital Output Module routines
Read a Byte 3-35
Read a Channel 3-34
Read a Word 3-35
Read All 3-36
Write a Byte 3-37
Write a Channel 3-36
Write a Word 3-37
Write All 3-38
XVME-500/590 Analog Input Module 4-2
Parameters 4-2
Source code location 4-2
XVME-500/590 Analog Input Module routines
Analog to Digital 4-6
Force an A/D Conversion 4-4
Read a Byte 4-2
Read Gain Factor 4-8
Reset 4-5
Set Conversion Mode 4-5
Set Gain Factor 4-7
Set Interrupt 4-4
Wait 4-3
Write a Byte 4-3

Index

I-4

XVME-505/595 4-Channel Analog
Input Module 4-10
Parameters 4-10
Source code location 4-10

XVME-505/595 4-Channel Analog Input
Module routines
Channel Output 4-10

XVME-530 Analog Output Module 4-11
Parameters 4-11
Source code location 4-11

XVME-530 Analog Output Module routines
Channel Output 4-13
Read a Byte 4-11
Reset 4-12
Wait 4-13
Write a Byte 4-12

XVME-540 Analog I/O Module 4-14
Parameters 4-14
Source code location 4-14

XVME-540 Analog I/O Module routines
Analog to Digital 4-18
Channel Output 4-19
Force an A/D Conversion 4-16
Read a Byte 4-14
Read Gain Factor 4-19
Reset 4-17
Set Conversion Mode 4-17
Set Gain Factor 4-18
Set Interrupt 4-16
Wait 4-15
Write a Byte 4-15

XVME-560 Analog Input/Output Module 4-20
Jumper settings 4-26
Parameters 4-20
Source code location 4-20

XVME-560 Analog Input/Output
Module routines 4-24
Force an A/D Conversion 4-22
Interrupt example 4-26
Read a Byte 4-21
Reset 4-24
Set Conversion Mode 4-23
Set Gain Factor 4-25
Set Interrupt 4-23
Wait 4-22
Write a Byte 4-21

XVME-566 High-Performance Analog Input Module 4-27
Parameters 4-27
Source code location 4-27

XVME-566 High-Performance Analog Input Module
routines
Interrupt example 4-31
Jumper settings 4-31

Read a Byte 4-27
Reset 4-30
Set Clock 4-29
Set Sample Clock 4-29
Write a Byte 4-28
Write a Word 4-28

