
Zedex.us | 1 © 2015 P a g e

ZENDEX ZX-200A SINGLE BOARD DISK CONTROLLER

HARDWARE REFERENCE MANUAL

(C) 2015 ZEDEX.US

by, Richard Brewster Main

Introduction

 I founded Zendex Corporation (Dublin, CA) in 1979 and did

all the engineering, manufacturing, marketing, and technical

support for the original ZENDEX ZX-200A Single Board Disk

Controller. I wrote the original Hardware Reference Manual for

it, but I didn't retain any copies of it, nor can I seem to find

any to buy or download in 2015. At present, I have four of these

boards, and two of the Intel SBC-202 M2FM Double Density Disk

Controllers they were intended by me to replace.

Design Goal

 The ZENDEX ZX-200A Single Board Disk Controller hardware

responds at its Multibus interface exactly like (1) the Intel

SBC-202 M2FM Double Density Disk Controller with a base address

of 078H, AND, (2) the Intel SBC-201 FM Single Density Disk

Controller with a base address of 088H. It can DMA to shared

Multibus Memory, and the I/O command/status ports are the same

as in MDS-800 and MDS-225 Series-I and Series-II Intellec

Development Systems.

 The original MDS configuration was to use a port address

base of 088H for their SBC-201 FM Single Density Disk Controller

and to that system you could add the Intel SBC-202 M2FM Double

Density Disk Controller with a base address of 078H. ISIS-II

would happily work with both if the hardware was set up this

way.

Zedex.us | 2 © 2015 P a g e

Using the ZX-200A

 The ZX-200A expects up to four single-sided 8" diskette

drives at its 50-pin edge connector like the Shugart Associates

SA-801. That 50-pin edge connector was designed with the exact

same pinout configuration as the SA-801, so a flat 5-wire ribbon

cable with five 3M type edge connectors (one for the ZX-200A and

four for the SA-801's) is all you need. Two SA-851 Double Sided

Drives can be used that provide four recording surfaces by

connecting the side-select signals in the drives to the drive-

select pins. See Section 1.15.3 Spindle Drive System for a

discussion of the disk drive interface and edge connector

pinout.

 All four physical drives (DS1-DS4), respectively as logical

FO, F1, F2 or F3 under ISIS-II will read/write double density

M2FM format. Only the first two physical drives (DS1-DS2) can be

used to read/write the single density FM (IBM 3740) format.

Read/write to logical drive F4 under ISIS-II will direct to

physical drive DS1 and proceed as single density. Read/write to

logical drive F5 under ISIS-II will direct to physical drive DS2

and proceed as single density. ISIS-II will regard this

arrangement of logical drives as completely satisfactory.

 The ZX-200A Controller simultaneously maps into I/O Ports

78H-7FH and 88H-8FH. The disk operation descriptor is placed in

a 7-10 byte block of shared memory called the "Input Output

Parameter Block" (IOPB). The host must then output the base

address of the IOPB in memory in two port OUT of two-byte hex to

a pair of ports on the ZX-200A. That second write to the second

port is what triggers the ZX-200A to fetch in the IOPB

constructed by the host to perform the operation described by

the IOPB. A complete discussion of the Programming Interface is

included here starting with Section 2-9 SWITCH AND JUMPER

Zedex.us | 3 © 2015 P a g e

CONFIGURATIONS, page 2-20, from the Intel SBC 202 Hardware

Reference Manual (9800420A_iSBC_202_Hardware_Reference_Sep77).

 When the task is complete, the ZX-200A will issue an

interrupt signal for the host that result information is

available. Performing a port input by the host will return

result information over the data bus. The ZX-200A appears to a

Multibus system as both an SBC-202 addressed at 078H (system)

and an SBC-201 addressed at 88H (add-on).

 The ZX-200A uses TTL random logic for the FDD Interface and

format control and 8085A CPU for control, a 2716 EPROM (firmware

BD-1) and an 8257 DMA Controller.

Zedex.us | 4 © 2015 P a g e

Controlling a 5.25" Floppy Disk Drive

 It is entirely doable and maybe advantageous in 2015 to

make one of the first two drives, DS1 or DS2, a 5.25" Floppy

Disk Drive. Best to use DS2, because CP/M-80 and ISIS-II need

DS0 to boot. Unfortunately, the wiring of an adapter will be

messy. (Another controller, a Zendex ZX-208 gives you both, a

50-pin for 8" and 34-pin for 5.25").

signal

name

SA-800/850

8" drive

SA-400/450

5.25" drive

ZX-200A

output/input

ground all odd numbered pins all odd numbered pins n/a

disk change* 12 input

side select 14 32 output

in use* 16 16

(Drive Motor Enable)

output

head load* 18 output

index 20 8 input

ready 22 input

sector

(SA851 only)

24 input

DS1 26 10 (NDS0) output

DS2 28 12 (NDS1) output

DS3 30 14 (NDS2) output

DS4 32 6 (NDS3)

stepper direction 34 18 output

step 36 20 output

write data 38 22 output

write gate 40 24 output

track 00 42 26 input

write protect 44 28 input

Zedex.us | 5 © 2015 P a g e

read data 46 30 input

sep-data

(SA 851 only)

48 input

sep-clock

(SA 851 only)

50 input

*These lines are alternate input/output lines and they are

enabled by jumper plugs.

Zedex.us | 6 © 2015 P a g e

 The following is an interesting discussion I found at

http://pinouts.ru/Storage/InternalDisk_pinout.shtml about wiring

in 3.5" floppies to 5.25" FDD connectors:

34 pin IDC male connector

at the motherboard & diskdrives

34 pin IDC female connector

at the cable

Controller pinout:
Pin Name Dir Description

2 /REDWC Density Select

4 n/c Reserved

6 n/c Reserved

8 /INDEX Index

10 /MOTEA Motor Enable A

12 /DRVSB Drive Sel B

14 /DRVSA Drive Sel A

16 /MOTEB Motor Enable B

18 /DIR Direction

20 /STEP Step

22 /WDATE Write Data

24 /WGATE Floppy Write Enable

26 /TRK00 Track 0

28 /WPT Write Protect

30 /RDATA Read Data

32 /SIDE1 Head Select

34 /DSKCHG Disk Change/Ready

Zedex.us | 7 © 2015 P a g e

Floppy Diskdrive pinout (Shugart interface):

Pin Name Dir Description

2 /DCD Disk Change Detect

3 Key no pin in this position

6 /DS3
Device Select 3. Not sure but Amiga 500s schematics reveal that this signal might

be used for motor control of internal DF1: on the Amiga 2000

4 /INUSE
A common open-collector LED driver signal? I have never seen this signal used

anywhere.

8 /INDEX Index

10 /DS0 Device Select 0

12 /DS1 Drive Sel B

14 /DS2 Device Select 2

16 /MTRON Motor On

18 /DIR Direction

20 /STEP Step

22 /WDATE Write Data

24 /WGATE Floppy Write Enable

26 /TRK00 Track 0

28 /WPT Write Protect

30 /RDATA Read Data

32 /SIDE1 Head Select

34 /RDY Drive Ready/Disk Changed

On a standard floppy drive there is absolutely no way to remap the motor on signal to another

pin with jumpers. Therefore to have independent motor control for two drives the cable must

provide this remapping with the traditional seven-conductor twist. If you jumper a floppy drive

to work as drive A (unit 0) and connect it to an IBM PC controller with a direct cable, the drive

will be selected when the controller tries to turn on the motor of drive A but nothing will happen

and the drives motor will rotate when drive Bs motor is turned on.

The original Shugart interface (from which the IBM PC floppy interface is derived a long time

ago) doesnt have separate motor on signals for the floppy drives but it does have a total of four

device select lines. I have also seen floppy drives that wont turn on their motors unless the

according device select signal is driven low. My guess is that this kind of drives strictly follow

the original Shugart standard.

Zedex.us | 8 © 2015 P a g e

Also many synthesizers that have floppy drives use the standard Shugart interface pinout. This

is why after replacing a faulty drive many people ask around the Internet why their new floppy

drive doesnt work when connected to the synth but works fine on their PC.

The same thing affects the classic Amiga. It uses a very slightly modified Shugart interface

pinout at the motherboard (the other /MTRON on pin 4) and a PC drive just doesnt work

correctly unless the /DCD is remapped to its original pin. The correctly mapped /DCD is enough

for AmigaOS but many trackloaders (X-Copy Pro for example) require the /RDY signal which the

drive should set low when the motor rotation has stabilised. This signal does exist on most

drives but at worst it requires relocating a soldered SMD jumper on the circuit board.

The floppy cable has 34 wires. There are normally five connectors on the floppy interface cable,

although sometimes there are only three. These are grouped into three sets; a single connector

plus two pairs of two each (for a standard, five-connector cable) or three single connectors.

This how the connectors are used:

Controller Connector: The single connector on one end of the cable is meant to connect to the floppy disk controller, either on a controller card

or the motherboard.

Drive A Connectors: The pair of connectors (or single connector in the case of a three-connector cable) at the opposite end of the cable is
intended for the A: floppy drive. This is explained in more detail below.

Drive B Connectors: The pair of connectors (or single connector in the case of a three-connector cable) in the middle of the cable is intended
for the B: floppy drive.

The reason that the standard cable uses pairs of connectors for the drives is for compatibility

with different types of drives. 3.5 drives generally use a pin header connector, while 5.25 drives

use a card edge connector. Therefore, each position, A and B, has two connectors so that the

correct one is available for whatever type of floppy drive being used. Only one of the two

connectors in the pair should be used (they're too close together to use both in most cases

anyway). The more common pin header (IDC) connector is shown below.

The three-connector cables are found either in very old systems or in ones where the

manufacturer was trying to save a few pennies. They reduce the flexibility of the setup;

fortunately these cables can be replaced directly by the five-connector type if necessary.

You will also notice that there is an odd twist in the floppy cable, located between the two pairs

of connectors intended for the floppy drives. Despite the fact that this appears to be a hack

(well, it really is a hack), this is in fact the correct construction of a standard floppy interface

cable. There are some cables that do not have the twist, and it is these that are actually non-

standard! What the twist does it to change the connection of the drive on the far end of the

Zedex.us | 9 © 2015 P a g e

twist so that it is different than the drive before the twist. This is done to cause the drive at the

end of the cable to appear as A: to the system and the one in the middle to be as B:.

Heres how it works in detail. Traditionally, floppy drives used a drive select (DS) jumper to

configure the drive as either A: or B: in the system. Then, special signals were used on the

floppy interface to tell the two drives in the system which one the controller was trying to talk

to at any given time. The wires that are cross-connected via the twist are signals 10 to 16

(seven wires). Of these, 11, 13, and 15 are grounds and carry no signal, so there are really four

signals that are inverted by the twist. The four signals that are inverted are exactly the ones

that control drive selection on the interface. Here is what happens when the twisted cable is

used:

 Line 10 Line 12 Line 14 Line 16

Controller Signals Motor Enable A Drive Select B Drive Select A Motor Enable B

Drive Before the Twist Sees Motor Enable A Drive Select B Drive Select A Motor Enable B

Drive After the Twist Sees Motor Enable B Drive Select A Drive Select B Motor Enable A

Since the signals are inverted, the drive after the twist responds to commands backwards from

the way it should; if it has its drive select jumpers set so that it is an A: device, it responds to

B: commands, and vice-versa.

One might ask why the twist was needed. In short, because it was a big time-saver during

setup back in the days when it was quite common to find two floppy drives in a machine.

Without the twist, for two floppy drives to be used, one had to be jumpered as A: and the other

as B:. With the twist, it was possible to leave them both jumpered as B:, and whichever was

after the twist will appear to the system as A: because the control lines are inverted. Changing

which drive is A: and which is B: is as easy as switching the cable. In systems with only one

floppy drive, only the connector after the twist cable should be used. Large manufacturers,

therefore, could arrange to have all of their floppy disks configured the same way without

having to pull jumpers as the PC was assembled.

In order for this system to work, both drives must be jumpered as B: drives. Since the floppy

cable with the twist is standard, this jumpering scheme has become the standard as well.

Virtually all floppy disks that you purchase come pre-jumpered as B: drives so that they will

work with this setup.

If this whole idea sounds similar to the seldom-used cable select protocol for IDE/ATA hard

disks, thats because it is essentially the same thing. IDE/ATA hard disks require you to change

Zedex.us | 10 © 2015 P a g e

the master/slave jumpers in a similar manner, and cable select was invented to do away with

this. The difference is, as usual, just one of inertia and history; the floppy drive system is the

standard while cable select never caught on for hard disks.

Some newer BIOSes have taken things a step further. They include a BIOS parameter that will

invert the A: and B: signals within the controller itself. When enabled, this lets you reverse

whichever drive is A: with the one that is B:, without requiring you to even open the case. Note

however that this is not compatible with all operating systems: in particular, both Windows NT

and Linux can malfunction with this swap feature set, which can cause serious problems when

trying to install the operating system. The reason this happens is that the swap setting only

affects the way the BIOS handles the floppy drive, and confuses operating systems that go

directly to the hardware.

Apparently, there is yet another floppy cable variant out there, that is used by some

manufacturers. In this setup, there are actually two twists in the floppy cable. The drive placed

after the first twist, in the middle of the cable, is A:, much as it is with the standard one-twist

cable. The drive placed after the second twist is B:. The second twist reverses the effect of the

first one and makes the connector at the end of the cable operate the same way a drive that

appears before the twist in a regular cable does.

On some mainboards pin 3 is used as the key (missing pin) and on some pin 5 is used as the

key pin, while a lot of mainboards dont have the key pin removed at all. This can all cause

problems when using cables which have the key pin hole closed. As all odd pins are ground

there are no technical implications in modifying such cables by removing the key pin closure by

force.

The ZX- 200 supports up to four drives, single sided 8" only. All four dr ives will play double density fo rmat while the first two
on ly will play the single dens ity format. The selection , by the host CPU, of which d rive is to respond in wh at density is co n­
tro lled by the select ion of log ical device names. Use of FO, F1, F2 or F3 results in double density operat ion to physical drives
0, 1, 2 and 3, resp ect ively. By us ing log ical device names, F4 and F5, the operation will be sing le densi ty to physical drives 0
and 1, respectively .

The ZX-200 Contro lle r maps into 10 Ports 78H-7FH and 88H-8FH. The disk operation descripto r is placed in a 7-10 byte
block of host memory called the 10PB . The host then outputs the address of the 10PB to a pair of po rts on the ZX-200. The
ZX-200 then fet ches the 10PB constructed by the host and performs the operation described in the 10 PB. When the task is
complete the ZX- 200 can issue an interr upt to signal the host that the resul t informat ion is available. Performing a po rt
input by the host will retu rn result in fo rmat ion over the data bus . The ZX-200 appears to a Mul t ibus system as an SBC-202
addressed at 78H (system) and an SBC-201 add ressed at 88H (add-on) .

The ZX-200 uses TTL random logic for FDD Interface and format cont rol and 8085A CPU for co nt ro l, a 2716 EPROM and an
8257 DMA Controlle r.

SPECIFICATIONS

Electrical

Power - 5 Volts @ 1.0 Amps (Typical)
Transfer Rate - 250K , 500K
Data Bus - 8 Bit Parallel
10 Address - 8 Bi t Paralle l
MEM Addressing - 16 Bit Parallel
Master Modes - Multibus Slave or Master

Connectors

Physical

Height - 6.75 Inches
Width - 12.00 Inches
Thickness - 0.50 Inches (Max)
Weight - 10 Ounces Net , 2 Pounds Shipping

Operating Temp - 0° to 50° C, 5 to 95% R.H.

Ordering Information

Bus: 86 PIN @ 0.156" Centers (Multi bus)
Disk : 50 PIN @ 0.1" Centers (SA800)

Documentation

Number

ZX-200A

Description

Single Board Flexible Diskette Controller.
(Includes Manual.)

ZX98-200 Hard ware Reference Manual (Supplied),
Includes Schematics Contro ller Firmware Source
Co de List ing, Installation Instructions and
Descri pt ions

-18-

1.15.3 Spindle Drive System

The spindle drive system consists of a spindle assembly driven through a drive belt by a brushless
D.C. motor/tachometer.

The servo electronics required for speed control are located on the printed circuit board.

The control circuitry contains an interface control line. When the drive motor control interface line is
false (high), the drive motor is allowed to come up to speed.

READY

CONTROL INDEX
LOGIC

DISK CHANGE

TWO SIDED

WRITE PROTECT

TRACK 00

IN USE

SIDE SELECT

HEAD CARRIAGE
DRIVE SELECTAND STEPPER

BAND
ASSEMBLY

SPINDLE
MOTOR CONTROL

MOTOR
CONTROL

WRITE GATE

WRITE WRITE DATA
LOGIC

CURRENT SWITCH

READ READ DATA
LOGIC

DIRECTION
STEPPER
MOTOR

CONTROL STEP

Figure 1-2
TM848 Disk Drive Functional Block Diagram

1.15.4 Positioner Control

The head positioning system uses a bipolar-driven motor drive, which changes one phase for each
track advancement of the read/write carriage. In addition to the logic necessary for motor control, a
gate is provided that inhibits positioner motion during a write operation.

1.15.5 Data Electronics

Information can be recorded on the diskette by using a double-frequency code. Figure 1-3 illustrates
the magnetization profiles in each bit cell for the number sequence shown for FM recording.

1-9

BIT PATTERN----, BIT CELL""""

I 1 I 1

I I I
I I I

WRITE DATA

o
I
I
1

I
C D ic D IC C ID C ICC D

1 I I I I I I I I I I I I

I I I \:f.=k:1,-,t;fl:f ~t:A1 I f IMAGNETIZATION 1:
1

I I -~ . ~

--'I I ~ I I
IIIIIIIIIII~II

M~NEnCELEMEN~~
I r--rTt4 I I

Figure 1-3
FM Recording Magnetization Profiles

The erase gaps provide a guard band on either side of the recorded track.

All signals required to control the data electronics are provided by the user system and are shown in
the TM848 drive functional block diagram (see Figure 1-2). These control signals are:

1. Select

2. Write Gate

3. Write Data

4. Side Select

5. Write Current Switch

Composite read data is sent to the user system via the Read Data interface line.

A. Data Recording

The write electronics consist of a switchable write current source, a write waveform
generator, an erase current source, the trim erase control logic, and the head selection logic
(see Appendix I).

The read/write winding on the head is center-tapped. During a write operation, current from
the write current source flows in alternate halves of the winding, under control of the write
waveform generator.

The conditions required for recording, i.e. drive ready must be established by the user's
system, as follows:

1. Drive speed stabilization occurs 700 milliseconds after the drive motor is started.

2. Subsequent to any read/write operation, the positioner must be allowed to settle. This
requires 18 milliseconds maximum after the last step pulse is initiated, i.e., 3 milliseconds
for the step motion and 15 milliseconds for settling.

3. The foregoing operations can be overlapped, if required.

Figure 1-4 illustrates the timing diagram for a write operation. At t = 0, when the unit is ready,
the write gate interface line goes true. This enables the write current source. Write current is
switched via the write current switch interface line to a lower value by the user's controller at
Track 43.

1-10

The Trim Erase control goes true 190 microseconds after the Write Enable interface line
since the trim erase gaps are behind the read/write gap. It should be noted that this value is
optimized between the requirements at Track 00 and at Track 76, so that the effect of the trim
erase gaps on previous information is minimized.

Figure 1-4 shows the information on the write data interface line and the output of the write
waveform generator, which toggles on the leading edge of every write data pulse.

A maximum of 4 microseconds between write gate going true and the first write data pulse is
only required if faithful reproduction of the first write data transition is signifcant.

At the end of recording, at least one additional pulse on the write data line must be inserted
after the last significant write data pulse to avoid excessive peak shift effects.

3. 10 MA PEAK TO PEAK, TRACK 0 TO
TRACK 42; 7.5 MA PEAK TO PEAK,
TRACK 43 TO TRACK 77.

4. 2 USEC MINIMUM
4 USEC MAXIMUM

I
I

NOTES: 1. T = 0 = 700 MILLISECONDS AFTER DRIVE MOTOR
STARTS OR 20 MILLISECONDS AFTER LAST STEP
PULSE, WHICHEVER IS THE LATEST TIME.

2. UNSYCHRONIZED

Figure 1-4
Write Operation Timing Diagram

NOTE 2

I
~

I
~50usec""

I I

~-""""""-----""---"""~:;-"'I~
~---tl----;---+----........--~.......I~~

I I

WRITE
WAVEFORM
GENERATOR

WRITE CURRENT

INTERNAL WRITE
BUSY

TRIM ERASE

WRITE GATE

The duration of a write operation is from the true going edge of write gate to the false going edge of
erase. This is indicated by the internal write busy waveform shown (see Figure 1-4).
The Read electronics consist of:

1. Read Switch/Side Select

2. Read Preamplifier

3. Filter

4. Differentiatior

5. Time Domain Filter and Digitizer

The read switch is used to isolate the read amplifier from the voltage excursion across the head
during a write operation. The side select is used to enable one of the read/write/erase heads.

The drive must be in a ready condition before reading can begin. As with the data recording operation,
this ready condition must be established by the user system. In addition to the requirements
established in this section, a period of 100 microseconds is necessary after a trim erase operation
occurs to allow the read amplifier to settle after the transient caused by the read switch returning to
the read mode.

1-11

The output signal from the read/write head is amplified by a read preamplifier and filtered by a low­
pass linear phase filter to remove noise (see Figure 1-5). The linear output from the filter is passed to
the differentiator, which generates a wave form whose zero crossovers correspond to the peaks of the
Read signal. This signal is then fed to the zero crossing detector and digitizer.

LINEAR OUTPUT FROM FILTER

OUTPUT FROM DIFFERENTIATOR

READ DATA INTERFACE

t
t == 0

Figure 1-5
Read Timing Diagram

Note

T = 0 is defined as 250 milliseconds after drive motor starts, or 20 milliseconds after a step
command, or 100 microseconds aftertermination of write busy, whichever is the latest time.

The zero crossover detector and digitizer circuitry generate a 200 nanosecond read data pulse,
corresponding to each peak of the read signal. The composite read data signal is sent to the user
system via the read data interface line.

1.16 INTERFACE ELECTRONICS

All interface signals are TTL compatible. Logic true (low) is +0.4 volt maximum, logic false (high) is
+2.4 volts minimum. The maximum interface cable length is ten feet. It is recommended that the
interface cable be flat ribbon cable that has a characteristic impedence of 100 ohms.

1.16.1 Interface Connector Pin Assignments, P13

The interface connector pin assignments, P13, are listed in Table 1-3.

1.16.2 Power Connector Pin Assignments

The power connector pin assignments are listed in Table 1-4.

1-12

TABLE 1-3

INTERFACE CONNECTOR PIN ASSIGNMENTS

Ground---
1
3

5

7

9
"11

'13

"15

"17

'19

:21

:23

:25

27

29
31

33

35

37

39
41

43

45

47

49

Pin Number

2
4
6

8

10

12

14

16

18

20

22

24

26

28

30

32
34

36
38

40

42

44
46
48

50

Signal

Write Current Switch
Motor Off Control 1

Motor Off Control 2

Motor Off Control 3
Two Sided (option) (Model TM848-2 only)

Disk Change (option)

Side Select (Model TM848-2 only)

Activity Indicator (option)

Head Load

Index

Ready

Motor Off Control 4

Drive Select 1 (Side Select Option, TM848-2 only)

Drive Select 2 (Side Select Option, TM848-2 only)

Drive Select 3 (Side Select Option, TM848-2 only)

Drive Select 4 (Side Select Option, TM848-2 only)

Direction Select (Side Select Option, TM848-2 only)

Step

Write Data

Write Gate

Track 00

Write Protect

Read Data

Alternate I/O

Alternate I/O

1-13

TABLE 1-4

POWER CONNECTOR PIN ASSIGNMENTS

Pin

1
6
3
2
5

1.17 TERMINATED LINES

Supply Voltage

24V D. C.
Return
Return
Return

5V D. C.

1.17.1 Input Line Terminations From Removable Resistor Pack

The drive has the capability of terminating the following input lines:

1. Write Current Switch

2. Write Data

3. Write Gate

4. Side Select (TM848-2 only)

5. Direction

6. Step

7. Head Load

These input lines are individually terminated through a 150 ohm resistor pack that is installed in the
dip socket located at integrated circuit location RP1. In a single-drive system, this resistor pack
should be installed to provide the proper terminations. In a multiple-drive system, only the last drive
on the interface is to be terminated. All other drives on the interface must have the resistor pack
removed (see Figure 1-6).

1.17.2 Drive Select

The Select lines provide a means of selecting and deselecting a drive. These four Iines·- OS1 through
DS4--allow independent selection of up to four drives attached to the controller.

When the signal logic level is true (low), the drive electronics are activated and the drive is
conditioned to respond to Step orto Read/Write commands. When the signal logic level is false (high),
the input control lines and the output status lines are disabled.

The drive select address is determined by a movable shorting plug installed on the circuit board.
Select lines one through four provide a means of daisy chaining a maximum of four drives to a
controller. Only one line can be true (low) at a time.An undefined operation might result if two or more units
are assigned the same address or if two or more select lines are in the true (low) state simultaneously (see
Figure 1-7). A select line must remain stable in the true (low) state until the execution if a Step or
Read/Write command is completed.

1.17.3 Program Shunt

The program shunt is AMP Part Number 435704-8. The program shunt positions are programmed by
cutting the particular shunt. The program shunt is installed in a dip socket. At the user's option, the
program shunt may be removed and replaced by a dip switch. Pins 8 and 9 of the program shunt are
not used. See Table 1-5 fora listing of the program shunts.

1-14

Preparation for Use

2-9. SWITCH AND JUMPER
CONFIGURATIONS

The following paragraphs provide instructions for configuring
the I/O Base Address switch and the Interrupt Level Select
switch. The memory base address, which is under program
control, is described in paragraph 4-4.

2-10. I/O BASE ADDRESS SELECTION

The user must assign a base address to the Diskette Channel.
The base address is defined by the five most significant bits of
the eight-bit I/O port address. The three least significant bits,
then, can be used to differentiate between eight input or eight
output channel commands. When the CPU accesses the Dis­
kette Channel by executing an I/O instruction the base address
(BASE) is used to select the Diskette Channel, while the three
low-order address bits select one of the channel commands, as
described in Chapter 3.

A base address is assigned by opening or closing the five most
significant switch positions of the S I switch (S I -4, 5, 6, 7, 8)
on the Channel Board (see sheet I of the Channel Board sche­
matic in Chapter 5). When a switch position is closed (on)
(tied to ground) it represents the assignment of a logical 0
address bit. When a position is open (off) (+ 5V), it repre­
sents a logical I selection.

SHC 202

The following sketch represents a base address selection of
7816.

8 - tTOP OF BOARD7 -6 -5 -4 -3-2-""-ON 1-
2-11. INTERRUPT LEVEL SELECTION

The user can assign the Diskette Channel's interrupt request
line to anyone of eight interrupt priority levels (lNTO/-INT7/)
by moving the interrupt level select switch (5 I) on the Inter­
face Board to the desired position. This eight position rotary
switch is shown on sheet 3 of the Interface Board schematic in
Chapter 5. The eight switch positions are associated with the
following priority levels:

SWITCH POSITION

1
2
3
4
5
6
7

8

INTERRUPT
PRIORITY LINE

INTO/
INT1/
INT2/
INT3/
INT4/
INT5/
INT6/
INT7/

RELATIVE PRIORITY
(INTELLEC MDS SYSTEM)

HIGHEST

LOWEST

The following sketch shows the switch settting 3 correspond ing to priority line INT2/.

2-20

•n

3-1. INTRODUCTION

CHAPTER 3
PROGRAMMING INFORMATION

The channel command provides the Controller with inform­
ation which:

All operations must be initiated by the Central Processor Unit
(CPU). Once initiated the controller completes the specified
operation without further intervention on the part of the CPU.
From the CPU's point of view, there are only three general
steps required to complete any diskette operation,

• The CPU must prepare and store in system memory an I/O
Parameter Block (lOPB) for each operation to be performed.
An 10PB (seven bytes) specifies a particular diskette oper­
tion and provides all of the parameters required for execu­
tion of that operation.

• The CPU must then pass the memory address of the 10PB to
the Controller Channel.

• The CPU must process the result information from the Con­
troller Channel upon completion of the operation(s).

The following paragraphs define the system operation.

The 7-byte parameter block (lDPB) must adapt the following
format:

Byte 1 Channel Command
2 Diskette Instruction
3 Number of Records
4 Track Address
5 Sector Address
6 Buffer Address (Lower)
7 Buffer Address (Upper)

The preparation of the 10PB by the CPU, in itself, requires no
interaction with the Controller Diskette Channel. The passing
of the memory address for the 10PB and the result processing,
however, do require interaction. Six channel commands have
been defined to allow the CPU to perform these interactive
steps. Three of the channel commands are the result of the
CPU executing an output instruction to a dedicated I/O port
address, while the other three commands are the result of input
instructions to dedicated ports. The six channel commands are:

(I) Write memory address lower (output)
(2) Write memory address upper and start the diskette oper-

ation (output)
(3) Reset the channel (output)
(4) Read subsystem status (input)
(5) Read result type (input)
(6) Read result byte (input)

(I) Determines the method of assigning logical sector addresses.
(2) Enables or disables a series of possible diskette interrupts.
(3) Determines the length of the data word to be transferred.

The CPU outputs the memory address of the 10PB by exe­
cuting channel commands I and 2. Upon execution of channel
command 2, the Controller Channel will request master con­
trol of the Multibus, fetch the diskette instruction and associ­
ated parameters from the 10PB, and proceed to perform the
specified diskette operation. The diskette instruction byte in
the IOPB can specify anyone of seven diskette operations:

(I) Recalibrate (seek track 00)
(2) Seek
(3) Format a track
(4) Write data (with data address marks)
(5) Write data (with deleted address marks)
(6) Read data
(7) Verify CRC

The Controller Channel can interrupt the CPU when the oper­
ation is completed or when the diskette ready status changes.
The host system software can implement its CPU interrupt
mechanism via this direct interrupt feature or it can "poll" the
Controller Channel by executing channel command 4 (read
subsystem status). When the CPU determines that the oper­
ation sequence has been completed (either by receiving an
interrupt request or by reading the interrupt status), the CPU
should execute channel commands 5 and 6 (read result type
and read result byte) to determine whether the diskette oper­
ations were successfully completed, and if not which type of
error occurred.

Thus, in summary, we see that certain channel commands are
executed by the CPU to point the Controller Channel to an
10PB in system memory, and initiate the operation sequence.
The Controller Channel, then, accesses the 10PB to perform
the diskette operation specified by the instruction byte of the
10PB. The Controller Channel will, if enabled by the lOPS,
generate an I/O complete interrupt request upon completion of
each diskette operation or detection of an error. The CPU, then,
executes other channel commands to determine the result of
the diskette operation.

3-1

Programming Information SSC 202

3-2. CHANNEL COMMANDS The use and format of each of the six channel commands is
described below:

There are six channel commands to which the Controller
Channel will respond. Three of the channel commands are
issued when a CPU in the system executes output (I/O write)
instructions with the appropriate eight-bit I/O addresses. The
other three commands are issued when the CPU executes input
(I/O read) instructions with the appropriate I/O addresses.

WRITE MEMORY ADDRESS LOWER (OUTPUT)

This channel command outputs the low order byte of the 16­
bit memory address that points to byte 1 ("channel word") of
the 10PB.

When the CPU executes one of the output channel commands,
it activates the I/O write (lOWC/) line and duplicates the
appropriate 8-bit I/O address on address lines ADRO/-ADR7/
and ADR8/- ADRF/ of the System bus. Depending on the par­
ticular channel command, the CPU may also place relevant
data on data lines DATO/-DAT7/ of the System bus. The CPU
maintains the data lines until the Controller Channel returns
the transfer acknowledge (XACK/) signal.

System address bus:

System data bus:

BASE + 1

Eight least significant bits of the 16­
bit memory address that points to
the first 10PB.

RESET DISKETTE SYSTEM (OUTPUT)

WRITE MEMORY ADDRESS UPPER AND START THE
DISKETTE OPERATION (OUTPUT)

This channel command outputs the high order byte of the 16­
bit memory address that points to byte 1 of the IOPB. This
command also causes the Controller Channel to begin execut­
ing the diskette operation specified in byte 2 (instruction byte)
of the addressed 10PB.

This output channel command causes all control logic in the
Controller Channel to be reset in an initialized state. If this
command is issued while a "write data" diskette operation
is in progress, the data in the sector currently being written
will be garbled. This command is intended to clear a "hang
up" in the Controller Channel.

Eight most significant bits of the 16­
bit memory address

BASE + 2System address bus

System data bus:

When the CPU executes one of the input channel commands, it
activates the I/O read (IORC/) line and duplicates the appro­
priate I/O address on both halves of the System bus. The CPU
expects the Controller Channel to activate the transfer knowl­
edge (XACK/) line when it has placed the requested data on
data lines DATO/-DAT7/.

If the Controller Channel is not busy, it will respond to an out­
put channel command within 3 microseconds. It is is busy, the
"write MA lower" and "write MA upper" commands are
ignored; no acknowledge is returned. (Note: Because no ac­
knowledge is returned in this case, it could be possible to
"hang up" the host system if the system does not include a
Fail Safe time-out provision, as is provided on the Front Panel
Control Module in the system). The "reset" command, how­
ever, is acknowledged even if the Controller Channel is busy.
"Reset" is executed immediately (if issued during a data write
operation, garbled data will be written).

The Controller Channel differentiates between the different
channel commands by interrogating the I/O read (IOCR/) and
I/O write (lOWC/) lines and the three least significant address
lines (ADRO/ - ADR2/). The five most significant I/O address
lines (ADR3/ - ADR7/) define the switch-selectable BASE
address for the Controller Channel.

System address bus: BASE + 7

READ SUBSYSTEM STATUS (INPUT)

This input channel command causes the Controller Channel to
return.

bit 0 - ready status of drive 0
bit I - ready status of drive I
bit 2 - state of the channel's interrupt flip-flop
bit 3 - controller presence indicator
bit 4 - double density controller presence indicator
bit 5 - ready status of drive 2
bit 6 - ready status of drive 3

The Diskette Controller responds to •'read subsystem status"
and •'read result type" input channel commands within 1
microsecond. The information returned in response to a •'read
subsystem status" command is always valid. The eight bits
of data returned in response to a "read result type" command,
however, are only valid if the Controller Channel had previ­
ously issued an interrupt request to the CPU. The Controller
Channel will, if not busy, respond to a "read result byte"
input command within 3 microseconds. If the Controller Chan­
nel is busy, however, it ignores the "read result byte" com­
mand (i.e., no acknowledge is returned). The "read result
type" and "read result byte" commands must be executed
sequentially (' 'read result type" first), and should be executed
only in response to an interrupt request from the Controller
Channel; execution at other times could produce erroneous
result data.

System data bus: Not used.

3-2

SBC 202 Programming Information

These indications allow the operating system to monitor the operation of the Controller Channel.

System address bus:

System data bus:

READ RESULT TYPE (INPUT)

BASE + f)

'---------1 logical 1 = drive 0 ready
logical 0 = drive 0 not ready

'-- --1 logical 1 = drive 1 ready

logical 0 = drive 1 not ready
1.- --1 logical 1 = interrupt pending

logical 0 = no interrupt pending

1.----------1 logical 1 = controller present
l...!?gi cal 0 = controller not present

This input channel command causes the Controller Channel to
return eight bits of information to the CPU. The two least sig-

nificant bits specify one of four different types of result byte
(see next paragraph) associated with diskette operations.

System address bus:

System data bus:

READ RESULT BYTE (INPUT)

BASE + 1

(LSB)
7 6 543 2 1 0

~U Type Code
------00 - I/O Complete error bits

10 - Result byte contains diskette
ready status

01,11 - Reserved

This input channel command causes the Controller Channel to
return eight bits of information to the CPU. The interpretation
of these bits is dependent upon the type code returned in the re-

suit type word (see previous paragraph). The "read result
byte" channel command should only be executed after a "read
result type" command has been executed.

System address bus:

System data bus:

BASE + 3

If the type code in the result type word = 00, the result byte, input on the data
bus, will contain error bits (see Paragraph 3-5 for error explanations) and will
be formatted as follows:

Not ready _

Write error -----------­
Write protect---------------'

......------Oeleted record
L--------CRC error

'----------Seek error
L----------Address error

L------------Oata overrun/underrun

3-3

Programming Information

If the type code = 10, the controller has detected a change in
the ready status of a drive and the contents of the result byte
will indicate the current ready status of the diskette drives:

(LSB)

7 654 3 2 1 0

-rr0000
* Unit 1 ready

* Unit 0 ready
* Unit 3 ready, _
* Unit 2 ready _

Reserved

SBC 202

*NOTE: A logical 1 means that the drive is currently ready;
a logical 0 means the drive is not ready. It is the
responsibility of the host system software to main­
tain appropriate tables to track these status changes.
There is one instance in which a drive can appear
"not ready" to the host system, when in fact it is
ready. For example, assume that while drive 0 is
selected, drive 1 just goes not ready then returns to
the ready state (perhaps the diskette platter was
changed). When the drive 0 operation is completed,

the diskette controller will return two consecutive
status change interrupts, the first showing drive 1 not
ready, the second showing drive 1 ready. The first

interrupt, indicating drive I to be not ready, is re­
turned even though the drive is now actually ready
because it is important that the operator know that
the ready status of the drive changed while the other
drive was selected. For instance, this would protect
against inadvertently accessing an "unknown" disk,
if the drive went not ready then ready again because
someone changed disk platters.

3-3. DISKETTE OPERATIONS

The Diskette System is capable of performing seven different
operations: recalibrate, seek, format track, write data (with
data marks), write data (with deleted data marks), read data,
and verify CRC. To initiate any diskette operation, the CPU
will output both bytes of the 16-bit memory address that points
to the first byte of an I/O Parameter Block (lOPB). The second
byte in the IOPB specifies one of the seven diskette operations
(see Paragraph 3-4 for IOPB format). After the Diskette Con­
troller receives the upper byte of the l o-bit memory address, it
accesses the IOPB to determine the operation to be performed
and to acquire the various parameters that are necessary for
execution of the diskette instruction. The Diskette System will
perform the specified operation, then set its interrupt flip-flop.

NOTE: The Diskette Channel automatically unloads the read/
write head after a fixed length of time following a
diskette operation. This feature is meant to reduce
head wear. The feature is implemented by counting
index pulses after a "read result byte" channel com­
mand is executed. When the specified count is
achieved, the head is unloaded, and the count is re­
initialized. At present, the count is set for 6: that is.
the head will remain loaded for at least five complete
revolutions following each diskette operation or group
of linked diskette operations.

3-4

The seven diskette operations are defined in the following

paragraphs:

RECALIBRATE

This operation causes the head of the selected diskette unit to
be moved over track 00. The diskette drive's track 0 sensor is
sampled to determine successful completion of this operation.
This is often the first instruction executed after a diskette is
loaded, or when a seek error occurs (see Paragraph 3-5).

SEEK

This operation causes the head of the selected diskette unit to
be moved over the track specified in byte 4 of the IOPB. The
Diskette Channel will verify the head position by reading the
track address from the diskette platter before completing the
operation. If at the completion of the head movement, the head
is not over the expected track, a "seek error" will be indi­

cated (see Paragraph 3-5).

FORMAT TRACK

This operation initializes the track specified in byte 4 of the
10PB, by writing all address marks, gaps, address fields and
data fields, as shown in Figure 3-1.

The method of assigning logical sector addresses, which are
written into the sector address fields, is specified by bit 6 of
the first 10PB byte (the channel word). If this bit is equal to
logical 0 the sequence of logical sector addresses will match

the physical sequence on the diskette (i.e., sector address' '0 I"
is written into the first physical sector after the index mark,

sector address "02" is written into the second physical sector,
and so on). In addition, the data byte stored in the memory
location specified by the 16-bit buffer address contained in
bytes 6 and 7 of the 10PB will be written into the 128-byte
locations of each sector's data field. No other data bytes need
to be stored in this buffer.

If, on the other hand, the sequence of logical addresses being
assigned to the sectors is "random" (that is, do not match
the physical sequence of sectors), bit 6 of the channel word
will be equal to logical 1, and 104 bytes (52 pairs) of data will
be stored in memory beginning at the lti-bit buffer address
contained in bytes 6 and 7 of 'the IOPB. Each of the 52 pairs of

SBC 202

data bytes will specify the logical sector address to be written
into the sector address field of the corresponding physical
sector, and the data character which will be written (128 times)
into the data field portion of that sector. For example, if the

first four bytes of the buffer are:

Byte Contents (hex)

I 01
2 FF
3 OE
4 00

Then, sector address "01" will be written into the sector
address field of the first physical sector after the index mark,
and "FFI6" (all ones) will be written into each of the 128

byte locations in the data field portion of this. sector. The
sector address "OE 16" (1410) will be written into the sector

address field of the second physical sector (i.e., the sector
which is physically next to the first sector), and "0016" (all

zeros) will be written into each of the 128 byte locations in the
data field portion of this sector. And so on, until a logical
sector address has been written into the sector address field of
each of the 52 physical sectors on the track, and a data byte is
written into each of the 128 byte locations in the data field por­
tion of each of the 52 sectors.

The firmware implementation of the format command is. such
that in order to format track n (nv O), track n-I must already be
formatted (i.e., already have readable address information
written into it). Track 0 can always be formatted even if no
valid address information is written on the disk.

During formatting, a "data mark" (i.e., a character which has
a clock pattern equal to 7016 and a data pattern equal to OB 16;

see Figure 3-2) is written into the "data/deleted data address
mark" character position of each sector (i.e., the character

position immediately preceding the 128 byte data field.

If, when the format track operation is initiated, the head is
not already positioned over the track specified in byte 4 of the
10PB, the format track instruction will cause the head to move
(seek) to the proper track before the actual formatting begins.

WRITE DATA

This operation transfers N x 128 bytes of contiguous data from
memory to the diskette. N represents the number of sectors to
be written. N is specified by the contents of byte 3 of the IOPB.
The 16-bit buffer address stored in bytes 6 and 7 of the 10PB
specifies the memory location containing the first data byte to
be transferred. The contents of bytes 4 and 5 of the IOPB
(track and sector addresses, respectively) specify the logical
address of the first sector to be written into.

Each 128 byte data field will be preceded by a "data" address
mark (see Figure 3-2) that is used for synchronization. Two
bytes (16 bits) of CRC check bits will be generated and written
after each data field; the CRC bytes' are generated from the
address mark, as well as the 128 data bytes.

Programming Information

A multi-sector operation (i.e., N :::: 2) may begin at any sector,
but must not go beyond the last logical sector on a track (sec­
tor 52).

If the head is not already positioned over the track specified in
byte 4 of the 10PB, the write data instruction will cause the
head to move (seek) to the proper track before the actual writ­
ing begins.

WRITE "DELETED" DATA

This operation is identical to the WRITE DATA operation,
described above, except that each 128 byte data field is pre­
ceded by a "deleted data" address mark, shown in Figure 3-3.

READ DATA

This operation transfers N sectors of data (128 bytes per sector)
from diskette to memory. N is specified by the contents of
byte 3 of the 10PB. The contents of bytes 4 and 5 of the 10PB
(track and sector addresses, respectively) specify the logical
address of the first sector to be read. The 16-bit buffer address
stored in bytes 6 and 7 of the 10PB specifies the memory lo­
cation into which the first data byte will be written.

Two bytes of CRC check bits will be generated as each sector
is being read. When the "data" address marks and all 128 data
bytes of a sector have been read, the generated CRC bits are
compared with the 16 CRC bits previously written. If there is a
mismatch, a CRC error is indicated (see Paragraph 3-5).

A multi-sector operation (i.e., N:::: 2) may begin at any sector,
but must not go beyond the last logical sector on a track (sec­
tor 52).

If the head is not already positioned over the track specified in
byte 4 of the 10PB, the read data instruction will cause the
head to move (seek) to the proper track before the actual data
reading begins.

VERIFY CRC

This operation is identical to the READ DATA operation,
described above, except that no data is transferred to memory.

3-4. I/O PARAMETER BLOCK

The CPU in the system initiates a diskette operation by out­
putting a 16-bit address that points to the beginning (the chan­
nel word) of the I/O Parameter Block (lOPB) in system mem­
ory. The Diskette Channel then accesses the IOPB. An IOPB
specifies one of the diskette operations (see Paragraph 3-3)
and provides all of the parameters required for the completion
of that operation. An IOPB consists of seven bytes, as shown

in Table 3-1.

3-5

Programming Information SBC 202

1

ID FIELD GAP DATA FIELD GAP
/,- A \~/r---------JA ,,.--I'---...

o [IE[[] D IT] [
1It

TRACK

ADDRESS
(l ijYTE)

SECTOR

ADDRESS
(1 BYTE)

TWO BYTES 28 BYTES

OF CRC

CHECK BITS

128 BYTES
OF DATA

28 BYTES

'ID'

ADDRESS
MARK

(1 BYTE)

'DATA/DELETED DATA'

ADDRESS MARK (1 BYTE)
TWO BYTES

OF CRC

CHECK BITS

14-------------------ONE SECTOR ------------------...

Figure 3-1. Sector Format

C = CLOCK

D = DATA

D'___ -' L --'

CLOCK = 0

DATA = o o o o

o o

o

o o

C = CLOCK

D = DATA

Figure 3-2. 'DATA' Address Mark

__fCl....__fCl....__rcl'-- fDl...... rcll-- _

CLOCK = 0

DATA = o o o o

o o

o o

o = 72 16

o =0816

3-6

Figure 3-3. 'DELETED DATA' Address Mark

SEC 202 Programming Information

Byte 1. Channel Word

This byte contains channel control information to be used by

654 3

Random Format Sequence ----

Interrupt Control --------

The "random format sequence" bit (6) specifies the method of
assigning logical sector addresses when formatting a track. If
this bit is reset (logical 0), sector addresses are assigned in
sequential order. If this bit is set (logical 1), sector addresses
are assigned in random order according to the pattern listed in
the 52 byte memory buffer, which begins at the location
addressed by the contents of IOPB bytes 6 and 7. (Refer to the
description of the FORMAT TRACK operation in Paragraph
3-3.)

The "interrupt control" bits (4 and 5) enable or disable Con­
troller Channel interrupts according to the scheme shown in

Table 3-2.

the Diskette System. Bit assignments in this byte are as fol­
lows:

x = Don't Care

Data Word Length

The "data word length" bit (3) must be reset (logical 0) when
the Diskette Controller is being used with 8-bit systems, or set
(logical 1) when being used with 16-bit systems. This bit must
be logical 0 when being used with the SBC 80 system (an 8­
bit system).

Byte 2. Diskette Instruction

This byte specifies the diskette operation to be performed and
identifies the diskette unit to be used:

7 6 5 4 3 2 1 0 (LSB)

Reserved "_0ti

,1
1

"t"TJ Op Code

Unit Select - Data Word Length

The "unit select" bits (4-5) specify the drive address as fol­
lows:

00 = drive 0
01 = drive 1
10 = drive 2
11 = drive 3

The "data word length" must contain the same value as the
corresponding bit in the channel word (byte I).

BIT: 3 2

0 0
0 0
0 1

0 1
1 0
1 0
1 1

1 1

The "op code" bits (0-2) specify one of the seven diskette
operations (refer to Section 3-3):

OPERATION

o No operation
1 Seek
o Format Track
1 Recalibrate
o Read data
1 Verify CRC
o Write data
1 Write 'Deleted' Data

3-7

Programming Information

Table 3-1. I/O Parameter Block (lOPB) Format

sse 202

BYTE 10PB FORMAT

*1 Channel Word

2 Diskette Instruction

3 Number of Records

4 Track Address

5 Sector Address

6 Buffer Address (Lower)

7 Buffer Address (Upper)

*The 16-bit address output to the Controller Channel by the two

'Write MA' channel Commands points to the first byte of an 10PB.

Table 3-2. Interrupt Control Bits

BIT: 5 4 FUNCTION

a a I/O complete interrupt request to be issued
(a) upon completion of diskette operation,
(b) upon detection of an error in any operation.

a 1 All I/O complete interrupts are disabled.

1 1 Illegal code
1 a

NOTE: The interrupt control bits do not affect interrupt requests which are issued as the result
of a change in diskette ready status.

3-8

SBC 202

Byte 3. Number of Records

This binary number specifies the number of sectors to be trans­
ferred. Multi-sector operations are allowed, but they must not
go beyond the last sector on a track (sector 52); that is, an
address error (see Paragraph 3-5) will be indicated if (starting
sector address) + (number of records) x 5210. Therefore, the
maximum block transfer is 52 sectors (from sector 1 to sector
52).

Byte 4. Track Address

This binary number identifies the track. Acceptable values are
o to 4Cl6 (7610), inclusive.

Byte 5. Sector Address

Bits 5 through 0 of this byte contain a binary number which
specifies the first sector to be accessed during transfer oper­
ations. Acceptable values are 1 to 3416 (5210), inclusive. Bits
6 and 7 are not used.

Programming Information

Byte 6. Buffer Address (Lower)

This byte contains the eight least significant bits of the 16-bit
buffer memory address.

Byte 7. BufTer Address (Upper)

This byte contains the eight most significant bits of the 16-bit
buffer memory address. Bytes 6 and 7 together contain the 16­
bit address of the first word of the buffer in system memory.
During read data operations, the data from the diskette is trans­
ferred to the buffer. During write operations, data from the
buffer is written to diskette. During format track operations,
the address assignment pattern and/or the data field "format
characters" are stored in the buffer.

3-5. ERROR INDICATIONS

If the CPU executes a "read result byte" channel command (in
response to a "read result type" channel command which re­
turned a code of 00), the Diskette Channel will return the fol­
lowing result word on the system data bus:

(LSB)

76543210

Not ready Vir .. Deleted recordWrite erro-r---------- J ----C·RC error

Write protect Seek error

I
I Address error

_. Data overrun/underrun error

The bits are defined as follows:

NOT READY. This bit (7) indicates that the selected unit was
not ready or that the selected unit changed to a not ready state
during an operation.

WRITE ERROR. This bit (6) indicates that, during a write
operation, a condition existed which precluded data integrity.
This error is detected by the drive and monitored by the Con­
troller Channel. An example of a condition that could cause
this error is an attempt to write through an unloaded head.

WRITE PROTECT. This bit (5) indicates that the selected
drive contains a diskette platter which is in the "read only"
mode. This condition is checked on format track, write data
(with data address marks) and write data (with deleted data
address marks) operations.

DATA OVERRUN/UNDERRUN ERROR. This bit (4) indi­
cates that the Diskette Controller was not able to service a byte
transfer request from the drive before the next request occurred.
The data byte is "lost".

ADDRESS ERROR. This bit (3) indicates that the disk ad­
dress received from the CPU is invalid; that is:

• track address > 7610,

• sector address = 00,

• sector address> 5210, or

• sector address + number of records > 5210

SEEK ERROR. This bit (2) indicates that, at the completion
of a head movement sequence, the head is not positioned over
the expected track. This bit indicates the Diskette System
Controller and/or drive are malfunctioning, and a recalibrate
diskette operation (see Paragraph 3-3) should be performed.
Because all of the diskette operations may implicitly cause the
head to move, a seek error can occur during any diskette
operation.

CRC ERROR. This bit (I) indicates that the two CRC charac­
ters generated during a read data or verify CRC operation were
not the same as the two CRC characters appended to the data
field when it was written on diskette.

3-9

Programming Information

DELETED RECORD. This bit (0) indicates that a sector ad­
dressed during a read data or verify CRC operation was pre­
ceded by a deleted data address mark.

Three other error conditions are indicated when more than
one error bit is true:

ID eRC ERROR. Ifthe address error (3) and CRC error (1)

bits are true, it indicates that the CRC characters generated
during the reading of an ID field were not the same as the CRC

3-10

SBC 202

characters appended to the field when it was written by a for­
mat track operation.

NO ADDRESS MARK. If the address error (3), seek error (2)
and CRC error (1) bits are true, it indicates that no address
mark was encountered for a full revolution of the diskette.
This usually indicates that the track has not been formatted.

DATA MARK ERROR. If the address error (3), seek error (2),
CRC error (1), and deleted record (0) bits are true, it indicates
that the data field of a particular sector was not preceded by
either a data mark or a deleted data mark.

