
Copyright © 1979
Heath Company

All Rights Reserved

SOFTWARE REFERENCE
MANUAL

HDOS SYSTEM

Chapter 2

CONSOLE DEBUGGER
DBUG

HEATH COMPANY
BENTON HARBOR, MICHIGAN 490 2 2

595-2336
Printed in the United

States of America

2-2 I CHAPTER TWO

TABLE OF CONTENTS

INTRODUCTION . 2-3

MEMORY COMMANDS
The Format Control . 2-4
Range .. 2-6

Displaying Memory Contents . 2-7
Altering Memory - Decimal or Octal 2-8
Altering Memory ASCII Format . 2-9

REGISTER COMMANDS
Displaying All Registers . 2-10
Displaying Individual Registers 2-10
Altering Register Contents . 2-11

EXECUTION CONTROL
Single Stepping . 2-12

Breakpointing . 2-13
Disk Loading/Dumping ... 2-17

COMMAND COMPLETION ... 2-18

APPENDIX A ... Error Messages . 2-19

APPENDIX B ... Command Summary . 2-20
Memory Commands . 2-20
Range ... 2-20
Register Commands . 2-21

Execution Control .. 2-22
Program Loading and Dumping ; 2-22

INDEX .. 2-23

INTRODUCTION

The Heath Console Debugger, DBUG, allows you to enter and debug machine­
language programs from a console terminal. DBUG occupies the lowest 3.5K of
user program RAM area, starting at 042 200. A user program can be loaded into
any free RAM (random access memory) location, and can be manipulated via
DBUG. See "Memory Layout" in the "Introduction".

DBUG contains facilities to perform the following nine major functions:

• Display the contents of a selected memory location.
• Alter the contents of a selected memory location.
• Display the contents of any 8080 compatible register.
• Alter the contents of any 8080 compatible register.
• Execute the user program a single instruction at a time.
• Execute the program.
• Insert breakpoints and execute the user program.
• Load user programs from a device.
• Dump user programs to a device.

A number of features were designed into DBUG for your convenience. Memory
locations and memory and register contents may be displayed as bytes or as
words, in octal, decimal, or ASCII format. With these features, you can select the
most familiar or desirable format. DBUG also contains a single-instruction facil­
ity that permits you to execute your program a single instruction at a time. And
for more advanced program analysis, a breakpointing feature is included that
permits you to execute several instructions in a program and then return control
to DBUG for analysis and/ or modification.

DBUG makes use of the console facilities of HDOS; therefore, the HDOS console
control conventions, CTRL-S, CTRL-Q, CTRL-0, CTRL-P, etc., also apply to
DBUG. DBUG does not respond to CTRL-Cs. CTRL-A is used to return to DBUG
command mode. This is done so the program being debugged can make use of
CTRL-B and CTRL-C.

When it is accepting commands from the console keyboard, DBUG uses the
"command completion" technique. As each character is entered, it is checked
against a list of all possible commands. If the character could not be a part of any
valid command, DBUG will refuse it by echoing an ASCII BELL character. In
addition, ifDBUG determines that there is only one choice for the next character
in the command, DBUG will type that character for you. Thus, if you strike the L
key, DBUG knows that all commands that start with L start with the word LOAD,
and will print the entire word LOAD on the terminal.

Console Debugger 12-3

2-4~'-C-HA_P_T_ER __ rw_o ___ ___

MEMORY COMMANDS

The memory commands permit you to display and alter the contents of indicated
memory locations. The format for memory display commands is:

<FORMAT CONTROL> < range > <blank>

The form for the alter memory command is:

<FORMAT CONTROL> <range> = <value list>

Format control specifies that memory display/alteration is in word or byte
format, and whether octal, decimal or ASCII notation is to be used. The range
specifies the memory address or addresses to be displayed or altered, and the
command is executed by the typing of a blank using the space bar on the console
terminal.

The Format Control

The format control consists of two characters which specify the form of the
values that are to be displayed and entered. The format control field may take on
a ~umber of different forms. They are:

FORMAT CONTROL

< null > < null >

F <null>

<null> A

FA

<null> D

FD

DESCRIPTION

Display/alter as octal integers,
byte format.

Display/alter as octal integers,
word format.

Display/alter as ASCII characters,
byte format.

Display/alter as ASCII characters,
word format.

Display/alter as decimal integers,
byte format.

Display/alter as decimal integers,
word format.

WORD FORMAT (F)

If an Fis specified as the first character of the format control field, it indicates that
the values are to be displayed/altered as "full words." This is to say that memory
locations are taken as two-byte pairs. The second byte is considered to be the
high-order (most significant) byte and is displayed first. The first byte is consi­
dered to be the low-order (least significant) byte and is displayed last.

BYTE FORMAT (NULL)

If an Fis not specified, the first character is null, indicating that the values are to
be displayed/altered as single bytes. You can create a NULL by not typing any
character for the format control portion of the memory command.

OCTAL FORMAT (NULL)

If no option (a NULL) is specified as the second character of the format control
field, the values to be displayed/altered are taken to be octal integers. The NULL
was chosen to specify both byte format and octal notation, as byte octal is the
most commonly used format. A blank separates each octal integer, or octal
integer pair if the F is specified.

DECIMAL FORMAT (D)

If a Dis specified as the second character of the format control field, the values to
be displayed/altered are taken to be decimal integers. A blank separates each
decimal integer, or decimal integer pair if the F is specified.

ASCII FORMAT (A)

If an A is specified as the second character of the format control field, the values
to be displayed/altered are converted from/to eight-bit representations of ASCII
characters. A blank separates each character, or character pair if the F is
specified.

DBUG is called by the operating system (HDOS) as follows:

HDOS DBUG # 102.00.00.

:B:

Nate that the version number may not be the same as yours, but a number will be
shown.

Console Debugger 12-5

2-61 CHAPTER TWO

Range

The range field consists of a beginning address and an ending address. You can
specify addresses by using the appropriate offset octal integers; or you can use
the NULL,#, and cnt (count) as indicated below.

RANGE FORM

ADDR <null>

ADDR1-ADDR2

ADDR/cnt

#-ADDR

#/cnt

< null>/cnt

< null > -ADDR

DESCRIPTION

Range specifies the single memory location
ADDR.

Range specifies the memory locations ADDR 1
through ADDR2, inclusive.

Range specifies cnt memory locations starting at
location ADDR. NOTE: cnt is a decimal integer
~ 255.

Range specifies the memory locations starting at
the beginning of the previous range and ending
at ADDR.

Range specifies cnt memory locations starting at
the beginning or the previous range. NOTE: cnt
is a decimal integer ~ 255.

Range specifies cnt memory locations starting at
the address following the last address of the pre­
vious range. NOTE: cnt is a decimal integer
~ 255.

Range specifies memory locations starting at the
address following the last address of the previ­
ous range and extending to memory location
ADDR.

For example, to display memory location 000 043 through 000 047, DBUG
simply requires the user to type 43-47 followed by a blank (a blank is generated
by using the console terminal space bar). For example:

:8:43-476100 112 107 114 100
:B:B

:B:/46303 053 040 365
:B:

NOTE: In the first example, the contents of memory locations 000 043 through
000 04 7 are displayed on the first line in octal byte format. The next four bytes
(locations 000 050 to 000 053) are displayed when the command /4 is typed. The
contents of these next four bytes are displayed as soon as a blank is typed after the
/4.

If the first address specified is greater than the second address specified, an error
message is generated. The form of the error message is:

LWA<FWA

For example:

:B:47-43t>LWA<FWA

:B:

NOTE: If you attempt to enter a numerical address which does not fit the offset
(split) octal format, DBUG rejects the improper entry and sounds the console
terminal bell. For example, the number 067777 does not fit the offset octal
format; therefore, DBUG does not allow the second 7 to be entered.

Displaying Memory Contents

To display the values in the specified range and in the specified format, type a
blank following the format and range fields. DBUG immediately executes the
command. In the following examples, the contents of a number of locations, 002
143 to 002 163 in the Monitor ROM, are displayed in octal byte format, in octal
word format, in decimal byte format, and in decimal word format. NOTE: When
all the bytes or words in the specified range cannot be displayed on the line, a
new line is started. DBUG supplied the starting address of the new line.

:B:2143-2163t>343 353 041 011 040 256 136 167 056 033 172 206 276 302
002162 160 002
:B:F2143-2163t>325343 041353 040011 136256 172033 276206 160302 303002
:B:D2143-2163t>227 235 033 009 032 174 094 119 046 027 122 134 190 194
002162 112 002
:B:FD2143-2163t>54755 08683 08201 24238 11895 31259 48774 28866 49922

Console Debugger 12-7

2-al~_c_HA_P_T_E_R_Tw __ o __ _

Note that you may type CTRL-A to short a memory display.

For example:

:B:30000-60000~303 014 037 041 300 377 071· 353 041 100 040 166 042 076 ~A
:B:

Altering Memory - Decimal or Octal
To alter memory in decimal or octal formats, type an= after the format control
and range fields. DBUG will then type the value of the first byte, or double byte if
an F was used in the format control and follow this with a/. You can then type a
new value if you want to change the contents of this location. If the contents of
the location are not to be changed, or if sufficient new digits have been entered to
complete the change, type a space or a carriage return.

If you type a space, DBUG offers the next byte (if there is one in the range) for
alteration. If you type a carriage return, DBUG returns to the command mode.

In the following example, memory locations 60000 through 60031 are loaded
with the octal values of the ASCII characters A through Z. NOTE: On the first
three lines, the initial address is followed by the= sign, the current octal value in
that memory location, and then a/. The current octal value may be different from
that shown in the example. The octal value for the letter is entered following the
slash. On the successive lines, a range of successive locations are opened and
then changed to the sequentially ascending ASCII characters.

After the letters have been entered, the 26 memory locations are examined in
byte format as ASCII characters. The 26 locations are then examined in word
format as ASCII characters. Note that the second byte is treated as the most
significant byte. Finally, the 26 locations are opened in byte octal format, using
the # as the first address of the range.

: B: 60000=324/101 §
:B:60001=030/102 §
:B:60002=353/103 §
:B:60003/23=341/104~330/105~203/106~137/107~076/110~000/111~212/112~127/113~

060013 322/114~365/115~057/116~311/117~315/120~072/121~030/122~345/123~

060023 365/124~345/125~021/126~012/127~000/130~315/131~106/132~

:B:

:B:A60000/26~A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z
:B:FA#/26~BA DC FE HG JI LK NM PO RQ TS VU XW ZY
:B:#-60031~101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120
060020 121 122 123 124 125 126 127 130 131 132
:B:

The DELETE (or RUBOUT) key is not effective when you are entering memory
locations. Values placed in memory are taken as modulus 256 numbers (if they
are entered in byte format) or as modulus 65,535 numbers (if they are entered in
full word format). Thus, if you make a mistake, simply type the correct value
with enough leading zeros to cause the bad digit to be eliminated. For example, if
byte 70,000 is to be set to 123 and the mis-type 125 occurs, it may be correctly
entered as:

: B: 70000=111/1250123 §
: B: 70000=123/ §

NOTE: Only the three least significant digits are accepted for this byte location.

Altering Memory - ASCII Format

To alter memory in ASCII format, type an= after the format control (A for ASCII)
and range fields. The processing is similar to decimal or octal forma.t memory
alterations. The contents of the opened locations should then be followed by a I.
You can then enter the replacement character (or two characters if the word
format is used). However, the space and the carriage return are considered to be
ASCII character values. To exit the command prematurely, use the ESCape or
CTRL-A key to avoid altering a location.

:B:A70000= /!.
:B:A70001= /~
: B: A70002= IQ.

Console Debugger 12-9

: B: A70003-70031= IQ /~I!. I.£/!:!_ /1,T/d_T/.!S_ /!: /~ /]:!7 IQ /.£: /] /~ IE_ I! /.!:!_ /::!...
010026 /'Ji/! 11. II=.
:B:A70000-70031~A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z
:B:A70000/26~A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z
:B:

2-10 I CHAPTER TWO

REGISTER COMMANDS
DBUG permits you to display the contents of all registers using octal, decimal, or
ASCII, or to display the contents of individual registers using octal, decimal, or
ASCII. In addition to displaying the contents of these registers, you can alter the
various registers in any of the three modes. NOTE: If the F command is used in
the format field, a register command is rejected, as register size is predetermined.

Displaying All Registers

To display the contents of all registers, .enter a command of the form.

<FORMAT> <CTRL-R>

DBUG displays the resister contents in a specified format. NOTE: An M register
is displayed in the ALL REGISTERS command and can be specified in other
commands. This register is the concatenation of the H and L registers. For
example:

:B:<CTRL-R>
A=OOO B=OOO C=001 D=OOO E=004 H=070 L=100 F=203 P=070005 M=070100 S=D42200
:B:

:B:D<CTRL-R>
A=OOO B=OOO C=001 D=OOO E=004 H=056 L=064 F=131 P=14341 M=14400 S=08832
:B:

:B:A<CTRL-R>
A= B= C= D= E= H=8 L=@ F= P=8 M=8@ S="
:B:

A Control R (CTRL-R) should be typed after each command. However, no charac­
ter is actually displayed. Also note that the ASCII display is not particularly
meaningful unless printing ASCII characters are contained in the desired regis­
ters.

Displaying Individual Registers

To display the contents of any single register, use a command in the following
format:

<FORMAT> REG <REG-NAME> <blank>

For example, to display the contents of register A, type:

: B: REGA~=101
:B:DREGA~=065

:B:AREGA~=A - -
:B:

In the above example, the first line calls for the contents of register A to be
displayed in octal format. In the second line, the contents of register A are
displayed in the decimal format, and in the third line, the contents of register A
are displayed in ASCII format. In the following example, the contents of the
16-bit register pair Hand L, known as the Mor memory register, are displayed in
octal format.

:B:REGM~=041031

:B:REGH~=041

:B:REGL~=031

:B:

Altering Register Contents

To alter the contents of a register, use a command in the following format:

<FORMAT> REG <REG-NAME> =

DBUG will then display the previous contents of the register (in the specified
format octal, decimal, or ASCII), followed by a/. It then accepts a new value if one
is typed in. When you are using octal or decimal format, use a carriage return to
close the entry or to skip the change. When you are using the ASCII format, type a
single ASCII character to close the register. However, as the carriage return is a
valid ASCII character, you must use ESCAPE or CTRL-A to skip the change. The
following examples demonstrate the altering of register contents.

:B:~EGA=102/103 §
:B:DREGA=067/066 §

:B:AREGA=B/f.
:B:

: B :B_EGA=103/ §
:B:AREGA=C/<CTRL-A>
:B:AREGA~=C - -
:B:

(Change contents of A from 1028 (ASCII B) to 1038 (ASCII C).
(Change contents of A from 67 10 (ASCII C) to 66 10 (ASCII B).
(Change contents of A from ASCII B to ASCII C.)

(A carriage return skips the change.)
(A CTRL-A skips the change.)
(The location is unaltered.)

NOTE: The last three are examples of skipping the change (leaving the location

unaltered).

Console Debugger 12-11

2-12 I CHAPTER TWO

EXECUTION CONTROL
One of the primary functions of DBUG is execution control. It lets you step
through the program, one or more instructions at a time, while examining
register and memory contents. In addition, complete breakpointing is available,
permitting you to execute a number of instructions and then return to DBUG
control to examine register and memory contents. You may also stop your
program execution at any time by typing CTRL-A, which will cause control to
return to DBUG. Execution control is divided into the areas of single stepping,
breakpointing, and the GO command.

Single Stepping

The form of the single step command is:

STEP ADDR/CNT

where ADDR is an offset octal address (or a null) and "CNT" is a decimal step
count,~ 255. If an address is not specified, DBUG starts stepping at the current
PC-register address. When the instructions are completed, DBUG types the
PC-register value and returns to the command mode. If an address is specified,
DBUG starts stepping at the specified address and, when the instructions are
completed, displays the terminating address value before returning to the com­
mand mode.

The following program increments the contents of memory location 070 100
each time the BC register pair is incremented from 000 000 to 02 7 000. This
program is used to demonstrate a number of the execution control features of
DBUG.

ADDRESS

070.000
070.000 041 100 070
070.003 066 ODO
070.005 003
070.006 170
070.007 376 027
070.011 302 005 070
070.014 064
070.015 176
070.016 376 377
070.020 006 ODO
070.022 302 005 070
070.025 327
070.026 ODO

LABEL INSTRUCTION

START ORG 07DDODA
L1 LXI H,07010DA

MVI M,000
L2 INX B

MOV A,B
CPI 027Q
JNZ L2
INR M
MOV A,M
CPI 377Q
MVI B,000
JNZ L2
RST 2
END START

COMMENT

POINT HL TO 070100
LOAD MEMORY WITH ZERO
INCREMENT BC PAIR
LOAD A WITH B
IS B 027 OCTAL?
JUMP BACK IF NOT
INCREMENT MEMORY
LOAD A WITH MEMORY
IS MEMORY 377 OCTAL?
LOAD B WITH ZERO
JUMP IF NOT ZERO

NOTE: The RST2 instruction is used to return this program to DBUG. When the
CPU encounters an RST2 instruction, it returns to DBUG.

For example, to load the above program using DBUG,

Console Debugger 12-13

:B:70000-70025=101/0416102/1006103/0706104/0666105/0006106/0036107/1706110/3766
111/0276112/3026113/0056114/0706115/0646116/~117/3766120/3776121/0066
070021 122/0006123/3026124/0056125/0706126/3276
:B:

: B: B_EGB=302/000 §
: B :BEGC=110/000 §

:B:.§.TEP 70000/6 §

-P=070005-

:B:

DBUG returns the value of the PC once the first six steps are executed.

Breakpointing

DBUG contains several commands to set, display, and clear breakpoints in your
program. Breakpointing permits you to execute portions of a program once (or a
number of times if the portion of a program is in a loop). Breakpointing is
especially useful in de-bugging programs which have a tendency to destroy
themselves or obliterate the cause of the problem in the process of complete
execution.

SETTING BREAKPOINTS

The breakpoint command is used to set a breakpoint. The form of the breakpoint
command is:

BKPT ADDR1/CNT1, ,ADDRn/CNTn

DBUG allows up to 8 breakpoints. They are entered in the breakpoint table
within DBUG, replacing any previously defined breakpoints at those addresses.
No more than eight breakpoints may be entered in the breakpoint table.

The CNT field may be used to specify the breakpoint repeat count. It is a decimal
number in the range of 1 to 255. Using the breakpoint count means the break­
point does not cause control to return to the monitor mode until the breakpoint is
executed CNT-1 times. Thus, you may execute a loop a number of times prior to
returning to the command mode via a breakpoint instruction. As noted, the
Breakpoint Instruction executes CNT-1 times, without recognizing the break-

CHAPTER TWO 2-141

point. The last time through the loop, the instruction at the breakpoint address is
not executed. The breakpoint returns control to DBUG. NOTE: If CNT is not
specified, the value 1 is assumed.

For example, the program of the previous example is run with breakpoints.

: B: 70100=000/ §
:B:~KPT 70015/6 §

: B :QO 1QQQ.Q. §

-P=070015-

: B: 70100=006/ §
:B:

NOTE: 070 100 is incremented by 6.

:8:70100=006/000 §
:B:~KPT 70015/6,70014/10,70022/30 §

: B: £0 IQQ.QQ. §

-P=070015-

:B:GO §

-P=070014-

:B:QO §

-P=070022-

:B:

DISPLAYING BREAKPOINTS

To display the current status of the breakpoint table, use the breakpoint display
command. DBUG can display the contents of the breakpoint table. The form of
the breakpoint command is:

BKPT DSPLY

DBUG provides a listing of the current breakpoints in the form:

BKPT DSPLY ADDR1/CNT1,ADDR2/CNT2, ,ADDRn/CNTn

where ADDR is the address of the breakpoint instruction, and CNT are the loop
counts remaining on the designated breakpoints. NOTE: When the breakpoint

count is exhausted, it causes control to return to DBUG. The exhausted break­
point is removed from the breakpoint table; nonexhausted breakpoints remain.
For example:

:8:70100=036/000 §
:B:.!?_KPT 70015/6,70014/10,70022/30 §

:B:~KPT QSPLY 070015/006 070014/010 070022/030
: B :Q.O 1QQQ.Q. §

-P=070015-

:B:]_KPT _QSPLY 070014/004 070022/025
:B:GO §

-P=070014-

:B:JiKPT ~SPLY 070022/021
: B :.QO §

-P=070022-

:B:.§.KPT QSPLY
:B:

CLEARING INDIVIDUAL BREAKPOINTS

To clear an individual breakpoint, use the command

CLEAR ADDR1, . . . , ADDRn

where ADDR1, ... ,ADDRn specifies the address of the breakpoint to be
removed from the table.

CLEARING ALL BREAKPOINTS

To clear all breakpoints from the breakpoint table, use the breakpoint clear
command

CLEAR ALL

For example:

:B: _gKPT 55012/10,55014/15,55020/20,55022/200 §)
:B: ~KPT ~SPLY 055012/010 055014/015 055020/020 055022/200
:B: ~LEAR 55014,55022 §)
:B: ~KPT ~SPLY 055012/0/0 055020/020
: B : JlLEAR _!LL §)
: B: ~KPT .QSPLY
:B:

Console Debugger 12-15

2-1 s I CHAPTER TWO

\

EXEC

The EXEC (execute) command is a combination of the GO and BKPT commands.
The form of the EXEC command is:

EXEC SADDR-ADDR 1, , ADD Rn

where "SADDR'' is the starting address for execution. If the starting address is
omitted, execution starts at the current program counter register value. ADDR1
through ADDRn are the addresses of breakpoints to be set before execution.
Thus, for example, to start at byte 070 000 and to execute to byte 070 015, the
command is typed as:

GO

:B: ~XEC 70000-70015 §
-P=070015-
: B:

Use the GO command to transfer control to your program. You can set break­
points before via the BKPT command. The form of the GO command is:

GO [SADDR]

If you specify "SADDR," execution begins at this specified address. If you do not
specify "SADDR," execution begins at the current value of the program counter
register. For example, simple execution of the previous program is ac­
complished by

:B:20 §
-P=070025
:B:

CTRL-A

When you are executing your program via EXEC or GO, you may return to DBUG
by typing CTRL-A. This is useful when you fail to set a breakpoint, or fail to reach
the ones you have set. For example:

:B:GO 70210 §
tA (CTRL-A struck)
-P=072121-
: B:

CTRL-D

When you are finished with the DBUG program, you can return to HDOS by
typing CTRL-D. The program will respond "ARE YOU SURE?" You must re­
spond with a "Y" to exit. For example:

:B:tD §
ARE YOU SURE? Y

>

Disk Loading/Dumping

DBUG offers two commands for program loading and dumping (or saving). With
these commands, described below, you can load or dump an absolute binary
program.

LOAD <fspec>

The LOAD command causes the contents of the file specified by <fspec> to be
loaded into memory. The file must be in absolute binary format (the format
generated by the HDOS assembler). Note that the absolute binary file contains
information to tell HDOS where the file must be loaded. DBUG will not allow you
to load a program over the DBUG code, or over the HDOS operating system. The
entry point address for the loaded program will be entered into the program
counter (Pc register) automatically. For example:

LOAD~SY1:TEST.ABS §)

DUMP <fspec> saddr-eaddr

The DUMP command causes the contents of memory from saddr to and includ­
ing eaddr to be written to the file <fspec> in absolute binary format. The contents
of the Pc register at the time of the DUMP are stored in the file as the program's
entry point. You can use this feature to save a patched binary program without
reassembling it. For example, to save the demo program used on Page 2-12, type:

DUMP~TEST~70000-70026 §)

Console Debugger 12-17

2-1 s I CHAPTER TWO

COMMAND COMPLETION

When DBUG is in the command mode, each terminal keystroke is considered for
validity. If the character belongs to no possible command, it is refused and the
bell code is echoed to the terminal. If the command syntax allows only one next
character, DBUG supplies and prints this character for the user.

:B: "D §>
ARE YOU SURE? Y

>

APPENDIX A

Error Messages

The following error messages are generated by DBUG. In addition to these errors,
other errors may be detected by the operating system itself. These errors are
discussed in Appendix B of the HDOS Manual.

<BELL>
The console terminal's bell is sounded when you type an illegal character
(for the current command). DBUG sends the ASCII bell code to the terminal
instead of echoing the illegal character.

LWA < FWA
The second address specified in this command must be the same as or larger
than the first address specified.

FORMAT ERROR IN FILE
The file you have attempted to load is not of the proper type. The LOAD
command will only load absolute binary files.

ATTEMPT TO LOAD OVER DBUG
A file may not be loaded into the same memory locations occupied by
DBUG.

NO ROOM
Attempt to specify more breakpoints than DBUG has room for. DBUG
currently allows a maximum of eight breakpoints to be simultaneously
specified.

Console Debugger 12-1 9

2-20 I CHAPTER TWO

APPENDIX B

DBUG Command Summary

Memory Commands

Memory display form:

FORMAT CONTROL range blank

Memory Alter form:

FORMAT CONTROL range

FORMAT RESULT

< null > < null > byte octal

F <null> word octal

<null> A byte ASCII

FA word ASCII

<null> D byte decimal

FD word decimal

Range

The range field consists of a beginning address and an endin~ address. You can
specify addresses by using the appropriate offset octal integt::rs; or you can use
the NULL, #, and cnt (count) as indicated below.

RANGE FORM

ADDR <null>

DESCRIPTION

Range specifies the single memory location
ADDR.

ADDR1-ADDR2

ADDR/cnt

#-ADDR

#/cnt

<null >/cnt

< null > -ADDR

Register Commands

All registers:

FORMAT CTRL-R

Single register:

REG REG-NAME blank

Altering register:

REG REG-NAME=

Range specifies the memory locations ADDRl
through ADDR2, inclusive.

Range specifies cnt memory locations starting at
location ADDR. NOTE: cnt is a decimal integer
~ 255.

Range specifies the memory locations starting at
the beginning of the previous range and ending
at ADDR.

Range specifies cnt memory locations starting at
the beginning of the previous range. NOTE: cnt
is a decimal integer ~ 255.

Range specifies cnt memory locations starting at
the address following the last address of the pre­
vious range. NOTE: cnt is a decimal integer
~ 255.

Range specifies memory locations starting at the
address following the last address of the previ­
ous range and extending to memory location
ADDR.

Console Debugger 12-21

2-22 I CHAPTER TWO

Execution Control

Single stepping:

STEP ADDR/cnt

Breakpointing:

BKPT ADDR1/cnt1, ,ADDRn/cntn

Breakpoint display:

BKPT DSPLY

Clearing breakpoints:

GO:

CLEAR ADDR 1 ,
CLEAR ALL

... ,ADDRn

GO (ADDR) (Starts at PC value if ADDR is not specified)

Execute:

EXEC SADDR-ADDR1, ,ADDRn (combines GO AND BKPT)

Program Loading and Dumping

LOAD <fspec>
DUMP <fspec>,saddr-eaddr

ASCII Characters, 2-4
ASCII Format, 2-5, 2-9
Altering Memory, 2-8
Altering Register Contents, 2-11

Breakpointing, 2-13
Byte Format, 2-5

Clearing Breakpoints, 2-15
Command Completion, 2-3, 2-18

Decimal Integers, 2-4
DELETE, 2-9
Displaying Breakpoints, 2-14
Dump, 2-17

Exec, 2-16

Execution Control, 2-12, 2-22

INDEX

Format Control, 2-4

GO, 2-16

Load, 2-17

Memory Commands, 2-4, 2-20

Octal Format, 2-5
Octal Integers, 2-4

Range, 2-6, 2-20

Register Commands, 2-10, 2-21
Rubout, 2-9

Setting Breakpoints, 2-13
Single Stepping, 2-12

Word Format, 2-4, 2-5

Console Debugger 12-23

	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23

