
Copyright © 1979
Heath Company

All Rights Reserved

SOFTWARE REFERENCE
MANUAL

HDOS SYSTEM

Chapter 5

EXTENDED BENTON HARBOR
BASIC

HEATH COMPANY
BENTON HARBOR, MICHIGAN 49022

595-2339

Printed in the United
States of America

s-2 I CHAPTER FIVE

TABLE OF CONTENTS

INTRODUCTION
Manual Scope 5-6
Hard ware Requirements , 5-6
Running BASIC .. , .. . 5-7

BASIC ARITHMETIC
Data Types • . .. 5-9·
Variables .. -............... ,. . . 5-'11
Subscripted Variables · , 5-12
Expressions ... · 5"'-14

Arithmetic Operators 5-14
Relational Operators ... -. . 5-18
Boolean Operators .. 5·-19

STRING MANIPULATION
String .. Variables .. , . .-- · .·-- • 5-21
String. Operators- ... , .- . .- • . . • . • • .. • .. . 5"'-22

THE COMMAND MODE-
Using the Command Mode for Statement Execution 5-23

BASIC STATEMENTS
Line Numbers 5-25.
Statement Types ,- 5-26
Command Mode Statements . • 5-2 7·
Statements Valid in the Command or Program Mode .. -............. 5-33
Program Mode Statements • . .. 5-63

PREDEFINED FUNCTIONS
Introduction ... ,- .. .-- 5-67
Arithmetic and Special Feature Functions . 5-67
String Functions ,- ,- 5-74

EXTENDED BENTON HARBOR BASIC Is-a

GENERAL TEXT RULES . 5-77

ERRORS
Error Messages .. 5-79
Recovering from Errors ... 5-79

ERROR MESSAGES 5-81

APPENDIX A

Numeric Data . 5-85
Boolean Data . 5-85
String Data .. 5-85
Variables .. 5-85
Subscripted Variables .. 5-86
Arithmetic Operators . 5-86
Relational Operators .. 5-86
Boolean Operators ... 5-87
String Variables . 5-8 7
String Operators ... 5-87
Line Numbers . 5-87
The Command Mode ... 5-87
Multiple Statements on One Line. 5-87
Command Mode Statements . 5-88
Command and Program Mode Statements 5-89
Program Mode Statements . 5-93
Predefined Functions ... 5-94

APPENDIX B
ASCII Conversion Chart 5-97

Index ... 5-99

5-4 I CHAPTER FIVE

EXTENDED BENTON HARBOR BASIC I s-s

TAB GUIDE

BASIC ARITHMETIC .. ·

STRING MANIPULATION

THE COMMAND MODE

BASIC STATEMENTS .. I
PREDEFINED FUNCTIONS .. .

ERRORS .. .

ERROR MESSAGES

APPENDIX A

5-6 I CHAPTER FIVE

INTRODUCTION

Extended BENTON HARBOR BASIC (Ex. B. H. BASIC) is a conversational
programming language which is an adaptation of Dartmouth BASIC*. (BASIC is
an acronym for Beginners' All Purpose Symbolic Instruction Code.) It uses
simple English statements and familiar algebraic equations to perform an opera­
tion or a series of operations to solve a problem. BENTON HARBOR BASIC is an
interpretive language, compact enough to run in a Heath computer with minimal
memory, yet powerful enough to satisfy most problem-solving requirements.
The interpretive structure of BASIC affords excellent facilities for the detection
and correction of programming errors. It uses advanced techniques to perform
intricate manipulations and to express problems more efficiently.

Manual Scope

This Manual is written for the user who is already familiar with the language
BASIC. It also describes the extended implementation of Dartmouth BASIC and,
in so doing, provides a brief summary of the language. However, this manual is
not intended as an instruction Manual for the language BASIC. If you are not
familiar with BASIC, we suggest that you obtain the Heathkit Continuing Educa­
tion course entitled "Basic Programming," Model EC-1100, before attempting to
use this Manual.

*BASIC is a registered trademark of the Trustees of Dartmouth College.

EXTENDED BENTON HARBOR BASIC I s-7

Hardware Requirements

Extended BENTON HARBOR BASIC runs on an H8/H17 or H89 Computer
System with a minimum of 16K bytes of random access memory.

In order to run BASIC, you must first copy the file BASIC.ABS from your
software distribution disk onto the system disk you plan to use. Use PIP or
ONECOPY to accomplish this. Refer to Chapter 1, the HDOS "Operating System"
Manual, for assistance.

Once the file BASIC.ABS is present, you can ·run BASIC by typing

RUN6dev:BASIC §

where "dev:" is the device name (S"'~: or SYl:) that contains the file BASIC.ABS.
If you do not type a device name, HDOS assumes the file is on SY.f1:. For example:

>RUN6BASIC §

EXTENDED BENTON HARBOR BASIC #110.00.00.

*

BASIC uses the asterisk(*) as its prompt character.

Note that the part number may be different. However, a part number will be
displayed.

s-s I CHAPTER FIVE

EXTENDED BENTON HARBOR BASIC 1 s-9

BASIC ARITHMETIC

Data Types

BASIC supports three different data types:

1. Numeric da\ta.
2. Boolean data.
3. String data.

NUMERIC DATA

BASIC accepts real and integer numbers. A real number contains a decimal
point. BASIC assumes a decimal point after integer data. Any number can be
used in mathematical expression without regard to its type. Real numbers must
be in the approximate range of 10-3s to 10+37, Integer numbers must lie in the
range of O to 65535. All numbers used in BASIC are internally represented in
floating point, which allows approximately 6.9 digits of accuracy. Numbers may
be either negative or positive.

In addition to integer and real numbers, BASIC recognizes a third format. This
format, called exponential notation, expresses a number as a decimal number
raised to a power of 10. The exponential form is

XXE(±)NN

where E represents the algebraic statement "times ten to the power of," XX
represents up to a six-digit integer or real number, and NN represents an integer
from 0 to 38. Thus, the number is read as "XX times 10 to the± power of NN."

Numeric data in all three forms may be used in the immediate mode, program
mode in data statements, or in response to READ and INPUT statements.

Unless otherwise specified, all the numbers including exponents are presumed
to be positive.

I

5-10 I CHAPTER FIVE

The results of BASIC computations are printed as decimal numbers if they lie in
the range of 0.1 to 999999*. If the results do not fall in this range, the exponential
format is used. BASIC automatically suppresses all leading and trailing zeros in
real and integer numbers. When the output is in exponential format, it is in the
form

(±) X.XXXXXE (±) NN

The following are examples of typical inputs and the corresponding output.
Note the dropping of leading and trailing zeros, truncation to six places of
accuracy, conversion to exponential notation when necessary, and conversion to
decimal notation where permitted.

INPUT NUMBER

0.1

.0079

0022

22.0200

999999

1000000

100000007

-10 .1E+2

BOOLEAN DATA

OUTPUT NUMBER COMMENTS

.1

7.90000E-03

22

22.02

999999

1. OOOOOE+06 .

1. OOOOOE+08

-1010

(leading zero dropped)
(<.1 converts to exf>0nential)
(leading zeros dropped)
(trailing zeros dropped)
(format maintained)
(converted to exponential)
(truncated to 6 places)
(converted to decimal format)

Boolean values are a subclass of numeric values. Values representing the posi­
tive integers from 0-65,535 (2 16- 1) may be used as Boolean data. When using
numeric data as Boolean values, the numeric data represents the equivalent
16-bit binary numbers. Fractional parts of numeric data used with Boolean
operators are discarded. If the numeric value with the fractional part does not fall
into the range of 0-65,535, an illegal number error is generated.

STRING DATA

Extended BASIC handles data in a character string format. Data elements of this
type are made up of a string of ASCII characters up to 255 characters in length.
Extended BASIC provides operators and functions to manipulate string data.
Any printable ASCII character (with the exception of the quotation mark itself)
may appear in an Extended BASIC string. In addition to the printable ASCII
characters, the line feed and bell characters are also permitted. A string may not
be typed on more than one line. A carriage return is rejected as an illegal string
character.

-kNOTE: This may be changed. See "CNTRL 1," Page 5-38.

EXTENDED BENTON HARBOR BASIC l s-11

Variables
A BASIC variable is an algebraic symbol representing a number. Variable nam­
ing adheres to the Dartmouth specification. That is, variable names consist of one
alphabetic character which may be followed by one digit (zero to nine). The
following is a list of acceptable and unacceptable variables, and the reason why
the variable is unacceptable.

ACCEPTABLE UNACCEPTABLE REASON FOR
VARIABLES VARIABLES UN ACCEPT ABILITY

c 2C A digit cannot begin a variable.

A5 AF A second character in a variable
must be a number (0-9).

D 3 A single number is not an acceptable
variable.

L2 $2 The first character of a variable must
be a letter (A-Z).

Subscripted variables, string variables, and subscripted string variables are
permitted. See "Subscripted Variables," Page 5-12, and "String Manipulation"
on Page 5-21.

A value is assigned to a variable when you indicate the value in a LET, READ, or
INPUT statement. These operations are discussed in "LET" (Page 5-50),
"PRINT" (5-55), and "INPUT AND LINE INPUT" (Page 5-64).

The value assigned to a variable changes each time a statement equates the
variable to a new value. The RUN command sets all variables to zero (0).
Therefore, it is only necessary to assign an exact value to a variable when an
initial value other than zero is required.

s-12 I CHAPTER FIVE

Subscripted Variables
In addition to the variables described above, BASIC permits subscripted vari­
ables. Subscripted variables are of the form:

An (N1 , ••••• , N8),

where A is the variable letter, n is a number (optional) 0-9, and N 1 thru N8 are the
integer dimensions of the variable. Subscripted variables provide you with the
ability to manipulate lists, tables, matrices, or any set of variables. Variables are
allowed one to eight subscripts.

The use of subscripts permits you to create multi-dimensional arrays of numeric
and string variables. It is important to note that a dimensioned variable is
distinguished from a scaler value of the same name. For example, all four of the
following are distinct variables:

A, A(N), A$, A$,(N)

When you are referencing a subscripted variable, each element in the subscript
list may consist of an arbitrarily complex expression so long as it evaluates to a
numeric value within the allowable range for the indicated dimension. Thus, the
subscripted variable A(5,5), would be dimensioned as:

X = A(2,3)
X = A(2t2, VAL("4.0"))
X = A(2,"4.0")

is legal
is legal as it is equivalent to A(4,4}
is not legal as ("4.0" is a string)

EXTENDED BENTON HARBOR BASIC I s-13

The following are graphic illustrations of simple subscripted variables. In these
particular examples, a simple variable (A) is followed by one or two integer
expressions in parentheses. For example,

A(I)

where I may assume the values of 0 to 5, allows reference to each of the six
elements A(O), A(l), A(2), A(3), A(4), and A(5). A graphic representation of this
6-element, single-dimension array is shown below. Each box represents a mem­
ory location reserved for the value of the variable of the indicated name. Often,
the entire array is referred to as A(.

A(O)

A(l)

A(2)

A(3)

A(4)

A(5)

NOTE: Subscripted variables begin at zero. Therefore, the previous example Oto
5 defines six elements.

A two-dimensional array B(I, J) allows you to refer to each of the elements (BO,O),
B(0,1), B(0,2), , B(O,J), , B(l,J).

This is graphically illustrated as follows, for B(3,4).

J

B(O,O) B(0,1) B(0,2) B(0,3) B(0,4)

B(l,O) B(l,1) B(l,2) B(l,3) B(l,4)
I

B(2,0) B(2,1) B(2,2) B(2,3) B(2,4)

B(3,0) B(3,1) B(3,2) B(3,3) B(3,4)

NOTE: A variable cannot be dimensioned twice in the same program unless you
first clear it with the CLEAR statement.

5-14 I CHAPTER FIVE

BASIC does not presume any dimension. Therefore, the DIMension (DIM) state­
ment must be used to define the maxi~um number of elements in any array. It is
described in "DIM (DIMENSION)" on Page 5-40.

Expressions

An expression is a group of symbols to be evaluated by BASIC. Expressions are
composed of numeric data, Boolean data, string data, variables, or functions. In
an expression, these are alone or combined by arithmetic~ relational, or Boolean
operators.

The following examples show some expressions BASIC recognizes.

ARITHMETIC BOOLEAN STRING
EXPRESSIONS EXPRESSIONS EXPRESSIONS DESCRIPTION

1.02 255 "YES" Data
1.02+ 16 255 OR 003 "YES" + "NO" Combined

A<B "YES" < "NO" Relational

A major feature of BASIC is its extensive use of expressions in situations when
many other BASICs only permit variables or numbers. This feature permits you
to perform very sophisticated operations within a particular command or func­
tion. It is important to note that not all expressions can be used in all statements.
The explanations describing the individual statements detail any limitations.

Arithmetic Operators

BASIC performs exponentiation, multiplication, division, addition, and subtrac­
tion. BASIC also supports two unary operators (- and NOT). The asterisk(*) is
used to signifiy multiplication and the slash (/) is used to indicate division.
Exponentiation is indicated by the up arrow (t).

THE PRIORITY OF ARITHMETIC OPERATlONS

When multiple operations are to be performed in a single expression, an order of
priority is obsetved. The following list shows the arithmetic operators in order of
descending p~ecedence. Operators appearing on the same line are of equal
precedence.

-(Unary)
t

* I
+

(negation)
(exponentiation)
(multiplication division)
(addition subtraction)

EXTENDED BENTON HARBOR BASIC I s-15

Parentheses are used to change the precedence of any arithmetic operations, as
they are in common algebra. Parentheses receive top priority. Any expression
within parentheses is evaluated before an expression without parentheses. The
innermost leftmost parenthetical expression has the greatest priority.

UNARY OPERATORS

BASIC supports two unary operators: - and NOT. These operators are referred to
as unary because they require only one operand. For example:

A = -2
C = NOT D

The unary operator (-) performs arithmetic negation. The NOT operator per­
forms Boolean negation. See Page 5-19.

EXPONENTIATION

Exponentiation (t) is used to raise numeric or variable data to a power. For
example:

A = Bt2 is equivalent to A = B * B.

NOTE: The operand must not be negative. The exponent may be negative. A
negative operand generates a syntax error. For greatest efficiency, Bt2 should be
written as B* Band Bt3 should be written as B * B * B. All other powers should
use the t.

MULTIPLICATION AND DIVISION

BASIC uses the asterisk (*) and the slash (/) as symbols to perform the algebraic
operations of multiplication and division, respectively. Both multiplication and
division require numeric data as operands.

The following examples use the multiplication and division operators:

*PRINT 2*6 §

12

*PRINT 2/3 §
.666667

*PRINT 6/3*2 §>
4

*

NOTE: This last expression evaluates to 4, not 1; as* and I have equal precedence
and, therefore, the leftmost operator is evaluated first.

5-16 I CHAPTER FIVE

ADDITION AND SUBTRACTION

The plus sign (+) and the minus sign (-) perform arithmetic addition and
subtraction. In addition, the plus operator (+) performs string concatenation if
both operands are string data. The following examples use the plus and minus
operators;

*PRINT 3 §)
3

*PRINT 3+5 ~

8

*PRINT 10-3 §)
7

*PRINT "HEATH" + II II + "COMPUTER" §)
HEATH COMPUTER

*

SUMMARY

In any given expression, BASIC performs arithmetic operations in the following
order:

1. Parentheses have top priority. Any expression in parentheses is
evaluated prior to a nonparenthetical expression.

2. Without parentheses, the order of priority is:
a. Unary minus and NOT (equal priority).
b. Exponentiation (proceeds from left to right).
c. Multiplication and division (equal priority, proceeds from left to

right).
d. Addition and subtraction (equal priority, proceeds from left to

right).
3. If the rules in either 1 or 2 do not clearly designate the order of priority,

the evaluation of expression proceeds from left to right.

The following examples illustrate these principles. The expression 2t3t2 is
evaluated from left to right:

1. 2t3 = 8 (leftmost exponentiation has highest priority).
2. 8t2 = 64 (answer).

EXTENDED BENTON HARBOR BASIC I s-17

The expression 12/6*4 is evaluated from left to right since multiplication and
division are of equal priority:

1. 12/6 = 2 (division is the left-most operator).
2. 2*4 = 8 (answer).

The expression 6+4*3t2 evaluates as:

1. 31'2 = 9 (exponentiation has highest priority).
2. 9*4 = 36 (multiplication has second priority).
3. 36+6 = 42 (addition has lowest priority; answer).

Parentheses may be nested, (enclosed by additional sets of parentheses). The
expression in the innermost set of parentheses is evaluated first. The next
innermost left-justified is second, and so on, until all parenthetical expressions
are evaluated. For example:

6 *((2t3+4)/3)

Evaluates as:

1. 2 t3 = 8 (exponentiation in parentheses has highest priority).
2. 8+4 = 12 (addition in parentheses has next highest priority).
3. 12/3 = 4 (next innermost parentheses are evaluated).
4. 4*6 = 24 (multiplication outside of parentheses is lowest priority).

Parentheses prevent confusion or doubt when you are evaluating the expression.
For example, the two expressions

D*Et2/4+E/C*At2
((D*(Et2))/4)+((E/C)*(At2))

are executed identically. However, the second is much easier to understand.

Blanks should be used in a similar manner, as BASIC ignores blanks (except
when they are part of a string enclosed in quotatfon marks). The two statements:

10 LET B = 3 * 2 + 1
10 LET B=3*2+1

are identical. The blanks in the first statement make it easier to read.

.S..18) CH.APT.ER .FIVE

Relational Operators

Relational operators compare two variables or expressions. They are generally
used with an IF THEN statement. The result of a comparison by the relational
opera~ors is either a true or a false. A false is repr~sented by zero, anQ true is
represented by ()5535 (2 16-1). NOTE: These values are chosen so when they are
used as Boolean values, false is all zeros and true is all ones.

The following table lists relat_ion~l operators as used in BASIC.

ALGEBRAIC BASIC
SYMBOL SYMBOL EXAMPLE MEANING

= = A=B A is equal to B.

< < A<B A is less than B.
~ <= A<=B A is less than or equal to B.

> > A>B A is greater than B.

> >= A> =B A is greater than or equal to B.

=I= <> A<>B A is not equal to B.

The symbols=<,=>,>< are not accepted and BASIC generates a syntax error
if they are used.

The following examples show the results of using relational operators.

*PRINT 3<4 § (true)

65535

*PRINT 4<3 § (false)

0

EX. B .H. BASIC differs from most other BAS I Cs in the use of the relational
operator. When you are using BASIC, you may use the relational operators in any
expression. When the expression is evaluated, the appropriate numeric answer
(0 or 65535) will be used as the answer to that expression.

EXTENDED BENTON HARBOR BASIC I s-19

Boolean Operators

OR

The operator OR performs a Boolean OR on the two integer operands. The integer
operands (which must lie in the range of O to 65535) are converted to 16-bit
binary numbers. The Boolean (logical) 16-bit OR is applied and the result is
returned to the equivalent integer representation. NOTE: As the Boolean value
chosen to represent true (65535) and false (0), the OR operator implements a
standard truth table OR function. For example:

*PRINT 132 OR 255 §

255

and

*PRINT (3>2) OR (4>9) §

65535

AND

00000000 10000100 132

00000000 11111111 255

00000000 11111111 255

The AND operator performs a Boolean (logical) AND on the two integer
operands. These integer operands must lie in the range of 0 to 65535. The integer
operands are converted into 16-bit binary numbers and the logical AND is
performed. The result is returned to the equivalent integer representation.
NOTE: The AND operator implements a standard AND truth table on the values
true (65535) AND false (0). For example:

*PRINT 132 AND 255 § 00000000 10000100 132
132 00000000 11111111 255

* 00000000 10000100 132

and

*PRINT (3>2) AND (9>7) §

65535
NOT

The NOT operator Boolean negation. That is, the numeric value of the variable is
converted into a 16-bit Boolean data value; each bit is inverted, and the 16-bit
binary number is restored to numeric data. For example:

*PRINT NOT 0 § 0 = 00000000 00000000 and
65535 65535 = 11111111 11111111

*

5-20 I CHAPTER FIVE

EXTENDED BENTON HARBOR BASIC I s-21

STRING MANIPULATION

Extended BENTON HARBOR BASIC is capable of manipulating string informa­
tion. A string is a sequence of characters treated as a single unit of an expression.
It can be composed of alphanumeric and other printing characters. An al­
phanumeric string contains letters, numbers, blanks, or any combination of
these characters. A character string may not exceed 2 55 characters. The blank,
bell, form feed, and TAB are considered to be printing characters.

String Variables

The dollar sign ($) following a variable name indicates a string variable. For
example:

B$
and

L6$

are string variables. A string variable (B$) is used in the following example.

*B$ = "HI": PRINT B$ §

HI

NOTE: The string variable B$ is separate and distinct from the variable B.

Any array name followed by the $ character notes that the dimensioned variable
is a string. For example:

L$(n)
D$(m,n)

A2$(n)
H1$(m,n)

(single-dimensioned string variables).
(multiple-dimensioned string variables).

The numbers in parentheses indicate the location within the array. See "Sub­
scripted Variables," Page 5-12.

The same variable can be used as a numeric variable and as a string variable in
one program. For example, each of the following is a different variable:

B

B$
B(n)
B$(m,n)

The following are illegal, as they are double declarations of the same variable.

A$(n) A$(n.m)

String arrays are defined with a dimension (DIM) statement in the same way
numerical arrays are defined.

I

s-22 I CHAPTER FIVE

String Operators

Extended BASIC provides you with the ability to manipulate strings. The string
manipulation operators are: plus (+), for concatenation, and the relational
operators.

CONCATENATION

Concatenation connects one string to another without any intervening charac­
ters. This is specified by using the plus (+) symbol and only works with strings.
The maximum length of a concatenated string is 255 characters. For example:

*PRINT "THE HEATH II + "COMPUTER" '§l

THE HEATH COMPUTER

RELATIONAL OPERATORS FOR STRINGS

Relational operators, when applied to strings, indicate alphabetic sequence. The
relational comparison is done on the basics of the ASCII value associated with
each character,_ on a character-by-character basis, using the ASCII collating
sequence. A null character (indicating that the string is exhausted) is considered
to head the collating sequence. For example:

*PRINT II ABC" < "DEF" §)

65536 (The relation shown is true)

*PRINT "ABC">"ABCD" '§l
0

(The relation is false. "ABC" is less than ",ABCD".)

NOTE: In any string comparison, trailing blanks are not ignored. For example:

*PRINT II CDE" = II CDE II §

0 (The equality is false.)

The following table indicates how relational operators are used with string
variables in Extended BASIC.

OPERATOR EXAMPLE MEANING

= A$= B$ String A$ and B$ are alphabetically equal.
< A$< B$ String A$ is alphabetically less than B$
> A$> B$ String A$ is alphabetically greater than B$

<= A$<= B$ String A$ is equal to or less than B$.
>= A$>= B$ String A$ is equal to or greater than B$.
<> A$<> B$ String A$ and B$ are not alphabetically equal.

EXTENDED BENTON HARBOR BASIC 1 s-23

THE COMMAND MODE

Using the Command Mode for Statement Execution

You may solve a problem in BASIC by using a complete program or by use of the
command mode. Command mode makes BASIC an extremely powerful cal­
culator.

Lines of program material entered for later execution are identified by line
numbers. BASIC identifies those lines entered for immediate execution by the
absence of the line number. That is to say, statements that begin with line
numbers are stored, and statements without line numbers are executed im­
mediately when a carriage return is received. For example:

10 PRINT "THIS IS A COMPUTER" §

is not executed when it is entered at the console terminal. However, the state­
ment:

*PRINT "THIS IS THE HEATH COMPUTER" §

when the RETURN key is typed, is immediately executed as:

THIS IS THE HEATH COMPUTER

The command mode of operation is useful in program de-bugging and perform­
ing simple calculations which do not justify the writing of a complete program.

For example, in order to facilitate program de-bugging, you may place STOP
statements liberally throughout a program.

If you use STOP in this manner, an error message will be printed. This is a normal
response and not a programming error on your part. Once BASIC encounters a
STOP statement, the program halts. You can examine and change data values
using the command mode. The statement

CONTINUE §2

is used to continue execution of the pro.gram.You can also use the GO SUB and IF
commands. Values assigned to variables remain intact using this technique. A
SCRATCH, CLEAR, or another RUN command resets these values.

I

5-24 I CHAPTER FIVE

The ability to place multiple statements on a single line is an advantage in the
command mode. For example:

*B = 2:PRINT B:PRINT B + 1 '§

2

3

*

Program loops are allowed in the command mode. For example, a table of
squares can be produced as follows:

*FOR A = 1 TO 10:PRINT AIA * A:NEXT A ~
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

*

Some statements cannot be used in the command mode. The INPUT statement,
for example, is not available in the command mode, and its use results in the USE
error message. There are certain command functions in the command mode
which make no sense when used in the command mode. Statements available in
the command mode are covered in "Command Mode Statements" on Page 5-2 7

and "Statements Valid in the Command or Program Mode" on Page 5-33.

EXTENDED BENTON HARBOR BASIC I s-25

BASIC STATEMENTS

A program is composed of one or more lines or "statements" instructing BASIC
to solve a problem. Each program line begins with a line number identifying the
line and its statement. The line number indicates the desired order of statement
execution. Each statement starts with an English word specifying the operation
to be performed. Single statements are terminated with the return key. Multiple
statements are separated by a colon(:) with the last statement terminated by a
return (a non-printing character). A DATA statement cannot share a line with
other statements. (See Page 5-59.)

Line Numbers

An integer number begins each line in a BASIC program. BASIC executes the
program statements in numerical sequence, regardless of the input order. State­
ment numbers must lie in the range of 1 to 65,534. It is good programming
practice to number lines in increments of 5 of 10 to allow insertion of forgotten or
additional statements when de-bugging the program.

The length of a BASIC statement must not exceed one line. There is no method to
continue a statement to a following line. However, multiple statements may be
written on a single line. In this situation, each statement is separated by a colon.
For example:

10 PRINT "VALUES", A, A+1 is a single line print statement, whereas
10 LET A=12: PRINT A, A+1, A+2 is a line containing two statements, LET and PRINT.

Virtually all statements can be used anywhere in a multiple statement line. There
are, however, a few exceptions. They are noted in the discussion of each state­
ment. NOTE: Only the first statement on a line can have a line number. Program
control cannot be transferred to a statement within a line, but only to the
beginning of a line.

Each time you type a statement with a line number, BASIC performs some simple
syntactical checks before inserting the line into your program. BASIC checks to
see if all of the keywords are spelled correctly, and translates them to upper case.
It makes sure that all function calls are immediately followed by an open
parenthesis "(".BASIC makes several other checks of the line to check for simple
syntax errors. If the line is determined to be incorrect, the message

SYNTAX ERROR

will be typed and the line will not be inserted into your program. Nate that this
preliminary syntax check will not detect all possible errors; BASIC may accept
the line when you type it and then detect an error later when you execute your
program.

5-26 I CHAPTER FIVE

Statement Types

BENTON HARBOR BASIC supports three different types of statements. First,
there are statements valid only in the command mode. These statements are used
for loading programs, erasing memory, and other such functions directing
BASIC's activities. Second, there are statements valid as both commands or
within a program. Third, there are statements valid only within a program. These
statements may not be used in the command mode. Most statements fall into the
second category. This means they can appear within a program or be typed
directly in the command mode and immediately executed.

As noted earlier, some statements valid in both modes may not be meaningful in
both modes.

BASIC is designed to allow maximum versatility in its structure. Thus, almost
everywhere that BASIC requires a number or a string, BASIC allows a numeric or
a string expression. For example, you could cause the SIN of 3 to be printed by
typing ·

PRINT SIN(6/2)

The following three sections are organized as command mode statements, com­
mand and program mode statements, and program mode statements. They can
be found, respectively in: "Command Mode Statements" (Page 5-27). "State­
ments Valid in the Command or Program Mode" (Page 5-33), and "Program
Mode Statements" (Page 6-63).

To simplify some practical descriptions in these sections and those following,
the notations below are used to describe allowed expressions:

1. "iexp11 indicates an integer expression, an expression lying in the
range of O to 65535. The fractional part of any integer expression is
discarded when the integer is formed.

2. "nexp" indicates a numeric expression. This may be an integer, deci­
mal, or exponential expression with up to 6 decimal places.

3. "sexp" indicates a string expression. String expressions are limited to
a maximum of 255 printing ASCII characters.

4. "linnum" indicates a line number. This must be an unsigned decimal
number, or the expression LNO (iexp). See the discussion of the LNO
function for more information.

5. "sep" indicates a separator. Separators such as the comma and the
semi-color are used to delineate certain portions of BASIC statements.

6. "[]"brackets indicate optional portions of a statement, depending on
the exact function desired.

EXTENDED BENTON HARBOR BASIC I s-21

7. "var" indicates a variable. This may be a numeric or string variable,
depending upon the example.

8. "name" indicates a string used to identify a date, a program, or a
language record.

9. "fname" indicates an HDOS file descriptor ("file name"). A file de­
scriptor may include a device specification, and a file name and
extension. The device specification and extension may be omitted, in
which case BASIC will supply a default.

Command Mode Statements

The command mode statements cannot be used within a program. For example,
the RUN statement cannot be used within a program to make it self-starting. Any
attempt to incorporate one of these statements within a program generates a USE
error message.

BUILD

This statement is used to insert or replace many program lines. The form of the
BUILD statement is

BUILD iexp1, iexp2 § where iexp1 = Starting number of build sequence.
iexp2 = Increment.

When BUILD is executed, the initial line number iexp 1 is displayed on the
terminal. Any text entered after the new line number is displayed becomes the
new line, replacing any pre-existing line. Once the line is completed by a
carriage return, the next line number is displayed. NOTE: If a null entry is given
(a carriage return typed directly after the line number is displayed), the line
whose number is displayed is eliminated if it existed.

Build is illustrated in the following example. CTRL-C terminates BUILD.

*BUILD 100,10 §

100 PRINT "LINE 100" §)

110 PRINT "LINE 110" §)

120 PRINT "LINE 120" §

130 :f. (CTRL-C typed here)
*LIST §

100 PRINT "LINE 100"
110 PRINT "LINE 110"
120 PRINT "LINE 120"

*

5-28 I CHAPTER FIVE

BASIC performs a preliminary syntax check on lines entered via BUILD. Should
an error be detected, BUILD will give an error message. For example:

BYE

*BUILD 10 , 10 §

10 PRINT "LINE 10" §

20 PRANT "LINE 20" §

SYNTAX ERROR
20 PRINT "LINE 20" §

30

r note the error)

(re-enter the line 20)

The BYE command is used to terminate BASIC and return to HDOS command
mode. BYE will not save your program, close your files, or in any other way clean
up. If you want to save the program you have written, use SA VE or REPLACE
before using BYE. BYE will ask you if you are sure before terminating. For
example:

*BYE §

SURE?YES '§>

>

CONTINUE

CONTINUE begins or resumes the execution of a BASIC program. CONTINUE
has the unique feature of not affecting any existing variable values, nor does it
affect the GOSUB or FOR stack. CONTINUE is normally used to resume execu­
tion after an error in the program or after a CTRL-C stops the program. CON­
TINUE may be used to enter a program or a specific line (in conjunction with a
GOTO). CONTINUE is unlike RUN, which resets all variables, stacks, etc .. The
form of the CONTINUE statement is:

CONTINUE §

EXTENDED BENTON HARBOR BASIC 1 s-29

In the following example, CONTINUE starts the program at a specific line
number.

*GOTO 100 §)

*CONTINUE §> (start execution at line 100)

CONTINUE is also useful for entering a program with a variable or variables set
at particular values. For example:

*,A = 23. 5 §>
*GOTO 230 §2

*CONTINUE §>

DELETE

(Program continues execution at Line 230

with variable A set to the value 23.5,

regardless of previous program effects on A.)

The DELETE statement is used to remove several lines from the BASIC source
program. The form of the DELETE statement is

DELETE iexp1, iexp2 '§l

The lines between and including iexp1 and iexp2 are deleted.

A syntax error is flagged if "iexp1" is greater than "iexp2." Normally, DELETE is
used to eliminate a number of lines of text. The SCRATCH command is used to
eliminate all text. A RETURN typed directly after a line number eliminates that
line. This technique is used to eliminate a single line.

LIST

This command lists the program on the console terminal for reviewing, editing,
etc. The form of the list command is:

LIST [LINNUM1], [LINNUM2] §)

Line numbers are indicated by the optional integer expressions. If no line
numbers are specified, the entire program is listed. If a single line number
("iexp1") is specified, EX. B.H. BASIC lists that single line. You can use a
CTRL-0 or CTRL-C to abort the listing. If both of the optional line numbers are
specified, separated by a comma (,), all lines within the range of iexp1 to iexp2
are listed. You can abort a listing by using the control characters.

CHAPTER FIVE s-ao I
--~

The following are examples of the LIST command.

10 LET A=5:LET B=6
20 PRINT A,B,A+B,
30 LET C=A/B
40 PRINT C
50 END

*RUN §)
5 6 11

END AT LINE 50
*LIST §

.833333

10 LET A=5:LET B=6
20 PRINT A,B,A+B,
30 LET C=A/B
40 PRINT C
50 END

*LIST 20 §

20 PRINT A,B,A+B,
*LIST 20,40 §

20 PRINT A,B,A+B,
30 LET C=A/B
40 PRINT C

*

OLD

The OLD command is used to read some pre-existing program into BASIC. OLD
performs a SCRATCH command, destroying the previous program before read­
ing in the new one. The format for the OLD command is:

OLD "fname" §

where "fname" is the file name of the program to be loaded. If no device code is
specified, BASIC assumes SYJI:. If no extension is specified, BASIC assumes
.BAS. For example:

*OLD "DEMO" §

*OLD "SY1:STARTREK.GAM" §)

If you want to load a new program without disturbing your variables and their
values, use the CHAIN command.

BASIC performs a preliminary syntax check on lines read in via the OLD com­
mand, just as it would for lines you type yourself on the console. Should the OLD
command detect any such syntax errors in the lines being read, it will insert th~
characters *ERR* at the spot in the line the error was detected. This should never
occur with programs which you have entered and modified with BASIC, since

EXTENDED BENTON HARBOR BASf() 1 s•31

BASIC will not let you type lines with such errors. However, such errors could
occur is you used the text editor, EDIT, to modify or create a BASIC program.

You can detect such occurrences by listing the program and fooklng for the
'*ERR*' symbol. Executing a line with the *ERR* symbol in it will generate a
syntax error.

REPLACE

The REPLACE command is identical to the SA VE command except that RE­
PLACE will allow you to replace a pre-existing file. See the SA VE command
discussion below for more information. The syntax of the REPLACE command
is:

REPLACE "fname" §

The default device is SY~:, the default extension is .BAS. Note that you can use
the REPLACE command to obtain a copy of the current program. For example, if
you had a hard-copy terminal configured as an alternate terminal (device AT:),
the command

REPLACE "AT:'" §

would cause BASIC to write the source for the program to the AT: terminal, thus
giving you a hard-copy listing. The SA VE command cannot be used to do this
since SA VE opens the file specified for read to see if it already exists. HDOS will
tell the SA VE command that the file AT: does ex:lst, and SA VE will then inform
you of your "error."

RUN

A prepared program may be executed using the RUN statement. The program is
executed starting at the lowest numbered statement.. All variables and stacks are
cleared (set to zero) before program execution starts.-

The form of the RUN statement is:

*RUN §>

After program completion, BASIC prompts the user with an asterisk(*) in the left
margin, indicating that it is ready for additional command statements. If the
program should contain errors, an error message is printed that indicates the
error and the line number contafo:lng the error, and program execution is termi­
nated. Again, a prompt is· given. The program must now be edited to correct the
error and rerun. This process is continued until the program runs properly
without producing any error messages·. See ''Errors" (Page 5-79) for a discussion
of error messages.

5-321 CHAPTER FIVE

Occasionally, a program contains an error that causes it to enter an unending
loop. In this case, the program never terminates. The user may regain control of
the program by typing CTRL-C. This aborts the program and returns control to
the user. Storage is not altered in this process. CONTINUE resumes program
execution. RUN clears the storage and restarts program execution.

SAVE

The SA VE command is used to save a BASIC program as an HDOS file. The file
can then be listed or copied onto different devices, edited by the text editor, and
reread by BASIC (via the OLD command). The SAVE command is the normal
method of saving a program that you might want to use again. The format of the
SA VE command is:

SAVE "fname" §l

where "fname" is the name of the file which is to be written. If no device is
specified, BASIC assumes SY¢:. If no extension is specified, BASIC assumes
.BAS. NOTE: The file fname must not already exist on the specified device.
BASIC will not allow you to replace a file with the SA VE command. This is done
so you will not accidentally use the same name for two programs and inadver­
tently destroy one of them. If you wish to store an updated version of a program,

. you can delete the old version first via UNSA VE, or you can use the REPLACE
command. For example:

*SAVE "SY1:INCOMETX" §

*LIST 10 §

00010 PRINT "HI THRER"
*10 PRINT "HI THERE" §

*SAVE "SY1:INCOMETX" §

! ERROR - FILE ALREADY EXISTS
*REPLACE "SY1:INCOMETX" §
*

(note the error)

(correct the error)

(attempt to replace program)

(replace program)

Remember, you can only use "SYl:" if you have a multiple-drive system.

SCRATCH

SCRATCH clears all current storage areas used by BASIC. This deletes any
commands, programs, data, strings, or symbols currently stored by BASIC.

SCRATCH should be used for entering a new program from the terminal
keyboard to ensure that old program lines are not mixed with new program lines.
It also assures a clear symbol table. The form of the SCRATCH statement is:

*SCRATCH §l

EXTENDED BENTON HARBOR BASIC I s-33

Before destroying stored information, the user is asked "SURE?". A "Y" reply
causes SCRATCH to proceed. Any other response cancels SCRATCH. For exam­
ple:

*SCRATCH §

SURE? Y §

*

(Scratch statement entered.)

(Are you sure, answer Y (YES,)

(BASIC is ready for a new entry.)

Statements Valid in the Command or Program Mode

Yau may use the statements in this section in either the command or the program
mode. A few of them have only subtle uses in one mode or the other. Because
they may be used in both modes, they are listed in this section.

CHAIN

The CHAIN command is used to start the execution of another BASIC program.
The format of the CHAIN command is:

CHAIN sexp § (or)

CHAIN sexp,linnum §

where "sexp" is a string expression containing the file name of the program to be
executed. If no device is specified, BASIC assumes SY~:. If no extension is
specified, BASIC assumes .BAS.

The CHAIN command causes the current program text to be deleted, the new
program to be read in, and execution to begin. If no line number is specified,
execution begins at the first line of the new program. If a line number is specified,
execution begins at that line number.Nate that tpe GOSUB and FOR loop tables
are cleared by the qHAIN process, but no data values (numeric and string
variables and arrays) are affected by the CHAIN. However, the data pointer is
reset to the top of the data statements. In addition, user-defined functions are
undefined, and the random process is restarted. Open data files not affected.

Yau can use the CHAIN command in the command mode as a quick way to load
and execute a program. For example,

*CHAIN "DEMO" §

HI, I'M A BASIC DEMO PROGRAM!
(etc.)

5-341 CHAPTER FIVE

You can use the CHAIN command in the execution mode to start a different
program executing, while maintaining any open files and data values. Thus, a
program that is too large to fit in memory all at once can be written in several
sections, with each section chaining to the next one when ready. As an example,
assume we have written a payroll maintenance program that is too large to all fit
in memory. This program can perform 5 different functions upon the payroll file.
One of these functions might be "add an employee'~, another one "print monthly
checks", and so forth. Because the entire program will not fit in memory at one
time, we have split it into five pieces, each of which performs one of the five
functions. A section of the program might look like:

00020 DIM A$(4)
00030 A$(0)="SY1:PAYROL1.BAS"
00040 A$(1) = "SY1:PAYROL2.BAS"

02000 INPUT "WHAT FUNCTION (1-5)",F
02010 CHAIN A$(F-1)

This program inputs a number from the operator, indicating which function is to
be performed, and then CHAINs to the- appropriate program.

The value.of A$ and the values of all other variables are preserved during the
CHAIN. In this example, the individual service programs CHAIN back to the
master program when done, with a statement

CHAIN "PAYROLL",2000 §

so the PAYROLL program does not start over at the beginning, but instead, starts
at line 2000.

CLEAR

CLEAR sets the contents of all variables, arrays, string buffers, and stacks to zero.
The program itself is not affected. The command is generally used before a
program is rerun to insure a fresh start if the program is started with a command
other than RUN. The form of the CLEAR statement is:

CLEAR §
CLEAR varname §

EXTENDED BENTON HARBOR BASIC I s-35

All variables, arrays, string buffers, etc., are cleared before a program is executed
by RUN. Therefore, a clear statement is not required. However, a program
terminated prior to execution (by a STOP command or an error) does not set these
variables, etc., to zero. They are left with the last value assigned. If the variable
name (varname) is specified, the CLEAR command clears the named variable,
array, or DEF FN (user defined function).

Note that the memory space used by string variables and arrays is not freed when
CLEAR varname is used. String values should be set to null (for example, A$ =

"") before clearing so the string space can be recovered.

For example:

QLEAR A §

CLEAR A$ §
CLEAR A(@I

Clears variable A
Clears the string variable A$
Clears the dimensioned variable Af

If a section of the program is to be rerun after appropriate editing, the variables,
arrays, dimensions, etc., should be reinitialized. You can accomplish this by
using the CLEAR statement in the command mode.

CLOSE

The CLOSE statement is used to close an HDOS file. To read or write to a file,
three things must be done in sequence:

1. The file must be opened (see OPEN).
2. The I/0 is performed (via "INPUT #chan" or "PRINT #chan").
3. The file must be closed.

The format of the CLOSE statement is

CLOSE #chan1 @) forj

CLOSE #chan1, . , #chann §

where "#chan" is the channel number assigned to the file when it was opened.
The CLOSE command does three things:

1. If the file was OPENed for writing, the new file is entered into the
. disk's directory. If the file is not closed, it, and the information written
to it, are lost.

5-361 CHAPTER FIVE

2. The BASIC channel number is freed so a different file may be OPENed
on that channel.

3. If there are no open channels with numbers higher than the one being
closed, the buffer space in the FILE table (see the FREE command) is
freed up. That is, if channels 1 and 2 are open, and you close 1, then no
FILE table space is freed. When you later close channel 2, then the
FILE table space for both channels 1 and 2 is freed.

If your program blows up without closing its channels, you may want to type
CLEAR to discard the partially written files. If you want to save any partial files,
use CLOSE in command mode to close the files.

If the channel number(s) listed in the CLOSE command have not been opened or
have already been closed, they are ignored.

CNTRL (CONTROL)

Control is a multi-purpose command used to set various options and flags. The
form of the CONTROL statement is:

CNTRL iexp1, iexp2 §

The various CNTRL options are:

iexp1 iexp2

CNTRL 0, nnn

CNTRL 1, n

CNTRL 2, n

CNTRL 3, n

CNTRL 4, n

EXTENDED BENTON HARBOR BASIC 15-37

CNTRL o

The CNTRL 0, nnn command sets up a GOSUB routine to process CTRL-B
characters. The line number of the routine is specified as "iexp2." When a
CTRL-B is entered from the terminal program, control is passed to the specified
statement (beginning at the line iexp2) via a GOSUB linkage, after the statement
being executed is completed. For example:

00010 CNTRL 0,500
00020 FOR A=1 TO 9
00030 PRINT A,A*A,A*A*A
00040 NEXT A
00050 END
00500 PRINT "THAT TICKLES"
00510 RETURN
*lillli '§

1 1 1
<CTRL-B> 2 4 8

THAT TICKLES
3 9 27
4 16 <CTRL-B> 64

THAT TICKLES
5 25 125
6 36 216

<CTRL-B>THAT TICKLES
7 49 <CTRL-B> 343

THAT TICKLES
8 64 512
9 81 729

END AT LINE 50
*

5-381 CHAPTER FIVE

During the execution of the program containing these three statements, a
CTRL-B from the keyboard momentarily interrupts execution for the program.
The program completes the line in progress and then enters the subroutine at
line 500 printing the string.

THAT TICKLES

It then moves to the next statement, a RETURN. This causes the program to
continue with normal program execution. NOTE: The CNTRL 0, nnn must be
executed before it is operational.

CNTRL 1

The CNTRL 1, n command sets the number of ·digits permitted before the
exponential notation is used. Normal mode N = 6. For example:

*CNTRL 1,2 §

*PRINT 101 §

1.D1DDDE+D2

CNTRL 2

(Numbers ~ 100 are to be in exponential format.)

The CNTRL 2, n command controls the HB front panel LED display mode. The
control functions are:

CNTRL 2,0 §

CNTRL 2, 1 §

.CNTRL 2,2 §

Turn display off (Normal mode).

Turn display on without update. (For writing into a display. See the

example under "The SEG Function, SEG (NARG)" on Page '5-72.")

Turn display on with update (to monitor a register or

memory location).

NOTE: The CNTRL 2 ,n command has no effect on an H89, since there is no front
panel display on this model.

EXTENDED BENTON HARBOR BASIC I s-ag

CNTRL 3

The CNTRL 3, n command controls the size of a print zone. This is normally 14.
However, CNTRL 3, n can change the number of spaces in a print zone.

*CNTRL 3,5 §9

*PRINT 1,2,3,4,3,2,1,0 '§)
1 2 3 2 3 4 3 2 1 0

CNTRL 4

The CNTRL 4, n command is used to control the HDOS Operating System's
overlay handling. Part of the HDOS system does not reside permanently in RAM,
but is kept on the disk in SYjf:. When it is needed, it is read into memory
temporarily. This section of HDOS is called the "overlays", and is used when
files are opened and closed. The statement

CNTRL 4, 1 §

will cause these HDOS overlays to remain in memory permanently. This will
greatly speed up the execution of the RUN, SAVE, UNSAVE, OLD, REPLACE,
OPEN, and CLOSE statements, at the cost of about 2.5K bytes of free RAM.
Executing the statement

CNTRL 4,0 §

restores HDOS to its normal mode and allows BASIC to make use of that 2.5K
bytes of RAM. When you first run BASIC, it starts up in the CNTRL 4 ,0 mode.
Users with sufficient free space will find a significant speed increase by using
the CNTRL 4,1 command.

NOTE: The CNTRL 4,n command cannot be executed as a program statement. If
you want to "lock" the overlays in memory, do so before executing the program.
Good programming practice dictates that you do a CNTRL 4,n command prior to
putting the program into memory.

5-40 I CHAPTER FIVE

DIM (DIMENSION)

The DIMENSION statement explicitly defines the maximum dimensions of array
variables. A single dimension array is often called a vector. The form of the!
DIMENSION statement is:

*DIM var name (iexp1, , iexpn) , varname2 (. . . .) §

The expressions "iexpl" through "iexpn" are integer expressions specifying the
bounds of each dimension. Dimensions are 0 to "expn." So, for example, the
statement:

DIM A(5, 5) §

reserves an array 6 x 6 or 36 values. If the dimensioned variable is numeric, the
values are preset to zero. If the dimensioned variable is a string, all the values are
preset to a null string.

You may declare several variables in one DIMENSION statement by separating
them with commas. For example:

*DIM A6(3,2), B(5,5), C3(10,10) §

dimensions the following arrays

VARIABLE

A6
B
C3

4 by 3

6 by 6
11by11

SIZE

12 elements
36 elements

121 elements

EXTENDED BENTON HARBOR BASIC I s-41

You can place a DIMENSION statement anywhere in a multiple statement line
and it can appear anywhere in the program. However, an array can only be
dimensioned once in a program unless it is cleared. DIMENSION statements
must be executed before the first reference to the array, although good program­
ming practices place all DIMENSION statements in a group among the first
statements of a program. This allows them to be easily identified and changed if
alterations are required later. The following example demonstrates the use of the
DIMENSION statement with subscripted variables and a two-level FOR state­
ment.

*LIST §>

10 REM DIMENSION DEMO PROGRAM
20 DIM A(5,10)
30 FOR B=O TO 5
40 LET A(B,O)=B
50 FOR C=O TO 10
60 LET A(O,C)=C
70 PRINT A(B, C);
80 NEXT C:PRINT :NEXT B
90 END

*RUN '§>

0 1 2 3 4 5 6 7 8 9
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

END AT LINE 90
*

FORAND NEXT

10
0
0
0
0

0

FOR and NEXT statements define the beginning and end of a program loop. A
program loop is a set of repeated instructions. Each time they are repeated they
modify a variable in some way until a predetermined condition is reached,
causing the program to exit from the loop. The FOR NEXT statement is of the
form:

FOR var = nexp1 to nexp2 [STEP nexp3]

NEXT var

5-42 I CHAPTER FIVE

When BASIC encounters the FOR statement, the expressions nexpl, nexp2, and
nexp3 (if present) are evaluated. The variable "var" may be a scaler numeric
variable, or it may be an element of a numeric array. It is assigned a value of
"nexpl." For example:

*FOR A=2 TO 20 STEP 2:PRINT A; :NEXT A §>

2 4 6 8 10 12 14 16 18 20

causes the program to execute as long as A is less than or equal to 20. Each time
the program passes through the loop, the variable A is incremented by 2 (the
STEP number). Therefore, this loop is executed a total of 10 times. When
incremented to 22, program control passes to the line following the associated
NEXT statement. It is important to note that the initial value used for the variable
is the value assigned to the variable expression when it entered the FOR-NEXT
loop. For example:

*A=10:FOR A=2 TO 20 STEP 2:PRINT A; :NEXT A '§

2 4 6 8 10 12 14 16 18 20

*

Prior to execution, the variable A is assigned the value 10. The program passes
through the loop 10 times. A is reset to 2 and then increments from 2 to 20.

If "nexp2" ~ O, and the initial value of var~ "nexp2", the loop terminates. For
example, the program:

*LIST '§

10 FOR J=2 TO 18 STEP 4
20 J=18

30 PRINT J; :NEXT J
40 END

*RUN '@2

18
END AT LINE 40

*
is· only executed once, since the value of J = 18 is reached on the first pass,
satisfying the termination condition.

A loop created by the statement:

*FOR A=20 TO 2 STEP 2:PRINT A; :NEXT A §

20

*

EXTENDED BENTON HARBOR BASIC I s-43

is executed only once, as the initial value exceeds the terminal value. However, if
this example is modified to read:

*FOR A=20 TO 2 STEP -2:PRINT A; :NEXT A §

20 18 16 14 12 10 8 6 4 2

*

the negative step allows normal operation.

In summary, for positive STEP values, the loop is executed until the variable
(var) is greater than the final assigned value (nexp2). For negative STEP values,
the loop is executed until the variable (var) is less than the final assigned value
(nexp2).

If the loop does not terminate, execution is transferred to the statement following
the FOR statement. Therefore, a series of statements may be executed using the
incremented value of the variable. If the loop does terminate, execution is
transferred to the statement following NEXT.

The expressions in the FOR statement can be any acceptable BASIC numeric
expressions.

If the STEP expression and the word STEP are omitted from the FOR statement, a
step of+ 1 is the default value. Since + 1 is an extremely common step value, the
STEP portion of the statement is frequently omitted. For example:

*FOR A=2 TO 10:PRINT A; :NEXT A '§
2 3 4 5 6 7 8 9 10

*

5-44IL-cH_A_P_r_ER __ F_1v_E __ __

Nesting is a technique frequently used in programming. It-consists of placing
one or more loops completely inside another loop. The field or operating range of
the loop (the lines from the FOR statement to the corresponding NEXT state­
ment) must not cross the field of another loop. The following two examples show
legal and illegal nesting of FOR NEXT loops.

LEGAL NESTING ILLEGAL NESTING

Two-Level Nesting

LOOP A
FIELD~

FOR A= 1TO50

--~:>"""[FOR B = 1TO10
LOOPB
FIELD NEXT B

[

FOR C = 1 TO 20

LOOP~NEXTC
FIELD

NEXTA

LOOP A
FIELD

LOOPB--

FOR A = 1 TO 100

FOR B = 1TO10

NEXTA

FIELD NEXT B

Three-Level Nesting

LOOP A FOR A = 1 TO 10
FIELD

FOR B = 1TO5

FIELD ·

LOOP C NEXT C
FIELD

LOOPD
·FIELD

FORD= 1TO40

NEXTD

NEXTB

NEXTA

LOOP A lrFOR A= 1TO3
FIELD_

FOR B = 1TO10

LOOPB
FIELD [FOR C = 1 TO 5

LOOP C NEXT C
FIELD

[

FORD= 1TO30

NEXTD

NEXTA

NEXTB

Note that both columns of nesting illustrations are shown in two-level and
three-level forms. Ho~ever, right-hand columns are not truly nesting but a
crossover of FOR and NEXT loops (fields), and therefore are illegal. Also note
that each of these examples uses the implied STEP value of 1.

EXTENDED BENTON HARBOR BASIC I s-45

The depth of nesting depends upon the amount of memory space available.

It is possible to exit from a FOR NEXT loop without reaching the variable
termination value. This can be done using a conditional transfer such as an IF
statement within the loop. However, control can only be transferred into a loop if
the loop is left during prior program execution without being completed. This
ensures the assignment of values to the termination and step variables.

Both FOR and NEXT statements can appear anywhere on a multiple statement
line.

The NEXT statement does not require the variable. If the variable is not given,
BASIC will NEXT the innermost FOR loop.

FREE

The FREE statement displays the amount of memory used by EX. B.H. BASIC and
any program material. It also displays the total amount of free space left, which is
dependent on the amount of memory in the computer and the program size. This
command is particularly valuable when you are gauging the size of the pro­
gram's data structure and establishing limits on a DIMENSION command. The
FREE command also indicates the cause of memory overflow errors. The form of
the FREE statement is:

*FREE §

The form of the printout is:

TEXT = nnnn

SYMB = nnnn

FORL = nnnn

GSUB = nnnn

STRN = nnnn

WORK = nnnn

FILE = nnnn

FREE = nnnn

(Bytes used by program text.)

(Bytes used by variables and arrays.)

(Bytes used by FOR loops.)

(Bytes used by GOSUBs.)

(Bytes used by STRINGs.)

(Bytes used by expression and function evaluation.)

(Bytes used by file buffers.)

(Total number of free bytes.)

5-4& I CHAPTER FIVE

For example, running the program

* 10 GOSUB 10 @

BASIC soon returns a memory overflow error. Executing FREE shows the user a
very large GOSUB table. This, and the statement provided in the error message,
enables one to determine the program is in a GOSUB loop.

*FREE §)

TEXT = 9
SYMB= 0
FORL = 0
GSUB = 0
WORK = 0
STRN = 0
FILE = 0
FREE = 7248

* 10 GO SUB 10 §

*RUN '§l

! ERROR - MEM OVR AT LINE 10
*FREE @

TEXT :: 9
SYMB = 0
FORL = 0
GSUB = 7515
WORK = O
STRN = 0
FILE = 0
FREE = 16

*

Note that the FILE table never requires less than 283 bytes. This table contains.
the disk file buffers necessary to read and write files. The 283 bytes are required
for BASIC's internal buffer, which it uses for such commands as OLD, SA VE, and
REPLACE.

You can compute the amount of space used by the FILE table with the formula:

bytes = N * 256

where N is the number of the highest-numbered channel that is open. Thus,
when your program opens files, it should ,open them on the lowest numbered
channels first. If you open a file on channel 3, space is reserved for the buffers for
channels 1 and 2, even if they are never opened.

EXTENDED BENTON HARBOR BASIC I s-47

FREEZE

The FREEZE command is used to store BASIC, your program, and all of your
program's variables on SYp: or SYl:. The format of the command is:

FREEZE 11 fname 11 ·§)

where "fname" is the file name under which the frozen program will be stored. If
no device is specified, BASIC assumes SY/!:. If no extension is specified, BASIC
assumes .BAF (for BASIC Frozen). Of course, you cannot spe<:ify a device of
"SYl:" unless you have a second drive installed on your computer system.

The FREEZE command allows you to suspend work temporarily; perhaps to
power-down overnight or to allow some more important work to interrupt. This
command is not intended as a general-purpose, program-save command; the
SA VE and REPLACE commands are provided for normal program saving. The
file created by the FREEZE command is in absolute binary format and cannot be
displayed or edited. Its sole use is to be unfrozen with the UNFREEZE command.

The file is quite large because it contains all of the BASIC interpreter in addition
to your program and variables. Frozen programs are non-transferrable, in that
they cannot be unfrozen by a different version of BASIC than the one they were
frozen with.

NOTE: All files must be closed before a program is saved via FREEZE.

GOSUB AND RETURN

A subroutine is a section of program performing some operation required one or
more times during program execution. Complicated operations on a volume of
data, mathematical evaluations too complex for user-defined functions, or a
previously written routine are all examples of processes best performed by a
subroutine.

More than one subroutine is allowed in a single program. Good programming
practices dictate that subroutines should be placed one after another at the end of
the program in line number sequence. A useful practice is to assign distinctive
line number groups to subroutines.

For example, a main program uses line numbers through 300. The 400 block is
assigned to subroutine #1 and the 500 block is assigned to subroutine #2. Thus,
any errors, program modifications, etc., involving the subroutine are easily
identified.

5-481 CHAPTER FIVE

Subroutines are normally placed at the end of a program, but before data state­
ments if there are any.

Program execution begins and continues until a GOSUB statement is encoun­
tered. The form of the GOSUB statement is:

*GOSUB LINNUM §

where LINNUM is the line number of the first line in the subroutine. Once
GOSUB is executed, program control transfers to the first line of the subroutine
and the subrou"tine is executed. For example:

60 GOSUB 500 §

in this example, control (the sequence of program execution) is transferred to
line 500 in the program after line 60 is executed. The first line in the subroutine
may often be a remark to identify the subroutine, or it may be any executable
statement.

Once program control is transferred to a subroutine, program execution con­
tinues in the normal line-by-line manner until a RETURN statement is encoun­
tered. The RETURN statement is of the form:

RETURN §

RETURN causes the program control to return to the statement following the
original GOSUB statement. A subroutine must always be terminated by a RE­
TURN.

Before BASIC transfers control to a subroutine, the next sequential statement to
be processed after the GOSUB statement is internally recorded. The RETURN
statement draws on this stored information to restart normal program execution.
Using this technique, BASIC always knows where to transfer control, no matter
how many times subroutines are called.

Subroutines can be nested in the same manner that FOR NEXT statements can be
nested. That is, one subroutine can call another subroutine, and if necessary, that'
subroutine may call a third subroutine, etc. If, during execution of the subroutine
a RETURN is encountered, control is returned to the line following the GOSUB
calling the subroutine. Therefore, a subroutine can call another subroutine, even
itself. Subroutines can be entered at any point and can have more than one
RETURN. Multiple RETURN statements are often necessary when a subroutine
contains conditional statements imbedded in it, which cause different sub­
routine completions dependent on the program data.

EXTENDED BENTON HARBOR BASIC I s-49

It is possible to transfer to the beginning or to any part of the subroutine. Multiple
entry points and returns make the GOSUB statement an extremely versatile tool.

Extended BASIC permits unlimited GOSUB nesting. However, nesting uses
memory and excessive nesting depth will cause an overflow.

GOTO

The GOTO statement provides unconditional transfer of program execution to
another line in the program. The GOTO statement is of the form:

*GOTO LINNUM §

When this statement is executed, program control transfers to the line number
specified by LINNUM. For example:

10 LET A=1
20 GOTO 40
30 LET A=2
40 PRINT A
50 END

*RUN §

1

END AT LINE 50

*
Program lines in this example are executed in the following order:

10, 20,40, 50

Line 30 is never executed because the GOTO statement in line 20 uncondition­
ally transfers control to line 40. After the unconditional transfer takes place,
normal sequential execution resumes at line 40.

IF THEN (IF GOTO)

The IF THEN (IF GOTO) conditionally transfers program execution from the
normal consecutive order of program lines, depending on the results of a relation
test. The forms of the IF statement are:

IF expression{THEN} LINNUM § or
GOTO

IF expression THEN statement §

5'-50 I CHAPTER FIVE

The expression frequently consists of two variables combined by the relational
operators described in "Relational Operators" (Page 5-86). In the first form, if the
result of the expression is true, control passes to the specified line number
(LINNUM). In the second form, control passes to the statement following THEN
on the remainder of the line. If the result of the expression is false, control passes
to the next line. The following examples show use of the IF THEN statement.

10 READ A
20 B=10
30 IF A=BD.THEN 50
40 PR:..N'1' II A< >B II 'A: END

50 PRINT 11 A=B 11 ,A
60 DATA 10' 5, 20
70 END

*RUN §)

A=B 10

END AT LINE 70
*CONTINUE §)

A< >B 5

END AT LINE 40
*CONTINUE §)

A< >B 20

END AT LINE 40

*

NOTE: The expression can be an arbitrarily complex expression. For example:

IF (A<3) AND NOT (B>C) THEN 33

LET

The LET statement assigns a value ·to a specific variable. The form of the LET
statement is:

LET var = nexp
LET var$ = sexp

or

EXTENDED BENTON HARBOR BASIC I s-51

The variable "var" may be a numeric variable or a string variable "var$." The
expression may be either an arithmetic "nexp" or a string expression "sexp."
However, all items in a statement must be either numeric or string, they cannot
be mixed. If they are mixed, a type conflict error is flagged. NOTE: Unlike
standard BASIC, multiple assignments are not permitted. For example,

LET A=B=3 §

causes A to be set to 65,535 (true) if B is equal to 3, or it causes A to be set to O
(false) if B is not equal to 3. It does not cause both A and B to be &'et to 3.

You may omit the key word LET if you prefer. For example, the following two
statements produce identical results.

10 LET A = 6
10 A = 6

or

The LET statement is often referred to as an assignment statement. In this
context, the meaning of the equal (=) symbol should be understood as it is used
in BASIC. In ordinary algebra, the formula Y = Y + 1 is meaningless. However,
in BASIC, the equal sign denotes replacement rather than equality. Thus, the
formula Y = Y + 1 is translated as add 1 to the current·value of Y and store the
new result at the location indicated by the variable Y.

Any values previously assigned to Y are combined with 1. An expression such as
D = B + C instructs BASIC to add the values assigned to the variables B and C and
store the resultant value at the location indicated by the variable D. The variable
Dis not evaluated in terms of previously assigned values, but only in terms of B
and C. Therefore, if previous assignments gave D a different value, the prior
value is lost when this statement is executed.

LOCK

The LOCK statement protects your program by preventing you from executing of
the following command mode statements:

BUILD CLEAR SCRATCH

BYE DELETE UNFREEZE

CHAIN RUN

5·52 I CHAPTER FIVE

It also prevents the entry or deletion of program text. Variables can be changed,
but not deleted. The form of the LOCK statement is:

*LOCK '§)

A lock error (LOCK) is generated if you attempt to enter a "locked out" command
mode statement, such as RUN. Use the UNLOCK statement to abort the LOCK
mode.

ON ... GOSUB

The ON ... GOSUB statement allows you to program a computed GOSUB. When
you use the ON ... GOSUB statement, use a RETURN at the end of the sub­
routine to return program control to the statement following the ON ... GOSUB
statement. The form of the ON ... GOSUB statement is:

ON iexp1 GOSUB LINNUM1, ,LINNUMn §

When it is processing an ON ... GOSUB statement, BASIC evaluates the
expression "iexpl" and uses the result as an index to the list of statement
numbers LINNUMl through LINNUMn. If the expression "iexpl" evaluates to 1,

for example, control is passed to line number "LINNUMl". If the expression
"iexpl" evaluates to 3, for example, control is passed to line number "LIN­
NUM3". If the expression "iexpl," evaluates to 0, or to an index greater than the
number of statement numbers listed, control is passed to the next program
statement.

ON ... GOTO

The ON ... GOTO statement allows you to perform a computed GOTO. The form
of the ON ... GOTO statement is:

ON iexp1 GOTO LINNUM1, , LINNUMn §

When it is processing an ON ... GOTO statement, BASIC evaluates the expres­
sion "iexpl" and uses the result as an index to the list of statement numbers
LINNUMl thru LINNUMn. If the expression "iexpl" evaluates to 1, for example,
control is passed to the line number given by the expression "LINNUMl ".If the
expression "iexpl" evaluates to 3, for example, control is passed.to line number
given by the expre.ssion "LINNUM3 ". If the expression "iexp 1" evaluates to O, or
to an index greater than the number of statement numbers listed, control is
passed to the next program statement.

OPEN

The OPEN command is used to open HDOS files so that they can be read or
written from BASIC. The format of the OPEN command is:

OPEN sexp FOR READ AS FILE #iexp §

OPEN sexp FOR WRITE AS FILE #iexp §

(or)

EXTENDED BENTON HARBOR BASIC I s-53

The first form is used to open files for reading via the INPUT command. The
second form is used to open files for writing via the PRINT command.

"sexp" is a string value that contains the HDOS file name. If no device is
specified, BASIC assumes SY~:. Remember, you can only specify "SYl:" for a
device if you have a second drive on your system. If no extension is specified,
BASIC assumes .DAT. Any legal device may be u·sed. "iexp" represents the
channel number that is to be assigned to the file. BASIC has five channels, 1

through 5. This means that you can have a maximum of five files open at one
time.You can close a file and then re-use its channel for some other file. After the
OPEN statement, the only way to refer to the file is by its channel number; the file
name is no longer needed. For example:

OPEN "TEMP" FOR WRITE AS FILE #3
OPEN "SY1: RALPH. WRK" FOR. READ AS FILE #1
OPEN A$ FOR WRITE AS FILE #1
OPEN "TT:" FOR WRITE AS FILE #2

To print or output to the "alternate terminal" device:

00010 OPEN "AT:" FOR WRITE AS FILE #1
00020 FOR I=1 TO 10
00030 PRINT #1,I,SQR(I)
00040 NEXT I
00050 CLOSE #1
00060 STOP
00070 END

NOTES:

1. Although five channels are available, 1, 2, 3, 4, and 5, you should use
the lowest-numbered channel available when opening a file to

. minimize the amount of memory space required. See the FREE com­
mand discussion (Page 5-45) for more information.

2. Although files may be opened to any legal device, including the
console terminal (device TT:), you should use 'the regular INPUT and
PRINT statements for communicating with the console. Due to the
requirements of HDOS device I/0, BASIC saves up the data you write
to a file via PRINT until there are 256 bytes of data, and then writes the
256 bytes all in one group. Likewise, when reading, BASIC reads­
ahead a 256 byte block of data and then supplies it as needed to the
INPUT #chan statements. Thus, if you write to the console via a
channel opened on the device TT:, the lines will not appear on the
console when you PRINT them but when BASIC has accumulated 256

bytes worth (or when the file is closed).

5-541 CHAPTER FIVE

OUT

The OUT statement is used to output binary numbers to an output port. The form
of the OUT statement is:

OUT· iexp1, iexp2 §

The expression "iexpl" is used as the port address, and "iexp2" is the value to be
placed at that port. Both iexpl and iexp2 are decimal numbers. The low-order
8-bits generated by the decimal numbers in iexpl or iexp2 are used. If you wish
to write iexpl and iexp2 in octal notation for ease in conversion to the actual
binary values, write a subroutine or function to perform octal to decimal conver­
sion.

PAUSE

The PAUSE statement causes BASIC to delay before executing the next state­
ment. The form of the pause statement is:

PAUSE [iexp]

If the optional expression iexp is omitted, PAUSE suspends execution until you
type a carriage return. If the expression iexp is present, PAUSE delays 2* iexp
milliseconds, and then allows execution to resume. The maximum value for iexp
is 30,000, allowing a maximum delay of about 60 seconds.

The PAUSE statement is particularly useful when you are viewing long outputs
on a CRT display. You can insert a PAUSE at appropriate points in the program,
allowing you to view the information on the CRT before the information scrolls
off the screen.

EXTENDED BENTON HARBOR BASIC 5-55

POKE

WARNING
The POKE function gives an experienced BASIC user direct control of virtually
all of the features of the computer. However, subtle misusage of POKE can
interfere with the operating system and cause it to cease correct functioning. For
this reason, Heath cannot provide consulting support for users who use the '
POKE function.

The POKE statement is used to place a value in a particular memory location. The
form of the POKE statement is:

POKE Location, Value

The "Location" is a decimal integer in the range of Oto 65,535. This references
any individual byte of a memory location. The "Value" is also an integer
expression lying in the range of 0 to 255. You can examine tlie contents of a
memory location by using the PEEK function described on Page 5-70.

PRINT

The PRINT statement is used to output data to the console terminal or to an
HDOS file. The form of the PRINT statement is:

PRINT [nexp1,sep1, .. [,nexpn, sepn]-] (or)
PRINT #chan, [nexp1,sep1, .. [,nexpn,sepn]]

The first form shown is for writing text and values to the console terminal. The
second form is for writing values and text to an HDOS file. 'chan' is the channel
number of a file which must have been opened for WRITE. See the discussion of
the OPEN and CLOSE command for more information. Except for the destination
of the data, both forms of the command are otherwise identical.

. 5-561 CHAPTER FIVE

The expressions and separators contained within the brackets are optional.
When used without these optional expressions and separators, the simple

PRINT or

PRINT#CHAN,

statement outputs a blank line.

Printing Variables

The PRINT statement can be used to evaluate expressions and to simultaneously
print their results, or to simply print the results of a previously evaluated
expression or evaluations. Any expression contained in the PRINT statement is
evaluated before the result is printed. For example:

10 A=4:B=6:C=5+A
20 PRINT
30 PRINT A+B+C
40 END

*RUN§

19

END AT LINE 40
*

All numbers are printed with a preceding and following blank. You can use
PRINT statements anywhere in a multiple-statement line. NOTE: The terminal
performs a carriage-return line feed at the end of each PRINT statement unless
you use the separators described in "Use of the, and;" (Page 5-57). Thus, in the
previous example, the first PRINT statement outputs a carriage-return line feed
and the second print statement outputs the number 19 followed by a carriage-
return line feed. ·

Printing Strings

The PRINT statement can be used to print a message (a string of characters). The
string may be alone or it may be used together with the evaluation and printing of
a numeric value. Characters to be printed are designated by enclosing them in
quotation marks ("). For example:

10 PRINT "THIS IS A HEATH COMPUTER"
*RUN§

THIS IS A HEATH COMPUTER

END AT LINE 65535
*

EXTENDED BENTON HARBOR BASIC I s-57

The string contained in a PRINT statement may be used to document the variable
being printed. For example:

10 LET A=5:LET B=10
20 PRINT "A+ B",A+B
30 END

*RUN§
A + B

END AT LINE 30

*

15

When a character string is printed, only the characters between the quotes
appear. No leading or trailing blanks are added as they are when a numeric value
is printed. Leading and trailing blanks can be added within the quotation marks.

Use of the "," and ";"

The console terminal is normally initialized with 80 columns divided into five
zones. (See CNTRL 3, n for exception.) Each zone, therefore, consists of 14
spaces. When an expression in the PRINT statement is followed by a comma (,)
the next value to be printed appears in the next available print zone. For
example:

10 A=5. 55555: B=2
20 PRINT A,B,A+B,A*B,A-B,B-A
30 END

*RUN§
5.55554
-3.55554

2 7.55554 11. 1111 3.55554

*
END AT LINE 30

NOTE: The sixth element in the PRINT list is the first entry on a new line, as the
five print zones of a 72-character line were used.

Using two commas together in a PRINT statement causes a print zone to be
skipped. For example:

10 A=5.55555:B=2
20 PRINT A,B,A+B,,A*B,A-B,B-A
30 END

*RUN §>
5.55554
2.55554

2
-3.55554

7.55554 11.1111

END AT LINE 30

*

5-58 I CHAPTER FIVE

If the last expression in a PRINT statement is followed by a comma, no carriage­
return line feed is given when the last variable is printed. The next value printed
(by a later PRINT statement) appears in the next available print zone. For
example:

10 LET A=1:LET B=2:LET C=3
20 PRINT A,
30 PRINT B
40 PRINT C
50 END

*RUN §

1 2

3

END AT LINE 50

*

At certain times, it is desirable to use more than the designated five print zones. If
such tighter packing of the numeric values is desired, a semicolon(;) is inserted
in place of the comma. A semicolon does not move the next output to the next
PRINT zone, but simply prints the next variable, including its leading and
trailing blank. For example:

10 LET A=1:LET B=2:LET C=3
20 PRINT A;B;C
30 PRINT A+1;B+1
40 PRINT C+1
50 END

*RUN

*

1 2 3

2 3

4

END AT LINE 50

NOTE: If either a comma or a semicolon is the final character in a PRINT
statement, no final carriage-return line feed is pri~ted.

EXTENDED BENTON HARBOR BASIC 1 s-59

READ AND DATA

The READ and DATA statements are used in conjunction with each other to
enter data into an executing program. One statement is never used without the
other. The form of the statements are:

READ var1,

DATA val1,

. , varn

. , valn

The READ statement assigns the values listed in the DAT A statement to the
specified variables varl through varn. The items in the variable list may be
simple variable names, arrays, or string variable names. Each one is separated by
a comma. For example:

5 DIM A (2,3)
10 READ C,B$,A (1,2)
20 DATA 12,THIS IS SIX,56
30 PRINT C,B$,A (1,2)

*RUN §

12 THIS IS SIX 56

END AT LINE 65535

*

Because data must be read before it can be used in the program, READ statements
generally occur in the beginning of a program. You may, however, place a READ
statement anywhere in a multiple-statement line. The type of value in the DATA
statement must match the type of corresponding variable in the READ statement.
When the DAT A statement is exhausted, BASIC finds the next sequential DAT A
statement in the program. NOTE: BASIC does not automatically go to the next
DAT A statement for every READ statement. Therefore, one D~ TA statement may
supply values for several READ statements if the DATA statement contains more
expressions than the READ statement has variables.

The data values in a DATA statement must be separated by commas. If the value
is to be read into a numeric variable or array, it must be a number. If the value is to
be _read into a string variable or array, no specific format is required. If the value is
enclosed in quotes(''"), the quoted characters are assigned to the string variable.
If the value is not enclosed in quotes, BASIC uses the characters until a comma or
the end of the line is reached. Thus, if you wish to read a comma as part of the
value, you must enclose the value in quotes.

5-60 I CHAPTER FIVE

You may not include a quote character in the value. For example:

10 READ A$,B$,C$

20 PRINT A$,B$,C$

30 DATA HI THERE,"HI, THERE",YES
*RUN §

HI THERE HI, THERE YES

A field in DAT A statement may be left null by means of two adjacent commas.
This causes the associated variable to retain the old value. For example:

10 A=1:B=1:C=1
20 READ A,B,C
30 PRINT A,B,C
40 DATA 3, ,4

50 END
*RUN §

3 1 4

END AT LINE 50
*

If a DATA statement appears on a line, it must be the only statement on the line.
DAT A statements may not follow any other statement on the line. Other s.tate­
ments should not follow DAT A statements.

DATA statements do not have to be executed to be used. That is, they may be the
last statement in a program, and be used by a READ statement executed earlier in
the program. However, ifDATA statements appear in a program in such a place
that they are executed (there are executable statements beyond the DATA state­
ment), the executed DATA statement has no effect. Therefore, location of DATA
statements is arbitrary as long as the values contained within the DAT A state­
ments appear in the correct order. However, good programming practice dictates
all DAT A statements occur near the end ·of the program. This makes it easy for the
programmer to modify the DAT A statements when necessary.

If a value contained in a DATA statement is incorrect, the illegal character error
message is printed. All subsequent READ statements also cause the message. If
there is no data available in the data table for the READ statement to use, the no
data error message is printed.

If the number of values in the data list exceed those required by the program
READ statements, they are ignored, and thus not used.

EXTENDED BENTON HARBOR BASIC I s-61

REM (REMARK)

The REMARK statement lets you insert notes, messages, and other useful infor­
mation within your program in such a form that it is not executed. The contents
of the REMARK statement may give such information as the name and purpose of
the program, how the program may be used, how certain portions of the program
work, etc .. Although the REMARK statement inserts comments into the program
without affecting execution, they do use memory which_ may be needed in
exceptionally long programs.

)

REMARK statements must be preceded by a line number when used in the
program. They may be used anywhere in a multiple statement line. The message
itself can contain any printing character on the keyboard and can include blanks.
BASIC ignores_ anything on a line following the letters REM.

RESTORE

The RESTORE statement causes the program to reuse data starting at the first
DAT A statement. It resets the DAT A statement pointer to the beginning of the
program. The RESTORE statement is of the form:

RESTORE

For example:

10 READ A,B,C
20 PRINT A,B,C
30 RESTORE
40 READ. D,E,F
50 PRINT D,E,F

· 60 DATA 1,2,3,4,5,6,7,8
70 END

*RUN§

1
1

2
2

END AT LINE 70

*

3
3

This program does not utilize the last five elements of the DATA statement. The
RESTORE command resets the DATA statement pointer and the READ D,E,F
statement uses the first three data elements, as doesthe initial READ statement.

The CLEAR command includes the RESTORE function.

5-621 CHAPTER FIVE

STEP

The STEP command permits you to step through a program a single line or a few
lines at a time. The form of the step command is:

STEP iexp §

where the integer expression iexp indicates the number of lines to be executed
before stopping. Execution of the desired lines is indicated by the prompt NXT =
nnnn, where nnnn is the next line number to be executed. A STEP 2 is required to
execute the first program line. All future single-line executions require a STEP or
STEP 1. For example:

10 READ A,B,C
20 PRINT A,B,C
30 RESTORE
40 READ D,E,F
50 PRINT D,E,F
60 DATA 1,2,3,4,5,6,7,8
70 END

*CLEAR §

*STEP 3 §
1 2 3
NXT= 30

*STEP §
NXT= 40

*STEP §
NXT= 50

*STEP @
1 2 3
NXT= 60

*STEP 2 §

END AT LINE 70
*

UNFREEZE

The UNFREEZE command is used to restore a program that has been frozen with
the FREEZE command. See "FREEZE" (Page 5-47) for more information. The
format of the UNFREEZE command is:

UNFREEZE "fname" §

where "fname" is the name of the previously frozen file. If no device is specified,
BASIC assumes SY~:. If not extension is specified, BASIC assumes .BAS.

EXTENDED BENTON HARBOR EIASIC I s-63

UNLOCK

The UNLOCK statement aborts the LOCK mode and restores the use of all
command mode statements. The form of the UNLOCK statement is:

*UNLOCK §

UNSAVE

The UNSA VE command is used to delete programs and files from the disk. The
form of the UNSA VE command is:

UNSAVE "fname" §

where fname is the name of the file to delete. If no device is specified, BASIC
assumes SY~:. If no extension is specified, BASIC assumes .BAS. Unless the file
or the disk is write-protected, you can use UNSAVE to delete any file: a BASIC
program, a data file, or anything else.

Program Mode Statements

PROGRAM MODE statements are valid only when utilized within a program. If
they are entered in the command mode, an illegal use error is flagged.

DATA

The DATA statement discussed in "Read and Data" (Page 5-59) is a program only
statement, although it is used in conjunction with a READ statement, which may
be used in either the command or program mode.

DEFFN

The DEF FN statement defines single-line program functions created by the user.
The form of the DEF FN statement is:

DEF FN varname (arg1 [, arg2, , argn J) expr

5-64 I CHAPTER FIVE

The variable name (varname) must be a legal string or numeric variable name
and cannot be previously dimensioned. However, it may be previously defined.
The latest definition takes precedence. The argument list
"(argl [,arg2, ,arg3])" must be supplied to indicate a function. Note: the
arguments are real, not dummy variables, and do change as evaluation proceeds.

END

10 REM DEFINE A SQUARE FUNCTION
20 DEF FN S1(I) = I * I
30 PRINT FN S1(3),I,FN S1(5),I
40 END

*RUN §

9 3 25

END AT LINE 40
*

5

The END statement causes control to return to the command mode. An END
statement message is typed, giving the line number of the END statement. END
also causes the "next statement" pointer to be set to the beginning of the program
so a CONTINUE resumes execution at the beginning of the program.

An END statement may appear anywhere in the program, as many times as
desired. If a program does not contain anEND statement, it ''runs off the end.'' In
this case, BASIC generates a pseudo end statement at line 65,535.

INPUT AND LINE INPUT

The INPUT and LINE input statements are used when data is to be read from the
console terminal, or from an HDOS file. The form of the INPUT statement is

""·
INPUT prompt; var1, ... , varn (or)

INPUT #chan, prompt; var1, . . . , varn

The #chan specification (shown in the second example) is optional, and if
present specifies the channel number of the file (which must have been previ­
ously OPENed for INPUT) to read from. An INPUT statement with a file channel
number specified works just like a regular INPUT statement, except that a line is
read from the file rather than the console. Values are read from the line in exactly
the same way as they would be from a line typed at the console. If necessary,
BASIC will read more lines from the file to satisfy the INPUT statement. Any
unused values on the line are discarded.

EXTENDED BENTON HARBOR BASIC I s-&5

If the first element following the INPUT statement is a string, INPUT assumes it
is a prompt and types the string instead of the question mark (?). If you do not
want a prompt string but the first variable is a string variable, a leading semico­
lon is required. For example:

INPUT ;S3$(2)

tells BASIC that the data read from the console terminal is to be placed in the
third element of the string array S3$. Nate that a prompt is meaningless when
inputting from HDOS files.

The data line input from the console or read from the HDOS file is identical in
format to the DATA statement except that the DA TA keyword is omitted. String
values need not be enclosed in quotes unless they contain the comma (,) charac­
ter. Multiple data values on the same line must be separated by commas.

As in the DATA statement, null fields (two commas in a row) cause the variable
to retain its previous value. If the user response (or the line read if you are
inputting from an HDOS file) does not supply sufficient data to complete the
INPUT statement, another "?" prompt is issued (if you are inputting from the
console) and another line is read from the console or the data file. CAUTION: If
you supply too much data or there is too much on a line read from a file, it will be
ignored. The next INPUT statement issues a fresh read to the terminal or file.

When there are several values to be entered via the INPUT statement, it is helpful
to print a message explaining the data needed, using the prompt string. For
example:

10 INPUT "THE TIME IS?";T

When this line of the program is executed, BASIC prints

THE TIME IS?

and then waits for a response.

The LINE INPUT statement is used to input one line of string data from the
console terminNnd assign it to a string variable. Its form is identical to the
INPUT form t*,~ept that the supplied line is read in its entirety into the string
variable, regardless of commas (,) or quotes ("). For example:

LINE INPUT "YES OR NO?";A$
LINE INPUT #2.;A$

(or)

5-661 CHAPTER FIVE

Note that the channel number in the second example must be followed by a
comma; the following semicolon tells BASIC that A$ is the variable name, not a
prompt.

LINE INPUT, unlike READ and INPUT, allows you to read a string containing a
quote(") character. Note that you should not enclose your reply in quotes, since
these will be accepted as part of the string.

STOP

The STOP statement causes BASIC to enter the command mode. The message
stating the line number of the STOP is printed. The "next line" pointer is left
after the STOP statement, so a CONTINUE statement causes execution to resume
on the line immediately after the STOP statement. The STOP statement is of the
form:

STOP

The STOP statement can occur several times throughout a single program with
conditional jumps determining the actual end of the program. The following
example uses the STOP statement to examine a variable during execution.

10 A=1: B=2: C=3
20 PRINT A,B,C
30 END

*RUN §>

1

END AT LINE 30
*15STOP §>

*RUN PY

STOP AT LINE15
*PRINT A @

1
*15 §>

*RUN §>

1

END AT LINE 30

*

2 3

Stop deleted

2 3

EXTENDED BENTON HARBOR BASIC I s-67

PREDEFINED FUNCTIONS

Introduction

There are 28 predefined functions in EX. B.H. BASIC. These functions perform
standard mathematical operations such as square roots, logarithms, string mani­
pulations, and special features. Each function has an abbreviated three- or
four-letter name, followed by an argument in parentheses. As these functions are
predefined, they may be used throughout a program when required. Predefined
functions use numeric expressions (nexp), integer expressions (iexp), and string
expressions (sexp).

The abbreviation (narg) is used to indicate a numeric argument, a decimal
number lying in the approximate range of 10-3s to 10+31• Certain functions do not
permit the argument to assume this wide range, as indicated in the function
description.

The predefined functions may be used in either the command or program mode.

Arithmetic and Special Feature Functions

THE ABSOLUTE VALUE FUNCTION, ABS (nexp)

The ABSOLUTE VALUE function gives the absolute value of the argument. The
absolute value is the positive portion of the numeric expression. For example:

*PRINT ABS(-5.5) §
5.5 or,

*PRINT ABS(SIN(3.5)) §
.350783

*

NOTE: The sine of 3.5 radians is -.350783.

5-681 CHAPTER FIVE

THE ARC TANGENT FUNCTION, ATN (nexp)

The ARC TANGENT function returns the arc tangent of the argument. For
example:

*PRINT ATN (1/1) *57. 296; "DEGREES" §
45.0001 DEGREES

*PRINT 4*ATN(1) §
3.14159

* NOTE: 1T = 3.14159

THE CHARACTER INPUT FUNCTION, CIN (chan)

The CIN function is used to read a character from any open file, or from the
console terminal (if chan = 0). If the value returned is positive, then it is the next
byte read from the file, or the next character read from the console (if chan = 0). If
the value returned is negative, then an end-of-file has been detected on the file, or
no line has yet been entered on the console (if chan = 0). For example:

*PRINT CIN(O) §
-1

*

THE COSINE FUNCTION, COS (nexp)

The COSINE function returns the COSINE of the argument (nexp) expressed in
radians. For example:

*PRINT COS(60/57.296) §
.500003

*

THE EXPONENTIAL FUNCTION EXP (nexp)

The EXPONENTIAL function returns the value ff'eXP. ~ "nexp" exceeds 88, an
overflow is flagged, as the result exceeds 1Cl38 • If "nexp" is less than -88, an
overflow error occurs. An example of the exponential function is:

*PRINT EXP(1).EXP(2).EXP(COS(60/57.296)) §
2.71828 7.38905 1.64873

*

EXTENDED BENTON HARBOR BASIC I s-&9

THE INTEGER FUNCTION, INT (narg)

The INTEGER function returns the value of the greatest integer value, not greater
than "narg". If the argument is a negative number, the INTEGER function returns
the negative number with the same or smaller absolute value. For example:

*PRINT INT (38.55)
38

*PRINT INT (-3.3)
-3

THE LINE NUMBER FUNCTION, LNO (iexp)

BASIC statements that refer to the line numbers (such as GOTO, GOSUB, and so
forth) do not allow the line number to be expressed as a numeric expression. The
LNO function is provided to convert an integer expression into a line number.
For example:

GOTO 20 §
(and)

GOTO LN0(2*10)

both cause a jump to statement number twenty. You can use the LNO function
anywhere a line number is required; it provides a very p_owerful "computed
GOTO" facility. A program can compute the line number it wishes to jump to (or
call, via GOSUB) by using the LNO function. Some more examples:

GOSUB LN0(2*Y+100)

ON I GOTO 20,30,LNO(I).LNO(I*2)

IF (A=B) THEN GOTO LNO(A)

THE LOGARITHM FUNCTION, LOG (nexp)

The LOGARITHM function returns the natural logarithm (LOG to the base e) of
the argument. You can find the Logarithms of a number N in any other base by
using the formula:

LOGa N = LOGeN/LOGea,

where "a" represents the desired base. Most frequently, "a" is 10 when you are
converting to common logarithms. For example:

PRINT "A POWER RATIO OF 2 IS";1D(LOG(2)/LOG(10});"DECIBELS" §
A POWER RATIO OF 2 IS 3.0103 DECIBELS

*

5-70 I CHAPTER FIVE

THE PAD FUNCTION, PAD (O)

The PAD function returns the value of the keypad pressed on the H8 front panel.
For example:

*PRINT PAD (0) §
6 The #6 key was pressed.

The PAD function uses all the front panel deb ounce and repeat software con­
tained in PAM-8. (See "The Segment Function," Page 5-72, for an additional
example.)

NOTE: The PAD function must be completely executed before any other function
will respond. Therefore, CTRL-C, etc., will not work until you press an H8 front
panel key.

The PAD function is intended for use on an H8 computer, where front panel
access is necessary. On an H89 computer, there is no front panel. If a BASIC
program using the PAD function is run on an H89, a zero (0) will be returned as
soon as the PAD(O) is executed. CTRL-C is not disabled on the H89.

THE PEEK FUNCTION, PEEK (iexp)

The PEEK functions returns the numeric value of the byte at memory location
iexp. iexp is in decimal.

THE P1N FUNCTION, PIN (iexp)

The PIN function returns the value input from port "iexp" where iexp is a
decimal expression ranging·from 0-255. For example:

*A=PIN(38) §

Where "A" now contains the data that was at port #38 (46 octal).

THE POSITION FUNCTION, POS (chan)

The POSITION function returns the current terminal printhead (cursor) posi­
tion. The argument "chan" specifies the 1/0 channel number (see the OPEN
statement) you wish to interrogate. BASIC maintains a separate cursor address
for each I/0 channel in use. Channel 0 is always the console channel, and is
always considered "open." Thus, use POS(O) to read the position of the console
cursor. The value returned is a decimal number indicating the column number of
the printhead (cursor) position. For example:

*PRINT POS(D), POS(D), POS(O); POS(D); POS(D) §
1 14 28 32 36

*

EXTENDED BENTON HARBOR BASIC I s-11

THE RANDOM FUNCTION, RND (narg)

The RANDOM number function returns the next element in a pseudo-random
series. The RANDOM number generator is not truly random, and may be man­
ipulated by controlling the argument. If narg>O, the random number generator
returns the next random number in the series. If narg = 0, the random number
generator returns the previously returned random number. If narg<O, the value
"narg" is used as a new seed for a random number, thus starting an entire new
series. Using these three inputs to the random number series, the program may
continuously return the same number while de-bugging the program, determine
what the series of numbers will be when the program is run, or start a series of
new random numbers each time BASIC is loaded. For example:

10 RUN FOR A=O to 2
20 PRINT RND(1)
30 NEXT.
40 END

*RUN§
.93677
.566681
.53128

END AT LINE 40

*20PRINT RND(O) §

*RUN §>
.332306
.332306
.332306

END AT LINE 40
*20PRINT RND (-1) §

*RUN§
6.25305E-02
6.25305E-02
6.25305E-02

END AT LINE 40
*20PRINT RND(-5) ?Y

*RUN§
.460968
.460968
.460968

END AT LINE 40
*

5-12 I CHAPTER FIVE

THE SEGMENT FUNCTION, SEG (narg)

The SEG function returns a numeric value which is the correct a-bit binary
number to display the digit on the Ha front panel LED's. The argument must be
an integer between O and 9. The following program demonstrates the use of PAD,
POKE, and SEG in EX. B.H. BASIC.

10 REM A PROGRAM TO USE THE FRONT PANEL LEDS. CNTRL 2,1 TURNS
20 REM ON THE LEDS WITHOUT UPDATE. THE KEYPAD NOW DRIVES THE
30 REM DISPLAY THRU BASIC. 8203 IS THE FIRST LED MEM LOCAT~ON.
40 CNTRL 2,1
60 A=8203
60 FOR I=At:. TO .A+8
70 POKE I,SEG(PAD(O))
80 NEXT I
90 GOTO 60

When the program is executed, the Ha front panel LEDs respond to the Ha
keypad numeric entries. To escape from the program, you would type CTRL-C
and then press a key on the Ha front panel.

The SEG function is not useful on an Ha9 computer. Running this sample
program on your Hag will produce no results. Type CTRL-C to exit.

THE SIGN FUNCTION, SGN (narg)

The SIGN function returns the value + 1 if "narg" is a positive value, O if "narg"
is O, and -1 if "narg" is negative. For example:

*PRINT SGN(5.6) ~
'"f

*PRINT SGN (-600) ·~

-1

*PRINT SGN(12-12) ~
0

*

THE SINE FUNCTION SIN (nexp)

The SIN function returns the sine of the argument (nexp) expressed in radians.
For example:

*PRINT SIN(30/67.296) ~
.499999

*

EXTENDED BENTON HARBOR BASIC I s-73

SQUARE ROOT FUNCTION, SQR (narg)

The SQUARE ROOT function returns the square root of "narg". The argument
"narg" must be greater than or equal to O (for example, positive).

*FOR A=O TO 5:PRINT A,SQR(A) .A*A:NEXT §
0 0 0
1 1 1
2 1.41421 4
3 1.73205 9
4 2 16
5 2.23607 25

*

THE MAXIMUM FUNCTION, MAX (nexpl, ,nexpn)

The MAXIMUM function returns the maximum value of all the expressions
which are arguments of the function. For example:

10 LET A=1
20 PRINT MAX(COS(A),SIN(A)/COS(A))
30 END

*RUN§
1. 55741
END AT LINE 30

*

The expression containing the maximum value is the expression for the tangent
of 1 radian, (1.55741).

THE MINIMUM FUNCTION, MIN (nexpl, .•. ,nexpn)

The MINIMUM function returns the lowest value of all expressions contained in
the argument. For example:

*PRINT MIN(1,2,3,4,.5) ~
.5

*

THE TANGENT FUNCTION, TAN (nexp)

The TANGENT function returns the TANGENT of the argument ''nexp'' expres­
sed in radians. For example:

*PRINT TAN (45/57.296) ~
.999996

*

5-7 41 CHAPTER FIVE

THE SPACE FUNCTION, SPC (iexp)

The SPACE function spaces the printhead (cursor) iexp spaces to the right of its
present position. For example:

*PRINT 12.14,SPC(20);600 §)
12 14 600

*

THE TAB FUNCTION TAB (iexp)

The TAB function moves the printhead (cursor) to the iexp th column. NOTE: If
the printhead is at or past the iexp th column, the function is ignored. For
example:

*PRINT TAB(20);60,70 §)
60 70

*

String Functions

BASIC contains various functions for processing character strings in addition to
the functions used for mathematical operations. These functions allow the
program to concatenate two strings, access a part of string, generate a character
string corresponding to a given number, or generate a number for a given string.

THE CHARACTER FUNCTION, CHR$ (iexp)

The CHARACTER function returns a string that consists of a single character.
The character generated has the ASCII code "iexp". NOTE: "iexp" is a decimal
number and must be converted to octal for comparison with most ASCII charac­
ter tables. See "Appendix B" on Page 5-97. For example:

*PRINT CHR$(65) §)
A
*PRINT CHR$ (70) §)
F

*

NOTE: If iexp =· O, the generated string is null.

EXTENDED BENTON HARBOR BASIC I s-75

THE STRING FUNCTIONS, STR$ (narg)

The STRING function encodes the argument (narg) into ASCII in the same format
used by the PRINT statement for numbers. These characters are returned as a
string, with leading and trailing blanks. For example:

*PRINT STR$ (100) § l
100

*PRINT "100" §

100

*
l

STR$ function

Normal string printing

THE ASCII FUNCTIONS, ASC (sexp)

The ASCII function returns the ASCII code for the first character in the string
expression (sexp). If the string is a null, the ASCII function returns a zero. The
return is a decimal number and must be converted to octal for comparison to
most ASCII tables. See "Appendix B" on Page 5-97. For example:

*PRINT ASC("ABC") §
65

*PRINT CHR$(65) §
A

*

THE LEFT STRING FUNCTION, LEFT$ (sexp, iexp)

The LEFT STRING function returns the "iexp" left-most characters of the string
expression (sexp). If "iexp" equals 0, the null string is returned. For example:

*PRINT LEFT$("HELLO, THIS IS A TEST",10) §

HELLO, THI

*
THE RIGHT STRING FUNCTION, RIGHT$ (sexp, iexp)

The RIGHT STRING function returns the right-most "iexp" characters of the
string expression (sexp). If "iexp" equals 0, the null string is returned. For
example:

*PRINT RIGHT$ ("HELLO, THIS IS A TEST", 10) §

IS A TEST

*
THE LEN FUNCTION, LEN (sexp)

The LEN function returns the length of the string expression "sexp". For exam­
ple:

*PRINT LEN("HOW LONG IS THE STRING?") §

23

5-7& I CHAPTER FIVE

THE MATCH STRING FUNCTION, MATCH (sexp1,sexp2,iexp)

The MATCH function searches the string sexpl for any substrings matching
sexp2. The search starts with character iexp in the string sexpl. If iexp = 1, the
search starts at the first character in sexp 1. If iexp = 2, the search starts at the
second character in sexp 1, and so forth. MATCH returns the character number of
the start of the substring in sexpl, if one was found, and a 0 if it was not found.
For example:

*PRINT MATCH("THIS IS A RATHER LONG STRING"."TH".2) §
13

*

.Nate that MATCH found the TH in RATHER, not in THIS. Since the MATCH call
specified a search to start with the second character, BASIC started searching at
the "HIS IS ... ", thereby ignoring the T in "THIS".

THr MIDDLE STRING FUNCTION, MID$ (sexp, iexp1 [,iexp2])

The MIDDLE STRING function returns the right-hand substring of the string
expression "sexp" starting with the "iexpl" th character from the left-hand side
(the first character is 1). The return continues for "iexp2" characters or to the end
of the string if the optional terminating expression "iexp2" is omitted. For
example:

*PRINT MID$ ("HELLO. THIS IS A TEST". 10. 10) §
IS- --rs-ATE

*

THE NUMERIC VALUE FUNCTION, VAL (sexp)

The NUMERIC VALUE function returns the numeric value of the number en­
coded in the string expression (sexp). For example:

*PRINT VAL (". 0032E-1") §

3.00000E-04

*

EXTENDED BENTON HARBOR BASIC I s-11

GENERAL TEXT RULES

BLANKS AND TABS

BASIC programs are generally "free format." That is, blanks (spaces and TABS)
may be included freely with the following restrictions.

1. Variable names, keywords, and numeric constants may not contain
imbedded blanks or tabs.

2. Blanks or tabs may not appear before a statement number.

LINE INSERTION

You can insert lines into a BASIC program by simply typing an appropriate line
number followed by the desired line of text. This is done in response to the
command mode prompt (an asterisk). Except when it it running a program,
BASIC remains in the command mode, showing a single asterisk(*) as a prompt.
NOTE: The text should immediately follow the last digit of the line number.
Although intervening blanks are allowable, they waste memory. BASIC au­
tomatically inserts a blank when listing the text. For example:

*100PRINT "HEATH BASIC"
LIST§
100 PRINT "HEATH BASIC"

Each time you type a statement with a line number, BASIC performs some simple
syntactical checks before inserting the line into your program. BASIC checks to
see if all the keywords are spelled correctly, and translates them to upper case. It
makes sure that all function calls· are immediately followed by an open paren­
thesis "(". BASIC makes several other checks of the line to check for simple
syntax errors. If the line is determined to be incorrect, the message

SYNTAX ERROR

will be typed, and the line will not be inserted into your program. Note that this
preliminary syntax check will not detect all possible errors; BASIC may accept
the line when you type it and then detect an error later when you execute your
program.

5-1a I CHAPTER FIVE

LINE LENGTH.

A line in Extended BENTON HARBOR BASIC is restricted to 100 characters.

LINE REPLACEMENT

Replace existing program lines by simply typing the line number and the new
text. This is the same process you use to insert a new line. The old line is
completely lost once the new line is entered.

LINE DELETION

Delete lines by typing the line number immediately followed by a carriage­
return. You can leave blank lines by typing the single space before typing the
carriage-return.

EXTENDED BENTON HARBOR BASIC I s-79

ERRORS

BASIC detects many different error conditions. When an error is detected, a
message of the form:

! ERROR-(ERRORMESSAGE) [at line NNNNN]

is typed. BASIC returns to the command mode (if it is not already in the
command mode), ringing the console terminal bell. If BASIC is in the command
mode, the "at line NNNN" portion of the error message is omitted. For example:

! PRINT 1/0 §

! ERROR - ATTEMPTED DIVIDE BY ZERO
*10PRINT 1/0 §
*RUN §

ERROR - ATTEMPTED DIVIDE BY ZERO AT LINE 10
*

NOTE: If a line of BASIC contains an error, you can correct it by retyping the
entire line. Once the line number is typed, the contents of the old line are lost. To
delete a line, type the line number and follow it with a carriage-return.

Error Messages

The following error table describes the Error Messages generated by Extended
BENTON HARBOR BASIC. This error table discusses only those errors which are
detected directly by BASIC. When you are dealing with HDOS files, there are
many errors which are detected by HDOS. They are printed in the BASIC error
message format described above, but their meanings are discussed in Chapter 1,

the HDOS Manual.

Recovering from Errors

When it detects an error, BASIC enters the command mode with the variables
and stacks as they were at the time of the error. Th us, the user can use PRINT and
LET statements to examine and alter variable contents. Likewise, a GOTO state­
ment can be used to set the "next statement" pointer to any desired statement
number. Often, a combination of these techniques allows the user to continue a
program with the error corrected.

NOTE: If the program text is modified in any way, the GOSUB and FOR stacks are
purged. If an error occurred in a GOSUB routine for a FOR-loop, the entire
program must be restarted.

5-80 I CHAPTER FIVE

EXTENDED BENTON HA.RBOR BASIC I s-01

ERROR MESSAGES

AN ILLEGAL CHARACTER WAS ENCOUNTERED
This message indicates a syntax error in the line. BASIC saw a character that
was not legal in a BASIC statement.

ATTEMPTED DIVIDE BY ZERO
Your program tried to divide a number by 0.

CAN'T FIND VARIABLE NAME MENTIONED IN NEXT STATEMENT
BASIC has not seen a matching FOR-loop for the variable named in the
NEXT statement. This error can be caused by improper FOR-loop nesting.

CTL-B STRUCK
The CTRL-B key was struck and no CTRL-B line number had been set up.
See the CNTRL O,n command for more information.

CTL-C STRUCK
The CTRL-C key was struck, interrupting the program.

DATA EXHAUSTED
A READ statement was executed when there was no data remaining in
DAT A statements to satisfy the. READ. You either have too many READ
requests or too few DAT A statements.

DATA LOCK ENGAGED.

END

This operation is illegal when BASIC is in the LOCKed state. See the LOCK
and UNLOCK commands for more information.

Your program executed an END statement. This is a normal way of terminat­
ing execution, and not an error. If your program has no END statement,
BASIC will invent one at line 65535.

FILE ALREADY EXISTS
You tried to SA VE to a file name which is already present on that device.
Either SAVE to a different file name, UNSAVE (delete) the existing file
name, or use the REPLACE command.

FILE IS NOT OPEN
You tried to do file I/0 (PRINT #chan, or INPUT #chan) to a channel which
has no open file associated with it. You must OPEN a file before it can be
used for INPUT or PRINTing.

•

s-a2 I CHAPTER FIVE

FLOATING POINT OVERFLOW (Number too large)
An arithmetic calculation produced a number larger than 1 x 101'37.

ILLEGAL FORMAT FOR FILE NAME
A file name specified in an OP EN statement contained too many characters
to be valid. There should be no blanks or extraneous characters in a file
name string.

ILLEGAL NUMBER VALUE
A number appeared in an illegal format or syntax. If this error occurs during
a READ or INPUT statement, check the value being READ or INPUTted to
see if it is valid.

ILLEGAL OR UNKNOWN STATEMENT NUMBER
A reference was made to a statement that does not exist, or to an illegal
statement number. Statement numbers must be between 1 and 65534.

ILLEGAL USAGE
This statement may not be used in this mode. You have tried to use an
"execution mode only" command in immediate mode, or an "immediate
mode only" command in an executing program.

NO CORRESPONDING GOSUB FOR THIS RETURN STATEMENT
A RETURN statement was encountered when the GOSUB stack was empty.

OUT OF RAM SPACE

STOP

There is insufficient free RAM space to continue with this program. This
error usually occurs when you DIMension a large array. If you cannot
determine the cause of the memory overflow, use the FREE command to
display the amounts being used by the various tables. If you have specified
CNTRL 4,1, you can free up some RAM space by specifying CNTRL 4,0.

A STOP statement was encountered. This is a normal condition, and not an
error.

STRING LENGTH EXCEEDS 255 CHARACTERS
The maximum length of a string in BASIC is 255 characters.

SUBSCRIPT OUT OF RANGE
The program specified a subscript value larger than the declared limit for
that dimension. Either your array was declared too small or your program
incorrectly computed the subscript.

EXTENDED BENTON HARBOR BASIC I s-aa

SYNTAX ERROR
There is an error in the statement's syntax.

TOO MANY OR TOO FEW ARGUMENTS SPECIFIED
An incorrect number of arguments was specified for a call to a built-in
function or a user-defined function.

TOO MANY OR TOO FEW SUBSCRIPTS SUPPLIED
The number of subscripts in the array reference do not match the number of
dimensions declared.

TYPE CONFLICT (ILLEGAL mix of string and number values)
The program attempted an operation illegally mixing string and number
values, or supplied a numeric argument to a function requiring a string
argument, or vice versa. This error can also occur if you try to INPUT or
READ a string value into a numeric variable.

UNDEFINED FUNCTION
This user-defined function has not been defined. Your program must exe­
cute the DEF FN statement before you attempt to call that function.

5-84 I CHAPTER FIVE

EXTENDED BENTON HARBOR BASIC I s-as

APPENDIX A

A Summary of BASIC

For additional details, refer to the page number that is
given with each of the following topics.

Numeric Data

Numbers may be real or integer with the following characteristics:

Range . 1 o-3s to 1 o+37•

Accuracy 6.9 digits.
Decimal range 0.1 to 999999.
Exponential format (±) XJCXXXXE (±) NN.

Boolean Data

See Page

5-9

5-10

Integer numbers from O to 65535 represent two byte binary data from
00000000 00000000 to 11111111 11111111. Fractional parts of numbers be­
tween O and 6553 5 are discarded.

String Data 5-10

Data is all printed in ASCII characters plus the BELL, BLANK, TAB, and FORM
FEED, with the following characteristics:

Maximum string length 255 characters.
Enclosure . Quotation marks (") on both ends.
Multiple lines Not allowed for a single string.

Variables 5-11

Variables are named by a single letter (A through Z), or a single letter followed by
a single number (O through 9). For example: A or A6.

•

5-B& I CHAPTER FIVE

See Page

Subscripted Variables 5-12

Subscripted variables are named like variables, but are followed by dimensions
in parentheses. Subscripted variables are of the form:

An(N 1 ,N2 , ••••• , N.r) For example: A(1,2,7) or A6(1,5).

You must use a DIMENSION statement to define the range and number of
allowable subscripts for a variable.

Arithmetic Operators 5-14

Listed in order of priority. Operators on the same line have equal precedence.
Parenthetical operations are performed first. Precedence is left to right if all other
factors are equal.

SYMBOL

t
* I
+ -

EXPLANATION

Unary negation logical complement
Exponentiation.
Multiplication division
Addition subtraction

Relational Operators

SYMBOL EXPLANATION

= Equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

<> Not equal to

5-18

Boolean Operators

EXTENDED BENTON HARBOR BASIC I s-87

See Page

5-19

Boolean operators perform the Boolean (logical) operations on two integer
operands. The operands must evaluate to integers in the range of Oto 65535. The
operators are:

NOT
OR

AND

String Variables

Logical complement, bit by bit
Logical OR, bit by bit
Logical AND, bit by bit

5-21

String variables may be either subscripted or nonsubscripted. They take the
same form as numeric or Boolean variables but are followed by a dollar sign($) to
indicate a string variable. For example: A$ A6$ A$(1,2,7) or A6$(1,5).

String Operators 5-22

String expressions may be operated on by the relational operators as well as the
plus (+) symbol. The plus symbol is used to perform string concatenation.

Line Numbers 5-25

When it is used in the program mode, BASIC requires that each line be preceded
by an integer line number in the range 1 to 65534.

The Command Mode 5-23

The command mode does not use line numbers. Statements are executed when a
carriage-return is typed.

Multiple Statements on One Line 5-25*

BASIC permits multiple statements on one line. Each statement is separated
from the others by a colon(:). DATA statements may not appear on lines with
other statements.

*See "Basic Statements."

s-aa 1 CHAPTER FIVE

Command Mode Statements

COMMAND FORM DESCRIPTION SEE Pg.

BUILD BUILD iexp 1, iexp2 Automatically generates program 5-27
line numbers starting at iexpl in
steps of iexp2.

BYE BYE Exits BASIC, returns to HDOS 5-28
command mode.

CONTINUE CONTINUE Resumes program execution. 5-28

DELETE DELETE Deletes program lines between 5-29
[iexpl, iexp2] iexp 1 and iexp2

LIST LIST Lists the entire program on the 5-29
[iexpl] [,iexp2] console terminal. Lists the line iexp 1

or the range of lines iexp 1
through iexp2.

OLD OLD "fname" Loads file "fname" into BASIC. 5-30
Clears variables.

REPLACE REPLACE "fname" Saves current program as file "fname." 5-30
Replaces "fname" if it already exists.

RUN RUN Start execution of current program. 5-31
Preclears all variables, stacks, etc ..

SAVE SA VE "fname" Saves current program as file 5-32
"fname". Will not replace any
pre-existing ''fname''.

SCRATCH SCRATCH Clears all program and data 5-32
SURE?Y § storage area. Any response to

SURE but Y cancels SCRATCH.

EXTENDED BENTON HARBOR BASIC I s-ag

Command and Program Mode Statements

COMMAND FORM

CHAIN

CLEAR

CLOSE

CONTROL

CHAIN
''fname"[,linnum]

CLEAR [varname]

CLOSE #chan 1
[,#chan n]

CNTRL iexp 1, iexp2

DESCRIPTION

Loads new program "fname" into
BASIC and continues execution at linnum.
If no line number is specified, start
execution at first line number. Does
not affect variables or open files.

Clears all variables, arrays, string
buffers, etc. Optionally clears
named variable (varname).
Specifies functions and arrays as
V).

Close an HDOS file. "#chan" is the
number assigned to the opened file.

CNTRL O sets a GOSUB to line iexp2
when a CTRL-B is typed.

CNTRL 1 sets iexp2 digits before
exponential format is used.

CNTRL 2 controls the Ha front
panel. If iexp2: = 0, display off; if
iexp2 = 1, display on without up­
date; if i\3XP2 = 2, display on with up
date. (NOTE: has no effect dll the
H89). .

CNTRL 3 sets the width of a print
zone to iexp2 columns.

CNTRL 4 controls the state of the
HDOS system overlay. iexp2 = 0,
swap overlay. iexp = 1, keep over­
lay in memory. (Command Mode
only).

DIMENSION DIMvarname(iexp1 [, ,iexpn]) [,varname2(....)]

Defines the maximum size
of variable arrays.

SEE Pg.

5-33

5-34

5-35

5-37

5-38

5-38

5-39

5-39

5-40

5-90IL_c_HA_P_T_E_R __ F1_v_E __ ----

COMMAND FORM DESCRIPTION

FOR/NEXT FOR var= nexpl TO nexp2 [STEP nexp3)

NEXT var

FREE FREE

FREEZE FREEZE "fname"

GOSUB/ GOSUB iexp
RETURN RETURN

GOTO GOTO iexp

IF/THEN IF expression THEN
iexp IF expression
THEN statement

LET LET var = nexp
LET var$ = sexp

Defines a program loop. Var is ini­
tially set to nexpl. Loop cycles
until NEXT is executed; then var
is incremented by nexp3 (default
is +1). Looping continues until
var > nexp2 (or less then nexp2 if
STEP is negative). The statement
after NEXT is then executed.

Displays the amount of memory
assigned to tables and text.

Saves BASIC interpreter, current
program, and data values on file
"fname". All files must be closed
before FREEZE.

Transfers execution sequence
of program to line iexp (the
beginning of a subroutine). RETURN
returns execution sequence to
the statement following the
calling GOSUB.

Unconditionally transfers the
program execution sequence to
the line iexp.

If the expression is true,
control passes to iexp line
or to "statement." If the
relation is false, control
passes to the next independent
statement.

Assigns the value nexp (or sexp in the
case of strings) to the variable var (or
var$). LET keyword is optional.

SEE Pg.

5-41

5-45

5-47

5-47

5-49

5-49

5-50

COMMAND FORM

LOCK LOCK

ON/GOSUB ON iexpl GOSUB
iexp2 , ... ,iexpn.

ON/GOTO ON iexpl GOTO
iexp2 , ... ,iexpn

OPEN OPEN sexp FOR
READ AS FILE
#iexp

OUT

PAUSE

POKE

OPEN sexp FOR
WRITE AS FILE
#iexp

OUT iexpl, iexp2

PAUSE (iexp)

POKE iexpl, iexp2

EXTENDED BENTON HARBOR BASIC I s-91

DESCRIPTION

Protects your program by prevent­
ing you from executing the
BUILD, BYE, CHAIN, UN­
FREEZE, DELETE, RUN,
SCRATCH, and CLEAR command
mode statements. Also prevents
the entry or deletion of program
text.

Permits a computed GOSUB. Iexpl
is evaluated and acts as an index
to line numbers iexp2 thru iexpn,
each pointing to a different
subroutine.

Permits a computed GOTO. Iexpl
is evaluated and acts as an index
to line numbers iexp2 thru iexpn.

Opens file for read or WTite
operations. "sexp" is a string
expression for the file name.
"#iexp" is the cha~nel number
assigned to the file to be ope,ned.

Outputs a number iexp2
to output port iexpl.

Ceases program execution until a
console terminal key is typed.
Ceases program execution for 2 X
iexp mS.

Writes a number iexp2 into
memory location iexpl.

SEE Pg.

5-51

5-52

5-52

5-52

5-54

5-54

5-55

5-92f cHAP~T=ER~F~IV~E:__ __ _

COMMAND FORM

PRINT PRINT [#chan,]
(nexp1 sept ...
nexpn (sepn)

DESCRIPTION

Prints the value of the expres­
sion(s) exp with a leading and
trailing space. Expressions may
be numeric or string. If the
separator is a comma, the next
print zone is used. If the separator
is a semicolon, no print zones are
used. No separator prints each
expression on a new line. #chan
specifies channel to write line to
HDOS file. If no #chan is
specified, line goes to console
terminal.

READ/DATA READ var1, ... ,varn The READ statement assigns the
DATA exp1 .. ,expn values exp1 thru expn in the

data to the variables var1 thru varn.

REMARK REM Text following the REM is not
executed and is used for
commentary only.

RESTORE RESTORE Causes the program to reset the
DATA pointer, thus reusing data
at the first DAT A statement.

STEP STEP iexp Executes iexp lines of the
program. Then returns BASIC to
the command mode.

UNFREEZE UNFREEZE "fname" Restores BASIC program and
variables from previously
created FREEZE file. ·

UNLOCK UNLOCK Aborts the LOCK mode and restores the
use of all command mode statements.

UNSAVE UNSA VE "fname" Deletes programs or files from the disk.

SEE Pg.

5-55

5-59

5-61

5-61

5-62

5-62

5-63

5-63

EXTENDED BENTON HARBOR BASIC I s-93

Program Mode Statements

COMMAND FORM

DEF

END

INPUT

LINE INPUT

STOP

DEF FN varname
(arg list) = exp

END

INPUT [#chan,]
prompt;var1 , ... ,varn

LINE INPUT [#chan,]
prompt;stringvar

STOP

DESCRIPTION

Defines a single-line program
function created by the user.

Causes control to return to
the command mode.

Reads data from the console ter-
minal, or from the HDOS file open
on channel "chan", if #chan is
specified. String data must be en-
closed in quotes if it contains any
commas(,).

Reads string data from the console
terminal, or from the HDOS file
open on channel "chan, if #chan,
is specified. Data should not be
enclosed in quotes; entire line is
read into string variable.

Causes BASIC to enter the command mode
when the statement containing STOP
is executed.

SEE Pg.

5-63

5-64

5-64

5-64

5-66

5-94l~_c_HA_P_T_E_R __ F1_v_e __ __

Predefined Functions

FUNCTION DEFINITION SEE Pg.

ABS (nexp) Returns the absolute value of nexp. 5-67

ASC (sexp) Returns the ASCII code for the first 5-75
character in the string sexp.

ATN (nexp) Return the arctangent of nexp (radians). 5-68

CHR$ (iexp) Returns the ASCII character iexp. 5-74

CIN (chan) Reads a character from any open 5-68
file, or from the console terminal
(if chan = 0). If the value returned
is positive, a character was read. If
the value was negative, an end-
of-file or no line was read.

COS (nexp) . Returns the cosine of nexp (radians). 5-68

EXP (nexp) Returns enexp. 5-68

INT (narg) Returns the integer value of narg. 5-68

LEFT (sexp, iexp) Returns the left iexp charaters of the 5-75
string sexp.

LEN (sexp) Returns length of string expression sexp. 5-75

LNO (iexp) Converts iexp to a line number. 5-69

LOG (nexp) Returns the natural logarithm of nexp. 5-69

MATCH Finds the first occurrence of the substring sexp 2 in 5-76

(sexp1, sexp2, iexp) sexp1 starting at the iexp th character in sexp1.
Returns index of start of substring if found, 0 if not
found.

MAX (nexp1, ... ,nexpn) Returns the maximum value of expressions 5-73
nexp1 thru nexpn.

EXTENDED BENTON HARBOR BASIC I s-95

COMMAND FUNCTION

MID$ (sexp, iexpl) [,iexp2] Returns the substring of the string sexp
starting with the iexp 1 th character
and ending with the iexp2 th character
if iexp2 is specified. If not specified,
returns iexpl th character to the end.

MIN (nexpl, ... ,nexpn)

PAD (0)

PEEK (iexp)

PIN (iexp)

POS (chan)

RND (narg)

RIGHT$ (sexp, iexp)

SEG (narg)

SGN (narg)

SIN (nexp)

SPC (iexp)

SQR (narg)

Returns the minimum value of
expressions nexpl thru nexpn.

Returns the value of the HB front
panel key pressed. Includes key de­
bounce. Returns a O on an H89.

Returns the numeric value at memory
location iexp.

Returns the data input from port iexp.

Retuns the current file or console printhead
(cursor) position (by column number).

Returns a random number. If narg >O,
RND is next in the series. If narge = O

RND is the previous random number. If
narg <O, RND algorithm uses narg as a new seed.

Returns the right iexp characters of
the string sexp.

Returns the correct eight-bit number
to display narg (0-9) on the HB LEDs.
Has no effect on an HB 9.

Returns + 1 if narge is positive.
Returns -1 if narg is negative.
Returns O if narg is zero.

Returns the sine of nexp (radians).

Positions printhead (cursor) iexp
columns to the right.

Returns the square root of narg.

SEE Pg.

5-76

5-73

5-70

5-70

5-70

5-70

5-70

5-75

5-72

5-72

5-72

5-74

5-73

5-961 CHAPTER FIVE

COMMAND FUNCTION SEE Pg.

STR$ (narg) Returns narg encoded into ASCII with 5-75
leading and trailing blanks as in the
print statement.

TAB (iexp) Position printhead (cursor) to the 5-74
iexp th column.

TAN (nexp) Returns the tangent of nexp (radians). 5-73

VAL (sexp) Returns the numeric value of the 5-76
number encoded in the string.

EXTENDED BENTON HARBOR BASIC I s-97

APPENDIX B

ASCII CODES

DECIMAL TO OCTAL TO HEX TO ASCII CONVERSION

DEC OCT HEX ASCII DEC

D ODO DD NUL
1 001 01 SOH
2 002 02 STX
3 003 03 ETX
4 004 04 EQT
5 005 05 ENQ
6 006 06 ACK
7 007 07 BEL

8 010 08 BS
9 011 09 HT

10 012 DA LF
11 013 DB VT
12 014 DC FF
13 015 DD CR
14 016 DE SO
15 017 OF SI

16 020 10 OLE
17 021 11 DC1
18 022 12 DC2
19 023 13 DC3
20 024 14 DC4
21 025 15 N~K

22 026 16 SYN
23 027 17 ETB

24 030 18 CAN
25 031 19 EM
26 032 1A SUB
27 . 033 1B ESC
28 ··. 034 1C FS
29 035 1D GS
30 036 1E RS
31 037 1F US

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

OCT HEX ASCII

040 20 SPACE
041 21
042 22
043 23 #
044 24 $
045 25 %
046 26 &
047 27

050 28
051 29
052 2A *
053 2B +
054 2C
055 20
056 2E PERIOD
057 2F I

060 30 0
061 31 1
062 32 2
063 33 3
064 34 4
065 35 5
066 36 G
067 37 7

070 38 8
071 39 9
072 3A
073 .3B
074 3C <
075 30
076 3E >
077 3F ?

DEC OCT HEX ASCII DEC

64
65
66
67
68
69
70
71

72
73
74
75
7G
77
78
79

80
81
82
83
84
85
8G
87

88
89
90
91
92
93
94
95

100 40
101 41
102 42
103 43
104 44
105 45
106 46
107 47

110 48
111 49
112 4A
113 4B
114 4C
115 40
116 4E
117 4F

120 50
121 51
122 52
123 53
124 54
125 55
126 56
127 57

130 58
131 59
132 5A
133 5B
134 5C
135 50
136 5E
137 5F

@

A
B
c
D
E
F
G

H
I
J
K
L
M
N
0

p
Q

R
s
T
u
v
w

x
y

z
[

\
]
A

96
97
98
99

100
101
102
103

104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119

120
121
122
123
124
125
126
127

OCT HEX ASCII

140 60
141 61 a
142 62 b
143 63 c
144 64 d
145 65 e
146 66 f
147 G7 g

150 G8 h
151 G9 i
152 GA j
153 GB k
154 GC 1
155 GD m
15G GE n
157 GF o

160 70 p
161 71 q
1G2 72 r
163 73 s
164 74 t
165 75 u
16G 7G v
167 77 w

170 78 x
171 79 y
172 7A z
173 7B {
174 7C I
175 7D }
17G 7E
177 7F DELETE

5-98l __ cH_A_P_T_ER __ F_1v_E __ __

NUL Null; Tape Feed,
SOH Start of Heading; Start of Message
STX Start of Text; End of Address
ETX End of Text; End of Message
EOT End of Transmission; Shuts off TWX machines
ENQ Enquiry; WRU
ACK Acknowledge; RU
BEL Rings Bell
BS Backspace; For at Effector
HT Horizontal TAB
LF Line Feed or Space (New Line)
VT Vertical TAB
FF Form Feed (PAGE)
CR Carriage Return
SO Shift Out
SI Shift In
OLE Data Link Escape
DC1 Device Control 1; Reader on
DC2 Device Control 2; Punch on
DC3 Device Control 3; Reader off
DC4 Device Control 4; Punch off
NAK Negative Acknowledge; Error
SYN Synchronous Idle (SYNC)
ETB End of Transmission Block; Logical End of Medium
CAN Cancel (CANCL)
EM End of Medium
SUB Substitute
ESC Escape
FS File Separator
GS Group Separator
RS Record Separator
US Unit Separator

Note that these characters (Octal 000 through 037), can be generated from the
combination CTRL and the character in the same row, but in the third or fourth column
(Octal 100 through 137 or 140 through 177).
That is, BEL is Control/G or /g, and CAN is Control/X or /x.

EXTENDED BENTON HARBOR BASIC I s-99

INDEX

NOTE: Numbers printed in a bold type face refer to
examples of the indicated statement or function:

ASCII Function, 5-75
Absolute Value, 5-67
Addition, 5-14, 5-16
AND, 5-19
Arc Tangent Function, 5-68
Arithmetic, 5-9
Arithmetic, Functions, 5-67 ff
Arithmetic Operators, 5-14
Arithmetic Priority, 5-14
Arrays, 5-12 ff, 5-21, 5-35
Assignment Statement, 5-11
Asterisk, 5-7, 5-14

BASIC File, 5-29, 30, 32,
35, 52, 55

Basic Statements, 5-25
Blanks (spaces), 5-77
Boolean Values, 5-10
Brackets, 5-26
BUILD, 5-27

Character Input Function, CIN '· 5-68
CHR$, 5-74
CLEAR, 5-34
Clear Varname, 5-34
Colon, 5-25,
Comma, 5-57
Command Mode, 5-23 ff, 5-33
Comments, 5-61
Concatenation, 5-22
Continue, 5-23, 5-28
CTRL-B, 5-37
CTRL-C, 5-27
CNTRL, 5-37 ff
Cosine Function, 5-68

DATA, 5-59
Data Exhausted, 5-81
Data Only Statement,

One Line, 5-60
Decimal Notation, 5-10
DEF FN, 5-63
DELETE, 5-29
DIM (Dimension), 5-12, 5-13, 5-40

Displays Control, 5-38
Divide by Zero, 5-79
Division, 5-14
Dollar Sign ($), 5-21
Double Commas, 5-57

END, 5-53
Equal Sign, 5-18, 5-22, 5-46
Errors, 5-79 ff
Error Recovery, 5-79
ERROR Table, 5-79
Exponential Format, 5-9
Exponential Function, 5-68
Exponential Notation, 5-9
Exponentiation, 5-15 ff
Expressions, 5-14
Extended B. H. Basic, 5-7

False, 5-18
FOR, 5-24, 5-37, 5-39, 5-39 ff
FREE, 5-45
Functions, Predefined, 5-67 ff

GOSUB, 5-47
GOTO, 5-48

5-100 I CHAPTER FIVE

iexp, 5-26
IF GOTO, 5-49
IF THEN, 5-18, 5-49

Immediate Execution, 5-23
Input and Line Input, 5-64
Integer Function, 5-68
Integer Numbers, 5-9

Left String Function, 5-75
LEN Function, 5-75
LET, 5-50
Lexical Rules, 5-77
Line Deletion, 5-78
Line Input, 5-64
Line Insertion, 5-77
Line Length, 5-7 8
Line Numbers, 5-25
Line Replacement, 5-78
Linnum, 5-48, 5-50, 5-52
LIST, 5-50
LNO, 5-69
Loading Basic, 5-7
LOCK, 5-51
Logarithm Function, 5-69
Loop, 5-24, 5,-41 ff

MATCH String Function, 5-76
Maximum Function, 5-73
Memory, 5-6

Middle String Function, 5-76
Minimum Function, 5-73
Multiple Statements, 5-24
Multiplication, 5-14 ff

"Name", 5-27
Negation~ 5-14, 5-15
Nesting, 5-44 ff
Nesting Depth, 5-44
nexp, 5-26 ff
NEXT, 5-24, 5-37
NOT, 5-15, 5-19

Numeric Data, 5-9
Numeric Value Function, 5-76
NXT, 5-62

OLD, 5-30
ON ... GOSUB, 5-52
ON ... GOTO, 5-52
OPEN, 5-52
Operators, 5-14
OR, 5-19
OUT, 5-54
Output Port, 5-54
Output Restoration, 1-18
Output Suspension, 1-18, 5-51
Outputting Control, 1-18

PAD Function, 5-70
Parentheses, 5-15
PAUSE, 5-54
PEEK, 5-70
PIN, 5-70
POKE, 5-55
POS, Position Function, 5-70
Predefined Functions, 5-67 ff
PRINT, 5-55 ff
Printing Strings, 5-56
Printing Variables, 5-56
Print Zone, 5-57
Priority, Arithmetic, 5-14 ff
Program Loop, 5-24, 5-37
Program Mode, 5-25 ff, 5-33
Prompt,

Basic, 5-7
Input, 5-64

Quotes,
Input, 5-64
Line Input, 5-64
Strings, 5-56
Data, 5-59

Random Function RND, 5-70
READ, 5-59
Real Numbers, 5-9
Relational Operators, 5-18, 5-22
REM (Remark), 5-61
RESTORE, 5-61
RETURN, 5-4 7 ff
Right String Function, 5-75
RUN, 5-31

SCRATCH, 5-32
Segment Function, 5-72
Semicolon, 5-57
sexp, 5-26
Sign Function SGN, 5-72
Sine Function, 5-72
Single Statements, 5-23 ff
Single Step Execution, 5-62

Space Function, 5-74
Spaces, see "Blanks", 5-77
Special Feature Functions, 5-67 ff
SQUARE (Example), 5-24, 5-37
Square Root Function, 5-73
Statement Length, 5-2 5
Statements, 5-25 ff
Statement Types, 5-26
Step, FOR/NEXT, 5-4·1 ff
STEP, 5-62

STOP, 5-66
String Data, 5-10
String Functions, 5-7 4 ff
String Operators, 5-22
Strings, 5-21

EXTENDED BENTON HARBOR BASIC I 5· 101

String Variables, 5-21
Subroutines, 5-47 ff
Subscripted Variables, 5-12
Subtraction, 5-14, 5-16
SURE, 5-28, 5-32

TAB Function, 5-74
Tangent Function, 5-73
Text Rules, 5-77
Trailing blanks, 5-56
True, 5-18
Truncation, 5-1L

Unary Operators, 5-14 ff
UNLOCK, 5-62
USE Error, 5-27
User-Defined Function,

Single Line (DEF-FN), 5-63

VAL, 5-76
Var, 5-27
Variables, 5-11

	5-001
	5-002
	5-003
	5-004
	5-005
	5-006
	5-007
	5-008
	5-009
	5-010
	5-011
	5-012
	5-013
	5-014
	5-015
	5-016
	5-017
	5-018
	5-019
	5-020
	5-021
	5-022
	5-023
	5-024
	5-025
	5-026
	5-027
	5-028
	5-029
	5-030
	5-031
	5-032
	5-033
	5-034
	5-035
	5-036
	5-037
	5-038
	5-039
	5-040
	5-041
	5-042
	5-043
	5-044
	5-045
	5-046
	5-047
	5-048
	5-049
	5-050
	5-051
	5-052
	5-053
	5-054
	5-055
	5-056
	5-057
	5-058
	5-059
	5-060
	5-061
	5-062
	5-063
	5-064
	5-065
	5-066
	5-067
	5-068
	5-069
	5-070
	5-071
	5-072
	5-073
	5-074
	5-075
	5-076
	5-077
	5-078
	5-079
	5-080
	5-081
	5-082
	5-083
	5-084
	5-085
	5-086
	5-087
	5-088
	5-089
	5-090
	5-091
	5-092
	5-093
	5-094
	5-095
	5-096
	5-097
	5-098
	5-099
	5-100
	5-101

