
ZAM

ZENTEC ASSEMBLY METHOD

9000 SERIES REFERENCE MANUAL

Zentec Corporation

88-409-01 REV B.

Z~

ZENTEC ASSEMBLY METHOD

9000 SERIES REFERENCE MANUAL

The information in this manual is based on the latest
specifications available at the time of publication.
Every effort has been made to insure its accuracy.
However, ZENTEC reserves the right to make changes at
any time.

(£) ZENTEC CORPORATION 1976 Issued: May 1976

SECTION

1

2

3

4

5

TABLE OF CONTENTS

TITLE

ORGANIZATION OF THE ZENTEC 9000 SERIES
1.1 WORKING REGISTERS
1.2 MEMORY
1.3 PROGRAM COUNTER
1.4 STACK POINTER
1.5 INPUT/OUTPUT

PROGRAMMING CONCEPTS
2.1 COMPUTER PROGRAM REPRESENTATION IN MEMORY
2.2 MEMORY ADDRESSING

2.2.1 Direct Addressing
2.2.2 Register Pair Addressing
2.2.3 Stack Pointer Addressing
2.2.4 Immediate Addressing

2.3 SUBROUTINES AND USE OF THE STACK FOR
ADDRESSING

2.4 CONDITION BITS

FORMAT
3.1
3.2
3.3
3.4
3.5

2.4.1 Carry Bit
2.4.2 Auxiliary Carry Bit
2.4.3 Sign Bit
2.4.4 Zero Bit
2.4.5 Parity Bit

OF THE ASSEMBLY LANGUAGE STATEMENT
LABEL FIELD
CODE FIELD
OPERAND FIELD·
COMMENT FIELD
ASSEMBLER LISTING FIELDS

ASSEMBLER DIRECTIVES
4.1 PSEUDO-INSTRUCTIONS

4.1.1 EJT Eject A Page
4.1.2 END End of Program
4.1.3 ENTY Identify Entry Point
4.1.4 EQU Equate
4.1.5 EXTN Identify External Symbol
4.1.6 ORG Origin
4.1.7 SPC Space

4.2 DECLARATION INSTRUCTIONS
4.2.1 DC Define Constant
4.2.2 DS Define Storage
4.2.3 DB Define Byte

THE 9000 INSTRUCTION SET
5.1 INSTRUCTION GROUPS
5.2 CARRY BIT INSTRUCTIONS

5.2.1 COMC Complement Carry
5.2.2 SETC Set Carry

i

PAGE

1-1
1-1
1-1
1-4
1-4
1-5

2-1
2-1
2-3
2-3
2-3
2-4
2-6

2-7
2-9
2-9
2-9
2-10
2-10
2-10

3-1
3-2
3-4
3-4
3-7
3-8

4-1
4-1
4-1
4-1
4-2
4-2
4-3
4-5
4-6
4-7
4-7
4-8
4-9

5-1
5-1
5-2
5-2
5-2

SECTION

5.3

5.4

5.5

5.6

5.7

5.8

TABLE OF CONTENTS (Continued)

TITLE

SINGLE REGISTER INSTRUCTIONS
5.3.1 BUMP Bump Register or Memory
5.3.2 COM Complement Accumulator
5.3.3 DAA Decimal Adjust Accumulator
5.3.4 DEC Decrement Register or Memory
NOP INSTRUCTION
5.4.1 NOP No Operation
DATA TRANSFER INSTRUCTIONS
5.5.1 LB Load Byte
5.5.2 LBA Load Byte to Accumulator
5.5.3 LBI Load Byte Immediate
5.5.4 LR Load Register
5.5.5 STA Store Accumulator
5.5.6 STB Store Byte
5.5.7 STBI Store Byte Immediate
REGISTER OR MEMORY TO ACCUMULATOR INSTRUC­

A Add
AC Add Carry
ACI Add Carry Immediate
AI Add Immediate
AND Logical AND
ANDI AND Immediate
ANDR AND Register
AR Add Register
ARC Add Register Carry
C Compare
CI Compare Immediate
CR Compare Registers
o Logical OR
OI OR Immediate
OR OR Registers
S Subtract
SC Subtract Carry
SCI Subtract Carry Immediate
SI Subtract Immediate
SR Subtract Register
SRC Subtract Register Carry
X Exclusive OR
XI Exclusive OR Immediate
XR Exclusive OR Register

TIONS
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6
5.6.7
5.6.8
5.6.9
5.6.10
5.6.11
5.6.12
5.6.13
5.6.14
5.6.15
5.6.16
5.6.17
5.6.18
5.6.19
5.6.20
5.6.21
5.6.22
5.6.23
5.6.24
ROTATE
5.7.1
5.7.2
5.7.3
5.7.4
REGISTER
5.8.1

ACCUMULATOR INSTRUCTIONS
RLC Rotate Left Carry
ROL Rotate Left
ROR Rotate Right
RRC Rotate Right Carry
PAIR INSTRUCTIONS
DAD Double Add

ii

PAGE

5-3
5-3
5-4
5-4
5-6
5-7
5-7
5-8
5-8
5-9
5-10
5-11
5-12
5-13
5 ... 14

5-15
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-26
5-27
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5 ... 39
5-40
5-41
5-41
5-42
5-43
5-44
5-45
5-46

TABLE OF CONTENTS (Continued)

SECTION TITLE PAGE

5.8.2 DECP Decrement Register Pair 5-47
5.8.3 INCP Increment Register Pair 5-48
5.8.4 LHI Load Half-Word Immediate 5-49
5.8.5 POP Pop Data Off Stack 5-51
5.8.6 PUSH Push Data Onto Stack 5-53
5.8.7 SPHL .. Load SP From Hand L 5-55
5.8.8 XCHG Exchange Registers 5-56
5.8.9 XTHL Exchange Stack 5-57

5.9 DIRECT ADDRESSING INSTRUCTIONS 5-58
5.9.1 LAD Load Accumulator Direct 5-58
5.9.2 LHLD Load Hand L Direct 5-59
5.9.3 SHLD Store Hand L Direct 5-59
5.9.4 STD Store Accumulator Direct 5-60

5.10 BRANCH INSTRUCTIONS 5-61
5.10.1 B Absolute Branch 5-61
5.10.2 BE Branch On Equal 5-62
5.10.3 BFC Branch False Carry 5-62
5.10.4 BFP Branch False Parity 5-63
5.10.5 BFS Branch False Sign 5-63
5.10.6 BFZ Branch False Zero 5-64
5.10.7 BH Branch On High Or Equal 5-64
5.10.8 BL Branch On Low 5-65
5.10.9 BM Branch On Minus 5-65
5.10.10 BNE Branch On Not Equal 5-66
5.10.11 BNM Branch On Not Minus 5-66
5.10.12 BNP Branch On Not Plus 5-66
5.10.13 BNZ Branch On Not Zero 5-67
5.10.14 BP Branch On Plus 5-67
5.10.15 BTC Branch True Carry 5-67
5.10.16 BTP Branch True Parity 5-68
5.10.17 BTS Branch True Sign 5-68
5.10.18 BTZ Branch True Zero 5-68
5.10.19 BZ Branch On Zero 5-69
5.10.20 PCHL Load Program Counter 5-69

5.11 CALL SUBROUTINE INSTRUCTIONS 5-70
5.11.1 CALL Absolute Call 5-70
5.11.2 CE Call On Equal 5-70
5.11. 3 CTC Call False Carry 5-71
5.11.4 CFP Call False Parity 5-71
5.11.5 CFS Call False Sign 5-71
5.11. 6 CFZ Call False Zero 5-72
5.11. 7 CH Call On High Or Equal 5-72
5.11. 8 CL Call On Low 5-72
5.11. 9 CM Call On Minus 5-73
5.11.10 CNE Call On Not Equal 5-73
5.11.11 CNM Call On Not Minus 5-73
5.11.12 CNP Call On Not Plus 5-74
5.11.13 CNZ Call On Not Zero 5-74
5.11.14 CP Call On Plus 5-74

iii

TABLE OF CONTENTS (Continued)

SECTl;ON TITLE PAGE

5.11.15 CTC Call True Carry 5-75
5.11.16 CTP Call True Parity 5-75
5.11.17 CTS Call True Sign 5-75
5.11.18 CTZ Call True Zero 5-76
5.11.19 CZ CalIOn Zero 5-76

5.12 RETURN FROM SUBROUTINE INSTRUCTIONS 5-77
5.12.1 RET Absolute Return 5-77
5.12.2 RE Return On Equal 5-77
5.12.3 RFC Return False Carry 5-77
5.12.4 RFP Return False Parity 5-78
5.12.5 RFS Return False Sign 5-78
5.12.6 RFZ Return False Zero 5-78
5.12.7 RH Return On High Or Equal 5-79
5.12.8 RL Return On Low 5-79
5.12.9 RM Return On Minus 5-79
5.12.10 RNE Return On Not Equal 5-80
5.12.11 RNM Return On Not Minus 5-80
5.12.12 RNP Return On Not Plus 5-80
5.12.13 RNZ Return On Not Zero 5-81
5.12.14 RP Return On PlUS 5-81
5.12.15 RTC Return True Carry 5-81
5.12.16 RTP Return True Parity 5-82
5.12.17 RTS Return True Sign 5-82
5.12.18 RTZ Return True Zero 5-82
5.12.19 RZ Return On Zero 5-82

5.13 INTERRUPT ENABLE/DISABLE INSTRUCTIONS 5-84
5.13.1 EI Enable Interrupts 5-84
5.13.2 DI Disable Interrupts 5-84

5.14 INPUT/OUTPUT INSTRUCTIONS (9003) 5-85
5.14.1 IN Input 5-85
5.14.2 OUT Output 5-86

5.15 INPUT/OUTPUT INSTRUCTIONS (9002) 5-87
5.15.1 IN Input 5-87
5.15.2 OUT Output 5-87

6 SUBROUTINE PROGRAMMING 6-1
6.1 BASIC OPERATION OF A SUBROUTINE 6-1
6.2 TRANSFERRING DATA TO A SUBROUTINE 6-3

6.2.1 External Subroutines 6-4
6.3 WRITING INTERRUPT SUBROUTINES 6-6

7 INPUT/OUTPUT PROGRAMMING 7-1
7.1 KEYBOARD AND CRT DISPLAY 7-4

7.1.1 Keyboard Interrogation Routine 7-4
7.1. 2 CRT Display Special Effects 7-4

7.2 DISK 7-7
7.3 RS-232 COMMUNICATIONS 7-10

7.3.1 Transmit Routine 7-10

iv

SECTION

8

9

Appendix

Appendix

Appendix

Appendix

Appendix

FIGURE

1-1
1-2

2-1

7-1
7-2
7-3
7-4
7-5

8-1
8-2

TABLE

3-1
3-2

7-1
7-2
7-3

A

B

C

D

E

TABLE OF CONTENTS (Continued)

TITLE

7.3.2 Receive Routine
7.4 PRINTER

SYSTEM WORKING REGISTERS
8.1 HARDWARE REGISTERS
8.2 SOFTWARE REGISTERS

HOW TO USE THE ZENTEC ASSEMBLER MODULE (ZAM)
9.1 OPERATION OF THE ASSEMBLER CONTROL PROGRAM
9.2 OPERATION OF THE ASSEMBLER EDIT PROGRAM

9000 SERIES INTSTRUCTION SET SUMMARY

BASIC SYSTEM SUBROUTINES

SYSTEM SUPPORT ROUTINES

ASCII TABLE

INPUT/OUTPUT PORT ASSIGNMENTS

LIST OF ILLUSTRATIONS

System Memory Organization Of The 9003
System Memory Organization Of The 9002

Automatic Advance Of The Program Counter
Instructions Are Executed

Special Display Effects Control Character
Disk Transfer Parameter List
Error/Status Byte
RS-232 Input And Output Bytes
Printer Status Byte

Map Of Working Registers In Memory
Prior Condition Register Format

LIST OF TABLES

Zentec System Subroutine Names
Absolute And Re10catable Expression Rules

Zentec 9003 Device Numbers
Zentec 9002 Device Numbers
Keyboard Codes

v

As

PAGE

7-12
7-13

8-1
8-1
8-6

9-1
9-2
9-4

A-1

B-1

C-1

D-1

E-1

1-2
1-3

2-2

7-6
7-7
7-8
7-11
7-13

8-2
8-4

3-3
3-6

7-2
7-3
7-5

INTRODUCTION

The Zentec 9000 Series Microcomputer Terminal System is an a-bit micro­
computer. It offers a powerful instruction set, including extensive
memory referencing and flexible branch-on-condition capability.

There are two models in the Zentec 9000 series: the 9002 and the
9003. The 9003 is a somewhat more powerful version of the 9002.
The 9003 can directly address 64K bytes of memory; the 9002 can
directly address 16K bytes. The 9003 also includes fully-programmable
stacks, allowing unlimited subroutine nesting and full interrupt
handling capability.

This manual has been written to help the reader program the Zentec
9000 series. Most of this manual applies equally to the 9003 and
the 9002. Differences between the features of the two models are
discussed where appropriate. All descriptions within that are
unique to the 9003 are printed in itaZics. All programming examples
are for the 9003 unless otherwise noted.

All memory addresses used in this manual are hexadecimal, and are
denoted in the form X'nnnn'.

vi

SECTION 1

ORGANIZATION OF THE ZENTEC 9000 SERIES

This section provides the programmer with a functional overview
of the 9000 series Microcomputer Terminal System. Information is
presented at a level that provides a programmer with necessary back­
ground in order to write efficient programs.

The programmer can think of the computer as consisting of the
following parts:

1. Seven working registers in which all data operations
occur, and which provide one means for addressing memory.

2. Memory, which may hold program instructions or data and
which must be addressed location by location in order to
access stored information.

3. The Program Counter, whose contents indicate the next
program instruction to be executed.

4. The Stack Pointer, a register which enables execution of
subroutines.

5. Input/Ouptut, which is the interface between a program
and external devices.

1.1 WORKING REGISTERS

The 9000 series provides the programmer with an 8-bit accumulator and
six additional a-bit "scratch pad" registers. These seven "work-
ing registers" are, by convention, identified by the letters A
(Accumulator), B, C, D, E, H, and L.

1.2 MEMORY

The zentec 9003 contains up to 64K bytes of memory. The Zentec 9002
contains up to 16K bytes of memory. This memory is divided into
ROM (Read Only Memory), PROM (Programmable Read Only Memory) and
RAM (Random Access Memory) portions.

For addressing purposes the overall memory is divided into 2K (2048)
8-bit byte blocks, as shown in Figures 1-1 and 1-2. The usage of
certain 2K memory blocks is preassigned at the factory, but all other
blocks can be assigned by the user.

1-1

0 -"I

BASIC PROGRAM EXECUTIVE

AND) ROM/PROM

TELE-COMMUNICATION

2 T.
~,

'",

BASIC SYSTEM SUBROUTINES) ROM

4 T. I ' I...,

SYSTEM WORKING REGISTERS

AND

PAGE 1 OF DISPLAY

6 K

PAGE 2 OF DISPLAY

AND

GENERAL WORKING 1-1E1-lORY

8 K

AVAILABLE TO USER RAM

10K~----------------------4

AVAILABLE TO USER

12Krur--------------------,--------~

;:~ AVAILABLE TO USER ~;

62 ... ' < ADDITIONAL USER MEMORY
(RAM/ROM/PROM)

OR) RAM/ROM/PROM

SUPER TEXT OPTION (ROM/PRO~!f)

64 .I.'
,--

FIGURE 1-1

SYSTEM MEMORY ORGANIZATION OF THE 9003

1-2

o

2 .. , .'

.. , .. ' 4

v .. 6

.. , ., 8

T.II ", 10

.. , .' 12

14K
~

BASIC PROGRAM EXECUTIVE
AND

TELE-COMMUNICATION

BASIC SYSTEM SUBROUTINES

SYSTEM WORKING REGISTERS

AND

PAGE 1 OF OISPLAY

PAGE 2 OF DISPLAY
AND

OPTIONAL DEVICE REGISTERS

AVAILABLE TO USER

AVAILABLE TO USER

-

AVAILABLE TO USER

ADDITIONAL USER MEMORY
(RAM/ROM/PROM)

OR.

SUPER TEXT OPTION (ROM/PR01!)

;

i~

~

I'"

16K~ ________________________ ~

FIGURE 1-2

) ROM/PRO:o1

) RO~

RAM/ROM/PROM

SYSTEM MEMORY ORGANIZATION OF THE 9002

1-3 '.

The block assignments are as follows:

• The first 2K-byte block is committed to ROM or PROM.
Locations X'OOOO'-X'OlFF' hold the Basic Program Execu-
tive. Locations X'0200'-X'07FF' hold the Te1e-Communications
package.

• The second block is committed to RO~1. These locations
(X'0800'-X'OFFF') hold the Basic System Subroutines,
designed for both system and user use. These subroutines
are described in Appendix B.

• The third block (X'1000'-X'17FF') is a RAM area that
contains the system working registers (described in
Section 8), system work space and Terminal display Page 1.

• The fourth block (X'1800'-X'lFFF'.) is a RAM area that
contains Terminal display Page 2.

• 9003: Blocks 5 through 32 (X'2000'-X'FFFF') are RAM areas
that the programmer may use. The 32nd block (X'F800'­
X'FFFF') will contain the Super Text ROM/PROM if that
option is installed.

• 9002: Blocks 5 through 8 (X'2000'-X'3FFF') are RAM areas
that the programmer may use. The 8th block (X'3800'-X3FFF')
will contain the Super Text ROM if that option is installed.

1.3 PROGRAM COUNTER

9003: The Program Counter is a 16-bit register which is accessible
to the programmer and whose contents indicate the memory
address of the next instruction to be executed.

9002: The Program Counter is a 14-bit register whose contents
indicate the memory address of the next instruction to be
executed.

1.4 STACK POINTER

9003: A stack is an area of memory set aside by the programmer in
which data or addresses are stored and retrieved by stack
operations. Stack operations are performed by several of the
9003 instructions, and facilitate execution of subroutines and
handling of program interrupts. The programmer specifies which
a~dresses the stack operations will operate upon via a special
accessible 16-bit register called the stack pointer.

9002: Seven l4-bit registers provide storage for 7 levels of CALL.
The stack automatically stores and restores the program
counter upon the execution of a CALL and RETURN.

1-4

1.5 INPUT/OUTPUT

9003: The outside world consists of up to 64 input devices and 48
output devices. Each device communicates with the 9003 via
data bytes sent to or received from the Accumulator, and each
device is assigned a number which is not under control of
the programmer. The instructions which perform these data
transmissions are described in Section 5.14.

9002: The 9002 may access up to 32 input devices and 24 output
devices.

1-5

SECTION 2

PROGRAMMING CONCEPTS

This section gives a basic introduction to zentec 9000 series
programming.

2.1 COMPUTER PROGRAM REPRESENTATION IN MEMORY

A computer program consists of a sequence of instructions. Each
instruction enables an elementary operation such as the movement
of a data byte, an arithmetic or logical operation on a data byte,
or a change in instruction execution sequence. Instructions are
described individually in Section 5.

A program will be stored in memory as a sequence of bits which
represent the instructions of the program, and which we will rep­
resent via hexadecimal digits. The memory address of the next in­
struction to be executed is held in the Program Counter. Just be­
fore each instruction is executed, the Program Counter is advanced
to the address of the next sequential instruction. Program execu­
tion proceeds sequentially unless a transfer-of-control instruction
(branch, call, or return) is executed, which causes the Program
Counter to be set to a specified address. Execution then continues
sequentially from this new address in memory.

Upon examining the contents of a memory byte, there is no way of
telling whether the byte contains an encoded instruction or data.
It is up to the logic of a program to insure that data is not mis­
interpreted as an instruction code, but this is simply done as
follows.

Every program has a starting memory address, which is the memory
address of the byte holding the first instruction to be executed.
Before the first instruction is executed, the Program Counter
will automatically be advanced to address the next instruction to
be executed, and this procedure will be repeated for every in­
struction in the program. 9003 instructions may require I, 2, or
3 bytes to encode an instruction; in each case the Program Counter
is automatically advanced to the start of the next instruction, as
illustrated in Figure 2-1.

In order to avoid errors, the programmer must be sure that a data
byte does not follow an instruction when another instruction is
expected. Referring to Figure 2-1, an instruction is expected in
byte X'201F', since instruction 8 is to be executed after instruc­
tion 7. If byte X'201F' held data, the program would not execute
correctly. Therefore, when writing a program, do not store data
between adjacent instructions that are to be executed consecu­
tively.

2-1

Memory Instruction Program Counter
Address Number Contents

2012 0213
2013 } 0215
2014 2

2015 3 0216
2016

}
0219

2017 4
2018
2019 5 0218
201A

I 201B 6 021C

201C 021F

201D 7
201E
201F 8 0220
2020 9 0221
2021 10 0222

FIGURE 2-1

AUTOMATIC ADVANCE OF THE PROGRAM
COUNTER AS INSTRUCTIONS ARE
EXECUTED

A class of instructions (referred to as branch instructions) cause
program execution to branch to an instruction that may be anywhere
in memory. The memory address specified by the branch instruction
must be the address of another instruction; if it is the address
of a memory byte holding data, the program will not execute cor­
rectly. For example, referring to Figure 2-1, say instruction 4
specifies a branch to memory byte X'201F', and say instructions 5,
6, and 7 are replaced by data; then following execution of instruc­
tion 4, the program would execute correctly. But if, in error,
instruction 4 specifies a branch to memory byte X'201E', an error
would result, since this byte now holds data. Even if instructions
5, 6, and 7 were not replaced by data, a branch to memory byte
X'201E' would cause an error, since this is not the first byte of
the instruction.

Upon reading Section 5, you will see that it is easy to avoid
writing an assembly language program with branch instructions that
have erroneous memory addresses. Information on this subject is
given rather to help the programmer who is debugging programs by
entering hexadecimal codes directly into memory.

2-2

2.2 MEMORY ADDRESSING

By now it will have become apparent that addressing specific memory
bytes constitutes an important part of any computer program.

Addresses are absolute or relocatable, depending upon the effect
program relocation has on them. Program relocation is the loading
of the object program into memory locations other than those orig­
inally assigned by the assembler. An address is absolute if its
value does not change upon relocation. An address is relocatable
if its value changes upon relocation.

Relocatability is resolved during loading. The subsections to
follow show the ways the 9003 instructions can address memory when
the program is executing.

2.2.1 Direct Addressing

with direct addressing~ an instruction supplies an exact memory
address.

The instruction

"Load the contents of memory address lF2A into the Accumulator"

is a~ example of an instruction using direct addressing~ lF2A being
the direct address.

This would appear in memory as follows:

Memory Address

any

any + 1

any + 2

Memory

JA

2A

IF

instruction
being executed

The instruction occupies three memory bytes~ the second and third
of which hold the direct address.

2.2.2 Register Pair Addressing

A memory address may be specified by the contents of a register
pair. For all 9002 and almost all 9003 memory reference instructions,
the memory address is specified by the contents of the Hand L regis­
ters. The H register contains the most significant 8 bits of the
referenced address, and the L register contains the least sig­
nificant 8 bits. A one-byte instruction which will load the ACCU­
mulator with the contents of memory byte X'2F2A' would appear as
shown below.

2-3

Memory Registers

B
Instruction

being executed -+ 7 E c

o

E

2F H

2A L

A

In addition, there are two 9003 instructions which use either the
Band C registers or the D and E registers to address memory. As
above, the first register of the pair holds the most significant
8 bits of the address, while the second register holds the least
significant 8 bits. These 9003 instructions, STA and LBA, are des­
cribed in Section 5. For the 9002 a predefined macro is used to
load a register pair. This macro, LHI, is described in Section 5.

2.2.3 Stack Pointer Addressing

Memory locations may be addressed via the l6-bit stack pointer
register~ as described below.

There are only two stack operations which may be performed; putting
data into a stack is called a push, whiZe retrieving data from a
stack is called a pop.

STACK PUSH OPERATION

Sixteen bits of data are transferred to a memory area (called a
stack) from a register pair or the l6-bit program counter during
any stack push operation. The addresses of the memory area which
is to be accessed during a stack push operation are determined by
using the stack pointer as follows:

l. The most significant 8 bits of data are stored at the
memory address one less than the contents of the stack
pointer.

2. The least significant 8 bits of data are stored at the
memory address two less than the contents of the stack
pointer.

2-4

3. The staok pointer is automatioally decremented by two.

For example, suppose that the stack pointer contains the address
X'23A6', register H contains X'6A' and register L contains X'30'.
Then a stack push of register pair Hand L would operate as follows:

I
I

Before Push Memory Address After Push

FF 23A3 FF

FF 23A4 30 ~ SP

FF 23A5 6A

SP ~ FF 23A6 FF

H L H L

0 0 0 0

STACK POP OPERATION

l6 bits of data are transferred from a memory area (called a stack)
to a register pair or the l6-bit program counter during any staok
pop operation. The addresses of the memory area which is to be
accessed during a stack pop operation are determined by using the
staok pointer as follows:

l. The second register of the pair, or the least significant
B bits of the program counter, are loaded from the memory
address held in the stack pointer.

2. The first register of the pair, or the most significant
B bits of the program oounter, are loaded from the memory
address one greater than the address held in the staok
pointer.

3. The stack pointer is automatically incremented by two.

For example, suppose that the stack pointer contains the address
X'250B', memory location X'250B' contains X'33' and memory location
X'2509' contains X'OB'. Then a stack pop into register pair
Hand L would operate as follows:

2-5

I
I

8efore Pop Memory Address After PoP

FF 2507

SP -+ 33 2508 33

08 2509 DB

FF 250A FF +- SP

H L H L

0 0 0 ~

2.2.4 Immediate Addressing

An immediate instruction is one that contains data. The following
is an example of immediate addressing:

"Load the accumulator with the value X'2A'."

The above instruction would be coded in memory as follows:

Memory

W +- Load accumulator immediate

~ +- Value to be loaded into accumulator

Immediate instructions do not reference memory; rather they con­
tain data in the memory byte following the instruction code byte.

2-6

2.3 SUBROUTINES AND USE OF THE STACK FOR ADDRESSING

Before understanding the purpose or effectiveness of the stack,
it is necessary to understand the concept of a subroutine.

Consider a frequently used operation such as multiplication. The
9000 series provides instructions to add one byte of data to another
byte of data, but what if you wish to multiply these numbers? This
will require a number of instructions to be executed in sequence.
It is quite possible that this routine may be required many times
within one program; to repeat the identical code every time it is
needed is possible, but very wasteful of memory:

,
I

: Program
I

Routine ,
I
I Program
I

Routine
I
I
I Program
I
I

Routine
i

etc

A more efficient means of accessing the routine would be to store
it once, and find a way of accessing it when needed:

Program

Program ~
Routine +---+

Program /
A frequently accessed routine such as the above is called a sub­
routine, and the 9000 series provides instructions that call and
return from subroutines.

2-7

When a subroutine is executed, the sequence of events may be Qe­
picted as follows:

Main Program
• i

Call instructio~

Next instruction""subroutine

1 Return instruction

The arrows indicate the execution sequence.

When the "Call" instruction is executed, the address of the "next"
instruction (that is, the address held in the Program Counter), is
pushed onto the stack, and the subroutine is executed. The last
executed instruction of a subroutine will usually be & " Retu:rm "
instruction, which pops an address off the stack into the Program
Counter, and thus causes program execution to continue at the
"Next" instruction as illustrated below:

Memarv
Address Instruction

OC02 Push address of

OC03 CALL SUBROUTINE next instruction
OC04 02 (.x' OC06 ') onto
OC05 OF the stack and

OC06 NEXT INSTRUCTION branch to
subroutine
starting at

OFOO X'OF02'
OFOl
OF02 FIRST SUBROUTINE

INSTRUCTION ~

OF03

Body of subroutine
Pop return address

(X' OC06 ') off
OF4E stack and return

OF4F RETURN to next instruction

9003: Subroutines may be nested up to any depth, limited only by ~he
amount of memory available for the stack. ~or example, the
first subroutine could itself call some other ~ubroutine, and
so on. An examination of the sequence of stack pushes and pops
will show that the return path will always be identical to the
call path, even if the same subroutine is called at more than
one level.

9002: Subroutines may be nested up to a depth of seven levels.

2-8

2.4 CONDITION BITS

Four condition (or status) bits are provided by the 9000 series to
reflect the results of data operations. In addition, the 9003 also
provides an Auxiliary Carry bit. All but one of these bits (the
Auxiliary Carry bit) may be tested by program instructions which
affect subsequent program execution. The descriptions of individual
instructions in Section 5 specify which condition bits are affected
by the execution of the instruction, and whether the execution of the
instruction is dependent in any way on prior status of condition bits.

In the following discussion of condition bits, "setting" a bit
causes its value to be 1, while "resetting" a bit causes its value
to be O.

2.4.1 Carry Bit

The Carry bit is set and reset by certain data operations, and its
status can be directly tested by a program. The operations which
affect the Carry bit are addition, subtraction, rotate, and logical
operations. For example, addition of two one-byte numbers can
produce a carry out of the high-order bit:

Bit No. 7 6 5 4 3 2 1 0

AE= 1 0 1 0 1 1 1 0

+ 74= ~ 1
1 1 0 1 0 0 -

122 arry out=l, sets Carry bit=l

An additional operation that results in a carry out of the high-order
bit will set the Carry bit; an addition operation that could have
resulted in a carry out but did not will reset the Carry bit.

2.4.2 Auxiliary Carry Bit

The Auxiliary Carry bit indioates oarry out of bit 3. It is used
in deoimal operations. The following addition will reset the Carry
bit and set the AuxiZiary Carry bit:

Bit No. 7 6 5 4 3 2 1 0

2E= 0 0 1 0 1 1 1 0

+ 74= 0 1 1 1 0 1 0 0

A2 1 0 1 0 o 0 1 0

'--.carry=o LAuXiZiary Carry=l

2-9

Th~ Auxiliary Carry bit will be affeated by all addition, eubtraa­
tio~, inarement, dearement, and aompare inetruatione.

2 • 4 . 3, Sign Bit

It is possible to treat a byte of data as having the, numerical
range ~l2810 to +12710' In this case, by convention, the 7 bit
will always represent the sign of the number; that is, if the 7
bit is I, the number is in the range -128 10 to -1. If bit 7 is

. 0, the number is in the range 0 to +127 10 ,

At the conclusion of certain instructions (as specified in the in­
struction description sections of Section 5), the Sign bit will be
set to the condition of the most significant bit of the answer
(bi t 7).

2.4.4 Zero Bit

This condition bit is set if the result generated by the execution
of certain instructions is zero. The Zero bit is reset if the re~
suIt is not zero.

A result that has a carry but a zero answer byte, as illustrated
below, will also set the Zero bit:

Bit No. 7 6 5 4 3 2 1 0

1 0 1 0 0 1 1 1
+ 0 1 0 1 1 0 0 1

~D 0
0 0 0 0 0 0 0

arry out Zero answer
of bit 7. Zero bit set to 1.

2.4.5 Parity Bit

Byte "parity" is checked after certain operations. The number of
1 bits in a byte are counted, and if the total is odd, "odd" parity
is flagged; if the total is even, "even" parity is flagged.

The Parity bit is set to 1 for even parity, and is reset to 0 for
odd parity.

2-10

SECTION 3

FORMAT OF THE ASSEMBLY LANGUAGE STATEMENT

Assembly language instructions must adhere to a fixed set of rules,
as described in this section. An instruction has four separate
and distinct parts of fields.

Field 1 is the LABEL field. It is a name used to reference the
instruction's address.

Field 2 is the CODE field. It specifies the operation that is to
be performed.

Field 3 is the OPERAND field. It provides any addres$ or data in­
formation needed by the CODE field.

Field 4 is the COMMENT field. It is present
convenience and is ignored by the assembler.
comment fields to describe the operation and
more readable.

for the programmer's
The programmer uses

thus make the program

The assembler uses free fields; that is, any number of blanks may
separate fields.

Before describing each field in detail, here are some general
examples:

Label

HERE

THERE

LOOP

Code Operand Comment

LBI RC,O Load register C with zero

DC X' 3A' Create a one-b~te

AR RA,RE Add register E to

ROL RA Rotate register A

NOTE

These examples and the ones which
follow are intended to illustrate
how the various fields appear in
complete assembly language st~te­
ments. It is not necessary at
this point to understand the
operations that the statements
perform.

3-1

data constant

register A

to left

3.1 LABEL FIELD

This is an optional field, which, if present, may be from 1 to 6
characters long. The first character of the label must be a ~et­
ter of the alphabet.

The register names (RA, RB, RC, RD, RE, RH, and RL) are specially
defined within the assembler and may not be used as labels. In
addition, the names of Zentec's Basic System Subroutines should
not be used in the label field. These subroutines are described
in Appendix B; their names are summarized in Table 3-1.

Here are some examples of valid label fields:

LABELS
F14F
Q

Here are some invalid label fields:

123 begins with a decimal number
ADD2 is one of the Basic System Subroutines
RA is a register name

The label INSTRUCTION has more than six characters; only the
first six will be recogniZed. That is, the assembler will read
this label as INSTRU.

Since labels serve as instruction addresses, they cannot be du­
plicated. For example, the sequence:

HERE B THERE

THERE LR RC,RD

THERE C~L SUB

is ambiguous; the assembler cannot determine which address is to
be referenced by the B (Branch) instruction.

One instruction may have more than one label, however. The fol~
lowing sequence is valid:

LOOPl
LOOP2

EQU
LR

*
RC,RD

B LOOPl

B LOOP2

First label
Second label

Each B instruction will cause program control to be transferred
to the same LR instruction.

3-2

TABLE 3-1

ZENTEC SYSTEM SUBROUTINE NAMES

NAME SECTION NAME SECTION

ABTAB B.l.l EOS B.2.8

ADD2 B.3.l HOME B.l. 8

ATAB B.l. 2 ILINE B.2.9

BLANK B.2.l INSERT B.2.l0

BTAB B.l.3 LDCURS B.3.S

CDOWN B.l.4 LDFAS B.3.6

CLEAR B.2.2 LDSAS B.3.7

CLEFT B.l.S LDTAS B.3.8

CMESSA B.2.3 LMOVE B.3.9

COMl B.3.2 NEWFRM B.2.ll

COMPER B.3.3 RECON B.3.l0

CONV B.3.4 RETURN B.1. 9

CRIGHT B.l.6 RMOVE B.3.ll

CUP B.1. 7 SMOVE B.3.l2

DELBYT B.2.4 STFAS B.3.l3

DELFD B.2.S STSAS B.3.l4

DLINE B.2.6 STTAS B.3.lS

DPAGE B.4.l SUBREG B.3.l6

DREAD 7.2 SUBT2 B.3.l7

DSCROL B.4.2 TAB B .1.10

DWRITE 7.2 UPAGE B.4.3

EOL B.2.7 USCROL B.4.4

3-3

3.2 CODE FIELD

This field contains a code which identifies the machine operation
(add, subtract, etc.) to be performed; hence the term operation
code, or op code. The instructions described in Section 5
are each identified by a mnemonic label which must appear in the
code field. For example, since the branch instruction is identi­
fied by the letter "B II , this letter must appear in the code field
to identify the instruction as "Branch".

There must be at least one space following the code field. Thus,

HERE B THERE

is legal, but

HERE BTHERE

is illegal.

3.3 OPERAND FIELD

This field contains information used in conjunction with the code
field to precisely define the operation to be performed by the in­
struction. Depending upon the code field, the operand field may
consist of one or more items, where items are separated by a comma.

Legal operands are as follows:

1. A register code. The codes RA, RB, RC f RD, RE, RH, and
RL specify registers A, Bf C, D, E, H, and L, respectively,
as a source or destination for the operation.

Example:

Label

HERE

Code

LR

Operand

RA,RC

Comment

Load C into A

specifies that the contents of register C (the source
register) is to be loaded into register A (the des­
tination register) .

2. A hexadecimal, decimal, or ASCII constant. Hexadecimal
constants can be from one to four digits. Each hexa­
decimal constant must be enclosed with an X and single
quotes.

Example:

Label

HERE

Code

LBI
DC

Operand Comment

RC,X'3F' Load register C with hex. 3F
X'lOOQ',X'2F',X'3566'

3-4

Decimal constants can be from one to five decimal digits,
not to exceed 32676 maximum or -32768 minimum. Decimal
constants are written without any operators.

Example:

Label

HERE

Code

LBI
DC

Operand Comment

RC,63 Load register C with 63
66,5,128,32000

An ASCII constant is one or more ASCII characters enclosed
in single quotes. Appendix D contains a list of legal
ASCII characters and their hexadecimal representations.

Example:

Label

CHAR

*
*
*

Code

LBI

Operand

RC, , * ,
Conunent

Load register C with

eight-bit ASCII

representation of an

asterisk

3. Labels that appear in the label field of another instruc­
tion.

Example:

Label

HERE

*

THERE

Code

B

LEI

Operand

THERE

RC,X'3F'

Comment

Jump to instruction at

THERE

4. The current program counter. This is specified as the
character '*' and is equal to the address of the current
instruction.

Example:

Label

GO

Code

B

Operand

*+6

This .instruction causes program control to be transferred
to the address six bytes beyond the location of the B in­
struction.

3-5

A
A
A
A

5. An expression. An expression is a symbol, a constant,
or a series of such items separated by the arithmetic
operators + (plus) or - (minus). The following in­
structions illustrate the use of expressions:

is
is
is
is

Code °Eerand
B LOOP+4

B TABLE+X'12'

B STOP-GO+2

LBI RA,-FROG

LBI RA, 'A'+l

An expression is absolute if its value is absolute.
Similarly, an absolute expression does not change as a
function of the physical location of the program in
memory. The value of a relocatable expression does
change when the location of the program changes. The
relocatable value changes by the difference in byte
locations between the originally assigned area of
storage.

An expression, when evaluated, produces a value which
is considered absolute or relocatable according to the
rules outlined in Table 3-2.

TABLE 3-2

ABSOLUTE AND RELOCATABLE EXPRESSION RULES

A+B A-B

absolute, B is absolute Absolute Absolute
absolute, B is relocatable Relocatable Invalid
relocatable, B is absolute Relocatable Relocatable
relocatable, B is relocatable Absolute Absolute

3-6

3.4 COMMENT FIELD

The only rule governing this field is that it must be separated
from the operand field by at least one space.

In addition, a comment field may appear alone on a line by coding
an asterisk into column 1. This is useful for general program
comments, such as

* Begin loop here

or for comment field continuations, such as

Label

CHAR

*
*

Code

LBI

Operand

RC,'*'

3-7

Comment

Load register C with eight-bit

ASCII representation of an

asterisk

3.5 ASSEMBLER LISTING FIELDS

On the assembly listing there are five fields of information associated
with each source statement. These fields appear on the listing to tbe
left of each assembly language statement.

Field I is the ERROR flag.
with the source statement.
follows:

ERROR CODE

I

2

4

8

It is an error diagnostic associated
The meaning of the error flag is as

MEANING

Error in the operand field

Multiply defined symbol

Undefined symbol

Op-code undefined

Either above or combination of above values.

Field 2 is the line number associated with the source statement to
be used for future editing references.

Field 3 is the memory location (relative or absolute) of the object
code generated by the source statement.

Field 4 is the ADDRESS TYPE. All addresses (or data) encountered
which are relocatable or external will be so indicated by "R" or
"E", respectively.

Field 5 is the listing of object code generated by the assembly
language statement.

3-8

SECTION 4

ASSEMBLER DIRECTIVES

There are two types of assembler directives: pseudo-instructions
and declaration instructions.

Pseudo-instructions provide the assembler with various types of
information pertaining to the program about to be assembled, and
how the results of the assembly should be printed. This print is
called an assembly listing.

Pseudo-instructions (Section 4.1) are written in a source program,
but unlike the instructions in Section 5, pseudo-instructions
generate no object code.

Declaration instructions (Section 4.2) are used to generate data
constants and addresses that are output by the assembler as Part
of the object code.

4.1 PSEUDO-INSTRUCTIONS

Pseudo-instructions provide the assembler with information that
will be used when it generates object code.

4.1.1 EJT Eject A Page

Assembler Format: EJT

This pseudo-instruction is used to separate assembler listings for
easy reading. When EJT is encountered in a source program, the
printer attacped to the 9003 advances to the top of the next page.

NOTE

The EJT instruct~on cannot be labelled.

4.1.2 END End of Program

Assembler Format: END

The END pseudo-instruction signifies to the assembler that the
physical end of the program has been reached, and that generation
of the ~bject program and (possibly) listing of the source program
should now begin.

4-1

One, and only one, END instruction must appear in every assembly,
and it must be the (physically) last statement of the assembly.

END may be labelled.

4.1.3 ENTY Identify Entry Point

Assembler Format: ENTY symboll,symbo1 2 ,etc.

The ENTY pseudo-instruction identifies symbols in this proqram that
may be used by other programs. This permits programs that are
assembled separately to communicate with each other. Only those
symbols identified as entry symbols (symbol 1 ,symbo1 2 ,etc.) are
available to other separately-assembled programs. All ENTY state­
ments must precede any symbols they reference in the program.

Example:

INI

IN2

NOTE

ENTY instructions cannot be la­
belled.

ENTY INl,IN2

EQU * .
LR RA,Re

END

4.1.4 EQU Equate

Assembler Format: name EQU exp

The symbol "name" is assigned the value "exp" by the assembler,
where "exp" is any defined expression. Whenever the symbol "name"
is encountered subsequently in the assembly, this value will be
used.

Each EQU instruction must be labelled.

NOTE

A symbol may appear in the label
field of only one EQU pseudo­
instruction. That is, an EQU
symbol cannot be re-defined.

4-2

Example:

TAG
*

LABEL
HERE
LENGTH
START

EQU
EQU
EQU
EQU

BOTTOM-TOP
X'2000'

Subsequently, for instance, the instruction

CALL LABEL

would actually cause the same effect as

CALL TAG

4.1.5 EXTN Identify External Symbol

Assembler Format: EXTN

The EXTN pseudo-instruction identifies symbols in another program
that are referenced by this program. This permits programs that
are assembled separately to communicate with each other. Only
those symbols identified as ENTY symbols (see Section 4.1.3) in
another program can be identified as externally-defined in this
program. All EXTN statements must precede any references to the
external symbols within the program.

Example:

The sequence

EXTN XOUTl,XOUT2

CALL XOUTI

LHI RH,XOUT2

END

would allow the program to use the XOUTI and XOUT2 symbols
that are defined in an external program.

Any symbols declared external have the following restrictions:

1. EXTN symbols must not be combined in arithmetic expres­
sions. So

LHI RH,XOUTl+3

is illegal.

4-3

2. EXTN symbols must only be used in a two-byte address field;
i.e.,

LHI
B
CALL

RH,XOUTl
XOUTl
XOUTl

3. EXTN symbols may not be used with assembler pseudo­
instructions such as EQU, END, etc.

EXTN and ENTY instructions are particularly valuable for sharing
subroutines. Rather than having to assemble the main program and
its subroutines at the same time to establish correct communica­
tion, the EXTN/ENTY capability permits the main program to be as­
sembled and then loaded with the previously-assembled subroutines.
The symbols identified by EXTN or ENTY statements are then linked
at load time by the Zentec Linking Loader. Such modularity will
enhance both the structure of program design and the productivity
of the programmer.

Consider the following two

Label O:eeration

* Main program

*
EXTN

START LHI

LBI

STB

CALL

B

END

* Subroutine XOUT2

*

XOUT2

XOUTl

ENTY

EQU

LB

RET

DS

END

hypothetical programs:

°Eerand

XOUTl,XOUT2

RH,XOUTl

RC,X'FF'

RA

XOUT2

START

XOUTl,XOUT2

*
RA

2

4-4

The symbols XOUTl and XOUT2 ~re used by the main program, but their
values are not known at assembly time. Since they are defined as
EXTN, the symbols XOUTl and XOUT2 and the location at which they
are referenced in the main program are output to the object file
together with the rest of the assembled program.

In a similar fashion, when the subroutine XOUT2 is assembled, the
symbols XOUTl and XOUT2 are output along with the subroutine.

As the main program and subroutines are loaded, the loader accumu­
lates a table of references to symbols and their values. This in­
formation is used by the loader to link the main program and sub­
routine by replacing every reference to XOUTl and XOUT2 by the
values passed on from the subroutine by the ENTY instruction.

4.1.6 ORG Origin

Assembler Format: ORG exp

The assembler's location counter is set to the value of "exp",
which must be a valid l6-bit memory address. The next instruction
or data byte(s) assembled will be assembled at address exp, exp+l,
etc.

~f no ORG instruction appe~rs bef~re the fir~t instruction or data byte
ln the program, assembly wlll begln at relatlve location O. The ORG
statement must precede any EXTN and ENTY op-codes which define variables
to be modified by the ORG instruction.

Example 1:

Hex
Address

1000

1001

1003

1050

Label

HERE

NEXT

Code

ORG

LR

AI

B

ORG

XR

OEerand

X'lOOO'

RA,Re

RA,2

NEXT

X'1050'

RA,RA

The first ORG pseudo-instruction informs the assembler that
the object program will begin at memory address X'lOOO'. The
second ORG tells the assembler to set its location counter to
X'1050' and continue assembling machine instructions or data
bytes from that point. The label HERE refers to memory loca­
tion X'1050', since this is the address immediately following
the jump instruction. Note that the portion of memory from
X'1006' to x'104F' is still included in the object program,
but does not contain assembled data. In particular, the pro­
grammer should not assume that these locations will contain
zero, or any other value.

4-5

Example 2:

The ORG pseudo-instruction can perform a function equivalent
to the DS (Define Storage) instruction in Section 4.2.2. The
following two sections of code are exactly equivalent:

NEXT

LR RA,RC
B NEXT
DS 12
XR RA,RA

4.1.7 SPC Space

Assembler Format: SPC number

LR
B
ORG

NEXT XR

RA,RC
NEXT
*+12
RA,RA

This pseudo-instruction causes the printer to space "number" lines.
If the number of lines to be spaced exceeds the number of lines
remaining on the page, this instruction has the same effect as
EJT (see Section 4.1.11).

4-6

4.2 DECLARATION INSTRUCTIONS

A declaration instruction differs from a pseudo-instruction (Sec­
tion 4.1) in that a declaration instruction actually creates object
code.

Declaration instructions reserve memory locations, either with
specified contents (DC instruction) or without specified contents
(DS instruction).

4.2.1 DC Define Constant

The format of the DC instruction is

DC constantl,constant2 .•. ,constantn

where "constant" is either a hexadecimal, decimal, or ASCII con­
stant or a label that is specified following the format in Sec­
tion 3.3. The constant may be absolute, relocatable or external.

Each DC instruction will reserve the numper of memory locations
required to store its constants and fill those locations with the
bit patterns that represent the constants.

Hexadecimal constants can be from one to four digits. One- or
two-digit hexadecimal constants will b~ stored in one memory loca­
tion, whereas three- or four-digit hexadecimal constants will be
stored in two memory locations. Any two-digit constant (address)
will be stored in reverse order, except for the ASCII strings.
Example 1:

CONS DC X'lF32' I X'FB'

will stare X'32' into memory location CONS, X'lF' into
CONS+l and X'FB' into CONS+2.

ASCII constants can be any length and will use one memory loca­
tion for each character.

Example 2:

r·1ESGl DC 'LOAD THE TAPE'

will use thirteen memory locations, storing the appropri­
ate ASCII code (see Appendix D) into each location.

A label represents a storage address that is translated into a
constant. It is a relocatable, external or absolute constant as
determined by the combinations of symbols and constants in the
expression.

4-7

Example 3:

CONL DC
DC
DC

XOUTI
XIN+2
XINl-XIN2

will cause the address constant stored to be relocatable or
absolute as determined by the rules given in Table 3-2 of
Section 3.3.

The following example shows how a single DC instruction can be
used to define different types of data. Each operand is separ­
ated from the next by a comma.

Example 4:

TABLE DC
DC
DC

x ' OFDE' , X ' FF '
'START OF PROG', 598
XIN, XOUT

4.2.2 DS Define Storage

The format of the DS instruction is

DS exp

where "exp" is an expression that is specified following the
format in Section 3.3. This expression must be a constant
(hexadecimal or decimal) or must reduce to a constant when
evaluated. The value of the expression determines the number
of memory locations that will be reserved. Although the DS in­
struction reserves memory locations, it does not alter the cur­
rent contents of those locations. The programmer should not
assume that these locations contain zero, or any other value.

Example:

DS
DS

80
TOP-BOTTOM

Reserves 80 memory locations
Reserves (TOP-BOTTOM) memory locations

4-8

4.2.3 DB Define Byte

The format of the DB instruction is:

DB constantl , constant2 , ..• , constantn

where "constant" is either a hexadecimal, decimal, or ASCII constant
or a label that is specified following the format in Section 3.3.

Each DB instruction will reserve only one byte of memory location for
each constant and fill that location with the least significant byte
that represents the constant.

Example:

CONS DB TAG, END-START, X'FB'

where TAB = X'lFBB' and END-START = 'OlFC'. The DB will store
X'BB' into CONS, X'FC' into CONS+l and X'FB' into CONS+2. Only
absolute values can be stored

4-9

SECTION 5

THE 9000 INSTRUCTION SET

Asse~ly language instructions can be classified by groups, and
when learning assembly language, it is advisable to study individual
instructions in a logical sequence.

For simple reference purposes, descriptions of instructions are
easier to find if instructions are documented in alphabetic
order of the mnemonic.

This section groups instructions by group, then instructions are
described in alphabetic order, starting at Section 5.2. Instructions
printed in itaZics can be used only with the 9003.

The hexadecimal codes shown for each instruction are for the 9003.

The entire instruction set for both the 9002 and the 9003 is summarized
in alphabetic and in hexadecimal order in Appendix A.

5.1 INSTRUCTIONS GROUPS

The 9000 instruction set can be divided into the following groups:

Group

Carry Bit

Single Register

NOP

Data Transfer

Register or Memory To Accumulator

Rotate Accumulator

Register Pair

Direct Addressing

Branch

Call Subroutine

Return From Subroutine

Interrupt Enable/Disable

Input/Output

Section

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

~it~i~ the grou~s, instructions can be further classified by their
lndlvldual attrlbutes. For example, within the Data Transfer Group
there are Store and Load instructions. Within these instruction
types there are three different Store instructions and four differ­
ent Load instructions. However, they all have one thing in common:
they all transfer data back and forth between memory and the working
registers .. hence their group name, Data Transf.er.·

5-1

5.2 CARRY BIT INSTRUCTIONS

This section describes the instructions which operate directly upon
the Carry bit.

5.2.1 COMC Complement Carry

Assembler Format: COMC

10,0,1 , 1 1 1,1,1,11

If the Carry bit=O, it is set to 1. If the Carry bit=l, it is re­
set to O.

Operation: Carry + Carry

Condition bits affected: Carry

5.2.2 SETC Set Carry

Assembler Format: SETC

The Carry bit is set to one.

Operation: Carry + 1

Condition bits affected: Carry

5-2

5.3 SINGLE REGISTER INSTRUCTIONS

This section describes instructions which operate on a single regis­
ter or memory location. If a memory reference is specified, the
memory byte addressed by the Hand L registers is operated upon.
The H register holds the most significant 8 bits of the address
while the L register holds the least significant 8 bits of the ad-
dress.

5.3.1 BUMP Bump Register or Memory

Assembler Format: BUMP Rn (where Rn = RA, RB, RC, RD, RE, RH,
or RL)

o~ BUMP M (M is optional)

'OIOL9~Jlolo'
- 000

001
010
011
100
101
110
111

for
for
for
for
for
for
fo~
fo~

register B
register C
register D
register E
register H
register L
memo~y ~ef. M
~egiste~ A

The specified register o~ memo~y byte is incremented by one.

Operation: Rn + Rn+l

Condition bits affected: Zero, Sign, Parity, Auxilia~y Ca~~y

Example:

If register C contains X'99', the instruction

BUMP RC

will cause register C to contain X'9A'.

If register C contains X'FF', the instruction

BUMP RC

will cause register C to contain X'OO' and the Zero bit to
set.

5-3

5.3.2 COM Complement Accumulator

Assemblep Fopmat: COM RA

Each bit of the contents of the Accumulatop is complemented (ppo­
ducing the one's complement).

Opepation: RA + RA

Condition bits affected: None

Example:

If the Accumulatop contains X'51', the instpuction

COM RA

will cause the Accumulatop to contain X'AE'.

5.3.3 DAA Decimal Adjust Accumulator

Assemblep Fopmat: DAA RA

I 0 I 0, 1,0 I 0 I I, I, 11

The eight-bit hexadecimal number in the Accumulatop is adjusted to
fopm two foup-bit binapy-coded-decimal digits by the following two­
step ppocess:

1. If the least significant foup bits of the Accumulatop pep­
pesents a numbep gpeatep than 9, OP if the Auxiliapy Cappy
bit is equal to one, the Accumulatop is incpemented by
six. Othepwise, no incpementing occups.

2. If the most significant foup bits of the Accumulatop now
peppesent a numbep gpeatep than 9, OP if the nopmal Cappy
bit is equal to one, the most significant foup bits of the
Accumulatop ape incpemented by six. Othepwise, no incpe­
menting occups.

If a cappy out of the least significant foup bits occUPS duping
step 1, the Auxiliapy Cappy bit is set; othepwise, it is peset.
Likewise, if a cappy out of the most significant foup bits occUPS
duping step 2, the nopmal Cappy bit is set; othepwise, it is un­
affected.

5-4

NOTE

The instruction is used when adding
decimal numbers. It is the only
instruction whose operation is af­
fected by the Auxiliary Carry bit.

Operation: If (A o-A 3 »9 or (Aux. Carry)=l~ (A) + (A)+6

Then if (A4-A7»9 or (Carry)=l~ (A)=(A)+6·2 4

Condition bits affected: Zero~ Sign~ Parity~ Carry~ Auxiliary Carry

Example:

Suppose the Accumulator contains X'9B'~ and both Carry bits=O.
The DAA instruction will operate as follows:

1. Since bits 0-3 are greater than 9~ add 6 to the Accumulator.
This addition will generate a carry out of the lower four
bits, setting the Auxiliary Carry bit.

Accumulator
+6

= 1001 1011 = X'9B'
= 0110

1010 ~1 = X'Al'

~Auxiliary Carry=l

2. Since bits 4-7 now are greater than 9~ add 6 to these bits.
This addition will generate a carry out of the upper four
bits, setting the Carry bit.

Accumulator = 1010 0001 = X'Al'
+6 = ~0~1~1~0 ____ _

[
fl 0000 0001

Carry=l

Thus, the Accumulator will now contain 1, and both Carry
bits will be=l.

5-5

5.3.4 DEC Decrement Register or Memory

Assembler Format: DEC Rn (where Rn = RA, RB, RC, RD, RE, RH,
or RL)

or DEC M (M is optionaZ)

IO,Ol1?l,O,ll

L 000
001
010
all
100
101
110
111

for
for
for
for
for
for
for
for

register B
register C
register D
register E
register H
register L
memory ref. M
register A

The specified register or Memory byte is decremented by one.

Operation: Rn + Rn-l

Condition bits affected: Zero, Sign, Parity, AuxiZiary Carry

Example:

If register C contains X'99', the instruction

DEC RC

will cause register C to contain X'98'.

5-6

5.4 NOP INSTRUCTION

This instruction causes no operation.

5.4.1 NOP No Operation

Assembler Format: NOP

10,0 ,0,0 , 0 , 0,0,01

No operation occurs. Operation proceeds with the next sequential
instruction.

Operation: No operation

Condition bits affected: None

5-7

5.5 DATA TRANSFER INSTRUCTIONS

This section describes instructions that transfer data between
registers or between memory and a register.

5.5.1 LB Load Byte

Assembler Format: LB Rn (where Rn = RA, RB, RC, RO, RE, RH,
or RL)

IOI{"-Ellllol
~------------OOO for register B

001 for register C
010 for register D
011 for register E
100 for register H
101 for register L
III for register A

The contents of the memory location addressed by registers Hand
L replace the contents of the specified register.

Operation: Rn + M

Condition bits affected: None

Example:

If register H contains X'13' and register L contains X'8B' I

the instruction

LB RC

will load register C with the contents of memory location
X' l38B' •

5-8

5.5.2 LBA Load Byte to Accumulator

Assembler Format: LBA RB or LBA RD

10 0 Olxll 0 1 01
I I t I I I

o for registers Band C
1 for registers D and E

The contents of the memory location addressed by register pair Band
c~ or by register pa{~ D and E, repZace the contents of the Accumulator.

Operation: RA ~ M

condition bits affected: None

Example:

If register B contains X'21' and register C contains X'03'~
the instruction

LBA RB

will Zoad the Accumulator with the contents of memory Zocation
X'2103'.

5-9

5.5.3 LBI Load Byte Immediate

Assembler Format: LBI Rn,mm (where Rn = RA, RB, RC, RD, RE, RH,
or RL)

IO,OLE1,l,ol ,
L------OOO

001
010
011
100
101
III

mm

for register B
for register C
for register D
for register E
for register H
for register L
for register A

The byte of immediate data replaces the contents of the specified
register.

Operation: Rn + mm

Condition bits affected: None

Example:

The instruction

LBI RC,X'12'

will load X'12' into register C, whereas the instruction

LBI RC,12

will load x'OC' (Le., 1210) into register C.

5-10

5.5.4 LR Load Register

Assembler Format: LR Rd,Rs (where Rd,Rs = RA, RB, RC, RD, RE,
RH, or RL)

000 for register B
001 for register C
010 for register D
all for register E
100 for register H
101 for register L
111 for register A

One byte of data is moved from the register specified by Rs (the
source register) to the register specified by Rd (the destination
register). The data replaces the contents of the destination
register; the source remains unchanged.

Operation: Rd + Rs

Condition bits affected: None

Examples:

If register A contains X'9AI and register B contains X'OC',
the instruction

LR RB,RA

will cause registers A and B to both contain X'9A'. Instruc­
tions of the type

LR RB,RB

can be used as no-op instructions.

5-11

5.5.5 STA Store Accumulator

Assembler Format: STA BB or STA BD

lo,o,o\xlo,o,l,ol

f~ __________ o for registers Band C
1 for registers D and E

The contents of the Accumulator are stored in the memory location
addressed by register pai~ Band C, or by register pa~r D and E.

Operation: M + BA

Condition bits affected: None

Example:

If register B contains X'21' and register C contains X'OJ',
the instruction

STA BB

will store the contents of the Accumulator at memory location
X'210J'.

5-12

5.5.6 STB Store Byte

Assembler Format: STB Rn (where Rn = RA, RB, RC, RD, RE, RH,
or RL)

10,1,1,1,01

rooo for register B
001 for register C
010 for register D
011 for register E
100 for register H
101 for register L
III for register A

The contents of the specified register is stored into the memory
location addressed by registers Hand L.

Operation: M + Rn

Condition bits affected: None

Example:

If register H contains X'13', register L contains X'8B', and
register C contains X'IC', the instruction

STB RC

will store X'lC' into memory location X'138B'.

5-13

5.5.7 STBI Store Byte Immediate

Assembler Format: STBI rom

mm
I

The byte of immediate data is stored into the memory location ad­
dressed by registers Hand L.

operation: M ~ mm

Condition bits affected: None

Example:

If register H contains X'23' and register L contains X'8B',
the instruction

will store X'lC' into memory location X'238B',

5-14

5.6 REGISTER OR HEMORY TO ACCUMULATOR INSTRUCTIONS

This instruction group alters the contents of register A, the
Accumulator.

5.6.1 A Add

Assembler Format: A RA

The contents of the memory location addressed by registers Hand
L is added to register A using two's complement arithmetic.

Operation: RA + RA+M

Condition bits affected: Carry, Sign, Zero, Parity, Auxiliary Carry

Example:

If register H contains X I 13' and register L contains X'8B',
memory location X'138B' will be addressed. So, if memory
location X'138B' contains X'8A' and register A contains X'OC',
the instruction

A RA

will cause the following addition to be performed:

Register A = 0000 1100 = X'OC'
Memory = 1000 1010 = X'8A' = -X'76'

Result = 1001 0110 = X'96' = -X'6A'

To summarize the results:

Register A = X'96'
Carry = 0
Sign = 1
Zero = 0
Parity = 1
Aux. Carry = 1

5-15

5.6.2 AC Add Carry

Assembler Format: AC RA

The contents of the memory location addressed by registers Hand
L, plus the Carry, is added to register A using two's complement
arithmetic.

Operation: RA + RA+M+Carry

Condition bits affected: Carry, Sign, Zero, Parity, AuxiZiapy Cappy

Example:

If register H contains X'13' and register L contains X'SB',
memory location X'13BB' will be addressed. So, if memory lo­
cation X'13SB' contains X'30', register A contains X'42, and
the Carry bit=O, the instruction

AC RA

will perform the addition as follows:

X'30' = 0011 1101
X'42' = 0100 0010
Carry = 0

Result = 0111 1111 = X' 7F'

The results are:

Register A = X' 7F'
Carry = 0
Sign = 0
Zero = 0
Parity = 0
Aux. Carry = 0

If the Carry bit had been one at the beginning of the example,
the following would have occurred:

X' 3D' = 0011 1101
X'42' = 0100 0010
Carry = 1

Result = 1000 0000 = X'BO'

Register A = X'BO'
Carry = 0
Sign = 1
Zero = 0
Parity = 0
Aux. Carry = 1

5-16

5.6.3 ACI Add Carry Immediate

Assembler Format: ACI RA,mm

11, 1, 0 , 0 , 1, I, I, 0 I mm ,

The byte of immediate data is added to the contents of register A
plus the contents of the Carry bit.

Operation: RA + RA+mm+Carry

Condition bits affected: Carry, Sign, Zero, Parity, Auxiliary Carry

Example:

If Carry=l and register A contains X' 42 1 , the instruction

ACI RA,X'3D '

will cause the following addition to occur:

X ' 3D ' = 0011 1101
X ' 42 1 = 0100 0010
Carry = 1

Result = 1000 0000 = Xl 80 I

The results are:

Register A = X 180 I
Carry = a
Sign = 1
Zero = 0
Parity = a
Aux. Carry = 1

5-17

5.6.4 AI Add Immediate

Assembler Format: AI RA,mm

The byte of immediate data is added to the contents of register A
using two's complement arithmetic.

Operation: RA -+- RA+mm

Condition bits affected: carry, Sign, Zero, Parity, AuxiZiary Carry

Example:

Label Code °Eerand

ADI LBI RA,20

AD2 AI RA,66

AD3 AI RA,-66

The instruction at ADI loads register A with X'14'. The in­
struction at AD2 performsthe following addition:

X'14' = 0001 0100
X'42' = 0100 0010

Result = 0101 0110 = X'56'

The parity bit is set; all other bits are reset.

The instruction at AD3 restores the original contents of
register A. The Carry, Auxiliary Carry and Parity bits are
set. The Zero and Sign bits are reset.

5-18

5.6.5 AND Logical AND

Assembler Format: AND RA

The byte in the memory location addressed by registers Hand L
is logically ANDed, bit by bit, with register A. The Carry bit
is reset to zero.

The logical AND of two bits produces 1 if and only if both bits
equal 1.

Operation: RA + RA A M, Carry + 0

Condition bits affected: Carry, Zero, Sign, Parity

Example:

Since any bit ANDed with a zero produces a zero and any bit
ANDed with a one remains unchanged, the AND function is often
used to zero groups of bits.

If register H contains X'13' and register L contains X'SB',
memory location X'13SB' will be addressed. So, if location
X'13SB' contains X'OF' and register A contains X'FC', the
instruction

AND RA

will act as follows:

Register A = 1111 1100 = X'FC'
Memory = 0000 1111 = X'OF'

Result = 0000 1100 = X'OC' in register A

This particular example guarantees that the high-order four
bits of the accumulator are zero, and the low-order four bits
are unchanged.

5-19

5.6.6 ANDI AND Immediate

Assembler Format: AND I RA,mm

11 , 1,1,0,0,1,1 1 01 , nun
1 I I I

The byte of immediate data is logically ANDed with the contents of
register A. The Carry bit is reset to zero.

Operation: RA + RA A mm, Carry + 0

Condition bits affected: Carry, Zero, Sign, Parity

Example:

Consider the instruction sequence

LR RA,RC
ANDI RA,X'OF'

The contents of the C register are moved to register A~ The
ANDI instruction then zeroes the high-order four bits, leav­
ing the low-order four bits unchanged. The Zero bit will be
set if and only if the low-order four bits were originally
zero.

If the C register contained X'3A', the ANDI would perform
the following:

Register A = 0011 1010 = X'3A'
mm = 0000 1111 = X'OF'

Result = 0000 1010 = X'OA' in register A

5-20

5.6.7 ANDR AND Register

Assembler Format: ANDR RA,Rn (where Rn = RA, RB, RC, RD, RE, RH,
or RL)

IllOlllOIOZ
00 for register B

001 for register C
010 for register D
011 for register E
100 for register H
101 for register L
III for register A

The specified register is logically ANDed, bit by bit, with the
contents of register A. The Carry bit is reset to zero.

The logical AND fUnction of two bits is 1 if and only if both the
bits equal 1.

Operation: RA + RA A Rn, Carry + 0

Condition bits affected: Carry, Zero, Sign, Parity

Example:

Since any bit ANDed with a zero produces a zero and any bit
ANDed with a one remains unchanged, the AND function is often
used to zero groups of bits.

Assuming that register A contains X'3A' and the C register
contains X'OF', the instruction

ANDR RA,RC

will act as follows:

Register A =
Register C =

0011 1010
0000 1111

= X' 3A'
= X' OF'

Result = 0000 1010 = X'OA' in register A

5-21

5.6.8 AR Add Register

Assembler Format: AR RA,Rn (where Rn = RA, RB, RC, RO, RE, RH,
or RL)

[lIOIOIOIO~

000 for register B
001 for register C
010 for register 0
011 for register E
100 for register H
101 for register L
III for register A

The specified register is added to the contents of register A
using two's complement arithmetic.

Operation: RA + RA+Rn

Condition bits affected: Carry, Sign, Zero, Parity, AuxiZiary Carry

Example 1:

Assume that the 0 register contains X'2E' and register A con­
tains X'6C'. Then the instruction

AR RA,RO

will perform the addition as follows:

X' 2E' = 0010 1110
X' 6C' = 0110 1100

Result = 1001 1010 = X' 9A' in register A

The Zero and Carry bits are reset; the Parity and Sign bits
are set. Since there is a carry out of bit As, the AuxiZiary
Carry bit is set.

Example 2:

The instruction

AR RA,RA

will double the contents of register A.

5-22

5.6.9 ARC Add Register Carry

Assembler Format: ARC RA,Rn (where Rn = RA, RB, RC, RD, RE, RB,
or RL)

11IO.OIO.1~

000 for register B
001 for register C
010 for register D
all for register E
100 for register H
101 for register L
III for register A

The contents of the specified register, plus the Carry bit, is
added to register A using two's complement arithmetic.

Operation: RA + RA+Rn+Carry

Condition bits affected: Carry, Sign, Zero, Parity, AuxiZiapy Cappy

Example:

Assume that register C contains X'3D', register A contains
X'42', and the Carry bit=O. The instruction

ARC RA,RC

will perform the addition as follows:

X' 3D' ;:: 0011 1101
X'42' ;:: 0100 0010
Carry = a

Result = 0111 1111 = X'7F'

The results can be summarized as follows:

Register A = X'7F'
Carry = a
Sign = a
Zero ;:: a
Parity = a
Aux. Carry = a

5-23

5.6.10 C Compare

Assembler Format: C RA

The contents of the memory location addressed b~ registers Hand
L is compared with the contents of register A. The comparison is
performed by internally subtracting the contents of memory from
register A (leaving both unchanged) and setting the condition bits
according to the result. The Zero bit is set if the quantities
are equal, and reset if they are unequal. Since a subtract opera­
tion is performed, the Carry bit will be set if there is no carry
out of bit 7, indicating that the contents of memory are greater
than the contents of register A, and reset otherwise.

Operation:

NOTE

If the two quantities to be com­
pared differ in sign, the sense
of the Carry bit is reversed.

(RA-M)

Condition bits affected: Carry, Zero, Sign, Parity, AuxiZiapy Cappy

Example 1:

Assume that register A contains the number X'OA' and memory
contains the number X'05'. Then the instruction

C RA

performs the following internal subtraction:

X'OA' = 0000 1010
-(X'05') = 1111 1011

r--~ 0000 0101 = Result

L.carry=l, causing the Carry bit to be reset

Register A still contains X'OA' and memory still contains
X'05'i however, the Carry bit is reset and the Zero bit re­
set, indicating that memory is less than register A.

Example 2:

If register A had contained the number X'02', the internal
subtraction would have produced the following:

5-24

X'02~ = 0000 0010
-(X'05') = 1111 1011

r---9 1111 1101 = Result

~carry=O, Carry bit=l

The Zero bit would be reset and the Carry bit set, indicating
memory greater than A.

5-25

5.6.11 CI Compare Immediate

Assembler Format: CI RA,mm

mm
I

The byte of immediate data is compared to the contents of register A.

The comparison is performed by internally subtracting the data from
register A using two's complement arithmetic, leaving register A
unchanged but setting the condition bits by the result.

The Zero bit is set if the quantities are equal, and reset if they
are unequal.

Since a subtract operation is performed, the Carry bit will be set
if there is not carry out of bit 7, indicating the immediate data
is greater than the contents of register A, and reset otherwise.

Operation:

NOTE

If the two quantities to be compared
differ in sign, the sense of the
Carry bit is reversed.

(RA-mm)

Condition bits affected: Carry, Zero, Sign, Parity, AuxiZiary Carry

Example:

Consider the instruction sequence

LBI RA,X'4A'
CI RA,X'40'

The CI instruction performs the following internal subtraction:

X'4A' = 0100 1010
-(X'40') = 1100 0000

I~ 0000 1010

~carry out=l, causing the Carry bit to be reset

Register A still contains X'4A', but the Zero bit is reset
indicating that the quantities were unequal, and the Carry
bit is reset indicating mm is less than the register A.

5-26

5.6.12 CR Compare Registers

Assembler Format: CR RA,Rn (where Rn = RA, RB, RC , RD, RE, RH,
or RL)

Il10llllilLE
000 for register B
001 for register C
010 for register D
all for register E
100 for register H
101 for register L
111 for register A

The contents of the specified register is compared with the con­
tents of register A. The comparison is performed by internally
subtracting the contents of register n from register A (leaving
both unchanged) and setting the condition bits according to the
result. The Zero bit is set if the quantities are equal, and
reset if they are unequal. Since a subtract operation is per­
formed, the Carry bit will be set if there is no carry out of
bit 7, indicating that the contents of register n are greater
than the contents of register A, and reset otherwise.

Operation:

NOTE

If the two quantities to be com­
pared differ in sign, the sense
of the Carry bit is reversed.

(RA-Rn)

Condition bits affected: Carry, Zero, Sign, Parity, Auxiliary Carry

Example 1:

Assume that register A contains the number X'OA' and RC con­
tains the number X'05'. Then the instruction

CR RA,RC

performs the following internal subtraction:

X'OA' = 0000 1010
-(X'05') = 1111 1011

r---~ 0000 0101 = Result

~carry=l, causing the Carry bit to be reset

Register A still contains X'OA' and register C still contains
X'05'i however, the Carry bit is reset and the Zero bit reset,
indicating that memory is less than A.

5-27

Example 2:

If register A had contained the number X'02', the internal
subtraction would have produced the fOllowing:

X'02' = 0000 0010
-(X'05') = 1111 1011

C~ 1111 1101 = Result

carry=O, Carry bit=l

The Zero bit would be reset and the Carry bit set, indicat­
ing memory greater than A.

5-28

5.6.13 0 Logical OR

Assembler Format: 0 RA

The contents of the memory location addressed by registers Hand
L is logically ORed, bit by bit, with the contents of register A.
The Carry bit is reset to zero.

The logical OR function of two bits equals zero if and only if
both bits equal zero.

Operation: RA + RA V M, Carry + 0

Condition bits affected: Carry, Zero, Sign, Parity

Example:

Since any bit ORed with a one produces a one, and any bit
ORed with a zero remains unchanged, the 0 function is often
used to set groups of bits to one.

If register H contains X'13' and register L contains X'8B',
memory location X'138B' contains X'OF' and register A con­
tains X'33', the instruction

o RA

acts as follows:

Register A = 0011 0011 = X'33'
Memory = 0000 1111 = X'OF'

Result = 0011 1111 = X'3F' in register A

This particular example guarantees that the low-order four
bits of register A are one, and the high-order four bits are
unchanged.

5-29

5.6.14 OI OR Immediate

Assembler Format: OI RA,mm

mm
I ! I I I

The byte of immediate data is logically ORed with the contents of
register A.

The result is stored in register A. The Carry bit is reset to
zero, while the Zero, Sign, and Parity bits are set according to
the result.

Operation: RA + RA V mm, Carry + 0

Condition bits affected: Carry, Zero, Sign, Parity

Example:

Consider the instruction sequence

LR RA,RC
OI RA,X'OF'

If the C register
following:

Register A =
mm =

Result =

contained X'B5',

1011 0101 = X'B5'
0000 1111 = X'OF'

1011 1111 = X'BF'

the OI would perform the

in register A.

Thus the contents of the C register are moved to register A.
The OI instruction then sets the low-order four bits to one,
leaving the high-order four bits unchanged.

5-30

5.6.15 OR OR Registers

Assembler Format: OR RA,Rn (where Rn = RA, RB, RC, RD, RE, RH,
or RL)

11, 01 1,1, aLl':
000 for register B
001 for register C
010 for register D
011 for register E
100 for register H
101 for register L
111 for register A

The specified register is logically ORed, bit by bit, with the
contents of the accumulator. The Carry bit is reset to zero.

The logical OR function of two bits equals zero if and only if
both the bits equal zero.

Operation: RA + RA V Rn

Condition bits affected: Carry, Zero, Sign, Parity

Example:

Since any bit ORed with a one produces a one, and any bit
ORed with a zero remains unchanged, the OR function is often
used to set groups of bits to one.

Assuming that register C contains X'OF' and register A con­
tains X'33', the instruction:

OR RA,RC

acts as follows:

Register A = 0011 0011 = X I 33'
Register C = 0000 1111 = X'OF'

Result = 0011 1111 = X'3F' in register A

This particular example guarantees that the low-order four
bits of register A are one, and the high-order four bits are
unchanged.

5-31

5.6.16 S Subtract

Assembler Format: S RA

The contents of the memory location addressed by register$ Hand
L is subtracted from register A using two's complement arithmetic.

If there is no carry out of the high-order bit position, indicat­
ing that a borrow occurred, the Carry bit is set; otherwise it is
reset. (Note that this differs from an add operation, which re­
sets the carry if no overflow occurs.)

Operation: RA + RA-M

Condition bits affected: Carry, Sign, Zero, Parity, Auxiliary Carry

Example:

If register H contains X1 13' and register L contains X'8B',
memory location X'138B' contains X'8A' and register A contains
X'OC', the instruction

S RA

will cause X'SA' to be two's complemented (=X'76') and added
to X'OC'. That is,

Register A = 0000 1100 = X'OC'
-Memory = -(X'8A') = 0111 0110 = X'76'

1000 0010 = X'82'

This operation also resets the Carry bit, indicating that
the result is positive:

5-32

5.6.17 SC Subtract Carry

Assembler Format: SC RA

Carry is added to the contents of the memory location addressed
by registers Hand L. This sum is then subtracted from register
A using two's complement arithmetic.

The SC instruction is useful when performing subtractions. It
adjusts the result of subtracting two bytes when a previous sub­
traction has produced a negative result (a borrow) .

Operation: RA + RA-(M+Carry)

Condition bits affected: Carry, Sign, Zero, Parity, Auxiliary Carry

Example:

If register H contains X1 13' and register L
memory location X'138B' will be addressed.
location X'138B' contains X'02', register A
and Carry=l, the instruction

SC RA

will act as follows:

X'02' + Carry = X'03'

Two's Complement of X'03' = 1111 1101

Adding this to register A produces:

Register A = 0000 0100 = X'04'
1111 1101

iJ] 0000 0001 = X' all

contains X' 8B' ,
So, if memory
contains X'04',

~carry out=l, causing the Carry bit to be reset

The final value in register A is X'Ol', causing the Zero bit
to be reset. The Carry bit is reset since this is a subtract
operation and there was a carry out of the high-order bit
position. The Auxiliary Carry hit is set since there Was a
carry out of hit A 3 • The Parity and the Sign bits are reset.

5-33

5.6.18 SCI Subtract Carry Immediate

Assembler Format: SCI RA,mm

rom
I

The Carry bit is internally added to the byte of immediate data.
This sum is then subtracted from register A using two's comple­
ment arithmetic.

This instruction and the SC and SRC instructions are most useful
when performing multibyte subtractions.

Since this is a subtraction operation, the Carry bit is set if
there is no carry out of the high-order position, and reset if a
carry out occurs.

Operation: RA + RA-(rom+Carry)

Condition bits affected: Carry, Sign, Zero, Parity, AuxiZiary Carry

Example:

Consider the instruction sequence

XR RA,RA
SCI RA,l

The XR instruction will zero register A. If the Carry bit is
zero, the SCI instruction will then perform the following
operation:

mm + Carry = X'Ol'

-X'Ol' = 1111 1111

Adding this to register A produces:

Register A = 0000 0000
1111 1111 e llll 1111 = X'FF' = -X'Ol'

Carry out=O, setting the Carry bit

The Carry bit is set, indicating a borrow. The Zero and
Auxiliary Carry bits are reset, while the Sign and Parity
bits are set.

5-34

5.6.19 SI Subtract Immediate

Assembler Format: SI RA,mm

rom
I

The byte of immediate data is subtracted from the contents of
register A using two's complement arithmetic.

Since this is a subtraction operation, the Carry bit is set, in­
dicating a borrow, if there is no carry out of the high-order
bit position, and reset if there is a carry out.

operation: RA +- RA-mm

Condition bits affected: Carry, Sign, Zero, Parity, Auxiliary Carry

Example:

This instruction can be used as the register A equivalent of
the DEC (Decrement Register) instruction by coding

SI RA,l

5-35

5.6.20 SR Subtract Register

Assembler Format: SR RA,Rn (where Rn = RA, RB, RC, RO, RE, RH,
or RL)

Il,Oj 0, l,ocr
000 for register B
001 for register C
010 for register D
011 for register E
100 for register H
101 for register L
III for register A

The specified register is subtracted from register A using two's
complement arithmetic.

If there is no carry out of the high-order bit position, indicat­
ing that a borrow occurred, the Carry bit is set; otherwise it is
reset. (Note that this differs from an add operation, which re­
sets the carry if no overflow occurs).

Operation: RA + RA-Rn

Condition bits affected: Carry, Sign, Zero, Parity, Auxiliary Carry

Example:

Assume that register A contains X'3E'. Then the instruction:

SR RA,RA

will subtract the accumulator from itself producing a result
of zero as follows:

X'3E' = 0011 1110
+(-X'3E') = 1100 0001 negate and add one to produce

1 two's complement -----=
Carry -+ D 0000 0000 = Result = 0

Since there was a carry out of the high-order bit position,
and this is a subtraction operation, the Carry bit will be
reset.

Since there was a carry out of bit A3, the Auxiliary Carry
bit will be set.

The Parity and Zero bits will also be set, and the Sign bit
will be reset.

Thus the SR RA,RA instruction can be used to reset the Carry
bit (and clear register A) •

5-36

5.6.21 SRC Subtract Register Carry

Assembler Format: SRC RA,Rn (where Rn = RA, RB, RC f RD, RE, RH,
or RL)

[1/ 0, O,l.lDE
000
001
010
011
100
101
III

for
for
for
for
for
for
for

register B
register C
register D
register E
register H
register L
register A

The Carry bit is internally added to the contents of the specified
register. This value is then subtracted from register A using two's
complement arithmetic.

This instruction is most useful when performing subtractions. It
adjusts the result of subtracting two bytes when a previous sub­
traction has produced a negative result (a borrow) .

Operation: RA + RA-(Rn+Carry)

Condition bits affected: Carry, Sign, Zero, Parity, Auxiliapy Cappy

Example:

Assume that register L contains X'02', register A contains
X'04', and the Carry bit=l. Then the instruction

SRC RA,RL

will act as follows:

X'02' + Carry = X'03'

Two's Complement of X'03' = 1111 1101

Adding this to register A produces:

Register A = 0000 0100 = X'04'
1111 1101 = -X'03'

I:Q 0000 0001 = X'Ol'

~carry out=l, causing the Carry bit to be reset

The final value in register A is X'Ol', causing the Zero bit
to be reset. The Carry bit is reset since this is a subtract
operation and there was a carry out of the high-order bit
position. The Auxiliary Carry bit is set since there was a
carry out of bit A3. The Parity and the Sign bits are reset.

5-37

5.6.22 X Exclusive OR

Assembler Format: X RA

The contents of the memory location addressed by registers Hand
L is Exclusive-ORed, bit by bit, with the contents of register A.
The Carry bit is reset to zero.

The Exclusive-OR of the two bits produces I if and only if the
values of the bits are different.

operation: RA +- RA ~ M, Carry +- 0

Condition bits affected: Carry, Zero, Sign, Parity

Example:

Any bit Exclusive-ORed with a one is complemented. There­
fore, if register H contains X'l3' and register L contains
X'8B', memory location X'138B' will be addressed. So, if
memory location X'l38B' contains X'FF' and register A con­
tains X'OC', the instruction

X RA

will one's complement register A (X'F3'). Further, the se­
quence

X RA
AI RA,1

will two's complement register A (X'F4').

5-38

5.6.23 XI Exclusive OR Immediate

Assembler Format: XI RA,mm

mm
I

The byte of immediate data is Exclusive-ORed with the contents of
register A. The Carry bit is set to zero.

Operation: RA + RA ~ mm, Carry + 0

Condition bits affected: Carry, Zero, Sign, Parity

Example:

Since any bit Exclusive-ORed with a one is complemented and
any bit Exclusive-ORed with a zero is unchanged, this in­
struction can be used to complement specific bits of register
A. For example, the instruction

XI RA,X'81'

will complement bits 0 and 7 of register A, leaving bits 1-6
unchanged.

5-39

5.6.24 XR Exclusive OR Register

Assembler Format: XR RA,Rn (where Rn = RA, RB, RC, RD, RE, RH,
or RL)

The specified register is
tents of register A. The

000 for register B
001 for register C
010 for register D
all for register E
100 for register H
101 for register L
110 for register M
III for register A

Exclusive-ORed, bit by bit,
Carry bit is reset to zero.

with the con-

The Exclusive-OR function of two bits equals 1 if and only if the
values are different.

Operation: RA + RA ~Rn, Carry + 0

Condition bits affected: Carry, Zero, Sign, Parity

Example:

Since any bits Exclusive-ORed with itself produces zero, the
instruction

XR RA,RA

will clear register A.

5-40

5.7 ROTATE ACCUMULATOR INSTRUCTIONS

This section describes the instructions which rotate the contents
of the Accumulator. No memory locations or other registers are
affected.

5.7.1 RLC Rotate Left Carry

Assembler Format: RLC RA

The contents of register A are rotated one bit position to the left.
The high-order bit of the register replaces the Carry bit, while
the Carry bit replaces the low-order bit of the register.

Operation: Carry + RA7,RA1~7 + RAO-6 and RAo + Carry

Condition bits affected: Carry

Example:

Assume that register A contains X'B5'. Then the instruction

RLC RA

acts as follows.

Before RLC is executed: Carry Register A

After RLC is executed:

Carry=l RA=X'6A'

5-41

5.7.2 ROL Rotate Left

Assembler Format: ROL RA

The Carry bit is set equal to the high-order bit of register A.
The contents of register A are rotated one bit position to the
left, with the high-order bit being transferred to the low-order
bit position of the register.

Operation: Carry ~ RA7,RAl-7 ~ RAO-6 and RAo ~ RA7

Condition bits affected: Carry

Example:

Assume that register A contains X'F2'. Then the instruction

ROL RA

acts as follows.

Before ROL is executed: Carry Register A

After ROL is executed:

Carry=l RA=X'E5'

5-42

5.7.3 ROR Rotate Right

Assembler Format: ROR RA

The Carry bit is set equal to the low-order bit of register A. The
contents of register A are rotated one bit position to the right,
with the low-order bit being transferred to the high-order bit
position of the register.

Operation: Carry + RA o ,RA o- 6 + RAl-7 and RA7 + RAo

Condition bits affected: Carry

Example:

Assume that register A contains X'F2'. Then the instruction

ROR RA

acts as follows.

Before ROR is executed: Register A Carry

After ROR is executed:

RA=X'79' Carry=O

5-43

5.7.4 RRC Rotate Right Carry

Assembler Format: RRC RA

I 0, 0, 0 , I, I, 1 , I, 1 I
The contents of register A are rotated one bit position to the
right.

The low-order bit of the register replaces the Carry bit, while
the Carry bit replaces the high-order bit of the register.

Operation: Carry + RAo,RAO-6 + RAl-7 and RA7 + RAo

ConcH t:i..on bits affected: Carry

Example:

Assume that register A contains X'6A'. Then the instruction

RRC RA

acts as follows.

Before RRC is executed: Register A Carry

rl 0 11 11 10 \11 0 11 10 f-.[!h

After RRC is executed:

RA=X'B5' Carry=O

5-44

5.8 REGISTER PAIR INSTRUCTIONS

This section describes instructions that operate on pairs of regis­
ters.

In addition to these instructions, several of the Basic System Sub­
routines in Appendix B can be used to perform some useful register
pair operations. Specifically:

• ADD2 (Section B.3.l) adds register C to register pair D
and E

• COMPER (Section B.3.3) compares register pair Band C
with register pair D and E

• SUBREG (Section B.3.l6) subtracts register pair Band C
from register pair D and E

• SUBT2 (Section B.3.l7) subtracts register C from register
pair D and E.

5-45

5.8.1 DAD Double Add

Assembler Format: DAD Rp (where Rp = RB~ RD~ RH~ or SP)

1 0, 0l)J 1, 0, 0, 11 00

01
10
11

for registers Band C
for registers D and E
for registers Hand L
for register SP

The 16-bit number in the specified register pair is added to the
16-bit number held in the Hand L registers using two's complement
arithmetic. The result replaces the contents of the Hand L regis­
ters.

Operation: H~L + (H~L)+Rp

Condition bits affected: Carry

Example 1:

Assume that register B contains X'55'~ register C contains
X'9F'~ register H contains X'A1'~ and register L contains
X'?B'. Then the instruction

DAD RB

performs the following addition:

Registers B and C = X'559F'
+ Re(listers H and L = X'A1?B'

New contents of H and L = X'D~lA'

Register H now contains X'D5' and register L now contains
X'lA'. Since no carry out was produced~ the Carry bit is
reset=O.

Example 2:

The instruction

DAD RH

will double the 16-bit number in the Hand L registers (which
is equivalent to shifting the 16 bits one position to the
left) .

5-46

5.8.2 DECP Decrement Register Pair

Assembler Format: DECP Rp (where Rp = RB, RD, RH, or SP)

IOIO~lIOlllll

~------------~oo for registers Band C
01 for registers D and E
10 for registers Hand L
11 for register SP

The 16-bit number held in the specified register pair is decremented
by one.

NOTE

In the Zentec 9002, the Hand L
register pair can be decremented
by one by calling a basic system
subroutine labelled DECHL.

Operation: Rp + Rp-1

Condition bits affected: None

Example:

If register H contains X'98' and register L contains X'OO',
the instruction

DECP RH

will cause register H to contain X ' 9?' and register L to con­
tain X' FF'.

5-47

5.8.3 INCP Increment Register Pair

Assembler Format: INCP Rp (where Rp = RB, RD, RH, or SP)

10, olliJo, 0 ,1,11

f~ ____________ ~~o for registers Band C
01 for registers D and E
10 for registers Hand L
11 for register SP

The 16-bit number held in the specified register pair is incremented
by one.

NOTE

In the Zentec 9002, the Hand L
register pair can be incremented
by one by calling a basic system
subroutine labelled BUMPHL.

Operation: Rp + Rp+1

Condition bits affected: None

Example:

If registers D and E contain X'38' and X'FF' respectively, the
instruction

INCP RD

will cause register D to contain X'39' and register E to con­
tain X'OO'.

5-48

5.8.4 LHI Load Half-Word Immediate

Assembler Format: LHI Rp~ nn,mm (where Rp = RB~ RD~ RH~ or Spy

nn
I I

~---------oo for registers Band C
01 for registers D and E
10 for registers Hand L
11 for register SP

The third byte of the instruction (nn) is loaded into the first
register of the specified pair~ while the second byte of the in­
struction is loaded into the second register of the specified
pair. If SP is specified as the register pair~ the second byte
of the instruction replaces the least significant 8 bits of the
stack pointer~ while the third byte of the instruction replaces
the most significant 8 bits of the stack pointer.

Operation: Rp + mmnn

Condition bits affected: None

Example:

NOTE

The immediate data for this in­
struction is a 16-bit quantity.
All other immediate instructions
require an 8-bit data value.

Assume that instruction label STRT refers to memory location
X'2103'. Then the following instructions will each load the
H register with X'21' and the L register with X'03':

LHI RH~X'2103'
LHI RH~STRT

9002 LHI Macro

In order for the 9002 user to effectively use relocatable addressing,
a predefined macro is available which allows the addressing of a
relocatable, external or absolute location.

Assembler Format: LHI Rp,mmnn (where Rp=RA,RB,RC,RD, or RH)

The operation is similar to that of the LHI instruction for the
9003. The first register of the pair is loaded with the most
significant byte (mm); the second register is loaded with the least
significant byte (nn).

Operation: Rp + mmnn

5-49

Condition bits affected: None

Example:

Assume that LABEL refers to location X'lFSB'. The following
will then load the C registers with X'lF' and the 0 register
with X' SB' :

LHI RC,LABEL

5-50

5.8.5 POP Pop Data Off Stack

Assembler Format: POP Rp (where Rp = RB~ RD~ RH~ or PSW)

00
01
10
11

for
for
for
for

registers
registers
registers
flags and

Band C
D and E
Hand L
register A

The contents of the specified register pair are restored from two
bytes of memory indicated by the stack pointer SP. The byte of
data at the memory address indicated by the stack pointer is loaded
into the second register of the register pair; the byte of data at
the address one greater than the address indicated by the stack
pointer is loaded into the first register of the pair. If register
pair PSW is specified~ the byte of data indicated by the contents
of the stack pointer plus one is used to restore the values of the
five condition hits (Carry, Zero~ Sign~ Parity~ and Auxiliary Carry)
using the format described in the last section.

In any case~ after the data has been restored~ the stack pointer is
incremented by two.

Operation: (RP1) + (SP+l)~ (RP2) + SP~ SP + (SP+2)

Condition bits affected: If register pair PSW is specified~ Carry~
Sign~ Zero~ Parity~ and Auxiliary Carry
may be changed. Otherwise~ none are af­
fected.

Example 1:

Assume that memory locations X'1239' and X'123A' contain
X'3D' and X'93', respectively~ and that the stack pointer
contains X'1239'. Then the instruction

POP RH

loads register L with the value X'3D' from location X'1239'~
loads register H with the value X'93' from location X'123A'~
and increments the stack pointer by two, leaving it equal
to X'123B'.

5-51

BefoI'e POP

SE' --+

Example 2:

I
I
I-

HEX
MEMORY ADDRESS MEMORY

1238

1239

123A

123B
I
I
I
I

+ SP

H L

§J [§

AfteI' POP

Assume that memoI'Y locations X'2COO' and X'2C01' contain
X'C3' and X'FF', I'espectively, and that the stack pointeI'
contains X'2COO'. Then the instI'uction

POP PSW

will load the AccumulatoI' with X'FF' and set the condition
bit as follows:

X'C3' =

W
OOlt

Sign bit=l t! a:l"l'Y bit=l
ZeI'O bit=l PaI'ity bit=O
Aux. CaI'I'Y bit=O

5-52

5.8.6 PUSH Push Data Onto Stack

Assembler Format: PUSH Rp (where Rp = RB, RD, RH, or PSW)

Il,lLfO ,1,0,1 1

00

01
10

for
for
for

11 for

registers
registers
registers
flags and

Band C
D and E
Hand L
register A

The contents of the specified register pair are saved in two bytes
of memory indicated by the stack pointer SP.

The contents of the first register are saved at the memory address
one less than the address indicated by the stack pointer; the con­
tents of the second register are saved at the address two less than
the address indicated by the stack pointer. If register pair PSW
is specified, the first byte of information saved holds the contents
of the A register; the second byte holds the settings of the five
condition bits, i.e., Carry, Zero, Sign, Parity, and Auxiliary
Carry. The format of this byte is:

State of Sign bit-----~
State of Zero bit--------~

always o----------~
State of Auxiliary---------------­
Carry bit

Carry bit

Parity bit

In any case, after the data has been saved, the stack pointer is
decremented by two.

Operation: (SP-1) +- (RP1), (SP-2) +- (RP2), SP +- (SP-2)

Condition bits affected: None

Example 1:

Assume that register D contains X'2F', register E contains
X'9D', and the stack pointer contains X'3A2C'. Then the in­
struction

PUSH RD

stores the D register at memory address X'3A2B', stores the E
register at memory address X'3A2A', and then decrements the
stack pointer by two, leaving the stack pointer equal to
X ' .3A 2A ' .

5-53

Before PUSH

Example 2:

I
I
I-

HEX
MEMORY ADDRESS MEMORY

FF

SP -+ FF

D E

EJEJ

3A29

3A2AI
3A2B

3A2C
I
I
I
I

FF

9D +- SP

2F

FF

D E

EJ EJ

After PUSH

Assume that the Accumulator contains X'lF', the stack pointer
contains X'302A', the Carry, Zero and Parity bits all equal 1,
and the Sign and Auxiliary Carry bits all equal o. Then the
instruction

PUSH PSW

stores the AccumuZator (X'lF') at location X'3029', stores the
value X'47', corresponding to the flag settings, at location
X'3028', and decrements the stack pointer to the value X'3028'.

5-54

5.8.7 SPHL Load SP From Hand L

Assembter Format: SPHL

The 16 bits of data hetd in the Hand L registers reptace the con­
tents of the stack pointer SP. The contents of the Hand L regis­
ters are unchanged.

Operation: SP + H~L

Condition bits affected: None

Exampte:

If registers Hand L contain X'20' and X'6C'~ respectivety~
the instruction SPHL witt toad the stack pointer with the
vatue X'206C'.

5-55

5.8.8 XCHG Exchange Registers

Assembler Format: XCHG

G-,l,l,O ,1,0 ,1,11

The 16 bits of data held in the Hand L registers are exchanged
with the 16 bits of data held in the D and E registers.

Operation: D,E ++ H,L

Condition bits affected: None

Example:

If register H contains X'OO', register L contains X'FF',
register D contains X'33', and register E contains X'55',
the instruction XCHG will perform the following operation:

Before XCHG After XCHG

D E D E

H L H L

5-56

5.8.9 XTHL Exchange Stack

Assembler Format: XTHL

The contents of the L register are exchanged with the contents of
the memory byte whose address is held in the stack pointer SP. The
contents of the H register are exchanged with the contents of the
memory byte whose address is one greater than that held in the
stack pointer.

Operation: L ~~ (SP)~ H ~~ (SP+1)

Condition bits affected: None

Example: If register H contains X'OB'~ register L contains X'3C'~
register SP contains X'20AD'~ and memory locations X'20AD'
and X'20AE' contain X'FO' and X'OD'~ respectively~ the
XTHL instruction wilZ perform the foZlowing operation:

Before XTH L After XTHL

HEX

MEMORY ADDRESS MEMORY

FF 20AC I~sp SP ~ FO 20AD
OD 20AE OB

FF 20AF FF

H L H L

[Q[J CKJ [2QJ ITQ]

5-57

~.9 DIRECT ADDRESSING INSTRUCTIONS

This seation desaribes instruations whiah referenae memory by a
two-byte address that is part of the instruation itseZf. Instrua­
tions in this aZass oaaupy three bytes, as foZZows:

I I

hi addr
I I I I I

where "Zow addr' is the Zeast-signifiaant byte of a memory address
and "hi addrr is the most-signifiaant byte of a memory address. The
address may be absoZute, reZoaatabZe, or externaZ.

5.9.1 LAD Load Accumulator Direct

AssembZer Format: LAD addr

low addr hi addr
I I I I I I I I I I I

The byte at the memory address formed by aonaatenating "hi addr"
with "Zow addr" repZaaes the aontents of the AaaumuZator.

Operation: RA + M

Condition bits affeated: None

ExampZe:

The instruation

LAD X'211C'

wiZZ repZaae the AaaumuZator aontents with the aontents of
memory Zoaation X'211C'.

5-58

5.9.2 LHLD Load HAnd L Direct

Assembler Format: LHLD addr

low addr hi addr

The byte at the memory address formed by concatenating "hi addr"
with "low addr" replaces the contents of register L. The byte at
the next higher memory address replaces the contents of register
H.

Operation: RL + M and RH + M+l

Condition bits affected: None

Example:

If memory locations X'2113' and X'2114' contain X'EF' and
X'22'~ respectively~ the instruction

LHLD X'2113'

will load register L with X'EF' and register H with X'22'.

5.9.3 SHLD Store HAnd L Direct

Assembler Format: SHLD addr

10 0 1 0 0;0 1 01
I I I I I I

low addr hi addr

The contents of register L are stored at the memory address formed
by concatenating "hi addr" with "low addr". The contents of regis­
ter H are stored at the next higher memory address.

Operation: M + RL and M+l + RH

Example:

If the Hand L registers contain X'21' and X'BC'~ respectively~
the instruction

SHLD X' 24CE'

will store X'BC' into location X'24CE' and X'21 I into location
X'24CF'.

5-59

5.9.4 STD Store Accumulator Direct

Assembler Format: STD addr

I 1 1 A 1 I I :lOIW ,addr, 0,0, , ,,0.0, ,a L. I
The contents of the AccumuZator replace the byte at the memory
address formed by concatenating "hi addr" with "low addr".

Operations: M + RA

Condition bits affected: None

Example:

The instruction

STD X'241C'

will store the contents of the Accumulator at memory address
X'241C'.

5-60

5.10 BRANCH INSTRUCTIONS

This instruction group causes the normal execution sequence of in­
structions to b~ altered. With the exception of PCHL (Section
5.10.21), instructions in this class occupy three bytes, as follows:

code low addr hi addr

where low addr = least-significant byte of a memory address
hi addr = most-significant byte of a memory address

The address may be absolute, relocatable or external.

5.10.1 B Absolute Branch

Assembler Format: B label

low addr hi addr

Program execution branches unconditionally to the memory address
of "label".

operation: Prog. Counter + label

Condition bits affected: None

Example 1:

The instruction

B START

will cause program control to transfer to the instruction
that has the label START.

Example 2:

The instruction

B X'0113'

will cause program control to transfer to the instruction lo­
cated at memory location X'Ol13'.

5-61

5.10.2 BE Branch On Equal

Assembler Format: BE label

low addr hi addr
I I I I I _, I I

Program execution will branch to "label" if the preceding compare
operation (C, CI or CR) was successful: that is, if the Zero bit
is set.

Operation: Prog. counter + label if Zero=l

Condition bits affected: None

Example:

The instruction sequence

CI RA,3 Does A equal 3?
BE EQUAL Yes, go to EQUAL
LR RB,RA No, load A into B
B CONT Go to CONT

EQUAL LR RC,RA Load A into C
CONT LR RH,RD Load D into H

checks if register A contains 3. If it does, it is loaded
into register C: if not, it is loaded into register B.

5.10.3 BFC Branch False Carry

Assembler Format: BFC label

lo~ addr
I I I! , I I

Program execution will branch to "label" if Carry=O

Operation: Prog. Counter + label if Carry=O

Condition bits affected: None

5-62

5.10.4 BFP Branch False Parity

Assembler Format: BFP label

low addr hi addr
I I

Program execution will branch to "label" if Accumulator parity is
odd; that is, if the Parity bit is reset.

Operation: Prog. Counter + label if Parity=O

Condition bits affected: None

5.10.5 BFS Branch False Sign

Assembler Format: BFS label

low addr hi addr

Program execution will branch to "label" if the Accumulator con­
tains a non-zero positive number; that is, if Sign=O and Zero=O.

Operation: Prog. Counter + label if Sign=O and Zero=O

Condition bits affected: None

Example:

The instruction sequence

SI
BFS
SR

MORE AR

RA,X'42'
MORE
RA,RA
RA,RB

Subtract X'42' from A
Branch on A GT X'42'
Zero A if LT or EQ X'42'
Add B to A

checks to see if the value in register A is greater than
X'42'. If it is, this difference is added to register B;
if not, register A is zeroed and register B is, in effect,
loaded into register A.

5-63

5.10.6 BFZ Branch False Zero

Assembler Format: BFZ label

low addr hi addr
I I

Program execution will branch to "label" if the Accumulator is
not zero or a compare operation (C, CI or CR) was not equal.

Operation: Prog. Counter + label if Zero=O

Condition bits affected: None

5.10.7 BH Branch On High Or Equal

Assembler Format: BH label

low addr hi addr
I I I , I

Program execution will branch to "label" if the preceding compare
operation (C, CI or CR) detected that the Accumulator was equal
to or higher than the comparand.

Operation: Prog. Counter + label if Carry=O

Condition bits affected: None

Example:

The instruction sequence

CI RA,6 A GT or EQ to 6?
BHE HIGH Yes, branch to HIGH
SR RA,RA No, clear A
B AD DB Go add B

HIGH SI RA,6 Sub 6 from A
ADDB AR RA,RB Add A and B

checks to see if the Accumulator is greater than or equal to
6. If it is, the difference is added to register Bi if not,
the Accumulator is cleared before adding.

5-64

5.10.8 BL Branch On Low

Assembler Format: BL label

low addr hi addr
I I

program execution will branch to "label" if the preceding compare
operation (C, CI or CR) detected that the Accumulator was less
than the comparand.

operation: prog. Counter + label if Carry=l

Condition bits affected: None

5.1Q.9 BM Branch On Minus

Assembler Format: BM label

low addr hi addr

Program execution will branch to "label" if the Accumulator con­
tains a negative number; that is, if Sign=l.

Operation: prog. Counter + label if Sign=l

Condition bits affected: None

5-65

5.10.10 BNE Branch On Not Equal

Assembler Format: BNE label

low addr hi addr
I I I I I I I I I

program execution will branch to "label" if the preceding compare
operation (C, CI or CR) was unsuccessful; that is, if the Zero bit
is reset.

Operation: Prog. Counter + label if Zero=O

Condition bits affected: None

5.10.11 BNM Branch On Not Minus

Assembler Format: BNM label

low addr hi addr
, I I I I ! ti' I

Program execution will branch to "label" if the Accumulator con­
tains a positive number or zero.

Operation: Prog. Counter + label if Sign=O

Condition bits affected: None

5.10.12 BNP Branch On Not Plus

Assembler Format: BNP label

low addr
I I I

hi addr
I I I I

Program execution will branch to "label" if the Accumulator con­
tains a negative number.

Operation: Prog. Counter + label if Sign=l

Condition bits affected: None

5-66

5.10.13 BNZ Branch On Not Zero

Assembler Format: BNZ label

low addr hi addr
I I

Program execution will branch to "label" if the Accumulator is not
zero.

Operation: Prog. Counter + label if Zero=O

Condition bits affected: None

5.10.14 BP Branch On Plus

Assembler Format: BP label

low addr hi addr

Program execution will branch to "label" if the Accumulator is
positive or zero.

Operation: Prog. Counter + label if Sign=O

Condition bits affected: None

5.10.15 BTC Branch True Carry

Assembler Format: BTC label

low addr hi addr
I I

program execution will branch to "label" if the Carry bit is on.

Operation: Prog. Counter + label if Carry=l

Condition bits affected: None

5-67

5.10.16 BTP Branch True Parity

Assembler Format: BTP label

low addr hi addr
, I I I I I I I -,

Program execution will branch to "label" if Accumulator parity is
even; that is, if the Parity bit is set.

Operation: Prog. counter + label if Parity=l

Condition bits affected: None

5.10.17 BTS Branch True Sign

Assembler Format: BTS label

hi addr
, I I I I

Program execution will branch to "label" if the Accumulator sign
is negative.

Operation: Prog. Counter + label if Sign=l

Condition bits affected: None

5.10.18 BTZ Branch True Zero

Assembler Format: BTZ label

low addr hi addr
I I I I I I I I I

Program execution will branch to "label" if the Accumulator con­
tains zero or a compare operation (C, CI or CR) showed equality.

Operation: Prog. Counter + label if Zero=l

Condition bits affected: None

5-68

5.lQ.19 BZ Branch On Zero

Assembler Format: BZ label

low addr hi addr

Program execution will branch to "label" if the Accumulator is
zero.

Operation: Prog. Counter + label if Zero=l

Condition bits affected: None

5.10.20 PCHL Load Program Counter-

Assembler Format: PCHL

[11 I, 1 10 I I, 0,0 111

The contents of the H register replace the most significant 8
bits of the program counter, and the contents of the L register
replace the least significant 8 bits of the program counter.
This causes program execution to continue at the address contained
in the Hand L registers.

operation: PC + H,L

Condition bits affected: None

Example:

If the H register contains X'21' and the L register contains
X'3E', the instruction:

PCHL

will cause program execution to continue with the instruction
at memory address X'213E'.

5-69

5.11 CALL SUBROUTINE INSTRUCTIONS

This section describes the instructions that call subroutines.
These instructions operate like the Branch instructions, causing
a transfer of program control, but they also push a return address
onto the stack for use by the Return instructions (Section 5.11).

Instructions in this class occupy three bytes, as follows:

low addr hi addr cbdc
I I I I I I I I ; I I I I

where low addr = least-significant byte of a memory address
hi addr = most-significant byte of a memory address

5.11.1 CALL Absolute Call

Assembler Format: CALL sub

hi addr
I I

A call operation is unconditionally performed to subroutine "sub".

Operation: (Stack) + PC, SP + (SP-2), PC + addr

Condition bits affected: None

Example:

The instruction

CALL SUBR

transfers control to subroutine SUBR.

5.11.2 CE CalIOn Equal

Assembler Format: CE sub

low addr
I I

hi addr
, I

Call "sub" if the preceding compare operation (C , CI or CR) was
successful; that is, if the Zero bit is set.

Operation: If Zero=l, then (Stack) + PC, SP + (SP-2), PC + addr

Condition bits affected: None

5-70

5.11.3 CFC Call Fa~se Carry

Assembler Format: CFC sub

low addr hi addr

Call "s\lb" if Carry=O

Operation: If Carry=O, then (Stack) ~ PC, SP ~ (SP-2), PC ~ addr

Conqition bits affected: None

5.11.4 CFP Call False Parity

Assembler Format: CFP sub

Call "sub" if Accumulator parity is odd; that is, if the Parity
bit is reset.

Operation: If Parity=O, then (Stack) ~ PC, SP ~ (SP-2), PC ~ addr

Condition bits affected: None

5.11.5 CFS Call False Sign

Asse~bler Format: CFS sub

low addr hi addr

Call "sub" if the Accumulator contains a non-zero positive number;
that i$, if Sign=O and Zero=O. .

Operation: If Sign=O and Zero=O, then (Stack) 4 PC, SP ~ (Sp-2),
PC ~ add

Condition bits affected: None

5-71

5.11.6 CFZ Call False Zero

Assembler Format: CFZ sub

hi addr
I I I I

Call "sub" if the Accumulator is not zero or a compare operation
(C , CI or CR) was not equal.

Operation: If Zero=O, then (Stack) +- PC, SP +- (SP-2), PC +. addr

Condition bits affected: None

5.11.7 CH CalIOn High Or Equal

Assembler Format: CH sub

low addr hi addr
I !

Call "sub" if the preceding compare operation (C, CI or CR) detected
that the Accumulator was equal to or higher than the comparand.

Operation: If Carry=O, then (Stack) +- PC, SP +- (SP-2), PC +- addr

Condition bits affected: None

5.11.8 CL CalIOn Low

Assembler Format: CL sub

hi·addr
" I I

Call "sub" if the preceding compare operation (C, CI or CR) detected
that the Accumulator was less than the comparand.

Operation: If Carry=l, then (Stack) +- PC, SP +- (SP-2), PC +- addr

Condition bits affected: None

5-72

5.11.9 CM CalIOn Minus

Assembler Format: CM sub

low addr hi addr I
Call "sub" if the Accumulator contains a negative number; that is,
if Sign=l.

Operation: If Sign=l, then (Stack) + PC, SP + (SP-2), PC + addr

Condition bits affected: None

5.11.10 CNE CalIOn Not Equal

Assembler Format: CNE sub

low addr hi addr

Call "sub" if the preceding compare operation (C, CI or CR) was un­
successful; that is, if the Zero bit is reset.

Operation: If Zero=O, then (Stack) + PC, SP + (SP-2), PC + addr

Condition bits affected: None

5.11.11 CNM CalIOn Not Minus

Assembler Format: CNM sub

low addr hi addr

Call "sub" if the Accumulator contains a positive number or zero.

Operation: If Sign=O, then (Stack) + PC,. SP + (SP-2), PC + addr

Condition bits affected: None

5-73

5.11.12 CNP CalIOn Not Plus

Assembler Format: CNP sub

low addr hi addr
I I I I , I I "

Call "sub" if the Accumulator contains a negative number.

Operation: If Sign=l, then (Stack) + PC, SP + (SP-2), PC + addr

Condition bits affected: None

5.11.13 CNZ CalIOn Not Zero

Assembler Format: CNZ sub

low addr
! I I

Call "sub" if the Accumulator is not zero.

Operation: If Zero=O, then (Stack) + PC, SP + (SP-2), PC + addr

Condition bits affected: None

5.11.14 CP CalIOn Plus

Assembler Format: CP sub

low addr hi addr
I I I I I

Call "sub" if the Accumulator is positive or zero.

Operation: If Sign=O, then (Stack) + PC, SP + (SP-2), PC + addr

Condition bits affected: None

5-74

5.11.15 CTC Call True Carry

Assembler Format: CTC sub

low addr hi addr ; I
Call "sub" if the Carry bit is on.

Operation: If Carry=l, then (Stack) ~ PC, SP ~ (SP-2), PC ~ addr

Condition bits affected: None

5.11.16 CTP Call True Parity

Assembler Format: CTP sub

low addr hi addr

Call "sub" if Accumulator parity is even; that is, if the Parity
bit is set.

Operation: If Parity=l, then (Stack) ~ PC, SP ~ (SP-2), PC ~ addr

Condition bits affected: None

5.11.17 CTS Call True Sign

Assembler Format: CTS sub

low addr hi addr
I ,

Call "sub" if the Accumulator sign is negative.

Operation: If Sign=l, then (Stack) ~ PC, SP ~ (SP-2), PC ~ addr

Condition bits affected: None

5-75

5.11.18 CTZ Call True Zero

Assembler Format: CTZ sub

hi addr
I I

Call "sub" if the Accumulator contains zero or a compare operation
(C, CI or CR) showed equality.

Operation: If Zero-I, then (Stack) + PC, SP + (SP-2), PC + addr

Condition bits affected: None

5.11.19 CZ CalIOn Zero

Assembler Format: CZ sub

low addr hi addr
, I

Call "sub" if the Accumulator is zero.

Operation: If Zero=l, then (Stack) + PC, SP + (SP-2), PC + addr

Condition bits affected: None

5-76

5.12 RETURN FRON: SUBROUTINE INSTRUCTIONS

This section describes the instructions used to return from sub­
routines. These instructions pop the last address saved on the
stack into the program counter, causing a transfer of program con­
trol to that address.

Instructions in this class occupy one byte.

5.12.1 RET Absolute Return

Assembler Format: RET

A return operation is unconditionally performed.

Operation: Prog. Counter ~ SP

Condition bits affected: None

5.12.2 RE Return On Equal

Assembler Format: RE

Return if the preceding compare operation ec, CI or CR) was suc­
cessful; that is, if the Zero bit is set.

Operation: Prog. Counter ~ SP if Zero=l

Condition bits affected: None

5.12.3 RFC Return False Carry

Assembler Format: RFC

Return if Carry=O.

Operation: Prog. Counter ~ SP if Carry=O

Condition bits affected: None

5-77

5.12.4 RFP Return False Parity

Assembler Format: RFP

[I, I, I, 0 I 0 I 0 I 0 I 0 I
Return if Accumulator parity is odd; that is, if the Parity bit is
reset.

Operation: Prog. Counter + SP if Parity=O

Condition bits affected: None

5.12.5 RFS Return False Sign

Assembler Format: RFS

Return if the Accumulator contains a non-zero positive number;
that is, if Sign=O and Zero=O.

Operation: Prog. Counter + SP if Sign=O and Zero=O

Condition bits affected: None

5.12.6 RFZ Return False Zero

Assembler Format: RFZ

Return if the Accumulator is not zero or a compare operation (C,
CI or CR) was not equal.

Operation: Prog. Counter + SP if Zero=O

Condition bits affected: None

5-78

5.12.7 RH Return On High Or Equal

Assembler Format: RH

Return if the preceding compare operation (C, CI or CR) detected
that the Accumulator was equal to or higher than the comparand.

Operation: Prog. Counter + SP if Carry=O

Condition bits affected: None

5.12.8 RL Return On Low

Assembler Format: RL

111 I, 0 I I, 11 0 I 0, 0 I
Return if the preceding compare operation (C, CI or CR) detected
that the Accumulator was less than the comparand.

Operation: Prog. Counter + SP if Carry=l

Condition bits affected: None

5.12.9 RM Return On Minus

Assembler Format: RM

III I, I, I, 11 0 I 0 I a I
Return if the Accumulator contains a negative number; that is, if
Sign=l.

Operation: Prog. Counter + SP if Sign=l

Condition bits affected: None

5-79

5.12.10 RNE Return On Not Equal

Assembler Format: BNE label

Return if the preceding compare operation (C, CI or CR) was un­
successful; that is, if the Zero bit is reset.

Operation: Prog. counter + SP if Zero=O

Condition bits affected: None

5.12.11 RNM Return On Not Minus

Assembler Format: RNM

II, I, I, 11 0, 0 i 0, 0 I
Return if the Accumulator contains a positive number or zero.

Operation: Prog. Counter + SP if Sign=O

Condition bits affected: None

5.12.12 RNP Return On Not Plus

Assembler Format: RNP

11 ,1,1,1,1 10,0,01

Return if the Accumulator contains a negative number.

Operation: Prog. Counter + SP if Sign=l

Condition bits affected: None

5-80

5.12.13 RNZ Return On Not Zero

Assembler Format: RNZ

II, I, 0, 0, 0, 0, 01 01

Return if the Accumulator is not zero.

Operation: Prog. Counter + SP if Zero=O

Condition bits affected: None

5.12.14 RP Return On Plus

Assembler Format: RP

I I, I, I, I, 0, Of 01 01

Return if the Accumulator is positive or zero.

Operation: Prog. Counter + SP if Sign=O

Condition bits affected: None

5.12.15 RTC Return True Carry

Assembler Format: RTP

Return if the Carry bit is on.

Operation: Prog. Counter + SP if Carry~l

Condition bits affected: None

5-81

5.12.16 RTP Return True Parity

Assembler Format: RTP

II, I, I, 0 I I, 0 , 0 , 0 I
Return if Accumulator parity is even; that is, if the Parity bit
is set.

Operation: Prog. Counter + SP if Parity=l

Condition bits affected: None

5.12.17 RTS Return True Sign

Assembler Format: RTS

11 2, I, I, I, 0 ! 0 , 0 I
Return if the Accumulator sign is negative.

Operation: Prog. Counter + SP if Sign=l

Condition bits affected: None

5.12.18 RTZ Return True Zero

Assembler Format: RTZ

11,1, 0 10, 1,0 ,0,0 I
Return if the Accumulator contains zero or a compare operation (C,
CI or CR) showed equality.

Operation: Prog. Counter + SP if Zero=l

Condition bits affected: None

5-82

5.12.19 RZ Return On Zero

Assembler Format: RZ

Return if the Accumulator is zero.

Operation: Prog. Counter ~ SP if Zero=l

Condition bits affected: None

5-83

5.13 INTERRUPT ENABLE/DISABLE INSTRUCTIONS

This section descpibes the instpuctions that enabLe and disabLe
inteppupts.

5.13.1 EI Enable Interrupts

AssembLep Fopmat: EI

This instpuction enabLes the CPU to pecognize and pespond to in­
teppupts.

Opepation: (INTE) +- 1

Condition bits affected: None

5.13.2 DI Disable Interrupts

AssembLep Fopmat: DI

II, I, 1; 1 1 0 I 0 ,1 1 11
This instpuction causes the CPU to ignope aLL inteppupts.

Opepation: (INTE) +- 0

Condition bits affected: None

5-84

5.14 INPUT/OUTPUT INSTRUCTIONS (9003)

This section describes the instructions that cause a byte of in­
formation to be input or output from the 9003. Instructions in
this class occupy two bytes as follows:

code
I I I I I I

device no. I
I I I I I I J

The device number is a hardware characteristic of the input or
output device~ not under the programmer's control. $ection 7
discusses Input/Output programming.

5.14.1 IN Input

Assembler Format: IN dev

I qey I

An eight-bit data byte is read from input device number dev and
replaces the contents of the Accumulator.

Operation: RA + input device

Condition bits affected: None

Example:

The instruction

IN 1

causes one byte to be input from device #1 into the Accumulator.

5-85

5.14.2 OUT Output

Assembler Format: OUT dev

The contents of the Accumulator are sent to output device number
dev.

Operation: RA + output device

Condition bits affected: None

Example:

The instruction

OUT 10

sends the contents of the Accumulator to device number 10,
as does

OUT X, A '

5-86

5.15 INPUT/OUTPUT INSTRUCTIONS (9002)

This section describes the instructions that cause a byte of infor­
mation to be input or output from the 9002. Instructions in this
class occupy one byte.

The device number is a hardware characteristic of the input or
output device, not under the programmer's control. Section 7
provides additional information on Input/Ouptut programming.

5.15.1 IN Input

Assembler Format: IN dev

I a ,1 10 10, I d~v ,

The instruction code will be between x'41' and X'4F'.

The contents of the Accumulator and the one byte dev code are
concatenated internally by the hardware to address the input device.
The Accumulator contents is then replaced by the data byte from the
input device.

Operation: RA + input device

Condition bits affected: None

Example:

The instructions:

LBI RA,X'OO'
IN X' OF'

cause one byte to be input from the RS-232 communications.

5.15.2 OUT Output

Assembler Format: OUT dev

The instruction code will be between X'51' and X'7F'.

The contents of the Accumulator are sent to output device number dev.

Operation: RA + output device

Condition bits affected: None

5-87

Example:

The instruction

OUT X'lD'

sends the contents of the Accumulator out to the RS-232
communications.

5-88

SECTION 6

SUBROUTINE PROGRAMMING

Frequently, a certain operation must be performed many times in a
program. Rather than recoding the instruction sequence each time,
it is more efficient to code it once in a subroutine.

6.1 BASIC OPERATION OF A SUBROUTINE

A subroutine is coded like any other group of assembly language
statements, and is referred to by its name, which is the label of
the first instruction. The programmer references a subroutine by
writing its name in the operand field of a Call instruction. When
the Call is executed, the address of the next sequential instruc­
tion after the Call is pushed onto the stack, and program execution
proceeds with the first instruction of the subroutine. When the
subroutine has completed its work, a Return instruction is executed,
which causes the top address in the stack to be popped into the
program counter, causing program execution to continue with the
instruction following the Call. Thus, one copy of a subroutine may
be called from many different points in memory, preventing duplica­
tion of code.

As an example, subroutine MINC increments a l6-bit number held
least-significant-byte first in two consecutive memory locations,
and then returns to the instruction following the last Call state­
ment executed. The address of the number to be incremented is
passed in the Hand L registers.

Label Code °Eerand Comment

MINC BUMP M Increment low-order byte

RNZ If non-zero, return to calling

* routine

INCP RH Address high-order byte

BUMP M Increment high-order byte

~T Return unconditionally

Assume MINC appears in the following program:

6-1

Arbitrary
Memory Address

2COO CALL MINC

2EFO CALL MINC

Arbitrary
Memory Address

When the first call is executed, address X'2C03' is pushed onto
the stack indicated by the stack pointer, and control is trans­
ferred to X'3COO'. Execution of either Return statement in MINC
will cause the top entry to be popped off the stack into the pro­
gram counter, causing execution to continue at X'2C03' (since the
Call statement is three bytes long) .

Stack After
Stack Before Stack While RETURN
CALL MINC Executes is Performed

FF FF +- Stack FF
Pointer

FF 2C 2C

Stack +- Stack
FF +- 00 00 Pointer Pointer

FF FF FF

When the second call is executed, address X'2EF3' is pushed onto
the stack, and control is again transferred to MINC. This time,
either Return instruction will cause execution to resume at X'2EF3'.

Note that MINC could have called another subroutine during its
execution, causing another address to be pushed onto the stack.
This can occur as many times as necessary, limited only by the size
of memory available for the stack.

Note also that any subroutine could push data onto the stack for
temporary storage without affecting the call and return sequences
as long as the same amount of data is popped off the stack before
executing a Return statement.

6-2

6.2 TRANSFERRING DATA-TO A SUBROUTINE

A subroutine often requires data to perform its operations. In the
simplest case, this data may be transferred in one or more regis­
ters. Subroutine MINC in the last section, for example, receives
the memory address which it requires in the Hand L registers.

Sometimes it is more convenient and economical to let the subrou­
tine load its own registers. One way to do this is to place a list
of the required data (called a parameter list) in some data area of
memory, and pass the address of this list to the subroutine in the
Hand L registers.

For example, the subroutine ADSUB expects the address of a three­
byte parameter list in the Hand L registers. It adds the first
and second bytes of the list, and stores the result in the third
byte of the list.

Label Code Operand

LHI RH,PLIST

*
CALL ADSUB

RETl

PLIST DC 6

DC 8

DS 1

LHI RH,LIST2

CALL ADSUB

RET2

LIST2 DC 10

DC 35

DS 1

* Subroutine

ADSUB LB RA

INCP RH

LB RB

AR RA,RB

STB RA

*
RET

Comment

Load address of parameter list

into Hand L

Call the subroutine

First number to be added

Second number to be added

Result will be stored here

Load H and L

for another call to ADSUB

Get first parameter

Increment memory address

Get second parameter

Add first to second

Store result at third

parameter location

Return unconditionally

6-3

The first time ADSUB is called, it loads the A and B registers from
PLIST and PLIST+l, respectively, adds them, and stores the result
in PtIST+2. Return is then made to the instruction at RETl.

First call to ADSUB:

AOSUB: r-----.

06 PLiST

08 PLlST+1

--+- PLlST+2

The second time ADSUB is called, the Hand L registers point to
the parameter list LIST 2. The A and B registers are loaded with
X'OA' and X'23', respectively, and the sum is stored at LIST2+2.
Return is then made to the instruction at RBT2.

Second call to ADSUB:

H L

CJ CJ , , ..

OA LlST2

23 LlST2+1

~ 20 LlST2+2

Note that the parameter lists PLIST and LIST2 could appear anywhere
in memory without altering the results produced by ADSUB.

6.2.1 External Subroutines

Data can also be transferred to a subroutine by external linkage.
This involves the use of the ENTY and EXTN statements that were
described in Section 4.1.

Suppose you have a main program and a subroutine used by it.
Rather than assembling both at one time, they can be modularized

6-4

into two separate assemblies. This is advantageous in that if
one routine needs to be reassembled, it will not be necessary to
include the other program in the assembly.

The example to follow shows a program calling an external sub­
routine, SUBDP. This subroutine will subtract a double-precision
number in VAR2 from a double-precision number in VARI and store
the result in RESULT.

Label Code

EXTN

Operand Comment

SUBDP,VARl,VAR2,RESULT

* The external subroutine and its variables are linked

* via the EXTN to this program. Thus one need only

* reassemble the main module and then link up to the

* subroutine

SHLD

XCHG

SHLD

CALL

LHLD

VARI

VAR2

SUBDP

RESULT

Store RH&RL into VARI

Exchange RH&RL with RD&RE

Store RH&RL into VAR2

Subtract double-precision

Result of subtract into RH&RL

* Subroutine module to perform double-precision subtraction

ENTY SUBDP,VARl,VAR2,RESULT

SUBDP LHLD VAR2 RH&RL get VAR2

XCHG

LHLD VARI

LR RA,RL

SR RA,RE

LR" RL,RA

LR RA,RH

SRC RA,RD

LR RH,RA

SHLD RESULT

RET

VARI DS 2

VAR2 DS 2

RESULT DS 2

END

6-5

Exchange RH&RL with RD&RE

RH&RL get VARI

Subtract RE

from RL

and store in RL

Subtract RD

from RH

and store in RH

Save RH&RL in RESULT

and exit

6.3 WRITING INTERRUPT SUBROUTINES

In general, any registers or condition bits changed by an interrupt
subroutine must be restored before returning to the interrupted
program, or error will occur.

For example, suppose a program is interrupted just prior to the in­
struction:

ETC LOC

and the carry bit equals l. If the interrupt subroutine happens to
zero the carry bit just before returning to the interrupted program,
the branch to LOC which should have occurred will not, causing the
interrupted program to produce erroneous results.

Like any other subroutine then, any interrupt subroutine should
save at least the condition bits and restore them before performing
a Return operation. (The obvious and most convenient way to do this
is to save the data in the stack, using PUSH and POP operations.)

Further, the interrupt enable system is automatically disabled when­
ever an interrupt is acknowledged. Except in special cases, there­
fore, an interrupt subroutine should include an EI instruction some­
where to permit detection and handling of future interrupts. Any
time after an EI is executed, the interrupt subroutine may itself
be interrupted. This process may continue to any level, but as long
as all pertinent data are saved and restored, correct program execution
will continue automatically.

A typical interrupt subroutine, then, could appear as follows:

Code

PUSH

EI

Operand

PSW

Comment

Save condition bits and Accumulator

Re-enable interrupts

Perform necessary actions to service the interrupt

POP
RET

PSW Restore machine status
Return to interrupted program

6-6

SECTION 7

INPUT/OUTPUT PROGRAMMING

The Zentec 9000 Microcomputer Terminal System communicates with all
external devices using two instructions, IN and OUT, which were in­
troduced in Section 5.14. For the 9003 each of these instructions
occupy two bytes, where the first byte is the instruction code and
the second byte is a device number. The 9002 IN and OUT instruc­
tions combine the code and the device number in one byte.

The device number identifies the byte of information (control,
data, or status) the 9000 is sending to, or wants to receive from,
the external device. As such, most devices will be assigned several
device numbers, with each number having a unique meaning to the de­
vice.

This section includes I/O programming examples for four common de­
vices: the 9003 keyboard, Disk, RS-232 Tele-Communications and
Printer. Tables 7-1 and 7-2 list the device numbers used for
the Printer and RS-232. Appendix E lists all of the currently
assigned device numbers.

7-1

TABLE 7-1

ZENTEC 9003 DEVICE NUMBERS

INPUT OUTPUT

Device Device
Number Function Number Function

01 * 11 *
03 Printer status 13 Output to Printer
05 * 15 *
07 * 17 *
09 * 19 *
OB * IB *
OD * ID RS-232 Output Character
OF RS-232 Input Character IF RS-232 Control Word
41 RS-232 Interface Status 21 *
43 RS-232 1-1odem Status 23 *
45 RS-232 I.D. No. 2B *
47 * 2D *
49 * 2F *
4B * 3B *
4D * 3C *
4F * 3D *
89 * 3E *
8B * 3F *
8D *
CF *

*These codes are reserved.

7-2

TABLE 7-2

ZENTEC 9002 DEVICE NUMBERS

INPUT

Device
Number Accumulator Function

03 0 Printer Status
OF 0 RS-232 Input Character
01 40 RS-232 Interface Status
03 40 RS-232 Modem Status
05 40 RS-232 I.D. Number

OUTPUT

Device
Number Function

15 Output to Printer
ID RS-232 Output Character
IF RS-232 Control Word

All other device numbers are reserved.

7-3

7.1 KEYBOARD AND CRT DISPLAY

This section provides a short keyboard interrogation routine and
a description of how to control the special effects on the CRT
display.

7.1.1 Keyboard Interrogation Routine

Whenever a key is depressed, the Zentec 9000 keyboard generates
an a-bit character code and loads this code into the keyboard
input register in memory (X'1002'). Table 7-3 lists these codes.

The code X'FF' in the keyboard input register has a special meaning
and is not generated by any key. This code is a "null" character,
which indicates that no keyboard code has been entered in memory.
Your program should loop upon sensing X'FF' and should re-store
X'FF' after a proper key code has been sensed and processed.

The routine below illustrates one approach by which the program
can interrogate this register.

Label Code Operand

PICK LHI RH,X'1002'

*
PICKA LB RA

CI RA,X'FF'

BE PICKA

STBI M,X'FF'

~T

7.1.2 CRT Display Special Effects

Comment

Load keyboard input register

address into Hand L

Load A from memory

NULL character present?

Yes, try again

Store the NULL character

Return with character in A

Memory locations X'10aO'-X'17FF' comprise a dedicated portion of
RAM memory that stores one byte for every character position on
the CRT display. This area is commonly called the video display
section of RAM.

Whenever a displayable character or special display effects control
code is entered from the keyboard (or another source), the CPU
processes that character and writes it into the video display sec­
tion. From there, it is read out periodically by the video circuitry,
transformed into a video signal and displayed on the screen of the
CRT display. Thus, the CPU writes into the video display section,
as needed to alter the display image, but the video circuitry con­
tinuously reads it out.

7-4

Bit No.

KEYBOARD CODES

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011
INSERT DEL];;'l'.!!;

LINE LINE SP 0 @ P
,

P CTRL@ CTRL P NP0

0001 ERASE
FIELD 1 ! 1 A Q a q CTRLA CTRL Q NP 1

0010 ERASE
2 .. 2 B R b CTRL B CTRL R NP 2 DISPLAY r

0011 5L 3 # 3 C S c s CTRLC CTRLS NP 3

0100 4 RETURN S 4 D T d t CTRL D CTRL T NP4

0101 LINE
FEED MODE % 5 E U e u CTRL E CTRL U NP 5

OllO DELETE r SCROL & 6 F V f v CTRL F CTRL V NP 6

-..J
I 0111

U1

ERASE 1 SCROL . ~ND LINE 7 G W g w CTRL G CTRLW NP 7

1000 BACK
-SPACE -----. (8 H X h x CTRL H CTRL X NP 8

1001 BACK
TAB TAB) 9 I Y i y CTRL I CTRL Y NP 9

1010 1 T * : J Z j z CTRLJ CTRL Z

1011 HOME ESC + K [k { CTRL K CTRL [

1100 T PAGE 1 \ I
CTRL \ PAGE < L I I CTRL L

1101 AUTO AUTO } TAB BACK TAB = M 1 m CTRL M CTRLJ

1110 INS
A r--/ CTRLA 5U "REP N n CTRL N NP·

1111 ERASE
lEND DISP ~ / ? 0 - 0 DEL CTRLO CTRL -

In the video display section there is space for a total of 1920
bytes of data representing the 80 characters on each of 24 dis­
play lines. Any byte stored in the video display section of the
RAM is interpreted by the video circuits as either a data charac­
ter or as a control code. If a byte is interpreted as a data
character, it is simply displayed on the screen at the cursor
location; if it is a control code, it specifies the special dis­
play effect which applies to all following data characters. For
example, it can specify that all characters following are to be
dimmed, or displayed on a reversed background, etc.

A control character specifies special display effects for all
data characters from that location on until the end of the screen,
or until another control character is encountered. Figure 7-1
shows the format of the control character.

~----------l=character dimmed
~------------l=character blinking

~--------------l=background reversed
~ _________________ l=character space blanked

~ __________________ l=characters underscored

FIGURE 7-1

SPECIAL DISPLAY EFFECTS CONTROL CHARACTER

To turn on one or more of the special effects from a program,
simply store the appropriate control character in the associated
byte location in RAM. Any of the special display effects can
also be combined. All 0 bits in positions 0 thru 4 will cause
the display to appear normal.

To initiate a special effect starting at the first character
display position, store the control character into memory location
X'1004' (Prior Condition Register, see Section 8.1). However,
the control character sent to X'1004' should have the three high
order bits equal to zero because these bits are reserved.

7-6

7.2 DISK

The Zentec 9000 contains two System Support Routines that the pro­
gram can call to perform disk data transfer operations. Disk
read operations are performed by DREAD; disk write operations are
performed by DWRITE.

Both routines will fetch the transfer parameters from an eight­
byte block of RAM memory. The sequence of this block is shown in
Figure 7-2.

LaC.

N
N+l
N+2
N+3
N+4
N+S
N+6
N+7

Error/Status
Dr~ve Number
Track Number
Sector Number
RAM Locat~on, h~gh-order byte
RAM Locat~on, low-order byte
Byte Count, high-order byte
Byte Count, low-order byte

FIGURE 7-2

DISK TRANSFER PARAMETER LIST

Error/Status indicates the current status of the disk operation.
It should be initialized to X'OO'. At the completion of the disk
I/O routine, Error/Status will contain one of two possible bytes:
if bit 5=0, Error/Status should be interpreted as a Status byte;
if bit 5=1, Error/Status should be interpreted as an Error byte.
The formats are shown in Figure 7-3.

After calling DREAD or DWRITE, the program should interrogate loca­
tion N to see if the transfer is completed without error (bit 5=0,
bit 6=0) or with error (bit 5=1).

Drive Number should be X'OO' to select Drive #0 or X'Ol' to select
Drive #1.

Track Number can be assigned a value between X'OO' (Track 0) and
X'4C' (Track 76).

Sector Number can be assigned a value between X'Ol' (Sector 1) and
X'lA' (Sector 26).

RAM Location is the starting memory address that the disk data will
be transferred to (for Read) or from (for Write) .

7-7

654 321 0
o Status byte

~--------------l=I/O in progress
O=Operation complete, no errors

Error byte

i=Drive was not ready
~---l=Deleted record

~--------l=Sector missing
------------l=CRC error

~--------------l=Data overrun
~----------------~~=No address mark

NOTE

Shaded bits are not meaning­
ful to the programmer.

FIGURE 7-3

ERROR/STATUS BYTE

Byte Count is the number of bytes to be transferred. From one byte
(X'OOOI') to 32K bytes (X'7FFFI).

Additionally, the DREAD and DWRITE routines will expect to find the
starting address of the parameter list (N in Figure 7-2) in regis­
ters D and E.

The program below is one way a disk Read operation can be coded.
(Note that this same sequence could perform a Write operation if the
call was made to DWRITE.)

Label Code Operand Comment

LHI RD,DLIST Set up parameter list address

* in D and E

CALL DREAD Call Read routine

LHI RH,DLIST Address Error/Status on return

7-8

Label Code O;Eerand Conunent

LOOP LB RA Load Error/Status into A

ANDI RA,X'60' Done & no errors?

BZ CaNT Yes, branch to continue

ANDI RA,X'20' Error indicated?

BZ LOOP No, try again

B ERR Yes, branch to error routine

CaNT

ERR

DLIST DC 0 Initialize Error/Status

DC 0 Drive 0

DC 16 Track 16

DC 1 Sector 1

DC X'22' Destination is

DC X' 3F' location X'223F'

DC X'OOO4' Read 1K bytes

of data

7-9

7.3 RS-232 CO~1MUNICATIONS

Programming RS-232 communications requires four device numbers
for input and two device numbers for output. Figure 7-4 shows
the bit patterns associated with each of these device numbers.

7.3.1 Transmit Routine

The subroutine below, XMIT, will transmit up to 255 characters
to a modem. The subroutine assumes the character count has been
loaded into register C.and the starting memory address of the
character buffer is in register pair Hand L before XMIT is
called.

Label

XMIT

RTS

MODEM

XMITMT

Code

IN

ANDI

BNZ

LBI

OUT

IN

ANDI

BZ

IN

ANDI

BNZ

LB

OUT

INCP

DEC

BNZ

RET

°Eerand

X'41'

RA,6

XMIT

RA,3

X'lF'

X'43'

RA,2

MODEM

X'41'

RA,2

XMITMT

RA

X'lD'

RH

RC

RTS

Comment

Input interface status

Look at XMIT not available or empty

Loop if not available

Load request to send

Xmit request to send

Input modem status

Look at clear to send

Loop if not clear to send

Input interface status

Look at XMIT not available

Loop if XMIT not available

Load character into RA

Xmit character

Address next character

Decrement character count

Branch if not done

Return if done

Note that XMIT could send more than 255 characters if register
pair Band C contained the character count. The only change in
the coding would be that a "DECP RB" instruction would replace
the existing "DEC RC" instruction.

7-10

Instruction

IN X'OF '

IN XI 41 I

IN XI 43 I

IN Xl 45 I

Instruction

OUT X'ID '

OUT X'IF '

Data Into Register A Name

!
7 6 5 4 3 2

I I I ~ I
1 0

I I J
Input

Input Character

character

Interface Status

available
not available
not empty

~--------~Reverse channel receive
~------------~reak in progress

~----------------Framing error
~--------------------~verrun error

~-----------------------Parity error

7 6 5 4

Modem Status

ata set ready
~---clear to send

~------Line signal detect
~----------Ring indicator

3 2 1 0

I Q I 0 1 I I i I I ~ I.D. Number

Data From

7 6 5

J
-.c: I I I

I.D. #

Register A Name

4 3 2 1 0

{ I I I ! Output Character

Data out

Control Word

ata terminal request
~---Request to send

'--------~Break

'----------~Reverse channel XMIT
'--------------_~aster clear

FIGURE 7-4

RS-232 INPUT AND OUTPUT BYTES

7-11

7.3.2 Receive Routine

The subroutine below, REC , will receive characters from a data
set and store them in memory. The subroutine assumes that the
starting memory address of the character buffer is in register
pair Hand L before REC is called.

Label

REC

DSR

LSD

DI

ERRS

Code

LBI

OUT

IN

ANDI

BZ

IN

ANDI

BZ

IN

ANDI

BZ

CI

BNE

IN

STB

INCP

Operand

RA,l

X'lF'

X '43 '

RA,l

DSR

X'43'

RAt 4

LSD

X '41'

RA,X'Ol'

DI

RA,l

ERRS

X'OF'

RA

RH

7-12

Comment

Load data terminal request

Send data terminal request

Input modem status

See if data set is ready

If not, wait for it

If so, input modem status

Line signal detect?

If not, wait for it

If so, input interface status

Data available?

If not, wait for it

If so, check for errors

Branch on errors

Input character

Store character

If not, increment buffer address

Error service routine

7.4 PRINTER

Programming the printer involves only two instructions: an IN X'03'
instruction to check printer status and an OUT X'13' instruction
to send the ASCII character byte.

Figure 7-5 shows the format of the printer Status byte. Shaded
bits are not meaningful to the programmer.

7 6 5 4 1 0

~----~l=Printer check condition
(hardware error)

'-------1 =Paper out
~------~_=10 characters/inch

0=12 characters/inch
'--------------~.=Auto line feed set

fer full

FIGURE 7-5

PRINTER STATUS BYTE

Bits 2 and 3 indicate hardware error conditions that are uncorrect­
able by the software. Bits 4 and 5 provide printer information to
the program. Bit 7 will indicate when the printer is not ready to
receive a new character.

Appendix D gives the complete list of ASCII codes.

The instruction sequence below, PRNT, is an
that can be called to print the contents of
The buffer address is at PLIST and PLIST+l.
is at PLIST+2.

example of a subroutine
a buffer in memory.

The character count

Label

PRNT

*

PIN

Code

LHI

LB

INCP

LB

INCP

LB

IN

ROL

BTC

ANDI

BNZ

Operand

RH,PLIST

RD

RH

RE

RH

RC

X' 03'

RA

PIN

RA,X'IS'

HDERR

7-13

Comment

Load address of parameter list

into Hand L

Load high-order address into D

Increment memory address

Load low-order address into E

Increment memory address

Load character count into C

Input printer status

Rotate buffer full bit to Carry

Loop on buffer full

Check or paper out?

Yes, branch to hard error routine

Label

POUT

PLIST

HDERR

Code

LBA

OUT

DEC

RZ

INCP

B

DC

DC

DC

°eerand

RD

X'13'

RC

RD

PIN

X' 21'

X'3F'

25

7-14

Comment

No, load character into Accumulator

Send character to printer

Decrement character count

Return if count=O

Address next character

Go send next character

Character buffer is at

location X'213F'

Print 25 characters

SECTION 8

SYSTEM WORKING REGISTERS

Memory locations X'lOOO' through X'102F' comprise a dedicated por­
tion of RAH memory that the system uses to communicate with the
display, the keyboard, the RS-232 interface, and certain optional
interfaces.

Figure 8-1 is a map of this area. The working registers are of
two types - software registers and hardware registers. Software
registers hold information used by the CPU during data processing,
but their contents are not accessible to any other circuits. There
are a total of 13 software registers. The software registers der­
ive their name from the fact that they are written into and read
out only by the CPU.

Hardware registers are also written into and read out by the CPU,
but their main usage is in communication with input/output hard­
ware. Typically, the CPU uses a hardware register to store the
results of some data processing routine. These results are read
and interpreted by a hardware circuit as an instruction to perform
a specific task. Alternatively, a hardware circuit writes data
into a register and the CPU fetches the data and processes it.
For example, a two-byte register is used by the CPU to actuate
the audible tone alarm circuit, and a single byte register is used
to receive keyboard data to be processed by the CPU.

8.1 HARDWARE REGISTERS

The hardware registers are as follows:

ADDRESS (ES)

X'lOOO'-X'lOOl'

DESCRIPTION

Cursor Address Registers. There are two
cursor address registers that identify
the locations of the cursor on the CRT
display screen. One register, at loca­
tion X'lOOO', identifies the cursor row
and the other, at location X'lOOl',
identifies the cursor column.

The values contained in the two registers
are derived by the CPU from the contents
of the FAS software registers and can
range from X'OO' to X'19' for the row ad­
dress register and X'OO' to X'4F' for the
column address. If the system contains
the Page Two Video Display option, row
addresses can extend to X'30'i note, how­
ever, that row address X'OO' corresponds
to the 25th line on the screen, which is
not normally accessible. Row address

8-1

HEX
ADDRESS

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
100A
100B
100C
100D
100E
100F
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
thru
101E
101F
1020
1021
1022
1023
1024
thru
102D
102E
102F

Cursor Register, Row Address
Cursor Regl.ster, Column Address
Keyboard Input Character Register
Function Register
Prior Condition Register
Page Regl.ster
(Reserved)
(Reserved)
Branch Area Address

or
TAS SQftwa.re Register
(Reserved)
(Reserved)
(Reserved)
(Reserved)
(Reserved)
Scroll Value
Input Buffer Pointer
Protected Cursor Flag
(Reserved)
Line Space Count
Local Mode Save
Current Mode
Previous Character Hold
Current Character Hold

Keyboard Input Buffer
(6 bytes)

(Reserved)

FAS Software Register

SAS Software Register

Open Work Area For CPU
(10 bytes)

(Reserved)
(Reserved)

FIGURE 8-1

MAP OF WORKING REGISTERS IN MEMORY

8-2

ADDRESS (ES)

X'l002'

X'l003'

X'l004'

DESCRIPTION

X'Ol' corresponds to row 1 of the first
video display page and column address
X'OO' corresponds to the first column on
the left of the screen. From these values
on, all addresses are contiguous.

Keyboard Input Character Register. The
keyboard input character register always
receives data from the keyboard and al­
ways outputs data to the cpu. A total of
171 different codes are written into the
register: 128 standard ASCII alphanumeric
characters, punctuation marks, and symbols
are defined by the first seven bits, and
the eighth bit is used to identify inputs
from the numeric pad (11 keys) and 32
codes generated by selected keys while
the CTRL key is held depressed (@, A-Z,
[,\,],/\, -).

The interface protocol is such that the
keyboard is allowed to write any code
,except X'fF' into the register. After
the cpu reads a valid character code out
of the register it writes all 1 bits
(X'FF') into the register. Thus, when
the cpu monitors the register, it inter­
prets X'FF' as the absence of a keyboard
character, but any other bit combination
is read and processed.

See Section 7 for an example of Keyboard
I/O programming.

Function Register. The function register
has only one use - to actuate the audible
alarm tone. A tone, approximately two
seconds in duration, is produced when­
ever the eighth bit in the function regis­
ter changes state. That is, whenever the
eighth bit changes from 1 to a logic 0
state, or vice versa, the tone alarm cir­
cuit is actuated. All other bits in the
function register are reserved for program
usage, but do not affect the tone alarm
circuit.

Prior Condition Register. The prior condi­
tion register is used to establish the
initial screen polarity and blinking
characteristics for the line scans. Spe­
cial control characters placed within the

8-3

ADDRESS (ES) DESCRIPTION

refresh RAM area will vary the screen
polarity, tone and blinking character­
istics, but it is necessary to establish
'initial' conditions or the first re­
fresh RAM location of each line of the
screen would be committed to establishing
'current' screen characteristics. Figure
8-2 shows the format of the prior condi­
tion register.

7 6 '5 4 3 2 1 0

r 0

X'l005'

0 0 I I I I I I
• ~ . • ,

FIGURE 8-2

l=dim
0= normal

l=blinking
0= no blinking

l=light background;
O=dark background

l=blank data;
O=no blanking

l=underscore;
O=no underscore

PRIOR CONDITION REGISTER FORMAT

Page Register. The page register stores
the address of that 80-byte segment of
the video display section of the RAM
which appears as the top line on the CRT
screen. Its contents must be X'Ol' if
there is only one page of video data in
the RAM, but can be any number between
X'Ol' and X'19' if the Page Two option
is installed in the system. If the sec­
ond page option is in the system, the
page register is also used for scrolling.
In this case, it can contain any value
between X'OO' and X'19'. (Even though it
is not of any evident practical value,
the page register can also be programmed
to contain the address X'OO', which is

8-4

ADDRESS (ES)

*

DESCRIPTION

the 25th line. In that case the control
line is displayed both on top and bottom
of the screen.)

The high order bit of the Page Register
is used to engage the hardware scroll
feature for single page only. If not
used, hardware scroll is automatic on
two page / 48 line basis.

8-5

B.2 SOFTWARE REGISTERS

The software registers are as follows:

ADDRESS (ES)

X'IOOB'-X'IOOA'

X'IOIO'

X'IOII'

X'IOI2'

X'IOI4'

X'IOI5'

DESCRIPTION

Branch Area or TAS. The Branch Area is
a three-byte field used by the system
executive to cause branches into the vari­
ous function routines in the system. Lo­
cation X'IOOB' must always contain X'C3',
which is a B (Branch) instruction.

The Third Address (TAS) is a two-byte
field used as a temporary work area for
16-bit values. Two of the basic routines
use TAS. TAS overlays the value portion
of the Branch Area (X'I009' and X'IOOA').

Scroll Value. The scroll value is the
amount added to or subtracted from the
value in the Page Register to vary the
starting line of data on the screen.
This value is X'02' unless modified by
the user.

Input Buffer Pointer. The system execu­
tive supports a six-location buffer
(X'IOI9'-X'IOIE') to hold keyboard input
data. The input buffer pointer holds
the next available buffer address.

Protected Cursor Flag. The protected
cursor flag is used to allow the cursor
to be positioned under a protected char­
acter. The flag is tested for zero or
non-zero.

Line Space Count. The line space count
is used to speed character inserts.
This value defines the number of avail­
able spaces from the last character, on
the line holding the cursor, to the end
of the line. This value is used exclu­
sively in 'insert' sub-mode.

Local Mode Save. The local mode save
location holds the code representing the
mode and sub-mode that was in control
prior to entering 'Control' mode. It is
used to reestablish the proper mode and
sub-mode at return from 'Control' mode.

B-6

ADDRESS (ES)

X'1016'

X'1017'

X'1018'

X'1019'-X'lOlE'

X'1020'-X'1021'

X'1022'-X'1023'

X'1024'-X'102D'

DESCRIPTION

Current Mode. The current mode code is
maintained for program control and list
control purposes.

Previous Character Hold. The previous
character hold maintains the value of the
last keyboard character processed. It
is used for special double-character se­
quences.

Current Character Hold. The current
character hold maintains the value of
the keyboard character currently being­
processed.

Keyboard Input Buffer. The keyboard input
buffer is a six-byte buffer used by the
system to support keyboard input at its
maximum rate, while allowing functions of
various speeds to be performed.

FAS. The First Address (FAS) is a two­
byte field used to hold the 16-bit binary
value of the current cursor address. All
cursor manipulation programs operate
with FAS, and the value is then converted
into Rowand Column values which are
inserted into the cursor hardware regis­
ters (see Section 8.1).

SAS. The Second Address (SAS) is a two­
byte field used as a temporary work area
for 16-bit values. A number of the
basic routines use SAS.

Open Work Area. Locations X'1024' through
X'102D' are used by various basic routines
as temporary work space.

8-7

SECTION 9

HOW TO USE THE ZENTEC ASSEMBLER MODULE (ZAM)

The Zentec Assembler Module (ZAM) consists of several programs.
They are:

• Assembler Control Program
• Assembler Edit Program
• Assembler - 9002 Program
• Assembler - 9003 Program
• Loader Program
• Assembler Catalog Program

To use the Zentec Assembler Module, put a ZAM disk and a work
disk in your disk unit. The ZAM disk must be put in Drive 0; the
work disk must be put in Drive 1.

Place the terminal into the Control mode by pressing the MODE key.
Press PAGE t, which executes a Disk IPL (Section C.2 of Appendix C)
and loads the Assembler Catalog Program.

With the Assembler Catalog Program loaded, press the following se­
quence of keys:

G
E
T

E
D
I
T
RETURN

This sequence loads the Assembler Control Program. To activate
this program, press the MODE key and PROG 2. When the Assembler
Control Program is activated, the Terminal will display the message

EDITOR READY

on the eighth line and the cursor on the twelfth line.

9-1

9.1 OPERATION OF THE ASSEMBLER CONTROL PROGRAM

The user can now select one of several operations by entering a
pre-assigned command and then pressing the RETURN key (indicated
by ® below). The conunands are given below.

Conunand Sequence

EDIT~

EDIT-name0

LOAD-addr,namel,name2 .•• ,name~

LOAD-,namel,name2 ••• ,name~

SAVE-name;0

8ASM-name®

8ASM-name ,NP@

BOASM-namd!!J

BOASM-name, NRtJ)

9-2

Description

Edit data already on work
disk, using Assembler Edit
Program (see Section 9.2).

Loads 'name' file from ZAM
disk onto work disk. If
file is not found, work
disk is cleared. If file
is found, work disk data
can be edited using Assem­
bler Edit Program (see
Section 9.2).

Loads programs listed and
links them together at
starting address 'addr',
where 'addr' is a four-digit
hexadecimal number standing
alone.

Loads programs listed and
links them together at
starting address specified
by first module.

Creates a file named 'name'
on the ZAM disk. File is
image of 'NAME' file on work
disk.

Assembles 9002 code into
named data set and stores it
on ZAM disk. Prints.

Same as above, but without
printing.

AssembZes 9003 oode into
named data set and stores it
on ZAM disk. Prints.

Same as above, but witho~t
printing.

The assembler (either 8ASM or 80ASM) will be temporarily halted if
any key is typed while it is running. This will, for example, make
it possible to adjust the paper in the printer during the printing
of the listing. The assembler will restart where it left off when
a second key is typed.

9-3

9.2 OPERATION OF THE ASSEMBLER EDIT PROGRAM

Either of the EDIT command sequences in Section 9.1 will cause
the Assembler Edit Program to be loaded. The following list gives
all the Edit Program operations by both keyboard label and ZAM
function.

ZAM FUNCTION FUNCTION

REPLACE LINE Reiaces old line with line of
data on screen.

DELETE LINE Deletes line of data.

ERASE DISPLAY Erases data on screen.
LINE

COpy LAST LINE Copies last line of data
entered onto screen.

KEYBOARD KEY

DELETE

DELETE LINE

ERASE END LINE

ERASE END DISPLAY

EDIT COMPLETE Returns control to the Assembler ESC
Control Program.

HOME

LINE 1

SEARCH

REPLACE

SET LINE GET

PERFORM LINE
GET

INSERT

Moves cursor to leftmost
position on screen.

Displays line #1 on screen.

Starts a search.

Replaces the data searched
by the replace data.

Causes next four numeric key
strokes to be interpreted as
a line number.

Loads record line number that
was selected by four numeric
~ey strokes after F4.

NOTE

If selected line number is not
higher than last line number,
line 1 will be selected.

Inserts a new line of data
after last entry.

9-4

HOME

Fl

F2

F3

F4

F5

RETURN or
INSERT LINE

ZAM Function

SCROL "'"

TAB

SEARCH AND
REPLACE

DELETE

Function Keyboard Key

Loads next line to screen. SCROL ~

Performs TAB operation. TAB

Moves cursor left one position, ~
except when it is at leftmost
position.

Moves cursor right one position, ~
except when it is at rightmost
position.

Performs the F2/F3 functions 9 (Numeri.c Pad)
automatically to the end of
data.

Successive delete key when held • (Numeric Pad)
down.

A SEARCH field may be defined by pressing the slash key fol~ed
by the character to be searched, followed by another slash,~ •

A REPLACE field may be defined by inserting data to replace the
searched data after the second slash in the search d~inition.
The end of the replace field is defined by a slash, ~ •

When using the Editor it is necessary to insert the master diskette
containing the software into Disk Drive O. A scratch diskette
should be inserted into Disk Drive 1.

To create a new file:

1. Enter the CATALOG mode and get the EDIT file from the master
diskette (i.e., GET-EDIT R).

2. Execute location X'2000', the starting address of EDIT.
3. From the keyboard enter EDIT-NEW R
4. Wait until a header appears on the screen. Then enter through

the keyboard the source statements followed by a carriage
return. The edit functions listed above may be used.

5. When the editing process is finished, save the newly created
file on the master diskette by pressing the ESCAPE key and
entering SAVE-fn where fn is the name of the file to be saved.
The file name must not be more than three alphanumeric characters.

To edit an existing file, repeat the above instructions, substituting
for #3 EDIT-fn where fn is the existing file name.

9-5

APPENDIX A

9000 SERIES INSTRUCTION SET SUMMARY

This appendix is designed to give the manual better potential as a
reference tool.

The instruction set in Section 5 is organized to help the reader
learn the instructions. However, since the instruction mnemonics
are not ordered alphabetically (although they are so ordered within
a group), this organization can prove cumbersome for reference
work. To solve this problem, Table A-l is a listing of the instruc­
tion set in alphabetic order, Table A-2 lists the 9003 instruction
set by hexadecimal code, Table A-3 lists the 9002 instruction set
by hexadecimal code and Table A-4 gives an operational summary of
the set.

You will note, incidentally, that several of the instructions dis­
play the same hex code. Such instructions are equivalent and were
assigned several mnemonics merely to make a program easier to under­
stand. For example, the CZ (Call On Zero) and CE (Call On Equal)
instructions both have the same hex code: X'CC' for the 9003; X'6A'
for the 9002. However, the programmer will feel more at ease in
coding CZ if he is looking for a zero Accumulator and CE if he is
looking for an "equal" result to a preceding compare operation.

PROGRAM STATUS WORD (PSW) DEFINITIONS:

BIT

7
6
5
4
3
2
1
o

PSW

sign
zero
%
auxillary carry
%
parity
1
carry

A-l

TABLE A-I

ALPHABETIC LISTING OF 9000 SERIES INSTRUCTION SET

9003 9002
INSTRUCTION MEANING HEX HEX SECTION

A RA Add 86 87 5.6.1
AC RA Add Carry 8E 8F 5.6.2
ACI RA,mm Add Carry Immediate CE OC 5.6.3
AI RA,mm Add Immediate C6 04 5.6.4
AND RA Logical AND A6 A7 5.6.5
AND I RA,mm AND Immediate E6 24 5.6.6
ANDR RA,Rn AND Register A7,AO-A5 AO-A6 5.6.7
AR RA,Rn Add Register 87,80-85 80-86 5.6.8
ARC;: RA,Rn Add Register Carry S8-8F 88-8E 5.6.9
B label Absolute Branch C3 44 5.10.1
BE label Branch On Equal CA 68 5.10,2
BFC label Branch False Carry D2 40 5.10.3
BFP label Branch False Parity-Odd E2 58 5.10.4
BFS label Branch False Sign F2 50 5.10.5
BFZ label Branch False Zero C2 40 5.10.6
BH: label Branch On High Or Equal D2 40 5.10.7
BL label Branch On Low DA 60 5.10.8
BM label Branch On Minus FA 70 5.10.9
BNE label Branch On Not Equal C2 48 5.10.10
BNM label Branch On Not Minus F2 50 5.l0.l~
BNP label Branch On Not Plus FA 70 5.l0.l~
BNZ label Branch On Not Zero C2 48 5.10.1
BP label Branch On Plus F2 50 5.10.14
BTC label Branch True Carry DA 60 5.10.15
BTP label Branch True Parity-Even EA 78 5.10.16
BTS label Branch True Sign FA 70 5.10.17
BTZ label Branch True Zero CA 68 5.10.18
BUMP M Bump Memory 04-3C 10-30 5.3.1
BZ label Branch On Zero CA 68 5.10.19
C RA Compare BE BF 5.6.10
CALL sub Absolute Call CD 46 5.11.1
CE sub CalIOn Equal CC 6A 5.11.2
CFC sub Call False Carry D4 42 5.11.3
CFP sub Call False Parity E4 SA 5.11.4
CFS sub Call False Sign F4 52 5.11.5
CFZ ~ub Call False Zero C4 4A 5.11. 6
CH. sub CalIOn High Or Equal D4 42 5.11.7
CI RA,mm Compare Immediate FE 3C 5.6.11
CL sub CalIOn Low DC 62 5.11.8
CM sub CalIOn Minus FC 72 5.11.9
CNE sub CalIOn Not Equal C4 4A 5.11.10
CNM sub CalIOn Not Minus F4 52 5.11.11
CNP sub CalIOn Not Plus FC 72 5.11.12
CNZ sub CalIOn Not Zero C4 4A 5.11.13
COM RA Complement Accumulator 2F - 5.3.2
COMe Complement Carry 3F - 5.2.1
CP sub CalIOn Plus F4 52 5.ll.l~

--I

A-2

TABLE A-I (Continued)

9003 9002
INSTRUCTION MEANING HEX HEX SECTION

CR RA,Rn Compare Registers tsF,BS-BD B9-BE 5.6.12
CTC sub Call True Carry DC 62 5.11.15
CTP sub Call True Parity EC 7A 5.11.16
CTS sub Call True Sign FC 72 5.11.17
CTZ sub Call True Zero CC 6A 5.11.1S
CZ sub CalIOn Zero CC 6A 5.11.19
DAA RA Decimal Adjust Accumulator 27 - 5.3.3
DAD Rp Double Add 09,19,29,39 - 5.S.1
DEC M Decrement Memory 35 - 5.3.4
DEC Rn Decrement Register 05-3D 09-31 5.3.4
DECP Rp Decrement Register Pair OB,lB,2B,3B - 5.S.2
DI Disable Interrupts F3 - 5.13.2
EI Enable Interrupts FB - 5.13.1
IN dev Input DB 41-4F 5.14.1
INCP Rp Increment Register Pair 03,13,23,33 - 5.S.3
LAD addr Load Accumulator Direct 3A - 5.9.1
LB Rn Load Byte 46-7E C7-F7 5.5.1
LBA RB Load Byte to Accumulator OA - 5.5.2
LBA RD Load Byte to Accumulator 1A - 5.5.2
LBI Rn ,mm Load Byte Immediate 06-3E 06-36 5.5.3
LHLD addr Load Hand L Direct 2A - 5.9.2
LHI Rp ,mm Load Half-Word Immediate 01,11,21,31 (See LBI) 5.S.4
LR Rd,Rs Load Register 40-7F CD-F6 5.5.4
NOP No Operation 00 co 5.4.1
0 RA Logical OR B6 B7 5.6.13
OI RA OR Immediate F6 34 5.6.14
OR RA,Rn OR Registers B7,BO-B5 BO-B6 5.6.15
OUT dev Output D3 51-7F 5.14.2
PCHL Load Program Counter E9 - 5.10.20
POP Rp Pop Data Off Stack C1,D1,E1,F1 - 5.S.5
PUSH Rp Push Data Onto Stack C5,D5,E5,F5 - 5.S.6
RET Absolute Return C9 07 5.12.1
RE Return On Equal CS 2B 5.12.2
RFC Return False Carry DO 03 5.12.3
RFP Return False Parity EO 1B 5.12.4
RFS Return False Sign FO 13 5.12.5
RFZ Return False Zero CO OB 5.12.6
RHE Return On High Or Equal DO 03 5.12.7 I

RL Return On Low DS 23 5.12.S
RLC RA Rotate Left Carry 17 12 5.7.1
RM Return On Minus FS 33 5.12.9
RNE Return On Not Equal CO OB 5.12.10
RNM Return On Not Minus FO 13 5.12.11
RNP Return On Not Plus FS 33 5.12.12
RNZ Return On Not Zero CO OB 5.12.13
ROL RA Rotate Left 07 02 5.7.2
ROR RA Rotate Right OF OA 5.7.3
RP Return On Plus FO 13 5.12.14
RRC RA Rotate Right Carry -IF 1A 5.7.4
RTC Return True Carry DS 23 5.12.15

A-3

TABLE A-I (Continued)

9003 9002
INSTRUC,;!,ION MEANING HEX HEX

RTP Return True Parity EB 3B
RTS Return True Sign FB 33
RTZ Return True Zero CB 2B
RZ Return On Zero CB 2B
S RA Subtract 96 97
SC RA Subtract Carry 9E 9F
SCI RA,mm Subtract Carry Immediate DE lC
SETC Set Carry 37 -
SHLD addr Store Hand L Direct 22 ...
SI RA,mm Subtract Immediate D6 14
SPHL Load SP From Hand L F9 -
SR RA,Rn Subtract Register 97,90-95 90-96
SRC RA,Rn Subtract Register Carry 9F,9B-90 98-9E
STA RB Store Accumulator 02 -
STA RD Store Accumulator 12 -
STB Rn Store Byte 71-77 FB-FE
STBI mm Store Byte Immediate 36 3E
STD addr Store Accumulator Direct 32 -
X RA Exclusive OR AE AF
XCHG Exchange Registers EB -
XI RA,mm Exclusive OR Immediate EE 2C
XR RA,Rn Exclusive OR Register AF ,AB-AD A8-AE
XTHL Exchange Stack E3 -

NOTES:

1. The exact hex code for some instructions depends upon the
specified register or registers. For these instructions a
range of hex codes are shown. The hex code for a particular
case may be found in Table A-2 (for the 9003) or Table A-3
(for the 9002) .

SECTION

5.12.16
5.12.17
5.l2.lB
5.12.19
5.6.16
5.6.17
5.6.lB
5.2.2
5.9.3
5.6.19
5.B.7
5.6.20
5.6.21
5.5.5
5.5.5
5.5.6
5.5.7
5.9.4
5.6.22
5.8.8
5.6.23
5.6.24
5.8.9

2. Instructions which are not available on the 9002 are indicated
by a "_" in the hex code column.

A-4

I

\

TABLE A-2
HEXADECIMAL CODE FOR 9003 INSTRUCTION SET

HEX INSTRUCTION HEX INSTRUCTION HEX INSTRUCTION

00 NOP 3A LAD addr 6B LR RL,RE
01 LHI RB,mm 3B DECP SP 6C LR RL,RH
02 STA RB 3C BUMP RA 6D LR RL,RL
03 INCP RB 3D DEC RA 6E LB RL
04 BUMP RB 3E LBI RA,mm 6F LR RL,RA
05 DEC RB 3F COMC 70 STB RB
06 LBI RB,mm 40 LR RB,RB 71 STB RC
07 ROC RA 41 LR RB,RC 72 STB RD
09 DAD RB 42 LR RB,RD 73 STB RE
OA LBA RB 43 LR RB,RE 74 STB RH
OB DECP RB 44 LR RB,RH 75 STB RL
OC BUMP RC 45 LR RB,RL 77 STB RA
OD DEC RC 46 LB RB 78 LR RA,RB
OE LBI RC,mm 47 LR RB,RA 79 LR RA,RC
11 LHI RD,mm 48 LR RC,RB 7A LR RA,RD
12 STA RD 49 LR RC,RC 7B LR RA,RE
13 INCP RD 4A LR RC,RD 7C LR RA,RH
14 BUMP RD 4B LR RC,RE 7D LR RA,RL
15 DEC RD 4C LR RC,RH 7E LB RA
16 LBI RD,mm 4D LR RC,RL 7F LR RA,RA
17 RLC RA 4E LB RC 80 AR RA,RB
19 DAD RD 4F LR RC,RA 81 AR RA,RC
lA LBA RD 50 LR RD,RB 82 AR RA,RD
IB DECP RD 51 LR RD,RC 83 AR RA,RE
lC BUMP RE 52 LR RD,RD 84 AR RA,RH
ID DEC RE 53 LR RD,RE 85 AR RA,RL
IE LBI RE,mm 54 LR RD,RH 86 A RA
IF RRC RA 55 LR RD,RL 87 AR RA,RA
21 LHI RH,mm 56 LB RD 88 ARC RA,RB
22 SHLD addr 57 LR RD,RA 89 ARC RA,RC
23 INCP RH 58 LR RE,RB 8A ARC RA,RD
24 BUMP RH 59 LR RE,RC 8B ARC RA,RE
25 DEC RH SA LR RE,RD 8C ARC RA,RH
26 LBI RH,mm 5B LR RE,RE 8D ARC RA,RL
27 DAA RA 5C LR RE,RH 8E AC RA
29 DAD RH 5D LR RE,RL 8F ARC RA,RA
2A LHLD addr 5E LB RE 90 SR RA,RB
2B DECP RH SF LR RE,RA 91 SR RA,RC
2C BUMP RL 60 LR RH,RB 92 SR RA,RD
2D DEC RL 61 LR RH,RC 93 SR RA,RE
2E LBI RL,mm 62 LR RH,RD 94 SR RA,RH
2F COM RA 63 LR RH,RE 95 SR RA,RL
31 LHI SP,mm 64 LR RH,RH 96 S RA
32 STD addr 65 LR RH,RL 97 SR RA,RA
33 INCP SP 66 LB RH 98 SRC RA,RB
34 BUMP M 67 LR RH,RA 99 SRC RA,RC
35 DEC M 68 LR RL,RB 9A SRC RA,RD
36 STBI mm 69 LR RL,RC 9B SRC RA,RE
37 SETC 6A LR RL,RD 9C SRC RA,RH
39 DAD SP OF ROR RA

A-5

TABLE A-2 (Continued)

~ INSTRUCTION HEX INSTRUCTION HEX INSTRUCTION

9D SRC RA,RL C2 BFZ label DF
9E SC RA C2 BNE label EO RFP
9F SRC RA,RA C2 BNZ label EI POP RH
AO AND RA,RB C3 B label E2 BFP label
Al AND RA,RC C4 CFZ sub E3 XTHL
A2 AND RA,RD C4 CNE sub E4 CFP sub
A3 AND RA,RE C4 CNZ sub E5 PUSH RH
A4 AND RA,RH C5 PUSH RB E6 ANDI RA,mm
A5 AND RA,RL C6 AI RA,mm E8 RTP
A6 AND RA CB RE E9 PCHL
A7 AND RA,RA C8 RTZ EA BTP label
A8 XR RA,RB CB RZ EB XCHG
A9 XR RA,RC C9 RET EC CTP sub
AA XR RA,RD CA BE label EE XI RA,mm
AB XR RA,RE CA BTC label FO RFS
AC XR RA,RH CA BZ label FO RNM
AD XR RA,RL CC CE sub FO RP
AE X RA CC CTZ sub Fl POP PSW
AF XR RA,RA CC CZ sub F2 BF:; Label
BO OR RA,RB CD CALL sub F2 BNM label
BI OR RA,RC CE ACI RA,mm F2 BP label
B2 OR RA,RD DO RFC F3 DI
B3 OR RA,RE DO RH F4 CFS sub
B4 OR RA,RH Dl POP RD F4 CNM sub
B5 OR RA,RL D2 BFC label F4 CP sub
B6 0 RA D2 BH label F5 PUSH PSW
B7 OR RA,RA D3 OUT dev F6 01 RA
B8 CR RA,RB D4 CFC sub FB RM
B9 CR RA,RC D4 CH sub FB RNP
BA CR RA,RD D5 PUSH RD FB RTS
BB CR RA,RE D6 SI RA,mm F9 SPHL
BC CR RA,RH DB RL FA BM label
BD CR RA,RL DB RTC FA BMP label
BE C RA DA BL label FA BTS label
BF CR RA,RA DA BTC label FB EI
CO RFZ DB IN dev FC CM sum
CO RNE DC CL sub FC CNP sub
CI POP RB DC j-cTC sub FC CTS sub

DE SCI RA,mm FE CI RA,mm .

A-6

TABLE A-3
HEXADECIMAL CODE FOR 9002 INSTRUCTION SET

HEX INSTRUCTION HEX INSTRUCTION HEX INSTRUCTION

00 (Power Up Restart) 34 01 RA,mm 61 OUT dev
02 ROL RA 36 LBI RL,mm 62 CTC label
03 RFC label 3B RTP label 62 CL label
03 RHE label 3C CI RA,mm 63 OUT dev
04 AI RA,mm 3E STBI M,mm 64 B label
06 LBI RA,mm 40 BFC label 65 OUT dev
07 RET label 40 BHE label 66 CALL label
08 BUMP RB 41 IN dev 67 OUT dev
09 DEC RB 42 CFC label 68 BTZ label
OA ROR RA 42 CHE label 68 BE label
OB RFZ label 43 IN dev 68 BZ label
OB RNZ label 44 B label 69 OUT dev
OB RNE label 45 IN dev 6A CTZ label
OC ACI RA,mm 46 CALL label 6A CZ label
OE LBI RB,mm 47 IN dev 6A CE label
OF RET label 48 BFZ label 6B OUT dev
10 BUMP RC 48 BNZ label 6C B label
11 DEC RC 48 BNE label 6D OUT dev
12 RLC RA 49 IN dev 6E CALL label
13 RFS label 4A CFZ label 6F OUT dev
13 RP label 4A CNZ label 70 BTS label
13 RNM label 4A CNE label 70 BM label
14 SI RA,mm 4B IN dev 70 BNP label
16 LBI RC,mm 4C B label 71 OUT dev
18 BUMP RD 4D IN dev 72 CTS label
19 DEC RD 4E CALL label 72 CM label
1A RRC RA 4F IN dev 72 CNP label
1B RFP label 50 BFS label 73 OUT dev
1C SCI RA,mm 50 BP label 74 B label
1E LBI RD,mm 50 BNM label 75 OUT dev
20 BUMP RE 51 OUT dev 76 CALL label
21 DEC RE 52 CFS label 77 OUT dev
23 RTC label 52 CP label 78 BTP label
23 RL label 53 OUT dev 79 OUT dev
24 ANDI RA,mm 54 B label 7A CTP label
26 LBI RE,mm 55 OUT dev 7B OUT dev
28 BUMP RH 56 CALL label 7C B label
29 DEC RH 57 OUT dev 7D OUT dev
2B RTZ label 58 BFP label 7E CALL label
2B RZ label 59 OUT dev 7F OUT dev
2B RE label 5A CFP label 80 AR RA,RA
2C XI RA,mm 5B OUT dev 81 AR RA,RB
2E LBI RH,mm 5C B label 82 AR RA,RC
30 BUMP RL 5D OUT dev 83 AR RA,RD
31 DEC RL 5E CALL label 84 AR RA,RE
33 RTS label 5F OUT dev 85 AR RA,RH
33 RM label 60 BTC label 86 AR RA,RL
33 RNP label 60 BL label 87 A RA

A-7

TABLE A-3 (Continued)

HEX INSTRUCTION HEX INSTRUCTION HEX INSTRUCTION

88 ARC RA,RA BO OR RA,RA D8 LR RD,RA
89 ARC RA,RB Bl OR RA,RB D9 LR RD,RB
SA ARC RA,RC B2 OR RA,RC DA LR RD,RC
8B ARC RA,RD B3 OR RA,RD DB LR RD,RD
8C ARC RA,RE B4 OR RA,RE DC LR RD,RE
8D ARC RA,RH B5 OR RA,RH DD LR RD,RH
8E ARC RA,RL B6 OR RA,RL DE LR RD,RL
8F AC RA B7 0 RA DF LB RD
90 SR RA,RA B8 CR RA,RA EO LR RE,RA
91 SR RA,RB B9 CR RA,RB El LR RE,RB
92 SR RA,RC BA CR RA,RC E2 LR RE,RC
93 SR RA,RD BB CR RA,RD E3 LR RE,RD
94 SR RA,RE BC CR RA,RE E4 LR RE,RE
95 SR RA,RH BD CR RA,RH E5 LR RE,RH
96 SR RH,RL BE CR RA,RL E6 LR RE,RL
97 S RA BF C RA E7 LB RE
98 SRC RA,RA CO LR RA,RA E8 LR RH,RA
99 SRC RA,RR Cl LR RA,RB E9 LR RH,RB
9A SRC RA,RC C2 LR RA,RC EA LR RH,RC
9B SRC RA,RD C3 LR RA,RD EB LR RH,RD
9C SRC RA,RE C4 LR RA,RE EC LR RH,RE
9D SRC RA,RH C5 LR RA,RH ED LR RH,RH
9E SRC RA,RL C6 LR RA,RL EE LR RH,RL
9F SC RA C7 LB RA EF LB RH
AO ANDR RA,RA C8 LR RB,RA FO LR RL,RA
Al ANDR RA,RB C9 LR RB,RB Fl LR RL,RB
A2 NADR RA,RC CA LR RB,RC F2 LR RL,RC
A3 ANDR RA,RD CB LR RB,RD F3 LR RL,RD
A4 ANDR RA,RE CC LR RB,RE F4 LR RL,RE
A5 ANDR RA,RH CD LR RB,RH F5 LR RL,RH
A6 ANDR RA,RL CE LR RB,RL F6 LR RL,RL
A7 AND RA CF LB RB F7 LB RL
A8 XR RA,RA DO LR RC,RA F8 STB RA
A9 XR RA,RB Dl LR RC,RB F9 STB RB
AA XR RA,RC D2 LR RC,RC FA STB RC
AB XR RA,RD D3 LR RC,RD FB STB RD
AC XR RA,RE D4 LR RC,RE FC STB RE
AD XR RA,RH D5 LR RC,RH FD STB RH
AE XR RH,RL D6 LR RC,RL FE STB RL
AF X RA D7 LB RC

A-8

TABLE A-4

OPERATIONAL SUMMARY OF THE 9000 SERIES INSTRUCTION SET

CODE OPERATION

CARRY BIT INSTRUCTIONS

COMC Carry +- Carry

SETC Carry +- 1

SINGLE REGISTER INSTRUCTIONS

BUMP Rn +- Rn+l

COM RA+- RA

DAA If (Ao -A 3) >9 or {Aux. Carry)=l, (A) +- (A)+6
Then if (A If -A 7 »9 or (Carry)=l, {A)=(A)+602 1f

DEC Rn +- Rn-l

NOP INSTRUCTION

NOP No Operation

DATA TRANSFER INSTRUCTIONS

LB Rn +- M

LBA RA+- M

LBI Rn +- rom

LR Rd +- Rs

STA M +- RA

STB M +- Rn

STBI M +- rom

REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS

A RA+- RA+M

AC RA+- RA+M+Carry

A-9

TABLE A-4 (Continued)

CODE OPERATION

ACI RA+ RA+mm+Carry

AI RA + RA+mm

AND RA + RAA M, Carry + 0

ANDI RA+ RAA mm, Carry + 0

ANDR RA + RAA Rn, Carry + 0

AR RA + RA+Rn

ARC RA + RA+Rn+Carry

C (RA-M)

CI (RA-mm)

CR (RA-Rn)

0 RA + RAV H, Carry + 0

OI RA + RAV rom, Carry + 0

OR RA + RAV Rn

S RA + RA-M

SC RA + RA-(M+Carry)

SCI RA+ RA-(mm+Carry)

SI RA + RA-mm

SR RA+ RA-Rn

SRC RA + RA-(Rn+Carry)

X RA+ RA lj. M, Carry 0

XI RA+ RA ¥ rom, Carry 0

XR RA + RA 10\ Rn, Carry 0

ROTATE ACCUMULATOR INSTRUCTIONS

RLC Carry + Ra7,RAl-7 + RAo-s and RAo + Carry

ROL Carry + RA7,RAl-7 + RAo-s and RAo + RA7

ROR Carry + RAo,RAo-s + RAl-7 and RA7 + RAo

RRC Carry + RAo,RAo-s + RAl-7 and RA7 + RAo

REGISTER PAIR INSTRUCTIONS

DAD H,L + (H,L)+Rp

A-IO

CODE

DECP

INCP

LHI

POP

PUSH

SPHL

XCHG

XTHL

LAD

LHLD

SHLD

OPERATION

Rp -+- Rp-l

Rp -+- Rp+l

Rp -+- mmnn

TABLE A-4 (Continued)

(RPI) -+- (SP+I) I (RP2) -+- SP , SP -+- (SP+2)

(SP-I) +- (RPI) I (SP-2) -+- (RP2) I SP -+- (SP-2)

SP -+- H/L

D,E -+-.... H,L

L -+- (SP) I H -+- (SP+I)

DIRECT ADDRESSING INSTRUCTIONS

RA -+- M

RL -+- M and RH +- M+I

M +- RL and M+I -+- RH

STD M -+- RA

BRANCH INSTRUCTIONS

B Prog. Counter -+- label

BE Prog. Counter +- label if Zero:::l

BFC Prog. Counter -+- label if Carry=O

BFP Prog. Counter +- label if Parity=O

BFS Prog. Counter +- label if Sign=O and Zero=O

BFZ Prog. Counter +- label if Zero=O

BHE Prog. Counter -+- label if Carry~O

BL Prog. Counter +- label if Carry=l

BM Prog. Counter +- label if Sign=1

BNE Prog. Counter +- label if Zero=O

BNM Prog. Counter -+- label if Sign=O

BNP Prog. Counter +- label if Sign=l

BNZ Prog. Counter -+- label if Zero=O

BP Prog. Counter +- label if Sign=O

A-II

CODE

BTC

BTP

BTS

BTZ

BZ

PCHL

CALL

CE

CFC

CFP

CFS

CFZ

CHE

CL

CM

CNE

CNM

CNP

CNZ

CP

CTC

CTP

CTS

CTZ

CZ

TABLE A-4 (Continued)

OPERATION

Prog. Counter +- label if Carry=l

Prog. Counter +- label if Parity=l

Prog. Counter +- label if Sign=l

Prog. Counter +- label if Zero=l

Prog. Counter +- label if Zero=l

PC +- H,L

CALL SUBROUTINE INSTRUCTIONS

(Stack) +- PC, SP +- (SP-2), PC +- addr

If Zero=l, then (Stack) +- PC, SP +- (SP-2) , PC +- addr

If Carry=O, then (Stack) +- PC, SP +- (SP-2) ,
PC +- addr

If Parity=O, then (Stack) +- PC, SP +- (SP-2) ,
PC +- addr

If Sign=O and Zero=O, then (Stack) +- PC, SP +- (SP-2),
PC +- addr

If Zero=O, then (Stack) +- PC, SP +- (SP-2) , PC +- addr

If Carry=O, then (Stack) +- PC; SP +- (SP-2) , PC +- addr

If Carry=l, then (Stack) +- PC, SP +- (SP-2) , PC +- addr

If Sign=l, then (Stack) +- PC, SP +- (SP-2), PC +- addr

If Zero=O, then (Stack) +- PC, SP +- (SP-2) , PC +- addr

If Sign=O, then (Stack) +- PC, SP +- (SP-2), PC +- addr

If Sign=l, then (Stack) +- PC, SP +- (SP-2) I PC +- addr

If Zero=O, then (Stack) +- PC, SP +- (SP-2) , PC +- addr

If Sign=O, then (Stack) +- PC, SP +- (SP-2) , PC +- addr

If Carry=l, then (Stack) +- PC, SP +- (SP-2) ,
PC +- addr

If Parity=l, then (Stack) +- PC, SP +- (SP-2) ,
PC +- addr

If Sign=l, then (Stack) +- PC, SP +- (SP-2) , PC +- addr

If Zero-I, then (Stack) +- PC, SP +- (SP-2), PC +- addr

If Zero=l, then (Stack) +- PC, SP +- (SP-2) , PC +- addr

A-l2

TABLE A-4 (Continued)

CODE OPERATION

RETURN FROM SUBROUTINE INSTRUCTIONS

RET Prog. Counter -+- S-P

RE Prog. Counter -+- SP if Zero=l

RFC Prog. Counter -+- SP if Carry=O

RFP Prog. Counter -+- SP if Parity=O

RFS Prog. Counter -+- SP if Sign=O and Zero=O

RFZ Prog. Counter -+- SP if Zero=O

RHE Prog. Counter -+- SP if Carry=O

RL Prog. Counter -+- SP if Carry=l

RM Prog. Counter -+- SP if Sign=l

RNE Prog. Counter -+- SP if Zero=O

RNM Prog. Counter -+- SP if Sign=O

RNP Prog. Counter -+- SP if Sign=l

RNZ Prog. Counter -+- SP if Zero=O -

RP Prog. Counter -+- SP if Sign=O

RTC Prog. Counter -+- SP if Carry=l

RTP Prog. Counter -+- SP if Parity=l

RTS Prog. Counter -+- SP if Sign=l

RTZ Prog. Counter -+- SP if Zero=l

RZ Prog. Counter -+- SP if Zero=l

INTERRUPT ENABLE/DISABLE INSTRUCTIONS

EI (INTE) -+- 1

DI (INTE) -+- 0

INPUT/OUTPUT INSTRUCTIONS

IN RA-+- input device

OUT RA-+ output device

A-13

APPENDIX B

BASIC SYSTEM SUBROUTINES

This appendix contains a description of basic subroutines in the
system. They are used by the system itself, but can also be called
by users' programs.

B.l CURSOR MOVE ROUTINES

B.l.l ABTAB Auto Tab Backward

Moves the cursor to the left past the next preceding set of pro­
tected byte(s}, and past all the unprotected bytes until it reaches
the left-most byte of that unprotected set. If, at initial cursor
scan the next preceding byte is not protected, the scan ends at
the left-most byte of the current unprotected set.

Registers affected: All

Call sequence: Call ABTAB

Result: All registers indeterminate; hardware and software cursor
registers are updated.

B.l.2 ATAB Auto Tab Forward

Moves the cursor to the right to the first unprotected byte beyond
the next set of protected byte(s). If the right scan searches
beyond the last displayable character, the cursor is set at true
HOME.

Registers affected: All

Call sequence: Call ATAB

Result: All registers indeterminate; hardware and software cursor
registers are updated.

B.l.3 BTAB Move Cursor To Next Previous Tab Stop

Cursor is moved from current location to next previous tab stop.
If the next previous tab stop on this line is a protected byte,
the cursor will scan right to the first available non-protected
byte. (The cursor cannot ever move left past a protected byte at

B-1

the tab stop location by using this function.) If there is no
next previous tab stop on this line, or no tab stops at all, the
cursor will move to the left-most position of the current line.
If already at the left-most position, the cursor will move to the
last position of the next preceding line and scan left. In no
case will the cursor move past true HOME in its backward scan.

Registers affected: All

Call sequence: Call BTAB

Result: All registers indeterminate; hardware and software cursor
registers are updated.

B .1. 4 CDOv7N Move Cursor One Line Down

Moves cursor (on screen) one line down.
most line, it is moved to top-most line.
a protected byte, unless location X'1012'
is non-zero.

Registers affected: All

Call sequence: Call CDOWN

If cursor is at bottom­
Cursor will not stop at
(Protected Cursor Flag)

Result: All registers indeterminate; hardware cursor registers
(X'lOOO'-X'lOOl') and software cursor register (FAS) are
updated. Where double-page option exists, page adjust­
ment is made automatically.

B.l.S CLEFT Move Cursor One Position To Left

Moves cursor (on screen) one position to left. If cursor is at
left-most position, it will be moved to the right-most position of
the preceding line. If cursor is at the left-most position of the
first line {true HOr1E) , it will not be moved. Unless location
X'1012' (Protected Cursor Flag) is non-zero, cursor will not stop
at a 'protected' byte location, but will continue going left. If
true Home is found to be protected, cursor will search right and
stop at first available not protected byte location.

Registers affected: All

Call sequence: Call CLEFT

Result: All registers indeterminate; both actual, terminal cursor
registers and binary cursor location (FAS) are updated.
Where double-page option exists, page adjust is also made.

B-2

B~I.6 CRIGHT Move Cursor One Position To Right

Moves cursor (on screen) one position to right. If cursor is at
right-most position, it will be moved to the left-most position of
the next line. If it is at the right-most position of the last
available line, it will be moved to the left-most position of the
first line. Cursor will automatically bypass any 'protected' byte
locations, unless_location X'IOI2' (Protected Cursor Flat) is non-zero.

Registers affected: All

Call sequence: Call CRIGHT

Result: All registers indeterminate; both actual, terminal cursor
registers and binary cursor location (FAS) are properly
updated. Where double-page option exists, page adjust­
ment to cursor position is also updated.

B.I.7 CUP Move Cursor One Line Up

Moves cursor (on screen) one line up. If cursor is already at
top-most line, it will not be moved. Cursor will not stop at a
protected byte unless location X'IOI2' (Protected Cursor Flag) is
non-zero. Attempt to move cursor to top-line, if' it is protected
and location X'IOI2' is zero, will result in cursor moving to
right on top line until a non-protected byte location is found.

Registers affected: All

Call sequence: Call CUP

Result: All registers indeterminate; hardware cursor registers
(X'IOOQI-X'IOQI') and software cursor register (FAS) are
updated. Where double-page option exists, adjustment is
made automatically.

B.I.B HOME Move Cursor To HOME Location

Cursor is moved from current location to left-most position, top­
line of current screen image. If that position is protected, cur­
sor will scan right until first unprotected byte is found.

Registers affected: All

Call sequence: Call HOME

Result: All registers indeterminate; hardware and software cursor
registers updated.

B-3

B.I.9 RETURN Move Cursor To First Position of Next Line

Moves cursor from current position to the left-most position of
next line. If current cursor position is on last displayable
line, cursor is moved to true HOME. Cursor will not stop at pro­
tected byte but will scan right to first non-protected location.

Registers affected: All

Call sequence: Call RETURN

Result: All registers indeterminate; hardware and software cursor
registers updated. Where necessary, page ~s adjusted.

B.I.IO TAB Move Cursor To Next Tab stop

Cursor is moved from current location to next tab stop to right.
If there are no more stops on the line, or if no stops exist, the
cursor is moved to the left-most position of the following line.
In this case it always acts precisely like RETURN.

Registers affected: All

Call sequence: Call TAB

Result: All registers indeterminate: hardware and softwar~ cursor
registers are updated.

B-4

B.2 VIEWABLE SCREEN ROUTINES

B.2.l BLANK Blank Screen

That portion of the screen ranging from the value (binary address)
in FAS up to, but not including, the value in SAS is blanked. Both
protected and unprotected are~s are blanked. Indeterminate results
can be expected if the value in FAS is not less than that in SASe

Registers affected: All

Call sequence: After establishing FAS and SAS, Call BLANK.

Result: All bytes in the area specified are changed to blanks
(X'20'). Register values at completion are indeterminate.

B.2.2 CLEAR Clear All Viewable Memory

Clears all viewable memory to blanks.

Registers affected: All

Call sequence: Call CLEAR

Result: All registers indeterminate; cursor is repositioned to
true Home location. Where necessary, first page is set.
All cursor registers are updated.

B.2.3 CMESSA Insert Control Label

The control label at the extreme lower right of the visible screen
is loaded by this routine. Any new label can be loaded to that
area by specifying the address of the right-most byte of an eight­
position label in the register pair Hand L, then calling this
routine.

Registers affected: All

Call sequence: LBI RH,
LBI RL,

(label address + 7)
(label address + 7)

Call CMESSA.

Result: Register values at completion are indeterminate; the new
label is displayed.

B.2.4 DELBYT Delete Byte

Deletes byte at cursor location, and moves all data to the right,
to the end of the line or to the next protected byte to the left
one byte. The last byte on the line or the last unprotected byte
in the current field is then blanked.

Registers affected: All

Call sequence: Call DELBYT

Result: All registers indeterminate; cursor is not moved.

B.2.S DELFD Delete Field

From current cursor location, a scan is made to the left until
either the start of line is reached or a protected byte is found.
Then the scan is made to the right until either the end of line is
reached or a protected byte is found. Within the established
range, all unprotected bytes are blanked. The cursor is then re­
positioned ~t the left-most unprotected byte of the range.

Registers affected: All

Call sequence: Call DELFLD

Result: All registers indeterminate; hardware and software cursor
registers are updated.

B.2.6 DLINE Delete Line

Cursor is moved to extreme left position of current line. All
lines from the one following the cursor line to the end of dis­
playable memory are moved up one line. Thus all following moved
lines overlay their next preceding line. The last line is blanked
at completion of the move. If the cursor is on the last line, this
line is blanked.

The DLINE routine automatically incorporates Mercury Move if this
option is installed.

Registers affected: All

Call sequence: Call DLINE

Result: All registers indeterminate; hardware and software cursor
registers are updated.

B-6

B.2.7 EOL Erase To End Of Line

Blanks screen from current cursor location to end of line. Pro­
tected bytes are not blanked unless the value at X'1016' is X'SO'
or greater.

Registers affected: All

Call sequence: Call EOL

Result: All registers indeterminate; cursor remains at same loca­
tion.

B.2.S EOS Erase To End Of Screen

Blanks screen from current cursor location to last screen display­
able position. Protected bytes are not blanked unless the value
at X'1016' is X'SO' or greater.

Registers affected: All

Call sequence: Call EOS

Result: All registers indeterminate; cursor remains at same posi­
tion.

B.2.9 ILINE Insert Blank Line

Cursor is moved to extreme left position of current line. All
lines up to and including the cursor line are moved down one line.
The cursor line is then blanked. The last displayable line is
blanked and the operation proceeds normally. If the cursor is on
the last line, that line is blanked.

The ILINE routine automatically incorporates Mercury Move if this
option is installed.

Registers affected: All

Call sequence: Call ILINE

Result: All registers indeterminate; hardware and software cursor
registers are updated.

B-7

B.2.10 INSERT Insert Byte

From the current cursor location, all data to the right, to the
end of the line or to the next set of protected byte{s), is moved
right one position. If the last position on the line was affected,
that last position is changed to a blank. The keyed character is
then inserted at the current cursor location. The cursor is ad­
vanced automatically.

Registers affected: All

Call sequence: Call INSERT

Result: All registers indeterminate; cursor position advanced one
position to right.

B.2.11 NEWFRM Clear Viewable Memory Of All Unprotected Data

All viewable memory, with exception of Control line and protected
bytes, is cleared to blanks.

Registers affected: All

Call sequence: Call NEWFRM

Result: All registers indeterminate; cursor is repositioned to
true Home. Where necessary, first page is set. All cur­
sor registers are updated.

B-8

B.3 MICROCOMPUTER ROUTINES

B.3.1 ADD2 Add Register C to Register Pair D and E

Adds value in register C to value in register pair D and E. Results
are placed in register pair D and E.

Registers affected: A, D, and E

Call sequence: After loading 16 bit value in registers D and E,
and loading add value in register C, then, Call ADD2.

Result: Register A is indeterminate, registers B, C, H, and L are
not changed, and register pair D and E contain the new
value.

B.3.2

B.3.3 COMPER Compare Register Pair Band C with Register Pair
D and E

The value in register pair Band C is compared against the value
in register pair D and E. At completion, Register B holds the
High, Low or Equal result.

Registers affected: A, B, C, D, and E.

Call sequence: After loading the values to be compared in register
pairs B,C and D,E, then, Call COMPER.

B-9

Result: Register A is indeterminate; registers C, Df E, H, and L
are unchanged. Register B contains:

X'02' if value in register pair D and E is numerically
greater than value in Band C.

X'OI' if value in register pair D and E is less than
value in Band C.

X'OO' if values are equal.

B.3.4 CONV Convert Binary Cursor Value in FAS to Hardware Cursor
Value

Takes the 16-bit binary current cursor value from FAS, and converts
it to row and column discontinuous binary value of terminal, and
stores the value in the cursor address register.

Registers affected: All

Call sequence: Call CONV

Result: Registers A, B, and C are indeterminate; register pair
D and E will contain the new cursor address register
value, and paired registers Hand L will contain the
value X'IOOI'.

B.3.5 LDCURS Load Cursor

The two-byte contents of the cursor address register (row and
column) located at X'IOOO' and X'IOOI' is loaded into the regis­
ter pair D and E.

Registers affected: D, E, H, and L

Call sequence: Call LDCURS

Result: At completion, the register pair D and E contain the con­
tents of memory locations X'IOOO' and X'IOOI', respec­
tively. Register pair Hand L contain the value X'lOOO'.

B.3.6 LDFAS Load First Address

The two-byte value at address X'I020' is the absolute binary address
of the current cursor location. It is known as FAS, or First Ad­
dress. Since the binary counterpart of the current cursor location is

B-IO

used so often, FAS has special load and store routines. Calling
LDFAS will load the Hand L registers with the value in FAS. That
value will also be loaded in registers D and E.

Registers affected: D, E, H, and L

Call sequence 1: Call LDFAS

Result: The value in FAS (assume X'189C') will be loaded into
registers D and E and also registers Hand L, Register D
will contain X'18', E will contain X'9C', H will contain
X'18', and L will contain X'9C'.

A portion of the LDFAS routine can be used to load registers Hand
L from almost any addressable memory pair (note exception), by
loading the address of the value desired into registers Hand L,
and then performing a call to location LDFAS+4.

Call sequence 2: LBI
LBI

RH,XX
RL,YY

Call LDFAS+4

(where XX and YY are the high- and
low-order bytes of the desired
location, respectively)

Result: Same as in basic LDFAS routine, register pair D and E, H
and L are loaded with the value located at xx YY.

Exception: Load results will be indeterminate, and almost certainly
wrong, if the memory pair addressed crosses a hexadeci­
mal century boundary, i.e., if the memory address to be
loaded ends in X'FF'.

B.3.? LDSAS Load Second Address

The two-byte space at address X'1022' is used as temporary storage
by a significant number of the Basic System Subroutines; it is
known as Second Address, or SASe Calling LDSAS will load the regis­
ter pair Hand L with the value in SASe

Registers affected: D, E, H, and L

Call sequence: Call LDSAS

Result: The value in SAS will be loaded into register pairs D and
E, and Hand L.

B-ll

B.3.8 LDTAS Load Third Address

The two-byte space at address X'I009' is used as temporary storage
by several Basic System Subroutines; it is known as Third Address,
or TAS. Calling LDTAS will load the register pair Hand L with
the value in TAS.

Registers affected: D, E, H, and L

Call sequence: Call LDTAS

Result: The value in TAS will be loaded into register pairs D and
E, and Hand L.

B.3.9 LMOVE Move Data Into RM1, High-Order To Low-Order Addresses

Moves up to 256 bytes from any addressable area in memory to any
portion of RAM memory. The move is byte by byte, moving the final
byte of the 'from' block to the final byte location of the 't~'
block first, then decrementing address and byte count and mov1ng
each additional byte until all required bytes have been moved.
Register pair D and E must be loaded with the starting location of
the 'to' block. Register pair II and L must be loaded with the
starting location of the 'from' block. Register C is loaded with
the value X'OI' to X'FF' to move from I to 255 bytes. Loading
register C with X'OO' will move 256 bytes.

This routine uses the Mercury Move option if it is installed.

Registers affected: All

Call sequence: After loading register pair Hand L with the 'from'
location, D and E with the 'to' location, and regis­
ter C with move count, then, Call LMOVE.

Result: Registers A and B are indeterminate; register C is X'OO',
register pair D and E point to the last byte moved, minus
one, of the 'to' area, and register pair Hand L point to
the last byte minus one of the 'from' area.

B.3.10 RECON Generate Binary Cursor value in FAS From Value In
Hardware Cursor Register

Takes the Row/Column current Hardware cursor value and converts it
to a 16-bit binary value and stores that value at FAS.

Registers affected: All

Call sequence: Call RECON

B-12

Result: Registers A, B, and C are indeterminate; register pair D
and E contain the new l6-bit binary value representing
the current cursor location, and register pair Hand L
contain the address of FAS+l.

B.3.ll RMOVE Move Data Into RAM, Low-Order To High-Order Addresses

Moves up to 256 bytes from any addressable area in memory to any
portion of RAM memory. The move is byte by byte, moving the first
byte of the 'from' block to the first byte location of the 'to'
block first, then incrementing address and decrementing byte count
and moving each additional byte until all required bytes have been
moved. Register pair D and E must be loaded with the starting lo­
cation of the 'to' block. Register pair Hand L must be loaded
with the starting location of the 'from' block. Register C is
loaded with the value X'Ol' to X'FF' to move from 1 to 255 bytes.
Loading register C with X'OO' will cause 256 bytes to be moved.

This routine uses the Mercury Move option if it is installed.

Registers affected: All

Call sequence: After loading register pair Hand L with the 'from'
location, register pair D and E with the 'to' lo­
cation, and register C with move count, then Call
Call LMOVE.

Result: Register A and B are indeterminate; register C is X'OO',
register pair D and E point to the last byte plus one of
the 'to' area, register pair Hand L point to the last
byte plus one of the 'from' area.

B.3.l2 SMOVE Special Move For Data Going To Control Line

The Control Line (bottom line of screen) has a special function
associated with the high-order bit of each byte on that line
(Addresses X'1030'-X'107F'). The SMOVE routine inserts data on
that line without affecting the high-order bits. In all other
respects this move is treated as an 'LMOVE' function. Thus, data
moved to the control line must be addressed from the right side
rather than the left, etc. See LMOVE (Section B.3.9) for addi­
tional information.

Registers affected: All

Call sequence: After loading register pair D and E with the 'to'
location, register pair II and L with the 'from'
location, and register C with move count, then,
Call SMOVE.

B-13

Result: Registers A and B are indeterminate; register C is X'OO',
register pair D and E point to the last byte moved, minus
one, of the 'to' area, register pair Hand L point to the
last byte, minus one, of the 'from' area.

B.3.l3 STFAS Store First Address

The two-byte value in register pair Hand L is stored at FAS (ab­
solute binary address X'1020').

Registers affected: D, E, H, and L

Call sequence 1: Call STFAS

Result: At completion, FAS contains value that was in register
pair Hand L, register pair D and E also contains value
originally in Hand L, and register pair Hand L contains
the address of FAS+l.

A portion of the STFAS routine can be used to store the value in
register paj.r D and E into FAS.

Call sequence 2: Call STFAS+2

Result: Same as basic STFAS result.

B.3.l4 STSAS Store Second Address

The two-byte value in register pair Hand L is stored at SAS (ab­
solute binary address X'1022').

Registers affected: D, E, H, and L

Call sequence: Call STSAS

Result: At completion, SAS and the register pair D and E will con­
tain the value initially held in register pair Hand Li
Hand L will contain the address of SAS+l.

B.3.lS STTAS Store Third Address

The two-byte value in register pair D and E is stored at TAS (ab­
solute binary address X'l009').

Registers affected: D, E, H, and L

Call sequence: Call STTAS

B-14

Result: At completion, TAS and the register pair D and E will con­
tain the value initially held in register pair D and E;
register pair Hand L will contain the address of TAS+I.

B.3.16 SUBREG Subtract Register Pair BAnd C From Register Pair
D And E

Subtracts 16-bit value in register pair Band C from 16-bit value
in register pair D and E and stores 16-bit result in register pair
Band C.

Registers affected: A, B, C, D, and E

Call sequence: After establishing registers B, C, D, and E,
Call SUBREG.

Result: Registers D and E will remain as they were just prior to
entry to this routine; registers Band C will hold the new
result value.

B.3.17 SUBT2 Subtract Register C From Register Pair D and E

Subtracts value in register C from value in register pair D and E.
Results are placed in register pair D and E.

Registers affected: A, D, and E

Call sequence: After loading l6-bit value in registers D and E, and
loading subtract value in register C, then, Call SUBT2.

Result: Register A is indeterminate, registers B, C, H, and L are
not changed, and register pair D and E contain the new value.

B-15

B.4 TWO-PAGE OPTION ROUTINES

The routines below operate only if the Page Two Video Display option
is installed.

B.4.1 DPAGE Display Page One On Screen

Causes Page One to be displayed by setting the hardware Page Regis­
ter (X'I005') to X'OI'.

Registers affected: H, L

Call sequence: Call DPAGE

Result: Register pair Hand L contain X'I005'.

B.4.2 DSCROL Scroll Page Data Downward

Screen view 'window' of data is moved upward, but page data appears
to move downward. Hardware Page Register value is decreased by
value in location X'IOIO' (scroll value). Page Register value may
not be less than X'OI'.

Registers affected: A, B, C, H, and L

Call sequence: Call DSCROL

Result: Registers A, B, and C are indeterminate; register pair H
and L contain X'I005'.

B.4.3 UPAGE Display Page Two On Screen

Causes Page Two to be displayed by setting the hardware Page
Register (X'I005') to X'19'.

Registers affected: H, L

Call sequence: Call UPAGE

Result: Register pair Hand L contain X'I005'.

B-16

B.4.4 USCROL Scroll Page Data Upward

Screen view 'window' of data is moved downward, but page data ap­
pears to move upward. Hardware Page Register value is increased
by value in location X'lOlO' (scroll value). Page Register value
may not exceed X'19'.

Registers affected: At B, C, H, and L

Call sequence: Call USCROL

Result: Registers A, B, and C are indeterminate; register pair H
and L contain X'l005'.

B-1?

SUBROUTINE EQUATE LIST

8080 8008

CRIGHT 098D 09A1
CLEFT 0996 09AC
CUP 09AA 09BF
CDOWN 099F 09B4
RETURN OABC OAB9
HOME OAA9 OAA5
TAB OB1E OB21
BTAB OB23 OB26
ATAB OC12 OC40
ABTAB OC3F OC74
CLEAR OA89 OA8D
NEWFRM OAD6 OAD8
EOS OA59 OA5A
EOL OA6B OA6F
BLANK 086B 089A
CMESSA 0853 0871
DELBYT OCA3 ODOE
DELFLD OCD9 OD4B
INSERT OD19 OD97
DLINE ODDF OE99
ILINE ODDB OE95
LDFAS 0800 0800
STFAS 0809 080A
LDSAS 0812 0814
STSAS 0818 081B
LDTAS 083E 0852
STTAS 0844 0859
LDCURS 0820 0824
BUMPHL 0834
DECHL 0838
SUBREG 087B 08AB
CONV 08A1 08DD
RECON 08C7 0905
COMPER 096E 097E
ADD2 0987 0999
SUBT2 0981 0991
RMOVE 08E6 0927
LMOVE 0902 0941
SMOVE 0952 0954
UPAGE OACA OACA
DPAGE OADO OAD1
USCROL OAE2 OAE9
DSCROL OAE7 OAE4
TEST OEC9
DISK OE80

B-18

APPENDIX C

SYSTEM SUPPORT ROUTINES

C.l CRT TERMINAL SELF-TEST ROUTINE

This routine will write patterns of X'55' and X'AA' into the en­
tire RAM portion of memory and then read them back to verify that
those patterns were correctly stored. After performing this opera­
tion 16 times, the CRT will display all displayable characters in
twelve modes for the operator to visually verify. Pressing any
keyboard key will clear the screen and return to Control mode.

Registers affected: All

Keyboard entry sequence: To execute this routine, press MODE, then
ESC.

Result: All registers are indeterminate.

C.2 DISK IPL (INITIAL PROGRAM LOAD)

This routine will load the disk catalog into memory locations
X'3000'-X'3800' and then branch to warm start.

Registers affected: A, B, C, H, and L

Keyboard entry sequence: To execute this routine, press MODE, then
PAGE t.

C-l

C.3 ZIM (ZENTEC INTERROGATION MODULE) PROGRAM

The ZIM program provides visual access to the entire system memory.
The contents of each location in the memory is displayed on the
screen in hexadecimal-coded form and various sections of the memory
can be moved on or off the screen with the keyboard cursor controls.
In addition, contents of any memory location in the RAM segment can
be altered from the keyboard when operating under the control of the
ZIM program. Consequently, the ZIM program is useful for program­
ing, program debugging, as well as for maintenance purposes.

Installation of the ZI~1 program requires that the Page Two Video
Display option is present in the system.

The ZIM program is entered from the Control mode by pressing MODE,
then CLEAR. A segment of the memory contents will be displayed in
hexadecimal form in rows across the screen with the row's starting
address displayed in the left-hand column. The 25th line will dis­
play "CONTROL". A typical display will look like this:

OF80 C2 OA OA OA OA 24 OF Bl 2E 10 36 24 F8 07 46 00
OF90 08 2E 10 36 01 C4 97 40 9B OF 19 EO 46 OC 08 16
OFAO 50 46 99 09 46 7A 09 46 59 08 09 OB EB F4 16 50
OFBO C7 3C 20 48 9F 9F 46 34 08 11 48 BO OF 07 CA 2E
OFCO 10 36 14 F9 44 C5 OD 00 46 8D OA IE 10 26 00 2E
OFDO OF 36 DE 16 22 46 27 09 46 D3 OB 44 16 00 01 00
OFEO FF 00 00 01 00 00 44 00 00 00 00 00 00 00 '02 19

CONTROL

With the ZIM program executing, the cursor move keys will allow you
to index through the memory. (The cursor appears as a reverse
video character.) You can also index through memory by keying in
a four-digit hexadecimal memory address, most-significant digit
first, and pressing the lower-case "1" key.

To alter the contents of a specific RAM memory location, key in
the four-digit hexadecimal memory address and press the SPACE BAR.
The hexamecimal characters will replace the current contents of
that location.

To execute a program in memory, key in the four-digit hexadecimal
memory address and press the lower-case "g" key. The 9003 program
will branch to the specified memory location and start executing
at that location.

To exit the ZIM program and return to the normal operating pro­
gram, press the RESET key.

C-2

APPENDIX D

ASCII TABLE

HEX CHARACTER HEX CHARACTER HEX CHARACTER

00 NUL 2B + 56 V
01 SOH 2C , 57 W

02 STX 2D - 58 X
03 ETX 2E . 59 Y
04 EOT
05 ENQ

2F /
30 0

5A Z
5B [

06 ACK 31 1 5C \
07 BEL 32 2 5D]
08 BS 33 3 5E " (t) i

09 HT 34 4 5F (+-) -
OA LF 35 5 60 ..
OB VT 36 6 61 a
OC FF i 37 7 62 b
OD CR 38 8 63 c
OE SO , 39 9 64 d
OF SI 3A : 65 e
10 DLE 3B i 66 f
11 DCl (X-ON) 3C < 67 g
12 DC2 (TAPE) 3D = 68 h
13 DC3 (X-OFF) 3E > 69 i
15 DC4 3F ? 6A j
15 NAK 40 @ 6B k
16 SYN 41 A 6C 1
17 ETB 42 B 6D m
18 CAN 43 C 6E n
19 EM 44 D 6F 0

lA SUB
IB ESC
lC FS

45 E
46 F
47 G

70 P
71 q

I 72 r I

ID GS 48 H 73 s i

IE RS 49 I 74 t
IF US 4A J 75 u
20 SP 4B K 76 v
21 I . 4C L 77 w
22 " 4D M 78 x
23 # 4E N 79 y
24 $ 4F 0 7A z
25 % 50 P 7B {

26 & 51 Q 7C I
27 I 52 R 7D }

28 (53 S 7E
~

29) 54 T 7F DEL (RUB OUT)
2A * 55 U

D-l

8008 8080

PORT REGISTER A PORT

41
43
45
47
49
4B
4D
4F
41
43
45
47
49
4B
4D
4F
41
43
45
47
49
4B
4D
4F
41
43
45
47
49
4B
4D
4F

00
00
00
00
00
00
00
00
40
40
40
40
40
40
40
40
80
80
80
80
80
80
80
80
CO
CO
CO
CO
CO
CO
CO
CO

01
03
05
07
09
OB
OD
OF
41
43
45
47
49
4B
4D
4F
81
83
85
87
89
8B
8D
8F
C1
C3
C5
C7
C9
CB
CD
CF

APPENDIX E

INPUT PORT ASSIGNMENTS

Disk Status
Printer Status
Mercury Move Status and Paper Tape Reader Status
Light Pin Input

~~~~ ~tatus} Synchronous TCOM 
Interface #1 

!~i~~:::::us ~ Asynchronous TeOM 

I.D. # ) 
Tape Drive #1 flags, status, and word count 
Tape Drive #2 flags, status, and word count 
Paper Tape Reader Data 
Interrupt Drive # 
Interface status, Synchronous TCOM interface #1 
Not Assigned 
Not Assigned 
Not Assigned 
Not Assigned 

~~~~ ~tatus } Synchronous TCOM 
Interface #2 Data Input

Not Assigned
Not Assigned
Not Assigned
Not Assigned
Not Assigned
Not Assigned
Not Assigned
Not Assigned
Interface status, Synchronous TCOM interface #2

E-1

8008

PORT

51
53
55
57
59
5B
5D
SF
61
63
65
67
69
6B
6D
6F
71
73
75
77
79
7B
7D
7F

8080

PORT

11
13
15
17
19
lB
lD
IF
21
23
25
27
29
2B
2D
2F
31
33
35
37
39
3B
3D
3F
3C
3E

APPENDIX E

OUTPUT PORT ASSIGNMENTS

Disk Instruction FIFO
Disk Go, Start Mecury Move I Interrupt Enable
Printer Output
Mecury Move Control Data
Light Pin Control
Special TCOM Control, TCOM Interrupt Enable
Data Out }
Control Out Asynchronous TCOM
Tape Drive #1 instructions
Tape Drive #2 instructions
Input/Output control} Synchronous TCOM
Data Out Interface #1
TCOM Data
TCOM Mode Control
TCOM I/O Control
Not Assigned
Not Assigned
Not Assigned
Input/Output Control} Synchronous TCOM
Data Out Interface #2
Not Assigned
TCOM Data
TCOM Mode Control
TCOM I/O Control
Least significant byte, 8080 timer
Most significant byte, 8080 timer

E-2

	0000
	0001
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78
	5-79
	5-80
	5-81
	5-82
	5-83
	5-84
	5-85
	5-86
	5-87
	5-88
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02

