
Zilog

Z80-RIO
Relocating Assembler and Linker

Users Manual

Copyright © 1978 by 2ilog, Inc. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system or transmitted,
in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of 2ilog.

2ilog assumes no responsibility for the use of any circuitry other than
circuitry embodied in a 2ilog product. No other circuit patent licenses
are implied.

78009

zaO-RIO
RELOCATING ASSEMBLER AND LINKER

USER'S MANUAL

REVISION B

TABLE OF CONTENTS

OVERVIEW . • • . . 2

1.0 ASSEMBLER 5

5

6

6
6

1.1 THE ASSEMBLY LANGUAGE

1 • 2

1 • j

ASSEMBLY LANGUAGE CONVENTIONS .

Delimiters
Comments
Labels . . .
Opcodes and Operands
Numbers
Character Values
Upper/Lower Case

EXPRESSIONS

Table of Operators
Mode of Expressions . .
Relative Addressing . .

6
7
7
8
8

9

9
. . . .10

. . . • • . 12

1.4 LISTING FORMAT 13

14 Cr oss-Re fer enc e

1.5 PSEUDO-OPS • • • • • 1 6

Data Definition: DEFB, DEFW, DEFM, DEFT •. 16
Storage Definition: DEFS. 18
Source Termination: END 19
Symbol Definition: EQU, DEFL, GLOBAL,

EXTERNAL 20
Sample Relocatable Program 23
Reference Counter Control: ORG .•.•.. 25
Conditional Assembly: COND and ENDC 26

1.6 MACROS

Macro Definition
Macro Calls and Macro
Symbol Generator
Recursion
Listing Format

1.7 ASSEMBLER COMMANDS

. 29

. 29
Expansion 30

• • . • • . •. 3 1
• • . . . • . 3 1

• 32

• • • • • 4 a

Eject, Heading, List, Maclist, Include 40

1.8 ASSEMBLER COMMAND LINE OPTIONS · 42

2.0

Using the Assembler • • . 42
Module Identification•. 44
Options: Macro, Symbol, Xref, Absolute,

NOList, NOMaclist, NOObject,
NOWarning, Date.• .. 45

1/0 Routing Options • •. .•. 47
Logical Unit Definitions .•..•..•• 48
Fatal Error Messages • 48

LINKER

2. 1 FUNCTION

• • 50

· 50

• 50

2.2

Features

USING THE LINKER

Non-fatal Errors
Assignment of Module Origins
Segment Generation
Link-only Modules .•....
Module Identification

2.3 LINKER COMMAND LINE OPTIONS.

• 51

. . .. 52
.53

. • . • . 53
. 55

. •. 55

. . . 57

Entry, LET, Map, Name, NOMap, NOWarning,
Print, RLength, STacksize, SYmbol 57

Logical Unit Definitions 60
Fatal Error Messages • • 60

2.4 MAP FORMAT

2.5 OVERLA YS

APPENDICES

Appendix A - Opcode Listing

Appendix B - Object Module Format

Appendix C - Assembly Error Messages

• • • 63

· 64

PREFACE

This manual describes the relocating assembler (ASM) and
linker (LINK) programs which support the translation of Z80
assembly language source code into executable machine code
on the Zilog RIO operating system.

This manual contains two chapters -- Chapter 1 covers
assembly language conventions, pseudo-ops, and how to
invoke the Assembler with different command options. It
does not describe the Z80 instruction set or mnemonics,
since this information can be found in the publication

Z80-Assembly Language Programming Manual

Chapter 2 covers the functional characteristics of the
Linker and how to invoke it with different command options.

RELATED PUBLICATIONS

RIO Operating System User's Manual
Z80-CPU Technical Manual

1

OVERVIEW

The relocating assembler ASM accepts a source file (a
symbolic representation of a portion of a program in Z80
assembly language) and translates it into an object module.
It may also produce a listing file which contains the
source, assembled code, and optional symbol
cross-reference. The features of the relocating assembler
include macros and conditional assembly, as well as the
capability to produce either relocatable or absolute object
code.

All object code must be processed by the linker LINK before
it is ready for execution. The linker accepts several
object modules and combines them into a single program in
the form of an executable procedure file. It may also
produce a load map describing the assigned addresses and
lengths of modules. An optional symbol file may be created
for use by a symbolic debug package.

Relocation

Relocation refers to the ability to bind a program module
and its data to a particular memory area at a time after
the assembly process. The output of the assembler is an
object module which contains enough information to allow
the linker to ~ssign that module a memory area. Since many
modules may be loaded together to form a complete program,
a need for inter-module communication arises. For example,
one module may contain a call to a routine which was
assembled as part of another module and may be located in
some arbitrary part of memory. Therefore, the assembler
must provide information in the object module which allows
the linker to link inter-module references.

There are several major advantages to using the relocating
assembler as compared to the absolute assembler:

1) Assignment of modules to memory areas can be handled by
the linker rather than requiring the programmer to
assign fixed absolute locations via the "ORG" pseudo-op,
and thus modules can be relocated without requiring
re-assembly.

2) If errors are found in one module, only that one module
needs to be re-assembled and then re-linked with the
other modules, thus increasing software productivity.

3) Programs can be structured into independent modules,
coded separately and assembled, even though the other
modules may not yet exist. This separation of

2

functionality also enhances program maintenance and
verification.

4) Libraries of commonly used modules can be built and
then linked with programs wf'thout requiring their
re-assembly.

5) Communications between overlay segments can be achieved
through methods similar to normal (non-overlay) inter­
module references.

Relocatability is specified on a per module basis; in other
words, a program may contain some relocatable modules and
some absolute modules, but a single module is either
entirely absolute or entirely relocatable. The notion of
"absolute" is that there is a one-to-one direct
correspondence between the assigned address of an
instruction within a module during assembly, and the memory
address of that instruction during program execution. Thus
an absolute module whose origin is "absolute 0" will have
its first instruction located at memory location O.
Absolute modules usually contain ORG pseudo-ops to set the
origin of sections of code, since the default origin is a
(see ORG pseudo-op).

Modules are by default assembled as relocatable modules.
The notion of "relocatable" is that the assigned address of
an instruction within a module during assembly, is a
relative offset from an origin which is assigned an
absolute address by the Linker. During program execution,
the instruction will be located at the memory location
specified by the assigned origin plus the relative offset.
Thus, a relocatable module whose first instruction (which
is located at "relocatable 0") will have that instruction
located at the memory location which is the assigned origin
of the module as determined by the Linker.

To achieve relocation in the Z80, instructions which
reference memory addresses (such as LD, CALL, JP) and data
values which serve as pointers to memory locations (such as
PTR: DEFW DATA where DATA is a label in the program module)
must be altered at linkage time to reflect the assigned
absolute addresses. However, as far as the programmer is
concerned, instructions and addressing remain the same as
in the absolute assembler.

3

Inter-module Communication

To allow instructions to refer to "names" (either data
values or entry points) in other separately assembled
modules, the assembler provides two pseudo-ops, GLOBAL and
EXTERNAL. The syntax is the pseudo-op, followed by a list
of names.

The meaning of GLOBAL is that each of the listed names is
defined in this module, and the name is made available to
other modules which contain an EXTERNAL declaration for
that name. The complementary form then is EXTERNAL, which
declares each of the listed names to be defined in some
other module. Notice that the GLOBAL name may be in either
an absolute module or a relocatable module. A portion of
the object module contains a list of both the GLOBALs which
are defined in the module, as well as the EXTERNALs which
the module references. One function of the Linker is to
match all the EXTERNALs with the appropriate GLOBALs so
that every instruction will reference the correct address
during program execution.

Programming Hints

A general approach to designing a program, then, would be
to divide it into manageable portions, each of which
constitutes a module. Most modules can be relocatable, that
is, it does not matter where the module is placed in memory
as long as it is correctly referenced by other modules
through the use of GLOBAL and EXTERNAL names. Parts of the
program may be coded,assembled, linked and tested. Then
other modules may be added in a step-wise fashion without
re-assembly of already-tested modules, thereby increasing
programming productivity.

For those applications which will ultimately be implemented
in a system configuration where the program code is in ROM
and the data area is in RAM, it is a good idea to segregate
the data into one or two modules with GLOBAL declarations
for each data address. During the program development
stage, these data modules might be relocated anywhere, and
then assigned a particular origin depending on the memory
configuration only when the program is finished.

4

1.0 ASSEMBLER

1.1 THE ASSEMBLY LANGUAGE

The assembly language of the Z80 is designed to minimize
the number of different opcodes corresponding to the set of
basic machine operations and to provide for a consistent
description of instruction operands. The nomenclature has
been defined with special emphasis on mnemonic value and
readability. For example, the movement of data is
indicated primarily by a single opcode, LD (standing for
LoaD), regardless of whether the movement is between
different registers or between registers and memory.

The first operand of an LD instruction is the destination
of the operation, and the second operand is the source of
the operation. For example,

LD A,B

indicates that the contents of the second operand, register
B, are to be transferred to the first operand, register A.
Similarly,

LD C,3FH

indicates that the constant 3FH is to be loaded into the
register C. Enclosing an operand wholly in parentheses
indicates a memory location addressed by the contents of
the parentheses. For example,

LD HL,(1200)

indicates the contents of memory locations 1200 and 1201
are to be loaded into the 16-b~t register pair HL.
Similarly,

LD (IX+6),C

indicates the contents of the register C are to be stored
into the memory location addressed by the current value of
the 16-bit index register IX plus 6.

The regular formation of assembly instructions minimizes
the number of mnemonics and format rules that the user must
learn and manipulate. Additionally, the resulting programs
are easier to interpret, which in turn reduces programming
errors and improves software maintenance.

5

1.2 ASSEMBLY LANGUAGE CONVENTIONS

An assembly language source program consists of a sequence
of statements in the order which defines the user's
program. Each statement corresponds to a line of text of
up to 128 characters ended by a carriage return. Each
statement may contain zero or more of 'the following four
fields which are identified primarily by their order in the
statement line and by specific delimiter characters as
indicated below.

LABEL OPCODE OPERAND COMMENT

For example, here is a statement which contains all four
fields:

LOOP: LD HL,VALUE ;GET THE VALUE

a. DELIMITERS - Opcodes, operands, and labels must be
separated from each other by one or more commas, spaces or
tabs. Notice that anywhere a comma could be used, a space
or tab will be equivalent, and vice-versa.

b. COMMENTS - Comments are not a functional part of an
assembly language source program, but instead are used for
program documentation to add clarity, and to facilitate
software maintenance. A comment is defined as any string
following a semicolon in a line, and is ignored by the
assembler. Comments can begin in any column, so a
statement might consist of only a comment.

c. LABELS - A label is a symbol representing up to 16 bits
of information and is used to specify an address or data.
If the programmer attempts to use a symbol that has been
defined to have a value greater than 8 bits for an 8-bit
data constant, the assembler will generate an error
message.

A label is composed of a string of one or more characters,
of which the first six characters must be unique. For
example, the labels LONGNAME and LONGNAMEALSO will be
considered to be the same label. The first character must
be alphabetic and any following characters must be either
alphanumeric (A ... Z or 0 ... 9), the question-mark character
(?) or the underbar character (). Any other characters
within a label will cause an error message. A label can
start in any column if immediately followed by a colon. It
does not require a colon if started in column one.

6

Labels are entered into a symbol tabl~ along with the value
assigned by the assembler. The symbol table normally
resides in RAM, but automatically overflows to a disk file
if necessary, so there is virtually no limit to the number
of labels that can occur in a single program.

Labels are normally assigned the value of the reference
counter for the statement in which they occur. The
reference counter corresponds to the CPU program counter
and is used to assign and calculate machine-language
addresses within an object module. The symbol $ is used to
represent the value of the reference counter of the first
byte of the current instruction, and can be used in general
expressions (see Expressions).

d. OPCODES AND OPERANDS

Z80 machine instructions are represented by specific
mnemonics, usually consisting of a single opcode (such as
LD, CALL, etc.) and zero or more operands (such as a
register designator like HL or a condition code like Z).
See the Appendix for a complete listing of all
opcode/operand combinations.

The Assembler also recognizes certain pseudo-ops (sometimes
called directives) which occur in the opcode/operand
positions (see Pseudo-ops). Certain opcodes allow a
particular operand to be the value of an arbitrary
expression using arithmetic and logical operators (such as
addition or multiplication) and operands (such as labels,
numbers or character values).

Numbers

The Assembler will accept numbers in the following
different bases: including binary, octal, decimal and
hexadecimal. Numbers must always start with a digit
(leading zeros are sufficient), and may be followed
immediately by a single letter which signifies the base of
the numbers ('B' for binary, '0' or 'Q' for octal, 'D' for
decimal, and 'H' for hexadecimal). If no base is
specififed, decimal is assumed. For example, here is the
same number represented in each of the four bases:

1011100B, 134Q, 1340, 92, 92D, 05CH

7

Character Values

The Assembler will accept as operands ASCII characters
bounded by a single quote mark with the corresponding ASCII
value (e.g.) 'A' has value 41H). Because all operands are
evaluated as 16-bit quantities, strings of characters
longer than two will be truncated in value to the first two
characters, so that 'AB' and 'ABCDE' will have the same
value. There is a method to define data storage which is
initialized to a string of up to 63 characters (see DEFM,
DEFT pseudo-ops). The quote character itself is
represented by two successive single quote marks within a
string (e.g., LD A, "" causes the A register to be loaded
with the value 27H, which is the ASCII value for the single
quote character). A special string called the null string
(which has the value of 0) can be represented by just two
successive single quotes as in "

Upper/Lower Case

The Assembler processes source text which contains both
upper and lower case alphabetic characters in the following
manner. All opcodes and keywords, such as register names
or condition codes, must be either all capitals or all
lower case. Label names may consist of any permutation of
upper and lower case; however, two names which differ in
case will be treated as two different names. Thus LABEL,
label, and LaBeL will be considered as three different
names. Notice that one could use a mixture of case to
allow definition of labels or macros which look similar to
opcodes, such as Push, or LdiR, without redefining the
meaning of the opcode. All assembler commands, such as
*List or *Include (see Assembler Commands), can be in any
combination of upper or lower case, as can the arithmetic
operators such as .NOT., .AND., or .EQ., and numbers can be
any mixture of case, such as Offffh, OAbCdH, or OllOOlb.

8

1.3 EXPRESSIONS

The Assembler will accept a wide range of expressions
involving arithmetic and logical operations. All
expressions are evaluated left to right, except that unary
operators are performed first, exponentiation next,
multiplication, division, modulo, and shifts next, followed
by addition and subtraction, then logical operations and
comparisons. The following table is arranged in a
hierarchy of descending precedence.

Table of Operators

OPERATOR

+

.NOT. or \

.RES.
**
*
/
.MOD.
.SHR.
.SHL.
+

.AND. or &

.OR. or A

.XOR.

.EQ. or =

.GT. or >

.LT. or <

.UGT.

. ULT.

FUNCTION

UNARY PLUS
UNARY MINUS
LOGICAL NOT
RESULT
EXPONENTIATION
MULTIPLICATON
DIVISION
MODULO
LOGICAL SHIFT RIGHT
LOGICAL SHIFT LEFT
ADDITION
SUBTRACTION
LOGICAL AND
LOGICAL OR
LOGICAL XOR
EQUALS
GREATER THAN
LESS THAN
UNSIGNED GREATER THAN
UNSIGNED LESS THAN

PRECEDENCE

1
1
1
1
2
3
3
3
3
3
II
4
5
6
6
7
7
7
7
7

Parentheses can be used to ensure correct expression
evaluation. Note, however, that enclosing an expression
wholly in parentheses indicates a reference to a memory
address.

Delimiters such as spaces or co~mas are not allowed within
an expression since they serve to separate the expression
from other portions of the statement.

16-bit signed integer arithmetic is used throughout.

Notice that anywhere a number or character value can be
used in an expression, a symbol (label) could be used as
well. The value of the symbol is always a 16-bit quantity.

The negative of an expression can be formed by a preceding
minus sign "-".

9

For example:

LD A,-2 is equivalent to LD A,OFEH,
since OFEH is the 8-bit two's complement
representation of negative 2.

The five comparison operators (.EQ., .GT., .LT., .UGT., and
.ULT.) evaluate to a logical True (all ones) if the
comparison is true and a logical False (zero) otherwise.
The operators .GT. and .LT. deal with signed numbers
whereas .UGT. and .ULT. assume unsigned arguments.

For example:

1.EQ.2 is equivalent to 0,
(2+2).LT.5 is equivalent to OFFFFH
and '0'=0 is equivalent to 0

The Result operator (.RES.) causes overflow to be
suppressed during evaluation of its argument, thus overflow
is n6t flagged with an error message.

For example:

LD BC,1FFFH+1 would cause an error message,
whereas LD BC,.RES.(1FFFH+1) would not.

The Modulo operator (.MOD.) is defined as:

X.MOD.Y = X-y*(X/Y)
where the division (X/Y) is integer division.

For example:

8.MOD.3 is 2 and OASH.MOD.OBH is 6

The Shift operators (.SHR.,.SHL.) shift their first
argument right or left by the number of positions given in
their second argument. Zeros are shifted into the
high-order or low-order bits, respectively.

Mode of Expressions

Arithmetic expressions have a mode associated with them:
absolute, relocatable or external as defined below. A
symbol in an expression is absolute if its value is a
constant (either a number, character value, or a symbol
which has been EQUated to a constant expression). A symbol
in an expression is relocatable if its value is subject to
relocation after assembly (either a label or the reference
counter symbol '$'). Simple relocation means that only a

10

single relocation factor needs to be added to the
relocatable value at load time. GLOBAL names within a
relocatable module have a relocatable mode. GLOBAL names
within an absolute module have an absolute mode. A symbol
is external if it is declared in an EXTERNAL pseudo-oPe

In the following, A stands for an absolute symbol or
expression, R stands for a relocatable symbol or
expression, and X stands for an external symbol or
expression. <operator) is one of the standard arithmetic
symbols such as +, -, *, .OR., .AND., etc. (comparison) is
either .EQ., .LT., .GT., .UGT., .ULT. -- the resulting
value is either True (all ones) or False (all zeros).

A is defined as either:
1) absolute symbol
2) A (operator) A
3) +A or -A or .NOT.A or .RES.A (unary operators)
4) R - R
5) A (comparison) A
6) R (comparison) R

R is defined as either:

X is

1) relocatable symbol
2) R + A
3) R - A
4) A + R
5) +R
6) .RES.R

defined as

(unary plus)
(ignores overflow in a relocatable
expression)

either:
1) external symbol
2) X + A
3) X - A
4) A + X
5) +X (unary plus)
6) .RES.X (ignores overflow in an external

expression)

Invalid expressions include:
R + R this is not simple relocatable

since the relocation factor would
have to be added twice

R *
A -
X +
R =
X =

A
R
R
A

X

cannot add external and relocatable
cannot compare absolute with
relocatable
cannot compare externals

11

Relative Addressing

In specifying relative addressing with either the JR (Jump
Relative) or DJNZ (Decrement and Jump if Not Zero)
instructions, the Assembler automatically subtracts the
value of the next instruction's reference counter from the
value given in the operand field to form the relative
address for the jump instruction. For example:

JR C,LOOP

will jump to the instruction labeled LOOP if the Carry flag
is set. The limits on the range of a relative address is
128 bytes in either direction from the reference counter of
the next instruction (notice that JR and DJNZ are two-byte
instructions). Thus LOOP must be a label within the range
<-126, +129> from the JR instruction. An error message will
be generated if this range is exceeded.

Notice that the mode of a label and the reference counter
must match so that the result of the implied subtraction is
absolute (both must be relocatable or both must be
absolute). If not, an error message will be generated.

An expression which evaluates to a displacement in the
range <-126, +129> can be added to the reference counter to
form a relative address. For example:

JR C,$+5

will jump to the instruction which is 5 bytes beyond the
current instruction.

12

1.4 LISTING FORMAT

The Assembler produces a paginated listing of the source
program along with the generated object code, plus an
optional cross-reference listing of all symbols. A
description of the various fields in the listing format
follows. Refer also to the sample listing.

Heading

LaC

OBJ CODE

M

STMT

Each page has a heading which contains
the name of the source file, a page
number, column headings as explained
below, and the Assembler version
number. In addition, the heading
may contain a user-specified
heading (see *Heading Assembler
command) and a user-specified
string which is usually the date
of assembly (see Date option).

Location: This column contains the
value of the reference counter for
statements which generate object
code. It is blank otherwise.

Object code: This column contains the
value of generated object code, up to
a maximum of four bytes of code. It is
blank if a statement does not generate
object code.

Mode: This single character column
indicates the mode of an instruction.
An 'R' indicates the instruction
contains a reference to a relocatable
address, an 'X' indicates the
instruction contains a reference to
an external address, and a blank
indicates the instruction is absolute.
Notice that an instruction which
contains either a relocatable or
external reference will be modified
by the Linker; therefore, the
value in the object code listing does
not reflect the true value of the
instruction during program execution.

Statement number: This column contains
the sequence number of each source
statement.

13

SOURCE STATEMENT

Cross-reference

The remainder of the line contains the
source statement text. Listing lines
longer than 132 characters will be
truncated.

If the cross-reference option is specified, then an
alphabetical list of all the symbols in the source program,
along with the statement number of each line which contains
a reference to that symbol, will be appended to the listing
file. The format is a symbol, followed by its 16-bit
value, a mode indicator, the statement line on which the
symbol was defined, and a list of the statement lines which
refer to the symbol.

The mode of a symbol follows its value, with
blank=absolute, 'R'=relocatable, 'G'=GLOBAL, and
'X'=external. Names which are declared EXTERNAL are
considered to be defined by the EXTERNAL pseudo-op
statement. Names which are declared GLOBAL are considered
to be defined where they appear as a label, and considered
to be referenced by the GLOBAL statement.

14

multiply 6/15/77 PAGE 1
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 4.0

1 GLOBAL ENTRY,MLTPLY
2 EXTERNAL OUTNUM
3
4 ; TEST OF MULTIPLY ROUTINE

0000 ED5BODOO R 5 ENTRY: LD DE, (DATA)
0004 OE02 6 LD C,TWO
0006 CDOFOO R 7 CALL MLTPLY ;DO MULTIPLICATION
0009 CDOOOO X 8 CALL OUTNUM ;OUTPUT VALUE IN HL
OOOC 76 9 HALT

10
OOOD AAOO 1 1 DATA: DEFW OAAH

12
13 TWO EQU 2
14
15 ;B-BIT BINARY MULTIPLY ROUTINE
16 MULTIPLIER IN C
17 MULTIPLICAND IN DE
18 . PARTIAL SUM IN HL ,

OOOF 210000 19 MLTPLY: LD HLe O
0012 0608 20 LD B,

21
0014 CB39 22 MLOOP: SRL C
0016 3001 23 JR NC,NOADD
0018 19 24 ADD HL,DE

25
0019 CB23 26 NOADD: SLA E
001B CB12 27 RL D
001D 10F5 28 DJNZ MLOOP

29
001F C9 30 RET

31 END

CROSS REFERENCE multiply 6/15/77 PAGE 2
SYMBOL VAL M DEFN REFS
DATA OOOD R 11 5
ENTRY 0000 G 5 1
MLOOP 0014 R 22 28
MLTPLY OOOF G 19 1 7
NOADD 0019 R 26 23
OUTNUH 0000 X 2 8
TWO 0002 13 6

15

1.5 PSEUDO-OPS

In addition to normal opcodes which generate executable
machine instructions, the Assembler recognizes several
pseudo-ops which are used to control the generation of
object code. Pseudo-ops have the same basic format as
instructions, with the pseudo-op located in the opcode
field and any operands following. Labels and comments
generally may be used subject to the restrictions listed
with the individual pseudo-op descriptions.

Data Definition

DEFB -- Define Byte

The DEFB pseudo-op takes one operand and generates a single
byte of object code located at the current value of the
reference counter.

Label Opcode Operand

optional: DEFB expression

If a label is present, it will be assigned the current
value of the reference counter, and thus can be used to
refer to the data value. The expression must evaluate to a
quantity which can be represented in a single byte (8
bits). An error message will be generated if the value is
not in the range -128 to 255. Because the Assembler treats
all relocatable and external expressions as 16-bit
addresses, the mode of an expression used in a DEFB must be
absolute, since a 16-bit value will generally not fit into
a single byte.

Examples:

Object Code Label Opcode Operand

BD TRUE: DEFB OBDH
04 DEFB 2+2
30 CHAR: DEFB ' a '

DEFW -- Define Word

The DEFW pseudo-op takes one operand and generates a single
word (16 bits or 2 bytes) of object code located at the
current value of the reference counter.

16

Label Opcode Operand

optional: DEFW expression

The least significant byte is located at the current value
of the reference counter, while the most significant byte
is located at the next higher location. The order for
storing low and then high order bytes is the format for
addresses stored in memory; thus the DEFW can be used to
store values which "point" to a particular memory address.
The mode of the expression can be either absolute,
relocatable or external. If a label is present, it will be
assigned the current value of the reference counter, and
thus can be used to refer to the data value.

The expression may consist of a character value, but notice
that only the first two characters in a string are used.
The object code will contain the characters in the same
order as they appear in the string, not in reverse order.

Examples:

Suppose that PROC1 is a label on an instruction which was
located at the reference counter value of 40BDH.

Object Code

BD40
0400
3031

Label

PTR:

STRNG:

DEFM -- Define Message

Opcode

DEFW
DEFW
DEFW

Operand

PROC1
2+2
, 01'

The DEFM pseudo-op takes one string operand and generates a
sequence of bytes in the object code which represents the
7-bit ASCII code for each character in the string.

Label Opcode Operand

optional: DEFM string

A string is represented by a sequence of characters bounded
by single quote marks. The number of characters must be in
the range 0 to 63. The single quote character itself is
represented by two successive single quote marks within the
string. If a label is present, it will be assigned the
current value of the reference counter, and thus can be
used to refer to the first character in the string.

17

Notice that only the length byte and the first three
characters of a long string will be listed in the object
code field in the listing.

Examples:

Object Code

48454C4C
612762

Label

MSG:

DEFT -- Define Text

Opcode Operand

DEFM 'HELLO THERE'
DEFM 'a' 'b'

The DEFT pseudo-op takes one string operand and generates a
sequence of bytes in the object code which represents the
7-bit ASCII code for each character in the string. In
addition, it inserts a byte which contains the length of
the string as the first byte in the object code.

Label Opcode Operand

optional: DEFT string

A string is represented by a sequence of characters bounded
by single quote marks. The number of characters must be in
the range of 0 to 63. The single quote character itself
is represented by two successive single quote marks within
the string. If a label is present, it will be assigned the
current valu~ of the reference counter and thus can be used
to refer to the length byte of the string.

Notice that only the length byte and the first three
characters of a long string will be listed in the object
code field in the listing.

Examples:

Object Code

OB48454C
03612762

Storage Definition

Label

MSG:

DEFS -- Define Storage

Opcode Operand

DEFT 'HELLO THERE'
DEFT ' a' , b'

The DEFS pseudo-op takes one operand which specifies a
number of bytes to be reserved for data storage starting at
the current value of the reference counter.

18

Label Opcode Operand

optional: DEFS expression

If a label is present, it will be assigned the current
value of the reference counter, and thus can be used to
refer to the first byte of data storage. The expression
can evaluate to any 16-bit quantity; however, the mode must
be absolute. Any symbol appearing in the expression must
have been defined before the Assembler encounters the
expression.

The DEFS pseudo-op reserves storage by incrementing the
reference counter by the value of the expression. If the
result exceeds a 16-bit quantity, an error is generated and
the reference counter is not changed. Since no object code
is generated into storage area, the contents of the storage
during initial program execution are unpredictable.

Examples:

Notice that the symbol LINELN in the following example must
have been previously defined.

Label

BUFFER:

Source Termination

Opcode

DEFS
DEFS

END -- End of Source

Operand

128
LINELN + 1

The END pseudo-op signifies the end of the source program,
and thus any subsequent text will be ignored.

Label Opcode Operand

optional: END

If a label is present, it will be assigned the current
value of the reference counter. Operands are ignored. If
a source program does not contain an END pseudo-op, then
the end-of-file mark in the last source file in the
assembler command line will signify the end of the program.

19

Symbol Definition

Labels on instructions are automatically assigned the
current value of the reference counter. The pseudo-ops EQU
and DEFL can be used to assign arbitrary values to symbols.
In addition, to facilitate inter-module communication,
certain symbols can be declared to be either GLOBAL or
EXTERNAL to a particular module.

EQU -- Equate

The EQU pseudo-op is used to assign the value of an
expression to the symbol in the label field.

Label Opcode Operand

name: EQU expression

The name in the label field is required and must follow the
rules for forming a label (remember the colon is optional
if the name starts in column one). The name must not be
redefined as a label anywhere else in the source program,
or a multiple definition error will occur.

The value of the expression can be any 16-bit value, but
any symbol appearing in the expression must have been
defined before the Assembler encounters the expression.
The symbol being EQUated inherits the mode of the
expression, that is, relocatable or absolute. The mode of
the expression must not be external. A name which is
EQUated to a GLOBAL name in a module will be relocatable if
the GLOBAL name is relocatable, otherwise it is absolute;
however, the name will not be accessible to other
separately assembled modules.

Examples:

Suppose the symbol TWO has the value 2.

Label

ASCICR
FOUR
SEMICO

Opcode Operand

EQU
EQU
EQU

ODH
TWO+2 , . , ,

20

ASCII carriage return

ASCII semicolon

DEFL -- Define Label

The DEFL pseudo-op is used to assign the value of an
expression to the symbol in the label field. This symbol
may be redefined by subsequent DEFL pseudo-ops.

Label Opcode Operand

name: DEFL expression

The name in the label field is required and must follow the
rules for forming a label (remember the colon is optional
if the name starts in column one). The DEFL pseudo-op is
identical to the EQU pseudo-op except that "name" may
appear in multiple DEFL pseudo-ops in the same program.
Notice that both the value and the mode can be changed by
each occurrence of the DEFL.

Example:

Object Code

3EOO

3EFF

Programming Hints

Label

FLAG:

FLAG:

Opcode Operand

DEFL 0
LD A,FLAG
DEFL OFFH
LD A,FLAG

Using symbolic names instead of numbers for constant values
enhances the readability of a program and tends to make the
code self-documenting. For instance, the symbol BUFLEN is
a more d~scriptive name for a value than, say, 72.
Furthermore, by using EQUates, if a value which is used
throughout a program needs to be changed, only the EQU
statement needs to be modified rather than finding all
occurrences of the number 72.

It is generally preferable to use EQU for symbol
definition, since the Assembler will generate error
messages for multiply-defined symbols which may indicate
spelling errors or some other oversight by the user. DEFL
should be reserved for special cases where it is necessar~
to reuse the same symbol, for instance, in conjunction with
conditional assembly.

A common use of EQUates is to symbolically represent
offsets in a data structure. The following example
demonstrates how EQUates might be used to reference
certain fields in an 1/0 parameter vector as offsets from
the IY index register:

21

IOLUN
IOREQ
IODTA
IODL
OPEN

EQU
EQU
EQU
EQU
EQU

o
1
2
4
04H

LD (IY+IOREQ),OPEN
CALL SYSTEM

logical unit designator
request code
data transfer address
data length
open I/O device request code

open the device

GLOBAL -- Global Symbol Declaration

The GLOBAL pseudo-op is used to declare that each of its
operands are symbols defined in the module, and the
name and value are made available to other modules
which contain an EXTERNAL declaration for that name.

Label Opcode Operands

GLOBAL n am e 1, n am e 2, .•.

There must be no label. There may be zero or more names
which are separated by delimiters and refer to labels which
are defined elsewhere in the module. GLOBAL pseudo-ops may
occur anywhere within the source text. Notice that the
mode of a GLOBAL depends on how the label is defined, which,
for labels on instructions or data values, depends on
whether the module is relocatable or absolute.

A name may not be declared as both GLOBAL and EXTERNAL. If
the name is never actually defined in the module (i.e.,
there is no corresponding label definition), an error
message will be generated at the end of the listing.

Examples:

Label

*Implementation Note

Opcode

GLOBAL
GLOBAL

Operand

ENTRY
FEE, F I , F 0 , F UM

In order to distinguish between GLOBAL symbols which have
been defined and those which have not, the Assembler
maintains undefined GLOBAL symbols in the symbol table with
the value OFFFFH. This implies that no GLOBAL symbol
should be given this value, or it will be considered to be
undefined.

22

EXTERNAL -- External Symbol Declaration

The EXTERNAL pseudo-op is used to declare 'that each of its
operands are symbols defined in some other module but
referenced in this module.

Label Opcode Operands

EXTERNAL n am e 1 , n am e 2, . . •

There must be no label. There may be zero or more names
which are separated by delimiters and refer to names which
are defined in some other module. EXTERNAL pseudo-ops may
occur anywhere within the source text. The EXTERNAL
pseudo-op assigns each name an external mode, which allows
the name to be used in arbitrary expressions elsewhere in
the module, subject to the rules for external expressions.

A name may not be declared as both EXTERNAL and GLOBAL. If
the name also appears as a label (i.e., the name is
assigned a value within this module), an error message will
be generated.

Examples:

Label Opcode

EXTERNAL
EXTERNAL

Sample Relocatable Program

Operands

TTY
SYSTEM,MEMTOP,MEMBOT

This simple program is an incomplete specification of three
separate modules -- a main routine and an input and output
routine -- where each is maintained in a different source
file and is assembled separately from the others. In
addition, each source file contains an *INCLUDE of the same
file of constants (EQUates) to maintain consistency
throughout the program and avoid repetitious typing and
editing.

23

File MAIN.S contains:

GLOBAL MAIN,BUFFER
EXTERNAL INPUT, OUTPUT

*INCLUDE EQUATES
FULL: DEFB FALSE
BUFFER: DEFS 80
MAIN:

LD A,(FULL)
CP FALSE
CALL Z,INPUT

LD A,(FULL)
C P TR UE
CALL Z,OUTPUT

JP MAIN
END

File INDRIVER.S contains:

GLOBAL INPUT
EXTERNAL BUFFER

*INCLUDE EQUATES
INPUT:

LD HL,BUFFER

RET
END

File OUTDRIVER.S contains:

GLOBAL OUTPUT
EXTERNAL BUFFER

*INCLUDE EQUATES
OUTPUT:

LD HL,BUFFER

RET
END

File EQUATES.S contains:

TRUE EQU OFFH
FALSE EQU 0

24

LOCAL FLAG BYTE
GLOBAL DATA BUFFER

TEST BUFFER FLAG

FILL BUFFER IF EMPTY

TEST BUFFER FLAG

OUTPUT BUFFER IF FULL

INFINITE LOOP

DRIVER ENTRY POINT
ACCESS GLOBAL DATA BUFFER

DRIVER ENTRY POINT
ACCESS GLOBAL DATA BUFFER

Reference Counter Control

ORG -- Origin

The ORG pseudo-op is used to set the reference counter to
the value of an expression. The reference counter serves
the same function for the Assembler as the program counter
does for the CPU in specifying where object code is
located.

Label Opcode Operand

optional: ORG expression·

The reference counter is set to the 16-bit value of the
expression, so that the next machine instruction or data
item will be located at the specified address. Any symbol
appearing in the expression must have been defined before
the Assembler encounters the expression. The reference
counter is initially set to zero, so if no ORG statement
precedes the first instruction or data byte in the module,
that byte will be assembled at location zero. If a label
is present, it will be assigned the same value as the
expression. A module may contain any number of ORG
statements.

The mode of the expression in an ORG pseudo-op must not be
external and depends on the relocatability of the
module. If a module is absolute, the ORG pseudo-op serves
to assign an absolute address to both the reference counter
and the label. The expression will be treated as
relocatable in a relocatable module, since the effect is to
change the relocatable reference counter. Thus the label
on an ORG statement in a relocatable module will have a
relocatable mode. For example, the effect of the statement

Label Opcode Operand

LAB: ORG 100

within a relocatable module would be to set the reference
counter to "relocatable 100", assign the label LAB the
value 100, and give it a relocatable mode.

Relocatable modules do not generally contain ORG
statements, since the pseudo-op is useful only to reserve
space within the module (in a manner similar to the DEFS
pseudo-op), and not to assign an absolute location to a
section of code since this would defeat the purpose of
relocation. Since modules are by default relocatable, a
warning message will be printed if an ORG pseudo-op is
encountered in a relocatable module to indicate to the user
that he may have forgotten to specify the Absolute option

25

in the Assembler command line. This warning message may be
suppressed by the NOW option.

Some applications require that a section of code must start
on a particular address boundary, for instance, at an
address which is some multiple of a memory page size (say,
256 bytes per page). A useful formula for incrementing the
reference counter to the next page boundary is
N*(($+N-1)/N) where N is the page size. For example,
suppose the page size is 8 and it is required that an
interrupt vector table INTVEC be located at the next page
boundary following the current value of the reference
counter. Then the following statement achieves this effect
regardless of the current value of the reference counter.

Label Opcode Operand

INTVEC: ORG 8*(($+7)/8)

Notice that this formula is useful only in an absolute
module, since multiplication and division are undefined for
relocatable operands (the reference counter symbol $ is
relocatable in a relocatable module).

*Implementation Note

In order to assist the Linker in assigning origins to
relocatable modules, the Assembler computes the size of a
module so that other modules can be relocated immediately
following it. This length is computed as the value of the
reference counter at the end of assembly minus the origin
of the module. The origin of a relocatable module is
relocatable zero, while the origin of an absolute module is
the lowest address in the module which contains object
code. In either case, if a program contains an ORG
statement which sets the reference counter to a value less
than it was previously, unexpected results may occur. In
particular, an absolute module whose reference counter at
the end of assembly is less than the lowest address which
contains object code will cause an erroneous length to be
computed. The programmer is advised that, in general, the
reference counter should be incremented in a monotonic
fashion so that addresses are in ascending order.

Conditional Assembly

Conditional assembly allows the programmer to inhibit the
assembly of portions of the source text provided certain
conditions are satisfied. Conditional assembly is
particularly useful when a program needs to contain similar
code sequences for slightly different applications. Rather

26

than generating a multitude of programs to handle each
application, the application-dependent sections of code can
be enclosed by the conditional pseudo-ops within a single
program. Then by changing the values of several symbols
used to control the conditional assembly, the user can
generate different object modules from subsequent
assemblies of the same source.

Another common use of conditional assembly is in
conjunction with macros to control generation of code
dependent on the value of parameters (see Macros).

COND and ENDC -- Conditional Assembly

The pseudo-op COND is used to test the value of an operand
and, depending on the result, inhibit assembly of
subsequent statements until an ENDC pseudo-op is
encountered.

Label

optional:
optional:

Opcode

COND
ENDC

Operand

expression

The Assembler evaluates the expression in the operand field
of the COND pseudo-oPe If the 16-bit result is true
(non-zero), the COND pseudo-op is ignored and subsequent
statements are assembled normally. If the result is false
(zero), the assembly of subsequent statements is inhibited
until an ENDC pseudo-op is encountered. The mode of "the
expression can be either relocatable or absolute; however,
it may not be external. There is no operand for the ENDC
pseudo-oPe

Notice that the definition of symbols within a conditional
assembly block may be inhibited, and thus references to
these symbols elsewhere in the module may cause undefined
symbol errors. In particular, the label on an ENDC
pseudo-op will not be defined if the assembly is inhibited
when the pseudo-op is encountered.

Conditional assembly blocks cannot be nested, i.e., the
occurrence of an ENDC causes resumption of assembly of
subsequent statements. Therefore, each COND does not
require a matching ENDC.

The user must be cautious of nesting conditional blocks
within macro definitions (see Macros) and vice-versa. If a
macro definition is only partially completed because a
surrounding conditional assembly block has inhibited the
definition, or conversely, if a macro contains an unmatched
COND/ENDC, unexpected results may occur.

27

Ex amples :

Label Opcode

COND

ENDC

Operand

FLAG
these statements are
assembled only if the
value of FLAG is not
equal to zero

(see Macros for further examples)

/

28

/"'\ (2c.J:: s: ~ ,",
/_;-> It <"-.1 -' j j C, f\1l'l 't) ()

/__ " 11 '-- \.,.. :: OVI \ I'J ~ I-1,\J ~VVW;V c.Uj 1 • 6 MACROS
~"-- "" I S t<-~o~

Macros prov)ft~means for th~er to define his own ~
Qp:codes ," -or to redefine existingbpcodes. A macro deflnes
a body of text which will be automatically inserted in the
source stream at each occurrence of a macro call. In
addition, parameters provide a capability for making
limited changes in the macro at each call. If a macro is
used to redefine an existing opcode, a warning message is
generated to indicate that future use of that opcode will
always be processed as a macro call. If a program uses
macros, then the assembly option M must be specified
(described later).

Macro Definition

The body of text to be used as a macro is given in the
macro definition. Each definition begins with a Macro
pseudo-op and ends with an ENDM pseudo-oPe The general
forms are:

Label Opcode Operand s

name: MACRO IfPO,#P1, .•. ,#Pn

optional: ENDM

The name is required, and must obey all the usual rules for
forming labels (remember the colon is optional if the name
starts in column one).

There can be any number of parameters (including none at
all), each starting with the symbol H. The rest of the
parameter name can be any string not containing a delimiter
(blank, comma, tab, semicolon) or the symbol H. However,
parameters will be scanned left to right for a match, so
the user is cautioned not to use parameter names which are
prefix substrings of later parameter names. Parameter
names are not entered in the symbol table.

The label on an ENDM is optional, but if one is given it
must obey all the usual rules for forming labels.

Each statement between the MACRO and ENDM statements is
entered into a temporary macro file. The only restriction
on these statements is that they do not include another
macro definition (nested definitions are not allowed).
They may include macro calls. The depth of nested calls is
limited only by the available buffer space in the macro
parameter stack. The amount of buffer space required by a
sequence of nested calls is dependent on the number and
length of parameters, which in general allows calls nested
to a depth of about 15.

29

The statements of the macro body are not assembled at
definition time, so they will not define labels, generate
code, or cause errors. Exceptions are the assembler
commands such as *List, which are executed wherever they
occur. Within the macro body text, the formal parameter
names may occur anywhere that an expansion-time
substitution is desired. This includes within comments and
quoted strings. The symbol # may not occur except as the
first symbol of a parameter name.

Macros must be defined before they are called.

Macro Calls and Macro Expansion

A macro is called by using its name as an opcode at any
point after the defihition. The general form is:

label: name 'S1', 'S2', ... 'Sn'

The label is optional and will be assigned to the current
value of the reference counter, while the name must be a
previously-defined macro. There may be any number of
argument strings, Si, separated by any number of blanks,
tabs, or commas. Commas do not serve as parameter place
holders, only as string delimiters. If there are too few
parameters, the missing ones are assumed to be null. If
there are too many, the extras are ignored. The position.
of each string in the list corresponds with the position of
the macro parameter name it is to replace. Thus the third
string in a macro call statement will be substituted for
each occurrence of the third parameter name.

The strings may be of any length and may contain any
characters. The outer level quotes around the string are
generally optional, but are required if the string contains
delimiters or the quote character itself. The quote
character is represented by two successive quote marks at
the inner level. The outer level quotes, if present, will
not occur in the substitution. The null string,
represented by two successive quote marks at the outer
level, may be used in any parameter' posi tion.

After processing the macro call statement, the Assembler
switches its input from the source file to the macro file.
Each statement of the macro body is scanned for occurrences
of parameter names, and for each occurrence found, the
corresponding string from the macro call statement is
substituted. After substitution, the statement is
assembled normally.

30

Symbol Generator

Every macro definition has an implicit parameter named
#$YM. This may be referenced by the user in the macro body,
but should not explicitly appear in the MACRO statement.
At expansion time, each occurrence of #$YM in the
definition is replaced by a string representing a 4-digit
hexadecimal constant.

This string is constant over a given level of macro
expansion, but increases by one for each new macro call.
The most common use of #$YM is to provide unique labels for
different expansions of the same macro. Otherwise, a macro
containing a label would cause multiple definition errors
if it were called more than once. Notice that a generated
label must start with an alphabetic character just like all
other labels.

The following is a simple macro which fills a buffer
specified by the parameter #BUFFER with the number of
blanks specified by DCOUNT. The use of #$YM is necessary to
create a unique label for each call to the macro.

FILLBL

FL#$YM

MACRO #BUFFER #COUNT
LD B, IICOUNT
LD HL,#BUFFER
LD (HL), , ,
INC HL
DJNZ FL#$YM
ENDM

number of bytes
address of buffer
insert blank
advance pointer
loop until done

If this is the first macro call, it would generate the
following expansion when called with parameters INBUF and
50:

FLOOOO:

FILLBL INBUF 50
LD B,50
LD HL,INBUF
LD (HL),' ,
INC HL
DJNZ FLOOOO
ENDM

The next call would cause the label FL0001 to be generated,
and so on.

Recursion

Macros may include calls to other macros, including
themselves. A macro which directly calls itself (or
indirectly by calling a second macro which calls the first

31

macro) is said to be recursive. Each recursive call causes
a new expansion of the macro, possibly with different
parameters. In order to prevent the macro being called
endlessly, conditional assembly is used to inhibit a
recursive call when certain conditions are satisfied (see
the following examples). A macro which calls itself more
times than the macro parameter stack can accommodate will
generate an error. This often indicates that the recursion
halting conditions would never be satisfied and the macro
would be endlessly calling itself.

Listing Format

By default, each expanded statement is listed with a blank
STMT field to differentiate macro expansions from normal
source statements. If the Maclist flag is turned off by
the NOM option or *M OFF, then only the macro call is
listed.

Examples:

The following example, MOVE, is a macro which is used to
move (copy) a block of memory. The source address,
destination address, and number of bytes are all specified
by parameters to the macro call.

The macro also provides the option to save the registers
before the move and restore them upon completion. This
option is implemented through the use of conditional
assembly and the fact that any missing parameters are
assumed to be null. Thus, if a non-null parameter is
substituted for USAVE?, the true condition of the COND
statement is met and the code to save and restore the
registers is assembled. If no parameter is passed, the
USAVE? parameter will be equal to the null string and the
code will"be ignored.

32

1
2
3

MOVE MACRO--BLOCK MOVE OF HLENGTH BYTES
FROM HSOURCE TO HDEST

4
5 ,
6 MOVE
7
8
9

10
1 1
12
13
14
15
16
17
18
19
20
21

IF 4TH PARAMETER IS PRESENT,
THEN REGISTERS ARE PRESERVED

MACRO HDEST #SOURCE HLENGTH HSAVE?
COND .NOT.('HSAVE?'=")
PUSH BC
PUSH DE
PUSH HL
ENDC
LD
LD
LD
LDIR

BC,IILENGTH
DE,IIDEST
HL,HSOURCE

;MOVE HLENGTH BYTES

COND .NOT.('HSAVE?'=")
POP HL
POP DE
POP BC
ENDC
ENDM

If the MOVE macro is called as follows:

MOVE OUTBUF INBUF 25 S

code would be generated to save the registers BC, DE and
HL, to move 25 bytes from INBUF to OUTBUF and then to
restore registers BC, DE and HL.

22 A SAMPLE USE OF 'MOVE' WHICH PRESERVES
23 REGISTERS
24 MOVE OUTBUF INBUF 25 S

CON D . NOT. ('S ' = ' ,)
0000 C5 PUSH BC
0001 D5 PUSH DE
0002 E5 PUSH HL

ENDC
0003 011900 LD BC,25 ;MOVE 25 BYTES
0006 111COO LD DE,OUTBUF
0009 213500 LD HL,INBUF
OOOC EDBO LDIR

COND . NOT. ('S ' = ' ,)
OOOE E1 POP HL
OOOF D1 POP DE
0010 C1 POP BC

ENDC

33

If the last parameter were omitted and the call was made as
follows:

MOVE OUTBUF INBUF 25

the code to preserve the registers would not be generated
because the HSAVE? parameter is the null string.

25 THIS 'MOVE' DOES NOT SAVE REGISTER
26 CONTENTS
27 MOVE OUTBUF INBUF 25

COND .NOT. (' '=")
PUSH BC
PUSH DE
PUSH HL
ENDC

0011 011900 LD BC,25 ;MOVE 25 BYTES
0014 111COO LD DE,OUTBUF
0017 213500 LD HL, INBUF
001A EDBO LDIR

COND . NOT. (, '= ' ,)
POP HL
POP DE
POP BC
ENDC

28
001C 29 OUTBUF: DEFS 25
0035 30 INBUF: DEFS 25

34

The next example demonstrates the use of recursion, as well
as the use of the DEFL pseudo-op'to redefine the value of a
label to be used as a counter to control the recursion.

When DUP is called, it initializes the label to the value
passed to HeNT and then calls DUP1 with the parameter that
was passed to HOP.

The DUP1 macro decrements the value of the label and
recursively calls itself until the label has a value of
zero.

The second call to DUP demonstrates the use of the *M OFF
and *M ON assember commands to suppress the listing of the
expansion of the macro (see Assembler commands
description).

35

1 ; DUPLICATE MACRO -- DUPLICATES HOP FOR HCNT
2 ; LINES USES DLAB LABEL AS RECURSION FACTOR
3 DUP MACRO /fOP HCNT
4 DLAB DEFL HCNT
5 DUP1 '/fOP'
6 ENDM
1
8 DUP1 RECURSIVE MACRO -- OUTPUTS HOP EACH Tn
9 ; RECURS ON THE VALUE OF THE LABEL DLAB

10 DUP1 MACRO /fOP
1 1 COND DLAB)O
12 DLAB DEFL DLAB-1
13 DUP1 'HOP'
14 IIOP
15 ENDC
16 ENDM
11
18 ROTATE RIGHT ACCUMULATOR 3 TIMES
19 DUP RRA 3

DLAB DEFL 3
DUP1 'RRA'
COND DLAB)O

DLAB DEFL DLAB-1
DUP1 'R RA'
COND DLAB)O

DLAB DEFL DLAB-1
DUP1 'RRA'
COND DLAB)O

DLAB DEFL DLAB-1
DUP1 'R RA '
COND DLAB)O

DLAB DEFL DLAB-1
DUP1 'RRA'
RRA
ENDC

0000 1F RRA
EN DC

0001 1F RRA
ENDC

0002 1F RRA
ENDC

20 *M OFF
0003 21 DUP 'INC HL' 4 ;INCREMENT HL BY 4

22 *M ON

36

The last example, DB, is a macro which accepts up to 10
parameters, and issues a DEFB pseudo-op for each value.

The macro issues a DEFB for its first parameter and then
calls itself recursively with the same parameters it
received minus the first. Thus with each call the
parameters are shifted to the left by one, and any missing
parameters become the null string. After all of the values
have been processed, the call to DB will pass the null
string as parameter #1 and the condition of the COND
statement will not be met. Notice how the outer level of
single quotes is stripped from the parameter strings.

37

25
26
27
28
29
30
31
32
33
34

0007 01

0008 02

0009 03

OOOA 04

OOOB 05

OOOC 06

OOOD 07

OOOE 08

OOOF 09

f"If"I1f"1 f"Il\
VVIV Vli.

; DB MACRO -- ACCEPTS UP TO 10 VALUES ON SAME L
, OUTPUTS A DEFB FOR EACH ONE -- SELF-RECURSIV:
DB MACRO 110 111 112 113 114 115 #6 117 #8 119

DEFB #0
COND '#1'

DB '111' '112' '113' '114' '#5' '116' '117' '118' 'i

ENDC
ENDM

DB 1,2,3,4,5,6,7,8,9,10
DEFB 1
COND '2 '

DB ' 2 ' , 3 ' , 4 ' , 5 ' '6 ' '7 ' , 8 ' '9 ' , 10 '
DEFB 2
COND ' 3 '

DB ' 3 ' , 4 ' , 5 ' , 6 ' , 7 ' , 8 ' , 9 ' , 1 0 ' , ,
DEFB 3
COND '4 '

DB ' 4 ' , 5 ' '6 ' '7 ' , 8 ' , 9 ' , 1 0 ' , , , ,
DEFB 4
COND ' 5 '

DB ' 5 ' , 6 ' '7 ' '8 ' , 9 ' , 10' , , , , , ,
DEFB 5
COND '6 '

DB '6 ' '7 ' '8 ' '9 ' , 1 0 ' , , , , , , , ,
DEFB 6
COND '7 '

DB '7 ' , 8 ' , 9 ' , 10' , , , , , , , , , ,
DEFB 7
COND ' 8 '

DB '8 ' '9 ' , 10' , , , , , , , , , , , ,
DEFB 8
COND ' 9 '

DB ' 9 ' , 10' , , , , , , , , , , , , , ,
DEFB 9
COND ' 1 0 '

DB ' 10 '
, ,

" 'f ff 'f ff ff "

DEFB "11"\
IV

COND ' ,
DB ' f

f , f ,
'f " ff " ff "

ENDC
ENDC
ENDC
ENDC
ENDC
ENDC
ENDC
ENDC
ENDC
ENDC

38

36 DB LAB,LAB*3+1,TRUE,FALSE,OFFH
0011 02 DEFB LAB

COND 'LAB*3+1 '
DB 'LAB*3+1 ' 'TRUE' 'FALSE' 'OFFH' , , , , , , , , , ,

0012 07 DEFB LAB*3+1
COND 'TRUE'

DB 'TRUE' 'FALSE' 'OFFH' , , , , , , , , , , , ,
0013 FF DEFB TRUE

COND 'FALS"E'
DB 'FALSE' 'OFFH' , , , , , , , , , , , , , ,

0014 00 DEFB FALSE
COND 'OFFH'

DB 'OFFH' , , , , , , , , , , , , , , , ,
0015 FF DEFB OFFH

COND ' ,
DB ' , , , , , , , , , , , , , , , , ,

ENDC
ENDC
ENDC
EN DC
ENDC

37 *M OFF
0016 38 DB o 0 0 0 000 0 0

39 *M ON
40 LAB: EQU 2
41 TRUE: EQU OFFH
42 FALSE:EQU 0

39

1.7 ASSEMBLER COMMANDS

The Assembler recognizes several commands to modify the
listing format, and one command to allow other source files
to be included at that point within the source program. An
assembler command is a line of the source file beginning
with an * in column one. The character in column two
identifies the type of command. Arguments, if any, are
separated from the command by any number of blanks, tabs,
or commas. The following commands are recognized by the
Assembler:

*Eject Causes the listing to advance to a new
page starting with this line. This is
accomplished by outputting an ASCII form
feed character followed by a carriage
return character.

*Heading s Causes string s to be taken as a heading
to be printed at the top of each new page.
String s may be any string of 1 to 28
characters not containing leading
delimiters (notice that the string is
not bounded by quote marks). This
command does an automatic Eject.

*List OFF Causes listing and printing to be
suspended starting with this line.

*List ON Causes listing and printing to resume,
starting with this line.

*Maclist OFF Causes listing and printing of macro
expansions to be suspended, starting with
this line. Only macro calls will be in
the listing.

*Maclist ON Causes listing and prIntIng of macro
expansion to resume, starting with this
line.

*Include filename

Causes the source file "filename" to be
included in the source stream following
the command statement.

The expected use of *Include is for files of macro
definitions, lists of EXTERNAL declarations, lists of
EQUates, or commonly used subroutines, although it can be
used anywhere in a program where the other commands would
be legal. The filename must follow the normal convention
for specifying sou~ce filenames as indicated in the

40

Assembler command line options description. The included
file may also contain an *Include command, up to a nested
level of four.

If the *Include command appears within a macro definition,
the Assembler will always try to shoe-horn the file inside
the macro definition, and although the *Include statement
will appear in a macro expansion, the file will not be
included again at the point of expansion. *Include works
in the expected manner in conjunction with conditional
assembly. For example,

*Include
COND
FILE1
ENDC

exp

;FILE1 is included only if the value of exp is non-zero.

41

1.8 ASSEMBLER COMMAND LINE OPTIONS

The Assembler interacts with the RIO operating system to
permit the user complete control over the routing of all
input and output (1/0) during assembly. The Assembler
makes use of both the console device and disk files for
110 .. The reader may wish to refer to the RIO Operating
System User's Manual mentioned in the preface for a more
complete description of files and 1/0 handling.

Using the Assembler

The Assembler is invoked from the RIO Executive by a
command in the general form:

ASM file name* [(options)]

where * means that one or more file names may be specified
in the standard RIO format, and the square brackets mean
that the' options are optional. However, if present, they
must be enclosed by parentheses. The Assembler processes
the given source files in the order specified to produce a
single object module and a listing file. It is not
necessary to specify options to control assembly since
defaults exist, but when included they must be enclosed by
parentheses. The command is terminated by either a return
or· a sem icolon .

When invoked, the Assembler first identifies itself by
printing on the console its name and version number, where
n.n is the current version specification:

ASM n.n

The Assembler processes the source program in two passes.
The first pass identifies instructions s tests for
correctness of operand combinations, defines the value of
symbols and writes an intermediate file to the disk. At
the conclusion of this process, a message is printed on the
console:

PASS 1 COMPLETE

During the second assembly pass, listing and object files
are created as output. The listing file contains the
source language statements in their original format as well
as the corresponding machine language and memory addresses.
The listing file may optionally include a symbol
cross-reference. The listing file is an ASCII type file
with 128 bytes per record.

42

The object module consists of a binary type file with 128
bytes per record which is meaningful ,only to the Linker.
It consists of four basic parts: a Header, the External
Symbol Dictionary (ESD), Code blocks, and an optional
Internal Symbol Dictionary (ISD). The Header contains
information describing the module such as the number of ESD
entries and the number of bytes of code. The ESD consists
of all the GLOBAL and EXTERNAL names and possibly some
indication of where the names are defined in the following
Code blocks. The Code blocks contain both the actual
machine code, as indicated in the listing, as well as a
bit-map which indicates which instructions are to be
relocated or linked to EXTERNAL names. The ISD is created
only if the Symbol option in the command line is specified.
The ISD contains all the symbols which are internal to the
module (i.e., not GLOBAL or EXTERNAL) and is used by the
Linker to create a symbol table file for use by a symbolic
debug package. See the Appendix for a complete description
of an object module.

Both files are created by default on the same disk drive
with the first source file. If files already exist with
the same name, they are erased and replaced with the newly
generated files.

Errors in the source program detected during assembly are
indicated by appropriate messages following the specific
line both on the console and in the listing file (see the
Appendix). In addition, the number of errors is indicated
on the console at the end of the second pass by the
following message where n is a decimal number:

n ASSEMBLY ERRORS

Normally, the assembly is complete after two passes.
However, if either the cross-reference or the symbol option
are specified, the Assembler starts a third pass by
printing the following message:

PASS 2 COMPLETE

At the conclusion of the assembly, a message is printed on
the console:

ASSEMBLY COMPLETE

Both the second and third pass are implemented as overlays
to a portion of the first pass. The overlays are in
procedure type files named ASM2 and ASM3, respectively. If
these files cannot be found when required, the Assembler
will abort.

43

At any point during the assembly, entering a '?' character
will cause the Assembler to pause until another '?'
character is entered. This allows the user to scan a
portion of output while it is generated. In addition, if
the ESCape character (ASCII 1BH) is entered, the Assembler
will close all files immediately and abort the assembly.
Notice that if the assembly is aborted, output files may
contain incomplete information.

Several temporary scratch files are created by the
Assembler, but are erased upon completion of an assembly.
They include, depending on the options specified 1 the
intermediate file, macro file, cross-reference fIle, and a
symbol table overflow file. The user can control the
assignment of these files if necessary (see below).

The Assembler uses a buffered IIO technique for handling
the assembly language source file, listing file, object
file and temporary files. The Assembler automatically
determines the available work space and allocates the
buffer sizes accordingly. Hence there are no constraints on
the size of the assembly language source file that can be
assembled, provided there is adequate space for the files.

Module Identification

The Assembler follows the general principle that anywhere a
file name may be specified, that file name may be
completely or partially qualified by either a device driver
name or a drive specification.

For example:

1) ASM PROG1.S
2) ASM $MYDOS:2/multiply

The first example demonstrates the use of an unqualified
file name, PROG1.S, which can be found on the master
device. If that device is ZDOS, then the standard disk
drive search sequence of drive 1,2, .•. 0 will be used. The
second example demonstrates a fully qualified file name,
multiply, which can be found on drive 2 of the device
MYDOS.

Each source file must be ASCII type with 128 bytes per
record.

When the period character is used to separate a file name
into several parts, those parts are referred to as file
name "extensions". For instance, the file name PROG1.S in
the above example has the extension .S. The notion of file
name extensions is a useful convention for the user who

44

wishes to categorize certain files by their names. To
assist in this categorization, and to provide a uniform
method for naming generated files such as the associated
object and listing files, the Assembler insists that all
source file names must end in the extension .S (for
source). Notice there may be several extensions, as long
as the last one is .S, and either upper or lower case is
acceptable. Furthermore, the extension does not have to be
typed in the command line, so that if the last two
characters are not .S, the Assembler will automatically
append the extension before attempting to open the file.

By default, the object module and list file will be given
the name of the first source file which comprises the
module, as indicated in the command line, but with the
extensions .OBJ and .L, respectively. The case of the
extension is the same as the first character of the file
name.

For example:

1) ASM YOURPROG
looks for source YOURPROG.S, creates
YOURPROG.OBJ and YOURPROG.L

2) ASM myprog1.s myprog2 TTY.INT
looks for sources myprog1.s, myprog2.s, and
TTY.INT.S, creates myprog1.obj and myprog1.1

It is possible to override the name of either the object or
listing file by appropriate options in the command line as
described below.

Options

Several options can be used to modify the ASM command;
however, the list of options must be enclosed in
parentheses following the source file names. The options
may be specified in any order, with capital letters in the
following list signifying the minimum allowable
abbreviation. Notice that either upper or lower case can
be used.

In order to maximize the effectiveness of allocation of
file buffers, and thus reduce I/O activity, certain
processing must be explicitly requested:

Macro Enables macro processing. If not
specified, macro definitions and
calls will be flagged as errors.

45

Symbol

Xref

Causes a third pass to be executed,
producing a binary representation
of the internal symbols (i.e., not
GLOBAL or EXTERNAL) to be appended
to the object module. This
information may be used by a
symbolic debug package.

Causes a third pass to be executed,
producing a sorted cross-reference
table at the end of the list file.

The following options will override default settings:

Absolute

NOList

NOMaclist

NOObject

NOWarning

Causes the entire module to be
assembled with absolute addresses.
Default is relocatable.

Suppresses the creation of the
listing file.

Suppresses the ~isting and printing
of macro expansions.

Suppresses the creation of the
object file.

Suppresses the generation of opcode
redefinition warning messages, and
relocatable ORG warning messages.

The following option aids documentation:

D:string Places up to an 18-character
string, not including blanks, tabs,
commas, or semicolons, in the
heading of each page of the listing
(normaLly used to specify a date).

Note the following interactions:

NOL overrides *List and *Maclist commands in the text.

*Maclist commands in the text override NOM.

X will override NOL for the third pass only. That is,
(NOL X) will produce a list file containing only the
cross-reference listing.

NOO overrides S.

46

I/O Routing Options

The Assembler uses several logical I/O units, some of which
depend on the requirements of the module being assembled.
The user can control the definition of these units either
through interaction with the RIO Executive before giving
the ASM command, or by specifying certain options in the
command line. Pass completion notices and all fatal error
messages which cause the Assembler to abort (see Fatal
Error Messages) are always routed to. the console (logical
unit CONOUT). Normally, errors in the source statements
will also be routed to the console, unless overridden by
the Print option.

Print Causes the listing output as it is
generated to be routed to the logical
unit SYSLST, in addition to being
directed to a listing file. This is
particularly useful if SYSLST is
defined to be a line printer driver,
for instance. The device driver
must recognize the WRITE ASCII
request code to operate properly.
The Print option inhibits source
statement errors from being sent
to the console to avoid duplicate
messages when SYSLST and CONOUT
are both assigned to the same device.

The following options will override the default definition
of output and temporary files used by the Assembler.

file name can be a completely or partially qualified
file-name.

I=file name
L=file name
M=file-name
O=file name
T=file-name
X=file-name

defines intermediate file
defines listing file
defines macro file
defines object file
defines symbol table overflow file
defines cross-reference file

The symbol table overflow file is created automatically but
only if necessary. M= and X= imply the Macro and Xref
options, respectively.

Notice that giving a complete file name to a file which
would normally be a temporary scratch file will cause that
file to remain after assembly. For instance, 1=3 causes
the intermediate file to be assigned to a scratch file
(zero-length name) on drive 3 of the master device, whereas
I=3/I.TMP causes the intermediate file to remain after
assembly as the file I.TMP on drive 3 of the master device.

47

Examples:

1) ASM PROG1
produces PROG1.0BJ and PROG1.L on the master
device and same drive as the source program,
PROG1.S, will use the same drive for both
the intermediate file and the symbol table
overflow file if necessar Yt and will not
print the listing on SYSLS .

2) ASM PROG1 (O=$MYDOS:O/A.OUT S X=2 P NOL)
produces an object file with attached symbol
table named A.OUT on drive 0 of device $MYDOS,
prints the listing with a cross-reference on
SYSLST, uses drive 2 of the master device for
the temporary cross-reference file, and
produces no listing file. The intermediate
file and symbol table overflow file will be
created as scratch files on the same device
and drive as the source, PROG1.S.

Logical Unit Definitions

The Assembler uses the following logical I/O units:

2
3
4
5
6
7
8
9

10-13

CONOUT
SYSLST

Fatal Error Messages

Error messages
Print option output
List file
Object file
Intermediate file
Macro file
Xref file
Symbol table. overflow file
Source files
(multiple units used to support
nested *Include commands)

There are several conditions that may occur which will
cause the Assembler to terminate further processing, close
all files, and abort by returning to the RIO Executive.
The following messages may appear on the console:

INVALID OPTION: s

Indicates that the string s was not recognized as a valid
command line option. The cause may be, for instance, a
misspelled option specifier or invalid use of delimiters
within options.

48

MEMORY TOO SMALL

Indicates that the amount of available buffer space is not
adequate to permit assembly. Buffers are allocated during
each pass depending on the various options requested in the
command line.

LINE TOO LONG: filename

Indicates that a source text line in "filename" was
encountered that was longer than 128 characters. Due to
buffer allocation, longer lines are not acceptable. This
error may indicate that the contents of the source file
have been damaged.

FILE NOT FOUND: filename

Indicates that the source "filename" could not be found in
a device directory. Remember that the source file name
must end in the extension .S.

INVALID ATTRIBUTES: filename

Indicates that the source "filename" had attributes other
than type ASCII (subtype is ignored) and a record length of
128 bytes.

INVALID FILE: filename

Indicates that the string "filename".is not a proper file
name specifier. This may include illegal characters within
the name or an invalid device or drive designator (see RIO
Operating System User's Manual for further details). The
string "filename" is printed as it appeared in the command
line.

1/0 ERROR e ON UNIT u

All other fatal errors involve 1/0 errors (hex value e) on
a particular logical unit (decimal value u). Refer to the
Logical Unit Definitions for the Assembler and the RIO
Operating System User's Manual for an explanation of
specific errors.

49

2.0 LINKER

2.1 FUNCTION

The function of the Linker is to process one or more object
modules created by the Assembler (version ti.O or greater),
or any other language translator which generates
relocatable object modules, and output a single program in
the form of an executable procedure file. The Linker
provides relocation of modules and resolves inter-module
references to allow linking of separately assembled
modules. In addition, a load map file and a binary symbol
table file may be created.

The Linker interacts with the RIO operating system to
permit the user complete control over the rbuting of all
input and output (1/0) during linkage. The Linker makes
use of both the console device and disk files for 110. The
reader may wish to refer to the RIO Operating System User's
Manual mentioned in the preface for a more complete
description of files and 1/0 handling.

Features

1) Creates a segmented procedure type file of either
128, 256, 512, or 1024 bytes per record. Code may
be assigned to any location in memory, and up to
16 different segments of code can be generated
which allows for discontiguous sections of memory
which are not overlaid when the procedure file is
loaded.

2) Provides ability to link both absolute and
relocatable modules together.

3) Allows optional assignment of some or all
relocatable modules to specific absolute origins.

4) Permits specification of the execution starting
address as either a hexadecimal number or a GLOBAL
symbol.

5) Checks for multiply-defined GLOBALs and unresolved
EXTERNALs.

I

6) Provides the capability to specify "link-only"
modules, that is, modules which are used to control
assignment of relocatable module origins and resolve
EXTERNAL references, but are not included as part
of the generated procedure file.

50

7) Creates a load map with the assigned orIgIn and
length of each module, followed by an alpha­
betically sorted list of all GLOBALs 1 their
assigned addresses and)the module WhICh contains
them. The map file also contains a list of any
error messages generated during linkage.

8) Allows optional creation of a binary symbol table
file, structured by module, for use by a symbolic
debug package.

9) Provides user control over the routing of all input
and output during linkage.

2.2 USING THE LINKER

The linker is invoked from the RIO Executive by issuing the
command LINK followed by a list of module names and options
as described below. The general form is:

LINK file name* [(options)]

where * means that one or more file names may be specified
in the standard RIO format, and the square brackets mean
that the options are optional; however, if present they must
be enclosed by parentheses. The command is terminated by
either a return or a semicolon.

When invoked, the Linker first identifies itself by
printing on the console its name and version number, where
n.n is the current version specification:

LINK n.n

There are two distinct passes to the Linker. During the
first pass the Linker must build what is called the Link
Directory, which allows it to assign absolute addresses to
modules and GLOBAL names. EXTERNAL names must be partially
resolved -- i.e., assigned the absolute address of the
corresponding GLOBAL name. Modules are normally assigned
ascending addresses in the order they are specified.

During the second pass, the object code of each module is
processed, local references are relocated, EXTERNAL
references are completely resolved, and both a procedure
file and a load map file are generated. An optional third
pass will occur if a symbol file is to be generated. At
the end of linkage, if there were any non-fatal errors, an
error count is printed on the console:

n ERRORS

51

where n is the total number of multiply-defined GLOBALs and
unresolved EXTERNALs. Other messages are considered only
warning messages.

The final message on the console is:

LINK COMPLETE

At any time during linkage, the '?' character can be
entered, and the Linker will pause until another '?'
character is entered. If the ESCape character is entered,
the Linker will close all files immediately and abort by
returning to the RIO Executive. If the Linker is aborted,
output files may contain incomplete information.

Non-fatal Errors

There are two non-fatal error conditions which can occur
during the first phase of linking. Multiply-defined GLOBAL
names will be listed and should be considered a significant
error. Unresolved EXTERNALs will be listed but may
not indicate an error, since the module may not have
actually used the EXTERNAL name in a reference, for
instance, during the initial checkout of a program. These
errors will cause the Linker to suppress creation of a
procedure file unless the LET option is specified (see
Options).

If either of these errors exist, an appropriate message is
output to both the console and map file, followed by a list
of the symbol names and the appropriate object module which
caused the error:

MULTIPLY-DEFINED GLOBAL IN MODULE:
module name

This message indicates that symbol name was defined as a
GLOBAL in two different modules, where module name contains
the second definition. If a load map is generated, the
user can determine the other module from the alphabetic
list of GLOBALs. References to a multiply-defined GLOBAL
will always refer to the first definition.

UNRESOLVED EXTERNAL IN MODULE:
symbol_name module name

This message indicates that symbol name which was declared
to be EXTERNAL to module name coula not be matched to a
corresponding GLOBAL name. If a procedure file is created
with unresolved EXTERNAL references, those references will
contain unpredictable addresses.

52

Assignment of Module Origins

The Linker maintains a reference counter which is similar
to the CPU program counter and is used to assign sections
of machine code to memory locations. By default,
relocatable modules are located in contiguous memory areas
automatically by assigning the current value of the
reference counter to be the module's origin and then
incrementing the reference counter by the module's length.
The reference counter is always initialized to zero.

In order to control the assignment of relocatable modules
to certain absolute addresses, it is possible to
intersperse assignments to the reference counter between
module names. The form for these assignments is either:

1) $=X
X is a hexadecimal number (no trailing 'H')

2) $=$+X

where the first allows direct assignment to the reference
counter which causes the next relocatable module to have
that address as its origin. The second form allows the
reference counter to be incremented by an appropriate
amount, say to allocate some buffer space between modules.
For example, to link three modules together with an origin
of 4000 and a data buffer module at 9000:

LINK $=4000 MODA MODB MODC $=9000 DATA

MODA, MODB and MODC will follow immediately after each
other in memory starting at location 4000.

If the reference counter assignment is poorly formed
(embedded delimiters or an invalid hexadecimal number) an
invalid option message will be issued and the Linker will
abort. Notice that absolute modules may be linked to
relocatable modules or to each other. Absolute modules
contain their own address information, so it makes little
sense to use $ when linking absolute modules. The reference
counter is reset to the lowest address of the absolute
module which contains object code and then incremented by
the length of the module. Both the lowest address and the
length of the module are calculated by the language
translator which created the object module.

Segment Generation

Often the need arises in a program to separate it into
several non-contiguous segments of machine code due either

53

to certain hardware requirements--such as the application
memory configuration or peripheral device interface
restrictions--or certain software requirements--such as the
need to implement an overlay scheme. The Linker provides an
automatic facility for generating up to 16 non-contiguous
memory segments, each of which consists of an arbitrary
number of bytes located at an arbitrary starting point.
Each segment contains a number of bytes which is always an
integral multiple of the procedure file's record length
(default of 128 bytes--see Record Length option).

When the resulting procedure file is loaded, only those
areas of memory occupied by the segments will be modified.
The Linker uses two strategies in determining when to start
generating a new segment:

1) A new segment is started for"machine code which is to be
located at an address which is less than the previous
value of the reference counter. This may occur as the
result of an ORG statement in assembly language or from
the assignment of the Linker's reference counter using
the $=X construct. The Linker will output the following
message:

POSSIBLE CODE OVERLAY AT n IN module name

which indicates that machine code may be overlaid at
memory location n when the procedure file is subsequently
loaded. The module name indicates the object module which
causes the new segment to be generated. If the maximum
allowable number of segments (16) is exhausted, the
Linker will abort.

Example:

LINK $=5000 MODA $=4000 MODB

module MODB will start a new segment

2) A new segment is started for machine code which is to be
located at an address which is greater than the procedure
file's record length beyond the current reference counter
value, that is, the address of the last generated byte of
machine code. This avoids entire records of meaningless
data in the procedure file which might be caused by eiher
a large DEFS statement in assembly language or an
assignment to the Linker's reference counter using the
$=X construct. If the maximum allowable number of
segments is exhausted, the Linker is forced to generate
all remaining machine code in the last segment.

54

Example:

LINK $=1000 MODA $=2000 MODS

module MODB will start a new segment unless MODA is
larger than COO bytes, assuming a record length of 400.

Link-only Modules

A standard technique for implementing a program which is
larger than the available memory space is to "overlay"
one portion on top of anoher which is not longer needed.
The various portions can be maintained as separate
procedure files which are loaded by program interaction
with the RIO Executive (see Overlays for further
details). In order to facilitate the construction of
overlay programs, the Linker provides a method to
specify that certain modules are "link-only"; that is,
the object modules will be used to help assign module
starting addresses and to resolve EXTERNAL references,
but will not cause generation of machine code in the
resulting procedure files.

Any module name that is immediately preceded by the minus
character '-' (ASCII 2DH) will be considered to be a
link-only module. A link-only module will appear in the
load map along with its GLOSALs, but it \~ill not be loaded
as a part of the procedure file.

Example:

LINK $=2000 RESIDENT -OVERLAY.2

would cause the creation of a procedure file containing
only the machine code of the module RESIDENT and not that
of OVERLAY.2. However, any EXTERNAL references within
RESIDENT which are satisfied by GLOBALs in OVERLAY.2 will
be correctly resolved.

Module Identification

The Linker follows the general principle that anywhere a
file -name may be specified, it may be completel y or
partially qualified by either a device driver name or
a drive specification.

For ex ample:

1) LINK MODA MODB.OBJ
2) LINK $MYDOS:2/multiply

55

The first example demonstrates the use of unqualified file
names, MODA and MODB.OBJ, which can be found on the master
device. If that device is ZDOS, then the standard disk
drive search sequence of drive 1,2, ... ,0 will be used. The
second example demonstrates a fully qualified file name,
multiply, which can be found on drive 2 of the device
MYDOS.

Each object module must be a binary type file with 128
bytes per record. In addition, an object module contains
information within it which identifies it, and the Linker
will abort if a module does not contain the correct
identification.

Each object module file name must end in the extension
.OBJ, and either upper or lower case is acceptable.
Furthermore, the extension does not have to be typed in the
command line, so that if the last four characters are not
.OBJ, the Linker will automatically append the extension
before attempting to open the file.

By default, the resulting procedure file will have the same
name as the first object file which comprises the program
as indicated in the command line, but without the .OBJ
extension. The map file and symbol file will have the same
name as the procedure file, but with the extensions .MAP
and .SYM, respectively. The case of the extension is the
same as the first character of the file name.

For example:

1) LINK YOURPROG
looks for object YOURPROG.OBJ; creates
YOURPROG, YOURPROG.MAP, and YOURPROG.SYM

2) LINK myprog1.obj myprog2 TTY.INT
looks for object modules myprog1~obji myprog2.obj
and TTY.INT.OBJ; creates myprog1, myprog1.map
and myprog1.sym

It is 'possible to override the name of either the procedure
file, map file or symbol file by appropriate options in the
command line as described below.

56

2.3 LINKER COMMAND LINE OPTIONS

As the name implies, options are optional and default
values will be assumed as indicated. If options are
desired, they must be enclosed in parentheses following the
object module file names. The format for options is a
keyword--usually just the first letter as indicated by the
capitals in the following list--sometimes followed by an
equal sign (=), and an appropriate value or name as
specified for each option. Options can be specified in any
order and the last occurrence of a particular option will
override previous ones.

Notice that several of the command options are used to
control the definition of the logical I/O units used by the
Linker. Thus, through interaction with the RIO Executive
before giving the LINK command and by using the options
which specify a file name (and the Print option), the user
can direct the routing of all I/O during linkage. Notice
that "filename" in the following descriptions means a
standard RIO file name which may be completely or partially
qualified.

All fatal error messages which cause the Linker to abort
(see Fatal Error Messages) ,are always routed to the console
(logical unit CONOUT). Normally, non-fatal errors and
warning messages are also routed to the console, unless
overridden by the Print option, in which case they are
routed to SYSLST.

Entry=n

Used to specify the starting execution address for the
procedure file. n may be either a hex value (must start
with a numeric digit, a leading zero is sufficient) or a
GLOBAL name. Default--the starting address is taken to be
the assigned origin of the first object module. If a
GLOBAL name is specified but not found, a warning message
will be output and the default origin will be used.

LET

Used to force the second phase of linking even if there
were errors such as unresolved EXTERNALs or
multiply-defined GLOBALs. Default--errors inhibit the
generation of a procedure file.

57

Map=filename

Used to cause generation of a load map which indicates
module starting addresses and lengths. In addition, all
GLOBALs are listed (alphabetically sorted) with their
assigned addresses and the module which contains them.
The filename specifies a file where the load map and any
non-fatal error messages are to be output. Default--a load
map (ASCII type with 128 bytes per record) is generated and
output to a file with extension .MAP with the same name as
the procedure file.

Name=filename

Used to specify the name of the procedure file to be
created. The name defaults to that of the first module name
minus the .OBJ extension. The name will also be given to
the map and symbol files (unless overridden by specific
options) with the appropriate extensions .MAP and .SYM.

NOMap

Suppresses creation of the load map file. Default--a load
map is output to a file.

NOWarning

Used to inhibit warning messages about multiply-defined
GLOBALs or unresolved EXTERNALs. Suppresses warnings that
possible overlay of code may occur when the reference
counter is decremented. Also inhibits the checking for
multiply-defined GLOBALs and thus speeds up the first
phase of linking. Default--warning messages are output and
multiply-defined GLOBALs are checked for.

Print

Causes the output of the load map and error messages to be
routed to SYSLST. Default--only error messages are output
to CONOUT and nothing is output to SYSLST.

RLength=n

Used to specify the record length of the procedure file. n
is a hexadecimal number equal to either BOH, 100H, 200H, or
400H (no trailing 'H'). Default--record length is 80H (128
bytes decimal).

58

STacksize=n

Used to specify the size of the stack space required by the
procedure file when executed. n is a hexadecimal number of
bytes. Default--a stack size of 80H bytes is specified.

SYmbol

SYmbol=filename

Used to create a binary symbol file (128 bytes per record)
combining the absolutized GLOBALs and the ISD (Internal
Symbol Dictionary) of each object module for use by a
symbolic debug package. Notice that some modules may have
no ISD. The file name, if not specified, defaults to the
same name as the procedure file, with extension .SYM.
Default--no symbol file is created.

Note the following interactions:

NOM overrides Map=filename.

NOW is an implied LET since errors will be suppressed.

If a procedure file is not successfully generated, there
will be no symbol file and the map file will only contain
error messages.

If the user specifies a scratch file (i.e., a file name
with a zero length name) for an output file, that-file will
disappear after linkage.

Examples:

1) LINK $=1000 PROG1 PROG2
produces a procedure file PROG1 (with entry point
1000) and a map file PROG1.MAP on the master device
and same drive as the object module, PROG1.0BJ, and
will not print the load map on SYSLST.

2) LINK PROG1 (N=$MYDOS:2/PROG.RUN S NOM P E=MAIN)
produces a procedure file PROG.RUN (with entry point
equal to the assigned address of GLOBAL MAIN) and a
symbol file PROG.RUN.SYM.on drive 2 of the device
MYDOS, will not create a map file but will print
the load map and any error messages on SYSLST.

59

Logical Unit Definitions

The Linker uses the following logical I/O units:

2
3
4
5
6
7

CONOUT
SYSLST

Fatal Error Messages

Error messages
Print option output
Object files
Procedure file
Map file
Symbol file

There are several conditions that may occur which cause the
Linker to terminate further processing, close all files,
and abort by returning to the RIO Executive. The following
messages may appear on the console:

INVALID OPTION: s

Indicates that the string s was not recognized as a valid
command line option. The cause may be, for instance, a
misspelled option specifier or invalid use of delimiters
within options. Notice that all numbers must be specified
in hexadecimal notation (but no trailing 'H').

LINK DIRECTORY OVERFLOW

Indicates that there is insufficient memory space to permit
linkage. The Link Directory is basically a composite list
of GLOBALs and EXTERNALs for each object module which the
Linker uses to relocate and resolve object code references.
File buffers are allocated in proportion to available
space; however, there must be room for both the Link
Directory and the minimum size buffer for the various
files. The size of the Link Directory may be kept s~all by
reducing the number and length of GLOBAL symbols in a
program and by not including EXTERNAL declarations for
symbols never referenced in a module. This message will
also occur if the user attempts to link more than 127
modules together.

PROGRAM TOO BIG

Indicates that the reference counter was incremented past
FFFFH, which is beyond the address space of the CPU. The
program size or origin should be reduced.

60

TOO MANY SEGMENTS

Indicates that more than the maximum number (16) of
procedure file segments was created. This may occur when
the reference counter is decremented too many times to
allow a new segment to be generated. The reference counter
is decremented by either an assignment to $ in the Linker
command line or by an ORG statement in assembly language
within an object module. This problem can be avoided by
rearranging modules or sections of code so that the
reference counter is incremented in ascending order.

FILE NOT FOUND: filename

Indicates that the object "filename" could not be found in
a device directory. Remember that the object file name
must end in the extension .OBJ.

INVALID FILE: filename

Indicates that the string "filename" is not a proper file
name specifier. This may include illegal characters within
the name or an invalid device or drive designator (see RIO
Operating System User's Manual for further details). The
string "filename" is printed as it appeared in the command
line.

INVALID FORMAT: filename

Indicates that the object filename had attributes other
than type binary (subtype is ignored) and a record length
of 128 bytes. This message will also appear if the file
does not contain a header of data which is consistent with
an object module. This may indicate that the file was
damaged and should be regenerated by reassembling the
module.

INVALID DATA: filename

Indicates that the object filename contains invalid data,
such as a checksum error, or a symbol name whose length is
either zero or greater than the maximum allowed (currently
127). This usually occurs as a result of a damaged file
which should be regenerated by reassembling the module.

61

1/0 ERROR e ON UNIT u

All other fatal errors involve 1/0 errors (hex value e) on
a particular logical unit (decimal value u). Refer to the
Logical Unit Definitions for the Linker and the RIO
Operating System User's Manual for an explanation of
specific errors.

62

2.4 MAP FORMAT

The Linker produces a load map which indicates the assigned
origin and length of each module, and an alphabetic list of
all GLOBALs with their assigned addresses and the modules
that contain them. In addition, the m8p contains the
program's name, its length in bytes, and its entry point.
Refer to the following example which is, hopefully,
self-explanatory.

LINK $=1000 MODA MODS $=2000 COS. MATH SIN.MATH (N=COMPUTE
E=MAIN)

LINK 1.0

LOAD MAP
MODULE

MODA
MODB
COS. MATH
SIN.MATH

GLOBAL

COS
MAIN
SIN
SQRT
VECTOR

PROGRAM
ENTRY:

COMPUTE
10CC

ORIGIN

1000
1B32
2000
20BO

ADDRESS

2000
10CC
20BO
1B32
1669

-- 1166

LENGTH

OB32
01AA
OOBO
00B6

MODULE

COS. MATH
MODA
SIN.MATH
MODB
MODA

BYTES

The total number of bytes for a progrAm is computed as the
difference between the lowest and highest addresses which
actually contain machine code in the procedure file. Thus
the number of bytes may not accurately reflect the actual
amount of memory a program occupies.

63

2.5 OVERLAYS

This section provides some guidelines for the user whose
program must be implemented as an overlay structure due to
memory space constraints. By utilizing certain facilities
of the Linker, such as assignment of relocatable module
origins and link-only modules, the user may build an
effective overlay scheme. Notice, however, that overlay
management must be built into the user's program in the
sense that the program must explicitly initiate the ~oading
of an overlay segment before any references are made to
that segment.

An overlay structure normally has a resident segment which
contains data and routines which are common to the various
overlay segments. In particular, the routine which
initiates the loading of the other segments would normally
be in the resident segment. The other segments will
normally be maintained as separate procedure files which
have been created through a series of linkages as described
below.

The method for structuring an overlay program is best
illustrated by a simple example. Consider a program
(EXAMPLE) which gathers a large amount of data from a
particular source (READ), reorganizes and calculates new
data (PROCESS), and then outputs this data to a particuJar
destination (WRITE). Assume that this sequence only needs
to be done once. Presumably, there is only room for one of
these segments to be resident at a time, along with the data
and a few common routines, but by simply over-laying the
previous segment, the program can accomplish its desired
goal.

By properly declaring data and routines as GLOBAL and
EXTERNAL in each of the four modules which comprise the
program, the user can then combine them in separate
linkages as follows. Since READ can fit in memory with the
resident segment, EXAMPLE, the two modules are linked
together into a single procedure file called EXAMPLE.
Notice that because the resident module contains references
to both PROCESS and WRITE, these modules are included as
link-only modules to allow the proper references to be
resolved.

1) LINK EXAMPLE $=5000 READ $=5000 -PROCESS
$=5000 -WRITE

Then the two overlay segments are created by linking the
resident segment with the appropriate module, but
specifying the resident as a link-only module.

2) LINK -EXAMPLE $=5000 PROCESS
3) LINK -EXAMPLE $=5000 WRITE

64

(N=PROCESS)
(N=WRITE)

The program can be executed by issuing the command EXAMPLE,
and provided the resident portion initiates the loading of
the two overlay segments at the proper time, the entire
program will run to completion.

Overlay procedure files may be loaded in several ways. A
program can contain code to open the correct file and read
the contents into memory at the right location.
Alternatively, a command string which loads a file without
executing it can be passed to the RIO operating system by
making an I/O request to logical unit a with a pointer to a
section of memory which contains a string such as
'PROCESS,' followed by a carriage return. See the RIO
Operating System User's Manual for further details.

Much more complicated overlay structures can be designed in
the same general fashion. For instance, an overlay segment
may c~use a portion of itself to be overlaid. Or an
overlay segment may be loaded several times, instead of
just once, and if it contains data that must be saved, it
must be written to a temporary file before it is overlaid.
By careful planning and programming, the user may utilize
the facilities of the Linker to create an overlay schema
suitable to the application.

65

APPENDIX A

OPCODE LISTING

opcode 6/15/77 PAGE 1
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 4.0

0000 00 1 nop 00
0001 018605 R 2 Id bc,nn 01
0004 02 3 Id (bc) , a 02
0005 03 4 inc bc 03
0006 04 5 inc b 04
0007 05 6 dec b 05
0008 0620 7 Id b,n 06
OOOA 07 8 rIca 07
OOOB 08 9 ex af,af' 08
OOOC 09 10 add hl,bc 09
OOOD OA 1 1 Id a, (bc) Oa
OOOE OB 12 dec bc Ob
OOOF OC 13 inc c Oc
0010 OD 14 dec c Od
0011 OE20 15 Id c,n Oe
0013 OF 16 rrca Of
0014 102E 17 djnz $+dis 10
0016 118605 R 18 Id de,nn 1 1
0019 12 19 Id (de),a 12
001A 13 20 inc de 1 3
001B 14 21 inc d 14
001C 15 22 dec d 15
001D 1620 23 Id d,n 16
001F 17 24 rIa 17
0020 182E 25 jr $+dis 18
0022 19 26 add hl,de 19
0023 1A 27 Id a,(de) 1a
0024 1B 28 dec de 1b
0025 1C 29 inc e 1c
0026 1D 30 dec e 1d
0027 1E20 31 Id e,n 1e
0029 1F 32 rra 1f
002A 202E 33 jr nz,$+dis 20
002C 218605 R 34 Id hl,nn 21
002F 228605 R 35 Id (nn),hl 22
0032 23 36 inc hI 23
0033 24 37 inc h 24
0034 25 38 dec h 25
0035 2620 39 Id h,n 26
0037 27 40 daa 27
0038 282E 41 jr z,$+dis 28
003A 29 42 add hl,hl 29
003B 2A8605 R 43 Id hI, (nn) 2a
003E 2B 44 dec hI 2b
003F 2C 45 inc I 2c
0040 2D 46 dec I 2d
0041 2E20 47 Id I,n 2e
0043 2F 48 cpl 2f
0044 302E 49 jr nc,$+dis 30
0046 318605 R 50 Id sp,nn 31
0049 328605 R 51 Id (nn),a 32
004C 33 52 inc sp 33
004D 34 53 inc (hI) 34
004E 35 54 dec (hI) 35
004F 3620 55 Id (hI), n 36
0051 37 56 scf 37
0052 382E 57 jr c,$+dis 38
0054 39 58 add hl,sp 39

opcode 6/15/77 PAGE 2
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 4.0

0055 3A8605 R 59 Id a,(nn) 3a
0058 3B 60 dec sp 3b
0059 3C 61 inc a 3c
005A 3D 62 dec a 3d
005B 3E20 63 Id a,n 3e
005D 3F 64 ccf 3f
005E 40 65 Id b,b 40
005F 41 66 Id b,c 41
0060 42 67 Id b,d 42
0061 43 68 Id b,e 43
0062 44 69 Id b,h 44
0063 45 70 Id b,1 45
0064 46 71 Id b , (hI) 46
0065 47 72 Id b,a 47
0066 48 73 Id c,b 48
0067 49 74 Id c,c 49
0068 4A 75 Id c,d 4a
0069 4B 76 Id c,e 4b
006A 4C 77 Id c,h 4c
006B 4D 78 Id c,1 4d
006C 4E 79 Id c , (hI) 4e
006D 4F 80 Id c,a 4f
006E 50 81 Id d,b 50
006F 51 82 Id d,c 51
0070 52 83 Id d,d 52
0071 53 84 Id d,e 53
0072 54 85 Id d,h 54
0073 55 86 Id d,l 55
0074 56 87 Id d,(hl) 56
0075 57 88 Id d,a 57
0076 58 89 Id e,b 58
0077 59 90 Id e,c 59
0078 5A 91 Id e,d 5a
0079 5B 92 Id e,e 5b
007A 5C 93 Id e,h 5c
007B 5D 94 Id e,l 5d
007C 5E 95 Id e , (hI) 5e
007D 5F 96 Id eja 5f
007E 60 97 Id h,b 60
007F 61 98 Id h,c 61
0080 62 99 Id h,d 62
0081 63 100 Id h,e 63
0082 64 101 Id h,h 64
0083 65 102 Id h,l 65
0084 66 103 Id h, (hI) 66
0085 67 104 Id h,a 67
0086 68 105 Id l,b 68
0087 69 106 Id l,c 69
0088 6A 107 Id I,d 6a
0089 6B 108 Id l,e 6b
008A 6C' 109 Id l,h 6c
008B 6D 110 Id 1,1 6d
OOBC 6E 111 Id 1 , (hI) 6e
008D 6F 112 Id l,a 6f
008E 70 113 Id (hI) ,b 70
008F 71 114 Id (hI) ,c 71
0090 72 115 Id (hI) ,d 72
0091 73 116 Id (hI) ,e 73

opeode 6/15/77 PAGE 3
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 4.0

0092 74 117 Id (hI) ,h . 74 ,
0093 75 118 Id (hI) ,1 . 75 ,
0094 76 119 halt 76
0095 77 120 Id (hl),a 77
0096 78 121 Id a,b 78
0097 79 122 Id a,e 79
0098 7A 123 Id a,d 7a
0099 78 124 Id a,e 7b
009A 7C 125 Id a,h 7e
009B 7D 126 Id a,l 7d
009C 7E 127 Id a,(hl) 7e
009D 7F 128 Id a,a 7f
009E 80 129 add a,b 80
009F 81 130 add a,e 81
OOAO 82 131 add a,d 82
OOA 1 83 132 add a,e 83
00A2 84 133 add a,h 84
OOA3 85 134 add a,l 85
00A4 86 135 add a , (hI) 86
OOA5 87 136 add a,a 87
00A6 88 137 ade a,b 88
00A7 89 138 ade a,e 89
00A8 8A 139 ade a,d 8a
00A9 8B 140 ade a,e 8b
OOAA 8C 141 ade a,h 8e
OOAB 8D 142 ade a,l 8d
OOAC BE 143 ade a , (hI) 8e
OOAD 8F 144 ade a,a 8f
OOAE 90 145 sub b 90
OOAF 91 146 sub e 91
OOBO 92 147 sub d 92
00B1 93 148 sub e 93
00B2 94 149 sub h 94
00B3 95 150 sub 1 95
00B4 96 151 sub (hI) 96
00B5 97 152 sub a 97
00B6 98 153 sbe a,b 98
00B7 99 154 sbe a,e 99
00B8 9A 155 sbe a,d 9a
00B9 9B 156 sbe a,e 9b
OOBA 9C 157 sbe a,h ge
OOBB 9D 158 sbe a ,1 9d
OOBC 9E 159 sbe a , (hI) ge
OOBD 9F 160 sbe a,a 9f
OOBE AO 161 and b aO
OOBF A1 162 and e a1
OOCO A2 163 and d a2
OOC 1 A3 164 and e a3
OOC2 A4 165 and h a4
OOC3 A5 166 and 1 a5
OOC4 A6 167 and (hI) a6
OOC5 A7 168 and a a7
OOC6 A8 169 xor b a8
OOC7 A9 170 xor e a9
OOC8 AA 171 xor d aa
OOC9 AB 172 xor e ab
OOCA AC 173 xor h ae
OOCB AD 174 xor 1 ad

opcode 6/15/77 PAGE 4
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 4.0

OOCC AE 175 xor (hI) ae
OOCD AF 176 xor a af
OOCE BO 177 or b bO
OOCF B1 178 or c b1
OODO B2 179 or d b2
OOD 1 B3 180 or e b3
00D2 Bll 181 or h b4
00D3 B5 182 or I b5
00D4 B6 183 or (hI) b6
00D5 B7 184 or a b7
00D6 B8 185 cp b b8
00D7 B9 186 cp c b9
OODS BA 187 cp d ba
00D9 BB 188 cp e bb
OODA Be 189 cp h bc
OODB BD 190 cp I bd
OODC BE 191 cp (hI) be
OODD BF 192 cp a bf
OODE CO 193 ret nz cO
OODF C1 194 pop bc c1
OOEO C28605 R 195 jp nz,nn c2
00E3 C38605 R 196 jp nn c3
00E6 C48605 R 197 call nz,nn c4
00E9 C5 198 push bc c5
OOEA C620 199 add a,n c6
OOEC C7 200 rst 0 c7
OOED C8 201 ret z c8
OOEE C9 202 ret c9
OOEF CA8605 R 203 jp z,nn ca
00F2 CC8605 R 204 call z,nn cc
00F5 CD8605 R 205 call nn cd
00F8 CE20 206 adc a,n c
OOFA CF 207 rst 8 cf
OOFB DO 208 ret nc dO
OOFC D1 209 pop de d1
OOFD D28605 R 210 jp nC,nn d2
0100 D320 211 out (n),a d3
0102 D48605 R 212 call nC,nn d4
0105 D5 213 push de d5
0106 D620 214 sub n d6
0108 D7 215 rst 10h d7
0109 D8 216 ret c d8
010A D9 217 exx d9
010B DA8605 R 218 j pc, nn da
010E DB20 219 in a,(n) db
0110 DC8605 R 220 call c,nn dc
0113 DE20 221 sbc a,n de
0115 DF 222 rst 18h df
0116 EO 223 ret po eO
0117 E 1 224 pop hI e1
0118 E 28605 R 225. jp pO,nn e2
011B E3 226 ex (s p) ,hI e3
011C E48605 R 227 call pO,nn e4
011 F E5 228 push hI e5
0120 E620 229 and n e6
0122 E7 230 rst 20h e7
0123 E8 231 ret pe e8
0124 E9 232 jp (hI) e9

opcode 6/15/77 PAGE 5
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 4.0

0125 EA8605 R 233 jp pe,nn ea
0128 EB 234 ex de,hl eb
0129 EC8605 R 235 call pe,nn ec
012C EE20 236 xor n ee
012E EF 237 rst 28h ef
012F FO 238 ret p fO
0130 F1 239 pop af f1
0131 F 28605 R 240 jp p,nn f2
0134 F3 241 di f3
0135 F48605 R 242 call p,nn f4
0138 F5 243 push af f5
0139 F620 244 or n f6
013B F7 245 rst 30h f7
013C F8 246 ret m f8
013D F9 247 ld sp,hl f9
013E FA8605 R 248 j pm, nn fa
0141 FB 249 ei fb
0142 FC8605 R 250 call m,nn fc
0145 FE20 251 cp n fe
0147 FF 252 rst 38h ff
0148 CBOO 253 rIc b 00
014A CB01 254 rIc c 01
014C CB02 255 rIc d 02
014E CB03 256 rIc e 03
0150 CB04 257 rIc h 04
0152 CB05 258 rIc I 05
0154 CB06 259 rIc (hI) 06
0156 CB07 260 rIc a 07
0158 CB08 261 rrc b 08
015A CB09 262 rrc c 09
015C CBOA 263 rrc d Oa
015E CBOB 264 rrc e Ob
0160 CBOC 265 rrc h Oc
0162 CBOD 266 rrc I Od
0164 CBOE 267 rrc (hI) Oe
0166 CBOF 268 rrc a Of
0168 CB10 269 rl b 10
016A CB 11 270 rl c 1 1
016c CB12 271 rl d 12
016E CB13 272 rl e 13
0170 CB14 273 rl h 14
0172 CB15 274 rl I 15
0174 CB16 275 rl (hI) 16
0176 CB17 276 rl a 17
0178 CB18 277 rr b 18
017A CB19 278 rr c 19
017C CB1A 279 rr d 1a
017E CB1B 280 rr e 1b
0180 CB1C 281 rr h 1c
0182 CB1D 282 rr I 1 d
0184 CB1E 283 rr (hI) 1e
0186 CB1F 284 rr a 1f
0188 CB20 285 sla b 20
018A CB21 286 sla c 21
018C CB22 287 sla d 22
018E CB23 288 sla e 23
0190 CB24 289 sla h 24
0192 CB25 290 sla I 25

opcode 6/15/77 PAGE 6
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 4.0

0194 CB26 291 sla (hI) 26
0196 CB27 292 sla a 27
0198 CB28 293 sra b 28
019A CB29 294 sra c 29
019C CB2A 295 sra d 2a
019E CB2B 296 sra e 2b
01AO CB2C 297 sra h 2c
o 1A2 CB2D 298 sra 1 2d
01A4 CB2E 299 sra (hI) 2e
01A6 CB2F 300 sra a 2f
01A8 CB38 301 srI b 38
01AA CB39 302 srI c 39
01AC CB3A 303 srI d 3a
01AE CB3B 304 srI e 3b
01BO CB3C 305 srI h 3c
01B2 CB3D 306 srI 1 3d
01B4 CB3E 307 srI (hI) 3e
01B6 ' CB3F 308 srI a 3f
01B8 CB40 309 bit O,b 40
01BA CB41 310 bit O,c 41
01BC CB42 311 bit O,d 42
01BE CB43 312 bit O,e 43
01CO CB44 313 bit O,h 44
o 1C2 CB45 314 bit 0,1 45
01C4 CB46 315 bit 0, (hI) 46
01C6 CB47 316 bit O,a 47
01C8 CB48 317 bit 1 , b 48
01CA CB49 318 bit 1 , c 49
01CC CB4A 319 bit 1 , d !la
01CE CB4B 320 bit 1 , e 4b
01DO CB4C 321 bit 1 , h 4c
01D2 CB4D 322 bit 1 , 1 !~ d
o 1D4 CB!~E 323 bit 1,(hl) 4e
o 1D6 CB4F 324 bit 1 , a 4f
o 1D8 CB50 325 bit 2,b 50
01DA CB51 326 bit 2,c 5 1
01DC CB52 327 bit 2,d 52
01DE CB53 328 hit 2,e 53
01EO CB54 329 bit 2,h 54
o 1E2 CB55 330 bit 2,1 55
01E4 CB57 331 bit 2,a 57
o 1E 6 CB56 332 bit 2,(hl) 56
01E8 CB58 333 bit 3,b 58
01EA CB59 334 bit 3,c 59
01EC CB5B 335 bit 3,e 5a
01EE CB5B 336 bit 3,e 5b
o 1FO CB5C 337 bit 3,h 5c
01F2 CB5D 338 bit 3,1 5d
o 1F 4 CB5E 339 bit 3, (hI) 5e
01F6 CB5F 340 bit 3,a 5f
o 1F8 CB60 341 bit 4,b 60
01FA CB61 342 bit 4,c 61
01FC CB62 343 bit 4,d 62
01FE CB63 344 bit 4,e 63
0200 CB64 345 bit 4,h 64
0202 CB65 346 bit 4,1 65
0204 CB66 347 bit 4,(hl) 66
0206 CB67 348 bit !~ , a 67

opeode 6/15/77 PAGE 7
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 4.0

0208 CB68 349 bit 5,b 68
020A CB69 350 bit 5,e 69
020C CB6A 351 bit 5,d 6a
020E CB6B 352 bit 5,e 6b
0210 CB6C 353 bit 5,h 6e
0212 CB6D 354 bit 5,1 6d
0214 CB6E 355 bit 5 , (hI) 6e
0216 CB6F 356 bit 5,a 6f
0218 CB70 357 bit 6,b 70
021A CB71 358 bit 6,e 71
021C CB72 359 bit 6,d 72 .
021E CB73 360 bit 6,e 73
0220 CB74 361 bit 6,h 74
0222 CB75 362 bit 6,1 75
0224 CB76 363 bit 6 , (hI) 76
0226 CB77 364 bit 6,a 77
0228 CB78 365 bit 7,b 78
022A CB79 366 bit 7,e 79
022C CB7A 367 bit 7,d 7a
022E CB7B 368 bit 7,e 7b
0230 CB7C 369 bit 7,h 7e
0232 CB7D 370 bit 7,1 7d
0234 CB7E 371 bit 7 , (hI) 7e
0236 CB7F 372 bit 7,a 7f
0238 CB80 373 res O,b 80
023A CB81 374 res O,e 81
023C CB82 375 res O,d 82
023E CB83 376 res O,e 83
0240 CB84 377 res O,h 84
0242 CB85 378 res 0,1 85
0244 CB86 379 res 0, (hI) 86
0246 CB87 380 res O,a 87
0248 CB88 381 res 1 , b 88
024A CB89 382 res 1 , e 89
024C CB8A 383 res 1 , d 8a
021~E CB8B 384 res 1 , e 8b
0250 CB8C 385 res 1 , h 8e
0252 CB8D 386 res 1 , 1 8d
0254 CS8E 387 res 1 , (hI) 8e
0256 CB8F 388 res 1 , a 8f
0258 CB90 389 res 2,b 90
025A CB91 390 res 2,e 91
025C CB92 391 res 2,d 92
025E CB93 392 res 2,e 93
0260 CB94 393 res 2,h 94
0262 CB95 394 res 2,1 95
0264 CB96 395 res 2, (hI) 96
0266 CB97 396 res 2,a 97
0268 CB98 397 res 3,b 98
026A CB99 398 res 3,e 99
026C CB9A 399 res 3,d 9a
026E CB9S 400 res 3,e 9b
0270 CB9C 401 res 3,h ge
0272 CB9D 402 res 3,1 9d
0274 CB9E 403 res 3, (hI) ge
0276 CB9F 404 res 3,a 9f
0278 CBAO 405 res 4,b aO
027A CBA 1 406 res 4,e a1

opeode 6/15/77 PAGE 8
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 4.0

027C CBA2 407 res 4,d a2
027E CBA3 408 res 4,e a3
0280 CBA4 409 res 4,h a4
0282 CBA5 410 res 4,1 a5
0284 CBA6 411 res 4, (hI) a6
0286 CBA7 412 res 4,a a7
0288 CBA8 413 res 5,b a8
028A CBA9 414 res 5,e a9
028C CBAA 415 res 5,d aa
028E CBAB 416 res 5,e ab
0290 CBAC 417 res 5,h ae
0292 CBAD 418 res 5,1 ad
0294 CBAE 419 res 5, (hI) ae
0296 CBAF 420 res 5,a af
0298 CBBO 421 res 6,b bO
029A CBB1 422 res 6,e b1
029C CBB2 423 res 6,d b2
029E CBB3 424 res 6,e be
02AO CBB4 425 res 6,h b4
02A2 CBB5 426 res 6,1 b5
02A4 CBB6 427 res 6, (hI) b6
02A6 CBB7 428 res 6,a b7
02A8 CBB8 429 res 7,b b8
02AA CBB9 430 res 7,e b9
02AC CBBA 431 res 7,d ba
02AE CBBB 432 res 7,e bb
02BO CBBC 433 res 7,h be
02B2 CBBD 434 res 7,1 bd
02B4 CBBF 435 res 7,a bf
02B6 CBCO 436 set O,b cO
02B8 CBC1 437 set O,e e1
02BA CBC2 438 set O,d e2
02BC CBC3 439 set O,e e3
02BE CBC4 440 set O,h e4
02CO CBC5 441 set 0,1 e5
02C2 CBC6 442 set 0,(h1) e6
02C4 CBC7 443 set O,a e7
02C6 CBC8 444 set 1 h c8 , ,
02C8 CBC9 445 set 1 , e e9
02CA CBCA 446 set 1 , d ea
02CC CBCB 447 set 1 , e eb
02CE CBCC 448 set 1 , h ee
02DO CBCD 449 set 1 , 1 cd
02D2 CBCE 450 set 1,(h1) ee
02D4 CBCF 451 set 1 , a ef
02D6 CBDO 452 set 2,b dO
02D8 CBD1 453 set 2,e d1
02DA CBD2 454 set 2,d d2
02DC CBD3 455 set 2,e d3
02DE CBD4 456 set 2,h d4
02EO CBD5 457 set 2,1 d5
02E2 CBD6 458 set 2 , (hI) d6
02E4 CBD7 459 set 2,a d7
02E6 CBD8 460 set 3,b d8
02E8 CBD9 461 set 3,e d9
02EA CBDA 462 set 3,d da
02EC CBDB 463 set 3,e db
02EE CBDC 464 set 3,h de

opcode 6/15/77 PAGE 9
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 4.0

02FO CBDD 465 set 3,1 dd
02F2 CBDE 466 set 3,(hl) de
02F L~ CBDF 467 set 3,a df
02F6 CBEO 468 set 4,b eO
02F8 CBE1 469 set 4,c e1
02FA CBE2 470 set 4,d e2
02FC CBE3 471 set 4,e e3
02FE CBE4 472 set 4,h e4
0300 CBE5 473 set 4,1 e5
0302 CBE6 474 set 4,(hl) e6
0304 CBE7 475 set 4,a e7
0306 CBE8 476 set 5,b e8
0308 CBE9 477 set 5,c e9
030A CBEA 478 set 5,d ea
030C CBEB 479 set 5,e eb
030E CBEC 480 set 5,h ec
0310 CBED 481 set 5,1 ed
0312 CBEE 482 set 5,(hl) ee
0314 CBEF 483 set 5,a ef
0316 CBFO 484 set 6,b fO
0318 CBF1 485 set 6,c f1
031A CBF2 486 set 6,d f2
031C CBF3 487 set 6,e f3
031E CBF4 488 set 6,h f4
0320 CBF5 489 set 6,1 f5
0322 CBF6 490 set 6,(hl) f6
0324 CBF7 491 set 6,a f7
0326 CBF8 492 set 7,b f8
0328 CBF9 493 set 7,c f9
032A CBFA 494 set 7,d fa
032C CBFB 495 set 7,e fb
032E CBFC 496 set 7"h fc
0330 CBFD 497 set 7,1 fd
0332 CBFE 498 set 7,(hl) fe
0334 CBFF 499 set 7,a ff
0336 DD09 500 add ix,bc 09
0338 DD19 501 add ix,de 19
033A DD218605 R 502 Id ix,nn 21
033E DD228605 R 503 Id (nn),ix 22
0342 DD23 504 inc ix 23
0344 DD29 505 add ix,ix 29
0346 DD2A8605 R 506 Id ix,(nn) 2a
034A DD2B 507 dec ix 2b
034C DD3405 508 inc (ix+ind) 3 L~
034F DD3505 509 dec (ix+ind) 35
0352 DD360520 510 Id (ix+ind),n 36
0356 DD39 511 add ix,sp 39
0358 DD4605 512 Id b,(ix+ind) 46
035B DD4E05 513 Id c,(ix+ind) 4e
035E DD5605 514 Id d,(ix+ind) 56
0361 DD5E05 515 Id e,(ix+ind) 5e
0364 DD6605 516 Id h,(ix+ind) 66
0367 DD6E05 517 Id l,(ix+ind) 6e
036A DD7005 518 Id (ix+ind),b 70
036D DD7105 519 Id (ix+ind),c 71
0370 DD7205 520 Id (ix+ind),d 72
0373 DD7305 521 Id (ix+ind),e 73
0376 DD7405 522 Id (ix+ind),h 74

opeode 6/15/11 PAGE 10
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 4.0

0319 DD1505 523 Id (ix+ind),1 15
031C DD7105 524 Id (ix+ind),a 11
031F DD7E05 525 Id a,(ix+ind) 1e
0382 DD8605 526 add a,(ix+ind) 86
0385 DD8E05 521 ade a,(ix+ind) 8e
0388 DD9605 528 sub (ix+ind) 96
038B DD9E05 529 sbe a,(ix+ind) ge
038E DDA605 530 and (ix+ind) a6
0391 DDAE05 531 xor (ix+ind) ae
0394 DDB605 532 or (ix+ind) b6
0391 DDBE05 533 ep (ix+ind) be
039A DDE1 534 pop ix e1
039C DDE3 535 ex (sp),ix e3
039E DDE5 536 push ix e5
03AO DDE9 537 jp (ix) e9
03A2 DDF9 538 Id sp, ix f9
03A4 DDCB0506 539 rIc (ix+ind) 06
03A8 DDCB050E 540 rre (ix+ind) Oe
03AC' DDCB0516 541 rl (ix+ind) 16
03BO DDCB051E 542 rr (ix+ind) 1e
03B4 DDCB0526 543 sla (ix+ind) 26
03B8 DDCB052E 544 sra (ix+ind) 2e
03BC DDCB053E 545 srI (ix+ind) 3e
03CO DDCB0546 546 bit O,(ix+ind) 46
03C4 DDCB054E 547 bit 1,(ix+ind) 4e
03C8 DDCB0556 548 bit 2,(ix+ind) 56
03CC DDCB055E 549 bit 3,(ix+ind) 5e
03DO DDCB0566 550 bit 4,(ix+ind) 66
03D4 DDCB056E 551 bit 5,(ix+ind) 6e
03D8 DDCB0576 552 bit 6,(ix+ind) 76
03DC DDCB057E 553 bit 7,(ix+ind) 7e
03EO DDCB0586 554 res O,(ix+ind) 86
03E4 DDCB058E 555 res 1,(ix+ind) 8e
03E8 DDCB0596 556 res 2,(ix+ind) 96
03EC DDCB059E 557 res 3,(ix+ind) ge
03FO DDCB05A6 558 res 4,(ix+ind) a6
03F4 DDCB05AE 559 res 5,(ix+ind) ae
03F8 DDCB05B6 560 res 6,(ix+ind) b6
03FC DDCB05BE 561 res 1,(ix+ind) be
0400 DDCB05C6 562 set O,(ix+ind) e6
0404 DDCB05CE 563 set 1,(ix+i"nd) ee
0408 DDCB05D6 564 set 2,(ix+ind) d6
040C DDCB05DE 565 set 3,(ix+ind) de
0410 DDCB05E6 566 set 4,(ix+ind) e6
0414 DDCB05EE 567 set 5,(ix+ind) ee
0418 DDCB05F6 568 set 6, (i x+ ind) f6
041C DDCB05FE 569 set 7,(ix+ind) fe
0420 ED40 510 in b,(e) 40
0422 ED41 511 out (e),b 41
0424 ED42 572 sbe hl,be 42
0426 ED438605 R 573 Id (nn) ,be 43
042A ED44 574 neg 44
042C ED45 575 retn 45
042E ED46 576 im 0 46
0430 ED41 577 Id i,a 47
0432 ED48 578 in e,(e) 48
0434 ED49 519 out (e),e 49
0436 ED4A 580 ade hl,be 4a

opcod e 6/15/77 PAGE 11
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 4.0

0438 ED4B8605 R 581 Id bc,(nn) 4b
043C ED4D 582 reti 4d
043E ED4F 583 Id r,a 4f
0440 ED50 584 in d,(c) 50
0442 ED51 585 out (c),d 51
0444 ED52 586 sbc hl,de 52
0446 ED538605 R 587 Id (nn) ,de 53
044A ED56 588 im 1 56
044C ED57 589 Id a,i 57
044E ED 58 590 in e,(c) 58
0450 ED59 591 out (c),e 59
0452 ED5A 592 adc hl,de 5a
0454 ED5B8605 R 593 Id de,(nn) 5b
0458 ED5E 594 im 2 5e
045A ED5F 595 Id a,r 5f
045C ED60 596 in h,(c) 60
045E ED61 597 out (c),h 61
0460 ED62 598 sbc hl,hl 62
0462 ED67 599 rrd 67
0464 ED68 600 in I,(c) 68
0466 ED69 601 ou t (c), I 69
0468 ED6A 602 adc hl,hl 6a
046A ED6F 603 rId 6f
046C ED72 604 sbc hl,sp 72
046E ED738605 R 605 Id (nn) ,sp 73
0472 ED78 606 in a,(c) 78
0474 ED79 607 out (c),a 79
0476 ED7A 608 adc hl,sp 7a
0478 ED7B8605 R 609 Id sp,(nn) 7b
047C EDAO 610 Idi aO
047E EDA 1 611 cpi a1
0480 EDA2 612 ini a2
0482 EDA3 613 outi a3
0484 EDA8 614 Idd a8
0486 EDA9 615 cpd a9
0488 EDAA 616 ind aa
048A EDAB 617 outd ab
048C EDBO 618 Idir bO
048E EDB1 619 cpir b1
0490 EDB2 620 inir b2
0492 EDB3 621 otir b3
0494 EDB8 622 Iddr b8
0496 EDB9 623 cpdr b9
0498 EDBA 624 indr ba
049A EDBB 625 otdr bb
049C FD09 626 add iy,bc 09
049E FD19 627 add iy,de 19
04AO FD218605 R 628 Id iy,nn 21
04A4 FD228605 R 629 Id (nn) ,iy 22
04A8 FD23 630 inc iy 23
04AA FD29 631 add iy,iy 29
04AC FD2A8605 R 632 Id iy,(nn) 2a
04BO FD2B 633 dec iy 2b
04B2 FD3405 634 inc (iy+ind) 34
04B5 FD3505 635 dec (iy+ind) 35
04B8 FD360520 636 Id (iy+ind),n 36
04BC FD39 637 add iy,sp 39
04BE FD4605 638 Id b,(iy+ind) 46

opcode 6/15/77 PAGE 12
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 4.0

04C1 FD!lE05 639 Id c,(iy+ind) 4e
04C4 FD5605 640 Id d,(iy+ind) 56
04C7 FD5E05 641 Id e,(iy+ind) 5e
04CA FD6605 642 Id h,(iy+ind) 66
04CD FD6E 05 643 Id l,(iy+ind) 6e
04DO FD7005 644 Id (iy+ind),b 70
04D3 FD7105 645 Id (iy+ind),c 71
04D6 FD7205 646 Id (iy+ind),d 72
0!~D9 FD7305 647 Id (iy+ind) ,e 73
04DC FD7405 648 Id (iy+ind),h 74
04DF FD7505 6119 Id (iy+ind) ,1 75
04E2 FD7705 650 Id (iy+ind),a 77
04E5 FD7E05 651 Id a,(iy+ind) 7e
04E8 FD8605 652 add a,(iy+ind) 86
04EB FD8E05 653 adc a,(iy+ind) 8e
04EE FD9605 654 sub (iy+ind) 96
OLtF 1 FD9E05 655 sbc a,(iy+ind) ge
04F4 FDA605 656 and (iy+ind) a6
04F7 FDAE05 657 xor (iy+ind) ae
04FA FDB605 658 or (iy+ind) b6
04FD FDBE05 659 cp (iy+ind) be
0500 FDE 1 660 pop iy e1
0502 FDE3 661 ex (sp) ,iy e3
0504 FDE5 662 push iy e5
0506 FDE9 663 jp (iy) , e9
0508 FDF9 664 Id sp,iy ; .. f9
050A FDCB0506 665 rIc (iy+ind) 06
050E FDCB050E 666 rrc (iy+ind) Oe
0512 F DCB0516 667 rl (iy+ind) 16
0516 FDCB051E 668 rr (iy+ind) 1e
051A FDCB0526 669 sla (iy+ind) 26
051E FDCB052E 670 sra (iy+ind) 2e
0522 F DCB053E 671 srI (iy+ind) 3e
0526 FDCB0546 672 bit O,(iy+ind) 46
052A FDCB054E 673 bit 1,(iy+ind) 4e
052E F DCB0556 674 bit 2,(iy+ind) 56
0532 FDCB055E 675 bit 3,(iy+ind) 5e
0536 F DCB05 66 676 bit 4,(iy+ind) 66
053A FDCB056E 677 bit 5,(iy+ind) 6e
053E FDCB0576 678 bit 6,(iy+ind) 76
0542 FDCB057E 679 bit 7,(iy+ind) 7e
0546 FDCB0586 680 res O,(iy+ind) 86
054A FDCB058E 681 res 1,(iy+ind) 8e
054E FDCB0596 682 res 2,(iy+ind) 96
0552 FDCB059E 683 res 3,(iy+ind) ge

·0556 FDCB05A6 684 res 4,(iy+ind) a6
055A FDCB05AE 685 res 5,(iy+ind) ae
055E FDCB05B6 686 res 6,(iy+ind) b6
0562 FDCB05BE 687 res 7,(iy+ind) be
0566 FDCB05C6 688 set O,(iy+ind) c6
056A FDCB05CE 689 set 1,(iy+ind) ce
056E FDCB05D6 690 set 2,(iy+ind) d6
0572 FDCB05DE 691 set 3,(iy+ind) de
0576 FDCB05E6 692 set 4,(iy+ind) e6
057A FDCB05EE 693 set 5,(iy+ind) ee
057E FDCB05F6 694 set 6,(iy+ind) f6
0582 FDCB05FE 695 set 7,(iy+ind) fe

696

opcode 6/15/77 PAGE 13
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 4.0

0586 697 nn defs 2
698 ind equ 5
699 m equ 10h
700 n equ 20h
701 dis equ 30h
702 end

Header -
16 Bytes

I. Header

Byte 110

1
2 ••• 3
4 ••• 5
6 ... 7
8 ... 9

10 ... 11
1 2 ••• 1 3
14 ... 15

APPENDIX B

OBJECT MODULE FORMAT

- ESD - -
Variable

- Code Blocks -
128 Bytes/Block

- ISD
Variable

80 hex (absolute object file mark) 81
81 hex (relocatable object file mark)
Reserved for future use
II of bytes of code in module
II of ESD entries
Record II of first code block
Lowest absolute address used if absolute
module
Reserved for future use
II of ISD entries
Record II of first ISD block

II. ESD (EXTERNAL SYMBOL DICTIONARY)

Each entry is of variable length, with zero-filled entries,
if necessary, to fill the last physical record of the ESD.
The format of an entry of size n:

Byte 110

1
2 .•. n- 3

n-2 ... n-3

Attribute byte - high order bit indicates
a GLOBAL (bit=1) or EXTERNAL (bit=O)
Low order bit indicates whether GLOBAL is
relocatable (bit=1) or absolute (bit=O).
All other bits are reserved for future
use (currently=O).
Symbol name length in bytes (i.e., n-4)
Symbol name (ASCII characters)
16 bit value
In the case of a GLOBAL name, the value
is the address which defines the symbol.
The value of an EXTERNAL name is
its index (relative byte position) in the
ESD which will be modified by the Linker.

III. CODE BLOCK

Byte 110

1 ••• 2

3
It ••• 11

1 8 .•• 126

127

Code Mark
(83 hex if this is the last code block in
the module, 82 hex otherwise)
Reference counter value of first byte in
block
II of code bytes in block
Bitmap (only 5 high-order bits of 1117 are
used). The bitmap is organized with 1 bit
per byte of code, where O=absolute;
1,0=relocatable; 1,1=EXTERNAL reference.
Object code
The two bytes for a relocatable reference
is a 16 bit signed quantity to be added
to the assigned starting location of the
module at link time. The 2 bytes of code
for an EXTERNAL reference is a 16 bit
signed quantity to be added to the final
assigned absolute address of the EXTERNAL.
In addition, there are 2 extra bytes
which contain a relative pointer to the
attribute byte of the EXTERNAL name in
the ESD (these two bytes are the
relative byte position of the EXTERNAL
in the ESD). These two bytes are not
actually converted to machine code
during the linking process, and thus
have zero bits in the corresponding
bitmap entries.
*** Relocatable and EXTERNAL references

will not be split across a record
boundary; instead, when necessary,
they will start a new record.

Checksum (sum of bytes up to Checksum +
Checksum =0). In fact, the checksum byte
actually follows the last good code byte
in the block, any following bytes are
ignored. Thus, in a block with zero bytes
of code, the checksum byte will actually
occur in byte #18.

IV. ISD (INTERNAL SYMBOL DICTIONARY - appended by Symbol
Option in Assembler)

Same variable format as ESD - only difference is there are
no GLOBALs and thus the GLOBAL bit in the attribute byte is
always reset (=0). The low order bit of attribute byte
indicates whether internal symbol is relocatable (bit=1) or
absolute (bit=O).

APPENDIX C

ASSEMBLY ERROR MESSAGES AND EXPLANATIONS

1) WARNING - OPCODE REDEFINED
Indicates that an opcode has been redefined by a
macro so that future uses of the opcode will
result in the appropriate macro call. This message
may be suppressed by the NOW option.

2) NAME CONTAINS INVALID CHARACTERS
Indicates that a name (either a label or an operand)
contains illegal characters. Names must start with
an alphabetic character and any following characters
must be either alphanumeric (A ... Z or o ... 9), a
question mark (?) or an underbar ().

3) INVALID OPCODE
Indicates that the opcode was not recognized.
Occurs when the opcode contains an illegal
character (including non-printing control
characters), when the opcode is not either all
upper case or all lower case, or when macros
are used and the M option is not specified.

4) INVALID NUMBER
Indicates an invalid character in a number.
Occurs when a number contains an illegal
character (including non-printing control
characters) or a number contains a digtt not
allowed in the specified base (e.g., 8 or 9
in an octal number or a letter in a hexadecimal
number where the trailing H was omitted).

5) INVALID OPERATOR
Indicates use of an invalid operator in an
expression. Occurs when an operator such as
.AND. or .XOR. is misspelled or contains
illegal characters.

6) SYNTAX ERROR
Indicates the syntax error of the statement
is invalid. Occurs when an expression is
incorrectly formed, unmatched parentheses are
found in an operand field, or a DEFM or DEFT
string is either too long (greater than 63
characters) or contains unbalanced quotes.

7) ASSEMBLER ERROR
Indicates that the assembler has failed to
process this instruction. Usually occurs
when an expression is incorrectly formed.

8) UNDEFINED SYMBOL
Indicates that a symbol in an operand field
is misspelled or not declared as a label for an
instruction or pseudo-op, or was not declared
EXTERNAL.

9) INVALID OPERAND COMBINATION
Indicates that the operand combination for this
opcode is invalid. Occurs when a register name
or condition code is misspelled or incorrectly
used with the particular opcode.

10) EXPRESSION OUT OF RANGE
Indicates that the value of an expression is
either too large or too small for the appropriate
'quantity. Occurs on 16-bit arithmetic overflow

w or division by zero in an expression, incrementing
the reference counter beyond a 16-bit value, or
trying to use a value which will not fit into a
particular bit-field--typically a byte.

11) MULTIPLE DECLARATION
Indicates that an attempt was made to redefine
a label. Occurs when a label is misspelled, or
mistakenly used several times. The pseudo-op
DEFL can be used to assign a value to a label
which can then be redefined by another DEFL.

12) MACRO DEFINITION ERROR
Indicates that a macro is incorrectly defined.
Occurs when th~ M option is not specified but
macros are used, when a macro is defined
within another macro definition, when the
parameters are not correctly specified, or an
unrecognized parameter is found in the macro
body.

13) UNBALANCED QUOTES
Indicates that a string is not properly
bounded by single quote marks, or quote marks
inside a string are not properly matched in
pairs.

14) ASSEMBLER COMMAND ERROR
Indicates that an assembler command is not
recognized or correctly formed. The
command must begin with an asterisk (*) in
column one, the first letter identifies the
command, and any parameters such as 'ON', 'OFF'
or a filename must be properly delimited. The
command will be ignored.

15) MACRO EXPANSION ERROR
Indicates that the expansion of a single line
in a macro has overflowed the expansion buffer.
Occurs when substitution of a parameter causes
the line to increase in length beyond the
capacity of the buffer (currently 128 bytes).
The line will be truncated.

16) MACRO STACK OVERFLOW
Indicates that the depth of nesting of macro
calls has exceeded the macro parameter stack
buffer capacity. Occurs when the sum of the
parameter string lengths (plus some additional
information for each macro call) is longer than
the buffer (currently 256 bytes), which often
happens if infinitely recursive macro calls
are used. The macro call which caused the error
will be ignored.

17) INCLUDE NESTED TOO DEEP
Indicates that an *Include command was found
which would have caused a nesting of included
source files to a depth greater than four,
where the original source file is considered
to be level one. The command will be "ignored.

18) GLOBAL DEFINITION ERROR
Indicates that either a label was present on a
GLOBAL pseudo-op statement, or there was an
attempt to give an absolute value to a GLOBAL
symbol in a relocatable module. The latter case
is not allowed since all GLOBALs in a relocatable
module will be relocated by the Linker. May
occur either after a GLOBAL pseudo-op or after
an EQU or DEFL statement which is attempting to
absolutize a relocatable GLOBAL symbol~

19) EXTERNAL DEFINITION ERROR
Indicates that either a label was present on an
EXTERNAL pseudo-op statement, or there was an
attempt to declare a symbol to be EXTERNAL which
had previously been defined within the module to
have an absolute value. May occur due to a
misspelling or other oversight.

20) NAME DECLARED GLOBAL AND EXTERNAL
Indicates that the name was found in both a GLOBAL
pseudo-op and an EXTERNAL pseudo-op, which is
contradictory. May occur due to a misspelling or
other oversight.

21) LABEL DECLARED AS EXTERNAL
Indicates that a name has been declared in both an
EXTERNAL pseudo-op and as a label in this module.
May occur due to a misspelling or other oversight.

22) INVALID EXTERNAL EXPRESSION
Indicates that a symbol name which has been declared
in an EXTERNAL pseudo-op is improperly used in an
expression. May occur when invalid arithmetic
operators are applied to an external expression or
when the mode of an operand must be either absolute
or relocatable.

23) INVALID RELOCATABLE EXPRESSION
Indicates that an expression which contains a
relocatable value (either a label or the reference
counter symbol $ in a relocatable module) is
improperly formed or used. May occur when invalid
arithmetic operators are applied to a relocatable
expression or when the mode of an operand must be
absolute. Remember that all relocatable values
(addresses) must be represented in 16 bits.

24) EXPRESSION MUST BE ABSOLUTE
Indicates that the mode of an expression is not
absolute when it should be. May occur when a
relocatable or external expresion is used to
specify a quantity that must be either constant
or representable in less than 16 bits.

25) UNDEFINED GLOBAL(S)
Indicates that one or more symbols which were declared
in a GLOBAL pseudo-op were never actually defined as a
label in this module. A cross-reference listing may
be helpful in determining which GLOBALs are undefined
(value=FFFF).

26) WARNING - ORG IS RELOCATABLE
Indicates that an ORG statement was encountered in a
relocatable module. This warning is issued to remind
the user that the reference counter is set to a
relocatable value, not an absolute one. May occur
when the Absolute option is not specified for an
absolute module. This warning may be suppressed by
the NOW option.

Zilog
10460 Bubb Road

Cupertino, California 95014
Telephone (408) 446-4666

TWX 910-338-7621

~ ,
I

r

