
Z80·R10

~ Text Editor User's Manual

Zilog

September 1980

03-0074-00
Revision B

Copyright © 1978 by Zilog, I nco All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Zilog.

Zilog assumes no responsibility for the use of any circuitry other than
circuitry embodied in a Zilog product. No other circuit patent licenses
are implied.

z8d-RIO
Text Editor Users Manual

TABLE OF CONTENTS

1. INTRODUCTION.. • • 2

2. EDITING COMMANDS · . 8

2. 1 RIO EDITOR COMMAND SUMMARY • • 1 0

3. COMMAND DEFINITIONS • • 1 1

3. 1 Again · · · · · · · · · · · .11
3.2 Bottom .12
3.3 Br ief · · · · · · · · · · · · · 13
3.4 Change · · · · · · 14
3.5 Delete · · · · · · · · · · · · · · 15
3.6 Find · · · · · · · · · · · · · · · 16
3.7 Get · · · · · · · · · · · .17
3.8 Goto · · · · · 19
3.9 Input · · · · · · · · · · · .20
3. 10 Join · · · · · .21
3. 11 Lineno · · · · .22
3. 12 Locate · · .23
3. 13 Macro · · · .24
3. 14 Next · · · · · · · · · · · .25
3. 15 Print · · · · · · .26
3. 16 Put · · · · · · · · · .27
3. 17 Putd · · · · · · · · · .28
3. 18 Quit · · · · · · · · · .29
3. 19 Replace · · · · · · .30
3.20 Top · · · · · .31
3. 21 Up . · · · · .32
3.22 Ver i fy · · · · · · · · .33
3.23 Window · · · · · · · · · · · · · .34
3.24 Xecute · · · .35

Other pertinent documentation with which the reader
may want to become familiar include:

RIO Operating System User's Manual

1

1. INTRODUCTION

The RIO Text Editor is a line-oriented editor with string
handling capability and automatic interface to the disk.
It uses a memory paging technique which allows any size
text file to be edited. The Editor automatically determines
the work space available, and brings blocks of text into
its memory buffer as required by the command issued.

The portion of the user's file which is contained within
this memory buffer is called the 'window'. If a command is
issued that operates on text which is not in the window,
the Editor will write out the memory buffer onto disk and
read the next sequential block of text into the window.
This action is referred to as 'rolling'. The Editor rolls
blocks of text in and out of the window until the required
one is found.

The Editor maintains a 'current line pointer' which points
to the line last referenced. At the beginning of the
editing session this pointer points to a null line at the
top of the file. After executing each command the Editor
will respond with a prompt ,>, to indicate that a new
command should be issued. Note that in Input mode no
prompt is output. The Editor can handle lines up to a
maximum length of 512 characters.

The Editor can be used to create a new text file or to
modify an already existing one. If the Editor is given a
file name which does not exist in the disk directory it
will create a new file with the specified name, and then
automatically enter Input mode (see Input command
definition). This file will be created with a record
length of 128 bytes unless otherwise specified in the 'RL'
option.

If the specified file already exists, a backup file is
created before the editing session begins. This file is a
duplicate of the user file, thus if the user file should
get damaged during editing, the user still has a copy of
the original file. This backup file is created with the
same name as the user file but with an extension of 'OLD'.
This extension will be in upper or lower case depending on
the Tirst letter of the user file name, i.e., editing a
file called 'MYFILE' would cause the creation of a backup
file 'MYFILE.OLD', whereas editing 'myfile' would cause the

2

creation of a backup file 'myfile.old'. One of two options
may be used when invoking the editor to either override the
default name for the backup file or to suppress its
creation entirely. These options are called the OLD option
(0) and No backup option (N), respectively.

The Editor is invoked from the RIO executive via the
command:

EDIT filename [options]

where: filename is a standard RIO file name which
may be fully or partially qualified;

where: option is one of the following:

O=filename1

N

RL=record length
(in hex)

specifying a name for the
backup file

specifying that no backup file
should be created

specifying that the new file
should be created with the
given record length

If no filename is given the Editor will respond with:

NAME?

In this case, the user should name a file to edit or enter
a carriage return to return to the RIO executive.

If the specified file is not of type ASCII (20H) the
message:

INVALID ATTRIBUTES: filename

will be output to the console. This message is also output
if a file specified in the GEt command has an invalid type
or record length.

If the named file does not exist, it will be created and
the Editor will output the message:

NEW FILE
INPUT

and enter Input mode.

3

If the file already exists, the Editor will create the
backup file and then output the message:

EDIT

EXAMPLES:

Creating a new file with the Editor:

%EDIT MYFILE RL=400

NEW FILE
INPUT

EDIT
>QUIT

;MYFILE does not exist and is
created with a record length
of 400 hex

;input text

;null line
;edit mode
;update and close user file

Editing an already existing file with a default backup
file:

%EDIT MYFILE
EDIT
>

>QUIT

; M YF I LEe xis t s
;backup MYFILE.OLD created

;edit session

;update and close user file

Editing an already existing file, using the Old option:

%EDIT MYFILE O=$YDOS:2/BACKUP
EDIT

>

>QUIT

4

;MYFILE exists
;backup file BACKUP
is created under
file system YDOS
on drive 2

;edit session

;update and close
user file

Editing an already existing file, using the No backup
option:

%EDIT MYFILE N
EDIT
>

>QUIT

;MYFILE exists
;no backup file created

;edit session

;update and close MYFILE

If a disk error occurs during an operation on either the
user file or backup file, the Editor closes the files and
returns to the RIO Executive. At this time a message:

1/0 ERROR xx ON UNIT yy

will be output to the console, where xx is the error return
code (see RIO Software User's Manual), and yy is the
logical unit number: 04 for the user file, 05 for the
backup file.

The editor environment is exited via the QUIT command.
This command will cause the user file to be updated and
closed and will then return to the RIO Executive.

If the user file was damaged during the editing session
(via disk errors or misuse of editing commands), the user
may wish to QUIT and begin again. This can be done in
several ways. Following is a description of three methods
with an example for each.

One method is to QUIT from the Editor environment, DELETE
the user file, and then RENAME the backup file:

%EDIT MYFILE
EDIT
>

>QUIT
%DELETE MYFILE
DELETE 2/MYFILE (Y/N/A/Q)?Y
%RENAME MYFILE.OLD MYFILE
MYFILE.OLD ----> MYFILE
%

5

;invoke Editor

;edit session

;quit edit environment
;delete the user file

;rename backup file

Another method is to remain in the Editor environment,
DElete all of the lines in the user file, and then GEt the
backup file:

%EDIT MYFILE
EDIT
>

>T

T>DE *
>GE MYFILE.OLD

last line
>

>QUIT

%

6

;invoke Editor

;edit session

;go to the top of the
file

;delete all of the lines
in the file

;insert contents of the
backup file

;continue edit session

;close and update user
file

If a disk error occurs while operating on the user file,
the Editor will automatically return to the RIO Executive.
In this case the user may wish to DELETE the damaged user
file, create a new file with the Editor, and then GEt the
backup file:

%EDIT MYFILE
EDIT
>

I/O ERROR C4 ON UNIT 04

%DELETE MYFILE
DELETE 2/MYFILE (Y/N/A/Q)Y
%EDIT MYFILE

NEW FILE
INPUT

EDIT
>G E MYF ILE. OLD

last line
>

>QUIT

7

;invoke Editor

;edit session

;disk error C4 on user
file

;delete user file
;create new file with
Editor

;null line

;insert contents of
backup file

;edit session

;update and close user
file

2. EDITING COMMANDS

The Editor currently offers 24 commands which are executed
via a one or more letter code. The commands may be issued
in either upper case or lower case characters. In the
following summary, the capital letter (or letters)
indicates the minimum call for each command:

Again
Bottom
BRief
Change
DElete

Find
GEt
Goto
Input
Join

LIneno
Locate
Macro
Next
Print

PUt Up
PUTD Verify
QUIT Window
Replace Xecute
Top

There are two general forms of command modifiers which are
used with many of the edit commands: a number n, or a
string.

The first form, a decimal number n, indicates the number of
times the command operation is to be repeated. For
example, Print 15 would output 15 lines to the console.
The symbol ,*, can be used to indicate that the operation
should be repeated over the entire range of the file
beginning with the current line.

The second form is a string of characters between
delimiters. This form indicates that the command should
repeat until the string is found. For example, Print ILD
A,BI would print the current line and each following line
until it printed the line containing the first occurrence
of the string 'LD A,B'. A delimiter is defined as the
first nonblank, nonnumeric character in the modifier. The
string may contain any character except for the delimiter.
The second delimiter is optional. In the following
discussion, the character I is used to represent any valid
delimiter.

If the string is not found in the current window, the
message:

STRING NOT IN BLOCK
PROCEED?

will be output to the console. If a 'Y' is entered the
command will execute on the current window and the next
block will be brought in from the disk. Otherwise, the
command will terminate, leaving the pointer pointing to
the current line. When using the string modifier with the
Up command, only the first message will be output and the
option to proceed will not be given. The pointer will
be left on the current line.

8

These modifiers are used with the following commands:

Delete, Next, Print, PUt, PUTD, Up

In general, commands and modifiers must be separated by at
least one or more blanks.

The Editor has two modes - Brief and Verbose - which affect
the Bottom, Change, Find, Goto, Get, Locate, Next, and Up
commands. When in Verbose mode (the default mode) a line of
text is output following each of these commands. When in
Brief mode this printing is suppressed.

Brief mode can be entered in two ways. The first way is
via the BRief command and will affect all commands until
Brief mode is exited via the Verbose command.

Brief suppression can also be obtained for a single command
by issuing a dot '.' immediately after the command (i.e.,
F. ILOOP1/).

When a '?' is entered during the execution of the Change or
Print commands, execution will stop until another '?' is
entered. If an ESC is entered, the command will abort and
the editor will return to Edit mode. The commands check
for a '?' or ESC after processing each line. After an ESC
is recognized, the pointer is left at the last line
processed. Note: this feature does not apply to the ZDS
system.

The following notation is used in the command definitions
in section 3:

Portions of a modifier that are optional are
enclosed in brackets [].

The symbol for logical or, I, is used if either
option can be used, i.e., DE [n/string[/]] can
be expanded as DE n or DE Istring/.

Parameters which can be repeated more than once
are followed by an asterisk * - i.e.,
J &command&[command&]*

9

2.1 RIO EDITOR COMMAND SUMMARY

COMMAND COMMAND COMMAND
ABBREVIATION NAME PARAMETERS

A Again [D of times]

B Bottom

BR Br ief

C Change fold string/new string/CD of
lines[D of times per line]]

DE Delete [D of lines: /string/]

F Find /string/

GE Get [filename]

G Goto line D

I Input [text line]

J Join &command&command& ...

LI Lineno

L Locate /string/

M Macro &command&command& ...

N Next [line D : /string/]

P Print [D of lines: /string/]

P U Pu t [D 0 f 1 in e s : / s t r in g / [f i 1 en am e
[record length]]]

PUTD Put and [D of lines: /string[filename
Delete [record length]]]

Q Quit

R Replace [text line]

T Top

U Up [D of lines /string/]

V Verify

W Window

x Xecute

10

3. COMMAND DEFINITIONS

3.1 Again [n]

Function:

Repeats the previous command n times. If n is not
specified the previous command is repeated once. When the
Again command is issued after a Join or Xecute command,
only the last specifed single command will be repeated.

Ex amples :

>P 3
line 1
line 2
line 3
>A
line 3
line 4
line 5
>J &U 4&P 4&
line 1
line 1
line 2
line 3
line 4
>A
line 4
line 5
line 6
line 7
>

;print 3 lines

;print another 3 lines

;join command (up 4, print 4)
;up 4 lines
;print 4 lines

;repeat last command (print 4)

11

3.2 Bottom

Function:

Moves the current line pointer to the last line of the file
and prints the line on the console. If Brief mode has been
set the printing of the last line will be suppressed.

Examples:

>B
last line
>N
EOF
>

;move pointer to bottom of file

;next line

12

3.3 Brief

Function:

Causes the editor to enter Brief mode in which the normal
printing of the line of text following the Bottom, Change
Find, Goto, Get, Locate, Next, and Up command is
suppressed.

Examples:

)P
This is line 10
)C /10/11
This is line 11

)BR
)C /11/10/

)P
This is line 10
)

;print 1 line

;change 10 to 11
;in Verbose mode - line is
printed after change

;enter Brief mode
;change 11 to 10, in Brief mode,
change does not print line

;print 1 line

13

3.4 Change fold string/new string[/[n1[n2]]]

Function:

Locates 'old string' within the range specified by n1 and
n2, and replaces it with 'new string'. n1 specifies the
number of lines in which 'old string' should be looked for
and changed. n2 specifies the number of occurrences per
line to be changed. The Change command begins its search
in the current line (unlike the Find and Locate commands
which begin the search in the next line). If n1 and/or n2
is not specified, the default is one. A '*' can be used
for n1, specifying that all lines from the current line on
be changed, or for n2 specifying that all occurrences in
the specified lines be changed. When in Verbose mode the
line will be printed after the change has been made. This
is suppressed in Brief mode. If 'new string' is not given
(i.e., C fold string//), 'old string' will be deleted. If
'old string' is not found the message:

NO CHANGE

will be output to the console and the command will
terminate. Upon termination of the Change command, the
current line pointer is left on the last line in which 'old
string' was looked for. The execution of the Change
command may be temporarily or permanently halted (on MCZ
systems) via the? or ESC mechanism described in section 2.

Examples:

)P
ADD A,B

)C /A,B/HL,DE
ADD HL,DE

)P 4

line 110
line 111
line 112
line 113
)U 3
line 110
)C /1/2/3 2

line 220
line 221
line 222

)T
T)C /IX/IY/* *

;print 1 line

;change string 'A,B' to 'HL,DE'

;print 4 lines

;up 3 lines

;change first 2 occurrences of '1' to '2'
in next 3 lines

;note only 2 occurrences changed

;go to top of file
;change every occurrence of IX to IY

14

3.5 DElete [n:/string[/JJ

Function:

Deletes lines from the file beginning with the current
line. If n is specified, n lines will be deleted. If a
string is specified, all lines up to but not including the
line containing the specified string will be deleted. After
deleting, the current line pointer is left on the line
after the last line deleted.

Ex amples :

>p 5
line 1
line 2
line 3
line 4
line 5
>u 4
line 1
>DE 2
>p
line 3
>

>p 5
line 1
line 2
line 3
line 4
line 5
>u 4
line 1
>DE /2/
>p
line 2
>

;print 5 lines

;up 4 lines

;delete 2 lines
;print 1 line

;print 5 lines

;up 4 lines

;deletes up to first line containing '2'
;print 1 line

15

3.6 Find /string[/J

Function:

Moves the current line pointer to the first line following
the current line which contains the specified string
beginning in column one. This command is a special case of
the Locate command and is useful in locating labels in
assembly language source.

Ex amples:

)P 5
LD A,B
ADD A,C
JR Z,LOOP1
INC A

LOOP1: LD D,A
)U 4

. LD A, B
)F /LOOP1/
LOOP1: LD D,A
)U 4

LD A,B
L /LOOP1

JR Z,LOOP1
)

;print 5 lines

;up 4 lines

;find LOOP1 beginning in column 1

;up 4 lines

;locate LOOP1 in any column

16

3.7 GEt [filename]

Function:

Reads a disk file and inserts its contents into the user
file after the current line. If no filename is specified,
the temporary PUT/GET file created by a PUT or PUTD command
is inserted. If a filename is specified, the entire
contents of this file will be inserted. The current line
pointer is moved to the last line of the inserted file.
Note that it is not possible to insert just a part of a
file with the GEt command. This can be done, however, by
'PUT'ting the desired portion onto a separate file and then
'Get'ting this new file. If a file name is specified, the
file must be of type ASCII with a record length of less
than or equal to 512. If it is not, the message:

INVALID ATTRIBUTES: filename

will be output to the console.

Examples:

)P 5
line 1
line 2
line 3
line 4
line 5
)U 3
line 2
)PUT 2
)P
line 4
)B
line 5
)GET
line 3
)T
T)P *
line 1
line 2
line 3
line 4
line 5
line 2
line 3
EOF
)

;print 5 lines

;go up 3 lines

;put 2 lines into temporary file
;print 1 line

;go to the bottom of the file

;insert contents of the temporary file

;go to the top of the file
;print all of the file

17

)P 3
line 1
line 2
line 3
)GET EXTFILE.TEXT
external line 5
)T
T)P *
line 1
line 2
line 3
external line 1
external line 2
external line 3
external line 4
external line 5
EOF
)

;print 3 lines

;insert the contents of file

;go to the top of the file
;print all of the file

18

3.8 Goto n

Function:

Moves the current line pointer to point to the line with
the specified decimal line number n

Examples:

)P 5
line 1
line 2
line 3
line 4
line 5
)T
)G 3
line 3
)

;print 5 lines

;go to the top of the file
;go to the third line in the file

19

3.9 Input [text line]

Function:

Inputs text into the file after the current line. If a line
of text is given, it will be inserted. Note that the text
line must be separated from the command 'I' by one blank.
Any additional blanks will be treated as part of the text
line, i.e., I line 1A will cause 'line 1A' to be inserted,
whereas I line 1A will cause ' line 1A' to be inserted.
If no line is specified, the Editor will enter Input mode.
In this mode, all text that is entered from the console is
inserted after the current line. Input mode is terminated
when a null line is entered (by typing just a carriage
return). Upon termination of the Input command the current
line pointer points to the last line input.

Examples:

>p
line 1
>1 line 1A
>p
line 1A
>1
INPUT
line 1B
line 1C
line 1D

EDIT
>T
T>P *
line 1
line 1A
line 1B
1 ine 1 C
line 1D
EOF
>

;print 1 line

;insert 'line 1A' into text
;print 1 line

;enter Input mode

;null line

;go to top of file
;print all of file

20

3.10 Join &command&[command&]*

Function:

Causes the specified sequence of commands to be executed as
soon as the carriage return is received. Join is similar
to the Macro command immediately followed by an Xecute
command. Any number of commands can be concatenated as
long as they fit ·on a single line (512 characters). Spaces
are not allowed between the commands and delimiters. Any
delimiter may be used, however, it must not occur in any of
the commands.

Examples:

)J IITIIL ILOOP111C
T
LOOP 1 :
LOOP2:

LD A,B
LD A,B
DEC B
JR Z,LOOP3

LOOP2:

)A

)

DEC BC

DEC BC
LD A,(HL)
CP ASCICR
JR NZ,LOOP2
JR END

11/211U 311P 5
;Top command
;Locate command
;Change command
;Up command
;Print command

;repeat last command
;Print command

21

3.11 Llneno

Function:

Prints the line number of the current line. This command
can be used with the Goto command to operate the editor on
a line number concept.

Examples:

>P
line number 10
>LI
10
>

jprint 1 line

jdetermine line number

22

3.12 Locate /string[/J

Function:

Moves the current line pointer to the first line, following
the current line which contains the specified string.

Examples:

>L /200
LD HL,200H

>A
STRING NOT IN BLOCK
PROCEED?
>y

LD DE,200H
>A
STRING NOT IN BLOCK
PROCEED?
>N

ADD HL,DE
>

;locate string '200'

;locate it again

;look in next block

;and again

;terminate command
;last line of block

23

3.13 Macro &command&[command&J*

Function:

Causes the specified sequence of commands to be loaded into
the macro buffer to be executed each time the Xecute
command is issued. Any number of commands can be
concatenated as long as they fit on a single line (512
characters). Note that spaces are not allowed between
commands and the delimiting character. Any character may be
used as a delimiter, however, it may not occur in any of
the commands. When the editor is first initialized, the
macro buffer contains the commands: $U. 6$P 12$. Thus
issuing the Xecute command before a Macro command will
cause these commands to be executed.

Examples:

>M &T&L IA,B/&C IA,B/A,CI
>P 5
LOOP:

LD A, (HL)
ADD A,B
INC HL
DEC B

>U 10

>X
T

>

JR NZ,LOOP

ADD A,B
ADD A,C

24

;initialize macro buffer
jprint 5 lines

;up 10 lines

;Xecute contents of macro buffer
;Top command
;Locate command
;Change command

3.14 Next [nl/string[/]]

Function:

Causes the current line pointer to be moved down n lines or
to the first line which contains the specified string.

Examples:

)P
line 3
)N 5
line 8
)T
T)P 2
line 0
line 1
)N 131
line 3
)

;print 1 line

;go down 5 lines

;go to top of file
;print 2 lines

;go down to line containing '3'

25

3.15 Print [nl/string[/]]

Function:

Prints, beginning at the current line, the next n lines or
until the first occurrence of the specified string. Upon
termination of the command the current line pointer is left
on the last printed line. The Print command can be
temporarily or permanently halted via the? and ESC
mechanism described in section 2.

Examples:

>P 3
line 1
line 2
line 3
>P 171
line 3
line 4
line 5
line 6
line 7
>

;print 3 lines

;print until the string '7' is found

26

3.16 PUt [n:/string[/[filename[RL=m]]]]

Function:

Writes onto a disk file, starting with the current line, n
lines or lines up to but not including the first occurrence
of the specified string. If a file name is specified the
PUt will be made to a file of this name. If one already
exists it will be erased and replaced by the new file.
If the file exists it must have a record length of less
than or equal to 512. If it does not exist, it will be
created with a record length of 128, unless otherwise
specified via the RL option. Note: m is specified in
hex. If the RL option is used, m must be less than or
equal to 200H. If no name is specified, the PUt will be
made to the temporary Put/Get file, thus overwritting any
text previously PUt there. Note that there must be a
space between the second string delimiter and the file
name. Upon termination of the PUt command the current
line pointer is left at the line following the last line
written.

Examples:

>PU 3

>PU /A,S/

>PU 6 PUT.FILE

;puts 3 lines into the temporary
PUt/GEt disk file

;puts all lines until string 'A,S'
is located into the temporary
Put/Get disk file

;puts 6 lines into a file called
PUT.FILE which is created with
a record length equal to 128.

>PU 6 PUT.FILE RL=200 ;puts 6 lines into a file called
PUT.FILE which is created with
a record length equal to 512.

27

3.17 PUTn [nl/string[/[filename]]]

Function:

Writes onto a disk file, starting with the current line, n
lines or lines up to the first occurrence of the specified
string and deletes those lines from the user file. If
a file name is specified, the PUt will be made to a file of
this name. If one already exists it will be erased and
replaced by the new file. If the file exists it must have
a record length of less than or equal to 512. If it does
not exist it will be created with a record length of 128,
unless otherwise specified via the RL option. Note: m is
specified in hex. If the RL option is used, m must be
less than or equal to 200 hex. If no name is specified,
the PUt will be made to the temporary Put/Get file, thus
overwriting any text previously PUt there. Note that
there must be a space between the second string delimiter
and the file name. Upon termination of the PUt command
the current line pointer is left at the line following
the last line written.

Examples:

)T
T)P 5
line 1
line 2
line 3
line 4
line 5
)T
T)PUTn 3
)8
line 5
)GE
line 3
)T
T)P *
line 4
line 5
line 1
line 2
line 3
EOF
)

;go to the top of the file
;print 5 lines

;go back to the top
;put and delete 3 lines into temporary file
;go to bottom of file

;insert temporary file

;go to the top of the file
;print all of the file

28

3.18 QUIT

Function·:

Updates and closes the user file and returns control to the
RIO executive.

Ex amples :

%EDIT MYFILE
EDIT
>

>QUIT
%

;edit session

;update and close MYFILE
;return to RIO Executive

29

3.19 Replace [text line]

Function:

Replaces the current line with the specified text. Ifca
line of text is given, it will replace the line. Note that
the text line must be separated from the command 'R' by one
blank. Any additional blanks will be treated as part of
the text line, i.e., R line 4A will cause 'line ~A' to be
inserted whereas R line 4A will cause' line 4A' to be
inserted. If no line is specified, the Editor will enter
Input mode. In this mode, all text that is entered from
the console is inserted, replacing the current line. Input
mode is terminated when a null line is entered (by typing
just a carriage return). The current line pointer is left
pointing to the last line input.

Ex amples :

>P 2
line 4
line 5
>r line 4A
>U
line 4
>P 2
line 4
line 4A
>R
INPUT
line 4AA
line 4AB
line 4AC

>U 4
line 3
>P 5
line 3
line 4
line 4AA
line 4AB
line 4AC
>

;print 2 lines

;replace current line with string 'line 4A'
;go up 1 line

;print 2 lines

;replace the current line with what follows

;null line
;go up 4 lines

;print 5 lines

30

3.20 Top

Function:

Moves the current line pointer to the null line just above
the first line of the user file.

Ex amples :

)P 3
line 1
line 2
line 3
)T
T)1 line 0
)P 4
line 0
line 1
line 2
line 3
)

;print 3 lines

;go to the top of the file
;insert string at top
;print 4 lines

31

3.21 Up [n:/string[/JJ

Function:

Moves the current line pointer to the line that is up n
lines from the current line, or the first line (moving up)
which contains the specified string. Note that Up will
only work within the current window when using a string
parameter. If a line containing that string is not found,
the message:

STRING NOT IN BLOCK

will be output to the console, and the command will
terminate leaving the pointer at the first line of the
current window.

Examples:

>p
line 10
>U 4
line 6
>U /3
line 3
>B
line 900
w>U /line 3/
STRING NOT IN BLOCK
>p
line 504
>

;print 1 line

;up 4 lines

;up to line containing '3'

;go to bottom of file

;up to line containing 'line 3'
;string not found
;print 1 line

32

3.22 Verify

Function:

Exits Brief mode and resumes the normal printing of the
line of text following the Bottom, Change, Find Get,
Locate, Next, and Up commands.

Examples:

>BR
>N 3
>v
>N 3
line 20
>

;enter Brief mode
;go down 3 lines
;exit Brief mode
;go down 3 lines

33

3.23 Window

Function:

Displays on the console the line numbers of the top and
bottom lines of the current window. This is useful because
it allows the user to complete all editing in this window
before editing lines that are not yet in memory, thus
reducing the need for unnecessary disk 1/0 and therefore
speeding up the editing function.

Examples:

>WI
0001
0500
>

34

3.24 Xecute

Function:

Causes the commands in the macro buffer to be executed.

Examples:

>M &U 3&P
>P
line 30
>x
line 27
line 27
line 28
line 29
line 30
line 31
line 32
>

6& jinitialize macro buffer
;print 1 line

;execute the commands in the macro buffer
;up 3
;print 6

35

~
Zilog

READER COMMENTS

Your comments concerning this publication are important to us.
Please take the time to complete this questionnaire and return it to
Zilog.

Title of Publication: ___________________________ _

Document Number: _______________________________ __

Your Hardware Model and Memory Size: ___________________ _

Describe your likes/dislikes concerning this document:

Technical Information: -----------------------------------

Supporting Diagrams:

Ease of Use: __ ___

Your Name: __ _

Company and Address: ___ _

· I,
II
II

• I • I
I
I
II

• • • • • • • ,
'I

• .II ,
• • • ,
• • • • I

• • • • • • • I!
II
II
II
II

•
~
II
II ..
• ! •••••••• ~ •• •••

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 475 CUPERTINO, CA

POSTAGE WILL BE PAID BY

Zilog
Systems Publications Department
10411 Bubb Road
Cupertino, California 95014

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

• · •
" IJ

" • II .. · 4

· •• B •••••••••••••••••••••••• •• •• ••••••• ••••••

• •

Zilog, Inc. 10460 Bubb Road, Cupertino, California 95014 Telephone (408)446-4666 TWX 910-338-7621

Printed in USA

