

#3-3246-04
October, 1983

Copyright 1983 by Zilog Inc. All rights reserved. No part
of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of Zilog.

The information in this publication 1is subject to change
without notice.

Zilog assumes no responsibility for the use of any circuitry
other than circuitry embodied in a Zilog product. No other
circuit patent licenses are implied.

SYSTEM 8000

ZEUS ADMINISTRATOR MANUAL

Software Release 3.2

ii

Zilog

Zilog

ii

Zilog

Preface

This manual describes the steps involved in performing various
system administrative functions: system startup (bootstrapping),
system reconfiguration (software system regeneration), and system
maintenance (adding or deleting users, file management, backing
up files to tape, etc.).

Each section of this manual describes a major component of system
administration. Certain sections may require a basic understand-
ing of the ZEUS operating system. Appendix A provides an over-
view of the ZEUS operating system. Appendix B contains important
considerations for changing the layout of disk filesystems.

The following are related manuals that are pért of the standard

manual set. Additional manuals describing particular boards

and/or options can be ordered using the part numbers in the Zilog
literature order form.

Related Software Manuals

System 8000 ZEUS Reference Manual (#3-3255)
System 8000 ZEUS Utilities Manual (9#3-3250)
System 800@ ZEUS Languages/Programming Tools Manual (@3-3249)

Related Hardware Manuals

System 8000 Hardware Reference Manual (93-3237)
System 8000 SADIE Reference Manual (93-3264)

iii Zilog iii

iv

Zilog

Zilog

iv

Zilog

Table of Contents

SECTION]. INTRODUC‘TION ® © 0 00 00006 0¢ 0005000000 0000000s0000 1-1

SECTION 2 STARTUP AND SHUTDOWN PROCEDURES

N
I
-

.1l. Initial Startup Considerationscececoeceses
. Initial Startup ProcCedUIreoeeeseececososses
. Automatic BoOt ProCedUreceeeceecescscconses
2,.3.1. GenNeral .c.ceeecesecscstcctacsccccsncncncosoes
2.3.2, ProCedUre .:ieeeeeessoesoesnsocesoosoncanacs
2.4, Manual Boot ProCeAULEe ...eceeeeoccccsconsasocsess
2.4.1. GeNeral ..vieeesscoscccersscossccocncsncccens
2.4.2, ProCedUre .ieescecescaccccconosoocesonsseacs
. Single-User Mode FUNCLIONS ccveeeeeooconconocess
. Startup File Management ..c.ececececscsooscncses
. Adding New Users and Terminalseeeeeceeoss
. Bringing the System DOWN ...eeeeeeceenccccsasaes

1
AN QAU & D

2
2.2
2'3

NN NDNDNDN
|

NN NN
=]

SECTION 3 RESTORING THE SYSTEM DISK ...cceccceecocccenns

w
f
]

3-1
3-4
3-13
3-13
3-15

B €1 o T -
. Software Reinstallation Using Release Tape .
. Disk Formatting Informationceeeeecesas
. Initializing the Root and /usr File Systems

. File System ResStoration ...cceeeceeesccocoes

e & o o
3
® o e o @

SECTION 4 FILE SYSTEM MANAGEMENTcc0ceeeesececeses 4-=1

. Layout of the System Disk ...veeeese

.
.
[~
|
N
=

Bad FreeblOCk ® 0 0 0.0 0 0 000 0 0 00 40000 00000 0o
Bad Bl’OCk ® © 0 00 0000 0000000000 000000800000 4"2@
NO Directory Entries ® ¢ 2 0006000000000 00 0000 4'21

nadbdWwWwN =
e & » e e

4.1 Y S A
4.2. AAdAIng DiSKS seeeeeeoececccecssossnosssssncnsnee 4=2
4.2.1. General ...ieieeeccessrssessoscersscsscaccceccss 4=2
4.2.2. ProcedUre ...ceesececccscsacccnsssccccccssese 4-3
4.2.3., Reconfiguration of the Original Disk 4-12
4,.3. Maintenance File SYSteM ..eeeeecescecoscnceceaces 4=15
4.4, DUMDS ceereeessoccacescsssssscscscscsssoccosocscssseaee 4=18
4.5. Managing File System Consistency .ec.eeeeeeee... 4-18
4.5, MisSSing BlOCKS teeeeeesvecocccnccnccccooes 4=20
4 Duplicate BlOCKS ceeeeoesscocscccnccnccass 4=20
4
4
4

M
5
5
5
5
5

\Y Zilog \Y

Zilog

4.5.6. Too Many Directory Entries ...eeeeeececeses 4=-22
4.5.7. File Block Outside the File System 4-23
4,5.8., Duplicate Blocks in FileS eeeveecesccscess 4=23

SECTION 5 SYSTEM GENERATION (' sysgen"') ..ccceceoeceee. 5-=1

SECTION 6 SYSTEM CRASHES AND OTHER PROBLEMSccc...

System Crashes ..ueeeeeeenceccsssscasssssnsns
PanicC MESSAUES cveeeeortscscccccccccsonccncss
Other MeSSAgEeS ceieeescesocssessococcccocnocss
Troubleshooting ceeeeeeeseseccoosossceocsncns
Error Checking and Correction (ECC) .ceecoceeces
. Troubleshooting AidS ..cseecececcssccocsscocsss

. e e
e o L]
O ¢ & e

L] .

A OO
L]

AU W -
L]

SECTION 7 SYSTEM MAINTENANCEccce0cecscccncscnnsses 7-1

7.1. Line Printer Informationceeeeeeesoncsees 7-1
7.2. Printer Spooler Considerationsceecesesses 7T-4
7.2.1., Introduction ...cieeevececccccccccncneceee T1-=4
7.2.2. Miscellaneous Spooler Commands ..c.ceeoeeeee 7=5
7.2.3. Configuration File Description ..ccceoeeeee. 7-6
7.3. From Boot to Login - A Commentary e..c.ceeeoveeess 7-8
7.3.1. Kernel Initialization ...eeeveeececcocsess 7-8
7e3¢02. /EC/INIT tteeesecassscsssssssccsscconsssss 1-9
7¢3¢3: /ELC/GETTY teeeeoosassscosssssssacssonsasss 1-10
7¢3.04. LOGIN cteusveesoccccscsscocosoosccsscconseoee 711
7.3.5. LOGOUL tieeeeoeooecsesossscecsoosssosoncssse 1=12
7.4. AAdAding TerminalsS ceeseeeceeescccccssscossscoccsoce 71-12
7.4.1. Preliminary Instructions ...ceeeeeecseeeee 7-13
7.4.2, Software Modification Procedureoccee. 7-14
7.5. Adding and Removing USErS ...ceeeeececescscccases 7-18
7.5.1. AAAUSEr ..eeeteescoocsssscossssososnscoscsee 71-18
7¢5.2. RMUSEY «tuveeeesoassasassssssssssssscsoncssss 7=19

APPENDIX A AN OVERVIEW OF ZEUScc0ccccesooscccccs

A
|
|_J

l General L LI R BN AR 2R 2 B B I I I I Y I Y I K I B I I R I S I N R Y
2 POCGSS ContrO]. ® 5 6. 6 0.0 0 00 0 500000 S L e e OSSO

l. Process Creation and Program Fxecution ...
2. SWAPPING ceteneesscesscessccesscscscsnscscss
3. Synchronization and Schedulingcceeee.
O SYStemM .eueeeeeeenssnssssasssssssccccocosass
1
2
e
1

« Block I/0 SYStOM ceeeveceacococosoocnsococses
. Character I/0 SYSteM ..ceeeocccecocsoncocses

Fil‘e System @ 8 6 8 0 5 0 0 2 0 9 0 P VO SO SO S OSSN OO0V EECE e o0
. File System Layout ..eieeecececccccscoacsces

:1’3’3’:1’:1’?3’3’3’3’
oo N N BN N T, Il

vi Zilog vi

Zilog

2. Directory FileS seeeeceaccscccsscecscecececes A=9
. 3. . A-10
.4, Mounted File SyStemsS .c.eeececececsccccoesass A=13

The Shell ..cieeeeeoeerosesosscassssssscsecsosasensese A=13

Other Programs as Shell ...ceeeecececcecsssseses A=14

InOdeE; ® © 0 0 0 0 00 0D 00O L L OO PO L OO N OEOe s

APPENDIX B REDISTRIBUTING FILES WITHIN THE

CURRENT DISK CONFIGURATION ...c.cceeeeeeesee B-1
B.l. General ® O D 8 6 0 6 0 6 O PO LD OO OSSOSO E O OGO L O PO e S e 00 0 s s o B—l
B.2. File Relocation Requirementseeeeeeeesees B=1
B.2.l' Addin(_; New Files ® @ 5 0 & & &6 0 0 OO 0O YOO OGN P oo B_l
B.2.2. Running Out of Space On a Device .¢e¢eeeee.. B-=1
B.2.3. Optimizing Disk Access TimeS ...eeeeeeees B=2
B.3. Removing Unwanted FileS ...eeeececccccccoccsasss B=2
B.4. DiStributi()n TapeS ® ® & 2 0 06 0 0 0 0 0000 000 000 00000 000 B—Z
B.S. Suggested F‘ile DiStribUtiOl’l ® ® 0 0 060 085 00 0006 000 000 B-3
List of Illustrations
Figure
2-1 Baud Rate/Disk Type Dip Switcheseevevee. 2-3
A—l User PrOCeSS COl’lt]’.’Ol ® © 5 9 6 6 0 0 00 0 00O LG e e oo A"'2
A-2 Process Control Data Structure ...¢cceceeee.. A-4
A—3 File SYStem Layout ® @ @ 0 0 0 0 G O OO P OO PO O PSP s e e 0o A-lg
List of Tables
Table
1-1 Entries Required for Each Disk Type ...ceoe.. 1=2
2"'1 CPU Card Baud Rate Settings ® ® 0 0 0 060 000 00 00 00 0 2_2
2-2 CPU Card Disk Type Switch Settings ..eeeeee.. 2-3
3-1 Procedure Step Format Description ..eeeeeee.. 3-4
3-2 System 8009 Disk Drive # Characteristics 3-13
4-1 Default Disk Configuration Parameters 4-1
5-1 Typical System ConStantS @ ® 5 0 000606 0600000000000 5_2

vii Zilog vii

Zilog

7-1 Terminal Type COAES tecsesececoscaccosssscses /=11

viii Zilog viii

Zilog

SECTION 1
INTRODUCTION

Almost all of the system administrator functions must be per-
formed by the ZEUS super-user (called "zeus"). The super-user
has the permission to read, write, and execute all files, no
matter what the access permission bits indicate. Other functions
exclusive to the super-user include changing the password of any
user, changing the owner or access permission bits of any file,
entering a user into the system, and making a file system on
disk.

The system administrator becomes a super-user either by typing
"zeus" as a response to the login message or by typing "su zeus"
while logged in as another user. The system prompts for the
super-user's password, and the appropriate response is "jupiter."
This password should be changed promptly after system installa-
tion (see passwd(l)).

Command notations within the text of this manual are followed by
a letter or naumber enclosed within parentheses; for example,
sysgen(M). The parenthetical expression references a particular
section of the ZEUS Reference Manual. Section M contains com-
mands that are specifically used for system administration or
maintenance. General-use commands are normally followed by (1)
to denote that they can be found in Section 1 of the ZEUS Refer-
ence Manual.

NOTE

Some of the system administration commands are actually
"csh™ shell scripts that can be fouled by user-
selected, envirommental parameter settings. Particu-
larly, do not set the csh "noclobber™ option or some of
the system administration commands, such as adduser (M),
will not work.

Throughout this book, there are procedures which require the
entry of either of the terms "zd" or "smd". These terms refer to
a program interface parameter for a particular disk type. Before
continuing, find the applicable disk type and its associated
entries in Table 1-1 which follows.

1-1 Zilog 1-1

Zilog

Table 1-1. Entries Required for Each Disk Type

ASSOCIATED ENTRIES

TYPE OF BOOT or
INTERFACE RESTART
*MODELS 20, 21, 30 zd ZBOOT D
or
Z D
*MODEL 31 smd ZBOOT §
(see note also) or
Z S

With any model, it is always possible to boot from tape

using "Z T" and a ZEUS Release Tape (or 3.1 or higher
Update Tape).

NOTE

The Model 31 is shipped with "smd" type disk(s). How-
ever, it can be optionally configured with "zd" type
disks as well as "smd" type disks. Im the latter case,
the appropriate entry must be specified for each of the
individual disk drives in the procedures which follow.

Zilog

Zilog

SECTION 2
STARTUP AND SHUTDOWN PROCEDURES

2.1, Imitial Startup Considerations

When the System 8007 is shipped from the factory, the system disk
has been formatted, and is loaded with the ZEUS operating system
programs and files.

The Initial Startup Procedure consists of an automatic boot fol-
lowed by the Startup File Management procedure in Section 2.6. If
the automatic boot portion fails, the ZEUS files and programs on
disks may have been lost due to unusual handling during shipment
and installation. To restore correct disk data, the software
restoration from a Release tape should be performed as described
in Section 3. However, other diagnotic actions should be taken
first as detailed in the following startup procedure.

2.2. Imitial Startup Procedure

Once the System 8000 hardware is set up, the system can be
started using the following procedure.

(L) Turn ON the system power with the rear-panel power switches.

(2) Turn ON the front-panel keylock switch. This enables the
front-panel RESET and START switches.

(3) Proceed to the Automatic Boot Procedure in Section 2.3.2. If
the automatic boot is successful, turn the keylock switch to
the LOCK position, remove the key, 1ignore the remaining
steps of this procedure and continue to Section 2.6 instead.
(Leaving the keylock switch in the LOCK position disables
the RESET and START switches, guarding against unintended
interruptions of computer operation.)

If the automatic boot fails, return to this section and per-
form the remaining steps in this procedure.

(4) If the boot failed, turn off system power.

(5) Remove the pop-off front cover from the Processor module
(with the RESET and START pushbuttons).

(6) Remove the CPU card from slot one.

2-1 Zilog 2-1

(7)

(8)

(9)
(19)

(11)

(12)

Zilog

Switches 1 and 4 (bits D4 and D5) on the CPU card control
the console terminal port baud rate. Ensure that they match
the baud rate of the console terminal that is attached to
the system. See Figure 2-1, Table 2-1, and refer to the
System 8000 Hardware Reference Manual.

Switches 2 and 3 (bits D7 and D6) on the CPU card indicate
the boot disk device type (refer to Figure 2-1). As shown
in Table 2-2, use the settings which correspond to the "zd"
disk interface type for the Model 21; use the settings which
correspond to the "smd" disk interface type for the Model
31.

Re-install the CPU card.

Ensure that the Disk/Tape module power cord is plugged in to
the outlet at the rear of the Processor module. (The
absence of the disk's steady whirring sound would indicate
that power is not connected.)

Refer to Section 3.4 of the System 800@% Hardware Reference
Manual, and perform those steps necessary to ensure that the
disk head is unlocked.

Repeat steps 1-3. However, if the boot fails again, proceed
to Section 3, particularly the Software Reinstallation Pro-
cedure in Section 3,2, Alternately, run the Stand-Alone
Diagnostic Interactive Executive (SADIE) programs as
described in the SADIE Reference Manual in order to verify
proper system hardware operation.

Table 2-1. CPU Card Baud Rate Settings

DATA BITS: D5 D4

SWITCHES: 4 1 BAUD RATE
ON ON 300
ON OFF 1299
OFF ON 9600
OFF OFF 19,200

Zilog 2-2

Zilog

Table 2-2. CPU Card Disk Type Switch Settings

NOTE

These switches indicate the interface type for disk
device @ (default boot device).

DATA BITS: D6 D7

SWITCHES: 2 3

DISK INTERFACE TYPE

md* ON OFF
zd : OFF OFF
smd OFF ON
reserved ON ON

* md is used only on the Model 11

00365

Figure 2-1 Baud Rate/Disk Type DIP Switches
Shown for zd type disk; 9600 baud

Zilog

Zilog

2.3. Automatic Boot Procedure

The automatic boot method is the normal way the system is brought
up since it requires only two keyboard inputs and it automati-
cally performs file system integrity checks.

2.3.1. General

The automatic boot procedure is initiated by pressing the RESET
and then START pushbuttons.

First, the power-on diagnostics are run, the bootstrap program is
read from disk, the kernel is read, and then INIT is called (see
Section 7). INIT executes the file /etc/rc (a "sh" shell
script). This script in turn conditionally executes the
/etc/rc_csh file (a "csh" shell script). Among other things, the
rc_csh executes the fsck(M) program which checks the consistency
of the (yet unmounted) filesystems. The execution of /etc/rc csh
displays status messages on the console to indicate the progress
of the boot.

1f the system encounters any problems that it cannot fix automat-
ically, it indicates the fact and issues a prompt on the system
console. The system is in single user mode, and 1is ready to
accept commands. If the problem is due to a filesystem incon-
sistency, the system administrator should attempt to fix the
problem by following instructions in Section 4.5, Managing File
System Consistency.

After /etc/rc_csh checks for certain error conditions, it prompts
for the date (see datem(M)). Then it mounts certain filesystems.
A successful boot is indicated by the message

ZEUS login:

on the system console and on all terminals. At this point, the
system administrator should login. Users can login as soon as
the login message is displayed.

The file /etc/rc_csh can be modified to reflect conditions at
each installation. For example, if a disk is reconfigured, the
fsck command line in /etc/rc_csh should be changed accordingly.
Other necessary changes are described in Section 4.2.

2-4 Zilog 2-4

Zilog

2.3.2. Procedure

l.

Press the front-panel RESET switch. The console should
display the following message:

S8000 Monitor X.Y - Press START To Load System
If it does not, ensure that the keylock is ON. Press RESET.
If there 1is still no response, contact the nearest Zilog
Field Service office. RESET initiates communication with
the monitor. Monitor commands are listed in Section 4 of
the System 8000 Hardware Reference Manual.
Press the START switch, as indicated in the above display.
The console should display filesystem information for a
short duration, followed by the last known date and time.
Last known date and time: Fri Mar 5 98:13:19 1982
Then a prompt provides the option of entering a new date:
Enter Date (MM/DD/YY or <crd>):

Enter the date in the following format, followed by a
RETURN:

MM/DD/YY

where MM, DD, and YY are month, day, and year, respectively.
See the example below.

Next, the console prompts for the time:
Enter Time (HH:MM):
Enter the time in the following fofmat, followed by RETURN:
HH :MM
where HH and MM are hours and minutes. Enter the hour from
a 24-hour clock. See the example below. When the entry is
complete, the console displays the new date and time. See
also date(M).
Example:
Last known date and time: Fri Mar 5 ©#8:13:19 1982
Enter Date (MM/DD/YY or <cr>): 3/26/82

Enter Time (HH:MM): 16:48
Fri Mar 26 16:48:00 PST 1982

Zilog 2-5

Zilog

3. A successful boot 1is indicated when the system console
displays the last date the system stored, followed by:

Going multi-user!
ZEUS login:

4, If this boot was preceded by reconfiguration of the disk
(sysgen) or recovery of the original software from Release
tape (Section 3), or if this was the initial boot after the
system is first installed, then proceed to Section 2.6.

2.4. Manual Boot Procedure

The manual boot method requires explicit entry of parameters that
indicate the names and locations of programs to be executed as
part of system initialization.

The manual boot can be used to bring the system up in single-user
mode as well as to perform certain stand-alone recovery functions
from the secondary bootstrapper. The benefits of single-user
mode are described in Single-User Mode Functions, Section 2.5.

2.4.1. General

The manual boot procedure allows user interaction with the secon-
dary bootstrapper program. If booting from disk, the CPU Monitor
prompts the user for the name of a secondary bootstrapper, which
it reads from disk and executes. If booting from tape, the tape
primary bootstrapper automatically reads the secondary
bootstrapper from tape and executes it.

The secondary bootstrapper can read and execute any stand-alone
program from tape or disk. After execution, the secondary
bootstrapper regains control and can run another program.

The secondary bootstrapper program is provided on disk within the
first filesystem and on tape as the second file on any Release
Tape or 3.1 (or higher) Update Tape.

2.4.2. Procedure

Use the following procedure to bootstrap manually. Each command
must be followed by a (carriage) RETURN.

1. Enter the monitor by pressing RESET. At this point, depend-
ing on the System 8000 model, it is possible to boot from
either disk or tape (providing the disk is intact). To load
from disk, go to step 2. To load from tape, go to step 3.

2-6 Zilog 2-6

Zilog

To boot from disk, enter either one of the following com-
mands for Model 21 systems:

ZBOOT D
Z D

For Model 31 systems, use either one of the following com-
mands:

ZBOOT S
Z S

The CPU Monitor prompts the user for the name of the secon-
dary bootstrapper with:

BOOTING FROM DISK
>

At this point the user should enter the name of the secon-
dary Dbootstrapper (the default is "boot") followed by
RETURN.

> boot

This loads the secondary bootstrapper from the first
filesystem on the disk, and executes it. Go to step 4.

To load the primary bootstrapper from tape and execute it,
enter the command

zBooT T
or
z T

The primary bootstrapper automatically 1loads and executes
the secondary bootstrapper from the tape. The monitor
displays: :

BOOTING FROM TAPE ,
(Non-) Segmented Jumper Configuration

Continue to step 4.
For either procedure the secondary bootstrapper prompt:

(Non-) Segmented Jumper Configuration
Boot

should now be displayed on the console.

Zilog 2-7

Zilog

The secondlary bootstrapper loads a program from tape or
disk, and executes it. The command syntax for reading and
executing a disk program is:

:xxx (n,m)name [| xxx(n,m)fppname]
where: xxx is either "zd" for Model 21 systems or "smd"
for Model 31 systems where the boot disk is of
"smd" type.
n is the drive number of the disk

name is the name of the file to be read in,

m is the starting block of the filesystem where the
file resides (the first filesystem has index zero)
fppname is the name of the file containing the optional
Floating Point Board Set microcode (only useful

when the option has been properly installed)

[ees] indicates that the expression contained within
the brackets is optional (note that brackets are
a textual notation only - actual entries would not
include the brackets)

NOTE

The optional expression [within brackets], if 1left
unspecified, defaults to that shown above if a properly
installed Floating Point Board Set has been detected.

Further, an entry consisting of only a carriage return
(blank 1line) causes the secondary bootstrapper to sup-
pPly a default entry, similar to the operation of the
automatic, primary bootstrapper. The default entry is
valid for the default system disk layout that is ini-
tially provided for the first disk. Amy subsequent
changes to the system disk layout necessitate the re-
creation of the secondary boot program (and primary
boot defaults) in order to maintain wvalid default
parameters. This task is described in the system gen-
eration chapter, Section 5.

Example:
If the user enters
zd(0,15200) zeus
the kernel is booted from drive @ at a block offset of
152049, from a "zd" type disk (Model 21 system). Enter this

to change the system to single-user mode from the secondarv
bootstrapper program.

Zilog 2-8

Zilog

The command syntax for a tape program is:
ct(n,m)

where: n is the drive number of the tape
m is the mth file on tape, beginning
with zero (m must be greater than 1
since the first and second files on
tape are the bootstrappers themselves).

5. Run the ZEUS kernel (refer to the example in the preceding
step) from the secondary bootstrapper to bring up ZEUS in
single-user mode. Now ZEUS has control of the system, which
it keeps it rather than returning control to the secondary
bootstrapper. When started in this manner, ZEUS automati-
cally runs one c¢sh(l) command interpreter program. It
expects ZEUS commands, not secondary bootstrapper commands.

The system administrator now issues commands directly to the
ZEUS system, instead of to the secondary bootstrapper.

NOTE

Only a subset of the available ZEUS commands listed in
the ZEUS Reference Manual is available from single-user
mode unless all filesystems (not just the root) are
manually mounted with the mfs(M) command.

All of the ZEUS commands become available once filesystems
other than the root are mounted. This task is automatically
performed when multi-user state is requested with the "INIT
2" command.

If the manual boot was preceded by reconfiguration of the disk
(sysgen) or recovery of the original software from Release tape
(Section 3), or if this was the initial boot after the system is
first installed, then proceed to Section 2.6.

NOTE
Entering "INIT 2" after step 5 of the manual bootstrap

procedure leaves the system in the same (multi-user)
state as would an automatic boot.

2-9 Zilog : 2-9

Zilog

2.5. Single-User Mode Functions

In this mode, the administrator can perform various maintenance
activities that are often incompatible with a normal multi-user,
time-sharing operation. These include the filesystem initializa-
tion tasks performed with labelit(M), mkfs(M), and makenewfs(M),
which are part of the data restoration tasks as described in Sec-
tion 3.

Single-user mode is also useful when troubleshooting and recovery
functions must be performed. These tasks often require that the
filesystems (except root) be unmounted (a single-user mode
default). Entering single-user mode from multi-user mode
automatically kills all user-processes and ongoing processes such
as the spooler, any of which could be responsible for improper
system operation. Refer to Section 6.4.

If serious errors are reported concerning disk files or disk dev-
ices that cannot be fixed simply, such as by freeing up space on
a filesystem, enter single-user mode and then follow the detailed
procedures in Sections 4.5 through 4.5.7. An automatic boot will
also perform many of the same troubleshooting functions and
attempt to repair disk files. So, this may be the first correc-
tive action that should be taken (and often is required if the
error "crashes" the system). If the system does not "crash" as
the result of a serious disk problem, the super-user should bring
the system down anyway, since any further work with files could
jeopardize disk data even further.

To switch from multi-user mode to single-user, use the procedure
in Section 2.8.

In single-user mode, the user at the console is automatically
made the super-user (often referred to as zeus), providing unlim-
ited access to files and programs (except if they are presently
unmounted) .

7ZEUS issues a prompt for each command line in the form "#n",
where n is the command number which can be referenced to re-
request commands already entered (see csh(l)).

To change the operating mode to multi-user, enter:

INIT 2

This invokes /etc/INIT which causes the shell scripts /etc/rc and
/etc/rc_csh to run.

Successful completion of the startup script is indicated when all

terminals display the 1login prompt and the system console
displays:

2-10 Zilog 2-190

Zilog

Going multi-user!
ZEUS login:

The most important things that /etc/rc_csh does are the follow-
ing:

a) Runs the filesystem consistency check/fix program
fsck(M). Problems that fsck cannot automatically fix
must be fixed manually. See Section 4.5, Managing

Filesystem Consistency.

b) Prompts for the date, as described in datem(M). A
reply must be given within 2 minutes. See the pro-
cedure in Section 2.3.2, step 2. If this is not done,
the system displays the last known date and time, and
then enters multi-user mode.

c) Issues a mount command for each filesystem to Dbe
mounted. This is done by running the shell script,
/etc/mfs, which contains the mount commands.

d) Background processes such as dqueuer(M) and cron(M) are
started.

2.6. Startup File Management

This procedure is not required for boots subsequent to the ini-
tial boot (unless such boots follow file system restoration or
system reconfiguration).

1. If in single-user mode, request multi-user mode by entering:

INIT 2

NOTE

Steps seven and higher require mounted filesystems.
Entering multi-user mode with "INIT 2" automatically
accomplishes this at the outset. Even though other
terminals may display login prompts, their operation is
suspect until this procedure has been completed.

On the system console, login as zeus to perform super-user
(system administrator) functions. The password is
"jupiter", unless it has already been changed. After ini-
tial startup procedures, the password should be changed.
See passwd(l).

2-11 Zilog 2-11

Zilog

Check the file /etc/inittab to ensure that it contains
desired parameters for terminals other than the console that
have been attached to the system. The system reads this
information when switching from single-user to multi-user
mode.

NOTE

The console entry is a special one that should not
require changing.

Terminals other than the console can be configured to
run at a variety of baud rates by leaving the GETTY
command in place but changing the numbers following the
GETTY command as described in Section 7.3.3. To con-
figure a terminal port for write—-only operation
(printers), eliminate the GETTY fields and do not
replace them with any other interactive program invoca-
tion. The GETTY invocation is also required to estab-
lish the baud rates for terminal ports to be used with
dialin modems.

The system console terminal may be used like any other
terminal. It is not dedicated to console functions,
although system error messages are displayed on it.

Configure the system's serial ports as modems or terminals
with the ttyconfig (M) command by changing the ttyconfig com-
mand line in the /etc/rc_csh startup script. The ttyconfig
command line (or lines) specifies which ports use the modem
control lines, and which do not.

The ttyconfig command has two options:

ttyconfig -m ports

and
ttyconfig -t ports
where:
-m specifies a modem (7-wire line) configuration
-t specifies a terminal (3-wire line) configuration

Zilog 2-12

Zilog

ports is comma-separated TTY port numbers or ranges of
port numbers

Example: To configure terminal ports 2-6 for terminals (3-
wire 1lines) and port 7 for a modem (7-wire line),
use the command

ttyconfig -t 2-6 -m 7

NOTE

To avoid having to reboot the system to establish these
settings, directly enter these commands as the super-
user. Check the results by entering the command
"ttyconfig" with no arguments after the csh prompt.

If the system encounters a problem while opening an
improperly configured port, it may become caught in a
continuous retry loop. Follow the procedure at the end
of Section 7.3.2. ,

Update the file /etc/ttytype. The login program reads this
file to determine the user's terminal type. This informa-
tion is then used by the visual editor vi. See ttytype(5)
for correct parameter settings and step 2 in Section 7.4.2.

If the system has more than one cartridge tape drive, the
correct entries must be placed in /dev for each additional
drive. For each such drive, enter the command

/etc/mktape n

where n is between 1 and 3, ‘and is the tape drive number.
Tape drives are numbered from @ through 3, but the correct
entry is already in /dev for tape drive zero. Mktape(M) is
a program located in /etc that makes the necessary special
files in /dev. For example, if the system has three tape
drives, the following commands would be executed:

/etc/mktape 1
/etc/mktape 2

After these commands are issued, they should never be issued
again (unless, for some reason, the entries in /dev are
removed or destroyed). See ct(4) and mktape(M) for more
information about the cartridge tape.

Zilog 2-13

-/.

Zilog

If the system has one or more nine-track tape drives, the
correct entries must be placed in /dev for each drive. For
each, enter the command:

/etc/mkmt mtin>
where n is between 0 and 3.

Mkmt(M) is a program that makes the special files in /dev.
For example, if the system has two tape drives, the follow-
ing commands would be required:

/etc/mkmt mtd
/etc/mkmt mtl

After these commands are issued, they need not be executed
again unless the entries in /dev are removed or otherwise
destroyed. See mt(4) and mkmt(M) for more information.

1f the default timezone mode of Pacific Standard Time is
acceptable, proceed to step 8. The default is also for day-
light savings time to be displayed. If a change in timezone
mode is desired, perform the following steps once only;
thereafter, when the system 1is rebooted the modified
timezone becomes the new default.

a) Edit the /etc/rc file, changing the TZ environ(5) vari-
able to the appropriate value. Particularly, the
string "PST8PDT" must be changed to reflect the
appropriate timezone abbreviation (ie. PST), the
correct number of hours west of Greenwich Mean Time (8
is the correct number for a Pacific timezone) and the
daylight time abbreviation (ie. PDT). The original and
new lines for changing the entry from Pacific daylight
savings time to Eastern daylight time are as follows:

WAS :
setenv TZ PST8PDT

IS:
setenv TZ ESTS5EDT

b) Make the same change as described above in three other
files, /etc/cshprofile, /etc/inittab and /etc/profile.

c) Run sysgen (Section 5) in order to change the system
constants DSTFLAG and TIMEZONE. Set DSTFLAG to a value
of 1 to enable daylight savings time. Set TIMEZONE to
a value representing the number of minutes westward
from Greenwich mean time (the product of 60 x <number
of timezones west of GMT>).

Zilog 2-14

l1o.

Zilog

d) After rebooting, if the system is in single-user mode,
repeat step 1.

If the system has more than one disk drive, follow the pro-
cedure described in Section 4.2 for configuring them.

If the system has an additional line printer, or if the line
printer has a Data Products (vs. Centronics) interface,
refer to Section 7.1.

If any filesystems other than /usr, /tmp, /z and / have been
created by changing the disk layouts or adding disks, then
"lost and found" directories should be made for each of them
as described 1in this step. (For the default configuration
of disk drive @, the directories mentioned have factory-
installed lost and found directories.)

Make a directory called "lost+found" in all filesystems that
do not already contain the directory. Fsck(M) uses the
"lost+found" directories to fix <certain filesystem con-
sistency problems. For instance, if a file has no
corresponding directory entry, then fsck puts that file 1in
the "lost+found" directory for that filesystem. However, in
this case, if there is no "lost+found" directory, it cannot
be safely made, because the filesystem is already corrupt.
The file will be lost.

The space for the directory "lost+found" must be allocated
in advance. (Free blocks cannot be allocated to the direc-
tory when the filesystem is in the process of being fixed).
Typically, about ten blocks are allocated to the directory.
An easy way to do this is to make a directory, move some
files into it, and remove them. The following csh script is
automatically run by makenewfs(M):

#
foreach i (/tmp /2)
set dir="8i/lost+found"”
if (! -e $dir) then
mkdir $dir
chmog #9750 zeus @ S$dir

endif
@ j = 318
while $j
echo > dir/zj
@ j--
end
@ j = 318
while $j
rm dir/z3
@ j--

zilog 2-15

Zilog

end
end

With the standard disk configuration and one drive, this
shell script is executed for the directories /tmp and /z.
It takes about 5 minutes to complete.

11. To activate all of the parameters requested in the previous
steps, redispatch multi-user mode by entering:

INIT 2

12. On the system console, login as zeus to perform additional
super-user functions as described in the following sections.
The password is "jupiter", unless it has already been
changed. After 1initial startup procedures, the password
should be changed. See passwd(l).

2.7. Adding New Users and Terminals

New terminals and new users can be added after the initial
power-on, boot, and file administration procedures have been com-
pleted. See Section 7 and adduser(M).

2.8. Bringing the System Down

Execute the utility down(M), which brings the system down without
mishap. Then press RESET.

Down(M) is the recommended utility for bringing the system down;
however, it can be done manually. Use the following procedure:

1, Use the wall(M) command, which sends a message to each ter-
minal, notifying all logged-in users of the impending shut-
down.

2, Issue the command

INIT 1 OR
kill -1 1

This kills all multi-user related processes running on the
system. This command must be issued by the super-user. The
system is left running a single-user c¢sh process that
receives commands from the console.

2-16 Zilog 2-16

Zilog

Issue the commands

sync; sync

from the system console.

the system to
powered down or
the front-panel

This forces all outstanding I/0 on

completion. Now, the system can either be

rebooted. To shut the

system down,

press

RESET switch and turn the system power off.

Zilog

Zilog

SECTION 3
RESTORING THE SYSTEM DISK

3.1. General

The System 8000 is shipped with a preformatted disk that contains
all operating system software. Consequently, the system should
boot properly with the manual or automatic boot procedure.

NOTE

If the Imnitial Startup Procedure described in Section 2
has been successfully performed, Section 3 can be
ignored.

If the system does not boot properly, then the backup copy of the
system software on the release tape must first be restored to the
disk using the procedures in this section. 1In general, the res-
toration procedure involves creating empty ZEUS filesystems and
restoring data files and directories onto the empty filesystems.
These procedures are combined into one general procedure in the
subsection which immediately follows.

NOTE

The procedures in this section require a properly for-
matted disk.

Disk formatting is unnecessary at installation of a new system
since it has been formatted at the factory. However, the format-
ting procedure may be a necessary part of disk repair or
recovery, Disk formatting 1is performed with the Stand-Alone
Diagnostic Interactive Executive (SADIE) program. Refer to the
SADIE Reference Manual. ‘

All of the programs and data files needed for this complete res-
toration are on the Release tape and are listed below. The number
within parenthesis is the correct number to use to reference the
location on the tape where the associated file or program
resides.

() The primary bootstrap program -- a 512 byte program that

automatically loads the next program (the secondary
bootstrapper) into memory and executes it.

3-1 Zilog 3-1

Zilog

(L) The secondary bootstrap program -- a program that reads into
memory and executes any stand-alone program from tape or
disk.

(2) Disk formatting information -- informs the user about refor-

matting the system disks.

(3) A stand-alone version of mkfs(M) -- a program that makes
filesystems on the disk.

(4) A stand-alone version of restor(M) -- a program that reads
filesystems from the system tape to disk.

(5) A level @ dump of the common root filesystem that is
restored from tape to disk. This root filesystem is common
to all System 8000 models.

(6) A level 1 dump of Model 21 special root files.
(7) A level 1 dump of Model 11 special root files.
(8) A level 1 dump of Model 31 special root files.

(9) A level § dump of the common filesystem /usr that |is
restored from tape to disk. This filesystem is common to
all System 8000 models.

(19) A level 1 dump of Model 21 and Model 31 special /usr files.

(XX) File 1locations higher than 10 contain tar(l)-recorded
software packages including the accounting system, global
optimizer, learn tutorials, source code control system
(sccs), version 7 nroff, zmenu, etc.

NOTE

The files and/or programs after 1location 10 can be
restored using the package(M) utility.

The common root is the set of files making up the root that are
the same for all System 8000 models. Though they may be identi-
cally named, two or more versions of other files are supplied to
accommodate specific System 8000 models. The model-specific
files for each different model are grouped together in a single
location on the tape, making it possible to select the correct
files through tape location rather than filename.

‘The following is a complete list of the files specific to the
Model 21 (where Y.Z is the current release number):

3-2 Zilog 3-2

The

Zilog

/zeus, /zeus2 Y.%

/dev/zd¢, /dev/zd2, /dev/zd3, /dev/zd4

/dev/rzd@, /dev/rzd2, /dev/rzd3, /dev/rzd4,

/dev/z, /dev/rz, /dev/usr, /dev/rusr, /dev/tmp, /dev/rtmp,
/dev/root, /dev/rroot, /dev/swap, /etc/group

following is a complete list of the files specific to the

Model 31 (where Y.Z is the current release number):

/zeus, /zeus2 Y.Z

/dev/smd@, /dev/smd2, /dev/smd3, /dev/smd4,

/dev/rsmd@, /dev/rsmd2, /dev/rsmd3, /dev/rsmd4

/dev/z, /dev/rz, /dev/usr, /dev/rusr, /dev/tmp, /dev/rtmp,
/dev/root, /dev/rroot, /dev/swap, /etc/group

Note that the following filenames are linked to the same file
("zd" should be "smd" for Model 31 systems):

/zeus and /zeus2 Y.Z

/dev/zd@® and /dev/usr
/dev/rzd@ and /dev/rusr

/dev/zd2 and /dev/root
/dev/rzd2 and /dev/rroot

/dev/2zd3 and /dev/tmp
/dev/rzd3 and /dev/rtmp

/dev/zd4 and /dev/z
/dev/rzd4 and /dev/rz

Zilog 3-3

Zilog

3.2. Software Reinstallation Using Release Tape
CAUTION

Portions of this procedure destroy the contents of the
disk.

The following procedure is a global procedure, incorporating all
the other procedures in Section 3, and assumes a Model 21 system.
At the end of the procedure, the system is in multi-user mode,
all terminals display the login prompt, and the system is ready
for use.

NOTE

Except for pressing the RESET and START buttons, all

user entries MUST be concluded with a (carriage)
RETURN.

The format for each of the steps in the following procedure |is
shown in Table 3-1, If any of the items of information is miss-
ing, then there is no pertinent information.

Table 3-1. Procedure Step Format Description

<step no.>

display: this 1line(s) contains the information
displayed on the screen.

enter: this line describes the information that
must be entered by the user -- information
that is entered 1literally is enclosed 1in
quotes ("").

note: explanation of any of the above is contained’

on this line.

NOTE
To boot from an "smd" type disk, enter "smd" in

place of "zd" in steps 8, 14, 22, 25, 35, and 38
of the following procedure.

3-4 Zilog 3-4

Step

Step

Step

Step

Step

Step

1.

Zilog

Initial Boot/File System
Initialization Procedures

Switch power on and press the RESET button on the

front panel.

2.
display:
enter:
note:

3.

display:

enter:
4,

display:

enter:
note:

display:

enter:
note:

6.

display:
note:

S8000 Monitor X.Y - Press START to Load System
” Z T"

"ZBOOT T" can also be used.

BOOTING FROM TAPE
(Non-) Segmented Jumper Configuration
Boot

;'ct(G,Z) "

ZEUS Disk Format Information

<CR>
Disk formatting is unnecessary at installation of a
new system, since it has been formatted at the fac-

tory. However, the formatting procedure may be a
necessary part of disk repair. Disk formatting is
performed with the SADIE diagnostic programs.

Refer to the descriptions of SADIE operation in the
SADIE Reference Manual.

Boot

“Ct(G,3)"

CAUTION! Steps 5 through 10 initialize the root
("/") filesystem. Do not initiate this step unless
you are prepared to wipe out all the information in
the root ("/") filesystem.

(tttt/OxTTTT) + (dAdAA/0XDDDD) + (eoeo)+(o.s)
Each pair of parenthetical expressions contains the
size of text and data in bytes of a particular

Zilog

Step

Step

Step

Step

Step

Step

Step

7.

display:
enter:

8. (See

display:
enter:

9.
display:
enter:
note:
10,
display:

note:

11.

display:

enter:
note:

12,

display:
note:

13.

display:
enter:

Zilog

segment, starting with segment 4. Decimal digits
are followed by a slash and the hex equivalent.

filesystem size:
"6QQQ"

NOTE preceding this procedure)

filesystem:
"zd (@, 15209)"

interleaving factor (m n):
m n
m and n are interleaving factors; see Table 3-2.

isize = 1600 m/n = mm nn

Exit called

mm and nn are the interleaving factors entered in
the preceding step. The isize will vary with the
filesystem size.

Boot

"Ct(0,3)"

CAUTION! Steps 11 through 16 initialize the
("/usr™) filesystem. Do not initiate this step
unless you are prepared to wipe out all the infor-
mation in the "/usr" filesystem.

(tttt/OxTTTT) + (AAdAdA/0XDDDD) + (e} +(eee) oo

Each pair of parenthetical expressions contains the
size of text and data in bytes of a particular seg-
ment, starting with segment #. Decimal digits are
followed by a slash and the hex equivalent.

filesystem size:
"12000"

Zilog 3-6

Step

Step

Step

Step

Step

Step

Step

14.

display:
enter:

15.
display:
enter:
note:
16.
display:

note:

17.
display:

enter:
note:
18.
display:

enter:
note:

19.
display:
enter:
note:
20.
display:

enter:

Zilog

(See NOTE preceding this procedure)

filesystem:
"zd(@,a)"

interleaving factors (m n):

m n

m and n are the interleaving factors; see Table 3-
2.

isize = 1600 m/n = mm nn

Exit called

mm and nn are the interleaving factors entered in
the preceding step. The isize will vary with the

filesystem size.

Boot

"ct(g’4) n
This procedure loads and executes
version of the restor program,

the stand-alone

Will you be restoring from a factory-supplied Zilog
release tape (y or n)?
"y“ or " n'l

"y" answer initiates the interaction described in
paragraph 3.5, step 2. Be sure to read this para-
graph for complete instructions. An "n" answer
skips to step 34 below.
Do you want instructions (y or n)?
L) y" or " n"
Instructions are described in paragraph 3.5, step
4, Enter "y" for instructions; else enter "n".
Do you want to restore the root filesystem (y or
n) ?
")y" or ” n“

Zilog 3-7

Step

Step

Step

Step

Step

Step

note:

21.
display:

enter:
note:

Zilog

"y" requests restoration of the root filesystem;
"n" skips steps 22-24 and 29.

Do you want to restore the /usr filesystem (y orx
n) ?

"yll or “n"
"y" requests restoration of /usr; "n" skips steps
25-27 and 30. "n" for both this step and the

preceding step aborts the restor program, skipping
to step 38.

22. (See NOTE preceding this procedure)

display:

note:

23.

display:
enter:
note:

24.

display:
enter:
note:

Restoring the root filesystem

onto 'zd' type disk:

Press RETURN if disk type is zd; else enter disk
type.

disk unit: 0

RETURN or a number

Press RETURN if disk unit is @; else enter disk
unit number @ through 3.

offset 15200:
RETURN or offset size
Press RETURN if offset is 15200; else enter offset.

25. (See NOTE preceding this procedure)

display:
enter:
note:
26.
display:

enter:
note:

Restoring the /usr filesystem

onto "zd" type disk:

RETURN or disk type

Press RETURN if disk type is zd; else enter disk
type. See Table 3-2.

disk unit @:

RETURN or disk type
Press RETURN if unit is @; else enter disk unit
number @ through 3.

Zilog 3-8

Step

Step

Step

Step

Step

Step

Step

Step

27.
display:
enter:
note:
28,
display:
enter:
note:

29.

display:

note:

3g.

display:

31.
display:

enter:
note:

32.

display:

33.
display:

note:

34.

display:
enter:

Zilog

offset §:
RETURN or offset size
Press RETURN if offset is 0; else enter offset.

Tape Unit number?

)

Be sure to insert the cartridge tape in drive
number @.

Restoring from tape drive #0

Onto device zd(9,15200):

Common / filesystem

Special / for 'zd' type drives

Console displays restor program constants from

above steps.

Onto device zd(0,0):
Common /usr filesystem

Special /usr for 'zd' type drives

OK to restore (y or n)?
WMt or Illn“

-"n" causes program to exit. Start again at step 17.

After an affirmative response the restoration takes
about 3¢ minutes to complete.

Restoring / filesystem
Done.

Restoring /usr filesystem
Done.

If steps 19 through 32 have been performed, the
program skips to step 38.
Tape?
'lct(x'y) L]
Zilog 3-9

Step

Step

Step

Step

Step

note:

Zilog

To restore from a dump tape not supplied by Zilog,
enter the values for x and y as described in step
12 of Section 3.5.

35. (See NOTE preceding this procedure)

display:
enter:

36.
display:
enter:
note:

37.

display:

Disk?
"zd(9,15200)"

Last chance before scribbling on disk.
RETURN
Allow about 15 minutes.

End of tape

38. (See NOTE preceding this procedure)

display:

enter:
note:

39.

display:

note:

Boot

"zd(0,15200) zeus"
Transfers control to the default system kernel
restored in the preceding steps.

(tttt/OxTTTT)+ (ddAA/OXDDDD) + (eee)t(eee) oo
%Zilog Zeus Kernel-- Release y.y --Generated mm/dd/yy hh:imm:
Copyright 1981 Zilog, Inc.

System: SYS 800@, Node: ZEUS, Release: REL Y.7% Versior

<Configuration Item> <Configuration Data>

SYS 8000 ZEUS
Single-User Mode

Each pair of parenthetical expressions contains the
size of text and data in bytes of a particular seg-
ment, starting with segment @ through segment X,
which 1is configuration dependent. Decimal digits
are followed by a slash and the hex equivalent.
Also displayed are the kernel, version, and node

Zilog 3-10

Step

Step

Step

Step

Step

49,

display:
enter:
note:

Zilog

default names. vy.y is release number followed by
release date.

#1
"chmod 0700 /etc/makenewfs"
#1 is the first ZEUS prompt.

NOTE

Before proceeding to step 41, Model 20 and 36 users
must modify the /etc/makenewfs script for different
disk parameters as shown in Table 3-2.

41.

display:
enter:

42,

display:

enter:
43.

display:

note:

44,

display:

#2
"/etc/makenewfs"

kkk*x WARNING #***%%

THIS PROGRAM WILL COMPLETELY REMAKE THE /z AND
/tmp FILE SYSTEMS

Are you ready to proceed? (y or n)

lly"

Initializing /z and /tmp file systems

/etc/mkfs /dev/rtmp 6000 12 96

/etc/mkfs /dev/rz 30400 12 96

isize=1280

m/n=mm nn

isize=1600

m/n=mm nn

The /z and /tmp filesystems are initialized

mm nn are interleaving factors; the isizes will
vary with the filesystem size.

Labeling all filesystems...

All filesystems are being mounted temporarily to
run the lost+found shell script as explained in the
System Administrator Manual. The following shell
script takes about 5 minutes to complete.

Zilog 3-11

Step

45.

display:
note:

Zilog

cp /boot /usr/boot
This file has been made non-executable.
chmod 709 makenewfs

before it can be used again

#3

Follow the directions in Section 2.6. This brings
the system up in multi-user mode; system is ready
for use. All terminals have the 1login prompt and
are ready for use.

Zilog 3-12

Zilog

8000 Disk Drive @ Characteristics

Table 3-2. System
System Disk Drive Disk Interleaving Logical
30040 Type Model Factors Size
Model m n (.5K blocks)
20 and 30 8" CDC Finch 12 72 43200
(24Mbyte) Winchester BASF 12 72 43200
(zd)
21 8" CDC 12 96 57600
(32Mbyte) Winchester CDC Finch
(zd)
31 8" } Fujitsu 16 224 131936
(82Mbyte) Winchester Memorex 16 224 131936
(smd)
3.3. Disk Formatting Information

Disk formatting is unnecessary at installation of a new systenm,
since it has been formatted at the factory. However, the format-
ting procedure may be a necessary part of disk repair. Disk for-
matting is performed with the Stand-Alone Diagnostic Interactive
Executive (SADIE) program. Refer to the descriptions of SADIE
operation in the SADIE Reference Manual.

In the rare event where system disk formatting is required, the
individual procedures described in the remaining subsections must
be followed instead of the overall procedure described in the
preceding section.

3.4. Initializing the Root and /usr File Systems

In the case where the system disk has had to be formatted, the
next step is to initialize the root and /usr filesystems as empty
ZEUS filesystems. This procedure uses a stand-alone version of
mk £s (M) (Make File System). While the stand-alone version of
mkfs could also be used to initialize other filesystems on the
disk, it 1is somewhat easier to initialize them under a running
ZEUS system using the regular mkfs (as in the recommended pro-
cedures given in this section and Section 3.5).

Zilog

Zilog

(1) Press RESET to boot the primary bootstrapper. Then enter "2
T" or "ZBOOT T" to load the secondary bootstrapper. The fol-
lowing prompts should appear:

BOOTING FROM TAPE

(Non-) Segmented Jumper Configuration
Boot

(2) Enter:
ct(9,3)

after the colon. The secondary bootstrapper 1loads the
stand-alone mkfs into memory and executes it. As part of
the loading, the bootstrapper prints the sizes of the text
(instructions), data, and bss (uninitialized data) areas of
the program being loaded (in bytes).

(3) To initialize a ZEUS disk, two pieces of information are
needed by mkfs: the size of the filesystem in 512 byte
blocks, and the location of the filesystem on the disk.
Location is specified as drive number and the offset, in
blocks, of the first block of the filesystem.

Mkfs asks for each of these in turn. For example, the pro-
gram prompts and user entries for the root (/) filesystem
follow (for Model 31 systems, enter "smd" in place of "zd"
at the "filesystem:" prompt).

file sys size: 6000
filesystem: zd(0,15200)
interleaving factor (m n): <Refer to Table 3-2>

where "zd" or "smd" is the disk type, zero indicates the
physical disk wunit, and 15200 is the block offset at
which the filesystem starts. See Table 3-2 for inter-
leaving factors. Mkfs prints internal information about
the size of the inode pool and the interleaving factors.
See Table 3-2.

Next, for /usr, repeat the above step, but enter 12008 for the
filesystem size, zd(@,0) or "smd" for the filesystem, and enter
the same interleaving factors as previously entered.

The stand-alone mkfs program runs for about a minute each time,
and then exits and returns control to the secondary bootstrapper.

3-14 Zilog 3-14

Zilog

Mkfs initializes an empty ZEUS filesystem. A single directory is
created that is the root directory for the filesystem. All the
inodes (accounting of disk blocks) are marked as free, and all of
the other disk blocks are placed on the free list. Continue to
Section 3.5,

3.5. File System Restoration

(1) The next step is to fill the filesystem with the program and
data files needed by ZEUS for normal operation. This is
done by a stand-alone version of restor(M) that is in the
fifth file of the system tape. So, in response to the
prompt:

Boot

from the secondary bootstrapper, enter:
ct(0,4)

This reply executes the stand-alone restor. This reply, and
the following replies to the prompts are standard. When
first booting the system, be sure to use these replies as
shown. Do not change these replies without careful prior
consideration.

The bootstrapper prints the text, data, and bss sizes as it
works.

(2) The restor program prompts
Will you be restoring from a factory-
supplied Zilog release tape (y or n)?
The answer "n" skips to step 12, below; the answer "y" con-
tinues to step 3.

(3) The standard system tape has a common root dump image in the
sixth file. For the initial boot, leave this tape in the
tape drive.

The program now prompts

Do you want instructions (y or n)?

The answer "y" continues to step 4 below; the answer "n"
skips to step 5 below.

w
I

15 Zilog 3-15

(4)

(5)

(6)

(7)

Zilog

The console displays:

This program builds filesystems from a release tape. It
asks a series of questions to find out which filesystems you
want to restore from what cartridge tape drive.

The program displays information about the drive type, unit
number, and offset for building each filesystem. It waits
for a response from you. A RETURN means that the display is
correct; otherwise, the program changes these parameters to
those you enter.

The program reads some switches on the CPU board to deter-
mine the disk type. The model numbers of the various sys-
tems correspond to the default disk types as follows:

Model 11 'md' type disk
Model 21 'zd' type disk
Model 31 'smd' type disk

When a yes/no answer is required, the affirmative answer
must contain a "y" as the €first character. A negative

response must contain an "n" as the first character. On any
other response, the question repeats. :

At this point, the program reads the CPU switches, as
described in Section 2, to determine the type of boot drive
device.
The program prompts

Do you want to restore the root

filesystem (y or n)?

The answer "y" continues to step 7 below; the answer "n"
causes step 8, and part of the display in step 11 to be
skipped.

The program prompts
Do you want to restore the /usr

filesystem (y or n)?

The answer "y" continues to step 8 below; the answer "n"
causes step 9 and part of the display in step 11 to be
skipped. A "n" to both questions aborts the restor program.

Zilog 3-16

(8)

(9)

(19)

(11)

Zilog

The display prompts (for Model 31, "zd" becomes "smd")

Restoring the root filesystem onto
'zd' type disk:
disk unit @:
offset 15200:

in three steps. Following each prompt, either enter the
correct information; or, if the default information is
correct, press RETURN, not "y".

The display prompts (for Model 31, "zd" becomes "smd")

Restoring the /usr filesystem onto
'zd' type disk:
disk unit 0:
offset O:

in three steps. Following each prompt, either enter correct
information; or if the default information is correct, press
RETURN.

The display prompts
Tape unit number? @

If the boot drive device is 0, press RETURN; otherwise enter
the correct unit number, in the range 1 through 3.

The display shows (for Model 31 "zd" is replaced by "smd"):

Restoring from tape drive #0

Onto device zd(9,15200);

Common / filesystem

Special / for 'zd' type drives
Onto device zd(@,0);

Common /usr filesystem

Special /usr for 'zd' type drives

OK to restore (y or n)? y
The answer "n" aborts the restore operation. Repeat the
above procedure starting at step 1 by entering

ct(#,4)

The answer "y" continues the restore operation. As the
operation progresses, the display prints

Zilog 3-17

(12)

Zilog

Restoring / filesystem
Done.

Restoring /usr filesystem
Done.

If you are restoring from a factory-supplied release tape,
skip to step 14. To restor the / filesystem from a dump
tape, reply "n" to the question in step 2. The restor pro-
gram then prompts

Tape?

NOTE

When the display prompts "Tape2?", any dump tape may be
used.

To restore the root, remove the system tape, and insert the
root dump tape in the drive. Specify:

ct(x,y)

for the tape, where x is the tape drive number, and y is the
file 1location on the tape relative to zero, the first loca-
tion. For example, if the restore is made from drive @, and
is the first file (file @) on the tape, then the entry would
be

ct(@,ad)
It is strongly recommended that periodic dump tapes of the
root and /usr filesystems be made to allow this type of
stand-alone restoration. A dump of a 6909 block root takes
about ten minutes, and should be done about every month, or
more frequently if there is very much activity on the root
filesystem. Restor then prompts:

Disk?
Enter:

zd (0,15200)

Restor then prints the message:

Last chance before scribbling on the disk.

Zilog 3-18

Zilog

Press RETURN to continue, or RESET to abort. The message is
redundant since formatting and mkfs have already destroyed
whatever data was present on the (filesystem, The restor
takes about 30 seconds to decide exactly which files in the
filesystem it restors (in this case, all of them), then it
proceeds to read from the tape and write to the disk. The
entire process takes about ten minutes. When restor com-
pletes, it prints the message:
End of tape

and transfers control back to the secondary bootstrapper.
(1L3) To restore the /usr filesystem from a dump tape, insert the
system tape in the tape drive and enter:
ct(d,4)
The restor program prompts:

Will you be restoring from a factory supplied Zilog release
tape (y or n)?

Respond by typing "n".
The restor program prompts:
Tape?

Remove the system tape from the tape drive and insert the
dump tape. Then enter:

ct(x,y)
where x is the tape drive number
y is the position (relative to zero) of the file on
tape that is to be restored.
Restor then prompts:
Disk?
Enter:
zd(9,09)
Restor then prints the message:

Last chance before scribbling on the disk.

3-19 Zilog 3-19

(14)

Zilog

Press RETURN to continue, or RESET to abort. The message is
redundant since formatting and mkfs have already destroyed
whatever data was present on the filesystem. The restor
takes about 30 seconds to decide exactly which files in the
filesystem it restors (in this case, all of them), then it
proceeds to read from the tape and write to the disk. The
entire process takes about fifteen minutes. When restor
completes, it prints the message:

End of tape
and transfers control back to the secondary bootstrapper.

Boot ZEUS with the tape secondary bootstrapper. In response
to the prompt of:

Boot

.
.

Enter:

2zd(0,15200) zeus
OR
smd(9,15200) zeus

This directs the secondary bootstrapper to load the program
"zeus" from the disk filesystem starting at block 15200 on
drive @. The bootstrapper prints the text, data, and bss
sizes.

The first actions of the operating system are to print the
kernel release message and date:

Zilog ZEUS Kernel --Release n.n-- Generated <date>
Copyright 1981 Zilog, Inc.

where n is the release variable.

The kernel then determines how much memory is available for
normal mode (user) programs. This is (roughly) the amount
of real memory on the system, less about 100 Kbytes for the
operating system itself. The operating system prints the
size of memory in decimal.

Finally the operating system is brought up in "single user
mode" and is indicated by the system prompt: "#n", where n
is the command number. This mode allows the system adminis-
trator to perform various maintenance actions that cannot be
done conveniently (or at all) under normal time-sharing
operation. The system is running the C shell (csh(l)) as

20

Zilog 3

(15)

Zilog

the user "zeus", the super-user.

Now the filesystems on disk should be initialized. Enter
the commands:

chmod #7080 /etc/makenewfs
/etc/makenewfs

NOTE

Before performing this step, Model 20 and 3¢ users must
modify the /etc/makenewfs script for different disk
parameters as shown in Table 3-2.

This causes the shell script makenewfs(M) to be run, which
takes 1less than 15 minutes. As it executes, makenewfs asks
for interleaving factors, and then prints statements on the
console indicating what it is doing. For interleaving fac-
tors, see Table 3-2. Among other things, makenewfs executes
the regular (i.e. not the stand-alone) version of mkfs.
Most important, it executes the following commands (the
values differ for models other than Model 21; refer to Table
3-2):

/etc/mkfs /dev/rtmp 6000 9 96
/etc/mkfs /dev/rz 30400 9 96

The interleaving factor of mkfs controls the order in which
the blocks are placed on the free list. A gap is left
between contiguous logical blocks of a file, so that ZEUS
can initiate an I/O operation before the next block passes
under the disk read/write heads. If the interleaving were
not present, and the logically contiguous blocks of a file
were physically contiguous on the disk, then ZEUS could not
start an I/0 operation to access the next block of the file
before it had already passed by. This necessitates a delay
of one full disk revolution to access the block. Interleav-
ing is only effective on the initial creation of the free
list. This means that files are allocated optimally only
when they are allocated space from this optimal free 1list.
With time, as files are removed and other files are created,
the disk allocation becomes more and more suboptimal. Con-
sequently, the best practice is to dump, mkfs, and restore
the filesystems on a periodic basis. Following the initial-
ization of the filesystems, makenewfs continues by making
the lost+found directories.

Then, the secondary bootstrapper is copied from the root

Zilog 3-21

(16)

Zilog

filesystem to the first filesystem of drive @, /usr. It is
important to note that if makenewfs is not executed during
the restoration or if the system has a non-standard confi-
guration, the user must copy the secondary bootstrapper into
the first filesystem of drive 0.

If this is the initial boot, continue to Section 2.6, Other-
wise, enter "INIT 2%"; this brings the system up in a multi-
user mode, and all terminals display the login message.

Zilog 3-22

Zilog

SECTION 4
FILE SYSTEM MANAGEMENT

4.1. Layout of the System Disk

At initial power-on, the system must be booted as described in
Section 2 preceding., The initial boot procedure configures the
disk associated with drive 6. ‘Configuration is determined by the
set of mkfs(M) and restor (M) commands. The default configuration
layout is listed in Table 4-1 below.

Table 4-1. Default Disk Configuration Parameters

System 8000 File System File Default
Model No. Device Name** System Name* * Size (in blocks)

21 /dev/z40 /usr 12000

/dev/swap 3200

/dev/zd2 / 6000

/dev/zd3 - /tmp 6000

/dev/z44 - /z 30400

31 /dev/smdg /usr 12000

/dev/swap 3200

/dev/smd2 / 6000

/dev/smd3 /tmp 6000

/dev/smd4 /2 194739

* % File system and device names are linked.

The filesystem device name is the name the system associates with
that area on disk. This name is actually the name of a special
file located in /dev. Thus, the root filesystem initially sup-
plied on the system tape has a directory in it called /dev with
entries for, among other things, the special files /usr, /swap,
/root, /tmp, and /z. Entries such as these were created by the
mknod (M) command. For example:

/etc/mknod /dev/root b g 2

The filesystem name is the pathname component associated with
that area on disk. For example, the file /usr/foo/file is
located in filesystem /dev/usr. The association between the

4-1 Zilog ‘ 4-1

Zilog

filesystem and the system name is made by issuing a mount com-
mand. For example:

/etc/mount /dev/usr /usr

This is usually done at boot time for all normally mounted
filesystems.

The filesystem /dev/z is meant to be used for development work.
For instance, when user "stan" logs in, the home directory for
that user might be /z/stan.

4.2. Adding Disks

The following paragraphs describe the recommended software modi f-
ication procedure for adding extra disks. Any specific instruc-
tions supplied with a particular disk upgrade should be performed
first.

4_.2_.1. General

Model 2@, 21, 39, and 31 systems can operate with three addi-
tional disk drives. Unless the disk configuration for the addi-
tional drive is changed, the default configuration (assumed by
ZEUS) is the same as the default for the first drive.

Before configuring the additional disk, the extra disk should be
formatted, which physically sets up the disk for access by the
software. Refer to Section 3.3. Do not format drive @!

The configuration of each additional disk is at the wuser's
option; the only constraint is that each disk is limited to a
maximum of ten filesystems. Recommended practice is to configure
additional disks so that the most active filesystems are together
near the center of the disk. This minimizes head travel and
access time.

To change a disk configuration, invoke sysgen(M) and dgenerate a
new kernel. Sysgen prompts the user for the size of each
filesystem on the drive, in order. After generating this new ker-
nel, boot it. This procedure is described in the following sec-
tion.

4-2 Zilog 4-2

Zilog

4.2.2. Procedure

To add another disk drive to a System 80008, use the following
procedure. This procedure includes an example for adding a
second disk to a system that previously had only one disk. The
example is continued through the procedure.

In the example, a second disk drive is being added to a System
8009 Model 21 that presently has only one disk. The format of
the new disk includes two filesystems, zl and z2; the size (in
blocks) of each will be 20,000 and 37,600.

1. Make a new zeus kernel that includes the layout of the new
disk format(s). See sysgen(M) and Section 5. Enter the
commands

cd /usr/sys/conf
/etc/sysgen

and answer the questions as prompted. The questions and
answers for the example are shown below. The newly created

zeus kernel recognizes the new filesystems on the second
disk.

Do you wish to change any system constants? (y or n) : n
Is this kernel for a Model 11 system? (y or n) : n
Do you have ZD type drives on your system? (y or n) : y

How many disk drives do you have? (1-3) : 2
Do you wish to change the disk layout? (y or n) : y
Do you wish to change drive 8? : n
Do you wish to change drive 1? : y
Drive number : 1
Number of virtual disks? : 2

virtual disk number : 9 size: 20000
‘ virtual disk number : 1 size: 37600
Is the swap area on these disks? (y or n) : y
Enter the size of the swap area: 3200
Would you like to see the disk layout? (y or n) : y

DRIVE @ DRIVE 1
(Virtual)
Dis Of fset ° Size Of £set Size
o "} 12000) 20000
1 12000 3200 20000 37600
2 15200 6000])
3 21200 6000])
4 27200 30400) g

4-3 Zilog 4-3

Zilog

Will you boot from any of these drives? (y or n) : y
Do you want a new secondary boot made? (y or n) : n

Do you have SMD type drives on your system? (y or n) : n

Do you have a nine-track drive? (y or n) : n

Do you have any line printers? (y or n) : y

Do you have any cartridge tape drives? (y or n) : y

Do you have any ICP 8/02 Intelligent Serial Processors?
(y or n) : n

Do you wish to add any of your own
device drivers? (y or n) : n

The major device numbers for the ZD drives is :
The major device number for the SMD drives is :
The major device number for the MODEL 11 drives is : 10

Enter the major, minor numbers for the root
filesystem, n,n : @,2)
Enter the major, minor numbers for the swap
filesystem. m,n : 9,1

Enter the major, minor pair for temp storage
device for pipes : 4,2

What system name would you like to call this system?
(8 characters max): XXXXXXXX

What network node name would you like to call this system?

(8 characters max): XXXXXXXX

What version label would you like to call this system?
(8 characters max): XXXXXXXX

making zeus
Version X.Y
4 lines
sld -Ns -o zeus -e start -X -i -Ms62 z.o event,o mch.o
ver.o fpe.o confl.o conf2.0 ../dev/mt.d.o ../dev/lpr.o
UNET.D.LIB ../dev/zd.o ../dev/smd.d.o ../dev/md.d.o
../dev/ct.0 ../icp/zpd/icp.d.o ../icp/zpd/itty/itty.d.o
../icp/zpd/ilp/ilp.d.o ../icp/zpd/x25/x25.d.0
../icp/zpd/bsc/bsc.d.0 ../icp/zpd/sna/sna.d.o
../icp/zpd/oly/oly.d.o ../icp/zpd/acu/acu.d.o
../icp/zpd/apt/apt.d.o ../icp/zpd/bs3/bs3.d.o
../s8ys/LIBl ../dev/LIB2

new kernel: zeus
size of zeus: 82686 + 11776 + 56064 = 150526 = 0Ox24bfe

Zilog

Zilog

2. Move the 0ld zeus to a file ozeus as shown,

mv /zeus /ozeus

and replace it with the new zeus:

mv /usr/sys/conf/zeus /zeus

3. Change the mode and owner with the command

chmog 644 bin 0 /zeus

4, Use the following procedure to reboot the system:
a) Enter
INIT 1 OR
kill -1 1 OR
/etc/down

b)

c)

a)

(the down command is recommended if in multiple-user
mode) and wait for the new zeus super-user prompt,
which will be

#1
Enter the commands

sync; sync

This completes all current system I/O.

Press the RESET button on the System 80¢0 front panel,
and wait for the prompt:

S8000 Monitor X.Y - Press START to load system
Enter

Z D
followed by RETURN,

The CPU monitor prompts the user for the name of the
secondary bootstrapper with:

BOOTING FROM DISK
>

Zilog 4-5

Zilog

e) Enter
boot
The system console will display
(Non~-) Segmented Jumper Configuration

Boot

£) Enter
24 (¢ ,15200) zeus
to boot the kernel. The console will display the ker-

nel message (with the date and release number), along
with the new zeus prompt:

#1
The system is now in single user mode with the new zeus
kernel.
5. Modify the directory /dev to include a new entry for each

new filesystem. Use the command

/etc/mknod /dev/<devname> y <major device number>
<minor device number>

where: devname is the device name, and is either zdxx
for the non-raw device or rzdxx for the raw device;
and xx is a two digit decimal number that 1is the
same as the minor device number.

y is either b for the non-raw device, or c¢ for
the raw device.

major device number is @ for 2zd type drives for
both cases preceding (or 8 for block smd and 2 for
character smd). It is used to access the disk dev-
ice driver.

minor device number is a two digit number that
identifies each filesystem on the disk. Minor dev-
ice numbers are assigned sequentially for each
filesystem on each disk, as indicated below:

system (first) disk: @ through 9 (Unit @)

second disk: 13 through 19 (Unit 1)
third disk 20 through 29 (Unit 2)
fourth disk 30 through 39 (Unit 3)

4-6 Zilog 4-6

Zilog

For the example, the block device names for the new files
are 2dl1@ and zdll for zd type disks. Each filesystem must
have one raw, and one non-raw device, respectively. The raw
device has an "r" prefix to the device name. The raw device
is a character device, and the non-raw device 1is a block
device. To add these four files, the commands would be:

/etc/mknod /dev/zd10 b 0 1@
/etc/mknod /dev/zdll b 9 11
/etc/mknod /dev/rzdl® c @ 10
/etc/mknod /dev/rzdll c¢ @ 11

The same commands for smd type disks would be:

/etc/mknod /dev/smdl? b 8 10
/etc/mknod /dev/smdll b 8 11
/etc/mknod /dev/rsmdl@ c 2 10
/etc/mknod /dev/rsmdll c 2 11

All entries in /dev are made with the command mknod(M).

Set the mode and owner of the new files properly. For the
example above, use the following command for zd type disks:

chmog 640 bin ¢ /dev/zdl@ /dev/zdll
chmog 640 bin @ /dev/rzdl® /dev/rzdll
To check the entries, use the command:
1ls -1 /dev

The result is a list of all the files in /dev. BAmong them,
would be the following:

CYW—t——=——-— 1 bin system @, @ Dec 31 16:39 rusr

CYW-Y-———— 1 bin system 0, 10 Dec 31 19:50 rzdlg
CYW—F=———— 1l bin system @, 11 Dec 31 19:580 rzdll
CrW—f———=—— 1 bin system @, 2 Dec 31 18:54 rroot
Crw-Y—---—-— 1 bin system @, 3 Dec 31 16:40 rtmp

CrW—Y=———— 1 bin system #, 4 Dec 31 14:26 rz

Zilog 4-7

Zilog

DrW-Y=——==== 1 bin system ¢, @ Jul 31 19:01 usr

brw-r---—-- 1l bin system @, 10 Dec 31 19:49 2419
brw-r—---- 1 bin system @, 11 Dec 31 19:49 zdll
brw-r--—--- 1 bin system @, 2 Jul 31 19:01 root
brw-r--——--- 1 bin system @, 3 Jul 31 19:01 tmp

brw-r——--- 1 bin system ¢, 4 Jul 31 19:01 z

Use vi to add new file entries for both mount(M) and
umount (M) routines in /etc/mfs and in /etc/umfs. Name the
new directories at this time. For the example above, use
the command:

vi /etc/mfs
A typical file is displayed as follows:

: "@[$]mfs <whatstr version> <date> <time> ~ Zilog Inc"
case $0 in
/etc/mfs | mfs)
/etc/devnm / |grep root |/etc/setmnt
/bin/echo 'mounting:'
/etc/mount /dev/z /z
/etc/mount /dev/tmp /tmp
/etc/mount /dev/usr /usr
/etc/mount ;;

/etc/umfs umfs)
/bin/echo 'un-mounting:'
/etc/mount |grep -v root
/etc/umount /dev/z
/etc/umount /dev/tmp
/etc/umount /dev usr ;;

*)

/bin/echo "$@: Unknown command" ;;
esac

The new directories are to be named zl and z2. Add the fol-
lowing entries to the file following lines 8 and 15, respec-
tively:

/etc/mount /dev/zdl0 /zl
/etc/mount /dev/zdll /z2

/etc/umount /dev/zdl@
/etc/umount /dev/zdll

Wwhen this step is finished, the completed file will appear
as follows:

Zilog 4-8

Zilog

: "@[$Imfs <whatstr version> <date> <time> ~ Zilog Inc"
case $0 in
/etc/mfs | mfs)
/etc/devnm / lgrep root |/etc/setmnt
/bin/echo 'mounting:’
/etc/mount /dev/z /z
/etc/mount /dev/tmp /tmp
/etc/mount /dev/usr /usr
/etc/mount /dev/zdl@ /zl
/etc/mount /dev/zdll /z2
/etc/mount ;;

/etc/umfs | umfs)
/bin/echo 'un-mounting:'
/etc/mount |grep -v root
/etc/umount /dev/z
/etc/umount /dev/tmp
/etc/umount /dev/usr
/etc/umount /dev/zdl@
/etc/umount /dev/zdll;;

*)
/bin/echo "$0: Unknown command” ;;
esac

8. Add new files to the startup script in /etc/rc csh. For the
example, the following line would be added to the check for
filesystem consistency if a zd type disk has been added:

/etc/fsck -y /dev/rzdl@ /dev/rzdll

When the script is checked, the lines for filesystem con-
sistency typically would appear as shown:

"@[S$lrc_csh <whatstr version> <date> <timed> - Zilog Inc"
echo
uname -sn
echo 'RC STARTUP SCRIPT®
echo 'Multi-user Startup'
echo

Check for filesystem consistency
/etc/fsck -y /dev/root
/etc/fsck -y /dev/rusr /dev/rtmp
/etc/fsck -y -t /scratch /dev/rz
/etc/fsck -y /dev/rzdl@® /dev/rzdll

4-9 Zilog 4-9

10.

11.

Zilog

NOTE

Both the -t option to fsck and a "scratch™ filename
argument within a filesystem other than the one to be
checked should be used when checking a filesystem of
greater than 30,0900 blocks. This will avoid the need
for any extra user intervention when the start-up
script is invoked.

Add

the new filesystem(s) to the fsck checklist in

/etc/checklist. For the above example (zd type disk), the
following lines would be added to the end of the file:

/dev/rzdl0
/dev/rzdll

The complete file would then appear as:

/dev/rusr
/dev/root
/dev/rtmp
/dev/rz
/dev/rzdl®
/dev/rzdll

Add new directories to the root filesystem (/) for each new
filesystem. Use the following commands with the new file
names:

mkdir /zl /22

Construct the new filesystems on the additional (new) disk.

Use

the system mkfs(M) command program (/etc/mkfs). This

step will take considerably longer for larger filesystems.

Enter the command

/etc/mkfs <device id> <file size> m n

where: <device 1id> 1is the device name (for example,

/dev/rzdl9)

<file size> is the number of blocks that are to be
in the filesystem '

<m n> are interleaving factors. <m n> are given in

Zilog 4-10

12,

13.

14,

Zilog

For the example above (zd type disk), use the commands

/etc/mkfs /dev/rzdl0 20000 12 96
/etc/mkfs /dev/rzdll 37690 12 96

where the interleaving factors are 12 96.

Label the filesystems using the labelit(M) command. The
first argument to this command is the /dev filename entry,
the second is the mounted name of the filesystem, and the
third 1is the volume number. For the example case, the fol-
lowing commands should be entered:

/etc/labelit /dev/rzdlg /zl 1
/etc/labelit /dev/rzdll /z2 1

Mount the new filesystems on directories zl and z2. Enter
the commands for a zd type disk:

/etc/mount /dev/zdl@ /zl
/etc/mount /dev/zd1ll /z2

Write a new shell script /etc/mlf to add "lost and found"
directories for each of the new filesystems. Use the
filesystem names zl and z2. This new script will make 1lost
and found files 10 blocks long for any files in "foreach".
The completed file should look like:

#
foreach i (/zl1 /z2)
set dir="$i/lost+found"
if (! -e $dir) then
mkdir Sdir
chmog @750 zeus @ $dir
endif
@ j=318
while §j
echo > dir/zj
Qe j--
end
@ j=318
while $j
rm dir/zj
Q@ j--
end
end

zilog 4-11

Zilog

15. Enter the command:
chmod @709 /etc/mlf
16. Start the execution of the shell script by entering:
/etc/mlf
The script takes a few minutes to complete.

17. Change the mode and owner of the new "lost+found" direc-
tories. Use the command:

chmog 644 bin @ /zl/lost+found /z2/lost+found

18. Check for successful completion of the previous steps using
the ls command:

ls =1 /z*
The display should show the following for zl and 2z2:

/zl:
total 190
drw-r--r-- 2 bin system 5120 Dec 31 21:20 lost+found

/z2:
total 19
drw-r--r-- 2 bin system 5120 Dec 31 21:29 lost+found

19. To enter multiple-user mode, enter the commands:

sync
INIT 2

This completes the software modification procedures for the
addition of a new disk.

4.2.3. Reconfiguration of the Original Disk

With the addition of a disk, it may also become desirable to
change the layout (sizes and composition) of the first disk. To
optimize the system, however, the default disk layout should bhe
followed wherever possible (such as leaving the "command" pro-
grams within / in the central area of the disk to minimize head
travel for frequently accessed programs).

4-12 Zilog 4-12

Zilog

Use the following procedure to change the first (system) disk
layout:

6.

NOTE

Note that the root, /tmp, and /usr should not be
smaller than the default sizes, since the restor may
not work if they are.

Run sysgen to generate a new kernel for the new configura-
tion. When the new kernel is created, copy the old file,
/zeus, to /zeus.old and move the new kernel to the root
filesystem with the name /zeus. If a new secondary
bootstrapper was created, move it to the filesystem which
will be the first filesystem on disk in the new configura-
tion. Name it "boot".

Dump each filesystem to a separate tape.
Bring the system down.

Insert the system distribution tape, press RESET and type in
llZ Tll o

Type in
ct(a,3)

to invoke the stand-alone mkfs(M) program. The prompts and
appropriate Model 21 replies are:

file sys size: x
filesystem: zd(0,y)
interleaving factor (m n):

where x is the new size of the root; x should
be greater than or equal to 6000, since
the new root will be restored from the
dump of the root just taken. y is the
block offset on disk where the new root
filesystem starts.

mm and nn are the interleaving factors.
See Table 3-2,

Type in
ct(0,4)

Zilog 4-13

Zilog

which invokes the stand-alone restor(M) program,
The restor program prompts

Will you be restoring from a factory-supplied
Zilog release tape (y or n)?

Enter
n

and insert the tape with the dump image of the root on it.
The prompts and appropriate replies for Model 21 are:

Tape? ct(¥,0)
Disk? zd(¥,n)

where n is the block offset of the new root filesystem.

Ehis command restores the root filesystem from the dump just
aken.

Type in (change "zd" to "smd" for Model 31 systems)
zd (0 ,n) zeus

where n, again, is the block offset of the root filesystem
that was restored. The name of the kernel that was gen-
erated using sysgen(M) should be "zeus". The system should
now boot,

Issue appropriate mknod(M) and mkfs(M) commands as described
above, and follow steps 1 through 7, above. Then restore
and label the filesystems dumped previously, using restor(M)
and labelit(M).

If it is desirable to have a maintenance kernel to boot (see
Section 4.3), /tmp should be no smaller than the root
filesystem. A new kernel should be sysgened. When the
major, minor numbers for the root are requested, reply with
the major, minor number for /tmp. The major, minor number
for temporary storage for pipes should also be that of /tmp.
The new kernel should be called "zeus.maint" and moved to
the root. Finally, dump the contents of this new root to
tape for use when necessary to boot from the maintenance
filesystem.

Zilog 4-14

Zilog

4.3. Maintenance File System

If fsck cannot fix a corrupted root filesystem, it may be neces-
sary to boot using a maintenance filesystem to clean up an
unmounted root. In the configuration above (which is enforced at
boot time), the filesystem /dev/tmp is the same size as the root
filesystem, /dev/root. Thus /dev/tmp can be used as the root
filesystem if the real root 1is corrupted. This is possible
because /tmp, the file name linked to /dev/zd3 or /dev/smd3, is
not wused by the commands that are ordinarily issued to clean up
/dev/root, and thus need not be separately mounted. Use the fol-
lowing procedure to boot (Model 21) using /dev/tmp as the mainte-
nance filesystem.

NOTE
To boot using /dev/tmp as the maintenance system for
the Model 31, substitute "smd for "zd" in steps five,
six, and seven of the following procedure. The device

files are named /dev/smd<X> rather than /dev/zd<X> for
the Model 31.

1. Bring the system down.
2. Insert the system tape in the tape drive.
3. Press RESET.

4. Enter

ZBOOT T

5. In response to the secondary bootstrapper's prompt, enter
"ct(0,3)". This executes the stand-alone mkfs program. The
prompts and replies for this program for a Model 21 are:

fFile sys size: 6000
filesystem: zd(0,21200)

This remakes the filesystem /dev/zd3 (or /dev/smd3 for Model
31 systems).

6. Use the following procedure to restor the root filesystem.
In this case, the root filesystem, on tape, is being
restored in the filesystem on disk usually associated with
/tmp. The restore should take about 15 minutes.

4-15 Zilog 4-15

display:

enter:

display:
enter:
note:

display:
enter:

display:
enter:

display:
note:

display:
enter:
note:

display:
enter:
note:

display:
enter:
note:

Zilog

Step 1.

Will you be restoring from a factory supplied Zilog
release tape (y or n)?
“yl!

Step 2.

Do you want instructions (y or n)?

” n"

Instructions are described in paragraph
4,

3‘5'
Enter "y" for instructions; else enter "n"

step

Step 3.

Do you want to restor the root filesystem (y or n)?
Mo,
Y

Step 4.

Do you want to restor the /usr filesystem (y or n)?
" n"

Step 5.

Restoring the root filesystem onto 'zd' type disk:
Press RETURN if disk type is zd; else enter disk
type.

Step 6.

disk unit: ¢

RETURN or a number

Press RETURN if disk unit is
unit number @ through 3.

@; else enter disk

Step 7.

offset 15200:
21200
Entering 21200 writes on /tmp instead of /.

Step 8.

Tape Unit number?
]
Be sure to insert the cartridge tape in drive

Zilog 4-16

Zilog

Step 9.
display:
Restoring from tape drive #0
Onto device zd(9,21200):
Common / filesystem
Special / for Model 21
note: Console displays restor constants from above steps.
Step 10.
display: OK to restor (y or n)?
enter: "y"
Step 1l.
display:
Restoring / filesystem
Done
7. The secondary bootstrapper prompts again when the restore is

done. The prompt and appropriate reply in the Model 21 are:

Boot
:2d(0,21200) zeus.maint

This causes the maintenance kernel, which considers /dev/tmp
as the root, to be booted.

Now /dev/root can be repaired in single-user mode either by run-
ning the program fsck or by running individual commands such as
icheck(M) and dcheck(M). To use fsck, extract from /etc/xrc_csh
the 1line which invokes fsck, and issue that line as a command.
Alternately, refer to Section 4.5 and follow the instructions
carefully.

When /dev/root is repaired, manually reboot the system with the
0old root filesystem (/dev/root), and, in single user mode, issue
the command:

/etc/mkfs /dev/tmp 6000 <m> <n>
WHERE FOR MODEL 21:

m=12 n=96
WHERE FOR MODELS 20, 3¢ and 31:

refer to Table 3-2 for the values of m and n

This remakes the filesystem associated with /tmp. The system can
now be brought up multi-user.

4-17 Zilog 4-17

Zilog

4.4. Dumps

To dump the contents of a filesystem to tape as a precautionary
backup, the user usually issues a command like

/etc/dump Qu /dev/rz
This copies the files from disk filesystem /dev/rz onto tape.

The complementary command restor(M) can be used to restore the
files from the tape back to the disk. The command:

/etc/restor r /dev/rz

restores the files from tape back onto the /dev/rz filesystem on
disk.

Only unmounted filesystems should be dumped, because activity in
a filesystem being dumped can make it an unreliable backup.

The characteristics of each installation determine how frequently
dumps should be made. For most installations, a weekly level 0
dump and daily level 1 dumps are advisable for active filesys-
tems. For less active filesystems, the weekly level @ dump is
still a good idea, but the level 1 dumps need not be taken so
frequently.

To minimize the impact on the user community, dumps can be made
at some "off" time through the use of the at(l) command. A tape
is left in the transport and the dump is scheduled to be taken at
some later time.

It may be desirable to do a tape dump, a mkfs(M), and a tape res-
toration of a filesystem occasionally (eg. every three to six
months). This dump/mkfs/restor re-allocates all of the blocks in
each file in an optimal way. Active filesystems become frag-
mented over time, so the performance improvement can be notice-
able.

4.5. Managing File System Consistency

The fsck(M) program is used to check filesystem consistency as
part of the /etc/rc_csh script that is automatically executed
after a manual or automatic boot when bringing the system into a
multiple-user state. It can also be entered manually.

However it is run, fsck(M) performs the necessary repairs in

almost all cases. However, occasionally the f£sck program may
encounter a problem that requires manual intervention to correct.

4-18 Zilog 4-18

Zilog

This section discusses various file consistency problems
recovery procedures. The following subsections each describe
of the possible errors and the corrective action that must
taken.

Fsck actually performs the equivalent of an icheck(M)
dcheck(M) on (mostly unmounted) filesystems. Icheck checks
block consistency of a filesystem. For each filesystem,
returns messages of the form:

files 149 (r=128, d=13, b=3, c=5)
used 1721 (i=57, ii=@, iii=@, d=1664)
free 3245

missing @

This is interpreted as follows:

and
one
be

and
for
it

® Files: there are 149 files in the filesystem; 128 are regu-

lar files, 13 are directories, 3 are block special files
5 are character special files.

and

® Used: there are 1721 blocks used in the filesystem, there

are 57 indirect blocks, no doubly or triply indirect blo
and 1664 direct blocks.

® Free: there are 3245 blocks on the free list.

® Missing: there are no missing blocks. Blocks are nmis
when they are not in a file and not on the free list.

Dcheck checks the consistency between link counts in inodes

cks,

sing

and

directory entries. If dcheck is successful, it returns nothing

except the name of the device being checked.

Icheck and dcheck can report different types of errors. These
errors and appropriate recovery procedures are discussed below.

NOTE

Whenever possible, make all error recoveries on
unmounted or quiescent filesystems. If the root
filesystem is inconsistent, make all fixes to the raw
device /dev/rtmp. Then reboot, but do not issue any
sync commands prior to rebooting. Likewise, before
rebooting, do not issue a regular icheck or dcheck of
the root, because these commands may issue sync com—
mands. An alternate method is to boot from a mainte-
nance filesystem and work on an unmounted root.

4-19 zilog

Zilog

4.5.1. Missing Blocks

The icheck(M) program detects an error involving missing blocks.
Recover by doing an icheck with the "-s" option, which restruc-
tures the free list. Enter:

/etc/icheck -s /dev/...
where ... is the filesystem in error.
Then do a regular icheck:

/etc/icheck /dev/...

This ensures there are now no missing blocks. Missing blocks are
not too serious and can be reclaimed at the user's convenience.

4.5.2. Duplicate Blocks

The icheck(M) program detects an error involving duplicate
blocks:

53311 dup; inode=81 <class = free

The word "dup" indicates that logical block #53311 is both on the
free 1list and in a file. Recover by doing an icheck with the
"_g" option, as described above. Then do a regular icheck. This
removes the blocks in question from the free list. This is a
serious error and should be repaired immediately.

4.5.3. Bad Freeblock

The icheck(M) program detects an error in addressing a block.
This indicates that a block number outside the available space
was encountered in the free list. To recover, do an icheck with
the "-s" option.

4.5.4. Bad Block

The icheck(M) program detects an error in addressing a block and
is indicated by a message similar to a "duplicate block" message:

53312 bad; 1inode = 58, class = free

In this example, block 53312 lies outside the filesystem on the
disk. Since the class indicates that the block is on the free
list, an "/etc/icheck -s" should be performed. Issue an icheck

4-20 Zilog 4-2¢0

Zilog

and a dcheck to check filesystem consistency. Recovery is impor-
tant and should be done promptly.

4.5.5. No Directory Enmtries

The dcheck(M) program detects an error in the accounting informa-
tion associated with a file. Part of this message is:

/dev/...
entries link cnt
4348 9 1

In this example, the link count in inode 4348 is one but there
are no directory entries for this file. Therefore, this file
will never be deallocated. To recover run clri(M) on the inode.
For example:

/etc/clri /dev/z 4348
Then execute an icheck on the filesystem:
/etc/icheck -s /dev/z

This puts the disk blocks back on the free list. Finally, per-
form an icheck and dcheck on the filesystem.

If the fields for both the entries and 1link count fields are
zero, use the same recovery procedure.

If the dcheck indicates at least one directory entry for the
file, but the 1link count is still greater than the number of
entries, then there are two options:

1. Do nothing. When all the directory entries are removed for
that file, the inode will not be deallocated. Some disk
space will be lost, but the situation does not degenerate.

2. Remove the directory entries by removing the file(s), and
clear the inode. The method for doing this, and for obtain-
ing the ASCII file name(s) for the file(s), is described for
Too Many Directory Entries, below.

4-21 Zilog 4-21

Zilog

4.5.6. Too Many Directory Entries

The dcheck(M) program detects an error in the accounting informa-
tion associated with a file. Part of this message is:

/dev/...

entries link cnt
4348 2 1

This message indicates that a particular inode has more directory
entries than links, as indicated by the link count. Eventually,
one or more directory entries may point to an inode that is
either not allocated; or worse, may point to a different file.
To recover:

1. Discover the file name associated with the inode in question
by doing an ncheck(M). For example:

/etc/ncheck -i 2001 /dev/zd5

Ncheck returns the ASCII name of the file corresponding to
inode 2001.

2. Remove the file from the filesystem. 1f the file is impor-
tant, first attempt to copy it to another file in a clean
filesystem first. To remove a file:

a. Mount the filesystem. For example:
/etc/mount /dev/z /z
See /etc/mfs to determine the correct mount command.
b. Remove the file with the rm(l) command.
C. Finally, issue the command:
/etc/umount /dev/z
3. Issue the following commands to complete the recovery:
/etc/clri /dev/z 2001
/etc/icheck -s /dev/z
/etc/icheck /dev/z
/etc/dcheck /dev/z

No errors should be found.

4-22 Zilog 4-22

Zilog

4.5.7. File Block Outside the File System

The icheck(M) program detects an error in addressing an allocated
block and is indicated by a message similar to "Bad Block":

53312 bad; inode = 25, class = data (small)

In this example, block 53312 lies outside the filesystem on the
disk. It 1is a block that is part of a file, and it is a direct
block because it 1is described as "small", (The adjectives
"large", "huge" and "garg" indicate that the block is accessed
singly, doubly or triply indirect, respectively.) To recover:

1, Remove the file from the filesystem. Use the procedure for
Too Many Directory Entries, above.

2. Because the file's blocks were returned to the free list,
the free list may have a block that is outside the available
filesystem space. Perform an:

/etc/icheck -s /dev/. ..

3. Check filesystem consistency with an icheck and a dcheck.

4.5.8. Duplicate Blocks in Files

The icheck(M) program detects an error in addressing an allocated
block. Part of this message is:

53312 dup; 1inode = 25, class = data (large)

In this example, block 53312 is in two files, and the inode for
one of these files is 25. The inode and file name for the other
file should be retrieved in order to correct the problem, In
order to retrieve them, first issue an icheck command with the -b
option. This produces the inode numbers of all the files that
contain the duplicated block. After this is done, find the file
names from the inode numbers as described above for a file block
outside the filesystem. One of these files must be removed. The
administrator must use discretion in deciding which file to
remove. Usually, this file was open at the time of the system
crash. Use adb(l) to examine the contents of the duplicate
block. Sometimes the contents are obviously part of one file.
In any case, if the file is important, try to copy it to another
filesystem before removing it. After one file is removed, per-
form an icheck -s, and then an icheck, and finally, dcheck to
ensure consistency.

4-23 Zilog 4-23

Zilog

SECTION 5
SYSTEM GENERATION (' ‘sysgen'')

System generation (sysgen) is an on-line tool for modifying and
generating a new version of the ZEUS kernel. The user can wmodify
certain system constants, change the configuration of the
disk(s), modify the location of the root filesystem, or add
user-written device drivers to the system. Most installations
use sysgen{(M) only to adjust the timezone information to reflect
the location of the system. The other tuning parameters should
not need adjustment in normal circumstances. It is possible to
seriously degrade system performance or even to create a non-
functional kernel by inappropriate adjustments of parameters.

Many of the parameters are used as bounds on arrays. Their ini-
tial settings have been chosen to make maximum use of the kernel
address space. In most cases, the number of big (disk block)
buffers (NBUF) is the last parameter adjusted. 1Its value is usu-
ally set to occupy the remaining address space. For example,
decreasing the number of processes (NPROC) from the default set-
ting may free enough memory to allow the number of buffers (NBUF)
to be increased. Although it is possible to create a slightly
smaller kernel by setting NBUF to a smaller value, system perfor-
mance will probably be degraded.

To use sysgen, change directory to /usr/sys/conf, and then exe-
cute /etc/sysgen.

See sysgen(M). If the -d option is not used, sysgen asks the
user a number of questions, creates some temporary files, and
then builds a new kernel from the available object files. The
questions and the procedures are described below. See Section
4.2.2 (step 1) for an example of sysgen operation.

1. System Constants
The first sysgen question is:

Do you wish to change any system constants? (y or n):
Ei ther "y" or "yes" invokes the editor vi (see vi(l)), which
allows the user to edit the file /usr/sys/h/sysparm.h. This file
contains all the modifiable system constants. The recommended

response is "n", for no (unless simply changing the time zone
quantity within the TIMEZONE constant definition).

5-1 7ilog 5-1

Zilog

CAUTION

Do not change any of the system constants unless neces-
sary.

Do not change the value of any system constant to be
nonsense

To return from vi,
prompt for disk information (next

Table 5-1 contains a typical list

and meanings.

enter

a

value (e.g. setting the size of the open file
table to @).

"ex"™ or "Zz". The system will then
step) .
of constants, default values

Table 5-1 Typical System Constants
#define CANBSIZ 256 /* max size of input line from terminal */
$define DSTFLAG 1 /* Daylight Savings Time flag */
$define MAXMEM 512 /* max memory per process */
/* (256 byte blocks) */
$define MAXUPRC 20 /* max imum number of processes per user */
$define NBUF1 44 /* number of big buffers in buffer pool 1*/
$define NBUF2 1 /* number of big buffers in buffer pool 2*/
$#define NBUF3 1 /* number of big buffers in buffer pool 3*/
$#define NBUF4 1 /* number of big buffers in buffer pool 4*/
#define NBUF5 1 /* number of big buffers in buffer pool 5*/
#define NCLIST 109 /* number of small buffers for term io */
#$define NFILE 175 /* size of system open file table * /
$define NINODE 200 /* number of in-core inodes */
#define NMOUNT 20 /* number of mountable filesystems */
$define NPROC 78 /* max number of active processes */
#define NTEXT 49 /* max number of shared text segments */
$define TIMEZONE (8%*6@)/* minutes westward from GMT */
$define NFLOCK 100 /* number of lockable regions in a file */
$define NESLOT 20 /* number of slots for error logging */
2. Disk Information
a. Di fferent types and sizes of disks can be wused with
various models of the System 800@. These drives are
listed in Table 3-2 in Section 3.
Sysgen asks if the system model number is 11:
Is this kernel for a Model 11 system? (y or n) :
5-2 zilog 5-2

Zilog

If the response is "y" or "yes", then sysgen asks for
data pertinent to the disk units on those models only.
The proper response for Model 21 and 31 systems is "n"
or "no". If the answer is "n" or "no", then sysgen
asks if the system has 2D type disk drives (non =-SMD
interface):

Do you have ZD type drives on your system? (y or n) :

If the answer is "n" or "no", then sysgen asks for data
pertinent to SMD interface disks:

Do you have SMD type drives on your system? (y or n) :

One of the three questions must have an affirmative
answer.

Sysgen first asks for the number of disk drives in the
system: :

How many disk drives do you have? (1-4):

Enter the number of physical drives in the system con-
figuration. The maximum number is four for Model 21
and eight for the Model 31 (consisting of four "zd" and
four "smd" type drives).

Sysgen then asks for data relevant to disk layout:
Do you wish to change the disk layout? (y or n):

A default disk layout is assumed if the answer to this
question 1is "n" or "no". Avoid "fancy" disk layouts;
it is very easy to do something wrong, or 1leave some-
thing undone. The default partitioning of the first
and second disks should be appropriate for most ZEUS
users. The default layouts for the System 8000 drives
are shown in Table 4-1,

This partitioning is optimized to increase disk access
performance. There should be a good reason to change
the layout of the first two physical drives. For 3
drives, the 1layout should probably be changed to
improve performance and accommodate local needs (e.g.
putting two heavily used filesystems on separate
drives, or, if on the same drive, close together).

Remember to create the proper special device files,

modify the /etc/rc_csh script, and modify the /etc/mfs
after installing the new filesystem.

zilog 5-3

Zilog

NOTE

If changing the disk layout, be sure to save a copy of
the 0ld boot program first (/usr/boot).

If the layout does need to be changed, sysgen steps
through each of the physical drives, asking whether the
layout should be changed. If so, sysgen asks for the
number of virtual disks (partitions) on that drive, and
for the size of each partition. The maximum number of
blocks for a given physical disk is in Table 3-2. All
blocks on a given disk must be allocated. The maximum
number of partitions on a disk is 10,

d. Sysgen next asks:
Is the swap area on these disks? (y or n):

Answer "y" unless you have both smd and zd disks and

you wish to place the swap area on a different kind of
disk.

e. Sysgen next asks for the size of the swap area, in
blocks. This size must match one of the virtual disk
sizes entered above, or for the default size in Table
4-1.

f. Next sysgen asks:
Would you like to see the disk layout? (y or n):

If the answer is "y", the layout is shown for all disks
configured in the system.

NOTE

Request a new bootstrapper only if the location of the
root has changed, and the root is on the disk(s) being
changed.

g. The sysgen program creates a new secondary boot pro-
gram, if requested, that looks for /zeus in the correct
place when booting is automatic. Next, sysgen asks for
the 1location of the root, i.e. the physical drive
number and block offset on that disk (the default

Zilog 5-4

Zilog

values are @ and 15200, respectively). The sysgen pro-
gram checks to ensure that the offset given for the
root also exists in the disk layout tables. Then it
prints the messages:

making new boot
new boot in current directory : boot

To install this new secondary bootstrapper for the new
kernel, move it to /usr/boot (default disk layout), or,
the first filesystem on drive ¢ (non-default layout) .
Do this only after the new kernel is installed, because
the new boot might not work automatically with the old
kernel.

3. Nine-Track Tape Option

Sysgen prompts:

Do you have a nine track magnetic tape drive? (y or n) :
Enter "y" or "yes" if a nine-track magnetic tape drive is
installed with the system.

4, Line Printers

Sysgen next asks:

Do you have any line printers? (y or n) :

5. Cartridge Tape
Next sysgen asks:
Do you have any cartridge tape drives? (y or n) :
Since the standard model configurations always include a car-
tridge tape, the answer should be "y".
6. Intelligent Communications Processor (ICP)

Sysgen asks:

Do you have any ICP 8/02 Intelligent Serial Processors?
{y or n):

5-5 Zilog 5-5

Zilog

If you answer "y" sysdgen then prompts:

How many ICP 8/62's do you have? (1 to 3) :

NOTE

The following questions appear only if files have been
properly installed using the Zilog release tape associ-
ated with these options.

Do you wish to have the Intelligent Tty protocol included?
(y or n):

Do you wish to have the Intelligent Line Printer protocol
included? (y or n):

Enter the correct quantity in response to the first question, and
"y" for each of the desired protocols.

7. Device Drivers
Sysgen next asks:

Do you wish to add any of your own device drivers? (y or n) :

To add user-written device drivers to the kernel, answer "y" or
"yes", Sysgen asks for the .o file name of the compiled device
driver. The user can add up to six drivers in this manner. Con-
tinue to the next question by pressing RETURN.

Writing a device driver and making it work are not trivial tasks.
The basic shells for all the required routines are provided in
/usr/sys/dev, in the files udevl.c, udev2.c, etc.

Use the mknod(M) command to set up the appropriate special files
in the directory /dev. The major device numbers for the six user
devices are 16-21, respectively. Minor device numbers must be
determined by the user, as they are device dependent.

8. File System Location
If the disk layout has been changed from the default, then
sysgen(M) asks the user to enter the major, minor number pair for

three separate areas on disk: the root filesystem, the swap area,
and the temporary storage area for pipes. The major device

5-6 Zilog 5-6

Zilog

numbers differ for the smd and zd type disk drives as indicated
in Section 4.2.2.

The swap filesystem is where all processes are swapped. The tem-
porary storage area for pipes should be located in the same
filesystem as the root, to allow pipes to be used in single-user
mode. Again, these should not be changed without careful prior
consideration.

9. Naming Your System
Sysgen prompts:

What system name would you like to call this kernel? (8
characters max) : :

This question helps identify the kernel via the wuname(2) system
call. This name may be up to eight characters and may include
blanks, numbers and special characters. It replaces the default
system name of "ZEUS" appearing in several prompts including the
login prompt.

10. Network Node Name
Sysgen prompts:

What network node name would you like to call this kernel?
(8 characters max) :

This question helps identify the kernel via the uname(2) system
call. This name may be up to eight characters and may include
blanks, numbers and special characters. The network node name
is used by uucp(l) to identify itself to other systems. For this
purpose, imbedded blanks should be avoided.

11. Kernel Version Name/Number

Sysgen prompts:

What version label would you like to call this kernel? (8
characters max) :

This question helps identify the kernel via the uname(2) system
call. This name may be up to eight characters and may include
blanks, numbers and special characters.

12. Kernel File Creation

Sysgen then invokes the make(l) utility to build a new kernel in
the current directory. The display prints:

5-7 Zilog 5=7

Zilog

making <filename>
Version <version number>
4 lines

The version and line messages are generated by the chkout(l)
program in the process of making ver.o. The next message is
the input to the ZEUS loader, which links the various pieces
of kernel object code together and resolves external refer-
ences. The next message is:

new kernel : zeus

The filename will be "zeus" unless the -f option was used
when sysgen(M) was executed.

The final message states the sizes of the various pieces of
kernel. For example, the message:

size of zeus: 82686 + 11776 + 56064 = 150526 = 0@x24bfe

tells the user that the size of the kernel text area is
82,686 bytes, the kernel data area is 11,776 bytes, and the
bss area is 56,064 bytes.

To 1install the new zeus, move /zeus to /ozeus, move
/usr/sys/conf/zeus to /zeus, and then reboot the system.

The most common mistakes in running sysgen are:

[L] Not having write permission in /usr/sys/conf. The user
must be the owner of /usr/sys/conf or the super-user,
because sysgen creates some temporary files there.

[2] Undefined symbols from the loader. These will probably
be from user-defined device drivers. All the necessary
driver routines must be defined.

[3] The generated kernel does not boot. 1In this case possi-
ble causes can include giving the wrong major,minor pair
for the root to sysgen; defining a bad disk format; or
overlooking installation of a new boot when changing the
disk layout. If the old kernel does not boot manually,

then it may be necessary to boot from tape or a backup
filesystem.

{4] Upon booting, the fsck(M) program removes many files in
a filesystem. This is usually a result of an incorrect
declaration of the filesystem size during sysgen. If
this occurs, interrupt the fsck program immediately and

5-8 Zilog

Zilog

try booting an old kernel. (All user files should have
been backed up to tape, so their recovery is possible.)

Zilog

Zilog

SECTION 6
SYSTEM CRASHES AND OTHER PROBLEMS

6.1. System Crashes

If the system crashes, note the cause (if possible) from the mes-
sage on the system console. If there is a message, it starts
with the word "panic:", and is followed by other information.
Panic messages and their meanings are listed below. All of these
are "should never happen" messages, and indicate a serious
hardware or software problem. If the kernel has been recently
changed, it is a prime suspect. If not, there 1is probably a
hardware problem.

6.2. Panic Messages

blkdev
The kernel was called to get a block from a filesystem
represented by a nonexistent major device number.

devtab
Block in nonexistent device requested.

EIT on ICPLX>
An Ex tended Instruction Trap occurred on ICP<x>, where x |is
a number from @ through 2. To recover, stop the ICP, and
re-load the ICP protocol tape. This is a fatal (disabling)
error only for those devices connected to ICP number x.

EPU instruction ‘
An EPU instruction trap occurred while in system mode.

ICP<x> Parity Error
The system detects corrupted memory on ICPLX>, where x is a
number from @ through 2. To recover, stop the ICP, and re-
load the ICP protocol tape. This is a fatal (disabling) er-
ror only for those devices connected to ICP number x.

ICP<x> Uninitialized Vector Entry
A critical error is detected on ICP<X>, where x is a number
from @ through 2. To recover, stop the ICP, and re-load the
ICP protocol tape. This is a fatal (disabling) error only
for those devices connected to ICP number x.

init
An I/0 error occurred during initialization while reading
the super-block for the root filesystem.

6-1 Zilog 6-1

Zilog

I0 err in swap

An I/O error occurred while swapping.

Kernel segmentation violation

An MMU complained.

Kernel system call

System call routine was entered from system mode.

<zd> or <smd>: fatal error
An unrecoverable error status was returned from the disk
controller, indicating the system disk is unusable. To re-
cover, reboot. 1If the reboot fails, turn power off for a
few minutes and then reboot again.

no fs
A device has disappeared from the mounted device table in
the kernel,

no imt
Same as above but produced from a different kernel routine.

no procs

Internal system fork can't find process entry in table.

Nonvectored interrupt

Spurious interrupt.

Out of swap

A program needs to be swapped out, and there is no more swap
space.

out of swap space

Same as above.

Privileged instruction

Privileged instruction interrupt happened from system mode.

restart

Control erroneously jumped to location 4.

Running a dead proc

A context switch is made to a bad process.

Unexpected interrupt

Spurious interrupt.

Zilog 6-2

Zilog

zero wchan

6.3.

A process is sleeping on the wrong internal channel. The
system must be rebooted. If the boot does not work (for ex-
ample, the prompt is never issued) the files needed to boot
are probably not intact (most likely, /etc/init). To
correct, restor(M) the root filesystem from tape. In this
case, boot from a maintenance filesystem. Then check the
root filesystem consistency with fsck or icheck and dcheck.
When it is consistent, mount the old root on a new directo-
ry, and check the files necessary for booting. The follow-
ing commands are an example:

mkdir /t

/etc/mount /dev/root /t

ls -1 /t/etc/INIT /t/dev/console /t/bin/csh /t /zeus*
<here, move files over to root, if necessary>
/etc/umount /dev/root

The directory /t is made in the (maintenance) root
filesystem, which is currently on /tmp. =zeus should be

linked to the file zeus3 _Y.Z. Thus, the file
/t/zeus2_Y.Z and the link /t/zeus should exist. Note
that the file zeus maint is linked to zeus3 _Y.Z - where

Y.Z is the release number.

Other Messages

The kernel also prints a number of other messages indicating
serious, but non-fatal problems. These messages are:

bad block on dev x/y

A block in a file is not located between the i-list and the
end of the filesystem on disk. x is the major device number
and y is the minor device number. Minor device numbers are
the individual filesystems on disk. The file /etc/mfs shows
what filesystems are mounted under which names. For the
typical system with "zd" type disks, these are:

Major Major Minor File System
(raw) (block)

] 9 7] /usr

) @ 1 swap area
) 0] 2 root (/)
0] 3 /tmp
7] 7] 4 /z

Zilog 6-3

Zilog

To recover, bring the system down and reboot, having fsck(M)
fix the filesystem consistency problem.

bad count on dev x/y

A consistency check on the super block of a mounted filesys-
tem failed. Chances are, the filesystem super block has
been corrupted. To recover, dump to tape (dump(M)), do a
mkfs(M), and restore {restoxr(M)).,

Bad free count on dev x/y

The super block of the filesystem associated with major dev-
ice x, minor device y is full, or corrupted. The size of
the free block list, kept in the super block, is bad. To
recover, try to delete some of the files on the x/y device.
If this does not clear the trouble, dump the filesystem onto
tape, remake using mkfs(M), and restore the filesystem using
restor(M).

err on dev x/y bn=n er=0xm,0xo0

A device error occurred when accessing the device associated
with major/minor device pair x/y. (Other information given
by the message is for Zilog internal use only.) To recover,
bring the system down, power down the system, and then power
up and reboot. If the error still occurs, contact the
nearest Zilog Field Service office.

Out of inodes on dev x/y

There are no more inodes available in the filesystem associ-
ated with major device number x, minor device number y. To
recover, either delete some files from the filesystem or in-
crease the size of the filesystem.

Out of space on dev x/y

There is no space on the filesystem associated with
major/minor device numbers x/y. To recover, the filesystem
must be "cleaned up" to make more space. Because the oc-
currence of this condition can cause seriously incorrect ac-
tions to occur (e.g. unsuspected truncation of a file), it
should be addressed before there is no space left. As a
general rule, at least ten percent of the space in a
filesystem should be free. If the count drops below ten
percent the administrator should take steps to get users to
clean up. The programs df(M) (disk free space) and fsck (M)
can be used to indicate the amount of available free space
in a filesystem. The find(l) and quot (M) commands can then
be used to find users who have excessive amounts of space in

Zilog 6-4

Zilog

use, or files that are candidates for deletion or archiving
to tape (see tar(l)). ‘

Inode table overflow

<zd>
<zd>
<zd>

The in-core inode table is full. Wait until some processes
naturally die (or close files) or, alternately, "kill"™ un-
critical processes that may have files open. If the tunable
parameter NINODE was changed with sysgen(M), increase the
size of this parameter. 1If this is not the case, and the
error occurs with some regularity, use sysgen(M) to increase
the size of NINODE.

or <smd>: wunexpected intrpt 0xn ignored
or <smd>: fatal error on unit n
or <smd>: unrecoverable error on unit n

In all of the above cases, the disk driver encountered an
error that couldn't be corrected. 1In all cases, reboot the
system., If the error continues to occur, contact the
nearest Zilog Field Service office.

no file

The global open file table is full. Given the large number
of slots available, this is a very unusual condition. 1If
desirable, "kill" some processes that may have open files,
or wait until some processes die before trying again. Al-
ternately, if the size of the open file table was diminished
by running sysgen(M), it may have been made too small; the
size should be increased. In any case, it may be desirable
to increase the tunable parameter NFILE using sysgen(M).

Nonmaskable interrupt

An NMI was received, due either to a manual press of the
START button, an impending power fail or a memory error. In
all cases but the first, the system will go down, and should
be rebooted. 1In the case of a memory error, if the rebooted
system generates the same error, contact the nearest Zilog
Field Service office.

Zilog 6-5

Zilog

no procs

There are no free processes. This message indicates an ab-
normal condition. Use ps(l) to get a list of all processes,
and use kill(l) to get rid of the offenders. It may be
desirable to use sysgen(M) to generate another kernel with a
new value for NPROC.

proc on g

A request was made by the operating system to put a process
on the run queue. However, the process appears to already
be on the run queue. If this happens, reboot the system.

out of text

There are no more shared text table entries. If this hap-~
pens more than very occasionally, use sysgen(M) to create a
kernel with a larger table by increasing the parameter
NTEXT. As with all changes to tunable parameters, be aware
that some other parameter may need to be decreased to stay
within the address space limits.

Warning: ECC error count high
See Section 6.5, Error Checking and Correction.
6.4. Troubleshooting

Two commands, kill(l) and ps(l) are important debugging tools.
For example, if a wuser locks up the terminal or cannot kill a
program with RUB or DEL, the system administrator can issue the
command

ps -leaf

This produces a detailed display of the status of every process
currently running in the system. Among the items shown is the
process identification (pid) number. To delete an ongoing pro-
cess, a kill command can be issued with the pid as an argument.
If the pid that is specified in a kill command argument is that
of the user's login shell, that command interpreter shell is
aborted and the user is issued a new login prompt. This allows
the creation of a newly initialized login shell. Such a pro-
cedure may be necessary if the original shell corrupts and is un-
able to communicate with the terminal. To make it a "sure kill,"
the argument -9 can be used as an option (some processes refuse
to die otherwise). For example:

kill -9 <pid>

6-6 Zilog 6-6

Zilog

where pid is the process number of the doomed process as obtained
from the ps(l) display.

6.5. Error Checking and Correction (ECC)

The System 8000 memory controller employs memory error checking
and correcting circuitry that detects and corrects one-bit per
byte errors. Correctable one-bit errors are referred to as
"soft"™ errors. The ECC can also detect, but it cannot correct,
two--bit (or "hard") errors.

The ECC also counts the soft errors. The operating system inter-
rogates the ECC hourly, and if the error count exceeds 128, the
operating system prints the following message on the system con-
sole:

Warning: ECC error count high
Soft errors encountered in the last hour = ddd
Memory bank error bit map = @xhh

where: ddd is a decimal number not exceeding 255 (the ECC
count stops at 255), and @xhh is hexadecimal number.

If there have been less than 128 errors, no message is print-
ed. If the error message is printed, there may be a memory
malfunction. Although the system will continue to operate,
for best results the malfunction should be located and
corrected.

The memory bank error bit map indicates the sections of
memory where one or more errors may have occurred. Each bit
corresponds to one 256K byte section of memory, and the least
significant bit corresponds to the lowest section of memory.
If a bit is set in the bit map, it indicates that there was
at least 1 soft error in the corresponding 256K byte sectio
of memory. ‘

The ECC also detects errors greater than one bit, but it can-
not correct them. If such an error occurs, the ECC circuit
responds with a non-maskable interrupt (NMI). When the
operating system recelves the NMI, it determines that the in-
terrupt was caused by the ECC controller, performs a "panic"
stop, and it prints a panic message:

panic: Uncorrectable ECC error

If an uncorrectable memory error causes a panic halt, repair
the memory malfunction and re-boot the system.

6-7 Zilog 6-7

Zilog

6.6. Troubleshooting Aids

Pressing the START switch on the processor module (with the key
switch away from the LOCK position), causes the system to print
various status information at the console. The status
corresponds to the state of the machine precisely when the button
was pressed. Most of this information is unfamiliar to the aver-
age user. However some of it may be useful, if not to users,
then to Zilog Technical Support personnel. The format of the
status information is as follows:

<BANNER>
<Event id> <FCW> <pcseg> <pcoff> <state pointer>
<Contents of general purpose registers>

<Last Interrupt Handled>
<Pending Interrupts>
<Scheduler state>

<Last interrupted process, and its owner> OR
<Scheduling or Idle>

<Status of various segments of the last interrupted process>

<Last 16 or less items at the top of the system stack>

where:

BANNER indicates the mode of the CPU
eventid is the last vectored interrupt
FCW is the Flag and Control Word

pcseg and pcoff are the Program Counter

6-8 Zilog 6-8

Zilog

SECTION 7
SYSTEM MAINTENANCE

7.1. Line Printer Imformation

The kernel supplied with the system contains a 1line printer
driver that handles up to three parallel-port printers. Each can
have either a Centronics or Data Products interface. (Additional
letter-quality or serial printers can be attached to unused tty
ports, and all printers can be spooled together under the control
of one spooling program.) The parallel-port line printer driver
has been tested with the following line printers:

Anadex (Model DP-9501 - Centronics interface)

Printronix (Model P60@ - Centronics interface, and also Data

Products 1Interface. These interfaces do not support the
nroff separate underline character.)

Centronics (Model 703/704)

Data Products (Model B60@ - Data Products interface)

Data Products (Model 2230 - Data Products interface)

NEC Spinwriter (Model 5500 Series‘— Centronics interface)

The driver should work with most printers that have either a Cen-
tronics or a Data Products interface. The System 800¢ hardware
is configured for a Centronics printer interface. For a Data
Products printer interface, disconnect the following shunts for
the Centronics interface:

E1l3 from El4
17 from E18

Connect the following shunts:

El4 to E15
El6 to El7

The supplied /dev entries for the line printer(s) are correct if
both 1line printers have a Centronics interface; otherwise they
should be changed before using the 1line printer (as described
following) .

7-1 Zilog 7-1

Zilog

When the system is shipped, there are two entries in /dev;
for each line printer. The command

ls -1 /dev/lp*
produces the following type of output:

CrW—————-— 1l zeus system 9, @ May 6 @0:32 /dev/lp
CrW——————~— 1l zeus system 9, 1 May 6 00:33 /dev/1lp2

The first line above refers to the first 1line printer, and
the second to the second line printer (connected via the ter-
minal expansion board). Both define printers with a Centron-
ics interface. 1If either printer has a Data Products inter-
face, the entry for that device must be changed from that
which is supplied. For example, if the line printer associ-
ated with the expansion board (the second line printer) has a
Data Products interface, issue the commands

ls -1 /dev/1p2
rm /dev/1p2
/etc/mknod /dev/1p2 ¢ 9 5

which changes the entry for /dev/1p2 to reflect a minor dev-
ice number of five rather than one. The minor device numbet
determines the port number (@, 1, or 2), the interface type
(Centronics or Data Products) and whether the interface is in
raw or normal mode. The minor device number can be set to a
value between one and fourteen where the value of each of the
bits in a binary representation has the following meaning:

MSB LSB
P 90 2 rtaa

where: r=raw interface if 0
r=normal interface if 1
t=Centronics if @
t=Data Products if 1
aa=decimal Port Number @, 1 or 2

In decimal values, the minor device number is interpreted as
follows:

7-2 Zilog

one

Zilog

MINOR MEANING

VALUE
%] normal Centronics interface on port g
1 normal Centronics interface on port 1
2 normal Centronics interface on port 2
4 normal Data Products interface on port 0
5 normal Data Products interface on port 1
6 normal Data Products interface on port 2
8 raw Centronics interface on port 0
9 raw Centronics interface on port 1

10 raw Centronics interface on port 2

12 raw Data Products interface on port 0
13 raw Data Products interface on port 1
14 raw Data Products interface on port 2

Raw mode is currently unsupported; it is intended to be a
buffered, interrupt-driven parallel port that is different
from normal mode because it allows any byte value to be writ-
ten to it without generating a segmentation violation. Also
it does not attempt to re-interpret tabs, carriage returns
and so forth. ‘

If a third printer is to be configured, enter the command:
/etc/mknod /dev/1p3 c 9 2

for a Centronics interface or
/etc/mknod /dev/1p3 c 9 6

for a Data Products interface.

The command "1s -1 /dev/lp*" displays the owner and protec-
tion bits of the printer device files; change them as ap-
propriate.

Disable the skip perforation and automatic line feed switches
on any line printer connected to the system. Skip perfora-
tion, when enabled, causes the printer to skip several lines
at the end of the page. Automatic line feed causes a line
feed to be printed when a carriage return character is re-
ceived. The system assumes 66 lines per page; set the asso-
ciated hardware switch appropriately.

The special file associated with the second line printer is
/dev/1p2. To print a file "filename" on the first line

7-3 Zilog

Zilog

printer using the queuer, enter:
ng -q lpr:l filename

To print the file on the second line printer, enter:
ng -q lpr:2 filename

The option arguments, -q lp:n, specify the queue "1p" and the
device "n". If the option is omitted, the first available
device in the printer queue is chosen. The default is the
first queue described in the configuration file (see Section
7.2.3).

If there is no second line printer attached to the system,
issue the following command:

chmod @00 /dev/1lp2

Be sure to remove the device entry in the spooler configura-
tion file (see Section 7.2.3). This makes the device inac-
cessable.

7.2. Printer Spooler Considerations

Maintenance of the queuer program primarily consists of providing
and updating the configuration data regarding the kind and number
of printers attached to the system,

7.2.1. Imtroduction

The line printer spooler outputs data, upon request, when a dev-
ice (such as a line printer or a text-quality printer) is free.
This has two advantages: first, a user program can output data
any time, whether a printer is free or not, If a printer is not
free, the request is remembered until a printer becomes free.
Second, if there 1is more than one printer on the system, the
spooler can output to either one. This allows the spooler to
keep two devices busy, and is more efficient.

The ZEUS printer spooler consists of the program nqg(l) and lpr(l)
(which are linked together), for generating print requests; xq(l)
for displaying and modifying previous requests; and dqueuer(M),
with the backends /usr/lib/lp and /usr/lib/text for printing the
requests. The system administrator has other functions available
from the program xd. These are described in xq(M). See also
backend(M). The /usr/spool/queuer directory holds the necessary
configuration, status and request files to operate the spooling
system.

7-4 Zilog 7-4

Zilog

The dequeuing process, dqueuer(M), runs at all times, and is
started by /etc/rc_csh. Subsequent requests by ngq(l), lpr(l),
and xq(l) signal the dqueuer for service. The dqueuer then sets
its process ID in a specific area in the active configuration
file, /usr/spool/queuer/activeconfig. With this method, and
various record locking techniques followed by all programs in the
spooling system, all programs can inter-communicate without con-
flict. In addition, multiple copies of the dqueuer detect the
existence of other copies, and immediately exit.

The dqueuer scans all devices and requests each time it is start-
ed. It dispatches child processes (called backends) to print a
specific file on a specific device. If there are no available
devices, or no ready requests, it goes to sleep, via pause(2),
until it receives a signal from another process. Upon that sig-
nal, it restarts the scanning process. Ng(l) and 1lpr(l) both
generate signals when they create a request. Xq(l) can Jgenerate
signals if it needs to indicate a change in system status. The
backends, through dqueuer(M), also generate signals when they
finish printing a request. The above interprocess communication
keeps the dqueuer printing when a device is open and when a re-
quest is ready to be printed, and quiescent when nothing is to be
done. One exception to this occurs when a device is offline. In
that case, the dqueuer polls the device once a minute to see if
it came online.

Devices (printers) can be attached to the serial tty ports or the
parallel printer ports on the System 80@¥@. Then the configuration
file (/usr/spooler/queuer/config) must be edited to link the dev-
jce to the port, as described in Section 7.2.3.

7.2.2. Miscellaneous Spooler Commands

If a file is printing, and the printer fouls, the command

xq -q que:dev -sd

stops ("-s") the current job and prevents (trailing "d") any
further access to the printer device specified. The command

xq -q que:dev -Ud

reenables access to the printer. See xq(M) and dqueuer (M) for
other spooler control commands.

To delete a request in the gqueue that is not currently running,
use the command

xgq -d XXX

7-5 Zilog 7-5

Zilog

where xxx is the sequence number of the request to be cancelled.
Xq(l) lists files and sequence numbers.

The printer spooler can also spool a text-quality printer that is
attached to a tty port. To do so, use an editor program to
change the first character in the third (action) field of the ap-
propriate 1line of /etc/inittab to "k" (refer to Section 7.3.2).
For example, if communications line @ is to be used as the
printer, the state 2 entry in /etc/inittab would change from
this:

2:00:c:/etc/GETTY ttyg 2
to this:

2:00:k:/etc/GETTY ttyd !
Then use the command

kill -2 1
OR
INIT 2

to reparse the /etc/inittab file and disable that tty port for
logins. Then edit the spooler configuration file to reflect the
new device (as described below).

7.2.3. Configuration File Description

The ZEUS printer spooler requires information about the device
configuration of the system on which it runs. This information
is contained in the configuration file, /usr/spool/queuer/config.
The configuration file contains three types of records: comments,
queue descriptors, and device descriptors. These are illustrated
below.

The following example is for a system with two line printers
(line printers 1 and 2), which are in the first queue; and one
text-quality printer, which is in the second queue, and 1is con-
nected to tty port /dev/ttysé.

#
Sample Configuration File

This file describes a system with 2 line
printers and one text quality printer.

#
#
#
:
first queue ... lpr has two line printers
#

Q

lpr,R,N,S

7-6 Zilog 7-6

Zilog

line printer 1
D1,R,/dev/1p,/usr/lib/1p

line printer 2
D2,R,/dev/1p2,/usr/lib/1lp

i

second queue ... text has the spinwriter
#

Qtext,R,N, S _

text quality printer (typical option
¥ shown ... this example for a gqume)
D1,R,/dev/tty6,/usr/lib/text -T "9600 -nl"
.

#

principal components of the above example are:
Comments. A comment line starts with a "§".

Queue descriptors. A queue descriptor starts with a
"Q". The information on each queue record is:

(queue name 1-8 characters
status R=ready, D=down
minimum priority R=rush, N=normal, D=deferred

selection criteria F=first in first out,
S=smallest file first

One queue definition should be used for each type of physi-
cal device; for example, "1lp" for a line printer, or "text"
for a text-quality printer.

Device descriptors. A (physical) device descriptor starts
with a "D." The device descriptor record follows the queue
record with which it is associated. There should be a dev-
ice descriptor for each physical device in the system confi-
guration. The device descriptor record contains the follow-
ing information:

device name 1-5 .characters

status R=ready, D=down

special file entry in /dev associated
with this device

backend name entry in /usr/1lib

options passed to backend

Backend options are described in backend(M).

Zilog 7-7

Zilog

To view a summary of the configuration file, use the command
/etc/dqueuver -n

After the configuration file has been changed, issue the command
/etc/dqueuer -r

This enables the dqueuer to recognize these changes.

Note that changing the status, priority or selection criteria in
the configuration file does not effect the dqueuer. To change
the dqueuer, use xq(M).

7.3. From Boot to Login - A Commentary

This section describes system operations from the initial boot to
multi-user login.

Booting ZEUS is a two-step process. The first step is done by
the ROM monitor (at the user's request). The primary
bootstrapper loads the secondary bootstrapper from the disk or
tape and then transfers control +to it. It is the secondary
bootstrapper that prints the boot prompt.

If the primary bootstrap is invalid, not much can be done. The
symptom 1is that nothing happens after pressing START (NMI). The
primary and secondary bootstrap are somewhat more verbose |if
something goes wrong during execution.

7.3.1. Kernel Imitialization

Following a successful boot and various internal initializations,
the kernel copies a small program from inside itself into process
one. This small program is equivalent to the following C pro-
gram:

main() {

exec ("/etc/INIT",0);
while (1);

}

/etc/INIT is a process that ultimately forks off processes that
monitor wuser terminals for a login request. If the exec fails,
the program loops, which appears as a continuous "on" condition
of the user mode light. The only recourse is to try stand-alone
restoration of a maintenance filesystem from tape, followed by a
boot of the maintenance kernel.

7-8 Zilog 7-8

Zilog

7.3.2. /etc/INIT

After a manual boot, INIT starts by forking a process that runs
/bin/csh with standard input, output, and error reporting to
/dev/console. This state is called "single user mode." It allows
checking and repair of filesystems and other operations that
should be completed before users are on the system,

The system is switched to multiple-user mode by entering "“INIT
24, INIT executes the shell procedures found in /etc/rc and
/etc/rc_csh. '

The system is usually brought up with the automatic boot by
pressing RESET and then START. This causes /etc/INIT to skip the
single-user mode, and immediately begin to execute /etc/rc. Sec-
tion 2.5 includes a discussion of the functions of /etc/rc_csh.
This file may be locally modified to include any other functions
desired.

If /etc/rc 1is not found, INIT ignores it and moves on.

Before running /etc/rc, INIT reads the file /etc/inittab. This
file 1lists the actions to be taken on entry to each state (num-
bered one through nine), and the commands to be executed while in
it. These actions and commands are organized according to group
IDs, which by convention are associated with tty IDs. Each entry
has the following format: :

state:id:action(s) :command
where:

state is an integer value between 1 and 9, with 1 con-
ventionally associated with single-user mode and 2 with
multiple-user mode.

id is an arbitrary unique identifier for this entry,
conventionally associated with a tty terminal.

action(s) is identified by the letters "t", "k", or "en,
which specify the disposition of any ongoing processes
of the same type as the following: k=kill, t=terminate,
c=reinvoke the process continuously. The kill (k) and
terminate (t) actions can both be requested within the
action field,

command is a string that can be given to a "sh" shell
that is performed through an exec(l).

Typically entries for state 1 appear as follows:

7-9 Zilog 7-9

Zilog

1:00:k:/etc/GETTY ttyd !
Typically entries for state 2 appear as follows:
2:00:c:/etc/GETTY ttyd 2

If an entry for an ID is not present for some state, nothing is
done to any processes running under it, nor is any new login
listener invoked. To temporarily disable a line that is Dbeing
used for something other than user logins, set the action field
to k, delete the command field, and re-enter your current state
using the INIT command. For example, to kill the GETTY on com-
munication line 3, change the entry for that line 3 to bes:

2:093:k:
NOTE

There is no constraint requiring only login shells to
be invoked on each line; states could be defined that
run application programs on any or all terminals as the
default.

If INIT fails in opening a configured terminal, the child process
of INIT terminates and INIT forks another copy. This cycles
through processes very quickly (hundreds per minute), and con-
sumes a great deal of system resources. To recover, login as
zeus, edit the /etc/inittab file and issue the command "INIT 2".
Logging in under such circumstances takes a long time. Do not
give up and start over. The same thing occurs if the terminal
line is very "noisy."

7.3.3. /etc/GETTY

The GETTY program is started with the terminal type as one of its
arguments. This argument to GETTY controls the initial values
for terminal speed and various terminal parameters.

Currently GETTY supports nine different terminal types. Aside
from minor variations in parameters, the distinguishing factor is
the line speed. GETTY handles variable speed (typically dialup)
lines by sensing the user transmitting "break," and trying anoth-
er speed until the user does not send a "break." Thus, the user
presses BREAK (or DELETE) until a recognizable input prompt is
received.

7-10 Zilog 7-10

Zilog

Table 7-1 below summarizes GETTY terminal types:

Table 7-1. Terminal Type Codes

Type Speed(s) Uses
/] 300,1200,150,110 dialup
- 110 old Mod 33/Mod35 teletype
1 159
2 2600 glass tty's (Zilog standard)
3 1200,300 dialup
5 300,1200 dialup
4 300 309 baud terminals
6 2400 lower-speed glass tty
7 19209 high-speed glass tty
8

4800 med-speed glass tty

GETTY prints the login message on configured terminals. GETTY
then 1listens character-by-character for user input. It listens

in raw mode to determine whether the terminal session is to be in
uppercase or lowercase.

If GETTY receives all uppercase characters in the login name, it
(naively) assumes that the user has an uppercase-only terminal.
All user input and system output characters are translated and
displayed as uppercase characters. If a user terminal gets into
uppercase mode, the easiest way to recover is to type an invalid
password; then answer the second user name request with CTRL-4d.
This starts a new GETTY.

7.3.4. Login

Login is executed by GETTY with the user name as an argument. If
the name starts with "-", no message of the day is printed.
After GETTY receives the user's name, it invokes /etc/login which
is "linked" to /bin/login, which asks for the user's password,
encrypts it, and compares it to the appropriate entry in the
password file, /etc/passwd. If this file cannot be found, no one
can login. To recover, reboot, come up in single-user mode, and
try to salvage the password file or restore it from a backup
tape. 1If the password is correct, login attempts to update the
database for logged in users, and the login accounting database.
Nothing happens if these two files (/usr/adm/wtmp and
/usr/adm/utmp) do not exist.

7-11 Zilog 7-11

Zilog

Login then does a number of things. It attempts to change its
working directory to the user's home directory. If this fails,
"No directory" is printed and another name and password are soli-
cited. Typically, this situation occurs when the user filesystem
has not been mounted. Next, it changes the owner of the terminal
and the process to the user logging in. It initializes the en-
vironment vector with the home directory, shell, and terminal
type. The terminal type 1is used by wvi, and comes from
/etc/ttytype, which consists of lines in the form:

cc <device name>
For example:
vz console

means that /dev/console is a vrz 2/108. In this file, the tty
type is restricted to no more than seven characters. The file
/etc/termcap should contain an occurence of the same terminal
name followed by descriptive data.

1f the device name is not found in this table, the type is set to
"xx", which has no meaning for vi. After this, login optionally
prints the contents of /etc/motd, the message of the -day. It
checks the file /usr/spool/mail/<name> to see if the user has
mail. If the mailbox does not exist, no check is made. Finally,
it executes the shell specified in the /etc/passwd entry with the
argument "-". This causes the shell to take commands from
SHOME/.profile (if it is /bin/sh) or from SHOME/.cshrc (if it 'is
/bin/csh) . /bin/csh then interprets SHOME/.login. I1f the shell
invocation fails, the "No Shell"™ message is printed, and another
name/password pair is solicited.

7.3.5. Logout

Wwhen the user logs out, /bin/csh executes SHOME/.logout and ex-
its, (/bin/sh simply exits). Meanwhile, INIT has a wait(2) out-
standing. If the wait is satisfied by one of INIT's immediate
descendents (the processes initially running GETTY), and the in-
ittab entry for this descendant in this state specifies continu-
ous re-invocation of GETTY, INIT forks another GETTY and the cy-
cle repeats indefinitely. . :

7.4. Adding Terminals
Use the following procedure to add new terminals.

The standard System 8000 accommodates up to eight terminals.
These terminals connect to the connectors on the distribution

7-12 Zilog 7-12

Zilog

panel, which is on the rear panel of the CPU module. Each termi-
nal connector is marked with the following terminal identifiers:

TTY 0@
CONSOLE
TTY 2

through

TTY 7

where CONSOLE is TTY 1. When more than eight terminals are
used with the system, the additional terminals are connected
to a secondary distribution panel that is similar to the
primary panel. The connectors on the secondary panel are
labeled TTY 8 through TTY 15. The secondary panel is locat-
ed below the primary panel.

NOTE

The system console must be connected to the connector
labeled CONSOLE.

When any terminals are added to the system, the software changes
described in Section 7.4.2, below, are also required. Terminal
devices (except the system console) are referred to as

tty<n>

where <n> is a numeral from @ through 15, but excluding ¢ttyl.
The system console is identified as either "console," or as
"ttyconsole." These designations correspond to the distribution
panel identifiers.

The distribution panel connectors are female 25-pin D connectors
that mate with standard male connectors. The connectors and oth-
er interface characteristics are compatible with EIA RS-232C.

Note that the operating system enforces limits on the number of
usexrs contained in the ZEUS software license agreement.

7.4.1. Preliminary Imstructions

Installation of the additional hardware supplied with the Field
Upgrade Kit 1is performed before changing the system software.

Perform the instructions accompanying the Upgrade Kit, then the
following steps.

7-13 Zilog 7-13

Zilog

1. Double check all communications cable connections.

2. Turn on system power, boot the system, and remain in
single-user mode.

3. Login and remain logged in as the super-user (zeus) until
the procedure in section 7.4.2 is completed.

NOTE

If installing terminals using an Intelligent Communica-
tions Processor (ICP) Board option, skip to Section 7.5
(the instructions supplied with the board include the
correct Software Modification Procedure for this op-
tion).

7.4.2. Software Modification Procedure

1. Edit the file
/etc/inittab

by adding one entry for each new terminal to be added. Each
entry should have the form (refer to Section 7.3.2 for a de-
tailed description):

<state>:<id>:<action(s)>:/etc/GETTY tty<n> <m> <o>

where: <m> specifies the terminal type as shown
in Table 7-1.

<n> is the tty number.

<0> is the number of seconds of delay before a dial-up
port is disconnected if the user does not respond to
the login request. Use only with dialup ports.

Each line in this file describes a terminal; thus, there

must be a line entry for each terminal attached to the sys-
tem, This allows different types of terminals to be added
to the system. Examples:

a. Suppose an additional terminal is connected to the ter-

minal three port and is to be initialized to run the
normal ZEUS login (csh) shell in multiple wuser state

7-14 Zilog 7-14

Zilog

(state 2). The file /etc/inittab must have new or
changed entries for tty3 that describe the terminal
connected to the terminal three port.

The second argument to GETTY describes the terminal
type (Table 7-1 lists terminal type codes). Thus, if
terminal three is a high-speed CRT-type (glass) tty
(19.2 K baud), then the type code would be "7", and the
entire entry would be:

2:93:c:/etc/GETTY tty3 7

Another line is added to specify the disposition (kil-
ling) of processes initiated at this terminal when sin-
gle user state (state 1) is entered:

1:93:k:/etc/GETTY tty3 !

b. To add entries for eight new terminals where the
specific terminals are tty8 through ttyl5 and where the
baud rate is 9600 insert the following lines into the
/etc/inittab file. ‘

1:98:k:/etc/GETTY tty8

2:08:c:/etc/GETTY tty8

1:09:k:/etc/GETTY tty?9

2:09:c:/etc/GETTY tty9

1:10:k :/etc/GETTY ttyl@
2:10:c:/etc/GETTY ttyld
1:11:k:/etc/GETTY ttyll
2:11:c:/etc/GETTY ttyll
1:12:k:/etc/GETTY ttyl2
2:12:c:/etc/GETTY ttyl2
1:13:k:/etc/GETTY ttyl3
2:13:c:/etc/GETTY ttyl3
1:14:k:/etc/GETTY ttyld
2:14:c:/etc/GETTY ttyld
1:15:k:/etc/GETTY ttyl5
2:15:c:/etc/GETTY ttyl5

DN o= DD o=

N otm D o= DD o= BN o= D o= N o=

Edit the file
Jetc/ttytype

by adding a new entry for each new terminal. This file is
l1ike the one described in step 1 above. It contains one en-
try for each terminal used by the system. Each entry tells
the screen editor what type of terminal is connected to each
line. Each entry has the form

Zilog 7-15

Zilog

<typecode> tty<n>

where: <typecode> specifies the type of terminal equipment.
The typecode 1is a maximum of seven characters that
must be the same as found in the /etc/termcap file
entry. For example, the VTZ 2/10 terminal is iden-
tified by "vz"; the Concept 100 terminal is identi-
fied by the characters "c1" (c-one). Note that the
entries in /etc/termcap and /etc/termcap.others are
followed by longer entries that can be more con-
venient for a reader.

<n> is the tty number. This number consists either
of the word "“console," or the connector number on
the distribution panel. For example, if the connec-
tor designation is TTY 3, then <n> would be 3, and
the file entry would be tty3.

Examples:

a. For a VTZ 2/10 terminal connected to connector TTY 5,
the entry would be:

vz tty5s

b. For an additional eight VvTZ 2/1¢ terminals, the new en-
tries would be:

vz ttys8

vz tty9

vz ttyl@
vz ttyll
vz ttyl2
vz ttyl3
vz ttyl4
vz ttyls

Check the file
/etc/termcap

for an entry corresponding to the terminal(s) to be used
with the system. When the visual editor (vi) is invoked by
a user, it reads file /etc/termcap for a description of the
terminal that 1is to be used for the editing session. The
file describes the terminal features, so that the system
responds properly to the various terminal control functions.
Usually there is already an entry in the file that describes
the terminal type. However, if there is not, then an ap-
propriate entry must be added. For this purpose, there is a

Zilog 7-16

5.

6.

"Zilog

secondary, or backup file:
/etc/termcap.others

file

This contains the same entries that are in
/etc/termcap, plus some others that may be needed. Thus,
while /etc/termcap is read by vi, the file

/etc/termcap.others is not; it is simply used for reference
in case another addition must be made to /etc/termcap. In
this case, the information in /etc/termcap.others can be re-
peated in etc/termcap. The file /etc/termcap is deli-
berately kept small so that it can be read quickly.

If the information for any specific terminal is not in ei-
ther /etc/termcap or /etc/termcap.others, then check with
the Zilog Systems Division Technical Support Department.
Also refer to termcap(5). :

Use the mknod (M) command once for each terminal tty<n> to be

added in order to create a new device file for each new ter-
minal:

/etc/mknod /dev/tty<n> c 8 <n>
where <n> in the tty number. See fﬁe command mknod (M) .
Ex amples: |
to be added, then

a. If a new terminal, ttyS5, is the

propriate command would be:

ap-

/etc/mknod /dev/tty5 c 8 5

b. To add new terminals 8 through 15, enter the mknod com-

mand eight times, as shown below:

/etc/mknod /dev/tty8 c 8 8

/etc/mknod /dev/tty9 c 8 9

/etc/mknod /dev/ttyl® c 8 10
/etc/mknod /dev/ttyll c 8 11
/etc/mknod /dev/ttyl2 c 8 12
/etc/mknod /dev/ttyl3 c 8 13
/etc/mknod /dev/ttyld c 8 14
/etc/mknod /dev/ttyl5 c 8 15

Connect the new terminal to line

power and turn it ON.

The final step can be performed in two ways, as described in
either step a or b following.

Zilog

Zilog

a. Execute the command
INIT 2

as described in init(M). When the INIT command is used,
"the 1login message is displayed on all new terminals
when they are powered-up.

b. Re-boot the system. When the system is rebooted, and
goes multi-user, all new terminals will display a 1ogln
message.

7.5. Adding and Removing Users

The system has two shell scripts, adduser(M) and rmuser(M). (see
below) that prompt the super-user for the information necessary
to add or remove a user (respectlvely) from the system.

7.5.1. Adduser

Adduser looks for a new user ID (userid) by scanning the file
/etc/passwd (see passwd(5)) for a uid that is one greater than
the highest one in /etc/passwd. This file contains information
about all wusers on the system; it is scanned upon login for the
password, and it is used for mapping the userid number to the
password, for mapping the userid number to the string that iden-
tifies the user, etc. When adduser finds a new userid, it
prompts for a home directory for the new user; i.e. the directory
at which the user will be logged in. An attempt is made to
create the home directory. 1If this attempt fails, adduser asks
for another home directory name. The next prompt is for the 1lo-
gin shell (the program that receives input from the terminal upon
login). Most installations use the C shell, /bin/csh, because it
provides more features than the standard shell, /bin/sh.

Adduser then prompts for information regarding the group or
groups to which the new user will belong. By convention, most
users are a member of one group, called "other." The groups and
the associated group-id are found in /etc/group (see group(5)).
If a user is a member of more than one group, it is possible for
that wuser to change groups (see newgrp(l) and setgid(2)). The
default login group is the group in which a given user automati-
cally becomes a member after login.

Finally, adduser prompts for the user's initial password. This

password should probably be changed by the user after the initial
login. :

7-18 zilog - 7-18

Zilog

Optionally, the administrator or the new user may want to put a
profile file 1in the new user's home directory. This file is
called .cshrc if the login shell is the C shell (/bin/csh), and
.profile if it is the standard shell (/bin/sh). A minimal .cshrc
file might look like the following example:

#
set path = (. /bin /usr/bin)

This file is actually a shell script that is evaluated by the
shell when the user logs in. The first line (#) tells the shell
that the file is to be interpreted by the C shell, and not the
standard shell. (ALl shell scripts must contain this line if
they are to be interpreted by the C shell.) The second line lists
the directories that are searched for the commands entered by the
user. In this example, the search starts in the wuser's current
directory, followed by /bin, then /usr/bin. This is actually the
default directory search, but it can be changed. For example, to
check the user's private bin directory before it checks /bin, the
path would be changed as shown:

set path = (. “/bin /bin /usr/bin)

The directory /bin contains the most frequently used commands;
/usr/bin contains less frequently used commands, so it is usually
searched after /bin. Setting up paths carefully ensures faster
access to frequently used programs.

For more information on the C shell and .cshrc files, refer to
the ZEUS Utilities Manual.

7.5.2. Rmuser

Rmuser is a shell script that, when executed, removes a user from
the system. Rmuser removes the wuser from all groups (see
group(5)) and allows the administrator to change the password for
that user, making it impossible for that user to login. The en-
try for the user is not removed from /etc/passwd, so that any
files that remain in the system owned by that wuser will be as-
sociated with the appropriate user name. Finally, rmuser scans
the system for any files owned by the deleted user, and leaves
the list in files.<user>. The system administrator can handle
them as desired. kf

7-19 . Zilog 7-19

Zilog

APPENDIX A
AN OVERVIEW OF ZEUS

A.l. General

This Appendix describes the ZEUS kernel. The discussion has four
parts:

a. Process Control

b. The I/0 System

c. The ZEUS file system, and

d. The ZEUS command interpreter (the "shell")

For an introduction to the ZEUS, refer to the ZEUS Reference
Manual, Section @.

A.2. Process Control

Users execute programs in an environment called a user process,
which is simply a program in execution that includes those com-
ponents that make the program run. These include a memory image,
general register values, and the status of open files. When a
user process requires that a system function be performed, it
calls the system as a subroutine (system call). At some point in
this call, there is a distinct switch of environments. After
this, the process is said to be running in system mode, because
it actually executes code within the ZEUS kernel. Thus, 1in the
normal definition of processes, the user and system processes are
different phases of the same process (they never execute simul-
taneously). For protection, the system part of the process has
its own stack, distinct from the user part of the process. (See
Figure A-1l.)

A-1 Zilog a-1

Zilog

USER USER
PROCESS Y PROCESS Z
USER (running same (running different
PROCESS X normal mode program) normal mode program)
NORMAL MODE 0
ONE COPY SHARED TEXT
AMONG ALL and
TEXT >
PROCESSES RUNNING TEXT DATA
SAME PROGRAM
DATA DATA
STACK STACK STACK

Figure A-1 User Process Control

A process has up to seven distinct segments:

1. a user mode text (program) segment containing only instruc-
tions and immediate operands,

2. a user mode data segment,
3. a user mode stack segment,
4. a system mode text segment that has the instructions of the

operating system,

5. a system mode data segment containing operating system data
global to all processes,

6. a system mode process local stack segment,

7. a system mode process local data segment (often called the
"u vector" from the name of the structure defining the seg-
ment) .

A-2° Zilog A-2

Zilog

In this context, "segment" means a logical entity, not a memory
segment. The user mode text and data segments may be combined
into one segment. If they are separated, the text segment can be
shared by all processes currently executing the same program.
This read-only, sharable feature is specified at compile time,
using the "-i" option of the linker.

All current read-only text segments in the system are maintained
from the "text table." A text table entry holds the location of
the text segment in secondary memory. If the segment is 1loaded
in primary memory, that table also holds the primary memory loca-
tion and the count of the number of processes sharing this entry.
A text table entry is allocated when a process first executes a
read-only text segment. At that time the segment is 1loaded into
secondary memory. Subsequent processes executing the same text
segment cause only the reference count in the text table entry to
be incremented. When this count is reduced to zero, the entry is
freed along with any primary and secondary memory holding the
segment.

If the "-i" compile-time option is used, the user data segment is
separate from the code, in a 64K byte address space. Otherwise,
the data and code are in the same 64K byte address space. The
data segment referred to also includes the user stack; the user's
data segment does not hold system data. In particular, there are
no system level I/O0 buffers in the user address space.

The user data segment has two growing boundaries. One, increased
automatically by the system as a result of memory faults, is used
for a stack. The second boundary is only grown (or shrunk) by
explicit requests (see brk(2)). The contents of newly allocated
primary memory is initialized with zeroes.

Also associated and swapped (i.e. moved temporarily to disk and
back again) with a process is a small fixed-size system data seg-
ment. This segment contains all the data about the process that
the system needs when the process is active. Examples of the
kind of data contained in the system data segment are: saved cen-
tral processor registers, open file descriptors, accounting in-
formation, scratch data area, and the stack for the system phase
of the process. The system data segment is not addressable from
the user process and is therefore protected.

Processes are listed in a process table with one entry per pro-
cess. Each entry contains data needed by the system when the
process is not active -- such as the process name, the location
of the other segments, and scheduling information. The process
table entry is allocated when the process is created, and freed
when the process terminates. This process entry is always
directly addressable by the kernel. It is, in a sense, the de-
finition of all processes because all the data associated with a

A-3 Zilog A-3

Zilog

process may be accessed starting from the process table entry.

Figure A-2 shows the relationships between the various process
control data.

A.2.1. Process Creation and Program Execution

Processes are created using the fork(2) system call. This system
call causes a copy of the process invoking it to be created; that
is, it causes a second image of the same process to be made, and
execution begins on both images. The two processes have a
hierarchical relationship, that of parent and child, even though
they are identical in terms of their memory images, open files
and the like.

If the fork(2) system call returns a value of -1, this indicates
that the fork was unsuccessful. Anything greater than -1 indi-
cates success; the value zero is returned to the child, and the
process-id of the child is returned to the parent.

A 7

TEXT
PROCESS TABLE
TABLE ENTRY
ENTRY
L TEXT TABLE RESIDENT
PROCESS TABLE 1
SYSTEM
DATA SWAPPABLE
SEGMENT
USER
TEXT
USER SEGMENT
DATA
- SEGMENT
USER
ADDRESS
SPACE

00157

Figure A-2 Process Control Data Structure

The fork(2) system call is not very useful alone. However, when
it is combined with the system call, exec(2), there is a full

process creation/execution mechanism. "Exec" causes the process
image to be replaced by that of another program, which is speci-
fied as a file name to exec(2). Although an explicit process

A-4 Zilog A-4

zZilog

switch does not occur, this latter program is overlaid, and it
becomes the process. Execution now proceeds from the beginning
of the latter program. In other words, as soon as a process is-
sues a successful system call exec(2), it is no longer executing
the same code; its text and data segments are replaced by new
ones, and the new ones are executed.

If a program, (such as the first pass of a compiler) has instruc-
tions to overlay itself with another program (such as the second
pass), then it issues an exec(2) call for the second program.
This is analogous to a "goto". 1If a program wishes to regain
control after the "exec" of the second program, it "forks" a
child process, has the child "exec" the second program, and then
issues the system call "wait" to wait for the child to complete.

A.2.2. Swapping

The major data associated with a process (the user data segment,
the system data segment, and the text segment) are swapped to and
from secondary memory, as needed, The user data segment and the
system data segment are kept in contiguous primary memory to
reduce swapping latency. Allocation of both primary and secon-
dary memory is performed by the same simple first-fit algorithm.
When a process grows, a new piece of primary memory is allocated.
The contents of the old memory are copied to the new memory. The
01d memory is freed and the tables are updated. If there is not
enough primary memory, secondary memory is allocated instead.
The process is swapped out onto the secondary memory, ready to be
swapped in with its new size.

The scheduler, a separate process in the kernel, swaps other
processes in and out of primary memory. It examines the process
table looking for a process that is swapped out and is ready to
run. It allocates primary memory for that process and reads its
segments into primary memory, where that process competes for the
central processor with other loaded processes. If no primary
memory is available, the swapping process makes memory available
by examining the process table for processes that can be swapped
out. It selects a process to swap out, writes it to secondary
memory, frees the primary memory, and then goes back to look for
a process to swap in.

The scheduler uses two specific algorithms in making swapping de-
cisions. One of these determines which process to swap in, as a
function of secondary storage residence time. The one with the
longest time out is swapped in first. There is a slight penalty
for larger processes. The second algorithm determines which pro-
cess to swap out. Processes that are not running or are waiting
for slow events (i.e., waiting for teletype I/0 or time-of-day
events) are picked first, by age in primary memory (again with a

A-5 Zilog A-5

Zilog

size penalty). The other Processes are examined by the same age
algorithm, but are not taken out unless they are at least of some
age. This prevents total thrashing.

Swapping does not affect the execution of the resident processes.
However, if the device used for swapping is wused for file
storage, the swapping traffic may affect the file system traffic,
and slow down the system,

A.2.3. Synchronization and Scheduling

Processes are synchronized by having processes sleep while wait-
ing for a particular event. Events are represented by addresses,
usually of table entries associated with the events. For exam-
ple, a process that is waiting for any of its children to ter-
minate will wait for an event that is the address of its own pro-
cess table entry. When a process terminates, it signals the
event represented by its parent's process table entry. Signaling
an event for which no process is waiting has no effect. Signal-
ing an event for which many processes are waiting wakes them all
up. Only one process gets the needed resource, and the others go
back to sleep.

The event-wait code in the kernel is like a co-routine linkage.
At any time, all but one of the processes has called event-wait.
The remaining process is the one currently executing; when it
calls event-wait, a process whose event has been signaled is
selected to be run and the process running returns from its call
to event-wait.

The process priority helps determine which process runs next.
Each process has a priority; user process priority is determined
by the recent ratio of compute time to real time consumed by the
process. A process that has used a lot of compute time in the
last real-time unit is assigned a lower user priority. Thus, be-
cause interactive processes are characterized by low ratios of
compute to real time, interactive response is maintained without
any special arrangements.

The compute-to-real-time ratio, which helps determine user pro-
cess priority, is updated every second. Thus, in general, loop-
ing compute-bound user processes are scheduled round-robin with a
l-second quantum. A high-priority process waking up will preempt
a running, low-priority process. Consequently, the scheduling
algorithm has a very desirable negative feedback character. A
process with a high priority cannot use an unfair share of the
processor because its priority drops. At the same time, if a
low-priority process is ignored for a 1long time, its priority
rises.

A-6 Zilog A-6

Zilog

a.3. I/0 System

There are two types of I/0 performed on the system: block I/O and
character 1/0, often called "raw" I/0. Block I/0 always causes
data to be read and written into the system's 512-byte internal
buffers before being transferred to the final destination; char-
acter I/0, on the other hand, is unconcerned with blocks and in-
volves the direct transfer of a specific number of bytes between
memory and the device.

1/0 devices are characterized by a major device number, a minor
device number, and a class (block or character). For each class,
there is a table consisting of one entry per device. Each entry
is an array of entry points into the device drivers. The major
device number is used to index into the table when calling the
code for a particular device driver. The minor device number is
passed to the device driver as an argument. The minor number has
no significance other than that attributed to it by the driver.
Usually, the driver uses the minor number to access one of
several identical physical devices; e.g. separate disk drives on
the same controller.

A.3.1. Block I/0 System

The model block I/0 device consists of randomly addressed, secon-
dary memory blocks of 512 bytes each. The blocks are uniformly
addressed @, 1, ... up to the size of the device. The block dev-
ice driver has the job of emulating this model on a physical dev-
ice. ‘

The block I/0 devices are accessed through a layer of buffering
software. The system maintains a 1ist of 52 buffers (this number
can be changed by the user), each assigned a device name and a
device address. This buffer pool constitutes a data cache for
the block devices. On a read request, the cache is searched for
the desired Dblock. 1f the block is found, the data are made
available to the requester without any physical 1/0. If the
block is not in the cache, the least recently used block in the
cache is renamed, the correct device driver is called to fill up
the renamed buffer, and then the data is made available. Write
requests are handled similarly. The correct buffer is found and
relabeled if necessary. The write is performed simply by marking
the buffer as "dirty". The physical I/0 is then deferred until
the buffer is renamed. Note that if the system stops unexpected-
ly, it is possible that there will be logically complete, but
physically incomplete, 1/0 in the buffers.

There is a system primitive (system call "sync") to flush all

outstanding I/0 activity from the buffers. Normally, this call
is made every 30 seconds by a process (see update(M)) that is in-

A-7 Zilog A-17

Zilog

voked when the system goes multi-user. However, this does not
guarantee that the file systems will be consistent if the system
goes down unexpectedly. In such a case some repair work may have
to be done; this is done either automatically by £sck(M), or
manually, as described in Section 6 of this manual,

A.3.2. Character I1/0 System

The character I/0 system includes the "classical" character dev-
ices such as communications lines and line printers. It also in-
cludes tapes and disks when they are accessed directly (i.e. the
buffer cache is bypassed); for example, for track-at-a-time disk
copies. User I/0 requests are sent (essentially unaltered) to
the device driver for implementation.

Zilog follows the convention that raw I1/0 is specified by fixing
the letter "r" to the file name associated with the device. Thus
if a block device is referred to as "/dev/ct@d", the raw device
will be referred to as "/dev/rctB". Using the raw device is usu-
ally faster than using the block device. The user is cautioned,
however, to make sure that the raw disk device is used only when
the corresponding file system is unmounted.

A.4. The File System

In the ZEUS system, a file is a (one-dimensional) array of bytes.
No other structure of files is implied by the system. Files are
attached anywhere (and possibly multiply) onto a hierarchy of
directories. Directories are simply files that users cannot
write.

A.4.1. File System Layout

The canonical view of a "disk" is a randomly addressable array of
512-byte blocks. This "array" is usually divided up into several
contiguous variable-sized partitions. Most of these partitions
are occupied by "file systems" although ZEUS requires that one
partition (and only one) be reserved for swapping. A file system
on disk (accessed either through the block or character I/0 sys-
tem) has four distinct self-identifying regions:

1. The first consists of one block (logical address) that is
used only for booting.

2. The second consists of one block (logical address 1) called
a "super-block". The super-block contains, among other
things, the size of the file system, the boundaries of the
other regions, and the list of pointers to free inodes.

A-8 zilog A-8

Zilog

3. The third is the list of inodes. An 1inode 1is a 64-byte
structure that defines the characteristics of a file (loca-
tion, type, access permission, owner, etc.). The offset of a
particular inode within the i-list is its i-number. The com-
bination of device name (major and minor numbers) and i-
number identifies a particular file to ZEUS.

4. The fourth section, from the i-list to the end of the disk
space allocated to the file system, includes free storage
blocks; these are available for file storage. (See Figure
A-3.)

The free space on a disk is maintained by a linked list of avail-
able disk blocks. Every block in this chain contains the address
of the next block in the chain. The remaining space in the block
contains the address of up to 50 disk blocks that are also free.
Thus, with one I/0 operation, the system obtains 50 free Dblocks
and a pointer to more. Since all blocks have a fixed size, and
there is strict accounting of space, there is no need to compact
or "garbage collect." However, as disk space becomes dispersed,
latency gradually increases. Some installations may choose to
occasionally compact disk space to reduce latency.

A.4.2. Directory Files

A logical directory hierarchy is added to the flat physical file
system structure simply by adding a new type of file, the direc-
tory. A directory contains lé-byte entries consisting of a 14-
byte name and an index, or i-number. The i-number is the index to
an inode. The root of the hierarchy is at a known i-number, 2;
that 1is, it is the second inode in the i-list. The file system
structure allows an arbitrary, directed graph of directories with
regular files 1linked at arbitrary places in this graph. Direc-
tories are accessed the same way as ordinary files.

A-9 Zilog A-9

Zilog

FILE SYSTEM-
0 PHYSICAL DISK LOGICAL DISK N BLOCKS

BLOCK 0:
SUPER BLOCK

ARBITRARY ——> LOGICAL DISK = e 512 BYTE BLOCKS 1-X:
SIZED FILE SYSTEM BLOCKS INODES

SECTORING
FILE SYSTEM {

etc.

X+1

BLOCKS X +1 to N-1:
FILES and FREE BLOCKS

00158

Figure A-3 File System Layout

A.4.3. Inodes

When a file is accessed, the associated i-number is used to index
into the i-list region of the file system for that directory. The
entry found thereby is the inode, which contains, among other
things, the description of the file:

1. The user and group-ID of its owner.

2. Its protection bits.

3. The physical disk addresses for the file contents.

4, Its size.

5. Time of creation, last use, and last modification.

6. The number of links to the file, that 1is, the number of
times it appears in a directory. .

A-10 Zilog A-19

Zilog

7. A code indicating whether the file is a directory, an ordi-
nary file, or a special file.

The system maintains a table of all active inodes. As a new file
is accessed, the system locates the corresponding inode, allo-
cates an inode table entry, and reads the inode into the table in
primary memory. This is the current inode; changes to the inode
are made to the table entry. When the last access to the inode
finishes, the table entry is copied back to the secondary store
i-list and the table entry is freed.

All I/0 file operations are carried out with the aid of the
corresponding inode table entry. Inodes and i-numbers are tran-
sparent to the user. References to the file system are made in
terms of path names of the directory tree. Converting a path
name into an inode table entry begins with a known inode (the
root or the current directory of some process). The next com-
ponent of the path name is searched by reading the directory.
This gives an i-number and an implied device (corresponding to
the file system that the device is in). Thus the next inode
table entry can be accessed. 1If that was the last component of
the path name, then this inode is the result. If not, this inode
is the directory needed to look up the next component of the path
name, and the algorithm is repeated.

An inode normally contains 13 disk addresses. The first ten of
these addresses point directly at the first ten blocks of a file.
If a file is larger than ten blocks, then the eleventh address
points at a block that contains the addresses of the next 128
blocks of the file. If the file is still larger than this, then
the twelfth block points at up to 128 blocks, each pointing to
128 blocks of the file. Files yet larger use the thirteenth ad-
dress for a "triple indirect" address. Thus files can grow to
[(12 + 128 + 128 SQUARED + 128 CUBED) TIMES 512] bytes.

If an inode indicates that the file is special, the last 12 dev-
ice address words are immaterial, and the first specifies an
internal "device name"; that is, a major and a mwminor device
number.

The user process accesses the file system with certain primi-
tives. The most common of these are system calls open(2),
creat(2), read(2), write(2), lseek(2), and close(2). The data
structures maintained are shown in Figure A-2., 1In the system
data segment associated with a user, there is room for a list of
20 open files. The list consists of pointers that can be used to
access corresponding inode table entries. Associated with each
of these open files 1is a current I/0 pointer. This is a byte
offset of the next read/write operation on the file. The system
treats each read/write request as random with an implied seek to
the 1/0 pointer. The user may, of course, perform random I/O by

A-11 Zilog a-11

Zilog

setting the I/0 pointer before read or write operations using the
"l1seek" system call.

With file sharing, it is necessary for related processes to share
a common I/0 pointer, and yet have separate I/0 pointers for in-
dependent processes that access the same file. With these two
conditions, the I/O pointer cannot reside in the inode table nor
can it reside in the list of open files for the process. A new
table, the open file table, holds the I/0 pointer. Processes
that share the same open file (the result of a "fork") share a
common open file table entry. A separate open of the same file
shares only the inode table entry, and has distinct open file
table entries.

The main file system primitives are implemented as follows.

1. open(2) converts a file system path name given by the user
into an inode table entry. A pointer to the inode table en-
try is placed in a newly created open file table entry. A
pointer to the file table entry is placed in the system data
segment for the process,

2. creat(2) first creates a new 1inode entry, writes the i-
number into a directory, and then builds the same structure
as for an "open."

3. read(2) and write(2) Jjust access the 1inode entry as
described above.

4. lseek(2) simply manipulates the I/0 pointer. No physical
seeking is done.

5. close(2) just frees the structures built by open(2) and
creat(2)

Reference counts are kept on the open file table entries and the
inode table entries to free these structures after the last
reference goes away. Making a link to an existing file involves
creating a directory entry with the new name, copying the i-
number from the original file entry, and incrementing the 1link-
count field of the inode. Removing (unlinking) a file is done by
decrementing the reference count for the given inode. When the
last reference to an inode is removed, then the file is deleted
and the inode entry is freed. Note that if a file 1is removed
while it is still open, the reference count will not be zero un-
til the file is closed, since there is a count for the directory
reference to the file, as well as a count for the "open" on the
file.

A-12 Zilog A-12

Zilog

A.4.4. Mounted File Systems

A file system is associated with some ‘designated block device,
which is formatted to contain a hierarchy, as described above.
One file system always contains the root directory, and is usual-
ly called the root file system. Another file system may be mount-
ed at any node (usually a leaf) of the current hierarchy. This
logically extends the current hierarchy.

Mounting is achieved by issuing a "mount" system call, which
takes three parameters: the name of a special file, the name of
an ordinary file (usually a directory), and a flag that indicates
whether the mounted file system is to have read-only status.
After a "mount" has been issued, references to files with a path-
name that includes the ordinary file name cause the system to
look for that file on the mounted device. Any files previously
associated with the sub-tree defined by the ordinary file are in-
visible.

Allocation of space for a file is taken from the free pool of a
file system on disk. The hierarchy that the user usually sees
consists of many mounted devices, and does not have a common pool
of free secondary storage space. This separation of space on dif-
ferent devices is necessary to allow easy unmounting of a device.

A.5. The Shell

The shell, or system command interpreter, is the program with
which most users interact after logging into the system. Most of
the time, the shell is waiting for the user to type a command.
When the newline character ending the line is typed, the shell's
read(2) call returns. The shell analyzes the command line, put-
ting the arguments in a form appropriate for exec(2). Then
fork(2) is called. The child process, whose code is still that
of the shell, attempts to perform an "exec" with the appropriate
arguments. If successful, this will bring in and start execution
of the program whose name was given. Meanwhile, the other pro-
cess resulting from the fork(2), which is the parent process,
wwaits" for the child process to die. When this happens, the
shell knows the command is finished, so it types its prompt and
reads the keyboard to obtain another command.

Given this framework, the implementation of background processes
is trivial; whenever a command line contains "&", the shell mere-
ly refrains from waiting for the process that it created to exe-
cute the command.

This mechanism meshes well with the notion of standard input and

output files. When a process is created by the fork(2) primi-
tive, it inherits not only the memory image of 1its parent but

aA-13 Zilog A-13

Zilog

also all the files currently open in its parent, including those
with file descriptors @, 1, and 2. The shell, of course, uses
these files to read command lines and to write its prompts and
diagnostics. 1In the ordinary case, its children, the command
programs, inherit them automatically. When an argument with "<"
or ">" is given, however, the offspring process, just before it
performs an "exec" of the program or command, makes the standard
I/0 file descriptor (@ or 1, respectively) refer to the named
file. This is easy because, by agreement, the smallest unused
file descriptor is assigned when a new file is "opened" (or
"created"); it is only necessary to close file @ (or 1) and open
the named file. Because the process in which the command program
runs simply terminates when it 1is through, the association
between a file specified after "<" or ">" and file descriptor @
or 1 1is ended automatically when the process dies. Therefore,
the shell does not have the actual names of the files that are
its own standard input and output, because it never reopens them.

In ordinary circumstances, the main loop of the shell never ter-
minates. The main 1loop includes the branch of the return from
fork(2) belonging to the parent process; that is, the branch that
does a "wait", then reads another command line. The one thing
that causes the shell to terminate is discovering an end-of-file
condition on its input file. Thus, when the shell is executed as
a command with a given input file, as in:

sh <comfile

the commands in comfile are executed until the end of comfile is
reached; then the instance of the "shell" invoked by sh ter-
minates. Because this shell process is the child of another in-
stance of the shell, the wait(2) executed in the latter will re-
turn, and another command may then be processed.

Most systems use the C shell (see csh(l)), rather than the shell
described in sh(l). The C shell, although bigger, has more
features and thus, is easier to use.

A.6. Other Programs as Shell

The shell as described above is designed to allow users full ac-
cess to the facilities of the system, because it can invoke the
execution of any program with an appropriate protection wode.
Sometimes, however, a different interface to the system is desir-
able, and this feature is easily arranged.

Ordinarily, after a user has successfully logged in, INIT(M) in-
vokes the shell. However, the user entry in the /etc/passwd file
may contain the name of another program to be invoked after 1lo-
gin. This program is free to interpret user input in other ways.

A-14 Zilog A-14

Zilog

For example, the /etc/passwd file entries for users of a secre-
tarial editing system might specify that an editor is to be used
instead of the shell. Thus, when users of the editing system lo-
gin, they are inside the editor and can begin work immediately.

They can also be prevented from invoking programs not intended
for their use.

A-15 Zilog A-15

Zilog

APPENDIX B
REDISTRIBUTING FILES WITHIN THE
CURRENT DISK CONFIGURATION

B.l. General

This appendix contains instructions for relocating files within
the current disk configuration. This procedure is easier and
safer than reconfiguring the disk layout itself, which |is
described in Section 4.2.3. Directions can vary from system to
system, depending upon disk capacity and additional software pur-
chased.

B.2. File Relocation Requirements

File relocation can be necessary:

1. Before adding new files.
2. After running out of space on a device.
3. When is it desired to speed up disk access times.

B.2.1l. Adding New Files

Before adding large files or large numbers of new files ¢to a
filesystem, use d4f(M) to check the number of free blocks on the
target filesystem, If adding new files will decrease the number
of free blocks below ten percent of the total blocks, reorganiza-
tion is recommended. To avoid running out of space on that dev-
ice (a potentially dangerous problem), perform this check.

B.2.2. Running Out of Space On a Device

The / and /usr filesystems should not run out of space unless the
number of available blocks have not been checked before transfer-
ring large numbers of files. However, /usr may run out of space
if many files are spooled to the printer. If this condition oc-
curs frequently, it may be desirable to create more free space by
relocating files as the following sections describe.

B-1 Zilog B-1

Zilog

B.2.3. Optimizing Disk Access Times

As delivered, the ZEUS system is set up so that the most fre-
quently used programs reside on /, and less frequently used pro-
grams on /usr and /z. Under the default disk configuration, / is
physically in the middle of the disk, and is thus faster to ac-
cess; whereas /usr and /z are somewhat slower to access. Normal-
ly, path variables in .login or .cshrc files are set up so that
the current directory is searched first; then /bin, which resides
on /; and finally /usr/bin, which resides on /usr. 1If languages
are placed under /z/bin, the path variables in the users' .login
or .cshrc files should be changed to reflect this.

To prevent software failure, certain files must not be moved,
These include files in /1ib and /usr/lib. Sh, csh, and commands
needed in single user mode must not be moved out of /bin.

B.3. Removing Unwanted Files

Unused files can be removed to make space for more useful files.
They can be moved to a less frequently accessed filesystem using
mv(l), or they can be removed with rm(l). It is advisable to
tar(l) the unwanted files to a tape before removing them, in case
they are needed later. To avoid running out of space on the tar-
get filesystem, check the number of free blocks on that device
with df(M) before moving a large number of files. The following
are possible candidates for removal, because they are seldom
needed:

1. /usr/lib/asz2 and /usr/lib/asz2d, which are MCZ-compatible
versions of the assembler.

2. /etc/termcap.others, which contains terminal descriptions
for nonstandard terminals.

For more information, refer to as(l), and termcap(5).

B.4. Distribution Tapes

For ease of custom-tailoring systems and because disks come in
different sizes, the ZEUS system now comes on multiple tapes.
These are:

1. The "boot" tape, including the operating system and utili-
ties (dumps(M) of / and /usr specific to Model 11, 21 and

31).

2. Separate tapes containing tar(l) images of the languages
Pascal, Cobol, Z8 Assembler, 2780 Assembler, 780 C and For-
tran.

B-2 Zilog B-2

Zilog

Organizing files within filesystems 1is simplified if the
languages are on separate tapes to allow selective restoration of
languages. For example, it is possible for a 40 MB disk to have
a large /usr filesystem, which could accommodate all the manual
pages and the extra languages. On the other hand, if-the system
had a smaller capacity disk, and everything were on one tape
(under /usr/doc and /usr/bin, as configured on a 4@ MB disk), the
/usr filesystem might run out of space upon restoring (M) the
utilities. The number of languages on the system and the size of
the system disk determine the number of languages which can re-
side in /usr/bin, and whether the online ZEUS Reference Manual
pages may be included in /usr/man.

Additional languages will be placed in /z/bin. If languages re-
side in /z/bin, the .login files in the users' home directories
must be modified to include this pathname. For example,

set path = (. /bin /usr/bin /z/bin)

Remember to logout, and then login again to activate the new .lo-
gin file.

B.5. Suggested File Distribution

Since all the extra software and documentation probably will not
fit on one filesystem, files should be distributed as follows:

1. Languages from the additional language tapes in /z/bin.

2. Manual page entries in /z/man or /z/usr/man if /usr is 1low
on space.

B-3 Zilog B-3

H ; 3 R i
Jun S dsrde 1704 pad
PR [YN ™
e oYL O Cow Fr

P, o P an TG
- o o D d L0 e e
B i o R S 1 ol 3 Ly
Vit ¥e PoenlPHEZALS:

-
fuie
P
ERERRS)
Rl T
IR T BRI R =S
Ao o=Cos0>
Soea ol
ve Jaieniteds Junper Lonfi

{¢ U <
judilo,ioéul)froadacods
(121597 ux2747)+ (857 0%
litcg Zwdas Kernel -
LU riant 1521 Jii
LLoysiamiLsYs ol
LNUmoer oT usars
[P
Sadw Wi ouser struct
sddress 07 user siru
srnel nemory size
SO0 MEaadry Slre
Ll G A2lOry
Lluniiasaabie Interrdo

tgot Pagze |
2535 STARY %o Losd System i

auration i i . ! i

3/2k4900)+(55862/0xDATS)

~

xT403Y+(1RER
|
32 |
Jelease Ja2 == [enerated 06/20/%4 00:08:16
D2s Inc. \
NModesITUS | ReleasetREL:3.2 Version:MOB 21°
= e |
- ': ‘
= (?3#&/?x5’?) bytes j
ct = Ox3z0CFA0C i
= (155648%/2xP6000) bytes
= (90027 /0xDACO]) bytes
= ecc |

——— - - W - WR S W G e W WS W W A PR M M N W T G N e e Y Am G e e P W W

% kx|

t O INTERRUPTED IN SYSTEM MODE %%k

pcseq=8000, pcoff=5808 |
rfe2ER0 r7:FCES
3:FCE6 r14:C r1S5:FECA

eryiced: epl=time clock,
moda \ ‘
wechany COF |
nted proarah. Jeal user id= 9§ |
adar: 1 tefize: 0 @ dsize: 40.
“00 size:rSdlattr:d
oA 23ize:rl mttr:il4
2 P02 sizerdattr:le i

~~

Floating Point Processor Microcode V1.0
Installation Instructions

This software package is distributed on a tape
cartridge (zilog P/N 14-0106-00) in tar format.

Before attempting to install this package please check
to see if you already have the correct microcode on
your system. To do this simply determine the checksum
as follows: A

sum /fpp.u.code

The expected value is "49209 48", Any other checksum
value returned indicates an older, preliminary version
and the microcode should be replaced as follows:

Change directories to “/z” with the command:
cd /z

Extract the tape files into the disk directory with the
following command: ,

tar xv

Because the v (verbose) option is used, the names and
sizes of the files are displayed as they are extracted.
Now the current directory contains the following two
files:

READ ME fpp.u.code

If you wish to save the old version of fpp.u.code, you
can move the old copy to fpp.u.code.o with the
following command:

mv /fpp.u.code fpp.u.code.o

The new version of fpp.u.code must now be -moved to the
root directory ("/") by typing the following copmands:

cd /
mv /z/fpp.u.code .

You may remove the READ ME file from "/z" by typing the
following command: : ; R

rm /z/READﬁME

The new version of fpp.u.code is now installed on disc.
You now must repoot the system in order to download and
initialize the FPP H/W option for subsequent usgs.

Remember to perform this procedure again whenever vyou

restore the ZEUS 3.2 Operating System from the standard
rg;gggé:;gﬁg‘supplieg‘B?‘ZiIGETﬁx“The~miCTOCoéE“fUr*the

floating point processor H/W option suppliej on the
ZEUS 3.2 release tape was preliminary in nature and is
known to have bugs.. = e s e , .

e,

Zilog, Inc. 1315 Dell Ave., Campbell, California 95008 Telephone (408)370-8000 - TWX910-338-7621

- Printed in USA

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	B-01
	B-02
	B-03
	_1
	_2
	xBack

