ES 1800 SATELLITE EMULATOR

OPERATOR’S
MANUAL

FOR 68000/68008/68010
MICROPROCESSORS

Applied
IMicrosystems

CORPORATION

CHANGING YOUR IDEAS ABOUT EMULATION

5020 - 148th Avenue NE
P.O. Box C-1002
Redmond, WA 98073-1002
(206) 882-2000

(800) 426-3925

August, 1984

Copyright®1384 by Applied Microsystems Corporation. All rights reserved.

Satellite Emulator is a Trademark of Applied Microsystems Corporation

920-11435-00

SET-UP CHECKLIST
68000 /69008 /68010

Please read this checklist completely before using your new
Applied Microsystems' Satellite Emulator.

1. Are you going to operate in static or dynamic RAM? If you are
using dynamic RAM, check the ON-OFF switches. See CAS and TAD,
page 3-19.

2. Have you reviewed the specifications for the serial interface
port? See Sections 2.3.3 and 2.3.4.

3. If using commnications without a modem, you may need a null
modem cable. If you purchase null modem cable, it is likely to
have the following configuration: '

20 20 *
7 ———7

Check the specifications in your terminal manual before
reversing the pins. *Note that pins 6, 8, and 20 are not used
and are unaffected by the cable configuration.

4. You may wish to protect the 64-pin adapter on the Probe Tip
Assenbly by installing a low-cost, round-pin CPU socket
(male-female) onto the adapter. If a pin is then broken on the
CPU socket, it is easier to replace because of its common
usage.

5. At a minimum, you should review sections applicable to the
steps listed here, plus:

e Section l—Introduction
® Section 2—Installation and Set-up (safety information,
Help menus, sample first-time emulation sequences, etc.).

If you experience difficulty in setting up your Satellite
Emulator, call Customer Service for ES Products at 1-800-426-3925,

PLACE CHECKLIST INSIDE FRONT OOVER FOR FUTURE REFERENCE

5020 148th AVenue NE //////” RApplied

P.O. Box C-1082 Microsystemns
Redmond, WA 98073-~10@2 : CORPORATION

Toll Free Service: 1-800-426-3925 August, 1984

RUN/EMULATION:
STP - SINGLE STEP / STOP
RST - RESET TARGET SYSTEM

TRACE HISTORY:
DT - DISASSEMBLE MOST RECENT LINE
DT X TO Y - DISASSEMBLE BLOCK

MEMORY - REGISTER COMMANDS:
DB(.BWL) X TO Y - DISPLAY BLOCK
BMO X TO Y,Z - BLOCK MOVE TO 2z
VBM X TO ¥,Z2 - VERIFY BLOCK MOVE
M X - VIEW/CHANGE MEMORY AT X
MMS/MMD = SP, SD, UP,UD, CPU

COMMUNICATIONS:
DNL - DOWNLOAD HEX FILE FROM HOST
UPL X TO Y - UPLOAD HEX TO HOST

SYSTEM:
BUS - VIEW HARDWARE STATUS LINES
ON/OFF - VIEW/ALTER SWITCHES

RUN/RNV - RUN/RUN WITH NEW VECTORS
RBK/RBV - RUN TO BREAKPOINT/WITH VECTORS
WAIT ~ WAIT UNTIL EMULATION BREAFK

DTB/DTF - DISASSEMBLE PAGE BACK/FORWARD
DRT (X) - DISPLAY PAGE RAW TRACE (FROM X)

DR - DISPLAY ALL CPU REGISTERS

FILL X TO Y,Z - FILL BLOCK WITH Z
LOV/VFO X TO Y - LOAD/VERIFY OVERLAY

X - EXIT MEMORY MODE

.B, .W,.L - DATA LENGTH; BYTE,WORD,LONG
STATUS FOR MEMORY ACCESS; SOQURCE/DEST

TRA - TRANSPARENT MODE TERMINAL-HOST.
CCT - TRANSFER CONTROL TO COMPUTER PORT
TCT - TRANSFER CONTROL TO TERMINAL PQRT
SET ~ VIEW/ALTER SYSTEM PARAMETERS
SZ(.BWL) - SET DEFAULT DATA LENGTH

SF - VIEW/EXECUTE SPECIAL FUNCTIONS =

MAC/CMC - DISPLAY/CLEAR MACROS DIS/ASM (X) - DIS/ASSEMBLE:FROM/TO MEMORY
ILD/SAV (X) - LOAD/SAVE 0=SETUP,1=REGS,2=EVENTS,3=MAP,4=SWITCHES,5?MACROS
MEMORY MAPPING: OVE = SP+SD+UP+UD+CPU; OVS = 0-7

MAP X TO Y :RO :RW :TGT :ILG

EVENT MONITOR SYSTEM:

DES/CES (X) -
EVENT ACTIONS:
BRK - BREAK CNT - COUNT EVENT
TRC - TRACE EVENT RCT - RESET COUNTER
TOT - TOGGLE TRACE TOC - TOGGLE COUNT
EVENT DETECTORS - GROUPS 1,2,3,4:

DM/CLM - DISPLAY/CLEAR MEMORY MAP

DISPLAY/CLEAR ALL EVENT SPECIFICATIONS (FOR GROUP X)

TGR - TTL TRIGGER STROBE
FSI - FORCE SPECIAL INTERRUPT
GROUP X - SWITCH TO GROUP X

ACl,AC2 OR ACl.X,AC2.X - 24 BIT DISCRETE ADDRESS OR INTERNAL EXTERNAL RANGE
DC1,DC2 OR DC1.X,DC2.X - 16 BIT DATA, MAY INCLUDE DON'T CARE BITS

51,82 OR S$1.X%,82.X -

LsSAa -

CL - COUNT LIMIT,

STEP 1 - ASSIGN EVENT DETECTORS

SPECIFICATIONS
ACl = $1234;S1 = SP + RD
ACl.2 = $4576+14%*6;DC2.2 =
CL.2 = $FO00 LEN $400

24;AC2.2 =

$5600 DC SFF

STATUS AND CONTROL - BYT/WRD + RD/WR + TAR/OVL
+ SP/SD/UP/UD + IPO ..
16 LOGIC STATE LINES, MAY INCLUDE DON'T CARE BITS
ANY NUMBER 1 TO 65,535

IP7 + VP + VM + BER

STEP 2 - CREATE EVENT

WHEN AC1 AND S1 THEN GROUP 2
2 WHEN ACl AND NOT DC2 THEN CNT
WHEN CL.2 OR ACZ.2 THEN BRK

Applied Microsystems Corporation has made every
effort to document this product accurately and
completely. However, Applied Microsystems assumes no
liability for errors or for any damages that result from
use of this manual or the equipment it accompanies.
Applied Microsystems reserves the right to make changes
to this manual without notice at any time.

Information that is unique to the MC68010
is marked with a solid bar (}) in the
margin.

TABLE OF CONTENTS

QUICK-INDEX TO COMMANDS
LIST OF FIGURES

LIST OF TABLES

LIST OF EXAMPLES

SECTION 1. INTRODUCTION

1.1 SYSTEM CONCEPT
1.1.1 Components

The Target System
The Host System
System Configurations

.1.5 System Features
DOCUMENTATION
68000 APPLICATIONS
OPTIONS
SPECIFICATIONS
LIMITED WARRANTY
SERVICE

e
M
NP WN

—
e o @

™
e« o o o s o
SN BdWN

SECTION 2. INSTALLATION AND SET UP

UNPACKING AND INSPECTION

OPERATING VOLTAGE AND GROUNDING

SYSTEM INTERFACING

2.3.1 The Rear Panel

2.3.2 The Side Panel

2.3.3 Serial Port Connector Pin Assignment

2.3.4 Setting Interface Parameters

2.4 PHYSICAL CONNECTION

2.4.1 Connection to a CRT Terminal

2.4.2 Connection to a Target System

SYSTEM POWER-UP AND CHECKOUT

PRE-EMULATION CHECKLIST AND THE HELP MENU

2.6.1 Parameter Set-Up and EEPROM Storage
Overview

« o »
W N

NN
. e
S o,

SECTION 3. SYSTEM SYNTAX AND PARAMETERS

3.1 INTRODUCTION
3.2 STANDARD CHARACTERS
3.2.1 The Prompt Character
3.2.2 The Run Prompt
3.2.3 Spacing
3.2.4 Utility Operators
3.3 NUMBERS AND BASE VALUES
3.3.1 Hexadecimal, Decimal, Binary and Octal
3.3.2 Default Base
3.3.3 Display Base
3.4 ARITHMETIC OPERATORS
3.4.1 Assignment Operators
3.4.2 Two-Argument Operators
3.4.3 Single-Argument Operators
3.5 PARAMETER SET-UP AND EEPROM STORAGE

ii

vi

xi
xii

b et et b et ek e ek b et b b
]
HEEOOONARRPWNDON

oo

NNNNNNI\')NNNNN
e ONNOOBDRBWWNN

N
[}
—
w

wwwwwwwc:awwwwuww
RO UTARWWNNND NN

nHO

SECTION 4. OPERATION

4.1
4.2

4.3

4.4

4.5

4.6

Lo HPhrPApA
. ¢« o s e
-0 00~

[a—ry

INTRODUCTION

REGISTER OPERATORS

4,2.1 Loading a Register

4.2.2 General Registers

LATION

Run

Step and Stop

Run With Breakpoints

Vector Loading and Running With Vectors
Reset

Wait

Cycle

MODE '

Entering and Exiting Memory

Memory Mode Pointer

Scrolling

HWord, Byte and Long Word Mode

Examining and Changing Values

Memory Mode Status

Displaying a Block of Memory and
Finding a Memory Pattern

EMORY MAPPING AND THE OVERLAY MEMORY

5.1 Memory Block Attributes

5.2 Memory Mapping Operators
5.
E
6.

(=R
\lO\m#th—‘a\lO\mthl—'

EMU
4.3,
4.3.
4.3.
4.3.
4.3.
4.3.
4.3.
MEM
4.4.
4.4.
4.4,
4.4.
4.4,
4.4.
4.4,

3 Overlay Memory Operators
TRACE MEMORY AND DISASSEMBLY
1 Display Raw Trace
6.2 Disassemble Trace
4.6.3 Disassemble Previous and Following Trace
SOFTWARE DEBUGGING WITHOUT TARGET SYSTEM HARDWARE
ERROR HANDLING AND CODES
BUS ERRORS
THE MEMORY DISASSEMBLER
4.10.1 Display Disassembled Memory
THE LINE ASSEMBLER
4,11.1 Standard Mnemonics
1.2 Assemble Line to Memory
1.3 Assembler Directives
1.4 Usage Notes
1.5 More Examples

M
4,
4,
4.
TH
4.
4.

.1
.1
.1
1

SECTION 5. PROGRAMMING THE EVENT MONITOR SYSTEM

(S S, 3,
WMN =

5.4

5.5

INTRODUCTION

DISPLAYING AND CLEARING THE EVENT MONITOR SYSTEM
COMPARATORS

5.3.1 Address Comparators
5.3.2 Count Limit

5.3.3 Data Comparators

5.3.4 Status Comparators
5.3.5 Don't Cares

EVENT MONITOR SYSTEM ACTIONS
5.4.1 Force Special Interrupt
EVENT GROUPS

] L U UL
COONNNIIONGTTO OBl WWWNN

-h-h-b-b-h-b-h-h-h-?-h-h-b-h-h-b-h-h-h-h

WRIRNI NN RN RN RN = b s st s s b b

CWOWRONNNIIANTNTITVOWOVUONNANWN-O

LI I R |
wmn O

mmmmmtpmmmmm
===, AN

5.6 OPTIONAL LOGIC STATE ANALYZER
5.6.1 LSA Functions
5.6.2 Timing Strobe
5.7 STATEMENT CONTROL
7 Repeat Command
7 Loop Counter
7

S
5
5
5 Macros

[FS I

SECTION 6. INTERFACING AND COMMUNICATIONS

6.1 INTRODUCTION

6.2 SERIAL DATA REQUIREMENTS

6.3 SETTING SYSTEM CONTROL
6.3.1 Terminal Control
6.3.2 Computer Control
6.3.3 Transparent Mode

6.4 DATA TRANSFER AND MANIPULATION
6.4.1 Upload and Download
6.4.2 Verify

SECTION 7. DIAGNOSTIC FUNCTIONS

7.1 INTRODUCTION
7.2 RAM DIAGNOSTICS
7.2.1 SF $0, <RANGE>
.2.2 SF $1, <RANGE>
.2.3 SF $2, <RANGE>
.4 SF $3, <RANGE>
7.3
1 SF $10, <ADDR>
2 SF $11, <ADDR> <DATA>
3 SF $12, <ADDR>, <PAT-1>, <PAT-2>
.4 SF $13, <ADR>, <PAT>
5 SF $14, <ADDR>, <DATA>
6 SF $15, <RANGE>
7 SF $16, <ADDR>
7.3.8 SF $17
CLOCK AND CRC
BUS
COM AND DIA
EXECUTING CUSTOM DIAGNOSTICS
7.7.1 PEEKING AND POKING TO THE TARGET SYSTEM
(68010)
7.7.2 PEEKING AND POKING TO THE TARGET SYSTEM
(68000/68008)
7.7.3 PASSING PARAMETERS TO CUSTOM DIAGNOSTICS

NN
e s e
~Noo s

SECTION 8. MAINTENANCE AND TROUBLESHOOTING

8.1 MAINTENANCE

8.1.1 Cables

8.1.2 Probe Tip Assembly
.2 TROUBLESHOOTING
.3 PARTS LIST

o o

APPENDIX A. SERIAL DATA FORMATS

A.1 MOS TECHNOLOGY FORMAT

A.2 MOTOROLA EXORCISER FORMAT

A.3 INTEL INTELLEC 8/MDS FORMAT

A.4 SIGNETICS ABSOLUTE OBJECT FORMAT

iv

TRTILRTTL
]
NOotwwwwhnN

R I D N I R I R R L L e e
P WWWWWWWWwWwwhNhRRN DN

SNNSNSNSNSNSNSNNSNNNSNSNNNNNY

~

(=]

Y
o~

A.5 TEKTRONIX HEXADECIMAL FORMAT

A.6 EXTENDED TEKHEX FORMAT
A.6.1 VARIABLE-LENGTH FIELDS
A.6.2 DATA AND TERMINATION BLOCKS
A.6.3 SYMBOL BLOCKS

APPENDIX B. GLOSSARY AND REFERENCE MANUAL

B.1 GLOSSARY
B.2 REFERENCE MATERIAL

APPENDIX C. SYMBOLIC DEBUG

C.1 COMMANDS

C.2 USAGE NOTE FOR USERS WITH SYMBOLIC FORMATS
OTHER THAN EXTENDED TEKHEX

APPENDIX D. S-RECORD OUTPUT FORMAT

D.1 S-RECORD OUTPUT FORMAT
D.1.1 S-RECORD CONTENT
D.1.2 S-RECORD TYPES

D.2 CREATION OF S-RECORDS

INDEX TO TOPICS

[w Nl o)
t
HWwnN

QUICK INDEX TO OPERATORS

SECTION

OPERATOR NAME PAGE NUMBER
AOA6 CPU address registers 0 through 6 4-2 4,2
ABS absolute value 3-14 3.4.3
ACl, AC2 address comparators 1 and 2 (Event Monitor System) 5-4 5.3.1
ALL enable all spaces for overlay {(constant) 4-13 4.5.3
AND logical event AND (Event Monitor System) 5-2 5.1
ASM assemble line to memory 4-27 4.11.2
BAS display base value . 3-5 3.3.3
BER status bus error (status constant) 5-6 5.3.4
BMO block move 4-15 4.5.3
BRK break (Event Monitor System) 5-10 5.4
BTE bus timeout enable (switch) 3-18 3.5
BUS display status of lines 7-3 7.5
BYM byte mode 4-7 4.4.4
BYT byte status {constant) 5-6 5.3.4
CAS continuous address strobe (switch) 3-19 3.5
CcCt Computer Control : 6-3 6.3.2
CES clear Event Monitor System When/Then statements 5-4 5.2
CL count limit (Event Monitor System) 5-5 5.3.2

. 5-5 5.3.2
CLK measure target system clock 7-3 7.4
CLM clear memory map 4-12 4.5.2
CNT count event (Event Monitor System) 5-10 5.4
CoM communicate with program running in target system 7-4 7.6
CPY copy (hardcopy switch) 3-17 3.5
CPU CPU space (constant) 4-8 4.4.6
CRC calculate cyclic redundancy check in target system 7-3 7.4
cYc single bus cycle 4-5 4.3.7 .
DO-7 CPU data registers 0 through 7 4-2 4.2
DB display memory block 4-9 4.4.7
DC Don't Care 5-9 5.3.5
DC1,DC2 data comparators 1 and 2 (Event Monitor System) 5-6 5.3.3
DEL delete symbol or section c-2 C
DES display Event Monitor System When/Then statements 5-4 5.2
DFB default base value 3-4 3.3.2
DFC destination function code (register) 4-2 3.2 B
DIA display character string from target memory 7-5 7.6
DIB data input buffer (register) 4-2 4.2 1
DIS display disassembled memory 4-26 4.10
DLR delete range of symbol/section c-2 c
DM display memory map 4-12 4.5.2
DNL download 6-5 6.4.1
DOB data output buffer (register) 4-2 4.2 u
DPB disable bus error on peek or poke (switch) 3-18 3.5
DR display CPU registers 4-3 4.2
DRT display raw Trace Memory 4-17 4.6.1
DT disassemble Trace Memory 4-19 4.6.2
DTB disassemble Trace Memory backward 4-19 4.6.3
DTF disassemble Trace Memory forward 4-19 4.6.3

vi

Index Continued

FA

FIL
FIN
FMT
FSI
FST
FTO

GDO-7
GRO-7
GRO
I1B
ILG
M
1PO-7
IRA
ITR

LD

LDV
LEN
Loy
LSA
LST
LWM

MAP
MM or M
MMD
MMP
MMS
MOD
MSK
MX or X

NOT
NRM
NXT

bus error register

fi11l memory with constant data

find byte, word, or long word in range

bus error register

Force Special Interrupt (Event Monitor System)
fast interrupt enable (switch)

fast timeout (switch)

general purpose data registers 0 through 7
general purpose range registers 0 through 7
group (Event Monitor System)

bus error register

illegal memory access (overlay)
introspective mode (switch)

interrupt levels 0 through 7 (constant)
internal range

initialize trace

Toad EEPROM data

Toad vectors

length (specified ranges)

load Overlay Memory

Logic State Analyzer comparator (Event Monitor System)
last-Return decrements address in Memory Mode

Tong word mode

define Overlay Memory Map

enter Memory Mode

Memory Mode status for block move and verify
Memory Mode pointer

Memory Mode status

modulo

bus error register

exit Memory Mode

logical event NOT (Event Monitor System)
overlay/target status (status constant)
next-Return increments address in Memory Mode

enable switches

disable switches

logical event OR (Event Monitor System)
Overlay Memory enable

status Overlay Memory (status constant)
overlay only (in memory mode) (constant)
Overlay Memory speed

program counter

peek poke trace (switch)
clear all symbols

vii

N
L IR
N N

o

wmmw-:lh.:-u'l-b

i
=PI N N
onN

-]

[
N

[UL
w

B
ANV ONOOh

-h-?m
-~ 00 W

1
~ -~

-&-h(n-?(ntncn
— 00 OV = Q) b b
w

w

TEL
NE=N
[« <Y

.
.
-~ w

oaNan

Wwur P
—

.
— —

Wonwaponbh
e o o o . o

L] L] [] L] . .
SN WWRN NTwWwnoIN NN
L] [] . L]

oW ;.dn—uho-

LWL ALD b aeN
NDABAN O =N

anvALDDAEO

.
-

F -3,

- -
o o
w N

e o
[S 00 PSS, N Y,]
e o o o

PhUOTAOOWW
« o s o o
w oW

MOWH
o
[y

.
rs

Index Continued

RO-14

TRC
up
UPL

UPS
usp

bus error register

run with breakpoints

run with breakpoint and vectors
reset count limit (Event Monitor System)
read (status constant)

display ESL revision date

run with vectors

read only :

reset target system

run emulation

read/write (used with overlay memory)

status comparators 1 and 2 (Event Monitor System)
save EEPROM data

CPU space codes (constants)

find symbolic section(s)

set system parameters

special functions

set special interrupt address

slow interrupt enable (switch)
supervisor data (status constant)
supervisor program (status constant)
view bus speed information (constant)
status register

system stack pointer

step/stop

find all symbols with value

byte mode

Tong word mode

word mode

tri-state address (switch)

status target system (status constant)
terminal control

target only (in memory mode) (constant)
enable trigger output (Event Monitor System)
target system memory {(no overlay)

then (Event Monitor System)

to (specifies range)

toggle counting (Event Monitor System)
toggle Trace Memory (Event Monitor System)
Transparent Mode

trace event (Event Monitor System)

user data (status constant)

user program (status constant)
upload (from target system memory)
upload all symbols

user stack pointer

viii

! LU R UL
SNSNSNNNENNN 00 00 - I N s N\ OO b
N W W

(Vo]

o

- XK h##ﬁ##h(?)hbmeNn#Nm
(=

| DN B |
=S = = et QO = = OO W
N O

[IL
[NN

[Sa N Qe IS NS, NS, BN, I
]

o

#ﬁa"\-b-h
AN, Je o o]

w-h:.uwl\:
. L]
& w

1]
=S

)
OWwoiWw
.)

-h-h-h-h-h@mm-h-h:h

L]
oy
o e
O =

.
et

DhHE WD NWNS
[y

(2],

EhEOMEPWOPRAPLPWOAOANNGOAEANOG

. .
. .
&b N

BWBDPOROB_DWOO
. . . .

[]
[— O) b N

)
w

[Sa - WS IS IS, IS R S, I N QS V)
. e o o o s o o .

NS

APODDS
. hubiaie
N

- Oy O)

Index Continued

YBL
YBM
YFO
YFY
VM
VP

WAl
WDM
WHE
WR

WRD

X
X
XRA

>
R>

<return>

/

.
>

CNTL X
CNTL R

.B
M

SRl N AD~ N~ RIS
v A — —

— V A

verify block data

verify block move

verify Overlay Memory

verify serial data

valid memory address (status constant)
valid peripheral address (status constant)

wait

word mode

when (Event Monitor System)
write (status constant)
word (status constant)

memory mode exit
don't care
external range

prompt character

run prompt

return or enter

repeat previous command line
statement separator
argument separator

delete line

reprint current line

byte

word

Tong word

hexadecimal

decimal

binary

octal

equal

parentheses

indirection

multiplication

division

addition

subtraction

bitwise AND

bitwise OR

shift left

shift right

inverse

memory block attribute
increment Memory Mode address
decrement Memory Mode address
Help Menu or error message
Disassembler prompt

ix

¢ o &
wWwwanonm
. o PR

QO b,

WWrH dWw

AWM

» LN~ PAPPEANWWW

(S, S WS- -

ww

)
— O =

o1 OV
| B I |
O (=)

PRADRPLULWWWWWWWWNN
WWwwwww [NN [3, IS, S, - -
e o e o « . « o

G L0 LI W LW LW WWWWWWWWw
Tt ot b
ON~N D
P
. e o -

| I D B B |
R e N B e e e el e e al ed adlay
= HBWWWWWNNN
. o . .
WWHWRNMNNNONNN SRR RAELREDEN-

. . . o
O DAL AEDDRREREELAEPWWWWANRNDNNDNDNRNDNDNDNDN
© o o o » . s o o o o o o » « o o . PR

BN AEARWWWWWWWWWWWWWWwWwwwwww
« & o ®» s o o ® e @ e ® 6 o o o o o o o s o o
—
.
(8,

AN PEPPRPDRDWLWLWWWWWWWLWWWWW

oo

TIST OF FIGURES

— s
OB 1
PONOANHBRWNE HWN -

NP NDNN NN

R
A PHWN -

o o
OO 1 1
N

>3 2 3>
o~ P~ WN -

The Satellite Emulator
Mainframe Components
System Configurations
Dimensions

Rear Panel

Serial Port Connector Pinout

Front and Top Panel Removal

Installing the Emulation Control Board
Connecting the Pod Assemblies to the Mainframe
Installing the DIP Header Plug

The Help Menu

Display Format

Display Registers Format
Display Memory Block Format
Display Memory Map Format
Trace Memory Format

Error Recognition

LSA Timing Diagram

Format of a Serial Word
System Control

Specifications for MOS Technology Format
Specifications for Motorola Exorciser Format
Specifications for Intel Intellec 8/MDS Format

— et e
= =000 W onwNn

NN

Specifications for Signetics Absolute Object Format

Specifications for Tektronix Hexadecimal Format
Tekhex Data Block

Tekhex Termination Block
Tekhex Symbol Block

Hpspm O AhWN

> T» 3= > 2> 2> T
NN N

LIST OF TABLES

et
I
W N =

Feature Summary
Applications
Specifications

Serial Port Connector Pin Signals
Interface Parameter Switch Settings
Model Numbers ‘

NI'}’N
W N =

Arithmetic Operators
Two-Argument Operation Validities
Bitwise Operator Validities
Single-Argument Operators

SET Select Numbers

[}
OB WN =

]
W=

Registers

0VS Values
Error Codes
Bus Errors

c'nu'a
N =

Event Monitor System Operators
Status Mnemonics

~
'
—

Custom Diagnostics Access Codes

o
]
b

Troubleshooting

Extended Tekhex Header Field

Character Values for Checksum Computation
Extended Tekhex Data Block Format

Extended Tekhex Termination Block Format
Extended Tekhex Symbol Block Format

Extended Tekhex Symbol Block: Section Definition
Symbol

Extended Tekhex Symbol Block: Symbol Definition
Field

>>)'>>>>
AN HDWN =

T
~

Number Bases Cross Reference
ASCII and IEEE Code Chart
ASCII Control Characters

w oW
U
W N =

xi

—
| UL

0 oo

N NN
[I | | I R B B] T 11
=t = - OY 0~ w;

I - WWwWwww
NN =N

T o
[

N w

N

w

[L
= =0 00 00~

> T» I» I» I» I o] ~

CIST OF EXAMPLES

Most examples occur within the section that discusses the operator in the
example. The only examples listed here are those that have been placed
separately from their section because more than one operator is illustrated.

Parentheses and Indirection

3-1 3-9
3-2 Multiplication and Addition 3-12
3-3 Bitwise AND, Bitwise OR 3-14
3-4 Load and Save 3-17
4-1 Run, Run With Breakpoints, Step, and Stop 4-4
5-1 Setting Status Comparators 5-7
5-2 Examining the Contents of the Status Comparators 5-7
5-3 Types of Breakpoints 5-11
5-4 Sample Valid When/Then Statements 5-14

xji

SECTION 1

INTRODUCTION

1.1

1.2
1.3
1.4
1.5
1.6
1.7

SYSTEM CONCEPT

1.1.1 Components

Mainframe * Emulator Pod
Assembly * Optional Logic State
Analyzer Pod Assembly * Null
Target Software Simulation Tool
The Target System

The Host System

System Configurations
Standalone * Standalone With Host
Data Files * Host System Control
1.1.5 System Features

- -
e o o
[
“« o o
W

DOCUMENTATION
68000 APPLICATIONS
OPTIONS
SPECIFICATIONS
LIMITED WARRANTY
SERVICE

1-1

1.1 SYSTEM CONCEPT

1.1.1 Components

Figure 1-1.
The Satellite
Emulator

The Applied Microsystems ES 1800 Satellite Emulator (See Fig.
1-1,) is a controllable microprocessor emulation system. It
operates in conjunction with your host computer system or as a
standalone system controlled by a CRT terminal. A1l system
configurations provide powerful hardware and software debugging
capability as well as hardware/software integration support.

The Satellite Emulator is transparent to the normal operation of
the "target system" (your hardware). Emulation is performed in
real time - no additional microprocessor cycles are required as a
result of the emulation process. No target system addresses or I1/0
ports are needed or used and no program or software objects are
required in the target system address space. There are no hidden
quirks. You will have no difficulty using the Satellite Emulator
with your target system, even when critical timing constraints are
present. The emulator operates at speeds up to the specified
clock rate and will also single-step the microprocessor under
program or operator control.

Standard features of the Satellite Emulator include an Event
Monitor System, Trace Memory and Disassembly and special test
functions.

The Satellite Emulator consists of a mainframe, an emulator pod
assembly, a Null Target Software Simulation Tool, and an optional
Logic State Analysis pod assembly.

MAINFRAME. The mainframe houses the emulation control board, the
memory controller board, the RAM Overlay board, the controller
board, the trace and break board, and the power supply, as shown in
Figure 1-2. There are no external panel controls except the power
switch on the rear panel, The emulation control board configures
the Satellite Emulator for use with specific microprocessors. It
resides in the mainframe and contains the electronics unique to the
specific device it emulates.

MAINFRAME

LOGIC STATES ANALYSIS (LSA)
POD ASSEMBLY

EMULATOR POD ASSEMBLY

Figure 1-2.
Mainframe
Components

1.1.2 The Target
System

POWER SUPPLY
FAN \ CONTROLLER BOARD

RAM OVERLAY BOARD

EMULATION CONTROL BOARD TRACE AND BREAK BOARD

MEMORY CONTROLLER BOARD ~ NOT SHOWN

EMULATOR POD ASSEMBLY. The emulator pod assembly consists of the
pod, a probe and two cables:

o The 40-inch ribbon cable connects the assembly to the mainframe;
the 1ll-inch ribbon cable connects the assembly to the target
system.

e The pod contains the emulating microprocessor and associated
circuitry (line buffers, etc.).

e A dual in-Tine package (DIP) connector on the probe plugs into
the target system's microprocessor chip socket.

The emulator pod assembly is connected internally to the mainframe
via the emulation control board (see Figure 1-2).

OPTIONAL LOGIC STATE ANALYZER POD ASSEMBLY. The Logic State
Analyzer (LSA), via the optional LSA pod assembly, provides 16
additional input lines to the Satellite Emulator, giving you access
to signals other than the bus signals.

The target system is your hardware. The emulator pod assembly is
connected to the target system by removing the target system micro-
processor from its socket and plugging the probe connector in its
place. The emulator then functions as a replacement for the
microprocessor that was removed, providing a rich variety of
control and analysis capabilities at the same time.

Once connected, the emulator is able to communicate with the
environment that the target system provides for the target system
microprocessor; the emulator may read or write to the micropro-
cessor registers or memory locations and it may execute programs
contained in the target system memory. It makes no assumptions
about the environment provided by the target system; if the target
system microprocessor works correctly with the target system, the
emulator will also, provided that the microprocessor manufacturer's
design specifications are complied with.

1-3

1.1.3. The Host The host system may be a development system, minicomputer, or
System . automatic test equipment system. The Satellite Emulator connects
to a host system via a serial port (labeled "COMPUTER") on the rear
panel of the emulator mainframe. A second serial port (labeled
“TERMINAL") 1is provided for connection to a CRT terminal.

The host system can be used to control the emulator or as a source
of data. This is described in section 1.1.4.

1.1.4 System There are two system configurations: standalone, and standalone with
Configurations host data files. See Figure 1-3.

STANDALONE. In this configuration, the Satellite Emulator is
controlled directly by a CRT terminal, with no external data
sources or output devices. The terminal serial port on the rear
panel is the input source for control commands you key in on a CRT
terminal. See Figure 1-3a.

STANDALONE WITH HOST DATA FILES. In this configuration, the
Satellite Emulator is still under the direct control of the CRT
terminal. In addition, the computer serial port is connected to a
host system for access to the host's data files. Or, the computer
serial port can be connected to a printer for dumping data from the
emulator to create hard copies. You also have available a
“transparent mode," wherein the Satellite Emulator allows
communication between the computer and terminal ports or output
devices connected to these other ports. Essentially, the
transparent mode uses the emulator as an interface or conduit
between the two ports. See Figure 1-3b.

N
co'NT'ROLUNG COMMANDS

—1

TERMINAL PORT

EMULATOR CRT TERMINAL
a. STAND-ALONE

(I (DATA FILES CONT?OLLING COMM+AN]DS

)

[
* TERMINAL
PORT
COMPUTER
PORT
HOST COMPUTER
OR PRINTER EMULATOR CRT TERMINAL

b. STAND-ALONE WITH HOST DATA FILES

Figure 1-3.
System Configurations

1.1.5 System Table 1-1 summarizes the system features of the emulator.
Features

These
features can be combined in various ways to form an emulation
system that fulfills your exact needs.

Section 3 gives a more
detailed description of how these are combined.

Table 1-1.
Feature Summary

FEATURE

DESCRIPTION

Help Menu

EEPROM Storage

Emulation

Trace Memory

Disassembler

Event Monitor System

1-6

Provides you with a display of examples on
a CRT terminal. See Section 2.

Allows two users to store complete sets of
unique, user-defined operating parameters;
interface parameters, register values,
switch settings, Event Monitor System
parameters, and the memory map.
Parameters can be accessed and changed at
any time during an emulation session. See
Section 2.

Lets the emulator become the target system
microprocessor and execute the program and
functions of the target system, See
Section 4.

Functions as a history of target system
program execution. It records each bus
cycle and can output to a display the last
2046 machine cycles. See Section 4,

Allows you to display the contents of the
Trace Memory history in a form similiar to
your program listing. Output can be to
your CRT terminal, a printer, or your host
computer. See Section 4.

Allows you to specify event detectors that
will cause specified actions to occur when
the events are encountered in the target
system program. Some of the available
actions are:

¢ break emulation

e qualify trace data

¢ increment or reset the pass counter

e trigger an oscilloscope or other
instrument

e switch to other event detectors
e interrupt to a user routine

See Section 5.

1.2 DOCUMENTATION

Logic State Analyzer

Overlay Memory
(options up to 512K-
byte total)

Memory Mode

Null Target Software

Simulation Tool

Downloading

Uploading

Diagnostic Functions

Provides external logic signal recording
(pod assembly option) and event detection
capability (16 inputs
to a 16 x 2048-bit memory). See Section
5.

Memory, locatable in 2K-byte segments,
that can be mapped into the address space
of the target system. When a portion of
the target system program is loaded into
it, the program can be edited, positioned
as desired, and the program executed as if
it resided completely 1in the target
system. See Section 4.

Provides fast and easy examination and
modification to target system memory
locations. See Section 4.

Allows you to execute your software with-
out connecting the emulator to your target
system. See Section 5.

Loads target system memory space with data
from a host system. See Section 6.

Dumps data from the target system address
space to one of the Satellite Emulator's
serial ports. See Section 6.

A large number of diagnostic functions and
routines that can be wused in both
engineering and manufacturing environments
to turn on and test your microprocessor
system hardware. Features include memory
tests, oscilloscope synchronization, and
signature analysis stimuli. See Section 7
for a complete 1list and detailed
descriptions.

This manual gives you information necessary for setting up and
operating the Satellite Emulator.

This first section of the manual introduces the Satellite Emulator
and provides information on features, options, specifications,

warranty, and servi
follows:

ce.

The remaining sections are organized as

e Section 2, Installation and Set-Up: procedures for setting up the
physical connection,
the emulation system, pre-operational procedures for setting up
the system, such as accessing the Help Menu and EEPROM storage of
parameters and a sample first-time emulation sequence.

1-7

interface parameters, initial checkout of

1.3 68000

APPLICATIONS

Table 1-2
Applications

e Section 3, System Syntax and Parameters.

e Section 4, Operation: procedures for emulation, Memory Mode,
Overlay Memory, Trace Memory, and error codes.

e Section 5, Programming the Event Monitor System: procedures for
programming the Event Monitor System to your specific needs.

e Section 6, .Interfacing and Communications: procedures for
communicating between the Satellite Emulator and other units in
an emulation system, such as uploading and downloading and
setting system controls.

e Section 7, Diagnostic Functions: descriptions of and procedures
for using the built-in diagnostic functions of the Satellite
Emulator.

® Section 8, Maintenance and Troubleshooting: procedures for
routine maintenance and basic troubleshooting of the Satellite
Emutator.

® Appendices: serial data formats, glossary, cross-reference of
number bases.

o Index

Your Satellite Emulator is configured for 68000 family micropro-
cessors with the appropriate emulation control board and emulator
pod assembly. The following table lists the microprocessors
currently supported by the ES series emulators and the emulation
control board and emulator pod assembly used with each. New
devices may be added as support becomes available. Contact your
Applied Microsystems Corporation representative when you need
additional support.

ENUCATION EMULCATOR

DEVICE CONTROL BOARD POD ASSEMBLY
Motorola:

68000 ES-68000B ES-68000P

68008 ES-68008B ES-68008P

68010 ES-680108B ES-68010P
Zilog:

28000 ES-Z8000B ES-Z8000P

28001 " ES-Z8001P

28002 " ES-Z8002P

28003 " ES-Z8003P
Intel:

8086 ES-8086B ES-8086P-86

8088 " ES-8086P~-88

80186 " ES-80186P~186

80188 " ES-80186P-188

1-8

1.4 OPTIONS

1.5 SPECIFICATIONS

The following options are available for your emulator. Contact
your Applied Microsystems Corporation representative for infor-
mation on prices and ordering.

e Overlay Memory Expansion: available for adding Overlay Memory
from 32K-bytes up to 512K-bytes total.

e Logic State Analyzer (LSA) Pod Assembly: provides 16 input lines
and one trigger output line. The pod assembly gives you access
to signals other than bus signals which are recorded
simultaneously with the bus signals into the Trace Memory. These
signals also become part of the Event Monitor System.

e Carrying Case: fits mainframe, one pod assembly, and LSA pod
assembly.

e Symbolic Debug (described in appendix C).

Other options are available to configure your ES 1800 Satellite
Emulator mainframe for use with other microprocessor families. See
your sales representative for more information.

Table 1-3 lists the specifications of the Satellite Emulator.

Figure 1-4 shows the dimensions of the mainframe and emulator pod
assembly.

1-9

Table 1-3. Specifications

INPUT POWER

Standard:
90 to 130 VAC
47 to 440 Hz
consumption less than 130W

Optional:
180 to 260 VAC
47 to 440 Hz
consumption less than 130W

ENVIRONMENTAL

Operating Temperature: 0% to 40% (32

% to 104°F)

Storage Temperature: -40°C to 70°C (-40%F to 158°F)

Humidity: 5% to 95% relative humidity, noncondensing

PHYSICAL

~ Mainframe:

13.2 cm x 43.18 cm..
(6.2 in. x 17 in. x 13.5 in.)

Emulator Pod:
22.6 ¢cm. x 12.9 cm. x 4.1 cm.
(8.9 in. x 5.1 in. x 1.6 1in.)

Target System Connection
(total length including pod):
1.5 m (60 inches)

LSA Pod
12.4 cm. x 7.9 cm. x 2.3 cm.
(4.9 in. x 3.1 in. x .9 in.)

Total Weight: 9.1 kg. (20 1bs.).
Shipping: 10.9 kg. (24 1bs.).

MAINFRAME
135

—

l

17

L
|

Figure 1-4.
Dimensions

x 34.29 cm.

1.6 LIMITED WARRANTY

1.7 SERVICE

Applied Microsystems Corporation warrants that the -equipment
accompanying this document is free from defects in material and
workmanship, and will perform to applicable published Applied
Microsystems' specifications for one year from the date of ship-
ment., THIS WARRANTY IS IN LIEU OF AND REPLACES ALL OTHER
WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THE WARRANTY OF
MERCHANTABILITY AND THE WARRANTY OF FITNESS FOR PARTICULAR PURPOSE.
In no event will Applied Microsystems be 1liable for special or
consequential damages as a result of any breach of this warranty
provision. The 1iability of Applied Microsystems shall be limited
to replacing or repairing, at its option, any defective unit which
is returned F.0.B. to Applied Microsystems' plant. Equipment or
parts which have been subject to abuse, misuse, accident,
alteration, neglect, unauthorized repair, or improper installation
are not covered by this warranty. Applied Microsystems shall have
the right to determine the existence and cause of any defect. When
jtems are repaired or replaced, the warranty shall remain in effect
for the balance of the warranty period or for 90 days following
date of shipment by Applied Microsystems, whichever period is
longer.

Extended warranty programs are available by contract.

If the unit is to be returned to Applied Microsystems for repairs,
a repair authorization number will be issued by Applied Micro-
systems Customer Service for ES products. Call 1-800-426-3925 to
obtain the necessary return shipment information.

After expiration of the warranty period, service and repairs are

billed at standard hourly rates, plus shipping to and from your
premises.

1-11

SECTION 2

INSTALLATION AND SET-UP

2.1
2.2
2.3

2.4

2.5
2.6

UNPACKING AND INSPECTION
OPERATING YOLTAGES AND GROUNDING

SYSTEM INTERFACING

2.3.1 The Rear Panel

2.3.2 Side Panel _

2.3.3 Serial Port Connector Pin Assignment
2.3.4 Setting Interface Parameters

PHYSICAL CONNECTION
2.4.1 Connection to a CRT Terminal
2.4.2 Connection to a Target System

SYSTEM POWER-UP AND CHECKOUT

PRE-EMULATION CHECKLIST AND THE HELP MENU
2.6.1 Parameter Set-Up and EEPROM Storage Overview

2.1 UNPACKING AND
INSPECTION

2.2 OPERATING VOLTAGE
AND GROUNDING

The Satellite Emulator was inspected and tested for any electrical
and mechanical defects before it was shipped and adjusted for the
line voltage you requested. The emulator was carefully packed to
prevent any possible damage and should arrive in perfect operating
condition. Carefully inspect it for any damage that may have
occurred in transit. If any physical damage is noted, file a claim
with the carrier and notify Applied Microsystems. Also check to
make sure each unit of the Satellite Emulator system is present:

e the emulator mainframe

e the pod assembly for 680XX microprocessors
e the 680XX emulation control board

e the mainframe power cord

o Null Target Software Simulation Tool

e an extra probe tip

e the 68000/68008/68010 Operator Manual

e Optional equipment you may have ordered:
- Overlay Memory
- Logic State Analyzer pod assembly
- a carrying case
- Symbotlic Debug

The following paragraphs describe how to properly set up an
emulation system around the Satellite Emulator.

CAUTION:
DO NOT OPERATE THE EMULATOR UNTIL
YOU HAVE COMPLETED THE PROCEDURES
IN SECTIONS 2.2 THROUGH 2.5.

The Satellite Emulator is normally set for operation on 90 to 140
VAC 50/60 HZ. It is also available for operation on 180 to 240 VAC
50/60 HZ, if so specified when ordered.

The emulator is supplied with a three-wire cord fastened to a
three-terminal polarized plug for connection to a power source and
a protective ground. The ground terminal of the plug is connected
internally to the metal chassis parts of the emulator. Electric
shock protection is provided when the plug is connected to a mating
outlet with a protective ground contact that is properly grounded.

WARNING:
FAILURE TO PROPERLY GROUND THE
SYSTEM WILL CREATE A SHOCK HAZARD

The emulator has three types of grounds. The first is the chassis
ground that is connected to the metallic enclosure of the unit.
The second type is the AC protective ground. This ground is
derived from the third (green) wire of the AC power cord. It is

2-2

2.3 SYSTEM INTERFACING

2.3.1 The Rear Panel

Figure 2-1
Rear Panel

tied to the chassis ground at the power input filter of the
emulator. The third ground is the signal ground. This is used as
a common reference for all DC voltages and is the ground employed
by the logic circuits. The signal ground is tied to the chassis
ground (and thus to the AC ground) by means of a jumper at the
power supply terminal strip.

NOTE:

Any target system connected to a Satellite Emulator
should ideally have independent signal and chassis
grounds that can be disconnected from each other when
the target system is connected to the emulator. If the
target system's signal ground is permanently tied to its
chassis ground, a ground loop will exist. In some cases
this will cause unwanted currents to flow through the
emulator signal ground and may result in electrical
noise on data, address, and control lines.

Total elimination of ground loops may not be practical if the
system also contains peripherals that tie a signal ground to a
chassis ground. When the signal and chassis grounds can't be
separated, a low resistance strap between the emulator chassis and
the target system chassis can reduce noise on the signal Tines.

The Satellite Emulator will be connected to the target system, a
CRT terminal, and/or a host system. Two points must be considered:
(1) the physical connection between the emulator and the CRT
terminal or host system and (2) maintaining proper grounds
throughout the system.

The rear panel of the Satellite Emulator is shown in Figure 2-1.
The two serial ports are labeled TERMINAL and COMPUTER, to signify
which is used for connection to a CRT terminal and which is for a
host system, printer, or other source of data files. Be sure all
peripherals are connected to the proper serial port.’

Also on the rear panel is a BNC connector for connecting to an
oscilloscope trigger, the main power switch, a line fuse, and the
AC power connection.

The line fuse may be replaced if necessary. It is removed by
turning the fuse holder counterclockwise with a small screwdriver.
Replace with a 3-amp slow-blow fuse for 110-volt operation.

TERMINAL PORT COMPUTER PORT

/\”
®q§§;§p..“

®
K=—10 ®
®
® - °
© - © , AW o
/ 7
POWER SWITCH LINE FUSE
OSCILLOSCOPE TRIGGER AC POWER CONNECTION

2-3

2.3.2 The Side Panel The side panel contains the cooling fan for the emulator. See

2.3.3 Serial Port
Connector Pin
Assignment

Figure 2-2
Serial Port
‘onnector
Pinout

Figure 1-2 for the location.

CAUTION:
DO NOT BLOCK THE FAN OPENING WHEN THE POWER IS
ON. THIS WILL CAUSE THE EMULATOR TO OVERHEAT.

Figure 2-2 shows the pinout of the serial port connectors. Both
ports use the same pin assignment. Table 2-1 1lists the signals
present on each pin. Pins without signals shown are not connected
within the emulator. A1l pin assignments and voltage levels
conform to Electronics Industries Association (EIA) RS232C
standards.

Physically, there is no difference between the two ports. However,
there are many software constraints making it important that
peripherals are connected to the emulator at the correct port.

o\@@@@@@@@@@ay/o
2eleleleleoiclololelo

The minimum connection to another unit consists of pins 1, 2, 3,
and 7. Pins 4 and 5, Request to Send and Clear to Send, need not
be connected unless other units connected to the emulator are using
them.

You must be familiar with the pin configurations of your own
equipment, as pins 2 and 3 vary and pins 1 and 7 are sometimes tied
together.

CAUTION:
CHECK HOST AND CRT CONFIGURATIONS BEFORE CONTINUING

Table 2-1.
Serial Port

Connector Pin
Signals

PIN

NAME

DESCRIPTION

Protective Ground

Serial Data Out*

Serial Data I

n*

Connected in the emulator to the Togic
ground.

This signal is driven to nominal + 12
volt levels by an RS232C compatible
driver,

Data will be accepted on this pin if the
voltage levels are as specified by RS
232C specifications and follows the
format outlined 1in Section of this
manual.

*NOTE:

You should be familiar with the pin configuration of
your own system.

some on pin 3

Some systems receive on pin 2 and
It may be necessary for you to rewire

the cable connecting the units.

Request to Se
(Output)

Clear to Send
(Input)

Not Used

Signal Ground

9 to 25 Not Used

nd

This signal is driven to nominal + 12
volt levels by an RS232C compatible
driver; it signals other equipment that
the emulator is ready to accept data on
this port.

This input to the emulator indicates
that other equipment in the system is
ready to accept data. This signal is
terminated such that the emulator will
operate with it disconnected.

This pin is connected in the emulator to
the system logic ground. Note, however,
that this ground is connected to the
emulator probe ground pin; when the
emulator 1is connected to the target
system, the target system Tlogic ground
and the emulator 1logic ground are
connected together, and to the ground
system of equipment plugged into the
serial ports.

2-5

2.3.4 Setting
Interface
Parameters

Figure 2-3
“op and
‘ront Panel
Removal

A thumbwheel switch on the controller card selects the initial
power-on interface parameters, set up in user-defined groups.
After power-up, you can override the switch setting with software
commands described in Section 3.5 of this manual. To select
parameters, turn BOTH knobs to the left and remove the front panel
of the emulator to expose the card cage, as shown in Figure 2-3.
The controller card is the top card in the card cage.

INTERFACE PARAMETER CONTROLLER CARD
SWITCH .

SCREWS

Refer to Table 2-2. The term "Factory Default" is used to denote
an 8-bit word, one stop bit, and no parity. "User 0" and "User 1"
refer to two operators. This allows two operators to each define
their own power-up parameters, store them in the EEPROM (see
Section 3), and recall them on power-up, depending on the switch
position. “Terminal Control" and "“Computer Control" determine
which port will be active on power-up.

Table 2-2.

Interface Parameter POSITION FUNCTION POSITION FUNCTION
Switch Settings 0 Factory Default 6 Factory Default
9600 baud 300 baud
1 User O 7 Factory Default
Terminal Control 1200 baud
2 User 1 8 Factory Default
Terminal Control 2400 baud
3 User O 9 Factory Default
Computer Control 4800 baud
4 User 1 A Factory Default
Computer Control 7200 baud
5 Factory Default B Factory Default
110 baud 19,200 baud

c,D,E,F Reserved for
factory use

Factory Default = 8-bit word, one stop bit, no parity

2.4 PHYSICAL Connection to a host system will vary with the application.
CONNECTION Contact Customer Service for ES Products if you require additional
information for your host system.

2.4.1 Connection to You may need to consult your CRT terminal manual to correctly
CRT Terminal connect it to the Satellite Emulator. Standard parameters are:

e 9600 baud rate

e 8-bit word length

e one stop bit

® no parity

e full duplex

® no echo

e XON and XOFF are recognized.

Refer to the table above if you need to use a baud rate other than
9600.

Connect the CRT terminal to the TERMINAL port of the emulator.
Make sure your connector pin assignment is compatible with the
emulator.

On some CRT terminals, it may be necessary to turn the power off,

then on, to ensure all switches are read by the CRT terminal
hardware.

2-7

2.4.2 Connection to To connect the Satellite Emulator to a target system, the procedure

a Target
System

Table 2-3.

Model Numbers

Figure 2-4

Installing the

Emulator

Control Board

is as follows:

1. Verify that the target system power supply voltages are
correct.

2. Install the proper emulation control board in the mainframe as
shown in Figure 2-4., See the table below to determine the
correct board for the microprocessor you are working with
(your emulator will arrive from the factory with the correct
board installed if you ordered only one family support; Z8000,
68000, etc.).

~ EMULATION tMULATOR SWITCH SETTING

DEVICE CONTROL BOARD POD ASSEMBLY ON MCB (FIG. 2.4)
Motorola:

68000 ES-68000B ES-68000P Left

68008 ES-680008B ES-68008P Centered

68010 ES-680108B ES-68010P Centered
Zilog:

ES-Z8000B ES-Z8000P Right

78001 ES-Z8000P ES-Z8001P Right

28002 ES-Z8000P ES-Z8002P Right

28003 ES-Z8000P ES-Z8003P Right
Intel:

8086 ES-80868B ES-8086P Centered

8088 ES-8086B ES-8088P Centered

80186 ES-80868 ES-80186P Centered

80188 ES-8086B ES-80188P Centered

MEMORY OONTROLLER BOARD — NOT SHOWN

EMULATION CONTROL BOARD

5.

Connect the emulator pod assembly to the mainframe as shown in
Figure 2-5.

With target system power off, remove the target system micro-
processor from its socket and plug in the DIP header, as shown
in Figure 2-6. '

CAUTION:
NOTE CORRECT PIN 1 ORIENTATION

The next section gives power-up procedures.

LSA POD ASSEMBLY

Figure 2-5.
Connecting the
Pod Assemblies
To the Mainframe

EMULATOR POD ASSEMBLY

Figure 2-6.
Installing the
DIP Header Plug

2-10

2.5 SYSTEM POWER-UP
AND CHECKOUT

2.6 PRE-EMULATION
CHECK LIST AND
THE HELP MENU

With the emulator properly connected to a CRT terminal and your
target system, first turn on the CRT terminal, then the target
system, and finally the emulator. When the power is first applied
to the Satellite Emulator and its clock begins operating, a Power-
on-reset operation occurs during which the following functions are
performed:

1. The microprocessors in the mainframe and pod are both reset.

2. The Trace Memory, Event Monitor System, and registers are
cleared.

3. The emulator program starting address is cleared to zero (the
default starting address).

4, If the interface parameter switch is in any of positions 1
through 4, the parameters and register values stored in the
EEPROM are loaded. See Section 3.

You should see this display at the top of the screen:

COPYRIGHT 1983

APPLIED MICROSYSTEMS CORPORATION
SATELLITE EMULATOR V X.X

USER = n, SH = n

XXK AVAILABLE OVERLAY

- When the three-line header appears, the emulator is in a self-
test mode, checking items 1 through 4 above. When the test is
complete, the > prompt tells you that the emulator is ready to
receive your instructions. (Always make sure that the > prompt
shows before you type in a command or you will lose one character
and the command will fail. You then must re-enter the command).

NOTE:

If the > does not appear, turn off all equipment,
check the connections and then repeat the power-on
sequence: terminal, target system and emulator. If
the > prompt still does not appear, contact your
Applied Microsystems representative.

- The user number (USER = n) and software number (SW = n) display
the current settings on the interface parameter switch.

- You should verify that your system clock is operating correctly.

As mentioned previously, before beginning emulation some of the
features associated with it must be set up. First, review the Help
feature.

1. At any time after the emulator is receiving power, you can
call up the Help Menu by entering ?. This feature of the
Satellite Emulator is two built-in display pages that
summarize the operators used and the input form of each.
Figure 2-7 shows the two displays. To access the first
display (Figure 2-7a), key in:

To move to the second display, enter:
<return>
2-11

Figure 2-7.
The Help Menu

To return to the first help screen, type ? again.

To move out of the Help Menu after the first page (without
viewing the second page), enter any character other than

<return>,
enter your next command.

The emulator will return a > prompt and you can

The Help Menu can be accessed at any time as long as the
emulator responds to input characters and it has not just

transmitted a "?".

>
>
>?
RUN/EMULATION:
STP - SINGLE STEP / STOP
RST - RESET TARGET SYSTEM

TRACE HISTORY:
DT - DISASSEMBLE MOST RECENT LINE
DT X TO Y - DISASSEMBLE BLOCK

MEMORY -~ REGISTER COMMANDS:
DB(.BWL) X TO Y - DISPLAY BLOCK
BMO X TO Y,Z - BLOCK MOVE TO 2
MMS = sco0,sCt,..,sC?7,sP,SD,UP,UD
.B, .W, .L DETERMINES DATA LENGTH
A0.B, .W, .L - BYTE, WORD, LONG

MEMORY MAPPING:
MAP X TO Y tR™ : RW :TGT :ILG
COMMUNICATIONS:
DNL -~ DOWNLOAD HEX FILE FROM HOST
UPL X TO Y - UPLOAD HEX TO HOST

SYSTEM:

RUN/RNV - RUN/RUN WITH NEW VECTORS
RBK/RBV - RUN TO BREAKPOINT/WITH VECTORS
WAIT - WAIT UNTIL EMULATION BREAK

DTB - DISASSEMBLE PAGE BACKWARD
DTF - DISASSEMBLE PAGE FORWARD
DRT (X) - DISPLAY PAGE RAW TRACE (FROM X)

DR - DISPLAY ALL CPU REGISTERS

FILL X TO Y,Z - FILL BLOCK WITH 2
LOV/VFO X TO Y - LOAD/VERIFY OVERLAY
DEFINES STATUS LINES FOR MEMORY ACCESS
M X - VIEW/CHANGE MEMORY AT X

X - EXIT MEMORY MODE

OVE = SCO+..+SC7/SP+SD+UP+UD; OVS = 0-7
DM/CLM ~ DISPLAY/CLEAR MEMORY MAP

TRA - TRANSPARENT MODE TERMINAL-HOST
CCT - TRANSFER CONTROL TO COMPUTER PORT
TCT ~ TRANSFER CONTROL TO TERMINAL PORT

SET - VIEW/ALTER SYSTEM PARAMETERS

. FIRST PAGE OF HELP MENU

LD/SAV (X) - LOAD/SAVE 0=SETUP,1=REGS,2=EVENTS,3=MAP,4=SWITCHES (DEFAULT=ALL)

Access by entering (7)

EVENT MONITOR SYSTEM:
DES - DISPLAY ALL EVENT SPECIFICATIONS
CES - CLEAR ALL EVENT SPECIFICATIONS

DES X - DISPLAY ALL EVENT SPECIFICATIONS FOR GROUP X
CES X - CLEAR ALL EVENT SPECIFICATIONS FOR GROUP X
EVENT ACTIONS:
BRK - BREAK CNT - COUNT EVENT TGR - TTL TRIGGER STROBE

TRC - TRACE EVENT RCT -~ RESET COUNTER
TOT -~ TOGGLE TRACE TOC - TOGGLE COUNT

FSI - FORCE SPECIAL INTERRUPT
GROUP X - SWITCH TO GROUP X

EVENT DETECTORS - GROUPS 1,2,3,4:
AC1,AC2 OR AC1l.X,AC2.X - 24 BIT DISCRETE ADDRESS OR INTERNAL EXTERNAL RANGE
DC1,DC2 OR DC1.X,DC2.X - 16 BIT DATA, MAY INCLUDE DON'T CARE BITS
S1,52 OR S1.X,S2.X - STATUS AND CONTROL - BYT/WRD + RD/WR + TAR/OVL
+ SP/SD/UP/UD/SC0-SC7 + IPO .., IP7
LSA - 16 LOGIC STATE LINES, MAY INCLUDE DON'T CARE BITS
CL - COUNT LIMIT, ANY NUMBER 1 TO 65,535 .

STEP 1 - ASSIGN EVENT DETECTORS STEP 2 - CREATE EVENT SPECIFICATIONS
ACl = $1234;S1 = SP + RD WHEN AC1 AND S1 THEN GROUP 2
AC1.2 = $4576+14%6;DC2.2 = $5600 DC $FF 2 WHEN ACl AND NOT DC2 THEN CNT

' b. SECOND PAGE OF HELP MENU CL.2 = 24;AC2.2 = $F000 LEN $400 WHEN CL,2 OR AC2.2 THEN BRK
>

Access by entering 8 <cr>

Skip by entering sny other

2. The first time you use your emulator, it must be powered up
with the interface parameter switch in position 0 or
positions 5 through B. These are pre-set factory interface
parameters. Your CRT terminal must be set to match these the
first time the emulator is used. They can be user-defined

2-12

7.6.1 Parameter
Set-Up and
EEPROM Storage
Overview

Set-Up
SET

Figure 2-8.
Display Format

after the unit is powered up, using the SET command described
later in this section.

The Satellite Emulator contains an interface parameter switch that
allows you to power up the emulator with one of eight sets of
factory-defined parameters, or one of four sets of user-defined
parameters. These user-defined and other display and interfacing
defaults are defined with SET commands. A1l the data defined with
the SET commands can be stored in an EEPROM (Electrically Erasable
Programmable Read Only Memory) located on the controller board.
The EEPROM can also store register values, parameters for the Event
Monitor System, terminal characteristics and the memory map for the
Overlay Memory.

SET commands are used to configure Satellite Emulator interface and
display parameters. A menu display, shown in Figure 2-8, shows the
general syntax for the commands and what parameters are in effect.
To access this display, enter:

>SET<return>

> .

>

>SET
ES SETUP: SEE MANUAL FOR DETAILS...

SET #X,#Y - SET ITEM X TO VALUE CORRESPONDING TO Y
LD 0;SAV 0 LOAD/SAVE SETUP FOR CURRENTLY SELECTED USER

SYSTEM: #1 USER = 0; ([0,1]
#2 RESET CHAR = $1A
#3 XON, XOFF = $11,S13

TERMINAL: #10 BAUD RATE = #14; [2=110,5=300,10=2400,14=9600])
#11 STOP BITS = 1; [1,2]
#12 PARITY = 0; [0=NONE,l=EVEN,2=0DD]
#13 CRT LENGTH = #24
#14 TRANSPARENT MODE ESCAPE SEQUENCE = $1B,$1B

COMPUTER: #20 BAUD RATE = #14; [7=1200,12=4800,15=19200])
#21 STOP BITS = 1
#22 PARITY = 0
$23 TRANSPARENT MODE ESCAPE SEQUENCE = $1B,$1B
#24 COMMAND TERMINATOR SEQUENCE = $0D,$00,$00
#25 UPLOAD RECORD LENGTH = #32; [1 to 127)
#26 DATA FORMAT = 2; [0=INT,1=MOS,2=MOT,3=SIG,4=TEK,S5=XTEK]
#27 ACKNOWLEDGE CHAR = $06

The following example shows the key sequence for entering SET
commands. Table 3-5 at the end of Section 3 shows which parameters
can be defined, and which SET commands require the reset character.
The reset character is Ctrl Z, unless changed in your system by you
or a previous user.

Some of the parameters set via SET will go into effect immediately.
Others will require you to enter a reset character first. You will
be prompted for these by the display "YOU MUST RESET ME TO INSTALL
THIS VALUE IN H/W."

Note that the SET menu display shows what is in effect currently if
you have not yet changed any parameters. If you have changed some
2-13

Load and Save

LD
SAV

but not yet entered the reset character, it will show what will be
in effect after the reset character is input.

The generalized key sequence to alter the interface parameters or
the CRT display format, is:

>SET<select number>, <value>[,valuell,valuel<return>

The select number selects which attribute will be altered. The
values entered correspond to the selections displayed in Table 3-5.
Remember to use decimal-based numbers when entering the select
number.

NOTE:

When scrolling, XOFF (Ctrl S) is used to stop the
screen and XON (Ctrl Q) turns the scrolling on
again. You may need to change the defaults for use
in the transparent mode, for instance. Like all
codes specified and displayed by the SET command,
those new values can be stored in EEPROM. XON and
XOFF are set as follows:

>SET 3, $10, $12

In this example, XON has been changed to 1016 and
XOFF has been changed to 1216'

The EEPROM is partitioned into space for two users (0 and 1). Each
user's space is partitioned into five groups:

e 0 = system set-up (defined via SET)

o1 = all the registers in the system and Event Monitor System
event comparators

e 2 = Event Monitor System WHEN/THEN statements
o 3 = RAM Overlay map
e 4 = Software Switch Settings (see Section 3.5)

A user's number is determined by the SET operator described in the
previous section. Parameters selected with the SET commands are
stored in the EEPROM with the SAV (Save) command. Once parameters
have been stored via SAV, they can be called up with the Load
command. When you first receive the machine or when converting it
from another microprocessor family, initialize the EEPROM to the
proper data, you should execute a:

>SAY (no argument)<return>

The entire contents of the EEPROM of the appropriate user will be
loaded into the Satellite Emulator automatically on power-up if the
interface parameter switch is in positions 1, 2, 3, or 4. When the
switch is in any other position, you must key in a Load command to
access the data in the EEPROM.

2-14

Run With Yectors
RNY

You can selectively Load or Save the groups of data with the
EEPROM.

® To Load or Save all the groups, key in the Load and Save command.

e To Load or Save only one group of data, such as just the
registers, you will key in the group number in addition to the
command.

e To Load or Save a combination of data groups, such as the
parameters and the registers, you will have to enter two or three
commands.

The program counter and stack pointer are loaded to their starting
values, and emulation is started when you enter RNV <return> (See
section 4.2 for detailed instructions).

You will see an R> (the RUN prompt). Most commands can be executed
from the R>. However, if your command fails and you see a ?,
follow these steps:

e Enter ? to get the error message telling you why the command
failed.

o If the command failed because it cannot be executed from the R>,
enter STP. When the > appears, re-enter the command.

o If the command failed for any other reason, follow the
appropriate measures to correct.

Sample sequence for first-time emulation:

>RNV Loads target system vectors, begins program execution
>STP;DTB Stops program execution and disassembles one page
>STP;DT Steps (executes) one instruction and disassembles it

>ACl = <address>; WHEN AC1 THEN BRK
Sets breakpoint address
>RBK; WAIT; DTB
Runs program, waits until breakpoint, then dis-
assembles one page

Here is another sequence you can try. You will be unfamiliar with
the syntax at this point, but type in the commands to get the feel
of the emulator. Observe what happens on the screen and read the
comment in the right-hand column before going on to type in the
next command. (System syntax is explained in Section 3, and
emulation is explained beginning in Section 4.)

OVERVIEW:

Stop emulation. Display all the CPU registers, then display just
one register, then change a register and display all the registers
again to view the change. Display a block of memory in byte form,
word form, or long word form, whichever is most convenient. Go
into memory mode to display memory data and then change it.

2-15

STP
DR

Al.W=8844

A6=$1F34CD22

D3.B=#16

DR

A3

DB.B 100 TO 140

DB.W 100 LENGTH 40

DB.L $100 LEN $40

MAP 4000 LEN 1000 :RW

MMS=SP

M.W 4000

<return>
<return>
<return>

2-16

Stop emulation
Display all the CPU registers.

Change the lower word of register
A6 to the value 8844 hex
(assuming the default base is
16).

Change the 32-bit length register
A6 to the value 1F34CD22 hex

Change the lower byte of data
register D3 to 16 decimal or 10
hex. Note that the prefix $
means hexadecimal, the prefix #
means decimal, / denotes octal,
and %Z denotes binary.

Display all the CPU registers
again to verify they were changed
as expected.

Typing in just the name of a
register will return the value of
that register.

Display a block of memory from
location 100 to 140 (hex). The
.B means in byte form.

Display a block of memory from
location 100 with the length of
40 in word form.

Display a block of memory.
Notice the prefix $ 1is optional
since DFB = 16 and that the short
form of LENGTH is used.

Map a block of memory to reside
in RAM Overlay and make it read/
write,

There are four different memory
spaces in the 680XX: Supervisor
Program, Supervisor Data, User
Program, and User Data. The ES
is now pointing to the supervisor
program memory command.

This is the command to inspect
and change memory.

Notice that each time you hit the
<return> that the memory location
is incremented by one word and
the next word is displayed.

A period (at the beginning of the
line only) without a <return>
will increment the address of the
word being displayed as well.

, _ The comma decrements the address
of the word being displayed.

1111 To change the value at that
location, simply type in the new
value,

2222, 3333, 4444 To change values in successive

locations, simply separate the
values by commas.

This is how to patch data in your program.

(For patching instructions, you would use the single 1line
assembler, ASM.)

v w v w

Back up to see that you did
indeed change the values stored
at those locations.

X Exit the memory mode.

NOTE: Some emulator features that enhance emulation may be set up
prior to emulation. However, if you are working with the emulator
for the first time, we recommend following the sequence of commands
given in Section 4. This sequence starts with the most basic
commands.

The advanced features that enhance emulation are:

o Event Monitor System - the Event Monitor System allows you to
select events within emulation that will cause specified actions
to occur. These events and resultant actions may be defined
prior to emulation and are described in Section 5.

® Memory Mode - allows you to examine and change contents of the
target system memory.

e Overlay Memory - you may wish to map your target system program
memory and fill it with data. This is described in Section 4.5.

e Trace Memory - special conditions can also be set for the Trace
Memory. These are described in Section 4.6.

2-17

SECTION 3

SYSTEM SYNTAX AND PARAMETERS

3.1
3.2

3.3

3.4

3.5

TNTRODUCTION

STANDARD CHARACTERS
3.2.1 The Prompt Character
2 The Run Prompt
.2.3 Spacing
.4 Utility Operators
Return * Repeat Previous Command Line * Statement
Separator * Argument Separator * Delete Line * Reprint Current
Line * Dot Operators

NUMBE
3.3.1 Hexadecimal, Decimal, Binary, and Octal
3.3.2 Default Base
3.3.3 Display Base
ARITHMETIC OPERATORS
3.4.1 Assignment Operators
Equal * Parentheses * Indirection
3.4.2 Two-Argument Operators
Multiplication * Addition * Division * Subtraction * Modulo *
Shift Left and Shift Right * Bitwise AND * Bitwise OR
3.4.3 Single-Argument Operators
Inverse/One's Complement * Negation/Two's Complement * Absolute
Value

PARAMETER SET-UP AND EEPROM STORAGE

3-1

3.1 INTRODUCTION

3.2 STANDARD
CHARACTERS
3.2.1 The Prompt
Character
>
3.2.2 The Run Prompt

3.2.3

R>

Spacing

This section explains how to use ESL, the Satellite Emulator
control language. The information here will be used in conjunction
with that given in Sections 4-7.

NOTE:

If you are reading this manual for the first time, you

should familiarize yourself with the contents of this chapter.
Then you can then refer to specific sections when you need to
use them.. New users do not need to read all of the

information word for word.

The Satellite Emulator operates in response to command statements
made up of operators and arguments. Operator refers to the command
mnemonic or symbol used (RUN, FIL, etc.). Argument refers to any
additional value you must enter as part of the command sequence,
such as an address range or base value. Essentially, the command
operators form a control language, much like higher-level computer
languages. And, like a computer languag, the operators and
arguments may be combined in various ways to form many complex
command "sentences." The Satellite Emulator accepts operators and
arguments when they are logically combined into a statement.
Statements can be up to 79 characters long.

The control software recognizes over one hundred mnemonics
described in Sections 3, 4, 5, and 6. You have two options in
entering the mnemonics. Since the software recognizes the first
three letters and last two digits, you can enter just these, as in
GRO for group, or you can enter GROUP. Any letters included after
the first three are disregarded: GROABCD would also be recognzed
as GRO. Note that the limitation on the last two digits only
refers to those included in operator mnemonics. Other numerical
values are not Timited.

In the following discussion many examples have been included to
illustrate the test. Some conventions have been adopted for ease
of explanation.

o When an angle bracket <> encloses an expression, it is required
entry; for example, <address range> or <value>.

o When square brackets [] are used to enclose an expression, it is
an optional entry; for example, [base valuel.

Standard characters appear throughout all the operations of the
Satellite Emulator.

When the Emulator is ready to accept a command statement, the
prompt character (>) appears on the left margin of the CRT terminal
screen. In the examples, it should be understood that you do not
type in the prompt character; it was already supplied by the
command interpreter, indicating readiness for another input line.

The Run prompt appears on the CRT terminal to notify you that the
emulator is in Run mode (emulating).

Space characters (the space bar) are used to improve readability.

Normally, you may enter them at your discretion except as required
to separate two named items (such as "NOT AC2"). So the statement:

3-2

3.2.4 Utility
Operators

<RETURN>

CNTL X

CNTL R

3.3 NUMBERS AND BASE
VALUES

>GD4 = GD4 + #8 * GD2 <return>
can also be written as:

>GD4=6D4+#8*GD2<return>.

Lower-case characters are converted to upper-case except in the
Transparent Mode or when using Symbolic Debug.

The utility operators are used to separate, execute, edit, and
repeat other commands. These operators are:

RETURN. The <return> is used to terminate statements and execute
commands. It must be entered after every statement. It is also
used to scroll through addresses while you are in the Memory Mode.
On some CRT terminals, the key may be labeled ENTER.

REPEAT PREVIOUS COMMAND LINE. When this operator (/) is the first
character of a line, it repeats the previous command line. When it
appears anywhere else on a line, it signifies arithmetic division.

STATEMENT SEPARATOR. The semicolon (;) is used to separate command
statements that are strung together on one line.

ARGUMENT SEPARATOR. Just as the semicolon separates command
statements, the comma (,) is used to separate arguments when more
than one argument is required to form a command statement. The
comma is also used to decrement addresses when you are in the
Memory Mode, where it will be the only operator on a line.

DELETE LINE. The CNTL (control key) X command will delete that
Tine.

REPRINT CURRENT LINE. CNTL R will reprint the line you just
entered. This will be useful to you when you are making a hard
copy. Don't confuse this with the / operator - the command is not
repeated, only reprinted.

DOT OPERATORS. The .B, .W, and .L operators used with the 680XX
are also recognized by the Satellite Emulator. The .B and .W
operators are used to refer to the lower byte or word of a Tong
word value. The resulting value is formed by sign extending the
byte or word value to 32 bits.

e When @ is used, .L is the default extension regardless of system

default, unless you specify .B or .W.

e When commands such as DB, FIL, or FIN are used, size is
determined by SZ < .B, .W or .L>

You may temporarily override system default at any time by keying
in these extensions.

There are three basic types of values used in the emulator: Normal,
Don't Cares, and ranges.

e Normal values are simple integer numbers.

e Don't Care values consist of two normal values separated by the
Don't Care operator DC. Don't Care values are best envisioned in
binary form. The value to the right of DC should have some bits

3-3

3.3.1 HEXADECIMAL ($)
DECIMAL (#)
BINARY (%)
OCTAL (\)

3.3.2 Default Base
DFB

set. These bits are used as a mask so that every bit set in the
right side value causes the corresponding bit position on the
left value to be ignored. Don't Care values are useful when you
are working with the Event Monitor system to monitor bit logic
and are described in Section 5.

o Range values consist of two normal values separated by one of the
range operators TO or LEN. Range values are useful for referring
to blocks of memory and are also described in Section 5. Also,
XRA and IRA can be prefixed to the arguments to define external
or internal ranges, respectively. The default is IRA.

The base value operators are used to set the numeric base you want
to work with or to temporarily change the base in effect. On
power-up the default base is hexadecimal (unless another default
base has been loaded by the EEPROM on power-up).

These operators tell the emulator what base a value is in. The
format is $n, #n, %n, or \n, where n is any numeric value. The
operator preceding n tells the Satellite Emulator that n is in that
base. They are used any time you want to enter a value in other
than the default base. Values not preceded by one of these
operators are presumed by the emulator to be in the default base.

The following numbers show the format for the different bases:
e $270F - hexadecimal

e #9999 - decimal

0 \23417 - octal

e 210011100001111 - binary

The DFB operator is used to display the system default base or
change the default base in effect (factory default is hexadecimal).
The Satellite Emulator will attempt to work with any base you set,
though decimal, hexadecimal, octal, or binary are the most
meaningful. Numbers without a base prefix are assumed to be in the
default base. If any number larger than 16 (hexadecimal) or
smaller than 2 (binary) is assigned, the Satellite Emulator will
assume the base to be hexadecimal. The following example shows the
key sequences for assigning default bases.

® To display the default base in effect:
>DFB<return>

® To set the default base to binary:
>DFB = #2<return>

e To set the default base to decimal:
>DFB = #10<return>

o To set the default base to octal:
>DFB = #8<return>

e To set the default base to hexadecimal:
>DFB = #16 <return>
3-4

r«3.3 Display Base
BAS

e The same format as shown above is used to set the emulator to any
other base desired between 2 and 16.

This operator displays the base currently in effect for a specific
register, as shown in the following example. Displayed bases are
always shown in decimal:

o #16 = hexadecimal

o #10 = decimal
e #8 = octal
e #2 = binary

If it is necessary to have a specific register value displayed in
other than the default base, you can assign it a "private" display
base of any number between 2 and 16. Be careful when setting
private display bases to unusual bases such as 4,7, or 11. The
Satellite Emulator will operate correctly but the results may be
confusing. The example also shows how to set private display
bases.

If the base value is set to other than hexadecimal, decimal, octal
or binary, the emulator will display a ? when you ask it to display
the base in effect--there are symbols only for the four most common
bases.

o To display the current default base:
>DFB<return>

o To display the base of a specific register:
>BAS GD3<return>

GD3 is the name for a specific register that you need to know the
base of. The emulator may respond with #16 to show that the
register base is hexadecimal. Note, however, that though the
register is hexadecimal, the base is displayed in decimal: #16 =
hexadecimal, #8 = octal, #10 = decimal, #2 = binary, etc.

o If a register has no private display base assigned, the result of
this command will be
DEFAULT:#n
where n is the current default base.

o To set a private display base:
>BAS GD3=2<return>

This sets the display base of GD3 to binary but does not affect
any other values or the default base (it only affects GD3). The
next time you display the base of GD3, the CRT terminal will
respond with:

#2

The value of GD3 will always be displayed in binary until you key
in a different display base or the Satellite Emulator is reset.
The private display base of any register may be assigned the
value 0 to cause that value to be displayed in the default base.

3.4 ARITHMETIC
OPERATORS

Table 3-1.

Arithmetic Operations

3.4.1 Assignment
Operators

Arithmetic operators can be divided into three groups.
e Assignment operators are used to assign values.
e Single-argument operators assign a property to a single argument.

e The two-argument operators include the more common arithmetic
symbols and operators for more specific arithmetic operations.
Each of these groups have some specific characteristics. Table
3-1 lists the arithmetic commands and tells which of the three
groups each falls in.

GROUP™ OPERATOR NAME
Assignment Operators:

= Equal

() Parentheses

@ Indirection
Two Argument Operators:

* Multiplication

+ Addition

/ Division

- Subtraction

MOD Modulo

& Bitwise AND

A Bitwise OR

<< Shift Left

>> Shift Right
Single Argument Operators:

! Inverse

- Negation*

ABS Absolute Value

*Note that the minus sign (-) signifies subtraction when it is part
of a two-argument statement and negation when it is part of a
single-argument statement.

Assignment operators assign a value or property to an argument.
They also extend expressions to include values obtained from com-
binations of other expressions, or values stored in the target
system memory address space.

Generally, the form taken by the result of an operation will be the
form of the left-hand argument: a Don't Care value times a normal
value will be a Don't Care value. There are two exceptions to
this:

3-6

()

1. When a normal value appears on the left and a Don't Care value
on the right, the result will include Don't Care bits;

2. When a normal value appears on the left and an internal or
external range appears on the right, the result will be a range.

EQUAL. The equal sign passes the quantity defined on its right to
the entity on its left. A1l operations to its right will be per-
formed before the equality is considered. The entity on the left
should be a single entity.
e The equal sign is used as follows:

>GD3 = $47FF<return>

The emulator does not display anything in response to this entry,
but the value you entered at the right ($47FF) is now assigned to
GD3.

o It is also used as follows:

>GD3 = $121 + $4<return>

This would first add $4 to $121. GD3 is then assigned the value $125.

PARENTHESES. The emulator recognizes parentheses, just as they are
treated in algebraic equations: all operations within the
parentheses are performed first and a single value derived.

NOTE

There is no set number of levels of parenthe-
ses that the Satellite Emulator can work
with. The only limitation is that statements
can be no more than 79 characters 1long.
Whatever level of complexity you can handle
within this limitation will be handled easily
by the emulator.

3-7

INDIRECTION. The "at" sign is used to express indirection.
Indirection allows expressions to include values obtained from, or
stored to, the target system memory address space. The @ operator
causes the command interpreter to consider the value of the
expression following to be an address of a target system word; the
word is accessed and that word--from the target system address
space--becomes the value of the expression.

It is possible to use more than one @ operator in an expression.
If two are used, the Satellite Emulator will access the expression
following the operators and look at the address pointed to; the
value at that address is then also considered to be an address, and
that address is accessed and displayed. This gives a means to
display a quantity that is pointed to by some other quantity
located in the target system memory. Refer to Example 3-1 for
illustration of this operator.

Just as with parentheses, the Satellite Emulator is capable of
dealing with many levels of indirection. However, again due to the
limitation that statements not exceed 79 characters, you will
probably not deal with more than 70 levels of indirection at one
time.

The dot operators (.B, .W, or .L) can also be used with @.

Example 3-1.
Parentheses and
Indirection o The following two examples help explain using Parenthesis and
’ Indirection together:
>@GD4 + 6<return>
>@(GD4 + 6)<return>

Both contain the indirection operator and the same argument, GD4.
In the first example, the indirection operator would be applied
to GD4: the. command interpreter accesses the target system
location pointed to by GD4, adds six to the value stored there,
and then will display the final result. Instead, if you wanted
to see the location stored in six locations above the address
pointed to by GD4, you would use the second example, using the
parentheses to signify that GD4 + 6 is one entity.

e It is also possible to use indirection in an assignment function:
>e(GD4 + 6) = #10 <return>

This example assigns the number ten to the target system memory
location which is found six bytes above the location pointed to
by GD4.

e The following example is also legal:
>e(GD4 + 6) = e(GD4 + 8)

Here, a quantity offset eight bytes from the location pointed to
by GD4 is copied to a location offset six bytes from the location
pointed to by GD4. This is a target-to-target move.

® You can use more than one @ operator in a statement. In this
example the dual indirection is used to access a table of data
that is pointed to by the system stack pointer.

>e@ SSP
>12345678
CPU System Stack
Registers RAM Memory

1234

F306

F306

SSP

e The dot operators can also be applied to 8. The command:
>@.NA3 = @.BDO.N
would cause the following sequence to occur:

3-9

3.4.2

Two-Argument
Operators

The

The lower word of DO is collected and sign extended to 32
bits.

That value is used as an address to memory where a byte value
is read.

The value just read from memory is sign extended from 8 to 32
bits.

The contents of A3 are used as an address where the low-order
word of the 32-bit value above is stored.

two-argument operators involve an arithmetic or Tlogical

operation between two values. The following table Tists the two-
argument operators and the combinations. It is set up as a matrix,
showing what operations are valid. Refer to this table in the
following discussion of the individual operators.

3-10

Table 3-2.

Two-Argument
Operation Validities

NOTE

Normal refers to simple arithmetic values. DC
means Don't Care bits are included, IRA is an
internal address range, and XRA is an external
address range. They are explained in detail in

Section 4.
[EFT-HAND RIGHT-HAND
ARGUMENT ARGUMENT OPERATION RESULT
Normal Normal * [/ MOD Valid
&~ Valid
<< >> Valid
+ - Valid
Normal Don't Care MOD ILLEGAL
* / Don't Care bits are passed
to the left hand argument.
& A Don't Care bits are passed
to the Teft hand argument.
<< >> Invalid
+ - Don't Care bits are passed
to the left hand argument.
Normal IRA XRA * [/ MOD Invalid
& Invalid
<< >> Invalid
+ - The endpoints of the range
will be altered by the
value of the normal ex-
pression.
DC DC * [/ MOD Invalid
& A Invalid
<< >> Invalid
+ - Don't Care bits are ANDed
DC DC *x [/ MOD Don't Care bits are kept
& A Valid
<< >> Don't Care bit positions are
shifted
+ - Don't care bits are kept
IRA, XRA Normal * / MOD Invalid
& A Invalid
<< > Invalid
+ - The endpoints of the range

Wwill be altered by the
value of the normal’
expression.

Example 3-2.
Multiplication and

Addition

MULTIPLICATION. An asterisk is used to denote multiplication.
Multiplication is algebraic--the value to the left is muitiplied by
the value to the right of the * operator. And, as in an algebraic
equation, multiplication has precedence over addition or
subtraction in the same equation or statement unless the operator
separator (;) is used. Multiplication can't be performed on
address ranges,

ADDITION. Addition is denoted with the addition sign. Like
multiplication, it operates just as in an algebraic equation.
Addition can be performed on address ranges and Don't Cares.

DIVISION. Division follows the same principles as multiplication.
It has precedence over addition and subtraction when all are
contained in one equation or statement. Be careful not to confuse
the slash operator used for division with the slash used for Repeat
Previous Command Line. Both use the same key, but, when the slash
is used to repeat command statements it will be the first character
on a line. When used for division it is between two arguments - it
cannot be the first character on a line. Division can't be
performed on address ranges or Don't Cares.

Here's an easy example:
>6D4 = GD4 + #8 *GD2<return>

1}

the equal operator

GD4 (again)

+ the addition operator

#8 a number, written with the decimal prefix

* the multiplication operator

GD2 a variable name representing another register

<return> the return symbol

The effect of this statement is to read the current value of
register GD4, add to this value the product of 8 and the value
contained in GD2, and assign this sum to GD4, thus changing the
value it contains,

3-12

MOD

>>
<<

Table 3-3.
Bitwise Operator
Validities

SUBTRACTION. Subtraction is much the same as addition. It is
denoted by the minus sign (-). The minus sign is also used to
denote negation or two's complement.

MODULO. The result of this operation is the remainder after the
value on the left has been divided by the value on the right. See
the following example.

e >29 MOD 4
result =1

e >38 MOD 6
result = 2

SHIFT LEFT AND SHIFT RIGHT. These two operations are a movement of
the bits of a number. For gxamp]e, a right shift of n places has
the effect of dividing byn2 and a left shift of n places has the
effect of multiplying by 2°'. See the following example.

e A binary shift left:
>00100000<<1
result = 01000000

e A binary shift right:
>0001000000000000>>1
result = 100000000000

BITWISE AND. Bitwise And operator (&) functions as a logical AND.
The & operator infers the ANDing of the bits that form the two
arguments. Refer to example 3-3 and Table 3-2.

BITWISE OR. The Bitwise OR operator (#) functions as a logical
inclusive OR. The operator infers the ORing of the bits that form
the arguments.

AND & OR A
INPUT OUTPUT INPUT ouTPUT
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1

3-13

Example 3-3
Bitwise And
Bitwise Or

~

3.4.3 Single-
Argument
Operators

ABS

Table 3-4.
Single-Argument
Operators

e Bitwise And:
>%00101101 & 210011100
result = 200001100

® Bitwise Or:
>200101101 ~ 210011100
result = 210111101

Single-argument operators assign a property to the number directly
following the operator. The following table summarizes the
operators and valid combinations.

Note that a single-argument operator can even be used before a
parenthetical operation, and the value within the parentheses will
be treated as a single value.

INVERSE/ONE'S COMPLEMENT. The exclamation mark is used to signify
that the following number or value is to be inverted. The inverse is
the one's complement; the inverse of %0010 would be %1101. Address
ranges can also be inverted: an internal into an external and vice
versa,

NEGATION AND TWO'S COMPLEMENT. The minus sign is also used for
negating a number when used as single-argument operator. This
operator forms the two's complement of its argument.

ABSOLUTE VALUE. The ABS operator converts the following value to its
absolute, positive value; a negation value would become positive, a
positive value would remain unchanged.

OPERATOR ARGUMENT RESULT

! Normal Valid
DC Don't care bits are not affected
IRA Complement (IRA becomes XRA)
XRA Complement (XRA becomes IRA)

ABS Normal Valid

DC Don't care bits are not affected
IRA Invalid
XRA Invalid

- Normal Valid
DC Don't care bits are not affected
IRA Invalid
XRA Invalid

3-14

3.5 PARAMETER SET-UP As mentioned in the overview in Section 2, you may set system
AND EEPROM STORAGE parameters with the SET command. These are listed in Table 3-5,
_ which follows.

You can also set an additional 11 parameters using software
switches. Ten of these relate to emulation and one determines
whether or not you can produce hard copy during an emulation
session. These are listed after Table 3-5 under ON and OFF.

3-15

Table 3-5
SET Select Numbers

RESET CHARACTER

{ SEQUENCE DESCRIPTION/RESULT REQUIRED
SET #1,#0<returnm> Select User 0 No
SET #1,#l<return> Select User 1 No
SET #2,<return> Specify Reset character (default = $1A) No
SET #3,%n,$m<return> Set XON, XOFF (defaults = $11, $13) No
SET #10,#0<return> Set CRT terminal baud rate to 50 Yes
SET #10,#1<return> 75 baud (CRT terminal) Yes
SET #10,#2<return> 110 baud (CRT terminal) Yes
SET #10,#3<return> 134.5 baud (CRT terminal) Yes
SET #10,#4<return> 150 baud (CRT terminal) Yes
SET #10,#5<return> 300 baud (CRT terminal) Yes
SET #10,#6<return> 600 baud (CRT terminal) Yes
SET #10,#7<return> 1,200 baud (CRT terminal) Yes
SET #10,#8<return> 1,800 baud (CRT terminal) Yes
SET #10,#9<return> 2,000 baud (CRT terminal) Yes
SET #10,#10<return> 2,400 baud (CRT terminal) Yes
SET #10,#11<return> 3,600 baud (CRT terminal) Yes
SET #10,#12<return> 4,800 baud (CRT terminal) Yes
SET #10,#13<return> 7,200 baud (CRT terminal) Yes
SET #10,#l4<return> 9,600 baud (CRT terminal) Yes

T #10,#15<return> 19,200 baud (CRT terminal) Yes
SET #11,#1<return> CRT terminal data frame has 1 stop bit Yes
SET #11,#2<return> 2 stop bits (CRT terminal) Yes
SET #12,#0<return> CRT terminal parity (send and receive) none Yes
SET #12,#1<return> Parity even (CRT terminal) Yes
SET #12,#2<return> Parity odd (CRT terminal) Yes
SET #13,#n<return> Set CRT terminal lines per page; n=5 to 255 No
SET #14,$n<return> Specify an 8-bit Reset character. The reception of No

this character from any port in any mode resets the
emulator
SET #15,%n,$m<return> CRT terminal transparent mode escape sequence; n and No
m are arbitrary character codes; 7-bit ASCII values only
SET #20,#n<return> Select computer baud rate; n0 to 15 as in SET #10,n No
above
SET #21,#1<return> Computer data frame has 1 stop bit Yes
SET #21,#2<return> 2 stop bits (computer) Yes
SET #22,#n<return> Select computer parity as in SET #12,n above Yes
SET #23,$n,$m<return> Set computer transparent mode escape characters as No

in SET #15,n,m

3-16

Table 3-5 (cont.)

RESET CHARACTERS
DESCRIPTION/RESULT REQUIRED

ocT #24,%n,%m, %0
<return>
SET #25,#n<return>

SET #26,#n<return>

SET #27<return>

Example 3-4.
Load and Save

Command terminator for Download; n, m, and o are No
arbitrary 7-bit ASCII character codes

Determine maximum number of data bytes in an Upload No
record; n =1 to 27

Select serial data format for Upload and Download; No
O0=Intel

1=M0S

2=Motorola

3=Signetics
4=Tektronix
5=Extended Tekhex

Set acknowledge character (default = $06) No

Example 3-4 shows how to Load or Save parameters. The loader
checks the validity of the stored data before transferring it to
the Satellite Emulator memory.

The system will save what is shown on the SET menu. The parameters
shown do not necessarily have to be in effect at the time they are
saved. This allows you to use one system to set up default
parameters for another system.

NOTE
A SAV Operation may take up to two minutes. Do not
interrupt the process.

o To Load all the system parameters:
>LD<return>

e To Load only one section:
>LD <n><return>
The section to be Loaded is denoted by n.

e To Save all system parameters:
>SAV<return>
Remember this may take up to two minutes.

e To Save only one section:
>SAV <n><return>
Again, n is the section number.

ON
OFF

Peek Poke Trace
PPT

Initialize Trace
ITR

Bus Ti-eodt Enable
BTE

The switches used to control emulation and hard copy parameters are
enabled using ON and disabled using OFF.

e To turn on the PPT switch
>0N PPT

® To turn off all switches
>0FF -1

e To turn on three switches
>0N PPT + CAS + BTE

e To display switches
>ON
or
>OFF

PPT makes it possible to trace all Reads (Peeks) and Writes (Pokes)
to the Target System.

e To trace a particular memory location:
>ON PPT
>AC1 = 5550
>CES; WHEN AC1 THEN TRC
>ITR
>SF1, 5000 TO S5FFF

>DRT

This displays what happened at location 5550 during the Memory
Diagnostic.

ITR causes the trace and break electronics to be initialized just
as it is prior to going to RUN. Thus, even though emulation does
not occur, you may record information about Peeks and Pokes to the
target system.

You may wish to use this capability by tracing only Peeks or Pokes
that are qualified in some way or by doing a Toggle Trace (TOT) to
turn the Trace on and off under certain conditions. To do this,
the ITR command must be executed after setting up the Event System,
and prior to executing the command that performs Peeks and Pokes to
the target system.

When BTE is ON and the target program is running, an internal
watchdog timer will detect if the address strobe has been active
for too long a time. In most systems, this condition will be
detected by hardware in the target; however, if the target fails to
do so the Satellite Emulator will detect the fault. Setting BTE to
off will not disable Timeout on Peek/Poke operations.

Fast Timeout
FTO

Disable Bus Error on
Peek or Poke

/W?)%P

Slow Interrupt Enable
SLO

Fast Interrupt Enable
FST

Continuous Address
Strobe CAS

Tri-State Address
TAD

FTO is used with BTE.
e When FTO is OFF, BTE requires 35840 clock cycles.

e When FTO is ON, BTE will be shorter by a factor of 16 (2240
clock cycles).

Either of these settings will probably be much Tonger than the
amount of delay used by the watchdog circuit in the target system.

On Peek/Poke cycles FTO is always used regardless of the setting.

DPB makes it possible to ignore the Bus Error signal coming from
the target system. This could allow the Emulator to interface with
a system that had a faulty memory error detection scheme. The
Emulator will generate the Bus Error when one is detected by the
built-in watchdog circuit.

e When DPB is ON, Bus Errors are inhibited during Peeks and Pokes,
but not during emulation.

e When DPB is OFF, Bus Errors are detected as normal.

When SLO is ON, Interrupts will not be enabled immediately upon
going into emulation; instead a delay of approximately 160 clock
cycles must elapse before Interrupts are enabled.

If both SLO and FST are OFF, Interrupts generated by the target
system will be inhibited from reaching the MPU.

If FST is ON, Interrupts will be enabled at the moment the Emulator
begins executing the target program.

e If both SLO and FST are OFF, Interrupts generated by the target
system will be inhibited from reaching the MPU.

e If both the SLO and FST are ON, the effect is the same as FST
being ON alone.

CAS enables the address strobe to go to the target system while not
emulating.

o If CAS is ON, address strobes continue whether emulating or not.

e If CAS 1is OFF, address strobes are only generated during
emulation.

TAD enables tri-stating of the address bus (determining whether the
bus continues to output addresses to the target system when not
emulating).

e When TAD is off, addresses generated from the program being

executed on the emulator card are output by the address bus to
the target systenm.

3-19

iew Bus Speed Info
SPD

Introspective Mode
M

Copy Switch
cpPY

e When TAD is ON, you can prevent these extraneous addresses from
reaching the target system. This will Tri-State the address bus
anytime the Emulator is not emulating or doing Peeks or Pokes.

The DRT command contains a column labeled "IPL" that displays the
state of the interrupt lines from the target system.

o If SPD is ON, the column will instead display a number that
relates to the access time of devices on the bus. If one access
displays a "4" and another a "5", the latter bus cycle took one
more clock cycle to complete than the former. Access times
greater than or equal to 10 cycles will display as "+".

When IM is ON, the emulator itself becomes the "target system."
This gives you the capability of writing your own scope loops and
diagnostics.

While IM is ON, only addresses greater than $80000 may be overlaid.
There is 3K of RAM set aside for the user in the memory map of the
emulator ($7000-$78FF). Special functions 40-49 are used to
execute subroutines in internal RAM.

This switch allows you to produce hard copy of your emulation
session. When CPY is on, data sent to the controlling port will
also be echoed to the other port. This is useful for making hard
copy of emulation sessions or monitoring computer control (CCT)
commands.

3-20

SECTION 4
OPERATION

4.1

4.2

4.3

4.4

4.5

4.6

4.7
4.8
4.9
4.10

4.11

TNTRODUCTION

REGISTER OPERATORS
4.2.1 Loading a Register
4.2.2 General Registers

EMULATION

Run

Step and Stop

Run With Breakpoints

Vector Loading and Running With Vectors
Reset

Wait

Cycle

* o ®» e o o o
NN HWN =

[=]

NN HARWN =D
-

MODE

Entering and Exiting Memory

Memory, Memory Mode Pointers

Scrolling

Word, Byte, and Long Word Mode

Examining and Changing Values

Memory Mode Status

Displaying a Block of Memory and Finding a Memory Pattern
Display Memory Block * Find Memory Pattern

APEaEAPAEEAPAE Lo R R)
e o o o s [T e e s o o o o

PN -
e

MEMORY MAPPING AND THE OVERLAY MEMORY
4,5.1 Memory Block Attributes

Read Only * Read/Write * Target * Illegal
4,5.2 Memory Mapping Operators

Set Memory Map * Display Memory Map * Clear Memory Map
4.5.3 Overlay Memory Operators

OVE * OVS * LOV * VFO * FILL * VBL * CLM * BMO * VBM * Speed

HE TRACE MEMORY AND DISASSEMBLER
6.1 Display Raw Trace
6.2 Disassemble Trace

T
4
4
4.6.3 Disassemble Previous and Following Trace

SOFTWARE DEBUGGING WITHOUT TARGET SYSTEM HARDWARE
ERROR HANDLING AND CODES

BUS ERRORS

THE MEMORY DISASSEMBLER
4,10.1 Display Disassembled Memory

THE LINE ASSEMBLER

4.11.1 Standard Mnemonics

1.2 Assemble Line to Memory
1.3 Assembler Directives
1.4 Usage Notes
1.5

.1
.1
.1
.1 More Examples

4-1

4.1 INTRODUCTION

4.2 REGISTER OPERATORS

Table 4-1
Registers

This section describes the procedures for operating the Satellite
Emulator and error codes that may occur during the process. The
information here presumes that you have read the previous sections.

THE SATELLITE EMULATOR WILL NOT OPERATE PROPERLY UNLESS IT HAS BEEN
CORRECTLY INSTALLED AND SET UP. Information on system communi-
cations and serial interfacing (beyond initial installation) is
in Section 6, Interfacing and Communications.

The register operators are used to assign values to registers
within the 680XX and the emulator, and to display these values.

Values should be assigned to the necessary registers before they
are used in statements. The program counter and stack pointer
should be loaded before beginning emulation. This is done by
entering the RNV command. Table 4-1 lists the registers recognized
by the system.

OPERATOR DESCRIPTION HOW USED

ACl, AC2 address comparator registers 1 Event Monitor System
and 2

CL count limit comparator register Event Monitor System

DC1, DC2 data comparator registers 1 and 2 Event Monitor System

LSA Logic State Analyzer comparator Event Monitor System
register

S1, S2 status comparator registers 1 and Event Monitor System
2

SIA Special Interrupt address register Event Monitor System

OVE Overlay Memory enable register Memory Mode

0vsS Overlay Memory speed register Memory Mode

MMP memory space pointer Memory Mode

MMS Memory Mode access status register Memory Mode

MMD Access status register for Memory Mode
destination of block move

DFB default base register Miscellaneous

GDn (0-7) general purpose data register Miscellaneous

GRn (0-7) general purpose range register Miscellaneous

PC program counter register Motorola CPU Register

usp User stack pointer register Motorola CPU Register

Ssp Supervisor stack pointer register Motorola CPU Register

VBR Vector base register (32 bit) Motorola CPU Register

SFC Source function code register (3 Motorola CPU Register
Bit)

DFC ?estin?tion function code register Motorola CPU Register
3 bit

SR status register Motorola CPU Register

An (0-6) CPU address registers Motorola CPU Register

Dn (0-7) CPU data registers Motorola CPU Register

118 Instruction Input Buffer Bus Error Register*

DIB Data Input Buffer Bus Error Register*

DOB Data Output Buffer Bus Error Register*

FA Fault Address Register Bus Error Register*

FMT Format Register Bus Error Register*

SSKW Special Status Word Bus Error Register*

MSK Internal Information Bus Error Register*

Rn (0-14) Internal Information Bus Error Register*

*See Section 4.9

|

4.2.1 Loading a
Register

4.2.2 General
Registers

Figure 4-1,
Display Registers
Format

4.3 EMULATION

The 5f§p]gy Registers command is used to display the CPU registers
in a fixed format. See figure 4.1, Its format is:

>DR<return>
Registers (except event comparators) will be displayed in long word
format (32-bit).

Example:

>RO
>$00000000
>R0=5678
>R0
>00005678
>DR

GD0-7 and GRO-7 are miscellaneous registers used to save key
strokes when you are using simple integers, ranges, or Don't Cares.
They are used as follows:

e GRO-7 integers or ranges for addresses
e GDO-7 integers or Don't Cares for data
Examples:

>GR0=1000 TO 2FFF
>MAP GRO
>DM

>GRO= 10 TO 20
>DB GRO

>GRO = OLENSO
>DB GRO

>MAP GRO

>FIL GRO, $90
>DB GRO

These examples display only the series of keystrokes you would
enter; the system response is not shown.

-8 - -1 - -2 - -3 - -4 - -5 - -6 - -7 -
D = GOOOFFFF (O@@OFFFF OO@PFFFF 7820FFFC @O@OFFFF G@OOFFFF @@P@FFFF GO0POFFFF|
A = @OB4FFFF OOOOFFFF @OQOFFFF O@@AFFFF OGOOFFFE G@OOFFFF BO8OFFFF

pC VBR=0 @ SFC=0 DFC=0 SSP=000@ USP=0 SR=..S7.....

The basic function of the Satellite Emulator is the emulation of
microprocessors. When emulation is initiated, the Satellite
Emulator will run the target system program transparently and in
real time, just as the target system microprocessor would, or one
instruction at a time. Essentially, emulation lets you "see" into
the logical environment of the emulated microprocessor.

4.3.1 Run
RUN

4.3.2 Step and Stop
STP

4.3.3 Run With
Breakpoints
RBK

Example 4-1.
Run, Run With
Breakpoints, Step,
and Stop

The operators associated with emulation are:

e Run - RUN

o Step and Stop - STP

e Run With Breakpoints - RBK
@ Wait - WAIT

Only used to start emulation:

e Run With New Vectors - RNV
@ Run With New Vectors and Breakpoints - RBV
e Load New Vectors - LDV

To reset processor:
e Reset - RST

The Run operation executes the target system program in real time
until you stop it or it encounters an access violation associated
with the defined memory map. The Run Prompt R> will be present
during RUN. See example 4-1.

The Satellite Emulator combines Step and Stop into one mnemonic.
Step takes you through the target system program one instruction at
a time. Stop is used to break emulation during a Run or Run With
Breakpoints.

e If emulation is in progress, keying in STP will cause the
Satellite Emulator to halt emulation.

o If STP is entered while emulation is not in progress, one program
instruction will be executed. (If you want to execute more
instructions, press the slash key (/) as many times as desired.)

See Example 4-1.
Run With Breakpoints (RBK) is the same as a Run operation except
that break operators within the Event Monitor System are honored
and will stop program execution when encountered. The Run prompt
R> will be present during RBK.

These examples show how to start emulation:

e To initiate a Run:
>RUN<return>

e To initiate a Run With Breakpoints:
>RBK<return>

e To stop a Run or Run With Breakpoints:
R>STP<returnm>

e To Step through emulation (emulation not currently in progress):
>STP<return>

4-4

4.3.4 VYector Loading Since the 680XX uses start-up vectors, three additional operators

and Running
With Vectors
LDV
RNV
RBY

4.3.5 Reset
RST

4.3.6 MNait
WAI

4.3.7 Cycle
CcYC

are used to accomodate them. LDV loads the program counter and
stack pointer target system vector table into the 680XX registers.
RNV and RBV are Run commands that preload the vectors. RNV is
identical to LDV;RUN. RBY is the same as LDV;RBK. The Run prompt
(R>) is present during the RNV and RBYV.

e To load vectors:
>LDV<return>

e To run with vectors:
>RNV<return>
or
>LDV;RUN<return>

Note that the two examples cause identical results, RNV Jloads
the vectors, then starts emulation. The same can be accomplished
using the two commands LDV and RUN.

e To run with vectors and breakpoints:
>RBY<return>
or
>LDV;RBK

The Reset operator (RST) can be used at any time to reset your
target system except during emulation.

NOTE:

Ctr) Z differs from RST in that Ctrl Z resets the emulator,
but does not reset the target system.

The Wait operator causes the Satellite Emulator to delay executing
the command statement following it until emulation is broken for
some reason (an event detector within the Event Monitor System or
access violation of the memory map, for example). See the
following example. :

e The format for the Wait operator is:
>RBK ;WAI ; <command><return>

o For example:
>RBK;WAI ;D3<return>

e Note that the semicolon is used to separate the commands.

CAUTION
THE EMULATOR MAY HANG UP WHILE USING THE WAIT OPERATOR
IF EMULATION IS NOT AUTOMATICALLY BROKEN. TO ESCAPE
THIS CONDITION, USE THE USER-DEFINED RESET CHARACTER

CYC allows the target program to be executed in the form of
jndividual bus cycles rather than by instruction. When
instructions are broken up into bus cycles, there are only three
types that are encountered while executing CYC:

e A Read cycle {(also called a Peek)

4-5

4.4 MEMORY MODE

4.4.1 Entering and
Exiting
Memory Mode
MM or M
MX or X

® A Write cycle (also called a Poke)
® A Read-Write-Modify cycle

CYC does not actually execute the target program the way a STP
command does: the individual cycles are simulated by performing
Peeks or Pokes to the target system. Since the Emulator does not
go to RUN while executing the Bus Cycles, the Trace Memory does not
keep a record of transactions to and from the target system.

Memory Mode allows you to examine or change the contents of the
target system memory. Each address is accessed and displayed
individually, with easy-to-use scrolling features. Data at each
address can be displayed and/or entered in any number base you
select.

The following sections explain how to enter and exit Memory Mode,
use the pointer, scrolling features, long word, word and byte
modes, and how to examine and change the target system memory.

MM or M is used to enter Memory Mode. If no entry address is
specified, the address will default to the value of MMP. Upon
entry, the memory location is read and the address and data
residing there are displayed preceding the prompt. A <return> will
increment the address, (unless a LST was entered previously).

® To enter the target system memory space at a specific address:
>M <address><return>

e To enter the target system memory space at the default address:
SM<return>

e You should specify the data length when entering memory mode,
unless current system default is desired.

- To change the data size globally
>SZ.B/W/L
>MM

- To change the data size only for memory mode
SMM.B/W/L

(Data length is discussed further in Section 4.4.4)

e The system will respond with one of the three memory mode
prompts:

- byte mode $000000 $FF>

- word mode $000000 $FFFF>

- long word mode $000000 $FFFFFFFF>
® To exit Memory Mode:

>MX<return> or
>X<return>

4.4.2

4.4.3

4.4.4

Memory Mode
Pointer
MMP

Scrolling
NXT
LST

Word, Byte,
Long Word
Mode

SZ.N or WDM
SZ.B or BYM
SZ.L or LWM
.B

N

L

The Memory Mode pointer, when invoked, will display the last
address invoked in the Memory Mode since power-up. The key
sequence is shown in the following example.

You can also change the Memory Mode pointer to a value you select
by entering the desired value before the <return>.

e To display the last memory space address examined:
>MMP<return>

e To change the'Memory Mode pointer:
SMMP=<address><return

Once you have entered Memory Mode at a specific address, you can
scroll to higher or lower addresses. The NXT and LST operators
determine the default direction of sequential memory accesses.

When you enter NXT after the prompt, the addresses are incremented
between each access. LST entered after the prompt causes the
addresses to be decremented. The power-up default is NXT. These
commands are useful for storing lists of values into memory.

When a comma or period is entered in response to the Memory Mode
prompt, addresses are incremented (with the period) or decremented
(with the comma) and the next location displayed. These are used
to temporarily override NXT and LST.

® To scroll to the next higher address:
>NXT <return>

or
>.

or
<return>

® To scroll to the next Towest address:
>LST<return>
or
>

If you wish to scroll through the memory spaces one byte (8 bits)
at a time, invoke SZ.B SZ.W is used to scroll in the word mode (16
bits). SZ.L scrolls you through Memory Mode in a long word mode (32
bits). The system will default to a byte mode.

SZ.W, SZ.B, and SZ.L should be considered global defaults that
affect all operations, not just Memory Mode. The dot operators
(.B, .W, .L) can be appended to specific commands to temporarily
override the SZ.<B/W/L> operators, just as the comma and period
temporarily override NXT and LST commands.

e To scrol] in the byte mode:
>SZ.B;M or M.B

4-7

4.4.5 Examining
and Changing
Yalues

SV cdden <ty

QhM&hJﬁr TIEOQM&X' :
Codbey it ALY > ——

‘;-;4,\,1.5(IR
ey 4t 'j::)

4.4.6 Memory Mode
Status
MMS
MMD
SP
SD
up
ub
CPU
SCo-7
[Te0]
fovo]
[NRM]

e To return to the word mode:
>SZ.W;M or M.W

e To scroll in the Tlong word mode:
>SZ.L;M or ML

Now that you can access Memory Mode, work with the pointers, and
scroll higher and lower in either the byte, word, or long word
mode, it's time to discuss how to change values.

When you enter an address or scroll to a new address, the CRT
terminal will display the value at that location. To change the
value, simply enter a new value followed by a <return>. A string
of values can also be entered, each separated by a comma. This
will store the values to consecutive locations according to the
current NXT or LST mode.

e To change a single value at one location:
>$47FF<return>

e To change a series of values at consecutive locations:
>M<return>
The emulator will respond with:
<address> <current data>
Then enter:
>$1,$2,%3,%4<return>

The emulator loaded the first location with 1, the second with 2,
the third with 3, and the fourth with 4. The address increments to
the next location following the last word that received data
(according to current NXT or LST mode).

Memory Mode status (MMS) allows you to access any of the eight
680XX memory spaces: Supervisor program, Supervisor data, User
program, User data, or CPU space or unused codes (SC#, SC3 and
SC4). See the following example.

SCO = unused (used only by 68010)

SC1 = UD (user data)

SC2 = UP (user program)

SC3 = unused (used only by 68010)

SC4 = unused (used only by 68010)

SC5 = SD (supervisor data)

SC6 = SP (supervisor program)

SC7 = CPU (interrupt acknowledge or breakpoint cycle)

MMD is the same as MMS except that MMD is used with Block Move and
Block Verify.

In addition to specifying the memory space, you may specify target
only access (TGO) or overlay only access (0V0). If you have
overlay mapped and you want to see what's in the target system
without destroying what you have mapped, specify TGO, If you have

4.4.7 Displaying a
Block of
Memory and
Finding a
Memory
Pattern

DB

the target system mapped and want to Took at overlay only, specify
0V0. When you use 0V0, no bus cycles enter the target system.

o The general format is:

>MMS = SP
SD
UP + TGO
un + 0vo
CPU.
Only one of the possible memory spaces can be selected.

e To access Supervisor program space:
>MMS = SP<return>

o To access Supervisor data space:
>MMS = SD

o To access User program space:
>MMS = UP

e To access User data space:
SMMS = UD

® To access CPU space:
>MMS = CPU

e To access overlay independent of the target:
>MMS = SC5 + 0Y0

e To access target even if address is mapped by overlay:
>MMS = UD + TGO

¢ To return to default mode (after previously specifying TGO or
0vo):
>MMS = SP + NRM

Two additional operators need explanation at this point. Though
you cannot be in Memory Mode when you invoke them, these operators
affect memory examination.

DISPLAY MEMORY BLOCK. To display a block of memory, use the DB
operator. The display format includes line address and hexadecimal
byte data; ASCII-equivalent characters are displayed when in byte
mode.

®» To display a block of memory:
>DB [.B or .W or .L] <address range> <return>

4-9

FIN

4.5 MEMORY MAPPING
AND THE
OVERLAY MEMORY

| ‘
FIND MEMORY PATTERN. To find a specific bit pattern in memory the
FIN operator is used.

e To find a bit pattern in memory:
>FIN [.B or .W or .L] <range>, <data> <return>

e To find a bit pattern using Don't Cares (either form):
FIN.W 1000 TO 2FFF, 60XX

or
FIN.L $C000 LEN 200,$7FFE1234 DC 1F80000
The emutator will return:

$<address> = <data>
to indicate where the bit pattern has been found.

Memory mapping is used in conjunction with the Overlay Memory.
If you wish to use the Overlay Memory during emulation, you will
have to define the memory map first.

The Overlay Memory is RAM in the Satellite Emulator with
appropriate address and control Togic. It is locatable in 2K-byte
segments throughout the system. Size of the Overlay Memory ranges
from 32K-bytes to 512K-bytes, depending on the option you selected
at time of purchase.

The Overlay Memory can be mapped into the address space of a target
system so you can load the target system program into it; the
target system program can then be edited, positioned in the target
system address space as desired, and the program is executed in
real time as if it resided totally in the target system. Overlay
Memory is also useful for checking programs not yet committed to
PROM. When programming data is correct, it can be uploaded to a
PROM programmer.

4-10

Figure 4-2.
Display Memory Block
Format

4.5.1 Memory Block
Attributes

:RO

DB.B 1000 7o 11040
V01000 FF FF FF FF FF FE Y FE FE FF FE FF FE PF
001010 FF FF FF FF FY ¢F FF FE FF FE FE FE FE EFF
001020 F¥ FF FF FE FE FE FF FE FE FF FE FE FE FF
001030 FF FF FF FF FF FE tF FE FE FE FE FE FE PF
001040 FF FE FF Y& FE FF FE FE FE FE FE VY FEFE
001050 FF FF FE V¥ FF ot FE rE fF FE FE FE FE FE
001060 FF FE FE FF PP FE FE FE FE FE OFE FE PP B
001070 FF FF FF FF FE PV FF FE EE FE FE PV FE FE
001080 FF FE FF FF FF FE FF FE OFE FE PP OFE FE OFE
001090 FF FE FF FE FF FF FF Pt P& FE FF FE FF PY
Q010A0 FF FF FF FF FF FF Fr FE FE FE FP FE FE FE
0010BU FF FF FE.FF FE FF FE FE FF FE FF PP FEFEF
0010C0 FE FE FE FF FE FF FFE FF FE P FFE FE FE EE
0010D0 FF F¥ F¥ FE FF FE FF PE FE FE FE FE FF FFP
0010EQ FF FF FE FF FF FE FE FE FE FF FF FE FY FF
0010F0 FF FF FF FE FF FE FE FE FF FE FE FE FE FE
001100 FF

>

DB.W 1000 LEN S$4F

001000 FFFF FFFE FFFF FEFE FFFE FEFE FFFE FEEE
001010 FEFE FFFF FFFF FFFF FEFFE FFEF FFFE FFFF
oulo20 FFFF FFFF FFFF FFFE FFFF FFFE FFFE FEPFF
001030 FEEF FFEEF FFFF FFFE FFFE FFFF FFFF FFFF
001040 FFFF FFEE FFFF YrFF FFFF FFFF FEFE FFFY
>DB.L 1000 LEN $4¢
001000 FFFFFEFE FEFFFFFE FFEFFFEE FEEFFFFF
001010 FFFFFFEF FFFFFFFE PFFEFFEE FEFFFEFF
001020 FFEFFFFE FREFFFFE FEEEFFFF FFPEFFFF
001030 FEFFFFFF FFFFFFFE FEFEEFRE FEFFFFEF
001040 FEFFFFFF FFFFFFFFE FEFFFFFF FFEFFFEF

>

The first step in using the Overlay Memory is assigning one of
four attributes to the memory ranges. The ranges specified must
fall on 2K-byte boundaries. If you specify a range that does not,
the Satellite Emulator will expand the range until the endpoints
fall on such a boundary.

The following paragraphs describe the attributes of the four types
of memory blocks possible.

NOTE:
The memory block attribute operators, :R0O, :RW
:TGT, and :ILG, are always preceded by a colon.

READ ONLY. Memory blocks marked with this attribute are write-
protected: no target system write cycle can change the data. Note,
however, that the emulator can write to that space. This is most

often used to emulate instruction memory that would be placed in
ROM or PROM, 1If a write cycle is made to a memory block that has
this attribute, a write access violation breakpoint stops program
execution and displays a message to that effect.

4-11

4.5.2

RN

:TaT

:IL6

Memory Mapping
Operators

MAP

CLM

READ/WRITE. Memory blocks marked with this attribute are available
for read or write access. No error breakpoints ever occur as a
consequence of access to these blocks.

TARGET. Memory blocks marked with this attribute are assigned to
the target system. A1l memory accesses marked target by the micro-
processor go directly to the target system memories (if any).

ILLEGAL. Memory blocks marked with this attribute are illegal for
all types of access. Normally these blocks are useful for marking
memory that should never be referenced by the program at all. In
other words, if the program references these addresses, there is
something wrong with the program. If this ever occurs, a memory
access violation breakpoint will stop program execution and display
a message to that effect.

Three operators are used in conjunction with the memory type
operators for memory mapping.

SET MEMORY MAP. The Set Memory Map Operator (MAP) is used in
conjunction with the memory type operators (Read Only, Read/Write,
etc.) to define the memory map of the system.

e The general format for setting up a block of overlay memory is:
>MAP <range>: [memory typel<return>

e To set a memory space as Read Only, $3000 bytes long, responding
to addresses 0 to $2FFF:
SMAP 0 to $2FFF:RO<return>
This would contain 6 blocks of 2K bytes each.

e The same format is used for setting any other of the four memory
types. If the memory type argument is not supplied, the default
is read/write (:RW).

DISPLAY MEMORY MAP. This operator allows you to display the memory
map currently in effect.

o To display the memory map in effect:
>DM<return>

CLEAR MEMORY MAP. This operator clears the memory map currently in
effect. Be sure you are ready to clear it before invoking the
operator.

e To clear the memory map in effect:
>CLM<return>

4-12

Figure 4-3.
Display Memory Map
Format

/5.3 Overlay
Memory
Operators

OVE

ovs

DM
MEMORY MAP:
OVERLAY ENABLED FOR (OVE=) SUP+USR+PGM+DTA, SPEED (OVS) = 0
MAP $000000 TO SOOOQFFF : TGT
MAP $001000 TO SO027FF : RW
MAP $002800 TO $O002FFF : TGT
MAP $003000 TO SU047FF : RO
MAP $004800 TO $O008FFF : TGT
MAP $009000 TO S$S009FFF : ILG
MAP $00A000 TO SFFFEFF : IGT
>

OVERLAY MEMORY ENABLE. The OVE operator allows you to load values
that determine which 680XX memory status space the Overlay Memory
responds to. The current value is shown when the memory map is
displayed. Factory default is SD + SP + UD + UP,

e The general format for OVE is:
>0VE = SD + UP + UD<return>
>0VE = ALL (enabled for all spaces, 5 for 68000/68008, 8 for
68010)

OVERLAY MEMORY SPEED. OVS is a variable that causes the Overlay to
return a DTACK to the MPU. The current value of OVS is displayed
when the memory map is displayed. O0VS can be loaded with the
values 0 through 7 as shown in the next example.

e To set OVS:
>0VS = (0 through 7)<return>

NOTE

When overlaying PROM, it may be necessary to
set MMS = <Space Code> + 0OVO. This will allow
the overlay to operate independently of the
target system. A DTACK 1is automatically
supplied when this is in effect.

4-13

Table 4-2
0VS Values

Load Overlay
Memory
Lov

Yerify Overlay
Aemory
YFO

Fill Operator
FIL

ovS =0 No DTACK; DTACK suppTied by target system
ovs =1 No delay, AS returned to 680XX as DTACK
ovsS = 2 +1 cycle delay

ovS = 3 +2 cycles delay

ovsS = 4 +3 cycles delay

0vs = 5 +4 cycles delay

ovVSs = 6 . +5 cycles delay

ovs =7 +6 cycles delay

LOV. LOV loads Overlay Memory with your target system program.
The data is automatically verified during the operation. (The
target is not written to.)

The key sequence for loading the Overlay Memory is given in the
following example. The argument specifies the address range of the
target system memory from which to move data to the Emulator
Overlay Memory. Note that the Overlay Memory may also be loaded
via the block move command.

The key sequence is:
>LOV X TO Y<return>
or
>LOV X LEN W<return>

YFO. VERIFY OVERLAY MEMORY. VFO is used to verify that the
program you have loaded into Overlay Memory matches the program in
your target system memory. The following example shows the key
sequence.

® The key sequence is:
>YFO X TO Y<return>

o If any differences occur, the emulator will return:
<address> = XX NOT YY

The <address> is where the misverify occurred. XX denotes the
data present in Overlay Memory and YY is the data at that
location in target system memory.

FILL. FIL is used to fi1ll the memory space of the emulator or
target system with a constant. The constant may be written to
overlay memory and target read/write memory.

The format for the Fill operator is:
FILBxTOY, Z
or
FIL.L x LEN W,Z

The first argument specifies the address range to be filled with
the constant specified in the second argument. The second argument
may be byte, word, or long word depending on the global default or
the type of extension (.B, .W, or .L).

4-14

Yerify Block Data
VBL

Clear Overlay
CLM

Block Move
VYerify Block Move
BMO

VBM

VERIFY BLOCK DATA. The VBL operator is used in conjunction with
the FIL operator. Once the Overlay Memory has been filled with
constant data (via FIL), this data can be verified with the VBL
command. The key sequence shown in the following sequence is much
1ike the key sequence for FIL.

The general format is:
>YBL <.B .W or .L> <address range>, <argument><return>

The VBL operatbr verifies that the address range contains the
argument.

CLEAR OVERLAY MEMORY MAP. The CLM operator clears all addresses
and data from the Overlay Memory map. Clear the map and data by
typing CLM <return>, enter the new map, then load new data.

The format for clearing Overlay Memory is:
>CLM<return>

The Block Move operator moves a block of data from one location
within the emulator or target system memory, or Overlay Memory

to another via a source/destination format. The space you move
data into should be designated as writeable. You can also specify
the 68010 status space (Supervisor program, Supervisor data, User
program, User data).

The format for a block move is:

>BMO<source range>, [source space,]

<destination start address>,[destination]l<return>
"Space" refers to the 680XX status space: SP, SD, UP, or UD.
The source space for a Block Move is determined by the value in
MMS. The destination space is determined by the value stored in
MMD.

e You can set MMS and MMD prior to execution:

>MMS = SD
>MMD = SC@
>BMO = GR1,$1000

e Byte or word may be specified. The space code may be typed on
the same 1line.

>BMO.W 300 LEN 40,SP,10300,UP
e You can verify byte data between the target and overlay memory:
>VYBM.B 2000 TO 3FFF,SPTG0,2010,SP+0V0

Verify Block Move has the same syntax as Block Move except that VBM
only verifies that the source and destination blocks are identical.

4-15

4.6 THE TRACE MEMORY
AND DISASSEMBLER

The Trace Memory records the history of the program execution. It
may be used in conjunction with a disassembly routine to format the
trace data. The mnemonics provided by the disassembled display
ensure more rapid analysis of your data.

During emulation, the activity of the executing program is recorded
continuously and stored in the Trace Memory. At any point in the
process, the program execution can be stopped. The address, data,
and control bus of the last series of cycles can be displayed and
scolled on a CRT terminal or output to a printer. The entire
contents or a "window" of cycles occurring between specified bus or
instruction cycles can be dumped. If something unexpected happens
during program execution, the Trace Memory provides a record that
can be reviewed to determine what happened. The Event Monitor
System can be used to qualify, start recording of data into the
Trace Memory, and stop the recording process.

By enabling the PPT switch, all PEEK or POKE operations will be
traced in addition to normal emulation being traced.

The Trace Memory is 72 bits wide and 2048 words deep; two words are
used for marks, leaving 2046 words. It cannot be accessed by the
user during emulation.

A trace counter supplies the address to the Trace Memory and can be
incremented with each cycle. It is a 12-bit counter (only eleven
are used) with count mode logic. It has three modes of operation:

e count never
e count every bus cycle (only available during a Run mode)

e count every bus cycle when qualified by trace directive from
state decode logic (only available during a Run mode)

A Disassembler is available for use with the Trace Memory. This
allows you to display or print Trace Memory in an easy-to-read
format similiar to a program listing. Figure 4-4 shows printouts
of the Trace Memory and of the Trace Memory with Disassembly. The
4 line header may be garbled because no linefeed is sent from the
disassembler; however the rest of the printout will be legible.

A "page" of Trace Memory is defined as the number of lines on the

CRT terminal, less three. A1l scrolling is done by pages, with
both raw Trace Memory data and disassembled data.

4-16

4.6.1 Display Raw
Trace
DRT

DRT can be used to display Trace Memory data in bus cycles if you
do not wish to use Disassembly to display instruction cycles.

Invoking DRT causes the Satellite Emulator to display a page of bus
cycles of the Trace Memory. More or less cycles may be displayed
by specifying an address or address range in an argument following
the operator. If a single address is specified, the system will
display the specified address and the previous 20 bus cycles. The
Trace Memory holds 2,046 cycles; therefore, 2,046 is the highest
number allowable as input. Note that the raw Trace Memory contains
the 16-bit status and control word (described in Section 5.2.6).

e To display the last page of bus cycles:
>DRT<return>

e To display a specific line number and the previous 20 cycles:
>DRT<address><return>

e To display a range of line numbers:
>DRT<range><return>

Note that the range is a range of bus cycles, not the address
recorded in the Trace Memory.

4-17

RAW TRACE

DISASSEMBLED
- TRACE

MEMORY
DISASSEMBLER
PROGRAM

Figure 4-4.
Trace Memory Format

B\

LINE ADDRESS DATA R/W FC IPL LsA -8 7 - @
#20 00100A> 3080 R OVL SP "] $11111111 $11111111
#19 99160C> BA3C R OVL SP [$11111111 $11111111
$#18 GP1PQPE> 6639 R OVL SP [} $11111111 %11111111
#17 821010> 6CH2 R OVL SP] $11111111 $11111111
$#16 291012> 5E480 R OVL SP] $11111111 $11111111
#15 2010614> 5746 R OVL SP] $11111111 $11111111
$14 @210416> 41FA R OVL SP] $11111111 $11111111
#13 001018> @3FF R OVL SP [} $11111111 $11111111
#12 90161A> 3146 R OVL SP [} $11111111 $11111111
#11 90161C> FF9d R OVL SP [} $11111111 $11111111
#1060 O0101E> 1140 R OVL SP g $11121111 $11111111

#9 291308 <@B37 W OVL SD 2] $11111111 $11111111
#8 0901020> FFF7 R OVL SP [} $11111111 $11111111
#7 0010622> 66E@ R OVL SP [} $11111111 811111111
#6 OO13FF < 37 W OVL SD] $11111111 $11111111
#5 901024> 4E71 R OVL SP [] $111111121 $11111111
#4 901004> BG3C R OVL SP [} $11111111 $11111111
#3 001006> #B39 R OVL SP [} $11111111 $11111:1111
#2 001008> 6CG2 R OVL SP [} $11111111 $11111111
#1 @01006A> 3080 R OVL SP] $11111111 $11111111
#2 BREAK
>DTB

SEQ# ADDR OPCODE MNEMONIC OPERAND FIELDS BUS CYCLE DATA

0941 901008 6CO2 BGE.S $001006C

0040 00100A 3080 MOVE.W D@, (AG) ©001408<0036

0039 09100C BE3CHBG39 CMP.B #$39,D0

0936 201010 6CO2 BGE.S $001014

9035 991012 5E40 ADDQ.W?? #7,D0

0934 221014 5749 SUBQ.W #3,D@

9033 £010616 41FAA3F@ LEA.L $001408(PC),A0d

0031 90101A 3148FFO0 MOVE.W D@,-$100 (AQ) ©01308<003A
9929 @O101E 1140FFF7 MOVE.B DO, -9(A8) OO13FF<3A

0026 081022 60ED BRA.S $0010084
0323 091084 BO3CAB39 CMP.B #$39,D0
0@2]1 201008 6CO2 BGE.S $001006C
9019 00190C BA3CAB39 CMP.B #$39,D0
0017 001010 6CB2 BGE.S $001014
0916 201912 SE40 ADDQ.W?? #7,D0

0015 291014 5749 SUBQ.W #3,D0

92314 901016 41FA@3F9 LEA.L $001408(pPC), A0

0012 @0101A 3140FF0@ MOVE.W DO,-$100(A0) ©01308<0037
9019 @0101E 114@0FFF7 MOVE.B D@,-9(A8) PBL3FF<37

0007 801022 6PED BRA.S $001004

0004 901004 BO3COB39 CMP.B #$39,D0

>DIS 10080
001000 303COG3A MOVE.W #$003A,DO
991984 BO3COB39 CMP.B #$39,D0
001008 6CO2 BGE.S $00100C
80100A 308¢ MOVE.W D@, (AD)
90100C BO3COB39 CMP.B $#$39,D0
901010 6CO2 BGE.S $001014
901012 SE49 ADDQ.W #7,D0
991014 5740 SUBQ.W #3,D0
#01916 41FAB3F0 LEA.L $001408(pPC), A0
00121A 3140FF00 MOVE.W D@, -$100 (A0)
@P101E 114@FFF7 MOVE.B D@,-9(A@)
001022 6QED BRA.S $001004
991024 4E71 NOP

NOTE
If a double question mark (??) appears on a line of disassembled
output, this indicates that the disassembler does not know if the
instruction was executed. This could be due to any of three
reasons.

o The preceding conditional branch 1is jumping around this
instruction.

® The instruction is a single-word type.

e The instruction does not cause data to appear on the bus.

4-18

4.6.2 Disassemble
Trace
DT

4.6.3 Disassemble
Previous and
Following
Trace
DTB
DTF

4.7 SOFTWARE DEBUGGING
WITHOUT TARGET
SYSTEM HARDWARE

4.8 ERROR HANDLING
AND CODE

This operator will cause the Trace Memory to be disassembled and
output to the controlling port (computer or terminal). If no range
argument is specified, the last instruction executed is dis-
assembled. The output of the DT operator in this instance has its
linefeed suppressed. Thus, by repeating the operators Step and
Disassemble Trace, a continuous Disassembly is formed
(>STP;DT<return>). Some information can't be disassembled because
of qualifiers such as TOT or TRC (within the Event Monitor System).

e To disassemble the last instruction executed:
>DT<return> .

e To disassemble a range:
>DT<single value or range><return>
The single or range values are sequence numbers where 0 is the
number for the most recent instruction. Entering a single value
will disassemble that value and the previous page. A range
disassembles that range of sequence numbers.

® To initiate a continuous Disassembly:
STP;DT<return>

These two operators will scroll you through the disassembled Trace
Memory a page at a time. This key sequence is also shown in
Example 4-19.

NOTE
The sequence numbers in DT, DTB, and DTF correlate with
the Tline numbers displayed by DRT, which are bus cycle
numbers.

e To disassemble the previous page:
>DTB<return>

e To disassemble the following page:
>DTF<return>

An added feature of the Satellite Emulator is its ability to debug
software without being physically connected to your target system.
This is accomplished with the Null Target Software Simulation Tool.

The procedure consists of mapping memory space and loading the
Overlay Memory with your program. With the Null Target attached to
the emulator pod assembly, you can now use the features of the
emulator to execute program code and test modules.

When an error occurs, the system will print a question mark (?) on
the screen, directly below or just after the point in the input
(Figure 4.5) that caused the error. See Figure 4-5.

When the question mark appears on the screen, you should key in a
question mark in return to find out the error message. Table 4-3
lists the errors that may occur by code and their messages as
displayed on the CRT. If you need additional help, call Customer
Service for ES Products.

4-19

Figure 4-5.
Error Recognition

If you are operating the Satellite Emulator under host system
control, only two errors are likely to occur, assuming the host
system software has been fully debugged: Error 6, a checksum error
and Error 34, a read-after-write error. The host system can be set
up to return a question mark to the emulator and use the error code
number to consult its own table for further action.

DB.X 0 TO S2F
?
>?
ERROR #1
EXPRESSION HAS NO MEANINGFUL RELATION TO THE REST OF THE COMMAND

>

>DST
?
>?
ERROR #5
UNDEFINED SYMBOL OR CHARACTER DETECTED
>

>SET #20,55
2
>?
ERROR %42
ILLEGAL SETUP SET VALUE
>

4-20

Table 4-3.

CODE

Error Codes

MESSAGE DISPLAYED

COMMENTS

i EXPRESSTON HAS NO MEANINGFUL RELATION TO REST

11

13
16

17
18
19
23

OF THE COMMAND

UNDEFINED SYMBOL OR INVALID CHARACTER
DETECTED

CHECKSUM ERROR IN DOWNLOAD DATA

BAD STATUS = ...RETURNED FROM EMULATOR
CARD

ARGUMENT IS NOT A SIMPLE INTEGER
OR INTERNAL RANGE

NO MORE OVERLAY MEMORY AVAILABLE

MULTIPLE-DEFINED EVENT GROUP

ILLEGAL ARGUMENT TYPE FOR EVENT
SPECIFICATION

ARGUMENTS MUST BE A SIMPLE INTEGER

OPERATION INVALID FOR THESE ARGUMENT
TYPES

SHIFT ARGUMENT CANNOT BE NEGATIVE

TOO MANY ARGUMENTS IN LIST...(9 MAX)
INVALID GROUP NUMBER...(NOT IN 1-4)
OPERATION INVALID FOR THESE ARGUMENT TYPES

Often caused by entering symboTs
out of context. DR and BRK are
both legal operators but entered
together as DR BRK would cause
this error message.

Generally caused by improper
spelling.

The last record received was in
error. Make sure that the format
selected in the system setup is
the same as that of the received
data. Refer to download for error
hand1ing during computer control.

Contact Customer Service for ES
Products.

Don't Cares are not allowed in
this context.

You haven't cleared the map or you
are trying to map in more memory
than is allowed.*

Only one group may be referenced
in any event clause; caused by
trying to mix event register
groups in an event clause e.g., 2
WHEN AC1.2 THEN BRK would cause
this error.

Often caused by attempting
arithmetic operations on
incompatible variables, e.g., (4
DC 9) + (IRA 500 to 700). Same as
error 23.

See error 16,

=xContact Applied Microsystems for optional Overlay Memory expansion.

4-21

CODE MESSAGE DISPLAYED COMMENTS
24 BASE ARGUMENT MUST BE A SIMPLE INTEGER Argument should be #0 to #16.
J RANGE TYPE ARGUMENT NOT ALLOWED AS DATA
27 ADDRESS ARGUMENT MUST BE A SIMPLE INTEGER
29 ILLEGAL DESTINATION - SOURCE TYPE MIX Caused by trying to store don't
. care data into a range variable
and other similar operations.
31 RANGE START AND END ARGUMENTS MUST BE
SIMPLE INTEGERS
32 RANGE END MUST BE GREATER THAN RANGE START 6 LEN 1 is not a valid range
33 RANGE START AND END ARGUMENTS MUST BE
SIMPLE INTEGERS
34 READ AFTER WRITE-VERIFY ERROR Downloaded data is verified on a
byte-by~byte basis. The error
message contains the location and
results of the comparison.
35 WARNING - DATA WILL BE LOST WHEN Caused by attempting to store into
EMULATION IS BROKEN CPU registers during emulation.
CPU registers are copied into
internal RAM only when emulation
is broken. The RAM contents are
copied into the processor only
when emutation is begun. The
emulator cannot access CPU
registers during emulation. Thus,
once emulation has been started,
the DR command will show the
contents of the CPU registers as
they were before emulation was
begun. Changes can be made to
these values but the data will be
rewritten when emulation is
broken.
38 NO ROOM...BREAKPOINT CLAUSES T0O
NUMEROGUS OR COMPLEX
39 INVALID GROUP NUMBER...(NOT IN 1-4)
40 ILLEGAL SELECT VALUE First argument after SET operator
is invalid.
41 INCORRECT NUMBER OF ARGUMENTS IN LIST
42 ILLEGAL SETUP SET VALUE The argument nearest to the "?" is

“WHEN" CLAUSE REDUCED TO NULL FUNCTION

4-22

illegal.

Caused by such constructs as "WHEN
AC1 AND NOT ACL."

CODE MESSAGE DISPLAYED COMMENTS

44 INTERNAL ERROR...NULL SHIFTER FILE Contact Customer Service for
ES Products.

) MAP CANNOT BE ACCESSED DURING EMULATION The map hardware is constantly
used by the emulating processor
during emulation.

46 ARGUMENT MUST BE AN INTERNAL RANGE

47 16-BIT RANGE END LESS THAN START

48 ILLEGAL MODE SELECT VALUE

49 INVALID GROUP NUMBER...(NOT IN 1-4)

50 INVALID GROUP NUMBER...(NOT IN 1-4)

51 SAVE/LOAD INVALID ARGUMENT VALUE

52 DISPLAY BLOCK NEEDS AN IRA ARGUMENT

53 EEPROM WRITE VERIFY ERROR Data in the EEPROM is verified
during the SAV operation. (The
store operation is retried many
times before the error is
generated.) EEPROMs have a finite
write cycle 1ife. The EEPROM in
your emulator is warranted for one
year. Contact Customer Service
for ES Products.

54 ATTEMPT TO SAVE/LOAD DURING EMULATION

55 EEPROM DATA INVALID DUE TO INTERRUPTED SAVE Previous SAV was interrupted by a
reset or power off,

56 TRACE DATA IS INVALID DURING EMULATION

57 INVALID GROUP NUMBER (NOT 1-4)

58 IMPROPER NUMBER OR ARGUMENTS

59 ARGUMENT MUST BE AN INTERNAL RANGE

60 ARGUMENT MUST BE A SIMPLE INTEGER

61 IMPROPER NUMBER OF ARGUMENTS

62 CANNOT STORE THIS VARIABLE DURING EMULATION

63 ILLEGAL ARGUMENT TYPE

A4 ARGUMENT TOO LARGE Caused by entering range or

4-23

integer values with the DRT
command that include numbers
greater than #2045.

66
67
68
70

71

72

73

74
75

ILLEGAL RANGE

STATUS CONSTANTS CANNOT BE ALTERED

TOO MANY "WHEN" CLAUSES

COMMAND INVALID DURING EMULATION

CANNOT INITIALIZE VECTORS DURING EMULATION

UNKNOWN EMULATOR ERROR
INCOMPATIBLE EEPROM DATA

OVE MUST BE SET TO [SUP, USR] AND
[PGM, DTA]

COMMAND INVALID DURING EMULATION
INVALID RECORD TYPE

4-24

Typed LDV, RNV, RBV during
emulation.

Call Customer Service for ES
Products.

Previous data save was not from
680XX emulator system.

Download routine received invalid
record type code.

4.9 BUS ERRORS

Table 4-4.
Bus Errors

The emulator can send a bus error to the MPU for two different
reasons:

o When executing the "CYC" command a bus error is forced in order
that the long stack of information be available to the firmware
that simulates bus cycles.

e When the "BTE" switch is ON, emulation will be aborted by an
internally generated bus error if the target system holds the
address strobe asserted for a sufficient length of time.

In either case, the entire "long" stack of registers is saved in.
registers with specific names. The registers may be examined
and/or modified.

The registers named "MSK" and "RO" - "R14" contain internal
information that is not documented by Motorola. Modification of an
of these registers may result in unpredictable operation of the
68010 MPU,

6800d/68008 68019
PC High Status Register SR
PC Low PC High .
Status Register B Tow PC[Yalid after
nstruction Register X000/Vector Offset FMT y
Access Addr. High Special Status Word SSH 4
Access Addr. Low Fault Addr. High FA
RAW]II/N TFC rault Add Low
Unused
Data Output Buffer DOB
nused
ata Input Buffer DIB
nused
Inst. Input Buffer I1B
_ MSK
RO
R1
R2 [valid only
R3 After Bus
R4 Error on
R5 "cye"
Internal R6 Execution
Information < R7
16 Words ‘ R8
R9
R10
R11
R12
R13
L R14

4-25

4.10 THE MEMORY
DISASSEMBLER

4.10.1 Display
Disassembled
Memory
DIS

Example 4,10-1

The memory disassembler allows you to dump the contents of memory
and have it displayed or printed in an easy-to-read format similar
to a program listing.

NOTE:

You should be familiar with 68000 assembly language
programming before reading this section. The information
presented here is an overview, which will provide the
necessary instructions when used in conjunction with
Motorola documentation. You should have these handy:

e 16-BIT MICROPROCESSOR, User's Manual
MC68000UMLAD3]

o MC68000 16-Bit Microprocessor Programming Card,
MC68000(AC1)

This operator will cause memory to be disassembled and output to the
controlling port (computer or terminal). The key sequence is shown
in example 4.10-1. If no argument is specified, one page of
disassembly is displayed, beginning at the last address when this
operation was previously invoked.

Use of DIS

e To disassemble one page of memory beginning at the last address
when this operation was previously invoked:

>DIS<return>

® To disassemble one page of memory beginning at the specified
address:

>DIS <single value><return>

e To disassemble a range of memory:
>DIS (range><return>

e To continue disassembly one line at a time:
><space> (at the end of each 1ine)

e To continue disassembly one page at a time:

><return> (at the end of each page)

4-26

4,11 THE LINE
ASSEMBLER

4.11.1 Standard
Mnemonics

4.11.2 Assemble Line
to Memory
ASM

_ Example 4.11-1

The 68000 Line Assembler allows you to enter and assemble Motorola
68K mnemonic instructions into target memory. In addition to
instructions, there are "Assembler Directives" to aid you in
selecting memory addresses, using symbols, inserting numbers and
text strings into memory, etc. The Line Assembler gives you a
powerful software tool to facilitate in software patching,
hardware/software debug, developing small programs, writing
hardware/software test routines, etc.

A1l standard Motorola 68000 mnemonics are supported. These are
listed in the Motorola 16-bit Microprocessor User's Manual.

NOTE:
Lines shown in bold print with a <return> are user
entries; lines shown in regular print are the assembled
response.

This operator will cause the line assembler to be invoked. The key
sequence is shown in the following example. If no argument is
specified, line assembly will begin at the last address, when this
operation was previously invoked. To exit line assembly and return
to the command level, enter either END or X with the address prompt
displayed (as shown here).

Use of ASM

o To start line assembly beginning at the last address when this
operation was previously invoked:

>ASM<return>
*xkk 680XX LINE ASSEMBLER ****

000000 >
e To start line assembly beginning at the specified address:

>ASM $4C6A3<return>
*kkkx 680XX LINE ASSEMBLER ****

04C6A3>
® To terminate line assembly:

012345 >X<return>
*%%% END OF LINE ASSEMBLY ****

>

4-27

4,11.3 Assembler
Directives

Example 4.11-2
Use of Assembler
Directives

The following assembler directives are supported:

DIRECTIVE DESCRIPTION

ORG Set program origin

DC Define bytes, words, longwords, and text
strings

END 4 End line assembly

X End Tine assembly

EQU Define symbol value (only valid if

symbolic debug hardware is installed)

SET Define/Redefine symbol value (only valid
with local labels §LO to L9t unless
symbolic debug hardware is installed)

L0,L1...L9 Print value of local symbol

' symbo1l Print value of symbol (only valid with
installed symbolic debug hardware)

<return> Disassemble one instruction at current
address

* Current line assembly address

The key sequences for these assembler directives are shown in the
following example.

o To set program assembly origin:

35F300 >ORG $4000<return>VFO
004000> :

® To define constant byte, word, longword, or text string:
002400 > DC.W $8034,256,1024<return>
002400 8034 0100 0400
002406>

e To exit line assembly:

0058FD >X<return>
*%x%% END OF LINE ASSEMBLY ***

>

o To define symbol (if symbolic debug hardware is installed):

O1FEO0 >'Unit EQU $89400<return>
01FE00>

4-28

4,11.4 Usage Notes

'<bs>

PCR

To define/redefine local symbol or symbol (if symbolic debug
hardware is installed):

018802 >L3 SET $032000<return>
018802>

To print local symbol:

018802 >L3<return>
018802 >L3 SET $0003200
018802 >

To print symbol (if symbolic debug hardware installed):

018890 >'Unit <return>
018890 >'Unit SET $0089400
018890 >

To disassemble one instruction at current address:
OFSDOA ><return>

OF5DOA 33F4D8FE00450000 MOVE.W $FE(A4.A5.L),$450000
OF5D12 >

Plus or minus (+ or -) are the only arithmetic operators allowed
in expressions

Slashes (/) or double quotes (") are used to delimit ASCII
strings. If you enclose the string in slashes, you may not use
slashes within the string, but any number of double quotes may be
used. If you enclose the string in double quotes, you may not
use double quotes within the string, but any number of slashes
may be used.

Upper-case strings are the default. (If you have symbolic debug
installed, the use of '<backspace> will allow entry of lower-case
letters until you enter a <space>.)

The two number bases are hexadecimal and decimal. Decimal is the
default. Numbers beginning with $ are hexadecimal. A1l other
numbers are decimal.

When referencing memory, you must use a leading zero with the
Program Counter Relative, as shown in these examples:

PCR with index and displacement

0(PC,D3)

Address register indirect with index and displacement

0(A4,D3)
Remember that the pound sign has two different meanings:
--At the ES command level, # denotes a decimal number.

--Within the line assembler, # denotes an immediate addressing
mode.

4-29

4.11.5 More
Examples

mple 4,11-3
»ing Addresses

Example 4.11-4
Using Local Symbols

ample 4,11-5
Using Assembler
Directives

Example 4.11-6
Error Message in
Response to ?

The following examples represent ways in which the line assembler
can be used.

>ASM 100<return>
**k%k 680XX LINE ASSEMBLER **%%

000100 >MOVEQ #8,D3<return>

000100 7608 MOVEQ #8,D3
000102 >MOVE (A2)+,(A6)+<return>

000102 3CDA MOVE (A2)+,(A6)+
000104 >DBNE D3,$102<return>

000104 56CBFFFC DBNE D3,$102

000108 >X<return> ‘
**%% END OF LINE ASSEMBLY *¥x

>ASM 100<return>
**kk 680XX LINE ASSEMBLER *%k*
000100 >MOYEQ #8,D3<return>

000100 7608 MOVEQ #8,D3

000102 >L5 MOVE (A2)+,(A6)+<return>

000102 3CDA L5 MOVE (A2)+,(A6)+
000104 >DBNE D3,L5<return>

000104 56CBFFFC DBNE D3,L5

000108 >X<return>
*%%% END OF LINE ASSEMBLY *%+x

>ASH<return>

*kkkx 680XX LINE ASSEMBLER *%*%

000108 >ORG *+$1000<return>

001108 >L2 SET $4<return> == $00000004
001108 >L3 SET L5-*+2<return> == $FFFFEFFC
001108 >L1 DC.B “TEST",O<return>

001108 54 45 53 54 00

00110D >ORG $2000<return>

002000 >LEA L1(PC),AO<return>

002000 41FAF106 LEA L1(PC),AO
002004 >MOVE.B (A0),-(A4)<return>

002004 1910 MOVE.B (A0),-(A4)
002006 >ADDA #1,A0<return>

002006 DOFCO0001 ADDA #1,A0
00200A >BRA $2004<return>

00200A 60F8 BRA $2004

00200C >X<return>
*xkx END OF LINE ASSEMBLY *%*x*

>ASM $4000<return>
*k%kkx 680XX LINE ASSEMBLER ****

004000 >'label BSR $2006<return>
?

>?

ERROR #9

ARGUMENT OUT OF RANGE

4-30

Example 4.11-7

Using Symbols With Symbolic Debug Hardware
Installed

>ASM <return>
xx 680XX Line Assembler *¥**

004000 >BSR.L $2006<return>

004000 6100E004 BSR.L $2006
004004 >'label SET $00004000<return>

004004 >‘'page table SET $F01890<return>
004004 >'pt bTink SET $4<return>

004004 >MOVEA.L #'page_table ,A5<return>

004004 27C00F01890 MOVEA.L #'page_table ,AS5
00400A >LEA ‘'pt blink (A5),A3<return>

00400A 47ED0004 LEA 'pt blink (A5),A3
00400E >X -

*xk%x END OF LINE ASSEMBLY *%x

4-31

SECTION 5
_PROGRAMMING THE
“ENT MONITOR SYSTEM

5.1 INTRODUCTION
5.2 DISPLAYING AND CLEARING THE EVENT MONITOR SYSTEM

5.3 EVENT COMPARATORS

5.3.1 Address Comparators
Count Limit
Data Comparators
Status Comparators
Don't Cares

gaonnoro;m
e o o
wWwww
« o e
e wNn

5.4 EVENT MONITOR SYSTEM ACTIONS
5.4.1 Force Special Interrupt

5.5 EVENT GROUPS

5.6 OPTIONAL LOGIC STATE ANALYZER
5.6.1 LSA Functions
5.6.2 Timing Strobe

5.7 STATEMENT CONTROL
5.7.1 Repeat Command
5.7.2 Loop Counter
5.7.3 Macros Defining Macros

5-1

5.1 INTRODUCTION

The Event Monitor System is an expanded and enhanced breakpoint
system. It is used to detect specific events occurring in the
target system and to perform actions when these events are
detected. Action is taken according to a set of statements.
These statements combine detection comparators and action items.
When an event is detected, any of the following actions may occur:

all-cycle trace

single-cycle trace

window-mode trace

external triggering

pass counting

breakpoints (ranging from simple to highly complex)

In addition, the Logic State Analyzer option gives you access to
sixteen external logic signals that can be defined and considered
in the Event Monitor System.

To set up the Event Monitor System, you must define event detectors
that will trigger an action list. The event detectors and the
action list are combined into WHEN/THEN statements, which become
active when running the target system. WHEN/THEN statements take
the following form:

WHE[N] <event> THE[N] <action>

Event detectors may be combined using AND, OR, and NOT. These are
like logical ANDs, ORs, and NOTs, except that they are not on a bit
level. A more complex example of a WHEN/THEN statement might look
1ike this:

WHELN] <event> AND <event> OR <event> THE[N] <action>, <action>,
<action>

There are four event groups, each group consisting of eight
comparators. The system can operate in only one group at a time.
Each WHEN/THEN statement must be defined for a specific group. If
no group is defined, the statement will default to group 1.
WHEN/THEN statements are used to link event groups together for
sequential operation.

The table on the next page summarizes the operators used with the

Event Monitor System. (These operators are also displayed online
on page 2 of the Help Menu.)

5-2

Table 5-1.

Event Monitor System OPERATOR ~NAME BITS
__ Operators NIDE
SETTING AND CLEARING CES clear event system
DES display event system
EVENT COMPARATORS ACl address comparator 1 24*
(singly or in combinations AC2 address comparator 2 24*
comprise event detectors) DC1 data comparator 1 16**
DC2 data comparator 2 16%*
S1 status comparator 1 16%*
S2 status comparator 2 16**
LSA Logic State Analyzer 16%*
comparator
- CL count limit comparator 16

*single address or address range
**includes Don't Cares

ACTIONS CNT count event
(What the Satellite FSI Force Special Interrupt
Emulator does in response BRK break emulation during RBK or RBY
to the event detectors; TGR trigger signal high for one
several actions may bus cycle
be combined in a single TRC trace event
statement) RCT reset count limit

GRO switch event group

TOT toggle tracing

T0C toggle counting
STATEMENT OPERATORS IRA internal range
(used to combine event XRA external range
comparators and actions T0 to
into statements) LEN length

WHEN when

THEN then

AND and

OR or

NOT not

DC Don't Care

SIA Special Interrupt Address

Remember that the Event Monitor System must be set up prior to its
use. Comparator values can be stored in the EEPROM between
emulation sessions. (Two users may store their event system
setups.)

NOTE
When the Event Monitor System is used in con-
junction with emulation, timing is not affected--
the emulator still operates in real time.

5-3

5.2 DISPLAYING AND

CLEARING THE EVENT
MONITOR SYSTEM

DES

CES

5.3 EVENT COMPARATORS

5.3.1 Address

IRA

Comparators
AC1
AC2

Two operators are included for clearing the contents of the
Event Monitor System and displaying its contents.

e To clear all the WHEN/THEN statements:
>CES<returnm>

e To clear the WHEN/THEN statements for a single group:
>CES <group number><return>

) To.disp1ay all of the WHEN/THEN statements:
>DES<return>

o To display the comparators as well as the WHEN/THEN statements
for a given event group:
>DES <group number><return>

There are eight event comparators for each of the four event system
groups:

e two address comparators

o two data comparators

e two status comparators

e one count 1limit comparator

e one Logic State Analyzer comparator

Three types of data may be assigned to the comparators: integers,
ranges, and don't cares. Values contained in any other registers
in the system may be assigned to the comparators, as long as the
data types are compatible, for example:

S1 = MMS

The address comparators match addresses occurring within the
emulation process against the 24-bit address bus. If a match
is detected, the associated action occurs.

Address comparators can be a single address, an internal range, or
an external range.

The examples shown here illustrate the format for assigning address
comparators and ranges. When a single address is assigned to an
address comparator, such as ACl = $4766<return>, each time the
address $4766 appears on the address bus, the ACl comparator will
detect this "event" and will produce a true output (the action
associated with the ACl event detector).

¢ To set an address comparator to a single address:
>AC1.3 = $06FF<return>
or
>AC2.1 = $3488<return>
or
>AC1 = PC + $200<return>

The assignment statement may include other operations, such as
adding an offset to one of the CPU registers (in this case the
program counter). This would cause the specified event to occur
upon an access $200 bytes ahead of the current program counter.

o Ranges are set up with the IRA, XRA, TO, and LEN operators.
5-4

T0
LEN

(1

5.3.2 Count Linit

CcL

To set an address comparator to an internal range (all
addresses from n to m, including addresses n and m):

address comparator = IRA <address n> TO <address m><return>
>AC2 = IRA $3000 TO $3FFF<return>
or
address comparator = <address> LEN <length><return>
>AC2 = $3000 LEN $1000<return>
or
address comparator = <address n> TO <address m><return>
>AC2 = $3000 TO $47FF<return>

Note that when no prefix is applied (IRA or XRA) the range is
assumed to be internal--IRA is implied.

e To set an address comparator to an external range (all addresses
not between n and m -- addresses lower than and including n, or
addresses higher than and including m):

address comparator = XRA <address n> TO <address m><return>
>AC1 = XRA $2000 TO $32FB <return>
or
>AC1 = XRA $2000 LEN $32FA <return>

e The inverse operator (!) can also be used:
>AC2 = !AC1

The above would define AC2 as the inverse of ACl. If ACl is
internal, AC2 would become its complementary external range and
vice versa.

Both internal and external ranges include endpoints as part of the
valid range. The LEN Operator provides an alternative to speci-
fying ranges. When a range is specified with a LEN expression, the
first value specified is the beginning address of the range and the
last value is the block size (the length specified with LEN, minus
one). Ranges can also be defined from other ranges w1th the
inverse operator (!) shown in the first example.

NOTE
Addresses can also be assigned with the
indirection operator (@). See Section 3.6 for
an example.

Each event has a count 1imit comparator, and the system has one
hardware counter. When entering RUN mode, the value from CL.1 is
automatically loaded into the hardware counter, and may be used in
event system WHEN/THEN statements, as shown here:

S1 = RD + OVL

CL = #200

WHE[N] S1 THE[N] CNT
WHE[N] CL THE[N] BRK

In order to load the value from another CL register into the
hardware counter, an RCT (reset count) action must be specified in

5.3.3 Data
Comparators

0C1
DC2

5.3.4 Status
Comparators
S1
S2

Table 5-2.
Status Mnemonics

conjunction with the switch to a new group. This new count limit
value may then be used in WHEN/THEN statements, as shown here:

AC1 = $7800

CL.2 = #10

AC1.2 = $7840

WHE[N] AC1 THE[N] RCT, GRO 2
2 WHE[N] AC1 THE[N] CNT

2 WHE[N] CcL THE[N] BRK

The data comparators are set like the address and LSA comparators.
Data comparators may be assigned integer values and may contain
Don't Care bits (see Section 5.3.5 for a detailed explanation of
Don't Cares). Other registers, such as general purpose registers
GDO-7 may be assigned to these comparators.

e To assign an integer
DC1 = $F033

e To assign a Don't Care value
DC2.3 = $FFO0 DC $FF
DC1 = GDO (general purpose data register)

The Satellite Emulator records a 16-bit status and control word in
every Trace Memory cell. The bits in this word are a combination
of 680XX-generated signals and signals internal to the emulator.

The emulator has a set of "constant” registers that the Event
Monitor System can use as event comparators. When the status word
matches the status defined by S1 and/or S2, the comparator output
is true.

The following table 1ists the status constants. Example 5-1 shows
how to set S1 and S2.

MNEMONIC DESCRIPTION

BER bus error

VM valid memory address

VP valid peripheral address
IPO-1P7 interrupt levels 0-7

SP supervisor program

SD supervisor data

up user program

uD user data

CPU CPU space

SC0-SC7 numeric names for all 8 space codes*
TAR target system access

ovL Overlay memory access

RD read access

WR write access

BYT byte mode

WRD word mode

* SC@P, SC3, SC4 used only by 6810.

5-6

Example 5-1.

Setting Status
Comparators

Example 5-2

Examining the Contents

of the Status

Comparator

Activated
Bit Values

) The general format is:

1 2 3 4 5 6 7
S1= TAR + RD + SCO + IP0O + BYT + BER
S2 ovL NR UD/scC1 Ir1 WRD M

upP/sc2 IP2 VP
SC3 1P3
SCA 1P4

SD/SC5 IP5

SP/SC6 IP6

CPu/sc? 1pP7
Note the seven-column formét. A status comparator may be set with
a maximum of one constant from each of columns 2-6; i.e., S1 and S2
can both have one from each of columns 2-6.

In addition, as many constants as desired can be included from
column 7.

Remember that these are maximums. It is not necessary to use all
the possible constants.

[Some sample status comparators are:

>S1 = TAR + RD + SD + IP3 + BER
>S2 = TAR + WR + CPU
>S2 = OVL + UD

The addition sign is used as a connective between the constant
mnemonics, acting as a Boolean "AND."

To examine the contents of the status comparator, type S1 or S2.
Note, however, that when the status comparator name is keyed in,
the system responds with a value, rather than the mnemonic code
used to enter that value into the system. The table below is used
to translate the system response back into the mnemonic codes
entered originally. This table can also be used to help enter
status comparator values directly.

0=IP7 0=SCO0 0=0VL + WR + WRD
2=IP6 1=UD 1=WRD

4=1P5 2=Up 2=RD

6=I1P4 3=SC3 3=RD + BYT

8=IP3 4=5C4 4=TAR

A=IP2 5=SD 5=TAR +BYT

C=IP1 6=SP 6=TAR + RD

E=IPO 7=CPU 7=TAR + RD + BYT

5-7

When you type S1 or S2, the system responds with a value with this
general format:

$ 0000X4X3X2X1 bC 0000X4X3X2X1
The hexadecimal values X,, X,, X,, X, represent the bit
patterns of the status comerato; reé%ste%. Those to the left
of the DC operator correspond to the activated bits (0s);
those to the right are the Don't Cares, or mask values (1s).

Examination of the mask values reveals which bits have been
activated, or enabled. A mask of FFFF shows that all the bits
are masked, while a mask of FF8F indicates that all bits
except 4, 5, and 6 have been masked. That is, 4, 5, and 6 are
the only bits that have been enabled.

The activated bit values, to the 1left of the DC operator,
correspond to the mnemonic entered into the comparator. These
mnemonic codes can be read directly off the table once the enabled
bit pattern has been determined. For example, suppose the system
responds with:

a.
$ 00000060 DC OOOOFF8F

The mask value shows that bits 4, 5, and 6 have been enabled.
The 6 .in the X, column to the left of the DC operator can be
matched with thé 6 in the same column of the table, indicating
that the mnemonic entered was SP.

b’

$ 00000060 DC O0OOFF8B
Mask values: all except 2, 4, 5, and 6 are masked
Mnemonic values: the 6 in X, corresponds to SP. The 0 in
column X, corresponds to soae combination of OVL, WR, and
WRD; sinte only bit 2 is activated, though, the mnemonic
entered must have been OVL.
Original entry: S1 = SP + OVL

c.

$ 00000054 DC 000OBF8B
Mask values: all bits except 2, 4, 5, 6, and 14 are masked.
Mnemonic values: since bit 14 is activated and a 0 shows in

X4, VM must have been entered; the 5 in X2 corresponds to SD,

and the 4 in X1 matches with TAR.

Original entry: S1 = VM + SD + TAR

5.3.5 Don't Cares
DC
X

d.
$ 00000607 DC OOOOF1FD
Mask values: all except 1, 9, 10, and 11 are masked.

Mnemonic values: the 6 in X, corresponds to IP4 in the table;
the 7 in X, indicates a comb?nation of TAR, RD, and BYT, but
only bit 17is activated, so RD was entered.

Original entry: S1 = IP4 + RD
e.
$ 00000703 DC 0OOOFOFC
Mask values: bits 0, 1, 8, 9, 10 and 11 are enabled.

Mnemonic values: any odd value in X, indicates a combination
of BER and one of the interrupt levels (IPO-IP7), simply
because an odd value must include a 1 in bit 8. So the odd
number corresponds to BER and the mnemonic for the next lowest
even number, which is 6 in this case, so IP4 was entered. The
3 1in X1, coupled with the mask value of C indicates that both
RD and BYT were entered.

Original Entry: S1 = IP4 + BER + RD + BYT

This table also applies to the Memory Mode access status register,
with certain restrictions. The MMS register allows the user to
access only SD, SP, UD, UP, and CPU space. So, when the contents
of the MMS register are displayed, only the X, column needs to be
read. The format of the display is the same as that for the Status
Comparator register.

The MMS register is not used in conjunction with the Event Monitor
System.

The DC or X operators specify Don't Care bits. Bits specified to
the left are significant while those to the right are ignored
(Don't Cares). Where overlap occurs between significant and Don't
Care bit positions, the bits are treated as Don't Cares.

Don't Cares are used with the event detectors when it is desirable
to restrict monitoring to a subset of the sixteen data, status, and
LSA Tines; for example, you may wish to monitor only the low-order
eight bits and ignore the high-order bits. This is done by
specifying the high-order bits as Don't Cares.

Address comparators and count 1limit comparators may not contain
Don't Cares.

e Don't Cares can be assigned in data, status, or LSA comparators.

An example of setting a data comparator and including a Don't
Care is:

5-9

5.4 EVENT MONITOR
SYSTEM ACTIONS

BRK
TRC
CNT
TOT

RCT
TGR
GRO

>DC1 = $0055 DC $FFOO<return>

The value of the Don't Care expression is assigned to DC1. The
first value in the statement ($0055) is the match value. The
comparator will be looking for this value on the data bus. The
second value ($FF00) is the Don't Care mask. The comparator will
mask all bit positions containing ones.

Another method of entering Don't Cares and defining comparators
uses Xs to mark the Don't Cares:

>DC1 = $4XX2<return>

The result of this assignment is $4FF2 as significant and $OFFO
as Don't Cares.

A sample LSA comparator would be:
>LSA = #65532 DC 210
Note that the Don't Care value can be specified in different

bases. The emulator looks at #65532 and translates it, then at
%10 and translates it before dealing with the value as a whole.

The event detectors cause the Satellite Emulator to perform an
action when they are detected during emulation. The trace function
defaults to the ON state--tracing all bus cycles--unless TRC or TOT
is specified.

The most commonly used detectors are BREAK, TRACE, and COUNT.

BRK (Break) causes emulation to halt.

TRC (Trace) traces the event; the Trace Memory is ON unless TRC
or TOT is specified.

CNT (Count) decrements the pass counter on the occurrence of a
specified event. RCT resets this counter (see below).

TOT (Toggle Trace) allows windowing. By identifying a starting
event and ending event you can toggle the trace from ON to OFF or
OFF to ON.

TOC (Toggle Count) allows you to window the pass counter. By
identifying a starting and ending event, you can toggle the
counter from ON to OFF or from OFF to ON.

RCT (Reset Counter) resets the pass counter to the specified
count. To load the counter, see Section 5.3.2, Count Limit.

TGR (trigger) causes the trigger output on the LSA Pod Assembly
and BNC connector to be high for the next cycle. (LSA is
discussed in detail in the next section. For BNC trigger
information, see Section 5.6.2.)

5-10

o GRO (Group) causes the system to switch to another event group.
(Event groups are discussed in more detail in Section 5.5)

The order in which actions are specified in a WHEN/THEN statement
is not critical except in two cases:

o If CNT and RCT are both specified for the same event, the
resulting action is RCT.

o If both CNT and TOC are specified for one event, the second
action specified will be performed.

To perform both TRC and TOT or CNT and TOT functions, each function
should be in a separate group.

Example 5-3. Breakpoints range from very simple to highly complex. A simple

Types of Breakpoints breakpoint would be to break emulation when a particular address in
the target program is accessed. For example, you could instruct
the emulator to wait for the CPU to access a particular instruction
in a program and to break emulation when the access occurs, as
shown here. This type of breakpoint is useful for running the
program until it reaches the code module or subroutine that you
want to debug.

e To halt emulation when address = $3000
SWHE[N] AC1 THE[N] BRK
>AC1 = $3000

After setting this and using RBK (run with breakpoints), the
program will execute until an access of any kind occurs at address
$3000.

Each of the following examples adds a new feature or level of
complexity to the WHEN/THEN statements shown here. Remember that
the Event Monitor System can be used for many possible combinations
of events and actions to suit your own needs. These examples
illustrate only a small percentage of the system s capabilities.
(Additional examples are in other sections of this chapter.)

e To halt at a code module with multiple entry points

>NHE[N] AC1 THE[N] BRK
>AC1 = $3000 TO $32FC

The same WHEN/THEN statement is used, but ACl1 is now defined as a
range

o To save only the bus cycles you want to view
>WHE[N] AC1 THE[N] TRC
>AC1 $3000 TO $32FC

In this case, you do not have to specify a breakpoint; only the bus
cycles occurring in the range ACl will be traced.

5-11

5.4.1 Force
Special
Interrupt

FSI
SIA

e To use the pass counter

>WHE[N] AC1 THE[N] TRC, CNT
>WNHE[N] CL THE[N] BRK

>AC1 = $3000 TO $32FC

>CL = $000A

In this example, each bus cycle occurring in the address range
$3000 to $32FC will be stored in trace memory and cause the pass
counter to be decremented. When ten cycles (0A16) have occurred,
emulation will be broken.

e To stop program execution when a specific data pattern is written to
memory at a certain address

>NHE[N] AC1 AND DC1 AND S1 THE[N] BRK

>AC1 = $3000 (address comparator)
>DC1 = $55AA (data comparator)
>S1 = WR (status comparator set to write)

When conditions ACl, DC1 and S1 are met simultaneously, the emulator
will break.

e To stop program execution when one of two data patterns appears at
either of two addresses during a write cycle

>WHE[N] AC1 OR AC2 AND DC1 OR DC2 AND S1 THE[N] BRK
e To set two conditions for a breakpoint

>WHE[N] AC1 AND DC1 AND S1 THE[N] BRK
>WNHE[N] AC2 AND DC2 AND S1 THE[N] BRK

The Force Special Interrupt feature allows your program to jump to
any address (for instance, a particular subroutine) when a
specified event is detected. This address is set by assigning a
value to Special Interrupt Address (SIA).

The user program is interrupted by the Event Monitor System when
the FSI event is detected, and program execution will begin at the
SIA. The routine must terminate with a “"return from exception"
(RTE) instruction to properly return to the interrupted routine,
The message FSI ACTIVE will be printed when an FSI occurs.

The FSI feature is helpful for inserting a quick patch in ROM code
or to terminate a process requiring a careful termination routine.
Only one SIA address can be set at a time.

The keystroke sequence for setting and clearing the Force Special

Interrupt is shown in the next example. The address argument is
the address of the interrupt service routine.

5-12

" EVENT GROUPS
GRO

¢ To set the Force Special Interrupt address:
>SIA = <address><return>

® To force a special interrupt
(A sample use for this would be to insert a code module that you
did not include in a Tinked program that is already compiled and
loaded for debugging.)

>HHEN AC1 THEN FSI
>NHEN AC2 THEN FSI

>SIA = $F2D0
>AC1 = $302C
>AC2 = $4010

In this example, the program will execute normally until address
$302C or $4010 is reached. When one of these addresses occurs,
emulation will be halted. Address $302C (or $4012) will be pushed
onto the CPU stack as the return address. The program counter will
be set to the value specified in SIA ($F2D0), and the CPU will
begin executing the program at the new address. To return to the
original program at the end of the patch, execute a Return from
Execution” (RTE) instruction (this will vary from processor to
processor) and the CPU will unstack the pushed program counter
($302C or $4010 in this example) and continue running from where it
left off.

The Satellite Emulator is capable of having up to four groups of
event detectors defined at one time, analogous to "event states." Th
is done by adding the suffix .n (n = 1 through 4) to the event
comparators; for example, ACl can be ACl.1, ACl1.2, DC2 can be DC2.4,
etc. These groups are defined when you are assigning the event
comparators or can be defined in the WHEN/THEN Statement. This is
illustrated in the following example.

Within one WHEN/THEN statement, only one group of events can be dealt
with at one time--the system can only be in one state at a time. The
group operator (GRO) is used to switch the Satellite Emulator to a
different event group in response to the event detector. If no group
number is assigned, the system will default to group 1.

e To use more than one event group

>WHE[N] AC1 AND S1 THE[N] CNT
>NHE[N] CL THELN] RCT, GROUP 2

>2 WHE[N] AC1 AND S1 THE[N] TRC, CNT
>2 WHE[N] CL THE[N] BRK

>AC1.1 = $4010; AC1l.2 = $4011

>CL.1 = 3; CL.2 = $14 (20 decimal)
>S1.1 = WR; S1.2 = RD

nou

This example could be used to monitor the activity of an 1/0 port aft
the port had been initialized. When ACl has been accessed by three
write cycles, the counter will be reset and the event monitor will
transfer to group 2.

5-13

is

er

Example 5-4.
~ Sample Valid WHEN/
THEN Statements

5.6 OPTIONAL LOGIC
STATE ANALYZER
LSA

5.6.1 LSA Functions

e Possible Event Groups:*
Group 1 =AC1.1, AC2.1, DCl.1, DC2.1, S1.1, S2.1, LSA.1, CL.1
Group 2 =AC1.2, AC2.2, DC1l.2, DC2.2, S1.2, S2.2, LSA.2, CL.2
Group 3 =AC1.3, AC2.3, DC1.3, DC2.3, S1.3, S2.3, LSA.3, CL.3
Group 4 =AC1.4, AC2.4, DC1.4, DC2.4, S1.4, S2.4, LSA.4, CL.4

* Any valid combination of comparators can be used but all must be from
the same event group. Event groups are signified by adding .n (1, 2,
3, or 4) to the comparator as above.

. Simp1? WHEN/THEN Statement (no event group specified, defaults to
group 1):
WHELN] <event> THE[N] <action>
any comparator or
valid combination
formed with AND, OR,
or NOT; must be from
same event group

o Event Group WHEN/THEN Statement:
X WHE[N] <event> THE[N] <action>
X=1, 2, 3, or 4

e Event comparators are assumed to be ACl.2 and AC2.2
>2 WHE[N] AC1 OR AC2 THE[N] BRK, TGR<return>

o WHEN/THEN clause assumed to be from group 3.
>WHE[N] NOT AC1.3 AND NOT DC1.3 THE[N] BRK, RCT, TRC<return>

e System defaults to group 1 when no group is specified.
>WHE[N] DC1 and AC1 THE[N] FSl<return>

e Group 4 comparators.
>4 WHE[N] AC2 THE[N] CNT<return>

The Logic State Analyzer option assembly consists of a pod, cable, and
probe clips. It provides you with access to external logic signals
that can be fed directly into the trace and break card of the emulator.
This data is qualified and clocked with other trace data by the Event
Monitor System. (Trace Data is displayed by using the DRT command.)
The Logic State Analyzer is used for many applications, such as:

o debugging data and address lines on the other side of the CPU
buffer

e debugging decode lines
e keeping track of memory management
e debugging I/0

e address and chip select decoding

5-14

5.6.2 Timing Strobe

The LSA comparator is assigned with an assignment statement, just
as the address comparators are. It is 16-bits wide; Don't Care
bits are permissible.

e To monitor a specific activity outside the microprocessor

This example will turn on a trace when that activity occurs
and turn off the trace when the activity is terminated. The
two event groups are required to specify separate on and off
points.

>NHEN LSA THEN TOT, GRO[UP]2
>2 WHEN LSA THEN BRK

>LSA.1 = $0000 DC $FFFE
>LSA.2 = $0001 DC $FFFE

This example waits for the logic state analyzer, Bit 0 to go
low and then uses the toggle trace command (TOT) to turn on
trace memory, and GRO[UPJ2 to switch groups. In group 2 all
bus cycles are traced until LSA pod bit 0 goes high. Then
emulation is broken.

The ES uses a bus request signal (shown in Figure 5-1) to
generate a trigger which is sent to the LSA pod and to the BNC
connector on the rear panel. The trigger is a low-going-high

signal for approximately one bus cycle and is generated after

an event.

If you do not have the LSA pod, you can still take advantage
of the trigger through the BNC connector for use with
signature analysis equipment, a logic analyzer, or an
oscilloscope:

e With an oscilloscope, the trigger could be used to flag a loop or
1/0 routine.

e With a signature analyzer, you can use the trigger to provide
start and stop pulses, from the LSA pod or the BNC connector.

Another use for the trigger would be to connect two emulators,
using the signal from the first to trigger a break in the second
emulator. The Event Monitor System would be programmed as shown:

o Emulator 1: WHE[N] <event> THE[N] TGR

e Emulator 2: WHE[N] LSA THE[N] BRK

5-15

Figure 5-1
LSA Timing
iagram Clock

Address
Target o
Processor Strobe ‘.| /_—
Signals
_____ Upperand , =\
Lower Data" A
\ Strobe \
|
|
I;—————\ BusCycle _ |4 __
| \ Request _\\‘ ,
i L \ \
! |
le——— EVENT
Emulator |
Signals

5.7 STATEMENT CONTROL

5.7.1 Repeat
Command

Indefinite
Repeat

5.7.2 Loop Counter

An asterisk (*) at the beginning of a command 1ine repeats one or
more commands. The asterisk is followed by an optional decimal
argument to specify the number of times to repeat the buffer con-
tents. If the argument is zero, the buffer content is not exe-
cuted. A command having normal ESL syntax succeeds this argument.

For example:

>*5STP ;DT
>* 5STP;DT
>* 5 STP;DT

In these three equivalent examples, the "STP;DT" command is
repeated five times. If the slash key is typed after the above
example is input, the entire line is repeated, causing five more
"STP;DT" commands to be executed.

The repeat argument must be specified in decimal, it cannot be in
hex, nor can it be a variable; and there must be a space following
the repeat argument if the next character is a decimal digit.

When the repeat qﬁgument is not specified, it is assumed to be
4,294,967,295 (2 ““-1). There are two ways to stop an indefinite
repeat.

First, you can abort a repeat by executing a reset (usually a CNTL
Z). However, note that this will also abort emulation if it is in
progress, without saving the state of the CPU.

Second, there is a variable called "TST" that gets set to all 1's
at the beginning of a repeat. Then it is tested for zero just
before a line is re-executed. If TST becomes zero, the buffer is
not executed and the repeat halts, returning control to the users
terminal.

If you want to single step and disassemble until you reach a par-
ticular address, you could type, for example:

>*STP; DT; TST = PC-$C324

In this example, single stepping continues until the program
counter equals 0C324 Hex. If the PC does not reach 0C234, you can
still use CNTL Z to stop the repeat.

When a repeat is initialized, just before execution begins, the
repeat argument goes to an ESL variable called "LIM;" if "IDX" is
greater than or equal to "LIM" the repeat is stopped. Since "LIM"
and "IDX" are ESL variables, they may be used in commands or
modified by the execution of the repeat.

Here are three examples:

>BASE DX=#10
>*3 IDX
#0
#1
5-17

5.7.3 Macros
Defining
Macros

#2

>MM.B $1000
$001000 $34 >*4 LIM-IDX-1
$001001 $CO
$001002 $BF
$001003 $00

$001004 $21 >MM MMP-4
$001000 $03 >*4
$001001 $02

$001002 $01

$001003 $00

$001004 $21 >

In the first example, "IDX" is printed showing that it is reset to
zero and incremented thereafter. The second example shows how a
block of memory can be initialized to a decrementing count ending
in zero. In the last repeat example, the initialized block of
memory is displayed.

If "IDX" is modified during a command repeat loop, it will still
be incremented before being compared to "LIM." This may cause the
loop to be exited one cycle earlier than expected.

You can define up to ten macros. They are referred to by decimal
numbers @-9. The ten macros are linked in one buffer with #1 be-
ginning first then #2...#9 with #@ being last.

If the sum of the lengths of all 1@ macros is greater than the
buffer length, then the highest numbered macros will be truncated
in order to fit them into the buffer size, starting with macro #8.
This truncation happens silently, without any indication to the
user.

Here is an example of some macro definitions:

STP;DT
Dl GD1+1

>1
> 2
> 3 1; 2

The syntax is as follows: the first character on the line must be
the underscore; the second character must be a decimal digit, a
comma, or a period; the third character on the line must be an
equals. If the syntax varies from that listed above, the line
will be passed to the parser, which will throw it out as illegal
syntax. If the syntax is correct, the remainder of the line after
the equals and up to, but not including the return, will replace
the previous definition of the macro. No syntax checking is done
when a macro is defined, syntax errors will only be detected when
the macro is executed.

In the above example, macro #3 contains two nested macros. The
macros are not expanded when the macro is defined, but only when
it is executed, so the definition of macro #3 may change depending
on the content of macros #1 and #2.

If you define a macro, but only type a <return>, the macro is

defined as null. A null macro is not displayed by the MAC command

and when it is executed, no characters replace the macro call
5-18

Filling
The Buffer

Displaying
Macros

Executing
Macros

argument.,

If macros #1 to #8 are defined, and in this process used up all of
the space in the buffer, then an attempt to define macro #9 or #§
would result in those macros remaining null. Also, if the length
of any macro from #1 to #7 was increased after filing the buffer,
then macro #8 would be truncated as a result and if the increase
was more than the size of macro #8, then macro #8 would become
null and macro #7 would be truncated, and so on. There are no
warnings when truncation or nullification takes place, so if a
number of long macros are defined, the "MAC" command should be
executed to determine if the macros with the highest numbers are
still intact. ‘

The MAC command will display all of the macros that contain 1 or
more characters. Nested macros are not expanded by MAC. The
macros are displayed the way you typed them in and they are
jdentified by the same three-character sequences that are used to
define the macros.

This is an example of macro definition:

> 5='This 'is 'a 'macro
> 6=ABCDEFG

> 1=PC;RET;STP;DT

> 2=PC=$10¢0

> 3=MM.B $20¢@+GD@
>T4=(SSP+4)

> b=

This is an example of macro display:

>MAC

1=PC;RET;STP;DT
—2=PC=$100¢

3=MM.B $20@@+GDJ
T4=0(SSP+4)
_5='This 'is 'a 'macro

You can execute macros #1 and #2 by a single keystroke when not

in memory mode. Whenever you type a comma as the first character
on a line, macro #1 is executed; if you type a period as the first
character on a line, macro #2 is executed. You an execute any of
the ten macros by entering the underscore followed by a decimal
number.

A macro may contain a portion of a command, or an entire command.
It cannot contain part of a token, i.e., the "A@" register cannot
be specified by taking the last character of one macro ("A") and
concatenating it with the first character of the next macro ("@").
If several macros each contain a single command, and it is desired
to execute them serially as a string of commands, then the
semicolon can be used to separate the macro calls.

For example:
>1; 25 3

The semicolon can also be used within the macro at the beginning
5-19

or end to separate commands.

Since a macro may contain a portion of a command, you could do
something 1ike the following example:

Macro definition:
> 4=GD1
> 5==$24
>"6==04

Macro executioh:
>4 6 >GD1=04
>45 >GD1=$24

The right side shows how the macro is expanded when executed, the
contents of the two macros are concatenated to form a complete
command.

5-20

SECTION &

INTERFACING AND COMMUNICATIONS

6.1
6.2
6.3

6.4

INTRODUCTION
SERIAL DATA REQUIREMENTS

SETTING SYSTEM CONTROL
6.3.1 Terminal Control
6.3.2 Computer Control
6.3.3 Transparent

DATA TRANSFER AND MANIPULATION
6.4.1 Upload and Download
6.4.2 Verify

6.1 INTRODUCTION

6.2 SERIAL DATA
REQUIREMENTS

This section gives information necessary for interfacing and
communication between the Satellite Emulator and other units in an
emulation system. Information includes:

e serial data requirements
e setting system control
e data transfer and verification

Specifications for the serial data formats are located in Appendix
A.

The Satellite Emulator is compatible with RS232C standard pin
conventions and signaling levels (given in section 2.3.2).

The standard software transmits and receives ASCII characters
requiring seven-bit representation. One stop bit is recommended
for most uses; however, some data terminals require two for proper
operation.

The format of a serial word is shown in Figure 6-1. When no data
is being transmitted, the Serial Data Out pin will be at the 12
volt Tlevel (marking). When the Satellite Emulator sends a
character, there will always be a start bit, followed by 7 or 8
data bits, and 1 or 2 stop bits. The number of data bits and stop
bits are specified by command, described in the operation section
for the microprocessor you are using.

The Satellite Emulator sends and checks parity according to system
set-up parameters.

Two additional signals used by the emulator are the Request to Send
(pin 4) output and the Clear to Send (pin 5) input. The software
uses these signals to coordinate data transfer. When the emulator
is ready to begin receiving data, it changes the Request to Send
line from low to high and awaits data transmission. When it has
finished receiving data, it returns the Request to Send line to the
low state. When the emulator is ready to send a character, the
software tests the condition of the Clear to Send line. When used
in conjunction with XON and XOFF, transmission of the character is
provided only if Clear to Send is in the high state; the character
is held if the signal is in the low state. Thus, a receiving unit
may control the transfer of data by taking the Clear to Send line
high when more data is desired and Tow when not ready for data.
The ASCII control characters, XON and XOFF, are recognized by the
emulator.

6-2

Figure 6-1

Format of a Serial Word

6.3 SETTING SYSTEM
CONTROL

6.3.1 Terminal
Control
TCT

6.3.2 Computer
Control
CcCT

6.3.3 Transparent
Mode
TRA

=12v START DO D1 D2 D3 D4 D5 D6 D7 STOP START DO

hondietie bendbendien Sadbentis afiandbandh anlinadh = — = [r— - —
| | I I [[| ! ! I
i J I L | [1 l | |
—— M e __.T---— — e . e b . . — — e . lbeer—— e v
!

I
| t | t=timeofone dataelementor baud

The Satellite Emulator can operate under CRT terminal or host
computer control, or can become transparent, allowing the CRT
terminal to communicate directly with a host computer.

This operator is entered from a host system interfaced through the
computer port, only when the Satellite Emulator is in the host
system control mode. Control is transferred to the CRT terminal
and away from the host system. This overrides the setting of the
interface parameter switch.

This operator, analogous to the Terminal Control operator, is
entered from a CRT terminal interfaced through the terminal port,
only when the emulator is being controlled via a CRT terminal to a
host system interfaced through the computer port. This overrides
the setting of the interface parameter switch. CCT is used with
TRA for automated tests.

There are four characteristics to remember about CCT:

o First, the emulator will echo most of the characteristics sent to
it, so the computer can use this feature to check the data
transmission.

e Second, when the host sends a RETURN, the emulator begins
processing the command l1ine. New lines generally begin with
RETURN LINEFEED NULL NULL.

e Third, the host must be able to handle incoming data at high
rates as the emulator will be sending at 960 characters/second
(9600 baud); the host should be able to send XON/XOFF to the
emulator.

e Fourth, UPL (upload) and DNL (download) expect data from the same
port whether you are using TCT or CCT: if you are downloading
the emulator always expects data to come from the host, and if
you are uploading data is always sent to the host.

NOTE:

If you execute CCT in error, turn the emulator
off, then on again.

This operator instructs the emulator to become transparent,

allowing the CRT terminal interfaced through the terminal port to
communicate directly with a host system interfaced through the

6-3

“vample 6-1.

Terminal Control,
Computer Control,
Transparent Mode

computer port. TRA can be entered while in either Terminal or
Computer Control modes.

The Terminal Control and Computer Control operators are used to
switch control back and forth between a host system and CRT
terminal. The Transparent operator allows you to bypass the
Satellite Emulator and communicate directly between your CRT
terminal and host system. The emulator acts only as an interface.
In this mode the emulator can buffer up to 64 characters for each
port and can operate the ports at independent baud rates.

Refer to the system configuration shown in Figure 6-2. The initial
physical connection is made according to the procedures outlined in
Section 2. Original control is set with the interface parameter
switch.

With the set-up complete, start with the CRT terminal controlling
the Satellite Emulator. This is done by having the interface
parameter switch in any position but those that are for computer
control. (Positions 3 and 4 are for computer control.)

o If you now want to switch control to the host system, despite the
fact that the switch is positioned for terminal control, you will
enter:

>CCT<return>

o To go back to terminal control, enter at the computer port:
>TCT<return>

o If you want to communicate directly between the CRT terminal and
the host system, enter from the controlling port:
>TRA<return>

Figure 6-2.
System Control

6.4 DATA TRANSFER AND
MANIPULATION

6.4.1 Upload and
Download
UPL
DNL

TCT? — TRA? CCT' «— TRA®
[;] |
{ TERMINAL
COMPUTER PORT
PORT
HOST CRT
COMPUTER EMULATOR TERMINAL

1. CCT switches control to computer

2. TCT switches control to CRT terminal.

3. TRA (entered from controlling port) allows communication directly between CRT terminal
and computer.

These commands are used for moving data in and out of the emulator
and manipulating data within. Formats are described in Appendix A.
The commands are:

e Upload - UPL
o Download - DNL
e Verify or compare - VFY

Upload and download operations initiate routines to load the target
system memory and/or Overlay Memory with data from a host
system, and to dump data from the target system address space to a
host system and/or Overlay Memory.

6-5

The Satellite Emulator will download in either a software handshake
or no-handshake mode., While the no-handshake mode is faster and
very simple, the handshake mode offers verification that data is
received correctly and allows resending of data that is received
bad.

In an Upload operation, data is transferred from the emulator to a
host computer or other peripheral interfaced to the Satellite
Emulator computer port. A Download, conversely, moves data from a
host computer to the emulator.

The following steps are necessary to Upload data from the emulator
to a host computer or other peripheral.

e Type TRA <return>. This puts the ES in the transparency mode for
entering a command line to the host computer and prepares it to
receive a file. Note that this TRA command is not necessary when
using and uploading to a hard copy printer. Do not enter a
<return> at the end of the Tine. Instead, type in the two-
character transparency escape code. This code returns the
emulator to its normal communication status with the user and

causes the emulator to send the host computer a "command line

terminator." The host computer (or other peripheral) should now
be ready to accept data.

o Enter the Upload command for the desired range (see Example 6-2.
Upload and Download). The emulator will now dump data to the
computer port in the download format specified in the Set Menu.
Refer to Table 3-5.

Typing the DNL command at the terminal causes two things to happen.
First the emulator readies itself to receive data; then it goes
into a ‘"transparent" mode (like the TRA operator described
previously, though accomplished here without the TRA command),
allowing the CRT terminal to communicate directly with the host
computer. This is necessary to allow you to enter the command line
necessary to tell the host computer to send data to the emulator.
Do not enter a <return> at the end of this line. Instead, type in
the two-character transparency escape code. As data records are
received, they are displayed on the CRT terminal. The command line
terminator, transparency escape code, and the serial data format
are user-defined with the Set-Up command, described in Section 3.

If the DNL operator is issued by the host computer (in computer
control mode), the process is somewhat different. The emulator
will not go into transparent mode and data records will not be
displayed on the terminal. However, after successful reception and
storage of every data record, the emulator will respond to the host
with an ASCII ACK (6) character. Thus, to monitor the download
process, the host should send one record, then wait for a response.
If the response is the ACK, the host should continue with the next
data record.

6-6

6.4.2 Verify
YFY

If the response is not the ACK, the emulator will have detected an
error or End of File condition. 1In the case of the EOF, the
emulator will return the normal prompt because the data transfer is
complete.

If the Satellite Emulator has detected an error, it will respond
with a <return>, line feed, several spaces, a ?, and a BEL. Then
it will revert to the normal prompt on a new line. The host can
then find the cause of the error by sending a ? to the Satellite
Emulator,

There are only two errors that can occur during a download. There
may be a checksum error in the data record. In this case, the DNL
process is aborted before any data from that record is stored to
memory. The second type of error is a read-after-write verify
error. Every byte in a data record is verified after it is stored.
If an error occurs, the DNL process is aborted but some of the data
in the record has obviously been stored to memory.

o Upload:
>UPL<range argument><return>

e Download:
>DNL<return>
><transparent><commands to computer><escape code>
This terminates the Transparent mode and the Download occurs.
Note that the escape code is created with the Set-Up command
described in Section 2.

The Verify operator (VFY) compares data received at the computer
port with memory. Any differences are displayed. The operator
interaction required is similar to the Download command. The VFY
command does not display incoming data records. See the following
example.

e Ihe format for Verify operator is:
>YFY<return>

e Any differences will be displayed as:
address = XX NOT YY

In the above example, the address is the address where the
misverify occurred. XX denotes the actual data present at that
location. YY denotes what should be at that location.

6-7

SECTION 7

DIAGNOSTIC FUNCTIONS

7.1
7.2

1.3

7.4
7.5
7.6
1.7

INTRODUCTION

RAM DIAGNOSTICS

7.2.1 SF $0, <RANGE>
7.2.2 SF $1, <RANGE>

7.2.3 SF $2, <RANGE>

7.2.4 SF $3, <RANGE>

E

.1 SF $10, <ADDR>

2 SF $11, <ADDR> <DATA>

SF $12, <ADDR>, <PAT-1>, <PAT-2>
SF $13, <ADR>, <PAT>

SF $14, <ADDR>, <DATA>

SF $15, <RANGE>

SF $16, <ADDR>

SF $17

CLOCK AND CRC

BUS

COM AND DIA

EXECUTING CUSTOM DIAGNOSTICS

7.7.1 PEEKING AND POKING TO THE TARGET SYSTEM (68010)

7.7.2 PEEKING AND POKING TO THE TARGET SYSTEM (68000/68008)
7.7.3 PASSING PARAMETERS TO CUSTOM DIAGNOSTICS

7.1 INTRODUCTION

7.2 RAM DIAGNOSTICS

7.2.1 SF $0,
<RANGE>

7.2.2 SF $1,
<RANGE>

7.2.3 SF $2,
<RANGE>

7.2.4 SF %3,
<RANGE>

7.3 SCOPE LOOPS

The Special Functions are a group of utility routines and diagnos-
tic tests invoked with the SF operator. These routines are used
for debugging hardware or accommodating wunusual hardware
conditions.,

NOTE:

If the default base in your machine is hexadecimal, you
can omit entry of the $.

These routines are “canned" RAM tests that can be run on the target
or RAM Overlay system. The tests are executed in word mode.

This routine involves three steps. First, the RAM test consists
of writing a zero to the test cell and then reading the cell to see
if a zero exists. Next, a one is used for the test pattern
followed by $3, $7, $F, $1F, $3F,..., S$FFFF, S$FFFE, S$FFFC,...,
$C000, $8000. Finally if a failure is detected, the problem
address, correct data and faulty data are displayed. This routine
can be aborted by resetting the emulator but will finish after a
single pass.

Executes a complete RAM test over the words within the specified
range. The test was derived from a study by Nair, Thatte and
Abraham entitled "Efficient Algorithms for Testing Semiconductor
Random-Access Memories: (IEEE Transactions on Computers, vol. c-27,
no. 6 June 1978). The test corresponds to their algorithm "A" and
is more efficient than standard "GALPAT" type tests. If an error
is detected by this test, the associated address, good data, bad
data, and test sequence number are displayed. The sequence number
corresponds exactly to the sequence numbers suggested in the
article, but if you do not have the article, the above information
should be sufficient. This is a single-pass test that can be
aborted by resetting the emulator.

Continuously executes the test described for "SF $0" above. While
executing the test, a pass count is maintained and displayed on the
screen. The count is updated by rewriting the display line without
using a "line feed." Thus, intermittent errors will not be pushed
off the screen by the pass count. You must reset the emulator to
terminate this test.

Executes the RAM test described in "SF $1" above, continuously over
the words in <RANGE>. A pass counter is displayed as in "SF $2."
You must reset the emulator to terminate this test.

Scope loops are diagnostic routines built into emulator firmware.
The uses for these special functions range from locating stuck
address, data, status or control lines to generating signatures
using common signature analysis equipment.

The routines for Scope Loops are executed at maximum speed.
This short cycle time allows the hardware engineer to easily view
the timing of pertinent signals in the target system without using
a storage type oscilloscope. All of these routines must be
terminated by resetting the emulator. The scope loops can be
executed in byte or word data lengths. In addition to byte and
word data, SF $16 may use long word data. The data length will be
the global default (see SZ) or can be specifically set by using the
dot operator with the command i.e. "SF.W $10, $4149F3."

\ 7-2

If the length specified is invalid for the routine, the longest
possible length will be used. As with the RAM tests, these scope
loops access the memory space defined by the last setting of MMS
(memory mode status). The following paragraphs describe each of
the different scope loops.

7.3.1 SF #10, <ADDR> Executes "reads" into the target system. (Peeks)

7.3.2 SF #11, Executes "writes" into the target system. (Pokes)

<ADDR>, <DATA>

7.3.3 SF #12, HWrites alternating patterns to the target system.

<ADDR>, <PAT-1>,
<PAT-2>

7.3.4 SF #13, Writes the pattern to the target system but the pattern is rotated

<ADDR>, <PAT> one bit left after each "write."

7.3.5 SF #14, Hrites the supplied data to the target system and then reads it

<ADDR>, <DATA> from the target system at the same address. Data read from the
target system is ignored by the ES.

7.3.6 SF #15 <RANGE> Executes a read from the target system for every address in

<RANGE>.

7.3.7 SF #16 <ADDR> MWrites an incrementing count value into the target system.

7.3.8 SF #17 Generates RESET pulses into the target system.

+ CLOCK AND CRC The CLK and CRC operators are useful during diagnostic testing.
CLK o CLK reads the target system clock and returns the value in KHz,
CRC accurate to 1 to 2 KHz,

>CLK<return>

o CRC computes a cyclic redundancy check over an address range. It

will be useful for checking if a block of memory has changed.
>CRC <address range><return>
*NOTE
For Diagnostic purposes CRC will function for byte, word or
Tong word.
7.5 Bus BUS displays the status of several status lines. For example:
BUS

o >BUS
FAULT STATUS
HLT IPL RST vCC
0 0 0 0

In this example, "0" indicates a no-fault condition; a fault
condition would be indicated by "1."

7-3

Table 7-1.

Special Functions

BYTE, WORD
(YPE TEST OR LONG WORD KEY SEQUENCE DESCRIPTION
RAM Diagnostics word SF $0,<range><return> Simple RAM test, single pass
word SF $1,<range><return> Complete RAM test, single pass
word SF $2,<range><return> Simple RAM test, looping
word SF $3,<range><réturn> Complete RAM test, looping
Scope Loops byte or word SF $10,<address><return> READ
byte or word SF $11,<address><data> WRITE
<return>
byte or word SF $12,<address>, WRITE alternate patterns
<pattern 1>, <pattern
2><return>
byte or word SF $13,<address>, WRITE pattern then rotate
<pattern><return>
byte or word SF $14,<address>,<data> WRITE data then READ

7.6 COM AND DIA
COM

byte

byte,

<return>
or word SF $15,<range><return> READ data over entire range

word, SF $16,<address><return> WRITE incrementing count

or long word

SF $17<return> Generate RESET pulses

COM allows you to communicate directly with a program running in
the target system. COM allows the simulation of communication
between the target system program and a serial interface (usually
the ES control terminal, sometimes another computer attached to the
ES.

The routine is invoked with a simple 32-bit argument, the address
of a 2-byte "port" in target memory.

The first byte is for characters coming from the target program.
The MSB of this byte is used to indicate "new character" to the
ES. If the bit is set, this routine will read the character,
display it on the controlling port, and clear the target memory
location (as a handshake).

The second byte is the write byte. If a character arrives from
the controlling port, the routine will place it in the target
memory with the MSB set. The routine will terminate only when
the terminal transparent mode escape sequence is detected. The
routine does not check to see if the last character written to
the target system was accepted.

7-4

DIA

7 7 EXECUTING CUSTOM
DIAGNOSTICS

As examining target memory requires that emulation be halted for
about 180 microseconds, COM will wait 1/2 second between target
system reads. However, if a character is placed in the output port
byte by the target system program, COM will collect the character,
reset the MSB and re-examine the port as soon as the character has
been put into the output UART buffer. COM will also immediately
examine the output port whenever it places a character in the input
port.

DIA allows you.to display, on your controlling device, a string of
characters that are stored in target memory. This routine is
invoked with a simple 32-bit argument.

e The 8 MSB's of the argument contain the expected stop characters.

¢ The Tower 24 bits contain the address of the first character of
the message.

DIA begins with a RETURN on a line feed. The routine then reads
one byte at a time from your target system, starting with the
address you specified and working towards high memory. The
characters are displayed on the controlling port (usually the ES
controlling CRT).

The DIA routine is completed when the character read matches the
stop character.

You may determine that the built-in diagnostics and scope Toops do
not provide the proper test for your equipment; for that reason
Custom Diagnostics are provided to allow you to download, debug and
execute diagnostics of your own design.

Custom diagnostics can access or modify parameters stored in GD0-7
and may also read or write to any Function Code Space in the Target
System and/or Overlay Memory. Special Functions 40-49 provide the
means of executing up to ten custom diagnostics.

To make a group of diagnostics, you must first create a table
containing up to ten long-branches that starts at Address 7000 Hex.
The Long-Branch must be present or the Diagnostic will not be

executed. The Long-Branch will vector to the Start of the user-

written routine. (This routine must be located in Internal RAM, in

the Range of 7000-78FF (3K) unless a "JMP" vectors control to
Overlay Memory that is mapped at an address above 80000 Hex.) To
return control to the emulator, the routine will terminate with an
“RTS" instruction.

7-5

Table 7-1
Custom Diagnostics
Access Codes

7.7.1 Peeking and
Poking to the
Target System
(68010)

Number

Description

SF $40

SF $41

SF $42

SF $43

SF $44

SF $45

SF $46

SF $47

SF $48

SF $49

There are four Special Function Codes reserved for the purpose of

Execute user-written diagnostic that
begins with a long branch at 7000

Execute user-written diagnostic that
begins with a long branch at 7004

Execute user-written diagnostic that
begins with a long branch at 7008

Execute user-written diagnostic that
begins with a long branch at 700C

Execute user-written diagnostic that
begins with a long branch at 7010

Execute user-written diagnostic that
begins with a long branch at 7014

Execute user-written diagnostic that
begins with a long branch at 7018

Execute user-written diagnostic that
begins with a long branch at 701C

Execute user-written diagnostic that
begins with a long branch at 7020

Execute user-written diagnostic that
begins with a long branch at 7024

accessing the Target and/or Overlay from a custom diagnostic.
These special function codes can be generated by the use of the
The function code seen by the target system
is not the function code that the "MOVES" instruction generates,
instead the target function code is picked up from a register in
the internal memory space.

"MOVES" Instruction.

The register containing the substitution function code is six bits
wide and contains two function code values:

e The lowest three bits of this register (0-2) are referred to as

lell

7-6

Table 7-2
Use of Special
Function Codes

7.7.2 Peeking and
Poking to
the Target
System

e The upper three bits (3-5) are referred to as "Y"

By storing the proper codes in the 680XX's SFC and DFC registers,
it is possible to read from one function code space, controlled by
"X", and write to another function code space, controlled by "Y".

Two of the four special function codes are used to access either
the overlay exclusively (OVO) or the target exclusively (TGO). The
other two codes access the target and also the overlay, when it is
mapped.

The following table lists three columns that show how the three
special function codes are used. The left column shows the
function code that originates at the SFC or DFC register inside the
CPU; the middle column shows which substitution register is used to
generate the Space code for the target system, and to enable the
Overlay Memory; the last column indicates the two special function
codes that are used to enable the Target Only (TGO) and the Overlay
Only (0vO0).

Origin

0 X TGO
1 X

3 Y

4 Y ovo

Note that before a custom diagnostic can PEEK or POKE to the
Target, the "X" and "Y" registers must be initialized. In most
cases only the "X" bits need to be initialized since typically one
Function Code Space is all that's needed. This register is located
at address $3F63 in the Internal Memory Space:

7 6 5 4 3 2 1 0
[n/c_ [n/c [Y2 [VI [T Y0] X2 | XI T X0

Bits 6 and 7 are not used. Data stored to this register can also
be read, so Read/Modify/Write instructions 1ike "AND" and "OR" will
work.

After the "X" and "Y" registers are initialized the SFC and DFC
registers can be loaded. These registers would typically both be
loaded with a "1" to cause the "X" register to be substituted, and
to enable both the Target System and the Overlay when it is mapped.

Unlike the 68010, the 68000 and 68008 processors do not support the
"MOVES" instruction. Consequently, the 68000/68008 emulators
access the target differently.

(68000/68008) When the 68000/68008 emulator is not in emulation, the function

code seen by the target is in a register in the Internal Memory
Space.

7-7

The register containing the substitution function code is six bits
wide and contains the following:

e The Towest three bits (0-2) are referred to as "X".
e Bit 3 is referred to as "OV0" (OVerlay Only).

e Bit 4 is referred to as "TGO" (TarGet Only).

e Bit5 is not'used.

In order to read and write to different function code spaces, "X"
must contain the function code space before accessing the target.

Normally during a Peek or Poke, if the space to be accessed is
overlaid, the target and Overlay Memory are accessed
simultaneously. However, if accesses to that space in the target
cause a Bus Error, you may set the "OVO" bit and only the Overlay
will be accessed. Likewise, to restrict accesses to the target
only, set the "TGO" bit.

To access the target (or the Overlay, if it is mapped), the
diagnostic program must generate a function code "1" (User Data)
during a target read or write. Then the function code in the
substitution register (Jlocated at $3F63 in the Internal Memory
Space) will be seen by the target.

7 6 5 4 3 2 1 0
n/c n/c n/c 160 0v0 X2 X1 X0
Table 7-3
68000/68008 Bits 5, 6, and 7 are not used. Data stored to this register can
Function Code also be read, so Read/Modify/Write instructions like "AND" and "OR"
Substitution will work.
Register
7.7.3 Passing Many times when writing diagnostics it may be necessary to pass
Parameters parameters to those routines. The SF 40-49 commands do not take
to Custom parameters, so you should store the parameters into one of the
Diagnostics eight general range registers (GRO-7) or into one of the eight
general data registers (GDO-7). Your custom diagnostic may then
pick up the data, or store results, at the following locations:
Table 7-4

Memory Allocation
for the GRO-7 & GDO-7

Registers
$3000 - $3003 Beginning Range - GRO
$3004 - $3007 Ending Range - GRO
$3008 - $3008 Beginning Range - GR1
$300C - $300F Ending Range - GR1
$3010 - $3013 Beginning Range - GR2
$3014 - $3017 Ending Range - GR2

$3018 - $3018 Beginning Range - GR3

$301C - $301F Ending Range - GR3
$3020 - $3023 Beginning Range - GR4
$3024 - $3027 Ending Range - GR4
$3028 - $3028B Beginning Range - GRS
$302C - $302F Ending Range - GR5
$3030 - $3033 Beginning Range - GR6
$3034 - $3037 Ending Range - GR6
$3038 - $3038 Beginning Range - GR7
$303C - $303F Ending Range - GR7
$3040 - $3043 Data - GDO
$3044 - $3047 Don't Care Data - GDO
$3048 - $3048B Data - GD1
$304C - $304F Don't Care Data - GD1
$3050 - $3053 Data - GD2
$3054 - $3057 Don't Care Data - GD2
$3058 - $35B Data - GD3
$305C - $305F Don't Care Data - GD3
$3060 - $3063 Data - GD4
$3064 - $3067 Don't Care Data - GD4
$3068 - $306B Data - GD5
$306C - $306F Don't Care Data - GDS
$3070 - $3073 Data - GD6
$3074 - $3077 ‘ Don't Care Data - GD6
$3078 - $3078B Data - GD7
$307C - $307F Don't Care Data - GD7

One more note: the GR registers are 32 bits wide, but ranges are
only valid for the first 24 bits.

A custom diagnostic that required a range parameter and a Don't-
Care, and returned a 32-bit data parameter might look 1ike this:

>GR4=$1000 LEN $40;GD4=$CXFF;SF $44;GDO
The range parameter goes into GR4; the Don't Care bit ("X") goes

into GD4; then the user diagnostic is called; and finally, the
result is displayed as the content of GDO.

7-9

SECTION 8
MAINTENANCE AND TROUBLESHOOTING

8.1 MAINTENANCE

8.1.1 Cables

8.1.2 Probe Tip Assembly
8.2 TROUBLESHOOTING

8.3 PARTS LIST

8-1

8.1 MAINTENANCE

8.1.1 Cables

8.1.2 Probe Tip
Assembly

8.2 TROUBLESHOOTING

Maintenance of the ES-Series Satellite Emulator has been minimized
by the extensive use of solid-state components throughout the
instrument. There are only two areas where you need concern your-
self with maintenance.

The interconnect cables are the most vulnerable part of the instru-
ment due to constant flexing during insertion and extraction.
First, inspect the cables for any obvious damage, such as cuts,
breaks, or tears. Even if you have thoroughly inspected the cables
and cannot find any damage, there may be broken wires within the
cables (usually located close to the ends). A broken wire within
the cable will cause the instrument to run erractically or
intermittently if the cables are flexed during the "RUN" mode.
(You can also run a memory diagnostic and flex the cable during
execution. If the diagnostic fails, the cable is faulty). By
swapping the cables in question with a known good set of cables,
you can easily isolate the faulty cable. The parts list at the end
of this section contains cable part numbers if you need to order
replacements.

The Probe Tip Assembly is the small DIP header assembly that plugs
into the target system CPU socket. The most obvious area to
inspect is the 64-pin adapter, as the pins can be broken during
insertion or extraction. If one of the pins should be inadver-
tently broken, you should replace the complete 40-pin adapter.

NOTE:
The 64-pin adapter can be protected by installing a CPU socket
(male-female) onto the 64-pin adapter. If a pin is then
broken on the CPU socket, it is easier to replace because of
its common usage.

You should also inspect the probe tip assembly to see if any of the
resistors have been broken. Due to close physical tolerance
surrounding the resistors, we recommend that the probe tip assembly
be returned to the factory for repair.

Your emulator is equipped with diagnostic test routines. The
diagnostic programs are described in Section 7; if you need to
perform any specific test, you should refer to the description in
Section 7. Before starting troubleshooting procedures, be sure
that interconnect cables are installed properly in a compatible
target system, with power applied to both the target system and the
emulator.

The most common problems encountered are listed in Table 8-1. We
recommend that you contact Customer Service for ES Emulators if you
experience any problems that do not fall within this range of
jtems. Before you call our service department, display your
software revision number by typing:

>REY
You will be asked for this information when you call.
NOTE:

We do not recommend a component-level repair in the field,
unless performed by a qualified service engineer.

8-2

Table 8-1.
Troubleshooting

8.3 PARTS LIST

SYMPTOM POSSIBLE CAUSES SECTION
Target system 1. Faulty interconnect cables 8.1
runs erratically
2. Intermittent contact on Probe
Tip Assembly PC Card *
3. Broken pin on 64-pin adapter 2.3.3
4, "Hold-tites" on Probe Tip
Assembly missing (for
connection to 64-pin
adapter) *
5. Broken resistor on Probe
Tip Assembly 8.1
6. Emulator and target system
not compatible 1.1
7. LDV not executed before RUN
(vector not loaded). 4.3.4
Emulator will 1. Baud rate set incorrectly 2.4.1
not communicate
over RS-232 line 2. Target system requires "null"
modem cable (pin 2 and pin 3 of
RS-232 connector) reversed. 2.3.3
Target system will 1. Cables plugged in wrong 3.3
not run
2. Faulty interconnect cables 8.1
3. Broken pin on 64-pin adapter 8.1
2.3
Unable to perform 1. Transparent mode escape 3.5
download sequence not compatible #15/23
with host
2. Host computer and'computer
port of ES need to be set
at 4800 baud (RS-232 1ink may
need to be slowed down) 3.5 #20
3. MWrong format selected 3.5 #26

*Call Customer Service for ES Emulators
**Check Target System

The following parts are available for you to order:

64-pin Adapter 210-11412-00
Short Cable Set 600-11141-00
Long Cable Set 600-11142-00

8-3

APPERDIX K

~~RIAL DATA FORMATS

The following sections detail the five serial data formats compatible with the

Satellite Emulator.

A.l
A.2
A.3
A.4
A.5
A.6

MOS TECHNOLOGY FORMAT

MOTOROLA EXORCISOR FORMAT

INTEL INTELLEC 8/MDS FORMAT
SIGNETICS ABSOLUTE OBJECT FORMAT
TEKTRONIX HEXADECIMAL FORMAT
EXTENDED TEKHEX

A-1

Each is illustrated in the accompanying figures.

A.1 MOS TECHNOLOGY
FORMAT

Figure A-1
Specifications
for MOS
Technology
Data Files

The data in each record is sandwiched between a seven-character
prefix and a four-character suffix. The number of data bytes in
each record must be indicated by the byte count in the prefix. The
input file can be divided into records of varios lengths.

Figure A-1 simulates a series of valid data records.

e Each data record begins with a semicolon (;). The Satellite
Emulator ignores all characters received prior to the first
semicolon. A1l other characters in a valid record must be valid
hex digits (0 through 9 and A through F).

o A two-digit byte count follows the start character; the byte
count, expressed in hexadecimal digits, must equal the number of
data bytes in the record.

¢ The next four digits make up the address of the first data type
in the record.

e Data bytes follow, each represented by two hexadecimal digits.

e The suffix 1is a four-character checksum, representing the
sixteen-bit binary sum of all hexadecimal bytes in the record,
including the address and byte count. Carry from the most
significant bit is dropped.

INPUT
DATA RECORD END OF FILE RECORD
DATVA RECORD
\1 START CHARACTER
: START CHARACTER
8 Byte Count. BC = 00 1n End-of File Record
B BC = Byte Count. The hexadecimal number of data hvtes C
the record
c in the r -
R
A Record Count
A AAAA = Address of frst data byle in record AAAA in R
A hexadecimal notation only R
A
C
" ¢ Checksum
" HH = One data byte i hexadecunal natation c
" c
H
[ouUTPUT
NOTES
¢ CCCC = Checksum. Two-byte binary summation of 11 Number of bytes pes record 1s vaniahle See Table 31
¢ preceding bytes i record hincluding address, and data 2) Each fine ends with nonprinting hine feed, carniage return
N bytes) in hexadecimal notation and nulls
c
-} This space can be used for hine feed. carrnage return of 2 Hex characters © 1 byte Data Records
comments.
: {Beginning of nex1 record) acaaa -~
BCAAA
\ BCAAA,
BCAAA
LEGEND BCAAA oo
BCAAAA cce
H = Star1 Character BCAAAA cco
ec = Byte Count (BC> 00 in Record. BC = 00 in End of Fite Record) BCRRRACCCC
AAAA = Address Fiald
CCCC = Checksum of Record
ARAR = Record Count
HH = Two Hexadecimal Digits (0-9, A-F}

Copyright 1983, Data I/0 Corporation; reprinted by permission

A-2

A.2 MOTOROLA
EXORCISER FORMAT

Figure A-2
Specifications
for Motorola
EXORciser 16-Bit
Data Files

e Data

Motorola data files may begin with a sign-on record, initiated by
the code SO. Valid data records start with an eight-character
prefix and end with a two-character suffix.

Figure A-2 demonstrates a series of valid Motorola data records.
S-record output format follows on pages A3a-A3d.

e Each data record begins with the start characters,

"Sl";
emulator will ignore all earlier characters.

the

® The third and fourth characters represent the byte count,

expressing the number of data, address, and checksum bytes in the
record.

e The address of the first‘data byte in the record is expressed by

the last four characters of the prefix.

bytes follow, each represented by two hexadecimal
characters. The number of data bytes occurring must be three
less than the byte count.

o The suffix is a two-character checksum.

INPUT

DATA RECORD Qe Gt RECORD OPTHG AL

s START CHARACTERS SO - Start characters of sign-on record Excent for start characiers
1 S® record has same tormat as data recotd
B BC = Byte Count. The number of data bytes plus 3 (1 for
c checksum and 2 for address} in hexadecimal notation
END OF FILE RECORD
A ERNDOF PILE TR
A AAAA = Address of fust data byte in record AAAA 0 \/
A hexadecimal notation only
A S START CHARACTERS
9
H
H 8 Bvte Count BC = 031n End of Fiie Record
H HH = One data hyte in hexadecimat nolation C
H
A
A Adaress
A
A
c
c Checksum
CC = Checksum One's complement of hinary summatian /-\
¢ b of preceding bytes in record tincluding byte count, address
c 1 4nd data bytes) in hexadecimal notation
Th n be used for line feed. carmage return or
ol 7" space can be v OUTPUT
NOTES
s (Beginning of next record)
! 1) Number of hytes per reca riahle See Table 3.1
P\ 21 Each line ends with non ine feed. cariiage return

and nulls
3) Sugn on record may precede data

S2 and S8 records are also accepted.

LEGEND
2 Hex characters 1 byte Data Records
S0 = Optional Record Start Characters
S1 = Start Characters
[= Byte Count _
{{Datas Bytes/Record] * 3) S1BCAAA. g
AAARA = Address of First Data Byte S1BCAAA, ¢
HH = Two Hexadecimal Digis (09, A F) S1BCAA.
cc = Checksum of Record (one byte) S18CAAA C
S9BCAAAACC
NOTE:
.

They

have 24 bit addresses (six address characters)
rather than the 18 shown.

Copyright 1983, Data I/0 Corporation; reprinted by permission

A-3

A.3 INTEL INTELLEC
8/MDS FORMAT

Figure A-3
Specifications
for Intel Intellec
8/MDS Data Files

Intel data records begin with a nine-character prefix and end with
a two-character suffix. The byte count must equal the number of
data bytes in the record.

Figure A-3 simulates a series of valid data records.

® Each record begins with a colon (:), followed by a two-character
byte count.

e The four digits following the byte count give the address of the
first data byte.

e Each data byte is represented by two hex digits; the number of
data bytes in each record must equal the byte count.

® The suffix is a two-digit checksum, the two's complement of the
binary summation of the previous bytes in the record.

INPUT
DATA RECORD END OF FILE RECORD
s START CHARACTER . START CHARACTER
B BC ~ Byte Count The hexadet il numiue o dota bytes -
c i the recora s Byt Count BC 00 n €na of Fle Record
A
A AAAA Address Gf st data tivie o recunt AAAA & A
A hexade: imal notation anly A Address
A A
A
T TT Record Tyue (00 ;
i 1 TT Record Type 101
H
H HH One data byte o he /\J

CC Checksum Negation ftau's OuTPUT
¢ summation of prececing yte
c COUNT, a00ress. and data bytes NOTES
L This space can be used for Line feeis carniage return o
comments. 11 Number of byfes per record is vanable See Table 3 1
: 21 Each 1ine ends with nonprinting hine feed, carriage return
N and nulls
2 Hex characters 1 byte Data Records
LEGEND
= Start Character BCAAAATT e c
8C < Byte Count (Data Bytes Recordi BCAAAATT c
AAAA = Address Field BCAAAATT %
TT = Record Type BCAAAATY
H = One Hexadecimal Digit 109, A F)
cc = Checksum of Record

Copyright 1983, Data I/0 Corporation; reprinted by permission

A-4

A.4 SIGNETICS ABSOLUTE Figure A-4 shows the specifications of Signetics format files. The
OBJECT FORMAT data in each record is sandwiched between a nine-character prefix
and a two-character suffix.

e The start character is a colon (:).

o This is followed by the address of the first data byte, the byte
count, and a two-digit address check.

INPUT
DATA RECORD END.OF FILE RECORD

N START CHARACTER \.4 START CHARACTER

AAAA = Address of the first data byte in record AAAA n
nhexadectmal notation only

P>>P

Address

»r>»pr |

o
@

BC = The hexadecimal number of data bytes in the record Byte Count BC - 00 End.of File Record

o

A AC = Address Check Every byte 1s exclusive ORed with
C the previous byte, then rotated Jef1 one b

H

H

HH = One data by1e sn hexadectmal notation

/~ outeur

15 Number of hytes per record s vanable See Table 3-1
2) Each line ends with nonprinting line feed. carriage refurn

NOTES

o DC = Data Check. Every byte it exciusive ORed vath the and nully
c previous byte, then rotated left one tit
b This space can be used for bine feed. carriage return or IHEXh - Data Records
chatacters 1 byte

& L {Beginning of nex1 record)
AAAABCACI AN DC
AAAABCAC DC (
AAAABCAC 0C

LEGEND AAAABCAC oc

= Start Character AAAABCAC
AAAA = Address Field
F-" ure A_4 8C = Byte Count (Data Bytes‘Record)
g AC « Address Check. Checksum of address and byte count
. f . .
Speci HM = Twa Hexadecimal Digits (0.9, AF)
p ications oc = Data Check. Checksum of data i record

for Signetics
Absolute Object
Data Files

Copyright 1983, Data I/0 Corporation; reprinted by permission

A.5 TEKTRONIX
HEXADEC IMAL
FORMAT

Figure A-5
Specification
for Tektronix
Hexadecimal
Data Files

Figure A-5 illustrates a valid Tektronix data file. The data in
each record is sandwiched between the start character and a two-
character checksum.

e The start character is a slash (/).

o The next four characters of the prefix express the address of the
first data byte.

e The address is followed by a byte count, representing the number
of data bytes in the record, and by a checksum of the address and
byte count.

e Data bytes follow, represented by pairs of hexadecimal characters
and succeeded by a checksum of the data bytes.

e The End-0f-File record consists only of control characters, used
to signal the end of transmission, and a byte count and checksum
for verification.

INPUT
DATA RECORD ABORY RECORO
/ /= Start Character
Two Start Characters
A
A AAAA - Address of the fust data hvir v the cecord "
A {hexadecimal notations x
A
XX X Arucacy string ol ASCI characters
]
c x
c . Carr age ret
c
H
H
Py
END OF FILE RECORD
\\/
Start Char
CC * Checksum E.gnt bt sum moduti- 256 ot tne N
¢ four bit hexadecimal values of the digts fhat make up thee A
¢ Gata bytes N AAAA Transher Aguress
Carrrage 1 a
inning of nextrecord!
{Beannng of e recora :’ 8C By Counr BC 00~ End of F e record
r\ A ot the four bit hexadecimal
\ o vatn b The tansfer address
OuUTPUT 11 mai notationt
NOTES Carrage rarn
1) Numoee of bytes per record 1s variable See Tabie 3 1 f\
2) Each line ends with nongrinting hine teed carnage return
and nulls
i s = Dara Records
2 Hex characters = 1 byte \ LEGEND
/ARAABCCC) cC
/AAAABCCCH C
IAAAABCCCH c JYYY
/A \AABCCCH ce BC
/ARAABCCT cc o
Endof Fie Record HH Two Hexavecimal Digits (09, A F)
x Any ASCII Character

Copyright 1983, Data I/0 Corporation; reprinted by permission

A-6

A.6 EXTENDED TEKHEX

Table A-1
Extended Tekhex
Header Field

Extended Tekhex uses three types of message blocks:
e A data block contains object code.

o A symbol block contains information about a program section and
the symbols associated with it. This information is needed only
for symbolic debug.

o A termination block contains the transfer address and marks the
end of the load module.

NOTE

Extended Tekhex has no specially defined abort
block. To abort a formatted transfer, use a
Standard Tekhex abort block, as defined earlier in
this section.

Each block begins with a six-character header field and ends with
an end-of-1ine character sequence (on the 8550, a RETURN). A block
can be up to 255 characters long, not counting the end-of-line. A
header field has the format shown in Table A-1.

Number of
Item ASCII Characters Description

2 1 A percent sign specifies that
the block is in Extended Tekhex
format.

Block Length 2 The number of characters in the
block; a two-digit hex number.
this count does not include the
Teading % or the end-of-line.

Block Type 1 6 = data block
3 = symbol block
8 = termination block

Checksum 2 a two-digit hex number repre-

senting the sum, mod 256, of the
values of all the characters in
the block, except the leading %,
the checksum digits, and the
end-of-1ine. Table A-2 gives
the values for all characters
that may appear in Extended
Tekhex message blocks.

Copyright 1983, Tektronix; reprinted by permission

A-7

Table A-2 -
Character Values
for Checksum
Computation

A.6.1 Yariable-
Length Fields

A.6.2 Data and
Termination
Blocks

Table A-3
Extended Tekhex
Data Block Format

Characters Values (Decimal)
0..9 0..9

A..Z 10..35

$ 36

2 : 37

.(period) 38
__(underscore) 39

a..z 40..65

In Extended Tekhex, certain fields may vary in length from 2 to 17
characters. This practice enables you to compress data by
eliminating Teading zeros from numbers and trailing spaces from
symbols. The first character of a variable-length field is a
hexadecimal digit that indicates the length of the rest of the
field. The digit 0 indicates a length of 16 characters.

For example, the symbols START, LOOP, and KLUDGESTARTSHERE are
represented as 5START, 4L00P, and OKLUDGESTARTSHERE. The values O,
100H, and FFOOOOH are represented as 10, 3100, and 6FF0000.

If you do not intend to transfer program symbols with your object
code, you can do without symbol blocks. Your load module can
consist of one or more data blocks, followed by a termination
block. Table A-3 gives the format of a data block, and Table A-4
gives the format of a termination block.

NUMBER OF ASCII

FIELD CHARACTERS DESCRIPTION

Header [, Standard header field. Block type =
6.

Load Address 2 to 17 The address where the object code is
to be 1loaded: a variable-length
number.

Object 2n n bytes, each represented as two hex
digits.

Copyright 1983, Tektronix; reprinted by permission.

A-8

Table A-4

Extended Tekhex Terminal NOMBER OF ASCIT
Block Format

A.6.3

Symbol Blocks

FIELD CHARACTERS DESCRIPTION

Header 6 Standard header field. Block type = 8.

Transfer Address 2 to 17 The address where program execution is
to begin: a variable-length number.

A symbol used in symbolic debug has the following attributes:

1. The symbol itself: 1 to 16 letters, digits, dollar signs,
periods, or underscores. The first character of the symbol can
be a letter or (if the symbol is a section name) a percent
sign. Lower case letters are converted to upper-case when they
are placed in the symbol table.

2. A value: up to 64 bits (16 hexadecimal digits).

3. A type: address or scalar. (A scalar is any number that is not
an address). An address may be further classified as a code
address (the address of an instruction) or a data address (the
address of a data item). Symbolic debug does not currently use
the code/data distinction, so the address/scalar distinction is
sufficient for standard applications of Extended Tekhex.

4, A global/local designation. This designation is of limited use
in a load module, and is provided for future development. The
concept of global symbols is discussed in the Assembler Core
Manuals for both A Series and B Series assemblers. If the
global/local distinction is not important for your purposes,
simply call all your symbols global.

5. Section membership. A section may be thought of as a named
area of memory. Each address in your program belongs to
exactly one section. A scalar belongs to no section.

The symbols in your program are conveyed in symbol blocks. Each
symbol block contains the name of a section and a list of the
symbols that belong to that section. (You may include scalars with
any section you 1ike.) More than one block may contain symbols for
the same section. For each section, exactly one symbol block
should contain a section definition field, which defines the
starting address and length of the section.

If your object code has been generated by an assembler or compiler
that does not deal with sections, simply define one section called
(for example) MEMORY, with a starting address of 0 and a length
greater than the highest address used by your program; and put all
your symbols in that section.

Table A-5 gives the format of a symbol block. Tables A-6 and A-7
give the formats for section definition fields and symbol
definition fields, which are parts of a symbol block.

Copyright 1983, Tektronix: reprinted by permission.

Table A-5
Extended Tekhex
Block Format

Table A-6

Extended Tekhex
Symbol Block
Section Definition
Field

NUMBER OF ASCII

FIELD CHARACTERS DESCRIPTION

Header 6 Standard header field. Block type = 3.

Section Name 2 to 17 The name of the section that contains
the symbols defined in this block: a
variable-length symbol.

Section 5 to 35 This field must be present in exactly

Definition one symbol block for each section.
This field may be preceded or followed
by any number of symbol definition
fields. Table A-6 gives the format
for this field.

Symbol 5 to 35 Zero or more symbol definition fields,
Definition(s) each as described in
Table A-7.
NUMBER OF ASCIT

ITEM CHARACTERS DESCRIPTION

0 1 A zero signals a section definition
field.

Base Address 2 to 17 The starting address of the section: a
variable-length number.

Length 2 to 17 The length of the section: a variable-

length number, computed as 1 + (high
address base address).

Copyright 1983, Tektronix: reprinted by permission.

A-10

Table A-7

Extended Tekhex

NUMBER OF ASCII

Symbol Block: ITEM CHARACTERS DESCRIPTION
Symbol Definition
Field
Type 1 A hex digit that indicates the global/
local designation of the symbol, and
the type of value the symbol
represents:
1 = global address
2 = global scalar
3 = global code address
4 = global data address
5 = local address
6 = local scalar
7 = local code address
8 = local data address
Symbol 2 to 17 A variable-length symbol.
Value 2 to 17 The value associated with the symbol:

a variable-length number.

NOTE

Symbol records are currently ignored by the
emulator,

Figure A-8 shows how this information might be encoded in Extended
Tekhex symbol blocks. (A1l
single 96-character block.)
purposes of illustration.)

this information could be encoded in a
It is divided into two blocks for

Copyright 1983, Tektronix: reprinted by permission.

A-11

Figure A-6.
Tekhex Data Block

“ure A-7
ekhex Termination Block

Figure A-8
Tekhex Symbol Block

Block length: 16H = 21

} Checksum: 1CH = 28 = 1-56+6+3+1+0-0+-0+2-0+2+...
l r Object code: 6 bytes
—— P

*1881C310032C2CC02C2C2

Load address: 10CH

L Header character

Block length: 8
i

‘ r— Checksum: 1AH = 26 = 0+8-8-2+8+0

— -

T0881ALZB0

{ T L Transfer address: 80H

Block type: 8

-

Header character

8iocx iength: 37H = 55

i_———— Checksum: 60H = (3+7+3+8+28+31+12+28+29+...) mod 256
Section definition field:
\ * base address = 40H; length = C6H

— e,
=3735085VCITUFFG2402C522CRID1I4CPEN2SC14READZS81SWRITEZ60
<373C88SVCETUTF15CLOSE288)14EXITZ7029BUFLENGTH28013BUF278

A e
' 4-——Sec:ior\ name
! Block type: 3

l——— Header character

Copyright 1983, Tektronix: reprinted by permission

APPERDIX B
REFERENCE MATERIAL

B.1 Glossary

argument. An independent variable; the number or numbers that identifies
the Tocation of a desired value.

baud. The shortest code element computed to a unit of signaling speed.
The speed in baud equals the number of code elements per second.

breakpoint. A point in a program where an external source can intervene
by giving a specific instruction to interrupt the normal sequence of
operations. The normal sequence can be resumed after the interruptions
used for debugging or visual checks on a terminal are terminated.

default. An option or value that is assumed provided another one has not
been specified.

disassembly (disassembler). A program that converts binary instructions
into their symbolic mnemonic representation.

don't care. A term applied to an input or output value that is irrele-
vant to the specific operation or consideration.

duplex. Communications in a two-way independent transmission moving in
both directions.

echo. Part of a transmitted signal recognized and received as interfer-
ence because of the magnitude and delay of the signal reflected back.

EEPROM. E]ectrica11y Eraseable Programmable Read Only Memory.
error code. A marking that indicates error by a code.

host system. The system that controls; for example, the development
system, minicomputer, or automatic test equipment (ATE) system.

indirection. The term means indirect addressing; particularly with
respect to the mechanism that performs it.

logic state analyzer (LSA). Monitors a system or component board and
shows the monitored information to be reviewed.

mainframe. A reference to 1large computers to distinguish them from
microcomputers, microprocessors, and minicomputers. With respect to the
ES1800 Satellite Emulator, the mainframe houses the emulator board, RAM
Overlay Board, the controller board, the trace and break board, the
memory control board, and the power supply.

memory map. A table or drawing representing the memory locations for
devices, programs, or functions.

modulo. The result of a mathematical operation of a specified number

that has been divided leaving a remainder. The remainder equals the
modulo.

B-1

operator. The element in an operation that defines what action is to be
performed on the operand.

parameter. A quantity which may be given variable values.

parity. A method of self-checking the accuracy of binary number
transmission.

run. A term describing the execution of emulation.

run with breakpoints. The execution of a program with temporary halts to
permit the operator to make some checks.

statement. A generalized instruction or syntactically complete string of
characters.

step. Single step operation.

stop bit. One or two l-bits used as a character delimiter in start-stop
transmission.

target system. With respect to emulation, the target system is the
computer (your hardware) that is emulated.

Trace Memory. Functions as a history of target system program execution.
XOFF. Transmitter off,

XON. Transmitter on.

B-2

Table B-1.
Number Bases Cross

Reference
STANDARD
BINARY OCTAL HEXADECIMAL DECIMAL ABBREVIATION

0000 — 0 0 0

0001 1 1 1

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 10 8 8

1001 11 9 9

1010 12 A 10

1011 13 B 11

1100 14 C 12

1101 15 D 13

1110 16 E 14

1111 17 F 15

0001 0000 20 10 16

0010 0000 40 20 32

0100 0000 100 40 64

1000 0000 200 80 128

0001 0000 0000 400 100 256

0010 0000 0000 1000 200 512
0100 0000 0000 2000 400 1,024 1K
1000 0000 0000 4000 800 2,048 2K
1100 0000 0000 6000 coo 3,072 3K
0001 0000 0000 0000 10000 1000 4,096 4K
0001 0100 0000 0000 12000 1400 5,120 5K
0001 1000 0000 0000 14000 1800 6,144 6K
0001 1100 0000 0000 16000 1C00 7,168 7K
0010 0000 0000 0000 20000 2000 8,192 8K
0010 0100 0000 0000 22000 2400 9,216 9K
0010 1000 0000 0000 24000 2800 10,240 10K
0100 0000 0000 0000 40000 4000 16,384 16K
1000 0000 0000 0000 100000 8000 32,768 32K
0001 0000 0000 0000 0000 200000 10000 65,536 64K

KEY

octal

25

15

7 6 5 0 0 O 0 0 1 0 1 0 0 1 1 1 0 O 1 0 1 t 1 0
NUMBERS
BITS CONTROL & UPPER CASE LOWER CASE
1 3 4 SYMBOLS
0 20 40 60 100 120 140 160
NUL DLE SP 0 @ P 1 p
00 0 0|0 0|10 16| 20 32 |30 48 | 40 64 | 50 80 | 60 96 | 70 112
1 21 41 61 101 121 141 161
SOH DC1 ! 1 A Q a q
0 0 0 1 |1 1] 11 171 21 33 | 31 49 | 41 65 | 51 81 |61 9717 113
2 22 42 62 102 122 142 162
STX DC2 " 2 B R b r
00 1 0 (|2 24112 18| 22 34 {32 50 | 42 66 | 52 82 |62 98 | 72 114
3 23 43 63 103 123 143 163
ETX DC3 # 3 C S c s
0 1 1]3 3113 19| 23 35| 33 51143 67 | 53 83 163 99|73 115
4 24 44 64 104 124 144 164
EOT DCa $ 4 D T d t
0 0 0|4 4114 20| 24 36 | 34 52 | 44 68 | 54 84 |64 100 | 74 116
5 25 45 65 105 125 145 165
ENQ NAK % 5 E U e u
0 0 1]5 5115 21| 25 37135 53 | 45 69 | 55 85 |65 101 | 75 117
6 26 46 66 106 126 146 166
ACK SYN & 6 F \'} f v
0 1 06 6|16 22| 26 38 | 36 54 | 46 70 | 56 86 |66 102 | 76 118
7 27 47 67 107 127 147 167
BEL ETB ! 7 G w] w
0 117 7117 23| 27 39 {37 55| 47 71|57 87 |67 103177 119
10 30 50 70 110 130 150 170
BS CAN (8 H X h X
1 0 08 8)18 24| 28 40 | 38 56 | 48 72 | 58 88 |68 104 | 78 120
11 31 51 71 111 131 151 171
HT EM)] 9 i Y i y
1 0 119 9|19 25| 29 41 |39 57| 49 73 | 59 89 |69 105 | 79 121
12 32 52 72 112 132 152 172
LF SUB v J V4 j 2
1 1 0]A 10 { 1A 261 2A 42 | 3A 581 4A 74 | 5A 90 [6A 106 | 7A 122
13 33 53 73 113 133 153 173
vT ESC + ; K [k {
1 1t 1|8 11{1B 27| 2B 43 | 3B 59| 48 751 5B 91 |6B 107 | 7B 123
14 34 54 74 114 134 154 174
FF FS , < L \ I
1 0 0|C 12 | 1C 28| 2C 44 | 3C 60| 4C 76 | 5C 92 {6C 108 | 7C 124
15 35 55 75 115 135 155 175
CR GS = M] m }
1 0 1|D 13| 1D 291 2D 45 | 3D 61| 4D 77 | 5D 93 |6D 109 | 7D 125
16 36 56 76 116 136 156 176
SO RS > N \ n
1 1 0|E 14 | 1€ 30| 2E 46 | 3E 62| 4E 78 | 5E 94 | 6E 110 | 7E 126
17 37 57 77 117 137 157 177
Si us / ? (o] —_ o Rubout
1 1 1]F 15 | 1F 31| 2F 47 | 3F 63| 4F 79 | 5F 95 |6F 111 | 7F 127
PPU|GPIB coqe (‘;gr?wrrisai%ds Cl(J)rr’rl\\g:-\ac:s Listen Addresses Talk Addresses Secg:\%aor:/ngc;:;essses
NAK ASCIi character Table B-3.
21} decimal ASCIt and IEEE Code

Chart

B-4

Table B-3.
~ASCII Control Characters

ETB
ETX

FS
GS
HT
LF
NAK
NUL
RS
SI
SO
SOH
STX
SUB
SYN

VT

B-5

acknowledge

bell

backspace

cancel

carriage return

playback on, CNTL Q, X-ON
record on, CNTL R, PUNCH-ON, SOM
playback off, CNTL S, X-OFF
record off, CNTL T, PUNCH-OFF, EOM
delete, rubout

data link escape

end of medium

enquiry

end of transmission
escape

end of transmission block
end of text

form feed

file separator

group separator
horizontal tabulation
Tine feed

negative acknowledge

null

record separator

shift in

shift out

start of heading

start of text

substitute

synchronous idle

unit separator

vertical tab

APPENDIX C
SYMBOLIC DEBUG

C.T COMMANDS

C.2 USAGE NOTE FOR USERS WITH SYMBOLIC FORMATS OTHER THAN
EXTENDED TEKHEX

C.1 COMMANDS

The symbolic debug option allows easier debugging, using a wider
range of capabilities. These include:

® Reference to an address by a name instead of a value

e Display of all symbols and sections with their values

e Editing (entry and deletion) of symbols and their values

e Automatic display of symbolic addresses during disassembly

e Section (module) symbols that can be used as range arguments and
for section offsets in trace disassembly

e Upload and download of symbol and section definitions using
standard serial formats

The only standard symbolic format currently accepted is extended
Tekhex. If you are using another symbolic format, please see the
usage note at the end of this appendix.

o Implicit symbol definition and symbol value change
> "<SYMBOL> = <VALUE>

If SYMBOL is undefined, it is placed into the symbol table and
assigned the value VALUE. If SYMBOL was previously defined, it
will be reassigned the value VALUE.

--<VALUE> is a 32-bit integer value. Don't cares are not allowed
in symbolic definitions.

--<SYMBOL> is any combination of the ASCII characters with decimal
values in the range 33-126. This range includes all of the
printable ASCII characters. Symbols are delineated by a single
starting quote (') and the first blank space or RETURN. Symbols
can be up to 64 characters long, although only the first 16
characters are displayed with symbolic disassembly.

Symbolic reference

> '<SYMBOL> ;GRO = '<SYMBOL> ;‘'<SYMBOL> + $41900;...
The reference to 'SYMBOL will be exactly like referencing a ny
of the common registers in the ES, with the exception that sym-
bols not at the end of the command 1ine must be terminated with
a space.
Displaying symbols

>SYM [VALUE]
This displays the symbol(s) that have been assigned the value
VALUE. If no argument is entered, all symbols and their values
will be displayed.
Section definition

>'<SYMBOL> = <RANGE>

Any symbol that is assigned a range value will, by definition,
be a section. <RANGE> is a standard ES 24-bit range value.

NOTE:

Overlapping sections and sections with the same
name as a symbol are illegal.

Display of section values
>SEC [<VALUE>]
The section containing the value will be displayed along with its
assigned values. If no argument is entered, all section names
and values will be displayed.
Deletion of a symbol or section
>DEL '<SYMBOL>
This will remove the symbol or section definition
Clearing symbolic memory

>PUR

This command permanently removes all symbol data from ES memory.

¢ Upload and download of symbolic information

>Ups

This command uploads all symbols and sections in extended Tekhex
format.

--Sections are defined in separate records.

--Symbols are defined as belonging to the section "m".

Extended Tekhex restricts the number and range of characters that
can be used for a symbol name. The ES will truncate symbols to
16 characters and will substitute ¥ for characters not allowed by
Tekhex.

>DNL
This command will accept symbolic definition records as well as

data records if the ES download format variable is set to 5
(extended Tekhex).

The use of symbols in disassembly alTows the ES to display trace
data in a more useful format. Disassembly with defined symbols
will display the symbol name everywhere there is an address
reference that matches the symbol's value. Section names will be
shown whenever the program addresses fall within a defined
section. Also, when in a defined section, the program addresses
will be displayed as offset values from the beginning of that
section.

This example outlines these points. The first disassembly is
without any defined symbols. The second disassembly shows the
effect of the three symbolic definitions. Note how the program
address display mode changes as the addresses move out of the
section.

c.2

USAGE NOTE FOR
USERS WITH
SYMBOLIC FORMATS
OTHER THAN
EXTENDED

TEKHEX

>DT 0 LEN #10
SEQ# ADDR OPCODE MNEMONIC OPERAND FIELDS BUS CYCLE DATA

0009 000166 31C23000 MOVE.W D2,$3000 003000<8787

0008 00016A D081 ADD.L D1,D0
0007 00016C 64000004 BCC.L $000172
0006 000172 D885 ADD.L D5,D4
0005 000174 64F0 BCC.S $000166
0004 000166 31C23000 MOVE.W D2,$3000 003000<8787
0003 00016A D081 ADD.L D1,D0
0002 00016C 64000004 BCC.L $000172
0001 000172 D885 ADD.L D5,D4
0000 000174 64F0 BCC.S $000166
>

>'Loop = 166

>'Demon.module = 'Loop TO 16C

>'1/0 port 0 = 3000

>DT O LEN #10
SEQ# ADDR OPCODE MNEMONIC OPERAND FIELDS BUS CYCLE DATA

- > — - " i S - " " o > = o - A D P e W A e - - - - -

SEC: DEMON.MODULE

0009+L00P

0009+000000 31C23000 MOVE.W D2,1/0 PORT 0 003000<8787
0008+000004 D081 ADD.L D1,D0 ~ -

0007+000006 64000004 BCC.L $000172

0006 000172 D885 ADD.L D5,D4

0005 000174 64F0 BCC.S $LooP

SEC: DEMON.MODULE

0004+L00P :

0004+000000 31€23000 MOVE.W D2,1/0 _PORT_0 003000<8787
0003+000004 DO81 ADD.L D1,D0

0002+000006 64000004 BCC.L $000172

0001 000172 D885 ADD.L D5,D4

0000 000174 64r0 BCC.S $Loop

>

0f the three methods of entering symbolic data, downloading from
the host using DNL is preferable since it is not only fast, but
includes error checking in the transmission of your data. However,
if you are working with any symbolic format other than Extended
Tekhex, you will not be able to use this method. Two alternates
are available: both require that you convert the symbolic format
that you are using before you enter the symbolic data.

. For very small programs, you can enter symbolic data manually
from a symbol map as follows:

><symbo1> =<value><return>

. For other applications, you would want to put the Satellite
Emulator under computer control, using CCT. This method is just
as fast as downloading; however, no error checking is performed.
You must write a program that converts your symbolic data as
shown above; the program can then transmit the strings to the
emulator,

C-5

There are four characteristics to remember about CCT.

First, the emulator will echo most of the characters sent to it, so
the computer can use this feature to check the data transmission.

Second, when the host sends a RETURN, the emulator begins pro-
cessing the command line. New lines generally begin with RETURN
LINEFEED NULL NULL.

Third, the host must be able to handle incoming data at high rates
as the emulator will be sending at 9600 baud; the host should be
able to send XON/XOFF to the emulator.

Fourth, UPL (upload) and DNL (download) expect data from the same
port whether you are using TCT or CCT: if you are downloading the
emulator always expects data to come from the host, and if you are
uploading data is always sent to the host.

C-6

APPENDIX D
S-RECORD OUTPUT FORMAT

D.1 S-Record Output Format
D.1. -Record Content
D.1.

1 S
2 S-Record Types

D.2 Creation of S-Records

D.1 S-RECORD OUTPUT

FORMAT

D.1.1 S-Record
Content

The S-record format for output modules was devised for the purpose
of encoding programs or data files in a printable format for trans-
portation between computer systems. The transportation process can
thus be visually monitored and the S-records can be more easily
edited.

When viewed by the user, S-records are essentially character
strings made of several fields which identify the record type,
record length, memory address, code/data, and checksum. Each type
of binary data is encoded as a 2-character hexadecimal number: the
first character representing the high-order 4 bits, and the second
the Tow-order 4 bits of the byte.

The 5 fields which comprise an S-record are shown below:

type record length address code data checksum

Where the fields are composed as follows:

PRINTABLE

FIELD CHARACTERS CONTENTS

type 2 S-record type -- SO, S1, etc.

record length 2 The count of the character pairs
in the record, excluding the type
and record length.

address 4, 6, or 8 The 2-, 3-, or 4-byte address at
which the data field is to be
loaded into memory.

code/data 0-2n From 0 to n bytes of executable
code, memory-ioadable data, or
descriptive information. For com-
patibility with teletypewriters,
some programs may limit the number
of bytes to as few as 28 (56
printable characters in S-record).
checksum 2 The least significant byte of the
one's complement of the sum of the
values represented by the pairs of
characters making up the record
length, address, and the code/data
fields.

Each record may be terminated wih a CR/LF/NULL. Additionally, an
S-record may have an initial field to accomodate other data such as
line numbers generated by some time-sharing systems.

Accuracy of transmission is ensured by the record length (byte
count) and checksum fields.

D-2

D.1.2 S-Record Types Eight types of S-records have been defined to accommodate the
several needs of the encoding, transportation, and decoding
functions. The various Motorola upload, download, and other
file-creating or debugging programs, utilize only those S-records
which serve the purpose of the program. For specific information
on which S-records are supported by a particular program, the
user's manual for that program must be consulted.

SO The header record for each block of S-records. The code/data
field may contain any descriptive information identifying the
following block of S-records. Under VERSAdos, the resident
linker's IDENT command can be used to designate module name,
version number, revision number, and the description
information which will make up the header record. The address
field is normally zeroes.

S1 A record containing code/data and the 2-byte address at which
the code/data is to reside.

S2 A record contaning code/data and the 3-byte address at which
the code/data is to reside.

S3 A record containing code/data and the 4-byte address at which
the code/data is to reside.

S5 A record containing the number of S1, S2 and S3 records
transmitted in a particular block. This count appears in the
address field. There is no code/data field.

S7 A termination record for a block of S3 records. The address
field may optionally contain the 3-byte address of the
instruction to which control is to be passed. There is no
code/data field.

S8 A termination record for a block of S2 records. The address
field may optionally contain the 3-byte address of the
instruction to which control is to be passed. There is no
code/data field.

S9 A termination record for a block of SI records. The address
field may optionally contain the 2-byte address of the
instruction to which control is to be passed. Under VERSAdos,
the resident linker's ENTRY command can be used to specify this
address. If not specified, the first entry point specification
encountered in the object module input will be used. There is
no code/data field.

Only one termination record is used for each block of S-records.
S7 and S8 records are usually used only when control is to be
passed to a 3- or 4-byte address. Normally, only one header record
is used, although it is possible for multiple header records to
occur,

D-3

.2 CREATION OF
S-RECORDS

S-record-format programs may be produced by several dump utilities,
debuggers, VERSAdos' resident Tlinkage editor, or several cross
assemblers or cross linkers. On EXORmacs, the Build Load Module
(MBLM) utility allows an executable load module to be built from
S-records and has a counterpart utility in BUILDS, which allows an
S-record file to be created from a load module.

Several programs are available for downloading a file in S-record
format from a host system to an 8-bit microprocessor-based or a
16-bit microprocessor-based system. Programs are also available
for uploading an S-record file to or from an EXORmacs system.

Examg1e

Shown below is a typical S-record-format module, as printed or
displayed:

S00600004844218B :
$1130000285F2212226A00044290008237C2A
$11300100002000800082629001853812341001813
$113002041E900084E42234300182342000824A952
$107003000144Ed492

S9030000FC

The module consists of one S@ record, four S1 records, and an S9
record.

The SO records is comprised of the following character pairs:
SO S-record type SO, indicating that it is a header record.

06 Hexadecimal 06 (decimal 6), indicating that six character
pairs (or ASCII bytes) follow.

88 + Four-character 2-byte address field, zeroes in this example.
48

44 + ASCII H, D, and R - "HDR".

52

1B The checksum.
The first S1 record is explained as follows:

S1 S-record type S1, indicating that it is a code/data record to
be loaded/verified at a 2-byte address.

13 Hexadecimal 13 (decimal 19), indicating that 19 character
pairs, representing 19 bytes of binary data, follow.

00 . Four-character 2-byte address field; hexadecimal address 0000,
00 where the data which follows is to be loaded.

D-4

The next 16 character pairs of the first S1 record are the ASCII
bytes of the actual program code/data. In this assembly language
example, the hexadecimal opcodes of the program are written 1in
sequence in the code/data fields of the Sl records:

OPCODE INSTRUCTION

285F MOVE.L (A7) +,Ad

245F MOVE.L (A7) +,A2

2212 MOVE.L (A2),D1

226A0004 MOVE.L 4(A2),A1

24290008 MOVE.L FUNCTION(A1),D2

237C MOVE.L #FORCEFUNC ,FUNCTION(AL)

(The balance of this code is continued in the
code/data fields of the remaining S1 records,
and stored in memory location ¢@l@, etc.)

2A The checksum of the first S1 record.

The second and third S1 records each also contain $13 (19)
character pairs and are ended with checksums 13 and 52
respectively. The fourth S1 record contains @7 character pairs and
has a checksum of 92.

The S9 record is explained as follows:
S9 S-record type S9, indicating that it is a termination record.

#3 Hexadecimal @3, indicating that three character pairs (3
bytes) follow.

gg The address field, zeroes.

FC The checksum of the S9 record.

Each printable character in an S-record is encoded in hexadecimal
(ASCII in this example) representation of the binary bits which are
actually transmitted. For example, the first S1 record above is
sent as:

)gmm address _mzdu/aau cheTk s

1 h] 3 3 [3 0 3] 3 [3 2) [} 3 5 L} 6 b} ? 4 1

0011 lnool 00il [0021 0011 [DOOO 0011 [0000 0011 IOOOO 001} [0000 0011]oom 0011 llOOO o011 [0101 o100 [onu <ee {OCHY 190!0 9100 looﬂl

D-5

INDEX TO TOPICS
A

Absolute value, 3.3

Activated bit values, 5.5.5
Address comparators, 5.3.1
Addition, 3.4.2

All-cycle trace, 5.1
Arithmetic applications, 3.4
Assemble 1ine to memory, 4.11
Assignment operators, 3.4.1
AT operator, 3.4.1

B

Back panel, 2.3.1

Base values, 3.3

Baud rate, 2.4.1, 8.2

Binary base indicator, 3.3.1
Bit values, 5.5.5

Bitwise and, bitwise, 3.4.2
Block move, 4.5.3

BNC connector, 2.3.1
Breaking emulation, 5.1, 5.3
Breakpoint system, 5.1

BUS, 7.5

Bus cycle display, 4.6.1

Bus cycle step, 4.3.7

Bus error enable/disable, 3.5
Bus speed information, 3.5
Bus timeout enable, 3.5

Byte mode, 4.4.4

c

Cables, 8.3

Changing values, 4.4.5

Character values for checksum computation, A.6
Characters, standard, 3.2

Changing values, 4.2, 4.4.5, 4.5.3, 5.10.4
Clear memory map, 4.5.2

Clear Overlay Memory, 4.5.3

Clock and CRC, 7.4

Code space, 5.5.5

Communications, 6

Comparators, 5.1

Computer control, 6.3.2

Configurations, system, 1.1.4

Connecting pod assemblies to mainframe, 2.4.2
Connection to CRT terminal, 2.4.1

Connection to target system, 2.4.2

Constants, 5.3.4

Continuous address strobe, 3.5
I-1

Controller card 2.3.4
Count limit, 5.3.2
Counting bus cycles, 4.6
Counting events, 5.5

CPU registers, 4.9

CRC, 7.4

D

Data, moving, 6.4

Data comparators, 5.5.3

Debugging, symbolic, C.1

Debugging without target system hardware, 4.7
Decimal base indicator, 3.3.1
Default base, 3.3.2, 7.1

Defaults, 2.4.1, 2.6.1

Delete line, 3.2.4

Diagnostics, RAM, 7.2

DIP header, 1.1.1, 2.4.2

Disable bus error, 3.5

Disassemble previous, following trace, 4.6.3
Disassemble trace, 4.6.2

Display backwards, 4.6.3

Display base, 3.3.2

Display by bus cycles, 4.6.1
Display, clear memory map, 4.5.2
Display disassembled memory, 4.10
Display memory block format, 4.4.7
Display memory map, 4.5.2

Display raw trace, 4.6.1

Display registers format, 4.2
Displaying block of memory, 4.4.7
Displaying, clearing event monitor system, 5.2
Division, 3.4.2

Documentation, 1.2

Downloading, 6.4.1, 8.2

DTACK, 4.5.3

Don't cares, 3.3, 5.3.5

Dumping data, 6.4.1

Duplex, default, 2.4.1

E

EEPROM storage, 3.5

Emulation, 4.3

Emulation control board, 1,1.1, 2.4.2
Emulation sequences, sample 2.6.1
Enabling RAM overlay, 4.5.3

Equal sign, 3.4.1

Error messages, 4.8

Errors, download, 6.4.1

Escape code, 6.4.1

Event detector actions, 5.3

I-2

Event detectors, 5.1

Event groups, 5.5

Examining, changing values, 4.2, 4.4.5, 4.5.3, 5.10.4
Extended Tek Hex, A.6

External breakpoint, 5.4

External triggering, 5.4.1

F

Fan, 1.1.1

Fast interrupt enable, 3.5

Fast timeout, 3.5

Filling memory space, 4.5.2
Finding memory pattern, 4.4.7
Force Special Interrupt, 5.4.1
Formats, data, App. A

Front, top parel removal, 2.3.4
Fuse, line, 2.3.1

G

Grounding, 2.2, 2.3.3
Ground loops 2.2

H

Hard copy, see CPY, 3.5

Help menu, 2.6

Hexadecimal base indicator, 3.3.1
Host system control, 1.1.4

I

I11egal memory, 4.5.1

Indirection, 3.4.1

Instaltation, 2.1-2.5

Installing DIP header plug, 1.1.1, 2.4.2
Inter/Intellac 8/mds format, A.3
Interface parameter switch settings, 2.6.1
Interfacing and communications, 2.3, 6
Interrupt acknowledge, 4.4.6

Interrupt, special forced, 5.3.1
Interrupts, SLO, FST, 3.5

Introspective mode, 3.5

Instruction cycle display, 4.6
Instruction cycle step, 4.3.2
Inverse/one's complement, 3.4.3

J

I-3

Pin signals, serial ports, 2.3.3
Pod, emulator, 1.1.1, 2.4.2
Pod, LSA, 1.1.1, 2.4.2

Ports, 2.3.1, 2.3.3

Power connection, 2.3.1

Power supply, 1.1.1, 1.5
Power switch, 2.3.1

Power-up, 2.5

Pre-emulation check list, 2.6
Program counter, 4.11
Prompts, 3.2.1, 4.4.1, 5.3.1

Q
R

RAM diagnostics, 7.2

RAM overlay board, 1.1.1

RAM overlay, 4.5.2

Range values, 3.3

Read only memory, 4.5.1
Read/write memory, 4.5.1
Rear panel, 2.3.1

Registers, loading, 4.2.1
Registers, general 4.2.2
Register operators, 4.2
Registers, 4.9

Repeat previous command line, 3.2.4
Reprint current line, 3.2.4
Resets, types, 4.3.5

Return character, 3.2.4
RS232 pin conventions, 2.3.3
Run prompt, 3.2.2

Run, 4.3.1

Run with breakpoint, 4.3.3

S

S-record information, App. A
Scope loops, 3.5, 7.3
Scrolling, 2.6.2, 4.4.3
Separators, 3.2.4
Serial port connector pin assignment, 2.3.3
Serial ports, 2.3.1, 2.3.3
Service, 1.7
SET select numbers, 2.6.1
Setting up, 2.1-2.5
Shift left, shift right, 3.4.2
Side panel, 2.3.2
Signature analysis, 5.4.1
Signetics absolute object format, A-4
Single-argument operators, 3.4.1
Single-step, 4.3.2
Spacing, 3.2.3
I-5

Specifications, 1.5

Standard characters, 3

Status comparators, 5.3.4
Status mnemonics, 5.5.5

Step and stop, 4.3.2

Stepping through program, 4.3.2
Stop bit, 2.4.1

Strobe, timing, 5.6.2
Subtraction, 3.4.2

Supervisor data, 5.5

Supervisor program, 5.5

Switch settings, 2.6.1, 3.5
Symbolic debugging, App. C
System configurations, 1.1.4
System control, 1.1.4

System parameters, defaults, 2.6.1

T

Target memory accesses, 4.5.1
Target system, 1.1.2

Tektronix hexadecimal format, A-5
Terminal control, 6.3.1
Thumbwheel switch, 2.3.4

Timing strobe, 5.6.2

Toggle counting, 5.4

Toggle tracing, 5.4

Trace and break board, 5.3.1
Trace memory and disassembly, 4.6
Tracing software sequences, 4.6
Transparency, 1.1

Transparent mode, 6.3.3
Triggering outputs, 5.4.1
Troubleshooting, 8.2
Two-argument operators, 3.4.2

]

Upload and download, 6.4.1
User data, 5.5.5

User program, 5.5.5
Utility opeartors, 3.2.4
utility routines, 7

v

Values, examining, changing, 4.2, 4.4.5, 4.5.3, 5.10.4
Vectors, loading, running with, 4.3.4

Verify download, 6.4.2

Verify block data, 4.5.3

Verify block move, 4.5.3

Verify Overlay Memory, 4.5.3

View bus speed info, 3.5

Voltage, 2.2

W

Wait, 4.3.6

Warranty, 1.6

When/then statements, 5.1, 5.5
Windowing, 5.3 s
Word mode, 3.2.4

X

XON, XOFF, 2.4.1, 6.2

Y

Z

Zilog family support, 1.3

I-7

