)

| kbt

ES 1800 SATELLITE EMULATOR

OPERATOR’S
MANUAL

FOR 8086 FAMILY
MICROPROCESSORS

lilhApplied
i microsystems

CORPORATION
5020 148th Avenue N.E.
(206) 882-2000 1-800-426-3925 December 1985

Copyright T 1983 by Applied Microsystems Corporation. All rights reserved.

Applied Microsystems Corporation has made every
effort to document this product accurately and
comp1ete1y However, App]ied Microsystems assumes no

VT2abhdVTlh,, Lawe ~ateminas ata Lawm amee
!;au;!!ly ']gnr‘ grrors oOr IUI an'v uamages that "'e""‘-* fpom

use of this manual or the equipment it accompanies.
Applied Microsystems reserves the right to make changes
to this manual without notice at any time.

Because this conf1gurat1on of the ES1800 Satellite
Emulator is intended for use in developing, debugging,
and testing Intel 8086/8088 m1croprocessor—based
systems, it is presumed that the user is familiar with
the terminology of the 8086/8088 microprocessors.

WARNING - This equipment generates, uses, and can
radiate radio frequency energy and if not installed
and used in accordance with the instructions manual,
may cause interference to radio communications. As
temporarily permitted by regulation it has not been
tested for compliance with the limits for Class A
computing devices pursuant to Subpart J of Part 15 of
FCC Rules, which are designed to provide reasonable
protection against such interference. Operation of
this equipment in a residential area is likely to
cause Interference in which case the user at his own
expense will be required to take whatever measures
may be required to correct the interference.

TABLE OF CONTENTS

QUICK-INDEX TO COMMANDS
LIST OF FIGURES

LIST OF TABLES

LIST OF EXAMPLES

SECTION 1. INTRODUCTION

[T W Wy WY
L] . . [1] (]
N0 WwN

SYSTEM CONCEPT

1.1.1 Components

1.1.2 The Target System
1.1.3 The Host System
1.1.4 System Configurations
1.1.5 System Features
DOCUMENTATION

8086 APPLICATIONS
OPTIONS

SPECIFICATIONS

LIMITED WARRANTY

SERVICE

SECTION 2. INSTALLATION AND SET UP

N MMN
. . L]
[PV I N

NN
. o
aw;m

UNPACKING AND INSPECTION
OPERATING VOLTAGE AND GROUNDING
SYSTEM INTERFACING

2.3.1 The Rear Panel

2 3.2 The Side Panel

2.3.3 Serial Port Connector Pin Assignment
3.4 Setting Interface Parameters

YSICAL CONNECTION

4,1 Connection to a CRT Terminal

4,2 Connection to a Target System
ST
E-
6.

£

EM POWER=-UP AKD CHECKOUT
EMULATION CHECKLIST AND THE HELP MENU
1 Parameter Set-Up and EEPROM Storage Overview

2.
PH
2.
2.
SY
PR
2.

SECTION 3. SYSTEM SYNTAX AND PARAMETERS

3.1
3.2

3.3

3.4

3.5

INTRODUCTION

STANDARD CHARACTERS

3.2.1 The Prompt Character
3.2.2 The Run Prompt

3.2.3 Spacing

3.2.4 Utility Operators
NUMBERS AND BASE VALUES

3.3.1 Hexadecimal, Decimal, Binary and Octal
3.3.2 Default Base

3.3.3 Display Base
ARITHMETIC OPERATORS

3.4.1 Assignment Operators
3.4.2 Two-Argument Operators

" 3.4.3 Single-Argument Operators

PARAMETER SET-UP AND EEPROM STORAGE

ii

vi

X1
xii

[}
= OO &EPPWNN

[N T e Sy e e o
]
(o N

n:n:nanan:n:q:a:u:harorvtv
bt e O~ ~N O PP W W RN

L - OO

[}

wwwwwwuo.awwwwwwu
= =SOSR WWWNRNDPOMN
W N

SECTION 4. OPERATION

4.1
4.2

O -
. s e
00~

INTRODUCTION
REGISTER OPERATORS
4,2.1 Loading a Register
4,2.2 General Registers
EMULATION
4, Run
4, Step and Stop
4 Run With Breakpoints

Vector Loading and Running w1th Vectors
Reset
Wait
MODE

Entering and Exiting Memory
Memory Mode and Pointers

Scrolling
Word and Byte

Examining and Changing Values
Memory Mode Status
Displaying a Block of Memory and

Finding a Memory Pattern
EMORY MAPPING AND THE OVERLAY MEMORY
5.1 Memory Block Attributes

.5.2 Memory Mapping Operators
4,5.3 Overlay Memory Operators
SOFTWARE DEBUGGING WITHOUT TARGET SYSTEM HARDWARE
ERROR HANDLING AND CODES
THE TRACE MEMORY AND DISASSEMBLER
4.8.1 Display Raw Trace
4.8.2 Disassemble Trace
.8.3 Disassemble Previous and Following Trace
E MEMORY DISASSEMBLER

.5.1 ODispiay Disassembied Memory
HE LINE ASSEMBLER
.10.1 Standard Mnemonics
.1
.1
.1

3
3
3
3
3
.3
EMO
.4
4
4
4
4
4
4

s o o “« o s * o o o o
\lmmthHgmm-thH

4
4
4
M
4
4
4.4,
4.4,
4
4
4
M
4
4

H

0.
0.2 Assembler Directives
0.3 Usage Notes

0.4 Assemble Line to Memory

bl Pl o

SECTION 5. PROGRAMMING THE EVENT MONITOR SYSTEM

oo,
.
LN -

wn
.
-

o
o o
(o 04,1

5.7

INTRODUCTION

DISPLAYING AND CLEARING THE EYENT MONITOR SYSTEM
EVENT COMPARATORS

5.3.1 Address Comparators
5.3.2 Count Limit

5.3.3 Data Comparators

5.3.4 Status Comparators
5.3.5 Don't Cares

EVENT MONITOR SYSTEM ACTIONS
5.4.1 Force Special Interrupt
EVENT GROUPS

OPTIONAL LOGIC STATE ANALYZER
5.6.1 LSA Functions

5.6.2 Timing Strobe

STATEMENT CONTROL

5.7.1 Repeat Command

5.7.2 Loop Counter

5.7.3 Macros

iii

bhh#hh-&##?###h#h#h#
WONNN~NAATGN BTN B PP WLWWWNN

U U UL LI I D I I Y R |
ANAEPNDPODNODNNDNOOOEBEPRPONNWHO

R TR
M RO RO R N N N = bt s 1= = = = = O O

]

[N T T D I I |
QWO 000NN

mmmmmmmmmemmmmmmm
NI R S R S R ST B W

SECTION 6. INTERFACING AND COMMUNICATIONS

6.1 INTRODUCTION
6.2 SERIAL DATA REQUIREMENTS
6.3 SETTING SYSTEM CONTROL
6.3.1 Terminal Control
6.3.2 Computer Control
6.3.3 Transparent Mode
6.4 DATA TRANSFER AND MANIPULATION
6.4.1 Upload and Download

6.4.2 Verify
SECTION 7. DIAGNOSTIC FUNCTIONS

7.1 INTRODUCTION
7.2 RAM DIAGNOSTICS
7.2.1 SF #0, <RANGE>
7.2.2 SF #1, <RANGE>
.3 SF #2, <RANGE>
SF #3, <RANGE>

~J
.

w

4
£
1 SF #4, <ADDR><DATA>

2 SF #5, <ADDR>

3 SF #6, <ADDR> <DATA>

.4 SF #7, <ADDR>, <PAT-1>, <PAT-2>
5 SF #8, <ADDR>, <PAT>

6 SF #9, <ADDR>, <DATA»

7 SF #10, <RANGE>

8 SF #11, <ADDR»>

9 SF #12, <RANGE>

.3.10 SF #13, <RETURN>

CLOCK AND CRC

BUS

COM AND DIA

~N N
o o o
N O

SECTION 8. HAINTENANCE ARD TROUBLESHOGTING

8.1 MAINTENANCE

8.1.1 Cables

8.1.2 Probe Tip Assembly
8.2 TROUBLESHOOTING
8.3 PARTS LIST

APPENDIX A. SERIAL DATA FORMATS

MOS TECHNOLOGY FORMAT

MOTOROLA EXORCISER FORMAT

INTEL INTELLEC 8/MDS FORMAT
SIGNETICS ABSOLUTE OBJECT FORMAT
TEKTRONIX HEXADECIMAL FORMAT
EXTENDED TEKHEX FORMAT

A.6.1 Variable-Length Fields
A.6.2 Data and Termination Blocks
A.6.3 Symbol Blocks

b~ Sl - Sl - -
. . . L] . L]
U WM

iv

O‘\O\O\O\O\O\O’\O'\O'\
'
N pbhWwWwwMN

\I\INN\I\IN'\I\I\'J\'I\I\I\J\‘\!\‘N\I\I
NP WWWWWWWWWWwWwMNNPPNDN NN

33> 3333
WO~ WM

APPENDIX B. GLOSSARY AND REFERENCE MANUAL

B.1 Glossary
B.2 Reference Material

APPENDIX C. SYMBOLIC DEBUG

C.1 COMMANDS

C.2 USAGE NOTE FOR USERS WITH SYMBOLIC FORMATS
OTHER THAN EXTENDED TEKHEX

APPENDIX D. S-RECORD OUTPUT FORMAT

D.1 S-RECORD OUTPUT FORMAT
D.1.1 S-Record Content
D.1.2 S-Record Types

D.2 CREATION OF S-RECORDS

INDEX TO TOPICS

QUICK INDEX TO OPERATORS

OPERATOR

ABS

ACl, AC2
ALT

AND

AX, AL, AH

BAS
BMO
BP
BRK
BUS
BX, BL, BH
BYM
BYT

cCcT
cD
CES
CK
CLM
CNT
CPY
CRC
cs
cob
CTL
CX, CL, CH

DX,DL, DH

NAME

absolute value

address comparators 1 and 2
alternate data access
Togical event AND
accumulator (low and high)

display base value

block move

base pointer

break

display status of lines
base register (low and high)
byte mode

byte status

Computer Control

overlay enable for code access

clear Event Monitor System When/Then statements
measure target system clock

clear memory map

count event

copy switch

calculate cyclic redundancy check in target system
code segment

code status

count limit

count register (Tow and high)

Aa+a

ans [4
Ul Ll U

~rrace +a
display memory
Don't Care
data comparators 1 and 2
display Event Monitor System When/Then statements
default base value
destination index
display memory map
DMA cycle status
display disassembled memory
download
display CPU registers
display raw Trace Memory
data segment
disassemble Trace Memory
overlay enable for data access
disassemble Trace Memory backward
disassemble Trace Memory forward
data register (low and high)

17

tus
block

vi

o
i >

o
Noom

oW

[D I N I DN I T I I)
N =00 0N

o w w

U‘l-h-h‘-;lm-h-hw
(SN N YA N Y=L)

[UL [I D IR DR I]]
[, W' Nen) - -

-c-mm.p-\u:umawm-hm
N OO N Gt =) D = W

N

LI I | 1
lﬂtV!;lv(ﬂld(D:SIV-D(»Gh‘O(DCD

-h-h-h-h-b(h-h(f-h-&(d(ﬂ(n(ﬂ-th
[,

PN
t
— s
O O

5
N

SECTION
NUMBER

. L]
oW

Lot ONw
. .

N O W W P
L]

apPpPOOITARANOW

- «
ww

[3 00 - - L NS, - N N}
«
.

.
[S, 00 -

w N

.
n

.
N

NDNWWwhPAEOABAANDOIW

. L] L] . . L L] L]
. « e o
N WO~

.
— -

.
—

AP APAPARAPPOOLUITRARARPLONNOIOI AN
.
NOOOOUNMOONOOMNPOWORNWNWWPEIN

L] .

Index Continued

ES

FIL

FIN

FLX, FLL,
FLH

FSI

GDO:7
GRO:7
GRO

HLT
ILG

I0A

MX or X

NBC
NMI
NOT
NXT

ON
OFF
OR

OVE
ovL

QD1-QD6
QF

extra data segment

fi11 memory with constant data
find byte or word

flags register (low and high)
Force Special Interrupt

general purpose data registers 0 through 7
general purpose range registers 0 through 7

Event Monitor System Group
halt status

illegal memory access
interrupt acknowledge status
instruction fetch status
introspective mode

I0 access status

I0 mode pointer

instruction pointer register
internal range

initialize trace

load EEPROM data

Toad vectors

length

load Overlay Memory

Logic State Probe comparator

last-Return decrements address in Memory Mode

define Overlay Memory Map
memory status

enter Memory Mode

Memory Mode pointer
Memory Mode status

modulo

exit Memory Mode

no bus status
MNI cycle status
logical event NOT

next-Return increments address in Memory Mode

enable switches
disable switches
logical event OR
Overlay Memory enable
status Overlay Memory

que depth (1-6) status
que flush cycle status

vii

[UL L R N L
[$,] o

wm-h-hcpwmm-h
= N OO0 = 00 00

(=]

w

N

-Fhm-h'.:'l-hl\)
[Rl N N

o

?wh?hm#

09T %S
~ W 00 0 hOOoMNNODE

= RN

m-l:-t:\ww
[Y)

]

L:'IU'I
0o 0

.
N

[, -1 LT
N
—

(3, - -
« o
0N

[8,]

. .
(%)

L]

rS

wonsLLnWwOI, S
e s s s

W HdLWNTWWWm
. . . L] .

N e

. . . L] . - .
e NNWLWRH
e N & o o .
w [N —

PO m
.
HNDOYW BN

SLWPAEAPAEOPA PPN

s,
- L] -
R WW
»]
o~

.
w

aponww

. . . .
oot O,m
o w

Index Continued

RBK
RBY
RCT
RD
RIO
RM

(23 V1Y

KNY

.
* id

THE

TRC

YBL

VFY

WAI
WOM
WHE
WIO
WM

WR

WRD

run with breakpoints

run with breakpoint and vectors

reset count Timit
read status

read I0 status
read memory status
run with vectors
read only

reset

run emulation
read/write

status comparators 1 and 2
save EEPROM data

set system parameters

special functions

source index

set Special Interrupt Address
stack pointer

stack segment

stack data status

step and stop

target access

status target system
Terminal Control
enable trigger output

target system memory

then

to

toggle counting
toggle Trace Memory
Transparent Mode
trace event

upload
upload symbols

verify block data
verify block move
verify Overlay Memory
verify serial data

wait

word mode

when

write I0 status
write memory status
write

word status

viii

LI I I |
—

[
o

.n..p.a..p.p.(_'nmm(n-h-h
SbmHUImmem#

UL
N W

-n.ma-pc:wh\ammm
(.AI(DNN:NND—'D—'\I

m-|>u1?\mm
e s WD OO

mmt..nmm
- -

.
L

WWNHNPAEAODNOTOW G1 W LW O WL W W AW
L] .

N L
. .
[] L] .
T T S

L] . L] . .
L] L] .
- (R

PppEppOP~NSNNNDDO

D)
) .
- 0N N P

.
(2

N>y oo
* e s e

.
—

-
W P PeWw AnpLLOW

noaghoro;m
. * o ®
.
(¥%)

N
N

S

GOy T OO
-

N W W W
.

Index Continued

X
XRA
X87

>
R>
<return>
/

.
£

CNTL X
CNTL R

—

0-—&2 BRI | + N %D~ Il @2t

don' t care/exit memory mode
external range
8087 cycle status

prompt character

run prompt

return

repeat previous command line
statement separator

argument separator

delete line

reprint current line
hexadecimal

decimal

binary

octal

equal

parentheses

indirection

multiplication

division

addition
subtraction/negation
(negation)

bitwise AND

bitwise OR

shift left

shift right

inverse

memory block attribute
pointer type style

increment Memory Mode address
decrement Memory Mode address
Help Menu or Error Query

ix

i
00 O 4
[

]
Pt SNIN W W bt s it e b S SN S BB RWWWWWWMNON

1
—

[I R A D N U DR DN NN N B]
NN OOO0O

Na-hwwwwwwwwwww(fwwuwwwwwwwwuwww

o on Oy
« e
[N PS N

« o
S s O

.

OB ARRLELARDRBRER R AERWWWWRRNRNNNN NN
. .
WL B WRNNRNR WR N RN b 8 B PP P R

e & & o 2 e e & e ® e e 2 s s e O e ¢ ¢ o 2 0 ¢
e o o e e o o a4 e ¢ e o » ® e ® @ e & & e & o & o+ o

NH PR WWWWWWWWWWWWWWWWLWLWwWWwWwWwwwwwww
. .

TIST OF FIGURES

e
]
W N

PRRTRERN
O~ HWN

| L L LU]
DOV WN —

PP PPt w

[« 3 i
| I R N I N | UL UNL
O~ B WN - N = N =

>

The Satellite Emulator
Mainframe Components
System Configurations
Dimensions

Rear Panel

Serial Port Connector Pinout

Front and Top Panel Removal

Installing the Emulation Control Board
Connecting the Pod Assemblies to the Mainframe
Installing the DIP Header Plug

The Help Menu

Display Format

ES Switch Settings

Display Registers Format
Display Memory Block Format
Display Memory Map Format
Trace Memory Format
Disassemble Trace Format
Error Recognition

Activated Bit Values
Timing Strobe

Format of a Serial Word
System Control

Specifications for MOS Technology Format
Specifications for Motorola Exorciser Format
Specifications for Intel Intellec 8/MDS Format
Specifications for Signetics Absolute Object Format
Specifications for Tektronix Hexadecimal Format
Tekhex Data Block

Tekhex Termination Block

Tekhex Symbol Block

— b
| B T O I O I | | N I |
=IO WwWoomhWw [Te S, WNN N

PN

TIST OF TABLES

1-1 Feature Summary 1-6
1-2 Applications 1-8
1-3 Specifications 1-9
Serial Port Connector Pin Signals

2-1 2-5
2-2 Interface Parameter Switch Settings 2-7
2-3 Model Numbers 2-8

3«1 Arithmetic Operators 3-6
3-2 Two-Argument Operation Validities 3-9
3-3 Bitwise And and Or Validities 3-11
3-4 Single-Argument Operation Yalidities 3-12
3-5 SET Select Numbers 3-15
4-1 Registers 4-2
4-2 Error Codes 4-18
5~-1 Event Monitor System 5-3
§-2 Status Mnemonics 5-8
7-1 Special Functions 7-4
8-1 Troubleshooting 8-3
A-1 Extended Tekhex Header Field A-7
A-2 Character values for Checksum Computation A-8
A-3 Extended Tekhex Data Block Format A-8
A-4 Extended Tekhex Termination Block Format A-9
A-5 Extended Tekhex Symbol Block Format A-10
A-6 Extended Tekhex Symbol Block: Section Definition A-10
Field
A-7 Extended Tekhex Symbol Block: Symbol Definition A-11
Field
B-1 Number Bases Cross Reference B-3
B-2 ASCII and IEEE Code Chart B-4
B-3 ASCII Control Characters B-5

xi

TIST OF EXAMPLES

Most examples occur within the section that discusses the operator in the
example. The only examples listed here are those that have been placed
separately from their section because more than one operator is illustrated.

Damambdisaasns «m A ASma

Dasamomdi T PN
rdrcnbhc:ca afna i1nairec

3-1 tio 3-8

3-2 Multiplication and Addition 3-10
3-3 Bitwise AND, Bitwise OR 3-11
3-4 Load and Save 3-16
-1 Setting Status Comparator 5-8

5-2 Examining the Contents of the Status Comparator 5-9

5-3 Types of Breakpoints 5-13
5-4 Sample Valid WHEN/THEN Statements 5-16
6-1 Terminal Control, Computer Control and

Transparent Mode 6-4

6-2 Upload and Download 6-7

6-3 Verify 6-7

7-1 Clock and CRC 7-4

C-1 Dissassembly With Defined Symbols Cc-3

xii

SECTION 1
INTRODUCTION

I.1 -SYSTEM CONCEPT

1.2
1.3

1.1.1

=
. . L]
(S
L] . .
FPRENY

1.1.5

Components
Mainframe * Emulator Pod
Assembly * Optional Logic State

Analvzer Pod Assemblv

The Target System

The Host System

System Configurations

Standalone * Standalone With Host
Data Files * Host System Control
System Features

DOCUMENTATION

8086 APPLICATIONS

OPTIONS

SPECIFICATIONS

1 T
Limlic

SERVIC

D WARRANTY

1-1

1.1 SYSTEM CONCEPTS

1.1.1 Components

Figure 1-1.
The Satellite Emulator

The Applied Microsystems ES 1800 Satellite Emulator is a controll-
able microprocessor emulation system. It operates in conjunction
with your host computer system or as a standalone system controlled
by a CRT terminal. A1l system configurations provide powerful
hardware and software debugging capability as well as
hardware/software integration support.

The Satellite Emulator is transparent to the normal operation of
the "target system" (your hardware). Emulation is performed in
real time--no additional microprocessor cycles are required as a
result of the emulation process. No target system addresses or I/0
ports are needed or used and no program or software objects are
required in the target system address space. There are no hidden
quirks. You will have no difficulty using the Satellite Emulator
with your target system, even when critical timing constraints are
present. The emulator operates at speeds up tc the specified clock
rate and will also single-step the microprocessor under program or
operator control.

Standard features of the Satellite Emulator include an Event
Monitor System, Trace Memory and Disassembly and special test
functions. :

The Satellite Emulator consists of a mainframe, an emulator pod
assembly and an optional Logic State Analysis pod assembly.

MAINFRAME. The mainframe houses the emulation control board, the
memory controller board, the RAM Overlay board, the controller
board, the trace and break board, and the power supply, as shown in
Figqure 1-2. There are no external panel controls except the power
switch on the rear panel. The emulation control board configures
the Satellite Emulator for use with specific microprocessors. It
resides in the mainframe and contains the electronics unique to the
specific device it emulates.

MAINFRAME

e

LOGIC STATES ANALYSIS (LSA)
POD ASSEMBLY

EMULATOR POD ASSEMBLY

1-2

Figure 1-2.
Maintrame Components

1.1.2 The Target
System

POWER SUPPLY

\

CONTROLLER BOARD

e
S|
——

: L O >4 < > ‘
= ———n\|
RAM OVERLAY BOARD //\\\/g/\

EMULATION CONTROL BOARD

TRACE AND BREAK BOARD

MEMORY CONTROLLER BOARD (MCB)-NOT SHOWN. It is normally between
the controller board and the trace and break board.

EMULATOR POD ASSEMBLY. The emulator pod assembly consists of the
pod, a probe and two cables:

o The 40-inch ribbon cable connects the assembly to the mainframe;
the 1ll-inch ribbon cable connects the assembly to the target

cvectam
Sysien.

o The pod contains the emulating microprocessor and associated
circuitry (line buffers, etc.).

e A dual in-line package (DIP) connector on the probe plugs into
the target system's microprocessor chip socket.

The emulator pod assembly is connected internally to the mainframe
via the emulation control board (see Figure 1-2).

OPTIONAL LOGIC STATE ANALYZER POD ASSEMBLY. The Logic State
Analyzer (LSA), via the optional LSA pod assembly, provides 16
additional input lines to the Satellite Emulator, giving you access
to signals other than the bus signals.

The target system is your hardware. The emulator pod assembly is
connected to the target system by removing the target system micro-
processor from its socket and plugging the probe connector in its
place. The emulator then functions as a replacement for the
microprocessor that was removed, providing a rich variety of
control and analysis capabilities at the same time.

Once connected, the emulator is able to communicate with the
environment that the target system provides for the target system
microprocessor; the emulator may read or write to the micropro-
cessor registers or memory locations and it may execute programs
contained in the target system memory. It makes no assumptions
about the environment provided by the target system; if the target
system microprocessor works correctly with the target system, the
emulator will also, provided that the microprocessor manufacturer's
design specifications are complied with.

1-3

1.1.3. The Host
System

1.1.4 System
Configurations

The host system may be a development system, computer, or automatic
test equipment system. The Satellite Emulator connects to a host
system via a serial port (labeled "COMPUTER") on the rear panel of
the emulator mainframe. A second serial port (labeled "TERMINAL")
is provided for connection to a CRT terminal.

The host system can be used to control the emulator or as a source
of data. This is described in section 1.1.4.

There are two system configurations: standalone, and standalone
with host data files. See Figure 1-3.)

STANDALONE. In this configuration, the Satellite Emulator is
controlled directly by a CRT terminal, with no external data
sources or output devices. The terminal serial port on the rear
panel is the input source for control commands you key in on a CRT
terminal. See Figure 1-3a.

STANDALONE WITH HOST DATA FILES. In this configuration, the
Satellite Emulator is still under the direct control of the CRT
terminal. In addition, the computer serial port is connected to a
host system for access to the host's data files. Or, the computer
serial port can be connected to a printer for dumping data from the
emulator to create hard copies. You also have available a
“transparent mode," wherein the Satellite Emulator allows
communication between the computer and terminal ports or output
devices connected to these other ports. Essentially, the
transparent mode uses the emulator as an interface or conduit
between the two ports. See Figure 1-3b.

7N
com*nou.mc COMMANDS

TERMINAL PORT

EMULATOR CRT TERMINAL

a. STAND-ALONE

N7 N\
[r DATA FILES \; CONTROLLING COMMANDS
Py
| ! .
{ TERMINAL
PORT
COMPUTER
PORT
HOST COMPUTER
OR PRINTER EMULATOR CRT TERMINAL
Figure 1-3. . b. STAND-ALONE WITH HOST DATA FILES
System Configurations
1.1.5 System Table 1-1 summarizes the system features of the emulator.
Features

These
features can be combined in various ways to form an emulation
system that fulfills your exact needs.

Section 3 gives a more
detailed description of how these are combined.

Table 1-1.
Feature Summary

FEATURE

DESCRIPTION

Help Menu

EEPROM Storage

Trace Memory

Disassembler

Event Monitor System

Logic State Analyzer
(pod assembly option)

1-6

Provides you with a display of examples on
a CRT terminal. See Section 2.

Allows two users to store complete sets of
unique, user-defined operating parameters;
interface parameters, register values,
switch settings, Event Monitor System
parameters, and the memory map. Para-
meters can be accessed and changed at any
time during an emulation session while the
target system is stopped. See Section 2.

Lets the emulator become the target system
microprocessor and execute the program and
functions of the target system. See
Section 4.

Functions as a history of target system
program execution. It records each
bus cycle and can output to a display the
last 2046 machine cycles. See Section 4.

Allows you to display the contents of the
Trace Memory history in a form similiar to
your program listing. Output can be to
your CRT terminal, a printer, or your host
computer. See Section 4.

Allows you to specify event detectors that
will cause specified actions to occur when
the events are encountered during the
target system program. Possible actions
are:

e break emulation

o qualify trace data

=
[nd
[14]
]

® increment or reset the pass cou

e trigger an
instrument

oscilloscope or other

o switch to other event detectors

e interrupt to a user routine

See Section 5.

Provides external logic signal recording
and event detection capability (16 inputs

to a 16 x 2046-bit memory). See Section
5.

1.2 DOCUMENTATION

Overlay Memory Memory, Tlocatable in 2K-byte segments,
(options up to 512K- that can be mapped into the address space
byte total) of the target system. When a portion of

the target system program is loaded into
it, the program can be edited, positioned
as desired, and the program executed as if
it resided compietely in the target
system. See Section 4.

Internal Clock Allows you to execute your software with-

out connecting the emulator to your target
system. See Section 5.

Downloading Loads target system memory space with data

from a host system. See Section 6.

Uploading Dumps data from the target system address

space to one of the Satellite Emulator's
serial ports. See Section 6.

Diagnostic Functions A large number of diagnostic functions and

routines that can be used 1in both
engineering and manufacturing environments
to turn on and test your microprocessor
system hardware. Features include memory
tests, oscilloscope synchronization, and
signature analysis stimuli. See Section 7

1 s Vad
for a complete list and detailed

descriptions.

This manual gives you information necessary for setting up and
operating the Satellite Emulator.

This first section of the manual introduces the Satellite Emulator
and provides information on features, options, specifications,
warranty, and service. The remaining sections are organized as
follows:

Section 2, Installation and Set-Up: procedures for setting up the
physical connection, interface parameters, initial checkout of
the emulation system, and pre-operational procedures for setting
up the system, such as accessing the Help Menu and EEPROM storage
of parameters and a sample first-time emulation sequence.

Section 3, System Syntax and Parameters.

Section 4, Operation: procedures for emulation, Memory Mode,
Overlay Memory, Trace Memory, and error codes.

Section 5, Programming the Event Monitor System: procedures for
programming the Event Monitor System to your specific needs.

Section 6, Interfacing and Communications: procedures for
communicating between the Satellite Emulator and other units in
an emulation system, such as uploading and downloading and
setting system controls.

1-7

1.3 8086
APPLICATIONS

Table 1-2.
Applications

1.4 OPTIONS

e Section 7, Diagnostic Functions: descriptions of and procedures
for using the built-in diagnostic functions of the Satellite
Emulator.

o Section 8, Maintenance and Troubleshooting: procedures for
routine maintenance and basic troubleshooting of the Satellite
Emulator.

e Appendices: serial data formats, glossary, cross-reference of
number bases.

o Index

Your Satellite Emulator is configured for 8086/8088 micropro-
cessors with the appropriate emulation control board and emulator
pod assembly. The following table lists the microprocessors
currently supported by the ES series emulators and the emulation
control board and emulator pod assembly used with each. New
devices may be added as support becomes available. Contact your
Applied Microsystems Corporation representative when you need
additional support.

EMULCATION EMULATOR

DEVICE CONTROL BOARD POD ASSEMBLY
Motorola:

68010 ES-680108 ES-68010P

68000 ES-68000B ES-68000P
Zilog:

28000 ES-Z8000B ES-Z8000P

78001 ES-Z8001P

28002 ES-Z8002P

78003 £S-Z8G03P
Intei:

8086

8088

80186

80188

The following options are available for your emulator. Contact
...... S Aam manmasanbadsia £ Tanfan

your App'ried Microsystems Corpoiration representative
mation on prices and ordering.

¢ Overlay Memory Expansion: available for adding Overlay Memory
from 32K-bytes up to 512K-bytes total.

¢ Logic State Analyzer (LSA) Pod Assembly: provides 16 input lines
and one trigger output line. The pod assembly gives you access
to signals other than bus signals which are recorded simulta-
neously with the bus signals into the Trace Memory. These
signals also become part of the Event Monitor System.

e Carrying Case: fits mainframe, one pod assembly, and LSA pod
assembly.

e Symbolic Debug (described in appendix C)

1-8

Other options are available to configure your ES 1800 Satellite

Emulator mainframe for use with other microprocessor families.

See

your sales representative for more information.

1.5 SPECIFICATIONS

Table 1-3 lists the specifications of the Satellite Emulator.
Figure 1-4 shows the dimensions of the mainframe and emulator pod

assembly.
Table 1=3. Specifications
— INPUT PONER PHYSICAL
Standard: Mainframe:
90 to 130 VAC 13.2 cm x 43.18 cm.. x 34.29 cm.
47 to 440 Hz (6.2 in. x 17 in. x 13.5 in.)
consumption less than 130W
Optional: Emulator Pod:
180 to 260 VAC 22.6 cm. x 12.9 cm. x 4.1 cm.
47 to 440 Hz (8.9 in. x 5.1 in. x 1.6 in.)
consumption less than 130W
Target System Connection
ENVIRONMENTAL (total length including pod):
o o o 0 1.5 m (60 inches)
Operating Temperature: GOC to 4006 (32 g to 104 g)
Storage Temperature: -40°C to 70°C (-40°F to 158°F) LSA Pod

Humidity: 5% to 95% relative humidity, noncondensing

MAINFRAME

EMULATOR POD ASSEMBLY

| a0 /-,‘ 8.9]—-—12 -.‘
| /5.1
i1 l == =
1 T
1 T ‘t { b
1.6 I/
LSA POD ASSEMBLY

JJI’/,r——4s-—T~———1s—-—j

g\z_,djtﬂ

1-9

12.4 cm. x 7.9 cm. x 2.3 cm.
(4.9 in. x 3.1 in. x .9 in.)

Total Weight: 9.1 kg. (20 1bs.).

Shipping: 10.9 kg. (24 1bs.).

Figure 1-4.
Dimensions .

1.6 LIMITED WARRANTY

1.7 SERVICE

Applied Microsystems Corporation warrants that the equipment
accompanying this document is free from defects in material and
workmanship, and will perform to applicable published Applied
Microsystems' specifications for one year from the date of ship-
ment. THIS WARRANTY IS IN LIEU OF AND REPLACES ALL OTHER
WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THE WARRANTY OF
MERCHANTABILITY AND THE WARRANTY OF FITNESS FOR PARTICULAR PURPOSE.
In no event will Applied Microsystems be liable for special or
consequential damages as a result of any breach of this warranty
provision. The 1iability of Applied Microsystems shall be limited
to replacing or repairing, at its option, any defective unit which
is returned F.0.B. to Applied Microsystems' plant. Equipment or
parts which have been subject to abuse, misuse, accident,
alteration, neglect, unauthorized repair, or improper installation
are not covered by this warranty. Applied Microsystems shall have
the right to determine the existence and cause of any defect. When
items are repaired or replaced, the warranty shall remain in effect
for the balance of the warranty period or for 90 days following
date of shipment by Applied Microsystems, whichever period is
longer.

Extended warranty programs are available by contract.

If the unit is to be returned to Applied Microsystems for repairs,
a repair authorization number will be issued by Applied Micro-
systems Custamer Service for ES products. Call 1-800-426-3925 to
cobtain the necessary return shipment information.

After expiration of the warranty periocd, service and repairs are
billed at standard hourly rates, plus shipping to and fram your

premises.

1-19

SECTION 2

INSTALLATION AND SET-UP

Z.T

2.2
2.3

2.4

2.5
2.6

UNPACKING AND INSPECTION

OPERATING YOLTAGE AND GROUNDING

SYS

N NN R
° »

P
2
2

k]

. e
W W Wt
. .

TEM
1

- L]
BwMNF

.1
.2

INTERFACING

The Rear Panel

Side Panel

Serial Port Connector Pin Assignment

Setting Interface Parameters

HYSICAL CONNECTION
4
4

Connection to a CRT Terminal
Connection to a Target System

SYSTEM POWER-UP AND CHECKOUT

PRE-EMULATION CHECKLIST AND THE HELP MENU

2-1

2.1 UNPACKING AND
INSPECTION

2.2 OPERATING VOLTAGE
AND GROUNDING

The Satellite Emulator was inspected and tested for any electrical
and mechanical defects before it was shipped and adjusted for the
line voltage you requested. The emulator was carefully packed to
prevent any possible damage and should arrive in perfect operating
condition. Carefully inspect it for any damage that may have
occurred in transit. If any physical damage is noted, file a claim
with the carrier and notify Applied Microsystems. Also check to
make sure each unit of the Satellite Emulator system is present:

e the emulator mainframe

o the pod assembly for 8086 or 8088 microprocessors
e the 8086 emulation control board

e the mainframe power cord

e the 8086 and 8088 Operator Manual

e Optional equipment you may have ordered:

Overlay Memory

Logic State Analysis pod assembly

Symbolic Debug
- a carrying case

The following paragraphs describe how to properly set up an
emulation system around the Satellite Emulator.

CAUTION:

DO NOT OPERATE THE EMULATOR UNTIL
YOU HAVE COMPLETED THE PROCEDURES
IN SECTIONS 2.2 THROUGH 2.5.

The Satellite Emulator is normally set for operation on 90 to 140
VAC 50/60 Hz. It is also available for operation on 180 to 240 VAC
50/60 Hz, if so specified when ordered.

The emulator is supplied with a three-wire cord fastened to a
three-terminal polarized plug for connection to a power source with
a protective ground. The ground terminal of the plug is connected
internally to the metal chassis parts of the emulator. Electric
shock protection is provided when the plug is connected to a mating
outlet with a protective ground contact that is properly grounded.

MARNINE:
FAILURE TO PROPERLY GROUND THE
SYSTEM WILL CREATE A SHOCK HAZARD

The emulator has three types of grounds. The first is the chassis
ground that is connected to the metallic enclosure of the unit.
The second type is the AC protective ground. This ground is
derived from the third (green) wire of the AC power cord, It is

2-2

2.3 SYSTEM INTERFACING

2.3.1 The Rear Panel

Figure 2-1.
Rear Panel

tied to the chassis ground at the power input filter of the
emulator. The third ground is the signal ground. This is used as
a common reference for all DC voltages and is the ground employed
by the logic circuits. The signal ground is tied to the chassis
ground (and thus to the AC ground) by means of a jumper at the
power supply terminal strip.

NOTE:
Any target system connected to a Satellite Emulator
should ideally have independent signal and chassis
grounds that can be disconnected from each other
when the target system is connected to the emula-
tor. If the target system's signal ground is per-
manently tied to its chassis ground, a ground loop
will exist. In some cases this will cause unwanted
currents to flow through the emulator signal ground
and may result in electrical noise on data,
address, and control lines.

Total elimination of ground loops may not be practical if the
system also contains peripherals that tie a signal ground to a
chassis ground. When the signal and chassis grounds can't be
separated, a low resistance strap between the emulator chassis and
the target system chassis can reduce noise on the signal lines.

The Satellite Emulator will be connected to the target system, a
CRT terminal, and/or a host system. Two points must be
considered: (1) the physical connection between the emulator and
the CRT terminal or host system and (2) maintaining proper grounds
throughout the system.

The rear panel of the Satellite Emulator is shown in Figure 2-1.
The two serial ports are labeled TERMINAL and COMPUTER, to signify
which is used for connection to a CRT terminai and which is for a
host system, printer, or other source of data files. Be sure all
peripherals are connected to the proper serial port.

Also on the rear panel is a BNC connector for connecting to an
oscilloscope trigger, the main power switch, a line fuse, and the
AC power connection.

TERMINAL, PORT COOMPUTER PORT

/\”_ /T O\

®
®
w—vn-
® [O]
3 ~ ®
o F I\~ © f{@fy ®
/ 7
POWER SWITCH LINE FUSE
TRIGGER OUTPUT AC PORER CONNECTION

2-3

2.3.2 The Side Panel The side panel contains the cooling fan for the emulator. See

2.3.3 Serial Port
Connector Pin
Assignment

Figure 2-2.
Serial Port Connector
Pinout

Figure 1-2 for the location.

CAUTION:
DO NOT BLOCK THE FAN OPENING WHEN THE POWER IS
ON. THIS WILL CAUSE THE EMULATOR TO OVERHEAT.

The line fuse may be replaced if necessary. It is removed by
turning the fuse holder counterclockwise with a small screwdriver,
Replace with a 3-amp slow-blow fuse for 110-volt operation.

Figure 2-2 shows the pinout of the serial port connectors. Both
ports use the same pin assignment. Table 2-1 Tlists the signals
present on each pin. Pins without signals shown are not connected
within the emulator. Al11 pin assignments and voltage levels
conform to Electronics Industries Association (EIA) RS232C
standards.

Physically, there is no difference between the two ports. However,
there are many software constraints making it important that
peripherals are connected to the emulator at the correct port.

The minimum connection to another unit consists of pins 1, 2, 3,
and 7. Pins 4 and 5, Request to Send and Clear to Send, need not
be connected unless other units connected to the emulator are using
them.

You must be familiar with the pin configurations of yvour own
equipment, as pins 2 and 3 vary and pins 1 and 7 are sometimes tied
together.

CAUTION:

CHECK HOST AND CRT CONFIGURATIONS
BEFORE CONTINUING.

Table 2-1.
Serial Port
Connector Pin
Signals

PIN

NAME

DESCRIPTION

9 to 25

Protective Ground

Serial Data Out*

Serial Data In*

Request to Send
(Output)

Clear to Send
(Input)

Not Used

Signal Ground

Not Used

Connected in the emulator to the logic
ground.

This signal is driven to nominal + 12
volt Tlevels by an RS232C compafible
driver.

Data will be accepted on this pin if th
voltage levels are as specified by RS
232C specifications and follows the
format outlined in Section 6.2 of this
manual.

[4]

This signal is driven to nominal + 12
volt Tevels by an RS232C compafible
driver; it signals other equipment that
the emulator is ready to accept data on
this port.

This input to the emulator indicates
that other equipment in the system is
ready to accept data. This signal is
terminated such that the emulator will

operate with it disconnected.

This pin is connected in the emulator to
the system logic ground. Note, however,
that this ground is connected to the
emulator probe ground pin; when the
emulator 1is connected to the target
system, the target system logic ground
and the emulator 1logic ground are
connected together, and to the ground
system of equipment plugged into the
serial ports.

*NOTE:

You should be familiar with the pin configuration of

your own system,
some on pin 3,

Some systems receive on pin 2 and
It may be necessary for you to rewire

the cable connecting the units.

2.3.4 Setting
Interface
Parameters

Figure 2-3.
Top and
Front Panel
Removal

A thumbwheel switch on the controller card selects the initial
power-on interface parameters, set up in user-defined groups.
After power-up, you can override the switch setting with software
commands described in Section 3.5 of this manual. To select
parameters, turn BOTH knobs to the left and remove the front panel
of the emulator to expose the card cage, as shown in Figure 2-3.
The controller card is the top card in the card cage.

INTERFACE PARAMETER CONTROLLER CARb
SWITCH

KNOBS

Refer to Table 2-2. The term "Factory Default" is used to denote
an 8-bit word, one stop bit, and no parity. "User 0" and "User 1"
refer to two operators. This allows two operators to each define
their own power-up parameters, store them in the EEPROM (see
Section 3), and recall them on power-up, depending on the switch
position. "Terminal Control" and "Computer Control" determine
which port will be active on power-up.

Table 2-2.

Interface Parameter POSITION FUNCTION POSTTION FUNCTTON
Switch Settings 0 Factory Default 6 Factory Defauit
9600 baud 300 baud
1 User 0 7 Factory Default
Terminai Control 1200 baud
2 User 1 8 Factory Default
Terminal Control 2400 baud
3 User 0 . 9 Factory Default
Computer Control 4800 baud
4 User 1 A Factory Default
Computer Control 7200 baud
5 Factory Default B Factory Default
110 baud 19,200 baud
¢,D,E,F Reserved for

factory use

Factory Default = 8-bit word, one stop bit, no parity

2.4 DPHYSICAI

. LR 2

CONNECTION

Cannartinn tn a hact cycfom will varv with +he annlicatian
Lagnnection T0 & nNostT system will vary wiin Inhe appiigaction,

Contact Applied Microsystems Customer Service for ES products if
you require additional information for your host system.

2.4.1 Connection to
CRT Terminal

You may need to consult your CRT terminal manual to correctly
connect the terminal to the Satellite Emulator. Standard
parameters are:

¢ 9600 baud rate

e 8-bit word length

e one stop bit

e no parity

o full duplex

e no echo

e XON and XOFF are recognized.

Refer to the table above if you need to use a baud rate other than
9600.

Connect the CRT terminal to the TERMINAL port of the emulator.
Make sure your connector pin assignment is compatible with the
emulator.

On some CRT terminals, it may be necessary to turn the power off,

then on, to ensure all switches are read by the CRT terminal
hardware.

2-7

2.4.2 Connection to To connect the Satellite Emulator to a target system, the procedure

a Target
System

Table 2-3.

Model Numbers

Figure 2-4.
Installing the
Emulator Control Board

is as follows:

1. Verify that the target system power supply voltages are

correct.

2. Install the proper emulation control board in the mainframe as

shown 1in Figure 2-4,

See the table below to determine the

correct board for the microprocessor you are working with
(your emulator will arrive from the factory with the correct
board installed if you ordered only one family support; Z8000,
68000, etc.).

EMUCATION EMULATOR SWITCH SETTING

DEVICE CONTROL BOARD POD ASSEMBLY ON MCB (Fig., 2.4)
Motorola:

68000 ES-68000B ES-68000P Left

68010 ES-680108 ES-68010P Centered
Zilog:

ES-Z80008B ES-Z8000P Right

28001 " ES-Z8001P Right

28002 " ES~Z8002P Right

728003 " ES-Z8003P Right
Intel:

8086 £S-8086B ES-8086P Centered

8088 " ES-8088P Centered

80186 " ES-80186P Centered

80188 " ES-80188P Centered

MCB Switch Memory Controller Board

EMULATION CONTROL BOARD

EMULATION CONTROL BOARD .
3. Connect the emulator pod assembly to the mainframe as shown in

Figure 2-5.

2-8

Figure 2-5.
Connecting the
Pod Assemblies
To the Mainframe

Figure 2-6.
Installing the
DIP Header Plug

4. With target system power off, remove the target system micro-
processor from its socket and plug in the DIP header, as shown
in Figure 2-6.
- CAUTION:

NOTE CORRECT PIN 1 ORIENTATION

5. The next -section gives power-up procedures.

LSA POD ASSEMBLY

2.5 SYSTEM POWER-UP
AND CHECKOUT

With the emulator properly connected to a CRT terminal and your
target system, first turn on the CRT terminal, then the target
system, and finally the emulator.

The first time you use your emulator, it must be powered up with
the interface parameter switch in position @ or positions 5 through
B. To ensure the proper switch position, first check the baud rate
on the terminal, then, if necessary, select the appropriate
parameter switch setting so that the baud rate on the emulator
correlates with the baud setting on the terminal. We recommend the
highest rate possible for best response. You can later make and
store final adjustments for the terminal/emulator interface with
switches 1 through 4 by using the set command.

NOTE

If the interface parameter switch is in any of
positions 1 through 4, the parameters and register
values stored in the EEPROM are loaded. See Sec-
tion 3.5 and Section 2.3.4.

When the power is first applied to the Satellite Emulator and its
clock begins operating, a Power-on-reset operation occurs during
which the following functions are performed:

1. The microprocessors in the mainframe and pod are both reset.

2. The Trace Memory, Event Monitor System, and registers are
cleared. '

If the interface parameter switch is in any of positions 1
through 4, the parameters and register values stored in the
EEPROM are loaded. See Section 3.5 and Section 2.3.4.

3. The emulator transmits the following message to the terminal:

COPYRIGHT 1984

APPLIED MICROSYSTEMS CORPORATION

SATELLITE EMULATOR 8086 V2.0 MAX MODE v2.4

USER=0 SW =15

The processor type, and mode, are that of the target system.
The version number reflects the released rev of the ESL
software in the emulator. The USER number and software number
SW are determined by the Interface Parameter Switch.

£

5. The emulator performs its self test which may take a couple of
seconds. During this time the emulator determines the amount
of overlay memory and transmits to the terminal:

XXK AVAILABLE OVERLAY XX=32, 64, 128, 256 or 512 depending
upon amount of overlay memory installed in the system.

2-10

2.6 PRE-EMULATION
CHECK LIST AND
THE HELP MENU

When there is no clock in the target system there will be a
different message:

XXK AVAILABLE OYERLAY
NO CLOCK TYPE "Y" TO SELECT INTERNAL CLOCK

If you do elect to use the internal clock type a Y and the
emulator will respond with a >,

The > prompt tells you that the emulator is ready to receive
your instructions. (Always make sure that the > prompt shows
before you type in a command or you will lose one character
and the command will fail. You then must re-enter the
command) .

NOTE:

If the > does not appear, turn off all equipment, check
the connections and then repeat the power-on sequence:
terminal, target system and emulator. If the > prompt
still does not appear, contact your Applied Microsystems
representative.

Before reviewing the pre-emulation checklist and character set,
type "CLK" just to verify that your target system clock is ok.

As mentioned previously, before beginning emulation some of the

features associated with it must be set up. First, review the Help
feature.

1.

At any time after the emulator is up, you can call up the Help
Menu by entering the question mark character, "?". This
feature of the Satellite Emulator is two built-in display
pages that summarize the operators used and the input form of
each. Figure 2-7 shows the two displays. To access the first
display (Figure 2-7a), key in:

> ?
To move to the second display, enter:

> <return>
To move out of the Help Menu after the first page (without
viewing the second page), enter any character other than
<return>., The emulator will return a > prompt and you can
enter your next command.

2-11

Figure 2-7.
The Help Menu

a FIAST PAGE OF WELP MENU

5 SECOND PAGE OF NELP BEM

The Help Menu can be accessed at any time as long as the
emulator responds to input characters and it has not just

transmitted a "?".

R
> ?

RUN/EMULATION:
STP - SINGLE STEP / STOP
RST - RESET TARGET SYSTEM

TRACE HISTORY:
DT - DISASSEMBLE MOST RECENT LINE

MEMORY - REGISTER COMMANDS:
DB X TO Y - DISPLAY BLOCK
BMO X TO Y,2 - BLOCK MOVE TO 2Z
MMS = ALT, COD, DAT, STA
X - EXIT MEMORY MODE

MEMORY MAPPING:

MAP X TO Y :RO : RW :TGT :ILG
COMMUNICATIONS:
DNL - DOWNLOAD HEX FILE FROM HOST

UPL X TO Y - UPLOAD HEX TO HOST

SYSTEM:
ON/OFF - VIEW/ALTER SWITCHES
ASM (X) - IN LINE ASSEMBLER

RUN/RNV - RUN/RUN WITH NEW VECTORS
RBK/RBV - RUN TO BREAKPOINT/WITH VECTORS
WAIT - WAIT UNTIL EMULATION BREAK

DTB/DTF~-DISASSEMBLE PAGE BACK/FORWARD
DRT (X) - DISPLAY PAGE RAW TRACE (FROM X)

DR - DISPLAY ALL CPU REGISTERS

FILL X TO Y,2 - FILL BLOCK WITH Z
LOV/VFO X TO Y - LOAD/VERIFY OVERLAY
DEFINES STATUS LINES FOR MEMORY ACCESS
M X - VIEW/CHANGE MEMORY AT X

OVE = CD, DTA
DM/CLM - DISPLAY/CLEAR MEMORY MAP

TRA - TRANSPARENT MODE TERMINAL~HOST
CCT - TRANSFER CONTROL TO COMPUTER PORT
TCT - TRANSFER CONTROL TO TERMINAL PORT

SET - VIEW/ALTER SYSTEM PARAMETERS
SF - VIEW/EXECUTE SPECIAL FUNCTIONS
DIS(X) DISASSEMBLE FROM MEMORY

LD/SAV (X) - LOAD/SAVE @=SETUP,1=REGS, 2=EVENTS, 3=MAP, 4=SWITCHES (DEFAULT=ALL }

EVENT MONITOR SYSTEM:

DES - DISPLAY ALL EVENT SPECIFICATIONS

CES - CLEAR ALL EVENT SPECIFICATIONS

DES X - DISPLAY ALL EVENT SPECIFICATIONS FOR GROUP X
CES X -~ CLEAR ALL EVENT SPECIFICATIONS FOR GROUP X

o2DwY
1233 3

TRC - TRACE EVENT
TOT - TOGGLE TRACE

AC1,AC2 OR ACl.X,AC2.X =~
DC1,DC2 OR DC1.X,DC2.X -

1-3-3-0.%74
=2 =T 3

EVENT ACTIONS:

FRIR . AATTAIM TR O
Wwi¥A T WNUULTL LY oAV

RCT - RESET COUNTER
TOC = TOGGLE COUNT

TGR - TTL TRIGGER STROBE
FSI - FORCE SPECIAL INTERRUPT
GROUP X - SWITCH TO GROUP X

EVENT DETECTORS - GROUPS 1,2,3,4:
24 BIT DISCRETE ADDRESS OR INTERNAL EXTERNAL RANGE
16 BIT DATA, MAY INCLUDE DON'T CARE BITS

§1,S2 OR 51.X,S2.X - STATUS AND CONTROL - BYT/WRD + RD/WR + TAR/OVL + MEM/IOA

LSA
CTL -

STEP 1 -~ ASSIGN EVENT DETECTORS

ACl = $1234;S1 = BYT + RM
$§4576+14%6;DC2.2 = $5680 DC $FF
CTL.2 = 24:AC2.2 = SFO00@9 LEN $400

ACl.2 =

+ IAK/RIO/WIO/HLT/IF/RM/WM/NBC + ALT/COD/DAT/STA
- 16 LOGIC STATE LINES, MAY INCLUDE DON'T CARE BITS
- COUNT LIMIT, ANY NUMBER 1 TO 65,535

STEP 2 - CREATE EVENT SPECIFICATIONS
WHEN ACl AND Sl THEN GROUP 2

2 WHEN ACl AND NOT DC2 THEN CNT
WHEN CTL.2 OR AC2.2 THEN BRK

2-12

2.6.1 Parameter
Set-Up and
EEPROM Storage
Overview

Figure 2-8.
Display Format

The Satellite Emulator contains an interface parameter switch that
allows you to power up the emulator with one of eight sets of
factory-defined parameters, or one of four sets of user-defined
parameters. These user-defined and other display and interfacing
defaults are defined with SET commands. A1l the data defined with
the SET commands can be stored in an EEPROM (Electrically Erasable
Programmable Read Only Memory) located on the controller board.
The EEPROM can also store register values, parameters for the Event
Monitor System, terminal characteristics and the memory map for the
RAM Qverlay Memory.

SET commands are used to configure Sateilite Emulator interface and
display parameters. A menu display, shown in Figure 2-8, shows the
general syntax for the commands and what parameters are in effect.
To access this display, enter:

>SET<return>

>SET
ES SETUP: SEE MANUAL FOR DETAILS...

SET #X,#Y - SET ITEM X TO VALUE CORRESPONDING TO Y
LD 8;SAV @ LOAD/SAVE SETUP FOR CURRENTLY SELECTED USER

SYSTEM: $1 USER = @; [@,1]
$#2 RESET CHAR = $1A
#1

AR XOFF = <11 $13

3 AUN, & Vi,

TERMINAL: #10 BAUD RATE = #14; [2=110,5=300,10=2400,14=9600]
#11 sToP BITS = 1; [1,2]
$£12 PARITY = @; [@=NONE,l=EVEN,2=0DD]
#13 CRT LENGTH = #24
$14 TRANSPARENT MODE ESCAPE SEQUENCE = $1B,$1B

#14; [7=1200,12=4808,15=19200]
1

COMPUTER: #2080 BAUD RATE
$21 STOP BITS
$22 PARITY = 0@
$23 TRANSPARENT MODE ESCAPE SEQUENCE = $1B,SlB
$24 COMMAND TERMINATOR SEQUENCE = $@D, $68, 500
$25 UPLOAD RECORD LENGTH = #32; [1 to 127]
$26 DATA FORMAT = 2: [@=INT, 1=MOS,2=MOT, 3=SIG, 4=TEK, S=XTEK]
$27 ACKNOWLEDGE CHAR = $86

The following example shows the key sequence for entering SET
commands. Table 3-5 at the end of Section 3 shows which parameters
can be defined, and which SET commands require the reset character.
The reset character is Ctrl Z, unless changed in your system by you
or a previous user,

Some of the parameters set via SET will go into effect immediately.
Others will require you to enter a reset character first. You will
be prompted for these by the display "YOU MUST RESET ME TO INSTALL
THIS YALUE IN H/W."

2-13

Load and Save

LD
SAY

Note that the SET menu display shows what is in effect currently if
you have not yet changed any parameters. If you have changed some
but not yet entered the reset character, it will show what will be
in effect after the reset character is input.

The generalized key sequence to alter the interface parameters or
the CRT display format, is:

>SET<select number>, <value>[,valuell,value]<return>

The select number selects which attribute will be altered. The
values entered correspond to the selections displayed in Table 3-5.
Remember to use decimal-based numbers when entering the select
number.

NOTE:

When scrolling, XOFF (Ctrl S) is used to stop the

screen and XON (Ctrl Q) turns the scrolling on again.

You may need to change the defaults for use in the
transparent mode, for instance. Like all codes

specified and displayed by the SET command these new values
can be stored in EEPROM. XON and XOFF are set as follows:

>SET 3, $10, $12

In this example, XON has been changed to 1016 and XOFF
has been changed to 1216

The EEPROM is partitioned into space for two users (0 and 1). Each
user's space is partitioned into five groups:

e 0 = system set-up (defined via SET)

o1 = all the registers in the system and Event Monitor System
event comparators

[J
n
(]

Event Monitor System WHEN/THEN statements

e 3 = RAM Overiay map

[J
~
[}

Software Switch Settings, see Section 3.5.

A user's number is determined by the SET operator described in the
previous section. Parameters selected with the SET commands are
stored in the EEPROM with the SAV (Save) command. Once parameters
have been stored via SAY, they can be called up with the Load
command. When you first receive the machine or when converting it
from another microprocessor family initialize the EEPROM to the
proper data, you should execute a:

>SAV (no argument)<return>

2-14

Run With
Yectors
RNY

The entire contents of the EEPROM of the appropriate user will be
loaded into the Satellite Emulator automatically on power-up if the
interface parameter switch is in positions 1, 2, 3, or 4. When the
switch is in any other position, you must key in a Load command to
access the data in the EEPROM.
r

wiam el
i

Ca 3
Save the groups of data with th

a
awva w wii ule

You can sejectively Load o©
EEPROM. For example:

e To Load or Save all the groups, key in the Load and Save command.

e To Load or Save only one group of data, such as just the
registers, you will key in the group number in addition to the
command.

e To Load or Save a combination of data groups, such as the
parameters and the registers, you will have to enter two or three
commands.

The code segment and instruction pointer are loaded to their
starting values, and emulation is started when you enter RNV
<return>,

You will see an R> (the RUN prompt). Most commands can be executed
from the R>. However, if your command fails and you see a ?,
follow these steps:

get the error message telling vou why the command

¢ Enter 7 to

e If the command failed because it cannot be executed from the R>,
enter STP. When the > appears, re-enter the command.

e If the command failed for any other reason, follow the
appropriate measures to correct.

e When you input a command to the emulator that it does n

ne
understand, it will respond with a "?".

Sample sequence for first-time emulation:

>RNY Loads target system vectors, begins program execution
R>STP;DTB Stops program execution and disassembles one page
>STP;DT Steps (executes) one instruction and disassembles it

>AC1 = <address>; WHEN AC1 THEN BRK

>RBK; WAIT; DTB
Runs program, waits until breakpoint, then
disassembles one page

NOTE: Some emulator features that enhance emulation may be set ‘up
prior to emulation. However, if you are working with the emulator
for the first time, we recommend following the sequence of commands
given in Section 4. This sequence starts with the most basic
commands.

2-15

The advanced features that enhance emulation are:

o Event Monitor System - the Event Monitor System allows you to
select events within emulation that will cause specified actions
to occur. These events and resultant actions may be defined
prior to emulation and are described in Section 5.

o Memory Mode - allows you to examine and change contents of the
target system memory.

e RAM Overlay Memory - you may wish to map your target system
program memory and fill it with data. This is described in
Section 4.5.

e Trace Memory - special conditions can also be set for the Trace
Memory. These are described in Section 4.6

2-16

SECTION 3

SYSTEM SYNTAX AND PARAMETERS

et ——————— e T TR Y T

J.d

3.2

3.3

3.4

3.5

IRIKUUWL1 IUR

STANDARD CHARACTERS

3.2.1 The Prompt Character

The Run Prompt

Spacing

Utility Operators

Return * Repeat Previous Command Line * Statement

Separator * Argument Separator * Delete Line * Reprint Previous
Line

W W w
e s o
NN N
e o o
W

BERS AND BASE VALUES

.1 Hexadecimal, Decimal, Binary, and Octal
.2 Default Base

.3 Display Base

ITHMETIC OPERATORS
.4.1 Assignment Operators
Equal * Parentheses * Indirection
3.4.2 Two-Argument Operators
Multiplication * Addition * Division * Subtraction * Modulo *
Shift Left and Shift Rinh‘f' * Bitwise AND * Ritwise OR
3.4.3 Single- Argument Dperators
Inverse/One's Complement * Negation/Two's Complement * Absolute
Yalue

‘*’;

PARAMETER SET-UP AND EEPROM STORAGE

3-1

3.1 INTRODUCTION

3.2 STANDARD
CHARACTERS

3.2.1 The Prompt
Character
>

3.2.2 The Run Prompt
R>

This section explains how to use ESL, the Satellite Emulator
control language. The information here will be used in conjunction
with that given in Sections 4-7.

NOTE:

If you are reading this manual for the first time,
you should familiarize yourself with the contents
of this chapter. Then you can refer to specific
sections when you need to use them. New users do
not need to read all of the information word

for word.

The Satellite Emulator operates in response to command statements
made up of operators and arguments. Operator refers to the command
mnemonic or symbol used (RUN, FIL, etc). Argument refers to any
additional value you must enter as part of the command sequence,
such as an address range or base value. Essentially, the command
operators form a control language, much like higher-level computer
Tanguages. And, like a computer language, the operators and
arguments may be combined in various ways to form many complex
command "sentences." The Satellite Emulator accepts operators and
arguments when they are logically combined into a statement.
Statements can be up to 79 characters long.

The control software recognizes over one hundred mnemonics
described in Sections 3, 4, 5, and 6. You have two options in
entering the mnemonics. Since the software recognizes the first
three letters and last two digits, you can enter just these, as in
GRO for group, or you can enter GROUP. Any letters included after
the first three are disregarded: GROABCD would also be recognized
as GRO. Note that the limitation on the last two digits only
refers to those included in operator mnemonics. Other numerical
values are not 1imited.

In the following discussion many examples have been included to
illustrate the test. Some conventions have been adopted for ease
of explanation.

e When an angle bracket <> encloses an expression, it is a required
. entry; for example, <address range> or <value>,

il am amizama hmanals F7l ama 114a A +a am
RITH JSYuairc widiac Ll A4rc ul3cTu v <ii
’

ets close
an optional entry; for example, [base value].

am AvmwmAcss An T4 3
Qan CAP' TII 1 Vil e 1

[1]

Standard characters appear throughout all the operations of the
Satellite Emulator.

When the Emulator is ready to accept a command statement, the
prompt character (>) appears on the left margin of the CRT terminal
screen. In the examples, it should be understocd that you do not
type in the prompt character; it was already supplied by the
command interpreter, indicating readiness for another input line.

The Run prompt appears on the CRT terminal to notify you that the
emulator is in Run mode (emulating).

3-2

3.2.3 Spacing

3.2.4 Utility
Operators

<RETURN>

CNTL R

3.3 NUMBERS AND BASE
YALUES

Space characters (the space bar) are used to improve readability.

Normally, you may enter them at your discretion except as required

to separate two named items (such as "NOT AC2"). So the statement:
>6D4 = GD4 + #8 * GDZ2 <return>

can also be written as: '

>6D4=GD4+#8*GD2<return>.

Lower-case characters are converted to upper-case except in the
Transparent Mode or when using Symbolic Debug.

The utility operators are used to separate, execute, edit, and
repeat other commands. These operators are:

RETURN. The <return> is used to terminate statements and execute
commands. It must be entered after every statement. It is also
used to scroll through addresses while you are in the Memory Mode.
On some CRT terminals, the key may be labeled ENTER.

REPEAT PREYIOUS COMMAND LINE. When this operator (/) is the first
character of a line, it repeats the previous command line. When it
appears anywhere else on a line, it signifies arithmetic division.

STATEMENT SEPARATOR. The semicolon (;) is used to separate command
statements that are strung together on one line.

ARGUMENT SEPARATOR. Just as the semicolon separates command
statements, the comma (,) is used to separate arguments when more
than one argument is required to form a command statement. The
comma is also used to decrement addresses when you are in the
Memory Mode, where it will be the only operator on a line.

A colon may be used as a separator for an 8086 family pointer type.
For example CS:IP will convert the segment and offset to the
absolute 20-bit address they represent (it is also a map type
separator).

DELETE LINE. The CNTL (control key) X command will delete that
Tine.

REPRINT CURRENT LINE. CNTL R will reprint the line you just
entered. This will be useful to you when you are making a hard
copy. Don't confuse this with the / operator - the command is not
repeated, only reprinted.

There are three basic types of values used in the emulator: normal,
Don't Cares and ranges. The following paragraphs describe each of
the values in detail.

e Normal values are simple integer numbers.

e Don't Care values consist of two normal values separated by the
Don't Care operator DC. Don't Care values are best envisioned in
binary form. The value to the right of DC should have some bits
set. These bits are used as a mask such that every bit set in
the right side value causes the corresponding bit position on the
left value to be ignored. Don't Care values are useful when you
are working with the Event Monitor system to monitor bit logic
and are described in Section 5.

3-3

3.3.1 HEXADECIMAL ($)
DECIMAL (#)
BINARY (2)
OCTAL (®)

3.3.2 Default Base
DFB

e Range values consist of two normal values separated by one of the
range operators TO or LEN. Range values are useful for referring
to blocks of memory. Also, XRA and IRA can be prefixed to the
arguments to define external ‘or internal ranges, respectively.
The default is IRA.

The base value operators are used to set the numeric base you want
to work with or to temporarily change the base in effect. On
power-up the default base is hexadecimal (unless another default
base has been loaded by the EEPROM on power-up).

These operators tell the emulator what base a value is in. The
format is $n, #n, %n, or ®n, where n is any numeric value., The
base operator preceding n tells the Satellite Emulator that n is in
that base. They are used any time you want to enter a value in
other than the default base. Values not preceded by one of these
operators are presumed by the emulator to be in the default base.

The following numbers show the format for the different bases:
e $270F - hexadecimal

e #9999 - decimal

e ®23417 - octal

e 210011100001111 - binary

The DFB operator is used to display the system default base or
change the default base in effect (factory default is hexadecimal).
The Satellite Emulator will attempt to work with any base you set,
though decimal, hexadecimal, octal, or binary are the most
meaningful. Numbers without a base prefix are assumed to be in the
default base. If any number larger than 16 (hexadecimal) or
smaller than 2 (binary) is assigned, the Satellite Emulator will
assume the base to be hexadecimal. The following example shows the
key sequences for assigning default bases.

e To display the default base in effect:
>DFB<return>

ck
C
cr
—_e
Y
-
«

® To set the defauit base

>DFB = #2<return>

o To set the default base to decimal:
>DFB = #10<return>

e To set the default base to octal:
>DFB = #8<return>

3.3.3 Display Base
BAS

o To set the default base to hexadecimal:
>DFB = #16 <return>

o The same format as shown above is used to set the emulator to any
other base desired between 2 and 16.

This operator displays the base currently in effect for a specific
register, as shown in the following example. Displayed bases are
always shown in decimal:

e #16 = hexadecimal
o #10 = decimal
o #8 = octal

e #2 = binary

If it is necessary to have a specific register value displayed in
other than the default base, you can assign it a "private" display
base of any number between 2 and 16, Be careful when setting
private display bases to unusual bases such as 4,7, or 11. The
Satellite Emulator will operate correctly but the results may be
confusing. The example also shows how to set private display
bases.

If the base value is set to other than hexadecimal, decimal, octal
or binary, the emulator will display a ? when you ask it to display
the base in effect--there are symbols only for the four most common
bases.

e To display the current default base:
>DFB<return>

o To display the base of a specific register:
>BAS E&D3<¢return>

GD3 is the name for a specific register that you need to know the
base of. The emulator may respond with #16 to show that the
register base is hexadecimal. Note however, that though the
register is hexadecimal, the base is displayed in decimal: #16 =
hexadecimal, #8 = octal, #10 = decimal, #2 = binary, etc.

e If a register has no private display base assigned, the result of
this command will be
DEFAULT:#n
where n is the current default base.

3.4 ARITHMETIC

e To set a private display base:

>BAS GD3=2<return>

This sets the display base of GD3 to binary but does not affect
any other values or the default base (it only affects GD3). The
next time you display the base of GD3, the CRT terminal will
respond with:

#2

The value of GD3 will always be displayed in binary until you key
in a different display base or the Satellite Emulator is reset.
The private display base of any register may be assigned the
value 0 to cause that value to be displayed in the default base.

Arithmetic operators can be divided into three groups.

OPERATORS
o Assignment operators are used to assign values.
e Single-argument operators assign a property to a single argument.
¢ The two-argument operators include the more common arithmetic
symbols and operators for more specific arithmetic operations.
Each of these groups have some specific characteristics. Table
3-1 lists the arithmetic commands and tells which of the three
groups each falls in.
Table 3-1. _
Arithmetic Operations GROUP OPERATOR NAME
Assignment Operators:
= Equal
() Parentheses
e Indirection
Two Argument Operators:
* Multiplication
+ Addition
/ Division
- Subtraction
- MOD Modutlo
9 LR WL T
A Bitwise OR
<< Shift Left
>> Shift Right

- - - - - - - - - - . — - - - - - - - . - - - - > == - -

Single Argument Operators:

Inverse
- Negation*
ABS Absolute Valu

Ihe tollowing sections describe the properties of the group and the
commands within each.

3-6

3.4.1 Assignment

e

Operators

o
—

INDIRECTION.

Assignment operators assign a value or property to an argument.
They also extend expressions to include values obtained from com-
binations of other expressions, or values stored in the target
system memory address space.

Generally, the form taken by the result of an operation will be the
form of the left-hand argument: a Don't Care value times a normal
value will be a Don't Care value. There are two exceptions to
this:

1. When a normal value appears on the left and a Don‘t Care value
on the right, the result will include Don't Care bits;

2. When a normal value appears on the left and an internal or
external range appears on the right, the result will be a range.

EQUAL. The equal sign passes the quantity defined on its right to
the entity on its left. A1l operations to its right will be per-
formed before the equality is considered. The entity on the left
should be a single entity.
o The equal sign is used as follows:
>6D3 = $47FF<return>
The emulator does not display anything in response to this entry,
but the value you entered at the right ($47FF) is now assigned to
GD3.
e It is also used as follows:
>GD3 = $121 + $4<return>

This would first add $4 to $121. GD3 is then assigned the value
$125.

PARENTHESES. The emulator recognizes parentheses, just as they are
treated 1in algebraic equations: all operations within the
parentheses are performed first and a single value derived.

NOTE

There is no set number of levels of parenthe-
ses that the Satellite Emulator can work
with., The only limitation is that statements
can be no more than 79 characters long.
“Whatever level of complexity you can handle
within this limitation will be handled easily
by the emulator.

The "at" sign is used to express indirection. Indirection allows
expressions to include values obtained from, or stored to, the
target system memory address space. The @ operator causes the
command interpreter to consider the value of the expression
following to be an address of a target system word; the word is
accessed and that word--from the target system address
space--becomes the value of the expression.

3-7

It is possible to use more than one @ operator in an expression.
If two are used, the Satellite Emulator will access the expression
following the operators and look at the address pointed to; the
value at that address is then also considered to be an address, and
that address is accessed and displayed. This gives a means to
display a quantity that is pointed to by some other quantity
located in the target system memory. See the example below.

In this example the dual indirection is used to access a table of
data that is pointed to by the system stack pointer.

>0@ SP
>12345678
cPU ~ SYSTEMS STACK
REGISTERS RAM MEMORY

1234

F306
SP _///‘-

Just as with parentheses, the Satellite Emulator is capable of
dealing with many levels of indirection. However, again due to the
Timitation that statements not exceed 79 characters, you will
probably not deal with more than 70 levels of indirection at one
time.

e the following two examples help explain using parenthesis and
indirection together: .
>@6D4 + 6<return>
>@(6D4 + 6)<return>

Both contain the indirection operator and the same argument, GD4.
In the first example, the indirection operator would be applied
to GD4: the command interpreter accesses the target system
location pointed to by GD4, adds six to the value stored there,
and then will display the final result. Instead, if you wanted
to see the location stored in six locations above the address
pointed to by GD4, you would use the second example, using the

parentheses to signify that GD4 + 6 is one entity.

o It is also possible to use indirection in an assignment function:
>e(GD4 + 6) = #10 <return>

This example assigns the number ten to the target system memory
lTocation which is found six bytes above the location pointed to
by GD4.

e The following example is also legal:
>@(GD4 + 6) = e(GD4 + 8)

3-8

3.4.2 Two-Argument
Operators

Table 3-2.
Two-Argument

Operation Validities

Here, a quantity offset eight bytes from the Tocation pointed to
by GD4 is copied to a location offset six bytes from the location
pointed to by GD4. This is a target-to-target move.

The two-argument operators involve an arithmetic or logical
operation between two values. The following table lists the two-
argument operators and the combinations. It is set up as a matrix,
showing what operations are valid. Refer to this table in the
following discussion of the individual operators.

NOTE

Normal refers to simple arithmetic values. DC means Don't
Care bits are included, IRA is an internal address range,
and XRA is an external address range. They are explained
in detail in Section 4.

Left Hand Right Hand

Argument Argument Operation Result
“Normal Normal * / MOD Valid
& A Valid
<< >> Valid
+ - valid
Normal Don't Care MOD ILLEGAL
* / Don't Care bits are passed
to the left hand argument.
& a Don't Care bits are passed
to the left hand argument.
<< >> Invalid
+ - Don't Care bits are passed
to the left hand argument.
Normal IRA XRA * / MOD Invalid
& a Invalid
<< >> Invalid
+ - The endpoints of the range

will be altered by the value
of the normal expression.

DC DC * [/ MOD Invalid
‘ & A Invalid
<< » Invalid
+ - Don't care bits are ANDed
DC DC * / MOD Don't care bits are kept
& A Yalid
<< > Don't care bit positions are
shifted
+ - Don't care bits are kept

3-9

Multiplication and
Addition

IRA, XRA Normal * / MOD Invalid

& A Invalid
<< >> Invalid
+ - The endpoints of the range

will be altered by the value
of the normal expression

MUCTIPLICATION. An asterisk is used to denote multiplication.
Multiplication is algebraic--the value to the left is multiplied by
the value to the right of the * operator. And, as in an algebraic
equation, multiplication has precedence over addition or subtrac-
tion 1in the same equation or statement unless the operator
separator (;) is used. Multiplication can't be performed on
address ranges.

ADDITION. Addition is denoted with the addition sign. Like
multiplication, it operates just as in an algebraic equation.
Addition can be performed on address ranges and Don't Cares.

DIVISION. Division follows the same principles as multiplication.
It has precedence over addition and subtraction when all are
contained in one equation or statement. Be careful not to confuse
the slash operator used for division with the slash used for Repeat
Previous Command Line. Both use the same key, but when the slash
is used to repeat command statements it will be the first character
on a line. When used for division, it is between two arguments -
it cannot be the first character on a line. Division can't be
performed on address ranges or Don't Cares.

Here's an easy example:
>GD4 = GD4 + #8 *GD2<return>

the equal operator

eD4 (again)

+ the addition operator

A0 a wasembhoasa it ddam atbh dha Adaadmal mnumald.

o A HUIHUTT 9 W1 T LLCH Wi LWL LIS UCTuiiiiad pPIrcitA

* the multiplication operator

6D2 a variable name representing another register

<return> the return symbol

The effect of this statement is to read the current value of
register GD4, add to this value the product of 8 and the value
contained in GD2, and assign this sum to GD4, thus changing the
value it contains.

3-10

MOD

>
<<

Bitwise And
Bitwise Or

SUBTRACTION. Subtraction is much the same as addition. It is
denoted by the minus sign (-). The minus sign is also used to
denote negation or two's complement.

MODULO. The result of this operation is the remainder after the
value on the left has been divided by the value on the right. See
the following exampie.

e >29 MOD 4
result = 1

e >38 MOD 6
result = 2

SHIFT LEFT AND SHIFT RIGHT. These two operations are a movement of
the bits of a number. For examp1e, a right shift of n places has
the effect of dividing bynZ and a left shift of n places has the
effect of multiplying by 2 See the following example.

® A binary shift left:
>00100000<<1
result = 01000000

e A binary shift right:
>0001000000000000>>1
result = 0000100000000000

BITWISE AND. Bitwise And operator (&) functions as a logical AND.
The & operator infers the ANDing of the bits that form the two
arguments,

BITWISE OR. The Bitwise OR operator (A) functions as a logical
inclusive OR. The operator infers the ORing of the bits that form
the arguments.

AD & ‘ OR ~
THPUT SUTPUT TRPUT OUTPUT
70 3 70 0
0 1 0 0 1 1
1 0 0 1 0 1
11 1 11 1

e Bitwise And:
>%00101101 & 210011100
result = 200001100

e Bitwise Or:
>200101101 ~ 210011100
result = %10111101

3-11

3.4.3 Single-
Argument

Table 3-4.

Sing]e-Argument'

Operators

ABS

Single-argument operators assign a property to the number directly
following the operator. The following table summarizes the
operators and valid combinations.

Note that a single-argument operator can even be used before a
parenthetical operation, and the value within the parentheses will
be treated as a single value.

OPERATOR ARGUMENT RESULT

! Normal Yalid
DC Don't care bits are not affected
IRA Complement (IRA becomes XRA)
XRA Complement (XRA becmes IRA)

ABS Normal Yalid
DC Don't care bits are not affected
IRA Invalid
XRA Invalid

- Normal Valid
DC Don't care bits are not affected
IRA Invalid - .
XRA Invalid

INVERSE/ONE'S COMPLEMENT. The exclamation mark is used to signify
that the following number or value is to be inverted. The inverse
is the one's complement; the inverse of %0010 would be %21101.
Address ranges can also be inverted: an internal into an external
and vice versa.

NEGATION AND TWO'S COMPLEMENT. The minus sign is also used for
negating a number when used as single-argument operator. This
operator forms the two's complement of its argument.

ABSOLUTE YALUE. The ABS operator converts the following value to

its absolute, positive value; a negation value would become
positive, a positive value would remain unchanged.

3-12

3.5 PARAMETER SET-UP As mentioned in the overview in Section 2.3.4, you may set system
AND EEPROM STORAGE parameters with the SET command. These are listed in Table 3-5,
which follows.

You can also set an additional 5 parameters using software
switches. Ten of these relate to emulation and one determines
whether or not you can produce hard copy during an emulation
session., These are listed after Table 3-5 under ON and OFF.

>ON
ES SWITCH SETTINGS

LD/SAV 4: LOAD/SAVE SWITCH SETTINGS IN EEPROM

EXAMPLES: >ON BKX+CK
>OFF FSX+CPY

VALUE NAME DESCRIPTION

OFF BKX ~° BREAK ON INSTRUCTION EXECUTION (NOT PREFETCH)
ON CK SELECT INTERNAL CLOCK

OFF cpy COPY DATA TO TERMINAL & COMPUTER PORTS

ON FSX FSI ON INSTRUCTION EXECUTION (NOT PREFETCH)

Figure 3-1.
ES Switch Settings

3-13

ON
OFF

Break on Instruction

Execution BKX

CLOCK
cK

FSI on Instructicn
Execution
FSX

Introspective Mode
IM

Copy Switch

cpY

Initialize Trace
ITR

The switches wused to control emulation and hard copy
parameters are enabled using ON and disabled using OFF,

e To turn on the IM switch
S0N IM

e To turn off all switches
>O0FF -1

e To turn on "break on instruction execution”
>0N BKX

¢ To display switches
~ >O0N
or
>OFF

The switches are:

If BKX is ON, an event system break will occur on the instruction
execution rather than the instruction pre-fetch.

If clock is ON, the emulator uses an internal clock.
If clock is OFF, the target system clock is used.

If FSX is ON, an FSI will occur on instruction execution rather
than the instruction pre-fetch.

When IM is ON, the emulator itself becomes the "target system".

When CPY is on, all data will be written to both the terminal and
computer ports.

ITR will load and assemble any new breakpoints or qualifiers. Note
that this will automatically be done before going into STEP or RUN.

NOTE
The "Copy & mode refers to tne 2 ports on the back of the
emulator. When copy all is "on", data sent to the controlling port
will also be echoed to the other port. This is useful for making
hard copy of emulation sessions or monitoring computer control
(CCT) commands.

L a1l
i

st

3-14

Table 3-5.
SET Select Numbers

RESET CHARACTER

KEY SEQUENCE DESCRIPTION/RESULT REQUIRED
SET #1,#0<return> Select User O No
SET #1,#l<return> Select User 1 No
SET #2,%n n is the desired reset character No
SET #3,$n,$m<return> Set values for X ON (n) and X OFF (m) No
SET #10,#0<return> Set CRT terminal baud rate to 50 Yes
SET #10,#1<return> 75 baud (CRT terminail) Yes
SET #10,#2<return> 110 baud (CRT terminal) Yes
SET #10,#3<return> 134.5 baud (CRT terminal) Yes
SET #10,#4<return> 150 baud (CRT terminal) Yes
SET #10,#5<return> 300 baud (CRT terminal) Yes
SET #10,#6<return> 600 baud (CRT terminal) Yes
SET #10,#7<return> 1,200 baud (CRT terminal) Yes
SET #10,#8<return> 1,800 baud (CRT terminal) Yes
SET #10,#9<return> 2,000 baud (CRT terminal) Yes
SET #10,#10<return> 2,400 baud (CRT terminal) Yes
SET #10,#11<return> 3,600 baud (CRT terminal) Yes
SET #10,#12<return> 4,800 baud (CRT terminal) Yes
SET #10,#13<return> 7,200 baud (CRT terminal) Yes
SET #10,#l4<return> 9,600 baud (CRT terminal) Yes
SET #10,#15<return> 19,200 baud (CRT terminal) Yes
SET #11,#1<return> CRT terminal data frame has 1 stop bit Yes
SET #11,#2<return> 2 stop bits (CRT terminal) Yes
SET #12,#0<return> CRT terminal parity (send and receive) none Yes
SET #12,#1<return> Parity even (CRT terminal) Yes
SET #12,#2<return> Parity odd (CRT terminal) Yes
SET #13,#n<return> Set CRT terminal lines per page; n=5 to 255 No
SET #14,$n<return> Specify a 7-bit Reset character. The reception of No
this character from any port in any mode resets the
emulator
SET #15,%n,$m<return> CRT terminal transparent mode escape sequence; n and No

m are arbitrary character codes; 7-bit ASCII values only

3-15

SET #20,#n<return>
SET #21,#1<return>
SET #21,#2<return>
SET #22,#n<return>
SET #23,%n,$m<return>
SET #24,%n,%m, %0
<return>

SET #25,#n<return>

SET #26,#n<return>

Example 3-4.
Load and Save

Select computer baud rate; n0 to 15 see SET #10,n
above

Computer data frame has 1 stop bit
2 stop bits {computer)

Select computer parity. See SET #12,n above

Set computer transparent mode escape characters. See
SET #15,n,m

Command terminator for Download; n, m, and o are
arbitrary 7-bit ASCII character codes

Determine maximum number of data bytes in an Upload
record; n =1 to 27

Select serial data format for Upload and Download;
O0=Intel, 1=M0S, 2=Motorola, 3=Signetics,
4=Tektronix, 5=Extended Tekhex

Example 3-4 shows how to Load or Save system parameters.
checks the validity of the stored data before transferring it to the

Satellite Emulator memory.

The system will save what is shown on the SET menu.

parameters for another system.
NOTE
A SAV Operation may take up to two minutes.

Do not interrupt the process.

No

Yes
Yes
Yes

No

No

No

No

The loader

The parameters
shown do not necessarily have to be in effect at the time they are
saved. This allows you to use one system to set up defauit

e To d 211 the svstem narameters:
o all the gystiem parameters;

Loa !
>LD<return>

¢ To Load only one section:
>LD <m><return>
The section to be Loaded is denoted by n.

e To Save all system parameters:
>SAV<return>
Remember this may take up to two minutes.

e To Save only one section:

>SAV <n><return>
Again, n is the section number.

3-16

SECTION 4
OPERATION

7.7 INTRODUCTION
4.2 REGISTER OPERATORS
4.3 EMULATION

4.3.2 Step and Stop

4,3.3 Run With Breakpoints

4.3.4 VYector Loading and Running With Vectors

4,3.5 Reset

4,3.6 Wait
4.4 MEMORY MODE, I/0 MODE

4.4.1 Entering and Exiting Memory Mode

4.4.2 Memory Mode and Pointers

4.4.3 Scrolling

4.4.4 Mord and Byte

4.4.5 Examining and Changing Values

4,4,6 Memory Mode Status

4.4.7 Displaying a Block of Memory and Finding a Memory Pattern

Display Memory Block * Find Memory Pattern

4.5 MEMORY MAPPING AND THE OVERLAY MEMORY

4.5.1 Memory Block Attributes

4,5.2 Memory Mapping Operators

4.5.3 Overlay Memory Operators

4.6 SOFTWARE DEBUGGING WITHOUT TARGET SYSTEM HARDMARE
4.7 ERROR HANDLING AND CODES

4.8 THE TRACE MEMORY AND DISASSEMBLER
4.8.1 Display Raw Trace
4.8.2 Disassemble Trace
4.8.3 Disassemble Previous and Following Trace

4.9 THE MEMORY DISASSEMBLER
4.9.1 Display Disassembled Memory

4.10 THE LINE ASSEMBLER
4.10.1 Standard Mnemonics
4.10.2 Assembler Directives
4.10.3 Usage Notes
4.10.4 Assemble Line to Memory

4.1 INTRODUCTION This section describes the procedures for operating the Satellite
Emulator and error codes that may occur. The information here
presumes that you have read the previous sections.

THE SATELLITE EMULATOR WILL NOT OPERATE PROPERLY UNLESS IT HAS BEEN
CORRECTLY INSTALLED AND SET UP. Information on system communi-
cations and serial interfacing (beyond initial installation) is
in Section 6, Interfacing and Communications.

4.2 REGISTER OPERATORS The register operators are used to assign values to registers
within the 8086 and the emulator, and to display these values.

Table 4-1 lists the registers recognized by the system.

Table 4-1.
Registers
OPERATOR DESCRIPTION HOW USED
ACl, AC2 address comparator registers 1 and 2 Event Monitor System
CTL count limit comparator register Event Monitor System
DC1, DC2 data comparator registers 1 and 2 Event Monitor System
LSA Logic State Analyzer comparator register Event Monitor System
S1, S2 status comparator registers 1 and 2 Event Monitor System
SIA Special Interrupt address register Event Monitor System
OVE Overlay enable register Memory Mode
MMP memory space pointer Memory Mode
MMS Memory Mode access status register Memory Mode
MMD Access status register for destination Miscellaneous
of block move
GD@-7 general purpose data register Miscellaneous
GR@-7 general purpose range register Miscellaneous
DFB default base register Miscellaneous
AX, AL, AH accumulator (low and high) CPU Register
8p base pointer CPU Registers
BX, BL, BH base register (low and high) CPU Registers
Cs code segment CPU Registers
CX, CL, CH count register (Tow and high) CPU Registers
DS data segment CPU Registers
DI destination index CPU Registers
0X, DL, DH data register (low and high) CPU Registers
ES extra segment CPU Registers
FLX, FLL,
FLH flags register (low and high) CPU Registers

IP instruction pointer CPU Registers
SI source index CPU Registers
SP stack pointer CPU Registers
SS stack segment CPU Registers

DR The Display Registers command is used to display the CPU registers

in a fixed format. See figure 4-1., TIts format is:
>DR<return>

4-2

>DR
Cs:1IP FLX AX BX cX DX DS sI Es DI BP SS sP
0000:8000 00008 0008 0000 0090 9000 0007 0080 0000 C003 POG3 0000

Figure 4-1.,
Display Registers Format

4.2.1 loading Example
A Register
>BX<return>
$00000000

>BX=5000<return>

BX<return>
$00005000

4,2.2 General GDO-7 and GRO-7 are miscellaneous registers used to save keystrokes when
Registers you are using simple integers, ranges or Don't Cares. They are used as
follows:

o GRO-7 integers or ranges for addresses
e GDO-7 integers or Don't Cares for data
Example:
>GR0=1000 TO 2FFF
>MAP GRO
>DM
>MEMORY MAP:
>MAP $00000008 106000FFF : TGT
>MAP $001000 108002FFF : RW
>MAP 003000 108FFFFFF : TGT
4.3 EMULATION The basic function of the Satellite Emulator is the emulation of
microprocessors. When emulation is initiated, the Satellite Emulator
will run the target system program transparently and in real time, just
as the target system microprocessor would, or one instruction at a time.
Essentially, emulation lets you "see" into the logical environment of
the emulated microprocessor.
The operators assoéiated with emulation are:
e Run - RUN
e Step and Stop - STP
e Run With Breakpoints - RBK

o Wait - WAIT

4.3.1 Run
RUN

4.3.2 Step and Stop
STP

4.3.3 Run With
Breakpoints
RBK

Run, Run With
Breakpoints, Step,
and Stop

Only used to start emulation:

o Run With New Vectors - RNV

o Run With New Vectors and Breakpoints =~ RBY
e Load New Vectors - LDY

To reset processor:

e Reset -~ RST (pod only)

The Run operation executes the target system program in real time
until you stop it or it encounters an access violation associated
with the defined memory map. The Run Prompt R> will be present
during RUN.

The Satellite Emulator combines Step and Stop into one mnemonic.
Step takes you through the target system program one instruction at
a time. Stop is used to break emulation during a Run or Run With
Breakpoints.

e If emulation is in progress, keying in STP will cause the
Satellite Emulator to halt emulation.

e If STP is entered while emulation is not in progress, one program
instruction will be executed. Use STP, 1, 1, 1, ... instead of
STP, STP, STP, ... it saves typing.

Run With Breakpoints (RBK) is the same as a Run operation except
that break operators within the Event Monitor System are honored
and will stop program execution when encountered. Te Run prompt
R> will be present during RBK.

These examples show how to start emulation:

e To initiate a Run:
SRUN<return>

~nny .
RDAN

e To initiat
re 1

a Run With Breakpoints:
v

e
‘L.ﬁ

e To stop a Run or a Run With Breakpoints:
R>STP<return>

e To Single Step through instructions (emulation not currently in
progress):
>STP<return>

4-4

4.3.4 VYector
Loading
and
Running
With
Yectors

LDY

RNY
RBY

4.3.5 Reset

newr

Koi

4.3.6 Wait
WAl

4.4 MEMORY MODE

The 8086 microprocessor, when reset, loads the IP (instruction
pointer) to $0000 and the CS (code segment) to FFFF. The 8088
emulator can automatically load these same values before going to
a run, Three commands implement these functions; LDV initializes
the registers, RNV initializes the registers and begins run, RBY
initializes the registers and starts run with breakpoints enabled.
See the following exampTles.

e To initialize registers:
>LDV<return>

e To initialize registers and run:

>RNY<return>
or
>LDY;RUN<return>
Note that the two examples cause identical results. RNV

initializes the vectors, then starts emulation. The same can be
accomplished using the two commands LDV and RUN.

e To initialize registers and run with breakpoints:
>RBY<return>

or
>LDV;RBK

The Reset operator (RST) will reset the emulator.

The Wait operator causes the Satellite Emulator to delay executing
the command statement following it until emulation is broken for
some reason (an event detector within the Event Monitor System or
access violation of the memory map, for example). See the
following example.

o The format for the Wait operator is:
>RBK; WAI ; <command><return>

e For example:
>RBK;WAI;BX<return>

o Note that the semicolon is used to separate the commands.

CAUTION
THE EMULATOR MAY HANG UP WHILE USING THE WAIT OPERATOR
IF EMULATION IS NOT AUTOMATICALLY BROKER. TO ESCAPE
THIS CONDITION, USE THE USER-DEFINED RESET CHARACTER.

Memory Mode allows you to examine or change the contents of the
target system memory. Each address is accessed and displayed
individually, with easy-to-use scrolling features. Data at each
address can be displayed and/or entered in any number base you
select.

4-5

4.4.1 Entering and
Exiting
Memory Mode
M or MM
X
MIO

4.4.2 Memory Mode
and Pointers
MMP
10P

The following sections gxp]ain how to enter and exit Memory Mode, .
use the pointer, scrolling features, word and byte modes, and how
to examine and change the target system memory.

M or MM is used to enter Memory Mode. If no entry address is
specified the address will default to the value of MMP. Upon
entry the memory location is read and the address and data residing
there are displayed preceding the prompt. A <return> will
increment the address.

MIO is used to enter I/0 mode. If no address is specified, the
address will default to the value of IOP. Upon entering this mode,
the ports are not read. The address is displayed preceeding the
prompt. To read the port, execute a <return> as the only character
on the T1ine. The port will be read and the address and data
displayed. The address will not be incremented unless a "." is
entered. Refer to the following example.

e To enter the target system memory space at a specific address:
>M <address><return>

o To enter the target system memory space at the default address:
SM<return>

e To change address while in memory mode:
$00000000 $FFFF >M <address><return>

¢ To exit Memory Mode:
>X<return>

¢ To enter I/0 space at a specific address:
>MI0<address><return>

e To enter 1/0 space at the default address:
>MI0<return>

¢ The system will respond with one of the two memory.mode prompts:

- byte mode $000000 $FF>
- word mode $000000 $FFFF>

The Memory and I/0 mode pointers, when invoked, will display the
last address invoked in Memory or I/0 Mode since power-up. The key
sequence is shown in the following example.

You can also change the pointers to a value you select by entering
the desired value before the <return>.

® To dispiay the last memory address examined:
SMMP<return>

e To change the Memory Mode pointer:
>MMP=<address><return>

4.4.3 Scrolling .
NXT
LST

4.4.4 ¥ord and Byte
Modes
BYM
WDM

4.4.5 Examining
and Changing
Yalues

o To display the last I/0 address examined:
>I0P <return>

e To change the I/0 pointer:
>I0P = <address><return>

Once you have entered Memory Mode at a specific address, you can
scroll to higher or lower addresses. The NXT and LST operators
determine the default direction of sequential memory accesses.

When you enter NXT after the prompt, the addresses are incremented
between each access. LST entered after the prompt causes the
addresses to be decremented. The power-up default is NXT. These
commands are useful for storing lists of values into memory.

When a comma or period is entered in response to the Memory Mode
prompt, addresses are incremented (with the period) or decremented
(with the comma) and the next location displayed. These are used
to temporarily override NXT and LST.

e To scroll to the next higher address:
<address><data»>> NXT <return>
or
<address><data> >.
or
<address><data><return>

+ TAnwune+
e To scroll to the next lowest

<address><data>>LST<return>
or
<address><data> >,

ddress:

If you wish to scroll through the memory spaces one byte (8 bits)
at a time, invoke BYM. WDM is used to scroll in the word mode (16
bits). The system will default to a byte mode. .

BYM and WDM shouid be considered giobal defauits that affect all
operations, not just Memory Mode.

® To scroll in the byte mode:
BYM

e To return to the word mode:
WDM

Now that you can access Memory and I/0 Modes, work with the
pointers and scroll higher and lower in either the byte or word
mode, it's time to discuss how to change values.

When you enter an address or scroll to a new address, the CRT
terminal will display the new address (and its value if in memory
mode). To change the value, simply enter a new value followed by a
<return>. A string of values can also be entered, each separated
by a comma. This will store the values to consecutive locations
according to the current NXT or LST mode when in memory mode. In
1/0 mode a string of values will be stored at the same address.

4-7

4.4.6

4.4.7

Memory Mode
Status
MMS

ALT
Ccob
DAT
STA

Displaying a
Block of
Memory and
Finding a
Memory
Pattern

DB

FIN

e To change a single value at one location:
<address><data>> #>$47FF<return>

e To change a series of values at consecutive locations:
>M<address><data>>$47FF<return>
The emulator will respond with:
<address> <current data>>
Then enter:
<address><data> >$1,$2,$3,%4<return>
The emulator loaded the first location with 1, the second with 2,
the third with 3, and the fourth with 4. The address increments to
the next location following the last word that received data
(according to current NXT or LST mode).

Memory Mode status (MMS) allows you to define any of four memory
segment registers. These registers include alternate, code,
data or stack segments. See the following example.

e ihe general format 1is:
SMMS = ALT
cob
DAT
STA
Only one of the four possible memory spaces can be selected.

o To access data space:
SMMS = DAT

e To access code space:
>HMS = COD

Two additional operators need explanation at this point. Though
you cannot be in Memory Mode when you invoke them, these operators
affect memory examination.

DISPLAY MEMORY BLOCK. To display a block of memory, use the DB
operator. The display format includes line address and hexadecimal
byte data; ASCII-equivalent characters are displayed when in byte
mode.

e To display a block of memory:
>DB <address range> <return>

FIND MEMORY PATTERN. To find a specific bit pattern in memory the
FIN operator is used.

o To find a bit pattern in memory:
>FIN <range>, <data> <return>

4-8

e To find a bit pattern using Don't Cares (either form):
FIN 1000 TO 2FFF, 60XX
or
FIN 1000 LEN 1000, 6000 DC OFF

The emulator wi e
$<address> = <dat.
to indicate where the bit pattern has been found.

>REV

Mon Jan 38 15:46:56 PST 1984

>

>BYM

>DB & LEN 30

2O0Pe2 80 48 45 4C 4C 4F 86 80 - 2F OF Fl F9 SE 2F F6 F@ .HELLO../... /..

¢0018 OF 03 F@ 48 OF OC F@ 48 - 07 06 FP 90 OF 6C D8 80 ...@...Q........
002020 FF OF FF F9 FF LF FF 7F - FF 3F FF BD FF 1F FF FF 2oei.n.
>
>WDM
>DB 6 LEN 30
Figure 4-2, 00000® 4888 4C45 4F4C 808G - PF2F F9Fl 2FSE FOF6

JUTE e, o~ .| 009018 ©30F 40F@ OCPF A40FP - 9687 OOF@ OCOF B@DS
Dispiay Memory BIOCK! ggppop @FFF F9FF 1FFF 7FFF - 3FFF BDFF 1FFF FFFF

Format

4.5 MEMORY MAPPING Memory mapping is used in conjunction with the Overlay Memory. If
AND THE you wish to use the Overlay Memory during emulation, you will have
OVERLAY MEMORY tc define the memory map first.

The Overlay Memory is RAM 1in the Satellite Emulator with
appropriate address and control logic. It is locatable in 2K-byte
segments throughout the system. Size of the Overlay Memory ranges
from 32K-bytes to 512K-bytes, depending on the option you selected
at time of purchase.

The Overlay memory can be mapped into the address space of a target
system so you can load the target system program into it; the
target system program can then be edited, positioned in the target
system address space as desired, and the program executed in
real time as if it resided totally in the target system. Overlay
Memory is also useful for checking programs not yet committed to
PROM. When programming data is correct, it can be uploaded to a
PROM programmer.

4.5.1 Memory Block The first step in using the Overlay Memory is assigning one of

Attributes four attributes to the memory ranges. The ranges specified must
fall on 2K-byte boundaries. If you specify a range that does not,
the Satellite Emulator will expand the range until the endpoints
fall on such a boundary.

The following paragraphs describe the attributes of the four types
of memory blocks possible.
NOTE:
The memory block attribute operators, :R0, :RW
:TGT, and :ILG, are always preceded by a colon.

4-9

4.5.2

:TGT

<ILG

Memory Mapping
Operators

MAP

CLM .

READ ONLY. Memory blocks marked with this attribute are write-
protected: no target system write cycle can change the data. Note,
however, that the emulator can write to that space. This is most
often used to emulate instruction memory that would be placed in
ROM or PROM. If a write cycle is made to a memory block that has
this attribute, a write access violation breakpoint stops program
execution and displays a message to that effect.

READ/WRITE. Memory blocks marked with this attribute are available
for read or write access. No error breakpoints ever occur as a
consequence of access to these blocks.

TARGET. Memory blocks marked with this attribute are assigned to
the target system. A1l memory accesses marked target by the micro-
processor go directly to the target system memories (if any).

ILLEGAL. Memory blocks marked with this attribute are illegal for
all types of access. Normally these blocks are useful for marking
memory that should never be referenced by the program at all. In
other words, if the program references these addresses, there is
something wrong with the program. If this ever occurs, a memory
access violation breakpoint-will stop program execution and display
a message to that effect.

Three operators are used in conjunction with the memory type
operators for memory mapping.

SET MEMORY MAP. The MAP Operator is used in conjunction w1th the
memory type operators (Read Only, Read/Write, etc.).

e The general format for sett1ng up a block of overlay memory is:
SHAP <range> [:memory tiypej<return>

e To set a memory space as Read Only, $3000 bytes long, responding
to addresses 0 to $2FFF:
>MAP 0 to $2FFF :RO<return>
This would contain 6 blocks of 2K bytes each.

e The same format is used for setting any other of the four memory
types. If the memory type argument is not supplied, the default
is read/write (:RW),

DISPLAY MEMORY MAP. This operator allows you to display the memory
map currently in effect.

e To display the memory map in effect:
>DM<return>

CLEAR MEMORY MAP, This operator clears the memory map currently in
effect. Be sure you are ready to clear it before invoking the
operator,

o To clear the memory map in effect:
>CLM<return>

4-10

Figure 4-3,
Display Memory Map
Format

4.5.3 Overlay Memory
Operators

OVE
DTA
cD

Load Overlay Memory
LOY

>MAP ©:RO

>DM
MEMORY MAP:
MAP $00@00@ TO $OPZ7FF : RO
MAP $9089880 TO $FFFFFF : TGT

Overlay Memory ENABLE. The OVE operator allows you to load ,
values that determine which 8086 memory status space the Overlay
Memory responds to. The possibilities are Code Space (CD) and Data
Space (DTA). The current value is shown when the memory map is
displayed. Factory default is CD + DTA.

e The general format for OVE 1s:
>0VE = CD + DTA <return>

LOv. LOV loads Overlay with your target system program.
The data is automatically verified during the operation. (The
target is not written to.)

The key sequence for loading the Overlay Memory is given in the
following example. The argument specifies the address range of the
target system memory from which to move data to the Emulator
Overlay Memory. Note that the Overlay Memory may also be loaded
via the block move command.

The key sequence is:
>LOV X TO Y<return>
or
>LOV X LEN W<return>

4-11

Yerify Overlay
Memory
YFO

Fill Operator
FIL

YFO. VERIFY OVERLAY MEMORY. VFO is used to verify that the
program you have loaded into Overlay Memory matches the program

in your target system memory. The following example shows the key
sequence.

e The key sequence is:
>YFO X TO Y<return>

o If any differences occur, the emulator will return:
<address> = XX NOT YY

The <address> is where the misverify occurred. XX denotes the
data present in Overlay Memory and YY is the data at that
location in target system memory.

FILL. FIL is used to fill the memory space of the emulator or
target system with a constant. The constant may be written to
overlay memory and target read/write memory.

The format for the Fill operator is:
SFILXTOY, Z
or
>FIL X LEN W,Z

The first argument specifies the address range to be filled with
the constant specified in the second argument. The second argument
may be byte or word, depending on the global default.

4-12

Verify Block Data
YBL

Clear Overlay Memory
CLM

Block Move

Yerify Block Move
BMO

VBM

4.6 SOFTWARE DEBUGGING
WITHOUT TARGET
SYSTEM HARDWARE

VERIFY BLOCK DATA. The VBL operator is used in conjunction with
the FIL operator. Once the Overlay Memory has been filled with
constant data (via FIL), this data can be verified with the VBL
command. The key sequence shown in the following sequence is much
like the key sequence for FIL.

The general format is:
>YBL <address range>, <argument><return>

The VBL operator verifies that the address range contains the
argument,

CLEAR OVERLAY MEMORY MAP. The CLM operator clears all addresses
and data from Overlay Memory map. Clear the map and data by typing
CLM<return>, enter the new map, then load new data.

The format for clearing Overlay Memory is:
>CLM<return>

The Block Move operator moves a block of data from one location
within the emulator or target system memory, or Overlay Memory to
another via a source/destination format. The space you move data
into should be designated as writeable.

The format for a block move is:
>BMO<source range>, [source space,]
<destination start address>,[destination]<return>

"Space" refers to the 8086 status space: CSP, DSP

o You can set MMS prior to execution:
>MMS = COD
>BMO GR1,3$1000

e Byte or word may be specified. The space code may be typed on
the same tine.
>BMO 300 LEN 40,,10300,

An added feature of the Satellite Emulator is its ability to debug
software without being physically connected to your target system.
This is accomplished by using an internally generated clock.

The procedure consists of mapping memory space and 1loading the

Overlay Memory with your program. You can now use the features of
the emulator to execute program code and test modules.

4-13

4.7 ERROR HANDLING
AND CODES

4.8 THE TRACE MEMORY
AND DISASSEMBLER

4.8.1 Display Raw
Trace
DRT

When an error occurs during operation of the Satellite Emulator
with a CRT terminal, the system will print a question mark (?) on
the screen, directly below or just after the point in the input
character stream that caused the error. See Figure 4-6.

The Trace Memory records the history of the program execution. It
may be used in conjunction with a disassembly routine to format the
trace data. The mnemonics provided by the disassembled display
ensure more rapid analysis of your data.

During emulation, the activity of the executing program is recorded
continuously and stored in the Trace Memory. At any point in the
process, the program execution can be stopped. The address, data,
and control bus of the last series of cycles can be displayed and
scrolled on a CRT terminal or output to a printer. The entire
contents or a "window" of cycles occurring between specified bus or
instruction cycles can be dumped. If something unexpected happens
during program execution, the Trace Memory provides a record that
can be reviewed to determine what happened. The Event Monitor
System can be used to qualify, start recording of data into the
Trace Memory, and stop the recording process.

The Trace Memory is 72 bits wide and 2048 words deep; two words are
used for marks, leaving 2046 words. It cannot be accessed by the

user during emulation.

A trace counter supplies the address to the Trace Memory and can be
incremented with each cycle. It is a 12-bit counter (only eleven
are used) with count mode logic. It has three modes of operation:

] count never
[count every bus cycie {oniy avaiiabie during a Run mode)

. count every bus cycle when quaiified by trace directive from
the event monitor system (only available during a Run mode)
(see Section 5).

A Disassembler is available for use with the Trace Memory. This
allows you to display or print Trace Memory out in an easy-to-read
format similiar to a program listing. Figures 4-4 and 4-5 show
et mbmred o -~ £ *la o~ Twamn LY Py -~ oA ~L E) N Tam anm Mammasme: 2% bl
Al t1HHLVuU LY v il 1ifavg ncmve y alid Vi il travec VICIHUIT j Wil Ll
Disassembly. When printed, the disassembler writes over the line
which invokes it. This may cause overstriking on your printout.

A "page" of Trace Memory is defined as the number of lines on the
CRT terminal, less three. All scrolling is done by pages, with
both raw Trace Memory data and disassembled data.

DRT can be used to display Trace Memory data in bus cycles if you
do not wish to use Disassembly to display instruction cycles,

4-14

Figure 4-4.

] You can verify byte data between the target and Overlay Memory:
>YBM 2000 TO 3FFF,2010,

Verify Block Move has the same syntax as Block Move except that VBM
only verifies that the source and destination blocks are identical.

Invoking DRT causes the Satellite Emulator to display a page of bus
cycles 9f the Trace Memory. More or less cycles may be displayed by

specifying an address or address range in an argument following the
operator. If a single address is specified, the system will disp1é} the
specified address and the previous 20 bus cycles. The Trace Memory
holds 2,046 cycles; therefore, 2,046 is the highest number allowable as
input. Note that the raw Trace Memory contains the 16-bit status and
control word (described in Section 5.2.6).

LY

® To display the last page of bus cycles:
>DRT<return>

° To display a specific line number and the previous 20 cycles:
>DRT<address><return>

(] To display a range of line numbers:
>DRT<range><return>

ﬁote that the range is a.range of bus cycies, not the address recorded
in the Trace Memory.

>DRT #58)

LINE ADDRESS DATA R/W M/I0 BCYC QUE LSA -~ 87 8
$69 0010060 > OFB9 R ovL M IF F & %11111111 %11
#68 001082 > BEOO R ovL M IF 2 $11111111 %11
467 001004 > 2000 R OVL M IF 2 $11111111 %11
$66 9001906 > @OBF R ovL M IF 1 $11111111 %11
$§65 ©010@8 > A522 R OoVL M IF 2 %11111111 %11
$64 09Q100A > A4F3 R OVL M IF 2 $11111111 %11
$63 @0186C > 8183 R OVL M IF 3 $11111111 %11
$62 002880 > FF50 R OVL M RM 4 $11111111 %11
$61 002208 < FF56 W OVL M WM 4 %1111111] %11
#60 OOGLP0E > FFBO R OVL #M IF 3 311111111 311
$59 001018 > ©2B9 R OVL M IF S $11111111 %11
#58 082002 > 3E R OVL M RM 6 $11111111 %11
$57 ©02202 < 3E W OVL M WM 6 $11111111 %11
$56 082083 > FF R OVL M RM 6 $11111111 %11
$55 ©02203 < FF L OoVL M WM 6 %11111111 %11
$54 002004 > 00 R OVL M RM 6 $11111111 %11
#53 002204 < 00 W OVL M WM 6 $11111111 %11
$52 002005 > 90 R OVL M RM 6 $11111111 $11
$51 002205 < 09 W OoVL M WM 6 $11111111 %11
#50 0802006 > FF R OVL M RM 6 %11111111 %11

Trace Memory Format

4-15

4.8.2 Disassemble

4.8.3

Trace
DT

Disassemble
Previous and
Following
Traca

DTB

DTF

This operator will cause the Trace Memory to be disassembled and
ouput to the controlling port (computer or terminal). The key
sequence is shown in Figure 4-5. If no range argument is
specified, the last instruction executed is disassembled. The
output of the DT operator in this instance has its line feed
suppressed. Thus, by repeating the operators Step and Dissemble
Trace, a continuous Disassembly is formed (>STP;DT<return>). Some
information can't be disassembled because of qualifiers such as TOT
or TRC (within the Event Monitor System).

0 To disassemble the last instruction executed:
>DT<return>

0 To disassemble a range:
>DT<single value or range><return>
The single or range values are sequence numbers where @ is the
number for the most recent instruction. Entering a single
value will disassemble that value and the previous page. A
range disassembles that range of sequence numbers.

0 To initiate a continuous Disassembly:
STP;DT<return>

NOTE :
When using Display Register (DR) and Disassemble Trace (DT) on
the same iine, enter DT first, then DR, as shown in this
example:

RBY;WAI;DT;DT<cr>

If you enter DR first, the DT command writes over the last
Tine of the register display.

These two operators will scroll you through the disassembled Trace
Memory a page at a time. This key sequence is also shown in
Figure 4-5.
NOTE
The Tine numbers in 0T, DTB, and DTF are instruction
numbers and do not correlate with the line numbers
displayed by DRT, which are bus cycle numbers.

¢ To disassemble the previous page:
>DTB<return>

e To disassemble the following page:
>DTF<return>

4-16

Figure 4
Disass
Format

-
am
=iy

*
hle Trace
Dle [race

>DTE

SEQ# ADDR OPCODE MNEMONIC

OPERAND FIELDS

BUS CYCLE DATA

SEQ4 ADDR OPCODE MNEMOMIC OPERAHD FIELDS

BUS CYCLE CATA

0049 P3#_5085_80186_Test

0049 1000 BPOFOQO nov CX-0Q0F

00468 1003 BEOQOZ2O nov S$I:2000

0054 1006 BFOQO22 nov DI,2200

0063 1009 AS navs WORD PTR 2000>FFF0 2200<FFFD

00s4 100A "F3 REFPZ

0064 1002 A4 movs BYTE PTR
2006203 2202<3E 2003>FF 2203<FF 2004500 2204<00
2005500 22035<00 2006>FF 2204<FF 2007>FF 2207<FF
2008500 2208<00 2009500 2209<00 200A>MFF 220A<FF
2008>FF 2208<FF 200C»00 220C<00 2000>00 220D<00
200E>FF 220E<FF 200F>F5 220F<KFS 2010>00 2210<00

0063 100C 0Q38100FF ADD AX,NORD FTR [8X-1002(DI] 2111>FF00

0059 1010 890200 nov CX,0002

00246 1013 F2 REPNZ

0025 1014 A7 CAPS MOROD PTR 20110FFL10 221i»FF10

0023 1013 C116002403 RCL WORD PTR Data_Word,03 2400:A4002 2400<0044

0017 1Cia (£3400004 ENTER 0040,04

17FESQO0Q00 FFFEMFFFF L?FCKFFFF FFFCOFFFF
17FAKFFFF FFFADFFFF 17F8CFFFF 17F6<17FE
0013 101E EQEO LOOPME SHORT PGAN_B8086_B801846_Test

When the question mark appears on the screen, you should key in a
question mark in return to find out the error message. Table 4-2
lists the errors that may occur by code and their messages as
displayed on the CRT. If you need additional help, call Customer
Service for ES products.

If you are operating the Satellite Emulator under host system
control, only two errors are likely to occur, assuming the host
system software has been fully debugged: Error 6, a checksum error
and Error 34, a read-after-write error. The host system can be set
up to return a question mark to the emulator and use the error code
number to consult its own table for further action.

4-17

>HELLO .
. ?
Figure 4-6. >?
Error Recognition ERROR #5

UNDEFINED SYMBOL OR CHARACTER DETECTED

>

>

>SET GDZ=@ LEN 68

?

>?
ERROR #29 _
ILLEGAL DESTINATION - SOURCE TYPE MIX

>?
ERROR #9
NO (MORE) OVERLAY RAM AVAILABLE

Table 4-2.
Error Codes

CODE MESSAGE DISPLAYED COMMENTS

1 EXPRESSION HAS NO MEANINGFUL RELATION TO REST Often caused by entering symbols
OF THE COMMAND out of context. DR and BRK are
both legal operators but entered
together as DR BRK would cause
this error message.

5 UNDEFINED SYMBOL OR INVALID CHARACTER Generally caused by improper
DETECTED spelling.
6 CHECKSUM ERROR IN DOWNLOAD DATA The last record received was in

error. Make sure that the format
selected in the system setup isg
the same as that of the received
data. Refer to download for error
handling during computer control.

7 BAD STATUS = ...RETURNED FROM EMULATOR Contact Applied Microsystems
CARD Technical Services Department.

8 ARGUMENT IS NOT A SIMPLE INTEGER Don't Cares are not allowed in
OR INTERNAL RANGE this context.

9 NO MORE OVERLAY MEMORY AVAILABLE You have not cleared the map or

you are trying to map in more
memory than is allowed.*

4-18

CODE

MESSAGE DISPLAYED

COMMENTS

10

11

13
16

31

32
33

34

MULTIPLE-DEFINED EVENT GROUP

ILLEGAL ARGUMENT TYPE FOR EVENT
SPECIFICATION

ARGUMENTS MUST BE A SIMPLE INTEGER

OPERATION INVALID FOR THESE ARGUMENT
TYPES

SHIFT ARGUMENT CANNOT BE NEGATIVE

TOO MANY ARGUMENTS IN LIST...(9 MAX)
INVALID GROUP NUMBER...(NOT IN 1-4)
OPERATICON INVALID FOR THESE ARGUMENT TYPES
BASE ARGUMENT MUST BE A SIMPLE INTEGER
RANGE TYPE ARGUMENT NOT ALLOWED AS DATA
ADDRESS ARGUMENT MUST BE A SIMPLE INTEGER
ILLEGAL DESTINATION - SOURCE TYPE MIX

RANGE START AND END ARGUMENTS MUST BE
SIMPLE INTEGERS

RANGE END MUST BE GREATER THAN RANGE START

RANGE START AND END ARGUMENTS MUST BE
SIMPLE INTEGERS

READ AFTER WRITE-VERIFY ERROR

Only one group may be referenced
in any event clause; caused by
trying to mix event register
groups in an event ciause e.g., 2
WHEN AC1.3 THEN BRK would cause
this error.

Often caused by attempting
arithmetic operations on
incompatible variables, e.g., (4
DC 9) + (IRA 500 to 700). Same as
error 23.

An Awmmoanm

< . 1€
S€e error 4o,

Argument should be #0 to #16.

Caused by trying to store don't
care data into a range variable
and other similar operations.

6 LEN 1 is not a valid range

Downloaded data is verified on a
byte-by-byte basis. The error
message contains the location and ~
results of the comparison.

*Contact Applied Microsystems for optional Overlay Memory expansion.

4-19

CODE MESSAGE DISPLAYED COMMENTS
35 WARNING - DATA WILL BE LOST WHEN Caused by attempting to store into
EMULATION IS BROKEN CPU registers during emulation.

CPU registers are copied into
internal RAM only when emulation
is broken. The RAM contents are
copied into the processor only
when emulation is begun. The
emulator cannot access CPU
registers during emulation. Thus,
once emulation has been started,
the DR command will show the
contents of the CPU registers as
they were before emulation was
begun. Changes can be made to
these values but the data will be
rewritten when emulation is
broken.

38 NO ROOM...BREAKPOINT CLAUSES T0O

NUMERQOUS OR COMPLEX

39 INVALID GROUP NUMBER...(NOT IN 1-4)

40 ILLEGAL SELECT VALUE First argument after SET operator
is invalid.

41 INCORRECT NUMBER OF ARGUMENTS IN LIST

42 ILLEGAL SETUP SET VALUE The argument nearest to the "?" is
illegal.

43 “WHEN" CLAUSE REDUCED TO NULL FUNCTION Caused by such constructs as "WHEN
AC1 AND NOT ACl."

44 INTERNAL ERROR...NULL SHIFTER FILE Contact Applied Microsystems.

45 MAP CANNOT BE ACCESSED DURING EMULATION The map hardware is constantly
used by the emulating processor
during emulation.

46 ARGUMENT MUST BE AN INTERNAL RANGE

47 16-BIT RANGE END LESS THAN START

48 ILLEGAL MODE SELECT VALUE

49 INVALID GROUP NUMBER...(NOT IN 1-4)

50 INVALID GROUP NUMBER...{NOT IN 1-4)

51 SAVE/LOAD INVALID ARGUMENT VALUE

g2 DISPLAY BLOCK NEEDS AN IRA ARGUMENT

4-20

CODE MESSAGE DISPLAYED COMMENTS

53 EEPROM WRITE YERIFY ERROR Data in the EEPROM is verified
during the SAV operation. (The
store operation is retried many
times before the error is
generated.) EEPROMs have a finite
write cycle 1ife. The EEPROM in
your emulator is warranted for one
year. Contact Applied
Microsystems for service.

54 ATTEMPT TO SAYE/LOAD DURING EMULATION

55 EEPROM DATA INVALID DUE TO INTERRUPTED SAVE Previous SAV was interrupted by a
reset or power off.

56 TRACE DATA IS INVALID DURING EMULATION

57 INVALID GROUP NUMBER (NOT 1-4)

58 IMPROPER NUMBER OR ARGUMENTS

59 ARGUMENT MUST BE AN INTERNAL RANGE

60 ARGUMENT MUST BE A SIMPLE INTEGER

61 IMPROPER NUMBER OF ARGUMENTS

62 CANNOT STORE THIS YARIABLE DURING EMULATION

63 ILLEGAL ARGUMENT TYPE

64 ARGUMENT TOO LARGE Caused by entering range or
integer vaiues with the DRT
command that include numbers
greater than #2045.

65 ILLEGAL RANGE

66 STATUS CONSTANTS CANNOT BE ALTERED

67 TOO MANY "WHEN" CLAUSES

68 COMMAND INVALID DURING EMULATION

70 CANNOT INITIALIZE YECTORS DURING EMULATION Typed LDY, RNY, RBY during

, emulation.

71 UNKNOWN EMULATOR ERROR Call Applied Microsystems.

72 INCOMPATIBLE EEPROM DATA Previous data save was not from
8086 emulator system.

74 COMMAND INVALID DURING EMULATION

75 INVALID RECORD TYPE Download routine received invalid

4-21

record type code.

4.9 THE MEMORY
DISASSEMBLER

4.9.1 Display
Disassembled
Memory
DIS

Example
Using DIS

4.10 THE LINE ASSEMBLER

4.10.1 Standard
Mnemonics

4.10.2 Assembier
Directives

The memory disassembler allows you to dump the contents of memory
and have it displayed or printed in an easy-to-read format similar
to a program listing.

NOTE:

You should be familiar with 8086 assembly language programming
before reading this section. The information presented here
is an overview, which will provide the necessary instructions
when used in conjunction with Intel documentation. You should
have the iAPX 86, 88, 186 and 188 User's Manual Programmer's

Reference for 8080/8085 based development systems or its
equivalent.

This operator will cause memory to be disassembled and output to
the controlling port (computer or terminal). If no argument is
specified, one page of disassembly is displayed, beginning at the
last address when this operation was previously invoked.

¢ lo disassemble one page of memory beginning at the last address
when this operation was previously invoked:
>DiS<return>

e To disassemble one page of memory beginning at the specified
address:
>BIS<single value><return>

e To disassemble a range of memory:
>DIS<range><return>

e To continue disassembly one line at a time:
><space> (at the end of each line)

e To continue disassembly one page at a time:
><return> (at the end of each page)

The 80886 Line Assembler allows vou to enter and assemble Intel 8086
mnemonic instructions into target memory. In addition to
instructions, there are Assembler Directives: to aid you in
selecting memory addresses, using symbols, inserting numbers and
text strings into memory, etc. The Line Assembier gives you a
powerful software tool to facilitate in software patching,
hardware/software debug, developing small programs, writing
hardware/software test routines, etc.

A1l standard Intel 8@86 mnemonics are supported. These are listed
in the ASM86 Language Reference Manual.

The foilowing assembier directives are supported:

DIRECTIVE DESCRIPTION

CSEG Sets 64K byte code segment window (corre-
sponds to CS register).

ORG Sets 64K byte offset into the code segment
window.

4-22

Example

Use of Assembler

Directives

DIRECTIVE DESCRIPTION

END Exits Line Assembler to the command level.

DB Defines byte data.

W Defines word data,

PRE Toggles preview display mode.

EQU Sets value for symbol (only valid with
installed symbolic debug hardware) or
local symbol (L@-L9)

Lg,L1...L9 Print value of local symbol.

' symbol Print value of symbol (only valid with
installed symbolic debug hardware).

<return> Disassemble one instruction at current
address,

$ Current line assemby offset address.

THIS NEAR Current line assembly offset address.

THIS FAR Current line assembly segment and offset

address.

The key sequences for these assembler directives are shown in
example 5-6.

NOTE:
Lines shown in bold type with a <return> are user

entries; lines shown in regular type are the

assembled response.

e To set Code Segment window (64K-byte assembly window):
1912 >CSEG OD4@@H<return>
1412 >

e To set line assembly origin within code segment window:
1412 >0RG 3&ACH<return>
3&AC >

o To exit line assembly:
58FD >X<return>
*x*x END OF LINE ASSEMBLY *¥i&
>

® To define constant byte data:
S8FD >0B 1,2,3,4, "TEST",@<return>
58FD 31 32 33 34 54 45 53 54 28 ¢¢
5987 >

4-23

4.10.3

Usage Notes

Y
> - =

()
.

I

o To define constant word data:
(Note: odd length text strings are padded with nulls) .
58FD >DW 1,2,3,4,"TEST",@<return>
58;8 g19g 9299 9398 9498 4554 5453 de2¢ dded
594D >

o To toggle to preview mode:
659¢ >PRE <return>
6599 C6479234 MOV BYTE PTR [BX+2H],34H

e To toggle out of previous mode:
6599 C6479234 MOV BYTE PTR [BX+2H],34H >PRE<return>
6599 >

¢ To define/redefine local symbol or symbolic (if symbolic debug
hardware is installed)"
6598 >L3 EQU 7A44H<return>
6598 >
or if symbolic debug hardware is installed:

6598 > 'Unit EQU @FDEOH<return>
659¢ >

e To print local symbol:
756A >L3<return>
756A >L3 EQU 7A44H
756A >

e To print symbol (if symbolic debug hardware is installed):
756A >'Unit <return>
756A >'Unit EQU FDEOH
756A >

e To disassemble one instruction at current code segment and line
assembly offset address:
SDEA ><return>
SDSA 33@6AD78 XOR AX,WORD PTR 78ADH

SDOE >
P1us, minus, asterisk, or slash are the only arithmetic operators
allowed in expressions. Note that only 16 bit arithmetic is

performed.
Parenthesis are allowed to group expressions.

Double quotes (") or percent signs (%) are used to delimit ASCII
strings. If you enclose the string in percent signs, you may not
use percent signs within the string, but any number of double
quotes may be used. If you enciose the string in doubie guotes,
you may not use double quotes within the string, but any number of
percent signs may be used.

4-24

4,10.4

L2 <bS>

HOQTY

Assemble Line
To Memory

Upper-case strings are the default. The use of "'<backspace> will
allow entry of lower-case letters within a text string until you
enter a <space>.

The number base used in the line assembler is the deault base used
by the system, except when the base is explicitly specified (H, O,

Q, T, or Y). o

H - Hexidecimal
0 - Octal

Q - Octal

T - Decimal

Y - Binary

Example operand addressing modes:

PA4H Immediate addressing mode
Word PTR 5634H Direct addressing mode
Byte PTR 9DC4H Direct addressing mode

[s1] Indexed addressing mode

[Bx1fsI] Base indexed addressing mode
[BX+SI] Base indexed addressing mode
[BX+5] Base Displacement addressing mode
[BP+4] Stack indexed addressing mode
[BX+DI+15] Base displacement indexed
[~3*(23+4)+BX+SI] Base displacement indexed

This operator will cause the line assembler to be invoked. The key
sequence is shown in the following example. If no argument is
specified, 1ine assembly will begin at the last address, when this
operation was previously invoked. To exit line assembly and return
to the command level, enter eiher END or X with the addressed
prompt displayed (as shown here).

° To start line assembly beginning at the last code segment and
line assembly address when this operation was previously
invoked:

>ASM<return>
*ikkk 8§86/88/186/188 LINE ASSEMBLER VX.XLA *ia*

goeg >

° To start line assembly beginning at the specified code segment
and line assembly offset address:

>ASM @C6A3<return>
*xkx 8@86/88/186/188 LINE ASSEMBLER VX.XLA **i*

° To terminate line assembly:

9876 >X<return>
*kix END OF LINE ASSEMBLY *#%*
>

4-25

The Tollowing examples represent ways in which the Tine assembler
can be used.

Example :
Using Addresses >ASM 1@@<return>
hxk 8'86/88/186/188 LINE ASSEMBLER VX.XLA *ix

g19@8 >CSEG 5dd@<return>

#1094 >MOY DX,8<return>

#1989 BAJSHY MOY DX,8

#1903 8949 MOV WORD PTR [BX+DI],CX
@145 >DEC DX<return>

g1ds 4A DEC DX

#1§6 >JINE WORD PTR 1@3<return>

@186 75FB JNE WORD PTR 143
#1#8 >X<return>

*xik END OF LINE ASSEMBLY *%%x

Example
Using Local Symbols >ASM l@@<return>
*xix 3@86/88/186/188 LINE ASSEMBLER VX.XLA *ivx

g198 >CSEG S@d@<return>

@194 >MOV DX,8<return>

9199 BAJSsdd MOY DX,8

@193 >L5 MOV WORD PTR [BX+DI],CX<return>
§1#3 8949 L5 MOV WORD PTR [BX+DI],CK
#1685 >DEC DX<return>

§1#6 >JINE WORD PTR L5<return>

@196 75FB JNE WORD PTR LS
#1¢8 >X<return>

wax% END OF LINE ASSEMBLY ##%*

Example
Using Assembler
Directives >ASM<returm>
hxk 8986/88/186/188 LINE ASSEMBLER VX.XLA #%

#198 >0RG $+1d@d@<return>

1180 NrCCN smadiimmy
ALPY TUdiLUd™MN T LUl L7

1198 >CSEG S@#8

1198 >L2 QU 4<returm>

1198 >L3 EQU L5-$+2<return>

1148 >L1 DB "TEST",@<return>

1198 54 45 53 54 g¢

118D >0RG 20@@<return>

2098 >MOV SI, WORD PTR Ll<return>
2909 8B36@811 MOV SI, WORD PTR L1
20¢4 >MOV DI,WORD PTR L3<return>
2¢94 8B3EFCEF MOY DI,WORD PTR L3
2088 >MOV CX,4<return> :
2098 899449 MOV CX,4

2098 >REP<return>

2998 F2

286C AV MOVSE

269D >X<return>

axk END OF LINE ASSEMBLY *##*

4-26

>

Example
Error Message in
Response to ?

Example
Using Symbols With
Symbolic Debug
Hardware Installed

>ASM<return>
*kk 8§86/88/186/188 LINE ASSEMBLER VX.XLA ****

299D >'label JNZ WORD PTR 1834 <return>
?

>2

ERROR #9

ARGUMENT OUT OF RANGE

>ASM <return>
*xtk 8@86/88/186/188 LINE ASSEMBLER YX.XLA *%x%

288D >JZ $+6<returm>

2080 7404 JZ $

2§gF >IMP WORD PTR 1@34<return>

200F FF26341¢ JMP WORD PTR 1¢34
2#13 >'label EQU 4@@@<return>

2013 >'page table EQU 189@<return>
2§13 >'pt-bTink EQU 4<return>

2013 >MOV BYX,'page table<return>

2613 BB9#1S MOV BX,'page table
2816 >LEA BX,[BX+'pt blink T <return>
2816 8DSF@4 LEA BX,[BX,[BX+'pt blink t
2019 >X<return> -
*kkk END OF LINE ASSEMBLY ***%

4-27

SECTION 5
PROGRAMMING THE
EVENT MONITOR SYSTEM

5.1 INTRODUCTION
5.2 DISPLAYING AND CLEARING THE EVENT MONITOR SYSTEM

5.3 EVENT COMPARATORS
5.3.1 Address Comparators
5.3.2 Count Limit
§.3.3 Data Comparators
5.3.4 Status Comparators
5.3.5 Don't Cares

5.4 EVENT MONITOR SYSTEM ACTIONS
5.4.1 Force Special Interrupt

5.5 EVENT GROUPS

5.6 OPTIONAL LOGIC STATE ANALYZER
5.6.1 LSA Functions
5.6.2 Timing Strobe

5.7 STATEMENT CONTROL
§.7.1 Repeat Command
5.7.2 Loop Counter
5.7.3 Macros Defining Macros

5-1

5.1 INTRODUCTION

The Event Monitor System is an expanded and enhanced breakpoint
system, It is used to detect specific events occurring in the
target system and to perform actions when these events are
detected. Action is taken according to a set of statements.
These statements combine detection comparators and action items.
When an event is detected, any of the following actions may occur:

e all-cycle trace

e single-cycle trace

e window-mode trace

¢ external triggering

® pass counting

e breakpoints (ranging from simple to highly complex)

In addition, the Logic State Analyzer option gives you access to
sixteen external logic signals that can be user-defined and con-
sidered in the Event Monitor System.

To set up the Event Monitor System, you must define event detectors
that will trigger an action list. The event detectors and the
action list are combined into WHEN/THEN statements, which become
active when running the target system. WHEN/THEN statements take
the following form:

WHE[N] <event> THE[N] <action>

Event detectors may be combined using AND, OR, and NOT. These are
1ike Togical ANDs, ORs, and NOTs, except that they are not on a bit
level. A more complex example of a WHEN/THEN statement might look
like this:

o WHE[N] <event> AND <event> OR <event> THE[N] <action>, <action>,
<action>

There are four event groups, each group consisting of eight
compdrators. The system can operate in only one group at a time.

Each WHEN/THEN statement must be defined for a specific group. If
no group is defined, the statement will default to group 1.
WHEN/THEN statements are used to link event groups together for

sequential operation.

Remember that the Event Monitor System must be set up prior to its
use. Comparator values can be stored in the EEPROM between
emulation sessions. (Two users may store their event system
setups.)

NOTE
When the Event Monitor System is used
in conjunction with emulation, timing
is not affected - the emulator still
operates in real time.
the operators used with the

The table on the next page summ s
s are also displayed online o

v MQ

Event Monitor System. (These operato
page 2 of the Help Menu.)

Table 5-1.

Event Monitor System OPERATOR — NAME BITS
: WIDE
SETTING AND CTEARING CES clear event system
DES display event system
EVENT COMPARATORS ACl address comparater 1 24*
(singly or in combinations AC2 address comparator 2 24*
comprise event detectors) DC1 data comparator 1 16%*
DC2 data comparator 2 16%*
s1 status comparator 1 16%*
S2 status comparator 2 16%*
LSA Logic State Analyzer
comparator 16%*
CTL count 1imit comparator 16

*single address or address range
**includes Don't Cares

ACTIONS CNT count event
(What the Satellite FSI Force Special Interrupt
Emutator does in response BRK break emulation during RBK or RB
to the event detectors; TGR trigger signal high for one
several actions may bus cycle
be combined in a single TRC trace event
statement) RCT reset count limit

GRO switch event group

TOT toggle tracing

ToC toggle counting
STATEMENT OPERATORS IRA internal range
(used to combine event XRA external range
comparators and actions T0 to
into statements) LEN Tength

WHEN when

THEN then

AND and

OR or

NOT not

DC Don't Care

SIA Special Interrupt Address

5.2 DISPLAYING AND Two operators are included for clearing the contents of the
CLEARING THE EVENT Event Monitor System and displaying its contents.
MONITOR SYSTEM
DES o To clear all the WHEN/THEN statements:
CES >CES<return>

e To clear the WHEN/THEN statements for a single group:
>CES <group number><return>

e To display all of the WHEN/THEN statements:
>DES<return>

5.3 EVENT COMPARATORS

o To display the comparators as well as the WHEN/THEN statements
for a given event group:
>DES <group number><return>

There are eight event comparators for each of the four event system
groups:

COMPARATOR TYPE (AMOUNT) DATA TYPE

Address (2) Integer, Internal Range
External Range

Data (2) Integer, Don't Care

Status (2) Integer, Don't Care

Count Limit (1) ‘ Integer

Logic State Analyzer (1) Integer, Don't Care

Values contained in any other register in the system may be
assigned to the comparators, as long as the data types are
compatible, for example:

S1 = MMS

0dd Boundaries

The address comparators in the 8086 may need to be specially set up
because it is a 16-bit machine with a prefetch QUE and byte based
instructions. This leads to problems with breaking on instructions
that occur on odd boundries. When the 8086 prefetches the instruc-
tion, it outputs the even address. Both bytes are fetched, and the
actual (odd) address of the byte in question is never seen. The
traditional idea of setting the Event Detector to the odd address
will obviously not work. If the 8086 jumps to the odd address, the
odd address does appear on the bus, and that byte alone is fetched.
In this case, the traditiconal sense of setting up the Event
Detector does work. The final case is when the low byte only is
read. In this case, the even address appears on the bus, but the

odd byte is not read.

The ES Event Detectors can be set up to resolve these three
conditions. Assume the byte in question is at $04001. This byte
could be accessed by the address $04001 or $04000. If the address
$04001 is on the bus, then the byte is accessed. If the address
$04000 is on the bus, and the bus cycle is a 16-bit cycle, then the
byte is accessed. If the address $04000 is on the bus, and the bus
cycle is an 8-bit cycle, then the byte is not accessed. The
following setup will handle this condition;

AC1 = $04000
AC2 = $04001
S1 = WRD

WHEN AC1 AND S1 OR AC2 THEN BRK

5.3.1 Address

iRA
LEN

Comparators
ACl
AC2

AC1 contains the even address. S1 is the word bus cycle condition.
I1f both are true, the high or odd byte has been accessed. AC2
contains the actual odd address. If it is true, then the byte is
always being accessed. If either is true (or), then the byte is
being accessed. If neither is true, then the byte is not being

-~mmnnnn

A
avuLtTootTu,.

The address comparators match addresses occurring within the
emulation process against the 24-bit address bus. If a match
is detected, the associated action occurs.

Address comparators can be a single address, an internal range, or
an external range.

The examples shown here illustrate the format for assignimg address
comparators and ranges. When a single address is assigned to an
address comparator, such as ACl = $4766<return>, each time the
address $4766 appears on the address bus, the ACl comparator will
detect this "event" and will produce a true output (the action

associated with the ACl event detector).

o To set an address comparator to a single address:
>AC1.3 = $06FF<return>

or
>AC2.1 = $3488<return>

or
>AC1 = IP + $2000 <return>

The assignment statement may include other operations, such as
adding an offset to one of the CPU registers (in this example the
instruction pointer). This would cause the specified event to
occur upon an access $200 bytes ahead of the current instruction
pointer.

® Ranges are set up with the IRA, XRA, TO, and LEN operators.
To set an address comparator to an internal range (all
addresses from n to m, including addresses n and m):

address comparator = IRA <address n> TO <address m><return>

>AC2 = IRA $3000 TO $3FFF<return>
or
address comparator = <address> LEN <length><return>
>AC2 = $3000 LEN $1000<return>
or
address comparator = <address n> T0 <address m><return>
>AC2 = $3000 TO $47FF<return>

Note that when no prefix is applied (IRA or XRA) the range is
assumed to be internal--IRA is implied.

5-5

XRA

(1)

5.3.2 Count Limit
CTL

5.3.3 Data
Comparators

e To set an address comparator to an external range (all addresses
not between n and m -- addresses lower than and including n, or
addresses higher than and including m):

address comparator = XRA <address n> TO <address m><return>
>AC1 = XRA $2000 TO $32FB <return>
or
>AC1 = XRA $2000 LEN $32FA <return>

o The inverse operator (!) can also be used:
>AC2 = IAC1

The above would define AC2 as the inverse of ACl. If ACl is
internal, AC2 would become its complementary external range and
vice versa.

Both internal and external ranges include endpoints as part of the
valid range. The LEN Operator provides an alternative to speci-
fying ranges. When a range is specified with a LEN expression, the
first value specified is the beginning address of the range and the
last value is the block size (the length specified with LEN, minus
one). Ranges can also be defined from other ranges with the
inverse operator (!) shown in the first example.

NOTE

Addresses can also be assigned with the indirec-
tion operator (@). See section 3.6 for an example.

Each event group has a count limit comparator, and the system has

- one hardware counter. When entering RUN mode, the value from CTL.1

is automatically loaded into the hardware counter, and may be used
in event system WHEN/THEN statements, as shown here:

S1 = RD + OVL

CTL = #200

WHE[N] S1 THE[N] CNT
WHE[N] CTL THE[N] BRK

In order to load the value from another CTL register into the
hardware counter, a RCT (reset count) action must be specified in
conjunction with the switch to a new group. Thnis new count Timit
value may then be used in WHEN/THEN statements, as shown here:

AC1 = 37800

CTL.2 = #10

AC1.2 = $7840 '
WHE[N] AC1 THE[N] RCT, GRO 2
2 WHE AC1 THE[N] CNT

2 WHELR] CTL THELN] BRK

Event groups are discussed in more detail in Section 5.5.

The data comparators are set like the address comparators.
Data comparators may be assigned integer values and may contain

5.3.4 Status
Comparators
S1
S2

Don't Care bits (see Section 5.3.5 for a detailed explanation of
Don't Cares). Other registers, such as general purpose registers
GDO-7 may be assigned to these comparators.

e To assign an integer
DC1I = $F033

e To assign a Don't Care value
DC2.3 = $FFO00 DC $FF or
DC2.3 = $FFXX
DC1 = 6DO (general purpose data register)

The Satellite Emulator records a 16-bit status and control word in
every Trace Memory cell. The bits in this word are a combination
of 8086/8088-generated signals and signals internal to the
emulator.

The emulator has a set of "constant" registers that the Event
Monitor System can use as event comparators. When the status word
matches the status defined by S1 and/or S2, the comparator output
is true.

The following table 1ists the status constants. Example 5-1 shows
how to set S1 and S2,

NOTE
Do not set S1 or S2 to break on a type 2 interrupt. This
includes an NMI. You should set up the system to break on the

vector pitch or the starting address of your interrupt
routine. The emulator will not work correctly.

5-7

Table 5-1.
Status Mnemonics

Example 5-1.
Setting Status
Comparator

MNEMONIC DESCRIPTION

ALT Alternate Data Access

BYT Byte Access

cop Code Data Access

DAT Data Access

HLT Halt Status

IAK Interrupt Acknowledge

IF Instruction Fetch

I0A 10 Access

MEM Memory Access

NBC No Bus Cycle

NMI NMI Cycle

ovL Overlay Access

QD1-6 Que Depth (1-6)

QF Que Flush Cycle

RD Read

RIO Read I0 Status

RM Read Memory Status

STA Stack Data Access

TAR Target Access

WIO0 Write I0 Status

WM Write Memory Status

WR Write

WRD Word Access

X87 8087 Cycle

1 2 3 4 5 6 7 8 9
S1= TAR + RD + BYT + MEM + ALT + HLT + QD1 + QF
S2 ovL WR WRD I0A caob TAK QD2 NMI

DAT NBC Qo3 X87
STA RIO QD4

RM QD5
WIO QD6
WM
IF

Note the seven-column format. A status comparator may be set with a
maximum of one constant from each of columns 2-8; and as many as you
want from column 9.

Remember that these are maximums. It is not necessary to use all the
possible constants.

5-8

. Some sample status comparators are:
>S1 = TAR + RD + IF + QF
>S2 = I0A + WR + DMA
>S2 = QYL + RIO

The addition sign is used as a connective between the constant
mnemonics acting as a Boolean "AND."

Example 5-2. To examine the contents of the status comparator, type S1 or S2.

Examining the Contents Note, however, that when the status comparator name is keyed in,

cf the Stata [+ha eue+em racnande with a \'161114 wadham +han ¢+ha mmama

Comparator used to enter that value into the system. The table below is used
to translate the system response back into the mnemonic codes
entered originally.

1 wat A Aaada
" LIIC aya Wil I CopUiiue wi vl a 11U, 1 aLiice Ll viie mnemuni L e

Figure 5-1.
Activated
Bit Values

X4 X3 X2 X1
15 14 1312 |11 10 9 8 |7 6 5 4 32 1 0
X&7 [WEW7 AR/] RD7 T BYT7
NMI DMA QF | IDA | OVL | WR_ | WRD

ALT = 0 IAK = 0 QD1 = 2 IOA + OVL + WR + WRD = CD

STA = 1 RIO = 1 QD2 = 4 BYT = 1

coD = 2 WIO = 2 QD3 = 6 RD = 2

DAT = 3 HLT = 3 QD4 = 8 RD + BYT = 3

IF =4 QD5 = A TAR = 4

RM =5 QD6 = ¢ TAR + BYT = 5

WM =6 TAR + RD =6

NBC = 7 TAR + RD + BYT = 7

MEM = -8

MEM + BYT = 9

MEM + RD = A

MEM + RD + BYT = B

MEM + TAR = C

MEM + TAR + BYT = D

MEM + TAR + RD = E

MEM + TAR + RD + BYT = F

When you type S1 or S2, the system responds with a value with this general
format:

$ 0000X4X3XZX1 DC OOOOX4X3X2X1

The hexadecimal values X,, X2’ X., X, represent the bit patterns of the
status comparator registér. Tho§e t3 the left of the DC operator
correspond to the activated bits (0s); those to the right are the Don't
Cares, or mask values (ls).

Examination of the mask values reveals which bits have been activated,
or enabled. A mask of FFFF shows that all the bits are masked, while a
mask of FF8F indicates that all bits except 4, 5, and 6 have been
masked. That is, 4, 5, and 6 are the only bits that have been enabled.

The activated bit values, to the left of the DC operator, correspond to the
mnemonic entered into the comparator. These mnemonic codes can be read
directly off the table once the enabled bit pattern has been determined.
For example, suppose the system responds with:

a)
$ 000000100 DC OOOOFSFF

The mask value shows that bits 8, 9, and 10 have been enabled. The 1
in the X3 column to the left of the DC operator can be matched with the
1 in the“same column of the table, indicating that the mnemonic entered
was RIO.

b)
$ 00000100 DC OOOOFS8FB

Mask values: all except 2, 8, 9, and 10 are masked

Mnemonic values: the 1 in X, corresponds to RIO. The 0 in column X
corresponds to some combina%ion of I0A OVL, WR, and WRD; since only bit
2 is activated, though, the mnemonic entered must have been OVL.

Original entry: S1 = RIO + OVYL

N
CJ

$ 00000454 DC 0000BSFB
Mask values: all bits except 2, 8, 9, 10, and 14 are masked.
Mnemonic values: since bit 14 is activated and a 4 shows in X, NMI must

have been entered; the 5 in X3 corresponds to RM, and the 4 iﬁ X1
matches with TAR.

5-10

d)

Original entry: S1 = NMI + RM + TAR

$ 00000009 DC OOOOFFE4

e)

Mnemonic values: the 0 in X, corresponds to QF in the table; the 9 in
X1 indicates that bits O, 1 i 3 are activated.

Original entry: S1=QF + MEM + WR + BYT

$ 00001000 DC 000068FF

Mask values: bits 8, 9, 10, 12, 13 and 15 are enabled.

Mnemonic values: bit 14 is masked so X4 is used to indicate which
segment register was used to form the address during this bus cycle.
Since bit 12 is set, the chosen segment is STA. Bit 11 of X3 is masked
which selects the processor status and since X3 is zero, IAK"is the
activated status.

Original Entry: S1 = STA + IAK

The DC or X operators specify Don t Care bits. Bits specified to

the left are significant while those to the right are ignored

(Don't Cares). Where overlap occurs between significant and Don't Care
bit positions, the bits are treated as Don't Cares.

Don't Cares are used with the event detectors when it is desirable to
restrict monitoring to a subset of the sixteen data, status, and LSA
lines; for example, you may wish to monitor only the low-order eight
bits and ignore the high-order bits. This is done by specifying the

high-order bits as Don't Cares.

Address comparators and count Timit comparators may not contain Don't
Cares.

e Don't Cares can be -assigned in data, status, or LSA comparators.
An example of setting a data comparator and including a Don't
Care 1is:

>DC1 = $0055 DC $FFO0<return>

The value of the Don't Care expression is assigned to DCl. The
first value in the statement ($0055) is the match value. The
comparator will be looking for this value on the data bus. The
second value ($FF00) is the Don't Care mask. The comparator will
mask all bit positions containing ones.

5-11

5.4 EVENT MONITOR
' SYSTEM ACTIONS

CNT
T0T

RCT
TGR
GRO

e Another method of entering Don't Cares and defining comparators
uses Xs to mark the Don't Cares:

>DC1 = $4XX2<return>

The result of this assignment is $4FF2 as significant and $OFFO
as Don't Cares.

e A sample LSA comparator would be:
>LSA = #65532 DC 210

Note that the Don't Care value can be specified in different
bases. The emulator looks at #65532 and translates it, then at
%210 and translates it before dealing with the value as a whole.

The event detectors cause the Satellite Emulator to perform an
action when they are detected during emulation. The trace function
defaults to the ON state--tracing all bus cycles--unless TRC or TOT
is specified.

The most commonly used detectors are BREAK, TRACE, and COUNT.
e BRK (Break) causes emulation to halt.

e TRC (Trace) traces the event; the Trace Memory is ON uniess TRC
or TOT is specified.

e CNT (Count) decrements the pass counter on the occurence of a
specified event, RCT resets this counter,

e TOT (Toggle Trace) allows windowing., By identifying a starting
event and ending event you can toggle the trace from ON to OFF or
OFF to ON.

e TOC (Toggle Count) allows you to window the pass counter. By

counter from ON to OFF gr from OFF to ON.

o RCT (Reset Counter) resets the pass counter to the specified
count. To load the counter, see Section 5.3.2, Count Limit.

e TGR (trigger) causes the trigger output on the LSA Pod Assembly
and BNC connector to be high for the next cycle. (LSA is
discussed in detail in the next section. For BNC trigger
information, see the Timing Strobe, Section 5.6.2.)

e GRO (Group) causes the system to switch to another event group.
(Event groups are discussed in more detail in Section 5.5)

5-12

The order in which actions are specified in a WHEN/THEN statement
is not critical except in two cases:

o If CNT and RCT are both specified for the same event, the
resulting action is RCT.

o If both CNT and TOC are specified for one event, the second
action specified will be performed.

To perform both TRC and TOT or CNT and TOT functions, each function
should be in a separate group.

Example 5-3. Breakpoints range from very simple to highly complex. A simple

Types of Breakpoints breakpoint would be to break emulation when a particular address in
the target program is accessed. For example, you could instruct
the emulator to wait for the CPU to access a particular instruction
in a program and to break emulation when the access occurs, as
shown here. This type of breakpoint is useful for running the
program until it reaches the code module or subroutine that you
want to debug.

0 To halt emulation when address = $3000
>WHE[N] AC1 THE[N] BRK
>AC1 = $3000

After setting this and using RBK (run with breakpoints), the
program will execute until an access of any kind occurs at

= >~ =

address $3000.

Each of the following examples adds a new feature or level of
complexity to the WHEN/THEN statements shown here. Remember that
the Event Monitor System can be used for many possible combinations
of events and actions to suit your own needs. These examples
illustrate only a small percentage of the possibilities the system
1s capable of.

o To halt at a code module with multiple entry points

>NHE[N] AC1 THE[N] BRK
>AC1 = $3000 TO $32FC

The same WHEN/THEN statement is used, but ACl1 is now defined as a
range

o To save only the bus cycles you want to view
>WHE[N] AC1 THE[N] TRC
>AC1 $3000 TO $32FC

In this case, you do not have to specify a breakpoint; only the bus
cycles occuring in the range ACl will be traced.

5-13

5.4.1 Force
Special
Interrupt
FSI

CTA

L 22l

o To use the pass counter

>WHE[N] AC1 THE[N] TRC, CNT
>NHE[N] CTL THE[N] BRK

>AC1 = $3000 TO $32FC

>CTL = $A

In this example, each bus cycle occurring in the address range
$3000 to $32FC will be stored in trace memory and cause the pass
counter to be decremented. When ten cycles (OA16) have occurred,
emulation will be broken.

e To stop program execution when a specific data pattern is written to
memory at a certain address

>WHE[N] AC1 AND DC1 AND S1 THE[N] BRK

>AC1 = $3000 (address comparator)
>DC1 = $55AA (data comparator)
>S1 = WR (status comparator set to write)

When conditions ACl, DC1 and S1 are met simultaneously, the emulator
will break.

e To stop program execution when one of two data patterns appears at
either of two addresses during a write cycle

>WHE[N] AC1 OR AC2 AND DC1 OR DC2 AND S1 THE[N] BRK
e To set two conditions for a breakpoint

>WHE[N] AC1 AND DC1 AND S1 THE[N] BRK
>WHELR] AC2 AND DCZ AND S1 THE[N] BRK

In some of the examples shown AC1 was used; however, AC2 could also
have been used.

The Force Special Interrupt feature allows your program to jump to
any address (for instance, a particular subroutine) when a
specified event is detected. This address is set by assigning a
value to Special Interrupt Address (SIA).

The user program is interrupted by the Event Monitor System when
the FSI event is detected, and program execution will begin at the
SIA. The routine must terminate with an "Interrupt Return" (IRET)
instruction to properly return to the interrupted routine. The
message FSI ACTIVE will be printed when an FSI occurs.

NOTE

When using the Event System FSI action, some internal
cycles are traced immediately preceeding the jump to the
SIA. This occurs because the cycles are not purged from
trace. If they were purged, the FSIs would occur more
slowly which is undesirable, and the disassembler would
not be able to disassemble the code.

5-14

The FSI feature is helpful for inserting a gquick patch in ROM code
or to terminate a process requiring a careful termination routine.
Only one SIA address can be set at a time.

The keystroke sequence for setting and clearing the
Interrupt is shown in the next example. The addres
the address of the interrupt service routine.

Force apc&.iq’l
s argument is

e To set the Force Special Interrupt address:
>SIA = <address><return>
o To force a special interrupt
(A sample use for this would be to insert a code module that you
did not include in a linked program that is already compiled and
loaded for debugging.)

>WHEN AC1 THEN FSI
>WHEN AC2 THEN FSI

>SIA = $F2D0
>AC1 = $302C
>AC2 = $4010

In this example, the program will execute normally until address
$302C or $4010 is reached. VWhen one of these addresses occurs,
emulation will be halted. Address $302C (or $4012) will be pushed
onto the CPU stack as the return address. The program counter will
be set to the value specified in SIA ($F2D0), and the CPU will
begin executing the program at the new address. To return to the
original program at the end of the patch, execute an "“Interrupt
Return" (IRET) instruction (this will vary from processor to
processor) and the CPU will unstack the pushed program counter
($302E or $4012 in this example) and continue running from where it

left off.

5-15

5.5 EVENT GROUPS
GRO

Example 5-4.
Sample Valid WHEN/
THEN Statements

The Satellite Emulator is capable of having up to four groups of

event detectors defined at one time, analogous to "event states." This
is done by adding the suffix .n (n = 1 through 4) toc the event
comparators; for example, ACl can be ACl.l, ACl.2, DC2 can be DC2.4,
etc. These groups are defined by placing a number preceding the
WHEN/THEN statement or by appending a group number to the event
detectors. The following examples would both define an event for Group
2:

2 WHE[N] S1 AND LSA THE[N] BRK
WHE[N] S1.2 AND LSA.2 THE[N] BRK

Within one WHEN/THEN statement, only one group of events can be dealt

with at one time -- the system can only be in one state at a time.

The group operator (GRO) is used to switch the Satellite Emulator to a
different event group in response to the event detector. If no group

number is assigned, the system will default to group 1.

o Possible Event Groups:*
Group 1 =AC1.1, AC2.1, DCl.1, DC2.1, S1.1, S2.1, LSA.1, CTL.1
Group 2 =ACl.2, AC2.2, DCl.2, DC2.2, S1.2, S2.2, LSA.2, CTL.2
Group 3 =AC1.3, AC2.3, DC1.3, DC2.3, S1.3, S2.3, LSA.3, CTL.3
Group 4 =ACl1.4, AC2.4, DC1.4, DC2.4, S1.4, S2.4, LSA.4, CTL.4

* Any valid combination of comparators can be used but all must be from
the same event group. Event groups are signified by adding .n (1, 2,
3, or 4) to the comparator as above.

o Simple WHEN/THEN Statement (no event group specified, defaults to
group 1):
WHE[N]

<event> THE[N] <action>

any comparator or
valid comhination
formed with AND, OR,
or NOT; must be from
same event group

o Event Group WHEN/THEN Statement:
X WHE[N] <event> THE[N] <action>
X=1,2, 3, or 4

o Event comparators are assumed to be ACl.2 and AC2.2
>2 WHE[N] AC1 OR AC2 THE[N] BRK, TGR<return>

0 WHEN/THEN clause assumed to be from group 3.
>WHE[N] NOT AC1.3 AND NOT DC1.3 THE[N] BRK, RCT, TRC<return>

o System defaults to group 1 when no group is specified.
SWHE[N] DC1 and AC1 THE[N] FSl<returm>

5-16

o Group 4 comparators.
>4 WHE[N] AC2 THE[N] CNT<return>

e To use more than one event group

>WHE[N] AC1 AND S1 THE[N] CNT
>WHE[N] CTL THE[N] RCT, GROUP 2

>2 WHE[N] AC1 AND S1 THE[N] TRC, CNT
>2 WHE[N] CTL THE[N] BRK

>AC1.1 = $4010; AC1.2 = $4011

>CTL.1 = 3; CTL.2 = $14 (20 decimal)

ace 1 _ - T 9 n
>S1.1 = ¥R; S1.2 = RD

This example could be used to monitor the activity of an I/0 port after
the port had been initialized. When ACl has been accessed by three
write cycles, the counter will be reset and the event monitor will
transfer to group 2. Then twenty read cycles will be traced. When
count 1imit is reached the event monitor will break halting emulation.

5.6 OPTIONAL LOGIC The Logic State Analyzer option assembly includes a pod, cable, and
STATE ANALYZER probe clips. It provides you with access to external logic signals
LSA that can be fed directly into the trace and break card of the
emulator. This data is qualified and clocked with other trace data
by the Event Monitor System. (Trace data is displayed by using the
DRT command.)

5.6.1 LSA Functions The Logic State Analyzer is used for many applications
inciuding:
¢ debugging data and address lines on the other side of the CPU
buffer
¢ debugging decode lines
e keeping track of memory management
e debugging I/0
e address and chip select decoding

The LSA comparator is assigned with an assignment statement, just
as the address comparators are. It is 16-bits wide; Don't Care
bits are permissible.

¢ To monitor a specific activity outside the microprocessor

This example will turn on a trace when that activity occurs
and turn off the trace when the activity is terminated. The
two event groups are required to specify separate on and off
points.

>WHEN LSA THEN TOT, GRO[UP]J2
>2 WHEN LSA THEN BRK

>LSA.1 = $0000 DC S$FFFE
>LSA.2 = $0001 DC $FFFE

5-17

This example waits for the logic state analyzer, Bit 0 to go
low and then uses the toggle trace command (TOT) to turn on
trace memory, and GRO[UP]2 to switch groups. In group 2 all
bus cycles are traced until LSA pod Bit O goes high. Then
emulation is broken.

5.6.2 Timing Strobe The ES uses a bus request signal (shown in the figure 5-2.) to

5.7 STATEMENT CONTROL

5.7.1 Repeat
Command

generate a trigger which is sent to the LSA pod and to the BNC
connector on the rear panel. The trigger is a low-going-high
signal for approximately one bus cycle and 1is generated
approximately 70 ns after an event,

If you do not have the LSA pod, you can still take advantage of the
trigger through the BNC connector for use with signature analysis
equipment, a logic analyzer, or an oscilloscope:

e With an oscilloscope, the trigger could be used to flag a loop or
1/0 routine.

e With a signature analyzer, you can use the trigger to provide
start and stop pulses, from the LSA pod or the BNC connector.

Another use for the trigger would be to connect two emulators,
using the signal from the first to trigger a break in the second
emulator. The Event Monitor System would be programmed as shown:

o Emulator 1: WHE[N] <event> THE[N] TeR

o Emulator 2: WHE[N] LSA THE[N] BRK

CPU State = T2 { 3 I T4

l
C¥0 Clock __f_iT [_l\ /\ N\

An asterisk (*) at the beginning of a command line repeats one or
more commands. The asterisk is followed by an optional decimal
argument to specify the number of times to repeat the buffer con-
tents. If the argument is zero, the buffer content is not exe-
cuted. A command having normal ESL syntax succeeds this argument.

For example:
>*5STP;DT
>* 5STP;DT
>* 5 STP;DT

5-18

Indefinite
Repeat

5.7.2 Loop Counter

In these three equivalent examples, the "STP;DT" command is
repeated five times. If the slash key is typed after the above
example is input, the entire line is repeated, causing five more
“STP;DT" commands to be executed.

The repeat argument must be specified in decimal, it cannot be in
hex, nor can it be a variable; and there must be a space following
the repeat argument if the next character is a decimal digit.

When the repeat aprgument is not specified, it is assumed to be
4,294,967,295 (2 °“-1). There are two ways to stop an indefinite
repeat.

First, you can abort a repeat by executing a reset (usually a CNTL
Z). However, note that this will also abort emulation if it is in
progress, without saving the state of the CPU.

Second, there is a variable called "TST" that gets set to all 1l's
at the beg1nn1ng of a repeat. Then it is tested for zero just
before a line is re-executed. If TST becomes zero, the buffer is
not executed and the repeat halts, returning control to the users
terminal.

If you want to single step and disassemble until you reach a par-
ticular address, you could type, for example:

>*STP; DT; TST = PC-$C324

In this example, single stepping continues until the program
counter equals 0C324 Hex. If the PC does not reach 0C234, you can
still use CNTL Z to stop the repeat.

When a repeat is initialized, just before execution begins, the
repeat argument goes to an ESL variable called "LIM;" if "IDX" is
greater than or equal to "LIM" the repeat is stopped. Since "LIM"
and "IDX" are ESL variables, they may be used in commands or
modified by the execution of the repeat.

Here are three examples:

>BASE DX=#10
>*3 IDX

#0

#1

#2

>MM.B $1000
$001000 $34 >*4 LIM-IDX-1
$001001 $CO
$001002 $BF
$001003 $00

$001004 $21 >MM MMP-4
$001000 $03 >*4
$001001 $02

$001002 $01

$001003 $00

$001004 $21 >

5.7.3 Macros
Defining
Macros

Filling
The Buffer

In the first example, "IDX" is printed showing that it is reset to
zero and incremented thereafter. The second example shows how a
block of memory can be initialized to a decrementing count ending
in zero. In the last repeat example, the initialized block of
memory is displayed.

If "IDX" is modified during a command repeat loop, it will still
be incremented before being compared to "LIM." This may cause the
loop to be exited one cycle earlier than expected.

You can define up to ten macros. They are referred to by decimal
numbers @#-9. The ten macros are linked in one buffer with #1 be-
ginning first then #2...#9 with #@ being last.

If the sum of the lengths of all 19 macros is greater than the
buffer length, then the highest numbered macros will be truncated
in order to fit them into the buffer size, starting with macro #8.
This truncation happens silently, without any indication to the
user.

Here is an example of some macro definitions:

TP;DT
D1=GD1+1
1, 2

> 1=§
>72=G
>3

The syntax is as follows: the first character on the Tine must be
the underscore; the second character must be a decimal digit, a
comma, or a period; the third character on the line must be an
equals. If the syntax varies from that listed above, the line
will be passed to the parser, which will throw it out as illegal
syntax. If the syntax is correct, the remainder of the line after
the equals and up to, but not including the return, will replace
the previous definition of the macro. No syntax checking is done
when a macro is defined, syntax errors will only be detected when
the macro is executed.

In the above example, macro #3 contains two nested macros. The
macros are not expanded when the macro is defined, but only when
it is executed, so the definition of macro #3 may change depending
on the content of macros #1 and #2.

If you define a macro, but only type a <return>, the macro is
defined as null. A null macro is not displayed by the MAC command
and when it is executed, no characters replace the macro call
argument.

If macros #1 to #8 are defined, and in this process used up all of
the space in the buffer, then an attempt to define macro #9 or #9
would result in those macros remaining null. Also, if the length
of any macro from #1 to #7 was increased after filing the buffer,
then macro #8 would be truncated as a result and if the increase
was more than the size of macro #8, then macro #8 would become
null and macro #7 would be truncated, and so on. There are no
warnings when truncation or nullification takes place, so if a
number of long macros are defined, the "MAC" command should be

executed to determine if the macros with the highest numbers are
still intact.

5-20

Displaying
Macres

Executing
Macros

The MAC command will display all of the macros that contain 1 or
more characters. Nested macros are not expanded by MAC. The
macros are displayed the way you typed them in and they are
jdentified by the same three-character sequences that are used to
define the macros.

This is an example of macro definition:

> 5='This 'is 'a 'macro
> 6=ABCDEFG

> lbe,RET;STP o7

> 2=PC=$1000

> 3=MM.B $2¢@@+GD¢@

> 4=@(SSP+4)

> 6=

This is an example of macro display:

>MAC

1=PC;RET;STP;DT
T2=PC=$10¢¢
T3=MM.B $200¢+GD@
T4=0(SSP+4)
“5='This 'is 'a ‘macro

You can execute macros #1 and #2 by a single keystroke when not

in memory mode. Whenever you type a comma as the first character
on a line, macro #1 is executed; if you type a period as the first
character on a line, macro #2 is executed. You an execute any of
the ten macros by entering the underscore followed by a decimal
number.

A macro may contain a portion of a command, or an entire command.
It cannot contain part of a token, i.e., the "A@" register cannot
be specified by taking the last character of one macro ("A") and
concatenating it with the first character of the next macro ("@").
If several macros each contain a single command, and it is desired
to execute them serially as a string of commands, then the
semicolon can be used to separate the macro calls.

For example:
>1; 25 3

The semicolon can also be used within the macro at the beginning
or end to separate commands.

Since a macro may contain a portion of a command, you could do
something 1ike the following example:

Macro definition:

> 4=GD1
==$24
: ==04
Macro execution:
> 4 6 >G01=04
>:}:§ >GD1=%24

5-21

The right side shows how the macro is expanded when executed, the
contents of the two macros are concatenated to form a complete

command.
Saving Macros To Toad and save macros, enter the following:

>LD S5<return>
>SAV S5<return>

Please see the LD/SAY section, 3.7.2, for information about
initializing the EEPROM.

Clearing To nullify all macros, enter:
Macros
>CMC<return>

5-22

SECTION 6

INTERFACING AND COMMUNICATIONS

6.1
6.2
6.3

6.4

INTRODUCTION
SERIAL DATA REQUIREMENTS

SETTING SYSTEM CONTROL
6.3.1 Terminal Control
6.3.2 Computer Control
6.3.3 Transparent Mode

DATA TRANSFER AND MANIPULATION
6.4.1 Upload and Download
6.4.2 Verify

6-1

6.1 INTRODUCTION

6.2 SERIAL DATA
REQUIREMENTS

This section gives information necessary for interfacing and
communication between the Satellite Emulator and other units in an
emulation system. Information includes:

o serial data requirements
e setting system control
o data transfer and verification

Specifications for the serial data formats are located in Appendix
A.

The Satellite Emulator is compatible with RS232C standard pin
conventions and signaling levels (given in section 2.3.3).

The standard software transmits and receives ASCII characters
requiring seven-bit representation. One stop bit is recommended
for most uses; however, some data terminals require two for proper
operation.

The format of a serial word is shown in Figure 6-1. When no data
is being transmitted, the Serial Data Out pin will be at the 12
volt 1level (marking). When the Satellite Emulator sends a
character, there will always be a start bit, followed by 7 or 8
data bits, and 1 or 2 stop bits. The number of data bits and stop
bits are specified by command, described in the operation section
for the microprocessor you are using.

The Satellite Emulator sends and checks parity according to system
set-up parameters.

Two additional signais used by the emuiator are the Request to Send
(pin 4) output and the Clear to Send (pin 5) input. The software
uses these signals to coordinate data transfer. When the emulator
is ready to begin receiving data, it changes the Request to Send
line from low to high and awaits data transmission. When it has
finished receiving data, it returns the Request to Send line to the
low state. When the emulator is ready to send a character, the
software tests the condition of the Clear to Send line. When used
in conjunction with XON and XOFF, transmission of the character is
provided only if Clear to Send is in the high state; the character
is held if the signal is in the low state. Thus, a receiving unit
may control the transfer of data by taking the Clear to Send line
high when more data is desired and low when not ready for data.
The ASCII control characters, XON and XOFF, are recognized by the
emulator.

Figure 6-1.

Format of a Serial Word

6.3 SETTING SYSTEM
CONTROL

6.3.1 Terminal
Control
TCT

6.3.2 Computer
Control
cCcT

The Satellite Emulator can operate under CRT terminal or host
computer control, or can become transparent, allowing the CRT
terminal to communicate directly with a host computer.

This operator is entered from a host system interfaced through the
computer port, only when the Satellite Emulator is in the host
system control mode. Control is transferred to the CRT terminal
and away from the host system. This overrides the setting of the
interface parameter switch.

This operator, analogous to the Terminal Control operator, is
entered from a CRT terminal interfaced through the terminal port,
only when the emulator is being controlled via a CRT terminal to a
host system interfaced through the computer port. This overrides
the setting of the interface parameter switch.

There are four characteristics to remember about CCT.

o First, the emulator will echo most of the characteristics sent to
it, so the computer can use this feature to check the data
transmission.

e Second, when the host sends a RETURN, the emulator begins
processing the command line. New lines generally begin with
RETURN LINEFEED NULL NULL.

6.3.3 Transparent
Mode
TRA

Example 6-1.
Terminal Control,
Computer Control and
Transparent Mode

e Third, the host must be able to handle incoming data at high
rates as the emulator will be sending at 960 characters/second
(9600 baud); the host should be able to send XON/XOFF to the
emulator,

e Fourth, UPL {upload) and DNL (download) expect data from the same
port whether you are using TCT or CCT: if you are downloading,
the emulator always expects data to come from the host, and if
you are uploading, data is always sent to the host.

NOTE:

If you execute CCT in error, turn the
emulator off, then on again.

This operator instructs the emulator to become transparent,
allowing the CRT terminal interfaced through the terminal port to
communicate directly with a host system interfaced through the
computer port. TRA can be entered while in either Terminal or
Computer Control modes.

The Terminal Control and Computer Control operators are used to
switch control back and forth between a host system and CRT
terminal. The Transparent operator allows you to bypass the
Satellite Emulator and communicate directly between your CRT
terminal and host system. The emulator acts only as an interface.
In this mode the emulator can buffer up to 64 characters for each
port and can operate the ports at independent baud rates.

Refer to the system configuration shown in Figure 6-2. The initial
physical connection is made according to the procedures outlined in
Section 2. Original control is set with the interface parameter
switch.

With the set-up complete, we will start with the CRT terminal
controlling the Satellite Emulator. This is done by having the
interface parameter switch in any position but those that are for
computer control (positions 3 and 4 are for computer control).

o If you now want to switch control to the host system, despite the
fact that the switch is positioned for terminai controi, you wiii
enter:

>CCT<return>

e To go back to terminal control, enter at the computer port:
>TCT<return>

e If you want to communicate directly between the CRT terminal and
the nost system, enter from the controiling port:
>TRA<return>

6-4

Figure 6-2.
System Control

6.4 DATA TRANSFER AND

MANIPULATION
6.4.1 Upload and
Download
UPL
DNL

4
(1'c1'z — TRA’\ cCTT «— TRA

| : i 1]

|
[TERMINAL
COMPUTER PORT
PORT
HOST CRT
COMPUTER EMULATOR TERMINAL

1. CCT switches control to computer.
2. TCT switches control to CRT terminal. '
3. TRA (entered from controtiing port) aliows communication directly between CRT terminal

and computer

These commands are used for moving data in and out of the emulator
and manipulating data within. Formats are described in Appendix A.
The commands are:

e Upload - UPL

e Download - DNL

o Verify or compare - VFY
e Upload Symbols - UPS

Upload and download operations initiate routines to load the target
system memory and/or RAM Overlay Memory with data from a host
system, and to dump data from the target system address space to a
host system and/or RAM Overlay Memory.

The Satellite Emulator will download in either a software handshake
or no-handshake mode. While the no-handshake mode is faster and
very simple, the handshake mode offers verification that data is
received correctly and allows resending of data that is received
bad.

In an Upload operation, data is transferred from the emulator to a
host computer or other peripheral interfaced to the Satellite
Emutator computer port. A Download, conversely, moves data from a
host computer to the emulator.

The following steps are necessary to Upload data from the emulator
to a host computer or other peripheral.

e Type TRA <return>. This puts the ES in the transparency mode for
entering a command line to the host computer and prepares it to
receive a file. Note that this TRA command is not necessary when
using and uploading to a hard copy printer. Do not enter a
<return> at the end of the line. Instead, type in the two-
character transparency escape code. This code returns the
emulator to its normal communication status with the user and
causes the emulator to send the host computer a "command line
terminator."” The host computer (or other peripheral) should now
be ready to accept data. v

e Enter the Upload command for the desired range or the Upload
Symbols command (see Example 6-2. Upload and Download). The
emulator will now dump data to the computer port in the download
format specified in the Set Menu. Refer to Table 3-5.

Typing the DNL command at the terminal causes two things to happen.
First the emulator readies itself to receive data; then it goes
into a ‘"transparent" mode (l1ike the TRA operator described
previously, though accomplished here without the TRA command),
allowing the CRT terminal to communicate directly with the host
computer. This is necessary to allow you to enter the command line
necessary to tell the host computer to send data to the emulator.
Do not enter a <return> at the end of this line. Instead, type in
the two-character transparency escape code. As data records are
received, they are displayed on the CRT terminal. The command line
terminator, transparency escape code, and the serial data format
are user-defined with the Set-Up command, described in Section 3.

If the DNL operator is issued by the host computer (in computer
control mode), the process is somewhat different. The emulator
will not go into transparent mode and data records will not be
dispiayed on the terminai. However, after successful reception and
storage of every data record, the emulator will respond to the host
with an ASCII ACK (6) character. Thus, to monitor the download
process, the host should send one record, then wait for a response.
If the response is the ACK, the host should continue with the next
data record.

If the response is not the ACK, the emulator will have detected an
error or End of File condition. In the case of the EQF, the

:1a 211 +ha
emutator will return the normal prompt b

complete.

+ha rla'b: +m=ne$ap 1e
i

If the Satellite Emulator has detected an error, it will respond
with a <return>, line feed, several spaces, a ?, and a BEL. Then
it will revert to the normal prompt on a new line. The host can
then find the cause of the error by sending a ? to the Satellite
Emulator.

There are only two errors that can occur during a download. There
may be a checksum error in the data record. In this case, the DNL
process is aborted before any data from that record is stored to
memory. The second type of error is a read-after-write verify

6-6

Example 6-2.
Upload and Download

6.4.2 Verify
VFY

Example 6-3.
Verify

error, Every byte in a data record is verified after it is stored.
If an error occurs, the DNL process is aborted but some of the data
in the record has obviously been stored to memory.

e Upload:
>UPL<range argument><return>
>UPS<return>
o Download:
>DNL<return>
><transparent><commands to computer><escape code>
This terminates the Transparent mode and the Download occurs.
Note that the escape code is created with the Set-Up command
described in Section 2.

The Verify operator (VFY) compares data received at the computer
port with memory. Any differences are displayed. The operator
interaction required is similar to the Download command. The VFY
command does not display incoming data records. See the following
example,

e The format for Verify operator is:
>YFY<return>

o Any differences will be displayed as:
address = XX NOT YY

In the above example, the address is the address where the
misverify occurred. XX denotes the actual data present at that
location. YY denotes what should be at that location.

SECTION 7
DIAGNOSTIC FUNCTIONS

7T TKTRODUCTIOR

7.2 RAM DIAGNOSTICS
7.2.1 SF #0, <RANGE>
7.2.2 SF #1, <RANGE>
7.2.3 SF #2, <RANGE>
7.2.4 SF #3, <RANGE>

LOOPS

SF #4, <ADDR><DATA>
SF #5, <ADDR>

SF #6, <ADDR> <DATA>
SF #7, <ADDR>, <PAT-1>, <PAT-2>
SF #8, <ADDR>, <PAT>
SF #9, <ADDR>, <DATA>
SF #10, <RANGE>

SF #11, <ADDR>

SF #12, <RANGE>

.10 SF #13, <returnm>

LOCK AND CRC

7.3

WO~NOATM WM

7.6 COM AND DIA

7-1

7.1 INTRODUCTION

7.2 RAM DIAGNOSTICS

7.2.1 SF #0,
<RANGE>
<RETURN>

7.2.2 SF #1,
<RANGE>
<RETURN>

7.2.3 SF #2,
<RANGE>
<RETURN>

A cr 42
T 9 wIy

<RANGE>
<RETURN>

7.3 SCOPE LOOPS

The Special Functions are a group of utility routines and diagnos-
tic tests invoked with the Special Function (SF) operator. These
routines are used for debugging hardware or accommodating unusual
hardware conditions.

These routines are "canned" RAM tests that can be run on the target
or RAM Overlay system. The tests are executed in byte mode.

This routine involves three steps. First, the RAM test consists
of writing a zero to the test cell and then reading the cell to see
if a zero exists. Next, a one is used for the test pattern
followed by $3, $7, F, S1F, $3F,..., S$FFFF, S$FFFE, S$FFFC,...,
$C000, $8000. Finally if a failure is detected, the problem
address, correct data and faulty data are displayed. This routine
can be aborted by resetting the emulator but will finish after a
single pass.

Executes a complete RAM test over the words within the specified
range. The test was derived from a study by Nair, Thatte and
Abraham entitled "Efficient Algorithms for Testing Semiconductor
Random-Access Memories: (IEEE Transactions on Computers, vol. c-27,
no. 6 June 1978). The test corresponds to their algorithm "A" and
is more efficient than standard "GALPAT" type tests. If an error
is detected by this test, the associated address, good data, bad
data, and test sequence number are displayed. The sequence number
corresponds exactly to the sequence numbers suggested in the
article, but if you do not have the article, the above information
should be sufficient. This is a single-pass test that can be
aborted by resetting the emulator.

Continuously executes the test described for "SF #0" above. While
executing the test, a pass count is maintained and displayed on the
screen. The count is updated by rewriting the display line without
using a "linefeed." Thus, intermittent errors will not be pushed
off the screen by the pass count. You must reset the emulator to
terminate this test.

s the RAM TEST DESCRIRB uously aver
the words in <RANGE>. A pass counter is displayed as in "SF #
st reset the emulator to terminate this test.

ED IN "SF #1" above, continuet
as

Scope Toops are diagnostic routines built into emuiator firmware.
The uses for these special functions range from locating stuck
address, data, status or control 1lines to generating signatures
using common signature analysis equipment.

The routines for Scope Loops are executed at maximum speed. This
short cycle time allows the hardware engineer to easily view the
timing of pertinent signals in the target system without using a
storage type oscilloscope. Al11 of these routines must be
terminated by resetting the emulator. The scope loops can be
executed in byte or word data lengths. The data length will be the
global default.

7.3.1 SF #4,
<ADDR>, <DATA>
<RETURN>

7.3.2 SF #5, <ADDR>
<RETURN>

7.3.3 SF #6,
<ADDR>, <DATA>
<RETURN>

7.3.4 SF #7,

As with the RAM tests, these scope loops access the memory space

defined by the last setting of MMS (memory mode status). The

following paragraphs describe each of the different scope loops.
NOTE

A1l special functions for the 8088 and 80188 are
executed in BYM (byte mode).

Writes alternating zeroes and user specified data to the target
system.

Executes "reads" into the target system. (Peeks)

Executes "writes" into the target system. (Pokes)

Writes alternating patterns to the target system.

<ADDR>, <PAT-1>,

<PAT-2><RETURN>

7.3.5 SF #8,
<ADDR>, <PAT>
<RETURN>

- 7.3.6 SF #9,
<ADDR>, <DATA>
<RETURN>

7.3.7 SF #10
<RETURN>

7.3.8 SF #11 <ADDR>
<RETURN>

7.3.9 SF 12
<RETURN>

7.3.10 SF #13
<RETURN>

7.4 CLOCK AND CRC
CLK <RETURN>
CRC <RETURN>
CRE/CRO <RANGE>
<RETURN>

Writes the pattern to the target system but the pattern is rotated
one bit left after each "write."

Writes the supplied data to the target system and then reads it
from the target system at the same address. Data read from the
target system is ignored by the ES.

Forces NOPs to the target system.
Writes an incrementing count value to a constant address.

Writes alternating zeroes and user specified data to the target
system.,

Makes a CRC check of the emulator hardware.

The CLK and CRC operators will be useful during diagnostic testing.
CLK reads the target system clock and returns the value in KHz,
accurate to 1 to 2 KHz.

CRC computes a cyclic redundancy check over an address range. It
will be useful for checking if a block of memory has changed. The
key sequences are shown in this example:

If your code is split into two PROMS with one even and the other
one odd, the CRE/CRO operators allow you to do a cyclic redundancy
check over each PROM.

*NOTE
For Diagnostic purposes CRC will function for byte
or word. Also, the CRC value may be calculated over
only odd addresses or only even addresses.

7-3

Example 7-1.
Clock and CRC

7.5 Bus
BUS
Table 7-1.

e [0 read the target system clock:
>CLK<return>

o To compute the CRC:
>CRC <address range><return>

e To calculate a CRC over even bytes only:
>CRE <address range><return>

o To calculate a CRC over odd bytes only:
>CRO <address range><return>

gUS displays the status of several status Tines. For example:

e >BUS
BUS STATUS
INT NMI RDY
0 0 O

(In this example, "0" indicates a no-fault condition; a fault
condition would be indicated by "1)."

Special Functions

TYPE TEST

BYTE, WORD
OR LONG WORD KEY SEQUENCE DESCRIPTION

RAM Diagnostics

Scope Loops

byte or word SF #0,<range><return> Simple RAM test, single pass
byte SF #1,<range><return> Complete RAM test, single pass

byte or word SF #2,<range><return> Simple RAM test, looping

byte SF #3,<range><returm Complete RAM test, Tooping
byte or word SF #4,<address><data> Write alternating zeroes
<return> and user-specific data to
target

byte or word SF #5,<address><return> Read

byte or word SF #6,<address><data> Write
<return>

byte or word SF #7,<address>, Write alternate patterns
<pattern 1>, <return>

byte or word SF #8,<address>, Write pattern then rotate
<pattern><return>

byte or word SF #9,<address>,<data> Write data then read
<return>

byte or word SF #10,<range><return> Forces NOPs to the target
system

byte or word SF #11,<address><return> Write incrementing count

byte or word SF #12 ,<range><return> Read data over an entire
range
SF #13,<return> CRC check of emulator firmware
Miscellaneous CLK<return> Displays target clock frequency
CRC<range><return> Calculate CRC of specified
range
CRE/CRO<range><return> Calculate CRC of even/odd
bytes only
7.6 COM AND DIA COM allows you to communicate directly with a program running in
comM the target system. COM allows the simulation of communication

between the target system program and a serial interface (usually
the ES control terminal, sometimes another computer attached to the

ES).

The routine is invoked with a simple 32-bit argument, the address
of a 2-byte "port" in target memory.

e The first byte is for characters coming from the target program.
the MSB of this byte is used to indicate "new character" to the
ES. If the bit is set, this routine will read the character,
display it on the controlling part, and clear the target memory
location (as a handshake).

e The second byte is the write byte. If a character arrives from
the controlling port, the routine will place it in the target
memory with the MSB set. The routine will terminate only when
the terminal transparent mode escape sequence is detected. The
routine does not check to see if the last character written to
the target system was accepted.

As examining target memory requires that emulation be halted for
about 180 microseconds, COM will wait 1/2 second between target
system reads. However, if a character is placed in the output port
byte by the target system program, COM will collect the character,
reset the MSB and re-examine the port as soon as the character has
been put into the output UART buffer. COM will also immediately
examine the output port whenever it places a character in the input
port.

7-5

DIA

DIA allows you to display, on your controlling device, a string of
characters which are stored in target memory. This routine is
invoked with a simple 32-bit argument.

o The 8 MSB's of the argument contain the expected stop characters.

o The lower 24-bits contain the address of the first character of
the message.

DIA begins with a RETURN on a line feed. The routine then reads
one byte at a time from your target system, starting with the
address you specified and working towards high memory. The
characters are displayed on the controlling port (usually the ES
controlling CRT).

The DIA routine is completed when the character read matches the
stop character.

7-6

SECTION 8
MAINTENANCE AND TROUBLESHOOTING

~8.1 MAINTENANCE
8.1.1 Cables
8.1.2 Probe Tip Assembly

8.2 TROUBLESHOOTING
8.3 PARTS LIST

8-1

8.1 MAINTENANCE

8.1.1 Cables

8.1.2 Probe Tip
Assembly

8.2 TROUBLESHOOTING

Maintenance of the ES-Series Satellite Emulator has been minimized
by the extensive use of solid-state components throughout the
instrument. There are only two areas where you need concern your-
self with maintenance.

The tnterconnect cables are the most vulnerable part of the instru-
ment due to constant flexing during insertion and extraction.
First, inspect the cables for any obvious damage, such as cuts,
breaks, or tears., Even if you have thoroughly inspected the cables
and cannot find any damage, there may be broken wires within the
cables (usually located close to the ends). A broken wire within
the cable will cause the instrument to run erractically or inter-
mittently if the cables are flexed during the "RUN" mode. By
swapping the cables in question with a known good set of cables,
you can easily isolate the faulty cable. The parts list at the end
of this section contains cable part numbers if you need to order
replacements.

The Probe Tip Assembly is the small DIP header assembly that plugs
into the target system CPU socket. The most obvious area to
inspect is the 40-pin adapter, as the pins can be broken during
insertion or extraction. If one of the pins should be
inadvertently broken, replace it with one of the extra pins
attached to the inside of the probe tip bottom. To do this,
unscrew the two screws at the base of the adapter and separate the
two pieces. Then, put the new pin in place of the broken one.

NOTE:

The 40-pin adapter can be protected by installing a
CPU socket (male-female) onto the 40-pin adapter,
If a pin is then broken on the CPU socket, it is
easier to replace because of its common usage.

Your emulator is equipped with diagnostic test routines. The
diagnostic programs are described in Section 7; if you need to
perform any specific test, vou should refaer tc the description in
Section 7. Before starting troubleshooting procedures, be sure
that interconnect cables are installed properly in a compatible
target system, with power applied to both the target system and the

Todomm
emuacor,

The most common problems encountered are listed in Table 8-1. We
recommend that you contact Customer Service for ES Emulators at
Applied Microsystems Corporation if you experience any problems
that do not fall within this range of items. Before you call our
service department, display your software revision number by

‘typing:

REY You will be asked for this information when you call,

NOTE:

We do not recommend a component-level repair in the
field, unless performed by a quaiified service engineer.

SYMPTOM POSSIRLE CAISES SECTION
Target system 1. Faulty interconnect cables 8.1
runs erratically
2. Broken pin on 40-pin adapter 2.3.3
3. Emulator and target system
not compatible 1.1
4, LDV not executed before RUN
(vector not loaded). 4.3.4
Emulator will 1. Baud rate set incorrectly 2.4.1
not communicate
over RS-232 line 2. Target system requires "null"
modem cable (pin 2 and pin 3 of
RS-232 connector) reversed. 2.3.3
Target system will 1. Cables plugged in wrong 3.3
not run
2., Faulty interconnect cables 8.1
3. Broken pin on 40-pin adapter 8.1
2.3
Unable to perform 1. Transparent mode escape 3.5
download sequence not compatible #15/23
with host
2. Host computer and computer
port of ES need to be set
at 4800 baud 3.5 #20
3. Hrong serial data format 3.5 #26
selected

* Call Applied Microsystems (Customer Service for ES Emulators)
**Check Target System

8.3 PARTS LIST The following parts are available for you to order:
40-pin adapter ====-
Short Cable Set ====-
Long Cable Set 600-11142-00

8-4

APPENDIX A
SERIAL DATA FORMATS

The following sections detail the five serial data format compatible with the
Satellite Emulator. Each is illustrated in the accompanying figures.

A.1 MOS TECHNOLOGY FORMAT

A.2 MOTOROLA EXORCISOR FORMAT

A.3 INTEL INTELLEC S/HDS FORMAT

A.4 SIGNETICS ABSOLUTE OBJECT FORMAT
A.5 TEKTRONIX HEXADECIMAL FORMAT
A.6 EXTENDED TEKHEX

A.1 MOS TECHNOLOGY
FORMAT

Figure A-1.
Specifications for
MOS Technology
Data Files

The data in each record is sandwiched between a seven-character
prefix and a four-character suffix. The number of data bytes in
each record must be indicated by the byte count in the prefix. The
input file can be divided into records of various lengths.

Figure A-1 simulates a series of valid data records. Each data
record begins with a semicolon (;). The Satellite Emulator ignores
all characters received prior to the first semicolon. All the
characters in a valid record must be valid hex digits (0 through 9
and A through F). A two-digit byte count follows the start
character; the byte count, expressed in hexadecimal digits, must
equal the number of data bytes in the record. The next four digits
make up the address of the first data type in the record. Data
bytes follow, each represented by two hexadecimal digits.

bit binary sum of all hexadecimal bytes in the record, including
the address and byte count. Carry from the most significant bit is
dropped.

INPUT
DATA AECORD

R N

START CMARACTER

ENO OF FILE RECORD

START CHARACTER

Bvte Count BC 2 00 E-gat ¥ e Aecor
BC = Bvie Count The nexacecma 2umber of dats Iivies

- the record

LX)

Recora Count

nooss|low

AAAA : Agaress of brst dara fvie N recora ARAA
S IR RGIFIE Gy

= s One 2312 Oy re m Yevadecnal NoTat In

TLIIXf e

(OuTPUT
NSUES
::: CCCC = Checusum Two ovie Mrary summaron ot TNUmoe 3 Dyres Der ar3eT b aar e See Tigre !
c Orecearng Dyley 10 1eCOrE | ACtuding address end 142 20 Eacrm m»ngy mtm 0n0r Rt g Y teed art age cetLen
< Oy test i Rensaecma satation Ly
- This 108CE C3n DR UKD 1Or Lnve 'erd CarTiage retura Of 2 ™en tvaraciars toye SyaRecorn
iBegnmng of next record) \._
8CAA
V\ BCaaaa
BCA&A
BCaaa
LEGEND aCass o
aaaa o
* Start Characrer :gu. e \
ac * 8vte Count 18C 00 1n Recard BC * 001 Ena of £ 1e Recoral BCRRRACCEC i
AAAR = Agorens Fea -
CCCC = Cracusum of Recora

RAAR = Reeora Count
- ¢ Two Fiusdecme O (53 A F)

Copyright 1983, Data 1/0 Corporation; reprinted by permission.

A-2

A.2 MOTOROLA

EXORCISER FORMAT

Figure A-2.
Specifications for
Motorola EXORciser
16-BM Data Files

Motorola data files may begin with a sign-on record, initialized by
the code S@. Valid data records start with an eight-character
Figure A-2 demon-

strates a series of valid Motorola data records.

Each data record begins with the start characters, "S1"; the
emulator will ignore all earliier characters. The third and fourth
characters represent the byte count, expressing the number of data,
address, and checksum bytes in the record. The address of the
first data byte in the record is expressed by the last four
characters of the prefix. Data bytes follow, each represented by
two hexadecimal characters. The number of data bytes occurring
mist be three less than the byte count. The suffix is a two-
character checksum.

INPUT

DATA RECOARD i s ECHBD OPT) Ay

H START CHARACTERS SO Start chaccters 0f 310% On record Excent tor N1 cRanaTen
' SO record hat same format 23 G818 record
B BC = Bvwe Count The aumber 0! 912 bytes pius 3 11 1en
c eneckium and 2 Yor a00ress) in ReradeCinal notaton
A END OF FILE RECORD
a AAAA © Agoress ot hist 0ata Dyte n record AAAA .
A NexaceCIMal NOLILION DNy
A s START CHARACTERS
9
“
PN 8 Byie Count BC * 03 in End of Fue Recora
[HH * One data byle 1 Rexsgec mal 1OtatOn S
"
a
‘ a
! Adiess
a
Iy
C
c Checksum
CC = Checksum One s compiement of henaty summar.on
c - of precechng bytes in recorg 110Cluding Dy 1e COUnt JUrrss
< ana daty Dvies) 'n hesagecimal nglauon
This space can be used tor Iine teed Carriage return O
- OUTPUT
s NOTES
(Begrnning of next recoral
1
15 Number of by fey Ner 7eCo10 3 variaiie See Tabie 31
f\ 21 Bach le ens with noapnnting ine leed Carsiage return

ana nuty
31 S.gn on record may Drecede Gt

LEGEND
2 Mex chacacters | vte Data Recoras

50 * Opuonal Recordt Start Charactens
st » Start Chavacsers
BC = Byte Count S

t{Data Byses/Recoral « 3 S1BCAAAA C
AAAR « Adarens of First Dava Byre S1BCaAa c
HA © Two Hesacecimal Digrts i0 9. AF) S1BCAAAA C
cc = Checksum of Record (one brtel S1BCaAA C

S98CAAAACC

Copyright 1983, Data I//0 Corporation; reprinted by permission.

A-3

A.3 INTEL INTELLEC
8/MDS FORMAT

Figure A-3.
Specifications for
Intel Intellec
8/MDS Data Files

Intel data records begin with a nine-character prefix and end with
a two-character suffix. The byte count must equal the number of
data bytes in the record.

Figure A-3 simulates a series of valid data records. Each record
begins with a colon (:), followed by a two-character byte count.
The Four digits following the byte count give the address of the
first data byte.

Each data byte is represented by two hex digits; the number of data
bytes in each record must equal the byte count.

The suffix is a two-digit checksum, the two's complement of the
binary summation of the previous bytes in the record.

INPUT
QATA RECORO ENQ QF FiLE AECORD
\/‘ ot \/
s START CmaRACTER R START CMARACTER
8 BC - Bute Count The moaaier Myt o i 0 g s
fd ~ ;e recard c Byre Count 3C G0 nEraotF g Aenars
a
a AXAA Aggeess ' Sera Dyie n e ot 3334 &
Aeviqec.mal A31ar 00 3ny a
a EREY
a A
a
'
, TT Recora Tyoe -00:
Qe
-
-
e Dne 030 trete C Puatier s gt
- CC Crecvim Newror caci cgmpemese oo KOUTPUT
- Summaron 3t Dreced ~q .tes - . |
- ZOuRT AGTENS AN T4Ta Dyies N meradeC = a toTar It | “2Es
dey TP IOUCE BN O 3T T me R Tyt gqe wt e -
omempaty TeLmowr gt 2v ey Der #C3r $.2 aote See Tadve 30
* o< N AR AITDr Nt Ag ne ‘eed U age reture
Joeewtraraciens D nue Deta Qecoras
- Starr Chacacter 3caaaars - c
a8c = Bote Count 'Ouara Avres Racora 3Caaaa77 '
aaaa * &garess Felg 3Caaaa’™ = \
- : Secora Tvoe gLazaalc y
L = One menagecnu D gt 109 aFy
cc © Checxsum of Recara

Copyright 1983, Data I/0 Corporation; reprinted by permission.

A-4

A.4 SIGNETICS ABSOLUTE Figure A-4 shows the specifications of Signetics format files. The

OBJECT FORMAT

Figure A-4.
Specifications for
Signetics Absolute
Object Data Files

data in each record is sandwiched between a nlne-character prefix
and a two-character suffix.

The start character is a colon (:). This is followed by the
address of the first data byte and a two-digit address check. Data

ia ad hu naw:—e nf havadgnqma'l rhamartane Tha hudka Alind
iS lcprcacuu:u vy MG Vi HCTAQUTUL NG I Lildl Qv bTi Je e vy LT countc

must equal the number of data bytes in the record. The suffix is a
two-character data check. Data is represented by pairs of hexa-
decimal characters. The byte count must equai the number of data
bytes in the record. The suffix is a two-character data check.

INPUT
DATA RECORD END OF FILE AECORD
: START CHARACTER \4 START CHARACTER
A AAAAL » Agoress of the fir3t Gata Dyte 0 record AAAA A
A Dexsdec:ma NOLLIOA Oy A Adaress
A A
i BC * The henasowcimal numbes of Seta bytes 1n e 1ecOD &
c Bvrte Count BC - 00 .n Eng of F e Recorts
A AC * Aaoress Check Every Dvie s exclusive ORed with
c The previous Dy, Then rO1ated lett one it
Ll V\
~
o M« One Gata Dyte n hexadecimal AotNOn
(ouTPUT
NOTES
11 Number of by ket 13er 16€0r0 & vaniable See Table 3 1
2 Each hine gy wsth Aonnr.ALng hing feed Carriage relurn
° OC * Data Check Every Dyte 11 exciusive ORed with the 30 o
< Drevious Byte. then (oLated lett one Dit
agpnadan. TH3 S53CR CO0 De wsed fOr hine feed. Carrigge return of
B e 2WEX crataciers 1 iwte Data Recorcy
V.‘\J‘-AL (Begnmng of next recore)
AAAABCAC 7’ DC
AAAABCAC DC ,
AAAABCACH oC 7
LEGEND AAAABCAC oc
* Start Character AAAABCAC
FYVYN * Agaress F g
8C = Byte Count (Da1a Bytes Record!
AC = Aadress Chect Checsum of address ang hyte count
L * Two Hesacecimai Digts (09 AF)
oc * Data Check Checitsum of 013 m record

Copyright 1983, Data I/0 Corporation; reprinted by permission.

A-5

TEKTRONIX
HEXADECIMAL
FORMAT

A.5

Figure A-5.
Specifications for
Tektronix Hexadecimal
Data Files

Figure A-5 illustrates of valid Tektronix data file. The data in
each record is sandwiched between the start character, a slash (/),
and a two-character checksum. Following the start character, the
next four characters of the prefix express the address of the first
data byte. The address is followed by a byte count, representing
the number of data bytes in the record, and by a checksum of the
address and byte count. Data bytes follow, represented by pairs of
hexadecimal characters and succeeded by a checksum of the data
bytes. The end of File record consists only of control characters,
used to signal the end of transmission, and a byte count and
checksum for verifications.

INPUT
CATA RECORD ABQ®T AESAR0
Start Cramacter
Two Searr Chacacren
a
a AAAA - Bgoress of me Loy tary dwre me cer o3
A TReTa0n M ~atar on
a
Aterar v g ot 350 naractens
' BC FvieCount e mmzi0ec e 2amnes ey e
c aneecwa
¢ CC Creexium Egnt 57 im 3t e i D svager ar oo -
¢ SO P NE An 3G INa ane L0 e ddeess et tL s
Zount mevedec ma 2otaran
) N
- MM Dme AP DV - msager mu c Ty
——
gz 66 zacsuag
e
< 0 Inecanum Eagnrac i o, 09§ e
< O OV eeaer T ar s 3 B 130 e e N
23ta owtes : aas A
2
Cars-agu revrm
1Begerning 30 mont ecorm N
\ N L 4. € ~E-r 03
Lo e = fgeees -
TP’ \ e R R FU S TR
QUTPUT N
NovES T
TONGMOB 3 Sy e 31T e stee See Tat e L
T B2 Al €D at AOROIAT g e el ars e ety
ng g
1 ren craacten - ! dyce Tarade
AN LEGEND
aamasce - o)
Asas 5 a3as
a .aagcce! - ac Auey
Aaaagccc o
T f-a00F e Amaa - 334
x

Copyright 1983, Data I/0 Corporation; reprinted by permission.

A.6 EXTENDED TEKHEX

Table A-1.
Extended Tekhex
Header Field

Extended Tekhex uses three types of message blocks:

le

2.

A data block contains object code.

A symbol block contains information about 2 program section and
the symbols associated with it. This information is needed
only for symbolic debug.

A termination block contains the transfer address and marks the
end of the load module,

NOTE
Extended Tekhex has no specially defined abort block. To abort

a formatted transfer, use a Standard Tekhex abort block, as
defined earlier in this section.

Each block begins with a six-character header field and ends with
an end-of-line character sequence (on the 8550, a carriage return).
A block can be up to 255 characters long, not counting the end-of-
line. A header field has the format shown in Table A-l.

NUMBER OF ASCII

ITEM CHARACTERS DESCRIPTION

4 1 A permit sign specifies that the
block is in Extended Tekhex format.

Block Length 2 The number of characters 1in the
biock: a two-digit hex number. This
count does not include the leading %
or the end-of-line.

Block Type 1 6 = data block
3 = symbol block
8 = termination block

Checksum 2 A two-digit hex number representing

the sum, mod 256, of the values of
all the characters in the block,
except the leading %, the checksum
digits, and the end-of-line. Table
A-2 gives the values for all
characters that may appear in
Extended Tekhex message blocks.

Copyright 1983, Tektronix; reprinted by permission

A-7

Table A-2.
Character Values
for Checksum
Computation

A.6.1 Yariable-Length
Fields

A.6.2 Data and
Termination
Blocks

Table A-3.
Extended Tekhex
Data Biock Format

CHARACTERS VALUES (DECIMAL)

0..9 0..9

A..Z 10..35

$ 36

2 37

.(period) 38
(underscore) 39

a..z 40..65

In Extended Tekhex, certain fields may vary in length from 2 to 17
characters. This practice enables you to compress your data by
eliminating leading zeros from numbers and trailing spaces from
symbols. The first character of a variable-length field is a
hexadecimal digit that indicates the length of the rest of the
field. The digit 0 indicates a length of 16 characters.

For example, the symbols START, LOOP, and KLUDGESTARTSHERE are
represented as SSTART, 4LOOP and OKLUDGESTARTSHERE. The values 0,
100H, and FFOO0OH are represented as 10, 3100, and 6FF0000.

If you do not intend to transfer program symbols with your object
code, you can do without symbol blocks. Your load module can
consist of one or more data blocks, followed by a termination
block. Table A-3 gives the format of a data block, and Table A-4
gives the format of a termination block.

NUMBER OF ASCII

FIELD CHARACTERS DESCRIPTION

Header 6 Standard header field. Block type =
6.

Load Address 2 to 17 The address where the object code is
to be Tloaded: a variable-length
number.

Object 2n n bytes, each represented as two hex
digits.

Copyright 1983, Tektronix; reprinted by permission.

A-8

Table A-4.
Extended Tekhex Terminal NOMBER OF ASCII
Block Format

A.6.3

Symbol Blocks

FIELD CHARACTERS DESCRIPTION

Header 6 Standard header field. Block type = 8.

Transfer Address 2 to 17 The address where program execution is
to begin: a variable-length number.

A symbol used in symbolic debug has the following attributes:

cumh lattar -
e LT

ne .;;muO 1. ss G-: 3 »
eriods, or symbolize a section name) percent sign. Lower
case letters are converted to upper case when they are placed
in the symbol table.

-
-

1f: n

N
O ar 1
goliar

[
(3

()
[#)}

2 a 1
reo 1
LA~ -

«t
(=9

<
-

wm

(7]

it

(Ve }

.

=
[~

2. A value: up to 64 bits (16 hexadecimal digits).

3. A type: address or scalar. (A scalar is any number that is not
an address). An address may be further classified as a code
address (the address of an instruction) or a data address (the
address of a data item). Symbolic debug does not currently use
the code/data distinction, so the address/scalar distinction is
sufficient for standard applications of Extended Tekhex.

4. A global/local designation. This designation is of limited use
in a load module, and is provided for future development. The
concept of global symbols is discussed in the Assembler Core
Manuals for both A Series and B Series assemblers. If the
global/local distinction is not important for your purposes,
simply call all your symbols global.

5. Section membership. A section may be thought of as a named
area of memory. Each address in your program belongs to
exactly one section. A scalar belongs to no section. the
concept of sections is discussed in detail in the Assembler
Core manuals for both A series and B series assemblers. The
significance of sections with regard to symbolic debug is
illustrated in the Emulation section of this manual.

The symbols in your program are conveyed in symbol blocks. Each
symbol block contains the name of a section and a 1ist of the
symbols that belong to that section. (You may include scalars with
any section you like). More than one block may contain symbols for
the same section. For each section, exactly one symbol block
should contain a section definition field, which defines the
starting address and length of the section.

If your object code has been generated by an assembler or compiler
that does not deal with sections, simply define one section called
(for example) MEMORY, with a starting address of 0 and a length
greater than the highest address used by your program; and put all
your symbols in that section.

Table A-5 gives the format of a symbol block. Tables A-6 and A-7
give the formats for section definition fields and symbol
definition fields, which are parts of a symbol block.

Copyright 1983, Tektronix: reprinted by permission.
A-9

Table A-5.
Extended Tekhex
Block Format

Table A-6.
Extended Tekhex
Symbol Block
Definition Field

NOMBER OF ASCIT

FIELD CHARACTERS DESCRIPTION

Header 6 Standard header field. Block type = 3.

Section Name 2 to 17 The name of the section that contains
the symbols defined in this block: a
variable-Tength symbol.

Section 5 to 35 This field must be present in exactly

Definition one symbol block for each section.
This field may be preceded or followed
by any number of symbol definition
fields. Table A-6 gives the format
for this fieid.

Symbol 5 to 35 Zero or more symbol definition fields,
Definition(s) each as described in
Table A-7.

~ NONBER OF ASCII

ITEM CHARACTERS DESCRIPTION

0 1 A zero signals a section definition
field.

Base Address 2 to 17 The starting address of the section:
a variable-length number.

Length 2 to 17 The length of the section:

variable-length number, coﬁputed as 1
+ (high address base address).

Copyright 1983, Tektronix: reprinted by permission.

A-10

Table A-7.

Extended Tekhex NUMBER OF ASCIT
Symbo1 Block: ITEM CHARACTERS DESCRIPTION
Symbol Definition
Field
Type I A hex digit that indicates the global/
local designation of the symbol, and
the type of value the symbol
represents:
1 = global address
2 = global scalar
3 = global code address
4 = gliobal data address
5 = local address
6 = local scalar
7 = local code address
8 = local data address
Symbol 2 to 17 A variable-length symbol.
Value 2 to 17 The value associated with the symbol:

a variable-length number.

NOTE

Symbol records are currently ignored by the
emulator.

Figure A-8 shows how this information might be encoded in Extended
Tekhex symbol blocks. (A1l

single 96-character block.

purposes of illustration.

this information could be encoded in a
It is divided into two blocks for

Copyright 1983, Tektronix: reprinted by permission.

A-11

Figure A-6.
Tekhex Data Block

Figure A-7.
Tekhex Termination Block

Figure A-8.
Tekhex Symbol Block

Bleck lengsh 15H = 21

PR

, p———— Checksur: 1CH = 28 = 1-5-6-3-1-0-0-0-2-0-2- ...
i{ ~—— Object coce 6 bytes
Ty \

"'-:;S s3.0002cz28zc0zile

VT

i
1

— Load address: 100K

2 I

— — Black tvpe 6

‘e Header character

Biock length 8

r— Checksum. 1AH = 26 = 0-8-3-2-8-0

w } -
n

Transfer acdress. 80OH
Block type: 8

Arar—————
Header character

Siock jangtn 37H = 55

Checksum: 60H = {3+7+3+8-28-31+12-28-29~..

|
! ~— Section definition field:
\ Y base address = 30H; length = C6H
wLADZ.’)Sl& RITE2EC
$TXITIT ‘2°3 JFLINGTH28C138LT27

Sectior name

=

! ———— Block tvpe: 3
l—————-—Heacer character

.} mod 256

Copyright 1983, Tektronix: reprinted by permission

A-12

APPENDIX B

REFERENCE MATERIAL

B.1 GLOSSARY

argument. An independent variable; the number or numbers that identifies
the location of a desired value.

baud. The shortest code element computed to a unit of signaling speed.
The speed in baud equals the number of code elements per second.

breakpoint. A point in a program where an external source can intervene
by giving a specific instruction to interrupt the normal sequence of
operations. The normal sequence can be resumed after the interruptions
used for debugging or visual checks on a terminal are terminated.

default. An option or value that is assumed provided another one has not
been specified.

disassembly (disassembler)., A program that converts binary instructions
into their symbolic mnemonic representation,

don't care. A term applied to an input or output value that is irrele-
vant to the specific operation or consideration.

duplex. Communications in a two-way independent transmission moving in
both directions.

wy

echo. Part of a transmitted signal recognized and received as interfer-
ence because of the magnitude and delay of the signal reflected back.

EEPROM. Electrically Eraseable Programmable Read Only Memory.
error code. A marking that indicates error by a code.

host system. The system that controls; for example, the development
system, minicomputer, or automatic test equipment (ATE) system.

indirection. The term means indirect addressing; particularly with
respect to the mechanism that performs it.

logic state probe (LSA). Monitors a system or component board and shows
the monitored information to be reviewed.

mainframe. A reference to large computers to distinguish them from
microcomputers, microprocessors, and minicomputers. With respect to the
ES1800 Satellite Emulator, the mainframe houses the emulator, control
board, RAM Overlay Board, the controller board, the trace and break
board, the memory control board, and the power supply.

memory map. A table or drawing representing the memory locations for
devices, programs, or functions.

modulo. The result of a mathematical operation of a specified number
that has been divided leaving a remainder. The remainder equals the
moduto,

operator. The element in an operation that defines what action is to be
performed on the operand.

parameter. A quantity which may be given variabie values.

parity. A method of self checking the accuracy of binary number
transmission.

run. A term describing the execution of emulation.

run with breakpoints. The execution of a program with temporary halts to
permit the operator to make some checks.

statement. A generalized instruction or syntactically complete string of
characters.

step. Single step operation.

stop bit. One or two l-bits used as a character delimiter in start-stop
transmission.

target system. With respect to emulation, the target system is the
computer (your hardware) that is emulated.

Trace Memory. Functions as a history of target system program execution.
XOFF. Transmitter off.

XON. Transmitter on.

B-2

B.2 REFERENCE MATERIAL

Table B-1.
Number Bases Cross
Reference
STANDARD
BINARY OCTAL HEXADECIMAL DECIMAL ABBREVIATION

0000 0 0 0

0001 1 1 1

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 10 8 8

1001 11 9 9

1010 12 A 10

1011 13 B 11

1100 14 c 12

1101 15 D 13

1110 16 E 14

1111 17 F 15

0001 0000 20 10 16

0010 0000 40 20 32

0100 0000 100 40 64

1000 0000 200 80 128

0001 0000 0000 400 100 256

0010 0000 0000 1000 200 512
0100 0000 Q000 2000 400 1,024 1K
1000 0000 0000 4000 800 2,048 2K
1100 0000 0000 6000 Ccoo 3,072 3K
0001 0000 0000 0000 10000 1000 4,096 4K
0001 0100 0000 QOO0 12000 1400 5,120 5K
0001 1000 0000 0000 14000 1800 6,144 6K
0001 1100 0000 0000 16000 1C00 7,168 7K
0010 0000 0000 0000 20000 2000 8,192 8K
0010 Q100 0000 0000 22000 2400 9,216 9K
0010 1000 0000 0000 24000 2800 10,240 10K
0100 0000 0000 0000 40000 4000 16,384 16K
1000 - 0000 Q000 0000 100000 8000 32,768 32K
0001 0000 0000 0000 0000 200000 10000 65,536 64K

7 6 5 0 0 O 0 0 1 0 v 0 0o 1 1 1 0 0 10 1 11 0
NUMBERS
BITS CONTROL & UPPER CASE LOWER CASE
1.2 3 4 SYMBOLS
10 20 40 60 100 120 140 160
NUL - DLE SP 0 @ P 1 p
0 0 0O |O o} 10 161 20 32130 48 { 40 64 {50 80 {60 96170 112
21 41 61 101 121 141 161
SOH DC1 ! 1 A Q a q
c 0 0 1 1 111 171 21 333N 49 | 41 65 { 51 . 8161 . 9717 113
2 2 42 62 102 122 142 162
STX DC2 " 2 B R b r
0 0t 0 |2 2112 181 22 34 |32 50 | 42 66 | 52 82 {62 98|72 114
3 23 43 63 103 123 143 163
ETX DC3 # 3 .C S c s
oo 1t 13 3113 191 23 35133 51143 67 |53 83 {63 9973 115
24 44 84 104 124 144 164
EOT DC4a H 4 D T d t
01 0 04 414 20 24 36 | 34 52144 68 | 54 84 | B4 100 | 74 116
. S 25 45 65 105 125 145 165
ENQ NAK % 5 E U e u
01 0 1|5 5115 211 25 37135 53] 45 69 | 55 85 {65 101175 117
6 26 46 66 106 126 146 166
ACK SYN & 6 F v f v
0 1 1 0 6|16 22} 26 38 |36 54 | 486 70 | 58 86 |66 1021 76 118
7 27 47 67 107 127 147 167
BEL ET8 ' 7 G w g w
g 1 1 1|7 7117 23 27 3|37 551 47 71 {57 87 |67 103177 119
10 30 50 70 110 130 150 170
BS CAN { 8 H X h X
1 0 0 08 8|18 241 28 40 | 38 56| 48 72|58 88 |68 104 | 78 120
1 31 51 Al 113 131 i51 71
HT EM) - 9 | Y i y
1t 00 119 9119 25| 29 41 |39 571 49 73 | 59 8g €9 105 | 79 12
12 32 52 72 112 132 152 172
LF SuB * : J Z i z
1 01 01}A 10 | 1A 26| 2A 42 | 3A 58| 4A 74 | SA 90 {6A 106 | 7A 122
i3 33 53 73 113 133 153 173
vT ESC + : K [k {
101t 11]8 11118 27| 28 43 | 38 501 4B 75 | 5B 91 | 6B 107 { 78 123
14 34 54 74 114 134 154 174
FF Fe . < L \ I
110 01C 12 11C 28} 2C 44 {3C 60| 4C 76 | 5C 92 16C 108 | 7C 124
15 35 55 75 115 138 158 175
CR GS . = M] m }
110 1D 13 {10 291 20 45 | 3D 611 4D 77 15D 93 |60 102170 125
16 36 56 76 116 136 156 176
SO RS . > N N n
1 11 0}E 14 | 1E 30| 2E 46 | 3E 62 | 4E 78 | 5E 94 | 6E 110 | 7€ 126
17 37 57 77 17 137 157 177
) Si us ! ? o] -— c Rubeu
1t 1 1 1 |F 15 { 1F 31} 2F 47 {3F 63| 4F 79 | SF 95 |6F 111 | 7F 127
Addressed Universal ram . Secondary Add
KEY Commands CO"“:T'B’\CE Listen Agdresses Talk Acdresses ccrcaor'ynmanrdessses
octal |25 PFUIGPIB code
NAK ASCli character Table B-2
hex |15 21] decimal ASCIi and IEEE Code

Chart

B-4

Table B-3.
ASCII Control Characters

B-5

acknowledge

bell

backspace

cancel

carriage return

playback on, CNTL Q, X-ON

record on, CNTL R, PUNCH-ON, SOM
playback off, CNTL S, X-OFF

record off, CNTL T, PUNCH-OFF, EOM
delete, rubout

f
data link escap

end of medium
enquiry

end of transmission
escape

end of transmission block
end of text

form feed

file separator

group separator
horizontal tabulation
line feed

negative acknowledge
null

record separator
shift in

shift out

start of heading
start of text
substitute
synchronous idle
unit separator
vertical tab

APPERDIX C
SYMBOLIC DEBUG

C.1 COMMANDS.

C.2 USAGE NOTE FOR USERS WITH SYMBOLIC FORMATS OTHER THAN
EXTENDED TEKHEX

C.1 COMMANDS

The symbolic debug option allows easier debugging, using a wider
range of capabilities. These include:

o Reference to an address by a name instead of a value

e Display of all symbols and sections with their values

e Editing (entry and deletion) of symbols and their values

o Automatic display of symbolic addresses during disassembly

e Section (module) symbols that can be used as range arguments and
for section offsets in trace disassembly

e Upload and d wnload of symbol and section definitions using
standard serial formats

The only standard symbolic format currently accepted is extended
Tekhex. If you are using another symbolic format, please see the
usage note at the end of this appendix.

o Implicit symbol definition and symbol value change
> "<SYMBOL> = <VALUE>

If SYMBOL is undefined, it is placed into the symbol table and
assigned the value VALUE. If SYMBOL was previously defined, it
will be reassigned the value VALUE,

~-<VALUE> is a 32-bit integer value. Don't cares are not allowed
in symbolic definitions.

--<SYMBOL> is any combination of the ASCII characters with decimal
values in the range 33-126. This range includes all of the
printable ASCII characters. Symbols are delineated by a single
starting quote (') and the first blank space or RETURN. Symbols
can be up to 64 characters long, although only the first 16

characters are displayed with symbolic disassembly.

e Symbolic reference

> "<SYMBOL> ;GRO = ‘<SYMBOL> ;'<SYMBOL> + $41900;...
The reference to 'SYMBOL will be exactly like referencing any of
the common registers in the ES, with the exception that symbols
not at the end of the command Tine must be terminated with a
space,
. Displaying symbols

>SYM [VALUE]

This displays the symbo1(s) that have been assigned the value
VALUE, If no argument is entered, all symbels and thei es

vl @ SFHivViI 9 Qi

will be displayed.
o Section definition
>'<SYMBOL> = <RANGE>
c-2

Example C-1.

Any symbol that is assigned a range value will, by definition, be a
section. <RANGE> is a standard ES 24-bit range value.

NOTE:

Overlapping sections and sections with the same
name as a symbol are illegal,

o Display of section values

>SEC [<VALUE>]

The section containing the value will be displayed along with its
Y - - v W =500 TEEEI Y Refil Tht § A% - u ulUlI;‘ i el 1 wa
assigned values. If no argument is entered, all section names and
values will be displayed.

o Deletion of a symbol or section

>DEL ‘<SYMBOL>

This will remove the symbol or section definition
o Clearing symbolic memory

>PUR
This command permanently removes all symbol data from ES memory.
e Upload and download of symbolic information

>UPS

This command uploads all symbols and sections in extended Tekhex
format.

--Sections are defined in separate records.
--Symbols are defined as belonging to the section "m".
Extended Tekhex restricts the number and range of characters that
can be used for a symbol name. The ES will truncate symbols to 16
characters and will substitute % for characters not allowed by
Tekhex.

>DNL
This command will accept symbolic definition records as well as

data records if the ES download format variable is set to 5
(extended Tekhex).

The use of symbols in disassembly allows the ES to display trace
data in a more useful format. Disassembly with defined symbols
will display the symbol name everywhere there is an address
reference that matches the symbol's value. Section names will be
shown whenever the program addresses fall within a defined section.
Also, when in a defined section, the program addresses will be
displayed as offset values from the beginning of that section.

This example outlines these points. The first disassembly contains
no defined symbols. The second disassembly shows the effect of the
c-3

a symbolic definition. Note how the program address display mode
changes as the addresses move out of the section.

>DTE
SEQ# - ADDR OPCODE MNEMONIC OPERAND FIELDS BUS CYCLE DATA
Figure C-1. Seeesmscccccmm—————— B e
Disassembly

Trace With Symbols ove
SEQH 4D0DR QFPCODE MNERCNIC CPERAND FIELDS BUS CYCLE DATA

0049 1000 BPOFOU ngy CX-000F

0052 1003 BEQOQ20 ngv S$I1:2000

00586 10056 BFO0022 nov DI,2200

0065 100? AS ngvs WOROD PTR 2000>FFFO0 2200<FFFO

0064 100a F3 : REPZ

0064 1008 A4 navs BYTE PTR
SG0253E 220243E Z20035FF 22034FF 2004500 2204<00
2005>00 2205<00 2006>FF 22046<FF 2007>FF 2207<FF

200800 2208<00 200900 2209<00 200A>FF 220A<FF
2008>FF 220B<FF 200C>00 220€<00 2000200 220D<C0
200E>FF 220QE<FF 200F>F5 220F<FS 2010200 2210400

0063 100C 038100FF ADD AX:NORD FPTR CBX-10013C0I) 2111>FFQ0Q
0059 1010 890200 noy CX-0002

0026 1013 F2 REPHZ

0025 1014 A7 CHFS MORO FPTR 20112FF10 2211»FF10

0025 101S C£116002405 RCL WORD PTR 2400,03 2400>A002 240040044
0017 10ia £8400004 ENTER 0040.04

17FE<Q000 FFFEDFFFF 17FCKFFFF FFFCOFFFF
17FACFFFF FFFARFFFF 17FB<FFFF 1TF&{17FE
0013 10lE EQEO LOOPHE SHORT 1000 .

Figure C-2.

Disassembly Trace sgps apoR OPCODE MMEMONIC OPERAND FIELDS BUS CYCLE DATa

Without Symbols ====m-=m=mmmmmro oo mo e eo oo mmeooseoeoseoooooseooooe -
0069 P5M_5086_80186_Test

00469 1000 B90FOO nov CX-000F

0068 1003 BEODO20 nay §1.2000

0056 1005 B8FQ022 nov D1.2200

0065 1009 aS movs WORD PTR 2000>FFFQ 2200<FFF9D
0054 100A 'F3 REPZ

0044 1008 A4) novs YT o7

2002>3E 2202<3E 2003>FF 2243<FF 2004500 2204<00
2005>00 2205<00 2006>FF 2204<FF 2007>FF 2207<FF
2008300 2208<00 2009>00 2209<00 200AMFF 220ALFF
2008>FF 220B<FF 200C»00 220C€<00 2000>00 220D<00
200E>FF 220EXFF 200F»F3 220F<FS 2010:00 2210400

0063 100C 038L00FF ADD AX.RORD FTR CBX-1001C0DI) 2111-FFOO0

0059 1010 890200 nov CX,0002

0026 1013 F2 REPNZ

0025 1014 A7 CHpPS MORD PTER 20113FFLO0 2211XFF 1O

0023 1013 C11600240% RCL YORD PTR Data_Word-03 2400>a002 2400<004A
0017 101A C28400004 ENTER 0040.04

17FE0000 FFFESFFFF 17FCSFFFF FFFCOFFFF
17FASFFFF FFFAMDFFFF 17F8<FFFF 17F&C(17FE
0018 101E EOQEOQ LOOPNE SHORT FGN_80846_80185_T=st

In this example a symbol "PGM ..." is assigned the value 1000. Code
has been executed and traced at this address. When this code is
disassembled, the 1line preceding the symbol address will show the
symbol name.

C-5

OTHER THAN
EXTENDED
TEKHEX

if you are working with any symbolic format other than Extended
Tekhex, you will not be able to use this method. Two alternates
are available: both require that you convert the symbolic format
that you are using before you enter the symbolic data.

e For very small programs, you can enter symbolic data manually
from a symbol map as follows:

><symbo1> =<valued<return>

e For other applications, you would want to put the Satellite
Emulator under computer control, using CCT. This method is just
as fast as downloading; however, no error checking is performed.
You must write a program that converts your symbolic data as
shown above; the program can then transmit the strings to the
emulator.

C-6

There are four characteristics to remember about CCT.

First, the emulator will echo most of the characters sent to it, so
the computer can use this feature to check the data transmission.

Second, when the host sends a RETURN, the emulator begins pro-
cessing the command line. New lines generally begin with RETURN
LINEFEED NULL NULL.

Third, the host must be able to handle incoming data at high rates
as the emulator will be sending at 968@ baud; the host should be
able to send XON/XOFF to the emulator.

Fourth, UPL (upload) and DNL (download) expect data from the same
port whether you are using TCT or CCT: if you are downloading the
emulator always expects data to come from the host, and if you are
uploading data is always sent to the host.

APPENDIX D
S-RECORD OUTPUT FORMAT

D.1. S-Record Output Format
D.1.1 S-Record Content
D.1.2 S-Record Types

D.2 Creation of S-Records

D.1 S-RECORD OUTPUT
FORMAT

D.1.1 S-RECORD
CONTENT

D.1.2 S-Record Types

The S-record format for output modules was devised for the purpose
of encoding programs or data files in a printable format for
transportation between computer systems. The transportation
process can thus be visually monitored and the S-records can be
more easily edited.

When viewed by the user, S-records are essentially character
strings made of several fields which identify the record type,
record length, memory address, code/data, and checksum. Each type
of binary data is encoded as a 2-character hexadecimal number: the
first character representing the high-order 4 bits, and the second
the low-order 4 bits of the byte.

The 5 fields which comprise an S-record are shown below:

type record length address code/data checksum

where the fields are composed as follows:

PRINTABLE
FIELD CHARACTERS CONTENTS

type 2 S-record type --S0, S1, etc.

record length 2 The count of the character pairs in the
record, excluding the type and record
length.

address 4, 6, or 8 The 2-, 3-, or 4-byte address at which
the data field is. to be loaded into
memory.

code/data 0-2n From 0 to n bytes of executable code,
memory-loadable data, or descriptive
information. For compatibility with
teletypewritters, some programs may
1imit the number of bytes to as few as
28 (56 printable characters in
S-record).

checksum 2z The ieast significant byte of the one's
complement of the sum of the values
represented by the pairs of characters
making up the record length, address,
and the code/data fields.

Each record may be terminated with a CR/LF/NULL. Additionally, an
S-record may have an initial field to accommodate other data such
as iine numbers generated by some time-sharing systems.

Accuracy of transmission is ensured by the record length (byte
count) and checksum fields.

Eight types of s-records have been defined to accommodate the
several needs of the encoding, transportation, and decoding
functions. The various Motorola upload, download, and other
file-creating or debugging programs, utilize only those S-records

D-2

D.2 CREATION OF
S-RECORDS

which serve the purpose of the program. For specific information
on which S-records are supported by a particular program, the
user's manual for that program must be consulted.

An S-record format module may contain S-records of the following
types:

SO The header record for each block of S-records. The code/data
field may contain any descriptive information identifying the
following block of S-records. Under VERSAdos, the resident
linker's IDENT command can be used to designate module name,
version number, revision number, and description information

whdabh 311 maba sim dha hasdaw masaw A Tha sddmscse €324 2o
wnicn wiii maKké uUp <tTneé nedger recora. tNg agqaress rviesa 1S

normally zeroes.

S1 A record containing code/data and the 2-byte address at which
the code/data is to reside.

S2 A record containing code/data and the 3-byte address at which
the code/data is to reside.

S3 A record containing code/data and the 4-byte address at which
the code/data is to reside.

S5 A record containing the number of S1, S2, and S3 records
transmitted in a particular block. This count appears in the
address field. There is no code/data field.

S7 A termination record for a block of S3 records. The address
field may optionally contain the 3-byte address of the
instruction to which control is to be passed. There is no
code/data field.

S8 A termination record for a block of S2 records. The address
field may optionally contain the 3-byte address of the
instruction to which control is to be passed. There is no
code/data field.

S9 A termination record for a block of S1 records. The address
field may optionally contain the 2-byte address of the
instruction to which control is to be passed. Under VERSAdos,
the resident linker's ENTRY command can be used to specify this
address. If not specified, the first entry point specification
encountered in the object module input will be used. There is
no code/data field.

Only one termination record is used for each block of S-records.
S7 and S8 records are usually used only when control is to be
passed to a 3- or 4-byte address. Normally, only one header record
is used, although it is possible for multiple header records to
occur.

S-record-format programs may be produced by several dump utilities,
debuggers, VERSAdos' resident 1linkage editor, or several cross
assemblers or cross linkers. On EXORmacs, the Build Load Module
(MBLM) utility allows an executable load module to be built from
S-records and has a counterpart utility in BUILDS, which allows an
S-record file to be created from a load module.

D-3

Several programs are available for downloading a file in S-record
format from a host system to an 8-bit microprocessor-based or a
16-bit microprocessor-based system. Programs are also available
for uploading an S-record file to or from an EXORmacs system.

Examg1e

Shown below is "a typical S-record-format module, as printed or
displayed:

$00600004844218B
S$1130000285F245F2212226A000424290008237C2A
$11300100002000800082629001853812341001813
$113002041E900084E42234300182342000824A952
$107003000144Ed492

S9030000FC

The module consists of one S@ record, four Sl records, and an S9
record.

The SO record is comprised of the following character pairs:
SO S-record type SO, indicating that it is a header record.

06 Hexadecimal 06 (decimal 6), indicating that six character
pairs (or ASCII bytes) follow.

gg t Four-character 2-byte address field, zeroes in this example.
48

44 + ASCII H, D, and R - "HDR".

52

1B The checksum.

The first S1 record is explained as follows:

S1 S-record type S1, indicating that it is a code/data record
to be loaded/verified at a 2-byte address.

13 Hexadecimal 13 (decimal 19), indicating that 19 character
pairs, representing 19 bytes of binary data, follow.

00
00

t Four-character 2-byte address field; hexadecimal address
0000, where the data which follows is to be loaded.

The next 16 character pairs of the first S1 record are the ASCII

bytes of the actual program code/data. In this assembly language

example, the hexadecimal opcodes of the program are written in

sequence in the code/data fields of the S1 records:

OPCODE INSTRUCTION

285F MOVE.L (A7) +,Ad4

245F MOVE.L (A7) +,A2

2212 MOVE.L (A2),01

226A0004 MOVE.L 4(A2),Al

24290008 MOVE.L FUNCTION(A1),D2

237C MOVE.L #FORCEFUNC,FUNCTION(AL)

o (The balance of this code is continued in the
code/data fields of the remaining S1 records,
and stored in memory location @¢1@, etc.)

2A The checksum of the first S1 record.

The second and third S1 records each also contain $13 (19)
character pairs and are ended with checksums 13 and 52
respectively. The fourth S1 record contains $7 character pairs and
has a checksum of 92.

The S9 record is explained as follows:

S9 S-record type S9, indicating that it is a termination record.

@3 Hexadecimal @3, indicating that three character pairs (3 bytes)
follow.

gg The address field, zeroes.

FC The checksum of the S9 record.

Each printable character in an S-record is encoded in hexadecimal
(ASCII in this example) representation of the binary bits which are
actually transmitted. For example, the first S1 record above is

sent as:
iype legen adotess Codu/dete f)
s 1 H 3 ° 0 o o 2 L} S [4 2
S) 3 i] 1 3) 3] 3 L] 3]) °) 2 3 . b - ¢ L]) H ¢
0101 jooil |oa3l jo001 {0OL IMX [-1 %9 }uu 0011 10000 {0OL) lm [193 Ioooo V0Ll |0000 {0011 {0010 j0O1) (uno 0011 {010! | 0100 {0110 | ... jooll o010 iol0e
L A i d R i 1

INDEX TO TOPICS
A

Absolute value. 3.4.3

AC Power Connection, 2.3.1

Activated bit values, 5.5.5
Address comparators, 5.3.1

Addition, 3.4.2

Al1l1- cycle trace, 5.1

Angle brackets, 3.1
Arithmetic applications, 3.4
Assemble T1ine to memory, 4.11
Assembler directives, 5.9
Assignment operators, 3.4.1

AT operator, 3.4.1
B

Back panel, 2.3.1

Base values, 3.3

Baud rate, 2.4.1, 8.2

Binary base indicator, 3.3.1
Bit values, 5.5.5

Bitwise and, Bitwise or, 3.4.2
Block move, 4.5.3

BNC connector, 2.3.1

Break Board, 5.3.1

Break on instruction Execution, 3.4.3
Breaking emulation, 5.1, 5.3
Breakpoint system, 5.1

BUS, 7.5

Bus error enable/disable, 3.5
Bus speed information, 3.5

Bus timeout enable, 3.5

Byte mode, 4.4.4

c

Cabtes, 8.1.1, 8.3

Changing values, 4.4.5

Character values for checksum computation, A.6
Characters, standard, 3.2

Changing values, 4.2, 4.4.5, 4.5.3, 5.10.4
Clear memory map, 4.5.2

Clear Overlay Memory, 4.5.3

Clear to send (input), 2.3.3

Clock and CRC, 7.4

Clock signal at power-up, 2.5

Code Segment, 2.5

Code space, 5.5.5

Communications, 6

Comparators, 5.1

Computer control, 6.3.2

Computer port, 1.1.3
Configurations, system, 1.1.4
Connecting pod. assemblies to mainframe, 2.4.3
Connection to CRT terminal, 2.4.1
Connection to target system, 2.4.2
Continuous address strobe, 3.5
Controller card 2.3.4

Copy Switch, 3.5

Count limit, 5.3.2

Counting bus cycles, 4.8

Counting events, 5.5

CRC, 7.4

D

Data, moving, 6.4

Data comparators, 5.3.3

Debugging, symbolic, C.1

Debugging without target system hardware, 4.7
Decimal base indicator, 3.3.1

Default base, 3.3.2, 7.1

Defaults, 2.4.1, 2.6.1

Delete 1ine, 3.2.4

Diagnostic functions, 7.1

Diagnostics, RAM, 7.2

DIP header, 1.1.1, 2.4.2

Disable bus error, 3.5

Disassemble previous, following trace, 4.8.3
Disassemble trace, 4.8.2

Display backwards, 3.3.3

Display base, 3.3.3

Display by bus cycles, 4.8.1

Display, clear memory map, 5.5.2

Display disassembled memory, 4.9.1
Display memory block format, 4.4.7
Display memory map, 4.5.2

Display raw trace, 4.8.1

Display registers format, 4.2
Displaying block of memory, 4.4.7
Displaying, clearing event monitor system, 5.2
Division, 3.4.2

Documentation, 1.2

Downloading, 6.4.1, 8.2

DTACK, 4.5.3

Don‘t Cares, 3.3, 5.3.5

Dumping data, 6.4.1

Duplex, default, 2.4.1

I-2

E

EEPROM storage, 3.5

Emulation, 4.3

Emulation control board, 1.1.1, 2.4.2
Enabling RAM overlay, 4.5.3

Equal sign, 3.4.1

Error messages, 4.8.3

Errors, download, 6.4.1

Escape code, 6.4.1

Event detector actions, 5.4

Event detectors, 5.1

Event groups, 5.5

Event monitor system, 5.2, 5.3

Examining, changing values, 4.2, 4.4.5, 4.5.3, 5.10.4
Extended TekHex, A.6

External breakpoint, 5.4

External triggering, 5.4.1

F

Fan, 1.1.1

Fast interrupt enable, 3.5

Fast timeout, 3.5

Fi1ling memory space, 4.5.2

Finding memory pattern, 4.4.7

Force Special Interrupt, 5.4.1, 3.5
Formats, data, App. A

Front, top panel removal, 2.3.4

FSI on instruction execution, 3.4.3
Fuse, line, 2.3.1

G

Glossary, B.1
Grounding, 2.2, 2.3.3
Ground loops, 2.2

H

Hard copy, see CPY, 3.5

Help menu, 2.6

Hexadecimal base indicator, 3.3.1
Host system control, 1.1.4

I

I1legal memory, 4.5.1

Indirection, 3.4.1

Installation, 2.1-2.5

Installing DIP header plug, 1.1.1, 2.4.2
Inter Intellac 8/mds format, A.3

Interface parameter switch settings, 2.6.1

I-3

Interfacing and communications, 2.3, 6
Interrupt acknowledge, 4.4.6
Interrupt, special forced, 5.3.1
Interrupts, SLO, FST, 3.5
Introspective mode, 3.5

Instruction cycle display, 4.8
Instruction cycle step, 4.3.2
Instruction pointer and code segment,
initializing, 4.3.4

Inverse/one's complement, 3.4.3

J
K

L

Line assembler, 4.10

Line fuse, 2.3.1

Line Voltage, 2.2, 2.3

Load parameters and save, 2.6.1
Load register, 4.2.1

Load RAM overlay, 4.5.2

Lockup, 4.3.5, 4.3.6, 6.3.2
Logic State Analyzer 5.6

Long word mode, 3.2.4

M

Machine-cycle step, 4.3.7

Mainframe components, 1.1.1

Main power switch, 2.3.1

Maintenance and troubleshooting, 8.1
Mask values, 5.5.5

Memory block attributes, 4.5.1
Memory controller board, 2.4.2
Memory disassembler, 4.9

Memory map, setting, 4.5.2

Memory and 1/0 mode pointer, 4.4.2
Memory mode prompls, 4.4.1

Memory spaces, 4.4.6

Memory mode status, 4.4.6

Modulo, 3.4.2

MOS technology format, A.l

Motorola exorciser format, A.2
Motorola family support, 1.3
Motorola S-record output format, A.2
Muitiplication, 3.4.2

N

Negation and two's complement, 3.4.3

Null modem cable, 2.3.3

Numbers and base values, 3.3

Number bases cross reference, B.2
I-4

0

Octal base indicator, 3.3.1
ON and OFF, 3.5
Oscilloscope trigger, 2.3.1
Options, 1.4

P

Parameter set-up and
mds

Neenmdbbcana am P
Pﬂrlﬂnl I'IC\P-'\ aro i

Parity, 2.4.1

Parts list, 8.3

Pass counting, 5.1, 5.3

Patching data, 4.4.5, 5.10. 4 5.3.1
Patching instructions, 4.9

Pin signals, serial ports, 2.3.3
Pod, emulator, 1.1.1, 2.4.2

Pod, LSA, 1.1.1, 2.4.2

Pointer, 2.5

Ports, 2.3.1, 2.3.3

Power connection, 2.3.1

Power supply, 1.1.1, 1.5

Power switch, 2.3.1

Power-up, 2.5

Pre-emulation check list, 2.6
Probe tip assembly, 8.1.2
Program counter, 4.10

Prompts, 3.2.1, 4.4.1, 5.3.1

Q
R

RAM diagnostics, 7.2

RAM overlay board, 1.1.1

RAM overlay, 4.5.2

Range values, 3.3

Read only memory, 4.5.1

Read/write memory, 4.5.1

Rear panel, 2.3.1

Registers, loading, 4.2.1

Registers, general 4.2.2

Register operators, 4.2

Registers, 4.9

Repeat previous command line, 3.2.4

Reprint current line, 3.2.4

Request to send (output), 2.3.3

Resets, types, 4.3.5

Return character, 3.2.4

RS232 pin conventions, 2.3.3

Run prompt, 3.2.2

Run, 4.3.1

Run with breakpoint, 4.3.3

Run with vectors, 2.6.1, 4.2
I-5

S

S-record information, App. D
Scope loops, 3.5, 7.3

Scrolling, 2.6.2, 4.4.3
Separators, 3.2.4

Serial data formats, Appendix A
Serial data in, 2.3.3

Serijal data out, 2.3.3

Serial data requirements, 6.2
Serial port connector pin assignment, 2.3.3
Serial ports, 2.3.1, 2.3.3
Service, 1.7

SET select numbers, 3.5

Setting up, 2.1-2.5

Shift left, shift right, 3.4.2
Side panel, 2.3.2

Signal ground, 2.3.3

Signature analysis, 5.4.1
Signetics absolute object format, A-4
Single-argument operators, 3.4.3
Single-step, 4.3.2

Spacing, 3.2.3

Specifications, 1.5

Square brackets, 3.1

Standalone system, 1.1.4
Standalone with host system, 1.1.4
Standard characters, 3.2

Status comparators, 5.3.4.
Status mnemonics, 5.5.5

Step and stop, 4.3.2

Stepping through program, 4.3.2
Stop bit, 2.3.2, 6.2

Strobe, timing, 5.6.2
Subtraction, 3.4.2

Supervisor data, 5.5.5
Supervisor program, 5.5.5

Switch settings, 2.6.1, 3.5
Symbol Blocks, A.6.3

Symbolic Debug, App. C

System configurations, 1.1.4
System control, 1.1.4

System parameters, defaults, 2.6.2

T

Target memory accesses, 4.5.1
Target system, 1,1.2

Tektronix hexadecimal format, A-5
Terminal control, 6.3.1

Terminal port 1.1.3

Thumbwheel switch, 2.3.4

Timing strobe, 5.6.2

I-6

Toggle counting, 5.3

Toggle tracing, 5.3

Trace and break board, 5.3.1
Trace memory and disassembly, 4.8
Tracing software sequences, 4.8
Transparency, 1.1

Transparent mode, 6.3.3
Triggering outputs, 5.4.1
Troubleshooting, 8.2

Two-argument operators, 3.4.2

u

Unpacking, 2.1

Upload and download, 6.4.1
User data, 5.5.5

User program, 5.5.5
Utility opeartors, 3.2.4
Utility routines, 7

v

Verify, 6.4.2

Values, examining, changing, 4.2, 4.4.5, 4.5.3, 5.10.4
Vectors, loading, running with, 4.3.4

Verify download, 6.4.2

Verify block data, 4.5.3

Verify block move, 4.5.3

Verify Overlay Memory, 4.5.3

View bus speed info, 3.5

Voltage, 2.2

W

Wait, 4.3.6

Warranty, 1.6

When/then statements, 5.1, 5.
Windowing, 5.3

Word mode, 3.2.4

Word and Byte Mode, 4.4.4
X

XON, XOFF, 2.4.1, 6.2

Y

z

Zilog family support, 1.3

SET-UP CHECKLIST
8086

Please read this checklist completely before using your new Aﬁp]ied Micro-

] 3
systems’ Satellite Emulator.

1. Have you reviewed the specifications for the serial interface port? See -
Sections 2.3.3 and 2.3.4. o o . T .

‘2. If using communications without a modem, you may need a null modem cable.
Exampie: . RTEINE e SR ,

N
(= T - -))

20

.

~
~4

Check the specifications 1in youf terminal hanha] before fé&ersingrthe“ |
pins. : Ce R L : IR o

3. You may wish to protect the 40-pin adapter on the Probe Tip Assembly by
installing a Tow-cost, round-pin CPU socket (male-female) onto the 40-pin
adapter. If a pin is then broken on the CPU socket, it is easier to
replace because of its common usage. . - '

4. At a minimum, you should review sections applicablé to the steps listed
- here, plus: ‘ : . P S :)

¢ Section 1-Introduction . o =

o Section 2-Installation and Set-up (includes help menus, sample first-
time emulation sequence, etc.) Sections 2.2 - 2.5 contain safety .
information. _ e -

If you experiencé difficulty in setting'up your‘Sate111te Emd?ator, call
Customer Services for ES products at 1-800-426-3925. S _

PLACE CHECKLIST INSIDE FRONT COVER FOR FUTURE REFERENCE

5020 148th Avenue N.E.

Redmong; WA 98052 o | o | /////ll rl?#gll&d .

Box C-1002
Redmond, WA 98073-1002

PLEASE LET US KNOW HOW WE'RE DOING

We welcome all comments on the contents and format of our manuals.
Address all comments to:

Technical Publications Department
Applied Microsystems Corporation
5020 148th Avenue N.E.

Box C-1002

Redmond, WA 98073-1002

	000
	001
	002
	003tiff
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	8-01
	8-02
	8-03
	8-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	D-01
	D-02
	D-03
	D-04
	D-05
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	_1
	replyA

