
ES 1800 SA TEL LITE EM ULA TOR

OPERATOR'S
MANUAL
FOR 80186/88
MICROPROCESSORS

////NI CCf/~~~stems
5020 148th Avenue N.E.
P. 0. Box 97002

cmPORRT/On

Redmond, WA 98073-9702
(206) 882-2000 1-800-426-3925

920-11437-01

December 1985

SET-UP CHECKLIST
80186/88

Please read this checklist completely before using your new Applied Micro­
systems' Satellite Emulator.

..~.

1. Have you reviewed the specifications for the serial interface port? See
Sections 2.3.3 and 2.3.4.

2. If using cOlmU.Dications without a modea, you may need a null mod~ ~•ble~· ·
Example:

1 1

6 6*
8 "] c 8*

20 ~20*
7 7

*Check the specifications in your terminal manual before reversing the
pins.

3. At a minimum, you should review sections applicable to the steps listed
here, plus "Getting Started With 'ftle 80186 or 80188."

.. ·
If you experience difficulty in setting up your Satellite Emulator, call
Customer Services for ES products at 1-800-426-3925.

PLACE CHECKLIST INSIDE FRONT COVER FOR FUTURE REFERENCE

U/IHllH:f/:stems
CCff'Cf?RTOl

5020 148th Avenue N.E.
Redmond, WA 98052

or
Box C-1002
Redmond, WA 98073-1002
Toll Free Service: 1-800-426-3925

GETTING STARTED WITH THE 80186 or 80188

The 80186 or 80188 microprocessors include on-chip peripheral
circuits which offer many benefits to the user. The addition of
these on-chip peripheral circuits adds a degree of complexity to
development workstations not previously encountered with either
the 8086 or 8088 microprocessors. As you might expect, this adds
greatly to the complexity of emulation, particularly in the area
of setting up an emulator to run with the target system.

This document should help identify obstacles to the installation
and operation of the emulator/target workstation. To help ensure
a successful and ~peedy start up, please follow these step-by­
step instructions.

STEP 1: SET UP THE EMULATOR/TARGET WORKSTATION
Connect the emulator to your target. Refer to section 2
of the Operator's Manual.

Apply power to your emulator then to your target system.

STEP 2: SET UP THE PCB RELOCATION REGISTER
Note: If you do not relocate the Peripheral Control
Block from $FF00 in I/O space, then go to Step 3.

ENTER: REL = register-value <Return>*

STEP 3:

ENTER:

ENTER:

STEP 4:

Note:

12/7/84

*Refer to an Intel 80186 User's Guide for the proper vay
to set up the register.

SET UP THE ON-CHIP CHIP SELECT PERIPHERAL
Note: If you do not use on-chip chip selects, then go
to Step 4.

ON RCS <Return)
With RCS set to ON, the following will be true:

PAUSE-TO-RUN transitions will write the emulator chip
select PCB values into the target PCB.
RUN-TO-PAUSE transitions will read the emulator chip
select PCB values from the target PCB.

Values needed for UMCS, LMCS, MPCS, MMCS and PACS
registers, as: UMCS = register_value (Return>.*

*Refer to an Intel 80186 User's Guide for the proper way
to set up the register.

SET UP THE ON-CHIP DMA PERIPHERAL

If on-chip DMA circuitry is not used, then go on to Step
5.

-1-

ENTER:

Note:

ENTER:

STEP 5:

Note:

ENTER:

Note:

STEP 6:

STEP 7:

Note:

!!:NIER:

Values needed for USRCO, SRCO, UDSTO, DSTO, XCO and CWO
registers, as: USRCO = register_value <Return>.*

*Refer to the intel 80186 User""s Guide for the proper
set up.

If you do not need DMA active while paused, then go on
to Step S.

ON DME (Return)

SET UP THE ON-CHIP TIMER PERIPHERAL

If en-chip
Step 6.

timer circuitry is not then on to

Values needed for TC~, TCl, TC2, MA0, MAl, MA2, MB0,
MBl, MB2, MCW0, MCWl and MCW2 registers, as:
TC0 = register_value (Return>.*

*Ref er to the Intel 80186 User's Guide for the proper
set up.

If you need a timer circuit active while paused, then
turn on the appropriate emulator software switch, as:
ON TE0 <Return> for timer zero, and/or
ON TEl <Return) for timer one, and/or
ON TE2 <Return) for timer three.

SET UP THE ON-CHIP INTERRUPT CONTROL PERIPHERAL

If on-chip Interrupt Control circuitry is not used, then
proceed to Step 7.

Values needed for INT0, INTl, INT3, EOI, POL, POS, MSK,
PLM, ISV, IRQ, IST, TCR, DMA0, DMAl, and DMA2 registers,
as:
INT0 register_value <Return>*

*Refer to the Intel 80186 User's Guide for the proper
set up.

SET UP OVERLAY AND A MINIMAL PROGRAM

This step assumes you have neither target memory nor a
valid program located at the startup location (*FFFF~).
If you have target memory and a valid program then go on
to Step 8.

MAP $FF80~;DM <Return>
This will map in overlay from $FF800 to $FFFFF and
display the memory map.

-2-

ENTER:

ENTER:

ENTER:

ENTER:

ON RDY <Return)
This will ensure that Reads and Writes to overlay use
the emulator's internal ready signal.

ASM <Return>
This will invoke the single-line assembler to enter a
sequence of NOP instructions.

CSEG = 0FFFF <Return>
This will set the assembler to an absolute address of
$FFFF0.

NOP <Return> (repeat several times)
This throw-away program is used to initialize the
on-chip peripheral circuitry.

ENTER: X (Return>
This will exit the assembler.

STEP 8: ACTIVATE THE ON-CHIP PERIPHERALS

Note: The following tasks should have been accomplished before
reaching this point: .

ENTER:

Note:

ENTER:

ENTER:

1) The state of all on-chip peripherals should have
been set up via the PCB registers.

2) The emulator's ON or OFF software switches have been
properly set up.

3) A program resides at the start up location ($FFFF0).

ACl stopping point <Return)
Th i s w i 11 d e f in e t h e s t o p p i n g p o i n t o f t he p r o g ram w. h i.c:h:
should follow the initialize section.

Th e on - chip p e r i p he r a 1 s a r e a c t iv at e d by e i the r a . '1le~a <r:
from, or Write to appropriate registers. The setting of
the emulator's switches to ON guarantees the chosen
peripheral registers will be written and read following
the execution of at least one instruction cycle. There~

fore, set up ACl, as either:

ACl = $FFFF2 (if manually initializing and using the
NOP program in Step 7),

or,

ACl stopping point (if using your own PCB initiali-
zation program).

WHEN ACl THEN BRK
This will allow a breakpoint when ACl is recognized
during emulation.

RST;RBV <Return)

-3-

RST sends a reset signal to the target system via the
RESET OUT line.

RBV sets
$ FFFF_0,

CS:IP registers
activates the

initiates a real-time run.

to the
event

absolute address of
monitor system, and

This concludes the initial startup procedure. At this point, the
PCB has been initialized and the emulator set up for further use.
You should be able to perform normal emulator functions.

,,
- '+-

Applied Microsystems Corporation has made every effort
to document this product accurately and completely. However,
Applied Microsystems assumes no liability for errors or for
any damages that result from use of this manual or the equip­
ment it accompanies. Applied Microsystems reserves the right
to make changes to this manual without notice at any time.

Because this configuration of the ES1800 Satellite
Emulator is intended for use in developing, debugging, and
testing Intel 80186/88 microprocessor-based systems, it is
presumed that the user is familiar with the terminology of
the 80186/88 microprocessors.

WARNING - This equipment generates, uses, and can
radiate radio frequency energy and if not installed
and used in accordance with the instructions manual,
may cause interference to radio communications. As
temporarily permitted by regulation it has not been
tested for compliance with the limits for Class A
computing devices pursuant to Subpart J of Part 15 of
FCC Rules, which are designed to provide reasonable
protection against such interference. Operation of
this equipment in a residential area is likely to
cause interference in which case the user at his own
expense will be required to take whatever measures
may be required to correct the interference.

i

TABLE OF CONTENTS

QUICK-INDEX TO COMMANDS vi
LIST OF FIGURES x
LIST OF TABLES xi
LIST OF EXAMPLES xii

SECTION 1. INTRODUCTION

1.1 SYSTEM CONCEPT 1-2
1.1. 1 Components 1-2
1.1.2 The Target System 1-3
1.1.3 The Host System 1-4
1.1.4 System Configurations 1-4
1.1.5 System Features 1-5

1. 2 DOCUMENTATION 1-7
1.3 8086 APPLICATIONS 1-8
1.4 OPTIONS 1-8
1.5 SPECIFICATIONS 1-9
1. 6 LIMITED WARRANTY 1-10
1.7 SERVICE 1-10

SECTION 2. INSTALLATION AllD SET UP

2.1 UNPACKING AND INSPECTION 2-2
2.2 OPERATING VOLTAGE AND GROUNDING 2-2
2.3 SYSTEM INTERFACING 2-3

2.3.1 The Rear Panel 2-3
2.3.2 The Side Panel 2-4
2.3.3 Serial Port Connector Pin Assignment 2-4
2.3.4 Setting Interface Parameters 2-6

2.4 PHYSICAL CONNECTION 2-7
2.4.1 Connection to a CRT Terminal 2-7
2.4.2 Connection to a Target System 2-8

2.5 SYSTEM POWER-UP AND CHECKOUT 2-10
2.6 PRE-EMULATION CHECKLIST AND THE HELP MENU 2-11

2.6.1 Parameter Set-Up and EEPROM Storage Overview 2-13

SECTION 3. SYSTEM SYNTAX AND PARAMETERS

3 .1 INTRODUCTION 3-2
3.2 STANDARD CHARACTERS 3-2

3.2.1 The Prompt Character 3-2
3.2.2 The Run Prompt 3-2
3.2.3 Spacing 3-3
3.2.4 Utility Operators 3-3

3.3 NUMBERS AND BASE VALUES 3-3
3.3.1 Hexadecimal, Decimal, Binary and Octal 3-4
3.3.2 Default Base 3-4
3.3.3 Display Base 3-5

3.4 ARITHMETIC OPERATORS 3-6
3 .4 .1 Assignment Operators 3-7
3.4.2 Two-Argument Operators 3-9
3.4.3 Single-Argument Operators 3-12

3.5 PARAMETER SET-UP AND EEPROM STORAGE 3-13

ii

SECTION 4. OPERATION

4.1 INTRODUCTION 4-2
4.2 REGISTER OPERATORS 4-2

4.2.1 Loading a Register 4-4
4. 2. 2 General Registers 4-4

4.3 EMULATION 4-4
4.3.1 Run 4-5
4.3.2 Step and Stop 4-5
4.3.3 Run With Breakpoints 4-5
4.3.4 Vector Loading and Running With Vectors 4-6
4.3.5 Reset 4-6
4.3.6 Wait 4-6

4.4 MEMORY MODE 4-6
4.4.1 Entering and Exiting Memory 4-7
4.4.2 Memory Mode and Pointers 4-7
4.4.3 Scrolling 4-8
4.4.4 Word and Byte 4-8
4.4.5 Examining and Changing Values 4-8
4.4.6 Memory Mode Status 4-9
4.4.7 Displaying a Block of Memory and 4-9

Finding a Memory Pattern
4.5 MEMORY MAPPING AND THE OVERLAY MEMORY 4-10

4.5.1 Memory Block Attributes 4-10
4.5.2 Memory Mapping Operators 4-11
4.5.3 Overlay Memory Operators 4-12

4.6 SOFTWARE DEBUGGING WITHOUT TARGET SYSTEM HARDWARE 4-14
4.7 ERROR HANDLING AND CODES 4-15
4.8 THE TRACE MEMORY AND DISASSEMBLER 4-15

4.8.1 Display Raw Trace 4-15
4.8.2 Disassemble Trace 4-16
4.8.3 Disassemble Previous and Following Trace 4-17

4. 9 THE MEMORY DISASSEMBLER 4-22
4.9.l Disassembled Memory 4-22

4 .10 THE LINE ASSEMBLER 4-22
4 .10 .1 Standard Mnemonics 4-23
4.10.2 Assembler Directives 4-i3
4 .10 .3 Usage Notes 4-25
4.10.4 Assemble Line to Memory 4-25

4. ll REPEAT AND MACROS 4-31

SECTION 5. PROGRAMMING THE EVENT MONITOR SYSTEM

5.1 INTRODUCTION 5-2
5.2 DISPLAYING AND CLEARING THE EVENT MONITOR SYSTEM 5-4
5.3 EVENT COMPARATORS 5-4

5.3.1 Address Comparators 5-5
5.3.2 Count Limit 5-6
5.3.3 Data Comparators 5-7
5.3.4 Status Comparators 5-7
5.3.5 Don't Cares 5-11

5.4 EVENT MONITOR SYSTEM ACTIONS 5-12
5.4.1 Force Special Interrupt 5-14

5.5 EVENT GROUPS 5-16
5.6 OPTIONAL LOGIC STATE ANALYZER 5-21

5.6.1 LSA Functions 5-21
5.6.2 Timing Strobe 5-22

iii

SECTION 6. INTERFACING AND COMMUNICATIONS

6.1 INTRODUCTION
6.2 SERIAL DATA REQUIREMENTS
6.3 SETTING SYSTEM CONTROL

6.3.1 Terminal Control
6.3.2 Computer Control
6.3.3 Transparent Mode

6.4 DATA TRANSFER AND MANIPULATION
6.4.1 Upload and Download
6.4.2 Verify

SECTION 7. DIAGNOSTIC FUNCTIONS

7.1 INTRODUCTION
7.2 RAM DIAGNOSTICS

7.2.1 SF #0, <RANGE)
7.2.2 SF #1, <RANGE)
7.2.3 SF #2, (RANGE)
7.2.4 SF #3, <RANGE)

7.3 SCOPE LOOPS
7.3.1 SF #4, (ADDR><DATA>
7.3.2 SF #5, <ADDR)
7.3.3 SF #6, <ADDR) <DATA>
7.3.4 SF #7, (ADDR>, (PAT-1) (PAT-2)
7.3.5 SF #8, <ADDR>, (PAT)
7.3.6 SF #9, <ADDR>, <DATA)
7.3.7 SF #10, (RANGE)
7.3.8 SF #11, <ADDR), (DATA)
7.3.9 SF #12, <RANGE)

7.4 MISCELLANEOUS
7.5 BUS
7.6 COM AND DIA

SECTION 8. MAINTENANCE AND l'ROUBLESHOOTING

8 • 1 MAINTENANCE
8.1.1 Cables
8.1.2 Probe Tip Assembly

8.2 TROUBLESHOOTING
8.3 PARTS LIST

APPENDIX A. SERIAL DATA FORMATS

A.l MOS TECHNOLOGY FORMAT
A.2 MOTOROLA EXORCISER FORMAT
A.3 INTEL INTELLEC 8/MDS FORMAT
A.4 SIGNETICS ABSOLUTE OBJECT FORMAT
A.5 TEKTRONIX HEXADECIMAL FORMAT
A.6 EXTENDED TEKHEX FORMAT

A.6.1 Variable-Length Fields
A.6.2 Data and Termination Blocks
A.6.3 Symbol Blocks

iv

6-2
6-2
6-3
6-3
6-3
6-4
6-5
6-5
6-7

7-2
7-2
7-2
7-2
7-2
7-2
7-2
7-3
7-3
7-3
7-3
7-3
7-3
7-3
7-3
7-3
7-3
7-4
7-5

8-2
8-2
8-2
8-2
8-4

A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-8
A-9

APPENDIX B. GLOSSARY AND REFERENCE MATERIAL

B.l Glossary
B.2 Reference Material

APPERDIX C. SYMBOLIC DEBUG

C.l COMMANDS
C.2 USAGE NOTE FOR USERS WITH SYMBOLIC FORMATS

OTHER THAN EXTENDED TEKHEX

APPENDIX D. S-RECORD OUTPUT FORMAT

D.l S-RECORD OUTPUT FORMAT
D.1.1 S-Record Content
D.1.2 S-Record Types

D.2 CREATION OF S=RECORDS

INDEX TO TOPICS

v

B-1

B-1
B-3

C-1

C-2
C-5

D-2
D-2
D-2
D-3

I-1

OPERATOR

ABS
ACI, AC2
ALT
AND
AX, AL, AH

BAS
BKX
BMO
BP
BRK
BUS
BX, BL, BH
BYM
BYT

CCT
CD
CES
CK
CLIC
CLM
CNT
CPY
CRC
cs
COD
COM
CTL
CW0, CWl
ex, CL, CH

DAT
DB
DC
DC1,DC2
DEL
DES
DFB
DI
DIS
DM
DMA
DMA0, 1
DMA0 (iRMX

mode)
DMAl (iRMX

mode)
DME

QUICK INDEX TO OPERATORS

absolute value
address comparators 1 and 2
alternate data access
logical event AND
accumulator (low and high)

display base value
break on instruction execution (not prefetch)
block move
base pointer
break
display status of lines
base register (low and high)
byte mode
byte status

Computer Control
overlay enable for code access
clear Event Monitor System When/Then statements
select internal clock
measure target system clock
clear memory map
count event
copy switch
calculate cyclic redundancy check in target system
code segment
code status
communicate with program running in system
count limit
dma control words ~ and 1
count register Jfow and high)

data access status
display memory block
Don't Care
data comparators 1 and 2
delete symbol
display Event Monitor System When/Then statements
default base value
destination index
display disassembled memory
display memory map
DMA cycle status
dma interrupt control regisers (0.1)

level 2 control register (DMA 0)

level 3 control register (DMA 1)
enable DMA timer during pause

vi

PAGE

3-12
5-4
5-8
5-13
4-2

3-4

4-12
4-2
5-10
7-4
4-2
4-6
5-11

6-3
4-11
5-3
3-13
7-3
4-10
5-10
3-15
7-3
4-2
5-8
7-5
5-9
4-2
4-2

4.8
4-8
5-9
5-6
6-3
5-3
3-4
4-2
4-21
4-9
5-8
4-3

4-3

4-3
3-14

SECTION
NUMBER.

3.4.2
5.3.1
5.3.4
5.6
4.2

3.3.3

4.5.3
4.2
5.4
7.5
4.2
4.4.4
5.5.5

6.3.2
4.5.3
5.2
3.5
7.4
4.5.2
5.4
3.5
7.4
4.2
5.3.4
7.6
5.5.2
4.2
4.2

4.4.6
4.4.7
5.3.5
5.5.3
6 .1
5.2
3.3.2
4.2
4.9.1
4.5.2
5.3.4
4.2

4.2

4.2
3.5

DNL
DR
ORT
OS
DST0, l
DT
DTA
OTB
DTF
DX,DL, DH

EDI
EDI (iRMX

mode)
ES

FIL
FIN
FLX, FLL,

FLH
FSI
FSX

GD~-7
GR0-7
GRO

HLT

IDX
ILG
IAK
IF
IM
INT0-3 (non-

iR...1-0C mode)
IOA
IOP
IP
IRA
IRQ (non­

iRMX mode)
IRQ (iRMX

mode)
IST
IST (iRMX

mode)
ISV (non­

iRMX mode)
ISV (iRMX

mode)
ITR
IV (iRMX

mode)

Index Continued

download
display CPU registers
display raw Trace Memory
data segment
dma lower 16 bits of destination address (0, 1)
disassemble Trace Memory
overlay enable for data access
disassemble Trace Memory backward
disassemble Trace Memory forward
data register (low and high)

end of interrupt register

specific end of interrupt register
extra data segment

fill memory with constant data
find byte or word

flags register (low and high)
Force Special Interrupt
FSI on instruction execution (not prefetch)

general purpose data registers 0 through 7
general purpose range registers 0 through 7
Event Monitor System Group

halt status

index variable
illegal memory access
interrupt acknowledge status
instruction fetch status
introspective mode

interrupt control registers (~-3)(non-iRMX mode)
IO access status
IO mode pointer
instruction pointer register
internal range

interrupt request register (non-i&"OC mode)

interrupt request register (iRMX mode)
interrupt status register (iRMX mode)

interrupt status register (non-iRMX mode)

in service register (non-iRMX mode)

in service register (iRMX mode)
initialize trace

interrupt vector register (iRMX mode)

vii

6-5
4-2
4-13
4-2
4-2
4-14
4-11
4-14
4-14
4-2

4-2

4-3
4-2

4-11
4-7

4-2
5-12
3-13

4-2
4-2
5-11

5-8

5-18
4-10
5-8
5-8
3-15

4-3
5-8
4-6
4-2
5-4

4-3

4-3
4-3

4-3

4-3

4-3
3-16

4-3

6.4.1
4.2
4.6.1
4.2
4.2
4.6.2
4.5.3
4.6.3
4.6.3
4.2

4.2

4.2
4.2

4.5.3
4.4.7

4.2
5.4.1
3.5

4.2
4.2
5.5.4

5.3.4

5.6.2
4.5.1
5.3.4
5.3.4
3.5

4.2
5.3.4
4.4.2
4.2
5.3.1

4.2

4.2
4.2

4.2

4.2

4.2
3.5

4.2

LD
LDV
LEN
LIM
LMCS
LOV
LSA
LST

MAC
MA~-2
MAP
MJ30-1
MCW<J-2
MEM
MM or M
MMCS
MMP
MMS
MOD
MPCS
MSK (iRMX

mode)
MSK (non­

iRMX mode)
MX or X

NBC
NMI
NOT
NXT

ON
OFF
OR
OVE
OVL

PCB
PACS
PLM (iRMX

mode)
PLM (non­

iRMX mode)
POL (non­

iRi."'-OC mode)
POS (non­

iRMX mode)
PUR
TCR (non­

iRMX mode)

QD1-QD6
QF

Index Continued

load EEPROM data
load vectors
length .
limit variable
lower memory chip select register
load RAM Overlay Memory
Logic State Probe comparator
last-Return decrements address in Memory Mode

display macro command
timer max count "A" register
define RAM Overlay Memory Map
timer max count "B" registers (~, 1)
timer mode control word registers (~-2)
memory status
enter Memory Mode
mid-range memory chip select (base address register)
Memory Mode pointer
Memory Mode status
modulo
mid-range memory chip select (block size register)

mask register (iRMX mode)

mask register (non-iRMX mode)
exit Memory Mode

no bus status
MNI cycle status
logical event NOT
next-Return increments address in Memory Mode

enable switches
disable switches
logical event OR
RAM Overlay Memory enable
status RAM Overlay Memory

display peripheral control block registers
peripheral chip select register

priority mask register (iRMX mode)

priority mask register (non-iRMX mode)

poll register (non-iRMX mode)

poll status register (non-iRMX mode)
purge symbols

timer interrupt control register (non-iRMX mode)

que depth (1-6) status
que flush cycle status

viii

2-13 2.6.1
4-5 4.3.4
5-4 5.3.1
5-18 5.6.2
4-3 4.2
4-11 4.5.3
5-14 5 •• 6
4-5 4.4.3

5-14 5.6.3
4-3 4.2
4-9 4.5.2
4-3 4.2
4-3 4.2
5-8 5.3.4
4-4 4.4.1

·4-3 4.2
4-2 4.4.3
4-6 4.4.6
3-9 3.4.2
4-3 4.2

4-3 4.2

4-3 4.2
4-5 4.4.1

5-8 5.3.4
5-8 5.3.4
5-3 5.2
4-5 4.4.3

3-12 3.5
3-12 3.5
5-13 5.6
4-11 4.5.3
5-11 5.5.5

4-4 4.2.1.1
4-3 4.2

4-3 4.2

4-3 4.2

4-3 4.2

4-3 4.2
C-3 c.1

4-3 4.2

5-8 5.3.4
5-8 5.3.4

RBK
RBV
RCS
RCT
RD
RDST0, 1
RDY
REL
RIO
RM
RNV
:RO
RST
RUN
:RW

Sl,S2
SAV
SEC
SET
SF0-l 7
SI
SIA
SP
SRC0, 1
SS
STA
ST!
STP
SYM

TAR

TC0-2
TCT
TGR
:TGT
THE
TMR0
TMRl
TMR2
TE0-2
TO
TOC
TOT
TRA
TRC

UMCS
USRC0, 1
UPL
UPS

VBL
VBM
VFO
VFY

Index Continued

run with breakpoints
run with breakpoint and vectors
chip select register display switch
reset count limit
read status
dma upper 4 bits of destination address (0,1)
select internal ready when accessing overlay
relocation register
read IO status
read memory status
run with vectors
read only
reset
run emulation
read/write

status comparators 1 and 2
save EEPROM data
display sections
set system parameters
special functions
source index
set special interrupt address
stack pointer
dma lower 16 bits of source address (~,l)
stack segment
stack data status
step through interrupt
step and stop
display symbols

target access
status target system
timer count registers (0-2)
Terminal Control
enable trigger output
target system memory
then
level 0 control register (timer 0)(iRMX mode)
level 4 control register (timer l)(iRMX mode)
level 5 control register (timer 2)(iRMX mode)
enable timer n during pause
to
toggle counting
toggle Trace Memory
Transparent Mode
trace event

upper memory chip select register
dma upper 4 bits of source address (~,l)
upload
upload symbols

verify block data
verify block move
verify RAM Overlay Memory
verify serial data

ix

4-4
4-5
3-14
5-3
5-11
4-3
4-21
4-3
5-8
5-8
4-5
4-9
4-5
4-4
4-9

5-6
2-13
C-3
2-12
7-2
4-2
5-12
4-2
4-3
4-2
5-8
3-14
4-3
C-2

5-8
5-11
4-3
6-3
5-11
4-10
5-13
4-3
4-3
4-3
3-14
5-4
5-10
5-10
6-3
5-10

4-3
4-3
6-5
4-2

4-12
4-12
4-11
6-6

4.3.3
4.3.3
3.5
5.3
5.4
4.2
4.7
4.2
5.3.4
5.3.4
4.3.4
4.5.1
4.3.5
4.3.1
4.5.1

5.5.5
2.6.1
C.l
2.6.1
7.2
4.2
5.4.1
4.2
4.2
4.2
5.3.4
3.5
4.3.2
C. l

5.3.4
5.5.5
4.1
6.3.1
5.4
4.5.1
5.6
4.1
4 .1
4 .1
3.5
5.3.1
5.4
5.4
6.3.3
5.4

4.2
4.2
6.4.1
4.2

4.5.3
4.5.3
4.5.3
6.4.2

WAI
WDM
WHE
WIO
WM
WR
WRD

x
xc r/J, 1
XRA
X87

>
R)
<return>
I

CNTL X
CNTL R
$
II
%
\

()
@

*
I
+

&

«
»

,
?

Index Continued

wait
word mode
when
write IO status
write memory status
write
word status

don't care/exit memory mode
dma transfer count (0, 1)
external range
8087 cycle status

prompt character
run prompt
return
repeat previous command line
statement separator
argument separator
delete line
reprint previous line
hexadecimal
decimal
binary
octal
equal
parentheses
indirection
multiplication
division
addition
subtraction/negation
(negation)
bitwise AND
bitwise OR
shift left
shift right
inverse
memory block attribute
pointer type style
increment Memory Mode address
decrement Memory Mode address
Help Menu or Error Query

x

4-5
4-7
5-2
5-8
5-8
5-11
5-6

5-9
4-3
5-5
5-8

3-2
3-2
3-3
3-3
3-3
3-3
3-3
3-3
3-4
3-4
3-4
3-4
3-6
3-6
3-7
3-10
3-10
3-10
3-10
3-12
3-11
3-11
3-7
3-7
3-12
3-3
3-3
4-7
4-7
2-11

4.3.6
4.4.4
5.1
5.3.4
5.3.4
5.5.S
5.2.6

5.3.5
4.2
5.3.1
5.3.4

3.2.1
3.2.2
3.2.4
3.2.4
3.2.4
3.2.4
3.2.4
3.2.4
3.3.1
3.3.1
3.3.1
3.3.1
3.4.1
3.4.1
3.4.1
3.4.2
3.4.2
3.4.2
3.4.2
3.4.3
3.4.2
3.4.2
3.4.1
3.4.3
3.4.3
3.2.4
3.2.4
4.4.3
4.4.3
2.6

LIST OF FIGURES

1-1 The Satellite Emulator
1-2 Mainframe Components
1-3 System Configurations
1-4 Dimensions

2-1 Rear Panel
2-2 Serial Port Connector Pinout
2-3 Front and.Top Panel Removal
2-4 Installing the Emulation Control Board

1-2
1-3
1-5
1-9

2-3
2-4
2-6
2=8

2-5 Connecting the Pod Assemblies to the Mainframe 2-9
2-6 Installing the Probe Tip 2-9
2-7 The Help Menu 2-12
2-8 Display Format 2-13

3-1 ES Switch Settings 3-13

4-1 Display Registers Format 4-3
4-2 Display Memory Block Format 4-9
4-3 Display Memory Map Format 4-11
4-4 Trace Memory Format 4-15
4-5 Disassemble Trace Format 4-17
4-6 Error Recognition 4-18

5-1 Activated Bit Values 5-9
5-2 Timing Strobe 5-18

6-1 Format of a Serial Word 6-3
6-2 System Control 6-5

A-1 Specifications for MOS Technology Format A-2
A-2 Specifications for Motorola Exorciser Format A-3
A-3 Specifications for Intel Intellec 8/MDS Format A-4
A-4 Specifications for Signetics Absolute Object Format A-5
A-5 Specifications for Tektronix Hexadecimal Format A-6
A-6 Tekhex Data Block A-12
A-7 Tekhex Termination Block A-12
A-8 Tekhex Symbol Block A-12

xi

LIST OF TABLES

1-1 Feature Summary
1-2 Applications
1-3 Specifications

2-1 Serial Port Connector Pin Signals
2-2 Interface Parameter Switch Settings
2-3 Model Numbers

3-1 Arithmetic Operators
3-2 Two-Argument Operation Validities
3-3 Bitwise And and Or Validities
3-4 Single-Argument Operation Validities
3-5 SET Select Numbers

4-1 Registers
4-2 Error Codes

5-1 Event Monitor System
5-2 Status Mnemonics

7-1 Special Functions

8-1 Troubleshooting

A-1 Extended Tekhex Header Field
A-2 Character Values for Checksum Computation
A-3 Extended Tekhex Data Block Format
A-4 Extended Tekhex Termination Block Format
A-5 Extended Tekhex Symbol Block Format
A-6 Extended Tekhex Symbol Block:

Field
A-7 Extended Tekhex Symbol Block:

Field
B-1 Number Bases Cross Reference
B-2 ASCII and IEEE Code Chart
B-3 ASCII Control Characters

xii

Section Definition

Symbol Definition

1-6
1-8
1-9

2-5
2-7
2-8

3-6
3-9
3-11
3-12
3-15

4-2
4-18

5-3
5-8

7-4

8-2

A-7
A-8
A-8
A-9
A-10
A-10

A-11

B-3
B-4
B-5

LIST OF EXAMPLES

Most examples occur within the section that discusses the operator in the
example. The only examples listed here are those that have been placed
separately from their section because more than one operator is illustrated.

3-1 Parentheses and Indirection 3-8
3-2 Multiplication and Addition 3-10
3-3 Bitwise AND, Bitwise OR 3-11
3-4 Load and Save 3-17

5-1 Setting Status Comparator 5-8
~-2 Examining the Contents of the Status Comparator 5-9
5-3 Types of Breakpoints 5-13
5-4 Sample Valid WHEN/THEN Statements 5-16

6-1 Terminal Control, Computer Control and
Transparent Mode 6-4

6-2 Upload and Download 6-7
6-3 Verify 6-7

7-1 Clock and CRC 7-4

C-1 Disassembly With Defined Symbols C-3

xiii

SECTION I
INTRODUCTION

I.I SYS~ CONCEPT

1.2

I.3

1.4

I.5

1.6

I.7

1.1.1 Components
Mainframe * Emulator Pod
Assembly * Optional Logic State
Analyzer Pod Assembly

1.1.2 The Target System
1.1.3 The Host System
1.1.4 System Configurations

Standalone * Standalone With .Host
Data Files

1.1.s System Features

DOCUMENTATION

APPLICATIONS

OPTIONS

SPECIFICATIOKS

LIMITED WARRANTY

SERVICE

1-1

1.1 SYSTEM CONCEPTS

I.I.I Components

Figure 1-1.
The Satellite Emulator

The Applied Microsystems ES 1800 Satellite Emulator (Figure 1.1) is
a controllable microprocessor emulation system. It operates in
conjunction with your host computer system or as a standalone
sys tern controlled by a CRT terminal. All sys tern configurations
provide powerful hardware and software debugging capability as well
as hardware/software integration support.

The Satellite Emulator is transparent to the normal operation of
the "target system" (your hardware). Emulation is performed in
real time--no additional microprocessor cycles are required as a
result of the emulation process. No target system addresses or I/O
ports are needed or used and no program or software objects are
required in the target system address space. There are no hidden
quirks. You will have no difficulty using the Satellite Emulator
with your target system, even when critical timing constraints are
present. The emulator operates at speeds up to the specified clock
rate and will also single-step the microprocessor under operator
control.

Standard features of the Satellite Emulator include an Event
Monitor System, Trace Memory and Disassembly and special test
functions.

The Satellite Emulator consists of a mainframe, an emulator pod
assembly and an optional Logic State Analysis pod assembly.

MAINFRAME. The mainframe houses the emulation control board, the
memory controller board, the RAM Overlay board, the controller
board, the trace and break board, and the power supply, as shown in
Figure 1-2. There are no external panel controls except the power
switch on the rear panel. The emulation control board configures
the Satellite Emulator for use with specific microprocessors. It
resides in the mainframe and contains the electronics unique to the
specific device it emulates.

MAINFRAME

J

EMULATOR POD ASSEMBLY

1-2

Figure 1-2.
Mainframe Components

1.1.2 The Target
Syste•

CONTROLLER BOARD

TRACE AND BREAK BOARD

MEMORY CONTROLLER BOARD (MCB)-NOT SHOWN. It is normally between
the controller board and the trace and break board. (See Figure
2-4).

EMULATOR POD ASSEMBLY. The emulator pod assembly consists of the
pod, a probe and two cables:

• The 40-inch ribbon cable connects the assembly to the mainframe;
the 11-inch ribbon cable connects the assembly to the target
system.

• The pod contains the emulating microprocessor and associated
circuitry (line buffers, etc.).

• A special probe tip connects the 11-inch ribbon cable to the
target system. The probe tip has been designed to be compatible
with sockets for the 80186/80188.

The emulator pod assembly is connected internally to the mainframe
via the emulation control board (see Figure 1-2).

OPTIONAL LOGIC STATE ARALYZER POD ASSEMBLY. The Logic State
Analyzer (LSA), via the optional LSA pod assembly, provides 16
additional input lines to the Satellite Emulator, giving you access
to signals other than the bus signals.

The target system is your hardware. The emulator pod assembly is
connected to the target system by removing the target system micro­
processor from its socket and plugging the probe connector in its
place. The emulator then functions as a replacement for the
microprocessor that was removed, providing a rich variety of
control and analysis capabilities at the same time.

Once connected, the emulator is able to communicate with the
environment that the target system provides for the target system
microprocessor; the emulator may read or write to the micropro­
cessor registers or memory locations and it may execute programs

1-3

1.1.3. The Host
System

contained in the target system memory. It makes no assumptions
about the environment provided by the target system; if the target
system microprocessor works correctly with the target system, the
emulator will also, provided that the microprocessor manufacturer's
design specifications are complied with.

The host system may be a development system, computer, or automatic
test equipment system. The Satellite Emulator connects to a host
sys tern via a serial port (labeled "COMPUTER") on the rear panel of
the emulator mainframe. A second serial port (labeled "TERMINAL")
is provided for connection to a CRT terminal.

The host system can be used to control the emulator or as a source
of data. This is described in section 1.1.4.

1.1.4 System There are two system configurations: standalone, and standalone
Configurations with host data files. See Figure 1-3.

Figure 1-3.
System Configurations

STABDALONE. In this configuration, the Satellite Emulator is
controlled directly by a CRT terminal, with no external data
sources or output devices. The terminal serial port on the rear
panel is the input source for control commands you key in on a CRT
terminal. See Figure l-3a.

STANDALONE WITH HOST DATA FILES. In this configuration, the
Satellite Emulator is still under the direct control of the CRT
terminal. In addition, the computer serial port is connected to a
host system for access to the host's data files. Or, the computer
serial port can be ·connected to a printer for dumping data from the
emulator to create hard copies. You also have available a "trans­
parent mode," wherein the Satellite Emulator allows communication
between the computer and terminal ports or output devices connected
to these other ports. Essentially, the transparent mode uses the
emulator as an interface or conduit between the two ports. See
Figure 1-3b.

CONTROLLING COMMANDS
; f ---. A I

TERMINAL PORT

EMULATOR CRT TERMINAL

a. STAND-ALONE

\ ,
~DA.TA. FILES\ CONTROLLING COMMA.NOS

HOST COMPUTER
OR PRINTER

' ' t ~ i
TERMINs-?,_....__· __ ___,

COMPUTER
PORT I

I PORT I

I EMULATOR I CRTTERMINAL

b. STAND·ALONE WITH HOST DATA FILES

1-4

1.1.5 System
Features

Table 1-1.
Feature Sunnnary

Table 1-1 summarizes the system features of the emulator. Features
can be combined in various ways to form an emulation system that
fulfills your exact needs. Section 3 gives a detailed description
of how features are combined.

Help Menu

EEPROM Storage

Emulation

Trace Memory

Disassembler

Event Monitor System

1-5

DESCRIPfiOH

Provides you with a display of examples on
a CRT terminal. See Section 2.

Allows two users to store complete sets of
unique, user-defined operating parameters;
interface parameters, register values,
macros, switch settings, Event Monitor
System parameters, and the memory map.
Parameters can be accessed and changed at
any time during an emulation session while
the target system is stopped. See Section
2.

Lets the emulator become the target system
microprocessor and execute the program and
functions of the target system. See
Section 4.

Functions as a history of target system
program execution. It records each
bus cycle and can output to a display the
last 2046 machine cycles. See Section 4.

Allows you to display the contents of the
Trace Memory history in a form similiar to
your program listing. Output can be to
your CRT terminal, a printer, or your host
computer. See Section 4.

Allows you to specify event detectors that
will cause specified actions to occur when
the events are encountered during the
target system program. Possible actions
are:

• break emulation

• qualify trace data

• increment or reset the pass counter

• trigger an
instrument

oscilloscope or

• switch to other event detectors

• interrupt to a user routine

See Section S.

other

1.2 DOCUMENTATION

Logic State Analyzer
(pod assembly option)

Overlay Memory
(options up to 512K­
byte total)

Internal Clock

Downloading

Uploading

Diagnostic Functions

Macros

Software Switches

Provides external logic signal recording
and event detection capability (16 inputs
to a 16 x 2046-bit memory). See Section 5.

Memory, locatable in 2K-byte segments,
that can be mapped into the address space
of the target system. When a portion of
the target system program is loaded into
it, the program can be edited, positioned
as desired, and the program executed as if
it resided completely in the target
system. See Section 4.

Allows you to execute your software with­
out connecting the emulator to your target
system. See Section S.

Loads target system memory space with
from a host system. See Section 6.

Dumps data from the target system address
space to one of the Satellite Emulator's
serial ports. See Section 6.

A large number of diagnostic functions and
routines that can be used in both engi­
neering and manufacturing environments to
turn on and test your microprocessor sys­
tem hardware. Features include memory
tests, oscilloscope synchronization, and
signature analysis stimuli. See Section 7
for a complete list and detailed
descriptions.

Up to ten macros can be defined and called
out. See Section 4.11.

Allow you to set system parameters. See
Section 3.5.

This manual gives you information necessary for setting up and
operating the Satellite Emulator.

This first section of the manual introduces the Satellite Emulator
and provides information on features, options, specifications,
warranty, and service. The remaining sections are organized as
follows:

• Section 2, Installation and Set-Up: procedures for setting up the
physical connection, interface parameters, initial checkout of
the emulation system, and pre-operational procedures for setting
up the system, such as accessing the Help Menu and EEPROM storage
of parameters and a sample first-time emulation sequence.

• Section 3, System Syntax and Parameters.

• Section 4, Operation: procedures for emulation, Memory Mode,
Overlay Memory, Trace Memory, and error codes.

1-6

1.3 80186/88
APPLICATIOWS

Table 1-2.
Applications

1.4 OPTIONS

• Section 5, Programming the Event Monitor System: procedures for
programming the Event Monitor System to your specific needs.

• Section 6, Interfacing and Communications: procedures for
communicating between the Satellite Emulator and other units in
an emulation system, such as uploading and downloading and
setting system controls.

•Section 7, Diagnostic Functions: descriptions of and procedures
for using the built-in diagnostic functions of the Satellite
Emulator.

• Section 8, Maintenance and Troubleshooting: procedures for
routine maintenance and basic troubleshooting of the Satellite
Emulator.

• Appendices: serial data formats, glossary, cross-reference of
number bases.

• Index

Your Satellite Emulator is configured for 80186/80188 microproces­
sors with the appropriate emulation control board and emulator pod
assembly. The following table lists the microprocessors currently
supported by the ES series emulators and the emulation control
board and emulator pod assembly used with each. New devices may be
added as support becomes available. Contact your Applied Microsys­
tems Corporation representative when you need additional support.

DEVICE
Motorola:

68010
68000
68008

Zilog:
Z8000
Z8001
28002
Z8003

Intel:
8086
8088
80186
80188

EMULATION
CON"l'ROL BOARD

ES-68010B
ES-68000B

ES-Z8000B

ES-8086B

EMIJLAl'OR
POD ASSEMBLY

ES-68010P
ES-68000P
ES-68008P

ES-Z8000P
ES-Z8001P
ES-Z8002P
ES-Z8003P

ES-8086P-86
ES-8086P-88
ES-80186P-186
ES-80186P-188

The following options are available for your emulator. Contact
your Applied Microsystems Corporation representative for infor­
mation on prices and ordering.

• Overlay Memory Expansion: available for adding Overlay Memory
from 32K-bytes up to 512K-bytes total.

• Logic State Analyzer (LSA) Pod Assembly: provides 16 input lines
and one trigger output line. The pod assembly gives you access
to signals other than bus signals which are recorded simulta­
neously with the bus signals into the Trace Memory. These
signals also become part of the Event Monitor System.

1-7

1.5 SPECIFICATIORS

• Carrying Case: fits mainframe, one pod assembly, and LSA pod
assembly.

• Symbolic Debug (described in appendix C)

Other options are available to configure your ES 1800 Satellite
Emulator mainframe for use with other microprocessor families. See
your sales representative for more information.

Table 1-3 lists the specifications of the Satellite Emulator.
Figure 1-4 shows the dimensions of the mainframe and emulator pod
assembly.

Table 1-3. Specifications
INPUT POWER

Standard:
90 to 130 VAC
47 to 440 Hz
consumption less than 130W

Optional:
180 to 260 VAC
47 to 440 Hz
consumption less than 130W

ENVIRONMERTAL

Operating Temperature: o0 c to 40°C (32°F to 104°F)
Storage Teaperature: -40°c to 7o0 c (-40°F to 158°F)
Humidity: 5% to 95% relative humidity, noncondensing

i---40
~-11

MAINFRAME

----13.5----

-f
5.2

_l

EMULATOR POD ASSEMBLY

s.1:>1 u--1-12-1

A<=-·~~ 1.&y

LSA POD ASSEMBLY

1--~~-40--3-.1 Q-U-i-16-1
#'----111---;/--~ ~

.9V

PHYSICAL

Mainfraae:
13.2 cm x 43.18 cm •• x 34.29 cm.
(6.2 in. x 17 in. x 13.5 in.)

Eaulator Pod:
22.6 cm. x 12.9 cm. x 4.1 cm.
(8.9 in. x 5.1 in. x 1.6 in.)

Target System Connection
(total length including pod):

1.5 m (60 inches)

LSA Pod
12.4 cm. x 7.9 cm. x 2.3 cm.
(4.9 in. x 3.1 in. x .9 in.)

Total Weight: 9.1 kg. (20 lbs.).
Shipping: 10.9 kg. (24 lbs.).

Figure 1-4.
Dimensions

1-8

1.6 LIMITED WARRANTY Applied Microsystems Corporation warrants that the equipment
accompanying this document is free from defects in material and
workmanship, and will perform to applicable published Applied
Microsystems' specifications for one year from the date of ship­
ment. THIS WARRANTY IS IN LIEU OF AND REPLACES ALL OTHER
WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THE WARRANTY OF
MERCHANTABILITY AND THE WARRANTY OF FITNESS FOR PARTICULAR PURPOSE.
In no event will Applied Microsystems be liable for special or
consequential damages as a result of any breach of this warranty
provision. The liability of Applied Microsystems shall be limited
to replacing or repairing, at its option, any defective unit which
is returned F .o.B. to Applied Microsystems' plant. Equipment or
parts which have been subject to abuse, misuse, accident, altera­
tion, neglect, unauthorized repair, or improper installation are
not covered by this warranty. Applied Microsystems shall have the
right to determine the existence and cause of any defect. When
items are repaired or replaced, the warranty shall remain in effect
for the balance of the warranty period or for 90 days following
date of shipment by Applied Microsystems, whichever period is
longer.

1.7 SERVICE

Extended warranty programs are available by contract.

If the unit is to be returned to Applied Microsystems for repairs,
a repair authorization number will be issued by Applied Micro­
systems Customer Service for ES products. Call 1-800-426-3925 to
obtain the necessary return shipment information.

After expiration of the warranty period, service and repairs are
billed at standard hourly rates, plus shipping to and from your
premises.

1-9

SECTION 2
INSTALLATION .Mm SET-UP

2.1 UNPACKING ARD INSPECTION

2.2 OPERATDIG VOLTAGE AND GROmIDING

2.3 SYSTEM IN'I'ERFACING
2.3.1 The Rear Panel
2.3.2 Side Panel
2.3.3 Serial Port Connector Pin Assignment
2.3.4 Setting Interface Parameters.

2.4 PHYSICAL CONNECTION
2.4.1 Connection to a CRT Terminal
2.4.2 Connection to a Target System

2.5 SYSTEM POWER-UP ARD CHECKOUT

2.6 PRE-EMULATION CHECKLIST AND THE HELP MENU

2-1

2.1 OIIPACllRG AID>
IIISPECTIOR

2.2 OPERATING VOLTAGE
AND GltOURDilfG

The Satellite Emulator was inspected and tested for any electrical
and mechanical defects before it was shipped and adjusted for thE
line voltage you requested. The emulator was carefully packed tc
prevent any possible damage and should arrive in perfect operatin~
condition. Carefully inspect it for any damage that may havE
occurred in transit. If any physical damage is noted, file a clain
with the carrier and notify Applied Microsystems. Also check tc

_make sure each unit of the Satellite Emulator system is present:

• the emulator mainframe

• the pod assembly for 80186 or 80188 microprocessors

• the emulation control board

• the mainframe power cord

• the 80186 and 80188 Operator Manual

• Optional equipment you may have ordered:

Overlay Memory

Logic State Analysis pod assembly

Symbolic Debug

a carrying case

The following paragraphs describe how to properly set up ar
emulation system around the Satellite Emulator.

CADTION:

DO BOT OPERATE THE EHIJLATOR. UllTIL
YOU HAVE COMPLETED TllB PROCEDURES
IR SBCllORS 2.2 THROUGH 2.5.

The Satellite Emulator is normally set for operation on 90 to 14C
VAC 50/60 Hz. It is also available for operation on 180 to 240 VAC
50/60 Hz, if so specified when ordered.

The emulator is supplied with a three-wire cord fastened to 8

three-terminal polarized plug for connection to a power source wit~
a protective ground. The ground terminal of the plug is connected
internally to the metal chassis parts of the emulator. Electric
shock protection is provided when the plug is connected to a matin~
outlet with a protective ground contact that is properly grounded.

VAIRIIIG:
FAILURE TO PROPDLY GltOURD THE
SYS'TEH WILL CREATE A SllOClt HAZARD

2-2

.The emulator has three types of grounds. The first is the chassis
ground that is connected to the metallic enclosure of the unit.
The second type is the AC protective ground. This ground is de­
rived from the third (green) wire of the AC power cord. It is tied
to the chassis ground at the power input filter of the emulator.
The third ground is the signal ground. This is used as a common
reference for all DC voltages and is the ground employed by the
logic circuits. The signal ground is tied to the chassis ground
(and thus to the AC ground) by means of a jumper at the power
supply terminal strip.

NOTE:
Any target systea connected to a Satellite Ellu.lator
sbou1d ideally have independent signal and chassis
grounds that can be disconnected from each other
when the target systea is connected to the ellUla­
tor. If the target system's signal ground is per­
aanently tied to its chassis ground, a ground loop
vill eltist. In some cases this will cause umranted
currents to flow through the eau.lator signal ground
and .ay result in electrical noise on data,
address, and control lines.

Total elimination of ground loops may not be practical if the
system also contains peripherals that tie a signal ground to a
chassis ground. When the signal and chassis grounds can't be
separated, a low resistance strap between the emulator chassis and
the target system chassis can reduce noise on the signal lines.

2.3 SYSTEM IIITEKFACIRG The Satellite Emulator will be connected to the target system, a
CRT terminal, and/or a host system. Two points must be consider­
ed: (1) the physical connection between the emulator and the CRT
terminal or host system and (2) maintaining proper grounds
throughout the system.

2.3.1 The Rear Panel The rear panel of the Satellite Emulator is shown in Figure 2-1.
The two serial ports are labeled tEIKlllAL and COMPUTER, to signify
which is used for connection to a CRT terminal and which is for a
host system, printer, or other source of data files. Be sure all
peripherals are connected to the proper serial port.

Also on the rear panel is a BNC connector for connecting to an
oscilloscope trigger, the main power switch, a line fuse, and the
AC power connection.

Figure 2·1.
Rear Panel

TERMINAL PORT COMPUTER PORT

~~\--=i-------------~
~7--
~-· 0

0 0

• ~~~ e @~e
POWERslrrcH ~================Ll=N=E=FU=i-------1

'l'RICJZR CX71'POl' AC POWER CONNECTION

2-3

2 .3 .2 The Side Panel The side panel contains the cooling fan for the emulator. See
Figure 1-2 for the location.

2.3.3

Figure 2-2.

Serial Port
Connector Pin
Assignment

Serial Port Connector
Plnout

CAUTION:
DO NOT BLOCK 'l'llK FAN OPEllING WHEN THE POWER IS
ON. THIS WILL CAUSE 1'1IE EMULATOR TO OVERHEAT.

The line fuse may be replaced if necessary. It is removed by
turning the fuse holder ._·ounterclockwise with a small screwdriver.
Replace with a 3-amp slow-blow fuse for 110-volt operation.

Figure 2-2 shows the pinout of the serial port connectors. Both
ports use the same pin assignment. Table 2-1 lists the signals
present on each pin. Pins without signals shown are not connected
within the emulator. All assigned pins and voltage levels conform
to Electronics Industries Association (EIA) RS232C standards.

Physically, there is no difference between the two ports. However,
there are many software constraints making it important that
peripherals are connected to the emulator at the correct port.

0 0

The minimum connection to another unit consists ot pins 1, 2, 3,
and 7. Pins 4 and 5, Request to Send and Clear to Send, need not
be connected unless other units connected to the emulator are using
them.

You must be familiar with the pin configurations of your own equip­
ment, as pins 2 and 3 vary and pins 1 and 7 are sometimes tied
together.

CAUTION:

CHECK HOST AMD CRT CONFIGURATIONS
BEFORE CONTINUING.

2-4

Table 2-1.
Serial Port
Connector Pin
Signals

PIN

1

2

3

4

5

Protective Ground

Serial Data Out*

Serial Data In*

Request to Send
(Output)

Clear to Send
(Input)

DESCRIPTION

Connected in the emulator to the logic
ground.

This signal is driven to nominal + 12
volt levels by an RS232C compatible
driver.

Data will be accepted on this pin if the
voltage levels are as specified by RS
232C specifications and follows the
format outlined in Section 6. 2 of this
manual.

This signal is driven to nominal + 12
volt levels by an RS232C compatible
driver; it signals other equipment that
the emulator is ready to accept data on
this port.

This input to the emulator indicates
that other equipment in the system is
ready to accept data. This signal is
terminated such that the emulator will
operate with it disconnected.

6 Not Used

7 Signal Ground This pin is connected in the emulator to
the system logic ground. Note, however,
that this ground is connected to the
emulator probe ground pin; when the
emulator is connected to the target
system, the target system logic ground
and the emulator logic ground are
connected together, and to the ground
system of equipment plugged into the
serial ports.

9 to 25 Not Used

*NOTE:

You should be familiar with the pin configuration of
your own system. Some systems receive on pin 2 and
some on pin 3. It may be necessary for you to rewire
the cable connecting the units.

2-5

2.3.4 Setting
Interface
Para11eters

Figure 2-3.
Top and
Front Panel
Removal

A thumbwheel switch on the controller card selects the initial
power-on interface parameters, set up in user-defined groups.
After power-up, you can override the switch setting with software
commands described in Section 3.5 of this manual. To select
parameters, turn BOTH knobs to the left and remove the front panel
of the emulator to expose the card cage, as shown in Figure 2-3.
The controller card is the top card in the card cage.

-1 INTERFACE PARAMETER
SWITCH

KNOBS

CONTROLLER CARD

Ref er to Table 2-2. The term "Factory Default" is used to denote
an 8- bit word, one stop bit, and no parity. "User O" and "User l"
refer to two operators. This allows two operators to each define
their own power-up parameters, store them in the EEPROM (see
Section 3), and recall them on power-up, depending on the switch
position. "Terminal Control" and "Computer Control" determine
which port will be active on power-up.

2-6

Table 2-2.
Interface Parameter
Switch Settings

2.4 PHYSICAL
CONllECTION

2.4.1 Connection to
CRT Terminal

POSITION FUNCTION POSITION FUNCTION
0 Factory Default 6 Factory Default

9600 baud 300 baud

1 User 0 7 Factory Default
Terminal Control 1200 baud

2 User 1 8 Factory Default
Terminal Control 2400 baud

3 User 0 9 Factory Default·
Computer Control 4800 baud

4 User 1 A Factory Default
Computer Control 7200 baud

5 Factory Default B Factory Default
110 baud 19,200 baud

C,D,E,F Reserved for
factory use

Factory Default 8-bit word, one stop bit, no parity

Connection to a host system will vary with the application.
Contact Applied Microsystems Customer Service for ES products if
you require additional information for your host system.

You may need to consult your CRT terminal manual to correctly
connect the terminal to the Satellite Emulator. Standard
parameters are:

• 9600 baud rate

• 8-bit word length

• one stop bit

• no parity

• full duplex

• no echo

• XON and XOFF are recognized.

Ref er to the table above if you need to use a baud rate other than
9600.

Connect the CRT terminal to the TERMINAL port of the emulator.
Make sure your connector pin assignment is compatible with the
emulator.

On some CRT terminals, it may be necessary to turn the power off,
then on, to ensure all switches are read by the CRT terminal
hardware.

2-7

2 ... 4 ... 2 Connection to
a Target
System

Table 2-3.
Model Numbers

To connect the Satellite Emulator to a target system, the procedure
is as follows:

1. Verify that the target system power supply voltages are
correct.

2. Install the proper emulation control board in the mainframe as
shown in Figure 2-4. See the table below to determine the
correct board for the microprocessor you are working with
(your emulator will arrive from the factory with the correct
board installed if you ordered only one family support; Z8000,
68000, etc.).

EMULATION EMULATOR SWITCH SETTING
DEVICE CONTROL BOARD POD ASSEMBLY ON MCB (Fig. 2.
Motorola:

Figure 2-4.
Installing the
Emulator Control Board

68000 ES-68000B
68008 ES-68008B
68010 ES-68010B

Zilog:
ES-Z8000B ES-Z8000P
Z8001 "
Z8002 "
Z8003 "

Intel:
8086 ES-8086B
8088 "
80186 "
80188 "

MCB Switch

EMULATION CONTROL BOARD I

2-8

ES-68000P Left
ES-68008P Centered
ES-68010P Centered

Right
ES-Z8001P Right
ES-Z8002P Right
ES-Z8003P Right

ES-8086P-86 Centered
ES-8088P-88 Centered
ES-80186P-186 Centered
ES-80188P-188 Centered

Memory Controller Board

Figure 2-5.
Connecting the
Pod Assemblies
To the Mainframe

Figure 2-6.
Installing the
Probe Tip

4. With target system power off, remove the target system micro­
processor from its socket and plug in the Probe Tip as shown in
Figure 2-6.

CAUTION:

NOTE CORRECT PIN 1 ORIEllTATION

-5. The next section gives power-up procedures.

LSA POD ASSEMBLY

I

EMULATOR POD ASSEMBLY

2-9

2.5 SYSTEM POWER-DP
ARD CHECKOUT

With the emulator properly connected to a CRT terminal and your
target system, first turn on the CRT terminal, then the target
system, and finally the emulator.

The first time you use your emulator, it must be powered up with
the interface parameter switch in position 0 or positions 5 through
B. To ensure the proper switch position, first check the baud rate
on the terminal, then, if necessary, select the appropriate parame­
ter switch setting so that the baud rate on the emulator correlates
with the baud setting on the terminal. We recommend the highest
rate possible for best response. You can later make and store
final adjustments for the terminal/emulator interface by using the
SET & SAVE commands.

NOTE

If the interface parameter swiccn is in any of
positions I through 4, the parameters and register
values stored in the EEPROM are loaded on power-up.
See Section 3.5 and Section 2.3.4.

When the power is first applied to the Satellite Emulator and its
clock begins operating, a Power-on-reset operation occurs during
which the following functions are performed:

I. The microprocessors in the mainframe and pod are both reset.

2. The Trace Memory, Event Monitor System, and registers are
cleared.

If the interface parameter switch is in any of positions 1
through 4, the parameters and register values stored in the
EEPROM are loaded. See Section 3.5 and Section 2.3.4.

3. The emulator transmits the following message to the terminal:

COPYRIGHT 1984
APPLIED MICROSYSTEMS CORPORATION
SAl'ELLITE EMULATOR 80186 V2.4
USEB. a 0 SW = I

4. The processor type is that of the microprocessor installed in
the pod. The version number reflects the released revision of
the software in the emulator. The USER number and switch po­
sition, SW, are determined by the Interface Parameter Switch.

S. The emulator performs its self test which may take a couple of
seconds. During this time the emulator determines the amount
of overlay memory and transmits to the terminal:

II nK AVAILABLE OVERLAY n=32, 64, 128, 256 or 512 depending
upon amount of overlay memory installed in the system.

2-10

2.6 PRE-EMULATION
CHECK LIST AND
THE HELP MERU

When there is no clock in the target system there will be a
different message:

nK AVAILABLE OVERLAY
NO CLOCK TYPE "Y" TO SELECT INTERNAL CLOCK

If you do elect to use the internal clock type a Y and the
emulator will respond with a >.

The > prompt tells you that the emulator is ready to receive
your instructions. (Always make sure that the > prompt shows
before you type in a command or you may lose characters and
the command will fail. You then must re-enter the command).

NOTE:

If the > does not appear, turn off all equipment, check
the connections and then repeat the power-on sequence:
terminal, target system and emulator. If the > prompt
still does not app~ar, contact your Applied Microsystems
representative.

Before reviewing the pre-emulation checklist and character set,
type "CLK" <return> just to verify that your target system clock is
ok.

As mentioned previously, before beginning emulation some of the
features associated with it must be set up. First, review the Help
feature.

1. At any time after the emulator is operating, you can call up
the Help Menu by entering the question mark character, "?".
This feature of the Satellite Emulator is two built-in display
pages that summarize the operators used and the input form of
each. Figure 2-7 shows the two displays. To access the first
display (Figure 2-7a), key in:

> ?
To move to the second display, enter:

> <return>
To move out of the Help Menu after the first page (without
viewing the second page), enter any character other than
<return). The emulator will return a > prompt and you can
enter your next command.

The Help Menu can be accessed at any time as long as the
emulator responds to input characters and it has not just
transmitted a "?".

2-11

Figure 2-7.
The Help Menu

Fl,.ST ,,_Gf OF Hf'll' lllHU

UCONO />4Gf OF HfLI' Wf,_1.1

IR
>< ?

RUN/EMULATION:
STP - SINGLE STEP / STOP
RST - RESET TARGET SYSTEM

!
TRACE HISTORY:

OT - DISASSEMBLE MOST RECENT LINE

MEMORY - REGISTER COMMANDS:
DB X TO Y - DISPLAY BLOCK
BMO X TO Y,Z - BLOCK MOVE TO Z
MMS = ALT, COD, DAT, STA
X - EXIT MEMORY MODE

MEMORY MAPPING:
MAP XTO Y :RO : RW :TGT :ILG

C0?""1MUNICATIONS:
DNL - DOWNLOAD HEX FILE FROM HOST
UPL X TO Y - UPLOAD HEX TO HOST

RUN/RNV - RUN/RUN WITH NEW VECTORS
RBK/RBV - RUN TO BREAKPOINT/WITH VECTORS
WAIT - WAIT UNTIL EMULATION BREAK

DTB/DTF-DISASSEMBLE PAGE BACK/FORWARD
ORT {X) - DISPLAY PAGE RAW TRACE (FROM X)

DR - DISPLAY ALL CPU REGISTERS
FILL X TO Y,Z - FILL BLOCK WITH Z
LOV/VFO X TO Y - LOAD/VERIFY OVERLAY
DEFINES STATUS LINES FOR MEMORY ACCESS
M X - VIEW/CHANGE MEMORY AT X

OVE = CD, OTA
DM/CLM - DISPLAY/CLEAR MEMORY MAP

TRA - TRANSPARENT MODE TERMINAL-HOST
CCT - TRANSFER CONTROL TO COMPUTER PORT
TCT - TRANSFER CONTROL TO TERMINAL PORT

SYSTEM: SET - VIEW/ALTER SYSTEM PARAMETERS
ON/OFF - VIEW/ALTER SWITCHES SF - VIEW/EXECUTE SPECIAL FUNCTIONS
ASM (X) - IN LINE ASSEMBLER DIS(X) DISASSEMBLE FROM MEMORY
LD/SAV (X) - LOAD/SAVE 0=SETUP,l=REGS,2=EVENTS,3=MAP,4=SWITCHES (DEFAULT=ALL)

EVENT MONITOR SYSTEM:
DES
CES

DISPLAY ALL EVENT SPECIFICATIONS
CLEAR ALL EVENT SPECIFICATIONS

DES X -
CES X -

DISPLAY ALL EVE~T SPECIFICATIONS FOR GROUP X
CLEAR ALL EVENT SPECIFICATIONS FOR GROUP X

BR.I< - BREAK
TRC - TRACE EVENT
TOT - TOGGLE TRACE

EVENT ACTIONS:
CNT - COUNT EVENT
RCT - RESET COUNTER
TOC - TOGGLE COUNT

TGR - TTL TRIGGER STROBE
FSI - FORCE SPECIAL INTERRUPT
GROUP X - SWITCH TO GROUP X

EVENT DETECTORS - GROUPS 1,2,3,4:
AC1,AC2 OR AC1.X,AC2.X - 24 BIT DISCRETE ADDRESS OR INTERNAL EXTERNAL RANGE
DC1,DC2 OR DC1.X,DC2.X - 16 BIT DATA, MAY INCLUDE DON'T CARE BITS
Sl,S2 OR Sl.X,S2.X - STATUS AND CONTROL - BYT/WRD + RD/WR + TAR/OVL + MEM/IOA

+ IAK/RIO/WIO/HLT/IF/RM/WM/NBC + ALT/COD/DAT/STA
LSA - 16 LOGIC STATE LINES, MAY INCLUDE DON'T CARE BITS
CTL - COUNT LIMIT, ANY NUMBER 1 TO 65,535 ••

STEP 1 - ASSIGN EVENT DETECTORS
ACl = $1234:Sl = BYT + RM
ACl.2 $4576+14*6:DC2.2 = $5600 DC $FF
CTL.2 = 24:AC2.2 • $F000 LEN $400

STEP 2 - CREATE EVENT SPECIFICATIONS
WHEN ACl AND Sl THEN GROUP 2
2 WHEN ACl AND NOT DC2 THEN CNT
WHEN CTL.2 OR AC2.2 THEN BRK

2.6.I Paraaeter
Set-Up and
EEPROM Storage
Overview

The Satellite Emulator contains an interface parameter switch that
allows you to power up the emulator with one of eight sets of
factory-defined parameters, or one of four sets of user-defined
parameters. These user-defined and other display and interfacing
defaults are defined with SET commands. All the data defined with
the SET commands can be stored in an EEPROM (Electrically Erasable
Programmable Read Only Memory) located on the cont roller board.
The EEPROM can also store register values, parameters for the Event
Monitor System, terminal characteristics and the memory map for the
R.&~ Overlay Memory, the on/off switches and macros.

2-12

Set-Up

SET

Figure 2-8.
Display Format

SET commands are used to configure Satellite Emulator interface and
display parameters. A menu display, shown in Figure 2-8, shows the
general syntax for the commands and what parameters are in effect.
To access this display, enter:

)SET< return>

>SET
ES SETUP: SEE MANUAL FOR DETAILS •..

SET #X,#Y - SET ITEM XTO VALUE CORRESPONDING TOY
LO 0:SAV 0 LOAD/SAVE SETUP FOR CURRENTLY SELECTED USER

SYSTEM: #1 USER= 0: [0,1]
#2 RESET CHAR = $1A
t3 XON, XOFF = $11,$13

TERMINAL: #10 BAUD RATE = #14: [2=110,5=300,10=2400,14=9600]
#11 STOP BITS = l: [1,2]
#12 PARITY= 0; [0=NONE,l=EVEN,2=0DD]
#13 CRT LENGTH = #24
#14 TRANSPARENT MOOE ESCAPE SEQUENCE = $1B,$1B

COMPUTER: #20 BAUD RATE = #14; [7=1200,12=4800,15=19200]
#21 STOP BITS = 1
#22 PARITY = 0
#23 TRANSPARENT MODE ESCAPE SEQUENCE = $1B,$1B
#24 COMMAND TERMINATOR SEQUENCE = $0D,$00,$00
#25 UPLOAD RECORD LENGTH = #32: [l to 127]
#26 DATA FORMAT = 2; [0=INT,l=MOS,2=MOT,3=SIG,4=TEK,S=XTEK]
#27 ACKNOWLEDGE CHAR = $06

The following example shows the key sequence for entering SET
commands. Table 3-5 at the end of Section 3 shows which parameters
can be defined, and which SET commands require the reset character.
The reset character is Ctrl Z, unless changed in your system by you
or a previous user.

Some of the parameters set via SET will go into effect immediately.
Others will require you to enter a reset character first. You will
be prompted for these by the display "YOU MUST RESET ME TO INSTALL
'l'HIS VALUE IN B/W."

Note that the SET· menu display shows what is in effect currently if
you have not yet changed any parameters. If you have changed some
but not yet entered the reset character, it will show what will be
in effect after the reset character is input.

The generalized key sequence to alter the interface parameters or
the CRT display format, is:

)SET<select nUJaber), <value>[,value][,value]<return>

2-13

The select number selects which attribute will be altered. The
values entered correspond to the selections displayed in Table 3-5.
Remember to use decimal-based numbers when entering the select
number.

NOTE:

When scrolling, XOFF (Ctr! S) is used to stop the
screen and XON (Ctrl Q) turns the scrolling on again.
You may need to change the defaults for use in the
transparent mode, for instance. Like all codes
specified and displayed by the SET command these new values
can be stored in EEPROM. XON and XOFF are set as follows:

)SET 3, $10, $12

In this example, XON has been changed to
has been changed to 12 16 •

and XOFF

Load and Save The EEPROM is partitioned into space for two users (0 and 1). Each
user's space is partitioned into six groups:

LD

SAV

• 0 = system set-up (defined via SET)

• 1 = all the registers in the system and Event Monitor System
event comparators

• 2 Event Monitor System WHEN/THEN statements

• 3 = RAM Overlay map

• 4 = Software Switch Settings, see Section 3.5.

• 5 Macros

A user's number is determined by the SET operator described in the
previous section. Parameters selected with the SET commands are
stored in the EEPROM with the SAV (Save) command. Once parameters
have been stored via SAV, they can be called up with the Load
command.

When you first receive the machine or when converting it from
another microprocessor family, you must initialize the EEPROM to
the proper data by executing a:

)SAV (no arguaent)(return>

The entire contents of the EEPROM of the appropriate user will be
loaded into the Satellite Emulator automatically on power-up if the
interface parameter switch is in positions 1, 2, 3, or 4. When the
switch is in any other position, you must key in a Load command to
access the data in the EEPROM.

2-14

Run With
Vectors RNV

You can selectively Load or Save the groups of data in the EEPROM.
For example:

• To Load or Save all the groups, key in the Load and Save command.

example:)LD
)SAV

• To Load or Save only one group of data, such as just the
registers, you will key in the group number in addition to the
command.

example: >LDl
)SAV3

• To Load or Save a combination of data groups, such as the
parameters and the registers, you will have to enter two or three
commands.

example:)LD2; LD4
)SAVl; SAV3

When you enter RNV, the code segment and instruction pointer are
loaded to their starting values, all other registers are
initialized to their default powerup values (F defined) and
emulation is started <return).

You will see an R> (the RUN prompt). Most commands can be executed
from the R). However, if your command fails and you see a ?,
follow these steps:

• Enter ? to get the error message telling you why the command
failed.

• If the command failed because it cannot be executed from the R>,
enter STP. When the> appears, re-enter the command.

• If the command failed for any other reason, follow the
appropriate measures to correct.

• When you input a command to the emulator that it does not
understand, it will respond with a"?".

Sample sequence for first-time emulation:

)RNV
R)STP;DTB

Loads target system vectors, begins program execution
Stops program execution and disassembles one page of
trace

)STP;DT Steps (executes) one instruction and disassembles it
)AC! = (address>; WHEN ACl THEN BRK
)RBK; WAIT; DTB

Runs program, waits
disassembles one page

until breakpoint, then

NOTE: Some emulator features that enhance emulation may be set up
prior to emulation. However, if you are working with the emulator
for the first time, we recommend following the sequence of commands
given in Section 4. This sequence starts with the most basic
commands.

2-15

The advanced features that enhance emulation are:

• Event Monitor System - the Event Monitor System allows you to
select events within emulation that will cause specified actions
to occur. These events and resultant actions may be defined
prior to emulation and are described in Section 5.

• Memory Mode - allows you to examine and change contents of the
target system memory.

• RAM Overlay Memory - you may wish to map your target system
program memory and fill it with data. This is described in
Section 4.5.

• Trace Memory - special conditions can also be set for the Trace
Memory. These are described in Section 4.6

2-16

SECTION 3
SYSTEM SYNTAX ARD PARAMETERS

3.1 INTRODUCTION

3 .2 STANDARD CHARACTERS
3.2.1 The Prompt Character
3.2.2 The Run Prompt
3.2.3 Spacing
3.2.4 Utility Operators

Return * Repeat Previous Command Line * Statement
Separator * Argument Separator * Delete Line * Reprint Previous
Line

3.3 NUMBERS AND BASE VALUES
3.3.1 Hexadecimal, Decimal, Binary, and Octal
3.3.2 Default Base
3.3.3 Display Base

3.4 ARITHMETIC OPERATORS
3.4.1 Assignment Operators

Equal * Parentheses * Indirection
3.4.2 Two-Argument Operators

Multiplication * Addition * Division * Subtraction * Modulo *
Shift Left and Shift Right * Bitwise AND * Bitwise OR

3.4.3 Single-Argument Operators
Inverse/One's Complement * Negation/Two's Complement * Absolute
Value

3.5 PARAMETER SET-UP ARD EEPR.OM STORAGE

3-1

3.1 INTR.ODUCTIOR

3.2 STANDARD
CHARACTERS

3.2.1 The Prompt
Character
>

This section explains how to use ESL, the Satellite Emulator
control language. The information here will be used in conjunction
with that given in Sections 4-7.

NOTE:

If you are reading this manual for the first time,
you should familiarize yourself with the contents
of this chapter. Then you can refer to specific
sections when you need to use them. New users do
not need to read all of the information in this chapter
word for word.

The Satellite Emulator operates in response to command statements
made up of operators and arguments. Operator refers to the command
mnemonic or symbol used (RUN, FIL, etc). Argument refers to any
additional value you must enter as part of the command sequence,
such as an address range or base value. Essentially, the command
operators form a control language, much like higher-level computer
languages. And, like a computer language, the operators and
arguments may be combined in various ways to form many complex
command "sentences." The Satellite Emulator accepts operators and
arguments when they are logically combined into a statement.
Statements can be up to 79 characters long.

The control software recognizes over one hundred mnemonics
described in Sections 3, 4, 5, and 6. You have two options in
entering the mnemonics. Since the software recognizes the first
three letters and last two digits, you can enter just these, as in
GRO for group, or you can enter GROUP. Any letters included after
the first three are disregarded: GROABCD would also be recognized
as GRO. Note that the limitation on the last two digits only
refers to those included in operator mnemonics. Other numerical
values are not limited.

In the following discussion many examples have been included to
illustrate the text. Some conventions have been adopted for ease
of explanation.

• When an angle bracket <> encloses an expression, it is a required
entry; for example, (address range) or <value).

•When square brackets [] are used to enclose an expression, it is
an optional entry; for example, [base value].

Standard characters appear throughout all the operations of the
Satellite Emulator.

When the Emulator is ready to accept a command statement, the
prompt character (>) appears on the left margin of the CRT terminal
screen. In the examples, it should be understood that you do not
type in the prompt character; it was already supplied by the
command interpreter, indicating readiness for another input line.

3.2.2 The Run Prompt The Run prompt appears on the CRT terminal to notify you that the
R) emulator is in Run mode (emulating).

3-2

3.2.3 Spacing

3.2.4 Utility
Operators

I

,

CNTL X

CNTL R

3.3 NUMBERS ARD BASE
VALUES

Space characters (the space bar) are used to improve readability.
Normally, you may enter them at your discretion except as required
to separate two named items (such as "NOT AC2"). So the statement:

)GD4 = GD4 + #8 * GD2 <return>
can also be written as:

)GD4=GD4+#8*GD2(return>.

Lower-case characters are converted to upper-case except in the
Transparent Mode or when using Symbolic Debug.

The utility operators
repeat other commands.

are used to separate,
These operators are:

execute, edit, and

RETURN. The <return> is used to terminate statements and execute
commands. It must be entered after every statement. It is also
~sed to scroll through addresses while you are in the Memory Mode.
On some CRT terminals, the key may be labeled ENTEt.

REPEAT PREVIOUS COMMAND LINE. When this operator (/) is the first
character of a line, it repeats the previous command line. When it
appears anywhere else on a line, it signifies arithmetic division.

STATEMENT SEPARATOR. The semicolon (;) is used to separate command
statements that are strung together on one line.

ARGUMENT SEPARATOR. Just as the semicolon separates command
statements, the comma (,) is used to separate arguments when more
than one argument is required to form a command statement. The
comma is also used to decrement addresses when you are in the
Memory Mode, where it will be the only operator on a line.

A colon may be used as a separator for an 80186 family pointer
type. For example CS:IP will convert the segment and offset to the
absolute 20-bit address they represent (it is also a map type
separator).

DELETE LINE.
line.

The CNTL (control key) X command will delete that

REPRINT CURRENT LINE. CNTL R will reprint the line you just
entered. This will be useful to you when you are making a hard
copy. Don't confuse this with the I operator - the command is not
repeated, only reprinted.

There are three basic types of values used in the emulator: normal,
Don't Cares and ranges. The following paragraphs describe each of
the values in detail.

o Normal values are simple integer numbers.

3-3

3.3.1 HEXADECIMAL ($)
DECIMAL (#)
BINARY (%)
OCTAL (\)

3.3.2 Default Base
DFB

• Don't Care values consist of two normal values separated by the
Don't Care operator DC. Don't Care values are best envisioned in
binary form. The value to the right of DC should have some bits
set. These bits are used as a mask such that every bit set in
the right side value causes the corresponding bit position on the
left value to be ignored. Don't Care values are useful when you
are working wit~ the Event Monitor system to monitor bit logic
and are described in Section S.

DCl = $FF00 DC $FF

• Range values consist of two normal values separated by one of the
range operators TO or LEN. Range values are useful for referring
to blocks of memory. Also, XRA and IRA can be prefixed to the
arguments to define external or internal ranges, respectively.
The default is IRA.

ACl :4 0 to $7FF
The base value operators are used to set the numeric base you want
to work with or to temporarily change the base in effect. On
power-up the default base is hexadecimal (unless another default
base has been loaded by the EEPROM on power-up).

These operators tell the emulator what base a value is in. The
format is $n, #n, %n, or \n, where n is any numeric value. The
base operator preceding n tells the Satellite Emulator that n is in
that base. They are used any time you want to enter a value in
other than the default base. Values not preceded by one of these
operators are presumed by the emulator to be in the default base.

The following numbers show the format for the different bases:

• $270F - hexadecimal

• #9999 - decimal

• \23417 - octal

• %10011100001111 - binary

The DFB operator is used to display the system default base or
change the default base in effect (factory default is hexadecimal).
The Satellite Emulator will attempt to work with any base you set,
though decimal, hexadecimal, octal, or binary are the most
meaningful. Numbers without a base prefix are assumed to be in the
default base. If any number larger than 16 (hexadecimal) or
smaller than 2 (binary) is assigned, the Satellite Emulator will
assume the base to be hexadecimal. The following example shows the
key sequences for assigning default bases.

• To display the default base in effect:
)DFB(return>

• To set the default base to binary:
)DFB = #2(return>

3-4

3.3.3 Display Base
BAS

• To set the default base to decimal:
)DFB = #IO<return>

• To set the default base to octal:
)DFB = #8(return>

• To set the default base to hexadecimal:
)DFB = #16 <return>

• The same format as shown above is used to set the emulator to any
other base desired between 2 and 16.

This operator displays the base currently in effect for a specific
register, as shown in the following example. Displayed bases are
always shown in decimal:

• #16 hexadecimal

• 1110 decimal

• 118 = octal

• #2 = binary

If it is necessary to have a specific register value displayed in
other than t~e default base, you can assign it a "private" display
base of any number between 2 and 16. Be careful when setting
private display bases to unusual bases such as 4, 7, or 11. The
Satellite Emulator will operate correctly but the results may be
confusing. The example also shows how to set private display
bases.

If the base value is set to other than hexadecimal, decimal, octal
or binary, the emulator will display a ? when you ask it to display
the base in effect--there are symbols only for the four most common
bases.

• To display the current default base:
)DFB<return>

• To display the base of a specific register:
)BAS GDJ(return>

GD3 is the name for a specific register that you need to know the
base of. The emulator may respond with 1116 to show that the
register base is hexadecimal. Note however, that though the
register is hexadecimal, the base is displayed in decimal: #16 =
hexadecimal, #8 = octal, #10 = decimal, 112 = binary, etc.

• If a register has no private display base assigned, the result of
this command will be

DEFAOLT:#n
where n is the current default base.

3-5

3.4 ARI'l'HMEnC
OPERATORS

Table 3-1.

• To set a private display base:
)BAS GD3=2(return>

This sets the display base of GD3 to binary but does not affect
any other values or the default base (it only affects GD3). The
next time you display the base of GD3, the CRT terminal will
respond with:

The value of GD3 will always be displayed in binary until you key
in a different display base or the Satellite Emulator is reset.
The private display base of any register may be assigned the
value 0 to cause that value to be displayed in the default base.

Arithmetic operators can be divided into three groups.

• Assignment operators are used to assign values.

• Single-argument operators modify the valve of a single argument.

• The two-argument operators include the more common arithmetic
symbols and operators for more specific arithmetic operations.
Each of these groups have some specific characteristics. Table
3-1 lists the arithmetic commands and tells which of the three
groups each falls in.

Arithmetic Operations GROUP OPERATOR

Assignment Operators:

Two Argument Operators:

Single Argument Operators:

=
()
@

*
+
I

MOD
&

«
»

ABS

Equal
Parentheses
Indirection

Multiplication
Addition
Division

Subtraction
Modulo

Bitwise AND
Bitwise OR
Shift Left

Shift Right

Inverse
Negation

Absolute Value

The following sections describe the properties of the group and the
commands within each.

3-6

3.4.1 Assignment
Operators

=

()

Assignment operators assign a value or property to an argument.
They also extend expressions to include values obtained from com­
binations of other expressions, or values stored in the target
system memory address space.

Generally, the form taken by the result of an operation will be the
form of the left-hand argument: a Don't Care value times a normal
value will be a Don't Care value. There are two exceptions to
this:

1. When a normal value appears on the left and a Don't Care value
on the right, the result will include Don't Care bits;

2. When a normal value appears on the left and an internal or
external range appears on the right, the result will be a range.

EQUAL. The equal sign passes the quantity defined on its right to
the entity on its left. All operations to its right will be per­
formed before the equality is considered. The entity on the left
should be a single entity.

• The equal sign is used as follows:

>GD3 = $47FF(return>

The emulator does not display anything in response to this entry,
but the value you entered at the right ($47FF) is now assigned to
GD3.

• It is also used as follows:

>GD3 = $121 + $4(return>

This would first add $4 to $121. GD3 is then assigned the value
$125.

PARENTHESES. The emulator recognizes parentheses, just as they are
treated in algebraic equations: all operations within the
parentheses are performed first and a single value derived.

NOTE

There is no set number of levels of parentheses
that the Satellite Emulator can work with. The
only limitation is that statements can be no
more than 79 characters long. Whatever level
of complexity you can handle within this limi­
tation will be handled easily by the emulator.

@ INDIRECTION. The "at" sign is used to express indirection. Indirection allows
expressions to include values obtained from, or stored to, the
target system memory address space. The @ operator causes the
command interpreter to consider the value of the expression
fallowing to be an address of a target system word; the word is
accessed and that word--f rom the target system address
space--becomes the value of the expression.

3-7

It is possible to use more than one @ operator in an expression.
If two are used, the Sateiiite Emulator will access the expression
following the operators and look at the address pointed to; the
value at that address is then also considered to be an address, and
that address is accessed and displayed. This gives a means to
display a quantity that is pointed to by some other quantity
located in the target system memory. See the example below.

In this example the dual indirection is used to access a table of
data that is pointed to by the system stack pointer.

>@@ SP
)1234

CPU
REGISTERS

SP

SYSTEMS STACK
RAM

F306

MEMORY

1234

Just as with parentheses, the Satellite Emulator is capable of
dealing with many levels of indirection. However, again due to the
limitation that statements not exceed 79 characters, you will
probably not deal with more than 70 levels of indirection at one
time.

• The following two examples help explain using parenthesis and
indirection together:

)@GD4 + 6<return>
>@(GD4 + 6)<return>

Both contain the indirection operator and the same argument, GD4.
In the first example, the indirection operator would be applied
to GD4: the command interpreter accesses the target system
location pointed to by GD4, adds six to the value stored there,
and then will display the final result. Instead, if you wanted
to see the location stored ·in six locations above the address
pointed to by GD4, you would use the second example, using the
parentheses to signify that GD4 + 6 is one entity.

• It is also possible to use indirection in an assignment function:
>@(GD4 + 6) = #10 (return>

This example assigns the number ten to the target system memory
location which is found six bytes above the location pointed to
by GD4.

• The following example is also legal:
>@(GD4 + 6) = @(GD4 + 8)

3-8

3.4.2 Two-Argument
Operators

Table 3-2.
Two-Argument
Operation Validities

Here, a quantity offset eight bytes from the location pointed to
by GD4 is copied to a location off set six bytes from the location
pointed to by GD4. This is a target-to-target move.

The two-argument . operators involve an arithmetic or logical
operation between two values. The following table lists the two­
argument operators and the combinations. It is set up as a matrix,
showing what operations are valid. Refer to this table in the
following discussion of the individual operators.

NOTE

Normal refers to simple arithmetic values. DC means Don't
Care bits are included, IRA is an internal address range,
and XRA is an external address range. They are explained
in detail in Section 4.

Left Hand
Argument

Right Hand
Argument Operation Result

Normal Normal

Normal DC

Normal IRA, XRA

DC DC

DC Normal

IRA, XRA Normal

3-9

* / MOD
& A

« »
+ -

MOD
* I

& A

« »
+ -

* I MOD
& A

« »
+ -

* / MOD
& A

« »
+ -

* I MOD
& A

« »

+ -

* / MOD
& A

« »
+ -

Valid
Valid
Valid
Valid

ILLEGAL
Don't Care bits are passed

to the left hand argument.
Don't Care bits are passed
to the left hand argument.

Invalid
Don't C~re bits are passed

to the left hand argument.

Invalid
Invalid
Invalid
The endpoints of the range
will be altered by the value
of the normal expression.

Invalid
Invalid
Invalid
Don't care bits are ANDed

Don't care bits are kept
Valid
Don't care bit positions are
shifted

Don't care bits are kept

Invalid
Invalid
Invalid
The endpoints of the range
will be altered by the value
of the normal expression

*

+

I

Multiplication and
Addition

MULTIPLICATION. An asterisk is used to denote multiplication.
Multiplication is algebraic--the value to the left is multiplied by
the value to the right of the * operator. And, as in an algebraic
equation, multiplication has precedence over addition or subtrac­
tion in the same equation or statement unless the operator
separator (;) is used. Multiplication can't be performed on
address ranges.

ADDITION. Addition is denoted with the addition sign. Like
multiplication, it operates just as in an algebraic equation.
Addition can be performed on address ranges and Don't Cares.

DIVISION. Divis~on follows the same principles as multiplication.
It has precedence over addition and subtraction when all are
contained in one equation or statement. Be careful not to confuse
the slash operator used for division with the slash used for Repeat
Previous Command Line. Both use the same key, but when the slash
is used to repeat command statements it will be the first character
on a line. When used for division, it is between two arguments -
it cannot be the first character on a line. Division can't be
performed on address ranges or Don't Cares.

Here's an easy example:

>GD4 GD4 + #8 *GD2<return>

GD4 General Purpose data register 4

= the equal operator

GD4 (again)

+ the addition operator

#8 a number, written with the decimal prefix

* the multiplication operator

GD2 a variable name representing another register

(return> the return symbol

The effect of this statement is to read the current value of
register GD4, add to this value the product of 8 and the value
contained in GD2, and assign this sum to ~D4, thus changing the
value it contains.

3-10

MOD

>>
<<

&

Bitwise And
Bitwise Or

SUBTRACTION. Subtraction is much the same as addition. It is
denoted by the minus sign (-). The minus sign is also used to
denote negation or two's complement.

MODULO. The result of this operation is the remainder after the
value on the left has been divided by the value on the right. See
the following example.

•)29 MOD 4
result = 1

•)38 MOD 6
result = 2

SHIFT LEFT ARD SHIFT RIGHT. These two operations are a movement of
the bits of a number. For example, a right shift of n places has
the effect of dividing by 2n and a left shift of n places has the
effect of multiplying by 2n. See the following example.

• A binary shift left:
)00100000((1
result = 01000000

• A binary shift right:
>0001000000000000))1
result = 0000100000000000

BITWISE AND. Bitwise And operator (&) functions as a logical AND.
The & operator infers the ANDing of the bits that form the two
arguments.

BITWISE OR. The Bitwise OR operator ("') functions as a logical
inclusive OR. The operator infers the ORing of the bits that form
the arguments.

AND &

INPUT OUTPUT

0 0 0
0 1 0
1 0 0
1 1 1

• Bitwise And:
)%00101101 & %10011100

result = %00001100

• Bitwise Or:
)%00101101 A %10011100

result = %10111101

3-11

OR A

INPUT OUTPUT

0 0 0
0 1 1
1 0 1
1 1 1

3.4.3 Single­
Argmaent

Table 3-4.
Single-Argument
Operators

ABS

Single-argument operators assign a property to the number directly
following the operator. The following table summarizes the
operators and valid combinations.

Note that a single-argument operator can even be used before a
parenthetical operation, and the value within the parentheses will
be treated as a single value.

OPERATOR ARGUMENT RESULT

Normal Valid
DC Don't care bits are not affected
IRA Complement (IRA becomes XRA)
XRA Complement (XRA becmes IRA)

ABS Normal Valid
DC Don't care bits are not affected
IRA Invalid
XRA Invalid
Normal Valid
DC Don't care bits are not affected
IRA Invalid
XRA Invalid

DJVERSE/ONE'S COMPLEMENT. The exclamation mark is used to signify
that the following number or value is to be inverted. The inverse
is the one's complement; the inverse of %0010 would be %1101.
Address ranges can also be inverted: an internal into an external
and vice versa.

NEGATION AND TWO'S COMPLEMENT. The minus sign is also used for
negating a number when used as single-argument operator. This
operator forms the two's complement of its argument.

ABSOLUTE VALUE. The ABS operator converts the following value to
its absolute, positive value; a negative value would become
positive, a positive value would remain unchanged.

3.5 PARAMETER SET-UP As mentioned in the overview in Section 2.3.4, you may set system
AND EEPROK STORAGE parameters with the SET command. These are listed in Table 3-5,

which follows.

You can also set an additional 10 parameters using software
switches. Nine of these relate to emulation and one determines
whether or not you can produce hard copy during an emulation
session. These are listed after Table 3-5 under ON and OFF.

3-12

ES SWITCH SETTINGS MENU

LD/SAV 4;
EXAMPLES:

LOAD/SAVE SWITCH SETTINGS IN EEPROM
)ON BKX+CK
)OFF FSX+CPY

VALUE NAME

OFF BKX
ON CK
OFF CPY
ON FSX
OFF RDY

DME
TE~
TEI
TE2
STI
RCS

Figure 3-1.
ES Switch Settings

Sof tvare Switches

ON
OFF

Break on Instruction
Execution BKX

CLOCK
CK

FSI on Instruction
Execution
FSX

DESCRIPTION

BREAK ON INSTRUCTION EXECUTION (NOT PREFETCH)
SELECT INTERNAL CLOCK
COPY DATA TO TERMINAL & COMPUTER PORTS
FSI ON INSTRUCTION EXECUTION (NOT PREFETCH)
SELECT INTERNAL READY WHEN ACCESSING OVERLAY
ENABLE DMA DURING PAUSE
ENABLE TIMER ~ DURING PAUSE
ENABLE TIMER 1 DURING PAUSE
ENABLE TIMER 2 DURING PAUSE
ENABLE STEP THROUGH INTERRUPTS
READ CHIP SELECTS ON RUN TO PAUSE

The switches used to control emulation and hard copy
parameters are enabled using ON and disabled using OFF.

• To display switches
)OR
or
)OFF

• To turn on "break on instruction execution"
)OR BICX

• To turn off all switches
)OFF -1

• To turn on more than one switch
)ON BKX + FSX + CPY + etc.

If BKX is ON, an event system break will occur on the instructio~
execution rather than the instruction pre-fetch.

If clock is ON, the emulator uses an internal clock.

If clock is OFF, the target system clock is used.

If FSX is ON, an FSI will occur on instruction execution rather
than the instruction pre-fetch. Note that if FSX is off, the emu­
lator may perform several FSis as the instruction is prefetched
several times.

3-13

Copy Switch
CPY

Internal Ready
Switch
RDY

Enable DMA
DME

Enable Pause Tiaer 0
1'Efl

Enable Pause Tiaer I
TEI

Enable Pause Tiaer 2
1.'E2

Step through
Interrupts
STI

Chip Select
I.CS

The CPY switch allows the user to enter a copy mode which refers to
the two ports on the back of the emulator. When the copy switch is
"on," data sent to the controlling port will also be echoed to the
other port~ This is useful for making hard copy of emulation
sessions or monitoring computer control (CCT) commands. When CPY
is off, data is sent only to the controlling port.

If the ready switch is on, the emulator will use an internally gen­
erated ready when accessing overlay memory. If the target system
does not provide a ready signal for addresses that are mapped into
overlay memory, this switch must be set on. The switch should be
off when overlaying Dynamic RAM for targets using dynamic memory
controllers that hold ready inactive during refresh.

When DME is ON, DMA will be enabled during pause. When it is OFF,
DMA will be disabled during pause.

When TE0 is ON, Timer 0 will be enabled during pauses.
OFF, Timer 0 will be disabled during pause.

When TEl is ON, Timer 1 will be enabled during pause.
OFF, Timer 1 will be disabled during pause.

When TE2 is ON, Timer 2 will be enabled during pause.
OFF, Timer 2 will be disabled during pause.

When STI is ON, the user may step through interrupts.
OFF, interrupts will not be serviced while stepping.

When it is

When it is

When it is

If it is

When RCS is ON, the emulator will read the Chip-Select Control
Registers upon entering PAUSE. This should be turned on only after
the Chip-Select Control Registers have been set because reading
enables them. RCS applies to the group of Chip-Select Control
Registers except UMCS. By writing to an individual Chip-Select
Control Register during PAUSE, you can enable reading it. For
example, LMCS = $8000.

Note: Pause means that the emulator is not in one of the RUN
modes.

3-14

Table 3-5.
SET Select Numbers

KEY SEQUENCE

SET #1,#0<return)
SET #1,#l<return>

SET 112, $n

SET #3,$n,$m<return)

SET #10,#0<return)
SET #10,#l(return)
SET #10,#2<return)
SET #10,#3(return)
SET #10,#4(return)
SET #10,#5(return)
SET #10,#6<return)
SET #10,#7<return)
SET #10,#8(return)
SET #10,#9(return)
SET #10,#lO<return)
SET #10,#ll(return>
SET #10,#12(return)
SET #10,#13<return>
SET #10,#14(return)
SET #10,#15(return>

SET #11,#l<return)
SET #ll,#2(return>

SET #12,#0<return)
SET #12,#l<return)
SET #12,#2<return)

SET #13,#n<return)

SET #14,$n(return)

DESCRIPTION/RESULT

Se~ect User 0
Select User 1

n is the desired reset character

Set values for X ON (n) and X OFF (m)

Set CRT terminal baud rate to 50
75 baud (CRT terminal)
110 baud (CRT terminal)
134.5 baud (CRT terminal)
150 baud (CRT terminal)
300 baud (CRT terminal)
600 baud (CRT terminal)
1,200 baud (CRT terminal)
1,800 baud (CRT terminal)
2,000 baud (CRT terminal)
2,400 baud (CRT terminal)
3,600 baud (CRT terminal)
4,800 baud (CRT terminal)
7,200 baud (CRT terminal)
9,600 baud (CRT terminal)
19,200 baud (CRT terminal)

CRT terminal data frame has 1 stop bit
2 stop bits (CRT terminal)

CRT terminal parity (send and receive) none
Parity even (CRT terminal)
Parity odd (CRT terminal)

Set CRT terminal lines per page; n=S to 255

Specify a 7-bit Reset character. The reception of
this character from any port in any mode resets the
emulator

RESET CHARACTER
REQUIRED

No
No

No

No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes

Yes
Yes
Yes

No

No

SET #15,$n,$m(return) CRT terminal transparent mode escape sequence; n and No

SET #20,#n(return)

SET #21,#l<return)
SET #21,#2<return)

SET #22,#n<return)

m are arbitrary character codes; 7-bit ASCII values only

Select computer baud rate; nO to 15 see SET #10,n
above

Computer data frame has 1 stop bit
2 stop bits (computer)

Select computer parity. See SET #12,n above

No

Yes
Yes

Yes

SET #23,$n,$m<return) Set computer transparent mode escape characters. See No
SET III 5, n, m

3-15

SET #24,$n,$m,$o
<return>

SET #25,#n<return>

SET #26,#n<return>

Example 3-4.
Load and Save

Command terminator for Download; n, m, and o are
arbitrary 7-bit ASCII character codes

Determine maximum number of data bytes in an Upload
rec~rd; n = 1 to 27

Select serial data format for Upload and Download;
O=Intel, l=MOS, 2=Motorola, 3=Signetics,
4=Tektronix, S=Extended Tekhex

No

No

No

Example 3-4 shows how to Load or Save system parameters. The loader
checks the validity of the stored data before transferring it to the
Satellite Emulator memory.

The system will save what is shown on the SET menu. The parameters
shown do not necessarily have to be in effect at the time they are
saved. This allows you to use one system to set up default
parameters for another system.

NOTE

A SAY Operation may take up to two minutes.

Do not interrupt the process.

• To Load all the system parameters:
>LD<return>

• To Load only one section:
>LD <n><return>

The section to be Loaded is denoted by n.

• To Save all system parameters:
)SAV<return>

Remember this may take up to two minutes.

• To Save only one section:
)SAY <n><return>

Again, n is the section number.

3-16

SECTION 4
OPERATION

4.1 INTRODUCTION

4.2 REGISTER OPERATORS

4.3 EMULATION
4.3.1 Run
4.3.2 Step and Stop
4.3.3 Run With Breakpoints
4.3.4 . Vector Loading and Running With Vectors
4.3.5 Reset
4.3.6 Wait

4.4 MEMORY MODE, I/O MODE
4.4.1 Entering and Exiting Memory Mode
4.4.2 Memory Mode and Pointers
4.4.3 Scrolling
4.4.4 Word and Byte
4.4.5 Examining and Changing Values
4.4.6 Memory Mode Status
4.4.7 Displaying a Block of Memory and Finding a Memory Pattern

Display Memory Block * Find Memory Pattern

4.5 MEMORY.MAPPING AND THE OVERLAY MEMORY
4.5.1 Memory Block Attributes
4.5.2 Memory Mapping Operators
4.5.3 Overlay Memory Operators

4 .6 SOF'IWARE DEBUGGING WI'nIOUT TARGET SYSTEM HARDWARE

4.7 ERROR HANDLING AND CODES

4.8 THE TRACE MEMORY AND DISASSEMBLER
4.8.1 Display Raw Trace
4.8.2 Disassemble Trace
4.8.3 Disassemble Previous and Following Trace

4.9 THE MEMORY DISASSEMBLER
4.9.1 Display Disassembled Memory

4.10 THE LIRE ASSEMBLER
4.10.1 Standard Mnemonics
4.10.2 Assembler Directives
4.10.3 Usage Notes
4.10.4 Assemble Line to Memory

4-1

4.1

4.2

Table

INTRODUCTION

REGISTER
OPERAl'ORS

4-1.
Registers

OPERATOR

AC!,
CTL
DCl,
LSA
Sl,
SIA

OVE
MMP
MMS
IOP

AC2

DC2

S2

GD0-7
GR0-7
DFB

AX, AL,
BP
BX, BL,
cs
ex, CL,
DS
DI

AH

BH

CH

DX, DL, DH
ES
FLX,
IP
SI
SP
SS

cwo
CWl

FLL, FLH

This section describes the procedures for operating the Satellite
Emulator and error codes that may occur. The information here pre­
sumes that you have read the previous sections.

l'BE SATELLITE EMOLA'l'OR WILL NOT OPERATE PROPERLY UNLESS IT HAS BEEN
CORRECTLY INSTALLED AND SET UP. Information on system communica­
tions and serial interfacing (beyond initial installation) is in
Section 6, Interfacing and Communications.

The register operators are used to assign values to registers with­
in the 80186 and the emulator, and to display these values.

Table 4-1 lists the registers recognized by the system.

DESCRIPTION

address comparator registers 1 and 2
count limit comparator register
data comparator registers l and 2
Logic State Analyzer comparator register
status comparator registers 1 and 2
Special Interrupt address register

Overlay enable register
memory space pointer
Memory Mode access status register
IO space pointer

general purpose data register
general purpose range register
default base register

accumulator (low and high)
base pointer
base register (low and high)
code segment
count register (low
data segment
destination index
data register (low
extra segment
flags register (low
instruction pointer
source index
stack pointer
stack segment

dma 0 control word
dma 1 control word

and high)

and high)

and high)

4-2

HOW USED

Event Monitor
Event Monitor
Event Monitor
Event Monitor
Event Monitor
Event Monitor

Memory Mode
Memory Mode
Memory Mode
IO Mode

Miscellaneous
Miscellaneous
Miscellaneous

CPU Registers
CPU Registers
CPU Registers
CPU Registers
CPU Registers
CPU Registers
CPU Registers
CPU Registers
CPU Registers
CPU Registers
CPU Registers
CPU Registers
CPU Registers
CPU Registers

PCB Registers
PCB Registers

System
System
System
System
System
System

DSTO
DSTl
EOI
LMCS
MAO
MAl
MA2
MBO
MBl
MCWO
MCWI
MCW2
MMCS

MPCS

PACS
REL
SRCO
SRCl
TCO
TCl
TC2
UDSTO
UDSTI
UMCS
USRCO
USRCl
xco
XCI

The following
DMAI
DMAO
EOI
IRQ
IST
ISV
IV
MSK
PLM
1MRO
TMRI
1MR2

The following
DMAO
DMAl
INTO
INTl
INT2
INT3
IRQ
IST
ISV
MSK

dma O lower 16 bits of destination address
dma I lower 16 bits of destination address
end of interrupt register
lower memory chip select register
time_r O max count "A" register
timer I max count "A" register
timer 2 max count "A" register
timer O max count "B" register
timer I max count "B" register
timer O mode control word register
timer I mode control word register
timer 2 mode control word register
mid-range memory chip select (base address)

register
mid-range memory chip select (block size)

register
peripherial chip select register
relocation register
dma 0 lower 16 bits of source address
dma I lower 16 bits of source address
timer 0 count register
timer 1 count register
timer 2 count register
dma 0 upper 4 bits of destination address
dma 1 upper 4 bits of destination address
upper memory chip select register
dma 0 upper 4 bits of source address
dma 1 upper 4 bits of source address
dma 0 transfer count
dma 1 transfer count

PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers

PCB Registers

PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers

interrupt controller registers are
level 3 control register (DMA I)
level 2 control register (DMA 0)
specific end of interrupt register
interrupt request register
interrupt status register

used only in iRMX aode

in service register
interrupt vector register
mask register
priority level mask register
level 0 control register (timer 0)
level 4 control register (timer I)
level S control register (timer 2)

interrupt controller registers are
dma 0 interrupt control register
dma I interrupt control register
interrupt 0 control register
interrupt I control register
interrupt 2 control register
interrupt 3 control register
interrupt request register
interrupt status register
in service register
mask register

4-3

used in

PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers

non-iRMX mode
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers
PCB Registers

PLM
POL
POS
TCR

DR

Figure 4-1.
Display
Registers
Form.at

4.2.1 Loading A
Register

4.2.1.1 Peripheral
Control
Block
(PCB)
Registers

4.2.1.1.1 General
PCB
Handling

priority mask register
poll register
poll status register
timer interrupt control register

PCB Registers
PCB Registers
PCB Registers
PCB Registers

The Display Registers command is used to display the CPU registers
in a fixed format. See figure 4-1. Its format is:

)DR(return>

>DR
CS:IP
"9f81"988

Example:

FLX

)BX<return>
$00000000

>BX=SOOO<return>

BX<return>
$00005000

AX BX ex DX DS SI ES DI BP SS SP
0ee0 00ee ee0e 0ee0 eeee eeee 90ee 0090 9000 0000 eeee

Because of the dynamic nature of some PCB registers, these are
handled slightly differently than regular CPU registers (such as
AX, BX, etc.). (Exceptions to the following procedure are also
described below.)

When the emulator exits the RUN mode, all memory and I/0 space is
searched for the P~

• When the PCB is located, it is moved to locations $FFOO-$FFFF in
I/O space.

• All register values are then copied to a table in internal RAM
and uploaded to the ES controller. These register values are the
ones displayed in response to the PCB command.

The values in this table are modified by commands such as:

MCW0-$1234

or

IST=$5678

4-4

The commands do not modify the current contents of the physical
PCB until the next PAUSE-TO-RUN transition.

When the emulator enters the RUN mode, the PCB register values con­
tained in the RAM table mentioned above are reloaded into the
physical PCB. The PCB is then moved back to its location in the
target address space and the emulator enters the target system.

4.2.1.1.2 Exceptions The emulator may be configured to allow some or all of the inte­
grated peripherals controlled by the PCB to continue operating
during PAUSE mode.

Tiaers The ON/OFF switches TE~, TEl and TE2 are used to selectively
enable/disable the integrated timers during PAUSE mode.

• If the switch is set to ON, the timer registers are handled as
described in the general procedure upon the RUN to PAUSE transi­
tion. On the PAUSE to RUN transition, none of the timer's values
are reloaded to the physical PCB, as this would destroy the data
generated during the PAUSE mode.

•If the switch is set to OFF (disable time during PAUSE mode), the
mode control (MCWO) for the particular timer is copied to the RAM
table upon RUN to PAUSE; the timer is then disabled by clearing
Bit 15 of the mode control word. Upon PAUSE to RUN, the value in
the RAM table are reloaded to the physical PCB. This restores
the timer to its configuration when last running in the target
system.

DMA The ON/OFF DME switch selectively enables/disables DMA operation
Controllers during PAUSE mode. Note that all DMA cycles are disabled immedi­

ately upon RUN to PAUSE transition by the asserting of an NMI to
the CPU, which then sets Bit 15 of the IST register (DHLT bit).

Chip
Select
Registers

• If the switch is set to ON DME:

-The IST register is copied to the RAM table
-The DHLT bit is then cleared, causing DMA cycles to resume. All

DMA cycles are steered to the target system.
-Upon PAUSE to RUN transition, the RAM table value of the IST
register will be reloaded to the physical PCB. If you want DMA
activity to continue when reentering RUN mode, the "RUN" command
must be preceeded by: "IST = IST & $7FFF" to clear the DHLT bit
of the RAM table's IST register value.

-No OMA register values are reloaded to the physical PCB with
this setting.

• If the switch is set to OFF DME, the DMA registers are handled as
described in "General PCB Handling"

The ON/OFF RCS switch controls the emulator's reading of the LMCS,
MMCS, MPCS, and PACS registers upon RUN to PAUSE transition.

• If the switch is set to ON RCS, all chip select registers are
read and restored as described in "General PCB Handling".

4-5

4.2.2

Interrupt
Controller
Registers

General
Registers

4.3 EMUI..ATION

• If the switch is set to OFF RCS, these chip select registers will
only be read and copies to RAM table if you have manually set the
register value during PAUSE mode (i.e. LMCS=l234). This is
necessary because reading of these chip select registers enables
them to drive the 80186/88's chips select lines.

Upon PAUSE to RUN transition, only the registers that have been
modified during PAUSE mode (i.e. LMCS=l234) are reloaded to the
physical PCB. Note that when the switch is OFF, the displayed
values of the chip select registers (LMCS, MMCS, MPCS, PACS) will
not show what is actually in the PCB.

Upon PAUSE to RUN, the poll status register (POS) and its value is
copied to its own table entry as well as the entry for the poll
register (POL). This is necessary to prevent setting the IS bit of

_any pending interrupt. Both registers will also show the same data
in the PCB.

Because these two registers are Read Only, they are not reloaded to
the physical PCB upon PAUSE to RUN transition.

GD0-7 and GR0-7 are miscellaneous registers used to save keystrokes
when you are using simple integers, ranges or Don't Cares. They
are used as follows:

• GR0-7 integers or ranges for addresses

• GD0-7 integers or Don't Cares for data

Example:

)GRO=lOOO TO 2FFF
)MAP GRO
)OM

)MEMORY MAP:
)MAP $000000 to $000FFF TGT
)MAP $001000 to $002FFF RW
)MAP $003000 to $FFFFFF TGT

The basic function of the Satellite Emulator is the emulation of
microprocessors. When emulation is initiated, the Satellite
Emulator will run the target' system program transparently and in
real time, just as the target system microprocessor would, or one
instruction at a time. Essentially, emulation lets you "see" into
the logical environment of the emulated microprocessor.

The operators associated with emulation are:

• Run - RUN

• Step and Stop - STP

• Run With Breakpoints - RBK

• Wait - WAIT

4-6

4.3.1

4.3.2

4.3.3

Run
RUH

Step and
Stop
STP

Run With
Breakpoints
RBK

Run, Run With
Breakpoints,
Step, and Stop

4.3.4 Vector
Loading
and
Running
Vi th
Vectors

Only used to start emulation:

• Run With New Vectors - RNV

• Run With New Vectors and Breakpoints - RBV

• Load New Vectors - LDV

To reset processor:

• Reset - RST (pod only)

The Run operation executes the target system program in real time
until you stop it or it encounters an access violation associated
with the defined memory map. The Run Prompt R> will be present
during RUN.

The Satellite Emulator combines Step and Stop into one mnemonic.
Step takes you through the target system program one instruction at
a time. Stop is used to break emulation during a Run or Run With
Breakpoints.

• If emulation is in progress, keying in STP will cause the
Satellite Emulator to halt emulation.

• If STP is entered while emulation is not in progress, one program
instruction will be executed. Use STP, /, /, /, ••• instead of
STP, STP, STP, ••• it saves typing.

Run With Breakpoints (RBK) is the same as a Run operation except
that break operators within the Event Monitor System are honored
and will stop program execution when encountered- The Run promp R>
will be present during RBK.

These examples show how to start emulation:

• To initiate a Run:
)RUH(return>

• To initiate a Run With Breakpoints:
)KBK(return>

• To stop a Run or a Run With Breakpoints:
R>STP(return>

• To Single Step through instructions (emulation not currently in
progress):

>STP(return>

The 80186 microprocessor, when reset, loads the IP (instruction
pointer) to $0000 and the CS (code segment) to FFFF. The emulator
can automatically load these same values before going to a run.
Three commands implement these functions; LDV initializes the reg­
isters, RNV initializes the registers and begins run, RBV
initializes the registers and starts run with breakpoints enabled.
See the following examples.

4-7

4.3.5

LDV

RNV
RBV

Reset
RST

• To initialize registers:
)LDV(return>

• To initialize registers and run:
)UV(return>

or
)LDV;RUN(return>·

Note that the two examples cause identical
initializes the vectors, then starts emulation.
accomplished using the two commands LDV and RUN.

• To initialize registers and run with breakpoints:
>RBV<return>

or
)LDV;RBK

results. RNV
The same can be

After an LDV, the registers contain the following data:

CS = $FFFF IP = $0000 FLX = $F002 DS = $0000
ES = $0000 SS = $0000 REL = $20FF UM Cs $FFFB
CW0 = $0000 CWl = $0000 MCW0 = $0000 MCWI $0000
MCW2 = $0000 INN = $000F INTI = $000F INT2 $000F
INT3 = $000F TCR $000F DMA0 = $000F DMAI $000F
MSK = $00FF PLM = $0007 ISV = $0000 IRQ = $0000

Reset is used to reset the microprocessor pod and emulator board
and also the . target. (On all other EM/ES emulators RST does not
reset the target.) The 80186/88 has two reset pins on it (see
diagram):

• /Res (pin 24) is an input to the microprocessor and can be driven
from both the target and the RST command

• Reset (pin 57) is an output from the microprocessor and is sent
back to the target

When an RST command comes from the controller board, it resets the
microprocessor and the target hardware as well. One exception to
this is when the /res pin goes to devices other than the micropro­
cessor, these devices will not get reset from the RST command.

Target

+5v

To devices

4-8

Pod

Res

Reset

RST command

80186
80188

I To pod and emulator

4.4

4.3.6 Wait
WAI

MEMORY MODE
IO MODE

4.4.1 Entering
and Exiting
Ke11ory Mode
Mor MK
x
KIO

The Wait operator causes the Satellite Emulator to delay executing
the command statement following it until emulation is broken for
some reason (an event detector within the Event Monitor System or
access violation of the memory map, for example). See the follow­
ing example.

• The format for the Wait operator is:
)RBK;VAI;<colml3Ild)(return>

• For example:
>RBK;WAI;BX(return>

• Note that the semicolon is used to separate the commands.

NOTE

THE EKULATOR KAY HANG UP WHILE USING THE WAIT OPERA­
TOR IF EHIJLATIOR IS NOT AUTOMATICALLY BROKER. TO
ESCAPE THIS CONDITION, USE THE USER-DEFINED RESET
CHARACTER..

Memory Mode allows you to examine or change the contents of the
target system memory. IO mode allows you to examine or write data
to IO ports. Each address is accessed and displayed individually,
with easy-to-use scrolling features. Data at each address can be
displayed and/or entered in any number base you select.

The following sections explain how to enter and exit Memory Mode,
use the pointer, scrolling features, word and byte modes, and how
to examine and change the target system memory.

M or MM is used to enter Memory Mode. If no entry address is spec­
ified, the address will default to the value of MMP. Upon entry,
the memory location is read and the address and data residing there
are displayed preceding the prompt. A <return> will increment the
address.

MIO is used to enter I/O mode. If no address is specified, the
address will default to the value of IOP. Upon entering this mode,
the ports are not read. The address is displayed preceeding the
prompt. To read the port, execute a (return) as the only character
on the line. The port will be read and the address and data dis­
played. The address will not be incremented unless a " " is
entered. Refer to the following example.

• To enter the target system memory space at a specific address:
)K (address)(return>

•To enter the target system memory space at the default address:
>M<return>

• To change address while in memory mode:
$00000000 $FFFF)II (address><return>

• The system will respond with one of the two memory mode prompts:

- byte mode $000000 $FF)
- word mode $000000 $FFFF)

4-9

4.4.2

4.4.3

Memory
Mode and
Pointers
MMP
IOP

Scrolling
NXT
LST

• To enter I/O space at a specific address:
)MIO(address>< return>

• To enter I/O space at the default address:
)MIO(return>

• To exit Memory Mode or IO Mode:
>X<return>

The Memory and I/O mode pointers, when invoked, will display the
last address invoked in Memory or I/O Mode since power-up. The key
sequence is shown in the following example.

You can also change the pointers to a value you select by entering
the desired value before the <return>.

• To dispiay the iast memory address examined:
)MMP(return>

• To change the Memory Mode pointer:
)MMP=(address)(return>

• To display the last I/O address examined:
}IOP <return>

• To change the I/O pointer:
)IOP = (address)(return>

Once you have entered Memory Mode at a specific address, you can
scroll to higher or lower addresses. The NXT and LST operators
determine the default direction of sequential memory accesses.
When you enter NXT after the prompt, the addresses are incremented
between each access. LST entered after the prompt causes the
addresses to be decremented. The power-up default is NXT. These
commands are useful for storing lists of values into memory.

When a comm.a or period is entered in response to the Memory Mode
prompt, addresses are incremented (with the period) or decremented
(with the connna) and the next location displayed. These are used
to temporarily override NXT and LST.

• To scroll to the next higher
address:
(address)(data> > HXT (return>

or
(address><data> >.

or
(address)(data> ><return>

• To scroll to the next lowest
address:
(address)(data>)LST(return>

or
(address><data> >,

4-10

IO Examples:
• Scroll to next address:

(address> >

• Display Data:
(address> ><return>
(address)(data> >

• Scroll to lower address:
<address> >,

4.4.4

4.4.5

4.4.6

Word and
Byte Modes
BYK
WDM

Exaaining
and
Changing
Values

Displaying
a Block of
Memory and
Finding a
Memory
Pattern
DB

If you wish to scroll through the memory spaces one byte (8 bits)
at a time, invoke BYM. WDM is used to scroll in the word mode (16
bits). The system will default to a byte mode.

BYM and WDM should be considered global defaults that affect all
qperations, not just Memory Mode.

• To scroll in the byte mode:
> BYK

• To return to the word mode:
> WDM

Now that you can access Memory and I/O Modes, work with the point­
ers and scroll higher and lower in either the byte or word mode,
it's time to discuss how to change values.

When you enter an address or scroll to a new address, the CRT ter­
minal will display the new address (and its value if in memory
mode). To change the value, simply enter a new value followed by a
<return). A string of values can also be entered, each separated
by a comma. This will store the values to consecutive locations
according to the current NXT or LST mode when in memory mode. In
I/O mode a string of values will be stored at the same address.
The maximum length for a string of values is 9.

• To change a single value at one location:
(address)(data>> $47FF<return>

• To change a series of values at consecutive locations:
)M(address> <return>

The emulator will respond with:
(address> (current data>>

Then enter:
<address)(data>)$1,$2,$3,$4(return>

The emulator loaded the first location with 1, the second with 2,
the third with 3, and the fourth with 4. The address increments to
the next location following the last word that received data (ac­
cording to current NXT or LST mode).

Two additional operators need explanation at this point. Though
you cannot be in Memory Mode when you invoke them, these operators
affect memory examination.

DISPLAY MEMORY BLOCK. To display a block of memory, use the DB
operator. The display format includes line address and hexadecimal
data; ASCII-equivalent characters are displayed when in byte mode.

• To display a block of memory:
)DB (address range) <return>

• To display a page of memory starting from a specified address:
)DB(address><return>

4-11

FIR

Figure 4-2.

4.5

Display Memory
Block Format

MEMORY
MAPPIRG AND
THE OVERLAY
MEMORY

• To display a page of memory starting from the ending address
of the previous DB command:

)DB(return>

• To easily scroll through memory use the slash "/" following a
DB<return> cOlllllalld.

FIND MEMORY PA'rl'ERN. To find a specific bit pattern in memory the
FIN operator is used.

• To find a bit pattern in memory:
)FIN <range>, (data> <return)

•To find a bit pattern using Don't Cares (either form):
FIR 1000 TO 2FFP, 60XX:

or
FIN 1000 LEN 1000, 6000 DC OFF

The emulator will return:
$(address> = (data>

to indicate where the bit pattern has been found.

>BYM
>DB 0 LEN 30

000000 80 48 4S .. ~ 4C 4C 4F 80 80 - 2F 0F Fl F9 SE 2F F6 F0 • HELLO •• I • :~. "'I ••
000010 0F 03 F0 40 0F 0C F0 40 - 07 06 F0 90 0F 0C 08 00 ••• @ ••• @ ••••••••
000020 FF 0F FF F9 FF lF FF 7F - FF 3F FF BO FF lF FF FF ••••••••. ? ••••••

>
>WDM
>DB 0 LEN 30

000000 4880 4C45 4F4C 8080 - 0F2F F9Fl 2FSE F0F6
000010 030F 40F0 0C0F 40F0 - 0607 90F0 0C0F 0008
00(J020 0FFF F9FF lFFF 7FFF - 3FFF BDFF lFFF FFFF

>
>

Memory mapping is used in conjunction with the Overlay Memory. If
you wish to use the Overlay Memory during emulation, you will need
to define the memory map first.

The overlay memory is available to the target for DMA only when us­
ing the ON-chip DMA controller. If an external DMA scheme is used,
it cannot access the overlay. The overlay memory is accessible to
the target system whenever it is mapped. An exception to this rule
is DMA. During External DMA or other non-CPU activity times, the
Overlay Memory is not available to the target. (Internal DMA
within the 80186/188 still has use of the Overlay.)

The Overlay Memory is RAM in the Satellite Emulator with appropri­
ate address and control logic. It is locatable in 2K-byte segments
throughout the system. Size of the Overlay Memory ranges from
3 2 K-bytes to 512K-bytes, depending on the opt ion you selected at
time of purchase.

I. , 'l
"t-LL

4.5.1

4.5.2

Memory
Block
Attributes

:RO

:RV

: 1.'GT

:ILG

Meaory
Mapping
Operators

MAP

The Overlay memory can be mapped into the address space of a target
system so you can load the target system program into it; the tar­
get system program can then be edited, positioned in the target
system address space as desired, and the program executed in real
time as if it resided totally in the target system. Overlay Memory
i_s also useful for checking programs not yet committed to PROM.
When programming data is correct, it can be uploaded to a PROM
programmer.

The first step in using the Overlay Memory is assigning one of four
attributes to the memory ranges. The ranges specified must fall on
2K-byte boundaries. If you specify a range that does not, the
Satellite Emulator will expand the range until the endpoints fall
on such a boundary.

The following paragraphs describe the attributes of the four types
of memory blocks possible.

NOTE:

The aeaory block attribute operators, :RO, :RV
:TGT, and :ILG, are always preceded by a colon.

READ ONLY. Memory blocks marked with this attribute are write­
protected: no target system write cycle can change the data. Note,
however, that the emulator can write to that space. This is most
often used to emulate instruction memory that would be placed in
ROM or PROM. If a write cycle is made to a memory block that has
this attribute, a write access violation breakpoint stops program
execution and displays a message to that effect.

READ/WRITE. Memory blocks marked with this attribute are available
for read or write access. No error breakpoints ever occur as a
consequence of access to these blocks.

TARGET. Memory blocks marked with this attribute are assigned to
the target system. All memory accesses marked target by the micro­
processor go directly to the target system memories (if any).

ILLEGAL. Memory blocks marked with this attribute are illegal for
all types of access. Normally these blocks are useful for marking
memory that should never be referenced by the program at all. In
other words, if the program references these addresses, there is
something wrong with the program. If this ever occurs, a memory

· access violation breakpoint will stop program execution and display
a message to that effect.

Three operators are used in conjunction with the memory type opera­
tors for memory mapping.

SET MEMORY MAP. The MAP Operator is used in conjunction with the
memory type operators (Read Only, Read/Write, etc.).

• The general format for setting up a block of overlay memory is:
>MAP (range) [:.eaory type] (return>

4-13

DH

CLM

Figure 4-3.
Display Memory
Map Format

4.5.3 Overlay
Meaory
Operators

OVE
DTA
CD

Load
Overlay
Meiaory LOV

• To set a memory space as Read Only, $3000 bytes long, responding
to addresses O to $2FFF:

>MAP 0 to $2FFF :Ro<return)
This would contain 6 blocks of 2K bytes each.

• The same format_ is used for setting any other of the four memory
types. If the memory type argument is not supplied, the default
is read/write (:RW).

DISPLAY MEMORY MAP. This operator allows you to display the memory
map currently in effect.

• To display the memory map in effect:
>DM<return>

CLEAR MEMORY MAP. This operator clears the memory map currently in
ef feet. Be sure you are ready to clear it before invoking the
operator.

• To clear the memory map in effect:
>CLM<return>

>MAP 0:RO
>OM

MEMORY MAP:
MAP $000000 TO $0007FF RO
MAP $000800 TO $FFFFFF TGT

Overlay Memory ENABLE. The OVE operator allows you to load values
that determine which memory status space the Overlay Memory re-
s ponds to. The possibilities are Code Space (CD) and Data Space
(DTA). The current value is shown when the memory map is dis­
played. Factory default is CD + DTA.

• The general format for OVE is:
)OVE = CD + D'rA (return>

LOV. LOV loads Overlay with your target system program. The data
is automatically verified during the operation. (The target is not
written to.)

The key sequence for loading the Overlay Memory is given in the
following example. The argument specifies the address range of the
target system memory from which to move data to the Em~lator
Overlay Memory.

The key sequence is:
)LOY X TO Y(return>

or
)LOV X LEN W(return>

4-14

Verify
Overlay
Memory
VFO

Fill
Operator
FIL

VFO. VERIFY OVERLAY MEMORY. VFO is used to verify that the pro­
gram you have loaded into Overlay Memory matches the program in
your target system memory. The following example shows the key
sequence.

• The key sequence is:
)VFO X TO Y(return>

• If any differences occur, the emulator will return:
(address) = XX NOT YY

The (address) is where the misverify occurred. XX denotes the data
present in Overlay Memory and YY is the data at that location in
target system memory.

FILL. FIL is used to fill the memory space of the emulator or tar­
get system with a constant. The constant may be written to overlay
memory and target read/write memory.

The format for the Fill operator is:
)FIL X TO Y, Z

or
)FIL X LEN W,Z

The first argument specifies the address range to be filled with
the constant specified in the second argument. The second argument
may be byte o~ word, depending on the global default.

Verify Block VERIFY BLOClt DATA. The VBL operator is used in conjunction with
Data the FIL operator. Once the Overlay Memory has been filled with
VBL constant data (via FIL) , this data can be verified with the VBL

command. The key sequence shown in the following sequence is much
like the key sequence for FIL.

The general format is:

)VBL (address range), <argument)(return>

The VBL operator verifies that the address range contains the
argument.

Block Move The Block Move operator moves a block of data from one location
Verify Block within the target system memory or Overlay Memory to another via a
Move source/ destination format. The space you move data into should be
BHO designated as writeable.
VBM

The format for a block move is:
)BMO(source range>
(destination start address>,<return>
)GR1='4LEN2•fl
)BMO GRl, $-

• You can verify byte data between the target and Overlay Memory:
)VBM 2000 TO 3FFF,2010

Verify Block Move has the same syntax as Block Move except that
VBM only verifies that the source and destination blocks are
identical.

4-15

4.6

4.7

CODE

1

4

5

6

7

sonvARE
DEBUGGIBG
Wl'l'BOUT
TARGET SYSTEM
HARDWARE

ERR.OR
HANDLING
ARD CODES

Figure 4-6.
Error
Recognition

Table 4-2.
Error Codes

An added feature of the Satellite Emulator is its ability to debug
software without being physically connected to your target system.
This is accomplished by using an internally generated clock.

The procedure consists of mapping memory space and loading the
Overlay Memory with your program. You can now use the features of
the emulator to execute program code and test modules.

When an error occurs during operation of the Satellite Emulator
with a CRT terminal, the system will print a question mark (?) on
the screen, directly below or just after the point in the input
character stream that caused the error. See Figure 4-6.

>HELLO
?

>?
ERROR #5
UNDEFINED SYMBOL OR CHARACTER

)

)

>SET GD0=0 LEN 60
?

>?
ERROR #29

DETECTED I

ILLEGAL DESTINATION - SOURCE TYPE MIX
)

)

)

>
>MAP 0 TO 0FFFFFF

?
>?

ERROR #9
NO (MORE) OVERLAY RAM AVAILABLE

MESSAGE DISPLAYED

EXPRESSION HAS NO MEANINGFUL RELATION TO REST
OF THE COMMAND

PARSE ERROR

UNDEFINED SYMBOL OR INVALID CHARACTER
DETECTED

CHECKSUM ERROR IN DOWNLOAD DATA

BAD STATUS = ••• RETURNED FROM EMULATOR
CARD

Of ten caused by entering symbols out
of context. DR and BRK are both
legal operators but entered together
as DR BRK would cause this error
message.

Call Customer Service

Generally
spelling.

caused by improper

The last record received was in
error. Make sure that the format
selected in the system setup is the
same as that of the received data.
Ref er to download for error handling
during computer control.

Contact Applied Microsystems Techni­
cal Services Department.

8

9

10

ARGUMENT IS NOT A SIMPLE INTEGER
OR INTERNAL RANGE

NO (MORE) OVERLAY RAM AVAILABLE

MULTIPLY-DEFINED EVENT GROUP

11 ILLEGAL ARGUMENT TYPE FOR EVENT
SPECIFICATION

13 ARGUMENT MUST BE A SIMPLE INTEGER

14-16 OPERATION INVALID FOR THESE ARGUMENT TYPES

17 SHIFT ARGUMENT CANNOT BE NEGATIVE

18 TOO MANY ARGUMENTS IN LIST ••• (9 MAX)

19 INVALID GROUP NUMBER ••• (NOT IN 1-4)

20-23 OPERATION INVALID FOR THESE ARGUMENT TYPES

24 BASE ARGUMENT MUST BE A SIMPLE INTEGER

25 'DON'T CARES' NOT ALLOWED IN I/O DATA

26 RANGE TYPE ARGUMENT NOT ALLOWED AS DATA

27 ADDRESS ARGUMENT MUST BE A SIMPLE INTEGER

28 ILLEGAL MODE SWITCH ATTEMPT.

29 ILLEGAL DESTINATION - SOURCE TYPE MIX

31 RANGE START AND END ARGUMENTS MUST BE
SIMPLE INTEGERS

32 RANGE END MUST BE GREATER THAN RANGE START

33 RANGE START AND END ARGUMENTS MUST BE
SIMPLE INTEGERS

Don't Cares are not allowed in this
context.

You have not cleared the map or you
are trying to map in more memory
than is allowed.*

Only one group may be referenced in
any event clause; caused by trying
to mix event register groups in an
event clause e.g., 2 WHEN ACl.3 THEN
BRK would cause this error.

Of ten caused by attempting arithme­
tic operations on incompatible vari­
ables, e.g., -(4 DC 9) + (IRA 500 to
700). Same as error 23.

See error 14-16.

Argument should be #0 to #16.

Can't enter I/O mode from memory
mode ad vice versa.

Caused by trying to store don't care
data into a range variable and other
similar operations.

6 LEN 1 is not a valid range.

*Contact Applied Microsystems for optional Overlay Memory expansion.

4-17

CODE MESSAGE DISPLAYED

34

35

36-38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

READ AFTER WRITE-VERIFY ERROR

WARNING - DATA WILL BE LOST WHEN
Eh'ULATION IS BROKEN

NO ROOM ••• BREAKPOINT CLAUSES TOO
NUMEROUS OR COMPLEX

INVALID GROUP NUMBER ••• (NOT IN 1-4)

ILLEGAL SELECT VALUE

INCORRECT NUMBER OF ARGUMENTS IN LIST

ILLEGAL SETUP SET VALUE

WHEN CLAUSE REDUCED TO ••• NULL FUNCTION

INTERNAL ERROR ••• NULL SHIFTER FILE

MAP CANNOT BE ACCESSED DURING EMULATION

ARGUMENT MUST BE AN INTERNAL RANGE

16 BIT RANGE END LESS THAN START

ILLEGAL MODE SELECT VALUE

INVALID GROUP NUMBER ••• (NOT IN 1-4)

INVALID GROUP NUMBER ••• (NOT IN 1-4)

SAVE/LOAD INVALID ARGUMENT VALUE

DISPLAY BLOCK NEEDS AN IRA ARGUMENT

4-18

COMMENTS

Downloaded data is verified on a
byte-by-byte basis. The error
message contains the location and
results of the comparison.

Caused by attempting to store into
CPU registers during emulation. CPU
registers are copied into internal
RAM only when emulation is broken.
The RAM contents are copied into the
processor only when emulation is be­
gun. The emulator cannot access CPU
registers during emulation. Thus,
once emulation has been started, the
DR command will show the contents of
the CPU registers as they were be­
fore emulation was begun. Changes
can be made to these values but the
data will be rewritten when emula­
tion is broken.

First argument after SET operator is
invalid.

The argument nearest to the "?" is
illegal.

Caused by such constructs as "WHEN
ACl AND NOT ACl."

Contact Applied Microsystems.

The map hardware is constantly used
by the emulating processor during
emulation.

CODE MESSAGE DISPLAYED

53 EEPROM WRITE VERIFY ERROR

54 ATTEMPT TO SAVE/LOAD DURING EMULATION

55 EEPROM DATA INVALID DUE TO INTERRUPTED SAVE

56 TRACE DATA IS INVALID DURING EMULATION

57 INVALID GROUP NUMBER (NOT 1-4)

58 IMPROPER NUMBER OR ARGUMENTS

59 ARGUMENT MUST BE AN INTERNAL RANGE

60 ARGUMENT MUST BE A SIMPLE INTEGER

61 IMPROPER NUMBER OF ARGUMENTS

62 CANNOT STORE THIS VARIABLE DURING EMULATION

63 ILLEGAL ARGUMENT TYPE

64 ARGUMENT TOO LARGE

65 ILLEGAL RANGE

66 STATUS CONSTANTS CANNOT BE ALTERED

6 7 TOO MANY "WHEN" CLAUSES

68 INVALID DATA FORMAT FOR SYMBOLS

70 CANNOT INITIALIZE VECTORS DURING EMULATION

71 UNKNOWN EMULATOR ERROR

72 INCOMPATIBLE EEPROM DATA

74 COMMAND INVALID DURING EMULATION

4-19

COMMENTS

Data in the EEPROM is verified dur­
ing the SAV operation. (The store
operation is retried many times
before the error is generated.)
EEPROMs have a finite write cycle
life. The EEPROM in your emulator
is warranted for one year. Contact
Applied Microsystems for service.

Previous SAV was interrupted by a
reset or power off.

Caused by entering range or integer
values with the DRT command that
include numbers greater than #2045.

Symbols must be up/down-loaded using
Extended Telchex format. The format
specified in the setup menu is not
Extended Telchex.

Typed LDV, RNV, RBV during
emulation.

Call Applied Microsystems.

Previous data save was not from 8086
or 80186 emulator system.

CODE MESSAGE DISPLAYED

75 INVALID RECORD TYPE

76 NO SYMBOLIC DEBUG

77 UNDEFINED SYMBOL OR CHARACTER DETECTED

78-80 TOO MANY SYMBOLS

81 SYMBOL OR SECTION PREVIOUSLY DEFINED

82 SYMBOL NAME IN USE

83 TYPE CONFLICT WITH DEFINED SYMBOL

87 SECTION TABLE FULL

88 INVALID ARGUMENT SIZE

89 INVALID ADDRESSING MODE

90 ARGUMENT OUT OF RANGE

94 ARGUMENT NOT SYMBOLIC

NO BUS CYCLES

SYSTEM RESET ERROR

4~20

COMMENTS

Download routine received invalic
record type code.

The ES will load all symbols pre­
ceeding the duplicate symbol intc
its symbolic RAM. When you then
type the command SYM, these will all
be displayed in the order that they
were downloaded. The symbol on the
end of the list can be found in your
download file, and the symbol imme­
diately following it will be the one
that caused the error.

No ALE'S were detected for at least
2.2 ms or longer. The controller
checks then for other fault condi­
tions: checking to see if the CPU
is halted, waiting, reset is assert­
ed or if the bus has been granted.
If any of these other conditions
exist then the appropriate message
for that condition would be display­
ed. If no other fault condition is
found then 'NO BUS CYCLES' will be
displayed.

When a reset has been asserted from
the controller and the emulator does
not report back that a reset has
been asserted then this message will
be displayed (also when reset has
been deasserted and the emulator
does not report back to the control­
ler that the reset has been
deasserted).

CODE MESSAGE DISPLAYED

POD CPU NOT INITIALIZED

POD CPU NOT RESPONDING

RESET ASSERTED

NO TARGET POWER

PROCESSOR WAITING

HOLD ACKNOWLEDGE ASSERTED/BUS GRANTED

4-21

COMMENTS

Whenever a reset occurs (power up,
AZ,RST), the controller and the emu­
lator will begin an initialization
routine to establish communication.
If this initialization routine fails
to complete, this message will be
displayed.

Whenever a STP, MM XXXX, or MIO XXXX
is executed the controller will
check to see if an error occurred
during the command. If no error
occurred then it looks to see if the
command completed. If the command
did not complete then the controller
looks to see if the CPU is still
running. If the CPU is not running,
an appropriate error message will be
displayed. If the CPU is running,
this message is displayed.

This indicates that a reset from a
target system has been asserted for
greater than 1/2 sec. When the re­
set is deasserted then the message
will be removed. However, if the
reset is less than 1/2 sec., then
the message will not be displayed.
This message is intended as an error
reporting condition.

If the +Sv supply in the target sys­
tem is at approximately +4v or less
then this message will be displayed.
The message will be removed when the
fault condition has been corrected.

This means that the CPU is waiting
for a RDY (either ARDY, SRDY, or
internal rdy) to come back. This
message will be displayed only if
the cpu has been waiting for greater
than 2.2ms. When the condition has
been corrected then the message
will be removed.

This message will be displayed when
a hold acknowledge has been asserted
for greater than 2.2ms. This mes­
sage will be removed when the CPU is
given back the bus.

CODE MESSAGE DISPLAYED COMMENTS

4.8

PROCESSOR HALTED

NO CLOCK

'l'HE TRACE
MEMORY AND
DISASSEMBLER

A HLT instruction has been executed
and has been asserted for greater
than 2 .2ms. This message will be
removed when the CPU is given back
the bus.

The CPU clock must have a period of
10us or faster to prevent this mes­
sage from being displayed. The
message will be removed when this
error condition has been corrected.

The Trace Memory records the history of the program execution. It
may be used in conj unction with a disassembly routine to format rne
trace data. The mnemonics provided by the disassembled display en­
sure more rapid analysis of your data.

During emulation, the activity of the executing program is recorded
continuously and stored in the Trace Memory. At any point in the
process, the program execution can be stopped. The address, data,
and control signals of the last series of cycles can be displayed
and scrolled on a CRT terminal or output to a printer. The entire
contents or a "window" of cycles occurring between specified bus or
instruction cycles can be dumped. If something unexpected happens
during program execution, the Trace Memory provides a record that
can be reviewed to determine what happened. The Event Monitor
System can be used to qualify, start recording of data into the
Trace Memory, and stop the recording process.

The Trace Memory is 72 bits wide and 2048 words deep; two words are
used for marks, leaving 2046 words. It cannot be accessed by the
user during emulation.

A trace counter supplies the address to the Trace Memory and can be
incremented with each cycle. It is a 12-bit counter (only eleven
are used) with count mode logic. It has three modes of operation:

• count never

• count every bus cycle (only available during a Run mode)

• count every bus cycle when qualified by trace directive from
the event monitor system (only available during a Run mode).
(See Section 5).

A Disassembler is available for use with the Trace Memory. This
allows you to display or print Trace Memory in an easy-to-read for­
mat similiar to a program listing. Figures 4-4 and 4-5 show print­
outs of the Trace Memory and of the Trace Memory with Disassembly.
When printed, the disassembler writes over the line which invokes
it. This may cause overstriking on your printout.

A "page" of Trace Memory is defined as the number of lines on the
CRT terminal, less three. All scrolling is done by pages, with
both raw Trace Memory data and disassembled data.

4-22

4.8.1

Figure 4-4.

Display
Raw
Trace
DRT

Trace Memory Format

4.8.2 Disassemble
Trace
DT

DRT can be used to display Trace Memory data in bus cycles if you
do not wish to use Disassembly to display instruction cycles.

Invoking DRT causes the Satellite Emulator to display a page of bus
cycles of the Trace Memory. More or less cycles may be displayed
by specifying an address or address range in an argument following
the operator. If a single address is specified, the system will
4isplay the specified address and the previous 20 bus cycles. The
Trace memory holds 2,046 cycles; therefore, 2,046 is the highest
number allowable as input. Note that the raw Trace Memory contains
the 16-bit status and control word (described in Section 5.2.6).

• To display the most current page of bus cycles:
)DllT(return>

• To display a specific line number and the previous 20 cycles:
)DRT(address)(return>

• To display a range of line numbers:
)DRT(range><return>

Note that the range is a range of bus cycles, not the address re­
corded in the Trace Memory.

>ORT t50
LINE ADDRESS DATA R/W M/IO BCYC QUE LSA - 8 7 s

t69 001000 > 0FB9 R OVL M IF F 0 Ulllllll Ul
t68 001002 > BE00 R OVL M IF 2 '11111111 \11
t67 001004 > 2000 R OVL M IF 2 '11111111 Ul
f 66 001006 > 00BF R OVL M Ii~ 1 '11111111 Ul
f 65 001008 > A522 R OVL H IF 2 Ulllllll Ul
f 64 00100A > A4F3 R OVL H IF 2 Ulllllll Ul
t63 00100C > 8103 R OVL H IF 3 '11111111 Ul
f 62 002000 > FF50 R OVL M RM 4 Ulllllll Ul
f 61 002200 < FF50 w OVL M tlM 4 Ulllllll Ul
160 00100E > FF00 R OVL H !F 3 Ulllllll Ul
t59 eeune > 0289 R OVL M IF 5 '11111111 Ul
f 58 002002 > 3E R OVL M RM 6 Ulllllll Ul
t57 002202 < 3E w OVL M WM 6 Ulllllll Ul
f 56 002003 > FF R OVL H RM 6 '11111111 Ul
tSS 002203 < FF w OVL M WM 6 '11111111 '11
154 002004) "" R OVL H RM 6 '11111111 '11
t53 002204 < 00 w OVL M WM 6 '11111111 '11
t52 002005) 00 R OVL M RH 6 Ulllllll Ul
151 eeJ2205 < 00 w OVL M WM 6 Ulllllll Ul
150 002006) FF R OVL M RM 6 Ulllllll Ul

This operator will cause the Trace Memory to be disassembled and
output to the controlling port (computer or terminal). If no range
argument is specified, the last instruction executed is disassem­
bled. The output of the DT operator in this instance has its line
feed suppressed. Thus, by repeating the operators Step and Disas­
semble Trace, a continuous Disassembly is formed ()STP;DT<return>).
Some information can't be disassembled because of qualifiers such
as TOT or TRC (within the Event Monitor System).

• To disassemble the last instruction executed:
)DT<return>

• To disassemble a range:
>DT(single value or range><return>

4-23

4.8.3

Figure 4-5.

The single or range values are sequence numbers where 0 is the num­
ber for the most recent instruction. Entering a single value will
disassemble that value and the previous page. A range disassembles
that range of sequence numbers.

•_To initiate a continuous Disassembly:
STP;DT(return>

NOTE

When using Display Register (DR) and Disassemble Trace
(DT) on the same line, enter DT first, then DR, as shown
in this example:

RBV;WAI;DT;DR<cr)

If you enter DR first, the DT command writes over the
last line of the register display.

Disassemble These two operators will scroll you through the disassembled Trace
Previous and Memory a page at a time. This is shown in Figure 4-5.
Following
Trace
DTB
DTF

• To disassemble the previous page:
)DTB(retarn>

• To disassemble the following page:
)DTF(retarn>

>Ort:
S£01t .1~H.:F. OPCODE "HEMOHIC OP~RAHD FIELDS eus'cYCLE Di1TA

0069 P~r.-~06o_801&6_T~2t
OOe~ 1000 e~OFOO ~av

0068 1003 EEOO~O ~ov

C06o lOC6 eroo:~ ~av

0065 1009 AS MOUS
00~.i, 100A 'F3 f.:Ef'Z
OC~.i, 100~ A4 MOVS

OOC.3 10CC
00':9 tote
00.:6 10 :"3

0:38100H
B90:?0:)
F:?

2oC:!>3E
200S>OO
200 a:· oo
2ooe:·FF
200DFF
ADD
P'IO'J
REf'H!

CXrOOOf
51,2000
01.2200
WORD PTR 2000)FFFO 2200{ffro

BYTE PTR
2202<3E 2003>FF 2203<FF
2205<00 2006>FF 220~<f F
2208(00 2009)00 2209<00
220B<FF 200C>OO 220C<OO
2~0E<FF 200F>F~ 220F<F~

AX.WORD PTR CBX-lOOJCDIJ
CXr0002

200'i.>Oo
2007>Ff
200A>Ff
2000:-00
20lti>OO

2111>Ff00

0 ... , IO' "'-· 1014 A7 C"PS wa~o PTR 2011>FF10 2211>FF10

2204<0~
2207<FI
220A<F"!
2200<01
2210<C•

OO:?!i 10 ~ "! Cl1600240~ RCL WO~D PTR D~ta_ward.O~ 2400>A002 2~00~004A

001? 1C:. ri c~ 1to ·Jo 04 EHTER 0040r04

Disassemble
17FE<OOOO FFFE>FFFF 17FC<FFFF FFFC)ffFF
17FA<FFFF FFFA>FFFF 17F!<Ffff 17f6<17FE
LOOPHE SHORT PG~_!086_101!6_T~~t Trace

Format

001~ 101E EOEO

When the question mark appears on the screen, you should key in a
question mark in return to find out the error message. Table 4-2
lists the errors that may occur by code and their messages as dis­
played on the CRT. If you need additional help, call Customer
Service for ES products.

I. "'­"+-"-"+

4.9 'l'HE MEMORY
DISASSEMBLER

If you are operating the Satellite Emulator under host system con­
trol, only two errors are likely to occur, assuming the host system
software has been fully debugged: Error 6, a checksum error and
Error 34, a read-after-write error. The host system can be set up
to return a question mark to the emulator and use the error code
number to consult its own table for further action.

The memory disassembler allows you to dump the contents of memory
and have it displayed or printed in an easy-to-read format similar
to a program listing.

NOTE:

You should be familiar with 8086/80186 assembly language
programming before reading this section. The informa­
tion presented here is an overview, which will provide
the necessary instructions when used in conjunction with
Intel documentation. You should have the iAPX 86, 88,
186 and 188 User's Manual Programmer's Reference.

4.9.1 Display This operator will cause memory to be disassembled and output to
Disasseabled the controlling port (computer or terminal). If no argument is
Memory specified, one page of disassembly is displayed, beginning at the
DIS last address when this operation was previously invoked.

Example
Using DIS

4 .10 THE LIRE
ASSEMBLER

4.10.1 Standard
Mnemonics

• To disassemble one page of memory beginning at the last address
when this operation was previously invoked:

>DIS(ret:urn>

• To disassemble one page of memory beginning at the specified
address:

>DIS(single value)(return>

• To disassemble a range of memory:
)DIS(range)(return>

• To continue disassembly one line at a time:
><space) (at the end of each line)

• To continue disassembly one page at a time:
><return> (at the end of each page}

The 8086/80186 Line Assembler allows you to enter and assemble
Intel mnemonic instructions into target memory. In addition to in­
structions, there are "Assembler Directives: to aid you in select­
ing memory addresses, using symbols, inserting numbers and text
strings into memory, etc. The Line Assembler gives you a powerful
software tool to facilitate in software patching, hardware/software
debug, developing small programs, writing hardware/software test
routines, etc.

All standard Intel 8086 and 80186 mnemonics are supported. These
are listed in the ASM86 Language Reference Manual.

4-25

4.10.2 Assembler
Directives

Example
Use of Assembler
Directives

The following assembler directives are supported:

DIRECTIVE

CSEG

ORG

END

DB

DW

PRE

EQU

L0, Ll. •• L9

"'symbol

<return)

$

THIS NEAR

THIS FAR

DESCRIPTION

Sets 64K byte code segment window (corre­
sponds to CS register).

Sets 64K byte off set into the code segment
window.

Exits Line Assembler to the command level.

Defines byte data.

Defines word data.

Toggles preview display mode.

Sets value for symbol (only valid with in­
stalled symbolic debug hardware) or local
symbol (L0-L9).

Print value of local symbol.

Print value of symbol (only valid with
installed symbolic debug hardware).

Disassemble one instruction at current
address.

Current line assembly offset address.

Current line assembly off set address.

Current line assembly segment and offset
address.

The key sequences for these assembler directives are shown in
example 5-6.

NOTE:

Lines shown in bold type with a <return> are user
entries; lines shown in regular type are the assembled
response.

•To set Code Segment window (64K-byte assembly window):
1012 >CSEG 004 .. H<return.>
1012 >

• To set line assembly origin within code segment window:
1012)ORG 38ACH<return.>
38AC >

4-26

4.10.3 Usage Notes
+ - * I

()

• To exit line assembly:
58FD)X(return>
**** END OF LINE ASSEMBLY ****
>

• To define constant byte data:
58FD >DB 1,2,3,4, "TEST'',f(return>
58FD 01 02 03 04 54 45 53 54 00
5906 >

• To define constant word data:
(Note: odd length text strings are padded with nulls)

58FD)DW l,2,3,4,"TEST",0<return>
58FD 0100 0200 0300 0400 4554 5453 0000
590B)

• To toggle to preview mode:
6590 >PRE (return>
6590 C6470234 MOV BYTE PTR [BX+2H],34H

• To toggle out of previous mode:
6590 C6470234 MOV BYTE PTR [BX+2H],34H)PRE(return>
6590 >

• To define/redefine local symbol or symbolic (if symbolic debug
hardware is installed)"

6590 >L3 EQU 7A44H(return>
6590 >

or if symbolic debug hardware is installed:

6590 > 'Unit EQU ~FDEOH(return>
6590 >

• To print local symbol:
756A >L3<return>
756A)L3 EQU 7A44H
756A >

•To print symbol (if symbolic debug hardware is installed):
756A)'Unit <return>
756A)'Unit EQU fDEOH
756A >

• To disassemble one instruction at current code segment and line
assembly offset address:

5D6A ><return>
5D0A 3306AD78 XOR AX,WORD PTR 78ADH
5DOE >

Plus, minus, asterisk, or slash are the only arithmetic operators
allowed in expressions. Note that only 16 bit arithmetic is
performed.

Parenthesis are allowed to group expressions.

4-27

" %

"""(bs)

HO QTY

4.10.4 Assemble
Line To
He11<>ry
ASM

Example
Use of ASM

Double quotes (") or percent signs (%) are used to delimit ASCII
strings. If you enclose the string in percent signs, you may not
use percent signs within the string, but any number of double
quotes may be used. If you enclose the string in double quotes,
you may not use double quotes within the string, but any number of
p~rcent signs may be used.

Upper-case strings are the default. The use of "'(backspace) will
allow entry of lower-case letters within a text string until you
enter a <space).

The number base used in the line assembler is the default base used
by the system, except when the base is explicitly specified (H, O,
Q, T, or Y).

H - Hexidecimal
0 - Octal
Q - Octal
T - Decimal
Y - Binary

Example operand addressing modes:

0A4H
WORD PTR 5634H
BYTE PTR 9DC4H
[SI]
[BX][SI]
[BX+SI]
[BX+S]
[BP+4]
[BX+DI+lS]
[-3*(23+4)+BX+SI]

Immediate addressing mode
Direct addressing mode
Direct addressing mode
Indexed addressing mode
Base indexed addressing mode
Base indexed addressing mode
Base Displacement addressing mode
Stack indexed addressing mode
Base displacement indexed
Base displacement indexed

This operator will cause the line assembler to be invoked. The key
sequence is shown in the following example. If no argument is
specified, line assembly will begin at the last address, when this
operation was previously invoked. To exit line assembly and return
to the command level, enter eiher END or X with the addressed
prompt displayed (as shown here).

• To start line assembly beginning at the last code segment and
line assembly address when this operation was previously invoked:

>ASM<return>
**** 8086/88/186/188 LINE ASSEMBLER VX.XLA ****

• To start line assembly beginning at the specified code segment
and line assembly offset address:

>ASM •c6AJ<return>
**** 8086/88/186/188 LINE ASSEMBLER VX.XLA ****

Example
Using Addresses

Example

• To terminate line assembly:

9876 >X<return>
**** END OF LINE ASSEMBLY ****
>

The following examples represent ways in which the line assembler
can be used.

>ASM l'•<return>
**** 8086/88/186/188 LINE ASSEMBLER VX.XLA ****

0100)CSEG s•••<return>
0100)MOV DX,8(return>
0100 BA0800 MOV DX,8
0103 8909 MOV WORD PTR [BX+DI],CX
0105)DEC DX(return>
0105 4A DEC DX
0106)JRE WORD PTR. l,3<return>
0106 75FB JNE WORD PTR 103
0108)X(return>
**** END OF LINE ASSEMBLY ****

Using Local Symbols)ASM I0tt<return>
**** 8086/88/186/188 LINE ASSEMBLER VX.XLA ****

0100)CSEG s•••<return>
0100)MOV DX,8(return>
0100 BA0800 MOV DX,8
0103)L5 MOV WORD PTR [BX+DI],CX(return>
0103 8909 L5 MOV WORD PTR [BX+DI],CK
0105)DEC DX(return>
0106).JNE WORD PTR L5(return>
0106 75FB JNE WORD PTR L5
01~8 >X<return>
**** END OF LINE ASSEMBLY ****

4-29

Example
Using Assembler
Directives

Example
Error Message
In Response To ?

Example
Using Symbols With
Symbolic Debug
Hardware Installed

>ASM<return>
**** 8086/88/186/188 LINE ASSEMBLER VX.XLA ****

0108)ORG $+l•ff<return>
ll08 >CSEG(return>
1108)CSEG 5000
1108 >L2 EQU 4<return>
1108)LJ EQO L5-$+2(return>
1108)Ll DB "TEST",f<return>
1108 54 45 53 54 00
110D >ORG 2~return>
2000)MOY SI, WORD PTR Ll(return>
2000 8B360811 MOV SI, WORD PTR Ll
2004)MOV DI,WORD PTlt LJ(return>
2004 8B3EFCEF MOV DI,WORD PTR L3
2008)HOV CX,4<return>
2008 890400 MOV CX,4
2008 >REP<return>
2008 F2
2009)MOV SB
2009 A4 MOV SB
200A >X<return>
**** END OF LINE ASSEMBLY ****
>

>ASH<return>
**** 8086/88/186/188 LINE ASSEMBLER VX.XLA ****

200D)""label JNZ WORD PTR lf34 (return>
?

>?
ERROR 119
ARGUMENT OUT OF RANGE

>ASM <return>
**** 8086/88/186/188 LINE ASSEMBLER VX.XLA ****

200D >~Z $+6(return>
2000 7404 JZ $+6
200F).IMP WORD PTR lf34(return>
200F FF263410 JMP WORD PTR 1034
2013)""label EQO 4•ff<return>
2013)""page table EQU 189f<return>
2013)""pt blink EQU 4(return>
2013)MOV-BX,'page table(return>
2013 BB9018 MOV-BX,page table
2016 >LEA BX,[BX+'pt blink-] (return>
2016 8DSF04 LEA BX,[BX+'pt blink]
2019 >X<return> -
**** END OF LINE ASSEMBLY ****
>

4-30

4.11 STATEMENT CONTROL You can save time and effort by using less keystrokes when you uti­
lize the Repeat and Macro functions. Your individual need for
these capabilities will appear as you identify sequences of com­
mands that you use repeatedly.

4.ll.l Repeat
eo.nand

Indefinite
Repeat

• The Repeat command repeats one or more commands a specified
number of times or indefinitely.

• The Macro capability allows you to define and save up to ten
macros, calling them out as necessary.

An asterisk (*) at the beginning of a command line repeats one or
more commands. (The asterisk must be the first character of the
input line.) If the asterisk is followed by an optional decimal
argument, you can specify the number of times to repeat the buffer
contents. A command having normal syntax succeeds this argument.
If the argument is zero, the buffer content is not executed.

• The repeat argument must be specified in decimal and cannot be a
variable

• There must be a space following the repeat argument if the first
character in the macro is a decimal digit

For example:

>*SSTP;DT

>* SSTP;DT

>* 5 STP;DT

In each of these three examples, the "STP; DT" command is repeated
five times. Note that if the slash key is typed after the above
example is input, the entire line is repeated, causing five more
"STP;DT" commands to be executed.

When the repeat3frgument is not specified, it is assumed to be
4,294,967,295 (2 -1). There are two ways to stop an indefinite
repeat.

First, you can abort a repeat by executing a reset (usually a CNTL
Z). However, note that this will also abort emulation if it is in
progress without saving the state of the CPU.

Second, there is a variable called "TST" that gets set to all l's
at the beginning of a repeat. Then it is tested for zero just
before a line is re-executed. If TST becomes zero, the buffer is
not executed and the repeat halts, returning control to the users
terminal.

If you want to single step and disassemble until you reach a
particular address, you could type, for example:

>*STP; DT; TST = IP-$C324

4-31

In this example, single stepping continues until the instruction
pointer equals OC324 Hex. If the IP does not reach OC234, you can
still use CNTL Z to stop the repeat.

4.11.2 Loop Counter When a repeat is initialized, just before execution begins, the
value of the repeat argument is assigned to a variable called
''LIM;" another variable called "IDX" is reset to zero. After each
execution "IDX" is incremented and then compared to "LIM;" if
"IDX" is greater than or equal to "LIM" the repeat is stopped.
Since 11 LlM11 and "IDX" are variables, they may be used in commands
or modified by the execution of the repeat.

4.11.3 Macros
Defining
Macros

Here are three examples:

)BASE IDX=lllO
>*3 IDX
110
l.ll
112

)M $1000
$001000 $34
$001001 $CO
$001002 $BF
$001003 $00

$001004 $21
$001000 $03
$001001 $02
$001002 $01
$001003 $00
$001004 $21

>*4 LIM-IDX-1

)M MMP-4
>*4

>

In the first example, "IDX" is printed showing that it is reset to
zero and incremented thereafter. The second example shows how a
block of memory can be initialized to a decrementing count ending
in zero. In the last repeat example, the initialized block of
memory is displayed.

If "IDX" is modified during a command repeat loop, it will still be
incremented before being compared to "LIM." This may cause the
loop to be exited one cycle earlier than expected.

You can define up to ten macros. They are referred to by decimal
numbers 0-9. The ten macros are stored in one buffer with #1 be­
ginning first then #2 ••• 119 with #0 being last.

If the sum of the lengths of all ten macros is greater than the
buffer length, then macros will be truncated in this order: 0, 9,
8, 7, 6, 5, 4, 3, 2, 1. (This truncation happens silently, without
any indication to you.)

Here are some macro definition examples:

> l=STP;DT
>-2=GDl=GDl+l
>-3= 1 · 2 - - ,_

4-32

Filling
The Buffer

Displaying
Macros

The syntax is as follows:

• the first character on the line must be the underscore
• the second character must be a decimal digit, a comma, or a

period
•- the third character on the line must be an equal sign

If the syntax is not correct, the line will be passed to the par­
ser, which will throw it out as illegal syntax. If the syntax is
correct, the remainder of the line after the equals and up to, but
not including the return, will replace the previous definition of
the macro. No syntax checking is done when a macro is defined,
syntax errors will only be detected when the macro is executed.

In the above example, macro #3 contains two nested macros. The
macros are not expanded when the macro is defined, but only when it
is executed, so the definition of macro #3 may change depending on
the content of macros #1 and #2.

If macros #1 to #8 are defined, and in this process used up all of
the space in the buffer, then an attempt to define macro #9 or #0
would result in those macros remaining null. Also, if the length
of any macro from #1 to #7 was increased after filling the buffer,
then macro #8 would be truncated as a result and if the increase
was more than the size of macro #8, then macro #8 would become null
and macro #7 would be truncated, and so on. There are no warnings
when truncation or nullification takes place, so if a number of
long macros are defined, the "MAC" command should be executed to
determine if the macros with the highest numbers are still intact.

The MAC command will display all of the macros that contain one or
more characters. Nested macros are not expanded by MAC. The
macros are displayed the way you typed them in and they are
identified by the same three character sequences that are used to
define the macros.

This is an example of macro definition:

> S='This 'is 'a 'macro
>-6=ABCDEFG
)-l=PCO;RET;STP;DT
>-2=PC0=$1000
>-3=M $2000+GDO
)-4=@(RR14+4)
>-6=

This is an example of macro display:

)MAC
l=PCO;RET;STP;DT

-2=PC0=$1000
-3=M $2000+GDO
=4=@(RR14+4)

S='This 'is 'a 'macro

4-33

Executing
Macros

Saving
Macros

You can execute macros #1 and #2 by a single keystroke when not in
memory mode. Whenever you type a comma as the first character on a
line, macro #1 is executed; if you type a period as the first char­
acter on a line, macro #2 is executed. You can execute any of the
ten macros by entering the underscore followed by a decimal number.

A macro may contain a portion of a command, or an entire command.
It cannot contain part of a token, i.e., the "RO" register cannot
be specified by taking the last character of one macro ("R") and
concatenating it with the first character of the next macro ("O").
If several macros each contain a single command, and you want to
execute them serially as a string of commands, use the semicolon to
separate the macro calls. For example:

> _l ;_2 ;_3

The semicolon can also be used within the macro at the beginning or
end to separate commands. For example:

l=STP;DT;
-2=DR

(This is called out by _1_2)

Since a macro may contain a portion of a command, you could do
something like the following example:

Macro definition:
) 4=GD1
)-5==$24
)-6==@4

Macro execution:
> 4 6
>-4-5

)GD1=@4
)GD1=$24

The right side shows how the macro is expanded when executed, the
contents of the two macros are concatenated to form a complete
command.

To load and save macros, enter the following:

)LD S<return)
>SAV S<return>

Please see the LD/SAV section, 3. 7. 2, for information about ini­
tializing the EEPROM.

4-34

Clearing
Macros

If you define a macro but only type a <return> following the equal
sign, the macro is defined as null. A null macro is not displayed
by the MAC command and when it is executed, no characters replace
the macro call argument.

To nullify a specific macro, enter:

-n=(return>

To nullify all macros, enter:

>CMC<return)

4-35

SECTIOR 5
PROGRAMMING THE
EVENT KONiroR. SYSTEM

5.1 INTRODUCTION

5.2 DISPLAYING AND CLEARING THE EVENT MONITOR SYSTEM

5.3 EVENT COMPAR.AroR.S
5.3.1 Address Comparators
5.3.2 Count Limit
5.3.3 Data Comparators
5.3.4 Status Comparators
5.3.5 Don't Cares

5.4 EVERT KONI10R SYSTEM ACTIONS
5.4.1 Force Special Interrupt

5.5 EVERT GR.OOPS

5.6 OPTIONAL LOGIC STATE ANALYZER
5.6.1 LSA Functions
5.6.2 Timing Strobe

5-1

5.1 INTRODUCTION The Event Monitor System is an expanded and enhanced breakpoint
system. It is used to detect specific events occurring in the tar­
get system and to perform actions when these events are detected.
Action is taken according to a set of statements. These statements
combine detection comparators and action items. When an event is
~etected, any of the following actions may occur:

• all-cycle trace
• single-cycle trace
• window-mode trace
• external triggering
• pass counting
• breakpoints (ranging from simple to highly complex)

In addition, the Logic State Analyzer option gives you access to
sixteen external logic signals that can be user-defined and con­
sidered in the Event Monitor System.

To set up the Event Monitor System, you must define event detectors
that will trigger an action list. The event detectors and the
action list are combined into WHEN/THEN statements, which become
active when running the target system. WHEN/THEN statements take
the following form:

WHE[N] <event) 'l'HE[N] <action>

Event detectors may be combined using AND, OR, and NOT. These are
like logical ANDs, ORs, and NOTs, except that they are not on a bit
level. A more complex example of a WHEN/THEN statement might look
like this:

• WHE[R] <event) AND (event) OR (event) THE[N] (action>, <action>,
(action>

There are four event groups, each group consisting of eight compar­
ators. The system can operate in only one group at a time. Each
WHEN/THEN statement must be defined for a specific group. If no
group is defined, the statement will default to group 1. WHEN/THEN
statements are used to link event groups together for sequential
operation.

Remember that the Event Monitor System must be set up prior to its
use. Comparator values and WHEN/THEN statements can be stored in
the EEPROM between emulation sessions. (Two users may store their
event system setups.)

NOTE

When the Event Monitor System is used in
conjunction with emulation, timing is not
affected - the emulator still operates in
real time.

The table on the next page summarizes the operators used with the
Event Monitor System. (These operators are also displayed online
on page 2 of the Help Menu.)

5-2

Table 5-1.

5.2

Event Monitor
System

DISPLAYING
ARD CLEARING
'l'HE EVENT
MONITOR
SYSTEM
DES
CES

SETITNG AND ClEAIUHG

OPERA.t'OR

CES
DES

··EVERT COMPARATORS ACl
(singly or in combinations AC2
comprise event detectors) DCl

DC2
Sl
S2
LSA

CTL

NAME

clear event system
display event system

address comparator 1
address comparator 2
data comparator 1
data comparator 2
status comparator 1
status comparator 2
Logic State Analyzer

comparator
count limit comparator

BITS
WIDE

24*
24*
16**
16**
16**
16**

16**
16

*single address or address range
**includes Don't Cares

ACTIONS
(What the Satellite
Emulator does in response
to the event detectors;
several actions may
be combined in a single
statement)

STATEMENT OPERATORS
(used to combine event
comparators and actions
into statements)

CNT
FSI
BRK
TGR

TRC
RCT
GRO
TOT
TOC

IRA
XRA
TO
LEN
WHEN
THEN
AND

count event
Force Special Interrupt
break emulation during RBK or RBV
trigger signal high for one

bus cycle
trace event
reset count limit
switch event group
toggle tracing
toggle counting

internal range
external range
to
length
when
then
and

OR or
NOT not
DC Don't Care
SIA Special Interrupt Address

Two operators are included for clearing the contents of the Event
Monitor System and displaying its contents.

• To clear all the WHEN/THEN statements:
)CES<return>

• To clear the WHEN/THEN statements for a single group:
)CES (group number)(return>

• To display all of the WHEN/THEN statements:
)DES(return>

• To display the comparators as well as the WHEN/THEN statements
for a given event group:

)DES (group nuaber)(return>

5-3

5.3 EVENT
COMPARA'!ORS

5.3.1 Address
Comparators
ACl
AC2

There are eight event comparators for each of the four event system
groups:

COMPARATOR TYPE (AMOUNT) DATA 1YPE
Address (2) Integer, Internal Range

External Range

Data (2) Integer, Don't Care

Status (2) Integer, Don't Care

Count Limit (1) Integer

Logic State Analyzer (1) Integer, Don't Care

Values contained in any other register in the system may be
assigned to the comparators, as long as the data types are com­
patible, for example:

Sl = MMS

The ES Event Detectors can be set up to resolve these three condi­
tions. Assume the byte in question is at $04001. This byte could
be accessed by the address $04001 or $04000. If the address $04001
is on the bus, then the byte is accessed. If the address $04000 is
on the bus, and the bus cycle is a 16-bit cycle, then the byte is
accessed. If the address $04000 is on the bus, and the bus cycle
is an 8-bit cycle, then the byte is not accessed. The following
setup will handle this condition;

AC! = $04000
AC2 = $04001
Sl = WRD
WHEN AC! AND Sl OR AC2 THEN BRK

AC! contains the even address. SI is the word bus cycle condition.
If both are true, the high or odd byte has been accessed. AC2 con­
tains the actual odd address. If it is true, then the byte is
always being accessed. If either is true (or), then the byte is
being accessed. If neither is true, then the byte is not being
accessed.

The address comparators match addresses occurring within the emula­
tion process against the 24-bit address bus. If a match is detect­
ed, the associated action occurs.

Address comparators can be a single address, an internal range, or
an external range.

The examples shown here illustrate the format for assigning address
comparators and ranges. When a single address is assigned to an
address comparator, such as AC! = $4766(return>, each time the
address $4766 appears on the address bus, the ACl comparator will
detect this "event" and will produce a true output (the action
associated with the ACl event detector).

5-4

IRA
TO
LEN

NOTE

ODD BOUNDARIES

The address comparators in the 80186 may need to be specially set
up because it is a 16-bit machine with a pref etch QUE and byte
based instructions. This leads to problems with breaking on in­
structions that occur on odd boundries. When the 80186 prefetches
the instruction, it outputs the even address. Both bytes are
fetched, and the actual (odd) address of the byte in question is
never seen. The traditional idea of setting the Event Detector to
the odd address will obviously not work. If the 80186 jumps to the
odd address, the odd address does appear on the bus, and that byte
alone is fetched. In this case, the traditional sense of setting
up the Event Detector does work. The final case is when the low
byte only is read. In this case, the even address appears on the
bus, but the odd byte is not read.

• To set an address comparator to a single address:
)ACl.3 = $06FF(return>

or
>AC2.1 = $3488(return>

or
)ACl = IP + $200 (return>

The assignment statement may include other operations, such as add­
ing an offset to one of the CPU registers (in this example the in­
struction pointer). This would cause the specified event to occur
upon an access $200 bytes ahead of the current instruction pointer.

• Ranges are set up with the IRA, XRA, TO, and LEN operators. To
set an address comparator to an internal range (all addresses
from n tom, including addresses n and m):

address comparator = IRA (address n) TO (address m><return>
)AC2 = IRA $3000 TO $3FFF(return>

or
address comparator = (address> LEN (length)(return>

)AC2 = $3000 LEH $1000(return>
or

address comparator = <address n) TO (address m><return)
)AC2 = $3000 TO $47FF(return>

Note that when no prefix is applied (IRA or XRA) the range is
assumed to be internal--IRA is implied.

• To set an address comparator to an external range (all addresses
not between n and m -- addresses lower than and including n, or
addresses higher than and including m):

address comparator = XRA (address n) TO (address m)(return>
)ACl = XRA $2000 TO $32FB (return>

or
>ACI = XRA $2000 LEN $32FA (return>

5-5

5.3.2

5.3.3

(!)

Count Liait
CTI..

•The inverse operator(!) can also be used:
)AC2 = !ACI

The above would define AC2 as the inverse of AC!. If AC! is
internal, AC2 would become its complementary external range and
vice versa.

Both internal and external ranges include endpoints as part of the
valid range. The LEN Operator provides an alternative to specify­
ing ranges. When a range is specified with a LEN expression, the
first value specified is the beginning address of the range and the
last value is the block size (the length specified with LEN, minus
one). Ranges can also be defined from other ranges with the in­
verse operator(!) shown in the first example.

NOTE

Addresses can also be assigned with the indirection
operator (@). See section 3.6 for an example.

Each event group has a count limit comparator, and the system has
one hardware counter. When entering RUN mode, the value from CTL.1
is automatically loaded into the hardware counter, and may be used
in event system WHEN/THEN statements, as shown here:

SI = RD + OVL
CTI.. = #200
WHE[N] SI 'l'HE[N] CNT
WBE[N) CTL mE(N] BRK

In order to load the value from another CTL register into the hard­
ware counter, a RCT (reset count) action must be specified in
conjunction with the switch to a new group. This new count limit
value may then be used in WHEN/THEN statements, as shown here:

ACI = $7800
CTL.2 = #IO
ACI.2 = $7840
WHE[N) ACI 'l'HE[N) RCT, GRO 2
2 WHE ACI l'HE[N] CllT
2 WHE[R] CTL THE[N] BRK

Event groups are discussed in more detail in Section S.S.

Data The data comparators are set like the address comparators. D a t a
Comparators comparators may be assigned integer values and may contain Don't

Care bits (see Section 5.3.S for a detailed explanation of Don't
Cares). Other registers, such as general purpose registers GD0-7
may be assigned to these comparators.

DCI
DC2

• To assign an integer
DCl = $F033

5-6

5.3.4

Table 5-1.

o To assign a Don't Care value
DC2.3 = $FFOO DC $FF

or
DC2.3 = $FFXX
DCI = GDO (general purpose data register)

Status The Satellite Emulator records a 16-bit status and control word in
Comparators .every Trace Memory cell. The bits in this word are a combination
Sl of 80186/80188-generated . signals and signals internal to the
S2 emulator.

The emulator has a set of "constant" registers that the Event
Monitor System can use as event comparators. When the status word
matches the status defined by Sl and/or S2, the comparator output
is true.

The following table lists the status constants. Example 5-2 shows
how to set Sl and S2.

NOTE

Do not set Sl or S2 to break on a type 2 interrupt.
This includes an NMI. You should set up the system to
break on the vector fetch or the starting address of
your interrupt routine or the emulator will not work
correctly.

Status Mnemonics
MNEMONIC

BYT
HLT
IAK
IF
IOA
MEM
NBC
NMI
OVL
QDl-6
QF
RD
RIO
RM
TAR
WIO
WM
WR
WRD
DMA

S-7

DESCRIPnOB

Byte Access
Halt Status
Interrupt Acknowledge
Instruction Fetch
IO Access
Memory Access
No Bus Cycle
NMI Cycle
Overlay Access
Que Depth (1-6)
Que Flush Cycle
Read
Read IO Status
Read Memory Status
Target Access
Write IO Status
Write Memory Status
Write
Word Access
DMA Cycle

Example 5-1.
Setting Status
Comparator

Example 5-2.
Examining the
Contents of the
Status Comparator

Figure 5-1.
Activated
Bit Values

X4
115 14 13 12

I NMI
ALT 0
STA 1
COD 2
DAT 3

1 2 3 4 5 6 7 8
Sl TAR + RD + BYT + MEM + HLT + QDl + QF
S2 OVL WR WRD IOA IAK QD2 NMI

NBC QD3 DMA
RIO QD4
RM QDS
WIO QD6
WM
IF

Note the eight-column format. A status comparator may be set with
a maximum of one constant from each of columns 2-7; and as many as
you want from column 8.

Remember that these are maximums. It is not necessary to use all
the possible constants.

• Some sample status comparators are:
)SI = TAR. + RD + IF + QP
)S2 = IOA + WR + DKA
)52 OYL + RIO

The addition sign is used as a connective between the constartt
mnemonics acting as a Boolean "AND."

To examine the contents of the status comparator, type Sl or S2.
Note, however, that when the stat us comparator name is keyed in,
the system responds with a value, rather than the mnemonic code
used to enter that value into the system. The table below is used
to translate the system response back into the mnemonic codes
entered originally.

X3 X2
11 10 9 8 7 6 5
X87
DMA

IAK 0 QDl 2
RIO 1 QD2 4
WIO = 2 QD3 6
HLT = 3 QD4 8
IF 4 QD5 A
RM 5 QD6 c
WM 6
NBC 7

Xl
4 3 2 1

MEM/ TAR/ RD/
F IOA OVL WR
IOA + OVL + WR + WRD

BYT
RD

RD+ BYT
TAR

TAR + BYT
TAR + RD =

TAR + RD + BYT =
MEM

MEM + BYT
MEM + RD

MEM + RD + BYT
MEM + TAR

0
BYT
WRD
0
1
2
3
4
5
6
7
8
9
A
B
c

MEM + TAR + BYT = D
MEM + TAR + RD E

MEM + TAR + RD + BYT F

*ROTE: The ALT, STA, COD and DAT statuses are used by 8086/8088 emulators only.

5-8

When you type Sl or S2, the system responds with a value with this
general format:

The hexadecimal values x1 , x
2

, X , x
4

represent the bit
patterns of the status comparator reJister. Those to the left
of the DC operator correspond to the activated bits (Os);
those to the right are the Don't Cares, or mask values (ls).

Examination of the mask values reveals which bits have been
activated, or enabled. A mask of FFFF shows that all the bits
are masked, while a mask of FF8F indicates that all bits
except 4, 5, and 6 have been masked. That is, 4, 5, and 6 are
the only bits that have been enabled.

The activated bit values, to the left of the DC operator,
correspond to the mnemonic entered into the comparator. These
mnemonic codes can be read directly off the table once the enabled
bit pattern has been determined. For example, suppose the system
responds with:

a) $ 000000100 DC OOOOF8FF

The mask value shows that bits 8, 9, and 10 have been enabled.
The 1 ip the X column to the left of the DC operator can be
matched with th~ 1 in the same column of the table, indicating
that the mnemonic entered was RIO.

b) $ 00000100 DC OOOOF8FB

Mask values: all except 2, 8, 9, and 10 are masked

Mnemonic values: the 1 in x
3

corresponds to RIO. The 0 in
column x

1
corresponds to some combination of IOA OVL, WR, and

WRD; since only bit 2 is activated, though, the mnemonic
entered must have been OVL.

Original entry: SI = RIO + OVL

c) $ 00000454 DC OOOOB8FB

Mask values: all bits except 2, 8, 9, 10, and 14 are masked.

Mnemonic values: since bit 14 is activated and a 4 shows in x4
NMI must have been entered; the 5 in x

3
corresponds to RM, and

the 4 in x
1

matches with TAR.

5-9

5.3.5 Don't Cares
DC
x

Original entry: SI = NMI + RM+ TAR

d) $ 00000009 DC OOOOFFE4

Mask values: all except 0, 1, 3, and 4 are masked.

Mnemonic values: the 0 in x
2

corresponds to QF in the table;
the 9 in X

1
indicates that bits 0, 1 & 3 are activated •

.L

Original entry: SI=QF + KEM + WR + BYT

e) $ 00001000 DC 000068FF

Mask values: bits 8, 9, 10, 12, 13 and 15 are enabled.

Mnemonic values: bit 14 is masked so X4 is used to indicate
which segment register was used to form the address during
this bus cycle. Since bit 12 is set, the chosen segment is
STA. Bit 11 of x

3
is masked which selects the processor

status and since x
3

is zero, IAK is the activated status.

Original Entry: SI = STA + IAK

The DC or X operators specify Don't Care bits. Bits specified to
the left are significant while those to the right are ignored
(Don't Cares). Where overlap occurs between significant and Don't
Care bit positions, the bits are treated as Don't Cares.

Don't Cares are used with the event detectors when it is desirable
to restrict monitoring to a subset of the sixteen data, status, and
LSA lines; for example, you may wish to monitor only the low-order
eight bi ts and ignore the high-order bits. This is done by
specifying the high-order bits as Don't Cares.

Address comparators and count limit comparators may not contain
Don't Cares.

• Don't Cares can be assigned in data, status, or LSA comparators.
An example of setting a data comparator and including a Don't
Care is:

)DCI = $0055 DC $FFOO<return>

The value of the Don't Care expression is assigned to DCl. The
first value in the statement ($0055) is the match value. The
comparator will be looking for this value on the data bus. The
second value ($FFOO) is the Don't Care mask. The comparator will
mask all bit positions containing ones.

5-10

5.4 EVENT MONITOR
SYSTEM ACTIONS

BRIC
TRC
CNT
TOT
TOC
R.CT
TGR.
GR.O

• Another method of entering Don't Cares and defining comparators
uses Xs to mark the Don't Cares:

)DCl = $4XX2<return>

The. result of this assignment is $4FF2 as significant and $0FFO
as Don't Cares.

• A sample LSA comparator would be:

)I.SA = #65532 DC %10

Note that the Don't Care value can be specified in different
bases. The emulator looks at #65532 and translates it, then at
%10 and translates it before dealing with the value as a whole.

The event detectors cause the Satellite Emulator to perform an ac­
tion whQn they are detected during emulation. The trace function
defaults to the ON state--tracing all bus cycles--unless TRC or TOT
is specified.

The most commonly used detectors are BREAK, TRACE, and COUNT.

• BRK (Break) causes emulation to halt.

• TRC (Trace) traces the event; the Trace Memory is ON unless TRC
or TOT is specified.

• CNT (Count) decrements the pass counter on the occurence of a
specified event. RCT resets this counter.

• TOT (Toggle Trace) allows windowing. By identifying a starting
event and ending event you can toggle the trace from ON to OFF or
OFF to ON.

• TOC (Toggle Count) allows you to window the pass counter. By
identifying a starting and ending event, you can toggle the
counter from ON to OFF or from OFF to ON.

• RCT (Reset Counter) resets the pass counter to the specified
count. To load the counter, see Section 5.3.2, Count Limit.

• TGR (trigger) causes the trigger output on the LSA Pod Assembly
and BNC connector to be high for the next cycle. (LSA is
discussed in detail in the next section. For BNC trigger
information, see the Timing Strobe, Section 5.6.2.)

• GRO (Group) causes the system to switch to another event group.
(Event groups are discussed in more detail in Section 5.5)

5-11

Example 5-3.
Types of Breakpoints

The order in which actions are specified in a WHEN/THEN statement
is not critical except in two cases:

• If CNT and RCT are both specified for the same event, the
resulting action is RCT.

•If both CNT and TOC are specified for one event, the second
action specified will be performed.

To perform both TRC and TOT or CNT and TOT functions, each function
should be in a separate group.

Breakpoints range from very simple to highly complex. A simple
breakpoint would be to break emulation when a particular address in
the target program is accessed. For example, you could instruct
.the emulator to wait for the CPU .to access a particular instruction
in a program and to break emulation when the access occurs, as
shown here. This type of breakpoint is useful for running the
program until it reaches the code module or subroutine that you
want to debug.

• To halt emulation when address
)WHE[N] ACI 'DIE[N] BRK
>ACl = $3000

$3000

After setting this and using RBK (run with breakpoints), the
program will execute until an access of any kind occurs at
address $3000.

Each of the following examples adds a new feature or level of
complexity to the WHEN/THEN statements shown here. Remember that
the Event Monitor System can be used for many possible combinations
of events and actions to suit your own needs. These examples
illustrate only a small percentage of the possibilities the system
is capable of.

• To halt at a code module with multiple entry points
>WRE[N] ACI 'DIE[N] Bil
>ACl = $3000 TO $32FC

The same WHEN/THEN statement is used, but ACl is now defined as a
range

• To save only the bus cycles jou want to view
)WRE[N] ACI 'IHE[N] TRC
)ACI $3000 TO $32FC

In this case, you do not have to specify a breakpoint; only the
bus cycles occuring in the range ACl will be traced.

5-12

5.4.I Force
Special
Interrupt
FSI
SIA

• To use the pass counter
>WHE[N] ACI l'HE[lf] me, ClfT
)WHE[N] CTL THE[N] BRK
)ACI = $3000 TO $32FC
)CTL = $A

In this example, each bus cycle occurring in the address range
.$3000 to $32FC will be stored in trace memory and cause the pass
counter to be decremented. When ten cycles (OA

6
) have occurred,

emulation will be broken. 1

• To stop program execution when a specific data pattern is written
to memory at a certain address

)WHE[N] ACI AND DCI AND Sl THE[lf] BRK
)ACI = $3000 (address comparator)
)DCI = $55AA (data comparator)
)SI = WR. (status comparator set to write)

When conditions AC!, DC! and Sl are met simultaneously, the
emulator will break.

• To stop program execution when one pattern appears at either of
two addresses during a write cycle

)WHE[N] ACI ARD DC! AND SI OR AC2 AND DCI AND SI THE[lf] BRK

• To set two conditions for a breakpoint

>WHE[N] ACI AND DCI AND SI THE[lf] BRK
)WHE[N] AC2 ARD DC2 ARD SI 1.'HE[N] BRK

In some of the examples shown AC! was used; however, AC2 could also
have been used.

The Force Special Interrupt feature allows your program to jump to
any address (for instance, a particular subroutine) when a speci­
fied event is detected. This address is set by assigning a value
to Special Interrupt Address (SIA).

The user program is interrupted by the Event Monitor System when
the FSI event is detected, and program execution will begin at the
SIA. The routine must terminate with an "Interrupt Return" (IRET)
instruction to properly return to the interrupted routine. The
message FSI ACTIVE will be printed when an FSI occurs.

NOTE

When using the Event System FSI action, some internal
cycles are traced immediately preceeding the jump to the
SIA. This occurs because the cycles are not purged from
trace. If they were purged, the FSis would occur more
slowly which is undesirable, and the disassembler would
not be able to disassemble the code.

5-13

The FSI feature is heipful for inserting a quick patch in ROM code
or to terminate a process requiring a careful termination routine.
Only one SIA address can be set at a time.

The keystroke sequence for setting and clearing the Force Special
Interrupt is shown in the next example. The address argument is
the address of the interrupt service routine.

• To set the Force Special Interrupt address:
)SIA = (address)(return>

• To force a special interrupt

(A sample use for this would be to insert a code module that you
did not include in a linked program that is already compiled and
loaded for debugginga)

)WHEll ACl TBElf FSI
)WHEN AC2 THEN FSI
)SIA = $F2DO
)ACI = $302C
)AC2 = $4010

In this example, the program will execute normally until address
$302C or $40_10 is reached. When one of these addresses occurs,
emulation will be halted. Address $302C (or $4012) will be pushed
onto the CPU stack as the return address. The program counter will
be set to the value specified in SIA ($F2DO), and the CPU will
begin executing the program at the new address. To return to the
original program at the end of the patch, execute an "Interrupt
Return" (IRET) instruction (this will vary from processor to
processor) and the CPU will unstack the pushed program counter
($302E or $4012 in this example) and continue running from where it
left off.

FSI is not enabled during single step.

5-14

5.5 EVERT GROUPS
GR.O

Example 5-4.
Sample Valid WHEN/
THEN Statements

The Satellite Emulator is capable of having up to four groups of
event detectors defined at one time, analogous to "event states."
This is done by adding the suffix .n (n = 1 through 4) to the event
comparators; for example, ACl can be ACl.l, ACl.2, DC2 can be
DC2.4, etc. These groups are defined by placing a number preceding
the WHEN/THEN statement or by appending a group number to the event
detectors. The following examples would both define an event for
Group 2:

2 WHE[N] SI AND LSA TBE[R] BRK

WHE(N] Sl.2 AllD LSA.2 'l'BE[N] BRIC

Within one WHEN/THEN statement, only one group of events can be
dealt with at one time -- the system can only be in one state at a
time. The group operator (GRO) is used to switch the Satellite
Emulator to a different event group in response to the event
detector. If no group number is assigned, the system will default
to group 1.

• Possible Event Groups:*
Group 1 =ACl.l, AC2.1, DCI.1, DC2.1, Sl.l, s2.1, LSA.l, CTL.l
Group 2 =ACI.2, AC2.2, DCI.2, DC2.2, Sl.2, s2.2, LSA.2, CTI...2
Group 3 =ACI.3, AC2.3, DCI.3, DC2.3, Sl.3, S2.3, LSA.3, CTL.3
Group 4 =ACI.4, AC2.4, DCI.4, DC2.4, Sl.4, S2.4, LSA.4, CTL.4

* Any valid combination of comparators can be used but all must be
from the same event group. Event groups are signified by adding
.n (1, 2, 3, or 4) to the comparator as above.

• Simple WHEN/THEN Statement (no event group specified, defaults to
group 1):

WHE[N] (event> THE[R] (action>
any co.parator or
valid combination
formed with AND, OR,
or NOT; must be fro•
saae event group

• Event Group WHEN/THEN Statement:
X WHE[N] (event) 1RE[N] (action>
X = 1, 2, 3, or 4

• Event comparators are assumed to be ACl.2 and AC2.2
)2 WHE[N] ACl OR AC2 1HE[R] Bil, 'l'GR(return>

• WHEN/THEN clause assumed to be from group 3.
)WBE[N] ROT ACI.3 ARD NOT DCI.3 1RE[N] BRK, RCT, D.C(return>

• System defaults to group 1 when no group is specified.
>WBE[N] DCI and ACl tBE[N] FSl(return>

5-15

5.6 OPTIOllAL LOGIC
STATE ANALTZER
LSA

5.6.I LSA
Functions

• Group 4 comparators.
)4 WBE[N) AC2 tBE[N] CNT(return>

• To use more than one event group

.)WHE[N) ACI AND SI THE[N] CNT
)WllE[N] CTL THE[N) RCT, GROUP 2
>2 WHE[N) ACI ARD SI 1.'BE(N] 'l'B.C, CNT
)2 WHE[N] CTL THE[N] BRIC.
)ACI.I = $40IO; ACl.2 = $4011
>CTL.l = 3; CTL.2 = $14 (20 decillal)
)SI.I = WR; Sl.2 = RD

This example could be used to monitor the activity of an I/O port
after the port had been initialized. When ACl has been accessed by
three write cycles, the counter will be reset and the event monitor
will transfer to group 2. Then twenty read cycles will be traced.
When count limit is reached the event monitor will break halting
emulation.

The Logic State Analyzer option assembly includes a pod, cable, and
probe clips. It provides you with access to external logic signals
that can be fed directly into the trace and break card of the
emulator. This data is qualified and clocked with other trace data
by the Event Monitor System. (Trace data is displayed by using the
DRT command.)

The Logic State Analyzer is used for many applications including:

• debugging data and address lines on the other side of the CPU
buffer

• debugging decode lines

• keeping track of memory management

• debugging I/O

• address and chip select decoding

The LSA comparator is assigned with an assignment statement, just
as the address comparators are. It is 16-bits wide; Don't Care
bits are permissible.

• To monitor a specific activity outside the microprocessor

This example will turn on trace when an activity occurs and turn
off the trace when the activity is terminated. The two event
groups are required to specify the on and off conditions.

)WHEN LSA THEN TOT, GRO[UP]2
)2 WllD LSA 'l'BER BRIC
)LSA.l = $0000 DC $FFFE
)LSA.2 = $0001 DC $FFFE

5-16

5.6.2

CPU State
CPU Clock

BCR

Timing
Strobe

Bus Cycle
Request
Event
TGR Output
Tl
T2
T3
T4

This example waits for the logic state analyzer, Bit 0 to go low
and then uses the toggle trace command (TOT) to turn on trace
memory, and GRO[UP]2 to switch groups. In group 2 all bus cycles
are traced until LSA pod Bit 0 goes high. Then emulation is
broken.

The ES uses a bus request signal (shown in the figure 5-2.) to gen­
erate a trigger which is sent to the LSA pod and to the BNC connec­
t or on the rear panel. The trigger is a low-going-high signal for
approximately one bus cycle and is generated approximately 70 ns
after an event.

If you do not have the LSA pod, you can still take advantage of the
trigger through the BNC connector for use with signature analysis
equipment, a logic analyzer, or an oscilloscope:

• With an oscilloscope, the trigger could be used to flag a loop or
I/O routine.

• With a signature analyzer, you can use the trigger to provide
start and stop pulses, from the LSA pod or the BNC connector.

Another use for the trigger would be to connect two emulators,
using the signal from the first to trigger a break in the second
emulator. The Event Monitor System would be programmed as shown:

• Emulator 1: WHE[N] <event) 'l'HE[N] 'l'GR

• Emulator 2: WHE[N] LSA THE[N] BRK

CFU State Tl l T2 T3 T4

cro Clock

I I Bus Lie OCR

LI Request

Event
I

-1

5-17

SECTION 6
INTER.FACIHG AND COMMIJifICATIONS

6.1 INTRODUCTION

6.2 SERIAL DATA REQUIREMENTS

6.3 SETI'ING SYSTEM CONTROL
6.3.1 Terminal Control
6.3.2 Computer Control
6.3.3 Transparent Mode

6.4 DATA TRANSFER AND MANIPULATION
6.4.1 Upload and Download
6.4.2 Verify

6-1

6 .1 INTRODUCTION

6.2 SERIAL DATA
REQUIREMENTS

This section gives information necessary for interfacing and
communication between the Satellite Emulator and other units in an
emulation system. Information includes:

• serial data requirements

• setting system control

• data transfer and verification

Specifications for the serial data formats are located in Appendix
A.

The Satellite Emulator is compatible with RS232C standard pin
conventions and signaling levels (given in section 2.3.3).

The standard software transmits and receives ASCII characters
requiring seven-bit representation. One stop bit is recommended
for most uses; however, some data terminals require two for proper
operation.

The format of a serial word is shown in Figure 6-1. When no data
is being transmitted, the Serial Data Out pin will be at the 12
volt level (marking). When the Satellite Emulator sends a
character, there will always be a start bit, followed by 7 or 8
data bits, and 1 or 2 stop bits. The number of data bits and stop
bits are specified by command, described in the operation section
for the microprocessor you are using.

The Satellite Emulator sends and checks parity according to system
set-up parameters.

Two additional signals used by the emulator are the Request to Send
(pin 4) output and the Clear to Send (pin 5) input. The software
uses these signals to coordinate data transfer. When the emulator
is ready to begin receiving data, it changes the Request to Send
line from low to high and awaits data transmission. When it has
finished receiving data, it returns the Request to Send line to the
low state. When the emulator is ready to send a character, the
software tests the condition of the Clear to Send line. When used
in conjunction with XON and XOFF, transmission of the character is
provided only if Clear to Send is in the high state; the character
is held if the signal is in the low state. Thus, a receiving unit
may control the transfer of data by taking the Clear to Send line
high when more data is desired and low when not ready for data.
The ASCII control characters, XON and XOFF, are recognized by the
emulator.

6-2

=12V START DO 01 02 03 04 DS 06 07 STOP START DO

~=J==J==r==L==c=J==r==~-~~
I I
I t I t = time of one data element or baud

Figure 6-1.
Format of a Serial Word

6.3 SETI'IHG SYSTEM
CONTROL

6.3.1 Terminal
Control
TCT

6.3.2 Computer
Control
CCT

The Satellite Emulator can operate under CRT terminal or host
computer control, or can .become transparent, allowing the CRT
terminal to communicate directly with a host computer.

This operator is entered from a host system interfaced through the
computer port, only when the Satellite Emulator is in the host
system control mode. Control is transferred to the CRT terminal
and away from the host system. This overrides the setting of the
interface parameter switch.

This operator, analogous to the Terminal Control operator, is
entered from a CRT terminal interfaced through the terminal port,
only when the emulator is being controlled via a CRT terminal.
Control is transferred to a host system interfaced through the
computer port. This overrides the setting of the interface
parameter switch.

There are four characteristics to remember about CCT.

• First, the emulator will echo most of the characteristics sent to
it, so the computer can use this feature to check the data
transmission.

• Second, when the host sends a RETURN, the emulator begins
processing the comm.and line. New lines generally begin with
RETURN LINEFEED NULL NULL.

6-3

6.3.3 Transparent
Mode
l'KA

Example 6-1.
Terminal Control,
Computer Control and
Transparent Mode

• Thi rd, the host must be able to handle incoming data at high
rates as the emulator will be sending at 960 characters/ second
(9600 baud); the host should be able to send XON/XOFF to the
emulator.

• Fourth, UPL (upload) and DNL (download) expect data from the same
port whether you are using TCT or CCT: if you are downloading,

·the emulator always expects data to come from the host, and if
you are uploading, data is always sent to the host.

NOTE:

If you execute CCT in error, turn the
emulator off, then on again.

This operator instructs the emulator to become transparent,
allowing the CRT terminal interfaced through the terminal port to
communicate directly with a host system interfaced through the
computer port. TRA can be entered while in either Terminal or
Computer Control modes.

The Terminal Control and Computer Control operators are used to
switch control back and forth between a host system and CRT
terminal. The Transparent operator allows you to bypass the
Satellite Emulator and communicate directly between your CRT
terminal and host system. The emulator acts only as an interface.
In this mode the emulator can buffer up to 64 characters for each
port and can operate the ports at independent baud rates.

Refer to the system configuration shown in Figure 6-2. The initial
physical connection is made according to the procedures outlined in
Section 2. Original control is set with the interface parameter
switch.

With the set-up complete, we will start with the CRT terminal
controlling the Satellite Emulator. This is done by having the
interface parameter switch in any position but those that are for
computer control (positions 3 and 4 are for computer control).

o If you now want to switch control to the host system, despite the
fact that the switch is positioned for terminal control, you will
enter:

>CCT<return>

o To go back to terminal control, enter at the computer port:
)TCT(return>

o If you want to communicate directly between the CRT terminal and
the host system, enter from the controlling port:

)'l.'RA(return>

6-4

Figure 6-2.
System Control

6.4 DATA TRANSFER ARD
MAHIPULAnON

6.4.1 Upload and
Download
UPL
DNL

TCT2 TRA3 CCT1
- TRA3

HOST
COMPUTER EMULATOR

CRT
TERMINAL

1. CC T switches control to computer.
2. TCT switches control to CRT terminal.
3. TRA (entered from controlling port) allows communication directly between CRT terminal

and computer.

These commands are used for moving data in and out of the emulator
and manipulating data within. Formats are described in Appendix A.
The commands are:

• Upload - UPL
• Download - DNL
• Verify or compare - VFY
• Upload Symbols - UPS

Upload and download operations initiate routines to load the target
system memory and/or RAM Overlay Memory with data from a host
system, and to dump data from the target system address space to a
host system and/or RAM Overlay Memory.

The Satellite Emulator will download in either a software handshake
or no-handshake mode. While the no-handshake mode is faster and
very simple, the handshake mode offers verification that data is
received correctly and allows resending of data that is received
bad.

In an Upload operation, data is transferred from the emulator to a
host computer or other peripheral interfaced to the Satellite
Emulator computer port. A Download, conversely, moves data from a
host computer to the emulator.

The following steps are necessary to Upload data from the emulator
to a host computer or other peripheral.

6-5

• Type TRA <return). This puts the ES in the transparency mode for
entering a command line to the host computer and prepares it to
receive a file. Note that this TRA command is not necessary when
using and uploading to a hard copy printer. Do not enter a
(return> at the end of the line. Instead, type in the two­
character transparency escape code. This code returns the
emµlator to its normal communication status with the user and

· causes the emulator to send the host computer a "command line
terminator." The host computer (or other peripheral) should now
be ready to accept data.

• Enter the Upload command for the desired range or the Upload
Symbols command (see Example 6-2. Upload and Download). The
emulator will now dump data to the computer port in the download
format specified in the Set Menu. Refer to Table 3-5.

Typing the DNL command at the terminal causes two things to happen.
First the emulator readies itself to receive data; then it goes
into a "transparent" mode (like the TRA operator described
previously, though accomplished here without the TRA command),
allowing the CRT terminal to communicate directly with the host
computer. This is necessary to allow you to enter the command line
necessary to tell the host computer to send data to the emulator.
Do not enter a <return) at the end of this line. Instead, type in
the two-character transparency escape code. As data records are
received, they.are displayed on the CRT terminal. The command line
terminator, transparency escape code, and the serial data format
are user-defined with the Set-Up command, described in Section 3.

If the DNL operator is issued by the host computer (in computer
control mode), the process is somewhat different. The emulator
will not go into transparent mode and data records will not be
displayed on the terminal. However, after successful reception and
storage of every data record, the emulator will respond to the host
with an ASCII ACK (6) character. Thus, to monitor the download
process, the host should send one record, then wait for a response.
If the response is the ACK, the host should continue with the next
data record.

If the response is not the ACK, the emulator will have detected an
error or End of File condition. In the case of the EOF, the
emulator will return the normal prompt because the data transfer is
complete.

If the Satellite Emulator has detected an error, it will respond
with a <return), line feed, several spaces, a ?, and a BEL. Then
it will revert to the normal prompt on a new line. The host can
then find the cause of the error by sending a ? to the Satellite
Emulator.

There are only two errors that can occur during a download. There
may be a checksum error in the data record. In this case, the DNL
process is aborted before any data from that record is stored to
memory. The second type of error is a read-after-write verify

6-6

Example 6-2.
Upload and Download

6.4.2 Verify
VFY

Example 6-3.
Verify

error. Every byte in a data record is verified after it is stored.
If an error occurs, the DNL process is aborted but some of the data
in the record has obviously been stored to memory.

• Upload:
)UPL(range arguaent)(return>
)UPS(return>

• Download:
)DNL(return>
><transparent)(cOlllllB.Ilds to computer)(escape code)

This terminates the Transparent mode and the Download occurs.
Note that the escape code is created with the Set-Up command
described in Section 2.

The Verify operator (VFY) compares data received at the computer
port with memory. Any differences are displayed. The operator
interaction required is similar to the Download command. The VFY
command does not display incoming data records. See the following
example.

• The format for Verify operator is:
>VFY<return>

• Any differences will be displayed as:
address = XX NOT YY

In the above example, the address is the address where the
misverify occurred. XX denotes the actual data present at that
location. YY denotes what should be at that location.

6-7

SECTION 7
DIAGNOSTIC FURCTIOIIS

7.1 INTRODUCTION

7.2 RAM DIAGNOSTICS
7.2.1 SF IFO, <RANGE>
7.2.2 SF ti 1 , <RANGE)
7.2.3 SF 112, <RANGE)
7.2.4 SF 113, <RANGE>

7.3 SCOPE LOOPS
7.3.1 SF 114, <ADDR)(DATA>
7.3.2 SF IF 5 , <ADDR>
7.3.3 SF 116, <ADDR> <DATA>
7.3.4 SF 117, (ADDR), <PAT-1), <PAT-2)
7.3.5 SF 118, <ADDR), (PAT)
7.3.6 SF #9, <ADDR), (DATA>
7.3.7 SF 1110, (RANGE)
7.3.8 SF 1111, <ADDR)
7.3.9 SF IF12, <RANGE>
7.3.10 SF 1113, <return>

7.4 CLOCK AND CRC

1.5 BUS

7.6 COM ARD DIA

7-1

7 .1 INTRODUCTION

7.2 RAM TESTS

7.2.1 SF 0,
<KARGE>
<RETURN>

7.2.2 SF 1,
(RAllGE>
(RETURN)

7.2.3 SF 2,
<RANCE>
(RE'11JRM)

7.2.4 SF 3,
<RANGE>
<RETURN>

7.3 SCOPE LOOPS
(MEMORY, I/O)

The Special Functions are a group of utility routines and diagnos­
tic tests invoked with the Special Function (SF) operator. These
routines are used for debugging hardware or accommodating unusual
hardware conditions.

These routines are ""canned" RAM tests that can be run on the target
or RAM Overlay system. The tests are executed in byte mode.

This routine involves three steps. First, the RAM test consists
of writing a zero to the test cell and then reading the cell to see
if a zero exists. Next, a one is used for the test pattern
followed by $3, $7, $F, $1F, $3F, ••• , $FFFF, $FFFE, $FFFC, ••• ,
$COOO, $8000. Finally if a failure is detected, the problem
address, correct data and faulty data are displayed. This routine
can be aborted by resetting the emulator but will finish after a
single pass.

Executes a complete RAM test over the words within the specified
range. The test was derived from a study by Nair, Thatte and
Abraham entitled "Efficient Algorithms for Testing Semiconductor
Random-Access Memories: (IEEE Transactions on Computers, vol. c-27,
no. 6 June 1978). The test corresponds to their algorithm "A" and
is more efficient than standard "GALPAT" type tests. If an error
is detected by this test, the associated address, good data, bad
data, and test sequence number are displayed. The sequence number
corresponds exactly to the sequence numbers suggested in the
article, but if you do not have the article, the above information
should be sufficient. This is a single-pass test that can be
aborted by resetting the emulator.

Continuously executes the test described for "SF 110" above. While
executing the test, a pass count is maintained and displayed on the
screen. The count is updated by rewriting the display line without
using a "linefeed." Thus, intermittent errors will not be pushed
off the screen by the pass count. You must reset the emulator to
terminate this test.

Executes the RAM test described in "SF lfl" above, continuously over
the words in <RANGE). A pass counter is displayed as described in
"SF IF2." You must reset the emulator to terminate this test.

Scope loops are diagnostic routines built into emulator firmware.
The uses for these special functions range from locating stuck
address, data, status or control lines to generating signatures
using common signature analysis equipment.

The routines for Scope Loops are executed at maximum speed. This
short cycle time allows the hardware engineer to easily view the
timing of pertinent signals in the target system without using a
storage type oscilloscope. All of these routines must be
terminated by resetting the emulator. The scope loops can be
executed in byte or word data lengths. The data length will be the
global default.

7-2

Memo
SF 4

SF 5

SF 6

SF 7

SF 8

SF 9

SF 10

SF 11

SF 12

As with the RAM tests, these scope loops access the memory space
defined by the last setting of MMS (memory mode status). The
following paragraphs describe each of the different scope loops.

NOTE

All special functions for the 80188 are
executed in BYM (byte mode).

MEMORY AND I/O SCOPE LOOPS

Parameters Re uired
<addr)<data><return>

25 B/W <addr><return>

26 B/W <addr><data><return>

27 B/W <addr)(pat)(return>

28 B/W <addr)(pat><return>

29 B/W <addr)(data><return)

30 B/W <range><return>

31 B/W (addr)(data)(return)

32 B/W <range)(return>

Descri tion
Writes alternating zeroes and user specified
data to the target system.

Executes "reads" into the target system.
(Peeks)

Executes "writes" into the target system.
(Pokes)

Writes pattern to the target system, then
complement pattern.

Writes the pattern to the target system but
the pattern is rotated one bit left after
each "write."

Writes the supplied data to the target system
and then reads it from the target system at
the same address. Data read from the target
system is ignored by the ES.

Forces NOPs to the target system.

Writes an incrementing count value to a
constant address.

Read data over entire range.

7.4 CLOCK AND CRC
CU{ <REl1JRN)
CRC <K.Emu>
CRE/CRO (RAIIGE)
(RETOU)

The CLK and CRC operators will be useful during diagnostic testing.
CLK reads the target system clock and returns the value in KHz,
accurate to 1 to 2 KHz.

CRC computes a cyclic redundancy check over an address range. It
will be useful for checking if a block of memory has changed. The
key sequences are shown in this example:

If your code is split into two PROMS with one even and the other
one odd, the CRE/CRO operators allow you to do a cyclic redundancy
check over each PROM.

*ROTE
For Diagnostic purposes CRC will function for byte
or word. Also, the CRC value may be calculated over
only odd addresses or ortly even addresses.

7-3

Example 7-1.
Ciock and CRC

7.5 Bus
BUS

7.6 COM ARD DIA
COM

• To read the target system clock:
)CLK.<return>

• To compute the CRC:
)CRC (address range)(return>

• To calculate a CRC over even bytes only:
)CRE (address range><return>

• To calculate a CRC over odd bytes only:
)CRO (address range)(return>

BUS displays the status of several status lines. For example:

o)BUS

NMI
0

ARDY
0

SRDY
0

INTO
0

INTI
0

INT2/INTAO
0

INT3/INTA1
0

TEST
0

(In this example, "O" indicates a no-fault condition; a fault
condition would be indicated by "l)."

COM allows you to communicate directly with a program running in
the target system. COM allows the simulation of communication
between the target system program and a serial interface (usually
the ES control terminal, sometimes another computer attached to the
ES).

The routine is invoked with a simple 32-bit argument, the address
of a 2-byte "port" in target memory.

• The first byte is for characters coming from the target P.rogram.
the MSB of this byte is used to indicate "new character" to the
ES. If the bit is set, this routine will read the character,
display it on the controlling port, and clear the target memory
location (as a handshake).

• The second byte is the write byte. If a character arrives from
the controlling port, the routine will place it in the target
memory with the MSB set. The routine will terminate only when
the terminal transparent mode escape sequence is detected. The
routine does not check to see if the last character written to
the target system was accepted.

As examining target memory requires that emulation be halted for
about 180 microseconds, COM will wait 1/2 second between target
system reads. However, if a character is placed in the output port
byte by the target system program, COM will collect the character,
reset the MSB and re-examine the port as soon as the character has
been put into the output UART buffer. COM will also immediately
examine the output port whenever it places a character in the input·
port.

7-4

DIA DIA allows you to display, on your controlling device, a string of
characters which are stored in target memory. This routine is
invoked with a simple 32-bit argument.

•·The 8 MSB's of the argument contain the expected stop characters.

e.Th€ lower 24-bits contain the address of the first character of
the message.

DIA begins with a RETURN or a line feed. The routine then reads
one byte at a time from your target system, starting with the
address you specified and working towards high memory. The
characters are displayed on the controlling port (usually the ES
controlling CRT).

The DIA routine is completed when the character read matches the
stop character.

7-5

SECnON 8
lfAIR'TENANCE ABD TR.OUBLESHOOTIHG

8 .1 MAINTENANCE
8.1.1 Cables
8.1.2 Probe Tip Assembly

8.2 TROUBLESHOOTING

8.3 PARTS LIST

8-1

8. l MAIRTENAHCE

8.1.1 cables

8.2 TROUBLESHOOTING

Maintenance of the ES-Series Satellite Emulator has been minimized
by the extensive use of solid-state components throughout the
instrument.

The interconnect cables are the most vulnerable part of the instru­
ment du€ to constant flexing during insertion and extraction.
First, inspect the cables for any obvious damage, such as cuts,
breaks, or tears. Even if you have thoroughly inspected the cables
and cannot find any damage, there may be broken wires within the
cables (usually located close to the ends). A broken wire within
the cable will cause the instrument to run erractically or inter­
mittently if the cables are flexed during the "RUN" mode. By
swapping the cables in question with a known good set of cables,
you can easily isolate the faulty cable. The parts list at the end
of this section contains cable part numbers if you need to order
replacements.

Your emulator is equipped with diagnostic test routines. The
diagnostic programs are described in Section 7; if you need to
perform any specific test, you should refer to the description in
Section 7. Before starting troubleshooting procedures, be sure
that interconnect cables are installed properly in a compatible
target system, with power applied to both the target system and the
emulator.

The most common problems encountered are listed in Table 8-1. We
recommend that you contact Customer Service for ES Emulators at
Applied Microsystems Corporation if you experience any problems
that do not fall within this range of items. Before you call our
service department, display your software revision number by
typing:

REV
You will be asked for this information when you call.

>REV
Thu Oct 11 13:44:32 PDT 1984
Tue Oct 16 17:11:50 PDT 1984

ESL 2.10
FW 3.6

NOTE:

We do not recommend a component-level repair in
the field, unless performed by a qualified ser­
vice engineer.

8-2

fable 8-1.
rroubleshooting

~.3 PARTS LIST

SYMPTOM

Target system
runs erratically

Emulator will
not communicate
over RS-232 line

Target system will
not run

Unable to perform
download

POSSIBLE CAUSES

1. Faulty interconnect cables

2. Emulator and target system
not compatible

3. LDV not executed before RUN
(vector not loaded).

1. Baud rate set incorrectly

2. Target system requires "null"
modem cable (pin 2 and pin 3 of
RS-232 connector) reversed.

1. Cables plugged in wrong

2. Faulty interconnect cables

1. Transparent mode escape
sequence not compatible
with host

2. Host computer and computer
port of ES need to be set
at 4800 baud

3. Wrong serial data format
selected

SECTION

8 .1

1.1

4.3.4

2.4.1

2.3.3

3.3

8.1

3.5
1115/23

3.5 1120

3. 5 1126

1
2

Call Applied Microsystems (Customer Service for ES Emulators)
Check Target System

The following parts are available for you to order:

Part
Short Cable Set
Long Cable Set

8-3

Number
600-11501-00
600-11142-00

APPENDIX A
SERIAL DATA FORMATS

The following sections detail the five serial data format compatible with the
Satelli~e Emulator. Each is illustrated in the accompanying figures.

A.l MOS TECHNOLOGY FORMAT

A.2 MOTOROLA EXORCISOR FORMAT

A.3 S-RECORD OUTPUT FORMAT

A.4 CREAUON OF S-RECORDS

A.5 INTEL INTELLEC 8/MDS FORMAT

A.6 SIGMEUCS ABSOLU'l.'E OBJECT FORMAT

A.7 TEKTRONIX HEXADECIMAL FORMAT

A.8 EXTE!IDED l"ElOIEX

A-1

A.1 MOS TECHNOLOGY
FORMAT

Figure A-1.
Specifications for
MOS Technology
Data Files

The data in each record is sandwiched between a seven-character
pref ix and a four-character suffix. The number of data bytes in
each record must be indicated by the byte count in the prefix. The
input file can be divided into records of various lengths.

Figure. A-1 simulates a series of valid data records. Each data
record begins with a semicolon (;). The Satellite Emulator ignores
all characters received prior to the first semicolon. All the
characters in a valid record must be valid hex digits (0 through 9
and A through F). A two-digit byte count follows the start
character; the byte count, expressed in hexadecimal digits, must
equal the number of data bytes in the record. The next four digits
make up the address of the first data type in the record. Data
bytes follow, each represented by two hexadecimal digits.

The suffix is a four-character checksum, representing the sixteen­
bit binary sum of all hexadecimal bytes in the record, inciuding
the address and byte count. Carry from the most significant bit is
dropped.

INPUT

START CMARACTE!'t

AAAA = Add•f'\\ of f,,'i! Udlit r1.., IP r '"f ..)• o A.AAA ·

A hrw.~•"'l'ti• notaf•on 0,.1..,

A

c
c

LEGEND

CCCC=Chetk\um T,,...ob-ytt' O•n•rv r,1.,1mm.11°un ,JI

prttrd1nq byt!'\ 1n rtcorc:I {.nclud•"Q •delrP\\. ctnfl d.tlcf

bvtf,.I '" r'\f!•~1mi11 no1a1.on

=Sun Cli1r.cter
BC ., 8vrt Coum lBC>OO 1n Rtcord BC· 00 '" E"d of F.i, Reoco101

AAAA • Addren F1rh:i

CCCC • Chockwm ot Rocord

RRRR • Rtcord Coun1
MH • Two H1udtc1m11 01q1n, 10 9. A FI

ENO Of Ft LE RECORD

START CHARACTER

Bvrt Counr ac : 00 '"End of r; If' RMorCI

OUTPUT
'IOTES

11 '-u,..,~1 of !1¥Tt\ per r!"CQrO ''- 11.a1•11U'llf' S.e T ibtf' 3 1

21E.cl"l1,np pndr, °"'''~ nonor .,, nq I np tf'f'd c1rr·a~ re11. .. •n

Jau RrcorcJ\

BCAAAAMMMMMHMMMMMMMMMMMMMMMMMMMMMHMMMMCCCC

BCAAAAMMHMHMMMMMMMMMMMMMMMMMMMMMMMMMMMCCCC I
BCAAAAMHHHHHHMH!-tHMMMMMMMHHMHMMMMHMMHHHCCCC

BCAAAAMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMCCCC ,

BCAAAAMMMMMMMMMMMHHHHMHHHHHMHMHMHHMMMMCCCC \

BCAAAAMMMMMMHHMMHMHMHMMHMMMMMMMMMMMMMMCCCC

BCAAAAMMMHMMMMMMMMMHMMMHMMMMMMMMMMMMMMCCCC

BCRRRRCCCC

Copyright 1983, Data I/O Corporation; reprinted by permission.

A-2

A.2 MOTOROLA
EXORCISER FORMAT

Figure A-2.
Specifications for
Motorola EXORciser
16-BM Data Files

Motorola data files may begin with a sign-on record, initialized by
the code S0. Valid data records start with an eight-character
prefix and end with a two-character suffix. Figure A-2 demon­
strates a series of valid Motorola data records.

Each data record begins with the start characters, "Sl"; the
emulator will ignore all earlier characters. The third and fourth
ch~racters represent the byte count, expressing the number of data,
address, and checksum bytes in the record. The address of the
first data byte in the record is expressed by the last four
characters of the prefix. Data bytes follow, each represented by
two hexadecimal characters. The number of data bytes occurring
must be three less than the byte count. The .. suffix is a two­
character checksum.

INPUT
DATA RECORD

START CPARACTERS

BC - Bvre Couiit Tht numoer of data nv:e') plu'i 3 r i •or

cntck\um and 2 for address I .n nexadec·ma1 nota! 01'

AAAA: Addfl!'n ot firs! dara t.1v1e n rt>c:Jrd AAAA 0 n

ne.ir:adec1""'al notation o..,ly

HH ~ One data rivte ,.., l"le:itadec ma1 ·1o'a"o•1

· CC = Checksum Ones ccmt'!f''Tie" r o• ,...,,..,arv su..,.,...,d! (1''

of preceding bytes 1n record (•nc 1ua-nq hv'e COL:!'" dc..Wr,.,

This 'iO.JCe can he used tor 1 neo +eea :::.:irr.dqe ''"''·..J''' "'

LEGEND

so
Sl
BC

AAAA

cc

= StartC!iarxter\
= Byte Count

I [Dita BvtH!Recoral • 31
" Addre,,s of F iru 0.Jta Bv re

= Two H'xadec1ma1 D1g1tc; iO 9 AF'

= Cl'\tcksum of ~ecord lonP ov1e1 "

(,,r · 1·. '-' :'' ,C

OUTPUT

2 Hn cha•ac:t>·~ l t:v ·c Da~a Records

s 1 BCAAAA,...,..,.. ... ,...., ... ,..~ . ..,,.. ... ,..,..,...,..,..,..,..,...,...,..,...,...,...,..,..,...,...cc \.I
51 BCAAAAHHHH>iHH ... HHHHHHHHHHHHHHHHHHHHHHHHCC I /
S 1 BC A A A A HH HHM~MMHHHH~HHHHHHHHHH MH HHHMMHHCC

S1BCAAAANHHHHP·O·otHHHHHHMMMHMl·ll·O·O·U-IHHHHHHHHl-l(C

598CAAAACC

Copyright 1983, Data I//O Corporation; reprinted by permission.

A-3

A.3 S-RECORD OUTPUT
FORMAT

A.3.1 S-RECORD
CONTENT

The S-record format for output modules was devised for the purpose
of encoding programs or data files in a printable format for
transportation between computer systems. The transportation
process can thus be visually monitored and the S-records can be
more easily edited.

When viewed by the user, S-records are essentially character
strings made of several fields which identify the record type,
record length, memory address, code/data, and checksum. Each type
of binary data is encoded as a 2-character hexadecimal number: the
first character representing the high-order 4 bits, and the second
the low-order 4 bits of the byte.

The 5 fields which comprise an S-record are shown below:

type record length address code/data checksum

where the fields are composed as follows:

PRINTABLE
FIELD CHARACTERS

type 2

record length 2

address 4, 6, or 8

code/data 0-2n

checksum 2

CONTENTS

S-record type --SO, Sl, etc.

The count of the character pairs in the
record, excluding the type and record
length.

The 2-, 3-, or 4-byte address at which
the data field is to be loaded into
memory.

From 0 to n bytes of executable code,
memory-loadable data, or descriptive
information. For compatibility with
teletypewritters, some programs may
limit the number of bytes to as few as
28 (56 printable characters in
S-record).

The least significant byte of the one's
complement of the sum of the values
represented by the pairs of characters
making up the record length, address,
and the code/data fields.

Each record may be terminated with a CR/LF/NULL. Additionally, an
S-record may have an initial field to accommodate other data such
as line numbers generated by some time-sharing systems.

Accuracy of transmission is ensured by the record length (byte
count) and checksum fields.

A.3.2 $-Record Types Eight types of s-records have been defined to accommodate the
several needs of the encoding, transportation, and decoding
functions. The various Motorola upload, download, and other
file-creating or debugging programs, utilize only those S-records

A-4

A.4 CREATION OF
S-RECORDS

which serve the purpose of the program. For specific information
on which S-records are supported by a particular program, the
user's manual for that program must be consulted.

An S-record format_ module may contain S-records of the following
types:

SO The header record for each block of S-records. The code/data
field may contain any descriptive information identifying the
following block of S-records. Under VERSAdos, the resident
linker's IDENT command can be used to designate module name,
version number, revision number, and description information
which will make up the header record. The address field is
normally zeroes.

Sl A record containing code/data and the 2-byte address at which
the code/data is to reside.

S2 A record containing code/data and the 3-byte address at which
the code/data is to reside.

S3 A record containing code/data and the 4-byte address at which
the code/data is to reside.

SS A record containing the number of Sl, S2, and S3 records
transmitted in a particular block. This count appears in the
address field. There is no code/data field.

S7 A termination record for a block of S3 records. The address
field may optionally contain the 3-byte address of the
instruction to which control is to be passed. There is no
code/data field.

S8 A termination record for a block of S2 records. The address
field may optionally contain the 3-byte address of the
inst ruction to which control is to be passed. There is no
code/data field.

S9 A termination record for a block of Sl records. The address
field may optionally contain the 2-byte address of the
instruction to which control is to be passed. Under VERSAdos,
the resident linker's ENTRY command can be used to specify this
address. If not specified, the first entry point specification
encountered in the object module input will be used. There is
no code/data field.

Only one termination record is used for each block of S-records.
S7 and S8 records are usually used only when control is to be
passed to a 3- or 4-byte address. Normally, only one header record
is used, although it is possible for multiple header records to
occur.

S-record-format programs may be produced by several dump utilities,
debuggers, VERSAdos' resident linkage editor, or several cross
assemblers or cross linkers. On EXORmacs, the Build Load Module
(MBLM) utility allows an executable load module to be built from
S-records and has a counterpart utility in BUILDS, which allows an
S-record file to be created from a load module.

A-5

Several programs are available for downloading a file in S-record
format from a host system to an 8-bit microprocessor-based or a
16-bit microprocessor-based system. Programs are also available
for uploading an S-record file to or from an EXORmacs system.

Example

s.hown below is a typical S-record-format module, as printed or
displayed:

S0060000484421B
Sll30000285F245F2212226A000424290008237C2A
Sll300100002000800082629001853812341001813
Sll3002041E900084E42234300182342000824A952
Sl07003000144Ed492
S9030000FC

The module consists of one S~ record, four Sl records, and an S9
record.

The SO record is comprised of the following character pairs:

SO S-record type SO, indicating that it is a header record.

06 Hexadecimal 06 (decimal 6), indicating that six character
pairs (or ASCII bytes) follow.

~~ } Four-character 2-byte address field, zeroes in this example.

48
44 ASCII H, D, and R - "HDR".
52

lB The checksum.

The first Sl record is explained as follows:

Sl S-record type Sl, indicating that it is a code/data record
to be loaded/verified at a 2-byte address.

13 Hexadecimal 13 (decimal 19), indicating that 19 character
pairs, representing 19 bytes of binary data, follow.

00 } Four-character 2-byte address field; hexadecimal address
00 0000, where the data which follows is to be loaded.

The next 16 character pairs of the first Sl record are the ASCII
bytes of the actual program code/data. In this assembly language
example, the hexadecimal opcodes of the program are written in
sequence in the code/data fields of the Sl records:

OPCODE

285F
245F
2212
226A0004
24290008
237C

INSTRUCTION

MOVE.L
MOVE.L
MOVE.L
MOVE.L
MOVE.L
MOVE.L

A-6

(A7) +,A4
(A7) +,A2
(A2) ,Dl
4(A2) ,Al
FUNCTION(Al),D2

o (The balance of this code is continued in the
code/data fields of the remaining Sl records,
and stored in memory location 0010, etc.)

2A The checksum of the first Sl record.

The second and third Sl records each also contain $13 (19)
character pairs and are ended with checksums 13 and 52
respectively. The fourth Sl record contains 07 character pairs and
has a checksum of 92.

The S9 record is explained as follows:

S9

FC

S-record type S9, indicating that it is a termination record.

Hexade~imal 03, indicating that three character pairs (3 bytes)
follow.

The address field, zeroes.

The checksum of the S9 record.

Each printable character in an S-record is encoded in hexadecimal
(ASCII in this example) representation of the binary bits which are
actually transmitted. For example, the first Sl record above is
sent as:

A-7

A.5 INTEL UiTELLEC
8/MDS FORMAT

,.,.,.,.. • 0000

CC • Checksu,.,

Figure A-3.
Specifications for
Intel Intellec
8/MDS Data Files

Intel data records begin with a nine-character prefix and end with
a two-character suffix. The byte count must equal the number of
data bytes in the record.

Figure A-3 simulates a series of valid data records. Each record
begins with a colon (:), followed by a two-character byte count.
The Four digits following the byte count give the address of the
first data byte.

Each data byte is represented by two hex digits; the number of data
bytes in each record must equal the byte count.

The suffix is a two-digit checksum, the two"' s complement of the
binary summation of the previous bytes in the record.

INPUT

LEGEND

ST ART CHARACTER

BC ~ B't'te Coun! Tne hl!'•.idec•m.ti nurniw1 u1 <.Joffci !)vlf'\

•n me record

AAAA Add~"n a+ t,,St data""'"' ,., 't'C"lJl(f

he•.tOK,mal notat•on oniy

AAAA n

CC ' Cl"lec'u.u'"" ~eg,u·o.., l!vi.o ~ :Y'"f'I'""''"""'' J' t1,,..a, -

\u""tmiT·on at prtcrd·nr; ~'Ylt\ ,,.. 1~i:orr~ l·nc'.ii1 ""Q nv'""

counl .Cdren •ne1 ditol t>vtu1 .r: ne .. ClM1"":a• no'..il•O'"'

"Stan Ch1r1etll!'1

BC "Bvre Count tOau Bvtt~ Rtcoq:! 1

AAAA == AddrHs Field

CC " CP,Ktr.surn of R~ord

START CHARACTE'l

Bv1e Count BC 00 , ... E"'d of!': ·It Record

(OUTPUT
'JOTES

I
Seoe T•ble 3 1

2 l"I!'• c..,c11,K!P•~ ' o-. 'P DatJ ~ecordi;

BCAA A AT THHH ... HHHH~MHMMHMMMHHHHHHHHH ... HHCC'\.1 ..

BC-" AAA n-., ,.. ... HHMHHHHC~ /)

:~::~:; ~"-! H.,_.t-IHHHHHMHHMMMMHMHHMHMHHHHHHMHHCC \

Copyright 1983, Data I/O Corporation; reprinted by permission.

A-8

A.6 SIGRETICS ABSOLUTE Figure A-4 shows the specifications of Signetics format files. The
OBJECT FORMAT data in each record is sandwiched between a nine-character pref ix

and a two-character suffix.

Figure A-4.
Specifications for
Signetics Absolute
Object Data Files

Th~ start character is a colon(:). This is followed by the
address of the first data byte and a two-digit address check. Data
is represented by pairs of hexadecimal characters. The byte count
must equal the number of data bytes in the record. The suffix is a
two-character data check. Data is represented by pairs of hexa­
decimal characters. The byte count must equal the number of data
bytes in the record. The suffix is a two-character data check.

INPUT

A

c

ST ART CHARACTER

AAAA = AddrtH of the first dll• b¥rt 1n r~ord AAAA 1n

ne:w:1dee1m1I notation on!'ll

LEGEND

AA.AA = Adelrf'U. l=1e-ld

BC = BvtP Count lOit1 BYies R,cordl

AC =Address Chrclt Checksum ot ldd:r.ss •nO hvt' count

= TWO H••~C1m11 0191n IQ 9. A I= I

DC = 0111 Chtck Chtcksum ot dlti 1n rrcorcJ

A

A

OUTPUT

START CHARACTER

B" t' Count BC = 00 1n End of i:: il' Rttord

"<OTES

11 'iumbPr ot l'lvlt'S prr rrco'd •'> v1r11b&r S..@o T1bir 3 1

]1 E..cri ,,,,, f'"'ld\,.irl"I "'onnr•nt1n9 l1nr •red c1tr1i91 rrturn

and null\

'}~Ex cr•a••ct1•r\ 1 r)vte Oiti Record'i

'""'"""""""""l""""""""""""""""""""";; AAAABCACHHHH ... HHHHHHHHHMMMMHMMHHMHHHHHHHH~~ (I
AAAA8CACHHHHHHMHHHHHHHHHHHHHHHHHHHHHHHHH0C

AAAA8CACHHHHHHHHHHHHHHHHMHHHHHHHHHHHHHHH0C \

AAAABCAC

Copyright 1983, Data I/O Corporation; reprinted by permission.

A-9

A.7 TEKTRORIX
HEXADECIMAL
FORMAT

Figure A-5.
Specifications for
Tektronix Hexadecimal
Data Files

Figure A-5 illustrates of valid Tektronix data file. The data in
each record is sandwiched between the start character, a slash(/),
and a two-character checksum. Following the start character, the
next four characters of the prefix express the address of the first
d~ta byte. The address is followed by a byte count, representing
the number of data.bytes in the record, and by a checksum of the
address and byte count. Data bytes follow, represented by pairs of
hexadecimal characters and succeeded by a checksum of the data
bytes. The end of File record consists only of control characters,
used to signal the end of transmission, and a byte count and
checksum for verifications.

INPUT

OUTPUT

AAAA' AQdr"n o• ll"lp '''\! rt•l.i ti .. ~ .. " .,., .. ·t"~t.J•O

ll'l"1r;it0foc•,..,•I riot•l•O""'

CC,' Cl"lt'c;k~um f1qh! D·l \urT" :;1 '"'" •uu< 1•·' ... ,.••Of'',.,.,,.
.... ,~Of ""• , •• d•IJ•H ''"'•' .,, ... "' uD f°"lf' •Octi'il!'\\ a 11, 't'

CC ° Ctif'Cli.\u""' € ori• !l • ,.,- ..,..) '. ;i;t; • ... ,.,

f()\.ot O•T ""ll!'•Mk'C·~<lll ·•• ... f\ :;• •R,., q .,

43411.IO'tlil!'\

NOTES

11 ~u'1"10f'r o! D'Jlt\ ~· rrcorCI •\ ••"•Oii" Ye" ~ ~!· .. J '
21 E.cn hnf pntn ...,,,,, .,onD''"'' "Q ,,.,f' •p,.rJ :••• •-41! .,., •

ABORT RECORD

XJI. x A•h"••• 1 \" -.q ot AS(ii c"'1•.1t:'I"•',

, v

9~ 9, .. : · 9 X' f • ~· i:

2Ht• C'l'lilt'Klf'" 0 'bvll!'' i)"'" R ••l\ LEGEND

•••ABCCCMMMM .. •o•M;;:. ... cc})
AAAA8CCCHHHHHHHMHHMMHHHHHHHMMMMfofHM'"'MHHMMC(S·••' (.. .,,,. •,

AAAAICCCHHHHHHHHMHMHMHMMMMMMHM""HHHHHHWMHC(0,,,,,, .. \,' " •
A \AA8CCCHHHHHHHHHHHHHHHHHHMMMMMHH.-4,_.MMHMH((3~·" ,-_,.,,,,, ::'1•3 3, • .,, ~ .. ·~~' •

AAAAICCC .:'"'"'' •_,.-

............. £.,cot~-·~ R"'tord ,.:i ""-••OP' ""1•1J.q 11 ~ .:i A~
A··~ ASC .:"•••n~·

Copyright 1983, Data I/O Corporation; reprinted by permission.

A-10

A.8 EXTENDED TElOlEX

Table A-1.
Extended Tekhex
Header Field

Extended Tekhex uses three types of message blocks:

1. A data block contains object code.

2 •. A symbol block contains information about a program section and
the symbols associated with it. This information is needed
only for symbolic debug.

3. A termination block contains the transfer address and marks the
end of the load module.

NOTE

Extended Tekhex has no specially defined abort block. To abort
a formatted transfer, use a Standard Tekhex abort block, as
defined earlier in this section.

Each block begins with a six-character header field and ends with
an end-of-line character sequence (on the 8550, a carriage return).
A block can be up to 255 characters long, not counting the end-of­
line. A header field has the format shown in Table A-1.

ITEM

%

Block Length

Block Type

Checksum

NUMBER OF ASCII
CHARACTERS

1

2

1

2

DESCRIPTION

A permit sign specifies that the
block is in Extended Tekhex format.

The number of characters in the
block: a two-digit hex number. This
count does not include the leading %
or the end-of-line.

6
3
8

data block
symbol block
termination block

A two-digit hex number representing
the sum, mod 256, of the values of
all the characters in the block,
except the leading % , the checksum
digits, and the end-of-line. Table
A-2 gives the values for all
characters that may appear in
Extended Tekhex message blocks.

Copyright 1983, Tektronix; reprinted by permission

A-11

Table A-2.
Character Values
for Checksum
Computation

A.8.1 Variable-Length
Fields

A.8.2 Data and
Termination
Blocks

Table A-3.
Extended Tekhex
Data Block Format

CHARACTERS

0 •• 9
A •• z
$
%
.(period)
_(underscore)
a •• z

VALUES (DECIMAL)

0 •• 9
10 •• 35

36
37
38
39

40 •• 65

In Extended Tekhex, certain fields may vary in length from 2 to 17
characters. This practice enables you to compress your data by
eliminating leading zeros from numbers and trailing spaces from
symbols. The first character of a variable-length field is a
hexadecimal digit that indicates the length of the rest of the
field. The digit 0 indicates a length of 16 characters.

For example, the symbols START, LOOP, and KLUDGESTARTSHERE are
represented as SSTART, 4LOOP and OKLUDGESTARTSHERE. The values 0,
lOOH, and FFOOOOH are represented as 10, 3100, and 6FFOOOO.

If you do not intend to transfer program symbols with your object
code, you can do without symbol blocks. Your load module can
consist of one or more data blocks, followed by a termination
block. Table A-3 gives the format of a data block, and Table A-4
gives the format of a termination block.

FIELD

Header

Load Address

Object

NUMBER OF ASCII
CHARACTERS

6

2 to 17

2n

DESCRIPnON

Standard header field. Block type
6.

The address where the object code is
to be loaded: a variable-length
number.

n bytes, each represented as two hex
digits.

Copyright 1983, Tektronix; reprinted by permission.

A-12

Table A-4.
Extended Tekhex
Terminal
Block Format

NUMBER OF ASCII
FIELD CHARACTERS

Header

Transfer
Address

6

2 to 17

DESCRIPTION

Standard header field. Block type = 8.

The address where program execution is
to begin: a variable-length number.

A.8.3 Symbol Blocks A symbol used in symbolic debug has the following attributes:

1. The symbol itself: 1 to 16 letters, digits, dollar signs,
periods, or symbolize a section name) a percent sign. Lower
case letters are converted to upper case when they are placed
in the symbol table.

2. A value: up to 64 bits (16 hexadecimal digits).

3. A type: address or scalar. (A scalar is any number that is not
an address). An address may be further classified as a code
address (the address of an instruction) or a data address (the
address of a data item). Symbolic debug does not currently use
the code/data distinction, so the address/scalar distinction is
sufficient for standard applications of Extended Tekhex.

4. A global/local designation. This designation is of limited use
in a load module, and is provided for future development. The
concept of global symbols is discussed in the Assembler Core
Manuals for both A Series and B Series assemblers. If the
global/ local distinction is not important for your purposes,
simply call all your symbols global.

5. Section membership. A section may be thought of as a named
area of memory. Each address in your program belongs to
exactly one section. A scalar belongs to no section. the
concept of sections is discussed in detail in the Assembler
Core manuals for both A series and B series assemblers. The
significance of sections with regard to symbolic debug is
illustrated in the Emulation section of this manual.

The symbols in your program are conveyed in symbol blocks. Each
symbol block contains the name of a section and a list of the sym­
bols that belong to that section. (You may include scalars with
any section you like). More than one block may contain symbols for
the same section. For each section, exactly one symbol block
should contain a section definition field, which defines the
starting address and length of the section.

If your object code has been generated by an assembler or compiler
that does not deal with sections, simply define one section called
(for example) MEMORY, with a starting address of 0 and a length
greater than the highest address used by your program; and put all
your symbols in that section.

Table A-5 gives the format of a symbol block. Tables A-6 and A-7
give the formats for section definition fields and symbol defini­
tion fields, which are parts of a symbol block.

Copyright 1983, Tektronix: reprinted by permission.

A-13

Table A-5.
Extended Tekhex
Block Format

Table A-6.
Extended Tekhex
Symbol Block
Definition Field

FIELD

Header

Section Name

Section
Definition

Symbol

I"l'llH

0

Base Address

Length

NUMBER OF ASCII
CHARACTERS

6

2 to 17

5 to 35

5 to 35

NUMBER OF ASCII
CllARAC"l"DS

1

2 to 17

2 to 17

DESCRIPTIO:R

Standard header field. Block type = 3.

The name of the section that contains
the symbols defined in this block: a
variable-length symbol.

This field must be present in exactly
one symbol block for each section.
This field may be preceded or followed
by any number of symbol definition
fields. Table A-6 gives the format
for this field.

Zero or more symbol definition fields,
Definition(s) each as described in
Table A-7.

DESCRIPTION

A zero signals a section definition
field.
The starting address of the section:
a variable-length number.

The length of the section: a
variable-length number, computed as 1
+ (high address base address).

Copyright 1983, Tektronix: reprinted by permission.

A-14

Table A-7.
Extended Tekhex
Symbol Block: ITEM

NUMBER OF ASCII
CHARACTERS DESCRIPTIO"N

Symbol Definition
Field

Type

Symbol

Value

1

2 to 17

2 to 17

A hex digit that indicates the global/
local designation of the symbol, and
the type of value the symbol
represents:
1 = global address
2 global scalar
3 global code address
4 global data address
5 local address
6 = local scalar
7 = local code address
8 = local data address

A variable-length symbol.

The value associated with the symbol:
a variable-length number.

NOTE

Symbol records are currently ignored by the
emulator.

Figure A-8 shows how this information might be encoded in Extended
Tekhex symbol blocks. (All this information could be encoded in a
single 96-character block. It is divided into two blocks for
purposes of illustration.

Copyright 1983, Tektronix: reprinted by permission.

A-15

Figure A-6.
Tekhex Data Block

Figure A-7.
Tekhex Termination Block

FlgureA-8.
Tekhex Symbol Block

S!ocl< !eng~!'i i SH = 2 i

,- Object code: 6 bytes

'
~:551C31COJ202C282C2C2

l Load address: 1 OOH

Header character

Block length: 8

Checksum: 1 AH = 26 = 0•8-8•2•8 ... 0

:-:ose:AZao

• i
I
I
t t Transfer addre•5' SOH

Block type: 8

'------- Header character

-------- Sioc~ iangth· 37H = 55

I I L
Checksum: 60H = (3•7+3+8·28•31•12•28•29• ...) mod 256

I Section definition field:
T base address = 40H; le:igth = C6H --

~.373608SVCST:.::FG2'7~2C5ZZCR1Dl4C?E!125014RE.AD2.5815WRITE260

"".3 73C88SVCS TCT?" 15C!..03 ~26 914E:X! TZ70298UFLENGTrl280 l 3Bti"F278

i i L Sectio,., name

I ----Block type: 3
I

'-------- Heaoer character

Copyright 1983, Tektronix: reprinted by permission

A-16

APPENDIX B
REFERENCE llAl'ERIAL

B .1 GLOSSARY

argument• An independent variable; the number or numbers that identifies
the location of a desired value.

baud. The shortest code element computed to a unit of signaling speed.
The speed in baud equals the number of code elements per second.

breakpoint. A point in a program where an external source can intervene
by giving a specific instruction to interrupt the normal sequence of
operations. The normal sequence can be resumed after the interruptions
used for debugging or visual checks on a terminal are terminated.

default. An option or value that is assumed provided another one has not
been specified.

disasseably (disassembler). A program that converts binary instructions
into their symbolic mnemonic representation.

don't care. A term applied to an input or output value that is irrele­
vant to the specific operation or consideration.

duplex. Communications in a two-way independent transmission moving in
both directions.

echo. Part of a transmitted signal recognized and received as interfer­
ence because of the magnitude and delay of the signal reflected back.

EEPROM. Electrically Eraseable Programmable Read Only Memory.

error code. A marking that indicates error by a code.

host systea. The system that controls; for example, the development
system, minicomputer, or automatic test equipment (ATE) system.

indirection. The term means indirect addressing; particularly with
respect to the mechanism that performs it.

logic state probe (LSA). Monitors a system or component board and shows
the monitored information to be reviewed.

111ainfraae. A reference to large computers to distinguish them from
microcomputers, microprocessors, and minicomputers. With respect to the
ES1800 Satellite Emulator, the mainframe houses the emulator, control
board, RAM Overlay Board, the controller board, the trace and break
board, the memory control board, and the power supply.

meaory map. A table or drawing representing the memory locations for
devices, programs, or functions.

modulo. The result of a mathematical operation of a specified number
that has been divided leaving a remainder. The remainder equals the
modulo.

B-1

operator. The element in an operation that defines what action is to be
performed on the operand.

para11eter. A quantity which may be given variable values.

parity. A method of self checking the accuracy of binary number
transmission.

run. A term describing the execution of emulation.

run with breakpoints. The execution of a program with temporary halts to
permit the operator to make some checks.

statement. A generalized instruction or syntactically complete string of
characters.

step. Single step operation.

stop bit. One or two 1-bits used as a character delimiter in start-stop
transmission.

target syste•. With respect to emulation, the target system is the
computer (your hardware) that is emulated.

Trace Memory. Functions as a history of target system program execution.

XOFF. Transmitter off.

XON. Transmitter on.

B-2

B.2 REFERENCE MATERIAL

Table B-1.
Number Bases Cross
Reference

STANDARD
BINARY OCTAL HEXADECDIAL DECIMAL ABBREVIATION

0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 A 10
1011 13 B 11
1100 14 c 12
1101 15 D 13
1110 16 E 14
1111 17 F 15

0001 0000 20 10 16
0010 0000 40 20 32
0100 0000 100 40 64
1000 0000 200 80 128

0001 0000 0000 400 100 256
0010 0000 0000 1000 200 512
0100 0000 0000 2000 400 1,024 lK
1000 0000 0000 4000 800 2,048 2K
1100 0000 0000 6000 coo 3 ,072 3K

0001 0000 0000 0000 10000 1000 4,096 4K
0001 0100 0000 0000 12000 1400 5,120 SK
0001 1000 0000 0000 14000 1800 6, 144 6K
0001 llOO 0000 0000 16000 lCOO 7,168 7K
0010 0000 0000 0000 20000 2000 8' 192 8K
0010 0100 0000 0000 22000 2400 9,216 9K
0010 1000 0000 0000 24000 2800 10,240 lOK
0100 0000 0000 0000 40000 4000 16,384 16K
1000 0000 0000 0000 .100000 8000 32,768 32K

0001 0000 0000 0000 0000 200000 10000 65,536 64K

B-3

7 6 5 0 0 0 0 0 1 o· 1 0 0 1

BITS CONTROL &
1 2 3 4 SYMBOLS

0 20 40 60
NUL OLE SP 0

0 0 0 0 0 0 10 16 20 32 30
1 21 41 61

SOH DC1 ! 1
0 0 0 1 1 1 11 17 21 33 31

2 22 42 62
STX DC2 " 2

0 0 1 0 2 2 12 18 22 34 32

3 23 43 63
ETX DCJ # 3

0 0 1 1 3 3 13 19 23 35 33

4 24 44 64
EOT DC4 $ 4

0 1 0 0 4 4 14 20 24 36 34

5 25 45 65
ENO NAK O/o 5

0 1 0 1 5 5 15 21 25 37 35

6 26 46 66
ACK SYN & 6

0 1 1 0 6 6 16 22 26 38 36

7 27 47 67
BEL ETB ' 7

0 1 1 1 7 7 17 23 27 39 37

10 30 50 70
BS CAN (8

1 0 0 0 8 8 18 24 28 40 38

11 31 51 71
HT EM) 9

1 0 0 1 9 9 19 25 29 41 39

12 32 52 72
LF SUB •

1 0 1 0 A 10 1A 26 2A 42 3A

13 33 53 73
VT ESC + '

1 0 1 1 8 11 18 27 28 43 38

14 34 54 74
FF FS ' <

1 1 0 0 c 12 1C 28 2C 44 3C

1S 35 55 75
CR GS =

1 1 0 1 0 13 10 29 20 4S 30

16 36 56 76
so RS >

1 1 1 0 E 14 1E 30 2E 46 3E

17 37 57 77
SI us I ?

KEY 1 1 1 1 F 1S 1F 31 2F 47 3F

octal 25
Addressed Universal

PPU GPIB co~e Commands Commands
Listen Addresses

NAK ASCII character

hex 15 21 decimal

1 1 0 0 1 0

NUMBERS
UPPER CASE

100 120
@ p

48 40 64 50

101 121
A a

49 41 65 51

102 122
B R

50 42 66 52

103 123
c s

51 43 67 53

104 124
D T

52 44 68 54

105 125
E u

S3 4S 69 55

106 126
F v

54 46 70 56

107 127
G w

SS 47 71 57

110 130
H x

56 48 72 58

111 131
I y

57 49 73 59

112 132
J z

S8 4A 74 SA

I 113 133
K [

S9 48 75 58
114 134

L \
60 4C 76 SC

115 135
M J

61 40 77 so
116 136

N ' 62 4E 78 SE
117 137

0 -
63 4F 79 SF

Talk Addresses

1 1 1 0

l
LOWER CASE !

140 160
1 p

80 60 96 70 112
141 161

a q
81 61 97 71 113

142 162 I

b r
82 62 98 72 114

143 163
c s

83 63 99 73 115
144 164

d t
84 64 100 74 116

145 ·165
e u

85 65 101 75 117
146 166

f y

86 66 102 76 118
147 167

g w
87 67 103 77 119

150 170
h x

88 68 104 78 120
1S1 171

i y
89 69 105 79 121

1S2 172
j z

90 6A 106 7A 122

1S3 173
k {

91 68 107 78 123
I 154 174

I
92 6C 108 7C 124

155 175
m I

93 60 109 70 125
156 176

n
94 6E 110 7E 126

1S7 177
0 Rubout

95 SF 111 7F 127

Secondary Addresses
or Commands

Table B-2
ASCII and IEEE Code
Chart

Table B-3.
ASCII Control Characters ACK

BEL
BS
CAN
CR
DCl
DC2
DC3
DC4
DEL
DLE
EM
ENQ
EOT
ESC
ETB
ETX
FF
FS
GS
HT
LF
NAK
NUL
RS
SI
so
SOH
STX
SUB
SYN
us
VT

B-5

acknowledge
bell
backspace
cancel
carriage return
playback on, CNTL Q, X-ON
record on, CNTL R, PUNCH-ON, SOM
playback off, CNTL S, X-OFF
record off, CNTL T, PUNCH-OFF, EOM
delete, rubout
data link escape
end of medium
enquiry
end of transmission
escape
end of transmission block
end of text
form feed
file separator
group separator
horizontal tabulation
line feed
negative acknowledge
null
record separator
shift in
shift out
start of heading
start of text
substitute
synchronous idle
unit separator
vertical tab

APPENDIX C
SYMBOLIC DEBUG

C.1 COMMANDS

C.2 USAGE NOTE FOR USERS WU'U SYMBOLIC FORMATS OTHER THAN
EXTUDED tEKHKX

C-1

C.l COMM.ARDS

The symbolic debug option allows easier debugging, using a wider
range of capabilities. These include:

• Reference to an address by a name instead of a value

• Display of all symbols and sections with their values

• Editing (entry and deletion) of symbols and their values

• Automatic display of symbolic addresses during disassembly

• Section (module) symbols that can be used as range arguments and
for section offsets in trace disassembly

• Upload and download of symbol and section definitions using
standard serial formats

The only standard symbolic format currently accepted is extended
Tekhex. If you are using another symbolic format, please see the
usage note at the end of this appendix.

• Implicit symbol definition and symbol value change

> '(SYMBOL) = (VALUE)

If SYMBOL is undefined, it is placed into the symbol table and
assigned the value VALUE. If SYMBOL was previously defined, it
will be reassigned the value VALUE.

--<VALUE) is a 32-bit integer value. Don't cares are not allowed
in symbolic definitions.

--<SYMBOL) is any combination of the ASCII characters with decimal
values in the range 33-126. This range includes all of the
printable ASCII characters. Symbols are delineated by a single
starting quote (') and the first blank space or RETURN. Symbols
can be up to 64 characters long, although only the first 16
characters are displayed with symbolic disassembly.

• Syabolic reference

) '(SYMBOL) ;GB.O = '(SYllBOL> ;'(SYMBOL>+ $41900; •••

The reference to 'SYMBOL will be exactly like referencing any of
the common registers in the ES, with the exception that symbols
not at the end of the command line must be terminated with a
space.

• Displaying symbols

)SYM [VALUE]

This displays the symbol(s) that have been assigned the value
VALUE. If no argument is entered, all symbols and their values
will be displayed.

C-2

• Section definition

)'(SYMBOL> = <IWIGE>

Any symbol that is assigned a range value will, by definition, be a
section. <RANGE) is a standard ES 24-bit range value.

NOTE:

Overlapping sections and sections with the same
name as a symbol are illegal.

• Display of section values

)SEC [(VALUE>]

The section containing the value will be displayed along with its
assigned values. If no argument is entered, all section names and
values will be displayed.

• Deletion of a SJllbol or section

)DEL '(SYMBOL>
. ,. 0

t.

This will. remove the symbol or section definition

• Clearing symbolic memory

)PUR

This command permanently removes all symbol data from ES memory.

• Upload and download of symbolic information

)UPS

This command uploads all symbols and sections in extended Tekhex
format.

--Sections are defined in separate records.

--Symbols are defined as belonging to the section "m".

Extended Tekhex restricts the number and range of characters that
can be used for a symbol name~ The ES will truncate symbols to 16
characters and will substitute % for characters not allowed by
Tekhex.

)ONL

This command will accept symbolic definition records as well as
data records if the ES download format variable is set to 5
(extended Tekhex).

C-3

Example C-1.

Figure C-1.
'· .. fri's'assembly

Trace With Symbols

.r i_

'J':

...

,:...;·,

The use of symbols in disassembly allows the ES to display trace
data in a more useful format. Disassembly with defined symbols
will display the symbol name everywhere there is an address
reference that matches the symbol's value. Section names will be
shown whenever the program addresses fall within a defined section.
Also, when in a defined section, the program addresses will be
displayed as off set values from the beginning of that section.

This example outlines these points. The first disassembly contains
no defined symbols. The second disassembly shows the effect of the
a symbolic definition. Note how the program address display mode
changes as the addresses move out of the section.

)DTE
SEQ# ADDR OPCODE MNEMONIC OPERAND FIELDS BUS CYCLE DATA

0069 PQM 8086 80186 Test
0069 1000- B90FOO - MOV
0068 1003 BE0020 MOV
0066 1006 BF0022 MOV
0065 1009 AS MOVS
0064 lOOA F3 REPZ
0064 lOOB A4 MOVS

0063 lOOC 038 lOOFF
0059 1010 890200
0026 1013 F2

2002)3E
2005)00
2008)00
2008)FF
200E)FF
ADD
MOV
REPNZ

CX,OOOF
SI,2000
DI,2200
WORD PTR 2000>FFFO 2200(FFFO

WORD PTR
2202(3E 2003)FF 2203(FF
2205(00 2006)FF 2206(FF
2208(00 2009)00 2209(00
2208(FF 200C)00 220C(00
220E(FF 200F)F5 220F(F5
AX,WORD PTR [BX-lOO][Dl]
CX,0002

2004)00
2007)FF
200A)FF
2000)00
2010)00

211DFFOO

0025 1014 A7 CMPS WORD PTR 2011)FF10 22ll)FF10

2204
2207
220A
220D
2210

0025 1015 Cll6002405 RCL WORD PTR Data_Word,05 2400)A002 2400(0
0017 lOlA C8400004

0015 lOlE EOEO

>
)'Loop = 166

ENTER 0040.04
17FE<OOOO FFFE>FFFF 17FC(FFFF FFFC)FFFF
17FA(FFFF FFFA)FFFF 17F8(FFFF 17F6(17FE
LOOPNE SHORT PGM 8086 80186 Test

)'Demon.module = 'Loop TO 16C
)'I/O port 0 = 3000
)OT 0-LEN HlO

SEQ# ADDR OPCODE MNEMONIC OPERAND FIELDS BUS CYCLE DATA

SEC: DEMON.MODULE
0009+LOOP
0009+000000 31C23000 MOVE.W D2,I/O_PORT_O 003000(8787
0008+000004 0081 ADD.L Dl ,DO
0007+000006 64000004 BCC.L $000172
0006 000172 0885 ADD.L 05,04
0005 000174 64FO BCC.S $LOOP
SEC: DEMON.MODULE
0004+LOOP
0004+000000 31C23000 MOVE.W 02,I/O_PORT_O 003000(8787
0003+000004 0081 ADD.L 01 ,DO
0002+000006 64000004 BCC.L $000172
0001 000172 0885 ADD.L 05,04
0000 000174 64FO BCC.S $Loop
>

C-4

C.2 USAGE NOTE FOR
USERS WITH
SYMBOLIC FORMATS
OTHER THAN
EX1.'ENDED
'l'EKllEX

Of the three methods of entering symbolic data, downloading from
the host using DNL is preferable since it is not only fast, but
includes error checking in the transmission of your data. However,
if you are working with any symbolic format other than Extended
Tekhex, you will not be able to use this method. Two alternates
are available: both require that you convert the symbolic format
that you are using before you enter the symbolic data.

• For very small programs, you can enter symbolic data_ ~a!l~~q.-i
from a symbol map as follows: . . : s:i£~--:;:1

><symbol) =(value><return)

• For other applications, you would want to put the Satellite
Emulator under computer control, using CCT. This method is just
as fast as downloading; however, no error checking is performed.
You must write a program that converts your symbolic data as
shown above; the program can then transmit the strings to the
emulator. -

There are four characteristics to remember about CCT.

First, the emulator will echo most of the characters sent to it, so
the computer can use this feature to check the data transmission.

Second, when the host sends a RETURN, the emulator begins pro­
cessing the command line. New lines generally begin with RETURN
LINEFEED NULL NULL.

Third, the host must be able to handle incoming data at-high--~­
as the emulator will be sending at 9600 baud; the host should be
able to send XON/XOFF to the emulator.

Fourth, UPL (upload) and DNL (download) expect data from the same
port whether you are using TCT or CCT: if you are downloading the
emulator always expects data to come from the host, and if you are
uploading data is always sent to the host.

c-s

INDEX TO 'IOPICS (by section number)

A

Absolute value, 3.4.3
AC power connection, 2.3.1
Activated bit values, 5.3.4
Address canparators, 5.3.1
Addition, 3.4.2
All-cycle trace, 5.1
Angle brackets, 3.1
AritJ:metic applications, 3.4
Assemble line to memory, 4.10
Assanbler directives, 4.9
Assigrment operators, 3.4.1
AT operator, 3.4.1

B

Back panel, 2.3.1
Base values, 3.3
Baud rate, 2.4.I, 8.2
Binary base indicator, 3.3.1
Bit values, 5.3.4
Bitwise And, Bitwise Or, 3.4.2
Block move, 4.5.3
BNC connector, 2.3.1
Brackets, 3.1
Break board, 2.4.2
Break on instruction execution, 3.5
Breaking anulation, 5.1
Breakpoint systan, 5.1
BUS, 7.5
Bus cycle display, 4.8.1
Byte mode, 4.4.4

c

Cables, 1.1.1, 8.1.1, 8.3
Changing values, 4.2, 4.4.5, 4.5.3, 4.10.4
Character values for checksum canputation, A.6
Characters, standard, 3
Clear memory map, 4.5.2
Clear to send (input), 2.3.3
Clock and CRC, 7.4
Clock signal at power-up, 2.5
Code space, 4.4.6, 4.5.3
Carmunications, 6
Canparators, 5.1
Canputer control, 6.3.2

I-1

Canputer port, lel.3
Configurations, syste:n, 1.1.4
Connecting pod assemblies to mainframe, 2.4.2
Connection to CR'I' tenninal, 2.4.1
Connection to target system, 2.4.2
Constants, 4. 5 .3 -
Controller board, 2.3.4
Copy switch, 3.5
Count limit, 5.3.2
CountirYJ events, 5.3.2
CPU Registers, 4.2
CRC, 7.4

D

Data, moving, 6.4
Data canparators, 5.3.3
Data space, 4.4.6
~bugging, symbolic, C.l
~bu;Jging without target system hardware, 4.6
~imal base indicator, 3.3.1
~fault base, 3.3.2, 7.1
~faults, 2.4.1, 2.6.1
~lete line, 3.2.4
Diagnostic functions, 7.1
Diagnostics, RAM, 7.2
DIP header, 2.4.2
Disassemble previous, following trace, 4.8.3
Disassemble trace, 4.8.2
Display base, 3.3.3
Display by bus cycles, 4.8.1
Display, clear manory map, 4.5.3
Display disassembled manory, 4.9.1
Display manory block fonnat, 4.4.7
Display manory map, 4.5.2
Display raw trace, 4.8.1
Display registers format, 4.2
Displaying block of memory, 4.4.7
Displaying, clearing event monitor system, 5.2
Division, 3.4.2
Ibcunentation, 1.2
IX>wnloading, 6.4.1, 8.2
IX>n't cares, 3.3, 5.3.5
D.Jmping data, 6.4.1
l)Jplex, default, 2.4.1

E.

EEPRCre1 storage, 3.5
Emulation, 4 .. 3
Emulation control boa.rd, 1.1.1, 2.4.2
Emulation sequences, sa:nple 2.6.1

I-2

Enabling RAM overlay, 4.5.3
Equal sign, 3.4.1
Error messages, 4.7
Errors, download, 6.4.1
Escape code, 6.4.1
Event detector actions, 5.3
Event detectors, 5.1
Event groups, 5.5
Event monitor system, 5.1
Examining, changing values, 4.2, 4.4.5, 4.5.3, 4.10.4
Extended Tek Hex, A. 6
External breakpoint, 5.7
External triggering, 5.7.2

F.

Fan, 2.3.2
Filling menory space, 4.5.3
Finding manory pattern, 4.4.7
Force special interrupt, 5.4.1. 3.5
Fonnats, data, App. A
Front, top panel removal, 2.3.4
FSI on instruction execution, 3.5
Fuse, line, 2.3.l.

G

Glossary, B.l
Grounding, 2.2, 2.3.3
Ground loops 2.2

H

Hard copy, see CPY, 3.5
Help menu, 2.6
Hexadecimal base indicator, 3.3.1
Host system control, 6.3.2

I

Illegal memory, 4.5.l
Indirection, 3.4.1
Installation, 2.1-2.5
Installing DIP header plug, 2.4.2
Intel Intellec 8/m:is fonnat, A.3
Interface paraneter switch settings, 2.3.4
Interfacing and can:nunications, 2.3.4, 6
Interrupt acknowledge, 5.3.4
Interrupt, special forced, 5.4.1
Interrupts, 3.5
Instruction cycle display, 4.6.l

I-3

Instruction cycle step, 4.3.2
Instruction pointer and code segment, 4.2
InitializinJ, 4.3.4
Inverse one's canplanent, 3.4.3

J

K

L

Line assembler, 4.10
Line fuse, 2.3.1
Load parameters and save, 2.6.1
Load register, 4.2.1
Load RAM overlay, 4.5.3
lockup, 4.3.5, 4.3.6, 6.3.2
Logic state analyzer, 5.6

M

Macros, 4 .11
Mainfrane canponents, 1.1.1
Main power switch, 2.3.1
Maintenance and troubleshooting, 8.1
Mask values, 5.3.4
Memory block attributes, 4.5.1
Manory controller board, 2.4.2
Memory disassanbler, 4.10
Manory map, setting 4.5.2
Memory roc>de and I/O pointer, 4.4.2
Memory rtDde pranpts, 4.4.1
Memory spaces, 4.4.6
Memory mode status, 4.4.6
Modulo, 3 .4 .2
MOS technology format, A.l
Motorola exorciser format, A.2
Motorola family support, 1.3
Motorola S-record output fonnat, A.2
Multiplication, 3.4.2

N

Negation and t\.\\'.)'S canplement, 3.4.3
Null modan cable, Set-up Checklist, 2.3.3
Numbers and base values, 3.3
Nunber bases cross reference, B.2

0

Octal base indicator, 3.3.1
I-4

()jd boundaries, 5.3
00 and OFF, 3.5
Oscilloscope trigger, 2.3.1_
Options, 1.4

p

Parameter set-up and EEPROM storage, 2.6.1
Parentheses and indirection, 3.4.l
Parity, 2.4.1
Parts list, 8.3
Pass countirY.J, 5.1, 5.3
Patching data, 4.4.5, 4.10.4
Patching instructions, 4.10
PCB infonnation, 4.2.1.1
Pin signals, serial ports, 2.3.3
Pod, emulator, 1.1.1, 2.4.2
Pod, I.SA, 1.1.1, 2.4.2
Pointer, instruction, 4.2
Ports, 2.3.1, 2.3.3
Power connection, 2.3.1
Power supply, 1.1.1, 1.5
Power switch, 2.3.l
Power-up, 2. 5
Pre-emulation check list, 2.6
Pranpts, 3.2.1, 4.4.1, 5.3.1

R

RAM diagnostics, 7.2
RAM overlay board, 1.1.1
RAM overlay, 4.5.3
Range values, 3.3
Read only manory, 4.5.1
Read/write manory, 4.5.l
Rear panel, 2.3.1
Registers, loading, 4.2.l
Registers, general, 4.2.2
Register operators, 4.2
Repeat function, 4.11
Repeat previous carmand line, 3.2.4
Reprint previous line, 3.2.4
Request to send (output), 2.3.3
Resets, types, 4.3.5
Return character, 3.2.4
RS232 pin conventions, 2.3.2
Run pranpt, 3.2.2
Run, 4.3.1
Run with breakpoints, 4.3.3
Run with vectors, 4.3.4

I-5

s

S-record information, App. A
Scope l~s, 7.3
scroll irg , 2. 6 .1, _ 4. 4. 3
Separators, 3.2.4
Serial data formats, Appendix A
Serial data in and out, 2.3.3
Serial port connector pin assignment, 2.3.3
Serial ports, 2.3.1, 2.3.3
Service, 1.7. 8.1-8.3
SET select nunbers, 2.6.1
Settirg up, 2.1-2.5 .
Shift left, shift right, 3.4.2
Side panel, 2.3.2
Signetics absolute object fonnat, A.4
Sir.gle-argunent operators, 3.4.3
Sirgle-step, 4.3.2
Spacing, 3.2.3
Specifications, 1.5
Square brackets, 3.1
Standard characters, 3
Standalone system, 1.1.4
Starxiard characters, 3
Status canparators, 5.3.4
Status mnerconics, 5.3.4
Step and stop, 4.3.2
Steppirg through proJram, 4.3.2
Stop bit, 2.4.1, 6.2
Strobe, timirg, 5.6.2
Subtraction, 3.4.2
switch settirgs, 2.6.1, 3.5
Symbolic debugging, App. C
System configurations, 1.1.4
System parameters, defaults, 2.6.l
System syntax, 3

T

Target memory accesses, 4.5.1
Target system, 1.1.2
Tektronix hexadecimal fonnat, A.5
Tenninal control, 6.3.1
'lhunbwheel switch, 2.3.4
Timing strobe, 5.7.2
Toggle countirg, 5.4
Toggle tracing, 5.4
Trace and break board, 1.1.1
Trace memory and disassembly, 4.8
Tracing software sequences, 4.8
Transparency, 1.1
Transparent no:ie, 6.3.3
Triggerirg outputs, 5.7.2
Troubleshooting, 8.2

I-6

Twcrarg1.1nent operators, 3.4.2

u

Unpacking, 2.1
Upload and download, 6.4.1
Utility operators, 3.2.4
Utility routines, 7

v

values, exam1n1ng, chan;:JiOJ, 4.2, 4.4.5, 4.5.3, 4.10.4
vectors, loading, runniOJ with, 4.3.4
Verify download, 6.4
verify block data, 4.5.3
verify block move, 4.5.3
Verify RAM overlay memory, 4.5.3
Voltage, 2.2

w

wait, 4.3.6
Warranty, 1.6
~en/then statements, 5.1, 5.3, 5.3.2, 5.4, 5.5
Windowing, 5.4
W::>rd and Byte M:>de, 4.4.4

x

XCN, XOFF, 2.4.1, 6.2

y

z

Zilcg family support, 1.3

I-7

	000a
	000b
	000c
	000d
	000e
	000f
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	8-01
	8-02
	8-03
	8-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07

