il

Applied
Microsystems
Corporation

ES 1800 Satellite Emulator
Reference Manual

For the 80186/188
Microprocessors

il

Applied
Microsystems
Corporation

ES 1800 Satellite Emulator
Reference Manual

For the 80186/188
Microprocessors

P/N 920-11437-04

March 1988
Copyright © 1986 Applied Microsystems
Corporation. All rights reserved.

Table of Contents

Page
PREFACE
~ Unpacking and InSpection.eunieiiinriiieeiiieeieereaarennnn. i
L0221 U 7 iii
N1 4 1¢1< AU AP v
Limited Hardware Warranty.oouviiiiireeiiiiiieetenecneennnns \%
Hardware Extended Warranty......ooooueiniiiiiiieiiiiiiinennennn. vi
Hardware Service Agreements.cooev v inineenneennneanenannnns \%1
SECTION 1: INTRODUCTION
HowtoUse ThisManual........c.ccouiiiiiiniiiiiiiiiiienennnnnn. 1-2
N 13 10 BT 10§ o A P 1-4
SyStem OpPeration. ..ottt ittt it it aateareaaraneeneanaanns 1-6
SECTION 2: GETTING STARTED
INtrodUCtioN. ...ttt e e e e 2-1
Emulator Setup. .ot i e 2-1
Target System SetUp. ...ttt et et ieeee e 2-4
Power-Up Sequence.coviiiiiiiiii it e ieiieeiaaaann, 2-5
Test RUN Of SySteml. ..ttt et e ee e 2-6
SECTION 3: HARDWARE
Emulator Chassis Assembly.........ccviiiiiiiiiiiiiieiiiennnns 3-1
Emulator Control Boards. ..o 3-3

Emulator Chassis Rear Panel. . ..o 3-6

Table of Contents (cont)

Page
Pod Assembly.o e 3-8
Logic State Analyzer (LSA) Assembly............oovviveinnu..... 3-9
Serial POrts. ..ot 3-10
M ANt e NaANCe. . ..ottt e e 3-14
TroubleshOOting. .. ccuuii it 3-19
ES1800 Emulator Specifications..........ccvviieiiiiniinnennnn. 3-20

SECTION 4: ES LANGUAGE
Structure of the ESLanguage..............ccooovviviiinnnnnnnn.. 4-1
Notes On ESL. ...t 4-6
Help. o 4-20
3 0] 4310 1 4-23
Special Modes. . ..ccoviiiiii e e e 4-24
Special Characters.covr ittt e 4-25
05 o 0 2 4-26
ES Language Error Messages.oouvtiit i eeanenanennns 4-27
SECTION 5: SYSTEM COMMANDS

Setup Commands.ouviiiiii 5-1
Serial Communications...... BT 5-29
Overlay Memory. ...coooiiii i e 5-54
S] 1 A 5-64
Trace MemoOry.ovuiiiiii it e e e 5-93
1\ =T o1 5-102
The Repeat Operators.ovviininniei i eaaaiis 5-107
SYMDOIS. . e 5-111
Miscellaneous Commands..............coviviiinneneinnnn.., 5-122

SECTION 6: TARGET COMMANDS
Introduction

Table of Contents (cont)

Page
B 2533100 F-1 5 T o VAN 6-2
Memory Commands.cooervrintiiiiiii e e aiiiieiaas 6-15
Memory and I/OModes.oiiiiiiiiii it 6-38
Diagnostic FUNCHIONS. . vurreee i ieiieieieeee e eeaeneeenennnns 6-50
SECTION 7: EVENT MONITOR SYSTEM
(@ A7) 74 1<) 2 AR AP APO 7-1
Defining Events. ...t iie e 7-8
Defining Action Lists.oiuiiniri et e e aieeeeaeaaens 7-9
Breaking Emulation..........cooiiiiiiiit it iaeiiiennes 7-14
Tracing Events. ... oottt ittt ii e eea e ananens 7-16
Counting Events.ottt i i ieaieee e, 7-19
Trigger S1gnal.ttt e ettt e 7-23
SpecCial TN eI UPES. ot vttt ittt ettt 7-25
Changing Event GroUPS. .. .ouveiriiieiieineeeeeneneanneennnnns 7-27
APPENDIX A: ES LANGUAGE MNEMONICS
Listof Commands.......coviriiiiiiiiiiieei it iei e eeenenns A-1
APPENDIX B: ERROR MESSAGES
Error MesSages. ..ottt ettt ettt B-1
APPENDIX C: SERIAL DATA FORMATS
MOS Technology Format.........ooiireiiieiiiiireiaieannnnns C-2
Motorola Exorcisor Format.oooiiriiiiiieeiiinnennann. C-3
Intel Intellec Format........cooiiiiiiiiiii it iiiieeeenns C-4
Signetics/Absolute Object File Format........................... C-5
Tektronix Hexadecimal Format...........coooviiiiinnnnnnnnnn.. C-6
Extended Tekhex Format........o, C-7

Motorola S-Record Format. ...t C-15

Table of Contents

Preface

Page

UNPACKING AND INSPECTION........oiiiiiiiiiii i i
Standard Equipment.........cooiiit i 11
Optional EQUIpMeEnt. . ..ottt ittt eeeieeaeennns 11
WARNING. ..ottt et e ie e e eee s iii
SERVICE. .. i i e ettt e iv
LIMITED HARDWARE WARRANTY. ... v
HARDWARE EXTENDED WARRANTY.......ccooiiiiiiien, \%1

PREFACE

APPLIED MICROSYSTEMS CORPORATION is proud of its role in the
systems development industry and conscious of its important contribution.
However, it assumes no liability for errors or for any damages that may
result from use of this manual or the equipment it accompanies.

We have made every effort to document this product accurately and
completely. We reserve the right to make changes to this manual without
notice.

The ES1800 Emulator is intended for use in developing, debugging, and
testing Intel 80186/88 microprocessor-based systems. This manual
assumes the user is familiar with the terminology and capabilities of the
80186/88 microprocessor.

Unpacking and Inspection

Your Emulator has been inspected and tested for electrical and mechanical
defects before shipping, then configured for the line voltage you
requested. Although the Emulator was carefully packed, check it for
possible transit damage and verify that the following units are present. If
you find any damage, file a claim with the carrier and notify Applied
Microsystems Corporation (Customer Service 1-800-426-3925).

ES1800 Emulator Reference Manual for §0186/188 Microprocess_ors

STANDARD EQUIPMENT

m Emulator chassis with power cord
m Main control boards and pod assembly

m ES1800 Emulator Reference Manual for 80186/88
Microprocessors

OPTIONAL EQUIPMENT

m Control Boards
m overlay memory
m symbolic debug
m Logic state analysis pod assembly

m Carrying case

i

Preface

Warning

This equipment generates, uses, and can radiate radio frequency energy
and if not installed and used in accordance with the instructions manual,
may cause interference to radio communications. It is temporarily
permitted by regulation and has not been tested for compliance with the
limits of Class A computing devices pursuant to Subpart J of Part 156 of
FCC Rules, which are designed to provide reasonable protection against
such interference. Operation of this equipment in a residential area is
likely to cause interference. It is up to the user, at his own expense, to take
whatever measures may be required to correct the interference.

ili

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Service

If the ES1800 unit needs to be returned for repairs, Applied Microsystems
Customer Service will issue a Return Authorization number. To obtain the
necessary Return Authorization number and shipping information call
1-800-426-3925, and ask for Customer Service. After the expiration of
the warranty period, service and repairs are billed at standard hourly rates,
plus shipping to and from your premises.

iv

Preface

Limited Hardware Warranty

Applied Microsystems Corporation warrants that all Applied Microsystems
manufactured products are free from defects in materials and
workmanship from date of shipment for a period of one (1) year, with the
exception of mechanical parts (such as probe tips, cables, pin adapters, test
clips, leadless chip sockets, and pin grid array adapters), which are
warranted for a period of 90 days. If any such product proves defective
during the warranty period, Applied Microsystems Corporation, at its
option, will either repair or replace the defective product. This warranty
applies to the original owner only and is not transferable.

To obtain warranty service, the customer must notify Applied
Microsystems Corporation of any defect prior to the warranty expiration
and make arrangements for repair and for prepaid shipment to Applied
Microsystems Corporation. Applied Microsystems Corporation will
prepay the return shipping to US locations. For international shipments,
customer is responsible for all shipping charges, duties and taxes. Prior to
returning any unit to Applied Microsystems Corporation for warranty
repair, a return authorization number must be obtained from Applied
Microsystems Corporation’s Customer Service Department (see Service
section).

This warranty shall not apply to any defect, failure, or damage caused by
improper use, improper maintenance, unauthorized repair, modification,
or integration of the product.

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Hardware Extended Warranty

Applied Microsystems Corporation’s optional EXTENDED WARRANTY
is available for all hardware products for an additional charge at the time
of the original purchase. The EXTENDED WARRANTY may be
purchased to extend the warranty period on mechanical parts normally
restricted to 90 days to a total of one (1) or two (2) years and to extend the
warranty on electrical parts and all other mechanical parts to two (2) years.

Hardware Service Agreements

SERVICE AGREEMENTS are available for purchase at any time for
qualified Applied Microsystems Corporation manufactured products. The
SERVICE AGREEMENT covers the repair of electrical and mechanical
parts for defects in materials and workmanship. For information, contact
your local sales office.

vi

SECTION 1

Table of Contents

HOWTOUSETHISMANUAL.......cooiiiiiiiiiiiecieveene 1-2
SYSTEM SETUP. ...ttt ieieieanaeaaenens 1-4
SYSTEM OPERATION. ...ttt ie e eeeneanens 1-6
L0 7S oY 1= AU 1-6
ES Language.cv it e i it e 1-6
Real TIme. ..ottt ittt it it eie it eneeaneanans 1-7
J AN RO § B -5 o~ AN 1-7
B ¢ TodI\Y (=3 o Lo o280 AP 1-7
Overlay MemoOrY. ..ottt ceei e ieieetennnneaanan 1-8
Event Monitor System.oouviriiiiiiiieiiiiiiieaaeannnnn, 1-8
Optional Symbolic Debugger........coovviiiiiiiiiiinnnnn.. 1-9
Optional Logic State Analyzer (LSA).........ccovvevnn.... 1-10

Diagnostic FUNCtionsS.oviiiiiiieiiiiiiieeiinnennnn 1-10

Section 1

INTRODUCTION

The ES1800 Emulation system allows you to analyze and control a target
environment, consisting of hardware or software, in real time. To use the
ES1800 with your target hardware, simply remove the target system’s
microprocessor and plug in the ES1800 Emulator. Your system uses the
Emulator in place of the microprocessor and behaves as if the target
microprocessor were there. It continues to run until you manually stop it
or it encounters a user-defined stop condition. This predefined condition
can be in the form of single-step operation statements or more complex
event monitoring (WHEN/THEN) statements.

During the debugging or integration process you can read and write to the
microprocessor registers or memory locations and execute programs
contained in the target system memory. The ES1800 Emulator also allows
you to debug software without being physically connected to the target
system. In this configuration, the Emulator uses its own real-time clock
feature combined with overlay memory capabilities.

Information in this manual applies to the Intel 80186/88 microprocessor
only. For more complete information on this chip, refer to the Intel

hardware reference manual iAPX 86/88, 186/188 User’s Manual
published by Intel Corporation.

1-1

ES1800 Emulator Reference Manual for 80186,/188 Microprocessors

How to Use This Manual

This manual is your guide to using the Applied Microsystems
Corporation’s ES1800 for the 80186/88 microprocessor. For your first
time using the ES1800, read through the Introduction and Getting Started
sections and refer to the Hardware section to make sure your hardware is
set up correctly.

Once you are familiar with the Emulator, Chapters 4, 5, 6 and 7 provide
information on all of the available commands. The comprehensive index
and Appendix A: ES Language Mnemonics are useful for finding specific
information in the manual.

The manual is organized as follows:

Section 1: Introduction introduces Applied Microsystem Corporation’s
ES1800 Emulator for the 80186/88. It explains emulation, setup, and

configuration requirements, and provides an overview of the features of
the ES1800.

Section 2: Getting Started provides a checklist for setting up the Emulator
and target system, starting and testing the Emulator, and storing
customized system variables in EEPROM.

Section 3: Hardware contains all the information on the Emulator, the
control boards, the rear panel, the pod, and the serial ports, as well as
information on maintenance and troubleshooting.

Section 4: ES Language explains the structure of the language that
controls the Emulator, with explanations of the help menus, prompts,
special modes and characters, and language related error messages.

Section 5: System Commands provides a reference to commands that
control the Emulator system. It is divided into sections on setup, serial

communications, download operations, registers, trace memory, macros,
and symbols.

Section 6: Target Commands provides a reference to commands that
directly control the target system. It is divided into sections on running the
target program, overlay memory commands, the line assembler, the
memory disassembler, memory and I/O modes, and special functions.

1-2

Section 1: Introduction

Section 7: Event Monitor System explains the powerful breakpoint and
control system, including the structure of the system, breaking emulation,
counting events, using special interrupts, and tracing events.

The Appendices are quick references to ES Language mnemonics and
explanations of the hardware error messages and serial data formats.

1-3

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

System Setup

The ES1800 can debug and integrate software and hardware. Setups for
each system may be different. In every combination, there is a ‘“‘target”
system, which can be hardware, software alone (if you are using the
Emulator’s overlay memory to debug software), or a combination of the
two. The target system is the environment you intend to emulate.

The ES1800 Emulator consists of a chassis assembly which houses the
control boards and an Emulator pod which houses the emulating
microprocessor. The Emulator can be controlled with a terminal, which
can be your development system CRT or another device set to function in
terminal mode. You can enhance this basic system by adding the optional
logic state analyzer (LSA) pod. This provides 16 additional input lines,
giving access to signals other than the normal address, data, and control
signals of the microprocessor. You may also add an optional overlay
memory board. Overlay memory can be mapped anywhere in the address
space of the target system. The overlay memory board provides additional
capabilities, including the ability to debug software with or without a
target system.

The stand alone environment (refer to diagram in Figure 1) consists of the
Emulator and a dumb terminal or equivalent connected to the terminal
port. This configuration can debug target systems with software already
installed or short, hand-entered routines. The stand-alone configuration is
common in manufacturing test and service facilities.

The Emulator can also use data stored in a host development system by
setting up a hosted environment (refer to diagram in Figure 1). The
Emulator is still under the direct control of the CRT but can load data
from the host system’s data files.

By attaching a printer, data and code from the target system can be printed
out in assembly language. You can also print all Emulator commands and
their results. The Emulator system has two serial ports and uses standard
RS232C serial port protocol. Each port can be independently configured
for baud rate, data length, and number of stop bits.

Software for driving the Emulator is available from Applied Microsystems
Corporation for the IBM PC and compatibles, SUN, APOLLO and VAX.

1-4

Section 1: Introduction

The Emulator can also be totally controlled by a host system. This hosted
software environment (refer to diagram in Figure 1) requires special host
resident software. Drivers and high level debuggers are available from
Applied Microsystems for most languages and host systems.

Figure 1. Environments

—/1

[

O
N

TERMINAL

EMULATOR

. TARGET
Hosted Environment

Hosted Software

1-5

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

System Operation
OVERVIEW

The ES1800 has two basic operational modes: emulation and pause. Pause
mode is generally used to set up the system configuration and to display

imnfarmatinn aftar avitine amnulatinn Cyvetam catiin 1e acocnmnlichad fram
AELANJA ALACILAU/LL LA LWL VA.I.LJ.IL& ALLREACR VAN LA, UJO&VLLL UULU}I “VVULLLPL.I.U ANW/\E A A \Jiid

two menus. The first menu contains all external communication variables;
the second contains the control switches for emulation. Both setups can be
saved to EEPROM and automatically loaded at power-up.

Emulation, or run mode, means that the microprocessor in the Emulator
pod is running a program in the target system, allowing you to see what is
happening within the target system. Emulation stops when (1) you stop it,
(2) user-defined breakpoints are enabled and occur, (3) you reset the
system, or (4) errors occur in the target system.

When you manually stop emulation or a breakpoint is reached, you enter
pause mode. All registers and addresses are then available for
examination, along with a trace history of performance of the
microprocessor. A command language allows you to enter emulation mode
in the desired state and leave emulation when the desired combination of
events are detected in the target.

ES LANGUAGE

The ES1800 uses its own command language. To benefit from the
sophisticated operations of the Emulator, you must understand the general
concepts of this language. The Emulator operates in response to command
statements composed of command mnemonics and, for some commands,
arguments. An argument to a command is an additional value entered as
part of the command sequence, such as an address range or base value.
Arguments can consist of single values, expressions, or lists.

The command statements form a control language, similar to higher-level
computer languages. And, like a computer language, the operators and
values can be combined to form complex expressions. Statements have a
maximum length of 76 characters and can be extended by the use of
macros.

1-6

Section 1: Introduction

The ES Language contains registers, counters, and conditional statements
allowing the user full control over the operation of the target system. To
complete the language, a full set of error messages is provided for (1) target
hardware, (2) Emulator hardware, (3) target software, and (4) ES
command language syntax.

REAL TIME

Since the pod processor is identical to the target microprocessor, the target
system runs in real time. No wait states are inserted by the Emulator
during run mode.

NULL TARGET

When there is no target system, you may select the internal clock feature,
which places the Emulator in null target mode. Overlay memory can then
be used to develop code as if a target system were attached. In this mode a
4 MHz clock is supplied to the CPU through a divide by 2 network. The
CPU runs at 2 MHz. Unterminated inputs are set inactive.

TRACE MEMORY

Trace memory functions as a history of the target system program'’s
execution. This memory can record 2046 bus cycles and display these in
assembly language. All address lines, data lines, processor status lines, and
16 bits of external logic input are traced. If something unexpected happens
during program execution, trace memory can be reviewed to determine the
sequence of instructions executed by the CPU prior to the unexpected
event. When used in conjunction with the trace disassembler, hardware
and software problems can be quickly tracked down.

Trace memory can be selectively switched on by the Event Monitor to trace
events only when certain conditions are met. Program execution can be
stopped at any point, either manually or using the Event Monitor System.
The address, data, and control signals of the most recently traced cycles can
then be critically reviewed.

1-7

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

OVERLAY MEMORY

Overlay memory is Emulator working memory, which can be used in a
variety of ways. When debugging software without target hardware, the
target program is loaded into overlay memory, where it can be edited and
positioned in the target system address space as desired (null target mode).
The program executes in real time as if it resided totally in the target
system. Overlay memory is also useful when a target is connected, for
loading portions of software, making patches, and checking programs not
yet committed to PROM.

The overlay memory is RAM with appropriate address and control logic,
ranging in size from 32K to 2M bytes and locatable in 2K -byte segments
throughout the system. Each segment can be assigned one of four
attributes: target, read/write, read-only, or illegal. Unmapped memory is
assigned the target attribute by default. Overlay memory mapped as read-
only can always be modified by the Emulator operator. However, if a
program tries to write to read-only overlay, emulation stops and an error
message 1s displayed. Overlay memory mapped as read/write can be
written to or read from. If a program attempts to read or write to memory
mapped as illegal, emulation stops and an error message is displayed.

When a segment of memory is mapped, program accesses in that memory
range are directed to the overlay instead of the target. Overlay memory
accesses occur in real time, with no wait states added by the Emulator.

EVENT MONITOR SYSTEM

The ES1800’s Event Monitor System provides unprecedented breakpoint
and system control, enabling the user to isolate and break on any
predefined series of events and then perform actions defined by
WHEN/THEN conditional statements. The user controls and monitors the
target with the Event Monitor System by defining statements that specify
exact or multiple events through logical combinations of address, data,
status, pass counter, and optional logic field states. When those events are
encountered in the target system program, the ES1800 can break
emulation, trace specific sequences, count events and trigger outputs all
independently, allowing the user to analyze the cause-effect relationship
established by the event/action sequences defined.

1-8

Section 1: Introduction

The Event Monitor System uses four groups containing eight registers each
to let the user monitor a complex series of events through multiple actions
and combinations of comparator registers. The system uses one group at a
time, with each WHEN/THEN statement active in a specific group.
WHEN/THEN statements can switch to different groups and access
conditional statements and registers for that group. The user can control
the tracing of 2046 machine cycles, selecting the desired instructions to be
recorded in the trace memory.

OPTIONAL SYMBOLIC DEBUGGER

The symbolic debug option allows you to assign frequently used values to
symbol names that make sense. Features include:

m Reference to an address by a name instead of a value
m Display of all symbols and sections with their values
m Editing (entry and deletion) of symbols and their values

m Automatic display of symbolic addresses during
disassembly

m Section (module) symbols that can be used as range
arguments and for section offsets in trace disassembly

m Upload and download of symbol and section definitions
using standard serial formats

Because symbols are a powerful extension of the Emulator, they are
frequently used in examples throughout Section 5, System Commands.
Please note that if you have not yet purchased the symbolic debug option,
you may need to modify these examples.

1-9

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

OPTIONAL LOGIC STATE ANALYZER (LSA)

LSA inputs can qualify event specifications in the Event Monitor System.
In the simplest form, specific bit patterns at the LSA inputs can cause a
breakpoint. The LSA comparator can detect arbitrarily complex event
specifications as well. The LSA allows tracing of additional signals in the
target system. This is useful when monitoring (1) buffers suspected of

failure, (2) decode logic, (3) memory management circuit translations, and
(4) for asynchronous external events.

DIAGNOSTIC FUNCTIONS

Diagnostics available in the ES1800 Emulator include both RAM/ROM
tests and scope loops. RAM test routines verify that RAM is operating
properly. They can be run on the target or Emulator overlay memory and
may be executed in either byte or word mode. ROM tests include a built-
in CRC algorithm.

High speed memory and I/O scope loops for troubleshooting with an
oscilloscope are built into the Emulator firmware. They can be used for
locating stuck address data, status or control lines, and generating
signatures using signature analysis equipment.

The firmware that generates the scope loops is optimized for maximum
speed of execution. This short cycle time allows the hardware engineer to
review the timing of pertinent signals in the target system without using a
storage oscilloscope. The scope loops can be executed in either byte or
word mode.

1-10

SECTION 2

Table of Contents

Getting Started

Page

INTRODUCTION. ...ttt ettt eeaaaans 2-1
EMULATOR SETUP. ...t ittt e 2-1
TARGET SYSTEM SETUP. ...t ieiiiiiaeaanan 2-4
POWER-UPSEQUENCE. ...ttt iiiinennnnn. 2-5
Target System Present. ...t 2-5

NoO Target System. ..ottt ecie e ieeanas 2-5
TEST RUNOF SYSTEM. ...t ciene 2-6
1. Initialize The Emulator.........cooviiiiiiiiiiiiininnnnn.. 2-6

2. Map Overlay Memory. ...cocviiiiniiiniiiiieiiiiennnns 2-7

3. est RAM . . i e e e 2-7

4. Enter Program.......oooiiriiiiiiiiii it 2-8
5.Verify The Program..........ccooiiiiiiiiiiiiiiiiiinnn.. 2-8

6. RunThe Emulator...........cooiiiiiiiiiiiiiiinnnn.. 2-9
7.8top The Program. ..ot 2-9

8. Display The Trace Buffer..............c.coiiiiiiinn... 2-9
9.Set A Breakpoint........ovuiniiiiiiii e 2-10

10. Initialize Peripheral Control Registers.................. 2-10

Section 2

GETTING STARTED

Introduction

This section provides a checklist for setting up the Emulator and target
system, starting and testing the Emulator and storing customized system
variables in EEPROM.

Emulator Setup

1. Refer to page 3-1 and verify that proper grounding and
power requirements have been met.

2. Remove the front cover of the Emulator by turning the
thumbscrews counterclockwise. The pod and LSA pod
may need to be unplugged in order to do this.

3. Verify that the main control board and the memory
control board are in the top two slots of the Emulator
chassis. (See page 3-4 for board positions.)

4. Verify that the trace/break board is in the third bus slot
of the Emulator chassis. (See page 3-4 for board
positions.)

2-1

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

2-2

10.

11.

If you are using overlay memory, verify that the RAM
overlay master, and/or master and slave boards, if
needed, are inserted. (See page 3-4 for board positions.)

Verify that the correct Emulator board for your target

microprocessor is in the bottom slot. (See page 3-4 for
board positions.)

Casaiil.y

Verify that all boards are firmly seated in their
motherboard connectors. (See page 3-4 for board
positions.)

Set the thumbwheel switch on the main control board for
your particular system variables (see page 3-5 for
thumbwheel switch location.

System default variables in switch position 0 are:

- 9600 baud - 8-bit word length

- One stop bit - No parity

- Full duplex - No echo

- Terminal control - XON and XOFF are recognized
- 8th data bit set to 0 (space)

Verify that the three-position toggle switch on the
memory control board is in the center position. See page
3-7 for location illustration.

NOTE: If you are using an early ES1800 model, the above
comment may not apply. Follow the instructions
provided at the time of purchase.

Replace front panel and attach the correct pod assembly
(see page 3-8). A pod assembly must be connected to the
Emulator even if you are not connecting it to a target
system.

OPTIONAL: Connect logic state analyzer pod (see page
3-9).

Section 2: Getting Started

12.

13.

14.

Verify that the RS232C cable connections are correct for
the system configuration you plan to use (see page 3-10,
Pin Configurations).

Verify that the RS232C baud rates and data requirements
are set the same on both the Emulator and the terminal.
See page 3-5 for thumbwheel switch settings.)

If using communications without a modem, you may need
a null modem cable. If you purchase a null modem cable,
it is likely to have the following configuration.

Nnh & O N -

0 O 0 AW -

6'

——

20 20*
7 7

Check the specifications in your terminal manual before
reversing the pins.

* Note that pins 6, 8, and 20 are not used and are
unaffected by the cable configuration.

2-3

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Target System Setup

2-4

1.

Check that the target has a 68 contact leadless chip carrier
socket. An adaptor, Part No. 210-00023-00, is available
for plastic leaded chip carriers.

Using an ohmmeter, check that a good ground exists at
the microprocessor socket. Measure from pin 26 and 60
to power supply ground on the target board.

Verify that all the power supplies in the target system are
functionine nronerlv,

Check for a valid clock signal at the target microprocessor
socket.

Turn off target system power and Emulator power.

Plug in the probe tip. (See page 3-14 for probe tip
precautions.)

Section 2: Getting Started

Power-Up Sequence
TARGET SYSTEM PRESENT

1. Turn on the target system.
2. Turn on the Emulator.

3. Reset the target system (see page 6-13).

NO TARGET SYSTEM

1. Verify that the pod is connected to the Emulator (see
page 3-8).

2. Be sure there is nothing in contact with the probe tip.
3. Power-up the Emulator.

4. The power-up banner should be displayed. Select the
internal clock source.

When you power-up the Emulator, all registers, maps, event clauses, and
system variables are either cleared or set to default values. Examine the
SET and ON menus (see pages 5-3 and 5-9) and configure the system to
your liking. Your special setup can then be stored in EEPROM (see page
5-25). By setting the rotary switch on the controller board to the proper
position, your set-up can be autoloaded on power-up. (See page 3-4.)

The ES1800 Emulator system is now running and ready to accept ES
language commands.

2-5

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Test Run of System

Use this test guide after the system configuration is correct and the ES
prompt is displayed ([]).

A system test run consists of the following 9 steps:
1. Initialize Emulator.

Map overlay memory.

Test overlay memory.

Enter a program.

Verify a program.

Run the Emulator.

Stop the program.

® N U A W

Display the trace buffer.
9. Set a breakpoint.

This test requires an optional overlay memory board. This demonstration
does not need a target system.

If you suspect trouble with the ES1800 hardware, call the Applied
Microsystems Corporation Customer Service hotline at /-800-426-3925
for assistance.

1. INITIALIZE THE EMULATOR

Enter the following to initialize the Emulator:

>SET 1,0;SAV;SET 1,1;SAV;SET 1,0

This will save any changes you have made to the six categories of variables,
which include the SET menu (see page 5-3). This operation can take up to
four minutes if major changes have been made.

2-6

Section 2: Getting Started

Do not interrupt the operation.

2. MAP OVERLAY MEMORY

Map all of the overlay memory available to the Emulator.

>MAP O TO XXXX

(Where XXXX is the ending address (in hex) of the amount of RAM
overlay installed.) The following table provides a quick reference for hex
values corresponding to overlay memory sizes:

Hex value Overlay Memory
TFFF 32K
OFFFF 64K
1FFFF 128K
3FFFF 256K
TFFFF 512K

For example, to map 64k, enter:

>MAP O to OFFFF

For more information, refer to page 5-56.

3. TEST RAM

Test all overlay memory installed by entering:

>SF 1,0 TO XXXX

(Where XXXX is the ending address (in hex) of the amount of overlay
memory installed.) If there is a failure, repeat mapping and testing.

For more information, refer to diagnostic functions, page 6-50.

2-7

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

4. ENTER PROGRAM

Enter a short program by invoking the line assembler and entering 8086 op
codes (see page 6-30).

>ASM 10
**xk%x 8086/88/186/188 LINE ASSEMBLER VX.XLA ¥*kk*
CSEG = XXXX

0010>NOP

0011>/

0012>7

0013>/

0014>/

0015>J4MP 10H

0017>X

NOP is a null operation. Each time you type the slash ([/]), you repeat the
previous command, so you have entered the equivalent of five lines of
NOPs. The [x] at the end exits the assembler.

5. VERIFY THE PROGRAM
Single step through the program to, verify that it works, by entering;

>Ss =0
>1P=10
>STP;DT
>/
>/
>/
>/
>/

The disassembled trace should show that NOPs were executed and that the
jump was taken correctly.

For more information on the STP command, refer to page 6-7.

2-8

Section 2: Getting Started

6. RUN THE EMULATOR
Enter RUN.

>RUN
R>

The [&5] prompt should be displayed with no error messages. This indicates
the Emulator is running in real time, executing the program.

7. STOP THE PROGRAM
Enter STP to stop.

R>STP

The Emulator should stop running and display the CS:IP register value and
Group 1. The CS:IP value should not exceed 0:15.

8. DISPLAY THE TRACE BUFFER
Enter DRT to display the execution history of the program.

>DRT

The display should show sequence numbers between 0 and 20, and address
values between 10 and 30.

>DTB

This should show a disassembled trace of the program with NOPs and JMP
10s.

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

9. SET A BREAKPOINT

Verify that the Event Monitor System halts execution when a defined
condition is met by setting a breakpoint. In this case, the Emulator
executes 100 (hex) bus cycles, then breaks.

Enter:

>WHEN DC1 THEN CNT
>WHEN CTL THEN BRK
>DC1=0XXXX
>CTL=100

>RBK

R>

This causes the counter to be incremented each time data comparator 1 sees

a data bus value between 00000 and OFFFF. When the count limit of 100 is
reached, emulation breaks.

If a break does not occur:
1. Enter a STP.
2. Set CSand IP to 0 and 10.

3. Enter DES 1 and verify that you have entered the

WHEN/THEN statement and comparator values as shown
above.

4. Type RBK again.

If no break occurs call Applied Microsystems Customer Service at
1-800-426-3925 for assistance.

10. INITTIALIZE PERIPHERAL CONTROL REGISTERS

1. Set up the PCB relocation register. If you do not relocate
the peripheral control block from $FF00 in I/O space,
then go to step 2.

2-10

Section 2: Getting Started

Enter:

>REL = <register value>

Refer to the Intel iAPX 86,/88, 186/188 User’s Manual
for the proper way to set up the PCB relocation register.

Set up the on-chip chip select peripheral. If you do not
use on-chip chip selects, then go to step 3.

Enter:

>ON RCS

With RCS set to ON, the following will be true:

Pause-to-run transitions will write the Emulator chip
select PCB values into the target PCB.

Run-to-pause transitions will read the Emulator chip
select PCB values from the target PCB.

Enter:
>UMCS = <register value>
>LMCS = <register value>
>MPCS = <register value>
>MMCS = <register value>
>PACS = <register value>

Refer to the Intel iAPX 86,88, 186,188 User’s Manual
for the proper way to set up the register.

Set up the on-chip DMA peripheral. If on-chip DMA
circuitry is not used, then go on to step 4.

2-11

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Enter:
>USRCO = <register value>
>SRCO = <register value>
>UDSTO = <register value>
>DSTO = <register value>
>XCO0 = <register value>
>CWO0 = <register value>

Refer to the Intel iAPX 86/88, 186,/188 User's Manual
for the proper setup.

If you do not need DMA active while paused, then go on
to step 4.

Enter:

>0ON DME

4. Set up the on-chip timer peripheral. If on-chip timer
circuitry is not used, then go on to step 5.

Enter:
>TCO0 = <register value>
>TC1 = <register value>
>TC2 = <register value>
>MAO0 = <register value>
>MA1 = <register value>
>MA2 = <register value>
>MB0 = <register value>
>MB1 = <register value>
>MB2 = <register value>
>MCW0 = <register value>
>MCW1 = <register value>
>MCW2 = <register value>

2-12

Section 2: Getting Started

Refer to the Intel iAPX 86/88, 186,188 User’s Manual
for the proper setup. '

If you need a timer circuit active while paused, then turn
on the appropriate emulator software switch, as follows:

>ON TEOQ
>ON TE1
>ON TE2

This will turn on timers zero, one, and two respectively.

Set up the on-chip interrupt control peripheral. If on-
chip interrupt control circuitry is not used, then proceed
to step 6.

Enter:
>INT0 = <register value>
>INT1 = <register value>
>INT3 = <register value>
>EQ]l = <register value>
>POL = <register value>
>POL = <register value>
>MSK = <register value>
>PLM = <register value>
>ISV = <register value>
>IR@ = <register value>
>IST = <register value>
>TCR = <register value>
>DMAD = <register value>
>DMA1 = <register value>
>DMA2 = <register value>

Refer to the Intel iAPX 86/88, 186 /188 User’s Manual
for the proper setup.

2-13

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

6. Display the status of the PCB registers.

>PCB

Th
registers.

4]
7]
(2]
-
4%
W

7. Set up overlay and a minimal program. This step assumes
you have neither target memory nor a valid program
located at the startup location (*FFFF0). If you have
target memory and a valid program, then go on to step 8.

Enter:

>MAP $FF800;DM

This maps in overlay from $FF800 to $FFFFF and
displays the memory map.

Enter:

>ON RDY

This ensures that reads and writes to overlay memory use
the Emulator’s internal ready signal.

Enter;

>ASM

This invokes the single-line assembler to enter a sequence
of NOP instructions.

2-14

Section 2. Getting Started

Enter:

>CSEG = OFFFF

This sets the assembler to an absolute address of $SFFFFO.

Enter:

>NOP
>NOP
>NOP

This throw-away program initializes the on-chip
peripheral circuitry.

Enter:

>X

This exits the assembler.

Activate the on-chip peripherals. The following tasks
should have been accomplished before reaching this
point:

m The state of all on-chip peripherals
should have been set up via the PCB
registers.

m The Emulator’s ON and OFF software
switches have been properly set up.

m A program resides at the start up location
($FFFFO0).

2-15

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Enter:

>AC1 = <stopping point>

This defines the stopping
should follow the initialize

oint 0
point o

section.

"
o=
-y
147

3
D~
©

The on-chip peripherals are activated by either a read
from, or write to appropriate registers. The setting of the
Emulator’s switches to ON guarantees the chosen
peripheral registers will be written and read following the
execution of at least one instruction cycle. Therefore, set
up ACI, as either:

AC1 = $FFFF2

if manually initializing and using the NOP program in
step 7, or

AC1 = <stopping point>

if using your own PCB initializing program.

Enter:

>WHEN AC1 THEN BRK

This allows a breakpoint when ACI is recognized during

emulation,

2-16

Section 2: Getting Started

Enter:

>RST;RBV

RST sends a reset signal to the target system via the
RESET OUT line.

RBV sets CS:IP registers to the absolute address of
$FFFFO0, activates the Event Monitor System, and
initiates a real-time run.

2-17

SECTION 3

Table of Contents
Hardware

Page

EMULATOR CHASSIS ASSEMBLY .. .ooii e 3-1
System Grounds........cc.vuiiiiiiirii ittt iiiainens 3-1
EMULATOR CONTROL BOARDS. ...ttt ieeeeeienaeeenns 3-3
Main Control Board......ooriiii e ann, 3-3
Memory Control Board. ...t 3-3
Trace/Break Board..........c.covviiiiiiiiiii i, 3-3
RAM Overlay Board(8).....coveiiiiiiiiiii i, 3-3
Emulation Board.ooiniini e 3-3
EMULATOR CHASSISREARPANEL. ..., 3-6
NI -1 1 30} ¢ - T 3-6
Trigger OUtPUL. .ot e e 3-6
Power SWitCh. ..o e 3-7
Lane FUSE. oo e e e e e e 3-7
POD ASSEMBLY ...t e e, 3-8
LOGIC STATE ANALYZER (LSA) ASSEMBLY................ 3-9
SERIAL PORTS. .. e e e 3-10
Baud Rate. . ..ot e 3-10

Section 3: Hardware Table of Contents { cont)

Page

Upload/Download. ..ot iiieanns 3-10

Pin Configurations.c.vutiriiiiiit i iiiiieiieieenanns 3-10
Data Requirements. ...o.oviiii it i e 3-12
SO Bt o vt i ittt e e 3-12
ParIty. ... iiiiiiiiiiiiiiiiiiiiiicciciiaiaeiacaaeea. 3712
Hardware Handshake........... ... it 3-12
Software Handshake XON XOFF..............cccoiiiia., 3-12
MAINTENANCE. ... e e 3-14
Cables. . oo e e e 3-14
Probe Tip Assembly. ...ttt 3-14
Cleaning the Fan Filter....................ooiiiiiia.L. 3-15
PartS. .o e i 3-18
TROUBLESHOOTING. ...ttt ce i 3-19
ES1800 EMULATOR SPECIFICATIONS.cooviiin... 3-20
Input POwer.o e 3-20
Standard. ... e e 3-20
OptIonal. ..o e 3-20
Environmental.............ooiuiiiiiiiiiii i 3-20
Operating Temperature.covvninee i eiieeeeranenns. 3-20
Storage Temperature............coviiiiniiiiniirnnenennnn.. 3-20
Humidity. ... e 3-20
Physical.o 3-20
Mainframe. 3-20
EmulatorPod............c i 3-20
Target System Connection (total length including pod).... 3-21
LSA Pod. .. o 3-21
Total Weight. ... i 3-21

ShIPPING. .ottt 3-21

Section 3

HARDWARE

Emulator Chassis Assembly

The Emulator chassis is the metal enclosure housing the control boards for
the target system. This rack-mountable chassis houses up to six boards as
shown in the figure on page 3-4.

The Emulator power supply is also in this chassis. A power switch on the
rear panel is the only external panel control.

WARNING!

A cooling fan and vent for the Emulator are located on the left
side panel of the chassis. The warm air exhaust vent is in the
right side panel. Blocking either of these panels may cause the
Emulator to overheat.

SYSTEM GROUNDS
The ES1800 Emulator has three grounding systems:

1. A chassis ground from the metallic enclosure of the unit
to the power filter.

2. An AC protective ground from the green ground wire of
the AC power cord and the chassis ground at the power
filter.

3-1

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

3. A signal ground connected by means of a jumper at the
power supply terminal strip to the chassis ground. The
Emulator has a three-wire power cord with a three-
terminal polarized plug. The ground terminal of the plug
1s connected internally to the metal chassis parts of the
Emulator.

WARNING!

Failure to ground the system properly may create
a shock hazard.

3-2

Section 3: Hardware

Emulator Control Boards

Removing the front panel of the Emulator chassis exposes the chassis card
cage as shown in Figure 2. Open this panel by turning the two knobs in the
upper corners of the front panel counterclockwise.

Main Control Board

Memory Control Board

Trace/Break Board

RAM Overlay
Board(s)

Emulation Board

The main control board holds the
controlling 6809 CPU for the Emulator, the
EEPROM, two serial ports, and RAM. The
16-position thumbwheel switch on this
board determines the system variables and
serial line baud rates for autoloading on
power-up. Refer to page 3-5, for each
switch position setup. Switch position 0
autoloads default system variables.

The memory control board holds the
memory management logic and optional
symbolic memory. The three-position
toggle switch below the main control board
thumbwheel switch must be in the center
position. If the toggle switch is in either of
the other two positions, the Emulator will
not work properly.

The trace/break board holds trace memory,
the Event Monitor System, and the logic
state analyzer (LSA) interface.

The RAM overlay board set is optional and
can hold 32K, 64K, 128K, 256K or 512K of
memory. 512K of memory requires a slave
board.

There are six different emulation boards,
depending on the target microprocessor you
are using. (Refer to the diagram on the
following page for the location of the label
indicating the processor type.)

3-3

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Figure 2. Control Boards

THUMBWHEEL SWITCH

k|

MCB TOGGLE SWITCH

COOLING FAN

COOLING VENTS
RAM OVERLAY BOARD

TRACE/BREAK BOARD

MEMORY CONTROL BOARD

EMULATION BOARD

MAIN CONTROL BOARD

POD CONNECTOR OPENING

LSA POD CONNECTOR OPENING

FRONT PANEL RELEASE KNOBS

3-4

Section 3: Hardware

Emulation Board
Thumbwheel Switch Settings

POSITION PARAMETERS BAUD RATE
Factory Default* 9,600

1 User "Q" defined User defined
Terminal control

2 User """ defined User defined
Terminal control

3 User "O" defined User defined
Computer control

4 User ™" defined User defined
Computer control

5 Factory Default* 110

6 Factory Default* 300

7 Factory Default* 1,200

8 Factory Default* 2,400

9 Factory Default* 4,800

A Factory Default* 7,200

B Factory Default* 19,200

C,D,E,F Reserved for factory use

*Factory Default Parameters

- 8-bit word length - one stop bit

- no parity - full duplex

- Terminal control - XON and XOFF are recognized

- no echo - baud rate the same for both terminals

8th data bit set to 0 (space)

3-5

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Emulator Chassis Rear Panel

The rear panel of the Emulator mainframe is shown in Figure 3 on page

3-7.

Serial Ports

Trigger Output

3-6

"fhe two serial ports are RS 232C ports

labeled and [coMpPUTER]. Pins are
discussed on page 3-10.

System configuration determines which
port your peripheral equipment connects to
(see page 1-4).

The ES1800 Emulator provides a TTL
trigger strobe output controlled by the
Event Monitor System. The trigger output
is available at a BNC connector on the rear
panel of the chassis and on a clip lead
attached to the optional logic state analyzer
(LSA) pod. Refer to Section 7 for
information on Event Monitor System
actions.

The trigger can be used for such things as:

mSynchronizing an
oscilloscope to the execution
of an I/O routine.

m Measuring the duration of a
routine by asserting the
trigger for its duration and
using a timer-counter.

m Cross-coupling two or more
Emulators so that an event
in one can control events in
the others.

Section 3: Hardware

Power Switch Before powering up, two items should be
checked:

1. Proper grounding of power cable
(see page 3-1).

2. Proper power-up sequence of
Emulator, target system, and/or
peripheral equipment. (See Power-
Up Sequence, page 2-5.)

Line Fuse A 3 amp slow-blow fuse for 110V operation
or a 1.5 amp slow-blow fuse for 220V
operations. Remove the fuse by turning the
fuse holder counterclockwise.

Figure 3. Rear Panel

115V/230V SWITCH
LINE FUSE

® TERMINAL @®
O ra COMPUTER
° S °
3 AMP/115 VAC
D 1.5 AMP/230 VAC
>
T $iGER @ @ @
L AC POWER CONNECTION
TRIGGER OUTPUT

POWER SWITCH

3-7

ES1800 Emulator Reference Manual for 80186 /188 Microprocessors

Pod Assembly

The pod assembly is the link between the ES1800 Emulator and the target
system. A 40-inch ribbon cable assembly connects the pod assembly to the
Emulator board. An 11-inch ribbon cable assembly ends in a probe tip
that is normally inserted into the microprocessor socket in the target
system.

The proper pod assembly is determined by the microprocessor being
emulated.

To install the probetip, remove the retainer clip from the LCC socket,
place the probe tip in the socket as you would the microprocessor, then
replace the retainer clip. Always check that pin 1 is aligned correctly.

On older model probes, the tip may be removed using the thumbscrew, to
allow for easier access to the retainer clip.

Figure 4. Pod Assembly

i
S Tacresstens

EP-80186/188
EMULATOR POD

3-8

Section 3: Hardware

Logic State Analyzer (LSA) Assembly

An optional feature, the logic state analyzer (LSA) pod assembly connects
directly above the Emulator pod assembly. The LSA assembly includes a
pod, cables, and probe clips. The LSA pod provides 16 input lines and one
trigger output line.

The one trigger output line behaves the same as the BNC signai on the rear
panel of the Emulator and can be used with an oscilloscope. This allows
triggering an oscilloscope or external logic analyzer for events that are set
up in the Event Monitor System with a ‘““then TGR” statement.

Figure 5. Logic State Analyzer Pod Assembly

3-9

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Serial Ports

Both the terminal port and the computer port end in standard RS232C
female connectors. Make sure peripheral hardware is connected to the
correct port.

Baud Rate Baud rates and data lengths for each port
are independent. Refer to the SET
command (page 5-3) for available baud
‘rates on each port.

Port Control Only one port can be the controlling port.
Either port can give control to the other
port. (See page 5-30, 5-35, 5-36.)

Upload /Download The Emulator accepts commands to begin
uploading/downloading from either port.
However, the Emulator uploads/downloads
hex format data files only through the
computer port.

Your system configuration determines which port should be in control.
Refer to pages 1-4, and 3-5.

PIN CONFIGURATIONS

The pin configuration of your equipment (terminal, PC or host) may not
match that of the Emulator. It is important to be familiar with the pin
configurations of all peripheral equipment you intend to use with the
ES1800 Emulator.

The ES1800 Emulator is configured as “Data Terminal Equipment” (DTE).
Before powering up, make sure the ES1800 Emulator system and
peripheral hardware are compatible. Pins 1, 2, 3 and 7 must be connected
to peripheral hardware. Pins 4 and 5 need to be connected if peripherals
attached to the Emulator use these pins.

Both Emulator serial ports use the same pin assignment. All pin
assignments and voltage levels conform to Electronics Industries
Association (EIA) RS232C standards. The following chart lists the signals
present on each pin.

3-10

Section 3: Hardware

Pin

Name

Description

8-25

Protective Ground

Serial Data Out

Serial Data In

Request to Send (Output)

Clear to Send (Input)

Not Used

Signal Ground

Not Used

Connected in the Emulator to
logic ground.

This signal is driven to nominal
t12 voltage levels by an RS232C
compatible driver.

Data is accepted on this pin if the
voltage levels (x12V) are as

specified by RS232C
specifications.

This signal is driven to nominal
+12V levels by an RS232C
compatible driver. It signals other
equipment that the Emulator is
ready to accept data at this port.

An input signal to the Emulator
indicates that another piece of
equipment in the system is ready
to accept data. This signal is
terminated so the Emulator
operates with the signal
disconnected.

Connected in the Emulator to the
system logic ground.

These pins are not used by the
ES1800 Emulator, but may be
required by your peripheral
hardware.

3-11

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

DATA REQUIREMENTS

Stop Bits

Parity

Hardware Handshake

Software Handshake
XON XOFF

3-12

The Emulator software transmits and
receives 8-bit ASCII characters. The
number of stop bits is determined by SET

: ~ e A

S R ¥) Lo 4l n 2 1 cm o oae
parameter #11 for the terminal port and

#21 for the computer port (see page 5-3).

The Emulator sends and checks parity
according to system SET parameter #12 for
the terminal port and #22 for the computer
port. These two SET parameters are listed
on the SET menu (page 5-3).

Each character consists of a start bit
followed by 8 data bits. When no data is
being transmitted, the serial data out pin
(pin #2) will be at the 12V level.

When the Emulator is ready to receive data,
it asserts the Request To Send line (pin #4).
When a receive buffer is nearly full, the
Emulator deasserts the Request To Send
line.

When the Emulator is ready to transmit
data, it checks the status of the Clear To
Send line (pin #5). Data is transmitted only
when Clear To Send is high.

The ES1800 uses normal flow control codes
to control software handshaking. The
default values are XON (DC1) and XOFF
(DC3). You can change these values (see
page 5-3).

The ES1800 serial I/0 system contains
internal buffers to smooth the transmission
of data via the serial ports. If an input
buffer becomes nearly full, the system

Section 3: Hardware

immediately transmits an XOFF character.
When the software empties the input
buffer, the system transmits an XON
character.

Although the user cannot overfill the input
buffer from a controlling terminal, a
controlling computer is quite capable of
doing so. The input buffer for the
computer port is 64 characters deep. When
eight characters have been placed in the
computer input buffer, the XOFF character
is transmitted. Allowing two character
times for skew, the computer must transmit
no more than 54 characters until the next
XON from the ES1800.

The RTS hardware handshake follows the
software handshake described above. When
an XOFF is transmitted, RTS is dropped on
that I/O port; when an XON is transmitted,
RTS is reasserted.

3-13

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Maintenance

Maintenance of the ES1800 Emulator has been minimized by the extensive
use of solid-state components throughout the instrument. There are three
areas where you need be concerned.

CABLES

The interconnect cables are the most vulnerable part of the instrument,
due to constant flexing during insertion and extraction. First, inspect the
cables for any obvious damage, such as cuts, breaks, or tears. Even if you
have thoroughly inspected the cables and cannot find any damage, there
may be broken wires within the cables (usually located close to the ends).
A broken wire within the cable will cause the instrument to run erratically
or intermittently if the cables are flexed during emulation (run) mode. By
swapping the cables in question with a known good set of cables, you can
easily isolate the faulty cable.

PROBE TIP ASSEMBLY

The probe tip assembly consists of a ceramic lead-less chip, four ribbon
cables and an adapter board. The adapter board is inside the pod case.
When the Emulator is not in use, the protective cover should be installed
over the ceramic chip to prevent cable abrasion and to protect it from
being damaged by other objects. Folding or kinking of the ribbon cables
may result in premature failure.

3-14

Section 3: Hardware

CLEANING THE FAN FILTER

The fan filter should be cleaned regularly. The recommended interval is
every 90 days. If you are working in a dusty environment, you may need
to clean the filter more frequently.

1. Unplug the ES 1800.

WARNING!

Electrical shock and moving fan parts are
dangerous. Make sure you unplug the unit before
proceeding.

2. Remove the front cover of the ES 1800. (Loosen the two
captive fasteners.)

3. Remove the top cover of the ES 1800. (Unscrew six
screws and lift the cover off.)

3-15

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

4. Unscrew the two screws at the top of the chassis which
hold the fan in place.

ES 1800 Fan Mounting

3-16

Section 3: Hardware

10.

11.

Tilt the fan towards the boards in the chassis.

ES 1800 With Fan Tilted for Easy Access to Filter

T FAN FILTER

Remove the fan filter.

Rinse the fan filter in cold water. Thoroughly shake out
the excess water.

. Replace the fan filter.

Tilt the fan back into the correct position.

Replace the screws connecting the top of the chassis to
the fan.

Replace the top and front covers.

3-17

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

PARTS

The following parts are available for you to order:

Probe tip assembly
Short cable set
Long cable set

3-18

Section 3: Hardware

Troubleshooting

Check that the interconnect cables are installed properly in a compatible
target system, with power applied to both the target system and the
Emulator before starting troubleshooting procedures.

The most common probiems encountered are listed beiow. We recommend
that you contact Customer Service at Applied Microsystems Corporation if
you experience any problems that do not fall within this range of items.
Before you call our service department, display your software revision
number by typing REYV (page 5-124). You will be asked for the revision
number and serial number when you call. Also, record the serial number
located on the back of the chassis.

We do not recommend a component-level repair in the field, unless
performed by a qualified service engineer.

Troubleshooting
SYMPTOM POSSIBLE CAUSES
Target system 1. Faulty interconnect cables

runs erratically
2. Emulator and target system not compatible

3. LDV not executed before RUN (vector not loaded).

Emulator does 1. Baud rate set incorrectly.

not communicate

over RS232 2. Target system requires "null" modem
cable (pin 2 and pin 3 of RS232 connector)
reversed.

3. Emulator configuration incorrect

3-19

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

ES1800 Emulator Specifications

INPUT POWER
Standard 90 to 130 VAC
47 to 63 Hz
consumption less than 130W
Optional 180 to 260 VAC
47 to 63 Hz
consumption less than 130W
ENVIRONMENTAL
Operating Temperature 0°C to40°C (32 °F to 104 °F)
Storage Temperature -40 °C to 70 °C (-40 °F to 158 °F)
Humidity 5% to 95% relative humidity, non-
condensing
PHYSICAL
Mainframe 13.2cm x 43.18 cm. x 34.29 cm.
(6.21in. x 17 in. x 13.51n)
Emulator Pod 226 cm. x12.9cm. x4.1 cm.

(891in. x5.1in. x 1.6 in.)

3-20

Section 3: Hardware

Target System
Connection (total
length including pod)

LSA Pod

Total Weight

Shipping

1.5 m (60 inches)

124cm. x79cm. x2.3cm.
(49in. x3.1in. x.91in.)
9.1 kg. (20 1bs.)

10.9 kg. (24 1bs.)

3-21

SECTION 4

"~ Table of Contents

ES Language

STRUCTURE OF THE ESLANGUAGE.o...... 4-1
NOTES ON ESL. ...ttt it ettt e ieeieiaaaes 4-6
Command Line.........ccoiiiiiiiiiiii it ii it iieeienennns 4-6
2= 01§ 4-6
Command Statement.ouiiiiiiitiniiiiiiieainecananns 4-6
Single Character Instant Commands.................cccvenn.. 4-7
Command MNemoOniCs. ..vueereieeeeeteeeeeeaeaeearanennnnn. 4-8
254 0] €110 (0] o VAU 4-8
SYMDOIS. .t e e 4-10
JA 021 o< 4-11
Base. .. e 4-12
EXpression List.....couiiiiiniiiiiiiiiiiiiiiiieiennnenanns 4-12
Assignment Command...........ccoviiiiiiiiiiiiiii .. 4-12
Event Monitor System Control Statement................... 4-14
5 0 1o TR 4-14
EVent. o e e e e e, 4-15
DS UM IV, oottt ettt et e 4-15
L070) 1§ 118 el 5 7 4-15
Unary Operator. ...ttt e, 4-16
100723 ¢ 8 () N 4-17

Modulo. ... e 4-17

Section 4: ES Language Table of Contents (cont)

Page

5 1 0 7 4-20
Software SWitChes.ooiiiiiiii i i 4-20
Communications Set-UpP......oviviviiieinenininrrnrnenennnn. 4-20
Special Diagnostic Functions.coveveen......4=-20

g 20 107 g U 7S 4-23
b 4-23

R i e e e e e 4-23
SPECIAL MODES. e, 4-24
Byte Mode/ Word Mode. ..ot 4-24
Line Assembler.........oouiiiiiiiii ittt 4-24
Memory Disassembler..........coviiiiiiiiiiiiii i 4-24
Memory Mode.ooviiiiiii i 4-24
I/OMoOde. ..o e 4-24
Transparent Mode.ttt 4-24
SPECIAL CHARACTERS.o 4-25
DELETE. .. i e e et 4-25
BACK SPACE. ... e i e 4-25

O 1 28 P G 4-25
CTRL R e e 4-25
CTRL Z. oo e e 4-25
ESC ESC. .. e 4-25

O 1 4-25
CTRL Q. ettt e e 4-25
ERRORS .. e 4-26

Section 4

ES LANGUAGE

Structure of the ES Language

The command language used to control the ES1800 Emulator is a formal
language. Once you understand the basic concepts of this language, you
can apply the full debugging power of the Emulator. An overview of the
structure of the ES language is presented in the accompanying table. A
more detailed description of the language elements, the help menu,
prompts, special operating modes, and ES language error messages are also
included in this section. Items in angle brackets ([<>]) are mandatory and
must be entered as part of the command.

Items shown in square brackets ([11]) are optional. Do not type the angle
or square brackets when typing a command.

If the ESL command interpreter detects an illegal statement, it beeps and
places a question mark under the command line near the position the error
was detected. Enter a[?] following an error to display the appropriate error
message.

4-1

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

ES Language Syntax

Language Element Example

Command Line
[Repeat] Command Statement [;Command Statement] ... <RETURN>

Single Character Instant Command

Repeat
<*> *STP;DT
<*><Repeat limit> *Q STP;DT
Repeat Limit:
Decimal number only (1 to 232—1) 87651234
Command Statement
Command Mnemonic DTB
Command Mnemonic <Expression> MM CS:IP + 4
Command Mnemonic <Expression List> SET #20,#14
Assignment Command CS = OFA9
Expression 2 * GRS
Event Monitor Systermn Control Statement WHEN AC1 THEN BRK

Single Character Instant Command
< /> (repeat previous command line)
<,> (execute macro 1 or decrement scroll in memory mode)
<.> (execute macro 2 or increment scroll in memory mode)
<7?> (help)

Command Mnemonic

<1 or more alpha characters>[1 or more decimal characters] ASM

Expression
[Unary Operator| Ivalue -2473
Ivalue <Operator> Expression 2 - 3F6C%0
<@> Expression 0240; JAASS: SP
<(> Expression <)> 2 * (-2 +3)
Nvalue <:> Nvalue CS:1234

4-2

Section 4: ES Language

ES Language Syntax (cont)

Language Element Example
Ivalue:
Symbol main
Nvalue
Symbol:

<’><1 or more printable characters><space or return>

Nvalue:
Number 7FA36
Register Name 1P

Register Name:
<1 - 8 Alpha characters>[0 - 2 decimal digits]

Number:
[Base]<1 or more digits> %0101001

Base:
<%> (binary)
<\> (octal)
<#> (decimal)
<$> (hexadecimal)

Expression List
Expression <,> Expression [,Expression list]... 1,CS:1P,2+42,-6

Assignment Command

Svalue <=> Expression IP = Q0FFFFO
<@> Expression <=> Expression @SS:SP = CS:IP
Svalue:
Symbol 'Test_result
Register Name MMP

4-3

ES1800 Emulator Reference Manual for 80186 /188 Microprocessors

ES Language Syntax (cont)

Language Element

Example

[Disjunctive] <Event Comparator>
Event <Conjunctive> <Event>

Disjunctive:
<NOT>

Event Comparator
<AC1>[.Group]
<AC2>[.Group]
<DC1>[.Group]
<DC2>[.Group]
<81>[.Group]
<82>[.Group)
<CTL>[.Group]
<LSA>[.Group]

Conjunctive:
<AND>
<OR>

Action List

<Action>[,Action]...

4
t

Event Monitor System Control Statemen

[Group] <WHE[N]> Event <THE[N]> Action List
Group:

<1>

<2>

<3>

<4>
Event:

WHEN AC1 THEN BRK

2 WHE AC1 THE BRK

NOT AC1
DC2 OR NOT AC1

AC1.3

CTL.4

TRC, TGR, FSI

4-4

Section4: ES Language

ES Language Syntax (cont)

Language Element Example
Action:
<BRK>
<TRC>
<TOT>
<CNT>
<TOC>
<RCT>
<TGR>
<FSI>
<GRO Group> GRO 3
Unary Operator
<ABS> ABS GD3
<!> 10AA
<-> -3
Operator
Mul.op
Add.op
Shft.op
<&> GD4 & OFF
< > DC2.3 ~ OFFGO
Mul.Op
<*> 2 *3
</> OFAC / %01001
<MOD> GD5 MOD 7
Add.op
<+> GRO + IP
<-> 2(SS:SP - &)
Shft.op
<<<> DC1 << 3
<>>>

4-5

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Notes on ESL

Command Line

Repeat

Command Statement

4-6

A command line is created by entering one
or more characters after the ESL prompt
(see page 4-23 for a description of the
various prompts). One or more command
statements can be placed on a single
command line. Multiple command
statements must be separated by a
semicolon. The command line is limited to
76 characters and must be terminated with a
return. The only way to extend command
lines is by using macros (see page 5-102).

Backspace or delete characters may be used
to delete the previous character entered on a
command line. CTRL X deletes the entire
line. CTRL R redisplays the current line
(useful for hardcopy terminals).

If an asterisk ([*]) is the first character on
the command line, the entire command line
will be repeated indefinitely. If the asterisk
is followed immediately by a decimal
number, the command will be executed that
many times. A repeating command line
may also be terminated by setting the TST
register to zero within the command line.
This allows you to repeat something until a
condition is met.

There are several special modes in which
the above command statement rules do not
apply. In memory mode (see page 6-40),
entering a on an empty line causes
the next location to be read. Entering a
value followed by will cause that
value to be written to memory. I/0 mode
(page 6-38), the line assembler (see page

Section4: ES Language

Single Character
Instant Commands

6-30), memory disassembler (page 6-36),
and main help menu (page 4-20) all have
special modes that alter the normal
execution of ESL commands.

These commands are processed immediately
when they are the first character entered on
a command line. The forward slash
character ([/]) will cause the previously
entered command line to be repeated.

>STP
>/
>/

This command single steps three times.

The comma ([,]) executes macro 1, and the
period ([.]) executes macro 2. However, if
you are in memory or I/O mode, the period
moves you to the next higher memory
address, while the comma moves you to the
next lower address.

The question mark ([7]) also has two uses.
It can be entered after the command
interpreter detects an error and beeps. If
you are ‘‘beeped,” enter a and the
command processor will give you an error
message describing the problem it detected.

A [?] entered at any other time (i.e., not after
an error), causes a two-page Help Menu to

be displayed. A moves you from
the first page to the second. Any other

character terminates the Help Menu.

4-7

ES1800 Emulator Reference Manual for 80186 /188 Microprocessors

Command Mnemonics

Expression

4-8

Command mnemonics are the alpha-
numeric character strings that identify a
specific ESL command. Command
mnemonics are formed from 1 to 3 alpha
characters followed by 0 to 2 numeric
characters. Extra characters in between are
ignored. For example, [WHEN] i1s the same as
[wHE] and is the same as [GR45]. See the
Appendices for a list of all ES language
mnemonics.

An expression can be an integer value, an
alpha/numeric value, or an equation.

Parentheses may be used to alter the normal
precedence of operations. The Emulator
recognizes parentheses just as they are
treated in algebraic equations. You can use
as many levels of parentheses as you need.
The only limitation is that statements can be
no more than 76 characters long.

Parentheses are not allowed in
WHEN/THEN clauses.

The expression processor can resolve
arbitrarily complex expressions.

@(GDO +3) = IP + #100 * (DX >> 4) +0AF34

This example retrieves the value of the DX
register, shifts it right 4 bit positions
(divide by 24), multiplies the result by 100
decimal, adds 0AF34 and the contents of
the IP register, and writes the result to the
location 3 bytes above the address in GDO.

Section4: ES Language

A more common and useful example might
be:

ASM CS:IP

This computes the address CS:IP and starts
up the line assembler at that address. The
expression:

'Interrupt + 146

by itself will add 1A6 to the current value
of the symbol, Interrupt, and display the
result. If you do not assign the results of an
expression to a location or register, the
result is displayed as a 32-bit value.

The [d] operator is an indirection operator.
(where is an expression) refers to
the value in memory at the address [Exp]. If
the is on the left side of an [=] then the
value from the right side of the [z] will be
loaded into memory at the address [Exp]. At
all other times, simply reads a value
from memory. is a simple way to
read something from the stack pointer. It is
legal to have multiple indirections, e.g.,
[2AGRO = ama(Ss:SP + 6)]. Byte mode and word
mode affect the length of data transferred
to or from the target by the [a] operator.

The [] operator mimics the arithmetic
combination of segment and pointer
registers in the 80186/88 microprocessor.
The value on the left side of the colon is
shifted left 4 bits, added to the value on the
right side and, finally, the total is masked to
20 bits. The colon operator is handled at

4-9

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Symbols

4-10

the preprocessor level and thus has higher
precedence than normal math operators.
The colon operator must be used only
between actual numbers or register names;

e.g., is fine but is illegal.

All other math or logic operations are
evaluated according to the order given in
the following section on operators.
Parentheses may be used to alter the normal
precedence. Unary operations must be
enclosed in parentheses if they occur within
another expression; e.g., 1s illegal, but
[2+¢(-1)] and [-1+2] are legal.

Certain combinations of expression types
and operators are illegal or have complex
results. See Results of Dyadic Operator
Combinations table on page 4-19.

Some commands can accept a variety of
argument types. The display block (DB)
command accepts an integer, a range, or no
argument at all. Other commands require
that a certain argument type be used. The
upload UPL command requires a range
argument. See the discussion on Numbers,
below, for types.

If you have the symbolic debug option
installed in your ES1800 Emulator, you can
use symbolic references. Every symbol
must begin with a single quote ([7]).
Symbols are composed of 1 to 64 printable
characters followed by a space or [RETURN].
Symbols can be used anywhere a register or
a number is used, with the exceptions that
symbols are not valid with the colon
operator or the repeat ([*]) operator.

Section 4: ES Language

Numbers

The ES1800 has a default base register. It is
assumed that numbers entered without a
leading base character are being entered in
the default base. Generally, the default
base is hexadecimal (factory default). See
page 5-80 for more information on
changing the default base register.

There are three different types of numbers.
An integer is a 32-bit signed value.

A don’t care is a 32-bit value with a 32-bit
mask. For each bit set in the mask, the
corresponding bit position in the value is
ignored during Event Monitor comparisons.
Don’t cares can be entered in two ways.
[1234 DC OFF0] 1s explicit. [1xx4] is equivalent
to [1FF4 DC OFF0]. Don’t cares are useful for
setting the Event Monitor System event
comparators (see page 7-2).

The third number type is range. A range is
specified by entering a start address and a
length or an endpoint. [200 LEN 20] is the
same as [200 10 21F]. Ranges can be either
internal (default) or external. An explicit
range type can be specified by using the
prefix IRA or XRA. is the same
as [IRA 0 LEN 100]. The [1] operator inverts the
type of a range value. [1(0 LEN 100)] is the
same as [XRA 0 LEN 100/, which means
everything but addresses 1 to O0OFF. The
endpoints are always included in the range.
Regardless of the method of entering (TO,
LEN), range values are always displayed as
“start TO end.”

Ranges, don’t cares, and integers are not
generally interchangeable. Certain registers
can only hold certain data types. All
registers can hold integers. Address type

4-11

ES1800 Emulator Reference Manual for 80186 /188 Microprocessors

Base

Expression List

Assignment Command

4-12

registers cannot be loaded with don’t care
values. Status and data registers cannot be
loaded with range values. See page 5-70 for
a list of all registers and their data types.

To enter a character in any base other than
the default, use a leading base character:
= binary, [\] = octal, [# = decimal, and [$] =
hexadecimal.

Lists are required by a few commands.
They can also be used for implicit
evaluation. For example, in pause mode,
entering the three numbers
[%010011010, #128, \77347] causes the Emulator
to display their equivalent in the default
display base (usually hexadecimal). Lists
are limited to nine elements. Lists are used
in memory and I/O modes as well.

Svalues are the names of registers or
symbolic references. The form
[@Expression = Expression] Will cause the left
side expression to be calculated and used as
an address at which to store the value of the
right side expression. Note that since
[RExpression] i1s itself an expression,

commands such as [@ass:sp_= 0] are legal and
useful.

Registers are grouped into three types:
integer only, don’t dare, and range. Any
register can be assigned an integer value.
Don’t care registers can be loaded with
don’t care values or integers but not ranges.
Range registers can be loaded with integers
or ranges but not don’t care values. See
page 5-70 for a list of all registers and their
data types.

Section 4: ES Language

The indirection operator [allows
expressions to include values transferred to
or from the target system memory address
space. The expression becomes the address
of a target system byte.

In physical mode, more than one [8] operator
in an expression displays a quantity pointed
to by another quantity located in the target
system memory. The Emulator evaluates
the expression following the [a] operators,
considers it an address, and looks at the
value stored at this address. The value at
this address is also considered to be an
address. This address is accessed and
displayed.

Parentheses may be used to affect the
processing of the [3] operator:

>3 GD4 + 6
> (GD4 + 6)

In the first example the indirection operator
is applied to [6b4]. The command interpreter
accesses the target system location pointed
at by [6D4], adds six to the value stored there,
and displays the final results.

In the second example, the Emulator
displays the value stored in the sixth
location above the address pointed to by
GD4].

4-13

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Event Monitor System
Control Statement

Group

4-14

Memory mode always executes memory
reads. This may be unacceptable for certain
hardware configurations. To store values
without entering memory mode, use:

>® <address> = <data>

This causes the system to load data into the
specified address.

Event Monitor System statements describe
combinations of target program conditions
and the corresponding actions to be taken if
the conditions are met; they do not describe
mathematical or logical computations. Be
aware that normal expression operators are
illegal when specifying Event Monitor
System statements. These statements are
discussed in detail in Section 7, Event
Monitor System.

The Event Monitor System (EMS) is
arranged in four independent groups.
These groups provide a state-machine
capability for debugging difficult
problems. An EMS control statement can
only be associated with one of the four
groups. If no group numbers are mentioned
in the EMS control statement, the statement
is assigned to group 1. There are two ways
to override this default selection of group 1.
You can begin the EMS control statement
with a group number, or you can append a
group number to any one of the vent
comparator names. For example:
[3 WHEN Ac1 THEN BRK] is functionally the same
as [WHEN AC1.3 THEN BRK]; both use group 3.
You cannot mix group numbers within a
single EMS control statement.

Section 4: ES Language

Event

Dis junctive

Conjunctive

You can define an event to be some
combination of address, data, status, count
and logic state probe conditions. Numerous
Event Monitor System control statements
can be entered and will be in effect
simultaneously. Conflicting statements may
cause unpredictable action processing.
Parentheses are not allowed in event
specifications.

The NOT operator is used to reverse the
sense of the comparator output. NOT has
higher precedence than either of the
conjunctives, AND and OR.

WHEN AC1 AND NOT DC1 THEN BRK

This statement means break whenever any
data pattern other than that in DClI is
written to the address in AC1.

AND and OR can be used where needed to
form more restrictive event definitions.
AND terms have higher precedence than
OR terms.

AC1 AND DC1 OR DC2

This event is equivalent to [Ac1_AND DC1] in
one statement and in another. If you
are looking for two different data values at
an address, use:

AC1 AND DC1 OR AC1 AND DC2

4-15

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Unary Operator

4-16

The OR operator is evaluated left to right
and is useful for simple comparator
combinations. For complex event
specifications, OR combinations can be
replaced with separate EMS control
statements for clarity.

AC1 AND S1 OR AC2 AND S2

This event is the same as [Ac1 anD s1] and
AC2 AND S2?] in separate statements.

All internal computations use 32-bit math.
Values entered with a leading [] are
converted to signed numbers; e.g., [[1] is
stored internally as [SFFrrrFFF]. Internal
math, however, is signed only for the 1, [,
*], operations; [-5+3] is [SFFFFFFFE|, while

is reduced to [S7FFFFFFF].

ABS converts a signed number to its
absolute value.

] is a logical NOT operator and
compliments all 32 bits of a number. If the
number is a range, the range type (internal
or external) is inverted.

Unary operators have the highest
precedence. is 1.

Section 4: ES Language

Operator

Modulo

The operators are listed below in
descending order of precedence. Operators
of the same type are evaluated left to right.

Mul.op:

* Multiply

/ Divide

MOD Modulo
Add.op:

+ Add

- Subtract
Shft.op:

>> Right shift

<< Left shift
& Logical AND
~ Logical OR

The MOD operator. The result of this
operation is the remainder after the value
on the left has been divided by the value on
the right.

>29 MOD 4
result = 1
>38 MOD 6
result = 2

4-17

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Results of Single- Argument Operators

Operator Argument Result
! Integer Valid
DC Don't care bits are not affected.
IRA Complement (IRA becomes XRA)
ABS Integer Valid
DC Don’t care bits are not affected.
IRA Invalid
XRA Invalid
- Integer Valid
DC Don’t care bits are not affected.
IRA Invalid
XRA Invalid
@ Integer Valid
DC Invalid
IRA Invalid
XRA Invalid

4-18

Section 4: ES Language

Results of Dyadic Operator Combinations

Left Hand Right Hand
Expression Expression Operator Result
Integer Integer * IMOD Valid
& * Valid
<< >> Valid
+ - Valid
Integer Don’t care MOD Illegal
*/ Don’t care bits are passed to
the left hand argument.
&~ Don’t care bits are passed to
the left hand argument.
<< >> Don’t care bits are passed to
the left hand argument.
Integer IRA XRA * /MOD Invalid
& - Invalid
<< >> Invalid
+ - The endpoints of the range will
be altered by the value of the
integer expression.
Don’t care Don’t care * /MOD Invalid
& ° Invalid
<< >> Invalid
+ - Don’t care bits are ANDed.
Don’t care Integer * /MOD Don’t care bits are kept.
& ° Valid
<< >> Don’t care bit positions are
shifted.
+ - Don’t care bits are kept.
IRA, XRA Integer * /MOD Invalid
& ” Invalid
<< >> Invalid
+ - The end points of the range

will be altered by the value of
the integer expressed.

4-19

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Help

There are two pages of help information available. Enter a [7] as the first
character of a command line to display the first help page. This page gives
examples of the most commonly used commands and their meanings. The
second page describes the Event Monitor System registers and commands.
Enter a at the end of the first page to move to the second page.
The menus are shown on the next two pages.

Information on switch settings, configuration settings, and special
functions is available without using the help menus. Other help menus are

described below.

Software Switches

Communications
Set-up

Special Diagnostic
Functions

4-20

Enter either or to display the
current settings and definitions of all
software switches, (see page 5-9).

Enter [sET] to display the current
configuration settings and possible values
(see page 5-3).

Enter to display a list of the available
special functions (RAM/ROM tests, Scope
loops, etc.) (see page 6-50).

Section 4: ES Language

First Page of Help Menu

>?

RUN/EMULATION:

STP - SINGLE STEP/STOP
RST - RESET TARGET SYSTEM

TRACE HISTORY:
DT - DISASSEMBLE MOST RECENT LINE

MEMORY - REGISTER COMMANDS:

DB X TO Y - DISPLAY BLOCK

BMO X TO Y,Z - BLOCK MOVE TO Z
MMS = ALT, COD, DAT, STA

X - EXIT MEMORY MODE

MEMORY MAPPING:
MAP X TO Y :RO :RW :TGT :ILG

COMMUNICATIONS:
DNL - DOWNLOAD HEX FILE FROM HOST
UPL X TO Y - UPLOAD HEX TO HOST

SYSTEM:
ON/OFF - VIEW/ALTER SWITCHES
ASM (X) - IN LINE ASSEMBLER

RUN/RNV - RUN/RUN WITH NEW VECTORS
RBK/RBV - RUN TO BREAKPOINT/WITH VECTORS
WAIT - WAIT UNTIL EMULATION BREAK

DTB/DTF-DISASSEMBLE PAGE BACK/FORWARD
DRT (X)-DISPLAY PAGE RAW TRACE (FROM X)

DR - DISPLAY ALL CPU REGISTERS

FILL X TO Y,Z2 - FILL BLOCK WITH Z
LOV/VFO X TO Y - LOAD/VERIFY OVERLAY
DEFINES STATUS LINES FOR MEMORY ACCESS
M X - VIEW/CHANGE MEMORY AT X

OVE = CD, DAT
DM/CLM - DISPLAY/CLEAR MEMORY MAP

TRA - TRANSPARENT MODE TERMINAL-HOST
CCT - TRANSFER CONTROL TO COMPUTER PORT
TCT - TRANSFER CONTROL TO TERMINAL PORT

SET - VIEW/ALTER SYSTEM PARAMETERS
SF - VIEW/EXECUTE SPECIAL FUNCTIONS
DIS(X) DISASSEMBLE FROM MEMORY

LD/SAV (X) - LOAD/SAVE 0=SETUP,1-REGS,2-EVENTS,3=MAP,4=SWITCHES,5=MACROS

4-21

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Second Page of Help Menu

DES -
CES -
DES X -
CES X -

EVENT ACTIONS:
BRK - BREAK

EVENT MONITOR SYSTEM

DISPLAY ALL EVENT SPECIFICATIONS

CLEAR ALL EVENT SPECIFICATIONS

DISPLAY ALL EVENT SPECIFICATIONS FOR GROUP X
CLEAR ALL EVENT SPECIFICATIONS FOR GROUP X

CNT - COUNT EVENT TGR - TTL TRIGGER STROBE

TRC - TRACE EVENT RCT - RESET COUNTER FSI - FORCE SPECIAL INTERRUPT
TOT - TOGGLE TRACE TOC - TOGGLE COUNT GROUP X - SWITCH TO GROUP X

EVENT DETECTORS - GROUPS 1,2,3,4:

AC1,AC2 OR AC1.X,AC2.X - 24 BIT DISCREET ADDRESS OR INTERNAL EXTERNAL RANGE
DC1,DC2 OR DC1.X,DC2.X
$1,82 OR S1.X,S2.X

16 BIT DATA, MAY INCLUDE DON'T CARE BITS
STATUS AND CONTROL - BYT/WRD + RD/WR + TAR/OVL
- + MEM/IOA + IAK/RIO/WIO/HLT/IF/RM/WM/NBC

- + ALT/COD/DAT/STA

LSA - 16 LOGIC STATE LINES, MAY INCLUDE DON'T CARE BITS

CTL - COUNT LIMIT, ANY NUMBER 1 TO 65,535

STEP 1 - ASSIGN EVENT DETECTORS STEP 2 - CREATE EVENT SPECIFICATIONS
AC1 = $1234;S1 = BYT + RM WHEN AC1 AND S1 THEN GROUP 2

AC1.2 = $4576+14*6;DC2.2 = $5600 DC $FF 2 WHEN AC1 AND NOT DC2 THEN CNT
CTL.2 - 24;AC2.2 = $F000 LEN $400 WHEN CTL.2 OR AC2.2 THEN BRK

4-22

Section4: ES Language

Prompts

Different prompts are displayed depending on the current operating mode

of the ES1800.

>

R>

$12345678 800 >
$12345678 300 R>
$12345678 30000 >
$12345678 80000 R>

The standard, or pause mode, prompt from
ESL consists of a space character followed
by a right arrow.

During emulation, the run mode prompt is
displayed. Most ESL commands are still
valid.

In memory mode, the prompt includes the
memory address and the data contained
there. Depending on whether byte mode or
word mode (BYM, WDM) has been chosen,
the data will be a byte or a word. The run
prompt may also be present during memory
mode.

¥¥% 8086,/88/186,/188 LINE ASSEMBLER V2.6LA ****

CSEG = 0000
0100 >

10:81200 >
10:81200 §00 >
10:81200 $0000 >
10:81200 R>
10:%1200 800 R>
10:$1200 80000 R>

The line assembler displays a 16-bit address
prompt. This prompt contains an [R} if you
are assembling during emulation.

In I/O mode, the prompt includes the 1I/0O
address. The data is included when a
is entered as the only character on
the line. The data field is affected by byte
and word mode. If emulating, the run
prompt will also be present.

4-23

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Special Modes

There are a few special modes you can enter, some of which must be exited
before using regular ESL commands. These modes can be identified by the
prompt displayed, or lack thereof.

Byte Mode/
Word Mode

Line Assembler

Memory Disassembler

Memory Mode

1/0 Mode

Transparent Mode

4-24

The BYM and WDM commands select byte
or word mode operation. The mode
selected determines whether 8- or 16-bit
data is used or displayed. If byte mode is
set, most data commands use byte values,
and the indirection operator reads a byte
from the address given. The same is true of
word mode.

The line assembler has a single 16-bit
address prompt. Exit by entering an [x] or
the END directive.

If initiated without a range argument, the
memory disassembler (DIS) displays a full
page of data, leaving the cursor at the lower
right corner of the screen. A
displays the next page of disassembled
memory. A causes only the next
instruction to be disassembled. Any other
character terminates memory disassembly.

Memory mode has an address and data
prompt. Exit by entering an [x].

I/O mode has an address prompt. Exit by
entering an [x].

No characters are generated by the ES1800.
Exit by entering the two- character escape
sequence (default is), or reset
(default).

Section 4: ES Language

Special Characters

DELETE
BACKSPACE

CTRL X
CTRL R

CTRL Z

ESCESC

CTRL S

CTRL Q

Either character deletes a character just
entered on a command line.

Deletes an entire command line.
Redisplays the current command line.

The default system reset character. Resets
the Emulator, stops emulation and/or clears
an error condition. It does not clear or
update Emulator registers. Used to
terminated certain diagnostic functions.
CTRL Z terminates an indefinitely
repeating command. You can change the
reset character (see page 5-3).

The default transparent mode escape
sequence, which terminates transparent
mode. You can change the transparent
mode escape sequence (see page 5-3).

The default XOFF character. When issued
from the keyboard, the screen display stops
scrolling, allowing you to see the
information. You can change the XOFF
character (see page 5-3).

The default XON character. Restarts the
screen display scrolling after an XOFF is
issued. You can change the XON character
(see page 5-3).

4-25

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Errors

The ES1800 software generates two basic types of error messages. ES
Language Syntax and operational errors in a command line are indicated
by a beep (BEL code). The next line displayed contains a single
underneath, and usually just after, the place in your command line that
caused the error. At the point the error is detected, the remainder of the
command line is discarded. For example, the DRT command is invalid
during emulation:

>WHE AC1 THE BRK; RBK; DRT; DR
<BEL> ?
R>

The RBK command was executed, but the DR command was not.
Whenever you see an error message of this type, you can enter a single [2].
The ES1800 responds with a text message explaining the error. For the
above example:

R>?

ERROR #56

TRACE DATA IS INVALID DURING EMULATION
R>

These error messages are described in this section. The second type of
error message is caused by target hardware problems. There are various
conditions that can occur in the target that prevent the pod processor from
operating. If these error messages are displayed, the problem must be
remedied before the ESI800 can be used. The error messages are quite
explicit: e.g., [NO TARGET cLOCK] or [RESET ASSERTED]. Target hardware error
messages are explained in Appendix B.

4-26

Section 4: ES Language

ES Language Error Messages

1,2,3

10

EXPRESSION HAS NO MEANINGFUL
RELATION TO REST OF COMMAND.
Often caused by entering symbols out of
context. [DR] and [BRK] are both legai, but
when entered together as [prR BRK] would
cause this error message.

UNDEFINED SYMBOL OR INVALID
CHARACTER DETECTED. Usually
caused by improper spelling.

CHECKSUM ERROR IN DOWNLOAD
DATA. The last record received was in
error. Make sure that the format selected in
the system set-up is the same as the format
of the received data. Refer to download
command (DNL) for error handling.

BAD STATUS = ..RETURNED FROM
EMULATOR CARD. Contact Customer
Service for ES Products.

ARGUMENT IS NOT A SIMPLE
INTEGER OR INTERNAL RANGE.
Don’t cares are not allowed in this context.

NO MORE OVERLAY MEMORY
AVAILABLE. You have not cleared the
map or you are trying to map in more
memory than is allowed. Contact Applied
Microsystems for optional overlay memory
expansion.

MULTIPLE-DEFINED EVENT GROUP.
Only one group may be referenced in any
event clause. Error is caused by trying to
mix event register groups in an event clause

4-27

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

11

12,13

14,15,16

17

18

19

4-28

(e.g., [2 WHEN AC1.3 THEN BRK| would cause this
error).

ILLEGAL ARGUMENT TYPE FOR
EVENT SPECIFICATION. Only the 8
event comparators may be used in the event
portion of a WHEN/THEN statement.

ARGUMENTS MUST BE A SIMPLE
INTEGER. Don’t care masks and ranges
not allowed.

OPERATION INVALID FOR THESE
ARGUMENT TYPES. Usually caused by
attempting arithmetic operations on
incompatible variables (e.g.,
[¢4 DC 9) + (IRA 500 to 700))]. (Same as error
23)

SHIFT ARGUMENT CANNOT BE
NEGATIVE. To shift a value in the reverse
direction, use the opposite shift operator,
or [<<], not a negative shift value.

TOO MANY ARGUMENTSIN LIST ... (9
MAX). When entering data in memory or
I/O mode, a list of only 9 values can be
entered on a single command line.

INVALID GROUP NUMBER ... (NOT IN
1-4). There are only four event groups
(1-4).

OPERATION INVALID FOR THESE
ARGUMENT TYPES. Often caused by
attempting arithmetic operations on
incompatible variables.

Section 4: ES Language

24

26

27

29

30,31

32

33

34

35

BASE ARGUMENT MUST BE A SIMPLE
INTEGER. Argument should be #0 to #16.

RANGE TYPE ARGUMENT NOT
ALLOWED AS DATA. Data can only be
expressed as masked values or integers.

ADDRESS ARGUMENT MUST BE A
SIMPLE INTEGER. Cannot use ranges or
masked values.

ILLEGAL DESTINATION - SOURCE
TYPE MIX. Caused by trying to store don’t
care data into a range variable or other
similar operations.

RANGE START AND END
ARGUMENTS MUST BE SIMPLE
INTEGERS. Cannot use masked values or
ranges.

RANGE END MUST BE GREATER
THAN RANGE START. and
10 to 5] are examples of invalid ranges.

RANGE START AND END
ARGUMENTS MUST BE SIMPLE
INTEGERS. Cannot use masked values or
ranges.

READ AFTER WRITE-VERIFY ERROR.
Data supposedly written to memory during
a download operation was read back as a
different value. The error message contains
the locations and results of the comparison.

WARNING - DATA WILL BE LOST
WHEN EMULATION IS BROKEN.
Caused by assigning values to CPU registers
during emulation. CPU registers are copied

4-29

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

36,37,38

39

40

41

42

43

44

4-30

into internal RAM only when emulation is
broken. The RAM contents are copied into
the processor only when emulation is
begun. The Emulator cannot access CPU
registers during emulation. Thus, once
emulation has been started the DR
command shows the contents of the CPU
registers as they were before emulation was
begun. Changes can be made to these
values, but the data will be rewritten when
emulation is broken.

NO ROOM . .. BREAKPOINT CLAUSES
TOO NUMEROUS OR COMPLEX. Too
many WHEN/THEN clauses were entered.

INVALID GROUP NUMBER ... (NOT IN
1-4). There are only four groups in the
Event Monitor System.

ILLEGAL SELECT VALUE. Variable
cannot be assigned value specified. Check
manual.

INCORRECT NUMBER OF
ARGUMENTS IN LIST. Check command
argument list.

ILLEGAL SETUP SET VALUE. Consult
SET menu for legal values (page 5-3).

“WHEN” CLAUSE REDUCED TO NULL
FUNCTION. Caused by constructs such as
[AC1 AND NOT ACH].

INTERNAL ERROR ... NULL SHIFTER
FILE. Contact Customer Service for ES
Products.

Section 4: ES Language

45

46

47

48

49,50

51

53

54

55

MAP CANNOT BE ACCESSED DURING
EMULATION. The map hardware is
constantly used by the emulating processor
during emulation and cannot be accessed.

ARGUMENT MUST BE AN INTERNAL
RANGE. External ranges and masked
values not allowed.

16-BIT RANGE END LESS THAN
START. Invalid range.

ILLEGAL MODE SELECT VALUE.

INVALID GROUP NUMBER ... (NOT IN
1-4). Must be 1 through 4.

SAVE/LOAD INVALID ARGUMENT
VALUE. Valid arguments include 0
through 3.

EEPROM WRITE VERIFY ERROR. Data
in the EEPROM is verified during the SAY
operation. (The store operation is retried
many times before this error is generated.)
EEPROMSs have a finite write cycle life.
The EEPROM in your Emulator is
warranted for one year. Contact Applied
Microsystems for service.

ATTEMPT TO SAVE/LOAD DURING
EMULATION. These commands may only
be used while in the pause mode.

EEPROM DATA INVALID DUE TO
INTERRUPTED SAVE. Previous SAV
command was interrupted by a reset or
power off.

4-31

ES1800 Emulator Reference Manual for 80186,/188 Microprocessors

56

57

58

59

60

61

62

63

64

N
N

TRACE DATA IS INVALID DURING
EMULATION. Viewing of the trace is
only allowed during pause mode.

(INYALID GROUP NUMBER (NOT 1-4).
Must use 1 - 4.

IMPROPER NUMBER OF ARGUMENTS.
Check command argument list.

ARGUMENT MUST BE AN INTERNAL
RANGE. External ranges and masked
values not allowed.

ARGUMENT MUST BE A SIMPLE
INTEGER. Ranges and don’t care masks
not allowed.

IMPROPER NUMBER OF ARGUMENTS.
See error 58.

CANNOT STORE THIS VARIABLE
DURING EMULATION. Must be in pause
mode.

ILLEGAL ARGUMENT TYPE.

ARGUMENT TOO LARGE. Caused by
entering DRT argument that includes
numbers greater than #2045.

ILLEGAL RANGE.
STATUS CONSTANTS CANNOT BE

ALTERED. System constants (e.g., BYT,
OVL) cannot be assigned values.

Section 4: ES Language

67

68

70

71

72

74

75

76

78,79,80

81

TOO MANY “WHEN” CLAUSES. You
have tried to enter more WHEN/THEN

clauses than the Event Monitor System can
handle.

INVALID DATA FORMAT FOR
SYMBOLS. Must use Extended Tektronix
Hex.

CANNOT INITIALIZE VECTORS
DURING EMULATION. [pv], [RNV], and
can only be entered in pause mode.

UNKNOWN EMULATOR ERROR. Call
Applied Microsystems.

INCOMPATIBLE EEPROM DATA.
Previous data saved to EEPROM was not
from an 80186/88 Emulator system.

COMMAND INVYALID DURING
EMULATION. Must be in pause mode.

INVALID RECORD TYPE. Download
routine received invalid record type code.

NO SYMBOLIC DEBUG. The symbolic
debug option is not installed in your system.
Cannot assign symbol and section values.

TOO MANY SYMBOLS. Symbols
exceeded available RAM. Purge symbols
before downloading again.

SYMBOL OR SECTION PREVIOUSLY
DEFINED. You must delete a section
before assigning it a new value.

4-33

ES1800 Emulator Reference Manual for 80186,/188 Microprocessors

82

83

87

88

89

90

91

93

94

4-34

SYMBOL NAME IN USE. Symbol name
cannot be used more than once.

TYPE CONFLICT WITH DEFINED
SYMBOL. Please refer to Extended Tek
specification.

SECTION TABLE FULL. Too many
symbolic section names have been defined.

INVALID ARGUMENT SIZE. Operand
doesn’t fit into destination register.

INVALID ADDRESSING MODE.
ARGUMENT OUT OF RANGE. Usually
caused by reference to a “FAR” location
without declaring “FAR.”

INVALID TRAP YECTOR NUMBER.
INVALID CONTROL REGISTER.

ARGUMENT NOT SYMBOLIC. Requires
a symbolic argument.

SECTION 5

Table of Contents

System Commands

SETUP COMMAND Sttt ittt ie i eeaieaenens 5-1
Set Command......ovvieiiieiieiiiieeraaeaetitaiiieeeaenas 5-3
R4 1007 s Y311 5 1 X~ 5-9
Break On Instruction EXecution.........coceveevieeininnen. 5-13
Clear DMA Halt.. ... iie e iiii i ciiieaeans 5-14
Internal/External Clock..........cooiiiiiiiiiiiiiiin.,. 5-15
Copy DatatoBoth Ports........cooviieiiiiiiiiiiiiiiit, 5-16
Enable Data.......ccovviriiiiiiiiiii i iiiiieiiiiriienns 5-17
FSI on Instruction Execution...........coviuiiieeeiineenennn 5-18
Read Chip SeleCt. . oviriie it ieeieeeeeranecneanns 5-19
Internal/External Ready Signal.............cocoiiiiiatn, 5-20
Step Through Interrupts.coovveviiiiiiiiiiiiiinnenn.. 5-22
5 00 T3 o7 5-23
Save System Variablesin EEPROM...................coo.s. 5-25
Load System Variables From EEPROM.................... 5-27

SERIAL COMMUNICATIONS. ..ottt i ieieeeens 5-29
Using A Host Computer.covvviieereirnrnreneaennaannns 5-29
Data Bufferingand Baud Rate...................cooieea... 5-29
Communication with the Host Computer................... 5-30
Port Dependent Commands..........c.ooviiviiininneaennnn.. 5-30
Download from Terminal Port..................coooiieet. 5-31

Download from Computer Port.........cccvviiiiiiiienn... 5-31

Section 5: System Commands Table of Contents (cont)

Page

Transparent Mode.........ooiiiiiiiiii i 5-33
Terminal Port Control..........coovviiiiiiiiiin i, 5-35
Computer Port Control..........coooiiiiiiininieiennnnnn.. 5-36
Download Operations............cocovviiiiiniinininnenn.. 5-38
Downloading Under TERMINAL Port Control............ 5-39
Return Controlto Emulator...........covviiiviiiiinnan.. .. 5-39
Downloading Under COMPUTER Port Control........... 5-40
Symbolic Download.........cccoviiieiieinie i iananns 5-40
Checksum error inthedatarecord...................oo.o... 5-41
Read after write verifyerror..............ocovviiiiinnnnan.. 5-41
Verify Serial Data.........ooviiiniiii e iiieaannnnn, 5-43
Upload Serial Data........coooiviiiii i eeeeesieanannnns 5-44
Upload Symbols. ... e 5-46
Communication With Target Programs..................... 5-48
Display Character String.............ovvriinnninnnnnn... 5-52
OVERLAYMEMORY. ... i, 5-54
Display Memory Map.coviiiiiiiiiiiiinieieaannns. 5-55
Set Memory Map....o.oviininiiiiiii e, 5-56
Clear Memory Map.ouvniiiiie e e 5-60
Overlay Memory Enable............ooiveiinrniinnnnnn.. 5-61
Load Overlay Memory........coovviiiini s, 5-62
Verify Overlay Memory.....ooooveeeviineeieiesianennns, 5-63
REGISTERS. ... i e e e, 5-64
Peripheral Control Block (PCB) Registers.................. 5-65
General PCBHandling............ooovviieinnieninnnnnnn.. 5-65
Relocationof the PCB...........coviiiiiieieiiaeanannn, 5-65
EXCeptiONS. ..t 5-67
TIMCTS. ..t e 5-67
DMA Controllers.ovinviiniieie e 5-67

Section 5: System Commands Table of Contents (cont)

Page

Interrupt Controller Registers......cvvuveiiiiinineenennnn. 5-69
Display/Load Microprocessor Registers.................... 5-74
Display PCB RegiSters. ... cueiiiiniiiiiiniiiiineneauananss 5-77
Loading RegiSters.vuvuiireieeiiiiiiiiiieneaenanans 5-79
Set/Display Register DefaultBase........................n. 5-80
Memory Mode Status Register........coviiiiiiiiiieann.s. 5-82
Memory Mode Pointer.........ccoiiiiiiiiiiiiiiiiiiiian.s 5-83
TI/OMoOde POINteT. ...vieeineeeie e iiiie i eaananaanns 5-85
Default Base. ...ovivtiiiiiei ittt ia i 5-86
General Purpose Data Registers.covvvivieeninien.n. 5-88
General Purpose Address Registers.......c.coveveeeeienenne. 5-90

B S A 2T 4 T 1 PR 5-62
TRACEMEMORYttt ittt iiiiaenens 5-93
Display Raw Trace BusCycles........c..ooeviiiiiniiin... 5-94
Disassemble Trace Memory.....cccvvvveeeeniiiiiniiiinnnnn. 5-98
Disassemble Trace Page.........coviiiiiniiiinnninnn, 5-101
MAC RO S, ..t e ettt it 5-102
Display Defined Macros.cocovvvveeiniiinineninnnn. 5-103
Define/Execute Macros.coviiiiieinienenneeneenninn. 5-104

(@) 1<7:1 g\ F- o) o - JA A 5-106
THE REPEAT OPERATORS. ...t 5-107
Repeat Command Line..........coiviiiieinnniinenennnnnns 5-110
SYMBOLS. ... i it e e e 5-111
Display Symbols. ... oviiii i e 5-116

I DT 0) F: R AN T-Te3 5 (0] + VAP 5-117
Symbol Definition.ot iiiiii e iiiaaanens 5-118
Delete a Symbol or Section............c..ccevnenen.. e, 5-120

Delete All Symbolsand Sections.............ccoovininn... 5-121

Section 5: System Commands Table of Contents (cont)

Page
MISCELLANEOUS COMMANDS.cooiiiiieieannnnn. 5-122
Display The Software Revision Dates..................... 5-123

Displaya Blank Line......coooeineirnee i, 5-124

Section 5

SYSTEM COMMANDS

Setup Commands

The SET and ON/OFF commands allow you to configure the ES1800
according to hardware and debugging needs. There are two menus
containing variables that are software selectable for quick and easy
changes.

The SET menu contains all of the external communication variables such
as baud rates, parity, and upload/download data format. Some set
parameters require a reset before becoming effective. You can also set the
serial communication parameters and save them to EEPROM without
affecting the parameters currently in use.

The ON/OFF menu contains switches that control emulation and the serial
port copy switch. For example, you can run the Emulator without a target
system by using the Emulator-supplied clock signal, an Emulator-
generated ready signal and overlay memory. The copy switch copies data
to both serial ports for obtaining hard copy of your emulation session.

The SET menu and the ON/OFF menu can be saved to EEPROM after you
have set them. These values may then be automatically loaded into the
Emulator on power-up by setting the thumbwheel switch to the

appropriate value, or manually by typing a load command (LD) to the
Emulator after power-up.

5-1

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

The EEPROM is divided into two groups of six sections. Each section
within a group may be loaded and saved individually. The two groups
designate two users, referred to as user 0 or user 1 in the SET menu. This
allows two users to save complete information about their emulation
session, and reload it later. The six sections of information are:

Group # Description

SET menu

Registers

Event Monitor WHEN/THEN clauses
Overlay map

ON/OFF menu

Macros

N A W O

5-2

SET COMMAND

Command Result

SET Displays the SET menu. The
parameters in this menu specify
the external communication
details.

>SET

SYSTEM:

TERMINAL:

COMPUTER:

ES SETUP: SEE MANUAL FOR DETAILS...

SET #X,#Y - SET ITEM X TO VALUE CORRESPONDING TO Y
LD 0;SAV O LOAD/SAVE SETUP FOR CURRENTLY SELECTED USER

#1 USER = 0; [0,1]
#2 RESET CHAR = $1A
#3 XON, XOFF = $11,%13

#10
#11
#12
#13
#14

#20
#21
#22
#23
#24
#25
#26
#27

BAUD RATE = #14; [2=110,5=300, 10=2400, 14=9600]
STOP BITS = 1 [1,2]

PARITY = 0; [O=NONE,1=EVEN,2=0DD]

CRT LENGTH = #24

TRANSPARENT MODE ESCAPE SEQUENCE = $1B,$18

BAUD RATE = #14; [7=1200,12=4800, 15=19200]
STOP BITS = 1

PARITY = 0

TRANSPARENT MODE ESCAPE SEQUENCE = $18B,$1B

COMMAND TERMINATOR SEQUENCE = $0D,$00,$00

UPLOAD RECORD LENGTH = #32; [1 to 127]

DATA FORMAT = 0; [0=INT,1=MOS,2=MOT,3=SIG,4=TEK,5=XTEK]
ACKNOWLEDGE CHAR = $06

(continued)

5-3

SET COMMAND (cont.)

SET <parameter>, <exp> The value of the specified

Comments

parameter is changed to <exp>.
If you assign an illegal value to a
variable, an error message is
displayed, and the value is not
changed.

The table below shows the valid values for each SET variable. All
arguments preceeded with a [§) indicate that the value entered must bea 7-
bit ASCII character.

The [# preceding the SET command arguments below is typed in and
designates the value entered as decimal. The [# is optional for decimal

numbers 0-9.

Parameters Description Reset Required
SET #1,#0 User 0 No
SET #1,#1 User 1 No

Two users may save and load values to the EEPROM.
This parameter indicates which user is active when
executing the SAV and LD commands.
SET #2,$n Reset character No
The reset character resets the Emulator and the pod
CPU. The system default is CTRL Z ($1A).
SET #3,$n,$m XON/XOFF characters No

5-4

XON and XOFF control the screen scrolling. An
XOFF stops a scrolling display. XON resumes scrolling
the display. The system defaults are CTRL Q, CTRL S
($13, $11).

SET COMMAND (cont.)

Parameters Description Reset Required
SET #10,#1 75 baud Yes
#2 110 baud
#3 134.5 baud
#4 150 baud
#5 300 baud
#6 600 baud
#7 1200 baud
#8 1800 baud
#9 2000 baud
#10 2400 baud
#11 3600 baud
#12 4800 baud
#13 7200 baud
#14 9600 baud (default)
#15 19200 baud
The terminal port baud rate
SET #11,#1 1 stop bit (default) Yes
#2 2 stop bits
The number of stop bits for the terminal port
SET #12,#0 No parity (default) Yes
#1 Even parity
#2 Odd parity
The parity for the terminal port
SET #13,#n CRT length (default: 24 lines) No

The maximum number of lines displayed for
commands that use paging

(continued)

5-5

SET COMMAND (cont.)

Parameters

Description Reset Required

SET #14,$n,$m

SET #20,#1
#2
#3
#4
#5
#6
#7
#8
#9

#10
#11
#12
#13
#14
#15

SET #21,#1
#2

SET #22,#0
#1
#2

5-6

Transparent mode

AN NA ey e

nNT -
c3Cape Sequceiice INO

When entered from either port, transparent mode is
terminated. The default sequence is ESC, ESC
($1B,$1B).

75 baud Yes
110 baud

134.5 baud

150 baud

300 baud

600 baud

1200 baud

1800 baud

2000 baud

2400 baud

3600 baud

4800 baud

7200 baud

9600 baud (default)
19200 baud

The computer port baud rate

1 stop bit (default) Yes
2 stop bits

The number of stop bits for the computer port

No parity (default) Yes
Even parity
Odd parity

Parity for the computer port

SET COMMAND (cont.)

Parameters

Description Reset Required

SET #23,$n,$m

SET #24,%n,$m,%o

SET #25,%n

SET #26,#0
#1
#2
#3
#4
#5

SET #27,$n

Transparent mode
gscape sequence No

When entered from the computer port, transparent
mode is exited. The default sequence is ESC, ESC
($1B,31B).

Command terminator sequence No

The default sequence is [RETURN], null, null ($0D, $00,
$00).

Upload record length No
The maximum length for an upload record. (The

default length is 32 bytes of data.)

Intel (default) No
MOS

Motorola

Signetics

Tektronix

Extended Tekhex

Upload/download serial data format

Acknowledge character No

The acknowlege character is sent when a valid record 1is
received when downloading in computer control. The
default is $06.

(continued)

5-7

SET COMMAND (cont.)

Comments

Some SET parameters require the system to be reset, and prompt for a reset
character. If you change a parameter that requires a reset, but do not enter
one, subsequent displays of the SET menu show the new value you have
assigned the variable, even though it is not currently in effect.

If you change the SET parameters and wish to use the new values at a later
date, you can save them in EEPROM by entering a SAV or SAV 0
command.

Saved parameters can be loaded automatically at power-up or manually
after the system is up and running. To load automatically, set the
thumbwheel switch (see page 3-5) before turning on the Emulator. To
load manually, enter LD (to load all variables and settings) or enter the LD
0 command (to load just the SET parameters).

See Serial Communication (page 5-29) for information on communicating
with a host computer.

5-8

SWITCH SETTING

Command Result
ON Displays the ON/OFF menu.
OFF Displays the ON/OFF menu.

>0ON
ES SWITCH SETTINGS
LD/SAV 4: LOAD/SAVE SWITCH SETTINGS IN EEPROM
EXAMPLES: >ON BKX+CK
>OFF FSX+CPY

VALUE NAME DESCRIPTION

OFF BKX BREAK ON INSTRUCTION EXECUTION (NOT PREFETCH)

ON CK SELECT INTERNAL CLOCK

OFF cPY COPY DATA TO TERMINAL & COMPUTER PORTS

ON FSX FSI ON INSTRUCTION EXECUTION (NOT PREFETCH)
ON RDY SELECT INTERNAL READY WHEN ACCESSING OVERLAY
ON STI ENABLE STEP THROUGH INTERRUPTS

OFF DME ENABLE DMA DURING PAUSE

OFF TEO ENABLE TIMER O DURING PAUSE

OFF TE1 ENABLE TIMER 1 DURING PAUSE

OFF TE2 ENABLE TIMER 2 DURING PAUSE
OFF RCS ENABLE CHIP SELECT REGISTERS DISPLAY
OFF CDH CLEAR DHLT BIT IN IST REGISTER ON PAUSE TO RUN

ON <switch> Sets the specified switch to the
ON position.

(continued)

5-9

SWITCH SETTING (cont.)

OFF <switch> Sets the specified switch to the
OFF position.

Comments

Some ON/OFF switches cannot be set during run mode.

The arguments to the ON and OFF commands are the names of the
switches themselves. These are:

BKX Break on instruction execution

CDH Clear DMA halt

CK Internal/external clock

CPY Copy data to both serial ports

DME Enable DMA

FSX Force special interrupt on instruction execution
RCS Read chip select control registers

RDY Internal/external ready signal

STI Step through interrupts

TE<O0,1,2> Timers

You may turn on or off multiple switches by listing them with a [+] between
their names.

All switches can be turned off with the command OFF - 1.

You can save all of the current switch settings in EEPROM for later use by
executing a SAV (to save all variables and settings) or SAV 4 (to save just
switch settings) command (see page 5-25).

The saved switches can be loaded automatically at power-up or manually
after the system is up and running. To load automatically, set the
thumbwheel switch (see page 3-5) before turning on the Emulator. To
load manually, enter a LD (to load all variables and settings) or LD 4 (to

5-10

SWITCH SETTING (cont.)

load just the switch settings) command (see page 5-27).

Examples

If you want a hard copy of an emulation session, attach a printer to the
computer port on the back chassis of the Emulator. Turn on the copy
switch so that all data is copied to both serial ports.

>ON CPY
>

Assume that you are debugging a program on a new piece of hardware.
The program has already been debugged using the Emulator’s overlay
memory and appears to be functioning properly. When you try to run the
program in the hardware it does not work correctly. In this case you may
want to switch back and forth between running from overlay memory and
the target. When running out of overlay you want to use an internal clock
and ready signal. You do this with these two commands:

>ON RDY+CK
>0OFF RDY+CK

Here are two alternative methods for doing the same thing using fewer
keystrokes.

The first is to use a general purpose register for the command parameter.
Assign the register the switch names. Then use the register as the
parameter for the commands.

>GRO = RDY+CK

>ON GRO
>OFF GRO

(continued)

5-11

SWITCH SETTING (cont.)

The next way is to use two macros for the commands. Assign macros 1 and
2 to the ON and OFF commands. Execute these macros by typing a [.] and
[] as the first character on each line (see page 5-104).

> 1=ON RDY+CK
> 2=0FF RDY+CK

v

5-12

BREAK ON INSTRUCTION EXECUTION

Command Result

ON BKX The Event Monitor System
breaks on the execution of the
instruction rather than the
instruction pre-fetch.

OFF BKX The Event Monitor System
breaks whenever an address is
seen on the bus.

Default: OFF

Comments

The 80186/88 prefetches instructions. Because of this, an address can be
detected on the address bus before the instruction is actually executed. If
you set a breakpoint on an address that immediately follows a branch, the
Emulator may break before the instruction is executed (it was prefetched).
Set this switch to force the break to occur only on address execution.

5-13

CLEAR DMA HALT

o

ON CDhH

OFF CDH

5-14

DMA is reenabled during
pause-to-run.

During pause-to-run, DMA
status is unchanged from status
while paused.

Default: OFF

INTERNAL/EXTERNAL CLOCK

Command Result

ON CK The CPU uses an internally
generated clock. This is a
nonadjustable clock set at 12.5
MHz (CPU speed).

OFF CK The CPU uses the target system
clock.

Default: OFF

Comments

This command is valid only in pause mode.

Use an internal clock when debugging code before target hardware is
available. Download the program to overlay memory. Turn on the
internally generated ready signal and clock (ON RDY and ON CK) and
begin debugging.

See also the Download command, page 5-38 the overlay memory section,
page 5-54 and the RDY switch, page 5-20.

5-15

COPY DATA TO BOTH PORTS

ON CPY Sends all data to both the
terminal and computer ports.
Data sent to the controlling port
is echoed to the other port
(noncontrolling port).

OFF CPY Only sends data from the
Emulator to the controlling
port.

Default: OFF

Comments

This provides a way to make a hard copy of emulation data. It is also
useful for monitoring computer control commands.

See Serial Communications, page 5-29 for more information on the
terminal and computer ports.

S5-16

ENABLE DATA

Command

Result

ON DME

OFF DME

Comments

The DMA controllers are active
during pause. The values in
DMAO and DMAI1 registers are
not reloaded to the physical PCB
upon pause-to-run. The
following also occurs:

On a run-to-pause transition
the IST register is copied to the
internal RAM table. The DHLT
bit is then cleared, causing
DMA cycles to resume. All
DMA cycles are directed to the
target system.

The DMA controllers are not
active during pause mode.

Default: OFF

All DMA cycles are disabled immediately upon a run-to-pause transition.

If the target system uses an external dynamic memory controller for
refresh, DME must be set to OFF. This prevents memory read signals
from going out to the target in pause mode.

If internal DMA is used, then DME should be ON.

5-17

FSI ON INSTRUCTION EXECUTION

ON FSX

OFF FSX

Comments

An Event Monitor System
forced special interrupt (FSI)
occurs when an instruction is
executed. Refer to page 7-25
for the FSI command.

Forced special interrupt (FSI)
occurs when an address is seen
on the bus.

Default: ON

The 80186/88 prefetches instructions. Because of this, an address can be
detected on the address bus before the instruction is actually executed. If
you set an FSI on an address that immediately follows a branch, the
Emulator may execute the FSI before the instruction is executed (it was
prefetched). Set this switch to force an FSI to occur only on address

execution.

S5-18

READ CHIP SELECT

Command

Result

ON RCS

OFF RCS

Comments

All chip select control registers
are read upon run-to-pause.

The chip select control registers
are only read and loaded to the
internal RAM table if they have
been set manually with a value
during pause mode.

The transition from pause to run
mode causes only those chip
select registers that have been
modified during pause mode to
reload to the physical PCB. The
displayed values of chip select
registers do not show what is
actually in the PCB.

Default; OFF

The RCS software switch does not affect the UMCS chip select control

register.

Reading the chip select control registers enables their corresponding
outputs. Use the RCS software switch only after the chip select control
registers are set.

5-19

INTERNAL/EXTERNAL READY SIGNAL

ON RDY Selects an internally generated
ready signal to complete
memory accesses. This allows
use of overlay memory when no
target system is being used.

OFF RDY Selects the target system’s ready
signal to complete memory
accesses.

Default: OFF (See note below.)

Comments

This command is valid only in pause mode.

A “ready signal” denotes the end of a memory cycle. See the Intel i4APX
86,/88, 186 /188 Users Manual for details.

If overlay memory is mapped in an area where target memory is
nonexistent, the target decode logic may not provide a ready signal. An
ON RDY provides this signal, allowing overlay memory to be used in those
areas.

When the ready switch is on and the target system is also providing a ready
signal, the first ready signal back to the Emulator will be the one used.

If internal ready is selected and there is a target, there is no
synchronization between the ready signal and the target hardware. This
can cause problems if a ready is returned by the Emulator before the target
hardware is ready.

5-20

INTERNAL/EXTERNAL READY SIGNAL (cont.)

NOTE: Default is ON if there is no target clock on power-up and if
internal clock has been selected.

5-21

STEP THROUGH INTERRUPTS

ARSI L

ON STI

OFF STI

Comments

The Emulator recognizes an
interrupt and steps through the
interrupt service routine.

The Emulator ignores interrupts
while stepping through a
program.

Default; OFF

Stepping through code is a common way to locate software bugs. This
switch allows you to ignore interrupts while debugging higher level
routines, or to step through and debug the interrupt routine itself.

See also the Step command (STP) on page 6-7.

5-22

TIMERS

Command

Result

ON TE<0,1,2>

OFF TE<0,1,2>

The specified PCB timer (0,1 or
2) is active during pause mode.
The transition between
emulation modes executes as
follows:

>RUN TO PAUSE

The value in the specified timer
register is loaded to internal
RAM and can be modified
using a [<reg> = <value>]
command.

>PAUSE TO RUN

The value in the internal RAM
table of the specified timer is
not loaded. Reloading this
value destroys the data
generated during pause mode.

The specified PCB timer (0,1,2)
is not active during pause mode.
The transition between
emulation modes executes as
follows:

(continued)

5-23

TIMERS (cont.)

5-24

RUN TO PAUSE

The mode control word register
(MCW0, MCW1, MCW2) for the
specified timer is ioaded to the
internal RAM table. The timer
is then disabled by clearing bit
15 of the mode control word
register.

PAUSE TO RUN

The value in the internal RAM
table of the specified timer is
reloaded to the physical PCB.
This restores the timer to its
configuration when last running
in the target system.

Default: OFF

SAVE SYSTEM VARIABLES IN EEPROM

Command Result

SAV Copies all system variables from
Emulator memory into
EEPROM.

SAYV <category> Saves one of the six categories
of variables from Emulator
RAM to EEPROM.

Comments

This command is valid only in pause mode.

A SAYV operation may take up to two minutes.

DO NOT INTERRUPT THE PROCESS!

Values saved to EEPROM continue to be valid within the Emulator.

There is room in EEPROM to save the system variables for two different
users. The user is determined by a parameter in the SET menu. When you
execute a SAV, the variables are saved to the user partition currently
defined in the SET menu.

(continued)

5-25

SAVE SYSTEM VARIABLES IN EEPROM (cont.)

This chart shows the categories of information that can be saved in
EEPROM and the corresponding page numbers to find more information.

0 - SET menu 5-3

1 - Contents of Emulator registers 5-70

2 - Event Monitor System 7-1
WHEN/THEN statements

3 - Overlay map 5-54

4 - Software switch settings 5-9

5 - Macros 5-102

Variables are loaded from EEPROM back to the Emulator using the LD
command.

When you first use the Emulator, you should execute a SAV command with
no parameter. This initializes EEPROM, so that subsequent LD commands
will work properly with the 8086 Emulator board and pod.

Examples

>SAV 1

Saves the current values of all the Emulator registers in EEPROM.

5-26

LOAD SYSTEM VARIABLES FROM EEPROM

Command Result

LD Copies all system variables
stored in EEPROM into
Emulator memory.

LD <category> Copies the variables from one of
the six categories in the
EEPROM to the Emulator
RAM.

Comments

This command is valid only in pause mode.

Executing a LD command reads system variables from the EEPROM and
copies them to into internal RAM. The EEPROM retains those original
variables until replaced by a SAV command.

There is room in the EEPROM to load the system variables for two
different users. The user is determined by a parameter in the SET menu.

You may load the following variable categories from EEPROM:

0 - SET menu

1 - Contents of Emulator registers

2 - Event Monitor System WHEN/THEN statements
3 - Overlay map

4 - Software switch settings

5 - Macros

{ continued)

5-27

LOAD SYSTEM VARIABLES FROM EEPROM (cont.)

Examples

\4
N

The overlay memory map in the EEPROM is copied into internal RAM.
Use the DM command to verify the new map. (See page 5-55.)

5-28

Section 5: System Commands

Serial Communications

The ES1800 can communicate through both DB-25 connectors on the
chassis rear panel using standard RS232C serial protocol. The ports can be
independently configured for baud rate, data length, and number of stop
bits.

USING A HOST COMPUTER

The most common development configuration is with a terminal connected
to the terminal port of the ES1800 and a host development system
connected to the computer port. The ES1800 provides a transparent mode
that essentially connects your terminal to the computer. The ES1800 also
has a special download command to load modules from the host system.

In configurations where the ES1800 is connected directly to a host
computer, there are a few details that need to be considered.

DATA BUFFERING AND BAUD RATE

When downloading from a computer, the ES1800 buffers all the data bytes
until the end of record. If the checksum is correct, the data are then
loaded into target memory. During this load time, the host computer may
start sending the next data record. The serial data buffer in the ES1800 is
64 bytes deep. When the sixth character is placed in the buffer, an XOFF
character is sent to the host computer. This means that the host computer
must transmit no more than 58 characters after the XOFF. Some multi-
tasking development systems may not be capable of quickly stopping
character transmission. For these systems, it may be advisable to lower the
computer port’s and host computer’s baud rates.

XON and XOFF characters can be used to control either output port on the
ES1800. These characters are user definable. The problem described in
the above paragraph can happen in the reverse direction. If the ES1800 is
uploading data to the host, it may be able to overrun the host’s ability to
receive characters. While lowering baud rates may help, there are probably
commands available on the host to solve the problem. You should also
make sure that the host does not echo characters sent to it while uploading
data. If the characters are echoed, the ES1800 will quickly send an XOFF
to the host while continuing to send normal upload characters. The host

(continued)

5-29

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

system will then probably send an XOFF to the ES1800 because the host’s
buffers are full. The result of this situation is that both systems will lock
up waiting for the other to send an XON. See your system administrator or
call Applied Microsystems Corporation customer service at
1-800-426-3925 for help.

COMMUNICATION WITH THE HOST COMPUTER

While in transparent mode, the ES1800 passes characters between the
computer and terminal ports. There is a user definable two-character
escape sequence to exit transparent mode. If the first character of the
escape sequence arrives at either port, the ES1800 holds it until it receives
another character from the same port. If the second character matches the
second character of the escape sequence, transparent mode is terminated.
If the second character is not part of the escape sequence, then both the
character being held and this second character are sent to the proper port.
See page 1-4 for setting the escape character sequence.

While in transparent mode, the only characters that are meaningful to the
ES1800 are XON, XOFF, the first character of the escape sequence, and
the reset character. The reset character may be sent from the host as part
of a command sequence to the terminal. This is common during edit
sessions and depends on the command set of your terminal. You should
define the reset character to be a character that will not normally be used
by the host system.

PORT DEPENDENT COMMANDS

Most commands are symmetric with respect to the controlling port and
appear to respond in the same manner if entered from either the computer
port or the terminal port. The “controlling” port is determined at power-
up by the setting of the thumbwheel switch on the controller board (see
3-5). After power-up, the commands CCT and TCT switch control from
one port to the other. TCT entered to the terminal port acts like a null
command as does a CCT entered at the computer port.

Section 5: System Commands

Entering transparent mode from either port causes both ports to be
““connected” to each other. If transparent mode is terminated from either
port, control returns to the port that initiated the transparent mode (TRA)
command.

DOWNLOAD FROM TERMINAL PORT

When the ES1800 receives a download command (DNL), it always expects
data records to arrive at the computer port. If the download command is
entered from the terminal port, the ESI800 automatically enters
transparent mode to allow you to send commands to the host system. You
normally enter a command that causes the host system to copy the
formatted object file to your terminal (see page 5-7 for setting serial data
format). The proper procedure is to enter the command to the host system
but not terminate it (i.e., do not press the key). Instead, enter the
two-character transparent mode escape sequence. When transparent mode
terminates, control returns to the download process. The download routine
then sends the user definable command terminator sequence to the host
system (see page 5-3 for setting the command terminator sequence). The
host system responds by sending the data records from the formatted
object file. Any characters sent by the computer are echoed to the
terminal port. All valid data records are copied into internal buffers and
the data written into target memory. When the End of File (EOF) record is
received, the download process terminates and a normal ESL prompt is
displayed.

If an error occurs (checksum or read-after-write) during the download,
the process terminates with an error and a new prompt is displayed. No
special characters are sent to the host, however, so it is likely that the next
time you enter transparent mode, the host will send the remainder of the
download data records.

DOWNLOAD FROM COMPUTER PORT

If the download command is entered from the computer port, the process is
different. In this case, the ES1800 does not enter transparent mode. The
DNL command can be immediately followed by data records. Each data
record 1s acknowledged with an ACK (6) character if its checksum is
correct and correctly written into target memory (verified with read-
after-write cycles). The EOF record is also acknowledged if valid. If an

{ continued)

5-31

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

error occurs during a download, the first character sent back to the host
will be the BEL (7) code. Programs written on the host system can use

these two characters to handshake the data records in an automatic
download routine.

TRANSPARENT MODE

Command Result
TRA The system enters transparent
mode.
ESC ESC Port control is returned to the

previous settings. Note that this
escape sequence can be changed
using the SET command (page
5-3).

Comments

Transparent mode can be entered while in terminal (TCT) or computer
control (CCT) modes.

In transparent mode the Emulator acts only as an interface between the
two serial ports. The Emulator can buffer up to 64 characters for each port
and can operate each port at independent baud rates.

There must be devices connected both to the terminal port (such as a
terminal) and the computer port (host system, line printer) for this
command to have any meaning.

Transparent mode is used to communicate with a host computer or any
other peripheral you want to attach to a serial port.

Refer also to Serial Communications (page 5-29).

(continued)

5-33

TRANSPARENT MODE (cont.)

Examples

TERMINAL PORT CONTROL

Command Result

TCT The terminal port becomes the
controlling port.

Comments

This command, along with the CCT command, allows control to be
switched between to two serial ports without powering down the ES1800
Emulator.

Any output generated by a command is directed to the controlling port.
The copy switch directs output to both serial ports.

This command is essentially a null command when entered from the
terminal port.

Port selection on power-up is controlled by the thumbwheel switch setting.
(See page 3-5.)

COMPUTER PORT CONTROL

CCT The computer port becomes the
controlling port.

Comments

This command, along with the TCT command, allows control to be
switched between the two serial ports without powering down the ES1800
Emulator.

Any output generated by a command is directed to the controlling port.
The copy switch directs output to both serial ports.

This command is essentially a null command when entered from the
computer port.

If there is a host attached to the computer port and you type a CCT from a
terminal connected to the terminal port, the host system takes control of
the Emulator. The host system must be able to handle incoming data at
high rates. Both hardware and software handshakes are supported (see
page 3-12).

The upload and download operations always send/receive data from the
computer port regardless of which port is the designated controller.

If you execute CCT in error with no terminal or host system connected to
the computer port:

m Move the terminal cable to the computer port, enter the
TCT command and return the cable to the terminal port.

This process will work in most cases to return control to
terminal. If not:

COMPUTER PORT CONTROL (cont.)

m Turn the Emulator off and then on.

This command can be executed from the computer port (see page 5-30 for
a discussion of port dependent commands). For port selection on power-
up refer to page 3-3.

DOWNLOAD OPERATIONS

A
Cuuuuauu

DNL DNL readies the Emulator to
receive data. If in terminal
control mode, the Emulator
enters a transparent mode
automatically, allowing direct
communication with the host
system. Other host system
commands may be executed
prior to the download operation.

Comments

You can choose the destination of the downloaded file:
m Target memory
m Emulator overlay memory

If the downloaded data is going to overlay memory, verify that the overlay
is mapped in the appropriate address range. Make sure that the start
address of the file is the address to which you expect to download.

Verify also that the data format of the host system file matches that being
used by the Emulator. Refer to SET menu set parameter #26 for
verification of Emulator format (see page 5-7. Use transparent mode
(TRA) to verify host system format and the address in the file. (See page
5-33))

You can download files with either the computer port or the terminal port
in control. That is, the downloading of files can be initiated and controlled
either by the user or by a host system. There are some differences in
procedure depending on which port is in control of the downloading
process.

5-38

DOWNLOAD OPERATIONS (cont.)

DOWNLOADING UNDER TERMINAL PORT CONTROL

After typing DNL, the system automatically enters transparent mode,
allowing communication with the host system. When you are ready to
download the file, enter a command that causes the host system to display a
file to the terminal, but in place of a [RETURN], enter the transparent mode
escape sequence (see page 5-33).

The Emulator is now ready to read the data records the host system will be
sending. Data records are displayed as they are received by the Emulator.
Checksums are verified and if a checksum error occurs, the download is
aborted with an error message. The data in the erroneous record will not
have been written to memory.

Each data byte is verified with a “read after write” cycle. If an error is
detected, the download is aborted.

RETURN CONTROL TO EMULATOR

Once the download command (DNL) is entered, control is returned to the
Emulator in one of three ways:

1. An end of file record is received. If an end of file record
is not recognized by the Emulator, control will not be
returned to the Emulator terminal port. This can be
caused by:

m Using a instead of the proper
escape sequence to terminate the

command line to the host computer
m Selecting the incorrect data format.
2. An Emulator reset is executed (default is CTRL Z).

3. Anerror is detected.

(continued)

5-39

DOWNILOAD OPERATIONS (cont.)
DOWNLOADING UNDER COMPUTER PORT CONTROL

To download while in computer control with a host computer attached, the
host computer should send:

>DNL

After the host sends the download command, the Emulator waits for data
at the computer port. The host computer should then send the
downloadable records followed by an end of file record. After the end of
file record, the system prompt ([5]) is sent to the computer port.

An acknowledge character (factory default is ASCII ACK $06) will be sent
to the computer port after storing a data record, when in computer control.
No acknowledgments are sent when in terminal control.

There are some differences between computer port control and terminal
port control during the downloading process. Under computer port
control:

m All good records are adknowledged with an [acK_$6].

m All error messages from bad records are received on the
computer port; therefore the host file that is controlling the
Emulator will need to be able to interpret error messages.

m Records are not echoed.

SYMBOLIC DOWNLOAD

The download command accepts symbolic definition records as well as
data records when the symbolic debug option is used and the Emulator
download format variable is set to 5 (Extended Tekhex). (See SET
parameter #26, page 5-7.)

Serial data can be verified with memory constants using the VFY
command.

5-40

DOWNLOAD OPERATIONS (cont.)

Errors

CHECKSUM ERROR IN THE DATA RECORD

The download process is aborted because the checksum sent with a record
file is not the same as the checksum caiculated by the Emuiator.

READ AFTER WRITE VERIFY ERROR

Every byte in a data record is verified after it is stored. This error
indicates that the data in memory does not match the data that was stored.

Problem What to Check

Emulator does not return a prompt

after file has been sent. 1. Serial data format - SET
menu.
2. No end of file (EOF)
record.

3. You entered a
instead of the

transparent mode escape
sequence after entering
the host copy command

Read-after-write verify error.
1. Target hardware

problem.

2. Overlay memory not
mapped in download

range. Address is
indicated by misverify
message.

(continued)

5-41

DOWNLOAD OPERATIONS (cont.)

Checksum error. 1. Improperly formatted
record sent by host.

2. Noisy serial data lines.

3. Host computer is not

responding to

XON/XOFF protocol.
Display of data does not]
commence after entering 1. Host not responding to
transparent mode escape user defined command
sequence. terminator sequence -

SET menu (page 5-3).

If the Emulator does not return a prompt, you will need to reset the system
(default is CTRL Z) in order to enter any other Emulator commands.

If the host computer does not respond to the XON/XOFF protocol fast
enough, you may need to lower the baud rate on the computer port and the
host computer.

5-42

VERIFY SERIAL DATA

Command Result

VFY Verifies serial data with data in
memory. If the data in memory
does not match the incoming
serial data, this message 1is
displayed:

[ADDRESS = XX NOT YY|

Address is the address where the
data mismatch occurred. XX
denotes the actual data present
at that location. Y7Y is the serial
data just sent.

Comments

This command is similar to the download command but no data is written
to memory, and the serial data is not displayed on the screen. The serial
data is compared to the data in target or overlay memory. Mismatches are
displayed.

Use this command if you suspect a file you downloaded was corrupted. If
downloaded data is being corrupted by your program, you can detect it by
mapping overlay as RO (read only) (see page 5-57.)

This command is also useful for determining differences between object
files. Follow instructions for downloading a file on page 5-38.

5-43

UPLOAD SERIAL DATA

UPL <range> The Emulator formats and sends
data to the computer port.

Comments

Data is transferred from the Emulator to a host system or other peripheral
interfaced to the Emulator computer port.

When uploading to a file on a host system, enter transparent mode first and
open a file to store the uploaded data records. (Review the Serial
Communications discussion, page 5-29.)

Examples

For UNIX:

Cat ><filename>

For VMS:;

TYPE ><filename>

(Create or EDT are also acceptable.)

S5-44

UPLOAD SERIAL DATA (cont.)

For CPM:

PIP A:<filename> = RDR:

Next, type the transparent mode escape sequence and the upload
command.

After all data has been uploaded and the Emulator prompt returns, enter
transparent mode and close the file by entering the appropriate control
character.

Remember to close the file before trying to view it.

If the host system does not respond to XON/XOFF protocol, it may be
necessary to lower the communicating port’s baud rates so that the host’s
input buffer is not overrun.

Upload performs no data verification.

A file may be uploaded to a printer, PROM programmer, or other
peripheral instead of to a host. In this case, there is no need to enter
transparent mode before uploading. Just be sure the peripheral is ready to
receive data.

Refer also to Serial Communications, page 5-29.

5-45

UPLOAD SYMBOLS

UPS All currently defined symbols
and sections are sent to the
computer port in Extended
Tekhex format.

Comments

Extended Tekhex restricts the number and range of characters that can be
used for symbol names. When formatting symbols for upload, the
Emulator truncates symbol names to 16 characters and substitutes [for
characters not allowed by Tekhex.

Extended Tekhex serial data format should be set before uploading
symbols (see SET parameter #26, page 5-7).

When uploading to a file on a host system, enter transparent mode first and
open a file to store the uploaded data records. (Review the Serial
Communications discussion page 5-29.)

Examples

For UNIX:

Cat ><filename>

5-46

UPLOAD SYMBOLS (cont.)

For VMS:

TYPE ><filename>

(Create or EDT are also acceptable.)

For CPM:

PIP A:<filename> = RDR:

Next, type the transparent escape sequence and begin uploading.

After all data has been uploaded and the Emulator prompt returns, enter
transparent mode and close the file by entering the appropriate control
character.

Remember to close the file before trying to view it.

Refer also to Serial Communications, page 5-29 and Symbols, page 5-111.

S-47

COMMUNICATION WITH TARGET PROGRAMS

e R Y]

DT
Cuuuuaud INCSUIL

COM <address> Establishes communication with
the target program through a
two-byte psuedo-port at the
specified address.

Exit COM mode by entering the
two-character transparent mode

escape sequence (see SET, page
5-3).

Comments

Only useful during run mode.
Affects real time operation.

Requires special target code. COM mode uses two bytes at the specified
address. The byte at <address> is used for characters sent from the target
to the controlling port. The byte at <address> + 1 is used for characters
being sent to the target program. This command makes use of 7-bit ASCII
characters, with the eighth bit of each byte used for handshaking.

To transmit a character to the ES1800, the target program first checks the
most significant bit (MSB) of the byte at <address>. If this bit is set (1),
the Emulator has not yet collected the previous character. If the bit is
cleared, the target program sets the MSB of the character to be transmitted
and places the result in the byte at <address>.

To receive a character from the Emulator, the target examines the byte at
<address> + 1. If the MSB of this byte is cleared, the Emulator has not yet
transmitted a new character. If the MSB is set, the character is “new.” If

5-48

COMMUNICATION WITH TARGET PROGRAMS (cont.)

the controlling port of the ES1800 is a terminal, the target program should
echo the character by immediately copying it into the byte at <address>
with the MSB still set. The target then program masks the MSB off and
stores the result back at <address> + 1. This prevents the target program
from re-reading the same character.

The COM routine does not check the byte at <address> + 1 to see if the
target program has received it. Generally, the target program will be
substantially faster than the COM routine and will always receive one

character before the COM routine can transmit the next.

In effect, the COM mode establishes a “transparent mode” between the
running target program and the controlling port of the ES1800. Whenever
the ES1800 reads target memory during run mode, it actually stops
emulation for about 100 microseconds. To avoid significant impact on real
time operation, the COM routine examines the byte at <address> only
once every 0.5 seconds. When the COM routine discovers a new byte from
the target program, it reads the byte and clears the location. The byte is
then sent to the controlling port of the ES1800. The COM routine then
immediately returns to examine the byte at <address>. A target output
routine has approximately 100 microseconds to place another character in
the output location. If this 100 microsecond window is missed, the display
of the subsequent character is delayed for 0.5 second.

The flow diagram on the next page summarizes the COM process.

(continued)

5-49

COMMUNICATION WITH TARGET PROGRAMS (cont.)

Figure 6. Flow Chart

Is km
ready from Y

keyboard
?

looping for
1/2 second

Is Escape
Flag set?

Does key
match 2nd
escape

code
?

Does key
match 1st
escape

Read byte
at
< address >

code
?

Is bit 7 of
byte set
?

Clear byte
at
< address >

Y

Clear bit 7
of byte

Y

display
character
on CRT

@

S-50

Get 1st
set Escape escape code
Fla
i ¥
i Set bit 7 of
é 33} It:clety7 escape code
Character ¥

Y

Write byte to
<address+1>

Y

Write byte to
< address +1>

Y

Delay 100
Delay 100 microseconds
microseconds
é

COM Routine Processing

COMMUNICATION WITH TARGET PROGRAMS (cont.)

Examples

One good use of the COM command is to simulate a serial I/O port when
debugging code before target hardware is available. The RUN command
downloads the target program into overlay memory and enters run mode.
The address supplied to the COM command is that of a simulated RS232
data port. Data entered at the terminal is passed to the target program, and
data output by the program appears on the screen.

>MAP 0 TO -1 /* Map all available overlay memory*/
>DNL

%cat serial.driver /* Download program to overlay */
(enter transparent mode escape sequence)

>RNV /* Run program */

R>COM !'serial_port /* Use serial data port as COM addr */

A note of caution: if a breakpoint or an error is encountered while running
the COM command, the system will appear to hang up. This is because
emulation has been broken, and the target program that receives and
transmits characters is no longer running. Entering the transparent mode
escape sequence will terminate COM mode and cause the break or error
message to be displayed.

5-51

DISPLAY CHARACTER STRING

DIA <address> Reads and displays characters
from target memory starting at
the specified address. The DIA
routine terminates when it reads
from target memory.

Affects real time operation
when entered in run mode. See
page 6-1.

Comments

DIA is commonly used for test purposes in target systems that have no
human-readable I/0O channels.

When a test routine detects a problem, it can load a register with the
address of a null terminated error message. The routine then jumps to an
address that causes the Emulator to break emulation. The DIA command
can then be used to display the error message.

DIA can also be used to check the contents of any null terminated string in
memory.

5-52

DISPLAY CHARACTER STRING (cont.)

Examples
>BYM Make sure we're in byte mode.
>M 120 Enter Memory mode at address 120
$000120 $00 >48,65,6C,6C,6F,0
$000126 $00 >X Enter a null terminated string and exit
>DIA 120 Display string starting at 120
Hello
>

This example sets a breakpoint in the target error routine. When the
breakpoint occurs, a message pointed to by the ES:BX register pair is
displayed. If the DX register is zero, the process stops. Otherwise, the
ES1800 immediately begins emulation and waits for another breakpoint
and message.

>AC1 = 'Error_stop
>WHE AC1 THE BRK
>* RBK;WAI;DIA ES:BX;TST = DX

(continued)

5-53

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Overlay Memory

Overlay memory can be used to debug target hardware and software. It
can be used to create and verify programs before hardware is available,
determine whether the program is making illegal accesses, and patch target
PROM code quickly and easily.

Overlay memory is available in memory ranges from 32K to 512K. See
your Applied Microsystems Corporation sales representative for
incremental options.

Overlay can be mapped in segments as small as 2K bytes. Each segment
can be assigned one of four attributes; target, read/write, read only, or
illegal. If memory is mapped, it means that you have assigned at least one
segment of overlay as read/write, read only, or illegal memory.
Unmapped memory is assigned the target attribute. Memory mapped as
target or illegal does not use up overlay memory.

When a segment of memory is mapped, program accesses in that memory
range are directed to the overlay instead of the target. The overlay can be
further qualified by the overlay enable register (OVE). This register
indicates whether code, data, or all accesses in a mapped memory range
should be directed to the overlay memory.

Overlay memory accesses occur in real time. No wait states are added by
the Emulator.

5-54

DISPLAY MEMORY MAP

*h
)
D
4
-y

Comman

Videaaw

DM Displays the memory map
currently in effect.

Comments

This command is valid only in pause mode.

Examples

>DM
MEMORY MAP:
$000000 TO $FFFFFF:TGT

Default map at power-up.

5-585

SET MEMORY MAP

£% W FVE O W

{‘1
U111 all

MAP <range>

MAP <value>

MAP <range><attribute>

MAP <value><attribute>

Attributes

Maps the specified range and
assigns it the default attribute
type, RW,

Maps a 2K-byte block
surrounding the specified value.
Assigns the block the default
attribute type, RW.

Maps the specified range and
assigns it the specified attribute
type.

Maps a 2K-byte block
surrounding the specified value.
Assigns the block the specified
attribute.

RW Memory mapped as read-write (RW) responds like
normal overlay memory. The overlay memory is high
speed and may actually run faster than target system
memory if that memory normally asserts wait states.

RW is the most common attribute and is therefore the

default.

MAP commands that do not specify an

attribute default to RW partitions.

5-56

SET MEMORY MAP (cont.)

RO Memory mapped as RO acts like read-only memory to
the target program. If the program attempts to write to
this memory, the ES1800 aborts run mode and displays
the error message, MEMORY WRITE VIOLATION RO
overlay cannot be altered by a running target program.

The same comments about speed given in the paragraph
on RW apply toc memory mapped as RO. You can always
modify memory mapped as RO (in pause mode) even
though the target program (run mode) cannot.

ILG Memory mapped as illegal can be used to mark address
ranges that should not be accessed by the target
program. Any access to an address range mapped as
ILG causes the ES1800 to abort run mode and display
the error message, MEMORY ACCESS VIOLATION.
Memory mapped as ILG does not use up available
overlay memory.

TGT The ES1800 ignores accesses in address ranges mapped
with this attribute. Memory that is not explicitly
mapped is defaulted to TGT.

Comments

Overlay memory is mapped in segments of 2K bytes. When you specify an
address or a range to be mapped as RW or RO, the mapping outline
allocates the minimum number of 2K segments that will completely
enclose the address(es) of interest (see Overlay Memory Enable, page 5-61.

There is a distinction between the overlay map and overlay memory. If
your system has any overlay memory installed (it is an option), you have a
complete overlay map and some limited amount of overlay memory. The
overlay map covers the entire address space (24 bits). The overlay map is

used to logically place segments of overlay memory anywhere throughout
the address space.

You can save and restore the contents of the overlay map by using the
EEPROM LD/SAYV commands (see pages 5-27 and 5-25). You cannot save
the contents of overlay memory in EEPROM.

{ continued)

5-57

SET MEMORY MAP (cont.)

Examples

The following command sequence might reflect a common mapping:

Command Comments
>CLM Clear map to all TGT
>MAP 0 TO -1:ILG Default entire address space to Illegal
>LDV Sets CS:IP to OFFFFO (reset vector)
>MAP CS:IP:RO Map ROM for reset vectors

>MAP 'RAM_start LEN 20000 Map some overlay memory to work with
>MAP '1/0 _start:TGT Have 1/0 already in target space
>MAP O LEN 800 Allocate RAM for interrupt vectors
>DM Display what we've done

MEMORY MAP:

MAP $000000 TO $0007FF:RW Interrupt Vectors

MAP $000800 TO $O0OFFFF:ILG

MAP $010000 TO $02FFFF:RW Working RAM

MAP $030000 TO $03FFFF:ILG

MAP $040000 TO $0407FF:TGT 1/0 space

MAP $040800 TO $OFF7FF:ILG

MAP $OFF800 TO $OFFFFF:RO Reset vectors

MAP $100000 TO $FFFFFF:ILG

>

S-58

SET MEMORY MAP (cont.)

Since the contents of overlay memory are not affected by changing the
overlay map, you can compare the operation of a program in target
memory with one in overlay memory.

Command Comments

>CLM Clear any previous mapping:

>MAP 1000 to 7FFF:RO Map ROM over existing target program
>LOV 1000 to 7FFF Copy target program into overlay memory
>ASM 2000 Use line assembler to make a patch

(Assembler commands)

>RNV Run patched version

>STP;MAP 1000 TO 7FFF:RO;RVN Stop, Remove map, Run normal version
>STP;MAP 1000 to 7FFF:RO;RNV Stop, Restore map, Run patched version

If you do not have target memory but you still want to compare two
programs, you can use a trick of overlay memory allocation. This example
assumes you have 128K or more of overlay memory.

Command Comments

>CLM;MAP OFFFFO:RO Need Reset Vector mapped as ROM
>GRO = 1000 LEN 8000 Will save some typing

>MAP GRO Map 32K bytes for code space

>DNL Download first program into overlay

(Download commands and records)
>MAP GRO:TGT Unmap code space (The data is still
in overlay memory)
>MAP GRO + 10000 Remap but at higher address range.

The first program now "exists" again
but in a higher address range.

>MAP GRO Now map more overlay at the normal
range
>DNL Download second program.

(Download commands and records)

Now you have a copy of both programs.
>MAP GRO:TGT;MAP GRO + 20000 Relocates second program out of the way
>MAP GRO +10000:TGT;MAP GRO Relocates first program back to normal

address range.

5-59

CLEAR MEMORY MAP

Command Result

CLM The entire address range is
assigned the TGT attribute.

Comments

This command clears all addresses from the overlay map.

This command is valid only in pause mode.

5-60

OVERLAY MEMORY ENABLE

Command Result

OVE =CD + DTA The overlay memory decodes
both code and data space.

OVE=CD Only code status space accesses
are decoded by overlay memory.

OVE =DTA Only data status space accesses
(including ALT, DAT and STA
space) are decoded by overlay
memory.

Comments

Overlay memory responds to an access only if a mapped address and the
current OVE status match the cycle being executed. For more information
about the four status spaces, see segment description in the raw trace
section (page 5-96), and the iAPX 86 /88, 186 /188 Users Manual.

CD is code space. The processor encodes it as code status.

DTA is data space. The processor encodes it as data, alternate data or stack
status.

Overlay memory cannot be divided between CD and DTA on the same
map. Itis either all one (CD), or the other (DTA), or all both (CD+DTA).

To display the value of the current status being used for memory access,
use the MMS command (page 5-82).

5-61

LOAD OVERLAY MEMORY

Command Resuit

LOV <range> Moves data from the target
system memory to the Emulator
overlay memory in the specified
address range.

Comments

This command is valid only in pause mode.

In order to load overlay memory from the target memory, you must have a
target system interfaced with the ES1800 Emulator and have overlay
memory installed and mapped.

In order to load a target memory range into the overlay memory at a
different address, use the LOV command, then do a block move (BMO) of
the data.

Use the VFO command (page 5-63) to verify the memory move.

5-62

VERIFY OVERLAY MEMORY

Command

VFO <range>

Comments

Compare the specified range in
the target memory to the same
range in the overlay memory.

If there are no differences
between the data in the overlay
and target, the Emulator
prompts you for the next
command.

If there are any differences, the
address of each difference
displays:

<ADDRESS> = XX NOT YY

XX denotes the data present in
overlay memory. YV is the data
at that location in the target
system memory.

This command is valid only in pause mode.

(continued)

5-63

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Registers

This section includes information on using the registers and a complete list
of all the registers in the Emulator.

The registers can be logically divided into four groups:
W MICroprocessor registers
m general Emulator registers

m target Peripheral Control Block (PCB) registers, those used
only in iRMX mode and those used in non-iRMX mode

m Event Monitor System registers

Each Emulator or Event Monitor System register accepts one or two of
three value types:

m integer values
m range values
m don’t care values

Registers that accept range and don’t care types can also be assigned
integer values.

Each register has a separate display base. The display base is viewed and
changed with the BAS command (see page 5-80). Display bases are often
changed for registers such as the Event Monitor LSA comparators, which
you might like to see in binary, and the CTL register, which you might
want to see in decimal.

The CPU registeré and the Event Monitor registers can be displayed as a
group by using the DR and DES n commands.

See Event Monitor System (Section 7) for Event Monitor System Register
descriptions.

The complete register set can be loaded from or saved to EEPROM.
Executing a SAV or LD copies all system variables. A SAV 1 or LD 1
copies only the register group.

S5-64

Section 5: System Commands

PERIPHERAL CONTROL BLOCK (PCB) REGISTERS

Because of the dynamic nature of some PCB registers, they are handled
slightly differently than regular CPU registers. The following sections
describe the problems and their solutions.

GENERAL PCB HANDLING

When the Emulator exits run mode, all memory and I/O space is searched
for the PCB. When the PCB is located, it is moved to locations
$FFO0-$FFFF in I/0O space. All register values are then copied to a table
in internal RAM and uploaded to the ES controller. These register values
are the ones displayed in response to the PCB command. The values in
this table are modified by commands such as:

MCWO=$1234

or

[ST=$5678

RELOCATION OF THE PCB

The PCB is completely relocatable anyplace in memory or I/O. It contains
an interrupt controller, two timers, three counters, two DMA channels and
chip select circuitry for decoding memory and I/O space. There are many
details to understand and remember when dealing with the PCB. These
details are pointed out in the following subsections.

Since the PCB is relocatable, there are several things that need to be
understood concerning the registers in the PCB. On the run-to-pause
transition the firmware takes a copy of the CPU registers and the registers
in the PCB and stores them first in a RAM table on the Emulator board and
then passes a copy of the registers to ESL. The copy that is sent to ESL is
what is shown to the user. When you make a change to any of the registers,
that change is simply stored in the RAM table kept by ESL. If you then

(continued)

5-65

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

ask to look at those registers you see the change made, but the change is
only to the RAM table and not to the CPU.

Prior to the transition from pause to run the registers are passed to the
firmware from ESL. The registers are then loaded into the CPU, and
control is turned over to the target. So if you want to load a register into
the CPU, you first need to equate the register to the correct value and then
put the ES1800 into either run mode or single step.

On the run-to-pause transition, the firmware locates the PCB and moves it
back to the power-up location of OFF20 in I/O space. This is done because
some users actually move the PCB to some other location. The firmware
moves the PCB to its default location so that it will not write over the top
of the PCB while in pause mode.

If you use the MIO command to write to the PCB and change the contents
of the registers, two questions may arise:

The first is if you try to write to their PCB at the location you moved it to
and can’t find it. The second question may occur if you write to the PCB
by using the MIO command and then look at the PCB registers through the
ESL command (PCB) and find that the register you changed in the PCB
was not changed in the ESL. RAM table. If after you make the change to
the PCB via the MIO command you then execute the RUN command and
then wonder why the CPU didn’t use the value loaded into the PCB.

The answer to the first question is simply that the PCB is moved to the
default location, so you will not find the PCB in the spot you moved it to.
The PCB is always moved back to the correct location on the pause-to-run
transition.

The answer to the second question is that the values in the ESL RAM table
are only loaded there from the PCB on the run-to-pause transition. Also
the values loaded back into the PCB on the pause-to-run transition are
from the ESL RAM table and therefore write over the top of anything that
the user puts into the PCB. To avoid this probiem, use the ESL command
format provided for changing the values of the registers (see page 5-79).

The commands do not modify the current contents of the physical PCB
until the next pause-to-run transition.

5-66

Section 5: System Commands

When the Emulator enters run mode, the PCB register values contained in
the RAM table mentioned above are reloaded into the physical PCB. The
PCB is then moved back to its location in the target address space and the
Emulator enters the target system.

EXCEPTIONS

The Emulator may be configured to allow some or all of the integrated
peripherals controlled by the PCB to continue operating during pause
mode.

TIMERS

The ON/OFF switches TEOQ, TEl, and TE2 are used to selectively
enable/disable the integrated timers during pause mode (see page 5-23).

If the switch is set to ON, the timer registers are handled as described in
the general procedure upon the run-to-pause transition. On the pause- to-
run transition, none of the timers’ values are reloaded to the physical PCB,
as this would destroy the data generated during pause mode.

If the switch is set to OFF (disable time during pause mode), the mode
control (MCWO) for the particular timer is copied to the RAM table upon
run to pause; the timer is then disabled by clearing bit 15 of the mode
control word. Upon pause-to-run, the value in the RAM table is reloaded
to the physical PCB. This restores the timer to its configuration when last
running in the target system.

DMA CONTROLLERS

The ON/OFF DME switch selectively enables/disables DMA operation
during pause mode. Note that all DMA cycles are disabled immediately
upon run-to- pause transition by the asserting of an NMI to the CPU,
which then sets bit 15 of the IST register (DHLT bit).

If the switch is set to ON DME, the IST register is copied to the RAM
table. The DHLT bit is then cleared, causing DMA cycles to resume. All
DMA cycles are steered to the target system.

(continued)

5-67

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Upon pause-to-run transition, the RAM table value of the IST register is
reloaded to the physical PCB. If you want DMA activity to continue when
reentering run mode, be sure the CDH soft switch is turned on.

No DMA register values are reloaded to the physical PCB with this setting.

i4~l 3
If the switch iS S€

t to OFF -
described in General PCB Handling.

CHIP SELECT REGISTERS

The ON/OFF RCS switch controls the Emulator’s reading of the LMCS,
MMCS, MPCS, and PACS registers upon run-to-pause transition.

If the switch is set to ON RCS, all chip select registers are read and
restored as described in “General PCB Handling.”

If the switch is set to OFF RCS, these chip select registers are read and
copied to the RAM table only if you have manually set the register value
during pause mode (i.e., LMCS=1234). This is necessary because reading
of these chip select registers enables them to drive the 80186/88’s chip
select lines.

Upon pause-to-run transition, only the registers that have been modified
during pause mode (i.e., LMCS=1234) are reloaded to the physical PCB.
Note that when the switch is OFF, the displayed values of the chip select
registers (LMCS, MMCS, MPCS, PACS) do not show what is actually in the
PCB.

When attempting to peek and poke into target space it is necessary to set up
the CS registers first so the address is decoded and the correct CS line
toggled. The CS registers can be set up either by running the code in the
target system or by setting up each of the registers in ESL and then
executing an STP to load them into the CPU.

When making the transition from run to pause, whether it is during the run
mode or during a step, the CPU picks up its NMI vector from the internal
world, but it uses the target ready to complete the bus cycle. The NMI
vectors are located at address 8, 9, A and B, which fall into the area of
LMCS. So if the LMCS is not set up and a break occurs or a step, then the
ES hangs up waiting for a ready from the target.

Section 5: System Command s

When reading the contents of the CS registers the value returned is often
different from the value written into the register. This is a function of the
CS registers having some bits that are read only. LMCS register bits 3, 4
and 5 are always high. MMCS register bits 3 through 8 are always high.
PACS register bits 3 through 5 are always high. UMCS register bits 3
through 5, 14 and 15 are always high.

INTERRUPT CONTROLLER REGISTERS

Upon pause-to-run, the poll status register (POS) and its value are copied
to their own table entry as well as the entry for the poll register (POL).
This is necessary to prevent setting the IS bit of any pending interrupt.
Both registers also show the same data in the PCB.

Because these two registers are Read Only, they are not reloaded to the
physical PCB upon pause-to-run transition.

On the run-to-pause transition all interrupts are disabled because there 1s
no way for the ES to handle interrupts during pause. This means that both
external and internal interrupt sources are ignored and not processed.
Interrupts are restored to their previous condition upon the pause-to-run
transition. If any of the interrupts that occurred during pause are still
pending upon the pause-to-run transition, they are serviced at that time.

(continued)

5-69

ES1800 Emulator Reference Manual for 80186,/188 Microprocessors

Microprocessor Registers

Name Description Type Length (bits)
AX, AL, AH accumulator (low and high) Int 16,8,8
BP base pointer Int 16
BX, BL, BH base (low and high) Int 16,8,8
CS code segment Int 16
CX,CL,CH count (low and high) Int 16,8,8
DI destination index Int 16
DS data segment Int 16
DX, DL, DH data (low and high) Int 16,8,8
ES extra segment Int 16
FLX, FLL, FLH flags (low and high) Int 16,8,8
1P instruction pointer Int 16
SI source index Int 16
SP stack pointer Int 16
SS stack segment Int 16
General Emulator Registers
Name Description Type Length (bits)
DFB default base Int 8
GDO0-GD7 general purpose data DC 32
GRO-GR7 general purpose range Range 32
IDX repeat index register Int 32
10P I/O mode pointer Int 16
LIM repeat limit register Int 32
MMP memory mode pointer Int 32
MMS memory mode status DC 16
OVE overlay enable DC 8
TST terminator for repeats Int 32

5-70

Section 5: System Command s

Target Peripheral Control Block (PCB) Registers

Name Description

REL relocation register

UMCS upper memory chip select control

LMCS lower memory chip select control

MMCS mid-range memory chip select control (base address)
MPCS mid-range memory chip select control (block size)
PACS peripheral chip select control

TCO timer #0 count register

TC1 timer #1 count register

TC2 timer #2 count register

MAO timer #0 max count A register

MA1 timer #1 max count A register

MA2 timer #2 max count A register

MBO0 timer #0 max count B register

MB1 timer #1 max count B register

MCW0 timer #0 mode control word register
MCW1 timer #1 mode control word register
MCW2 timer #2 mode control word register
USRCO0 dma #0 upper 4 bits of source address
USRC1 dma #1 upper 4 bits of source address
SCRO dma #0 lower 16 bits of source address
SCR1 dma #1 lower 16 bits of source address
UDSTO dma #0 upper 4 bits of destination address
UDST1 dma #1 upper 4 bits of destination address
DSTO dma #0 lower 16 bits of destination address
DST1 dma #1 lower 16 bits of destination address
XCo0 dma #0 transfer count

XC1 dma #1 transfer count

(continued)

5-71

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Target Peripheral Control Block (PCB) Registers (cont.)

Name Description
CWO0 dma #0 control word
CW1 dma #1 control word

PCB Registers Used Only in iRMX Mode

Name Description

EOI specific end of interrupt register

MSK mask register

PLM priority level mask register

ISV In service register

IRQ interrupt request register

IST interrupt status register

IV interrupt vector register

DMAO level #2 interrupt control register (dma #0)
DMA1 level #3 interrupt control register (dma #1)
TMRO level #0 interrupt control register (timer #0)
TMR1 level #4 interrupt control register (timer #0)
TMR2 level #5 interrupt control register (timer #0)

5-72

Section 5: System Commands

PCB Registers Used in Non-iRMX Mode

Name Description

POL poll register

POS poll status register

MSK mask register

PLM priority level mask register

ISY in service register

IRQ interrupt request register

IST interrupt status register

v interrupt vector register

TCR timer interrupt control register
DMAO dma #0 interrupt control register
DMA1 dma #1 interrupt control register
INTO interrupt control register #0
INT1 interrupt control register #1
INT2 interrupt control register #2
INT3 interrupt control register #3

Event Monitor System Registers

Name Description Type Length (bits)
AC1.1-AC1.4 address comparator Range 24
AC2.1-AC2.4 address comparator Range 24
CTL.1-CTL.4 count limit comparator Int 16
DC1.1-DC1.4 data comparator DC 16
DC2.1-DC2.4 data comparator DC 16
LSA.1-LSA 4 logic state comparator DC 16
S1.1-S1.4 status comparator DC 16
S2.1-S2.4 status comparator DC 16
SIA special interrupt address Int 32

5-73

DISPLAY/LOAD MICROPROCESSOR REGISTERS

Command Result
DR Displays values of all
microprocessor registers.
>DR
CS:IP FLX AX BX CX DX DS SI ES DI BP SS SP
0000:0000 0000 0000 0000 0O00 0000 0000 0000 0000 0000 0000 0000

<register name>

<register name>=<exp>

CLR

LDV

5-74

Displays the value of the
specified microprocessor
register in its display base.

Assigns the specified register
the value <exp>.

Clears the four CPU data
registers; AX, BX CX, and DX.

Loads the reset vectors into the
CS, IP and FLX registers. The
reset vectors can also be loaded
by the RNY and RBY
commands. These load the
vectors and enter run mode
(page 6-5).

DISPLAY/LOAD MICROPROCESSOR REGISTERS (cont.)

Comments

On power-up an LDV command is automatically executed. This command
sets the registers to Intel-defined default values. Register values may be
saved to and loaded from EEPROM.

The CPU registers are automatically copied from Emulator overlay
memory to the microprocessor when run mode is entered. When emulation
is broken, they are copied from the processor to Emulator overlay memory.

If a CPU register is loaded with a value during run mode, a warning
message is be displayed. This warning informs you that the value you are
entering will not be sent to the pod CPU during emulation. The value is
stored in the Emulator’s internal memory, but when emulation is broken,
the new value of the CPU register overwrites the value just entered.

The display of the FLX register is different from that of the other CPU
registers. The flags are more conveniently decoded by using an alpha
character to indicate whether the flag was set or cleared by a particular
instruction cycle. If the flag is clear, you see a [.] as a place holder. If set,
the following characters describe the flag.

N - Nested task

0 - Overflow

D - Direction

I - Interrupt

T - Trap

S - Sign

Z - Zero

A - Auxillary carry
P - Parity

C - Carry

If FLX were assigned the value $FFFF, the DR command would display
the FLX register as:

>DR

Cs:IP FLX AX BX €X bX DS SI ES DI BP SS SP
0000:0000 NODITSZAPC 0000 0000 0000 0000 0000 000C 0000 0000 0C0C 00CC 00CO

(continued)

5-75

DISPLAY/LOAD MICROPROCESSOR REGISTERS (cont.)

Examples

Load the data segment and verify that it contains the correct value.

>DS=$A700;DS
$A7C0

>

5-76

DISPLAY PCB REGISTERS

Comman Result
PCB Displays contents of the
peripheral control block
registers.
Examples
>PCB
** RELOCATION REGISTER REL = 20FF
** CHIP SELECT CONTROL UMCS LMCS MMCS MPCS PACS

FFFB 0000 0000 0000 0000

¥ TIMER REGISTERS
TC MA MB MCW
TIMER O 0000 0000 0000 000G
TIMER 1 0000 0000 0000 0000
TIMER 2 0000 0000 ---- 0000

**DMA REGISTERS
USRC SRC UpsT DST XC CW
CHANNEL 0 0000 0000 0000 0000 0000 0000
CHANNEL 1 0000 0000 0000 0000 0000 0000

**INTERRUPT CONTROL REGISTERS

EOI POL POS MSK PLM Isv IRQ IST
0000 0000 0000 0000 ©000C 0000 0000 0000

TCR DMAC DMA1 INTO INT1 INT2 INT3

0000 0000 0000 0000 0000 0000 0000
>

5-77

5-78

LOADING REGISTERS

Command Result
<register> = <value> Sets <register> to <value>.
<register> Displays register.

Examples

>UMCS = $FFFB

>REL = $20FF

5-79

SET/DISPLAY REGISTER DEFAULT BASE

Command

Result

BAS <register>

BAS <register>= <base value>

Comments

Displays the decimal base of the
specified register.

#0 - default

#2 - binary

#8 - octal

#10 - decimal
#16 - hexadecimal

If the register has not been
assigned a separate display base,
the current default base is
displayed.

Sets the display base of the
register to the base value.

If the base value for a register is
set to 0, the current default base
is used for display.

Base values may be stored in EEPROM and automatically loaded on
power-up or manually retrieved using the LD or LD 1 command.

Be careful when setting private display bases to unusual bases such as 4, 7
or 11. The Emulator operates correctly, but the results may be conf using.
If you set the base value to a value other than hexadecimal, decimal, octal,

5-80

SET/DISPLAY REGISTER DEFAULT BASE (cont.)

or binary, the Emulator displays a question mark ([?]) preceding the base
value when asked to display the base in effect.

Refer to the default base command, DFB (page 5-86), to display the
system global default base.

Examples

>BAS FLX
>#16

The value of GD3 is displayed in binary until you change its display base
or power down the Emulator.

>GD3

$0000AAS5

>BAS GD3 = 2

>BAS GD3

#2

>GD3
%00000000000000001010101001010101

5-81

MEMORY MODE STATUS REGISTER

Command

Result

MMS

MMS = <MMS register>

Comments

Displays the value of the
current status being used for
memory accesses. Refer to the
iAPX 86/88, 186/188 Users
Manual for details.

Sets the status space for memory
accesses.

The four registers that can be used for data accesses are:

ALT - alternate

DAT - data

COD - code

STA - stack
Examples

Memory commands use the alternate data register to access memory.

>MMS = ALT

5-82

MEMORY MODE POINTER

Command Result

MMP Displays the current value of
the memory mode pointer.

MMP = <exp> Assigns the value <exp> to the
memory mode pointer.

Comments

The MMP is the last address examined while in memory mode. If you
enter memory mode without specifying an address, the MMP value is used
as the entry point.

The default power-up value of the MMP register is zero. This register
may be saved to and loaded from EEPROM.

The memory mode pointer is automatically modified when you scroll to a
new address after entering memory mode. When you exit memory mode,
the MMP reflects the last address examined. For more information on
memory mode, see page 6-15.

(continued)

5-83

MEMORY MODE POINTER (cont.)

Examples

Sets an address comparator to the last address examined in memory mode.

>M 6000

(examine memory until you find a location of interest)

$006013 5A >X
>AC1=MMP

5-84

/0 MODE POINTER

Command Result
10P Displays the current value of
the I/O mode pointer.
I0P = <exp> Assigns the value <exp> to the
I/0 mode pointer.
Comments

The IOP is the last value examined while in I/O mode. If you enter 1/0O
mode without specifying an address, the IOP value is used as the entry

point.

The default power-up value of the IOP register is zero. This register may

be saved to and loaded from EEPROM.

The I/O mode pointer is automatically modified when you scroll to a new

address after entering I/O mode.

When you exit I/O mode, the IOP

reflects the last address examined. For more information on I/0O mode, see

page 6-36.

5-85

DEFAULT BASE

Result

Command
DFB
DFB = #2
DFB = #8
DFB = #10
DFB = #16
Comments

Displays the global default base.

On power-up the default base is
hexadecimal unless another
default base was loaded by the
EEPROM on power-up.

Sets the default base to binary.
Sets the default base to octal.
Sets the default base to decimal.

Sets the default base to
hexadecimal.

Specific operators determine the base of the input value:

Operator

<%>
<\>
<#>
<$>

Description

Binary
Octal
Decimal
Hexadecimal

Example

%10011100001111

\23417
#9999
$270F

5-86

DEFAULT BASE (cont.)

Base prefixes can be used any time to enter a value in a base different from
the default base. Values not preceded by one of these prefixes are
presumed by the Emulator to be in the default base.

For example, if you set the global default base to binary, and you then
want to assign a value to a register in a base other than binary, use a base
prefix.

The Emulator works correctly with any base between 2 and 16. However,
if you set an uncommon base, such as 5 or 9, the results of assignments and
commands may be confusing.

If the base is outside the allowable range, an error message is displayed and
the Emulator defaults to the hexadecimal base.

5-87

GENERAL PURPOSE DATA REGISTERS

Command Result

GD<0-7> Displays the value of the
specified register.

GD<0-7> = <value> Assigns a value to one of the
eight general purpose data
registers.

Comments

Use the general purpose registers as arguments to commands to save
keystrokes when using values repeatedly. They can also be used to save
space in macro definitions.

These general purpose registers may be used in place of integer or don’t
care values in command statements.

The general purpose data registers can be loaded with any integer or don’t
care value. They will not accept a range value.

Examples

General purpose data register 4 is loaded with 5000. GD4 can now be used
anywhere you would use this integer value.

>GD4 = 5000

5-88

GENERAL PURPOSE DATA REGISTERS (cont.)

If you are looking for a specific pattern on the LSA pod lines in more than
one event group, assign a general purpose data register the value you are
looking for. All subsequent LSA assignments can use this register.

>GD2 = %01100101100 DC % 10011

>LSA = GD2; LSA.2 = GD2

>GD3 = 'datpat? DC %FFO0 Looking for one byte
>DC1 = GD3 of a specified word?

If you have a hard time remembering the memory mode status mnemonics,
use a general purpose register instead.

>GD6 = ALT

>MMS = GD6

>GD1 = OVL+RD+I0OA To set-up a breakpoint on an overlay
>$1 = GD1 read from [/0 space.

5-89

GENERAL PURPOSE ADDRESS REGISTERS

Command Result

GR<0-7> Displays the value of the
specified register.

GR<0-7> = <value> Assigns a value to one of the
eight general purpose address
registers.

Comments

Use the general purpose registers as arguments to commands to save
keystrokes when using values repeatedly. They can also be used to save
space in macro definitions.

These general purpose registers may be used in place of integer or range
values in command statements.

The general purpose data registers can be loaded with any integer or range
value.

Examples

General purpose address register 4 is loaded with 5000. GR4 can now be
used wherever you would use this integer value.

>GR4 = 5000

5-90

GENERAL PURPOSE ADDRESS REGISTERS (cont.)

Assign a register a range you will be using often. Then use it as a
parameter for other commands.

>GRO = 'start_code LEN 20
>DIS GRO
>DB GRO

If you do not know the absolute address in the target hardware, but have
downloaded a symbol table containing them, then use the symbol names
instead of looking up the hardware specifications.

>GR2 = 'RAM LEN 'RAM_len Initialize GR2
>SF 0,GR2 Run a RAM test on your RAM
>AC1 = GR2 Set a breakpoint on any RAM access

>WHE AC1 THE BRK

5-91

TEST REGISTER

Command

Result

TST

Comments

Stops repeating commands. The
test register is set to an
expression in a command line.
When it becomes zero, the
repeat halts.

See Repeat Operators (page 5-107) for more detailed information.

5-92

Section 5: System Commands

Trace Memory

During emulation, the activity of the executing program is recorded and
stored in trace memory. All address lines, data lines, processor status lines,
and 16 bits of external logic-state are traced. This record becomes a
history of the program. If something unexpected happens during program
execution, trace memory can be reviewed to determine what exactly took
place. When used in conjunction with the trace disassembler, hardware
and software problems may be found.

Although you cannot access trace memory during emulation, you can stop
program execution at any point--either manually, or by using the Event
Monitor System. The address, data, and control signals of the most
recently traced cycles may be reviewed.

Trace memory commands deal with the display and disassembly of trace
memory data. Refer to the Event Monitor System (Section 7) for
sophisticated uses of trace memory.

Trace memory is 71 bits wide and 2046 bus cycles deep. Some bus cycles
may be used for marks to identify start and stop points within the trace
buffer. An unqualified trace contains all bus activity for the last 2046 bus
cycles.

NOTE: The sequence numbers in DT, DTB, and DTF (instructions)
correlate with the line numbers displayed in the DRT (bus cycles).
However, one or more bus cycles in the DRT display may make up one
instruction on the DT, DTB or DTF displays. These displays may have
missing sequence numbers indicating that a multiple bus cycle instruction
has been executed. Also, the sequence number (SEQ #) may be repeated
when two-byte wide instructions were executed from contiguous
addresses.

5-93

DISPLAY RAW TRACE BUS CYCLES

Command

Result

DRT

DRT <line number>

DRT <range>

Comments

Displays the last page of bus
cycles recorded in trace
memory.

Displays a page of the trace
buffer starting with <line
number>.

Displays the range of line
numbers. XON and XOFF may
be used to start and stop
scrolling if the range is larger
than the console display.

Note that the range is a range of
bus cycles, not the address
recorded in the trace memory.

SET parameter #13 sets the page length. Refer to SET (page 5-3).

This command is valid only in pause mode.

5-94

DISPLAY RAW TRACE BUS CYCLES (cont.)

Examples
>DRT #50
LINE ADDRESS DATA R/W M/I0 BCYC SEQQUE LSA - 8 7 - O
#69 001000 > OFBY R OVL M IF € FO %11111111 11111111
#68 001002 > BEOO R OVL M IF ¢ 2 11111111 21111111
#67 001004 > 2000 R OVL M IF C 2 11111111 11111111
#66 001006 > 00BF R OVL M IF C 1 1111111 1111111
#65 001008 > A522 R OVL M IF € 2 11111111 11111111
#64 00100A > A4F3 R OVL M IF € 2 11111111 11111111
#63 00100C > 8103 R OVL M IF € 3 %11111111 11111111
#62 002000 > FF50 R OVL M RM D 4 %11111111 1111111
#61 002200 < FF50 W OVL M WD 4 %11111111 %1111
#60 00100E > FFOO R OVL M IF ¢ 3 %1111 1111111
#59 001010 > 0289 R OVL M IF ¢ 1 %1111 11111111
#8 002002 > 3E R OVL M RM D 1 11111111 1111111
#57 002202 3 W OVL M W D 1 %11111111 %1111
#56 002003 > FF R OvL M RM D 1 %11111111 %1111
#55 002203 < FF W OVL M WM D1 %11111111 %11111111
#54 002006 > 00 R OVL M RM D 1 11111111 11111111
#53 002204 00 W OVL M WM D1 %1111 111111
#52 002005 > 00 R OVl M RM D 1 %1111 %1111
#51 002205 < 00 W ovL M WD 1 %1111 %1111
#50 002006 > FF R OVL M RM D 1 %11111111 111111
LINE Line number 0 in the trace buffer indicates the last
bus cycle prefetched or executed before the
Emulator went into pause mode. The larger the line
number, the further back in the history of the
program you are viewing. You can get a good idea
of the relationship of bus cycles to instructions by
matching the bus cycle line numbers in the DRT to
the SEQ# in the disassembled trace.
ADDRESS
DATA The address displayed is where the bus cycle took

place, along with the data written to, or read from,
that address.

(continued)

5-95

DISPLAY RAW TRACE BUS CYCLES (cont.)

5-96

TAR/OVL

M/IO

BCYC

SEG

and are data direction indicators. They
indicate whether data was read from an address
(]) or written to an address ([<]). These same
indicators are used in the trace disassembly.

TAR/OVL indicates whether the access was in the
target memory area or in the Emulator’s overlay
(see DM command to determine what addresses are
mapped).

M/IO indicates whether the bus cycle access was a
memory access (M) or an I/O access (I0). This is
determined by the program.

BCYC indicates what type of bus cycle was run.
This is determined by your program. The
possibilities are:

1AK interrupt acknowledge

RIO read from 1/0

Wio write to 1/0

HLT halt

IF instruction fetch

RM read memory

WM Write memory

NBC no bus cycles

X87 8087 microprocessor instruction

SEG indicates what type of segment is being used
by the program for data accesses. The possibilities
are:

A - Alternate Data
C - Code
D - Data
S - Stack

Refer to iAPX 86/88, 186/188 Users Manual for
definition of these segment types.

QUE

LSA-87-0

DISPLAY RAW TRACE BUS CYCLES (cont.)

QUE indicates how many bytes (up to 6) are in the
processor queue or how many were “flushed”
(usually caused by a branch). A flush is indicated
by a[a] preceding the queue depth value.

LSA-8 7-0 columns display the state of each pin of
the LSA pod during that bus cycie.

NOTE: The same information that is recorded in
the trace buffer can be used by the Event Monitor
System to cause event actions. Therefore,
everything in the trace buffer such as QUE flushes
or WIO or any combination of these traced items
can cause event actions such as selective tracing,
counting, or breaking emulation (refer to the Event
Monitor System, Section 7).

5-97

DISASSEMBLE TRACE MEMORY

Command Result

DT Disassembles and displays the
last instruction in trace memory.
A sequence number is not
included. Overwrites current
display line.

DT <range> Disassembles a range of bus
cycles, starting at the specified
value and proceeding back in
time.

DT <value> Disassembles a page of trace
starting at <value>.

Comments

This command is valid only in pause mode.
A page is defined by the CRT length parameter in the SET menu.

The sequence #0 is always the most recently recorded bus cycle in trace
memory. If an argument is specified to the DT command, the values refer
to the raw trace sequence numbers.

The sequence number shown is a decimal value. For numbers larger than
9, precede with a decimal ([#]) base sign.

When using the disassemble trace (DT) and the display register (DR) on the
same line, make sure you enter DT before DR, because DT will overwrite
the current line. It does this so that the STP;DT command used repeatedly

5-98

DISASSEMBLE TRACE MEMORY (cont.)

will give a listing similar to a program listing without the STP;DT line

between each command.

Examples

These two commands used in conjunction will produce output similar to a
program listing.

>STP;DT

>DT O

SEQ# ADDR OPCODE MNEMONIC OPERAND FIELDS BUS CYCLE DATA

0028 O00A 8B4600 MOV AX,WORD PTR [BP+0] 0800>10C5

0027 000D 050100 ADD AX, 1

0024 0010 EBF4 JMP SHORT 0006

0020 0006 904600 MOV WORD PTR [BP+01,AX 0800<10C6

0019 0009 90 NOP

0018 O0OA 8B4600 MOV AX,WORD PTR [BP+01,AX 0800<10C6é

0017 000D 050100 ADD AX, 1

0014 0010 EBF4 JMP SHORT 0006

0010 0006 904600 NOP

0009 0009 90 NOP

0008 O0CA 8B4600 MOV AX,WORD PTR [BP+0] 0800>10C7

0007 000D 050100 ADD AX, 1

>

SEQ# Correlates the disassembled instruction to
the raw trace bus cycle.
This is a decimal number and must be
preceded by a [# sign when referenced for
selective disassembling of the trace. This
corresponds to the line number in the DRT
command display.
ADDR The memory address or location where the

instruction was fetched.

(continued)

5-99

DISASSEMBLE TRACE MEMORY (cont.)

5-100

OPCODE

MNEMONIC

OPERAND FIELD
BUS CYCLE DATA

The machine-language (hex number)
equivalent of the following assembly-
language instruction.

The command used to invoke the
instruction.

The assembly-language instruction.

The bus cvcle transaction, if any, that
occurred as a result of the instruction. This
includes any information written to, or read
from, memory or I/O locations.

DISASSEMBLE TRACE PAGE

Command Result

DTB Disassembles the previous page
of trace memory (from current
trace memory pointer).

DTF Disassembles the following page
of trace memory (from the
current trace memory pointer).

Comments

This command is valid only in pause mode.

A page is defined by the CRT length parameter in the SET menu. Three
lines are subtracted for header and prompt lines.

Refer also to the DT command, page 5-98, the DRT command, page 5-94,
and the slash command, page 5-110.

(continued)

5-101

ES1800 Emulator Reference Manual for 80186 /188 Microprocessors

Macros

A macro defines a list of commands or expressions that are executed with
one command key word. This allows you to execute repetitive operations
quickly and easily.

You can define up to ten macros. They are referred to by the decimal
numbers #0-9. The ten macros are linked in one buffer with #1 first,
#2 .. .#9, and #0 last.

If the lengths of all ten macros exceeds the buffer length of 125 characters,
the highest numbered macro is truncated. Spaces are also considered
characters, so use them only when required, to save macro buffer space.

Examples

If macros #1 to #8 are defined and in this process use up all of the space in
the buffer, then an attempt to define macro #9 and #0 results in those
macros remaining null. Also, if the length of any macro from #1 to #7 18
increased after filling the buffer, then macro #8 will be truncated. If the
increase is more than the size of macro #8, macro #8 becomes null and
macro #7 is truncated.

WARNING!

There are no warnings when truncation or nullification takes
place.

When you define a number of long macros, execute the MAC command to
determine if the macros of the highest numbers are still intact. Using the
general purpose registers in macros helps minimize the number of
characters you need to use.

Macros can be saved in the Emulator EEPROM. Refer to the LD and SAV
(pages 5-27 and 5-25) commands for information on saving and reloading
macros.

5-102

DISPLAY DEFINED MACROS

ommand Result

MAC Displays all defined macros in
order #1-9,0 identified by three
character sequences.

Examples

> 1=DR;DIS CS:IP LEN 4; RUN
> 2=DB; SS:SP LEN 10;3'Data_ptr
>MAC
_1=DR;DIS CS:IP LEN 4; RUN
_2=DB; SS:SP LEN 10;a@'Data_ptr
>

5-103

DEFINE/EXECUTE MACROS

Command Result
_<0-9>=<com, exp, op> Defines the specified macro.
_<0-9> Executes the specified macro.
Comments

A space between the underscore, digit, or equals sign causes an error.

There are shorthand notations for two macros: a comma as the first
character on a line executes macro #1 and a period as the first character on
a line executes macro #2.

Examples

Three macros are defined. Macros #1 and #2 can be executed
independently. Macro #3 contains two nested macros (#1 and #2).

Macros are not expanded when the macro is defined, so the definition of
macro #3 may change, depending upon the content of macros #1 and #2.

In this example, macro #2 uses a general purpose register as a counter.

>_1=STP;DT
> 2= D1=GD1+1
> 3= 1; 2

5-104

DEFINE/EXECUTE MACROS (cont.)

Step and disassemble one instruction at a time.

> 1= DB SS:SP LEN 20;RET;DIS CS:IP LEN 12

Display the first 20H bytes on the stack, skip a line for readability and
disassemble the next instructions that will be executed.

There is no display on the screen and no syntax checking when a macro is
defined. Errors are detected only when the macro is executed.

Macro #3 1s executed.

5-105

CLEAR MACROS

Command Result
CMC Clears all defined macros.
_<0-9>= Clears the specified macro.

Examples

Clear macro #1.

> 1=

5-106

Section 5: System Commands

The Repeat Operators

The command repeat feature provides a way to repeat a command line a
specified number of times or indefinitely. A repeat is indicated by an
asterisk ([*]) at the beginning of a command line. The asterisk is followed
by an optional decimal argument to specify the number of times to repeat
the buffer contents. If the argument is zero, the buffer content is not
executed.

Examples

>*5STP;DT
>*5 STP:DT
>* 5 STP;DT

In these three equivalent examples, the STP;DT command is repeated five
times. If the slash key is typed after the above example is input, the entire
line is repeated, causing five more STP;DT commands to be executed.

The repeat argument must be specified in decimal, not in hex, or as a
variable, and there must be a space following the repeat count if the next
character is a decimal digit.

When the repeat argument is not specified it is assumed to be
4,294,967,295 (232—1). A repeat can always be terminated by executing a
system reset. However, this will also abort emulation, if it is in progress,
without saving the state of the CPU.

The TST variable terminates a repeats by setting it to zero with an
expression in the command line. It is tested just before the command line
is executed and if it has become zero, the command buffer is not executed
and the repeat halts.

To single step and disassemble until a specified address is reached:

>*STP;DT; TST=CS:IP-$C324

(continued)

5-107

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

If you are waiting for an overlay memory location to be cleared:

>*STP;DT; TST=a87020

You can use the system reset character to stop the repeat if the specified
test conditions are never reached.

The TST variable is set to all 1s at the start of a repeat. This is necessarv so
that the register is in a known state at the start of a repeat loop.

Repeats can also be terminated by the states of the limit (LIM) and index
(IDX) registers. Just before execution begins, the values of LIM and IDX
are compared. If IDX is greater than or equal to LIM, the repeat is
terminated. The LIM register is initialized to the number of times the loop
will execute, which is the decimal loop count you specified in the
command line.

IDX 1s a counter. It starts at zero and is incremented every time the repeat
loop is executed. You may assign new values to these registers within
repeat command lines if you wish.

For example, if you need a decimal counter:

>BAS IDX=#10
>*#3 IDX

#0

#1

#3

5-108

Section 5: System Commands

Initialize a block of memory to a decrementing count ending in zero, then

display it.

$001000
$001001
$001002
$001003
$001004
$001000
$001001
$001002
$001003
$001004

$34
$CO
$BF
$00
$21
$03
$02
$01
$00
$21

>BYM; M $1000

>*4 LIM-1DX-1

>M MMP-4
>*4

>

5-109

REPEAT COMMAND LINE

Command Result

/ Re-executes the previous
command line. No [RETURN] is
necessary.

Comments

In order to be recognized as the repeat character, the slash must be the first
character on a line.

Examples

This causes the system to single step and disassemble the instruction just
executed.

>STP;DT
>/
>/
>/
>/

This causes the system to single step and disassemble memory starting at
the instruction pointer (IP) location.

>STP;DIS CS:IP LEN 10
>/

5-110

Section 5: System Commands

Symbols

Symbol definitions allow you to refer to addresses and data values using
names rather than numbers. Symbols are 32-bit integer values and sections
are 32-bit ranges. Symbols and sections are sometimes collectively
referred to as symbols.

64K bytes of overlay memory are allocated for symbol definitions. To
determine approximately how many symbols you can define, take the
average symbol name length, add six and divide into 64K (64 x 1024).

Symbols are not typed within the Emulator, so all symbols are global. This
implies that a symbol and a section may not be defined using the same
name. A symbol name may only be defined once. Section range values
may not overlap.

Symbols may be redefined by assigning a new value to the symbol name. If
you want to reassign a symbol name to a section value, or if you want to
change the range value of a section, you need to delete the symbol or
section name before assigning the new value.

Most compilers and assemblers create symbol tables from the symbols
defined in the program. These symbols can be easily downloaded if you
have a linker and converter that can create Extended Tekhex serial data
records. See the SET command (page 5-3) for the serial data format
variable. If you are going to download sections that have already been
defined (perhaps from a previous download of the same file), purge all
symbols or delete the section definitions from memory before
downloading. If you do not, an error occurs when you attempt to redefine
the value of a section, and the download aborts.

Symbols may be used as parameters to any ESL commands. The only
limitation on symbols is that they cannot be used meaningfully with the
colon operator ([:]). The single line assembler accepts symbols as address
references and data values.

Memory and trace disassembly display symbol names in place of absolute
values for address fields. The following examples illustrate the difference
when the same program is disassembled with and without symbol
definitions.

(continued)

5-111

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Examples

First, the symbols are defined.

>SYM
$00000480 csr
$00000486 sh_csr
$00001000 CMND
$00001022 Tauc
$00000004 busy
$00000002 got_it
$00000080 action
$00004020 es10
>SEC
$000010000 TO $0000104F monitor

The following example shows memory disassembly with symbol
definitions.

>GR0O=1000 LEN 2A

>DIS GRO

CMND

1000 F70680048000 TEST WORD PTR csr,0080
1006 T74F8 JE SHORT CMND

1008 C606800402 MoV BYTE PTR csr,02
100D C606860402 Moy BYTE PTR sh_csr,02
1012 A02040 MOV AL,BYTE PTR es10
1015 800E860404 OR BYTE PTR sh_csr,04
101A 8A268604 MOV AH,BYTE PTR sh_csr
101E 88268004 MoV BYTE PTR csr,AH
Tauc

1022 F70680048000 TEST WORD PTR csr,0080
1028 75F8 JNE SHORT Tauc

5-112

Section 5: System Command s

The following example shows trace disassembly with symbol definitions.

>DTB
>PARTIAL T
FULL T.M. M
SEQ# ADDR

SEC:monitor
0038+CMND
0038+0000
0034+0006
0033+0008
0031+000D
0027+0012
0026+0015
0021+001A
0018+001E
0014+Tauc
0014+0022
0010+0028
0008+002A
0005+CMND
0005+0000

.M. MAP:
AP: PASS

OPCODE MNEMONIC OPERAND FIELDS

F706800480
74F8
C606800402
C606860402
A02040
800E860404
8A268604
88268004

F706800480
75F8
EBD4

F706

PASS 1
1 PASS

0 TEST
JE
MoV
Mov
Mov
OR
MoV
Mov

00 TEST
JNE
JMP

TEST

PASS 2
2

WORD PTR csr,0080
SHORT CMND

BYTE PTR csr,02
BYTE PTR sh_csr,02
AL,BYTE PTR es10
BYTE PTR sh_csr,04
AH,BYTE PTR sh_csr
BYTE PTR csr,AH

WORD PTR csr,0080
SHORT Tauc
SHORT CMND

WORD PTR 0000,06F7

BUS CYCLE DATA

(continued)

5-113

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

The following example shows trace disassembly without section
definitions.

>DEL ‘'monitor

FULL T.M. MAP: PASS 1 PASS 2
SEQ# ADDR OPCODE MNEMONIC OPERAND FIELDS BUS CYCLE DATA
0038 CMND
0038 1000 F7068004800 TEST WORD PTR csr,0080
0034 1006 T74F8 JE SHORT CMND
0033 1008 606800402 MOV BYTE PTR csr,02
0031 100D C606860402 MOV BYTE PTR sh_csr,02
0027 1012 A02040 MOV AL,BYTE PTR es10
0026 1015 800E860404 OR BYTE PTR sh_csr,04
0021 101A 8A268504 MOV AH,BYTE PTR sh_csr
0018 101E 88268004 Mov BYTE PTR csr,AH
0014 Tauc

0014 1022 F705680048000 TEST WORD PTR c¢sr,0080
0010 1028 75F8 JNE SHORT Tauc

0008 102A EBD4 JMP SHORT CMND

0005 CMND

0005 1000 F706 TEST WORD PTR 0000,06F7

S-114

Section 5: System Commands

The following example shows a memory disassembly with both sections
and symbols purged, followed by a trace disassembly with no section or

symbol definitions.

>PUR

>SYM; SEC

>

>DIS GRO

1000 F70680048000 TEST WORD PTR 0480,0080

1006 74F8 JE SHORT 1000

1008 C606800402 MoV BYTE PTR 0480,02

100D C606860402 MoV BYTE PTR 0486,02

1012 A02040 MOV AL,BYTE PTR 4020

1015 800E860404 OR BYTE PTR 0486,04

101A 8A268604 MoV AH,BYTE PTR 0486

101E 88268004 Mov BYTE PTR 0480, AH

1022 F70680048000 TEST WORD PTR 0480,0080

1028 75F8 JNE SHORT 1022

>

>DTB

FULL T.M. MAP: PASS 1 PASS 2

SEQ# ADDR OPCODE MNEMONIC OPERAND FIELDS BUS CYCLE DATA
0038 1000 F7068004800 TEST WORD PTR 0480,0080
0034 1006 74F8 JE SHORT CMND

0033 1008 C606300402 MoV BYTE PTR 0480,02
0031 100D C606860402 MoV BYTE PTR 0486,02
0027 1012 A02040 MoV AL,BYTE PTR 4020
0026 1015 800E860404 OR BYTE PTR 0486,04
0021 101A 8A268604 Mov AH,BYTE PTR 0486
0018 101E 88268004 Mov BYTE PTR 0480, AH
0014 1022 F70680048000 TEST WORD PTR 0480,0080
0010 1028 75F8 JNE SHORT 1022

0008 102A EBD4 JMP SHORT 1000

0005 1000 F706 TEST WORD PTR 0000, 06F7

5-115

DISPLAY SYMBOLS

Command Result
SYM Displays all defined symbols.
SYM <value> Displays all symbols assigned

the specified value.

‘<symbol > Displays the value of the
specified symbol.
Examples
>'sym = 1000

>!start = 8000
>'end = 'start +37E
>SYM

$00001000 sym
$00008000 start
$0000837E end

5-116

DISPLAY SECTION

SEC

SEC <value>

*<section>

Examples

Displays all currently defined
sections and their values.

Displays the section assigned the
specified value.

Displays the value of the
specified section.

>!'sec = 1000 LEN IF

>'init_mod = 'start TO 'end
>'RAM =30000 TO $FFFF

>SEC

$00001000 TO $0000101F sec
$00008000 TO $0000837E init_mod
$00000000 TO $0000FFFF RAM

S-117

SYMBOL DEFINITION

Command Result
‘<symbol> = <value> Assigns the <value> to the
specified symbol.

Comments

A space indicates the end of the symbol name. Symbol names can be up to
64 characters long, but only 16 character names can be uploaded and
downloaded.

<symbol> Any combination of ASCII characters with decimal
values in the range 33-126. This range includes all
of the printable ASCII characters.

<value> A 32-bit integer value or a range.

Comments

Be sure to end a symbol name with a space when assigning a value. If a
space is not entered as the last character of a symbol name, the characters
that follow are recognized as a continuation of the symbol. Once you type
the single quote, the Emulator displays what you type in lower case letters,
unless you explicitly type upper case letters (using the shift key). After
you end the symbol name by typing a space character, the display reverts
to all upper case letters.

If a symbol name is assigned a value that is a range, it is assumed that you
are defining a section. Section range values cannot overlap.

5-118

SYMBOL DEFINITION (cont.)

Examples

is recognized as the symbol.

>'testing =GRO

[Ttesting=6RO] is recognized as the symbol name. The name will probably not
be found and you will get an error message.

>!testing=GRO

>'section_X =10000 TO 1FFF
>'main_loop ='prog_start TO 'RAM_START-1

S-119

DELETE A SYMBOL OR SECTION

Command Result
DEL ’<symbol> Deletes the specified symbol.
DEL ’<section> Deletes the specified section.
Examples
>SYM

$00001000 Sym

$00008000 start
>DEL 'Sym; SYM

$00008000 start
>

5-120

DELETE ALL SYMBOLS AND SECTIONS

Command Result

PUR Purges all symbols and section
references.

Comments

Be sure to purge before downloading symbols that may already be defined.
If you do not, an error occurs and the download is aborted.

>SYM
$00001000 sym
$00008000 start
$0000837E end

>SEC
$00001000 TO $0000101F sec
$00008000 TO $0000837E init_mod
$00000000 TO $0000FFFF RAM
>PUR; SYM; SEC

>

(continued)

5-121

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Miscellaneous Commands

5-122

DISPLAY THE SOFTWARE REVISION DATES

el t o R e e B> ¢]

Cuuuuaud Resul;

REV Displays the software revision
dates for ESL and the firmware.

Comments

This command is valid only in pause mode.

When you call AMC customer service, they ask you what software
revisions are in your machine. This command gives you the necessary
information.

Examples
>REV
WED AUG 6 08:50:26 PDT 1986 - ESL 2.2
WED AUG 6 16:50:26 PDT 1986 - FW 3.12
>

5-123

DISPLAY A BLANK LINE

Command Result
RET Outputs a [RETURN], linefeed.
Comments

This command improves readability when displaying a lot of data.

Examples

Display two blocks of data, separating them with a blank line.

>DB SS:SP LEN 20;RET;DB DS:DX LEN 20

07FF76 02 06 - 20 46 40 62 00 00 12 20 .. Fab...
O7FF80 07 90 90 00 70 20 03 07 - 47 41 63 01 01 21 21 71p ..GAc..!!q
07FF90 01 90 06 21 12 13 R

088060 01 02 03 04 05 06 07 08 - 00 20 21 22 23 24 25 26 vuuuen.. 1E$%E
088070 30 31 32 33 34 35 36 37 - 55 56 50 49 48 47 30 30 01234567UVPIH600

5-124

SECTION 6

Table of Contents

Target Commands

Page

INTRODUCTION. ..ottt ittt ettt iiiirenaenrananes 6-1
EMULATTION. ..ottt e it e teeeeeneateieiraranasanaasnenes 6-2
Starting Emulation.cooiiieiiiiiiiiiiiiii e 6-2
Halting Emulation........ooevuiniiiiiiiriiiiiinernnaeeeans 6-3
Using RegistersInRunMode............oooiiiiiiiiiiiat 6-4
Run Target Program........cccoeiriiiiiiininiiienenennennenn. 6-5
Stop and Step Target System.c.covviiiiiiiiiiiinnninnenn. 6-7
Load Reset VeCtOrS. . ovuireirviiieeneeneaneneeercnnnnnanansns 6-9
Wait Until Emulation Break.........c.coviiiiiiiiiiiiiaan 6-11

2 XY= ARG 6-13
MEMORY COMMANDS . .. it eenenns 6-15
Display Memory BlocK.oviiiiiiiiiiiiiiiiii i 6-17
Find Memory Pattern............cooiiiiiiiiiiiiiiiiiina.. 6-19

J 11 O] 73 2110 AR SR 6-21
Verify Block Data.coiviiiiiii it iiiiiiiiainaens 6-22
BlOCK MOVE. .ttt iiiiii it et teeriaraeaseeneeneennenns 6-23
Verify BIoCK MOVe. ..ot 6-25
Load Overlay MemoOry.....ccociiiiiiiiiiiiiiiiiiiiiiinnnen. 6-27
Verify Overlay Memory. . ..oovviiiiiiiiiiiiieiiiiiiiiinens 6-28
Line ASSEmMDIer. ..ottt ittt 6-30

Assembler DireCtiVes. ..ovu ettt ittt iiienennaaeanaeaens 6-32

Section 6: Target Commands Table of Contents (cont)

Page

Memory Disassembler..........o.veoeuuiunneaia, 6-36
MEMORY ANDI/OMODES.coovriiiaaiiaann. 6-38
Memory Mode.........ooiiiii 6-38
I/OMoOde.coviiiii e e 6-38
Enter Memory Mode..........ooooviviiiniie i, 6-40
Enter I/OMode.......ooiiiiiii e, 6-43
Exit Memory and I/OModes........oovvereiinniinii .. 6-45
Scrolling in Memory Mode.ooueeeeneiein e, 6-46
I/OMode Pointer..........coovuneeiinee e, 6-47
Memory Mode Pointer.............coovveiininnnnnn, 6-48
DIAGNOSTIC FUNCTIONS.oootiiinee i 6-50
Ram Tests. ..o e e 6-50
SCOPE LOODS. - ot ettt 6-50
Special Functions List..............oooovuiiiiini . 6-52
Simple RAM Test, Single Pass............ooveeveeennnnnn. .. 6-53
Complete RAM Test, Single Pass...........covveneoneni. .. 6-55
Simple RAM Test, LOODINg........ouueeee. 6-56
Complete RAM Test, LOOPINg......oovvvvneiinannnnn, 6-58
Toggle Data At Address..........oooeeoeee i, 6-60
Peeks Into the Target System..............ouvveiinnni i, 6-62
Pokes Into The Target System.................oovueeiiii .. 6-63
Write Alternate Patterns..............c.coovuueeeieeeenin, 6-65
Write Pattern Then Rotate..................ooovviniii . 6-67
Write DataThen Read.......................oooiii i . 6-69
Force Null Operations..............oooooeiuueen i 6-70
Write Incrementing Value.....................cooiee . 6-71
Read DataOveran Entire Range..................oooo ... 6-72
Cyclic Redundancy Check..............cooeeeoee 6-73
Read Target System Clock.............cooovuvvnee 6-74

section 6: Target Commands Table of Contents (cont)

Page
Display Status of Several Status Lines....................... 6-76

Section 6

TARGET COMMANDS

Introduction

The term ‘““run mode” indicates that emulation has begun, that the
microprocessor in the pod is running a program in the target. Pause mode
is the opposite of run mode. The term “pause mode’ indicates that
emulation is not taking place. Generally, the target is the hardware and
software that you are debugging. If there is no target hardware available,
the target may be just a program, downloaded into the overlay memory.
The microprocessor in the Emulator’s pod replaces the microprocessor in
the target. This gives the Emulator control of the processor, which in turn
gives you use of the powerful Event Monitor System and the ability to see
what is happening within the target system.

The processor in the pod runs the target in real-time. All processor
functions are available and valid during emulation.

6-1

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Emulation
STARTING EMULATION

Enter run mode by executing any of four run commands. Two of the run
commands load the reset vectors before entering run mode, and two of
them enable the breakpoints in the Event Monitor System. Event system
breakpoints may be enabled or disabled during run mode. Even when
breakpoints are disabled, all other Event Monitor System functions are
active. The reset vectors are defined by Intel as:

CS = FFFFH
P =0
FLX = FOO2H

The reset vectors cannot be loaded during run mode. RUN and RBK are
typically used in run mode to disable and enable break points. The
following table is a quick reference to the RUN commands.

Load Break-
Run Reset points valid in
Command Vectors enabled Run mode

RUN NO NO YES
RNV YES NG NO
RBK NO YES YES
RBV YES YES NO

Many Emulator commands are valid during run mode. If you are unsure
whether a command may be entered during run mode, just enter it. An
error message is displayed if it is not valid. Some commands need to
communicate with the pod processor, and many of these commands cannot
be entered during run mode, because emulation must stop in order to
complete the command.

6-2

Section 6: Target Commands

The following commands may be entered in run mode, but do halt
emulation briefly in order to read or write data to the target system or
overlay memory.

M - Memory mode

MIO - 170 mode

a - Indirection operator

DB - Display block of memory
ASM - In-line assembler

DIS - Memory disassembler

NXT - Memory mode

LST - Memory mode

If there are target hardware problems, it may not be possible to enter run
mode. In these cases, error messages are displayed describing the problem.
If the error conditions do not clear, a reset may be required to bring the
system back into command entry mode.

HALTING EMULATION

Emulation can be halted in one of four ways:

1. Enter the stop emulation command, STP. When this
command is entered during run mode, emulation is
stopped and the values of the microprocessor registers are
copied into Emulator memory. The current CS:IP and
event monitor group number are displayed.

2. The Event Monitor System can stop emulation if you
have set up breakpoints and the breakpoints are enabled.
When a breakpoint condition occurs, emulation is halted,
the microprocessor registers are copied into Emulator
memory, and the CS:IP and event monitor group number
are displayed.

6-3

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

3. Issuing the reset character stops emulation. (See page
4-25 and 5-4 for information on the reset character.)
After the reset character is issued, the Emulator registers
have the same value they had before emulation began.
The operator should check those values or load the reset
vectors (LDV) before restarting emulation.

4. Emulation breaks automatically if the target program
commits an access or write violation in overlay memory.
(See page 5-54 for overlay memory access rights). The
condition that caused the error is displayed.

USING REGISTERS IN RUN MODE

Setting and displaying the microprocessor registers during run mode can
lead to unexpected results because the Emulator keeps a RAM image of the
microprocessor registers. This image is copied to the processor whenever
run mode is entered. The image is copied from the processor when
emulation is stopped by the STP command or the Event Monitor System.

Because of this, modifying these registers during run mode simply alters
the Emulator’s image of the registers. The Emulator does not copy the new
values of the registers to the microprocessor. When emulation is broken,
the current values of the microprocessor registers are copied and the RAM
image is overwritten. Thus, you cannot dynamically change the value of
the microprocessor registers while emulating, and a display register
command entered after emulation has begun will show you the register
values upon entry to emulation, not the values the registers currently
contain.

6-4

RUN TARGET PROGRAM

Command Result
RBK Begins executing the target

program at the current CS:IP
memory location with
breakpoints enabled.

RBY Loads the restart vectors and
begins executing the target
program at memory location
FFFFFOH with breakpoints
enabled.

RUN Begins executing the target
program at the current CS:IP
memory location with
breakpoints disabled..

RNY Loads the restart vectors and
begins executing the target
program at memory location
FFFFFOH with breakpoints
disabled.

(continued)

6-5

RUN TARGET PROGRAM (cont.)

Comments

Refer to Chapter 7, Event Monitor System, for breakpoint information.
RNY and RBY are valid only in pause mode.
All defined events are active while RBK and RBY are executing.

Run commands containing a B indicate that Event System breakpoints are
enabled. Run commands containing a V indicate that the reset vectors are
loaded prior to entering run mode.

Entering RNV is identical to entering LDV;RUN and entering RBYV is the
same as entering LDV;RBK.

6-6

STOP AND STEP TARGET SYSTEM

Result

R>STP

>STP

Comments

From run mode the STP stops
emulation and returns to pause
mode.

Displays the current CS:IP
address and the Event Monitor
System group number.

From pause mode, the STP
command executes one
instruction. To receive visual
feedback, combine this
command with a display
command such as STP;DT.

indicates that the Emulator is in run mode. indicates that the

Emulator is in pause mode.

See the Switch section under STI, page 5-22, for more information about

stepping.

Do not attempt to STP through an NMI vector fetch. This causes the
emulator to hang. It is possible to STP through the NMI interrupt routine,
but not the NMI vector fetch. All other vector fetches can be STP’ed

through.

(continued)

6-7

STOP AND STEP TARGET SYSTEM /cont.)

Examples

>STP;DR
>STP;DT
>STP;DIS IP LEN 4

6-8

LOAD RESET VECTORS

Command Result

LDV Loads the CPU reset vectors.

Comments

This command is valid in pause mode only.

RNY and RBY also load the reset vectors, then enter run mode. The RST
command resets the processor if in run mode and always loads the reset
vectors.

Intel defines the CPU reset vectors as:

CS = FFFFH
IP = OH
FLX = FOO2H

To verify that the reset vectors are loaded, execute the DR command or
individually display the CS, IP and FLX registers.

Refer also to Registers (page 5-64).

(continued)

6-9

LOAD RESET VECTORS (cont.)

Examples

Display the registers, then load the reset vectors, clear the data registers,
and verify the changes by redisplaying the register set.

>DR

CsS:IP FLX AX BX CX DX DS SI ES DI BP SS SP
8000:1002 Z... 0100 FFOO 1234 0040 CO00 0000 DOOG 0000 0000 CCOO 0024
>LDV;CLR;DR

Cs:IP FLX AX BX CX DX DS SI ES DI BP SS SP
FFFF:0000 0000 0000 0000 0000 COOC 000G DOGO 0000 0000 CCOO 0024
>

6-10

WAIT UNTIL EMULATION BREAK

Command Result
WAI Delays executing the specified
command until emulation is
broken.

Comments

Usually this command is used to delay executing a display command until
an event system breakpoint is reached.

An event may never occur to bring the Emulator out of run mode. When
this happens, use the system reset character to reset the system. (See pages
4-25 and 5-4 for more information on the reset character.)

After a reset, the delayed command is lost from the input buffer.

Examples

The Emulator disassembles a page of trace after a breakpoint is reached.
Entering RBK;DTB, without the WAI command, results in a CANNOT
EXECUTE COMMAND WHILE IN RUN MODE error.

RBK;WAI;DTB

(continued)

6-11

WATT UUNTIL EMULATION RREAK (cont.)

The Emulator runs until an access violation or a write violation is
encountered, then displays a message pointed at by the BX register.

RUN;WAI;DIA BX

6-12

RESET

Comman Result

RST Resets pod microprocessor and
loads the reset vectors.

FFFH

F
0

1
c
FLX = FOOZ2H

™ v o

Comments

The RST command can be issued from either run or pause mode. When in
pause mode, the RST command resets the mecroprocessor and loads the
reset vectors (LDV). While in run mode the microprocessor is reset in the
target environment and emulation continues. This causes the
microprocessor to start fetching instructions from the reset vector. RST
does not affect the barget reset signal; therefore no target hardware 1is
reset. This may cause problems when the target program tries to interact
with unitialized hardware.

CTRL Z differs from RST in that CTRL Z stops emulation if in run mode.
Further, CTRL Z does not initialize the emulator registers.

Examples

In the example below, the Emulator is in run mode. The microprocessor is
reset in the target environment and emulation continues.

(continued)

6-13

RESET (cont.)

R> RST
R>

In the next example, the Emulator is in pause mode. The microrprocessor
is reset and the reset vectors are loaded into the Emulator registers.

>RST

6-14

Section 6: Target Commands

Memory Commands

Memory commands allow you to modify and display memory in a number
of different ways. “Memory” refers to memory in the target system or the
Emulator’s overlay memory. If the overlay memory is mapped (mapped
memory will have the RW, RO or ILG attributes assigned to it), read and
write accesses are directed to it. Mapped memory is modified by a
memory command even if it is mapped as read only. If memory is
unmapped, (memory with the TGT attribute assigned to it), memory
command accesses are directed to the target system memory. Mapped and
unmapped memory may be interleaved in any way you desire. See the
Overlay Memory section (page 5-61) for details.

The default data length affects most memory commands. There are two
data lengths to choose from: byte mode (BYM) and word mode (WDM).
Commands Commands that accept data parameters truncate the data
entered to the current default data length. If you enter [FIN O LEN 20,23F¢]
and the default data length is byte mode, the find command truncates the
data field to and searchs the range for that byte. Commands that
display data use the current data length.

Some memory commands may be executed during run mode. These
commands halt emulation for a brief time in order to read from or write to
memory. If memory commands are executed while in run mode,
remember that you are not emulating in real-time.

(continued)

6-15

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

The following table shows the target-related commands that can be
entered in run mode and the commands that are affected by the default
data length.

Command Legal in Uses Default

Run Mode? Data Length?
DB YES YES
FIN NO YES
FIL NO YES
BMO NO YES
VBL NO YES
LoV NO YES
VFO NO YES
ASM YES N/A
DIS YES N/A
M YES YES
MIO YES YES
a YES YES

6-16

DISPLAY MEMORY BLOCK

DB <address range> Reads and displays the specified
address range.

DB Reads and displays one page of
memory, starting at the last
address displayed by any
previous DB command. On
power-up, this command
displays a page of memory from
address zero.

DB <address> Reads and displays one page of
memory, starting at the
specified address.

Comments

The page length is defined by the CRT length parameter in the SET menu
(see page 5-3). When displaying a block of data in byte mode, the ASCII
representation of each byte is also displayed.

The DB command provides an easy way to page through memory. Enter
the DB <address> command to start reading memory at the desired
address. Follow the display of this page of data with the DB command,
and type a slash ([/]) (page 5-110). This repeats the DB command to
increment the address and scroll through memory.

(continued)

6-17

DISPLAY MEMORY BLOCK (cont.)

If the display is longer than one page, the XON/XOFF characters can be
used to start and stop scrolling (page 5-3).

DB affects real-time operation when entered in run mode (see page 6-1).

Examples

Display 20 words pointed to by DS:DX.

>WDM; DB DS:DX LEN 20

Display a page of values pointed to by the value on top of the stack (see
pages 4-9 and 4-13 for information on @ operator).

>DB @SS:SP

Display block in byte mode and word mode.

>BYM

>DB O LEN 20

000000 80 48 45 4C 4C 4F 80 80 - 2F OF F1 F9 5E 2F F6 FO .HELLO../..."/..
000010 OF 03 FO 40 OF OC FO 40 - 07 06 FO 90 OF OC D8 00 ...@...@uuuveun-

>WDM

>DB 0 LEN 2F

000000 4880 4C45 4F4C 8080 - OF2F F9F1 2FSE FOF6
000010 030F 4OFO OCOF 40F0 - 0607 90FO OCOF 00DS8
000020 OFFF F9FF 1FFF 7FFF - 3FFF BDFF 1FFF FFFF

6-18

FIND MEMORY PATTERN

Command Result
FIN <range>, <data> Searches <range> for the data
pattern. All occurrences of the

pattern are displayed:

$<address>=$<data>
>

If the pattern is not found
within the range:

NOT FOUND
>

Comments

Data may be either an integer or don't care value. The find command uses
the default data length, regardless of the length of the <data>. (See SET
parameter #26, page 5-7 for default data length in memory commands.)

Refer also to the “don't care” description (page 4-11).

{continued)

6-19

FIND MEMORY PATTERN (cont.)

Examples

(Assume word mode.) To find a bit pattern using don’t cares, use either of
the following forms:

>FIN 1000 TO 2FFF, 60XX
or

>FIN 1000 LEN 1000,6000 DC OFF

(Assume byte mode.) Find the initialization data in the start module
section.

>FIN 'start_module,'init_uart

Find any NOPs in the range.

>FIN 100 TO 1000,90

FILL OPERATOR

FIL <range>,<constant> Fills <range> with the
' <constant> data pattern.

Comments

This command is valid in pause mode only.
<constant> must be an integer.

The FIL command uses the default data length, regardless of the length of
<constant>. (See page 6-15.)

The FIL command can be verified using the VBL (Verify BLock)
command (page 6-22).

Examples

Fill RAM with zero to initialize data space.

>FIL 2000 LEN 50,0

Fill RAM section with initialization data.

>FIL ram, 'init_data

6-21

VERIFY BLOCK DATA

Command Result

VBL <address range>, <data> Verifies that <address range>
contains the specified data.

Comments

This command is valid only in pause mode.

The VBL command uses the default data length, regardless of the length of
<data>. (See page 6-15.)

Examples

Verify that a range contains $3F.

>VBL 0 TO 2000, 3F
$00000004 - $00, NOT $3F

$00000126 - $76, NOT $3F
>

6-22

BLOCK MOVE

Result

BMO<range>,<address>

BMO<range>,<space>,<address>

BMO<range>,<address>,<space>

Moves <range> to the new
<address>. The current value
of MMS specifies the relocation
register used during the
transfer.

Moves <range> to the new
<address>. The <space>
argument specifies the memory
mode status to use during the
transfer.

Moves <range> to the new
<address>. The range is read
from the space specified in the
MMS register. The block is
written to <space>.

BMO<range>,<space>,<address>,<space>

Moves <range> to the new
<address>. The range is read
from <space> specified in the
argument following the range.
The block is written to <space>
specified in the argument
following the address.

(continued)

6-23

BLOCK MOVE (cont.)

Comments

This command is valid in pause mode only.

The following rules of thumb may make the numerous forms of this
command less confusing.

m If there is no space specified for the source argument,
MMS is always used (page 5-82).

m If no space 1s specified for the destination address, the
source space is always used.

m A non-overlapping block move can be verified using the
VBL command.

Examples

Move a range to a new location in data space.

>MMS=DAT
>BMO 100 TO 500, 1000

or

>BMO 100 to 500, DAT, 1000

Move 20 bytes from the stack in stack space to the value pointed to by the
data register in data space.

>BMO SS:SP LEN 20, STA, DX, DAT

6-24

VERIFY BLOCK MOVE

Command

Result

VBMc<range>,<address>

VBMc<range>,<space>,<address>

VBMc<range>,<address>,<space>

Verifies move of <range> to the
new <address>. The current
value of MMS specifies the
relocation register used during
the transfer.

Verifies move of <range> to the
new <address>. The <space>
argument specifies the memory
mode status used during the
transfer.

Verifies move of <range> to the
new <address>. The range is
read from the space specified in
the MMS register. The block is
written to the <space> specified
in the argument following the
address.

VBMc<range>,<space>,<address>,<space>

Verifes move of <range> to the
new <address>. The range is
read from <space> specified in
the argument following the
range. The block was written to

(continued)

6-25

VERIFY BLOCK MOVE (cont.)

the <space> specified in the
argument following the address.

Comments

This command is valid only in pause mode.

Verifies that a non-overlapping block move was successful.

6-26

LOAD OVERLAY MEMORY

4% WV PR OB W

Cuuuuaud Resul;

LOY <range> Moves data from the target
system memory to the Emulator
overlay memory in the specified
address range.

Comments

The LOY command may not be entered during run mode.

Refer to the YVFO command, page 5-63, to verify the load overlay
command.

To load overlay memory from the target memory, a target system must be
connected to the ES1800 Emulator and overlay memory installed and
mapped.

To load a target memory range into the overlay memory at a different
address, use the LOY command, then do a block move of the range.

Refer also to the Overlay Memory section, page 5-61.

Examples

>LOvV 80000 LEN 7FFF
>LOV 'BOOT_RANGE

6-27

VERIFY OVERLAY MEMORY

Command

Result

VFO <range>

Comments

Compares <range> in target
memory to the same range in the
overlay memory.

If there are any differences, the
address and data difference is
displayed:

<address> = XX NOT YY

XX is the data present in
overlay memory. Y7Y is the data
at that location in the target
system memory.

This command is valid only in pause mode.

Refer also to the Overlay Memory section, page 5-61.

6-28

VERIFY OVERLAY MEMORY (cont.)

Examples

To verify the two overlay loads in the LOY command section:

>VFO 80000 LEN 7FFF
>VFO 'BOOT_RANGE

LINE ASSEMBLER

Command Result
ASM Assembly begins at the last
address displayed during a
previous assembly session. At
power-up the start address is
zZero.
>ASM
*%%% 8086/88/186/188 LINE ASSEMBLER V2.6LA ****
CSEG = XXXX
0000 >X
>
ASM <arg> Assembly begins at the
specified address.
>ASM <address>
*akk 8086/88/186/188 LINE ASSEMBLER V2.6LA **¥*
CSEG = XXXX
0000 >END
>
END
X Exits line assembly.

6-30

0000 >X
>

LINE ASSEMBLER (cont.)

Comments

Modification of the line assembler address is a two-step process.

1. To change the segment, use the CSEG directive after
entering line assembly mode.

2. To change the offset, enter the assembler using a 16 bit
address parameter, or use the ORG directive after
entering the assembler.

All 80186/88 instructions can be entered from line assembly mode. The
instructions are converted to machine code and loaded into memory at the
address specified in the prompt.

The following pages describe the supported assembler directives.

6-31

ASSEMBLER DIRECTIVES

Command

Result

CSEG

ORG

END or X

6-32

Sets 64K byte code segment
window:

1012 >CSEG D4OCH
1012 >

Sets 64K byte offset into the
code segment window:

1012 >ORG 3ACH
03AC >

Exits line assembler to the
command level:

58FD >X
*%kk% END OF LINE ASSEMBLY *¥*¥

>

DB

DW

PRE

ASSEMBLER DIRECTIVES (cont.)

Defines constant byte data:

58FD >bB 1,2,3,4, "TEST", O
58FD 01 02 03 04 54 45 53 54 00
5907 >

Defines constant word data:
(Note: odd length text strings
are padded with nulls)

S8FD>DW 1,2,3,4, "TEST", O

58FD 0100 0200 0300 0400 4554
5453 0000

590D >

Toggles to preview mode
(causes next instruciton to be
disassembled):

6590 >PRE
6590 C6470234 MOV BYTE PTR
[BX+2H]1,34H

Toggles out of preview mode:

6590 C6470234 MOV BYTE PTR
[BX+2H] , 34H
>PRE
6590>

(continued)

6-33

ASSEMBLER DIRECTIVES (cont.)

EQU

LO0,L1...L9

’symbol

6-34

Defines/redefines local symbol
(LO-L9):

6590 >L3 EQU 7A44H
6590 >

or if symbolic debug hardware
is installed:

6590 > 'Unit EQU OFDEOH
6590 >

Prints value of local symbol:

756A >L3
756A >L3 EQU 7A44h
756A >

Prints value of symbol. This is
only valid if symbolic debug
hardware is installed:

756A >'Unit
756A >'Unit EQU FDEOH
756A >

RETURN]

NEAR

FAR

ASSEMBLER DIRECTIVES (cont.)

Disassembles one instruction at
the current address:

5DOA >

S5DOA 3306AD78 XOR AX,WORD
PTR 781DH

S5DE >

Current assembler offset
address.

Within current line assembly
segment.

Qutside current line assembly
segment.

6-35

MEMORY DISASSEMBLER

Command

Result

DIS <range>

DIS <address>

DIS

Comments

Disassembles and displays the
data in the specified range.

Disassembles one page of
memory beginning at a
specified address.

Disassembles and displays a
page of memory beginning at
the last address display during
previous DIS command. At
power-up this value is zero.

You should be familiar with 8086 assembly language programming and
have the iAPX 86,88, 186,188 User’s Manual by Intel.

Page length is defined by the CRT length parameter in the SET menu

(page 5-3).

6-36

MEMORY DISASSEMBLER (cont.)

A disassembly command with an integer argument or no argument enters a
special disassembly mode. The disassembly can be continued by typing a
<space> or [RETURN]. Exit disassembly by typing any other character.

<space> Continues disassembling one
line at a time.

Continues disassembling one
page at a time.
any char except <space> or Exits disassembly mode.
(continued)

6-37

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Memory and 1/O Modes
MEMORY MODE

Memory mode allows you to view and modify memory using a simple
scrolling scheme. Enter memory mode by executing the M command. The
current address and associated data are displayed. If the first character
entered on a memory mode command line is a [RETURN], the next address
and its data are displayed. If a value is entered before the [RETURN], that
value is written to the current address before displaying the next address.
A list of up to nine values separated by commas may be entered after a
memory mode prompt. This data is stored to consecutive addresses.

The scroll direction is determined by two commands, NXT and LST. NXT
(next) increments the address and LST (last) decrements the address.
Entering either of these commands during run or pause mode sets the scroll
direction and enters memory mode. The scroll direction can also be
changed after you have already entered memory mode by executing the
appropriate command. The scroll direction can be manually overridden at
any time by using the period [} and comma [] keys. A period increments
the address; a comma decrements it.

The MMP register (Memory Mode Pointer) is always set to the current
address being accessed. If memory mode is entered without specifying an
address, the value in this register specifies the starting address. On power-
up, MMP is set to zero. (For further information on MMP see pages 5-83
and 6-48.

1/0 MODE

I/O mode allows viewing and modification of the data in I/O address
space. I/O mode is entered with the MIO command. Data is not
automatically read from an I/O address on entry to I/O mode. Many I/0O
ports are *“write only” ports, and trying to read from them may cause
hardware problems. In order to read data from an I/O port, you must enter
a as the only character on the line. The data is displayed, but the
address is not automatically incremented. You must manually change the
address while in I/0O mode using the period and comma keys. A [J]
increments the address and a [[Jdecrements the address. Up to nine values
separated by commas can be entered in response to the I/O mode prompt.
All of the values in the list are written to the same I/0O address.

6-38

Section 6: Target Commands

The IOP register (I/O Pointer) is always set to the current I/O address
being accessed. If I/O mode is entered without specifying an address, the
value in this register will determine the starting address. On power-up,
IOP is set to zero. (For further information on IOP, see pages 5-85 and 6-
47.

6-39

ENTER MEMORY MODE

Command Result

M <address> Enters memory mode at
<address>. The address and the
data at that address are
displayed preceding the prompt.

M Enters memory mode at the last
address examined in a previous
memory mode session.

The last address is stored in the
MMP register, (Memory Mode
Pointer). At power-up, this
value is zero.

X Exits memory mode.

Comments

The M command affects real-time operation when entered in run mode
(see page 6-15).

Data displayed in memory mode can be in either byte or word lengths. Set
byte mode (BYM) or word mode (WDM) before entering memory mode. If
you are in word mode and enter a byte of data, the byte is padded with
zeroes and a word is written. If you are in byte mode and enter a word of
data, the value is truncated, and only a byte is written. (See page 4-24.)

The MMP register is modified if you scroll to a new address while in
memory mode. When you exit memory mode, MMP reflects the last
address examined.

6-40

ENTER MEMORY MODE (cont.)

When a is entered as the first character on a line, the address is
incremented or decremented and the new address and data are displayed.
On power-up, the default scroll mode is toward increasing memory
addresses. To change the scrolling direction use the NXT (forward) and
LST (backward) commands. These can be entered in memory mode. If
they are entered in pause mode, the scroll mode is set and memory mode is
entered at MMP.

The scroll mode can be overridden by using the period and comma keys. A
[[] increments the address and a [,] decrements the address.

To modify data at a memory location, enter the data and press [RETURN].
The data is written to the current address and the next address and data are
displayed.

Data can be entered quickly using a list. A list can contain up to nine
values separated by commas. See example below.

Examples

Set the MMP and use the NXT command to enter memory mode. Change a
word of data and verify.

>WDM; MMP=$FF000; NXT
$OFFO00 $1234 >1122
$0FF001 $O0OFF >,

$0FFO00 $1122 >X
>

(continued)

6-41

ENTER MEMORY MODE (cont.)

Assume that address 1000H is the start of a data table and you want to
write a short program to utilize that data.

Initialize the data using a list. Then invoke the line assembler using MMP
as the start address (page 6-30).

>M 1000
$001000 $00 >0,1,2,3,4,5,6,7,8
$001009 $00 >X

>ASM MMP
*kkk 8086/88/186/188 LINE ASSEMBLER V2.6LA *¥¥*
CSEG = 0000
1009 > Enter your program here.

Use 'X! or 'END' to exit
the line assembler.

6-42

ENTER 1/O MODE

MIO <address>

MIO

X

Comments

Enters I/O mode at <address>.
The port address is displayed,
but no data is read until a

RETURN] is entered as the first

character on the line.

Enters I/O mode at the last
address examined in a previous
I/O mode session.

This address is stored in the IOP
(I/0 Mode Pointer) register. At
power-up, this value is zero.

Exit I/O mode.

Affects real-time operation when entered in run mode (see page 6-15).

The IOP is modified by scrolling to a new address while in I/O mode.
When you exit I/O mode, the IOP reflects the last address examined. (See

IOP, page 6-47.)

To read from an I/O port, enter I/O mode using one of the above
commands, and enter a as the first character following the I1/O
mode prompt. The value of the current address is displayed.

{ continued)

6-43

ENTER 1/0 MODE (cont.)

To write to the I/O port, enter the value and press [RETURN]. The value is
written and the current address redisplayed.

Data can be entered quickly using a list. A list contains up to nine values

separated by commas. All of the values in a list are written to the same
address.

Addresses are not automatically incremented or decremented. Scrolling
the address in I/O mode must be done manually, by using the period to
increment the address, and the comma to decrement the address.

Examples

Enter I/0O mode, write to a port and verify.

>MIO $2F00
[I0:$2F00 >$7F
[0:$2F00 >

10:32F00 $7F >X
>

Set word mode and enter I/O mode at the last address, increment the
address and read the data.

>WDM; MIO
10:$2F00 >.
10:$2F01 >

10:$2F01 $05A6 >X
>

6-44

EXIT MEMORY AND I/O MODES

Command Result

Exits memory or I/O mode.

6-45

SCROLLING IN MEMORY MODE

Command

Result

LST

NXT

Comments

Scrolls through memory
addresses either one byte (8 bits)
at a time, or one word (16 bits)
at a time.

The key now

decrements addresses in
memory mode.

The key now
increments (default mode)
addresses in memory mode.

Increments the address in
memory mode.

Decrements the address in
memory mode.

The *“next” and “last” commands may be entered from pause, run, or
memory mode. If entered from run or pause mode, the RETURN] key is set
to increment or decrement and memory mode is entered at the current

value of MMP.

When a comma or period is entered in memory mode, this temporarily

overrides the scrolling direction.

6-46

1/0 MODE POINTER

Command Result

10P Displays the current value of
the I/0 mode pointer.

I0P = <exp> Assigns the value <exp> to the

I/0 mode pointer.

Comments

IOP is the last value examined while in I/O mode. If you enter I/O mode
without specifying an address, the IOP value is used as the entry point.

The default power-up value of the IOP register is zero. This register may
be stored in EEPROM.

The I/0O mode pointer is modified by moving to a new address after
entering I/O mode. When you exit I/O mode, the IOP reflects the last
address examined. As with any register, the IOP can be used as a
parameter for other commands (see Memory and 1/O Modes, page 6-38).

Examples

Set the IOP and verify.

>10P=$1100; 10P
$00001100
>

6-47

MEMORY MODE POINTER

Command Result

MMP Displays the current value of
the memory mode pointer.

MMP = <exp> Assigns the value <exp> to the
memory mode pointer.

Comments

MMP is the last value examined while in memory mode. If you enter
memory mode without specifing an address, the MMP value is used as the
entry point.

The default power-up value of the MMP register is zero. This register
may be stored in EEPROM.

The memory mode pointer is modified if you change to a new address after
entering memory mode. When you exit memory mode, the MMP reflects
the last address examined.

As with any register, the MMP can be used as a parameter to another
command. (See memory and I/O modes, page 6-38.)

MEMORY MODE POINTER (cont.)

Examples

Set the MMP and verify.

>MMP=$12330; MMP
$00012330

>

(continued)

6-49

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Diagnostic Functions

The diagnostic functions (also called special functions or SFs) are a group
of utility routines and special tests. They are valuable for locating address,
data, status or control line problems. There are two categories:

m RAM tests
m Scope loops

For a complete list see the SF command (page 6-52).

RAM TESTS

The prewritten tests check that RAM is operating properly. They can be
run on the target or overlay memory and may be executed in either byte or
word mode. Byte or word mode must be specified prior to initiating the SF
test.

SF 1 and 3 are modeled after a study by Abraham, Thatte, and Narir
entitled Efficient Algorithms for Testing Semiconductor Random-Access
Memories [IEEE Transaction on Computers, vol. ¢-27, no. 6 June 1978].
Refer to this publication for background information on these two
diagnostics.

If you are going to test a large chunk of RAM, it may take a significant
amount of time. If you attach a printer to the computer port and turn on
the copy switch, you can let the test run while you do something else. The
printer will record any errors that may occur in your absence.

SCOPE LOOPS

Scope loops are diagnostic routines built into the Emulator firmware for
use when troubleshooting with an oscilloscope. The uses for these special
functions range from locating stuck address data, status or control lines, to
generating signatures using signature analysis equipment. Special
Functions 4 through 12 are the memory scope loops and 24 through 32 are
the I/0 scope loops.

The firmware is optimized so that the loops execute at maximum speed.
This short cycle time allows the hardware engineer to review the timing of
pertinent signals in the target system without using a storage oscilloscope.

6-50

Section 6. Target Commands

All of these routines must be terminated by resetting the Emulator with the
reset character (see pages 4-25 and 5-4). The scope loops can be executed
in either byte or word mode.

Memory scope loops access the memory space defined by the current MMS
(Memory Mode Status) register.

I/0 scope loops access the target system’s 1/0O space.

6-51

SPECIAL FUNCTIONS LIST

Command

Result

SF Displays list of all available
RAM tests, scope loops and
miscellaneous tests.

Examples

>SF

SF 0,<RANGE><CR>
SF 1,<RANGE><CR>
SF 2,<RANGE><CR>
SF 3,<RANGE><CR>

SF & {243 ,<ADDRESS>,<PATTERN><CR>
SF 5 {25}, <ADDRESS><CR>

SF 6 {26},<ADDRESS>,<DATA><CR>

SF 7 {27),<ADDRESS>,<PATTERN><CR>
SF 8 {28}, <ADDRESS>,<PATTERN><CR>
SF 9 {293}, <ADDRESS>,<DATA><CR>

SF 10 {30}, <RANGE><CR>

SF 11 {31}, <ADDRESS>,<DATA><CR>
SF 12 {323,<RANGE><CR>
MISCELLANEOUS:

SF 13<CR>

CLK <CR>

CRC <RANGE><CR>

CRE/CRO <RANGE><CR>

>

SCOPE LOOPS: {SELECT NUMBER FOR 1/0 LOOPS)}

SIMPLE RAM TEST, SINGLE PASS
COMPLETE RAM TEST, SINGLE PASS
SIMPLE RAM TEST, LOOPING
COMPLETE RAM TEST, LOOPING

TOGGLE DATA AT ADDRESS

READ FROM ADDRESS

WRITE DATA TO ADDRESS

WRITE PATTERN, THEN PATTERN COMPLEMENT
WRITE PATTERN, THEN ROTATE

WRITE DATA, THEN READ

FORCE NOP TO INCREMENTING ADDRESS
WRITE INCREMENTING VALUE

READ DATA OVER ENTIRE RANGE

CRC CHECK OF EMULATOR FIRMWARE
DISPLAY TARGET CLOCK FREQUENCY
CALCULATE CRC OF SPECIFIED RANGE
CALCULATE CRC OF EVEN/ODD BYTES ONLY

6-52

SIMPLE RAM TEST, SINGLE PASS

SF 0, <range> Writes a test pattern to all
locations within the specified
range, then reads each location
to verify the data. The
following pattern sequence is
used:

Pattern
Sequence BYM WOM

1 0000 0000 0000
2 0001 0000 0001
3 0011 0000 0011
4 0111 0000 0111
5 1111 0000 1111
3 1110 0001 1111
7 1100 0011 1111
8 1000 0111 1111
9 1111 1111
10 1111 1110
11 1111 1100
12 1111 1000
13 1111 0000
14 1110 0000
15 1100 0000
16 1000 0000
(continued)

6-53

SIMPLE RAM TEST, SINGLE PASS /cont.)

Comments

This command is valid in pause mode only.

If a location is read that does not match the test pattern, a failure is
reported.

The address, correct data, and faulty data is displayed.

It no failure is detected, the following prompt is displayed:

TESTING RAM
COMPLETE

This is a single pass test.

6-54

COMPLETE RAM TEST, SINGLE PASS

Command Result

SF 1, <range> Writes, then reads, a test pattern
to all locations in the specified
range. Refer to Efficient
Algorithms for Test Semi-
conductor Random-Access
Memories mentioned in the
introduction to Diagnostic
Functions for the test pattern.

Comments

This command is valid in pause mode only.

If an error is detected, the associated address, correct data, faulty data, and
test sequence number are displayed. The sequence number specifies which
test in the complete list of tests caused the failure.

This is a single pass test.

Examples

TEST FAILED AT $20;GOOD DATA-$00, BAD DATA-$01 SEQ#-$02

An error 1s detected.

6-55

SIMPLE RAM TEST, LOOPING

Command Result

SF 2, <range> Writes a test pattern to all
locations in <range>, then reads
each location to verify the data.
See SF 0 for test pattern. Each
time the test is executed, the
pass count is incremented and
displayed on the screen.

Comments

This command is valid in pause mode only.

If no failure is detected, the pass line is the only line displayed. It is
continually updated, showing the number of times the test has been
executed.

SF 2, 070 4
YOU MUST RESET ME TO TERMINATE THIS FUNCTION
PASS COUNT = $XXXX

6-56

SIMPLE RAM TEST, LOOPING (cont.)

If a failure is detected, the problem address, correct data, and faulty data
are displayed on the line after the pass number line, and the test continues.

>SF 2,0 TO 4
YOU MUST RESET ME TO TERMINATE THIS FUNCTION

TEST FAILED AT $02; GOOD DATA - $FE, BAD DATA - $FF
PASS COUNT = $0000

TEST FAILED AT $02: GOOD DATA - $FE, BAD DATA - $FF
PASS COUNT $0001

until reset

You must issue the reset character to terminate this test (see pages 4-25 and
5-4).

COMPLETE RAM TEST, LOOPING

Command Result

SF 3, <range> Writes a test pattern to all
locations within <range>, then
reads each location to verify the
data. See SF 1 for test reference
information.

Comments

This command is valid in pause mode only.
During execution, a pass count is maintained and displayed on the screen.

If no failure is detected, the pass line is the only line. It is continually
updated, showing the number of times the test has been executed.

>SF 3, 0 T0 2
YOU MUST RESET ME TO TERMINATE THIS FUNCTION
PASS COUNT = $XXXX

6-58

COMPLETE RAM TEST, LOOPING (cont.)

If a failure is detected the associated address, the correct data, faulty data,
and test sequence number are displayed.

>SF 3, 0 TO 2
YOU MUST RESET ME TO TERMINATE THIS FUNCTION

TEST FAILED AT $02; GOOD DATA - $00, BAD DATA - $01 SEQ # - 02
PASS COUNT $0000

TEST FAILED AT $02; GOOD DATA - $00, BAD DATA - $01 SEQ # - 02
PASS COUNT $0001

until reset

You must issue the reset character to terminate this test (see pages 4-25 and
5-4).

6-59

TOGGLE DATA AT ADDRESS

Command

Result

SF 4 <address>,<data>

SF 24,<address>,<data>

Comments

<data> 1is written to the
specified address in the memory
space defined by MMS.

<data> 1s written to the
specified address in I/O space.

The user defined data pattern is
written to <address>,
alternating with a data pattern
of zeros.

SEQ BYM WOM
1 00 0000
2 XX XXXX (user data)
3 00 0000
4 XX XXXX (user data)

These commands are valid in pause mode only.

You must issue the reset character to terminate this test (see pages 4-25 and

5-4).

6-60

TOGGLE DATA AT ADDRESS (cont.)

Examples

Assume you are in word mode (WDM).

>SF 4, 2, SFFFF
YOU MUST RESET ME TO TERMINATE THIS FUNCTION

The data pattern written to address 2 is:

0000
FFFF
0000
FFFF

6-61

PEEKS INTO THE TARGET SYSTEM

Command Result

SF 5,<address> Consecutively reads from the
specified memory address using
MMS as status space register.

SF 25,<address> Consecutively reads from the
specified I/O address.

Comments

These commands are valid in pause mode only.

You must issue the reset character to terminate this test (see pages 4-25 and
5-4).

Examples

>SF 5, 2
YOU MUST RESET ME TO TERMINATE THIS FUNCTION

6-62

POKES INTO THE TARGET SYSTEM

SF 6,<address>,<data> Consecutively writes the user
defined data pattern to the
specified memory address using
MMS as status space register.

SF 26,<address>,<data> Consecutively writes the user
defined data pattern to the
specified I/O address.

Comments

These commands are valid in pause mode only.

You must issue the reset character to terminate this test (see pages 4-25 and
5-4).

Examples

>SF 6, 10,$FFFF
YOU MUST RESET ME TO TERMINATE THIS FUNCTION

The data pattern written to address 10 is:

(continued)

6-63

POKES INTO THE TARGET SYSTEM (cont.)

(BYM) (WDM)

FF FFFF
FF FFFF
FF FFFF

6-64

WRITE ALTERNATE PATTERNS

Command

23223

SF 7,<address>,<pattern>

SF 27,<address>,<pattern>

Comments

Consecutively writes the user
defined data pattern to the
specified memory address using
MMS as status space register
followed by the complement of
that data pattern to the same
address.

Consecutively writes the user
defined data pattern to the
specified I/O address followed
by the complement of that data
pattern to the same address.

These commands are valid in pause mode only.

You must issue the reset character to terminate this test (see pages 4-25 and

5-4).

Examples

>SF 7, 10, 55

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

(continued)

6-65

WRITE ALTERNATE PATTERNS (cont.)

The following data pattern is written to address 10:

BYM WDM

55 0055
AA FFAA
55 0055
AA FFAA

6-66

WRITE PATTERN THEN ROTATE

SF 8, <address>, <pattern>

SF 28, <address>, < pattern>

Comments

Consecutively writes the data
pattern to the specified memory
address using MMS as status
space register, rotates the
pattern 1 bit to the left, and
writes to the same address.

Consecutively writes the data
pattern to the specified I/0
address, rotates the pattern 1 bit
to the left, and writes to the
same address.

These commands are valid in pause mode only.

You must issue the reset character to terminate this test (see pages 4-25 and

5-4).

Examples

>SF 8,1000,05

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

(continued)

6-67

WRITE PATTERN THEN ROTATE (cont.)

The following data pattern is written to address 10:

BYM WDM
05 0005
0A 000A
14 0014
28 0028
50 0050
AO 00AO
41 0140
82 0280
0500
0AQ0
1400
2800
5000
A000
4001
8002

6-68

WRITE DATA THEN READ

SF 9, <address>, <data> Consecutively writes the
specified data pattern to the
specified memory address using
MMS as status space register,
then reads from that same
address.

SF 29, <address>, <data> Consecutively writes the
specified data pattern to the
specified I/O address, then
reads from that same address.

Comments

These commands are valid in pause mode only.

You must issue a reset character to terminate this test (see pages 4-25 and
5-4).

Examples

>SF 9, 100,$FFFF
YOU MUST RESET ME TO TERMINATE THIS FUNCTION

6-69

This page intentionally left blank.

6-70

WRITE INCREMENTING VALUE

Command Result

SF 11, <address> Consecutively writes a
constantly incrementing value
to the specified memory address
using MMS as status space
register.

SF 31, <address> Consecutively writes a
constantly incrementing value
to the specified I/O address.

Comments

These commands are valid in pause mode only.

You must issue the reset character to terminate this test (see pages 4-25 and
5-4).

Examples

>SF 11, 100
YOU MUST RESET ME TO TERMINATE THIS FUNCTION

6-71

READ DATA OVER AN ENTIRE RANGE

Command Result

SF 12, <range> Consecutively reads from the
specified memory address range
using MMS as status space
register.

SF 32, <range> Consecutively reads from the
specified I/O address range.

Comments

These commands are valid in pause mode only.

The Emulator performs consecutive reads over the specified address range.
The first read occurs at the starting address of the range. The address is
then incremented for each additional read cycle. After the last address in
the range has been read, the process starts again.

You must issue the reset character to terminate this test. (See page 4-25
and 5-4.)

Examples

>SF 12, 10 70 20
YOU MUST RESET ME TO TERMINATE THIS FUNCTION

6-72

CYCLIC REDUNDANCY CHECK

Command Result

SF 13 A CRC is calculated on the ES
1800 internal PROM that
contains the Emulator
firmware.

Comments

This command is valid in pause mode only.

This is an Emulator self-test.

If a failure is detected, a CRC error is displayed.
This is a single pass routine.

When the text completes without an error, the command prompt ([>]) is
displayed.

READ TARGET SYSTEM CLOCK

Command

Result

CLK Reads the target system clock
and displays the value in KHz.
The value is accurate to plus or
minus 2 KHz.
Examples
>CLK

CLOCK FREQUENCY = #2001 KHZ
>

TARGET CYCLIC REDUNDANCY CHECK

Command Result

CRC <range> The system calculates a cyclic
redundancy check on all
addresses in <range>.

CRE <address range> Calculates a cyclic redundancy
check on even addresses.

CRO <address range> Calculates a cyclic redundancy
check on odd addresses.

Comments

These commands are valid in pause mode only.

The CRC command generates a cyclic redundancy check value over a user
defined address range. Only the byte mode is fised for this test.

If code is split into two PROMs, with one even and the other one odd, the
CRE/CRO operators allow you to do a cyclic redundancy check on each
PROM.

CRC calculations can be used to determine if RAM based data is being
corrupted. Do a CRC over the data base and save the value. Then run the
program and do the CRC over the range again. If the values do not match,
data is being corrupted. The Event Monitor System can be set up to catch
writes to the data base.

The CRC algorithm is based on the polynomial x16,x15:x241.

6-75

DISPLAY STATUS OF SEVERAL STATUS LINES

Command Result

BUS The bus status is displayed:

Comments

The status of the following three bus lines is displayed:

NMI Non-maskable interrupt

ARDY Asynchronous ready

SRDY Synchronous ready

INTO Interrupt O

INTI Interrupt 1

INT2/INTAO Interrupt 2 or interrupt

acknowledge 0

INT3/INTA1 Interrupt 3 or interrupt
acknowledge 1

TEST Test input

6-76

DISPLAY STATUS OF SEVERAL STATUS LINES (cont.)

Examples
>BUS ,
NMI ARDY SRDY INTO INT1 INT2/INTAO INT3/INTA1 TEST
0 1 0 0 0 0 0 0

0 indicates an inactive condition

1 indicates an active condition

6-77

SECTION 7

Table of Contents

Page

OVERVIEW . .. it ittt e et ieieeannn. 7-1
Comparator Registers. .. .ovviiiiiein i iiinraieaeeeneannns 7-2
Address Comparators.vvee it iiiieriineneaneraneeans 7-3
Data and LSA Comparators. . ..oovveiitiiiiiiiininennnnnns 7-4
Status ComParators. ... vv vt ittt iieiie et ennenneannnns 7-4
Breaking On NMI. ittt ieeeeneenn, 7-6
Count Limit Comparator. .. .o etti et iieeeeennnenns 7-7
DEFINING EVENT S, .. it e it e cteeceieieaanens 7-8
Event. o e e 7-8
DEFINING ACTION LISTS. ..ottt 7-9
Display Event Specifications.......cc.vvvuiivninenenevennnn. 7-11
Clear WHEN/THEN Statements.c.oveeerenenneenennn. 7-13
BREAKING EMULATION.ttt 7-14
TRACING EVENT S, .. i e e 7-16
COUNTING EVENT S, .. e e 7-19

Section 7: Event Monitor System Table of Contents (cont)

Page

Section 7

EVENT MONITOR SYSTEM

Overview

The ES1800’s Event Monitor System provides extremely flexible system
and breakpoint control, enabling you to isolate or break on any predefined
series of events and then perform various actions. You control and
monitor the target by entering commands that define events as logical
combinations of address, data, status, count limit, and optional logic state
probe inputs. When an event is detected, the ES1800 can break emulation,
trace specific sequences, count events, execute user supplied target
routines, and trigger TTL outputs.

WHEN/THEN control statements define events and the corresponding
actions. There can be several actions for any event. The system only
recognizes the first three letters of any word in a control statement (e.g.,
WHEN=WHE; THEN=THE). There can be many control statements in
effect at any time. The Event Monitor System can also switch groups or
states. There are four event groups available and the control statements

and comparator values for any group are independent of those in other
groups.

You can enter Event Monitor System control statements while in run mode.
You can also modify the event comparator values during run mode. These

new statements and values will not go into effect until you stop and restart
run mode.

7-1

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

The ES1800 Event Monitor System monitors target information at the bus
cycle level, including every read or write cycle that the microprocessor
executes. The EMS *““sees” every signal that can affect the target system. It
can also monitor inputs from the logic state analyzer probe.

The Intel 80186/80188 microprocessors multiplex address and data lines.
The ES1800 demultiplexes those signals so that the Event Monitor System
“sees” all signals at the same time. The EMS essentially takes a picture of
the microprocessor’s signals at the beginning of every T4 state (refer to
Intel manual, iAPX 86,88, 186,188 Users Manual). The information that
is recorded into trace memory is the same information that the EMS is
monitoring.

The basic Event Monitoring System control statement is of the form:

[Group] WHE[N] <event> THE[N] <action>

Notice that the ESL. command processor needs only the first three letters of
the symbol.

COMPARATOR REGISTERS

There are eight comparator registers for each of the four event groups.
These event registers are listed in the table below. The address
comparators are used to detect discrete addresses or addresses inside or
outside a specified range. The data comparators can detect specific data
patterns and can ignore specified bit positions. The status comparators
monitor all of the status signals from the microprocessor as well as some
generated by the ES1800. The status comparators can also ignore bit
positions. The count limit register can be used to detect when an event has
occurred more than a specified number of times. The logic state analyzer
register can detect bit patterns in the inputs from the logic state probe.

7-2

Section 7: Event Monitor System

The following table describes the available event comparator registers.

Register Size Name by Group
Description Type (bits) 1 4
Address 1 Range, Int 24 AC1 or AC1. AC1.4
Address 2 Range, Int 24 AC2 or AC2. AC2.4
Data 1 Don't Care,Int 16 DC1 or DC1. DC1.4
Data 2 Don't Care,Int 16 DC2 or DC2. DC2.4
Status 1 Don't Care,Int 16 $1 or $1.1 $1.4
Status 2 Don't Care,Int 16 S2 or S2.1 S2.4
LSA Don't Care,Int 16 LSA or LSA. LSA.4
Count Int 16 CTL or CTL. CTL.4
ADDRESS COMPARATORS

Address comparators may be assigned integer values or range values.

Ranges may be either internal (IRA) or external (XRA).

If a range is

specified without IRA or XRA operators, the default range type will be
IRA. The following are examples of valid address comparator assignments.

>AC1=2000

>AC2=1000 LEN 20
>AC2.2=XRA 1100 TO 1250
>AC1.4 = IRA $FF006 LEN $FF
>AC1.1 = @SS:SP
>AC2='Symbol

>AC1 =IP + 200

>AC1.2 = IAC1.4

7-3

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

ODD BOUNDARIES

The address comparators in the 80186 may need to be specially set up. The
80186 is a 16-bit chip with a prefetch QUE and byte based instructions.
This causes problems with breaking on instructions that occur on odd
boundaries.

This section describes three distinct conditions, and suggestions for
resolving them.

1. 80186 prefetches an instruction.

When the 80186 prefetches an instruction, it outputs the
even address. Both bytes are fetched, and the actual
(odd) address of the byte in question 1s never seen. This
means that you can’t set the Event Monitor System to
break on the odd address.

2. 80186 jumps to an odd address.

When the 80186 jumps to an odd address, the odd address
does appear on the bus, and only that byte is fetched. In
this case, the Event Monitor System works as expected.

3. Only the low byte is read.

If only the low byte is read, the even address appears on
the bus, and the odd byte is not read. This means you
can’t set the Event Monitor System to break on the odd
address.

7-4

Section 7: Event Monitor System

The ES 1800 Event Monitor System can be set up to resolve conditions 1
and 3, and to guarantee correct operation in condition 2.

Assume the byte in question is at $04001. This byte could be accessed by
the address $04001 or $04000. If the address $04001 is on the bus, then the
byte is accessed. If the address $04000 is on the bus, and the bus cycle is a
16-bit cycle, then the byte is accessed. If the address $0400 is on the bus,
and the bus cycie is an 8-bit cycie, then the byte is not accessed.

This Event Monitor System setup handles this condition:

AC1=304000

AC2=$04001

S1=WRD

WHEN AC1 AND S1 OR AC2 THEN BRK

ACI1 contains the even address. Sl is the word bus cycle condition. If both
are true, the high or odd byte has been accessed. AC2 contains the actual
odd address. If it is true, then the byte is always being accessed. If neither
is true, then the byte is not being accessed.

7-4-A

ES1800 Emulator Reference Manual for 80186 /188 Microprocessors

DATA AND LSA COMPARATORS

The data comparators monitor the data bus for specified patterns. The
LSA comparators monitor the input pulses from the logic state probe.

Data and LSA comparators may be assigned integer values or don’t care
values. Don’t care values may be assigned in two ways.

m The first is to specify the value followed by the don’t care
mask

m The second is to specify the value using [x] in the don’t care
positions.

The following are examples of valid data and LSA comparator
assignments.

>DC1=237F
>LSA=5300 DC $FF
>LSA.3 = 53XX
>LSA = %110101 DC $FFO0
>DC2.2 = 42 DC %101

>DC2 = GDO + $F

>DC1.4 = @'data table + 56

STATUS COMPARATORS

The status comparators are assigned values from the list of status constants.
Many of these constants can be combined to specify a complex comparator

value. The list on the next page shows the available mnemonics. Any of
these statuses can cause events.

7-4-B

Section 7: Event Monitor System

STATUS MNEMONICS
ALT Alternate Data Access QD1-6 Queue Depth (1-6)
BYT Byte Access QF Queue Flush Cycle
COD Code Access RD Read
DAT Data access RIO Read 10 Status
HLT Halt Status RM Read Memory Status
IAK Interrupt Acknowledge Status STA Stack Access
IF Instruction Fetch Status TAR Target Access
IOA 10 Access Wio Write 10 Status
MEM Memory Access WM Write Memory Status
NBC No Bus Cycle Status WR Write
NMI NMI Cycle WRD Word Access
OVL Overlay Access DMA DMA Cycle

The status mnemonic table shows which status values can be assigned to
the comparators. You may assign a status comparator a single mnemonic,
or you may combine a mnemonic from each of the columns 2-8 and any or
all from column 9. Mnemonics are combined using an addition operator
([+]) as a Boolean AND.

STATUS MNEMONIC TABLE
$1 =TAR + RD + BYT + MEM + ALT + HLT + Q1 + QF
S2 ovL WR WRD 10A CoD TAK QD2 NMI
DAT NBC QD3 DMA
STA RIO QD4
RM QD5
WIOo QDé
WM QDé
IF

Some examples of status comparator assignments:

>$1=BYT
>$2=0VL+RD+DAT
>S$1.3=WR+I0A
>$2.4=RI0
>$1.2=QF

7-5

ES1800 Emulator Reference Manual for 80186,/188 Microprocessors

BREAKING ON NMI

Although it may be tempting to use the NMI status to break on NMI, do
not use this status with the break action. Setting a breakpoint on an NMI
fetch will cause the emulator to hang, requiring a Ctrl-Z to recover. To
break on an NMI, set the event system to break on the starting address of
the NMI interrupt routine. The NMI status may be used as a qualifier for
other EMS actions.

Figure 7. Status Translation Table

STATUS TRANSLATION TABLE

15 M 13 12 i 0 9 8 7 6 5 4 3 2 i 0 |
MEM/ |TAR/ |RD/ |BYT/
NMI X87 QF I0A| OVL| WR| WRD
SEGMENT CPU STATUS QUE DEPTH EMULATOR STATUS
NMI=0 ALT=0 X87=1 JAK =0 QDI =1 MEM=1 TAR=1 RD=1 BYT=]
STA=1 RIO=1 QD2=2 QF =0 ICA=0 OVL=0 WR-0 WRO=0
COD=2 Wi0=2 QD3=3
DAT=3 HLT=3 QD4a=4
IF=4 QD5 =5
RM=35 QD6=6
WM=6
NBC=7

When you display the value of the status comparators, you will see a 32-bit
don’t care value rather than the mnemonics you originally assigned them.
The Status Translation Table is provided to aid you in decoding the
numbers back into the mnemonics.

7-6

Section 7.: Event Monitor System

The don’t care mask is the value to the right of the DC. A “0” in a mask
bit position enables the status bit in the same position on the left side of the

DC, and a “1” in a mask bit position masks or disables the corresponding
bit on the left side of the DC.

Determine which bit positions are unmasked (those containing 0’s in the

ols =2nls AnGisAw A j A xr
mask value). It may be easier to do this by setting the status comparator’s

display base to binary ([BAS_si = 2|). Then refer to the translation table and
find the unmasked bit positions. Look at the value contained on the left
side of the DC and match it with the corresponding value shown
underneath the bit position in the table.

>S1
$00000504 DC 0000B8F8

All bits except bits 2, 8, 9, 10 and 14 are masked. Bit 14 is enabledand a 0
is in the bit 14 of the status value, so NMI was entered.

Bits 8,9, and 10 are enabled and there is a 101 (5) in those bits in the status
value so RM was entered.

Bit 2 is enabled and there is a 1 in bit 2 of the status value so TAR was
entered.

Therefore, the original input was:

>S1=NMI+RM+TAR

COUNT LIMIT COMPARATOR

The count limit comparator, CTL, is used to detect when events have
occurred a certain number of times. The CTL value for group 1 is loaded
into a hardware counter which is decremented whenever the action CNT is
executed (see Defining Action Lists, page 7-9). If a group switch occurs,
the hardware counter can be loaded with the new group’s count limit by
executing the RCT (Reset Count) action. Otherwise, the hardware counter
will not change its limit value when switching groups.

7-7

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Defining Events

The Event Monitor System is arranged in four independent groups. These
groups provide a state-machine capability for debugging difficult
problems. EMS control statements are associated with one of the four
groups. If no group numbers are mentioned in the EMS control statement,
the statement is assigned to group 1. There are two ways to override this
default selection of group 1. You can begin the EMS control statement
with a group number, or vou can add a group number to anv one of the
event comparator names. For example: [3 wHEN AC1 THEN BRK] is functionally
the same as [WHEN AC1.3 THEN BRK]. You cannot mix group numbers within a
single EMS control statement.

EVENT

You can define an event to be some combination of address, data, status,
count, and logic state probe conditions. Numerous Event Monitor System
control statements may be entered and in effect simultaneously.
Conflicting statements may cause unpredictable action processing.
Parentheses are not allowed in event specifications.

The NOT operator reverses the sense of the comparator output. NOT has
higher precedence than either of the conjunctives.
[WHEN _AC1 AND NOT DCT THEN BRK] means break whenever any data pattern other
than that in DC1 is written to an address in AC1.

AND and OR can be used where needed to form more restrictive event
definitions. = AND terms have higher precedence than OR terms.
[AC1 AND DCT OR DC2] is the same as [ACT AND DC1] in one statement and in
another. If you are looking for two different data values at an address, you
would use [AC1 AND DC1 OR AC1 AND DC2.

The OR operator is evaluated left to right and is useful for simple
comparator combinations. For complex event specifications, OR
combinations can be replaced with separate EMS Control statements for
clarity. [AC1 AND ST OR AC2 AND s2] is the same as [ACT AND s1] and [AC2 AND s2].

7-8

Section 7: Event Monitor System

Defining Action Lists

The action list in a WHEN/THEN statement defines what the Emulator
does when an event is detected. Actions are specified in an action list
separated by commas. The action list may have one or more actions
defined.

Example

<group> WHEN <event> THEN <action>,<action>, ... ,<action>

The following table lists all possible actions.

Event Monitor System Actions

Action Description

BRK Break emulation

CNT Count bus cycle

FSI Force special interrupt
GRO n Change event group

RCT Reset count value

TGR Output trigger signal
TOC Toggle count state

TOT Toggle trace state

TRC Trace bus cycle

The TRC and TOT actions are described in the Tracing Events section.
The CNT, RCT, and TOC actions are described in the Counting Events
section. The FSI action is described in the Special Interrupt section. The
GRO action is described in the Changing Event Groups section. The TGR
action is described in the Trigger Signal section. The BRK is described in
the Breaking Emulation section.

7-9

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

The EMS resolves conflicting EMS control statements. The TOC action in
the first statement:

>WHEN AC1 THEN TOC
>WHEN AC1 THEN CNT

is changed to CNT.

7-10

DISPLAY EVENT SPECIFICATIONS

DES Displays all of the
WHEN/THEN statements
currently active from all groups.

DES <group number> Displays all of the
WHEN/THEN statements and
the comparator values for the
specified group.

(continued)

7-11

DISPLAY EVENT SPECTFICATIONS (cont.)

Examples

Displays the statements and comparators for groups 1 and 2.

>DES 1;RET;DES 2
1 WHEN AC1 THEN BRK

AC1.1 = $007632
AC2.1 = $000000
DC1.1 = 30000
DC2.1 = $0000
§1 .1 = $0000
s2 .1 = $0000
LSA.1 = $0000
CTL.1 = $0000

2 WHEN S1 AND DC1 THEN CNT,TRC
2 WHEN CTL THEN BRK

AC1.2 = $000000

AC2.2 = $000000

DC1.2 = $40FF DC $0OFF
DC2.2 = $0000

S1 .2 = $0003 DC $FFFC
$2 .2 = $0000

LSA.2 = $0000

CTL.2 = 30010

CLEAR WHEN/THEN STATEMENTS

Command Result

CES Clears all of the WHEN/THEN
statements currently active.

CES <group number> Clears all of the WHEN/THEN
statements for the specified
group.

Comments

The comparator values are not affected by the CES command.

7-13

ES1800 Emulator Reference Manual for 80186 /188 Microprocessors

Breaking Emulation

The BRK action stops emulation, returning the system to pause mode.
When a break event is detected and emulation is broken, the current CS:IP
and event group are displayed on the terminal. Emulation begins at the
values displayed if the registers are not altered and you run or step
following a break. When entering emulation, the Event Monitor System
always begins looking for events specified in group 1.

Breakpoints stop program execution at specific times. After a break you
can disassemble the trace memory, look at the LSA bits in the raw trace,
check the CPU register values, or begin stepping through your code.

Breakpoint actions may be enabled or disabled by selecting the appropriate
run commands. If you enter emulation with the RBK or RBV run
commands, breakpoints are enabled. If you enter emulation with the RUN
or RNV commands, breakpoints are disabled, even if there are event
statements specifying the BRK action. If emulation is entered with
breakpoints disabled, you can enable them while running by entering the
RBK command. If you enter emulation with breakpoints enabled, you can
disable them while running by entering the RUN command. The RNV and
RBY commands are not allowed during emulation. These commands load
the reset vectors, which cannot be done during emulation.

Breaking can also be qualified by a soft switch, BKX. This switch
determines if breaks will occur on instruction execution, or on any access
to an address, including prefetches (see page 5-13).

Emulation may also be halted using the STP command. The RST
command and the reset character also break emulation.

7-14

Section 7: Event Monitor System

Examples

Breaks when the instruction at address $3000 is executed.

>0ON BKX

>AC1=3000

>WHEN AC1 THEN BRK
>RBK
R>

Trace only accesses between 1000 and 113C; break after ten accesses to this

address range.

>AC1=1000 to 113C
>CTL=#10

>WHEN AC1 THEN CNT,TRC
>WHEN CTL THEN BRK
>RBV
R>

Break when 55AA is written to I/O port A.

>AC1='PORT_A

>DC1=55AA

>$1=WIO

>WHEN AC1 AND DC1 AND S1 THEN BRK
>RBK

R>

7-15

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Tracing Events

Events:

TRC
TOT

The Event Monitor System can be set up to selectively trace bus cycles. If
all of the conditions specified in the event portion of the WHEN/THEN
clause are satisfied, the trace action, TRC, causes the specified bus cycle to
be recorded into the trace memory.

The toggle trace, TOT, allows you to turn tracing on and off. When a TOT
event is detected, the trace is toggled to the opposite state, either on or off.
You can specify a single event that starts and stops trace each time it is
detected or specify any number of events that toggle trace on and off.

If there are no event actions that specify TRC or TOT, all bus cycles are
traced. If there is a TRC event, only qualified bus cycles are traced. If
there is a TOT event, trace is off until the TOT is detected, then all bus
cycles are traced until encountering another TOT event.

7-16

Section 7: Event Monitor System

This table describes the trace conditions immediately before and
immediately after a group change.

Previous Group New Group
Nothing Specified TRC TOT
Nothing Specified Trace All Cycles | Trace Only | Trace Nothing
Qualified Cycles | Until First TOT
TRC Trace All Cycles | Trace Only | Trace Nothing
Qualified Cycles Until First TOT
TOT (Not Tracing) || Trace All Cycles | Trace Only | Trace Nothing
Qualified Cycles Until first TOT
TOT (Tracing) Trace All Cycles | Trace Only | Trace All Until
Qualified Cycles first TOT
This table describes initial trace conditions.
Action Specified Trace Condition
Nothing Trace All Cycles
TRC Trace Only Qualified TRC events
TOT Trace Nothing until TOT event
{ continued)

7-17

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Examples

Trace only a specific subroutine. Break at the end of the routine.

>AC1='Sub_start
>AC2='Sub_end
>WHEN AC1 THEN TOT
>WHEN AC2 THEN BRK
>RBK

R>

7-18

Section 7: Event Monitor System

Counting Events

Registers:
Value Type - 16 bit integer

CTL=<EXP>
CTL<.group>=<EXP>

Events:
CNT

RCT
TOC

Events can be defined to selectively count bus cycles. There is one
hardware counter and there are four count registers, one register for each
group. The hardware counter is automatically loaded with the count limit
register for group 1 when entering run mode.

The count, CNT, action decrements the hardware counter. When the count
reaches zero, the CTL event becomes true. If all other conditions specified
in the WHEN/THEN clause are satisfied, the appropriate action is taken.

Whenever the reset count, RCT, action is specified, the count comparator
value for the specified group is loaded into the hardware counter. When
switching groups, the current value of the hardware counter is passed
along as a global count value unless a RCT action is specified in the same
list of events that causes the group switch.

The toggle count, TOC, command allows you to turn counting on and off.
When a TOC event is detected, the count is toggled to the opposite state,
either on or off. You can specify an event that starts and stops the counter
each time it is detected or specify any number of events that toggle the
counter on and off.

(continued)

7-19

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

The current value of the counter cannot be read. You can only detect
when you have reached a limit.

This table describes the count conditions immediately before and after a

group change.

Previous Group New Group
Nothing Specified CNT TOC
Nothing Specified No Cycles Counted Court Only ! Count All Until
Qualified Cycles | First TOC

CNT

No Cycles Counted

Count Only
Qualified Cycles

Count Nothing
Until First TOC

TOC (Not Counting)

No Cycles Counted

Count Only
Qualified Cycles

Count Nothing
Until first TOC

TOC (Counting)

No Cycles Counted

Count Only

Qualified Cycles

Count All Until
first TOC

7-20

Section 7. Event Monitor System

This table describes initial count conditions (always group 1).

Action Specified Count Condition
Nothing No Cycles Counted
CNT Count Only Qualified CNT evenis
TOC Count Nothing until TOC event

Examples

Count the times that the specified data is written to a specific address.
Break if the data is written 20 times.

>CTL=#20

>S1=WR

>AC1=4020; DC1=$XXF3

>WHEN AC1 AND DC1 AND S1 THEN CNT
>WHEN CTL THEN BRK

>RBK

R>

(continued)

7-21

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Look for a read from a specific I/O port. After it is found go to group 2,
load the group 2 counter register value into the hardware counter, and set a
group 2 address comparator to count every bus cycle (all addresses). Break
after 100 bus cycles.

>AC1="10port

>S1=RD

>WHEN AC1 AND S1 THEN GRO 2, RCT
>CTL.2=#100

>AC1.2=0 TO -1

>2 WHEN AC1 THEN CNT

>2 WHEN CTL THEN BRK

>RBK

R>

7-22

Section 7; Event Monitor System

Trigger Signal

The trigger signal is an output that is available from the BNC connector
labelled TRIG on the back panel of the ES1800 chassis and from pin 19 of
the optional LSA pod. When a TGR event is detected, the trigger signal is
asserted, and remains so for the duration of the specified bus cycle. This is
asserted as a TTL-level high signal. If a trigger event is specified for more
than one consecutive bus cycle, the signal stays high for the duration of the
consecutive bus cycles.

The trigger signal can be used as a pulse output for triggering other
diagnostic equipment. It can also be used with a counter/timer for timing
subroutines.

Examples

Trigger a scope when reading data from a UART.

>AC1='DATA_PORT
>S1=RI0
>WHEN AC1 AND S1 THEN TGR

Determine the duration of a subroutine using the trigger pulse. The trigger
pulse can be the input to a counter/timer or a scope. The duration of the
subroutine can be determined from the pulse width displayed on the scope
or the counter/timer readout.

(continued)

7-23

ES1800 Emulator Reference Manual for 80186 /188 Microprocessors

>AC1=2500
>AC1.2=AC1+38E
>DC1.2=XXXX

>WHEN AC1 THEN TGR, GRO 2
>2 WHEN DC1 THEN TGR

>2 WHEN AC1 THEN GRO 1
>RUN
R>

Start of subroutine
End of subroutine
Detect any data pattern

Go to group 2 when subroutine is entered
Trigger during all cycles while in group 2
Go back to group 1 when last instruction
in subroutine is executed.

7-24

Section 7. Event Monitor System

Special Interrupts

Registers:
SIA vValue Type - 32 Bit Integer

Events:

FSI

The force special interrupt action, FSI, allows you to jump to a specified
address when a specific event is detected.

The special interrupt address register, SIA, should be set prior to entering
the run mode if you are using the FSI event. It defines the address your
program vectors to when the FSI is executed.

When an FSI event is detected, an message is displayed on the
screen. You may also see some unusual cycles in the trace memory at the
address where the FSI occurred. These are internal cycles that are traced
as the execution address is changed. These internal cycles are not purged
from trace memory.

The FSI event can allow you to patch to your code fast. It can also allow
you to write soft shutdown routines for machinery that cannot be halted
using a simple breakpoint.

The FSI routine residing at the SIA address should terminate with an
interrupt return (IRET) instruction. Execution resumes at the address
immediately following the instruction that caused the FSI. If this is a soft
shutdown, you will probably define a breakpoint at the IRET instruction.

(continued)

7-25

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Examples

Make a patch using overlay memory

>MAP 1000

>AC1=8F36

>WHEN ACT1 THEN FSI

>SIA=1000

>ASHM SIA Single line assembler - patch code
' can be assembled here.

>RUN
R>

Assume the program needs to break at a certain address, but the machine
cannot be turned off until a soft shutdown routine is executed. Set SIA to
the address of the soft shutdown routine. Use an FSI action at the break
address, then set a breakpoint at the end of the soft shutdown routine.

>SIA="'SHUT_down
>AC1=$7F4E2
>AC2='SHUT down + 4E
>WHEN AC1 THEN FSI
>WHEN AC2 THEN BRK
>RBK

R>

7-26

Section 7.: Event Monitor System

Changing Event Groups

The four event groups allow you to detect sequential events. When
emulation is entered, event monitoring always begins in group 1. The
example below describes a common use of the EMS group structure.

You may want to trace a subroutine after it has been called by Module A or
Module B, but not if it has been called from Modules C, D, or E. In this
case, define the address comparators in group 1 to the address ranges of
Modules A and B. When either of these modules is encountered, switch to
group 2 and look for the subroutine. After tracing the subroutine, switch
back to group 1. Turn on the break on instruction execution (BKX) switch
so that prefetching instructions do not trigger event actions.

>'Module A =1240 LEN 246
>'Module B =8750 LEN 408
>1Sub X =8934 LEN 56

>ON BKX

>AC1="Module_A
>AC2="Module B

>WHE AC1 OR AC2 THE GRO 2
>AC1.2='Sub X

>2 WHEN AC1 THE TRC
>2 WHE NOT AC1 THE GRO 1

(continued)

7-27

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

The TRC/TOT and CNT/TOC actions interact in a specific way when
event groups are switched. The following state transition tables describe
the actions taken when each of the different event combinations are

specified.

New Group
lirevious Noth’ipg' TRC TOT
Group Specified
Nothing Trace all Trace only No trace
specified cycles qualified cycles until first TOT
TRC Trace all Tr.ace only No trace
cycles qualified cycles until first TOT
T0T OFF Trace all Trace only No trace
(not tracing) cycles qualified cycles until first TOT
TOT ON Trace all Trace only No trace
(tracing) cycles qualified cycles until first TOT
New Group
Previous Nothin
Group Speciﬁegd CNT T0C
Nothing No cycles Count only No count
specified counted qualified cycles until first TOC
CNT No cycles Cgunt only No count
counted qualified cycles until first TOC
TOC OFF No cycles Count only No count
(not counting) counted qualified cycles until first TOC
TOC ON No cycles Count only No count
(counting) counted qualified cycles until first TOC

7-28

APPENDIX A

Table of Contents

ES Language Mnemonics

LISTOF COMMANDS. ... A-1

Appendix A

ES LANGUAGE MNEMONICS

List of Commands

Command Description Page
> Pause mode prompt 4-23
R> Run mode prompt 4-23
[RETURN] Return key 4-6

/ Repeat previous command line 4-7,
: Statement separator 4-6

* Repeat command 4-6

CTRL Q Start screen scrolling (can be changed) 4-25
CTRLR Reprint current line 4-25
CTRL S Stop screen scrolling (can be changed) 4-25
CTRL X Delete line 4-25
CTRL Z Reset the emulator (can be changed) 4-25
ESC ESC Escape transparent mode (can be changed)4-25
$ Hexadecimal 4-12
Decimal 4-12

ES1800 Emulator Reference Manual for 80186 /188 Microprocessors

Command Description Page
% Binary 4-12
\ Octal 4-12
= Equals 4-12
@) Parentheses 4-13
@ Indirection 4-9
¥ Multiplication 4-17
/ Division 4-17
+ Addition 4-17
- Subtraction 4-17
- Negation 4-15
& Bitwise AND 4-17
A Bitwise OR 4-17
<< Shift left 4-17
>> Shift right 4-17
! Inverse, bitwise NOT 4-15
Intel Segment/offset operator 4-9
Memory block attribute 6-15
Increment Memory Mode address 6-38
Execute macro #2 5-104
, Decrement Memory Mode address 6-38
, Execute macro #1 5-104
? Help menu 4-20
? Error query 4-7
. Define/execute macro 5-104
’ Symbol definition (single quote) 4-10

Appendix A: ES Language Mnemonics

Command Description Page
ABS Absolute value 4-16
AC1, AC2 Address comparators 1 and 2 7-3
ALT Alternate data access 7-5
AND Logical event AND 4-15
ASM Line assembler 6-30
AX, AL, AH Accumulator (low and high) 5-70
BAS Set/display base value 5-80
BKX Break on instruction execution 5-13
BMO Block move 6-23
BP Base pointer 5-70
BRK Break 7-14
BUS Display status of lines 6-76
BX, BL, BH Base register (low and high) 5-70
BYM Byte mode 4-24
BYT Byte access status 7-5
CCT Computer port control 5-36
CD Overlay enable for code access 5-61
CDH Clear DMA halt switch 5-14
CES Clear WHEN/THEN statements 7-13
CK Internal/external clock selection 5-14
CLK Read target system clock 6-74
CLM Clear memory map 5-60
CLR Clear microprocessor data registers 5-74
CMC Clear macros 5-106
CNT Count event 7-19
COD Code status 7-5

A-3

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Command Description Page
COM ASCII communication 5-48
CPY Copy switch 5-16
CRC/CRE/CRO Target cyclic redundancy check 6-75
CS Code segment 5-70
CTL Count limit 7-7
CX,CL,CH Count register (low and high) 5-70
DAT Data access status 7-5
DB Display memory block 6-17
DC Don’t cares 7-4
DC1, DC2 Data comparators 1 and 2 7-4
DEL Delete symbol/section 5-120
DES Display WHEN/THEN statements 7-11
DFB Set/display default base value 5-86
DI Destination index 5-70
DIA Display ASCII character string 5-52
DIS Display disassembled memory 6-36
DM Display memory map 5-55
DMA DMA cycle 5-67
DME Enable DME switch 5-17
DNL Download 5-38
DR Display microprocessor registers 5-74
DRT Display raw Trace Memory 5-94
DS Data segment 5-70
DT Disassemble Trace Memory 5-98
DTA Overlay enable for data access 5-61

Appendix A: ES Language Mnemonics

Command Description Page
DTB Disassemble Trace Memory backward 5-101
DTF Disassemble Trace Memory forward 5-101
DX, DL, DH Data register (low and high) 5-70
END Line assembler exit 6-32
ES Extra data segment 5-70
FIL Fill memory with constant data 6-21
FIN Find byte or word 6-19
FLX, FLL, FLH Flags register (low and high) 5-70
FSI Force special interrupt 7-25
FSX Force special interrupt on instruction

execution (switch) 5-18
GDO0-7 General purpose data registers (0-7) 5-88
GRO-7 General purpose range registers (0-7) 5-90
GRO Event monitor system group 7-27
HLT Halt status 7-5
TIAK Interrupt acknowledge status 7-5
IDX Repeat index register 5-107
IF Instruction fetch status 7-5
ILG Illegal memory access attribute 5-57
I0A IO access status 7-5
10P 10 mode pointer 6-47
1P Instruction pointer register 5-70

ES1800 Emulator Reference Manual for 80186 /188 Microprocessors

Command Description Page
IRA Internal range 7-3
LD Load EEPROM data 5-27
LDV Load vectors 6-9
LEN Length (specifies range) 4-11
LIM Repeat limit register 5-107
LOV Load Overlay Memory 5-62
LSA Logic State Probe comparator 7-2
LST Decrement address in memory mode 6-46
M Enter memory mode 6-40
MAC Display macros 5-103
MAP Define overlay memory map 5-56
MEM Memory status 7-5
MIO Enter I/O mode 6-43
MMP Memory mode pointer 5-83
MMS Memory mode status 5-82
MOD Modulo 4-17
NBC No bus cycles status 7-5
NMI NMI cycle status 7-5
NOT Logical event NOT 4-15
NXT Increment address in memory mode 6-46
OFF Display/disable switches 5-9
ON Display/enables switches 5-9
OR Logical event OR 4-15

Appendix A: ES Language Mnemonics

Command Description Page
OVE Overlay memory enable 5-61
OVL Overlay memory status 7-5
PCB Display PCB registers 5-77
PUR Clear symbolic memory 5-121
QD1-6 Queue depth (1-6) status 7-5
QF Queue flush cycle status 7-5
RBK Run with breakpoints 6-5
RBY Load vectors and run with breakpoints 6-5
RCS Read chip select switch 5-19
RCT Reset count limit 7-19
RD Read status 7-5
RDY Ready switch 5-20
RET Display return and line feed 5-124
REY Display software revisions 5-123
RIO Read I/O status 7-5
RM Read memory status 7-5
RNV Run with new vectors 6-5
RO Read only attribute 5-57
RST Reset 6-13
RUN Run emulation 6-5
RW Read/write attribute 5-56
S1, S2 Status comparators 1 and 2 7-5
SAV Save EEPROM data 5-25
SEC Display section 5-117
SET Set/display system parameters 5-3

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Command Description Page
SF Display special function menu 6-52
SF0-3 RAM Tests 6-52
SF 4-12 Special functions (memory) 6-52
SF 24-32 Special functions (I/0O) 6-52
SI Source index register 5-70
SIA Special interrupt address 7-25
SP Stack pointer register 5-70
SS Stack segment register 5-70
STA Stack data status 7-5
STI Step through interrupts 5-22
STP Step and stop 6-7
SYM Display symbols 5-116
TAR Target access status 5-96
TCT Terminal port control 5-35
TE0-2 Timer switches 5-23
TGR Enable trigger output 7-23
TGT Target memory attribute 5-57
THE THEN used in event statements 7-1
TO To 4-11
TOC Toggle counting 7-19
TOT Toggle trace memory 7-16
TRA Transparent mode 5-33
TRC Trace event 7-16
TST Test register for repeats 5-92

A-8

Appendix A: ES Language Mnemonics

Command Description Page
UPL Upload 5-44
UPS Upload symbols 5-46
YBL Verify block data 6-22
VBM Verify block move 6-25
VFO Verify overlay against target 6-28
VFY Verify serial data 5-43
WAI Wait until emulation is broken 6-11
WDM Word mode 4-24
WHEN/THEN WHEN/THEN Statements 7-9
WIO Write 1O status 7-5
WM Write memory status 7-5
WR Write status 7-5
WRD Word status 7-5
X Don’t care 7-4
X Exit memory mode 6-32
XRA External range 7-3

A-9

APPENDIX B

Table of Contents

ERROR MESSAGES.ottt iiiieeeeeeiieaenaenens B-1
Target Hardware Error Messages.....ooovvvvneieneennnnnnnn B-1
Hold Acknowledge/Bus Granted...................... B-1
NOBUS CyCles. ittt ieierenee e B-2

NO CIOCK. ittt i ettt it craenaneaeanes B-2
Processor Halted.........cco i iee B-2
Processor Waiting. . ..ovvveiniiinrernneeiennieneeenennns B-3
Reset Asserted.ooviiiiiiiiiiiiiiiiiiiiiiniieanennn B-4
Emulator Hardware Error Messages.ooeevvivenenennn B-4
Pod CPU Not Initialized..........c.cvvviiiiiiinnin.. B-4

Pod CPU NotResponding..........ccovvveiinneneanennn. B-5
System Reset Error.......cooviiiiiiiiiiiiiiane, B-5
Target Software Error Messages......cocvevereienienennnnnnn. B-5
Memory Access Violation..........ccoeeveeiinnennnnn... B-5

Memory Write Violation........c.covviviiiinneinvennnn. B-5

Appendix B

ERROR MESSAGES

Error Messages

Error messages are divided into 3 categories:

1. Target Hardware
2. Emulator Hardware

3. Target Software

TARGET HARDWARE ERROR MESSAGES

HOLD
ACKNOWLEDGE /BUS
GRANTED

This message is displayed when a hold
acknowledge has been asserted for longer
than 2.2 ms. When the microprocessor
regains control of the bus, the message is
removed. This message is caused by one of
two conditions: When a DMA (direct
memory access) controller takes over the
bus by asserting the hold line, or when the
microprocessor is running in a
multiprocessor environment. This message
is generally not an error message but rather
a statement of what the processor is doing.

ES1800 Emulator Reference Manual for 80186 /188 Microprocessors

NO BUS CYCLES

NO CLOCK

PROCESSOR
HALTED

This error message indicates that no ALE’s
(Address Latch Enable) were detected for
at least 2.2 ms or longer, and no other error
conditions are found.

When no ALE’s are detected the controller
checks for other fault conditions, including
proper target VCC, a functional clock, and
whether the processor is halted, waiting,
reset or the bus is granted. If any of these
other conditions exist then the appropriate
message for that condition is displayed. If
no other fault condition is found, the NO
BUS CYCLES message is displayed.

The microprocessor must have a clock
frequency within the range of 1.2 Mhz to 9
Mhz or the message NO CLOCK 1is
displayed.

If there is no clock from the target, the user
is given the option of selecting an internal
clock when the Emulator is powered up (see
page 5-9). However after an external clock
has been selected and the NO CLOCK
message is displayed, the only way to return
to an internal clock 1s to reset the system.

A halt (HLT) instruction has been executed
and the microprocessor has remained halted
for greater than 2.2 ms. The
microprocessor is in a run state and
commands can still be entered at the
keyboard.

NOTE 1: It is not possible to break on a
HLT instruction or status. If you want to
break on the HLT instruction it is necessary
to set a breakpoint at an address one
instruction before the HLT.

Appendix B: Error Messages

PROCESSOR
WAITING

NOTE 2: Normally when a HLT instruction
is executed, the microprocessor waits for a
reset or an interrupt to bring it out of that
condition. When single stepping, the
emulator uses an NMI to return to the
internal world. Therefore when a HLT
instruction is encountered it is executed and
the processor goes on to the next instruction
because the microprocessor was satisfied by
the NMI that took it out of the HLT
condition.

The microprocessor is waiting for a RDY
(ready) to be returned. This message
displays only if the microprocessor has been
waiting for greater than 2.2 ms. When the
condition has been corrected the message is
removed.

NOTE 1: It is necessary to use target RDY
when overlaying dynamic RAM that uses
the RDY line to halt microprocessor
activity during refresh cycles. When a
refresh cycle occurs on many systems the
RDY line is held in the NOT RDY state
until the refresh is complete. If an internal
RDY is used, the microprocessor will not
honor the REFRESH cycles and dynamic
memory will be corrupted. The choice of
internal or external RDY while using
overlay memory is made by using the RDY
switch (see page 5-20).

NOTE 2: When overlaying nonexistent code
space it is necessary to use the internal
RDY. Users may want to overlay
nonexistent code space (an area not decoded
in their hardware) to patch in code.

B-3

ES1800 Emulator Reference Manual for 80186 /188 Microprocessors

RESET ASSERTED

NOTE 3: When selecting internal or
external RDY for areas overlayed, that
particular RDY is selected for all overlay.
It is not possible therefore to overlay both
dynamic RAM and nonexistent RAM at the
same time.

This indicates that a reset from the target
has been asserted for greater than 2.2 ms.
When the reset is released then the message
is removed. However, if the reset is less
than 2.2 ms the message is not displayed.
Using an oscilloscope, verify that the reset
line is in fact being held reset. There are
some operating systems that may normally
hold the microprocessor reset until needed.
If the reset line is not being held reset at the
probe tip, unplug the emulator and verify
the condition in the NULL TARGET
mode.

EMULATOR HARDWARE ERROR MESSAGES

POD CPU NOT
INITIALIZED

When a reset occurs, (power up, CTRL Z,
or RST) the controller and the emulator
begin an initialization routine to establish
communication. If this initialization
routine fails to complete, this message is
displayed. This is an internal pod,
emulator, controller board problem.
Correct the problem by reseating boards,
cycling power, and verifying that the
microprocessor is correctly installed in the
pod, or replacing the microprocessor in the
pod.

Appendix B: Error Messages

POD CPU NOT Whenever a STP command is executed, or a

RESPONDING memory command is executed during
emulation, the ES language software looks
to see if any errors occurred during
execution of the command. The emulator
then checks if the command completed. If
it did not compiete the emuiator checks to
see if the microprocessor is still running or
if there is an error condition. If an error
condition exists then the appropriate
message is displayed. However, if the
microprocessor is still running and no error
conditions exist then the message POD CPU
NOT RESPONDING is displayed. Correct
the problem by resetting the system and
repeating the command.

SYSTEM RESET When a reset (power up, CTRL Z, or RST)

ERROR has been executed from the emulator
controller and the emulator board does not
acknowledge this, then a SYSTEM RESET
ERROR message displays. This situation is
an internal pod, emulator, or controller
board problem. Try reseating boards,
reseating pod cables, and cycling power.

TARGET SOFTWARE ERROR MESSAGES

MEMORY ACCESS The target program has attempted to access

VIOLATION an area of target mapped as illegal (ILG).
DM assists in determining which areas are
mapped as illegal. DRT helps determine
where the program was making the access.

MEMORY WRITE If the target program attempts to write to
VIOLATION the RAM overlay in an area that is mapped
READ ONLY, this error occurs. Use the
DM command and the raw trace (DRT) to
look for write cycles. DM assists in

B-5

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

determining which areas are mapped as
illegal. DRT helps determine where the
program was making the access.

B-6

APPENDIX C

Table of Contents

Serial Data Formats

Page

MOS TECHNOLOGY FORMATttt ieeeeeaaaannn, C-2
MOTOROLA EXORCISOR FORMAT. ...t C-3
INTEL INTELLEC FORMATttt aeaannnns C-4
SIGNETICS/ABSOLUTE OBJECT FILE FORMAT............ C-5
TEKTRONIX HEXADECIMAL FORMAT..........covvieiinn... C-6
EXTENDED TEKHEX FORMAT. ... iiieeieeeennnnn. C-7
Variable-Length Fields..........cooiiiiiiiiiiiiiiin.. C-9
Data and Termination BIOcKS. . ..o vvriiirienieniieneennnn. C-9
Symbol BIOCKS. ... C-10
MOTOROLA S-RECORD FORMAT. ..., C-15
S-Record Content.oouuit et ieneeneeaneeennes C-15
S-ReCord TypPes. ..viiii ittt C-16

Creation of S-Records.....oovriiieei i e, C-17

Appendix C

SERIAL DATA FORMATS

In order to download a program into target memory, the ES 1800 needs
some way to receive this data in an intelligible format. This Appendix
describes the downloading formats which the ES 1800 understands.

ES1800 Emulator Reference Manual for 80186 /188 Microprocessors

MOS Technology Format

Figure 8. Specifications for MOS Technology Data Files Copyright 1983,

Data I /0 Corporation; reprinted by permission.

A

, This space can be used for line feed, carriage return or
comments.

{Beginning of next record)

INPUT
DATA RECORD END-OF-FILE RECORD
— e
i START CHARACTER START CHARACTER
B BC = Byte Count. The hexadecimal number of data B Byte Count. BC = 00 in End of File Record
C bytes in the record C
A R
A AAAA = Address of first data byte in record. AAAA R Record Count
A in hexadecimal notation only R
A R
H C
H HH = One data byte in hexadecimal notation 8 Checksum
H C
N‘r— -
~a
- OUTPUT
C CCCC = Checksum. Two byte binary summation of NOTES
C preceding bytes in record (including address, and
8 data bytes) in hexadecimal notation. 1) Number of bytes per record is variable. See Table 3.1

2} Each line ends with nonprinting line feed, carriage return
and nulls.

2 Hex Characters = 1 byte Data Records

| BCAAAAHHHHHHHHHHHHHHHHHEHHHHHHHHHHHHHHHCCC
BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHRHHHHHHRCCC

LEGEND BCAAAAHHHHHHAHRHHHHHHHHHHHHHHHHHEHHHHHCCC
BCAAAAHHHHHHHHHHHEHHHHHHHHRRHHHHHHHHHHHCCC

= Start Character o BCAAAAHHHHHHHRHHHHHHHHHHHHHRHHHHHHHHHHCCC

BC = Byte Count{BC > 00 in Record, BC = End of File Record) | BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCC

AAAA = Address Field BCAAAAHHHHHHHHHHHHHHHHHHHHHHRHHHHHRRHHCCC
CCCC = Checksum of Record BCRRRRCCCC

RRRR = Record Count

HH = Two Hexadecimal Digits {0:9, AD)

C-2

Appendix C: Serial Data Formats

Motorola Exorcisor Format

Figure 9. Specifications for Motorola Exorciser/16-BM Data Files/
Copyright 1983, Data I /0 Corporation, reprinted by permission.

INPUT
DATA RECORD

START CHARACTERS

BC = Byte Count. The number of data bytes plus 3 {1 for
checksum and 2 for address) in hexadecimal notation

AAAA = Address of first date byte in record. AAAA in
hexadecimal notation only

HH = One data byte in hexadecimal notation

PR %g-- IITIITIT | »>>>» |00 =0 4

CC=Checksum. One’s complement of binary summation
C<,._ of preceding bytes in record (including byte count,

C address and data bytes) in hexadecimal notation
- This space can be used for line feed, carriage return or
comments

S (Beginning of next record)

1
-
LEGEND
SO = Optional Record Start Characters
S1 = Start Characters
BC = Byte Count

[(Date Butes/Record + 3)

AAAA = Address of First Data Byte
HH = Two Hexadecimal Digits (0-9, A-F)
CcC = Checksum of Record {one byte)

(OUTPUT

SIGN ON RECORD OPTIONAL
N~

S SO Start characters of sign on record. Except
0 for start characters SO record has same format as
data record

“ g N
END OF FILE RECORD

{

START CHARACTERS

ow

Byte Count. BC = 03 in End of File Record

Address

OO 222> |Ow

Checksum

e

NOTES

1) Number of bytes per record is variable. See Table 3.1.

2) Each line ends with nonprinting line feed, carriage return
and nulls

3) Sign on record may precede data

2 Hex characters 1 byte Data Records

$1BCAAAAHHHHHHHHHHHHHHHHBERHHHHHHHHAHHHHHCC
$1BCAAAAHHHHHHHHHHHHHHHRHHHHHHHHHHHHHHHHCC
$18CAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC
$1BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC
51BCAAAAHHHHHRHHHHHHHHHHHHHHHHHHAHHHHHHHCC
S9BCAAAACC

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Intel Intellec Format

Figure 10. Specifications for Intel Intellec/8/MDS Data Files/
Copyright 1983, Data I /O Corporation; reprinted by permission.

INPUT
DATA RECORD END OF FiLE RECORD
S\~ N
: START CHARACTER : START CHARACTER
B BC = Byte Count. The hexadecimal number of data bytes B Byte Count. BC = 00 in End of File Record
C in the record C
A A
A AAAA = Address of first date byte in record. AAAA in A Address
A hexadecimal notation only A
A A
I T
i TT = Record Type (00) T TT Record Type (01}
H
H HH = One data byte in hexadecimal notation
— KV -
N 1 11
CC = Checksum. Negation {two's complement} of binary OUTPUT
C summation of preceding bytes in record {including byte
C count, address, and data bytes) in hexadecimal notation NOTES
- This space can be used for line feed, carriage return or 1) Number of bytes per record is variable. See Table 3.1.
comments 2) Each line ends with nonprinting line feed, carriage return
: and nulls
b 2 Hex characters 1 byte Data Records
LEGEND BCAAAATTHHHRHHHHHHHHHHHHAHHHHHHHHHHHHHHHCC
BCAAAATTHHHHHHHHHHHRHHHHHHHHHHHHHHHHHHHHCC
= Start Characters RCAAAATTHHHHHHHRHHHHHHHHEHHHHRHHHHHHHHHHCC
BC = Byte Count (Date Bytes/Record) BCAAAATT
AAAA = Address Field
T = Record Type
H = QOne Hexadecimal Digit (0-3, A-F}
cC = Checksum of Record

Appendix C: Serial Data Formats

Signetics/Absolute Object File Format

Figure 11. Specifications for Signetics/Absolute Object Data Files
Copyright 1983, Data I /0O Corporation; reprinted by permission.

INPUT

~~—1

IT |O>» | Om | >>>>

[@]w)

4

DATA RECORD

START CHARACTER

AAAA = Address of first date byte in record. AAAA in
hexadecimal notation only

BC = Byte Count. The hexadecimal number of data bytes
in the record

AC = Address Check. Every byte is exclusive O Red with
the previous byte, then rotated left one bit.

HH = One data byte in hexadecimal notation

DC = Data Check. Every byte is exclusive O Red with the
previous byte, then rotated left one bit.

This space can be used for line feed, carriage return or
comments

(Beginning of next record)

Start Characters

Address Field

Byte Count (Date Bytes/Record)

= Address Check. Checksum of address and byte count
Two Hexadecimal Digits (0-8, A-F)

Data Check. Checksum of data in record

END OF FILE RECORD
"
: START CHARACTER
A
A Address
A
A
8 Byte Count. BC = 00 in End of File Record
™\ __]
(OUTPUT

NOTES
1) Number of bytes per record is variable. See Table 3.1.
2} Eagh line ends with nonprinting line feed, carriage return
and nulls

Data Records

}

2 HEX characters 1 byte

AAAABCACHHHHHHHHHHHBRHHHHHHHHHHHHHHHHHHHCC
AAAABCACHHHHHHHHHHHAHHHHHHHHHHHHHHHHHHHHHCC
AAAABCACHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC
AAAABCAC

C-5

ES1800 Emulator Reference Manual for 80186,/188 Microprocessors

Tektronix Hexadecimal Format

Figure 12. Specifications for Tektronix Hexadecimal Data Files
Copyright 1983, Data I /O Corporation; reprinted by permission.

iINPUT l
DATA RECORD ABORT RECORD
noVas
/ = Start Character /
/ // =Two Start Characters
AAAA = Address of first date byte in record. X
{(hexadecimal notation) X
. XX..X = Arbitrary string of ASCll characters
BC = Byte Count. The hexadecimal number of data bytes .
in the record X
CC = Checksum. Eight bit sum of the four bit
hexadecimal values of the six digits that make up the Carriage Return
address and byte counts (hexadecimal notation)

\/~A—

END OF FILE RECORD

N
: START CHARACTER

HH = One data byte in hexadecimal notation

g\ (@l --{kII OO 10w | > \<

CC = Checksum. Eight bit sum moduta 256, of the four A
bit hexadecimal values of the digits that make up the A AAAA Transfer Address
data bytes. A
_ A
Carriage Return B Byte Count. BC = 00 in End of File Record
{Beginning of next record) ¢ CC = Checksum. Eight bit sum of the four bit
C hexadecimal values of the six digils that make up
C the transfer address and the byte count
OUTPUT \ {(hexadecimal notation)
NOTES Carriage return
1) Number of bytes per record is variable. See Table 3.1
2} Each line ends with nonprinting iine feed, carriage return alha
and nulls LEGEND
2 Hex characters 1 byte —\ Data Records Start Charact
= Start Characters
AN AAAA = Address Field
1AAAABCCCHHHHHHHHHHHHHHHHRHHHHHHHHHHHHHHHCC BC = Byte Count (Date Bytes/Record)
IAABABCCCHHHHHHHHHHHHHHHHAHHHHHHHHHHHHHHHHCC cc = Checksum of Record
IAAAABCCCHHHHHHHHHRHHHHHHHHHHHHHHHHHHHAHHCC HH = Two Hexadecimal Digits {0-9, A-F)
{AAAABCCC X = Any ASCH Character
_ End of File Record

C-6

Appendix C: Serial Data Formats

Extended Tekhex Format

Copyright 1983, Tektronix; reprinted by permission
Extended Tekhex uses three types of message blocks:
1. The data block contains the object code.

2. The symbol block that contains information about a
program section and the symbols associated with it. This
information is only needed for symbolic debug.

3. The termination block contains the transfer address and
marks the end of the load module.

NOTE

Extended Tekhex has no specially defined abort block.
To abort a formatted transfer, use a Standard Tekhex
abort block.

Each block begins with a six-character header field and ends with an end-
of -line character sequence. A block can be up to 255 characters long, not
counting the end-of-line character. The header field has the format
shown in the following table.

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

NUMBER

OF ASCII
ITEM CHARACTERS
% 1
Block 2
Length
Block 1
Type
Checksum 2

DESCRIPTION
A permit sign specified that the block is
in Extended Tekhex format.

The number of characters in the block: a
two-digit hex number. This count does not
include the leading % or the end-of-line.

6 = data block
3 = symbol block
8 = termination block

A two-digit hex number representing the

sum, mod 256, of the values of all the
characters in the block, except the leading
%, the checksum digits, and the end-of-line.
The following table gives the values for

all characters that may appear in Extended
Tekhex message blocks.

CHARACTERS

. (period)
(underscore)
2

|

Character Values for Checksum Computation

VALUES (DECIMAL)
0..9

10..35

36

37

38

39

40-65

C-8

Appendix C: Serial Data Formats

VARIABLE-LENGTH FIELDS

In Extended Tekhex, certain fields may vary in length from 2 to 17
characters. This practice enables you to compress your data by eliminating
leading zeros from numbers and trailing spaces from symbols. The first

character of a variable-length field is a hexadecimal digit that indicates the
length of the rest of the field, The digit 0 indicates a length of 16

- e A AR \.Aa‘\v w e bW lvllb [9 A 4 \J
characters.

For example, the symbols START, LOOP, and KLUDGESTARTSHERE
are represented as SSTART, 4LOOP, and OKLUDGESTARTSHERE. The
values 0, 100H, and FFO0O00H are represented as 10, 3100, and 6 FF0000.

DATA AND TERMINATION BLOCKS

If you do not intend to transfer program symbols with your object code,
you do not need symbol blocks. Your load module can consist of one or
more data blocks followed by a termination block. The following table
gives the format of a data block and a termination block.

Extended Tekhex Data Block Format
OF ASCII

ITEM CHARACTERS DESCRIPTION

Header 6 Standard header field
Block Type = 6

Load Address 2 to 17 The address where the object code is to be
loaded: a variable-length number.

Object 2n n bytes, each represented as two hex
digits.

C-9

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Extended Tekhex Termination Block

Header é Standard header field
Block type = 8.

Transfer Address 2 to 17 The address where program execution is to
begin: a variable-length number.

SYMBOL BLOCKS

A symbol used in symbolic debug has the following attributes:

1. The symbol itself: 1 to 16 letters, digits, dollar signs,
periods, a percent sign, or symbolize a section name.
Lower case letters are converted to upper case when they
are placed in the symbol table.

2. A value: up to 64 bits (16 hexadecimal digits).

3. A type: address or scalar. (A scalar is any number that is
not an address.) An address may be further classified as a
code address (the address of an instruction) or a data
address (the address of a data item). As symbolic debug
does not currently use the code/data distinction, the
address/scalar distinction is sufficient for standard
applications of Extended Tekhex.

4. A global/local designation. This designation is of limited
use in a load module, and is provided for future
development. If the global/local distinction is not
important for your purposes, simply call all your symbols
global.

5. Section membership. A section may be thought of as a
named area of memory. Each address in your program
belongs to exactly one section. A scalar belongs to no
section.

The symbols in your program are conveyed in symbol blocks. Each symbol
block contains the name of a section and a list of the symbols that belong to
that section. (You may include scalars with any section you like.) More

C-10

Appendix C: Serial Data Formats

than one block may contain symbols for the same section. For each
section, exactly one symbol block should contain a section definition field,
which defines the starting address and length of the section.

If you object code has been generated by an assembler or compiler that
does not deal with sections, simply define one section called, for example,
MEMORY, with a starting address of 0 and a iength greater than the
highest address used by your program; and put all your symbois in that
section.

The following table gives the format of a symbol block. Tables that follow
give the formats for section definition fields and symbol definition fields,
which are parts of a symbol block.

Extended Tekhex Symbol Block Format
NUMBER
OF ASCII
ITEM CHARACTERS DESCRIPTION
Header 6 Standard header field
Block Type = 3
Section Name 2 to 17 The name of the section that contains the
symbols defined in this block: a
variable-length symbol.
Section 5 to 35 This field must be present in exactly one
Definition symbol block for each section. This field
may be preceded or followed by any number
of symbol definition fields. The table on
the next page gives the format for this
field.
Symbol 5 to 35 Zero or more symbol definition fields as
described in the next table.

C-11

£51800 Emulator Reference Manual for 80186/188 Microprocessors

ITEM

Base

Length

Extended Tekhex Symbol Block: Section Definition Field

NUMBER
OF ASCII
CHARACTERS

1

2 to 17

2 to 17

DESCRIPTION
A zero signals a section definition field.

The starting address of the Address
section: a variable-length number.

The length of the section: a variable-length
number, computed as 1 + (high address base
address).

ITEM
Type

Symbol

Value

Extended Tekhex Symbol Block: Symbol Definition Field

NUMBER
OF ASCII
CHARACTERS

1

2 to 17

2 to 17

DESCRIPTION

A hex digit that indicates the global/local
designation of the symbol, and the type of
value the symbol represents:

1 = global address

global scalar

global code address

global data address

local address

local scalar

local code address

Llocal data address

00 ~N O W
- n u nn

A variable-length symbol.

The value associated with the symbol: a
variable-length number.

The following figures show how the preceding tables of information might
be encoded in Extended Tekhex. The information for the Extended
Tekhex Symbol Block illustration could be encoded in a single 96-character
block. It is divided into two blocks for purposes of illustration.

C-12

Appendix C: Serial Data Formats

Extended Tekhex Symbol Block: Symbol Definition Field

NUMBER
OF ASCII
ITEM CHARACTERS DESCRIPTION
Type 1 A hex digit that indicates the global/local
designation of the symbol, and the type of
value the symbol represents:
global address
global scalar
global code address
global data address
local address
local scalar
local code address
local data address

O ~NOAV S WN -

Symbol 2 to 17 A variable-length symbol.

Value 2 to 17 The value associated with the symbol: a
variable-length number.

The following figures show how the preceding tables of information might
be encoded in Extended Tekhex. The information for the Extended
Tekhex Symbol Block illustration could be encoded in a single 96-
character block. It is divided into two blocks for purposes of illustration.

C-13

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Figure 13. Extended Tekhex Data Block

Block length: 15H = 21
Checksum: 1CH = 28 = 1+5+6+3+1+0+0+0+2+0+2+...

v[Object Code: 6 bytes

%1561C3100020202020202

A

‘i Load address: 100H

Block type: 6

Header character

Figure 14. Extended Tekhex Termination Block

Block length: 8
I l—— Checksum: 1AH = 26 = 0+8+8+2+8+0

%0881A280
A

tTransfer address: 80H

Block type: 8

Header character

C-14

Appendix C: Serial Data Formats

Figure 15. Extended Tekhex Symbol Block

Block length: 37H = 55
I_ Checksum: 60H = (3+7+3+8+28+31+12+28+29+..)mod 256

| Section definition field:
i base address = 40H; length = C6H

%373608SVCSTUFF02402C622CR1D140OPEN25014READ25815WRITE260
%37 3(38LSSVCSTUFF ISICLOSE268 14EXIT27029BUFLENGTH28013BUF278

L Section name;

Block type: 3

Header character

C-15

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Motorola S-Record Format

S-RECORD CONTENT

When viewed by the user, S-records are essentially character strings made
of several fields which identify the record type, record length, memory
address, code/data, and checksum. Each type of binary data is encoded as
a 2-character hexadecimal number: the first character representing the

high-order 4 bits, and the second the low-order 4 bits of the byte.

The 5 fields which comprise an S-record are: type, length, address,

code/data and checksum.

The fields are composed as follows:

PRINTABLE
FIELD CHARACTERS
type 2
record length 2
address 4, 6, or 8
code/data 0-2n
checksum 2

CONTENTS
s-record type -- S0, S1, etc.

The count of the character pairs in the
record, excluding the type and record length.

The 2-, 3-, or 4-byte address at or which the
data field is to be loaded into memory.

From 0 to n bytes of executable code, memory-
loadable data, or descriptive information.
For compatibility with teletypewriters, some
programs may limit the number of bytes to as
few as 28 (56 printable characters in S-
record).

The least significant byte of the one's
complement of the sum of the values
represented by the pairs of characters making
up the record length, address, and the
code/data fields.

Each record may be terminated with a CR/LF/NULL. Additionally, an S-
record may have an initial field to accommodate other data such as line

numbers generated by some time-sharing systems.

C-16

Appendix C: Serial Data Formats

Accuracy of transmission is ensured by the record length (byte count) and
checksum fields.

S-RECORD TYPES

Eight types of S-records have been defined to accommodate the several
needs of the encoding, transportation, and decoding functions. The
various Motorola upload, download, and other file-creating or debugging
programs, utilize only those S-records which serve the purpose of the
program. For specific information on which S-records are supported by a
particular program, the user’s manual for that program must be consulted.

An S-record format module may contain S-records of the following types:

SO The header record for each block of S-records. The
code/data field may contain any descriptive
information identifying the following block of SO-
records. Under VERSAdos, the resident linker’s
IDENT command can be used to designate module
name, version number, revision number, and
description information which will make up the header
record. The address field is normally zeros.

S1 A record containing code/data and the 2-byte address
at which the code/data is to reside.

S2 A record containing code/data and the 3-byte address
at which the code/data is to reside.

S3 A record containing code/data and the 4-byte address
at which the code/data is to reside.

S5 A record containing the number of S1, S2, and S3
records transmitted in a particular block. This count
appears in the address field. There is no code/data
field.

S7 A termination record for a block of S3 records. The
address field may optionally contain the 3-byte address
of the instruction to which control is to be passed.
There is no code/data field.

C-17

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

S8 A termination record for a block of S2 records. The
address field may optionally contain the 3-byte address
of the instruction to which control is to be passed.
There is no code/data field.

S9 A termination record for a block of S1 records. The
address field may optionally contain the 2-byte address
of the instruction to which control is to be passed.
Under VERSAdos, the resident linker’s ENTRY
command can be used to specify this address. If not
specified, the first entry point specification
encountered in the object module input will be used.
There is no code/data field.

Only one termination record is used for each block of S-records. S7 and S8
records are usually used only when control is to be passed to a 3- or 4- byte
address. Normally, only one header record is used, although it is possible
for multiple header records to occur.

CREATION OF S-RECORDS

S-record-format programs may be produced by several dump utilities,
debuggers, VERSAdos’ resident linkage editor, or several cross assemblers
or cross linkers. ON EXORmacs, the Build Load Module (MBLM) utility
allows an executable load module to be built from S-records; and has a
counterpart utility in BUILDS, which allows an S-record file to be created
from a load module.

Several programs are available for downloading a file in S-record format
from a host system to an 8-bit microprocessor-based or 16-bit
microprocessor-based system. Programs are also available for uploading
an S-record file to or from an EXORmacs system.

Example: Shown below is a typical S-record-format module, as printed or
displayed:

C-18

Appendix C: Serial Data Formats

$0060000484421B
$1130000285F245F2212226A00042429000082337CA
$113001000020000800082629001853812341001813
$113002041E9000084E42234300182342000824A952
$107003000144Ed492

$9030000FC

The module consist of one SO record, four S1 records, and an S9 record.

The SO record is comprised of the following character pairs:

S0
06
00+
00
48
L4+
52

1B

S-record type S0, indicating that it is a header record.
Hexadecimal 06 (decimal 6), indicating that six character pairs (OR
ASCII bytes) follow.

Four-character 2-byte address field, zeros in this example.

ASCII H, D, and R - "HDR".

The checksum.

The first S1 record is explained as follows:

s1

13

00+

00

S-record type S1, indicating that it is a code/data record to be
loaded/verified at a 2-byte address.

Hexadecimal 13 (decimal 19), indicating that 19 character pairs,
representing 19 bytes of binary data, follow.

Four-character 2-byte address field; hexadecimal address

0000, where the data which follows is to be loaded.

The next 16 character pairs of the first S1 record are the ASCII bytes of the
actual program code/data. In this assembly language example, the
hexadecimal opcodes of the programs are written in sequence in the

C-19

ES1800 Emulator Reference Manual for 80186,/188 Microprocessors

code/data fields of the S1 records:

OPCODE INSTRUCTION

285F MOVE.L (A7) +,A4

245F MOVE.L (A7) +,A2

2212 MOVE.L (A2),D1

226A0004 MOVE.L 4(A2),A1

24290008 MOVE.L FUNCTION(A1),D2

237C MOVE.L #FORCEFUNC, FUNCTION(CA1)

o (The balance of this code is continued in the code/data
fields of the remaining S1 records, and stored in memory
location 0010, etc.)

2A The checksum of the first S$1 record.

The second and third S1 records each also contain $13 (19) character pairs
and are ended with checksums 13 and 52 respectively. The fourth Sl
record contains 07 character pairs and has a checksum of 92.

The S9 record is explained as follows:

S9 S-record type S9, indicating that it is a termination record.

03 Hexadecimal 03, indicating that three character pairs (3 bytes) follow.
00 The address field, zeros.

FC The checksum of the S9 record.

Each printable character in an S-record is encoded in hexadecimal (ASCII
in this example) representation of the binary bits which are actually
transmitted.

SUBJECT INDEX

BMO, 6-23
- A- BNC connector, 3-6, 7-23
Absolute address, 5-91 Breﬁl;nulation 7-14
Acknowledge char, 5-3 On NML. 7-6
Address ; _
Branch to, 7-25 On odd address, 7-4

On pre-fetch, 5-13
Breakpoint, 6-2, 7-14
Bus cycles, 5-94

Comparators, 7-3
Registers, 5-90

Alpha/numeric value, 4-8 BUS. 6-76
AND, 4-15,7-8 Byte mode, 4-24
ASM, 6-30
Assembler, 4-24, 6-30
]lgirectiv%s, 263-32 -C-
rompt, 4-
Single step, 5-110 8%%16%_33_08’53__3134 5-.36
CDH, 5-14
-B- CES, 7-13
Backspace, 4-25 8%221%&%2,’56-—3593
Base CK, 5-15
Default, 5-86 Clear
OVC?ride defaUIt, 4-12, 5-86 Memory map 5—60
Register, 4-11 WHEN/THEN statements, 7-13
BAS, 5-80 CLK, 6-74
Baud rate, 3-10, 5-3, 5-29 CLM, 5-60
BKX, 5-13 Clock, 5-15, 6-74, B-2
Block data CMC, 5-106
Bl Vlgrlfy, 6-52223 Code space, 5-61
ock move, - Colon operator, 5-111
Verify, 6-25 Commands

I-1

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Abbreviations, 7-1

ArgumentsS-Rge(a)ducing -D-
typing, J-
Command line, 4-6 Dat};l ffori 5
Commonly used, 4-21 uffering, 5-29
Configure system, 5-1 Comparator registers, 7-4
Delay execution, 6-11 gata space, 5-61
Exceptions, 4-6 ownloading, 5-38
Extend command line, 4-6 Enable, 5-17)
Language overview, 1-6 General purpose registers, 5-88
Memory, 6-15 Requirements, 3-12
Mnemon,ics, 4-8 Serial data formats, C-1
Port dependent, 5-30 Upload, 5-44
Repeating, 5-92, 5-107, 5-110 DB-25 connectors, 5-29
Run mode, 6-2 DB, 6-17]
Save space/typing, 5-88 Debugging code with no
Single character, 4-7 Def ilardware, 5-15
Terminator sequence, 5-3 efault base, 5-86
Communication Register, 4-11
With host, 5-30 Delete line/character, 4-25
With target programs, 5-48]I;%ISJ, 75 '11120
Comparator registers, 7-2 DFB’ 5‘ 26
Computer port control, 5-40 . 29 070
COM. 5-48 Diagnostics
Confi’guration CRC check of emulator
Menus. 5-1 firmware, 6—79
System’ 1-4 Force null operations, 6-70
Boards, 3-3 RAM test - looping -
Characters, 4-25 complete, 6-58
Copy system variables, 5-27 RAM test - looping -
Count bus cycles, 7-19 simple, 6-56
Counter/timer use, 3-6, 7-23 RAM test - single pass -
Counting events, 7-19 complete, 6-35
Count limit comparator, 7-7 RAM test - single pass -
CPY, 5-16 simple, 6-53
CRC. 6-75 Read data over entire
CRE. 6-75 range, 6-72
CRO, 6-75 Read from address, 6-62
CRT length, 5-3 Toggle data at address, 6-60
Ctrl Q, 4225 Write alternate patterns, 6-65
Ctrl R. 4-25 Write data then read, 6-69
Ctrl S, 4-25 Write data to address, 6-63
Ctrl X. 4-25 Write incrementing value, 6-71
Ctrl Z, 4-25 Write pattern then rotate, 6-67
Customer service, 2-6, 2-10 ggg’ssse_ri%le 6-36
Cychcg_e%mdancy check, 6-73, Single step, 5-107

I-2

Index

Trace memory, 5-98
Trace page, 5-101

Display
Base, 5-86
Bus status, 6-76
Character string, 5-52
Event specifications, 7-11
Improve readability, 5-124
Memory block, 6-17
Raw trace bus cycles, 5-94
Revision dates, 5-123
Symbols, 5-116

DIS, 6-36

DMA halt, 5-14

DME, 5-17

DM, 5-55

DNL, 5-31, 5-38

Don’t care values, 4-11, 5-64, 5-88,

7-4,7-6

Download
Corruption, 5-43
Errors, 5-41
From computer port, 5-31
From terminal port, 5-31
Hex format files, 3-10
Port control differences, 5-40
Procedures, 5-38
Record format, 5-7
Symbols, 5-40

DR, 5-74

DRT, 5-94

DTB, 5-101

DTF, 5-101

DT, 5-98

Dynamic memory, 5-17

-E-

EEPROM

Groups, 5-2

Initialize, 5-26

Save configuration, 5-1, 5-10,

5-25

EMS control statements, 7-8
Emulation, 6-2

Breaking, 7-14

Halting, 6-3

Resetting, 6-4

Run mode, 6-2
Starting, 6-2

Emulator
Chassis rear panel, 3-6
Control boards, 3-3
Hardware error messages, B-4
Setup, 2-1

Enabie data, 5-17

END, 6-30

Error messages, 4-26, B-1
Emulator hardware, B-4
ES language, 4-27
Target hardware, B-1
Target software, B-5

Escape sequence, 5-3

Esc esc, 4-25

ES language, 1-6, 4-1
Illegal statement, 4-1
Mnemonics, A-1
Syntax, 4-2

Event, 7-8

Event Monitor System, 4-14, 7-1
Address comparators, 7-3
Clear WHEN/THEN, 7-13
Comparator registers, 7-2
Count events, 7-19
Data and LSA comparators, 7-4
Define action list, 7-9
Define event, 7-8
Event group changes, 7-27
Groups, 7-1, 7-8, 7-27
Help menu, 4-22
Interrupts, 7-25
Registers, 5-73
Status comparators, 7-4
Status mnemonics, 7-5
Trace events, 7-16
Trigger signal, 7-23

Event specs - display, 7-11

Expression, 4-8

-F-

Fan filter, cleaning, 3-15
Files
Closing, 5-45, 5-47
Opening, 5-46
Viewing, 5-45

I-3

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

Fill operator, 6-21

FIL, 6-21

Find memory pattern, 6-19
FIN, 6-19

FLX register, 5-75

Forced special interrupt, 5-18
Force null operations, 6-70
FSX, 5-18

Fuse, 3-7

-G -

GD, 5-88

General purpose address
registers, 5-90

Ground system, 3-1

Groups, 4-14, 7-8, 7-27

GR, 5-90

-H-

Hard copy, 5-11, 5-16

Help, 4-20
Communications set-up, 4-20
Software switches, 4-20
Special diagnostic

functions, 4-20

Host computer, 5-29

Communication with, 5-30

-I-

IDX, 5-107
ILG, 5-57
Indirection operator, 4-9, 4-13
Interrupts
Force special interrupt, 7-25
Spcl interrupt register, 7-25
Switch setting, 5-22
I/0 address space
Modifying, 6-38
Viewing, 6-38
I/0 mode, 4-24, 6-38
Entering, 6-43
Exiting, 6-45
Pointer, 5-85, 6-47
10P, 5-85, 6-47

-L-

LD, 5-27

LDV, 6-9

LIM, 5-107

Line assembler, 4-24, 6-30
Prompt, 4-23

Load
Overlay memory, 5-62, 6-27
Reset vectors, 6-9
Variables from EEPROM, 5-27

Loading registers, 5-79

Logic State Analyzer (LSA), 1-10,

3-6, 3-9
LOYVY, 5-62, 6-27
LST, 6-46

-M -

MAC, 5-103
Macros, 5-102
Clearing, 5-106
Define/execute, 5-104
Displaying, 5-103
Saving, 5-102
Using registers, 5-88, 5-90
Maintenance, 3-14
MAP, 5-56
Memory
Alternate overlay/target, 5-11
Assembler, 6-30
Block display, 6-17
Clear overlay map, 5-60
Commands, 6-15
Disassembler, 4-24, 6-36
Display overlay map, 5-55
Download to overlay, 5-38
Enable overlay, 5-61
Fill with data, 6-21
Find data pattern, 6-19
Illegal, B-5
Load overlay, 6-27
Load target to overlay, 5-62
Map overlay, 5-56
Mode, 6-38
Modify, 6-38
Overlay, 5-54

Index

Overview, 1-7
Read only, B-5
Scrolling, 6-17
Scroll through, 6-38
Trace (see also Trace), 5-93
Verify overlay, 5-63, 6-28
__Viewing, 6-38
Memory mode, 4-24
Entering, 6-40
Exiting, 6-45
Modifying data, 6-41
Pointer, 5-83, 6-48
Prompt, 4-23
Scrolling, 6-46
Status register, 5-82
Microprocessor registers, 5-70,
5-74
MIO, 6-43
MMP, 5-83, 6-48
MMS, 5-82
Modes
I/O6(s§§ also I/O mode), 4-24,

Memory, 6-38

Pause, 7-14

Run, 6-1

Special, 4-24

Transparent, 5-33
M, 6-40

-N -

NOT, 4-15,7-8
Null modem cable, 2-3
Null target, 1-7
Numbers, 4-11

Signed, 4-16
NXT, 6-46

-0-

Odd addresses, 7-4
OFF, 5-9
ON/OFF menu, 5-1, 5-9
ON, 5-9
Operators
Dyadic operator

combinations, 4-19
Indirection, 4-9, 4-13
Precedence, 4-17
Repeat, 5-107
Single argument, 4-18
Unary, 4-16

OR, 4-15,7-8
Osciiioscgpe use, 1-10, 6-50, 7-23,

B-

Overlay map, 5-57
Overlay memory (see also
Memory), 1-8

OVE, 5-61

-P-

Parentheses, 4-8, 7-8
Indirection, 4-13
WHEN/THEN, 4-15

Parity, 5-3

Parts, 3-18

Patch code, 7-25

Pause mode, 1-6, 7-14

PCB registers, 5-71
iRMX mode, 5-72
Non-iRMX mode, 5-73

Peeks, 6-62

Peripheral equipment, 3-6

Pin configurations, 3-10

Pod assembly, 3-8

Pokes, 6-63

Ports, 3-6
Baud rate, 3-10
Commands, 5-30
Computer control, 5-36
Configuration, 5-3, 5-29
Control, 5-30
Controlling port, 5-36
Data to, 5-16
Download data, 5-38
Port control, 3-10, 5-33, 5-35,

5-36
Terminal control, 5-35
Upload/download, 3-10

Power specs, 3-20

Power supply, 3-1

Power-up sequence, 2-5

Prefetch, 5-13, 5-18

I-5

ES1800 Emulator Reference Manua!l for 80186/188 Microprocessors

Print session, 5-11, 5-16 Using in run mode, 6-4
Probe tip assembly, 3-14 Repeat command line, 4-6, 5-107,
Prompts, 4-23 5-110
PUR, 5-121 Reset
Character, 5-3
Pod microprocessor, 6-13
- Revision dates, 5-123
RAM evision dates, 5-1
Testing (see also REV, 5-123
Diagnostics), 6-50 RNV, 6-5
Range, 4-11 » 3-107
RBK, 6-5 /,35-110
RBV. 6-5 RO, 5-57
RCS,’5—19 RST, 6-13
RDY, 5-20 Run
Readability, 5-124 Commands, 6-2
Read chip select, 5-19 Mode, 6-1, 6-2
Ready signal, 5-20 Mode prompt, 4-23
Real time, 1-7 Target program, 6-5
Registers, 5-64 Run mode, 7-1
Address, 7-3 RUN, 6-5
Clear microprocessor, 5-74 RW, 5-56
Comparator, 7-2-7-5
Count, 7-19 -S-
Count limit, 7-7
Data, 5-82, 7-4 Saved
Display, 5-74 ON/OFF menu, 5-1
Display base, 5-64, 5-80 Parameters, 5-8
Event Monitor System, 5-73 Registers, 5-64
General Emulator, 5-70 SET menu, 5-1
General purpose, 5-102 Switches, 5-10
General purpose address, 5-90 System variables, 5-25
General purpose data, 5-88 SAYVY, 5-25
Listing, 5-70, 5-71, 5-72,5-73 Scope loops, 6-50
Load, 5-74, 5-79 Scroll through memory, 6-17, 6-46
Logic state probe, 7-4 SEC, 5-117
Memory mode pointer Sections, 5-111
MMP, 6-38 Deleting, 5-120, 5-121
Microprocessor, 5-70 Display, 5-117
Overlay memory, 5-54 Serial
PCB, 5-72, 5-73 Communications, 5-29
Reset status, 6-13 Ports (see also Ports), 3-6
Saving, 5-64 Serial data formats, C-1
Set/display base, 5-80 Service, 0-4, 2-6,2-10
Status, 7-4 SET, 5-3
Target peripheral control SET menu, 5-1, 5-3
block, 5-71 Setup
Types, 4-12 Emulator, 2-1

Index

System, 1-4
Target system, 2-4
SF 10, 6-70
SF 11, 6-71
SF 12, 6-72
SF 13, 6-73
SF 1, 6-55
SF 24, 6-60
SF 25, 6-62
SF 26, 6-63
SF 27, 6-65
SF 28, 6-67
SF 29, 6-69
SF 30, 6-70
SF 31, 6-71
SF 32, 6-72
SF 3, 6-58
SF 4, 6-60
SF 5, 6-62
SF 6, 6-63
SF 7, 6-65
SF 8, 6-67
SF 9, 6-69
SF
0-32 (See also Diagnostics), 6-53
Special characters, 4-25
Special functions
(See also Diagnostics), 6-52
Special interrupts, 7-25
Special modes, 4-24
Specifications
ES 1800 Emulator, 3-20
S-records
creation, C-17
types, C-16
Status comparators, 7-4
STI, 5-22
Stop and step target system, 6-7
Stop bits, 5-3
Switches, 5-9
Break on instruction
execution, 5-13
Copy data to both ports, 5-16
FSI on instruction
execution, 5-18
Internal/external clock, 5-15
Internal/external ready
signal, 5-20

Step through interrupts, 5-22

Symbols, 4-10, 5-111
Define, 5-118
Deleting, 5-120, 5-121
Display, 5-116
Downloading, 5-40
Symbolic debugger, 1-9
Tabies, 5-1i1
Uploading, 5-46

SYM, 5-116

System
Configuration, 1-4
Operation, 1-6
Setup, 1-4
Variables, 5-25

System setup, 5-1

-T-

Target, 6-1
Commands, 6-1
Communication with, 5-48
Cyclic redundancy check, 6-75
Definition, 6-1
Display characters from
memory, 5-52
Download to, 5-38
Hardware errors, B-1
Load into Emulator, 6-27
Null, 1-7
Peripheral control block
registers, 5-71
Read clock, 6-74
Run program, 6-5
Software error messages, B-5
Stop and step system, 6-7
System peeks, 6-62
System pokes, 6-63
System setup, 2-4
TCT, 5-30, 5-33, 5-35
Temperature, 3-20
Terminal port control, 5-39
Test run of system, 2-6
TGT, 5-57
Thumbwheel switch, 2-2, 3-3, 3-4
Timers, 5-23
Toggle data at address, 6-60
Trace

I-7

ES1800 Emulator Reference Manual for 80186/188 Microprocessors

A subroutine, 7-27
Bus cycles, 7-16
Disassemble memory, 5-98
Disassemble page, 5-101
Display bus cycles, 5-94
Events, 7-16
Memory, 1-7, 5-93
Transpsarg)eélt mode, 4-24, 5-29,
Entering, 5-30
Exiting, 5-30
TRA, 5-33
Trigger signal, 7-23
Troubleshooting, 3-19
TST, 5-92

-U-

Unary operator, 4-16
Upload
Data, 5-44
Hex format files, 3-10
Record format, 5-7
Record length, 5-7
Symbols, 5-46
UPL, 5-44
UPS, 5-46
Users
Specify Oor 1, 5-4

-V-

VBL, 6-22
VBM, 6-25
Vectors
Load reset, 6-9
Verify
Block data, 6-22
Block move, 6-25
Overlay memory, 5-63, 6-28
Serial data, 5-43
VFO, 5-63, 6-28
VFY, 5-43

-W-

WAL 6-11

Warranty, 0-5

WHEN/THEN, 1-8, 7-1, 7-13
Word mode, 4-24

-X-
XON/XOFF, 2-

5-45,6-18
X, 6-30, 6-45

i

Applied
Microsystems
Corporation

5020 148th Ave. N.E.
P.0. Box 97002
Redmond, WA 98073-9702

(206) 882-2000
1-800-426-3925
TRT TELEX 185196
FAX (206) 883-3049

Applied Microsystems Corporation maintains a worldwide network

of Direct Sales Offices and Representative Organizations committed
to quality service and support. For the address and phone number
of the Applied Microsystems Corporation Sales Office nearest you,

call 1-800-426-3925 (in WA, call 206-882-2000).

Applied Microsystems’ products are available throughout Europe. For the
address and phone number of your nearest distributor, contact: Applied
Microsystems Corporation, Ltd. Chiltern Court, High Street, Wendover,
Aylesbury, Bucks, HP22 6EP, England. Tel 44(0) 296-625462

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-001
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	3-001
	3-002
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	4-001
	4-002
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	5-0001
	5-0002
	5-0003
	5-0004
	5-001
	5-002
	5-003
	5-004
	5-005
	5-006
	5-007
	5-008
	5-009
	5-010
	5-011
	5-012
	5-013
	5-014
	5-015
	5-016
	5-017
	5-018
	5-019
	5-020
	5-021
	5-022
	5-023
	5-024
	5-025
	5-026
	5-027
	5-028
	5-029
	5-030
	5-031
	5-032
	5-033
	5-034
	5-035
	5-036
	5-037
	5-038
	5-039
	5-040
	5-041
	5-042
	5-043
	5-044
	5-045
	5-046
	5-047
	5-048
	5-049
	5-050
	5-051
	5-052
	5-053
	5-054
	5-055
	5-056
	5-057
	5-058
	5-059
	5-060
	5-061
	5-062
	5-063
	5-064
	5-065
	5-066
	5-067
	5-068
	5-069
	5-070
	5-071
	5-072
	5-073
	5-074
	5-075
	5-076
	5-077
	5-078
	5-079
	5-080
	5-081
	5-082
	5-083
	5-084
	5-085
	5-086
	5-087
	5-088
	5-089
	5-090
	5-091
	5-092
	5-093
	5-094
	5-095
	5-096
	5-097
	5-098
	5-099
	5-100
	5-101
	5-102
	5-103
	5-104
	5-105
	5-106
	5-107
	5-108
	5-109
	5-110
	5-111
	5-112
	5-113
	5-114
	5-115
	5-116
	5-117
	5-118
	5-119
	5-120
	5-121
	5-122
	5-123
	5-124
	6-001
	6-002
	6-003
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	6-72
	6-73
	6-74
	6-75
	6-76
	6-77
	7-001
	7-002
	7-01
	7-02
	7-03
	7-04
	7-04a
	7-04b
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	A-001
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	B-001
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-001
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	xBack

