
1mm1
Applied
Microsystems
Corporation

NetROM™

User's Manual

December 1995
PIN 922-07000-00
Copyright © 1995 Applied Microsystems Corporation.
All rights reserved.

Information in this document is subject to change without
notice. Applied Microsystems Corporation reserves the right to
make changes to improve the performance and usability of the
products described herein.

Applied Microsystems Corporation's CodeTAP products are
protected under U.S. Patent 5,228,039. Additional patents
pending.

Trademarks
CodeTAP is a registered trademark of Applied Microsystems
Corporation.
CodeICE, RTOS-Link, CPU Browser, and NetROM are
trademarks of Applied Microsystems Corporation.
Other product names, trademarks, or brand names mentioned
in this document belong to their respective companies.

I Contents

Chapter 1
Introduction

Chapter2
NetROM Services

NetROM Features.. 1-2

ROM Emulation... 1-2

Communications .. 1-2

User Interface .. 1-3

Integration with Debuggers.. 1-3

Embedded Systems Development Environment............... 1-3

Standard Development Environment................................ 1-5

Development Environments Using N etROM 1-5

Documentation Overview... 1-6

Documentation Conventions.. 1-7

Warnings, Cautions, Notes.. 1-8

Support Services... 1-9

Communications Paths.. 2-1

Download path... 2-1

Console path... 2-1

Debug path... 2-2

NetROM Download Path... 2-2

Pods and Pod Groups 2-2

Configuring Pod Groups 2-6

iii

Chapter3
Installation

iv

Downloading Pod Groups .. 2-6

ROM Type Compatibility ... 2-7

NetROM Console Path ... 2-8

NetROM Debug Path ... 2-9

Optional Downloadable RAM Modules 2-10

NetROM Console .. 2-11

Command and Status Signals .. 2-12

NetROM LEDs .. 2-13

Collecting Equipment ... 3-1

Hardware Setup .. 3-4

Connecting AC Power Cord ... 3-4

Connecting to Ethernet .. 3-5

Connecting ROM Emulation Cables 3-8

Connecting DIP Style Cables 3-13

Connecting NetROM Console 3-14

Connecting Target Serial Port 3-14

Connecting Trace Cables ... 3-16

Connecting the Write Signal 3-16

Connecting the RESET Signal 3-17

Software Setup .. 3-19

Address Resolution ... 3-20

File Server Support .. 3-22

NetROM Startup Files ... 3-23

NetROM User's Manual

Chapter4
User Interface

Chapters
Debugger Support

NetROM Command Line Processing 4-1

Processes .. 4-1

Terminal Control Characters 4-3

Environment Variables ... 4-5

History Substitution .. 4-6

Batch Processing .. 4-7

N etROM Commands .. 4-8

Network Interface Commands .. .4-12

Target Interface Commands .. 4-20

Process Control Commands ... 4-31

Set Commands .. 4-34

Display Commands ... 4-54

ROM Set Commands .. 4-78

Miscellaneous Commands .. 4-87

Environment Variable Commands 4-99

NetROM Debug Paths .. 5-1

Passing Data Across the Debug Path 5-2

The Debug Control Port ... 5-3

Debug Control Functions ... 5-3

v

Chapter6
Alternate NetROM Interfaces

Non-TELNET Terminal Sessions 6-1

Non-TFTP File Downloads ... 6-2

Uploading Emulation Memory ... 6-3

Chapter7
Emulation Memory Mailbox Protocols

Sharing Emulation Memory ... 7-1

Memory Contention Issues .. 7-3

Dual port Emulation Memory 7-4

The Dual port Message Structure 7-6

Read-address Memory ... 7-9

Read-write Targets ... 7-11

Read-write Target-to-NetROM Message 7-12

Read-write NetROM-to-target Message 7-13

Read-only Targets ... 7-15

Read-only Target-to-NetROM Message 7-19

Read-only NetROM-to-Target Message 7-23

An Example Target Implementation 7-23

Porting the Sample Implementation 7-25

Sample Implementation Entry Points 7-26

Common Entry Points .. 7-27

Read-address Protocol Entry Points 7-33

Readwrite Protocol Entry Points 7-45

vi NetROM User's Manual

Chapters
Virtual Ethernet

Appendix A
Connector Pinouts

AppendixB
NetROM Processes

AppendixC

Virtual Ethernet Components ... 8-3

Virtual Ethernet Setup Procedure 8-3

NetROM Setup Procedure for Virtual Ethernet 8-4

RS-232 Pinouts ... A-1

Ethernet Pinouts .. A-2

Process names and descriptions .. B-1

NetROM Ports and Protocols
Port Addresses .. C-1

AppendixD
NetROM Filename Conventions

AppendixE
NetROM Defaults

Batch File Names ... D-1

RARP File Names ... D-1

Target Console Port ... E-1

NetROM Console Port ... E-1

Command Signals .. E-1

vii

AppendixF
Network Basics

Glossary

viii

Environment Variables .. E-2

Generic Variables ... E-3

TCP/IP Network Protocol ... F-1

Ethernet Packets .. F-3

Addressing ... F -4

Physical I Ethernet Addresses F-4

Internet Addresses ... F-5

Network Addresses .. F-7

Broadcast Address .. F-7

Subnets .. F -8

Subnet Masks ... F-10

Routers' F-11

NetROM User's Manual

I Chapter 1

Introduction
NetROM is a powerful communications and ROM-emulation
tool for use in embedded-systems design. It enhances the
embedded-systems development environment in ways that
increase productivity and decrease development time and cost.

NetROM facilities communication between a host computer
and a target system. Using the high-speed data-transfer rates
available on Ethernet LANs, NetROM updates emulation
memory with new images much more quickly than
conventional serial- or parallel-link ROM emulators.

N etROM gives developers convenient communications paths to
target systems via a serial link and a mailbox system in
emulation memory. The mailbox system is particularly useful
for target systems that do not have serial ports. You can also
use the mailbox system to give targets not capable of writing to
ROM addresses write capability.

N etROM can act as a communications nexus, collecting
messages from the target and sending them over the Ethernet
to the user, and collecting messages from the user and
forwarding them to the target. These communications paths
can be interactive sessions or they may be data-packet
transfers between the target system and a remote host
program.

N etROM provides a set of eight status inputs that can be
connected to any signal on the target system and sampled as
desired. NetROM also provides eight command signals that
can be connected to the target and asserted by the NetROM
user.

NetROM uses standard Internet protocols such as BOOTP,
RARP, TFTP, and TELNET. NetROM is network-manageable
usingSNMP.

1-1

NetROM Features

ROM Emulation

Communications

1-2

NetROM is a versatile development tool that can be adapted for
most embedded systems configurations. The following are
NetROM's principal features:

a 1 MB (megabyte) of emulation SRAM. Can break SRAM into
4 pods, each emulating a maximum of 256 Kbytes, or 2 pods,
each emulating up to 512 Kbytes.

a Support for 8-, 16-, and 32-bit words by clustering pods into
groups.

a Support for 64-bit words by using more than one NetROM
unit.

a Support for more than lMB of emulation by using more than
one NetROM unit.

a Emulation of64K, 256K, 512K, 1Mbit,2Mbit, and 4Mbit
ROMs.

a Emulation oflarger than 1 MB ROM by using more than one
NetROM unit.

a Simultaneous emulation of multiple ROM types and word
sizes by using different pods.

a 85 ns response time emulation memory and 55 ns for
NetROM450.

a 28-, 32-, and 40-pin DIPs, and 32- and 44-pin PLCC ROM
socket pods.

a Fast emulation downloads over Ethernet, using standard
protocols, such as TFTP or TCP.

a Communication with target systems using RS-232; and
emulation memory mailboxes.

a Address resolution using BOOTP or RARP.
a Eight status signals from the target that can be polled at

will.

NetROM User's Manual

User Interface

!J Eight target command signals that the user can assert.
!J Network manageable by SNMP.

!J Multiple user sessions with NetROM and/or the target, using
standard protocols such as TELNET.

!J Robust command-line interface.

Integration with Debuggers
!J Support for passing data between a debugger running on a

remote host and the target system.
!J Extended debugger support for updating the downloaded

image, resetting the target, and similar features.
!J Emulation memory writable by the target system even if

target hardware does not allow it.
!J Downloadable RAM modules to support optional features

like JTAG debugging and Virtual Ethernet.

Embedded Systems Development Environment
Embedded systems are specialized microprocessor-controlled
devices, of varying sizes, used for specific purposes. Examples
range from PC boards, network switching devices, and laser
printers to microwave ovens and the computerized controls in
a car. The NetROM device itself is an embedded system.

In most development environments for embedded systems,
there are four main components:

1. An embedded system under development--the target.

2. A computer used to develop the embedded system-the host.

3. A communications path between the host and the target.

4. A ROM emulator or ICE.

1-3

Although NetROM's ROM emulation features are powerful,
NetROM's most important function is communication between
the development host and the target system. In general, there
are three communication-path types between the target system
and the host computer: download, console, and debug.

These three paths are common aspects of embedded systems
development, and, usually, each path type has to be
implemented using a separate tool

NetROM, however, gives developers a single tool capable of
implementing all three paths from the host system to the
target. The three communication paths are discussed in detail
in Chapter 2; Table 1-1 briefly describes each path type.

Table 1-1 NetROM Communications Paths

Path Description

Download Mechanism in which an image file created on
the host system becomes accessible on the
target system.

Console Mechanism in which the user can
communicate with the target system.

Debug Mechanism in which an embedded systems
debugger program communicates between
the host system and the target system.

NetROM User's Manual

Standard Development Environment
Many embedded systems development environments use RS-
232 serial lines to implement each of the three communications
paths described above. This approach has three main
drawbacks: It lacks speed and portability, and it is
inconvenient.

Serial communications lines are much slower than LAN
technologies like Ethernet. The download path, in particular, is
affected because of the large amounts of data that must be
transferred. It is not uncommon to download megabyte-sized
images into emulators, which obviously can take considerable
time over a serial line.

With the variety of host systems available, software to drive
serial ports for each different system is sometimes difficult to
find. This problem is particularly acute when the host
computer is downloading to an emulator that uses a
proprietary protocol on top of the RS-232 serial link.

Using serial lines frequently can be complicated to set up and
to use. To physically set up a suitable environment for
debugging, the engineer must locate computers with serial
ports, software drivers for the serial ports, then connect cables
between the target system, the ROM emulator, and the host
computer. This process may require the host computer with the
serial port run a debugger, terminal emulator, ROM emulator
download, or all three.

Development Environments Using NetROM
NetROM technology addresses the drawbacks of a traditional
RS-232 development environment. In addition to emulating
ROMs, NetROM functions as a communications nexus between
the host computer and the target system. Because NetROM
connects to a high-speed LAN, it can multiplex all of the
different communications paths from their respective sources
onto the network.

1-5
h.,

NetROM is fast, because LANs are fast. This allows downloads
to be completed much more quickly than is possible with serial
lines.

NetROM is portable. With the variety of host systems available,
finding the software to drive serial ports for each is difficult.
The problem is acute when the host computer downloads to an
emulator that uses a proprietary protocol on top of the RS-232
serial link. With NetROM you do not have to modify serial
drivers.

NetROM is convenient. The debug path from the host computer
to the target can go through NetROM, with the host-side
program using standard TCP interfaces, such as sockets.
Physical setup of the debug environment is simplified, because
serial connections can go directly from NetROM to the target.
The emulation pods themselves provide non-RS-232 forms of
message passing, and NetROM allows supplementary control of
the target using the command and status signals.

Documentation Overview
This manual contains detailed information about the NetROM
product, its services, installation, user interface, debugger
support, alternate interfaces, emulation memory and more. It
also includes complete reference guides to the NetROM
commands and variables.

The manual is organized as follows:

Chapter 2. NetROM Services
Discusses the NetROM embedded systems development
environment, including its implementation of the three
communications paths. Also describes the NetROM console,
command and status signals, and LEDs.

Chapter 3. Installation
Gives step-by-step instructions for the installing the NetROM
hardware and software, including how to get started.

NetROM User's Manual

Chapter 4. User Interface
Describes the NetROM user interface, including the command
set and environment variables.

Chapter 5. Debugger Support
Describes NetROM' s debugger support features.

Chapter 6. Alternate NetROM Interfaces
Describes how users can write their own programs to interface
toNetROM.

Chapter 7. Emulation Memory Mailbox Protocols
Explains emulation memory mailbox protocols for targets that
cannot write to their own ROM space.

Chapter 8. Virtual Ethernet
Introduces Virtual Ethernet, an optional downloadable RAM
module to NetROM, including instructions for installation.

A set of appendices, a glossary, and an index follow these
chapters. The NetROM Installation Notes and the NetROM
Hardware Interface Reference are included at the end of this
manual.

Documentation Conventions
This manual uses the following conventions:

o Book titles, emphasized words, command names, and
keywords are in italics.

o Command parameters are in boldface.
o Computer programs are in constant-spaced font.

o Environment variable names are in "quotation marks."
o Items that are optional are enclosed in [square braces].
o Items that are mutually exclusive are separated by a

vertical bar I .
o Mutually exclusive items, one of which is mandatory, are

enclosed in {braces}.

1-7

Warnings, Cautions, Notes

·•····)Wamin~

Note

1-8

Warning messages appear before procedures and alert you to the
danger of personal injury which may result unless certain
precautions are obsetved.

Caution messages appear before procedures and indicate that
damage may be done to the emulator or to your target system
unless certain steps are observed.

Notes indicate important information for the proper operation
and installation of your emulator.

NetROM User's Manual

Support Services
Applied Microsystems provides a full range of support services.
The N etROM is covered by a 90-day warranty that includes full
applications phone support. Additional support agreements
are available to extend the initial warranty and to provide
additional services.

If you have trouble installing or using the product, consult your
manuals to verify that you are following the correct procedures.

If the problem persists, call Customer Support. Customers
outside the United States should contact their sales
representative or local Applied Microsystems office. When you
contact Customer Support, have your serial number available.

Telephone
800-ASK-4AMC (800-275-4262)

(206) 882-2000 (in Washington State or from Canada)

Internet address
If you have access to the Internet, you can contact Applied
Microsystems Customer Support using the following address:

support@amc.com

You can also browse the Applied Microsystems World Wide
Web page using the following URL:

http://www.amc.com

FAX
(206) 883-3049

1-9

I Chapter2

\ NetROM Services
This chapter provides a general description ofNetROM's •
implementation of the three communications paths introduced
in Chapter 1. It also discusses the NetROM console, NetROM' s
command and status signals, and the NetROM LEDs and their
uses.

Communications Paths

Download path

Console path

The embedded systems design, there are three NetROM
communications paths from the host to the target system:

How new images are loaded into NetROM's emulation memory.
This path allows the target system to respond quickly to
changes made in the source code residing on the host computer
and reduces the cycle time between modifying code and testing
the modification.

How humans interact with the target system; i.e., how they
configure it, control it, and monitor it. This usually consists of
a serial port running a simple terminal emulator that
processes commands. This path allows the development
engineer to easily inspect and monitor the system for bugs or
unexpected behavior.

2·1

Debug path
How the debugger running on a host computer communicates
with the target system. This allows the engineer to set
breakpoints, examine registers and data, and respond to error
conditions almost as if the target system were a program
running on the host computer.

NetROM Download Path
The download path from the host system to the target is used
to transfer ROM images from the host system, where they are
developed, to the target, where they are used. These images are
commonly executable code, but can contain other data as well;
for example, some target systems may use ROMs to store
graphics or configuration information. Images are generally
developed on the host system using a compiler or some similar
software tool

Pods and Pod Groups

2-2

NetROM has one megabyte of emulation SRAM. This is broken
down into four partitions, each of which can be used to emulate
a single ROM. The maximum size of each partition is 256
Kilobytes, the size of a 27c020 ROM. These partitions of
emulation memory connect to the target system using ribbon
cables which end in the type of connector used for the
particular type of ROM being emulated. We will refer to the
partitions of emulation memory and their associated connector
cable as emulation pods, and the ROM socket connectors on the
end as plugs. The term "pod" will be used interchangeably for
the emulation memory itself, or for the connector cable and its
plug. The two most common types of plugs are DIP (Dual In­
line Package) and PLCC (Plastic Leaded Chip Carrier). DIP
plugs are rectangular and PLCC plugs are square. Note that
since the cables and plugs can be detached from NetROM, the
same type of ROM, e.g. a 27c020, can be emulated whether it
comes in a DIP or PLCC package for a particular target system.

NetROM User's Manual

NetROM pods are numbered 0 to 3; each is capable of emulating
a single 8-bit ROM containing up to 256 Kilobytes. To make
using pods simpler, pods can be grouped together to form pod
groups. Pod groups are one or more 8-bit pods combined to
make 8-, 16-, or 32-bit words. Each pod is considered a ROM by
the target system. Pods can be combined to create words wider ..
than eight bits; for example, a target with two ROMs might use
them to make 16-bit words, where one pod is byte 0 of the word
and the other is byte 1. We will refer to this as a parallel pod
organization. Pods can also be combined, not to create wider
ROM words, but to create more words. For example, a target
with two ROMs might use them to create twice as many
consecutive 8-bit words as it could have with only one. We will
refer to this as the serial organization of pods. Serial and
parallel organizations are not mutually exclusive; a target with
four ROMs might use them to create twice as many 16-bit
words as it could with only two. See ''podgroup" on page 4-116
for detailed information on pod groups. Pod groups have five
defining qualities:

1. ROMtype:

All pods in a pod group emulate the same type of ROM. This
is because system designers use groups of 8-bit ROMs, all of
the same type, to implement ROM memories on their
embedded systems. Thus, it is not necessary to specify ROM
type for each pod in a pod group, but only for the pod group
as a whole.

2. Word size:

This determines the number of emulation pods operating in
parallel to create 8-, 16-, or 32-bit words. That the pods are
read as words is an artifact of the hardware design of the
target system. The target will generally have an address
which is the start of ROM space and will read whole words
from that address. For example, 2 pods may emulate 27 c020
ROMs in parallel to create a ROM space with 256 Kwords,
where each word is 16 bits, not eight bits, wide. Word size is
closely tied to ROM count, described below.

2-3

2-4

3. ROM count:

This is the total number of pods participating in emulation.
If the ROM count is greater than the word size divided by 8,
then some of the pods used in emulation are being used
serially to create a ROM address space longer than is
possible with a single set of pods operating in parallel. For
example, four pods may emulate 27 c020 RO Ms using a word
size of 16 bits. In this case, the word size divided by 8 is 2, so
the pods are being used by the target as two sets of parallel
ROMs operating in serial to provide a longer address space.
This space is 512 Kwords long, where each word is 16 bits
wide. shows the valid combinations of ROM count and word
size.

Table2-1 Combinations of ROM Count and Word Size

Word Size Number of ROMs Emulated

1

8 Yes

16 No

32 No

2

Yes

Yes

No

3

Yes

No

No

4

Yes

Yes

Yes

4. Pod order:

For target systems which use multiple pods, in serial or in
parallel, it may be desirable to specify the correspondence
between emulation pods and ROM bytes. Target systems
generally number the ROM sockets on the embedded
system. For example, a 16 bit target might number its
sockets 0 and 1, in accordance with which byte is within the
16-b~t word. The engineer debugging this target might want
NetR.OM pod 0 to byte 0 on the target and pod 1 to be byte 1,
or might prefer that pod 1 be byte 0 and pod 0 be byte 1.
Consult "podorder" on page 4-117 for more information.

NetROM User's Manual

5. Writability:

The system engineer may want some pod groups to be
writable by the target system. This allows the target to set
breakpoints in a ROM image, or to modify the image in other
ways. Pod groups by default are read-only, and any attempt
to write them is quietly ignored. The writability attribute •
controls both write cycles which use the emulation pod's
write line and the external write line.Note read-only targets
can request that NetROM write emulation memory for them
(see "Setting Emulation Memory" on page 7-21).

The pod memory (emulation memory) may be configured to
emulate either flash ROM or static RAM. The difference being
how NetROM reacts to the WR signal when OE is asserted. The
environment variable writemode control s this environment.
The default mode is FLASH.

In addition, pod groups have two other characteristics, both of
which exist for the convenience of the development engineer:

1. Group name:

Pod groups can be assigned a name, so that when engineers
examine the pod configuration for NetROM, they will not
have to remember which group is being used for what
purpose. Names can be any mnemonic, and are optional.

2. Target address:

This is the 32-bit address indicating the start of the pod
group in the target's address space. The ability to specify a
target-side starting address allows engineers to compare the
contents of emulation memory directly with the binary
image created on the host system, using the contents of a
map file for addressing. Target addresses default to 0, but
can be set to any 32-bit value.

Each emulation pod can be used independently or as part of a
pod group. Since there are four emulation pods, there are a
maximum of four pod groups available. As described above,
each pod group corresponds a ROM address space from the
point of view of the target. For example, pods 0 and 1 can be
used to emulate 27c020 ROMs making up ROM space of256

2-5

Kwords, where each word is 16 bits. Simultaneously, pod 2 can
emulate an 8-bit 27 c64 containing system configuration
information and pod 3 can emulate an 8-bit 27c010 containing
graphics tables.

Configuring Pod Groups
In the simplest case, in which the NetROM user simply wants
to emulate one pod group, configuring the pod group is quite
simple. NetROM allows the user to specify the ROM type, the
word size, and the ROM count for the default pod group (group
0) simply by stating his or her preferences on the command
line. The pod order (mapping between emulation pods and
target system RO Ms) can be set instead of, or in addition to, the
ROM count and word size. Consult "podorder" on page 4-117
for details on setting the pod order with a pod group. Pod group
configuration can be done as part of a startup batch file. After
the pod group has been configured, the group can be loaded
with an image and emulation can begin. The commands needed
to configure pod groups are described in Chapter 4.

Downloading Pod Groups

2-6

Each pod group can be downloaded independently. NetROM
takes advantage of LAN speeds to accomplish fast downloads.
Downloads can be accomplished in several ways. For many
users, downloads can be accomplished most easily using TFTP,
a standard Internet file transfer program. It is also possible to
download new images using TCP connections to a port on
NetROM. For many development environments, such as a set of
workstations connected on a LAN, it is easier to write network
code to communicate between two nodes on the LAN than it is
to write code which controls the serial port on a workstation.
Network code is generally more portable than serial control
code, in addition to being easier to write.

NetROM User's Manual

ROM Type Compatibility
It is possible to have NetROM's ROM emulation appear to fail
for a particular ROM type, even though a real ROM of that type
works. For example, a target system that works with a 27 cOlO
ROM may not work when NetROM emulates a 27c010 ROM. •
However, the same image may work if NetROM is emulating a
27c020 ROM instead. This situation is generally a result of the
target system's hardware interface to the ROM socket.

The pin specifications for the 27c010 describe certain pins as
being "no-connects." This is so that the 27c010 will fit into a 32-
pin socket, as will a 27 c020. However, on the 27 c020 the same
pin is specified as an address pin. As a result, if the target
system actually drives that pin NetROM will treat it as address
bit 17, and will respond as if it were a 27c020. (Hardware
timing restrictions prevent NetROM from masking address pins
based on ROM type.)

When a NetROM user specifies a ROM type, the type is
primarily used to locate where downloaded images should be
placed in emulation memory. NetROM's hardware "pulls up"
unconnected address pins, with the result that 27c010 images
need to be loaded in the top half of emulation memory. If the
"no-connect" address bit is driven by the target, the target will
actually be reading data from the bottom half of emulation
memory.

There are two ways to resolve the problem posed in our
example. One is to modify the emulation cables by physically
disconnecting address bit 17. The other is to specify a ROM
type of 27 c020. In situations where changing the ROM type
seems to alleviate a problem in emulation, it is a good idea to
consult the hardware specifications for the ROM socket on your
target system.

2-7

NetROM Console Path

2-8

Many embedded systems have a serial port for communicating
interactively with a user. Some systems have no such
mechanism and debugging is correspondingly more difficult,
since the engineer must rely on LED displays and DIP switches
or similar methods to determine what the target is doing and
give it commands. NetROM provides tools to communicate
directly with any of these types of target systems. The
"readaddr'' and "readwrite" paths use mailboxes in emulation
memory to communicate with the target system. The difference
between them is the ''readaddr" method can be used by targets
which cannot write emulation memory; it is slower than the
"readwrite" method, but it is absolutely generic with regards to
target capabilities.

Regardless of the method of communication between NetROM
and the target, the host system always uses TELNET to
communicate with NetROM. (Actually, the host system can use
a direct TCP link to a port on NetROM, but we shall use
TELNET in our discussion since it is available in many
development environments. Consult Chapter 6 for information
on alternate NetROM interfaces.) Using TELNET for all types
of communication with the target means that the development
engineer can more or less ignore which specific path is being
used to communicate with the target once everything is set up.
It also means that the engineer can communicate with the
target - via NetROM - from anywhere in the office or lab
which provides TELNET. This eliminates the need for VTlOO
terminals with serial cables sitting near the target system.

Another thing to note is that the target doesn't need to have a
serial port in order to provide a console to the engineer. By
using the emulation memory, which is shared between NetROM
and the target, to pass messages, the target can communicate
directly with the engineer during the lab debugging. Another
implication of using emulation memory to pass messages is
that it requires a minimum of working hardware. That is, even
targets with a serial port require hardware which can access
and program the port. During the very early phases of system
boot, this is not always available and software engineers must

NetROM User's Manual

NetROM Debug Path

use crude methods for debugging. However, targets which
execute out of emulation memory already have everything they
need to communicate with the engineer.

The protocol which is used to communicate with NetROM
through emulation memory is simple, and generic target-side ..
code is provided with NetROM. This code requires minimal
porting and provides character-oriented input and output
functions. The protocol is described in more detail in Chapter 7.

Many development environments for embedded systems use
symbolic debuggers. These debuggers actually run on the host
system but communicate with the target system, generally
using serial lines. The debugger sends messages to the target,
generally interrogating or setting the target's register state or
memory contents. The target sends messages to the debugger,
informing it of breakpoints and exceptions. On the host side,
the debugger keeps track of symbol tables, source files, and
breakpoint status. On the target side there are generally small
routines which perform the operations requested by the host
side.

NetROM allows the host side debugger to communicate with the
target through any of the paths. However, there are two paths
between NetROM and the debugger. One is the debug data
path. This is a TCP connection, and data received from the
debugger is passed directly to the target. The other is the debug
control path. This is also a TCP connection, but it is used to
pass control data directly to NetROM, which allows debuggers
to perform such tasks as directly reset the target or download
a new image. The debug path between NetROM and the target,
once again, is independent of the path between NetROM and the
debugger. Thus, the debugger does not need to be aware of how
data is passed to the target; it merely sends it to NetROM and
NetROM takes care of the rest.

2-9

Optional Downloadable RAM Modules

2-10

Applied Microsystems' downloadable RAM modules are
licensed applications pack.ages that extend the existing
command set or add functionality to the NetROM product. For
example, the Virtual Ethernet module gives target systems the
ability to become Ethernet communications devices without
requiring that they have Ethernet hardware; and the 29K
JTAG module adds standard IEEE 1149.1 JTAG debugging
emulation to NetROM's normal communications gateway and
ROM emulation functions.

These applications are licensed to individual NetROM units and
are linked to a specific NetROM version. That is, when you
purchase an XDI downloadable RAM module, it can only be
used on one NetROM unit and that unit must be running a
compatible version ofNetROM software.

The application software media contain the computer file(s)
necessary to load the module into the specific NetROM system.
Module files are loaded using the loadmodule command, which
automatically executes TFTP, the file transfer mechanism that
downloads the file(s) to your NetROM system. We recommend
these file(s) be stored in the same directory as your startup.bat
file; however, the file(s) can be placed on the server anywhere
to which NetROM has TFTP access.

Detailed installation and usage instructions for the modules
are included in the respective module's Application Notes or
User Manual.

NetROM User's Manual

NetROM Console
The NetROM console consists of a "dumb" terminal connected to
the NetROM console port by a serial RS-232 line. This port is ..
always active and can be used even when NetROM does not
seem to be accessible by the network. The port serves several
uses.

First, it allows NetROM users to access NetROM without using
the Ethernet. This is particularly useful during the initial
stages ofNetROM installation, when NetROM's Ethernet
address is not known and therefore cannot be associated with
an IP address for use on the Ethernet.

Second, in environments which do not offer address resolution
servers, such as BOOTP or RARP, the NetROM console allows
users to access NetROM in order to configure its IP address by
hand. Normal NetROM operation can then proceed, assuming a
TFTP server is present to download images. (It is possible to
send a file to NetROM for download into emulation memory,
rather than having NetROM request the file; however, such an
environment does not allow "normal usage." Consult Chapter 6
for information on alternate NetROM interfaces.)

Third, NetROM users may occasionally want to monitor traffic
between NetROM and the target system on the console path, the
debug path, or both. Data passed between NetROM and target
can be echoed to the NetROM console if enabled; see the set
consecho and the set debugecho commands for details.

Finally, if a terminal is left attached to the console port, it will
receive messages about abnormal events. As with many
multitasking and potentially multi-user systems, NetROM uses
its serial port to provide a log of diagnostic messages about
abnormal events. However, most users will not need to make
use of this aspect of the NetROM console.

2-11

Command and Status Signals

2-12

NetROM provides a set of eight command signals, which can be
mapped to arbitrary traces on the target system. Command
signals are "active low," which means when asserted (set to
"on") the signal is near ground potential. Active low traces are
common in many computer systems. There are certain
electrical considerations involved in using the command
signals. First, the command signal must be connected in such
a way that it will not cause a short circuit. NetROM command
signals are driven by a GAL 22V10-15 capable of sinking a
maximum of 16 milliamps at 0.5V. Command signals are tri­
state; that is, when they are not asserted, they are "not
connected" to the target. Most TTL signals generally drive
small amounts of current (about 10 milliamps). However, if the
trace to which the command signal is connected drives a large
amount of current, when the command signal is asserted there
will be a short circuit which may damage NetROM. The solution
is to use a resistor between the command signal and the target
trace. Command signals are meant to be used in either open­
collector circuits or circuits which drive small amounts of
current.

NetROM also provides a set of status signals which also can be
connected to arbitrary signal traces on the target system.
Status signals simply monitor the status of the traces on the
target system. They are interpreted as being active low; that is,
ifthe TTL signal on the target side is low, the status will read
as "on," otherwise it will read as "off." The status lines are
provided as a convenience to the engineer; they can be
interrogated at the command line or mapped to LEDs on the
NetROM back panel. There are eight status lines and only four
LEDs, so the engineer may either map some LEDs to multiple
status signals or not use all of the status signals. It is possible
to configure signal-to-LED mappings in such a way that the
LED lights up with the signal is high; that is the engineer can
specify a high-true mapping as desired. NetROM commands to
map status signals to LEDs are described in Chapter 4.

NetROM User's Manual

NetROM LEDs

Some of the command and status signals have default
semantics. For example, command signal zero (0) is assumed to
be connected to the target processor's reset line. If a reset line
is connected to the target, the engineer using NetROM can
apply a hardware reset to the target remotely; refer to "logout"
on page 4-94.

NetROM has two sets of LEDs, the network activity LEDs and
the status LEDs. The network activity LEDs are controlled by
NetROM's Ethernet interface, but the status LEDs are
controlled by NetROM's software. Figure 2-1 shows the front
panel view ofNetROM's LEDs.

The labeled LEDs in Figure 2-1 are the network LEDs and
represent different network states.

RX

TX

LINK

POLARITY

Indicates when NetROM is receiving frames.

Indicates when NetROM is transmitting
frames.

Represents twisted pair MAU link status.

Indicates reversed polarity on receives.

The numbered LEDs are the target status LEDs and can be
mapped to the status signals on NetROM. By default LED 0 is
used as a "heartbeat" LED, which indicates that NetROM is
alive and gives some indication of the load on the system. The
commands to map LEDs to status signals are described in
Chapter 4. The single red LED to the left indicates that power
is on.

2-13

I
I

•

ON

0

13 RXTX

NETWORK
ACTIVITY

3 LINK POLARITY

Figure 2-1 NetROM Back-Panel LEDs

2-14 NetROM User's Manual

I Chapter3

Installation

This chapter provides instructions for installing NetROM. The
process is broken into hardware setup and software setup. The
software section is further broken down into NetROM and host
setup.

For detailed installation instructions, see the NetROM
Installation Notes in the tabbed section at the end of this
manual.

Collecting Equipment

caution&
NetROM contains components that are subject to damage from
electrostatic discharge. Whenever you are using, handling, or
transporting the hardware, or connecting to or disconnecting
from a target system, always use proper anti-static protection
measures, including using static-free bench pads and grounded
wrist straps.

Before starting the installation verify that you have the
following equipment:

CJ An AC power cord and transformer provided with your
NetROM.

CJ A set of ROM emulation cables. The standard NetROM is
shipped with enough ROM emulation cables to support up to
four Dual In-line Package (DIP) EPROMs. Other types of
EPROMs may require additional cables (Please contact
Applied Microsystems if you have special cable needs.)

3-1

3-2

CJ A means of connecting to the Ethernet. Ethernet connection
may be accomplished in one of three ways:
1.Via a transceiver,

2.Via a twisted pair MAU,

3.Via a RJ-45 twisted pair connector.

If you do not have the above mentioned items please obtain
them before proceeding.

You may want to obtain a "dumb" terminal such as a VT100 to
serve as a NetROM console while you troubleshoot your NetROM
configuration. You may also want to check that equipment
pictured in Figure 3-1 was shipped withNetROM. lfnot, please
contact Applied Microsystems.

NetROM User's Manual

POWER
SUPPLY

Figure 3-1

a ~~~~ WRr~
DB-9 RJ-4S

•===a I EMULATION CABLES ~

NetROM and Accessories

3-3

Hardware Setup

Caution&

This section explains how to install external connections to the
various connectors on NetROM. Figure 3-2 illustrates the front
and rear panels of the NetROM, and the call-out numbers in the
figure are referenced in the following sub-sections.

NetROM contains components that are subject to damage from
electrostatic discharge. Whenever you are using, handling, or
transporting the hardware, or connecting to or disconnecting
from a target system, always use proper anti-static protection
measures, including using static-free bench pads and grounded
wrist straps.

Connecting AC Power Cord

3-4

An AC power cord with a transformer assembly is supplied
with NetROM.

Make certain the power switch on NetROM is turned off, then
attach the power cord to the connector labeled "power" on the
rear panel ofNetROM. Plug the other end of the power cord into
a grounded AC wall outlet.

To avoid damaging NetROM use only the AC power cord and
transformer supplied with your NetROM.

NetROM User's Manual

ROM sockets for
emulation pods 2 & 3

Write/Reset connectors

ROM sockets for
emulation pods o & 1

Target status/network
activity LED's

"On" LED

Console serial port

Figure 3-2 Connecting Hardware

Connecting to Ethernet
NetROM may be connected to the Ethernet via one of two
means. Figure 3-2 shows the location of the connectors on the
back of the NetROM, and Figure 3-3 shows the two connectors
in detail. Note that no switches or jumpers need be set on
NetROM when changing the type of Ethernet connection.
NetROM automatically configures for whichever network

3-5

3-6

connection is plugged in. If both connectors are plugged in,
NetR.OM will use the 10 Base-T interface and ignore the AUI
transceiver.

Using an Ethernet Transceiver
An Ethernet transceiver is required when connecting NetROM
to either thin or thick Ethernet cable. When using this type of
Ethernet connection the transceiver is connected via an
Attachment Unit Interface (AUi) cable to the 15-pin AUI
connector on the rear panel ofNetR.OM (Figure 3-3). Other
connections for the transceiver should be performed according
to the instructions supplied by the transceiver manufacturer.

Using an RJ-45 Connector
NetR.OM may also be connected to 10 Base-T networks via an
RJ-45 connector (Figure 3-3).

There are three RJ-45 connectors on the back panel of
NetROM. Do not connect the 10 Base-T network to either
connector labeled serial. The 10 Base-T connector should
ONLY be connected to the connector labeled Ethernet. Also, do
not connect any RS-232 cables to the connector labeled
Ethernet. The Ethernet connector supplies a 12 Volt signal and
may damage your RS-232 equipment.

NetROM User's Manual

CONSOLE 10 BASE T

0

TARGET CONSOLE 10 BASE T

l•••I 0
SERIAL ETHERNET

ETHERNET-AUi

• • • • • • • • • • • • • • •

ETHERNET-AUi

• • • • • • • • • • • • • • •

AUi Cable

Figure 3-3 Connecting Ethernet

0

0

3-7

Connecting ROM Emulation Cables

3-8

There are multiple versions of the ROM emulation cables
available for NetROM. ROM emulation cables vary depending
on the format of the ROM pack.age located on the target system.
The cables all connect to NetROM through 80-pin female
emulation pod connectors. Emulation pods 0 and 1 are
connected to the NetROM sock.et shown in Figure 3-2;
emulation pods 2 and 3 are connected the NetROM socket
shown in Figure 3-2. Refer to "podorder" on page 4-117.

Connecting ROM emulation cables to the target system
requires an understanding of the target system's word size and
byte ordering and their relationship to NetROM's four (4)
emulation pods. The NetROM software has a default mapping
of emulation pods to target byte ordering. This mapping may be
overridden using the "podorder" environment variable
discussed in Chapter 4. However for this discussion we shall
use the default mapping. In addition, the examples given are
for targets which use big-endian byte ordering; little-endian
targets will be discussed at the end for completeness.

NetROM users should understand the terms parallel and serial
emulation. If the target system has a multiple-byte word size
and more than one ROM is used to create this word, then you
will be using parallel emulation. Parallel emulation thus refers
to the operation of two or more NetROM emulation pods
configured in parallel to provide a single word to the target
system. If a target uses additional ROMs to provide more
memory space than is supplied in a single ROM then serial
emulation is used. For example, suppose a target has a word
size of 8 bits and uses two 27 c020 RO Ms. This gives a memory
space of 512 Kilobytes, where bytes 0 through 256K-1 are
supplied by one ROM and bytes 256K through 512K-1 are
supplied by the second ROM. This is an example of serial
emulation. with NetROM it possible to use serial emulation,
parallel emulation, and a combination of both. The following
table shows the possible combinations of emulation based on
the number ofROMs on a target system.

NetROM User's Manual

Note ~

Table3-1 Series and Parallel ROM Emulation

Number of ROMs Emulated

Word size 1 2 3 4

8 bit serial serial serial serial

16bit see note parallel see note serial &
parallel

32bit see note see note see note parallel

These configurations are possible but beyond the scope of this •
discussion.

Once you have determined the type of emulation you will be
using (serial, parallel or both), you will need to determine
which NetROM emulation pod to plug into the ROM sockets on
your target system. As mentioned above this discussion will
detail how to choose the proper configuration based on
NetROM's default podorder settings.

For systems with an 8-bit word size there are four possible
configurations, namely using 1, 2, 3 or 4 ROMs. Figure 3-2
shows mapping between NetROM emulation pods and the
target's ROM addresses assuming a 256 Kilobyte (27 c020)
ROM. Also included are the data bits supplied by each
emulation pod.

3-9

Table 3-2 Emulation of an Eight-bit Word Size

Number of ROMs Emulated

Pod 1 2 3 4 Data Bits

0 bytes 0 through bytes 0 through bytes 0 through bytes 0 through DO-D7
(256K-1) (256K-1) (256K-1) (256K-1)
OxOOOOO to OxOOOOOto OxOOOOOto OxOOOOO to
Ox3ffff Ox3ffff Ox3ffff Ox3ffff

1 NIA bytes 256K bytes 256K bytes256K DO-D7
through (512K- through (512K- through (512K-
1) 1) 1)
Ox40000 to Ox40000to Ox40000 to
Ox7ffff Ox7ffff Ox7ffff

2 NIA NIA bytes 512K bytes 512K DO-D7
through (768K- through (768K-
1) 1)
Ox80000 to Ox80000 to
Oxbffff Oxbffff

3 NIA NIA NIA bytes 768K DO-D7
through (lM-1)
OxcOOOOto
Oxfffff

For systems with a 16-bit word size, there are two possible
configurations: namely using 2 or 4 ROMs. Table 3-3 shows the
mapping between NetROM emulation pods and the target's
ROM addresses assuming a256 Kbyte (27c020) ROM. Also
included are the data bits supplied by each emulation pod.

3-10 NetROM User's Manual

Table 3-3 Emulation of a 16-bit Word Size

Number of ROMs Emulated

Pod 1 2 3 4 Data Bits

0 NIA even bytes 0 NIA even bytes 0 D8-D15
through through
(512K-1) (512K-1)
OxOOOOOto OxOOOOO to
Ox7ffff Ox7ffff

1 NIA odd bytes 0 NIA odd bytes 0 DO-D7
through (512K- through (512K-
1) 1)
OxOOOOO to OxOOOOO to • Ox7ffff Ox7ffff

2 NIA NIA NIA even bytes D8-D15
512K through
(lM-1)
Ox80000 to
Oxfffff

3 NIA NIA NIA odd bytes 512K DO-D7
through (lM-1)
Ox80000 to
Oxfffff

For systems with a 32-bit word size there is one possible
configuration: using four ROMs. Table 3-4 shows mapping
between NetROM emulation pods and the target's ROM
addresses assuming a 256K byte (27 c020) ROM. Also included
are the data bits supplied by each emulation pod.

3-11

Pod 1

0 NIA

NIA

2 NIA

3 NIA

3-12

Table 3-4 Emulation of a 32-bit Word Size

Number of ROMs Emulated

2 3 4 Data Bits

NIA NIA byte zero, 024-031
Othrough (1M-1),
OxOOOOO through
OXfffff

NIA NIA byte one, 016-023
Othrough (1M-1),
OxOOOOO through
Oxfffff

NIA NIA byte two, 08-015
O through (1 M-1),
OxOOOOO through
Oxfffff

NIA NIA byte three, 00-07
O through (1M-1),
oxooooo through
Oxfffff

When connecting the ROM emulation cables, it is helpful to
understand the byte ordering on the target system. The tables
above have shown the mapping for big-endian systems. The
next figure shows the byte ordering for big- and little-endian
systems for 16- and 32-bit word sizes. Using this figure and the
previous tables, it should be possible to determine which
NetROM emulation pod to plug into the target system's ROM
sockets.

NetROM User's Manual

Big Endian
Byte Ordering Byte o Byte 0

Bit 15 7 O
16 Bit Word

Byte 0 Byte 1 Byte2 Byte 3

32 Bit Word

Little Endian
Byte Ordering Byte 0 Byte 1

Bit? 0 15 8
16 Bit Word

I Byte 3 Byte 2 Byte 1 Byte 0

Bit? 15 8 23 16 31 24
32 Bit Word

Figure 3-4 Big-endian/Little-endian Byte Ordering

Connecting DIP Style Cables
DIP-style cables are used to connect NetROM to targets that
contain DIP ROM packages. Available in 28-, 32-, and 40-pin
versions, these cables plug directly into the ROM sockets on the
target system. Before connecting the emulation cables to the
target system, be certain to tum off power to the target system.
Remove any ROMs currently in the ROM sockets on the target.
Be certain to align pin 1 on the ROM emulation cable DIP
connector with pin 1 on the target DIP socket. The ROM power
"OK" LEDs (see Figure 3-2) will light when the cables are
plugged in correctly and the target system is powered on.

Plugging in ROM cables improperly may damage the NetROM.

3-13

•

Connecting PLCC Style Cables
PLCC style cables are used to connect NetROM to targets which
use PLCC ROM packages. These cables plug directly into the
ROM sockets on the target system. Before connecting the
emulation cables to the target system, be certain to turn off
power to the target system. Remove any ROMs currently in the
target sockets. Be certain to align pin 1 on the emulation cable
to pin 1 on the target PLCC socket; one corner of the emulation
cable's PLCC plug is cut off to indicate the location of pin l.The
power "OK" LEDs (Figure 3-2) will light when the cables are
plugged in correctly and the target system is powered on.

Connecting NetROM Console
The NetROM console connection allows the NetROM user to
communicate with the NetROM executive via a serial device
such as a terminal. Figure 3-2 shows the location of the console
port on the rear of the NetROM, and Figure 3-5 is a view of the
NetROM console socket. The pinouts for the NetROM console
connector are shown in Appendix A, and Appendix E gives the
default configuration of the Console Serial Port. The serial
connection should be made using an RJ-45 connector. The 9-
and 25-pin connectors supplied with NetROM are DTE, not
DCE. The DTR signal is always "true," and that the DSR signal
is ignored.

Connecting Target Serial Port

3-14

The NetROM target serial port allows the NetROM user to
access the target system's serial port. Figure 3-2 shows the
location of the target serial port on the rear of the NetROM, and
Figure 3-5 is an exploded view of the target serial socket. The
pinouts for the NetROM serial port are shown in Appendix A,
and Appendix E gives the default configuration of the Target
Serial Port.

NetROM User's Manual

TARGET

CONSOLE

ETHERNET

Figure 3-5 Connecting NetROM Serial Ports

3-15

The serial connection should be made using an RJ-45
connector. The 9- and 25-pin connectors supplied with
NetROM are DTE, not DCE. The DTR signal is always "true,"
and that the DSR signal is ignored.

Connecting Trace Cables
Trace cables are not yet provided with NetROM.

Connecting the Write Signal

3-16

The Write signal connection allows target systems to write
directly to their ROM space. The data written by the target
system is deposited at the specified address in NetROM's
emulation memory. Writing to your ROM address space
requires a a Write signal. There are three methods to do this:

a Have the target software monitor request NetROM to write
emulation memory.

o Allow your target hardware to signal a Write access on the
PGM pin of the ROM socket. This method is normally the
case ifNetROM is plugged into sockets designed for FLASH
ROM. An additional requirement is that your NetROM cable
must support writing. To see if your cable type supports
writing, refer to Table 4-11 in "romtype" on page 4-120.

o Connect a Write signal somewhere else on the target board.
This method also requires the cable to support writing. To
see ifit does, refer to Table 4-10 in "romtype" on page 4-120.

o If you need to connect the Write signal, connect a jumper
cable from the target system's write strobe to the Write pin
on the front panel ofNetROM (Figure 3-2 and Figure 3-6).
The write signal is "active low" and is expected to occur in
conjunction with a norm.al write cycle.

NetROM User's Manual

COMMAND
G76543210R

000000000

_...,-----,,000000000

WG STATUS

COMMAND
G76543210R

0 0 0 0 0 0 0 0 o.___-
000000000

WG STATUS

Figure 3-6 Connecting Wire/Reset Cables

After the cable is connected, software running on the target
may treat the ROM space as writable memory. This allows easy
insertion of breakpoints and/or patching of code by the target.

Connecting the RESET Signal
The Reset signal is output by NetROM to reset the target
system. This allows the NetROM user to reset their target
system remotely. Ajumper cable should be connected from the
target's Reset signal to the Reset pin on the front panel of
NetROM (see Figure 3-2).

3-17

•

Caution&

The Reset signal is "active low"; when it is asserted, it connects
to ground. The Reset signal should be connected to "open­
collector" traces, or to traces which drive a small amount of
current. An example configuration is shown in Figure 3-7.

If NetROM's Reset signal is connected to a high-current trace
on the target system, assertion of the signal may cause a short
circuit! Consult "NetROM LEDs" on page 2-13 for more
information on NetROM command signals.

Reset Signal

Figure 3-7 Connecting NetROM's Reset Signal

3-18 NetROM User's Manual

Software Setup
NetROM's hardware installation consists mainly of plugging
cables and power cords into the appropriate connectors.
Software installation is somewhat more involved, since
N etROM is a full-fledged multitasking network host, capable of
supporting multiple simultaneous terminal sessions and other
types of network connections. The initial effort required to
install NetROM on a network is comparable to that required
when installing a new workstation. However, once NetROM is
a functioning member of your network, using it is quite simple,
even if you physically move the unit or use it on different target
systems.

To use NetROM most effectively, it helps to have address •
resolution and file serving software running on a host system.
NetROM's software setup essentially consists of configuring
one or more host systems to provide these two basic services. At
power-up, N etROM knows its Ethernet address, but not its IP
address. While it is possible to configure N etROM' s network
address directly, using NetROM's serial console, it is much
simpler to have N etROM resolve its network address
automatically. File server support, in the form of a TFTP
server, should be present on your network. This is how
NetROM will download images into emulation memory. Once
address resolution and file server software is running in your
development environment, NetROM can be used anywhere
there is an Ethernet connection. Serial lines and "dumb"
terminals will no longer be necessary to debug your target
system.

This section describes, in general terms, the network protocols
which NetROM uses to perform address resolution and file
download functions. Consult the Installation Notes for tips on
how to configure host-side servers for your development
environment. Once servers are configured, it is only necessary
to create a startup batch file for your particular project.
Startup batch files are discussed in the last part of this section.

3-19

Address Resolution

3-20

As mentioned before, at power-up a NetROM unit does not know
its own IP address, but it does know its hardware (Ethernet)
address. Determining one's own network address is a common
problem for diskless computers, such as diskless workstations.
Such computers require a mechanism to determine their IP
address, knowing only their hardware address. Two software
protocols are commonly used for this purpose; BOOTP and
RARP. When NetROM powers up, it sends out simultaneous
RARP (Reverse Address Resolution Protocol) and BOOTP
requests. These requests are broadcasts, so all systems on the
Ethernet ''hear" them. BOOTP (or RARP) "servers" listen for
these requests, look up the requestor's IP address based on the
hardware address in the request frame, and send a response. If
NetROM receives a response to either its BOOTP or RARP
request, it uses the information in the response to configure its
IP address. If no response is received, it will re-broadcast the
requests 10 times and finally give up. The NetROM unit should
then be either power cycled or configured from the NetROM
console.

BOOTP and RARP are simple protocols; often, the most
complicated part of configuring a host computer as a "server" is
setting up configuration files and making sure the server
daemon is running! Once the server is responding to NetROM's
requests, NetROM should have no problem determining its IP
address, regardless of how often it is reset, power cycled, or
moved. Consult the Installation Notes addendum for details on
configuration file setup.

If both BOOTP and RARP are available in your development
environment, the choice of which to use should be based on
convenience. If NetROM receives both a BO OTP and a RARP
response simultaneously, it will use the BOOTP response to
configure its address.

BOOTP Address Resolution
BOOTP, like TFl'P, is a protocol which uses the connectionless
UDP transport protocol. There are two ''flavors" of BOOTP
servers, the "CMU" and the "Stanford" versions. These differ

NetROM User's Manual

only slightly; the CMU version allows the server to specify the
client's IP netmask and broadcast address, as well as its IP
address. Both versions provide a TFTP server address and a
download filename to request from the server. NetROM
understands BOOTP responses from either of the server types.
However, the configuration file formats for the two types of
servers are completely different, even though the configuration
files have the same names. This often results in great confusion
among people who are trying to set up BOOTP on their
Ethernet, especially since errors in the configuration file cause
the BOOTP server to quietly ignore requests!

If a configuration file is not explicitly specified in a BOOTP
response, NetROM will not try to download one.

RARP Address Resolution
RARP is another way to establish a mapping between an
Ethernet address and an IP address. Unlike BOOTP, RARP
does not use UDP as a transport. In fact, it is a variant of ARP,
the Address Resolution Protocol in common use throughout
TCP/IP networks, which does not even use IP as a network
protocol. Also unlike BOOTP, the RARP protocol does not
provide a mechanism to specify a download file. However, there
is a convention which allows the RARP client to determine
what configuration file it should download, as well as
determine its IP address.

NetROM will map RARP responses to startup file names as
follows. The RARP response consists of an IP address, which is
a 32-bit value. NetROM converts the individual numbers in its
dotted-decimal Internet address to two-digit hex numbers. For
example, given the address 192.0.0.210, 192 becomes OxCO, 0
remains OxOO, and 210 becomes OxD2. NetROM will then
concatenate these numbers to produce the filename (in
uppercase letters) COOOOOD2. NetROM will then attempt to
download one of the following startup files: "COOOOOD2," then
"/tftpboot/COOOOOD2," and finally "tftpboot/COOOOOD2." After
the first successful download, it will proceed with its boot
sequence and execute the commands in the startup file. It will
not attempt to download other startup files.

3-21

•

File Server Support

3-22

Since the RARP protocol cannot specify a TFTP server, NetROM
assumes that the TFTP server for the configuration file is the
same as that which responded to the RARP request. See "File
Server Support" (next section) for further information on
TFTP.

If this configuration file does not exist, or if there is not a TFTP
server running on the RARP server host, NetROM will display
appropriate error messages on its serial console and use its
default configuration values (see Appendix E).

TFTP is a standard file transfer protocol often used to provide
boot images to standalone devices. The TFTP server can be run
on any number of nodes on a network. By default, it looks for
files in the directory ltftpboot; that is, if the server receives a
request for file startup.bat it will respond by sending the file I
tftpboot I startup.bat.

The server can be run in either of two modes: "secure" mode or
''normal" mode. These two modes differ primarily in the way
they handle root-specific filenames in requests. Root-specific
requests are those which specify directory location starting at
the root of the directory tree. For example, the client may
request the file I startup. bat. Servicing this kind of request
could lead to a security risk; the client could request any file on
the server system; and since TFTP performs no authentication,
the client would get the file. Secure TFTP was developed to get
around this problem. Secure TFTP servers respond to root­
specific requests as if the directory I tftpboot were the root
directory. Secure servers cannot be circumvented using
symbolic links or similar tricks.

The problem with secure servers is that they prevent
legitimate clients from downloading files outside of the I
tftpboot directory subtree. For example, NetROM may want to
download a file from an engineer's development directory, but
secure-mode TFTP may make this impossible. There are at

NetROM User's Manual

NetROM Startup Files

least two ways of dealing with this problem; either do not use
secure TFTP, or copy images into the ltfipboot directory
subtree after each modification.

As with BOOTP and RARP servers, it is often harder make
sure that your TFTP server is running and getting files from
where you think it is, than it is to request a file from NetROM.
Consult the Installation Notes addendum for more information
on installing TFTP servers.

NetROM allows the user to specify a startup batch file. Batch
files are sequences ofNetROM command-line commands
delineated by begin/end statements. Chapter 4 provides details
on batch files and how to use them. NetROM's address
resolution mechanism at boot time determines what startup •
file it attempts to run, and which server it expects to provide
the file. BOOTP responses explicitly name a startup file and a
TFTP server, so when BOOTP is used to configure NetROM at
boot time, it is easy to specify the startup file. When RARP is
used as the address resolution protocol, NetROM uses its IP
address to construct the name of the file.

An example startup file is the following:

begin

end

setenv wordsize 16
setenv romtype 27c020

This file tells NetROM to organize its emulation pods as 16-bit
words, emulating 256 Kilobyte ROMs. The commands in the
file are executed in order, just as if the NetROM user had typed
them in at the keyboard. The file must be a "pure" text file; the
editor you use cannot use unprintable formatting characters.

Ifno startup file is specified with BOOTP, NetROM will not
attempt to download one. However, NetROM will always try to
download the RARP configuration file (if its address is being
configured by RARP). In this case, TFTP will inform it that the

3-23

3-24

file does not exist and no harm will be done. If TFTP is not
running on the RARP server, NetROM will abort its download
effort.

The output from the NetROM commands in the startup file will
go to the NetROM console serial port. Unless there is a terminal
connected to this port, errors in the startup file may not be
noticed. It is a good idea to test changes to the startup file by
running it as a batch file from the command line; this allows
you to debug your startup file without having to connect a
"dumb" terminal to the NetROM console.

NetROM User's Manual

I Chapter4

-. User Interface
This chapter describes the interface which NetROM presents to
human users. Users will generally interact with NetROM via
the NetROM console serial port, TELNET sessions, or direct
TCP connection to the NetROM console port. This chapter will
first describe command line processing performed by NetROM,
then the actual commands themselves.

NetROM Command Line Processing

Processes

NetROM accepts any number of single-line commands. If a
command is wider than the terminal on which it is entered
(which it might be in a TELNET session), the command will
wrap to the next line. There is no restriction on the length of
command line arguments. However, the maximum length of
the command line is 128 bytes, and the maximum number of
command line arguments is 16. There are five major facets to
NetROM's command line processing. These are processes,
terminal control characters, environment variables, history
substitution, and batch processing. •

NetROM uses a multitasking operating system to provide
services to the user. Each task running on NetROM is called a
"process." Processes allow NetROM to divide responsibility for
user services. Each terminal session, for example, is a separate
process. Processes have both a name and a process identifier,
or "pid," to identify them. More than one process may have the
same name, so pids are used in NetROM' s process control
commands. Current status for all NetROM processes may be
listed using the ps command, described below. Processes are
generally sleeping, ready, running, or yielding, but there are a

4-1

4-2

few other, generally transient, states which may be displayed
in the listing.

Each process has a controlling terminal and is capable of
reading commands from it and writing status to it. Generally a
single process is in charge of the controlling terminal and, if it
spawns child processes, controls them directly. It is also
possible to control processes using signals, which can be sent
from other controlling terminals. Table 4-1 lists signals
currently supported by NetROM' s operating system.

In most cases, signals sent to processes will cause them to be
killed, so this is not a good idea unless a process is known to be
hung. Users will use the SIGINT signal to kill child processes
of the issuing terminal. If the prpcess ignores this signal, the
SIGKILL signal will probably work. The SIGKILL signal
cannot be ignored, but the receiving process may not be able to
clean up its state before exiting, so SIGINT should be used in
preference to SIGKILL. Finally, the SIGHUP signal may be
used to restart certain "server daemons" running on NetROM,
such as snmpd. However, using SIGHUP in this way is not
currently implemented.

Other signals are used internally by the NetROM operating
system and should not be sent by NetROM users.

NetROM User's Manual

Number Name

1 SIGHUP

2 SIG INT

3 SIG KILL

4 SIGALRM

5 SIG PIPE

6 SI GAB RT

Table 4-1 NetROM Signal Summary

Meaning

The controlling terminal for a process has been
terminated. For example, a TELNET session ended after
spawning a ping process.

Interrupts (kills) another process. This is the standard
way to terminate processes asynchronously, and is
generated by the "intr" character on the controlling
terminal of a process.

This is a more fatal way of killing a process; it cannot be
caught, blocked, or ignored. It should be used with great
care.

This signal is used internally by N etROM to indicate a
timer event.

This signal is used internally by N etROM to indicate
that a write attempt occurred on a closed socket.

This signal is reserved, and causes the NetROM
operating system to hang.

Terminal Control Characters
NetROM considers interactive "console" sessions to be running
from terminals. Terminals may be attached to NetROM through
the NetROM console serial port, TELNET connections, or direct
TCP connections on the NetROM Command Port. Each
interactive NetROM session has several control characters
associated with it. These characters are considered "special" by
the command interpreter and are used for command-line
editing and process control.

The "erase" character erases the character to the left of the
cursor from the input stream, if there is one present. The ''kill"
character erases all characters in the input stream and starts
a new line. The ''werase" character erases the white-space-

4-3

•

4.4

delimited ((word" to the left of the cursor if one is present. The
"intr" character sends a SIGINT signal to all child processes of
the current session. Child processes might be ping processes,
file downloads, or any other process started as a result of a
command on that terminal. NOTE that the ''intr'' character is
treated specially during target console sessions: if the console
path is serial and an "intr'' is detected, NetROM will send a
BREAK to the target. The "eof' (end-of-file) character is used to
indicate that interactive input for a given command, such as a
target console, is complete. The "eof' character will not
terminate a terminal session. Table 4-2 summarizes the
terminal control characters.

Control characters may be displayed or set using the stty
command, described below. Control characters may also be set
for all subsequent terminal sessions using the same command.
This is useful for establishing default control characters at
NetROM reset.

Table 4-2 Tenninal Control Characters

Name Value

eof

erase

intr

kill

werase

Description

End of file.

Erase the character to the left of the
cursor.

Send a SIGINT signal to all child
processes. (See also ''tgtcons" on
page 4-28.)

Erase the input line.

Erase the "word" to the left of the
cursor.

NetROM User's Manual

Environment Variables

Variable Name

"batch path"

"consolepath"

"debugpath"

"debugport"

"dprbase"

"file type"

"fillpattern"

"groupaddr"

"groupwrite"

"host"

''loadfile"

Environment variables affect all terminal sessions running on
N etROM. All environment variables are predefined; they are
primarily concerned with configuring emulation and with
establishing communications paths between the target and the
host system. NetROM environment variables are summarized
in Table 4-3. They are described in more detail under the setenv
and printenv commands, below.

Table 4-3 NetROM Environment Variables

Description

The default directory on NetROM' s TFTP file server to search
for batch files.

A keyword (serial, readwrite, or readaddr) specifying the
console communication path between NetROM and the target
system.

A keyword (serial, readwrite, or readaddr) specifying the
debug communication path between NetROM and the target
system.

Set the TCP/UDP port number for host-based debuggers.

The base address in emulation pod 0 for mapping dualport
RAM.

The file format expected of the download file.

User-specified byte pattern to fill emulation memory.

The target's start address of the default podgroup.

A keyword (readonly or readwrite) indicating whether to
enable target writes to emulation memory.

The IP address of the TFTPfile server used for image and
batch downloads.

The default file to download into the default pod group.

4-5

•

Variable Name

"loadpath"

"podgroup"

"podorder"

"romcount''

"romtype"

"verify"

"wordsize"

"writemode"

History Substitution

Table 4-3 NetROM Environment Variables (Continued)

Description

The default path for downloading "loadfile."

The group number of the default pod group.

The pod-to-byte mapping of emulation pods in the default
pod group.

The number of bytes participating in emulation as part of the
default pod group.

The type of ROM being emulated by the default pod group.

A keyword (on or off) specifying whether downloads are to be
verified.

The size in bits of the ROM word being emulated by the
default pod group.

Configures emulation memory to emulate flash ROM or
static RAM.

Each NetROM terminal session remembers commands it has
been given. Remembered commands are said to be in the
NetROM "history buffer." Currently the history buffer for each
session is 16 commands deep. Commands in the history buffer
may be repeated and/or edited in a style similar to the UNIX
csh command interpreter.

>- To modify and repeat the most recent command

"aaa"bbb Replaces the string aaa with string bbb in the
most recent command.

4-6 NetROM User's Manual

Batch Processing

>- To repeat a recent command

!! Repeats the most recent command.

!nn Repeats command number nn.

!aaa Repeats the command beginning with the
string aaa.

!?aaa Repeats the command containing the string
aaa.

>- To add a string to the end of a previous command and
repeat it

!!aaa

Inn aaa

!aaa bbb

!?aaa bbb

Adds string aaa and repeat the most recent
command.

Adds string aaa and repeat command number
nn.

Adds string bbb and repeat the command
beginning with the string aaa.

Adds string bbb and repeat the command
containing the string aaa.

NetROM allows users to create "batch files" on the host system.
Batch files are simply multiple NetROM commands collected
into a file. The file should be delimited by begin and end
statements, and may have comments (identified by a pound
sign(#) as the first character on the line). Note, however, that
comments must be on lines by themselves. Batch files should
consist only of ASCII text, and should not be greater than 2048
bytes in size.

Batch files can be invoked on the command line using the batch
command; see Table 4-4. When it processes a batch command,
NetROM downloads the file from its TFTP server (given by the

4-7

•

''host" environment variable) and executed one line at a time.
The batch file's path on the server can be given explicitly on the
command line or inferred from the "batchpath" environment
variable. An example batch file is shown below:

begin
download a new image and reset the target
newimage
tgtreset
end

If this file were called "new" and were located in the batch path
directory, executing the command

NetROM> batch new

would execute first the newimage command and then the
tgtreset command, in order. The comment is parsed and
ignored. Commands executed within the batch file will be
entered into NetROM' s history buffer. Batch files may call other
batch files.

NetROM Commands

4-8

Commands can be issued to NetROM through a TELNET
connection, NetROM's Console Serial Port, or via a network
connection to the NetROM Control Port. This section describes
all of the commands available to the NetROM user interface.
Commands are grouped in functional sections, such as network
interface control, target download and control, and process
control. Table 4-4 summarizes commands alphabetically and
gives their types. Composite commands, such as set, di, setenv,
and printenv are treated in separate sections

NetROM User's Manual

Table4-4 NetROM Command Summary

Command Type Description

alias Miscellaneous Creates or deletes command "nicknames."

arp Netw-orkinterface Displays or modifies the contents of the
NetROM Address Resolution Table.

batch Miscellaneous Downloads and executes a batch file
containing NetROM commands.

di Set and display Displays various "generic" NetROM state
variables, statistics, and target statistics
information.

fill Target interface Fills emulation memory with a known
pattern.

help Miscellaneous Accesses NetROM on-line help facility.

history Miscellaneous Displays the contents of the history buffer
for the current NetROM session.

ifconfig N etw-ork interface Displays or configures a netw-ork interface.

kill Process control Sends a signal from one process running on
NetROM to any other process . • ledmap Miscellaneous Maps NetROM's target status signals to
LEDs on the back panel.

loadmodule Miscellaneous Loads the RAM-based optional software.

logout Miscellaneous Terminates a login session.

netstat Netw-orkinterface Displays netw-ork statistics.

newimage Target interface Downloads a file into emulation memory.

ping N etw-ork interface Determines whether remote hosts are up
and accessible.

4-9

Command

printenv

ps

reset

romset

route

serialcons

set

setenv

slip

stty

tgtcons

tgtreset

4-10

Table 4-4 NetROM Command Summary (Continued)

Type Description

Environment variable Displays the current values ofNetROM's
environment variables.

Process control Displays the current status of processes
running on NetROM.

Miscellaneous Resets NetROM hardware and software.

ROM set Manipulates large ROM address spaces or
word sizes greater than 32 bits.

Network interface Manipulates information in NetROM's IP
routing table.

Target interface Creates a "console" on a non-target system
using NetROM's target serial port.

Set and display Sets or modifies various NetROM state
variables.

Environment variable Modifies the value of environment variables.

Network interface Attaches or detaches a serial line to the
Serial Line IP interface.

Miscellaneous Displays or modifies characteristics of
NetROM terminal sessions.

Target interface Establishes a console session with the target
system.

Target interface Resets the target processor.

NetROM User's Manual

For example the description:

stty [-d] { erase I kill I werase I intr I eof} setting

describes the stty command, for which the '-d' argument is
optional, but which requires one of the keywords erase, kill,
werase, intr, or eoffollowed by an argument, setting. Since
setting is not a keyword, it will presumably be described in the
text of the command documentation.

Commands which have multiple formulations will have each
version appear on a line by itself. For example, the description:

arp dump
a:rp del host_address
a:rp set host_address hardware_address

indicates that the arp command can be invoked in any of the
three ways shown.

When describing P addresses, NetROM commands use standard
Internet "dotted-decimal" notation. An example of such an
address is "192.0.0.210"; this corresponds to the hexadecimal
number OxCOOOOOD2, but is expressed with each octet (that is,
byte) expressed as a decimal number separated from the next
by a period.

NetROM uses a similar format to describe Ethernet hardware
addresses. However, there are three important differences:

o Ethernet addresses are 6 octets long, not 4.
o Octets are separated by colons.
o Octets are expressed in hexadecimal.

For example, the address Ox0002F4000024 is expressed as
"00:02:f4:00:00:24." NetROM is not case sensitive in address
representation. We will refer to this as "colon-separated
hexadecimal" format.

4-11

•

Network Interface Commands

4-12

NetROM has several commands which control its various
network interfaces. These include arp, ifconfig, netstat,ping,
route, and slip. Most of these commands are similar to UNIX
commands of the same name. They are generally used by
system administrators to configure NetROM for operation in
particularly complex environments, or to verify that it is
interacting with other network hosts in the expected way.

The function of some of these commands, such as ifconfig, are
performed automatically during the address resolution phase
ofNetROM's boot sequence. Others, such as route, arp, or slip,
can be added to the NetROM startup file. This also causes them
to be invoked automatically at NetROM boot time.

NetROM User's Manual

arp
Used to display and/or modify the contents ofNetROM's
Address Resolution Table.

Synopsis
arp dump
azp del host_address
azp set host_address hardware_address

Description
When IP is run over Ethernet, hosts on the network must be
able to determine the Ethernet address of hosts with a given IP
address. This mapping is provided by ARP (Address Resolution
Protocol). NetROM maintains an Address Resolution Table, or
ARP table, which contains mapping information about hosts
NetROM has "seen" on the network.

The arp command displays or modifies the contents of
NetROM's ARP table. It can be used to dump the table, add new
entries, or delete current entries. All host addresses must be in
dotted-decimal notation, and hardware addresses are in colon­
separated hexadecimal format.

4-13

•

ifconfig

4-14

Displays or modifies the address, netmask, broadcast address,
or operating state of one of NetROM's interfaces.

Synopsis
ifconfig
ifconfig ifname [ifadd.ress] [netmask maskval] [
broadcast broadaddr]
if config ifname ifaddress destaddr
if config ifname { up I down }

Description
The ifconfig command can be used to configure either of
NetROM' s two network interfaces: the Ethernet interface and
the SLIP interface. The SLIP (Serial Link IP) interface runs
through the NetROM console serial port, and can be used to
connect NetROM to the host computer when an RS-232
connection is not desired. Generally, the NetROM console port
is not used, or is used to connect to a "dumb" terminal. The
ifname parameter which refers to the Ethernet interface is
''leO," and the one referring to the SLIP interface is "slO." In
addition, NetROM has a "loop back interface", which does not
connect to external hardware. This can be used to verify that
NetROM' s TCP/IP protocol stack is working properly by sending
"ping" packets to NetROM' s IP address, but most users can
safely ignore it. This interface's i:fname is "loO."

The :first formulation of the ifconfig command is used to display
state information about all ofNetROM's network interfaces.
Information displayed will include IP address, netmask,
broadcast address, and whether the interface is up or down.
Input, output, and error statistics will also be displayed for
each interface.

The second formulation is used to set IP parameters for a given
interface. It is possible to set the IP address, netmask, or
broadcast address, or more than one of these addresses, using
this form of the command.

NetROM User's Manual

Note

The third formulation is used to configure the point-to-point
SLIP link. Since SLIP is not a broadcast protocol, IP needs to
know the address of the host at the other end of the serial line.

The final formulation of the command is used to enable or
disable network interfaces. This command should be used with
care, since it is possible to disable the interface on which the
command was issued!

All addresses, ifaddress, destaddr, mask.val, and
broadaddr, should be given in dotted-decimal format.
Although this command can be used to setNetROM's Ethernet
address manually, it is simpler and probably more convenient
to use RARP or BOOTP to perform address resolution when
NetROM is reset.

4·15

•

netstat

4-16

Displays network statistics and routing information.

Synopsis
netstat [tcp I udp I ip icmp I routes

Description
The netstat command, when issued without arguments,
displays information aboutNetROM's TCP and UDP
"connections." This consists of the local and remote addresses
ofbound sockets, and for TCP, the current state of the
connection. Usually the TCP state is either LISTEN or
ESTABLISHED. Addresses are displayed in a special five-field
dotted-decimal format. The first four fields are the standard IP
address, and the fifth field is the decimal representation of the
local or remote port number. Together, IP address and port
number completely specify a UDP or TCP connection (note that
UDP "connections" consist of restrictions imposed upon which
hosts may communicate with a socket). Either the IP address
or the port part of the 5-tuple may be wildcarded, and if this is
the case, is represented with an asterisk. The "Recv-Q" and
"Send-Q" denote the number of bytes awaiting transmission on
the connection, or awaiting processing by the NetROM process
using TCP or UDP.

The netstat command also allows the NetROM user to monitor
the activity level and type of four protocols in the TCP/IP
protocol suite. These protocols are TCP, UDP, IP, and ICMP. A
complete description of protocol statistics is beyond the scope of
this document. However, they are generally either self­
explanatory or only useful to experienced TCP/IP network
administrators.

Finally netstat enables the user to display NetROM's routing
table. This contains information used by NetROM to access IP
hosts which are not on the local Ethernet. The routing table
contains information about "routers," which are special
network hosts that forward packets to computers with non­
local addresses.

NetROM User's Manual

ping
Sends ICMP ECHO _REQUEST packets to network hosts.

Synopsis
ping host_address size [count]]

Description
The ping command uses ICMP (Internet Control Message
Protocol) to determine whether remote hosts are up and
accessible. ICMP is a mandatory part of IP, and a host
receiving an ECHO_REQUEST packet should respond with an
ECHO _RESPONSE packet

The ping command actually creates a process which issues echo
request packets. Upon receipt of a response packet, The ping
process will print out the ICMP sequence number of the
response, the host it was received from, and the size of the
packet. The process will continue to send packets until it is
killed with a SIGINT signal, unless a count value was specified
on the command line. This signal can be issued from the
controlling terminal using the "intr" character, usually AC.
Upon being killed, the ping process will print the number of
echo requests it has sent, the number of responses it has
received, and the ratio of the two expressed as a percentage
lost.

The default ICMP datagram size is 64 bytes, but this value can
be overridden on the command line. Note that the ICMP
datagram size is not the same thing as the IP datagram size, or
as the Ethernet packet size. If a count value is specified on the
command, the ping process will send that many packets and
then quit.

The ping process does not use keyboard input, so other
commands may be entered while ping is running.

4.17

•

route

Note ~

4-18

Manipulates information in NetROM's routing table.

Synopsis
route add destination gateway [metric
route add default gateway [metric
route delete destination gateway

Description
The routing table is used by NetROM for determining the path
to nodes on networks to which NetROM is not directly attached.
This might include hosts in another building, or in another
country. The destination parameter is the IP address of the
remote host with which NetROM will be communicating. The
gateway parameter is the IP address of an intermediate host
which will be responsible for forwarding packets sent from
NetROM onward in their path to the remote host. The metric
parameter is an indication of how "hard" it is to reach the
destination via the gateway. Generally routing metrics are
interpreted as a ''hop count," which is the number of gateways
between NetROM and the destination. All IP addresses should
be given in standard dotted-decimal notation.

It is possible to assign NetROM a default route; this is the
address of a computer on the local subnetwork to which
NetROM will send packets destined for destinations on
unknown networks. The default route can be set by invoking
the route command with the default keyword, or by specifying
a destination with IP address "0.0.0.0."

On TCP/IP networks, there may be more than one route to a
given destination, so both the destination and the gateway are
required to fully specify a route. NetROM's current routing
table can be displayed using the n.etstat command.

NetROM User's Manual

slip
Attaches or detaches a serial line to the Serial Line IP (SLIP)
interface. The SLIP interface may be attached to either serial
port of NetROM.

Synopsis
slip attach port
slip detach port

Description
The slip attach command designates which serial port the SLIP
connection uses as its communication path. The port
parameter may be either a 1 or a 0. A 1 indicates the SLIP
connection should run over the remote port, while a 0 indicates
the SLIP connection should run over the console port. When
trying to establish a SLIP link with another computer the first
step (after all cabling has been performed) is to issue the slip
attach command.

The slip detach command removes a port from use by the SLIP
interface. It should be entered when the SLIP connection is no
longer needed.

4-19

•

Target Interface Commands

4-20

NetROM' s target interface commands allow the NetROM user to
download images to emulation memory, verify the images if
desired, establish "consoles" with the target, and reset the
target. These commands include newimage, serialcons, tgtcons,
and tgtreset.

NetROM User's Manual

fill
Allows NetROM users to initialize emulation memory to
arbitrary values.

Synopsis
fill value [podgroup I dpmem]

Description
This command fills the emulation space of one ofNetROM's pod
groups with a known value. This value is specified as an 8-bit
hexadecimal number given by the value parameter. The
optional podgroup parameter indicates which pod group's
emulation memory should be filled. If omitted, the default
podgroup is assumed. If the optional dpmem keyword is used
instead of a pod group number, NetROM's dualport RAM (used
for passing messages to the target system) will be filled with
the value pattern instead of the whole pod default group .

4-21

•

newimage

4-22

Downloads a file into emulation memory.

Synopsis
newimage [filename] [type={binazyl srecordl intelhex}
] [base=baseaddr] [offset=offset] [group=podgroup
] [fi11pattern=fillvalue] [host=ipaddr]

Description
The newimage command allows the NetROM user to download,
with TFTP, an image into ROM emulation memory. The
command uses the NetROM environment variables to provide
default values for all of the optional parameters listed above.
However, the environment variables may be overridden, if
desired. Note that there is no white space surrounding the
equals signs when overriding defaults.

NetROM resolves address fields in Intel Hex and Motorola S­
Record files using the base address of the destination pod group
as a reference. The base address will be subtracted from the
address given in the hex file when determining where in
emulation memory to load a record. For example, if the base
address of the target pod group is Ox40000 and a record's
address field indicates address Ox40010, the record's data will
be loaded at offset OxlO into emulation memory. The base
address for the default pod group is given by the "groupaddr"
environment variable. If desired, this value can be overridden
using the baseaddr parameter. Note that since binary files do
not have an address field, they are always loaded at the
beginning of emulation memory (unless the offset parameter
is used, as described below).

It is possible to have an offset added to the destination address
of a record, after it has been parsed and adjusted for the pod
group's base. For example, if a target pod group's base address
is 0 and records in a file are addressed beginning at 0, but the
file is really located for address OxlOO, setting the offset
parameter to OxlOO will cause OxlOO to be added to the
addresses of all records. This parameter can be used to control
the load address of binary files, since they do not have address
fields.

NetROM User's Manual

Attempts to program addresses outside of pod group emulation
space will simply be ignored, but a warning message will be
displayed after the download is complete.

The fillvalue parameter overrides the environment
"fillpattern" variable. It may be set to any 8-bit value, or to
none. If a fill pattern is specified, the entire target podgroup's
emulation memory will be set to that value prior to
downloading. If multiple image files are downloaded into
emulation memory, it is important to set the fill pattern to none
after the first download.

When issued with no arguments, the newimage command
performs the following actions: it concatenates the "loadpath"
and ''loadfile" environment variables to get a root-specific path
to the file to be downloaded. It uses the "filetype" environment
variable to determine whether to expect a binary, Intel Hex, or
Motorola S-Record file. The "host" variable determines the
address of the TFTP server for the Ethernet, and the
"podgroup" variable determines which of the four possible
podgroups will be downloaded. NetROM then contacts the
server, requests the file, and downloads it into emulation
memory, parsing the file format as necessary. Note that the
pod group and server address may be overridden using the
podgroup and ipaddr parameters, respectively.

The newimage command disables target access to all emulation •
pods for the duration of the download. If emulation was on,
NetROM will turn it off for the download and back on when the
download is complete. It may be necessary to reset the target
with the tgtreset command after a download.

When specifying the file to be downloaded, the file is assumed
to be in the ''loadpath" directory unless its name begins with a
'f. The 'f character denotes a root-specific filename and
overrides the "loadpath" variable.

Pod groups are specified by number, not by name. Server
addresses are denoted using standard dotted-decimal notation.
Filetype is given as ''binary," "intelhex," or "srecord," exactly as
in the environment variable.

4-23

4-24

The newimage command may be issued as part of a batch file
(see the batch command) if desired.

Example
Assume we are downloading two files into the default pod
group's emulation memory. The "fillpattem" environment
variable is none, the "filetype" variable is srecord, and the
"groupaddr" variable is Ox40000. The first file is located at
Ox40000 and the second file is a binary file which goes at
Ox40100.

NetROM> newimage filel.hex fillpattern=ff
NetROM> newimage file2.bin offset=lOO type=binary

These two commands load the S-Record file first, then the
binary file. Note that the binary file overlays any data that was
in the S-Record file starting at address OxlOO. Prior to loading
the first file, all of the default pod group's memory was loaded
with OxFF.

See Also
"verify'' environment variable, page 4-123
"groupaddr" environment variable, page 4-111
"fillpattem" environment variable, page 4-110
tgtreset command, page 4-30
di pgconfig command, page 4-67
set emulate off command, page 4-39
set emulate on command, page 4-39

NetROM User's Manual

Note ~
A user may experience problems resulting from the target
system's control of FLASH ROM write-enable lines. Some
target systems may allow the Write Enable signal to their
ROM sockets to "float." If a true "ROM" were plugged into the
socket this would not be an issue, since the ROM ignores that
signal. However, NetROM allows writes to emulation memory,
so a floating write line can cause random changes to emulation
memory. To disable the emulation pod's write signal, set the
groupwrite environment variable to "readonly," or specify a
read-only pod group if using the set pgconfig command .

4-25

•

serial cons

4-26

Allows NetROM users to create a "console" to a non-target
system in environments wherein neither the debug path nor
the console path use NetROM' s target serial port.

Synopsis
serial cons

Description
The serialcons command allows NetROM users to make use of
NetROM's target serial port, even when the target itself does
not use it. To see how this may be useful, consider that some
target systems may be plug-in boards which are used in some
larger system. An example of this might be a board that does I/
0 for a standalone computer such as a terminal concentrator.
The target board in this case might not have a serial port of its
own, so during development the engineer using NetROM might
use the "readwrite" or "readaddr" console and debug paths.
This would cause the tgtcons command, and any remote
debuggers being run, to use one of the dualport RAM mailbox
protocols to communicate with the target. However, the
target's "host" computer might have a serial port, and in this
case the serialcons command would allow the engineer to use
NetROM to communicate with both the host system and the
target!

The serialcons command will not work unless neither the
"debugpath" nor the "consolepath" environment variables is set
to "serial." Remember that changes in these environment
variables do not take effect until the target system is reset. If
there is a conflict with the environment variables, an error
message will be printed. In environments in which a serial port
will be used to communicate with the target, the tgtcons
command should be used instead.

To exit from a serialcons session, use the controlling terminal's
"eof' character. The default eof character is AD. The stty
command can be used to display and set the eof character.

NetROM User's Manual

See Also
tgtcons command, page 4-28
"debugpath" environment variable, page 4-106
"consolepath" environment variable, page 4-104
stty command, page 4-96

•

4-27

tgtcons

4-28

Establishes a console session with the target system.

Synopsis
tgtcons

Description
The tgtcons command allows NetR.OM users to establish a
console session with the target system, regardless of the
mechanism used to implement the console path. The console
path, which runs between the NetR.OM user on the host system
and the target system to which NetR.OM is attached, has two
segments. The first segment connects the host system and
NetR.OM. This is generally a TELNET terminal session on
NetR.OM but can be a "dumb" terminal connected to NetR.OM' s
console serial port, or a direct TCP connection to NetR.OM' s user
interface port. The second segment is between NetR.OM and the
target. This can be either an RS-232 serial connection using
NetR.OM' s target serial port, or one of two emulation RAM
mailbox protocols. These protocols are based on the target's
ability to write emulation memory, as well as read it. The
console path between NetR.OM and target system is selected by
the "consolepath" environment variable.

When the tgtcons command is issued, NetR.OM begins to
forward keystrokes received from the host side of the
connection to the target, and data received from the target side
to the host. The effect is the NetR.OM terminal session under
which the command was issued becomes a session directly
between the host system and target.

To exit from a tgtcons session, use the controlling terminal's
"eof' character. The default "eof' character is D. If the console
path uses the serial port, and since the default "eof' character
may be "special" for the target, it is possible to re-map the "eof'
character to another control character. The stty command can
be used to display and set the "eof' character.

It is possible to send RS-232 BREAKs to the target. NetR.OM
monitors tgtcons sessions for "intr" characters, and if the
console path uses the serial port, it sends a BREAK to the

NetROM User's Manual

target. lfNetROM's "intr" character is used by the target,
simply change it to something else using the stty command, as
explained for the "of' character, above.

Operation Change
In NetROM versions 1.2. 7 and earlier, this command sent a
"BREAK" through the target serial port on the invocation of the
command. For versions after 1.2.7, the "BREAK" has been
eliminated.

See Also
tgtcons command, page 4-28
11 debugpath" environment variable, page 4-106
"consolepath" environment variable, page 4-104
stty command, page 4-96

4-29

•

tgtreset

4-30

Resets the target processor.

Synopsis
tgtreset

Description
When the tgtreset command is issued, NetROM performs the
following actions:

1. It applies the reset pulse to the default reset command signal
pinout (command signal 0).

2. It locks the target out of emulation memory. This has the
same effect as the set emulate off command, and will cause
the target processor to read garbage from emulation
memory. This step is necessary to allow NetROM to reset the
contents of emulation memory mailboxes without
interference from the target.

3. NetROM resets emulation memory mailboxes and pointers, if
they are being used for communication with the target.

4. NetROM unlocks target emulation memory. This has the
same effect as the set emulate on command.

5. NetROM deasserts the reset pulse to the target.

The tgtreset command must be invoked after changing the
environment "consolepath" or "debugpath" variables. This
synchronizes the change of communication protocols between
the target and NetROM with both parties involved. Note that
tgtcons sessions do not need to be restarted after resets, even if
the target-to-NetROM communications paths have been
changed.

See Also
"tgtcons" command, page 4-28
"consolepath" environment variable, page 4-104
"debugpath" environment variable, page 4-106
set emulate off command, page 4-39
set emulate on command, page 4-39

NetROM User's Manual

Process Control Commands
The process control commands allow NetROM users to
determine the state of processes running on NetROM, and to
influence their execution using signals. These commands
include kill and ps.

4-31

•

kill

4-32

Sends a signal to any process running on NetROM.

Synopsis
kill signal pid

Description
The kill command allows a process to send a signal to any other
process, even one running under another controlling terminal.

The signal parameter is the signal number to be sent to the
process. Processes may block or ignore any signal other than
the SIGKILL signal. Valid signal values and their meanings
are shown in Table 4-1.

The process parameter is the process id to which the signal is
sent. Process ids may be obtained via the ps command.

NetROM User's Manual

ps
Displays the current status of processes running on NetROM.

Synopsis
ps [-s I -p -i

Description
Process status information is useful for determining whether
processes are running normally. The ps command allows the
user to determine whether or not processes are waking up
periodically, what their current state is, what is the process
group to which they belong (a process group is a set of processes
sharing a single controlling terminal), and other information
not generally useful to most users.

Without any arguments, ps displays the process' pid, name,
current status, current number of wakeups, stack usage, and,
ifthe process is sleeping, what its wakeup condition is. The
other arguments are interpreted as follows:

-s prints a bit more information about the stack space
allocated to each process, and about its process
group.

-p

-i

prints a bit more information about the process
itself. This is not useful to most users .

prints information about signals pending, blocked,
and ignored on each process. It also displays the
process group information.

Most users will use ps simply to determine the process id of
processes they wish to kill; see ''kill" on page 4-32. Processes
will generally be sleeping unless they have work to do, so a
process' wakeup count is a good way to determine its activity
level. Some processes, such as the kernel, are constantly active
so they are always in a yielding or a ready state. The "Kernel"
process is special; its wakeup count is always zero despite its
being constantly active.

4-33

•

Set Commands

Argument

?

cons echo

debugecho

dplocation

emulate

help

loadecho

4-34

NetROM maintains two kinds of state variables, each accessed
by its own set of commands. NetROM environment variables
have two important characteristics: they are independent of
processes and they are frequently accessed. Being independent
of processes means that they affect all processes, regardless of
which process changes them. Being frequently accessed means
that NetROM users want to display or change them relatively
frequently.

The other kind of state variable, generic variables, are a catch­
all for variables which are not environment variables. These
variables are either process-specific or rarely used. The
distinction between environment variables and generic
variables is rather hazy, but will begin to make sense after you
begin using NetROM.

The set command sets or modifies various generic NetROM
state variables. State variables, which can be set with the set
command, can be displayed with the di command. Table 4-5
summarizes the set command.

Table 4-5 Arguments to the set Command

Description

Displays arguments to the set command.

Enables or disables echoing console data passed to the target system.

Enables or disables echoing debug data passed to the target system.

Sets the location of the dualport pod for a large ROM.

Enables or disables target system access to emulation memory.

Displays arguments to the set command.

Enables or disables debug information on downloads.

NetROM User's Manual

Argument

pgconfig

pgname

podmem

prompt

raconfig

rawrites

romupgrade

tgtctl

udpsrcmode

username

Table 4-5 Arguments to the set Command (Continued)

Description

Configures a pod group.

Assigns a name to a pod group.

Sets values in emulation memory.

Sets the session prompt.

The number of target accesses expected when reading a read-address
byte.

Enable or disable target system requests that NetROM set a byte.

Installs a new version of the NetROM program.

Turns on or off command signals to the target system.

Set the state of the UDP source address variable.

Enable an advisory lock on the NetROM unit.

4-35

•

setconsecho

4-36

Enables or disables echoing of console path data on the NetROM
console port.

Synopsis
set consecho { on I off }

Description
Console echoing is meant to be used as a debug tool in cases
where the host system is having trouble with its console path
connection to the target. When console echoing is on, console
data which is received from the target is echoed to NetROM's
console port before being forwarded to the host system, and
console data received from the host system is echoed to
NetROM' s console port before being forwarded to the target. If
multiple target console sessions are active, data received from
any of their host connections is echoed, but data received from
the target is only echoed once.

In order to use console echoing, it is necessary to have a "dumb"
terminal connected to NetROM' s console serial port. This
terminal will be able to issue commands to NetROM, just as any
TELNET session can. If your terminal does not seem to be
communicating with NetROM, you may need a null modem.

If no terminal is connected to the console port and console
echoing is turned on, nothing will appear to happen. However,
data will still be echoed out the port; this may cause a slight
reduction in response time on the console path as perceived by
the host system and the target.

Console echo can be enabled or disabled from any NetROM
terminal session.

See Also
di consecho command, page 4-56

NetROM User's Manual

set debugecho
Enables or disables echoing of debug path data on the NetROM
console port.

Synopsis
set debugecho { on I off

Description
Debug echoing is a debug tool for cases in which the host
system has trouble with its debug path connection to the
target. When debug echoing is on, debug data received from the
target is echoed to the console session that issued the
set debugecho command before it is forwarded to the host
system, and debug data received from the host system is echoed
to NetROM' s console port before it is forwarded to the target. If
the environment variable "debugpath=serial" is set, data is
displayed only on the NetROM console serial port.

Debug echo can be enabled or disabled from any NetROM
terminal session.

See Also
di debugecho command, page 4-37

4-37

•

set dplocation

4-38

Indicates which NetROM pod will contain the dualport RAM on
''large" ROMs.

Synopsis
set dplocation { high I low }

Description
This command controls where NetROM puts dualport RAM on
''large" ROMs. A "large" ROM is one which has more than 256
Kwords; the 27 c040 is an example of such a device. Large
ROMs are implemented using an active pod cable which
combines two ofNetROM's emulation pods into one ROM plug.
If the NetROM pods are used sequentially to create a 'longer'
ROM, then NetROM pod 0 (and dualport RAM) can be in high
memory or low memory on the ROM.

This variable should be set to agree with a jumper on the active
pod. This variable controls where data is loaded into emulation
memory on long ROMs, so it may be necessary to redownload
after changing it.

See Also
di dplocation command, page 4-58

NetROM User's Manual

set emulate
Enables or disables target access to emulation memory on all
pods.

Synopsis
set emulate {on I off }

Description
Due to the asynchronous nature of target system access to
emulation memory, it is sometimes necessary to disable target
access entirely. Target access is asynchronous, because ROM
devices do not use a clock input. The target asserts an address
on the ROM address lines, waits a certain number of clock
cycles for data to stabilize on the data lines, and then samples
the data. If the target tries to access emulation memory while
NetROM is accessing it, the target will read garbage. Likewise,
ifthe target is in the process of accessing emulation memory,
NetROM accesses may be held off indefinitely.

While NetROM does not generally access emulation memory, it
may occasionally want to do so. For example, it may need to
download a new emulation image or display the contents of
emulation memory. Some NetROM commands, such as di
podmem, require that the user explicitly disable emulation.
Others, such as newimage, will automatically disable
emulation (and re-enable it when done).

The set emulate command allows the user to explicitly enable
or disable target access to emulation memory.

If the target system is connected to a writable pod group,
powering the target on or off with emulation on may corrupt
the emulation memory. This is due to possible noise on the
target's write line(s).

See Also
di emulate command, page 4-61

4-39

•

set pgconfig

4-40

Completely configures a pod group for emulation.

Synopsis
set pgconfig groupnum romtype tgtaddr podorder
{ readonly I readwrite}

Description
The set pgconfig command is used to completely define a
podgroup prior to downloading it with an emulation image.
This command is probably most useful in environments in
which NetROM is emulating more than one group of target
ROMs. Because it is simpler and generally more convenient to
configure pod groups using environment variables than with
the set pgconfig command.

An example of a multiple ROM-group target would be one in
which one set ofROMs holds an executable image and another
a graphics table. The engineer using NetROM would then
choose the most-often-updated group of ROMs and configure it
with environment variables, and configure the other group
with the set pgconfig command.

The groupnum parameter indicates which pod group is being
configured. If the "special" pod group named by the "podgroup"
environment variable is being configured, NetROM will change
environment variables to agree with the command-line
specification for this command. Refer to "Pods and Pod Groups"
on page 2-2.

The romtype parameter is the name of the ROM type being
emulated. Valid ROM types are given by Table 4-11.

The tgtaddr parameter is the 32-bit base address of the pod
group as seen by the target. This value is used by the di
podmem command to display emulation memory with the same
addresses as are used in a map file produced by a compiler.

The podorder parameter specifies which emulation pods are
to be used in the group, and in what order they emulate target
bytes. The format for podorder parameters is described more

NetROM User's Manual

fully in "podorder" on page 4-117. If the specification of pods in
the podorder parameter conflicts with pods in use by the pod
group named by the "podgroup" environment variable, the
command will fail with an error message.

Some target systems are unable to write to their ROM space
only because the system designer omitted providing a write
signal to the ROM memory. This is a logical thing to do,
because it is not possible to write a ROM. Some of these target
systems may be able to write ROM emulation memory on
NetROM if a write signal were provided. Such target systems
may use NetROM's external write line to connect to the
processor. The readonly and readwrite keywords indicate
whether or not the target system should be allowed to write
emulation memory for a given pod group, using the external
write line.

Examples
set pgconfig O 27c020 bfcOOOOO 0:1:3:2 readonly
Configures pod group 0 to emulate 27 c020 ROMs. The pod
group starts at target address OxBFCOOOOO, and emulates 32-
bit words. Note that pod 0 emulates byte 0 of the word, and that
pod 1 emulates byte 1, but that pod 3 emulates byte 2 and pod
2 emulates byte 3. The target system will not be allowed to
write emulation memory

set pgconfig O 27c010 O 1:0-3:2 readwrite •
Configures pod group 0 to emulate 27 c010 ROMs. The pod ~
group starts at target address OxOOOOOOOO, and emulates 16-
bit words. Pods 0 and 1 emulate one set of words, and pods 2
and 3 emulate another, which begins where the words
emulated by pods 0 and 1 leave off. Note that pods 0 and 2
emulate byte 0 of the word, and that pods 1and3 emulate byte
1. The target system will be allowed to write emulation
memory

set pgconfig 0 27c010 O 1-0-2-3 readonly
Configures pod group 0 to emulate 27 c010 ROMs. The pod
group starts at target address OxOOOOOOOO and emulates 8-bit
words. Since 27c010 ROMs have 128 Kilobytes, each pod
emulates 128 Kwords, where each word is eight bits wide. Note

4-41

4-42

that the pod group as a whole emulates 512K of consecutive
words, where pod 1 emulates the first 128K, pod 0 the second,
pod 2 the third, and pod 3 the fourth. The target system will not
be allowed to write emulation memory using the external write
line.

See Also
"podgroup" environment variable, page 4-116
"romtype" environment variable, page 4-120
"groupaddr" environment variable, page 4-111
"romcount" environment variable, page 4-119
"wordsize" environment variable, page 4-126
"podorder" environment variable, page 4-117
di pgconfig command, page 4-67
di podmem command, page 4-68
set pgname command, page 4-43
setenv command, page 4-101
printenv command, page 4-102

NetROM User's Manual

setpgname
Assigns a name to a pod group.

Synopsis
set pgname namestring [podgroup J

Description
The set pgname command assigns a name to a pod group. This
pod group must have either been configured using environment
variables or with the set pgconfig command. Pod group names
are optional and exist for the convenience of the NetROM user.
They are essentially mnemonics to help the NetROM user
remember what the pod group is emulating, if more than one
pod group is in use.

The namestring parameter is the name being assigned to the
podgroup. The podgroup to which the name is assigned is
defaulted to that named by the "podgroup" environment
variable. This default can be overridden by the podgroup
parameter.

The set pgname command will not work on pod groups which
have not yet been configured.

See Also
set pgconfig command, page 4-40
di pgconfig command, page 4-67

4-43

•

setpodmem

4-44

Allows NetROM users to selectively set values in emulation
memory.

Synopsis
set podmem address value

Description
The set podmem command allows NetROM users to set values
in emulation memory. The address parameter determines
where to set the value, and value is the 8-bit quantity being
written to memory. NetROM uses the address parameter to
determine which pod group will be affected by the write
operation.

NetROM User's Manual

set prompt
Changes the prompt for the NetROM terminal session which
issued it.

Synopsis
set prol!pt [-d] promptstrin.g

Description
The set prompt command changes the prompt for the current
NetROM terminal session to the value given by promptstring.
The new prompt cannot contain any white space; that is, it
must a single "word." If the optional-d flag is used, NetROM
will set the default prompt for all subsequent terminal sessions
as well as the prompt for the current terminal session .

4-45

•

set raconfig

4-46

Used to configure the number of accesses NetROM will expect
that the target make in the course of reading a single byte of
data from the interrupt area in dualport RAM.

Synopsis
set raconfig numaccesses

Description
This command is used to describe the target system's pattern
of accesses to emulation memory. This information is
important when the dualport memory mailbox protocols are
used to pass data between NetROM and the target system.
Some targets may execute multiple read cycles to read a single
byte; for example, a processor with a 32-bit data bus which is
reading opcodes from a single ROM may have memory
interface hardware which performs 4-byte read cycles in order
to present the processor with a 32 bit opcode.

On some of these target platforms, the memory interface
hardware performs four read cycles, even when the processor
only requests a single byte! This confuses the dualport
protocols, which require that a particular byte be read by the
target to send an 8-bit value. The numaccesses parameter to
this command describes the number of accesses to pod 0 the
target processor will make in the course of making a one-byte
access.

For example, if a 32-bit processor attempts to read a single byte
of ROM but its ROM interface hardware performs four read
cycles (to make a 32-bit word) in order to present the processor
with the single byte it requested, then numaccesses for this
target is four. If on a different target, the 32-bit processor
requests a single byte from ROM and its interface hardware
performs a single read cycle to fetch the byte, then
numaccesses is one for the target. Finally, if a 32-bit
processor requests a byte for a 16-bit ROM word composed of
two 8-bit ROMs, one of which is NetROM's pod 0, and the
interface hardware performs two read cycles on pod 0 and two
ready cycles on the other ROM (to assemble a 32-bit word),

NetROM User's Manual

Note

then numaccesses for this target is two. This is because only
two accesses were made to pod 0 in the course of requesting a
single byte, even though four accesses to ROMs were made
overall.

Read-address configuration is only important when using the
read-address dualport protocol; when using the readwrite
dualport protocol there is only one interrupt-causing address
defined.

4-47

•

set rawrites

4-48

Used to enable or disable target requests that NetROM write
emulation memory.

Synopsis
set rawrites { on I off }

Description
This command allows NetROM users to have the target system
request that NetROM set a byte of memory in emulation space.
Enabling read-address writes is equivalent to partially
enabling the readaddr path to the target. However, ifrawrites
are on, neither the console path nor the debug path is required
to use the readaddr protocol. (Note that neither path may use
the readwrite protocol; however, ifthe target can write its own
emulation memory, there is no reason for it to use read-address
writes.)

If rawrites are enabled, and one of the target paths is set to
readaddr, the entire readaddr protocol will be used. There is no
need to disable rawrites prior to enabling the readaddr
protocol. If the readaddr protocol is disabled and rawrites are
still on, the set memory portion of the read address protocol will
remain enabled.

A13 when setting the console or the debug path, changes to the
rawrites variable require the target to be reset with the tgtreset
command before they take effect.

NetROM User's Manual

set romupgrade
Initiates the download of a new NetROM operating system
image.

Synopsis
set romupgrade [ramimage=ramname] [romimage=romname
J [host=ipaddr]

Description
The set romupgrade command is used to update NetROM's
ROM-based operating system image. It should only be used
when a new system is distributed. When upgrading, Applied
Microsystems will make available two binary files,
nsXXXXXX.bin and netrom.bin; nsXXXXXX.bin is the new
system image and netrom.bin is a RAM-based download
program. The name of the new system image is based upon the
Ethernet address of the NetROM unit being upgraded. The last
six characters of the file name are the last six characters of the
unit's Ethernet address. To perform the upgrade, these two
files should be placed in the TFTP directory named by your
"loadpath" environment variable, on the host named by your
''host" environment variable. Then, invoking set romupgrade
command with no arguments will cause netrom.bin to be
loaded into RAM and control transferred to it. Netrom.bin will
download nsXXXXXX.bin into FLASH ROM memory in your
NetROM unit automatically. When the download is complete, •
you should reset your NetROM unit. •

The optional settings allow users to control the paths to the
RAM-based image which will reprogram the ROMs, the new
ROM system image, and the IP address of the TFTP server to
contact for both images. The default ROM image name is
determined by the NetROM unit's Ethernet address; for
example, ifthe unit's hardware address is "00:02:f4:00:00:24"
its new system image should be named ns000024.bin. The
default RAM image name is netrom. bin; and the default server
address is given by the ''host" environment variable. If the
image names are not root-specific, they are assumed to be in
the directory given by the "loadpath" environment variable.

4-49

Note ~

Note ~

Note ~

4-50

If you initiate the download from a Telnet session, the unit will
appear to reset when the download of netrom. bin is complete.
However, the unit has simply transferred control to a RAM­
based image, to which you can also Telnet. The complete
FLASH reprogramming may take as long as 5 minutes. We
recommend you monitor the progress of the download on the
NetROM console.

If you do not have a serial console handy, the download has
completed after:

1. netrom. bin has been downloaded and jumped to. At this
point your telnet session will stop responding. You should
exit it and re-telnet to NetROM.

2. ATFTP client has been created, run for a while, and exited.
You can see this process using the ps command. NetROM is
verifying that nsXXXXXX. bin can be downloaded.

3. There is a period in which telnet response seems sluggish,
NetROM's heartbeat LED is very slow, and there is no TFTP
client present. At this point, NetROM is erasing its
FLASHes.

Do not reset or power cycle NetROM after this point.

4. A new TFTP client has been created, run for a while, and
exited. At this point, NetROM is downloading its new image,
nsXXXXXX.bin and is programming it into the FLASHes.

Do not reset or power cycle NetROM during this process.

NetROM User's Manual

5. NetROM's Ethernet transmit LED is not longer flashing,
there is no TFTP client running, and the heartbeat LED is
flashing quickly (at its normal speed). At this point it is safe
to reset your NetROM with the reset command.

NetROM reboots the system automatically after a successful
upgrade is completed.

Do not attempt to copy system ROMs. ROM-based images
intended for one unit will not work on a different unit, unless
you have a multi-unit upgrade license.

4-51

•

set tgtctl

4-52

Used to control NetROM's control signal outputs.

Synopsis
set tgtctl signum {on
set tgtctl signum {on
set tgtctl signum {on

Description

off} [millisec_interval]
off} [toggle]
off} [:ex] [ack]

This command asserts or de-asserts one of the control signals
on NetROM's front panel. When on, these signals are connected
to ground (low true); when off, these signals do not assert or
draw current to or from the target. If the optional
millisec_interval parameter is present, the signal will be
asserted on or off as specified with that period. When not
asserted, the signal will have its alternate value. The
granularity of the interval is 5 milliseconds, values will be
rounded down to these increments. The timer will run until the
signal is turned on or off without a new interval.

When the toggle parameter is present, the signal will be
asserted briefly, then return to its alternate state. This can be
used to cause an interrupt to the target system. This use of the
target control signal requires hardware support from the
target system.

The third formulation of this command asserts the signal to the
specified value when data is passed to the target using one of
the dualport emulation memory protocols. This signal can be
attached to the target system, causing an interrupt to the
target when data is ready to be read. If the ack parameter is
specified, NetROM won't trigger a subsequent interrupt ifthe
previous one has not been acked.

This use of the target control signal requires hardware support
from the target system.

NetROM User's Manual

set udpsrcmode
Used to enable connectionless debug sessions.

Synopsis
set udpsrcmode { on I off }

Description
This command controls NetROM's treatment of UDP-based
debug sockets. When enabled, NetROM prepends the IP address
and UDP port number of the packet being sent to targets which
use dualport RAM for their debug paths. Similarly, data
received along the dualport paths is assumed to have a 32-bit
IP address followed by a 16-bit port number prepended to
actual data. These values will be sent and interpreted in
network byte order. This mode allows target systems to specify
the destination address of packets generated by the target's
debugger interface.

Since a start-of-packet/end-of-packet sequence is not defined
for the serial interface, UDP source mode cannot be used for
the serial debug path. UDP source mode is only used on the
debug path; UDP header information is only prepended to data
received on the NetROM debug port. Source address
information is not added on TCP-based debug sessions, nor on
console sessions.

IfUDP source mode is turned on while a debug connection is
active, the target must be reset with the tgtreset command
before UDP source mode is actually enabled.

4-53

Display Commands

Argument

?

cons echo

debugecho

load echo

dplocation

dpmem

dpstats

emulate

help

lanceha

ledmap

I stats

memstats

modules

pgconfig

4-54

The di command displays various generic NetROM state
variables, various NetROM statistics, and target state
information. State variables which are set with the set
command can be displayed with the di command. Statistics can
be displayed for NetROM's target and console serial port
UARTS, NetROM's Ethernet interface, and for memory usage.
Table 4-6 summarizes the di command.

Table 4-6 di Command Arguments

State or statistics displayed

List of di arguments and what they display.

Console echo state, on or off.

Debug echo state, on or off.

Load echo state.

Location of the dualport pod for a large ROM.

Contents of dualport RAM.

Statistics for dualport protocols.

Target access to emulation memory.

List of di arguments and what they display.

NetROM's Ethernet address.

Mapping between NetROM status signals and back panel LEDs.

Ethernet statistics.

Memory use statistics.

Names of optional RAM modules loaded.

Pod group configurations.

NetROM User's Manual

Argument

podmem

raconfig

rawrites

tgtctl

tgtstatus

uart

udpsrcmode

uptime

username

version

Table4-6 di Command Arguments (Continued)

State or statistics displayed

Contents of emulation memory.

Number of target accesses expected when reading read-address
byte.

Current state of the rawrites variable.

State of NetROM's command signals.

State ofNetROM's status signals.

Statistics for NetROM's serial ports.

Current state of the UDP debug source address variable. See set
uadpsrcmode.

Time since the last system reset.

User name used for advisory login locks.

Software version number for NetROMs operating system.

•

4-55

diconsecho

4-56

Displays whether console echoing is turned on or off.

Synopsis
di consecho

Description
di consecho prints to the screen the current state ofNetROM's
console echo variable. To change the variable, use the set
consecho command.

See Also
set consecho command, page 4-36

NetROM User's Manual

didebugecho
Displays whether debug echoing is turned on or off.

Synopsis
di debugecho

Description
di debugecho prints to the screen the current state ofNetROM' s
debug echo variable. To change the variable, use the set
debugecho command.

See Also
set debugecho command, page 4-37

4-57

•

di dplocation

4-58

Displays whether the dualport RAM location is high or low.

Synopsis
di dplocation

Description
di dplocation displays the setting of the dplocation variable,
which controls where NetROM puts dualport RAM on "large"
ROMs. A "large" ROM is one which has more than 256 Kwords;
the 27 c040 is an example of such a device.

See Also
set dplocation command, page 4-38

NetROM User's Manual

di dpmem
Displays the contents of the dualport RAM used to pass
messages between NetROM and the target.

Synopsis
di dpmem dpoffset nbytes

Description
The di dpmem command helps the NetROM user to debug the
target's dualport mailbox code, which is used to pass messages
between NetROM and the target. Pod O's dualport RAM, which
can be accessed simultaneously by both the target and NetROM,
is described in detail in Chapter 7. This command is provided
as a convenience to allow programmers to examine the mailbox
structures in dualport RAM without having to know where in
pod 0 the RAM is mapped.

This command displays nbytes bytes of dualport RAM,
starting at offset dpoffset from the start of the dualport area.
The same dpoffset value can be used regardless of where the
dualport RAM is mapped within pod 0, and only dualport RAM
data will be displayed, regardless of the word width of the pod
group of which pod 0 is a part.

See Also
di podmem command, page 4-68
"Dualport Emulation Memory" on page 7-4
"The Dualport Message Structure" on page 7-6

4-59

•

di dpstats

4-60

Displays statistics for the dualport protocols, if any, used to
pass data between NetROM and the target system.

Synopsis
di dpstats

Description
This command displays statistics about the dualport protocol
used to forward data between NetROM and the target system.
For the read-address protocol, statistics include the number of
bytes sent to and received from the target, the number of
messages sent to and received from the target, and the number
of various "out-of-band" control characters received from the
target. Although the read-addres's protocol will not drop
characters received from the target, a count is made of the
number of times the NetROM interrupt handler's input queue
filled completely before NetROM was able to service the
incoming characters.

Statistics for the readwrite protocol are simpler; they include
the number of bytes and messages sent to and received from
the target, and a count of error conditions, such as transmit
timeouts, occurring on both sends and receives.

All statistics are reset by the tgtreset command, page 4-30.

NetROM User's Manual

di emulate
Used to determine whether ROM emulation is turned on.

Synopsis
di emulate

Description
The di emulate command prints the current state of target
image emulation.

See Also
set emulate command, page 4-39

•

4-61

di lanceha

4-62

Prints out the 6-octet address used by NetROM' s Ethernet
interface.

Synopsis
di lanceha

Description
The di lanceha command will print out the 6-octet address used
by NetROM' s LANCE Ethernet interface. This address will be
displayed in colon-separated hexadecimal format. The di
lanceha command is primarily useful for setting up host
configuration files which will be used in address resolution at
NetROM boot time.

NetROM User's Manual

di ledmap
Shows the mapping between NetROM' s status signals and
LEDs on NetROM's back panel.

Synopsis
di ledmap

Description
The di ledmap command shows the mapping between
NetROM's status signals and LEDs on NetROM's back panel.
Mappings are sorted by signal number, then LED number.

See Also
ledmap command, page 4-92

4-63

•

di lstats

4-64

Prints a summary of packet and error counters for NetROM' s
Ethernet interface.

Synopsis
di lstats

Description
The di lstats command displays a summary of packet and error
counters for NetROM' s LANCE Ethernet interface. A complete
summary of these statistics is beyond the scope of this
document, but they are generally either self-explanatory or
useful only for detecting gross errors. The error counters
should all be zero, or very low, during normal NetROM
operation. High error counts may indicate a problem with
NetROM's LANCE chip or a malfunctioning host on the
Ethernet network.

NetROM User's Manual

di memstats
Displays current memory allocation statistics for NetROM.

Synopsis
di memstats

Description
The di memstats command allows the NetROM user to examine
the availability of allocation memory within NetROM' s
operating system. This command is primarily used to detect
pathological states during NetROM operation and is not useful
during normal operation. NetROM maintains several pools of
allocation memory; during normal operation there should
always be memory available in each of them. This can be
verified by examining the "free mbufs," "clfree," and "free
blocks" fields in the memory statistic display. None of these
values should be zero.

4-65

•

di modules

4-66

Displays the names of the optional RAM modules that have
been loaded into NetROM.

Synopsis
di modules

Description
The di modules command allows the NetROM user to display
the names of the optional RAM modules that have been loaded.

NetROM User's Manual

di pgconfig
Used to display the current pod group configurations.

Synopsis
di pgconf ig [podgroup]

Description
The di pgconfig command allows the NetROM user to examine
the current state of emulation pod groups. The command
displays, in tabular form, the name, word size, ROM type,
target address, pod order, and read/write characteristics, of all
podgroups defined in the system. If a pod group is specified
with the podgroup parameter, only the configuration for that
group will be shown.

See Also
set pgconfig command, page 4-40
podgroup command, page 4-116

4-67

•

di podmem

4-68

Allows the NetROM user to examine the contents of emulation
memory.

Synopsis
di podmem tgtaddr nbytes

Description
The di podmem command displays the contents of emulation
memory. The tgtaddr parameter is the address, as seen by the
target, at which to start dumping memory. The nbytes
parameter is the number of bytes to dump. NetROM uses the
tgtaddr parameter to determine which podgroup should be
displayed.

Due to hardware restrictions imposed by the nature of ROM
devices emulation must be turned off for the di podmem
command to work. If emulation is on, it will print an error
message.

See Also
set pgconfig command, page 4-40
set emulate command, page 4-39

NetROM User's Manual

di raconfig
Indicates how many target accesses NetROM should expect in
the course of reading a single byte from the read-address
interrupt area.

Synopsis
di raconfig

Description
This command displays the number of ROM accesses which the
target processor is expected to make to pod 0 in the course of
reading a single byte. For most targets, this value should be
one. However, some target processors may have ROM interface
hardware which performs multiple accesses to assemble a
complete word, even though the processor has only requested
that the interface read a single byte.

See Also
set raconfig command, page 4-46

4·69

•

di rawrites

4-70

Used to display the current state of the rawrites variable.

Synopsis
di rawrites

Description
This command is used to determine whether or not the target
system is capable of using read-address requests to set
emulation memory on NetROM. Read-address write requests
use the read-address protocol to ask NetROM to modify its own
emulation memory; this facility is useful for systems which are
unable to write to their own ROM space.

See Also
set rawrites command, page 4-48

NetROM User's Manual

di tgtctl
Displays the current status ofNetROM's target control signals.

Synopsis
di tgtctl

Description
This command displays the current state of NetROM's target
control signals on the front panel. When on, these signals are
connected to ground Clow true); when off these signals do not
assert or draw current to or from the target. The flags field is
set to 'n' if no special processing has been assigned to the
signal. A numeric value indicates that the signal will be
asserted with a period, in milliseconds, equal to that value. If
the flags field contains "RX", the signal will be asserted to the
target whenever NetROM sends data to the target using one of
the dualport protocols.

See Also
set tgtctl command, page 4-52

4-71

•

di tgtstatus

4-72

Displays the current state of the status signals on the NetROM
front panel.

Synopsis
di tgtstatus

Description
The di tgtstatus command displays the current state of the
status signals on the NetROM front panel. A disconnected
signal will read as "off."

NetROM User's Manual

di uart
Displays statistics for NetROM' s serial port UARTs.

Synopsis
di uart [uartnum

Description
The di uart command displays statistics for NetROM' s serial
port UARTs. The statistics include transmit, receive, and error
counts, as well as counts for various sorts of interrupts. This
command is useful for checking the quality of serial links
between NetROM and the target, or between NetROM and a
"dumb" terminal. When invoked without arguments, the di
uart command prints statistics for both UARTs. When invoked
with the optional uartnum parameter, it will only print
statistics for one port. A uartnum value of 0 indicates the
console port and a value of 1 indicates the target port .

4-73

•

di udpsrcmode

4-74

Used to determine the state of the UDP source address mode
variable.

Synopsis
di udpsrcmode

Description
This command prints the current state of the UDP debug
source address variable, which controls whether or not data
forwarded between the target system and the host along the
debug path will have IP addresses and UDP port numbers
prepended. If enabled, UDP source address mode allows the
target system to determine which of possibly many sources is
sending it data, and to specify to which of possibly many
destinations its data should be forwarded.

See Also
set udpsrcmode command, page 4-53

NetROM User's Manual

di uptime
Displays the amount of time since the last system reset.

Synopsis
di uptime

Description
The di uptime command allows NetROM users to determine
how long their NetROM system has been running. Time is
displayed in days, hours, minutes, and seconds .

•

4-75

di username

4-76

Displays who, if anyone, has installed an advisory login lock on
the NetROM unit.

Synopsis
di usen:iame

Description
The di username command allows NetROM users to determine
who, if anyone, has installed an advisory login lock on the
NetROM unit.

NetROM User's Manual

di version
Displays the software version number of NetROM's operating
system.

Synopsis
di version

Description
The di vers'ion command displays the software version number
of NetROM's operating system.

4-n

ROM Set Commands

4-78

For target systems which require large ROM address spaces or
word sizes greater than 32 its, a new group of commands has
been defined. These commands manipulate a multi-NetROM
data structure called a "ROM set." When using ROM sets, one
NetROM unit is designated the "master" and one or more other
units are designated as "slaves." The master unit's
responsibility is to provide a command line interface to the
NetROM user such that it appears that the emulation memory
of all units in the set are local to the master unit.

For example, assume a target system has a 64-bit word size
and uses 27 c020 ROMs. Then two NetROM units can be used to
define a ROM set. One will emulate the least significant 32 bits
of the word, and the other will emulate the most significant bits
of the word. Download and display of emulation memory would
take place on the master unit using the newimage and di
podmem commands, exactly as if all of the emulation memory
resided on the master unit. The console and debug paths would
also pass through the master unit.

Another example might involve a target system which required
4 megabytes of emulation memory, made up of 27 c020 RO Ms.
A ROM set using four NetROM units could be defined, where
each unit emulated its own successive megabyte of ROM.
Again, download and display of emulation memory would take
place through the master unit.

Emulation using ROM sets has four distinct stages: ROM set
definition, in which the pod orders and IP addresses of slave
units are defined on the master; connection, in which the
master unit makes TCP connections with all slave units and
puts them into slave mode; emulation, in which image
downloads and other communications with the target system
are carried out as normal; and disconnection, in which the
master unit releases slave units and disconnects from them.
There are specific commands to accomplish each of these steps,
as well as commands to display the current ROM set status.

NetROM User's Manual

Argument

?

clear

connect

define

disconnectt

help

show

slaveaddr

reset

Note that certain commands become restricted when a NetROM
unit is in slave mode. For example, the tgtreset command is not
allowed, nor is the set emulate command, nor are setenv
commands which affect pod order, word size, or ROM count.
This is because all of these functions are taken over by the
master unit. For example, if the master unit receives the
command set emulate off, emulation will be disabled on all
slave units as well.

Table 4-7 romset Command Arguments

State or statistics displayed

Displays arguments to romset command.

Clears current romset definitions.

Connects to slave units and enters romset mode.

Defines the romset pod order.

Disconnects from slave units and returns to normal mode.

Displays arguments to romset command.

Displays the current romset configuration.

Sets the addresses of slave units.

Resets all slave units.

4-79

•

romset clear

4-80

Erases ROM set definitions.

Synopsis
romset clear [podorder J slaveaddr]

Description
The romset clear command erases current ROM set definitions.
It should be used when changing the number of slave units
currently configured. If the unit count remains constant, use
the romset define or the romset slaveaddr commands instead.
Note that this command cannot be used while the NetROM unit
is in slave mode or is connected to slave units.

See Also
romset define command, page 4-82
romset slaveaddr command, page 4-85

NetROM User's Manual

romset connect
Causes NetROM to create TCP connections with slave units.

Synopsis
romset connect

Description
The romset connect command causes NetROM to connect to
slave units. When the command is issued, the unit it is issued
on becomes a ROM set master and the units it connects to are
put into slave mode. The ROM set must be defined and slave
unit addresses must be given before this command is issued.

See Also
romset slaveaddr command, page 4-85
romset disconnect command, page 4-83

4-81

•

romset define

4-82

Configures the pod orders of all units in the ROM set.

Synopsis
romset define order-string

Description
The romset define command configures the pod order of the
ROM set master unit, as well as the pod orders of all slave
units. The pod order syntax is similar to that of the setenv
podorder command, with the addition that the pod order for
each unit is enclosed within parentheses. The order-string for
each unit may be separated by hyphens ('-') indicating that
words do not span units, or by colons (':') to indicate a large
word size. The master unit's pod order is always the first in the
list. Currently the largest word size supported is 64 bits. Note
that the number of slave units indicated must agree with the
number specified in the romset slaveaddr command.

Examples
romset define (0:1-2:3)-(0:1-2:3)

This command defines a ROM set in which two units support
four consecutive sets of 16-bit words.

romset define (0:1:2:3): (0:1:2:3)-(0:1:2:3): (0:1:2:3)

This command configures a ROM set in which four units
support two consecutive sets of 64-bit words.

NetROM User's Manual

romset disconnect
Terminates the current ROM set connection.

Synopsis
romset disconnect

Description
The romset disconnect command causes the master unit to
restore connected slave units to normal mode and closes its
network connections with them. Note that the environment
characteristics defined by the ROM set will remain in effect on
all units.

4-83

•

romsetshow

4-84

Displays the current ROM set configuration and status.

Synopsis
romset show

Description
The romset show command displays the current ROM set state
for the unit it is invoked on. The state information includes
slave unit addresses and pod orders, whether the unit is
connected or not, and whether or not the unit is in slave or
master mode. The '\vord index" displayed is only used when
emulating ROM words larger than 32 bits. Since each unit can
only emulate 32 bit words, the word index indicates which 32-
bit increment of a word is emulated by the unit this command
is invoked on. The word index is not set directly, but is implied
by the order-string given in the romset define command. Note
that the ROM set master is always at word index zero.

NetROM User's Manual

romset slaveaddr
Used to assign the network addresses of ROM set slave units.

Synopsis
romset slaveaddr addrl [addr2 ...]

Description
The romset slaveaddr command is used to assign the (IP)
network addresses of ROM set slave units. The IP address of
the master unit should not be included in the list. Up to 8 units
may currently be specified. Note that the number of units
indicated must agree with the number of slave units implied by
the romset define command. There is a direct correspondence
between the order of units named in the romset slaveaddr
command and the units implied by the romset define command.

See Also
romset define command, page 4-82

4-85

•

romset reset

4-86

The romset reset command causes all slave units to reset
themselves.

Synopsis
romset reset

Description
The romset reset command resets all slave units. The unit
issuing the command must be the ROM set master. This
command essentially causes all connected slave units to
execute a reset command, but does not cause the master unit to
reset. The master unit reverts to normal mode after issuing
this command.

NetROM User's Manual

Miscellaneous Commands
NetROM provides several miscellaneous commands for the
convenience of the user. These include alias, batch, help,
history, ledmap, loadmodule, reset, and stty.

4-87

alias

Note

4-88

Used to create and delete command "nicknames."

Synopsis
alias [alias-name [alias-string]]
alias -d alias-name

Description
The alias command allows NetROM users to create nicknames
for commonly used commands. When invoked without
arguments, it lists all defined aliases, with the -d flag, it deletes
a defined alias. When invoked with the alias-name parameter
but no alias-string parameter, it displays the alias defined for
that name. If both an alias-name and an alias-string are
defined, the command assigns the alias string to substitute for
the alias name in command invocations.

Examples
The alias assignment

alias nb newimage type=binary

causes the command

nb myfile.bin

to be executed as if it had been entered

newimage type=binary myfile.bin

The alias assignment is deleted with

alias -d nb

Aliases can be nested; that is, an alias can include another alias
in its expansion. Also, defining aliases uses memory, so
defining aliases excessively should be avoided. A pre-defined
command name cannot be used as an alias; for example,
alias set di

will not work. Aliases are invoked only after a match with
defined command names fails.

NetROM User's Manual

batch
Downloads and executes batch files containing one or more
NetROM commands.

Synopsis
batch filename [server]

Description
The batch command enables NetROM users to execute many
NetROM commands with one command-line invocation. These
commands are read from a file residing on the TFTP server
which NetROM uses to load new images; this is the file server
named in the "host" environment variable. The format of the
file is a series ofNetROM commands separated by new lines and
terminated with an end statement. A begin statement at the
beginning of the file is optional but recommended. See "Batch
Processing" on page 4-7 for an example of a batch file.

The filename parameter names the file containing NetROM
commands. If the name is not root-specific; that is, ifit does not
begin with a'/', the filename parameter will be appended to
the "batch path" environment variable to produce a root-specific
path on the server. The optional server argument allows the
command issuer to override the default environment setting for
the TFTP server.

All commands executed as a result of the batch command will
be entered into the history buffer for the terminal session
under which the command was issued. The batch command
may be ''nested"; that is, it may be executed from within a batch
file.

4-89

•

help

4-90

Accesses NetROM's on-line help facility.

Synopsis
help [command
? [command)

Description
The help command accesses NetROM's on-line help facility.
When invoked without arguments, the command prints a
listing of available commands. When invoked with the
command argument, it prints information specific to that
command. When the command is a "nested" one, such as set, di,
setenv, or printenv, it will print a list of the commands which
come under that heading. It is possible to get help on nested
commands by specifying which specific command in the
command parameter. For example, help set emulate will get
help on the set emulate command. The question mark "?" is a
shorthand equivalent of the help command.

NetROM User's Manual

history
Displays the contents of the history buffer for the current
NetROM session.

Synopsis
history

Description
The history command displays the contents of the history
buffer for the NetROM terminal session under which the
command was issued. Commands are numbered within the
history buffer, allowing them to be invoked by number or
special character (e.g.,!!) for history substitution. See "History
Substitution" on page 4-6 for details on history substitution .

4-91

•

led map

Note ~

4-92

Allows users to map NetROM's status signals to LEDs on the
back panel.

Synopsis
leclmap set signum lednum [hightrue]
leclmap clear signum

Description
The ledmap command establishes a path between status
signals (signum) connected to traces on the target system and
the LEDs (lednum) on NetROM's back panel (see Figure 2-1).
The set version of this command establishes the mapping, and
the clear version deletes it. Each status signal may be mapped
to only one LED, but more than one signal may be mapped to
each LED. Note that LED 0 is NetROM's ''heartbeat'' LED; by
default, it indicates that NetROM is active and gives some
indication ofload on the system. If LED 0 is mapped using this
command, its heartbeat function will be disabled for the
duration of the mapping.

The hightrue keyword inverts the "normal" sense of status
signals, so that rather than being "on" when tied to ground (or
"low") they become "on" when asserting current.

Status signals are polled, so they do not latch target-side
events on the traces to which they are connected.

See Also
di ledmap command, page 4-63

NetROM User's Manual

loadmodule
Loads NetROM's optional RAM modules.

Synopsis
loadmodule [filename I init]

Description
This command downloads a RAM-based module that
implements or extends NetROM features and commands.
Normally, filename is appended to the string given by the
"batchpath" environment variable; however, if the filename
begins with a slash (f), the "batchpath" environment variable
will not be used. (init initializes the module extension table; it
is for Applied Microsystems development use only).

The RAM module software is loaded into specific addresses in
DRAM. We recommend that the file be stored in the same
directory as your startup.bat file, but the file can be placed on
the server anywhere to which NetROM has TFTP access.

A given module should be loaded only one time. If you need to
reload the module, reset the NetROM unit, then re-execute
loadmodule.

See Also
di module command, page 4-66

4-93

•

logout

4-94

Used to terminate login sessions.

Synopsis
logout

Description
This command terminates a login session. It can be used to exit
Telnet login sessions, direct connections on the NetROM control
port, or logins on the SLIP port, which are actually a special
case of Telnet logins. However, it cannot be used to terminate
the NetROM serial console session.

NetROM User's Manual

reset
Completely resets NetROM's hardware and software.

Synopsis
reset

Description
The reset command is as effective as power cycling the NetROM
unit, but does not affect the contents of emulation memory.
This command can be issued from any NetROM terminal
session.

4-95

stty

4-96

Displays or modifies characteristics of NetROM terminal
sessions.

Synopsis
stty [-d J { erase I kill I werase I intr I eof I
alterase} setting
stty [-d J all
stty [{ consoleltarget} [baud=baudrate J [stop=
{112 }]

[{ even I odd I none } J [{ hshake I nohshake }
J [{ xon I noxon }]
stty { echo I noecho }

Description
The stty command allows the NetROM user to customize
characteristics of the NetROM terminal session under which
the command is invoked. The command can also be used to
configure defaults for all subsequent terminal sessions. The
optional -d flag is used to set or display default characteristics,
and simultaneously set control characters for the current
session. The stty command can also be used to configure both of
NetROM's serial ports, the Console Port and the Target Port.
Finally, the command can be used to configure NetROM's
command interpreter to echo or not echo characters it receives.

All terminal sessions have several control characters
associated with them. See "Terminal Control Characters" on
page 4-3 for a description of these control characters. The
setting parameter is of the form "AX"; that is, it is two
characters, a carat w followed by the alphabetic character
itself. One exception is the DELETE key which can be used
without a carat "A.'' If the DELETE key is not mapped as a
control character, it will be printed as 11.?. The second form of
the stty command displays terminal control character settings.

The stty command can be used to configure either of the
NetROM serial ports; the console and target keywords indicate
which port is to be configured. All settings are updated
immediately. The baud rate for the port is configured using the
baudrate parameter. Valid baud rates are 150, 300, 600, 1200,

NetROM User's Manual

2400, 4800, 9600, 19200, and 38400. Note that there is no space
between the baud keyword, the equals sign, and the baudrate
parameter. The stop keyword is used to configure transmit stop
bits; NetROM's serial ports are always configured for one
received stop bit. Parity for a serial port can be set to odd, even,
or none. The hshake keyword enables RTS/CTS hardware
handshaking; if nohshake is selected, RTS will be asserted
before sending, and CTS will be ignored. NetROM does not
support DTR/DSR handshaking; DTR is always true and DSR
is ignored. Finally, the xon keyword enables XON/XOFF
software handshaking, and noxon disables it.

If stty is invoked with the noecho keyword, the terminal session
under which it is invoked will stop echoing input keystrokes.
This makes the session effectively "half duplex." Input echoing
can be re-enabled with the echo keyword. Note that command
output will not be affected.

Examples
stty eof "Z

Sets the eof control character for the current terminal session
to Control-Z.

stty -d kill "K

Sets the default line-kill character for all terminal sessions to
Control-K This also changes the line-kill character for the •
current session, but not for any other sessions already running. ~

stty -d all

Displays the current default terminal settings for NetROM
terminal sessions.

stty console;baud=4800 hshake noxon

Configures NetROM's Console Port to run at 4800 baud with
hardware handshaking enabled but XON/XOFF recognition
turned off. Other parameters remain as they were before the
command was issued.

stty noecho

4-97

4-98

Disables echoing of keyboard input; this is useful for users
establishing TCP connections to the NetROM Control Port,
since they may want to handle keyboard input locally, or issue
commands directly without echoing them.

See Also
tgtcons command, page4-28

NetROM User's Manual

Environment Variable Commands

Variable

"batch path"

"consolepath"

"debugpath"

"debugport"

"dprbase"

"file type"

"fillpattern"

"groupaddr"

"groupwrite"

"host"

NetROM has a special set of pre-defined state variables which
are used or referred to frequently by the user. These are
referred to as environment variables as distinguished from the
generic variables. Environmental variables are concerned
primarily with configuring communications paths between
NetROM and the target system, configuring pod groups for
emulation, and setting default values for downloading new
emulation images. Table 4-8 summarizes the environment
variables.

Table 4-8 Environmental variables

Description

Sets path on the TFTP file server N etROM uses to search for
batch files.

Sets console communication path between N etROM and the
target systeni. Takes as values: serial, readwrite, or readaddr.

Sets debug communication path between NetROM and the
target system. Takes as values: serial, readwrite, or readaddr.

Sets TCP/UDP port number on which NetROM accepts data
from host-based debuggers.

Sets base address in emulation pod 0 to map dualport RAM.

Sets expected download file format. Supports binary, srecord,
and intelhex.

Sets byte pattern to fill emulation memory.

Sets default pod group's start address.

Enables or disables NetROM's external write signal. Takes as
values: readonly or readwrite.

Sets IP address of the TFTP server used for image and batch
downloads.

4-99

•

Variable

"loadfile"

"loadpath"

"podgroup"

"pod order''

"romcount"

"romtype''

"tgtip" (optional)

"verify"

"vether" (optional)

"wordsize"

"writemode"

4-100

Table4-8 Environmental variables (Continued)

Description

Sets default file to download into the default pod group.

Sets default path for downloading "loadfile."

Sets default pod group.

Sets pod-to-byte mapping of emulation pods in the default pod
group.

Sets number of bytes in emulation as part of the default pod
group.

Sets ROM type being emulated by the default pod group.

Sets target machine's IP address when Virtual Ethernet is on.

Specifies whether downloads are verified. Tak.es as values: on
or off

Sets Virtual Ethernet on or off.

Sets size in bits of the ROM word being emulated by default
pod group.

Sets mode that configures emulation memory to emulate
FLASH ROM or static RAM.

There are two commands which directly manipulate
environment variables. These are the setenv and the printenv
commands. The next section describes these two commands
and each of the environment variables in detail.

NetROM User's Manual

setenv
Allows NetROM users to modify the value of all environment
variables.

Synopsis
setenv variable value

Description
The setenv command allows users to configure NetROM to meet
the needs of their development environment. NetROM' s
environment variables provide a simple and straightforward
way to do this, while allowing the user to take advantage of
some ofNetROM's more advanced features.

The variable parameter is the name of the environment
variable being set. Table 4-3 summarizes the names and
characteristics ofNetROM' s environment variables. The format
of the value parameter depends on the variable being set.
Consult the documentation for the variable in question for
more information on how to specify the value .

4-101

•

printenv

4-102

Displays the current values ofNetROM's environment
variables.

Synopsis
printenv

Description
The printenv command displays the current settings for all
environment variables. The variables are summarized in
Table 4-3, and discussed in detail in the documentation that
follows.

NetROM User's Manual

batch path
The "batchpath" environment variable is specifically designed
to facilitate the batch command. Some NetROM users may have
certain commands sequences that they repeat over and over. It
is possible to collect such sequences of commands into "batch
files" and have NetROM execute them as a group. Then, using
the batch command, the NetROM user can cause NetROM to
download these files and execute the commands in them one at
a time.

The "batchpath" environment variable is the path on the TFTP
file server that NetROM should use to search for batch files. It
is possible to override this default path if desired. See the batch
command for details. Note that setting ''batchpath" to "f'
effectively clears it on secure servers, and setting it to "I
tfipboot" clears it on non-secure servers.

Note to Windows Host Users: Set the batchpath variable to.
(dot). This causes NetROM to use the current directory for the
search path for batch files on the TFTP file server .

4-103

•

consolepath

4-104

The "consolepath" environment variable is used to configure
console path communications between NetROM and the target
system. Console path communications between the host and
NetROM are independent of the path between NetROM and the
target, and are not affected by this environment variable.

There are three possible values for the "consolepath" variable.
The serial value indicates that console path communication
with the target should proceed via NetROM's target serial port
interface. (Parameters for this port are configured using the
slip command.) The readwrite and readaddr values select one
of the two emulation memory mailbox protocols. The readwrite
setting indicates that the target system is capable of writing
into its ROM address space, and that message passing will take
advantage of this fact. The readaddr setting indicates that the
target system cannot write ROM space, so the alternate
mailbox protocol will be used. These mailbox protocols are
described in detail in Chapter 7. Table 4-8 summarizes the
possible values for the "consolepath" environment variable.

Table 4-9 Consolepath and Debugpath Environment Variables

Keyword NetROM-target communication path

serial NetROM' s Target serial port.

readwrite An emulation memory mailbox protocol which
takes advantage of the target's ability to
write to its own ROM space.

readaddr An emulation memory mailbox protocol which
uses target-side reads of emulation memory
and NetROM-side writes of emulation memory
to pass data.

The "consolepath" variable interacts with the "debugpath"
variable to some degree. They are somewhat independent,
because one may select the serial port communications path
and the other a mailbox protocol, and they may both use a
mailbox protocol, but they cannot use different mailbox

NetROM User's Manual

Note w
Debugpath

Serial

Read write

Readaddr

protocols. Table 4-9 summarizes these interactions. In
situations where the console path and the debug path between
NetROM and the target are the same, the host system side
debugger and console will receive both debug and console data.
It is the responsibility of the host system to distinguish
between them; also see "debugpath" on page 4-106.

Changing the "debugpath" variable will not take immediate
effect; the target must be reset with the tgtreset command
before the target-NetROM communication path will change.
This prevents corruption of any current active console sessions.

Table 4-10 Consolepath and Debugpath Interactions

Consolepath

Serial Readwrite Readaddr

Yes Yes Yes

Yes Yes No

Yes No Yes

4-105

•

debugpath

4-106

The "debugpath" environment variable is used to configure
debug path communications between NetROM and the target
system. Debug path communications between the host and
NetROM are independent of the path between NetROM and the
target, and are not affected by this environment variable.

There are three possible values for the "debugpath" variable.
The serial value indicates that console path communication
with the target should proceed via NetROM's target serial port
interface. (Parameters for this port are configured using the
slip command.) The readwrite and readaddr values select one
of the two emulation memory mailbox protocols. The readwrite
setting indicates the target system is capable of writing into its
ROM address space, and message passing will take advantage
of this fact. The readaddr setting indicates the target system
cannot write ROM space, so the alternate mailbox protocol will
be used. These mailbox protocols are described in detail in
Chapter 7. Table 4-7 summarizes the possible values for the
"debugpath" environment variable.

The "debugpath" variable interacts with the "consolepath"
variable to some degree. They are somewhat independent,
because one may select the serial port communications path
and the other a mailbox protocol, and they may both use a
mailbox protocol, but they cannot use different mailbox
protocols. Table 4-8 summarizes these interactions. In
situations where the console path and the debug path between
NetROM and the target are the same, the host system side
debugger and console will receive both debug and console data.
It is the responsibility of the host system to distinguish
between them.

Changing the "debugpath" variable will not take immediate
effect; the target must be reset with the tgtreset command
before the target-NetROM communication path will change.
This prevents corruption of currently active debug sessions.

NetROM User's Manual

debugport
The "debugport" environment variable is used to set the TCP/
UDP port number on which NetROM listens for data from host­
based debuggers. The portnum parameter should be in
decimal. The default port number is 1235. Note that if a
connection-oriented debug session is under way when this
command is issued, the new port will not become active until
the target system is reset with the tgtreset command.

See Also
set udpsrcmode command, page 4-53

4-107

•

dprbase

4-108

The "dprbase" environment variable tells NetROM where in
emulation pod 0 to map the dualport RAM used to pass
messages between NetROM and the target system. The value of
this variable is the hexadecimal offset, in bytes, from the start
of pod 0 memory. This value is independent of the word size of
the pod group containing pod 0. That is, it should be considered
the byte offset from the start of the ROM which pod 0 is
emulating. By default, the dualport memory is mapped to the
last 2048 bytes of memory emulated by pod 0. For example, if
pod 0 is emulating a 27 c020 ROM, which has 256 Kilobytes, the
default "dprbase" is Ox3F800, since this is 2048 (or Ox800) bytes
below the end of the ROM, which has Ox40000 bytes.

The "dprbase" variable allows the NetROM engineer to map the
communication mailbox area to another part of the ROM, for
example to the beginning. The last part of emulation memory
was chosen as the default because most ROM users fill their
ROMs from beginning to end, not the other way around. If the
target system is not going to use dualport memory to pass
messages to the target, the value of "dprbase" is unimportant.
However, it should not be moved after the pod group containing
pod 0 has been downloaded. If dualport RAM will be used to
pass messages, it is important that "dprbase" be set so that it
does not overlap any of the download image.

Changing the "dprbase" variable does not modify the mapping
of dualport RAM immediately. This is to prevent corruption of
the current target-NetROM communications path. In order to
effect the change in mapping, the target must be reset with the
tgtreset command.

NetROM User's Manual

filetype
The "filetype" environment variable tells NetROM what file
format to expect when downloading the default podgroup
(which is named by the "podgroup" environment variable).
Supported file types and their associated settings are given in
Table 4-10. The "filetype" default can be overridden on the
command line, when invoking newimage, if desired.

NetROM supports extended address records (type Ox04) for the
80386-and-higher processors. These records specify address
bits 16 through 31. Old style extended address records (type
Ox02), which affect address bits 4 through 19, are also
supported.

Table 4-11 Supported NetROM File Types

Value Meaning

binary Binary File.

srecord Motorola S-Record File.

intelhex Intel hex record file.

4-109

II

fill pattern

4-110

The "fillpattern" environment variables allows NetROM users
to specify an 8-bit pattern which will be used to fill emulation
memory prior to a download. Valid values for this variable are
either the keyword none or the hexadecimal 8-bit value.
Emulation memory can also be filled using the fill command.
The "fillpattern" value can be overridden on the command line
when invoking the newimage command. See documentation on
newimage for details.

NetROM User's Manual

groupaddr
The "groupaddr" environment variable gives NetROM the
target's idea of the start address of the default podgroup (which
is named by the "podgroup" environment variable). This value
is a 32-bit hexadecimal number, and is intended to allow the
NetROM user to examine emulation memory using the same
addresses which appear in compiler map files .

4-1 ,,

•

groupwrite

4-112

The "groupwrite" environment tells NetR.OM whether or not to
allow the target system to perform writes into emulation
memory using either the internal or the external write line. A
read-only target system cannot write to its own ROM space
because its hardware designer did not supply a write line to the
ROM sockets. If the target's write cycle is appropriately
supported in other respects, the NetROM user may decide to
connect the write signal, which is part ofNetROM's status
signal array, to the target processor's write line.

The "groupwrite" variable does affect write cycles which use the
write line in the emulation pod. Appropriate values for the
"groupwrite" variables are readonly and readwrite.

NetROM User's Manual

host
The "host" environment variable is the IP address of the TFTP
server NetROM will use during image and batch file downloads.
This address is given in standard dotted-decimal notation. This
default address can be overridden on the command line, for
example when invoking the batch and newimage commands .

4-113

•

loadfile

4-114

The "loadfile" environment variable is the name of the default
file to download into the default pod group (which is named by
the "podgroup" environment variable). This should be a simple
file name, not a directory path. This file name is concatenated
with the ''loadpath" environment variable to determine the
root-specific path of the default image file. The ''loadfile"
default can be overridden on the command line, when invoking
newimage, if desired. Note that setting "loadpath" to "f'
effectively clears it on secure servers, and setting it to "/
tftpboot" clears it on non-secure servers.

NetROM User's Manual

load path
The "loadpath" environment variable is the default directory
path NetROM will use when downloading image files into the
default pod group (which is named by the "podgroup"
environment variable). This path may or may not be ''root­
specific"; that is, it may or may not begin with a 'f. Most TFTP
servers will treat non-root-specific paths as being based out of
the /tftpboot directory. The "loadpath" default can be
overridden on the command line, when invoking newimage, if
desired.

Note to Windows Host Users: Set the loadpath variable to "."
(dot). This causes NetROM to use the current directory as the
default directory for the file being transferred from the TFTP
default directory on the host.

4-115

podgroup

4-116

The "podgroup" environment variable indicates which pod
group should be considered the default podgroup for various
commands that affect podgroups. These commands include
newimage and di podmem, among others. In addition, the
default podgroup is the one which is acted upon by the
environment variables affecting .ipod group:configuration
configuration; and downloading. The value of this variable is
the pod group number which should be selected as the default.

NetROM User's Manual

pod order
The "podorder" environment variable (illustrated in
Figure 4-1) maps emulation pods within the default pod group
(which is named by the ''podgroup" environment variable) to
ROM sockets being emulated by that pod group. For example,
if pods 0 and 1 are members of pod group 0 which emulates a
16-bit-word target ROM space, it may be desirable for pod 0 to
emulate ROM 0 while pod 1 emulates ROM 1, or vice versa.

The pod order is specified using pod numbers separated by
colons(':') and dashes('-') to indicate "parallel" or "serial" pods
respectively. Parallel pods occur within single ROM words and
serial pods occur within consecutive words. For example, the
notation "O: 1" indicates that pods 0 and 1 work together to
emulate a 16-bit word, in which pod 0 emulates byte 0 and pod
1 emulates byte 1. The notation "0-1" indicates that pods 0 and
1 work together to emulate an 8-bit word, where pod 0
emulates the lower-addressed words and pod 1 emulates the
higher-addressed words. This second notation indicates an
emulated space where words are half as wide as the first
notation, but in which there are twice as many words. Both
serial and parallel pods may occur in podorder notation; for
example, "O: 1-2:3" indicates not only that pods 0 and 1 emulate
a 16-bit word, as do pods 2 and 3, but also that the words
emulated by pods 0 and 1 are lower-addressed than the words
emulated by pods 2 and 3.

The "podorder" variable is related to the ''romcount" and the
"wordsize" variables. That is, the "podorder" contains within it
the combined information of the "romcount" and "wordsize"
variables. The "podorder" variable will override both the
"romcount" and "wordsize" variables. However, the "romcount"
and "wordsize" variables are probably more intuitive to use.
Without the "pod order" variable, the order of pods within the
default pod group is always the same. Figure 4-2 summarizes
the interactions of the ''romcount'' and ''wordsize" variables,
and gives the default values of the "podorder" variable for each
case. The "podorder'' variable can be used to explicitly set the
mapping between pods and ROM sockets if desired.

4-117

•

Byte# O 1

' ' Word# O -.o D
+ +

Pod# 0 1

a. Podorder "0:1"

Word# O
1

Pod#

Pod#

Pod#

a. Podorder "0-1" c. Podorder "0:1-2:3"

Figure 4-1 Podorder Examples

4-118 NetROM User's Manual

romcount

Wordsize

The "romcount" environment variable is concerned with the
emulation of the default pod group (which is named by the
"podgroup" environment variable). The "romcount" variable is
related to the "podorder" and the "wordsize" variables. The
"pod order" contains within it the combined information of the
"romcount" and "wordsize" variables. The "podorder" variable
will override both the ''romcount" and "wordsize" variables.
However, the "romcount" and "wordsize" variables are
probably more intuitive to use. Without the "podorder"
variable, the order of pods within the default pod group is
always the same. Figure 4-2 summarizes the interactions of
the "romcount" and '\vordsize" variables, and gives the default
values of the "podorder" variable for each case.

Rorncount

1 2 3 4

D D D D
D D D

8 D D
D

"O" "0-1" "0~1-2" "0-1-2-3"

DD DD
16 No No DD

"0-1" "0-:1-2:3"

32 No No No DODD
"0:1:2:3"

Figure 4-2 Podorder/Romcount'Wordsize Interactions

4-119

•

romtype

ROM type

27 c256, 28f256

27 c512, 28£512

27c010, 28f010,
28f00lb, 27c100

27 c020, 28f020

27c040, 29fo40

27c1024, 27c210

4-120

The "romtype" environment variable specifies the type of ROM
that NetROM will emulate. Table 4-12 gives the possible ROM
types, their corresponding ROM sizes, and the acceptable
variable name to use when setting the romtype environment
variable. The variable names are case sensitive.

Note that some of these ROMs are 16 bits wide. Such devices,
and the 4 Megabit 27 c040, require an "active pod" that
combines two ofNetROM's emulation pods into one DIP or
PLCC plug. Note that many of the type names are aliases for
one another.

If your ROM part is not list, use one of the generic types.
NetROM does not distinguish between ROM types that are the
same size.

Table4-12 ROM Types and Sizes

Size ROM type variable name Attribute

32Kx8 27 c256, 28f256
32k_by_8

64Kx8 27 c512, 28f512
64k_by_8

128Kx8 27c010,28f010,28f001b,27c100
128k_by_8

256Kx8 27 c020, 28f020
256k_by_8

512Kx 8 27c040, 29fo40 read-only
512k_by_8

64Kx 16 27c1024, 27c210
64k_by_l6

NetROM User's Manual

ROM type

27 c2048, 27 c220

27 c4096, 27 c400

27c400

Table4-12 ROM Types and Sizes (Continued}

Size ROM type variable name Attribute

128Kx 16 27c2048, 27c220
128k_by_l6

256Kx 16 27c4096,27c400 read-only
256k_by_l6

256Kx 16 or 27c400,256k_by_l6 read-only
512Kx8 512k_by_8

Read-only ROM types cannot be written directly by the target,
even using the external write line. To write to these ROMs, use
the read-address protocol to request that NetROM modify
emulation memory. This can be done even if neither the debug
path nor the console path use the read-address protocol. All
other ROM types can be written if (a) the pod group being
emulated is read-write, and (b) the write signal in the pod or
the external write line is asserted with normal write cycle
timing. If the ROM being emulated has both its write signal
and its output enable asserted, NetROM assumes that the cycle
is a read cycle, aborts the write without modifying emulation
memory, and drives the data bus with the contents of the ROM
at the specified address.

See Also
set raconfig command, page 4-46
set rawrites command, page 4-48

4-121

•

tgtip (optional)

4-122

The "tgtip" environment variable specifies the target machine's
IP address when Virtual Ethernet is turned on (see "wordsize"
on page 4-126). This IP address determines which packets to
send to the target. Enter this address in dotted decimal form;
e.g., 192.3.4.5. (Note: Virtual Ethernet is an optional feature of
NetROM, it is enabled when the licensed Virtual Ethernet RAM
module is loaded.)

NetROM User's Manual

verify
The "verify" environment variable affects NetROM's behavior
as it downloads pod groups. Valid values for this variable are
on and off When "verify" is on, NetROM calculates the
checksum of hex records and compares the sum with the value
given in the record. The "verify" variable has no effect on binary
file downloads. Since verifying records involves additional
arithmetic steps, it will tend to slow the download process
slightly.

4-123

II

vether (optional)

4-124

The "vether" environment variable turns Virtual Ethernet on
and off. When the corresponding driver is running on the target
system, Virtual Ethernet enables NetROM to act as an Ethernet
interface for the target. Virtual Ethernet filters incoming
packets and sends those addressed to the target over the
dualport RAM interface to the target. Packets from the target
are transmitted on the Ethernet. (Note: Virtual Ethernet is an
optional feature ofNetROM, which is enabled when the Virtual
Ethernet RAM module is loaded.)

NetROM User's Manual

write mode

Note ~

Synopsis
setenv writemode {flash I static}

Description
The ''writemode" environment variable configures the type of
device which will be emulated when writing to emulation
memory from the target. This is important if both OE and WR
are asserted at the same time. With flash ROM emulation,
asserting OE and WR causes a READ cycle. With static RAM
emulation, asserting OE and WR causes a WRITE cycle. The
default is flash ROM.

This optional feature requires a factory hardware modification
to switch modes. The standard product emulates flash ROM .

4-125

•

wordsize

4-126

The "wordsize" environment variable indicates the width in
bits of the words emulated by the default pod group (which is
named by the "podgroup" environment variable). Valid word
sizes are 8, 16, and 32 bits.

The "wordsize" variable is related to the "romcount" and the
"podgroup" variables. The "podorder" contains within it the
combined information of the "romcount" and "wordsize"
variables. The ''podorder" variable will override both the
"romcount" and "wordsize" variables. However, the "romcount"
and ''wordsize" variables are probably more intuitive to use.
Without the "pod order" variable, the order of pods within the
default pod group is always the same. Figure 4-2 summarizes
the interactions of the "romcount" and ''wordsize" variables,
and gives the default values of the "pod order" variable for each
case.

NetROM User's Manual

I Chapters

Debugger Support
NetROM provides support for embedded systems developers
using remote debuggers. Remote debuggers are software
systems which run both on the host system and on the target.
Most remote debuggers use RS-232 serial links to connect their
target and host sides. NetROM removes the need for serial
links; data packets destined for the target system's half of the
debugger can be sent to NetROM over Ethernet and forwarded
from NetROM to the target along the configured debug path.
Similarly, data from the target will be forwarded by NetROM to
the host.

The NetROM approach has several advantages. First, it does
not require that the host system running the debugger user
interface have a serial port. Second, it allows the system side of
the debugger to use system calls which interface to a TCP/IP
network; this is often simpler and more portable than writing
software to program a serial link. Third, NetROM can be used
to debug target systems which do not have a serial port;
NetROM insulates the host side of the debugger from the details
of communicating with the target.

NetROM Debug Paths
NetROM provides three choices for the debug path to the target.
This allows the NetROM user to choose the option that best
suits the requirements of the development environment and
the target system. The first option is the serial debug path.
This works well in environments which currently use serial
links to communicate with the target. NetROM can be used in •
these environments with no target-side modification at all; the
target sends and receives debugger packets on its serial port.

Targets which do not have serial ports can be separated into
two categories: those which can write to their ROM space and
those which cannot. NetROM can pass messages to both types
of target systems using portions of emulation memory as
mailboxes. It uses two different mailbox protocols, one for each
type of target system. Details of these protocols are given in
Chapter 7. In sum, targets able to write emulation memory can
pass data to NetROM more quickly than those which cannot.
However, the protocol for targets which cannot write emulation
memory will work with all target systems.

Passing Data Across the Debug Path

5-2

The mechanism for host side debuggers to pass data to and
from the target system is quite simple. NetROM has a "daemon"
process, called "debugpathd," which listens on a specific TCP
port, the Debug Data Port. The port number of the Debug Data
Port is given in Appendix C. In order to send data to the target,
the host side of the debugger needs only to establish a TCP
connection to the Debug Data Port. This can be done in a
straightforward way on most system using well-defined system
calls. Data for the target can be sent on this connection and
data from the target can be received on it.

NetROM' s "debugpath" environment variable configures the
NetROM-to-target communication path. The default path uses
NetROM' s Target Serial Port. The path from NetROM to the
host system is independent of the NetROM-to-target path. The
target must be reset with the tgtreset command before changes
to the debugpath will take affect, even in the NetROM startup
file.

NetROM User's Manual

The Debug Control Port
In addition to simply providing a facility for passing data
between the host system and the target sides of a debugger,
NetROM provides a mechanism for debuggers to directly control
the target. This is done through the Debug Control Port. The
Debug Control Port is a TCP port (whose number is given in
Appendix C), which is monitored by the "debugctld" process.
The Debug Control Port allows the host side of the debugger to
communicate with NetROM, and allows it to perform many of
the functions which are available on the NetROM command
line. These functions include, among others, resetting the
target, examining and/or writing emulation memory, and
downloading a new image.

Currently the Debug Control Port simply accepts ASCII text in
the form of NetROM command line commands. There is no
mechanism for machine-readable feedback.

Debug Control Functions
These include resetting the target, displaying and setting
emulation memory, and downloading new images. The current
implementation of the Debug Control Port is that it simply
provides a command-line interpreter, similar to the NetROM
Control Port. Although this mechanism is likely to change in
the near future, current implementations can treat the Debug
Control Port connection as if it were a NetROM Control Port
connection and achieve results in the short term .

5-3

•

I Chapter6

Alternate NetROM Interfaces
NetROM can be used in environments which do not support
TELNET or TFTP. These protocols are essential for "normal
operation" because they make it easy for users to ''log in" to
NetROM or to download files to emulation memory using off­
the-shelf software. However, NetROM also provides facilities
that allow users to perform these same functions with software
they write themselves.

Non-TELNET Terminal Sessions
The NetROM "netromd" process listens on the NetROM Console
Port. This is a TCP port whose number is given in Appendix C.
In order to obtain a command-line interface to NetROM, it is
merely necessary to connect to this socket using standard
system calls which interface to TCP. Such a program could be
part of a simple terminal emulator, which monitors both its
local keyboard and the NetROM connection for activity, or it
could be part of a more complex program which wants to be
able to make NetROM perform various actions. An example of
the latter program might be an X-Windows interface to
NetROM which offers a point-and-click interface for commonly
used functions.

Unlike TELNET connections, the NetROM Console Port
connection is half-duplex, so characters NetROM receives will
not be echoed. This can be configured using the stty command;
see the description of stty for details. To exit the connection,
simply close the socket.

6-1

Non-TFTP File Downloads

6-2

It is possible to "send" a file to NetROM for download into
emulation memory, rather than have NetROM "request'' the file
with TFTP. This facility might be useful for the host side of
target system debuggers, if they wish to provide debugger
extensions which download new emulation images.

Downloading files without TFTP is done using a TCP socket.
There are three phases of the download. The first is initiating
the download. This is more complicated than simply connecting
to a socket, because it is necessary to specify which pod group
will be downloaded. The mechanism for initiating a download
is to send an ASCII string similar to a command-line command.
The string consists of a download command, which is only
available on the NetROM Console Port. The syntax for the
download command is identical to that of the newimage
command, except that the host= keyword and the filename
parameter are not recognized. If no connection is established
on the NetROM Download Port after a few seconds, the
download will be aborted.

The second phase is opening a TCP connection to the NetROM
Download Port. The number for this port is given in Appendix
C. To send the file, simply write its bytes to the connection. The
third phase of the download is termination. Simply close the
TCP connection to signal NetROM that the download is
complete.

NetROM User's Manual

Uploading Emulation Memory
It is possible to have NetROM "send" the contents of emulation
memory to the host system on a TCP connection. This might be
useful for verifying the contents of emulation memory. As with
downloading files, there are three phases of the upload process.
The first is initiating the upload. This is more complicated than
simply connecting to a socket, because it is necessary to specify
which pod group: will be uploaded. The syntax for the upload
command is "upload podgroup". This command is only
available on the NetROM Console Port. The command is
invoked with the number of the pod group to be uploaded, and
activates the NetROM Upload Port. The second phase is
opening a TCP connection to the NetROM Upload Port. The
number for this port is given in Appendix C. The contents of
emulation memory can be read as binary data from the Upload
port. The third phase is termination; upon reaching the end of
emulation memory for that group, NetROM will terminate the
connection. If no connection is established on the NetROM
Upload Port for a few seconds after the upload command is
issued, the upload will be aborted.

6-3

•

Chapter7

Emulation Memory Mailbox Protocols
NetROM provides two non-RS-232 protocols for communicating
with target systems. Both of these pass messages in emulation
memory. Potentially they can be very fast, since they are
essentially memory-to-memory transfers between NetROM and
the target system, and since the link between NetROM and the
host system is a high-speed LAN. NetROM provides two
protocols, because some targets, which cannot write to their
own ROM space, need to use an alternate mechanism to pass
messages to NetROM. This chapter describes in detail the
protocol used between NetROM and the target system. Sample
target-side implementations of these protocols are available
with NetROM free of charge.

Sharing Emulation Memory
In order to explain the implementation of target-NetROM
protocols in shared memory, it is necessary to describe some
aspects of ROMs. ROM devices do not have an "output valid"
signal. Instead, ROM accesses are, in some sense,
asynchronous to the system clock. The target asserts an
address on the ROMs address lines, waits a certain number of
system clock cycles, then latches in the data on the ROM
output lines. This sequence of events constitutes a ROM
memory cycle. Figure 7-1 shows how this works. This can be
considered asynchronous, because ROMs do not use the system
clock to latch asserted addresses or outgoing data.

7-1

Target NetROM

Target asserts
address X

Target waits N
clock cycles

Target latches
valid data

Data stabilizes in
emulation RAM

a. Normal Target Access

Target

Target asserts
addressX

Target waits N
clock cycles

Target latches
invalid data

NetROM

NetROM asserts
address Y

Data stabilizes in
emulation RAM,
NetROM waits N
clock cycles

NetROM latches
valid data

b. Net-ROM-Target (N-T) Contention

Target

Target asserts
addressX

Target waits N
clock cycles

Target latches
valid data

NetROM

Data stabilizes in
emulation RAM,
NetROM defers
asserting addres

NetROM asserts
address Y

NetROM waits N
clock cycles

NetROM latches
valid data

c. Target-NetROM (T-N) ~ntention

Figure 7-1 Memory Access and Contention Cycles

7-2 NetROM User's Manual

Memory Contention Issues
The timed method of accessing ROMs has unfortunate
consequences for passing messages between the target and
NetROM in emulation memory. If only one party; i.e., NetROM
or the target, accesses an emulation pod at a time, everything
is fine. In normal operation, only the target will access
emulation memory. However, when passing messages it is
necessary for both parties to read and possibly write to a
"ROM." This leads to two forms of contention.

The first form of contention occurs when NetROM accesses an
emulation pod, and the target attempts to access the same pod
before NetROM' s access is completed. There is no way for
NetROM's memory hardware to tell the target that the pod is
busy and that the target should expect a delay in receiving its
data. Instead, the target will wait its prescribed number of
clock cycles and latch in the wrong data. This situation is
shown in Figure 7-1. We shall refer to this as N-T contention,
since the NetROM, then the target, attempt to access the same
memory during a single memory cycle.

The second form of contention occurs when the target accesses
an emulation pod, and NetROM attempts to access the same pod
before the target's cycle is competed. Unlike the target side,
NetROM's hardware is capable of"holding off' the NetROM
ROM cycle until the target's is finished. Unfortunately, ifthe
target is very busy accessing that particular pod, NetROM' s
processor may be held off indefinitely. This is an undesirable
occurrence, and may cause bus errors on the NetROM side. We
shall refer to this form of contention as T-N contention, since
the target, then NetROM, attempt to access the same memory
during a single memory cycle (see Figure 7-1). Note that
although the target will get correct data during its access cycle,
there is no way to guarantee that it will "beat" NetROM to the
memory. Therefore, T-N contention is just as unreliable and
undesirable as N-T contention.

7-3

Dualport Emulation Memory

7-4

To address the problems ofT-N contention, NetROM provides
memory in emulation pod 0 which is "special." This memory is
dual ported, which means that it is capable of supporting, not
one, but two simultaneous access cycles. That is, when the
target asserts an address and begins its waiting period, the
NetROM is able to assert a different address and begin its
waiting period, and both parties will receive correct data. This
is different from normal ROM or RAM, which can only supply
data for one address at a time.

However, even dualport RAM does not completely solve the
problems which occur when both the target and NetROM access
the same memory location. When both parties access the same
address, contention again occurs. However, the bad effects of
the contention are much reduced. Dualport RAM supplies an
"address busy" signal which will cause the NetROM hardware
to back off during target cycles. The access will be completed as
soon as the target is done with its cycle; thus, T-N contention is
averted entirely. However, since this signal is ignored by the
target, the target may get corrupted data if it begins its cycle
after NetROM does, so there is still a potential for N-T
contention. This problem is particularly acute when the target
attempts to write data to dualport RAM; if it begins its write
cycle after NetROM begins a read cycle, the data which it
attempts to assert will be lost.

To solve the problems posed by N-T contention, which is an
unavoidable consequence of the way in which ROMs work,
NetROM uses a software protocol. This protocol uses messages
written into dualport RAM, and comes in two forms, one for
targets which can write their ROM space, and one for targets
which cannot. Both protocols essentially keep the NetROM from
accessing any address at the same time as the target more than
once. The address at which potential contention can occur is
well defined, and the target will read garbled data at most once.
This is because N-T contention can occur for only one cycle.
These two protocols are described in detail in subsequent
sections.

NetROM User's Manual

NetROM's 2048 bytes of dualport RAM is located in emulation
pod 0. Its location within the pod is configurable. This is
because the dualport memory is physically separate from pod
O's emulation RAM and can be substituted for any 2K portion
of pod 0. That is, the NetROM user can select the address at
which dualport memory will start. Subsequent accesses to the •
dualport address range will behave exactly the same as
accesses of normal emulation memory, except that contention
problems are reduced as described above. Note that if dualport
memory is moved, its contents will move with it. This means
that if dualport memory overlaps part of, say, the target
system's executable image, and dualport RAM's address is re­
mapped, that part of the target system's image will appear to
move. This is shown in Figure 7-2. The lesson to this is twofold:
don't allow dualport RAM to overlap image data if possible,
and, if an overlap is necessary, re-download the image after
moving dualport RAM. Note that the address of dualport RAM
is affected by NetROM resets, so setting its location should be
part of the NetROM startup file. The address defaults to the
highest-addressed 2Kbytes emulated by pod 0.

7-5

PodO PodO

2048 Bytes ___..... XXX

• •
• ... •
• •

zz.z

Dualport at address N*2048 Dualport at address 1 *2048

Figure 7-2 Re-mapping Dualport RAM

The Dualport Message Structure

7-6

Messages written to dualport memory employ a common
structure, whether the target system is write-capable or not.
Naturally, read-only targets cannot write messages; they use
the read-address memory protocol described below.

Dualport message structures (DMSs) have three parts, a flags
part, a size part, and a data part. Each of these parts is of a
fixed size, as described in Figure 7-3. Essentially, the party
writing the message to dual port RAM writes the data, then the

NetROM User's Manual

size, then the flags. Most of dualport RAM is used as arrays of
these structures, one array written by NetROM and possibly
another array written by the target. A more complete
description of the arrays is given for the particular protocol
used by the target.

16 Bytes

\
4 Bytes

I
~-)II Flags (2 bytes)

(a) Dualport Message

~-)I Size (2 bytes) Structure Layout

D•)I Data (60 bytes)

15 87 0 15 87 0 Bit# Bit Name

I MSB LSB I 0 START
1 END
15 READY

BYTEO BYTE 1 BYTEO BYTE 1

(b) Dualport Size Field (c) Dualport Flags Field

Figure7-3 Dualport Message Structure

The Size field is interpreted as a big-endian value; that is, the
lower-addressed byte contains the more significant bits of the
address. The layout of the Size field is given in Figure 7-3.

The Flags field is used to indicate when the message is
complete and ready to be processed by the recipient, whether

7-7

7-8

the particular message is the start, end, or both, of a larger
message, and whether the particular message is the last of a
given array. The layout of the Flags field is given in Figure 7-3.
Note that the byte containing the READY bit should be written
last, after all other bytes of the message are valid.

V= Flags

V= Flags

Process V
(true value
of Flags)

Yes

Figure 7-4 Target Validating Dualport Flags

While the target system is waiting for a message to arrive from
NetROM, it will poll the Flags field of the next expected
message. Note that, due to N-T contention, the target may
detect a change in the value of the Flags field, but it cannot be

NetROM User's Manual

sure that it has read the correct value until it has read it twice
without seeing a change. Both of the dualport protocols
guarantee that NetROM will only write the Flags field once, so
once the target sees a "stable" value, it knows it is valid.
Reading other message fields twice is unnecessary, since the
protocol is set up to only allow potential contention to occur on
the Flags field. The flowchart in Figure 7-4 depicts the target
system reading and verifying the Flags field of a dualport
message structure.

Read-address Memory
As has been described above, it is not a good practice to have
both NetROM and the target constantly accessing ("polling") the
same area of memory. More particularly, if NetROM is
constantly polling an address waiting for the target to write
something, N-T contention may corrupt the target's written
data, and may also prevent the target from reading back what
it wrote to verify its correctness. Thus target-to-NetROM
communication using dualport RAM is interrupt driven. The
mechanism for this is read-address memory.

NetROM's read-address memory is another special area of pod
O; 256 bytes in size, it is separate from dualport memory, but
part or all of it may overlap dualport memory. When the target
reads from this address range, the offset of the address read is
latched by NetROM's memory hardware and an interrupt is
generated to NetROM's processor. This enables two things to
happen. First, it provides the target with a means to inform
NetROM of events via interrupts. An example of such an event
might be the target writing a message into dualport RAM. Note
that using this mechanism to notify NetROM of messages
waiting to be read allows NetROM to avoid polling "flag"
locations and possibly garbling the target's attempt to write
them. The other aspect of read-address memory is that the 8-
bit offset latched in by NetROM' s memory hardware can be
interpreted as an 8-bit data value. Thus, targets which cannot
write to their own ROM space can use read-address memory to
pass data to NetROM.

7-9

I

•

7-10

Read-address memory is similar to dualport memory because
its address is relocatable. Current implementations of the
dualport protocol locate the read-address memory at the low­
addressed end of dualport RAM, so that when dualport RAM
moves, so does the read-address RAM. Read-address dualport
RAM can be written by hosts capable of doing so, but any
access, even a write to this range of memory will cause address
latching and an interrupt to NetROM. To prevent this from
causing confusion for write-capable targets, NetROM is able to
selectively enable portions of the read-address RAM, and in
fact enables only the first 8 bytes of it for targets using the
read-write dualport protocol. When the target system is not
using a dualport protocol the read-address RAM's interrupt
capability is disabled entirely. Other than causing interrupts to
NetROM's processor, read-address memory is completely
normal dualport RAM.

NetROM will receive only one interrupt from the target, no
matter how many times the target reads read-address memory,
and that only the first address read will be latched. Only after
NetROM has serviced the interrupt and read the latched value
will a new interrupt and associated value be enabled. NetROM
requires a software protocol to make practical use of the read­
address memory. Essentially, NetROM will set a flag in
dualport RAM indicating that it is ready to receive read­
address interrupts. The target may then read some address
within the enabled read-address range. NetROM will service
the interrupt this causes, read the latched 8-bit offset for the
start of read-address memory, and increment an
"acknowledge" byte in another part of dualport RAM. The
target polls the "acknowledge" address after it reads looking for
the incremented value. Note that, due to N-T contention, the
target needs to read the "acknowledge" value two or more times
to verify the value that was written. This is the same process
as that depicted in the flowchart in Figure 7-4, which shows the
target reading and verifying the Flags field of a dualport
message structure. The variations on this, the read-address
protocol, are given for each variety of the dualport mailbox
protocols.

NetROM User's Manual

Note

NetROM supports target systems whose memory interface
hardware is always "burst reads" from emulation memory. In
older implementations of the read-address protocol, this caused
problems on 32-bit systems which ran from a single 8-bit ROM.
The target processor's memory interface hardware on such
systems may read 4 consecutive bytes to assemble a single 32- •
bit word to present to the processor. If the interface always
reads 32 bits, even on a byte access, then the effective size of
the read-address area of dualport memory is 256/4 = 64. To
accommodate such target systems, NetROM can be configured
to expect burst reads, and the sample implementation of the
target-side interface driver has been changed to take burst
reads into account. Consult documentation on the set raconfig
command for more information.

NetROM version 1.2.6 will not interoperate with targets
running the previous version of the read-address protocol.

Read-write Targets
The dualport readwrite protocol may only be used by target
systems which are capable of writing.to their own ROM space.
Such systems include those which use FLASH ROMs capable
of being reprogrammed by the target system's processor with
new images. The readwrite protocol allows the target system
and NetROM to exchange data in chunks the size of the DMS
data field (described in Figure 7-3). This amounts to a memory­
to-memory transfer between the target system and NetROM' s
processor.

Figure 7-5 shows the layout of dualport memory when the
readwrite protocol is used. Remember that dualport memory
may be mapped anywhere within pod 0, and that its default
location is at the top 2K of the ROM emulated by pod 0. Note
that dual port RAM is divided into two arrays of message

7-11

structures; one array is written by the target, and the other by
NetROM. Note also that the first 64 bytes of dualport memory
is used for a configuration/status structure, and that read­
address memory overlaps its first 8 bytes.

The configuration/status structure has only three active one­
byte fields; the remaining bytes of the structure are reserved
and should not be accessed. The TXA and RXA bytes are set to
one by NetROM when the transmit and receive arrays (or
channels) become active at the start of a session. The target
should verify that they are set before performing any activity
in dualport RAM. However, once set, they will remain set until
the target system is reset with the tgtreset command. The
address of the MRI, or Message Ready Indicator, is used to
indicate to NetROM that the target has written a message. Note
that it is part of the Interrupt Area (and the only part of the
Interrupt Area shared with the Read-write RAM), so reading
its address sends an interrupt to NetROM.

Read-write Target-to-NetROM Message

7-12

The flowchart in Figure 7-6 depicts the target system sending
a message to NetROM, and Figure 7-3 describes the message
structure. Sending a message has three stages. The first is
obtaining the next free message structure. A free message
structure is one in which the READY bit is not set. If this bit
were set in the message, it would mean that NetROM had not
yet processed the message, which must have been written
previously. The target system should wait, or perform other
processing, until the next DMS structure becomes free. The
second stage is writing to the message data and length fields.
This is done in a straight forward way. The third and final
stage is notifying NetROM that the message is ready. This
entails setting the READY bit in the message's Flags field, and
reading the MRI byte. (The actual data at the MRI address is
meaningless.) When NetROM has received the interrupt and
processed the message, it will clear the READY bit in the Flags
field, and the target may reuse the structure.

NetROM User's Manual

low address

Configuration/Status Structure 64 bytes

RX Message Structure O 64 bytes

...

RX Message Structure 14

TX Message Structure O

...

TX Message Structure 15

high address

Configuration/Status Structure

I MRI I Rese~ed ITXA IRXA I Rese~ed I
i 54bytes ~ 7bytes ~

..c ..c
._I _ __ __,I
Readaddr Memory

Figure 7-5 Dualport Read-write RAM

Read-write NetROM-to-target Message
The flowchart in Figure 7-6 depicts the target system receiving
a message from NetROM. Like sending a message, receiving a

· message has three stages. The first is detecting a new message.
Since NetROM cannot send an interrupt to the target system,
the target must "poll" the Flags field of the next message it
expects to get. Due to possible N-T contention, it must verify
the Flags value by reading it twice. The second stage is copying

7-13

•

7-14

ReadNerify Flags

Write message
data and size

Set READY bit
and read MRI byte

the data out of the message structure and processing it. The
third stage is clearing the READY bit in the Flags field, which
returns the message structure to NetROM for reuse.

Yes

Read/Verify Flags

Copy message
data

Clear READY bit

Yes

a. Sending a message with the
readwrite protocol.

b. Receiving a message with the
readwrite protocol.

Figure7.0 Dualport Protocol for Read-write Target Systems

NetROM User's Manual

Read-only Targets
The dualport mailbox readadd protocolr may be used by any
target system. It is particularly useful for targets which have •
no serial port, and which cannot write to their own ROM space.
NetROM sends messages to the target using dualport message
structures, and the target sends acknowledgments and data to
NetROM via the read-address memory mechanism. Figure 7-7
shows the layout of dualport memory when the readaddr
protocol is in use.

Remember, dualport memory may be mapped anywhere within
pod 0, and that its default location is at the top 2K of the ROM
emulated by pod 0. This protocol places the entire 256-byte
read-address memory at the start of dualport RAM, and divides
it into two sections: data section and control section.

The data section ofread-address memory is used by the target
to pass data bytes to NetROM. That is, if a read-address
interrupt is determined to have been caused by a target access
of this area, the 8-bit value obtained from the read is
interpreted as "frame data" destined for the host system, not
the NetROM unit.

Note that the layout of the data area is not rigidly defmed. This
is because some target systems do not have ROM interface
hardware that is capable of making a single access to ROM
space, even when attempting to read only a single byte. For
example, some targets might have 16- or 32-bit processors
reading their opcodes from a single 8-bit ROM. Hardware
designers for these systems may decide not to support single 8-
bit accesses to the ROM space, but instead to burst read 2 or 4
bytes even when the processor requests only 1. Other systems
may include ROM space in cached memory and perform burst
reads from ROM for that reason. If possible, burst refills of
cache from the read-address data area should be disabled since
they reduce the performance of the read-address protocol.

7-15

7-16

a. Read-only RAM layout

256-byte ASCII Read-Address Data

b. Configuration/Status Structure

RX Message Structure O

RX Message Structure 26

BACK Unused

62 bytes

Figure 7-7 Dualport Read-only RAM

Most target systems support byte read accesses to ROM. Burst
reading is only a problem if multiple bytes are read from pod O;
other pods do not send interrupts to NetROM. Do not configure
NetROM for burst accesses unless you are sure that is what
your target is doing. If your target system is performing burst
accesses, the effective size of the read-address data area is
reduced. This is because sending a character to NetROM
requires a software handshake (described in "Read-only
Target-to-NetROM Message" on page 7-19), and if the target

NetROM User's Manual

RACONFIG=1

BASE 0
+1 1
+2 2

(DATA
AREA)

~
BASE +OxF8 J;lack

ESC
set

(CONTROL start
AREA) end

res~
re~c
misc

reads 2 or 4 addresses in quick succession, NetROM will only
latch the first address read. Thus, burst reading 2 bytes halves
the effective number of interrupt-causing addresses; a burst
read of 4 bytes reduces it to a quarter of its original size .

RACONFIG:2 RACONFIG=4

BASE 0 BASE 0
+2 1 +4 1
+4 2 +8 2

~
(DATA
AREA)

~
~

(DATA
AREA) v-1 BASE +Ox38 oac'

i::sc
set

(CONTROL start
AREA) end BASE +Ox78 oacl reset

i=~<
re~c

set misc (CONTROL start
AREA) end

reset
rewc
misc

Figure 7-8 Read Address Protocol Interrupt Area

Figure 7-8 shows the layout of the read-address data area for a
variety of target types. To configure NetROM for burst reads of
pod 0, use the set raconfig command.

Part of the data area is set aside to send "out-of-band"
information to NetROM. This can include packet delimiter

7-17

•

7-18

characters, escape characters, and so on. These characters are
described in more detail in "Read-only Target-to-NetROM
Message" on page 7-19. The current implementation of the
read-address protocol allows for eight out-of-band characters.
The first seven have specific functions. The eighth, "misc," will
look at the next character to further parse a sub function. The
first sub function is "rx_intr_ack." The address of the first out­
of-band character is determined by the target's read behavior,
as shown in Figure 7-8. The data value corresponding to this
address is referred to as the out-of-band threshold for the
target.

The configuration/status structure of the readaddr protocol,
shown in Figure 7-7, is used by NetROM to pass data to the target.
This structure has three fields; the first is the RI, or Ready-for­
Interrupt, byte, which is set to one when NetROM is ready to
process, i, readaddrr: protocol interrupts. The target system
should always make sure this byte is set before sending any data
using the readaddr protocol, because NetROM will not detect
missed interrupts. The second field is the BACK byte, which is
incremented by one each time NetROM processes a read-address
interrupt, that is, receives a byte from the target. Thus, the target
needs to check the RI byte before reading from the data section,
and the BACK byte after reading. The third section is reserved
and should not be accessed by the target system.

Note since the configuration/status structure is not located in
the interrupt-causing read-address data area there is not need
to adjust addresses in the structure in response to the target's
read behavior. Addresses in the configuration/status structure
and the receive message structures are not affected by burst
reads from pod 0.

NetROM User's Manual

Read-only Target-to-NetROM Message
The flowchart in Figure 7-9 shows how the target can send a
message (a single byte at a time) to NetROM. Sending each
character has three stages; the first is verifying that NetROM is
ready to receive the character. This is done by checking the RI •
byte in the control/status structure. Note that this must be
done twice to prevent possible N-T contention. The second
stage is reading the appropriate address in the data section.
The offset of the address read from the start of read-address
memory provides the value of the byte being sent. (The
contents of the data section are undefined and meaningless).
The third stage is waiting for NetROM to acknowledge the data
just sent by the target. This is done by polling the BACK byte
in the control/status section. When the BACK byte is
incremented, the data has been received. Note that this must
be done twice due to possible N-T contention.

The semantics of the five out-of-band characters described
below. Each character is acknowledged in exactly the same way
as a normal data character, by an increment of the BACK byte
in the configuration/status structure. However, these
characters are not passed directly from the target system to the
host system; instead, they are interpreted directly by NetROM.
Remember that the addresses of these characters is
determined by the target system's memory interface hardware.
NetROM can be configured for burst reads of pod 0 via the set
raconfig command.

The remaining three out-of-band characters are reserved and
should not be used by the target.

7-19

Read I verify
RI byte

V=BACK byte.
Read data section.

Read I verify
BACK byte

7-9a. Sending a byte with
readaddr protocol.

Read I verify
Flags

Copy message
data

Send BACK
character

7-9b. Receiving a message
with readaddr protocol.

Figure 7-9 Dualport Protocol for Read-only Target Systems

7-20 NetROM User's Manual

Acknowledging Packets from NetROM
The PACK character is used to acknowledge a block of data
sent from NetROM to the target in one of the receive message
structures. Sending this character causes NetROM to clear the
READY bit in the oldest outstanding message structure. Note
that this character is used to acknowledge a single message •
structure, not a whole message delineated by START and END
bits.

Sending 8-bit Data
The ESC character is used when the target wants to send an 8-
bit value whose address is greater than the number of available
data addresses. For example, most targets can only send values
of up to OxF8, since higher values are interpreted as out-of­
band characters. When NetROM receives an ESC character, it
will add the value of the out-of-band threshold to the next
character received. Thus, in our example, to send a value of
OxFC, the target would send two characters: ESC, then 4. On a
target which performs 4 burst reads from pod 0, the out-of­
band threshold is Ox38. Since OxFC = (0x38 * 4) + OxlC, in
order to send our example value, this target would have to send
the following sequence: ESC, ESC, ESC, ESC, OxlC.

Setting Emulation Memory
The SET character is used when the target wants NetROM to
modify the contents of emulation memory. Modifying
emulation memory is often useful for patching code, setting
breakpoints, and so on. However, some target systems do not
have a write line connected to their ROM sockets and cannot
use the external write line for hardware timing reasons. Also,
some ROM types, such as the 27c040, cannot be written
directly by the target system. Such systems can use the SET
character to request that NetROM modify the contents of
emulation memory for them.

The SET sequence consists of six characters, as follows: SET,
off_O, off_l, off_2, off_3, val. Each character in the sequence is
acknowledged as usual, with an increment of the BACK
character. Each character following the SET character is an 8-

7-21

7-22.

bit value, and may be sent using an ESC sequence as described
above. The first four characters following the SET character
represent the offset of the 8-bit value to be written within
emulation memory. Offset bytes are sent most-significant-byte
first. For example, assume that the target wishes to set
memory address Oxbfc163fe to Oxa2. Further, assume that the
target does not burst read pod 0 and that its ROM space starts
at address OxBFCOOOOO. Then the offset at which it wishes to
set memory is Ox163fe, and the character sequence it should
send is: SET, OxOO, OxOl, Ox63, ESC, Ox06, Oxa2.

There is an important caveat when using NetROM to modify
emulation memory. If the target is running from ROM it is
quite possible that N-T contention during NetROM's write cycle
will cause the target to read a bad opcode and crash. To avoid
this, the target should jump to RAM prior to sending the value
character at the end of the SET sequence. The target should
run in RAM until the value character has been acknowledged,
then return to running out of ROM. The sample target-side
implementation of the dualport driver, described in "An
Example Target Implementation" on page 7-23, avoids N-T
contention by jumping to RAM. Feel free to obtain the source
code if you would like to see how it does this.

Sending Packetized Data to NetROM
The START and END characters are used to delineate a
complete message being sent to the host. Normally, NetROM
sends characters to the remote host as they are received. On
TCP-based connections, this happens when the TCP protocol
determines that enough outgoing characters have been
queued, or enough time has elapsed, that a packet should be
sent. The START and END characters can be used to send an
entire block of data to the network interface. On TCP-based
connections, this will not necessarily have a dramatic effect,
but for host systems using a UDP transport, this allows the
target to control the size and frequency of UDP packets sent
from NetROM to the host.

NetROM User's Manual

Read-only NetROM-to-Target Message
The flowchart in Figure 7-9 depicts the target system receiving
a message from NetROM. Note that it is very similar to the
target's receive procedure for the readwrite protocol. However,
since the target cannot clear the READY bit in an incoming •
message's Flags field, it must send an "acknowledge" character
to NetROM by reading a byte at the address of PACK in the
control section.

An Example Target Implementation

Routine

config_dpram

set_dp_blockio

dp_chanready

ra_putch

The following code is excerpted from a target-side
implementation of the dualport mailbox protocols. The full
source code is available free of charge from Applied
Microsystems with your NetROM unit. This section briefly
describes some of the entry points available to the user of the
sample code, and then describes in detail the steps needed to
port the code to a generic target system.

Table 7-1 Target Implementation Routines

Description

Initializes control structures and configures the target to use
the readaddr; or the readwrite; protocol.

Allows the target programmer to set or clear a bit in the
control structure. When set, the interface routines merely
poll for data and return if none is present. Otherwise they
will wait for data to appear.

Returns 1 if the NetROM is ready to process messages; 0
otherwise.

Sends a character to the NetROM using the read-address
protocol. This routine handles all of the appropriate software
handshaking.

7-23

Routine

ra_setmem

chan_putch

chan_flushtx

chang_getch

ra_getmsg

chan_getmsg

ra_putmsg

ra_reset

ra_resync

ra_emoffonwrite

chan_putmsg

ra_rx_intr_ack

7-24

Table7-1 Target Implementation Routines (Continued)

Description

Sends break.point code to emulated ROM for a read-only
target system.

Sends a character to the NetROM using the readwrite
protocol. Actually, it stores characters until the message
structure is full or chan_flushtx() is called. This reduces
protocol overhead.

Sends any characters which have been stored but not yet
passed to the NetROM. Used only with the readwrite protocol.

Reads a character from the NetROM, if one is present.

Reads a complete message from dualport memory, when
using the read-address protocol.

Reads a complete message from dualport memory, when
using the readwrite protocol.

Sends a complete message, delineated by the START and
END out-of-band characters.

Requests NetROM to reset the target.

Requests NetROM to re-initialize its dual port parameters.

Requests NetROM to tum off emulation memory before
modifying memory via the ra_setmem call.

Sends a complete message, possibly consisting of several
dualport message structures, delineated by the START and
END bits in the structures flags fields.

Acknowledges receive interrupt.

The sample implementation provides character-oriented input
and output, message-oriented input and output, a mechanism
to see if data from NetROM is available without reading it (a
polling routine), and a mechanism to request that NetROM
modify the contents of emulation memory. All routines can be

NetROM User's Manual

run in a ''blocking" or "non-blocking" mode. The sample
implementation supports both the readwrite and the read­
address versions of the mailbox protocol. Table 7-1 lists the
routines provided in the sample implementation .

Porting the Sample Implementation
The amount of code in the driver which needs to ported to a new
target system is very small. Figure 7-10 shows the entirety of
the code which requires porting. This code is from the include
file dptarget.h; in fact, most of the code probably does not need
to be changed for a particular target system

/* target-native data storage */
typedef unsigned long uint32;/* 32 bits unsigned*/
typedef unsigned short uint16;/* 16 bits unsigned*/
typedef short Int16;/* 16 bits signed*/
typedef unsigned char uChar;/* 8 bits unsigned*/
/* prevents private stuff from appearing in the link map */
#defineSTATICstatic

/*macro to allow other processes to run in a multitasking sytem
*/
#define YIELD_CPU()

/* Size (in bytes) of the ram-based routine used by read-only
target systems to communicate with NetROM while NetROM sets em­
ulation memory. See routine ra_setmem_sendval() .*/
#define RA_SETMEM_RTN_SIZE512

/* dualport access macros */
#defineREAD_POD(cp, addr) \

(* ((volatile uChar *) ((cp)->dpbase + ((cp)->width *
(addr)) + (cp)->index)))
#defineWRITE_POD(cp, addr, val) \

(* ((volatile uChar *) ((cp)->dpbase + ((cp)->width *
(addr)) + (cp)->index))) = (val)

Figure 7-10 Target-Native Data Storage

The first section of the include file provides target-native
storage types. These are used internally to the driver file

7-25

•

dptarget.c and the other include file, dualport.h; note that
dualport.h does not require porting to new platforms.

The STATIC macro is provided to prevent non-entry-point
routines from appearing in the target system's link map and
conflicting with similarly named routines in the target code.
The YIELD_CPU macro is provided for target systems which
(a) have a non-preemptive operating system which uses system
calls to initiate context switches, and (b) want to use the
dualport driver in a blocking mode. Note that blocking mode is
disabled by default; to enable blocking, use the
set_dp_blockio () entry point, described below.

The RA_SETMEM_RTN_SIZE is used for target systems
which would like to use the read-address protocol to request
that NetROM modify the contents of emulation memory. This
macro gives the number of bytes in the
ra_setmem_sendval () routine, which is copied into a ram
buffer before being executed. Consult "Read-only Targets" on
page 7-15 to see why this is done. The default value for
RA_SETMEM_RTN_SIZE is probably larger than necessary,
which will not cause a problem. To ''tune" the macro to the size
of the routine, you will need to determine the size of
ra_setmem_sendval () from the link map.

Finally, the READ_POD and WRITE_POD macros do not
actually need to be ported, but if a target implementor is
willing to sacrifice generality of the sample driver, he or she
can improve performance by modifying these macros.

Sample Implementation Entry Points

7-26

The sample implementation provides support for both the
readwrite protocol and the read-address protocol. To cause code
for the appropriate protocol to be compiled, the
READWRITE_TARGET macro, the READONLY_TARGET
macro, or both, should be defined on the compiler's command
line. This section describes the common entry points used for
both protocols and the entry points that are specific to each. If
the only part of the readaddr protocol being read is that part
which sends requests to the NetROM to modify emulation

NetROM User's Manual

memory, then both the READONLY_TARGET and the
RAWRITES_ONLY macros should be defined.

Common Entry Points
This section describes entry points used by both the read­
address and the readwrite protocols. There are a number of
references to "channels" in this and subsequent descriptions.
These are intended to allow dualport emulation memory to be
subdivided into logically separate communications channels,
similar to having multiple serial ports. In the current
implementation of the driver, only one channel is supported;
thus, when a channel number parameter is necessary, use
channel 0.

7-27

config_dpram

7-28

Synopsis
int config_dpram(base, width, index, flags, numaccess­
es)
uint32 base;
int width, index, flags, numaccesses;

Description
This routine initializes the dualport driver's internal data
structures. It also tells the driver where dualport memory is in
ROM space and how to access it. The base parameter is the
address of the start of dual port memory. The width parameter
is the number of bytes in a ROM word, and the index
parameter refers to which byte of the ROM contains pod 0.
Bytes are numbered in the ''big-endian" order, in which the
byte at the word address has index zero. The flags parameter
indicates which dualport protocol should be used by the driver;
the two choices are DPF _READONLY_TGT and
DPF _ONECHANNEL, where the former selects the read­
address protocol and the latter selects the readwrite protocol.
Finally, numaccesses tells the driver how many accesses to
pod 0 the target's memory interface hardware will make when
reading a single byte.

Figure 7-11 shows the interaction of base, width, index, and
numaccesses for a variety of target configurations.
Config_dpram() returns 0 if successful and (-1) ifthere is
some sort of error. This routine should be invoked to configure
the dualport interface structures before calling any other
driver entry points.

NetROM User's Manual

(a) 32-bit Processor

PODO POD1 POD2 POD3

Rombase -------- base=Rombase+OxFEOOO
Rombase +4 width=4

index=O
numaccesses:1

Rombase+
OxFCOOO

(b) 16-bit Processor
POD1 PODO

Rombase base=
Rombase +2 ---- Rombase+Ox4000

Rombase+
Ox4000

Rombase+
Ox5000

i---....---1 width=2
index=1
numaccesses:1

Dualport RAM

Target words containing
dualport RAM

(c) 32-bit Processor
word addressses only

Rombase
Rombase +1

Rombase+
Ox3F800

PODO
base=

Rombase+Ox3FSOO
width=2
index=O
numaccesses:1

Figure 7-11 Effect of Target Memory Interface in Dualport Protocol

7-29

•

set_dp_blockio

Note ~

7-30

Synopsis
void set_dp_blockio(chan, val)
int chan, val;

Description
This routine sets or clears the CF _NOW AITIO flag in the
driver interface control structure. When set, the driver
operates in a "non-blocking" mode. In non-blocking mode, if the
transmit or receive routines need to wait for something, they
return with an appropriate error code rather than blocking and
waiting. When the flag is clear, the driver operates in a
"blocking" mode; routines to get and send characters or
messages will repeatedly invoke the YIELD _CPU macro rather
than return with an error code. If the YIELD_CPU is defined
to be a system call, that system call will be performed; if it is
defined to be "null" the routine will busy-loop waiting for the
event it needs.

The chan parameter is the channel affected by the call to
set_dp_blockio ().The val parameter, if nonzero, causes
the interface to run in blocking mode; if clear, causes the
interface to run in non-blocking mode.

The only channel currently supported is channel 0.

NetROM User's Manual

dp_chanready

Note W

Synopsis
int dp_chanready(chan)
int chan;

Description
This routine returns 1 if the dual port channel given by the
chan parameter is active and if NetROM is ready to use it to
communicate with the target. If this routine returns 0, the
target should not attempt to perform 110 on the channel. A zero
return value may indicate a configuration error on the NetROM
side, or it may indicate that NetROM has not received a console
path or debug path connection on which to forward data
received on the channel.

The only channel currently supported is channel 0.

7-31

I

•

chan_kbhit

Note W

7-32

Synopsis
int chan_kbhit(chan)
int chan;

Description
This routine checks to see if a character is waiting to be read
from the dual port protocol interface. If so, it returns 1; if not, it
returns 0. This routine will work with either dualport protocol,
and will work with character- or message-oriented 1/0.

The only channel currently supported is channel 0.

NetROM User's Manual

Read-address Protocol Entry Points
This section describes the programmatic interface to the read­
address protocol's entry points. Using ra_setmem() does not
require the target implementor to use the entire read-address •
protocol. Consult the documentation on the set rawrites
command for more information.

7-33

ra_emoffonwrite

7-34

Synopsis
int ra_emoffonwrite

Description
This routine sends a request to NetROM to turn off emulation
memory before modifying memory via a ra_setmem call.

Use this routine when you are having trouble with the
ra_setmem call. For example, if you are unable to set
breakpoints in ROM space because the board logic does not
release the ROM control to allow NetROM access, call
ra_emoffonwrite before ra_setmem().
The routine only needs to be called one time. A suggested place
to call the routine is after the conf ig_dpram function call.

NetROM User's Manual

ra_getch

Synopsis
int ra_getch()

Description
This routine reads a character from the read-address receive
message structures, if one is available. If one is not, and the
interface is in blocking mode, the routine will wait for one to
arrive. Ifin nonblocking mode, the routine returns a -1.

7-35

•

ra_putch

7-36

Synopsis
void ra_putch(ch)
uChar ch;

Description
This routine sends a character to NetROM using the read­
address protocol. If NetROM has not set the RI byte in the
configuration/status structure for the read-address protocol,
ra_putch () will wait for it to be set. This routine will handle
all ESC sequences which need to be inserted to send the
character. When the routine returns, NetROM will have
received the character.

NetROM User's Manual

ra_getmsg

Synopsis
int ra_getmsg(buf, len, bytesread)
uChar *buf;
int len, *bytesread;

Description
This routine reads a message from the read-address protocol's
receive message structures. The buf parameter is a pointer to
the receive buffer, the len parameter is the number of bytes in
the buffer, and bytesread is filled in by ra_getmsg () with
the number of bytes read into the message.

When used in a polling mode, ra_getmsg () returns one of four
status values: GM_NODATA indicates that no data has
arrived since the last poll; GM_MSGCOMPLETE indicates
that new data has arrived and that the input buffer now holds
the complete message; GM_NOTDONE indicates that data has
arrived but that the message is not yet complete;
GM_MSGOVERFLOW indicates that more data has arrived,
but that it has overflown the input buffer. In a non-polling
mode, ra_getmsg () will return either GM_MSGCOMPLETE
or GM_MSGOVERFLOW.

The following shows an example of using ra_getmsg () (or
chan_getmsg ())in non-blocking mode to receive entire
messages.

7-37

•

7-38

/* reads a message from dualport ram */
int readmsg(buf, lenp)
uChar *buf;
int *lenp;
{ uChar *curbuf;

int bytesleft, bytesread, status, errcount;
uint32 cacr;
curbuf = buf;
bytesleft = *lenp;
errcount = O;
status = GM_NODATA;
while(status != GM_MSGCOMPLETE)

bytesread = 0;
#ifdef READONLY_TARGET

status= ra_getmsg(curbuf, bytesleft, &bytesread);
#else /* READONLY_TARGET *I

status = chan_getmsg(O, curbuf, bytesleft,
&bytesread) ;

#endif /* READONLY_TARGET */
switch(status) {
case GM_NODATA:/* nothing present */

break;
case GM_MSGCOMPLETE:/* got a complete message */

bytesleft -= bytesread;
*lenp = *lenp - bytesleft;
break;

case GM_NOTDONE:/* got part of a message */
bytesleft -= bytesread;
curbuf += bytesread;
break;

case GM_MSGOVERFLOW:/* reset all pointers,
we ran out of room */

curbuf = buf;
bytesleft = *lenp;
errcount ++;
break;

default:
errcount ++;
break;

return (status) ;

Figure 7-12 Using ra-getrnsg to receive a message

NetROM User's Manual

ra_putmsg

Synopsis
void ra_putmsg(buf, len)
uChar *buf;
int len;

Description
This routine sends an entire message to NetROM using the
read-address protocol. The message will be delineated by the
START and END out-of-band characters. Ra_putmsg () will
take care of all ESC sequences that need to be included in the
course of transmitting the message.

7-39

•

ra_setmem

7-40

Synopsis
void ra_setmem(ch, addr, buf)
uchar ch;
uint32 addr;
uChar *buf;

Description
This routine sends a request to NetROM to modify the contents
of emulation memory. The ch parameter is the 8-bit value to be
written. The addr parameter is the 32-bit offset from the start
of emulation memory to be modified. For example, if ROM
starts at OxFCOOOO and the target system wishes to modify
address OxBFC163FE, the addrparameterwould be Oxl63FE.
The buf parameter is a pointer to a buffer from which the set
request will execute. It is necessary to run from RAM during
parts of the set request to avoid potential memory contention
problems when NetROM executes the write. Consult "Setting
Emulation Memory" on page 7-21, above, for more information
on the read-address protocol and setting emulation memory.

The ra_setmem() routine will send the offset and data value
in the order expected by NetROM, and will insert any ESC
characters necessary. The buffer pointed to by ''buf' must be
32-bit aligned and contain RA_SETMEM_RTN_SIZE bytes of
storage. It is the responsibility of the target system
implementor to verify that RA_SETMEM_RTN_SIZE is
greater than or equal to the size of the driver routine
ra_setmem_sendval (),which is what is actually copied into
the buffer.

NetROM User's Manual

ra_reset

Synopsis
int ra_reset

Description
This routine requests NetROM to reset the target. The routine
returns a 0 if the NetROM is not ready or it returns a 1 when
done.

The routine may not have time to return when the target is
reset.

7-41

ra_resync

7-42

Synopsis
int ra_resync ()

Description
This routine requests the NetROM to re-initialize (resync) the
dual port parameters. The routine returns a 0 if the NetROM is
not ready or it returns a 1 when done.

A monitor could use ra_resync if it switches from running in
EPROM to running in RAM and therefore will re-initialize
itself. This routine could be called just before the switch to tell
NetROM to re-initialize the dual port parameters so the target
and the NetROM will be in sync when the target re-initializes.

NetROM User's Manual

ra_rx_intr _ack

Synopsis
int ra_rx_intr_ack

Description
This routine acknowledges a previous interrupt to the target.
The routine returns a 0 if the NetROM is not ready and returns
a 1 when done. This routine can help prevent nested
interrupts.

7-43

This page is intentionally left blank.

7-44 NetROM User's Manual

Readwrite Protocol Entry Points
This section describes the programmatic interface to the
readwrite protocol's entry points. Before using the readwrite
protocol, make sure that the NetROM's "groupwrite"
environment variable has been set to readwrite.

7-45

chan_getch

7-46

Synopsis
int chan_getch(chan)
int chan;

Description
This routine reads a character from the readwrite receive
message structures for channel chan, if one is available. If one
is not, and the interface is in blocking mode, the routine will
wait for one to arrive. If in nonblocking mode, the routine
returns a-1.

The only channel currently supported is channel 0.

NetROM User's Manual

chan_putch

Note ~

Synopsis
int chan_putch(chan, ch)
int chan;
uChar ch;

Description
This routine sends a character to NetROM using the readwrite
protocol. If a transmit structure is not available on channel
chan and the routine is running in blocking mode, it will wait
for a structure to become available. Otherwise it will return
with a status of-1. The routine returns 1 upon success.

The only channel currently supported is channel 0.

7-47

•

chan_getmsg

7-48

Synopsis
int chan_getmsg(chan, buf, len, bytesread)
int chan;
uChar *buf;
int len, *bytesread;

Description
This routine reads a message from the readwrite protocol's
receive message structures. The buf parameter is a pointer to
the receive buffer, the len parameter is the number of bytes in
the buffer, and bytesread is filled in by chan_getmsg ()with
the number of bytes read into the message. The chan
parameter is the channel on which the message is to be sent.

When used in a polling mode, chan_getmsg () returns one of
four status values: GM_NODATA indicates that no data has
arrived since the last poll; GM_MSGCOMPLETE indicates
that new data has arrived and that the input buffer now holds
the complete message; GM_NOTDONE indicates that data has
arrived but that the message is not yet complete;
GM_MSGOVERFLOW indicates that more data has arrived,
but that it has overflowed the input buffer. In a non-polling
mode, chan_getmsg () will return either
GM_MSGCOMPLETEorGM_MSGOVERFLOW.

Figure 7-12 shows an example of using chan_getmsg () (or
ra_getmsg ())in non-blocking mode to receive entire
messages.

The only channel currently supported is channel 0.

NetROM User's Manual

chan_putmsg

Note ~

Synopsis
void chan_putmsg(chan, buf, len)
int chan;
uChar *buf;
int len;

Description
This routine sends an entire message to NetROM using the
readwrite protocol on channel chan. The message will be
delineated by the START and END bits in the transmit
message structures. The routine will handle breaking large
messages into blocks automatically.

The only channel currently supported is channel 0.

7-49

•

I Chapters

·. Virtual Ethernet
Virtual Ethernet is an optional downloadable RAM module for
NetROM. Also called Vether, Virtual Ethernet gives target
systems the ability to become Ethernet communications
devices without requiring that they have Ethernet hardware.
This feature gives design engineers access to Ethernet
communications speed and function during the development
cycle even when Ethernet capability will not be needed in the
final product. Vether is also useful for debugging target
Ethernet hardware and drivers.

Vether operates in a way similar to XLNT Design's Virtual ••
UART in that the target application driver is replaced with a
virtual application driver. With Vether, the target's Ethernet
driver is replaced with the Virtual Ethernet driver. In this way,
communication between NetROM and the target is via Vether,
using NetROM' s shared memory protocols, and NetROM sends
and receives target packets on its Ethernet interface.
Figure 8-1 illustrates this process in a logical block diagram.

For additional information about Vether, refer to the NetROM
Application Notes.

8-1

Host Workstation

l Debugger J
l telnet J l Other N/W Tools J

Ethernet

Target

Applications

Operating System

1:111:!lli!l:~11.!lfil::·1:1:11·1111·11.11
Virtual Ethernet
Network Driver

Shared Memory

Net ROM

Figure 8-1 Virtual Ethernet Logical Block Diagram

Note ~
ReadWrite vs. ReadAddr Protocols

NetROM can use two protocols for communication over the
ROM address space: ReadAddr and ReadWrite. The ReadWrite
protocol requires the target to write to its ROM address space
while ReadAddr requires only read access. Because of
performance differences between the two protocols, we
recommend you use the ReadWrite protocol for target
machines that can write to ROM.

8-2 NetROM User's Manual

Virtual Ethernet Components
Virtual Ethernet functionality is implemented in a target
operating system driver and a NetROM RAM module.

Virtual Ethernet Setup Procedure
The setup procedure consists of several steps described below.

a Integrate the Vether driver into the target operating system.
This is similar to the process of integrating Applied
Microsystems' Virtual UART emulation memory protocol
routines. For more information, refer to the "Virtual
Ethernet Application Notes."

a Download the operating system to NetROM with the
newimage command or burn it into PROMs.

a Assign the target system a host name and an IP address and
add the address to
/etc/hosts or NIC

a Select an interrupt line on your target.

This line must signal a unique interrupt to the CPU.
Connect ajumper between one of the NetROM's command
pins and the interrupt signal on the target. NetROM will
signal the interrupt when it has received a packet for the
target.

The interrupt signal should be active low with a pull up
resistor. This is because NetROM does not drive a command
pin high, it just disconnects it from ground. If you must use
an active high signal, you should connect a 1000 ohm pullup
resistor so the signal will be driven high when NetROM
disconnects it from ground.

To enable interrupt signaling, enter the following NetROM
command:

set tgtctl 1 on rx

8-3

•

This will cause Net ROM to assert command pin 1 (active
low) when a packet arrives.

To enable an active high signal, use

set tgtctl 1 off rx

NetROM Setup Procedure for Virtual Ethernet

8-4

Execute the following commands to setup NetROM. You can add
these commands to your batch file so you don't have to enter
them each time you bring up NetROM.

a Load the Vether RAM module.
loadmodule modulepath

a Set the IP address of your target system:
setenv tgtip <n.n.n.n>

a Specify the communication protocol between NetROM and
the target:
setenv debugpath readwrite

-or-

setenv debugpath readaddr

a Allow the target to write to emulation memory if readwrite:
setenv groupwrite readwrite

a Enable Virtual Ethernet and wait for the target to be
initialized:
setenv vether on

a Enable interrupt signaling on packet reception:
set tgtctl 1 off rx

The NetROM side of Virtual Ethernet waits for the target's
vether driver to be initialized.

a Reset the target. After the target Vether initializes the
target, it synchronizes with NetROM and commences passing
packets.

NetROM User's Manual

I Appendix A

! Connector Pinouts

RS-232 Pinouts

Pin Description

1 Request To Send (RTS)

2 Data Terminal Ready (DTR)

3 Transmit Data (TxD)

4 Ground

5 Ground

6 Receive Data (RxD)

7 Data Set Ready (DSR)

8 Clear To Send (CTS)

•

A-1

Ethernet Pinouts

Pin IEEE 802.3 Signal Ethernet II Signal

1 Control In Circuit Shield Chassis Shield

2 Control In Circuit A Collision Presence+

3 Data Out Circuit A Transmit+

4 Data In Circuit Shield Not Used

5 Data In Circuit A Receive+

6 Voltage Common 12VGround

7 Not Used Not Used

8 Option Shield Not Used

9 Control In Circuit B Not Used

10 Data Out Circuit B Transmit-

11 Data Out Circuit Shield Not Used

12 Data In Circuit B Receive-

13 Voltage Plus +12V

14 Voltage Shield Not Used

15 Not Used Not Used

A-2 NetROM User's Manual

I AppendixB

NetROM Processes

Process names and descriptions

Process Name

Console

conspatbgd

debugctld

debugpathd

Kernel

netromd

NetROM Console

pingXX (1)

snmpd

telnetd

telnetXX(l)

TFTP Client(2)

This table lists the names of processes commonly encountered
in the N etROM environment, a brief summary of the function
of each process, and whether it supports multiple instances.

Multiple Description

No Provides a user interface on the N etROM Console
serial port.

No Multiplexes data from the target console to host-side
listeners.

No Supports direct target control for debug programs

No Transfers data between the target and the host system.

No N etROM' s operating system "process."

No Listens for connections on the NetROM Console Port
and spawns processes to handle each one.

Yes Direct TCP connection providing a non-TELNET
command-line user interface.

Yes Sends and receives CMP echo request packets to other
network hosts.

No Processes incoming SNMP requests.

No Listens for TELNET connection attempts.

Yes Provides a TELNET command-line user interface.

Yes Downloads a file from a TFTP server. •

B-2

Notes
(1) XX denotes the number of the process.

(2) The TFTP Client process cannot normally be multiply
instantiated.

NetROM User's Manual

I AppendixC

NetROM Ports and Protocols

Port Addresses
This table lists port addresses on which NetROM listens.

Port Name Number Type

BOOTP Client (1) 68 UDP

Debug Control 1237 TCP

Debug Data (2) 1235 TCP

Download (3) 1236 TCP

Upload (4) 1238 TCP

NetROM Console 1234 TCP

SNMP 161 UDP

TELNET 23 TCP

29KJTAG(5) 1239 TCP

Notes
(l)The BOOTP Client Port is only active during NetROM's boot
procedure, after N etROM has sent a BO OTP request packet to
the network broadcast address.

(2)This port number can be configured using the "debugport"
environment variable.

(3)The Download Port must be activated before it can be used.

(4)Activating the Upload Port is required before it can be used.

(5)If the JTAG29K optional RAM module is loaded and
enabled.

C-1

I AppendixD

NetROM Filename Conventions

Batch File Names
NetROM imposes no restrictions on the names of batch files;
such files can be named anything convenient for the local
operating system. A ".bat" suffix is not necessary, but is often
used in examples in this document to improve clarity. Note that
TFTP servers running in secure mode require that download
files be in a subdirectory of /tftpboot on the server's disk. This
directory is implied in all file requests, and should not need to
be given explicitly; for example, requesting /t:ftpboot/
startup.bat from a secure server would actually fetch the file
/t:ftpboot/t:ftpboot/startup.bat from the server's disk.

RARP File Names
IfRARP is being used as NetROM's address resolution
mechanism, the following conventions must be observed for the
N etROM startup file:

a The TFTP server for the startup file must reside at the same
IP address as the RARP server.

a The startup file's name must be determined from N etROM's
IP address.

The expected filename is the eight-character hexadecimal
representation ofNetROM's IP address, given in uppercase
with no periods and no suffix. For example, ifNetROM's
address were "192.0.0.210" then the startup file should be
named COOOOOD2. NetROM now makes several attempts to
download its startup file. NetROM will then attempt to
download the following startup files: "COOOOOD2," then

D-1

•

D-2

"/tftpbootJCOOOOOD2," and finally "tftpbootJCOOOOOD2." After
the first successful download, it will proceed with its boot
sequence and execute the commands in the startup file. It will
not attempt to download other startup files.

NetROM User's Manual

I AppendixE

NetROM Defaults

Target Console Port

9600baud

8 data bits

2 stop bits

No parity

No hardware handshaking

XON/XOFF software handshaking disabled

NetROM Console Port

9600baud

8 data bits

2 stop bits

No parity

No hardware handshaking

XON/XOFF software handshaking disabled

Command Signals

None asserted.

•

E-1

E-2

Environment Variables

batchpath /tftpboot

consolepath serial

debugpath serial

debugport 1235

dprbase Ox3F800

file type binary

fill pattern none

groupaddr OxOOOOOOOO

host (see Note)

loadfile image.bin

load path /tftpboot

podgroup 0

podorder 0

romcount 1

romtype 27c010

wordsize 8

writemode flash

verify on

The ''host" variable defaults to the address of the RARP or
BOOTP server configured by NetROM's IP address. If
NetROM's address is set manually, the default address is
"192.0.0.2."

NetROM User's Manual

Generic Variables

consechoon on

debugecho on

dplocation high

emulate on

raconfig 1

rawrite off

udpsrcmode off

•

E-3

I AppendixF

Network Basics

This appendix provides a simplified description of network
operation. 'TCP/IP Network Protocol" on page 1 outlines
Transmission Control Protoco1/Internet Protocol (TCP/IP),
which assembles message packets for network transmission.
"Addressing" on page 4 explains network and subnet
addressing.

TCP/IP Network Protocol
On Ethernet, Transmission Control Protocol I Internet Protocol
(TCP/IP) software allows communication between different
networks. A basic system consists of two transceivers
connected through a network; see Figure F-1. From the
transceiver 1, the application software generates the
application data. Next, the TCP software adds the TCP header
to the application data forming the TCP packet. Next, the IP
software forms the IP packet by adding the IP header to the
TCP packet. Finally, Ethernet softwiµ-e creates the Ethernet
packet by adding an Ethernet header to the IP packet. The
transceiver sends the Ethernet packet across the network to
transceiver 2 that receives the packet and successively strips
the headers leaving the application data.

F-1

F-2

Generates
application
data

Strips
Ethernet

Application
Software

Ethernet
Software

header from
Ethernet Packet

Adds TCP
header to
application
data

TCP
Software

Adds IP
header
to TCP
packet

IP
Software

Adds
Ethernet
header
to IP packet

Ethernet
Software

., Ethernet Packet I

IP
Software

Strips IP
header form
IP Packet

TCP
Software

Strips TCP
header from
TCP Packet

Figure F-1 TCP/IP Network Protocol

Application
Software

Receives
application
data

Tranceiver 1

Tranceiver 2

Figure F-2 illustrates the Ethernet packet, which consists of a
series of embedded data portions with headers. The TCP
packet is the data portion of the IP packet, and the IP packet
becomes the data portion of the Ethernet packet. Because of
this structure, the system can transmit the data within the
packet to other networks regardless of the packet type carrying
it.

NetROM User's Manual

Ethernet Packets

TCP
Header

Application
Data

TCP Packet

Figure F-2 Ethernet Message Packet

The transceiver routes data across the Ethernet in variable­
length "frame" or ''packet" format (see Figure F -3). Ethernet
packets are self identifying with each packet containing the
source address, the destination address, and the information •
type. Including packet type information in the structure allows
the use of multiple protocols on a single machine or on the same
physical network without interference.

Preamble Destination Source Packet Data CRC
Address Address Type

64 bits 48 bits 48 bits 16 bits 368-12,000 bits 32 bits

Figure F-3 Ethernet Packet Format

F-3

Addressing

Besides the destination and source addresses, Ethernet
packets contain this additional information.

Preamble

Packet Type

CRC

Consists of alternating Os and ls to aid the
receiving transceiver in signal
synchronization.
The last two digits are 11.

Informs the receiving transceiver protocol
software module used to process the
packet. In our case this is Internet
Protocol.

Used to identify data errors within the
packet.

A host is any end-user computer connected to the network.
Each host under TCP/IP has a physical (Ethernet) address and
an Internet (IP) address.

Physical I Ethernet Addresses

F-4

Each host's Ethernet interface contains the host unit's physical
or Ethernet address stored in a ROM or a PAL. The physical
address allows the computer to determine the packets the
computer will receive. The physical address is a six-byte,
hexadecimal number. Ethernet hardware manufacturers
purchase blocks of physical address and assign the address in
sequence as they manufacture the interface hardware.
Physical addresses can not be changed.

NetROM User's Manual

Note ~

Internet Addresses

Caution&

The physical address relates to the interface hardware rather
than the host. Replacing the host's interface hardware changes
the host's physical address.

An Internet (IP) address is a 4-Byte number written in dotted
decimal notation (XX.X.XX.:XXX). This notation expresses each
byte as a decimal integer between 0 and 255 with decimal
points separating the bytes.

For example: 10.4.25.196

The Internet address differs from the physical address because
users can assign and program the Internet address.

You must insure the Internet address is not duplicated
anywhere on the network, otherwise duplicate Internet
addresses can seriously interfere with network operation .

The Internet address consists of two portions: a Network ID
portion and a Host ID portion. The Network ID identifies a
given physical network, and the Host ID identifies a particular
host on that network.

There are five defined Internet address classes. Each class is
divided based on the number of networks and the number of
hosts. Only three of the classes (A, B, and C) can specify
individual hosts (Figure F-4).

F-5

•

F-6

Class A

OXXXXXXX xxxxxxxx xxxxxxxx xxxxxxxx

Network ID Host ID

Class B

1 oxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

Network ID Host ID

Class C

11 OXXXXX XXXXXXXX xxxxxxxx xxxxxxxx

Network ID Host ID

Figure F-4 Internet Address Classes

Class A
Networks having more than 65,536 (216) hosts use class A
addresses. The first eight bits are the network ID, and 24 bits
are the host ID. The high-order bit of the first byte (network ID)
must always be 0, allowing network addresses from 0 to 127.

Network ID 127 should not be used because it is reserved for
the local and loopback device.

NetROM User's Manual

Network Addresses

Broadcast Address

Class B
Networks have between 256 (28) and 65,536 (216) hosts use
class B addresses. The first 16 bits of the address are the
network ID, and the second 16 bits are the host ID. The high­
order bits of the first byte (network ID) must be 10 allowing
network addresses between 128.0 and 191.255.

Class C
Networks with fewer than 256 (28) hosts use class C
addressing. The first 24 bits of the address are the network ID,
and the remaining 8 bits are the host ID. The high-order bits of
the first byte (network ID) must be 110 allowing network
addresses from 192.0.0 to 223.255.255.

Convention regards the address of the network itself to have a
host ID of 0. Therefore, the user should never assign others
host a host ID of 0. A class B network address would have the
form:

x.y.0.0

For example: 192.12.0.0.

The Ethernet standard provides for a Broadcast Address that
refers to all hosts on the network. Broadcast addresses allows
a copy of a message packet to be sent to all hosts on the system.
An Internet address having a host ID of all bits set to 1 (255) is
the broadcast address. A class B broadcast address would have
the form:

x.y.255.255

For example: 192.12.255.255.

F-7

•

Subnets

F-8

As the number of physical networks in a given class grows, the
pool could run out of addresses. To reduce the number of
addresses needed in a large system Subnet Addressing and
Subnet Routing was developed. This allows a group of physical
networks (subnets) to share a single network address.

To do this the Internet address is replaced with an Internet
component and a local component. The Internet component is
the network address shared by the various local networks.

The local component consists of two parts. One part identifies
a particular subnet, and the second part identifies a host on
that subnet. The subnet address is concealed in the host ID
portion of the Internet address (Figure F-5).

Network Address

Internet
Component

Subnet Host
Partition Partition

Local
Component

Figure F-5 Internet Address With Subnet Addressing

Figure F-6 illustrates how subnet addressing works with a
class B network. In this system, the third byte of each Internet
address specifies the subnet (for example: 192.lfi.1.2), and the
fourth byte identifies the host (for example: 192.16.l.i). To the
rest of the Internet, the subnets and their hosts appear to be a
collection of hosts on network 192.16.0.0. The local gateway
accepts all packets with this network address and routes them
to the appropriate subnet by examining the third byte of the
address. The fourth byte of the address identifies the host on
the given subnet.

NetROM User's Manual

--
Packets for

Network
192.16.0.0 ,,
---~

,,
Local

Gateway

_ Subnet 192.16.1.0 ,,
-

Host 1
192.16.1.1

_Subnet 192.16.2.0

Host3
192.16.2.1

Figure F-6 Subnet Addressing

,,

Internet

Host2
192.16.1.2

Host4
192.16.2.2

--

--

- • -

F-9

Subnet Masks

F-10

The system shown in Figure F-6 uses the first 8 bits of the 16
bit local component to identify the subnet (for example:
192.16.1.2), and the remaining 8 bits identify the host (for
example: 192.16.1.2). This system allows up to 256 subnets
with 256 hosts per subnet.

This is not the only method of local component partitioning.
Each network administrator can partition the local component
in any manner that is usually based on expected growth of the
system. For example, if a network administrator determines
that a class B site requires many subnets with a few hosts on
each subnet, they can allocate 12 bits to the subnet partition
and 4 bits for the host partition. This example allows 4096
(212) subnets with up to 16 (24) hosts per subnet (including
network and broadcast addresses).

The Internet standard requires every site using subnet
addressing to define a 32-bit subnet mask for each physical
network at the site. A network's subnet mask defines how. Bits
in the' subset mask are set to ls if the corresponding bits
(including the Internet component) in the Internet address are
considered to be part of the network address. The bits are set
Os if the corresponding bits in the Internet addresses are
treated as part of the host identifier.

If a network administrator of a class B network wants to
allocate 12 bits of the local component to the subnet partition
and 4 bits to the host partition, the required subnet mask
would be shown in Figure F-7.

NetROM User's Manual

Internet
Component

Subnet
Partition

Host
Partition

1111 1111 1111 1111 1111 1111 1111 0000

0 F F F F F F F

Routers

Figure F-7 Subnet Mask for a Sample Class B Network

Since the Internet component and the subnet partition
together identify a particular physical network, they comprise
the "network address," and all bits of these two fields are set to
ls in the subnet mask. The host partition identifies a particular
host on a given network; all bits of this field are set to Os in the
mask. The subnet mask for Figure F-7 would be
"255.255.255.240."

Each host on a network has a copy of the subnet mask for that
network. By using the subnet mask, the host can extract the
network address from an Internet address; this helps make
packet-routing algorithms efficient.

Routers connect two or more networks and transfer message
packets among those networks. The router uses software
algorithms and routing tables to make the routing decisions
necessary to ensure each packet reaches its destination. Often,
the terms router and gateway will be used interchangeably.

Router Tables
Both hosts and routers use routing tables to determine where
to send message packets. Router tables do not contain complete
information on how to reach each destination address. Instead,
the tables tell the host or router where to send the packet to
reach the next step along the path to the packet's destination.
Essentially, the routing table contains pairs of addresses (D

F-11

•

F-12

and R). ''D" represents the destination's network address, and
"R" represents the Internet address. These addresses may
point to a router or directly to a host connected to the same
subnet.

When a host or router needs to forward a message packet, it
extracts the destination's network address by performing a
logical AND operation between the network address and the
local subnet mask. Next, the host or router searches its routing
table for the matching destination network address (D). If a
match is found, the host or router sends the message packet to
the corresponding destination (R). In tum, the host or router at
the destination performs the same process and routes the
message packet to the next host or router. If the destination
lies on the same subnet as the router or host, the router
delivers the packet directly to the destination.

For example, host 4 needs to send a message packet to host 7
(see Figure F-8). Since all the networks are class B, the subnet
mask for each network is 255.255.0.0 (binary: 11111111
111111110000000000000000). Also, host 4 contains the
routing table shown in Table F-1.

Table F-1 Example Host4 Routing Table

Destination Network (D)

192.7.0.0

192.12.0.0

192.16.0.0

192.41.0.0

Routing Address (R)

192.12.0.4

Deliver Directly

192.12.0.4

192.12.0.4

NetROM User's Manual

Network 192.7.0.0

Host 1 192.7.0.27 Host2
192.7.0.13 Router 1 192.7.0.3

192.16.0.19 192.12.0.4

J~ J~

- Network 192.12.0.0 ' -- -~ ~~ ,, ,,
Host3 Host4

192.12.0.17 192.12.0.32

- Network 192.16.0.0 ,, --- J~ J~ J~ -,, ,, ,,
Hosts 192.16.0.44 Host6

192.16.0.9 Router2 192.16.0.21

192.41.0.35 • ~ - Network 192.41.0.0 ,, - ~~ ~~ -,, ,,
Host 7 Host 8

192.41.0.62 192.41.0.75

Figure F-8 Example Network with Routers

F-13

F-14

Host 4 begins constructing the message packet and addressing
it to host 7 (Internet address: 192.41.0.62). Host 4 extracts the
network address (192.41.0.0) by ANDing the host 7 Internet
address with the subnet mask.

Subnet Mask FF FF 00 00

Internet Address = CO 29 00 3E

Destination Address CO 29 00 00

This address matches a destination network address in the
routing table (Table F-1) with a corresponding routing address
of 192.12.0.4. Host 4 sends the message packet to 192.12.0.4
(router 1).

Router 1 receives the packet and extracts the destination
network address (192.41.0.0). Router 1 searches its router
table (Table F-2) for the destination address and its
corresponding routing address which tells router 1 to send the
packet to 192.16.0.44 (router 2).

Table F-2 Router 1 Router Table

Destination Address

192.7.0.0

192.12.0.0

192.16.0.0

192.41.0.0

Routing Address

Deliver Directly

Deliver Directly

Deliver Directly

192.16.0.44

Router 2 receives the packet and extracts the destination
network address (192.41.0.0). Router 2 searches its router
table (Table F-3) for the destination address that tells router 2
to send the packet directly to host 7 at address 192.41.0.62.

NetROM User's Manual

Table F-3 Router 2 Router Table

Destination Address

192.7.0.0

192.12.0.0

192.16.0.0

192.41.0.0

Routing Address

192.16.0.19

192.16.0.19

Deliver Directly

Deliver Directly

In summary, the router receives a packet, extracts the
destination network address, finds its destination address in
its router table. The routing table tells the router to send the
packet directly to a host or to another router. In the example,
router 1 was unable to send the packet directly to the host,
therefore, router 1 sent the packet to router 2. Router 2 could
send the packet directly to the destination host 7 (see
Figure F-9).

Router 1

Host7

Figure F-9 Example Message Packet Flow

F-15

•

I Glossary_

Address Resolution

ARP

BO OTP

Client

Connection

Console Path

Debugger

Debug Path

DIP

Download Path

Dumb Terminal

The process of establishing a mapping between an Ethernet
address and an IP address.

Address Resolution Protocol, used to determine a destination
host's Ethernet Address using its known IP address.

An address resolution protocol which can also supply the
name of a startup file.

A requestor of a service from some provider on the network;
e.g. a BOOTP client, which sends out BOOTP requests to
determine its own IP address.

An IP connection is determined by a 4-tuple definition:
<source IP address, source port, destination IP address,
destination port>. This is to allow more than one dialog
between two hosts, using either the same source or the same
destination port number.

The route by which the host system establishes a console
session with the target.

A program which runs partly on the target system and partly
on the host, for the purpose of providing a user-friendly
interface to engineers debugging the target system.

The route over which debugger packets travel between the
host system and the target.

Dual In-Line Package.

The route over which emulation images are sent from the
host system to the target.

A monitor and keyboard system lacking a significant CPU;
"dumb" terminals use RS-232 serial ports to provide an
interface to systems which do not come equipped with a
monitor.

Glossary-1

EPROM

Gateway

Host

Host, System

Internet

IP

IP Address

LED

Path

PLCC

Plug

Pod

Pod Group

Port

RARP

ROM

Glossary-2

A form of ROM which can be erased and reprogrammed.

In IP routing, a gateway is a host on the local network which
agrees to route packets to other networks.

A computer on an IP network.

A computer which the embedded systems engineer uses to
develop code, run debuggers, or establish NetROM sessions.

A large network of heterogeneous sub-networks.

Internet Protocol, the protocol used to send packets between
nodes on the Internet.

A 32-bit value, often represented with each byte in decimal
and separated by a period.

Light-Emitting Diode.

A route for information to travel from the host system to the
target, or from the target to the host system; a file address,
consisting of a tree structure for reaching a particular file in
a computer memory.

Plastic Leaded Chip Carrier.

The end of an emulation pod which is inserted into a ROM
socket on the target system.

Emulation memory on NetROM, the physical cable leading
from NetROM to the ROM socket on the target, or both.

One or more ROMs used together to emulate ''words" of ROM
memory on the target system.

A TCP or UDP identifier, to distinguish between different
destinations using the same protocol.

Reverse Address Resolution Protocol, an address resolution
protocol used by NetROM to determine its own IP address
using its known Ethernet address.

Read-only memory.

NetROM User's Manual

Route

RS-232

Server

Session

Socket

SLIP

SNMP

Subnet

Subnet Mask

Terminal Session

Target System

TCP

TCP

TELNET

TFTP

In the IP sense, a route is uniquely identified by a
destination host, a gateway to that host, and a metric
describing ''how hard" it is to get to the destination through
the gateway.

A common serial line protocol.

A provider of some service on the network; e.g. a TFTP server
which responds to TFTP requests.

The data exchanged over some kind of communication
connection; for example, a TELNET login to NetROM
constitutes a terminal session.

When referring to ROMs, the receptacle into which the ROM
is inserted on the target system. When referring to network
communications, sockets are an operating system interface
which provides a communications end point for TCP or UDP.

Serial Line IP, a version of IP which runs over serial links.

Simple Network Management Protocol.

A "discrete" network, such as an Ethernet LAN, which is
part of the larger Internet.

A 32-bit value whose logical-and with an IP address
determines whether a particular address is on a particular
subnet.

See session.

The computer whose ROMs are being emulated by NetROM.

Transmission Control Protocol, a connection-oriented end-to­
end transport protocol running on top ofIP.

See connection.

A terminal emulation protocol.

Trivial File Transfer Protocol, used by NetROM to request
files to download.

Glossary-3

UDP

UDP

XON/XOFF

Glossary-4

User Datagram. Protocol, a connectionless end-to-end
transport protocol running on top of IP.

See connectwn.

A software handshaking protocol used on RS-232 lines.

NetROM User's Manual

I Index
A
Address Resolution

BOOTP 3-21
RARP 3-21

address resolution
BOOTP 4-15
IP 3-20
RARP 4-15

B
batch file 4-89, 4-103, 4-113
batch file processing 4-7
BOOTP 2-11, 3-20, Glossary-1

Address Resolution 3-21
breakpoint 2-5, 2-9, 3-17
Broadcast Address F-7
burst read 7-15, 7-19

c
command line processing 4-1
Command Signal E-1
command signal 2-12, 4-35, 4-71
commands

alias 4-88
arp 4-13, Glossary-1
batch 4-7, 4-89, 4-103
di? 4-54
di consecho 4-56
di debugecho 4-57
di dplocation 4-58
di dpmem 4-59
di dpstats 4-60
di emulate 4-61
di help 4-54
di lanceha 4-62

di ledmap 4-63
di loadecho 4-54
di !stats 4-64
dimemstats 4-65
di modules 4-66
di pgconfig 4-67
di podmem 4-40, 4-68, 4-116
di raconfig 4-69
di rawrites 4-70
di tgtctl 4-71
di tgtstatus 4-72
di uart 4-73
di udpsrcmode 4-74
di uptime 4-75
di usemame 4-76
di version 4-77
fill 4-21, 4-110
help 4-90
history 4-6, 4-8, 4-89, 4-91
ifconfig 4-14
kill 4-2, 4-32, 4-96
ledmap 4-92
loadmodule 4-93
logout 4-94
netstat 4-16, 4-18
newimage 4-22, 4-109, 4-116, 6-2
ping 4-3, 4-4, 4-17
printenv 4-102
ps 4-2, 4-33
reset 4-95
romset ? 4-79
romset clear 4-80
romset connect 4-81
romset define 4-82
romset disconnect 4-83
romset help 4-79
romset reset 4-86
romset show 4-84

lndex-1

romset slaveaddr 4-85
route 4-I8, Glossary-I, Glossary-2
serialcons 4-26
set? 4-34
set consecho 4-36, 4-37
set dploaction 4-38
set emulate 4-39
set help 4-34
set loadecho 4-34
set pgconfig 4-40
set pgname 4-43
set podmem 4-44
set prompt 4-45
set raconfig 4-46
set rawrites 4-48
set romupgrade 4-49
set tgtctl 4-52
set udpsrcmode 4-53
set usemame 4-35
setenv 4-lOI
slip 4-I4, 4-19, 4-104, 4-I06, Glossary-3
stty 4-4, 4-11, 4-26, 4-28, 4-96, 6-1
tgtcons 4-26
tgtreset 4-30, 5-2, 7-I2

common entry point
chan_kbhit 7-32
config_dpram 7-28
dp_chanready 7-31
set_dp_blockio 7-30

communication path
console 4-106
Debug 2-9
debug 5-I, 5-2, B-1
download 2-2

configuration 4-67, 7-I8
dualport 7-12
host 4-62
system 2-6

configuration information 2-2
configure

signal-to-LED mapping 2-I2
Connection

Ethernet 3-6
connection

lndex-2

ACPower 3-4
DIP style cables? 3-13
NetROM console 3-I4
PLCC style cables 3-I4
target serial port 3-I4
Write signal 3-16

Console B-1, C-1, E-1
console 2-8, 2-11, 4-96, Glossary-1
console port 4-73
console serial port 3-24
console session 4-28
Customer support 1-9

D
debug B-I, Glossary-I, Glossary-2
Debug Control Functions 5-3
Debug Control Port 5-3
Debug Path 2-9
debug path 4-5
debug path connection 4-37
debuggers 5-1
DIP Glossary-1
Download B-I, C-1
download 2-11, D-1, Glossary-3
Downloading non-TFTP files 6-2
dualport 4-108, 7-15, 7-3I, 7-38
dualport driver 7-22
dualport memory 4-46
Dualport Message Structure 7-6
Dualport RAM

out-of-band characters 7-19
dualport RAM 4-26, 4-54, 4-59, 7-4, 7-I9

out-of-band characters 7-I8
dualport RAM. 4-5

E
Emulation memory Glossary-2
emulation memory 2-2, 2-9, 4-20, 4-34, 4-39,

4-40, 4-4I, 4-68, 4-95, 4-I04, 4-llI, 7-
5, 7-21, 7-26

emulation pods 2-2

NetROM User's Manual

environment variables
batchpath 4-8, 4-89, 4-103
consolepath 4-26, 4-104
debugpath 4-26, 4-106, 5-2
filetype 4-109
fillpattern 4-23, 4-110
groupaddr 4-111
groupwrite 4-112
host 4-89, 4-113
loadfile 4-114
loadpath 4-115
lpodgroup 4-116
podgroup 4-40, 4-109
podorder 4-117, 4-126
romcount 4-119, 4-126
romtype 4-120
tgtip 4-122
verify 4-123, E-3
vether 4-124
wordsize 4-126
writemode 4-125

Ethernet 5-1, Glossary-1, Glossary-3
Ethernet address F-4
Ethernet packet F-2
Ethernet packets F-3

F
FAX 1-9

G
Group name 2-5

H
Host ID F-5

I
Images 2-2
Internet (IP) address F-5
Internet address 1-9

Internet component F-10
internet Protocol F-1
IP

address resolution 3-20
IP Address Glossary-2
IP address 2-11, 3-21, 4-5, 4-11, 4-113, D-1,

Glossary-1
IP packet F-1

L
LED 4-92, Glossary-2
LED mapping 2-12

M
mailbox protocols 4-26, 4-28, 4-104, 4-106, 5-

2, 7-10

N
NetROM

Commands 4-8
commands 4-12
Commands (Also, see commands)

NetROM Connections 3-4
NetROM console 3-2
NetROM Reset signal 3-18
NetROM target serial port 3-14
network activity LEDs 2-13
network address F-7
Network ID F-5
non-TELNET sessions 6-1

p
parallel emulation 3-8
parallel pod 2-3
path

console 4-28, 4-36, 4-104, 4-105, Glossa­
ry-1

debug 4-26, 4-105, 4-106, Glossary-1
download Glossary-1

lndex-3

Phone support I-9
physical address F-4
Pod Group Glossary-2
Pod group

configuration 4-54
pod group 2-5, 4-5, 4-35, 4-67, 4-I08

Configuration 2-6
name 4-43
non-TFTP files 6-2
Uploading Emulation Memory 6-3
word width 4-59

Pod groups
defaults 2-5

pod groups
configuration 2-5
Downloading 2-6
numbering 2-3

Pod order 2-4
pod order 2-6, 4-67, 4-117

R
RARP 2-11, 3-20, D-I, Glossary-2

Address Resolution 3-2I
readadd protocolr 7-I5
readaddr 4-5, 4-26, 4-I04, 4-I06
readaddr path 2-8
read-address 7-25, 7-36, 7-40
read-address memory. 7-9
read-address protocol 7-26
read-address protocol entry point

ra_emoffonwrite 7-44
ra_getch 7-35
ra_getmsg 7-37
ra_putch 7-36
ra_putmsg 7-39
ra_reset 7-4I
ra_resync 7-42
ra_rx_intr_ack 7-43
ra_setmem 7-40

read-only 2-5
readonly 4-4I
read-only targets 7-6
readwrite 4-5, 4-26, 4-4I, 4-I04, 4-I06, 4-

lndex-4

112, 7-23, 7-25, 7-49
readwrite path 2-8
readwrite protocol 7-11, 7-26, 7-45
readwrite protocol entry points

chan_getch 7-46
chan_getmsg 7-48
chan_putch 7-47
chan_putmsg 7-49

reset command signal 4-30
ROM count 2-4
ROM emulation cables 3-8
ROMtype 2-3
ROM Type Compatibility 2-7
routing tables F-11
RS-232 2-11, 4-28, Glossary-I, Glossary-4
RS-232 Pinouts B-I, C-I, D-I
RS-232protocols 7-I

s
serial emulation 3-8
serial pods 2-3
serial port 2-I, 2-6, 2-11, 4-104, B-I, Glossa-

ry-I
SNMP B-I, C-I, Glossary-3
startup batch file 3-23
status LEDs 2-I3
status signal 2-13, 4-54, 4-63, 4-72, 4-92, 4-

112
status signals 2-12
Subnet Addressing F-8
subnet mask F-10
subnet partition F-11
Subnet Routing F-8
Support 1-9
system image 4-49

T
target 7-I5, 7-2I, 7-26
Target address 2-5
target address 4-4I, 4-67
target interface commands 4-20

NetROM User's Manual

TCP 2-6, 2-9, 5-2, B-1, C-1, Glossary-2, Glos-
sary-3

TCP connection 4-28, 6-2
TCP packet F-1
TCP/IP F-1
TCPconnection 6-3
Technical support 1-9
TELNET 2-8, 4-28, 6-1, B-1, C-1, Glossary-3
terminal control characters 4-3
TFTP 2-6, 2-11, 4-103, 4-113, 6-1, B-1, D-1,

Glossary-3
TFTP server 3-19, 4-7
TFTPfile server 4-5
TFTPserver 4-89
TFTPservers 4-115
Transmission Control Protocol F-1

u
UART 4-73

w
Warranty 1-9
wider ROM 2-3
Word size 2-3
word size 3-9, 4-67, 4-108, 4-126

lndex-5

