
User's Manual

PIN 924-07001-0

[t t mm~ Applied Microsystems Corp~~tion

11!lml
Applied
Microsystems
Corporation

NetRO~ 500 Series

User's Manual

May 1997
Copyright © 1996 Applied Microsystems Corporation.
All rights reserved.

PIN 924-07001-01

Information in this document is subject to change without
notice. Applied Microsystems Corporation reserves the right to
make changes to improve the performance and usability of the
products described herein.

Applied Microsystems Corporation's CodeTAP and SuperTAP
products are protected under U.S. Patents 5,228,039 and
5,581,695. Additional patents pending.

Trademarks
CodeTAP is a registered trademark of Applied Microsystems
Corporation.
The following are trademarks of Applied Microsystems
Corporation: CodeCONNECT, CodeICE, CodeTEST, CPU
Browser, NetROM, NSE, RTOS-Link., SuperTAP, Transparent
Breakpoints, VSP-TAP
Other product names, trademarks, or brand names mentioned
in this document belong to their respective companies.

I Contents

Chapter 1
Introduction

Chapter 2
NetROM Services

NetROM features ... 1-2

Memory emulation :............................. 1-2

Target communication ... 1-3

Target control... 1-3

User interface... 1-3

Debugger integration... 1-3

Embedded systems development environment................. 1-5

Standard development environment 1-6

Development environments using NetROM............... 1-6

Documentation overview .. 1-8

Documentation conventions... 1-10

Warnings, cautions, notes ... 1-10

Radio interference warning....... 1-11

Operating requirements... 1-12

Standard electrostatic precautions 1-12

Support services ... 1-13

NetROM console ... 2-2

Communications paths.... 2-3

Debug path.. 2-4

iii

Console path .. 2-7

Channel paths ... 2-9

Download path ~ 2-11

Emulation memory ... 2-11

ROM groups .. 2-12

ConfigUring ROM groups ... 2-15

Downloading ROM groups ... 2-15

Optional downloadable RAM module 2-16

Command and status signals ... 2-16

NetROM LEDs .. 2-18

Main unit .. 2-18

Active cables ... 2-19

Chapter 3
Hardware Installation

Collecting equipment .. 3-2

Connecting power ... 3-5

Connecting AC power cord ... 3-5

Connecting to Ethernet .. 3-6

Connecting ROM emulation cables 3-8

Cable configUrations .. 3-8

Connection steps .. 3-12

Connecting NetROM console serial port 3-27

Connecting target serial port ... 3-27

Connecting the write signal ... 3-29

Connecting the reset signal.. .. 3-31

Connecting the command status connector 3-33

iv NetROM Users Manual

Chapter 4
Software Installation

Chapter 5
User Interface

Installing the software ... 4-2

PC ... 4-2

Sun, HP workstations .. 4-2

Updating the software ... 4-3

Establishing network communications 4-3

Specifying NetROM startup file .. 4-6

NetROM command line processing 5-2

Processes .. 5-2

Terminal control characters .. 5-4

History substitution ... 5-5

Batch processing .. 5-6

Environment variables .. 5-7

NetROM commands ... 5-9

Understanding the command descriptions 5-11

Network interface commands .. 5-13

Target interface commands ... 5-21

Process control commands ... 5-32

Set commands '" 5-35

Display commands .. 5-55

ROM set commands .. 5-78

Miscellaneous commands ... 5-87

Environment variable commands 5-101

v

Chapter 6
Utilities

Chapter 7
Debugger Support

Chapter 8

Understanding the utility descriptions 6-2

N etROM debug paths ... 7-1

Passing data across the debug path 7-2

The debug control port ... 7-3

Debug control functions .. 7-3

Alternate Net ROM Interfaces
Non-TELNET terminal sessions .. 8-2

Chapter 9
Emulation Memory Mailbox Protocol

Communication driver API .. 9-2

Porting the driver ... 9-3

Entry points .. 9-7

Chapter 10
General Porting Guide

Introduction .. 10-1

Porting overview ... 10-2

Process ... 10-3

Overview ... 10-7

Procedure .. 10-8

NetROM batch files .. 10-23

vi NetROM Users Manual

Chapter 11
Virtual Ethernet

Appendix A
Connector Pinouts

AppendixB
NetROM Processes

AppendixC

Batch file for MVME 162 ... 10-23

Batch file for Cogent PowerPC 603 (CMA277) 10-25

Batch file for Motorola/Cogent 68040 IDP target 10-27

Virtual Ethernet components .. 11-2

Virtual Ethernet setup procedure 11-3

NetROM setup procedure for virtual Ethernet 11-4

RS-232 pinouts ... A-1

Ethernet pinouts ... A-2

Process names and descriptions .. B-1

NetROM Ports and Protocols
Port addresses .. C-l

AppendixD
NetROM Filename Conventions

Batch file names ... D-1

RARP file names ... D-l

vii

AppendixE
NetROM Defaults

AppendixF
Mailbox Protocol Implementation

Sharing emulation memory .. F-1

Memory contention issues ... F-2

Dualport emulation memory F-4

The dualport message structure .. F-6

Read-address memory .. F-9

Dualport protocol .. F-10

Target-to-N etROM message .. F -12

NetROM-to-target message ... F -12
Glossary

viii NetROM User's Manual

I Chapter 1

Introduction
N etROM is a universal debugging platform providing high­
speed target communication and debugging functionality for
use in embedded system development. NetROM acts as a link
between your preferred debugger and target monitor to provide
faster downloads, remotely control the target, and emulate
ROM memory devices. NetROM requires almost no target
resources and can be rapidly moved from project to project and
from processor to processor.

NetROM's only required physical connection to your target
system is via a ROM socket or a ROM bus header. Using the
high-speed data-transfer rates available on Ethernet LANs,
N etROM updates emulation memory with new images much
more quickly than with conventional serial- or parallel-link
ROM emulators.

N etROM can act as a communications nexus, collecting
messages from the target and sending them over the Ethernet
to the user, and collecting messages from the user and
forwarding them to the target. These communications paths
can be interactive sessions or they can be data-packet transfers
between the target system and a remote host program.

N etROM gives developers convenient communications paths to
target systems via a serial link and a virtual UART mailbox
system in emulation memory. The mailbox system is
particularly useful for target systems that do not have serial
ports. You can also use the mailbox system to give targets not
capable of writing to ROM addresses write capability.

NetROM functionality has been integrated into many existing
debuggers and target monitors or agents. Through the use of
virtual UART technology, NetROM provides the debugger
target access through Ethernet and the ability to control

1-1

I

program execution from the debugger user interface. Now you
can set breakpoints in the ROM address space of your target.

NetROM provides a set of eight status inputs that can be
connected to any signal on the target system and sampled as
desired. N etROM also provides eight command signals that
can be connected to the target and asserted by the NetROM
user.

NetROM uses stap.dard Internet protocols such as BOOTP,
RARP, TFTP, and TELNET. NetROM is network-manageable
usingSNMP.

NetROM features

Memory emulation

1·2

NetROM is a universal development tool that can be adapted for
most embedded systems configurations. The following are
NetROM's principal features:

a 1 MB or 4 MB of emulation memory. Can divide memory into
4 pods, each emulating up to 1 MB, 2 pods, each emulating
up to 2 MB, or 1 pod, emulating up to 4 MB.

a Emulation of 64K, 256K, 512K, 1 MB, 2 MB and 4 MB
ROMs.

a Support for 8-, 16-, and 32-bit words.
a Support for 64-bit words by using more than one NetROM

unit.
a Support for more than 4 MB by using more than one NetROM

unit.
a Simultaneous emulation of multiple ROM types and word

sizes by using different pods.
a Support for 28-, 32-, and 40-pin DIPs, 32- and 44-pin PLCC

sockets, 50- and 60-pin headers, and TSOP and PSOP
surface mount packages.

a Support for both 5V and 3.3V memory devices automatically.

NetROM Users Manual

Introduction

Target communication

Target control

User interface

Debugger integration

o High-speed Ethernet connection between target and host
using no target resources.

o Rapid code downloads at up to 50Klsec over Ethernet, using
standard protocols, such as TFTP or TCP.

o Four virtual UART channels providing four LAN channels
for multiple user sessions with NetROM or the target.

o Communication with target systems using RS-232 and
emulation memory mailbox.

o Address resolution using BOOTP or RARP.

o Network manageable by SNMP.

o Eight status signals from the target that can be polled at
will.

o Eight target command signals that the user can assert.

D Multiple user sessions with NetROM and/or the target, using
standard protocols such as TELNET.

D Robust command-line interface.
D Online help.

D Integrated with multiple source-level debuggers.
Application notes on the Applied World Wide Web page
(http://www.amc.com) describe the steps required to utilize
NetROM features with your debugger.

D Support for passing data between a debugger running on a
remote host and the target system.

o Extended debugger support for updating the downloaded
image, resetting the target, and similar features.

D Emulation memory writable by the target system even if
target hardware does not allow it.

1-3

Q Downloadable RAM module to Support optional Virtual Ethemet feature.

Figure 1-1 NetROM system

Introduction

Embedded systems development environment
Embedded systems are specialized microprocessor-controlled
devices, of varying sizes, used for specific purposes. Examples
range from PC boards, network switching devices, and laser
printers to microwave ovens and the computerized controls in
a car. The NetROM device itself is an embedded system.

In most development environments for embedded systems,
there are four main components:

1. An embedded system under development--the target.

2. A computer used to develop the embedded system-the host.

3. A communications path between the host and the target.

4. A target control device such as an in-circuit emulator (ICE),
NetROM,orJTAG.

In general, there are three communication-path types between
the target system and the host computer: download, console,
and debug. These three paths are common aspects of embedded
systems development, and, usually, each path type has to be
implemented using a separate tool.

NetROM, however, gives developers a single tool capable of
implementing all three paths from the host system to the
target. NetROM improves your productivity in the download
and debug phase by approximately 20%. Although NetROM's
ROM emulation features are powerful, NetROM's most
important function is communication between the
development host and the target system. The three
communication paths are discussed in detail in Chapter 2;
Table 1-1 briefly describes each path type.

1-5

Table 1-1 NetROM communications paths

Path Description

Download Mechanism in which an image file created on
the host system becomes accessible on the
target system.

Console and
Channel

Debug

Mechanism in which the user can
communicate with the target system.

Mechanism in which an embedded systems
debugger program communicates between
the host system and the target system.

Standard development environment
Many embedded systems development environments use RS-
232 serial lines to implement each of the three communications
paths described above. This approach has three main
drawbacks: it lacks speed and portability, and it is
inconvenient.

Serial communications lines are much slower than LAN
technologies like Ethernet. The download path, in particular, is
affected because of the large amounts of data that must be
transferred. It is not uncommon to download megabyte-sized
images into ROM emulators, which obviously can take
considerable time over a serial line.

Development environments using NetROM

1-6

NetROM technology addresses the drawbacks of a traditional
RS-232 development environment. In addition to emulating
ROMs, EPROMs, and flash memory devices, NetROM functions
as a communications nexus between the host computer and the
target system. Because NetROM connects to a high-speed

NetROM User's Manual

Introduction

Ethernet LAN, it can multiplex all of the different
communications paths from their respective sources onto the
network.

NetROM is fast, because Ethernet LANs are fast. This allows
downloads to be completed much more quickly than is possible
with serial lines.

NetROM is powerful. The debug path from the host computer to
the target can go through NetROM, with the host-side program
using standard TCP interfaces, such as sockets. Physical setup
of the debug environment is simplified, because serial
connections can go directly from NetROM to the target. The
emulation pods themselves provide non-RS-232 forms of
message passing, and NetROM allows supplementary control of
the target using the command and status signals.

1-7

Documentation overview

1-8

This manual contains detailed information about the NetROM
product, its services, installation, user interface, debugger
support, alternate interfaces, emulation memory and more.

The manual is organized as follows:

Chapter 2 NetROM Services
Discusses the NetROM embedded systems development
environment, including its implementation of the three
communications paths. Also describes the NetROM console,
command and status signals, and LEDs.

Chapter 3 Hardware Installation
Gives step-by-step instructions for installing the NetROM
hardware.

Chapter 4 Software Installation
Gives step-by-step instructions for installing the software and
setting up communications.

Chapter 5 User Interface
Describes the NetROM user interface, including the command
set and environment variables.

Chapter 6 Utilities
Describes NetROM utilities.

Chapter 7 Debugger Support
Describes NetROM's debugger support features.

Chapter 8 Alternate NetROM Interfaces
Describes how users can write their own programs to interface
to NetROM.

Chapter 9 Emulation Memory Mailbox Protocols
Describes the virtual UART emulation memory mailbox
protocol.

NetROM User's Manual

Introduction

Chapter 10 General Porting Guide
Describes procedures for porting your target monitor or
operating system to N etROM.

Chapter 11 Virtual Ethernet
Introduces Virtual Ethernet, an optional downloadable RAM
module to NetROM, and provides installation instructions.

Appendix A Connector Pinouts
Lists the RS-232 and Ethernet connector signals.

Appendix B NetROM Processes
Describes the common NetROM processes.

Appendix C NetROM Ports and Protocols
Lists the N etROM port addresses.

Appendix D NetROM Filename Conventions
Describes the filename conventions for batch and RARP files.

Appendix E NetROM Defaults
Lists port and environment defaults.

Appendix F Mailbox Protocol Implementation
Addresses issues associated with implementation of emulation
memory mailbox protocol.

A glossary, and an index follow these chapters. The NetROM
Installation Notes and the NetROM Hardware Interface
Reference are included at the end of this manual.

In addition, the Applied web site (http://www.amc.com)
provides application notes and updated technical information.

1-9

Documentation conventions
This manual uses the following conventions:

D Book titles, emphasized words, command names, and
keywords are in italics.

D Command parameters are in boldface.
D Computer programs are in constant-spaced font.

D Environment variable names are in "quotation marks."
D Items that are optional are enclosed in [square braces].
D Items that are mutually exclusive are separated by a

vertical bar I.
D Mutually exclusive items, one of which is mandatory, are

enclosed in {braces}.

Warnings, cautions, notes

warninffi

Note

1-10

Warning messages appear before procedures and alert you to the
danger of personal injury which may result unless certain
precautions are observed.

Caution messages appear before procedures and indicate that
damage may be done to the emulator or to your target system
unless certain steps are observed.

Notes indicate important information for the proper operation
and installation of your emulator.

NetROM User's Manual

Introduction

Radio interference warning

caUlio"6

This equipment generates, uses, and can radiate radio
frequency energy.

This instrument is intended for use in the development of
microprocessor-based systems. At this stage of development,
these target devices typically include no inherent design to
limit the emissions of electromagnetic energy.

Precautions should be taken to prevent harmful radiation to
radio communications and other nearby sensitive electronic
systems by means of isolation, separation, or shielding, where
necessary.

Use of this instrument in a residential area is likely to cause
harmful interference, in which case, the user will be required
to correct the interference at his own expense.

FCC Rules
It is temporarily permitted by regulation and has not been
tested for compliance with the limits of Class A computing
devices pursuant to Subpart J of Part 15 of FCC Rules, which
are designed to provide reasonable protection against such
interference.

EMC Directive
For compliance to the essential requirements of the EMC
Directive 89/3361EEC, if a ground post is provided on the back
of the chassis or on the external power supply, a properly
bonded ground strap must be connected to it.

1-11

Operating requirements
Before setting up NetROM, you should determine where you
want to install NetROM and to make sure that the operating
environment is prepared.

Standard electrostatic precautions

1-12

This instrument contains static-sensitive components that are
subject to damage from electrostatic discharge. Use standard
ESD precautions when transporting, handling, or using the
instrument or when connecting/disconnecting the instrument
and the target,

Applied Microsystems recommends the use of the following
precautions:

o Use wrist straps or heel bands with a 1 Megohm resistor
connected to ground.

o On the work surface and floor, use static conductive mats
with a 1 Megohm resistor connected to ground.

o Keep high static-producing items, such as non-ESD­
approved plastics, tape and packaging foam, away from the
instrument and the target.

The above precautions should be considered as minimum
requirements for a static-controlled environment.

The instrument contains components that are subject to
damage from electrostatic discharge. Whenever you are using,
handling, or transporting the instrument, or connecting to or
disconnecting from a target system, always use proper anti­
static protection measures, including static-free bench pads
and grounded wrist straps.

NetROM User's Manual

Introduction

Support services
Applied Microsystems provides a full range of support services.
NetROM is covered by a 90-day warranty. Additional support
agreements are available to provide additional services.

If you have trouble installing or using the product, consult your
manuals to verify that you are following the correct procedures.

If the problem persists, call Customer Support. Customers
outside the United States should contact their sales
representative or local Applied Microsystems office. When you
contact Customer Support, have your ASI number available.

Telephone
800-ASK-4AMC (800-275-4262)

(425) 882-2000 (in Washington State or from Canada)

Internet address
If you have access to the Internet, you can contact Applied
Microsystems Customer Support using the following address:

support@amc.com

If you have product suggestions or requests, use the following
address:

netrom@amc.com

You can also browse the Applied Microsystems World Wide
Web page using the following URL:

http://www.amc.com

See the Applied web page for NetROM application notes.

FAX
(425) 883-3049

1-13

I Chapter 2

NetROM Services
This chapter provides a general description ofNetROM's
features.

Contents Page

"NetROM console" 2-2

Communications paths 2-3

Debug path 2-4

Console path 2-7

Channel paths 2-9

Download path 2-11

Optional downloadable RAM module 2-16

Command and status signals 2-16

NetROMLEDs 2-18

2-1

NetROM console

2-2

To set up NetROM and establish communications between
NetROM and host, there is one communication path from the
host to the NetROM console. The NetROM console processes
communications to NetROM from several input connections:

o Console serial port (for user-to-NetROM communications)
o TELNET port (for user-to-NetROM communications)
o NetROM console port (for debugger-to-NetROM

communications)
o NetROM debug control port (for debugger-to-NetROM

communications

The console serial port serves several purposes.

o It allows access to NetROM without using the Ethernet. This
is particularly useful during the initial stages of NetROM
installation, when NetROM' s Ethernet address is not known
and therefore cannot be associated with an IP address for
use on the Ethernet.

o In environments which do not offer address resolution
servers such as BOOTP or RARP, the NetROM console allows
users to access NetROM in order to configure its IP address
manually. Normal NetROM operation can then proceed,
assuming a TFTP server is present to download images. (It
is possible to send a file to NetROM for download into
emulation memory, rather than having NetROM request the
file; however, such an environment does not allow "normal
usage.» Consult Chapter 7 for information on alternate
NetROM interfaces.)

o You may occasionally want to monitor traffic between
NetROM and the target system on the console path, the
debug path, and/or one of the channel paths. If enabled, data
passed between NetROM and target can be echoed to the
NetROM console; see the set consecho, set debugecho, and set
chanecho commands for details. This is particularly useful
when integrating N etROM with various debugger/monitor
applications.

NetROM Users Manual

NetROM Services

o Displays messages about abnormal events. As with many
multitasking and potentially multi-user systems, NetROM
uses its serial port to provide a log of diagnostic messages
about abnormal events.

serial console
connector

NetROM Console port

TELNETport

..• Dualport

Figure 2-1 NetROM console communications channels

Communications paths
To support embedded systems design, there are three NetROM
communications paths from the host to the target system:

Debug path
How a debugger running on a host computer communicates
with a software monitor on the target system. This allows you
to set breakpoints, examine registers and data, and respond to
error conditions almost as if the target system were a program
running on the host computer.

2-3

Debug path

2-4

Console path/channel path
How the user interacts with the target system; i.e., configure,
control, and monitor. This can consist of a serial port running
a simple terminal emulator that processes commands or a
TELNET session on a direct TCP link to aN etRO M port. These
paths allow the user to easily inspect and monitor the system
for bugs or unexpected behavior.

Download path
How new images are loaded into NetROM's emulation memory.
This path allows the target system to respond quickly to
changes made in the source code residing on the host computer
and reduces the cycle time between modifying code and testing
the modification.

The following sections provide detailed information on each
path.

Many development environments for embedded systems use
symbolic debuggers. These debuggers run on the host system
but communicate with the target system, usually using serial
lines. The debugger sends messages to the target, generally
interrogating or setting the target's register, state or memory
contents. The target sends messages to the debugger,
informing it of breakpoints and exceptions. On the host side,
the debugger keeps track of symbol tables, source files, and
breakpoint status. On the target side there is generally a
software monitor which perform the operations requested by
the host side.

NetROM Users Manual

Note ~

NetROM Services

The communications methods from N etROM to target and
from host to N etROM are independent of each other. The
debugger does not need to be aware of how data is passed to the
target; it merely sends it to NetROM and NetROM takes care of
the rest.

NetROM-to-target communication
The debug path uses either serial or "dualport" (emulation
memory mailbox) channels to communicate with the target
system.

The dualport protocol which is used to communicate with
NetROM through emulation memory is simple, and generic
target-side code is provided with NetROM. This code requires
minimal porting and provides character-oriented input and
output functions. The protocol is described in detail in
Chapter 9.

There is a single serial channel between NetROM and target.
Communication on the serial channel will be seen by any path
using the channel.

A single dual port channel is shared between the console path
and the debug path. If you want to reserve the dualport
channel for use by the debug path, consider using a serial
channel for the console path or use one of three channel paths
for NetROM-to-target communications.

Host-to-NetROM communication
There are two paths between NetROM and the debugger. Both
are TCP connections. One is the debug data path; data received
from the debugger is passed directly to the target. The other is
the debug control path; control data received from the debugger

2-5

is passed directly to NetROM, which allows debuggers to
perform such tasks as directly reset the target or download a
new image.

TELNET is the recommended method for TCP communications
with NetROM. (See Chapter 8 for information on alternate
NetROM interfaces.) Using TELNET for all types of
communication with the target means that you can more or
less ignore which specific path is being used to communicate
with the target once everything is set up. It also means that you
can communicate with the target - via NetROM - from
anywhere in the office or lab which provides TELNET.

Figure 2·2 Debug path communications channels

2-6 NetROM Users Manual

Console path

NetROM SeNices

Many embedded systems have a serial port for communicating
interactively with a user. Some systems have no such
mechanism and debugging is correspondingly more difficult,
since you must rely on LED displays and DIP switches or
similar methods to determine what the target is doing and to
give it commands. NetROM provides tools to communicate
directly with any of these types of target systems.

The communications methods from NetROM to target and
from host to NetROM are independent of each other.

NetROM-to-target communication
The console path uses either serial or "dualport" (emulation
memory mailbox) channels to communicate with the target
system.

The target doesn't need to have a serial port in order to provide
a console to the user. By using the emulation memory, which is
shared between NetROM and the target, to pass messages, the
target can communicate directly with the user during
debugging. Using emulation memory to pass messages
requires a minimum of working hardware. That is, even
targets with a serial port require hardware which can access
and program the port. During the very early phases of system
boot, this is not always available and software engineers must
use crude methods for debugging. However, targets which
execute out of emulation memory already have everything they
need to communicate with the user.

The dualport protocol which is used to communicate with
NetROM through emulation memory is simple, and generic
target-side code is provided with NetROM. This code requires
minimal porting and provides character-oriented input and
output functions. The protocol is described in detail in
Chapter 9.

2-7

Note ~

There is a single serial channel between NetROM and target.
Communication on the serial channel will be seen by any path
using the channel.

A single dualport channel is shared between the console path
and the debug path. If you want to reserve the dualport
channel for use by the debug path, consider using a serial
channel for the console path or use one of three channel paths
for NetROM-to-target communications.

Host-to-NetROM communication
Use TCP or serial communications between host and NetROM
for the console path. Once communication is established
between host and NetROM, use the tgtcons command
(page 5-29) to establish a console session.

TELNET is the recommended method for TCP communications
with NetROM. (See Chapter 8 for information on alternate
NetROM interfaces.) UsingTELNET for all types of
communication means that you can more or less ignore which
specific path is being used to communicate with the target once
everything is set up. It also means that you can communicate
with the target - via NetROM - from anywhere in the office or
lab which provides TELNET.

Dualport

Figure 2-3 Console path communications channels

2-8 NetROM User's Manual

Channel paths

Note ~

NetROM Services

The three channel paths provide alternate communication
mechanisms between the user and the target.

Because the debug path and console path share the same
dualport channel, you may want to use one of the channel paths
to communicate with the target.

The communications methods from N etROM to target and
from host to NetROM are independent of each other.

NetROM-to-target communication
The channel paths use either serial or "dualport" (emulation
memory mailbox) channels to communicate with the target
system.

Three independent channels are available with dualport
communications. The dualport protocol which is used to
communicate with NetROM through emulation memory is
simple, and generic target-side code is provided with NetROM.
This code requires minimal porting and provides character­
oriented input and output functions. The protocol is described
in detail in Chapter 9. In addition, you can use buffer-oriented
110. See "nr_GetMsg" on page 9-16 and "nr_PutMsg" on
page 9-19.

There is a single serial channel between N etROM and target.
Communication on the serial channel will be seen by any path
using the channel.

Host-to-NetROM communication
TELNET is the recommended method for TCP communications
with NetROM. (See Chapter 8 for information on alternate
NetROM interfaces.) Using TELNET for all types of

2-9

communication with the target means that you can more or
less ignore which specific path is being used to communicate
with the target once everything is set up. It also means that you
can communicate with the target - via NetROM - from
anywhere in the office or lab which provides TELNET.

Figure 2-4 Channel path communications channels

2-10 NetROM Users Manual

Download path

Emulation memory

Net ROM Services

The download path from the host system to the target is used
to transfer ROM images from the host system, where they are
developed, to the target, where they are used. These images are
commonly executable code, but can contain other data as well;
for example, some target systems may use ROMs to store
graphics or configuration information. Images are generally
developed on the host system using a compiler or some similar
software tool.

NetROM has 1 MB or 4 ME of emulation SRAM. It consists of
four partitions, where the size of each partition is one-fourth of
the maximum, or 256Kfor 1 ME NetROMs and 1 ME for 4 ME
N etROMs. These partitions of emulation memory connect to
the target system using ribbon cables which end in a header or
connector used for the particular type of ROM being emulated.

The partitions of emulation memory will be referred to as
"emulation pods". The ribbon cables and ROM connectors will
be referred to as "emulation cables", of which there are two
types - active and passive. The ROM connectors will be referred
to as "plugs".

In general, emulation memory can be used to support a single
ROM, multiple ROMs used to extend the memory space, and
multiple ROMs used to create multiple-byte words.

With passive emulation cables, each emulation pod can
emulate a single 8-bit ROM. The emulation pods can also be
combined to support larger or wider ROMs.

With active emulation cables, emulation pods are used in pairs
and can emulate a single 8-bit ROM, or a single 16-bit ROM.
The emulation pod pairs can also be combined to support larger
or wider ROMs. When referring to the use of active emulation
cables, pod pairs will simply be referred to as pods.

2·"

ROM groups

2-12

When multiple ROMs are in a parallel or serial organization,
they become a ROM group for emulation purposes. A parallel
organization is when ROMs are used to create words wider
than a single ROM. A serial organization is when ROMs are
used to a memory space longer than a single ROM.

Serial and parallel organizations are not mutually exclusive; a
target with four 8-bit ROMs might use them to create twice as
many 16-bit words as it could with only two.

To emulate a ROM group, you will need to define several
attributes. If your target has multiple ROM groups that you
wish to emulate, you can define unique groups for each using
"set rgconfig" on page 5-44. To select the default ROM group
upon which other commands will act, use "romgroup" on
page 5-135.

ROM group defining attributes
ROM groups have five defining attributes:

1. ROMtype

All ROMs in a ROM group are the same type of ROM. Thus,
it is not necessary to specify the ROM type for each ROM in
a ROM group, but only for the ROM group as a whole. See
"romtype" on page 5-136.

2. Word size

This specifies the size of the word of the ROM group.

For example, two 27 c020 ROMs are used in parallel to create
a ROM space with 256 Kwords. Each word is 16 bits, not
eight bits, wide.

Word size is closely tied to ROM count, described below. See
"wordsize" on page 5-142. The target will generally have an
address which is the start of ROM space and will read whole
words from that address.

3. ROM count

This is the total number of emulated ROMs.

NetROM Users Manual

NetROM Services

If the ROM count is greater than the word size divided by 8,
then some of the emulated ROMs are being used serially to
create a ROM address space longer than is possible with a
single set of emulated ROMs operating in parallel. See
"romcount" on page 5-134.

For example, four 27c020 ROMs use a word size of 16 bits.
In this case, the word size (16) divided by 8 is 2, so the ROMs
are being used by the target as two sets of parallel ROMs
operating in serial to provide a longer address space. This
space is 512 Kwords long, where each word is 16 bits wide.

Table 2-1 and Table 2-2 show the valid combinations of
ROM count and word size. Valid combinations are
dependent upon the type of emulation cables being used and
the type of ROMs being emulated.

Table 2-1 Combinations of ROM count and word size (passive cables)

Number of ROMs Emulated

Word Size 1 2 3 4

8 Yes Yes Yes Yes

16 No Yes No Yes

32 No No No Yes

Table 2-2 Combinations of ROM count and word size (active cables)

Number of ROMs Emulated

Word Size 1 2 3 4

8 Yes Yes No No

16 Yes Yes No No

32 No Yes No No

2-13

2-14

4. Pod order

For target systems which use multiple 8-bit ROMs, in serial
or in parallel, you can specify the correspondence between
emulation pods and ROM bytes.

For example, a 16-bit data bus target might number its
sockets 0 and 1, according to where the byte is within the 16-
bit word. You might want pod 0 to be byte 0 on the target and
pod 1 to be byte 1, or might want pod 1 to be byte 0 and pod
o to be byte 1.

See ''podorder" on page 5-127. Note, "podorder" and
"wordsize"f'romcount" provide the same information in a
different form.

5. Writability

This allows the target to set breakpoints in a ROM image, or
to modify the image in other ways. ROM groups by default
are read-only, and any attempt to write them is quietly
ignored. The writability attribute controls both write cycles
which use the emulation pod's write line and the external
write line. Note read-only targets can request that NetROM
write emulation memory for them. See "Dualport protocol"
on pageF-10.

The emulation pod memory can be configured to emulate
either flash ROM or static RAM. The difference is how
NetROM reacts to the WR signal when OE is asserted. The
environment variable "writemode' controls this attribute.
The default mode is FLASH. See ''writemode'' on page 5-143.

Other ROM group attributes

In addition, ROM groups have two other attributes:

1. Group name

ROM groups can be assigned a name, so that you will not
have to remember which ROM group is being used for what
purpose. Names can be any mnemonic, and are optional. See
"set rgname" on page 5-47.

NetROM User's Manual

NetROM Services

2. Target address

This is the 32-bit address indicating the start of the ROM
group in the target's address space. The ability to specify a
target-side starting address allows you to compare the
contents of emulation memory directly with the binary
image created on the host system, using the contents of a
map file for addressing. Target addresses default to 0, but
can be set to any 32-bit value. See "groupaddr" on
page 5-122.

Configuring ROM groups
If you want to emulate only one ROM group, configuring it is
quite simple. As described above, you specify the ROM type,
the word size, and the ROM count for the default ROM group
(group 0) simply by stating your preferences on the command
line. ROM group configuration can be done as part of a startup
batch file. Mer the ROM group has been configured, the group
can be loaded with an image and emulation can begin.

If you want to emulate multiple ROM groups, you can define
unique groups for each using "set rgconfig" on page 5-44. To
select the default ROM group upon which other commands will
act, use "romgroup" on page 5-135.

Downloading ROM groups
Each ROM group can be downloaded independently. NetROM
takes advantage of LAN speeds to accomplish fast downloads.
Downloads can be accomplished in several ways:

a Trivial File Transfer Protocol (TFTP), a standard Internet
file transfer program.

a TCP connections to a port on NetROM.

2-15

Optional downloadable RAM module
Applied Microsystems' optional downloadable RAM module is
a licensed applications package that adds functionality to
NetROM. The Virtual Ethernet module gives target systems the
ability to become Ethernet communications devices without
requiring that they have Ethernet hardware.

The application is licensed to individual NetROM units and is
linked to a specific NetROM version. That is, when you
purchase a downloadable RAM module, it can only be used on
one NetROM unit and that unit must be running a compatible
version ofNetROM software.

The application software diskette contains the computer file(s)
necessary to load the module into the specific NetROM system.
Module files are loaded using the loadmodule command, which
automatically executes TFTP, the file transfer mechanism that
downloads the file(s) to your NetROM system. We recommend
these file(s) be stored in the same directory as your startup.bat
file; however, the file(s) can be placed on the server anywhere
to which NetROM has TFTP access.

Detailed setup and usage instructions for the Virtual Ethernet
module is in Chapter 11.

Command and status signals

2-16

Command signals
NetROM provides a set of eight command signals which can be
mapped to arbitrary traces on the target system. The command
signals are "active low," which means when asserted (set to
"on") the signal is near ground potential.

There are certain electrical considerations involved in using
the command signals.

NetROM User's Manual

NetROM Services

o Command signals are tri-state; that is, when they are not
asserted, they are "not connected" to the target.

o The command signal must be connected in such a way that
it will not cause a short circuit. NetROM command signals
are driven by a GAL 22V10-15 capable of sinking a
maximum of 16 milliamps at 0.5V.

o Command signals are meant to be used in either open­
collector circuits or circuits which drive small amounts of
current. Most TTL signals generally drive small amounts of
current (about 10 milliamps). However, if the trace to which
the command signal is connected drives a large amount of
current, when the command signal is asserted there will be
a short circuit which may damage NetROM. The solution is
to use a current-limiting resistor between the command
signal and the target trace.

Status signals
NetROM also provides a set of status signals which can be
connected to arbitrary signal traces on the target system.
Status signals simply monitor the status of the traces on the
target system. They are interpreted as being active low; that is,
if the TTL signal on the target side is low, the status will read
as "on," otherwise it will read as "off."

The status lines can be interrogated at the command line or
mapped to LEDs on the NetROM back panel. There are eight
status lines and only four LEDs, so you can either map some
LEDs to multiple status signals or not use all of the status
signals. It is possible to configure signal-to-LED mappings so
that the LED lights up when the signal is high. See "ledmap"
on page 5-92 and "di ledmap" on page 5-64.

Defaults
Some of the command and status signals have default
semantics. For example, command signal zero (0) is assumed to
be connected to the target processor's reset line. If a reset line
is connected to the target, you can apply a 100-millisecond
hardware reset to the target remotely; refer to "reset" on
page 5-96.

2-17

NetROM LEOs

Main unit

2-18

Front panel
The front of NetROM has two sets of LEDs, with one set for
each cable and one LED for each emulation pod. When you plug
the cable correctly into the target, the corresponding NetROM
green LED lights. If the cable is plugged in backwards, the
LED will not light.

Back panel
The back of NetROM has two sets of LEDs: the network activity
LEDs and the status LEDs. The network activity LEDs are
controlled by NetROM's Ethernet interface, but the status
LEDs are controlled by NetROM's software. Figure 2-5 shows
the NetROM's LEDs.

The labeled LEDs in Figure 2-1 are the network LEDs and
represent different network states.

RX

TX

LINK

POLARITY

Indicates when NetROM is receiving frames.

Indicates when NetROM is transmitting
frames.

Represents twisted pair MAU link status.

Indicates reversed polarity on receives.

The numbered LEDs are the target status LEDs and can be
mapped to the status signals on NetROM. By default, LED 0 is
used as a ''heartbeat" LED, which indicates that NetROM is
alive and gives some indication of the load on the system. See
"ledmap" on page 5-92 and cedi ledmap" on page 5-64. The single
red LED to the left indicates that power is on.

NetROM User's Manual

Active cables

NetROM Services

1 3 RX TX

ON

H

o 2 Link Polarity

Figure 2-5 NetROM LEDs

The active cable includes two LEDs, indicating read and write
cycles.

Figure 2-6 Active cable LEDs

Read .J
(red)

~Write
(green)

2-19

I Chapter3

Hardware Installation

Cauti0n&

This chapter provides instructions for installing NetROM
hardware.

Contents Page

Collecting equipment 3-2

Connecting power 3-5

Connecting to Ethernet 3-6

Connecting ROM emulation cables 3-8

Connecting N etROM console serial port 3-27

Connecting target serial port 3-27

Connecting the write signal 3-29

Connecting the reset signal 3-31

N etROM contains components that are subject to damage from
electrostatic discharge. Whenever you are using, handling, or
transporting the hardware, or connecting to or disconnecting
from a target system, always use proper anti-static protection
measures, including using static-free bench pads and grounded
wrist straps.

3-1

Collecting equipment

3-2

Before starting the installation verify that you have the
following equipment:

Cl An AC power cord and transformer provided with your
NetROM.

Cl The ROM emulation cables you ordered.
Cl A means of connecting to the Ethernet. Ethernet connection

may be accomplished two ways:
Cl Via a twisted pair MAU
Cl Via a RJ-45 twisted pair connector

If you do not have the above-mentioned items please obtain
them before proceeding.

You may want to obtain a "dumb" terminal such as a VT100 to
serve as a NetROM console while you troubleshoot your
NetROM configuration.

The following sections explain how to install external
connections to the various connectors on NetROM. Figure 3-2
illustrates the front and rear panels of the N etROM.

NetROM Users Manual

Power
supply

Serial cable with
RJ-45 connectors

Hardware Installation

~Mainunit

--.~~

I' i\ wr~Lt
08-9 RJ-45 cable

08-25 RJ-45

Passive emulation cable

Active emulation cable

Figure 3-1 NetROM and accessories

3-3

front Da'l§1

Connector for emUlation
pOds 2 and 3

Write/reset connectors

Connector for emUlation
pOds o and 1

ROM POWer "OK" LEOs

POWer connector
Target status/network

' activity LEOs POWer switch

connector
Figure 3-2 Front and rear panel connections

Ethernet AUI
connector (15-pin)

NetROM User's Manual

Hardware Installation

Connecting power

Connecting AC power cord

To avoid damaging NetROM use only the AC power cord and
transformer supplied with your N etROM.

~ To connect AC power:

1. Make certain the power switch on NetROM is turned off.

2. Attach the power cord to the connector labeled POWER on
the rear panel of NetROM.

3. Plug the other end of the power cord into a grounded AC wall
outlet.

3-5

Connecting to Ethernet

caulion&

3-6

N etROM can be connected to the Ethernet via one of two
means. Figure 3-2 on page 3-4 shows the location of the
connectors on the back ofthe N etROM, and Figure 3-3 on
page 3-7 shows the two connectors in detail. Note that no
switches or jumpers need be set on NetROM when changing
the type of Ethernet connection. NetROM automatically
configures for whichever network connection is plugged in. If
both connectors are plugged in, NetROM will use the 10 Base­
T interface and ignore the AU! transceiver.

An Ethernet transceiver is required when connecting N etROM
to either thin or thick Ethernet cable.

>- To use an Ethernet Transceiver:

• Connect the transceiver via an Attachment Unit Interface
(AU!) cable to the 15-pin AU! connector on the rear panel of
NetROM (Figure 3-3).

Other connections for the transceiver should be performed
according to the instructions supplied by the transceiver
manufacturer.

There are three RJ-45 connectors on the back panel of
NetROM. Do not connect the 10 Base-T network to either
connector labeled SERIAL. The 10 Base-T connector should
ONLY be connected to the connector labeled ETHERNET.
Also, do not connect any RS-232 cables to the connector labeled
ETHERNET. The ETHERNET connector supplies a 12 Volt
signal and may damage your RS-232 equipment.

>- To use an RJ-45 Connector:

• Connect to 10 Base-T networks via the RJ-45 connector
marked ETHERNET (Figure 3-3).

NetROM User's Manual

TARGET CONSOLE 10 BASE T

o

TARGET CONSOLE 10 BASE T

o
SERIAL ETHERNET

Hardware Installation

ETHERNET-AU I

•••••••• • • • • • • •

ETHERNET-AUI

• • • • • • • • • • • • • • •

AUI Cable

o

o

Figure 3-3 Connecting Ethernet

3-7

Connecting ROM emulation cables

Cable configurations

3-8

Because of the extensive list of supported ROMs, several
configurations of cable assemblies are provided:

o Active emulation cables
o Passive emulation cables
o Passive emulation cables with the "4 to 5" cable converter

Active cables contain active circuitry that is software
configured for the type of memory being emulated.

Passive cables originally designed for use with N etROM 400
series can be used with N etROM 500 series by connecting them
through the cable converter.

Examples of supported cable configurations are shown in
Figure 3-4, Figure 3-5, and Figure 3-6.

Assembly of ROM emulation cables
Depending on the device you are emulating you may need to
connect several assemblies to create your fmal cable assembly
configuration, prior to connecting to your target (see
"Connecting ROM emulation cables to target" on page 3-23).

Examples of cable assemblies are shown in Figure 3-7 and
Figure 3-8. All connectors are keyed.

NetROM Users Manual

Hardware Instal/ation

Maximum Memory Size: 2M x 8
or
1Mx16

A

2Mx8
or
1M x16

NetROM 540

4Mx8
or
2Mx16

NetROM 540

Figure 3·4 Active emulation cable configurations

Maximum Memory Size: 1 M x 8 1Mx81Mx8
1Mx8

NetROM 540

Figure 3·5 Passive emulation cable configuration

8

3-9

Maximum Memory Size: 256K x 8 256K x8

4 to 5 Converter

NetROM 540

Figure 3-6 Passive emulation cable configuration

3-10 NetROM User's Manual

to NetROM
~

to NetROM
~

-

Ribbon Cable

Figure 3-7

Active Pod

"0
0
a.
G)
>

~ ~ 0
III
~
~
z

Cable Adapter

Hardware Installation

to target ----..
Flex Circuit Adapter

-.r-

~

Cable assembly example

totar~t

Cable
Ribbon Cable Adapter Flex Circuit A dapter

Figure 3-8 Cable assembly example

3-11

Connection steps
>- To connect to a target system:

1. Identify the type and number of ROMs to be emulated. An
emulation cable is required for each ROM.

2. For more than one ROM, determine whether they are in a
parallel and/or serial configuration on the target.

3. Determine which emulation pods should be used.

4. Connect ROM emulation cables to NetROM

5. Connect ROM emulation cables to target.

The following topics are covered in this section:

Section Page

Parallel or serial? 3-13

Which emulation pods should be used? 3-14

Connecting ROM emulation cables to NetROM 3-22

Connecting ROM emulation cables to target 3-23

3-12 NetROM User's Manual

Hardware Installation

Parallel or serial?
Parallel. If the target system has a multiple-byte word size
and more than one ROM is used to create this word, the ROMs
are parallel and a parallel emulation setup is used.

o 0 o 0 0 0 DD
8 8 8 8 8 8 16 16

LJ I I I I
Wordsize 16 32 32

Figure 3-9 Possible parallel configurations

Serial. If a target uses additional ROMs to provide more
memory space than is supplied in a single ROM the ROMs are
serial and a serial emulation setup is used.

0 0 0 D
8 8 8 16

0 0 0 D
8 8 8 16

0 0
8 8

0
8

Figure 3-10 Possible serial configurations

3-13

3-14

Parallel and serial. If the target uses ROMs in a parallel/
serial combination a parallel/serial emulation setup is used.

o 0
8 8

o 0
8 8
L.J

Word size 16

Figure 3-11 ParalleVserial configuration

Which emulation pods should be used?
With 4 MB NetROM, passive cables support 8-bit ROMs up to
1 MB; active cables support 8-bit ROMs from 1 MB-4 MB and
16-bit ROMs.

With 1 MB NetROM, passive cables support 8-bit ROMs up to
256K; active cables support 8-bit ROMs from 256K to 1 M and
16-bit ROMs

NetROM software has a default mapping of emulation pods to
target byte ordering. This mapping can be overridden using the
"podorder" environment variable discussed on page 5-127. You
need to ensure that the emulation cables connect the ROMs to
the emulation pods in the correct order.

The following tables illustrate configurations for ROMs used
for 8, 16, or 32-bit words in parallel, serial, or both
configurations., using passive and active pods with 4 MB
NetROM. The default mapping and big-en dian byte ordering
are assumed. Use the tables to determine which emulation pod
should be used to emulate each ROM.

NetROM User's Manual

Pod 1

0 bytes 0 to
(lM-1)
OxOOOOO to
Oxfffff

1 N/A

2 N/A

3 N/A

Hardware Installation

8-bit word size/passive cables. There are four possible
configurations: using 1, 2, 3 or 4 ROMs. Table 3-1 shows
mapping between NetROM emulation pods and the target's
ROM addresses. Also included are the data bits supplied by
each emulation pod.

Table 3-1 Emulation of an 8-bit word size with passive emulation cables

Number of ROMs Emulated

2 3 4 Data Bits

bytes 0 to bytes 0 to bytes 0 to DO-D7
(lM-1) (lM-1) (lM-1)
OxOOOOO to OxOOOOO to OxOOOOO to
Oxfffff Oxfffff Oxfi'fff

bytes 1M to bytes 1M to bytes 1M to DO-D7
(2M-l) (2M-l) (2M-l)
Ox100000 to OxlOOOOO to OxlOOOOO to
Oxlff.fff Oxlfffff Oxlfffff

N/A bytes 2M to bytes 2M to DO-D7
(3M-!) (3M-l)
Ox200000 to Ox200000 to
Ox2fffff Ox2ff.fff

N/A N/A bytes 3M to DO-D7
(4M-l)
Ox300000 to
Ox3ff.fff

3-15

Pod

0

2

3-16

8-bit word size/active cables. There are two possible
configurations: using 1 or 2 ROMs. Table 3-2 shows mapping
between NetROM emulation pods and the target's ROM
addresses. Also included are the data bits supplied by each
emulation pod.

Table 3-2 Emulation of an 8-bit word size with active emulation cables

Number of ROMs Emulated

Configuration A in Figure 3-4 Configuration B in Figure 3-4

1 2 1 Data Bits

bytes 0 to bytes 0 to bytes 0 to (4 M-l) DO-D7
(2 M-l) (2M-l) OXOOOOO to Ox3fffff
OxOOOOO to OxOOOOO to
Oxlfffff Oxlfffff

N/A bytes 2Mto DO-D7
(2 M-l)
Ox200000 to
Ox3fffff

NetROM User's Manual

Pod 1

0 N/A

1 N/A

2 N/A

3 N/A

,'-Iardware Installation

16-bit word size/passive cables. There are two possible
configurations: using 2 or 4 ROMs. Table 3-3 shows the
mapping between NetROM emulation pods and the target's
ROM addresses. Also included are the data bits supplied by
each emulation pod.

Table 3-3 Emulation of a 16-bit word size with passive emulation cables

Number of ROMs Emulated

2 3 4 Data Bits

even bytes N/A even bytes DO-D7
o to (2M-l) o to (2M-l)
OXO to Oxlfffff OXO to Ox1fffff

odd bytes N/A odd bytes D8-D15
o to (2M-l) o to (2M-l)
OxO to Oxlfffff OxO to Oxlfffff

N/A N/A even bytes DO-D7
2M to (4M-l)
Ox200000 to
Ox3fffff

N/A N/A odd bytes D8-Dl5
2M to (4M-l)
Ox200000 to
Ox3fffff

3-17

Pod

0

2

3-18

16-bit word size/active cables. There are two possible
configurations: using I or 2 ROMs. Table 3-4 shows the
mapping between NetROM emulation pods and the target's
ROM addresses. Also included are the data bits supplied by
each emulation pod.

Table 3-4 Emulation of an 16·bit word size with active emulation cables

Number of ROMs Emulated

Configuration A in Figure 3-4 Configuration B in Figure 3-4

1 2 1 Data Bits

bytes 0 to (2M-I) bytes 0 to bytes 0 to (4M-I) DO-DI5
OXO to Oxlfffff (2 M-I) OxO to Ox3fffff

OXO to Oxlfffff

bytes 2 Mto DO-DI5
(4 M-l)
Ox200000 to
Ox3fffff

NetROM User's Manual

Pod 1

0 N/A

1 N/A

2 N/A

3 N/A

Hardware Installation

32-bit word size/passive cables. There is one possible
configuration: using four ROMs. Table 3-5 shows mapping
between NetROM emulation pods and the target's ROM
addresses. Also included are the data bits supplied by each
emulation pod.

Table 3-5 Emulation of a 32·bit word size with passive emulation cables

Number of ROMs Emulated

2 3 4 Data Bits

N/A N/A byte zero, DO-D7
o to C4M-l)
OXO to Ox3fffff

N/A N/A byte one, D8-D15
o to C4M-l)
OXO to Ox3fffff

N/A N/A byte two, D16-D23
o to C4M-l)
OXO to Ox3fffff

N/A N/A byte three, D24-D31
o to C4M-l),
OXO to Ox3fffff

3-19

3-20

32-bit word size/active cables. There is one possible
configuration: using two ROMs. Table 3-6 shows mapping
between NetROM emulation pods and the target's ROM
addresses. Also included are the data bits supplied by each
emulation pod.

Table 3-6 Emulation of an 32-bit word size with active emulation cables

Pod

o

2

Number of ROMs Emulated

Configuration A in Figure 3-4

2

byte zer%ne bytes 0 to (4M-l)
OXO to Ox3fffff

byte two/three bytes 0 to (4M-1)
OXO to Ox3fffff

Data Bits

DO-D15

D16-31

NetROM Users Manual

Hardware Installation

Byte ordering. When connecting the ROM emulation cables,
it is helpful to understand the byte ordering on the target
system. The tables above have shown the mapping for big-
en dian systems. The next figure shows the byte ordering for
big- and little-endian systems for 16- and 32-bit word sizes.
Using this figure and the previous tables, it should be possible
to determine which NetROM emulation cable to plug into the
target system's ROM sockets.

Big Endian
Byte Ordering

16-bit word

Byte 0 I Byte 1

15 87 0

Little Endian
Byte Ordering

32-bit word

I Byte 0 I Byte 1 I Byte 2

31 2423 1615

16-bitword

Byte 1 I Byte 0

15 87

32-bitword

I Byte 3 I Byte 2 I Byte 1

31 2423 1615

Figure 3-12 Big-endianllittle-endian byte ordering

I Byte3

87

o

I ByteO

87

o

o

3·21

3-22

Connecting ROM emulation cables to NetROM
The ROM emulation cables connect to NetROM through 100-
pin female cable connectors. The configurations vary
depending on the type of emulation cables you are using and
the size and format of the memory you are emulating. The
cables vary depending on the format of the ROM package
located on the target system.

Active cables can connect to one ROM, so you need to consider
only whether to connect to pods 0 and 1 or pods 2 and 3.

Passive cables can connect to two ROMs, but terminate in one
connector that plugs into NetROM. You need to know which
cable connects to which emulation pod. See the following figure
for the cable/pod association.

NetROM 540

(top)

pod 3 pod 2 pod1 pod 0

Figure 3-13 Pod/cable association

If you are using the 4 to 5 converter, first connect the target­
end cables to the converter, then determine whether to connect
to pods 0 and 1 or pods 2 and 3.

>- To use emulation pods 0 and 1

• Connect the emulation cables to the connector labeled
EMULATOR PODS 0 AND 1.

NetROM Users Manual

Caulion&

Hardware Installation

~ To use emulation pods 2 and 3

• Connect the emulation cables to the connector labeled
EMULATOR PODS 2 AND 3.

See Figure 3-2 and ''podorder'' on page 5-127.

Connecting ROM emulation cables to target
Instructions follow for connecting DIP, PLCC, header, and
surface mount style cables to your target.

NetROM and the target contain components that are subject to
damage from electrostatic discharge. Whenever you are
handling the hardware, or connecting to or disconnecting from
a target system, always use proper anti-static protection
measures, including using static-free bench pads and grounded
wrist straps.

Connecting DIP style cables
DIP-style cables are used to connect NetROM to targets that
contain DIP ROM packages. Available in 28-, 32-, and 40-pin
versions, these cables plug directly into the ROM sockets on the
target system.

Plugging in ROM cables improperly may damage the NetROM.

~ To connect DIP cables:

1. Turn off power to the target system.

2. Remove any ROMs currently in the ROM sockets on the
target.

3. Align pin 1 on the ROM emulation cable DIP connector with
pin 1 on the target DIP socket and insert.

3-23

3-24

The ROM power "OK" LEDs (see Figure 3-2 on page 3-4) will
light when the cables are plugged in correctly and the target
system is powered on.

Connecting PLCC style cables
PLee style cables are used to connect N etROM to targets
which use PLee ROM packages. These cables plug directly
into the ROM sockets on the target system.

Plugging in ROM cables improperly may damage the N etROM.

~ To connect PLCC cables:

1. Turn off power to the target system.

2. Remove any ROMs currently in the target sockets.

3. Align pin 1 on the emulation cable to pin 1 on the target
PLee socket and insert; one comer ofthe emulation cable's
PLee plug is cut off to indicate the location of pin l.

The power "OK" LEDs (see Figure 3-2 on page 3-4) will light
when the cables are plugged in correctly and the target system
is powered on.

Connecting header style cables
Header-style cables are used to connect NetROM to targets
with a 60-pin header.

Plugging in ROM cables improperly may damage the N etROM.

~ To connect header cables:

1. Turn off power to the target system.

2. Align pin 1 on the ROM emulation cable header connector
with pin 1 on the target header socket and insert.

NetROM User's Manual

Hardware Installation

The ROM power "OK" LEDs (see Figure 3-2 on page 3-4) will
light when the cables are plugged in correctly and the target
system is powered on.

Connecting surface mount style cables
Multiple surlace mount configurations are available. Some
plug in directly to a socket on your board and some require that
the adapter be soldered to your target

>- To attach a plug-in flex adapter to the target:

1. Tum off power to the target system.

2. Identify pin 1 on the adapter and align with pin 1 on the
ROM socket. See Figure 3-14.

3. Carefully insert the adapter into the socket.

>- To attach a solder-down flex adapter to the target:

Soldering the flex adapter to your target circuit board requires
expert skill at soldering surlace mount assemblies and will
need to be perlormed under a microscope.

1. Tum off power to the target system.

2. On the target system, deposit additional tinning on the PCB
pads. Clean the pads and apply a small amount of flux to
them.

3. Identify pin 1 on the adapter and align with pin 1 on the
ROM footprint. See Figure 3-14.

4. Form and test-fit the flex circuit to clear any obstacles on the
target board.

5. Using a soldering iron set to about 600 of, apply heat to each
pin/pad through the Kapton backing.

The ROM power "OK" LEOs (see Figure 3-2 on page 3-4) will
light when the cables are plugged in correctly and the target
system is powered on.

3-25

Caution&

3-26

Connection between the flex circuit and the target is extremely
fragile. If disturbed, the flex circuit can lift the pads from the
target. Use an appropriate tape or other mechanical means to
secure the flex circuit to the board.

Target

Figure 3·14 Rex circuit adapter -pin 1

NetROM Users Manual

Hardware Installation

Connecting NetROM console serial port
The NetROM console connection allows the NetROM user to
communicate with the NetROM executive via a serial device
such as a terminal. Figure 3-2 on page 3-4 shows the location
of the console port on the rear of the NetROM, and Figure 3-15
on page 3-28 is a view ofthe NetROM console socket. The
pinouts for the NetROM console connector are shown in
Appendix A, and Appendix E gives the default configuration of
the Console Serial Port.

>- To connect to NetROM console

• Using an RJ-45 serial cable, connect to the NetROM
connector labelled CONSOLE SERIAL and the serial device.

The 9- and 25-pin connectors supplied with NetROM are DTE,
not DCE. The DTR signal is always "true," and that the DSR
signal is ignored

Connecting target serial port
The NetROM target serial port allows the NetROM user to
access the target system's serial port. Figure 3-2 on page 3-4
shows the location of the target serial port on the rear of the
NetROM, and Figure 3-15 on page 3-28 is an exploded view of
the target serial socket. The pinouts for the NetROM serial
port are shown in Appendix A, and Appendix E gives the
default configuration of the Target Serial Port.

>- To connect to NetROM target serial port

• Using an RJ-45 serial cable, connect to the NetROM
connector labelled TARGET SERIAL and the target
system's serial port.

The 9- and 25-pin connectors supplied with NetROM are DTE,
not DCE. The DTR signal is always "true," and the DSR signal
is ignored.

3-27

Figure 3·15 Connecting NetROM serial ports

3-28 NetROM Users Manual

Hardware Installation

Connecting the write signal
The write signal connection allows target systems to write
directly to their ROM space. The data written by the target
system is deposited at the specified address in NetROM's
emulation memory. Writing to your ROM address space
requires a write signal. There are three methods to do this:

o Have the target software monitor request NetROM to write
emulation memory.

o Allow your target hardware to signal a write access on the
PGM pin ofthe ROM socket. This method is normally the
case if NetROM is plugged into sockets designed for FLASH
ROM.

o Connect a write signal somewhere else on the target board.

If you need to connect the write signal, connect ajumper ca­
ble from the target system's write strobe to the write pin (pin
20) on the front panel of Net ROM (see Figure 3-2 on page 3-4
and Figure 3-16 on page 3-30). The write signal is "active
low" and is expected to occur in conjunction with a normal
write cycle.

After the cable is connected, software running on the target
may treat the ROM space as writable memory. This allows
easy insertion of breakpoints and/or patching of code by the
target.

3-29

3-30

G 17 9 3 1

••••••••••
•••••••••

G 4 2

Write Cable

Reset Cable

G 17 9 3

•••••••••
••••••••••
W18 G 4 2

Figure 3-16 Connecting write and reset cables

NetROM Users Manual

Hardware Installation

Connecting the reset signal

caUlion&
If NetROM's reset signal is connected to a high-current trace
on the target system, assertion of the signal may cause a short
circuit! See ''N etROM LEDs" on page 2-18 for more information
on NetROM command signals.

The reset signal is output by NetROM to reset the target
system. This allows the N etROM user to reset their target
system remotely.

>- To connect to NetROM reset

• Connect ajumper cable from the target's reset signal to the
Reset pin (pin 1) on the front panel of NetROM (see
Figure 3-2 on page 3-4 and Figure 3-16 on page 3-30).

The reset signal is "active low"; when it is asserted, it connects
to ground. The reset signal should be connected to "open­
collector" traces, or to traces which drive a small amount of
current. An example configuration is shown in Figure 3-17.

3-31

Reset S

Figure 3-17 Connecting NetROM's reset signal

3-32 NetROM User's Manual

Hardware Installation

Connecting the command status connector
N etROM has a special20-pin command status connector on the
front panel. It can be used as described in "Connecting the
write signal" on page 3-29 and "Connecting the reset signal" on
page 3-31. It can also be used to send status and control signals
between N etROM and a target. See Chapter 5 in the Hardware
Interface Reference for information on the signals and
connecting to the connector.

3-33

I Chapter4

Software Installation
This chapter provides instructions for NetROM software
installation and setup.

First install the software and then set up Ethernet
communications. Once communications are established, create
a startup batch file for your particular project.

For reference communications information, see the NetROM
Installation Notes in the tabbed section at the end ofthis
manual.

Contents Page

Installing the software 4-2

Establishing network communications 4-3

Specifying NetROM startup file 4-6

4-'

Installing the software

PC

NetROM software is provided on 3112 inch DOS-formatted
disks. See the NetROM Driver's and Utilities User's Guide for
additional information.

>- To install the software:

1. Insert the disk labelled "NetROM, Drivers & Util" into the
disk drive.

2. Run setup in the \pc \nrwin directory on the disk. For
example, in Windows 3.1 select Run from the Program
Manager File menu and enter:

a:\pc\nrwin\setup.exe

3. Insert the disk labelled "NetROM, Firmware" into the disk
drive.

4. Copy the files from the disk to your installation directory.

Sun, HP workstations

4-2

>- To install the software:

1. Insert the disk labelled "NetROM, Drivers & Util" into the
disk drive on the PC.

2. Create an installation directory for the NetROM software.

3. Copy the subdirectories and files from the unix directory to
the installation directory.

4. Insert the disk labelled "NetROM, Firmware" into the disk
drive on the PC.

5. Copy the files from the disk to the installation directory.

Net ROM User's Manual

Software Installation

Updating the software
If this installation is an update to existing NetROM 500 series
software, after completing the communications setup, load the
software into NetROM. See the set romupgrade command on
page 5-48.

Establishing network communications

Note W

During normal operation, NetROM uses two network services:

I:) address resolution
I:) file transfer
Address resolution is not necessary, but it is convenient
because it allows N etROM to configure its network address
automatically. File transfer allows NetROM to download files
into its emulation memory.

Additional reference information is provided in the NetROM
Installation Notes (included at the end ofthis manual, behind
a "Notes" tab).

>- To set up communications, follow these six steps.

1. Obtain a unique IP address for the NetROM from your
system administrator.

NetROM's Ethernet address is guaranteed to be unique.
NetROM's address is printed on a label on the bottom of the
unit.

2. Obtain the IP addresses of the Address Resolution and
TFTP servers.

4·3

4-4

As an alternative to using RARP and BOOTP, you can
configure NetROM's IP address manually. Set up a serial
N etROM console session and use the ifconfig command (see
page 5-15) to configure communications. Use the save
command (see page 5-97) and the "bootflags" environment
variable (see page 5-109) to load the IP address from non­
volatile storage when NetROM is power cycled.

If you do not know how to identify which machine(s) on your
network will do this, consult "Finding servers on your
network" on page 2-14 of the NetROM Installation Notes.
Make sure that the server software is running on the
machine, and is not in a disabled state. If you are not sure
how to do this, consult "Daemons on UNIX systems" on
page 2-7.

3. Create a startup batch file.

Mter successfully resolving its address, NetROM will
attempt to download a startup batch file. To verify that the
batch file is being executed, it should do something which
will be an obvious modification ofN etROM's defaults. A good
temporary batch file is the following:

begin
set prompt -d Bob>

end

This sets NetROM's default prompt to be the string "Bob>";
such a prompt will be immediately obvious when you are
using NetROM.

You must put the startup batch file where it can be accessed
. by NetROM after its address resolution. The location of the
file and its name will vary depending on the "bootflags"
environment variable. Using "bootflags", you can specify a
name and path for your batch file, or you can use the default
name and path. You can also control whether or not
NetROM automatically processes your batch file when you
power-cycle it. For more information on setting "bootflags",
see page 5-109.

NetROM User's Manual

Software Installation

For more information on naming configuration files based on
NetROM defaults, see "BOOTP" on page 2-2 or "RARP" on
page 2-4 of the NetROM Installation Notes, and "File
transfer servers" on page 2-6 of the NetROM Installation
Notes for information on TFTP.

4. Configure the servers.

Edit the address resolution server configuration files so the
server is aware of Net ROM. This involves editing the
bootptab file if you are using BOOTP, and the ethers file if
you are using RARP.

See "Address resolution servers" on page 2-1 for information
on BOOTP or RARP. You will probably also want to edit the
hosts file to assign a symbolic name for N etROM. See
"System configuration files" on page 2-11 of the NetROM
Installation Notes for information on system files. Note that
if you are using NIS (also called the Yellow Pages) to
distribute your hosts file or your ethers file you will need to
update the NIS server and do a "push" operation. See "Using
NIS (Yellow Pages)" on page 2-13 of the NetROM
Installation Notes for information on NIS.

Further, if your server is running as a daemon, you may
need to send it a SIGHUP to force it to re-read its
configuration file. See "Daemons on UNIX systems" on
page 2-7 of the NetROM Installation Notes for information
on UNIX daemons.

5. Verify that NetROM is connected to the network. See
"Connecting to Ethernet" on page 3-6. If NetROM is
connected to a target system, make sure that pin 1 on each
emulation pod is plugged into pin 1 of the ROM socket.

6. Power on NetROM.

NetROM's LEDs should jump around for a second or two,
then settle down with the heartbeat LED blinking rapidly.
''NetROM LEDs" on page 2-18 describes the mapping of the
LEDs.

4-5

You should now be able to log into your NetROM unit with
telnet. When you TELNET to the NetROM unit, check the
prompt. If the prompt is "Bob>" you are now ready to use
your N etROM on a target system.

If you cannot TELNET to your NetROM unit, or if you can
TELNET to the unit, but the prompt has not been set to the
string specified in your startup batch file, see Chapter 3 of
the NetROM Installation Notes.

7. After NetROM has been installed on your network, modify
the startup batch file to perform whatever initialization is
required for your project. Typical command sequences to
include in the startup batch file set ROM type, word size,
image file type, image file name, and download paths. See
"Specifying N etROM startup file" on page 4-6.

See the NetROM Installation Notes for information on the
network protocols which NetROM uses to perform address
resolution and file download functions, and tips on how to
configure host-side servers for your development environment.

Specifying NetROM startup file

4-6

NetROM allows the user to specify a startup batch file. Batch
files are sequences ofNetROM command-line commands
delineated by begin/end statements. Chapter 5 provides details
on batch files and how to use them.

If you specify the autobat flag in the "bootflags" environment
variable (see page 5-109), NetROM's address resolution
mechanism at boot time will determine what startup file to
process, and which server it expects to provide the file. BOOTP
responses explicitly name a startup file and a TFTP server, so
when BOOTP is used to configure NetROM at boot time, it is
easy to specify the startup file. When RARP is used as the
address resolution protocol, N etROM uses its IP address to
construct the name of the file.

NetROM User's Manual

Software Installation

If you set the userbat flag in the "bootflags" environment
variable (see page 5-109), the "batchfile" (see page 5-106) and
"batchpath" (see page 5-107) environment variables will
determine what startup file to process.

An example startup file is the following:

begin

end

setenv wordsize 16
setenv romtype 27c020

This file tells NetROM to organize its emulation pods as 16-bit
words, emulating 256 Kilobyte ROMs. The commands in the
file are executed in order, just as if the NetROM user had typed
them in at the keyboard. The file must be a "pure" text file; the
editor you use cannot use unprintable formatting characters.

If no startup file is specified with BOOTP, NetROM will not
attempt to download one. However, NetROM will always try to
download the RARP configuration file (if its address is being
configured by RARP). In this case, TFTP will inform it that the
file does not exist and no harm will be done. IfTFTP is not
running on the RARP server, NetROM will abort its download
effort.

The output from the NetROM commands in the startup file will
go to the NetROM console serial port. Unless there is a terminal
connected to this port, errors in the startup file may not be
noticed. It is a good idea to test changes to the startup file by
running it as a batch file from the command line; this allows
you to debug your startup file without having to connect a
"dumb" terminal to the NetROM console.

4-7

I Chapter5

User Interface
This chapter describes the user interface to NetROM. Users will
generally interact with the NetROM console via the NetROM
console serial port, TELNET sessions, or direct TCP connection
to the NetROM console port.

After a description of N etROM command line processing, the
following command groups will be covered:

Command Groups Page

NetROM command line processing 5-2

N etROM commands 5-9

Network interface commands 5-13

Target interface commands 5-21

Process control commands 5-35

Set commands 5-55

Display commands 5-78

ROM set commands 5-87

Miscellaneous commands 5-87

Environment variable commands 5-101

5-1

NetROM command line processing

Processes

5-2

NetROM accepts any number of single-line commands. If a
command is wider than the terminal on which it is entered
(which it might be in a TELNET session), the command will
wrap to the next line. There is no restriction on the length of
command line arguments. However, the maximum length of
the command line is 128 bytes, and the maximum number of
command line arguments is 16. There are five major facets to
NetROM's command line processing. These are processes,
terminal control characters, environment variables, history
substitution, and batch processing.

NetROM uses a multitasking operating system to provide
services to the user. Each task running on NetROM is called a
"process." Processes allow NetROM to divide responsibility for
user services. Each terminal session, for example, is a separate
process. Processes have both a name and a process identifier,
or "pid," to identify them. More than one process may have the
same name, so pids are used in NetROM's process control
commands. Current status for all NetROM processes may be
listed using the ps command, described below. The most
common processes are sleeping, ready, running, or yielding, but
there are a few other, generally transient, states which maybe
displayed in the listing.

Each process has a controlling terminal and is capable of
reading commands from it and writing status to it. Generally a
single process is in charge of the controlling terminal and, if it
spawns child processes, controls them directly. It is also
possible to control processes using signals, which can be sent
from other controlling terminals. Table 5-1 lists signals
currently supported by NetROM's operating system.

In most cases, signals sent to processes will cause them to be
killed, so this is not a good idea unless a process is known to be
hung. Users will use the SIGINT signal to kill child processes

NetROM User's Manual

Number Name

1 SIGHUP

2 SIGINT

3 SIGKILL

4 SIGALRM

5 SIGPIPE

6 SIGABRT

User Interface

of the issuing terminal. If the process ignores this signal, the
SIGKILL signal will probably work. The SIGKILL signal
cannot be ignored, but the receiving process may not be able to
clean up its state before exiting, so SIGINT should be used in
preference to SIGKILL. Finally, the SIGHUP signal may be
used to restart certain "server daemons" running on NetROM,
such as snmpd. However, using SIGHUP in this way is not
currently implemented.

Other signals are used internally by the NetROM operating
system and should not be sent by NetROM users.

Table 5-1 NetROM signal summary

Meaning

The controlling terminal for a process has been
terminated. For example, a TELNET session ended after
spawning a ping process.

Interrupts (kills) another process. This is the standard
way to terminate processes asynchronously, and is
generated by the "intr" character on the controlling
terminal of a process.

This is a more fatal way of killing a process; it cannot be
caught, blocked, or ignored. It should be used with great
care.

This signal is used internally by NetROM to indicate a
timer event.

This signal is used internally by NetROM to indicate
that a write attempt occurred on a closed socket.

This signal is reserved, and causes the NetROM
operating system to hang.

5-3

Terminal control characters

5-4

NetROM considers interactive "console" sessions to be running
from terminals. Terminals may be attached to NetROM through
the NetROM console serial port, TELNET connections, or direct
TCP connections on the NetROM console port. Each interactive
NetROM session has several control characters associated with
it. These characters are considered "special" by the command
interpreter and are used for command-line editing and process
control.

Table 5-2 Terminal control characters

Name

eof

erase

intr

kill

werase

Value Description

End of file indicate that interactive
input for a given command; it does
not terminate a terminal session.

Erase the character to the left of the
cursor from the input stream

Send a SIGINT signal to all child
processes. (See also ''tgtcons'' on
page 5-29.)

Erase the input line.

Erase the white-space-delimited
"word" to the left ofthe cursor.

Note that the "intr" character is treated specially during target
console sessions: if the console path is serial and an "intr" is
detected, NetROM will send a BREAK to the target.

Control characters may be displayed or set using the stty
command, described below. Control characters may also be set
for all subsequent terminal sessions using the same command.
This is useful for establishing default control characters at
NetROM reset.

NetROM User's Manual

History substitution

User Interface

Each NetROM console session keeps track of commands it has
been given. These commands are said to be in the NetROM
''history buffer." Currently the history buffer for each session is
16 commands deep. Commands in the history buffer may be
repeated and/or edited in a style similar to the UNIX csh
command interpreter.

> To modify and repeat the most recent command

"aaa"bbb Replaces the stringaaa with string bbb in the
most recent command.

> To repeat a recent command

!1 Repeats the most recent command.

Inn Repeats command number nn.

!aaa Repeats the command beginning with the
stringaaa.

!?aaa Repeats the command containing the string
aaa.

> To add a string to the end of a previous command and
repeat it

llaaa

!nnaaa

!aaa bbb

!?aaa bbb

Adds string aaa and repeat the most recent
command.

Adds string aaa and repeat command number
nn.

Adds string bbb and repeat the command
beginning with the string aaa.

Adds string bbb and repeat the command
containing the string aaa.

5-5

Batch processing

5-6

NetROM allows users to create "batch files" on the host system.
Batch files are simply multiple NetROM commands collected
into a file. The file should be delimited by begin and end
statements, and may have comments (identified by a pound
sign (#) as the first character on the line). Note, however, that
comments must be on lines by themselves. Batch files should
consist only of ASCII text, and should not be greater than 2048
bytes in size.

Batch files can be invoked on the command line using the batch
command; see Table 5-4. When it processes a batch command,
NetROM downloads the file from its TFTP server (given by the
"host" environment variable) and executed one line at a time.
The batch file's path on the server can be given explicitly on the
command line or inferred from the "batch path" environment
variable. An example batch file is shown below:

begin
download a new image and reset the target
newimage
tgtreset
end

If this file were called "new" and were located in the batchpath
directory, executing the command

NetROM> batch new

would execute first the newimage command and then the
tgtreset command, in order. The comment is parsed and
ignored. Commands executed within the batch file will be
entered into NetROM's history buffer. Batch files may call other
batch files.

NetROM User's Manual

User Interface

Environment variables

Variable

"batchfile"

"batchpath"

"binenv"

"bootflags"

"chanpath"

"chanport"

"consolepath"

"debugpath"

"debugport"

"dprbase"

"filetype"

Environment variables affect all terminal sessions running on
NetROM. All environment variables are predefined; they are
primarily concerned with configuring emulation, file locations,
and with establishing communications paths between the
target and the host system. NetROM environment variables are
summarized in Table 5-3. They are described in more detail in
"Environment variable commands" on page 5-101.

Table 5-3 Environmental variables

Description Page

Specifies default batch file to process. 5-106

Sets path on the TFTP file server NetROM uses to 5-107
search for batch files and RAM module locations.

Controls how emulation memory is written and 5-108
displayed.

Controls NetROM's boot-time behavior 5-109

Sets channel communication path between NetROM 5-110
and the target system.

Sets TCPIUDP port number on which NetROM 5-112
accepts communications on channel path.

Sets console communication path between NetROM 5-113
and the target system.

Sets debug communication path between NetROM 5-115
and the target system.

Sets TCPIUDP port number on which NetROM 5-117
accepts communications on debug path.

Sets base address in emulation pod 0 to map 5-118
dualport RAM.

Sets expected download file format. Supports binary, 5-120
S-record, and Intel hex.

5-7

Table 5-3 Environmental variables (Continued)

Variable Description Page

"fillpattern " Sets byte pattern to fill emulation memory. 5-121

"groupaddr" Sets default ROM group's start address. 5-122

"groupwrite" Enables or disables NetROM's external write signal. 5-123

''host'' Sets IP address of the TFTP server used for image 5-124
and batch downloads, romupgrade, and loadmodule.

"loadfile" Sets default file to download into the default ROM 5-125
group.

''loadpath" Sets default path for downloading ''loadfile'' and 5-126
romupgrade.

"podorder" Sets pod-to-byte mapping of emulation pods in the 5-127
default ROM group.

''romgroup'' Sets default ROM group. 5-135

"romcount" Sets number of bytes in emulation as part of the 5-134
default ROM group.

"romtype" Sets ROM type being emulated by the default ROM 5-136
group.

"tgtip" (optional) Sets target machine's IP address when Virtual 5-139
Ethernet is on.

"verify" Specifies whether downloads are verified. 5-140

"vether" (optional) Sets Virtual Ethernet on or off. 5-141

"wordsize" Sets size in bits of the ROM word being emulated by 5-142
default ROM group.

''writemode'' Sets write mode that configures emulation memory 5-143
to emulate FLASH ROM or static RAM.

5-8 NetROM User's Manual

User Interface

NetROM commands
Commands can be issued to the NetROM console through
NetROM's console serial port, or via a network connection
through a TELNET connection or to the NetROM console port.

In this section, the NetROM interface commands are grouped
by functional type. Table 5-4 summarizes the commands
alphabetically and gives their type and page number.

Table 5-4 NetROM command summary

Command Description Type

alias Creates or deletes command "nickname". Miscellaneous

arp Displays or modifies the contents of the Network interface
NetROM Address Resolution Table.

batch Downloads and executes a batch file Miscellaneous
containing NetROM commands.

di Displays various "generic" NetROM state Display
variables, statistics, and target statistics
information.

fill Fills emulation memory with a known Target interface
pattern.

help Accesses NetROM on-line help facility. Miscellaneous

history

ifconfig

kill

ledmap

Displays the contents ofthe history buffer Miscellaneous
for the current NetROM session.

Displays or configures a network Network interface
interface.

Sends a signal from one process running Process control
on NetROM to any other process.

Maps NetROM's target status signals to Miscellaneous
LEDs on the back panel.

Page

5-88

5-14

5-89

5-55

5-22

5-90

5-91

5-15

5-33

5-92

5-9

Table 5-4 NetROM command summary (Continued)

Command Description Type Page

load Loads NetROM environment variables Miscellaneous 5-93
and IP address from non-volatile storage.

loadmodule Loads the RAM-based optional software. Miscellaneous 5-94

logout Terminates a login session. Miscellaneous 5-95

netstat Displays network statistics. Network interface 5-17

newimage Downloads a file into emulation memory. Target interface 5-23

ping Determines whether remote hosts are up Network interface 5-18
and accessible.

printenv Displays the current values ofNetROM's Environment variable 5-101
environment variables.

ps Displays the current status of processes Process control 5-34
running on NetROM.

reset Resets NetROM hardware and software. Miscellaneous 5-96

romset Manipulates large ROM address spaces ROM set 5-78
or word sizes greater than 32 bits.

route Manipulates information in NetROM's IP Network interface 5-19
routing table.

save Saves NetROM environment variables Miscellaneous 5-97
and IP address to non-volatile storage.

serialcons Creates a "console" on a non-target Target interface 5-27
system using NetROM's target serial port.

set Sets or modifies various NetROM state Set 5-35
variables.

setenv Modifies the value of environment Environment variable 5-101
variables.

5-10 NetROM User's Manual

User Interface

Table 5-4 NetROM command summary (Continued)

Command Description Type Page

slip Attaches or detaches a serial line to the Network interface 5-20
serial line IP interface.

stty Displays or modifies characteristics of Miscellaneous 5-98
NetROM terminal sessions.

tgtcons Establishes a console session with the Target interface 5-29
target system.

tgtreset Reinitializes communication channels Target interface 5-31
and dualport pointers, and can reset
target processor if an external reset line
is connected.

Understanding the command descriptions
The description:

stty [-d] { erase I kill I werase I intr I eof} setting

describes the stty command, for which the -d argument is
optional, but which requires one of the keywords erase, kill,
werase, intr, or eoffollowed by an argument, setting. Since
setting is not a keyword, it should be described in the text of
the command documentation.

Commands which have multiple formulations will have each
version appear on a line by itself. For example, the description:

arp dump
arp del host_address
arp set host_address hardware_address

indicates that the arp command can be invoked in any of the
three ways shown.

5-11

5-12

When describing IP addresses, NetROM commands use
standard Internet "dotted-decimal" notation. An example of
such an address is "192.0.0.210"; this corresponds to the
hexadecimal number OxCOOOOOD2, but is expressed with each
octet (that is, byte) expressed as a decimal number separated
from the next by a period.

NetROM uses a similar format to describe Ethernet hardware
addresses. However, there are three important differences:

o Ethernet addresses are 6 octets long, not 4.
o Octets are separated by colons.
o Octets are expressed in hexadecimal.

For example, the address Ox0002F4000024 is expressed as
"00:02:f4:00:00:24." NetROM is not case sensitive in address
representation. We will refer to this as "colon-separated
hexadecimal" format.

NetROM Users Manual

User Interface

Network interface commands

Argument

arp

ifconfig

netstat

ping

route

slip

NetROM has several commands which control its various
network interfaces. Most of these commands are similar to
UNIX commands of the same name. They are generally used by
system administrators to configure NetROM for operation in
particularly complex environments, or to verify that it is
interacting with other network hosts in the expected way.

The function of some of these commands, such as ifconfig, are
performed automatically during the address resolution phase
of NetROM's boot sequence. Others, such as route, arp, or slip,
can be added to the NetROM startup file. This also causes them
to be invoked automatically at NetROM boot time.

Table 5-5 Network interface commands.

Description Page

Display~ and/or modifies the contents of Net ROM's 5-14
Address Resolution Table.

Displays or modifies the address, netmask, broadcast 5-15
address, or operating state of one of NetROM's interfaces.

Displays network statistics and routing information. 5-17

Sends ICMP ECHO_REQUEST packets to network hosts. 5-18

Manipulates information in NetROM's routing table.

Attaches or detaches a serial line to the Serial Line IP
(SLIP) interface. The SLIP interface may be attached to
either serial port of Net ROM.

5-19

5-20

5-13

arp

5-14

Displays or modifies the contents of NetROM' s Address
Resolution Table.

Syntax
arp dump
arp del host_address
arp set host_address hardware_address

Description
When IP is run over Ethernet, hosts on the network must be
able to determine the Ethernet address of hosts with a given IP
address. This mapping is provided by ARP (Address Resolution
Protocol). NetROM maintains an Address Resolution Table, or
ARP table, which contains mapping information about hosts
NetROM has "seen" on the network.

The arp command displays or modifies the contents of
NetROM's ARP table. It can be used to dump the table, add new
entries, or delete current entries. All host addresses must be in
dotted-decimal notation, and hardware addresses are in colon­
separated hexadecimal format.

NetROM User's Manual

ifconfig

User Interface

Displays or modifies the address, netmask, broadcast address,
or operating state of one ofNetROM's interfaces.

Syntax
ifconfig
ifconfig ifname [ifaddress] [netmask maskval
[broadcast broadaddr]
ifconfig ifname ifaddress destaddr
ifconfig ifname { up I down }

Description
The ifconfig command can be used to configure either of
NetROM's two network interfaces: the Ethernet interface and
the SLIP interface. The SLIP (Serial Link IP) interface runs
through the NetROM console serial port, and can be used to
connect NetROM to the host computer when an RS-232
connection is not desired. Generally, the NetROM console serial
port is not used, or is used to connect to a "dumb" terminal. The
ifname parameter which refers to the Ethernet interface is
"leO," and the one referring to the SLIP interface is "slO." In
addition, NetROM has a "loopback interface", which does not
connect to external hardware. This can be used to verify that
NetROM's TCPIIP protocol stack is working properly by sending
"ping" packets to NetROM's IP address, but most users can
safely ignore it. This interface's ifname is "l00."

The first formulation of the ifconfig command is used to display
state information about all ofNetROM's network interfaces.
Information displayed will include IP address, netmask,
broadcast address, and whether the interface is up or down.
Input, output, and error statistics will also be displayed for
each interface.

The second formulation is used to set IP parameters for a given
interface. It is possible to set the IP address, netmask, or
broadcast address, or more than one of these addresses, using
this form ofthe command.

5-15

Note ~

5-16

The third formulation is used to configure the point-to-point
SLIP link. Since SLIP is not a broadcast protocol, IP needs to
know the address of the host at the other end of the serial line.

The final formulation of the command is used to enable or
disable network interfaces. This command should be used with
care, since it is possible to disable the interface on which the
command was issued!

All addresses, ifaddress, destaddr, maskval, and
broadaddr, should be given in dotted-decimal format.
Although this command can be used to set NetROM's Ethernet
address manually, it is simpler and probably more convenient
to use RARP or BOOTP to perform address resolution when
NetROM is reset.

NetROM Users Manual

netstat

User Interface

Displays network statistics and routing information.

Syntax
nets tat [tcp I udp I ip icmp I routes 1

Description
The netstat command, when issued without arguments,
displays information about NetROM's TOP and UDP
"connections." This consists of the local and remote addresses
of bound sockets, and for TOP, the current state of the
connection. Usually the TOP state is either LISTEN or
ESTABLISHED. Addresses are displayed in a special five-field
dotted-decimal format. The first four fields are the standard IP
address, and the fifth field is the decimal representation of the
local or remote port number. Together, IP address and port
number completely specify a UDP or TOP connection (note that
UDP "connections" consist of restrictions imposed upon which
hosts may communicate with a socket). Either the IP address
or the port part ofthe 5-tuple may be wildcarded, and if this is
the case, is represented with an asterisk. The "Recv-Q" and
"Send-Q" denote the number of bytes awaiting transmission on
the connection, or awaiting processing by the NetROM process
using TOP or UDP.

The netstat command also allows the NetROM user to monitor
the activity level and type of four protocols in the TOP/IP
protocol suite. These protocols are TOP, UDP, IP, and IOMP. A
complete description of protocol statistics is beyond the scope of
this document. However, they are generally either self­
explanatory or only useful to experienced TOP/IP network
administrators.

Finally netstat enables the user to display NetROM's routing
table. This contains information used by NetROM to access IP
hosts which are not on the local Ethernet. The routing table
contains information about "routers," which are special
network hosts that forward packets to computers with non­
local addresses.

5-17

ping

5-18

Sends ICMP ECHO_REQUEST packets to network hosts.

Syntax
ping host_address size [count]]

Description
The ping command uses ICMP (Internet Control Message
Protocol) to determine whether remote hosts are up and
accessible. ICMP is a mandatory part oflP, and a host
receiving an ECHO_REQUEST packet should respond with an
ECHO_RESPONSE packet

The ping command actually creates a process which issues echo
request packets. Upon receipt of a response packet, The ping
process will print out the lCMP sequence number of the
response, the host it was received from, and the size of the
packet. The process will continue to send packets until it is
killed with a SIGINT signal, unless a count value was specified
on the command line. This signal can be issued from the
controlling terminal using the "intr" character, usually AC.
Upon being killed, the ping process will print the number of
echo requests it has sent, the number of responses it has
received, and the ratio of the two expressed as a percentage
lost.

The default ICMP datagram size is 64 bytes, but this value can
be overridden on the command line. Note that the ICMP
datagram size is not the same thing as the IP datagram size, or
as the Ethernet packet size. If a count value is specified on the
command, the ping process will send that many packets and
then quit.

The ping process does not use keyboard input, so other
commands may be entered while ping is running.

NetROM User's Manual

route

Note

User Interface

Manipulates information in NetROM's routing table.

Syntax
route add destination gateway [metric
route add default gateway [metric
route delete destination gateway

Description
The routing table is used by NetROM for determining the path
to nodes on networks to which NetROM is not directly attached.
This might include hosts in another building, or in another
country. The destination parameter is the IP address of the
remote host with which NetROM will be communicating. The
gateway parameter is the IP address of an intermediate host
which will be responsible for forwarding packets sent from
NetROM onward in their path to the remote host. The metric
parameter is an indication of how ''hard'' it is to reach the
destination via the gateway. Generally routing metrics are
interpreted as a ''hop count," which is the number of gateways
between NetROM and the destination. All IP addresses should
be given in standard dotted-decimal notation.

It is possible to assign NetROM a default route; this is the
address of a computer on the local subnetwork to which
NetROM will send packets destined for destinations on
unknown networks. The default route can be set by invoking
the route command with the default keyword, or by specifying
a destination with IP address "0.0.0.0."

On TCP/IP networks, there may be more than one route to a
given destination, so both the destination and the gateway are
required to fully specify a route. NetROM's current routing
table can be displayed using the netstat command.

5-19

slip

5·20

Attaches or detaches a serial line to the Serial Line IP (SLIP)
interface. The SLIP interface may be attached to either serial
port ofNetROM.

Syntax:
slip attach port
slip detach port

Description
The slip attach command designates which serial port the SLIP
connection uses as its communication path. The port
paxameter may be either a 1 or a O. A 1 indicates the SLIP
connection should run over the remote port, while a 0 indicates
the SLIP connection should run over the console port. When
trying to establish a SLIP link with another computer the first
step (after all cabling has been performed) is to issue the slip
attach command.

The slip detach command removes a port from use by the SLIP
interface. It should be entered when the SLIP connection is no
longer needed.

NetROM Users Manual

User Interface

Target interface commands

Argument

fill

newimage

serialcons

tgtcons

tgtreset

NetROM's target interface commands allow the NetROM user to
download images to emulation memory, verify the images if
desired, establish "consoles" with the target, and reset the
target.

Table 5-6 Target interface commands.

Description

Allows initialization of emulation memory to arbitrary
values.

Downloads a file into emulation memory.

Page

5-22

5-23

Creates a "console" to a non-target system in environments 5-27
wherein neither the debug path nor the console path use
NetROM's target serial port.

Establishes a console session with the target system. 5-29

Reinitializes communication channels and dualport 5-31
pointers, and can reset target processor if an external reset
line is connected.

5-21

fill

5-22

Allows initialization of emulation memory to arbitrary values.

Syntax
fill value [romgroup I dpmem 1

Description
This command fills the emulation space of one ofNetROM's
ROM groups with a known value. This value is specified as an
8-bit hexadecimal number given by the value parameter. The
optional romgroup parameter indicates which ROM group's
emulation memory should be filled. If omitted, the default
romgroup is assumed. If the optional dpmem keyword is used
instead of a ROM group number, NetROM's dualport RAM
(used for passing messages to the target system) will be filled
with the value pattern instead of the whole pod default group.

NetROM User's Manual

newimage

User Interface

Downloads a file into emulation memory.

Syntax
newimage [filename] [type={binazyl srecordl intelhex}]
[base=baseaddr] [offset=offset] [group=romgroup]
[fillpattern=fillvalue] [host=ipaddr]

Description
The newimage command allows the NetROM user to download,
with TFTP, an image into ROM emulation memory. The
command uses the NetROM environment variables to provide
default values for all of the optional parameters listed above.
However, the environment variables may be overridden, if
desired. Note that there is no white space surrounding the
equals signs when overriding defaults.

NetROM resolves address fields in Intel Hex and Motorola S­
Record files using the base address of the destination ROM
group as a reference. The base address will be subtracted from
the address given in the hex file when determining where in
emulation memory to load a record. For example, if the base
address of the target ROM group is Ox40000 and a record's
address field indicates address Ox40010, the record's data will
be loaded at offset OxlO into emulation memory. The base
address for the default ROM group is given by the "groupaddr"
environment variable. If desired, this value can be overridden
using the baseaddr parameter. Note that since binary files do
not have an address field, they are always loaded at the
beginning of emulation memory (unless the offset parameter
is used, as described below).

It is possible to have an offset added to the destination address
of a record, after it has been parsed and adjusted for the ROM
group's base. For example, if a target ROM group's base
address is 0 and records in a file are addressed beginning at 0,
but the file is really located at address OxlOO, setting the offset
parameter to OxlOO will cause OxlOO to be added to the
addresses of all records. This parameter can be used to control
the load address of binary files, since they do not have address
fields.

5-23

5-24

Attempts to program addresses outside of ROM group
emulation space will simply be ignored, but a warning message
will be displayed after the download is complete.

The fillvalue parameter overrides the environment
"fillpattern" variable. It may be set to any 8-bit value, or to
none. If a fill pattern is specified, the entire target "romgroup"s
emulation memory will be set to that value prior to
downloading. If multiple image files are downloaded into
emulation memory, it is important to set the fill pattern to none
after the first download.

When issued with no arguments, the newimage command
performs the following actions: it concatenates the "loadpath"
and "loadfile" environment variables to get a root-specific path
to the file to be downloaded. It uses the "filetype" environment
variable to determine whether to expect a binary, Intel Hex, or
Motorola S-Record file. The "host" variable determines the
address of the TFTP server for the Ethernet, and the
"romgroup" variable determines which of the four possible
ROM groups will be downloaded. NetROM then contacts the
server, requests the file, and downloads it into emulation
memory, parsing the file format as necessary. Note that the
ROM group and server address may be overridden using the
romgroup and ipaddr parameters, respectively.

The new image command disables target access to all emulation
pods for the duration of the download. If emulation was on,
NetROM will turn it off for the download and back on when the
download is complete. It may be necessary to reset the target
with the tgtreset command after a download.

When specifying the file to be downloaded, the file is assumed
to be in the "loadpath" directory unless its name begins with a
'f. The 'f character denotes a root-specific filename and
overrides the "loadpath" variable.

Pod groups are specified by number, not by name. Server
addresses are denoted using standard dotted-decimal notation.
Filetype is given as "binary," "intelhex," or "srecord," exactly as
in the environment variable.

NetROM User's Manual

User Interface

The new image command may be issued as part of a batch file
(see the batch command) if desired.

Example
Assume you want to load three files into the default ROM
group's emulation memory. The files each contain OxlOO bytes
of data and need to be located in the target's memory map
starting at the beginning of the emulation memory. The
NetROM default group's starting address in the target is
Ox40000, specified by the "groupaddr" environment variable.
The files have these characteristics:

o The file file1.srec is in S-Record format. It contains data and
address information on where to store the data in memory.
In this file, the first byte of data is to be stored at address
Ox40000.

o The file file2.bin is a binary file. It contains only data and
does not contain any address information.

o The file file3.hex is an Intel hex file. It contains data and
information on where to store the data in memory. In this
file, the first byte of data is to be stored at address Oxo.

The following commands are used to load these files into
emulation memory:

NetROM> newimage filel.srec fillpattern=Oxff
NetROM> newimage file2.bin offset=OxlOO type=binary
NetROM> newimage file3.hex base=OxO offset=0x200 type=intelhex

The first command fills NetROM emulation memory with Oxff
before loading the S-record file, file1.srec. Since the first data
address specified in the file is the same as the first address of
emulation memory as defined by the "groupaddr" environment
variable, the data is loaded there.

The second command loads the data in the binary file, file2.bin,
to the start of emulation memory, offset by OxlOO bytes, as
specified by the offset argument.

The third command loads the Intel hex file, file3.hex. The first
byte of emulation memory is set to be at address OXO by the
argument, base=OxO. This overrides the "groupaddr"

5-25

Note

5-26

environment variable. The :first byte of data, which should be
stored at target address OxO, will actually go to the beginning
of Net ROM emulation memory, plus any offset specified by the
offset argument. This command will result in the first byte of
file3.hex being stored at address Ox40200.

When a newimage command loads a file into an area of
emulation memory that already contains data, the old data will
be replaced with the new data. For example, if the binary file,
file2.bin, were Ox200 bytes in length, then the last Oxl00 bytes
would have been overwritten by data loaded from file3.hex. If
the fillpattern argument used with the first command had been
used in all three commands, then after the third command, the
only data in NetROM's emulation memory would be data from
file3.hex. The rest of emulation space would be filled with the
value Oxff.

You may experience problems resulting from the target
system's control of FLASH ROM write-enable lines. Some
target systems may allow the Write Enable signal to their
ROM sockets to "float." If a true "ROM" were plugged into the
socket this would not be an issue, since the ROM ignores that
signal. However, NetROM allows writes to emulation memory,
so a floating write line can cause random changes to emulation
memory. To disable the emulation pod's write signal, set the
groupwrite environment variable to "readonly," or specify a
read-only ROM group if using the set rgconfig command.

See also
"verify" environment variable, page 5-140
"groupaddr" environment variable, page 5-122
"fillpattem" environment variable, page 5-121
tgtreset command, page 5-31
di rgconfig command, page 5-70
set emulate off command, page 5-40
set emulate on command, page 5-40

NetROM Users Manual

serial cons

User Interface

Creates a "console" to a non-target system in environments
wherein neither the debug path nor the console path use
NetROM's target serial port.

Syntax
serial cons

Description
The serialcons command allows you to make use ofNetROM's
target serial port, even when the target itself does not use it. To
see how this may be useful, consider that some target systems
may be plug-in boards which are used in a larger system. An
example of this might be a board that does I/O for a standalone
computer such as a terminal concentrator. The target board in
this case might not have a serial port of its own, so during
development you might use the "dualport" console and debug
paths. This would cause the tgtcons command, and any remote
debuggers being run, to use the dualport mailbox protocol to
communicate with the target. However, the target's "host"
computer might have a serial port, and in this case the
serialcons command would allow you to use NetROM to
communicate with both the host system and the target!

The serialcons command will not work unless neither the
"debugpath" nor the "consolepath" environment variables is set
to "serial." Remember that changes in these environment
variables do not take effect until the target system is reset. If
there is a conflict with the environment variables, an error
message will be printed. In environments in which a serial port
will be used to communicate with the target, the tgtcons
command should be used instead.

To exit from a serialcons session, use the controlling terminal's
"eor' character. The default eof character is AD. The stty
command can be used to display and set the eof character.

See also
tgtcons command, page 5-29
"debugpath" environment variable, page 5-115

5-27

5-28

1/ consolepath" environment variable, page 5-113
stty command, page 5-98

NetROM User's Manual

tgtcons

User Interface

Establishes a console session with the target system.

Syntax
tgtcons

Description
The tgtcons command allows NetROM users to establish a
console session with the target system, regardless of the
mechanism used to implement the console path. The console
path, which runs between the NetROM user on the host system
and the target system to which NetROM is attached, has two
segments. The first segment connects the host system and
NetROM. This is generally a TELNET terminal session on
NetROM but can be a "dumb" terminal connected to NetROM's
console serial port, or a direct TCP connection to NetROM's user
interface port. The second segment is between NetROM and the
target. This can be either an RS-232 serial connection using
NetROM's target serial port, or the emulation RAM mailbox
protocol. This protocol is based on the target's ability to write
emulation memory, as well as read it. The console path
between NetROM and target system is selected by the
"consolepath" environment variable.

When the tgtcons command is issued, NetROM begins to
forward keystrokes received from the host side of the
connection to the target, and data received from the target side
to the host. The effect is the NetROM terminal session under
which the command was issued becomes a session directly
between the host system and target.

To exit from a tgtcons session, use the controlling terminal's
"eor' character. The default "eof' character is AD. If the console
path uses the serial port, and since the default "eor' character
may be "special" for the target, it is possible to re-map the "eor'
character to another control character. The stty command can
be used to display and set the "eor' character.

It is possible to send RS-232 BREAKs to the target. NetROM
monitors tgtcons sessions for "intr" characters, and if the
console path uses the serial port, it sends a BREAK to the

5-29

5-30

target. If NetROM' s "intr" character is used by the target,
simply change it to something else using the stty command, as
explained for the "eof' character, above.

See also
serialcons command, page 5-27
1/ debugpath" environment variable, page 5-115
1/ consolepath" environment variable, page 5-113
stty command, page 5-98

NetROM Users Manual

tgtreset

User Interface

Resets the target processor.

Syntax
tgtreset

Description
When the tgtreset command is issued, NetROM performs the
following actions:

1. It applies the reset pulse to the default reset command signal
pinout (command signal 0).

2. It locks the target out of emulation memory. This has the
same effect as the set emulate off command, and will cause
the target processor to read garbage from emulation
memory. This step is necessary to allow NetROM to reset the
contents of emulation memory mailbox without interference
from the target.

3. NetROM resets emulation memory mailbox and pointers, if
they are being used for communication with the target.

4. NetROM unlocks target emulation memory. This has the
same effect as the set emulate on command.

5. NetROM deasserts the reset pulse to the target.

The tgtreset command must be invoked after changing the
environment "consolepath" or "debugpath" variables. This
synchronizes the change of communication protocols between
the host, the target, and NetROM with both parties involved.
Note that tgtcons sessions do not need to be restarted after
resets, even if the target-to-NetROM communications paths
have been changed.

See also
"tgtcons" command, page 5-29
"consolepath" environment variable, page 5-113
"debugpath" environment variable, page 5-115
set emulate off command, page 5-40
set emulate on command, page 5-40

5-31

Process control commands

Argument

kill

ps

5-32

The process control commands allow NetROM users to
determine the state of processes running on NetROM, and to
influence their execution using signals.

Table 5-7 Process control commands.

Description

Sends a signal to any process running on N etROM.

Displays the current status of processes running on
NetROM.

Page

5-33

5-34

NetROM User's Manual

kill

User Interface

Sends a signal to any process running on NetROM.

Syntax
kill signal pid

Description
The kill command allows a process to send a signal to any other
process, even one running under another controlling terminal.

The signal parameter is the signal number to be sent to the
process. Processes may block or ignore any signal other than
the SIGKILL signal. Valid signal values and their meanings
are shown in Table 5-1 on page 5-3.

The pid parameter is the process id to which the signal is sent.
Process ids may be obtained via the ps command.

5-33

ps

5-34

Displays the current status of processes running on NetROM.

Syntax
ps [-s I -p I -i

Description
Process status information is useful for determining whether
processes are running normally. The ps command allows the
user to determine whether or not processes are waking up
periodically, what their current state is, what is the process
group to which they belong (a process group is a set of processes
sharing a single controlling terminal), and other information
not generally useful to most users.

Without any arguments, ps displays the process' pid, name,
current status, current number of wakeups, stack usage, and,
if the process is sleeping, what its wakeup condition is. The
other arguments are interpreted as follows:

-s prints a bit more information about the stack space
allocated to each process, and about its process
group.

-p prints a bit more information about the process
itself. This is not useful to most users.

-1 prints information about signals pending, blocked,
and ignored on each process. It also displays the
process group information.

Most users will use ps simply to determine the process id of
processes they wish to kill; see "kill" on page 5-33. Processes
will generally be sleeping unless they have work to do, so a
process' wakeup count is a good way to determine its activity
level. Some processes, such as the kernel, are constantly active
so they are always in ayielding or a ready state. The "Kernel"
process is special; its wakeup count is always zero despite its
being constantly active.

NetROM User's Manual

User Interface

Set commands

Argument

?

chan echo

consecho

debugecho

emulate

NetROM maintains two kinds of state variables, each accessed
by its own set of commands. NetROM environment variables
have two important characteristics: they are independent of
processes and they are frequently accessed. Being independent
of processes means that they affect all processes, regardless of
which process changes them. Being frequently accessed means
that NetROM users want to display or change them relatively
frequently.

The other kind of state variable, generic variables, are a catch­
all for variables which are not environment variables. These
variables are either process-specific or rarely used. The
distinction between environment variables and generic
variables is rather hazy, but will begin to make sense after you
begin using NetROM.

The set command sets or modifies various generic NetROM
state variables. State variables, which can be set with the set
command, can be displayed with the di command. Table 5-8
summarizes the set command.

Table 5-8 Arguments to the set command

Description

Displays arguments to the set command.

Enables or disables echoing channel data passed to the
target system.

Enables or disables echoing console data passed to the
target system.

Enables or disables echoing debug data passed to the
target system.

Enables or disables target system access to emulation
memory.

Page

5-90

5-37

5-39

5-40

5-35

Table 5-8 Arguments to the set command (Continued)

Argument Description Page

help Displays arguments to the set command. 5-90

loadecho Enables or disables debug information on downloads. 5-41

podmem Sets values in emulation memory. 5-42

prompt Sets the session prompt. 5-43

rgconfig Configures a ROM group. 5-44

rgname Assigns a name to a ROM group. 5-47

romupgrade Installs a new version of the N etROM program. 5-48

tgtctl Turns on or off command signals to the target system. 5-51

udpsrcmode Sets the state of the UDP source address variable. 5-53

username Enables an advisory lock on the NetROM unit. 5-54

5-36 NetROM User's Manual

setchanecho

User Interface

Enables or disables echoing of channel path data on the
NetROM console.

Syntax
set chanecho [1 I 2 I 3] { on I off }

Description
Channel echoing is a debug tool for cases in which the host
system has trouble with a channel path connection to the
target. When channel echoing is on for a channel (1,2, or 3),
channel data received from the target is echoed to the N etROM
console session that issued the set chanecho command before it
is forwarded to the host system, and channel data received
from the host system is echoed to the NetROM console before it
is forwarded to the target.

If the environment variable "chan path #=serial" is set, data is
displayed only on the NetROM console serial port.

Channel echo can be enabled or disabled from any NetROM
terminal session.

See also
di debugecJw command, page 5-39

5-37

setconsecho

5-38

Enables or disables echoing of console path data on the NetROM
console.

Syntax
set cons echo { on I off }

Description
Console echoing is meant to be used as a debug tool in cases
where the host system is having trouble with its console path
connection to the target. When console echoing is on, console
data which is received from the target is echoed to NetROM's
console port before being forwarded to the host system, and
console data received from the host system is echoed to
NetROM's console port before being forwarded to the target. If
multiple target console sessions are active, data received from
any of their host connections is echoed, but data received from
the target is only echoed once.

In order to use console echoing, it is necessary to have a "dumb"
terminal connected to NetROM's console serial port. This
terminal will be able to issue commands to NetROM,just as any
TELNET session can. If your terminal does not seem to be
communicating with NetROM, you may need a null modem.

If no terminal is connected to the console serial port and
console echoing is turned on, nothing will appear to happen.
However, data will still be echoed out the port; this may cause
a slight reduction in response time on the console path as
perceived by the host system and the target.

Console echo can be enabled or disabled from any NetROM
terminal session.

See also
di consecho command, page 5-58

Net ROM User's Manual

set debugecho

User Interface

Enables or disables echoing of debug path data on the NetROM
console.

Syntax
set debugecho { on I off }

Description
Debug echoing is a debug tool for cases in which the host
system has trouble with its debug path connection to the
target. When debug echoing is on, debug data received from the
target is echoed to the NetROM console session that issued the
set debugecho command before it is forwarded to the host
system, and debug data received from the host system is echoed
to NetROM's console session before it is forwarded to the target.

If the environment variable "debugpath=serial" is set, data is
displayed only on the NetROM console serial port.

Debug echo can be enabled or disabled from any NetROM
terminal session.

See also
di debugecho command, page 5-59

5-39

set emulate

5-40

Enables or disables target access to emulation memory on all
pods.

Syntax
set emulate {on I off}

Description
Due to the asynchronous nature of target system access to
emulation memory, it is sometimes necessary to disable target
access entirely. Target access is asynchronous, because ROM
devices do not use a clock input. The target asserts an address
on the ROM address lines, waits a certain number of clock
cycles for data to stabilize on the data lines, and then samples
the data. If the target tries to access emulation memory while
NetROM is accessing it, the target will read garbage. Likewise,
if the target is in the process of accessing emulation memory,
NetROM accesses may be held off indefinitely.

While NetROM does not generally access emulation memory, it
may occasionally want to do so. For example, it may need to
download a new emulation image or display the contents of
emulation memory. Some NetROM commands, such as di
podmem, require that the user explicitly disable emulation.
Others, such as new image, will automatically disable
emulation (and re-enable it when done).

The set emulate command allows the user to explicitly enable
or disable target access to emulation memory.

If the target system is connected to a writable ROM group,
powering the target on or off with emulation on may corrupt
the emulation memory. This is due to possible noise on the
target's write line(s).

See also
di emulate command, page 5-62

NetROM User's Manual

set loadecho

User Interface

Enables or disables echoing of download path data on the
NetROM console.

Syntax
set loadecho { on I off }

Description
Download echoing is a debug tool for cases in which the host
system has trouble with its download path connection to the
target. When download echoing is on, download data received
from the target is echoed to the NetROM console session that
issued the set loadecho command before it is forwarded to the
host system, and download data received from the host system
is echoed to the NetROM console before it is forwarded to the
target.

Load echo can be enabled or disabled from any NetROM
terminal session.

See also
di loadecho command, page 5-65

5-41

setpodmem

5-42

Sets values in emulation memory.

Syntax
set podmem address value

Description
The set podmem command allows NetROM users to set values
in emulation memory. The address parameter determines
where to set the value, and value is the value being written to
memory. NetROM uses the address parameter to determine
which ROM group will be affected by the write operation.

The size and endian orientation is controlled by the binary
display/set environment settings. To change these settings use
"setenv binenv".

When "binenv" is set to 16, 32, or 64, the tgtaddr must start on
a word boundary. If it does not, an error message displays.

See also
di podmem command, page 5-69
"binenv"environment variable, page 5-108

NetROM User's Manual

set prompt

User Interface

Changes the prompt for the NetROM terminal session which
issued it.

Syntax
set prompt [-dJ prOlEQ;)tstring

Description
The set prompt command changes the prompt for the current
NetROM terminal session to the value given by promptstring.
The new prompt cannot contain any white space; that is, it
must a single ''word." If the optional-d flag is used, NetROM
will set the default prompt for all subsequent terminal sessions
as well as the prompt for the current terminal session.

set rgconfig

5-44

Completely configures a ROM group for emulation.

Syntax
set rgconfig groupnUlll romtype tgtaddr podorder

{readonly I readwrite}

Description
The set rgconfig command is used to completely defme a ROM
group prior to downloading it with an emulation image. This
command is probably most useful in environments in which
NetROM is emulating more than one group of target ROMs.
Because it is simpler and generally more convenient to
configure ROM groups using environment variables than with
the set rgconfig command.

An example of a multiple ROM-group target would be one in
which one set of ROMs holds an executable image and another
a graphics table. The engineer using NetROM would then
choose the most-often-updated group of ROMs and configure it
with environment variables, and configure the other group
with the set rgconfig command.

The groupnum parameter indicates which ROM group is
being configured. If the "special" ROM group named by the
"romgroup" environment variable is being configured, NetROM
will change environment variables to agree with the command­
line specification for this command. Refer to "Emulation
memory" on page 2-11.

The romtype parameter is the name of the ROM type being
emulated. Valid ROM types are given by Table 5-15 on
page 5-136.

The tgtaddr parameter is the 32-bit base address of the ROM
group as seen by the target. This value is used by the di
podmem command to display emulation memory with the same
addresses as are used in a map file produced by a compiler.

The podorder parameter specifies which emulation pods are
to be used in the group, and in what order they emulate target

NetROM Users Manual

User Interface

bytes. The format for podorder parameters is described more
fully in "podorder" on page 5-127. If the specification of pods in
the pod order parameter conflicts with pods in use by the
ROM group named by the "romgroup" environment variable,
the command will fail with an error message.

Some target systems are unable to write to their ROM space
only because the system designer omitted providing a write
signal to the ROM memory. This is a logical thing to do,
because it is not possible to write a ROM. Some of these target
systems may be able to write ROM emulation memory on
NetROM if a write signal were provided. Such target systems
may use NetROM's external write line to connect to the
processor. The readonly and readwrite keywords indicate
whether or not the target system should be allowed to write
emulation memory for a given ROM group, using the external
write line.

Examples
set rgconfig 0 27c020 bfcOOOOO 0:1:3:2 readonly

Configures ROM group 0 to emulate 27 c020 ROMs. The ROM
group starts at target address OxBFCOOOOO, and emulates 32-
bit words. Note that pod 0 emulates byte 0 of the word, and that
pod 1 emulates byte 1, but that pod 3 emulates byte 2 and pod
2 emulates byte 3. The target system will not be allowed to
write emulation memory

set rgconfig 0 27c010 0 1:0-3:2 readwrite

Configures ROM group 0 to emulate 27c010 ROMs. The ROM
group starts at target address OxOOOOOOOO, and emulates 16-
bit words. Pods 0 and 1 emulate one set of words, and pods 2
and 3 emulate another, which begins where the words
emulated by pods 0 and 1 leave off. Note that pods 0 and 2
emulate byte 0 ofthe word, and that pods 1 and 3 emulate byte
1. The target system will be allowed to write emulation
memory

set rgconfig 0 27c010 0 1-0-2-3 readonly

5-45

5-46

Configures ROM group 0 to emulate 27c010 ROMs. The ROM
group starts at target address OXOOOOOOOO and emulates 8-bit
words. Since 27cOlO ROMs have 128 Kilobytes, each pod
emulates 128 Kwords, where each word is eight bits wide. Note
that the ROM group as a whole emulates 512K of consecutive
words, where pod 1 emulates the first 128K, pod 0 the second,
pod 2 the third, and pod 3 the fourth. The target system will not
be allowed to write emulation memory using the external write
line.

See also
"romgroup" environment variable, page 5-135
"romtype" environment variable, page 5-136
"groupaddr" environment variable, page 5-122
"romcount" environment variable, page 5-134
"wordsize" environment variable, page 5-142
"podorder" environment variable, page 5-127
di podmem command, page 5-69
di rgconfig command, page 5-70
set rgname command, page 5-47
setenv command, page 5-104
printenv command, page 5-105

NetROM User's Manual

set rgname

User Interface

Assigns a name to a ROM group.

Syntax
set rgname namestring [romgroup 1

Description
The set rgname command assigns a name to a ROM group. This
ROM group must have either been configured using
environment variables or with the set rgconfig command. ROM
group names are optional and are essentially mnemonics to
help you remember what the ROM group is emulating, if more
than one ROM group is in use.

The name string parameter is the name being assigned to the
romgroup. The romgroup to which the name is assigned is
defaulted to that named by the "romgroup" environment
variable. This default can be overridden by the romgroup
parameter.

The set rgname command will not work on ROM groups which
have not yet been configured.

See also
set rgconfig command, page 5-44
di rgconfig command, page 5-70

5-47

set romupgrade

Note ~

5-48

Initiates the download of a new NetROM operating system
image.

Syntax
set romupgrade [ramimage=ramname 1 [romimage=romname
] [host=ipaddr]

Description
The set romupgrade command is used to update NetROM's
ROM-based operating system image. It should only be used
when a new system is distributed. When upgrading, Applied
Microsystems will make available two binary files, rom. bin and
netrom. bin; rom. bin is the new system image and netrom. bin is
a RAM-based download program.To perform the upgrade,
these two files should be placed in the TFTP directory named
by your "loadpath" environment variable, on the host named by
your "host" environment variable. Then, invoking set
romupgrade command with no arguments will cause
netrom. bin to be loaded into RAM and control transferred to it.
Netrom.bin will download rom. bin into FLASH ROM memory
in your NetROM unit automatically. When the download is
complete, NetROM resets itself.

The optional settings allow users to control the paths to the
RAM-based image which will reprogram the ROMs, the new
ROM system image, and the IP address of the TFTP server to
contact for both images. If the image names are not root­
specific, they are assumed to be in the directory given by the
"loadpath" environment variable.

If you initiate the download from a Telnet session, the unit will
appear to reset when the download of netrom. bin is complete.
However, the unit has simply transferred control to a RAM­
based image, to which you can also Telnet. The complete

NetROM User's Manual

Note

Note

User Interface

FLASH reprogramming may take as long as 5 minutes. We
recommend you monitor the progress of the download on the
NetROM console.

If you do not have a serial console handy, the download has
completed after:

1. netrom.bin has been downloaded and jumped to. At this
point your telnet session will stop responding. You should
exit it and re-telnet to NetROM.

2. A TFTP client has been created, run for a while, and exited.
You can see this process using the ps command. NetROM is
verifying that rom. bin can be downloaded.

3. There is a period in which telnet response seems sluggish,
NetROM's heartbeat LED is very slow, and there is no TFTP
client present. At this point, NetROM is erasing its
FLASHes.

Do not reset or power cycle NetROM after this point.

4. A new TFTP client has been created, run for a while, and
exited. At this point, NetROM is downloading its new image,
rom. bin and is programming it into the FLASHes.

Do not reset or power cycle NetROM during this process.

5-49

Note ~

5-50

5. NetROM's Ethernet transmit LED is no longer flashing,
there is no TFTP client running, and the heartbeat LED is
flashing quickly (at its normal speed). At this point it is safe
to reset your NetROM with the reset command.

NetROM reboots the system automatically after a successful
upgrade is completed.

Do not attempt to copy system ROMs. ROM-based images
intended for one unit will not work on a different unit, unless
you have a multi-unit upgrade license.

NetROM User's Manual

set tgtctl

User Interface

Controls NetROM's control signal outputs.

Syntax
set tgtctl signum {on
set tgtctl signum {on
set tgtctl signum {on
rx3] [ack]

Description

off} [millisec_interval]
off} [toggle]
off} [rx I rxO I rxl I rx2

This command asserts or de-asserts one of the control signals
on NetROM's front panel command status connector. When on,
these signals are connected to ground (low true); when of{,
these signals do not assert or draw current to or from the
target.

When millisec_interval is specified, the signal will be
asserted on or off as specified with that period. When not
asserted, the signal will have its alternate value. The
granularity ofthe interval varies depending on NetROM's
clock divider. Use? set tgtctl to display the value of the interval.
Accuracy of the timing is dependent on NetROM's load and
may vary. Don't use the timer for measurements that require a
high degree of accuracy. The timer will run until the signal is
turned on or offwithout a new interval.

When toggle is specified, the signal will be asserted briefly,
then return to its alternate state. This can be used to cause an
interrupt to the target system. This use of the target control
signal requires hardware support from the target system.

If ack is specified, NetROM won't trigger a subsequent interrupt
if the previous one has not been acked. When rx is specified, the
signal will be asserted when data is passed to the target using
the dualport emulation memory protocol on any channel. This
signal can be attached to the target system, causing an
interrupt to the target when data is ready to be read. To specify
a specific dualport channel, use:

5-51

5-52

rx# Dualport channel

rxO Console pathlDebug path

rxl Channel 1

r.x2 Channel 2

rx3 Channel 3

This use of the target control signal requires hardware support
from the target system.

See Chapter 5 in the NetROM Hardware Interface Reference
manual for the names of NetROM's target control signals
(signum) relative to their pin numbers on the command status
connector.

NetROM User's Manual

set udpsrcmode

User Interface

Enables connectionless debug sessions.

Syntax
set udpsrcmode { on I off }

Description
This command controls NetROM's treatment ofUDP-based
debug sockets. When enabled, NetROM prepends the IP address
and UDP port number of the packet being sent to targets which
use dualport RAM for their debug paths. Similarly, data
received along the dualport path is assumed to have a 32-bit IP
address followed by a 16-bit port number prepended to actual
data. These values will be sent and interpreted in network byte
order. This mode allows target systems to specify the
destination address of packets generated by the target's
debugger interface.

Since a start-of-packetlend-of-packet sequence is not defined
for the serial interface, UDP source mode cannot be used for
the serial debug path. UDP source mode is only used on the
debug path; UDP header information is only prepended to data
received on the NetROM debug port. Source address
information is not added on TCP-based debug sessions, nor on
console sessions.

IfUDP source mode is turned on while a debug connection is
active, the target must be reset with the tgtreset command
before UDP source mode is actually enabled.

5-53

set username

5-54

Sets an advisory login lock on the NetROM unit.

Syntax
set username

Description
The set username command enables an advisory login lock on
the NetROM unit.

NetROM User's Manual

User Interface

Display commands

Argument

?

chanecho

consecho

debugecho

loadecho

dpmem

dpstats

emulate

help

lanceha

ledmap

lstats

memstats

modules

The di command displays various generic NetROM state
variables, various NetROM statistics, and target state
infonnation. State variables which are set with the set
command can be displayed with the di command. Statistics can
be displayed for NetROM's target and console serial port
UARTS, NetROM's Ethernet interface, and for memory usage.
Table 5-9 summarizes the di command.

Table 5·9 di command arguments

State or statistics displayed

List of di arguments and what they display.

Channel echo state, on or off.

Console echo state, on or off.

Debug echo state, on or off.

Load echo state.

Page

5-90

5-57

5-58

5-59

Contents of dualport RAM. 5-60

Statistics for dualport protocol. 5-61

Target access to emulation memory. 5-62

List of di arguments and what they display. 5-90

NetROM's Ethernet address. 5-63

Mapping between NetROM status signals and back panel 5-64
LEDs.

Ethernet statistics. 5-66

Memory use statistics. 5-67

Names of optional RAM modules loaded. 5-68

5-55

Argument

podmem

rgconfig

tgtctl

tgtstatus

uart

udpsrcmode

uptime

username

version

5-56

Table 5-9 di command arguments (Continued)

State or statistics displayed

Contents of emulation memory.

ROM group configurations.

State of NetROM's command signals.

State of NetROM's status signals.

Statistics for NetROM's serial ports.

Current state of the UDP debug source address variable.

Time since the last system reset.

User name used for advisory login locks.

Software version number for NetROMs operating system.

Page

5-69

5-70

5-71

5-72

5-73

5-74

5-75

5-76

5-77

NetROM Users Manual

dichanecho

User Interface

Displays whether channel echoing is turned on or off.

Syntax
di chanecho {l1 2 I 3}

Description
di chanecho prints to the screen the current state ofNetROM's
channel echo variable for the specified channel (1,2, or 3). To
change the variable, use the set chanecho command.

See also
set chanecho command, page 5-37

5-57

diconsecho

5-58

Displays whether console echoing is turned on or off.

Syntax
di consecho

Description
di consecho prints to the screen the current state of NetROM's
console echo variable. To change the variable, use the set
consecho command.

See also
set consecho command, page 5-38

NetROM Users Manual

didebugecho

User Interface

Displays whether debug echoing is turned on or off.

Syntax
di debugecho

Description
di debugecho prints to the screen the current state ofNetROM's
debug echo variable. To change the variable, use the set
debugecho command.

See also
set debugecho command, page 5-39

5-59

di dpmem

5-60

Displays the contents of the dualport RAM used to pass
messages between NetROM and the target.

Syntax
di dpmem dpoffset nbytes

Description
The di dpmem command helps the NetROM user to debug the
target's dualport mailbox code, which is used to pass messages
between NetROM and the target. Pod O's dualport RAM, which
can be accessed simultaneously by both the target and NetROM,
is described in detail in Chapter 7. This command is provided
as a convenience to allow programmers to examine the mailbox
structures in dualport RAM without having to know where in
pod 0 the RAM is mapped.

This command displays nbytes bytes of dualport RAM,
starting at offset dpoffset from the start of the dualport area.
The same dpoffset value can be used regardless of where the
dualport RAM is mapped within pod 0, and only dualport RAM
data will be displayed, regardless of the word width ofthe ROM
group of which pod 0 is a part.

See also
di podmem command, page 5-69
"Dualport emulation memory" on page F-4
"Dualport protocol" on page F-IO

NetROM User's Manual

di dpstats

User Interface

Displays statistics for the dualport protocol, if any, used to pass
data between NetROM and the target system.

Syntax
di dpstats

Description
This command displays statistics about the dualport protocol
on channels 0 .. 3 used to transmit data between NetROM and
the target system.

Statistics for the protocol include whether the channel is
enabled, the number of bytes and messages sent to and
received from the target, and a count of error conditions, such
as transmit timeouts, occurring on both sends and receives.

All statistics are reset by the tgtreset command, page 5-31.

5-61

di emulate

5-62

Displays whether ROM emulation is turned on.

Syntax
eli emulate

Description
The di emulate command prints the current state of target
image emulation.

See also
set emulate command, page 5-40

NetROM User's Manual

di lanceha

User Interface

Displays the 6-octet address used by NetROM's Ethernet
interface.

Syntax
di lanceha

Description
The di lanceha command displays the 6-octet address used by
NetROM's LANCE Ethernet interface. This address will be
displayed in colon-separated hexadecimal format. The di
lanceha command is primarily useful for setting up host
configuration files which will be used in address resolution at
NetROM boot time.

5-63

di ledmap

5-64

Displays the mapping between NetROM's status signals and
LEDs on NetROM's back panel.

Syntax
di ledmap

Description
The di ledmap command shows the mapping between
NetROM's status signals and LEDs on NetROM's back panel.
Mappings are sorted by signal number, then LED number.

See also
ledmap command, page 5-92

NetROM User's Manual

di loadecho

User Interface

Displays whether load echoing is turned on or off.

Syntax
di loadecho

Description
di loadecho prints to the screen the current state of NetROM' s
load echo variable. To change the variable, use the set loadecho
command.

See also
set loadecho command, page 5-41

5-65

di Istats

5-66

Displays a summary of packet and error counters for NetROM's
Ethernet interface.

Syntax
di lstats

Description
The di lstats command displays a summary of packet and error
counters for NetROM's LANCE Ethernet interface. A complete
summary of these statistics is beyond the scope of this
document, but they are generally either self-explanatory or
useful only for detecting gross errors. The error counters
should all be zero, or very low, during normal NetROM
operation. High error counts may indicate a problem with
NetROM's LANCE chip or a malfunctioning host on the
Ethernet network.

NetROM Users Manual

di memstats

User Interface

Displays current memory allocation statistics for NetROM.

Syntax
di memstats

Description
The di memstats command allows the NetROM user to examine
the availability of allocation memory within NetROM's
operating system. This command is primarily used to detect
pathological states during NetROM operation and is not useful
during normal operation. NetROM maintains several pools of
allocation memory; during normal operation there should
always be memory available in each of them. This can be
verified by examining the "free mbufs," "clfree," and "free
blocks" fields in the memory statistic display. None of these
values should be zero.

5-67

di modules
Displays the names of the optional RAM modules that have
been loaded into NetROM.

Syntax
di modules

Description
The di modules command allows the NetROM user to display
the names of the optional RAM modules that have been loaded.

NetROM Users Manual

di podmem

User Interface

Displays the contents of emulation memory.

Syntax
di podmem tgtaddr nbytes

Description
The di podmem command displays the contents of emulation
memory. The tgtaddr parameter is the address, as seen by the
target, at which to start dumping memory. The nbytes
parameter is the number of bytes to dump. NetROM uses the
tgtaddr parameter to determine which ROM. group should be
displayed. The size and endian orientation is controlled by the
binary display/set environment settings. To change these
settings use "setenv binenv".

Due to hardware restrictions imposed by the nature of ROM
devices emulation must be turned off for the di podmem
command to work. If emulation is on, an error message
displays.

When "binenv" is set to 16, 32, or 64, the tgtaddr is set to the
nearest word boundary, if the tgtaddr given is not on a word
boundary.

See also
set podmem command, page 5-42
set rgconfig command, page 5-44
set emulate command, page 5-40
"binenv" environment variable, page 5-108

5-69

di rgconfig

5-70

Displays the current ROM group configurations.

Syntax
di rgconfig [ramgroup 1

Description
The di rgconfig command allows the NetROM user to examine
the current state of emulation ROM groups. The command
displays, in tabular form, the name, word size, ROM type,
target address, pod order, and read/write characteristics, of all
ROM groups defined in the system. If a ROM group is specified
with the romgroup parameter, only the configuration for that
group will be shown.

See also
set rgconfig command, page 5-44
romgroup command, page 5-135

NetROM User's Manual

di tgtctl

User Interface

Displays the current status ofNetROM's target control signals.

Syntax
di tgtctl

Description
This command displays the current state oftarget control
signals on the command status connector on NetROM's front
panel. When on, these signals are connected to ground (low
true); when off these signals do not assert or draw current to or
from the target. The flags field is set to 'n' if no special
processing has been assigned to the signal. A numeric value
indicates that the signal will be asserted with a period, in
milliseconds, equal to that value. If the flags field contains
"RX", the signal will be asserted to the target whenever
NetROM sends data to the target using the dualport protocol.

See Chapter 5 in the NetROM Hardware Interface Reference
manual for the names ofNetROM's target control signals
relative to their pin numbers on the command status
connector.

See also
set tgtctl command, page 5-51

5-71

di tgtstatus

5-72

Displays the current state of the status signals on the NetROM
front panel.

Syntax
di tgtstatus

Description
The di tgtstatus command displays the current state of the
status signals on the command status connector on NetROM's
front panel. A disconnected signal will read as "off."

NetROM Users Manual

diuart

User Interface

Displays statistics for NetROM's serial port DARTs.

Syntax
di uart [uartnum]

Description
The di uart command displays statistics for NetROM's serial
port DARTs. The statistics include transmit, receive, and error
counts, as well as counts for various sorts of interrupts. This
command is useful for checking the quality of serial links
between NetROM and the target, or between NetROM and a
"dumb" terminal. When invoked without arguments, the di
uart command prints statistics for both DARTs. When invoked
with the optional uartnum parameter, it will only print
statistics for one port. A uartnum value of 0 indicates the
console port and a value of 1 indicates the target port.

5-73

di udpsrcmode

5-74

Displays the state of the UDP source address mode variable.

Syntax
eli udpsrcmode

Description
This command prints the current state of the UDP debug
source address variable, which controls whether or not data
forwarded between the target system and the host along the
debug path will have IP addresses and UDP port numbers
prep ended. If enabled, UDP source address mode allows the
target system to determine which of possibly many sources is
sending it data, and to specify to which of possibly many
destinations its data should be forwarded.

See also
set udpsrcmode command, page 5-53

NetROM User's Manual

di uptime

User Interface

Displays the amount of time since the last system reset.

Syntax
di uptime

Description
The di uptime command allows NetROM users to determine
how long their NetROM system has been running. Time is
displayed in days, hours, minutes, and seconds.

5-75

di username

5-76

Displays who has installed an advisory login lock on the
NetROM unit.

Syntax
di username

Description
The di username command allows NetROM users to determine
who, if anyone, has installed an advisory login lock on the
NetROM unit.

NetROM User's Manual

di version

User Interface

Displays N etROM's version numbers.

Syntax
di version

Description
The di version command displays the NetROM model,
hardware ID, software version number, date and time of
NetROM's operating system.

5-77

ROM set commands

5-78

For target systems which require large ROM address spaces or
word sizes greater than 32 bits, a group of commands has been
defined. These commands manipulate a multi-NetROM data
structure called a "ROM set.» When using ROM sets, one
NetROM unit is designated the "master" and one or more other
units are designated as "slaves." The master unit's
responsibility is to provide a command line interface to the
NetROM user such that it appears that the emulation memory
of all units in the set are local to the master unit.

For example, assume a target system has a 64-bit word size
and uses 27c020 ROMs. Then two NetROM units can be used to
define a ROM set. One will emulate the least significant 32 bits
of the word, and the other will emulate the most significant bits
ofthe word. Download and display of emulation memory would
take place on the master unit using the newimage and di
podmem commands, exactly as if all of the emulation memory
resided on the master unit. The console and debug paths would
also pass through the master unit.

Emulation using ROM sets has four distinct stages:

Cl ROM set definition, in which the pod orders and IP
addresses of slave units are defined on the master;

Cl Connection, in which the master unit makes TCP
connections with all slave units and puts them into slave
mode;

Cl Emulation, in which image downloads and other
communications with the target system are carried out as
normal;

Cl Disconnection, in which the master unit releases slave units
and disconnects from them.

There are specific commands to accomplish each of these steps,
as well as commands to display the current ROM set status.

Note that certain commands become restricted when a NetROM
unit is in slave mode. For example, the tgtreset command is not

NetROM User's Manual

Argument

?

clear

connect

define

disconnect

help

show

slaveaddr

reset

User Interface

allowed, nor is the set emulate command, nor are setenv
commands which affect pod order, word size, or ROM count.
This is because all of these functions are taken over by the
master unit. For example, if the master unit receives the
command set emulate of{, emulation will be disabled on all
slave units as well.

Table 5-10 romset command arguments

Description Page

Displays arguments to romset command.

Clears current romset definitions. 5-80

Connects to slave units and enters romset mode. 5-81

Defines the romset pod order. 5-82

Disconnects from slave units and returns to normal mode. 5-83

Displays arguments to romset command.

Displays the current romset configuration. 5-84

Sets the addresses of slave units. 5-85

Resets all slave units. 5-86

5-79

romset clear

5-80

Erases ROM set definitions.

Syntax
romset clear [podorder Islaveaddr]

Description
The romset clear command erases current ROM set definitions.
It should be used when changing the number of slave units
currently configured. If the unit count remains constant, use
the romset define or the romset slaveaddr commands instead.
Note that this command cannot be used while the NetROM unit
is in slave mode or is connected to slave units.

See also
romset define command, page 5-82
romset slaveaddr command, page 5-85

NetROM User's Manual

romset connect

User Interface

Causes NetROM to create TCP connections with slave units.

Syntax
romset connect

Description
The romset connect command causes NetROM to connect to
slave units. When the command is issued, the unit it is issued
on becomes a ROM set master and the units it connects to are
put into slave mode. The ROM set must be defined and slave
unit addresses must be given before this command is issued.

See also
romset slaveaddr command, page 5-85
romset disconnect command, page 5-83

5-81

romset define

5-82

Configures the pod orders of all units in the ROM set.

Syntax
romset define order-string

Description
The romset define command configures the pod order of the
ROM set master unit, as well as the pod orders of all slave
units. The pod order syntax is similar to that of the setenv
podorder command, with the addition that the pod order for
each unit is enclosed within parentheses. The order-string for
each unit may be separated by hyphens ('-') indicating that
words do not span units, or by colons (':') to indicate a large
word size. The master unit's pod order is always the first in the
list. Currently the largest word size supported is 64 bits. Note
that the number of slave units indicated must agree with the
number specified in the romset slaveaddr command.

Examples
romset define (0:1-2:3)-(0:1-2:3)

This command defines a ROM set in which two units support
four consecutive sets of 16-bit words.

romset define (0: 1: 2: 3) : (0: 1: 2: 3) - (0: 1: 2: 3) : (0: 1: 2: 3)

This command configures a ROM set in which four units
support two consecutive sets of 64-bit words.

Net ROM User's Manual

romset disconnect

User Interface

Terminates the current ROM set connection.

Syntax
romset disconnect

Description
The romset disconnect command causes the master unit to
restore connected slave units to normal mode and closes its
network connections with them. Note that the environment
characteristics defined by the ROM set will remain in effect on
all units.

5-83

romset show
Displays the current ROM set configuration and status.

Syntax
romset show

Description
The romset show command displays the current ROM set state
for the unit it is invoked on. The state information includes
slave unit addresses and pod orders, whether the unit is
connected or not, and whether or not the unit is in slave or
master mode. The "word index" displayed is only used when
emulating ROM words larger than 32 bits. Since each unit can
only emulate 32 bit words, the word index indicates which 32-
bit increment of a word is emulated by the unit this command
is invoked on. The word index is not set directly, but is implied
by the order-string given in the romset define command. Note
that the ROM set master is always at word index zero.

NetROM Users Manual

romset slaveaddr

User Interface

Assigns the network addresses of ROM set slave units.

Syntax
romset slaveaddr addrl [addr2 ... J

Description
The romset slaveaddr command is used to assign the (IP)
network addresses of ROM set slave units. The IP address of
the master unit should not be included in the list. Up to 8 units
may currently be specified. Note that the number of units
indicated must agree with the number of slave units implied by
the romset define command. There is a direct correspondence
between the order of units named in the romset slaveaddr
command and the units implied by the romset define command.

See also
rvrnset define command, page 5-82

5-85

romset reset

5-86

Causes all slave units to reset themselves.

Syntax
romset reset

Description
The romset reset command resets all slave units. The unit
issuing the command must be the ROM set master. This
command essentially causes all connected slave units to
execute a reset command, but does not cause the master unit to
reset. The master unit reverts to normal mode after issuing
this command.

NetROM User's Manual

User Interface

Miscellaneous commands

Command

?

alias

batch

help

history

load

ledmap

loadmodule

logout

reset

save

stty

NetROM provides several miscellaneous commands for the
convenience of the user.

Table 5-11 Miscellaneous commands

Description Page

List of di arguments and what they display. 5-90

Creates command "nicknames". 5-88

Downloads and executes batch files. 5-89

List of di arguments and what they display. 5-90

Displays the contents of the command history buffer. 5-91

Load NetROM environment variables and IP address from 5-93
non-volatile storage.

Maps NetROM's status signals to LEDs. 5-92

Loads NetROM's optional RAM module. 5-94

Terminates login sessions. 5-95

Resets NetROM's hardware and software. 5-96

Saves NetROM environment variables and IP address to 5-97
non-volatile storage.

Displays or modifies characteristics of NetROM terminal 5-98
sessions.

5-87

alias

Note

5-88

Creates and deletes command "nicknames."

Syntax
alias [alias-name [alias-string]]
alias -d alias-name

Description
The alias command allows NetROM users to create nicknames
for commonly used commands. When invoked without
arguments, it lists all defined aliases, with the -d flag, it deletes
a defined alias. When invoked with the alias-name parameter
but no alias-string parameter, it displays the alias defined for
that name. If both an alias-name and an alias-string are
defined, the command assigns the alias string to substitute for
the alias name in command invocations.

Examples
The alias assignment

alias nb newimage type=binary

causes the command

nb myfile.bin

to be executed as if it had been entered

newimage type=binary myfile.bin

The alias assignment is deleted with

alias -d nb

Aliases can be nested; that is, an alias can include another alias
in its expansion. Also, defining aliases uses memory, so
defining aliases excessively should be avoided. A pre-defined
command name cannot be used as an alias; for example,
alias set di
will not work. Aliases are invoked only after a match with
defined command names fails.

NetROM User's Manual

batch

User Interface

Downloads and executes batch files containing one or more
NetROM commands.

Syntax
batch filename [server]

Description
The batch command enables NetROM users to execute many
NetROM commands with one command-line invocation. These
commands are read from a file residing on the TFTP server
which NetROM uses to load new images; this is the file server
named in the "host" environment variable. The format of the
file is a series ofNetROM commands separated by new lines and
terminated with an end statement. A begin statement at the
beginning of the file is optional but recommended. See "Batch
processing" on page 5-6 for an example of a batch file.

The filename parameter names the file containing NetROM
commands. If the name is not root-specific; that is, if it does not
begin with a 'f, the filename parameter will be appended to
the "batch path" environment variable to produce a root-specific
path on the server. The optional server argument allows the
command issuer to override the default environment setting for
the TFTP server.

All commands executed as a result of the batch command will
be entered into the history buffer for the terminal session
under which the command was issued. The batch command
may be "nested"; that is, it may be executed from within a batch
file.

5-89

help

5-90

Accesses NetROM's on-line help facility.

Syntax
help [command
? [command 1

Description
The help command accesses NetROM's on-line help facility.
When invoked without arguments, the command prints a
listing of available commands. When invoked with the
command argument, it prints information specific to that
command. When the command is a "nested" one, such as set, di,
setenv, or printenv, it will print a list of the commands which
come under that heading. It is possible to get help on nested
commands by specifying which specific command in the
command parameter. For example, help set emulate will get
help on the set emulate command. The question mark "1" is a
shorthand equivalent of the help command.

NetROM Users Manual

history

User Interface

Displays the contents of the history buffer for the current
NetROM session.

Syntax
history

Description
The history command displays the contents of the history
buffer for the NetROM terminal session under which the
command was issued. Commands are numbered within the
history buffer, allowing them to be invoked by number or
special character (e.g., !!) for history substitution. See "History
substitution" on page 5-5 for details on history substitution.

5-91

ledmap

5-92

Maps NetROM's status signals to LEDs on the back panel.

Syntax
ledmap set signum lednum [hightrue 1
1 edmap cl ear signum

Description
The ledmap command establishes a path between status
signals (signum) connected to traces on the target system and
the LEDs (lednum) on NetROM's front panel (see Figure 2-5).
The set version of this command establishes the mapping, and
the clear version deletes it. Each status signal may be mapped
to only one LED, but more than one signal may be mapped to
each LED. Note that LED 0 is NetROM's "heartbeat" LED; by
default, it indicates that NetROM is active and gives some
indication ofload on the system. If LED 0 is mapped using this
command, its heartbeat function will be disabled for the
duration of the mapping.

The hightrue keyword inverts the "normal" sense of status
signals, so that rather than being "on" when tied to ground (or
''low'') they become "on" when asserting current.

Status signals are polled, so they do not latch target-side
events on the traces to which they are connected.

See also
di ledmap command, page 5-64

NetROM User's Manual

load

User Interface

Loads NetROM environment variables and IP address from
non-volatile storage.

Syntax
load

Description
After you save the environment variables to non-volatile
memory, you may later recall them using the load command.
To automatically load your values when NetROM is power
cycled, use the setenv bootflags command.

See also
"bootflags" environment variable, page 5-109
save command, page 5-97

5-93

load module

Note ~

5-94

Loads NetROM's optional RAM modules.

Syntax
loadmodule [filename I init]

Description
This command downloads a RAM-based module that
implements or extends NetROM features and commands.
Normally, filename is appended to the string given by the
"batchpath" environment variable; however, if the filename
begins with a slash (I), the "batchpath" environment variable
will not be used. (init initializes the module extension table; it
is for Applied Microsystems development use only).

The RAM module software is loaded into specific addresses in
DRAM. We recommend that the file be stored in the same
directory as your startup. bat file, but the file can be placed on
the server anywhere to which NetROM has TFTP access.

A given module should be loaded only one time. If you need to
reload the module, reset the NetROM unit, then re-execute
loadmodule.

See also
di module command, page 5-68

Net ROM User's Manual

logout

User Interface

Terminates login sessions.

Syntax
logout

Description
This command terminates a login session. It can be used to exit
Telnet login sessions, direct connections on the NetROM control
port, or logins on the SLIP port, which are actually a special
case ofTelnet logins. However, it cannot be used to terminate
the NetROM serial console session.

5-95

reset

5-96

Completely resets NetROM's hardware and software.

Syntax
reset

Description
The reset command is as effective as power cycling the NetROM
unit, but does not affect the contents of emulation memory.
This command can be issued from any NetROM terminal
session.

NetROM User's Manual

save

Note W

User Interface

Saves NetROM environment variables and IP address to non­
volatile storage.

Syntax
save

Description
After you save the environment variables to non-volatile
memory, you may later recall them using the load command.
To automatically load your values when NetROM is power
cycled, see the setenv bootflags command.

The "loadpath" and "batchpath" environment variables are
limited to 60 bytes in length. The "loadfile" and "batchfile"
environment variables are limited to 24 bytes in length.

See also
"bootflags" environment variable, page 5-109
load command, page 5-93

5-97

stty

5-98

Displays or modifies characteristics of NetROM terminal
sessions.

Syntax
stty [-d] { erase I kill I werase I intr I eof I
alterase} setting
stty [-d] all
stty [{ console I target } [baud=baudrate]
[stop = { 1 I 2 } 1 [{ even I odd I none
[{ hshake I nohshake }] [{ xon I noxon }
stty {echo I noecho }

Description
The stty command allows the NetROM user to customize
characteristics of the NetROM terminal session under which
the command is invoked. The command can also be used to
configure defaults for all subsequent terminal sessions. The
optional-d flag is used to set or display default characteristics,
and simultaneously set control characters for the current
session. The stty command can also be used to configure both of
NetROM's serial ports, the Console Port and the Target Port.
Finally, the command can be used to configure NetROM's
command interpreter to echo or not echo characters it receives.

All terminal sessions have several control characters
associated with them. See "Terminal control characters" on
page 5-4 for a description of these control characters. The
setting parameter is of the form "AX"; that is, it is two
characters, a carat '1\' followed by the alphabetic character
itself. One exception is the DELETE key which can be used
without a carat "A." If the DELETE key is not mapped as a
control character, it will be printed as A? The second form of
the stty command displays terminal control character settings.

The stty command can be used to configure either of the
NetROM serial ports; the console and target keywords indicate
which port is to be configured. All settings are updated
immediately. The baud rate for the port is configured using the
baudrate parameter. Valid baud rates are 300, 600,1200,
2400,4800,9600, 19200, and 38400. Note that there is no space

NetROM User's Manual

User Interface

between the baud keyword, the equals sign, and the baudrate
parameter. The stop keyword is used to configure transmit stop
bits; NetROM's serial ports are always configured for one
received stop bit. Parity for a serial port can be set to odd, even,
or none. The hshake keyword enables RTS/CTS hardware
handshaking; if nohshake is selected, RTS will be asserted
before sending, and CTS will be ignored. NetROM does not
support DTRlDSR handshaking; DTR is always true and DSR
is ignored. Finally, the xon keyword enables XONIXOFF
software handshaking, and noxon disables it.

If stty is invoked with the noecho keyword, the terminal session
under which it is invoked will stop echoing input keystrokes.
This makes the session effectively "half duplex." Input echoing
can be re-enabled with the echo keyword. Note that command
output will not be affected.

Examples
stty eof "Z

Sets the eof control character for the current terminal session
to Control-Z.

stty -d kill "K

Sets the default line-kill character for all terminal sessions to
Control-K This also changes the line-kill character for the
current session, but not for any other sessions already running.

stty -d all

Displays the current default terminal settings for NetROM
terminal sessions.

stty consolebaud=4800 hshake noxon

Configures NetROM's Console Port to run at 4800 baud with
hardware handshaking enabled but XONIXOFF recognition
turned off. Other parameters remain as they were before the
command was issued.

stty noecho

5-99

5-100

Disables echoing of keyboard input; this is useful for users
establishing TCP connections to the NetROM Control Port,
since they may want to handle keyboard input locally, or issue
commands directly without echoing them.

See also
tgtcons command, page 5-29

NetROM User's Manual

User Interface

Environment variable commands

Variable

"batchfile"

"batchpath"

"binenv"

"bootflags"

"chanpath"

"chanport"

"consolepath»

NetROM has a special set ofpre-defmed state variables which
are used or referred to frequently by the user. These are
referred to as environment variables as distinguished from the
generic variables. Environmental variables are concerned
primarily with configuring communications paths between
NetROM and the target system, configuring ROM groups for
emulation, and setting default values for downloading new
emulation images.

There are two commands which directly manipulate
environment variables. These are the setenv and the printenv
commands. The next section describes these two commands
and each of the environment variables in detail.

Table 5-12 summarizes the environment variables.

Table 5-12 Environmental variables

Description Page

Specifies default batch file to process. 5-106

Sets path on the TFTP file server NetROM uses to 5-107
search for batch files and RAM module locations.

Controls how emulation memory is written and 5-108
displayed.

Controls NetROM's boot-time behavior 5-109

Sets channel communication path between NetROM 5-110
and the target system.

Sets TCPfUDP port number on which NetROM
accepts communications on channel path.

5-112

Sets console communication path between NetROM 5-113
and the target system.

5-101

Table 5-12 Environmental variables (Continued)

Variable Description Page

"debugpath" Sets debug communication path between NetROM 5-115
and the target system.

"debugport" Sets TCP/UDP port number on which NetROM 5-117
accepts communications on debug path.

"dprbase" Sets base address in emulation pod 0 to map 5-118
dualport RAM.

"filetype" Sets expected download file format. Supports binary, 5-120
S-record, and Intel hex.

"fillpattern" Sets byte pattern to fill emulation memory. 5-121

"groupaddr" Sets default ROM group's start address. 5-122

"groupwrite" Enables or disables NetROM's external write signal. 5-123

"host" Sets IP address of the TFTP server used for image 5-124
and batch downloads, romupgrade, and loadmodule.

"loadfile" Sets default file to download into the default ROM 5-125
group.

"loadpath" Sets default path for downloading "loadfile" and 5-126
romupgrade.

"podorder" Sets pod-to-byte mapping of emulation pods in the 5-127
default ROM group.

"romcount" Sets number of bytes in emulation as part of the 5-134
default ROM group.

''romgroup" Sets default ROM group. 5-135

"romtype" Sets ROM type being emulated by the default ROM 5-136
group.

"tgtip" (optional) Sets target machine's IP address when Virtual 5-139
Ethernet is on.

5-102 NetROM User's Manual

Variable

"verify"

"vether" (optional)

"wordsize"

"writemode"

User Interface

Table 5-12 Environmental variables (Continued)

Description Page

Specifies whether downloads are verified. Takes as 5-140
values: on or off.

Sets Virtual Ethernet on or oft'. 5-141

Sets size in bits ofthe ROM word being emulated by 5-142
default ROM group.

Sets write mode that configures emulation memory 5-143
to emulate FLASH ROM or static RAM.

5-103

setenv

5-104

Modifies the value of environment variables.

Syntax
setenv variable value

Description
The setenv command allows users to configure NetROM to meet
the needs of their development environment. NetROM's
environment variables provide a simple and straightforward
way to do this, while allowing the user to take advantage of
some of NetROM' s more advanced features.

The variable parameter is the name of the environment
variable being set. Table 5-12 summarizes the names and
characteristics ofNetROM's environment variables. The format
of the value parameter depends on the variable being set.
Consult the variable descriptions for more information on how
to specify the value.

NetROM User's Manual

printenv

User Interface

Displays the current values ofNetROM's environment
variables.

Syntax
printenv

Description
The printenv command displays the current settings for all
environment variables. The variables are summarized in
Table 5-12, and discussed in detail in the documentation that
follows.

5-105

batchfile

5-106

Specifies default batch file to process.

Syntax
setenv batchfile filename

Description
The "batchfile" environment variable is the name of the default
batch file to process. This should be a simple file name, not a
directory path. This file name is concatenated with the
"batchpath" environment variable to determine the root­
specific path of the default batch file.

The "batchfile" default can be overridden on the command line,
when invoking batch, if desired. Note that setting "batchpath"
to "f' effectively clears it on secure servers, and setting it to
"/tftpboot" clears it on non-secure servers.

See also
batch command, page 5-89
"batchpath" environment variable, page 5-107

NetROM User's Manual

batch path

User Interface

Sets the path on the TFTP server for the batch file.

Syntax
setenv batchpath path

Description
The ''batchpath" environment variable is the path on the TFTP
file server that NetROM should use to search for batch files. It
is possible to override this default path if desired. See the batch
command for details. Note that setting ''batchpath" to "f'
effectively clears it on secure servers, and setting it to
" I tftp boot" clears it on non-secure servers.

The "batchpath" environment variable is specifically designed
to facilitate the batch command. You may have certain
commands that you repeat over and over. It is possible to
collect such sequences of commands into "batch files" and have
NetROM execute them as a group. Then, using the batch
command, the you can cause NetROM to download these files
and execute the commands in them one at a time.

See also
batch command, page 5-89
"batchfile" environment variable, page 5-106

5-107

binenv

5-108

Specifies how emulation memory is read and displayed.

Syntax
setenv binenv {8 I 16 I 32 I 64} {big I little}

Description
The "binenv" environment variable controls how the set
podmem and di podmem commands write and display N etROM
emulation memory.

Select 8,16,32, or 64 to specify the word length, in bits, to use
when writing or displaying data. The default is 8 bit, no endian.

Select big or little to specify which endian mode to use when
writing or displaying emulation memory at the NetROM
prompt.

See also
set podmem command, page 5-42
di podmem command, page 5-69

NetROM Users Manual

bootflags

User Interface

Controls NetROM's boot-time behavior.

Syntax
setenv bootflags [loadenv] [rarp] [bootp] [storage]
[autobatluserbat] [hostip]

Description
This command sets the flags that determine how NetROM
configures its environment when power-cycled. To enable a
feature, include the appropriate flag on the command line.
Flags may be specified using one or more letters: loadenv, load,
and 1 are equivalent.

Table 5-13

Option

loadenv

rarp

bootp

storage

autobat

userbat

hostip

Bootflags and their effects

Action

Auto-load the previously saved
environment when N etROM is power-cycled

RARP for NetROM's IP address

Use BOOTP to find NetROM's IP address

Use the previously saved NetROM IP
address

Use NetROM's IP address in hexadecimal as
the batch file name. Example: IP address is
128.1.2.3, batchfile will be 80010203.

Use previously saved batchfile name

Use previously saved host IP address

NetROM's factory default for "bootflags" is:

setenv bootflags rarp bootp autobat

To load all values from storage, use:

setenv bootflags 1 s h

5-109

chan path

Note ~

5-110

Sets a channel communication path between N etROM and the
target system.

Syntax
setenv chanpath {l I 2 I 3} {serial I dualport}

Description
The "chanpath" environment variable is used to configure
channel path communications between NetROM and the target
system. Channel path communications between the host and
NetROM are independent of the path between NetROM and the
target, and are not affected by this environment variable.

Select 1,2, or 3 to specify which channel you are setting up.

Select serial or dualport to specify the communication protocol
for the selected channel.

The serial value selects NetROM's target serial port interface
for the channel path communication beteen NetROM and the
target. Parameters for this port are configured using the stty
command (see "stty" on page 5-98).

The dual port value selects the emulation memory mailbox
protocol for channel # path communication between NetROM
and the target. The mailbox protocol is described in detail in
Chapter 8.

Changing the "chan path" variable will not take immediate
effect; the target must be reset with the tgtreset command
before the NetROM-target communication path will change.
This prevents corruption of any current active channel
sessions.

NetROM Users Manual

User Interface

The "channelpath" variable is independent of the "consolepath"
and the "debugpath" variables. Each channel path has its own
dualport channel. In situations where more than one channel
is communicating serially, the host will receive all
communications and must distinguish between them.

5-111

chanport

Note ~

5-112

Sets TCP/UDP port number on which NetROM accepts data
from host.

Syntax
setenv chanport {I I 2 I 3} portnum

Description
The "chanport" environment variable is used to set the TCPI
UDP port number on which NetROM listens for data from the
host. The portnum parameter should be in decimal.

channel #

1

2

3

portnum default

1240

1241

1242

If a session is underway, changing the "chanport" variable will
not take immediate effect; the target must be reset with the
tgtreset command before the NetROM-target communication
port will change. This prevents corruption of any current active
channel sessions.

See also
set udpsrcmode command, page 5-53

NetROM Users Manual

consolepath

Note

User Interface

Sets the console communication path between NetROM and
the target system.

Syntax
setenv consolepath {serial I dualport}

Description
The "consolepath" environment variable is used to configure
console path communications between NetROM and the target
system. Console path communications between the host and
NetROM are independent of the path between NetROM and the
target, and are not affected by this environment variable.

Select serial or dualport to specify the communication protocol
for the console path.

The serial value selects NetROM's target serial port interface
for the console path communication between N etROM and the
target. Parameters for this port are configured using the stty
command (see "stty" on page 5-98).

The dual port value selects the emulation memory mailbox
protocol for the console path communication between NetROM
and the target. The mailbox protocol is described in detail in
Chapter 8.

Changing the "consolepath" variable will not take immediate
effect; the target must be reset with the tgtreset command
before the NetROM-target communication path will change.
This prevents corruption of any current active console sessions.

The "consolepath" variable and the "debugpath" variable are
independent, because one may use the serial port
communications path and the other the mailbox protocol, or
they may both use the mailbox protocol or the serial port. In
situations where the console path and the debug path between
NetROM and the target are the same, the host system side
debugger and console will receive both debug and console data.

5-113

5-114

It is the responsibility of the host system to distinguish
between them; also see "debugpath" on page 5-115.

NetROM User's Manual

debugpath

Note

User Interface

Sets the debug communication path between NetROM and the
target system.

Syntax
setenv debugpath {serial I dualport}

Description
The "debugpath" environment variable is used to configure
debug path communications between NetROM and the target
system. Debug path communications between the host and
NetROM are independent of the path between NetROM and the
target, and are not affected by this environment variable.

Select serial or dualport to specify the communication protocol
for the debug path.

The serial value selects NetROM's target serial port interface
for the debug path communication beteen NetROM and the
target. Parameters for this port are configured using the stty
command (see "stty" on page 5-98).

The dualport value selects the emulation memory mailbox
protocol for the debug path communication between NetROM
and the target. The mailbox protocol is described in detail in
Chapter 8.

Changing the "debugpath" variable will not take immediate
effect; the target must be reset with the tgtreset command
before the NetROM-target communication path will change.
This prevents corruption of any current active debug sessions.

The "consolepath" variable and the "debugpath" variable are
independent, because one may use the serial port
communications path and the other the mailbox protocol, or
they may both use the mailbox protocol or the serial port. In
situations where the console path and the debug path between
NetROM and the target are the same, the host system side
debugger and console will receive both debug and console data.

5-115

5-116

It is the responsibility of the host system to distinguish
between them; also see "consolepath" on page 5-113.

NetROM User's Manual .

debug port

User Interface

Sets TCP/UDP port number on which N etROM accepts data
from host-based debuggers.

Syntax
setenv debugport portnum

Description
The "debugport" environment variable is used to set the TCPI
UDP port number on which NetROM listens for data from host­
based debuggers. The portnum parameter should be in
decimal. The default port number is 1235.

If a session is underway, changing the "debugport" variable
will not take immediate effect; the target must be reset with
the tgtreset command before the NetROM-target
communication port will change. This prevents corruption of
any current active debug sessions.

See also
set udpsrcmode command, page 5-53

5-117

dprbase

5-118

Sets base address in emulation pod 0 to map dualport RAM.

Syntax
setenv dprbase offset

Description
The "dprbase" environment variable tells NetROM where in
emulation pod 0 to map the dualport RAM used to pass
messages between NetROM and the target system. The value of
this variable is the hexadecimal offset, in bytes, from the start
of pod 0 memory. This value is independent of the word size of
the ROM group containing pod O. That is, it should be
considered the byte offset from the start of the ROM which pod
o is emulating. "dprbase" must start on an 8K boundary.

The dualport requires 8K of memory for passing messages.By
default, the dualport memory is mapped to the last 8192 bytes
of memory emulated by pod O.

For example, for a 4 MB NetROM, ifpod 0 is emulating an
at27c080 ROM, which has 1 M, the default "dprbase" is
OxfeOOO, since this is 8192 (or 0x2000) bytes below the end of
ROM (Oxfffff).

For a 1 MB NetROM, if pod 0 is emulating a 27c020 ROM,
which has 256K, the default "dprbase" is Ox3eOOO, since this is
8192 (or Ox2000) bytes below the end of the ROM (Ox3ffff).

The "dprbase" variable allows you to map the communication
mailbox area to another part of the ROM, for example to the
beginning. The last part of emulation memory was chosen as
the default because most ROM users fill their ROMs from
beginning to end, not the other way around. Ifthe target
system is not going to use dualport memory to pass messages
to the target, the value of"dprbase" is unimportant. If dualport
RAM will be used to pass messages, it is important that
"dprbase" be set so that it does not overlap any of the download
image.

NetROM User's Manual

Note W
User Interface

Changing the "dprbase" variable does not modify the mapping
of dualport RAM immediately. This is to prevent corruption of
the current target-NetROM communications path. In order to
effect the change in mapping, the target must be reset with the
tgtreset command.

5-119

filetype
Sets expected download file format.

Syntax
setenv filetype format

Description
The "filetype" environment variable tells NetROM what file
format to expect when downloading the default ROM group
(which is named by the "romgroup" environment variable).
Supported file types and their associated settings are given in
Table 5-14. The "filetype" default can be overridden on the
command line when invoking new image.

NetROM supports extended address records (type Ox04) for the
80386-and-higher processors. These records specify address
bits 16 through 31. Old style extended address records (type
OX02), which affect address bits 4 through 19, are also
supported.

Table 5-14 Supported NetROM file formats

format Meaning

binary Binary file

srecord Motorola S-record file

intelhex Intel hex record file

5-120 NetROM Users Manual

fillpattern

User Interface

Sets byte pattern to fill emulation memory.

Syntax
setenv fillpattern pattern

Description
The "fillpattern" environment variables allows NetROM users
to specify an 8-bit pattern which will be used to fill emulation
memory prior to a download. Valid values for pattern are
either the word none or the hexadecimal8-bit value. Emulation
memory can also be filled using the fill command. The
"fillpattern" value can be overridden on the command line
when invoking the newimage command. See "newimage" on
page 5-23 for details.

5-121

groupaddr

5-122

Sets default ROM group's start address.

Syntax
setenv groupaddr address

Description
The "groupaddr" environment variable gives NetROM the
target's idea of the start address of the default ROM group
(which is named by the "romgroup" environment variable).
This value is a 32-bit hexadecimal number, and is intended to
allow the NetROM user to examine emulation memory using
the same addresses which appear in compiler map files.

NetROM User's Manual

groupwrite

User Interface

Enables or disables NetROM's write signal.

Syntax
setenv groupwrite {readonly I readwrite}

Description
The "groupwrite" environment tells NetROM whether or not to
allow the target system to perform writes into emulation
memory using either the internal or the external write line.
Appropriate values for the "groupwrite" variable are readonly
and readwrite.

A read-only target system cannot write to its own ROM space
because its hardware designer did not supply a write line to the
ROM sockets. If the target's write cYcle is appropriately
supported in other respects, the NetROM user may decide to
connect the write signal, which is part ofNetROM's status
signal array, to the target processor's write line. The
"groupwrite" variable does affect write cycles which use the
write line in the emulation pod.

5-123

host

5-124

Sets IP address of the TFTP server used for image and batch
downloads.

Syntax
setenv host ip_address

Description
The "host" environment variable is the IP address of the TFTP
server NetROM will use during image and batch file downloads.
This address is given in standard dotted-decimal notation.

This can be overridden on the command line, for example when
invoking the batch and newimage commands.

NetROM Users Manual

loadfile

User Interface

Sets default file to download into the default ROM group.

Syntax
setenv loadfile filename

Description
The "loadfile" environment variable is the name of the default
file to download into the default ROM group (which is named
by the "romgroup" environment variable). This should be a
simple file name, not a directory path. This file name is
concatenated with the "loadpath" environment variable to
determine the root-specific path of the default image file.

The "loadfile" default can be overridden on the command line,
when invoking new image, if desired. Note that setting
"loadpath" to "r effectively clears it on secure servers, and
setting it to "/tftpboot" clears it on non-secure servers.

5-125

load path

Note ~

5-126

Sets default path for downloading "loadfile".

Syntax
setenv loadpath path

Description
The "loadpath" environment variable is the default directory
path NetROM will use when downloading image files into the
default ROM group (which is named by the "romgroup"
environment variable). This path mayor may not be "root­
specific"; that is, it mayor may not begin with a 'f. Most TFTP
servers will treat non-root-specific paths as being based out of
the / tftpboot directory.

The "loadpath" default can be overridden on the command line,
when invoking newimage, if desired.

For Windows Host Users: Set the loadpath variable to "." (dot).
This causes NetROM to use the current directory as the default
directory for the file being transferred from the TFTP default
directory on the host.

Net ROM Users Manual

podorder

User Interface

Sets pod-to-byte mapping of emulation pods in the default
ROM group.

Syntax
setenv podorder pod#{-\:}pod#

Description
The "podorder" environment variable (see Figure 5-1) maps
emulation pods within the default ROM group (which is named
by the "romgroup" environment variable) to ROM sockets being
emulated by that ROM group.

For example, if ROM group 0 uses pods 0 and 1 and emulates a
16-bit-word target ROM space for two ROMs, it may be
desirable for pod 0 to emulate ROM 0 while pod 1 emulates
ROM 1, or vice versa.

The pod order is specified using pod numbers 0-3 as follows:

a separated by colons (':') indicates "parallel" usage (pods
emulate multiple ROMs used for single words)

a separated by dashes ('.') indicates "serial" usage (pods
emulate multiple ROMs used for consecutive words)

For passive cables, each emulation pod supports a single ROM
and must be mapped separately.

For active cables, the emulation pods are used in pairs: 0 and 1
are used together and 2 and 3 are used together. Specify 0 to
use pods 0 and 1; specify 2 to use pods 2 and 3.

Examples· passive cables

a The notation "0:1" indicates that pods 0 and 1 work together
to emulate a 16-bit word, in which pod 0 emulates byte 0 and
pod 1 emulates byte 1.

a The notation "0-1" indicates that pods 0 and 1 work together
to emulate an 8-bit word, where pod 0 emulates the lower­
addressed words and pod 1 emulates the higher-addressed
words. This notation indicates an emulated space where

5-127

Note ~

5-128

words are half as wide as the first notation, but in which
there are twice as many words.

o Both serial and parallel pods may occur in podorder
notation; "0:1-2:3" indicates not only that pods 0 and 1
emulate a 16-bit word, as do pods 2 and 3, but also that the
words emulated by pods 0 and 1 are lower-addressed than
the words emulated by pods 2 and 3.

Example - active cables

o The notation "0:2" indicates that pods 011 and 2/3 work
together. If you are using 8-bit ROMs, this would emulate a
16-bit word, in which pods 011 emulate byte 0 and pods 213
emulate byte 1.

o The notation "0-2" indicates that pods 011 and 2/3 work
together. Pods 011 emulate the lower-addressed words and
pods 213 emulate the higher-addressed words. This notation
indicates an emulated space where words are half as wide as
the first notation, but in which there are twice as many
words.

When using an active emulation cable for 16-bit devices, you
cannot use podorder to swap bytes within the device, although
bytes can be swapped between devices. The host utility,
rom pack, (see page 6-7) can be used to perform byte swaps
within a device.

The "podorder" variable is related to the "romcount" and the
"wordsize" variables. The "podorder" variable specifies the
combined information of the "romcount" and "wordsize"
variables. The "podorder" variable will override both the
"romcount" and "wordsize" variables, if set. However, the
"romcount" and "wordsize" variables are probably more
intuitive to use. If the "podorder" variable is not set, the order
of pods within the default ROM group is always the same.

Figure 5-2 through Figure 5-3 summarize the interactions of
the ''podorder", "romcount", and "wordsize" variables, and give

NetROM User's Manual

User Interface

the default values of the "podorder" variable for each case. The
"podorder" variable can be used to explicitly set the mapping
between pods and ROM sockets if desired.

Byte# 0 1

+ +
Word# 0 0 0

+ +
Pod# 0 1

a. Podorder "0:1"
Byte # 0 1

+ +
Word # 0 /~,

1 "0 0 0 1
Pod #

"
Pod #

2 3 Pod #

a. Podorder "0-1" c. Podorder "0:1-2:3"

Figure 5-1 Podorder examples (passive cables)

5-129

Romcount

1 2 3 4

0 0 0 0
0 0 0

8 0 0
0

"0" "0-1" "0-1-2" "0-1-2-3"

Wordsize

00 DO
16 No No DO

"0:1" "0:1-2:3"

32 No No No 0000
"0:1:2:3"

Figure 5·2 Podorcler/romcountlworclsize interactions (passive cables)

5-130 NetROM User's Manual

Wordsize

Romcount

1 2 3

~ ~
8

~
No

"0" "0-2"

16 No ~~ No

"0:2"

32 No No No

Figure 5-3 Podorder/romcountlwordsize interactions
(active cables - Figure 3-4A) - 8-bit ROMs

User Interface

4

No

No

No

5-131

Wordsize

Romcount

1 2 3

8 No No No

0 0
16 0 No

"0" "0-2"

32 No 00 No

"0:2"

Figure 5-4 Podorder/romcountlwordsize interactions
(active cables - Figure 3-4A) 16-bit ROMs

4

No

No

No

5-132 NetROM User's Manual

Wordsize

Romcount

1 2 3

a-bit
ROM

8 No No

"0"

16 ROM
o 16-bi1

No No

"0"

32 No No No

Figure 5-5 Podorder/romcountlwordsize interactions
(active cables - Figure 3-48)

User Interface

4

No

No

No

5-133

romcount

5-134

Sets number of ROMs being emulated in the default ROM
group.

Syntax
setenv romcount value

Description
The "romcount" environment variable specifies the number of
ROMs being emulated by the default ROM group (which is
named by the "romgroup" environment variable). The
"romcount" variable is related to the "podorder" and the
"wordsize" variables.

The "romcount" variable is related to the "podorder" and the
"wordsize" variables. The "podorder" variable specifies the
combined information of the "romcount" and "wordsize"
variables. The "podorder" variable will override both the
"romcount" and "wordsize" variables. However, the "romcount"
and "wordsize" variables are probably more intuitive to use. If
the "podorder" variable is not set, the order of pods within the
default ROM group is always the same.

Figure 5-2 through Figure 5-3 summarize the interactions of
the ''podorder'', "romcount", and "wordsize" variables, and give
the default values of the "podorder" variable for each case.

NetROM User's Manual

romgroup

User Interface

Sets the default ROM group.

Syntax
setenv romgroup value

Description
The "romgroup" environment variable selects the ROM group
that should be considered the default ROM group for the
commands that affect ROM groups. These commands include
new image and di podmem, among others. In addition, the
default ROM group is the one which is acted upon by the
environment variables affecting pod group ("groupaddr",
"groupwrite", "podorder","romcount", "romgroup", "romtype",
"wordsize") and downloading.

5-135

romtype

ROM type

27 c256, 28f256

27 c512, 28f512

27c010,27c100,
28f010, 28£001b

27c020,28£020

27 c040, 27x040,
29f040, am29f040,
am291v004b

5-136

Sets the type of device being emulated by the default ROM
group.

Syntax
setenv romtype device

Description
The "romtype" environment variable specifies the type of ROM
that NetROM will emulate. Table 5-15 gives the possible ROM
types, their corresponding ROM sizes, and the acceptable
variable name to use when setting the romtype environment
variable. The variable names are case sensitive.

Note that 16- and 32-bit wide devices requires the use of active
cables.

If your device is not listed, use the generic type that applies to
your device.

Table 5-15 ROM types and sizes

Size ROM type variable name

32Kx8 27c256,28f256
32k_by_8

64Kx8 27c512, 28f512
64k_by_8

128Kx8 27c010, 27c100, 28£010, 28£001b
128k_by_8

256Kx8 27 c020, 28f020
256k_by_8

512Kx8 27c040, 27x040, 29£040, am29£040,
am291v004b
512k_by_8

NetROM User's Manual

User Interface

Table 5-15 ROM types and sizes

ROM type Size ROM type variable name

2Sc400,2Sf200bx, 512Kx S 2Sc400,2Sf200bx,2Sf400bx,29flOOb,
2Sf400bx, 29f100b, 29f200b,29f400ab
29f200b,29f400ab 512k_by_8bp
(byte pin)

at27cOSO, at271vOSO, 1MxS at27cOSO, at271vOSO, m27cS01, 2SfOOSbv,
m27cS01,2SfOOSbv, 2SfOOSsa, 2SfOOSsc, 2SfOOSs5, m2Sf841,
2SfOOSsa, 2Sf008sc, m2SvS41,aIn29fOSO,49fOSO,at49fOSO
2SfOOSs5, m2Sf841, IM_by_8
m2SvS41, am29fOSO,
49fOSO, at49fOSO

2Sf800bv_by_S, IMxS 2Sf800bv_by_S,2Sf800cv_by_S,
2Sf800cv _by _S, am291vSOO_by_S,am291vSOOt_by_S
am291vSOO, IM_by_8bp
am291vSOOt
(byte pin)

m2Sf161, m2Sv161, 2MxS m2Sf161, m2Sv161, 29£016, am29f016,
29£016, am29f016, 49£016, at49f016
49£016, at49£o16 2M_by_8

2S£032sa 4MxS 2Sf032sa_by _S
(byte pin) 4M_by_8bp

27c1024,27c210 64Kx 16 27c1024,27c210
64k_by_16

27c204S,27c220 12SKx 16 27c204S,27c220
128k_by_16

27c240,27c4096 256Kx 16 27c240,27c4096
256k_by_16

27c400,2Sf200bx, 256Kx 16 27c400_by_16,2Sf200bx_by_16,
2Sf400bx, 29f100b, 2Sf400bx_by_16,29f100b_by_16,
29f200b, 29f400ab 29f200b_by_16,29f400ab_by_16
(byte pin) 256k_by _16bp

5-137

Table 5-15 ROM types and sizes

ROM type Size ROM type variable name

at49f8192, at27c8192 512Kx16 at49f8192,at27c8192
512k_by_8

28f800bv,28f800cv, 512Kx16 28f800bv_by_16,28f800cv_by_16,
am29lv800t am29Iv800t_by _16
(byte pin) 512k_by_8bp

msm27c16227b 1MBx 16 msm27c16227b
IM_by_16

m27c160,28f016sa, 1 MBx 16 m27c160_by_16,28f016sa_by_16,
28f016sv,hn625316 28f016sv_by_16,hn625316_by_16
(byte pin) IM_16bp

28f032sa 2MBx 16 28f032sa_by _16 ..
(byte pin) 2M_16bp

5-138 NetROM User's Manual

tgtip (optional)

User Interface

Sets the target's IP address when Virtual Ethernet is on.

Syntax
setenv tgtip ip_address

Description
The "tgtip" environment variable specifies the target's IP
address when Virtual Ethernet is turned on (see "wordsize" on
page 5-142). This IP address determines which packets to send
to the target. Enter this address in dotted decimal form; e.g.,
192.3.4.5.

Note
Virtual Ethernet is an optional feature ofNetROM, it is enabled
when the licensed Virtual Ethernet RAM module is loaded.

5-139

verify

5-140

Enables or disables download verification.

Syntax
setenv verify {on loff}

Description
The "verify" environment variable affects NetROM's behavior
as it downloads ROM groups. Valid values for this variable are
on and off. When "verify" is on, NetROM calculates the
checksum of hex records and compares the sum with the value
given in the record. The "verify" variable has no effect on binary
file downloads. Since verifying records involves additional
arithmetic steps, it will tend to slow the download process
slightly.

NetROM User's Manual

vether (optional)

User Interface

Sets Virtual Ethernet on or off.

Syntax
setenv vether {on ioff}

Description
The "vether" environment variable turns Virtual Ethernet on
and off. When the corresponding driver is running on the target
system, Virtual Ethernet enables NetROM to act as an Ethernet
interface for the target. Virtual Ethernet filters incoming
packets and sends those addressed to the target over the
dualport RAM interface to the target. Packets from the target
are transmitted on the Ethernet.

Note
Virtual Ethernet is an optional feature ofNetROM, which is
enabled when the Virtual Ethernet RAM module is loaded.

5-141

wordsize

5-142

Sets the size, in bits, of the ROM word being emulated by the
default ROM group.

Syntax
setenv wordsize {8 I 15 I 32}

Description
The "wordsize" environment variable sets the width in bits of
the words emulated by the default ROM group (which is named
by the "romgroup" environment variable). Valid word sizes are
8, 16, and 32 bits.

The "wordsize" variable is related to the "romcount" and the
"podorder" variables. The "podorder" variable specifies the
combined information of the "romcount" and "wordsize"
variables. The "podorder" variable will override both the
"romcount" and "wordsize" variables. However, the "romcount"
and "wordsize" variables are probably more intuitive to use. If
the "podorder" variable is not set, the order of pods within the
default ROM group is always the same.

Figure 5-2 through Figure 5-5 (pages 5-130 through 5-133)
summarize the interactions of the "podorder", "romcount", and
"wordsize" variables, and give the default values of the
"podorder" variable for each case.

NetROM User's Manual

writemode

User Interface

Sets emulation memory to emulate flash ROM or static RAM.

Syntax
setenv writemode {flash I static}

Description
The "writemode" environment variable configures the type of
device which will be emulated when writing to emulation
memory from the target. This is important if both OE and WR
are asserted at the same time. With flash ROM emulation,
asserting OE and WR causes a READ cycle. With static RAM
emulation, asserting OE and WR causes a WRITE cycle. The
default is flash ROM.

5-143

I Chapter6

Utilities

. Utility

download

ieeeparse

rompack

thost

ttarget

upload

Several Unix utilities are provided on your NetROM Drivers
and Utilities diskette.

Table 6-1 summarizes the utilites alphabetically and gives
their function and the page number of a complete description.

Table 6-1 NetROM utilities summary

Description Page

Downloads S-record, Intel hex, and binary images from Unix 6-3
host to NetROM

Creates a binary image from an IEEE record. 6-5

Modifies and! or combines S-record, Intel hex, or binary 6-7
images into a binary image for loading into NetROM. Allows
byte swapping in 16, 32, and 64 bit granularity.

Host-side of turbo Loader application; downloads S-record, 6-10
Intel hex, and binary images from Unix host to target RAM.

Target-side of turboLoader application; downloads S-record, 6-12
Intel hex, and binary images from Unix host to target RAM.
ttarget must be integrated with your target code.

Uploads binary images from NetROM to Unix host. 6-14

6-1

Understanding the utility descriptions
The syntax:

6-2

download [-b base] [-0 offset] [-f fillpattern]
[-g podgroup] filename netromaddr

describes the download utility, for which the -b argument is
optional, but which requires a base address if used. The -0, -f
and -g arguments are also optional, and each requires a
number. The filename and netromadd are not optional, and
must be supplied. netromadd may be supplied either as a
logical name, asin 'netrom22', or as an IP address.

When describing IP addresses, NetROM commands use
standard Internet "dotted-decimal" notation. An example of
such an address is "192.0.0.210".

NetROM User's Manual

download

Utilities

Sends an S-record, Intel hex, or binary image from the Unix
host to NetROM overlay memory.

Syntax
download [-b base] [-0 offset] [-f fillpattern I none]
[-g podgroup] file_name netram_address

Options
base base address for image; default is 0
offset address offset for image; default is 0
fillpattern pattern to prefill pod memory with before

downloading image; default is none, does not
alter pod memory

podgroup pod group to download image to; default is 0
file_name filename of image to be downloaded
netrom_address network address used by NetROM

Description
The download utility uses a TCPIIP socket connection between
host and N etROM to download code and data images to
NetROM. download understands S-record, Intel hex, and
binary file formats.

Compiling source code
download.e was compiled under SunOS 4.1.x using gee version
2.6.3, using the command line:

gcc -0 download -ansi -Wall -pedantic download.c

The following gee flag is optional:

Examples
Download a binary file named rom.bin to a NetROM with
logical address netrom22.

download rom. bin netrom22

6-3

6-4

Download an Intel hex file named boot.hex to a N etROM with
IP address 128.9.233.5.

download boot.hex 128.9.233.5

Download an S-record file with a start address ofOxFOOOOOOO,
named rom.sree, to a NetROM with logical address burton7.

download -b OxFOOOOOOO rom.srec burton7

NetROM Users Manual

ieeeparse

Utilities

Creates a binary image from an IEEE record.

Syntax
ieeeparse [-r romtype] [-c romcount] [-f { fillpattern
I none }] [-x] [-p] [-0 outfile] filel basel offsetl
[file2 base2 offset2 ...]

Options
romtype

romcount

fillpattern

-x

-p

out file

filel

basel

offsetl

Description

type of ROM image is to be placed in; see
page 5-136 for valid values
number of ROMs of the same romtype that
are being used in emulation
pattern to prefill pod memory with before
loading images; default is none, which prefills
memory with 00
truncates resulting binary file to only the
number of bytes actually used. Otherwise the
resulting outfile is the same size as the rom­
type given.
presents error conditions as warnings only
rather than halting the procedure
filename of the resulting file produced by
ieeeparse
name of first S-record, Intel hex, or binary file
for ieeeparse to place in resulting binary file.
first valid address for the ROM being emulat­
ed; this setting does not apply to binary
source files which are assumed to have the
same start address as the base of the emulat­
edROM
offset to add to record addresses

The ieeeparse utility converts an IEEE record into a binary
image that is loadable into NetROM.

Compiling source code
ieeeparse.c was compiled under SunOS 4.1.x using gee version
2.6.3, using command line:

6-5

6-6

gcc -0 ieeeparse -ansi -Wall -pedantic ieeeparse.c

The following gee flag is optional:

Example
Convert an IEEE record to a binary format file to be
downloaded to NetROM. In the following example the IEEE
record is going to be converted into a binary with the name
nr_dptest.bin. The starting address of the 27c020 that is being
emulated in the target is Oxe0040000, so the base is set to that
address.

ieeeparse -r 27c020 -0 nr_dptest.bin nr_dptest.x
Oxe0040000 OxO

NetROM User's Manual

rompack

Utilities

Modifies and! or combines S-record, Intel hex, or binary images
into a binary image for loading into NetROM and allows byte
swapping in 16,32, and 64 bit granularity.

Syntax
rompack [-r romtype] [-c romcount] [-f { fillpattern I
none}] [-x] [-p] [-ooutfile] [-s { 16 I 32 I 64 }]
filel basel offsetl [file2 base2 offset2 ... J

Options:
romtype

romcount

fillpattern

-x

-p

out file

-s #

filel

basel

.offsetl

Description

type of ROM image is to be placed in; see
page 5-136 for valid values
number of ROMs of the same romtype that
are being used in emulation
pattern to prefill pod memory with before
loading images; default is none, which prefills
memory with 00
truncates resulting binary file to only the
number of bytes actually used. Otherwise the
resulting outfile is the same size as the rom­
type given.
presents error conditions as warnings only
rather than halting the procedure
filename of the resulting file produced by
rompack
swaps the endianness in the image on the
given grain size (# is size in bits)
name offirst S-record, Intel hex or binary file
for rompack to place in resulting binary file.
first valid address for the ROM being emulat­
ed; this setting does not apply to binary
source files which are assumed to have the
same start address as the base of the emulat­
edROM
offset to add to record addresses

The rom pack utility allows several separate images of varying
types, S-record, Intel hex, and binary file formats, to be

6-7

merged! modified at once. This results in a single binary file
that can be loaded quickly into NetROM.

Compiling source code
rompaek.e was compiled under SunOS 4.1.x using gee version
2.6.3, using command line:

gee -0 rompaek -ansi -Wall -pedantic rompaek.e

The following gee flag is optional:

Examples
Combine an S-record file named 08.8 with a binary image
image. bin. The binary image will be loaded OxlOO bytes above
the starting address of the ROM being emulated, which in this
case is OXO.

rompack -r 27e020 -0 outfile.bin os.s OxO OxO image.bin
OxO OxlOO

Through the constructive use of the base and offset settings an
S-record or Intel hex file can be placed at any address in the
target. If the target has a 27 c020 that starts at address
Oxe0040000 and an S-record file that starts at address Ox20000
needs to be placed at the beginning of the ROM being emulated
in the target.

rompaek -r 27e020 -0 outfile.bin os.s Ox20000 OxO

or

rompaek -r 27e020 -0 outfile.bin os.s Oxe0040000
Oxe0020000

Since S-record and Intel hex records have absolute addresses
encoded in their format the NetROM needs to know at what
base address the ROM being emulated starts. If the ROM that
is being emulated starts at Oxe0040000, then the base should
be given as Oxe0040000 for these types of files. If the original
format of the binary source, in this case, a hex record, is of the

NetROM User's Manual

Utilities

wrong endian, the swap en dian option can be used. If the target
is a I6-bit target the -s 16 option can be used as shown here.
Also note that the -f option has been used here to fill the unused
bytes of the resulting output file with Oxfflike in a real PROM.

rompack -r 27c020 -f Oxff -5 16 -0 outfile.bin
wrongend.hex Oxe0040000 OxO

6-9

thost

6-10

Sends an S-record, Intel hex, or binary image from the Unix
host to target RAM. Note that ttarget must be running on the
target for this to work.

Syntax
thost [-s -i I -b) [-? I -b] [-B base] [-0 offset]
[-v] [-p port] file_name netram_&ddress

Options

-s

-i

-b

-7
-h

base

offset

specifies file format:
S-record
Intel hex
binary
default is auto-detection of filetype.
provides help
provides help
base address for image; default is 0 for binary
images and contained in the image file for S­
record and Intel hex
address offset for image; default is 0

-v verbose mode displays more execution infor­
mation; verbose mode is not the default

port NetROM port number to connect to; default
port is 1235

file_name filename of image to be downloaded
netram_&ddress network address used by NetROM

Description
The thost utility uses a TCPIIP socket connection between Unix
host and NetROM to load code and data images from the
specified file to target RAM.

Compiling source code
thost.e was compiled under SunOS 4.1.x using gee version
2.6.3. using the command line:

gcc -0 turboHost -ansi -Wall -pedantic turboHost.c

NetROM User's Manual

Utilities

The following gee flag is optional:

Examples
Download Intel hex image rom.hex to target RAM with target
connected to a NetROM with logical address netrom22. Use
NetROM port 1235, the default.

thost rom.hex netrom22

Download S-record image rom.srec to target RAM with target
connected to a NetROM with logical address 128.230.1.1. Use
N etROM port 2. Enable verbose mode.

thost -v -p 2 rom.hex 128.230.1.1

6-11

ttarget

6-12

Receives an S-record, Intel hex, or binary image from thost on
the Unix host. Copies image to target RAM. Note that thost
must be running on the host for this to work!

Description
The ttarget utility executes in the target at boot-time and uses
N etROM's Virtual UART technology to load an image from
thost. The load address for the downloaded image is a function
of the file you are downloading and the base and offset
addresses you provide to thost.

Compiling source code
1. The following instructions assume that you have already

included NetROM's Virtual UART communication driver in
your target's ROM-based boot code. If you have not, please
see Chapter 10.

2. Add ttarget.c to the makefile for your target's ROM-based
boot image.

3. Edit the function you call to configure NetROM's Virtual
UART driver, adding the call to tloadO just after the call to
nr_dpConfig(). See example, below.

Example
#define TURBO 1
#define FLAGVAL Ox1234ABCD /* Arbitrary value */

void configVUART(void)
{

static uInt32 FirstTimeFlag=O;
int rc;

if(FLAGVAL != FirstTimeFlag) {
FirstTimeFlag = FLAGVAL;

rc = nr_ConfigDP((uInt32) DP_BASE, ROMWORDWIDTH,
POD_O_INDEX);

#if (TURBO == 1)
tload() ;

#endif

NetROM Users Manual

} /* if (TRUE -- FirstTimeFlag) */

nr_SetBlockIO(CHANNEL, True);
/* configVUART */

Utilities

6-13

upload

6-14

Sends a binary image from NetROM overlay memory to Unix
host.

Syntax
upload [-g podgroup] [-0 outfile] net rom_address

Options
podgroup pod group to upload; default is podgroup 0
outfile file to save image to; default is outfile.bin
net rom_address network address used by N etROM

Description
The upload utility uses a TCP/IP socket connection between
host and NetROM to upload code and data images from
N etROM to a user-specified file on the host computer.

Compiling source code
upload.e was compiled under SunOS 4.l.x using gee version
2.6.3, using command line:

gcc -0 upload -ansi -Wall -pedantic upload.c

The following gee flag is optional:

Examples
Upload image to a binary file named upload.bin from
podgroup 0 of a NetROM with logical address netrom22.

upload netrom22

Upload image to a file named rom.bin from podgroup 1 of a
N etROM with IP address 128.9.233.5.

upload -g 1 -0 rom.bin 128.9.233.5

NetROM User's Manual

I Chapter 7

Debugger Support
NetROM provides support for embedded systems developers
using remote debuggers. Remote debuggers are software
systems which run both on the host system and on the target.
Most remote debuggers use RS-232 serial links to connect their
target and host sides. NetROM removes the need for serial
links; data packets destined for the target system's half of the
debugger can be sent to NetROM over Ethernet and forwarded
from NetROM to the target along the configured debug path.
Similarly, data from the target will be forwarded by NetROM to
the host.

The NetROM approach has several advantages:

IJ It does not require that the host system running the
debugger user interface have a serial port.

IJ It allows the system side ofthe debugger to use system calls
which interface to a TCPIIP network; this is often simpler
and more portable than writing software to program a serial
link.

IJ It can be used to debug target systems which do not have a
serial port; NetROM insulates the host side of the debugger
from the details of communicating with the target.

NetROM debug paths
NetROM provides two choices for the debug path to the target.
This allows the NetROM user to choose the option that best
suits the requirements of the development environment and
the target system.

7-1

The first option is the serial debug path. This works well in
environments which currently use serial links to communicate
with the target. NetROM can be used in these environments
with no target-side modification at all; the target sends and
receives debugger packets on its serial port.

Targets which do not have serial ports can be separated into
two categories: those which can write to their ROM space and
those which cannot. NetROM can pass messages to both types
of target systems using portions of emulation memory as a
mailbox. Details of the protocol are given in Chapter 9.

Passing data across the debug path

7-2

The mechanism for host side debuggers to pass data to and
from the target system is quite simple. NetROM has a "daemon"
process, called "debugpathd," which listens on a specific TOP
port, the Debug Data Port. The port number of the Debug Data
Port is given in Appendix C. In order to send data to the target,
the host side of the debugger needs only to establish a TCP
connection to the Debug Data Port. This capability is built into
nearly all popular debuggers. Data for the target can be sent on
this connection and data from the target can be received on it.

NetROM's "debugpath" environment variable configures the
NetROM-to-target communication path. The default path uses
NetROM's target serial port. The path from NetROM to the host
system is independent of the NetROM-to-target path. The
target must be reset with the tgtreset command before changes
to the debugpath will take affect, even in the NetROM startup
file.

NetROM Users Manual

Debugger Support

The debug control port
In addition to simply providing a facility for passing data
between the host system and the target side of a debugger,
NetROM provides a mechanism for debuggers to directly control
the target. This is done through the debug control port. The
debug control port is a TCP port (whose number is given in
Appendix C), which is monitored by the "debugctld" process.
The debug control port allows the host side of the debugger to
communicate with NetROM, and allows it to perform many of
the functions which are available on the NetROM command
line. These functions include, among others, resetting the
target, examining and/or writing emulation memory, and
downloading a new image.

Currently the debug control port simply accepts ASCII text in
the form ofNetROM command line commands. There is no
mechanism for machine-readable feedback.

Debug control functions
These include resetting the target, displaying and setting
emulation memory, and downloading new images. The current
implementation of the debug control port is that it simply
provides a command-line interpreter, similar to the NetROM
control port. Although this mechanism is likely to change in the
near future, current implementations can treat the debug
control port connection as if it were a NetROM control port
connection and achieve results in the short term.

7-3

I ChapterS

Alternate NetROM Interfaces
NetROM can be used in environments which do not support
TELNET or TFTP. These protocols are essential for "normal
operation" because they make it easy for users to "log in" to
NetROM or to download files to emulation memory using off­
the-shelf software. However, NetROM also provides facilities
that allow users to perform these same functions with software
they write themselves. These are:

o Non-TELNET terminal sessions; documented in this
chapter.

o Non-TFTP file downloads; see "download" on page 6-3.
o Uploading emulation memory, see "upload" on page 6-14.

8-1

Non-TELNET terminal sessions

8-2

The NetROM "netromd" process listens on the NetROM console
port. This is a TCPport whose number is given in Appendix C.
In order to obtain a command-line interface to NetROM, it is
merely necessary to connect to this socket using standard
system calls which interface to TCP. Such a program could be
part of a simple terminal emulator, which monitors both its
local keyboard and the NetROM connection for activity, or it
could be part of a more complex program which wants to be
able to make NetROM perform various actions. An example of
the latter program might be an X-Windows interface to
NetROM which offers a point-and-click interface for commonly
used functions.

Unlike TELNET connections, the NetROM Console Port
connection is half-duplex, so characters NetROM receives will
not be echoed. This can be configured using the stty command;
see the description of stty for details. To exit the connection,
simply close the socket.

NetROM User's Manual

I Chapter 9

Emulation Memory Mailbox Protocol
NetROM provides a memory mailbox communication protocol
for target-to-host communication. Potentially this virtual
UART can be very fast, since it does memory-to-memory
transfers between NetROM and the target system, and since the
link between NetROM and the host system is a high-speed LAN.

For targets which can write to their ROM area, NetROM
provides a read-write protocol. For targets which cannot write
to their ROM area, NetROM provides a read-read mechanism
which uses a special sequence of reads to cause writes to
overlay memory. This chapter describes in detail the protocol
used between NetROM and the target system. The API is the
same for both read-write and read-read protocols. The target­
side driver for this protocol is shipped with NetROM, on the
Drivers & Utilities diskette.

See Appendix F for a discussion of mailbox protocol
implementation issues.

g.1

Communication driver API

Routine

9-2

The full source code for this API is contained on the Drivers &
Utilities Diskette which shipped with your NetROM unit. This
section describes the entry points available to the user of the
driver.

The communication driver provides character-oriented input
and output, message-oriented input and output, a mechanism
to see if data from NetROM is available without reading it (a
polling routine), and a mechanism to request that NetROM
modify the contents of emulation memory. All routines can be
run in a "blocking" or "non-blocking" mode. Table 9-1 lists the
routines provided in the driver.

Table 9-1 Communication driver routines

Description

Initializes control structures and configures the target to use
the dualport communication protocol.

When not in blocking mode, the interface routines merely poll
for data and return if none is present. Otherwise they will
wait for data to appear.

Returns 1 ifNetROM is ready to process messages; 0
otherwise.

Sends a character to NetROM using the dualport protocol.
Actually, it stores characters until the message structure is
full or nr_FlushTXO is called. This reduces protocol overhead.

Sends any characters which have been stored but not yet
passed to NetROM. Used only with nr_Putch.

Determines if a there is an unread character to read in the
channel.

Reads a character from NetROM, if one is present.

Reads a complete message from dualport memory.

NetROM Users Manual

Emulation Memory Mailbox Protocol

Routine

Table 9-1 Communication driver routines

Description

Sends a complete message, possibly consisting of several
dualport message structures, delineated by the START and
END bits in the structures flags fields.

Requests NetROM to reset the target.

Requests NetROM to re-initialize its dual port parameters.

Requests NetROM to modify the contents of emulation
memory.

nr_IntAck Acknowledges receive interrupt.

nr_Cputs Puts a user-specified string to the NetROM console; the
message won't be transmitted to the host.

nr_TestComm Determines if NetROM communication is properly
configured.

nr_SetEmOffOn Write Requests NetROM to turn off emulation memory before
modifying memory via the ra_setmem call.

Porting the driver
Some of the code in the driver needs to be ported to the target
system. The following section shows the code which requires
porting. The code is from the include file dpconfig.h.

The first section of the include file provides target-native
storage types. These are used internally to the driver file
dptarget.c and the other include file, dualport.h; note that
dualport.h does not require porting to new platforms.

9-3

Driver code
1*---*1
1* *** PORT THIS SECTION *** * I
1*---*1
#define ROMSTART OxFFFOOOOOL
#define
#define
#define

ROMWORDWIDTH
POD_O_INDEX
ROMSIZE

1* MAX_WAIT_FTN_SIZE is used on read-only targets only.
** The wait_ftn() must execute from RAM while NetROM sets Podmem.
** MAX_WAIT_FTN_SIZE is the amount of memory to allocate in RAM
** for the wait_ftn(). nr_ConfigDP() copies wait_fnt() to RAM.
** If too little memory is set aside, nr_ConfigDP() will return
** with an error. If extra memory is set aside, no problem ...
** the nr_ConfigDP() only copies the minimum amount to RAM.
**
** Note: Using an MRI compiler wi an i960 target,
**
** sizeof(wait_ftn(» = _nr_WaitEnd - _nr_Wait
** = OxE0051560 - OxE00514FO
** OxFO
*1
#define MAX_WAIT_FTN_SIZE 0x200

1* The following formula is correct ONLY if dualport is at the default
** location, at the top of pod o.
** If you move dualport RAM to somewhere else, redefine DP_BASE !!!

*1
1*
#define DP_BASE (ROMSTART + ((ROMSIZE - DUALPORT_SIZE) * ROMWORDWIDTH»
*1

1* The following #define locates DP_BASE at the beginning of Pod 0 *1
#define DP_BASE (ROMSTART)

1* Do NOT modify ROMEND *1
#define ROMEND ((ROMSTART + ROMSIZE * ROMWORDWIDTH) - 1)

1* If your target CAN write to the memory emulated by NetROM,
** define READONLY_TARGET as False;
** If your target CANNOT write to the memory emulated by NetROM,
** define READONLY_TARGET as True

9-4 NetROM User's Manual

Emulation Memory Mailbox Protocol

*/
#define READONLY_TARGET True

/* Set to True if your target is little-endian, for example, Intel
for example, Motorola ** Set to False if your target is big-endian,

*/
#define LITTLE_ENDIAN TGT True

/* Big-endian / little-endian conversion routine */

#if(LITTLE_ENDIAN_TGT == True)
#define swap32 (x) \

« (long) (x) & OxOOOOOOFF)
« (long) (x) & OxOOOOFFOO)
« (long) (x) & OxOOFFOOOO)
« (long) (x) & OxFFOOOOOO)

#define swap16(x) \
« (int) (x) & OxOOFF) « 8

#else
#define swap32(x) x
#define swap16(x) x

#endif /* LITTLE_ENDIAN_TGT */

«
«
»
»

)

24) + \
8) + \
8) + \
24)

+ (((int) (x) & OxFFOO) » 8)

/* Define VETHER only if you are using Virtual Ethernet */
/* #define VETHER */

/* macro to allow other processes to run in a multitasking system */
/* If you are NOT using vxWorks, define YIELD_CPU for your RTOS */
#ifdef vxworks
#include "taskLib.h"
#define nr_YieldCPU() taskDelay(l) /* closest thing in VxWorks */
#else
#define nr_YieldCPU()
#endif

/* Macros to turn interrupts ON and OFF
** Required for nr_SetMem() which MUST be atomic. In multitasking
** systems, unless your code assures that the channel will not be
** written to by another function while nr_SetMem() is running, you'll
** need to define these macros. These macros are
** target-specific, you must supply them.
*/
#define nr_InterruptsOFF{)
#define nr_InterruptsON()

9-5

/* The following three macros control target caching. They are
** required for dualport communication protocol on targets that
** cache the memory region emulated by NetROM.
**
** Cache-related macros:
**
**
**
**
*/

nr_HasCache Boolean; equals True if your target caches
the memory emulated by NetROM, False otherwise.

nr_DataCacheOff Turns caching OFF--you must supply this for your target
nr_DataCacheOn Restores caching--you must supply this for your target

#define nr_HasCache
#define nr_DataCacheOff()
#define nr_DataCacheOn()

False /* True */

Three macros (nr_HasCache, nr_DataCacheOff, and
nr_DataCacheOn) are provided to control caching. They are
required for dualport communications for targets that cache
the memory region emulated by NetROM.

The ncYieldCPU macro is provided for target systems which
have a non-preemptive operating system which uses system
calls to initiate context switches, and which want to use the
dualport driver in a blocking mode. Note that blocking mode is
disabled by default; to enable blocking, use the nr_SetBlockIO
function, described below.

The MMC W AIT_FTN_SIZE constant is used by read-only
target systems which would like to request that NetROM
modify the contents of emulation memory. This macro gives the
number of bytes in the neW ait routine, which is copied into a
ram buffer before being executed. The default value for
MMCWAIT_FTN_SIZE is probably larger than necessary,
which will not cause a problem. To "tune" the macro to the size
of the routine, you will need to determine the size of nr_ Wait
from the link map.

NetROM User's Manual

Entry points

Emulation Memory Mailbox Protocol

This section describes entry points used by the dualport
protocol. There are a number of references to "channels" in this
and subsequent descriptions. These are intended to allow
dualport emulation memory to be subdivided into logically
separate communications channels, similar to having multiple
serial ports. In the current implementation ofthe driver, four
channels are supported.

9-7

ncConfigDP

Prototype
Int16

nr_ConfigDP(ulnt32 base, Int16 width, Int16 iDdex)

Parameters
base

width

index

Returns

first address of dualport RAM
width of ROM(s) emulated in bytes
location of po dO within pod group

ErcBadLength ifMA~C W AIT_FTN_SIZE is too small to hold
nr_WaitO

Err_No Error otherwise

Description
This routine initializes the dualport driver's internal data
structures. It also tells the driver where dualport memory is in
ROM space and how to access it. The base parameter is the
address of the start of dualport memory. The width parameter
is the number of bytes in a ROM word, and the index
parameter refers to which byte of the ROM contains pod O.
Bytes are numbered in the "big-en dian" order, in which the
byte at the word address has index zero.

Figure 9-1 shows the interaction of base, width, and index for
a variety of target configurations. This routine must be invoked
to configure the dualport interface structures before calling any
other driver entry points.

NetROM User's Manual

(a) 32-bit Processor

PODO POD1 POD2 POD3

Emulation Memory Mailbox Protocol

Rombase base=Rombase+OxFEOOO
Rombase +4 1--+--_-_---1 width=4

index=O
numaccesses=1

Rombase +
OxFCOOO

(b) 16-bit Processor
POD1 PODO

Rombase base=
Rombase +2 1--';---1 Rombase+Ox4000

Rombase +
Ox4000

Rombase +
Ox5000

1--;----1 width=2
index=1
numaccesses=1

Dualport RAM

Target words containing
dualport RAM

(c) 32-bit Processor
word addressses only

Rombase
Rombase+1

Rombase+
Ox3F800

PODO
base=

Rombase+Ox3F800
width=2
index=O
numaccesses=1

Figure 9-1 Effect of target memory interface in dual port protocol

9-9

ncSetBlocklO

9-10

Prototype
Int16

nr_SetBlockIO(ulnt16 chan, ulnt16 val)

Parameters
chan

val

Returns
Err_BadChan

Err_NoError

Description

channel to configure, 0-3
false for non-blocking, true for blocking

if chan is invalid
otherwise

When the driver operates in a "non-blocking' mode, if the
transmit or receive routines need to wait for something, they
return with an appropriate error code rather than blocking and
waiting. When the driver operates in a "blocking' mode
routines to get and send characters or messages will repeatedly
invoke the nr_YieldCPU macro rather than return with an
error code. Ifnr_YieldCPU is defined to be a system call, that
system call will be performed; if it is defined to be "null" the
routine will busy-loop waiting for the event it needs.

The chan parameter is the channel affected by the call to
nr_SetBlockIO (). The val parameter, if true, causes the
interface to run in blocking mode; if false, causes the interface
to run in non-blocking mode.

NetROM User's Manual

ncChanReady

Emulation Memory Mailbox Protocol

Prototype
Int16

nr_ChanReady(ulnt16 chan)

Parameters
chan

Returns
Err_BadChan

True

False

Description

channel to test, 0-3

if chan is invalid
if the channel is ready
if the channel is not ready

Call this function immediately after a call to nr_ConfigDPO.
This routine returns True if the dualport channel given by the
chan parameter is active and ifNetROM is ready to use it to
communicate with the target. If this routine returns False, the
target should not attempt to perform. I/O on the channel. A
False return value may indicate a configuration error on the
NetROM side, or it may indicate that NetROM has not received
a console path or debug path connection on which to forward
data received on the channel.

9-11

9-12

Prototype
Int16

nr_Putch(ulnt16 chan, char ch)

Parameters
chan

ch

Returns

channel to write to, 0-3
character to send

if the char was sent successfully
Err_WouldBlock if the char can't be sent
Err_BadChan if chan is invalid

Description
This routine sends a character to NetROM using the dualport
protocol. If a transmit structure is not available on channel
chan and the routine is running in blocking mode, it will wait
for a structure to become available. Otherwise it will return
with a status of Err_WouldBlock. Note that the character will
not actually be transmitted until the buffer is full (60
characters) or nr_FlushTXO is called.

NetROM Users Manual

Emulation Memory Mailbox Protocol

Prototype
Int16

nr_FlushTX(uInt16 chan)

Parameters
chan

Returns
Err_NoError

Err_BadChan

Description

channel to flush, 0-3

if successful
if chan is invalid

Transmits any chars pending in this channel.

9-13

9-14

Prototype
Int16

nr_Poll(ulnt16 chan)

Parameters
chan

Returns
True

False

Err_BadChan

Description

channel to poll, 0-3

if there is a character waiting
if there is NOT a character waiting
if chan is invalid

This routine checks to see if a character is waiting to be read
from the dualport protocol interface. If so, it returns True; if
not, it returns False.

NetROM User's Manual

Emulation Memory Mailbox Protocol

Prototype
Int16

nr_Getch(ulnt16 chan)

Parameters
chan

Returns

Err_BadChan

char

Description

channel to read from, 0-3

if channel is non-blocking and there is no
char
if chan is invalid
otherwise

This routine reads a character from the receive message
structures for channel chan, if one is available. If one is not,
and the interface is in blocking mode, the routine will wait for
one to arrive.

9·15

ncGetMsg

9-16

Prototype
Int1.6

nr_GetMSg(ulnt16 chan, char* buf, ulnt16 len,
ulnt16* ~esread)

Parameters
chaD.

buf

len

Returns

channel to read from, 0-3
buffer to read into
number of bytes expected, or max bytes for
this buffer
number of bytes actually received
(nr_GetMsg will set this)

if chan is invalid
GM NODATA see description, below
GM_MSGCOMPLETE see description, below
GM_NOTDONE see description, below
GM_MSGOVERFLOW see description, below

Description
This routine reads a message from the dualport protocol's
receive message structures. The buf parameter is a pointer to
the receive buffer, the len parameter is the number of bytes in
the buffer, and bytesread is filled in by nr_GetMsg () with
the number of bytes read into the message. The chan
parameter is the channel on which the message is to be sent.

When used in a polling mode, nr_GetMsg () returns one offour
status values:

Q GM_NODATA indicates that no data has arrived since the
last poll

Q GM_MSGCOMPLETE indicates that new data has arrived
and that the input buffer now holds the complete message

NetROM User's Manual

Emulation Memory Mailbox Protocol

o GM_NOTDONE indicates that data has arrived but that
the message is not yet complete

o GM_MSGOVERFLOW indicates that more data has
arrived, but that it has overflowed the input buffer.

In a non-polling mode, nr_GetMsg () will return either
GM_~GCOMPLETEorGM_~GOVERFLOW.

Figure 9-2 shows an example of using nr_GetMsg in non­
blocking mode to receive entire messages.

9-17

/* reads a message from dualport ram */
int readmsg(chan, buf, lenp)
int chan;
uChar *buf;
int *lenp;
{ uChar *curbuf;

int bytesleft, bytesread, status, errcount;
ulnt32 cacr;
curbuf = buf;
bytesleft = *lenp;
errcount = 0;
status = GM_NODATA;
while(status != GM_MSGCOMPLETE)

bytesread = 0;
status = nr_GetMsg(chan, curbuf, bytesleft,

&bytesread) ;
switch (status) (
case GM_NODATA:/* nothing present */

break;
case GM_MSGCOMPLETE:/* got a complete message */

bytesleft -= bytesread;
*lenp = *lenp - bytesleft;
break;

case GM_NOTDONE:/* got part of a message */
bytesleft -= bytesread;
curbuf += bytesread;
break;

case GM_MSGOVERFLOW:/* reset all pointers,
we ran out of room */

curbuf = buf;
bytesleft = *lenp;
errcount ++;
break;

default:
errcount ++;
break;

return(status);

Figure 9-2 Using ncGetMsg to receive a message

9·18 NetROM Use~s Manual

Emulation Memory Mailbox Protocol

Prototype
Int16

nr_PutMsg(ulnt16 chan, char *buf, ulnt16 len)

Parameters
chan

buf

len

Returns

channel to write to, 0-3
buffer to transmit
length of buffer to transmit

Err_NoError if the message was sent successfully
Err_NotReady if NetROM is not ready to process messages
Err_BadChan if chan is invalid

Description
This routine sends an entire message to NetROM using the
dualport protocol on channel chan. The message will be
delineated by the START and END bits in the transmit
message structures. The routine will handle breaking large
messages into blocks automatically.

9-19

ncReset

Note ~

9-20

Prototype
Int16

nr_Reset(ulnt16 chan)

Parameters
chan channel used for reset message, 0-3

Returns
Err_NoError if the OOB msg was sent successfully
Err_NotReady if NetROM is not ready to process messages
Err_BadChan if chan is invalid

Description
This routine requests NetROM to reset the target_

The routine may not have time to return when the target is
reset.

NetROM User's Manual

ncResync

Emulation Memory Mailbox Protocol

Prototype
Int16

nr_Resync(ulnt16 chan)

Parameters
chan channel to use for resync, 0-3

Returns
Err_BadChan if chan is invalid
Err_NotReady if NetROM is not ready
Err_NoError otherwise

Description
This routine requests the NetROM to re-initialize (resync) the
dual port parameters. Call this function after a call to
nr_ConfigDPO.

A monitor could use nr_Resync if it switches from running in
EPROM to running in RAM and therefore will re-initialize
itself. This routine could be called just before the switch to tell
NetROM to re-initialize the dual port parameters so the target
and the NetROM will be in sync when the target re-initializes.

9-21

ncSetMem

9-22

Prototype
Int16

nr_SetMem (ulnt16 chan, ulnt32 addr, char *buf,
ulnt16 len)

Parameters
chan

addr

buf

len

Returns

channel to write to, 0-3
start address for write
data to write
length of buf; must be less than 54 bytes

Err_NoError if successful
Err_BadLength iflength is invalid
Err_BadChan if chan is invalid
Err_BadAddress if the address is outside ROM

Description
This routine sends a request to NetROM to modify the contents
of emulation memory. The addr parameter is the 32-bit
address within emulation memory to be modified. The buf
parameter is a pointer to a buffer from which the data is copied.

It is necessary to run from RAM during part of the set request
to avoid potential memory contention problems when NetROM
executes the write.

NetROM User's Manual

nrJntAck

Emulation Memory Mailbox Protocol

Prototype
Int16

nr_IntAck(ulnt16 chan)

Parameters
chan channel to acknowledge interrupt on, 0-3

Returns
Err_NoError if successful
Err_NotReady if NetROM is not ready
Err_BadChan if chan is invalid

Description
This routine acknowledges a previous interrupt to the target.
This routine can help prevent nested interrupts.

9-23

ncCputs

9-24

Prototype
Int16

nr_Cputs(ulnt16 chan, char *buf, ulnt16 len)

Parameters
chan

len

Returns:

channel to write message through, 0-3
length of message, less than 56

Err_NoError if successful
Err_NotReady if NetROM is not ready to process messages
Err_BadChan if chan is invalid
Err_BadLength if the "size" of the buffer is too big

Description
Puts a string to the NetROM console; the message will not be
transmitted to the host.

NetROM User's Manual

0050 6e72

0060 6e72

0070 6e72

0080 0000

0090 6e72

OOaO 6e72

OObO 6e72

Emulation Memory Mailbox Protocol

Prototype
Int16

nr_TestComm(ulnt16 chan, ulnt16 lastTest,
ulnt16 endian)

Parameters
chan

lastTest

endian

Returns
Err_BadChan

Err_NoError

Description

channel to test, 0-3
See dptarget.c; set to 7 for low-level tests
o for Intel (little-endian),
1 for Motorola (big-endian)

if chan is invalid
otherwise

This function determines if N etROM dualport communication
is working. It first tests the low-level dualport functions
nr_ WriteByte, nr_ReadByte, nr_ WriteInt, nr_ReadInt,
nc WriteBuf, and nr_ReadBuf. After executing the tests, verify
their success by typing 'di dpmem Ox50 Ox80' at the NetROM
prompt. Your NetROM display should look like:

5f57 7269 7465 - 4279 7465 0000 0000 nr_WriteByte

5f52 6561 6442 - 7974 6500 0000 0000 nr_ReadByte

5f57 7269 7465 - 496e 7420 0000 0000 nr_Writelnt ~ . . .
0000 0000 0000 - 0000 0000 0000 0000
5f52 6561 6449 - 6e74 2020 0000 0000 nr_Readlnt

5f57 7269 7465 - 4275 6600 0000 0000 nr_WriteBuf

5f52 6561 6442 - 7566 2000 0000 0000 nr_ReadBuf

If the first seven tests fails, either there is a hardware problem,
NetROM is misconfigured, or nr_ConfigDPO was called with
incorrect parameters.

9-25

9-26

After verifying that the first seven tests passed, you may call
nr_TestComm with a higher value for the lastTest (see
dptarget.c for test details). Tests eight and higher test
nr_Getch, nr_Putch, nr_GetMsg, and nr_PutMsg.

NetROM User's Manual

ncSetEmOffOnWrite

Emulation Memory Mailbox Protocol

Prototype
void
nr_SetEmOffOnWrite(void)

Description
This routine sends a request to NetROM to turn off emulation
memory before modifying memory via a nr_SetMem call.

Use this routine when you are having trouble with the
nr_SetMem call. For example, if you are unable to set
breakpoints in ROM space because the board logic does not
release the ROM control to allow NetROM access, call
nr_SetEmOf fOnWri te before nr_SetMem () .
The routine needs to be called only one time. A suggested place
to call the routine is after the nr_ConfigDP function call.

9-27

I Chapter 10

General Porting Guide

Introduction

Feature

ROM Substitution

Run Control

Communication via
Virtual UART

N etROM, a universal debugging platform, integrates the most
useful features of hardware-assisted debugging with your
software development tools. N etROM works with your
debugger and monitor to provide much faster downloads, an
Ethernet connection to your target system, the ability to
remotely reset your target, ROM emulation, and the ability to
set breakpoints in ROM. All of this comes in a package that
requires almost no target resources and can be rapidly moved
from project to project and from processor to processor. These
benefits are summarized in Table 10-1 and Table 10-2.

Table 10-1 Target can write to ROM

Benefits

Fast download to ROM

Breakpoints in ROM

Single-step in ROM

Modify ROM contents

Break/stop

Communication with targets
lacking serial ports, or frees
target serial port, fast down­
load to RAM

Requirements

None

None

None

None

(Possibly) modify monitor's
interrupt handler, connect a
lead from NR to target

Replace UART driver with
VUART driver

10-1

Table 10-2 Target cannot write to ROM

Feature Benefits Requirements

ROM Substitution Fast download to ROM None

Breakpoints in ROM Modify monitor's breakpoint
routine to call NR setmem
function

Single-step in ROM Modify monitor's breakpoint
routine to call NR setmem
function

Single-step in ROM Modify monitor's breakpoint
routine to call NR setmem
function

Modify ROM contents Modify monitor's setmem rou-
tine to call NR setmem func-
tion

Run Control Break/stop Modify monitor's interrupt
handler, connect a lead from
NRtotarget

Communication Communication with targets Replace UART driver with
via Virtual UART lacking serial ports, or frees VUART driver

- target serial port, fast down-
load to RAM

Porting overview

10-2

Porting your target monitor or operating system to N etROM
consists of three tasks:

• Replace your target system's serial drivers so that they use
NetROM's Virtual UART drivers

• Add NetROM-based run-control to your target software

NetROM User's Manual

Process

General Porting Guide

• If your target cannot write to its ROM area, and you want to
debug code in ROM (in NetROM emulation memory), you
can add code to your monitor or operation system to request
that NetROM change the contents of emulation memory.
This is useful for setting breakpoints in "ROM."

This document shows you how to make the most of your
N etROM by describing the steps necessary to enhance target­
side monitors and operating systems with NetROM's
capabilities. These enhancements are referred to as a NetROM
port, and consist of the following steps:

1. Configure your workstation to work with NetROM.

2. Build the monitor without modification and download it to
N etROM. Verify operation of the monitor with a serial link
before attempting to port to NetROM.

3. Modify the target code so that it uses the NetROM device
driver. Through N etROM, the target will communicate with
the host-side debugger over Ethernet.

4. (If necessary) modify the monitor to enable breakpoints in
ROM. If your target has the ability to write to Flash or
EEPROM, you can easily debug code in ROM without
modifying the monitor. If your target cannot write to ROM,
you can add a function that requests NetROM to set the
breakpoint for you.

5. Add remote run control - stopping the target - through
NetROM.

10-3

Step 1: Configure your host environment for NetROM

The following steps assume that you are developing on a Unix
workstation. If you are using a different operating system, for
example Win95, or WinNT, follow the directions that came
with your software to add a RARP daemon and a TFTP daemon
and configure them for your NetROM.

Configuring your host environment for N etROM involves two
steps.

• Setting up your RARP daemon for N etROM
• Setting up your TFTP server for NetROM
If you have already established network communications, as
described in "Establishing network communications" on
page 4-3, go to "Test the monitor without modification" on
page 10-6.

>- Perform the following steps:

1. Configure RARP daemon.

Your workstation should invoke the RARP daemon at boot
time. To configure it so that it does, check your letclrc.local
file for the following:

if /tftpboot exists become a boot server

if [-d Itftpboot]; then

rarpd -a;
rpc • bootparamd.;

fi

echo -n ' rarpd'
echo -n ' bootparamd'

You will need root privileges to create the/tftpboot directo­
ry.

NetROM Users Manual

General Porting Guide

2. Confirm that the inetd daemon is being invoked.

Check letc/rc or letc/rc.local files for inetd.

3. Check that the letc/inetd.conf file invokes the tftp daemon.

Tftp service is provided primarily for booting.
Most
sites run this
only on machines acting as "boot servers. "

tftp dgram udp wait root
in.tftpd in.tftpd -s /tftpboot

/usr/etc/

The directory specified after '-s', in this case Itftpboot, is
where
NetROM's batch files will be stored. To access files from Itft­
pboot, use NetROM's setenv batchpath command to spec­
ify the batchpath as 'I.' TFTP will automatically prepend 1
tftpboottothepathyou specify.

4. Add NetROM's Ethernet address to letc/ethers file.

N etROM's Ethernet address is printed on the bottom of the
N etROM case. The label will look something like:

ETHERNET ADDRESS
OO:OO:F6:00:4C:E6

Add a line like the following to your host computer's letcl
ethers file:

OO:OO:f6:00:4c:e6 netroml # netrom for porting work

5. Add NetROM's IP address and hostname to letc/hosts.

Add a line like:

128.9.231.57 netrom1 # netrom for porting work

10-5

Step 2: Test the monitor without modification

10-6

The purpose of this step is to verify that NetROM is correctly
configured for your target, and that the target monitor and
hardware work correctly. For examples showing how to
configure your NetROM for your target system, see the
NetROM batch files section on page 10-23.

>- Perform the following steps

1. Turn on your N etROM; your target should be off. Assuming
you've completed Step 1 correctly, when you turn on your
NetROM unit, it will use RARP to determine its IP address.
You need to create a batch file that configures NetROM for
your host and target. Please refer to the Chapter 4, for
instructions regarding how to create a batch file. See the
example batch files beginning on page 10-23.

2. Once the batch file is ready, telnet into NetROM.

3. From the telnet session, use NetROM's batch command to
run your newly created batch file.

4. Use NetROM's newimage command to download your
monitor into N etROM.

5. To verify that you've configured NetROM, your target, and
monitor correctly, connect a serial line from the target to
your host computer, power on the target, and verify that the
monitor is working. You should verify that the target­
monitor and host-debugger are working together before
moving to Step 3.

At this point, you've verified that your host debugger, target
monitor, and NetROM are all properly configured and working.

NetROM Users Manual

Step 3: Replace the monitor's serial driver with NetROM's
Virtual UART driver

Overview

Routine

The communication driver provides character-oriented input
and output, message-oriented input and output, a mechanism
to see if data from NetROM is available without reading it (a
polling routine), and a mechanism to request that NetROM
modify the contents of emulation memory. All routines can be
run in a "blocking" or "non-blocking" mode. See the Chapter 8,
for details. The Driver API is outlined in Table 10-3.

Table 10-3 Driver API

Description

Initializes control structures and configures the target to use
the dualport communication protocol.

When not in blocking mode, the interface routines merely poll
for data and return if none is present. Otherwise they will
wait for data to appear.

Returns True ifNetROM is ready to process messages, False
otherwise.

Sends a character to NetROM using the dualport protocol.
Actually, it stores characters until the message structure is
full- 60 characters -or chan_FlushTXO is called. This
reduces protocol overhead.

Sends any characters which have been stored but not yet
passed to NetROM. Used only with nr_Putch.

Determines if a there is an unread character to read in the
channel.

Reads a character from NetROM, if one is present.

Reads a complete message from dualport memory.

10-7

Table 10-3 Driver API (Continued)

Routine Description

nr_PutMsg Sends a complete message, possibly consisting of several
dualport message structures, delineated by the START and
END bits in the structures flags fields.

nr_Reset Requests NetROM to reset the target.

nr_Resync Requests NetROM to re-initialize its dual port parameters.

nr_SetMem Requests NetROM to set memory in emulated ROM.

nr_IntAck Acknowledges receive interrupt.

nr_Cputs Puts a user-specified string to NetROM's serial console; the
message won't be transmitted to the host. This is a powerful
debugging tool that you can use while developing your code.

nr_TestComm Determines ifNetROM communication is properly
configured.

nr_SetEmOffOn Write Requests NetROM to turn off emulation memory before
modifying memory via the ra_setmem call.

Procedure

10-8

To use the VUART, you will either start with a skeleton device
driver or modify an existing serial driver. Device drivers
typically have four routines that serve as entry points to the
driver. These routines

Cl Configure the driver.
Cl Call a polling routine to check for characters arriving from

the host debugger.
Cl Call a character-in or message-in routine to read characters

from the host debugger.
Cl Call a character-out or message-out routine to send

characters to the host debugger.

NetROM User's Manual

General Porting Guide

After you copy the NetROM driver files into your working
directory, you will modify your four driver routines so that they
call the appropriate NetROM VUART functions.

> Copy the files from the NetROM Drivers & Utilities
diskette

You will be using the four virtual UART driver files from the
NetROM Drivers and Utilities diskette. These four files are:

Filename Description

dptarget.c C language source code for the virtual UART
driver. Do not modify this file.

dpconfig.h C language include file describing the target
system's memory layout. This file will .
require modification.

dptarget.h C language include file describing the
dualport structure used for communication.
Do not modify this file.

dualport.h C language include file containing macros
and data structure definitions. Do not modify
this file.

• Copy these files from the diskette to the directory from
which you build your device drivers.

> Modify your monitor's makefile

1. Replace the serial driver in your makefile with the VUART
driver file you are creating.

2. Add dptarget.c to your makefile.

3. Include the other NetROM routines, in the order shown
below, in the VUART driver file:

#include "dpconfig. hOI
#include "dptarget.h"
#include "dpdualport.h"

10-9

/*

*
*/

> Configure the NetROM VUART driver

• The driver is configured with a call to nr_ConfigDP. Place
the call to nr_ConfigDP in your monitor's
iniCcommunication_driver routine.

nr_ConfigDP will also call nr_ChanReady to determine if
the channel is ready. Ifnr_ChanReady indicates that the
channel is not ready, you should not attempt to use the
channel because it is either misconfigured, or the host de­
bugger has not connected. The next call nr_ConfigDP
makes will be to nr_Resync. nr_Resync will request that
NetROM clear old data from the channel. Without a call to
nr_Resync, the host debugger and target monitor will not
be synchronized, and communication mayor may not take
place.

This example driver initialization is from ppcmonfrom SDS.

Initialize NetROM Dualport protocols

void usr_init(void)
{

/* Use parameters from dpconfig.h, recommended */
nr_ConfigDP((uInt32)DP_BASE, ROMWORDWIDTH, POD_O_INDEX);
nr_SetBlockIO(CHANNEL, True); /* I/O blocks; optional */
}

Note ~

10-10

The parameters passed to nr_ConfigDP are defined in the file
dpconfig.h.

> Configure dpconfig.h for your target system

• Modify some of the #define statements in the dpconfig.h
file for proper operation in your target system.

The sections of dpconfig.h that you must port to your target
are given below, with additional comments interspersed.

NetROM User's Manual

General Porting Guide

dpconfig.h

/*---*/
/* *** PORT THIS SECTION *** * /
/*---*/
#define ROMSTART OxPPPOOOOOL
#define ROMWORDWXDTH 2
#define POD_O_INDEX 0
#define ROMSIZE RS_27C020

#define nr_BasCache False
#define nr_DataCacheOff()
#define nr_DataCacheOn()

a ROM_START

This constant refers to the start address of the ROM being
emulated on the target. This address is obtained from a
memory map of the target system. For the MVME162 target,
the value of ROM_START is OxFF800000.

a ROMWORDWIDTH

This constant refers to the number of bytes that make up a
word on the target system. On the MVME162, for example,
one 27c020 (8-bits wide) ROM is being emulated, so ROM­
WORDWIDTH is one. On the CMA277 target, one 27 c4096
(16-bits wide) ROM is being emulated, so ROMWORD­
WIDTH is two.

If you are emulating two 8-bit wide ROMs on your target to
form a 16-bit word, set ROMWORDWIDTH to two. If you are
emulating four 8-bit wide ROMs on your target to form a 32-
bit word set ROMWORDWIDTH to four.

a POD_O_INDEX

This constant refers to the index within a target system's
word of Net ROM's pod number O. PodO on N etROM contains
the control logic for implementing the virtual UART.
Through the use of the pod order environment variable it is

10-11

10-12

possible to set PodO to any byte in a target's word. To deter­
mine the proper value for your target, use the table below.
This table assumes a big endian target system.

Target Word ROM size Pod Order PodO_INDEX
Size

32-Bit 8-Bit O:X:X:X 0

32-Bit 8-Bit X:O:X:X 1

32-Bit 8-Bit X:X:O:X 2

32-Bit 8-Bit X:X:X:O 3

32-Bit 16-Bit O:X 0

32-Bit 16-Bit X:O 2

16-Bit 8-Bit O:X 0

16-Bit 8-Bit X:O 1

16-Bit 16-Bit X 0

8-Bit 8-Bit X 0

(X is don't care.)

Q ROMSIZE

This constant refers to the size in bytes of the ROM being
emulated. In the dpconfig.b header file, several common
ROM types are defined. An example is RS_27C020.

Q HASCACHE

The default for nr_HasCache is False. If your target caches
the ROM area, set nr_HasCache to True. You may need to
define the nr_CacheON and nr_CacheOFF macros in the
dpconfig.b header file.

NetROM User's Manual

General Porting Guide

dpconfig.h (continued)

/* MAX_WAIT_FTN_SIZE is used on read-only targets only
** The wait_ftn() must execute from RAM while NetROM sets Podmem.
** MAX_WAIT_PTN_SIZE is the amount of memory to allocate in RAM
** for the wait_ftn(). nr_ConfigDP() copies wait_ftn() to RAM.
** If too little memory is set aside, nr_ConfigDP() will return
** with an error. If extra memory is set aside, no problem ...
** the nr_ConfigDP() only copies the minimum amount to RAM.
**
** Note: Using an MRI compiler w/ an i960 target,
**
** sizeof(wait_ftn(»
**
**
*/

_nr_WaitEnd -
OxE0051560 -
OxFO

#define MAX WAIT_FTN_SIZE 0x200

nr_Wait
OxE00514FO

/* The following formula is correct ONLY if dualport is at the default
** location, at the top of pod O.
** If you move dualport RAM to somewhere else, redefine DP_BASE !!!

*/
#define DP_BASE (ROMSTART + ((ROMSIZE - DUALPORT_SIZE) * ROMWORDWIDTH»

/* The following #define locates DP_BASE to the beginning of Pod 0 */
#define DP_BASE (ROMSTART)

/* Do NOT modify ROMEND */
#define ROMEND ((ROMSTART + ROMSIZE * ROMWORDWIDTH) - l}

o ROMEND.

Do not modify.

/* Set to True if your target is little-endian, for example, Intel
** Set to False if your target is big-endian, for example, Motorola
*/
#define LITTLE_ENDIAN_TGT True

/* Big-endian / little-endian conversion routine */

#if(LITTLE_ENDIAN_TGT == True)
#define swap32(x) \

(((long) (x) & OxOOOOOOFF) «24) + \
(((long) (x) & OxOOOOFFOO) « 8} + \

10-13

« (long) (x) & OxOOFFOOOO) » 8) + \
« (long) (x) & OxFFOOOOOO) » 24)

#define swap16(x) \
« (int) (x) & OxOOFF) « 8) + « (int) (x) & OxFFOO) » 8)

#else
#define swap32(x) x
#define swap16(x) x

#endif /* LITTLE_ENDIAN_TGT */

Q LITl'LE_ENDIAN_TGT

Specify LITTLE_ENDIAN_TGT True for little-en dian tar­
gets; specify LITTLE_ENDIAN_TGT False for big-endian
targets.

/* If your target can write to the memory emulated by NetROM,
** define READONLY_TARGET as False.
/* If your target CANNOT write to the memory emulated by NetROM,
** define READONLY_TARGET as True.
*/
Idefine READONLY_TARGET True

Q READ ONLY_TARGET

The default configuration is True. This should be used if
your target cannot write to its ROMs and you cannot connect
NetROM's external write line to a write line on your target.
The communication protocol is more efficient when
READONLY_TARGET is set to False.

/* Define VETHER only if you are using Virtual Ethernet */
/* #define VETHER */

/* macro to allow other processes to run in a multitasking system */
/* If you are NOT using vxWorks, define YIELD_CPU for your RTOS */
lifdef vxworks
#include -taskLib.h-
Idefine nr_YieldCPU() taskDelay(l) /* closest thing in VxWorks */
lelse
#define nr_YieldCPU()
#endif

10-14 NetROM User's Manual

/*

General Porting Guide

>- Call a polling routine to check for characters from the
host debugger

• Modify your character-polling routine to use NetROM
functions.

The following is an example of a character-polling routine
from the SDS ppcmon monitor.

* Receive Poll routine. Return non-zero if there is a character available.
*/
long usr-poll(void)
{

/*

return ((long)nr_Poll(CBANNEL»; /'Ir char ready? 'Ir/

Some monitors, for example mon68 from Greenhills, combine
the polling function with the character-reading function.

>- Call a routine to read characters from the host debugger

• Modify your character-reading routine to use NetROM
functions.

The following example is from the Greenhills mon68 monitor
for 68K targets. The INPUT routine has been modified to
use NetROM VUART functions. Note that INPUT includes
a polling function.

** Read a character from the serial line or time out if it takes too long.
*/
int INPUT (void)
{

int i;
int cacrVal = CacheOff68();

/* timeout counter */

if(nr_Poll(ClIANNEL» /* Is there a char? */
return (nr_Getch(CHANNEL»; /* Use NetROM to read one char */

CacheQn68 (cacrVal); /* restore cache */

return -1; /* if we timed out, we return a -1 (/lEOF ") instead * /

10-15

/*

The following example is from the SDS ppcmon monitor for
PowerPC. usr~char has been modified to use N etROM
VUART
functions.

* Read a character from the NetROM communication channel.
*/
long usr-9char(void)
{

}

int rxd;
rxd = Dr_Getch(CHANNEL);
return ((long)rxd);

The final example is from a NetROM-based lSI pROBE+
communication driver. SerialPollConin has been modified to
N etROM VUART functions.

/***/

/* SerialPollConin: Get a character from the pROBE+ console
/*

INPUTS: None
RETURNS: Character from the console.

NOTE: This should only be called after SerialPollConsts()

*/
*/
*/
*/

*/

/*
/*
/*
/* has returned 1 (already know this is a good character) */
/***/

UCHAR SerialPollConin(void)
{

}

unsigned int ch = Dr_Getch(CHANNEL);

if (ch == BREAK
Brk_Rcvd = TRUE;

return ((l1CRAR) ch);

> Call a routine to send characters to the host debugger

• Modify your character-sending routine to use NetROM
functions.

The following example is from the SDS ppcmon monitor.

10-16 NetROM User's Manual

General Porting Guide

1*
* Transmi t the character "outchar".
*1
void usr-pchar(long outchar)
{

}

1*
*
*1

nr_Putch(CHANNEL, (uChar)outchar);

Note thatnr_Putch does not immediately send the characters.
Instead they are buffered until either 1) there are 60 characters
to send, or 2) Dr_FlushTX is called. The SDS monitor includes
a routine named usr_flush which will make the required call
to nr_FlushTX.

Flush any characters that usr-pchar placed in the transmit buffer

void usr_flush(void)
{

}

1*

nr_PlushTX(CHANNEL);

Here is a Greenhills mon68 version of the character transmit
routine. The call to Dr_FlushTX could either be added to the
OUTPUT routine below, or placed in a function that is called
at regular intervals, like the INPUT routine. If Dr_FlushTX
were placed in INPUT, you would want to put a count around
nr_FlushTX so that it wasn't called every time INPUT was
called. That would make more efficient use of the Ethernet
packets sent by NetROM because they would contain several
characters of useful information instead of just one.

** Write a character to the serial line.
*1
void OUTPtJ'l' (char out)
{

}

int cacrval = CacheOff68();
nr_Putch(CHANNEL,out);
CacheOn68(cacrVal);

/* NetROM: Writes one char to VUART */

10-17

Note

The INPUT and OUTPUT routines shown here are part of the
mon68 BSP. The Greenhills engineers actually chose to
implement their NetROM driver as part of the mon68 core.
Their implementation offered two advantages over the
implementation shown here: 1) the routines they modified were
inherently message-based, not character-based, so they made
more efficient use of NetROM's transmission and receive
mechanisms, and 2) their driver was portable across many
targets without modification.

The last example for this section is the SerialPollConout
routine from lSI pROBE+ driver.

1*** ******************/
/* SerialPollConout: Send a character to the console
/*
/*
/*

INPUTS: Character to send
RETURNS: None

*/
*/
*/
*/

/***/
void SerialPollConout(UCHAR c)
{

}

10-18 NetROM Users Manual

General Porting Guide

Step 4: Add breakpoints in ROM
In targets which can write to the memory overlaid by NetROM,
the ability to set emulation memory "comes along for free" with
N etROM. These targets include those which program their own
flash memory. In targets that do not have a write-line
connected to the device which NetROM is emulating, a
separate jumper wire can be connected between N etROM and
a Write signal on the target. The use of a jumper wire for the
Write line only works in targets for which the buffers between
the ROM and the CPU allow data to flow in both directions.

If the target is unable to write to the memory emulated by
NetROM, the target can request NetROM to write the memory.
The function to perform the write is nr_SetMem. If the
monitor is written to perform all of its writes through one
common routine, you modify this routine to call nr_SetMem
for writes to NetROM. You can use the macro nr_InROM to
determine if the address is within ROM or not. nr_SetMem
can handle buffers up to 54 bytes long.

The example below was taken from the SDS ppcmon monitor.
setbrk saves the original instruction, then replaces it with the
illegal brkpCinst. Note that brkpCinst is a 32-bit long, and
that brkpCinsCbu{ is a 4-byte character buffer containing the
same 4 byte values as brkpCinst.

ulong setbrk (ulong addr
{

ulong oldinst;
int romBreakPoint = 0;

#if (READONLY_TARGE'1' == True
if(nr_ZnROM(addr))

romBreakPoint = 1;
else

romBreakPoint = 0;
#else

romBreakPoint = 0;
#endif

10-19

}

10-20

cmd_mema.ddr = addr 1
cmd_recover = CMDR_READ;
oldinst = * «volatile ulong*)addr);

if(0 == romBreakPoint)
{

cmd_recover = CMDR_~TE;
«volatile ulong)addr) = brkpt_inst;
cache_flush (addr);
}

else /* New code, using NetROM to set the breakpoint */
{

cmd_recover = CMDR_~TEI
1* brkpt_inst_buf is 4-~e buf containing brkpt_inst *1
nr_SetMem(CRANNEL, addr, brkpt_inst_buf, 4);
cache_flush (addr);
}

cmd_recover = CMDR_VERIFYI
if (*«volatile ulong*)addr) 1= brkpt_inst) command_failure();

cmd_recover = 0;
return (oldinst);

NetROM Users Manual

General Porting Guide

Step 5: Add remote run control through NetROM
>- Add remote run control through NetROM.

N etROM has eight target control lines. You can use anyone of
these lines to cause your target to halt execution via interrupts.
You can connect another to your target's reset line.

The amount of work required to add remote run control via
NetROM depends on both your target and the monitor you are
using.

D An example of a simple run control enhancement is the
68040 IDP target running the mon68 monitor from
Greenhills. One approach is to simply connect a line from
target command pin 1 on NetROM to the Abort button on
the IDP board. When the target is running, you can enter the
command set tgtctll on toggle at the NetROM prompt to
stop the target. This does not require any modification of the
monitor. Because the monitor is written to handle the NMI
generated by the Abort button, it behaves correctly when
N etROM asserts the NMI.

D Another option, one which does not require connecting the
jumper from NetROM to the target, is to tie a polling routine
to a timer interrupt. This was the method used by the
Greenhills engineers and in the pROBE+ drivers. Simply
call a routine every n milliseconds that tests the NetROM
VUART channel for the receipt of the Break_Character. If
the Break_Character was received, halt the user's code.

D The final option is to write an interrupt service routine.
Connect the jumper from NetROM to the NMI line on the
target - for example the Abort button - and write an ISR to
handle the interrupt when it is received. This was the
approach used with the ppcmon monitor. In the case of
SingleStep, when the target is running user code, we could
assume that the only message the debugger would send
would be the Halt command. By configuring one of the
target command pins on NetROM correctly, we were able
to assert an interrupt on the target each time a character

10-21

10-22

was received. We ignore the interrupt while in monitor code,
and handle the interrupt when in user code. The command
issued on NetROM to set this up is shown in the NetROM
batch file for the Cogent603 board, on page 10-25.

NetROM User's Manual

General Porting Guide

NetROM batch files
The first batch configures NetROM for use with a Motorola
MVME 162 68040 target. The second batch file configures
NetROM for use with a Cogent CMA277 PowerPC603 target.
The third batch file configures NetROM for use with a
Motorola/Cogent 68040 IDP target.

Batch file for MVME 162
begin

NetROM Setup for MVME 162
m162.bat
Batch file for NetROM with MVME162

Command for this batch file: batch m162.bat 192.103.54.226

Note: All lines beginning with the '#' symbol are comments, and you
need not type them in. NetROM has online help. Type
'?' at the NetROM prompt for a list of topics. For help on a
a specific command, type '? command' for example:
NRCons>? setenv debugpath
will provide help on setting the debugpath.

setenv consolepath serial
setenv debugpath dualport

setenv debugport 2
setenv dprbase Ox3f800
setenv filetype srecord
setenv fl11pattern none
setenv groupaddr Oxff800000
setenv groupwrite readonly

192.103.54.226 is BART ... you will want to change this!

setenv host 192.103.54.226
setenv loadfile rom.hex

10-23

Note:

If you are a running your TFTP server in secure mode (-s option),
the server will preprend the TFTP root directory name to the
loadpath and batchpath that you set on NetROM.

setenv load,path I
setenv batchpath I
setenv podgroup
setenv podorder
setenv romcount
setenv romtype
setenv writemode
setenv wordsize
setenv verify

Useful aliases

o
o
1
27c020
flash
8
on

alias eon set emulate
alias eoff set emulate
alias h history
alias on set debugecho
alias off set debugecho

on
off

on
off

Resync communication channel

tgtreset

Load image (optional)

newimage

end

10-24 NetROM User's Manual

General Porting Guide

Batch file for Cogent PowerPC 603 (CMA2n)
begin

Cogent603 Setup
2/20/96 by MPH

NetROM command to execute this batch file:
batch <path/filename> <ip address of your TFTP server>
batch /a18/sds65/sun_sol1/ppcmon/cogmon/nr.bat 128.9.230.1

Note:

All lines beginning with the '#' symbol are comments, and you
need not type them in. The 'Usage' line and text describing
each command below were taken from NetROM's online help. For
example, type '? setenv debugpath' at the NetROM prompt

Usage: setenv debugpath { serial I dualport
setenv debugpath dualport

Usage: setenv consolepath { serial I dualport }
setenv consolepath serial

The path is actually changed when the target is reset using 'tgtreset'
tgtreset

Usage: setenv setenv fillpattern { none I value}
setenv fillpattern none

Usage: setenv host host-addr
setenv host 128.9.230.1

Usage: setenv loadpath load-file-path
setenv loadpath /a18/sds65/sun_sol1/ppcmon/cogmon

Usage: setenv loadfile filename
setenv loadfile cma277.mot

Usage: setenv filetype
setenv filetype srecord

binary I intelhex I srecord }

Usage: setenv batchpath batch-file-path
setenv batcbpath /a18/sds65/sun_sol1/ppcmon/cogmon

10-25

Usage: setenv romtype rom-type
setenv ramtype 27c020

Usage: setenv podorder podorder-string
set en v podorder 1:0

Usage: setenv target-addr-value
setenv groupaddr PPPOOOOO

Usage: setenv groupwrite {readonly I readwrite}
setenv groupwrite readonly

You can use the 'alias' command to create short abbreviations for
common commands

alias eoff set emulate off
alias eon set emulate on

Typing either 'stop' or's' at the NetROM prompt pulls NetROM's target
control 1 line to ground briefly, then lets it float again. If the line
is connected to an interrupt line on the target, and the monitor is set up
for "run control," the target code will halt.
alias stop set tgtctl 1 on toggle

dstop enables the SDS debugger to stop the target, for example when the
user clicks on the stop-sign or red traffic light icon.

alias dstop set tgtctl 1 on rx
dstop

Turn target access to emUlation memory 'on'

eon

Load the monitor into the target

newimage
end

10-26 NetROM Users Manual

General Porting Guide

Batch file for Motorola/Cogent 68040 lOP target
begin

Moto IDP Setup
2/1/96 by MPH

NetROM command to execute this bat file:
batch /u6/mikeh/gh/idp.bat 128.9.230.1

setenv debugpath dual port

setenv fillpattern none
setenv host 128.9.230.1

Note: In this example, we are using our home directory to store
batch files and download images. For this to work, the TFTP
server daemon must be configured in non-secure mode.

setenv loadpath /u6/mikeh/gh
setenv loadfile mon68.run
setenv filetype srecord
setenv batchpath /u6/mikeh/gh

setenv ro~ype 27c020
setenv podorder 0
setenv groupaddr Ox800000
setenv groupwrite readonly

alias eoff set emulate off
alias eon set emulate on
eon
end

10-27

I Chapter 11

Virtual Ethernet
Virtual Ethernet is an optional licensed downloadable RAM
module for use with NetROM, the Applied Microsystems'
embedded-systems development tool. Virtual Ethernet-also
called Vether-gives target systems the ability to become
Ethernet communications devices without requiring that they
have Ethernet hardware. Thif'! means design engineers can
have access to Ethernet communications speed and function
during the development cycle even when Ethernet capability
will not be needed in the final product. Vether is also useful for
debugging target Ethernet hardware and drivers.

Vether operates in a way similar to the Applied Microsystems
Virtual UART in that the target application driver is replaced
with a virtual application driver. With Vether, the target's
Ethernet driver is replaced with the Virtual Ethernet driver. In
this way, communication between NetROM and the target is
via Vether. Vether uses NetROM's shared memory protocols
instead of sending and receiving packets through the target
Ethernet hardware, and N etROM sends and receives target
packets on its Ethernet interface. Figure 11-1 illustrates this
process in a logical block diagram.

For additional information about integrating Vether into
specific environments, refer to the N etROM application notes
on the Applied Microsystems web page (http://www.arnc.com).
If you are not using an environment documented in an
application note, use the note as an example that you can adapt
to your environment.

11-1

Host Workstation

Debugger

Other NIW Tools

Ethernet

Target

Applications

Operating System

Virtual Ethernet
Network Driver

Shared Memory

NetROM

Figure 11-1 Virtual Ethernet logical block diagram

Virtual Ethernet components

11-2

Virtual Ethernet functionality is implemented in a target
operating system driver and a NetROM RAM module.

NetROM User's Manual

Virtual Ethernet

Virtual Ethernet setup procedure
The setup procedure consists of several steps described below.

• Integrate the Vether driver into the target operating system.
This is similar to the process of integrating Applied
Microsystems' Virtual UART emulation memory protocol
routines. For detailed procedures, refer to the application
notes on Applied's web page (for example, "Integrating
Virtual Ethernet into VxWorks").

• Download the operating system to NetROM with the
newimage command or burn it into PROMs.

• Assign the target system a host name and an IP address and
add the address to /etc/hosts or to the NIC. For example:
192.9.1.20 gaia #john smith

• Select an interrupt line on your target (optional).

This line must signal a unique interrupt to the CPU.
Connect a jumper between one of the NetROM's command
pins and the interrupt signal on the target. NetROM will
signal the interrupt when it has received a packet for the
target.

The interrupt signal should be active low with a pull up
resistor. This is because NetROM does not drive a command
pin high, it just disconnects it from ground. If you must use
an active high signal, you should connect a 1000 ohm pullup
resistor so the signal will be driven high when NetROM
disconnects it from ground.

To enable interrupt signaling, enter the following NetROM
command:

set tgtctl 1 on rxO

This will cause Net ROM to assert command pin 1 (active
low) when a packet arrives.

To enable an active high signal, use

set tgtctl 1 off rxO

11-3

Note
Only rxO (the console/debug path dualport channel) can be used
byVether.

NetROM setup procedure for virtual Ethernet

11-4

Execute the following commands to set up NetROM. You can
add these commands to your batch file so you don't have to
enter them each time you bring up NetROM.

• Load the Vether RAM module.
loadmodule modulepath

• Set the IP address of your target system:
setenv tgtip <n.n.n.n>

• Specify the communication protocol between NetROM and
the target:
setenv debugpath dualport

• If capable of it, allow target writes to emulation memory:
setenv groupwrite readwrite

• Enable interrupt signaling on packet reception:
set tgtctl 1 off rxO

The NetROM side of Virtual Ethernet waits for the target's
vether driver to be initialized.

• Enable Virtual Ethernet and wait for the target to be
initialized:
setenv vether on

• Reset the target. After the target Vether initializes, it
synchronizes with NetROM and commences passing packets.

NetROM User's Manual

I AppendixA

Connector Pinouts

RS·232 pinouts

Pin

1

2

3

4

5

6

7

8

Description

Request To Send (RTS)

Data Terminal Ready (DTR)

Transmit Data (TxD)

Ground

Ground

Receive Data (RxD)

Data Set Ready (DSR)

Clear To Send (CTS)

A-1

Ethernet pinouts

Pin IEEE 802.3 Signal Ethernet II Signal

1 Control In Circuit Shield Chassis Shield

2 Control In Circuit A Collision Presence+

3 Data Out Circuit A Transmit+

4 Data In Circuit Shield not used

5 Data In Circuit A Receive+

6 Voltage Common 12VGround

7 not used not used

8 Option Shield not used

9 Control In Circuit B not used

10 Data Out Circuit B Transmit-

11 Data Out Circuit Shield not used

12 Data In Circuit B Receive-

13 Voltage Plus +12V

14 Voltage Shield not used

15 not used not used

A-2 NetROM Users Manual

I AppendixB

NetROM Processes

Process names and descriptions

Process Name

chanpath1d

chanpath2d

chanpath3d

Console

conspatbgd

debugctld

debugpathd

Kernel

netromd

NetROM Console

pingXX (1)

snmpd

This table lists the names of processes commonly encountered
in the NetROM environment, a brief summary of the function
of each process, and whether it supports multiple instances.

Multiple Description

No Transfers data between the target and the host system.

No Transfers data between the target and the host system.

No Transfers data between the target and the host system.

No Provides a user interface on the NetROM Console
serial port.

No Multiplexes data from the target console to host-side
listeners.

No Supports direct target control for debug programs.

No Transfers data between the target and the host system.

No NetROM's operating system "process."

No Listens for connections on the NetROM Console Port
and spawns processes to handle each one.

Yes Direct TCP connection providing a non-TELNET
command-line user interface.

Yes Sends and receives CMP echo request packets to other
network hosts.

No Processes incoming SNMP requests.

8-1

telnetd

telnetXX(l)

TFTP Client(2)

B-2

No

Yes

Yes

Notes

Listens for TELNET connection attempts.

Provides a TELNET command-line user interface.

Downloads a file from a TFTP server.

(1) xx denotes the number of the process.

(2) The TFTP Client process cannot normally be multiply
instantiated.

NetROM User's Manual

I AppendixC

NetROM Ports and Protocols

Port addresses
This table lists port addresses on which NetROM listens.

Port Name Number Type

BOOTP Client (1) 68 UDP

Chan 1 1240 TCP

Chan 2 1241 TCP

Chan 3 1242 TCP

Debug Control 1237 TCP

Debug Data (2) 1235 TCP

Download (3) 1236 TCP

Upload (4) 1238 TCP

NetROM Console 1234 TCP

SNMP 161 UDP

TELNET 23 TCP

Notes
(l)The BOOTP Client Port is only active during NetROM's
boot procedure, after N etROM has sent a BOOTP request
packet to the network broadcast address.

(2) This port number can be configured using the "debugport"
environment variable.

(3)The Download Port must be activated before it can be used.

(4) The Upload Port must be activitated before it can be used.

C-1

I AppendixD

NetROM Filename Conventions

Batch file names

RARP file names

NetROM imposes no restrictions on the names of batch files;
such files can be named anything convenient for the local
operating system. A ".bat" suffix is not necessary, but is often
used in examples in this document to improve clarity. Note that
TFTP servers running in secure mode require that download
files be in a subdirectory of Itftpboot on the server's disk. This
directory is implied in all file requests, and should not need to
be given explicitly; for example, requesting Itftpbootl
startup. bat from a secure server would actually fetch the file
Itftpboot/tftpboot/startup.batfrom the server's disk.

If RARP is being used as N etROM's address resolution
mechanism, the following conventions must be observed for the
NetROM startup file:

o The TFTP server for the startup file must reside at the same
IP address as the RARP server.

o The startup file's name must be determined from NetROM's
IP address.

The expected filename is the eight-character hexadecimal
representation of NetROM's IP address, given in uppercase
with no periods and no suffix. For example, if NetROM's
address were "192.0.0.210" then the startup file should be
named COOOOOD2. NetROM now makes several attempts to
download its startup file. NetROM will then attempt to
download the following startup files: "COOOOOD2," then
"/tftpbootlCOOOOOD2," and finally "tftpboot/COOOOOD2." After

D-1

0-2

the first successful download, it will proceed with its boot
sequence and execute the commands in the startup file. It will
not attempt to download other startup files.

NetROM User's Manual

I AppendixE

NetROM Defaults

Target Console Port

9600 baud

8 data bits

2 stop bits

No parity

No hardware handshaking

XONIXOFF software handshaking disabled

NetROM Console Port

9600 baud

8 data bits

2 stop bits

No parity

No hardware handshaking

XONIXOFF software handshaking disabled

Command Signals

None asserted.

E·1

Environment Variables

batchfile (Hex value of Net ROM Ethernet
address)

batchpath /tftpboot

binenv 8

bootflags rarp bootp auto bat

chanpath serial

chanport 1 1240

chanport2 1241

chanport 3 1242

consolepath serial

debugpath serial

debugport 1235

dprbase Ox3F800

filetype binary

fillpattem none

groupaddr OxOOOOOOOO

groupwrite readonly

host (see Note)

loadfile image.bin

loadpath /tftpboot

podorder 0

romcount 1

romgroup 0

E-2 NetROM User's Manual

NetROM Defaults

Environment Variables

romtype

verify

wordsize

writemode

27c010

on

8

flash

The "host" variable defaults to the address of the RARP or
BOOTP server configured by NetROM's IP address. If
NetROM's address is set manually, the default address is
"192.0.0.2."

Generic Variables

consecho

debugecho

emulate

udpsrcmode

off

off

on

off

E-3

I AppendixF

Mailbox Protocol Implementation
NetROM provides a memory mailbox communication protocol
for target-to-host communication. Potentially this virtual
UART can be very fast, since it does memory-to-memory
transfers between NetROM and the target system, and since the
link between NetROM and the host system is a high-speed LAN.

This appendix describes implementation issues that were
addressed in designing the mailbox communication protocol.
See Chapter 9 for information on using the protocol.

Sharing emulation memory
In order to explain the implementation of target-NetROM
protocols in shared memory, it is necessary to describe some
aspects of ROMs. ROM devices do not have an "output valid"
signal. Instead, ROM accesses are, in some sense,
asynchronous to the system clock. The target asserts an
address on the ROMs address lines, waits a certain number of
system clock cycles, then latches in the data on the ROM
output lines. This sequence of events constitutes a ROM
memory cycle. Figure F-l shows how this works. This can be
considered asynchronous, because ROMs do not use the system
clock to latch asserted addresses or outgoing data.

F-1

Target

Target asserts
address X

Target waits N
clock cycles

Target latches
valid data

NetROM

Data stabilizes in
emulation RAM

Nonnal Target Access

Figure F-1 Memory access cycles

Memory contention issues

F-2

The timed method of accessing ROMs has unfortunate
consequences for passing messages between the target and
NetROM in emulation memory. If only one party; i.e., NetROM
or the target, accesses an emulation pod at a time, everything
is fine. In normal operation, only the target will access
emulation memory. However, when passing messages it is
necessary for both parties to read and possibly write to a
"ROM." This leads to two forms of contention.

The first form of contention occurs when NetROM accesses an
emulation pod, and the target attempts to access the same pod
before NetROM's access is completed. There is no way for
NetROM's memory hardware to tell the target that the pod is
busy and that the target should expect a delay in receiving its
data. Instead, the target will wait its prescribed number of
clock cycles and latch in the wrong data. This situation is
shown in Figure F -2. This will be referred to as N-T contention,

NetROM Users Manual

Mailbox Protocol Implementation

since the NetROM, then the target, attempt to access the same
memory during a single memory cycle.

Target-NetROM (ToN) Contention

Figure F·2 Contention cycles

The second form of contention occurs when the target accesses
an emulation pod, and NetROM attempts to access the same pod
before the target's cycle is competed. Unlike the target side,
NetROM's hardware is capable of "holding off' the NetROM
ROM cycle until the target's cycle is finished. Unfortunately, if
the target is very busy accessing that particular pod, NetROM's
processor may be held off indefinitely. This is an undesirable
occurrence, and may cause bus errors on the NetROM side. This
will be referred to as T-N contention, since the target, then
NetROM, attempt to access the same memory during a single

F·3

memory cycle (see Figure F-2). Note that although the target
will get correct data during its access cycle, there is no way to
guarantee that it will ''beat" NetROM to the memory. Therefore,
T-N contention is just as unreliable and undesirable as N-T
contention.

Dualport emulation memory

F-4

T·N contention
To address the problems ofT-N contention, NetROM provides
memory in emulation pod 0 which is "special." This memory is
dual ported, which means that it is capable of supporting, not
one, but two simultaneous access cycles. That is, when the
target asserts an address and begins its waiting period, the
NetROM is able to assert a different address and begin its
waiting period, and both parties will receive correct data. This
is different from normal ROM or RAM, which can only supply
data for one address at a time.

However, even dualport RAM does not completely solve the
problems which occur when both the target and NetROM access
the same memory location. When both parties access the same
address, contention again occurs. However, the negative effects
of the contention are much reduced. Dualport RAM supplies an
"address busy" signal which will cause the NetROM hardware
to back off during target cycles. The access will be completed as
soon as the target is done with its cycle; thus, T-N contention is
averted entirely. However, since this signal is ignored by the
target, the target may get corrupted data if it begins its cycle
after NetROM does, so there is still a potential for N-T
contention. This problem is particularly acute when the target
attempts to write data to dualport RAM; if it begins its write
cycle after NetROM begins a read cycle, the data which it
attempts to assert will be lost.

N· T contention
To address the problems posed by N -T contention, which is an
unavoidable consequence of the way in which ROMs work,
NetROM uses a software protocol. This protocol essentially

NetROM Users Manual

Mailbox Protoco//mp/ementation

keeps the NetROM from accessing any address at the same time
as the target more than once. The address at which potential
contention can occur is well defined, and the target will read
garbled data at most once. This is because N-T contention can
occur for only one cycle. This protocol is described in detail in
subsequent sections.

NetROM's 8192 bytes of dualport RAM are located in emulation
pod O. The dualport location within the pod is configurable.
This is because the dualport memory is physically separate
from pod O's emulation RAM and can be substituted for any 8K
portion of pod O. That is, the NetROM user can select the
address at which dualport memory will start. Subsequent
accesses to the dualport address range will behave exactly the
same as accesses of normal emulation memory, except that
contention problems are reduced as described above. Note that
the address of dualport RAM is affected by NetROM resets, so
setting its location should be part of the NetROM startup file.
The address defaults to the highest-addressed 8K emulated by
podO.

F-5

The dual port message structure

F-6

Dualport message structures have three parts, a flags part, a
size part, and a data part. Each of these parts is of a fixed size,
as shown in Figure F -3. Essentially, the party writing the
message to dualport RAM writes the data, then the size, then
the flags. Most of dualport RAM is used as arrays of these
structures, one array written by NetROM and another array
written by the target.

The size field is interpreted as a big-en dian value; that is, the
lower-addressed byte contains the more significant bits of the
address. The layout of the size field is shown in Figure F -3.

The flags field is used to indicate when the message is complete
and ready to be processed by the recipient, whether the
particular message is the start, end, or both, of a larger
message, and whether the particular message is the last of a
given array. The layout of the flags field is shown in Figure F -3.
Note that the byte containing the READY bit must be written
last, after all other bytes of the message are valid.

NetROM User's Manual

Mailbox Protocol Implementation

• 16 Bytes ..
\

4 Bytes

I
~- • Flags (2 bytes)

(a) Dualport Message

~- .. Size (2 bytes) Structure Layout

0- • Data (60 bytes)

15 87 0 15 87 0 Bit # Bit Name

I MSB LSB I 0 START
1 END
15 READY

BYTE 0 BYTE 1 BYTE 0 BYTE 1

(b) Dualport Size Field (c) Dualport Flags Field

Figure F-3 Dualport message structure

While the target system is waiting for a message to arrive from
NetROM, it will poll the flags field of the next expected message.
Note that, due to N-T contention, the target may detect a
change in the value of the flags field, but it cannot be sure that
it has read the correct value until it has read it twice without
seeing a change. The dualport protocol guarantees that
NetROM will only write the flags field once, so once the target
sees a "stable" value, it knows it is valid. Reading other
message fields twice is unnecessary, since the protocol is set up
to only allow potential contention to occur on the flags field.

F-7

F-B

The flowchart in Figure F -4 depicts the target system reading
and verifying the flags field of a dualport message structure.

V= Flags

V= Flags

Process V
(true value
of Flags)

No

Figure F-4 Target validating dualport flags

NetROM User's Manual

Mailbox Protocol Implementation

Read-address memory
As described above, it is not a good practice to have both
NetROM and the target constantly accessing ("polling") the
same area of memory. More particularly, ifNetROM is
constantly polling an address waiting for the target to write
something, N-T contention may corrupt the target's written
data, and may also prevent the target from reading back what
it wrote to verify its correctness. Thus target-to-NetROM
communication using dualport RAM is interrupt driven. The
mechanism for this is read-address memory.

NetROM's read-address memory is another special area of pod
O. It is separate from, but overlaps dualport memory. When the
target reads from this address range, the offset of the address
read is latched by NetROM's memory hardware and an
interrupt is generated to NetROM's processor. This enables two
things to happen. First, it provides the target with a means to
inform NetROM of events via interrupts. An example of such an
event might be the target writing a message into dualport
RAM. Note that using this mechanism to notify NetROM of
messages waiting to be read allows NetROM to avoid polling
"flag" locations and possibly garbling the target's attempt to
write them. Second, through a special read-read protocol,
targets that cannot directly write to emulation memory can
write to any address within the dualport region. They do this
by performing a sequence of reads to the appropriate
addresses.

NetROM supports target systems whose memory interface
hardware always "burst reads" from emulation memory. The
target processor's memory interface hardware on such systems
may read 4 consecutive bytes to assemble a single 32-bit word
to present to the processor. To accommodate such target
systems, NetROM can be configured to expect burst reads, and
the implementation of the target-side interface driver takes
burst reads into account. See the set raconfig command on page
5-44 for more information.

F-9

Dualport protocol

F-10

The same dualport protocol is used both on target systems
which are capable of writing to their own ROM space and
systems that lack this capability. Write-capable systems
include those which use FLASH ROMs capable of being
reprogrammed by the target system's processor with new
images. Targets that cannot directly write to overlay memory
use the read-read mechanism to write to dualport memory. The
dualport protocol allows the target system and NetROM to
exchange data in a fashion that amounts to a memory-to­
memory transfer between the target system and NetROM' s
processor.

Figure F-5 shows the layout of dualport memory. Remember
that dualport memory may be mapped anywhere within pod 0,
and that its default location is at the top 8K of the ROM
emulated by pod O. Note that dualport RAM is divided into
eight arrays of message structures-two for each channel.
Within each channel, one array is written by the target, and
the other by NetROM. Note also that the first 64 bytes of
dualport memory is used for a configuration/status structure,
and that read-address memory overlaps its first 8 bytes.

The configuration/status structure has several active one-byte
fields; the remaining bytes of the structure are reserved and
should not be accessed. The TXA and RXA bytes are set to 1 by
NetROM when the transmit and receive arrays (or channels)
become active at the start of a session. The target should verify
that they are set before performing any activity in dualport
RAM. However, once set, they will remain set until the target
system is reset with the tgtreset command. The address of the
MRI, or Message Ready Indicator, is used to indicate to
NetROM that the target has written a message. Note that it is
part of the Interrupt Area (and the only part of the Interrupt
Area shared with the dualport RAM), so reading its address
sends an interrupt to NetROM.

NetROM User's Manual

Mailbox Protocol Implementation

low address

Configuration/Status Structure 64 bytes

RX Message Structure 0 64 bytes

...

RX Message Structure 14

TX Message Structure 0

...

TX Message Structure 15

high address

Configuration/Status Structure

2 7 bytes 2
~ ~

54 bytes

I I
Readaddr Memory

Figure F-5 Dualport RAM channel

F-11

Target-to-NetROM message
The flowchart in Figure F -6 depicts the target system sending
a message to NetROM, and Figure F -3 describes the message
structure. Sending a message has three stages. The first is
obtaining the next free message structure. A free message
structure is one in which the READY bit is not set. If this bit
were set in the message, it would mean that NetROM had not
yet processed the message, which must have been written
previously. The target system should wait, or perform other
processing, until the next dualport message structure becomes
free. The second stage is writing to the message data and
length fields. This is done in a straight forward way. The third
and final stage is notifying NetROM that the message is ready.
This entails setting the READY bit in the message's Flags field,
and reading the MRI byte. (The actual data at the MRI address
is meaningless.) When NetROM has received the interrupt and
processed the message, it will clear the READY bit in the Flags
field, and the target may reuse the structure.

NetROM-to-target message

F-12

The flowchart in Figure F -6 depicts the target system receiving
a message from NetROM. Like sending a message, receiving a
message has three stages. The first is detecting a new message.
The target ''polls" the Flags field of the next message buffer.
Due to possible N-T contention, it must verify the Flags value
by reading it twice. The second stage is copying the data out of
the message structure and processing it. The third stage is
clearing the READY bit in the Flags field, which returns the
message structure to NetROM for reuse.

NetROM Users Manual

ReadNerify Flags

Write message
data and size

Set READY bit
and read MRI byte

Yes

a. Sending a message with the
dualport protocol.

Figure F-6 Dualport protocol

Mailbox Protocol Implementation

ReadNerify Flags

Copy message
data

Clear READY bit

No

b. Receiving a message with the
dual port protocol.

F-13

I Glossarr.

Address Resolution

ARP

BOOTP

Channel Path

Client

Connection

Console Path

Debugger

Debug Path

DIP

Download Path

The process of establishing a mapping between an Ethernet
address and an IP address.

Address Resolution Protocol, used to determine a destination
host's Ethernet Address using its known IP address.

An address resolution protocol which can also supply the
name of a startup file.

A route by which the user communicates with the target.

A requestor of a service from some provider on the network;
e.g. a BOOTP client, which sends out BOOTP requests to
determine its own IP address.

An IP connection is determined by a 4-tuple definition:
<source IP address, source port, destination IP address,
destination port>. This is to allow more than one dialog
between two hosts, using either the same source or the same
destination port number.

The route by which the host system establishes a console
session with the target.

A program which runs partly on the target system and partly
on the host, for the purpose of providing a user-friendly
interface to engineers debugging the target system.

The route over which debugger packets travel between the
host system and the target.

Dual In-Line Package.

The route over which emulation images are sent from the
host system to the target.

Glossary-l

Dumb Terminal

EPROM

Gateway

Host

Host, System

Internet

IP

IPAddress

LED

Path

PLCC

Plug

Pod

Port

PSOP

Glossary-2

A monitor and keyboard system lacking a significant CPU;
"dumb" terminals use RS-232 serial ports to provide an
interface to systems which do not come equipped with a
monitor.

A form of ROM which can be erased and reprogrammed.

In IP routing, a gateway is a host on the local network which
agrees to route packets to other networks.

A computer on an IP network.

A computer which the embedded systems engineer uses to
develop code, run debuggers, or establish NetROM sessions.

A large network of heterogeneous sub-networks.

Internet Protocol, the protocol used to send packets between
nodes on the Internet.

A 32-bit value, often represented with each byte in decimal
and separated by a period.

Light-emitting diode.

A route for information to travel from the host system to the
target, or from the target to the host system; a file address,
consisting of a tree structure for reaching a particular file in
a computer memory.

Plastic Leaded Chip Carrier.

The end of an emulation cable which is inserted into a ROM
socket on the target system.

Emulation memory on NetROM.

A TCP or UDP identifier, to distinguish between different
destinations using the same protocol.

Plastic Small Outline Package.

Net ROM User's Manual

RARP

ROM

ROM Group

Route

RS-232

Server

Session

Socket

SLIP

SNMP

Subnet

SubnetMask

Terminal Session

Target System

Reverse Address Resolution Protocol, an address resolution
protocol used by NetROM to determine its own IP address
using its known Ethernet address.

Read-only memory.

One or more ROMs used together to emulate "words" of ROM
memory on the target system.

In the IP sense, a route is uniquely identified by a
destination host, a gateway to that host, and a metric
describing "how hard" it is to get to the destination through
the gateway.

A common serial line protocol.

A provider of some service on the network; e.g. a TFTP server
which responds to TFTP requests.

The data exchanged over some kind of communication
connection; for example, a TELNET login to NetROM
constitutes a terminal session.

When referring to ROMs, the receptacle into which the ROM
is inserted on the target system. When referring to network
communications, sockets are an operating system interface
which provides a communications end point for TCP or UDP.

Serial Line IP, a version ofIP which runs over serial links.

Simple Network Management Protocol.

A "discrete" network, such as an Ethernet LAN, which is
part of the larger Internet.

A 32-bit value whose logical-and with an IP address
determines whether a particular address is on a particular
subnet.

See session.

The hardware whose ROMs are being emulated by NetROM.

Glossary-3

TCP

TELNET

TFTP

TSOP

UDP

XONIXOFF

Glossary-4

Transmission Control Protocol, a connection-oriented end-to­
end transport protocol running on top ofIP.

A terminal emulation protocol.

Trivial File Transfer Protocol, used by NetROM to request
files to download.

Thin Small Outline Package.

User Datagram Protocol, a connectionless end-to-end
transport protocol running on top of IP.

A software handshaking protocol used on RS-232 lines.

NetROM User's Manual

I Index
A
active emulation cables 3-8
address resolution Glossary-1

BOOTP 5-16
RARP 5-16

alias 5-88
arp 5-14,5-97, Glossary-1

B
batch 5-89, 5-107
batch file 5-89,5-107,5-124

names 0-1
processing 5-6

batchfile 5-106
batchpath 5-107
binenv 5-108
boot 5-109
bootflags 5-109
BOOTP 2-2, 4-5, Glossary-1
breakpoint 2-14, 3-29

C
cables 3-8
Channel Path Glossary-1
channel path 2-9
channel path connection 5-37
chanpath 5-110
chanport 5-112
clear, romset 5-80
Client Glossary-1
command line processing 5-2
command list 5-9
command signal 2-16, 5-71, E-1
commands 5-13

alias 5-88

arp 5-14, 5-97
batch 5-6, 5-89, 5-107
di consecho 5-58
di debugecho 5-57,5-59,5-65
di dpmem 5-60
di dpstats 5-61
di emulate 5-62
di lanceha 5-63
di ledmap 5-64
di lstats 5-66
di memstats 5-67
di modules 5-68
di podmem 5-44,5-69,5-135
di rgconfig 5-70
di tgtctl 5-71
di tgtstatus 5-72
di uart 5-73
di udpsrcmode 5-74
di uptime 5-75
di username 5-76
di version 5-77
fill 5-22
help 5-90
history 5-5, 5-6,5-89,5-91
ifconfig 5-15
kill 5-3, 5-33
ledmap 5-92
load 5-93
loadmodule 5-94
logout 5-95
netstat 5-17, 5-19
newimage 5-23,5-135
ping 5-3, 5-18, 6-3, 6-5, 6-7, 6-10
printenv 5-105
ps 5-2,5-34
reset 5-96
romset? 5-79
romset clear 5-80

Index-1

romset connect 5-81
romset define 5-82
romset disconnect 5-83
romset help 5-79
romset reset 5-86
romset show 5-84
romsetslaveaddr 5-85
route 5-19
serialcons 5-27
set consecho 5-37, 5-38
set debugecho 5-39, 5-41
set emulate 5-40
set podmem 5-42
set prompt 5-43
set rgconfig 5-44
set rgname 5-47
set romupgrade 5-48
set tgtctl 5-51
set udpsrcmode 5-53
set usemame 5-54
setenv 5-104
slip 5-15, 5-20, 5-110, 5-113, 5-115
stty 5-27, 5-29, 5-98, 8-2
tgtcons 5-27, 5-29
tgtreset 5-31

common entry point
nr_ChanReady 9-11
nr_ConfigDP 9-8
nr_Cputs 9-24
nr_EmOffOnWrite 9-27
nr_FlushTX 9-13
nr_Getch 9-15
nr_GetMsg 9-16
nr_IntAck 9-23
nr_Poll 9-14
nr_Putch 9-12
nr_PutMsg 9-19
nr_Reset 9-20
nr_Resync 9-21
nr_SetBlockIO 9-10
nr_SetMem 9-22
nr_TestComm 9-25

communication path 2-3
channel 2-9

Index-2

console 2-7
debug 2-4, 7-1, 7-2
download 2-11

Communications
Ethernet 4-3
mailbox 9-1, F-1
setup 4-3

configuration 5-70
cables 3-8
host 5-63
information 2-11
signal-tOoLED mapping 2-17

configuring servers 4-5
connect, romset 5-81
connection

ACpower 3-5
DIP style cables 3-23
Ethernet 3-6
header style cables 3-24
NetROM console 3-27
PLCC style cables 3-24
surface mount cables 3-25
target serial port 3-27
write signal 3-29

consecho, di 5-58
consecho, set 5-37,5-38
console 2-2,5-98, E-1
console path 2-7
console port 5-73
console serial port 4-7
console session 5-29
consolepath 5-113
Customer support 1-13

D
debug control functions 7-3
debug control port 7-3
debug path 2-4
debug path connection 5-39
debugecho, di 5-57,5-59,5-65
debugecho, set 5-39, 5-41
debuggers 7-1
debugpath 5-115

NetROM User's Manual

debugport 5-117
defaults,setting 4-4
define, romset 5-82
di consecho 5-58
di debugecho 5-57, 5-59, 5-65
di dpmem 5-60
di dpstats 5-61
di emulate 5-62
di lanceha 5-63
di ledmap 5-64
di lstats 5-66
di memstats 5-67
di modules 5-68
di podmem 5-69
di rgconfig 5-70
di tgtctl 5-71
di tgtstatus 5-72
di uart 5-73
di udpsremode 5-74
di uptime 5-75
di username 5-76
di version 5-77
DIP Glossary-1
disconnect, romset 5-83
download 2-2
download path connection 5-41
download port C-1
download utility 6-3
Downloading non-TFTP files 6-3
dpconfig.h 9-3
dpmem, di 5-60
dprbase 5-118
dpstats, di 5-61
drivers and utilities 6-1
dualport 5-118, 9-18

flags F-8
memory F-4
message structure F-6
protocol F -10

dualport path 2-5, 2-7, 2-9
dualport RAM 5-27 5-60 ,

E
Electrostatic discharge 1-12
EMI 1-11
emulate, di 5-62
emulate, set 5-40
emulation cables 3-8
emulation memory 2-5, 2-11, 5-21, 5-40,

5-44, 5-45, 5-69, 5-96, 5-108 5-122
emulation pods 2-11 '
environment variables

batehfile 5-106
batchpath 5-6, 5-89, 5-107
binenv 5-108
bootflags 5-109
ehanpath 5-110
chanport 5-112
consolepath 5-27, 5-113
debugpath 5-27,5-115
debugport 5-117
dprbase 5-118
filetype 5-120
fillpattern 5-24, 5-121
groupaddr 5-122
groupwrite 5-123
host 5-89,5-124
loadflle 5-125
loading 5-93
loadpath 5-126
podorder 5-127
romcount 5-134
romgroup 5-44, 5-135
romtype 5-136
tgtip 5-139
verify 5-140, E-3
vether 5-141
wordsize 5-142
writemode 5-143

ESD 1-12
Ethernet 7-1
Ethernet, virtual 11-1

Index-3

F
FAX 1-13
FCC,EMC 1-11
Filename conventions D-1
filetype 5-120
fill 5-22
fillpattern 5-121
Firmware 4-3

G
group name 2-14
groupaddr 5-122
groupwrite 5-123

H
hardware installation 3-1
help 5-90
history 5-91
host 5-124

I
ieeeparse utility 6-5
ifconfig 5-15
Images 2-11
Installation

hardware 3-1
software 4-1

Interference 1-11
Internet address 1-13
IP address 2-2, 4-3, 5-12, 5-124, 6-2, D-1,

Glossary-2

K
kill 5-33

L
lanceha, di 5-63

Index-4

LED 5-92, Glossary-2
LED indicators 4-5
LED mapping 5-92
ledmap 5-92
ledmap, di 5-64
LEDs 2-18, 2-19
load 5-93
loadfile 5-125
loadmodule 5-94
loadpath 5-126
logout 5-95
longer memory 2-12
lstats, di 5-66

M
mailbox protocol 5-27,5-29,5-110,5-113,

5-115,9-1, F-1
memory contention F-2
memstats, di 5-67
modules, di 5-68

N
name

ROM group 5-47
NetROM

commands 5-9, 5-13
Commands (Also, see commands)

NetROM connections 3-2
NetROM console 2-2, 3-2
NetROM reset signal 3-31
NetROM target serial port 3-27
netstat 5-17
network activity LEDs 2-18
newimage 5-23
NIS 4-5
non-TELNET sessions 8-2
nr_ChanReady 9-11
nr_ConfigDP 9-8
nr_ Cputs 9-24
nr_EmOffOnWrite 9-27
nr_FlushTX 9-13

NetROM User's Manual

nr_Getch 9-15
nr_GetMsg 9-16
nr_IntAck 9-23
nr_Poll 9-14
nr_Putch 9-12
nr_PutMsg 9-19
nr_Reset 9-20
nr_Res~c 9-21
nr_SetBlockIO 9-10
nr_SetMem 9-22
nr_TestComm. 9-25

p
parallel emulation 3-13
parallel ROMs 2-12
passive emulation cables 3-8
path Glossary-2

channel 5-110
console 5-29,5-37,5-38,5-113
debug 5-27,5-115

Phone support 1-13
ping 5-18,6-3,6-5,6-7,6-10
PLCC Glossary-2
Plug Glossary-2
pod Glossary-2
pod order 2-14, 5-70
podmem, di 5-69
podmem, set 5-42
podorder 5-127
Port Glossary-2
ports C-l
printenv 5-105
processes B-1
prompt, set 5-43
protocols C-l
ps 5-34
PSOP Glossary-2
push 4-5

R
Radio interference 1-11

RARP 2-2, 4-5, Glossary-3
RARP file names D-l
RARP filenames D-l
read-address memory F-9
readonly 5-45
read-only pod groups 2-14
readwrite 5-45,5-123
reset 3-31, 5-96
reset command signal 5-31
rese~ romset 5-86
rgconfig, di 5-70
rgconfig, set 5-44
rgname, set 5-47
ROM Glossary-3
ROM count 2-12
ROM emulation cables 3-8
ROM group 5-60, 5-70, 5-118, Glossary-3

doW7.Uoading 2-15
name 5-47
word width 5-60

ROM groups 2-12
ROMtype 2-12
romcount 5-134
romgroup 5-135
rompack utility 6-7
romset clear 5-80
romset connect 5-81
romset define 5-82
romset disconnect 5-83
romset reset 5-86
romset show 5-84
romset slaveaddr 5-85
romtype 5-136
romupgrade, set 5-48
route 5-19, Glossary-3
RS-232 5-29, Glossary-3

s
serial emulation 3-13
serial port 5-110, 5-113, 5-115
serial ROMs 2-12
serialcons 5-27
server Glossary-3

Index-5

server configuration 4-5
session Glossary-3
set consecho 5-37, 5-38
set debugecho 5-39, 5-41
set emulate 5-40
set podmem 5-42
set prompt 5-43
set rgconfig 5-44
set rgname 5-47
set romupgrade 5-48
set tgtctl 5-51
set udpsrcmode 5-53
set usemame 5-54
setenv 5-104
show, romset 5-84
slaveaddr, romset 5-85
SLIP Glossary-3
slip 5-20
SNMP C-l, Glossary-3
socket Glossary-3
software

installation 4-1
setup 4-1

startup batch file 4-6
startup batch file,creating 4-4
Static-sensitivity 1-12
status LEDs 2-18
status signal 2-17,2-18,5-64,5-72,5-92,

5-123
stty 5-98
subnet Glossary-3
subnet mask Glossary-3
Support 1-13
system image 5-48

T
target 9-7, Glossary-3
target address 2-15, 5-45, 5-70
target interface commands 5-21
target serial port 3-27
TCP 2-15, 7-2, C-l, Glossary-4
TCP connection 5-29
Technical support 1-13

Index-6

TELNET 5-29, 8-1, C-l, Glossary-4
terminal control characters 5-4
terminal session Glossary-3
TFTP 2-2,2-15,5-107,5-124,8-1, Glossary-4
TFTPserver 5-6,5-89,5-126
tgtcons 5-29
tgtctl, di 5-71
tgtctl, set 5-51
tgtip 5-139
tgtreset 5-31
tgtstatus,di 5-72
thost utility 6-10
TSOP Glossary-4
ttarget utility 6-12

U
UART 5-73
uart, di 5-73
UDP Glossary-4
udpsrcmode, di 5-74
udpsrcmode, set 5-53
upload 6-14
upload port C-1
upload utility 6-14
uploading emulation memory 6-14
uptime, di 5-75
usemame, di 5-76
utilities 6-1

V

download 6-3
ieeeparse 6-5
rompack 6-7
thost 6-10
ttarget 6-12
upload 6-14

verify 5-140
version, di 5-77
Vether 11-1
vether 5-141
virtual Ethernet 11-1

NetROM User's Manual

W
Warranty 1-13
wider memory 2-12
word size 2-12,3-15, 3-16, 5-70, 5-118, 5-142
write signal 3-29
writemode 5-143

X-Y-Z
XONIXOFF Glossary-4
Yellow Pages 4-5

Index-7

1_:
I I

-~

I_ "1
- ,

r­
I~"

I-~

1-·,

:1-:

I'
'I,

I~
I~

I:
I'
I~

[~

[J
r~

L .J

r~

L~

[!~ mm~ Applied Microsystems Corporation

