
United States Patent (19)
Knoke et al.

54)

75)

73

(21)

(22)

63)

51
52
58)

IIII
US005581695A

Patent Number: 5,581.695
Date of Patent: *Dec. 3, 1996

11

45

SOURCE-LEVEL RUN-TIME SOFTWARE
CODE DEBUGGING INSTRUMENT

Inventors: Robin L. Knoke, Duvall; Marvin T.
Johnson, Bothell, both of Wash.

Assignee: Applied Microsystems Corporation,
Redmond, Wash.

Notice: The term of this patent shall not extend
beyond the expiration date of Pat. No.
5,228,039.

Appl. No.: 271,568

Filed: Jul. 7, 1994.

Related U.S. Application Data

Continuation-in-part of Ser. No. 35,669, Mar. 23, 1993,
which is a continuation of Ser. No. 521,261, May 9, 1990,
Pat. No. 5,228,039.

Int. Cl. ... G06F 11/00
U.S. Cl. ... 395/183.04
Field of Search 395/575, 183.04;

371/16.1, 16.2, 19

References Cited

U.S. PATENT DOCUMENTS

4,084,869 4/1978 Yen ... 339/17
4,192,451 3/1980 Swerling 371/16.2
4,455,654, 6/1984 Bhaskar et al. 371/20
4,486,827 12/1984 Shima 364,200
4,569,048 2/1986 Sargent 371/16
4,622,647 11/1986 Sagnard 371122.1X
4,633,417 12/1986 Wilburn 364,550
4,661,921 4/1987 Barnes 364f708
4,674,089 6/1987 Poret, 371/16.2
4,691,316 9/1987 Phillips .. 371/2.2.1 X
4,788,683 11/1988 Hester 37.116.2
4,796,258 1/1989 Boyce et al............................... 371/16

(List continued on next page.)

OTHER PUBLICATIONS

Pasternak et al., In-Circuit-Emulation in ASIC Architec
tural Core Designs, Second Annual IEEE ASIC Seminar,
Sep. 1989, pp. 6-4.1-6.4.4.
B. K. Fawcett, "Taking Advantage of Reconfigurable
Logic,” 1989 Programmable Logic Guide, pp. 17-24.
B. Fawcett, “Logic Analyzer/In-Circuit Emulator.” The
Programmable Gate Array Data Book, 1988, pp. 6-51.

(List continued on next page.)

Primary Examiner-Robert W. Beausoliel, Jr.
Assistant Examiner-Glenn Snyder
Attorney, Agent, or Firm-Seed and Berry LLP

(57) ABSTRACT

A source-level run-time software code debugging instru
ment (10) includes target access probe (“TAP") (12) and
communications adapter (“COMDAP) (14) that process
emulation commands provided by source-level debugging
software operating on a host computer. The TAP includes a
TAP CPU (28) that receives target CPU input signals and
delivers target CPU output signals for controlling the execu
tion of software code by the target circuit in accordance with
command signals provided by the host computer. The TAP
also includes programmable logic cell array (24) and RAM
(34). The TAP logic cell array routes command and data
signals to and from the TAP CPU, and the RAM stores an
in-circuit emulation (“ICE") program used by the TAP to
operate the target circuit. The COMDAP is physically sepa
rate from the TAP and provides an interface between the host
computer and the TAP. The COMDAP includes a program
mable logic cell array (44) and an EPROM (46). The
COMDAP logic cell array routes command and data signals
to and from the COMDAP, and the EPROM stores the
commands for configuring the signal paths within the TAP
and COMDAP logic cell arrays and stores the TAP ICE
program. A fiat cable assembly (16) provides a high-speed
signal communications link between the TAP and the COM
DAP. The TAP uses certain microprocessor signal features
and source-level debugging software that runs on the host
computer to provide a software engineer with a fully trans
parent window into the internal functioning of the TAP CPU
while executing code in the target circuit environment.

103 Claims, 8 Drawing Sheets

5,581,695
Page 2

U.S. PATENT DOCUMENTS

4,809,167 2/1989 Pawloski 364/200
4,868,822 9/1989 Scott 37/16.2
4,899,306 2/1990 Greer 364/900
4,924,382 5/1990 Shouda ... 364/200
4,964,074 10/1990 Suzuki 364/900
5,047,926 9/1991 Kuo ... 364/200
5,053,949 10/1991 Allison 364/200
5,056,013 10/1991 Yamamoto 371116.2
5,068,852 11/1991 Locke 371/16.2
5,073.968 12/1991 Morrison.
5,077,657 12/1991 Cooper ...
5,109,353

... 395/500
a a 395/500

4/1992 Sample 371/2.2.2 X

OTHER PUBLICATIONS

Majewski, et al., "Emulator kit multiplies microprocessor
choices,’ 30 Electronic Design, 117-122 (Nov. 25, 1982).
Falk, "Emulators keep pace with chip speeds and complex
ity,” 26 Computer Design, 31-38 (May 15, 1987).
Everett, "In-circuit emulators keep pace with 16- and
32-bit teS,” 32 EDN-Electrical Design News, 252-258
(Jul. 23, 1987).
Balthasart, "Development of a low cost emulator for micro
processor Z80,' 95 Bulletin Scientifique No. 4, Association
des Ingenieurs Electriciens sortis de L'Insitut Electrotech
nique Montefiore, 131-136 (1982).
Santoni, "Instruments,” 26 EDN-Electrical Design News,
212-224 (Jul. 22, 1981).
Yen, “Fast emulator debugs 8085-based microcomputers in
real time,' 50 Electronics, 108-112 (Jul. 21, 1977).
The Microsystem Analyzer, Millennium Systems, Inc.,
Cupertino, CA.
Millennium Guide To Testing Microprocessor Based Sys
tems and Boards, Millenium Systems, Cupertiono, CA.
Millennium Diagnostic Programming For
Microprocessor-Based Systems, Millennium Systems,
Cupertino, CA.
Millennium Programming With SA Microsystem Analyzer,
Millennium Systems, Cupertiono, CA.
Millennium, Microsystem Analyzer, Users Manual Millen
nium Systems, Inc., Cupertino, CA.
Millennium Product Catalog, Millennium Systems, Inc.,
Cupertino, CA.
ICE-386DX In-Circuit Emulator User's Guide For DOS
Systems, By Intel Corporation (EK 1-3), Dec. 00, 1988.
Selected Pages, ICE-386DX In-Circuit Emulator Installa
tion Supplement For DOS Systems, By Intel Corporation
(EK 4-7), Dec. 00, 1988.
Features Sheet For 8088 Single Board Emulator (SBE-88),
By Huntsville Microsystems, Inc. (EK 8-9), 1986.
Pages From 8088 Single Board Emulator User's Manual
(SBE–88), By Huntsville Microsystems, Inc (EK 10–13),
1986.
Feature Sheet For EmulS1-PC Development System For
The 8051 Family, By Nohau (EK 115-117), Undated.
Electronic Design Article Titled "Development Tool
Trouble-Shotts Pgas In The Target System' (EK 119-122),
Jan. 26, 1989.
Pages Of Book Ice-85 MCS-In-Circuit Emulator, By Intel
Corp. (EK 123-126), 1978.
Feature Sheet For Mice-V-486, The First True 486 In-Cir
cuit Emuolator, By Microtek (EK 127), Undated.

Development Systems Handbook, By Intel Corp. (EK
129-137), May 1983.
Intel 386 Family In-Circuit Emulators, By Intel Corp. (EK
138-149), Jul. 1990.
Excerpt From Personal Engineering & Instrumentation
News Article Re Low-Cost Emulators (EK 150), Nov. 00,
1992.
Excerpt From Zilinx Databook Re Reconfigurable Logic,
And Showing Mesa-1, And Bibliography (EK 151), 1989.
8088 Single Board Emulator (SBE-88), By Huntsville
Microsystems Feature Sheet (EK 152-153), Undated.
6809 Single Board Emulator (SBE-09), By Huntsville
Microsystems Feature Sheet (EK 154), Undated.
Advance Information 80386 High Performance Micropro
cessor With Integrated Memory Management, By Intel
Corp. (EK 155-156), Oct. 1985.
Intel 386 Family In-Circuit Emulator, By Intel Corp. (EK
157-160), Nov. 1988.
Technical Data For The HP 64430 Emulation/Analysis Sup
port For Motorola 68030 Microprocessors, By Hewlett
Packard (EK 161-172), Mar. 1990.
Technical Data For The HP Emulation and Analysis Support
For Motorola 68020 and 68030 Microprocessors, By
Hewlett Packard (E 173-184), Mar. 1990.
Technical Data For The HP 64773A/AL Emulator/Analyzer
For AT&T We DSP32C Digital Signal Processor, By
Hewlett Packard (EK 185-192), Jul. 1990.
Technical Data For The HP Emulators And Development
Solutions For 80286/C286, 80C186/C188/186/188, 80C867
C88/86/88 Microprocessors, By Hewlett Packard (EK
193-204), May 1991.
d’ICE-51 In-Circuit Emulator For 8051S, By Cybernetic
Microsystems (EK 212), Oct. 1988.
Electronic Design Article Titled "PLD Designers Benefit
From Better Tools' (EK 221-226), Apr. 27, 1989.
Computer Design Article Titled "PC-Based PCB Design
Tools Move Into Workstation Turf' (EK 226-230), Jan. 1,
1989.
ES 1800 Emulator, By Intel Corp. (EK 244-245), Undated.
AN196-MC Real-Time Emulator, By Annapolis MicroSys
tems (EK 246), Undated.
Mesa-1 In-Circuit Verifier, By Data I/O (EK 247-250),
1989.
EL800 Series For 8-Bit Microprocessor Development Tools
For The Z80 Family Z180, And HD64180 Microprocessors,
By Applied Microsystems (EK 255–258), Jul. 1989.
ICE 386/25 User's Guide (2433DOC932-1491), Dec. 1988.
ICE 386/25 Installation Supplement (2433DOC167-252),
Dec. 1988.
ICE 386/DX Installation
(2433DOC1492-1600), Dec. 1988.
ICE 386/25 Specification Sheet (2433DOCO161-162), Jan.
1989.
ICE 386/SX Specification Sheet (2433DOCO163-164), Jan.
1989.
ICE 386 Developmental
(2433DOC2474-2985), Jan. 1988.
ICE 386SX User's Guide (2433DOCO253-748), Aug. 1988.
EL 3200 Advertisement (2432DOC01–05), 1989. .

Supplement

Solutions Packet

5,581.695 Sheet 1 of 8 Dec. 3, 1996 U.S. Patent

U.S. Patent Dec. 3, 1996 Sheet 2 of 8 5,581.695

mas
sur

amus

O O O (OG) O O Go O O G O G) O)
SN O) O G) O O. G. O. G. O. G) () (O) () (O)

O O G) G) O G O G O O G) O O G)

s

U.S. Patent

FIG. 4
94

LVL R
* CONV

LVL
RTS CONV

124

LVL

CONV

CTS

Dec. 3, 1996

FIFO
BUFFER

RECEIVE
HANDSHAKE

TRANSMITHANDSHAKE
CONTROL

Sheet 4 of 8

102

130

INPUT
PORT

REGISTER

106

132

5,581.695

TO TAP
SERIAL
OUT

164
TAP BUSY

FROM TAP
SERIAL EN

COMDAP
BUSY

10 MHZ
CLOCK

U.S. Patent Dec. 3, 1996 Sheet 6 of 8 5,581.695

FIG. 6
200 APPLY ELECTRICAL

POWERTO
DEBUGGING INSTRUMENT

202 CONFIGURE
LOGIC CELL
ARRAYS

DOWNLOAD
CE PROGRAM
TO RAM

204

APPLY LOGIC 9. STATE
TO BREAK CONDUCTOR AND
LOGIC 1 STATE TO RESET

CONDUCTOR TO RESET CPU
PROGRAM COUNTERTO
THE RESTART VECTOR

2O6

APPLY LOGIC-0STATE TO
RESET CONDUCTOR AND

MANTAIN BREAK CONDUCTOR
AT LOGIC 1 STATE TO DUMP

CONTENTS OF CPU REGISTERS

208

APPLY LOGIC-8 STATE
TO BREAK CONDUCTOR
TO RUNICE PROGRAM

210

DOWNLOAD
NEW TARGET
PROGRAM

212

U.S. Patent Dec. 3, 1996 Sheet 7 of 8 5,581.695

FIG. 7

P P TOP OF MEMORY

!-------------------------------- ---. START-UP-FFFFFFFO
REAL MODE BOOT CODE

!------------------------------- -----. O0067000

PROTECT MODE CODE

------ OOO64OOO

PROTECT MODE STACK

e - - - - - - - - - - - -ao - - - - - - - - - - - - - - - - - -

PROTECT MODE DATA

-------------------------------- ----- OOO6.0128

LOADALL AREA CS, DS, SS (r/m)
------------------------------- ------ OOO6OOOO

F------------------------------- HS SERIAL PORT SITES
HARDWARE

---------- FS-00010000

U.S. Patent Dec. 3, 1996 Sheet 8 of 8 5,581,695

A FIG. 8B P

FIG. 8A

IIII

, If,
AAA- SHELF 1

) 222 -- SHELF 2

5,581.695
1.

SOURCE-LEVEL RUN-TIME SOFTWARE
CODE DEBUGGING INSTRUMENT

This application is a continuation of application Ser. No.
08/035,669 filed May 23, 1993, which is a continuation of 5
application Ser. No. 07/521,261, filed May 9, 1990, now
U.S. Pat. No. 5,228,039.

TECHNICAL FIELD

The present invention relates to techniques for correcting
or "debugging' computer software code and, in particular, to
a source-level run-time software code debugging instrument
using microprocessor emulation technology.

BACKGROUND OF THE INVENTION

There are currently two conventional techniques used by
programmers to debug computer software code. These tech
niques include program monitors and microprocessor emu
lators.

A program monitor is intrusive software code located in
target memory to debug computer programs. The program
monitor operates in conjunction with and monitors the
operation of a main computer program that controls the
functions of a microprocessor-based target circuit. The pro
gram monitor code is intrusive in that it is linked to the main
program code, both of which are either downloaded into
memory sites provided in the target circuit or stored in a read
only memory (ROM) used by the programmer. The use of a
monitor program requires that a universal asynchronous
receiver-transmitter or other communication hardware be
provided in the target circuit so that the monitor can com
municate apart from the main program to the programmer.
The use of program monitors is advantageous because

they are relatively inexpensive and find the majority of
errors or “bugs' located in the main program. One drawback
of program monitors is that they require the use of resources
in the target circuit and typically are ineffective in detecting
more difficult problems present in the associated program
code.

An emulator is a nonintrusive software debugging tool
that uses external hardware to provide transparent operation
of a microprocessor embedded in a target circuit. The
emulator microprocessor substitutes for the target micropro
cessor during target circuit testing and execution, and the
emulator traces all activity that occurs at the target micro
processor input and output terminals. An emulator provides
a complex breakpoint system that monitors the target micro
processor activity and stops the microprocessor operations at
predetermined points for analysis of certain target circuit
signals.
An emulator is designed for use primarily in full system

integration and for solving real-time problems. A program
mer using an emulator is able to replace the programmer's
ancillary ROM with an overlay random access memory
(RAM) located in the emulator. The overlay RAM allows
the programmer to debug the program code even when the
target circuit is not complete physically and thereby shortens
the development time of microprocessor-embedded circuits.
Certain types of emulators do not require the use of the target
resources; therefore, such emulators can be viewed as non
intrusive code debugging instruments.
An emulator addresses the needs of the integration phase

and time-dependent problems in a target circuit by using a
trace feature, complex breakpoint systems, and an overlay

10

15

20

25

30

35

40

45

50

55

60

65

2
memory. Because each of these features is expensive but
critical for full system integration, such features are not
necessary for run-time debugging. Thus, one major draw
back of emulators is that they are relatively expensive,
thereby making them inaccessible to a significant percentage
of the growing number of software engineers participating in
microprocessor-based circuit design tasks.

SUMMARY OF THE INVENTION

An object of the present invention is, therefore, to provide
cost-effective early access to a microprocessor-embedded
target computer system for software debugging by a pro
grammer.

Another object of the invention is to provide a software
code debugging instrument that allows the shortening of
development time for microprocessor-embedded target
computer systems.
A further object of the invention is to address the increas

ing ratio of software engineers to hardware engineers and to
shorten the time-to-market by cost-effectively providing
each member of a software design team with a run-time code
debugging instrument.

Yet another object of the invention is to provide a cost
effective transparent run-time instrument that need not
require the use of target resources to function.
The present invention is a source-level run-time software

code debugging instrument that uses emulation technology.
The invention fills avoid in the microprocessor-based circuit
development cycle because it is a cost-effective, transparent
run-time software debugging instrument that need not use
the target resources required by a monitor and does not
provide the complex, expensive debugging features present
in an emulator.

A preferred embodiment of the present invention includes
a target access probe (“TAP') subsystem and a communi
cations adapter ("COMDAP") subsystem that process emu
lation commands provided by a host analysis code source
Such as source-level debugging software operating on a host
computer. The TAP includes a microprocessor or central
processing unit ("CPU”) that receives target CPU input
signals and delivers target CPU output signals for control
ling the execution of software code by the target circuit in
accordance with command signals provided by the host
computer. The command signals from the host computer
formulate operating instructions that the TAP CPU receives
and decodes to cause the target circuit to produce a desired
response. The TAP also includes a first programmable logic
cell array and a RAM. The first programmable logic cell
array routes command and data signals to and from the TAP
CPU along signal paths established to assemble such signals
in a digital word format that is compatible to the specific
type of TAP CPU in use. The RAM stores an in-circuit
emulation (“ICE") program used by the TAP to operate the
target circuit whenever the TAP assumes target circuit
control.

The COMDAP, which is physically separate from the
TAP, provides an interface between the host computer and
the TAP. The COMDAP includes a second programmable
logic cell array and an erasable programmable ROM
("EPROM"). The second programmable logic cell array
routes command and data signals to and from the COMDAP
along signal paths established to assemble such signals in a
digital word format that is compatible with the specific type
of host analysis code source and TAP in use. The EPROM
stores the commands for configuring the signal paths within

5,581.695
3

the first and second programmable logic cell arrays and
stores the TAPICE program, which is transferred to the TAP
RAM upon initial application of electrical power to the
debugging instrument.
A flat cable assembly provides the necessary signal com

munications link between the TAP and the COMDAP. The
use of the EPROM in conjunction with the first and second
programmable logic cell arrays in the TAP and COMDAP,
respectively, allows a software engineer to provide software
code that configures the TAP for a particular type of micro
processor and the COMDAP for a particular type of host
analysis code source.
The present invention differs from a software monitor in

that the former monitors and controls the execution of code
in the target circuit without requiring prior code modifica
tion or without using target memory or input-output cir
cuitry. The present invention includes RAM sites on the TAP
and EPROM sites on the COMDAP, thereby eliminating the
use of target RAM or ROM space. Equipping the debugging
instrument with the COMDAP eliminates the need for use of
a target universal asynchronous receiver-transmitter or other
communication hardware.

Because of certain microprocessor signal features used by
the TAP, source-level debugging software that runs in the
host computer provides the software engineer with a fully
transparent window into the internal functioning of the TAP
CPU while executing code in the target circuit environment.
This window into the TAP CPU combined with powerful
source-level debugging software provides a software engi
neer with the capability of solving run-time problems. A
preferred source-level debugging software package facili
tates ready access to data structures, arrays, dynamic vari
ables, and data breakpoints. The software engineer can read
data from and write data to specific target locations as well
as transmit register states and other data to the debugging
program for display to the software engineer. The software
engineer can also download and upload code, execute code
starting at a preset value, and stop code at a preset value. A
software engineer may use target interrupt resources
depending on target circuit CPU being emulated.

Additional objects and advantages of the present inven
tion will be apparent from the detailed description of a
preferred embodiment thereof, which proceeds with refer
ence to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a pictorial view of the software code debugging
instrument of the present invention, which includes target
access probe ("TAP") and communications adapter ("COM
DAP") subsystems connected by a flat cable assembly.

FIG. 2 is an enlarged view of the lower side of the TAP,
the upper side of which is shown in FIG. 1.

is a functional block diagram of the TAP subsystem of the
present invention.

FIG. 4 is a functional block diagram of the COMDAP
subsystem of the present invention.

FIG. 5 is a block diagram showing the functions imple
mented in software used by the present invention to perform
microprocessor-based emulation.

FIG. 6 is a flow diagram showing the processing steps for
initially configuring the TAP and COMDAP for operation.

FIG. 7 shows an address map for the RAM included as
part of the TAP

FIG. 8 is a diagram showing certain areas of the topology
of the Intel() 80386 microprocessor chip where wire place

10

15

20

25

30

35

40

45

50

55

60

65

4
ment is required to bond out three signal features used by a
preferred embodiment of the present invention.

DETALED DESCRIPTION OF PREFERRED
EMBODIMENT

FIG. 1 is a pictorial view of a preferred embodiment of
software code debugging instrument 10 of the present inven
tion. Debugging instrument 10 includes a target access probe
(“TAP") subsystem 12 and a communications adapter
("COMDAP") subsystem 14 interconnected by a detachable
flat cable assembly 16. COMDAP 14 receives command
signals transmitted on a RS-232 serial communications link
18 from a host analysis code source or host computer (not
shown) on which a fully integrated windowed debugging
software program operates. Communications link 18 is
preferably of the RS-232 type because standard computer
terminals use a communications protocol defined by EIA
standard RS-232 to send and receive data from a control
computer. COMDAP14 conditions the command signals for
delivery through the conductors of cable assembly 16 to TAP
12.

TAP12 includes a printed circuit board 20 that carries on
its upper surface 22 a first programmable logic cell array 24
and a first socket 26 that receives the lead pins of a
microprocessor or central processing unit ("CPU”) 28.
Socket 26 is affixed to conductive regions of circuitboard 20
by solder pads associated with different ones of the micro
processor lead pins. Printed circuit board 20 carries on its
lower surface 30 a second socket 32 having multiple down
wardly depending pins 33 (FIG. 2) that connect by electri
cally conductive paths through circuit board 20 to the solder
pads of socket 26 and can be inserted into a female target
CPU socket on the target circuit board (not shown). Printed
circuitboard 20 also carries on its lower surface 30 a random
access memory ("RAM")34. Programmable logic cell array
24 establishes signal flow paths necessary to provide data
and address signals in the proper digital word format to CPU
28 and RAM 34. CPU 28 substitutes for and plugs into the
socket receptacles dedicated for a CPU on the target circuit
board, and RAM 34 functions as the in-circuit emulation
(“ICE") program memory for TAP12 when it takes control
c target circuit operation.
COMDAP 14 includes a printed circuit board 40 that

carries on its upper surface 42 a second programmable logic
cell array 44 and an erasable programmable read only
memory ("EPROM") 46. COMDAP 14 also includes a 30
MHz crystal oscillator 48 and associated frequency divider
circuitry 50 that provide clock signals to programmable
logic cell arrays 24 and 44 to enable high-speed serial
command and data transfer between TAP 12 and COMDAP
14 through cable assembly 16.
TAP 12 and COMDAP 14 are preferably physically

separate so that TAP 12 can be used with COMDAPs 14
adapted for use with host computers of different types and so
that COMDAP 14 can be used with TAPs 12 adapted for use
with CPUs 28 of different types. It will be appreciated,
however, that TAP 12 and COMDAP 14 need not reside on
separate printed circuit boards but may share a common
printed circuit board, if desired.

FIG. 3 is a functional block diagram of TAP 12. With
reference to FIG.3, first programmable logic cell array 24 of
TAP12 is configured to have a data receive shift register 60
and a data transmit shift register 62 that respectively receive
serial digital commands from and deliver serial digital data
to COMDAP 14 through cable assembly 16. One commer

5,581.695
5

cially available device suitable for use as logic cell array 24
is a part number XC 3042 logic cell array manufactured by
XILINX, Inc., San Jose, Calif. Logic cell array 24 is also
configured to have a pair of first-in, first-out ("FIFO") buffer
registers 64 and 66, the former receiving serial digital
commands from the output of shift register 60 and the latter
delivering serial digital commands or data to the input of
shift register 62. Logic cell array 24 is configured as
described above in accordance with commands stored in
EPROM 46 of COMDAP14 (FIG. 1). Shift registers 60 and
62 assemble the serial digital commands and data received
from or delivered to the COMDAP.
An output port register 68 of logic cell array 24 receives

the byte wide digital words from FIFO register 64 and
provides them as address words and data words of the
required length and in the required format for use by CPU
28. These address and data words appear on separate sets of
conductors to the respective address bus conductors 70 and
data bus conductors 72 of CPU 28. An input port register 74
of logic cell array 24 and RAM 34 receive parallel digital
address words and data words from the respective address
bus conductors 70 and data bus conductors 72 of CPU 28.
Input port 74 reconfigures the address and data information
into byte wide format and provides them to FIFO register 66
for delivery to shift register 62 and COMDAP14. RAM 34
stores the software code representing the ICE program for
TAP12 to perform the debugging function. The contents of
RAM34 are loaded upon initial application of power to TAP
12 as will be described later below. The address bus con
ductors 70 and data bus conductors 72 are connected to the
appropriate address input conductors and data output con
ductors of RAM 34 to effect operational control of CPU 28
in response to command signals that formulate operating
instructions provided by the host computer to debugging
instrument 10.

Shift registers 60 and 62 of logic cell array 24 provide
digital words to CPU 28 in accordance with the instructions
delivered to instrument 10 from the host computer debug
ging software and provides address words and data words
indicative of the results produced by the target software for
analysis by the software in the host computer in response to
earlier provided instructions. The ICE program software
inscribed in RAM 34 effects the proper execution of the
instructions delivered to debugging instrument 10 from the
host computer.

FIG. 3 shows TAP 12 providing a BREAK signal on a
conductor 76 and a RESET signal on a conductor 78 to
respective BREAK and RESET inputs of CPU 28. The
BREAK signal indicates the receipt by FIFO register 64 of
any command from the host computer to stop the execution
of the target program by CPU 28. The RESET signal is
developed by a RESET circuit 80 in response to a RESET
signal generated by a software engineer activating a RESET
button 82 (FIG. 1) to reset the target program to its starting
address. The BREAK and RESET signals affect the opera
tion of CPU 28 in a manner that is described in detail below.

FIG. 4 is a functional block diagram of COMDAP 14.
With reference to FIG. 4, second programmable logic cell
array 44 of COMDAP14 is configured to have a data receive
shift register 90 and a data transmit shift register 92 that
respectively receive serial digital commands from and
deliver serial digital data to the host computer through
communications link 18. Logic cell array 44 is of a similar
type to that of logic cell array 24. A pair of voltage level
converters 94 and 96 condition the digital signals respec
tively received from and transmitted to the host computer.

Logic cell array 44 is also configured to have a pair of
FIFO buffer registers 98 and 100, the former receiving byte

O

15

20

25

30

35

40

45

50

55

65

6
wide digital commands from the output of shift register 90
and the latter delivering byte wide digital data to the input
of shift register 92. Logic cell array 44 is configured as
described above in accordance with commands stored in
EPROM 46 of COMDAP 14 (FIG. 1). FIFO register 98
temporarily stores the byte wide digital commands received
from shift register 90 at a relatively low data rate for delivery
to TAP 12 through cable assembly 16 at a relatively high
data rate. FIFO register 92 temporarily stores the byte wide
digital data received from TAP 12 at a high data rate for
delivery to shift register 92 and transmission to the host
computer through communications link 18 at a relatively
low data rate.
An output port register 102 of logic cell array 44 receives

byte wide digital commands from FIFO register 98 and
delivers them in serial format at a high data rate on a
conductor 104 of cable assembly 16 to data receive shift
register 60 of TAP12. An input port register 106 of logic cell
array 44 receives serial digital data from data transmit shift
register 62 of TAP12 at a high data rate on a conductor 108
of cable assembly 16.
The digital commands and data are transmitted in serial

format between TAP 12 and COMDAP 14 through the
conductors of cable assembly 16 at a 10 Mbps rate. This is
accomplished by 30 MHz oscillator 48 and a divide-by-three
counter 110 connected to the output 112 of oscillator 48,
which together develop a 10 MHz clock signal that is
delivered to output port register 102 and input port register
106. The 10 MHz clock signal is also provided on a
conductor 114 of cable assembly 16 for delivery to data
receive shift register 60 and data transmit shift register 62 of
TAP12. Output 112 of 30 MHz oscillator 48 is also applied
to a programmable frequency divider 116 that provides on
its output 118 a baud rate clock signal, which is applied to
the clockinputs of receive shift register 90 and transmit shift
register 92 that, respectively, receive serial commands from
and provide serial data to the host computer. The baud rate
clock enables COMDAP 14 to receive command signals
from and deliver data signals to the host computer at a rate
that differs from the 10Mbps data transfer rate between TAP
12 and COMDAP 14. A manually programmable baud rate
switch 120 facilitates the selection of a baud rate that is
appropriate to the capabilities of the type of host computer
with which COMDAP 14 communicates. A 19.2K baud rate
is appropriate for a PC type host computer.
The transmission of command and data signals among the

host computer, TAP 12, and COMDAP 14 takes place at
different rates. Moreover, commands are assembled in byte
wide digital format in TAP 12 for transmission to and from
CPU 28. To accommodate the resulting timing differences,
coordination of command and data transfer among the host
computer, TAP12, and COMDAP14 is accomplished by the
use of handshake techniques.
FIFO register 98 provides on an output terminal 122

through a voltage level converter 124 a RECEIVE HAND
SHAKE CONTROL signal to the host computer, and FIFO
register 100 receives on an input terminal 126 through a
voltage level converter 128 a TRANSMIT HANDSHAKE
CONTROL signal from the host computer. The two hand
shake control signals coordinate the data transfer between
the serial digital signal input and output ports of the host
computer and COMDAP14. FIFO register 98 receives on a
conductor 130 of cable assembly 16 a TAP BUSY signal
from FIFO register 64 whenever TAP 12 is providing
information to or receiving information from CPU 28.
Similarly, FIFO register 100 delivers on a conductor 132 of
cable assembly 16 a COMDAP BUSY signal whenever

5,581.695
7

COMDAP 14 is processing an instruction and is unavailable
for receiving data from data transmit shift register 62 of TAP
2.
EPROM 46 provides on multiple output conductors 134

command signals for configuring the data pathway struc
tures of logic cell arrays 24 and 44 and address and data
signals for loading the operations program in RAM. 34. All
of these functions occur upon initial application of electrical
power to debugging instrument 10.

FIG. 5 is a block diagram showing the functions imple
mented in software for processing command signals sent to
the target circuit and for processing data signals developed
by the target circuit in response to such commands. Debug
ging instrument 10 operates in association with a host
computer that is implemented with windowed, source-level
debugging software. The debugging software provides com
mand signals that debugging instrument 10 processes and
delivers to a target circuit to provide a software engineer
with the capability of solving run-time problems.
A preferred embodiment of debugging instrument 10 is

designed for use in debugging a target circuit controlled by
an Intel® 80386 32-bit microprocessor. A preferred source
level debugging software program is the VALIDATE(E)/Soft
Scope IIIG) 386, which together with Pharlap 386 ASM/
Linkloc assembly software, supports Intel OMF-compatible
languages, MicroSoft(E) C, and most compilers. The pre
ferred embodiment of debugging instrument 10 provides a
software engineer with a fully transparent window into the
internal functioning of the Intel® 80386 microprocessor
when executing software code instructions in the target
environment.

With reference to FIG. 5, an application software driver
150 of the host computer provides a set of command signals,
referred to as a set of "C calls,' in accordance with the
debugging software applications program. The C calls are
delivered to an ASCII Remote Control Driver (“ARCD')
152, which interprets the C calls and conditions them to a
format that is compatible for transmission to COMDAP 14.
ARCD 152 interprets the C calls as commands having
command codes and command fields. A command code is a
standard ASCII character (7-bit ASCII code), such as "M’
for a memory write command and "m' for a memory read
command. The command code may be followed by one or
more field codes.

The basic command protocol of ARCD 152 is the receipt
of a C call from the host computer and the receipt of a
response delivered by debugging instrument 10 from the
target circuit. The commands interpreted by ARCD 152 are
delivered to a serial port 154 included within the host
computer hardware for transmission as serial digital signals
on a conductor 156 of the RS-232 communications link 18
to TAP12 by way of COMDAP14. The commands received
by TAP 12 are processed in accordance with an operations
program initially stored in EPROM 46 of COMDAP 14 and
transferred to RAM 34 of TAP12 upon initial application of
electrical power.
The ICE program stored in RAM 34 effectively substi

tutes for the target program provided in the target circuit
whenever debugging instrument 10 takes control of the
target circuit operation. In FIG. 5, process block 160 rep
resents the translation by the ICE program stored in RAM 34
of a command in ASCII format to binary format for use by
the Intel® 80386 microprocessor-based target circuit. Pro
cess block 162 represents the decoding of the command, and
process block 164 represents various exemplary functions
Such as configure database, execute breakpoint data base or

5

10

15

20

25

30

35

40

45

50

55

60

65

8
single step instruction analysis, access memory, and access
register that a particular command could entail. Process
block 166 represents the register table assembled specifi
cally for the Intel() 80386 microprocessor, and indicates in
broken lines additional separate register tables custom
arranged in additional memory space for selective use with
microprocessors of different types.

FIG. 6 is a flow diagram showing the sequence of
operations debugging instrument 10 carries out to enable
debugging of a target circuit. With reference to FIG. 6,
process block 200 represents the initial application of elec
trical power to debugging instrument 10.

Process block 202 indicates that, immediately after appli
cation of electrical power, the command signals required to
configure logic cell arrays 44 and 24 of COMDAP 14 and
TAP 12, respectively, are sequentially read out from the
memory sites that correspond to the lowest order addresses
(starting at hexadecimal 0000) of EPROM 46.
Once logic cell arrays 24 and 44 are properly configured

to operate with the particular host computer and CPU 28 in
use, the contents of one-half of the memory sites that
correspond to the highest order addresses (hexadecimal
8000-FFFF) of EPROM 46 are downloaded to RAM 34, as
indicated by process block 204. The information transfer to
RAM 34 is the firmware representing the ICE program of
TAP 12. (In a preferred embodiment, EPROM 46 has a 64
K-byte storage capacity but RAM34 has a 32K-byte storage
capacity, thereby providing TAP12 with memory expansion
capability.) The above-described operations are effected by
means of conventional hardware techniques for initializing
computer-based electronic circuitry.

Process block 206 represents the application of a logic 1
state on RESET conductor 78 and a logic 0 state on BREAK
conductor 76 of CPU 28 to reset its program counter to the
restart vector, which is defined in the Intel() 80386 speci
fications.

Process block 208 indicates the application of a logic 0
state to RESET conductor 78 and a logic 1 state to BREAK
conductor 76 will cause CPU 28 to dump the contents of the
target CPU registers to ICE memory space in RAM 34,
which ICE memory space begins at hexadecimal address
60000. The result is that RAM 34 stores the contents of the
target CPU registers before the target operations program
has an opportunity to run and before the ICE program runs
the target circuit. This allows the software engineer to step
through the registers and inspect their contents.

Process block 210 indicates that applying a logic 1 state
on BREAK conductor 76 causes CPU 28 to run on the ICE
program stored in RAM 34. This assumes a preexisting
condition of debugging instrument 10 operating on the target
program, which operation requires a logic 0 state on
BREAK conductor 76.

Process block 212 indicates that the software engineer can
at this stage download a different target program, if the
software engineer so desires.

Debugging instrument 10 performs emulation functions
on a target circuit controlled by CPU 28, which in a
preferred embodiment is an Intel® 80386 32-bit micropro
cessor. To provide a capability for complete transparency
during the emulation process, debugging instrument 10
takes advantage of three signal features provided by emu
lation hardware integrated within the Intel(E) 80386 chip (but
not bonded out to the CPU pins) and of certain undocu
mented instructions. Applicants have identified the signal
features as IADS, RDY, and BREAK and have identified
the undocumented instructions as LOADALL and four

5,581.695
9

MOV instructions. (The term "undocumented' refers to
instructions implemented in the Intel(E) 80386 microproces
sor but not mentioned in its specification sheets.)
The IADS ('in-circuit emulation address strobe') and

IRDY ("in-circuit emulation ready”) signals implement an
additional 4 Gigabyte address space, which is available as an
alternative to, and an image of, the normal 4 Gigabyte
address space dedicated for use by the software engineer.
This additional memory space is referred to herein as "ICE
memory space' and represents memory sites in RAM34. To
access ICE memory space, the Intel(B) 80386 microprocessor
generates an IADS signal instead of the documented normal
ADS signal. The appropriate ICE memory sites respond to
the receipt of the IADS signal by generating an IRDY signal,
instead of the documented normal RDY signal dedicated to
the target memory system.

There are several ways to cause the Intel(E) 80386 micro
processor to generate addresses in the ICE memory space.
One way is to apply to BREAK conductor 76 a logic 0 state,
which suspends execution of the target program and com
mences execution of instructions stored in ICE memory
Space at the restart vector, beginning at hexadecimal address
FFFFFFF0. Applying a logic 0 state to BREAK conductor
76 also saves in a LOADALL area of ICE memory space the
contents of the Intel(E) 80386 microprocessor registers at the
point of transfer to ICE memory space. (This can be con
sidered as a "SAVEALL" instruction for storing the current
microprocessor state in the LOADALL area.) Thus, the
current microprocessor state in the target program execution
remains available for inspection, later resumption of the
target program, or modification as desired. The BREAK
signal allows, therefore, the software engineer to seize
control of the target program.

Executing the undocumented LOADALL instruction,
whose opcode is 0F07, transitions the Intel(E) 80386 micro
processor from ICE memory space to target memory space.
Before entering target memory space by executing a LOAD
ALL instruction, breakpoints need to be set to acquire
control of CPU 28 at the appropriate time during target code
execution. One method is to set software breakpoints, such
as an instruction that, when executed, will cause a BREAK
to ICE memory space. In the Intel(E) 80386, this instruction
has a single opcode "F1' that when executed saves the target
CPU states in the LOADALL area of ICE memory space, as
was described above. Another method is to set bit number 12
of the DEBUG register DR7 to a logic 1 state. This causes
the hardware breakpoint feature of the Intel(E) 80386 to
BREAK to ICE memory space rather than to target memory
Space.

Whenever a hardware or software breakpoint occurs,
CPU 28 will dump the contents of the CPU internal registers
to the LOADALL area, starting at hexadecimal address
60000, and then proceed to the RESTART vector and begin
execution.

In summary, executing the LOADALL instruction tran
sitions the Intel® 80386 microprocessor from ICE memory
space to target memory space. Effecting a BREAK condition
(i.e., executing SAVEALL) causes storage of the entire state
of the Intel(E) 80386 microprocessor in the LOADALL area
of ICE memory space. The target program can be resumed
by executing the undocumented LOADALL instruction.
Effecting a BREAK condition causes, therefore, a
SAVEALL of the microprocessor state to ICE memory
address 60000 and begins execution in ICE memory space
at FFFFFFF0. The SAVEALL/LOADALL capability of the
Intel® 80386 microprocessor loads the entire microproces

5

O

15

20

25

30

35

40

45

50

55

60

65

10
sor state, including "invisible' descriptor caches, from ICE
memory addresses 60000 to 60127.

Table 1 below identifies the hexadecimal addresses for the
target CPU register contents stored in the LOADALL area of
ICE memory space.

TABLE 1

Address Microprocessor Register

60000 CRO
60004 EFLAGS
60008 EIP
6000C EDI
60010 ESI
60014 EBP
60018 ESP
6001C EBX
60020 EDX
60.024 ECX
60028 EAX
6002C DR6
60.030 DRT
60034 TR
60038 LDTS
6003C GS
60040 FS
60.044 DS
600.48 SS
6004C CS
60050 ES
60054 TSS Attributes
60.058 TSS BASE
6005C TSS LIMIT
60060 IDTAttributes
60.064 IOT BASE
60068 IDT LIMIT
6006C GDTAttributes
60070 GEDT BASE
60074 GDT LIMIT
60078 LDTAttributes
6007C LDT BASE
60080 LDT LIMIT
60084 GSAttributes
60088 GS BASE
6008C GSLIMIT
60090 FSAttributes
60094 FSBASE
60098 FS LIMIT
6009C DS Attributes
600A0 DS BASE
600A4 DS LIMIT
600A8 SS Attributes
600AC SS BASE
6OOBO SS LIMIT
600B4 CS Attributes
600B8 CS BASE
600BC CS LIMIT
600CO ES Attributes
600C4 ES BASE
600C8 ESLIMIT
6O100 Attributes of selector recently loaded
60104 undefined
6O108 Destination EP of last JMP FAR
6O10C undefined
6010 undefined
6014 undefined
60118 undefined
6011C undefined
6O120 undefined
6O124 WEP Walue of virtual EP

The information in Table 1 enables the software engineer to
examine the state of the CPU registers and alter their
contents, if desired.
The four undocumented MOV instructions perform target

memory read and write operations from ICE memory
address space. A set of possible mnemonics for these four
instructions for inclusion in an Intel® 80386 microprocessor

5,581.695
11

disassembler, together with their opcodes and descriptions
are summarized below in Table 2.

TABLE 2

Opcode Instruction Description

OFO fr MVTGT rim8, r8 Move Byte to target address rim
OF11 fr MVTGT ring2, r32 Move Dword to target address

rim
OF12 fr MVTGT rS, rim8 Move Byte from target address

rim
OF13 fr MVTGTr32, rim32 Move Dword from target

address rim

In Table 2, "/r' specifies the register address and "r/m'
specifies the effective address in target memory space. The
mnemonic “MVTGT" refers to "MOV to target space,” and
the terms "Byte' and "Dword' refer to 8-bit data and 32-bit
data, respectively. (All addresses are 32 bits in length.) The
above instructions work properly in the protect mode of the
Intel() 80386 microprocessor. Persons having ordinary skill
in the art would appreciate the relationship of these instruc
tions to the operation of the Intel®) 80386.

FIG. 7 shows for RAM 34 the memory map summarizing
the starting addresses in ICE memory space for information
stored in response to execution of the unidentified signal
features and undocumented instructions. The address assign
ments in memory space for protect mode code, protect mode
stack, and protect mode data are optional. Other optional
address assignments are real mode boot code, which refers
to the starting address at initial application of electrical
power, and HS ("high-speed”) serial port locations, which
refer to memory sites from which data and instructions are
transferred between the host computer and debugging instru
ment 10.

FIG. 8 shows a diagram of the topology of the Intel()
80386 microprocessor chip for accomplishing a bond out of
the IADS, IRDY, and BREAK signal features to the CPU
pins. With reference to FIG. 8, arrows 13E and 13F in
DETAIL C and arrow 7C in DETAIL A designate the areas
for placement of bondout wires (shown as broken lines) for
the IADS, IRDY, and BREAK signal features, respectively.

It will be obvious to those having skill in the art that many
changes may be made to the details of the above-described
preferred embodiment of the present invention without
departing from the underlying principles thereof. As a first
example, the debugging instrument can be adapted for use
with target circuits controlled by a CPU other than an Intel(R)
80386 microprocessor. Depending on the type of CPU,
different program instructions may be required to provide
the fully transparent window into the internal functioning of
the TAP CPU while executing code in the target circuit
environment. As a second example, the programmable logic
cell arrays may be replaced by individual digital circuit
components electrically interconnected to achieve the func
tions described herein. The scope of the present invention
should, therefore, be determined only by the following
claims.
We claim:
1. A target access probe ("TAP") for connecting to a target

circuit that includes a target CPU communicating with a
target program memory having memory sites that store main
program instructions for exercising of target circuit compo
nents, the target CPU having input and output terminal
positions at which respective specified target CPU input and
output signals appear, the TAP testing and verifying the
operational performance of software, in the target circuit in
response to host command signals provided by a host

O

15

20

25

30

35

40

45

50

55

60

65

12
computer in the electrical absence of the target CPU and
comprising:

a connector for electrically and mechanically connecting
the TAP to the target circuit at the target CPU position,
the connector being fixedly mounted on the TAP and
being adapted for attachment directly to the target
circuit so that the TAP is physically supported by the
target circuit,

a TAP CPU receiving target CPU input signals at the input
terminal positions and delivering target CPU output
signals at the output terminal positions;

in-circuit emulation ("ICE') circuitry including ICE pro
gram memory sites that store ICE program instructions,
the ICE circuity communicating with the TAP CPU for
producing the target CPU output signals in accordance
with the ICE program instructions executed by the TAP
CPU in response to the host command signals; and

an input and output signal link for providing a signal link
to and from the host computer and for the target CPU
input and output signals, the ICE program memory
sites residing wholly outside of the target circuit and the
target circuit address space, and the delivery of the
target CPU input signals to the corresponding target
CPU input terminal positions and the delivery of the
target CPU output signals to the corresponding target
CPU output positions in response to the host command
signals providing a capability for testing and verifying
the performance of the target circuit in accordance with
the ICE program instructions independently of the
target program stored therein.

2. The TAP of claim 10 wherein the TAP further includes
a rigid substrate, and wherein the connector, the TAP CPU,
and the in-circuit emulation circuitry are physically mounted
on the substrate so that the TAP is physically supported on
the target circuit by the connector.

3. The TAP of claim 1 wherein the TAP CPU includes
emulation specific circuitry specially adapted to perform
emulation functions, and wherein the emulation specific
circuitry of the TAP CPU is accessible externally of the TAP
CPU and coupled to other circuitry on the TAP.

4. The TAP of claim 1 wherein the TAP CPU further
performs the function of communicating directly with the
host computer to receive the host command signals from the
host computer.

5. The TAP of claim 1 wherein the ICE circuitry includes
a memory containing at least one ICE program memory site.

6. The TAP of claim 1 wherein the ICE circuitry includes
a random access memory containing the ICE program
memory sites, and wherein the TAP CPU fetches the ICE
program instructions directly from the random access
memory.

7. The TAP of claim 1 wherein the TAP CPU is adapted
to communicate with both the host computer and the target
CPU.

8. The TAP of claim 1 wherein the ICE circuitry includes
a memory into which the ICE program instructions are
loaded upon initialization of the TAP.

9. The TAP of claim 8 wherein all of the ICE program
instructions are loaded upon initialization of the TAP

10. The TAP of claim 8 wherein multiple ICE program
instructions are loaded upon initialization of the TAP

11. The TAP of claim 8 wherein multiple instructions of
the ICE program are loaded upon initialization of the TAP

12. An instrument for testing and verifying the operational
performance of software in a target computer system in the
electrical absence of a target CPU having input and output
terminal positions at which respective specified target CPU
input and output signals appear, the instrument comprising:

5,581.695
13

a target access probe ("TAP’) including a TAP CPU
receiving target CPU input signals and delivering target
CPU output signals for controlling the execution of
software code on the target computer system in accor
dance with command signals provided by a host analy
sis code source, the TAP including a connector for
electrically connecting the TAP CPU to the target
computer system at the target CPU position, the TAP
further including a memory storing an in-circuit emu
lation (“ICE") program containing instructions for the
TAP CPU in accordance with the command signals
from the host analysis code source, the ICE program
residing wholly within the memory and outside both
the target computer system and the target computer
address space during execution of the ICE program by
the TAP CPU, the TAP further including a TAP signal
routing integrated circuit for assembling the host com
mand signals into a digital word format and routing the
assembled command signals to the TAP CPU;

a communications adapter that provides an interface
between the host analysis code source and the TAP, and

a data communication link for providing a data commu
nication link between the TAP and the communications
adapter.

13. The instrument of claim 12 wherein the connector is
fixedly mounted on the TAP and is adapted to plug directly
into the target computer system at the target CPU position so
that the TAP is physically supported by the target computer
system.

14. The instrument of claim 12 wherein the TAP CPU
includes emulation specific circuitry specially adapted to
perform emulation functions, and wherein the emulation
specific circuitry of the TAP CPU is accessible externally of
the TAP CPU and coupled to other circuitry on the TAP

15. The instrument of claim 12 wherein the communica
tions adapter is physically separate from the host analysis
code source.

16. The instrument of claim 12 wherein the TAP CPU
further performs the function of communicating directly
with the communications adapter to receive the command
signals from the host analysis code source.

17. The instrument of claim 12 wherein the TAP CPU
fetches the instructions of the ICE program directly from the
memory.

18. The instrument of claim 12 wherein the TAP CPU is
adapted to communicate with both the host analysis code
source and the target CPU.

19. The instrument of claim 12 wherein the instructions of
the ICE program are loaded into the memory upon initial
ization of the TAP CPU.

20. The instrument of claim 19 wherein all of the instruc
tions of the ICE program are loaded upon initialization of the
TAP CPU.

21. The instrument of claim 19 wherein multiple instruc
tions of the ICE program are loaded upon initialization of the
TAP CPU.

22. A target access probe ("TAP) for verifying and
controlling the operational performance of software in a
target system having a microprocessor position in accor
dance with instructions from a host analysis code source,
comprising:

a first connector for electrically and mechanically con
necting the TAP to the target system at the target
microprocessor position, the first connector being fix
edly mounted on the TAP and being adapted for attach
ment directly to the target system so that the TAP is
physically supported by the target system;

1O

15

20

25

30

35

40

45

50

55

60

65

14
a TAP microprocessor adapted to receive and transmit

signals to and from the target system through the first
connector,

emulation circuitry adapted to store an in-circuit emula
tion ("ICE") program and provide instructions to the
TAP microprocessor in accordance with instructions
from the host analysis code source, the ICE program
being stored entirely in the emulation circuitry on the
TAP during execution of the ICE program by the TAP
microprocessor so that the TAP microprocessor need
not fetch instructions from the target system, the target
system address space, or the host analysis source code
during execution of the ICE program; and

a second connector for linking the TAP with the host
analysis code source.

23. The TAP of claim 22 in which the ICE program is
loaded into the emulation circuitry when power is applied to
the TAP

24. The TAP of claim 23 in which the ICE program is
loaded into the emulation circuitry from outside of the TAP

25. The TAP of claim 22 in which emulation circuitry
comprises a random access memory.

26. The TAP of claim 22 wherein the TAP microprocessor
includes emulation specific circuitry specially adapted to
perform emulation functions, and wherein the emulation
specific circuitry of the TAP microprocessor is accessible
externally of the TAP microprocessor and coupled to other
circuitry on the TAP

27. The TAP of claim 22 wherein the TAP microprocessor
further performs the function of communicating directly
with the host analysis code source to receive the instructions
from the host analysis code source.

28. The TAP of claim 22 wherein emulation circuitry
includes a random access memory containing the ICE pro
gram, and wherein the TAP CPU fetches the instructions of
the ICE program directly from the random access memory.

29. The TAP of claim 22 wherein the TAP CPU is adapted
to communicate with both the host computer and the target
CPU.

30. The TAP of claim 22 wherein the emulation circuitry
includes a memory into which instructions of the ICE
program are loaded upon initialization of the TAP.

31. The TAP of claim 30 wherein all of the instructions of
the ICE program are loaded upon initialization of the TAP

32. The TAP of claim 22 further comprising a signal
routing integrated circuit for configuring electrical signals
for transmission between the TAP and the host analysis code
SOLTCC.

33. The TAP of claim 32 in which the signal routing
integrated circuit is of a programmable type.

34. The TAP of claim 32 in which instructions for
programming the signal routing integrated circuit and the
ICE program are loaded into the signal routing integrated
circuit and the emulation circuitry, respectively, from out
side the TAP upon application of power to the TAP.

35. The TAP of claim 32 in which the signal routing
integrated circuit is of a reprogrammable type.

36. The TAP of claim 35 in which the signal routing
integrated circuit is programmed by instructions received
after application of power to the TAP

37. The TAP of claim 36 in which the signal routing
integrated circuit is programmed by instructions received
from outside of the TAP.

38. The TAP of claim35 in which the TAP microprocessor
includes a program counter and in which upon application of
power to the TAP the signal routing integrated circuit is
programmed, the ICE program is loaded into the emulation
circuitry, and the program counter is set to a restart vector.

5,581,695
15

39. The TAP of claim 34 in which the TAP microprocessor
includes BREAK and RESET conductors having logic states
and in which the BREAK and RESET conductors are set to
logic states of reset the program counter to a restart vector.

40. The TAP of claim 39 in which the TAP microprocessor
includes CPU registers and in which the RESET conductor
and BREAK conductor are set to logic states to dump the
contents of the CPU register and the BREAK conductor is
then set to a logic state to run the ICE program in the
emulation circuitry.

41. An instrument for testing and verifying the operational
performance of software in a target computer system in the
electrical absence of a target CPU having input and output
terminal positions at which respective specified target CPU
input and output signals appear, the instrument comprising:

a target access probe ("TAP") including a connector for
electrically and mechanically connecting the TAP to the
target system at the target CPU position, the connector
being fixedly mounted on the TAP and being adapted
for attachment directly to the target computer system so
that the TAP is physically supported by the target
computer system; a TAP microprocessor adapted to
receive and transmit signals to and from the target
computer system; emulation circuitry adapted to store
an in-circuit emulation (“ICE') program that resides
wholly within the emulation circuitry and outside of the
target computer system and target computer system
address space during execution of the ICE program to
provide instructions to the TAP microprocessor so that
tile TAP itself can function as an emulator in accor
dance with instructions from a host analysis code
source, the microprocessor and emulation circuitry
being mounted in a common chassis; and

a communications adapter operatively connected to and
cooperating with the TAP to provide an interface
between the host analysis code source and the TAP to
route signals between the TAP and the host analysis
code source.

42. The instrument of claim 41 in which the communi
cations adapter includes a memory storing the ICE program
and in which the ICE program is loaded into the emulation
circuitry upon application of power to the instrument.

43. The instrument of claim 41 in which the TAP further
includes a signal routing integrated circuit for configuring
signal paths within the TAP and the communications adapter
includes a memory storing information for configuring the
signal routing integrated circuit.

44. The instrument of claim 41 in which the communi
cations adapter is physically separate from the host analysis
code source.

45. The instrument of claim 41 in which the communi
cations adapter is physically separate from the TAP

46. The instrument of claim 41 wherein the connector is
fixedly mounted on the chassis and is adapted to plug
directly into the target system at the target CPU position so
that the TAP chassis is physically supported by the target
System.

47. The instrument of claim 41 wherein the TAP micro
processor includes emulation specific circuitry specially
adapted to perform emulation functions, and wherein the
emulation specific circuitry of the TAP microprocessor is
accessible externally of the TAP microprocessor and
coupled to other circuitry on the TAP

48. The instrument of claim 41 wherein the communica
tions adapter is physically separate from the host analysis
code source.

49. The instrument of claim 41 wherein the TAP micro
processor further performs the function of communicating

5

O

15

20

25

30

35

40

45

50

55

60

65

16
directly with the communications adapter to receive the
instructions from the host analysis code source.

50. The instrument of claim 41 wherein the TAP CPU
fetches the instructions of the ICE program directly from the
emulation circuitry.

51. The instrument of claim 41 wherein the TAP CPU is
adapted to communicate with both the host analysis code
source and the target CPU.

52. The instrument of claim 41 wherein the instructions of
the ICE program are loaded into the emulation circuitry
upon initialization of the TAP CPU.

53. The instrument of claim 52 wherein all of the instruc
tions of the ICE program are loaded upon initialization of the
TAP CPU.

54. The instrument of claim 52 wherein multiple instruc
tions of the ICE program are loaded upon initialization of the
TAP CPU.

55. The instrument of claim 41 in which the tap further
includes a reprogrammable signal routing integrated circuit
for configuring electrical signals for transmission between
the TAP and the host analysis code source communications
adapter by way of the communications adapter and in which
the communications adapter includes a memory storing
configuration information that is loaded into the logic cell
array upon application of power to the instrument.

56. A method of configuring a target access probe (“TAP')
connected to a microprocessor position of a target system
and including a TAP microprocessor, in-circuit emulation
(“ICE") circuitry, a TAP signal routing integrated circuit,
and a signal link connecting the TAP to a host system, the
method comprising:

applying electrical power to the TAP,
configuring the TAP signal routing integrated circuit by

applying signals through the signal link to the signal
routing integrated circuit,

loading an ICE program into the ICE circuitry by down
loading the program through the signal link and the
signal routing integrated circuit after the signal routing
integrated circuit has been configured; and

the ICE program being stored entirely in the ICE circuitry
on the TAP during execution of the ICE program by the
TAP microprocessor allowing the TAP microprocessor
to execute the ICE program from the ICE circuitry.

57. The method of claim 56 in which the TAP micropro
cessor includes a program counter and registers and further
comprising:

setting program counter to a reset vector;
writing the contents of CPU registers to another memory;

and

running an ICE program.
58. The method of claim 56 in which the TAP commu

nicates with the host analysis source code through a con
munications adapter and in which downloading the ICE
program includes transferring the ICE program from the
communications adapter to the ICE circuitry through the
TAP signal routing integrated circuit.

59. The method of claim 56 further including the step of
maintaining the TAP microprocessor, in a reset condition
while the ICE program is being loaded into the ICE circuitry
through the signal link and the signal routing integrated
circuit.

60. The method of claim 56 wherein multiple instruction
bytes of the ICE program are downloaded into the ICE
circuitry upon configuring the TAP prior to execution of the
ICE program by the TAP microprocessor,

61. The method of claim 56 wherein the entire ICE
program is loaded into the ICE circuitry upon configuring

17
the TAP prior to execution of the ICE program by the TAP
microprocessor.

62. The method of claim 56 in which the TAP commu
nicates with the host analysis source code through a com
munications adapter and in which configuring the TAP
signal routing integrated circuit and loading an ICE program
include transferring data to the TAP from the communica
tions adapter.

63. The method of claim 62 in which the communications
adapter includes a communications adapter signal routing
integrated circuit and in which configuring the TAP signal
routing integrated circuit and loading an ICE program
include transferring data through the communications
adapter signal routing integrated circuit.

64. The method of claim 63 in which the communications
adapter signal routing integrated circuit is of a reprogram
mable type and in which transferring data through the
communications adapter signal routing integrated circuit
includes configuring the communications adapter signal
routing integrated circuit.

65. The method of claim 64 in which the communications
adapter includes memory sites and in which data for con
figuring the communications adapter signal routing inte
grated circuit are stored in the communications adapter
memory sites.

66. The method of claim 62 in which the communications
adapter includes memory sites and in which the ICE pro
gram is stored in the communications adapter memory sites.

67. The method of claim 62 in which the communications
adapter includes memory sites in which data for configuring
the TAP signal routing integrated circuit is stored in the
communications adapter memory sites.

68. An instrument for verifying and controlling the opera
tional performance of software in a target computer system
in the electrical absence of a target CPU having input and
output terminal positions at which respective target CPU
input and output signals appear, the instrument comprising:

a user interface device generating command signals cor
responding to manually selected user inputs;

a target access probe including a probe CPU of the same
type as the target CPU and an in-circuit emulation
memory storing an in-circuit emulation program that
resides wholly within the in-circuit emulation memory
and outside of the target computer system and the target
computer system address space during execution of the
in-circuit emulation program by the probe CPU so that
the probe CPU need not fetch instructions from the
target system or the user interface device during execu
tion of the in-circuit emulation program, thereby allow
ing the target access probe itself to a function as an
emulator, the in-circuit emulation memory providing
instructions to the probe CPU in accordance with the
command signals from the user interface device;

a signal link connecting the target access probe to the user
interface device to allow the target access probe to
receive the command signals from the user interface
device; and

a connector electrically and mechanically connecting ter
minals of the target access probe to corresponding input
and output terminal positions of the target CPU, the
connector being fixedly mounted on the target access
probe and being adapted for attachment directly to the
target computer system so that the target access probe
is physically supported by the target computer system.

69. The instrument of claim 68 wherein the target access
probe further includes a programmable signal routing circuit
that, after being programmed by the user interface device,
routes the in-circuit emulation program from the user inter
face device and downloads the in-circuit emulation program

5,581.695

10

15

20

25

30

35

40

45

50

55

60

65

18
into the in-circuit emulation memory prior to execution by
the probe CPU.

70. The instrument of claim 68 wherein the signal link
connecting the target access probe to the user interface
includes a communications adapter to provide an interface
between the user interface device and the target access
probe.

71. The instrument of claim 70 wherein the communica
tions adapter is physically separate from the user interface
device.

72. The instrument of claim 70 wherein the probe CPU
further performs the function of communicating directly
with the communications adapter to receive the in-circuit
emulation program from the user interface device.

73. The instrument of claim 68 wherein the connector is
fixedly mounted on the target access probe and is adapted to
plug directly into the target computer system at the target
CPU position so that the target access probe is physically
supported by the target computer system.

74. The instrument of claim 68 wherein the probe CPU
includes emulation specific circuitry specially adapted to
perform emulation functions, and wherein the emulation
specific circuitry of the probe CPU is accessible externally
of the probe CPU and coupled to other circuitry on the target
access probe.

75. The instrument of claim 68 wherein the instructions of
the in-circuit emulation program are loaded into the in
circuit emulation memory upon initialization of the probe
CPU.

76. The instrument of claim 75 wherein all of the instruc
tions of the in-circuit emulation program are loaded into the
in-circuit emulation memory upon initialization of the probe
CPU.

77. The instrument of claim 75 wherein multiple instruc
tions of the in-circuit emulation program are loaded into the
in-circuit emulation memory upon initialization of the probe
CPU.

78. The instrument of claim 68 wherein the probe CPU
fetches instructions of the in-circuit emulation program
directly from the in-circuit emulation memory.

79. The instrument of claim 68 wherein the probe CPU is
adapted to communicate with both the user interface device
and the target CPU.

80. A method of configuring a target access probe ("TAP)
connected to a microprocessor position of a target system
and including a TAP microprocessor, in-circuit emulation
(“ICE') circuitry, a TAP signal routing integrated circuit,
and a signal link connecting the TAP to a host system, the
method comprising:

applying electrical power to the TAP,
configuring the TAP signal routing integrated circuit;
loading an ICE program into the ICE circuitry by down

loading the program through the signal link and the
signal routing integrated circuit; and

the ICE program being stored entirely in the ICE circuitry
on the TAP during execution of the ICE program by the
TAP microprocessor allowing the TAP microprocessor
to execute the ICE program from the ICE circuitry.

81. The method of claim 80 further including the step of
holding the TAP microprocessor in a reset condition while
the ICE program is being loaded into the ICE circuitry.

82. The method of claim 80 in which the TAP commu
nicates with a host analysis source code through a commu
nications adapter and in which downloading the ICE pro
gram includes transferring the ICE program from the
communications adapter to the ICE circuitry through the
TAP signal routing integrated circuit.

83. The method of claim 80 wherein multiple instructions
of the ICE program are downloaded into the ICE circuitry
upon configuring the TAP prior to execution of the ICE
program by the microprocessor of the target system.

5,581,695
19

84. The method of claim 80 wherein the entire ICE
program is downloaded into the ICE circuitry upon config
uring the TAP prior to execution of the ICE program by the
microprocessor of the target system.

85. A method of configuring a target access probe ("TAP")
connected to a microprocessor position of a target system
and including a TAP microprocessor, in-circuit emulation
("ICE") circuitry, a TAP signal routing integrated circuit,
and a signal link connecting the TAP to a host system, the
method comprising:

applying electrical power to the TAP;
configuring the TAP signal routing integrated circuit by

applying signals to the signal routing integrated circuit;
loading an ICE program into the ICE circuitry by down

loading the program through the signal link and the
signal routing integrated circuit; and

the ICE program being stored entirely in the ICE circuitry
on the TAP during execution of the ICE program by the
TAP microprocessor allowing the TAP microprocessor
to execute the ICE program from the ICE circuitry.

86. The method of claim 85 in which the TAP commu
nicates with a host analysis source code through a commu
nications adapter and in which downloading the ICE pro
gram includes transferring the ICE program from the
communications adapter to the ICE circuitry through the
TAP signal routing integrated circuit.

87. The method of claim 85 in which the TAP commu
nicates with the host analysis source code through a com
munications adapter and in which configuring the TAP
signal routing integrated circuit and loading an ICE program
include transferring data to the TAP from the communica
tions adapter.

88. The method of claim 85 further including the step of
holding the TAP microprocessor in a reset condition while
the ICE program is being loaded into the ICE circuitry.

89. The method of claim 85 wherein multiple instructions
of the ICE program are downloaded into the ICE circuitry
upon configuring the TAP prior to execution of the ICE
program by the TAP microprocessor.

90. The method of claim 85 wherein the entire ICE
program is downloaded into the ICE circuitry upon config
uring the TAP prior to execution of the ICE program by the
TAP microprocessor.

91. An instrument for verifying and controlling the opera
tional performance of software in a target computer system
in the electrical absence of a target CPU having input and
output terminal positions at which respective target CPU
input and output signals appear, the instrument comprising:

a user interface device generating command signals cor
responding to manually selected user inputs;

a target access probe including a probe CPU of the same
type as the target CPU, an in-circuit emulation memory
storing an in-circuit emulation program that resides
wholly within the in-circuit emulation memory and
outside of the target computer system and the target
computer system address space during execution of the
in-circuit emulation program by the probe CPU so that
the probe CPU need not fetch instructions from the
target System or the user interface device during execu
tion of the in-circuit emulation program, thereby allow
ing the target access probe itself to a function as an
emulator, the in-circuit memory providing instructions
to the probe CPU in accordance with the command
signals from the user interface device, the target access
probe further including a signal routing integrated
circuit for routing signals in the target access probe;

5

10

15

20

25

30

35

40

45

50

55

60

20
a signal link connecting the target access probe to the user

interface device to allow the target access probe to
receive the command signals from the user interface
device, and

a connector electrically connecting terminals of the target
access probe to corresponding input and output termi
nal positions of the target CPU.

92. The instrument of claim 91 wherein the probe CPU
fetches instructions of the in-circuit emulation program
directly from the in-circuit emulation memory.

93. The instrument of claim 91 wherein the probe CPU is
adapted to communicate with both the user interface device
and the target CPU.

94. The instrument of claim 91 wherein the in-circuit
emulation program is loaded into the in-circuit emulation
memory upon initialization of the target access probe.

95. The instrument of claim 94 wherein all of the instruc
tions of the in-circuit emulation program are loaded upon
initialization of the target access probe.

96. The instrument of claim 94 wherein multiple instruc
tions of the in-circuit emulation program are loaded upon
initialization of the target access probe.

97. The instrument of claim 96 wherein the connector is
fixedly mounted on the target access probe and is adapted for
attachment directly to the target computer system so that the
target access probe is physically supported by the target
computer system.

98. An instrument for testing and verifying the operational
performance of software in a target computer system in the
electrical absence of a target CPU having input and output
terminal positions at which respective specified target CPU
input and output signals appear, the instrument comprising:

a target access probe ("TAP) including a connector for
electrically connecting the TAP to the target system at
the target CPU position; a TAP microprocessor adapted
to receive and transmit signals to and from the target
System; emulation circuitry adapted to store an in
circuit emulation ("ICE") program that resides wholly
within the emulation circuitry and outside of the target
System and target system address space during execu
tion of the ICE program to provide instructions to the
TAP microprocessor so that the TAP itself can function
as an emulator in accordance with instructions from a
host analysis code source; and a TAP signal routing
integrated circuit for routing signals in the TAP; and

a communications adapter operatively connected to and
cooperating with the TAP to provide an interface
between the host analysis code source and the TAP to
route signals between the TAP and the host analysis
code source.

99. The instrument of claim 98 wherein the instructions of
the ICE program are loaded into the emulation circuitry
upon initialization of the TAP CPU.

100. The instrument of claim 99 wherein all of the
instructions of the ICE program are loaded upon initializa
tion of the TAP CPU.

101. The instrument of claim 99 wherein multiple instruc
tions of the ICE program are loaded upon initialization of the
TAP CPU.

102. The instrument of claim 98 wherein the TAP CPU
fetches the instructions of the ICE program directly from the
emulation circuitry.

103. The instrument of claim 98 wherein the TAP CPU is
adapted to communicate with both the host analysis code
source and the target CPU.

ck k k k is

