68020 PROBE/3

20665 FOURTH STREET * SARATOGA, CA 95070 * (408) 741-5900

Contents 3

TABLE OF CONTENTS

CHAPTER 1. INSTALLING THE 68020 PROBE/3

Section Page
INTRODUCGTIONorereiereeieeseneeeesessesessssssesessrssesssssnsasssssssssssssssessnssses 1-2
UNPACKING THE PROBE........eeneerinrerereesesesssseresssssesessssasens 1-2
INSTALLING THE PROBE SOFTWARE..... e 1-3
PROBE’S CONFIGURATION FILEieeeeeeerereeseeresnsenans 1-3
INSTALLING THE BREAKPOINT/TRACE BOARDS........... i-4
INSTALLING THE MAP RAM BOARD ...ttt 1-4
INSTALLING THE LOGIC PROBES......ereeerreeecesiveneenas 1-5
USING THE ATRON DEMO BOARD ... 1-5
RUNNING 68020 PROBE DIAGNOSTICS ..o, 1-9
CONFO020 DIAGNOSTIC MESSAGES. ... reeeeseetseeesesreseressnines 1-10

CHAPTER 2. THE PROBE USER INTERFACE

Section Page
INTRODUCTIONoeieieeneieisiescseseesesessesssnstssssasssesssesesssesssassesssesssssssnss 2-2
HOW TO START PROBE ...ttt sesae s 2-2
PROBE’S CONFIGURATION FILE reeterererererererenererereas s rtesenatene 2-2
THE USER INTERFACE. ...ttt seaen s 2-3
ENTERING COMMANDS AND PARAMETERS........couu... 2-4
TERMINATING A COMMAND......oeeeeeeeeeeeeeesieseseereeeneens 2-6
EDITING COMMAND PARAMETERS.. ..., 2-6
WHAT THE EDIT KEYS DOt sassesenes 2-7
TAB FIELDS.....coee ettt s st st sns st tsssesas s s sns s sssens 2-9
WATCH WINDOWS ...ttt s senesssets s sessss s sansasns 2-9
ERROR MESSAGES ... eeeertetesenseasetesesesssesssssse s sssesssaesessansns 2-10
COPY AND PASTE... ettt res et essssesstssesesseses 2-10
VERSIONS OF PROBE SOFTWARE. ... 2-11
USING PROBE WITH A MOUSE. ...t sesessessessenses 2-11

Last revised 5/1/1987

Contents 4

CHAPTER 3. GENERATING AND USING

SYMBOLS
Section Page
INTRODUCTIONcooiiniverisesistnernisssssssssessssersssssessssssssssssssssssssassssssssssssases 3-2
DEVELOPMENT ENVIRONMENTS.......ovvreererererenersnrneserenssserensansenes 3-2
OBJECT MODULE FORMATS......oenerirerereesneeseesesessssrasies 3-3
NETWORKS ..ot stetresnessssessasssessassns 3-3
SCOPE OF SYMBOLS......rereeressrsisisesnssaes s ssenss s sesasss e senassesaenns 3-4
REFERENCING SYMBOLS IN COMMANDS. ... 3-5
EXAMPLES OF USING SYMBOLS.......eeeetreeee s 3-5

CHAPTER 4. PROBE TUTORIAL EXAMPLE

Section Page
INTRODUCTION.....oimisircrriceseseenanens 2
HOW TO INITIALIZING PROBE......eeereeeeereeneeeserssessseenns 3
HOW TO INITIALIZE THE MAP RAM BOARD......cccouvvvreeneee. 3
LOADING THE PROGRAM. ...ttt reeenensse s ssssasesaensaes 5
SYMBOLIC DEBUGGING INFORMATIONeeecerenieecnne 5
SINGLE STEP THROUGH PROGRAM ...t eresseean 7
DISPLAYING MEMORY AND REGISTERS.... e 11
START PROGRAM AND SET BREAKPOINTS....oveiteeeene. 13
SETTING SEQUENTIAL TRIGGER CONDITIONS................ 16
DISPLAY THE PROCEDURE CALLING SEQUENCE.............. 19
REAL TIME TRACE DATA ..t eee s sesassssnssonen 20
QUALIFIED TRACE DATA ..ot tsssssssssesssssssssesssaons 24
SEARCHING THE TRACE DATA FOR EVENTS .. 25
VIEWING UNASSEMBLED CODE AND LOGGING TO DISK 26
VIEWING FILES ON DISK ... eesesseeresessesseesssssssssesesses 28

Contents 5

CHAPTER 5. COMMAND REFERENCE

Section Page
COMMON COMMAND DEFINITIONS 2
VALUE 2
ADDRESS ..o oteeereenrrrresssssssessissassssssssssssssssessssssssssasasesssssssesssessas 3
EXPRESSION 3
BOOLEAN EXPRESSIONS......ooreetretetessetesessesssssessssssssesesesssessssesens 5
DEREFERENCED MEMORY 6
MEMORY SPACES 8
USING MEMORYSPACE WHEN DEREFERENCING........... 8
FORMAT FOR DESCRIBING PROBE COMMANDS.......... 9
USING WILDCARD CHARACTERS.......eereetesreenneesenaenens 10
SUMMARY OF 68020 PROBE COMMANDS i1
ASSEMBLE COMMAND .13
BREAKPOINT COMMAND 17
DISPLAY AND CHANGE MEMORY ..eeercrenreneeerenenesenesaesesns 38
EVALUATING EXPRESSIONS w52
GO COMMAND 54
HARDWARE CONTROL 59
INITIALIZATION.eeerereneenrennreevannns .64
LOADING PROGRAMS .68
MACRO COMMANDSeeetreetesesnssssesassssssesssssessssessssasesassssens 72
NEST COMMAND 85
1016518 ME©10). V1Y, 78 > JS SO 87
REGISTER COMMAND 88
SINGLE STEP COMMAND veeveaesresessasentesaens 92
TRACE COMMAND .103
UNASSEMBLE COMMAND 116
VIEW COMMAND ... ceeeeeremresssesesssessesessssessssssesesassesssssesesessssesasssns 120
WINDOW COMMAND 123
XFER COMMAND 133

SYMBOL COMMANDS ... 145

Contents 6

APPENDICES
APPENdix Title.eeriiiririnnniionisonniessisensosssssnsossssssssssssssssssossonsesss Page
APPENDIX A PROBE ERROR MESSAGES................... Appendix-2
APPENDIX B MAINFRAME COMPATIBILITY Appendix-16
APPENDIX C CONFIGURATION FILE................ Appendix-17

APPENDIX D TEXT FORMATS FOR MACROS,....Appendix-23
WINDOWS, AND INITIALIZATION FILES

APPENDIX E FILES ON PROBE DISKETTES........ Appendix-31
APPENDIX F LANGUAGE COMPATIBILITY Appendix-32
APPENDIX G OBJECT MODULE FORMATS.......... Appendix-34
APPENDIX H LOGIC ANALYZER SIGNALS......... Appendix-44
APPENDIX I POWER SUPPLY REQUIREMENTS. .. Appendix-45

APPENDIX J POD CHARACTERISTICS........u.. Appendix-46
APPENDIX K TECHNICAL REPORTS. ... Appendix-48
APPENDIX L MORE ON CONFO020 ..Appendix-54
FIGURES
Figure Title Page
Fig 1-1 Master Breakpoint/Trace board......eeeeececeenennee. 1-6
Fig 1-2 Slave Breakpoint/Trace board....ecrvveceeecenenee 1-6
Fig 1-3 68020 PODeeeeerereieeverssssssensnesssenssssesssassssssesens 1-7
Fig 1-4 Demo Board....iccrcceerrrerreererenesnessniessenesssesssnsssssseens 1-7
Fig 1-5 Map Ram Board...... e 1-8
Fig 1-6 LOgIiC Probes. .t ereeneesnnscnsenssessens 1-8
TABLES
Table Title Page
Table 5-1 Example Value DefinitiOns . coeesrereeeneresessaenes 5-2
Table 5-2 Definition and Precedence of operators................. 5-3
Table 5-3 Definition and Precedence of boolean ops........... 5-5

Table B-1 Hardware Compatability..ivceeerrnnerereresrenens Apn-16

Introduction 7

INTRODUCTION

Thank you for your purchase of the 68020 PROBE/3 ATRON’S
68020 PROBES are a family of debugging tools for the 68020
microprocessor. The PROBES are modular in design and provide a
wide range of debugging capabilities.

This version of PROBE is an in-circuit emulator. It consists of the
PROBE SOFTWARE which executes on an IBM AT, a POD which
plugs into the 68020 socket, and Breakpoint/Trace boards which plug
into the AT and connect to the POD.

THE POD

The 68020 POD comes in three versions -16 for 16 mhz systems, -20
for 20 mhz and -25 for 25 mhz systems. The following features are
implemented in the POD logic:

1. Hardware and software execution breakpoints (all other
hardware breakpoints come from Breakpoint/Trace boards.
2. Guarded memory access

3. 4 channel logic analyzer input

4. Breakpoint detect output trigger

5. Interface to Breakpoint/Trace boards

6. Interface to MAP RAM boards

7. High speed (375k baud) serial link

BREAKPOINT/TRACE BOARDS

There are two Breakpoint/Trace boards. The first board supports
processor data buses up to 16 bits wide and address buses up to 24
bits wide. The second Breakpoint/Trace board extends the first by
adding 16 additional data bus lines and 8 more address lines. Both
boards are needed for the 68020 PROBE. These boards plug into the
IBM AT and connect to the POD via ribbon cables.

This manual describes the 68020 PROBE\3 and its upgraded software
option 68020 SOURCE PROBE. The standard PROBE software has
symbolic debugging capabilities. The SOURCE PROBE option adds
source level debugging features to the symbolic debugging capability
of PROBE.

Introduction 8

MAP RAM

The MAP RAM option lets you add 1/2 megabyte of memory which
you can map over the target system.

ORGANIZATION OF THIS MANUAL
CHAPTER 1 contains the PROBE installation procedures.

CHAPTER 2 describes the PROBE user interface and the start up of
PROBE.

CHAPTER 3 describes the symbolic and source level debugging
information that can be used in PROBE commands.

CHAPTER 4 contains a tutorial example an provides an introduction
to PROBE commands.

CHAPTER 5 is the Command Reference section which contains
detinitions and examples tor each PROBE command.

APPENDICES contain additional information about the PROBE.
Also included is a useful group of technical reports regarding
common issues that arise during debugging.

INDEX indicates where to look for information based on key words
or concepts.

Installing the 68020 PROBE /3 Chapter 1-1

CHAPTER 1 INSTALLING THE PROBE

INTRODUCTION ..ciccensicrscssensesessesssssisonns 1-2
UNPACKING THE PROBE ceertet et erstae ettt ene 1-2
INSTALLING THE PROBE SOFTWARE.....iecnrecinane. 1-3
PROBE’S CONFIGURATION FILE....cercrecenensesesneenennes 1-3
INSTALLING THE BREAKPOINT/TRACE BOARDS.......... 1-4
INSTALLING THE MAP RAM BOARD 1-4
INSTALLING THE LOGIC PROBES.......vreeecceerrereersesenns 1-5
USING THE ATRON DEMO BOARD......cieecesscsinenes 1-5
RUNNING 68020 PROBE DIAGNOSTICSoommiecrenn. 1-9
CONF020 DIAGNOSTIC MESSAGES....iicecnrmissisinnnes 1-10

Chapter 1-2 Installing the 68020 PROBE /3

INTRODUCTION

This chapter contains the set up and installation procedures for the
68020 PROBE/3. There are six steps in the installation process.

Unpacking the PROBE

Installing the PROBE software
Installing the Breakpoint/Trace boards
Installing the MAP RAM board
Reviewing PROBE’S configuration file
Running the PROBE diagnostics

ISR o

UNPACKING THE PROBE

Carefully unpack your PROBE, and inspect all parts for damage. If
they are damaged, please contact Atron as well as the carrier used to
ship the PROBE. The PROBE/3 package should contain the
following components:

Master Breakpoint/Trace board - Fig 1-1
Slave Breakpoint/Trace board - Fig 1-2
68020 POD Fig 1-3

PROBE floppy diskettes

Demo board Fig 1-4 with power supply cable

In addition, some configurations include a MAP RAM board
which may be located inside the POD Fig 1-5.

7. Some systems may include the Logic Probes Fig 1-6.

A

Installing the 68020 PROBE /3 Chapter 1-3

INSTALLING THE PROBE SOFTWARE

It is recommended that you make a backup copy of your PROBE
floppy diskettes or copy them to your hard disk. To copy the
diskettes to a hard disk, first make a private directory:

MKDIR \PROBE
Change the directory to PROBE:
CD \PROBE

Now insert each floppy diskette into drive A and copy them to the
hard disk:

COPY A:**

If you get an error during this process, refer to the DOS manual
which came with your PC/AT.

PROBE'S CONFIGURATION FILE

The 68020 PROBE Breakpoint/Trace and MAP RAM boards use 16
kbytes of address space from the AT memory space. The base
address of this 16k byte memory block is set via software from a
configuration file named PROBE.CNF when the PROBE software is
invoked (see Chapter 2 pg 3). The default base address in this file is
D0000. This does not need to be changed unless it conflicts with
address space used by other AT boards. This space is not reserved
and does not conflict with known IBM boards or common peripheral
equipment.

The file PROBE.CNF contains simple ASCII text and can be changed
with a common text editor. This file also contains configuration
parameters which are described in Appendix C.

Chapter 1-4 Installing the 68020 PROBE /3

INSTALLING THE BREAKPOINT/TRACE BOARDS

First plug the Slave Breakpoint/Trace board (Fig 1-2) into the IBM
AT or compatible. This board can be plugged into any slot but it is
recommended that you use the slot to the left side (when facing the
front of the computer). This slot has only one AT motherboard
connector and the Slave Breakpoint/Trace board requires only one
connector. The Master Breakpoint/Trace board (Fig 1-1) should be
plugged adjacent to the Slave into an AT card slot which has 2
motherboard. A 34 pin ribbon cable comes attached to the Slave
board. Connect this cable to the adjacent Master board.

The POD (Fig 1-3) is connected to the two Breakpoint/Trace boards
through two 6 ft. ribbon cable assemblies. The ends of the Slave
Breakpoint/Trace board is color coded red. Match the cable with the
red lined connector to this board. The other cable and Master
Breakpoint/Trace board are not colored.

In this manual, the plug at the end of the POD into which the 68020
15 prugged 15 Cdiicu UIC Duller ASSCIULY. riug e puller ASSCINDLY
into the target system. Note that one extra pin grid array socket is
included on the Buffer Assembly. If pins break off this socket,
replace it with a new socket. Note that this socket is polarized to
prevent plugging into the target incorrectly.

INSTALLING THE MAP RAM BOARD

Open the POD chassis by removing the four screws that hold on the
rubber feet on the bottom. Install the MAP RAM board by plugging
into the two 64 pin connectors as shown in Fig 1-5. Insure that the
MAP RAM board is fully seated on these connectors. Next
recassemble the POD chassis. Note, if you purchased your MAP RAM
board with the PROBE/3, this step has already been done by Atron.

Installing the 68020 PROBE /3 Chapter 1-5

INSTALLING THE LOGIC PROBES

Open the POD chassis by removing the four screws that hold on the
rubber feet on the bottom. Plug the Logic Probe cable into the
connector labeled PL18 as shown in Fig 1-5. Insert the Logic
PROBES such that the Brown wire connects to the pin labeled 1.
Route the Logic Probes out the side of the POD between the bottom
plate and the top of the chassis. Next, reassemble the POD chassis.
See Appendix H for more information on the Logic Probes.

USING THE ATRON DEMO BOARD

The Demo Board contains a simple 68020 design including clock and
2k bytes of static ram memory starting at address 0. This board has
two purposes. First it can be used in conjunction with the PROBE
Diagnostic Confidence test (CONF020) to test the PROBE logic out
through the end of the plug. Second, if you don’t have any hardware
to start with, this board could provide a simple execution vehicle for
starting your software development. If more ram is needed, add the
PROBE RAM RAM board.

The Demo Board must be supplied with +5 volts. A power supply
cable is provided for this purpose. Connect the red wire to +5v.
Connect the black wire to ground. Connect the end with the plug
into the Demo Board - note that the polarity should be correct.

Chapter 1-6 Installing the 68020 PROBE /3

Master Breakpoint/Trace board
Fig 1-1

Slave Breakpoint/Trace board
Fig 1-2

Installing the 68020 PROBE /3 Chapter 1-7

68020 POD
Fig 1-3

i

i S i S

G o
; 3

e

B
it i
A s
PEIE

S ol

Eaa St ; __POD

i
e
i
i
e
ke

i
it
S

e

Logic Probes

. b oG
B
5

Demo Board
Fig 1-4

Chapter 1-8 Installing the 68020 PROBE /3

MAP RAM BOARD in POD
Fig 1-§

—————Cable to Breakpoint/Trace boards

POD

_—Logic Probe cables

able to Buffer Assembly

Logic Probes
Fig 1-6

68020 PROBE /3 Diagnostics Chapter 1-9

RUNNING 68020 PROBE DIAGNOSTICS

The CONF020.EXE is an extensive set of diagnostics used to perform
a confidence test on the 68020 Probe. To start the tests type:

CONF020

You will then receive the following prompts:

Is this a special I/0 port addressed set of boards (Y/N)

The answer to this prompt should always be NO unless you have
received a special set of Breakpoint/Trace boards from Atron which
initialize the boards in the AT’s IO space rather than the AT’s
memory space. See Appendix C for details.

Enter break /trace boards base address (C4 for C4000, CC, [DO], D4,
D8, DC):

This prompt requests the address within the AT for accessing the
ATRON break/trace boards. D0000 is used as the default address if
only <Enter> is typed. This address should match the address in the
PROBE.CNF file when running the normal PROBE software. If no
PROBE.CNF file is present, then the default base address is used.

Is 68020 buffer plugged into the ATRON DEMO BOARD (Y or [N]):
The confidence test will run in one of two modes:

DEMO BOARD: The 68020 buffer assembly is connected
to the ATRON DEMO board. This mode will test target
system access as well as performing internal diagnostics.
Appendix L describes the details of these accesses. This mode
tests all PROBE logic including the Buffer Assembly logic at
the end of the PROBE which plugs into the target.

INTERNAL ONLY: The 68020 is connected to something
other than the ATRON DEMO board. Only the internal
diagnostics are performed; no cycles are run in the user
system. This mode does not test the Buffer Assembly logic at
the end of the PROBE. If the target system can support the
access cycles and conditions as described in Appendix L, then
the DEMO BOARD MODE may be used in the target system:

Chapter 1-10 68020 PROBE /3 Diagnostics

Answering N’ or <Enter> to this prompt will inform the software to
skip all target system access tests as shown in Appendix L. If the
68020 buffer assembly is plugged into the ATRON DEMO BOARD
(or the target system supports the addresses and modes discussed
earlier,) then Y’ may be typed to test target system accesses as well
as internal pod diagnostics. If N’ or <Enter> is typed, the internal
diagnostics will begin immediately. If Y’ is typed, one additional
prompt is provided:

Execution breakpoint instruction is BKPT #n, n=(0, 1, ..., [7]):

This prompt requests the BKPT instruction that is used by the pod
for software and hardware execution breakpoints. For almost all
targets, the correct answer is ’7’ or simply <Enter>. Some targets may
have requested a special pod with another breakpoint instruction
used. These targets should type the breakpoint number that matches
their version of the pod.

CONF020 DIAGNOSTIC MESSAGES

The following tests are run in both DEMO BOARD MODE and
INTERNAL ONLY MODE. They test the basic functionality of the
hardware on the POD. No target system accesses are ever made.
The target system must supply only +5V, GND, and CLK to the
68020 in order for these tests to operate.

Slave 8031 ROM checksum test
Slave 8031 RAM bitwalk/address test.
Slave 8031 status check of 68020 test.
Slave 8031 <--> 68020 mailbox test
68020 ROM checksum test.

68020 data RAM bitwalk/address test.
68020 execution BP RAM bitwalk/address test.
68020 guard RAM bitwalk/address test..........
68020 map RAM bitwalk/address test

68020 PROBE /3 Diagnostics Chapter 1-11

If any of the previous tests fail, it could be for the following
reasons:

1. The cables from the POD to the Breakpoint/Trace boards are not
firmly seated. Also make sure that the pins on the
Breakpoint/Trace boards do not get bent together when plugging
in the cables.

2. Check Vcc in the target, it may be less than +5v.

3. You may be using an AT clone which does not support writes
from the cpu in the AT to location FFFF0Q in the memory space
of the AT.

4. The Base address you selected conflicts with other boards in the
system such as extended memory boards.

The POD or Breakpoint/Trace boards have failed and must be
returned to Atron for repair.

w

The following tests are run in both DEMO BOARD MODE and
INTERNAL ONLY MODE only if a MAP RAM memory board is
detected by the POD. They test the basic functionality of the
mapped memory hardware on the pod. No target system accesses are
ever made. The target system must supply only +5V, GND, and CLK
to the 68020 in order for these tests to operate.

68020 wait RAM bitwalk/address test.
68020 write enable RAM bitwalk/address test.
68020 map memory data array bitwalk/address test
68020 map memory data array overlap test

If any of the previous tests fail, it could be for the following
reasons:

I. The MAP RAM board is not fully seated in the POD. Open the
POD and insure a good seating.

2. The MAP RAM board has failed and must be returned to Atron
for repair.

The following tests are performed only if Y’ was answered to the
ATRON DEMO BOARD prompt. These tests will perform various
accesses to memory in the target system. The target system must
meet the requirements specified in Appendix L to support these tests.

Chapter 1-12 68020 PROBE /3 Diagnostics

Target system access (SAY TARGET WHAT’S HAPPENING) .
Start board, 8031 NMI stop board test.

Software execution breakpoints

Hardware execution breakpoints

Hardware breakpoint.
Tracedatatest.....................

Guarded access test.

Cache control test

If any of the previous tests fail, it could be for the following
reasons:

1.

Accesses in the target do not support the requirements of
Appendix L.

The cable from the POD to the Buffer Assembly.is in close
proximity to noisy circuits such as switching power supplies or
video controller boards. The PROBE Buffer Assembly has been
designed for maximum bandwidth and therefore may respond to
HOISC 111 e LdIgol di LICyqucClucCicod LU D0 Uifl4, rousitivn Luc cavic
from the Buffer Assembly to the POD to not drape across noisy
circuits in the target.

DSACK signals in the target do not respond.

The target generated Bus errors during the test.

The target system is using the same breakpoint instruction as you
selected for use by PROBE in the CONF020 prompts.

The POD or Breakpoint/Trace boards have failed and must be
returned to Atron for repair.

The following tests are performed only if 'Y’ was answered to the
ATRON DEMO BOARD prompt and MAP RAM is detected by the
POD. These tests will perform various accesses to memory in the
target system. The target system must meet the requirements
specified in Appendix L to support these tests.

Map array access from target system.
Map array overlap in target system
Map array wait state latch

68020 PROBE /3 Diagnostics Chapter 1-13

If any of the previous tests fail, it could be for the following
reasons:

1. The MAP RAM board is not fully seated in the POD. Open the
POD and insure a good seating.

2. The MAP RAM board has failed and must be returned to Atron
for repair.

Note: that the 68020 is reset after each of the confidence tests.

The PROBE User interface Chapter 2-1

CHAPTER 2

THE PROBE USER INTERFACE

INTRODUCTION ...oovcrtverterseessnsessessrsssrsssss s s ssss s oo oo o 2-2

HOW TO START PROBE ..ccocoerrersresressssssessssssemssssssssemssssssise 2-2

PROBE’S CONFIGURATION FILE......cooromerrsrernn 2-2

THE USER INTERFACE .cooorrvrrmresseesssssorsssssosssesesesssessses e 2-3
ENTERING COMMANDS AND PARAMETERS.......cocc... 2-4
TERMINATING A COMMAND.....coourrimmsmrssresnssmersessesssessoese 2-6
EDITING COMMAND PARAMETERS......cocomrmermsmescresisin 2-6

WHAT THE EDIT KEYS DO.. s s s e -7

VN 1533 053 9 0 1

WATCH WINDOWS

ERROR MESSAGESooocrmcocrsrmsomscencrsmeseesesseoseeseesecesossee

COPY AND PASTE..cccovrrrremesnmessesesssmssssssesssesssssssesesssssssssese 2-10

VERSIONS OF PROBE SOFTWARE ..ccccormmmmsresresessssesesesseese 2-11

USING PROBE WITH A MOUSE....inincninisncceesesesssannns 2-11

Chapter 2-2 The PROBE User interface

INTRODUCTION

This chapter tells you how to start the 68020 PROBE. It also
describes the operation of the PROBE user interface. This chapter
also includes information about the files on your disks and a
summary of the different versions of PROBE software.

HOW TO START PROBE

To start the 68020 PROBE, enter:
PROBE [initfile]

To start the 68020 SOURCE PROBE, enter:
SOURCE [initfile]

If an [initfile] is specified when PROBE is loaded, then this file is
loaded automatlcally The initfile contams 1mt1a112at10ns for a
ULLUUEELILE dLOd1ULl \dLL \/uaptvx v luxl. uuau nul LY uvtu;lo, e ;o
useful to create this custom file while you are in PROBE then save it
for future use. The initfile is an option and need not be specified
when you load PROBE or SOURCE.

PROBE’'S CONFIGURATION FILE

When invoked, PROBE and SOURCE look for a file named
PROBE.CNF. If found, configuration parameters for PROBE’s
hardware base address, screen color, temproary heap files etc. are
sclected from this file. See Appendix C for a complete description of
these configuration parameters. If PROBE.CNF does not exist, then
standard defaults described in Appendix C are used. These standard
defaults are usable for most systems. The file PROBE.CNF contains
simple ASCII text and can be changed with a common text editor.

If you want to walk through an example, go to Chapter 4 at this
point. Otherwise, keep reading for more background information.

The PROBE User interface Chapter 2-3

THE USER INTERFACE
When PROBE is started, the screen looks like this:

@ Assemble Breakpoint Display-change Evaluate Go Init Load Macro Nest
Quit Register Step Trace Unassemble View Window Xfer sYmbol

Replace|Insert

—

(D The top of the screen contains the MENU BAR with an
alphabetical list of commands. One of the commands is
highlighted. A command can be selected by typing its first
capital letter or by moving the highlight with the cursor
positioning keys and typing <enter>.

@ Immediately under the MENU BAR is a list of the subcommands
for the command which is highlighted in the MENU BAR. Once
a command from the MENU BAR is selected, a MENU BOX
hangs down from the MENU BAR to let you select a
subcommand. The subcommand is also selected with a single key.
There may be further subcommands in some cases. Thus you
progress through the command using single keystrokes without
having to remember how the command works or what to do next.

@ This part of the screen is called the DISPLAY WINDOW and it
appears immediately below the MENU BAR. Many commands
display data in the DISPLAY WINDOW and let you modify the
data displayed directly on the screen.

Chapter 2-4 The PROBE User interface

ENTERING COMMANDS AND PARAMETERS

At the end of the command chain, the command either displays data
in the DISPLAY WINDOW or lets you enter data into a DIALOG
BOX at the top of the screen. Some commands also present a
formatted screen in the DISPLAY WINDOW with a set of fields. The
fields on these screens are filled in when you enter data into the
DIALOG BOX. Here is a sample Display Byte command display:

_®

Start address: <00000000> End address: <0000003F> Memory space <UD>
Current address: < >

Enter new start address:|]
<Enter> or <Tab> to next field; <Esc> to main menu
00000000 02 03 04 0506 07 08 09 CAOBOCOD OEOF 1011*.............
00000010 12131415161718191A1BI1CID1E1F2021*........... . !
00000020 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31*"#3$%&’()*+,-./01

[alatala¥alial: Yol DA NO D4 DE BN QT AO 0N DA O O OTY OTS O AN S1ROQATATON ... PP

L |

(D If parameters must be entered for a command, you are prompted
to supply the parameter. In chapter 5 of this manual, the prompts
are shown in italics like this:

command prompt: [dialog box]

The command parameters are entered into the [dialog box] on the
screen. The blinking cursor is in the DIALOG BOX.

@ You can enter new data into the DIALOG BOX or simply type
<enter> to select the default. The default data is shown in
<default data> on the screen.

In some commands, there is a list of {options} to the right of the
DIALOG BOX in curly brackets. The choices are separated by
the | character. A default choice from the list is shown within
the DIALOG BOX and this choice can be selected by simply
typing the <enter> key. The DIALOG BOX would look like this:

command prompt.[choicea] {choicealchoiceblchoicec)

The PROBE User interface Chapter 2-5

@ If there is a highlight field in the DISPLAY WINDOW while the
blinking cursor is in the DIALOG BOX, then the contents of the
DIALOG BOX are transferred to the highlight field when you
type <enter>. If an expression is typed into the DIALOG BOX, it
is evaluated before the value is put into the highlighted field.
This lets you construct and edit expressions in the DIALOG BOX
and have the results go to the highlight field in the DISPLAY
WINDOW. A maximum of 255 characters can be entered into the
DIALOG BOX (the characters scroll horizontally within the
DIALOG BOX). The expressions inside the DIALOG BOX can be
edited with the EDIT KEYS. See EXAMPLES OF USING EDIT
KEYS later in this chapter.

Some command prompts you several times with DIALOG BOXES.
In this case, after typing <enter> for each DIALOG BOX, the
blinking cursor is transferred to the next DIALOG BOX. When
all necessary data is entered for the command to operate, the
command executes. Execution can mean:

Put data into the DISPLAY WINDOW
Put or get information from the target system
Put or get information from the AT memory or disk files

@ While in a command, you can move to another DIALOG BOX
manually by typing the <TAB> key. This lets you make new
entries into these fields. Also, in some commands, you are not
automatically prompted through all DIALOG BOXES. This is
because some of the DIALOG BOXES are so rarely used, it would
be annoying to be prompted for them during each command.
These fields are, however, displayed in the formatted screen of
the command, and you may reach them by typing the <TAB> key
until the blinking cursor gets to them. These are sometimes called
<TAB> TO fields.

Chapter 2-6 The PROBE User interface

TERMINATING A COMMAND

Once in a command, you stay in the command until the <ESC> key is
typed. This lets you make changes in the DIALOG BOX in a
command for re-execution of the same command. ESC typed at any
point will terminate a command and return control back to the
MENU BAR. Any command execution which is in process but
which has not already executed is canceled with the <ESC> key.
Note however, that you stay in a command and may execute it
several times before terminating it with the <ESC>. These changes
which have already occurred are not undone with the <ESC>.

EDITING COMMAND PARAMETERS

While entering data into the DIALOG BOXES, you may want to edit
for changes and mistakes. If the syntax entered into the DIALOG
BOX field is not recognized, an error appears in an MESSAGE BOX
describing the problem. In addition. the blinking cursor is placed
just atter the point 1n the DIALOG BOX where the syntax could not
be recognized by PROBE. The data in the DIALOG BOX may be
edited with the editing keys. These keys are described in the section
titled WHAT THE KEYS DO.

The PROBE User interface Chapter 2-7

WHAT THE EDIT KEYS DO

Keys affecting the display window
Cursor Keys (Up, Dn, Left, Right)

Move the highlight field in the DISPLAY WINDOW or the MENU
BAR.

PgUp and PgDn

For commands which can display additional screens of information
in the DISPLAY WINDOW, these keys show the previous or following
information associated with the command in process.

Ctrl PgUp and Ctrl PgDn

For commands which display files, real time trace data, or source
files during single step in the DISPLAY WINDOW, these keys move
to the start and end of the file.

<TAB

Move biinking cursor to the next DIALOG BOX for the command in
process.

Keys for editing data in the dialog box
<F3

Copy all remaining characters from the last time you typed into this
DIALOG BOX the DIALOG BOX. This lets you recall a previous
line instead of retyping it. This key functions exactly like the DOS
F3 key

RUBOUT

Move blinking cursor left one character and blank this character.

Chapter 2-8 The PROBE User inter face

HOME

Move blinking cursor one space toward the beginning of DIALOG
BOX but do not delete the characters. The cursor keys cannot be
used for moving the blinking cursor in the DIALOG BOX since they
are reserved for moving the highlight field in the DISPLAY
WINDOW.

END

Move the cursor one space toward the end of the DIALOG BOX.

The cursor keys cannot be used for moving the blinking cursor in the
DIALOG BOX since they are reserved for moving the highlight field
in the DISPLAY WINDOW.

Ctrl HOME

Move blinking cursor to the beginning of DIALOG BOX.
Ctrl END

Move the cursor to the end of the DIALOG BOX.

DEL

Delete the character above the blinking cursor.

Keys terminating commands

ESC

Terminates a command which is in the process of executing.
Ctrl Break

Terminates current command in process which does not stop with the
<ESC> key.

The PROBE User interface Chapter 2-9

EXAMPLES OF EDITING COMMAND PARAMETERS

The EDIT KEYS can be used to make changes in the DIALOG BOX.
The definition of these keys was described previously. Here are
some examples of using the edit keys.

Start by using the Display Byte command. Type:
DB

The command prompts for startaddress in the DIALOG BOX. Type:
\MAINSMODULE\PROCXEDURENAMES

Since no symbol matches this, an error message pops up. Type any
key to pop down the error message. The blinking cursor is in the
DIALOG BOX. Use the END key to move the blinking cursor just
under the X. Then type the DEL key. Now, to re-execute this
command type <enter>. The reason that the HOME and END keys
are used to move the blinking cursor within the DIALOG BOX is
because the cursor keys are reserved for moving the highlight field
in the DISPLAY WINDOW.

TAB FIELDS

The PROBE commands typically have several options which are not
normally changed They may be changed occasionally, however, and
therefore must be available when needed. These options are
displayed on the screen as:

Label:< >

These fields contain default values in the < >. You may get to these
fields to change the defaults by typing <TAB>. The default stays in
the < > until you select then change it. The <TAB> fields are
described for each command in Chapter 5.

Chapter 2-10 The PROBE User interface

WATCH WINDOWS

You can create custom WATCH WINDOWS which display many
different types of data with the Window command. WATCH
WINDOWS overlay the DISPLAY WINDOW. They are assigned to
any AltKey (i.e. hold down Alt while you type any other key). They
are popped up and down by typing the A/iKey. If more than one
window is popped up at a time, they "stack" one under the other in
the DISPLAY WINDOW. If a command is in process under the
WATCH WINDOW, it is temporarily suspended (except for single step
and Go commands) until all the WATCH WINDOWS are popped
down.

ERROR MESSAGES

When a command or command parameter is not recognized by
PROBE, an error message "pops up" on the screen in a MESSAGE
BOX to 1ndlcatc the problem Appendix A contalns a summary of

..................... A 2av waiva amvUDBEHV 20 yvyyvu R O A A VA

are returned to the command by typing any key.

COPY AND PASTE

PROBE has a copy and paste features which eliminates typing in the
long addresses and symbolnames requried during program debugging.
When you are looking at information on one PROBE screen which
you want to pick up and deposite into fields on another PROBE
screen, you can use PROBE’s copy and paste keys.

To copy information from a screen, start by typing the <F10> key.
The highlight field in the DISPLAY WINDOW will shrink to the size
of one character and will be positioned on the left side of the screen
about half way down from the top. As usual, use the cursor keys to
move this small highlight field to the start of the information you
want to copy. Next, type <F10> again which anchors the highlight
field at this location. Use the cursor keys again to spread the
highlight field over the characters on the screen you want to copy.
Next, you can deposite the highlighted information into any of the
following function keys: <F6>, <F7>, <F8>, <F9>, Note the curosr
motion will be faster if you have a mouse.

The PROBE User interface Chapter 2-11

The information stored in these function keys can now be pasted
into any other screen. The location on any screen which has the
blinking cursor can receive the information stored in the function
key simply by typing the function key. The ASCII text stored in the
function key is available each time the function key is typed until
the information in the key is changed.

VERSIONS OF PROBE SOFTWARE

There are several files on your PROBE distribution diskettes which
may or may not be needed depending upon what you are doing. A
list of these files, their current version numbers, and a description is
given in Appendix E for each type of PROBE software. Only those
used for "RUNNING" are required for the actual execution of
PROBE software.

This manual describes the standard versions of the PROBE and
SOURCE PROBE software. Other versions of these software
products are available which are optimized for specific applications.
These versions are described by inserts to this manual. These
versions are described in Appendix E.

USING PROBE WITH A MOUSE

PROBE supports the use of a mouse to replace keystrokes. The
MOUSE must be a Microsoft mouse or have a compatible Microsoft
mouse driver. To use PROBE with a mouse you must install the
mouse driver in your system. First copy the mouse driver to the top
directory on the drive which boots the operating system on your AT
computer. Add the following entry in your CONFIG.SYS file:

device = mouse.sys

When invoked, PROBE detects the presence of the mouse. Moving
the mouse is equivalent to using the cursor keys. Clicking the left
mouse button is equivalent to typing the <enter> key. Clicking the
right mouse button is equivalent to typing the <Esc> key.

Generating and Using Symbols Chapter 3-1

CHAPTER 3
GENERATING AND USING SYMBOLS

INTRODUCTION.cceimvieirrrnens retrereesb et sastes 3-2
DEVELOPMENT ENVIRONMENTS.......... 3-2
OBJECT MODULE FORMATS .3-3
NETWORKS ettt b s seae 3-3
SCOPE OF SYMBOLStciinsiessinennenseeensesssesssssssssessssssesssssssasses 3-4
REFERENCING SYMBOLS IN COMMANDS..... e 3-5
EXAMPLES OF USING SYMBOLS.........miisiecnsinenns 3-5

Chapter 3-2 Generating and Using Symbols

INTRODUCTION

68020 PROBE allows you to use the symbolic information from your
program during debugging instead of absolute numbers. This
symbolic information may consist of public variables, public
procedures, functions, subroutines, modulenames, and high level
language line numbers. Some compilers will also produce symbols for
local variables and procedures. This chapter describes the
development environments for generating programs and symbols.
Then it describes how to reference symbols during symbolic
debugging. Other parts of this manual describe important
information regarding symbols. This information is not duplicated
in this Chapter but here is a summary of where to find this
information.

Description Location

R R LEE AL RTE DAL TR TS R

Compiler controls to generate symbols Appendix F

Single step code by C linenumbers Source Step command Chapter 5
Loading symbols into PROBE’s symboltable Load command Chapter 5

Defining symbols on line sYmbol Define command Chapter 5
Deleting symbols sYmbol Remove command Chapter 5
Ignoring case in symbols sYmbol Case command Chapter 5
Defining a default modulename prefix sYmbol Module default Chapter 5
Display symbol which matches address Window command Chapter 5
Using a symbol in an indirect reference Dereferenced memory Chapter 5

DEVELOPMENT ENVIRONMENTS

The code for your target can be generated on a number of different
computers with a variety of compilers. The compiler controls needed
to generate this symbolic debugging information is a function of the
manufacturer of the compiler and the type of compiler. Appendix F
describes some compilers and controls which can be used with
PROBE. Refer to your compiler and linker manuals for details on
how to produce a PROBE compatible OBJECT MODULE FORMAT
(OMF).

Generating and Using Symbols Chapter 3-3

OBJECT MODULE FORMATS

To do symbolic debugging, the symbol table for the program must be
loaded into PROBE. The symbols may be in the executable object
file or in a separate file. The symbols in the file must match one of
the OMF’s compatible with PROBE. These are described in
Appendix G. If the code has not been compiled on the AT, it must
be down loaded to the AT and stored in a DOS compatible file on
the AT (unless the AT is on a network described later). If the image
of executable code and symbol table matches an OMF supported by
PROBE, you should load an exact image of the OMF into the DOS
file.

If the compiler does not generate a PROBE compatible OMF, you
may be able to write a conversion utility which converts the format
produced by your compiler to one supported by PROBE.

The executable code can be loaded into the target system (or MAP
RAM) and the symbol table loaded into the PROBE symbol table
space with the Load commands (see Chapter 5 for details). The Load
command has many options and code, data, and symbols can be
loaded separately or together. Code and symbols can even loaded
with offsets if the code is relocatable.

NETWORKS

If the AT host for the PROBE is operating on a network, PROBE can
load the code directly from the network to the target. PROBE
software is PC DOS compatible and goes entirely through DOS to
load files. If DOS is operating with a network, the PROBE load
command calls the operating system with a file to load or save. The
network drivers then passes the file between the network and
PROBE.

Chapter 3-4 Generating and Using Symbols

SCOPE OF SYMBOLS

A symbol is a 32 bit value which is normally used as an address in
PROBE commands. A symbol can be used in an expression at any
place a value is expected. Symbols can have a scope if it is defined
in the OMF. PROBE interprets the scope of symbols in the same way
as the the C language. Some definitions are shown here for
reference:

Symbol scope Description

EXTERNAL Visible to all modules. This symbol has
or an absolute address when the program is
PUBLIC loaded

LOCAL Visible only to the declaring procedure.

This symbol is stack based.
STATIC Visible to module after point of

b .1 et .k NI B N B PR PR S (S

e aea st ra e, A kAAN M sae e ssmmn eees e e

address when the program is loaded.

If the symbol is stored in PROBE’s symbol table as a PUBLIC or
EXTERNAL symbol it is referenced as:

\symbolname
If the symbol is LOCAL to a module or STATIC it is referenced as:
\modulename\symbolname

If the symbol is LOCAL to a module in the current procedure and
known only to a block it is referenced as:

\modulename\blockname\symbolname

If the symbol is a linenumber for a highlevel language executable
statement, then it is referenced as:

\modulename#linenumber

Procedure names and function names are treated the same as symbol
names.

Generating and Using Symbols Chapter 3-5

REFERENCING SYMBOLS IN COMMANDS

When a symbol is used in a PROBE command, it is treated as a 32 bit
value or address. In this manual, most examples will use symbols
instead of absolute numbers. Here are some notes regarding symbols
used in commands:

1. A default modulename prefix string is assumed by PROBE for
each symbol. A detailed description of how a symbol is parsed
with this default prefix is described in the sYmbol-Module-name-
default command in Chapter 5.

2. A symbol can be used as a pointer to another address by using it
in and indirect reference (see Chapter 5 Dereferencing Memory).

EXAMPLES OF USING SYMBOLS

In Chapter 5, the PROBE commands will use symbols in many
examples. Here are a few examples of how symbols are used:

This expression references the PUBLIC symbol MAIN
MAIN

This expression references the procedure named IO assuming it is in
the module named IOROUTINES.

IOROUTINES\IO

This expression references the byte pointed to by the 16 bit pointer
MEDIUMPOINTER. Sece Chapter 5 Dereferenced Memory for details.

[MEDIUMPOINTER].W

PROBE tutorial example Chapter 4-1

CHAPTER 4

PROBE TUTORIAL EXAMPLE

INTRODUCTION coorrrrrreeresresrssrsersersssssssssrs s ses s ssssees s ss s 2
HOW TO INITIALIZING PROBE ...coccurrmrerssmmssesssressrssssesssseees 3
HOW TO INITIALIZE THE MAP RAM BOARD....coocovcrrrrrrn 3
LOADING THE PROGRAM 5
SYMBOLIC DEBUGGING INFORMATION 5
SINGLE STEP THROUGH PROGRAM 7
DISPLAYING MEMORY AND REGISTERS 11
START PROGRAM AND SET BREAKPOINTS ..coorrrrerrrrnreen 13
SETTING SEQUENTIAL TRIGGER CONDITIONS.....cccrromres 16
DISPLAY THE PROCEDURE CALLING SEQUENCE 19
REAL TIME TRACE DATA ..o e 20
QUALIFIED TRACE DATA .24
SEARCHING THE TRACE DATA FOR EVENTS.............. 25
VIEWING UNASSEMBLED CODE AND LOGGING TO DISK 26
VIEWING FILES ON DISK coocvoermermmermmmssserssssemsssssessssssssssssssssseese 28

SAVYING INITIALIZATIONS AND BLOCKS OF MEMORY ...28

Chapter 4-2 PROBE tutorial example

INTRODUCTION

The commands are listed alphabetically in Chapter 5, COMMAND
REFERENCE, and no attempt is made to duplicate the complete
explanation of each command as it is being used in these examples.
If the short explanation of the command is not sufficient in the
example, please turn to Chapter 5, COMMAND REFERENCE, for
more information.

The program to be debugged is a C program. The source and object
files for the program are included on your disk, so you can actually
try the example in real time. The example is taken from the C
Programming Manual by Kernighan and Ritchie but has been broken
into three modules to demonstrate debugging a multiple module
program. If you are using Assembler, Pascal, or some other language
in your application, you will still find this tutorial useful from a
procedural point of view.

111C p1 Uglaui vatvulialcd a l\’dlllCllllCit w bUlltisl AUl LtauvLiL aliud dLULLWYD
the table in memory. It loads at location 400 and does not use any
external devices, therefore, you may be able to down load it into
your target system or to MAP RAM in the PROBE or to the DEMO
BOARD to try out the example in real time. Since the example
makes use of symbolic debugging, here are some of the symbol names
which are pertinent to this debugging session:

MODULENAME SYMBOLNAME DESCRIPTION

\ CELSIUS Variable used to store celsius temperature

\ COMPUTE Procedurename which does computation

\ FAHR Variable used to store fahrenheit temperature
\ LOWER Lower limit for the table

\ UPPER Upper limit for the table

\ STEP Increment between temperature values

PROBE tutorial example Chapter 4-3

HOW TO INITIALIZING PROBE

In this example, the input you provide from the keyboard is shown
in bold print. Prompts in DIALOG BOXES provided by PROBE are
shown in italics. In simple examples, the bold print is shown alone
without the screen which is presented by the command. In more
complex examples, the bold print is shown within the screen.

First, you can load PROBE. If you are running 68020 PROBE type:
probe <enter>

Or, if you are running the source level debugging version, 68020
SOURCE PROBE, type:

source<enter>

As described in Chapter 3, PROBE displays the MENU BAR of
commands at the top of the screen. Each command is selected with a
single key stroke. PROBE has Watch Windows which let you display
information in the target with a single keystroke. A set of windows
have been previously created for this demo and stored in a file. To
load this file of window definitions, use the Window Load command

wl

PROBE prompts you for the name of the file - type in the filename
FTOC.WIN.

lEnter window file name: [ftoc.win]

HOW TO INITIALIZE THE MAP RAM BOARD

For this example lets assume you have a MAP RAM in your PROBE
configuration. Since a program is going to be loaded into low
memory, you must map one of the blocks of the PROBE MAP RAM
to this area. MAP RAM provides up to 4 128k blocks which can be
mapped on any 64k boundary to the target memory space. Start the
Display-change Map memory command.

Chapter 4-4 PROBE tutorial example

dm

For this example, the lowest 128k of the target address space will be
mapped to memory array 0 of the PROBE MAP RAM. The default
state of the memory map is shown in the screen below.

Array 0: 128K Array 1: 128K Array 2: 128K Array 3: 128K

Don’t care bits:<.... ... oo vois el ol XXXX XXXX XXXX XXXX

Enter new start address of block:[|

Arrows to move ll; <Esc> to main menu

Start End Bus Guarded Map To Map Write Map wait for Map wt
Address Address Size Access Array# Protected target ready states
00000000 FFFFFFFF Long No

The default state of the map shows all memory mapped to Long Bus
Size (3?2 hit) Not Guarded acecece (it ic free tn he arcecced) and
mapped to the target system. PROBE maps the memory space of the
68020 into blocks. Each block can have a different size - from 64k
to the entire memory space. To map the lower 128k to the MAP
RAM board array #0 , move the highlight to the End Address field
and enter 1FFFF Then move the highlight to the MAP to Array #
field and enter 0. No other fields need to be set to map the memory,
therefore, the DISPLAY WINDOW will look like this:

Array 0: 128K Array 1: 128K Array 2: 128K Array 3: 128K
Don't care bits:<.... ... v e e s XXXX XXXX XXXX XXXX
Enter new start address of block:[]

Arrows to move B; <Esc> to main menu

Start End Bus Guarded Map To Map Write Map wait for Map wt
Address Address Size Access Array# Protected target ready states
00000000 O0O3FFFF Long No 0 No N 1
004FFFF FFFFFFFF Long No none

PROBE splits the initial single block. One with the characteristics
you specified, and the other with the default characteristics. If you
do not have a MAP RAM board, the default state of the MAP

PROBE tutorial example Chapter 4-5

assumes that memory is in the target system and that the bus size for
the target is Long. If the Bus Size in your target is not 32 bits for
the block into which the program will load, you must change the Bus
Size to fit your system or the PROBE breakpoints in this tutorial will
not work properly. Type <Esc> to return to the MENU BAR.

LOADING THE PROGRAM

A demo program is included on the PROBE distribution diskette.
This demo program loads into memory in the target system at
location 400 and is about 1k bytes in length. For this demo program
to work, the target must have functioning memory at these locations
or the PROBE must include a MAP RAM board. No other target
system resources are required for the demo. Use the Load command
to load the program into the target memory (or MAP RAM) type:

Ip
When PROBE prompts you for the filename, type FTOC.COF.

Enter program file name: [ftoc.cof]

SYMBOLIC DEBUGGING INFORMATION

This demo program was produced with the Microtec Research C
compiler. This compiler produces an Object Module Format which
contains symbolic debugging information which PROBE can load
into the PROBE internal symbol table. You can now look at symbols
in the symbol table with the sYmbol Display command.

yd

This program consists of three modules, (i.e. three separate
compilations) linked together. The symbol table, therefore, contains
variables and linenumbers for three modules. When referencing these
symbols or linenumbers the modulename must be included when
specifying the symbol (or it must come automatically from the
default prefix). There are also public symbols which do not need a
modulename prefix. The symbolnames and linenumbers for the
modulename are shown in the DISPLAY WINDOW. Since no
modulename has yet been specified, the default modulename assigned

Chapter 4-6 PROBE tutorial example

by PROBE is \. Change the modulename to FtoCM and display th

€

symbols in this module. This is done by typing <Tab> to get to the

Module:< > field:

Module:<\>
Enter symbol name:[<Tab>]
<Enter> only picks : PgUp/Dn, arrows move [|; <Esc> main menu
Address Symbol name
00000826 CELSIUS
00000536 COMPUTE
00000832 FAHR
000004fa INIT
00000420 LDIVT
00000424 LMODT
00000826 LOWER
00000444 MAIN

0000083C OUTPUTBUFFER

I UUUUuUooLy WVULIL ViDUL L S2IVLINLII LuN

|

Modulenames are displayed in the DISPLAY WINDOW. The modu
FtoCM can be selected by moving the highlight field to this
modulename and by simply typing <enter>:

le

Module:<\>

Enter module name:[<DownArrow><enter>|

<Enter> only picks : PgUp/Dn, arrows move [|; <Esc> main menu
ModuleName

FtoCIO

FtoCM

FtoCStrt

The symbols for the module FtoCM are put into the DISPLAY
WINDOW. Now you can type the PgDn key to page through the

symbols for this module. You could also define a new symbol called

START and assign it the value of the current program counter as
shown on the screen.

PROBE tutorial example Chapter 4-7

Module:<FtoCM\>
Enter symbol name:[start]
Enter new symbol value:[pc]

Address Symbol name
00000400A start

To get out of the sYmbol commands and back to the MENU BAR,
type the <ESCs> key.)

PROBE can set initial conditions automatically with the PROBE
Initialize Load command. This loads the program, symbo! table, sets
the MAP, loads Watch Windows and macros. For the SOURCE
version of PROBE, all initializations for source level debugging are
performed. The data for the initial conditions was derived by saving
these same items from a previous debug session. If you want to try
the Initialize command, Quit and reload PROBE. Then load the
initialization conditions from the file FTOC.INI by typing:

iiftoc.ini

An alternative is to include the initialization file when PROBE is
first invoked. To do this type:

probe ftoc.ini

This demo is using SOURCE rather than PROBE. Therefore, some of
the displays include source level information. If you are using

PROBE, the displays will be identical but will not include source
code.

SINGLE STEP THROUGH PROGRAM/POP UP
WATCH WINDOWS

The program counter is set to the start of program execution when
the program is loaded. You can now start single stepping the
program in assembly language steps with the Single step Assembly
language command, type:

Chapter 4-8 PROBE tutorial example

sa

PROBE prompts you for the start of the program execution. Since
the program counter is already set to the start of program execution
simply type <enter>.

Enter new start address: [<enter>]

An instruction is executed each time <enter> is typed. Try single
stepping several instructions.

Steps to take for each <Enter>: <001>

After <Enter>, step while: <False>

"B" to run to ; "J" to run to instr after [|: <Enter> to step from 00000400

<Tab> to next field above: PgUp/Dn Arrows to move []; <Esc> to main menu

D0=0000002 D4=00000000 A0=0000072A A4=00000000 PC=00000400 CACR=0000000
D1=00000001 D5=00000000 A1=0000077C A5=00000000 USP=00000000 CAAR=00000

D2=00000000 D6=00000000 A2=00000722 A6=00000700 ISP=000006DC VBR=0000000]
A D3=00000000 D7=00000000 A3=00000000 A7=00006DC MSP=0000000 SFC=0 DFC=0
SR=2704=T0 S1 MO0 I7 X0 NO Z1 V0O C0O

\START:
00000400 LEA.l (00000708),A7
sen Op 1 value=00000708, address=00000708=\FtoCStrt\STACKTOP
00000406 MOVE.] A7,A6
00000408 JSR (00000444)
0000040E BRA 00000400
\FtoCStrt\DOSIGNEDDIVIDE:
00000410 TST.1 D1
00000412 BEQ 0000041A

While single stepping, the blinking cursor is at the instruction which
is about to be executed. It is not executed until <enter> is typed.
Note during each step that the symbols for address and operands are
included in the display. Also note that each operand is evaluated
before it is single stepped to show its current contents. This
eliminates bailing out of the single step command to see the contents
of operands. The highlight field can be moved with the PgUp and
PgDn keys to let you scroll through and inspect your code. The

PROBE tutorial example Chapter 4-9

blinking cursor remains at the instruction which will be executed
when <enter> is typed. Use the PgDn and cursor keys to locate the
highlight field to the instruction shown here:

34. Init (&Lower, &Upper, &Step) g
00000452 PEA (0000071E) |

You can start program execution and set a breakpoint at this
instruction on the screen which is highlighted by typing:

b

You can pop up a Watch Window to display program variables while
single stepping. The definition of these windows came in when the
file of window definitions was loaded. Pop up two Watch Windows

by typing:

<AltV>
<AltL>

The first Watch Window displays the variables Fahr and Celsius.
The second Watch Window displays the values of Lower, Upper, and
Step. The screen looks like this:

Chapter 4-10 PROBE tutorial example

Steps to take for each <Enter>: <001

After <Enter>, step while: <False>

"B" to run to ; "J" to run to instr after [|: <Enter> to step from 00000400

<Tab> to next field above: PgUp/Dn Arrows to move []; <Esc> to main menu
D0=:00000002 D4=00000000 A0=0000071E A4=00000000 PC=00000452 CACR=000000
D1=55555555 D5=00000000 A1=0000071A A5=00000000 USP=00000000 CAAR=00000
D2=00000000 D6=00000000 A2=00000722 A6=00000700 ISP=000006FC VBR=000000
D3=00000000 D7=00000000 A3=00000000 A7=00006FC MSP=0000000 SFC=0 DFC=0
SR=2700=T0 S1 MO 17 X0 NO Z1 V0 CO

<ALTV>
FAHR = +0

CELSIUS = +0
<ALTL>

Lower = 40 Upper=+100 Step=-+10
34. Init (&Lower, &Upper, &Step);
UUUUU4b4 FrEAQ (VUUUUSZE)

sens Op 1 value = 0000082E=\STEP
0000045A PEA.l (0000082A)
00000460 PEA.1 (00000826)
00000466 JSR {0000094,PC)

The Watch Windows are updated after each single step. Pop the
Watch Window down again by typing the same AltKeys.

<AlItV>
<AltL>

It is common during single stepping to want to branch around
subroutines. Actually, you want to run through the subroutine in
real time and stop at the instruction after the one in the highlight
field. For example, single step the code until you get to this
instruction:

l 00000466 JSR (00000094,PC)

PROBE tutorial example Chapter 4-11

To run through this subroutine until you land on the instruction
following this one, type:

]

Even if you made a mistake and typed <enter> too many times and
stepped into the subroutine, this feature still works. Simple position
the highlight field to the instruction above and type J. PROBE
automatically sets a breakpoint at the instruction after the one in the

highlight field and then runs real time until the breakpoint is
detected.

Lets suppose you want to step 5 instructions at a time. You can do
this by changing the field in the menu for the step command. First
type <Tab> to get the following prompt - then type 5.

Enter number of steps to take for each <Enter>:[5]

Each enter will now take 5 steps. Next lets assume you want to step
until the variable FAHR is equal to 10 decimal. This can be done by
typing <Tab> until you get the following prompt.

Enter condition to test for end of stepping: [fahr != 10t<enter>]

Now you can continue the single stepping until this condition is met
by typing:

<enter>

If the condition is never met and you want to bail out of all this
single stepping, type <esc><esc>.

DISPLAYING MEMORY AND REGISTERS

Display and change of target memory is done easily with PROBE’s
Display command. Display bytes in memory with the Display Byte
command

db

PROBE prompts you for the start address and end addresses for the
data to be displayed. Type in the values shown in this screen:

Chapter 4-12 PROBE tutorial example

Start address: <00000832> End address: <0000097F> Memory space [SD]
Current address: <00000722>

Enter new start address:[fahr]

Enter new end address: [<enter>|

<Enter> or <Tab> to next field; <Esc> to main menu
00000830 00 00 00 00 00 OA FF FF FF EA 3020202D 3100* 0.-17*
00000840 12131415161718191A1B1C1D1E1F2021*........... . 1*
00000850 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31*"#3$%&’()*+,-./01 *
00000860 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41*23456789:;<=>7@*

You can use the cursor keys to move the highlight around the screen
and to page through memory. You can also change the data in
memory by simply entering a new value or expression. To get out of
this command type:

Sometimes it is desirable to only display and change a single address
in memory without reading any other memory locations - especially
in the case of peripheral devices. PROBE lets you do this with the
Display Single address command. In this case PROBE also prompts
you for the length of the memory location and if you want to read
or write to the location. Let PROBE prompt you through the
command to read the single address of a Long word at address
FAHR. The following keys are typed to do this.

dslrfahr

While in the Display Single Address command, each time you type
the <enter> key, this address is read and appears in the DISPLAY
WINDOW.

Address: <00000832> Memory space [SD]

Enter new address:[fahr]
Enter> or <Tab> to next field; <Esc> to main menu

00000832 = 00000000

PROBE tutorial example Chapter 4-13

Displaying registers is even simpler - type R and the registers are
displayed in the DISPLAY WINDOW:

Enter new value:|]

Arrows to move ; <Esc> to main menu
D0=0000000 D4=000000 A0=00000000 A4=0000000 PC=00000000 CARC=000000
D1=0000000 D5=000000 A1=00000000 A5=0000000 USP=00000000 CAAR=000000
D2=0000000 D6=000000 A2=00000000 A6=0000000 ISP=00000000 VBR=000000
D3=0000000 D7=000000 A3=0000000 A7=000000 MSP=00000000 SFC=0 DFC=0
SR=0000 = T0 SO MO I0 X0 NO Z0 V0 CO

You can move the highlight field in the DISPLAY WINDOW and
change the registers on the screen.

START PROGRAM EXECUTION AND SET
BREAKPOINTS

Program execution can start with the Go command. PROBE has two
kinds of breakpoints. Non-sticky breakpoints can be set in the Go
command. Sticky-breakpoints can set with the Breakpoint command
and are automatically included in future Go commands if they are
active. Start program execution from the current program counter,
type:

g<enter>

PROBE asks you if you want to start program execution or set a non-
sticky breakpoint. Set a non sticky breakpoint at the address
represented by the symbol COMPUTE, type:

Start program execution now. [n] {Yes|No)
Enter breakpoint address:[compute]
Enter new end address:{<Tab>]
Start program execution now. [<enter>] {Yes|No)

When this breakpoint occurs, PROBE prints the following message
telling you the breakpoint occurred and showing you the current
program location.

Chapter 4-14 PROBE tutorial example

Non-sticky Breakpoint detected: PC=00000536=\COMPUTE

PROBE has 10 sticky breakpoints labeled 0 through 9 which can be
defined with the Breakpoint command. Define breakpoint 0 to trap
a write to the variable FAHR and tell PROBE to pop up the Watch
Window assigned to the ALTV key when it occurs. First type:

bd0

The sticky breakpoint screen pops up. Fill in the screen as shown.

Breakpoint 0. Status <active>

ADDRESS OF BREAKPOINT:
<fahr>
To < >
B Don’t eare hiter< >

Memory spaces: <0,UD,UP,UR,4,S8D,SP,CPU> {0,UD,UP,UR4,SD,SP,CPU}
BREAKPOINT VERB: <Write>{Execute]HWExecute]Read|Write|Fetch|Logic|Any}

DATA FIELD OF BREAKPOINT:
DATA SIZE: <none> {none|Byte|Word|Long}
TRAP ON DATA: <Equal> {Equal|Not Equal}

BREAKPOINT QUALIFIERS:
Logic Lines (L3210):(xxx) IPL2,IPL1,IPLO: (XXX)
AFTER TRAP, EXECUTE MACRO\WINDOW KEY: <AlItV>

Once the breakpoint is defined, type the <ESC> key to go back to the
MENU BAR. Then, use the Go command to start program execution,
type the following keys:

g<enter><enter>

When the breakpoint occurs, the Watch Window pops up. Pop down
the Watch Window by typing any key. Now modify the breakpoint
to trap a write to this variable only when the data written to it is a

PROBE tutorial example Chapter 4-15

10 decimal. Note that FAHR is a long word variable. The
breakpoint screen looks like this:

Breakpoint 0. Status <active>

ADDRESS OF BREAKPOINT:
<fahr>
To < >
Don’t care bits:<.... .coc voes veev i ceee s e >
Memory spaces: <0,UD,UP,UR,4,SD,SP,CPU> {0,UD,UP,UR,4,SD,SP,CPU}

BREAKPOINT VERB: <Write>{Execute]HWExecute[Read|Write|Fetch|Logic|Any}

DATA FIELD OF BREAKPOINT:

DATA SIZE: <Long> {none|Byte[Word|Long}
DATA VALUE: <10t>
Don’t care bitg:<.... .oev ceee 0>

TRAP ON DATA: <Equal> {Equal|Not Equal}

BREAKPOINT QUALIFIERS:
Logic Lines (L3210):(x0xx) IPL2,IPL1,IPLO:(XXX)
AFTER TRAP, EXECUTE MACRO\WINDOW KEY: <AltV>

Now start the program again with the Go command. This time an
error message pops up.

BP0 -- Long data must start on long word boundary (A140=00)

When the 68020 does a long word write to a variable which is not
aligned on a long word boundary, such as FAHR, it does two
sequential writes. To breakpoint on this condition you can trap on
one of the writes or set a sequential breakpoint to trap both writes as
described later. In this case, since the data you are trying to trap
fits within a word value, go back and trap a word write to FAHR+2.
The screen looks like this:

Chapter 4-16 PROBE tutorial example

Breakpoint 0. Status <active>

ADDRESS OF BREAKPOINT:
<fahr+2>
To < >
Don’t care bits:<.... oo coes cees veee cere veee e >
Memory spaces: <0,UD,UP,UR,4,SD,SP,CPU> {0,UD,UP,UR,4,SD,SP,CPU}

BREAKPOINT VERB: <Write>{Execute]HWExecute|Read|Write|Fetch|Logic|Any}

DATA FIELD OF BREAKPOINT:

DATA SIZE: <Word> {none|Byte|Word|Long}
DATA VALUE: <10t>
Don’t care bits:<....>

TRAP ON DATA: <Egqual> {Equal|Not Equal}

DALANEULN L WYUALILS LLAD:
Logic Lines (L3210}):(xxxx) IPL2,IPL1,IPLO:(XXX)
AFTER TRAP, EXECUTE MACRO\WINDOW KEY: <AltV>

Now do the Go command and note that the breakpoint occurs.

SETTING SEQUENTIAL TRIGGER CONDITIONS

PROBE also has a real time sequential trap capability to trap a series
of events. To define a sequential breakpoint trap, you must first
define the breakpoints which will be used in the sequence.
Breakpoint 0 has already been defined from the previous example.
Use the Breakpoint command again to set sticky breakpoint number
1 and 2 as shown in the DISPLAY WINDOWS below.

PROBE tutorial example Chapter 4-17

Breakpoint 1. Status <active>

ADDRESS OF BREAKPOINT:
<celsius+2>
To < >
Don’t care bits:<....o cein ieis i aies e >
Memory spaces: <0,UD,UP,UR,4,SD,SP,CPU> {0,UD,UP,UR,4,SD,SP,CPU}

BREAKPOINT VERB: <Write>{Execute|HWExecute|Read|Write|Fetch|LogicjAny}

DATA FIELD OF BREAKPOINT:

DATA SIZE: <Word> {none|Byte|Word|Long}
DATA VALUE: <-17t>
Don’t care bits:<....>

TRAP ON DATA: <Equal> {Equal|Not Equal}

Breakpoint 2. Status <active>

: ADDRESS OF BREAKPOINT:

<fahr+2>

To < >

Don’t care bit8:<.... ... cece vees veis vees e 0>

Memory spaces: <0,UD,UP,UR,4,SD,SP,CPU> {0,UD,UP,UR,4,SD,SP,CPU}

BREAKPOINT VERB: <Write> {Execute]HWExecute|Read|Write|Fetch|Logic|Any }

DATA FIELD OF BREAKPOINT:
DATA SIZE: <Word> {none|Byte|Word|Long}
DATA VALUE: <20t>
TRAP ON DATA: <Equal> {Equal|Not Equal}

Now you can define a sequential breakpoint to stop when these three
(0,1,2) have been encountered in a sequence. The sequential
breakpoint definition is started by typing:

Chapter 4-18 PROBE tutorial example

bds

The sequence to be detected for this example is breakpoint 0
followed by 1 followed by 2. In addition, tell PROBE not to stop
until this sequence has happened FF times(255t). PROBE prompts
you through the screen to set up this sequence. When you are done,
the DISPLAY WINDOW should look like this.

Enter sequential conditional number: [3] {1]2]3|4|5[6}
<Enter> to next field; <Tab to next breakpoint; <Esc> to main menu.
Sequential Breakpoint. Status: <active>
Sequential condition: <3> Breakpoint assignment to BP's
1.AorBorCorD A is assigned to BP <0>
2. A arms B, reset by C B is assigned to BP <1>
3. A arms B arms C, reset by D C is assigned to BP <2>
4. A arms (B or C), reset by D D is assigned to BP <none>
5. (A or B) arms C, reset by D
Pass count before trap:<FF>

Continue trace after breakpoint:<No>
BP # Status Breakpoint-addr [To-range] Verb Size Data Match
BP 0 active fahr+2 Write Word 10t Equal
BP 1 active celsius+2 Write Word -17¢ Equal
BP 2 active fahr+2 Write Word 20t Equal
BP 3 inactive Execute
BP 4 inactive Execute
BP 5 inactive Execute
BP 6 inactive Execute
BP 7 inactive Execute
BP 8 inactive Execute
BP 9 inactive Execute

Note that while you are defining the sequential breakpoint, an
abbreviated summary of the sticky breakpoints is shown for easy
reference. Sticky breakpoints which are used in a sequential
breakpoint, only cause a breakpoint in the sequence and not
separately. Other active breakpoints not used in the sequence,
however, are detected separately.

PROBE tutorial example Chapter 4-19

g<enter><enter>

Once the sequential conditions have been defined, type <ESC> to get
to the MENU BAR. Then use the Go command to start program
execution. Once the 255 breakpoint sequences have occurred, PROBE
stops program execution. It also displays which breakpoint occurred
in the DISPLAY WINDOW since you may have many breakpoints set.
Another type of sequential breakpoint can detect excessive amounts
of time occurring between two breakpoints. To try this, go back to
the sequential breakpoint screen and set a breakpoint when BP2
follows BP0 by more than 50 microseconds. The screen looks like
this:

<Enter> to next field; <Tab to next breakpoint; <Esc> to main menu.
Sequential Breakpoint. Status: <@ctive>

Sequential condition: <6> Breakpoint assignment to BP’s

1.AorBorCorD A is assigned to BP <0>

2. A arms B, reset by C B is assigned to BP <2>

3. A arms B arms C, reset by D C is assigned to BP <Ilone>

4. A arms (B or C), reset by D D is assigned to BP <none>

5. (A or B) arms C, reset by D

6. A to B time greater than: <0:00.000,050>

Get back to the MENU BAR by typing <ESC>. Since sticky
breakpoint 1 is still active, it must be inactivated or it may cause a
breakpoint. Type:

bil<esc>

If the time between BP0 and BP2 is greater than 50 microseconds in
your system, then a breakpoint will occur.

DISPLAY THE PROCEDURE CALLING SEQUENCE

PROBE can display the procedure calling sequence by analyzing the

stack frames. In modular program design, you may have many levels
of procedure nesting and PROBE can show you the calling sequence

of these procedures. Use the Nest command to produce this screen:

Chapter 4-20 PROBE tutorial example

Stack Chaining Register:<A6> Stack Memory space:<SD> Code Memory space<SD>
Enter new chaining register:[<enter>
<Tab> to next field; <Esc> to main menu

PCis 000005E4=\ftocio#47+0000000E
Called from 000006D4=\ftocio#102+0000002C
Called from 000006A4=\ftocio#97+0000002A
Called from 0000070E=\ftocio#133+00000004
Called from 000004A0=\ftocm#55+00000006
Called from 00000408=\Start+00000008

The DISPLAY WINDOW shows the procedure calling sequences.
Note that in some systems, PROBE may track the stack frames into
non-existent memory and a ready time out may occur. If it does the
following message will appear:

Rire timin nnt nveonntinn cnnend hv nrrnce at nddroee vvvvvvyvy

If this occurs, simply type any key to clear the error message.

REAL TIME TRACE DATA

PROBE gathers the execution of the program in real time into its
high speed trace memory. This information can be displayed in
several different forms. To demonstrate the different trace displays,
go back to the breakpoint screen and inactivate all sticky breakpoints
except 0. Then run the program again. Type:

bil2s

G<enter><enter>

Use the Trace Activity command to view the real time trace data.
Note that this command prints a message describing the limitation of

the trace information in this format.

ta

PROBE tutorial example Chapter 4-21

Data cycles were not matched with prefetched instructions for this display.

There are 3 major side effects of this:

1) Data cycles will probably not appear with the instruction that generated them.
2} Instructions following those that can cause a transfer of control may not have
actually been executed.

3) The trace display software may print the target of a jump instruction as the
wrong word (low vs.high) of a 4-byte instruction fetch.

Press any key to begin display

0000082E :SD READ - 0000 \ftocm\Step
00000830 :SD READ - 000A \ftocm\Step+000G0002

000004D6 :SP MOVE.l (FFFFFFFC,A6),D0

0000080C :SD WRITE - 0000000A \ftocio\PutDecimal-+0000012A
000004DA :SP ADD.l DO,(A0)

00000808 :SD READ - 00000832 \ftocio\PutDecimal+00000126
000004DC :SP MOVE.l (FFFFFFF8,A6),A0

0000080C :SD READ - 0000000A \ftocio\PutDecimal-+0000012A

00000832 :SD READ - 0000 \ftocm\Fahr
00000834 :SD READ - 0000 \ftocm\Fahr+00000002
000004E0 :SP MOVE.l (A0),(FFFFFFFC,A6)
00000832 :SD WRITE - 0000 \ftocm\Fahr
B 00000834 :SD WRITE - O000A \ftocm\Fahr+00000002

00000808 :SD READ - 00000832 \ftocio\PutDecimal+00000126
000004E4 :SP MOVE.l (FFFFFFFC,A6),D0

00000832 :SD READ - 0000 \ftocm\Fahr

00000834 :SD READ - 000A \ftocm\Fahr+00000002
0000080C :SD WRITE - 0000000A \ftocio\PutDecimal+0000012A
0000080C :SD READ - 0000000A \ftocio\PutDecimal+0000012A

In this trace display, instructions which were fetched by the 68020
and the memory reference cycles are shown in exactly the order in
time in which they occurred. Under the source code, the assembly
language is displayed. Source code and symbols from the symbol
table are included in the display so that it is easy to understand. To
simplify locating the breakpoint in the trace display, a "B" is shown
in the first column for the cycle which caused the breakpoint.

Chapter 4-22 PROBE tutorial example

Note the ADD.] instruction at address 4DA. The bus cycles which
operate on the data for this instruction are several cycles lower at
addresses 832 and 834. Two other instruction prefetches also precede
these bus cycles. This makes following the execution of the ADD.I
difficult. Now Pg/Up the trace data to address 5D4 which contains
a BRA instruction. The instructions between this address and the
instruction at address 622 were prefetched but not executed.
Figuring this out mentally can become tedious. Now for a better
way to view the trace data, type <Esc> and invoke the Trace
Instructions command.

ti

0000082E :SD READ -
00000830 :SD READ -
0000080C :SD WRITE
000004D2 :SP MOVE.]

VUUUUOUO s

0000 \ftocm\Step

000A \ftocm\Step-+00000002

- 0000000A \ftocio\PutDecimal+0000012A
(FFFFFFF8,A6),A0

RV VI VITIV P \LUULAU (1 UV SULLGL | VYUV A wY

(FFFFFFFC,A6),D0

Fowey. ¥

000004D6 :SP MOVE.]

0000080C :SD READ
000004DA :SP ADD.]
00000832 :SD READ
00000834 :SD READ
00000832 :SD WRITE
B 00000834 :SD
000004DC :SP MOVE.l
00000808 :SD READ
000004E0Q :SP MOVE.]
00000832 :SD READ
00000834 :SD READ
0000080C :SD WRITE
000004E4 :SP MOVE.]
0000080C :SD READ

WRITE

- 0000000A \ftocio\PutDecimal+0000012A
DO,(A0)

- 0000 \ftocm\Fahr

- 0000 \ftocm\Fahr-+00000002

- 0000 \ftocm\Fahr

- 000A \ftocm\Fahr+00000002
(FFFFFFF8,A6),A0

- 00000832 \ftocio\PutDecimal+00000126
(A0),(FFFFFFFC,AS)

- 0000 \ftocm\Fahr

- 000A \ftocm\Fahr+00000002

- 0000000A \ftocio\PutDecimal+0000012A
(FFFFFFFC,A6),D0

- 0000000A \ftocio\PutDecimal+000001

In this format, PROBE uses a very sophisticated algorithm to
simplify the interpretation of the program execution. This algorithm
does the following:

PROBE tutorial example Chapter 4-23

1. Instructions which are prefetched but not executed are removed
from the display so you do not have to guess which ones
executed.

2. The memory reference cycles which are produced by the
instructions are shown directly under the instructions which
produced them. These cycles actually occurred many cycles later
in time because of the 68020 prefetch queue. With the Trace
Instructions command, you do not have to reconstruct the
program execution yourself mentally.

Note the ADD.I instruction at address 4DA again. The bus cycles
which operate on the data for this instruction are now dispiayed
directly under the ADD.l. Now Pg/Up the trace data to address 5D4
which contains a BRA instruction. The prefetched but unexecuted
instructions between this address and 622 are ¢liminated in this

display.

During this program execution, the 68020 cache was disabled. This is
the default case when PROBE software is started. Since the cache
was disabled, the trace display can be "dequeued" with the Trace
Instructions command (i.e., the instructions which were fetched but
not executed are filtered out of the trace display). Next, try running
the program with the cache enabied. The state of the cache is
controlled by three conditions:

1. A hardware signal in the target
2. The least significant bit of the CACR register
3. A control field in the PROBE GO command.

Lets assume your hardware has the cache enabled. Next, since this
demo program did not enable the cache, you must enable it by
changing the least significant bit of the CACR register to 0. To do
this, invoke the Register command and position the highlight to the
CACR register. When PROBE prompts you for a value, type:

cacr |1

This "or’s" the current CACR register and sets the least significant
bit. Now start the program again and set the same breakpoint, but
this time, enable the cache. This is done by typing the <TAB>
character to get to the field in the GO command which lets you
enable the cache. Type:

Chapter 4-24 PROBE tutorial example

g<enter><tab><tab><tab><tab>y<enter>

When the breakpoint occurs, dump the trace again with the TI
command. Note that the message and trace display you got
previously with the TA command appears, instead of the TI format.
This is because PROBE cannot dequeue the trace data when the
cache is enabled. Instead, it shows fetched instructions and bus
cycles in the order in which they occurred.

QUALIFIED TRACE DATA

PROBE also lets you qualify the real time trace data. This optimizes
the useful trace information and ignores trace data you do not want
to gather in real time. A qualified trace region is defined as a range
of memory from which instructions are fetched. While in the region,
the instructions and all memory reference cycles associated with the
instructions are entered into the trace data. While not in the region,
no trace data is gathered. PROBE disables the cache while in the
qualified trace region €ven 1if il iS €napied OIRErwise. UULslae oL Lnls
region, the 68020 cache is controlled by the same three conditions
described earlier. This is called "dynamic cache control". It provides
the benefits of running the target with the cache on for most of the
time while giving PROBE the ability to trace through the qualified
trace region. The trace region is set by typing:

tq

PROBE prompts you for the region, choose the responses shown here:

Start address: <00000000> End address: <00000000> Program space:<Both>
Don’t care bits:<.... coov vees e i s s 0>

Enable trace qualification: [Yes] {Yes|No}

Enter new start address: [\ftocm\#22]

Enter new end address: [\ftocm\#23]

This sets a qualified trace region between linenumbers 22 and 23 in
the module FTOCM. Now start program execution again with with
the sticky breakpoint 0O still set and the cache still enabled.

PROBE tutorial example Chapter 4-25

g<enter><enter>

When the breakpoint is detected, dump the trace data with the TA

command. You will see that only instructions between these two line
numbers are traced.

e 3k 3k 36 o5 3 ke e e e 3k 3k 3k ok 6 ke ke e Sk 3k e b e b ke e ke ke e e s ok e 3 3k ok sk ok e e e 3k ok ok ke ok

000007F0 :SD WRITE - 00000836 \ftocio\PutDecimal+0000010E
0000054C :SP MOVE.l #00000020,D0
0000054E :SP MOVE.I DO,(FFFFFFF4,A6)
O000007E4 :SD READ - 00000000 \ftocio\PuiDecimal+00000102
000007EC :SD WRITE - 00000000 \ftocio\PutDecimal+0000010A
00000552 :SP MOVE.l (FFFFFFF4,A6),D0
00000556 :SP SUR] DO,(FFFFFFF8,AG)
000007E8 :SD WRITE - 00000020 \ftocio\PutDecimal+00000106
0000055A :SP MOVE.l (FFFFFFFC,A6),A0
000007E8 :SD READ - 00000020 \ftocio\PutDecimal+00000106
00000S5E :SP MOVE.l (FFFFFFF8,A6),(A0)
000007EC :SD READ - 00000000 \ftocio\PutDecimal+0000010A
000007EC :SD WRITE - FFFFFFEO \fiocio\PutDecimal+000001CA
000007F0 :SD READ - 00000836 \ftocio\PutDecimal+0000010E
123. *CelsiusTemp = *CelsiusTemp * 5;
B 00000562 :SP MOVE.l (FFFFFFFC,A6),A0

SEARCHING THE TRACE DATA FOR EVENTS

The PROBE/3 real time trace contains so much trace data that
displaying it on the screen would take several minutes. In order to
quickly find useful information in this trace data, the Trace
commands have a built in text editor which will let you search for
events in the various trace fields. While you are in any of the Trace
commands, the DIALOG BOX looks like this:

Chapter 4-26 PROBE tutorial example

Search address:<Any> Space:<Any> Verb:<Any> Data:<Any>

Begin search of trace: [No] {Yes|No}

__PgUp/PgDnArrows move within memory; <Tab> to next field; <Esc> to main menu
Cache disabled during execution. Trace not qualified

Address OP CODE OPERANDS

PR:JBE prompts you to begin the search with:

Begin search of trace: [No] {Yes|No}

If you answer No to the "search" prompt, PROBE will provide a
series of prompts to let you specify which fields in the trace data
you want to search. If you answer Yes to the "search” prompt,
PROBE starts searching from the top line of the current DISPLAY
WINDOW until the end of the trace data. If vou want to start
searching from the start of the trace data, type Ctrl PgUp and the
first data entered into the trace is shown in the DISPLAY WINDOW.
When PROBE finds a match between the search fields you specified
and a line in the trace data. the character "S" designates the line.
You can continue the search by typing Yes in response to the
"search" prompt again.

VIEWING UNASSEMBLED CODE AND LOGGING
TO DISK

PROBE has an online unassembler to let you display memory as
68020 instructions. Let’s assume you want to unassemble a block of
memory and save it to a disk file. PROBE has a "log-file" capability
that lets you direct all PROBE screen output to a disk file or line
printer. This could also be used to save a debug session. To open a
"log file" for logging data type:

xly
PROBE prompts you for the name of the file to open. Respond with:

log.tmp

PROBE tutorial example Chapter 4-27

Now you can display a page full of memory starting from the
procedure COMPUTE by typing:

ucompute<enter><enter>

The following display appears. You can use the PgUp and PgDn
keys to scroll through memory. Note the symbols from the symbol
table are included with the instructions to help match the displayed
code to your program. Since this demo is being done with the
SOURCE versions of PROBE, the display also includes C source code.

Memory space: < >

Display instruction words: <No> Display operand addresses and values: <No>

Enter new start address: | |

' Start address: <00000000>

118. Compute (FahrTemp, CelsiusTemp)

000004F C
00000500
122.

123.

124.

LINK
MOVEM.1

A6,#00000000
A2,-(A7)

*CelsiusTemp = FahrTemp - 32;

00000504 MOVE. (00000008,A6),D0
00000508 MOVE. (0000000C,A6),A2
0000050C MOVE. #00000020,D1
0000050E SUB.I D1,D0

00000510 MOVE. DO,(A2)

*CelsiusTemp = *CelsiusTemp * 5;

00000512 MOVE.] (A2),Do
00000514 MOVE. DO,D1
00000516 ASL1 #2,D0
00000518 ADD. D1,D0
0000051A MOVE DO,(A2)

*CelsiusTemp = *CelsiusTemp / ;

0000051C MOVE. #00000009,D1
0000051E MOVE.l (A2),Do
00000520 JSR (00000420)
00000526 MOVE. D0,(A2)

Now you can close the log file by typing:

xIn

Chapter 4-28 PROBE tutorial example

VIEWING FILES ON DISK

You can view files on disk with the PROBE view command. To
display the file FTOCM.C on type:

vftocm.c

The PgUp and PgDn keys let you scroll through the file. When you
leave the View command and then reenter it, file is positioned on the
screen in exactly the same place as you left it. Up to 10 files can be
viewed with the View command and pointers are maintained to your
view of the file.

SAVING INITIALIZATIONS AND BLOCKS OF
MEMORY

PROBE lets you save the conditions of a debugging session so that
you can easily set up PROBE the next time you use it. This
commana 1s stdried oy Lyplug:

is

PROBE prompts you for the name of the file in which to save the
initializations.

Enter filename for initialization information:[]

You could also save a block of memory from the target or MAP RAM
to a disk file which you could later reload. This is done with the
Xfer Block-save command.

xb

COMMAND REFERENCE Chapter 5-1

CHAPTER 5 COMMAND REFERENCE

COMMON COMMAND DEFINITIONS .2
VALUE 2
ADDRESS w3
EXPRESSION 3
BOOLEAN EXPRESSIONS 5
DEREFERENCED MEMORY)
MEMORY SPACES 8
USING MEMORYSPACE WHEN DEREFERENCING........... 8
FORMAT FOR DESCRIBING PROBE COMMANDS............ 9
USING WILDCARD CHARACTERS. ... 10

SUMMARY OF 68020 PROBE COMMANDS .11

ASSEMBLE COMMAND w13

BREAKPOINT COMMAND....... 17

DISPLAY AND CHANGE MEMORYornrerenesessessssssssssnans 38

EVALUATING EXPRESSIONS......niieieirstssencnsnraesnseesessssasssssenans 52

GO COMMAND.....etrestsssensssssasesssssssssssssasssssassasssssssssssassaassssssssassassassans 54

HARDWARE CONTROL...oeereeeeeeeecnrensensenecasenssnessensenessasessssass 59

INITIALIZATION . rerteeecrnseseeesancaseassssssssssesssassssssssssssessessesssssssessansans 64

LOADING PROGRAMS 68

MACRO COMMANDS 72

NEST COMMAND 85

QUIT COMMAND 87

REGISTER COMMAND 88

SINGLE STEP COMMAND 92

TRACE COMMANDrrnresrnesenseesessenssssssssessssssssssssssssssssssssassinsans 103

UNASSEMBLE COMMANDL......comttmeremninsensesisssasssessssssesssssssasssssssenns 116

VIEW COMMAND 120

WINDOW COMMAND 123

XFER COMMAND 133

SYMBOL COMMANDS .. 145

Chapter 5-2 PARAMETERS AND DEFINITIONS

INTRODUCTION TO COMMON COMMAND
DEHNFHONS

This chapter contains a detailed description and examples for each
PROBE command. The commands are listed alphabetically. This
chapter also defines the common terms that are used in the PROBE
command definitions.

VALUE

A value is a 32 bit quantity that can be represented by any of the
items shown in table 5-1.

TABLE 5-1

EXAMPLE OF VALUE DEFINITIONS
Value represented as: Examples
a symbol name (it’s address) MAIN
a 32 bit numeric hex constant 12345678
a 32 bit numeric decimal constant 12345678T
a register name (it’s contents)* DO (see note below)
an ascii character in quotes A’
a dereferenced memory location (described later)

*Note: A value which matches a register name is interpreted as the
register name. Register names are specified in the R command. If
you want a hex value instead, precede the hex value with a 0.

BASE

When you enter values into PROBE commands, they are interpreted
as hex unless you specify another numeric base. You have the
following choices:

Subscript the value with t for a base of ten (i.e. decimal)
Example: 10t means 10 decimal.

Expressions Chapter 5-3

Put single or double quotes around the value to interpret it as an
ASCII string.
Example: *This is a string” represents 16 bytes of data.

ADDRESS

An address is simply a value.

EXPRESSION

An expression is a value calculated by combining a series of values
with operators.

+s's*s/3~s&s!‘:0/0A
Normal precedence of operators as defined in the C language is
assumed: (*, / ,% ,&) are higher than (+, -, |) and evaluation proceeds
left to right on-operators with equal precedence. Precedence may be
overridden by the use of parenthesis. Table 5-2 explains each
operator and lists them in order or precedence.

, TABLE 5-2
DEFINITION AND PRECEDENCE OF OPERATORS

Operator Definition

Highest precedence

- 2’s complement

- bit by bit negation
Next highest

* multiplication

/ division

% modulus (remainder)
& bit by bit and
Lowest

+ addition

- subtraction
| bit by bit inclusive or

bit by bit exclusive or

Chapter 5-4

Expressions

EXAMPLES: Assuming the following values in memory, here are

Expression

-main

~main

main*2

main/2

main %10
main+5

main-5
main|FF
main”~F0000000

several expressions and their resulting values.

The symbol main is 20000000
Memory at 20000000 is AABBCCDD
Memory at 20000005 is 11223344
Memory at 11223344 is EEFF7788
Memory at 11223354 is 99005566

Value

E0000000
DFFFFFFF
40000000
10000000

20000005
1FFFFFFB
2000000FF
D00000000

Boolean expressions Chapter 5-5

BOOLEAN EXPRESSIONS

Boolean expressions use boolean operators and result in one of two
boolean values. The PROBE boolean operators result in a value of
FFFFFFFF (or non zero) if the result is TRUE and a value of
00000000 if the result is FALSE. The boolean operators may be
joined with the &’ and ’|’ operators for the boolean AND and OR
functions.

TABLE 5-3

DEFINITION AND PRECEDENCE OF BOOLEAN OPERATORS
Operator Definition
< less than (unsigned)
<s less than (signed)
<= less than or equal (unsigned)
<=s ’ less than or equal (signed)
= is equal to
== is equal to
<> is not equal to
I= is not equal to
>= : greater than or equal {unsigned)
>=s greater than or equal (signed)
> A greater than (unsigned)

>s greater than (signed)

Chapter 5-6

Dereferenced memory

EXAMPLES: Here are some boolean expressions and a description of

how the operators work.

Boolean Description
Expression
D0>D1 If the contents of data register 0 is

[123]=[456]

Procedurea <PC

[Celsius] <10t

greater than data register 1, then the
result is true.

If the contents of memory at address 123
are equal to the contents of memory

~at address 456, then the result is true.

If the address represented by the symbol
Procedurea is less than the program
counter, then the result is true.

If the contents of the variable Celsius

is less than decimal 10, then the result

10 tiLuwv.

DEREFERENCED MEMORY

The contents of a memory location may be used as a value in an

expression. This is commonly referred to as dereferencing memory.
The value is pointed to by an address expression which is defined as

follows:

[expression].size

The .size may be omitted or may be:

SIZE - DEFINITION
B use the byte at the specified address -** Default **
A use the word (16 bits) at the specified address.

L use the long (32 bits) at the specified address.

Dere ferenced memory Chapter 5-7

EXAMPLES: Assuming the following values in memory, herc are
some address expressions and their resulting values as
interpreted by PROBE.

The symbol main is 20000000

The bytes of memory at 20000000 are AA, BB, CC, DD
The bytes of memory at 20000005 are 11, 22, 33, 44
The bytes of memory at 11223344 are EE, FF, 77, 88
The bytes of memory at 11223354 are 99, 00, 55, 66

AddressExpression Value (in hex)
main+5 20000005
[main+5].b 00000011
[main+5].w 00001122
[main+5].1 11223344
[[main+5].1] 000000EE
[[main+5].1].w O000OEEFF
[[main-+5].1].1 EEFF7788
[Imain+5].1410] 00000099
[[main+5].1+10].w 00009900

[[main+5].1+10].1 99005566

Chapter 5-8 Memory Spaces

MEMORY SPACES

The 68020 has 8 memory spaces. Commands which display or change
memory can do so in any of the 68020 memory spaces. If the
hardware design of the target system has separately decoded the
memory spaces of the 68020, then you must pay attention to the
memory space you want to display or change. If your hardware does
not do this decoding, then you can ignore the memory space and use the
defaults as supplied by PROBE. Since the memory spaces of the 68020
are not often used or changed, the portion of the commands which
select different memory spaces is a field which you must <TAB> to
in order to change. Here are the memory spaces of the 68020.

Memory space Description

0 Decoded as 0
UDor 1 User data

UP or 2 User program

UR or 3 User reserved

4 0r 4 Decoded as 4
SDor 5 Supervisor data
SPor 6 Supervisor program
CPU or 7 CPU data

USING MEMORYSPACE WHEN DEREFERENCING MEMORY

If you are entering an address expression into a field which is
dereferencing memory, you must specify a memory space for the
address expression if it is to be different than the default used for
the command. This adds to the definition of a dereferenced memory
location as follows:

[expression].size:space

Command format, wildcards Chapter 5-9

EXAMPLES: This address expression points to the Long word
located at the address represented by the symbol main
in the user data space.

[main].l:ud

This address expression points to.the byte at the
address contained in register AQ in the User Program
space. Note that no .b need be specified for byte since
this is the default.

AQ:up

FORMAT FOR DESCRIBING PROBE COMMANDS

In this chapter, the MENU BOX, DISPLAY WINDOVW, and DIALOG
BOXES produced by the commands are shown. Along the perimeter
of the screens you will find numbers in circles. In the text you will
find the corresponding numbers in circles along with a description of
the screen information.

The prompts PROBE provides you in DIALOG BOXES are shown in
italics in this chapter.

In the text, a keystroke is specified as:
<keyname>

For example, <Enter> means type the key labeled Enter on your
keyboard.

Some <keynames> require two keys. For example <4/tKey> means
hold down Alt and type the keyname.

Chapter 5-10 Command format, wildcards

USING WILDCARD CHARACTERS WHEN
ACCESSING FILENAMES

PROBE interprets file specifications in the same manner as DOS on
the AT. A filespec is defined as:

[drive] [path] [name of file]

If not specified, the default drive/path is used. PROBE lets you use
wildcard characters in any command which prompts you for a
filename. If you cannot remember the name of the file you want to
specify or you can only remember part of the filename, then use the
wildcard character *. If you are familiar with DOS, the * works in
exactly the same way as it does in the DIR command.

EXAMPLES: To tell the PROBE command to display all filenames in

the current directory, type:
* %

— s~ ee s . - .« - Tm A TR YL e v e~
AU OpWWEL Y WAL 2 LAWU LAA LAV WEAAVWWAUR Y \LYAL RAL Y AL ALAVANS W

type:
\MAIN\DEMOS* *

To specify all files in the current directory with a
.HEX extension type:
* hex

To specify all files in the current directory which start
with the letter A type:
A**

COMMAND SUMMARY Chapter 5-11

SUMMARY OF 68020 PROBE COMMANDS

REAL TIME ANALYSIS AND CONTROL COMMANDS

Ist Sub Description
key key
G Start program execution using current or new address

Set non sticky breakpoints from breakpoint screen
B Define/display sticky breakpoints from breakpoint screen
Inactivate sticky breakpoints
Activate sticky breakpoinis
Display real time trace data dequeued
Display trace data with prefetch not dequeued
Set qualified trace régicns
Display raw trace data
Save trace data to disk as ascii text.

IO »TUO

Save trace data to disk in a binary format

INTERROGATION AND MODIFICATION

Ist Sub Description

key key

U " Display a block of memory in assembly language
A Replace memory with assembly language
Insert assembly language instructions

D Display and change bytes memory
Display and change words in memory
Display and change long words in memory
Display and change single address
Display and change floating point data

Display and change memory mapping

ZZH®wE gw- X

Display and change noverify memory condition

R Change or display 68020, 68881, MMU registers and flags
Block save memory to disk file

Compare two blocks of memory

Find string in memory

Move a block of memory

Set block of memory to new values

Log PROBE output to disk

N Display high level language procedure nesting

HwgEaow

Chapter 5-12 COMMAND SUMMARY

UTILITY COMMANDS

Ist Sub Description
key key

L Load target system program and symbol table
Set Load options

Load initial set up conditions for PROBE

Save initial set up conditions for PROBE
Single step program via assembly language
Single step program via source code statements
Display/change symbol name or value

Remove symbol or block of symbols

Ignore case for symbols

Define default modulename prefix

Selectively load symbols for specified modules
Selectively source step through modules

<
>UuEHZaQWO®E 0O

Assign modulenames to source files
Evaluate an expression in several bases
Return to operating system

scw

Define/edit a window on the screen
Load window definitions from disk
Save window definition to disk file

N O

Remove or delete the definition for a window

<

View and scroll through disk files

Define a macro

Edit a currently defined macro

Define a macro for conditional execution

Load previously defined macros from a file

Save currently defined macros to a file

Remove a macro

Display target processor clock speed

Reset the target system hardware

Disable/Enable interrupt requests from the target
Disable/Enable DMA requests from the target
Disable/Enable Halt signal from the target
Disable/Enable stoppage of execution after breakpoint
Disable/Enable watch-dog-timeout of target system

fPEgwmu-"mamueraoasyo

Looping read-write test of target system

ASSEMBLE Chapter 5-13

ASSEMBLE COMMAND

PROBE has an on-line symbolic assembler that lets you put 68020
assembly language directly directly into memory. This command is
invoked from the MENU BAR by typing:

A for Assemble

The subcommands for the Assemble command now appear in a
MENU BOX and the screen looks like this.

Replace |Breakpoint Display-change Evaluate Go Init Load Macro Nest

Insert Register Step Trace Unassemble View Window Xfer sYmbol

I <Esc> to main menu |

The subcommands for Assemble are:

Command Sub Operation
command
Assemble Insert Insert code before instruction

Replace Replaces code with new code

INSERTING CODE

After invoking the Insert subcommand, the following screen appears:

e\ o _op

Inse?t address: <00000000> Memory space/<SP>
Patch address: <00000000> Co-processor ID:<0>
Enter address to insert before:|........]
<Tab> to next field: <Esc> to main menu
@ patch address instruction

Chapter 5-14 ASSEMBLE

@ The first DIALOG BOX prompts you for the insert address:

Enter address to insert before: []

The insert address can be any type of expression followed by
<enter>. A JMP instruction to the patch address is placed by the
Assemble Insert command at the insert before.address. The
instructions which were previously at the insert before address are
moved to the end of the patch area. NOP’s are inserted if the
moved instructions are a different size than the JMP.

@ The start of the patch area is specified in the nex:t grompt:

Enter address for patch: []

The new instructions will be assembled into memory starting at
this address.

@ Next, you are prompted to start assembling instructions.

Imetructione [-

The instructions which are initially typed into the DIALOG BOX
are transferred to memory and then unassembled into the
DISPLAY WINDOW after each <enter>. The PROBE edit keys let
you make corrections to the instructions in the DIALOG BOX.

(@ Typing <TAB> while in the Insert subcommand will bring up the
following DIALOG BOX:

Memory space: < > {OJUD|UP|UR|4|SD|SD|CPU}

The memory space into which the instructions are assembled can
be selected with this prompt. The default memory space is UP
(user program) or SP (supervisor program) depending on the
initial state of the flags in the 68020. Typing additional <TAB>s
will recall the other DIALOG BOXES for this command.

@ The assembler will work for Co-processors as well as the 63020
cpu. If there is more than one Co-processor of the same type in
the system, the ID of Co-processor must be identified to PROBE.
Type <Tab> to get the following prompt.

Enter new co-processor ID:[]

ASSEMBLE Chapter 5-15

Co-processor ID’s can be from 0 to 7. For the case of a single
Floating point Co-processor, 68881 , memory management
unit,68851, or one of each, PROBE can automatically determine
the ID. You may ignore the ID in these cases. If you have two

floating point Co-processors, however, a floating point instruction

must include the ID to determine which processor to use.

REPLACING CODE

After invoking the Replace subcommand, the following screen
appears.

a P Q

Repl;ce address: <00000000> Memory space:\ <SP>

Co-processor ID:<0>
Enter address of instruction to replace:|........

@ replace address instruction /

@ The first DIALOG BOX prompts you for the replace address

Enter address of instruction to replace: []

The replace address can be any type of expressing followed by
<enter>. Instructions at this address are replaced.

(@ Next, you are prompted to start assembling instructions.

Instructions:[]

The instructions which are initially typed into the DIALOG BOX

are transferred to the DISPLAY WINDOW after each <enter>.

The PROBE edit keys let you make corrections to the instructions

in the DIALOG BOX.

@ Typing <TAB> while in the Replace subcommand will bring up
the prompts for Memory Space and Co-processor ID as described
in the insert subcommand.

Chapter 5-16 ASSEMBLE

NOTES ON THE 68020 PROBE LINE ASSEMBLER

The following notes apply to the assembly language which which is
understood by the 68020 PROBE standard line assembler.

1. Standard 68020 assembly language mnemonics are used.

2. The assembler will automatically assemble short jumps and calls
depending on the displacement of the destination address.
3. When a byte, word, or long size cannot be determined by the

operand, the data type of the operand must be specified by .b, .w
or L

EXAMPLES OF THE ASSEMBLE COMMAND

Insert instructions in memory starting at location MAIN in the
current default module with new code starting at location IOPROC
in module DOIO. The key sequence for this is:

ALMALN<ENIEr>\DOIVU\IOUPROC<enter>
68020 instructions<Esc>

Replace instructions in memory starting at location FOO in the
current default module with new code:

ARMAIN
68020 instructions<Esc>

BREAKPOINT Chapter 5-17

BREAKPOINT COMMAND

The Breakpoint command lets you define, delete and activate sticky
breakpoints. If sticky breakpoints are active, they are automatically
inserted when the Go command is executed. The Breakpoint
command is invoked from the MENU BAR by typing:

B for Breakpoint

The subcommands for the Breakpoint command appear in a MENU
BOX and the screen looks like this:

' Define-edit Display-change Evaluate Go Init Load Macro Nest
Activate Step Trace Unassemble View Window Xfer sYmbol
Inactivate __<Esc> to main menu

The ubcommands for Breakpoint are:

Command Sub Operation
command
Breakpoint Define Define/change breakpoint

Activate Enable breakpoints during Go
Inactivate Do not enable breakpoint
during Go

Chapter 5-18 Breakpoint - Define and Edit

DEFINING AND EDITING BREAKPOINTS

When the Define subcommand is selected, the DISPLAY WINDOW
shows a summary of current condition of the sticky breakpoints..
This is sometimes referred to in this manual as the Abbreviated
Breakpoint Summary.

Enter breakpoint number: | A]
"S" for sequential; 0..9 for BP; <Esc> to main menu
BP # Status Breakpoint-addr [To-range] Verb Size Data Match|
BP 0 inactive } Execute
BP 1 inactive Execute
BP 2 inactive Execute
BP 3 inactive Execute
BP 4 inactive Execute
BP 5 inactive Execut
BP 7 inactive Execut
BP 8 inactive Execu
BP 9 inactive Execufe
Seq inactive \-

® O 06 ®0 ® O

@ The first DIALOG BOX prompts you for the breakpoint number:

Enter breakpoint number: []

PROBE lets you define up to 10 sticky breakpoints with
breakpoint numbers from 0 to 9. In addition, a breakpoint
number may be S (which stands for sequential) is described later.
To make it easy to remember which breakpoints are already
defined, an abbreviated summary of the status of all 10 sticky
breakpoints is shown in the DISPLAY WINDOW. A short
explanation of these fields is given here. A more thorough
explanation is given later.

This field is the Breakpoint number.

If a breakpoint has not previously been defined, its default status
is shown as inactive.

©E

Breakpoint-- Define and Edit -Chapter 5-19

This is the address of the currently defined sticky breakpoints.

This is the end address of the currently defined sticky breakpoint
if it is a range breakpoint.

This is the verb of the currently defined sticky breakpoints. The
default is Execute.

This is the Size of the data field if the data bus is included in
the breakpoint.

This is the Data field if the data bus is included in the
breakpoint.

This is the Match or No match condition if the data bus is
included in the breakpoint.

© ® 0 6 Ve

Once the the breakpoint number has been selected, the following
DISPLAY WINDOW appears.

:

Enter breakpoint address:[]

<Enter> to next field; <TabXx to next breakpoint;\<Esc>to main menu
Breakpoint 0. Status <inactive>

ADDRESS OF BREAKPOINT:
<

To <

Don't care bits:<.... ... e cres s e s D>

Memory spaces: <0,UD,UP,UR 4,SD,SP,CPU> {0,UD,UP,UR,4,SD,SR,CPU}

BREAKPOINT VERB: <Execute> {Execute|HWExecute|Read|Write|Retch|Logic|Any]

DATA FIELD OF BREAKPOINT:
DATA SIZE: <none> {none|Byte|Word|Long}
DATA VALUE: <
Don’t care bits:<.... oo voe it ein i s >
TRAP ON DATA: <Equal> {Equal|Not Equal}

BREAKPOINT QUALIFIERS: \
Logic lines (L3210):<xxxx><Equal> IPL2,IPL1,IPLO: <xxx><Equal>

AFTER TRAP, EXECUTE MACRO\WINDOW KEY: <none>

Chapter 5-20 Breakpoint - Define and Edit

@ The first DIALOG BOX prompts you for the address for the
breakpoint

Enter breakpoint address: []

You can use an expression or absolute number for the address.

@ The next prompt lets you enter the TO address if the breakpoint
is for a range of addresses:

Enter new end address:[]

You may enter any type of address expression. The end address
may also be of the form:
+ number

In this case the end address becomes start address+number. If
this field has previously been set to other values and you want to
clear the field, type <space><enter>.

Rather than go through the remainder of the Breakpoint
definition prompts, you may be finished at this point. If this
breakpoint has not been previously defined, the remainder of the
defaults in this breakpoint screen set it to a simple Execute
breakpoint. You may want to move on to define another
breakpoint. You may want to continue the breakpoint definition.
The following is a summary of the keys you could type at this
point in the definition (or at any point).

Key What you get
<ESC> Accept current screen, and go
to MENU BAR
<TAB> Accept current screen and start
defining another breakpoint
<enter> Move to next prompt for this breakpoint.

Do this if you want to set more breakpoint

fields but this is not a range breakpoint
address Define this breakpoint as a range

breakpoint and move on to next prompt

Breakpoint - Define and Edit -Chapter 5-21

®

®

This field lets you mask out bits in the address field of the
breakpoint.

Don’t care bitS: <. v voer coer vver vonr ven e >

This is useful if the target does not decode the entire address
space and ignores some address lines. It is also useful instead of
the range breakpoint for some applications. You enter an X for
each address bit position you want to mask and enter a period ()
for each address bit position you want to trigger on. The initial
default is all periods. The data you enter for this prompt is left
justified since it is most common to mask out the upper address
bits.

The next prompt lets you set the breakpoint on any combination
of the 8 different 68020 memory spaces. If the breakpoint is to
cover several memory spaces, separate them with a comma as
shown with the default. If VERB is Execute or HWExecute, then
only UP and SP are used for this field and all others are ignored.
If your hardware does not decode memory spaces, then take the
default which is all memory spaces by simply typing <enter>.

Enter memory space list: [] {0,UD,UP,UR4,SD,SP,CPU}

The next prompt sets the breakpoint verb:

Enter breakpoint verb: []
{ Execute|HWE xecute|Read|Write|Fetch|Logic|Any}

The breakpoint verbs are defined as follows:

Chapter 5-22 Breakpoint - Define and Edit

VERB VERB DEFINITION

Execute Instruction execution breakpoint via
software interrupt instruction. May only
be set in ram memory. This type of
breakpoint replaces the target code with
the 68020 BKPT #7instruction. See
Appendix C to change the BKPT 7 to
another vector.

HWExecute Instruction execution breakpoint via
POD. May be set in ram or prom memory.

Read Breakpoint on Read of memory address or

“range of memory

Write Breakpoint on Write to memory address or
range of memory

Fetch Breakpoint on read from UD or SD
memory address or range of memory.

Any Breakpoint on Any access (1 e.Read, Write,

——— o~ -

Ve oL As oy VUiLoasvaMvL Y u\.u.u\-oa Vi 1aupv VL

memory addresses.

The breakpoint can be further qualified with the DATA FIELD.
This is done by first selecting the size of the data field with this
prompt:

Enter type of data for breakpoint: []{none|Byte|Word|Long}

The size of the data field can be 1,2 or 4 bytes by choosing Byte,
Word or Long. If you do not want to include the DATA FIELD
in the breakpoint, then type <enter> to select the default which is
<none> and the next two prompts will be ignored.

If you select one of the types for the DATA FIELD, then you
must specify the DATA VALUE which will cause the breakpoint
with this prompt. The DATA VALUE can be an expression.

Enter data value for breakpoint: []

This field lets you mask out bits in the DATA FIELD of the
breakpoint.

Dor’t care bilS <. v vee vore vee cvre vven e >

Breakpoint - Define and Edit -Chapter 5-23

This is useful if you are looking for a bit field such as a flag or
an ASCII character in the breakpoint. You enter an X for each
data bit position you want to mask and enter a period (.) for each
data bit position you want to trigger on. The initial default is all
periods. The data you enter for this prompt is right justified.

@ The breakpoint can be selected to trap on the data being equal or
not equal to the DATA VALUE with this prompt.

Breakpoint on datavalue:[] { EquallNot Equal}

This is useful when you are looking for a change of state of a
variable or a bit in memory.

(0 This field lets you qualify the breakpoint further with the
external Logic PROBES. The match condition can be set to 1, O,
or Don’t care for each line. See Appendix H for more
information on these Logic PROBES. When a match occurs on
this field, the other breakpoint fields on this screen are enabled.
The prompt for this field is:

Enter qualifier bits ("0"1"1"1"x"): [/

Once a value has been put into the logic line file, a second
prompt appears:

Bredkpoint on value:{Equal] { EquallNot Equal}

This lets you look for an equal or not equal condition on the
Logic lines.

@ An additional option lets you invoke a PROBE macro or window
when the breakpoint has occurred. This is done by specifying an
AltKey (i.e. hold down Alt and type any key) in response to this
prompt.

Enter Macro/Window <AltKeyname>: []

Chapter 5-24 Breakpoint - Define and Edit

If a macro is defined for the specified AltKey, it will execute
when this breakpoint is executed. If a Watch Window is defined
for the specified AitKey, then it will pop up after the breakpoint
is detected.

@ This field lets you qualify the breakpoint further with the IPL
(interrupt priority level) lines on the 68020. The match condition
can be set to 1, 0, or Don’t care for each line. When a match
occurs on this field, the other breakpoint fields on this screen are
enabled. The prompt for this field is:

Enter qualifier bits ("0""1"|"x"): [7/

Once a value has been put into this field, a second prompt
appears:

Breakpoint on value:[Equal] { EquallNot Equal)

11115 ICLd YUU 1UUK 1Vl all CYudl Ul UUL Cyudl LOLLULLIULL ULl LG SL &y
lines.

@3 This field lets you activate or inactivate a breakpoint:

Enter status of this breakpoint: [] {activelinactive}

A <TAB> typed during the breakpoint definition will transfer you to
the prompt which lets you activate the breakpoint or back to the
first screen in the Breakpoint command so you can define another
breakpoint. You can also use the cursor keys to move you directly to
the field in this screen which you want to change. If the field has a
value in it and you want to make it blank, simply type
<space><enter> to clear the field.

Breakpoint - Define and Edit -Chapter 5-25

BREAKPOINT DETECT OUTPUT

For Breakpoint verbs; Read, Write, Fetch, and Any, a breakpoint
output detect pulse is available to trigger an external device such as
a Logic Analyzer or Scope. This Breakpoint Detect output signal is
produced in the POD is is avalialbe through the Logic PROBES. Sce
Appendix H for more information.

BREAKPOINT RESTRICTIONS

The following restrictions apply to the breakpoints whether set by
the Breakpoint command or the Go command.

1. Since PROBE uses the POD, Breakpoint/Trace boards, and
software breakpoints to set breakpoints, you can set up to 24
breakpoints. Since the BP screen lets you define only 10 sticky
breakpoints, the remainder of the 24 available breakpoints must
be set when you use the Go command. The maximums for each
type of breakpoint is shown in this table.

Type Maximum
Execute 16
HWEzxecute 4

Read|Write|Fetch|Any|Logic 4

2. Execute and HWExecute breakpoints may only be set in UP or SP
memory spaces. All other spaces are ignored for this type of
breakpoint even if they are specified.

3. Breakpoints which specify a Data Size have the following
restrictions:

Data Size cannot be selected for Execute or HWExecute verbs.
The Data Size may not be larger than the Bus Size. The Bus Size
is set for a block of memory with the Display-change Map
command and matches the physical size of the target bus over a
range of addresses. In addition, if Data Size is specified, the
breakpoint address must start on the address boundary and end 1
byte before the address boundary shown in the table below:

Chapter 5-26 Breakpoint - Define and Edit

TABLE 5-4

Data Size vs Address Boundary
Address DATA SIZE
Boundary Byte Word Long
AlAQ
00 ok ok ok
01 ok ok(if 32bit bus) not allowed
10 ok ok not allowed
11 ok not allowed not allowed

For example, if DATA SIZE is word, then the breakpoint must be
set on a word boundary. That is, A0 = 0. If DATA SIZE is long,
then the breakpoint must be set on a long boundary. That is, A0

=0, Al = 0.

4. Kange precakpoinis nave tne 1o11owing resirictions:
a. They may not cross a 1 megabyte boundary.
b. Verbs are limited to Read, Write, Any, or Fetch.

¢. Range breakpoints must start on the address boundary which is
the same size (or larger) as the Bus Size. The following table
illustrates this:

TABLE 5-5
Bus Size vs Address Boundary for Range Breakpoints

Address BUS SIZE
Boundary Byte Word Long

Al1A0

00 ok ok ok

01 ok not allowed not allowed
10 ok ok not allowed
11 ok not allowed not allowed

Range breakpoints which also include Data Size must meet the
same requirements as a normal range breakpoint. In addition, for

Breakpoint - Define and Edit -Chapter 5-27

range breakpoints which include Data Size, the Data Size must
exactly match the Bus Size.

BREAKPOINT COMMAND EXAMPLES

Define and activate breakpoint number 0 which detects a write to
the range of addresses starting at 1000 and ending at 14f6 when the
value written is 1234. Execute macro Al:J after the breakpoint.
Assume the BUS SIZE as set by the Display Map command is Long.
The key sequence to enter this breakpoint is shown followed by the
Abbreviated Breakpoint Summary.

BD01000<enter>+4f6<enter><enter><enter>WW1234<enter><enter>
<enter><enter><enter><AltJ>A<ESC>

BP # Status Breakpoint-addr [To-range] Verb Size Data Match
BP 0 active 1000 To +4f6 Write Long 1234 Equal

Define and activate breakpoint number 1 which traps executing an
instruction at location PROMPT in module MAIN. Assume the
instruction is in ram memory:

BDIMAIN\PROMPT<Up arrow>A<Esc>

BP # Status Breakpoint-addr [To-range] Verb Size Data Maich
BP 1 active main\prompt Execute

Define and activate breakpoint numbers 2,3,4, and 5 for executing
instructions at line numbers 20, 40 108 and 212 in the current
module. Assume that the breakpoints are in eprom memory.

BD2#20<enter><enter><enter><enter>H<Tab>Y
3#40<enter><enter><enter><enter>H<Tab>Y
4#108<enter><enter><enter><enter>H<Tab>Y
S#212<enter><enter><enter><enter>H<Tab>Y <Esc>

Chapter 5-28 Breakpoint - Define and Edit

BP # Status Breakpoint-addr [To-range] Verb Size Data Match
BP 2 active #20 HWExecute
BP 3 active #40 HWExecute
BP 4 active #108 HWExecute
BP 5 active #212 HWExecute

Define and activate sticky breakpoint 6 to detect a FETCH from the
lower 4k bytes of memory. Execute the macro assigned to the key
AltF when this breakpoint occurs.

BD60<enter>+3FF<enter><enter><enter>F<enter><enter><enter>

<enter>AltFA<Esc>
BP # Status Breakpoint-addr [To-range] Verb Size Data Match
BP 6 active 0 To +3ff Fetch Equal

DNefine and activate stickv breakpoint 7 to trap if the data pattern
AAAA is written to location 1000 and bit 0 of the PROBE Logic
lines is equal to 1.

BD71000<enter><enter><enter><enter>W<enter>0<enter><enter>
<enter>A<Esc>

Define and activate sticky breakpoint 8 to trap Any type of access
between locations FFFFF000 and FFFFFFFF. Set the trap for
memory spaces Supervisor program and User program only.

BDSFFFFFO00O<enter>+FFF<enter><enter>UP,SP<enter>A<enter>
<enter><enter><enter>A<Esc>

BP # Status Breakpoint-addr [To-range] Verb Size Data Match
BP 8 active fffff000 To +fff A Equal

Define and activate a sticky breakpoint 9 to trap Any access to the
range of memory between 0 and 000FFFFF with PROBE Logic Line
0 equal toa 1.

BD90<enter>0FFFFF<enter><enter><enter>A<enter>1l<enter><TAB>
Y <Esc>

Breakpoint - Define and Edit -Chapter 5-29

Go back and redefine breakpoint 9 to make it trap executing an
instruction at location MAIN.

BD9MAIN<enter><space><enter><enter><enter>E<enter>X<enter>
<Esc>

Assume the following code is in memory and the breakpoint defined
as shown below. The breakpoints show some of the restrictions as
described earlier in this command.

400 move.l #1234,(1000)
408 move.l #5678,(1002)
410 bra 400

BP # Status Breakpoint-addr [To-range] Verb Size Data Match
BP 0 active 1000 w L 1234 Equal
BP 1 active 1002 w L 5678 Equal
BP 2 active 1004 w w 5678 Equal
BP 3 active 1000 To 100F w w 5678 Equal
BP 4 active 1000 To 100F w L 5678 Equal

BP 0 will work ok. BP 1 will give the error "BP1 Long data must
start on Long word boundary (A1A0=00)" when the Go command is
typed. Breakpoint 2 will work ok. Breakpoint 3 will give the error
"Range breakpoint Data Size must match Bus Size". Breakpoint 4
will not give an error but will not trap a write of 5678 to location
1002 because it is set to trigger on a Long not Word write.

Chapter 5-30 Breakpoint-Sequential, Pass Count, Timeout

SEQUENTIAL, PASS COUNT AND TIMEOUT
BREAKPOINTS

In addition to the sticky breakpoints described previously, a special
kind of sticky breakpoint can be defined by selecting "S" as the
breakpoint number in the Breakpoint Define command. On this
breakpoint screen you can define

sequential breakpoints
timeout breakpoints
real time breakpoint pass counter
continue real time trace after breakpoint

A sequential breakpoint is the result of a sequence of operations
between other sticky breakpoints. A timeout breakpoint occurs when
the time between two other breakpoints exceeds a prespecified timer
value. The real time breakpoint pass counter lets you count the
number of breakpoints in real time before program execution is
stopped. The trace after trigger condition lets vou continne the real
time trace after the breakpoint has occurred.

When a sequential breakpoint is being defined, this DISPLAY
WINDOW appears.

Break point-Sequential Pass Count, Timeout Chapter 5-31

R _ 9

Enter sequential conditional number: [1] {1]|2|R}4[5]6}
<Enter> to next field; <Tab to neXt breakpoint;/<Esc> to main menu.

Sequential Breakpoint. S¥atus: <inactive>
Sequential condition: <6> Breakpoint assignment to BP’s
1.AorBorCorD
2. A arms B, reset by C
3. A arms B arms C, reset by D C is assigned to BP <none>
4. A arms (B or C), reset by D D is assigned to BP <none>
5. (A or B) arms C, reset by D
6. A to B time greater than: <0:00.000.000>
Pass count before trap:<0000>

Continue trace after breakpoint:<No>

A is assigned to BP <none>

B is assigned to BP <none>

BP # Status Breakpoint-addr [To-range] Verb Size Data Match

BP 0 inactive Execute
BP 1 inactive Execute
BP 2 inactive Execute
BP 3 inactive Execute
BP 4 inactive Execute
BP 5 inactive Execute
BP 6 inactive Execute
BP 7 inactive Execute
BP 8 inactive Execute
BP 9 inactive Execute

Seq inactive

®
@ The first DIALOG BOX prompts you to select the type of

breakpoint sequence you want to cause a trap :

Enter sequential condition number: [] {1|2|3|4]5]6}

There are 6 different types of sequential breakpoint conditions.
As you can see from the sequential conditions, four PROBE
hardware breakpoints can be involved in the breakpoint sequence.
These are labeled A, B, C, and D.

Chapter 5-32 Breakpoint-Sequential, Pass Count, Timeout

@ The sequential condition definitions are described in this area.
Arms in the breakpoint description means that the first
breakpoint enables detection of the second breakpoint. Reset in
the breakpoint description means that the previous Arms
condition is cleared. Thus if the reset breakpoint is detected
after the arming breakpoint but before the armed breakpoint,
then all bets are off and the sequence must start all over. If you
do not want the reset breakpoint, leave D blank.

@ Next you must assign A, B, C, and D to PROBE breakpoints.
This is done with the following series of prompts.

Assign breakpoint A to BP [] {0]1]2|3]4]5|6|7]8]9}
Assign breakpoint B to BP [] {0]1|2|3[4]5|61718|9}
Assign breakpoint C to BP [] {0]1]2|3|4|516|718|9}
Assign breakpoint D to BP [] {0|1]2]3]4]5|617|8]9}

The A, B, C, and D items are assigned sticky breakpoint numbers
(0 to 9) When a stlcky breakpoint is assigned to A, B, C, D then

thn mtlatlee, lwnntio ~ale 4+ e lobd ﬁ'hr\ nr-nf-l 'vo‘\ne-rsé'th ne o afghl’v

i s many e eweeeg e =

breakpoint and is only used in the sequence. If A, B, C, or D are
not assigned to a breakpoint (shown as none), then they are null
terms in the breakpoint sequence. When the breakpoints 0 thru 9
are assigned to a sequence, they must all fall within one of the
groups below:

All must have a verb of Execute or HWExecute.
All must have a verb of Read, Write, Fetch, Any, Logic.

In the first group, execution stops at each breakpoint and the
sequential condition is checked with software. In the second
group, sequential detection is done in real time. The error
checking to determine if the all breakpoints in a sequence are in
one of these two groups is not done until program execution
actually starts with the Go command. This lets you define which
sequence you want to use in advance of defining the breakpoints
in the sequence.

@ Sequential breakpoint type 6 in this display is a special case.
This is a timeout breakpoint. After this sequence is selected, the
following prompt appears:

Breakpoint-Sequential Pass Count, Timeout Chapter 5-33

Enter new time-out time as <min:sec.msecuses>:[]

A timer value is entered into this field. The timer value can be
specified as follows:

Min:Sec

Min:Sec.Millisecond
Min:Sec.Millisecond,Microsecond
Sec.Millisecond
Sec.Millisecond,Microsecond
Millisecond,Microsecond
Microsecond

Data is interpreted as follows when entered into this field.
Numbers to the left of a colon are interpreted as minutes.
Numbers to the right of a comma are interpreted as microseconds.
Numbers to the left of a period are interpreted as seconds.
Numbers to the right of a period are interpreted as milliseconds.

The timeout breakpoint occurs when the time between
breakpoints assigned to A and B exceeds the timer value while
the program is executing. A timer is started when the breakpoint
assigned to A is encountered. If the timer reaches the timer value
before the breakpoint assigned to B is encountered, then program
execution is stopped. If the breakpoint assigned to A occurs a
second time before the timer reaches the timer value, the timer is
reset and starts over again. The breakpoints assigned to A and B
cannot have Execute or HWExecute verbs (use Fetch instead).

For timeout breakpoints, PROBE forces the pass count to 1 and
the trace after trigger to no.

@ In addition to setting a trap on a sequence of breakpoints, the
PROBE has a real time pass counter. You can trap on the Nth
occurrence of a breakpoint sequence. By not assigning B, C, or D,
an individual breakpoint can have a pass count.

Enter new pass count: []

If you type <enter> without a pass count, the pass count will not
be changed. Pass count can have values from 1 to FF.

Chapter 5-34 Breakpoint-Sequential Pass Count, Timeout

@ Sometimes it is desirable to cause the real time trace to continue

after the breakpoint has occurred. The trace will continue for
128 cycles after the breakpoint is detected. This option is
selected with this prompt:

Continue trace after breakpoint:[No]{Yes|No)}

You can activate or inactivate the S breakpoint with the
following prompt

Enter status of this breakpoint: [] ({activelinactive}

The process of making the breakpoint assignments to A, B, C, and
D is made easier since an abbreviated summary of the current
sticky breakpoint definitions is also shown in this screen for
reference.

SEQUENTIAL BREAKPOINT COMMAND EXAMPLES

Define and activate the S breakpoint to detect the occurrence of
sticky breakpoint 5 followed by 2. If, however, breakpoint 3 occurs
between 5 and 2, restart the sequence of looking for breakpoint 5
again. Do not stop program execution until this sequence happens
255 times. Continue the real time trace after the breakpoint occurs.

BDS252<enter>3FF<enter>YA<ESC>

Enter sequential conditional number: [1] {1]2[3]4]5]6}
<Enter> to next field; <Tab to next breakpoint; <Esc> to main menu.
Sequential Breakpoint. Status: <active>

Sequential condition: <2> Breakpoint assignment to BP’s
1.AorBorCorD A is assigned to BP <5>

2. A arms B, reset by C B is assigned to BP <2>

3. A arms B arms C, reset by D C is assigned to BP <none>

4. A arms (B or C), reset by D D is assigned to BP <3>

5. (A or B) arms C, reset by D

6. A to B time greater than: <0:00.000.000>

Pass count before trap:<ff>
Continue trace after breakpoint:<yes>

Breakpoint-Sequential Pass Count, Timeout Chapter 5-35

Set a breakpoint which occurs if the time between sticky breakpoints
2 and 5 exceeds 50 microseconds.

BDS625<enter><enter>50<enter>A<ESC>

Enter sequential conditional number: [1] {1[2]3]|4|5]6}
<Enter> to next field; <Tab to next breakpoint; <Esc> to main menu.
Sequential Breakpoint. Status: <active>

Sequential condition: <6> Breakpoint assignment to BP’s
1.LAorBorCorD A is assigned to BP <2>

2. A arms B, reset by C B is assigned to BP <5>

3. A arms B arms C, reset by D C is assigned to BP <none>

4. Aarms {BorC),reset by D D is assigned to BP <none>

5. (A or B} arms C, reset by D

6. A to B time greater than: <0:00.000.50>

Pass count before trap:<0000>
Continue trace after breakpoint:<No>

Set a breakpoint on overwriting the variable FAHR which is at
address 722 when its data value is 90 decimal. Assume that BUS
SIZE is Long and that FAHR is addressed as a Long variable. Since
FAHR is spread across two memory locations, PROBE can only trap
on a write to the upper or lower word. To trap a write to both
words, use a sequential breakpoint A>B. A is a write to the most
significant word and B is a write to the least significant word. Here
are the screens for A, B, and S.

BP # Status Breakpoint-addr [To-range] Verb Size Data Match
BP 0 active FAHR w w 0 Equal
BP 1 active FAHR+2 w w 90T Equal

Chapter 5-36 Breakpoint-Sequential,Pass Count, Timeout

Enter sequential conditional number: {1] {1]2|3]4|5|6}
<Enter> to next field; <Tab to next breakpoint; <Esc> to main menu.
Sequential Breakpoint. Status: <active>

Sequential condition: <6> Breakpoint assignment to BP’s
1.AorBorCorD A is assigned to BP <2>

2. A arms B, reset by C B is assigned to BP <5>

3. A arms B arms C, reset by D C is assigned to BP <none>

4. A arms (B or C), reset by D D is assigned to BP <none>

5. (A or B) arms C, reset by D

6. A to B time greater than: <0:00.000.50>

Pass count before trap:<0000>
Continue trace after breakpoint:<No>

Breakpoint - Activate & Inactivate Chapter 5-37

ACTIVATE AND INACTIVATE BREAKPOINTS

Two other subcommand choices for the Breakpoint command are
Activate and Inactivate. When either subcommand is selected, the
following screen appears:

@ Enter breakpoint number: |]
"A” for all; "S"” for sequential; 0..9 for BP; <Esc> to main menu
BP # Status Breakpoint-addr [To-range] Verb Sige Data Match
BP 0 inactive Execute
BP 1 inactive Execute
@ BP 2 inactive Execute
BP 3 inactive Execute
BP 4 inactive Execute
BP 5 inactive Execute
BP 6 inactive Execute
BP 7 inactive Execute
BP 8 inactive Execute
BP 9 inactive Execute
Seq inactive

@ The first DIALOG BOX prompts you for the sticky breakpoint
number to activate or inactivate:

Enter breakpoint number: []

Select a breakpoint number or type A for all breakpoints to be
activated or inactivated.

@ An abbreviated breakpoint summary is shown to make it easy to
see the current status of sticky breakpoints.
EXAMPLES ACTIVATE/INACTIVATE BREAKPOINTS
Inactivate all sticky breakpoints.
BUA<Esc>
Activate sticky breakpoints 1,2, and 5.
BA125<Esc>

Chapter 5-38 DISPLAY-CHANGE MEMORY

DISPLAY AND CHANGE MEMORY

This command lets you change and display memory, and variables. It
Iets you display and change MAP RAM attributes. It also lets you
determine if PROBE should do a read after write check whenever it
changes memory. The display command is invoked from the MENU
BAR by typing:

D for Display

The subcommands for Display appear in a MENU BOX like this:

Byte Display-change Evaluate Go Init Load Macro Nest
Word Step Trace Unassemble View Window Xfer sYmbol
Long __<Esc> to main menu

Single address
Float

g | Map
Noverify condition

The subcommands for the Display command are:

Subcommand Operation

Byte Display/change bytes in memory

Word Display/change words in memory

Long Display/change long words in memory

Single Display/change peripheral devices or

address single address.

Float Display/change floating point data in
memory

Map Display/change memory mapping for Bus
Size, Guarded access and MAP RAM

NoVerify Display/change read after

condition write condition

Display-change Bytes, Words,Long Chapter 5-39

BYTES, WORDS, LONG

Memory can be displayed and changed in memory by selecting the
first character of the following data types:

Byte
Word
Long word

After selecting the data type, the DISPLAY WINDOW looks like this:

Start address <00000000> End address: <0000014F> Memory space [SD]
4 Current address: < >
Enter new start address:[|

<Enter> or <Tab> to next field; <Esc> to main\\enu
00000000 02 03 04 05 06 07 08 09 OAOBOCOD OEOF 1011* *
00000010 12331415161718191A1B1CID1E1F2021* 1
00000020 22 23\24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31*"#3$%&’()*+,-./01 *
00000030 32 33 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41*23456789:;<=>7@*

@ The first DIALOG BOX prompts you for the start address of the
memory to be displayed:

Enter new start address: []

You may enter any type of address expression. If you type
<enter>, you will get the default start address.

@ Next you are prompted for the end address

Enter new end address: []

You may enter any type of address expression. The end address
may also be of the form:

+ number
In this case the end address becomes start address+number. If
you simply type <enter> without entering a new end address, you
get the default end address shown on the screen.

Chapter 5-40 Display-change Bytes, Words,Long

®

@

This is the address field of the displayed memory in the
DISPLAY WINDOW.

This is the current address of the memory location which is
highlighted in the DISPLAY WINDOW. If the current address
matches or is close to a symbol in the symbol table, then the
symbol is also shown in this field along with the address.

A location in memory is highlighted in the DISPLAY WINDOW.
You are prompted to enter a new value into memory at this
location. The value can be a symbolic expression, a number, or a
string of "characters". If the value is a string, each character is
written to the next unit (i.e. byte, word, or long). If the value is
an expression, the standard PROBE editing keys can be used to
make changes to the expression in the DIALOG BOX.

Enter new value: []

After <enter> is typed, the value is deposited into memory and
the highlight moves to the next address. The value deposited in
memory is also displayed in the cell in the DISPLAY WINDOW
unless you have the Noverify condition set so that a read after
write does not occur. You can move the highlight field in the
DISPLAY WINDOW with the cursor and PgUp/PgDn keys. This
lets your scroll through memory and make changes visually on the
screen.

A duplicate of the data is shown as ASCII in this area for the
Display Byte command. Not for the Word or Long.

Typing <TAB> while in the Display command will bring up the
following prompt:

Memory space: < > {O|JUD|\UP|UR|4|SD|SD|CPU}

The memory space into which the data are accessed can be
selected with this prompt. The default memory space is SD
(supervisor data). Typing additional <Tab> keys will recall the
initial prompt sequences for this command. Type ESC to
terminate this command.

Display-change Bytes, Words,Long Chapter 5-41

Note that PROBE will display multiple locations in memory when
the cursor and paging keys are used. This may be a problem if the
displayed area is actually a device. In these cases, use the Display
Single address command so you will not chance reading a peripheral
device which you do not want to read.

EXAMPLES FOR DISPLAY BYTES, WORDS, LONG

This example demonstrates using the Display command to show a
screenful of words starting at location BUFFER in the current
module. The key sequence is:

DWBUFFER<enter><enter>
To look at the next screenful of words at this point type:
<PgDn>

Change the value of 3 bytes of memory starting at TEMP to 0.
Assume symbol TEMP is in the module MAIN which is not the
current default module.

DBMAIN\TEMP<enter><enter>0<enter>0<enter>0<enter><ESC>

The following examples show only the memory location and its
contents for data of different lengths. Assume memory contents:

ADDRESS CONTENTS

00000000 01234567

00000001 23

000001234 AA

01234567 BB

COMMAND RESULT ADDRESS DATA
DBO<enter>+1<enter> 00000000 _ 00
DB[0].B<enter>+1<enter> 00000001 23
DBI[0]. W<enter>+1<enter> 00001234 AA

DB[0].L<enter>+1<enter> 01234567 BB

Chapter 5-42 Display-change Single Address

SINGLE ADDRESS FOR PERIPHERAL DEVICES

In some cases, a peripheral device is addressed as a memory location
and it does not make sense to treat it as a block of memory. In fact,
it may be harmful to read other peripheral devices while scrolling
the PROBE display through memory. For these cases use the Single
address subcommand. When the Display Single address command is
selected the following screen appears:

Byte Display-change Evaluate Go Init Load Macro Nest
Word Step Trace Unassemble View Window Xfer sYmbol
Long _ <Esc> to main menu

A peripheral device may be treated as a 1, 2, or 4 byte type (i.e. Byte,
Word T.one)l Once the tune i< eolerted thic MENTT RNY annanre

Read Display-change Evaluate Go Init Load Macro Nest
Write Step Trace Unassemble View Window Xfer sYmbol
<Esc> to main menu

After selecting the peripheral for read or write, the following screen
appears.

o o

Address: <00000000> T~ Memory space [SD]

Enter new address:[]
Enter> or <Tab> to next field; <Esc> to main menu

00000010 1213

00000010->3456

Display-change Single Address Chapter 5-43

@ Next you are prompted for the address of the peripheral:

Enter new address: []

@ If you are simply reading the peripheral, the address of the
peripheral and data are shown in the DISPLAY WINDOW. The
above prompt remains on the screen and you can select a new
address or repeatedly read the same single address by typing
<enter>.

@ If you are writing to the peripheral instead of reading, then the
DIALOG BOX prompts you for a new value:

Enter new value:[]

PPN —ace wrh mbae to fxriaad

The value is written to the single address when <enter> is typed.
This prompt remains on the screen and you can write new values
to the single address. You can repeatedly write the same value to
the single address by typing <enter>. A read after write never
occurs for Display Single address.

@ By typing <TAB> you can reach the memory space field to
change the memory space of the single address. Type additional
<TAB>s to recall the previous MENU BOXES and DIALOG
BOXES.

DISPLAY SINGLE ADDRESS EXAMPLES
Display the word at the peripheral located at SERIALSIO.
DSWRSERIALS$IO<enter>
Now read at this same location 3 more times.
<enter><enter><enter>

Write a 01 to the byte of the peripheral at SERIALS$IO
DSBWSERIALS$IO<enter>01<enter>

Write this byte to this peripheral again 3 more times:

<enter><enter><enter>

Chapter 5-44 Display-change Floating Point

FLOATING POINT

If you have a 68881 floating point co-processor in your target, you
can display and change memory of a floating point format. When
you select the Display Float command, the following menu appears:

Single Display-change Evaluate Go Init Load Macro Nest
Double Step Trace Unassemble View Window Xfer sYmbol
Xtend __<Esc> to main menu

Packed

These menu options let you select the floating point data type and
correspond directly to their definitions in the MC68881 Floating
Point Coprocessor User’s Manual supplied by Motorola, Inc. Next,

crmry mwem mmmcmmtad Cam thha A AdAenn~r AF 4hA Aata.
S mm memm e megorew v ciee sl WTUO0 L

Enter new start address:[]

The data at this address is displayed in the floating point data type
you selected. You are then prompted to enter a new value:

Enter new value:[]

If you do not have a 68881 in your target, the values displayed by
this command are in hex. If you have the 68881, the conversions are
done and the data is displayed in decimal in the formats described
by the 68881 User’s Manual. Values can be entered in the format in
the 68881 Users manual. In addition, the values of NAN (not a
number) and INFINITY are also accepted. Once the value, <enter>
will select the address for the next value. In this command, each line
on the screen shows only one floating point value, since some values
will fill nearly an entire line. The cursor keys and highlighting
work the same in this command as in all others.

The <TAB> can be used to invoke the prompt which lets you change
the Memory Space field for address.

Display-change Verify condition Chapter 5-45

VERIFY CONDITION

Whenever PROBE writes to memory, it does a read to verify that the
write actually took place. For some application, this is not desirable.
To inhibit the read after write, select the Display Noverify
command. The following prompt then appears:

Verify that memory has changed after each memory write: [] {Yes|No}

The verify condition is checked for the following commands:

Display-change- Byte, Word, Long
Assemble - Insert, Replace
Xfer - Move, Set

Bus timeout in "Display" command

If the target system does not respond to a Display command within
250-300 milliseconds, an error message is printed. Note that this
timeout feature is always enabled and is not affected by the setting
of the "Hardware Watchdog timeout" command. That command only
affects bus timeouts with the Go command which are monitored with
PROBE’s watchdog timer.

Chapter 5-46 Display-change Memory Map

MEMORY MAPPING

The memory space as viewed from the 68020 cpu can have attributes
which are provided by the PROBE. These attributes are assigned to
the memory space in blocks. A block of memory has a start address
and an end address. Blocks are not restricted to one size and each
block can be a different size. The minimum size for a block is 64k
bytes and the maximum size is the entire memory space of the 68020.
The size of a block must be a multiple of 64k. Since blocks are
defined by start and end addresses, they do not overlap. Most
attributes for blocks can be set with or without MAP RAM boards.

DEFINING A BLOCK

The first time you select the Display Map command, the DISPLAY
WINDOW shows each block and its attributes. The screen below is
the initial default setting and is the screen you will see unless you
have chanced the attributee nr initialized the hlacks with the Tnit
Load command.

Array 0: OK Array 1: OK Array 2: OK Array 3: OK

Don’t care bits:< ... oo coes vees ceee e XXXX XXXX XXXX XXXX

Enter new start address of block:[|

Arrows to move []; <Esc> to main menu

Start End Bus Guarded Map To Map Write Map wait for Map wt
Address Address Size Access Array# Protected target ready states
00000000 FFFFFFFF Long No none

o @ 0 060 0 6 0o 6

One of the fields in the DISPLAY WINDOW is highlighted and the
highlight may be moved with the cursor keys. Here is a description
of the fields in the previous screen.

@ When this field is highlighted, the DIALOG BOX prompts you for

the starting address of the block. The starting address must be at
the start of a 64k boundary (i.e. the lower two bytes must be 0).

Enter new start address of block:[]

Display-change Memory Map Chapter 5-47

@ When this field is highlighted, you are prompted for the ending
address of the block. The end address must be at the end of a
64k block (i.e. the lower two bytes must be FFFF)

Enter new end address of block: []

New blocks are created by splitting old blocks or by consuming
multiple old blocks into 1 new block. This is all done by setting
new starting and ending addresses for the block which is
highlighted.

Specifically, if, for the highlighted block, you set a new starting
or ending address which overlaps an adjacent block,then the
boundary between the adjacent blocks is moved. If the boundary
moves inside an adjacent block, then the adjacent block becomes
smaller and the highlighted block becomes larger. If the new
boundary moves beyond the boundary of adjacent blocks, then
the adjacent blocks are consumed into the highlighted block.

The other case is when the starting or ending address is within
the highlighted block. In this case the highlighted block is split
into two blocks. The two new blocks inherit the attributes of the
highlighted block. You can change these attributes, of course, by
moving the highlight and changing the attribute fields.

@ When this field is highlighted, you are prompted for BUS SIZE.
BUS SIZE is the physical width of the data bus in the target for
this block. The choices for this field are B, W, and L which mean
8, 16, or 32 bits.

Enter bus size for this block: [Long] { Byte| Word| Long}

Note that the target system may have several different BUS
SIZES in its memory space. Blocks mapped to the target system
must be set to the correct BUS SIZE. If this is not done, then
PROBE Read/Write/Fetch/Any breakpoints will not work
properly. PROBE breakpoints look at BUS SIZE for these
breakpoints in order to find which physical data bus lines on the
68020 will receive the data. If a block is mapped to a MAP RAM
array, this field is automatically set to Long by PROBE. Blocks

Chapter 5-48 Display-change Memory Map

©

mapped to a PROBE array can only be changed to another BUS
SIZE if Map Wait for Target Ready is select to yes.

When this field is highlighted, you can guard all accesses (i.e.
read, write, fetch.) to this block. During emulation, any access to
a guarded block will cause a breakpoint. You do not need a MAP
RAM board to MAP a block as guarded.

Guard all accesses to this block: [N] {Yes|No}

You can only get to this field if a MAP RAM board is installed
in your PROBE. When this field is highlighted, you are prompted
to map this block to the PROBE MAP RAM. If you have a 512k
byte MAP RAM board in your PROBE POD, then the top of the
screen shows that you have four arrays of memory with 128k
bytes of memory in ecach array.

Map this block to PROBE MAP RAM array:[none]{ None|0|1]2|3}

You can put two 64k blocks or one 128k block into each arrav. TIf
you put two 64k blocks into the array, the blocks must both be in
the same 16 megabytes of memory space.

You cannot get to this field unless the block is mapped to a MAP
RAM array. When this field is highlighted you are prompted to
determine if the block should be write protected Write protecting
a block will not let the memory change if the program overwrites
this memory. Write protecting memory is a way of simulating
PROM with the MAP RAM.

Write protect this block: [No] {Yes|No}

This is an important attribute for some systems. You can only
get to this field if you have this block mapped to a MAP RAM
array. The prompt for this attribute is:

Map wait for target system ready:[yes] {Yes|No}

If you set Wait for Target Ready ready for this block to Yes,
then accesses to the MAP RAM for this block will wait for the
DACKO and DACK signals from the target as well as the MAP
RAM before completing a memory cycle. The MAP RAM, will in
this case, also responds in the same manncr as the target memory

Display-change Memory Map Chapter 5-49

would respond (byte, word, long). If the MAP RAM is faster than
the target memory, then the MAP RAM does not add additional
wait states. Remember to set the BUS SIZE attribute for this
block to match the bus size of the target.

Target systems which synchronize logic to the Address Strobe of
the 68020, and become unsyncronized if the 68020 proceeds
without waiting for the DACKO and DACKI signals from the
target, should set Wait for Target Ready to Yes. The advantage
is that the target system logic will not become unsynchronized
with the 68020 when PROBE does accesses to the PROBE MAP
RAM. The disadvantage is that waiting for the ready for both
the target and MAP RAM will introduce an additional wait states
to the access if the MAP RAM access time is longer than the
target. Another disadvantage is thai if the target system does not
return the DSACK’s then the target will hang. To get out of this
hang state you must type <Esc> or set the PROBE watchdog
timer. Target systems which do not synchronize logic with the
68020 do not need to wait for target system ready.

This attribute lets you choose the number of wait states for the
MAP RAM. The PROBE software sets the lower limit for this
attribute by checking the target clock frequency and MAP RAM
board speed. It then automatically sets the number of wait states
to the minimum value. You may increase the number of wait
states to 2 maximum of 4. Once the number of wait states is
chosen for the MAP RAM, it must be the same value for all
blocks mapped to the MAP RAM. The table below shows the
minimum number of wait states which PROBE chooses as a
function as a function of clock frequency and MAP RAM access
time.

Chapter 5-50 Display-change Memory Map

MIN WAIT STATES VS CLOCK AND ACCESS TIME
CPU CLOCK SPEED

RAM SPEED 8 MHZ 12 MHZ 16 MHZ 20 MHZ 25 MHZ
70 ns 0 0 0 1 1
100ns 0 0 1 1 2
150ns 0 1 2 2 3

EXAMPLES OF DISPLAY MAP COMMAND

Assume the MAP is in its default state which looks like this:

Array 0: 128K Array 1: 128K Array 2: 128K Array 3: 128K
Don’t care bits:<.... s s s XXXX XXXX XXXX XXXX
Enter new start address of block:[|

Arrows to move | |; <Es¢> to main menu

Start End Bus Guarded Map To Map Write Map wait for Map wt
Address Address Size Access Arrayf rrotectea Largeu reaay suaLes
00000000 FFFFFFFF Long No none

Create a block from 0 to 1FFFF which is mapped as a 32 bit bus, not
guarded, mapped to PROBE MAP RAM, and not write protected.
Create a block from 20000 to DFFFFFFF which is guarded. Create a
block from E0000000 to FFFFFFFF which is has a bus size of 32
bits, and not guarded.

DM<enter>1FFFF<enter><enter><enter>I<enter>Y<enter><enter>
<enter>DFFFFFFF<enter><enter>Y <enter><enter><enter><enter>
<enter><enter>Y<enter>Y<enter><esc>

Display-change Memory Map Chapter 5-51

Array 0: 128K Array 1: 128K Array 2: 128K Array 3: 128K
Don'’t care bits:<.... e vev eee vee e XXXX XXXX XXXX XXXX
Enter new start address of block:[|

Arrows to move []; <Esc> to main menu

Start End Bus Guarded Map To Map Write Map wait for Map wt
Address Address Size Access Array# Protected target ready states
00000000 OOQLFFFF Long No 1 No Y 1
00020000 DFFFFFFF Long Yes none

E0000000 FFFFFFFF Long No none

Chapter 5-52 ' EVALUATE

EVALUATING EXPRESSIONS

This command lets you evaluate expressions and display the results
in several different bases. The command is invoked by typing:

E for Evaluate

The following DIALOG BOX appears:

Expression:| |
Esc> to main menu

You can now type in any expression using the operators described at
the start of this chapter. The results are displayed in the DISPLAY
WINDOW in the following format:

HEX DECIMAL INTEGER ASCII BINARY

EXAMPLES OF THE EVALUATE COMMAND

Assume the symbol main is 20000000
Memory at 20000000 is AABBCCDD
Memory at 20000005 is 11223344
Memory at 11223344 is EEFF7788
Memory at 11223354 is 99005566

Evaluate expression: main
20000000H 536870912T +536870912T '..." 00100000,00000000,00000000,00000000

Evaluate expression: [main]
AABBCCDDH 286443439T -1430532899T ...’ 10101010,10111011,11001100,11011101

Evaluate expression: [[main+5].1+10].w
00009900H 39168T +39168T ' ' 00000000,00000000,10011001,00000000Y

Evaluate expression: AO (assume register AQ contains FFFFFFFF)
FFFFFFFH 4294967295T -1T ’’ 11111111,11111111,11111111,11111111Y

EVALUATE Chapter 5-53

Evaluate expression: ((50%¥10)-1)/499
00000001H 1T +1T °’.’ 00000000,00000000,00000000,00000001Y

Evaluate expression: ’a’
00000061H 97T +97T ’a’ 00000000,00000000,00000000,01100001Y

Chapter 5-54 GO

GO COMMAND

Program execution is started and non sticky breakpoints are set with
the Go command. The breakpoints activated with the Breakpoint
command are also set when the Go command is executed. It is
invoked from the MENU BAR by typing

G for Go
The DISPLAY WINDOW looks like this:

P ® p

Start address: <00000000> Program space /(User>
After trap, execute Macro/window: <none> Cache enabled: <No>
@ Enter new start address:[]

<Enter> or <Tab> to next field; <Esc> to main menu
@ BP # Status Breakpoint-addr [To-range] Verb Size Data Match

@ The first DIALOG BOX prompts you for for a new start address:

Enter new start address: []

@ If you type <enter> without entering a start address, the current
PC (program counter) will be used as a default and is shown in
the Start address < > field.

@ Next you have the option of setting breakpoints or starting
program execution. You are given the following prompt:

Start program execution now,; [Yes] {Yes|No}

Simply typing <enter> will select Yes and program execution will
start. If you select No, then the Breakpoint screen (see
Breakpoint command) will be displayed. This lets you set
breakpoints in the same way as with the Breakpoint command.
Breakpoints set on this screen in the Go command are non-sticky
breakpoints. They are only active when program execution starts
with this Go command. They are not included in future Go
commands unless you enter them again.

S

Q

Chapter 5-55

After entering the breakpoint on the breakpoint screen, type
<TAB> to recall the previous prompt. This lets you set another
non-sticky breakpoint or start program execution.

An abbreviated summary of the active sticky breakpoints which
will be used with this Go command is shown on this screen for
easy reference.

Typing additional <TAB> characters while in the Go command
will bring up the following prompt:

Enter initial memory space: [User] {User|Supervisor}

This iets you start program execution in the User/Supervisor
mode. If this prompt is not invoked, the default as shown on the
screen is assumed.

Typing <TAB> again will bring up the following prompt:

Enier macro/window <AltKeyname>.[<none>]

This lets you invoke a macro , or a Watch Window after a
breakpoint has occurred and program execution has stopped. If
this prompt is not invoked, the default as shown on the screen is
assumed. Note that Watch Windows and Macros can be invoked
from the individual macros as well. The Watch Window invoked
by the Go command preempts all others. Macros are executed for
each breakpoint first followed by the macro invoked by the Go
command.

Typing <TAB> again will bring up the following prompt:

Enable cache while executing [No] {Yes|No}

The program can execute with the 68020 PROBE cache enabled or
disabled. This affects the information which is entered into the
PROBE real time trace memory. See the Trace command for a
more detailed discussion of the Trace data. If you choose No for
this prompt, then the 68020 cache is not enabled during program
execution. If you choose Yes for this prompt, then the 68020

Chapter 5-56 GO

cache is controlled by the target system hardware and least
significant bit of the CACR register which is under target system
program control.

Typing Esc at any point will terminate the Go command. Sequential
breakpoints, breakpoint pass count and trace after trigger can only
be set in the Breakpoint command and not in the Go command.

EXAMPLES OF THE GO COMMAND

Start program execution with the default start address. Only active
breakpoints defined by the BP command are set:

Geenter><enter>

Start program execution with the default start address and sct a
breakpoint at MAIN:

(L oontarsNINMMATINT _Tahs cantars

Start program execution at the current program counter, set a
breakpoint on writing to location BUFFERPTR, change the memory
space to User, and execute the macro AItB when program execution
stops:

Geenter>NBUFFERPTR<enter><enter><enter><enter>W
<Tab><Tab><Tab>U<Tab>AltB<enter><enter>

GO Chapter 5-57

STATUS SCREEN AND WATCH WINDOWS DURING EMULATION

While the target program is executing, the Status screen below is

displayed:
00

Start address:< > Program space:<Supervisor>
After trap, execute Macro\window:<none> Cache enabled:<No>
Executing

<Esc> to stop execution_ _
BP # Status Breakpoint-addr [To-range] Verb Size Data Match
@ Active BPs:
Non-sticky breakpoints:

8 The start address for the current Go command is displayed.

This is the Macro or window which will execute when program
execution is stopped either with a breakpoint or with the <Esc>
key.

@ The current breakpoints are displayed in an abbreviated form.
The display inciudes active sticky breakpoints as well as non-
sticky breakpoints

@ This is the state of the cache control when program execution
started.

@ Program execution was started in this memory space.

In addition, a Watch Window may be popped up by typing the AltKey
for the window during execution. The window can display
information in the target system. To do this, the PROBE periodically
(about once every second) terminates target system execution and the
information needed for the Watch Window is extracted from the
target. Hitting a breakpoint or typing ESC terminates emulation
along with the Go command and control is transferred back to the
MENU BAR.

Chapter 5-58 GO

NOTES ON EMULATION

If the cpu executes a STOP instruction during emulation, it will
behave as a normal STOP instruction. Since no Address strobes are
produced while the cpu is stopped, the PROBE Watchdog timer will
cause a breakpoint if it is enabled. You can also regain control of
the system by typing <Esc>.

Bus errors which occur in the target are processed by the target as
they normally would without PROBE intervention. If you want to
trap a Bus error, then you should set a breakpoint on reading the Bus
error vector or executing the first instruction of the error handling
procedure.

If the 68020 stops executing because of a double Bus error or Halt
line, and you type the <Esc> key to regain control, the following
error message will occur:

D e R I L - L I SRRV R R TR RV - ee ma i mmmeme s

Type any key to clear this error message as you would any other
message. Several other error messages may follow which must also be
cleared with any key.

Could not stop execution of target processor. Use Hw Reset command
No address strobes to target processor. Use Hw Reset command.

Since the 68020 has stopped, PROBE cannot communicate with it.
You must use the Hardware Reset command to put the 68020 in a
state which will allow the PROBE to talk to it.

HARDWARE CONTROL Chapter 5-59

HARDWARE CONTROL

This command provides control over certain hardware related aspects
of the 68020. Specifically, it lets you reset the 68020, control the
interrupt and DMA operation of the cpu, and read the clock
frequency. This command is invoked from the Menu Bar by typing:

H for Hardware

The following Menu Box:

Clock frequency
Execution time
Reset-target system
Interrupt-enable
Dma-enable
Halt-line-enable
Break-enable
Watchdog-timeout
Loop-write-read

Subcommand

Go Init
View Window Xfer

Display-change Evaluate Load Macro Nest

Step Trace Unassemble

__<Esc> to main menu

sYmbol l

The subcommands for the Hardware command are:

Operation

Clock-frequency
Execution time
Reset-target
Interrupt-enable
DMA-enable
Halt-line-enable
Break-enable

Watchdog

Loop-write-read

Measure the target clock frequency

Time between Go and breakpoint

Apply a reset to the 68020 cpu

Enable interrupts during Go or Single step
Enable DMA when not emulating.

Enable Halt line when emulating

Do not stop emulation when breakpoint
detected

Cause a breakpoint when there is no ready
returned from the target for 10 ms.
Repeat read\write operation to target

Chapter 5-60 HARDWARE CONTROL

READING TARGET CLOCK FREQUENCY

This subcommand, selected by typing C, simply returns the frequency
of the clock in the target system.

EXECUTION TIME

When you use the Go command to start program execution, PROBE
starts a timer. When a breakpoint or <ESC> occurs, the timer is
stopped. This command lets you read timer. This is useful for
measuring the execution time for sections of code. The timer is
displayed as:

minutes:seconds.milliseconds,microseconds

RESET TARGET SYSTEM

This subcommand lets you reset the 68020 in the target. It will also

LWOVE Gy ULlivE JIG1 M YY UE v 111 LIV UL HVE VULIMGVIVU LU LIV L VOVE st

Reset the target system and processor registers:[No] {Yes|No}

"Unshadow" the rom in the User’s 68020 system.

When the 68020 processor is reset, it reads the 4-byte pointers at
memory locations 0 and 4 to set the initial stack pointer and PC.
Since many systems have ram starting in location 0 this presents a
problem because the ram will be uninitialized when the system
powers up. Many systems solve this problem by "shadowing" their
prom at location 0 after reset so that the correct PC and stack
pointer are read. Then some hardware operations usually follow that
disable prom addressing at 0 and enable the ram.

If the ram in the target system does not seem to be working, verify
the prom has been "unshadowed" if necessary.

HARDWARE CONTROL Chapter 5-61

ENABLE INTERRUPTS IN TARGET SYSTEM

This subcommand lets you start target system execution with
interrupts enabled or disabled whenever you are using the Go or Step
commands. It provides the following prompt:

Enable interrupts while emulating: [Yes] {Yes|No}
PROBE disables interrupts by masking them from the 68020 cpu with
hardware logic. It is useful to disable interrupts in the target system
when spurious interrupts are happening and the system has not yet
initialized interrupt vectors.

NATA
A/ iVAla

This subcommand lets you ignore or process DMA requests coming
from the target system while the 68020 is not executing code in the
target (i.e. not emulating). This lets other hardware in the target
continue to run even though emulation has stopped.

Allow DMA requests to be serviced: [No] {Yes|No}

It is useful to disable DMA requests from the target in cases where
the requests will not release the processor.
ENABLE HALT SIGNAL

This subcommand lets you enable the HALT signal to the 68020 from
the target while the 68020 is executing code in the target. It
provides the following prompt:

Enable HALT signal to target processor while emulating: [Yes] {Yes|No}

Chapter 5-62 HARDWARE CONTROL

BREAKPOINT ENABLE

This subcommand lets you inhibit the breakpoint logic from the
PROBE so that target program execution is not stopped when a
breakpoint is detected. When a breakpoint is detected, a pulse is
output on the BREAKPOINT DETECT signal in the POD. This
signal is available through the Logic PROBES. See Appendix H for
details. This signal can be used to trigger a logic analyzer or scope.
By inhibiting the breakpoint from stopping program execution, the
PROBE can use it’s sophisticated breakpoint detect logic to provide
triggers each time the breakpoint is detected. Note, that the trigger
is not provided for software breakpoints (i.e. Execute). This
subcommand provides the following prompt:

Break emulation when hardware breakpoint detected: [Yes] {Yes|No)

WATCHDOG TIMEOUT

This subcommand will let you detect when the ready has not been
returned from the target system for 10 milliseconds. If enabled, the
watchdog timer causes breakpoint when the target system does not
return ready. The following prompt is provided:

Enable watchdog address strobe timeout (no strobe in > 10 ms:[Y]J{Y|N}

If you want to terminate emulation when the 68020 executes a STOP
or the target does not return ready, then set the watchdog timer.

A LOOPING TEST FOR THE TARGET

This subcommand will let you repeatedly execute write/read
operations in the target. This is very useful when a "sync" signal is
nceded to trigger a scope or logic analyzer. When this command is
invoked, another MENU BOX lets you select the size of the
operation.

HARDWARE CONTROL

Chapter 5-63

Byte
Word
Long

Breakpoint
Register

Display-change Evaluate Go Init Load Macro Nest
Step Trace Unassemble View Window Xfer

<Esc> to main menu

sYmbol

The next MENU BOX lets you select from three different types of

access:

Both read and writé
Read only
Write only

Display-change Evaluate Go Init Load Macro Nest

Step Trace Unassemble View Window Xfer
<Esc> to main menu

sYmbol

Next you are prompted for the address and data for the operation:

En

ter address for access loop:[]

Enter data to write to address: []

PROBE performs the operation at this address. Typing any key
terminates the process.

Chapter 5-64 INITIALIZE

INITIALIZATION

Parameters which you set in PROBE can be saved to a disk file and
recalled in future debugging sessions with the Init command. This
command lets you completely set up the PROBE for a debugging
session. The command is invoked from the Menu Bar by typing:

I for Init

The subcommands for the Init command now appears in the Menu
Box:

Load Breakpoint Display-change Evaluate Go Init Load Macro Nest
Save Register Step Trace Unassemble View Window Xfer sYmbol
<Egc> to main menu

L e e B I T o B o e
Command Sub Operation
command
Init Load Load previously saved
initialize conditions
Save Save initialize conditions

SAVING INITIALIZATION PARAMETERS

When the Save subcommand is selected, the following screen pops up:

Default disk: <C> Default directory: <>
Enter filename for initialization information:[]

<Tab> to next field: <Esc> to main menu

The first DIALOG BOX prompts you for the filename where the
initialization conditions are to be stored:

Enter filename for initialization information:{]

INITIALIZE Chapter 5-65

The default drive and directory shown on this screen are used if you
do not specify them. If you cannot remember the name of the file
you want to use then type * to display all files in the directory.

The following is saved by the Init Save command:

1) The entire state of the memory mapping as defined by the
Display Map command.

2) Module information as set by the sYmbol command including:
a) The name of all modules
b) If symbols will be loaded for the module as defined with the
sYmbol Load-module-selection command.
¢) If source level single stepping is to include or ignore a module
as defined with the sYmbol Source-step-module-selection
command.
d) Filenames which are assigned to the module names as defined
by the sYmbol Assign-module-to-file command.

3) Program filename used in the most recent Load command

4) Macro filename used in the most recent Macro Load command. If
no Macro Load command has been used, then the most recent
filename used in the Macro Save command is saved with Init.

5) Window filename used in the most recent Window Load command.
If no Window Load command has been used, then the filename
used in the Window Save command is used instead.

The information is stored as ASCII text in the initialization file.
You may edit this text off line with a text editor. The definition of
the contents of this file is shown in Appendix D.

LOADING INITIALIZATION PARAMETERS

When the Load subcommand is selected, the following screen pops up:

Default disk: <C> Default directory: <>
Enter filename for initialization information:[|
<Tab> to next field: <Esc> to main menu

First you are prompted for the filename where the initialization
conditions are stored:

Chapter 5-66 INITIALIZE

Enter filename for initialization information:[]

The default drive and directory shown on this screen are used if you
do not specify them. If you cannot remember the name of the file
you want to use then type * and all files in the directory will be
displayed.

Initialization information stored in a previously saved file can be
loaded to completely set up PROBE for a debugging session. When
the file is loaded, the following occurs:

1) The memory map is defined.

2) Modulename information is stored such as:
a) Modulenames are put into PROBE’S modulename table.
b) If symbols will be loaded for the modulename when the Load
command is invoked.
¢) If source level single stepping is to include or ignore a module
when the Sten Sanrece command ic invnked
d) Filenames are assigned to the module names for use during
Step Source commands.

3) A program is loaded.

4) Macros from a Macrofile are loaded. If PROBE has currently
defined macronames which are the same as macronames found in
the loaded Macrofile, then those macronames are left unchanged
in PROBE.

5) Window definitions from a window file are loaded. If PROBE
has currently defined windownames which are the same as

windownames found in the loaded file, then those windownames
are left unchanged in PROBE.

INITIALIZE Chapter 5-67

EXAMPLES OF THE INITIALIZE COMMAND

Display the files in directory \MAIN\DEMOFILES which have the
extension .INI and save the current setup in an initialization file in
this directory called DEMO.INI

IS\MAIN\DEMOFILES*INI<enter>
<Home><Home><Home><Home><Home><Ins>DEMO<enter>

To load the initialize file named demo.ini from drive C, directory
\DEMOS type this key sequence:

ILCADEMOS\DEMO.INI<enter>

Chapter 5-68 LOAD

LOADING PROGRAMS

Target system programs and symbol table are loaded with the Load
command. The load command is invoked from the MENU BAR with:

L for Load

The subcommands for the Load command appear in the Menu Box:

Program| Breakpoint Display-change Evaluate Go Init Load Macro Nest
Options Register Step Trace Unassemble View Window Xfer sYmbol

<Esc> to main menu

The Load command has the following Subcommands:

Command Sub Operation
command
Load Program Load program

Options Set program load options

LOAD PROGRAM

The following screen appears:

2N o

8‘ Default disk: <C> Default directory: <\> Memory space: <SP>

Enter program file name: []

<Tab> to next field; <Esc> to main menu

@ The first DIALOG BOX prompts you for the name of the file to
load:

Enter program file name: []

If you cannot remember the name of the program, then use the
wildcard capability of PROBE to display files.

LOAD Chapter 5-69

The program is loaded into the target system memory and the
symbol table for the program is loaded into the PROBE symbol
table. If memory blocks are mapped to the MAP RAM board,
then they are used when the program is loaded. If the file
contains only code and no symbols, the symbol table is not loaded.

@ The default disk is shown in this field. To set a new default,
type <TAB> and the following prompt appears:

Enter new drive letter: []

(3) The default directory is shown in this field. If this is not
correct, they type <TAB> and the following prompt appears:

Enter new directory: []

@ The default memory space to load into is shown in this field.
You can change it by typing type <TAB> to get the following
prompt:

Memory space:< > {0\UD|UP{UR|4|SD|SP|ICPU}

LOAD OPTIONS

Load Options let you set parameters for the code and symbols which
the Load Program and Initialize Load commands will use. When
invoked, the following menu box appears:

Symbols Display-change Evaluate Go Init Load Macro Nest
Code-data Step Trace Unassemble View Window Xfer sYmbol
File-type <Esc> to main menu

Offset

Symbols

The Symbols option lets you load code without loading Symbols and
has the following prompt:

Chapter 5-70 LOAD

Load symbols from program file:[Yes] {Yes|No}

Code

The Code-data option lets you load symbols without loading Code or
data and has the following prompt:

Load code and data from program file:[Yes]{Yes|No}

File-type

The File-type option lets you specify the type of Object Module
Format to expect from the file. The OMF’s are described in
Appendix G. If you have not made a selection with this command,
PROBE tries to determine the OMF automatically when it loads the
file. Tf von make a selection with thic command and Inad a file
which does not agree with this selection, PROBE reports an ¢rror
message. The selections are shown here and described in more detail
in Appendix G:

SubSub command Operation

Auto-determine PROBE tries to make
automatic determination of OMF

S-records Standard Motorola S records

(extended)Tek hex or Tektronixextended Hex records

Binary-image A binary image with no addresses or
symbols

Unix-system V Unix system V coff records

Ieee-binary-Coff Modified coff records produced by
Microtec Research compilers

LOAD Chapter 5-71

Offset

The Offset option lets you specify a fixed offset which are to be
added to the addresses for symbols, code and data during the load.
This is very useful for relocatable code. The prompt is:

Enter offset added to symbol and code/data addresses:[]

EXAMPLES OF THE LOAD COMMAND

Load the program named FTOC.HEX from drive ¢ directory EXE
into the default memory space.

LPCAEXE\FTOC.HEX<enter>

Display all of the files in directory \DEMO with a .HEX extension
then load the program DEMO.HEX

LP\DEMO* HEX <enter>
<Home><Home><Home><Home><Home><Ins>DEMO<enter>

Set the program load options to no code.
LOCN
Add 10000H to all address during load.
LOO10000H<enter><esc>

Chapter 5-72 MACROS

MACRO COMMANDS

Macros are a way to create your own commands and automate
keystrokes which are repetitive. Macro commands are simply
keystrokes which are assigned to one keystroke. Each macro has a
name which is the keystroke which invokes it. The commands to let
you define, delete, edit, and display macros are invoked from the
MENU BAR by typing:

M for Macro

The subcommands for the Macro command appear in a MENU BOX
and the screen looks like this.

Define Display-change Evaluate Go Init Load Macro Nest
Edit Step Trace Unassemble View Window Xfer sYmbol
Conditional-define __<Esc> to main menu

LVau

Save

Remove

The macro subcommands are shown here along with a short
description of their operation.

Subcommand Operation

Define Define a new macro and assign it a name
which is an Altkey

Edit Change the definition of a current macro

Conditional Define a macro which will test a specified
condition before executing

Load Load previously defined macros from file

Save Save all currently defined macros to a
disk file

Remove Delete a currently defined macro.

MACROS -defining Chapter 5-73

DEFINING A MACRO

To start the definition of a macro type subcommand D. You are
then prompted with:

Enter <AltKey> that will activate this macro: []

An AltKey means hold down the key Alt and then type any other
key. The AltKey becomes the macroname. The Altkey can be any key
except Alt0 thru Ali19, Alt= and Alt-. These are saved for special use
within the macro The macro is defined as all key strokes until the
macroname (i.e. Altkey) is typed again. The commands which define
the macro also execute while the macro definition is in process.

While the macro definition is in process, the macroname is displayed
in the lower right area of the DISPLAY WINDOW to remind you that
a macro is being defined.

If the macroname already exists, you are given the following prompt:

<AltKey> is a macro. Remove it: [Yes] {Yes|No}

If you answer Yes, the current macro definition is deleted and you
can proceed redefining the macro. If No, you are returned to the
main menu. To change a macro use the Macro Edit command.

You are also prompted to add a Macro description to the Macro.
This is an ascii text string which describes your macro and can have
up to 200 characters. The macro description is stored with the
Macro. The Macro description can be viewed with the Macro Edit
command. If you simply type <enter> in response to this prompt, no
macro description is attached.

Macro description:[]

You cannot define a macro within a macro definition. PROBE
commands are executed while the macro definition is in process.

Chapter 5-74 MACROS - defining

PASSING PARAMETERS TO THE MACRO

Parameters can be included in the macro definition. A parameter is
defined as:

Alt#<enter>

This means hold down the Alt key and type a number from 0 to 9.
This is the reason that these AltKeys cannot be macronames. Up to
10 different parameters may be included in the macro definition,
and each parameter may be used multiple times within the macro
definition.

When the macro executes, it pauses the first time it encounters each
different Alt# and waits for you to input the parameter. The
parameter is specified as all keystrokes you type until <enter> is
typed. If there are 10 different #’s, then the macro will pause 10
times.

-t 41“, v e i e d m ke e,.1 4 A‘I‘_.,-..¢ «.1’-,-—-”. tem thn mAaneAn

4 tre Usearaw ax T - -

definition. When the macro executes it will pause only the first time
for this Alt# parameter definition. The macro will use this
definition each time it encounters this A//# during the current macro
execution.

During definition of a macro which includes parameters (i.e.Al#’s),
the parameter specification is passed on to the command in process.
Commands execute while the macro is being defined. Note that the
<enter> which specifies the end of the parameter during the
definition or execution of the macro is not passed on to the command
in process. Also note that you may define a macro which has
parameters without actually having to use real parameters. This is
done by simply typing:

ALT#<enter><enter>

This puts the ALT# into the macro definition, and passes <enter>
without a parameter to the command in process. This will typically
produce an error message which you can simply ignore by typing any
key.

MACROS -defining Chapter 5-75

A special AltKey is the Alt- key (hold down the Alt key and type the
minus sign). If Alt- is encountered, then the macro always pauses at
the Alt- during execution to wait for input. This lets you enter a
new parameter for this special 4ltKey each and every time it is
encountered. This is especially useful in conditional macros which
are described later.

While parameters are being entered into the definition of a macro, or
the macro is pausing during execution to receive the parameter
specification, the Alr# for this parameter is displayed in the lower
right of the screen. The definition of the parameters during macro
execution is not maintained after the macro is finished executing.
When this macro is invoked again, it will prompt you for the
definition of each parameter. If you want the macro to always

execute the same way, then do not use parameters.

NESTING MACROS

A macro may be defined which invokes other macros during
execution. This is done simply by typing the appropriate Al/tKey
which invokes the nested macro into the definition of the macro.
During execution, the nested macro may have parameters passed to it.
You can think of Alt#’s as global variable names which are
recognized by both the outer level and nested macros.

PASSING PARAMETERS TO NESTED MACROS

Parameters may be passed to the nested macro in one of two ways.
The first time an Alt # is encountered during macro execution, in
either nested or outer level macros, it is specified. All further
encounters of this parameter during execution of the outer level
macro or the nested macro will use this specification for the Alt#
(i.e. parameter).

The second way of passing a parameter to a macro lets the parameter
change each time the outer macro invokes the nested macro. This is
done by using the following form to redefine a parameter during
macro execution:

<Alt=><Alt#A><Alt#B>

Chapter 5-76 MACROS - defining

Alt= means hold down the AltKey and type the = key. Ali#B is the
Altkey to be redefined during macro execution. Alt#4 is the new
Altkey definition for Alt#B during macro execution. When the Ali=
is encountered by the macro during execution, A/{#B is replaced by
Alt#A. This lets you define macro modules which can be reused
multiple times in a macro execution while having their parameters
changed on the fly by other macros which call the macro module.

MACROS - conditional de fine Chapter 5-77

DEFINING MACROS WHICH CONDITIONALLY
EXECUTE

Macros can be defined to check for specified conditions before they
will execute. The condition is tested each time the conditional macro
is executed. This type of macro is defined by choosing the
Conditional subcommand from the MENU BOX. You are then
prompted with:

Enter <AltKeystroke> that will activate this macro: []

The same rules for naming macros apply as were described
previously. The next level of subcommand lets you choose the type
of condition to test before execution when the macro executes. The
foliowing screen pops up to iet you choose the conditions:

If
Loop
<Esc> to main menu

The subcommands for the Conditional subcommand are:

Subcommand Operation

If Execute macro If boolean expression is
true

Loop Execute macro Count, While, Forever on

on boolean expression

LOOPING CONDITIONAL MACROS

If the Loop subcommand is invoked from the previous screen, then
the following MENU BOX appears:

Count
Forever
While

<Esc> to main menu

Chapter 5-78 MACROS - conditional define

These are additional subcommands. These subcommands are defined
as follows:

Subcommand Operation

While Continue macro execution While boolean
expression is true

Count Execute macro the number of times
specified by Count

Forever Continue macro execution until Ctrl Break
key typed

Count

If you select the Count subcommand, the following prompt appears:

Loop count: []

The macro will execute repetitively the number of times specified by
the Loop count. Each time the macro reaches the end of its
definition, it decrements the Loop count. When the Loop count
reaches 0, this macro terminates execution. The Loop count can be
an expression or simply a number. It can also be parameter passed
from another macro. Since macros execute while they are being
defined, the loop execution starts when the macro definition is ended
(i.e. the AltKey is typed again.)

Forever

If you select the Forever subcommand, the macro will execute
repetitively until Ctrl Break is typed.

While

If you select the While subcommand, the following prompt appears:

Condition : []

MACROS - conditional define Chapter 5-79

The While condition is a boolean expression which is defined at the
start of this chapter in the section called BOOLEAN EXPRESSIONS.
The boolean expression is checked at the beginning of each execution
of the macro. If it is true, the macro executes again, If it is false
the macro execution is terminated. Since you may be defining a
conditional macro at a time when the condition is not true, the
macro definition ignores the condition so that you can continue the
definition.

IF CONDITIONS

Another type of condition for the Conditional macro definition is
the IF condition. When this subcommand is selected, you are
prompted with:

Condition : []

The IF condition is a boolean expression which is defined at the start
of this chapter in the section called BOOLEAN EXPRESSIONS. The
boolean expression is checked at the start of execution of the macro.
If it is false, the macro execution is terminated. Since you may be
defining a conditional macro at a time when the condition is not
true, the macro definition ignores the condition so that you can
continue the definition.

Chapter 5-80 MACROS - Load, Save and Delete

LOAD AND SAVE MACRO FILES

Macros can be loaded and saved from disk. The Load and Save
subcommands prompt you for the filename:

Enter macro file name: []
If the drive and directory are not specified, then the defaults shown

on the screen are used. See the section in this chapter labeled
USING WILDCARD CHARACTERS to display filenames.

DELETING A MACRO

A macro can be deleted by choosing the Remove subcommand from
the MENU BOX. You are them prompted with:

Enter <AltKeystroke> that will activate this macro: []

By specifying the key which would normally activate this macro in
response to this prompt, it is removed.

MACROS - Edit Chapter 5-81

EDITING MACROS

Once defined, macros can be edited by choosing the Edit
subcommand from the MENU BOX. If you cannot remember the
name of the macro you want to edit, they type *. This will display a
list of all macronames and windownames currently assigned to
AltKeys.

If the macro already exists, then the current definition of the macro
is shown in the DISPLAY WINDOW as a sequence of keystrokes. A
highlight field in the DISPLAY WINDOW can be moved with the
cursor keys. The DIALOG BOX which lets you make changes to the
macro definition looks like this:

[7

As the highlight field in the DISPLAY WINDOW is moved, the
contents of the highlight filed is duplicated in the DIALOG BOX.
You can use the PROBE edit keys to make changes, additions, or
deletions to the keystrokes in the macro. You may put several
keystrokes into the DIALOG BOX.

If you Edit a macro which does not exist, then the DISPLAY
WINDOW only contains the name of the macro. The same DIALOG
BOX as before is displayed. Key strokes are entered into the
DIALOG BOX and transferred to the DISPLAY WINDOW when
<enter> is typed. Using the Macro Edit command to define a new
macro lets you assign pure ASCII text to a macro name. This is
useful to simply save key strokes as with long complex symbolnames.

Since macros are saved in a file as simple ASCII text, they may be
edited off line with your favorite text editor. The format of the
macro text is described in Appendix D.

You can add comments to PROBE commands in the macro with the
edit command. On a single line in the ASCII definition of a macro,
all characters after a period until the end of the line are ignored
during macro execution. For example, a comment is added to the
first line of this LOOP While conditional macro.

<AltI>:LW.Macro to loop while DO is not equal to 30

Chapter 5-82 MACRO execution

MACRO EXECUTION

After a Macro has been defined, it can be executed by simply typing
the AltKey which is the macroname. You will see the macro execute
on the screen. If a macro pauses waiting for you enter to enter a
parameter, the Alt# for the parameter is in the lower right hand
corner of the screen. The command in process which will accept the
parameter is also shown on the screen.

If you want to bail out of macro execution, type Ctrl Break.

MACRO examples Chapter 5-83

MACRO COMMAND EXAMPLES

Define a macro named A4/tA that will load a program, display
registers, and unassemble the first 5 instructions from the start of
the program. The program name should be a parameter to the macro.

MDALTA<enter><enter>LALTOFTOC.HEX<enter>R<Esc>
U<enter>5<enter>4ALTA

This macro can now load the file FTOC.HEX with the following key
sequence.

ALTAFTOC.HEX<enter>

Define the same macro, but this time do not really load the file
while the macro is being defined.

MDALTA<enter><enter>LALTO0<enter><enter><Esc>R<Esc>
.U<enter>5<enter>ALTA

Edit the previous macro to delete the U command.

MEALTA<enter><enter><DnArrow><DnArrow><DnArrow>
<DnArrow><DelKey><DelKey><DelKey><DelKey><DelKey>
<DelKey><DelKey><DelKey><enter><Esc>

Define a macro named ALTB which is simply a string of characters
which is the symbol named
\MAINMODULE\IOPROCEDURE\VARTEMP

MEALTB<enter><enter><DnArrow>
\MAINMODULE\IOPROCEDURE\VARTEMP<enter><Esc>

Define a macro named ALTC with displays memory starting at an
address passed to it from the previously defined macro ALTB.
Display 15 words at this address, then display registers.

MDALTC<enter><enter>DWALTB<enter>+15<enter><Esc>R<Esc>ALTC

Define a macro ALTK that displays the file FTOC__IO.C if the
contents of memory location FILEPTR is "I".

MCALTK <enter><enter>I[FILEPTR]="I"<enter>VFTOC_I0.CALTK

Chapter 5-84 MACRO examples

Define a macro which defines and activates a sticky breakpoint on
writing to the long variable FAHR. After each write, check to see if
the contents of FAHR is greater than the contents of the long
variable FAHRMAX. If it is greater, stop the macro. If it is not,
keep running the macro. Note that it would be better to define the
breakpoint independently of this macro since it is defined through
each loop.

MCALTX<enter>Y<enter>LW[FAHR]LL<[FAHRMAX].LBDOFAHR
<enter><enter><enter><enter>W<Tab>Y<esc>Geenter><enter>4ALTX

Define a macros named 1 which will automatically open a file named
ONE and display it at the last place it was displayed. By defining a
macro like this for each file you want to display, you can quickly
move between multiple files for display. Note that you can use the
<ALTI1> key to name the macro, since, because it is the macro name,
it will not be interpreted as a parameter.

MDALTI<enter><enter>VONE<enter>ALT]

NEST Chapter 5-85

NEST COMMAND

PROBE can analyze the stack to find return addressed so that
procedure calling sequences can be determined. This command is
invoked from the MENU BAR by typing:

N for Nest

When the Nest command is invoked, the following screen appears:

®

%l Stack Chaining Register: <> Stack Memory space: <> Code Memory Space:< >

Enter new chaining register:[]

@ First you are prompted to enter the chaining register:

Enter new chaining register []

Simply typing <enter> will select the default Stack Chaining
register which is A6. The stack frames are assumed to look like
this:

high memory

PROGRAM COUNTER

OLD CHAINING REGISTER<
LOCAL VARIABLES
PARAMETERS

PROGRAM COUNTER
L OLD CHAINING REGISTER<
LOCAL VARIABLES
PARAMETERS

PROGRAM COUNTER
+=— OLD CHAINING REGISTER<----chaining register
LOCAL VARIABLES

low memory

Chapter 5-86 NEST

PROBE follows the chain and displays the current program
counter and procedure calling sequence in the DISPLAY
WINDOW. The symbols which match the calling instructions (or
the closest previous symbol) are displayed along with the value.

This is the default Stack Chaining Register.

The default code and stack memory spaces are shown in these
fields. You can change them default by typing <TAB> to get the
following prompts:

O©

Stack Memory space:
Memory space: <> {OJUD|\{UP|URJ4|SD|SP|CPU}

Code Memory space:
Memory space: <> {O|[UD|\UP|UR|4|SD|SP|CPU}

Note that in some systems, PROBE may track the stack frames into
non-existent memnrv and a time ont mav neenr If it daec the

following message will appear:
Bus time out exception caused by access at address XXXXxxxx

You can clear this error message, as always by striking any key.

EXAMPLES OF USING THE NEST COMMAND

Display the procedure calling sequence based upon the default A6
register. A sample PROBE display is also shown.

N<enter>

PC IS 00000100=\FTOCSTART\START
CALLED FROM 00000108=\FTOCSTRT\START+00000008

QUIT Chapter 5-87

QUIT COMMAND

PROBE software is terminated by typing:
Q for Quit
The following prompt verifies that you really want to quit.

Return to DOS now: [Yes] {Yes|No}

Chapter 5-88 REGISTER

REGISTER COMMAND

The registers and flags in the 68020 can be displayed and changed
with the register command. You invoke this command from the
MENU BAR by typing:

R for Register

The following screen appears:

Processo n>
Enter new value]

Arrows to move ll; <Esc> to main menu._|

D0=0000000 D4=000000 A0=00000000 A4=0000000 PC=00000000 CARC=0000000
D1=0000000 D5=000000 A1=00000000 A5=0000000 USP=00000000 CA AR=0000000
D2=0000000 D6=000000 A2=00000000 A6=0000000 ISP=00000000 VBR=0000000
D3=0000000 D7=000000 A3=0000000 A7=0000000 MSP=00000000 SFC=0 DFC=0
SH=000U = "1'0 SU MU 10 XU NU Z0 V0 CU

@ The DIALOG BOX prompts lets you change the value of one of

the registers:

Enter new value: []

@ The register to be changed is indicated by the highlight field.

®

The highlight field can be moved with cursor keys. Typing <Esc>
gets you back to the MENU BAR.

This field shows you which processor the registers in the
DISPLAY WINDOW is displaying. You can display the registers
for the 68881 numeric or 68851 memory management unit
coprocessors by typing <TAB> to get the following prompt:

Enter processor ID for register display:[Main]{Main|0|1}

Choose 1 for the 68881 and 0 for the 68851. PROBE must find
these coprocessors in the target to display the registers. See the
Motorola manuals for details on the 68881 and 68851 coprocessors.

REGISTER Chapter 5-89

When the target system is powered down, the starting PC and A7
(Stack pointer) registers are not automatically read when power is
reapplied. You should use the "H R Y" (Hardware Reset Yes)
command to get these initial register values.

The 68020 registers are defined as follows:

REGISTER/FLAG DESCRIPTION

DO0-D7 General purpose 32 bit registers.

AO0-A6 32 bit address registers.

A7 Current stack pointer(either USP, MSP, or ISP)
PC Program counter

Usp User stack pointer(A7 if S=0, M=x)

ISP Interrupt stack pointer{A7 if S=1, M=0)

MSP Master stack pointer(A7 if S=1, M=1)

SFC Source Function Code -used on source operand for MOVES instruction.
DFC Source Function Code -used on destination operand for MOVES instr.
VBR Vector base register for interrupts

CACR Cache control register

CAAR Cache address register

SR Status register

SR [T] Trace enable (2 bit field)

SR [S] Supervisor/User state (0=User, 1=Supervisor)
SR [M] Master/Interrupt state (O=Interrupt, 1=Master)
SR (1] Interrupt Priority Mask (3 bit field)

SR [X] Extend flag

SR [N] Negative flag

SR [Z] Zero flag

SR[V] Overflow flag

SR[C] Carry flag

These register names are recognized by PROBE and can be used in
expressions exactly as they are shown above. If you want to specify
a hex number to PROBE which coincides with a register name, you
must precede the hex number with 0. For example, DO specifies the
contents of a register, 0DO0 is a hex number.

The upper byte of SR is only visible in supervisor mode. The lower
byte of SR is visible at all times and may be called CCR (condition
code register). This is the register that is used by non-supervisor
programmers.

Chapter 5-90 REGISTER

The display of the 68851 registers is shown below. The register
names (16 and 32 bit only) for the 68851 are recognized by PROBE
and can be used in expressions.

SRP=00000002#00000002= L/U0 LM=0000 SGO DT2 CAL=00
CRP=00000000#00200480= L/U0 LM=0000 SGO DT0 VAL=00
DRP=00410000#00200000= L /U0 LM=0041 SGO DT0 SCC=FF
'TC=00004000= E0 SREO FCLO PSO0 IS0 TIA4 TIBO TICO TIDO AC=0083=MC1 ALCO MDS3L
PSR=0000=B0 LO SO A0 WO I0 MO GO CO NO PCSR=8000=F1 LWO0 TAO
BAC0=0008=BPEQO BSC08 BAD0=0000 BAC4=0000=BPEO BSC00 BAD4=0268
[BAC1=0000=BPEO BSC00 BAD1=0000 BAC5=0020=BPEO BSC20 BAD5=0000

AC2=0020=BPEO BSC20 BAD2=0000 BAC6=0000=BPEO BSC00 BAD6=0000
BAC3=0000=BPEO BSC00 BAD3=0020 BAC7=0000=BPEO BSC00 BAD7==0000
SRP=00000002#00000002= L/U0 LM=0000 SGO DT2

The display of the 68881 registers is shown below. The register
names (16 and 32 bit only) for the 68881 are recognized by PROBE
and can be used in expressions.

FPO=+NAN#7FFF0000#FFFFFFFF#FFFFFFFFFP4=+NAN#7FFF0000#FFFFFFFF
FP1=+NAN#7FFF0000#FFFFFFFF#FFFFFFFFFP5=4+NAN#7FFF0000#FFFFFFFF
FP2=+NAN#7FFF0000#FFFFFFFF#FFFFFFFF FP6=+NAN#7FFF0000#FFFFFFFF
FP3=+NAN#7FFFO000#FFFFFFFF#FFFFFFFF FP7=+NAN#7FFF0000#FFFFFFFF
FPSR=00000000= NO Z0 I0 NANO SO0 Q00

BSUNO SNANO OPERO OVFLO UNFLO DZ0 INXOO INXIO

Accrued IOP0 OVFLO UNFLO DZ0 INXO

FPCR=00000000= BSUNO SNANO OPERO OVFLO UNFLO DZ0 INXOO0 INXIO
Precision=Extended Round-toward=Nearest

REGISTER Chapter 5-91

EXAMPLES OF USING THE REGISTER COMMAND
Change the value of register D1 to AAAA.
R<DownArrow>AAAA<enter>

Display registers and change the PC to the value specified by the
macro ALTB.

R<RtArrow><RtArrow><RtArrow><RtArrow>ALTB<enter>
Change the value of the T flag to 1 and the value of the S bits to 7.

R<DnArrow><DnArrow><DnArrow><DnArrow><DnArrow>
<RtArrow><RtArrow>l<enter><RtArrow><RtArrow><RtArrow>7
<enter>

Change the least significant bit of the CACR register to 0 and leave
all other bits in the register unchanged:

R<«rt arrow><rt arrow><rt arrow><rt arrow>
<rt arrow>CACR&11111110<enter>

Chapter 5-92 SINGLE STEP

SINGLE STEP COMMAND

The single step command is very powerful in PROBE and lets you do
many things. You can step instructions one at a time or in multiple
steps, display windows while stepping, and continue stepping while
events are true in the system. You can start single stepping program
execution by typing:

S for Step

The subcommands for the Step command now pop up and the screen
looks like this: (This display is for Source not PROBE)

Assembly-language
Source-level

<Esc> to main menu

LMV DQUUVUMLIILALIIUD Al DU YWIL dIVviV, L VL L ANV DL, LIV Al 1V

subcommands.

Command Sub Operation
command
Step Assembly Assembly language
single step
Source Source level single step. This

subcommand is only available
with the 68020 Source Probe
option.

When either subcommand is invoked the following screen appears:

3

Start address: < > Program space: <User>
Enter start address: []
<Tab> to next field: <Esc> to main menu

|

SINGLE STEP Chapter 5-93

@ The first DIALOG BOX prompts you for the start address. If
you simply type <enter>, the default start address (current
program counter) is used. After the starting address has been
selected, the screen below appears.

@ This is the value of the current default start address.

This is the current default program space. You can change this
default by typing <Tab> to invoke the prompt which changes it.

Once single stepping has started, a screen similar to this appears:

5 Steps to take for each <Enter>: <001
After <Enter>, step while: <False>
(7

"B" to run to M; "J" to run to instr after B: <Enter> to step from 00000400
<Tab> to next field above: PgUp/Dn Arrows to move M; <Esc> to main menu
D0=0000002 D4=00000000 A0=0000072A A4=00000000 PC=00000400 CACR=0000000
D1=00000001 D5=00000000 A1=0000077C A5=00000000 USP=00000000 CA AR=00000
D2=00000000 D6=00000000 A2=00000722 A6=00000700 ISP=000006DC VBR=0000000
D3=00000000 D 7=00000000 A3=00000000 A7=00006DC MSP=0000000 SFC=0 DFC=0
SR=2704=T0 S1 MO 17 X0 NO Z1 V0 C0O

\START:

00000400 LEA.l__ {00000708),A7

“*** Op 1 value=00000708, address=00000708=\FtoCStrt\STACKTOP
00000406 MOVEL.] A7,A6

00000408 JSR (00000444)
0000040E BRA 00000400
\FtoCStrt\DOSIGNEDDIVIDE:
00000410 TST.1 D1
00000412 BEQ 0000041A

@ The instruction which matches the current program counter is
indicated by the blinking cursor. The address, opcode and
operands are shown on this line. This instruction is not executed
until the <enter> key is typed. Note that the next five instructions
in memory are shown below this instruction.

@ These are the values of the operands of the current instruction.
PROBE calculates the address of the operand, if appropriate, and
retrieves the contents of memory. It then shows you the
calculated operand address, any symbol or near symbol which

Chapter 5-94 SINGLE STEP

®

©
@

matches this calculated address, and the contents of the memory
at this calculated address. This shows you the operand values of
the current instruction before it actually executes (i.e. before you
type <enter>). This saves you from having to bail out of the
single step command to see the values of the operands. The "~ 4
on this line points to the instruction for these operands ,i.e. the
instruction just above the current line.

skkkokokkkdk sk kokokdkkkodkdkkkkkkokokkkkkokokkkkokkdkokkkskokkdkkkkdkskkkokkkkkkkkkkkkkk
Note that if the operand is pointing to a memory mapped IO
device which changes its contents when it is read that PROBE’s

advance read. of the operands may affect your program.
skokskskokokckkokskokokkkok ok sk kkkkskakokokokdkkokskkskkkkkkkkkkkkkkkdkkkkkkkkkkkkkkkkkk

Note that when you start the single step command, a highlight
field spans the current instruction and its operands. This
highlight field serves as a second cursor. The highlight field can
be moved with the PgDn/PgUp and cursor keys. When moving the
highlight field up the DISPLAY WINDOW past the current program
counter (i.e. blinking cursor) the previous single stepped instructions
WIC UIpLUYEU (HUL LHE COUE PIEVIOUS LU LIS INSLFUCLION. WAEN
moving the highlight field down the DISPLAY WINDOW below
the current program counter, your program (as disassembled
from memory or viewed through a source code file) is shown.
The blinking cursor remains at the instruction pointed to by the
program counter and does not move with the cursor keys. Typing
Ctrl PgUp moves the highlight field to the blinking cursor (i.e.
next instruction to be executed.).. If the highlight field disappears
when you step and does not come back, type <Esc> to regain
control (if you get an error see later in this chapter for details.)
PROBE precedes an instruction address with a symbol if one
matches the address. If an operands match symbols, the symbols
are shown to the right of the operand.

This field determines the number of instructions to step for each
typed <enter> key. See the section STEP COUNT later in this
command.

See the STEP WHILE CONDITION section later in this command
for this field.

See the next section BRANCHING... for this field.

SINGLE STEP Chapter 5-95

BRANCHING TO INSTRUCTION AND AROUND SUBROUTINES
DURING SINGLE STEP

During single stepping, PROBE can do more than just take the next
single step when <enter> is typed. Two other keys, B and J, can be
used to control program flow.

If you are paging through your program during single step and
position the highlight field at an instruction, typing the B (for break)
key will run the program from the current program counter and stop
at this highlighted instruction. This is easier and faster than getting
out of the single step command and setting a breakpoint at this
instruction.

You can also position the highlight field on any instruction and type
J (for Jump) to run the program from the current program counter
until the instruction at the next address after the highlighted
instruction. Why is this different than the B key. If you are
currently at an instruction which is going to call a subroutine, and
you want run through it real time until the program returns, then
type the J (for Jump) key instead of the <enter> key. This will also
work when you have already stepped into the subroutine by mistake.
Simply move the highlight field back up the screen to the jump
instruction which got you into the subroutine and type J to execute
until the instruction after the jump. You probably cannot easily use
the B key for this case (unless the routine is small and fits on the
screen) since the code you were executing before the jump is no
longer on the screen - but the jump instruction is.

If you type B or J and the highlight disappears and does not come
back, then PROBE did not reach the target instruction and is still
executing the program. To return control to the Step command, type
<esc> and the screen will be updated to show you where you are
currently executing.

STEP COUNT

Single stepping can be by a single instruction or multiple
instructions. This lets you go through your program in larger steps.
You can change the Step count by typing the <TAB> key until the
following prompt appears:

Chapter 5-96 SINGLE STEP

Enter number of steps to be taken for each <enter>:[]

Simply typing <enter> at this prompt does not change the number of
steps taken and returns you to single stepping.

STEP WHILE CONDITION

Single stepping can be programmed to continue automatically While a
a specified condition is true. You can set this condition by typing
<TAB> until you get the following prompt:

Enter condition to test for end of stepping: []

The condition is a boolean expression which was defined at the start
of this chapter in the section called BOOLEAN EXPRESSIONS.
After the While condition is entered in response to the above prompt,
typing <enter> will launch the single stepping. Stepping will
continue automatically as long as the condition 1S true. Lhe
condition is tested after each single step. If the While condition goes
False, stepping stops. You are still in the single step command,
however, and typing <enter> will again take the number of steps
shown in the Count field. Once the While condition is False it is
cleared from its field on the PROBE screen. If you type <TAB> or
<ESC> during the automatic single stepping, then single stepping will
stop and the While condition is set to False.

The following is a summary of the keys which operate in the single
step command:

SINGLE STEP Chapter 5-97

Key Operation

PgUp or Display previous pages (up to 4k buffer)

Up arrow of single step operations. Highlight field
moves with display but not blinking cursor

PgDn or Unassemble upcoming instructions or

Dn arrow scroll forward through source file.
Highlight field moves.

<enter> Execute the number of instructions
specified in the Count field

b Set an Execute breakpoint at the

highlight field and do a Go command
until this breakpoint is encountered.

j Run real time and set a breakpoint at the
instruction following the highlighted
instruction

ESC Terminate single stepping and pop down
all windows.

<TAB> Invokes DIALOG BOXES to change step

count or step While condition

WATCH WINDOWS DURING SINGLE STEP

While single stepping, you can pop up one or more Watch Windows.
These windows are defined by the Window command and are popped
up with a single AltKey. These windows are updated after each
single step, therefore, you can keep an eye on anything in the target
while you are single stepping. To single step while the Watch
Windows are active, wait until you have invoked the step command
and the highlight field appears before popping up the window.

SOURCE CODE STEPPING

You can single step the program via source statement lines by
choosing the Source subcommand for the Step command. During the
source stepping process, PROBE finds highlevel language
modulename\line numbers in the symbol table which match
executable instructions. It then uses the files assigned to the
modulenames from the sYmbol-Assign-module-to-file command or
those derived from loading an Initialization file. A sample
DISPLAY WINDOW is shown here:

Chapter 5-98 SINGLE STEP

Steps to take for each <enter>: <0001>
After <Enter>, step while: <False>
"B" to run until l; "J" to run until instr after l; <Enter> to step from 00000000
__ <Tab> to next field above; PgUp/Dn, Arrows to move []; <Esc> to main menu
12. *c__temp = {__temp - 32;
113. *c__temp = *c__temp * 5;
114. *c__temp = *c__temp / 9;
115.
116. return;}
@ 41, printf("%5d %5d\n", fahr, celsius);
42.
43. /*
44. Go to next line of table.
45. -— */
@ 46. fahr = fahr + step;

1110 11110 ULl dUUILC CUUC WILICH aiCnes tne currcnt program
counter is indicated by the blinking cursor. This instruction is
not executed until the <enter> key is typed. The lines of source
code after this instruction are also shown in the DISPLAY
WINDOW.

% This is the high level language linenumber for this line of code.

Note that when you start the single step command, a highlight
field spans the current instruction. This highlight field serves as
a second cursor. The highlight field can be moved with the
PgDn/PgUp and cursor keys. When moving the highlight field up
the DISPLAY WINDOW past the current program counter (i.c.
blinking cursor) the previous single stepped instructions are
displayed (not the code previous to this instruction. When moving
the highlight field down the DISPLAY WINDOW below the
current program counter, your source code is shown. The
blinking cursor remains at the instruction pointed to by the
program counter and does not move with the cursor keys. Typing
Ctrl PgUp moves the highlight field to the blinking cursor (i.c.
next instruction to be executed.)

¢)

The same fieclds which were described in the Step Assembly language
command apply to the Step Source code command. If you use the B
key to branch to a line of source code in the DISPLAY WINDOW

SINGLE STEP Chapter 5-99

which does not represent an executable instruction (i.e. it may be a
comment), then PROBE will stop at the first executable line of
source code after the line where you typed the B.

You may also limit the modules through which you single step while
executing all code outside these modules in real time. This is done
using the sYmbol command and choosing the Source-step-module-
selection subcommand. This provides an automatic method of
ignoring parts of you code which are automatically debugged and
which you do not want to step into.

WHAT HAPPENS DURING SINGLE STEPPING

Assembiy ianguage stepping

During single step, PROBE/3 performs bus cycles in the target
system before actually executing the desired instruction when you
type <enter>. There are 3 reasons these cycles are needed:

1. PROBE displays the next 5 instructions in memory from the
current program counter. To do this, PROBE reads the target
system memory (or MAP RAM) and disassembles the memory into
instructions.

2. PROBE displays the contents of memory operands that are
referenced by the instruction to be executed. To do this, the
PROBE reads the current values of the operands from memory in
the target system.

3. PROBE/3 implements Step Assembly language by setting
HWexecute breakpoints at the next instruction to be stepped.
PROBE analyzes the current instruction (i.e. where the blinking
cursor is) and sets a HWExecute breakpoint at all possible points
that this program could go to. When you type <enter>, PROBE
does a Go and starts executing your program until one of these
HWExecute breakpoints is hit. To determine the address of these
breakpoints, the PROBE reads target system memory (or MAP
RAM). Some examples are:

A) Indirect jumps through memory:
JMP ([5,A0],D0,8) - [5,A0] will be read
B) Instructions that may generate exceptions:
MOVE #2700, SR - Priv. excep. vector read

Chapter 5-100 SINGLE STEP

Bus errors during Single Step

Only one bus cycle will occur in the target system for each of the
references to target memory (or MAP RAM) described above. If a
bus error happens during one of these references, control will return
to PROBE before any stack operations or exception vector reads
occur. A message is displayed on the 68020 Probe screen indicating
the memory address of the cycle at fault and processing of the step
command continues for each of the previous 3 listed cases.

1. Disassembly and display of the current and the following
instructions is not completed. Stepping can continue even if
reading the current instruction caused the bus error. If the
instruction to be stepped caused the bus error, no breakpoints will
be set because PROBE could not determine what the current
instruction was, and therefore could not determine the possible
next instructions to be executed.

2. Printing memory based operands of the

Pr——

next instruction: A

- P ~ .
e L LaUse Asaves An AW prA AsELWAE WD MIAW Y GALWY VR LAV VVIGLIM. DWWV PIIUE

may continue by typing <enter>.

3. Determining possible next instructions to be executed: A
breakpoint is not set for the next instruction address that was
being calculated. Stepping may continue by typing <enter>.

Bus timeout during Single Step

If the target system does not return DSACK’s during single step
operations, PROBE reports a "bus timeout" error message. There are
several ways in which this could happen.

1. Since PROBE does a Go and sets HWExecute breakpoints during
single step, the processor may get an interrupt. If the interrupt
service routine in the target crashes the target system hardware
may not return DSACK’s. To eliminate this problem, use the
Hardware Interrupt No command to disable interrupts to the
68020.

2. Many target systems boot up with PROM shadowing low memory
and then switch the PROM to high memory. If the PROBE
attempts to step with the PROM still shadowed on low address
locations, a bus timeout error may appear. This is because the
PROBE steps by setting a breakpoint on every instruction that

SINGLE STEP Chapter 5-101

may execute after the stepped instruction executes. To determine
the locations of each of these target instructions, the PROBE may
reference target system memory. For example, if the instruction
might generate an exception, a breakpoint is set by PROBE on the
first instruction in the exception handler. Therefore, if the first
instruction to be stepped is "Move #2700, SR", it is possible that a
privilege exception may occur. Before stepping, the privilege
vector is read to determine what the next instruction location
would be if the exception occurred. If the PROM has not been
"unshadowed", the hardware may not respond to that location and
a 68020 Probe timeout may occur.

Interrupts during Single Step

For Assembly language single step, PROBE starts program execution
at the current Program Counter and sets HWExecute breakpoints at
all possible next instructions. This lets the target processor service
real time interrupts in the background between steps without
interfering with the single step process. If you do not want to
service interrupts between steps, use the Hardware Interrupt
command to lock out interrupts from the target. If you want to single
step an interrupt procedure , use the Go command to set a breakpoint
at the start of the interrupt procedure and then start single stepping.
If the target services an interrupt and does not return, then the
highlight field will disappear and the processor will continue to
execute code in the target. You can regain control in this case by
simply typing the <Esc> key. If the interrupt procedure crashes and
causes a double bus fault or stops the processor while you are
stepping, typing the <Esc> key will regain control and you will
probably get the following message:

No address strobes to target

This means that the 68020 is shut down and you can only regain
control by doing a Hardware Reset command.

PROBE real time trace logic is operating during program execution
while single stepping. If the 68020 is servicing interrupts during
single step, then real time trace of program execution between steps
is available for display. This is also a useful display to look at if the
"No address strobes" message occurs during single step.

Chapter 5-102 SINGLE STEP

No Address Strobes during Single Step

When the 68020 gets a double bus fault, the HALT line is held low
by external logic, or is held up the the BGACK, then the 68020 does
not produce address strobes to the target and the following message
is displayed.

No address strobes to target

These operations could happen during single stepping. If the error is
caused by the BGACK line, use the Hardware Dma Enable command
to mask the BR line from the 68020. If the error is caused by
interrupts which are happening in the background between steps, use
the Hardware Interrupt Enable command to mask interrupts from the
68020. If the error is caused by the Halt line, use the Hardware Halt
line enable command to mask this line from the 68020.

Source stenning

PROBE implements source level single stepping by setting a software
breakpoint at each instruction which has a source line number, then
executing a GO command. This is why eliminating modulename/line
number information in the symbol table or ignoring it with the
Symbol-Step-Module command limits source stepping.

EXAMPLES OF USING THE SINGLE STEP COMMAND

Step by Assembly language the program starting from location \main.
Make the single step command operate while D0 is <> 5.

SA\MAIN<enter><Tab><Tab>D0 <> 5<enter><enter>

Start stepping by Assembly language from the current PC. Set the
step count to 5. After stepping has started pop up the window
assigned to the key ALTZ

SA<enter><Tab>5<enter>ALTZ<enter>

TRACE

Chapter 5-103

TRACE COMMAND

This PROBE command displays the real time program execution
before (and optionally after) the breakpoint was detected. The trace
command is invoked from the MENU BAR by typing:

The subcommands for

T for Trace

the Trace command now appear in a MENU

BOX and the screen looks like this.

Instructions
Activity
Qualification
Raw-trace-data
Save-to-disk
Unformatted-save

The subcommands are:

Display-change Evaluate Go Init Load Macro Nest
Step Trace Unassemble View Window Xfer sYmbol

__<Esc> to main menu

Subcommand Operation

Instructions Display trace data with prefetch filtered
Activity Display trace with prefetch not filtered
Qualification Qualify trace data to a region of memory

Raw-trace-data
Save-to-disk
Unformatted-save

Display trace data in hex format
Save data to disk human readable form
Save data to disk machine readable form

Chapter 5-104 TRACE instructions

TRACE INSTRUCTIONS

The Trace Instructions command provides the most useful form of
the trace display. PROBE analyzes the trace data which was
collected in real time and processes it to produce an easy to
understand trace display. The processing does the following:

1. The 68020 pipeline (not cache) has been modeled in PROBE
software. PROBE analyzes the trace data and tosses out
prefetched but unexecuted instructions so you don’t have to guess
which instructions executed and which did not.

2. PROBE analyzes the trace data and displays the memory
reference cycles directly under the opcodes which executed them.
If PROBE did not do this, you would have to do this yourself
mentally. This is because the 68020 pipeline fetches opcodes
many bus cycles earlier than the memory reference cycles which
go with those opcodes.

Tha ¢4cenmma alhawven mnnamilhlad AcmAandan A A Acanwnnds Antn tennafasend

during execution cycles, stack operations, and interrupt cycles.
Program symbols are included in the trace data to make the
identification of program operation easy to understand. During
program execution, the cache could have been enabled or disabled
during program execution with the Go command. Trace data is
viewed after the detection of a breakpoint or emulation has been
terminated with the <Esc> key. If the cache were disabled during
program execution, a screen similar to the following appears:

TRACE instructions Chapter 5-105

Search address: <any> Space:<Any> Verb:<Any> Data:<any>

O)

Begin search of trace:[No] {Yes|No}
__PgUp/PgDn/Arrows move within memory; <Tab> to next field; <Esc> to main menu

e Cache enabled during execution. Trace not qualified.
6 45. Fahr <= Upper;
(1) 000004CO :SP MOVE. (A2),D0
(2)l§ 00000722 :SD READ - 0000 \FAHR
00000724 :SD READ - 0050 \FAHR+00000002
000004C2 :SP CMP.! {0000071A),DO
00000714 :SD READ - 0000 \UPPER
0000071C :SD READ - 0064 \UPPER+00000002
000004C8 :SP BLE 0000047E
50 Compute (Fahr, &Celsius});
0000047E :SP PEA. (00000726)
000006ES :SD WRITE - 00000726 \FtoCStrt\STACK+0000UuEU
00000484 :SP MOVE.]l (A2),-(AT)
B 00000722 :SD READ - 0000 \FAHR
S 00000724 :SD READ - 0050 \FAHR+00000002
000006E4 :SD WRITE - 00000050 \FtoCStrt\STACK+000000DC

@ This line shows the instruction address, memory space, opcodes
and operands.

@ Additional memory reference cycles used by the instruction are
shown on this line with their address, type of cycle, and data on
the bus during the cycle. If the address of the memory reference
cycle matches or is near a program symbol, the symbolname is
shown to the right.

@ A "B" in this column indicates that this is the cycles which caused
the breakpoint. If a "Pass count" condition was used in setting
the breakpoint, there may be multiple "B"s in the display.

@ A "S" in this column indicates that this cycles matches the fields
specified for a search. Note that both B and S can be in this
column.

Chapter 5-106 TRACE instructions

®

Procedure names or high level language line numbers which
match the address field of an instruction are shown before the
instruction. If using the SOURCE rather than the PROBE
version of the software, then the actual program source code
precedes the assembly language.

©) This line shows you if the trace data was taken with the cache

@

enabled or disabled and if the trace qualify condition was
enabled or disabled during the trace. Controlling the cache and
trace qualification is described later.

You can scroll and search for data in the trace display. This is
described later in this command.

TRACE activity Chapter 5-107

TRACE ACTIVITY

The Trace Activity command shows you the trace display in a form
similar to the Trace Instructions. The difference is that PROBE does
not filter out unexecuted prefetch or place memory reference cycles
directly under the instructions which caused them. It simply displays
the opcodes and memory reference cycles on the bus in the order in
which they occurred. When this command is invoked the following
message appears on the screen to remind you of these facts.

Data cycles were not matched with prefetched instructions for
this display.

There are 3 major side effects of this:

1) Data cycles will probably not appear with the instruction
that generated them.

2) Instructions following those that can cause a transfer of
control may not have actually been executed.

3) The trace display software may print the target of a jump
instruction as the wrong word (low vs. high) of a 4-byte
instruction fetch.

Press any key to begin display

The Trace Activity display can happen even with the Trace
Instructions command for certain conditions. This could happen for
the following reasons:

1. cache was enabled when the trace data was taken

2. trace qualify condition was active when the trace was taken
3. PROBE could not accurately analyze the the trace data to
filter out prefetch and tie memory reference cycles to opcodes

Chapter 5-108 TRACE raw

TRACE RAW

The Trace Raw command is a hex display of the real time trace data.
The display of the data appears under these columns:

Cycle Address Spc Data Strb RW If Rn Ep Bk BP Rs P G BgBe Log G24 G32

Cycle number of the cycle (0-7ff) in the trace data.
Address 32 bits of 68020 addresses.

Spc base 10 decode of the Function Code lines

Data 32 bits of 68020 data. For any given cycle the data

here may not be valid. The next field, Strb, indicates
which portion of the data bus contains valid data.

Strb binary, active lo field. 0111 indicates that only the 8
most significant data bits (d24-d31) are valid; 1100
(d0-d15) valid. These bits are not valid at all during

eps.

Rw the r/w line; 1 = read, VU = write 1I 1ndaicates that a
read from super or user program space occurred

Rn indicates the PROBE was emulating the target or
stopped for interrogation mode by the PROBE user
interface.

Ep indicates transition from the emulation mode to the
interrogation mode.

Bk indicates that a hardware breakpoint was detected.

BP when this field is a 1, it indicates that hardware
breakpoints were active.

Rs reserved

P performance mode timer overflow bit.

G when this field is a 1, it indicates that indicates a
guarded access occurred.

Bg bus grant

Be bus error

Log hex field that shows the state of the PROBE logic lines.

TRACE raw Chapter 5-109

G24
G32

hex fields that contains a collection of bits described

as follows: The g24 and g32 fields contain misc. bits
that were not decoded on the trace display because of
lack of room. The bits are labeled general 24 (Isb) thru
g31 (msb) and g32 (Isb) thru g39 (msb).

G24 IS DSACKO0/

G25 IS DSACK 1/

G26 1S IPLO/

G27 IS IPL1/

G28 IS IPL2/

G29 IS USED BY POD S/W
G30 IS SIZ0

G31 IS SIZ1

G32 IS USED BY POD S/W
G33 IS OCS

G34 IS CDIS/

G35 IS IPEND/

G36 IS AVEC/

G37 IS RMC/

G38 IS USED BY POD S/W
G39 IS HALT/

Chapter 5-110 TRACE save data

SAVE-to-DISK

This command lets you save the trace to a disk file. You could also
use the Xfer Log command to open a log file to disk then display the
trace data, but this is much faster. The data is saved to disk in a
human readable form. This command prompts you for the filename
to save the data.

UNFORMATTED-SAVE

This is a command which you use to save information to a disk file
which you can send to Atron. Atron has modeled the 68020 pipeline
in order to filter unexecuted instructions and tie memory reference
cycles to instructions. If this model has bugs, you can help us find
them by saving trace data when the Trace Instructions command
fails (i.e. gives you Trace Activity display instead). With this trace
save data, we can exactly recreate the state of the PROBE when it
fails in your target. There are other situations when the PROBE
APPNGIS WU U GULIE ULV kil A WALat) ass g vt vees e v asavir i e weie
identify at Atron with this Trace Save data. When something gets
screwed up in the PROBE, do a Trace Unformat Save and send it to:

Atron

Attn: Technical Support
20665 Fourth St.
Saratoga, Ca. 95070

When we receive the information, we will report our results, work
arounds, or corrections to you as soon as we find them.

TRACE search data Chapter 5-111

SEARCHING TRACE DATA

While you are in any of the Trace commands which display data in
the DISPLAY WINDOW, the following keys let you scroll through the
trace display:

PgUp/PgDn and cursor keys move you through the trace data.
Ctrl PgUp moves you to the start of the trace data.
Ctrl PgDn moves you to the end of the trace data.

PROBE also has a built in editor which lets you search trace data
fields for specific events. The DIALOG BOX prompts you with:

Begin search of trace:[No]{Yes|No)

If you type Y, PROBE starts searching from the current location in
the DISPLAY WINDOW until the end of the Trace data for matches
between the trace data and the other fields in the DIALOG BOX. If
you type N, then PROBE lets you set these other ficlds in the
DIALOG BOX. You are given the following series of prompts which
let you set these fields for the search of the trace data.

Enter address to search for: []
Enter end address of range to search for:[]
Enter don’t care bits ("."|"X")
Enter memory space to search for:[Any] { Any|0]1|2|3|4]5]6|7|8]9}
Enter verb to search for: [Any] { Any|Read|Write}
Enter data size to search for:[Any] { Any|Byte|Word{Long}

Enter data value to search for:[]
Enter don”t care bits("."|"X")

Begin search of trace [No] {Yes|No}

Typing <enter> in response to any of these fields takes the default in
the < >. If a search is completed successfully, the trace data is
positioned in the DISPLAY WINDOW with the character "S" on the
line which matches the search. You can continue the search from
here by simply typing Y again in response to the prompt. If the
search is not successful, the following message is displayed:

Specified values not found from current locations to the end of trace.

Chapter 5-112 TRACE search data

The search fields you specify stay as defaults for the next Trace
display. There is an S in each line which matches the search
condition in the trace display. The search can be terminated at any
time during the search with the Ctrl Break key.

TRACE qualification Chapter 5-113

TRACE QUALIFICATION

The 68020 PROBE has one qualified trace region which lets you
limit the real time trace data. This lets you optimize the trace data
by including only interesting trace information. A qualified trace
region saves instruction fetches and their following memory
reference cycles into the real time trace memory only if the fetched
address falls between the starting and end addresses of the qualified
trace region. The cache is always disabled while the program passes
through the qualified trace region. Outside of the region, the cache
can be enabled or disabled depending upon the control you set with
the Go command and/or the hardware control of the 68020 by the
target (see Controlling the 68020 cache). With the cache normally
enabled, you can have the simultaneous benefit running your
application as fast as possible while viewing more detailed trace
information in the qualified trace region. When the Trace Qualified
is selected the following DIALOG BOX appears:

@ Starting address:<00000000> End address:<00000000> Program space:<Both>
Don’t care bits<.... .cc. coov vt viis e s e >
@ Enable trace qualification: [No] {Yes|No}
<Space> for next choice: <Enter> or <Tab> to next field; <Esc> to main menu |

@ First you are prompted to enable or disable the trace
qualification during execution:

Enable trace qualification: [No] {Yes|No}

(@ If you pick Yes for trace qualification, you are then prompted
for the starting then ending address of the qualified trace region:

Enter new starting address []
Enter new end address :[]

You may enter any type of address expression. The end address
may also be of the form:
+ number

In this case the end address becomes start address+number.

Chapter 5-114 TRACE qualification

@ If you type <Tab>, you are then prompted for the program space
to be used in trace qualification. In this case, the space is limited
to the choices shown in the prompt:

Enter program space for qualification: [Both] {User| Supervisor| Both}

Note that since the 68020 does a lot of prefetching of instructions,
that you should not put the difference between the starting and
ending address less than 20 bytes. In addition, to see the memory
reference cycles of a particular instruction, you should not make the
end address of the qualified trace regions closer than 12 bytes past
the end of the instruction. If you do, the trace may turn off too
soon because of the 68020 prefetch and you will miss the details of
the memory reference cycles for the instruction.

Real time trace data taken with a qualified trace region enabled can
be displayed with the Trace Activity command but not the Trace
Instructions command.

CONTROLLING THE 68020 CACHE

There are four things which control the state of the cache during
program execution:

Go command cache enable field
Hardware line in the target
Bit 0 of the CACR register
PROBE Trace Qualify condition

1. PROBE can disable the 68020 cache at the start of program
execution with the Go command. In this case, PROBE can
display Trace Instructions since instructions are always fetched
from the bus. If the cache is disabled with the Go command, the
cache cannot be enabled via control of the target system
hardware or CACR bit.

TRACE qualification Chapter 5-115

2. PROBE can enable the 68020 cache at the start of program
execution with the Go command. In this case, PROBE can
display Trace Activity but not Trace instructions. This is because
68020 may execute repetitively from the cache without using the
bus. If the cache is enabled with the Go command, the cache can
still be disabled via control of the target system hardware or
register CACR bit 0 or a qualified trace region.

Here is a simplified logic diagram of how the cache is controlled by
the PROBE and the target system hardware.

68020 PROBE control _[>O |

Go command cache enable ———————] I__ b cache enable to 68020
Target system cache enable I

CACR BIT 0O

Chapter 5-116 UNASSEMBLE

UNASSEMBLE COMMAND

Memory can be displayed as 68020 assembly language instructions
with the Unassemble command. You can scroll through memory to
display code. This command is invoked from the MENU BAR by

typing:
U for Unassemble

A screen similar to the following screen pops up:

oo a_ q

Start address: <00000000> Memory space: < > \
e Display instruction words: <No> Display operand addresses and values: <No>
o Enter new start address: | 1

18. Compute (FahrTemp, CelsiusTemp)
000004FC LINK A6,4:00000000

00000500 MOVEM.1 A2,-(AT7)

122. *CelsiusTemp = FahrTemp - 32;

00000504 MOVE.] (00000008,A6),D0

00000508 MOVEL. (0000000C,A6),A2

0000050C MOVE.l #00000020,D1

0000050E SUBL.1 D1,D0

00000510 MOVE.] DO,(A2)

123. *CelsiusTemp = *CelsiusTemp * 5;

00000512 MOVE.l (A2),D0

00000514 MOVE.]l DO,D1

00000516 ASL. #2,D0

00000518 ADD. D1,DO

0000051A MOVE DO,(A2)

124. *CelsiusTemp = *CelsiusTemp /[;

0000051C MOVE.] #00000009,D1

0000051E MOVE. (A2),D0

00000520 JSR (00000420)

00000526 MOVE. DO,(A2)

UNASSEMBLE Chapter 5-117

@ The first DIALOG BOX prompts you for the starting address of
the memory to disassemble:

Enter new start address: []

If <enter> is typed with no start address then the default start
address is assumed. Next you are prompted for the number of
instructions to unassemble:

Enter number of instructions:[]

If <enter> with no input is typed for this field then the default is
a screenful of instructions. This prompt remains on the screen
and the next page full of instructions is displayed each time
<enter> is typed. If you type the PgDn or Down Arrow, then
more unassembled instructions are shown in the DISPLAY
WINDOW. If you type the PgUp key, previous instruction are
shown, but you cannot go previous to the very first instruction
you unassembled since executable code in this direction is
indeterminate.

@ This is the current default start address. It is current program
counter if a Go or Step command has been executed previous to
this command. It is set to the last address of a previous
Unassemble command display if no Go or Step command have
been recently executed.

@ Note that symbols or linenumbers which match the address fields
are included in the unassembly to simplify the display. If you
are running the SOURCE level version of PROBE, the source
code which is associated with the unassembled is also shown in
the DISPLAY WINDOW.

MORE DISPLAY DATA DURING UNASSEMBLE

Several other fields can be set which control the information being
displayed by the Unassemble command. Typing <TAB> will bring up
the prompts which let you set these fields which are described below.

@ The memory space default is shown in this field. The following
prompt for this field lets you change it.

Chapter 5-118 UNASSEMBLE

®

©)

Memory space: < >: {OJUD|UR|4|SD|SP|ICPU}

The hex equivalent for the unassembled instruction can be shown
along with the instruction by answering yes to this prompt.

Display instruction words: [Yes} {Yes|No}

The reason that this is a choice rather than a default is that the
much more of the DISPLAY WINDOW is taken up displaying this
additional information which is needed in only a few instances.
If Yes is chosen for this prompt then the instruction looks like
this:

instruction address hex equivalent of instruction

aaaaaaaa

instruction

The 222224 indicates which instruction address is tied to the
instruction in the DISPLAY WINDOW.

L1E UPEraNU dUUresses and vaiues ror tne unassemblea instruction
can be shown along with the instruction by answering yes to this
prompt:

Display operand addresses and values: [No] {Yes|No}

The reason that this is a choice rather than a default is that the
much more of the unassembly display is taken up displaying this
additional information which is needed in only a few instances.
Note that operands in the display are based upon the current
contents of memory and registers. The operand values may be
very different when the instruction actually executes. Use this
option cautiously - when PROBE references target memory a bus
error may caused. If Yes is chosen for this prompt then the
disassembled instruction looks like this:

instruction

AAAAAAAA

first operand address and/or value [symbol matching operand]

........

second operand address and/or value [symbol matching operand)

Program symbols and linenumbers which match the operands are
shown in this display. If Yes is chosen for the prompts in 5 and
6 then the unassembled instruction looks like this:

UNASSEMBLE Chapter 5-119

instruction address hex equivalent of instruction

AAAAAAAA

instruction

AAAAAAAA

first operand address and/or value [symbol matching operand]

AAAAAAAA

second operand address and/or value [symbol matching operand]

NOTES ON THE DISASSEMBLER

If an A trap instruction is encountered by PROBE (i.e. 0000AxxxX),
then PROBE disassembles the instruction as follows:

? Axxxx = symbolname

The A trap is often used as a subroutine call. By associating a
symbolname with your A trap, then PROBE can easily show you the

Sik [58 R

name of your subroutine during disassembly. This is very useful in a
target system such as the Apple MAC II (tm).

EXAMPLES OF THE UNASSEMBLE COMMAND

Unassemble memory starting from line number 76. Display the
operands along with the instructions. Display a screen full,

U#76<enter><Tab><Tab><Tab>NY<enter>

A screen like the one shown here will be displayed.

\main#76

000AD36 MOVE.L {000000D6),D0

el OP1 value=0000000A, address=000000D6= \FAHR

0000AD3A CMP.L (ooo000D2),DO

sans OP1 value=00000064, address=000000D2= \UPPER
OP2 value=000000A

0000AD3E BGT 0000AD68

e OP1 address=0000AD68 = /[FTOCM#49

0000AD40 MOVE.L #000000D8,-(A7)

sans OP2 address = 0000F586

0000AD46 MOVE.L (000000D6),-(A7)

i OP1 value=0000000A, address=000000D6= \FAHR

. OP2 address = 0000F574

Chapter 5-120 VIEW

VIEW COMMAND

Files can be viewed from PROBE while debugging with the VIEW
command. This command is invoked from the MENU BAR by

typing:
V for View

The following screen appears:

Default disk: <C> Default directory: <\>
Enter view filename OR file number: | |
Arrows move H; "*" or "7" directory; Tab to next field: <Esc> to main menu

©® NG o A®® RO

@ The DIALOG BOX first prompts you for the filename or file
number:

Enter view filename: []

If you do not include the drive and directory for the filename
then the defaults shown on the screen will be used. If you cannot
remember the name of the file, then use the wild card capability
of PROBE to display files.

@ The filenames you have previously viewed are shown in the
DISPLAY WINDOW and they are assigned a number. Moving the
highlight field to the filename and typing <enter> selects the file.
If there are already 10 files assigned on the screen and you want
to open another, you will be prompted for the number of the file
(0 to 9) close. When a file is opened and displayed in the

VIEW Chapter 5-121

©)

DISPLAY WINDOW, it is automatically positioned to the point in
the file where it was previously viewed. This lets you move

quickly between 10 files without repositioning the cursor in each
file.

This is the default drive and pathname Type <TAB> to get the
DIALOG BOXES which let you change the defaults.

Once the filename is chosen, the file is displayed in the DISPLAY
WINDOW shown here.

&

®

View filename:< >
Fields: <Line-display> or <String-search>
Enter line to display: []
PgUp/PgDn/Arrow move within file:<TAB> to next field: <Esc> to main menu

w oo

@ This field shows you the name of the file shown in the DISPLAY

©)

WINDOW. You can use the cursor and paging keys to reposition
yourself within the file. Typing <Ctrl><PgUp> or <Ctrl><PgDn>
will move you to the beginning or end of the file.

The DIALOG BOX prompts you to:

Enter line to display:[]

The linenumber you chose in the displayed file is positioned to
the center of the DISPLAY WINDOW. By typing <Tab> you
bring up the next DIALOG BOX:

Enter string to search for:[]

You can enter a character string to search for in the file. When
the string is found, it is positioned in the center of the DISPLAY

Chapter 5-122 VIEW

WINDOW. A message also tells you the line number in which the
string was found.

@ PROBE displays a linenumber along with the text in this area.
PROBE counts carriage return characters to determine the line
numbers in the file. Note that this is the same linenumber which
is produced by the compiler for use by the Source Step command.

EXAMPLES OF USING THE VIEW COMMANDS

Display all files in the current pathname. The key sequence is:

V*.*
Displays all files in drive a:
VA**
Dioelor 210 DT s e el SUIILl piLLlLl Ll W ITDID Lilliaiiond
V*HEX

View the file with the pathname a:\srcfiles\main.c:
Va:\srcfiles\main.c
Change the default drive and directory to a:\tempfiles:
V<Tab>a<enter>\tempfiles<enter>
View the file named FTOCIO.C. Display line #103 in this file.
VFTOCIO.C<enter><Tab>103<enter>

WINDOW Chapter 5-123

WINDOW COMMAND

You can create your own custom data displays called Watch Windows
which can be popped up over the DISPLAY WINDOW. These Watch
Windows of data are defined by the Window command. The Window
command assigns the Watch Window to any AltKey (i.e. hold down
ALT while you type any other key). The window can be popped up
at any time by typing the AltKey. It can be popped down by typing
the same AltKey again. If more than one window is popped up at a
time, they "stack" one under the other. If a command is in process
under the pop up window, it is temporarily suspended until all the
Watch Windows are popped down. An exception is the Step
command. In this case the program can continue to be single stepped
even with the Watch Window popped up. During each single step,
the Watch Windows are updated. Another exception is the Go
command. If a Watch Window is popped up during a Go command,
emulation is periodically stopped and the Watch Window is updated.

If a Window is being popped up during the definition of a Macro,
the AltKey which pops the window down is not passed on to the
macro. This has the effect of pausing the macro when the window is
displayed. You then pop down the window with the appropriate
AltKey and the macro continues execution.

The AliKey which popped up the Watch Window is shown in the
window. When multiple windows are popped up, the must be popped
down starting with the one on the bottom of the screen.

The Window command is invoked from the MENU BAR by typing:
W for Window

The subcommands for the Window command are displayed in the
MENU BOX and the screen looks like this:

Define edit Display-change Evaluate Go Init Load Macro Nest
Load Step Trace Unassemble View Window Xfer sYmbol
Save _ <Esc> to main menu

Remove

Chapter 5-124 WINDOW definition

The subcommands for the Window command are:

Subcommand Operation

Define-edit Define or edit a pop up Watch Window
Load Load a file of predefined windows

Save Save current windows definitions to disk
Remove Delete currently defined window

DEFINING AND EDITING WINDOWS

When the Define subcommand is selected, the following prompt
appears:

Enter <AltKey> that will activate this window:[]

An AltKey means hold down Alt and type any other key. This
AltKey becomes the key which will pop up the window. This AltKey
may have already been assigned to a window. In this case, the
subcommands let you edit the window definition. If you enter the
wild card key *, the names of all windows are displayed. Once
entered, the Define Edit subcommand displays another MENU BOX.

Add-field Display-change Evaluate Go Init Load Macro Nest
Remove-field Step Trace Unassemble View Window Xfer sYmbol
Change-field __<Esc> to main menu

Move field

WINDOW de finition Chapter 5-125

ADDING A FIELD

A field is an area of the window which displays the data. When the
Add-Field subcommand is selected, another MENU BOX appears.

Expression Display-change Evaluate Go Init Load Macro Nest
Range of memory Step Trace Unassemble View Window Xfer sYmbol
String in memory __<Esc> to main menu

Label

The size of the field in the window is automatically adjusted to fit
the data put into the field. For each of the subcommands in the
previous screen, you are prompted for the DATA TYPE and then
given the ADDITIONAL DIALOG BOXES shown below:

Chapter 5-126

WINDOW de finition

SUB DATA ADDITIONAL
COMMAND TYPE DIALOG BOXES
Expression Byte-hex Expression:[]

Word-hex "

Logn-hex "

Decimal "

Range-of-memory

String-in-memory

Label

Signed-decimal
ASCII

sYmbol
Float-register

Byte

Word
Long
Single
Double

Packed

Zero-terminated
Length-defined

Enter start address:[]
Enter end address[]

Enter address of string:
Enter address of string:
Enter length of string:

Enter label characters:[]

Each field in a Watch Window has a DATA TYPE. These are shown
in the previous table and they are explained below. A field which

contains an Expression will first evaluate the expression then put the
data into the field in the DATA TYPE you select for the expression.

WINDOW de finition Chapter 5-127

DATA TYPE DESCRIPTION

Byte Byte value in hex

Word Word (two bytes) value in hex

Long Long (four words) value in hex
Decimal Long value in decimal no sign extension
Signed-decimal Long value in decimal sign extended
ASCII Byte value in ascii

sYmbol Symbolname which matches expression
Float-register Floating point value or float register
Range-of-memory Range of memory in hex

Single Single precision floating point

Double Double precision floating point

Xtend Extended floating point

Packed Packed decimal

String-in-memory Ascii string 0 terminated or length defined

At the end of choosing the DATA TYPE for the field and filling in
the answers to the PROBE prompts, the final DIALOG BOX for the
Add Field subcommand appears:

Place W in location for field and press <FEnter>

Use the cursor keys to move the solid block cursor shown in the
DISPLAY WINDOW to the position within the window where the
field is to be displayed. If other fields are already defined for this
window, they are shown so that the new field will not conflict with
the current fields. You should insure that a field is not positioned
such that it writes over another currently defined field. If you do,
the data from one field will overwrite the data of other fields.

REMOVING A FIELD

If the Remove-a-field subcommand to the previous screen is selected,
the following DIALOG BOX appears:

Place B in field to be removed and press <Enter>
The solid block cursor can be moved with the cursor motion keys to

the start of the field you want to delete for this window. Deleting
this field leaves the remaining fields in the window in place.

Chapter 5-128 WINDOW definition

CHANGE A FIELD

If the Change-a-Field subcommand is selected, the following
DIALOG BOX appears:

Place Bin field to be changed and press <Enter>

The solid block cursor can be moved with the cursor motion keys to
the field you want to change in this window. The solid block moves
only to the starting position of each field with the cursor keys.
Typing <enter> brings up the prompts from the Add-a-field
subcommand so that you can edit and make changes to the field.
Only the DATA TYPE can be changed for the field.

MOVE A FIELD

If the Move Field subcommand is selected, the following prompt
appears:

Place W in field to be moved and press <Enter>
The solid block cursor can be moved with the cursor motion keys to

the field you want to move within this window. Typing <enter> then
gives you this prompt:

Place M in location for field and press <Enter>

Move the solid block cursor where you want the field to move then
type <enter>.

WINDOW Load and Save Chapter 5-129

LOADING AND SAVING WINDOWS

Currently defined windows can be saved to a disk file with the Save
subcommand. These window can be loaded again with the Load
subcommand. For either subcommand, the following screen appears:

Default disk: < > Default directory: < >
Enter window file name: |]

"*" or "?" directory; <Tab> to next field; <Esc> to main menu

@ The DIALOG BOX prompts you for the filename to load or save
the windows.

Enter window file name:[i

If you do not specify the drive and pathname for the file, the
defaults will be assumed.

@ This is the default disk drive and directory. By typing <TAB>,
you can invoke prompts to change these defaults.

Note that the currently defined windows can also be saved with the
Initialize Save command and loaded with the Initialize Load
command. If Windows are currently already defined or loaded in
PROBE, then Windows from new loads will not redefine the
currently defined windows. If you want to replace the current
definitions with new, remove the specific Watch Window names.

Chapter 5-130 WINDOW deleting

REMOVING A WINDOW

A window can be deleted by selecting the Remove-a-window
subcommand. The following prompt appears:

Enter <AltKey> that will activate this window: []
If you cannot remember the 4/tKeys for the windows, type * and all

currently active window and macro Altkeys will be displayed.
Entering A for this prompt will delete all currently active windows.

OTHER NOTES ON WINDOWS

If you try to define a window which is already assigned to a Macro,
the following prompt appears:

<AltKey> is a macro. Remove it:[Yes] {Yes|No}

You can then elect to delete the macro in favor of the window.

You can also edit Windows off line with your favorite text editor.
See Appendix D for doing this.

WINDOW examples Chapter 5-131

EXAMPLES OF USING THE WINDOW COMMANDS

Define a window named AltZ which display the block of memory 3F
words long which starts at location \ARRAY. Put a label on this
array called MEMBLOCK. Then print the Long word which is
pointed to by the variable at \VARPOINTER. Put a label on this
called POINTER. A sample of this window is shown below.

WD<AltZ><enter> ALMEMBLOCK <enter><enter>ARW\ARRAY
<enter>+3F<enter><RtArrow><RtArrow><RtArrow><RtArrow>
<RtArrow><RtArrow><RtArrow><RtArrow><RtArrow><enter>
ALPOINTER<enter><DnArrow><DnArrow><DnArrow><DnArrow>
<DnArrow><DnArrow><LtArrow><enter>ARL[\VARPOINTER]
<enter>+1<enter><RtArrow><RtArrow><RtArrow><RtArrow>
<RtArrow><RtArrow><RtArrow><RtArrow><enter><Esc>

ALTZ

MEMBLOCK FFFE FF44 FF45 5678 1234 959F 9859 9898
9898 9DFE FEAB BABE 1267 1717 7171 TA7C
BE12 12BC BCBD BDBC BCB3 BCBD DEDC CDE4
1234 1234 4567 5667 4567 4523 2345 1234

POINTER 12345678

Define a window named Al:D which displays the contents of register
AQ in ASCII. Put a label AO in front of the data. (Note that a
window called AltR which displays the contents of all registers in a
long word format is included in file of predefined windows included
with the PROBE distribution diskette). Assume the contents of
register A0 is an ascii ’FOO’ for this example.

WD<AlItD><enter>ALAO=<enter><enter>AEAAQ<enter><RtArrow>
<RtArrow><RtArrow><enter><Esc>

ALTA
A0 'FOO’

Chapter 5-132 WINDOW examples

Define a Window named Alt A which displays the value of a long
pointer represented by the symbol POINTER and label it POINTER
=, Then display the 0 terminated string pointed to by this long
pointer.

WD<ALTA><enter>ALPOINTER=<enter><enter>ASZ[POINTER].L
<rtarrow><rtarrow><rtarrow><rtarrow><rtarrow><rtarrow>
<rtarrow><rtarrow><enter>

Suppose you program calculates target address to which it will jump.
Suppose the target address which will be reached have symbols
associated with the addresses. Assume the target address is the
contents of the A6 register. Define a window which will show which
symbol matches the contents of A6. Name the window AltX

WD<ALTX><enter>AEY A6<enter><esc>
Load the file of windows from the file REG.WIN.

WT RF(= WINcantars

Save all currently defined windows in a file called WINSAVE.WIN.
First change the current directory to \WINDOWS and the current
drive to B.

WS<Tab>B<enter>\WINDOWS<enter>WINSAVE.WIN
Remove the window assigned to AltD.

WR<AItD><enter>

XFER Chapter 5-133

XFER COMMAND

The Xfer command lets you save, compare, find, move, and initialize
blocks of memory in the target system. It also lets you redirect IO.
This command is invoked from the MENU BAR by typing:

X for Xfer

The subcommands for the Xfer command are displayed in the MENU
BOX and the screen looks like this:

Block-save Display-change Evaluate Go Init Load Macro Nest
Compare-block Step Trace Unassemble View Window Xfer sYmbol
Find-string _ <Esc> to main menu

Move-block

Set-block

Log-file

The Xfer command has the following subcommands:

Subcommand Operation

Block Save a range of memory to disk file

Compare Compare two blocks of and report
differences

Find Search memory for a string

Move Move block of memory to new location

Set Fill block of memory with a string

Log-file Enable or disable redirection of PROBE

output to a log file.

Chapter 5-134 XFER - Block Save

SAVING A BLOCK OF MEMORY

The Block-save subcommand saves a block of target memory to a disk
file in S record format. The memory is read from the target as
bytes. When invoked, the following screen pops up:

o___a @

I Start address: <30000000> End address <‘00000000> Memory spa}:e: <UP>

Enter source start address: | 1
<Enter> or <Tab> to next field; <Esc> to main menu

@ The first DIALOG BOX prompts you for the starting address of
the block:

Enter source start address: []

You may enter any type of address expression or simply type

santavs tn nrnndmt tho Aafnnlt ctnet adAesce nhAawvern An tho nAasann

Once entered, y;ou then prompted for the ending address:

Enter source end address: []

You may enter any type of address expression. The end address
may also be of the form:

+ number
In this case the end address becomes start address+number. If
you simply type <enter> without entering a new end address, you
get the default end address shown in < >.
This is the default start address.
This is the default end address.

The default memory space is shown on the screen. You may
change it by typing <TAB> to get the following prompt:

GO

Memory space: <UP> {O0|UD|UP|UR|4|SD|SPICPU)

XFER - Block Save Chapter 5-135

Once the end address is entered the following screen appears:

Default disk: <C> Default directory: < >
Enter save range filename: < >
"*" or "?" directory: <Tab> to next field; <Esc> to main menu

You are prompted for the file to save the block of memory:

Enter save range filename.[]

If you do not enter the drive and pathname for the filename, the
defaults on this screen will be used. Type <TAB> to bring up the
prompts which will let you change these defaults.

Chapter 5-136 XFER - Block Compare

COMPARING BLOCKS OF MEMORY

A block of memory called the source block can be compared to
another block called the destination block with the Compare
subcommand. The memory is read from the target as bytes. When
invoked the following screen appears:

0]

GO

Qe @

Start address: <‘00000000> End address: <?)0000000> Memory}pace:<UD>
Destin. address: <00000000> Memory space: <UD>
Enter source start address: []

<Enter> or <Tab> to next field; <Esc> to main menu

The DIALOG BOX prompts you for the starting address of the
source block:

Enter source start address: []

You may enter any type of address expression or simply type
<enter> to accept the default start address shown on the screen.
Once entered, you then prompted for the ending address:

Enter source end address: []

You may enter any type of address expression. The end address
may also be of the form:
+ number

In this case the end address becomes start address+number. If
you simply type <enter> without entering a new end address, you
get the default end address for the source block.

This is the default start address for the source block.
This is the default end address for the source block.

This is the default memory space for the source block. You may
change it by typing <TAB> to get the following prompt:

Memory space: <UP> {0|UD|UP|UR|4|SD|SP|CPU}

Once the end address for the source block is entered you are
prompted for the address of the destination block:

Enter destination address:[]

XFER - Block Compare Chapter 5-137

The default destination address shown on the screen can be
chosen by simply typing <enter> in response to this prompt. The
default memory space for the destination block is shown on the
screen and can now be changed by typing <TAB> to get the
appropriate prompt.

Once the destination address has been entered, PROBE compares the
source block of memory to the block starting at the destination

address byte by byte. Miscompares are displayed in the DISPLAY
WINDOVW in the following format:

Source Dest
Address BB-BB Address

Chapter 5-138 XFER - Block Search

FINDING A STRING IN MEMORY

A block of memory can be searched for a string by choosing the
Find-string subcommand. The following screen appears:

@& @

Enter source start address: []

l Start address: <\00000000> End address: 200000000> Memor)} space:<UD>

<Enter> or <Tab> to next field; <Esc> to main menu

@ You are first prompted for the starting address of the block:

Clo®

Enter source start address: []

You may enter any type of address expression or simply type
<enter> to accept the default start address shown on the screen.
Once entered, you then prompted for the ending address:

Lnter source ena aadress. [/

You may enter any type of address expression. The end address
may also be of the form:
: + number

In this case the end address becomes start address+number. If
you simply type <enter> without entering a new end address, you
get the default end address for the block.

This is the default start address
This is the default end address

This is the default memory space. You may change it by typing
<TAB> to get the following prompt:

Memory space: <UP> {O|[UD|UP|UR|4|SD|SPICPU)

Once the end address for the block is entered you are prompted for
the string to search for

Enter list:[]

XFER - Block Search Chapter 5-139

The list may be hex bytes, or an ASCII string in quotes. The memory
is read from the target as bytes. Once entered, the following prompt
appears:

Report success ful matches(yes) or unsuccessful matches(no):{yes]

If you answer yes to this prompt, then each time the string compares
successfully to the block of memory, the starting address of the
string match is printed in the DISPLAY WINDOW. If you answer no
to this prompt, then each time the string does not compare
successfully to the block of memory, the starting address of each
miscompare is printed in the DISPLAY WINDOW.

Chapter 5-140 XFER - Block Move

MOVING A BLOCK OF MEMORY

A block of memory called the source block can be moved to a new
memory location called the destination address the Move
subcommand. When invoked the following screen appears:

@___a @

Start address: <\00000000> End address: <00000000> Memory\ space:<UD>
Destin. address:<00000000> Memory space: <UD>
Enter source start address: []

<Enter> or <Tab> to next field; <Esc> to main menu

@ The DIALOG BOX prompts you for the starting address of the
source block:

Enter source start address: []

VA mav antar anv tuna nf addrace avnraccinn ar cimnly tunea

<enter> to accept the default start address shown on the screen.
Once entered, you then prompted for the ending address:

Enter source end address: []

You may enter any type of address expression. The end address
may also be of the form:

+ number
In this case the end address becomes start address+number. If
you simply type <enter> without entering a new end address, you
get the default end address for the source block.
This is the default start address for the source block.
This is the default end address for the source block.

This is the default memory space for the source block. You may
change it by typing <TAB> to get the following prompt:

OO

Memory space: <UP> {0|UD|\UP\UR}4|SD|SP|CPU}

@ Once the end address for the source block is entered you are
prompted for the destination address :

Enter destination address:[]

XFER - Block Move Chapter 5-141

The default destination address shown on the screen can be
chosen by simply typing <enter> in response to this prompt. The
default memory space for the destination address is shown on the
screen and can now be changed by typing <TAB> to get the
appropriate prompt. Once the destination address has been
entered, PROBE moves the source block of memory to the the
destination address byte by byte. The memory is read from the
target as bytes. If the start of the destination overlaps the source
range, the data is moved starting with the high address end of the
source block.

Chapter 5-142 XFER - fill memory

INITIALIZING A BLOCK OF MEMORY

A block of memory can be initialized to a string by choosing the Set-
block subcommand. The following screen appears:

@8 o

| Start address: 200000000> End address: :00000000> Memor\y space

Enter source start address: [|
<Enter> or <Tab> to next field; <Esc> to main menu

@ The DIALOG BOX prompts you for the starting address :

Enter source start address: []

You may enter any type of address expression or simply type
<enter> to accept the default start address shown on the screen.
Once entered, you then prompted for the ending address:

Enter source end address: []

The ending address is an address expression. It may also be:
+ number

In this case the end address becomes start address+number. If
you simply type <enter> , you get the default end address.

@ This is the default start address
(3) This is the default end address
(4) This is the default memory space. Type <TAB to change it:

Memory space: <UP> {0|UD|\UP|UR|4|SD|SP|CPU}

Next you are prompted for the string to search for.

Enter list:[]

The list may be hex bytes, or an ASCII string in quotes. Once the
list has been entered, PROBE fills the memory repeatedly with the
list. The final copy of the list written into memory may only be a
partial since the block size may not be an even multiple of the list
size. The list is treated as a sequence of bytes.

XFER - redirect to log file Chapter 5-143

REDIRECTING PROBE OUTPUT TO A LOG FILE

You can redirect PROBE output to a log file. This lets you save the
history of a debugging session. A log file can be an AT disk file,
printer, communications port on the AT, or file on a remote file
server on an AT network. PROBE simply calls DOS with the
filename handle. DOS then redirects the output to the specified
device. When this subcommand is selected, the following prompt
appears:

Enable listing to log file [No] {Yes|No}

If you select No, any current open log file is closed. If you select
Yes, the following screen appears:

Default disk: <C> Default directory: < >
Enter new log file name: []

You are prompted for the name of the log file. The default disk
drive and directory are shown on this screen. Type <<TAB>> to
bring up the prompts which let you change these defaults. Here are
the devices you can specify for a log file:

Filename Description

filename DOS filename either local or remote on a network
Iptl: Lineprinter 1 attached to the AT

Ipt2: Lineprinter 2 attached to the AT

coml: Coml1 port on At

com2:; Com?2 port on AT

Insure that the line printer is attached and turned on, however,
otherwise PROBE will wait on the print device indefinitely.

Chapter 5-144 XFER - examples

EXAMPLES OF USING THE XFER COMMANDS

Save a block of memory to disk from \ARRAYSTART to
\ARRAYEND in a file called SAVEBLOCK. Use the UD memory
space. Use drive D with directory \TEMPSAVE.

XB\ARRAYSTART<enter>\ARRAYEND<Tab>UD<enter>
SAYEBLOCK<Tab>D<enter>\TEMPSAVE<enter><enter>.

Compare a block of memory starting at the defaults shown on the
screen with the block at \ARRAYSTART in the default destination
memory space.

XC<enter><enter>\ARRAYSTART<enter>

Find the string in memory "Now is the time" in the user data space
starting at 30000000 and ending at 3FFFFFFF. Report only
successful matches.

XF30000000<enter>3FFFFFFF<enter>"Now is the time"<enter>Y

Move the block of memory from \ARRAYSTART to
\ARRAYSTART+3FF into \NEWARRAY. Use the default memory
spaces.

XM\ARRAYSTART<enter>+3FF<enter>\NEWARRAY <enter>

Fill the block of memory starting at \ARRAYSTART and ending at
\ARRAYEND with the string "Now is the time".

XS\ARRAYSTART<enter>ARRAYEND<enter>"Now is the
time"<enter>

SYMBOL Chapter 5-145

SYMBOL COMMANDS

PROBE loads symbols into the AT memory when the program is
loaded into the target ram or MAP RAM with the Load command.
PROBE is compatible with a number of object module formats. See
the Appendix G under Compatible Object module formats for more
details. The sYmbol command lets you do many things with the
PROBE symbols. It is invoked from the MENU BAR by typing

Y for sYmbol
The following MENU BOX is displayed:

Display-change Evaluate Go Init Load Macro Nest
Remove Unassemble View Window Xfer sYmbol
Case-sensitivity <Esc> to main menu

Module-name-default
Load-module-selection
Source-step-module-selection
Assign-module-to-file

The subcommands for the symbol command are shown here along
with a short description of their operation.

Subcommand Operation

Display-change Display, change or delete
symbols

Remove Delete symbols or all symbols
in module

Case-sensitivity Ignore or use case in symbols

Module-name-default Assign default symbol prefix

Load-module-selection Load symbols from only from

selected modules
Source-step-module-selection Source step only in selected

modules
Assign-module-to-file Display/change filenames

assigned to modulenames

Chapter 5-146 SYMBOL - display and change

DISPLAY AND CHANGE SYMBOLS

Symbols are displayed by selecting the Display subcommand. When
invoked, the following screen appears:

Module: <\>

Enter symbolname: [|

<Enter> only picks ll; PgUp/Dn, arrows move l; <Esc> to main Menu
Address Symbolname

@ PROBE groups symbols by modulename. The symbols for the
default Module on the screen are displayed in the DISPLAY
WINDOW. The default modulename after the program has been
loaded is \ which means no modulename (i.e. public symbols).
The value of the symbol is shown with the symbol. The first
symbolname 1n the DISPLAY WINDOW is also hxghhghted If
casvaw aw smAv AW viswas W UWA VWAL WA UL u,;nuum, yUu may udv wuLv
PgUp/PgDn keys to scroll through the symbols for this module.
The DIALOG BOX prompts you for the symbolname to be
displayed:

Enter symbolname: []

Entering a symbolname for this prompt searches the symbol table
for the symbolname and displays the symbol along with its value.
This lets you find a symbol in a very large symbol table. If a
symbolname is entered without specifying a modulename, the
current default modulename shown on the screen is assumed.
Typing <Enter> without a symbolname in response to this prompt
will choose the symbolname which is currently highlighted in the
DISPLAY WINDOW. Entering a new currently undefined
symbolname will insert the symbolname before the highlighted
symbol.

After the symbolname is chosen, the DIALOG BOX lets you
change or define the value of a symbol:

Enter new symbol value:[]

SYMBOL - display and change Chapter 5-147

After entering a value or typing <Enter> without entering a
value, you are returned to the previous prompt so you can
continue to display or define new symbols.

@ This is the current default modulename. To change the default
modulename type <TAB> and the following screen will appear:

Module: < >
Enter modulename: [|

<Enter> only picks ll; Pgup/Dn, arrows move ll: <Esc> to main Menu
Modulename

All modulenames are displayed in the DISPLAY WINDOW and
one is highlighted. The following prompt appears:

Enter modulename[]

You can enter a new modulename by typing it in or moving the
highlight field to the selected modulename and typing <enter>.

The default can also be \ which means no modulename. Public
symbols do not have a modulename and therefore their default

modulename is \. After the default modulename is entered, you
are returned to the prompt in item 1 above.

Chapter 5-148 SYMBOL - delete

DELETING SYMBOLS AND MODULES

Symbols are deleted by selecting the Remove subcommand. When
invoked, the following screen appears:

Module: <\>

Enter symbolname: |]

<Enter> only picks ll; Pgup/Dn, arrows move l: <Esc> to main Menu
Address . Symbolname

@ You are first prompted for the symbolname for the symbols to be
deleted:

Enter symbolname: []

Typing <Enter> without a symbolname in response to this prompt

will rhnancs tha cvmhnlnnmn whirh 1o ~An vranf-lv l\vnkl-nkfnﬁl in tha

DISPLAY WINDOW. Entering * as the symbolname will invoke
the following prompt:

Remove all symbols in this module: [No] {Yes|No}

Choosing Y will delete all symbols for this module. This also
removes the modulename from future displays of symbols.

@ This is the current default modulename. To change the default
modulename type <TAB> and the following prompt:

Enter modulenamef]

You can enter a new modulename by typing it in or moving the
highlight field to the sclected modulename and typing enter. If
you select *, then the following prompt appears:

Remove all symbols:[No] (Yes|No}

This will delete all symbols for all modules as well as all
modulenames.

SYMBOL - Case sensitivity Chapter 5-149

CASE SENSITIVITY

Some compilers create different symbolnames if the case for any of
the characters of the symbol are different. Other compilers ignore
case. You can choose to use or ignore case with the Case-sensitivity
subcommand. When this subcommand is invoked, the following
prompt appears:

Upper case characters equal to lower case: [Yes] {Yes|No)}

Chapter 5-150 SYMBOL - Default modulename

SELECTING THE DEFAULT MODULENAME

It is tedious to type in the complete modulename and symbolname
prefix for every symbol if you are always working within the same
module. PROBE lets you define a default modulename and prefix
which will automatically be included in front of symbols. This is
done with the Module-default subcommand which displays the
following screen:

Default modulename prefix: < >

Enter modulename: []

<Enter> only picks ll; Pgup/Dn, arrows move lM: <Esc> to main Menu
Modulename

All currently loaded modules are displayed on the screen and the
following prompt appears:

Enter modulename: []

One of the modulenames on the screen is highlighted. The cursor
keys move the highlighted field. You can simply type <enter> to
select the highlighted modulename or type in a new modulename.
Once entered, the following prompt appears:

Enter rest of modulename prefix:[]

This lets you add an additional symbolname prefix to be used as the
default prefix for all symbols. This is very useful for variables
which have scope. You can also simply type <enter> without
additional prefix information.

If no modulename is specified when you specify symbol or
linenumber, then the current default prefix is used. After the
symbol table is loaded, the default prefix is public symbols (\). You
can define a new default prefix with the sYmbol-Modulename-
default command.

SYMBOL - De fault moduiename Chapter 5-151

HOW THE DEFAULT MODULENAME WORKS

The default modulename is inserted automatically by PROBE in
front of all symbols in an expression when PROBE interprets the
expression (the insert is not visual). A default prefix can be defined
to inciude the modulename and any other scope of prefix which you
want to include as a default in front of your symbols. If you
include a prefix when you use a symbol, and the default prefix
overlaps the prefix you have put in front of your symbol, the
overlapping parts are ignored. PROBE iteratively scans the symbol
and tries to match it to entries in the symboltable. PROBE uses the
following algorithm:

If the specified symbol starts with \ look only in public
symbols

First look for \defaultmodulename\Name

Next, look for \defaultmodulename-lelement\Name
Iterate this until you reach \Name

EXAMPLE: Assume the following symbols are in the symbol table:

\Sym1

\Sym2

\Mod1\Sym1l

\ModI1\Sym3

\Mod1\BlockI\Sym3

\Mod1\Block2\Sym?2

\Mod1\Block2\Sym4

Assume the default modulename is \Mod1\Block?2.
PROBE would then search this symbol table as follows
when you enter the symbolnames shown:

SYMBOL PROBE SEARCHES FOR

Sym1 \Mod1\Block2\Sym1
\Mod1\Syml

Sym3 \Mod1\Block2\Sym3
\Mod1\Sym3

Block1\Sym3 \Mod1\Block2\Block1\Sym 3
\Mod1\Block1\Sym3

Sym4 \Mod1\Block2\Sym4

\Block2\Sym4 \Block2\Sym4 - not found

\Sym1 \Sym1

Chapter 5-152 SYMBOL - Selective symbol load

SELECTIVELY LOADING SYMBOLS

The loading of symbols into the symbol table can be limited to
specified modulenames. This is done with the Load-Module-
selections subcommand. When invoked the following screen appears:

Enter modulename: []

Load?) MODULENAME

The current modules are shown in the DISPLAY WINDOW. These
may have been previously loaded from the PROBE initialization file.
If the PROBE Load command is used before this command is used,
then the default assumed is that all modules and all symbols will be
loaded into the PROBE symbol table and all modulenames are loaded
intn thic gelectinn lict table Once this suheammand ic nsed. onlv
symbols which appear in the selected modules will be loaded in
future loads. The selected modules could also have been specified
with the Init Load command. The following prompt appears:

Enter modulename: []

You can now enter new modulenames into this list or select yes or no
for the state of the loading of symbols for a module. One of the
modulenames in the DISPLAY WINDOW is highlighted. Entering a
modulename selects this module or enters a new modulename in the
list if it is not currently defined. Or, the highlighted modulename is
selected by typing <enter>. Once selected, the next prompt enables or
disables the loading of symbols into the symbol table when the Load
command loads the program into the target system.

Allow symbols to be loaded for this module:[Yes] {Yes|No}

You remain in this command to change other modules until you type
<Esc>. Note that you can delete modulenames from the selection list
by using the sYmbol Remove * command to delete all the symbols in
a module,

SYMBOL - Selective source stepping Chapter 5-153

LIMITING SOURCE LEVEL SINGLE STEPPING TO
SPECIFIED MODULES

SOURCE can single step a high level language program by statements
with the Step Source command. It may be desirable to limit the
single stepping of source code to only specified modules. When the
program goes outside of the specified modules, it runs real time until
it gets back into the selected modules. This can be done with the
Source-step-module-selection subcommand. When invoked the
following screen appears:

| Enter modulename: []

Step MODULENAME

The current modules are shown in the DISPLAY WINDOW. These
may have been previously loaded with the Init Load command. If
the PROBE Load command is used before this command is used, then
the default assumed is that all modules will be single stepped with
the Step Source command. Once this subcommand is used or the
selected modules have been loaded with the Init Load command,
only symbols which appear in this list will be source stepped. The
following prompt appears:

Enter modulename: []

You can now enter new modulenames into this list or change the
single stepping for a module. One of the modulenames in the
DISPLAY WINDOW is highlighted. Entering a modulename selects
this module or enters a new modulename in the list if it is not
currently defined. Or, the highlighted modulename is selected by
typing <enter>. Once selected, the next prompt enables or disables
the source single stepping for this module.

Source-step at lines in this module:[Yes] {Yes|No}

Sce the Step command in this chapter for how the Source Step
command works.

Chapter 5-154 SYMBOL - Assign modulename to source file

ASSIGNING MODULENAMES TO SOURCE FILES

For source level single stepping or for including source code in Trace
and Unassemble displays, source files must be assigned to
modulenames . To do this select the Assignments subcommand and
the following screen is displayed.

Enter new modulename |]

Modulename File name

The current modules are shown in the DISPLAY WINDOW. These
may have been previously loaded with the Init Load command. If
the PROBE Load command is used before this command is used, and
the object module format includes the assignments then, this table
receives default initializations. The following prompt appears:

Enter modulename: []

You can now enter new modulenames into this list or change the
source file assignment for a module. One of the modulenames in the
DISPLAY WINDOW is highlighted. Entering a modulename selects
this module or enters a new modulename in the list if it is not
currently defined. Or, the highlighted modulename is selected by
typing <enter>. Once selected, the next prompt lets you assign the
source filename

Enter new file name: []

You remain in this command to change other modules until you type
<Esc>.

SYMBOL - Examples Chapter 5-155

EXAMPLES OF USING SYMBOLS COMMANDS
Display all symbols for the module \FTOCIO
YD<Tab>FTOCIO<enter>

Starting from the where the previous example leaves you on the
screen, display the symbol Getval and change its address to Getval+1.

GETVAL<enter>GETVAL+1<enter>

Starting from the where the previous example leaves you on the
screen, go down three symbols and change that symbols value to 0.

<DnArro§v><DnArrow><DnArrow><enter>0<cntcr>
Delete ail symbois in moduie \FTOCIO and delete the moduiename.
YR<Tab>\FTOCIO<enter>*Y
Delete all symbols in all modules.
YR<Tab>*<enter>Y
Set the Case sensitivity to treat upper and lower case identically.
YCY
Change the default modulename to FTOCIO.
YMFTOCIO<enter><enter>

Set up PROBE so that symbols from modulename \FTOCIO will not
be loaded when the program is loaded.

YLFTOCIO<enter>N

Unselect a module named FTOCIO from the list of modules which
can be source level single stepped (i.e. the code will run real time
through this module during source single step.)

YSFTOCIO<enter>N

Assign a module named FTOCIO to a file called
a:\sourcefiles\FTOCIO.C for the purpose of single stepping.

YAFTOCIO<enter>A:\SOURCEFILES\FTOCIO.C

Appendices Appendix 1

APPENDICES
APPENDIX A PROBE ERROR MESSAGES 2
APPENDIX B MAINFRAME COMPATIBILITY ...ccccoeevnemrenrcerenees 16
APPENDIX CONFIGURATION FILEnceecnrenrnnsensisenes 17
APPENDIX D TEXT FORMATS FOR MACROS,.....nee 23
WINDOWS,AND INITIALIZATION FILES
APPENDIX E FILES ON YOUR PROBE DISKETTES........... 31
APPENDIX F LANGUAGE COMPATIBILITYonrccncnncnneee 32
APPENDIX G OBJECT MODULE FORMATS 34
APPENDIX H LOGIC PROBES 44
APPENDIX I PROBE .I.LPOWER SUPPLY 45
APPENDIX J ELECTRICAL CHARACTERISTICS......ccoevecnee. 46
OF 68020 POD
APPENDIX K TECHNICAL REPORTS 48
GENERATING A C LIST FILE WITH LINE NUMBERS.......... 51

APPENDIX L MORE ON CONF020 .54

Appendix -2 PROBE Error Messages

APPENDIX A
PROBE ERROR MESSAGES

These are the error messages which PROBE will display. To clear
the error message and resume keyboard input to PROBE, strike any
key. The error messages are arranged in this Appendix as nearly as
possible to alphabetical for easy reference.

"Access denied to file."
The specified file could not be accessed because of a
privilege violation.

"Array has no memory. It cannot be used in map."
The array selected to be mapped to user memory does not
contain any memory (se¢ array size at the top of the
screen) This array is not available for mapping to the
user system.

"Array may not cross 16Mbyte boundary."
iuappuu Livinvl y altayd aitC Ul alluwiu U Liudd a 1utvivy o
boundary. i.e. The start address "xxvw0000" and the end
address "xxyzFFFF" of the block must have the same "xx"
value.

"Attempt to read past end-of-file."
An invalid read request was made to the file.

"Attempted access to guarded memory at address xxxxxxxx"
The memory access at address xxxxxxxx is flagged as
guarded in the Display Map command.

"Attempted division by 0."
Division by 0 was attempted in the expression.

"bbbbb: base address should be "xy000": xy=C4,CC,D0,D4,D8,DC"
The base address listed in the PROBE.CNF file ("bbbbb")
is not a valid board base address.

"Bad drive request: Abort, Retry, Ignore?"
See "DOS critical error"

PROBE Error Messages Appendix -3

"Baud rate must be 110, 150, 300, 600, 1200, 2400, 4800, or 9600"

For Probe/1, the com port used to communicate with the target
system may only be set to the above baud rates. The com port is
always set to 8 data bits, 2 stop bits, no parity.

"Block will not fit in array. NOTE: Array may not cross 16Mbyte
boundary."

This block will not fit in the specified array. This may be
caused by:

1) Not enough RAM in this array to cover the region.

2) The array is used in another region or regions and
cannot fully cover those regions as well as the selected
region.

3) The array would have to cross a 16Mbyte boundary
(xx000000) to cover the other regions as well as the
selected region.

"Board does not respond at address xy000"

The base address is valid but the board does not respond
at that address. This may mean:

1) The Atron Break/Trace boards are not installed in the
computer.

2) The Atron Break/Trace boards are instalied in the
computer but this address conflicts with another board in
the computer. try changing the base address in the
PROBE.CNF file.

3) The Atron Break/Trace boards have failed. Run the
diagnostics.

3) The Atron Break/Trace boards were ordered with the
special modification to place their selection in I/0 space.
If this is the case, make sure the ", pppp" option is also
added to the ADDR option in the PROBE.CNF file.

"BP x " error in sticky BP

(see BP command)

"Bus time out exception caused by access at address xXxxxxxx"

The memory access at address xxxxxxxx timed out. The
bus error may be caused by the target system if it is
capable of causing a bus error time out. It also may have
been caused by the PROBE software when it was detected
that the memory access was taking too long.

Appendix -4 PROBE Error Messages

"Cannot communicate with floating point co-processor #n"

' The CPID option in the PROBE.CNF file specified this co-
processor as floating point but communication with that
co-processor could not be established in the target system.

"Cannot communicate with PMMU co-processor #n"
The CPID option in the PROBE.CNF file specified this co-
processor as a PMMU but communication with that co-
processor could not be established in the target system.

"Chaining register must be A0-A6"
The only valid registers for use as a stack chain with the
nest command are the registers A0, Al, A2, A3, A4, A5,
and A6.

"Com port must be 1 or 2"
For Probe/1, the com port used to communicate with the
target system must be 1 or 2 for COMI1: or COM2:

"Could not communicate with master U31. Use HwW Kesec commana
Communications could not be established with the 8031 on
the Atron break/trace boards in the computer. Try the
HW Reset command. If this occurs again, run the
diagnostics.

"Could not communicate with slave 8031 in pod. Use Hw Reset
command"
Communications were established with the 8031 on the
Atron break/trace boards in the computer. However, the
computer could not communicate with the 8031 in the
Atron personality pod. Try the HW Reset command. If
this occurs again, it may be caused by:
1) Loose cable connections at the break/trace boards in the
back of the computer.
2) Loose cable connections at the personality pod.
3) The personality pod has failed. Run the diagnostics.

PROBE Error Messages Appendix -5

"Could not communicate with target processor Use Hw Reset
command."

Communications were established with the 8031 on the
Atron break/trace boards in the computer and with the
8031 in the Atron personality pod. However,
communications could not be established with the target
processor. Try the HW Reset command. If this occurs
again, it may be caused by:

1) The target system is turned off.

2) The buffer assembly has become disconnected from the
target system.

3) The target system is not providing clocks or a processor
for the personality pod.

4) The personality pod has failed. Run the diagnostics.

5) A double bus fault occurred whiie accessing the target
system, either while interrogating the target system or
while executing code in the target system. In either case,
the target processor has entered the SHUTDOWN state and
must be reset.

"Could not detect start of target processor execution. Use Hw Reset

command"

Attempted to start execution of target processor
instructions but could not detect the fact that execution
had actually begun. Try the HW Reset command.

"Could not stop execution of target processor. Use Hw Reset

command"

The target processor did not respond to the interrupt level
7 produced by the Atron personality pod. The HW Reset

command will re-establish communications with the target
system but the target processor’s internal registers will be
lost.

"Could not open heap overflow file on disk."

The heap overflow file "ATRON.HEP" could not be opened
on disk in the directory listed in the PROBE.CNF file, in
the directory containing the PROBE.CNF file, or in the
default directory. The symbol table, macro table, and
window table will not be allowed to overflow to disk.

Appendix -6 PROBE Error Messages

"Could not write instruction words at this address."
An attempt was made to write the instruction at the

assemble address but that area of memory was not RAM.
This will only occur if Display-change Noverify-state is

set to read-after-write.

"Communication failure with pod. Use Hw Reset command"
A general communication failure occurred while
communicating with the pod. Try the HW Reset command

or the diagnostics.

"Co-processor ID must be: 0 <= ID <= 7"
Co-processors must have an ID field from 0 to 7.

"Co-processor specified is not floating point"
The floating point register name is a valid register name.

However,the CPID option in the PROBE.CNF file did not
specify this co-processor as a floating point co-processor.

“C/U‘}}AUVVQOUI Ql.l\v\a;:;\t\; ;O 1muUe I—.IV:V;U"
The MMU register name is a valid register name.
However, the CPID option in the PROBE.CNF file did not

specify this co-processor as an PMMU co-processor.

"CRC error: Abort, Retry, Ignore?"
See "DOS critical error"

"Destination more than 32K away from source."
DBcc instruction must branch within 32K of assemble

address.

"DOS critical error: Abort, Retry, Ignore?”
DOS detected an error while accessing the disk. You may

type:"A" or <Esc>to abort the operation,"R" to retry the
operation, "I" to ignore the error and continue.

"Drive not ready: Abort, Retry, Ignore?"
See "DOS critical error”

"Duplicate symbol name found but not stored in symbol table."
While loading symbols, duplicate names were found. The
new names and their values were discarded and the values

in the symbol table were not changed.

PROBE Error Messages Appendix -7

"Error accessing heap overflow file on disk. Heap may be corrupted.”
The symbol table, macro table, or window table
overflowed to the heap overflow file on disk. When an
attempt was made to access the overflowed data, a non-
recoverable disk error occurred (e.g. the diskette
containing the overflow file has been removed.) If the
symbol table, macro table, or window table were being
loaded, then the symbol table, macro table, and window
table may all be corrupted.

"Execution stopped by bus error in user system and stack. Use Hw

reset command"
The target processor responded to the interrupt level 7
produced by the Atron personality pod only after the pod
caused a bus error. The bus error occurred in the target
system, with all of the appropriate information being put
on the target stack, before the interrupt was recognized.
Therefore, the current PC and SP reflect the system state
in the bus error exception handler.

"File not found."
The specified file was not found and could not be opened.

"File system error."
A general DOS file system error was detected.

"First operand specified is illegal.”
The first of the operands specified or its addressing mode
is not allowed for this instruction.

"Illegal operand specified."
One of the operands or addressing modes specified is not
allowed for this instruction.

"Illegal floating point format"
The input floating point number is not specified correctly:
[digits] [’ [digits]] [’E’ digits]

"Invalid file access."

An invalid access was made to the file.

"Less operands are required.”
There are more operands in the typed instruction than are
required for this instruction (e.g. MOVE DQ,D1,D2).

Appendix -8 PROBE Error Messages

"Line number specification must be single decimal number."
You may not specify expressions as line number -- just a
value.

"Macro name may not be changed while editing macro."
All information about a macro except its name may be
changed.

"Macro nesting > 5. Macro will not execute."
The macro nesting (macros starting other macros) has
exceeded 5. No more macros may start until the current
macro has finished.

"Map table is full. No new entries may be created."
There are a maximum of 19 map regions.

"More operands are required."
There are more operands required for this instruction than
were found in the typed instruction (e.g. MOVE D0).

"Must assign at least one breakpoint to one BP."
When the sequential BP is active, at least one breakpoint
must be assigned to one BP.

"Must be: 0:00.000,000 <= Time <= 71:34.967,295"
The maximum time allowed by the hardware timer is just
over 71 1/2 minutes.

"Must be: 0 <= BKPT # <=7 or 0 <= TRAP # <= F"
Breakpoints are number 0 to 7, Traps are numbered 0 to F.

"Must be: 1 <= Shift/rotate factor <= 8"
Shift/rotate immediate instruction must have a value from
1to 8.

"Must be: 1 <= Pass Count <= Q00FF"
The pass counter is a one byte counter and, thus, may have
values in the range of 1 to FF.

"Must specify a size."
This instruction with these operands must have a size (".b",
"w', L)

PROBE Error Messages Appendix -9

"Must be: 4 >= wait states >= n"
The maximum number of wait states that may be selected
for the map arrays is 4. The minimum is computed as a
function of RAM speed on the map array and clock speed
to the target processor. The selected number of wait states
must be between these values (inclusive).

"Must be: 1 <= Step Count <= FFFF"
The step counter (number of steps to take for each
<Enter>) is a 16 bit value.

"No address strobes to target processor Use Hw Reset command."
See "Could not communicate with target processor."

*No clocks to target processor. Use Hw Reset command”
See "Could not communicate with target processor.”

"No Vcc to target processor. Use Hw Reset command”
See "Could not communicate with target processor."

"Non-sticky Breakpoint "
error in non-sticky BP (see GO command)

"Non-sticky Breakpoint ".error in non-sticky BP
(see GO command)

"Operator expected but not found in expression.”
An operator was expected in the expression between the
operands.

"PMMU did not accept new value of register xxx,..."
The PMMU signaled an exception when the new value of
the listed register(s) was written to the co-processor. The
only registers that may be aborted are: TC, SRP, CRP, and
DRP.

"Printer out of paper: Abort, Retry, Ignore?"
See "DOS critical error"

"Read fault: Abort, Retry, Ignore?"
See "DOS critical error"

Appendix -10 PROBE Error Messages

"Region must have StartAddress <= EndAddress"
Map regions must have a start address that is less than
their end address.

"Register name specified is not a floating point register"
The register name specified in the expression is not an 8§,
16, or 32 bit floating point register.

"Register name specified is not a PMMU register”
The register name specified in the expression is not an 8§,
16, or 32 bit MMU register.

"Register name specified is not a floating point register”
The register name specified in the expression is not a valid
floating point register for display in the Float-register
field of the window.

"Second operand specified is illegal."
The second of the operands specnfxed or its addressing

.nnvuv 10 UL axlvwvu LRV E S tnlb Aubll u\'lluu

"Sector not found: Abort, Retry, Ignore?"
See "DOS critical error"

"Seek error: Abort, Retry, Ignore?"
See "DOS critical error"

"Specified size not allowed."
The specified instruction size (".b", ".w", ".I", ...) is not
allowed for this instruction with these operands.

"Specified values not found from current location to the end of
trace."
The specified search values were not found starting at the
end of the screen and searching to the end of valid trace
memory. Try <Ctrl><PgUp> then executing the search
again.

"Symbol not found: xxxxxxxx"
The specified symbol ("xxxxxxx") was not found in the
symbol table and cannot be displayed on the screen.

PROBE Error Messages Appendix -11

"String not found in file."
The string to be searched for was not found in the file.
Note that upper- and lower-case characters are identical in
this search.

"Symbol/Macro/Window allocation table is full."
The symbol table, macro table, and window table in
memory and on disk is full of information. All symbols
from the load file may not have been loaded.

"Symbol/Macro/Window allocation table is full."
The symbol table, macro table, and window table in
memory .and on disk is full of information.

"Symbol/Macro/Window allocation table is full."
The symbol table, macro table, and window tabie in
memory and on disk is full of information.

"There were more ’(’ than ’)."
The parenthesis were mis-matched and the expression
could not be properly evaluated.

"There were more °[’ than °]."
The dereference operators were mis-matched and the
expression could not be properly evaluated.

"Third operand specified is illegal."
The third of the operands specified or its addressing mode
is not allowed for this instruction.

"Time is: [[[minutes:] seconds.] milliseconds,] microseconds"
Time must be specified as MIN > SEC °’ MSEC °;” USEC

"Too many ’(’s to be parsed."
The expression evaluator can parse an expression with up
to 10 open °C or .

"Too many open files."
There are too many files open in DOS at the current time.
PROBE will have at most 5 files open at any one time.
This problem may be fixed by changing or increasing the
"FILES = XXXX" parameter in the CONFIG.SYS file. (If
omitted, DOS defaults to FILES=38).

Appendix -12 PROBE Error Messages

"Trace qual BP".error in trace qualification range

"Unknown unit: Abort, Retry, Ignore?"
See "DOS critical error"”

"Unknown command: Abort, Retry, Ignore?"
See "DOS critical error"

"Unknown instruction mnemonic."
The mnemonic listed is not a legal 68020, 68851, or 68881
instruction.

"Unknown media: Abort, Retry, Ignore?"
See "DOS critical error"

"Unrecognized object module format. Cannot load this program."
The currently recognized object module formats are:
Motorola S-record format, Tekhex, Extended Tekhex,
Atron binary, Microtec IEEE binary COFF format, Unix
(tm) Svstem V COFF farmat

"Valid qualifier values are "0", "1", or "X™
When entering qualifier bits (Logic Lines or IPL lines), the
only valid values are 0’ for logic 0, ’1’ for logic 1, or ’X’
for don’t care.

"Valid don’t care bits are "." or "X""
When entering don’t care bits, the only valid values are °.’
for care and X’ for don’t care.

"Value expected but not found in expression."
A value (see definition of value) was expected but not
found in the expression. This may mean that the symbol
specified in the expression could not be found.

"Value written to memory is different from value read back."
The value written to memory (in the command input area)
is different from the data read back from memory
(displayed in the highlighted field.) This will only occur
if Display-change Noverify-state is set to read-after-write.

"Write fault: Abort, Retry, Ignore?"
See "DOS critical error"

PROBE Error Messages Appendix -13

"Write fault or disk full."
The disk is full or write protected and the specified file
could not be written. Note that the data that was being
SAVED has not been saved.

"Write-protect error: Abort, Retry, Ignore?"
See "DOS critical error"

"<AltKey> is not a macro key."
The <AltKey> typed is not a macro and, thus, cannot be
killed.

"<AltKey> is not a window key."
The <AltKey> typed is not a window and, thus, cannot be
killed.

"-- Must have breakpoint address or Logic verb to activate."
An address must be specified for all verbs except Logic.

"-- Must have data size and data value for Logic verb."
The Logic verb must be accompanied by data size and
value for logic lines to break on.

"-- May not have TO address or DATA with Execute verb."
Execute and HWExecute breakpoints may not be range or
data breakpoints. Thus, there must be no TO address or
DATA specified.

"-- Must have data value if data size <> none."
If a data size is listed, then a data value must also be
listed.

"-- Range start address > range end address."
Start address of range must be below the end address.

"-- Too many execution breakpoints (16 max)."
There are a maximum of 16 breakpoints with the Execute
verb.

"-- Too many HW execution breakpoints (4 max)."
There are a maximum of 4 breakpoints with the
HWEzxecute verb.

Appendix -14 PROBE Error Messages

"-- Too many HW breakpoints (4 max; Range=2, TraceQual=2)."
There are a maximum of 4 breakpoints with verbs other
than Execute or HWExecute. Note that a range breakpoint
(address TO address) takes 2 HW breakpoints and that
trace qualification takes 2 HW breakpoints.

"-- Execution breakpoint address is not RAM."
The software execution breakpoint instruction address was
not a RAM address and the breakpoint could not be
written. Use the HWExecute verb.

"-- Range breakpoint may not cross megabyte boundary."
Range breakpoints (address TO address) are not allowed to
cross a one megabyte boundary (MMMzxxxxx TO
MMMyyyyy -- MMM must be the same). Use two range
breakpoints (MMMzxxxxx TO MMMFFFFF and NNN00000
TO NNNyyyyy).

"-- More BPs are reaquired for this seauential condition."
2. A arms B, reset-by C A and B required
3. A arms B arms C, reset-by D A, B, and C required
4. A arms (B or C), reset-by D A, B, and C required
5. (A or B) arms C, reset-by D A, B, and C required
6. A to B time greater than:<xxxxx> A and B required

"-- Less BPs are required for this sequential condition."
2. A arms B, reset-by C D not allowed
6. A to B time greater than:<xxxxx> C and D not allowed

"-- Breakpoint A may only be range for conditions 1 and 2."
Breakpoint A is allowed to be a range BP only for
conditions 1 (A or B or C or D) and 2 (A arms B, reset-by
).

"-- Breakpoints B, C, D may only be range for condition 1."
Breakpoints B, C, and D are allowed to be a range BP only
for condition 1 (A or B or C or D).

"-- Timeout condition only allowed for 2 hardware BPs."
Condition 6 (A to B time greater than:<xxxxx>) is only
allowed if both breakpoint A and B are hardware BPs
(verb is not Execute or HWExecute).

PROBE Error Messages Appendix -15

"-- Only conditions 1 and 2 allowed with trace qualification”
If trace qualification is enabled, only the breakpoints
using 1 or 2 BPs are allowed. These are condition 1 (A or
B or C or D) and condition 2 (A arms B).

"-- Only 2 breakpoints may be assigned with trace qualification"
Only two breakpoints may be assigned to BPs when trace
qualification is enabled since trace qualification uses the
other 2 breakpoints.

"-- Long data value only allowed on long (32 bit) bus."

"-- Long data must start on long word boundary (A1A0=00)"
A long data value can only be detected by the PROBE if it
starts on a long word boundary on a 32 bit bus. That is,
the entire iong word access must take piace in one bus
cycle.

"-- Word data value not allowed on byte (8 bit) bus."

"-- Word data must start on word boundary (A0=0)"

"-- Word data must not start on end of long (A1AQ<>11)"
A word data value can only be detected by the PROBE if
it starts on a word boundary on a 16 or 32 bit bus. That
is, the entire word access must take place in one bus cycle.

"-- Range breakpoint data size must match bus size."
In order for a range data breakpoint to correctly sense the
data cycle, the data size being written must match the bus
size listed in the

Appendix -16 Mainframe Compatibility

APPENDIX B
MAINFRAME COMPATIBILITY

The PROBE is compatible with the systems shown in Table B-1.*

Table B-1. Hardware Compatibility

SYSTEM MANUFACTURER

AT IBM

COMPAQ PORTABLE 286 COMPAQ

Tandy 3000 TANDY

Vectra Hewlett Packard

SPERRY IT SPERRY

LEADING EDGE AT LEADING EDGE
FARADAY BOARD FARADAY ELECTRONICS
WYSE AT WYSE

For compatibilitv with the Comnaa 38A. the Breaknnint/Trace hnarde
must be modified by Atron to put the boards into the IO space rather
than the memory space of the Compaq 386. Call Atron for this
modification.

*Compatibility with other systems will be added in the future.
Contact Atron for additional information.

Configuration File Appendix -17

APPENDIX C
CONFIGURATION FILE

The configuration file is an ASCII file named PROBE.CNF, and the
file provides PROBE system information to be used during some
commands. You can use a text editor to change this file. Your text
editor should store PROBE.CNF as ASCII text and should not include
other hidden text editor control information in PROBE.CNF.
PROBE.CNF specifies the following:

The base address of PROBE hardware.
The heap overflow file for symboi table expansion.
Programmable hardware features on PROBE

The instruction word that will be used for software execution
breakpoints.

Eallb ol

Here are some definitions for parameters which will be used in
describing the configuration file. No distinction is made between
upper- and lower-case characters.

Parameter Definition

[¢] specifies 0 or more alphanumeric characters which does not include
<Space>, '=’, Cr, Lf

[s] specifies 0 or more <Space> characters

["o" specifies 0 or more "0" characters

<"c"> specifies zero or more <Space> characters, followed by one <Space> or

<"c"> character, followed by gzero or more <Space> characters. There
must be a <Space> or a <"c¢"> character. No distinction is made
between upper- and lower-case characters.

{=} specifies either a <Space> character or a =’ character i.e. there must
be a <Space> or an ’=’ character.

Appendix -18 Configuration File

PROBE.CNF PARAMETERS
Here are the parameters in the PROBE.CNF file:

1) "ADDR"[cK"="}["0"]xy[c] [[s] "," [s] ppPD]
The Base Address 0xyOOOH of the Breakpoint/Trace boards in the
AT memory space is set by writting the value 0xy000H to memory
location FFFFO in the AT. The following base addresses are
allowed by PROBE. If omitted, the default base address is
0D0000 (xy=D0).

0C4000 0CC000 0D0000 0D4000
0D8000 0DCO000

EXAMPLES:

ADDR=D4 sets base address to 0D4000
ADDR D8000 sets base address to 0D8000
ADDRESS 0C40 sets base address to 0C4000

********#*#**************chyrE*#****************************

Some AT clones do not actually write data to address FFFF0
in the AT memory space. Some example systems which do are
not are the Compaq 386. In these systems, the base address of
the 68020 PROBE must be set by writing to IO space in the
AT. If ",pppp" is specified, PROBE sets the base address of
the Breakpoint/Trace boards with a write to port "pppp". Two
PALs must be changed and a modification to the master
break/trace board must occur for the ",pppp" option to work
correctly, Call Atron for for these modifications.

EXAMPLE:

ADDRESS= 0D4, 100 sets base address to 0D4000

selected by I/O write to 0100.
deckkdkkckkdkkkkokokokskdkkdkdeokodkokokokdkokskokdkkskdkkkkdkkkkkokkkdkkkkkkkkkkkkkkkkkk

2) "HEAP"[c{"="}drive-directory
Put the heap overflow file "ATRON.HEP" in the specified drive-
directory. If omitted, the file will be opened in the same drive-
directory where the PROBE.CNF file was found. If there is no
PROBE.CNF, the file will be opened in the default drive-
directory at the time of starting PROBE.

Configuration File Appendix -19

Example: HEAPFILE=C:\Obj file is C:\OBJ\ATRON.HEP
HEAP \Misc file is \MISC\ATRON.HEP

3) "COLOR"[cK"="}FCIc] [{","}BClc]]
Set the Foreground Color and Background Color of the monitor.
This configuration switch is ignored for monochrome monitors.
Colors are:

R’ -- Red ’G’ -- Green ’B’ -- Blue
’C’ -- Cyan 'Y’ -- Yellow M’ -- Magenta
W’ -- White ’K’ -- black

If omitted, the color is set to "W, K" (white on black). If the

ec
background color is omitted, it is set to black.

Examples
COLOR=Y,K Yellow on black
COLORS Blue White Blue letters on white background
COLOR green Green letters on black background

3) "CPID"[c]{"=")CHOICE [{","}CHOICE [{","YCHOICE [{",")}CHOICE
-1l
Set the co-processor types for each co-processor id. For each co-
processor id (0 to 7), the corresponding entry in the list is its co-
processor type.

CHOICE --> "F"[c] for floating point co-processor
"M"[c] for memory management unit
co-processor any other for no co-processor

If CHOICE is omitted, it defaults to none.
EXAMPLES

CPID = MMU Float FLOAT ; Co-processor 0 = MMU
; Co-processor 1 = float pt
; Co-processor 2 = float pt
; all others not used

Appendix -20 Configuration File

Cpld m,f,nf,x,f ; Co-processor 0 = MMU
; Co-processor 1 = float pt
; Co-processor 2 = not used
; Co-processor 3 = float pt
; Co-processor 4 = not used
; Co-processor 5 = float pt
; all others not used

If CPID is omitted from the file, it defaults to:
CPID = MMU,FloatingPoint,None,None,None,None,None,None

4) "FLOAT"[c{"="}FloatID
Set the co-processor to be used by the PROBE software for
translation of floating point formats. Note that this co-processor
is not dedicated to PROBE use. The internal state is saved before
use by PROBE software and restored after use. However, this co-
Processor must DE a4l dCLudl IVIULUIULE VOO0 1, dULLWALT Cliuld LiuLl
of this co-processor cannot be used by the PROBE software.

FloatID --> 0[1]2|3]4]|5]6]|7]|any_other

EXAMPLE:
FLOAT=1 ; Use co-proc #1
FLOATPROC 3 ; Use co-proc #3
FLOAT -1 ; Do not use any co-proc

If not listed, the FloatID defaults to co-processor #1. If a
FloatID of any number but {0..7} is used, if this co-processor is
not designated as FLOATING__POINT in the CPID configuration
option, or if this co-processor cannot be communicated with, no
floating point translation will be done by the PROBE software.

6) "DONTCARE"[C]{"="}{llell'l."}{IIX"l"'"}'"{"X"l""l)
Specify the address don’t care bits in the target system. This may
be used, for instance, if the target system hardware does not
decode all address bits (A31-A24 being the most common). A "X"
or "x" denotes a don’t care bit while a "." denotes a care bit. A
space (" ") may be included anywhere and will be ignored. This
specification will be the default value for don’t care bits in the

Configuration File Appendix -21

software (i.e. in the Display-Map command, the Breakpoint
command, etc.). The bits are listed from highest order address bit
to lowest order, with the first bit listed corresponding to A31.
Any omitted lower-order bits (for example, if only 16 bits are
listed) are set to care (".").

EXAMPLE: Set A31-A24 don’t care and A23-A0 to care.

4)

5)

6)

7)

DontCare = XXXXXXXX .eer serveene svnsnne
Set A31-A28 to care, A27-A20 to don’t care and A19-A0 care

DontCareAddressBits ... XXXX XXXX

"MCOUNT"[cK"="}BR,BW,WR,WW,LR,LW
Do not modify this configuration parameter unless notified to do
so by Atron.

"GCOUNT"[c]{"=")xx
Do not modify this configuration parameter unless notified to do
so by Atron.

"EXECBP"[c[{"="}["0"]wwwW

Specify the instruction word that will be used for execution
breakpoints. The current default is wwww=484F (the BKPT #7
instruction). This value may be changed to any value from 4848-
484F (BKPT #0-7). If this value is changed, 3 jumpers in the pod
and a PAL in the pod need to be changed to match this value.
This is available for users who are already using BKPT #7 and
cannot allow the 68KPROBE to use it.

Example:
EXECBP = 4848 sets the exec bp to BKPT #0
EXECBP 484A sets the exec bp to BKPT #2
"BAUD"[c]

[c] can be 2400,4800,9600. This parameter only applies to
PROBE/! versions. If omitted, or if any other value is listed,
9600 baud will be used. No parity, 8 data bits, and 2 stop bits
are always used and cannot be changed.

Appendix -22 Configuration File

8) "COM" [c]islic]
[c] is either 1 or 2 for COMI1: or COM2:, This parameter only
applies to PROBE/1 versions. If omitted, or if any other value is
listed, COM1: will be used.

DEFAULT CONFIGURATION FILE

The default PROBE.CNF file as supplied on your distribution
diskette does not contain any settings, therefore, PROBE assumes the
defaults described earlier. If PROBE does not find the file
PROBE.CNF in the current directory or in a DOS "PATH" spec, then
these default parameters are used.

Text formats for macros, windows & init. Appendix -23

APPENDIX D
TEXT FORMATS FOR MACROS, WINDOWS,AND
INITIALIZATION FILES

Macros, Windows, and Initialization files are stored as text files.
Macro files are are created with the Macro Save command. Windows
are created with the Window Save command. Initialization files are
created with the Initialize Save command. Macros and windows can
be edited on-line with the Macro Edit and Window Edit commands.
Macro, Window, and Initialization files can also be edited offline
with a standard text editor and stored as text files. Be sure that
your editor only stores the file as pure ASCII text and does not
include additional control codes. The formats for these files is
described below.

MACRO FILE FORMATS

In macro editing, both on- and off-line, the special keyboard keys are
specified exactly as described below:

SPECIFICATION DESCRIPTION

<Enter> Enter key.

<Esc> Esc key.

<Tab> Tab key.

<Bs> <~ backspace key.

<Home> Home key.

<End> End key.

<PgUp> PgUp key.

<PgDn> PgDn key.

<CtrlHome> Home key with the Ctrl key held down.
<CtrlEnd> End key with the Ctrl key held down.
<CtrlPgUp> PgUp key with the Ctrl key held down.
<CtrlPgDn> PgDn key with the Ctrl key held down.
<CursorUp> up arrow key.

<CursorDown> down arrow key.

<CursorLeft> left arrow key.

<CursorRight> right arrow key.

<Ins> Inz key.

 Del key.

<F1> to <F10> function keys.

Appendix -24

Text formats for macros, windows & init.

<Alt?>

alt key. Possible values for ’?’ are: any letter A..Z, Space (i.e.<Alt >)
any number 0..9 - or = F1 to F10

The format for macros in a macrofile are:

MACRONAME [:' MACROTYPE]

MACRODEFINITION
BLANKLINE
WHERE:
MACRONAME an AltKey
MACROTYPE T for a conditional macro
'L F for a loop forever macro
'L’ 'C’ COUNT for a loop count macro.
COUNT is an expression
'L’ "W’ CONDITION for a loop while macro.
CONDITION is a boolean expression which is
either TRUE (not 0) or FALSE (0)
WIAUOLUVLILLD 11NL 1 1\JLY KECYBLWUKES LUL laCiv
BLANKLINE a line containing only a Cr (or Cr,Lf) or the End-of-file to signal end of

macro.

EXAMPLES: This macro file contains the macros Altl and AItT.

NOTE:

Macro <Altl> is a macro which performs a Display
Single-address Long-word Write to location CD000000
with data 4COB000. Macro <AltT> will loop while (DO
< 10). It will execute macro <Altl>, then Unassemble
from location 80000114 for 5 instructions.

<Altl>
<Esc>dslwCD000000<Enter>
04C0OB000<Enter><Esc>

<AltT>:LWd0<10
<Altl>
u80000114<Enter>5<Enter><Esc>

The MACRODEFINITION may contain Cr (or Cr,Lf)
characters at any point. These characters are ignored
when being read in, unless the Cr is the only character
on a line.

Text formats for macros, windows & init. Appendix -25

WINDOW TEXT FILE FORMATS:

The format for Windows in a window file are:

WHERE:

WINDOWNAME

FIELDSPEC
ROW '’ COL

WINDOWNAME
FIELDSPEC
FIELDSPEC
FIELDSPEC

NULLFIELD

altkeyname

{EXPRESSION__SPEC | STRING_ SPEC | RANGE_ SPEC | LABEL__SPEC}

ROW
COL

a hex number in the range 0..18. Row for field from start of window.
is a hex number in the range 1..4F. Column for field from start of
window Note: the top, left corner of the window is 0,1.

EXPRESSION__ SPEC is 'E’ EXPRTYPE

expression

STRING__SPEC

EXPRTYPE is {'B’ |'W’ | 'L’ | A’ | 'D’ | ’S’}

Note: byte, word, long, ASCII, decimal, signed-decimal
{LENGTH__STRING | ZEROTERM__STRING}
LENGTH__STRING ’'S§'’L’

expression for address of string

expression for length of string

ZEROTERM__STRING 'S’ 'Z’

RANGE__SPEC

RANGETYPE
LABEL_SPEC
NULLFIELD

EXAMPLES:

expression for address of zero-terminated string
'R’ RANGETYPE

expression for start address of range

expression for end address (or '+’ length) of range
{'B’ | 'W* | 'L’} for byte, word, long.

'L’ label string

FF,FF

The window will be opened by typing <AltW>. In the
top left corner of the window (location 0, 1) the Label
"D0=" will be printed. Then, at location 0,4 (right after
the ’=’) the register d0 will be printed as a Long-word
Expression. Next, at location 1,1 (the start of the next

Appendix -26 Text formats for macros, windows & init.

line), the String which starts at address
"\StringAddress" and whose Length is contained in the
16-bit variable "\StringLength" will be printed.
Finally, the Range of Bytes starting at location
"\BufferStart" will be printed on the next line of the
window. The range is 8 bytes long.

<AltW>

0,1

L

DO0=

0,4

EL

do

1,1

SL
\StringAddress
[\StringLength].w
2,1

RB
\BufferStart
+8

FF

Thus, the window display would look like:

DO=55AA55AA
StringAddress
00 01 02 04 55 33 2211

INITIALIZE FILE FORMATS

The initialization file consists of blocks for each set of information
in the file. The blocks of information are saved:

Text formats for macros, windows & init. Appendix -27

MAP block
MODULE block
PROGRAM block
MACRO block
WINDOW block

The blocks are saved in the order shown above. Each block begins
with a header to denote the type of block. The information for that
block follows the header. The information is terminated by a blank
line. All blocks are saved when the Init Save filename command is
issued.

When the blocks are loaded with the Init Load filename command,
the order of the blocks in the file does not matter. The file is
searched and information loaded in the same order as the
information is stored by the Init Save command. If there are two
block specifications for the same block type (e.g. two MAP blocks),
then only the first block is loaded. If there is no block specification
for any block, then that information is not changed in the current
context.

Here are some definitions for parameters which will be used in
describing the initialization file. No distinction is made between
upper- and lower-case characters{except for module name).

Parameter Definition

c specifies any non-space character

[e] specifies 0 or more non space characters

[s] specifies 0 or more <Space> characters

{.} denotes any number of space characters (0..n}), followed by a space or a

'’ character, followed by any number of space characters (0..n)

The blocks stored in this file are described as follows:

MAP Block:

"MAP" [¢] [s] "=" [s] <Enter>

Start {,} End {,} BusSize? {,} Guard? {,} Map? [{,}, Write?][{,} Wait?]
Start {,} End {,} BusSize? {,} Guard? {,} Map? [{,}, Write?

<Blank Line>

Appendix -28 Text formats for macros, windows & init.

where
Start and End are address expressions
BusSize is {"B" |"W" | "L"} [¢]
Guard?, Write? are {"Y" | "N"} [c]
Map? is a digit indicating mapped memory array number
Wait? is a digit indicating number of wait states in MAP RAM

Examples: This example sets a map region from 00000000 to
000FFFFF to be a 32 bit, unguarded, unmapped region.
It also set a region from 80000000 to 8000FFFF to be
an 8 bit, unguarded region. This second region is
mapped to the PROBE MAP RAM boards and is write
protected

MAP =
0,fffff,Long , n, n
80000000,8000ffff,b,n,0,yes,y

MODULE Block:

"MOD" [c] [s] "=" [s] <Enter>

modulename {,} Loadable? [{,} Stepable? [{,]} filename]]
modulename {,} Loadable? [{,} Stepable? [{,} filename]]

<Blank line>

where
modulename or filename are ¢ [c]
Loadable? and Stepable? are {"Y" | "N"} [¢]

Examples: This example tells the PROBE symbol table manager to
neither load nor source step the symbols in the module
FtoCIO. The module FtocM should have all symbols
loaded, should be allowed to be source stepped through,
and is assigned to the file C:\SOURCE\FTOCM.C.

MODULES =
FtoCIO, No, No
FtocM, Yes, v, C:\Source\FtocM.C

Text formats for macros, windows & init. Appendix -29

PROGRAM Block:

"PROG" [c] [s] "=" [s] <Enter>
filename [MemSpace[","LoadOffset[[","LoadSymbols?[","LoadCode[","FileType]]]]]

where

filename is ¢ [c]

MemSpace is
{nonlnln|”2n|n3n|n4nlu5n|n6nIWTIHUDWIWUPWInURnlnSDnlwsPnInCPU"}
LoadOffset is 00000000 to FFFFFFFF

LoadSymbols is Y or N

LoadCode is Y or N

FileType is ’A’,'S’,'B’,"U",'T’}

ax

The defaults are MemSpace is 6 or 2 depending upon statie of
Supervisor bit, all others default to current setting from Load
Options command in PROBE software.

Examples:

This example first loads the program
"\OBI\FTOC.HEX" into Supervisor Program space. It
then loads the file "FTOC.DAT" into the current load
space (which, in this example, will still be set to SP).

PROGRAM =
\obj\ftoc.hex, sp
ftoc.dat

Load FTOC.S into memory space 6. Add 0 to symbols
and loadd addresses. Load symbols with program load
both code and data as an S record file

PROG=
FOTC.S,6,00000000,Y,Y,S

Load FTOC.S into memory space 6 and add 800000000
to symbol and load addresses. Load symbols but not

code or data. Automatically determine file type to
load.

FTOC.S,6,800000000,Y,N,A

Appendix -30 Text formats for macros, windows & init.

Load code from FTOC.S with a 0 offset then load
symbols from FTOCS.S and offset all addresses by
800000000.

MAC Block:

"MAGC" [c] [s] "=" [s] <Enter>

filename

filename

<Blank line>

where
filename is ¢ [c]
Examples: This example loads macros from the file
"\OBI\FTOC.MAC".
MACROS=
Vohi\ ftar mace
WIN Block:

"WIN" [c] [s] "=" [s] <Enter>
filename

filename

<Blank line>

where:

filename is c [c]

Examples: This example loads windows from the file
"NOBIA\FTOC.WIN". It then loads more windows from
the file "\REG.WIN",

WINS=
\obj\ftoc.win
\reg.win

Files on your PROBE diskettes Appendix -31

APPENDIX E
FILES ON YOUR PROBE DISKETTES

There are several files on your PROBE diskettes which may or may
not be needed depending upon what you are doing. Only those used
for "EXECUTING PROBE SOFTWARE" are required. A list of these
files and their purpose is given below:

PROBE FILES VERSION DESCRIPTION

PROBE.EXE 1.0 Executable file for "Running” PROBE software
PROBE.CNF N/A Default config file

ATRON.HEP N/A Default heap file

FTOC.S N\A Demo program executable file

FTOC.INI N\A Demo program initialization file

FTOC.WIN N\A Demo program window file

FTOCM.C N\A Demo program C source file module 1
FTOCIO.C N\A Demo program C source file module 2
FTOCSTRT.A68 N\A Demo program assy lang source file module 3
REG.WIN N\A A window file which displays registers
CONF020.EXE 1.0 Diagnostic confidence test

ABS2BIN.EXE 1.0 ’ Binary image to loadfile utility (see Apn G)
SOURCE VERSION DESCRIPTION

SOURCE.EXE 1.0 Executable file for "Running” SOURCE
PROBE.CNF N/A Default configuration file

NOTE: N/A means there is no applicable version number for this
file.

Appendix -32 Language Compatibility

APPENDIX F
LANGUAGE COMPATIBILITY

68020 PROBE allows you to use the symbolic information from your
program during debugging instead of absolute numbers. The
symbolic debugging information is passed to the PROBE from the
compiler using controls which are discussed here. This symbolic
information may consist of public variables, public procedures,
functions, subroutines, modulenames, and high level language line
numbers. Some compilers will also produce symbols for local
variables and procedures.. In addition, if the 68020 SOURCE
PROBE version of the software is running on, then source level
debugging can be achieved.

The sections which follow describe the considerations when using
PROBE with C, Pascal, and Assembly language. You may want to go
directly to the section which applies to you. A description of the
compiler and linker controls required for several different
manufacturers is described

USING MICROTEC RESEARCH(TM) LANGUAGES
WITH PROBE

MICROTEC RESEARCH C - PC BASED

Here are sample batch files which you can run on your PC to
generate symbolic debugging information. See the Microtek Research
manual for details.

MCC68k /cpu=68020 /debug/ /nolp %l.c
asm %1

asmo68k %l.src, %l.0bj, %l.Ist /b

lod 68k @%1l.cmd, %l.map, %Il.cof

the command file referenced by the %Il.cmd would look
something like this:

chip 68020

format iecee

name programname
load object module list

Language Compatibility Appendix -33

an example command file for the applications example in
chapter 4 would be

chip 68020

format ieee

name ftoc__68020

order 727709, 772?13, 777?14

sect 7?2709 = $00000400

list d,s,t,x

load ftocstrt.obj, fotcm.obj, ftocio.obj

YAX C, Pascal, Assembler
PC/AT ASSEMBLER, Pascal
SUN MICROSYSTEMS WORKSTATION C, Assembler

COMPATIBLE GREENHILLS SOFTWARE

VAX C
SUN MICROSYSTEMS WORKSTATION C

COMPATIBLE UNIX SYSTEM V SOFTWARE

PC/AT BASED FROM MOTOROLA C, Asy using COFF records
VAX BASED FROM MOTOROLA C, Asy using COFF records
PROPRIETARY WORKSTATIONS C, Asy using COFF records
SUN MICROSYSTEMS

C, Asy User must convert a.out to COFF

Appendix -34 Object module formats

APPENDIX G
OBJECT MODULE FORMATS

PROBE is compatible with a number of object module formats.
PROBE can load the code, data, and symbolic debugging information
for these formats. You can tell PROBE which format to load with
the Load Options File-type command. You can then select any of the
types shown here:

Automatic - determine
S-records (ext)tekhex
Binary-image
Unix(tm)System V
Ieee-binary-coff

A summary of these formats is described next. If you choose the
Automatic-determine File-type, PROBE looks at the first character in
the File to determine the File-type automatically.

S RECORDS, TEKHEX, EXTENDED TEKHEX
PROBE supports the following hex formats:

Motorola S-Records (records start with ’S’)
Tekhex records (records start with ’/%)
Extended Tekhex records (records start with *%’)

S-RECORD FORMAT

The S-record format for output modules was devised for the purpose
of encoding programs or data files in a printable format for
transportation between computer systems. The transportation process
can thus be visually monitored and the S-records can be more casily
edited.

S-RECORD CONTENT

When viewed by the user, S-records are essentially character strings
made of several fields which identify the record type, record length,
memory address, code/data, and checksum. Each byte of binary data
is encoded as a 2-character hexadecimal number: the first character

Ob ject module formats Appendix -35

representing the high-order 4 bits, and the second the low- order 4
bits of the byte.

The 5 fields which comprise an S-record are shown below:
type record length address code/data checksum

Where the fields are composed as follows:

PRINTABLE
FIELD CHARACTERS CONTENTS
type 2 S-record type--S0,S1,etc.
record length 2 The count of the character pairs in the

record,excluding the type and record length.

address 486, 0or 8 The 2-, 3-, or 4-byte address at which the data
fieid is to be loaded into memory

code/data 0-2n From 0 to n bytes of executable code, memory
-loadable data, or descriptive information. For
compatibility with teletypewriters, some
programs may limit the number of bytes to as
few as 28 (56 printable characters in the S
-record).

checksum 2 The least significant byte of the sum of the
values represented by the pairs of characters
making up the record length, address, and the
code/data fields.

Each record may be terminated with a CR/LF/NULL. Additionally,
an S-record may have an initial field to accommodate other data
such as line numbers generated by some time-sharing systems.

Accuracy of transmission is ensured by the record length (byte count)
and checksum fields.

S-RECORD TYPES

Eight types of S-records have been defined to accommodate the
several needs of the encoding, transportation, and decoding
functions. An S-record-format module may contain S-records of the
following types:

Appendix -36 Object module formats

S0 The header record for each block of S-records. The code/data
field may contain any descriptive information identifying the
following block of S-records.

S1 A record containing code/data and the 2-byte address at which
the code/data is to reside.

S2 A record containing code/data and the 3-byte address at which
the code/data is to reside.

S3 A record containing code/data and the 4-byte address at which
the code/data is to reside.

S5 A record containing the number of SI, S2, and S3 records
transmitted in a particular block. This count appears in the
address field. There is no code/data field.

S7 A termination record for a block of S3 records. The address field
may optionally contain the 4-byte address of the instruction to
which control is to be passed. There is no code/data field.

S8 A termmatlon record for a block of S2 records. The address field
R | T H',., i PP T PO ..,J_J...,... ,-C ‘l”. :.-.e-h-",.w Arm +n svhial
epeacinll yooooininotho 2 byer nddns

control is to be passed There is no code/data field.

S9 A termination record for a block of S1 records. The address
fields may optionally contain the 2-byte address of the
instruction to which control is to be passed.

Only one termination record is used for each block of S-records. S7
and S8 records are usually used only when control is to be passed to
a 3- or 4-byte address. Normally, only one header record is used,
although it is possible for multiple header records to occur.

EXAMPLE

Shown below is a typical S-record-format module, as printed or
displayed:

SO0600004844521B
S1130000285F245F2212226A000424290008237C2A
S11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A0652
S107003000144ED492

S9030000FC

Object module formats Appendix -37

The module consists of one SO record, four Sl records, and an S9
record. The SO record is comprised of the following character pairs:

SO S-record type SO, indicating that it is a header record

06 Hexadecimal 06 (decimal 6), indicating that six character pairs
(or ASCII bytes) follow.

0000 Four-character 2-byte address field, zeros in this example.
4844 ASCII H, D, and R - "HDR".

52

1B The checksum.

The first S1 record is explained as follows:
S1 S-record type S1, indicating that it is a code/data record to be

loaded/verified at a 2-byte address.
13 Hexadecimal 13 (decimal 19), indicating that 19 character pairs,
representing 19 bytes of binary data, follow.

00 Four-character 2-byte address field; hexadecimal
00 address 0000, where the data which follows is to be loaded.

The next 16 character pairs of the first S1 record are the ASCII
bytes of the actual program code/data. In this assembly language
example, the hexadecimal opcodes of the program are written in
sequence in the code/data fields of the S1 records:

OPCODE INSTRUCTION
285F MOVE.L (A7)+,A4

245F MOVE.L (A7)=,A2

2212 MOVE.L (A2),D1

226A0004 MOVE.L 4(A2),Al

2490008 MOVE.L FUNCTION (Al),D2

237C MOVE.L #FORCEFUNC,FUNCTION (Al)

The balance of this code is continued in the code/data fields of the
remaining Sl records, and stored in memory location 0010, etc.

2A The checksum of the first S1 record.

The second and third S1 records each also contain $13 (19) character
pairs and are ended with checksums 13 and 52, respectively. The

Appendix -38 Object module formats

fourth S1 record contains 07 character pairs ans has a checksum of
92.

The S9 record is explained as follows:
S9 S-record type S9, indicating that it is a termination record.

03 Hexadecimal 03, indicating that three character pairs (3 bytes)
follow.

00 00 The address field, zeros.
FC The checksum of the S9 record.

Each printable character in an S-record is encoded in hexadecimal
(ASCII in this example) representation of the binary bits which are
actually transmitted. For example, the first S1 record above is sent

as:

type length address code/data checksum
S 1 130000 285F 2 A

5331 31333030303032383546..3241
N1OT ONT1 ANTT NNNT NN

EXTENSIONS TO HEX RECORD FORMATS

In addition to the above hex-record object module formats, PROBE
can also support the following extensions in the format of the file:

$$

SymbolName SymbolAddr....SymbolName Symbol Addr (these are publics i.e. no modulename)
$$ ModuleName

SymbolName SymbolAddr SymbolName Symbol Addr ...

SymbolName SymbolAddr ...

$$ ModuleName
SymbolName SymbolAddr SymbolName Symbol Addr ...
SymbolName SymbolAddr ...

$$ (this is the end of symboltable. Additional blank lines may occur after this but nothing
else.)

Here are some definitions or the previous format:

Ob ject module formats Appendix -39

ModuleName the name of the module that produced the symbols
SymbolName the name of the symbol to be defined

LineNumber a symbol name of the form: ’#’ DecimalLineNumber.
SymbolAddr the hex address of the symbol

(with or without leading ’$’)
(with or without leading ’0’s)
(with or without trailing 'H’)

S-Records or Tekhex records or Extended Tekhex records may
follow. There may be any number of spaces before each symbol
name and between each symbol name and its corresponding address.
Each line may have any number of symbols but must be less than 100
characters long. Each symbol may be of any length as long as it and
its address fit on a line. The "$$ <nothing>" line marks the end of
the symbol table and the start of the hex object module with one
exception. If a "$$ <nothing>" line is encountered before any
symbols have been loaded, then the following list of symbols is
assumed to contain PUBLICS.

Note that Extended Tekhex format may define symbols in two ways.
It may define the symbols using the "$$" format described here. It
may also include Symbol Definition (Type 3) records in the object
module.

Example 1:
$$
PublicSymboll $00000400 PublicSymbol2 $00000402
PublicSymbol3 $00000404 PublicSymbol4 $00101000
$$ Modulel
Sym1 $500 Sym?2 $505 Sym3 $0600
#10 $80000000 #20 $80000008
53
SO.... (Start of S-Records)

Appendix -40

Object module formats

Example 2:

This file defines 7 symbols and 2 line numbers:
\PublicSymboll at 00000400
\PublicSymbol2 at 00000402
\PublicSymbol3 at 00000404
\PublicSymbol4 at 00101000
\Modulel\Sym1 at 00000500
\Modulel\Sym2 at 00000505
\Modulel\Sym3 at 00000600
\Modulel#10 at 80000000
\Modulel#20 at 80000008

$$ Modulel

Syml $00000400 Sym?2 $00000402 Sym3 $00000404
Sym4 $00101000

$$ Module2

Sym1 $00000500 Sym2 $00000505 Sym3 $00000600
#10 $80000000 #20 $80000008

}52 (Start of Tekhex records)

This file defines 7 symbols and 2 line numbers:
\Module1\Sym1 at 00000400

\Modulel\Sym2 at 00000402

\Modulel\Sym3 at 00000404

\Modulel\Sym4 at 00101000

\Module2\Sym1 at 00000500

\Module2\Sym?2 at 00000505

\Module2\Sym3 at 00000600

\Module2#10 at 80000000

\Module2#20 at 80000008

BINARY IMAGE LOAD FILE FORMAT

A utility program named Abs2Bin is included on the PROBE
distribution diskettes which takes an absolute binary memory image
and produces an output file in binary loadable format which can be
loaded by PROBE. This utility is invoked by:

Abs2Bin InputFile [OutputFile] [/aaddress]

Object module formats Appendix -41

InputFile is the absolute memory image and OutputFile is the file
loadable by PROBE. If omitted, OutputFile defaults to the same file
name as InputFile with extension .BIN. A load address can be
included in the OutputFile if the /aaddress option is specified. If
omitted the load address defaults to 00000000. NOTE: There must be
no space between the ’a’ and the ADDRESS.

EXAMPLE To load an absolute memory image, contained in the
file \OBJECT\ROM.ABS, at address FF400000 and
produce the output file \OBJECT\ROM.BIN:

Abs2Bin \Object\Rom.Abs \Object\Rom /aff400000

thh in the PROBE software, you can load this
program with the following PROBE command:

LPROM.BIN

Here is a picture of the file format for the OutputFile.

Appendix -42

Object module formats

| <=-= First byte loaded

/ Loaded Address (file

bytes 3,4,5,6)

/ <—-— Last byteloaded

| Load address+bytecount-1

———————————————————— 4+
Data Checksum MSB |
____________________ +
Data Checksum]
———————————————————— + Trailer

Data Checksum

Object module formats Appendix -43

o e +

| Data Checksum LSB |

B e +

| 1A | End-of-file mark
o —————————— +

Header Checksum is the 16 bit sum of header bytes (not negated
or processed).

Data Checksum is the 32 bit sum of all data bytes (not negated
or processed).

Note that none of the checksum bytes are included in the
checksum calculation.

UNIX SYSTEM V COFF RECORDS

Coff records are defined in Chapter 8 of the UNIX SYSTEM V
SUPPORT TOOLS GUIDE Release 2.0. This manual is available
from AT&T and is commonly available from computer book stores.

MICROTEK RESEARCH (Ieee binary coff)

This format is a proprietary format from Microtek Research of Santa
Clara Ca.

Appendix -44 Logic Probes

APPENDIX H
LOGIC PROBES

Logic PROBES are plugged into the POD see Chapter 1. They
provide four inputs to the breakpoint and trace logic. The logic lines
designated as 0, 1, 2, and 3 in the Breakpoint screen and shown
under the Log column of the Trace Raw screen. The Logic PROBES
also connect to the Breakpoint Detect output which provides a pulse
when Read, Write, Fetch, or Any breakpoint verbs are detected (see
Breakpoint command and Hardware Breakpoint Enable command).
The Logic PROBES are not keyed and can be plugged into the POD
in either direction. In order for the labels on the Logic Probes to
match the software, plug these Probes in as shown below:

Color Label on POD connector Software Designation
Logic Probe PL18 Pin#

Brown LOGO 1 Logic Line 0

Red T.OG1 2 T.ngie Tine 1

Orange LOG2 3 Logic Line 2

Yellow LOG3 4 Logic Line 3

Green BREAK 5 Breakpoint Detect

PROBE power supply requirements Appendix -45

APPENDIX |
PROBE POWER SUPPLY REQUIREMENTS

PROBE has been designed to plug into a standard IBM PC AT with
the following configuration.

640k dynamic ram

1 floppy disk drive

1 hard disk drive

1 floppy disk/hard disk controller

1 monochrome, color graphics adapter, or EGA

If you have additional boards plugged into you target system, it may
not be able to supply adequate power to PROBE. The 68020
PROBE/3 which includes Breakpoint/Trace boards, POD and 1/2
Mbyte MAP RAM draws 13 amps of +5V from the AT computer.

The 68020 PROBE buffer assy draws 3 amps of +5V from the target
socket.

Appendix -46 Electrical characteristics of 68020 POD

[r—

4.

PPENDIX J
LECTRICAL CHARACTERISTICS OF 68020 POD

The following signals go directly from the 68020 to the target
socket. They are not intercepted or gated by the 68020 probe.
They are buffered at the 68020 buffer assy and sent to the 68020
pod. The buffer load is:

input high current .02 m.a.
input low current -5 m.a.

The following signals are affected:
AQ thru A31 FCO0,FC1,FC2 SI1Z0,S1Z1 ECS,0CS RMC IPEND
CLK

The 32 data bus lines are intercepted by 74ALS245 tristate
buffers which have the following specs:

input high current .02 m.a.
input low current -1 m.a.
propagation delay 3 ns min, 10 ns max

Note: This additional delay decreases the address valid/ control
valid to data valid 68020 cpu spec by 10 ns max. The 68020 cpu
at room temp provides address and control faster than data sheet
worst case spec and this 10 ns degradation is not seen in most
applications.

The control signals AS, DS, DBEN, and R/W are intercepted by a
74AS257 which has the following specs:

Tristate current +/- .05 m.a.

Output hi current 15 m.a.

Output lo current -48 m.a.
propagation delay 1 ns min, 6 ns max

These signals are held hi when not emulating. See the note above
regarding system timing degradation.

The BERR, CDIS, DSACKO0, and DSACK signals are intercepted
by a 74AS257. The pertinent specs are:

Electrical characteristics of 68020 POD Appendix -47

input high current .02 m.a.
input low current -5 m.a.
propagation delay 1 ns min, 6 ns max

5. The AVEC, IPLO, TIPL1, and IPL2 signals are intercepted by a
74LS157. The pertinent specs are:

input high current .02 m.a.
input low current -4 m.a.
propagation delay 9 ns TYP, 14 ns max

6. The bus arbitration signals BR, BG, and BGACK are¢ gated with a
74AS832. The pertinent specs are:

BR, BG input high current .02 m.a.

input low current -5 ma.

BGACK output hi current -2
output lo current 20 m.a.
propagation delay 1 ns min, 6 ns max

7. The HALT signal is gated with a MOSFET. The specs are:

m

11.4.

input high current .02 m.a.

input low current -5 m.a.

output lo current 10 m.a.

output hi current open drain
propagation delay 3 ns min, 10 ns max

8. The RESET pin is driven by an open emitter bipolar transistor in
a wire or configuration. When the hardware reset command is
given to the 68020 probe, it drives this pin low and any target
circuit attached to this pin will also be affected.

9. BR, BG, and BGACK operate in the target system even when
PROBE has stopped emulation in the target system unless masked
by using the PROBE Hardware commands.

10. Memory reference cycles conducted in a PROBE MAP RAM array
are duplicated in the target system.

Appendix K-48 Technical Reports

APPENDIX K
TECHNICAL REPORTS

This section provides technical information, potential problem areas,
and bug reports for the PROBE. It will be updated periodically if
you send in your registration card.

This appendix contains the following Technical Reports:

WHAT HAPPENS WHEN THE TARGET SYSTEM HANGS
MYSTERIOUS BREAKPOINT 7 INSTRUCTION

S/W BREAK POINT AND H/W EXECUTION BREAK POINT
GENERATING A C LIST FILE WITH LINE NUMBERS
TIMEOUT BREAKPOINTS WITH POP UP WINDOWS
PROBE PERFORMANCE FOR BLOCK OPERATIONS

Technical Reports Appendix K-49

WHAT HAPPENS WHEN THE TARGET SYSTEM HANGS

If the target system hangs because DACK’s are not returned to the
processor, PROBE cannot regain control until:

1. <ESC> is typed
2. The PROBE watchdog timer times out

For both of these cases, the PROBE forces a Bus Error to the 68020
in the target in order to regain control. This pushes information into
the target system stack. If the target stack pointer is not valid, a
double bus fault may occur and the target will continue to hang.

The following message is displayed:

Could not STOP execution of target processor. Reset? Y/N

If you choose to reset the target then register values will be lost.

If the target stack is valid then PROBE can regain control and the
following message is displayed:

Execution stopped by Bus Error in target system. Reset? Y/N

If you do not reset, the registers remain unchanged.

MYSTERIOUS BREAKPOINT 7 INSTRUCTION

Sometimes when the single step command hangs up, and you type
<ESC> to regain control of the system, you find that the next
instruction to be single stepped is a Breakpoint 7. You may type
<ESC> again to get out of the single step command entirely, then
unassemble the code at the same spot. You may then notice the
Breakpoint 7 is still there, even if the program is in Eprom memory
in your target.

What probably happened is that a Bus error occurred during the
single step operation. PROBE single steps by executing a Go
command with an HWExecute breakpoint set on the next instruction
which the 68020 could execute (with possible branches this could be
at one of 3 locations so PROBE sets 3 HWExecute breakpoints). If,
however, a Bus Error occurs between the Go and the breakpoint, the
step will not occur if the interrupt handler in the target does not

Appendix K-50 Technical Reports

return to the next instruction to be stepped. You regain control by
typing <ESC> as explained in the previous tech note. This may leave
PROBE in an indeterminent state.

PROBE implements the HWExecute breakpoint by forcing a
Breakpoint 7 instruction into the 68020 with hardware logic in the
POD (it does not put the Bk 7 in memory). When PROBE goes to an
indeterminent state, the PROBE logic may still be decoding the
address of the instruction where it tried to put the Breakpoint 7.

The POD will then always force the Breakpoint 7 instruction into the
68020 whenever this address is referenced for any PROBE command.
When this occurs, the only solution is to do a Hardware Reset
command.

S/W BREAK POINT AND H/W EXECUTION BREAK POINT
USAGE (single step)

The 68020 probe normallv uses bp # 7 as the bp that is set in user
ram, for a s/w bp, and is forced on the bus for either a h/w
execution bp or when single stepping.

The other 7 bp’s can be optionally selected by changing a pal on the
68020 pod and installing a jumper on the 68020 buffer assy. The pal
is socketed and is identified as chgadrxn; where x = the pal revision
level and n = 0 to 6 identifies the bp level decoded (no n indicates
the normal level 7). The jumpers can be located on the bottom of the
buffer assy between U 12 and U 14 as shown below. No jumper is
the normal level 7 condition.

BP# J2 J1 JO
0 IN IN IN
1 IN IN ouT
2 IN ouT IN
3 IN ouT ouT
4 ouT IN IN
5 ouT IN ouT
6 ouT ouT IN
7 ouT ouT ouT

Technical Reports Appendix K-51

Ulz2 |

0--0 0--0 0--0
J2 J1 Jo

I |

I |

| Ul4 |

GENERATING A C LIST FILE WITH LINE NUMBERS

This utility is provided as a convenience. It is not necessary for use
by PROBE software. The CLIST program found on the PROBE
diskette accepts an input "C" source file and produces a listing file.
It also expands tabs into spaces from the source file so that the file
may be printed on any line printer.

FORMAT:

CLIST [sourcefile [,destinationfile [,spaces per tab]]] [options]

If the files are not listed, then the user is prompted for
the file names. Source lines are transferred to the
destinationfile in the format specified later. All tabs
are expanded to spaces with tab stops every specified
number of columns. The two options which can be
specified are i and c:

-i<include drive>

I specifies the drive to be searched for all include files.
example-ia (no intervening spaces)

-C

C specifies that comments do not nest. An */ ends all
comments currently in effect, no matter how many /*
have occurred.

This is the LISTING FORMAT which is produced:

Appendix K-52 Technical Reports

C ***¥*¥ (0000. XX

C

kkkkk

00000

XXXXX

EXAMPLES:

Is a comment indicator. The ’C’ is placed in this
column if the first character in the source line is
considered to be inside a comment.

Is the include nesting level from the include files
which are currently being used. Each include file
which includes another file will add one more * to this
field. There are a maximum of 5 *.

Is the line number of the line in the current file. Each
<CR> in the file increments the line count. The line
count starts at 1 in each file.

Is the line of source code.

Produce a listing in ftocm.Ist with tabs set every 8
spaces. Include files are on the default drive and

~AAaMMante nact

clist ftocm.c, ftocm.Ist, 8

Produce a listing directly to the line printer with tabs
set every 4 spaces. Include files are on the default
drive and comments nest.

clist ftocm.c, Iptl:, 4

Produce a listing directly to the line printer with tabs
set every 4 spaces. In addition, all include files exist
on drive C, and comments do not nest.

clist ftocm.c, Iptl:, 4 -ic -¢

You are prompted for the destination file and for the
number of spaces per tab. All include files exist on
drive A, and comments nest.

clist ftocm.c -ia

TIMEOUT BREAKPOINTS WITH POP UP WINDOWS

If you pop up a Watch Window during emulation when a timeout
breakpoint is set, the time PROBE spends displaying the window is
not included in the breakpoint. Therefore, even if the time exceeds

Technical Reports Appendix K-53

the timeout value, PROBE may not cause the breakpoint since it
disables the timer while updating the Window.

PROBE PERFORMANCE FOR BLOCK OPERATIONS

Here are some reference numbers for block operations in the Xfer
command. They were derived in the following environment:

Block operation on 64k bytes of memory
68020 operating at 20 mhz

Block Save 32 sec
Compare block 33 sec
Find string 22 sec
Move block 29 sec

Set block 15 sec

Appendix -54 MORE ON CONF020

APPENDIX L
MORE ON CONF020

The CONF020.EXE program is used to perform a confidence test on
the 68020 pod for the Probe /2 and Probe /3 products. This test will
run in one of two modes:

DEMO BOARD: The 68020 buffer assembly is connected
to the ATRON DEMO board. This mode will test target
system access as well as performing internal diagnostics.

INTERNAL ONLY: The 68020 is connected to something
other than the ATRON DEMO board. Only the internal
diagnostics are performed; no cycles are run in the target
system. If the target system can support the access cycles and
conditions as described here, then the DEMO BOARD MODE
may be used in the target system:

1 Carhea alwave enahled fram tarcet cuctem (CNIC/ —— 1)

Bus error never occurs in target system (BERR/ == 1).
RAM must exist from 00000000 to 0002FFFF (192K).
Memory accesses performed in the target as shown in Table 1-1

(memory does not necessarily need to exist at these locations but
a DACK signal must be returned):

Eall ol

MORE ON CONF020 Appendix -55

Accesses in target for confidence test Demo Board Mode

Address Access Size Access type DACK required
00000000 Byte, Word, Long Read/Write any DACK
00000001 Byte, Word, Long Read/Write any DACK
00000002 Byte, Word, Long Read/Write any DACK
00000003 Byte, Word, Long Read/Write any DACK
000004xx Byte, Word, Long Execute/Write any DACK
00010000 Byte Read/Write any DACK
00010xxx Byte,Long Read/Write any DACK
00020000 Byte,Long Read/Write 32 bit DACK
00020001 Byte Write 22 bit DACK
00020002 Byte,Long Read/Write 32 bit DACK
00020003 Byte Write 32 bit DACK
00040000 Byte Read/Write any DACK
00080000 Byte Read/Write any DACK
00100000 Byte Read/Write any DACK
00200000 Byte Read/Write any DACK
00400000 Byte Read/Write any DACK
00800000 Byte Read/Write any DACK
1000000 Byte Read/Write any DACK
02000000 Byte Read/Write any DACK
03000600 Byte Read/Write any DACK
04000000 Byte Read/Write any DACK
08000000 Byte Read/Write any DACK
10000000 Byte Read/Write any DACK
20000000 Byte Read/Write any DACK
40000000 Byte Read/Write any DACK
55555554 Long Read any DACK
55555555 Byte Read/Write any DACK
80000000 Byte Read/Write any DACK

AAAAAAAA Byte,Long Read/Write any DACK

Index 1

INDEX

Other Entries

* 5-10, 5-65, 5-66, 5-148

+ number 5-20, 5-39, 5-113,
5-134, 5-140, 5-142

32 bit 5-2

68851 5-15, 5-88

68881 5-15, 5-44, 5-88

<TAB> 5-97

\ 5-147

AAAAA 5_94

<> 29

<F3> 2-7

<TAB> TO fields 2-5, 2-7,
2-92-5

[12-4

{options} 2-4

| 2-4

A

A trap 5-119
Abs2BinApn-40
Address 5-3
expression 5-39
Strobe 5-49
Alt- 5-73, 5-75
Alt0 5-73
Alt9 5-73
Alt= 5-73
AltKey 2-10, 5-9, 5-23, 5-57,
5-73, 5-74, 5-97, 5-123
Any 5-22
Arms 5-32
ASCII 5-40, 5-52, 5-139, 5-142
string 5-3
Assign-module-to-file 5-97
Assemble Apn-33
command 5-13
data size 5-16

insert 5-13
replace 5-15
ATRON.Hep apn-18

B

B 5-97
Base 5-2
Base address 1-11, Apn-2,
Apn-17, Apn-18
Berr apn-46
BGACK 5-102, Apn-47
BINARY 5-52
image 5-71
LOAD Apn-40
BKPT #7 1-10, 5-22,Apn-21,
Apn-50
Blank 5-24
Blinking cursor 5-94
Blocks 5-46
Boolean expression 5-5, 5-77,
5-79, 5-96
BRA apn-47
Breakpoint/Trace board 1-2
Breakpoint 5-22, 5-37,
Apn-7Apn-49
command 5-17
datafield 5-22
detect 5-62, Apn-44
don’t care bits 5-21, 5-22
editing 5-18
inactivate 5-37
inhibit 5-62
long word overwrite 5-35
max number 5-25
non-sticky 5-55
number of sticky 5-18
output signal 5-25
pass counter 5-33
range 5-20
restrictions 5-25
sequential 5-30
software execute Apn-17

Index 2

timeout 5-32
verb 5-21
Buffer Assembly 1-4
Bus Error 5-58, 5-108,Apn-49
Bus grant 5-108
Bus Size 5-25, 5-47
Bus timeout 5-45, 5-100
Byte 5-39

C

C 5-3, Apn-32, Apn-51
Cache 5-89, 5-106, 5-113, 5-114
control 5-55
CACR 56, 5-115
Case-sensitivity 5-149
CDIS Apn-46
Chaining register 5-85
Clear the field 5-24
Clist apn-51
C1loCcK 2-6U
Coff 5-71, Apn-43
COLOR Apn-19
Command
termination 2-6, 2-8
prompt 2-4
Compatible
languages apn-32
systems apn-16
CONFO020 1-5, 1-9, Apn-54
CONFIG.SYS 2-11
Configuration
file Apn-17
parameters 5-2
Control signals Apn-46
Compaq 386 Apn-18
Coprocessor 5-14, 5-88, Apn-19
COPY AND PASTE 2-10
Count 78
Ctrl Break 2-8
Ctrl END 2-8
Ctrl HOME 2-8
Ctrl PgDn 2-7

Ctrl PgUp 94
Curly brackets 2-4
Cursor 2-5, 4-8
Cursor Keys 2-7
Cycles 104

D

DATA FIELD 22
Data Size 25, 27
DATA TYPE 126
DATA VALUE 22
Decimal 2, 52
Default
base address 1-3
data 2-4, 2-9
memory space 5-14
modulename 5-147, 5-148
prefix 5-146, 5-150
PROBE.CNF Apn-22
DEL 2-3
Demo
Board 1-5, 1-9, Apn-54
Program 4-5
Dereferencing 5-6, 5-8
DIALOG BOX 2-4, 5-9
editing 2-6
MAX CHARACTERS 2-5
Display
command 5-38
Map 5-46
peripheral 5-41, 5-42
verify condition 5-45
Window 2-3, 2-7, 5-9
DMA 5-61
Don’t care bits 5-22, Apn-20
Double bus fault 5-102
DSACK 1-12, 5-100 Apn-46,
Apn-46

Index 3

E

Editing
commands 2-6
EDITING MACROS 5-81
KEYS 2-7
END 2-8
Error
syntax 2-6
MESSAGES 2-10
ESC 2-6, 2-8, 5-97
Evaluate command 5-52
Execute 5-22, 5-33
Execution
breakpoint 5-22
command 2-5
time 5-60
Expression 2-5, 5-3, 5-8, 5-52,
5-126
editing 2-6
boolean 5-5, 5-79, 5-96
Extended Hex records 5-71
EXTERNAL 3-4

F

FALSE 5-5, 5-96
Fetch 5-22
File 8
on distribution disk
2-11, Apn-31
initialization 5-65, Apn-23
log 5-143
macrofile 2-2, Apn-23
versions 2-11
window 5-129, Apn-23
File-type 5-70
Filename 5-120
Filespec 5-10
Flags 5-14
Floating point 5-44
Forever 5-78
Frequency 5-60

Function Code 5-89, 5-108
G

Go command 5-54, 5-97, 5-102
Guarded access 5-48
breakpoint 5-48

H

HALT 5-61, 5-102, Apn-47

Hardware
command 5-59
compatibility Apn-16
Breakpoint Enable Apn-44
Reset 58

HEAP Apn-18

Hex 5-2, 5-52, 5-89, 5-142

Highlight disappears 5-94, 5-95

HOME 2-8

HWExecute 5-22, 5-33, 5-99

Ieee-binary-Coff Apn-43, 5-71
IF 5-79
INFINITY 5-44
Initialization 2-2, 5-69, 5-97
command 5-64
file 2-2, 5-65
load 5-66
memory block 5-142
module assignments 5-154
module stepping 5-153
save 5-65
symbol load 5-152
Installation 1-4
INTEGER 5-52
Interrupt priority level 5-24
Interrupts 5-61
IPL 5-24

Index 4

J 5-97
K

Key
definitions 2-7
single step 5-96

L

Linenumber 3-4, 5-98, 5-117,
5-121
Load
command 5-68
symbols 5-152
window file 5-129
TNOAAT 2 A4
Log file 5-143
Logic analyzer 5-62
Logic PROBES 5-23, Apn-44
Long word 5-39
Loop count 5-78
LOOPING TEST 5-62

M

Macro 5-65, 5-66
after breakpoint 5-55
breakpoint 5-24
command 5-72
conditional 5-77
define 5-73
delete 5-73, 5-80
display all 5-81
edit 5-81

execute 5-74,5-75, 5-78, 5-82

in go command 5-57
load 5-80

looping 5-77
nesting 5-75

null parameters 5-74
parameter 5-82
parameters 5-74, 5-75
pause 5-74, 5-75
pause in window 5-123
save 5-80
stop execution 5-82
terminate 5-78, 5-79
MAP RAM 1-4, 1-11, 1-12, 4-4,
5-69
array size max 5-48
boundary 5-46
minimum size 5-46
PROM simulation 5-48
Memory space 5-8, 5-21, 5-40,
5-46, 5-55, 5-57, 5-118,~
5-134, 5-136, 5-138, 5-140,
5-142
MENU BAR 2-3, 2-7
NMUNTY DNV 22 80
MESSAGE BOX 2-6, 2-10
Microtec Research Apn-32
Module 5-66
Modulename 3-4, 5-146
Mouse 2-11
Monitors Apn-19

N

NAN 5-44

Nest command 5-85

Network 3-3

No address strobes 5-58, 5-102
No code 5-70

NOISE 1-12

No symbols 5-69

Non-existent memory 5-86
NOP 5-14

Index 5

o)

Object Module Format
3-2, 5-70, Apn-34

Offset 5-71

OMF 3-2

Opcode 5-104

Operands 5-93, 5-99

Operators 5-3, 5-52

P

PATH Apn-22

Pass count 5-33

Patch area 5-i4

Parameter 2-4

Peripheral 5-42

PgDn 2-7, 5-97, 5-146

PgUp 2-7, 5-97, 5-146

Pipeline 5-104

Power supply 5-89, Apn-45

pppp Apn-18

Precedence 5-3

Prefetch 5-103, 5-107

Prefix 5-150

Program counter 5-93, 5-98

PROM shadowing 5-100

Propagation delay apn-46

PROBE characteristics apn-46

PROBE DIAGNOSTICS. 1-9

PROBE.CNF 1-3, 1-9, 2-2,
Apn-2,Apn-17

PUBLIC 3-4, 5-146

Public symbols 5-147

Q

Qualified trace 5-113
Quit command 5-87

R

Read 5-22
REDIRECTING 5-143
Register
command 5-88
descriptions 5-89
Reset 5-60, Apn-47
RUBOUT 2-7

S

S records 5-71
Save range 5-135
Scope 3-4, 5-150, 5-151
Search 5-138
Sequential 5-31
Single address 5-42
Single step 5-65, 5-66
affects 10 5-94
B key 5-95
bus error 5-100
bus timeout 5-100
branch to 5-95
command 5-92
during interrupt 5-100,
5-101
jump around 5-95
keys 5-96
limit source modules 5-153
linenumber 5-122
source 5-97
while 5-96
Source code 5-106
Source step 5-99
Source-step-module
-selection 5-99
Stack frames 5-85
Stack pointer 5-89
STATIC 3-4
STOP 5-58, 5-62
String
assign to a key 5-81
Supervisor/User 5-89

Index 6

Symbol 3-4, 5-65
assign to filename 5-154
case sensitivity 5-149
command 5-145
delete 5-148
display/change 5-146
limit source step 5-153
prefix 5-150
selectively loading 5-152
Symbolname 3-4
default prefix 5-150
public 5-150
Symbol table
overflow apn-17
selective load 5-152
Sync 5-62
Subcommands 2-3
Syntax editing 2-6

T

T 5-2
TAB to FIELDS 2-9
Target system hangs Apn-49
Technical Reports Apn-48
Terminate
command 2-6, 2-8
emulation 5-62
Time out 5-86
breakpoint 5-33
Timer 5-33
TO 5-20
Trace
after trigger 5-34
assembly language 5-104
B 5-105
command 5-103
fail to analyze
qualified regions 5-113
raw data 5-108, Apn-44
S 5-105
save to disk 5-110
search 5-111

send to atron 5-110
size of qualify 5-114
TRUE 5-5

u

Unassemble 5-119
causes bus error 5-118
command 5-116
Unix system V 5-71, Apn-43
User/Supervisor 5-55

Vv

Value 5-2, 5-6, 5-22
YAX Apn-33
Verify 5-45
Version 2-11
View
command 5-120
search 11le d>-121

w

Wait for User ready 5-48, 5-49
Wait states 5-49
Watch Window 5-24, 5-65, 5-66
Apn-52
command 5-97, 5-123
define/edit 5-124
delete 5-130
during Go command 5-57
during single step 5-97
field overwrites 5-127
macroname conflict 5-130
Watchdog timer 5-49, 5-58, 5-62
While 5-79, 5-96
Wildcard 5-120, 5-124, 5-10,
5-68, 5-80
Word 5-39
Write 5-22
Write protected 5-48

Index 7

X

Xfer 5-142
command 5-133, Apn-53
compare blocks 5-136
find string 5-138
move block 5-140
saving memory 5-134

Index 8

Index 9

ATRON REPAIR SERVICE POLICY

Atron will provide service repair of the 68020 PROBE on the
following basis.

PROBE within 1 year hardware warranty period

Atron will send a new board to customer and customer will return
failed board to Atron. Atron will pay for UPS surface freight to
customer. (Customer pays for upgraded freight service.) Customer
pays for return freight of failed board to Atron. A PO # will be
required in advance of sending new board to customer for the price
of a new system and is automatically canceled upon arrival of the
failed board to Atron.

PROBE outside 1 year hardware warranty period

Atron will send a new board to customer and customer will return
failed board to Atron. Customer pays for freight service in both
directions. A PO # will be required in advance of sending new
board to customer for the price of a new system. Upon receipt of
the returned board, Atron wiil invoice customer in the amount of
Atron’s then fixed repair cost for the board. If the failed board is
not received by Atron within 15 days after sending customer a new
board, the PO is due and payable.

LIMITED WARRANTY

Atron Corporation warrants this product to be in good working order
for a period of 1 year from the date of purchase from Atron or an
authorized Atron dealer. Should this product fail to be in good
working order at any time during this warranty period, Atron will,
at its option repair or replace this product at no additional charge
except as set forth below. Repair parts and replacement products
will be furnished on an exchange basis and will be either
reconditioned or new. All replaced parts and products become the
property of Atron. This limited warranty does not include service to
repair damage to the product resulting from accident, disaster,
misuse, abuse, or non-Atron modifications of the product.

Index 10

Limited warranty service may be obtained by delivering the product
during the warranty period to Atron. If this product is delivered by
mail, you agree to insure the product or assume the risk of loss or
damage in transit, to prepay shipping charges to Atron and to insure
the product is adequately packed.

ALL WARRANTIES FOR THIS PRODUCT, WHETHER EXPRESS
OR IMPLIED, ARE LIMITED IN DURATION TO A PERIOD OF 90
DAYS FROM THE DATE OF PURCHASE, AND NO WARRANTIES,
WHETHER EXPRESS OR IMPLIED, WILL APPLY AFTER THIS
PERIOD.

ATRON HEREBY DISCLAIMS ALL OTHER EXPRESS AND
IMPLIED WARRANTIES FOR THIS PRODUCT INCLUDING THE
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. SOME STATES DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE
LIMITATIONS MAY NOT APPLY TO YOU.

L€ 1010 FAUDULE 1D INUL LIN UUUD WUKKING UKUEK AD
WARRANTED ABOVE, YOUR SOLE REMEDY SHALL BE REPAIR
OR REPLACEMENT AS PROVIDED ABOVE. IN NO EVENT WILL
ATRON BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING
ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
OR INABILITY TO USE SUCH PRODUCT.

SOFTWARE LICENSE AGREEMENT

All Atron software is protected by both United States Copyright Law
and International Treaty provisions. Therefore, you must treat this
software just like a book with the following exception: Atron Corp
authorizes you to make archival copies of the software for the sole
purpose of backing up your software and protecting your investment
from loss.

This means that this software may be used by any number of people
and may be freely moved from one computer location to another so
long as there is no possibility of it being used at one location while
it is being used at another - just like a book.

	001
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-01
	3-02
	3-03
	3-04
	3-05
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	5-001
	5-002
	5-003
	5-004
	5-005
	5-006
	5-007
	5-008
	5-009
	5-010
	5-011
	5-012
	5-013
	5-014
	5-015
	5-016
	5-017
	5-018
	5-019
	5-020
	5-021
	5-022
	5-023
	5-024
	5-025
	5-026
	5-027
	5-028
	5-029
	5-030
	5-031
	5-032
	5-033
	5-034
	5-035
	5-036
	5-037
	5-038
	5-039
	5-040
	5-041
	5-042
	5-043
	5-044
	5-045
	5-046
	5-047
	5-048
	5-049
	5-050
	5-051
	5-052
	5-053
	5-054
	5-055
	5-056
	5-057
	5-058
	5-059
	5-060
	5-061
	5-062
	5-063
	5-064
	5-065
	5-066
	5-067
	5-068
	5-069
	5-070
	5-071
	5-072
	5-073
	5-074
	5-075
	5-076
	5-077
	5-078
	5-079
	5-080
	5-081
	5-082
	5-083
	5-084
	5-085
	5-086
	5-087
	5-088
	5-089
	5-090
	5-091
	5-092
	5-093
	5-094
	5-095
	5-096
	5-097
	5-098
	5-099
	5-100
	5-101
	5-102
	5-103
	5-104
	5-105
	5-106
	5-107
	5-108
	5-109
	5-110
	5-111
	5-112
	5-113
	5-114
	5-115
	5-116
	5-117
	5-118
	5-119
	5-120
	5-121
	5-122
	5-123
	5-124
	5-125
	5-126
	5-127
	5-128
	5-129
	5-130
	5-131
	5-132
	5-133
	5-134
	5-135
	5-136
	5-137
	5-138
	5-139
	5-140
	5-141
	5-142
	5-143
	5-144
	5-145
	5-146
	5-147
	5-148
	5-149
	5-150
	5-151
	5-152
	5-153
	5-154
	5-155
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	A-53
	A-54
	A-55
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10

