Dynamic RAM Timing

STIMULUS PROGRAM NAME: RAMSELECT1
DESCRIPTION: SIZE: 267 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With sIG IVL LVL Mode Counter Range Pin
U58-3 I/0 MODULE 024F 10 TRANS
U58-6 I/0 MODULE O01B6 10 TRANS
U59-6 I/0 MODULE O01B6 10 TRANS
U61-11 I/0 MODULE 03F9 10 TRANS
U60-2 I/0 MODULE 024F 10 TRANS
U60~-7 I/0 MODULE 01B6 10 TRANS
U60-14 I/0 MODULE O01B6 10 TRANS
U59-9 I/0 MODULE O03F$ 10 TRANS
U63-8 I/0 MODULE O01B6 10 TRANS
U19-6 I/0 MODULE 024F 10 TRANS
U24-6 I/0 MODULE 01B6 10 TRANS
U64-10 I/0 MODULE 024F 10 TRANS
U59-10 I/0 MODULE 0000 10 TRANS

Figure 4-35: Response File (ramselect1)

Dynamic RAM Timing

program ramselect2

rrrrrtrrrtpbErLELLELLIIOLEILIIIIITITIRILIPILEI PR RELILITIOILITIITIIRI I TIITIRIEILIIIITILTITITIrrrrrrtrrnt

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT
! activity and the response file contains the known-good responses for

the outputs in the UUT that are stimulated by the stimulus program.

1 1
i 1
1 i
1 1
1 1
1 1
1 t
! Ramselect2 is used to stimulate the RAM select circuitry after the !
! decoders. The stimulus is a combination of reads that will ensure !
! the decoder and related circuitry is working properly. Ramselect?2 !
! differs for ramselectl because setoffset is required to delay the 1
! data due to signal propogation though the number of parts in the !
! ram decode circuitry. !
1 1
t !
1 1
! 1
t 1
1 1
1 1
1 1
1 1
1 !

TEST PROGRAMS CALLED:
{none})

GRAPHICS PROGRAMS CALLED:
{none)

Global Variables Modified:
{none}

! Main Declarations t
)0 0 A A A A A A 0 0 A A A A 0 T 0 A O O AN R A O A

declare numeric bias = 9938957

trrrrrrtrrrrrLLLLOLLLIE LY LILI LI RICE LRI E R YL LI IOLIIEILIOLIGIEISLILI LI ISR IO ITG PRI RITERITLITPITIITITIITTITITITTITITILITILILTILISLI

! FAULT HANDLERS: !
IR RN R R R R R R RN R RN R R R R R R R R R R RN RN R R R R R RN AR !

handle pod timeout enabled_line
recover ()
end handle
handle pod timeout_recovered
recover {)
end handle
handle pod_timeout no clk
end handle
jrrrrrrrrrrrrLLLLLLLILIOLI I ILI LI LIORISRI LTI RSLC PRI I IIOIIIIILIITIEIS R TITRITLITITLTILIOITIITITIILITII It

! Main part of STIMULUS PROGRAM !
RN RN R R R R RN N R N R N R R R RN R R RSN N R R RO N

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

(continued on the next page)

Figure 4-36: Stimulus Program (ramselect2)

4-101

Dynamic RAM Timing

else
devname = "/modi"
end if
print "sStimulus Program RAMSELECT2"

! Set addressing mode and setup measurement device.

mem word = getspace space “memory”, size "word"
mem byte = getspace space "memory", size “"byte"
reset device devname

sync device devname, mode "pod*

sync device "/pod", mode "data"

! Store calibration offset, set new offset
! Display warning message if setting new offset fails

cal offset = getoffset device devname

if (setoffset device devname, offset bias) = 0 then
fault ‘setoffset returned a bad status, fatal error®

end if

! Present stimulus to UUT.

arm device devname
setspace (mem word)
read addr $1ASA4
read addr $F0000
read addr $F0000
read addr $5A5A
read addr $F0000
read addr $F0000
write addr $7BDE, data $1234
read addr $F0000
write addr $15A5A, data $9876
read addr $F0000

setspace (mem byte)

read addr 1

read addr 2

read addr 3

write addr 4, data O

write addr 5, data $12

read addr $1111

read addr $11111

read addr $AARA
readout device devname

! Restore original calibration offset

setoffset device devname, offset cal offset
end program

Figure 4-36: Stimulus Program (ramselect2) - continued .

4-102

Dynamic RAM Timing

<:::;)
. STIMULUS PROGRAM NAME: RAMSELECT2

DESCRIPTION: SIZE: 114 BYTES
Response Data
E Node Learned Async Clk Counter Priority
1 Signal Src With SIG IVL LVL Mode Counter Range Pin
u58-8 I1/0 MODULE B6FD 10 TRANS
us8-11 I/0 MODULE BR603 10 TRANS
u62-8 I/0 MODULE F963 10 TRANS
us7-12 1/0 MODULE F99D 10 TRANS

Figure 4-37: Response File (ramselect2)

4-103

Dynamic RAM Timing

program refsh addr

Stimulus programs and response files are used by GFI to backtrace
from a falling node. The stimulus program must create repeatable UUT
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1

1

1

1

1

1

! TEST PROGRAMS CALLED:

! check_meas (device, start, stop, clock, enable)

! Checks to see if the measure-
! ment is complete using the

! TL/1 checkstatus command. If
1

! redisplay connect locations.
!
1
1
1
1
1
!
1
t

GRAPHICS PROGRAMS CALLED:
{none}

1
1
1
1
!
Local Variables Modified: f
done returned from check meas ()
devname Measurement device !
1
1

trrrrrrrtrrTIITIITI LR RLILLLILILI LI I PIILILIRITITILIIILIIILIIRITRITIITITIIII LI I TITITTITITI I I IR rrrrntt

! Main Declarations !
rrrrtrtrtt LI R ILILILIIIIIIISTIGELILITIILIIILILITILLEITILITITIITTIIEILTITILTIT LTI rrrtrnn

declare numeric done = 0

trrrrrrerrrrrrrr R R R I I I IIORIRILIRI LI LIITILITIIITIRISLIIIIIITIITIRISTIIIIIIIEILEILILEILIILLIYL

! Main part of STIMULUS PROGRAM !
IR R R R R RN R R RN R R NN R R RN RN R RN R R R R R R R R R R R R R R R R

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print "Stimulus Program REFSH ADDR"

(continued on the next page)

Figure 4-38: Stimulus Program (refsh_addr)

4-104

Dynamic RAM Timing

Set addressing mode and setup measurement device.

setspace space (getspace space "memory", size "word")
reset device devname

sync device devname, mode “ext"

enable device devname, mode "always"

edge device devname, start "+", stop "-", clock "-"

Prompt user to connect external lines.

connect device devname, start "U67-9*, stop "U67-9", clock "U63-8", common "gnd"

External lines determine measurement.
! check meas times out and reprompts if external lines aren't connected

loop until done = 1
arm device devname
done = check meas (devname, "U67-9", "U67-3", "U63-8", *#*%)
readout device devname
end loop

end program

Figure 4-38: Stimulus Program (refsh_addr) - continued

4-105

Dynamic RAM Timing _

STIMULUS PROGRAM NAME: REFSH ADDR

DESCRIPTION: SIZE: 182 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With SIG IVL 1VL Mode Counter Range Pin
ué7-15 I/0 MODULE 96EC 10 TRANS
u67-1 I/0 MODULE AFCl 10 TRANS
u67-2 I/0 MODULE 4A2C 10 TRANS
u67-3 I/0 MODULE 25AF 10 TRANS
u67-4 I/0 MODULE ACDE 10 TRANS
u7-5 I/0 MODULE 122D 10 TRANS
u67-6 I/0 MODULE EEA6 10 TRANS
ue7-7 I/0 MODULE 68F8 10 TRANS

Figure 4-39: Response File (refsh_addr)

4-106

Dynamic RAM Timing

program refsh time

STIMULUS PROGRAM characterizes the refresh timing.

t
1
stimulus programs and response files are used by GFI to backtrace i
from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for !
1
1
1
1
1
1

the outputs in the UUT that are stimulated by the stimulus program.

1

1

1

1

1

1

1 .

! TEST PROGRAMS CALLED:

! check_meas (device, start, stop, clock, enable)

! Checks to see if the measure-

! ment is complete using the

! TL/1 checkstatus command. If !
! the measurement times out then!
1 redisplay connect locations. !
1
1
1
1
1
1
1

GRAPHICS PROGRAMS CALLED:
{none}

Local Variables Modified:
done returned from check meas (}
devname Measurement device

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfl device

else
devname = */modl"

end if

print "Stimulus Program REFSH TIME"

(continued on the next page)

Figure 4-40: Stimulus Program (refsh_time)

4-107

Dynamic RAM Timing

! Set addressing mode and setup measurement device.

setspace space (getspace space "memory", size "word")
reset device devname

sync device devname, mode "“ext®

enable device devname, mode "“always"

edge device devname, start "+", stop "count", clock "-*
stopcount device devname, count 48

! Prompt user to connect external lines.
connect device devname, start "U67-13%", clock "U13-1", common "gnd"

! External lines determine measurement.
! check_meas times out and reprompts if external lines aren't connected.

loop until done = 1
arm device devname
done = check meas(devname, "U67-13", "*», "Ul3-1", "*m)
readout device devname
end loop

end program

Figure 4-40: Stimulus Program (refsh_time) - continued

4-108

Dynamic RAM Timing

STIMULUS PROGRAM NAME: REFSH TIME

DESCRIPTION: SIZE: 195 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL ILVL Mode Counter Range Pin
u59-9 I/0 MODULE 1592 10 TRANS
u64-13 I/0 MODULE 909A 10 TRANS
u44-5 I/0 MODULE 87E6 10 TRANS
U44-6 PROBE DE42 10 TRANS
ud4-6 I/0 MODULE DEA42 10 TRANS
u59-10 I/0 MODULE AC3E 10 TRANS
U44-9 PROBE 43F3 10 TRANS
ud4-9 I/0 MODULE 43F3 10 TRANS
ud4-8 I/0 MODULE 1AS57 10 TRANS
u6l-11 I1/0 MODULE 10 TRANS
u43-11 I1/0 MODULE 10 TRANS

Figure 4-41: Response File (refsh_time)

4-109

Dynamic RAM Timing

program refsh u56

STIMULUS PROGRAM characterizes the refresh circuitry.

1
1
stimulus programs and response files are used by GFI to backtrace !
from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for !
the outputs in the UUT that are stimulated by the stimulus program. !
1
1
1
1
1

1

1

!

1

1

1

1

! TEST PROGRAMS CALLED:

! check meas (device, start, stop, clock, enable}

! Checks to see if the measure-

! ment is complete using the

! TL/1 checkstatus command. If !
! the measurement times out then!
! redisplay connect locatlons.

1
1
1
1
1
1
1

GRAPHICS PROGRAMS CALLED:
{none})

Local Variables Modified:
done returned from check meas ()
devname Measurement device

! Let GFI determine the measurement device.

1f (gfi control) = "yes" then
devname = gfi device

else
devname = */modl"

end if

print "stimulus Program REFSH U56"

(continued on the next page)

Figure 4-42: Stimulus Program (refsh_u56)

4-110

Dynamic RAM Timing

! Set addressing mode and setup measurement device.

setspace space (getspace space "memory"*, size "word")
reset device devname

sync device devname, mode "ext"

enable device devname, mode “always"

edge device devname, start "+", stop "count”, clock "+"
stopcount device devname, count 48

! Prompt user to connect external lines.
connect device "/modl", start "U67-13", clock "U1l3-1", common *gnd"

! External lines determine measurement.
! check_meas times out and reprompts if external lines aren't connected.

loop until done = 1
arm device devname
done = check_meas (devname, "U67-13", "*%, "Ul3-1", "*")
readout device devname
end loop

end program

Figure 4-42; Stimulus Program (refsh_u56) - continued

4-111

Dynamic RAM Timing

STIMULUS PROGRAM NAME: REFSH U56

DESCRIPTION: SIZE:

Response Data
Async Clk Counter
SIG IVL IVL Mode

Node Learned

Signal Src With Counter Range

TRANS 1

PROBE 0
¢ TRANS 1

I/0 MODULE

UsS6-12
us56-12

S

Figure 4-43: Response File (refsh_u56)

4-112

63 BYTES

Priority
Pin

Dynamic RAM Timing

Summary of Complete Solution for

Dynamic RAM Timing

4.4.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Dynamic RAM Timing functional block is
shown below. The format below is similar to a 9100A/9105A
UUT directory (you could consider the functional block to be a
small UUT), but in addition shows the use of each program and
the location in this manual for each file.

UUT DIRECTORY

(Complete File Set for Dynamic RAM Timing)

Programs (PROGRAM):
TST_REFRSH Functional test
CAS_STIM Stimulus Program
RAS_STIM Stimulus Program
RAMSELECT1 Stimulus Program
RAMSELECT2 Stimulus Program
REFSH_ADDR Stimulus Program
FREQUENCY Stimulus Program
REFSH_TIME Stimulus Program
REFSH_US6 Stimulus Program
Stimulus Program Responses (RESPONSE):
CAS_STIM
RAS_STIM
RAMSELECT1
RAMSELECT2
REFSH_ADDR
FREQUENCY
REFSH_TIME
REFSH_US6
Node List (NODE):
NODELIST
Text Files (TEXT):
Reference Designator List (REF):
REFLIST
Compiled Database (DATABASE):
GFIDATA

Section 4.4.5
Figure 4-30
Figure 4-32
Figure 4-34
Figure 4-36
Figure 4-38
Figure 4-117
Figure 4-40
Figure 4-42

Figure 4-31
Figure 4-33
Figure 4-35
Figure 4-37
Figure 4-39
Figure 4-118
Figure 4-41
Figure 4-43

Appendix A

Appendix B

Compiled by the 9100A

4-113

Dynamic RAM Timing

(This page is intentionally blank.)

4-114

Parallel 11O

O PARALLEL INPUT/OUTPUT FUNCTIONAL
BLOCK 4.5.
Introduction to Parallel I/10 451.

Parallel I/O implementations range in complexity from simple
latches to LSI components. This section covers two basic types
of parallel /O circuits, simple discrete I/O circuits, and common
LSI components like Programmable Interface Adapters (PIA)
and Programmable Interval Timers (PIT).

Parallel 1/O is one of a microcomputer's interfaces to the real
world. The microcomputers in products like cash registers,
copiers, telephone switching equipment, electronic instruments,
and personal computers often monitor and control optical or
electromechanical components like LEDs, displays, keyboards,
optical switches, printers, disk or tape drives. Often, the
interface to these components from the microprocessor's
perspective is a set of registers to which it can read and write
data.

Output lines may be connected to recording or display devices,
which can be damaged if random data is written indiscriminately
to them. Signals controlled by output ports can produce
voltages or actuate devices that can pose a threat to human
safety. Care should be taken in designing stimulus programs
when the possibility of injury to people or damage to equipment
can result.

Considerations for Testing and
Troubleshooting 4.5.2.

Programmable LSI Components

Programmable LSI components usually contain internal registers
which characterize the component to a particular circuit
application. Among the ways in which these components can be
programmed are:

4-115

Parallel YO

4-116

® Setinternal operating modes.

¢ Configure I/O ports as inputs or outputs.
¢ Setedge polarity on edge-sensitive inputs.
¢ Enable or disable interrupts.

¢ Establish data exchange protocol.

When testing LSI components, it is necessary to initialize them
first. Initialization usually consists of a series of reads from and
writes to internal registers. It is useful to create a separate
9100A initialization program which can be called from various
stimulus programs, or from the operator's keyboard.

If a component, such as a PIA, does not work properly after
initialization, check the inputs that affect its operation, such as
chip-select lines, read and write lines, register-select lines, and
clocks. Signals that reset, gate, or set outputs to high impedance
might also be suspect. If these inputs all appear good, the bus
cycles accessing the component may not have the proper number
of wait states.

To verify operation of the component, stimulus commands such
as rampdata, read, and write can be used in combination with
1/O-module measurements. For troubleshooting both inputs and
outputs on devices such as LEDs and keyboards, it is often
necessary to prompt the operator to interact with the UUT.
Simple commands prompting operator action can be included in
stimulus programs and displayed on the operator's display.

Outputs can be tested with write, toggledata, or rampdata
commands. Responses can be read as signatures or as
asynchronous or clocked level history. Signatures are useful for
identifying outputs that are tied to each other. If there is not an
appropriate clock available, transition counts or level history can
be used.

Inputs can be verified by reading the component. To exercise all
states of the input lines, some type of stimulus must be applied.
If the circuit allows, the inputs can be overdriven to each logic

Parallel /O

state with the I/O module. For electromechanical devices such
as keys and switches, interaction with the person performing a
test may be required. Switch testing can be automated by using
solenoids to actuate the switches.

Discrete I/O

Components used for discrete I/O include buffers, latches,
addressable latches, and flip-flops. Such components usually
have simpler interfaces to the microprocessor than
programmable LSI components and they are handled in a similar
manner, but their initialization procedures are different, if
required at all.

If data does not appear to be reaching I/O latches, or is not read
from 1/O buffers, it may be necessary to check the address
decoding logic to verify that the proper control signals are
present. Here are some common problems associated with
discrete I/O:

® Outputs may be loaded by external devices. Such outputs
may work properly when disconnected. The loading
problem may be associated with the external device, or
with its connector.

¢ Inputs may be damaged by static electricity when they are
disconnected from the signal sources and left unprotected.

® Clocked inputs on components like latches or flip-flops
may be faulty.

® Reset inputs may either be stuck, forcing outputs to some
state, or open, preventing circuits from being initialized.

® Pullup or pulldown resistors that establish static logic
levels may be open, creating indeterminate inputs.

4-117

Parallel I/O

Parallel I/O Example 4.5.3.

The Programmable Interface Adapter on the Demo/Trainer UUT
(U31) is shown in Figure 4-44. It can be programmed for
operation with three ports, each with eight data lines. Each port
is addressed for read or write by address lines IAO1 and TAO2.
Ports A (lines PAO-7) and B (lines PB0-7) are used for outputs
to the two on-board seven-segment LEDs. Port A corresponds
to the upper LED, port B corresponds to the lower LED, and
port C (lines PCO-7) is used for inputs from the four push-
button switches.

Keystroke Functional Test 454.

4-118

Part A:

1.

Initialize the Parallel I/O functional block using the WRITE
key with the following commands:

WRITE DATA 89 TO ADDR 4006
(ADDR OPTION: I/O BYTE)
WRITE DATA FF TO ADDR 4000
(ADDR OPTION: I/O BYTE)
WRITE DATA FF TO ADDR 4002
(ADDR OPTION: I/O BYTE)

Use the WRITE key to write values to the PIA chip. Read
the resulting numbers on LED A. The values to be written
and the results to be displayed are shown in the Response
table in Figure 4-44.

WRITE DATA <see response table> TO ADDR 4000
(ADDR OPTION: I/O BYTE)

Now use the WRITE key to write values to the PIA chip to
display numbers on LED B. The values to be written and
the results to be displayed are shown in the Response table
in Figure 4-44.

Parallel 11O

WRITE DATA <see response table> TO ADDR 4002
(ADDR OPTION: I/O BYTE)
Part B:
1. Use the READ key to read values resulting from pressing the
UUT keys 1 through 4. The response table in Figure 4-45
shows the values that should be read for each key pressed.

READ ADDR 4004 = <see response table>
(ADDR OPTION: I/O BYTE)

4-119

Parallel I/O

Keystroke Functional Test (Part A)

CONNECTION TABLE

TEST ACCESS SOCKET

STIMULUS AND RESPONSE TABLE FOR LEDA

STIMULUS AND RESPONSE TABLE FOR LEDB

4-120

Parallel I/O

+5v +5W +5v 5V
AEADY 4, TK 47K 4.7k a4.7K
2
CIAGUIT s Tes A ?aa
1] 1 k)
82554 . I
F'C-"I[=l | i - |
P13 | I
| T (Y B 1 1
pra il J s t] ES) |:| 53 l‘_‘sa |j
pral 13 _HC 7
pos, 12 NC 2 2 z 2
i NG
pos[1e_ne L PuskBUTTON SHITCHES
] A
| BUS
1 R11 330
| BUFFER
1 Ls24s Riz 330
pEO L8 2 [1a1
1402 B lay pey 2 2 1iaz A13 330
[e IR0 9 g PRz B0 B |43 1
P3| 21 8 liaa A4 330
o 1000 34 lg poal 22] zns
D01 33] 2 zaz A5 330
= ooz 32 | pas 24 5] 3n3 ER iyt
203 Sihs pey| 25 E A1 330
- 04 16
__Elg {18]sE A17 330
R 28 g % L 46
27 b7 A8 330
Ls24a4
Panl_t 2 l1a1 8
E gts PAd 142 1va[1E
Az & f1a3 1valld
| IFEAD _ |8 Jap paal L B aaa ava| 12 —
I Paal 12l oay gyylS | 1 R 330
o LRAITE 26 o pas| 32 3laaz ave |
Sag| 38 5|ana 2va|o A23 330
35 qeser pa?| 30 7]aaa aval3 E e
o 416] RZ24 330

2 15
J;' . A28 330

1 R28 330 o 4,

—

- |
] ! Vs o 2
ADr_JLaOEUscs | JFPTsCT | R L use | L1 AR o b ldied ey
DECODE | R27 330 -

CLOCK AMD RESET |-w-PESET , A30 330

- P R

HRS0BZ2-T610

Figure 4-44: Parallel I/O Functional Test (Part A)

4-121

Parallel I/O

Keystroke Functional Test (Part B)

CONNECTION TABLE

51 TEST ACCESS SOCKET
52

53
54

STIMULUS AND RESPONSE TABLE FOR LEDA

4-122

Parallel I/O

| 5V +3V +5V +5v
READY 47K 4. 7K 4.7K L
CIACUIT % a6
L B2554 h
PCOLS
&
80286 it
MICROPADCESSOR FC3
g : | PO
PCY
Fee 47 PUSH-BUTTON SWITCHES
| LEDB
| BUS L A1 3m0 Lo, QU7
BUFFER i _“
Lgads g R12 330 o 43 g
LIEL 2 lgns 1ys| 1B | ¢
1A02 8 19) S ival1E
[e IA02 B PB1 142 1Y A3 330
- 1401 Y pEal 20 B | 143 1va Sy G T RS P
pEaL 2l 8 1iae 1yl ey R24 330 4 5 4 | +5v
- pea 22 llaas @ys W2 BG4y 1a
= e 13 pn py2 |_1 A15 330 5 7 4 3
i~ (L 15 1 z43 pyal > Fnnne————— 4 ¥
pa7 23 A7) zna gyald , RI1E 330 5 o
- i 1476 A
o L Fﬁ 26 L RA17 330 5 4,
- L CHEER TS
A A1 330
LS2as 1 ARG 26 o
paglt 2 lias 1yaldB HESOAZ-TELD
patf 2 2 a2 1v2lie |
pazl—2 5 {143 1v3pld | LEDA
Pazt 8 1 iaa tyall2 | [
paald0 11241 2Y1 1 A8 330 5 4 2ige
pas[35 A2 oz eyall 1
PAE g? ? 243 273 g o1 PRS0 e a3 by
Pa7 2A4 2Ya S
L 16 R 3 F24 330 5 49 g
| pEl=m ¢
- 1 "uae | aes 330
ADOAESS swz-2 | — b TR Q_MK_ 14| *EY
e |
DECODE _Zo/aij | y FET 380 5 5 o | 3
] 1 g
7 AEB 330
: 22ty
T '"i | I ; AeE 330 . g,
CLOCK AND RESET |wrEsEl | [-
HPSQB2-7610

Figure 4-45: Parallel I/O Functional Test (Part B)

=

4-123

Parallel 110

Programmed Functional Test 45.5.

The test_pia program is the programmed functional test for the
Parallel I/O functional block. The program asks the test operator
to check the visual properties of the LEDs that are driven by the
PIA chip and also to check the mechanical operation of the
pushbutton switches.

The program displays a message to the operator to watch LED A
while the program displays numbers 1 through 9 on it. The
operator is prompted to acknowledge proper operation or failing
operation. If the LED fails, the gfi test command is used to test
the LED drivers. If the LED drivers fail, GFI takes control and
backtraces to the source of the failure. The same operation is
then repeated for LED B.

Next, the operator is prompted to press key 1. The program

polls the PIA chip and determines when the operator has pushed

the key 1 button (if the key and the PIA are working properly).

If the PIA cannot sense that the operator has pressed the key, the "
operator is instructed to press a 9100A/9105A key to indicate a w
failure. When the operator indicates a failing key, the gfi test

command is used to verify correct signal levels at the key output.

If a failure exists, GFI takes control and backtraces to the source

of the failure. The same operation is repeated for keys 2, 3 and

4,

program test pia

! FUNCTIONAL TEST of the PARALLEL I/O functional block.

1

1 1

! This program tests the PARALLEL I/0 functional block of the !
! Demo/Trainer. The two LEDs and the four pushbutton switches are

! tested. The test operator is prompted to visually inspect the LEDs !

! as the LEDs count a series of numbers. !

1

1

1

1

1

keys (key number) Test Demo/Trainer pushbutton
key key number. Prompt test
operator to push the key.

1

1

1

1

1

1

1

! TEST FUNCTIONS CALLED:
1

1

1

1

! leds (led addr, led name) Test Demo/Trainer LED led name!
! which is driven by the PIA and!
! has the address led addr.

1

Parallel 110

function keys (keynum)

declare numeric keynum ! Number of key to test.
declare string norm = "\1B[Om" ! Normal video escape string
declare string rev = "\1B[0;7m" ! Reverse video escape string

declare string entry
declare string fail = v
declare global numeric tlb
declare global numeric tli

mask = setbit (keynum - 1)

loop until fail = chr(SD) ! loop until YES key
print on tlb ,"\nlPress ", rev," UUT KEY ", keynum,” *,norm," pushbutton"
print on tlb ,*Press any 9100 key if test is stuck”
loop until (poll channel tli, event “input®) =1
if ((read addr $4004) and mask) = 0 then return

end loop

loop until (pcll channel tli, event "input") =0 ! Flush input buffer
input on tli ,entry

end loop

print on tlb ,"\nlPress ",rev,"™ YES *,norm," to fail KEY ", keynum," test,"
print on tlb ,"Press "+rev+" NO "+norm+" to continue key test,"
input on tili ,fail

end loop

print on tlb ,"\nl\nl"

fault ! Fail Key test (set termination
end function ! status of function to fail.

function leds(led_addr, led name)
declare numeric led addr
declare string led name
declare string key

declare string norm = "\1B[Om"
declare string bold = "\1B{1m"
declare string rev = "\1B{7m"

declare string clear screen = "\1B[2J"

declare string no_auto_linefeed = "\1B[20h"
declare global numeric tli
declare numeric array [0:10] numbers

numbers {[0] = $CO
numbers [1] = $F9
numbers [2] = $A4
numbers [3] = $BO
numbers [4] = $99
NO = chr ($7F)

numbers [5] = $92
numbers [6] = $82
numbers [7] = $F8
numbers [8] = $80
numbers [9] = $98
YES = chr{ $D)

P

print norm, clear screen, "Watch LED ", led name, " count”
print "Press ", rev, " ENTER *, norm, * key to start LED counting."
input key
print clear_ screen
for 1 =0 to 9
write addr led addr, data numbers [i]
wait time 500
next

Parallel 1/O

write addr led addr, data $7F
print clear_screen, "\1B[201"
print "™\1B{1;1fDid LED ", led_name, " display ALL segments off, then"
print *\1B[2;1fdigits 0 to 9, then only the Decimal Point 2*
print *\1B[3;fpress: "+rev+"* YES "+norm+" or "+rev+" NO "+norm
loop until key = YES or key = NO
| input on tli ,key
/ if key = NO then fault
end loop
% write addr led addr, data $FF \ print no_auto_linefeed,clear screen

end function

tlb open device "/terml*, as "update", mode "buffered”
tli open device “/terml”, as "input", mode "unbuffered"
execute pia init ()

if leds {54000, "A") fails then fault *PIA LED A failed' \ return
if leds{$4002, "B") fails then fault 'PIA LED B failed' \ return

if keys(l) fails then fault °*PIA KEY 1 failed® \ return
if keys(2) fails then fault °'PIA KEY 2 failed' \ return
if keys(3) fails then fault 'PIA KEY 3 failed' \ return
if keys(4) fails then fault 'PIA KEY 4 failed' \ return
end program
Stimulus Programs and Responses 4.5.6.

Figure 4-46 is the stimulus program planning diagram for the
Parallel I/O functional block. The Parallel I/O stimulus
programs only measure the electrical parameters of the Parallel
/O circuit; the visual properties of the LEDs are not measured.

The ram_data stimulus program outputs data from the PIA onto
the data bus. The pia_leds stimulus program exercises outputs
going to the LEDs. The key I, key 2, key 3, and key_ 4
stimulus programs monitor the operation of the four numbered
pushbutton switches.

All the stimulus programs execute the pia_init program before
any measurements are made on the PIA circuitry.

Parallel /O

(This page is intentionally blank.)

4-127

Parallel I/O

Stimulus Program Planning

:

PROGRAM: KEY_1

EXECUTES PIA_INIT AND MONITORS LEVELS AND
TRANSITIONS AFTER PROMPTJNG THE OPERATOH
TO PRESS KEY 1 St

MEASUREMENT AT:

R5-1 INITIALIZATION PROGRAM: PIA_INIT

INITIALIZES THE PIA PORT

MEASUREMENT AT:

(MOMNE])

4-128

Parallel I/O

READY
CIRCUIT

HOZ2BE
MICROPROCESSOR

b

ADDRESS
OECODE

CLOCK AND AESET

Figure 4-46: Parallel I/O Stimulus Program Planning

RESET

B255a

pooie [=

pCyfld

E

sc3| L7

preld
pon

PCE
PC7

zlzlzz
nlhlnls

o is [

+5Y 5y 45V +5v

7
e, 2 2 2
(9 PUSH-BUTTON SWITCHES
LEDZ
Ai1 330 b
™
A12 330 13 by,

A13 330
Ai4 330

A15 330

Ri5 330
RL7 330

f1d 330

e &
6 opyg
il

R19 330

AE3 330

HRSOB2-7610

AZ24 330
AZ25 330
A27 330
A28 330
A2% 330

R3O 330

.E‘H_

6 dag
™
HRSOBE-7E10

4-129

Parallel I/O

program key_1

! STIMULUS PROGRAM checks KEY 1 of PIA circuit. i
1 t
! stimulus programs and response files are used by GFI to backtrace !
! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. !
1 1
! TEST PROGRAMS CALLED: |
! pia_init () !
1 1
! GRAPHICS PROGRAMS CALLED: !
! {none) !
1 1
I Local Constants Modified: !
! CARRAGE_RETURN Matches a carrage return input. !
1 1
! Local Variables Modified: !
! devname Measurement device !
! input_str Input from keypad !
! state Level returned from measurement !
! finished State of loop looking for condition !
TrrrtrrT It LILELLILILIRRIIOTIOLILIOIOTTIII T I IR RILIPIIILILIITIGTI RIS RITI I LI EIIITIERIIIIIITILILILIIIIIIIIILIILILNSL

declare global numeric finished = 0
declare string CARRAGE_RETURN = "*
declare string input_str

declare numeric state = 0

declare numeric high = 4

finished = 0

! Let GFI determine the testing device.

if (gfi control) = "yes" then
devname = gfi device
if (gfi ref) = "U31l" then pinnum = 14
else
devname = "/probe"
end if
print "Stimulus Program KeY 1"

(continued on the next page)

Figure 4-47: Stimulus Program (key_1)

Parallel /1O

{ Setup measurement device and prompt operator.

podsetup 'report power' "off"

podsetup 'report forcing' "off"
podsetup ‘report intr' "off"

podsetup ‘report address' "off"
podsetup 'report data' "off"

podsetup ‘report control' "“off"

reset device devname

execute pia_init ()

setspace space (getspace space "i/o", size "byte")
sync device devname, mode "int"

tlup = open device "/terml", as *update"

! Wait for a high. Leave program if <ENTER> key is pressed.

loop until state = high
arm device devname \ readout device devname

if devname = "/probe" then

state = level device devname, type "async"
else

state = level device devname, pin pinnum, type "async®
end if

if (poll channel tlup, event "input®) = 1 then
input on tlup ,input_str
if input_str = CARRAGE RETURN then return
end if -
end loop

! Start response capture. End when POD detects reset.
arm device devname
strobeclock device devname
print on tlup ,*"WHILE MEASURING, Press \1B[7mDemo UUT KEY I\1B[Om*
print on tlup ,"Press 9100 ENTER key if test is stuck."
loop until finished =1
if ((read addr $4004) and 1) = 0 then
wait time 2 ! De-bounce.
strobeclock device devname
finished = 1
else if (poll channel tlup, event "input") = 1 then
input on tlup ,input_str
if input_str = CARRAGE RETURN then finished =1
end if
end loop
readout device devname

print "\nl\nl"
end program

Figure 4-47: Stimulus Program (key_1) - continued

4-131

Parallel /O

STIMULUS PROGRAM: KEY 1

DESCRIPTION: SIZE:
Response Data
Node Learned Async Clk Counter
Signal Src With SIG IVL IVL Mode Counter Range
R5-1 PROBE 0002 1 O TRANS
R3-1 1/0 MODULE 0002 1 O TRANS

Figure 4-48: Response File (key_1)

78 BYTES

Priority
Pin

Parallel I/O

program key 2

trottetrtrrrr LRI LI I IOTIII I IR LIILILII I I RIRLIII LTI LIRIEIIIIIIILILILITLEIEIIIIILTY

STIMULUS PROGRAM checks KEY 2 of PIA circuit.

Stimulus programs and response files are used by GFI to backtrace
from a failing node. The stimulus program must create repeatable UUT
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

TEST PROGRAMS CALLED:
pia_init ()

GRAPHICS PROGRAMS CALLED:
{none}

Local Constants Modified:
CARRAGE, RETURN Matches a carrage return input.

Local Variables Modified:

devname Measurement device

input_ str Input from keypad

state Level returned from measurement
finished State of loop looking for condition

! Main Declaratiens !
L0000 O A O A 1 A A T O O O A ¢

declare global numeric finished = 0
declare string carrage return = ""
declare string str

declare numeric state = 0

declare numeric high = 4

finished = 0

trrrrrrrppbIt IR ELILLOLILILIOLIPITILI IR I LI LILILILIOLILIIILI RIS LI T LI TIORILI RIS EILIIIITISITIGELIIIIIITILILILIILIILITLTY

! Main part of STIMULUS PROGRAM
Trrrrrrrrrrrrrnrr LTI TIOIIIRE R RICEREILILILILILIOYILILIESLRILEILITILIITIGLEILITTITTITITTITLTIT RIS TITTITITITLEILITIREITILITTITILIIIIIIIOGLGY

! Let GFI determine the testing device.

if (gfi control) = "yes" then
devname = gfi device
if (gfi ref) = "U31" then pinnum = 15
else
devname = "“/probe”
end if
print "Stimulus Program KEY 2"

(continued on the next page)

Figure 4-49: Stimulus Program (key _2)

Parallel J/O

! Setup measurement device and prompt operator.

reset device devname

execute pia init ()

setspace space (getspace space "i/o", size "byte")
sync device devname, mode "int®*

tlup = open device "/terml", as "update"

! Wait for a high. ILeave program if <ENTER> key is pressed.

loop until state = high
arm device devname \ readout device devname
if devname = "/probe" then
state = level device devname, type "async"
else
state = level device devname, pin pinnum, type "“async®
end if
if (poll channel tlup, event "input”) = 1 then
input on tlup ,str
if str = carrage return then return
end if
end loop

! Start response capture. End when PIA detects line low.

arm device devname
strobeclock device devname
print on tlup ,"WHILE MEASURING, Press \1B[7mDemo UUT KEY 2\1B{Om*
print on tlup ,"Press 9100 ENTER key if test is stuck."
loop until finished =1
1f ((read addr $4004) and 2} = O then
wait time 2 ! De-bounce.
strobeclock device devname
finished = 1
else if {poll channel tlup, event "input")} = 1 then
input on tlup ,str
if str = carrage_return then finished =1
end if
end loop
readout device devname

print "\nl\nl*
end program

Figure 4-49: Stimulus Program (key_2) - continued

4-134

Parallel 1/0

I STIMULUS PROGRAM: KEY 2

DESCRIPTION: SIZE: 78 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With SIG IVL IVL Mode Counter Range Pin
R6-1 PROBE 0002 1 O TRANS
R6-1 1/0 MODULE 0002 1 0 TRANS

Figure 4-50: Response File (key_2)

4-135

Parallel I/O

program key 3

Stimulus programs and response files are used by GFI to backtrace !
from a failing node. The stimulus program must create repeatable UUT !
activity and the respense file contains the known-good responses for

! the outputs in the UUT that are stimulated by the stimulus program.

TEST PROGRAMS CALLED:
pia_init ()

Local Constants Modified:
CARRAGE RETURN Matches a carrage return input.

Local Variables Modified:
devname Measurement device
input_str Input from keypad
state Level returned from measurement

1

1

1

1

1

1

1

1

1

!

! GRAPHICS PROGRAMS CALLED:
1

1

!

1

1

1

1

1

1

! finished State of loop looking for condition
1

1
1
1
i
1
1
1
1
1
1
1
(none) !
1
1
1
1
1
!
1
1
1
!

! Main Declarations !
Trrprrtrnprrb L ELLLOLLLLOLOLR R RONLIOLILIOEIOLEOEILIOERIOEILILILIOTITLITPTIRITYRILITITTITLITTIT LI RITREITTITTITTILITITITIRITILIIIIIIIILIL

declare global numeric finished = 0
declare string carrage_return = "*
declare string str

declare numeric state = 0

declare numeric high = 4

finished = 0

Trrrrrrrrrrprrn I rI R TR RtL LI IOPIOLII I I TIOGRRIRLILIIIIIIRIRIIIIIIOGI I TIGLITTITLITTITITTIT T IL et riitn

! Main part of STIMULUS PROGRAM
SRR R R S NS N R R N R R N R N R R R RO E O SRS E R R RS

! Let GFI determine the testing device.

if (gfi control) = "yes" then
devname = gfl device
if (gfi ref) = "U31" then pinnum = 16
else
devname = "/probe"
end if
print "Stimulus Program KEY 3"

(continued on the next page)

Figure 4-51: Stimulus Program (key_3)

4-136

Parallel 1/O

! Setup measurement device and prompt operator.

reset device devname

execute pla init ()

setspace space (getspace space "i/o", size "byte"}
sync device devname, mode “int"

tlup = open device "/terml", as "update"

! Wait for a high. Leave program 1f <ENTER> key 1s pressed.

loop until state = high
arm device devname \ readout device devname

if devname = "/probe" then
state = level device devname, type "async”
else
state = level device devname, pin pinnum, type "async®
end if
if (poll channel tlup, event "input") = 1 then

input on tlup ,str
if str = carrage return then return
end if
end loop

! Start response capture. End when POD detects reset.
arm device devname
strobeclock device devname
print on tlup ,"WHILE MEASURING, Press \1B[7mDemo UUT KEY 3\1B[Om"
print on tlup ,"Press 9100 ENTER key if test is stuck."
loop until finished = 1
1f ((read addr $4004) and 4) = 0 then
wait time 2 ! De-bounce.
strobeclock device devname
finished = 1
else if (poll channel tlup, event "input") = 1 then
input on tlup ,str
if str = carrage_return then finished = 1
end if
end loop
readout device devname

print "\nl\nl"
end program

Figure 4-51: Stimulus Program (key_3) - continued

4-137

Parallel I/O

STIMULUS PROGRAM: KEY 3
DESCRIPTION:

SIZE:

Response Data

Nede Learned Async Clk Counter
Signal Src With SIG IVL I1VL Mode Counter Range
R7-1 PROBE 0002 1 0 TRANS
R7-1 I/Q MODULE 0002 1 0 TRANS

Figure 4-52: Response File (key_3)

78 BYTES

Priority
Pin

Parallel I/O

program key 4

! STIMULUS PROGRAM checks KEY 4 of PIA circuit. !
1 1
! Stimulus programs and response files are used by GFI to backtrace i
! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. !
1 1
! TEST PROGRAMS CALLED: !
! pia_init () !
! !
! GRAPHICS PROGRAMS CALLED:

! {none} !
1 1
! Local Constants Modified: !
i CARRAGE RETURN Matches a carrage return input. i
1 1
! Local Variables Modified: !
! devname Measurement device !
f input_str Input from keypad !
! state Level returned from measurement !
! finished State of loop looking for condition !
TrrrrrrrrrrLbLLL LRI LY LCRBRELLLOLLOLLI LI LTI OO RIOEIELI RO LI LI LTI RITTRITLITRITITITTITTITLTITEITTITTITIEIYLITIITTITIErtrtrrngy

! Main Declarations
trrrrrrrrtttrrrn bt IIILLIILIILTELILILILILIOLIITI I LI EILILILI IO I IO ERELIOTILI LI I EIIGITITITILITITILITIIGEELLn

declare global numeric finished = O
declare string carrage return = ""
declare string str

declare numeric state = 0

declare numeric high =

finished = 0

TrrrrrrrrrrLLbLLLCELIILIOLC LI L RICLEOLI LI IO ITI LI LILI LI BRI RILIOITI I I LTI EITTIGLIIOIGIITIRIRILIIIIOIILILIORIRLILIILIIILTTYD

! Main part of STIMULUS PROGRAM
ISR SR R N R N R R R RN R R N R R R A R SRR R AN S

! Tet GFI determine the testing device.

if {(gfi control) = "yes" then
devname = gfi device
if (gfi ref) = "U31" then pinnum = 17
else
devname = "/probe”
end if
print "Stimulus Program KEY 4"

(continued on the next page)

Figure 4-53: Stimulus Program (key 4)

Parallel I/0

! Setup measurement device and prompt operator.

reset device devname

execute pia init ()

setspace space {(getspace space "i/o", size "byte*)
sync device devname, mode "int"

tlup = open device "/terml", as "“update"

! Wait for a high. Leave program if <ENTER> key is pressed.

loop until state = high
arm device devname \ readout device devname

if devname = "/probe" then

state = level device devname, type "async"
else

state = level device devname, pin pinnum, type "async"
end if

if (poll channel tlup, event "input") = 1 then
input on tlup ,str
if str = carrage return then return
end if
end loop

! Start response capture. End when BOD detects reset.
arm device devname
strobeclock device devname
print on tlup ,"WHILE MEASURING, Press \1B[7mDemo UUT KEY 4\1B[Om"
print on tlup ,"Press 39100 ENTER key if test is stuck.”
loop until finished =1
if ((read addr $4004) and 8) = O then
wailt time 2 ! De-bounce.
strobeclock device devname
finished = 1
else if (poll channel tlup, event "input") = 1 then
input on tlup ,str
if str = carrage return then finished =1
end if
end loop
readout device devname

print "\nl\nl®"
end program

Figure 4-53: Stimulus Program (key_4) - continued

4-140

Parallel I/O

STIMULUS PROGRAM NAME:

KEY 4
DESCRIPTION: SIZE:
Response Data
Node Learned Async Clk Counter
Signal Src With SIG IVL IVL Mode Counter Range
R8-1 PROBE 0002 1 0 TRANS
R8-1 I/0 MODULE 0002 1 0 TRANS

Figure 4-54: Response File (key_4)

78 BYTES

Priority
Pin

4-141

Parallel /O

program pia data

Stimulus programs and response files are used by GFI to backtrace
from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for

! the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !

! or without the ready circuit working properly. Because of this, all !
! the stimulus programs in the kernel area must disable the READY input !
! to the pod, then perform the stimulus, then re-enable the READY input !
! to the pod. The 80286 microprocessor has a separate bus controller; !
! for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Two fault !
! handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover() program is executed to 1
resynchronize the bus controller and the pod. !

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

! .
! TEST PROGRAMS CALLED: 1
! recover () The 80286 microprocessor has a!
! bus controller that is totally!
! separate from the pod. In '
! some cases the pod can get out!
! of sync with the bus control- !
! ler. The recover program !
! resynchronizes the pod and the!
! bus controller. !
1

1

1

]

1

1

1

1

1

1

1

1

1

1

pia_init () Initalization program for the
8255. Sets port A and B to
output with port C to input.

GRAPHICS PROGRAMS CALLED:
{none}

! Tocal Variables Modified:
devname Measurement device

! Global Variables Modified:
recover times Reset to Zero

(continued on the next page)

Figure 4-55: Stimulus Program (pia_data)

4-142

Parallel 110

trrrrrrrrrrLLERLLLLLIOLLELLOLILIOE LRI EG R LIOLILIEILI LRI RIGRILILIOLI LIS LIERILIOLII LTI EITLIOTI IO LI LISLIRITEILITITTIITIIIIIILIIIITLY

! FAULT HANDLERS:
RN S R R R R R R R RS RN RS SO R R AR R RN

handle pod_timeout_enabled line
recover ()

end handle

handle pod_timeout_recovered
recover (}

end handle

declare global numeric recover times
recover _times = 0

! Let GFI user select which I/0O module to use

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl”

end if

print "Stimulus Program PIA DATA"

Initialize the PIA and setup the measurement device.

reset device devname

pia_init ()

setspace space (getspace space "i/o", size "byte")

write addr $4002, data $AA ! set port B to known value.
sync device devname, mode "pod"

sync device */pod", mode "data"

Present stimulus to the UUT, read PIA port B register onto data bus.
arm device devname ! Start response capture.

read addr $4002 ! read port B

write addr $4002, data $55

read addr $4002
readout device devname ! End response capture.

end pia_data

Figure 4-55: Stimulus Program (pia_data) - continued

4-143

Parallel 1/O

STIMULUS PROGRAM NAME: PIA DATA
DESCRIPTION: SIZE: 326 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG ILVL IVL Mode Counter Range Pin
U31-34 PROBE 0003 TRANS
U31-34 I/0 MODULE 0003 TRANS U21-5
U31-33 PROBE 0004 TRANS
U31-33 I/0 MODULE 0004 TRANS U21-5
U31-32 PROBE 0003 TRANS
U31-32 I/0 MODULE 0003 TRANS U21-5
U31-31 PROBE 0004 TRANS
U31-31 I/0 MCDULE 0004 TRANS U21-5
U31-30 PROBE 0003 TRANS
U31-30 I/0 MODULE 0003 TRANS U21-5
U31-29 PROBE 0004 TRANS
U31-29 I/0 MODULE 0004 TRANS U21-5
U31-28 PROBE 0003 TRANS
U31-28 I/0 MODULE 0003 TRANS U21-5
U31-27 PROBE 0004 TRANS
U31-27 I/0 MODULE 0004 TRANS U21~-5

Figure 4-56: Response File (pia_data)

4-144

Parallel I/0

program pia leds

Stimulus programs and response files are used by GFI to backtrace !
from a failing node. The stimulus program must create repeatable UJT !
activity and the response file contains the known-good responses for

! the outputs in the UUT that are stimulated by the stimulus program.

This Stimulus program uses rampdata at the PIA output port addresses
! to toggle port B.

pia_init () Initalization program for the !
8255. Sets port A and B to
output with port C to input.

GRAPHICS PROGRAMS CALIED:
(none)

1 1
1 1
1 1
1 1
1 1
i 1
1 1
1 1
1 1
! !
{ TEST PROGRAMS CALLED: !
i 1
1 1
1 1
1 1
1 1
1 1
1 1
! Local Variables Modified: !
! devname Measurement device

1 1

! Let GFI user select which I/0 module to use

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print "Stimulus Program PIA LEDS"

! Initialize the PIA port and setup measurent device.
reset device devname
execute pia_init ()
setspace space (getspace space "i/o", size "word")
sync device devname, mode "pod"
sync device "/pod", mode "data"
! Present stimulus to the UUT
arm device devname ! Start response capture.
rampdata addr $4000, data ©, mask SFF
rampdata addr $4002, data 0, mask SFF

readout device devname ! End response capture

end pia_leds

Figure 4-57: Stimulus Program (pia_leds)

4-145

Parallel I/O

STIMULUS PROGRAM NAME: PIA LEDS
DESCRIPTION: SIZE: 1,134 BYTES

Response Data

Nede Learned Async Clk Counter Priority
Signal Src With SIG IVL IVL Mode Counter Range Pin
U31-4 I/0 MODULE EFF7 10 TRANS
U31-3 I/0 MODULE 7628 10 TRANS
U31-2 I/0 MODULE 790E 10 TRANS
U31-1 I/0 MODULE 49CB 10 TRANS
U31-40 1/0 MODULE CO4E 10 TRANS
U31-39 I/0 MODULE 1D3A 10 TRANS
U31-38 I/0 MODULE AlC7 10 TRANS
U31-37 I/0 MODULE 63EB 10 TRANS
U31l-18 I/0 MODULE D37A 10 TRANS
U31-19 I/0 MODULE Al121 10 TRANS
U31-20 I/0 MODULE 6AFA 10 TRANS
U31-21 I/0 MODULE BSFC 10 TRANS
U31-22 I/0 MODULE A71E 10 TRANS
U31-23 I/0 MODULE DAF9 10 TRANS
U31-24 I/0 MODULE 23EF 10 TRANS
U31-25 I/0 MODULE 2F53 10 TRANS
U46-18 PROBE D37Aa 10 TRANS
U46-18 I/0 MODULE D37A 10 TRANS
Ud6-16 PROBE Al21 10 TRANS
U46-16 I/0 MODULE Al21 10 TRANS
U46-14 PROBE 6AFA 10 TRANS
U46-14 I/0 MODULE 6AFA 10 TRANS
U46-12 PROBE B5FC 10 TRANS
U46-12 I/0 MODULE BSFC 10 TRANS
U46-9 PROBE A71E 10 TRANS
U46-9 I/0 MODULE A71E 10 TRANS
U46-7 PROBE DAF9 10 TRANS
U46~7 1/0 MODULE DAF9 10 TRANS
U46~5 PROBE 23EF 10 TRANS
U46-5 I/0 MODULE 23EF 190 TRANS
U46-3 PROBE 2F53 10 TRANS
U46-3 I/0 MODULE 2F53 10 TRANS
U32-18 PROBE EFF7 10 TRANS
U32-18 I/0 MODULE EFF7 10 TRANS
U32-16 PROBE 7628 10 TRANS
U32~16 I/0 MODULE 7628 10 TRANS
U32-14 PROBE 790E 10 TRANS
U32-14 I/0 MODULE 790E 10 TRANS
U32-12 PROBE 49CB 10 TRANS
U32-12 I/0 MODULE 49CB 10 TRANS
U32-¢ PROBE CO4E 10 TRANS
U32-9 I/0 MODULE CO4E 10 TRANS

(continued on the next page)

Figure 4-58: Response File (pia_leds)

4-146

Parallel 1/0

U32-7 PROBE 1D3A 10 TRANS
U32-7 I/0 MODULE 1D3A 10 TRANS
U32-5 PROBE AlC7 10 TRANS
U32-5 I/0 MODULE A1C7 10 TRANS
U32-3 PROBE 63EB 10 TRANS
U32-3 I/0 MODULE 63EB 10 TRANS
R11-2 PROBE 4596 1 TRANS
R12-2 PROBE 4596 1 TRANS
R13-2 PROBE 4596 1 TRANS
R14-2 PROBE 4596 1 TRANS
R15-2 PROBE 4596 1 TRANS
R16-2 PROBE 4596 1 TRANS
R17-2 PROBE 4596 1 TRANS
R18-2 PROBE 4596 1 TRANS
R19-2 PROBE 4596 1 TRANS
R23-2 PROBE 4596 1 TRANS
R24-2 PROBE 4596 1 TRANS
R25-2 PROBE 4596 1 TRANS
R27-2 PROBE 4596 1 TRANS
R28-2 PROBE 4596 1 TRANS
R29-2 PROBE 4596 1 TRANS
R30-2 PROBE 4596 1 TRANS

Figure 4-58: Response File (pia_leds) - continued

4-147

Parallel I/O

program pia init

INITIALIZATION PROGRAM to set up the PIA.

1
i
TEST PROGRAMS CALLED: !
(none) !
1
!
1

GRAPHICS PROGRAMS CALLED:

{none)
IR N N N RN RN NN

1
1
1
1
1
1
1
!

! set address space

setspace space (getspace space "1/o", size "byte")

! Initialize the PIA port

write data $89, addr $4006 ! SET CONTROL REG
write data $FF, addr $4000 ! CLEAR THE A REG
write data $FF, addr $4002 ! CLEAR THE B REG

end pia_init

Figure 4-59: Initialization Program (pia_init)

4-148

Parallel I/O

Summary of Complete Solution for
Parallel I/O 4.5.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Parallel I/O functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the location in
this manual for each file.

UUT DIRECTORY
{Complete File Set for Parallel 1/O)
Programs (PROGRAM):
TEST_PIA Functional Test Section 4.5.5
PIA_DATA Stimulus Program Figure 4-55
PIA_LEDS Stimulus Program Figure 4-57
KEY_1 Stimulus Program Figure 4-47
KEY_ 2 Stimulus Program Figure 4-49
KEY_3 Stimulus Program Figure 4-51
KEY 4 Stimulus Program Figure 4-53
PIA_INIT Initialization Program Figure 4-59
Stimulus Program Responses (RESPONSE):
PIA_DATA Figure 4-56
PIA_LEDS Figure 4-58
KEY_1 Figure 4-48
KEY_2 Figure 4-50
KEY_3 Figure 4-52
KEY_4 Figure 4-54
Node List (NODE):
NODELIST Appendix A
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix B
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-149

Parallel I/O

(This page is intentionally blank.)

4-150

Serial 1/0

SERIAL INPUT/OUTPUT FUNCTIONAL BLOCK 4.6.

Introduction to Serial /0 4.6.1.

The block diagram in Figure 4-60 shows a typical serial I/O port
implemented with a UART (universal asynchronous receiver-
transmitter) surrounded by its direct support circuitry. For the
UART to function properly, all of the support circuitry in Figure
4-1 must function properly.

SIA (serial interface adaptor) chips typically implement all of the
UART block and most of the clock and interrupt blocks. On the
Demo/Trainer UUT, address decoding and interrupt generation
circuits are grouped as separate functional blocks and are
described later in Sections 4.11 and 4.13.

Considerations for Testing and
Troubleshooting 4.6.2.

Testing
The external I/O lines can be divided into two types:

A Serial lines.
b Handshake and control lines.

Testing the handshake lines is straightforward. The status of
input handshake lines can usually be checked by reading a
register and testing the appropriate bit. Similarly, output
handshake lines can be toggled by setting and clearing a bit in an
output register. Testing can be done using the probe or by
connecting output lines back to input lines. Some SIA chips
need initialization before they respond properly.

Testing the serial input and serial output lines is usually done by
connecting the output back to the input. On the Demo/Trainer
UUT, this can be done by setting switches. In general, it is

4-151

Serial /0

From
Microprocessor

Address Clock
Decoding (Baud Rate Generator)
A A
UART Line Drivers

(With Status Register) |

and Receivers

—»

External VO
l¢———

A

Interrupt

Generation

Figure 4-60: Typical Serial /O Port, With Support Circuitry

4-152

Serial I/O

preferable to wire a connector to perform the loopback. This
allows testing the entire interface, including the connector.

UART chips provide data buffers on their inputs. Therefore,
characters can be written to the output side of the UART and the
read at the input side. If this technique is used, two limitations
should be kept in mind:

. Since the input and output baud rates are usually derived
from the same clock, loopback testing will not test for
proper baud-rate timing,.

b The UART must be initialized with the same transmit and
receive baud rate.

One approach to testing the baud rate clock frequency is to set up
the transmitter to send seven bits with no parity. Under these
conditions, when a null character (00 hex) is sent, the result will
be a pulse that is high for eight bit times (start bit and seven data
bits). If the probe is connected to a known-frequency clock
signal and the start and stop lines are connected to the serial
output, the baud rate can be computed. The start line should
cause counting to start on the first bit and the stop line should
stop the count at the end of the last bit. For example, on the
Demo/Trainer UUT, the 8 MHz clock on U1-5 (Figure 4-61)
can be probed and the start and stop lines from the clock module
can be connected to one of the serial output pins (U13-8 or U12-
7). Eight bits at 1200 baud (8/1200 sec) counting 8 MHz the
result should be about 53,333 (D055 hex) counts.

The procedures above do not test the interrupt generation block.
This circuitry, which is described in detail later in Section 4.13,
can be tested by individually enabling the interrupts that are of
interest and then stimulating them by exercising the UART. For
example, to test the character-received interrupt, perform the
following steps:

1. Initialize the interface.

2. Enable the receiver interrupt (usually a bit in a
command register).

4-153

Serial /O

3. With loopback wired, send a character.

4. Verify that the pod received an interrupt using the
readstatus TL/1 command. (This assumes that the
interrupt stays active until serviced.)

Here are some potential problems in testing serial I/O ports:

® The I/O module may load a crystal oscillator enough to
shift the frequency or make it stop oscillating.

® Some SIA chips will not send characters if their handshake
lines are in the wrong state.

® If a loopback test cannot be performed on your UUT, you
can use the RS-232 port on your 9100A/9105A to test the
serial I/O port on the UUT.

Troubleshooting

4-154

The central element of a serial I/O port is the UART or SIA chip.
If troubleshooting is started by clipping the UART, the problem
should be easily isolated. The UART either receives or
generates signals from all of the other circuit blocks. If all
inputs to the UART are good and all outputs are bad, the UART
is bad or its outputs are loaded. If an input is bad, the problem
can be traced into the circuitry that generated it. All of this is
done automatically in GFI.

The serial input and output can be evaluated by writing a series
of characters and counting transitions. The Demo/Trainer UUT
stimulus programs for the serial I/O block work this way.

The Demo/Trainer UUT has built-in switches that loop the serial
outputs back to the inputs. If GFI troubleshooting is done with
the loopback in place, the nodelist must show this connection; if

Serial /O

loopback is done at the connector, the appropriate pins of the
connector can simply be shown on the same node.

The probe has a special threshold level for testing RS-232
signals, which is set up with the TL/1 command:

threshold device "/probe", mode "rs232"
or the operator's keypad command:
SET PROBE LOGIC INPUT LEVEL TO RS232.

If a part has RS-232-level signals, it should be specified as a
probe device in the reflist for the UUT.

The gfi control TL/1 command determines when a stimulus
program is under GFI (or UFI) control. There are many
examples of its use in the stimulus programs that follow. When
a program is under GFI (or UFI) control, the gfi reference
function will return a string describing the device being clipped
or the pin being probed. The following TL/1 example shows
how the gfi ref command could be used in a stimulus program
to change the threshold levels if the components to be tested
require such a change.

if (gfi control) = "yes" then
str = gfi ref
if ((str = "U1l2~14") or {(str = "U1l2-7")) then
threshold device "/probe”, mode "rs232"
else
threshold device "/probe™, mode "ttl"
end if
end if
Serial /O Example 4.6.3.

Figure 4-61 shows the serial I/O port on the Demo/Trainer
UUT. The DUART (dual universal asynchronous receiver-
transmitter), U11, receives serial data input from the keyboard
(RXDA/TXDA) and handles bidirectional signal flow with the
RS-232 port (RXDB/TXDB). Keyboard input must be at 1200

Serial /O

baud. U12 acts as a level shifter, coupling TTL signal levels on
the Demo/Trainer UUT to RS-232 levels at the serial interface;
U12 uses a charge pump to shift levels from a +5V source.

The keystroke functional test that follows is not a complete test
of the RS-232 circuit. The keyboard receive, port 1 transmit,
and port 2 receive lines are not tested between the loopback
switch and the connectors. Also, the test assumes that the
interrupt functional block is good when testing the INT pin
(U11-24).

Keystroke Functional Test 46.4.

4-156

1. Initialize the Dual UART using the EXEC key with the
following command:

EXECUTE UUT DEMO PROGRAM RS23Z INIT

2. Close switches SW4-4, SW4-5 and SW6-4. Now the
Transmit line (Txd) is looped back to the receive line (RxD)
and transmitting a character on TxD will cause the UART to
receive a character on RxD. Then use the SETUP MENU
key with the following command to turn off reporting of
interrupts: '

SETUP POD REPORT INTR ACTIVE OFF

3. Use the WRITE and READ keys with the following
commands to test Port A of the DUART:

WRITE DATA 45 TO ADDR 2006
(ADDR OPTION: I/O BYTE)
READ ADDR 2006 =
(ADDR OPTION: I/O BYTE)
The value read should be 45.

Serial /O

4. Use the WRITE and READ keys with the following

commands to test the Transmit to Receive loopback of Port

B of the DUART:

WRITE DATA 55 TO ADDR 2016
(ADDR OPTION: I/O BYTE)
READ ADDR 2016 =
(ADDR OPTION: I/O BYTE)

The value read should be 55.

You may need to do the READ step up to three times to get
the expected value, since the read buffer can be stacked

three-deep.

5. Use the WRITE and READ keys with the following
commands to test the RTS to CTS loopback of Port B of the

DUART:

WRITE DATA 0 TO ADDR 201A
(ADDR OPTION: I/O BYTE)
WRITE DATA FF TO ADDR 201C
(ADDR OPTION: I/O BYTE)
READ ADDR 201A =
(ADDR OPTION: I/0O BYTE)
Examine the hexadecimal
bit 1 is a 0. Bit 0 is
WRITE DATA FF TO ADDR 201E
(ADDR OPTION: I/O BYTE)
READ ADDR 201A =
(ADDR OPTION: I/O BYTE)
Examine the hexadecimal
bit 1 is a 1. Bit 0 is

value to make sure
the LSB.

value to make sure
the LSB.

4-157

Serial I/0

Keystroke Functional Test

CONNECTION TABLE

TEST ACCESS SOCKET TEST ACCESS SOCKET

STIMULUS AND RESPONSE TABLE FOR DUART PORT A

STIMULUS AND RESPONSE TABLE FOR DUART PORT B

STIMULUS AND RESPONSE TABLE FOR TIMER INTERRUPT

Serial I/O

e
- READY | A3 Hiz ASCII KEYBDARD
CIRCULT NS 7H CONNECTOR
. S5
WEOATA
}—/ 1 HSDATA
W13 u1s S.ew
- _l G
B T uoour
5 | uoont
b B ERTFLD
SHIELD
o BTN
BUS
BUFFER . 410V
B Az pHEo sREE ‘__;;’:
a9k EsK SaK o
5y
RAZz232-C
PORT 1
o
o+

RESET 38
| . B L]
| 37 E
| ADORESS L Swi-s
DECODE ™1 - 1
[

| cLock amd AzsET ‘ Le® Ll
100F 10pF INTERAUPT
KH CIRCUTT
InTH B -
TRTAGT)

Figure 4-61: Serial I/O Functional Test

4-159

Serial 1/0

Programmed Functional Test 4.6.5.

4-160

The test rs232 program is the programmed functional test for
the Serial I/O functional block. This program also tests for
interrupt conditions generated by the Serial I/O circuit.

First, the program initializes the DUART U11 and prompts the
test operator to close the loopback switches which connect Port
A transmit to Part A receive, connect Port B transmit to Port B
receive, and connect Port B Request To Send (RTS) to Port B
Clear To Send (CTS).

Next, Port A is checked by transmitting a character and
examining the receive buffer for the same character.

And finally, a character is transmitted on Port B which also
generates an interrupt condition. Two pod programs called
Jrc_int and rd_cscd are executed to check proper operation of the
interrupt logic. After that, the receive buffer is examined for the
same character that was transmitted. This clears the interrupt
condition. Then the frc_int program is executed again to make
sure the interrupt condition has been cleared. A register in the
DUART is then checked to see that the RTS/CTS loopback
worked properly.

If any of the above operations fail, the gfi fest command is used
to find a failing signal. GFI then takes control and backtraces to
the source of the failure.

If a problem is detected in the interrupt circuit, the s¢_intrpt
program (programmed test of the Interrupt Circuit functional
block) is executed.

Serial I/0

program test rs232

rearms the pod to respond to
the next interrupt.

! FUNCTIONAL TEST of the SERIAL I/0 functional block. !
1 1
! This program tests the SERIAL I/0 functional block of the

! Demo/Trainer. The two RS-232 ports are tested by setting three Dip !
! switches to loop back the two ports (SW4-4, SW4-5 and SWé-4 loop back !
! ports A and B}. The SERIAL I/O functional block also outputs two !
! interrupt request signals. This program also checks the interrupt !
! ecircuitry. !
1 1
! fre int () POD PROGRAM forces repetitive !
! interrupt acknowledge cycles !
1 and returns first interrupt

! vector found on data bus. !
1 1
! rd csed () POD PROGRAM returns the 24 bit!
! interrupt cascade address that!
! was found on the address bus !
! during the last interrupt

! acknowledge cycle.

1 1
! rd_rearm [¢] POD PROGRAM returns the most !
! recent interrupt vector and

1 1
1 1
1

declare
string g ! used to get input from keyboard
global string rev ! Reverse Video escape sequence
global string norm ! Normal Video escape sequence

end declare

function sync buffer(address, data)
declare numeric address
declare numeric data

! Synchronize FIFO buffer in DUART. Write and then read until correct data
! is returned or count has expired.

write addr address, data data ! Transmit Data 31 on port A
wait time $200
cnt =0 \x=0
loop until x = data or cnt > 3
X = read addr address
cnt = cnt + 1
end loop
end function

4-161

Serial 1/0

4-162

! Set interrupt acknowledge cycles on and use the 80286
! pod specific programs rd_rearm(), frc int() & rd_cscd(}.

podsetup ‘report intr' "off"

podsetup ‘'intr_ack on' ! Enable Interrupt Ack. cycles
option = getspace space "i/o", size "byte"

setspace (option)

execute check_loop ()

execute rd rearm(} t Clear interrupts

! Main part of Test. Verify DUART port A.

sync_buffer($2006, $61) ! Synchronize FIFO in DUART for port A

write addr $2006, data $55 ! Transmit Data 31 on port A

wait time $200

if ((read addr $2002) and $F) <> $D then fault °'RS232 Port A failed' \ return
if (read addr $2006) <> $55 then fault 'RS232 Port A failed' \ return

write addr $2006, data $55 ! Transmit Data 31 on port A

wait time $200
if ((read addr $2002) and $F) <> $D then fault ‘'RS232 Port A failed® \ return
if (read addr $2006) <> $55 then fault 'RS232 Port A failed' \ return

! Verify DUART port B and interrupts.

sync buffer($2016, $61) ! Synchronize FIFO in DUART for port B
write addr $201E, data S$FF ! set output port low
write addr $2016, data $31 ! Transmit Data 31 on port B

if frc int () <> $22 then fault ‘Interrupt failed' \ return

if rd cscd() <> $2016 then fault ‘'Interrupt failed* \ return

if (readstatus() and 8) <> 8 then fault 'Interrupt failed' \ return

if (read addr $2016) <> $31 then fault *'RS232 Port B failed' \ return

if frc int () <> $27 then fault 'Interrupt failed' \ return

write addr $201C, data S$FF

if ((read addr $201A) and 2) <> 0 then fault 'RS232 Port B failed' \ return

end program

Serial I/0

i Stimulus Programs and Responses 4.6.6.

Figure 4-62 is the stimulus program planning diagram for the
Serial I/O functional block. The Serial I/O stimulus programs
require the test operator to close the loopback switches which
loop the transmit lines back to the receive lines and loop the Port
B RTS output back to the Port B CTS input.

The r5232_data stimulus program outputs data from the DUART
onto the data bus. The rs232_[vi stimulus program sends a
character out the transmit line and then monitors RS232-level
signals using the probe with the threshold levels set to "rs232".
The #_Ivl stimulus program is the same as rs232_Ivl except that
signals are measured using a level threshold of "ttI".

All the stimulus programs execute rs232 init before any
measurements are made on the Serial 1/O circuitry.

4-163

Serial I/0

PROGRAM: TTL_LVL

EXECUTES RS232..INIT AND EXERCISES RS-232
CIRCUITRY AT TTL LEVELS

MEASUREMENT AT:

U11-33,14,24,13,15,17
U12-12.9
U13-68

INITIALIZATION PROGRAM: RS232_INIT

INITIALIZES THE DUART

MEASUREMENT AT:

(NONE)

4-164

Serial I/O

READY
CIRCUTT

I

MIC

BOZEE
ROFROCESSOR

Bus
BUFFER

DUART
2681

LESTY

AxDE

ADDRESS
DECODE -J

CLOCK AND BESET e

|

INTR

THOE

5

ASCTT KEYBOAAD
CONNECTOR

JE
HEGATE

HBDATE

TERST

Axpalds

HAX23Z

100F T sver

ny

. TH
Lk}

THEA

T/GIHT

IRTRET

Figure 4-62: Serial I/O Stimulus Program Planning

4-165

Serial 1/O

program rs232_data

STIMULUS PROGRAM for Ull data lines as outputs.

stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to t
resynchronize the bus contreller and the pod. i

1

1

1

TEST PROGRAMS CALLED:
rs232_init () Initialize the RS232 circuit.

recover { The 80286 microprocessor has al
bus controller that is totally!
separate from the pod. In !
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program 1
resynchronizes the pod and the!
bus controller. !

GRAPHICS PROGRAMS CALLED:
(none}

Global Variables Modified:
recover times Reset to Zero
devname Measurement device

declare global numeric recover times

(continued on the next page)

Figure 4-63: Stimulus Program (rs232_data)

Serial I/O

handle pod_timeout_enabled line
recover (}

end handle

handle pod_timeout_recovered
recover (}

end handle

! Main part of STIMULUS PROGRAM

recover_times = 0
! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print "Stimulus Program RS232_DATA"

! Set addressing mode and setup measurement device.

reset device devname

execute rs232_init ()

setspace space (getspace space "i/o", size "byte")
sync device devname, mode “pod"

sync device "/pod", mode "data"

! Present stimulus to UUT.

arm device devname ! Start response capture.
read addr $200A
read addr $201A
read addr $2012
read addr $201A
read addr $2000
readout device devname ! End response capture.

end program

Figure 4-63: Stimulus Program (rs232_data) - continued

4-167

Serial I/O

STIMULUS PROGRAM NAME: RS232 DATA
DESCRIPTION: SIZE: 318 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG ILVL IVL Mode Counter Range Pin
Ul1l-18 PROBE 000B 1 0 TRANS
Ul1l-18 I/0 MODULE 000B 1 O TRANS
Ulil-19 PROBE CO0E 1 O TRANS
Ull-19 I/0 MODULE OOOE 1 0 TRANS
Uli-20 PROBE 000A 1 0 TRANS
Ul1~20 I/0 MODULE 000A 1 O TRANS
Ull-21 PROBE 000A 1 0 TRANS
U11-21 I/0 MODULE O000A 1 0 TRANS
Ul1-25 PROBE 000A 1 0 TRANS
Ul1-25 I/0 MODULE CO00A 1 O TRANS
Ul1l-26 PROBE 001Aa 1 0 TRANS
Ull-26 I/0 MODULE O00l1A 1 0 TRANS
U11-27 PROBE 00CF 1 O TRANS
U11-27 I/0 MODULE OOOF 1 O TRANS
Ul1-28 PROBE 001B 1 0 TRANS
Ulil-28 I/0 MODULE 001B 1 O TRANS

Figure 4-64: Response File (rs232_data)

4-168

Serial I/0

program rs232_1lvl

STIMULUS PROGRAM for DUART serial circuits at TTL levels.

Stimulus programs and response files are used by GFI 56 backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
i
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to H
resynchronize the bus controller and the pod.
1
1
1
1
1
1
1
1
1
1
1
t
1
!

TEST PROGRAMS CALLED:
rs232_init () Initialize the RS232 circuit.

check_loop () Check that loop-back switches !
are closed. Prompt if the
switches are not closed.

GRAPHICS PROGRAMS CALLED:
(none)

Local Variables Modified: !
string to accept keypad input.!

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl”

end if

print *Stimulus Program RS232 LVL"

(continued on the next page)

Figure 4-65: Stimulus Program (rs232_i)

Serial 1/0

! Set addressing mode and setup measurement device.

reset device devname

execute rs232_ init ()

setspace space (getspace space "i/o", size "byte")
sync device "/probe", mode "freerun"

thresheold device "/probe", level "rs232%

execute check loop(} ! check if the loop back switches are set.

! Present stimulus to UUT.

arm device devname ! Start response capture.
write addr $2006, data $55 ! Txd port A
write addr $2006, data $D ! Txd port A
write addr $2016, data $55 ! Txd port B
write addr $2016, data $D ! Txd port B
readout device devname ! End response capture.

end program

Figure 4-65: Stimulus Program (rs232_Ivi) - continued

4-170

Serial I/0

STIMULUS PROGRAM NAME: RS232 IVL

DESCRIPTICN: SIZE: 249 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With sIG ILVL LVL Mode Counter Range Pin
Uiz-7 PROBE 10 TRANS 8
Ul2-14 PROBE 1 TRANS 0
J2-3 PROBE 10 TRANS 8
J2-5 PROBE 1 TRANS 0
R22-2 PROBE 1 TRANS 0
Ul2-1 PROBE 1 TRANS
Ul2-2 PROBE 1 TRANS
Cl15-2 PROBE 1X TRANS
Ul2-4 PROBE iX TRANS
C17-2 PROBE 1X0 TRANS
Ul2-6 PROBE X TRANS

Figure 4-66: Response File (rs232_IvI)

4-171

Serial 1/0

program ttl lvl

! STIMULUS PROGRAM for DUART serial circuits at TTL levels. !
1 1
! Stimulus programs and response files are used by GFI to back-trace !
! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. !
1 1
! TEST PROGRAMS CALLED: !
! rs232_init () Initialize the RS232 circuit. !
1 1
! check loop () Check that loop-back switches !
! are closed. Prompt if the

! switches are not closed. !
1 1
! GRAPHICS PROGRAMS CALILED: !
! {none} !
! !
! Local Variables Modified: !
! q string to accept keypad input.!
! devname Measurement device !
SRR RN N SN N R SN RN R RN RN

declare string q

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print “Stimulus Program TTL_LVL"

(continued on the next page)

Figure 4-67: Stimulus Program (tt_Ivi)’

4-172

Serial 110

‘ ! Set addressing mode and setup measurement device.

reset device devname

execute rs232_init ()

setspace space (getspace space "i/o®, size "byte")
sync device "/probe", mode *pod"

sync device "/pod", mode "data"

threshold device "“/probe", level "ttl"

execute check loop() ! Check 1f loop back switches are closed.
! Present stimulus to UUT.
arm device devname Start response capture.

1
write addr $2006, data $55 ! Txd port A
write addr $2006, data $D ! Txd port A
1
1
i

write addr $2016, data $55 Txd port B

write addr $2016, data $D Txd port B

write addr $201C, data $FF !

write addr $201E, data $FF ! Pulse timer interrupt.
readout device devname ! End response capture.

end program

Figure 4-67: Stimulus Program (tt!_Ivl) - continued

4-173

Serial 1/0

STIMULUS PROGRAM NAME: TTL ILVL

DESCRIPTION: SIZE:
Response Data
Node Learned Async Clk Counter
Signal Src With 8IG IVL LVL Mode Counter Range
Ul1-13 PROBE 10 TRANS 8
Ull-14 PRCBE 10 TRANS 1
Ul11-33 PROBE 10 TRANS 8
U11-33 I/0 MCDULE 10 TRANS 8
Ul1l-15 PROBE 10 TRANS 1
Ul1-15 I/0 MODULE 10 TRANS 1
Ul1-17 PROBE 10 TRANS 1
Ul1l-24 PROBE 10 TRANS 0
Ul11-24 I/0 MODULE 10 TRANS O
U12-12 PROBE 10 TRANS 8
U12-9 PROBE 10 TRANS 1
Ul3~6 PROBE 10 TRANS 8
Ul3-6 I/0 MODULE 10 TRANS 8
U13-8 I/0 MCDULE 10 TRANS 8

4-174

Figure 4-68: Response File (tt!_Ivl)

368 BYTES

Priority
Pin

Serial 1/0

program rs232_init

Trrpsrre e rren sttt r R R TR I I I I T LIELILIIIIILILIIOIIIILIRILILIII I IOISEIIIIIIIIILIOYLISYL

TEST PROGRAMS CALLED:
{none})

GRAPHICS PROGRAMS CALLED:
{none)

INITIALIZATION PROGRAM for SERIAL I/0 functional block.

setspace space (getspace space

write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write

addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr

$2004,
$2004,
$2004,
$2004,
$2004,
$2014,
$2014,
$2014,
52014,
$2014,
$2000,
$2000,
$2010,
$2010,
$2002,
$2012,
$2008,

read addr $2002
read addr $2000

end program

data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data

$15
$25
$35
$45
$55
$15
$25
$35
$45
$55
$13
7
$13
7
$66
$BB
$20

"i/o", size

Cmnd
Cmnd
Cmnd
Cmnd
Cmnd
Crand
Cmnd
Cmnd
Cmnd
Crind
Mode
Mode
Mode
Mode

Read Status Reg A
Read Command Reg A

Reg A:
Reg A:
Reg A:
Reg B:
Reg B:
Reg A:
Reg A:
Reg A:
Reg B:
Reg B:

"byte")

reset
reset
reset
reset
reset
reset
reset
reset
reset
reset

register 1A
register 2A
register 1B
reglster 2B
Clock select register A
Clock select register B
Interrupts for port B

Rxd
Txd
Errors
Rxd
Txd
Rxd
Txd
Errors
Rxd
Txd

Figure 4-69: Initialization Program (rs232_init)

Serial I/O

Summary of Complete Solution for
Serial I/0 4.6.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Serial I/O functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the location in
this manual for each file.

UUT DIRECTORY
(Complete File Set for Serial I/O)
Programs (PROGRAM):
TEST_RS232 Functional Test Section 4.6.5
RS232_DATA Stimulus Program Figure 4-63
RS232_LVL Stimulus Program Figure 4-65
TTL_LVL Stimulus Program Figure 4-67
FREQUENCY Stimulus Program Figure 4-117
LEVELS Stimulus Program Figure 4-92
RS232_INIT Initialization Program Figure 4-69
Stimulus Program Responses (RESPONSE):
RS232_DATA Figure 4-64
RS232_LVL Figure 4-66
TTL_LVL Figure 4-68
FREQUENCY Figure 4-118
LEVELS Figure 4-93
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-176

Video Output

VIDEO OUTPUT FUNCTIONAL BLOCK 4.7.

Introduction to Video Output Circuits 4.7.1.

Video output circuits are part of larger video display circuits. In
general, video display circuits can be divided into two basic
classes: video display controllers and intelligent command-
oriented display systems, which are a superset of video display
controllers. In this manual, we will limit our discussion to video
display controllers.

Figure 4-70 is a block diagram of a typical, complete video
display controller, of which video output is one functional
block. On the Demo/Trainer UUT, address decoding is
partitioned as a separate functional block and is described later in
Sections 4.11. Often, much of the video control circuitry is
performed by a VDC (video display controller) chip. On the
Demo/Trainer UUT, most of the video output block is
implemented with a single LSI chip.

The video output block typically performs all or some of the
following functions:

® Converts video RAM character or dot graphics signals
(typically on a bus) to higher-speed (typically serial) pixel
outputs that drive the monitor. This is usually done with
shift registers.

® Modifies the meaning of video RAM color-data outputs
according to a color look-up table or palette RAM.

. Converts the pixel output to analog or digital signals
compatible with the monitor.

Considerations for Testing and
Troubleshooting 4.7.2.

The Video Output functional block simply processes information
presented to it by the Video Control and Video RAM functional
blocks. All three video blocks can be considered good if the

4-177

Video Output

Address
Decoding
Circuit

A

3z

From - laisplay Video Processing "
A S emory »| and Output To Monitor

Microprocessor and Memory ; ;
— ACCess Shift Register |—»

4 [

A

Video Control
and Timing

Figure 4-70: Typical Video Controller Circuit

Video Output

O final outputs of the Video Output functional block are good.
Because of this, the Video Output functional block is tested first.

While a generalized approach to testing Video Control functional
blocks is feasible, testing Video Output and Video RAM
functional blocks is strongly dependent on the design of the
UUT.
The general approach for testing video circuits is to initialize
video RAM and any other RAM sections so that some regular
pattern will occur each frame. When this is done for each mode,
there should be a way to capture stable signatures on the
outputs.
To test video output:

1. Initialize the video control circuit.

2. Initialize the video RAM with blinking disabled.

For horizontal sync and vertical sync:
3. Probe the horizontal sync and vertical sync outputs.
4. Compare all frequencies to those from a known-good
UUT.
For video outputs:

3. Connect the clock module's external CLOCK,
START, and STOP lines.

4. Compare signatures of TTL-level video outputs to
those from a known-good UUT.

5. You can check the level history of any non-TTL-level
video outputs to verify that they are toggling.

4-179

Video Output

Connecting the Start and Stop lines to the vertical sync line will
usually work. The Clock line should be connected to the high-
speed clock that drives the video output shift registers.

Video outputs are sometimes high-speed analog signals.
Fortunately, any digital-to-analog conversion is usually done at
the last step before the monitor. By measuring the digital signals
that drive digital-to-analog converters, most of the circuit can be
tested with the 9100A/9105A.

Furthermore, many of the monitors for personal computers
accept TTL-level signals. Video cards that put out such TTL-
level signals can be checked by the 9100A/9105A at these TTL-

level video outputs.

Choose your measurement device to suit the data rate of the
signals you are measuring. If the Video Output signals exceed
the maximum data rate of the I/O modules (10 MHz), the probe
should be used.

Testing should be started in the mode that tests as much of the
video display circuitry as possible. In a color graphics circuit,
this might be the highest resolution mode with the most colors.
Simple tests in other modes can then be used to cover circuitry
not tested with the more extensive test.

When selecting the Start and Stop signals for signature analysis,
connect to the slowest repetitive signal, relative to the circuitry
being tested. This will usually be the vertical sync signal.

To test blinking cursors, it may be easiest simply to probe an
internal line to make sure it is blinking rather than run a test
program. Other similar modes may also be faster to test with the
probe.

Video Output Circuit Example 4.7.3.

4-180

The Video Output functional block, shown in Figure 4-71,
consists of the 2675 attributes controller chip (U78) and
associated circuitry. The 2675 contains a programmable dot

Video Output

Q clock divider to generate a character clock, a high-speed shift
register to convert parallel pixel data into a serial stream, latches
and logic to apply visual attributes (e.g. colors) to the resulting
display, and logic to display a cursor on the monitor.

Associated circuitry includes latches U87 and U76, which clock
in display information provided by the character PROM, and Q1
and Q2, which boost the video signal before it is mixed with the
horizontal and vertical sync signals at the monitor to be
connected at J3.

The circuitry from the Video Control functional block up to the
2675 attributes controller chip (U78) clocks video data in
character format. This means that the code for a character and
the attributes for that character are clocked toward the 2675 chip.
The attributes controller converts the parallel character
information to pixel data.

The circuitry after U78 should be initialized without blinking
characters in the video screen, otherwise the pixel stream will
change when the characters blink. However, the circuitry
between the video control and U78 may contain blinking
characters, since the blinking characters are determined by an
attribute bit which is stable.

Keystroke Functional Test 4.7.4.

Before testing any part of the video display circuitry, the video
controller and video RAM must be initialized. The TL/1
programs video_init, video fill, and video fil2 are used for
initialization of the Demo/Trainer UUT video circuitry. Figure
4-79 shows the video init program, which contains a sequence
of write commands needed to initialize the Video Control
functional block. Figures 4-80 and 4-81 show the video fill
and video_fil2 programs, which write blocks of data to video
RAM.

4-181

Video Output

4-182

. Use the EXEC key with the following commands to initialize

the video circuit and to fill the video RAM with a test pattern.

EXECUTE UUT DEMO PROGRAM VIDEQ_ INIT
EXECUTE UUT DEMO PROGRAM VIDEO FIL1

. Connect the external control lines of the clock module as

follows:

Clock to 16MHZ (U25-9)
Start to VSYNC (U72-18)
Stop to VSYNC (U72-18)
Enable to BLANK (U72-17)

. Use the SYNC and PROBE keys with the following

commands to measure the node response for the video
output signals (TTV1, TTLV2, and VIDEO). The pins to be
probed and the correct responses are shown in the response
table of Figure 4-71.

SYNC PROBE TO EXT MOD ENABLE LOW CLOCK | ...
. sTarT | sTtop T

ARM PROBE FOR CAPTURE USING SYNC

SHOW PROBE CAPTURED RESPONSES <see ..
. response table>

. Use the PROBE and SOFT KEYS keys with the following

command to measure frequency of the video synchronization
signals. The results for each sync signal (HSYNC and
VSYNC) are shown in the response table of Figure 4-71.

FREQ AT PROBE

Video Output

(This page is intentionally blank.)

4-183

Video Output

Keystroke Functional Test

CONNECTION TABLE

{NONE)
CLOCK u25-9 u7s
START 72418 13
STOP ure-1s
EMARLE U727
RESPONSE TABLE

CLOCK AND RESET - B0286 BUS
: Fee | MICADPROCESSOR SUFFER

| 1EMHT HEADYT “‘—_‘—J

READY VIDED

CIACUIT RaM

i

VRAMADY .

4-184

Video Output

g AES

158

DADDD4 4
DADOOS S
DADO0E 17
DADROT 13 |
BV 1
L504 1 +Bv
BLANK 3 [4 8 X |
-
s 18 07
0803 o 18 DB
0801 17 DB
oac: 3 D4
|| o=oz 3 E 5y
DE0 =S PER!
DEOS “ RE 01 .

4 sl AS3 pAB4
oBos - Llato oot oe 458 gasa
Deo7 EXN i

| | oetia ALZ o
DH1% o
. T oiue
E
DABELY - COLOR/MONOCHROME
DaDOD1D o S ATTRIBU :EqSS?gDNTHDLLEH
11
ALSOB el
| |ceae
DBOZ
 |omin
OB11 .
oB12 B oz g3 i CURSOR NS
DB13 7 ln= a: | 12 Blank TTLVY
o 33 15 .
4 o1 a1 5 MG | Er TTLYVE
2 oo aol 2 _NC —322ncLk
FE — .
L 08 s 1BMHL |
TTLve
= TIva
ABE) REY RBE
CURSOA 330 gaso ERES
BLANK S cas l
CCLE | P l I
i Z‘Q Uﬁ9s aeutva a0z
SWE-2 . 2. aK
| +EV 46 586
| 9y
10
HE YN i \\—SS-S ! J
2_)] wea 3 ~
L]
45V 12
VSYNG 13[] ues il

Figure 4-71: Video Output Functional Test

4-185

3 Video Output

Programmed Functional Test 4.7.5.

The test video program is the programmed functional test for the
Video Output functional block. This program uses the gfi test
command and the probe to measure the output of the video
circuit.

If the video outputs fail, the program executes programmed
functional tests for the Video Control functional block and the
Video RAM functional block. If either of these functional tests
fails, GFI will take control and begin backtracing. If neither test
fails, the problem is in the Video Output functional block and the
test video program passes control to GFI to start backtracing
from the video outputs that failed.

program test_video

Tttt rr L LRLELCLLOLIOIILCOELELLILIOLTIRIEELIOEI LI LI TITERITIIIITITITTIIEILTITITLITTIIIIIIIIIIterrrnat

! FUNCTIONAL TEST of the VIDEO functional block !
] !
! This program tests the VIDEO functional block of the Demo/Trainer. !
! The video test uses the gfi test command to run stimulus programs and !
! to check the outputs of the Video circuit against the stimulus program!
! response files. The gfi test command returns a passes status if all !
! the measured results from running the stimulus programs match the !
! response files. Otherwise the gfi test command returns a fails !
! status. !

! Setup and initialization.

connect clear "yes"
podsetup ‘enable ~ready' “on"
print "\nl\nl"

! Main part of Test.

if gfi test "J3-8" fails then fault video_scan \ return
if gfi test "J3-9" fails then fault video_scan \ return

if gfi test "U78-11" fails then fault video_scan \ return
if gfi test "U78-28" fails then fault video output \ return
if gfi test "U78-29" fails then fault video output \ return
if gfi test "J3-7" fails then fault video output \ return

end program

4-186

O

Video Output

Stimulus Programs and Responses 4.7.6.

Figure 4-72 is the stimulus program planning diagram for the
Video Output functional block. The video freq stimulus
program initializes the video registers and then measures
frequency. The video_scan stimulus program initializes video
RAM with blinking characters by executing video_ fill. The
video out stimulus program initializes video RAM without any
blinking characters by executing video _fil2. Not having
blinking characters results in stable signatures in the circuitry
between U78 and the video output connector.

All the stimulus programs execute video_init before any
measurements are made on the video circuitry.

4-187

Video Output

Stimulus Program Planning

INITIALIZATION PROGRAM: VIDEO_FIL1

INITIALIZES VIDEQ RAM WITH BLINKING
CHARACTERS

MEASUREMENT AT:

INONE)

INITIALIZATION PROGRAM: VIDEO_INIT

INITIALIZES VIDEC REGISTERS TO STANDARD
OPERATING MODE

MEASUREMENT AT:

(MONE)

INITIALIZATION PROGRAM: VIDEO_FIL2

INITIALIZES VIDEQ RAM WITHOUT BLINKING
CHARACTERS

MEASUREMENT AT:

(NOME)

PROGRAM: VIDEO_OUT

EXECUTES VIDEO_INIT, VIDEO_FIL2, AND
MEASURES ALL CIRCUITRY WHERE DATA IS
CLOCKED THROUGH BY PIXELS

MEASUREMENT AT:

U78-28.29
uss-6.8
R72-2, R71-2
a1-1

Qz2-1

CLx .]
CLOCK AND RESET = 80285 IR 8Us]
MICAOPADCESSOR | BUFFER |

I L

- 1
| 1BMHZ READY
READY VIDED
CIACULT RAM

WEAMADY

4-188

Video Output

CappDos &

DADDOS & |
DADDOE 12

DADDO? 13

o4

LS
BLANK 3 :@ =]

oBQ

¥5V =t

+5V
REL JAEZ JRE3 (AB4 JAES
158 {158 {158 {158 {158
- - L ca1
T .otuF
1
A
Ao COLOR/MONDCHROME
ADD11 .
DADDI0 ATTRIBUTES CONTROLLER
2675
ALS08 L 1; BLINK |
A3 : |

S0R

oo

D1
D2 RELANK

D3

AHILT w0 5
ABLANK

A0OUBLE

ARVID

APGS
ARG

GPE
GP 1
TTLV 4
TTLVE=E==

HSYNC

SB6

VSYNC

sBE

4 |
=]§ u@ﬁ_lw
SBE
Elve .
| 107 usa WB_ OUTVEL
<7 o

S

SE6

+EY 12
— .J@j uea)ﬁ
i

Figure 4-72: Video Output Stimulus Program Planning

4-189

Video Output

program video freq

Trrprretrrrnrpnpren e n SRR IR R LIILILEIPIEILIII YIRS LITIIOILIIOBITILIIIILIG LI TITIITILIIITITII e

STIMULUS PROGRAM to measure frequency in video circuit.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

GRAPHICS PROGRAMS CALLED:
{none)

Local Variables Modified:

1

1

1

1

1

t

!

! TEST PROGRAMS CALLED:
1

r

1

1

1

1

! devname Measurement device
1

t
1
1
1
1
1
1
1
video_init () Initialize video !
1
1
1
1
1
1
1

! FAULT HANDLERS: !
IR RN R S R N S N R R N RN R R R R R NS R E S SRR RN R RS SRS

handle pod timeout enabled line
recover (}

end handle

handle pod_timeout_recovered

recover ()
end handle

1B R R R R R SR RN RN RN

! Main part of STIMULUS PROGRAM !
RS N R R R R R R R R R N SRR S S R N N R SRR

recover times = 0
! Let GFI determine the measurement device

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/probe"

end if

print *\1B[2J"

print "Stimulus Program VIDEO FREQ"

! Initialize and Setup desired measurement mode
reset device devname
execute video init ()
counter device devname, mode "freq"

! No stimulus is applied; response is frequency

arm device devname ! Start response capture
readout device devname ! End response capture

end program

- Figure 4-73: Stimulus Program (video_freq)

Video Output

STIMULUS PROGRAM NAME: VIDEQO FREQ
DESCRIPTION:

Node
Signal Src

U72-17
U72-17
U72-18
U72-18
U72-19
U72-19
U78-33
U78-33
Ugs-3

Ugg-11
U70-11
U70-11
U62-4

SIZE:

Learned
With

PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
PROBE
PROBE
I/0 MODULE
I/0 MODULE

Figure 4-74: Response File (video_freq)

SIG

Response Data
Async Clk Counter
ILVL IVL Mode

FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ

[l e I SR S S PRI S
cooO0cOOoO0OCOOO OO

Counter Range

14300-14500
14300-14500
59-61

59-61
16700-16800
16700-16800
1770000-1780000
1770000~-1780000
16700-16800
59-61
1770000-1780000
1770000-1780000
14300-14500

345 BYTES

Priority
Pin

Video Output

program video out

Trrrrrrernnprr LRI LI LI LIILEILIEITITI LI LI LRI RIREI I TITILII I RIRILILIIII I IRLILILIIIGITIRRILIIIIIIIILIY

STIMULUS PROGRAM measures character scan circuitry from U78 to output.!

Stimulus programs and response files are used by GFI to backtrace

from a faliling node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

video init () Initialize video ciruit.

video fil2 () Initialize data in video RAM
with no blinking characters

1 !
1 1
1 1
i 1
1 1
1 1
! !
! TEST PROGRAMS CALLED: !
1 1
1 1
t 1
1 1
1 1
! check meas (device, start, stop, clock, enable) !
! Checks to see if the measure- !
! ment is complete using the i
! TL/1 checkstatus command. If
! the measurement times out then!
1
1
1
1
1
1
1
1
1

redisplay connect locations. !

GRAPHICS PROGRAMS CALLED:
(none)

Local Variables Modified:
done returned from check meas ()

devname Measurement device
T1rrrnprterLLLILL NI LIO LTI TILILIIbR RGP ERLILIIOLIYIRILIIRIRITLRITLITLITTITLTITTITTIOTITRIRITRTLITTITTITTITTITITTITYEITTITEITTITITITTITITILIIrny

! Main Declarations
ISR U U O O O O 0 0 N O O N O O R OO0 O O 0 0 0 0 A A A A N A A A A O A A O O O O O |

declare numeric done = 0

trrrrrrrrrrrrrr L rr LTI TR R R LIILIIIITLIOIILTIRER R R LIIILI LI LI RIS IR R R LI LI LI LRI RIEILIOLITIIILIILIOILILILIGLTY

! Main part of STIMULUS PROGRAM !
IR R RN R RN R A RN EE RN SN

! Let GFI determine measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/probe"

end if

print "\1B[2J"

print "Stimulus Program VIDEQ OUT"

(continued on the next page)

Figure 4-75: Stimulus Program (video_out)

4-192

Video Output

! Initialize and Prompt user to connect external lines

execute video_init ()
execute video fil2()
connect device devname, start "U88-13", stop "U88-13", clock "U25-9", common "gnd"

! Setup desired measurement modes.

reset device devname

sync device devname, mode "ext”

enable device devname, mode "always"

edge device devname, start *-", stop "+", clock "-"
old cal = getoffset device devname

setoffset device devname, offset (1000000 + 40)

! Present stimulus to UUT.

loop until done = 1
arm device devname
done = check_meas (devname, "U88-13", "U88-13", "U25-9", "*")
readout device devname
end loop

setoffset device devname, offset old cal
end program

Figure 4-75: Stimulus Program (video_out) - continued

4-193

Video Output

STIMULUS PROGRAM NAME: VIDEO OUT
DESCRIPTICON: SIZE: 200 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL 1IVL Mode Counter Range Pin
U78-28 PRCBE B013 10 TRANS 4431
U78-29 PROBE BE4A7 10 TRANS 6359
Ugg-6 PROBE 10 TRANS 4431
ugg~8 PROBE 10 TRANS 6359
R72-2 PROBE 1X0 TRANS
Q2-1 PROBE 1X TRANS
Q1-1 PROBE 1X0 TRANS

: R71-2 PROBE 1X0 TRANS

Figure 4-76: Response File (video_out)

Video Output

program video_ scan

! STIMULUS PROGRAM to measure character scan circuitry from U72 to U78. !
1 1
! stimulus programs and response files are used by GFI to back-trace !
! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. i
1 1
! TEST PROGRAMS CALLED: !
! video_init () Initialize video ciruit.

1 1
! video fill () Initialize data in video RAM

1 1
! check meas (device, start, stop, clock, enable) !
! Checks to see if the measure- !
! ment is complete using the

! TL/1 checkstatus command. If !
! the measurement times out then!
! redisplay connect locations.

1 1
! GRAPHICS PROGRAMS CALLED:

! (none) !
! 1
! Local Variables Modified: !
I done returned from check_meas ()

1 devname Measurement device
llllllllll!lllllll!ll!lv trerrpreprnrn LRI L RLLILIILIIITIRLILILILIILILIISLILILIY

handle pod_timeout_enabled line
recover (}

end handle

handle pod_timeout recovered
recover ()

end handle

! Main part of STIMULUS PROGRAM 1
TrrrrIILLILTIILTILIOLILILIOLIILIII LI TIS LTI I T LIRIRILIIII I LIS T ETITIIIIOILIIGRSELITIIILISLEIILITLITIIIITIL ettt

recover_times = 0

(continued on the next page)

Figure 4-77: Stimulus Program (video_scan)

4-195

Video Output

! Let GFI determine measurement device.

if (gfi control} = "yes" then
devname = gfi device
measure ref = gfi ref

else
devname = "/modl"
measure_ref = "U72"
end if

print "Stimulus Program VIDEO SCAN"

Initialize and Prompt user to connect external lines

execute video init ()

execute video_fill ()

connect device devname, start "U88-13", stop "U88-13", enable "U78-12",
clock "U78-33", common "gnd"

Setup desired mesurement modes.

reset device devname

sync device devname, mode “ext"

enable device devname, mode "low"

edge device devname, start “-", stop "+", clock "-"

Present stimulus to the UUT.

The blink signal node (U72-23 to U78-11) has a signature of 0000 50% of the time
and the signature in BLINK SIG the rest of the time. If U72 or U78-11 is being
tested, make sure both a zero and the signature in BLINK SIG are measured

on the node. The signature that gfi will evaluate is the signature in the
variable BLINK SIG.

done = 0 \ done2 =0
cnt = 0 \ blink =0
loop until done = 1 and done2 = 1 or cnt > 12
arm device devname
done = check_meas (devname, "U88-13%, “Ugg-13“, "U78-33", "U78-12")
if done = 1 then if checkstatus (devname} <> $F then done2 =1
readout device devname
if measure ref = "U78-11" then
if (sig device devname, pin 11)=0 then blink =1
if (sig device devname, pin 11)=BLINK SIG and blink=1 then done2=1
else 1f measure ref = "U72" then
if (sig device "U72", pin 23)=0 then blink = 1
if (sig device "U72", pin 23)=BLINK SIG and blink = 1 then done2 = 1
else
done2 =1 ! Don't loop if not U72 or U78-11
end if
cnt =cnt + 1
end loop

end program

Figure 4-77: Stimulus Program (video_scan) - continued

4-196

Video Output

STIMULUS PROGRAM NAME:

DESCRIPTION:

Node
Signal Src

U74-9

U74-10
U74-11
U74-13
U74-14
U74-15
U74-16
U74-17
ugs-9

U85-10
U85-11
U85-13
Ug5-14
U85-15
Ugs5-16
Ugs5-17
U84-12
U84-9

Ug4-7

Ug4-4

U83-12
U83-9

U83-7

U83-4

U73-12
U73-9

U73-7

U72-34
U72-33
U72-32
U72-31
U72-30
U72-29
U72-28
U72-27
U72-26
U72-25
U72-24

VIDEO_SCAN

Learned
With

I/0
I/0
1/0
1/0
I/0
I/0
I/0
/0
I/0
1/0
1/0
1/0
I/0
I/0
1/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
/0
I/0
I/0
1/0
I/0
/0
I/0
I/0
1/0
I/0
I/0
1/0
1/0
I/0
I/0

MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MCDULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE

PROBE

I/0

MODULE

PROBE

I/0

MODULE

PROBE

I/0
I/0

MODULE
MODULE

Figure 4-78: Response File (video _scan)

SIG

4155
3F33
A65A
9024
DE6D
D6FA
7AC3
0477
A814

(continued on the next page)

Response Data

Async Clk Counter

IVL LVL Mode

PRPRPRPEPERPERPREPERRRP SR PR e s b s
COO0O0ONDOOO0O00OOO00O0O0O0DO00OO0O0C0O0O00OOOOOOCOOOOO0OO OO

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

TRANS
TRANS

Counter Range

1,710 BYTES

Priority

Pin

4-197

Video Output

U75-3 1/0 MODULE 6FBl 10 TRANS
u75-7 I/0 MODULE 9B47 10 TRANS
U75-6 I/0 MODULE 58R8 10 TRANS
U75-10 I/0 MODULE 762E 10 TRANS
U75-11 I/0 MODULE BSD1 10 TRANS
U75-15 I/0 MODULE 2C30 10 TRANS
U75-14 I/0 MODULE EFCF 10 TRANS
U77-11 I/0 MODULE 7B80 10 TRANS
U77-12 1/0 MODULE 8FE6 10 TRANS
U77-13 I/0 MODULE ADD1l 10 TRANS
U77-15 I/0 MODULE EBR37 10 TRANS
U77-16 I/0 MODULE FFE7 10 TRANS
u77-17 I/0 MODULE B708 10 TRANS
U77-18 I/0 MODULE 55C3 10 TRANS
U77-19 I/0 MODULE BOOD 10 TRANS
Ug7-2 I/0 MODULE 7B80 160 TRANS
U87-5 I/0 MODULE 8FE6 10 TRANS
U87-6 1/0 MODULE ADD1 10 TRANS
Ug7-9 I/0 MODULE EB37 10 TRANS
ug7-12 I/0 MODULE FFE7 10 TRANS
u87-15 I/0 MODULE B708 10 TRANS
U87-16 I/0 MODULE 55C3 10 TRANS
Ug7-19% I/0 MODULE BOOD 10 TRANS
U76-2 PROBE 1ADB 10 TRANS
U76-2 I/0 MODULE 1ADB 10 TRANS
U76-5 PROBE 444F 10 TRANS
U76-5 I/0 MODULE 444F 10 TRANS
U76-6 PROBE D65A 10 TRANS
U76-6 I/0 MODULE D65A 10 TRANS
U76-9 PROBE 4366 10 TRANS
U76-3% I/0 MODULE 4366 10 TRANS
U76-12 PROBE 49EA 10 TRANS
U76-12 1/0 MODULE 49EA 10 TRANS
U76-15 PROBE 4DDC 10 TRANS
U76-15 I/0 MODULE 4DDC 10 TRANS
U76-16 PROBE 5B18 10 TRANS
u76-16 1/0 MODULE 5B18 10 TRANS
U76-19 I/0 MODULE 3EF2 10 TRANS
U63-11 PROBE 0CSB 10 TRANS
U63-11 I/0 MODULE OCS5B 10 TRANS
U63-6 PROBE 66D3 10 TRANS
U63-6 I/0 MODULE 66D3 10 TRANS
Uge-6 PROBE 610D 10 TRANS
U86~6 I/0 MODULE 610D 10 TRANS
Ug6-9 PROBE 5925 10 TRANS
UB6-9 I/0 MODULE 5925 10 TRANS
U86-12 PROBE SFAA 10 TRANS
Ug6-12 I/0 MODULE 5FAA 10 TRANS
U86~15 PROBE D909 10 TRANS
U86-15 I/0 MODULE D909 10 TRANS
UB6-16 PROBE C26B 160 TRANS
Ug6-16 I/0 MODULE C26B 10 TRANS
Ug6-19 PROBE A814 10 TRANS
Ug6-19 I/0 MODULE A814 10 TRANS
Figure 4-78: Response File (video_scan) - continued

Video Output

program video init

INITIALIZATION PROGRAM for the 2674 Advanced Video Display Controller.!
The program executes two Master Reset commands followed by the init- !
ialization of 15 contiguous Initialization Registers. Next 6 regis-
ers are initialized which determine the screen memory mapping and the
cursor location.

1

1

1

1

1

1

! This program must be executed before any video testing is performed,
! and must be re-executed whenever UUT power has been interrupted.
1

1

1

1

1

t

TEST PROGRAMS CALLED:
{none})

! GRAPHICS PROGRAMS CALLED:
(none) 1

setspace space (getspace space "i/o", size "byte")

write ADDR 2, DATA O Master Reset Command
write ADDR 2, DATA O Master Reset Command
write ADDR 0, DATA $48 Write Initialization Register

write ADDR 0, DATA $20
write ADDR 0, DATA $22
write ADDR 0, DATA $86
write ADDR O, DATA $17
write ADDR 0, DATA $4F
write ADDR 0, DATA 9

0
Write Initialization Register 1
Write Initialization Register 2
Write Initialization Register 3
Write Initialization Register 4
Write Initialization Register 5
Write Initialization Register 6

7

8

1

1

1

1

1

1

1

1

!
write ADDR 0, DATA $28 ! Write Initialization Register
write ADDR O, DATA O ! Write Initialization Register
write ADDR 0O, DATA $10 ! Write Initialization Register 9
write ADDR O, DATA O ! Write Initialization Register 10
write ADDR 0, DATA O ! Write Initialization Register 11
write ADDR 0, DATA 0 ! Write Initialization Register 12
write ADDR O, DATA 0 ! Write Initialization Register 13
write ADDR O, DATA O ! Write Initialization Register 14
write ADDR 4, DATA 1 ! Screen Start 1 Lower Register
write ADDR 6, DATA O ! Screen Start 1 Upper Register
write ADDR 8, DATA O ! Cursor Address Lower Register
write ADDR $A, DATA O ! Cursor Address Upper Register
write ADDR $C, DATA © ! Screen Start 2 Lower Register
write ADDR $E, DATA © ! Screen Start 2 Upper Register
write ADDR 2, DATA 529 ! Enable Screen On Command

end program

Figure 4-79: Initialization Program (video_init)

4-199

Video Output

program video fill

INITTALIZATION PROGRAM fills video RAM with every attribute & char
TEST PROGRAMS CALLED:

{none}

(none}

Text Files Accessed:

vid_fil111 !
IR S NS NN NN

1]
1 1
1 1
1 !
! !
! GRAPHICS PROGRAMS CALLED: !
1 1
1 1
1 1
1 1
1

setspace space (getspace space "memory", size "word")
writeblock file "vid filll", format "motorola™

end program

Figure 4-80: Initialization Program (video _fil1)

4-200

Video Output

program video fil2

trrrrreretpptprerptrrrrrrrrLEELLLLLIIRLLLLLIIELILILIRLELLIOLIOIOL IR RELIIEILIIIIIILILLETY

GRAPHICS PROGRAMS CALLED:
(none)

Text Files Accessed:
vid fill2 !

setspace space (getspace space "memory"”, size *"word")
writeblock file "vid fill2", format "motorola"

end program

Figure 4-81: Initialization Program (video_fil2)

4-201

Video Output

Summary of Complete Solution for
Video Output 4.7.7.

4-202

The entire set of programs and files needed to test and GFI
troubleshoot the Video Output functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the location in
this manual for each file.

UUT DIRECTORY
(Complete File Set for Video Output)
Programs (PROGRAM):
TEST _VIDEO Functional Test Section 4.7.5
VIDEO_FREQ Stimulus Program Figure 4-73
VIDEO_OUT Stimulus Program Figure 4-75
VIDEO_SCAN Stimulus Program Figure 4-77
LEVELS Stimulus Program Figure 4-92
VIDEO_INIT Initialization Program Figure 4-79
VIDEO_FIL1 Initialization Program Figure 4-80
VIDEO_FIL2 Initialization Program Figure 4-81
Stimulus Program Responses (RESPONSE):
VIDEO_FREQ Figure 4-74
VIDEO_OQUT Figure 4-76
VIDEO_SCAN Figure 4-78
LEVELS Figure 4-93
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
VID_FILL1 Initialization Data File
VID_FILL2 Initialization Data File
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

S

O

Video Control

VIDEO CONTROL FUNCTIONAL BLOCK 4.8.

Introduction to Video Control Circuits 4.8.1.

After initialization by the microprocessor, the video control
block typically generates four major timing functions:

® Character timing for serializing character or dot graphics
information to the Video Output functional block.

® Address generation and timing control for accessing the
video RAM.

® Cursor timing and control to the Video Output block.
. Vertical and horizontal sync signals.
The frequency of these signals may vary from about 60 Hz for

vertical sync to well over 10 MHz for pixel information. Figure
4-82 shows the timing of some of these signals.

Timing Signals

The vertical scan rate is the measure of how often the entire
video picture is drawn on the screen (usually 50 or 60 Hz). The
screen is scanned horizontally many times during each vertical
scan. If the video display is character-oriented, there might be
10 horizontal scans for each row of characters.

When set up properly, the timing outputs and video RAM
address outputs will repeat regularly at the vertical scan rate. All
the timing signals (such as the character clock, horizontal scan,
blanking, vertical sync, blink rate, and cursor signal) are
normally derived from the dot clock.

The cursor timing output is a strobe which occurs when the
cursor address is sent out.

4-203

Video Control

Dot 16
Clock MHz
Video

Data

Character
Clock I1VII7-17
oo — | Mhz

Dot-Related Timing

Character

(~CCLK) Z
Video
RAM

Addresses

&
HSYNG 95 Cycles of Character Clock*l_

el 1t
a1

Character-Related Timing

0

le———— 540 Cycles of HSYNG ——»!

VSYNC

Video Frame Timing

Figure 4-82: Video Display Controller Timing

4-204

G

Video Control

Considerations for Testing and
Troubleshooting 4.8.2.

Video control circuitry can usually be tested in four steps.

1. Initialize the circuitry (set up the video display
controller registers if the implementation uses such a
chip).

2. Test for proper signature on the scan address lines
going to the video RAM to ensure that it cycles
through the proper addresses when displaying a
frame.

3. Check the vertical and horizontal sync frequency.

If the timing logic is used in several modes, the three
steps described above can be repeated for each mode.

4. Test the cursor strobe generator by clocking from the
character clock, starting at the beginning of the frame
and stopping at the end of the frame. You may need
to test for proper signatures at several cursor
positions. For this test approach to work, the cursor
cannot be in a blinking mode.

The video RAM access logic, which allows the microprocessor
and the video display controller to share video RAM, must
arbitrate access to video RAM.

Since the microprocessor and the video display controller are not
always synchronous, it may be impossible to find a single clock
that gives stable signatures for all of the arbitration logic. One
approach to testing the arbitration logic is to count pulses on the
outputs of the video control logic while doing a series of writes
to video RAM.

The Demo/Trainer UUT contains an example of a memory
arbitration circuit which is hard to troubleshoot. It is a state
machine with seven inputs and three outputs. In testing this type
of circuit, you don't need to worry about how it works. All that

4-205

Video Control

is required is to exercise the inputs in a way that causes a stable
response on each output. When this type of circuit does not
function, it may be necessary to break some of the feedback
loops to isolate the problem to one component. This can be
done by using an I/O module to overdrive nodes in the feedback
loops.

The character clock will probably be the best clock signal for
most of the nodes, including scan address lines, video RAM,
and circuitry up to the shift register which converts character
information to pixel information. The response measurement
should start at the end of the vertical retrace and should stop at
the beginning of the vertical retrace. This means that the Start
and Stop external control lines from the 9100A/9105A Clock
Module or an I/O Module should connect to the vertical sync
signal.

Video Control Circuit Example 4.8.3.

4-206

The Video Control Circuit of the Demo/Trainer UUT, Figure 4-
83, uses a Signetics™ 2674 advanced video display controller
(AVDCQ), U72, for video control. The 2674 is a programmable
device designed for use with CRT terminals and display systems
that employ raster-scan techniques. It is programmed with
CRT-terminal setup information, providing cursor, blanking,
and clock signals to the 2675 Attributes Controller chip (U78) in
the Video Output functional block.

The 2674 outputs to the Video RAM functional block on the
scan address lines DADDQ0O-11 in synchronization with the
horizontal and vertical sync signals.

The remaining circuitry in this block is a state machine. It is
normally inactive, but upon writing to video RAM it produces a
variable-length wait state to synchronize the microprocessor bus
cycle to the video character clock.

Figure 4-83 shows a timing diagram for the video control circuit
of the Demo/Trainer UUT.

Video Control

o

State machine for Video RAM access (U70, U71, U79, U80, U81, U82)

|
]
~CCLK 1.77 MHz J Input
| < 564 ns »
U79-8 I I Input
|
|
~SELECT A I Output
| | |
< > 125 ns
| | |
§ SELECT D { ! } Output
] (|
~VRAMRDY I } } /_— Output
| | |
Processor Request Switch MUX Enable Return Ready
to Write Video RAM to Processor Data to End Cycle
Address
‘) Figure 4-83: Video Control Functional Block Timing

Video Control

4-208

Keystroke Functional Test 48.4.

Part A:

1.

Clip a 40-pin clip module on I/O module 1 to test U72.

2. Use the the EXEC, I/O MOD, and SOFT KEYS keys with

the following commands and check the measured frequency
with the correct frequency ranges shown in the response
table of Figure 4-84.

EXECUTE UUT DEMO PROGRAM VIDEO_ INIT
FREQ ON I/O MOD 1 PIN <see response table>

Part B:

1. Connect the external control lines of the I/O module 1 as

follows:

Clock to CCLK (U78-33)
Start to VSYNC (U88-13)
Stop to VSYNC (U88-13)
Enable to BLANK (U78-12)

Use the EXEC, SYNC, and I/O MOD keys with the
following commands, and check the measurements with the
response table in Figure 4-85.

EXECUTE UUT DEMO PROGRAM VIDEQ_INIT
SYNC I/O MOD 1 TO EXT ENABLE LOW ...
. CLOCK {START { sTop T
ARM I/O MOD 1 FOR CAPTURE USING SYNC
SHOW I/0 MOD 1 PIN <see response table> ...
... CAPTURED RESPONSES

Video Control

; —~
NOTE

The SHOW command requires a clip module pin
number rather than a part pin number. This requires
you to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User's
Manual). For your convenience, this translation has
been done for you in this example, and the results are
shown in the "I!O MOD PIN" column of the
response table in the Figure 4-85.

Part C:

Use the SYNC, PROBE, and WRITE keys with the probe to
test the video ready signals. Compare the results with the
response table in Figure 4-86.

SYNC PROBE TO POD DATA
e ARM PROBE FOR CAPTURE USING SYNC
‘" a WRITE BLOCK INTO MEMORY FROM UUT DEMO ...
_ . FILE VID FILL1 USING MOTOROLA
(ADDR OPTION: MEMORY WORD)
SHOW PROBE CAPTURED RESPONSES

4-209

Video Control

Keystroke Functional Test (Part A)

(NDNE)

CONNECTION TABLE

ure

4-210

CLOCK AMD RESET

RESET

32MHZ

CLK

RESPONSE TABLE

HOZHEG BUS
MICROPROCESSOA BUFFERA
ROV
READY ADDAESS | o VIOSCT
CIRCUIT DECODE VAAM

WEAMRDY

Video Control

ADVANCED VIDED DISPLAY
CONTROLLER {avDC)

VIDED

COLK ouT

2674
TEY 36 el CTAL:
CTAL2
MC 35 3nTH CTRLA
(1403 35,5 DapOD33 2L NG
_[h02 3B ,5 DaDD 12,22 NG
TA01 37 |4 pADDA 1L 23 DAOD11
naDnio, 24 DADO10 5
ocaDDa 25 DA0O0S | SWS-8
VIDSLT 2 |&r oappa |26 DADOOE R
TWRITE 3 _|yg oapp7 |27 DADDO7
e Oappe |28 DADOOS
o oanoe |28 DADDOS
fano4 |29 ADD
| 1007 s banna |31 AD00
| [ooE 14) ppe paDoE |32 DADDO2
005 13| e bangos |33 DaDDO:
| 1094 12154 Dapoo 34 DaDDoC
003 11| pq
002 105 CcuRsoAL_ 7 CUASCR
{ 1001 3 g, BLask 27 BLANK
000 8 fng EECK 26 ECIK

v (18 HSYNG
vayne 2B VEYNG
2

ToLk A2 U770
CCLK = % N

1

7 SELECTOD

558
10 ac

pli GC |

ol 15 Go

14 GO

e
| |) TEHE 10,
IAD0 & 5 us

ESET

LS10

|50
flsle

8 Juss

LECTA

Figure 4-84: Video Control Functional Test (Part A)

4-211

Video Control

Keystroke Functional Test (Part B)

CONNECTION TABLE

| MEASUREMENT CONTROL
CLOCK u78-33 ure
START UB8-13
STOR UEB-13
EMABLE urs-12
RESPONSE TABLE

*DAD11 has a signature of DB6S ane half of the time and 0000 the other half of the time.

CLOCK AND RESET Ll BO28EE BUS
MICROPADCESSOR BUFFER
RESET MM
TEADY
READY ADDRESS WIOSLT
CIRCULT DECOOE | g VAEH
TVFUHRDY

4-212

Video Control

+5V 36

NE 35 TRTA

IA03
IAa0z

Ia01

VIDSLT 2 |gF
TWAITE

ADVANCED VIDEOQ DISPLAY
CONTROLLER [aVDC)
EET74
CTAL1

ACLL

DADD11

DADO 1D

CTALZ |———
CTARL3

DADDOT

DADDDS

EERITY

DADDOS

DADD13]
Dapo1alSE ME
DADD14
Danoag
DADDI
Dapos
DADDT

38] 4o
370 a1

TREAL

DADDE

e

0ADDS
DADD4
04003
oagoz
DADD1

DADOO

CURSOA

BLANK 25

CCLEK .=

DADDO 2

SwWS-8

VIDED
ouT

HSYNC

VEYNC

30

8 c_15 11 10 2
G0 12| uv1
5) u7s 8 13

32MHZ

SHE-3
R B T |

ETE I
4 aal_2ax

VIDED
RAM

usz
a2 BELECTA

1

2

a

it !

] u?9\~ L
B

i

T LS00
THHE 10 12
TADD 5 | US1

L5214
i1

ESET

Figure 4-85: Video Control Functional Test (Part B)

4-213

Video Control

Keystroke Functional Test (Part C)

CONNECTION TABLE

RESPONSE TABLE

CLOCK AND RESET LL Bus
BUFFER
RESET 32MHZ
1
AEADY ADDRESS |- LOSLY
CIACUIT DECOOE VAAM
|
|

4-214

Video Control

ADVANCED VIDEOQ DISPLAY

CONTROLLER [avDC)
2674
*EY 36 [ap e cTALL | ANC gigg:é
NC 38 | CIOE §:§ DADDOT
M INTE cTAL3 | BNC BT
0A0005
EE) 21 NG
A3 DADD1 3|
ECH I DapDio, B8 NG DAODOA
e
oappiol 2L DADC 1D
oapna |25 DaDOOS SWS-8
TIOELT 2 | panDs |25 3
TRRITE 3 |4n oapo7 |22
TREAD 4 ospos (28
= 7o gapos |28
; ., oappa |20
pe? 15 1oy oapp3 |21
| Zoce 2los oaopa |22
nos N nappy |33
04 2lpe oacoo |24
(o003 1]y
002 10]pz cuAsoR|_7 CURSOR
DO1 ot BLank |17 BLANK
iooe oo TECE |48 COLK
Hsvne |18 HEYNC
wevne [18 R
ure
CELK
1
[]
| {
] .
- .
2
L a
LYSEL 4
Th 5
GC 5
GO 41
—__ _Lsoo
TEHE 10 12
[Ia00 8] UG

VIDED

CELE ouT
VIDED

RaM

ESET

R

Figure 4-86: Video Control Functional Test (Part C)

Video Control

Programmed Functional Test 48.5.

The zst_vidctl program is the programmed functional test for the
Video Control functional block. This program checks the video
controller IC (U72) and the video RAM ready generator outputs
U81-8 and U82-3 using the gfi test command. If the gfi rest
command fails, the abort_test program is executed and GFI
troubleshootlng begins. (See the Bus Buffer functional block for
a discussion of the abort_test program).

program tst vidctl

FUNCTIONAL TEST of the VIDEO CONTROL functional block.

1
t
This program tests the VIDEO CONTROL functional block of the !
Demo/Trainer, The gfi test command and I/0 module are used to !
perform the test. !
1
1
i
1
1

I
1
1
!
l
I
! TEST PROGRAMS CALLED:

! abort_test (ref-pin) If gfi has an accusation
f display the accusation else

! create a gfi hint for the

! ref-pin and terminate the test!
! program (GFI begins trouble- !
! shooting). !
1

1 Setup
print *\nl\nlTESTING VIDEO CONTROL Circuit"™
! Main part of test
podsetup 'enable ~ready' "on"
if gfi test "“U72-34" fails then abort_test ("U72-34")
if gfi test "U81-8" fails then abort test (“U81-8")

if gfi test "U82-3" fails then abort test ("U82-3")

print *VIDEO CONTROL TEST PASSES™
end program

Stimulus Programs and Responses 48.6.

4-216

Figure 4-87 is the stimulus program planning diagram for the
Video Control functional block. The video data stimulus
program outputs data onto the data bus. The video freq
stimulus program initializes the video registers and then
measures frequency. The video scan stimulus program
initializes video RAM by executing video fill, which fills video

Video Control

RAM with characters including blinking characters. The
reset_low stimulus program prompts the test operator to push
the Demo/Trainer UUT RESET pushbutton and measures the
level of the reset signal. The levels stimulus program stimulates
activity appropriate for measuring static levels on a number of
nodes in the Video RAM Ready (VRAMRDY) generation
circuit. The video rdy stimulus program stimulates the Video
RAM Ready (VRAMRDY) generation circuit by writes made to
the write-only video RAM.

All the stimulus programs execute video init before any
measurements are made on the video circuitry.

4-217

Video Control

PROGRAM: VIDEO_SCAN

EXECUTES VIDEO_INIT, VIDEO_FIL1, AND
MEASURES ALL CIRCUITRY WHERE DATA IS
CLOCKED THROUGH BY CHARACTERS

MEASUREMENT AT:

U72-34,33,32,31,30,29,28,27,26,25,24,23,7

INITIALIZATION PROGRAM: VIDEO_INIT

INITIALIZES VIDEQ REGISTERS TO STANDARD
OPERATING MODE

(NOME)

MEASUREMENT AT:

4-218

CLOCK aND RESET

RESET 32MHZ
¥

CLK

80286
MICROPROCESSOA

READY

READY
CIRCUIT

AMALY

BUS
BUFFER
AODAESS | gu 1OSCT
DECODE J—o-—""—

Video Control

ADVANCED VIDEQ DISPLAY

CONTAOLLEA (AvOD) VIDED
2674 EELK ouT
. 0oy -
5Y 38 acLL TR 4 NG L
o G ATUhR
HE S5 TWTR ctAL3 | B NC DADDOE
1a03 38| ,. Dapn13| 23 NG QADDOS |
[1a0z _361.2 gaoois e
Ia01 37 | ay DaDO14 !
DaDD10L SR Amlb] &
DADDS oD _0ADDOD =

WE-B

bapDa 2B 0AQDOR VIDED
papo? |27 DaOOO7]
oaDDS |28 DADOOE | AaM
DaADDS 29 DADOOS
oaDDa |20 DADDO4
oanDa 31 DaD003
oappz |22 DADCOZ

oapDy {33 040001 |
fapno |34 DADOOO

(1]

-

7 cuasos
CURSOR|
BLang [HED BLAMK]
TOLK
HSYNC
VSYNG
z

CCLK
GC
[+]s]
_0: 13 LS00
s 1
- QA
GB

L500

| TBHE 10
Ia00 9 @_I.EJ_

LS10 GC|

o — "
VRRRFEY 0GB
9 SELECTA

Figure 4-87: Video Control Stimulus Program Planning

o

4-219

Video Control

program video_data

STIMULUS PROGRAM to extract data from U72 registers.

1
1
! Stimulus programs and response files are used by GFI to backtrace

! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for

! the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with 1
or without the ready circuit working properly. Because of this, all !

! the stimulus programs in the kernel area must disable the READY input !
! to the pod, then perform the stimulus, then re-enable the READY input !
! to the pod. The 80286 microprocessor has a separate bus controller; !
t for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to !
resynchronize the bus controller and the pod. !

1

1

1
1
1
!
! TEST PROGRAMS CALLED:

i recover 0 The 80286 microprocessor has a!
! bus controller that is totaly !
! separate from the pod. In

! some cases the pod can get out!
! of sync with the bus control- !
! ler. The recover program !
! resynchronizes the pod and the!
! bus controller. !
1

1

1

1

1

1

1

1

GRAPHICS PROGRAMS CALLED:
{none})

Local Variables Modified:
recover_times Reset to Zero
devname Measurement device
Trrrrrr bR LIOROLRIEISLIO LI LI LRI RIRIRILIILIII I I LTI IRRLILIILI LI I ILRITRLILIIIITLIIITIIITITLIILITITEILLILILIIIIty

! FAULT HANDLERS: !
SRR R SR N R N R R R R N R RN N SN R RS SRS

handle pod_timeout enabled line
recover ()

end handle

handle pod_timeout recovered
recover ()

end handle

(continued on the next page)

Figure 4-88: Stimulus Program (video_data)

4-220

Video Control

! Main part of STIMULUS PROGRAM !

recover_times = 0
! Let GFI determine measurement device.

if (gfi control) = "yes" then
devname = gfi device
else
devname = "/modl"
end if
print “Stimulus Program VIDEO DATA"

! Set addressing mode and initialize.

option = getspace type "i/o", size "byte"
setspace (option)

write ADDR 8, DATA $FF ! Cursor Address Lower
write ADDR $A, DATA O ! Cursor Address Upper
write ADDR $C, DATA $AA ! Screen Start 2 Lower
write ADDR $E, DATA $35 ! Screen Start 2 Upper

! Setup measurement device.

| reset device devname
: sync device devname, mode "pod"
' sync device "/pod", mode "data"

! Present stimulus to UUT.

arm device devname ! Start response capture
read addr 8 ! Lower Cursor Addr Reg
read addr $A ! Upper Cursor Addr Reg
read addr $C ! Lower Screen Start 2
read addr S$E ! Upper Screen Start 2

readout device devname ! End response capture

end program

Figure 4-88: Stimulus Program (video_data) - continued

4-221

Video Control

STIMULUS PROGRAM NAME: VIDEO DATA

DESCRIPTION: SIZE: 318 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With SIG IVL IVL Mode Counter Range Pin
U72-8 PROBE 0009 1 O TRANS
U72-8 1/0 MODULE 0009 1 0 TRANS
U72-9 PROBE 000A 1 0 TRANS
U72-9 I/0 MODULE O0O00A 1 0 TRANS
U72-10 PRCBE 0009 1 O TRANS
U72-10 I/0 MODULE 0009 1 O TRANS
U72-11 PROBE 000A 1 0 TRANS
U72-11 I/0 MODULE O000A 1 0 TRANS
U72-12 PROBE 0009 1 0 TRANS
U72-12 I/0 MODULE 0009 1 O TRANS
U72-13 PROBE COOB 1 0 TRANS
U72-13 I/0 MODULE 000B 1 O TRANS
U72-14 PROBE 0008 1 0 TRANS
U72~14 I/0 MODULE 0008 1 0 TRANS
U72-15 PROBE 000A 1 0 TRANS
U72-15 I/0 MODULE O000A 1 0 TRANS

Figure 4-89: Response File (video_data)

4-222

Video Control

program video_rdy

! STIMULUS PROGRAM activates video ready circuitry.

1 1
! Stimulus programs and response files are used by GFI to backtrace

! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. t
1 . 1
! TEST PROGRAMS CALLED: 1
i (none) !
1 1
! GRAPHICS PROGRAMS CALLED: !
! {none) !
1 1
! Local Variables Modified: !
! devname Measurement device !
lll‘IllllllllllllllllIIIIIIIlll|llilllllVIIIIIIIIIIIIIIIIIIIIIIY!III]I‘IT

handle pod_timeout_enabled line
recover ()

end handle

handle pod_timeout_recovered
recover (}

end handle

! Main part of STIMULUS PROGRAM 1

recover times = 0
! Let GFI determine measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/probe”

end if

print "Stimulus Program VIDEO RDY"

! Set addressing mode and Set up measurement device.
reset device devname
setspace space (getspace space “memory"”, size "word")
sync device devname, mode "pod"

sync device "/pod", mode "data"

! Present stimulus to UUT

arm device devname ! Start response capture.
toggledata addr. $20000, data 0, mask $FFFF ! Create a burst of writes.
readout device devname ! End response capture.

end program

Figure 4-90: Stimulus Program (video_rdy)

4-223

Video Control

STIMULUS PROGRAM NAME: VIDEO RDY

DESCRIPTION: SIZE: 1,411 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With SIG ILVL I1VL Mode Counter Range Pin
Ug2-2 PROBE 0000 10 TRANS
us2-2 1/0 MODULE 0000 10 TRANS
Ug2-3 PROBE 3951 10 TRANS
Ug2-3 I/0 MODULE 3951 10 TRANS
Ug2-7 PROBE 0000 10 TRANS
Ug2-7 I/0 MODULE 0000 10 TRANS
Ug2-6 PROBE 3951 10 TRANS
U82-10 PROBE 3951 10 TRANS
Ug2-10 I/0 MODULE 3951 10 TRANS
Ug2-11 PROBE 0000 10 TRANS
Ug2-11 I/0 MODULE 0000 10 TRANS
Ug2-15 PROBE 0000 10 TRANS
U82-15 I/0 MODULE 0000 10 TRANS
Us2-14 PROBE 3951 10 TRANS
U82-14 I/0 MODULE 3951 10 TRANS
Usl-6 PROBE 3951 10 TRANS
Ugl-6 I/0 MODULE 3951 10 TRANS
Usl-8 PROBE 0000 10 TRANS
Ugl-8 I/0 MODULE 0000 10 TRANS
Ugl-12 PROBE 3951 10 TRANS
U80-6 PROBE 0000 10 TRANS
Ug0-8 PROBE 3951 10 TRANS
Ug0-12 PROBE 3951 10 TRANS
U79-8 I/0 MODULE 3951 10 1 TRANS
U71-3 PROBE 0000 10 TRANS
U71-3 I/0 MODULE 0000 10 TRANS
U71-6 PROBE 0000 10 TRANS
U71-6 I/0 MODULE 0000 10 TRANS
U71-8 PROBE 0000 10 TRANS
U71-8 I/0 MODULE 0000 10 TRANS
U71-11 I/0 MODULE 3951 10 TRANS
U70-3 I/0 MODULE 3951 10 TRANS
U70-6 I/0 MODULE 3951 10 TRANS
U70-8 I/0 MODULE 3951 10 TRANS
U70-11 PROBE 10 TRANS
U70-11 I/0 MODULE 10 TRANS
U62-2 PROBE 3951 10 TRANS
U62-2 I/0 MODULE 3951 10 TRANS
U62-6 I/0 MODULE 0000 10 TRANS
U62-10 I/0 MODULE 39531 1 TRANS
U62-12 I/0 MODULE 3951 1 TRANS
U61-6 I/0 MODULE 3951 10 TRANS
U61-3 I/0 MODULE 3951 10 TRANS
U61-8 I/0 MODULE 3951 1 TRANS

(continued on the next page)

Figure 4-91: Response File (video_rdy)

4-224

Video Control

U84-4
Ug4-~7
Ug4-9
U84-12
U83-4
U83-7
Ug3-9
Ug3-12
U73-7
U73-9
U73-12
U69-18
U69-16
U69-14
U69-12
U69-9
U69-7
U69-5
U69-3
U68-18
U68-16
U68-14
Ue8-12
U68-9
U68-7
U68~5
U68-3

I/0
I/0
1/0
I/0
I/0
I/0
I/0
I/0
1/0
I/0
I/0
I/0
1/0
I/0
1/0
1/0
I/0
I/0
I/0
I/0
1/0
I/0
I/0
I/0
I/0
I/0
I1/0

MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE

PREREREBRERRPBRBSE MBS e b e e e e
COO0OO0O00O00O0OOOOO0O0OCOCOOOOOO OO

TRANS 8300-9500
TRANS 14000-17500
TRANS 30000-36000
TRANS 61000-71000
TRANS 950~1300
TRANS 1400-1800
TRANS 2300-2700
TRANS 4100-4700
TRANS 475-800
TRANS 500-900
TRANS 700-1000
TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

Figure 4-91: Response File (video_rdy) - continued

4-225

Video Control

program levels

! STIMULUS PROGRAM to measure level history. !
1 1
| Stimulus programs and response files are used by GFI to backtrace !
! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program. !
1 1
3 ! This is a general purpose routine that is used to characterize the
| ! level history both sync and async of a node that may not lend itself
! to signatures or frequency. 1
1 1
! TEST PROGRAMS CALLED: !
! {none) !
1 1
! GRAPHICS PROGRAMS CALLED: !
1 (none} !
1 1
! Local Variables Modified: !
! devname Measurement device !
IIIll1|l1!lllllIIIIII!‘II!IIIllllltllllllllllllIll!lllIllltlllllllllll'll

1 FAULT HANDLERS: !

handle ped timeout_no clk
end handle

! Let GFI user select which I/0 module to use.
if (gfi control) = "yes" then
devname = gfi device
else
devname = "/modl"
end if
print “Stimulus Program LEVELS"
! Set desired measurement modes.
reset device devname

! No stimulus is applied; response is async levels.

arm device devname ! Start response capture.
readout device devname ! End response capture

end levels

Figure 4-92: Stimulus Program (levels)

4-226

Video Control

STIMULUS PROGRAM NAME: LEVELS

DESCRIPTIOCN: SIZE: 1,435 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With SIG ILVL LVL Mode Counter Range Pin
Ug2-2 PROBE 0 TRANS
Ug2-2 I/0 MODULE 0 TRANS
U82-3 PROBE 1 TRANS
Ug2-3 I/0 MODULE 1 TRANS
uUg2-7 PROBE 0 TRANS
Ug2-7 I/0 MODULE 0 TRANS
Ug82-6 PROBE 1 TRANS
Ug82-10 PROBE 0 TRANS
U82-10 I/0 MODULE 0 TRANS
Ug2-11 PROBE 1 TRANS
Ug2-11 I/0 MODULE 1 TRANS
Ug82-15 PROBE 0 TRANS
Ug82-15 I/0 MODULE 0 TRANS
Ug82-14 PROBE 1 TRANS
U82-14 I/0 MODULE 1 TRANS
Ugl-6 PROBE 1 TRANS
Ugl-6 I/0 MODULE 1 TRANS
Ugl-8 PROBE 1 TRANS
U81-8 I/0 MODULE 1 TRANS
Ugl-12 PROBE 0 TRANS
U80-6 PROBE 1 TRANS
Ug80-8 PROBE 1 TRANS
U80-12 PROBE 1 TRANS
U79-8 I/0 MODULE 1 TRANS
U71-3 PROBE 0 TRANS
U71-3 I/0 MODULE 0 TRANS
U71-6 PROBE 0 TRANS
U71-6 I/0 MODULE 0 TRANS
U71-8 PROBE 0 TRANS
U71-8 I/0 MODULE 0 TRANS
U71-11 I/0 MODULE 1 TRANS
U70-3 I/0 MODULE 1 TRANS
U70-6 I/0 MODULE 1 TRANS
U70-8 I/0 MODULE 1 TRANS
U70-11 PROBE 10 TRANS
U70-11 I/0 MODULE 10 TRANS
U62~2 PROBE 0 TRANS
U62-2 I/0 MODULE 0 TRANS
U61-8 I/0 MODULE 1 TRANS
U62-6 I/0 MODULE 0 TRANS
U61-3 I1/0 MODULE 1 TRANS
U61-6 I1/0 MODULE 1 TRANS
Ug4-4 I/0 MODULE 10 TRANS
Ug4-7 I/0 MODULE 10 TRANS
(continued on the next page)
Figure 4-93: Response File (levels)
4-227

Video Control

Us4-9 I/0 MODULE 10 TRANS
Ug4-12 I/0 MODULE 10 TRANS
U83-4 I/0 MODULE 10 TRANS
Us3-7 I/0 MODULE 10 TRANS
U83-9 I/0 MODULE 10 TRANS
U83-12 1/0 MODULE 10 TRANS
U73-7 I/0 MODULE 10 TRANS
U73-9 I/0 MODULE 10 TRANS
U73-12 I/0 MODULE 10 TRANS
U69-18 I/0 MODULE 10 TRANS
U69-16 I/0 MODULE 10 TRANS
U69-14 I1/0 MODULE 10 TRANS
U69-12 I/0 MODULE 10 TRANS
U69-9 I/0 MODULE 10 TRANS
Ue9-7 I/0 MODULE 10 TRANS
U69-5 I/0 MODULE 10 TRANS
U69-3 1/0 MODULE 10 TRANS
U68-18 I/0 MODULE 10 TRANS
Ues-16 1/0 MODULE 10 TRANS
Ue8-14 I/0 MODULE 10 TRANS
U68-12 I/0 MODULE 10 TRANS
U68-9 I/0 MODULE 10 TRANS
U68-7 I/0 MODULE 10 TRANS
U68-5 I/0 MODULE 10 TRANS
U68-3 T/0 MODULE 10 TRANS
J4-6 PROBE 0 TRANS
J4-6 I/0 MODULE o] TRANS
J4-10 PROBE 1 TRANS
J4-10 I/0 MODULE 1 TRANS
R34-1 PROBE 1 TRANS
DS1-2 PROBE 1 TRANS
R26~1 PROBE 0 TRANS
R26-1 I/0 MODULE 0 TRANS
R32-1 PROBE 1 TRANS
R4-1 PROBE 0 TRANS
R61-1 PROBE X TRANS
R77-1 PROBE 1 TRANS
R78~2 PROBE 1 TRANS
R79-2 PROBE 1 TRANS
R80-1 PROBE 1 TRANS
U26-3 I/0 MODULE X TRANS
Ul3-4 PROBE 1 TRANS
Ul3-4 I/0 MODULE 1 TRANS
Ul1l3-12 PROBE 0 TRANS
Ul13-12 I/0 MODULE 0 TRANS
Ccl3-1 PROBE 1X0 TRANS
Cc4-1 PROBE 0 TRANS
Ul4-65 PROBE 1 TRANS
Ul4-65 1/0 MODULE 1 TRANS

Figure 4-93: Response File (levels) - continued

1 4-228

Video Control

O Summary of Complete Solution for
Video Control 48.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Video Control functional block is shown
below. The format below is similar to a 9100A/9105A UUT
directory (you could consider the functional block to be a small
UUT), but in addition shows the use of each program and the
location in this manual for each file.

UUT DIRECTORY
(Complete File Set for Video Control)
Programs (PROGRAM):
TST_VCTRL Functional Test Section 4.8.5
RESET_LOW Stimulus Program Figure 4-115
VIDEO_DATA Stimulus Program Figure 4-88
VIDEO_FREQ Stimulus Program Figure 4-73
VIDEO_RDY Stimulus Program Figure 4-90
VIDEO_SCAN Stimulus Program Figure 4-77
LEVELS Stimulus Program Figure 4-92
VIDEO_INIT Initialization Program Figure 4-79
Stimulus Program Responses (RESPONSE):
RESET_LOW . Figure 4-116
VIDEO_DATA Figure 4-89
VIDEO_FREQ Figure 4-74
VIDEO_RDY Figure 4-91
VIDEO_SCAN Figure 4-78
LEVELS Figure 4-93
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-229

Video Control

(This page is intentionally blank.)

4-230

Video RAM

VIDEO RAM FUNCTIONAL BLOCK 4.9.

Introduction to Video RAM 4.9.1.

Video RAM blocks come in several forms. Here are some of the
common configurations:

Character-oriented video RAM, with secondary character-
generation ROM or RAM.

Pixel-oriented video RAM.
Combinations of the above.

Access to video RAM can be provided in several ways,
including:

The video display controller may directly access
microprocessor memory by stealing memory cycles.

Video RAM may be separate but still mapped into
microprocessor memory space. In this case, access to this
memory may be write-only or read/write.

Access to video RAM may be through I/O-mapped
registers.

If character-generation RAM is used, access to character
RAM may be different than access to video RAM.

Considerations for Testing and
Troubleshooting 4.9.2.

Testing of video display circuits is complicated by the fact that
there may be as many as three separate hierarchical memory
spaces, each of which may be sectioned for use only in a
particular mode of operation:

4-231

Video RAM

® VideoRAM
¢ Character ROM or RAM
¢ Color palette RAM

Video RAM

If video RAM has read/write access and is mapped into the
microprocessor memory space, it can be tested with the
9100A/9105A's built-in RAM test (Section 4.4 discusses this
built-in test). If video RAM does not have read access, the
video RAM output must be tested with the I/O module or the
probe. The 9100A/9105A external Start and Stop control lines
should be connected (probably to vertical sync) so that one
frame is captured. The 9100A/9105A external Clock control
lines should be connected to the appropriate clock signal so that
valid RAM output will be captured for each read cycle.

With the above connections, the following procedure will
usually test video RAM:

1. Initialize the video circuitry, if not already initialized.

2. Initialize the video RAM with blinking enabled. The
TL/1 writeblock and writefill commands can be used
to do this.

3. Set the video control mode so that it accesses as
much video RAM as possible.

4. Measure signatures at the video RAM output and
compare them to good signatures.

5. Steps 2, 3, and 4 can be repeated, varying the test
pattern loaded into video RAM. For example, with
16-bit-wide memory try test patterns like FFFF,
0000, 7777, and AAAA, or ramping data over the
entire video RAM.

Video RAM

O Character ROM or RAM

If the video RAM is character oriented, with secondary character
ROM or RAM, a pattern can be written into the video RAM that
cycles through the character-memory addresses. In the case of
character ROM, signatures collected at the ROM outputs serve to
test the ROM. In the case of character RAM, a pattern must be
loaded into the RAM before testing.

Video RAM Circuit Example 4.9.3.

Figure 4-94 shows the Video RAM functional block for the
Demo/Trainer UUT. Components U74 and U85 provide 2K
bytes of static vidleo RAM. When addressed over the main
address bus (IA01-11), video RAM is used to store ASCII
character codes supplied by the microprocessor over the main
data bus (DB00-15). The system is character-mapped: a
specific video RAM address maps into a physical location on the
monitor screen.

The video control logic sequentially samples these addresses
over lines DADDO00-11 to generate display characters using the
ASCII codes at these addresses and the corresponding display-
character information in the character PROM (see U77 in the
Video Output functional block).

The multiplexers U73, U83, and U84 select between the video
control address lines (DADO00-11) and the buffered
microprocessor lines (IAQ1-11). The selection control for this
multiplexing comes from the Video Control functional block.

Video RAM

Keystroke Functional Test 4.9.4.

1. Connect the external control lines of I/O module 1 as
follows: '

Clock to CCLK (U78-33)
Start to VSYNC (U88-13)
Stop to VSYNC (U88-13)
Enable to BLANK (U78-12)

the video scan signal. Use the EXEC, SYNC, and I/O MOD
keys to enter the following commands. Then, compare the

% 2. Use a 24-pin clip module on side A of I/O module 1 to test
measurements with the response tables in Figure 4-94.

3 EXECUTE UUT DEMO PROGRAM VIDEO INIT

: EXECUTE UUT DEMO PROGRAM VIDEQ FIL1

SYNC I/0 MOD 1 TO EXT ENABLE LOW ...
. crLock ! start | stop T

ARM I/0 MOD 1 FOR CAPTURE USING SYNC

SHOW I/0 MOD 1 PIN <see response table> ...
. CAPTURED RESPONSES

NOTE

The SHOW command requires a clip module pin
number rather than a part pin number. This requires
you to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User's
Manual). For your convenience, this translation has
been done for you in this example, and the results are
shown in the "I/O MOD PIN” column of the
response table in Figure 4-94.

Video RAM

(This page is intentionally blank.)

Video RAM

Keystroke Functional Test

CONNECTION TABLE

MEASUREMENT CONTROL
CLOCK u7e-33 uva
START UB8-13 uas
STOP Uaa-13
ENABLE uva-12
RESPONSE TABLE

CLOCK AND RESET OLK 80286 BUS
MICROPAOCESSORA BUFFER

HEAnY
READY e VIDEQ -
CIRCUIT CONTROL -

4-236

Video RAM

F157
_a..._j..a
Laty 0 5 laa
Iatl 11 38
Iang 14 .0 1wl 4__'*1_C
oyl 7 AB10
NC 3 g ay[9 aB0s
oaDO1Q =] a 4% 12 ABOE
DADODS 10 35)
DADO0E 13 5
L _lsEL
15 3
[u7s | |
[i
T
|
4 ABOT
7 ABDE
Danon? 3 aBOS
£ADOOE |1z ABO4
DADDOS |
DADDDS
1 =EL
15 I
V155
[ICE]
A
Al
AD4 2 A
A03 5 lag A
A02 T /A A N A
A01 14 |4 w4 asoa| ||, Al
2y 7 aB0Z &
_DADDO3 s8 =y|_8 AB01 A
_DADDOZ =8 4y 12 ABOQ Al
Dao001 | 10 [5g
DADDIO 20 g
h L504 [2iWE
] 5 185
" 4 —i uss
usz —
SELECTA
L5244
0315 2 [ya. syg| 18 D815
1014 4 | 0814)
D13 B | 1a3 1v3 0B13 |
012 B | 4ps 1va oBiz
D11 1 a1 2yl 2 0B11
010 13| ap5 oyaz| 7 OB10
LS04 | [|foos 2a3 2y3[S 0809
5 Ls00 | [Tooe 17 3 oeos
R TEFE 43 LN | 2a4 2¥a
= | ust b2 4l 15
usz [S
1 uss
LS04
1200 1gf™. 1
usz
| Ls2ag
| 1at 1ya[18 0807
1az 1yz|i6 0BOS
143 1yg|i4 0B0S
N = DBOA
SELECTA 1a4 1va
2a1 2v: DBO3
SELECTD Snz By2 oED2
5 oeo:
283 2v3 1801]
2aa 2yal S 0B00
6
5
uEa

VIDED

Figure 4-94: Video RAM Functional Test

ouT

4-237

Video RAM

Programmed Functional Test 4.9.5.

The tst_vidram program is the programmed functional test for
the Video RAM functional block. This program checks the two
RAM ICs U74 and U85 using the gfi test command. If the gfi
test command fails, the abort_test program is executed and GFI
troubleshooting begins. (See the Bus Buffer functional block
for a discussion of the abort_test program).

program tst_vidram

BRSNS R

! FUNCTIONAL TEST of the VIDEO RAM functional block.

! This program tests the VIDEO RAM functional block of the Demo/Trainer.!
! The gfi test command and I/O module are used to perform the test.

1
1
!
! TEST PROGRAMS CALLED:

! abort_test (ref-pin) If gfi has an accusation

! display the accusation else
! create a gfi hint for the

! ref-pin and terminate the test!
! program (GFI begins trouble~ !
1
1

shoot ing). !
trrrrrrrrrrtrr R EELLEOLIEYI LI R RITELILIYITEILIT LTI EITLRITEITTITEITTIEITTITTITTITERITITLTITTITITIIITITITLTIGLTITTITILTIIIOIIIIIITIIL ittt

! Setup
print "\nl\nlTESTING VIDEO RAM Circuit"
! Main part of Test

podsetup 'enable ~ready' *"on"

if gfi test "U74-9" fails then abort test ("U74-9")
if gfi test "U85-9" fails then abort test ("U85-9")

print “VIDEO RAM TEST PASSES"
end program

Stimulus Programs and Responses 4.9.6.

4-238

Figure 4-95 is the stimulus program planning diagram for the
Video RAM functional block. The video scan stimulus program
initializes video RAM by executing video fill, which fills video
RAM with characters including blinking characters. The levels
stimulus program provides the appropriate stimuli to measure the
asynchronous level of various outputs. The video rdy stimulus

Video RAM

program stimulates the Video RAM Ready (VRAMRDY)
generation circuit by writes made to the write-only video RAM.

All these stimulus programs (except levels) execute video_init
before any measurements are made on the video circuitry.

4-239

Video RAM

Stimulus Program Planning

PROGRAM: VIDEO_RDY

EXERCISES THE VIDEO RAM DATA BUFFERS AND
VIDEO RAM ADDRESS MULTIPLEXERS

MEASUREMENT AT:

ug4-129.7.4 U61-36

ug3-129.7.4 U68-3,5,7,9,12,14,16,18
u73-129,7 U§9-3,5,7,9,12,14,16,18
U62-6,12,10

INITIALIZATION PROGRAM: VIDEO_INIT

INITIALIZES VIDEO REGISTERS TO STANDARD
QOPERATING MODE

MEASUREMENT AT:

(NONE)}

INITIALIZATION PROGRAM: VIDEO_FIL2

INITIALIZES VIDEC RAM WITHOUT BLINKING

CHARACTERS
MEASUREMENT AT;
INITIALIZATION PROGRAM: VIDEO_FIL1
(NONE)
INITIALIZES VIDEQ RAM WITH BLINKING
CHARACTERS
MEASUREMENT AT:
(NONE)
CLOCK AND RESET CLE g 80288 8Us
MICROPROCESSOR BUFFER
i
READY
READY VRAMADY YIDED
CIRCUIT CONTROL

4-240

Video RAM

1air
1a10
109]
| AB10
NC | ABOZ
0ADDI0 I Al
DADDOS Al
DADDOB Al
Al
A
Al
2
| Al
Al
F157
IACH
IAQT
IADE
IAUS
4
0ADDC?
CADOCE
CADDCS
DADDCA
Al
Al
A
Al
AD4 “ABD
EGE Al
202 A
EGE A
1 A
_pappod A
DapDo0Z | A
DADDOY h
0ADDOO
ci5 2
D14 4
5] E
o
] 1
o L3
Inog 15
I00E 17
LS04
1400 11f™~ [40 fH0e =
1 - U1 B
us2
L5244
1007 2 faa1 avy
005 4 14,5 vz
: 143 173
SELECTA rru M
2a1 271t
SELECTD 13 | naz mve
15 243 2v3
_% 24 2Ya

Figure 4-95: Video RAM Stimulus Program Planning

4-241

