Video RAM

Summary of Complete Solution for
Video RAM 497.

The entire set of programs and files needed to test and GFI
troubleshoot the Video RAM functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the location in
this manual for each file.

UUT DIRECTORY
(Complete File Set for Video RAM)
Programs (PROGRAM):
TST_VCTRL Functional Test Section 4.9.5
LEVELS Stimulus Program Figure 4-92
VIDEO_RDY Stimulus Program Figure 4-90
VIDEO_SCAN Stimulus Program Figure 4-77
VIDEO_INIT Initialization Program Figure 4-79
VIDEO_FIL1 Initialization Program Figure 4-80
VIDEQO_FIL2 Initialization Program Figure 4-81
Stimulus Program Responses (RESPONSE):
LEVELS Figure 4-93
VIDEO_RDY Figure 4-91
VIDEO_SCAN Figure 4-78
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
VID_FILL1 Initialization Data File
VID_FILL2 Initialization Data File
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-242

Bus Buffer

BUS BUFFER FUNCTIONAL BLOCK 4.10.

Buses and Bus Buffers 4.10.1.

In addition to the bus at the pins of a microprocessor, many
microprocessor-based designs include additional internal buses
connecting the microprocessor, memory, I/O devices, and other
circuitry. These internal buses are often separated by buffers or
latches which complicate testing and troubleshooting.

For purposes of testing and troubleshooting, a bus is a group of
signals that operate in an identical manner, such as an address or
data bus. The bus is a connection between a sending output and
one or more receiving inputs. For internal buses, the sending
and receiving components may be buffers. Buffers separate
internal buses from the microprocessor bus. A fault such as two
buffered address lines tied together cannot be directly detected
from the microprocessor bus. Thus, some faults on the buffered
bus may go undetected by the built-in BUS TEST.

The key to testing a bus is that while there may be multiple
outputs to the bus, only one should be active at any time. Each
bus has an associated set of control and status lines which must
also be tested.

Considerations for Testing and
Troubleshooting 4.10.2.

There are several methods of testing bus buffers. For buses, it
is usually desirable to test all combinations of bus signal levels
to verify that:

® Alllines are drivable.
® No two lines are shorted together.
® No lines are open between the master and the receivers.

Bus Buffer

This is particularly desirable for data and address buses, whose
lines are often physically adjacent. These lines may be subject to
manufacturing defects and failure modes, such as:

¢ Over-etching of traces causing open lines.

® Under-etching of traces causing shorted lines.

® Solder bridges causing shorted lines.

¢ Faulty or damaged parts causing lines to be stuck or open.

¢ Faulty or damaged parts that have incorrect logical
behavior.

Bus and Buffer Testing Capabilities

4-244

A ramp function is useful for testing buses and their associated
buffers. The ramp function is a binary progression (i.e. a
sequence of ascending numbers) covering all combinations of
signal values. The ramp counts through all the values, starting
at the lowest and ending at the highest. For large groups of
signals, ramping over the full range can take considerable time.
A means of ramping through a limited range by selecting a group
of bits via a mask is therefore provided. For example, a 32-bit
address bus may be covered by performing four ramping
operations for each set of 8 bits (each group of which is
probably associated with a particular buffer). This requires only
4x28 or 1024 operations vs. 232 or 4.3 billion operations!

To troubleshoot a bus effectively, ramping operations must
cover all normal transitions for logically adjacent lines. In the
example above, suppose ramping operations covered address
lines AQ through A7, A8 through A15, etc. If A7 and A8 are
tied, the fault may not be discovered. It is therefore advisable to
overlap ramping operations in order to provide the additional
fault coverage. A portion of a TL/1 stimulus program might
look like this:

Bus Buffer

rampaddr addr $F0000000, mask S$S1FF
rampaddr addr S$F0000000, mask $1FF00
rampaddr addr $F0000000, mask $1FF0000
rampaddr addr $F0000000, mask $SFF000000

There would be 3 x 29 + 28 or 1792 iterations vs. 1024 in the
preceding example. Overlapping ramp functions usually takes
little additional test time.

Several built-in ramp and toggle stimulus functions are available:
In TL/1, the commands are rampaddr, rampdata, toggleaddr,

toggledata, and togglecontrol (see Section 3 of the TL/1

Reference Manual). From the operator's keyboard, the STIM
key provides these functions (see Section 5 of the Technical
User’s Manual).

As described earlier in Section 2.2, the 9100A/9105A can make
five types of measurements to determine whether a node is good
or bad. The list below describes how these five measurement
types relate to bus buffers. The combination of CRC signatures
and asynchronous level history is recommended for most bus
node measurements, except when data buses are being
measured. Data buses are bidirectional and can be set to high-
impedance levels between valid data times. In this case, CRC
signatures with synchronous level history are the recommended
measurement combination.

® CRC signatures are useful when associated with stimulus
functions, since a unique signature results from a relatively
large number of signal transitions. For a given stimulus
program, two nodes that are tied will almost always have
the same signature, different from the known-good
signature.

® Asynchronous level history is useful when trying to
determine whether a bus node is stuck. In this mode, the
probe or I/O module will report all of a node's three states
during the measurement period: logic 1, logic 0, or invalid
X (high-impedence). Asynchronous level history is very
useful for detecting glitches (short pulses) and is usually
used together with CRC signatures. It should not,
however, be used on data buses, which are bidirectional

Bus Buffer

and can be set to high impedance; since three-state
conditions are not predictable on such lines, they may
cause the measurement to fail. To measure data buses, use
synchronous level history with CRC signatures.

® Synchronous (clocked) level history is used to measure
signal levels at clock edges. This is useful for separation
of signals present at the specified clock edges from signals
present at other times. Clocked level history reports logic
states in the same way as asynchronous level history.
Measure data buses with this method, using the stable
clock to avoid the three-state condition.

® Transition count is used in place of CRC signatures when
there is no stable clock available.

® Frequency can be used to measure periodic bus cycles,
such as refresh, or to verify the frequency of system
clocks.

Address Buffers

When troubleshooting address buffers, the physical address map
of the UUT can be used to partition address buffer tests. For
example, a set of address lines may be part of the I/O memory
and associated with a particular buffer. Thus, a rampaddr
command over the specific I/O memory range may be sufficient
to verify proper operation of the buffer.

Other examples of address-bus partitions are:

® Mapped address lines are the microprocessor address lines
that are translated or mapped into another set of lines by a
fast RAM or VLSI component.

d System bus address lines are the address lines (usually
different from the microprocessor address lines) in the
system bus. These are usually buffered independently
from internal address lines.

® [Internal (local) address lines are usually buffered
separately for local memory or other components.

4-246

Bus Buffer

Address lines may be latched as well as buffered. In latched
applications, the latch acts as a buffer and should therefore be
included in the Bus Buffer functional block.

Data Buffers

Many UUTs with 16- and 32-bit microprocessors and standard
buses have separate buffers for each group of eight bits with
three-state and direction-control lines that can be controlled
independently. There may also be buffers that allow swapping
or repositioning of bytes within a word. The rampdata
command, combined with CRC signatures, can be used to
diagnose data-bus-related errors in a similar way as rampaddr.

The rampdata command is a stimulus with the microprocessor as
the node source. To apply stimulus in the opposite direction,
read data from a component on the bus (such as RAM, ROM or
DMA). To do this, write a stimulus program to read data from
the component, and record signatures in the same way as for
rampdata. A ROM is a convenient component since, once
programmed, it contains a pseudo-random pattern which, over a
given address range, will generate meaningful signatures for the
individual data lines. There is usually a ROM associated with
each byte of the data bus. The read or rampaddr commands will
provide the addresses for generating the data to be read from the
ROM.

Control Buffers

Control lines may sometimes be generated by an LSI component
associated with the microprocessor. The LSI component is
included here in the bus buffer functional block because it
performs a function similar to the bus buffer. The testing and
troubleshooting of these components proceeds as though they
were simple buffers.

A faulty control buffer can cause the address-bus and data-bus
tests to fail. Control signals are tested by performing reads and

4-247

Bus Buffer

writes in all possible address spaces and all possible data
widths. Some control signals can be tested by the togglecontrol
command. The control buffers should be checked as the control
lines are stimulated.

Several types of control lines present problems. Here are some
general guidelines:

Bus exchange signals are used to relinquish control of the
microprocessor bus to another master. Large systems may
have a bus arbitration circuit for granting the bus to a
requesting component. These circuits should probably be
treated separately from the bus buffer block.
Asynchronous access to the bus during tests should be
restricted and access should be limited to the specific
master acting as the stimulus source. The state of the bus-
request line can be determined with the measurement
techniques described above.

Direction control signals control the direction of data flow
through the buffers and are usually connected directly to
inputs on the buffer ICs. These signals may be derived
from microprocessor status lines, LSI components, or
buffered versions of the microprocessor signal. There
may also be separate read and write signals for different
physical memory or 1/O address spaces. The logic state
for each of these signals should be verified for the
appropriate bus cycle.

Wait-state control signals such as READY on the 80286
microprocessor and ~DTACK on the 68000
microprocessor extend the bus cycle to accommodate
slower components. Stuck wait-state control lines will
cause bus-related functions to fail. If the pod is the
stimulus source, a stuck high (negated) condition on
Ready will cause a pod timeout. When the pod timeout
occurs, a message like "enabled line ~READY PIN 63
causes timeout" (when using an 80286 pad) will result.
The line can be disabled and testing can proceed. For
example, when a ROM requiring one wait state is the
stimulus source and the Ready or ~NDTACK signal is stuck
low (asserted), the bus cycles may be completed but bad

Bus Buffer

data may be produced. As with other control lines,
asynchronous level history is useful in detecting stuck
control lines.

® Reset is a system-wide control signal which may be
included in the bus buffer functional block. A reset signal
stuck in the asserted state will probably affect many tests.
Often, the only way to verify operation of a Reset signal
without cycling the power on the UUT is to externally
assert the signal using a switch, or overdriving device such
as the probe. The various nodes which distribute the reset
signal via buffers may be verified using the asynchronous
level history measurement.

Miscellaneous Lines

System clocks are sometimes associated with the control lines
for a particular bus. These clocks are often used to synchronize
external events with a bus cycle, they are often an integral part of
control-signal generation, and they can cause control-signal
faults if they are faulty.

Clocks asynchronous with the microprocessor clock are
sometimes used to run state machines associated with bus- and
buffer-control circuitry. Nodes that distribute these clocks via
buffers can be measured with the probe or I/O module
programmed to measure frequency. There is no stimulus
associated with these frequency measurements, even though a
stimulus program is used to set the mode on the measurement
device. The same is true for the program used to measure
asynchronous levels. These programs are referred to as
response-only stimulus programs. See the levels and frequency
programs in Section 4.8.6 and 4.12.6.

Pull-up or pull-down resistors which establish static logic levels
on buses when there are no active outputs should also be tested.
Levels can be verified with asynchronous level history
measurements.

4-249

Bus Buffer

VLSI Components

Some VLSI components integrate a large amount of peripheral
microprocessor circuitry associated with personal computer
designs, including the bus buffers. Operation of these
components can be quite complex. To simplify stimulus
program design, the buffer portion of these components, along
with the associated control signals, can be grouped in a separate
functional block from the other functions of the component.
Testing can then be done in a manner similar to that for discrete
buffers.

Connectors

Connectors are a part of many bus buffering functional blocks.
Whether these are test connectors, card-edge connectors or
sockets, they are components that can cause stuck, tied, or open
bus lines. Connectors should therefore be included in tests.

Bus Buffer Example 4.10.3.

4-250

The bus buffer in the Demo/Trainer UUT, Figure 4-96, uses an
82288 bus controller (U15) to decode status lines ~S0, ~S1,
M/~IO from the microprocessor and to generate command
signals for bus-cycle control. An "I" is appended to some
mnemonics, signifying internal (buffered) signals. For
example, data-bus lines D00-D15 become internal lines ID0O0-
15.

The address bus (A00-23) is buffered with latches U2, U16,
and U22. The rising edge of each ALE transition latches a new
address.

For the data bus (D00-15), the 82288 outputs control signals
DEN (data enable) and DT/~R (data transmit/receive). These
two signals control the state of data-bus transceivers U23 and
U3. For write cycles, both DEN and DT/~R are high. For read
cycles, DEN is high and DT/~R is low.

O

Bus Buffer

Keystroke Functional Test 4.10.4.
Part A:

Use a 20-pin clip module on side A of I/O module 1 to test
data and control outputs from the microprocessor. Use the
SYNC, I/O MOD, and STIM keys with the commands
below for each of the following parts: U3, U23, U22, U15,
and U45. The correct measurement for each pin is shown in
the response table in Figure 4-96.

SYNC I/0 MOD 1 TO POD DATA
ARM I/0 MOD 1 FOR CAPTURE USING SYNC
RAMP DATA 0 MASKED BY FF, ADDR 0
(ADDR OPTION: I/O BYTE)
RAMP DATA 0 MASKED BY FF00, ADDR 0
. (ADDR OPTION: MEMORY WORD)
SHOW I/0 MOD 1 PIN <see response table> ...
. CAPTURED RESPONSES

NOTE

The SHOW command requires a clip module pin
number rather than a part pin number. This requires
you to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User’s
Manual). For your convenience, this translation has
been done for you in this example, and the results are
shown in the "I/O MOD PIN" column of the
response table in Figure 4-96.

Part B:

Use a 20-pin clip module on side A of 1/O module 1 to test
data input to the microprocessor from the ROMs. Use the
SYNC, I/O MOD, and STIM keys with the commands
below for U3 and then for U23. The correct measurement
for each pin is shown in the response table in Figure 4-97.

4-251

Bus Buffer

SYNC I/0 MOD 1 TO POD DATA
ARM I/0O MOD 1 FOR CAPTURE USING SYNC
RAMP ADDR E0000 MASKED BY 1FE
(ADDR OPTION: MEMORY WORD)
SHOW I/0 MOD 1 PIN <see response table>
. CAPTURED RESPONSES

Part C:

1. Use a 20-pin clip module on side A of I/O module 1 to test
addresses and control outputs from the microprocessor.

2. Use the SETUP MENU key with the following commands
to disable Ready so all addresses can be generated:

SETUP POD ENABLE ~READY OFF
SETUP POD REPORT FORCING SIGNALS OFF

3. Use the SYNC, I/O MOD, and STIM keys with the
commands below for each of the following parts: U16, U2,
U22, U15, and U45. The correct measurement for each pin
is shown in response table #1 in Figure 4-98.

SYNC I/O MOD 1 TO POD ADDR
ARM I/0O MOD 1 FOR CAPTURE USING SYNC
RAMP ADDR 0 MASKED BY FFCO00
(ADDR OPTION: MEMORY WORD)
RAMP ADDR 0 MASKED BY 7FF
(ADDR OPTION: I/0O BYTE)
SHOW I/O MOD 1 PIN <see response table>
CAPTURED RESPONSES

4. Use the SYNC, I/O MOD, and STIM keys with the
commands below for part U15. The correct measurement
for each pin is shown in response table #2 in Figure 4-98.

SYNC I/O0 MOD 1 TO POD DATA

(Note that this is pod DATA sync)
ARM I/0 MOD 1 FOR CAPTURE USING SYNC
RAMP ADDR 0 MASKED BY FFC00

(ADDR OPTION: MEMORY WORD)
RAMP ADDR 0 MASKED BY 7FF

4-252

Bus Buffer

(ADDR OPTION: I/O BYTE)
SHOW I/O MOD 1 PIN 8 CAPTURED RESPONSES
SHOW I/O MOD 1 PIN 12 CAPTURED RESPONSES

5. After completing this functional test, use the SETUP MENU
key with the commands below to enable Ready and to
restore reporting of active forcing signals.

SETUP POD ENABLE READY ON
SETUP POD REPORT FORCING SIGNALS ON

Part D:

Use a 20-pin clip module on side A of I/O module 1 to test
control outputs during interrupt acknowledge by using the
pod program named FRC_INT. Use the SETUP MENU,
SYNC, and I/O MOD keys with the commands below for
U135 and then for U45. The correct measurement for each
pin is shown in the response table in Figure 4-99.

SETUP POD ENABLE ~READY ON

SETUP POD REPORT FORCING SIGNALS ON

SETUP POD INTA ACK ON

SYNC I/0 MOD 1 TO POD INTA

ARM I/0 MOD 1 FOR CAPTURE USING SYNC

POD: FRC_INT

.. (ADDR OPTION: MEMORY WORD)

SHOW I/O MOD 1 PIN <see response table>
. CAPTURED RESPONSES

4-253

Bus Buffer

Keystroke Functional Test (Part A)

CONNECTION TABLE

TEST ACCESS SOCKET U3 uis
uza uds
uzz

RESPONSE TABLE

4-254

Bus Buffer

oK ol CLOCK AND AESET

sLato
AaM
OYMNAMIC
AAM -
TIMING
ADDRESS -
DECODE
| —
2
5
(-
: e ROM L
i
T e 3 L
3 By gyl i Ia08 1408
ils

PARALLEL
| 1/0

|+mv
SERIAL
/0

Figure 4-96: Bus Buffer Functional Test (Part A)

4-255

Bus Buffer

Keystroke Functional Test (Part B)

CONNECTION TABLE

TEST ACCESS SCCKET U3
u23

RESPONSE TABLE

4-256

Bus Buffer

READY
CIRCUIT

l CLOCK AND RESET

o MATEH)

SHE-5

LY 31, 6 e

TA08

R
"SR 4-1
¥

16

120%

ALATCH

AaM |

DYNAMIC

Ram =
TIMING

INTERRUPT
CIRCUIT

HARALLEL
1/0

oo7?
coe
[=]:1]

Oba

003

[EF

oD

Figure 4-97: Bus Buffer Functional Test (Part B)

AOM —

4-257

Bus Buffer

Keystroke Functional Test (Part C)

CONNECTION TABLE

TEST ACCESS SOCKET

RESPONSE TABLE #1

RESPONSE TABLE #2

4-258

Bus Buffer

READY
CIRCUIT

L CLOCK AND RESET

ALATE

— AD0AESS -
| OECOOE

INTERRUPT
CIRCUTT

- SERIAL
/0
VIDED .
Ram
1005 -
- I; VIDED
\Swa—a CONTROL
o iE]
v

Figure 4-98: Bus Buffer Functional Test (Part C)

Bus Buffer

Keystroke Functional Test (Part D)

CONNECTION TABLE

TEST ACCESS SOCKET

RESPONSE TABLE

4-260

Bus Buffer

READY
CIRCULT

CLe CLOCK AND RESET

hed
| A2085
J ot/ AL ALSGS
15 cens7En cEn = .
" | . T | ALATCH
READ
WHITE
TREED
TRALTE ~
THTA
—r Ram
coo/TnTa. DYNAMIC
BRE b —
a13
418 -
A17 I
—
ADDAESS I
DECOOE
|t AOM -
at0 I
AT I
A58 fAOE
————
i |
vt .| INTERRUPT L
CIRCUIT {
16]
- 1208
EEN [EE LT —]
; PAR!}{LLEL |
] G718 Tatn 10
1
ue
leg ey
I!
B | SERIAL
2 52 /0
- A 83
B4
85
&6
ar 11 1008
FrEEES B S— VIoso
HAM
1007
1008
3 5 I00%
1% 1004 J; VIDEQ
I by -
5ie a2 - WS- CONTROL
tE Toot |15 B
13 1000 <&

- 8
187 |

Figure 4-99: Bus Buffer Functional Test (Part D)

4-261

Bus Buffer

Programmed Functional Test 4.10.5.

4-262

The tst_buffer program is the programmed functional test for the
Bus Buffer functional block. The gfi test command is used to
run all stimulus programs defined for the parts tested and to
compare the results against known-good responses stored in the
response files. If all results are good, the gfi test passes;
otherwise the gfi test fails.

The tst_buffer program performs a gfi test on address buffer
U16. If the gfi test fails, a program called abort_test is executed
using a variable containing the part and pin number that was
tested by the gfi test command. A listing for the abort test
program is included in Appendix C.

The abort_test program uses the gfi accuse command to see if an
accusation exists. If there is no accusation, a gfi hint containing
the part number and pin number is generated and the program is
terminated (the gfi hint gives GFI a place to start
troubleshooting). If an accusation does exist, the abort test
program displays the accusation and the program is terminated.

The gfi test (and execution of abort test if the gfi test fails) is
repeated for the other two address buffers U2 and U22 and then
for the data bus buffers U3 and U23.

program tst_buffer

! FUNCTIONAL TEST of the BUS BUFFER functional block.

! This program tests the BUS BUFFER functional block of the
! Demo/Trainer. The gfi test command and I/0 module are used to clip
! over the buffers and perform the test.

1
1
1
!
! TEST PROGRAMS CALLED:

! abort_test (ref-pin) If gfi has an accusation

! display the accusation else
! create a gfi hint for the

! ref-pin and terminate the test!
! program (GFI begins trouble- !
! shooting). !
1

Bus Buffer

G

print "\nlTESTING BUS BUFFER Circuit"™
! Test ADDRESS BUS
if gfi test "Ulé-1" fails then abort test ("Ul6-1")
if gfi test "U2-1" fails then abort test ("U2-1")
if gfi test "U22-1" fails then abort_test ("U22-1")
{ Test DATA BUS

if gfi test "U3-1" fails then abort test ("U3-1")
if gfi test "U23-1" fails then abort_test ("U23-1")

print “BUS BUFFER TEST PASSES"
end program

Stimulus Programs and Responses 4.10.6.

Figure 4-100 is the stimulus program planning diagram for the
Bus Buffer functional block.

The stimulus programs addr _out, ctrl_outl, ctrl_out2, ctrl_out3,
~ and data_out exercise outputs going outward from the
U microprocessor. The roml data stimulus program stimulates
the outputs of the data buffers that are connected to the

MiCroprocessor.

4-263

Bus Buffer

Stimulus Program Planning

PROGRAM: CTRL_.OUT1

EXERCISES CONTROL LINES FROM THE
MICROPROCESSOR USING POD ADDRESS
SYNCHROMIZATION

MEASUREMENT AT:

uz22-56
us7-8
U15-16
u45-8

4-264

Bus Buffer

READT
CIRCUIT

e e CLOCH AND RESET

-

5 ALSI0

ALATCH

| e —
DYNAMIC |
—r= RaM [
TIMING
. ADORESS |-
DECODE |
]
— AOM [—
L o InTERALRT
CIACUTT
PAHALLEL
N]
+5v
.| SERTAL
/0
VIDED
= Ram =
T
13
5 1005 1
4 Pk VIDED |
2 Swa-z " CONTROL |
1 13]
o

Figure 4-100: Bus Buffer Stimulus Program Planning

4-265

Bus Buffer

program ctrl out2

trrrrrrrrrrrrr s r et r I RL I ILILIILIITIRI LI LILILILILILIIIRITILILILITILIIGLBITTITLIIIIIIIIIILIISLEISLIY

STIMULUS PROGRAM for bus controller, Ul5 & uP ctrl lines.

Stimulus programs and response files are used by GFI to backtrace !
from a falling node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for

! the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
! or without the ready circuit working properly. Because of this, all !
! the stimulus programs in the kernel area must disable the READY input !
! to the pod, then perform the stimulus, then re-enable the READY input !
! to the pod. The 80286 microprocessor has a separate bus controller; !
! for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to
resynchronize the bus controller and the pod. !
1

recover {) The 80286 microprocessor has a!
bus controller that is totally!
separate from the pod. In !
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program !
resynchronizes the pod and the!
bus controller. !

GRAPHICS PROGRAMS CALLED:
{(none}

1
1
1
1
Local Variables Modified: !
devname Measurement device !
1
1
1
1
1
1

io_byte I/0 BYTE address space
mem_word MEMORY WORD address space

Global Variables Modified:

1
1
H
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
! i
! TEST PROGRAMS CALLED: !
1
1
1
1
1
1
1
1
1
1
1
1
1
1
!
1
1
1
! recover times Reset to Zero
1

! Main Declarations !
L0000 0 A O A A A A 0 O O 0 O O O O

declare global numeric recover_times

(continued on the next page)

Figure 4-101: Stimulus Program (ctr_out2)

4-266

Bus Buffer

N
Q TP r I TR r L LN I LTI LI TIE R TI LI IILIITI R EI LI LI I I I EITILIITI LI ITIIII It irrnrn

! FAULT HANDLERS: !
R RN R R R R R R R R R R R R R AR R R R A RN E

handle pod_timeout enabled line
recover (}

end handle

handle pod timeout_ recovered
recover ()

end handle

handle pod timeout no_clk
end handle

trtrrtrtrrptnr IR LLILCLILILLLIELILI I IR IR ELILIRIOLIRIRICRIOLIGEI ISR RILEITTILIIIOGPIIILIGLITTITLILILITLIIIIIILI

! Main part of STIMULUS PROGRAM !
SRR RN RN R R R R R RN RN RN RN RN R R R R AR

recover times = 0

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modi®

end if

print "Stimulus Program CTRL_OUT2"

I Set addressing mode and setup measurement device.

S podsetup ‘enable ~ready' "off"
podsetup ‘report power' "off"

podsetup 'report forcing' "off™
podsetup 'report intr' "off"
podsetup 'report address' "off"
podsetup ‘report data' "off"
podsetup 'report control' "off"®
io byte = getspace space "i/o", size "byte"
mem word = getspace space "memory", size "word"
reset device devname
sync device devname,mode "pod"
sync device "/pod”, mode "data"
old cal = getoffset device devname
setoffset device devname, offset (1000000 - 70}

{ Present stimulus to UUT.

arm device devname ! Start response capture.
setspace (mem word)
rampaddr addr $E0000, mask $1E
rampdata addr $50000, data 0, mask $F
setspace (io_byte)
rampaddr addr 0, mask $3FQ0Q
rampdata addr $2000, data 0, mask $F
readout device devname ! End response capture.

setoffset device devname, offset old cal

podsetup 'enable ~ready' "on"
end program

Figure 4-101: Stimulus Program (ctrl_out2) - continued

Bus Buffer

STIMULUS PROGRAM NAME: CTRL OUT2
DESCRIPTION: SIZE: 261 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src with SIG ILVL 1VL Mode Counter Range Pin
U15-5 I/0 MODULE 0000 10 0 TRANS
Ul15-8 PROBE A5B1 10 TRANS
Ul5-8 I/0 MODULE ASBl 10 TRANS
Ul5-9 PROBE AB41 10 TRANS
Ul5-9 I/0 MODULE A841 10 TRANS
Ul5-11 PROBE 448E 10 TRANS
Ul5-11 I/0 MODULE 448E 10 TRANS
Ul5-12 PROBE F383 10 TRANS
Ul5-12 I/0 MODULE F383 10 TRANS
Ul5-13 I/0 MODULE BAFD 1 TRANS
Ul15~17 I/0 MODULE ECCF 10 TRANS
U5-8 I/0 MODULE FE73 10 TRANS
U45-8 I/0 MODULE BAFD 10 TRANS
U56~-6 PROBE 448E 10 TRANS
U56-6 I/0 MODULE 448E 10 TRANS

Figure 4-102: Response File (ctrl_out2)

4-268

O

Bus Buffer

program ctrl out3

in the kernel area of the UUT.

TEST PROGRAMS CALLED:
recover {)

frc int ()

GRAPHICS PROGRAMS CALLED:
{none})

Local Variables Modified:
devname
io_byte
mem_word

Global Variables Modified:
recover_times

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
These programs create activity with !
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then-re-enable the READY input !
to the ped. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to !
resynchronize the bus controller and the pod. !

1

The 80286 microprocessor has al!
bus controller that is totally!
separate from the pod. 1In i
some cases the pod can get outt
of sync with the bus control- !
ler. The recover program !
resynchronizes the pod and the!
bus controller. !

!

1
Pod program to Force Interrupt!
Ack. !

1
i
1
1
1
Measurement device !
I/0 BYTE address space !
MEMORY WORD address space !
1
1
1
1

Reset to Zero

(continued on the next page)

Figure 4-103: Stimulus Program (ctrl_out3)

4-269

Bus Buffer

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = clip ref "Ul5"

end if

print "Stimulus Program CTRL OQUT3"

! Set addressing mode and setup measurement device.

io_byte = getspace space "i/o", size "byte"
mem word = getspace space "memory”, size "word"
podsetup ‘report power*' "off"

podsetup 'report forcing' "off"

podsetup 'report intr' "off*

podsetup ‘report address* "off"

podsetup ‘report data*' "off"

podsetup 'report control' "off"

reset device devname

podsetup 'intr ack on'

sync device "/pod”, mode "inta"

sync device devname, mode "pod"

! Present stimulus to UUT.

arm device devname ! Start response capture.
execute frc int () ! Force Interrupt Ack.
readout device devname ! End response capture.

end program

Figure 4-103: Stimulus Program (ctrl_out3) - continued

4-270

Bus Buffer

STIMULUS PROGRAM NAME: CTRL OUT3
DESCRIPTION: SIZE: 282 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With sIG IVL IVL Mode Counter Range Pin
Ul5-5 I/0 MODULE 0000 10 TRANS
Ul5-8 PROBE 0001 10 TRANS
U15-8 I/0 MODULE 0001 10 TRANS
U15-9 PROBE 0001 1 TRANS
Ul5-9 I/0 MODULE 0001 1 TRANS
Ul5-11 PROBE 0001 1 TRANS
Ul5-11 I/0 MODULE. 0001 1 TRANS
Ul15-12 PROBE 0001 1 TRANS
Ul5-12 I/0 MODULE 0001 1 TRANS
Ul15-13 I/0 MODULE 0000 10 TRANS
Ul15-17 I/0 MODULE 0000 10 TRANS
U4-3 I/0 MODULE 0000 10 TRANS
Us-8 I/0 MODULE 0001 10 TRANS
U45-8 I/0 MODULE 0001 10 TRANS
U56-6 PROBE 0000 10 TRANS
U56-6 I/0 MODULE 0000 10 TRANS
Ul5-4 I1/0 MODULE 0000 10 TRANS

Figure 4-104: Response File (ctrl_out3)

4-271

Bus Buffer

Summary of Complete Solution for Bus Buffer 4.10.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Bus Buffer functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the location in

this manual for each file.
UUT DIRECTORY
(Complete File Set for Bus Buffer)
Programs (PROGRAM):
TST_BUFFER Functional test Section 4.10.5
ADDR_OUT Stimulus Program Figure 4-4
DATA_OUT Stimulus Program Figure 4-6
CTRL_OUT1 Stimulus Program Figure 4-8
CTRL_OUT2 Stimulus Program Figure 4-101
CTRL_OUT3 Stimulus Program Figure 4-103
ROMI1_DATA Stimulus Program Figure 4-16
Stimulus Program Responses (RESPONSE):
ADDR_OUT Figure 4-5
DATA_OUT Figure 4-7
CTRL_OUT1 Figure 4-9
CTRL_OUT2 Figure 4-102
CTRL_OUT3 Figure 4-104
ROMI1_DATA Figure 4-17
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-272

Address Decode

Q ADDRESS DECODE FUNCTIONAL BLOCK 4.11.

Introduction to Address Decode Circuits 4.11.1.

The Address Decode circuit of a UUT typically consists of the
decoder ICs, an address path from the microprocessor to the
decoder ICs, and the decoder outputs that select the peripheral
devices on the UUT. Figure 4-105 shows such a circuit.

Many microprocessor systems contain an address latch or a
buffer between the microprocessor and the address decoder ICs.
The decoder ICs generally contain combinatorial logic that
asserts one and only one of the decoder outputs for a given
range of addresses. The address decoder typically has one or
more enable input pins. The signals feeding these pins may be
address lines or outputs from other decoders.

In some cases, the address decode logic is just one part of an
LSI chip. In this situation, the LSI component should be
partitioned so that only those inputs and outputs that relate to
address decoding are part of the Address Decode functional
block. :

Considerations for Testing and
Troubleshooting 4.11.2.

Use the 9100A/9105A's I/O module to test address decoding
circuits. The general procedure is to characterize all decoder ICs
and paths in the address decoding circuit of a known-good
UUT, and then perform the same procedures on the suspect
UUT, comparing results.

For each decoder IC in the circuit, the following test procedure
can be used from the operator's keypad:

1. Clip the I/O module onto the IC.

2. Synchronize and arm the I/O module (see the
Ci Technical User’s Manual for this procedure).

4-273

Address Decode

4-274

Micro-
processor

Address
Decoder

Enable

—>

S

—»

— Decoder
— Outputs
—»

.
-

—>
—>
—>
— Decoder
— Outputs
L—p

—>
>

Address
ﬁ/ Decoder
MEMIO # Enable
—————N] Address
Address Bus J} Buffer Buffered Address Bus

Figure 4-105: Typical Address Decode Functional Block

Address Decode

3. Run a stimulus procedure to make each output go
high and low.

4. Use the SHOW I/O MOD command on the I/O MOD
key (operator's keypad) to observe signatures on
each pin of the IC.

5. Write down the signatures gathered from each pin on
the IC, both inputs and outputs.

Since decoder outputs are typically asserted only over a specific
address range, your stimulus procedure should also perform its
reads and writes within that range for each decoder output. For
example, consider a decoder with eight outputs, as follows:

Decoder Address
Cutput Range (hex)
~Y0 0-7FF

~Y1 800-FFF
~Y2 1000-17FF
~Y3 1800-2FFF
~Y4 3000-37FF
~Y5 3800-3FFF
~Y6 4000-47FF
~Y7 4800-4FFF

A stimulus procedure to test the first output, ~Y0, might consist
of the following:

READ ADDR 0
READ ADDR 7FF

This will test the end points of the valid address range for ~YO0,
to verify that ~YO is asserted (low) within that range. The same
pair of reads within the valid address range of ~Y1 will test that
~YO0 is not asserted (high) outside the valid address range of
~Y0. You can use this strategy to test all of the decoder outputs
with only 16 read operations.

4-275

Address Decode

If the outputs of a decoder IC are bad and the inputs are good,
suspect the IC and/or suspect shorts on the output signal paths.
If the decoder inputs are bad as well, trace back toward the
microprocessor. If your UUT has address latches or buffers,
perform a similar test on them. :

Watch for decoder ICs that are enabled only during reads or
writes. Use the appropriate stimulus command (read or write)
on these ICs.

Address Decode Circuit Example 4.11.3.

4-276

Figure 4-106 shows the address decode circuit (U8, U9, and
U21) in the Demo/Trainer UUT. It selects the memory or I/O
component being addressed. Some of the buffered address lines
and bus controller lines are used to enable the following decoded
address output lines (all have active low outputs):

Address
Range Circuit
Output Enabled Enabled

RAMO 00000-OFFFF 64K byte dynamic RAM

RAMI 10000-1FFFF 64K byte dynamic RAM
VRAM 20000-2FFFF Video RAM
IPOLL 30000-3FFFF Interrupt polling

SPARE1 40000-4FFFF (decode complete signal)

SPARE?2 50000-5FFFF (decode complete signal)

ROMO E0000-EFFFF 64K byte ROM, U29 and U30

ROM1 FO000-FFFFF 64K byte ROM, U27 and U28

VIDSLT 00000-01FFE Video controller

I/OSLT 02000-03FFE RS-232 port and the ASCII
keyboard

PPISLT 04000-05FFE Outputs to seven-segment
displays and inputs from test
switches S1 through S4

Address Decode

Keystroke Functional Test 4.11.4.

1. Use a 16-pin clip module on side A of I/O module 1 to test
the decoded signals.

2. Use the SETUP MENU key with the commands below:

SETUP POD ENABLE ~READY QFF
SETUP POD REPORT FORCING SIGNALS OFF

3. Use the SYNC, I/O MOD, and STIM keys with the
commands below for each of the following parts: U8, U9
and U21. The correct measurements for each pin are shown
in the response table in Figure 4-106.

SYNC I/0 MOD 1 TO POD DATA
ARM I/O MOD 1 FOR CAPTURE USING SYNC
RAMP ADDR (0 MASKED BY F0000
(ADDR OPTION: MEMORY WORD)
RAMP ADDR (0 MASKED BY F000
(ADDR OPTION: I/O BYTE)
SHOW I/O MOD 1 PIN <see response table> ...
. CAPTURED RESPONSES

NOTE

The SHOW command requires a clip module pin
number rather than a part pin number. This requires
you to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User's
Manual). For your convenience, this translation has
been done for you in this example, and the results are
shown in the "I/O MOD PIN" column of the
response table in Figure 4-106.

4-277

Address Decode

4. After completing the test, use the SETUP MENU key with
the commands below to restore the settings for POD
ENABLE and POD REPORT:

SETUP POD ENABLE READY ON
SETUP POD REPORT FORCING SIGNALS ON

4-278

Address Decode

(This page is intentionally blank.)

4-279

Address Decode

Keystroke Functional Test

CONNECTION TABLE

TEST ACCESS SOCKET

RESPONSE TABLE

4-280

Address Decode

READY READY
CIACUIT
i
| mEsET cLack
& BESET

ALS04
L 4 2 +5v
L5142 |4
u1a "
3 [, S gl5_ DISABLE
1 u7?
ALE - 2 [x gLe_NC
=
ALSO4 R
3 4 _Tl-‘ OYNAMIC
- aAM FAMADY
1
DISABLE TIMING
SWi-3 4 MALS138 45 FAMO _ 00000-OFFFF
iag 3 14 5 gs; % 14 FAAMI 10000-1FFFF —
M/ T0 - 61 Ve 13 VRAM 20000-2FFFF - VIDED | VRARRDY
218 c 73|42 TPOLL 30000-3FFFF =
217 8 w1 — CONTROL
215 a vEpl SPAREL 40000-4FFFF
5 pi0 SPARES | SO000-SFFFF - VIDSLT
. ¥7(9 NC S —
E
ug INTERBUPT INTADY
ALS04 CIRCUIT
1a1g 3 4 4 ALSI38 45 Ng .
L BEA YO 44 wC +5V | SEARET
— us7y o G2 Y1 } E.F:_F.'.Ef,
IM/ IO 51 v pi3 NC 10 SPAREZ
1418 C Y3 |12 NC aWa-7
Iai? 2 g ¥4 S
TAL6 s v i: :E - AOMOADY.
Je 1 ROM AOMIADY
Y7 | | E00DD-EFFFF =
~ [FOO0U-FFFFF —
Vs e - /080T |
a00 . ALS138 45 WIDSLT 0000-1FFE
— G2k YO |34 FFOSLT =2000-3FFE SERIAL
M/ I0_____ s g6eE 11 43 PPISLT A4COO-SFFE e 1/0
con/INTA ; g‘ % P '
A15 3 —_— . PPISLT
3 | FFISLT
Al4 E i‘ :_‘5‘ 11 NC =
A13 P |
VE 10 NC t
¥7| 9 nC J PARALLEL |
|
Uzt 7 NC I/0

Figure 4-106: Address Decode Functional Test

4-281

Address Decode

Programmed Functional Test 4.11.5.

4-282

The tst_decode program is the programmed functional test for
the Address Decode functional block. This program checks the
three address decode ICs (U8, U9 and U21) using the gfi test
command. If the gfi test command fails, the abort _test program
is executed and GFI troubleshooting begins. (See the Bus
Buffer functional block for a discussion of the abort test

program).
program tst_ decode

! FUNCTIONAL TEST of the DECODE functional block. !

! This program tests the DECODE functional block of the Demo/Trainer. !
t The gfi test command and I/0 module are used to clip over the decoders!
! and perform the test. !

!
1
1
1
1
! 1
! TEST PROGRAMS CALLED: !
t abort_test (ref-pin) If gfi has an accusation !
! : display the accusation else 1
t create a gfi hint for the 1
! ref-pin and terminate the test!
! program (GFI begins trouble-

! shooting}. !
1

declare
global string decode checked = "" ! Record this test was run
end declare

if decode checked <> "yes" then
decode_checked = "yes"
print *\nl\nlTESTING ADDRESS DECODE"

podsetup '‘enable ~ready' "off"
podsetup ‘report forcing' "off"

if gfi test "UB-15" fails then abort_ test (*U8-15")
if gfi test "U9-7" fails then abort_test ("U9-7")
if gfi test "U21-15" fails then abort_test ("U21~15")

print “ADDRESS DECODE TEST PASSES™
end if
end program

Address Decode

Stimulus Programs and Responses 4.11.6.

Figure 4-107 is the stimulus program planning diagram for the
Address Decode functional block. The decode stimulus program
performs an access at each decoded address space. The addr_out
stimulus program exercises the address lines. The reset_low
stimulus program checks the reset signal when the test operator
presses the Demo/Trainer UUT RESET pushbutton.

4-283

Address Decode

Stimulus Program Planning

PROGRAM: RESET_LOW

PROMPTS THE OPERATOR TO PRESS THE RESET
KEY AND THEN CHECKS FOR A LOW LEVEL

MEASUREMENT AT:

U19-4

4-284

Address Decode

RESET cLock
1 & AESET
CLK) . } I
READY 80285
MICROPROCESSOR
aus
BUFFER
5 OISABLE
o A4 ur
ALE 2 |k g@pE_NC
ALSO04) — o -~
S ‘]‘15 DYNAMIC |
,/“‘\\ S FAMACY
,r . | = RAM
{ Uis
% - OISABLE J TIMING
swi-a | q ALS138 _oooog-orrer |
1419 3 14 5 “_g;; % [10000-1FFFF —
M/ﬁ 5 G1 vz ____20000-2FFFF YIDED
A18 3 ¥3 -
AD 3lc’ ¥s 30000-3FFFF e CONTROL
2 T il :_5 SPAREL _ 40000-4FFFF .
Y& L0 SPAREZ 50000-5FFFF - _ vipslT]
w7]
| I
- INTERAUPT TNTAOY
LS04 | CIRCUIT
a1 3 4 pLsi3s .
- ﬂ SPARE 1
- us7 5 4GEF VIp_——
IM/I0 1 YE N S
e c v S
I a a4 -
as7 : &l HOMOADY
¥& AOM RAOMIADY
7 ‘
~ R ¥
us T/08LT
. ALS138 PHE VIGELT 0000-1FFE SERTAL
i:‘?%a 5 Ges vy pidl I7OSLT =2000-3rFE - 1/0
= o vz 43 FPISLT 4000-SFFE
,\:5’ A 3¢ % 18 NG FRIELT
a1a z | B T4la1 NC _ i
213 S L Y gy
1433 0 1 V6 pi0 NE
ALY PARALLEL
p— e I/0
[T .l !

Figure 4-107: Address Decode Stimulus Program Planning

4-285

Address Decode

program decode

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with t
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to !
resynchronize the bus controller and the pod. !

1

recover 4} The 80286 microprocessor has al!
bus controller that is totally!
separate from the pod. In !
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program 1
resynchronizes the pod and the!
bus controller. t

GRAPHICS PROGRAMS CALLED:
{none)
devname Measurement device

Global Variables Modified:

1
1

1

1

i

1

1

1

1

1

1

1

1

1

1

1

1

1

! !
! TEST PROGRAMS CALIED: !
1

1

1

i

1

1

1

1

1

1

1

i1

1

1

1

1

! recover_times Reset to Zero
1

1
1
!
!
Local Variables Modified: !
1
1
!
1
1

i FAULT HANDLERS: !

trrrrrrrrrrrbbLLLLLLIOLOLLEI RO RLI LRI LILIIOLIGLIOLI PRI RO RRLIOLILI RIS IO TEIRIGEILPIT IO LTI LI IS LIITTIIITIITIIETIILILIILIILY

handle pod timeout enabled line
recover ()
end handle

(continued on the next page)

Figure 4-108: Stimulus Program (decode)

4-286

Address Decode

handle pod timeout_recovered
recover ()
end handle

recover times = 0

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl”

end if

print "Stimulus Program DECODE"
! Set addressing mode and setup measurement device.

podsetup ‘'enable ~ready‘' "off"

podsetup ‘'report power' "off"

podsetup ‘'report forcing' "off*

podsetup 'report intr' "off"

podsetup ‘report address' "off"

podsetup ‘report data! "off"

podsetup 'report control* "off"

io_byte = getspace space "i/o", size "byte"
mem word = getspace space "memory", size "word"
reset device devname

sync device devname, mode "pod"

sync device "/pod", mode "data”

old cal = getoffset device devname

setoffset device devname, offset (1000000 - 56}

! Present stimulus to UUT.

arm device devname ! Start response capture.
setspace (mem word}
read addr 0 ! RAMO
read addr $10000 ! RAM]
write addr $20000, data 0 ! VRAM (write only)
read addr $30000 ! IPOLL
read addr $40000 ! SPARE1
read addr $50000 ! SPARE2
read addr $SE0000 ! ROMO
read addr $FQ000 ! ROM1
setspace (io_byte)
read addr O ! VIDSLT
read addr $2000 ! I/OSLT
read addr $4000 ! PPISLT

readout device devname ! End response capture.
setoffset device devname, offset old cal

podsetup ‘'enable ~ready' "on"
end program

Figure 4-108: Stimulus Program (decode) - continued

4-287

Address Decode

STIMULUS PROGRAM NAME: DECODE
DESCRIPTION: SIZE: 392 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL LVL Mode Counter Range Pin
Ug-15 1/0 MODULE 03F9 10 TRANS
Ug-14 1/0 MODULE O05F6 10 TRANS
) Ug-13 I/0 MODULE O06F1 10 TRANS
Q Ug-12 I/0 MODULE 0772 10 TRANS
] Ug-11 I/0 MODULE 07B3 10 TRANS
Ug-10 I/0 MODULE 07D3 10 TRANS
U9-9 I/0 MODULE O07E3 10 TRANS
U9-7 I/0 MODULE O07FB 10 TRANS
U21-15 PROBE 07F7 10 TRANS
U21-15 I/0 MODULE O07F7 10 TRANS
U21-14 PROBE 07F1 10 TRANS
U21-14 I/0 MODULE O07F1 10 TRANS
U21-13 I/0 MODULE 07F2 10 TRANS
U7-5 I/0 MODULE 0000 10 TRANS
Ul9-2 I/0 MODULE 08675 10 TRANS
U19-4 I/0 MODULE O07F3 1 TRANS
U45-3 I/0 MODULE O7FB 10 TRANS
U45-6 I/0 MODULE O7E3 10 TRANS
Us5-11 I/0 MODULE 07F3 1 TRANS
U4-3 1/0 MODULE O07F3 1 TRANS
U57-2 I/0 MODULE 0637 10 TRANS
Us7-6 I/0 MODULE 0081 10 TRANS

Figure 4-109: Response File (decode)

4-288

Address Decode

Summary of Complete Solution for
Address Decode 4.11.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Address Decode functional block is shown
below. The format below is similar to a 9100A/9105A UUT
directory (you could consider the functional block to be a small
UUT), but in addition shows the use of each program and the
location in this manual for each file.

UUT DIRECTORY
(Complete File Set for Address Decode)
Programs (PROGRAM):
TST_DECODE Functional Test Section 4.11.5
DECODE Stimulus Program Figure 4-108
ADDR_OUT Stimulus Program Figure 4-4
RESET_LOW Stimulus Program Figure 4-115
Stimulus Program Responses (RESPONSE):
m DECODE Figure 4-109
- ADDR_OUT Figure 4-5
RESET_LOW Figure 4-114
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-289

Address Decode

(This page is intentionally blank.)

4-290

Clock and Reset

CLOCK AND RESET FUNCTIONAL BLOCK 4.12.

Introduction to Clock and Reset Circuits 4121,

Microprocessor-system clock circuits may generate single
periodic digital signals or multiple signals representing different
phases of a single time base. Both types of clocks may be
present in a UUT. Clock circuits typically include circuitry for
buffering and/or dividing clock sources.

Reset circuits range in complexity from simple resistor-capacitor
networks to several IC's. Often a single switch, IC, gate, or
monostable multivibrator serves as the reset circuit. Some
UUTSs have watchdog timers which automatically reset the UUT
if the microprocessor gets lost in a program.

Considerations for Testing and
Troubleshooting 4.12.2.

Clocks

When clocks circuits fail, most other functional blocks will also
fail. Clock problems are usually associated with only a few
components. Here are some guidelines:

® Open or stuck nodes on the crystal oscillator.
Manufacturing defects or failed components may cause
stuck or open lines on ICs used as oscillators.

® DC or capacitive loading on the outputs of the oscillator.
A stuck or tied line may load the oscillator output so that it
cannot generate a signal.

® Failed counter or flip-flop deriving lower frequency
signals from the master clock. Pullup or pulldown
resistors establishing static logic levels on unused counter
or flip-flop inputs may be short or open.

4-291

Clock and Reset

® Failed clock-generator IC. Clock generator ICs may fail
due to manufacturing defects or shorted or tied inputs.

Frequency measurements with the probe or I/O module are a
good way to trace clock-related problems. For measurements
above 10 MHz, use the probe; measurements below that
frequency can be made with the I/O module.

The Demo/Trainer UUT stimulus program called frequency, in
Section 4.12.6, shows how to program the I/O module to
measure frequency. The frequency of the clock is measured
three times during a 9100A/9105A LEARN operation on a
known-good UUT, when the response file is created. If the
value of the clock is stable, a single decimal value is recorded.
If the value of the clock is unstable, the highest and lowest
values are recorded. With frequency or transition counts, the
min-max range must be large enough to account for variations
between UUTs and variations due to environmental factors,
such as temperature and humidity. To establish the range, first
learn the response from a known-good UUT, then adjust the
range for appropriate tolerance factors.

Some clock-related problems, such as injected noise, marginal
signals, or asymmetrical phases, are hard to detect with digital
test equipment. The probe, which operates at up to 40 MHz, is
very useful for these problems. Asynchronous level history
measurements with the probe can detect marginal signal levels
and noise. If, after measurements with the probe, the UUT still
exhibits erratic clock behavior, check the quality of the clock
signal with a high-bandwidth oscilloscope.

Reset

Asynchronous level history is a useful measurement technique
with which to verify the operation of a reset circuit.

Several 9100A/9105A devices are useful in detecting reset
faults. The probe can be used to verify static logic levels on
circuit nodes. The I/O module can be used to overdrive the
Reset input to verify operation. Since most Reset lines connect

4-292

Clock and Reset

to the microprocessor, the pod can sense whether this line is
active. In setting up test fixturing, it is helpful to connect the
Reset line to a test point or test connector attached to an I/O
module line. This allows the test program to automatically reset
the UUT at the start of a test sequence.

Verify operation of the Reset line in both states. The
Demo/Trainer UUT stimulus programs called reser low and
reset_high, in Section 4.12.6, show how the probe and I/O
module can be used to troubleshoot reset circuits.

For reset circuits that use a switch or pushbutton, the operator
must usually be involved. A prompt to the operator can be
displayed, asking that the switch be pressed during certain
modes of the test while measurements are performed.

Clock and Reset Example : 4123.

The clock source in the Demo/Trainer UUT is a 31.9399 MHz
oscillator (U18). This frequency is divided by two and by four.
The 8 MHz signal is used by the 82284 clock generator (U1) to
generate the microprocessor clock signals. The 31.9399 MHz
signal is also used in the Video Ready generation circuit.

The 15.9799 MHz signal is used as the clock source for the
video circuit. The Reset signal is controlled by the RESET
pushbutton switch. Pressing this switch causes an active Ready
signal to be generated.

4-293

Clock and Reset

Keystroke Functional Test 4.12.4.
Part A:

Measure frequency of clock signals with the probe, using the
PROBE and SOFT KEYS key with the command below:

FREQ AT PROBE =

The pins to be probed and the correct measurements at each
pin are shown in the response table in Figure 4-110.

Part B:
Operate the RESET switch and measure the level of Ul-12
with the probe, using the PROBE and SOFT KEYS key
with the command below:
INPUT PROBE LEVEL =

The pins to be probed and the correct measurements at each
pin are shown in the response table in Figure 4-111.

4-294

A A e 3 5

Clock and Reset

(This page is intentionally blank.)

4-295

Clock and Reset

Keystroke Functional Test (Part A)

CONNECTION TABLE

iNONE] -

u1
uzs

RESPONSE TABLE

4-296

Clock and Reset

EXTERNAL
RESET

OSCILLATOA

+5Y

—
. . & W
POWER-DN LED T os1

S |

80286 |

— | MICROPROCESSOR

1

VIDEQ |
| T |
[1 i CONTROL i
N —— (|
! oYdaMIC |
| RAM I
™ TIMING |
H H
——
+5V +5V i
| +5v a |
s awhz
vIDED
oUTPUT

Figure 4-110: Clock and Reset Functional Test (Part A)

4-297

Clock and Reset

Keystroke Functional Test (Part B)

CONNECTION TABLE

S8 i1z

STIMULUS AND RESPONSE TABLE

4-298

Clock and Reset

POWER-ON LED

50 4
+5v - 80286
82284 — MICROPROCESSOR
ag 1l Bas32 |§< =7]
a.7x oAy 16057 meser .
AES i
tEY B esT olk b0 GLK - VIDED
MC 7 1y poLK b13 PCLK ;
- CONTROL
NE B xm f
BMHZ 5 J S
4 EFT
T _—
| DYNAMIC }
™ HAM |
—_— SEUHZ = TIMING [
If'—\ | o esv
[! OSCILLATOR 10
v 3IEMHZ N =]
’ !_”] i1 g = a 9 1EMHZ
) 7 _NC
|
i I +5v
! 1EMHZ VIDEQ
o QUTRUT
(\ Figure 4-111: Clock and Reset Functional Test (Part B)

4-299

Clock and Reset

Programmed Functional Test 4.12.5.

4-300

The #st_clock program is the programmed functional test for the
Clock and Reset functional block. Ul is a signal conditioning
IC for the Clock, Reset, and Ready signals, however the
tst_clock program tests only the Clock and Reset portion of the
chip.

The #st_clock program uses the gfi status command to determine
if U1 has previously been tested using gfi tesz. If U1 has not
been tested, a gfi test of Ul is performed. The gfi status

command is then used to determine if the Clock and Reset
outputs of Ul failed. If the outputs failed, the abort test

program is executed and GFI troubleshooting is started. (See
the Bus Buffer functional block for a discussion of abort_test).

program tst_clock

! FUNCTIONAL TEST of the CLOCK and RESET functional block.

1
1 1
! This program tests the CLOCK and RESET functional block of the t
! Demo/Trainer. The gfl test command, I/0 module and PROBE are used to !
! perform the test. !
1
1
1
1
1

1
1
1
1
1
!
! TEST PROGRAMS CALLED:

! abort test (ref-pin) If gfi has an accusation
! display the accusation else

! create a gfi hint for the

! ref-pin and terminate the test!
! program (GFI begins trouble- !
! shooting) . !
1

print "\nlTESTING CLOCK & RESET Circuit"

if {gfi status "Ul-10") = "untested” then
gfi test "Ul-10"

end if

if (gfi status "U1-12") "bad" then abort test (“Ul-12")

if (gfi status "U1-10") "bad" then abort_test ("Ul-10")

if {gfi status "U1-13"} "bad" then abort_test ("Ul-13*}

if gfi test "U25-9" fails then abort test ("U25-9"

|

print "CLOCK & RESET TEST PASSES”"
end program

Clock and Reset

‘ Stimulus Programs and Responses 4.12.6.

Figure 4-112 is the stimulus program planning diagram for the
Clock and Reset functional block. frequency is a general-
purpose stimulus program used to measure the frequencies of
various outputs around the Demo/Trainer UUT. reset_high
checks for a high-level Reset signal and reset low checks for a
low-level Reset signal.

4-301

Clock and Reset

Stimulus Program Planning

PROGRAM: RESET_LOW

PROMPTS THE OPERATOR TO PRESS THE RESET
KEY AND THEN CHECKS FOR A LOW LEVEL

MEASUREMENT AT:

R10-1
ROTOEE

4-302

Clock and Reset

+5V

POWER-ON LED

+5v a0286
MICAOPROCESSOR
Yag 1 Bas3z
P
. 4 4. TH = CR1
10710 5 1 R
EXTEANAL l + €8 c§i$§gL
RESET 1 1“10uF
DYNAMIC
HaAM
B ~ TIMING

+5V
/—\\ Y
OSCILLATOA 10

32MHZ i
5 g
D 32NHZ| 13'ﬂ> uzs
e 70 |
1] |
{ [+ i
2 Jia |
. !
i _—
|
| VIDED
QUTPUT
(\ Figure 4-112: Clock and Reset Stimulus Program Planning

4-303

Clock and Reset

program reset_high

I STIMULUS PROGRAM characterizes the reset signal when high is active. !
! 1
! Stimulus programs and response files are used by GFI to back-trace !
! from a failing node. The stimulus program must create repeatable UUT !
I activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. !
1 1
! TEST PROGRAMS CALLED: !
! (none) !
1 1
! GRAPHICS PROGRAMS CALLED: !
! {none} !
1 !
! Local Constants Modified: !
! CARRAGE RETURN Matches a carrage return input. !
! TRUE Value that is considered active TRUE!
1 1
t Local Variables Modified: !
! input_str Input from keypad !
! state Level returned from measurement !
! pinnum The pin number used by level command!
! finished State of loop loocking for condition !
! devname Measurement device !
IEEE R R R N R S R R R R R RSN

declare string CARRAGE RETURN = ""
declare numeric TRUE = 1

declare string input_str

declare numeric state = 0

declare numeric pinnum = 1
finished = 0

t Main part of STIMULUS PROGRAM !

! Let GFI determine the testing device.

if (gfi control) = "yes" then
devname = gfi device
measure_ref = gfi ref
if measure ref = "Ul" then pinnum = 12
if measure_ref = "Ull" then pinnum = 38

(continued on the next page)

Figure 4-113: Stimulus Program (reset_high)

4-304

Clock and Reset

if measure ref = "Ul3" then pinnum = 11
if measure ref = "U31" then pinnum = 35
if measure ref = "U19" then pinnum = 3
if measure ref = "U7" then pinnum = 15
else
devname = clip ref "Ui%
measure_ref = "U1"
end if

print "Stimulus Program RESET HIGH"
! Setup measurement device and prompt operator.

podsetup ‘report power® "off"

podsetup ‘report forcing' “off"

podsetup 'report intr' "off"

podsetup ‘report address' "off"

podsetup 'report data' "off"

podsetup 'report control' "off"

reset device devname

sync device devname, mode "int"

podsetup 'report forcing*® "off"

tlup = open device "/terml"™, as "update”

print on tlup ,"\O7WHILE MEASURING, Press \1B[7mDemo UUT RESET\1B[Om key."
print on tlup ,"Press 9100 ENTER key if test is stuck.”

! Wait for a TRUE. Leave program if <ENTER> key is pressed.

loop until state = TRUE
arm device devname \ readout device devname

if devname = */probe" then

state = level device devname, type "async®
else

state = level device measure_ref, pin pinnum, type "async”
end if

if (poll channel tlup, event "input") = 1 then
input on tlup ,input str
if input_str = CARRAGE RETURN then return
end if
end loop

! Start response capture. End when POD detects reset.

arm device devname
strobeclock device devname
loop until finished = 1
X = readstatus({)
if (x and $10) = $10 then
strobeclock device devname
finished =1
end if
1f (poll channel tlup, event “input”} = 1 then
input on tlup ,input_str
if input_str = CARRAGE RETURN then return
end if
end loop
readout device devname
print "\nl\nl"

end program

Figure 4-113: Stimulus Program (reset_high) - continued

4-305

Clock and Reset

STIMULUS PROGRAM NAME: RESET HIGH
DESCRIPTION: SIZE: 78 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL LVL Mode Counter Range Pin
Ul-12 PROBE 0001 10 TRANS
Ul-12 I/0 MODULE 0001 10 TRANS

Figure 4-114: Response File (reset_high)

4-306

Clock and Reset

program reset_low

1
t
Stimulus programs and response files are used by GFI to backtrace i
from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for !
the outputs in the UUT that are stimulated by the stimulus program. !
1
1
1
1
1
1

TEST PROGRAMS CALLED:

check meas (device, start, stop, clock, enable) !
Checks to see if the measure- !
ment is complete using the
TL/1 checkstatus command. If !
the measurement times out then!
redisplay connect locations., !

1

GRAPHICS PROGRAMS CALLED: !
{none} !

1

Local Constants Modified: !
CARRAGE RETURN Matches a carrage return input. !
TRUE Value that is considered active true!

1

Local Variables Modified: !
input str Input from keypad !
state Level returned from measurement !
pinnum The pin number used by level command!
finished State of loop loocking for condition !
devname Measurement device !

! Main Declarations
TrrrrrrrprrrrbLLLLLLLLLOLIOLI R L RILIRIOLEILEIRITEIOLITRIETRTLITTITTITTITTIIIIRITTITIIIITTIITIITITIIIIILREI et

declare string CARRAGE RETURN = ""
declare string input_str
declare numeric state = 0
declare numeric TRUE = 4
declare numeric pinnum = 1
finished = 0
trrrrrrrrrrrrrtrtr et I I TN IR EILLLLIILIINILIILILII LRI ELIIIIEIITILILILIILIIIIIIIITRITLILILrt

! Let GFI determine the testing device.

if (gfi control) = "yes" then
devname = gfi device
measure ref = gfi ref

(continued on the next page)

Figure 4-115: Stimulus Program (reset_low)

4-307

Clock and Reset

if measure ref = "Ul" then pinnum = 11
if measure ref = *U13" then pinnum = 13
if measure ref = "U19" then pinnum = 4
if measure ref = “U7" then pinnum = 15
else
devname = clip ref "U1"
measure_ref = "Ul"
end if

print "Stimulus Program RESET LOW"
! Setup measurement device and prompt operator.

podsetup 'report power‘® "off"

podsetup 'report forcing' "off"

podsetup 'report intr* "off"

podsetup 'report address' "off"

podsetup ‘'report data‘' “off"

podsetup 'report control* "off"

reset device devname

sync device devname, mode "int"

podsetup ‘'report forcing' "off”"

tlup = open device "/terml", as "update”

print on tlup ,"\O7WHILE MEASURING, Press \1B[7mDemo UUT RESET\1B[Om key."
print on tlup ,"Press 9100 ENTER key if test is stuck.*

{ Wait for a TRUE. Leave program if <ENTER> key is pressed.

loop until state = TRUE
arm device devname \ readout device devname
if devname = "/probe* then
state = level device devname, type "async"

else

state = level device measure ref, pin pinnum, type "async"
end if
if (poll channel tlup, event "input") = 1 then

input on tlup ,input str
if input str = CARRAGE RETURN then return
end if
end loop

! Start response capture. End when POD detects reset.

arm device devname
strobeclock device devname
loop until finished =1
x = readstatus(}
if (x and $10) = $10 then
strobeclock device devname

finished = 1
end if
if (poll channel tlup, event "input") = 1 then

input on tlup ,input_str
if input_str = CARRAGE RETURN then return
end if
end loop
readout device devname
print "\nl\ni®

end program

Figure 4-115: Stimulus Program (reset_low) - continued

4-308

Clock and Reset

STIMULUS PROGRAM NAME: RESET LOW
DESCRIPTION: SIZE: 146 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG VL IVL Mode Counter Range Pin
U13-10 PROBE 0002 10 TRANS
U13-10 I/0 MODULE 0002 10 TRANS
Ul9-4 I/0 MODULE 0002 10 TRANS
R10-1 PROBE 0002 1 O TRANS
R9-2 PROBE 0002 1 0 TRANS
R9-2 I/0 MODULE 0002 1 O TRANS

Figure 4-116: Response File (reset_low)

4-309

Clock and Reset

program frequency

ISR R R R R RN R R R R R R R R R R R RSO EEER N

STIMULUS PROGRAM to measure frequencies.

Local Variables Modified:
devname Measurement device

Global Variables Modified:
{none)

1 1
1 1
t Stimulus programs and response files are used by GFI to backtrace !
! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. !
! This is a general purpose routine that can be used to characterize !
! any free-running system clock, dot clock, etc... !
! When measuring frequency no stimulus is normally applied because the !
! signal begins running at power on. !
1 !
! TEST PROGRAMS CALLED: !
! {none} 1
1 1
! GRAPHICS PROGRAMS CALLED: !
! {none) !
1 1
1 1
1 1
1 1
1 1
t 1
1 1

! FAULT HANDLERS: !
RSN RN R R RN RN R R R R R R R RN NN R R R AR R R RN R RSN R R RO

handle pod_timeout_no_clk

end handle
trrrrrr T T LT TR LTI RRITTITRIRIOLRIRILITILITITITITII I I TITIRIS LI TITII IO I I LIRS LITLRITIITITITRITITLTIRISLITLTIITILILIEILILI Tttt

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl®

end if

print "Stimulus Program FREQUENCY"

! Set addressing mode and setup measurement device.

podsetup 'report power' "off"
podsetup ‘report forcing' "“off"
podsetup 'report intr® "off"
podsetup 'report address' "off"
podsetup ‘report data' "off"
podsetup ‘report control' "off"
reset device devname

counter device devname, mode "freq"

! No stimulus is applied; response is frequency.
arm device devname ! Start response capture.

readout device devname ! End response capture.
end program

Figure 4-117: Stimulus Program (frequency)

4-310

Clock and Reset

STIMULUS PROGRAM NAME: FREQUENCY

DESCRIPTICON: SIZE: 370 BYTES
Response Data
Node Learned Async Clk Counter Priority

Signal Src With SIG ILVL IVL Mode Counter Range Pin
U1-10 PROBE 10 FREQ 7585000-8383000 U25-5
Ul-10 I/0 MODULE 10 FREQ 7585000~-8383000

U1-13 I/0 MCDULE 10 FREQ 3792000-4191000 U25-5
U25-5 PROBE 10 FREQ 7585000-8383000

U25-5 1/0 MODULE 10 FREQ 7585000-8383000

Uz25-9 PROBE 10 FREQ 15170000-16760000

U42-3 1/0 MODULE 10 FREQ 379200-419100

U42-7 I/0 MODULE 10 FREQ 758500-838300

U43-11 I/0 MODULE 10 FREQ 63200-69800

UsS6-12 PROBE 10 FREQ 63200-69800

U56-12 I/0 MODULE 10 FREQ 63200-69800

U13-2 PROBE 10 FREQ 7585000-8383000

Ul3-2 I1/0 MODULE 10 FREQ 7585000-8383000

Y1-1 PROBE 10 FREQ 3670000-3700000

Figure 4-118: Response File (frequency)

4-311

Clock and Reset

Summary of Complete Solution for
Clock and Reset 4.12.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Clock and Reset functional block is shown
below. The format below is similar to a 9100A/9105A UUT
directory (you could consider the functional block to be a small
UUT), but in addition shows the use of each program and the
location in this manual for each file.

UUT DIRECTORY
(Complete File Set for Clock and Reset)
Programs (PROGRAM):
TST_CLOCK Functional Test Section 4.12.5
FREQUENCY Stimulus Program Figure 4-117
RESET_HIGH Stimulus Program Figure 4-113
RESET_LOW Stimulus Program Figure 4-115
LEVELS Stimulus Program Figure 4-92
Stimulus Program Responses (RESPONSE):
FREQUENCY Figure 4-118
RESET_HIGH Figure 4-114
RESET LOW Figure 4-116
LEVELS Figure 4-93
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-312

Interrupt Circuit

INTERRUPT CIRCUIT FUNCTIONAL BLOCK 4.13.

Introduction to Interrupt Circuits 4.131.

Microprocessor-system interrupt circuits collect and prioritize the
interrupt output of each circuit that has an interrupt-request
output. These outputs come from circuits such as peripheral
devices (keyboards, disk controllers, modems, printers) and
dynamic RAM controllers. If there are enough interrupt signals,
the system may use an interrupt controller to prioritize interrupts.

In some systems, the microprocessor can read a pointer to a
branch address (called an "interrupt vector") from the
microprocessor's external bus. These systems may have
circuitry to generate the interrupt vector when the appropriate
interrupt signal is asserted. Quite often, the vector-generation
and interrupt-controller circuits are the same.

Figure 4-119 shows a typical interrupt circuit for a
MiCroprocessor system.

Considerations for Testing and
Troubleshooting 4.13.2.

The Interrupt Circuit is part of a feedback loop. Address and
data buses go out from the microprocessor to the various
components in the UUT and interrupt lines come back from
those components, through the Interrupt Circuit, to the
MmiCroprocessor.

The pod can break this feedback loop by selectively ignoring the
interrupt line to the pod. Particularly during troubleshooting, the
interrupt line must be ignored so the 9100A/9105A is not
interrupted while testing the interrupt circuitry.

4-313

Interrupt Circuit

Interrupt

Peripheral | Request
Component

Interrupt

Peripheral | Request
Component

Interrupt

Peripheral | Request
Component

4-314

Interrupt
Controller
and Interrupt
Vector
Generator

K Address Bus

Interrupt
Request

Micro-
processor

Figure 4-119: Typical Interrupt Circuit

Interrupt Circuit

The Interrupt Circuit can be tested by the following procedure:

1. Read or write to each component that can generate an
interrupt so that an interrupt is generated.

2. After each interrupt is generated, check to see that the
pod has detected the interrupt. If all interrupts are
detected by the pod, the interrupt circuit is good.

If the microprocessor on your UUT has the ability to fetch an
interrupt vector from its external bus, test the circuit that
generates that vector by reading or writing to a component and
thereby forcing that component to generate an interrupt. The
interrupt vector should be the same address as the read or write
address used to generate the interrupt.

Some pods (e.g. 8086, 8088, 80186, 80188, 80286, 68000)
can read interrupt vectors. The '86-family and '88-family pods,
for example, can read vectors automatically in response to an
interrupt input from the pod to the UUT, or by command from
the operator (TL/1 programs that perform these functions are
accessed with the POD key on the operator's keypad).

The availability of these automatic interrupt testing functions
greatly eases the test procedures. With these functions, the
procedure for testing interrupt vector generation circuits might
work like this:

1. Configure the pod to capture an interrupt vector (this
is usually called an "interrupt acknowledge cycle").

2. Write the interrupt vector to the interrupt controller or
Vector generator.

3. Perform some operation that causes the interrupt
controller to interrupt the pod and place a vector on
the UUT's bus. This operation may simply mean
overdriving an input to the interrupt controller.

4-315

Interrupt Circuit

Troubleshooting the interrupt circuitry is accomplished by
performing a procedure that causes each circuit with an interrupt
request output to activate that output. Then signatures are
recorded for all the nodes in the Interrupt Circuit. The steps to
perform this are as follows:

1. Generate an interrupt on each interrupt request line
that feeds into the interrupt circuit by performing the
appropriate reads and writes.

2. Measure the signatures for each node in the Interrupt
Circuit and compare to known-good signatures.

3. If an incorrect signature is found, follow that signal
back towards its source.

You may need to disable the reporting of active interrupts by the
pod when troubleshooting this circuit. If reporting is allowed
and the interrupt is asserted, you may be unnecessarily bothered
with "active interrupt” messages when the pod is used in
stimulus operations. Section 4.15.2, "Forcing Lines", in this
manual describes how to disable reporting of active interrupts.

Interrupt Circuit Example 4.13.3.

Figure 4-120 shows the Interrupt Circuit for the Demo/Trainer
UUT. This circuit uses two interrupts. The first, I/OINT, is
configurable to be active when a character is transmitted or
received through the serial port. The second, TIMER, is
configurable to be active when the timer in the DUART IC (in
the Serial I/O functional block) times out or when the output port
toggles the bit in the output register connected to the TIMER
output line.

Keystroke Functional Test 4.13.4.

4-316

1. Use the SETUP MENU, EXEC, and READ keys with the
commands below to disable interrupt trapping and to

Interrupt Circuit

initialize the Serial I/O functional block:

SETUP POD REPORT INTR ACTIVE OFF
EXECUTE RS232 INIT
READ ADDR 2016 =

(ADDR OPTION: I/O BYTE)

2. Use the READ key with the commands below to check the
status of interrupts in the UUT:

READ STATUS OF MICRO =
(Should be C0 with no interrupts)
READ ADDR 30000 =
(ADDR OPTION: MEMORY WORD)
(Should be 27 with no interrupts)

3. Use the WRITE and READ keys with the following
commands to force an interrupt on TIMER (by setting output
OP3 low) and to check that the interrupt occurs:

WRITE DATA 0 TO ADDR 201A
(ADDR OPTION: I/0 BYTE)
WRITE DATA 8 TO ADDR 201C
(ADDR OPTION: I/O BYTE)
READ STATUS OF MICRO =
(Should be C8 with an interrupt)
READ ADDR 30000 =
(ADDR OPTION: MEMORY WORD)
(Should be 25 with a TIMER interrupt)
WRITE DATA 8 TO ADDR 201E
(ADDR OPTION: I/0O BYTE)

4. Use the WRITE and READ keys with the following
commands to force an interrupt on I/OINT (by causing an
interrupt from RS232) and to check that this interrupt occurs:

WRITE DATA 10 TO ADDR 200A
(ADDR OPTION: I/O BYTE)
WRITE DATA 41 TO ADDR 2016
(ADDR OPTION: I/O BYTE)

4-317

4-318

Interrupt Circuit

(Should be C8 with an interrupt)
READ ADDR 30000 =

READ STATUS OF MICRO =

(Should be 22 with the I/OINT interrupt)
(ADDR OPTION: MEMORY WORD)
WRITE DATA 0 TO ADDR 200A

(ADDR OPTION: I/O BYTE)

5. Re-enable interrupt trapping by using the SETUP MENU
key to enter the following command:

SETUP POD REPORT INTR ACTIVE ON

Interrupt Circuit

(This page is intentionally blank.)

4-319

Interrupt Circuit

Keystroke Functional Test

CONNECTION TABLE

TEST ACCESS SOCKET TEST ACCESS SCOCKET

STIMULUS AND MEASUREMENT TABLE

4-320

Interrupt Circuit

INTR
| FEADT
+5v
80286
LE148 Ls373
LMICHDPHDCESSOR R33 10]5 aghd 3 [y Bo 1000
7k 98 AT
S SRR ST) o 2 bs p@sf S I001
. ENET e 7 e ooz
| L 1305 EEpitac 3 63 003
| 4 13 13 by Galt 004
B i Em TSV 14 . sl b 005
| D 7loe ool 46 1006
L | ISPARE 4 % 1807 g7l 19_IDo7
BUFFER ! E 11
| ? a0 4
- SWa-2 i e =~ S T
————— 15
[SERIAL | g | TIMER
| /0 - I/GINT ALS04
. FERD s [z a3t
! T
l . us?
S ALEO4
5
AODAESS b=
DECOOE

Figure 4-120: Interrupt Circuit Functional Test

4-321

Interrupt Circuit

Programmed Functional Test 4.13.5.

The tst_intrpt program is the programmed functional test for the
Interrupt Circuit functional block. This program checks the
interrupt poll register using the gfi test command. If the gfi test
command fails, the abort test program is executed and GFI
troubleshooting begins. (See the Bus Buffer functional block for
a discussion of the abort_test program).

program tst intrpt

Trrrrr et n eI IIIIILILIIIILI I RIRIRIRLLIY

! FUNCTIONAL TEST of the INTERRUPT functional block.

1

! This program tests the INTERRUPT functional block of the Demo/Trainer.
! The gfi test command and I/0 module are used to perform the test.

1
! TEST PROGRAMS CALLED:

i abort_test (ref-pin) If gfi has an accusation

1 display the accusation else
! create a gfi hint for the

1 ref-pin and terminate the test!
H program {(GFI begins trouble- !
1 shooting). !
1

print "\nlTESTING INTERRUPT Circuit™"

podsetup 'report intr' "off"
if gfi test "U10-1" falls then abort test ("U10-1"}

print "INTERRUPT TEST PASSES"
end program

Stimulus Programs and Responses 4.13.6.

4-322

Figure 4-121 is the stimulus program planning diagram for the
Interrupt Circuit functional block. The decode stimulus program
performs an access at each decoded address space. The ##l_Ivi
stimulus program transmits a character out the serial port and
measures signals using TTL threshold levels. The inzerrupt
stimulus program generates interrupts in the Serial I/O circuit
and measures interrupt lines.

Interrupt Circuit

(This page is intentionally blank.)

4-323

Interrupt Circuit

Stimulus Program Planning G

PROGRAM: INTERRUPT

EXECUTES RS232_INIT AND EXERCISES INTERRUPT
LINES

MEASUREMENT AT:

U10-2,56.9,12,15,16,19
U20-6,79,15

R33-1

U5-11

4-324

Interrupt Circuit

I
AEADY .
CIRCUIT
| [+8Y
I ROCE '! | L5148 Ls373
MICROPAOCESSOR _' 3 o . oo
- SN S o
L 220F GE S 7 los o o
| 1343 wspldc E los AT
43 130n: gal 22 _I0D4
| S45 E0piS B 13los os[18 1005
1 =2]s C
.EIUS | ISPARE 4)5 Eg? g? B Ihoo
BUFFEA : 7 1
=
Swa-2 20 v L JoE
uio
l il P
[SERTAL - TR
| I 1/0 - TGN
i ' HEAD
| TFOLL
ADDRESS EEEEEE——
= =
pECODE INTA
L TRTAGY

() Figure 4-121: Interrupt Circuit Stimulus Program Planning

4-325

Interrupt Circuit

program interrupt

rrrrrrrrrrrbbbRRRbELLbOLOLLILOLCEE L ROEELILEOLE LI LRI REICELIOLILI I I EIRIOYRILEIEITIOLI P TIRIEIITITLITIOTISLITTITTILEITLILIILIILILIYL

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT
! activity and the response file contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program.

! This stimulus program sets the DUART to cause an interrupt when data
is written to the transmit register. Immediately after the write to
! the register the interrupt vector is read from the bus (read @ 30000).

1

1

!

1

1

1

1

1

1

1

!

! TEST PROGRAMS CALLED:

! (none)

1

! GRAPHICS PROGRAMS CALLED:

! rs232_init () This is the initalization for
H
1
1
1
1
1
1
1
1

the DUART which contains a
timer used for interrupts.

Local Variables Modified:
devname Measurement device

Global Variables Modified:
{none) 1

! Main part of STIMULUS PROGRAM !
RS N NN R N S R R R R N R R S N R SRR R RN NSRS NN R]

i Let GFI determine the measurement device.

if (gfi control) = *“yes" then
devname = gfi device

else
devname = "/modl"

end if

print "Stimulus Program INTERRUPT"

! Set addressing mode and setup measurement device,

reset device devname

execute rs232_init ()

write addr $200A, data $10 ! Set interrupt on tranmit - no loopback
setspace space (getspace space "i/o", size "byte")

sync device devname, mode "pod"

sync device "/pod", mode “data"

threshold device "/probe", level *ttl"

(continued on the next page)

Figure 4-122: Stimulus Program (interrupt)

4-326

Interrupt Circuit

! Present stimulus to UUT.

arm device devname ! Start response capture.
write addr $2016, data $55 ! Txd port B
setspace space (getspace space "memory", size "word")
read addr $30000 ! read the interrupt vector onto the bus.
setspace space (getspace space "i/o", size "byte")
write addr $2016, data $D ! Txd port B

setspace space (getspace space "memory", size “word")
read addr $30000
setspace space (getspace space "i/o", size "byte")
write addr $201C, data $FF
setspace space (getspace space "memory", size "word")
read addr $30000
setspace space {getspace space "i/o", size "byte")
write addr $201E, data S$FF ! Pulse timer interrupt.
setspace space (getspace space "memory", size "word")
read addr $30000

readout device devname ! End response capture.

end program

Figure 4-122: Stimulus Program (interrupt) - continued

4-327

Interrupt Circuit

STIMULUS PROGRAM NAME: INTERRUPT
DESCRIPTION: SIZE: 660 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL LVL Mode Counter Range Pin
Ul0-6 PROBE 00AB 10 10 TRANS 4
Ul0-6 I/0 MODULE O0OAB 10 10 TRANS 4
U1l0-2 PROBE 00AB 10 10 TRANS 4
U10-2 I/0 MCDULE OOAB 10 10TRANS 4
U10-5 PROBE 005F 10 10 TRANS 2
U10~5 1/0 MODULE OOSF 10 1 0 TRANS 2
Ul0-9 PROBE 002a 10 1 0 TRANS 5
Ulo0-9 I/0 MODULE 002A 10 1 0 TRANS S
U10-12 PROBE 008B 10 10TRANS 5
Ul0-12 I/0 MCDULE 008B 10 10TRANS 5
U10-15 PROBE 005F 10 10 TRANS 2
U10-15 I/C MCDULE O0O5F 10 10TRANS 2
Ul0-16 PROBE 008B 10 10TRANS 5
Ul0-16 I/0 MODULE O008B 10 1 0 TRANS 5
U10-19 PROBE 000A 10 10TRANS 6
U10-19 I/0 MODULE 000A 10 10TRANS 6
U20-6 I/0 MODULE 0000 10 0 TRANS 2
U20-7 I/0 MODULE OOFE 1 1 TRANS 0
U20-9 I/0 MODULE 0000 10 0 TRANS 2
U20-15 PROBE OOFE 10 1 TRANS 2
U20-15 I/0 MODULE OOFE 10 1 TRANS 2
R33-1 PROBE OOFE 1 1 TRANS O
R33-1 I/0 MCDULE OOFE 1 1 TRANS O
Us-11 I/0 MODULE O0O0AB 10 TRANS

Figure 4-123: Response File (interrupt)

4-328

Interrupt Circuit

Summary of Complete Solution for
Interrupt Circuit 4.13.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Interrupt Circuit functional block is shown
below. The format below is similar to a 9100A/9105A UUT
directory (you could consider the functional block to be a small
UUT), but in addition shows the use of each program and the
location in this manual for each file.

UUT DIRECTORY
(Complete File Set for Interrupt Circuit)

Programs (PROGRAM):

TST_INTRPT Functional Test Section 4.13.5

CTRL_OUT3 Stimulus Program Figure 4-103

INTERRUPT Stimulus Program Figure 4-122

DECODE Stimulus Program Figure 4-108
Stimulus Program Responses (RESPONSE):

CTRL_OUT3 Figure 4-104

INTERRUPT Figure 4-123

DECODE Figure 4-109
Node List (NODE):

NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):

REFLIST Appendix A
Compiled Database (DATABASE):

GFIDATA Compiled by the 9100A

4-329

Interrupt Circuit

(This page is intentionally blank.)

4-330

Ready Circuit

O READY CIRCUIT FUNCTIONAL BLOCK 4.14.

Introduction to Ready Circuits 4.141.

Some peripheral components have different (slower) timing than
the microprocessor. To accommodate these components, wait
states (extra clock cycles) are added to the read and write bus
cycles. The number of wait states inserted is typically controlled
by an input to the microprocessor called Wait, Ready, or
DTACK; in this discussion, we will call it the Ready signal.

Many microprocessor systems have a circuit that generates the
Ready signal in response to the selection of a peripheral
component. The circuit (Figure 4-124) typically consists of a
counter and/or a state machine that uses the microprocessor
clock. The inputs to the state machine include a strobe signal
from the microprocessor (to indicate that a bus cycle has started)
and the various decoder outputs that select the components
needing wait states.

In a given bus cycle, the state machine typically recognizes the
assertion of the microprocessor strobe signal, and looks at the
decoder signals to determine which component is being selected.
The state machine then asserts Ready for the appropriate number
of clock cycles.

Considerations for Testing and
Troubleshooting 4.14.2.

Ready circuits often involve multiple feedback loops between the
microprocessor and the ROM, RAM timing, and video control
circuits. Since these feedback loops may need to remain
unbroken while testing memory and/or video circuits, the Ready
circuit is tested separately. Here is a good way test the Ready
circuit:

1. Break the feedback loop by overdriving the lines that
form the feedback loop.

4-331

Ready Circuit

Ready Signal
—
Decoder
Outputs ___,
! —p| Ready
Micro- Counter
processor and State
Strobe Machine
Clock
Microprocessor
Clock Clock

4-332

Figure 4-124: Typical Ready Circuit

Ready Circuit

2. Exercise the rest of the inputs using microprocessor
reads and writes.

3. Measure the output of the loop.

A second approach is to use one I/O module to overdrive all the
inputs and another I/O module (or another clip on the same I/O
module) to measure the Ready output to the microprocessor.

Test each IC in the circuit individually, using the following
procedure:

1. Clip the I/O module onto the IC.

2. Synchronize and arm the I/O module (see the
Technical User's Manual for this procedure).

3. Run a stimulus procedure to make each output go
high and low (this may mean overdriving another
part of the circuit with another I/O module clip).

4. Use the SHOW I/O MOD command on the I/O MOD
key (operator's keypad) to observe signatures on
each pin of the IC.

5. Write down the signatures gathered from each pin on
the IC, both inputs and outputs.

Compare the signatures gathered on the suspect UUT to those
from a known-good UUT to determine which pins are bad.

Test the timing properties of the state machine that actually
generates the Ready signal. You can do this with the external
Start, Stop, and Clock lines on the I/O module or clock module
to begin timing the wait states. Connect the external Clock line
to the Ready-circuit's clock input (the microprocessor clock).
Connect the Start line to the signal that starts the wait state
generation. Set the Stop count to the proper number of clock
cycles to verify that the wait state becomes active at the proper
time. If the Stop count is set properly, decreasing its value by 1

4-333

L IR

Ready Circuit

from the proper value should show that the wait state does not
become active and using the proper value should show that the
wait state is active.

Again, compare the responses gathered on the suspect UUT to
those from a known-good UUT to determine which pins are
bad.

If the outputs of the ICs are bad and the inputs are good, suspect
the IC and/or suspect shorts on the output signal paths. If the
inputs are bad as well, trace back toward the microprocessor. If
your UUT has address latches or buffers, perform a similar test
on them.

You may need to disable the Ready input to the pod and turn
reporting of forcing lines off when troubleshooting this circuit.
If the Ready input to the pod is enabled, and Ready is not
asserted for a long enough time due to testing operations, the
pod may timeout if it is being used in the stimulus operation.
Section 4.15.4, "Forcing Lines", in this manual describes how
to disable the Ready input to the pod.

Ready Circuit Example 4.14.3.

4-334

The Ready Circuit for the Demo/Trainer UUT is shown in
Figure 4-125. The microprocessor does not complete the
current bus cycle until an active Ready signal (a low) is received
from the Ready Circuit. Any circuit addressed to be read by the
microprocessor must return such a Ready signal. Some circuits
(ROMO, ROM1, and Interrupt) set SRDY low right away and
the read is completed on the next clock cycle. Other circuits
(Parallel I/O, Serial I/O, and Video Control) cannot match the
speed of the microprocessor and add three wait states for proper
timing. In addition, Dynamic RAM Timing may insert wait
states in order to delay until RAM refresh finishes, and Video
RAM may insert wait states to synchronize the microprocessor
with video scan sequences.

The microprocessor drives address lines, which go to address
decoding, and the outputs of address decode are inputs to the

Ready Circuit

Ready Circuit. The output of the Ready Circuit is an input to the
microprocessor, which forms a feedback loop. The pod is able
to break this feedback loop by ignoring and disabling the Ready
input.

The Ready Circuit has a second, more troublesome feedback
loop. The Ready output, U1-4, feeds back as an input to the
Ready Circuit at U4-12. This second feedback loop must be
broken in order to perform testing or troubleshooting on the
Ready Circuit.

Keystroke Functional Test . 4.144.

The functional test for the Ready Circuit uses two I[/O module
clips. One clip is used for measurement and the other clip is
used to overdrive Ready Circuit inputs (to break the Ready
Circuit feedback loop).

In the following procedure use one clip module to measure U1-
4, U4-6, and U17-11 outputs. Use the second clip module as
prompted by the program.

Part A:

1. Use a 20-pin clip module on side A of I/O module 1 and a

14-pin clip module on side B as the second clip of I/O
module 1 to check the Ready Circuit output.

2. Use the EXEC and I/O MOD keys with the commands below
for Ul and U4. The correct measurements for each pin are
shown in the response table of Figure 4-125.

EXECUTE UUT DEMO PROGRAM READY 1
The program will prompt:

Enter ref name (Choose Ul, U4, Ul4 OR U1l)5)

Type in U1 and press the ENTER key.

4-335

Ready Circuit

L

4-336

Follow the instructions to clip Ul and press the Ready
button on the clip module. Then clip U4 and press the
Ready button on its clip module.

SHOW I/O MOD 1 PIN 4 CAPTURED RESPONSES
SHOW I/O MOD 1 PIN 26 CAPTURED RESPONSES

NOTE

The SHOW command requires a clip module pin
number rather than a part pin number. This requires
you to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User's
Manual). For your convenience, this translation has
been done for you in this example, and the results are
shown in the "I!O MOD PIN" column of the
response table in Figure 4-125. '

Part B:
1. Use a 14-pin clip module on side B of I/O module 1 to check
the Ready Circuit.

2. Use the EXEC and I/O MOD keys with the commands below
for U4. The correct measurement for this step is shown in
response table #1 of Figure 4-126.

EXECUTE UUT DEMO PROGRAM READY 2
The program will prompt:
Enter ref name (Choose Ul, U4, U5, U6 or Ul7)

Type in U4 and press the ENTER key.

Follow the instructions to clip U4 and press the Ready
button on the clip module.

Ready Circuit

SHOW I/O MOD 1 PIN 26 CAPTURED RESPONSES

3. Use a 14-pin clip module on side A of I/O module 1 to check
the Ready Circuit.

4. Use the EXEC and I/O MOD keys with the commands below
for U4. The correct measurement for this step is shown in
response table #2 of Figure 4-126.

EXECUTE UUT DEMO PROGRAM READY 3
The program will prompt:
Enter ref name (Choose Ul, U4, U5 or U6)

Type in U4 and press the ENTER key.

Follow the instructions to clip U4 and press the Ready
button on the clip module.

SHOW I/O0 MOD 1 PIN 26 CAPTURED RESPONSES

Part C:
1. Use a 14-pin clip module on side A of I/O module 1 and a

20-pin clip module on side B as the second clip of I/O
module 1 to check the Ready Circuit.

2. Use the EXEC and I/O MOD keys with the commands below
for U5. The correct measurement for each pin is shown in
the response table of Figure 4-127.

EXECUTE UUT DEMO PROGRAM READY 4
The program will prompt:

Enter ref name (Choose U4, U5 or Ul7)

4-337

Ready Circuit

Type in U5 and press the ENTER key.

Follow the instructions to clip U5 and press the Ready
button on the clip module.

Then clip U17 using the second clip module and press its
Ready button.

SHOW I/0 MOD 1 PIN 3 CAPTURED RESPONSES

Part D:

1. Use a 20-pin clip module on side A of I/O module 1 to check
the Ready Circuit I/O wait state generator.

2. Use the EXEC and I/O MOD keys with the commands below
for U17. The correct measurement for this step is shown in
response table #1 of Figure 4-128.

EXECUTE UUT DEMO PROGRAM READY 5
The program will prompt:

Enter ref name (Choose U5 or Ul7)
Type in U17 and press the ENTER key.

Follow the instructions to clip U17 and press the Ready
button on the clip module.

SHOW I/0 MOD 1 PIN 17 CAPTURED RESPONSES

3. Use a 20-pin clip module on side A of I/O module 1 to check
the Ready Circuit I/O wait state generator.

4-338

SR A

Ready Circuit

4. Use the EXEC and I/O MOD keys with the commands below
for U17. The correct measurement responses for each step
are shown in response table #2 of Figure 4-128.
EXECUTE UUT DEMO PROGRAM READY 6
The program will prompt:
Enter ref name (Choose U5 or Ul7)

Type in U17 and press the ENTER key.

Follow the instructions to clip U17 and press the Ready
button on the clip module.

SHOW I/O MOD 1 PIN 17 CAPTURED RESPONSES

