Ready Circuit

Keystroke Functional Test (Part A)

CONNECTION TABLE

RESPONSE TABLE

4-340

Ready Circuit

—_—

BUS ALATCH BOZEE
- — -
BUFFER : MICROPROCESSOR
DYNAMIC | A
AnM L
TIMING | FEAGY
. .] B
i E2284
READY
I +5V =TT
| - . =8 ARDY)
i _ TEARET a ARDYEM
__SPAREE 3 - ﬂ AL
pyitEly \ SAOYEN 810
| = (131
ADORESS L 0 5] U8 v
DECODE ! g
- VAAMADY 11
+5Y a2 BAOY .
VIDEQ |
CONTROL o —
ALS0B ’7 Lssga
27 | +5W n
= D ="
CLOCK e
AND - CLK e
RESET
S — U7
INTERRUPT
CIRCUIT

Figure 4-125: Ready Circuit Functional Test (Part A)

4-341

Ready Circuit

Keystroke Functional Test (Part B)

CONNECTION TABLE

TEST ACCESS SOCKET U4-g

U4-11

RESPONSE TABLE #1

RESPONSE TABLE #2

4-342

Ready Circuit

FFISLT
INTROY

BUS ALATCH
BUFFER
R / |
OYNAMIC
AAM P E—
TIMING READY
1
— 82284
. 1681
15080 READY p2
AOM - +5Y 1 | AROY
T 'sv:n';;v ; - ARDVER
— 2
- = SROY
SPAREZ e A
]
| omiFOY 5| Vs u1
AODRESS 20";23* §~ U s
] | AMI
1 DECODE L
| VAARADY 11 |
T sV a2 SH0Y
VIOEQD ALEOD
CONTROL = o
E}
a
CLOCK :
AND = 5
RESET
INTERAUPT
CIACUIT T7050T g ALS10
L8,
VIDSLT

Figure 4-126: Ready Circuit Functional Test (Part B)

4-343

Ready Circuit

Keystroke Functional Test (Part C)

CONNECTION TABLE

RESPONSE TABLE

4-344

Ready Circuit

——
BUS ALATCH 80286
aurrEs .] MICROPROCESS0A
— ! |
DYMAMIC |
RAM -
TIMING e
ROM -—
= | w5V 4
- | SPAREL 2
| EPAREZ 3 o
o [BOMOAOY 4 o
ADDRESS L ROMIAOY s -
DECODE RAMADY &
VEAMADYT 11
8y 12
VIDED
CONTADL - |
| ALS0S
D
I wock | a3 ua Al
:: CLOCK | " zua_s
| AND .
AESET | -
.
=
INTERRURT
CIRCUIT —-—l T7o5T o ALS20
VIOSLT 0] ysey 8
o i1
FEISLT o hLses
INTRDY 8| us a8

Figure 4-127: Ready Circuit Functional Test (Part C)

4-345

Ready Circuit

Keystroke Functional Test (Part D)

CONNECTION TABLE

RESPONSE TABLE #1

RESPONSE TABLE #2

4-346

Ready Circuit

BOZ2BE |

MICROPROCESSOR J

+5Y

3,50 AEADY b

7 | REDVEN

g-c SRDY -
gﬂc SRDYEN aio
U1

BUS aLaTan
BUFFEA - —
TIMING . wEAv)
|
|
HOM - |
b | 45V 1,
| SFAAEL 2
SPAREZ 3
| | AOMOREY 4
L AOMiRoY 5| Y8 8
, ADDRESS L B
| OECODE AAMEOT B
{ VEAUADY 41
S - R
i VIDED)
| CONTROL o 2
S | L5164
*5V A NE
: i1 2 |z gz, 4 _NC
HEas - TR oac o NG
AND - CLK) ao [6 NG
RESET SE [11 3WAITS
o a5 NE
G HC
Ui7
INTERRUPT
CIRCUTT e TrseT ese
1
| a

INTROY

Figure 4-128: Ready Circuit Functional Test (Part D)

4-347

Ready Circuit

Programmed Functional Test 4.14.6.

4-348

The tst_ready program is the programmed functional test for the
Ready Circuit functional block. This program checks the Ready
circuit using the gfi test command. If the gfi test command fails,
the abort_test program is executed and GFI troubleshooting
begins. (See the Bus Buffer functional block for a discussion of
the abort_test program).

The gfi test command executes a number of stimulus programs.
The ready 1, ready 2, ready 3, and ready 4 stimulus programs
overdrive nodes in order to break the feedback loop in the Ready
circuit. These programs will ask the operator to use a second
clip on a second component so that the circuit can be overdriven.

program tst ready

! FUNCTIONAL TEST of the READY functional block. i
1 1
This program tests the READY functional block of the Demo/Trainer. t
The gfi test command and I/0 module are used to perform the test. The !
ready test involves overdriving components to break the feedback loop !
in the ready partition. Two I/0 module clips are required; one for !
measurement and one for stimulus (overdriving). !
1

1

1

1

1

1
1
1
1
1
1
! TEST PROGRAMS CALLED:

i abort_test (ref-pin) If gfi has an accusation
! display the accusation else

! create a gfi hint for the

! ref-pin and terminate the test!
! program (GFI begins trouble- !
! shooting). !
1

if (gfi status "Ul-4") = "untested" then
print "\nl\nlTESTING READY CIRCUIT"

podsetup 'enable ~ready' "off"
podsetup ‘'report forcing' "off"

if (gfi status "Ul-4") = "untested" then gfi test "Ul-4"
if (gfi status "Ul-4") = "bad" or (gfi status *"Ul-2") = "bad" or
{gfi status "Ul~-3") = "bad" then

abort_test ("Ul-4")

else
print "READY CIRCUIT PASSES"

end if

end if
end program

Ready Circuit

Stimulus Programs and Responses 4.14.7.

Figure 4-129 is the stimulus program planning diagram for the
Ready Circuit functional block. The ready 1, ready 2,
ready_3, and ready_4 stimulus programs use one clip For
measurement and a second clip to overdrive the Ready circuit in
order to break the feedback loop in this circuit. ready 5 and
ready 6 provide stimulus to measure the operation of the I/O
ready generator, U17. These two stimulus programs count how
many 8 Mhz clocks occur during the wait state generated by
U17.

The steps to break the Ready feedback loop to diagnose a fault
are shown below:

1. Overdrive inputs U4-4 and U4-5. Then measure
outputs U4-6 and Ul-4. The 82284 chip (U1)
synchronizes the Ready output (U4-6) to the
microprocessor read/write cycles. This requires the
ready 1 stimulus program to output the level, allow
enough time for the signal to get synchronized, then
check the level at the output U1-4.

2. Finish breaking the Ready signal feedback loop by
overdriving inputs U4-12 and U4-13, then measure
the outputs U4-11, U5-3, and U4-6. In order to
measure US5-3 and U4-6, the other inputs U5-1 and
U4-5 must be held high so the signals will flow
through the AND gates. The ready 4 stimulus
program performs this step.

3. Hold the node with output source U4-11 high. This
allows signals from U6 to flow through U5-3 to U4-
6. At the same time, holding U4-11 high causes
output U17-11 to stabilize at a high state, allowing
signals from US56 to ripple through U5-6 to U4-6.
Now use the pod to exercise the Ready Circuit inputs
that are driven by the Address Decode functional
block. The ready 2 stimulus program performs this
sequence for all components that can be forced to use
zero wait states. It does this by disabling U17 (all

4-349

Ready Circuit

components except RAM and Video RAM). Since
the pod has turned ~READY ENABLE OFF, the pod
generates a sync pulse with zero wait states.
Because the RAM and Video RAM return wait states,
taking signature measurements on RAM and Video
RAM will turn out to be unstable. To solve this
problem, ready 2 accesses all components except
RAM and Video RAM. Then the ready 3 stimulus
program performs a similar operation, but exercises
only RAM and Video RAM. ready 3 responses are
characterized by asynchronous level history and
transition counts to allow the RAM and Video RAM
wait state signals to be measured.

4. Measure the I/O component wait state generator,
U17. The Clear input at U17-9 is toggled low. At
the same time a measurement using external Clock
(and Start) is made. The External Clock line is
connected to the § MHz clock CLK and the Start line
is connected to the node which includes U17-9. A
Stop Count is set and transition counts and level
history are measured. The ready 6 stimulus
program uses a Stop Count of four clocks and the
response is expected to be low level history and zero
transitions, indicating that the wait state output was
low for at least four clocks. The ready 5 stimulus
program uses a Stop Count of six clocks. In this
case, a response of high and low level history is
expected, and a transition count of 1 is expected.
These results indicate that the wait state finished
within six clock cycles.

Advice for Making GFI Work in the Presence of Ready Faults

When a Ready fault exists, a forcing-line fault condition will be
generated. However, the pod must ignore the Ready
forcing-line fault condition so that the stimulus program will
execute completely. Otherwise, a fault condition would be
generated and GFI would terminate. To turn this report off, a
SETUP REPORT FORCING ~READY OFF command can be

4-350

Ready Circuit

performed. When this is done, the pod will continue to respond
to the Ready signal, but will not generate a fault message. If the
Ready signal is stuck high, the pod will cause the 9100A/9105A
to generate a pod timeout fault condition. To cure this, a SETUP
ENABLE ~READY OFF command is performed. At this point,
GFI will work properly and Ready problems can be isolated to
the failing component or node.

More generally, GFI works best if every stimulus program turns
all reporting conditions off. In addition, those stimulus
programs that create activity in the kernel area, may need to turn
off Enable Ready. All Demo/Trainer UUT stimulus programs
related to the address bus, data bus, control signals, address
decoding, interrupts, and ready circuitry turn the Ready Enable
off at the beginning of the stimulus program and the turn Ready
Enable back on at the end of the program.

One more note: the 80286 microprocessor uses a separate bus
controller that has no feedback lines to the microprocessor.
When the pod disables the Ready input and performs zero wait
state operations regardless of the Ready input, the bus controller
can get out of synchronization from the pod and may get
confused. When this happens, an enabled line timeout fault
condition is generated. The solution is to provide a handler for
that fault condition in each stimulus program that enables and
disables Ready. The handler for the fault condition should call a
program which performs a recovery procedure. The recovery
procedure depends on the UUT. Usually, forcing the Ready
line active or performing a Reset will recover synchronization.
Or, by disabling Ready and then performing a read or write in
memory space followed by enabling Ready may recover
synchronization of the 80286 pod and the bus controller. Most
other microprocessors do not have this problem.

Ready Circuit

Stimulus Program Planning

PROGRAM: READY.3

OVERDRIVES THE NODE AT U4-11 AND EXERCISES
THE READY RETURN LINES VRAM AND VRAMRDY

MEASUREMENT AT:

4-352

Ready Circuit

BUS ALATCH BO288
BUFFER MICROPROCESSOR
OYNAMIC

RAM - N
TIMING T

L
ROM | e) ;
| B — 45V 1 —:”
J SPAFEL @ by il
SFARED 3 s —34 SRO s
] AOMOREY | 4 o J7_q SF!DYEN_ M
1
ADDRESS ACMIADY 5| us U »
OECODE AAMADY 5
VEAMRBOY 41
o +5Y iz SEOY
VIDED | s ALS00 rcon
=] ua
I
12»‘7308 ey L5164) . I -
|
B 2 _-t;; g; e
CLOCK B e i
AND o} OLK oo [5_me s
RESET .
— S <
INTERRUPT
CIRCUIT T7EECT
] VIDSLT
| PPISLT

INTROY

Figure 4-129: Ready Circuit Stimulus Program Planning

4-353

Ready Circuit

program ready 1

Trrprprtrrrrr Rt T T ITIRrTT T T T LRI r I IR R R I I I IR RTITIIIIIITIIIIIIIIIILIIGLYL

STIMULUS PROGRAM overdrives U4 in ready circuit.
Characterizes U4-6 and Ul-4.

Stimulus programs and response files are used by GFI to backtrace
from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for

! the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
or without the ready circuit working properly. Because of this, all !

! the stimulus programs in the kernel area must disable the READY input !
! to the pod, then perform the stimulus, then re-enable the READY input !
! to the pod. The 80286 microprocessor has a separate bus controller; !
! for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Two fault f
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover (} program is executed to !

1

1

resynchronize the bus controller and the ped.

recover () The 80286 microprocessor has al!
bus controller that is totally!
separate from the pod. 1In !
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program !
resynchronizes the pod and the!
bus controller. !

GRAPHICS PROGRAMS CALLED:
{none}

Global Variables Modified:
recover times Reset to Zero

Local Variables Modified:
measure_dev Measurement device

1
!

1

t

1

1

1

!

1

1

i

e

1

1

1

1

1

!

1

! 1
! TEST PROGRAMS CALLED: !
1

1

t

1

1

!

1

1

1

1

1

1

1

1

1

1

1

1

! stimulus dev Stimulus device (overdrives)

declare global numeric recover_ times

(continued on the next page)

Figure 4-130: Stimulus Program (ready_1)

4-354

Ready Circuit

handle pod_timeout_ enabled line
recover ()

end handle

handle pod_timeout recovered
recover (}

end handle

handle pod timout neo_clk

end handle

recover times = 0
! Let GFI determine measurement device
if {(gfi control) = "yes" then

measure_dev = gfi device
measure ref = gfi ref

else
print "Enter reference name of part to measure:"
print " {Chose Ul, U4, Ul4 or Ul5)"
measure_ref = "" \ input measure ref

if measure ref <> "Ul4" then
measure_dev = clip ref measure ref

else
probe ref "Ul4-63" \ measure dev = "/probe"

end if
end if

! Determine stimulus device

if measure ref = "U4" then
stimulus_dev = measure dev

else
print "\O7\1B{2J\1B[201\1B[3;1f USING \1B[7mSECOND\1B[Om CLIP."

stimulus dev = clip ref "U4"
print "\1B{20h"

end if

print "Stimulus Program READY 1"

(continued on the next page)

Figure 4-130: Stimulus Program (ready_1) - continued

4-355

Ready Circuit

! Setup measurement device.

podsetup 'enable ~ready' "off"
podsetup 'standby function off!
podsetup 'report power' "off"
podsetup 'report forcing' "off"
podsetup ‘report intr' "“off"
podsetup 'report address' "off"
podsetup ‘report data' *"off"
podsetup ‘report control' "off"
reset device measure dev

reset device stimulus dev

sync device measure_dev, mode "int"

! Perform Stimulus

‘ arm device measure dev
Zg writepin device "U4", pin 4, level "1", mode "latch"
writepin device "U4", pin 5, level "1", mode "latch"

strobeclock device measure dev
writepin device "U4", pin 4, level "0", mode "latch"
writepin device "U4", pin 5, level "1", mode "latch"
strobeclock device measure dev
writepin device "U4", pin 4, level "1", mode "latch"
writepin device "U4", pin 5, level *1", mode "latch”
strobeclock device measure dev
writepin device "U4", pin 2, level "1", mode "latch"
writepin device "U4", pin 5, level "0", mode "latch"
strobeclock device measure dev
writepin device "U4", pin 4, level "1%, mode *"latch"
writepin device "U4", pin 5, level "1", mode "latch"
strobeclock device measure_dev

readout device measure dev

clearoutputs device stimulus dev
podsetup 'standby function on!
podsetup ‘enable ~ready' "on"

end program

Figure 4-130: Stimulus Program (ready_1) - continued

4-356

Ready Circuit

O ' STIMULUS PROGRAM NAME: READY 1

DESCRIPTION: SIZE: 94 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With SIG IVL IVL Mode Counter Range Pin
U4-6 I/0 MODULE 0015 10 TRANS
Ul-4 PROBE 0015 10 TRANS
Ul-4 I/0 MODULE 0015 10 TRANS

Figure 4-131: Response File (ready 1)

4-357

Ready Circuit

program ready 2

Trrtrppeetrrr bR R tE LR LILI I LIGPRELCLILIIOIOLITIGLPIEEIIEIIO RIS RITRITLIIIOLIISLIGPITTITLIIIIOLIOIGLIITIEILILILIILIILIYL

STIMULUS PROGRAM overdrives U4 in ready circuit.
Characterizes U4-6 and Ul-4.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
H
This stimulus program is cne of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the ped. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to !
resynchronize the bus controller and the pod. !

1

TEST PROGRAMS CALLED: 1
recover () The 80286 microprocessor has a!l
bus controller that is totally!

separate from the pod. 1In !

some cases the pod can get out!

of sync with the bus control- !

ler. The recover program !

resynchronizes the pod and the!

bus controeller. 1

GRAPHICS PROGRAMS CALLED:
{none}

Global Variables Modified:

recover times Reset to Zero

Local Variables Modified:
measure_dev Measurement device
stimulus_dev Stimulus device (overdrives)

declare global numeric recover times

(continued on the next page)

Figure 4-132: Stimulus Program (ready_2)

4-358

Ready Circuit

handle pod timeout enabled line
recover (}

end handle

handle pod_timeout_recovered
recover (}

end handle

handle pod timout no clk

end handle

recover_times = 0

! Let GFI determine measurement device

if (gfi control) “yes" then
measure _dev = gfi device
measure ref = gfi ref
else
print "Enter reference name of part to measure:"

print *

{Chose U1, U4, U5, U6, U56 or U17)"

measure_ref
measure_dev

\ input measure_ref
clip ref measure_ref

end if

! Determine stimulus device

if measure_ref = "Ul" then
print *\07\1B[2J\1B[201\1B[3;1f
stimulus_dev clip ref "U4"
print "\1B{20h"
else
stimulus dev
end if
print "Stimulus Program READY 2"

USING \1B[7mSECOND\1B[Om CLIP."

measure_dev

! Setup measurement device.
podsetup 'enable ~ready' "off"
podsetup ‘report power' "off"
podsetup 'report forcing' "off"
podsetup 'report intr* "“off"
podsetup ‘report address' "off”
podsetup 'report data®' "off"
podsetup 'report control' "off"
io_byte = getspace space "i/o", size "byte"

mem word = getspace space "memory", size "word®

(continued on the next page)

Figure 4-132: Stimulus Program (ready_2) - continued

4-359

Ready Circuit

reset device measure dev

reset device stimulus dev

sync device measure dev, mode “pod"

sync device "/pod", mode "data"

old cal = getoffset device measure_dev

setoffset device measure dev, offset (1000000 - 56)

if measure ref = "US" then
writepin device "U5S", pin 2, level "1", mode "latch"
writepin device "U5", pin 4, level "1%, mode "latch"

else if measure ref = "U4" or measure ref = "UL" then
writepin device "U4", pin 11, level "1", mode “latch”
end if

! Stimulate ICs and capture response.

arm device measure_dev ! Start response capture.
setspace (mem word)
read addr $30000 ! IPOLL
read addr $40000 ! SPARE1
read addr $50000 ! SPARE2
read addr $E000O ! ROMO
read addr $F0000 I ROM1
setspace (io_byte)
read addr O ! VIDSLT
read addr $2000 ! I/08LT
read addr $4000 ! PPISLT

1

readout device measure dev End response capture.

if stimulus dev <> "/probe" then clearoutputs device stimulus dev
setoffset device measure_dev, offset old cal

pedsetup ‘enable ~ready' "“on"

end program

Figure 4-132: Stimulus Program (ready_2) - continued

4-360

Ready Circuit

O STIMULUS PROGRAM NAME: READY 2

DESCRIPTICN: SIZ2E: 143 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL IVL Mode Counter Range Pin
U4-6 1/0 MODULE 0000 10 TRANS
U4-8 PROBE CO7E 10 TRANS
U4-8 1/0 MODULE O007E 190 TRANS
U5-3 I/0 MODULE 0086 10 TRANS
Us-6 I/0 MODULE 0078 10 TRANS
U56-8 PRCBE 0086 10 TRANS
US6-8 I/0 MODULE 0086 10 TRANS
U6-8 1/0 MODULE 0078 190 TRANS

Figure 4-133: Response File (ready 2)

Ready Circuit

program ready 3

STIMULUS PROGRAM toggles ready circuit inputs which generate
wait states.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
t
1
1
1

1
1
1
i
1
1
i
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
1

1

i

1

1

1

1

1

1

1

or without the ready circuit working properly. Because of this, all
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re—enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller;
for this reason, disabling ready and performing stimulus can get the
bus contreller out of synchronization with the pod. Two fault 1
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to
resynchronize the bus controller and the pod.

1

1

1

1

1

1

1

1

1

1

1

1

1

! !
! TEST PROGRAMS CALLED: !
! recover () The 80286 microprocessor has al!
! bus controller that is totally!
! separate from the pod. In

! some cases the pod can get out!
! of sync with the bus control- !
H ler. The recover program

! resynchronizes the pod and the!
! bus controller. 1
1

1

1

1

1

1

1

1

1

1

!

GRAPHICS PROGRAMS CALIED:
{none}

recover times Reset to Zero

Local Variables Modified:
measure_dev Measurement device

1

1

1

1

Global Varilables Modified: !
1

1

1

1

stimulus_dev Stimulus device (overdrives) !

TrrrrrrrrrrrERLLI LI LI LI IO LI I I LI LI LIOLIGLRIGRICTI LTI I LI I I TIPSR LI LI TITITIIITII IERTI I IPIITRRLIILIILIIIIILILILIILILILL

! Main Declarations

declare global numeric recover times

(continued on the next page)

Figure 4-134: Stimulus Program (ready_3)

4-362

Ready Circuit

TrrrrrrrrbIbIbILLLERLLILILILILILLIIbOELILLIOILILIG LI IOLIIOLI R RIEILIIII LI PO IOIIOLI RIS LIEITREILIOIOIIIII I LIEILILIULIILIY

! FAULT HANDLERS:
AR N N N R N R R N R S R RN N S RN S R NN RS R S RSB

handle pod_timecut_enabled line
recover (}

end handle

handle pod timeout recovered
recover ()

end handle

handle pod_timout no_clk

end handle

recover_times = 0
! Let GFI determine measurement device

if (gfi control) = "yes" then
measure _dev = gfi device
measure_ref = gfi ref

else
print “Enter reference name of part to measure:"
print " {Chose Ul, U4, U5 or UG)"
measure_ref = "" \ input measure ref
measure_dev = clip ref measure ref

end if

! Determine stimulus device

if measure ref = "Ul" then
print "\07\1B[23\1B[201\1B{3;1f USING \1B[7mSECOND\1B[Om CLIP."
stimulus dev = clip ref "U4"
print "\1B[20h"
else
stimulus dev = measure dev

end if
print "Stimulus Program READY 3"

(continued on the next page)

Figure 4-134: Stimulus Program (ready_3) - continued

4-363

Ready Circuit

! Setup measurement device.

podsetup ‘'enable ~ready' "“off*

podsetup 'standby function off!

podsetup ‘report power' “off"

podsetup 'report forcing' "off*

podsetup 'report intr' "“off"

podsetup 'report address' "off"

podsetup ‘report data' "off"

poedsetup 'report control* “off"

io_byte = getspace space "i/o", size "byte"

mem word = getspace space "memory", size "word”
reset device measure dev

reset device stimulus dev

sync device measure dev, mode “pod"

sync device "/pod", mode "data"

old cal = getoffset device measure dev
setoffset device measure dev, offset (1000000 - 56)

if measure ref = "US" then
writepin device "U5", pin 2, level "1", mode "latch"
writepin device "U5", pin 4, level "1", mode "latch"
else if measure ref = "U4" or measure ref = "UL" then
writepin device "U4", pin 11, level "1", mode "latch"
end if

! Stimulate ICs and capture response.

arm device measure dev ! Start response capture.
setspace (mem word)
read addr O ! RAMO
read addr $10000 ! RAM1
write addr $20000, data O ! VRAM (write only)
1

readout device measure_dev ! End response capture.

clearoutputs device stimulus_dev

setoffset device measure dev, offset old cal
podsetup 'standby function on'

podsetup 'enable ~ready' "on®

end program

Figure 4-134: Stimulus Program (ready_3) - continued

4-364

Ready Circuit

STIMULUS PROGRAM NAME: READY 3

DESCRIPTION:

Node Learned
Signal Src With

U4-6 I/0 MOCDULE
Us-3 I/0 MCDULE
U6-8 I/0 MCDULE

Figure 4-135: Response File (ready_3)

SIG

SIZE:
Response Data
Async Clk Counter
IVL IVL Mode Counter Range
10 TRANS 3
10 TRANS 3
10 TRANS 3

112 BYTES

Priority
Pin

4-365

Ready Circuit

program ready 4

STIMULUS PROGRAM overdrives U4 in ready circuit.
Characterizes U4-6 and Ul-4.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the ped, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to !
resynchronize the bus controller and the pod. !
1

TEST PROGRAMS CALLED: !
recover {) The 80286 microprocessor has al
bus controller that is totally!

separate from the pod. In !

some cases the pod can get out!

of sync with the bus control- !

ler. The recover program !

resynchronizes the pod and the!

bus controller. 1

GRAPHICS PROGRAMS CALLED:
(none)

1
i
t
1
Global Variables Modified: !
recover_times Reset to Zero !
1
1
1
1
i

Local Variables Modified:
measure_dev Measurement device
stimulus dev Stimulus device (overdrives)

IIIIIIIIIIIVTIIIIIlllllllllllllllllltllllll!llllllil!lllllll!!lllllllll

Main Declarations

trrrrrrrrbLLLLLOLLOILCLILCORLLLIOLLILOLI R RRLIOLILIOLI IR R RLIOLILII IO LPITILRILIILIPIOIOG LI RLEILILIIILIOLIEILIIORLTIEILILIILIILIILY]

declare global numeric recover times

(continued on the next page)

Figure 4-136: Stimulus Program (ready_4)

4-366

Ready Circuit

{ FAULT HANDLERS:

handle pod_timeout_enabled line
recover (}

end handle

handle pod_timeout_recovered
recover ()

end handle

handle pod_timout no_clk

end handle

recover times = 0
i Let GFI determine measurement device

if (gfi control) = "yes" then
measure_dev = gfi device
measure ref = gfi ref

else
print "Enter reference name of part to measure:"
print * (Chose U4, U5 or Ui7)"
measure_ref = "" \ input measure ref
measure_dev = clip ref measure_ref

end if

! Determine stimulus device

if measure ref = "U4" then
print "\O7\1B[2J\1B[201\1B[3;1f USING \1B[7mSECOND\1B[Om CLIP.*
stimulus_dev = clip ref "U45"

else if measure ref = "U5" then
print "\07\1B[2J\1B[201\1B{3;1f USING \1B[7mSECOND\1B[Om CLIP."

stimulus_dev = clip ref "Ul17"

else if measure ref = "U17" then
print "\O7\1B[2J\1B[201\1B[3;1f USING \1B[7mSECOND\1B[Om CLIP."

stimulus dev = clip ref "U4"
end if
print "\1B[20h*
print "Stimulus Program READY 4"

(continued on the next page)

Figure 4-136: Stimulus Program (ready_4) - continued

Ready Circuit

! Setup measurement device.

podsetup ‘enable

~ready*® "off"

podsetup ‘report power' "“off"
podsetup ‘report forcing' "off*®

podsetup ‘report intr* "off"
podsetup 'report address' "off*
podsetup 'report data' "off*
podsetup ‘report control' “off"

reset device measure dev
reset device stimulus dev
sync device measure dev, mode "int"
sync device stimulus dev, mode "int"

if measure_ref = "U4" then
storepatt device "U4", pin 12, patt "10111"
storepatt device "U4", pirn 13, patt *11101"
storepatt device "U45", pin 6, patt "00000"
storepatt device "U45%, pin 3, patt "00000"
else if measure ref = "US5" then
storepatt device "U5%, pin 1, patt "11111"
storepatt device "U17", pin 9, patt "10101"

else if measure ref = "UL7" then
storepatt device "U4", pin 12, patt *10111"
storepatt device "U4", pin 13, patt "11101"
end if

{ Provide stimulus to UUT using I/0 module to overdrive.

arm device measure dev

if measure ref = "U4" then

writepatt device "U45,U4", mode "pulse"
else if measure ref = "U5" then

writepatt device "U17,U5", mode "pulse"
else if measure_ref = "Ul7" then

writepatt device "U4", mode "pulse"
end if

readout device measure dev

podsetup ‘enable ~ready' "on*
end program

Figure 4-136: Stimulus Program (ready_4) - continued

4-368

Ready Circuit

STIMULUS PROGRAM NAME: READY 4

DESCRIPTION: SIZE:
Response Data
Node Learned Async Clk Counter
Signal Src With SIG ILVL IVL Mode Counter Range
U4-11 I/0 MODULE 0015 10 TRANS
Us5-3 I/0 MODULE OOOA 10 TRANS

Figure 4-137: Response File (ready_4)

78 BYTES

Priority
Pin

Ready Circuit

program ready 5

STIMULUS PROGRAM characterizes the ready circuit.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !

1 in the kernel area of the UUT. These programs create activity with !
! or without the ready circuit working properly. Because of this, all !
1

1

1

1

1

1

1

H

1

! the stimulus programs in the kernel area must disable the READY input

! to the pod, then perform the stimulus, then re-enable the READY input

! to the pod. The 80286 microprocessor has a separate bus controller;

! for this reason, disabling ready and performing stimulus can get the

! bus controller out of synchronization with the pod. Two fault
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover() program is executed to
resynchronize the bus controller and the pod.

1

1

1

1

1

1

1

1

1

1

1

1

!

1

1

1

1

1

! H
! TEST PROGRAMS CALLED: !
! recover () The 80286 microprocessor has a!
! bus controller that is totally!
! separate from the pod. In

! some cases the pod can get out!
! of sync with the bus control- !
! ler. The recover program

! resynchronizes the pod and the!
! bus controller. !
1

1

1

1

i

1

b

i

t

1

1

1

1

1

1

1

1

1

!

1

check meas (device, start, stop, clock, enable)
Checks to see if the measure-
ment is complete using the
TL/1 checkstatus command. If !
the measurement times out thent
redisplay connect locations. !

f GRAPHICS PROGRAMS CALLED:
{none}

Local Variables Modified:
done returned from check_meas (}

Global Variables Modified:
recover_times Reset to Zero

Local Variables Modified:
measure_dev Measurement device
stimulus dev Stimulus device (overdrives)

(continued on the next page)

Figure 4-138: Stimulus Program (ready._5)

5‘—4-370

Ready Circuit

declare global numeric recover times
declare numeric done = 0

handle pod_timeout enabled line
recover ()

end handle

handle pod_timeout_ recovered
recover ()

end handle

! Main part of STIMULUS PROGRAM !
I R SR NN R N N R AR R R R R R R RN |

recover times = 0
! Let GFI determine the measurement device.

if {(gfi control) = "yes" then
measure dev = gfi device
measure ref = gfi ref

else
print "Enter reference name of part to measure:"
print » (Chose U5 or U17)}"
measure_ref = "" \ input measure ref
measure_dev = clip ref measure ref

end if

print "Stimulus Program READY 5"

! Set addressing mode and setup measurement device.

podsetup 'enable ~ready®' "“off"
podsetup 'standby function off!'
podsetup ‘report power' "off"
podsetup 'report forcing' "off"
podsetup ‘report intr' "off"

podsetup ‘report address' "off”
podsetup ‘report data' "off"

podsetup ‘'report control' "“off"
setspace(getspace{ *i/o", "byte" }}
reset device measure dev

sync device measure_dev, mode "ext"
enable device measure dev, mode "high"
edge device measure dev, start "+", stop "count", clock "-"
stopcount device measure dev, count 7

(continued on the next page)

Figure 4-138: Stimulus Program (ready 5) - continued

Ready Circuit

! Prompt user to connect external lines.

1 if measure ref = "Ul7" then
. connect device measure dev, start "U4-11", clock "U1-10", common "“gnd"
else
connect device measure dev, start "Ul7-%", clock "Ul-10", common "gnd"
end if

! External lines determine measurement.

loop until done = 1
arm device measure dev
read addr 0
done = check_meas (measure_dev, "U4-11", "**, "Ul-10", "*")
readout device measure dev
end loop

clearoutputs device measure dev

podsetup ‘standby function on'

podsetup ‘enable ~ready' "on*
end program

Figure 4-138: Stimulus Program (ready 5) - continued

4-372

Ready Circuit

‘ STIMULUS PROGRAM NAME: READY 5

DESCRIPTION: SIZE: 69 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG VL IVL Mode Counter Range Pin
Ul7-11 I/0 MCDULE 10 TRANS 1

Figure 4-139: Response File (ready_5)

4-373

Ready Circuit

program ready 6

STIMULUS PROGRAM to wiggle all address lines from the uP.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1 1
This stimulus program is one of the programs which creates activity t
in the kernel area of the UUT. These programs create activity with t
or without the ready circuit working properly. Because of this, all !

1

1

1

1

i

1

1

1

1

! the stimulus programs in the kernel area must disable the READY input !

! to the pod, then perform the stimulus, then re—enable the READY input !

! to the pod. The 80286 microprocessor has a separate bus controller;
for this reason, disabling ready and performing stimulus can get the
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover() program is executed to
resynchronize the bus controller and the pod.

recover 4] The 80286 microprocessor has a!l
bus controller that is totally!
separate from the pod. In !
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program !
resynchronizes the pod and the!
bus controller. !

GRAPHICS PROGRAMS CALIED:
{none}

1
i
i
1
Global Variables Modified: !
recover times Reset to Zero !
1
i
t
1
1

1
!

1

1

1

1

1

1

1

1

1

1

!

1

1

I

1

1

! !
! TEST PROGRAMS CALLED: !
1

1

1

1

1

1

1

1

1

1

1

1

1

1

i

! Local Variables Modified:

! measure_dev Measurement device

1 stimulus dev Stimulus device {overdrives)
i

(continued on the next page)

Figure 4-140: Stimulus Program (ready_6)

Ready Circuit

declare global numeric recover_ times
declare numeric done = 0

handle pod timeout enabled line
recover (}

end handle

handle pod_timeout_ recovered
recover {)

end handle

trrrprrrrrrrrrn LI IELLLLOLILIIIOELLILILILIOLIRILIOIOLILIOLIIITILIIILIIIRIILTIGRITITIIIIIIILTIELt

! Main part of STIMULUS PROGRAM !
AR RN NS R NN R R R N N R N A SR RN R R R A NN

recover_times = 0
! Let GFI determine the measurement device.

if (gfi control) = "yes" then
measure_dev = gfi device
measure ref = gfi ref

else
print "Enter reference name of part to measure:”
print " (Chose U5 or U17)"
measure_ref = "" \ input measure ref
measure_dev = clip ref measure_ref

end if

print "Stimulus Program READY 6"

! Set addressing mode and setup measurement device.

podsetup 'enable ~ready' "off"
podsetup 'standby function off*
podsetup 'report power' "off*

podsetup 'report forcing' "off"
podsetup 'report intr' “off"

podsetup ‘report address' *"off"
podsetup 'report data' "off"

podsetup ‘'report control!' "“off”
setspace(getspace("i/o", "byte" })
reset device measure dev

sync device measure dev, mode “ext™
enable device measure dev, mode "high"
edge device measure dev, start "+", stop "count", clock "-"
stopcount device measure dev, count 4

(continued on the next page)

Figure 4-140: Stimulus Program (ready_6) - continued

4-375

Ready Circuit

! Prompt user to connect external lines.

if measure ref = "UL7" then

connect device measure dev, start "U4-11", clock "U1-10", common "gnd"
else

connect device measure dev, start "Ul7-9", clock "Ul-10", common "gnd"
end if

{ External lines determine measurement.

loop until done =1
arm device measure_dev
read addr O
done = check meas (measure_dev, "U4-11%, "*n", #yl-10", =+1)
readout device measure dev
end loop

clearoutputs device measure dev
podsetup ‘standby function on'
podsetup ‘'enable ~ready‘' "on"

end program

Figure 4-140: Stimulus Program (ready_6) - continued

4-376

Ready Circuit

O STIMULUS PROGRAM NAME: READY 6

DESCRIPTION: SIZE: 70 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With SIG IVL IVL Mode Counter Range Pin
Ul7-11 1/0 MODULE 10 0 TRANS 0

Figure 4-141: Response File (ready_6)

4-377

Ready Circuit

Summary of Complete Solution for
Ready Circuit 4.14.8.

The entire set of programs and files needed to test and GFI
troubleshoot the Ready Circuit functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the location in
this manual for each file.

UUT DIRECTORY
(Complete File Set for Ready Circuit)
Programs (PROGRAM):
TST_READY Functional Test Section 4.14.5
READY_1 Stimulus Program Figure 4-130
READY_ 2 Stimulus Program Figure 4-132
READY_3 Stimulus Program Figure 4-134
READY_4 Stimulus Program Figure 4-136
READY_5 Stimulus Program Figure 4-138
READY_6 Stimulus Program Figure 4-140
Stimulus Program Responses (RESPONSE):
READY_1 Figure 4-131
READY_2 Figure 4-133
READY_3 Figure 4-135
READY_4 Figure 4-137
READY_5 Figure 4-139
READY_6 Figure 4-141
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-378

Other Functional Blocks and Circuits

OTHER FUNCTIONAL BLOCKS AND CIRCUITS 4.15.

The 9100A/9105A provides the capability to handle a number of
special circuits or situations. Among these are watchdog timers
forcing lines, feedback loops, and in-circuit component testing.

Watchdog Timers 4.15.1.

Watchdog timers usually interfere with testing and
troubleshooting. If your UUT has a watchdog timer, your test
procedure or program must disable it before performing tests.

Many watchdog timers initiate a master reset when they detect
incorrect activity. Others may use a high-priority interrupt line
to reset the system.

Whenever possible, physically disable the watchdog timer with a
jumper or switch provided for that purpose. If the watchdog
timer cannot be disabled at the UUT, the 9100A/9105A may be
able to ignore it with the SETUP POD REPORT FORCING
SIGNAL ACTIVE OFF keypad command, or disable it with a
command like SETUP POD ENABLE READY ON/OFF. Be
very careful, however, when doing this. Read the precautions
about these commands in Section 4.15.2, "Forcing Lines."

Forcing Lines 4.15.2.

In some situations, forcing lines must be disabled (disconnected
from the pod microprocessor) during a test. You can do this
with the SETUP POD ENABLE READY ON/OFF keypad
command ("READY" is a pod-dependent choice; some pods
may call this line by a different name).

Exercise care whenever you disable a forcing line. Write or read
commands to circuits that generate wait states through a Ready
line may become unpredictable after the Ready line is disabled at
the pod.

4-379

Other Functional Blocks and Circuits

In addition to disabling forcing lines, you can also ignore them.
The SETUP POD REPORT FORCING SIGNAL ACTIVE OFF
keypad command will prevent the reporting of forcing lines. In
this mode, the pod behaves normally but forcing conditions are
not reported by the pod to the 9100A/9105A.

Exercise care with this mode also. The pod's hardware
performance is not affected and the pod will continue reacting to
the forcing line. If the UUT generates a permanent wait state
using a forcing line, the pod will halt and the system will display
a timeout message. Other fault-indicating signals on your UUT
will also be ignored if the forcing line is disabled. Be sure that
] your UUT hardware is not affected by the same forcing line.

Breaking Feedback Loops 4.15.3.

| Microprocessor-based systems often have several feedback
i loops. The microprocessor and the components tied to the data
q and address buses form a large feedback loop. Most of the

loops in the system will be broken when the microprocessor is
replaced by the pod, because the pod can selectively ignore or
l report conditions of status and forcing lines. However, there

may be additional loops which are not broken by the pod.

Figure 4-125 shows a feedback loop in the Ready functional
block of the Demo/Trainer UUT. The READY output (U1-4) is
fed back as an input at U4-12.

To test a functional block that contains a feedback loop, drive all
of its inputs, including the inputs connected to outputs that form
the feedback loop, and measure the outputs. Use the I/O module
to overdrive inputs while measuring signature, level, and count
at the outputs.

Visual and Acoustic Interfaces 4.15.4.

Some circuits, such as LEDs and beepers, have both electrical
characteristics and visual or acoustic characteristics . In general,
stimulus programs should ignore the visual or acoustic

4-380

Other Functional Blocks and Circuits

characteristics and measure only the electrical characteristics .
The functional tests should prompt the test operator to verify the
visual or acoustical characteristics .

If the functional test fails, use the gfi test command. If gfi test
fails, start GFI troubleshooting. If the functional test fails and
gfi test passes, the part is bad, since the part operates incorrectly
but the electrical signals at the part are good.

In the case of the Parallel I/O functional block on the
Demo/Trainer UUT, the functional test includes a prompt to the
operator to verify the correct display on the LEDs. If the LEDs
fail, the Parallel I/O functional test should perform a gfi test,
which will run the stimulus programs and check the electrical
properties. If gfi test passes (when the Parallel I/O functional
test failed), it means that the electrical characteristics are good
but the display is bad. The LEDs are bad and the operator
should be prompted to replace them. If the gfi rest fails, GFI
troubleshooting can begin at the pin where the gfi fest failed.

In-Circuit Component Tests 4.155.

If you wish, you can write TL/1 programs to test individual
components rather than using the GFI to do so. These in-circuit
component tests use a sequence of ones and zeroes defined with
the TL/1 storepatt command and executed by the TL/1 writepart
command to overdrive the inputs of the component to be tested
while measuring the signatures or level histories of its outputs.
A test operator runs these tests by using the EXEC key to run
the required program.

4-381

Other Functional Blocks and Circuits

(This page is intentionally blank.)

J 4-382

Section 5

UUT Go/No-Go
Functional Tests

PROGRAMMED GO/NO-GO FUNCTIONAL
TESTING 5.1.

The UUT go/no-go test is the third of four modular levels in
programming the 9100A, as shown in Figure 5-1. In this third
level, the go/no-go test determines whether the UUT is good
(passes) or bad (fails). The go/no-go test combines built-in
functional test commands with functional tests designed by the
programmer.

The go/no-go test is simple because it builds on the tests of
functional blocks. It determines only whether the entire UUT is
good or bad. It does not determine which functional block is
causing a failure.

CREATING A PROGRAMMED GO/NO-GO
FUNCTIONAL TEST 5.2.

Suppose a UUT has 14 functional blocks and a functional test is
defined for each of them. One way to create a go/no-go test is to
perform all 14 functional tests. Some blocks, however, can be
tested indirectly by testing other blocks. For example, the bus
buffer is assumed to be good if the ROM, RAM, and other
blocks pass their tests. Therefore, a second way to create the
g0/no-go test is to perform functional tests only on functional
blocks which cannot be tested indirectly by testing other blocks.

5-1

5-2

Level 1 I

« Stimulus Programs for Nodes

«|earned Node Responses
from Known-Good UUT

- Node List and Reference
Designator List (Both Optional)

Level 2 I

Functional Tests of
Entire Functional Blocks

Level 4

Go/No-Go Test
for the Entire UUT,
with Fault Isolation

to the Block Level

Figure 5-1: UUT Go/No-Go Functional Testing (Level 3)

Figure 5-2 shows the steps used to reach a go/no-go status:
decision. Care must be taken to ensure that your go/no-go test
really does test the UUT for all possible faults.

Figure 5-3 shows the structure of a go/no-go functional test for
the Demo/Trainer UUT. For this UUT, only six functional
blocks need to be tested for the go/no-go functional test of the
UUT: Microprocessor Bus, RAM, ROM, Parallel I/O, Serial
I/0O, and Video. The microprocessor bus test is run first because
it is built-in, fast, and provides excellent diagnostic information.
A failure on the microprocessor bus will cause most other
circuits to fail, so it is most efficient to check this functional
block first.

In the Demo/Trainer UUT, the following functional blocks are
tested indirectly by the go/no-go test:

Clock and Reset
Ready Circuit
Interrupt Circuit

Bus Buffer

Dynamic RAM Timing
Address Decode
Video Control

Video RAM

Figure 5-4 is a listing of the go/no-go functional test program for
the Demo/Trainer UUT. It calls the functional test for each of
the functional blocks which must be tested directly for the UUT
go/no-go functional test to be complete. The remaining
functional blocks are tested indirectly; if they fail, one of the six
blocks that is tested by the go/no-go test will fail also.

EVALUATING TEST EFFECTIVENESS 5.3.

The purpose of the go/no-go test is to determine whether the
UUT is good or bad. Two measures are frequently used to
evaluate how well a go/no-go functional test performs: node
activity and fault coverage. Node activity is important because

Select a Functional
Block Which Cannot
» be Tested Indirectly
by Testing Another
Functional Block

A

Execute the Functional
Test for the Functional
Block

Fault
Message?

Any Functional
Blocks Not Yet
Tested Directly
or Indirectly?

Yes

No

3
(UUT Passes) (UUT Fails)

Figure 5-2: Go/No-Go Test Sequence

Test Microprocessor Bus

Test RAM

Test ROM

Test Parallel /O

Test Serial I/O

Test Video

Figure 5-3: Demo/Trainer UUT Go/No-Go Test

program go_nogo

The Go/No-Go program is the highest level of the functional testing
and fault handlers. The purpose of the Go/No-Go test is to determine
whether the UUT is good or bad. This program executes six programs
which test the six major functional blocks (Microprocessor Bus, ROM,
RAM, Parallel I/O, Serial I/O, and Video functional blocks).

By testing the six major functional blocks, the remaining

functional blocks are indirectly tested.

TEST PROGRAMS CALLED:
test bus () Test the microprocessor bus,
buffered bus, and address
select logic.

test_rom ()} Test the ROM functional block
of the Demo/Trainer UUT.

test_ram () Test the RAM functional block
of the Demo/Trainer UUT.

test_pia {) Test the PARALLEL I/O
functional block of the
Demo/Trainer UUT.

test_rs232 () Test the SERIAL I/O
functional block and the
Interrupt Circuit functional
block of the Demo/Trainer UUT.

test video () Test the VIDEO circuit of the
Demo/Trainer UUT.
TRttt eIt rt I I PP I I TILI I I I IR I TIIIIIIIIIIIILILIILITTIL

1
1
t
1
1
1
1
t
1
1
1
1
1
1
i
1
1
1
!
1
1
1
1
H
!
1
1
1
1
i
1

Turn on reporting functions except
interrupt which is tested in the
SERIAL I/O test (test_rs232).

podsetup 'report power' "on"
podsetup 'report intr' "“off"
podsetup 'report address' "“on"
podsetup 'report control' "“on"
podsetup 'report data' "on"
podsetup 'report forcing' “on"

gfi clear ! CLEAR ALL GFI RECOMMENDATIONS
connect clear "“yes" ! Clear all connect information.

execute test bus ()

execute test rom(})

execute test ram()

execute test pila()

execute test rs232()

execute test_video()
end program

Figure 5-4: Go/No-Go Test for Demo/Trainer UUT

5-6

each node on the UUT must be exercised for a thorough
functional test.

However, activity on each node is not a sufficient evaluation of
test effectiveness. In addition, you need to evaluate how well
your test detects faults in the UUT. This is done by injecting
faults (such as stuck lows, stuck highs, intermittent highs, or
intermittent lows) at each node in the UUT while running your
functional test to see if the test fails. The 9100A/9105A probe
(used as a source) provides a convenient tool for this purpose.

Fault coverage is the percentage of faults that will be detected by
the functional test software. It is often measured as the ratio of
the number of nodes where injected faults can be detected by a
test to the total number of nodes in the UUT. This ratio is
usually expressed in percent. If the fault coverage is not high,
you can analyze the pattern of faults that are not detected to
determine additions to your test program to increase the fault
coverage.

EXECUTING UUT SELF-TESTS 5.4.

Self-test routines contained in UUT memory can be executed
from the 9100A/9105A by pressing the RUN UUT key at the
operator's keypad and entering the UUT's starting address of
the routine. These self-test routines can also be run from TL/1
programs by using the runuut command. Self-test routines
typically save their test results in UUT RAM. The
9100A/9105A can later read the appropriate RAM addresses to
get these results.

An I/O module can generate one hardware breakpoint (system
interrupt) upon detection of any user-defined combination of
logic-highs and logic-lows on selected I/O module lines. This
feature may be invoked at the operator's keypad (SET I/O MOD
COMPARE WORD command), or through program execution.
Once set up for a breakpoint, the J/O module continuously
monitors the specified lines while other functions (such as RUN
UUT) are performed. When the breakpoint event occurs, RUN
UUT execution halts. A breakpoint message will interrupt any

5-7

current system activity. If a program is being executed, it may
redirect the breakpoint message through a fault condition
handler, as described in Section 6 of this manual.

A complete functional test for a UUT might begin with the BUS,
RAM, and ROM tests, followed by execution of UUT self-test
routines. By using RUN UUT breakpoints to detect addresses,
data, and other UUT logic levels, the program can integrate the
UUT's self-tests with 9100A/9105A functional tests.

Some pods can also generate UUT breakpoints without using
the I/O module. For these pods, breakpoint-related softkeys
appear when the RUN UUT key is pressed. Consult your pod
manual for these pod-specific breakpoint capabilities, if any.

EXECUTING DOWNLOADED MACHINE CODE 5.5.

5-8

After part of the UUT RAM has been tested and found to be
good, machine code can be downloaded to the tested RAM and
executed. The machine code may be downloaded using a series
of WRITE commands or the WRITE BLOCK command, which
downloads an entire Motorola-format user file.

After the code is downloaded, you can execute it with the RUN
UUT command, specifying the code's starting address.
Although most testing can be done efficiently through the TL/1
test language, downloading machine code is useful when the
code for a test already exists, when the testing must be done at
machine-code speeds, or when a feature not supported by the
pod must be used as part of the test.

The pod's microprocessor bus cycles are actually done at full
UUT speed. The 9100A/9105A, however, is often slower than
the UUT. For example, when the system performs a looping
READ, each bus cycle is at full UUT speed but individual read
operations are not done one immediately after the other.

Q Section 6
Identifying a Faulty
Functional Block

After the go/no-go test determines that a UUT is faulty, the next
step is to identify the failing functional block. Doing so before
starting to troubleshoot will greatly improve troubleshooting
efficiency because troubleshooting can begin closer to the failure
and will take less time to reach the failing node. In addition,
fault detection will be more accurate because the diagnostic test
can check for special types of faults, such as bus contention,
before troubleshooting begins.

Programs that identify faulty functional blocks are called
diagnostic programs. Diagnostic programs, which are a subset
of troubleshooting procedures, build on the UUT go/no-go test,
functional tests of blocks, and stimulus programs. They are the
Iast of the four modular levels in programming the 9100A, as
shown in Figure 6-1. In this fourth programming level, fault
condition handlers and gfi hint commands are added to the UUT
go/no-go test to create a diagnostic program that traps faults and
initiates tests of functional blocks that may be responsible for the
fault, thereby isolating the block that is causing the UUT to fail.
In addition, a failing output of the faulty block is identified as a
starting point for backtracing toward the fault that causes the
block to fail. At that point, GFI troubleshooting (the GFI key
on the operator's keypad) can be used to backtrace to the bad
node or component.

6-2

Level 1

= Stimulus Programs for Nodes

«Learned Node Responses
from Known-Good UUT

»Node List and Reference
Designator List (Both Optional)

Level 2

Functional Tests of
Entire Functional Blocks

Level 3

Go/No-Go Test
for the Entire UUT

Level4

Go/No-Go Test
for the Entire UUT,
with Fault Isolation

fo the Block'Level

Figure 6-1: Diagnostic Programs (Level 4)

R

STRATEGY OF DIAGNOSTIC PROGRAMS 6.1.

The first step in developing a diagnostic strategy is to draw a
diagram showing the major functional blocks used in the go/no-
go functional test. Next, show all other functional blocks that
provide input to these major functional blocks. Figure 6-2
shows such a diagram for the Demo/Trainer UUT. The figure
shows six sets of functional blocks, one for each major
functional block tested by the go/no-go functional test. The
blocks on the left provide input to the blocks on the right, and
the blocks tested by the go/no-go functional test are on the right
side of each set.

The task of the diagnostic program is to select a failing
functional block for troubleshooting and to generate an
appropriate starting point (or points) where GFI can begin
automated troubleshooting. When a major functional block
fails, you know that one or more outputs of the block are bad.
But it doesn't necessarily mean that the block itself is bad; bad
inputs to the major functional block may be causing the block to
fail. How do you continue from there to isolate the failing block
and select an efficient starting point for GFI?

One diagnostic strategy is to test blocks that provide input to the
failing major block. Isolating the block causing a failure
involves tracing from the right-hand side toward the left, testing
each block in the path until one is found with good inputs and
bad outputs. This strategy works best when the string of blocks
leading up to a major block is short. Such is the case for most
of the sets of blocks in Figure 6-2.

A second diagnostic strategy, helpful when you have a longer
string of blocks leading up to a failing major block, is to divide
the blocks in half and begin testing a block halfway between the
first block in the string and the major block at the end. If the
middle block passes, keep dividing the failing string of blocks in
half and testing a middle block. If the middle block fails, test the
blocks to the left starting at the middle block. This second
strategy would be appropriate for the Video set of blocks in
Figure 6-2.

6-3

Bus Buffer

MICROPROCESSOR BUS

Clock and Reset

Address Decode

RAM

Bus Buffer

Clock and Reset

Microprocessor Bus

RAM

A

Dynamic RAM Timing

Ready Circuit

Address Decode

ROM

Bus Buffer

ROM

Ready Circuit

(continued on the next page)

Figure 6-2: Inputs to Functional Blocks

Address Decode

Bus Buffer

PARALLEL l/O

Clock and Reset

Ready Circuit

Address Decode

Bus Buffer

Clock and Reset

» Parallel VO

SERIAL VO

Ready Circuit

Interrupt Circuit

Address Decode

Bus Buffer

Serial /10

VIDEO

Clock and Reset

Video Control Video RAM Video Output

Ready Circuit

Figure 6-2: inputs to Functional Blocks- continued

Another strategy, used when a fault is likely to be near a failing
output pin of the failing major block, is to begin GFI backtracing
directly from the failing output pin, without checking the inputs
to the major functional block.

Diagnostic programs can speed up troubleshooting by starting
GFI closer to the actual problem. On the other hand, isolating
the failure to a very small area may require more time than is
saved in reduced troubleshooting time. There is a balance
between isolating the failure to a very small area and doing no
isolation of the failing circuit. Decisions on when to start GFI
and when to isolate the failure to a smaller area depend on your
UUT and the relative cost of additional programming effort
compared to the resulting savings in troubleshooting time.

IMPLEMENTING THE STRATEGY FOR
DIAGNOSTIC PROGRAMS 6.2.

6-6

Figure 6-3 shows a typical process to implement a diagnostic
program strategy. The diagnostic program executes a functional
test for each major functional block. If a fault condition is
generated during the test, the major functional block is possibly
faulty. To verify this suspicion, the inputs to the functional
block are checked. If the inputs are all good, then the major
functional block is indeed faulty. However, if one of the inputs
to a major functional block is not good, the fault probably lies in
the functional blocks which provide input to the major functional
block. In this case, the input functional blocks become the
suspect blocks and their inputs are checked. This process
continues until a block is found with all good inputs but a bad
output.

When this faulty functional block is identified, appropriate GFI
hints are generated to indicate the node (or nodes) where GFI
should start troubleshooting.

O Select a Major

Functional Block
(Cannot beTested
Indirectly by
Testing Another
Functional Block)

¥

A

Execute the Functional
Test for the Major
Functional Block

Fault
Condition?

The Functional
Block Is Suspect

A

Test Every Functional

Block which Provides

Inputs to the Suspect
Functional Block

4

Any Functional
Blocks Not Yet
Tested Directly
or Indirectly?

Yes Fault

Condition?

No

The Failure Is Within
the Suspect Functional
Block

A

Generate GFI
Hints or Start
GFI

y

A
C UUT Passes) (UUT Fails)

Figure 6-3: Identifying a Faulty Functional Block

DIAGNOSIS USING FAULT CONDITION
HANDLERS 6.3.

Fault condition handlers provide the means for communicating
9100A/9105A functional test failure information to the operator
for keystroke troubleshooting or to GFI for automated
troubleshooting.

What are Fault Condition Handlers? 6.3.1.

6-8

A fault condition is generated or "raised" in one of two ways:

g A built-in TL/1 function is run, and the UUT does not
respond correctly. For example, a microprocessor address
line cannot be driven to logic-high during a read or write
operation.

® A fault command is executed in a TL/1 program.

A fault condition handler is a TL/1 procedure, called by a fault
condition of the same name, that responds in some way to the
fault condition. For example, the handler might try to determine
the cause of the fault.

Each fault condition has a name. Fault conditions created by
built-in functions have defined names and parameters, listed in
TL/1 Reference Manual appendices. Fault conditions created by
your fault commands may have any name, including the same
name used by the built-in functions.

When a fault condition is raised, the system halts execution of
the current program. If your program contains a fault condition
handler with the same name as the fault condition, the program
statements inside the handler are executed. After the handler is
finished, execution of your program resumes where it left off.

If your program does not contain an appropriate fault condition
handler, execution of the program terminates and its calling
program (if any) is searched for a fault condition handler with

the specified fault condition name. This process continues until
an appropriate handler is found. If no handler is found, a fault
message will appear on the operator's display.

For more information on fault condition handlers, see Section
3.7 of the Programmer’s Manual.

Using Fault Condition Handlers 6.3.2.

The UUT go/no-go test should test only those functional blocks
that cannot be tested indirectly by other blocks. When the
go/no-go test detects a failure, the diagnostic program is used to
identify the failing block and to identify a failing node as a
starting point for troubleshooting.

To use fault condition handlers in a diagnostic program, you
need to do two programming tasks for each handler:

1. Use the fault command (with an appropriate fault
condition that you create) to generate the fault
condition if a test (or part of a test) of a functional
block fails. For example, if the diagnostic program
finds that the functional test of the video output
circuitry fails, you might choose to generate a fault
condition named video_output.

2. Create a handler for this fault condition. The handler
should check other input blocks to isolate the failing
functional block. It might also do further testing to
narrow down the zone of failure within a failing
functional block. And the handler will generate the
appropriate starting point for GFI by using the gfi
hint command.

A Diagnostic Test Example 6.3.3.

Suppose the video circuitry is failing. Testing begins with
execution of the go/no-go2 program, listed in Section 6.4 of this
manual. This program has many fault condition handlers at the

6-9

6-10

beginning, and it has six execute statements at the end that
actually execute the go/no-go test. Each of these execute
statements executes a different functional test program for a
major functional block. And each of these functional test
programs include the necessary fault condition handlers to
generate GFI hints appropriate for the fault condition
encountered (a listing for each of these programs is contained in
Section 6.5 of this manual). The GFI hints are very important to
the troubleshooting process; they are the means by which the
9100A/9105A communicates the results of its functional testing
to provide efficient starting points for GFI troubleshooting.

Suppose that the failing video circuitry does not affect any of the
six major functional blocks except rest video2. In this case,
test_bus2, test rom2, test_ram2, test_pia2, and test_rs232b all
pass, but test video? fails. The ftest video2 test is really the test
of the Video Output functional block. If this test fails, a video
fault condition is generated (suppose the video scan fault
condition is generated). Since the test video2 program has a
handler for video scan, the program statements inside this
handler are executed.

Once the hints to GFI are passed, execution of the video fault
condition handler (video scan) ends, the test program
(test video2) ends, and the diagnostic program (go_ nogoZ)
ends. A message appears on the operator's display saying that
GFI hints have been generated, and that GFI should be run.

The diagnostic program is structured so that only one failure is
isolated at a time. The problem should be isolated with GFI and
fixed when it is detected. It is appropriate to repair an isolated
fault before testing any further, since apparent multiple failures
often result from one physical problem on a board. For
example, a short between two nodes can appear as two failures.
After a fault has been repaired, the diagnostic program should be
run again to find other faults or to verify that no more faults can
be found.

DIAGNOSTIC PROGRAM FOR THE

DEMO/TRAINER UUT

program go_nogo2

The Go/No-go program is the highest level of the functional testing

and fault condition handlers.

The purpose of the Go/No-go test is to !

! determine whether the UUT is good or bad. This program executes six

! programs which test the six major functional blocks (Microprocessor !
Bus, ROM, RAM, Parallel I/0, Serial I/0, and Video). By testing the
six major functional blocks, the remaining functional blocks are

indirectly tested.

If the Go/No-go test detects a faulty UUT, further fault isolation is !
performed to isolate which circuit is causing the failure. The fault
condition handlers in the Go/No-go program and the other functional
test programs perform the fault isolation. The fault condition
handlers included in this program are handlers for those fault
conditions which may occur during any of the six major functional

! tests,

The major functional test programs include fault condition handlers
for fault conditions which are only generated within that program.
The first three programs (TEST BUS, TEST ROM, and TEST_RAM) use

are documented in the 9100/9105A TIL/1 Reference Manual.

TEST PROGRAMS CALLED:
test_bus2

test_ram2

test_pia2
test_rs232b

test_video2

1

1

1

1

1

1

1

1

1

1

1

1

!

1

1

1

1

1

1

1

1

1

1

1

1

1

i

!

! test_rom2
i

1

1

1

1

1

1

!

1

1

1

!

i

1

1

!

1

! recover
1
1
T
1
!
1
1
1

1
t
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
! 1
built-in TL/1 tests and the built-in fault condition handlers that !
1
1
1
1
1
1
1
1
1
1
!
1
1
1
1
T
1
i
1

Test the microprocessor bus,
buffered bus, and address
select logic.

Test the ROM functional block !
of the Demo/Trainer UUT.

Test the RAM functional block !
of the Demo/Trainer UUT.

Test the PARALIEL I/O
functional block of the
Demo/Trainer UUT.

block and the Interrupt
Circuit functional block of
the Demo/Trainer UUT.

Test the VIDEO circuit of the
Demo/Trainexr UUT,

The 80286 microprocessor has al
bus controller that is totally!
separate from the pod. In !
some cases, the pod can get !
out of sync with the bus f
controller. The recover !
program resynchronizes the pod!

and the bus controller. !
1

6.4.

! FUNCTIONS CALLED: !
! retry access (access, addr, control) This function is executed when!
! a pod_timeout recovered fault !
! condition occurs. This !
! function repeats the attempted!
! access that failed and !
! determines if the access can
! be sucessfully repeated.

1
1
T

Global Variables Modified:
recover times Reset to Zero f

declare
global numeric recover_ times ! Count of executing recover().
end declare

GENERAL PURPOSE FAULT CONDITION HANDLERS

1 1
1 1
! The built-in fault conditions "pod_addr_ tied", "pod ctl tied", !
! "pod_data_ incorrect" and pod data_tied are generated when the pod !
! detects a stuck or tied line at the pod socket. These fault !
! conditions are not handled because the diagnostic message for these !
! faults cannot be made better by additional testing. If one of these !
1 1
1
1

handle pod forcing active (mask)
declare string mask
declare global numeric tlo

declare string clear screen = "\1B[2J"

print on tlo ,clear screen, "POD Forcing Lines Active fault"

fault forcing lines mask mask ! Redirect fault
end handle

handle ped interrupt active (mask)
declare string mask
declare global numeric tlo
declare string clear screen = "\1B[2J"
print on tlo ,clear_screen, "PCD Interrupt Line Active fault"

! Get the last two characters of the 64 bit string mask and decode to INTR/NMI

lines = val (mid(mask, len{mask)-3, 2),16)
if (lines and $10) <> O then
execute tst_intrpt ()
else if (lines and 1} <> 0 then
fault NMI_active
end if
end handle

handle pod misc_ fault
fault bad power ! Redirect fault
end handle

6-12

handle pod_special
end handle

handle pod timeout bad pwr
declare global numeric tlo

declare string clear screen = "\1B[2J"

print on tlo ,clear screen, "POD timeout bad power fault"

fault bad _power ! Redirect fault
end handle

handle pod_timeout_enabled_line (mask)
declare string mask
declare global numeric tlo

declare string clear screen = "\1B[2J"

print on tlo ,clear_screen, "POD Timeout Enabled line fault”

fault forcing lines mask mask ! Redirect fault
end handle

handle pod_timeout no_clk
declare global numeric tlo

declare string clear screen = "\1B[2J"

print on tlo ,clear screen, "POD Timeout No Clock at POD Pin 31"

execute tst_clock() ! Test Clock and Reset
end handle

handle pod timeout_ recovered (access attempted, ctl, addr)
declare string access_attempted
declare numeric ctl = $E0000000
declare numeric addr = $E0000000
declare global numeric tlo
declare string clear screen = *\1B[2J"
declare global numeric repeated timeouts
print on tlo ,clear_screen, "pod timeout recovered: "
podsetup 'enable ~ready' "off"
podsetup ‘enable hold' "off”"
podsetup ‘report forcing' *off"
repeated timeouts = repeated timeouts + 1

! DISABLE all lines that can be enabled, retry access, then turn enable
{ lines on until the access cannot be repeated. The lines that can be
! enabled on the 80286 are Hold and Ready.

if repeated_timeouts > 10 then
fault dead kernel
else if retry access(access attempted, ctl, addr) fails then
fault dead kernel
else
podsetup ‘enable hold' "on"
if retry access(access_attempted, ctl, addr) fails then
fault hold circuit
else
podsetup 'enable ~ready' "on"
if retry access(access_attempted, ctl, addr) fails then
execute tst_decode ()
execute tst_ready ()
else
print on tlo ,clear_screen
end if
end if
end if
end handle

handle pod timeout setup
end handle

handle pod_uut_ power
fault bad_power ! Redirect fault
end handle

handle iomed dce
end handle

priprrrrbtLREbLLLLLLILLLLLLLLLLIOGLE

! Redirected Fault Handlers !
trrrrrtrrtrrrLLLLLLLLLLLLLOLOLYL

handle forcing lines (mask)
declare string mask
declare global numeric recover times

! attempt to recover synchronization between pod and bus controller before
! testing the decode, ready or clock circuits. If the recover procedure

! has been executed at least twice, then go ahead and test decode, ready or
! the clock circuit.

if recover times < 2 then
execute recover ()
else
lines = val (mid(mask, len (mask)-7, 8),16)
if (lines and 1) <> 0 then
execute tst_decode ()
execute tst_ready()
else if (lines and $10) <> 0 then
execute tst_ clock () ! Test Clock and Reset
end if

! The status lines HOLD, PEREQ, BUSY and ERROR are not used in the
! Demo/Trainer UUT. Display a message if one of these lines is active
! and wailt for the condition to be fixed.

loop while (lines and $E2) <> O
print on tlo ,clear screen
if {(lines and 2) <> 0 then
print on tlo ,"HOLD is active; Press RESET to continue"
else if (lines and $20} <> 0 then
print on tlo ,"PEREQ is active; Press RESET to continue”
else if (lines and $40) <> 0 then
print on tlo ,"~BUSY is active; Press RESET to continue"
else if (lines and $80) <> 0 then
print on tlo ,"~ERRCR is active; Press RESET to continue"
end if
wait time 2000
end loop
end if
end handle

6-14

handle bad power

declare global numeric t2o

declare string clear screen = "\1B[2J"
declare global string messg

print on t2o ,messg+"FAULT DETECTED"
loop until (readstatus () and $3D00) = 0

fall ($14)

1f (readstatus{} and $3C00) = $3C00 then
print on tlo ,clear screen, "POD UUT Power"
print on tlo ,"POWER UP and press RESET on Trainer UUT"

wait time 2000

print on tlo ,clear_ screen, "CONTINUING..."

else
if (readstatus()
if (readstatus()
if (readstatus()
i1f (readstatus()
if (readstatus()
end if
end loop
untested ($14)
end handle

and $100) <> 0 then fault ‘CAP failure at POD Pin 52°
and $400) <> 0 then fault 'POWER failure at POD Pin 30
and $800) <> 0 then fault 'POWER failure at POD Pin 62°
and $1000) <> 0 then fault 'GROUND failure at POD Pin 35°
and $2000) <> 0 then fault 'GROUND failure at POD Pin 9°'

function retry access (ACCESS, ADDR, CTL)

! Retry last access performed using parameters from fault handlers.

handle pod_timeout bad pwr

fault
end handle

handle pod_timeout_enabled line

fault
end handle

handle pod_timecut no_clk

fault
end handle

handle pod timeout recovered

fault
end handle

handle pod_timeout setup

fault
end handle

declare string ACCESS
declare numeric CTL
declare numeric ADDR

if ADDR <> $E0000000 then

address = ADDR

else if CTL <> $E0000000 then

address = CTL
else

address = 0
end if

1f ACCESS = "READ" then
if read addr address fails then fault

else if ACCESS = "WRITE" then
if write addr address, data $A5C3 falls then fault

end if

end function

frprprrrrrLLILLLLILILOEERLELIOLOLILOLIOLILILILIOLTY

! SETUP AND SYSTEM INITIALIZATION !
SRR R R R R R R R R R R R R R R R R RS

recover_times = 0
execute recover ()

Recover synchronization between PCD
and the 80288 bus controller.

podsetup ‘report power® "on"
podsetup ‘report intr' "off"
podsetup 'report address' “on"
podsetup 'report control' “on"
podsetup 'report data' "on"
podsetup 'report forcing' *on*

gfi clear

connect

execute
execute
execute
execute
execute
execute

clear "yes"

test_bus2 ()
test rom2 ()
test_ram2 ()
test piaz ()
test rs232b ()
test video2 ()

1

Turn on reporting functions except
interrupts which is tested in the
SERIAL I/0 test (test rs232b).

CLEAR ALL GFI RECOMENDATIONS

! Clear all connect information.

end program

6-16

FUNCTIONAL BLOCK TESTS FOR THE
DEMO/TRAINER UUT DIAGNOSTIC PROGRAM 6.5.

This section contains the following functional test programs,
which are necessary to support the diagnostic program for the

Demo/Trainer UUT:
test_bus2 Tests the Microprocessor Bus functional
block.
test_pia2 Tests the Parallel 1/O function block.
test_ ram2 Test the RAM functional block.
test rom2 Tests the ROM function block.

test_rs232b Tests the Serial I/O function block.

test_video2 Tests the video circuitry (the Video
Control, Video RAM, and Video Output
functional blocks).

These programs are much like the programs by the same name
found in Section 4 and used in Section 5 of this manual.
However, these programs also contain the necessary fault
condition handlers and gfi hint commands to tell GFI where to
start backtracing if the functional block fails.

6-17

program test_bus2

Trrpprtrrrttrtr et IIILLELIELLLILLIIOLIILIIOELLIOLIOEILITIOIIREITEILI I TILITLI LTI IR REIEIITIITITIITTILEILILLIILIILIILTY

{ This program tests the unbuffered microprocessor bus, performs an
access at each decoded address of the buffered bus, and checks the

! data bus for bus contention (where a component outputs onto the data

! bus at incorrect times). If bus contention is detected then the

! program TST CONTEN is executed. TST CONTEN checks for incorrect !
enable line conditions on all the components on the buffered data bus.!

1 1
1 1
1 1
t 1
1 1
1 1
1 1
1 1
t i
! TEST PROGRAMS CALLED: !
1 tst_conten (addr, data bits) Test for bus contention on

! the data bus by checking the

{ enable lines of all devices

! on the data bus. !
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Local Constants:

ZERO_AT_ROMO Address of zero data in ROMO
ZERO AT ROML Address of zero data in ROML
IO BYTE I/0 BYTE address specifier

MEM WORD MEMORY WORD address specifier !

Local Variables Modified:
X value returned from a read

! Main Declarations 1
Trrrrrnrr L rerernr R IR IIILITIIIIINTILIIIIITIIO IR R LILILITEIIIIIILITLILILIILIGLYL

declare numeric ZERO AT ROMO = $EOO2A ! Location in ROMO where 0 exists
declare numeric ZERO AT ROM1 = $F0022 ! Location in ROMl where 0 exists

! Setup Statements

podsetup 'enable ~ready' "on"

podsetup ‘report forcing*® "on"

IO BYTE = getspace space "1/o", size “"byte"

MEM WORD = getspace space "memory", size "word”

! Test the Unbuffered Microprocessor Bus.
testbus addr O
! Test the Extended Microprocessor Bus and Address Decoding.

setspace (MEM WORD)
read addr 0

read addr $10000
write addr $20000, data 0
read addr $30000
read addr $ECC00Q
read addr $F0000
setspace (IO BYTE)
read addr 0

read addr $2000
read addr $4000

RAM BANK 0

RAM BANK 1

VIDEC RAM (write only)
INTERRUPT POLL

ROM BANK O

RCM BANK 1

VIDEO SELECT
RS232 SELECT
PIA SELECT

6-18

setspace (MEM WORD}
X

! Test for Bus Contention driving lines low by accessing unused address space

read addr $50000 ! SPARE-2 ADDRESS SPACE
if x <> $FFFF then
execute tst_conten($50000, cpl(x) and SFFFF)
return
end if

Test for Bus Contention driving lines high by reading and writing RAM
If failure then check for bad RAM by reading zeros from 2 other devices.
write addr 0, data 0

X = read addr O

! WRITE and READ RAM addr 0O
if x <> 0 then

! If fails then check for bad RAM
I by reading 0's at ROMO and ROM1
if (read addr ZERO AT ROMO) <> O then

if (read addr ZERO_AT ROM1) <> O then

execute tst_conten{ 0, x)
return

end if
end if
end if

end program

program test pla2

FUNCTIONAL TEST of the PARALLEL I/O functional block.

! This program tests the PARALLEL I/0 functional block of the

! Demo/Trainer. The two LEDs and the four pushbutton switches are

! tested. The test operator is prompted to visually inspect the LEDs
as the LEDs count a series of numbers.

1 1
1 1
1 1
1 1
1 1
1 1
$ i
t TEST PROGRAMS CALLED: f
! abort_test (ref-pin) If gfi has an accusation, !
! display the accusation; !
! otherwise create a gfi hint
! for the ref-pin and terminate !
! the test program (GFI begins
! troubleshooting) . !
1 1
! TEST FUNCTIONS CALLED: !
t keys (key number) Test Demo/Trainer pushbutton !
! - key key number. Prompt test !
! operator to push the key.
1

1

1

!

1

leds (led_addr, led name} Test Demo/Trainer LED led name!

which is driven by the PIA and!

has the address led addr. i

SRR R R R R R R R R AR R R RN A RR RS R AR DR R RE RN

IER RS R R R R R R R R R R N R R R R A DR R RS

! Main Declarations !

IR R R R R R R R R R R R R R A RO R R R R R R R R AR R R RN R R

declare global numeric tlb ! Terml buffered output & input
declare global numeric tli ! Terml unbuffered input

trrrrrrrrrrrrILLLLILLIOLIOEILIILILIRILRITI LI I I TIIITIITITISPRISRETIITITITITIIIIITITITITI I I T T eI rrig

! FAULT CONDITION HANDLERS: !
! These fault conditions are generated by the this program. These !
! handlers perform isolation of the faulty circuit. The handlers !
! which isolate the LED problems perform a GFI test on the LED. !
! If all signals are good and the test operator has failed the LED,!
! then the LED is accused as a bad component. !
0000 0 0 0 0 O A A A 0 O 0 O O O O O O A

handle 'PIA LED A failed'
declare global string rev
declare string newline = "\nl"

if gfi test "U32-1" fails then
abort_test (“U32-1")
else
if gfi test "U33-1" fails then
abort_test ("U33-1")
else if gfi test "U33-13" fails then
abort_test ("U33-13")
else if gfi test "U33-10" fails then
abort_test ("U33-10"
else if gfi test "U33-8" fails then
abort_test ("U33-8")
else if gfi test "U33-7" fails then
abort_test ("U33-7")
else if gfi test "U33-2" fails then
abort_test ("U33-2")

6-20

else if gfi test "U33-11" fails then
abort_test ("U33-11%)
else if gfi test "U33-6" fails then
abort test (“U33-6")
else
print rev, newline,"LED A IS BAD", newline, "REPLACE LED A"
end if
end if
end handle

handle 'PIA LED B failed®
declare global string rev
declare string newline = *\nl"

if gfi test "U46-1" fails then
abort_test ("U46-1")
else
if gfi test "U47-1" fails then
abort_test ("U47-1")
else if gfi test "U47-13" fails then
abort_test ("U47-13")
else if gfi test "U47-10" fails then
abort_test ("U47-10"})
else if gfi test "U47-8" fails then
abort_test ("U47-8")
else if gfi test "U47-7" fails then
abort_test ("U47-7")
else if gfi test "U47-2" fails then
abort_test ("U47-2")
else if gfi test "U47-11%" fails then
abort_test ("U47-11%)
else if gfi test "U47-6" fails then
abort_test ("U47~6")
else
print rev, newline, "LED B IS BAD", newline, "REPIACE LED B"
end if
end if
end handle

handle ‘PIA KEY 1 failed®
abort_test ("U31-14")
end handle

handle 'PIA KEY 2 failed®
abort_test ("U31-15"})
end handle

handle ‘PIA KEY 3 failed'
abort test ("U31-16")
end handle

handle 'PIA KEY 4 failed®
abort_test ("U31-17")
end handle

6-21

function keys (keynum)

declare numeric keynum ! Number of key to test.
declare string norm = "\1B{Om" ! Normal video escape string
declare string rev = "\1B[0;7m" ! Reverse video escape string

declare string entry
declare string fail = »»
declare global numeric tlb
declare global numeric tli

mask = setbit (keynum - 1)

loop until fail = chr($D) ! loop until YES key
print on tlb ,"\nlPress ", rev,* UUT KEY ", keynum,* ",norm," pushbutton"
print on tlb ,"Press any 9100 key if test is stuck"
loop until (poll channel tl1i, event "input”) =1
if ((read addr $4004) and mask) = O then return

end loop

loop until (poll channel tli, event "input®) =0 ! Flush input buffer
input on tli ,entry

end loop

print on tlb ,"\nlPress “,rev," YES ", ,norm," to fail KEY ", keynum, " test,"
print on tlb ,"Press "“+rev+" NO "+norm+" to continue key test,”
input on tli ,fail

end loop

print on tlb ,"\nl\ni"

fault ! Fail Key test (set termination
end function ! status of function to fail.

IR RERERRR SRR SRS SRR ESRRR SRR RRNSSSRRRRR AR RRRE RS RSN RN SRR R RSN
function leds(led addr, led name)

declare numeric led addr

declare string led_name

declare string key

declare string norm = "\1B{Om"

declare string bold = "\1B{1lm"

declare string rev = "\1B{7m"

declare string clear screen = "\1B[2J"
declare string no_auto_linefeed = "\1B[20h"

declare global numeric tli
declare numeric array [0:10] numbers

numbers [0] = $CO
numbers [1] = $F9
numbers [2] = $A4
numbers [3] = $BO
numbers [4] = $99%
NO = chr{$7F)

numbers [5] = $92
numbers [6] = $82
numbers [7] SF8
numbers [8] = $80
numbers [9] = $98
YES = chr($D)

I

P

print norm, clear_screen, “Watch LED %, led name, " count"

print "Press ", rev, " ENTER ", norm, " key to start LED counting."
input key

print clear screen

for i =0 to 9
write addr led_addr, data numbers {[i]
wait time 500

next

6-22

. write addr led addr, data $7F

print clear_screen, "\1B[201"
print *\1B[1;1fDid LED *, led name, " display ALL segments off, then"
print "\1B[2;1fdigits O to 9, then only the Decimal Point 2"
print "\1B[3;fpress: "+rev+" YES "+norm+" or "+rev+" NO "+norm
loop until key = YES or key = NO
input on tli ,key
if key = NO then fault
end loop
write addr led addr, data $FF \ print no_auto linefeed,clear screen

end function

tlb = open device "/terml", as "update", mode "buffered"
tli = open device "/terml", as "input", mode "unbuffered"
execute pia init ()

if leds($4000, "A") fails then fault 'PIA LED A failed' \ return
if leds (%4002, "B") fails then fault *PIA LED B failed' \ return

if keys(l) fails then fault *PIA KEY 1 failed' \ return
if keys(2) fails then fault °'PIA KEY 2 failed' \ return
if keys(3) fails then fault 'PIA KEY 3 failed' \ return
if keys(4) fails then fault 'PIA KEY 4 failed' \ return

end program

6-23

program test ram2

trrrrrrrrrrLL LTI II I TR T LIRRILIELIILIITIPILILITITTIITIRI LI RI ISR TITTITTITIITITI LI RIS PITITEILITIEITI I I TILEILEIELILILILIIOLGL

! FUNCTIONAL TEST of the RAM functional block.

This program tests the RAM functional block of the Demo/Trainer. The !
TL/1 testramfast command is used to test the RAMs. If the RAMs are
found to be faulty, then one of twelve built-in fault conditions is
generated.

1 1
1 1
1 i
1 1
1 1
1 1
! !
! TEST PROGRAMS CALLED: !
! abort_test (ref-pin) If gfi has an accusation, !
1 display the accusation; i
! otherwise create a gfi hint

1 for the ref-pin and terminate !
! the test program (GFI begins

! troubleshooting) . !
1

! FAULT CONDITION HANDLERS: !
! Built-in testramfast fault condition handlers !
1

handle ram addr fault (data mask)
declare numeric data mask
declare string clear screen = “\1B[2J"
print clear screen
print "\nlRAM addr line fault detected, CONTINUING"
fault ram_component data bits data_mask
end handle

handle ram addr addr tied (data mask)
declare numeric data mask
declare string clear screen = *\1B[2J"
print clear screen
print "\nlRAM addr lines tied detected, CONTINUING"
fault ram_ component data_bits data_mask
end handle

handle ram addr data tied (data_expected, data}

declare numeric data_expected

declare numeric data

declare string clear_screen = "\1B[2J"

print clear screen

print "\nlRAM addr-data tied detected, CONTINUING"

fault ram component data bits (data xor data_expected)
end handle

handle ram addr data tied unconfirmed (data_expected, data)
declare numeric data_expected
declare numeric data
declare string clear screen = "\1B[2J"
print clear screen
print "\nlRAM addr-data tied detected, CONTINUING"
fault ram component data_bits (data xor data_expected)
end handle

6-24

handle ram data data tied (data_expected, data)

declare numeric data_expected

declare numeric data

declare string clear_screen = "\1B[2J"

print clear_ screen

print "\nlRAM data lines tied detected, = CONTINUING"

fault ram component data_bits (data xor data_expected)
end handle

handle ram data fault (data)
declare numeric data
declare string clear screen = "\1B[2J"
print clear screen
print "\nlRAM data line fault detected, CONTINUING"
fault ram component data_bits data
end handle

handle ram data_incorrect (data_expected, data)

declare numeric data_expected

declare numeric data

declare string clear screen = "\1B[2J"

print clear screen

print "\nlBAD RAM data detected, CONTINUING"

fault ram component data bits (data xor data_expected)
end handle

handle ram data high tied (data expected data)

declare numeric data _expected

declare numeric data

declare string clear screen = "\1B[2J"

print clear screen

print "\nlRAM data tied high detected, CONTINUING"

fault ram component data bits (data xor data_expected)
end handle

handle ram data_ low _tied (data_expected, data)

declare numeric data expected

declare numeric data

declare string clear screen = "\1B[2J"

print clear screen

print "\nlRAM data tied low detected, CONTINUING"

fault ram component data bits (data xor data_expected)
end handle

handle ram cell cell tied (data_expected, data)

declare numeric data_ expected

declare numeric data

declare string clear_screen = "\1B[2J"

print clear screen

print "\nlRAM cells tied detected, CONTINUING"

fault ram component data_bits (data xor data_expected)
end handle

handle ram cell low_tied (data_expected, data)

declare numeric data_expected

declare numeric data

declare string clear screen = "\1B[2J"

print clear screen

print *"\nlRAM cell tied low detected, CONTINUING"

fault ram component data bits (data xor data_expected)
end handle

6-25

Redirected fault handler

1 1
1 1
! The RAM block can fail if a problem exists with the ready circuit. !
! So test the ready circuit, then if the ready circuit is good, use !
! the data bits parameter passed from the testramfast built-in fault !
! handlers to test the failing RAM IC. If the RAM IC is good then !
t test the data bus at the bus buffers. (Testing the data bus buffer !
! will detect any problem in the data bus}. !
1

handle ram component (data bits)
declare numeric data bits
declare string array [0:$15] ram ic

ram ic[0] = "U55" \ ram_ic[l] = "US54" ! RAMs US55, US4
ram ic[2] \ ram_ic(3] ! RAMs US53, U52
ram ic(4] \ ram ic[5] ! RAMs U51, U50
ram ic[6] = "U49" \ ram ic[7] ! RAMs U49, U48
ram ic[B] = "U41" \ ram ic[9] = ! RAMs U4l, U40
ram ic[10] = "U39* \ ram ic[1ll]} = "U38" ! RAMs U39, U38
ram ic[12] = "U37" \ ram ic[13] = "U36" ! RAMs U37, U36
ram ic(14] = "U35" \ ram ic[15] = "U34" ! RAMs U35, U34

! If ready circuit is untested, then check Ready circuit

if(gfi status "Ul-4") = "untested" then
if gfi test "Ul-4" fails then abort_test {"Ul-4")
end if

! Check highest order ram that is failing, using ram ic array to get refname.

if data_bits <> 0 then
bad ram ref = ram ic[msb(data bits)] + "-1"
if gfi test bad ram ref fails then abort_test (bad ram ref)
end if
! Check Data Bus buffers.
if gfi test "U3-2" fails then abort_test ("U3-2")

if gfi test "U23-2" fails then abort test ("U23-2")
end handle

! Setup

podsetup ‘enable ~ready' "on"

podsetup 'report forcing' "on"

setspace space (getspace space "memory", size "word")
! Main part of test

testramfast addr 0, upto $1FFFE, delay 250, seed 1

end program

program test rom2

FUNCTIONAL TEST of the ROM functional block.

This program tests the ROM functional block of the Demo/Trainer.

The

TL/1 testromfull command is used to test the ROMs. If the ROMs are

found to be faulty, then one of seven built-in fault conditions is

generated.

abort_test (ref-pin)

1

!

1

1

1

1

1

I TEST PROGRAMS CALLED:
1

1

1

1

[

! troubleshooting).
1

If gfi has an accusation,
display the accusation;
otherwise create a gfi hint
for the ref-pin and terminate
the test program (GFI begins

! FAULT CONDITION HANDLERS:
! Built-in testromfull fault condition handlers

handle rom sig incorrect (addr)
declare numeric addr
declare string clear screen = "\1B[2J"
print clear screen
print "\nlBAD signature detected, CONTINUING®
fault rom_component addr bits addr
end handle

handle rom addr fault (addr)
declare numeric addr
declare string clear screen = "\1B[2J"
print clear screen
print "\nlRom address line fault detected, CONTINUING*
fault rom component addr bits addr
end handle

handle rom addr addr tied (addr)
declare numeric addr
declare string clear screen = “\1B[2J"
print clear screen
print "\nlRom address line tied detected, CONTINUING"
fault rom component addr bits addr
end handle

handle rom data high tied_all (addr)
declare numeric addr
declare string clear_screen = “\1B[2J"
print clear_ screen
print "\nlRom data all high detected, CONTINUING"
fault rom component addr bits addr
end handle

handle rom data low tied _all (addr)
declare numeric addr
declare string clear screen = "\1B[2J%
print clear screen
print "\nlRom data all low detected, CONTINUING"
fault rom_component addr bits addr
end handle

6-27

handle rom data_ fault (addr)
declare numeric addr
declare string clear screen = “\1B[2J"
print clear screen
print "\nlRom data line fault detected, CONTINUING"
fault rom_ component addr_bits addr
end handle

handle rom data data tied (addr)
declare numeric addr
declare string clear screen = "\1B[2J"
print clear screen
print "\nlRom data lines tied detected, CONTINUING"
fault rom component addr bits addr
end handle

! Redirected fault condition handler:

! Use falling address bits parameter passed from testromfull fault

! condition handlers to gfi test the ROM bank that failed.

handle rom compenent (addr_bits)
declare numeric addr bits

if addr_bits >= $F0000 then
if gfi test "U27-1" fails then abort test ("U27-11") \
if gfi test "U28-1" fails then abort test ("U28-11"} \
else
if gfi test "U29-1" fails then abort test (“U29-11%} \
if gfi test "U30-1" fails then abort_test (*U30-11") \
end if
end handle

return
return

return
return

1 Setup.
podsetup ‘'enable ~ready® "on"
podsetup 'report forcing*® "on"
setspace space (getspace space "memory", size "word")

! Main part of Test.

testromfull addr $F0000, upto S$FFFFE, addrstep 2, sig $156F
testromfull addr $E0000, upto SEFFFE, addrstep 2, sig $B61E

end program

6-28

program test rs232b

FUNCTIONAL TEST of the SERTAL I/O functional block.

1
1
This program tests the SERIAL I/0 functional block of the Demo/ !
Trainer. The two RS-232 ports are tested by setting three Dip !
Switches to loop back the two ports (SW4-4, SW4-5 and SW6-4 loop back !
ports A and B). The SERIAL I/0 functional block also outputs two !
interrupt request signals. This program also checks the interrupt !
circuitry. !
1

TEST PROGRAMS CALLED: !
abort_test (ref-pin) Call fail for reference name !
then if gfi has an accusation !

display the accusation else !

create a gfi hint for the !

1

program (GFI begins trouble-
shoot ing).

1

1

1

1

1

1

1

1

1

1

1

1

1

1

!

1 1
! 1
! !
! frc_int () POD PROGRAM forces repetitive !
! interrupt acknowledge cycles

! and returns first interrupt

! vector found on data bus. !
1 1
! rd_cscd O POD PROGRAM returns the 24 bit!
1 interrupt cascade address that!
! was found on the address bus

! during the last interrupt

! acknowledge cycle.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

!

1
1
1
rd rearm () POD PROGRAM returns the most !
recent interrupt vector and !

rearms the pod to respond to !

the next interrupt. !
1

1

1

!

1

1

FUNCTIONS CALLED:
sync_buffer (address, data) Synchronize FIFO buffer in

DUART to be last byte received
Receive buffer 1s located at
the value of address. The 1
data in data is written to the!
DUART and then read until it !
appears in the FIFO or count !

expires. t

[ER RN N E R R N
IR e e R A R R B
! Main Declarations !
IR R R R S S R R AR AR R R R R R R R R S R R AR AR RN AR AR R R SRR R R R SRR AR AN
declare

string g ! used to get input from keyboard

string rev = "\1B[0;7m" ! Reverse Video escape sequence

string norm = "\1B[Om" ! Normal Video escape sequence

end declare

! FAULT HANDLERS: !
! These fault conditions are generated by the this program. These !
! handlers verify the fallure using the Probe or I/O Module and

! then pass control to GFI. !
prrtrprrtrrrrr It I I IIL LI I SISLEITLILILILITIIILIIRITIIIITILIISLRIRIITIIIIPISEITIITTITITITI IRt Iy

handle *RS232 Port A failed®
if gfi test "Ull-35" fails then abort test {("U11-35")
end handle

handle 'RS232 Port B failed!'
if gfi test "Ull-5" fails then abort_test (“Ull-5")
if gfi test "Ull-11" fails then abort_test ("Ull-11%)
end handle

handle 'Interrupt failed®
if gfi test "Ul10-2" fails then abort_ test (*Ul0-2"}
if gfi test "U20-9" fails then abort_test (*U20-9")
end handle

function sync buffer(address, data }
declare numeric address
declare numeric data

! Synchronize FIFO buffer in DUART. Write and then read until correct data
! is returned or count has expired.

write addr address, data data ! Transmit Data 31 on port A
walt time $200
cnt =0 \x=0
loop until x = data or cnt > 3
x = read addr address
ent = cnt + 1
end loop
end function

! Set interrupt acknowledge cycles on and use the 80286
! pod specific programs rd_rearm(), frc_int()} & rd_csecd{).

podsetup ‘report intr' "off"

podsetup 'intr ack on’ ! Enable Interrupt Ack. cycles
option = getspace space "i/o", size "byte"

setspace (option)

execute check loop ()

execute rd_rearm() ! Clear interrupts

6-30

Q ! Main part of Test. Verify DUART port A.

sync buffer($2006, $6l) ! Synchronize FIFO in DUART for port A
write addr $2006, data $55 ! Transmit Data 31 on port A

wait time $200
if ((read addr $2002) and $F) <> $D then fault 'RS232 Port A failed' \ return

if (read addr $2006) <> $55 then fault 'RS232 Port A failed' \ return
write addr $2006, data $55 ! Transmit Data 31 on port A

wait time $200
if ({read addr $2002) and $F) <> $D then fault 'RS232 Port A failed' \ return
if (read addr $2006) <> $55 then fault 'RS232 Port A failed* \ return

! Verify DUART port B and interrupts.

sync buffer{ $2016, $61) ! Synchronize FIFO in DUART for port B
write addr $201E, data SFF ! set output port low
write addr $2016, data $31 ! Transmit Data 31 on port B

if frc int{) <> $22 then fault 'Interrupt failed® \ return

if rd_csed() <> $2016 then fault 'Interrupt failed' \ return

if (readstatus{) and 8) <> 8 then fault 'Interrupt failed' \ return

if (read addr $2016) <> $31 then fault 'RS232 Port B failed' \ return

if frc int() <> $27 then fault ‘Interrupt failed' \ return

write addr $201C, data SFF

1f ((read addr $201A) and 2} <> 0 then fault 'RS$S232 Port B failed® \ return

end program

6-31

program test video2

! FUNCTIONAL TEST of the VIDEO functional block !

This program tests the VIDEO functional block of the Demo/Trainer. !
! The video test uses the gfi test command to run stimulus programs and !
! to check the outputs of the Video circuit against the stimulus program!
! response files. The gfi test command returns a passes status if all !
! the measured results from running the stimulus programs match the

response files. Otherwise the gfi test command returns a fails

status.

1

1

1

1

1

1

1 1
1 1
1 1
1 1
! TEST PROGRAMS CALLED: !
! abort_test (ref-pin) If gfi has an accusation, !
! display the accusation; !
! otherwise create a gfi hint !
! for the ref-pin and terminate !
! the test program (GFI begins

! troubleshooting). !
1 1
! tst_videtl () Test program to test the video!
! control functional block t
! outputs. Returns passes !
! termination status if f
! functional block is good else !
t return fails termination

! status. !
1 1
1 1
1

1

1

1

1

tst_vidram () Test program to test the video
RAM functional block cutputs.
Returns passes termination
status if functional block is
good else return fails
termination status.

! FAULT CONDITION HANDLERS: 1
! These fault conditions are generated by the this program. These !
! handlers isolate the failure in the video circuit to the Video !
! control section, Video RAM section or the Video output section. !
! Once the failing Video subsection has been identified, then GFI !
! is started. !

1

handle video output
! IF Video Control section is bad, tst_videctl will start GFI.
if tst_videtl() fails then return
! IF Video RAM section is bad, tst_vidram will start GFI.
if tst_vidram() fails then return
! Video Control and Video RAM have passed. Video Out is bad. Start GFI.

abort_test ("J3-9")
end handle

6-32

handle video_scan

gfi hint "J3-8"

gfi hint "J3-9»

fault ‘'gfl hints generated' ' please run gfi®
end handle

trrrrrrrrrrrrr R EERLILILIOLII LTI R ILILILIIIO LI I I IITILI I T I RSRLI LI I I TIGRITILI I I I IELIELIITIITI I ILIIIOLGL

! FUNCTIONAL TEST of the VIDEO Functional Block. !
Trrtrrrrrrren LIt I TP RRLILILILII R RILITILIT I ITIRILILILI IR I RRLIIIIIIISEIRILIIIIITLTIY

! Setup and initialization.

connect clear "yes*
podsetup 'enable ~ready' "on"
print "\nl\nl"

! Main part of Test.

if gfi test "J3-8" fails then fault video_scan \ return
if gfi test "J3-9" fails then fault video_scan \ return

if gfi test "U78-11" fails then fault video_scan \ return
if gfi test "U78-28" fails then fault video_output \ return
if gfi test "U78-29" fails then fault video_output \ return
if gfi test "J3-7" fails then fault video output \ return

end program

6-33

(This page is intentionally blank.)

6-34

Section 7
Troubleshooting

After a failing functional block is isolated with a diagnostic
program, Unguided Fault Isolation (UFI) or Guided Fault
Isolation (GFI) troubleshooting can be used to backtrace to the
bad node or component.

UNGUIDED FAULT ISOLATION (UFI) 7.1.

UFI troubleshooting is valuable when you need experience with
stimulus programs before expanding to the GFI environment. It
lets you use stimulus programs to determine whether a node is
good or bad, without having to enter a node list for the UUT.

UFI is used in a manner similar to GFl: the GFI key on the
operator's keypad begins the process. Unlike GFI, UFI is
designed to test only output pins. When testing with the probe,
the output source for a node can be characterized and the other
points on the node (such as inputs) can be probed looking for
the same response. However, when testing with the I/O
module, only the output pins can be measured because the other
pins on the node are connected to I/O module pins different from
the pins UFI thinks it should be measuring.

When an operator needs to troubleshoot boards before the GFI

database is developed, he can use stimulus programs in UFI
mode while waiting for GFI to be completed. However, he

7-1

needs to understand the UUT since UFI does not recommend
the next location to test.

GUIDED FAULT ISOLATION (GFI) 7.2.

The 9100A/9105A’s built-in GFI algorithm guides an operator
in diagnosing a faulty circuit to the component or node level
without assistance from a skilled technician.

Once a functional test or larger diagnostic program has generated
a list of suspect nodes, GFI troubleshooting can begin. The
GFI key on the operator's keypad starts the process. GFI
begins with a bad output and tests the suspect node. Nodes are
exercised with a stimulus program and determined to be good or
bad by comparing their measured response to responses learned
from a known-good UUT.

When a node is bad, GFI tests the inputs which affect that node
and recommends which node to test next. If the output of a
component is bad and all inputs to the component are good, GFI
accuses the component of being bad or the output node of being
loaded. The node may be shorted to another node or a defective
component may be loading the node. If an input is bad and the
output source for that node is good, GFI accuses the node of
having an open circuit.

The GFI capability is general enough to troubleshoot most
digital circuits. To apply GFI to a particular UUT, however,
you will need to supply UUT-specific information to the GFI
database for that UUT. The files used for this database are
summarized in Section 7.5 of this manual and described fully in
the Guided Fault Isolation section of the Programmer's Manual.

STIMULUS PROGRAMS 7.3.

7-2

Stimulus programs are TL/1 programs used by GFI or UFI to
exercise UUT nodes in such a way that responses at the nodes
can be analyzed and compared to responses of nodes on a

C

known-good UUT. A typical stimulus program consists of up

to 6 main parts:

1. (As required) - Initialize the UUT and define the
measurement device.

2. (As required) - Setup of the pod, probe, or I/O
module.

3. Use the arm command to start the measurement of
the node response.

4. Use any commands necessary to apply the stimulus.

5. Use the readout command to end the measurement of
the node response.

6. (Asrequired) - Restore any conditions altered by the

setup step above (step 2).

Stimulus programs should satisfy three very important criteria:

¢ The program must be independent, initializing the UUT as
required. This is because GFI can begin backtracing at
any node, and the state of the UUT, prior to running the
stimulus, is unknown. The program must also restore
any adjustments it makes to the calibration offset.

® During stimulus execution, only one pin should drive a
node: that is, during the period between the arm and
readout commands, one and only one pin should be a node
signal source (data should flow in only one direction).

® There should be at least one stimulus program for each
output to the node.

See the "Stimulus Programs” section in the Programmer's
Manual for more detailed information on stimulus programs.

7-3

STIMULUS PROGRAM RESPONSES 7.4.

Both UFI and GFI select the appropriate stimulus programs to
exercise a node to be measured and compare the actual response
at the node with a stored response from a known-good UUT.
These responses may be any of the following (or combinations
of them):

¢ CRC Signature.

® Transition Count.

hd Frequency.

® Asynchronous Level History.

¢ Synchronous Level History.

The information below summarizes each of these response

measurements. See the Guided Fault Isolation section of the
Programmer’s Manual for more complete information.

Learning Responses From a
Known-Good UUT 7.4.1.

7-4

The 9100A editor's LEARN function is used to learn a set of
responses measured on known-good UUT nodes. Once a
stimulus program is written to exercise a node, a response file
can be generated. To do this, the 9100A is commanded to learn
responses at a node or set of nodes and the system prompts the
operator to connect the measurement device (probe or I/0
module) to the component providing the node signal source.
The 9100A makes a series of measurements and determines the
characteristics. It learns the response with three measurements
(early, normal, and late clock or sync events) to make sure the
response is stable and that the measurement can be used as a
reliable characterization of that node.

Node characterization may use one or more of five
characteristics to determine whether the node is good or bad.
You can select which of the five should be saved in a response

O

file. GFI and UFI use these saved characteristics to determine
whether a node is good or bad.

CRC Signatures 7.4.2.

It is very important to ensure that a CRC signature used in node
characterization will properly identify all good UUTs, at all
measurement temperatures and power supply levels. A marginal
signature occurs when the measured node changes state near the
clock transition or when the Start, Stop, or Clock signals are not
stable. A marginal signature may appear stable on one UUT and
thereby lead to a false sense of security. Other UUTs may yield
different signatures because of temperature or power supply
variations.

When the 9100A editor learns a signature, it attempts to identify
marginal CRCs by collecting signatures with advanced clock
edges, normal clock edges, and delayed clock edges. If a
signature has the same value for advanced and normal clock
edges, it will be suffixed by a "-" sign. If a signature has the
same value for normal and delayed clock edges, it will be
suffixed by a "+" sign. If all three values agree, the signature is
displayed with no qualification.

A variable signature results if the Start, Stop, or Enable signals
are irregular, compared to the Clock signal. In addition, since
the Start, Stop, and Clock signals are edge-triggered, unstable
signatures will result if the Start or Stop signal edge occurs at the
same time as the Clock signal edge.

Figure 7-1 shows how to test whether the start/stop interval is
stable. Connect the Clock to the clock signal you want to use.
Connect the probe or I/O module to a logic-high level and
connect the Start and Stop lines to the locations where you
would connect these lines when making the signature
measurement. If the start/stop interval is stable, a constant
number of clocks will occur between the start and stop
condition, and the signature will be constant. If the CRC
signature is not constant, the start/stop interval is unstable.

7-5

Start
Signal

Stop
Signal

Start/Stop
Interval

Clock
(On Falling Edge)

Data
(Logic High)

s

Constant number of clock pulses I

Figure 7-1: Testing for Start and Stop Stability

O Unstable signatures may also be caused by Start or Stop signal
edges which occur at the same time as the Clock signal edge or
by Start or Stop signals which are asynchronous to the selected
clock signal. Use an oscilloscope to determine whether a line is
irregular or whether a timing problem exists between the Clock
signal and the Start or Stop signal.

If unstable signatures are caused by Start or Stop signal edges
which occur at the same time as the Clock signal edge, select the
other Clock edge (+ or -) and use the geroffset and setoffset
TL/1 commands to adjust the measurement timing.

Other Characterizations 7.4.3.

Some circuits are difficult to characterize by a CRC signature.
The node may have regular activity but there might be no signal
which can be used as a clock to gather a consistent signature. In
many such cases, nodes can be characterized by using transition
counts.

The transition count works on asynchronous signals. The
transition count can monitor information that the CRC will not
detect, such as extra transitions between CRC clocks. The
transition count will typically be a range of counts, defined by a
minimum and maximum, that represents the extremes of the
three measurements taken by the LEARN function. Only low-
to-high transitions are counted (not high-to-low). When the
measurement is synchronized to the external lines, the data input
is gated with the enable line, if used. A count of zero will result
if the enable-true window does not overlap the low-to-high
transition of the data.

The frequency of a signal may be more important than its CRC
or transition count. This is especially true for system clocks. If
a system clock is run at 4 MHz rather than 8§ MHz, everything
on the board could appear to be good. However, when the
board is plugged into a system, the board running at 4 MHz may
cause a system failure. Frequency is also important for video
signals such as horizontal and vertical sync.

7-7

Level history is an important characterization parameter when
combined with signatures or transition counts. If a faulty node
has the correct timing but swings between ground and an invalid
level for part of the time, measuring asynchronous level history
would detect this fault, which will be missed if only a CRC is
measured.

Consider the case where a node that should go high and low is
stuck on a faulty UUT. Using both CRC and asynchronous
level history to characterize the node will provide more complete
information to the technician who repairs the board. The
operator can see that the line is stuck when it should be
changing.

Level history can be used to detect glitches. If the measurement
period is set so that a signal is either high or low during
measurement, with no glitches, the level history will show only
high or low. If the level history shows both high and low, a
glitch has occurred.

Calibration of the I/0 Module and Probe 7.4.4.

7-8

Whenever the pod performs a microprocessor operation, it
generates a synchronization pulse which the 9100A/9105A uses
to measure signatures and clocked levels. The synchronization
pulse can be generated by several devices, including the pod or
an external clock.

In order for the system to measure critical signals reliably, each
measurement device (I/O modules and probe) must be calibrated
to this synchronization pulse on the system where it will be
used, since each measurement device contains its own
electronics that affect timing. If your tests must be accurate to
within a few tens of nanoseconds on signal edges, calibration
should be done.

The procedures for calibration are given in the Technical User's
Manual. Calibration should be performed for each measurement
device and for each synchronization mode of that device on the
particular 9100A/9105A system where it will be used. For

example, the probe for an 80286-based UUT should be
calibrated to EXT, POD ADDR and POD DATA on the
9100A/9105A where the probe will be used.

Calibration is UUT-dependent. For this reason, calibration
settings should be saved under the specific directory for that
UUT. If calibration is not performed, default calibration values
will be used. These default calibration values will only work
properly in some UUTs (those which have ample timing margin
or which operate at slow speeds).

Adjusting Sync Timing 7.4.5.

The sync pulse that the measurement devices (I/O modules and
probe) receive from the 9100A/9105A comes either from the pod
or an external clock signal. The pod may provide sync pulses
with different timings relative to microprocessor read/write
operations, depending on the synchronization mode of the pod.
For example, the 80286 pod has POD ADDR and POD DATA
sync modes. The sync pulse in POD ADDR mode is earlier than
in the POD DATA mode. See the timing diagram in the pod
manual for the pod you are using.

Most signals on a UUT can be characterized using the external
or pod sync mode. However, in some cases, the sync pulse
occurs at a different time than when the signal should be
measured.

The getoffset and setoffset TL/1 commands can be used to adjust
the time when a signature or clocked level measurement is made,
relative to the sync pulse. Figure 7-2 shows how this offset is
implemented in the probe or the I/O module. The data to be
measured passes through one delay line and the sync pulse
passes through a different delay line. One of the delay lines is
variable. By adjusting the variable delay line, the data is
measured at a different time relative to the sync pulse.

Section 3 of the TL/I Reference Manual contains details about
the getoffset and setoffset commands, including the
approximate timing resolutions of the probe and the I/O module.

7-10

Measurement Line
(Probe Tip or
/O Module Line)

Clock or
Sync Pulse

1/0 Moduile Line or Probe

Delay Line

Measurement
Hardware

Delay Line

Results of
Measurements

Figure 7-2: Synchronization-Pulse Delay Mechanism

Appendices C and E of the Technical User's Manual contain
additional timing specifications for the pod, probe, and I/O
modules. The Supplemental Pod Information for 9100A/9105A
Users manual and the pod manuals have more detailed
information about pods.

When a program adjusts the sync timing, the original timing
should be restored at the end of the program. This can be done
by storing the result of a getoffset command, adjusting the
timing with setoffset, and readjusting the timing with setoffset at
the end of the program with the stored getoffset value.

Dynamic RAM circuits usually require sync timing adjustment in
order to measure the RAS and CAS signals, which do not
necessarily coincide with the POD ADDR or POD DATA sync
pulses. The Demo/Trainer UUT stimulus programs for the
Dynamic RAM Timing functional block show one way to adjust
the sync timing.

THE UUT DESCRIPTION 7.5.

The UUT description, which provides the 9100A/9105A with
information used for GFI and UFI, consists of:

d Reference designator list (reflist).

® Part Library (part descriptions). A basic part library is
provided with the system.

® Node list (net list or wire list).

The Programmer’s Manual provides detailed information about
this database and how GFI and UFI use it. The following
sections are simply a brief overview.

Reference Designator List (REFLIST) 7.5.1.

The reference designator list establishes the relationship between
reference designators (such as "U80") and a part or component

type (such as 7410). It also specifies the testing device (probe
or I/O module) to be used on the component.

A sample Demo/Trainer UUT reference designator list is shown
in Appendix A. GFI and UFI both require the reference
designator list to determine the device needed to test a
component.

No distinction is made between families of components, such as
74LS00 or 74HCT00. The Fluke-supplied part library uses
generic names like 7400 and 7432, so when you make entries in
a reference designator list you will need to use generic names.

Part Library (Part Descriptions) 7.5.2.

The part library is a group of files (part descriptions) that
describe UUT components. A part description specifies each
pin to be an input, output, bidirectional, ground, power, or
unused. Each output has a list of related inputs which affect that
output. The library can be accessed through any UUT directory.
A basic part library is supplied by Fluke. You can add part des-
criptions, including custom designs.

See the Guided Fault Isolation section of the Programmer’s
Manual for examples of part descriptions.

Node List (Net List or Wire List) 7.5.3.

7-12

The node list specifies interconnections between reference
designators. The list is only necessary for GFI, which uses it to
backtrace between components.

A complete node list contains one line for each node in a UUT.
The pins on one line are all connected to form a node. Lines
may be continued on the next line with the backslash (V)
character.

@,

Appendix B contains a node list for the Demo/Trainer UUT.
Reviewing this example will be helpful to you when developing
you own node lists.

Bus-Master Pins in a Node List 7.5.4.

The 9100A normally determines the flow of data from the node
list; it assumes that data can be sent from any pin to any other
pin on a given node. However, sometimes two pins are
connected together by a node but do not actually communicate
with each other; this situation commonly arises in bus-oriented
systems with many components connected to a common
microprocessor data bus.

In such cases, you need to let GFI know that only some pins
(called bus-master pins) can communicate with all the other pins
on the same node. This is done by entries in the optional
*masters section of the node list.

The *masters section is optional, and for most UUT node lists it
can be omitted. Where it is needed, it usually contains just a
short list of pins, because most nodes have only a single source.
It is only for nets such as the one in the following example that
the *masters section becomes important.

Consider the node shown below: It consists of bit 0 of a
bidirectional data bus connecting several components to a
Microprocessor.

Micro- 15 Data Bus Bit 0
processor le— y y y y
&8 v2 ¢ 10 ¢ 11
RAM 1 RAM 2 ROM o
uz25
u18 ur2 ug us1

Only pin U25-15 can talk to all other input pins on the node and
only U25-15 can receive from all other output pins on the node.
Either condition would be sufficient to make U25-15 a bus-
master pin.

For this reason, pin U25-15 is shown as a bus-master pin in the
partial node list below. It is listed in the regular section of the
node list and is also included in the optional *masters section of
the node list.

U8-12 U3-9 U42-21
U25-15 U1l9-8 U22-2 U9-10 U31l-11
Ul7-4 U28-5 U27-6

*masters
U25-15

See the Node List section in the Programmer's Manual for more
information about bus-master pins.

Choice of Backtracing Path 7.5.5.

If there are two or more stimulus programs available for a node,
GFI will attempt to use the program that stimulates all of the
node's outputs (and related inputs) before using programs that
stimulate only some of the node's pins.

Here are three cases that relate to the AND gate in Figure 7-3.
Each case shows the test results from two stimulus programs, A
and B, and the conclusion that GFI comes to:

Micro-
processor

K 4 Buffer

Bus-Master

Pin

®

DMA

Circuit

TN ®
@2'

ROM

Bus-Master
Pin

Figure 7-3: Direction-Control Example

7-15

Case I: Input 1 Inpuz 2 Oumput 3

Stimulus Program A good good bad
Stimulus Program B — bad bad

GFI will accuse the node of being bad because stimulus
program A covers all the nodes and is therefore evaluated
first. In this case stimulus program B will not be

executed.

Case2: Input 1 Input 2 Output 3
Stimulus Program A bad good bad
Stimulus Program B - bad bad

GFI will test the component connected to input 1, again
because stimulus program A covers all the nodes and is
therefore evaluated first Therefore, GFI will backtrace to
the Bus Buffer.

Case 3: Input 1 Input 2 Output 3

Stimulus Program A good good good
Stimulus Program B - bad bad

GFI will test the component connected to input 2, because
stimulus program A finds no problem and the system goes
on to evaluate stimulus program B. Therefore, GFI will
backtrace to the DMA circuit.

Consider these two problems in Figure 7-3, in which both the
microprocessor and the DMA controller are both *master
components:

® If the problem is in the microprocessor, evaluation is the
same as for Case 2, above, and GFI troubleshooting traces
back to the microprocessor from input 1 of the AND gate.

A If the problem is in the DMA controller, evaluation is the
same as for Case 3, above, and GFI troubleshooting traces
back to the DMA circuit from input 2 of the AND gate.

While you can effectively steer GFI by designing stimulus
programs to cover all or only some inputs and outputs, you do
not usually need to worry about control of the backtracing path;
it is only needed in special circumstances.

Normally, you should design stimulus programs that test all
inputs and outputs of a node or component. If there is no single
stimulus program that covers all inputs and outputs, the
9100A/9105A uses these criteria to determine status:

¢ If ANY stimulus program gives a BAD response on a pin,
the pin is considered BAD.

¢ If ALL stimulus programs give GOOD responses on the
pin, the pin is considered GOOD.

® Otherwise, the pin is considered UNKNOWN.

SUMMARY OF GFI COVERAGE 7.6.

The 9100A provides a convenient means to check the
completeness of the information you have entered into the GFI
database for a particular UUT. When viewing the UUT
directory display, you can press the SUMMARY softkey to
request generation of a summary of GFI coverage for that
particular UUT. The compiled database (GFIDATA or
UFIDATA) will be examined and a summary will be generated,
displayed on the monitor, and stored in a UUT text file that you
specify. If you press the Shift key on the programmer's
keyboard and the SUMMARY softkey, the summary will appear
on the monitor without sending a copy to a text file.

Creating a Summary of GFI Coverage

The following procedure is used to generate a Summary of
GFI Coverage for a UUT:

1. Press the EDIT key on the operator's keypad to enter
the Editor (unless you are already in the Editor).

7-17

7-18

2. Use the EDIT key on the Programmer's Keyboard to
enter the name of the UUT so that the UUT directory
for this UUT is displayed on the monitor. The UUT
directory you have selected must contain a compiled
database (either GFIDATA or UFIDATA).

3. Press the SUMMARY Softkey (F8) and the 9100A
will issue the prompt shown below to ask for a text
file name:

Generate GFI Summary to TEXT file

The Summary of GFI Coverage to be generated will
be stored in this text file.

4. Type in the text file name you wish and press the
Return key. The 9100A will then begin generating
the Summary of GFI Coverage for the UUT and will
display the results on the monitor.

When the generation is complete, the following message will
appear on the monitor:

Press Msgs key to continue

When you press the Msgs key on the programmer's keyboard,
the UUT directory display will reappear on the monitor. You
can use the Edit key on the programmer's keyboard to access the
text file you generated.

@,

Statistical Summary

The first part of the Summary of GFI Coverage is a statistical
summary of the UUT, based on the GFI database you have
provided. Figure 7-4 shows a typical example of such a
summary. Each entry in the summary is described below:

¢ Summary for /<disk drive>/<UUT>: In Figure 7-
4, HDR is the disk drive and the UUT directory name is
EXAMPLE.

¢ Parts: The number of unique part types in the UUT,
based on the reference designator list.

¢ Reference Designators: The number of reference
designators in the UUT, based on the node list.

® Connected Pins: The number of UUT pins that are
connected to other pins on the UUT, based on the node
list.

¢* Unconnected Pins: The number of UUT pins that are
not connected to any other UUT pins, based on the node
list.

®* Total Pins: The total number of pins on the UUT.

¢ Programs: The number of TL/1 programs that can be
used by GFI as stimulus programs. This number is equal
to the number of response files.

i Testable Connected Pins: The number of connected
pins that can be tested by GFI. Testable pins have either
been characterized with LEARN, or are a member of a
node that has been characterized with LEARN.

¢ Testable Unconnected Pins: The number of
unconnected pins that can be tested by GFI. Testable
unconnected pins have been characterized by LEARN and
appear in a response file.

¢ Total Testable Pins: The total number of UUT pins
that can be tested with GFI, given the database you have
entered.

7-19

7-20

Summary for /HDR/EXAMPLE:

53
167
1694
225
13819
42

1688
16
1704

6
209
215

99%
88%

Parts

Reference Designators
Connected Pins
Unconnected Pins
Total Pins

Programs

Testable Connected Pins
Testable Unconnected Pins
Total Testable Pins

Untestable Connected Pins
Untestable Unconnected Pins
Total Untestable Pins

Test Coverage of Connected Pins
Test Coverage of Total Pins

Figure 7-4: Statistical Summary Display for a UUT

A Untestable Connected Pins: The number of
connected pins that cannot be tested with GFI, due to an
incomplete database.

® Untestable Unconnected Pins: The number of
unconnected pins that cannot be tested with GFI, due to an
incomplete database.

¢ Total Untestable Pins: The total number of UUT pins
that cannot be tested with GFI, given the database you
have entered.

¢ Test Coverage of Connected Pins: The percentage
of connected pins on the UUT that can be tested with GFI,
given the database you have entered. A figure of less than
100% indicates an incomplete database.

¢ Test Coverage of Total Pins: The percentage of
UUT pins that can be tested with GFI, given the database
you have entered. This figure is typically less than 100%
because a UUT often has unused pins.

Pin Coverage

The second part of the GFI Summary of Coverage display is a
matrix showing how component pins are tested with the
database you have provided. Figure 7-5 shows a partial
example of a pin coverage matrix. The matrix is organized with
the reference designators listed vertically (in the left-most
column) and with component pin numbers listed horizontally.
The number of pins per line will be the number required by the
largest component in the list. If more than 35 pins are required,
the display will produce a second list of reference designators
following the first list and this second set will have pin numbers
starting with 36 and continuing up from there.

Each component pin has a one-character symbol that shows how
GFI looks at the pin given the database you have provided. The
table at the bottom of Figure 7-5 shows the meaning of each
symbol that is possible:

7-21

Pin Coverage:

11111111112222222222333333

12345678901234567890123456789012345
Cl3 T O v v v o s o 4 s o o s a o & 2 a o & 2 s o« 2 a 2 a » = 2 « « o« a =
Cle T I . o v v v @ @ 2 o o & = » « « 28 » « 5 5 o o s s o o s 2 o v o ==
Cl7 T O v v v v v 6 o & o o = o = o o = = = & = = 2 2 2 & 2 » « « « « a
J5 I ** I T ***T1T+*** T JTIIIIIIIIIIIIIITIIIIIII
J6 I I I T T oo v v v o o a o a = a » «a «a =5 2 « a = = 2 » o« « =« « = « =
QL O I T o v o o o o a o o 2 = o 2 2 = o = 2 = o « = s s s s o o« a o o &«
02 O I T . i v o v o o o o o o « o o o = & a 2 = s a = 2 2 2 o« « « « « =«
RIO O T . 4 i 4t a s s e o n s o s s 5 o = 5 s o o s a a = s o « « = = =
RII IO & & 4 4 o @ o = o o« = o = = » = = 2 2 2 2 « 2 2 2 » 2 « « « « =« =
RIZ T O . v v 4 v v o s = = o o o« 2 a 2 = a 2 2 o « = v o o = = s o o = =
Bl I T . & v i i v v e a o s s o o s o s o a 2 « a4 = = » 2 s 2 « « = o«
7 e
U0 ITIITIBIIBIIBIIBBIIBI .. et oo oo e «aeaom=
U1 *# I * T I II*III*O0O0O0O*OCBBBBI*OBBBB®*®**x*Q*xT]
Ul2 OOIOIOOIOIIOIOTII . v oo oo o v o a a2 o s » o= «=
Ul3 TOIOIOGOIOIOIP .o oo s oo o o a a a2 2 s 2 2 ««o=
Ul4 O* * 00 *** T ** 0000000000000 0000IIIOCOI
Symbol Meanin

I The pin is testable as an input only.

0] The pin is testable as an output only.

B The pin is testable as both an input and an output.

P The pin is testable as a power pin.

G The pin is testable as a ground pin.

*

The pin is not testable (because it has no associated
stimulus program or no known-good
response stored for this pin).

There is no such pin in the database.

Figure 7-5: Pin Coverage Display for a UUT

7-22

O

FAULT CONDITION EXERCISERS 7.7.

When the 9100A/9105A detects a fault, and a fault condition
handler is not defined for the fault condition raised, a fault
message will appear on the operator's display. At this point, the
operator can press the LOOP key on the operator's keypad to
repeatedly reproduce the fault so that it can be isolated manually.
To do so requires that a fault condition exerciser exist for the
fault condition that was raised. If the exerciser exists, it is
invoked continually until the operator presses the STOP key on
the operator's keypad.

A fault condition exerciser is a software block designed
specifically to reproduce a fault condition in a UUT. Two types
of exercisers are available: built-in exercisers and user-defined
exercisers.

When a fault condition is raised by a built-in stimulus function
(such as read, write, ramp, toggle, or rotate) or a built-in test
function (such as testbus, testramfast, testramfull, or
testromfull), the 9100A/9105A has a pre-defined sequence of
commands that exercise the fault when the LOOP key is pressed.
These are called built-in fault condition exercisers. In addition,
you as a programmer can write your own fault condition
exercisers for fault conditions that you define or to replace the
built-in fault condition exercisers. When one of these fault
conditions is encountered and the LOOP key is pressed, the fault
condition exerciser with the matching name is invoked.

If a fault condition exerciser for the displayed fault condition is
found when the LOOP key is pressed, the fault condition
exerciser is invoked repeatedly to stimulate the UUT. This
allows the probe to be used to examine node responses in the
circuit and to trace faulty circuit operation to its cause.

7-23

REPAIR AFTER TROUBLESHOOTING 7.8.

7-24

When GFI terminates, it will often display one of the following
messages:

* Open circuit.
¢ Bad IC or output loaded.

When GFI reports an open circuit, it has found an input which is
bad even though the signal source on that node is good. To
repair the node:

1. Retest both ends of the node to make sure the output
was properly probed.

2. Confirm the open circuit with an chmmeter.

3. Trace along the node with the ohmmeter until the
open point is found.

4. If the node is connected properly, check for:

- An error in the node list entry for the failed node.

- Marginal measurements due to the frequency or
timing of signals on the node. Ringing may be
occurring on the node, or the time between the
sync and the signal transitions may be marginal.
Change the stimulus setup or the sync timing to
correct the problem (see Section 8.5 on adjusting
sync timing).

When GFI reports a bad IC or output loaded, it has found all
good inputs and one or more bad outputs. In this case,
determine whether the part is bad or the output is loaded. To do
this, test the component by overdriving its inputs with the I/O
module while measuring level history or CRC signatures.

In doing so, determine whether:

The level history showed that the line went to a high and
low state. If so, the node is only loaded part of the time,
or the component is bad.

The node is loaded. If the component is good but the node
is bad, the node must be loaded. The cause of a loaded
node can be:

A short to another node, the power supply, or
ground.

A damaged IC loading the node. Example 1 in
Figure 7-6 shows a bad input at U6 causing node
A to be loaded.

Another output source is also driving that node.
Check the enable and control lines of any other
devices that can drive the node. Example 2 in
Figure 7-6 shows node A to be loaded because
both U1 and US are attempting to drive the node
at the same time. U1 is operating as it should but
the U5 enable-line state is incorrect and US5 is
also driving the same node.

Operators should be provided with a procedure for tracing short
circuits. For example, a milliohmmeter can be used to determine
the point at which a node is shorted. To do this, attach one lead
of the milliohmmeter to the faulty node. With the other lead,
look for low resistance paths.

7-25

U

I

Shorted 1o
= Inside Us

Enabled

Bad

Input ——4¢

Disabled

Example 1: Bad IC

Enabled

T

Bad
y

Input —4¢ ”r—

3

‘

Disabled

Example 2: Bus Contention

Enabled

Ground

Disabled

Enabled
Output

Disabled

Enabled

Enabled <—— Incoming Level on Enable
Line Causes Bad Node
Enabled

Output

Disabled

Figure 7-6: Node Loading

7-26

Section 8

Glossary

If you cannot find a term in the glossary, search the index for a
reference to that term.

Active Edge
A signal transition used to initiate action.

Address Space

A section of memory reserved for a particular use, such as the
stack. The term "decoded address space" implies memory
residing in physically separate chips (selectively enabled by a
"decoder"), such as a frame buffer, character generator, or the
control registers inside a peripheral chip.

Aliasing
A condition where a component address responds to more than
one combination of address bus bits.

Assert
To cause a signal to change to its logical "true" state.

Asynchronous

Not synchronized to the microprocessor or not synchronous to
any clock signal.

8-1

8-2

Automated Test
An automated activity that verifies the correct operation of a
circuit by comparing its output to the expected output.

Automated Troubleshooting
An automated process of locating a fault on a UUT.

Backtracing

A procedure for locating the source of a fault on a UUT by
checking logic along a logical path from bad outputs to bad
inputs until the point where no bad inputs are found.

Bus
A group of functionally similar signals.

Bus Contention
A situation where two or more bus devices are trying to put
different data onto the same bus.

CAD
An acronym for Computer-Aided Design. CAD systems let the
user create, manipulate, and store designs on a computer.

Comment
Text in a program that is not executed. A comment in a TL/1
program or a node list must begin with an exclamation point (!).

Component
A passive or active part on a UUT.

Control Line
A signal that comes out of a microprocessor and is used to
control the UUT.

CRC Signature

CRC is an acronym for Cyclic Redundancy Check. A CRC
signature is a compression of a long data stream into a 16-bit
number.

Cursor
A symbol on a display (usually a box or an underscore) that
indicates where a typed character will appear.

Data Bus
A set of signal paths on which parallel data is transferred
between two or more devices.

Device

1. Refers to the probe, an I/O module, a reference designator,
or the pod. 2. Also used with I/O operations to specify a port
or a disk drive.

DIP
An acronym for Dual In-line Package. A DIP has an equal
number of pins on each of its long sides. See also SIP.

Directory
A collection of related sets of data (files, for example) on a disk.

Drivability
Testing whether lines can be driven to the appropriate active high
or active low level.

Dynamic Coupling
Data in one memory location is affected by combinations of data
in other memory locations.

Edge
The transition from one voltage level to a different voltage level.

Exerciser
See Fault Condition Exerciser.

External Synchronization
Synchronizing a node response measurement using signals
external to the pod.

Fault
A defect in a UUT that causes circuitry to operate in a manner
that is inconsistent with its design.

Fault Condition

A recognition by the 9100A/9105A that a fault exists on the
UUT.

8-3

8-4

Fault Condition Exerciser

A group of statements that attempts to repetitively reproduce the
conditions that generate a fault condition. (Sometimes called just
an "exerciser.")

Fault Condition Handler
A group of statements that is executed when a particular fault
condition occurs. (Sometimes called just a "handler.")

Fault Condition Raising
The generation of a fault condition either from detecting a fault
on a UUT or from using a TL/1 fault statement.

Feedback Loop
A circuit in which one or more outputs is routed to the circuit's
input.

Forcing Line
Input to the microprocessor that forces it to a particular known
state.

Functional Test
An activity that verifies the correct operation of a circuit by
comparing its output to the expected output.

GFI
See Guided Fault Isolation.

GFI Summary
A record of the components that have been tested by GFL

Go/No-Go Test
A pass/fail test; either a unit passes or it doesn't.

Guided Fault Isolation
An algorithm that uses backtracing to troubleshoot a UUT.

Handler
See Fault Condition Handler.

Hexadecimal
Pertaining to the base 16 numbering system. (Often abbreviated
as "hex.")

/0

An abbreviation for Input/Output. The transfer of data to and
from devices other than the local memory of the microprocessor
system.

I/O Module
An option for the 9100A/9105A that allows simultaneous
stimulus or response for multiple points on a UUT.

Level History

A character string that represents a record of the logic levels
measured at a point over a period of time. "1", "X", and "0"
represent high, invalid, and low states, respectively.

Library

A directory that contains a collection of only a particular type of
file. The 9100A/9105A uses four libraries: a part library, a
program library, a pod library, and a help library.

Mask
A value where each logic "1" represents a bit that is to be acted
on.

Monitor
A 24-line, 80-column video display that connects to the rear
panel of the 9100A/9105A.

Node
A set of points that are all electrically interconnected.

Node List
A file containing a description of the interconnection of all pins
on a UUT.

Operator

1. A symbol that acts on one or more values or expressions to
produce another value. 2. A person who uses the 9100A/
9105A for testing or troubleshooting.

8-5

8-6

Operator's Display
Three-line display on the mainframe of the 9100A/9105A.

Operator's Interface ;
The operator's display and the operator's keypad.

Operator's Keypad
The set of keys on the front panel of the base unit of the
9100A/9105A.

Overdrive

To put a logic state on a signal line by applying more power than
the normal driver for that node. This is how the 9100A/9105A
injects signals into the UUT.

Part Description
A file that describes a component on a UUT.

Part Library
A library of part descriptions.

Pod Library
A library of pod descriptions, each of which contains a pod
database and pod-related TL/1 programs.

Pod Synchronization
Synchronizing a node response measurement using signals
generated by the pod to indicate the sampling time.

Priority Pin
A pin that the GFI program will test first if a particular node is
bad.

Probe
A hand-held device that can stimulate and measure any single
point on the UUT.

Program Library
A library of programs that can be called by any program in the
userdisk.

Programmer's Interface
The monitor and the programmer's keyboard.

Programmer's Keyboard
The keyboard that connects to the side panel of the 9100A.

Raise
See Fault Condition Raising.

Reference Designator
A one to ten character string naming a component on the UUT.

Related Input Pin
An input pin on a component that affects an output pin on that
same component.

Response File

A file containing data generated by executing a specific stimulus
program to a UUT and recording the responses from its
execution.

RUN UUT Test
A feature that allows the normal operation of a UUT using its
own program.

Signature
See CRC Signature.

S1P
An acronym for Single In-line Package. See also DIP.

Softkey
A key that has its function determined by software.

State Machine

A circuit which produces output signals in response to input
signals and its own internal state. Typically used to generate a
sequence of control signals, as in a bus interface.

8-7

8-8

Stimulus Program

A program that exercises a circuit while the activity on circuit
nodes are recorded to see if the circuit produces the same
response as a known-good circuit.

String
A group of characters enclosed in double-quote characters (")
and manipulated as a single entity.

Synchronous
Coordinated to the transitions of a clock signal.

Termination Status
An indication of whether a UUT passed a test.

Timeout
A condition in which an expected event has not occurred within
the expected time period.

Toggle
Change to the complementary logic state.

Transition Count
A record of the number of times the logic level at a node changes
from low to high within a period of time.

Troubleshooting
A process of locating the area of a UUT that is causing a fault.

Userdisk

1. A diskette containing test programs and information about a
particular UUT. 2. The current disk drive that is used as a
source for UUT programs and data.

UUT
Unit Under Test. A physical item, i.e., a board or a system to
be tested.

UUT Directory
A set of files that contain information about a particular UUT.

Wait State
A bus cycle which is too short for a slow chip is lengthened by
the insertion of one or more clock cycles, called wait states.

Watchdog Timer

A circuit which produces a signal, typically a reset or high-
priority interrupt, if a timeout condition is met. For example, an
excessive number of wait states may trigger a watchdog timer.

Wildcard
A symbol that represents any sequence of characters. The
9100A/9105A uses the asterisk character (*) for this purpose.

Window

An area of the monitor reserved for certain information to be
displayed.

8-9

(This page is intentionally blank.)

8-10

Appendix A

Demo/Trainer UUT
Reflist

NAME: REFLIST

DESCRIPTION: SIZE: 3,555 BYTES
TESTING
REF PART DEVICE
R72 RESISTOR PROBE
R73 RESISTOR PROBE
R4 RESISTOR PROBE
R79 RESISTOR PROBE
R78 RESTSTOR PROBE
R61 RESISTOR PROBE
R62 RESISTOR PROBE
R63 RESISTOR PROBE
R64 RESISTOR PROBE
R65 RESISTOR PROBE
R70 RESISTOR PROBE
C4 CAPACITOR PRORE
Ch CAPACITOR PROBE
c8 CAPACITOR PROBE
Cc9 CAPACITOR PROBE
cl3 CAPACITOR PROBRE
C1l5 CAPACITCR PROBE
Cle CAPACITOR PROBE
cl7 CAPACITOR PROBE
u74 2016 I/0 MODULE
Uu8s 2016 I/0 MODULE
Uui12 2674 I/0 MODULE
Uu78 2675 PROBE
U1l 2681 PRORE
u77 27128 1/0 MODULE
u30 27256 I/0 MODULE
A-1

U29
U28
U217
0l

Q2

C1l

R35
R1

R77
R8O
R15
R14
R1l6
R13
R17
R12
R18
R11
R27
R25
R24
R28
R29
R23
R30
R19
R68
R69
R20
R21
R22
R34
R33
R3

R5

R6

R7

R8

R32
R31
R26
R9

R2

U34
U35
U36
U37
U38
U39
U40

27256
27256
27256
TRANSISTOR
TRANSISTOR
CAPACITOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTCR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
4164
4164
4164
4164
4164
4164
4164

I/0
I/0
I/0

MODULE
MODULE
MODULE

PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE

I/0
1/0
I/0
I/0
I/0
I/0
I/0

MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE

U4l
U48
U49
U50
Us1
U52
Us3
U54
U55
R67
Cé6

Cc7

R71
R10
R66
Ul4
J5

Ul

Ul5
U3l
U58
u24
Us

Ue4d
Us7
ulo
U4

Ue3
Useé
U21
U8

U9

U3

U23
U44
CR1
J2

J3

J6

U73
U83
Ug4
Ues
U66
U033
u47
Uel
u70
U7l
Ue2

4164

4164

4164

4164

4164

4164

4164

4164

4164
RESISTOR
CAPACITOR
CAPACITOR
RESISTOR
RESISTOR
RESISTOR
80286
CONN68
82284
82288
8255

7400

7400

7400

7402

7404

7404

7408

7408

7410
74138
74138
74138
74245
74245
7474
DIODE
CONN_RS232
CONN_VIDEO
CONN_KEYBD
74157
74157
74157
74257
74257
7SEGLED
7SEGLED
7400

7400

7400

7404

1/0 MODULE
I/0 MODULE
1/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
PROBE

PRORBE

PROBE

PROBE

PROBE

PROBE

PROBE

PROBE

I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
1/0 MODULE
1/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
1/0 MODULE
I/0 MODULE
I/0 MODULE
PROBE

PROBE

PROBE

PROBE

I/0 MODULE
I/0 MODULE
I1/0 MODULE
I/0 MODULE
I/0 MODULE
PROBE

PROBE

I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE

A-4

U59
U8o
Usl
07

U25
U26
U20
U1l3
U43
Ul7
u75
Ues
ue9
U32
U4e
Ue

Uu79
Ue60
U45
91213
u87
Ulo0
U2

Ule
022
U76
U42
ue’7
Ulz2
J4

Uls
Ug2
uss
Y1

54

S3

52

Sl

56

DSl
z1

74109
7410

7410
74112
74112
74125
74148
7414
74164
74164
74175
74244
74244
74244
74244
7430

7430

7431

7432
74373
74373
74373
74374
74374
74374
74374
74390
74590
MAX232
PWRCONN
OSCILLATOR
74175
7486

XTAL
KEYSWITCH
KEYSWITCH
KEYSWITCH
KEYSWITCH
KEYSWITCH
LED
NETWORK10

I/0

MODULE

PROBE
PROBE

1/0

MODULE

PROBE

I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I1/0
I1/0
1/0

MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE

PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE

I/0

MODULE

Appendix B
Demo/Trainer UUT

Node List

NAME: NODELIST
DESCRIPTION: SIZE: 16,492 BYTES

U23~11 U41-2 U69-17 U30-11 U28-11 U41-14 2z1-10
U23-12 U40-2 ©U40-14 U69-15 U30-12 U28-12 21-9
U23-13 U039-2 U39-14 U69-13 U30-13 U28~13 Z1-8
U23-14 U38-2 U38-14 U69-11 U30-15 U28-15 21-7
U23-15 U37-2 U37-14 U69-8 U30-16 U28-16 2Z1-6
U23-16 U36-2 U36-14 U69-6 U30-17 U28~17 2Z1-5
U23-17 U35-2 U35-14 Ue69-4 U30-18 U28-18 21-4
U23-18 U34-2 U34-14 U69-~2 U30-19 U28-19 21-3
U58-8 U34-15 U35-15 U36-15 U37-15 U38-15 U39-15 U40-15 U41-15
R69-1 R72-1 U88-8

U84-6 U72-32

R14-1 U46-12

R13-1 U46-14

R12-1 U4de6-16

R11-1 U46-18

R18-1 U46-3

R17-1 U46-5

R16-1 U46-7

R15-1 U46-9

U32-11 U31-40

R27-1 U32-9

R25-1 U32-12

R24-1 U32-14

R23-1 U32~1¢

R19-1 U32-18

R30~1 U32-3

U32-13 U31-39

R28-1 U32-7

U32-15 U31-38

B-1

R29-1
U32-8
R27-2
R19-2
U2-5
Ug4-3
U84-10
Ul6-15
U28-
Ul1-36
U11-37
Ul6-19
U70-11
uz22-9
Ue5-1
U3-18
U29-
U2-6
R25-2
R24-2
R23-2
R29-2
U32-6
U32-2
U32-4
Ud6-11
R12-2
R17-2
R13~-2
R14-2
R15-2
R11-2
U58-2
U6l1-1
Uel-4
U43-11
U6l-6
U6l-3
U70-3
U70-6
U70-8
U56-10
U75-5
U68-3
U68-5
U68-14
U76-6
U76-5
U88-9
U87-13

B-2

U32-5
U31-1
U33-7
U33-1 4
U66-6 U21-2 U30-26 U29-26 U28-26 U27-26
U72-31
U72-33
U65-5 UB4-11 Ull-4 U72-38 U31-8 U30-9 U
9 U27-9
Y1-1 C8-1
Yi-2 c9-1
U61-9 U21-4 U62-9 U62-11
U81-5
U61-10 US57-13 U62-13
U66-1 U60-7
U48-2 U48-14 U68-2 UL0-19 ULl-21 U72-15
19 U27-19
U66-3 U21-1 U30-2 U29-2 U28-2 U27-2
U33-8
U33-10
U33-13
U33-11
U31-2
U31-4
U31-3
U31-22
U47-13
U47-11
U47-10
U47-8
U47-17
U47-1
U8-14
U62-12
U62-10
U61-12 U67-11 U67-13 U44-1 U44-13 U59-13
U68-1 U68-19 U74-21
U69-1 U69-19 U85-21
U71-2
u71-4
U71-5
U21-15 U72-2
U83-10 U72-29
U74-9 U77-6
U74-10 U77-5
U74-15 U77-24
U78-4
U78-36
U78-29
U77-16

29-9

U31-27%

\

U87-8 U77-15

ug7-17 U77-18

ug7-7 U77-13

U87-18 U77-19

U75-2 U77-10

u75-7 U77-9

U75-10 U77-8

U86-19 U78-19

u87-14 U77-17

U87-3 U77-11

ug7-4 U77-12

Ug86-15 U78-17

U86-16 U78~16

Uuge-12 U78-25

Uge-6 U78-18

U69-9 U86-13 U85-13

U69-18 U85-17 U77-26

U72-23 U78-11

U69-12 U86-8 U85-14

Uso-8 UB81-13

U80-10 U81-10 U8B2-6

Ugo-12 U8l-1

Ugo0-2 U70-5 U71-12 U81-4 U82-15

U80-4 U70-9 U81-11 U82-10

U80-6 U81-2

U80~11 U79%-11 UB82-14

U80-5 U79-4 Ue62-2

Ug0-3 U70-13 U79-5 UB81-9 U82-3 U73-1 U83-1 UB4-1 U6E2-5

U70-12 U76-11 1U79-3 U86-~11 U87-11 U72-16 U78-33

U71-13 U79-6 U81-3 U82-11

U22-5 U21-6

U83-9 U74-3 U85-3

U3~-11 U55-2 U55-14 Ué8-17 Ul0-2 Ull-28 U72-8 U31-34 \
U29-11 U27-11

U32-17 U31-37

U2-15 Ue65-6 U73-11 U30-24 U29-24 U28-24 TU27-24

Ul6-5 Ue66-5 U83-11 U30-5 U29-5 U28-5 U27-5

U46-13 U31-23

U46-8 U31-21

U2-9 U65-13 U30-23 U29-23 U28-23 U27-23

U27-22 U6-5 U45-3 U28-22

U34-4 U35-4 U36-4 U37-4 U38-4 U39-4 U40-4 U4l-4 U48-4 \
U49-4 U50-4 U51-4 U52-4 U53-4 US4-4 U55-4 U64-8 U63-8

U34-5 U35-5 U36-5 Ueb-4 U67-15 U37-5 U38-5 U39-5 U40-5 \
U41-5 U48-5 U49-5 1US0-5 U51-5 U52-5 U53-5 U54-5 U55-~5

U34-6 U35-6 U36-6 U65-9 U67-2 U37-6 U38-6 U39~-6 U40-6 \
U41-6 U48-6 U49-6 U50-6 U51-6 US52-6 U53-6 US54~6 TU55-6

U34-7 U35-7 U36-7 U65-7 Ue7-1 U37-7 U38-7 U39-7 U40-7 \
U41-7 U48-7 U49-7 U50-7 U51-7 US52-7 U53-7 US4-7 U55-7

U34-3 U35-3 U36-3 U37-3 U38-3 U39-3 U40-3 U41-3 1U48-3 \

B-3

U49-3 U50-3 U51-3 U52-3 US53-3 U54-3 U26-8 US5-3

U34-12 U35-12 U36-12 U65-12 U67-3 U37-12 1U38-12 U39-12 \
U40-12 U41-12 U48-12 U49-12 U50-12 U51-12 U52-12 U53-12 \
U54-12 US5-12

U34-11 U35-11 U36-11 U66-4 U67~-4 U37-11 U38-11 U39-11 \
U40-11 U41-11 U48-11 U49-11 US50-11 U51-11 U52-11 U53-11 \
U54-11 U55-11

U34-10 U35-10 U36-10 U66-7 U67-5 U37-10 U38-10 U39-10 \
U40-10 U41-10 U48-10 U49-10 U50-10 U51-10 U52-10 U53-10 \
U54-10 U55-10

U34-13 U35-13 U36-13 U66-9 U67-6 \
U37-13 U38-13 U39-13 U40-13 U41-13 U48-13 U49-13 U50-13 \
U51-13 U52-13 U53-13 U54-13 U55-13

U58-11 U48-15 U49-15 U50-15 U51-15 U52-15 U53-15 U54-15 \
U55-15

Ue-2 U8-11

U6-3 U8-10

U5-10 Ul1-9 U72-3 U31-36 Ul5-1l

U57-2 U5-13

U83-12 U74-4 U85-4

U6-11 U81-8

Ulé-2 U66-11 U83-5 U30-4 U29-4 U28-4 U27-4

U43-9 U56-12

U2-12 U65-10 TU73-5 U30-21 U29-21 U28-21 U27-21

U56-1 U44-9 Ue4-12

U34-9 U35-9 U36-9 U66-12 U67-7 U37-9 U38-9 U39-9 U40-9 \
U41-9 U48-9 U49-9 U50-9 U51-9 U52-9 U53-9 U54-9 U55-9

Us56-9 U21-14 U11-39

U46-15 U31-24

Ud46-17 U31-25

U76-15 U78-38

U75-15 U77-7

U68-14 U86-7 UB5-15

U45~1 U45-4 US56-3 U79-2 U57-1 Ul5-8

U45-5 U9-9 U30-20 U29-20

U2-16 U65-3 U73-14 U30-25 U29-25 U28-25 U27-25

U2-19 Ue6-14 U83-2 U30-3 U29-3 U28-3 U27-3

Ude6-6 U31-20

U46-4 U31-19

U46-2 U31-18

Ul6-6 U66-2 U83-14 U30-6 U29-6 1U28-6 U27-6

U3-14 U52-2 U52-14 Ueé8~11 Ul0-9 Ul1l-19 U72-11 U31-31 \
U29-15 U27-15

U3-13 U53-2 U53-14 U68-13 U10-6 U1l-27 U72-10 U31-32 \
U29-13 U27-13

Ugg-4 U78-28

Ug2-1 Ul13-10

U3-15 U51-2 US51-14 Ué68-8 U10-12 Ull-26 U72~-12 U31-30 \
U29-16 U27-16

U22-4 J5-66 Ul4-66

U22-14 J5-13 Ul4-13

U22-18 J5-15 Ul4-15

U2-4 J5-17 Ul4-17

U22-13 J5-12 Ul4-12

U22-17 J5-14 Ul4-14

Ul4-52 C4-1

J5-52 Cl13-1

Ul6-8 J5-27 Ul4-27

ule-7 J5-26 Ul4-2¢6

Ul6-13 J5-28 Ul4-28

Ul-10 Ul17-8 U44-3 U44-11
U7-1 U13-1 Ul14-31 Ulb-2

Ulée-14 J5-32 Ul4-32

Ulée-18 J5-34 Ul4-34

R1-2 Ul-4 U19-1 J5-63 U4-

U23-2 J5-51 Ul4-51

U23-3 J5-49 TUl4-49

U3-2 J5-50 U14-50

U3-6 J5-42 Ul4-42

U23-4 J5-47 Ul4-47

U23-5 J5-45 Ul4-45

U23-6 J5-43 Ul4-43

U23-8 J5-39 U14-39

U2-11 Ule-11 U22-11 U7-2

U56-5 U1l1-10 U72-1 U31-5

Ulé-16 U65-2 U84-14 TUll-2
U28-10 U27-10

U23-9 J5-37 U14-37

U26-1 Ul13-4 U13-13 Ul4-64

U3-5 J5-44 Ul4-44

U22-8 J5-1 Ul4-1

U23-7 J5-41 U1l4-41

U3-9 J5-36 Ul4-36

J5-64 Ul3-12

U3-8 J5-38 U14-38

U3-7 J5-40 Ul4-40

U2-8 J5-19 U14-19

U2-2 Ue66-10 U21-3 U30-27

U3-3 J5-48 Ul4-48

U2-18 J5-23 U14-23

U3-4 J5-46 Ul4-46

Ug84-12 U74-8 U85-8

U84-9 U74-7 U85-7

Ul-16 J5-4 Ul4-4 U15-3

R26-1 U13-3

Ule-12 Ue5-11 U84-5 Ull-6
U27-8

Ue-4 U45-6 U30-22 U29-22

U21-13 U4-10 U31l-6

U3-12 U54-2 U54-14 U68-15

U59-4

12 Ul4

Ul5-5
Ul5-12
u72-37

U28~27

U72-39

Ul0-5

J5-31 \

-63 Ul5-1
U31-9 U30-10
U28-27 U27-21
U30-8 U29-8
Ul1l-18 U72-9

U29-10

U28-8

U31-33

\

U29-12 U27-12
R5-1 Ss1-1 1U31-14
R6-1 52-1 U31-15
R7-1 83-1 U31l-16
R8-1 s4-1 U31-17
U56-8 U5-5
Ues8-7 U74-11 U77-4
U71-3 U82-4
Ul6-9 U65-14 U84-2 Ull-7 U30-7 U29-7 U28-7 U27-7
U61-13 U58-6 U59-2 1U59-3 Ue60-1 U63-9
U58-12 U62-8
U56-13 U59-12 Ul13-2
U65-15 Ue66-15 U44-5 U44-12
U2-7 J5-18 Ul4-18
Ul-12 U1%-3 J5-29 Ull-38 U13-11 U31-35 Ul4-29
Ul-15 J5-5 Ul4-5 U1l5-19
Ug4-4 U74-5 UB5-5
U84-13 U72-34
U88-13 U72-18
Usg-1 U72-19
U73-13 U72-26
U73-10 U72-25
u72-7 U78-8
U83-7 U74-2 U85-2
U83-4 U74-1 U85-1
U6-8 US5-1
Ul3-5 U13-8
R33-1 U20-4
U76-9 U78-37
R20-1 R21-1 R22-1 Ul2-2
U19-2 U7-3
U43-8 U42-3
U86-9 U78-14
Ul7-9 U4-11 U5-2
U7-5 U8-4
Ul9-4 U7-15
U45-9 US56-6
U84-7 U74-6 U8B5-6
U20-6 U10-7
U76-19 U63-4 U63-13
U20-2 Ull-24 R3-1
U76-16 U63-5 U78-2
U69-7 U86-14 U85-11
U8-13 U62-1
U45-10 U5-8
U75-9 Ue62-4
U63-6 U78-39
U76-2 U63-12 U78-5
U80-9 U80-13 U70-1 U70-4 U70-10 UB2-2
Usl-12 U82-12

B-6

U68-16 U74-16 U77-21

U75-13 U83-3 U72-27

Ue8-12 U74-14 U77-25

U57-6 U5-12

U69-5 UB6-17 U85-10

U69-16 U85-16 U77-2

J2-2 U12-7

J2-3 Ul12-13 R21-2

Ul1-13 U42-4

U25-1 U25-9 U78-32

Ug80-1 Ue6l-2 Uel-5 U70-2

U71-9 U79-8

U60-2 U60-5 U60-15

U20-9 Ul0-3

U20-7 U10-4

Ul1-13 Ul2-10

R34-1 U25-15

Ue63-11 TU78-6

U76-12 U78-3

U68~-18 U74-17 U77-23

U69-3 U86-18 U85-9

U75-4 U83-13 U72-30

U75-12 U83-6 U72-28

U73-6 U72-24 U78-13

U4-5 U5-6

U4-1 U5-11

Ul1-35 Ul3-6

Ull-5 Ul2-9

U60-14 U1l9-5

U44-2 U64-13

Ull-14 Ul2-11

U4-2 U5-9 U15-13

U57-4 U9-5

Us57-2 Ul5-16

U22-12 U57-3 U8-5

U20-12 ©Ull-15 R2-1

U3-17 U49-2 U49-14 U68-4
U29-18 U27-18

Ué8-9 U74-13 U77-3

U62-3 U72-17 U78-12

U22-6 U21-5 U8-6 U9-6

Ul2-1 C15-1

J6-2 Ul1-33 U13-9 R31-1

Ul6-3 J5-24 Ul4-24

Ule-17 J5-33 Ul4-33

R80-1 J5-61 Ul4-61

R77-1 J5-59 U14-59

U20-15 J5-57 Ul4-57

R78-2 J5-54 Ul4-54

Ule-4 J5-25 Ul4-25

Ug2-17

Ul0-16 U1l1-25 U72-14

c7-1

U31-28

\

Ul-5
J5-16
U3-1
Ul-2
U26-2
U45-8
U24-4
U26-9
U1l-11
R22-2
J2-5
Jz2-4
U11-17
U73-17
U62-6
U73-12
U73-9
U1l1-11
Ul1l2-3
Ul2-4
ugo-7
R10-1
U3-19
U22-16
U22-15
Ul7-11
U4-3
U3-16
U31-
U64-9
U6-6
U56-11
U61-8
U61-11
U57-5
U56-2
U45-2
U58-1
U44-8
Us7-12
Us8-5
U58-9
U22-19
U22-7
U2-13
U2-14
u2-17
R79-2
U42-1
U76-17

B-8

U25-5
Ul4-16 U2-3

U23-1 U15-17
U4-6
U1l4-65
U24-5 U4-13
Ul9-6
U56-4 Ul5-9
R10-2 R9-2 C5-1 CR1-2
J2-20
U12-8 R20-2
Ul2-14
J6-3
U74-19 U85-19
U74-20 U85-20
U74-23 U85-23
U74-22 UB85-22
Ul2-12
C15-2
Cl7-1
S6-1
U23-19 U57-8
Ug-2 U9-2
U8-3 U9-3
U5-4
U4-9 U10-1 Ul0-11
U50-2 U50-14 Ue68-6 UL0-15 Ull-20 U72-13
29 U29-17 U27-17
U24-6
U59-6
U4-8
U79-12
U59-11
Uug-12
Uée7-14 Udd-6
U9-7 U28-20 U27-20
U8-15
U63-10
U58-10
U59-9 Ue64-11
U58-13 U64-10
U66-13 U8-1 U9S-1
J5-67 Uld4-67 Ul5-18
J5-20 Ul4-20
J5-21 Ul4-21
J5-22 Ul4-22
J5-53 U14-53
u42-7
Ug7-16

U76-13 U87-12

U76-8 U87-9

U4-4 U5-3

Ul2-6 Cl16-2

U59-10 U59-14

U76-4 U87-5

U8g-11 J3-9

U8g-3 J3-8

R73-2 R71-2 J3-7

Ulz2-5 C17-2

Ulg-8 U82-9 U25-13

U71-10 U71-11

U58-3 U58-4

R32-1 Jé-1 Ceé-1

U76-14 U87-15

U76-3 U87-2

U71-6 U82-5

U71-8 U82-13

R67-2 02-1 0Q1-2

U76-7 U87-6

R68-1 R70-1 U88-6

R28-2 U33-2

R30-2 U33-6

R16-2 U47-2

R18-2 U47-6

U71-1 U8l-6

R70-2 R72-2 R66-2 Q2-2

R71-1 Qi-1

R61-1 R62-1 R63-1 R64-1

U76-18 U87-19

J2-7 R4-1

R35-1 DS1-2

! GROUND NODES

R73-1 Ul1-3 Ul-9 U2-1 U
Ule-10 U22-1 U22-10 U2
U35-16 U36-16 U37-16
U45-7 U48-16 U49-16 U
U54-16 U55-16 U56-7 U
U68-10 U69-10 U70-7 U
U79-7 U81-7 U86-1 1U86
Ugg-2 U88-5 U88-7 U88-
U42-2 U42-8 U42-12 U42
U59-8 U82-8 U60-8 U73
U84-15 U64-7 U24-7 Ul
J5-9 J5-35 J5-60 U4-7
R4-2 U7-8 U8-8 U9S-4
Ul0-10 U10-13 TU1l0-17
Ul2-15 Cl6-1 U1l3-7 J4-6

R65—~

2-10
3-10
U38-16
50-16
61-7
71-7
-3 U8
10 U1

-14 U42-15

-8 U7

1 U78-

1

U3-10 Ueé-7 U
U26-7 U26-10

U39-16

U51-16

U40-
U52-1

U65-8 U66-8
U75-8 U76-1

6-4 U86-10

7-7 \

3-15 U8

9-7 U20-5 U2

Us-7
U9-8
U10-18

J4-17

\
U10-8
Ul1-22
J4-8

us7-7

16-1

U34-1
16 U4
6 US53
ue7-8
U76-10

ug7-1

Us8-7

3-8 U83-15
0-8 U21-8

\
J3-1
J4-9

J3-6
S4-2

\
6 \
1-16
-16

Ue7-12

\
U87-10

u44-7
Ug4-8
\

\
53-2

\

U43-7

\

\

\

B-9

§2-2 S81-2 S6-2 U25-8 C5-2 U32-1 U32-10 U32-19 U46-1 \
U46-10 U46-19 Q2-3 U62-7 U63-7 U74-12 U74-18 J6-4 C4-2 C13-2 \
U72-20 U85-12 U85-18 U77-14 U77-20 U77-22 U78-9 \
U78-10 U78-15 U78-20 U78-21 U78-22 U78-23 U78-24 U78-31
U31-7 U30-14 U29-14 U28-14 U27-14 Ul4-9 U14-35 Ul4-60 \
Ul5-6 U15-7 Ul5-10 Cl1l-2 C6-2 C7-2 \

U18-7 R35-2 R77-2 R80-2 C8-2 Cc9-2 z21-1

! POWER NODES

Ul8-1 DSl1l-1 RI1-1 R34-2 R33-2 R3-2 U33-3 U33-14 R5-2 R6-2
R7-2 R8-2 UB0-14 R32-2 R31-2 R68-2 R69-2 R67-1 \
R61-2 R62-2 R63-2 R64-2 R65-2 Ul-1 Ul-6 U1-17 \
Ul-18 U2-20 U3-20 Ue6-1 U6-12 Ub-14 Uls6-20 \

U22-3 U22-20 U23-20 U26-14 U34-8 U35-8 U36-8 U37-8 \
U38-8 U39-8 U40-8 U41-8 U43-1 U43-2 U43-14 \

U45-14 U47-3 U47-14 U48-8 U49-8 U50-8 U51-8 U52-8 \
U53-8 U54-8 ©U55-8 U56-14 U61-14 U65~1l6 U6o6-1l6 \

Ué67-10 Ueé7-16 U68-20 U69-20 U70-14 U71-14 U75-1 U75-16
U76-20 U79-1 U79-14 U81-14 U86-20 U87-20 U88-12 \
Ugg-14 Ul1l7-1 Ul7-2 Ul7-14 R66-1 R79-1 R78-1 \

R26-2 R9-1 J5-62 Ul4-62 U42-16 U57-14 \

U58-14 U44-4 U44-10 U44-14 U59-1 U59-5 U59-15 \

U59-16 U82-16 U60-6 U60-16 U73-16 U83-16 UB4-16 U64-14
U24-14 U19-14 U20-1 U20-3 U20-10 U20-11 U20-13 \

U20-16 U21-16 J5-30 U4-14 U5-14 U7-4 \

U7-16 U8-16 U9-1l6 Ul0-14 Ul0-20 U1ll-44 R2-2 Ul2-16 \
U13-14 J4-10 J4-11 C1-1 J4-12 J4-13 U25-2 \

U25-3 U25-4 U25-10 U25-11 U25-12 U25-14 U25-16 CR1l~1 \
U32-20 U46-20 Q1-3 U62-14 U63-14 U74-24 \

J6-5 U72-36 U72-40 U85-24 U77-1 U77-27 U77-28 U78-7 \
U78-30 U78-34 U78-35 U78-40 U31-26 U30-1 U30-28 \

U29-1 U29-28 U28-1 U28-28 U27-1 U27-28 Ul4-30 UL5-14 \
U15-15 Ul5-20

! UNUSED OUTPUTS

U26-3
U73-4
U75-3
U75-6
U75-11
U75-14
U86-2
U86-5
Ul5-4
U59-7
U42-5
U42-6
U42-13

B-10

\

\

\

\

U42-11
U42-10
U42-9
U43-3
U43-4
U43-5
U43-6
U43-10
U43-12
U43-13
Ue7-9
U31-13
U31-12
U31-11
U31-10
Ull-8
Ul1l-40
Ul1-3
Ul1-43
Ull1-42
Ull-41
Ul1-32
Ul1-31
Ul1-30
Ull-le
Ul1i-29
Ug-9
ug-7
U9-15
U9-14
U9-13
Us-12
Uo-11
U9-10
U21-12
U21-11
U21-10
U21-9
U21-7
U25-7
U25-6
U20-14
U17-3
Ul7-4
Ul7-5
Ul7-6
Ul7-10
U17-12
U17-13

*masters

! PROCESSOR ADDRESS LINES
Ul4-34
Ul4-33
U14-32
U14-28
Ul4-27
Ul4-26
U14-25
Ul4-24

Ul4-23
Ul4-22
Ul4-21
Ul4-20
Ul4-19
Ul4-18
Ul4-17
Ul4-16

Ul14-15
Ul4-14
Ul4-13
Ul4-12

! BUFFERED ADDRESS LINES
Ul6-19
Ule-16
Ulé6-15
Ule-12
U16-9
Ule-6
Ule-5
Ul6-2

U2-19
U2-16
U2-15
U2-12
U2-9
U2-6
U2-5
Uz2-2

U22-19
U22-16
U22-15
U22-12

U22-9
U22-6
U22-5

! PROCESSOR DATA LINES

U1l4-51
Ul4-49
Ul4-47
Ul4-45
Ul4-43
Ul4-41
Ul4-39
Ul4-37

Ul4-50
Ul4-48
Ul4-46
Ul4-44
Ul4-42
Ul4-40
Ul4~38
Ul4-36

! BUFFERED DATA LINES
U23-18
U23-17
U23-16
U23-15
U23-14
U23-13
U23-12
U23-11

U3-18
U3-17
U3-16
U3-15
U3-14
U3-13
U3-12
U3-11

(This page is intentionally blank.)

Appendix C

Subprograms for

Functional Test and Stimulus
Programs

The following programs are included in this appendix:
abort test
check_loop
check_meas
recover
Ist_conten

C-1

program abort test (ref)

FUNCTIONAL TEST of the Microprocessor Bus. !

1
1
! This program is called by many of the test programs after the test i
! program has found a failing circuit. This program highlights the part!
! with the FAILED test attribute, changes all parts with a TESTING test !
t atribute to UNTESTED, and then checks to see 1f gfi has enough test
! results to make an accusation. If an accusation exists then the

! accusation is displayed. Otherwise a gfi hint is generated for the
! part and the test programs are terminated so that GFI can begin

! troubleshooting.

1

1

1

1

1

1

1

none

1
1
1
1
1
!
TEST PROGRAMS CALLED: !
1
1
GRAPHICS PROGRAMS CALLED: !
fail (part_number) Highlight part to be failed
1
1

declare
string ref ! The ref-pin of the failed part
global numeric t2o ! Buffered I/0 on /term2.
global string array {1:107] part ! Part shape and positions
global numeric array [1:107] partatrb ! Attribute number of part

! Next three items relate to Test window displayed by disply pcb{).

global string testwindl = "\1B[12;65f\1B[Om\1B[Im" ! Place text in line 2

global string testwind2 = "\1B[13;65f\1B[Om\1B[Im" ! Place text in lilne 3

global string undrtest = "\1B[15;66f\1B{0m" ! Place text in line 5
end declare

! Highlight Pailed Part.

! Change all parts with a TESTING attribute to an UNTESTED attribute and

1

1
1

n = instr(ref, "-")
if n = 0 then n = len(ref) + 1
ic_ num = (val{mid(ref, 2, n-2),16))

! convert decimal ic num to hex

decl00 = ic num / $100

decl0 = (ic_num - declQ0 * $100) / $10

decl = (ic num - decl00 * $100 - declO * $10)
hex 1c num = decl00 * 100 + decl® * 10 + decl
fail (hex_ic num)

display GFI TROUBLESHOOTING in the test window.
for i =1 to 107

if partatrb[i] = 2 then untested (i)
next

print on t2o ,testwindl," GFI ", testwind2, "TROUBLESHOOTING"

print on t2o ,undrtest," "

If GFI has an accusation then display the accusation otherwise generate

GFI Hints,

accusation = gfi accuse
if accusation = "" then
gfi hint ref
fault 'gfi hints generated' ' please run gfi
else
fault '' '’ accusation
end if

end program

C-3

program check_loop

! This program checks the DEMO/TRAINER UUT Loopback switches.
! loopback switches are not closed then a prompt is generated to close
! the loopback switches. Otherwise no prompt is generated.

function pmpt_lpbk
declare
string q
end declare

print *Close SW4-4, SW4-5 and SW6-4 for loopback"
print "Press \1B[7m ENTER \1B[Om key to continue "

input q \ print
end function

execute rs232 init ()

write addr $2006, data $AA
wailt time $200

if ((read addr $2002) and $F) <> $D then
execute pmpt_1lpbk ()
return

end if

write addr $201E, data $FF
write addr $2016, data $BB
wait time $200

if (read addr $2016) <> $BB then
execute pmpt_1lpbk ()
return

end if

write addr $201C, data $FF

if ((read addr $201A) and 2} <> 0 then
execute pmpt_lpbk ()
return

end if

end program

program check meas (dev, start, stop, clock, enable)

! Check status of External START, STOP, CLOCK, ENABLE lines,

! Return 1 if measurement is complete, display prompt to fix
i the external lines, wait for ENTER key, and return O if the
! measurement times out.

trrrrr eIttt IRt I E I IIILIIIIIIIIIILIL

Ty ettt ettt I IR EILIIIILIIIITILILIIILIILIL

declare string dev
declare string start
declare string stop
declare string clock
declare string enable

times = 0

loop while checkstatus(dev) <> $F and times < 100
times = times + 1

end loop

If START fails then STOP, ENABLE and CLOCK will also fail.
If ENABLE fails then CLOCK will also fail.

Do not display CLOCK when ENABLE line fails.

if times < 100 then
return (1)
else
tl = open device "/terml", mode "unbuffered"

! turn autolinefeed off and clear screen

print "\1B[2J\1B[201"
n = checkstatus(dev) \ str = "* \ line = "»
if (n and 4) = 0 then
line = line + “START "
str = str + " START to " + start + ", "
else
if (n and 8) = 0 and stop <> "*" then
line = line + "STOP, "
str = str + " STOP to " + stop + ", "
end if
if (n and 2) = 0 and enable <> "“*" then
line = line + "ENABLE "
str = str + " ENABLE to ¥ + enable + ",*
else if (n and 1) = 0 then
line = line + "CLOCK *
str = str + " CLOCK to ™ + clock + ", %
end if
end if
print "\1B[1l;1f", "External line(s) ", line, "failed."
print "\1B[2;1f", "Connect", str, “\1B[3;lf"

print "Press \1B[7mENTER \1B{Om to REPEAT, \1B[7mNO \1B{Om to CONTINUE"

! Wait for ENTER key to be pressed.

Diagnose cause of failure and only display START if START fails.

input on tl ,str
print "\1B[20h\1B[2J"
close channel tl
if str = "\7F" then
return (1)
else
return (0)
end if
end if
end program

program recover

This program recovers sync between the 82288 Bus Controller and the i

80286 pod. !
1
Some of the stimulus programs disable ready before performing stimulus!
which can cause the 80286 bus controller to get out of sync with the !
pod. The recover() program is executed to resynchronize the bus
controller and the pod.

{none}

GRAPHICS PROGRAMS CALLED:
{none}

1

1

1

1

1

!

1

!

! TEST PROGRAMS CALLED:
1

1

1

1

1

! Global Variables Modified:

! recover times Reset to Zero
1

Trrrrrrrr R R R IRLIE L L LI LI LI LI IR EIGLIOGRIC LRI R LI IOLIRIEIGLIOR LI LI IO LI IOGLIGEITTILIOILIOILEIREISTITEITLEILITIIOLIIIIISLEIGLIILIILITY

! Main Declarations t
Trrrrrrrrrrrrrrrr R ETEIEELEEEIEEILILI LI LI LIOTIIITITITIIOPIITRPITIILILIITITEILILITILIIIIIITTITILIILILILILEIIETIIIIL

declare global numeric recover times ! Count of executing recover().

LS00 0 A A A A O O O O A A A A A O A O O A O O O O A A O A 0 0 0 A

! Main part of STIMULUS PROGRAM !
RSN N R R R N R R R R R R R R R R SRR N SR E R

recover_times = recover times + 1

if recover times <= 1 then
podsetup 'enable ~ready' "off"
setspace (get space {"memory", *word"}}
read addr 0
write addr 0, data 0
podsetup 'enable ~ready' "on"

else
podsetup ‘enable ~ready' "“off"
print "Please press the \1B[7mUUT RESET KEY \1B[Om"

POD is out of sync with
the 82288 bus controller
Read in memory space then
Write in memory space to
synchronize 82288 and PCD.

loop until (readstatus{) and $10) <> 0 ! wait for RESET active.
end loop
podsetup 'enable ~ready' "on"

loop until (readstatus() and $10) 0 ! wait for RESET inactive.
end loop
print "\1B{2J"

end if

end program

C-7

program tst_conten (addr, data bits)

rrrrrrrrrrrLE R LOELILIEILILIOLILIOILILILI RIS RITTITLITITLITIOILRITIRITRIT I LTI TITIT I LIRIRISRITTITILITI LIRS REITITITIILIIEIEIPITSEIILILILIILILIILSY

TEST to isolate DATA BUS CONTENTION to the failing part. !

This program attempts to determine the cause of Data Bus contention by!
testing the enable lines of all the devices on the Data Bus. This !
program performs several steps. First each device on the data bus is

! accessed and determined to be accessible or inaccessible. The

{ variable bad dev is a mask that records which devices failed.

! Many times when Data Bus contention exists, the device that has the

! bad enable lines can be accessed and the rest of the devices cannot be
accessed. This program checks the mask to see if all except one
device is bad and then tests the enable lines on the device that
appeared good.

1
1
1
1
1
I
1
1
1
1
If all devices are bad or more than one device is good then this test !
checks the enable lines of all the devices on the Data Bus by brute !
force. !
!
1
1
1
1
1
1
1
1
1
1

abort_test (ref-pin) If gfi has an accusation
display the accusation else
create a gfi hint for the
ref-pin and terminate the test
program (GFI begins trouble-
shooting).

1

1

1

1

1

1

H

1

1

1

1

1

1

1

1

1

1

1

! TEST PROGRAMS CALLED:
1

1

1

1

b

1

1

! FUNCTIONS CALLED:

! testic (refname, pinl, pin2) This function performs a gfi

! test on refname. Then the pins!
! pinl and pin2 (which are the 1
! enable lines) are checked to

t see if they are bad. If so

! abort_test is called and GFI is!
! started on the failing enable !
! line. Otherwise all test info !
! about the part is discarded !
! using the gfi clear command. f

declare
numeric addr t Address where failure occured.
numeric data bits ! Mask of failing data bits.
numeric bad dev = 0 t Mask to record falling devices
numeric array [0:$15] ram ic ! Convert RAM bit to part number
global string contention_checked t Record that this test ran.

end declare

function testic (ref, pin a, pin b)
declare numeric ref
declare numeric pin a
declare numeric pin b

! convert decimal ref to hex

decl00 = ref / 100
declO = (ref - declO0 * 100) / 10
decl = (ref - declO0 * 100 - declO * 10)
href = decl00 * $100 + decl0 * $10 + decl

ref a = "U" + str(href,16) + "-" + str(pin_a,16)
ref b = "U" + str(href,16) + “-" + str(pin b, 16)

if gfi test ref a fails then
if (gfi status ref a) = "bad" then
abort_test (ref a)
else

if (gfi status ref b) = "untested" then gfi test ref b

if (gfi status ref b) = "bad" then
abort_test (ref_b)
end if
end if
gfi clear ! Only looking at Enable
end if
end function

ram ic[0] = 55 \ ram ic[1l] = 54 !
ram ic[2] = 53 \ ram ic[3] = 52 1
ram ic[4] = 51 \ ram ic[5] = 50 !
ram_ic[6] = 49 \ ram ic[7] = 48 f
ram ic[8] = 41 \ ram ic[9] = 40 !
ram ic{10] = 39 \ ram ic{11] = 38 t
ram ic(12] = 37 \ ram ic{13] = 36 i

T

ram ic[14] = 35 \ ram ic[15] = 34

if contention checked <> "yes" then
contention checked = "yes"
podsetup ‘report intr' “off"
podsetup ‘'‘enable ~ready' "on"
print "\nl\nlTESTING BUS CONTENTION"

Read from each device on the bus and record if each device reads correctly.

Lines, Clear Other Info.

! RAMs
! RAMs
! RAMs
! RAMs
! RAMs
! RAMs
! RAMs
! RAMs

UsS,
Us3,
Us1,
U49,
U4,
U39,
u37,
u3s,

Then check and see if all components are bad except one.

that component's enable lines.

Otherwise brute force check all enable lines on all components connected to

the bus.
! ROMO and RCM1

setspace(getspace ("memory", "“word"))
if (read addr $E002A) <> 0 then bad dev

Us4

Uso
u4s
U40
U3s
U3e
U34

If so then check

bad_dev or 1

if (read addr $F0022) <> 0 then bad dev = bad_dev or 2

! Dynamic RAM

write addr $1000, data $FFFF

if (read addr $1000) <> SFFFF then bad dev = bad dev or 4

write addr $1000, data O

if (read addr $1000) <> O then bad dev = bad_dev or 4

{ PIA registers

C-9

execute pia init ()

if (read addr $4002) <> $FF then bad dev = bad dev or 8

write addr $4002, data O

if (read addr $4002) <> 0 then bad dev = bad dev or 8

! DUART registers

execute rs232 init ()

if (read addr $200A) <> $11 then bad dev = bad dev or $10

if {read addr $201A) <> $FF then bad_dev

bad_dev or $10

if (read addr $2012) <> $C then bad dev = bad dev or $10

! Video Controller registers

execute rs232 init ()

if (read addr 8) <> $FF then bad dev = bad dev or $20
if (read addr $A) <> 0 then bad dev = bad_dev or $20

I If only one device is good, CLIP and check enable lines on that device.

if bad dev <> 0 and bad_dev <> $3F then
{ CLIP and Check Enable lines on ROMs
if bad dev = $7E then
if (data bits and $FF) <> O then
testic(29, $20, $22)
end if
if (data bits and $FFC0) <> 0 then
testic(30, $20, $22)
end if

else if bad_dev = $7D then
if (data bits and $FF) <> 0 then
testic (27, $20, $22)
end if
if (data bits and $FF00) <> 0 then
testic(28, $20, $22)
end if

else if bad_dev = $7B then
testic (ram ic[msb(data bits)], $15, 4)
else if bad_dev = $77 then
testic (31, 6, 6)
else if bad_dev = $2F then
testic (11, $39, 9)
else if bad _dev = $1F then
testic (72, 2, 3)
end if
end if

Low data bits are bad
Check low byte ROMO.

High data bits are bad
Check high byte ROMO.

Low data bits are bad
Check low byte ROMO.

High data bits are bad
Check high byte ROMO.

Check RAM.
Check PIA.
Check DUART.

Check Video Controller

! BRUTE FORCE check enable lines of all devices on bus.

if (data_bits and $FF) <> 0 then
testic (27, $20, $22)
testic(29, $20, $22)

end if

if (data bits and $FF00) <> O then
testic(28, $20, $22)
testic (30, $20, $22)

end if

testic (ram ic[msb(data bits}], $15, 4}

testic (31, 6, 6)

testic (11, $39, 9)

testic (72, 2, 3)

Low data bits are bad
Check low byte ROMO.

High data bits are bad
Check high byte ROMO.

Check RAM.
Check PIA.

! Check DUART.
t Check Video Controller

testic (10, $11, 1) ! Check Interrupt Buffer
if bad dev = $3F then
if (data_bits and $FF) <> 0 then
if gfi test "U3-1" fails then abort test ("U3-1")
end if '
if (data_bits and $FF00) <> 0 then
if gfi test "U23-1" fails then abort_test (*U23-1")
end if
end if

print "BUS CONTENTION TEST PASSES"
end if
end program

C-12

(This page is intentionally blank.)

Index

*masters, 4-5, 7-13

ABORT_TEST program, 4-262

Acoustic and visual characteristics, 4-380

Active edge, 8-1

Active interrupt lines, 4-8 See also interrupts

ADDR_OUT stimulus program, 3-12, 4-20
used in other chapters, 4-263, 4-283

ADDR_OUT response file, 4-22

Address buffers, 4-246

Address Decode functional block, 4-273
example, 4-276
keystroke functional test, 4-277
programmed functional test, 4-282
stimulus programs and response files, 4-283
summary page, 4-289
testing and troubleshooting, 4-273

Address decoder, 4-273

Address latch, 4-273

Address space, 4-14, 8-1

Aliasing, 8-1

armcommand, 3-21

Assert, 8-1

assoc command, 3-19

Asynchronous, 8-1

Asynchronous level history, 2-7, 4-245, 7-8

Asynchronous signals, 7-7

Index-1

Automated test, 8-2
Automated troubleshooting, 8-2

Backiracing, 2-12, 6-1, 8-2
path, 7-14
Baud-rate timing, 4-153
Bidirectional lines, 3-10, 7-13
Blinking cursors, 4-180
Breakpoints, 4-8, 5-7
Built-in fault condition exerciser, 7-23
Built-in tests, 3-24, 4-3
Microprocessor Bus, 4-7, 4-10
RAM, 4-7, 4-59
ROM, 4-7, 4-33
Bus, 8-2
arbitration, 4-248
contention, 4-14, 4-33, 8-2
controller, 4-351
cycles, 2-1, 4-7, 4-331
emulation, 4-3
exchange, 4-9, 4-248
masters, 4-5, 7-13
Bus Buffer functional block, 4-243
example, 4-250
keystroke functional test, 4-251
programmed functional test, 4-262
stimulus programs and response files, 4-263
summary page, 4-272
testing and troubleshooting, 4-243

CAD, 8-2

Calibration, 7-8

CAS, See Column Address Strobe

CAS_STIM stimulus program, 4-88, 4-92

CAS_STIM response file, 4-94

Character generator, 4-233

Clearance, 4-3

clip command, 3-19

Clip module, 2-10, 3-19

Clip module name, 3-19

Clock and Reset functional block, 4-291
example, 4-293
keystroke functional test, 4-294
programmed functional test, 4-300
stimulus programs and response files, 4-301

Index-2

Clock and Reset functional block, (continued)
summary page, 4-312
testing and troubleshooting, 4-291
Clock signal, 7-5, 7-7
Clocked level history, 2-7, 2-9, 2-10, 4-246
Color look-up table, 4-177
Column Address Strobe (CAS), 4-75
Comment, 8-2
Component, 8-2
Component extraction tool, 4-3
Connectors, 4-250
Control lines, 4-247, 8-2
Coprocessor cycles, 4-9
Coupling fault, 4-61
CRC signature, 2-10, 3-19, 4-245, 7-5, 8-2
Crystal oscillator, 4-154, 4-291
CTRL_OUT1 stimulus program, 3-16, 4-28
used in other chapters, 4-263
CTRL_OUT1 response file, 4-30
CTRL_OUT?2 stimulus program, 3-16, 4-266
CTRL_OUT2 response file, 4-268
CTRL_OUTS stimulus program, 3-16, 4-269
used in other chapters, 4-329
CTRL_OUTS response file, 4-271
Cursor, 8-2
Cursor timing output, 4-203
Cycles
bus, 2-1, 4-7, 4-331
coprocessor, 4-8
refresh, 4-9, 4-75, 4-79, 4-81
Cyclic Redundancy Check (CRC), 2-6
See also CRC signature

Data bus, 8-3

Data Compare Equal (DCE) condition, 2-10

Data exchange protocol, 4-116

Data tied to address, 4-38

DATA_OUT stimulus program, 3-16, 4-17, 4-24
used in other chapters, 4-263

DATA_OUT response file, 4-26

DECODE stimulus program, 4-283, 4-286
used in other chapters, 4-46, 4-322

DECODE response file, 4-288

Delay line, 7-9

Delay parameter, 4-61

Index-3

Index-4

Demo/Trainer UUT, 3-2, 4-1, 4-10, 4-63, 6-3
Device, 8-3
Device name, 3-20
Diagnostic messages
bus test, 4-6
RAM test, 4-62
ROM test, 4-36
Diagnostic program, 3-8, 6-1
Diagnostic strategy, 6-3
DIP, 8-3
Direction control signals, 4-248
Directory, 8-3
Discrete /O, 4-117
DMA controllers, 4-9
Downloading programs to the UUT, 5-8
Drivability, 3-4, 8-3
Drive capability, 2-9
DTACK, 4-248, 4-331
Dual UART (DUART), 4-155
Dynamic coupling, 8-3
Dynamic RAM, 4-59, 4-75
adjusting sync timing for, 7-11
multiplexed address, 4-75
refresh, 4-9, 4-75, 4-79, 4-81
Dynamic RAM Timing functional block, 4-75
example, 4-79
keystroke functional test, 4-83
programmed functional test, 4-88
stimulus programs and response files, 4-89
summary page, 4-113
testing and troubleshooting, 4-75

Edge, 8-3
Edge-sensitive inputs, 4-116
Edit key, 7-18
Editor, 7-17
Electromechanical devices, 4-117
Emulative testing, 2-2
speed of emulation, 5-8
enabled line_timeout fault condition, 4-351
Examples
Address Decode, 4-276
Bus Buffer, 4-250
Clock and Reset, 4-293
Interrupt Circuit, 4-316

Examples, (continued)
Microprocessor Bus, 4-10
Parallel /0, 4-118
Dynamic RAM Timing, 4-79
RAM, 4-63
Ready Circuit, 4-334
ROM, 4-39
Serial I/O, 4-155
Video Control, 4-206
Video Output, 4-180
Video RAM, 4-233

EXEC key, 4-381

Exerciser, See fault condition exerciser

External clock signal (sync), 2-10, 7-9

External control lines, 2-10

External I/O lines, 4-151

External synchronization, 8-3

Fault, 8-3
fault command, 6-8, 6-9
Fault condition, 6-8, 7-23, 8-3
enabled_line_timeout, 4-351
exerciser, 7-23, 8-4
forcing-line, 4-350
handler, 3-8, 5-8, 6-1, 6-8, 8-4
raising, 8-4
ram_component, 4-66
rom_address, 4-44
rom_comp, 4-44
Fault coverage, 3-11, 5-3, 4-244
Fault isolation, 2-11
Feedback loop, 8-4
breaking, 4-380
interrupt Circuit, 4-313
Ready Circuit, 4-331, 4-335
Forcing lines, 4-379, 8-4
Forcing signal conditions, 4-9
Forcing-line fault condition, 4-350
FRC_INT program, 4-160
Freerun clock, 2-9
Frequency, 2-7, 2-9, 4-246, 7-7
Frequency min-max, 4-79, 4-292
FREQUENCY stimulus program, 4-301, 4-310
used in other chapters, 4-89, 4-176
FREQUENCY response file, 4-311

Index-5

Index-6

Functional block, 3-1, 3-11, 3-16, 4-1

Functional test, 1-5, 2-13, 3-8, 5-8, 8-4
TEST_BUS, 4-14
TEST _BUS2, 6-18, 6-17
TEST _PIA, 4-124
TEST _PIA2, 6-20, 6-17
TEST_RAM , 4-66
TEST_RAM2, 6-24, 6-17
TEST_ROM, 4-44
TEST_ROM2, 6-27, 6-17
TEST_RS232, 4-160
TEST_RS232B, 6-29, 6-17
TEST _VIDEO, 4-186
TEST _VIDEO2, 6-31, 6-17
TST_BUFFER, 4-262
TST_CLOCK, 4-300
TST_CONTEN, 4-15
TST_DECODE, 4-282
TST_INTRPT, 4-322

used in other chapters, 4-160

TST_READY, 4-348
TST_REFRSH, 4-88
TST_VIDCTL, 4-216
TST_VIDRAM, 4-238

getoffset command, 4-77, 7-9

GFl, See Guided Fault Isolation

GFl hints, 2-13

GFl key, 7-2

GFl procedures, 1-5

GFl summary, 8-4

GFI troubleshooting, 2-12, 7-2

gfi control command, 3-19

gfi device command, 3-19

gfi hint command, 3-8, 6-1, 6-9

gfi test command, 3-8, 3-24

Glitches, 7-8

Go/no-go test, 4-2, 5-1, 5-3, 6-1, 6-3, 8-4
GO_NOGO2 diagnostic program, 6-11
Ground, 4-4

Guided Fault Isolation (GFI), 1-5, 2-12, 3-12, 8-4

Handler, See fault condition handler
Hexadecimal, 8-5

HOLD line, 4-10
HOLDA line, 4-10

In-circuit component tests, 4-381
In-circuit emulation, 2-2
Initialization, 3-10, 3-17, 4-116
Parallel /O, 4-126
RAM, 4-67
Serial I/0, 4-162
Video RAM, 4-238
Interface pod, See pod
Internal address bus, 4-246
Internal operating modes, 4-116
Internal sync, 2-10
Interrupt acknowledge cycle, 3-16, 4-315
Interrupt Circuit functional block, 4-313
example, 4-316
keystroke functional test, 4-316
programmed functional test, 4-322
stimulus programs and response files, 4-322
summary page, 4-329
testing and troubleshooting, 4-313
INTERRUPT stimulus program, 4-322, 4-326
INTERRUPT response file, 4-328
Interrupt response file, 4-328
Interrupts, 4-8
interrupt vector, 4-313
I/0, 8-5
I/0O module, 2-4, 2-10, 3-17, 7-1, 7-11, 8-5
adjusting sync, 7-9
breakpoints, 5-7
calibration, 7-8
I/0O module adapter, 2-10
I/0 module name, 3-20

Kernel, 4-5

KEY_1 stimulus program, 4-126, 4-130
KEY_1 response file, 4-132

KEY_2 stimulus program, 4-126, 4-133
KEY_2 response file, 4-135

KEY_3 stimulus program, 4-126, 4-136
KEY_3 response file, 4-138

KEY_4 stimulus program, 4-126, 4-139
KEY_4 response file, 4-141

Keys, 4-117

Index-7

Index-8

Keystroke functional test
Address Decode, 4-277
Bus Buffer, 4-251
Clock and Reset, 4-294
Interrupt Circuit, 4-316
Microprocessor Bus, 4-10
Parallel I/0, 4-118
Dynamic RAM Timing, 4-83
RAM, 4-63
Ready Circuit, 4-335
ROM, 4-39
Serial I/0, 4-156
Video Control, 4-208
Video Output, 4-181
Video RAM, 4-233
Keystroke mode, 1-5
Known-good UUT, 3-10, 3-12, 7-4

LEARN function, 7-4, 7-7

Level 1 programming, 1-3

Level 2 programming, 1-3

Level 3 programming, 1-5

Level 4 programming, 1-5

Level history, 2-7, 2-9, 7-8, 8-5

LEVELS stimulus program, 4-217, 4-226
used in other chapters, 4-238

LEVELS response file, 4-227

Library, 8-5

Line numbers, 3-20

Local address bus, 4-246

LOOP key, 7-23

Loopback, 4-151

Machine code, 5-8

Mapped address bus, 4-246

Marginal signals, 4-292

Marginal signature, 7-5

Mask, 8-5

Masters, 4-5, 7-13

Measurement device, 3-17
calibration, 7-8

Memory arbitration circuit, 4-205

Microprocessor Bus functional block, 4-3
example, 4-10
keystroke functional test, 4-10

Microprocessor Bus functional block, (continued)
programmed functional test, 4-14
stimulus programs and response files, 4-17
summary page, 4-31
testing and troubleshooting, 4-5

Microprocessor kernel, 4-5

Milliohmmeter, 7-25

Min-max, 4-79, 4-292

Monitor, 8-5

Msgs key, 7-18

Multiple failures, 6-10

Multiplexed address, 4-75

Net list, 7-11

Node, 8-5

Node activity, 5-3

Node characterization, 2-6
Node list, 2-12, 7-11, 8-5
Noise, 4-292

Normal mode, 2-9

Open circuit, 7-24

Operator, 8-5

Operator's display, 8-6

Operator's interface, 8-6

Operator's keypad, 8-6

Output loaded, 7-24

Overdrive, 2-9, 2-10, 4-4, 4-206, 4-331, 4-381, 8-6
Overlapped ramping operations, 4-244

Parallel I/0 functional block, 4-115
example, 4-118
keystroke functional test, 4-118
programmed functional test, 4-124
stimulus programs and response files, 4-126
summary page, 4-149
testing and troubleshooting, 4-115

Part description, 7-12, 8-6

Part library, 2-12, 7-11, 7-12, 8-6

Partitioning the UUT, 3-1

Pattern sensitive fault, 4-61

Patterns, 2-1, 3-19

Peripheral devices, 4-313

PIA_DATA stimulus program, 4-142

PIA_DATA response file, 4-144

Index-9

PIA_INIT initialization program, 4-126, 4-148
PIA_LEDS stimulus program, 4-126, 4-145
PIA_LEDS response file, 4-146
Pin coverage matrix, 7-21
Pin numbers, 3-20
Pin number parameters, 3-21
Pod Address Sync, 2-9, 3-16, 4-77
Pod Data Sync, 2-9, 3-16, 4-77
Pod, 2-4, 2-9, 4-3, 5-8
library, 8-6
pod breakpoints, 4-8, 5-7
synchronization, 8-6
podsetup command, 4-5
Power supply, 4-3
Priority pin, 8-6
Probe, 2-9, 3-17, 4-292, 7-1, 7-11, 8-6
adjusting sync, 7-9
calibration, 7-8
injecting fauits with, 5-3
Program library, 8-6
Programmable Interface Adapter (PIA), 4-115
Programmable Interval Timer (PIT), 4-115
Programmed functional test
Address Decode, 4-282
Bus Buffer, 4-262
Clock and Reset, 4-300
Interrupt Circuit, 4-322
Microprocessor Bus, 4-14
Parallel /0, 4-124
Dynamic RAM Timing, 4-88
RAM, 4-66
Ready Circuit, 4-348
ROM, 4-44
Serial /O, 4-160
Video Control, 4-216
Video Output, 4-186
Video RAM, 4-238
Programmer's interface, 1-5, 8-7
Programmer's keyboard, 8-7
Pull-up resistors, 4-4

Quality characterization, 2-6

Raise, See fault condition, raising
RAM FAST test, 4-59

Index-10

RAM FULL test, 4-59
RAM QUICK test, 4-59
RAM TEST key, 4-63
RAM
dynamic, 4-75
sync timing, 7-11
testing, 4-59
ram_component fault condition, 4-66
RAM_DATA stimulus program, 4-67, 4-70
used in other chapters, 4-126
RAM_DATA response file, 4-72
RAM_FILL initialization program, 4-67, 4-73
RAM functional block, 4-59
example, 4-63
keystroke functional test, 4-63
programmed functional test, 4-66
stimulus programs and response files, 4-67
summary page, 4-74
testing and troubleshooting, 4-59
Ramp function, 4-244
rampaddr command, 4-246
rampdata command, 4-247
RAMSELECT1 stimulus program, 4-89, 4-98
RAMSELECT1 response file, 4-100
RAMSELECT2 stimulus program, 4-89, 4-101
RAMSELECT2 response file, 4-103
RAM Timing, See Dynamic RAM Timing
RAS, See Row Address Strobe
RAS_STIM stimulus program, 4-88, 4-95
RAS_STIM response file, 4-97
RD_CSCD program, 4-160
Read/Write strobe, 4-33
readout command, 3-21
Ready button, 3-17
Ready Circuit functional block, 4-331
example, 4-334
keystroke functional test, 4-335
programmed functional test, 4-348
stimulus programs and response files, 4-349
summary page, 4-378
testing and troubleshooting, 4-331
Ready signal, 4-248
READY_1 stimulus program, 4-349, 4-354
READY_1 response file, 4-357
READY_2 stimulus program, 4-349, 4-358

Index-11

READY_2 response file, 4-361
READY_3 stimulus program, 4-349, 4-362
READY_3 response file, 4-365
READY_4 stimulus program, 4-349, 4-366
READY_4 response file, 4-369
READY_5 stimulus program, 4-349, 4-370
READY_5 response file, 4-373
READY_6 stimulus program, 4-349, 4-374
READY_6 response file, 4-377
Reterence designator, 3-20, 7-11, 8-7
Reference designator list, 7-11
Refresh, 4-9, 4-75, 4-79, 4-81, 4-75, 4-79, 4-81
Refresh cycle, 4-9, 4-75, 4-79, 4-81
REFSH_ADDR stimulus program, 4-89, 4-104
REFSH_ADDR response file, 4-106
REFSH_TIME stimulus program, 4-89, 4-107
REFSH_TIME response file, 4-109
REFSH_U56 stimulus program, 4-89, 4-110
REFSH_U56 response file, 4-112
Related input pin, 8-7
Repair, 7-24
Reset functional block, See Clock and Reset
RESET_HIGH stimulus program, 4-301, 4-304
RESET_HIGH response file, 4-306
RESET_LOW stimulus program, 4-301, 4-307
used in other chapters, 4-217, 4-283
RESET_LOW response file, 4-309
Response file, 3-12, 4-17, 7-4, 8-7
rom_address fault condition, 4-44
rom_comp fault condition, 4-44
ROM TEST key, 4-39
ROMO_DATA stimulus program, 4-46, 4-50
ROMO_DATA response file, 4-52
ROM1_DATA stimulus program, 3-16, 4-46, 4-53
used in other chapters, 4-263
ROM1_DATA response file, 4-55
ROM functional block, 4-33
example, 4-39
keystroke functional test, 4-39
programmed functional test, 4-44
stimulus programs and response files, 4-46
summary page, 4-57
testing and troubleshooting, 4-33
Row Address Strobe (RAS), 4-75, 4-78
RS-232 port, 4-154

Index-12

RS232_DATA stimulus program, 4-163, 4-166
RS232_DATA response file, 4-168

RS232_INIT initialization program, 4-163, 4-175
RS232_LVL stimulus program, 4-163, 4-169
RS232_LVL response file, 4-171

Rules for stimulus programs and response files, 4-17
runuut command, 5-7

RUN UUT mode, 2-9

RUN UUT test, 8-7

Serial interface adaptor, 4-151
Serial IO functional block, 4-151
example, 4-155
keystroke functional test, 4-156
programmed functional test, 4-160
stimulus programs and response files, 4-163
summary page, 4-176
testing and troubleshooting, 4-151
setoffset command, 4-77, 7-9
SETUP POD command, 4-5
SIA , See serial interface adaptor
Side (of YO module), 2-10, 3-17
Signature, See CRC signature
SIP, 8-7
Softkey, 8-7
Start signal, 4-180
State machine, 4-205, 4-331, 8-7
Static electricity, 4-117
Static logic levels, 4-4
Static RAM, 4-59, 4-61, 4-75
Status lines, 4-9
Stimulus and measurement capabilities, 2-7
Stimulus function, 7-23
Stimulus program, 3-6, 3-16, 4-17, 7-2, 8-8
Stimulus programs and response files
Address Decode, 4-283
Bus Buffer, 4-263
Clock and Reset, 4-301
Interrupt Circuit, 4-322
Microprocessor Bus, 4-17
Parallel I/0, 4-126
Dynamic RAM Timing, 4-89
RAM, 4-67
Ready Circuit, 4-349
ROM, 4-46

Index-13

Stimulus programs and response files, (continued)
Serial /0, 4-163
Video Control, 4-216
Video Output, 4-187
Video RAM, 4-238
Stop signal, 4-180
storepatt command, 3-19, 4-383
String, 8-8
Stuck bus lines, 4-5
Stuck cells, 4-59
SUMMARY softkey, 7-17
Summary of GFl coverage, 7-17
Summary page
Address Decode, 4-289
Bus Buffer, 4-272
Clock and Reset, 4-312
Interrupt Circuit, 4-329
Microprocessor Bus, 4-31
Parallel I/O, 4-149
Dynamic RAM Timing, 4-113
RAM, 4-74
Ready Circuit, 4-378
ROM, 4-57
Serial /0, 4-176
Video Control, 4-229
Video Output, 4-202
Video RAM, 4-242
Switches, 4-117
SYNC key, 4-8
sync command, 4-8
Sync timing, 7-9
Synchronization mode, 2-9, 4-8, 7-8
with ROM, 4-39
Synchronous, 8-8
Synchronous level history, 2-7, 2-9, 2-10, 4-246
System address bus, 4-246
System clock, 4-249

Termination status, 8-8

Test access, 4-3

Test access socket, 4-10

Test access switch, 4-10

Test function, 7-23

TEST_BUS functional test, 4-14
TEST_BUS2 functional test, 6-17, 6-18

Index-14

TEST_PIA functional test, 4-124
TEST_PIA2 functional test, 6-17, 6-20
TEST_RAM functional test, 4-66
TEST_RAM2 functional test, 6-17, 6-24
TEST_ROM functional test, 4-44
TEST_ROM2 functional test, 6-17, 6-27
TEST_RS$232 functional test, 4-160
TEST_RS232B functional test, 6-17, 6-29
TEST_VIDEO functional test, 4-186
TEST_VIDEO2 functional test, 6-17, 6-32
Testing and troubleshooting, 2-1, 3-1

Address Decode, 4-273

Bus Buffer, 4-243

Clock and Reset, 4-291

Interrupt Circuit, 4-313

Microprocessor Bus, 4-5

Parallel VO, 4-115

Dynamic RAM Timing, 4-75

RAM, 4-59

Ready Circuit, 4-331

ROM, 4-33

Serial /O, 4-151

Video Control, 4-205

Video Output, 4-177

Video RAM, 4-231
Timeout, 8-8
TL/1 programming language, 1-2, 1-6
Toggle, 8-8
togglecontrol command, 4-248
Transition count, 2-7, 2-9, 2-107, 4-246, 7-4, 8-8
Transition fault, 4-61
Troubleshooting, 2-1, 3-1, 6-1, 7-1, 8-8
TST_BUFFER functional test, 4-262
TST_CLOCK functional test, 4-300
TST_CONTEN functional test, 4-15
TST_DECODE functional test, 4-282
TST_INTRPT functional test, 4-322

used in other chapters, 4-160
TST_READY functional test, 4-348
TST_REFRSH functional test, 4-88
TST_VIDCTL functional test, 4-216
TST_VIDRAM functional test, 4-238
TTL_LVL stimulus program, 4-163, 4-172

used in other chapters, 4-322
TTL_LVL response file, 4-174

Index-15

UART, See Universal Asynchronous Receiver-Transmitter
Unguided Fault Isolation (UFI), 7-1

Unit Under Test (UUT), 1-1, 3-1, 4-3, 8-8

Universal Asynchronous Receiver-Transmitter, 4-151
Unprogrammed ROM, 4-38

Unstable signature, 7-5

Unused inputs, 4-4

Use of pod, 2-9

Userdisk, 8-8

UUT, See Unit Under Test

UUT clock, 4-4

UUT directory, See summary page

UUT go/no-go test, 3-8, 4-2, 5-1, 5-3, 6-1, 63 6-9
UUT partitioning, 3-1

UUT voltage, 4-5

Variable signature, 7-5
Vertical scan rate, 4-203
Vertical sync, 4-180
Video cards, 4-180
Video control, 4-203
Video Control functional block, 4-203
example, 4-206
keystroke functional test, 4-208
programmed functional test, 4-216
stimulus programs and response files, 4-216
summary page, 4-229
testing and troubleshooting, 4-205
Video display controller, 4-177
VIDEQ_DATA stimulus program, 4-216, 4-220
VIDEO_DATA response file, 4-222
VIDEO_FIL1 initialization program, 4-187, 4-200
used in other chapters, 4-216, 4-238
VIDEO_FIL2 initialization program, 4-187, 4-201
VIDEQ_FREQ stimulus program, 4-187, 4-190
used in other chapters, 4-216
VIDEO_FREQ response file, 4-190
VIDEO_INIT initialization program, 4-187, 4-199
used in other chapters, 4-217, 4-239
Video Output functional block, 4-177
example, 4-180
keystroke functional test, 4-181
programmed functional test, 4-186
stimulus programs and response files, 4-187

Index-16

Video Output functional block, (continued)
summary page, 4-202
testing and troubleshooting, 4-177
VIDEO_OUT stimulus program, 4-187, 4-192
VIDEO_OUT response file, 4-193
Video RAM functional block, 4-231
example, 4-233
keystroke functional test, 4-233
programmed functional test, 4-238
stimulus programs and response files, 4-238
summary page, 4-242
testing and troubleshooting, 4-231
VIDEO_RDY stimulus program, 4-217, 4-223
used in other chapters, 4-238
VIDEQO_RDY response file, 4-224
VIDEQ_SCAN stimulus program, 4-187, 4-195
used in other chapters, 4-216, 4-238
VIDEO_SCAN response file, 4-196
Visual or acoustic characteristics, 4-380

Wait state, 4-331, 8-9

Watchdog timer, 4-8, 4-379, 8-9
Wildcard, 8-9

Window, 8-9

Wire list, 7-11

WRITE BLOCK command, 5-8
WRITE command, 5-8

Wirite control signals, 4-248 ,
writepatt command, 3-20, 3-21, 4-381

Index-17

