9100 Series

Programmer's
Manual

O

CUSTOMER NOTICE

THROUGHOUT THIS MANUAL, ALL INSTANCES OF 9100A
AND 9105A ALSO APPLY TO THE 9100FT AND 9105FT.

S

Contents
Section Title Page
WHhere AM 2. xiii
R 6 1 -1 4V A1 PP 1-1
2. EdROI ... 2-1
2.1. INTRODUCTIONccovviiiiiieiirrieniirnierieneeeeeseeeein e enenee e 2-1
2.2. USERDISK ORGANIZATION.......ccccceovvirieeeiceree e 2-2
2.3 PHYSICAL ENVIRONMENTc.ccovvvievieie e 2-7
2.3.1. Monitor Display.......cccceeveeiiiiiiiiiie e 29
2.3.2. ASCIl Keyboard.......ccccoovviviniinicnicinneer e siinnne 2-15
2.3.3. Editor Keypad........cooooiiiiiiimriecccree e 2-17
2.3.4. Softkeys (Function Keys)........cccovvvvnveerinineerernrnnen. 2-19
2.4, ENTERING AND EXITING THE EDITORccoeeveeeeee. 2-20
2.5. DISK UTILITIES.....c.otiiiiiciiie e s snie s snnnne e s 2-21
2.6. INFORMATION ENTRY ... 2-23
2.6.1. TeXE ENINY oot 2-23
2.6.2. Fields ..ot 2-24
2.6.3. Prompts and Defaultsccccoeeivveiiniiin e 2-27
2.7. CHECKING FORERRORS ... 2-29
2.8. FILE AND DIRECTORYNAMEScccooeeieiiirerie, 2-31
2.9. EDITING A USERDISK.......covveiririeniineeenirevineee e 2-32
2.10. CURSORCOMMANDScoeverieeciii e 2-35
2.11. WINDOW COMMANDS. ..., 2-38
2.12. BLOCK COMMANDS........ccoe it e 2-39
i

Section Title Page

2.13. GUIDED FAULT ISOLATION COMMANDS.................... 2-41
2.14. TERMINAL EMULATION COMMANDS..............cceevnnene 2-43
2.15. CAD TRANSLATOR COMMANDS...........ccccevvevrrnnnene. 2-43
overview of TL/T.......ccooiiiiiiiiie e, 3-1

3.1. GETTING STARTED WITH TL/1 PROGRAMS................ 3-1

3.1.1. Features of TL/....coooviivivvierien v ereeeeeen, 3-1

3.1.2. Locations of TL/1 Programsccceceveeevvnveeeeennnnnns 3-2

3.1.3. Bringing Up a Program Screenccccoeeeerviieenennnn. 3-2

3.1.4. Structure of a TL/1 Program........ccccceveveeeeieenineeenennn. 3-7

3.1.5. Writing @ TL/1 Program.........ccccceeeeeveeeeeceveveeccnninnnns 3-9

3.1.6. Using the CHECK Function...........ccccevvvveeeviecvnnennn. 3-11
3.1.7. Using the Shift-CHECK Function............cccvveveneenne. 3-15
3.1.8. Using the Debugger..........cccccceeiriinrinrirneereenniinnenn 3-16
3.1.9. Compiling a TL/1 Program.............ccocecennevrveieeereenn. 3-19
3.1.10. Executing a TL/1 Program........cc..eceevvvreeveeereennnen. 3-36
3.1.11. TL/ SYMAX .o ccciieee e ccececritvere e v 3-37
3.2. DATA TYPES, VARIABLES, AND EXPRESSIONS. 3-38
3.2.1. D7 11 R B/ o - SO 3-38
3.2.2. Variables. ..o e 3-39
3.2.3. 10/ o117 1 o] £ T 3-51
3.2.4. EXPressions........ccccoeieierieeireeeneeeeeeie e e seevracae e 3-52
3.2.5. Math Functionscccooiiiiieiii e, 3-53
3.2.6. System FUnNCtionSoovvvvnrivieie e 3-53
3.3. PROGRAM STRUCTURE AND FLOW CONTROL.......... 3-54
3.3.1. Block Structure of TL/1.....ooooiiie e 3-54
3.3.2. How Programs and Functions Are Invoked............... 3-59
3.3.3. Scope Rules for Programs and Functions 3-60
3.3.4. Passing Arguments...........ccooeiriiiiiiiiiiiieieienenninenennes 3-61
3.3.5. Returning Values from Programs and Functions....... 3-62
3.3.6. Scope Rules for Variables.......c.cceceeviiiminnnenceerenenes 3-63
3.3.7. Conditional Flow of Control ... 3-64
3.4. INPUT, OUTPUT, AND FILE COMMANDS..................... 3-67
3.4.1. File and Device Types.......cccovrriiiiiniiineeciinssnnnnns 3-68
3.4.2. Opening Devices and Files ..., 3-68
3.43. Buffered and Unbuffered Channels......................... 3-69
3.44. /O COMMANGScoevieieiiecienirerricerreeestrannr e eeeeeees 3-71
3.4.5. WINAOWS ..o ettt 3-72
3.4.6. Disk Pathnames in TL/1 ..c...oiiiiiiiiiireereicr e 3-75
3.5. POD-RELATED COMMANDS........cccrirrrieinn e 3-76
3.5.1. Pod Setup Commandsccceerverieemmmmmmmereennins 3-78
3.5.2. Reading and Writing UUT Memory and /O................ 3-81

:m\ Section Title Page

3.5.3. Reading and Writing Microprocessor
Interface Signals........cccceveerieerieciiecce e, 3-83
3.5.4. Stimulus Commands for Signature Analysis.............. 3-84
3.55. Built-in Functional Tests...........ccccccecievveivvrinienne, 3-86
3.5.6. RUN UUT MOdE.....cooiiirriiicieceer e 3-91
3.6. IO MODULE AND PROBE COMMANDS...................... 3-93
3.6.1. Naming UUT Components and Pins............ccoo.n....... 3-93
3.6.2. Naming 9100A/9105A DeviceS......ccc.oeevvrvvrinvneeenen. 3-97
3.6.3. Kinds of Measurements that Can Be Made............... 3-98
3.6.4. Synchronization Modes...........cocivvveveeeieeeeeeeeeen 3-100
3.6.5. ‘Making Measurements with the Probe and
VO MOAUIE.....coiveee e 3-103
3.6.6. Data Comparison with the /O Module....................... 3-111
3.6.7. Pattern Driving with the /O Module........................... 3-112
3.6.8. Probe Stimulus ... 3-114
3.6.9. Changing the Calibration Delay Offset for the
/O Module or Probecccevvvevvveneeeireeieeeeceen, 3-115
3.7. FAULT CONDITIONS AND FAULT HANDLING.............. 3-116
3.7.1. Raising a Fault Condition..............ccccoevveveieciniiee. 3-117
3.7.2. Fault Condition Names...........cccccccvvrvneevve i, 3-119
. 3.7.3. Creating a Fault Condition Handler........................... 3-119
<,) 3.7.4. How a Fault Condition Handler Is Chosen................. 3-121
3.7.5. How a TL/1 Fault Condition Handler s Invoked.......... 3-123
3.7.6. Unhandled Fault Conditions................ceccovvvveirnnnne 3-124
3.7.7. Creating a Fault Condition Exerciser 3-126
3.7.8. Termination Status (Passes or Fails)......................... 3-127
3.8 HELP LIBRARY ...t e 3-130
3.8.1. INDEX File....ccooiiiiiieeiieecrcecce et 3-130
3.8.2. HELP M@SSAQESvvvriieeeii it ce e reiee e 3-130
3.9. GFl COMMANDS. ...t e 3-133
3.9.1. Stimulus Programs Called from GFlccoevee.... 3-136
3.9.2. Stimulus Programs Called From Either GFI
or the Operator's Keypad..........c.ccovviveeeineeecenenen.. 3-138
3.9.3. Invoking GFI from a TL/1 Programc..c.......... 3-140
4. DebUPPer... ..ottt 4-1
41 ENTERING AND EXITING THE DEBUGGER.................. 4-2
4.2 DEBUGGER SCREEN.........ccccvvuiiiriiieceece e, 4-2
43 PROGRAM EXECUTION ... 4-3
44 DEBUGGER KEYBOARD........ccccvveeieeieeieiieeeee e 4-4
45 DEBUGGER COMMANDS (SOFTKEYS)cvvveieeennns 4-5
4.6 USING THE DEBUGGERooovvivveeviiireieeeee e .. 4-10

Section Title L
4.6.1 Availability of Debugger Commands........................ 4-10
4.6.2 When an Error OCCUIS.......c.ccceceveeeeneeceeeeieeveneeaen, 4-12
4.6.3 Debugging Programscccccvevevvieeiiinicnenerneennnn. 4-13
4.6.4 Debugging Blocks Within Programs......................... 4-14
4.6.5 Debugging Chained Programs.........c.cccccvvvveeerennn. 4-16

i

5. Guided Fault Isolation (GFI).........cccccceei e, 5-1
5.1. INTRODUCTION ...t
5.2. THE BASIC GFI ALGORITHM.......coceevieeevvieeieeceee,

5.3. ADDITIONAL GFI FEATURES.........c.ccovveeeeeeeeecreennn
5.3.1. The 1/O Modules........cocoeeeieeiieeeceeeeeeeeeee,
5.3.2. Probing Inputs before Outputs.........cccovveeveeneennnen..
5.3.3. Related INPULS.........ooveeeeciiiiieeiieie e
5.3.4. Leapfrogging........cceeevvmmriviiieee e
5.3.5. Feedback LOOPS......ccceeieeerieeienieeeeeeee v
5.4. GFI DATABASE OVERVIEWcoovveerieeeeceeceen,
5.41. The Database and Stimulus Programs......................
5.4.2. How GFI Uses the Database and Stimuli
5.5. GFI DATABASE REFERENCE...........coovvevevieereenee.
5.5.1. Part Library......cccccecmmoieiieeeececeecceee e
5.5.2. Part Descriptions.........ccoeccvveeeeecvvie i,
5.5.3. Entering a Part Description............c.cccvevveeuerevennnnn.
5.54. Reference Designator Listc..coeoovivveeneneeneennn.
5.5.5. Editing the Reference Designator List......................
5.5.6. Node List........ooommiiiiiiiieeeecee e
55.7. Editing the Node List..........ccoocevecivieeniiiieiecee,
5.5.8. Stimulus Programscccceeeeiviiineevieveeeeeeenn
5.5.9. Writing Stimulus Programscccccevvvveeieeennee.
5.5.10. Stimulus Program Response Files...............c.co........
55.11. Editing a Stimulus Program Response File...............
5.5.12. Example LEARN SeSSioN........cccovvieiiviiieeeieeeneen.
5.5.13. Compiling the GFI Database fora UUT.......................
5.5.14, Generating a Summary of the GFI Database
5.6. UNGUIDED FAULT ISOLATION (UFl).....cccveeeeeeccnnee.
5.6.1. Differences between UFland GFl
5.6.2. The UFI User Interfacecccccceeeviveineeeeeoncnnieenne.
5.6.3. Converting from UFItO GFlccooeveviviieeceen.
5.7. USING THE GFI DATABASE WITH TL/16

FUNCTIONSot
5.8. THE GFIUSER INTERFACEccovveeiiiieececeee

vi

O Section Title Page
6. Terminal EMUIator..............ccocooiviiiiiinii e, 6-1
6.1. ENTERING AND EXITING THE TERMINAL
EMULATOR ..., 6-1
6.2, TERMINAL EMULATOR DISPLAYccovvveeiviireeeennnnn. 6-2
6.3. TERMINAL EMULATOR QUTPUT.....covvereeiecee. 6-5
6.4. TERMINAL EMULATOR INPUT...c..coveiiiniieeeeeeeeeeee. 6-8
6.5. FLOW CONTROL ..o, 6-9
6.6. TERMINAL COMMANDS (SOFTKEY DEFINITIONS)...... 6-9
6.7. TRANSFERRING FILES TO AND FROM
THE S100A ...t 6-10
6.7.1. Converting Files for Uploading from the 9100A......... 6-11
6.7.2. General Upload Procedure.........cccocveevvveueecennnn... 6-12 I
6.7.3. Uploading from the 9100Ato a PC.....c..oooovevieeeeene. 6-17
6.7.4. Downloading Files to the 9100A..........cc..coevvennnnee. 6-17 i
6.7.5. General Download Procedurec...ccccveeevvenee. 6-18
6.7.6. Downloading Files from a PC to the 9100A............... 6-21
6.7.7. Converting Files Downloaded to the 9100A............. 6-24
6.8 USING THE 9100A BULLETIN BOARDccccuuen....... 6-25
6.8.1 Logging into the Bulletin Board from the |
9100A Terminal Emulator.............ccoceevvvevvivien e, 6-25
6.8.2. Downloading Files from the Bulletin Board
to the 9100A.....c e 6-26
6.8.3. Uploading Files to the Bulletin Board
fromthe 9100A.........oo i, 6-28
7. CAD Translator ... 7-1
7.1 INTRODUCTIONooviiiiiiieecee e 7-1
7.2 OVERVIEW OF THE CAD TRANSLATOR 7-2
7.3 TRANSFERRING A CAD OUTPUT FILE
TOAGI00A ...t 7-4
7.4 USING THE CAD TRANSLATOR........cceeevrenereerirns 7-4
7.4.1. Required INPULSccooveiiiiiiniieirieeie e, 7-5
7.4.2. Optional Files.........coocoeeiiciiireieie e, 7-5
7.5 ALIAS FILE FORMAT EXAMPLES.........ccoooveiivieieninnn. 7-10
7.6 REGULAR EXPRESSIONSooieiiiieeeecieeccceeee 7-14
7.7 SUGGESTIONS FOR USING
THE CAD TRANSLATORoooiiiiriiiiei e 7-19
7.8 SUPPORTED CAD SYSTEMS........cooooeieveeeeeere, 7-20
7.8.1 Futurenet ..o 7-21
7.8.2 SCICANAS.....coiciiieiiriii e 7-22
7.8.3 CadNBLIX ... 7-22
vii

Section Title Page

8. GlOSSATY ... 8-1

Index

viii

Figure

$) L) [}
hhbrps

yot

Liboousm

NNNNNNI’\)NNI\)NI\)

wwwwwwwwgwwwwwww

Figures

Title Page

Userdisk Organization............cooeeveeeiiiiciicciiieeeieeee e, 2-3

Programmer's Keyboardccovvviiiiiiinimiiiiiciin e, 2-8

Windows in the Userdisk Screenocceoveeeiiivivee e, 2-10
A Userdisk Screen with Help Window........cccccceeveeeiicicccieene. 2-12
Status Line, and Softkey Numbers and Labels Lines 2-14
ASCH Keyboard........ccccocviviiir st e et eevee e 2-16
Editor Keypad...........cciiiiiiiiiiiiiieie et 2-18
FIBIS oo 2-26
Prompts and Repliescvciiviiiiiiriiiiiiiiiiniennieieeee e ee e e 2-28
CHECK EIOrS ...ttt e 2-30
Userdisk SCreen.......ccccveeeiiiiieceie e 2-34
Deleting, Moving, and Copying Text........cccocciieieiiiiiieineeen. 2-40
Locations of TL/1 Programsccccooieviiieeniire e, 3-3

Program SCrEEM.......cccceeiei ettt eeee e e snrr e e e e 3-6

Block Structure of TL/1 Programs.........cccccveiivieviieiciinnenneenn 3-8

A Practice TL/1T Programccooovevveeieieeeeceeeeee e 3-10
TL/1 Check Dialog Windowccooevvven 3-14
Lower Half of TL/1 Check Dialog Windowccoevvveeennn.n. 3-14
Results of the Practice Program (test101)ccovvvivvinnnrnnnninnns 3-17
Debugger Screen EXample.......ccooveervceeivieirienecinssneinesienens 3-18
TL/1 Compiler Dialog Window.........ccccoveiieicciiiiieeieeeeeeee e 3-23
Lower Half of TL/1 Compiler Dialog Window.............ccccocvvernnne. 3-25
Persistent Variables Model.........cooooeriivcciiiiniiieecreee e 3-44
Persistent Variable Set Program Examplecccccvvvveeeeeenn. 3-47
TL/ BIOCK TYPES ceeeitiieiir ettt ee e, 3-56
Program Structure EXampleucvvvvevimviiieniiiiiinneeennveeenennn 3-58
Window Coordinate Systemsc.ccevveeviviiiiiiier et 3-74
Pod-Related Commands......... ettt bt e et tbe e e anes 3-77

Figure Title Page

3-17: Fault Detection for RAM TestS........cccccveeevneeeeiiiineee e 3-89
3-18: 1/0 Module and Probe Commands, by Category...................... 3-94
3-19: 1/0 Module and Probe Commands, Alphabetized.................... 3-95
3-20: Setup for External Synchronizationcceceevveeeeeeeeeeeeennn, 3-102
3-21: Pattern Driving EXample.........ccoceevvceeivcienie e 3-113
3-22: Raising and Handling a Fault Conditionc.oeeeeeennnen. 3-118
3-23: Example of a ProgramwithHandlers..............ococvvvveiiiiniinnnenn. 3-120
3-24: Locations of Fault Condition Handlers...........c.ccecveenierverennnnne. 3-122
3-25: Alternative Actions for Unhandled Faults.............cceeeeeeueennnn... 3-125
3-26: Termination Status when Handling Fault Conditions................ 3-128
3-27: Termination Status when Exercising Fault Conditions.............. 3-129
3-28: Editor Display of the HELP Libraryoevevevemeeeeemenenenenanrnnns 3-131
3-29: A Typical INDEX File......covieiiereeecteeeeerese s 3-132
3-30: Commands Used to Communicate Between TL/1 and GFl........ 3-135
3-31: Stimulus Program Called From GFl.........ccocovviviininiiinieeeeen 3-137
3-32: Typical Steps for Stimulus Programs..............ccovvveveveeevevennneees 3-139
3-33: GFI Called from a TL/1 Program...........cceeevvnieriessreiseeeieeeneesne 3-142
4-1: Debugger Screen EXample..........ccceveiviiiviiciiieiieneninsnneesonnes 4-3
5-1: Example UUT Circuit with Faultccocoovnmmneeniinin i, 5-4
5-2: The Basic GFl AlgOorthm.......ccccovviiieiiieiie e 5-6
5-3: Benefits of Probing Inputs before Qutputs..........ccoevvvvrevrnnnne 5-9
5-4: Related Inputs and Their Prioritiesccoviveveeree i nrcniiinnenn. 5-11
5-5: Priofity PiNS....cooooiiiiiiirrr e e e 5-13
5-6: Feedback LOOPS.......cccooorriirieicieeer s rcieiene e s 5-15
5-7: How GFI Uses the Database and Stimuliccccccccvvvreennnen. 5-20
5-8: Standard Part Libraryccccooovveveveieiiieiis i eeee e 5-23
5-9: SIP Part DesCrptiON......cccooveevvercrceiriinieieeeeeeireeeeeseesnees e 5-25
5-10: DIP Part DesCrplion.........ccceeeeeeeviereeeeeccrereenee e e 5-26
5-11: Specifying Pin Functions in a Part Description............cccceeen. 5-29
5-12: 2114 Part Descriptionccccocevcviirireieees i cecrrereerees e viaees 5-33
5-13: 4034 Part Description.........ccoeeeieiiiiiiieeeieieeeirer e 5-36
5-14: Pull-Up Resistor Part Description...........ceevvvvvrvieniierenereiernnenn, 5-39
5-15: 7420 Part Description..........cccoiveiiiiiiiiivmnriininmierirenenernaeienns 5-41
5-16: Reference Designator List (REFLIST)....cccovvvviiiiniiiiinirieeen, 5-43
5-17: Editing the Reference Designator List..........c.ccocovieerniiininnn, 5-45
5-18: Node List (NODELIST).....cceoiiieieiit e 5-47
5-19: Bus-Master (*master) Example.........ccccccovciveiieniinniieineneens 5-49
5-20: Editing the Node List............cccoveiiveiiiiniiininiii s snana 5-51
5-21: Stimulus Program (€Xt_SYNC).....ccccccvvrreeeriiiiveresicinnineeeisnreninns 5-53
5-22: Multiple Signal Sources for One Nodecccoevevvivvevrinennn. 5-57
5-23: Stimulus Program {(POd_SYNC)ceveeriiirerriireeiiiiner e e ee e e, 5-58
5-24: Stimulus Program Response File (addr_out)cccccvvvviennn, 5-61

Figure Title Page

5-25: MORE Command Response File..............cceeeeeiiiiininiicennnn, 5-66
5-26: Stable and Unstable Response Timing............cccecevevieeccninnnnee. 5-71
5-27: Marginal Response TimiNg............ooeeeereeniiiviriieeececsiienernnnnnnas 5-73
5-28: Merging Signatures Exampleccccceveevininininnin i, 5-75
5-29: Example LEARN Session {(Screen 1).........ccceeeeviiiieivvivnnnnnnnn, 5-79
5-30: Example LEARN Session (Screens 2 And 3)......ccccevevveenennne. 5-80
5-31: Example LEARN Session (Screens 4 And 5)..........cccceeenneeeee. 5-82
5-32: A Signal with Timing Variation............cocecvvereeirecccccie e, 5-84
5-33: The GFI Offset WINdOWooeeiriieiiiniiiieececccccccccninie, 5-87
5-34: Selecting an Offset.....cccoeeiriiiiii i, 5-95
5-35: GFI Stimulus Program that Sets an Offset.............ccccccooieienie 5-98
5-36: Compiled UUTFIlES.......coovvvveeiiii et 5-100
5-37: Information Displayed After a Successful and Unsuccessful

(07T ¢/ o 11 PR 5-103
5-38: Statistical Summary Display fora UUTcoovvveiiiriciinininnnnnnnn, 5-111
5-39: Pin Coverage Display fora UUTococeiiiniiiniie e, 5-115
5-40: GFI User-Interface Example Commands............cccceeeveeveeeenenn, 5-119
5-41: GFI User-Interface Example Recommendations....................... 5-121
6-1: Terminal Emulator Screen Examplec.cecevevveveeeeiniiininnenn.. 6-3
6-2: Keyboard - Control SEqUENCES.........ccuvmerriieiriiiirieeieeeieeeeeeenn, 6-6
6-3: Keyboard - Escape Sequences........ccccovviivicvinienenninenn e cennne. 6-7
6-4: Host to 9100A Connections - XON/XOFF Control.................... 6-13
6-5: Modem to 9100A Connections - XON/XQOFF Control................ 6-14
6-6: Host to 9100A Upload Connections - Clear to Send Control..... 6-15
6-7: Host to 9100A Download Connections -

Clearto Send COoNntrolccooviveiiiieeiiie e 6-19
7-1 CADTIANS PrOCESS ... viveeiieeeeriieeiieeee e e ectieaeeeee e e sreereaaasennns 7-3
7-2 Part Alias File EXaMPIEScocoevieiviireiieirr e 7-11
7-3 Regular Expression Charactersccocccvveeeeerieiireceieceene, 7-16

xi

Where Am I?

: A description of the parts of the
Getting 9100A/9105A, what they do, how to
connect them, and how to power up.
Automated How to run pre-programmed
Operations test or troubleshooting
Manual procedures.
|
Technical How to use the 9100A/9105A
User's keypad to test and troubleshoot your
Manual Unit Under Test (UUT).
g |
o e How to design test or troubleshooting
Applications procedures for your Unit Under Test
Manual UuT ,
(UUT). [

) How to use the programming station '
Progr aT/’g;’eJ asl with the 9100A to create automated test ‘
or troubleshooting procedures.
TL/1 A description of all TL/1 commands
Reference arranged in alphabetical order for 3
Manual quick reference. i

xiii

Section 1
Overview

By writing TL/1 programs, you can integrate a wide range of
operations that use and expand on the built-in functions of the
9100A/9105A. The amount of time you invest in creating
programs pays off in increased efficiency for test and trouble-
shooting operations. This manual describes 9100A/9105A
programs and how to create them using the programmer's
interface on a 9100A. For a summary of each TL/1 command
and its syntax, refer to the TL/1 Reference Manual.

If you have written programs before, you will find programming
on the 9100A to be similar to other programming you have
done. If you have no previous programming experience, you
will find the 9100A system to be easy to learn, although you
may want to refer to a programming text for help in
understanding some of the fundamental programming principles
used.

Before you begin to program, you will want to familiarize
yourself with the operation of the 9100A/9105A and with the
proper functioning of the circuit boards you wish to test so that
you can define the tasks you want your programs to perform.

1-1

1-2

The remaining sections of this manual are organized in the
following order:

2.

Editor - The physical programming environment.
You learn how you use the programmer's interface to
create, modify, and store programs and other
information.

Overview of TL/1 - A guide to the features of the
TL/1 programming language. TL/1 is a structured
language specifically designed for convenient use in
developing test and troubleshooting routines.

Debugger - The 9100A facility for fine tuning a
program. Much of programming effort is devoted to
verifying that a program does what it is supposed to
do. The debugger is an aid to this process.

Guided Fault Isolation (GFI) - How to program the
system to perform Guided Fault Isolation. The GFI
troubleshooting feature can be customized for your
UUT designs.

Terminal Emulator - How to use the programmer's
interface as a remote terminal. This feature is useful
for transferring information between the 9100A and
other computer systems.

CAD Translator - How to use the 9100A to
download a CAD system output file and to convert it

into the proper format for use with the
9100A/9105A.

Glossary - Definitions of commonly used terms.

An index is provided at the end of the manual for reference.

Section 2

Editor

INTRODUCTION 2.1.

With the editor, you create, store, or change the data and
programs required for testing and troubleshooting with the
9100A/9105A. The editor follows the userdisk organization
shown in Figure 2-1. A "userdisk" is the formatted storage
space on a physical disk (the hard disk or a floppy disk)
allocated for user-accessible information. Each physical disk
incorporates a userdisk, which can contain data and programs
for one or more UUTs. To provide additional userdisks, you
add more floppy disks.

2-1

USERDISK ORGANIZATION 2.2,

2-2

A userdisk consists of the following:

Userdisk Text Files: Files that can contain any text.

These files are used for information which is not specific
to just one UUT (Unit Under Test).

UUT Directories: Directories that include all test

programs and Guided Fault Isolation (GFI) information
for a single UUT.

Program Library: Stores programs that can be used by
all UUTs.

Pod Library: Contains pod descriptions. Each
description includes a database for the pod and sometimes
special TL/1 programs to be used with the pod.

Part Library: Stores descriptions of different types of
components.

Help Library: Contains the text of the operator's
keypad help information.

Figure 2-1 summarizes the organization of a userdisk. Each of
the items listed above is described in more detail starting below.

Userdisk Text Files - Operator's instructions or program
documentation that is associated with more than one UUT can be
stored in userdisk text documents. Userdisk text files may also
be written to or read from by a TL/1 program.

T 14 Weiboig
L# ww_mxm._. uondiasaq 1sI79poN pajiduo)y
red 1nn nn
L9 oseqeieq Y ssiodsay o
. : 14 Weaboid
0198, pajdwos %mm_%wmo nn
WwesBos
m%m_ mm.uom 14 weibold aseqRIRq
paidion Palejog-pod pod
weibol,
me__anon_ 14 Wesboig
7 T Kseaqn Areign
W m%wmwms uondiosag uondiiasaq
I8H Jed Aeigr] pod
ﬁ q 1# hoypang [EXIERCIN
fieig fieigry e Aleigr] nn e
diey ved pod wesbolg
st Addojoson

104810 pieH Y0016

ion

t

Userdisk Organiza

Figure 2-1

2-3

2-4

UUT Directories - Each UUT directory includes the
following items:

¢ Programs for testing or troubleshooting.
® Stimulus program response files.

. A node list (NODELIST).

® A reference designator list (REFLIST).
® Part descriptions.

d A compiled database (GFIDATA).

® UUT text files.

® Test vector files.

A program is used to test the functionality of an area of the UUT
(or of the whole UUT.) Programs are also used in GFI to
stimulate an individual node.

A stimulus program response file contains the correct data
measurements that result from the application of a stimulus
program to a particular node. In a complete UUT directory,
each stimulus program is paired with a response file. GFI uses
one or more stimulus programs and response files to determine
whether a node is good or bad.

The node list describes all the interconnections of the UUT.
Each UUT directory contains only one node list. The node list is
used by GFL.

The reference designator list contains names which represent
devices on the UUT. With this list, you assign a unique name
and a part description to every device on the UUT. Each UUT
directory contains only one reference designator list.

A compiled database contains stimulus program responses,
reference designators, part descriptions, and the node list
converted to a form that the GFI program can use for isolating
faults. You cannot edit a compiled database. Stimulus
programs themselves are not compiled into the database. You
must copy them separately whenever you copy a compiled
database to another disk.

A part description contains a description of a component, such
as a 7400 quad NAND gate or a resistor. The part descriptions
are used by GFL

UUT text files may be used either to describe the UUT or the
tests, or to contain source notes about programming. UUT text
files also may be written to or read from by a TL/1 program.

In addition, UUT text files are manipulated by the READ
BLOCK and WRITE BLOCK commands entered at the
operator's keypad. And, UUT text files can be deleted using the
MAIN MENU key on the operator's keypad.

Test vector files are used to describe the test vectors to be driven
out by a vector output I/O module. For more information, refer
to the Vector Output 1/0O Module Manual.

Program Library - The program library usually contains
programs that perform frequently used operations that are not
UUT specific. Unlike the programs in individual UUT
directories, these programs can be called (invoked) by any other
program on the userdisk. Storing these programs in the
program library, rather than in a UUT directory, avoids
duplicating the same program for every UUT that uses it.

Pod Library - The pod library contains pod descriptions.
Each of these descriptions contains a database describing the
pod. For some pods, the pod description also contains special
TL/1 programs that are used with the pod.

2-5

Part Library - The part library consists solely of part
descriptions. A "part description" contains a description of a
component, such as a 7400 quad NAND gate or a resistor. The
part library is shared by all the UUT directories on the same
userdisk so that a part description does not have to be duplicated
for each UUT that uses that part. '

Help Library - The help library contains the help messages
associated with fault messages that appear on the operator's
display. The help messages are text files. There is one file
called INDEX in the help library which maps fault names with
help text.

Creating or Changing Directories or Files

You create and change directories and files through the editor.
The operations you can perform with the 9100A editor are
context sensitive (they depend on what you are editing). When
the EDIT key on the operator's keypad is first pressed, the
userdisk screen appears on the monitor. If you direct the editor
to a particular UUT directory, library, or userdisk text file, the
editor commands change to match the type of the item selected: a
directory, library, or text file, for example.

When accessing files, the editor follows the userdisk organ-
ization shown in Figure 2-1. For example, if you are currently
editing the node list of UUT directory #1 and want to perform an
operation on a program of UUT directory #2, you can follow
these steps:

1. Quit editing the node list.

2. Quitediting UUT directory #1.

3. Now you are at the userdisk level. Type in the name
of UUT directory #2 and select its type.

4. Type in the name of the program and select its type.

This type of procedure (and a short-cut method) is described in
the heading "Entering and Exiting the Editor" located in Section
2.

PHYSICAL ENVIRONMENT 2.3.

This section describes the physical tools used to edit the contents
of the userdisk. Your 9100A must be equipped with a monitor
and keyboard to enable editing. The connections are described
in Getting Started. The monitor displays information from the
editor. The keyboard includes an ASCII keyboard, which you
enter text through, and an editor keypad and softkeys (function
keys), which you enter commands with (see Figure 2-2).

2-7

Num Caps Scroll
Lock Lock Lock
- - -

e LEELEELELERTE
IWERTIYIUII Iolpl(l
o G G O O
ZXICIVIB|N1M|<I?I?

’

Sc Fd

Begin Line

Figure 2-2: Programmer's Keyboard

2-8

@

‘ 3
. K
-

Monitor Display 2.3.1.

'The monitor's display contains 24 lines by 80 columns. When
you first enter the editor by pressing the EDIT key on the
operator's keypad, this display is divided into areas called
windows as shown in Figure 2-3.

The contents of these windows vary according to what you are
editing:

¢ Information Window: In Figure 2-3 the editor is
operating on a userdisk screen, so the information window
contains information such as the name and description of
the userdisk, the write-protection status of the disk, and
the amount of space available.

o Edit Window: The edit window lists the contents of the
userdisk, organized by categories.

Commands to manipulate windows are described later in this
section under "Window Commands."

When you are editing a directory (such as a UUT directory or
the part library), the edit window lists the items in the directory.
For example, when you view a userdisk directory, the edit
window lists the UUT directories, userdisk text files, the part
library, the pod library, the program library, and the help library
(press the Scroll Forward key to see this item in the userdisk
directory). In this case, you cannot move the cursor into the edit
window nor can you turn the information window off, -

When you are editing an item that is not a directory (such as a
program or a node list), you can move the cursor into the edit
window, and you carn turn the information window on and off
(by pressing the Info key on the programmer's keyboard).

2-9

Information Window

NAME: T T 18,39,

DESCRIPTION:
STARTUP UUT: PROGRAM: DISK PROTECTED: WO

PRESS A COMMAND KEY OR HELP KEY
DIRECTORY OF /HDR (USERDISK)
Units Under Test {(UUT}:
ABC

Text Files (TEXT):

Part Library (LIBRARY):
PARTLIB

Pod Library (LIBRARY):
PODLIE

Program Library (LIBRARY):
PROGLIB

FI=R=1F 4)
REMOVE SAVE FORMAT COPY TERM STVE

2-10

Edit Window

Figure 2-3: Windows in the Userdisk Screen

i
I\

Three other windows can appear on the display:

Help Window: This window, which is controlled by

the Help key on the programmer's keyboard, contains one
line of text that describes the type of information required
at the cursor location. The window also contains a
variable amount of reference information depending on the
type of the item being edited. The window appears in the
lower portion of the display (see Figure 2-4). When you
turn the help window on, the cursor moves into the
window allowing you to search or scroll through the help
message. To move the cursor to its original position
outside the window, press the Help key to turn the
window off.

Messages Window: This window displays
asynchronous messages that are generated by the 9100A.
The messages window covers the entire display area
(monitor) and appears as a blank window if there are no
messages to display. You can turn the messages window
on and off by pressing the Msgs key. The Scroll Lock key
stops and starts the addition of new messages.

Fault Window: This window is used to display a fault
message that is generated by a TL/1 program, either by a
stimulus program or by the debugger. When you turn the
window on, the cursor moves into the window allowing
you to scroll through the complete fault message.

DISK FREE: 18,398,976 BYTES
DESCRIPTION:
STARTUP LUT: FROBRAM: DISK PROTECTED: NO

PRESS A COMMAND KEY OR HELP KEY

DIRECTORY OF /HDR (USERDISK)

rQescription of user disk {opt}

GETTING STARTED (use down arrow key to read HELP)
Press the Edit key to create a new UUT directory.
Try This:

Press Help to remove this window then:
Press Edit, type in BOARD and Press Return Twice (selects “UUT" file type)

Figure 2-4: A Userdisk Screen with Help Window

2-12

- The top line and two bottom lines of the display are reserved for
() the following information as shown in Figure 2-5:

Status Line: This displays the name (pathname) and
type for the item you are editing. The status line also
displays the line number of the cursor location. If you
make changes, the status line displays a note to remind you
to save the changes before you quit editing.

Softkey Numbers Line: This displays the softkey
numbers (F1, F2, . . ., F10) above the softkey labels.

Softkey Labels Line: This displays the labels for the
ten softkeys. You press softkeys to perform editor
commands. The softkey labels change according to the
commands that are available. When fewer than ten
commands are available, some of the labels remain blank.

Some commands require that you enter information (the
name of a program, for example). Pressing a key for one
of these commands causes a prompt line to replace the
softkey labels, and the cursor moves to the line so you can
type in whatever is requested.

The softkey labels line is also used to display messages
that pertain to the status of disk operations, such as
"SAVING. . ." and "LOADING . . ." messages.

If you enter inappropriate information, an error message
replaces the softkey labels on the softkey labels line. Press
the Return key after you read the error message to restore
the softkey labels on the screen.

2-13

~——— Status Line

NAME: FDR

DESCRIPTION:

Wi

DISK FREE: 18,398,976 BYTES

STARTUP WUT:

PROGRAM: DISK PROTECTED: NO

Units Under Test (UUT):
ABC

Text Files (TEXT):

Part Library (LIBRARY):
PARTLIB

Pod Library (LIBRARY):
PODLIB

PRESS A COMMAND KEY OR HELP KEY
DIRECTORY OF /HDR {USERDISK}

Program Library (LIBRARY):
PROGLIB

=17

F4 F
COPY TERM STYLE

———— Softkey Labels Line

Softkey Numbers Line

Figure 2-5: Status Line, and Softkey Numbers and Labels Lines

ASCIl Keyboard 2.3.2.

The ASCII keyboard (see Figure 2-6) includes keys for all
ASCII characters. In addition, the following keys perform
special functions:

Shift: When pressed at the same time as another key, the
Shift key causes the shifted (upper) value of the key to be
typed.

Caps Lock: This key affects only alphabetic keys and
causes these keys to type upper-case letters. Press the
Caps Lock key again to turn off the feature. The indicator
lamp on the key turns on when Caps Lock is active.

Ctrl: When pressed at the same time as another key, the
CTRL key causes the corresponding control sequence
(CTRL-C, for example) to be typed. The CTRL key is not
used during editing.

Scroll Lock: As new messages appear at the bottom of
the messages window, previous messages scroll up and
off the screen. Pressing the Scroll Lock key stops the
scrolling so that messages do not disappear. Pressing the
Scroll Lock key again unlocks the display and allows
scrolling to resume. The indicator lamp on the key turns
on when Scroll Lock is active.

Arrow Keys: These keys move the cursor in the
indicated direction. The Back Space key is identical to the
left arrow key.

Delete: The Delete key (marked with a large X) removes
one character to the left of the cursor and moves the cursor
one character to the left.

Tab: This key is used when editing programs, node lists,
and text files. When pressed, the Tab key causes spaces to
be inserted up to the next tab stop. Tab stops are located
every eight columns.

Field Select: This key is active only when the cursor is
located at a selectable field. The selectable field will be
highlighted. To scroll through the various selections, press

K

ASCII Keyboard

Figure 2-6

2-16

the Field Select key. To scroll backwards through
previously viewed selections, hold down the Shift key
while pressing the Field Select key.

Escape: This key is not used during editing. If you press
this key during editing, you will hear a beep.

Break: This key is not used during editing. If you press
this key during editing, you will hear a beep.

All keys except the Return key and the Escape key repeat when
held down.

Editor Keypad 2.3.3.

The editor keys shown in Figure 2-7 perform the following
commands:

Edit: This key lets you edit a new item. For example,
when you are editing a UUT directory and instead want to
edit a response file, you press the Edit key. The editor
responds by prompting for a file name and a file type.

Quit: This key lets you quit editing at the current level and
return to the next higher level. For example, if you are
editing a node list and press the Quit key, the editor returns
to the UUT directory. You also press the Quit key to
cancel a prompt.

NOTE

You may avoid repetitive quitting through
higher levels by holding down the Shift key
while pressing the Quit key. In this case,
control immediately returns to the operator’s
keypad. When you subsequently press the
EDIT key on the operator’s keypad, the
editor resumes with the file or directory from
which the Shift-Quit was issued.

2-17

Sc Fd
0 .

Begin Line End L

Softkeys (Function Keys)

Figure 2-7: Editor Keypad and Softkeys

2-18

. Msgs: This key turns the messages window on and off.
® Help: This key turns the help window on and off.

¢ Info: This key turns the information window on and off.
It is active only when you are editing a file.

¢ Beg F (Begin File): This key moves the cursor to the
first character or field of the file.

g End F (End File): This key moves the cursor to the last
character or field of the file.

® Sc Fd (Scroll Forward): This key scrolls the display
up 20 lines, moving the bottom line to the top of the edit
window.,

® Sc Bk (Scroll Backward): This key scrolls the display
down 20 lines, moving the top line to the bottom of the
edit window. If fewer than 20 lines exist before the
currently displayed lines, the display is scrolled until the
first line of the file appears and the cursor will stay on the
current line.

® Begin Line: This key moves the cursor to the first
character or field of the current line. It is active only when
the cursor is in the edit window or information window.

. End L (End Line): This key moves the cursor to the

last character or field of the current line. It is active only
when the cursor is in the edit window or information

window.
Softkeys (Function Keys) 2.3.4.
Ten keys labeled F1, F2, . . . F10 (see Figure 2-7) are

designated softkeys because their functions are determined by
the editor software. The labels that appear in the softkey labels
line of the display specify the function for each key that is active.

2-19

ENTERING AND EXITING THE EDITOR 2.4.

2-20

The monitor and programmer's keyboard provide the
communications interface to the 9100A editor. When you use
the editor, you cannot troubleshoot with the 9100A since the
operator's keypad and display are inactive for the duration of
your editing session.

To invoke the editor, press the EDIT key on the operator's
keypad. The 9100A checks for the presence of the
programmer's interface; if the interface is connected, the
information window and edit window for the HDR userdisk (on
the hard disk) appear on the display. From this point on, you
enter commands from the programmer's keyboard.

Initially you are editing the userdisk on the hard disk drive
(called the HDR userdisk). Press the Edit key to edit either the
DR1 userdisk (floppy disk drive) or any item displayed for the
HDR userdisk. A prompt appears to let you enter the name of
the items and its type (USERDISK, UUT, etc.). If the name
and type match an existing item, the information is retrieved
from the userdisk and displayed. Otherwise, the editor creates a
new (blank) item with the name and type you have specified.

If you are familiar with the organization of the userdisk, you can
direct the editor to a low-level item immediately (rather than by
editing successively lower levels). To do this, enter the full
pathname of the item you want to edit. For example, to edit the
program VIDEO_TEST in the UUT directory MAIN_BOARD
on the DR1 userdisk, enter /dr1/main_board/video_test as the
name of the item to edit.

If you have made changes to the item you are currently editing
and you press the Edit key, the editor will prompt you for the
name and type of the next item to be edited. Then the editor
prompts you to determine whether you want to save the changes
made to the original item.

To finish editing, press the Quit key. If you have made
changes, the editor prompts you to determine whether to save
the changes. Once you answer this prompt the editor returns to

G

S

the next higher level. For example, if you quit editing a node
list, the editor returns to the UUT directory. If you quit editing
the UUT directory, the editor returns to the userdisk. Finally, if
you quit editing the userdisk, the editor returns control to the
operator's keypad.

NOTE

You may avoid repetitive quitting through
higher levels by holding down the Shift key
while pressing the Quit key. In this case,
control immediately returns to the operator's
keypad. When you subsequently press the
EDIT key on the operator's keypad, the
editor resumes with the file or directory from
which the Shift-Quit was issued.

DISK UTILITIES 2.5.

Utilities operate on whole entities: programs, node lists, or
UUT directories, for example. These commands are all invoked
by pressing softkeys when the appropriate labels are displayed:

S SRR -

COPY: This command performs several operations. When

you copy a directory, you copy all the files contained in
that directory.

Copy files and directories - You can copy an item to a new
item of the same type on either the same userdisk or a
different userdisk, with the same name or a new name. If
the name and type of the destination you specify matches
an existing item, you are prompted about whether to
overwrite the existing item.,

Create a backup disk - You can copy an entire userdisk to a

different disk. If a userdisk already exists on the
destination disk, it is erased before copying.

2-21

2-22

Convert files to and from text - If you copy a non-text file
to a new file of the type TEXT, you create a text document
equivalent of the file. If you copy a text document to a
new file of any type except TEXT, the text in the original
document must meet all the format and syntax
requirements for the new type; otherwise, the conversion
is not allowed. These operations allow you to transfer files
to and from a different system with a different editor.

Print files and directories - If you print a directory, the
print format of that directory depends on the setting of the
STYLE softkey. If it is set to BRIEF, a list of the
directory files is printed. If it is set to LONG, a list of the
directory files, file sizes, and file modification dates and
times are printed. You specify a portname (either /PORT1
or /PORT2, whichever the printer is connected to) as the
name and PORT as the type of the item to copy to. The
9100A automatically converts the item to text and sends it
to the printer port. This operation can be used to print any
file or directory.

REMOVE: This command removes the item or items you
specify. You cannot remove the item that you are currently
editing.

FORMAT: This command operates on the floppy disk in
disk drive /DR1. The hard disk cannot be formatted.
FORMAT clears the current contents of the disk, prepares
it for storing files, and inspects it for physical defects.
You use the FORMAT command either to erase all files
from a disk or to prepare an unused disk for storing files.
If the specified disk is already formatted, you are prompted
as to whether you want to overwrite the information.
Otherwise you are prompted to verify that you really want
to format the disk. If a physical defect is found on the
floppy disk, the FORMAT operation terminates, returning
an error message.

SAVE: This command writes the current state of the item
you are editing, including the name and write protection
status, to the disk and leaves the cursor at its current
position. For example, if you create a new text document
and type in some text, you enter the SAVE command to
save the text on the disk. If there is not enough free
memory on the disk to save the file, an error message

O

memory on the disk to save the file, an error message
appears. To save the file, insert another disk and
temporarily save the file on the new disk. Then after
making room on the original disk, the file can be copied
back onto it.

If the file on the disk is write-protected (indicated by a
YES in the WRITE PROTECT field of the information
window), you are prompted whether you want to
overwrite the disk version of the file. Because the prompt
is based on the disk version of the file, if you do not want
to be prompted, change the write-protection field of the
information window to NO and save the file. Thereafter
you will not be prompted. '

INFORMATION ENTRY 2.6.

You enter all editor commands by pressing a softkey or an editor
keypad key; you do not need to memorize control key (Ctrl)
sequences or type command names. When the editor requires
more information, it displays a prompt and you type a reply.
When the information that you can enter is limited to a small
number of choices, the editor provides the choices for you to
select from.

Text Entry 2.6.1.

You insert text at the cursor location by typing characters from
the ASCII keyboard. When you press the Return key, the line
of text is created. If you type beyond the 80 character width of
the display, the editor automatically inserts a continuation
character (>) at the end of the display line, moves the cursor to
the beginning of the next display line, and inserts a second
continuation character (<). The continuation characters connect
one display line to the next, resulting in one continuous text line
containing more than 80 characters.

The Tab key inserts spaces. Tab stops are fixed at every eighth

column. Pressing the Tab key advances the cursor to the next
tab stop. Tabs are not allowed when filling in a field.

2-23

The Delete key moves the cursor left and erases the character in
that location. Character deletion wraps to the previous line; if
you press the Delete key when the cursor is at the beginning of a
line, the carriage return after the previous line is deleted, and the
two lines are joined. You cannot delete past the beginning of a
field.

You cannot enter control characters in the text. If you type a
control character during editing, you will hear a beep, and the
input will be ignored by the editor.

Fields 2.6.2.

2-24

In programs, text files, and node lists, you can enter characters
anywhere within the display. In response files, part
descriptions, and other items (such as the information window),
cursor movement is limited to specific areas called fields. A
simple way to determine the presence of fields is to move the
cursor with the right arrow and left arrow keys. If there are no
fields, the cursor moves one character at a time; if there are
fields, the cursor jumps from one field to the next.

There are two types of fields; an example of each is shown in
Figure 2-8:

Fill-in: This field appears as a long blank, similar to

those on a paper form. You type information into the field
from the keyboard. When you press the Return key, or
move the cursor out of the field, or enter the SAVE
command, the information you have typed is entered.

The number of characters you can type in a fill-in field is
limited by the size of the field.

Selectable: This field can only be filled by a limited
number of choices. When you move the cursor to a
selectable field, the cursor disappears and the entire field is
highlighted. After you move the cursor to the field, press
the Field Select key to see the available choices. You can
think of the choices as being attached to a knob that you
turn by pressing the Field Select key until the choice you
want appears. To review the selections in the opposite
direction, hold down the Shift key while you press the
Field Select key.

When editing an item in the edit window that contains fields,
lines are automatically inserted when you attempt to move down
from the last line. Lines can also be inserted above the last line
by using the INSERT softkey. When the INSERT softkey is
pressed, a new line is inserted beneath the line where the cursor
is located. Lines can be deleted by using the DELETE softkey.
When the DELETE softkey is pressed, the line where the cursor
is located will be deleted.

2-25

ey
Lo
-
£
el

JTTITTS

ma

PIH RELATED INPUT|PINS

2-26

—— Fill-in Field ———— Selectable Field

Figure 2-8: Fields

C

Prompts and Defaults 2.6.3.

A prompt is a word or phrase that appears on the prompt line.
Whenever a prompt appears, the cursor is moved to the prompt
line so that you can type a reply. After you type the reply, press
the Return key. The bottom line of Figure 2-9 shows two
prompts with appropriate replies.

Frequently, a prompt appears with the reply already provided.
The editor retains the reply that you entered the last time it
displayed this prompt and offers this reply as a default. To enter
the default, press only the Return key. To enter another reply
instead, type it in; the default disappears with the first character
you type. Once you press the Return key, the command is
issued and the new reply becomes the default. To cancel a
prompt, press the Quit key. The softkey labels reappear and no
operation is performed.

The 9100A editor recognizes the asterisk (*) as a wildcard in
your replies to many of its prompts. The most common use of
the wildcard is while entering names, either to save typing or to
specify several names at once.

For example, if you want to remove all programs that begin with
the letter R from a UUT directory, you edit the UUT directory
and use the REMOVE command, specifying R* as the name and
PROGRAM as the type. In this case, the wildcard provides a
way to identify many names at once.

You can include several wildcards in a single name. For
example, *TEST* can represent the name BITTESTS. You
cannot include a wildcard in any but the last item of a pathname;
for example, the pathname /DR1/TK*/EXAMPLE is not valid.

2-27

'976 BYTES

DESCRIPTION:
STARTUP LUT: PROGRAM: DISK PROTECTED: NO

PRESS A COMMAND KEY OR HELP KEY
DIRECTORY OF /HDR {(USERDISK)

Units Under Test (UUT):
ABC

Text Files (TEXT):

Part Library (LIBRARY):
PARTLIB

Ped Library (LIBRARY): b
PODLIB Wl

Program Library (LIBRARY):
__PROGLIB

Figure 2-9: Prompts and Replies

2-28

Q CHECKING FOR ERRORS 2.7.

The 9100A editor operates on structured information. A node
list, for example, contains only pin names. A program contains
only TL/1 statements. Because of this structure, the editor can
detect errors in the information you enter.

The types of errors that the editor detects depend on what you
are editing. For example, when you are editing a node list, the
editor checks that everything you enter has the form of a pin
name. For a program, the editor checks that the text you enter
conforms to TL/1 language rules.

The editor and debugger check for syntax and run-time errors as
follows:

¢ An editor line-check detects syntax errors as you type. If
you try to move the cursor off a line that contains a syntax
error, you will see an error message displayed on the
message line. You must change the line to correct the
error; otherwise, you cannot move the cursor off the line,
you can neither save the file nor quit editing.

If you are editing a TL/1 program or a node list, you can
turn the line-checker ON or OFF by pressing the CHECK
softkey while holding down the SHIFT key. The current
status of the line-checker is shown in the status line. The
line checking mode cannot be changed until the current line
is correct.

® The CHECK command in the editor performs an overall
check by searching for syntax errors that cannot be
detected by the line-check, such as missing block
delimiters. When it discovers an error, the editor inserts
an error message after the erroneous line. If you correct
the error and reissue the CHECK command, the message
disappears. (You can also delete the message yourself,
using regular editor commands.) The CHECK command
is applicable only for programs and node lists. A display
resulting from a CHECK command is shown in Figure
2-10.

2-29

— Result of missing end if statement following the end loop statement.

Result of subtracting a string from a numeric.

Figure 2-10: CHECK Errors

2-30

o

G

When the CHECK command is used on TL/1 programs,
you are prompted to determine if you want to use the
current set of options to the checker. If you select NO, a
dialog window listing the various options is displayed.
Use the up and down arrow keys to select various items,
and the Field Select key to choose the value of the entry.

NOTE

CHECK messages begin with a series of plus
signs (+) so that you can locate the messages
quickly using the SEARCH command.

The debugger checks for run-time errors. With the

debugger, you can view and alter the values of variables at
intermediate stages of program execution. By tracing the
values of variables during execution, you can determine if
a program performs as intended. See Section 4,
"Debugger," for more information.

: FILE AND DIRECTORY NAMES 2.8.

Every file and directory has a name. A file or directory name
must meet the following requirements:

It consists only of letters, digits, underscore characters

"non

_", and periods ".".
Its first character is either a letter or digit.

It has no more than 10 characters.

File and directory names are not case-sensitive; "TEST1" is the
same name as "testl”. Two files or directories can have the
same name if they have different types. For example, a program
named TEST]1 is distinct from a text document named TEST]I.
Two files of the same type can have the same name if they are in
different directories. The program DEMO in the program library
does not conflict with the program DEMO in a UUT directory.

2-31

EDITING A USERDISK

2-32

The names PARTLIB, PROGLIB, PODLIB, and HELPLIB can
only be given to a parts library, program library, pod library,
and help library, respectively. For example, you cannot name a
program PODLIB.

The names of directories that are limited to one per userdisk or
files that are limited to one per UUT directory are predetermined.
These items and their names are:

Items limited to one per userdisk

Directory Name Type

user disk (hard drive) HDR USERDISK

user disk (floppy drive 1) DR1 USERDISK

user disk (floppy drive 2)* DR2 USERDISK

part library PARTLIB LIBRARY

program library PROGLIB LIBRARY

pod library PODLIB LIBRARY

help library HELPLIB LIBRARY
Items limited to one per UUT directory

File Name Type

reference designator list REFLIST REF

node list NODELIST NODE

* Onthe 9105A only.

2.9.

An example of the edit window and information window
formats of a userdisk screen is shown in Figure 2-11.

The edit window shows the various directories and files on the
userdisk.

e

G

The information window includes the following fields:

NAME: The editor displays the name of the userdisk in
this field. The name is one of the following:

HDR - The hard disk
DR1 - Floppy disk drive 1
DR2 - Floppy disk drive 2 (9105A only)

DESCRIPTION: Enter text describing the contents of the
userdisk in this field.

STARTUP UUT: Enter the name of a UUT on the

userdisk. This UUT directory automatically becomes the
current UUT directory when the system is powered up
with this userdisk.

PROGRAM: Enter the name of a program in the startup
UUT directory. This program is automatically executed
when the system is powered up with this userdisk.

DISK FREE: The amount of disk space that is still
available. This field cannot be edited.

DISK PROTECTED: The editor fills in this field that

indicates whether the physical disk is write protected. This
field is not the same as the write-protection field for files.
Disk write protection is accomplished in hardware
(physically), whereas file protection is accomplished in
software.

To edit any item in the userdisk, press the Edit key and enter the
name of the item. The edit and information windows for any
directory are similar to the userdisk screen, except that the sub-
directory names are different and no STARTUP UUT nor
PROGRAM field appears.

2-33

TNfE: FOR ' FREE: 18,338, 976 BYTES

DESCRIPTION:
STARTUP LUT: PROGRAN: DISK PROTECTED: NO

PRESS A COMMAND KEY OR HELP KEY
DIRECTORY OF /HDR (USERDISK)

Units Under Test (UUT):
ABC

Text Files (TEXT):

Part Library (LIBRARY}:
PARTLIB

Pod Library (LIBRARY):
PODLIB

Program Library (LIBRARY):
PROGLIB

REMOVE SAVE FORMAT COPY TERM STYLE

|

Figure 2-11: Userdisk Screen

2-34

C

S

CURSOR COMMANDS 2.10.

Four arrow keys, six editor keypad keys, and three softkeys
control the position of the cursor. These keys help you make
changes quickly.

The arrow keys move the cursor a character at a time:

Up Arrow and Down Arrow: The up arrow key moves the
cursor up one line. The down arrow key moves the cursor
down one line.

If you move the cursor up when it is on the first line of the
display, the display scrolls down a line. If you move the
cursor up when it is on the first line of the file, the 9100A
beeps. If you move the cursor down when it is on the last
line of the display, the display scrolls up a line. If you
attempt to move the cursor down when it is on the last line
of the file, you will hear a beep and the cursor will remain
in its current location.

Right Arrow and Left Arrow: The right arrow key moves
the cursor one character to the right or, if the item contains
fields, one field to the right. The left arrow key moves the
cursor one character to the left or, if the item contains
fields, one field to the left. If there are no characters or
fields in the direction you move the cursor, you will hear a
beep.

The following editor keypad keys change the position of the
Cursor:

Begin Line: This key moves the cursor to the first
character of the current line. If the file contains fields, the
cursor moves to the first character position in the left-most
editable field of the current line.

End L: This key moves the cursor to the last character of
the current line. If the file contains fields, the cursor

2-35

2-36

moves to the first character position in the right-most
editable field of the current line.

Sc Fd (Scroll Forward): This key scrolls the display
up 20 lines, moving the bottom line to the top of the edit
window. The cursor moves to the first character of the top
line.

Sc Bk (Scroll Backward): This key scrolls the
display down 20 lines, moving the top line to the bottom
of the edit window. The cursor moves to the first
character or first field of the bottom line. If fewer than 20
lines exist before the currently displayed lines, the display
is scrolled until the first line of the file appears and the
cursor will stay on the current line.

Beg F (Begin File): This key moves the cursor to the
first character of the file. The text is scrolled back to the
first screen if necessary. If the file contains fields, the

cursor moves to the first character position in the first
editable field.

End F (End File): This key moves the cursor to the last
character of the file. The text is scrolled forward to the last
screen if necessary. If the file contains fields, the cursor
moves to the first character position in the last editable
field.

The following softkey commands change the position of the
cursor:

GOTO: This command, which is active when the GOTO
softkey label appears, moves the cursor to the beginning of
any line. When you press the GOTO softkey, the editor
prompts you for the line number:

GOTO LINE
Lines are numbered consecutively from the top of the file.

If you enter the number of a line that does not exist or is
not editable, the 9100A displays an error message.

O

SEARCH: This command, which is active when the

SEARCH softkey label appears, moves the cursor to the
next occurrence of a character string you specify at the
prompt:

SEARCH FOR

The character string may be a word, part of a word, or
several words, up to 20 characters in length. The search is
case sensitive; the upper-case "A", for example, is

",

different from the lower-case "a".

If the editor does not find the character string between the
cursor position and the end of the file, the search wraps
around to the beginning of the file and continues. If the
editor does not find the character string anywhere in the
file, it displays an error message. The editor retains the
string you enter and offers it as a default the next time you
issue the SEARCH command.

The searchstring can contain one or more wildcard
characters (*). For example, if you specify MOD*, the
editor finds the next occurrence of MOD followed by any
character: MOD2, MODULE, or MODE, for example. If
you want to search for a literal asterisk (*), enter two
asterisks (**) in the search string. For example, to search
for the expression 2*3, you would enter the search string
2**3, By entering two asterisks, the editor interprets the
character sequence as a literal asterisk rather than as two
wildcard characters.

To reissue your last search (and avoid re-typing the search
string), press the Shift key and hold it down while
pressing the SEARCH sofitkey.

REPLACE: This command, which is active when the

REPL softkey label appears, moves the cursor to and
replaces the next occurrence of a character string you
specify at the prompt:

REPLACE WITH

2-37

The string is replaced with a second string that you
specify. The search is performed exactly as for the
SEARCH command. The replacement string cannot
contain a wildcard.

To reissue your last replace command (and avoid re-typing
both the search string and the replace string), press the
Shift key and hold it down while pressing the REPL
softkey.

NOTE

Programs and node lists may contain check
messages. These lines are not editable. When
the string to be replaced is found in one of
these lines, the cursor will be positioned at the
beginning of the string but the replacement will
not be carried out.

WINDOW COMMANDS 2.11,

2-38

The following keys control the display of windows that cover
the edit window:

Msgs: This key turns the messages window on and off.
Help: This key turns the help window on and off.

Info: This key turns the information window on and off.
This key is only active when you are editing a file.

FAULT (softkey): This softkey turns the fault window

on and off. The FAULT softkey is active when editing a
stimulus program response file or when using the
debugger.

O

G

BLOCK COMMANDS 2.12.

The MARK, CUT, YANK, and PASTE commands are available
for deleting, moving, and copying blocks of text within a file or
between two files. The editor maintains two buffers for
temporary text storage. By moving text to and from these
buffers, you can save time and effort while making changes to
existing text. Figure 2-12 illustrates how you delete, move, and
copy text.

The following commands are active only when their softkey
labels appear; in addition, the CUT and YANK commands are
active only when you use the MARK command:

L MARK: This command identifies a block of text for use

with the CUT or YANK command. You can mark a set of
contiguous characters or contiguous lines, but not a
combination of both (you cannot mark one and a half lines,
for example). One end of the block is the cursor position
when you press the MARK softkey. The other end of the
block is the cursor position when you press the CUT or
YANK softkey. You can use the arrow keys or the cursor
movement keys on the editor keypad to move the cursor
forward or backward. As you move the cursor, the block
is highlighted in inverse video, and a message in the status
line reminds you that you are in the process of marking a
block.

To cancel the MARK command and turn off the block
marking, press the MARK softkey again. The block
marking also disappears when you press the CUT softkey
or YANK softkey.

¢ CUT: This command deletes the marked block from the
display and moves it into one of the temporary buffers,
replacing the current buffer contents. Pressing the CUT
softkey alone moves the block into buffer #1; pressing the
Shift key and the CUT softkey at the same time moves the
block into buffer #2. After the CUT command is

2-39

e :
1. MARK
2. CUT
1. MARK
2. CUT

3. Move Cursor

4. PASTE
I Buffer | Copy:

1. MARK

2. YANK

3. Move Cursor
4. PASTE

Figure 2-12: Deleting, Moving, and Copying Text

2-40

G

performed, the softkey labels line displays a message
indicating how many characters or lines were affected.

® YANK: This command copies the marked block into one

of the temporary buffers, replacing the current buffer
contents; the text remains on the display. Pressing the
YANK softkey alone copies the block into buffer #1;
pressing the Shift key and the YANK softkey at the same
time copies the block into buffer #2. After the YANK
command is performed, the message line displays how
many characters or lines were affected.

® PASTE: This command copies the contents of one of the
temporary buffers into the display just before the cursor
position. Pressing the PASTE softkey alone copies the
contents of buffer #1; pressing the Shift key and the
PASTE softkey at the same time copies the contents of
buffer #2. The PASTE command does not alter the
contents of the buffers.

To move text between two files, simply edit the file containing
the text to be copied and use the MARK and CUT (or YANK)
commands to copy the text block to a buffer. Then edit the
destination file and PASTE the text block from the buffer into
the desired location.

GUIDED FAULT ISOLATION COMMANDS 2.13.

The following commands are associated with the LEARN
operation, which gathers response data from a good UUT and
stores it in a stimulus program response file. The LEARN
operation involves executing a stimulus program, gathering
signatures, recording level history and count data, and storing it
for future use. Section 5, "Guided Fault Isolation," describes
these commands in detail.

2-41

The following commands apply only to stimulus program
response files:

¢ LEARN: This command gathers a set of node response
data from a known-good UUT while a stimulus program is
executed. It generates the necessary operator prompts,
executes stimulus programs, and measures the response
data.

4 SELECT: This command selects the data in the field at the

cursor location as data to be saved in the response file.
You view the learned information and decide what should
be saved.

® OFFSET: This command determines the offset delay at

which clocked measurements should be taken with the
probe and I/O module.

The following commands operate only on UUT directories:

¢ SUMMARY: This command analyzes the compiled
database and generates a summary describing the GFI
coverage of the UUT. For more information, see the
"Guided Fault Isolation (GFI)" section of this manual.

The following command operates only on UUT directories,
POD directories, and the PROGLIB directory:

L COMPILE: This command selects the TL/1 GFI or UFI
compiler.

2-42

The following command operates only on programs and node
lists:

® CHECK: For programs, the CHECK command looks for

TL/1 syntax errors that are not detected by the line syntax
check. For node lists, the CHECK command detects
duplicate pin occurrences. Error messages are inserted in
the program or node list after the line in which the error is
detected.

NOTE

CHECK messages begin with a series of plus signs
(+) so that you can locate the messages quickly using
the SEARCH command.

TERMINAL EMULATION COMMANDS 2.14.

CAD

The following command performs terminal emulation
operations:

¢ TERM: This command makes the 9100A programmer's
interface act as a terminal. You can connect another
computer through an RS-232 port on the 9100A
mainframe. For more information on this command, see
the "Terminal Emulator” section of this manual.

TRANSLATOR COMMANDS 2.15.

The following command performs translations of CAD system
output files into a format acceptable by the 9100A/9105A.

¢ CAD: This command translates a CAD system output file
into the format required by the 9100A/9105A for a
reference designator list (REFLIST) and a node list
(NODELIST). For more information on this command,
see the "CAD Translator” section of this manual.

2-43

2-44

U

Section 3
Overview of TL/1

GETTING STARTED WITH TL/1 PROGRAMS 3.1.

You may find it helpful to refer to the TL/I Reference Manual
for the specifics of command syntax while reading through this
overview of the TL/1 language.

Features of TL/1 3.1.1.

TL/1 is a structured programming language specifically designed
for convenient use in developing test and troubleshooting
routines. Its BASIC-like statements are easy to learn and use.
Command vocabulary is based on the vocabulary of the test
environment, minimizing language learning time. For most
commands, default entries are available to simplify the process
of writing test and troubleshooting programs.

There are pre-programmed functional tests for the bus circuitry,
RAM, and ROM. TL/1 also includes stimulus and response-
gathering capabilities both at the microprocessor bus and at up to
160 nodes at any place on your UUT. In addition, there are
fault-handling provisions which allow you to choose the
appropriate action for any expected fault on your UUT.

TL/1 is capable of many other functions. It can efficiently
manipulate numeric, string, and floating-point data. It can
perform input and output operations on the operator's display
and keypad, the monitor and programmer's keyboard, the two
RS-232 ports, the IEEE-488 port, and text files on the disk
drives.

Locations of TL/1 Programs 3.1.2.

TL/1 programs may exist in three places in the userdisk.

¢ UUT Directory - In each UUT directory, there are
programs that perform testing or stimulus actions for only
that type of UUT. The most likely starting point for
writing a first program would be in a UUT directory.

¢ Program Library - General purpose programs which might
be useful for more than one UUT may be stored in the
program library.

® Pod Library - The pod library contains special TL/1

programs, which are used to support various pod
activities.

Figure 3-1 shows each of these locations for TL/1 programs. A
diagram and description of the complete 9100A/9105A file
structure is contained in "Userdisk Organization" located in
Section 2 of this manual.

Bringing Up a Program Screen 3.1.3.

TL/1 programs are entered at the programmer's keyboard using
the 9100A editor. The editor understands the structure of TL/1
statements and checks the syntax of each line after you type it in.

To write a TL/1 program in a UUT directory, first enter the
editor by pressing the EDIT key on the operator's keypad. This
transfers control to the programmer's keyboard and monitor and
puts an editor's screen on the monitor. Then, enter the name for
the UUT and the name for the program. There are two ways to
enter these names (methods A and B appear on the following

pages):

9100A Hard Disk or
Microfloppy Disk

Program Pod
Library Library

Library TLA
Program #1

uuT
Directory #1 1}

Pod Descrip-
tion #1

Pod-Related
T

UuT TN
Program #1

Program #1

Figure 3-1: Locations of TL/1 Programs

3-3

A. Using a complete pathname:

1.
2.

Press the Edit key on the programmer's keyboard.

Enter a disk name, a UUT directory name, and a
program name together as shown in the example
below, and then press the Return key:

/hdr/abc/test101

("hdr" is the disk name, "abc" is the UUT directory
name, and "test101" is the program name.)

Select PROGRAM as the TYPE by pressing the
Field Select key as many times as necessary to bring
the word "PROGRAM" into the TYPE field. Then,
press the Return key.

B. Moving down the file tree (see Figure 3-1):

1.

The userdisk screen should now be displayed (see
Figure 2-3).

If any other screen is displayed, press the Quit key
on the programmer's keyboard and wait for the
monitor's display to change. If the new display is
not the userdisk screen either, repeat this step until
the userdisk screen does appear. If you press Quit
too many times, control will return to the operator's
interface and you will need to press the EDIT key on
the operator’s keypad to get back into the editor.

Press the Edit key on the programmer's keyboard.

Enter a UUT directory name (for example, "abc™)
and press the Return key.

4. Select UUT as the TYPE by pressing the Field Select
key as many times as necessary to bring the word
"UUT" into the TYPE field. Then press the Return
key. The requested UUT directory will be displayed
on the monitor.

5. Press the Edit key again and enter a program name
(for example, "test101") followed by a Return.

6. Select PROGRAM as the TYPE by pressing the
Field Select key as many times as necessary to bring
the word "PROGRAM" into the TYPE field. Then,
press the Return key.

Using either method A or method B to enter the UUT name and
program name will cause the program screen to appear on the
monitor. See Figure 3-2 for an example of a program screen for
a new program.

Pressing the Info key shows the information window, which
displays the space available on the disk and the size of the
program file. In addition, you can enter a short description for
the program and change the program's write protection status.
Pressing the Info key again will turn the information window
off. Section 2 of this manual, "Editor," explains more about this
information window.

The first statement of the program must be the program
statement and it must use the same name (<program name>) as
the one used for the program file name. The last statement of the
program must be an end statement, which is either end program
or end <program name>, where the program name is the same
name as the program file name.

3-5

Fle=fo==F3 s 8. = 10
G0T0 SAVE DEBUG PRSTE REFL| SEARCH CHECK

3-6

Figure 3-2: Program Screen

You can exit the program by pressing the Quit key, which
moves you up one level in the file tree to the UUT directory. Or
you can do a quick exit to the operator's keypad and operator's
display by pressing the Shift key and the Quit key at the same
time. If you do this, when you enter the editor the next time,
you will be returned to the same screen from which you did the
quick exit.

Structure of a TL/1 Program 3.1.4.

Figure 3-3 shows that TL/1 is a block-structured language in
which executable commands are preceded by any necessary
definition blocks.

There are four types of definition blocks that may be placed
within a TL/1 program block:

¢ Declaration blocks: Used to define the type and default

value of variables. These definition blocks begin with a
declare statement.

g Function definition blocks: Used to define a function,
which may be called from any place within the program
block that defines that function. These definition blocks
begin with a function statement.

d Fault condition handler definition blocks: Used to define a
block which is called when a UUT fault condition is
detected. These definition blocks begin with a handle
statement.

® Fault condition exerciser definition blocks: Used to define
a TL/1 block which is called when a UUT fault condition
is detected and the LOOP key on the operator's keypad is
pressed. These definition blocks begin with an exercise
statement.

3-8

Figure 3-3: Block Structure of TL/1 Programs

C\; Writing a TL/1 Program 3.1.5.

Suppose you type in the program shown in Figure 3-4. To
make the task easier, you might wish to leave out the
exclamation points and any text that follows on a line, since the
exclamation point is used to indicate the beginning of a
comment.

If you make a mistake, you can move the cursor to the right of
the offending characters (or character) and press the delete key
once for each character to be deleted. Or, to delete the character
under the cursor, you can press the Ctrl key and the Delete key
(marked with an X) at the same time. More powerful editing
features are described in Section 2, "Editor," of this manual.
These features include deleting, moving, and copying either
blocks, lines, or parts of lines.

You may have noticed that the 9100A is persistent about syntax
errors and will not let you off a line that contains such an error.
This feature is for your protection, but it might occasionally lead
to frustration if the necessary correction is not immediately
obvious. The 9100A provides three solutions for this situation.

The first solution is to press the Help key on the programmer's
keyboard to bring up a help window. Pressing the SEARCH
softkey and entering the TL/1 command that has given you
difficulties will position you in the help file where there are
examples of this command. You can use the Scroll Forward,
Scroll Backward, up arrow, and down arrow keys, as well as
the SEARCH softkey to move around in the help file. When
you are finished with the file, press the Help key again and the
help window will disappear.

program testlOl ! The program name must match
! the program file name

ch = open device "/term2", as "output™ ! Opens a channel for

! output to the monitor
k=1
loop while k <= 12

First line of a loop block
to loop twelve times.

print using "The number is #@", k ! print using allows printing
a formatted column of
decimal numbers

Wait. 800 milliseconds
before displaying a new
! number

wait time 800

k=k+1
end loop

Last line of the loop bloc

print Send a blank line
print "THAT'S ALL FOLKS!"™

wait time 5000

Allows time to view the
Messages Window

close channel ch Close the channel ch

Could also be written as:
! end testlOl

end program

Figure 3-4: A Practice TL/1 Program

3-10

The second solution is to press the Begin Line key to move to
the beginning of the line and type in an exclamation point. This
makes the whole line a comment, and the syntax checker doesn't
care what you have written. This can be of value if you need to
save the program and come back to it later.

The third solution is to disable the line syntax checking by
simultaneously pressing the Shift key and the CHECK softkey.
The status line at the top of the CRT displays the current line
checking mode as either '[CHECK is ON]' or '[CHECK is
OFF]'. The line checking mode cannot be changed until the
current line is correct.

Using the CHECK Function 3.1.6.

As you write each line, the editor checks the line for syntax
errors. After you have entered the whole program, you need to
check the program for errors that can be detected only by
comparing each line to the other lines in the program. The
CHECK softkey initiates this action.

CHECK identifies the same errors that the TL/1 compiler finds.
Using CHECK has the effect of embedding the compiler error
messages into the program. Both CHECK and the compiler have
options to control the type of warning messages that are
generated. They share a dialog window that controls the option
settings. If you change an option for the CHECK function, the
compiler options will automatically be changed to match.

This section describes how to check TL/1 programs from the
editor.

Check procedure
The following two procedures are used to check a TL/1 source
program:
® Checking programs by using the current options.
® Checking programs by changing the current options.

Use the first procedure if the current option settings are correct.
Use the second procedure if you want to change the options, or

if you want to see what the options are. Each time the editor is
started, the options are set to system default values that report
only errors, and no warnings.

Check procedures (using current options)

1.

Press the CHECK softkey. Observe the prompt, USE
CURRENT TL/1 COMPILER OPTIONS.

After the USE CURRENT TL/1 COMPILER OPTIONS
prompt, use the Field Select key to select YES. This
prompt controls the type of optional warning messages
that are generated when a program is checked.

Press the Return key to begin checking. Observe the
message "CHECKING ..." on the bottom of the monitor
screen. When the check operation is complete, a
message like "3 errors or warnings detected" is displayed
on the bottom of the monitor screen. In addition, the
CHECK function inserts error messages into the
program text. Each error message appears in bold and
begins with the characters "+++". If you cannot see any
of these errors because the program is longer than one
screen, the editor search command can be used. Press
the SEARCH softkey and enter "+++" as the search
string as shown below:

SEARCH FOR i+

If the CHECK function does not find any errors, the
message "0 errors detected” is displayed.

Check procedures (by changing current options)

1.

Press the CHECK softkey. Observe the prompt, USE
CURRENT TL/1 COMPILER OPTIONS.

After the USE CURRENT TL/1 COMPILER OPTIONS
prompt, use the Field Select key to select NO, then press
the Return key.

Observe that the TI/1 Compiler Options Dialog Window
has appeared. This window is shown in Figure 3-5.
Observe the prompt, "Generate standard warning
messages”. Use the Field Select key to select YES or
NO. This prompt controls whether the checker will
generate optional warning messages. Warning messages
are precautionary only, and advise of TL/1 constructs
that may be bugs.

Use the Field Select key to select YES. Observe that
when YES is selected, five additional prompts appear in
the lower half of the dialog window, as shown in Figure
3-6. Press the down-arrow key to move the cursor to
the first prompt.

Observe the five prompts, Undeclared formal
parameters, Implicit variables, Uninitialized global
variables, and Unused global variables. These prompts
can be turned on and off independently, and control
whether the checker will generate warning messages
when it detects these conditions in a program. Use the
Field Select key to select YES or NO for each prompt.
Use the Return key or arrow keys to move between the
prompts. The section entitled "Using the Compiler
Options for Diagnostics” further on in Section 3
describes each prompt in detail.

Setting each prompt to YES instructs the checker to
check for each of these conditions, and results in the
maximum number of warning messages.

3-13

Figure 3-5 : TL/1 Check Dialog Window

Figure 3-6: Lower Half of TL/1 Check Dialog Window

5. When all five prompts have been responded to, press the
CHECK softkey (F10) to begin the check. Observe the
message "CHECKING ..." on the bottom of the monitor
screen. When the check operation is complete, a
message like "3 errors or warnings detected"” is displayed
on the bottom of the monitor screen. In addition, the
CHECK function inserts error messages into the
program text. Each error message appears in bold and
begins with the characters "+++". If you cannot see any
of these errors because the program is longer than one
screen, the editor search command can be used. Press
the SEARCH softkey and enter "+++" as the search
string as shown below:

SEARCH FOR tt+

If the CHECK function does not find any errors, the
message "0 errors detected" is displayed.

Using the Shift-CHECK Function 3.1.7.

As you enter each line, the editor checks it for syntax errors.
This line syntax checking can be disabled for TL/1 programs and
node lists. To disable the line syntax checking, edit a program
and simultaneously press the Shift key and the CHECK softkey.
This key combination will toggle the line checker ON and OFF.
The current mode is displayed in the status line at the top of the
monitor as shown below:

[CHECK is ON] or [CHECK is OFF]

When CHECK is ON, the line syntax is checked when you
leave a line that you have modified. An error message is
displayed if the line contains a syntax error, and you cannot
move the cursor off the line until the syntax error has been
corrected.

When CHECK is OFF, the line syntax is not checked. In this
mode, you can create syntactically incorrect lines. These line
syntax errors are not reported until you compile the program or
use the CHECK function.

The line checking mode cannot be changed until the current line
is correct.

3-15

Using the Debugger 3.1.8. U

Once the program passes the CHECK function, it is ready to be
tested to make sure it does what you intend. The 9100A
debugger can be used for this purpose. The debugger allows
execution of TL/1 programs from the programmer's keyboard,
setting of software break points, single-stepping, and setting or
examination of variables.

To use the debugger on the program you have entered, press the
DEBUG softkey, then the EXECUTE softkey, and finally the
Return key. If no errors are found the program will run to
completion and the following message will appear at the bottom
of the monitor:

Complete, status = PASS <PRESS RETURN>

The results for the program testl0] are displayed in the
messages window (see Figure 3-7). After program completion,
the messages window disappears; however, you can toggle the
messages window on and off with the Msgs key to review the
results of your program.

If an error is found, the debugger displays an error message on
the bottom line of the monitor display and the debugger will
place the cursor at the line where the error was found. As an
example, you might want to try editing the next-to-last line of
program test101 by changing the channel name to chl. Then,
run the debugger to see how it handles errors.

Pressing the Quit key exits the debugger and returns to the editor
to allow you to make any changes necessary in your program.

After you fix any errors that the debugger catches automatically,
you return to the debugger for its main use: making sure that
your program does what you intend. To single-step your
program while in the debugger, move the cursor down to the
first executable line and press the BREAK softkey. Figure 3-8
shows what the debugger display will look hke for the example
program you entered.

O

The number is
The number is
The number is
The number is
The number is
The number is
The number is
The number is
The number is
The number is 10
The number is 11
The number is 12

: THAT’S ALL, FOLKS!

W00 S O U B Lo N

Figure 3-7: Results of the Practice Program (test101)

3-17

progras tesilfl
BRK; ch= open device /iermZ”, as “output’
k=1
loop while k{=12
print using “The number is #&\nl”, k
wait time BEO :
k=h+l
end loop
grint
print “THAT'S ALL FOLKS!®
wait {ime 5000
close channel ch

m
=
=™
=
=
=
(=]
]
B

fE=F3 = F1¢
SET SEARCH FAULT

Fi = F5 = 6

STEP MEAT CONT FYECUTE INIT BREAK SHOM

3-18

Figure 3-8: Debugger Screen Example

~ Now, when you press the EXECUTE softkey and press the
Q Return key, the program will stop at the indicated breakpoint and
make it possible to step through your program using the STEP
softkey. Other debugger actions available when stopped in the

middle of a program are explained in Section 4, of this manual.

Compiling a TL/1 Program 3.1.9.

9100A systems with version 6.0 or later software execute
compiled TL/1 programs. You can let the 9100A automatically
compile the programs when you execute (this is the default
system behavior), or you can precompile your programs from
the editor.

Precompiling programs has the following advantages:

® Programs which are precompiled will start executing
faster.

® Precompiling programs lets you find all the compilation
errors at one time during the program development
process, rather than finding the errors one-at-a-time during
program execution.

¢ Precompiling programs allows you to distribute object
programs rather than TL/1 source programs. An object
program is an execute-only program that cannot be
modified.

NOTE

It is strongly recommended that you precompile all
your TL/1 programs before executing them.

The following paragraphs describe how to precompile TL/1
programs from the editor.

Compiling Procedures

3-20

The following procedures allow you to compile a TL/1 source
program (type PROGRAM) into an object program (type
OBJPROG). Each step includes a discussion of the available
options. Two procedures are provided:

® Using the Current Compiler Options.
¢ Changing the Current Compiler Options.

The TL/1 compiler has two types of options:

® An option to save the compiler error messages to a text
file.

® Options to control whether the compiler generates warning
messages about certain types of TL/1 constructs.

The option settings are shared by the TL/1 compiler and the TL/1
CHECK function.

Warning messages attempt to identify features of the TL/1
program that are likely to be bugs or to be wasteful. For
example, one option causes the compiler to generate a warning
message about variables that have not been assigned a value
before they are used. Warning messages are precautionary only,
and a program which generates warning messages can be
executed.

Each time the editor is started, the compiler options are set to
system default values that report only errors, and no warnings.
If you change the compiler options, your choices become the
new default values that will be used throughout the edit session.

Use the first procedure if you want to compile a program using
the current compiler options. Use the second procedure if you
want to change the compiler options, or if you want to see what
the current compiler options are.

Compiling procedure (using current options)

1.

Edit the UUT, PROGLIB, or POD that contains the
programs that you want to compile. Observe that a
directory is displayed, and that the program (or

programs) to be compiled are listed in the directory under
PROGRAM.

Press the COMPILE softkey. Observe the prompt,
COMPILER TYPE.

After the COMPILER TYPE prompt, use the Field Select
key to display TL/1 in the Reply window, then press the
Return key. Observe the prompt, COMPILE NAME.

After the COMPILE NAME prompt, enter the name of
the TL/1 program to be compiled. More than one
program can be selected using the * wildcard. For
example, F* compiles all the programs that begin with F.
Entering just * compiles all the programs. Press the
Return key after entering the COMPILE NAME
selection. Observe the prompt, USE CURRENT TL/1
COMPILER OPTIONS.

After the USE CURRENT TL/1 COMPILER OPTIONS
prompt, use the Field Select key to select YES. This
prompt controls the type of optional warning messages
that are generated when a program is compiled. It also
controls whether the compiler messages are saved in a
test file or simply written to the monitor display.

Press the Return key to begin the compile. Observe that
the compilation process begins with the display "TL/1
Compiler” on the monitor display. As the compiler
generates error messages, these are displayed on the
monitor. Use the Scroll Lock key to stop the messages
from scrolling off the monitor screen. Compilation is
complete when the message "Press Msgs key to
continue" appears. To embed the compiler error and
warning messages directly into the program, edit the
program and press the CHECK softkey. For more
information, refer to "Using the CHECK Function" in
Section 3.

3-21

Compiling Procedure (by changing current options)

3-22

1.

Edit the UUT, PROGLIB or POD that contains the
programs that you want to compile. Observe that a
directory is displayed, and that the program (or

programs) to be compiled are listed in the directory under
PROGRAM.

Press the COMPILE softkey. Observe the prompt,
COMPILER TYPE.

After the COMPILER TYPE prompt, use the Field Select
key to display TL/1 in the Reply window, then press the
Return key. Observe the prompt, COMPILE NAME.

After the COMPILE NAME prompt, enter the name of
the TL/1 program to be compiled. More than one
program can be selected using the * wildcard. For
example, F* compiles all the programs that begin with F.
Entering just * compiles all the programs. Press the
Return key after entering the COMPILE NAME
selection. Observe the prompt, USE CURRENT TL/1
COMPILER OPTIONS.

After the USE CURRENT TL/1 COMPILER OPTIONS
prompt, use the Field Select key to select NO.

Observe that the TL/1 Compiler Options Dialog Window
has appeared. This window is shown in Figure 3-9.
Observe the prompt, "Save error messages in text file".
During compilation, the compiler error messages are
written to the monitor display. These messages can also
be saved in a text file for later review.

If you want the messages to be saved in a text file, enter
the name of the text file and press the Return key. If a
file by that name already exists, it is deleted.

Figure 3-9: TL/1 Compiler Dialog Window

3-23

3-24

If you do not want to save these messages in a
text file, leave the field blank, and press the
Return key.

Observe the prompt, "Generate standard warning
messages". Use the Field Select key to select
YES or NO. This prompt controls whether the
TL/1 compiler generates optional warning
messages when it compiles a program. Warning
messages are precautionary only, and advise of
TL/1 constructs that may be bugs.

Use the Field Select key to select YES and press
the down-arrow key. Observe that when YES is
selected, five additional prompts appear in the
lower half of the Dialog Window, as shown in
Figure 3-10.

Observe the five prompts, Undeclared formal
parameters, Implicit variables, Uninitialized
global variables, References of unassigned
variables and Unused global variables. These
prompts can be turned on and off independently,
and control whether the compiler generates
warning messages when it detects these
conditions in a program. Use the Field Select
key to select YES or NO for each prompt. Use
the Return key or arrow keys to move between
the prompts. "Using the Compiler Options for
Diagnostics” further on in Section 3 describes
each prompt in detail.

Setting each prompt to YES instructs the
compiler to check for each of these conditions,
and results in the maximum number of warning
messages. When all five prompts have been
responded to, press the COMPILE softkey (F3).

The compilation process begins with the display
"TL/1 Compiler" followed by a list of status and
error messages. Use the Scroll Lock key to stop
the messages from scrolling off the monitor
screen. Compilation is complete when the
message "Press Msgs key to continue"” appears.

G

Figure 3-10: Lower Half of TL/1 Compiler Dialog Window

G

3-25

To embed the compiler error and warning
messages directly into the program, edit the
program and press the CHECK softkey. To
review the compilation messages, edit the text file
specified in step 6 (if applicable).

Using the Compiler Options for Diagnostics

When compiling a TL/1 program, part of the procedure includes
changing the TL/1 compiler options. The compiler has five
options which control the warning messages which can be
issued. These options are:

® Undeclared formal parameters: Warns about

undeclared formal parameters to programs, functions,
exercisers or handlers.

® Implicit variables: Warns about variables declared
implicitly by assigning to them.

¢ Uninitialized global variables: Warns about
uninitialized global variables.

®* References of unassigned variables: Warns about
variables that were not assigned a value before being
referenced (this is the default only for string variables).

¢ Unused global variables: Warns about global
variables that are declared but not used.

3-26

C

Diagnostics emitted during compilation have the following
format:

podtest (5) : warning: variable 'y "' unused
The parts are:
File Name: podtest
Line Number of the Offender: (5)
(Optional) Non-fatal Error: warning:
Error Description: variable 'y’ unused
The following TL/1 program contains some illustrative errors:

program foo (argl, arg2)
numeric argl

string sl

y==3

sl = 3

sl = arg2
end bar

The messages without any option causes the following output:

foo(5): syntax error

foo (6) : operands of '=' have incompatible types

foo(8): warning: END name 'bar' does not match
program name 'foo!

foo(3): warning: variable 'sl' set but not used

foo(2): warning: variable 'argl' unused

A few of the diagnostics above deserve special mention. First,
note that line 6 attempts an assignment of a numeric constant to a
string variable. Where possible, the compiler options verify the
legality of types in all expressions, assignments, etc.

3-27

Next, notice that variable sl is declared as not used. This
warning is issued even though s1 has had a value assigned to it,
in the belief that a variable is not really used unless it is
referenced somewhere in an expression. This is only a warning.

Since the compiler options check for a large number of possible
errors, it is not feasible to illustrate all of them here. It is
important to note that the compiler options cannot find errors that
occur at run-time; for example, expressions that evaluate to out-
of-range values will not be detected. The remainder of these
examples discuss certain key features of the compiler options,
particularly optional diagnostics controlled by the selected
option.

Example of an Undeclared Format Parameter
Warning

This option warns about undeclared formal parameters to
programs, functions, exercisers, or handlers. With this flag, the
test program above, foo, would have an additional diagnostic
generated:

foo(7) : warning: type of argument ‘arg2’
undeclared

Example of an Implicit Variable Warning

3-28

This option turns on diagnostics about variables that are declared
by assigning to them, as opposed to a formal declaration. Most
users will have little use for this particular diagnostic, as such
implicit declarations are supported by the TL/1 language
specification. However, some users prefer to declare all
variables explicitly, and may find this diagnostic useful. For
example, the compiler option generates no diagnostic output for
the following program:

program test2
i=3
test3 (i)

end program

O

However, with this option, the compiler generates the following
diagnostic:

test2(2): warning: 'i' implicitly defined

Another reason to avoid implicit type declarations is that the
compiler option may not always be able to discern the type of a
variable declared this way. The compiler option does not track
the types of values returned by functions and programs, since
there is no explicit support by the language syntax for declaring
this information. Therefore, the following implicit declaration of
the variable foo does not give the compiler option any type
information:

foo = funcl (3)

Suppose the actual execution of the above assignment results in
foo having type numeric. Since the compiler option was not
able to determine foo's type, it will not warn about the
subsequent type mismatch in the following statement:

foo = "foo"

If foo had been declared explicitly, the compiler option would
have caught this error.

Example of an Uninitialized Global Variable Warning

This option turns on diagnostics about uninitialized global
variables. It is incorrect to use a global variable without first
assigning it a value, either via a default value specification in the
declaration or via an assignment statement. TL/1 assigns
reasonable values to uninitialized global variables, which is the
reason why this feature is optional.

3-29

3-30

If this option is not selected, the compiler generates no
diagnostics for the following TL/1 program:

program test3
function fool
declare
global numeric globl
global numeric glob2
global numeric glob3
global numeric glob4
end declare
globl = 3
end fool
function foo2
declare
global numeric globl
global numeric glob2 = 4
global numeric glob3
global numeric glob4
numeric nl
numeric n2
end declare

]
w

nl = globl
nl = glob2
nl = glob3
nl = glob4
nl = n2
n2 = nl

end foo2

fool ()

foo2 ()

end program

With the option selected, the compiler generates the following
diagnostic:

test3(7): warning: global variable 'glob4'
never assigned a value

The compiler does not analyze the control flow of the program to
verify that global variables are actually initialized before they are
used, since this information cannot be determined by the kinds
of static analyses performed by the compiler option. All the
compiler can check is that global variables have been initialized.

Example of a Reference of Unassigned Variables
() Warning '

This option turns on warnings about variables that were not
assigned a value before being used. This behavior is the default
for string variables, so this option actually affects only numeric
and floating variables. For example:

program test4
declare numeric n
declare floating £
declare string s

fool (n)
foo2 (f)
foo3 (s)

end program

When analyzed by the compiler without this option, the compiler
produces the following diagnostic:

test4(7): 's' has not been assigned a value
Q With the option selected, two additional diagnostic lines appear:
test4(5): 'n' has not been assigned a value
test4(6): 'f' has not been assigned a value
test4(7): 's' has not been assigned a value

Example of an Unused Global Variable Warning

This option turns on diagnostics about unused global variables.
For example:

program test5
function fool
declare
global numeric globl
global numeric glob2
end declare
end fool
function foo2
declare
global numeric globl
global numeric glob3

:‘\ numeric nl

3-31

end declare

nl = globl
globl = nl
end foo2
fool ()
foo2 ()

end program

If this option is not selected, no diagnostics are generated by the
compiler for the above program. If the option is selected, the
following two diagnostic lines appear:

test5(5): warning: global variable 'glob2' unused
test5(1l1l) : warning: global variable 'glob3' unused

Example of Built-In Function Checking

The compiler options is capable of checking the use of built-in
TL/1 functions (for example, gfi, podinfo, etc.). With this
information, the compiler is capable of checking semantic
constraints on calls of built-in functions in either positional or
keyword notation.

For positional notation function calls, the compiler checks the
quantity and types of the arguments. The compiler also checks
that it is legal to call the function in positional notation; for
example, gfi may be called only in keyword notation, also
known as slot notation. For example, for the following

program:
program testé6
gfi (3)
read (3,3)

write ("foo", 3)
end program

The compiler generates the following diagnostics:

test6(2): 'gfi' must be called in keyword
notation

test6(3): too many arguments to 'read'

test6(4): argument number 1 to 'write' is the
wrong type

3-32

keyword names, also known as slot names, and types, and
ensures that the grouping of keyword arguments is legal. For
example, for the following program:

:m\ For keyword notation function calls, the compiler checks the

program test?7
gfi fail "foo", status "bar"
gfi accuse 3
clip ref "foo"

end program

The compiler generates the following diagnostics:

test7(2): illegal combination of arguments to
3 TR |
gfi

test7(3): argument ‘accuse' to 'gfi' does not
take a value

test7(4): required argument 'pins' to 'clip' is
missing

Examples of Return Value Chécking

— The compiler also monitors return statements to check that
U functions and programs do not return more than one type, and to
verify that functions and programs that return a value do not also
"fall off the end" without returning a value. For example, for

the following program:

program test8 (arg)
declare numeric arg
if (arg) then
return (3)
end if
return ("foo")
end test$8

The compiler generates the following diagnostics:

testB8(6): warning: 'test8' returns more than
one type

3-33

For the following program:

program test9 (arg)
declare numeric arg
if (arg) then
return (3)
end if
end program

The compiler generates the following diagnostics:

test9(6): warning: 'test9' has RETURN
(expression), and RETURN

This indicates that test9 is in danger of "falling off the end,”
when it has been established that test9 is expected to return a
value (at least in some context).

Examples of Control Flow Checking

The compiler also analyzes control flow to venfy that statements
are reachable. For example:

program testl0
return (3)
foo (3)

end program

generates the diagnostic:

test10(3): warning: statement not reached

Analyses of control flow and return type often interact in ways
that the user should be aware of, especially since return type
diagnostics are sometimes difficult to get rid of if you tend to
return values from inside loops that are guaranteed to terminate
for reasons that are not obvious to the compiler. For example,
the compiler does not warn about "falling off the end" of the
following program:

program testll
if (foo ()) then
return (1)
else
return (3)
end if
end program

3-34

This is because control flow analyses revealed that "falling off
Q the end" was not possible. However, the compiler warns about
"falling off the end" of the following program:

program testl2
declare numeric i
for i = 0 to 100
if (foo (i)) then
return (0)
else if (bar (i)) then
return (1)
end if
next
end program

The compiler generates the following diagnostics:

test12(10) : warning: 'testl2' has RETURN
(expression), and RETURN

In the above example, it is not obvious to the compiler that the

loop will not terminate without returning (assuming that it does).

The simplest way to prevent the compiler warnings in this
O situation is to add a return statement at the end.

The compiler does recognize that infinite loops of the format
loop .. end loop cannot be exited except via goto and return
statements. Thus the compiler does not warn about this
program:

program testl3
loop
if (foo()) then
return (3)
end 1if
end loop
end program

3-35

However, the compiler warns about the equivalent program:

program testl4
loop while 1

i1f (foo ()) then
return (3)
end if
end loop

end program
The compiler generates the following diagnostic:

test14(7): warning: 'testl4' has RETURN
(expression), and RETURN

The compiler does not examine the expression supplied to while
statements for the possibility of ever being false. Therefore, the
way to get the compiler to ignore return types for constructs that
depend on eventually returning from inside an infinite loop is to
use a loop .. end loop block to implement the loop.

Executing a TL/1 Program 3.1.10.

3-36

After being debugged, TL/1 programs are usually run from the
operator's keypad by pressing the EXEC key and entering the
UUT name and program name. Even though the program name
might be in lower-case within the program, the operator's
interface allows you to enter it in upper-case. When you press
the ENTER key, the 9100A/9105A searches for your program.
First it looks in the currently selected UUT directory. If the
program is not there and if there is a pod plugged into the
9100A/9105A, the pod description for that pod is searched for
the program. If the program still isn't found, the program
library is searched.

A TL/1 program can be executed by calling it from another TL/1
program. When one program calls another, the same three disk
locations are searched to find the called program.

N

If the TL/1 program has been pre-compiled, the compiled form
of the program will be executed; otherwise, the source program
will be compiled and executed (the compiled form is not saved
on the disk). In addition, pre-compiled programs that are out-
of-date with respect to their source programs are automatically
recompiled before being executed.

TL/1 Syntax 3.1.11.

Each line of a TL/1 program has up to three pieces, which must
be placed in the following order: label, statement, and comment.
A line in a TL/1 program may consist of a label only, a statement
only, a comment only, or any combination of these. It may also
include none of them (a blank line).

The label is a character string that meets the requirements for a
variable name (see Section 2.1, "Name Conventions," in the
TL/I Reference Manual) and that ends with a colon. A comment
begins with an exclamation point (!); none of the text after this
exclamation point is seen or executed by TL/1.

The TL/I1 Reference Manual gives a complete explanation of
each TL/1 command, including syntax in typed form
(metasyntax) and picture form (syntax diagram). The first pages
of the "TL/1 Alphabetical Reference" section of the TL/I
Reference Manual show the conventions used in the syntax of
TL/1 commands. (

Many TL/1 commands can be written in two forms: keyword
notation and positional notation.

With positional notation, only argument values are entered and
they must be entered in the correct order. No argument values
may be omitted. A TL/1 command written in positional notation
might look like this:

x = getromsig (0,$7FF,SFFFEFFFFF, 2)

3-37

With keyword notation, each argument value is preceded by a
keyword associated with that argument. For example, the
command above could be written as follows:

x = getromsig addr 0, upto $7FF, addrstep 2

In keyword notation, it is much clearer that this command would
gather the signature from ROM starting at address 0 and ending
at hexadecimal address 7FF, using an address step of 2. The
mask argument was not needed in the keyword notation because
the default value of FFFFFFFF was used instead. Keyword
notation is usually preferred because it is easier to read and it
provides better documentation for users who have not written
the programs. Keyword notation also allows default values to
be used with optional arguments. And, keyword notation
reduces the chances of making errors, which could be caused by
mixing up the order of argument values required by positional
notation.

DATA TYPES, VARIABLES, AND EXPRESSIONS 3.2.

Data

3-38

This section discusses the kinds of data that TL/1 can
manipulate, the operators and functions that operate on data, and
how simple variables and arrays are both declared and used.

This section summarizes information presented in Section 2 of
the TL/I Reference Manual.

Types 3.2.1.

TL/1 supports three kinds of data: integer numbers (data type:
numeric), floating-point numbers (data type: floating), and
strings (data type: string). Integer numbers in TL/1 are 32-bit
positive integers which have values from 0 through
4,294,967,295 (base 10) or from 0 through FFFFFFFF (base
16). Floating-point numbers use the IEEE standard for double-
precision floating-point numbers, except that Infinity and NaN
(Not a Number) are not supported. Strings in TL/1 are
sequences which contain from O through 255 ASCII (8-bit)
characters.

C
)

C

Numeric values may be written in either hexadecimal or decimal
notation. Hexadecimal numeric constants must be prefixed with
a "$" character. The hexadecimal characters A through F must
always be written in upper-case. For example, the decimal
number 43 could be expressed as any of the following:

$2B (hexadecimal)
43 (decimal)
String constants are written as a sequence of characters placed

between double quotes:

is a string containing no characters.

" "

abc is a three-character string.

ASCII characters which do not have a printable representation in
strings can be placed in strings by using backslash escapes:

\' is the string quote character.

\nl is the newline character (defines the end of a
line and does not necessarily include a line
feed).

N\ is the backslash character itself.

\HH is the ASCII character corresponding to the

two-digit hex number HH.

Variables 3.2.2.

A TL/1 variable is characterized by:

¢* Name - an identifier by which the variable's value is
known. See Section 2 of the TL/1 Reference Manual for
information on legal variable names.

® Type - numeric, string, or floating.

3-39

3-40

® Value - an initial value, either a number (floating or
numeric) or string, depending upon the variable's type. A
variable has no value until one has been assigned, which is
discussed in a subsequent paragraph.

. Scope - local, global, or persistent. A variable is defined
to be either valid only within an invocation block (local
scope) or valid both within an invocation and outside it
(global or persistent scope). A local variable is accessible
only in the block in which it is defined. For more
information on blocks, see Section 3.3 of this manual and
the sections in the TL/1 Reference Manual covering the
program, function, handle, and exercise commands. A
global variable is accessible in any block that contains a
declare global statement for that variable. Likewise, a
persistent variable is accessible in any block that contains a
declare persistent statement for that variable.

Once a variable is created, its name and type are fixed—only the
value may be changed. The value of a variable is accessed by
mentioning the variable in an expression such as:

print beta

A variable is assigned a new value by writing the variable's
name to the left of an equals sign in an assignment statement:

beta = 4

The variable above, beta, is called a simple variable: it holds
only one value at a time. TL/1 also allows arrays of a single
data type. Arrays may have any number of subscripts, limited
only by available memory. Individual array elements are
referred to by comma-separated subscripts enclosed in square
brackets:

testvec|[l] = SFE0O
uutloc(i, j]

signame[testvec([i], uutloc[i,]]]

Only individual array elements, like those shown in the
examples above, may be used in TL/1 assignment statements,
expressions, or as function arguments.

Variable Declarations

The declare statement declares the name, scope, array, type, and
default value for a single variable. For example, the following
declaration uses only one statement:

declare global string uut_name

TL/1 also allows multiple declarations with a declaration block,
as shown with the following example:

declare
global numeric array [0:9] intr_vec
string 'error message' = "no error"

end declare

Variable declarations using the declare statement may occur in
program, function, handler, and exerciser blocks.

A local variable that is not an array does not have to be declared;
simply assigning a value to it is enough to implicitly declare the
variable. The type of the variable is taken to be the type of the
expression assigned to it.

The table below shows how the different variable attributes
affect valid variable declarations:

Implicit declaration Default value

Variable Scope allowed? allowed?

simple local yes yes
global no yes
persistent no yes

array local no no
global no no
persistent N/A* N/A*

* persistent variables may not be arrays.

3-41

Assigning Default Values to Variables

A default value may be given to a simple variable in a declare
statement by following the variable name with an equals sign
and a value:

declare numeric nr_of pins = 24

declare
string start_msg = "Beginning test"™
numeric pin_mask = $DFE(
floating vcec = 5.0

end declare

Remember that default values may not be assigned to arrays.

Persistent Variables

3-42

TL/1 variable declarations can use an optional persistent
attribute, using the same syntax applicable to global variables.
For example, the following are allowable persistent variable
declarations:

declare persistent numeric n
declare persistent string sl

declare
persistent floating £
end declare

Persistent variables allow TL/1 programs to preserve the values
of certain variables across the execution of several programs.
This is especially useful for programs executed during GFI,
which otherwise would have no convenient way of
communicating variable values among various stimulus
programs.

Persistent TL/1 variables are similar to TL/1 global variables,
except that their values survive execution. However, they are
not in the same "name space” as global variables, so that in the
following TL/1 program, the two instances of the foo variable
actually refer to distinct variables:

program progl
declare persistent numeric foo
function xyzzy
declare global numeric foo
end function
end program

Persistent variables have the same property as global variables in
that synonymous declarations in different functions and
programs refer to the same variable; for example, in the
program:

program prog2
declare persistent numeric foo
function Xyzzy
declare persistent numeric foo
end function
end program
Both declarations of foo refer to the same variable.

Persistent variables may have type numeric, string, or floating.
They may not be declared as arrays. Also, arguments to the
enclosing block (for example, to a function or program) may not
be declared as persistent variables.

The model for implementation of persistent variables consists of
two entities: the persistent variable set and a set of local copies in
the currently running TL/1 program, and a number of operations
for propagating elements of one set to the other. This model is
is shown in Figure 3-11.

3-43

CURRENTLY RUNNING TL/4 PROGRAM

DECLARATION
LOCAL COPIES ASSIGNMENT PERSISTENT VARIABLE SET
INPUT
>

pvi "fooi”
pv1 "foot" pv2 "foo2"
pv3 "foo3"

» DECLARATION

Figure 3-11: Persistent Variables Model

3-44

Certain TL/1 operations retrieve persistent variables from the
persistent variable set, while other operations write them to the
persistent variable set. The set of local copies known by the
TL/1 program is also called the currently active set of persistent
variables.

When a TL/1 declaration for a persistent variable is processed,
the persistent variable set is first checked to see if it contains the
declared variable. If it does, the value is retrieved and used to
set the local copy. If not, the value held by any previously
declared local copy is used. If there is no local copy, then a
default value is assigned. Finally, after the value of the local
copy is established, the variable and its value are written back to
the persistent variable set. If the set did not previously contain
this variable, the write operation adds it to the set.

When a TL/1 operation occurs that assigns a value to a persistent
variable (e.g., input, assignment, for loop variable updating),
the local copy is first updated to the new value. Next, the
variable and its value are written to the persistent variable set. If
the set did not previously contain this variable, the write
operation adds it to the set. In general, the persistent variable set
already contains the variable, since it must have been declared
prior to use in the TL/1 program. However, the persistent
variable set contents may have been reset in the interim as
described in the following paragraphs.

When a TL/1 operation occurs that references the value of a
persistent variable (for example, usage of the value in an
expression), only the local copy is checked. The contents of the
persistent variable set are not used. In particular, if the
persistent variable set does not contain the referenced variable,
the reference does not add the variable back to the set.

The values of all currently active persistent variables can be set
to zero values with the clearpersvars command. clearpersvars
sets all currently active numeric persistent variables to 0, all
currently active floating persistent variables to 0, and all
currently active string persistent variables to "" (the empty
string). Currently active means the set of persistent variables
known so far by the TL/1 program executing the clearpersvars
command (the set of local copies).

3-45

3-46

The currently active set does not include persistent variables with
declarations in the current program that have not been processed,
nor does it include persistent variables installed in the persistent
variable set by some previously executed TL/1 program, but
unknown by the current program. This feature of the
clearpersvars command is essential to hide non-volatile
information in the persistent variable set which is not relevant to
the current application.

For example:

program prog3
declare persistent numeric pnl
declare persistent floating pfl
declare persistent string psl

clearpersvars ()

! pnl is now 0, pfl is now 0.0, and psl is
! now "" in both the local copy set and the
! persistent variable set.

! all other variables in the persistent

! variable set are unchanged.

end program

The set of persistent variables always starts out empty each time
the 9100A/9105A is turned on, and accumulates from that point.

Resetting the 9100A/9105A with the front panel RESET key
does not affect the set.

The persistent variable set is explicitly emptied with the TL/1
resetpersvars command. resetpersvars resets the persistent
variable set to its initial empty condition. An important feature
of this command is that even though the persistent variable set is
emptied, the set of local copies active in a currently running TL/1
program retain their values locally to the execution of the
program. Persistent variables which receive a value or are
declared after resetting the set are added to the persistent variable
set as shown in Figure 3-12.

program progé4

1
! funcl - establishes persistent variables
! pvl...pv4, and assigns them initial

! values

!

function funcl
declare
persistent string pvl
persistent string pv2
persistent string pv3
persistent string pv4d = "food"
end declare

pvl = "fool"
pv2 = "fool2"
pv3 = "foo3"

end function

!
! func2 - resets the persistent variable set,
! then assigns a new value to pv2 and

! accesses the value of pv3.

! the former operation will add pv2 back to

! the persistent variable set, while the

! latter operation will not add pv3.

!

function func2
declare
persistent string pvl
persistent string pv2
persistent string pv3
persistent string pv4
end declare

resetpersvars () ! reset the set of
! persistent variables

pv2 = pv3
end function

(Continued on next page)

Figure 3-12: Persistent Variable Set Program Example

3-47

' e
! func3 - declares pvl again for the first Q&ﬂ)
! time since resetting the persistent

! variable set, thus adding it back to

! the set.

!

function func3
declare
persistent string pvl
end declare
end function

funcl ()
func?2 ()
func3 ()

end program

Figure 3-12: Persistent Variable Set Program Example (cont)

3-48

For the above program, the following describes the sequence of
operations on the set of persistent variables during execution of
the program (assuming that the set of persistent variables is
initially empty):

1.

During the processing of the declarations for
function funcl, the persistent variables pv1, pv2,
pv3, and pv4 are added to the persistent variable
set. By the time funcl returns, assignment
statements to pvl, pv2, and pv3 have set their
values to "fool", "foo2", and "foo3",
respectively, and pv4 has been set to "foo4" by
the default initializer in its declaration.

After executing the resetpersvars command in
func2, the persistent variable set is empty. Note
that even though pv1 through pv4 are declared in
func2, the declarations do not have the effect of
adding them back to the persistent variable set,
since their effect occurs before the resetpersvars
command is executed.

Again, note that even though pv1 through pv4
are removed from the persistent variable set, they
retain their values in the currently running
program. Thus, the value of pvl1 is still "fool",
pv2 is "foo2", etc. If no further operations are
performed on these variables, they disappear on
termination of the program.

After executing the assignment statement:
pv2=pv3

the variable pv2 is added back to the persistent
variable set, since a value was assigned to it.
pv3 was not added to the set, since referencing
the value of a variable formerly declared
persistent is not sufficient to add it to the set.
The value of pv2 is now "foo3".

3-49

4. Since pv1 is declared in func3, it is added back to
the set when the declaration is processed. The
value associated with pv1 is still "fool"

Thus, when the above program terminates, the persistent
variable set contains two variables, pvl and pv2, with values
"fool" and "foo3", respectively.

It is important to note that the clearpersvars function writes new
values to the currently active set of persistent variables. The
effect of the following call to resetpersvars is negated by the
subsequent call to clearpersvars for all persistent variables
known to the currently active program (persistent variables pv1
through pv3):

program prog5
declare
persistent string pvl
persistent string pv2
persistent string pv3
end declare

resetpersvars ()
clearpersvars ()
end program

The previous program has the effect of discarding all other
persistent variables, then setting the values of pv1, pv2, and pv3
to the empty string and installing them as the entire contents of
the persistent variable set.

The Assignment Statement
An assignment statement can have either of the forms below:

variable = expression

array[subscripti, subscript:, ..., subscriptnsl]
= expression

Values can be assigned only to individual array elements, not to
entire arrays.

3-50

C » Passing Arguments

Passing an argument to a program or function is another way of
assigning a value to a variable. The function block uuztest is
defined below followed by an invocation (execute command) of
uuttest:

function uuttest (addr)
declare numeric addr

end function
execute uuttest addr $100

The addr argument for uuttest will be assigned the hexadecimal
value of 100 as part of the invocation process.

Operators 3.2.3.

The TL/1 operators for string, numeric, and floating-point
values are explained in Section 2.4 of the TL/I Reference
Manual; the order in which operators are applied (precedence) is
explained in Section 2.5 of the TL/I Reference Manual. Many
of these operators will be familiar to those with experience using
any high-level language.

TL/1 also provides logical string operators. Certain functions for
the pod and the I/O modules require long sequences of bits
which may take on the values 0 (low), 1 (high), or X
(undefined). TL/1 has provided operators which compute the
and, or, xor, and complement (cpl) of these strings. The least-
significant bit of such strings is defined to occupy the right-most
place in the string. If two strings of unequal length are
combined using a logical operator, the shorter string is extended
to the left (high-order bit positions) with zeros. The operators
themselves produce values as shown in the following table:

3-51

>
S

AandB AorB AxorB cplA

HKRHR—m—mOoOoOo
M= OM O =
HMHXoX—oooo
U P s R e ©
MKHEHEHo—~Xr—o
HXHEHooco—r—r

Expressions 3.2.4.

TL/1 uses expressions to combine data values into new values.
These new values are usually assigned to variables or passed as
arguments to functions or programs. Expressions in TL/1 are
composed of simple variables, array elements, constants,
function invocations, and operators. Some examples of
expressions are:

pinnr a simple variable

maskval []j] an array element

read (SF0) + 4 a function invocation
and addition

read addr S$FO0 - $10 a function invocation
and subtraction

300 a numeric constant

j *x 4 a multiplication
operation

2.5/1E-3 a floating-point division

label + "abc" a string concatenation

which adds the characters
abc to the end of the
string named label.

3-62

Math Functions 3.2.5.

TL/1 provides a number of math functions for floating-point

numbers:

Math Function TL/1 Function
absolute value fabs
square root sqrt
exponential pow
logarithm (base may be

specified) log
sine sin
inverse sine asin
cosine cos
inverse cosine acos
tangent tan
inverse tangent atan

In addition, the natural command provides built-in constants for
the transcendental numbers 7 and e.

System Functions 3.2.6.

The systime Function

The systime function returns the number of seconds since
00:00:00 on the arbitrary date of January 1, 1980. The readdate
function converts the number returned by systime into a usable
string for the current date. The readtime function converts the
number returned by systime into a usable string for the current
time.

3-53

The systime function is also useful in timing the duration of
events; the difference between the values returned by two
invocations of systime is the number of seconds required to
perform an action:

start = systime ()

execute test23 ()

print using "the test took #####Q
seconds" systime() - start

The sysdata and sysaddr Functions

These functions are primarily for use with exercisers and
handlers invoked from the operator's keypad. Operations
directed to the pod (such as read, write, and writefill) set the
values returned by sysaddr and sysdata. The exact values will
depend upon the circumstances; sysdata and sysaddr together
are meant to provide an easy-to-use feature that reduces the data
entry load on the operator.

PROGRAM STRUCTURE AND FLOW CONTROL 3.3.

Block Structure of TL/1 3.3.1.

3-54

Every TL/1 program begins with a program statement and
terminates with an end program statement. These two
statements delimit the program definition block, which encloses
all the declarations and executable statements of the program. A
program is the smallest unit of TL/1 code that may be executed
(or invoked) using the EXEC key on the operator's keypad.
Here is a simple TL/1 program:

program echo (message)
declare string message = "Hello, world!"™
n = open device "/term2", as "output”
print message
close channel n

end program

The program consists of the name, echo, a declaration and
default value for the argument message, and three additional
statements. The first opens a channel to the monitor, the second
prints the message on the channel, and the third closes the
channel.

TL/1 is a block-structured language. Blocks serve to group:

¢ Statements - In the echo program, only the statements
defined in the echo program block will be executed.

i Variables - The variables that are declared inside echo are
only known to that program (except for global variables,
which will be covered later). When echo finishes
execution, the storage used for variables is reused for other
purposes.

Every block consists of a statement that starts the block (such as
program, declare, or if) and another statement that ends the
block (such as end program, end declare, or end if). A
summary of the characteristics of TL/1 blocks is shown in
Figure 3-13.

3-55

Block Type Name Contain How Is It Invoked? Can Variables

Function Be Local to
Déefinitions? Block Only?
program 1-10 characters, yes EXEC key, execute yes
valid file name statement, or
invocation in
expression
function 1-255 characters no execute statement yes
or invocation in
expression
handler fault name no fault statement yes
1-255 characters
exerciser fault name no LOOP key yes
1-255 characters
declare none no declare statement N/A
if none no if statement no
loop for none no loop statement loop index
only
loop while none no loop statement no
loop until none no loop statement no

Figure 3-13: TL/1 Block Types

3-56

The program, function, handler, and exerciser blocks share the
following characteristics:

A name - Names for programs can be 1 to 10 characters
long. Names for function, handler, and exerciser blocks
can be 1 to 255 characters long.

An argument list - The argument list tells which values
each block expects to receive when it begins execution.
The actual declaration of the argument variables gives the
type and may specify a default value, if it is appropriate.

Variable declarations - Any variables used by a block
should be declared before use. While this is optional for
local variables (variables known only inside the block
being defined), it is required for global and persistent
variables.

TL/1 statements - The statements define the actions to be
performed when the program is executed.

The program block is the principal building block for TL/1. It
contains:

A program statement, which gives a name to the program

and lists the program arguments. The name of the
program must match the name of the file containing the
TL/1 program.

Declarations for any local or global variables.

Any function definition blocks, fault condition handler

definition blocks, or fault condition exerciser definition
blocks.

TL/1 statements that make up the program.

An end program statement, which defines the end of the
program block.

Figure 3-14 shows a skeleton of a program, which contains a
function definition block, a fault condition handler definition
block and a fault condition exerciser definition block. The
example program shows that a program's variables are declared

3-57

program example (start, finish)
declare
numeric start = 0
numeric finish = 0
floating frequency = 60.0
global string active_space
numeric my_variable
end declare
function do_test (addr, range)
declare numeric addr
declare numeric range
declare global string active_ space
! executable statements for function

end do_test
handle some_fault (addr)
declare numeric addr
declare global string active_space
! executable statements for handler

end some_fault
exercise a_fault (addr)
declare numeric addr
declare global string active_space
! executable statements for exerciser

end a_fault
! Executable statements for program

end program

Figure 3-14: Program Structure Example

3-58

first, then functions are defined, then fault condition handlers or
fault condition exercisers are defined, and finally the executable
statements for the program are listed. The executable statements
for each function, handler, or exerciser are included within each
respective definition block.

How Programs and Functions Are Invoked 3.3.2.

TL/1 programs can be invoked from the operator's keypad or
they can be called from another TL/1 program:

® A program is invoked from the operator's keypad by
pressing the EXEC key and then providing the name of the
UUT directory and the name of the program.

¢ A program is called from another program by using the
execute statement:

execute example (0, 1000)

The statement above calls the program named example

(_ f } using 0 and 1000 as arguments.
® A program will be called when its name appears in an
expression:
total = times (plus (a, b), minus (c, d)) i

The statement above calls the user-defined programs times,
plus, and minus.

Functions are also called using the execute statement or by
placing the function name in an expression.

When a program is invoked, it is first loaded from a disk file if it
is not already in memory from a previous invocation; from then
on, the 9100A/9105A processes programs and functions in the
same way, as is shown on the next page.

1. Storage is allocated for the local variables of the
newly created program or function.

3-59

2. Argument values from the calling statement are
copied to the corresponding newly created local
variables, overriding the default values of the called
block. Any variables that do not appear in the calling
statement are assigned default values.

3. Execution of the program or function begins with the
first executable statement in the block.

Scope Rules for Programs and Functions 3.3.3.

3-60

A TL/1 program name appears both in the program statement
and as the name of the file in which the program is stored (this
file name appears in a 9100A/9105A directory). When the
EXEC key is pressed or when an execute statement is
performed, the search for the file containing the named TL/1
program follows this order:

1. USERDISK current UUT directory
2. USERDISK current pod directory
3. USERDISK program library directory

® If E-disk is loaded:

E-disk current UUT directory

E-disk current pod directory
USERDISK current UUT directory
USERDISK current pod directory
USERDISK program library directory

Ot W

If the program isn't found in any of these directories, an error
occurs.

The scope of a program name depends upon the directory in
which the specified program is placed:

¢ A program file in the program library has a scope
extending over all pod descriptions and UUT directories.

But if a program of the same name is placed in a pod
Q description or UUT directory and the EXEC key or an
execute statement is performed while testing that UUT or
using that pod, the program in the program library will not
be executed; instead, the program in the pod description or

UUT directory will be executed.

® A program file in a pod description will be found only
when that particular pod is being used. But a program of
the same name in a UUT directory will be found before the
program in the pod description when that particular UUT
directory is the current directory.

¢ A program file in a UUT directory will be found only
when that particular UUT directory is the current directory.

® The scope of a function name extends throughout the
program block in which the function is defined. The
function cannot be called from another program block.

Passing Arguments 3.3.4.

U TL/1 provides a convenient method for passing variable values

- into program, function, handler, and exerciser blocks. These
variables are called arguments; any necessary argument names
and argument values appear in the statement that invokes the
block. For example, the block below requires two numeric
arguments, start and finish:

program test_uut (start, finish)
declare
numeric start = 0
numeric finish
end declare

The program rest_uut could be called using any of the following
statements:

execute test_uut finish 54, start 10

3-61

execute test_uut finish 15
execute test_uut (40, 50)

The first two execute statements use keyword notation; the name
of the argument is followed by the value to be assigned to it.
The third execute statement uses positional notation; in this
case, all arguments must be supplied and they must be supplied
in the order given by the program statement.

The arguments supplied to a program, function, handler, or
exerciser must be simple numeric or string values—arrays
cannot be passed as arguments. When the block is invoked, the
values of the arguments from the calling statement are copied to
the area of memory set aside for local variables in the block
being invoked.

Returning Values from Programs and
Functions 3.3.5.

3-62

A program or function completes its work by executing either an
implied or an explicit return. At this point, all local variables
disappear along with all other information about the terminated
program or function. The return may be implicit due to an
implied return statement (which returns nothing) at the end
statement that terminates every TL/1 program and function. An
explicit return uses a return statement. It can either return no
value or a single numeric, string, or floating-point value (a
return cannot return an array of values). A program or function
may contain more than one return statement, but all return
statements in a program or function must return the same type of
object: no value, a numeric value, a floating-point value, or a
string value.

To use a returned value, you must use it in an expression. For
example, if a_function returns a value, it can be assigned to the
variable x:

x = a_function (3, 4)

When a program or function is invoked from an expression, an
error will be reported if the program or function does not return
a value or if it returns a value of the wrong type. For example,
if a_function does not return a value, the following statement
would cause an error:

print a function (3, 4) + 5

Scope Rules for Variables 3.3.6.

Figure 3-10 also shows how information can be passed through
both arguments and global or persistent variables. The scope
rules of TL/1 define which variables are known inside
programs, functions, handlers, and exercisers. The scope rules
are simple:

A variable that is an argument to a block is visible only
inside the block. The variables start and finish in
Figure 3-10 are arguments in the example program, as are
the addr and range arguments in the do_test function,

A variable that is not explicitly declared as global or
persistent is a local variable. This means that my variable
is accessible only to the executable statements for the
program example, not to the function do_test nor to the
handler some_fault nor to the exerciser a_fault. A local
variable is accessible only to the block in which it is
declared, and not to any nested blocks.

A variable that is used in a block, but does not appear in a

declare statement, is a local variable and is visible only
inside that block.

A variable that is declared global in a declare statement is
visible in every block that also contains a global declaration
for the same variable.

A variable that is declared persistent in a declare statement
is visible in every block that also contains a persistent
declaration for the same variable.

3-63

Global variables exist from the time the EXEC key on the
operator keypad is pressed until the time a different TL/1
program is run. Pressing the REPEAT key, which re-runs
the program, permits global variables to retain their values.

If some function a calls another function b, the local variables in
function a retain their values when b terminates, so that a can
continue its work. But the local variables in b disappear when b
terminates, just as the local variables in a disappear when it
returns to its caller.

Conditional Flow of Control 3.3.7.

TL/1 uses block structuring to organize if and loop statements.
Both are conditional statements; refer to Section 2.4,
"Conditional Expressions," of the TL/I Reference Manual for
more information on formats for conditional expressions.

If Blocks

3-64

The if statement is used to select alternative courses of action
based upon one or more conditions. The action of the if
statement is to try all of the alternative conditions (condition.,
conditions, . . ., conditions) in order until one of the conditions
evaluates to true (a non-zero value). If one of the conditions is
true, then the corresponding action is executed. If none of the
conditions is true and an else clause is present, the else action is
executed. The actions themselves can be any list of TL/1
statements, including other if statements.

if <conditiomi> then
<actioni>

else if <condition:> then
<actionz>

G

else if <conditiona> then
<actionn>

else
<actiomneise>

end if

The block terminator end if can also be written as endif for
compatibility with BASIC, but this usage is not the preferred
TL/1 form.

Simple If Statements

Where you need only a single condition, with no else clause, a
simpler form of the if statement can be used. This statement has
the form:

if <condition> then <statement:>\<statement2>\

The statements, statement., statement., and so on, are executed
only if the condition evaluates to true.

A Word about Compound Conditions

TL/1 always evaluates conditional expressions completely. This
is usually not important but does make a difference in the
following example:

if (a <> 0) and (b/a <> 3) then ...
The problem is that the subexpression b/a will be evaluated
whether or not a is equal to zero, which can result in a divide-
by-zero error. This kind of test must be converted into two if
statements as shown below:

if a <> 0 then if b/a <> 3 then ...

3-65

Loop Blocks

3-66

The loop block is used to group statements which are to be
executed repeatedly. This looping can proceed while some
condition is true, or until some condition becomes true, or for
some sequence of numeric values, or indefinitely.

The loop while block has the form: :

loop while <condition>
<action>
end loop

The effect is to repeatedly execute the action within the block
delimited by the loop while and end loop statements as long as
the condition is true. The condition is tested before any
statements in the block are executed. The action may be any list
of TL/1 statements including other loop blocks.

The loop until block has the form:

loop until <condition>
<action>
end loop

The effect is to repeatedly execute the action within the block
delimited by the loop until and end loop statements as long as the
condition is false. The condition is tested before any statements
in the block are executed.

The loop for block has the form:

loop for <varindex> = <expri> to <expr:>
[step <expra>]
<action>
end loop

The step expression is optional and assumed to be 1 if omitted.
The loop index variable (varindex) begins with the initial value,
expri; while the index variable is less than expr:, the statements
inside the loop block are executed. Following each iteration of
the loop, the value of expr: (which defaults to 1) is added to the
index variable. The end loop statement can be replaced by the
keyword next, which is compatible with BASIC; however, this
is not the preferred TL/1 form.

Omitting a controlling condition such as while, until, or for
creates an endless loop:

loop
<action>

end loop

The action between loop and end loop is executed until some
external event (such as a fault condition) causes control to be
transferred outside the loop.

INPUT, OUTPUT, AND FILE COMMANDS 3.4.

This section provides an overview of how to use the TL/1 input
and output commands.

1.

The open command performs the initialization
required to allow your program to read from or write
to the device or file named in the device argument of
the command. The open command returns a channel
number which may be assigned to any numeric
variable you specify. This channel number is used in
subsequent print and input commands to identify the
device to be used. Up to 16 channels may be open at
any given time.

The print and input commands transfer information
between the TL/1 program and the device. The
channel number returned by open is used to identify
the device to be used. Several devices can be open at
once.

The close command breaks the association between
the channel number and the device. Once a close has
been performed, no further operations can be
performed on the device unless another open
command is performed for it.

3-67

File and Device Types 3.4.1.

There are several kinds of devices which may be used from
TL/1. These following devices produce and accept the printable
ASCII data that the I/O commands are designed to handle:

® Operator's Interface - named "/term1". The name refers to
the operator's display on output and the operator's keypad
on input.

® Programmer's Interface - named "/term2". The name
refers to the monitor on output and the programmer's
keyboard on input.

® Windows - named "/terml/win" for a window on the
operator's display and "/term2/win" (or "/win") for a
window on the monitor. Additional arguments are
provided in the open command to set window parameters.

® RS-232 Ports - named "/port]l" and "/port2". Additional
arguments are provided in the open command to control
the communication through these ports.

¢ Disk Text Files - named using the system's file naming
conventions (see Sections 2.8 and 3.4.6 of this manual).

. IEEE-488 Interface and Devices - named "fieee" or
"fieee/address list". The names refer to either the IEEE-
488 interface, or to a group of devices attached to the
interface.

Opening Devices and Files 3.4.2.

3-68

The open command makes a device or disk file accessible to
your TL/1 program. The open command accepts several
arguments, all optional, giving information about the device or
file to be used; open returns a channel number which serves to
identify the device or file in subsequent I/O function calls.

O

The device argument gives the name of the device or file to be
opened. The as argument ("input", "output", "update", or
"append") gives the direction of the I/O transfers. The mode
argument tells whether I/O is done a line at a time ("buffered") or
a character at a time ("unbuffered").

All arguments to the open command are optional. The applicable
defaults provided are documented in the open command section
of the TL/I Reference Manual.

Buffered and Unbuffered Channels 3.4.3.

The mode argument of the open command governs several
aspects of how the device attached to the channel is treated.
Most of the argument's values apply to the operator's interface,
programmer's interface, and the RS-232 ports.

Buffered Channels

Buffered mode is appropriate for operator input—the editing
features are almost essential for manual data entry. Buffered
mode input is also useful with disk files that have fixed data
formats compatible with the input using command (which cannot
be used in unbuffered mode). Buffered channels have the
following characteristics:

® Record size: Input and output occur in units of lines rather
than characters. An input command, for example, will
wait for input until a line-terminating character (such as
Return on the keyboard, or a newline character on the RS-
232 port) is entered.

¢ Inputdata types: The input command reads numbers and
multi-character strings in buffered mode, rather than the
single-character strings read in unbuffered mode.

¢ Newline character: Newline characters printed on a
buffered RS-232 channel are converted either to a single
carriage return, or to a carriage-return/linefeed sequence,
as selected by the SETUP MENU key.

3-69

Unbuffered Channels

Unbuffered channels are most useful when dealing with inter-
machine communications, special operator interface functions (in
which the format of the operator's or programmer's display
must be very carefully controlled), or when the input format is
too complex for input using.

Unbuffered channels have the following characteristics:

® Record size: Input and output occur in units of characters.

An input command will read data as it is entered rather than
waiting for a line-terminating character.

Input data types: The input command places a one-
character string into each of the string variables in its
argument list; numeric and floating-point variables are not

permitted. The input using command is illegal for
unbuffered channels.

® Newline character: The newline character on an unbuffered
channel may only be a carriage return.

Printing Newlines on Output Channels

3-70

The print command will always print a termination character (the
default is a carriage return (CR)) after the last expression in its
argument list. The print using command prints a carriage return
only when a newline character appears in its format string. (See
the print using command in the TL/I Reference Manual for
more information on format strings.)

A carriage return may be transformed into a carriage-
return/linefeed (CRLF) sequence when printing to a buffered
RS-232 port if the newline character in the SETUP MENU has
been set to CRLF. The possible combinations are summarized
in the following table:

Command Channel Mode Newline Character
CR CRLF
print buffered CR CRLF
unbuffered CR CR
print using (with buffered CR CRLF
\nlin the format) unbuffered CR CR
print using (with buffered (none) (none)
no \nl in the format) unbuffered (none) (none)
/0 Commands 3.4.4.

The input command is used to read all data in TL/1. The simple
form of input reads only decimal numeric data, floating-point
data, and unformatted string data. The format strings used with
input using are designed to handle the most common numeric,
floating, and string input requirements, and format strings are
particularly suited for machine-generated, fixed-format data files
(such as CAD databases). When this isn't enough, the input
command can read entire lines of input into string variables,
which may be processed using the string functions of TL/1.

The print command is used to output data in TL/1. The simple
form of print prints strings "as is", numeric numbers in decimal
format, and floating-point numbers in scientific format. The
print using command uses a format string to print numeric
numbers in hexadecimal, decimal, or binary format; floating-
point numbers in scientific or fixed-point format; and strings
using fixed-width fields.

3-71

See the print using and the input using commands in the TL/1
Reference Manual for more information on format strings.

When no on clause appears, the print and input commands use
the first channel that was opened with the appropriate direction
("input" or "update" for input; "update”, "append", or "output”
for print). For example, the following program reads a line
from the operator's keypad and echoes it on the operator's

display:

program example
declare string line
chan = open device "/termi"
input 1line
print line
close channel chan
end example

The poll command returns /O status information about devices
or files accessible to a TL/1 program via an open channel. Most
of this information is useful only for devices, but the "input”
condition will also tell your program whether or not the end of a
disk input file has been reached. To avoid an I/O error, your
programs should make sure that a poll for an "input" condition
on the input channel returns a non-zero value before using the
input command.

The delete command is used to remove text files from a disk.
The delete command cannot be used to remove directories or
non-text files.

Windows 3.4.5.

3-72

The 9100A/9105A uses a window manager to manage all
displays on both the operator's display and the monitor. A
window manager allows the screen to be thought of a series of
rectangular "screens" on the physical screen. For example,
when using the programming interface, there is an info window
that can be placed on top of the display window. The types of
things you might want to do in a window are to display textual
information, to display UUT pictures, to prompt for operator
action, or to build menu-driven interfaces.

G

Each window is opened and closed using the TL/1 open and
close commands. This allows normal print and input to be done
on windows just as it is done on any other display device.
Windows are permitted to overlap each other. What is displayed
is determined by the order in which the windows were created.
A new window is always on top of all the other windows. An
existing window may be moved to the front or the back using
the winctl command. The winctl command also permits making
a window invisible by "hiding" it, and making an invisible
window visible by "unhiding" it.

The location of the upper, left-hand corner of a window is
specified by xorg and yorg (see Figure 3-15). The size of a
window is specified by xdim and ydim. The size of the object to
be displayed in the window is controlled by xscale and yscale.
All references to locations inside a window and sizes of objects
displayed in a window are made relative to the full-scale
coordinates specified. For example, if xscale and yscale are
both 1000, the center of the window is (500,500). If the object
size is larger than the window, only part of the object will be
visible at any given time.

The 9100A/9105A monitor displays 24 rows with 80 characters
per row. The operator's screen displays 3 rows with 42
characters per row. Therefore, a window that exactly covered
the monitor would use (0,0) for xorg-yorg and (80,24) for
xdim-ydim. If you wish to specify locations in a window using
character offsets from the origin of the window, you can set
xscale = xdim and yscale = ydim. In this case, since the
window is of size (80,24), the center of the window would be
(40,12).

3-73

OBJECT

(0, 0) (xscale, 0)
r - - - - - — - /1
: (xorg, yorg) WINDOW :
| * |
| (xscale/2, yscale/2) |
I ydim _I__/ l
| |
| v I
l | xdim —»| l
| |
L o -
(0, yscale) (xscale, yscale)

3-74

Figure 3-15: Window Coordinate Systems

o

e

SV

All normal print and input commands can operate on a window.
Using an input command with a window device open in update
or read mode will take input from the programmer's keyboard
(in the case of a window on the monitor) or from the operator's
keypad (in the case of a window on the operator's display).
Each window is an ANSI terminal with all of the escape
sequences and control codes active as defined in Appendix B.

The TL/1 command below shows an example of an open
command used to create a window on the monitor at origin
(20,6) with a dimension of 40 horizontal characters by 12 rows.
This window is to be centered on the monitor display. In
addition, the window is to have the title RESULTS centered in
the border at the top of the window. The full-scale coordinates
of objects to be displayed in the window are to be (1000,1000).

channel = open device "/win", xorg 20, yorg 6,
xdim 40, ydim 12, xscale 1000, yscale 1000,
border "RESULTS"

Disk Pathnames in TL/1 3.4.6.

Pathnames are used to specify text files and I/O devices. Serial
/O devices have only a device name, such as "/term1". But disk
devices allow directories and files to be embedded within them.
Files exist within directories, and each disk device contains at
least one directory.

A full pathname, which begins with a "/" character, is a disk
device name, followed by zero or more directory names,
followed by the file name. The different components of the
pathname are separated by "/" characters. For example:

/hdr/abc/test4
A relative pathname begins without a "/" character and consists
of zero or more directory names and ends with the file name.
The different components of the pathname are separated by "/"
characters. For example:

abc/test4

3-75

A full pathname uniquely identifies a file, but a relative pathname
refers to the current directory. For most TL/1 programs started
from the operator's interface, the current directory is a UUT
directory. But this may not be true when a TL/1 program is run
under the TL/1 debugger. Therefore, use relative pathnames in
open and delete functions with care. In most cases these
commands will not cause problems, but using the debugger on
programs that use relative pathnames may cause inappropriate
files to be placed in or removed from 9100A/9105A directories.

POD-RELATED COMMANDS 3.5.

3-76

The commands described in this section are used to
communicate between a TL/1 program and a pod attached to a
9100A/9105A system. Figure 3-16 provides a summary of the
available commands and a classification of their normal use.
The following sections provide an overview of how these
commands are used in TL/1 programs.

Category Commands Use
Pod Setup setspace, getspace, Selects UUT address space.
sysspace
podsetup Select pod error reporting.
sync Select pod sync generation.
readspecial, writespecial Interface to special pod operations.
Read or Write read Read from current UUT address
Memory or I/O space.
write, writefill Write to current UUT address space.
readblock, writeblock Copy data between UUT memory and
disk file.
Read or Write readstatus Read microprocessor status inputs.
Microprocessor
Interface writecontrol Write microprocessor control
Signals outputs.,
Stimulus rotate, rampdata, Wiggle data signals.
Functions for toggledata
Signature
Analysis rampaddr, toggleaddr Wiggle address signals.
togglecontrol Wiggle microprocessor control
signals.
Built-in testbus Test address, control, and data buses
Functional Test for drivability and tied lines.
Commands
pretestram Very fast pretest of RAM.
testramfast, testramfull RAM memory tests.
diagnoseram Post-process fault analysis for
custom RAM tests.
getromsig, testromfull ROM memory tests.
RUN UUT haltwut, runuut, waituut Control RUN UUT mode.
Mode

polluut

Determine if pod is in RUN UUT
mode.

Figure 3-16: Pod-Related Commands

3-77

Pod Setup Commands 3.5.1.

UUT Address Space Selection

3-78

Complex microprocessors provide several memory access
methods; these methods may include different data widths (8,
16, and 32 bits), different program privilege levels (user,
executive, supervisor, and kernel), and different memory
segments (code, data, stack, and so on). Some microprocessors
also support parallel I/O and memory address spaces, both
addressed by the microprocessor's address signals. The
microprocessor's memory-interface signals are set to values
which depend upon the access method desired for each cycle.
Each possible setting of these control signals is called an address
space. The getspace, setspace, and sysspace commands tell the
9100A/9105A and the pod which address space should be used
during subsequent UUT read and write cycles.

Each microprocessor manufacturer uses different terminology
for the different address spaces supported by its
microprocessors, and microprocessors differ in the number and
kinds of address spaces that each provides. The documentation
for each pod and Appendix I of the TL/I Reference Manual list
the address spaces supported for each microprocessor. The
getspace command converts a readable description of the address
space you want to use into a number used internally by
9100A/9105A software to describe the address space. Using the
80186 as an example, we can create two address space
descriptors as follows:

normalmemword = getspace mode "normal™, space
"memory"”, size “word"

dmaiobyte = getspace mode "dma", space "i/o",
size "byte"

The variable, normalmemword, will be assigned a number
corresponding to the 9100A/9105A internal encoding for a
normal (non-DMA), memory word access, while dmaiobyte will
be assigned a number corresponding to a DMA-mode, I/O byte
access.

The numbers returned by getspace are used as arguments to the
setspace command, which actually tells the pod which address
space to use. For example, to read a word from memory and
then a byte from the DMA I/O space of an 80186:

setspace space normalmemword
firstmemword = read addr $1F0A
secondmemword = read addr $1FO0C
setspace space dmaiobyte

iobyte = read addr SF

Notice that you only need to call setspace when you want to
change address spaces; once set, an address space selection
remains in force until another setspace command is used.

The number of the microprocessor address space currently in
use can be determined by using the sysspace command. This
command is normally used in functions, handlers, or exercisers
which need to temporarily change address spaces. For example,
a handler which needs to read a word vector at location 0 in
68000 code space, without disturbing the current address space
selection, could use the following steps:

oldspace = sysspace ()

newspace = getspace space "supporg",
size "word"

setspace space newspace

Once the operations requiring newspace have been completed,
the old address space can be restored by executing:

setspace space oldspace

3-79

Setting Pod Error Reporting and Sync Mode

The pod can detect and report a number of exception and error
conditions. The podsetup command allows you to selectively
enable and disable different classes of error reporting. For
example, pods will normally report an error if a forcing line
(such as the RESET input of a microprocessor) is asserted
during a UUT access cycle. But this error can be masked by
using podsetup as follows:

podsetup 'report forcing' “off"

Notice that the report forcing argument contains a space
character, therefore it must be surrounded by single quote
characters.

The pod sync mode is selected using the sync command. The
available sync modes are documented in the relevant pod
manual; all pods support at least ADDR and DATA sync modes:

sync device "/pod", mode "addr™

sync device "/pod"™, mode "data"

Interface to Special Pod Operations

3-80

Certain pods have functions which cannot be accessed using the
normal functions of the 9100A/9105A. These special functions
are accessed by reading and writing to locations, called special
addresses, outside the normal UUT microprocessor address
range. The readspecial and writespecial commands access these
special addresses so that the full functionality of each pod is
available.

Each pod manual fully documents any special addresses, and the
side effects of reading from and writing to them. Use
readspecial and writespecial only when you know that the
normal 9100A/9105A commands cannot perform the special
operation required. Incorrect use of readspecial and writespecial
can get the pod and the 9100A/9105A into inconsistent states,
requiring that the pod be reset to recover.

Q Reading and Writing UUT Memory and I/O 3.5.2.

You need to select an address space with the getspace and
setspace commands before accessing the UUT memory and I/O
spaces. All UUT memory accesses take place in the context of
some address space, which must be selected before the UUT
memory access is attempted.

Reading and Writing a Single Location

The read and write commands provide the basic interface to the
UUT's memory and I/O. The read command simply tells the
pod to read the data at the location you specify and to return the
result. The write command tells the pod to write the data you
want at the address you specify. As noted in Section 3.5.1, the
setspace command selects the address space, after which read
and write actually perform the UUT accesses. To increment a
byte at location 100 (hex) in UUT memory using the Z80 pod:

setspace space (getspace space "memory")
val = read addr $100
write addr $100, data val + 1

Filling a Block of Memory

The writefill command can quickly fill a block of memory with a
single value. The interpretation of the width of the data value
(for example, byte or word) is taken from the address space
currently in use. The following statements will set each 16-bit
word in the first 4K bytes (2K words) of a 68000-based UUT
user data memory to the value 8:

setspace space (getspace space "usrdata", size

"wo rd")
writefill addr 0, upto S$FFE, data 8

3-81

Likewise, the following statements will write a zero to each of
the I/O ports of an 8085:

setspace space {(getspace space "i/o")
writefill addr 0, upto $FF, data 0

Saving and Restoring UUT Memory Data

3-82

TL/1's readblock command reads a block of memory and creates
a Motorola-format (S-record) text file containing a copy of the
memory data. This file contains the memory data, the starting
address of the region copied, and the region's size. The
writeblock command reads a Motorola-format text file (as
created by readblock) and fills the UUT memory with the data
taken from the file. The starting address and size of the region
filled by writeblock are the same as when the file was created by
readblock.

One way to copy the first 16K bytes of an 8088-based UUT's
code space to disk is:

setspace space (getspace space "code™)
readblock file "codestuff", format "motorola™
addr 0, upto 16383

This data could later be restored by executing:

setspace space (getspace space "code")
writeblock file “codestuff", format "motorola"™

Notice that writeblock omits the starting and ending addresses
since this information is recorded in the file named codestuff.

Reading and Writing Microprocessor
Interface Signals 3.5.3.

The readstatus command returns a pod-dependent number where
the bit settings reflect the current status of the pod and UUT
microprocessor. The status returned by readstatus is usually a
mixture of information regarding the microprocessor's status
lines and other information about the pod itself. For example,
the 80286 pod returns information about the UUT power and
ground integrity, the health of the 80286 substrate bias
capacitor, along with the values of the eight microprocessor
status input lines. The status of PEREQ, for example, is
indicated in bit 5 (the 6th bit over from the right) of the number
returned by readstatus. To check whether or not the PEREQ
input is asserted, you could use the statements:

status = readstatus()
if (status and $20) then . .

Because microprocessors differ greatly, each pod defines a
different set of readstatus bit values.

The purpose of the writecontrol command is to briefly set user-
writable control lines to specific logic levels, to check for
drivability, and for use in troubleshooting. Control lines are
defined as writable by the specific pod documentation. Again,
using the 80286 as an example, the writable control lines are:

Bit Control Line
2 PEACK-

1 HLDA

0 LOCK-

To briefly drive the LOCK line high, you could use:

writecontrol ctl 1

The exact length of time that any line is driven differs,
depending upon the kind of pod in use.

3-83

Stimulus Commands for Signature Analysis 3.5.4.

3-84

The TL/1 commands described in this section are intended to be
used with signature analysis. These commands produce a
repeatable stimulus on a microprocessor's address, data, and
control buses.

The ramp commands generate patterns which resemble binary
counting (or "ramping up"). For example, the rampaddr
command, defined as:

rampaddr addr a, mask m

performs reads beginning at address a and not m, where the bits
in a selected by corresponding one-bits in m are first set to zero.
Reads are then performed at successively higher addresses; the
addresses are ramped up, which is simply binary counting in
which only the bits in a selected by one-bits in m are changed.
The result is that 27 reads are performed when n one-bits occur
in the mask m. The operation of rampdata is similar.

The toggle commands also use a mask argument which selects
bits in the addr argument. For example:

toggleaddr addr a, mask m

But the toggle commands simply invert the bits in g selected by
one-bits in m. The toggleaddr procedure is fairly simple:

loop for bit = (each one-bit in mask from
least~- to most-significant)
read addr a
read addr (a xor bit)
end loop

Notice that two reads are performed for each one-bit in the
mask. The toggledata and togglecontrol commands operate in a
similar fashion.

O

NOTE

It is not a good idea to use the built in functional test
commands (testbus, testramfast, testramfull, and
testromfull) to provide stimulus where signature
measurements will be made. These functional test
implementations may change, resulting in changes in
signatures obtained with these stimuli.

Data Bus Stimulus Commands

The rotate, rampdata, and toggledata commands produce
repeatable bit patterns to stimulate microprocessor data bus lines
by writing data patterns to an address specified by your TL/1
program.

rotate writes a data pattern to the data bus, rotates the
pattern right by one bit position, and then writes it again.
The last data pattern written is the original data pattern
rotated left by one bit position.

rampdata writes a data pattern you specify to the data
bus, and then ramps up only the data bits you've specified
in the mask argument. The number of writes performed is

2n, where n is the number of bits set to one in the mask
argument.

toggledata writes a data pattern you specify but
individually toggles each bit written as specified in the
mask argument. Two writes are performed for each bit set
to one in the mask argument.

Address Bus Stimulus Commands

The rampaddr and toggleaddr commands produce repeatable
patterns on the microprocessor's address bus by performing a
series of reads at different addresses as specified by your TL/1
program,

3-85

® rampaddr reads beginning at the address specified, and
ramps up only the address bits specified in the mask
argument. The rampaddr command performs 2" reads,
where n is the number of bits set to one in mask.

® toggleaddr reads from the address specified and from the
address formed by complementing each address bit
corresponding to a one-bit in the mask argument. The
toggleaddr commandperforms two reads for each bit set to
one in mask.

Control Line Stimulus Commands

The togglecontrol command performs a series of writecontrols
(setting and resetting the microprocessor's writable control lines)
in a repeatable fashion. For each bit set to one in the mask
argument, two writecontrol operations will be performed, so that
each ctl-bit value matching a one-bit in the mask is driven both
high and low.

Built-in Functional Tests 3.5.5.

3-86

The 9100A/9105A built-in functional tests are designed to
provide fast, reliable implementations of commonly required
tests. These tests cover the major microprocessor buses, RAM
tests, and ROM tests.

Two common features of the functional tests are:

¢ They return only a termination status (pass or fail) so that
these tests commonly appear in TL/1 programs as:

if testbus addr $1000 fails then . . .

® They may raise a number of fault conditions. The fault
conditions raised are listed in Appendix G of the TL/I
Reference Manual.

@,

NOTE

These functional tests are not intended to
provide stimulus for fault isolation techniques,
such as GFI, which depend upon signature
analysis. Test implementations may change,
which would change learned UUT signatures
as well. Use the commands described in
Section 3.5 4 for signature analysis.

Testing the Microprocessor Buses

The testbus command performs a comprehensive test of the
microprocessor address, data, and control buses. All three
buses are tested for drivability, and the address and data buses
are tested to ensure that no two address or data lines are tied
together. The addr argument for testbus should be a RAM
memory location that can be written to and read from without
causing bus access faults.

Testing RAM Memory

There are three RAM tests available to TL/1 programs:
pretestram, testramfast and testramfull. The table below and
Figure 3-17 compare their features. Refer to the pretestram,
testramfast, and testramfull commands in the TL/I Reference
Manual for more information on these tests.

Test Type Coupling RAM Width Accesses per Cell

pretestram N/A any Only some
addresses are
checked
testramfast N/A any 5
testramfull disabled any 17
enabled 8 29
enabled 16 33
enabled 32 37

3-87

3-88

pretestram is a very fast pretest of RAM to find any simple
faults such as a totally dead memory chip, stuck address
lines, or stuck data lines.

testramfast is a fast RAM test that performs only five
passes through memory. The testramfast command writes
pseudo-random data to memory. Since this data is
random, faults found in one invocation of testramfast may
not be found in another invocation.

testramfull is a deterministic RAM test; if the UUT
operates in the same way, every invocation of testramfull
will find the same faults.

O

Fault Condition testramfast testramfull

Stuck cells. Always found. Always found.

Aliased cells. " "

Stuck data lines. " "

Stuck address lines. " "

Shorted address lines. " "

Multiple selection May be found. Always found.

decoder.

Dynamic coupling. " "

Shorted data lines. May be found. Always found for coupling
enabled; may be found for
coupling disabled.

Aliasing between bits " "

in same word.

Pattern-sensitive faults. May be found. Not found.

Refresh problems.

Always found if delay is sufficiently long and standby
reads do not mask the problem.

Figure 3-17: Fault Detection for RAM Tests

3-89

A testramfast will always find stuck or aliased cells, stuck
address or data lines, and shorted address lines, but
testramfast may not find problems like multiple selection
decoding, dynamic coupling, or aliasing between bits in a
single memory word.

® testramfast is more likely to find some pattern-sensitive
faults than is testramfull: testramfast writes pseudo-
random data to memory, and all possible data patterns are
equally likely.

® testramfast is not as likely as testramfull to find problems

due to electrical transients related to writing all ones or all
Zeros to memory.

If you create your own customized RAM tests, pretestram can be
used as a quick pretest. In addition, diagnoseram can be used to
provide diagnostics and fault messages which are consistent
with those of testramfast and testramfull.

Testing ROM Memory

3-90

The getromsig and testromfull commands are used together to
perform ROM memory tests. To read 64K bytes of ROM in a
16-bit wide address space use the following command:

sigval = getromsig addr $FF0000, upto SFFFFFE,
addrstep 2

The signature is returned and assigned to sigval. A mask
argument to getromsig can mask any bits of the ROM which
shouldn't be used.

The testromfull command first generates a ROM signature and
then compares it with the signature from a known-good ROM
(generated by getromsig). For example, the ROM signature
generated by the getromsig command in the previous paragraph
could then be used in the following command:

testromfull addr $FF0000, upto SFFFFFE,
addrstep 2, sig sigval

If the calculated and expected signatures don't match, testromfull
will report a fault message on the operator's display. As with all
signature-based schemes, there is a small probability (in this
case, not more than 1 in 216) that a ROM containing incorrect
data will not be detected as faulty.

RUN UUT Mode 3.5.6.

The RUN UUT mode of 9100 pods allows the pod
microprocessor to emulate the target microprocessor, executing
programs on the UUT. This mode is useful for executing pre-
written tests stored in a UUT ROM or to perform initialization of
UUT peripherals prior to a test. The commands related to RUN
UUT mode are:

® runuut, which puts the pod into RUN UUT mode.
® haltuuz, which brings the pod out of RUN UUT mode.

® waituut, which suspends the TL/1 program until either a
time limit expires or the pod leaves RUN UUT mode.

® polluut, which returns 1 if the pod is in RUN UUT mode,
and O otherwise.

Placing a Pod in RUN UUT Mode

Before placing a pod in RUN UUT mode, make sure it is
properly set up. Your TL/1 program should:

® Perform any podsetup operations required to initialize the
pod. In particular, using overlay RAM will require special
initialization.

4 If the compare command will be used, instruct the operator

to clip any I/O modules to the UUT, and then, use the
compare command to set up any I/O modules.

3-91

The runuut command places a pod in RUN UUT mode. This
command has the following form in which start is the memory
address at which execution should begin and stop is a breakpoint
address:

runuut addr start, break stop

Not all pods support breakpoints: check the pod manual for
your microprocessor. For microprocessors that provide several
modes of operation (for example, the 80286), check the pod
manual to find out how the microprocessor is initialized by
runuut.

Once the runuut command has been executed, the TL/1 program
can proceed to perform other tasks, but the only pod-related
commands which may be executed are waituut, haltuut, and
polluut.

Removing a Pod from RUN UUT Mode

3-92

The pod itself will remain in RUN UUT mode until one of the
following occurs:

¢ The pod encounters a breakpoint.

¢ An I/O modulereports a data-compare-equal (DCE)
condition.

® A haltuut command is performed.
. A waituut command times out.

¢ The operator enters RESET or RUN UUT HALT from the
operator's keypad.

If the pod is brought out of RUN UUT mode by a DCE
condition, the pod microprocessor will probably have executed a

number of instructions since the DCE condition was actually
detected.

- You can expect that fault conditions may be generated by haltuut
Q or waituut. Any fault conditions encountered by the pod after
the runuut command is completed will be retained by the pod

and returned on the next command to the pod.

/O MODULE AND PROBE COMMANDS 3.6.

This section describes the TL/1 commands which control the use
of the I/O modules and the probe. An I/O module is normally
used with a clip module that fits over an integrated circuit; this
permits measurement and stimulus access to all pins of the IC
component at once. The probe is a single-point device,
manipulated either by a machine (autoprober) or an operator, to
measure or stimulate any single node on a UUT. Figures 3-18
and 3-19 summarize the commands used to control the I/O
modules and probe.

Naming UUT Components and Pins 3.6.1.

A reference designator is a UUT component name. A reference
designator begins with a letter (A to Z) or digit (0 to 9), and
consists of from one to six letters, digits, underscores (), or
periods (.). Some valid reference designators are:

Reference
Designator Part

U21 IC21
R1 Resistor 1
TPS Test point 5

Reference designators are case-insensitive; "u43" and "U43"
refer to the same component.

3-93

Category Command Use

Configure 1/0 module counter Set counter mode.
or probe for
measurement edge Set active edges for external sync.
enable Set enable mode for external sync.
reset Reset to default mode.
stopcount Set number of enabled clock pulses
for measurement.
sync Set synchronization mode.
threshold Set input threshold levels.
Attach probe or I/O assign Resets connection data.
module to UUT assoc Associates a UUT part with an I/O
module.
clip Prompt operator to clip I/O module.
connect Prompt operator to connect external
sync lines.
probe Prompt operator to place probe.
Perform measurement arm Arm measurement hardware.
with 1/O module or probe
checkstatus Check if measurement complete.
readout Get data from measurement.
strobeclock Strobe internal clock for probe or
I/O module.
Read measurement taken count Read count or frequency.
for one UUT component
pin level Read level history.
sig Read signature.
Probe stimulus pulser Set probe pulser mode.
I/0O module stimulus clearoutputs Turn off output drivers.
clearpatt Discard output patterns.
storepatt Set output patterns to be written.
writepatt Write output patterns to UUT.
writepin Latch or pulse level on single pin.
I/O module word compare Set bit pattern to be compared with
recognition I/O module input.
Get or set delay for getoffset Return current delay offset.
1/0O module or probe
setoffset Set new delay offset.

Figure 3-18: /0 Module and Probe Commands, by Category

3-94

e et e s e . -

Command I/O Module Probe Sync Measurement Stimulus

arm . . any .

assign . any . .

assoc . any . .

checkstatus . . "ext" .

clearoutputs . .

clearpatt . .

clip . any . R

compare . any .

connect . "axt" . .
* "ext" .

count . . .

counter . . any .

edge . "ext" . .
* "ext” .

enable R "ext" . .
¢ "ext" .

getoffset . . any

level . . any .

probe . any . .

pulser . any .

readout . R any .

reset . . any . .

setoffset . . any

sig * . any .

Figure 3-19:

I/0 Module and Probe Commands, Alphabetized

3-95

Command /O Module Probe Sync Measurement Stimulus

stopcount . "ext" . .

. "ext” .
storepatt . .
strobeclock . “int” . .

. "int" .
sync . . any . .
threshold . . any .
writepatt . "int" .
writepin . .

Figure 3-19: I/O Module and Probe Commands, Alphabetized (cont)

3-96

™ A reference pin argument tells which pin on a UUT component
O should be used by a command. Legal reference pin values are
between 1 and 255. Different commands require that reference

pins be specified in one of two ways:

A Commands such as probe and connect, which tell the
operator to connect a 9100A/9105A device to a UUT
component, require that reference pins be specified as
XXXXXx-nnn; that is, as a reference designator followed by
a hyphen and one to three characters.

¢ Commands such as count, level, or sig may refer either to
UUT component pins or 9100A/9105A device pins:

Example 1:

! uses a 9100A/9105A device pin
x = count device "/modlB", pin 22

Example 2:

! Uses a UUT component pin.

! The pin number is specified as a separate

! numeric argument i.e., ul7-2 is not correct
! syntax.

X = count device "ul7", pin 2

Naming 9100A/9105A Devices 3.6.2.

Each 9100A/9105A system may have one pod, one probe, and
up to four I/O modules attached.

The name of the pod is the string:
"/pod"
The name of the probe is the string:

"/prObe"

3-97

The 1/0 modules are named by the strings:

"“fmod1"
n/modzn
"/mod3"
"fmod4"

Each I/O module can have either one or two clip modules
installed. The clip modules are named by the strings:

"/mod1A"
"/mOdlB"
"/fmod2A"
"/mOdZB"
n/mod3Au
"fmod3B"
"/mod4A™
"/mod4B"

The name of each clip module names the I/O module (1-4), and
the side (A or B) to which the clip is attached. Appendix E of
the TL/1 Reference Manual contains tables which describe how
I/O module pin positions and clip pin positions are related.

Kinds of Measurements that Can Be Made 3.6.3.

3-98

The measurements gathered by the probe and the I/O module
include both synchronous and asynchronous data. Synchronous
data is sampled at some fixed offset from a clock signal edge;
clock signals are specified using the sync command.
Asynchronous data is gathered continuously, without respect to
any clock edge. The asynchronous measurements made by the
9100A/9105A system are asynchronous level histories,
transition counts, and frequencies. All other measurements
require a clock.

Q Signatures

A signature is a number which represents (or summarizes) the
sequence of data values seen at some circuit node (or pin) in a
UUT. The sync command tells which clock to use in order to
get valid data at the node. The arm and readout commands are
used to begin and end the signature measurement. Finally, the
sig command returns a number which represents the (16-bit)
signature taken at a single UUT pin. Both the probe and I/O
modules are capable of taking signature measurements.

Level Histories—Synchronous and Asynchronous

A level history is a record of whether or not a signal has taken
on one of the values low, high, or invalid during the execution
of an arm . . . readout block. The exact input voltages that are
considered low, high, or invalid are set by the threshold
command.

A synchronous level history simply examines the level at a pin
whenever a clock edge occurs, and the fact that the value was
low, high, or invalid is recorded. An asynchronous level
history examines the level continuously; as such, the
asynchronous history is useful as a "glitch catcher."

A level history measurement is in no way equivalent to the kind
of information provided by a logic analyzer. The level history
simply tells whether or not a particular level was ever seen at a
UUT node. The actual level measurement is made within an
arm . . . readout block. The level command returns a number
that tells which levels were seen at that pin:

Value Levels Recorded

0 none

1 low only

2 invalid

3 low and invalid

4 high only

5 high and low

6 high and invalid

7 high, low, and invalid

3-99

Transition Counting and Frequency Measurement

Transition counting and frequency measurements do not depend
on the synchronization method used. The transition count is
simply the number of active rising edges (transitions from the
invalid to high state) measured at a pin between the arm and
readout commands. The frequency measurement is the
frequency measured at a pin during the arm . . . readout block.

Each device (I/O module or probe) can perform either a
transition count or a frequency measurement during a single
arm . . . readout block; the counter command selects which of
these measurements will be made. The count command is used
following readout to return either the transition count or
frequency measured at a UUT pin. If a counter overflows, the
result returned has bit 31 (the high-order bit) set. Frequency
measurements are returned in Hz.

Synchronization Modes 3.6.4.

The sync command sets the synchronization mode (or clock
source) for the probe and I/O modules. For the I/O modules, the
sync mode affects only measurements: any stimulus generated
by an I/O module uses timing generated internally by the
9100A/9105A (for the writepart command) or by a TL/1
program (for the writepin command). The probe's output,
however, can be synchronized to any of the available clock
sources.

Each of the I/O modules and the probe can use a different
synchronization, defined by the sync command. The available
synchronization types are described in the following sections.

Pod Synchronization

3-100

The 9100A/9105A pods are designed to provide timing signals,
which indicate the beginning and end of UUT access cycles.
The falling edge of the ~PodSync signal indicates the beginning
of a UUT access. All pods support at least ADDR and DATA
sync modes; see the sync command description and the Fluke
pod manual for the microprocessor you are using.

C } Internal Synchronization

Internal sync is used in conjunction with the strobeclock and
writepatt commands. The strobeclock command is used when
measurements (using the probe or an I/O module) or stimulus
(using the probe) are performed under the control of a TL/1
program. Internal sync is also used when gathering signatures
with writepart. Internal sync can also be used whenever no sync
signal is desired, as might be true with an asynchronous level
history, transition count, or frequency measurement.

External Synchronization

External sync uses the external control leads on the clock module
(for the probe) or on an I/O module. These leads provide edge-
triggered Start, Stop, and Clock signals, and a level-sensitive
Enable signal. Refer to Figure 3-20 for a diagram of how to set
up external sync in a TL/1 program.

External sync first requires a Start signal edge. Once this has
been received, each active external clock edge during which the
Enable input is asserted true will trigger a measurement until
either a Stop signal edge occurs or the number of enabled clock
edges specified by the stopcount command has occurred.

For the probe, external sync can also be used in conjunction
with the pulser command. In this case, a pulser output transition
occurs for each enabled clock edge.

3-101

‘ Start ’

Setsync
1o “ext”
Mode

A

Useconnect :
to Attach External
Control Leads

A

Use edge
to Set Active Edges
and Stop Condition

Using a
Stop Count?

No

Yes

Use stopcount
to Set Clock
Cycle Count

A

Use enable
to Select
Enable Condition

Done

Figure 3-20: Setup for External Synchronization

(’”\? Freerun Synchronization

Freerun sync is used with the probe when the probe is used to
provide a low-frequency stimulus for troubleshooting. It is
driven by an internal 1K-Hz oscillator. Signature and other
measurements should not be made using freerun sync—any
such measurements will be meaningless.

Making Measurements with the Probe and
1/0 Module 3.6.5.

Every time a measurement is made with the probe or I/O
module, the same four steps must be performed:

1. Place probe or I/O module - Prompt the operator to
connect the probe or I/O module to the UUT, or
direct an autoprober.

2. Configure hardware - Set the counter mode, sync

mode, and input thresholds. If using external

™ synchronization, set the active sync signal edges and
O clock enable level.

3. Perform measurement - Apply stimulus, using the
pod, probe, or I/O module, to the UUT within an
arm . . . readout block. If using internal sync, use
strobeclock to trigger measurements. If using
external sync, use checkstatus to make sure the
measurement is complete.

4. Read data for each component pin - Use the sig,
count, and/or level commands to read the
measurement data collected for either the single pin
measured by the probe, or by all input pins clipped
by an I/O module.

3-103

A stimulus program that will be invoked by GFI should not
perform step 1 and step 4 listed above. GFI will already have
chosen and placed a measurement device (see the gfi device
command), and GFI will use the sig, count, or level commands
itself, as required. To design a TL/1 stimulus program that may
be run alone or under GFI control, see the gfi control command,
and "GFI Commands" in Section 3 of this manual.

Selecting and Placing an /O Module

3-104

Normally the 9100A/9105A software itself is used to prompt an
operator to select an I/O module and to clip the leads of an I/O
module adapter to the UUT. The clip command will ask the
operator to select a clip module and to attach it to the UUT
component specified. For example, the following commands
would prompt the operator to clip onto U22 (a component with
24 pins):

module = clip ref "U22", pins 24

The value returned by clip is the name of the one or more clip
modules selected by the operator to clip to the UUT component.

When using fixturing, the placement of the I/O module clips is
preset so it is unnecessary and undesirable to press the ready
button on each of the clips (as required by the clip command).
In this case, the assoc command should be used. For example,
the following command would associate the "B" side of I/O
module 1 with the reference designator U22 (a component with
24 pins):

assoc ref "U22", pins 24, device "/modlB"

The assoc command is functionally equivalent to the clip
command except that the device list is set in the TL/1 program by
the programmer rather than being determined by the I/O module
button that is pressed.

The assign command resets the connection data for a specified
I/O module so that it no longer associates that module with a
particular reference designator. This command is not required in
most programs.

Placing the Probe

The probe command generates a message to the operator to
probe a particular pin on the UUT before a measurement is
taken.

Connecting External Sync Leads

If you are using the “ext” mode in the sync command, the
START, STOP, CLOCK, and ENABLE leads must be
connected. The connect command prompts the operator to hook
up the leads from the clock module (for the probe) or from the
I/O module used:

connect device "/probe", start "ul-4", stop
"u4-12", clock "u4-3", common "tp4"

Any leads left unspecified in the connect command are
considered to be not used, but the COMMON lead should
always be connected.

Configuring Measurement Hardware

Before performing any measurements, the response-gathering
hardware must be configured to conform to the test
requirements.

¢® Logic threshold levels- The threshold command
selects one of four possible logic threshold values for the
probe: TTL, CMOS, RS232, or ECL; and one of two
possible thresholds for the I/O module: TTL or CMOS.
ECL is only valid if the ECL capability is installed.

3-105

3-106

¢ Synchronization mode - The sync command selects
one of the four available sync modes: external ("ext"),
internal ("int"), "pod", or "freerun". Each device (probe
and I/O module) can use a different sync source. As noted
before, freerun sync should be used only with the probe
pulser.

¢ Counter mode - If measuring transitions or frequencies,
the counter command must be used.

counter device "/probe", mode "freq"

mod = clip ref "u5", pins 16
counter device mod, mode “transition"™

Using Pod Synchronization

When using "pod” mode for the sync command, you must tell
the pod what kind of pod sync signal should be generated. This
is done with an additional sync command:

sync device “/probe", mode "“pod"
sync device "/pod", mode "data"

All Fluke pods support at least "addr” and "data" sync; other
modes are supported for pods that require these additional
modes.

Remember that a pod can only generate one form of sync signal
at a time: it is not possible to use "addr" sync for one 1/O
module and "data" sync for another while performing a single
measurement.

Using External Synchronization
Because of its flexibility, external sync requires more

information than other sync modes. This additional information
is explained in the following paragraphs.

,,,,,,

O

1. The active edges of the edge-sensitive Start, Stop,
and Clock signals must be selected. This is done
with the edge command:

edge device "/probe", start "+", stop "-",
clock "-"

2. The clock-enable condition must be chosen. This
condition can be either "always", "high", or "low",
or it can be some combination of the PodSync line
and the external enable line as detailed in the
explanation of the sync command in the TL/!
Reference Manual.

3. The stop condition must be specified. It may either
be a transition of the Stop signal, or a predetermined
number of enabled clock pulses. The edge and
stopcount commands are used to select these options.
Using a Stop edge requires that the stop argument for
edge be one of the strings “+" or "-" as shown
above. But stopping after a certain number of
enabled Clock signal transitions requires using both
edge and stopcount:

edge device "/probe"™, stop "count"
stopcount device "/probe", count 100

mod = clip ref "u43", pins 22
stopcount device mod, count a * 14

edge device mod, start "-", clock "+",
stop "count"

Performing a Measurement

Making measurements requires the arm and readout commands
to enclose a group of TL/1 statements that provide stimulus to
the UUT. When no stimulus is required (for example, when
measuring the frequency of an oscillator), the arm . . . readout
block will contain no statements. But some stimulus from the
pod, the probe, or an I/O module is usually required.

3-107

3-108

arm and readout

Once the measurement hardware has been configured, it is
possible to make a measurement. All measurements are made
within an arm . . . readout block—the arm command signals the
hardware to begin taking a new measurement, and the readout
commandterminates the measurement. For example, to measure
the frequency output of a clock generator using the probe, you
might use:

probe ref "u3l-5"
counter device "/probe", mode "freq"
arm device "/probe"
readout device "/probe"

! No stimulus is required in

! the arm . . . readout block
clock_freq = count device "/probe"

Since the clock generator is a free-running component (it doesn't
need a stimulus), simply probing its output pin while power is
applied to the UUT will give a valid frequency measurement.

When stimulus is required (which is normal when taking
signatures), either the pod, the probe, or an I/O module can be
used to apply the stimulus. The example on the following page
shows how signatures could be gathered from an 8-bit bus data
buffer using the pod.

iomod = clip ref "u23", pins 20
sync device iomod, mode “pod"
sync device "/pod", mode "data"
arm device iomod
'~ rampdata addr 0, data 0, mask S$F
rampdata addr 0, data 0, mask S$FO
readout device iomod

sigbitl = sig device "u23", pin 18
sigbit2 = sig device "u23", pin 17
sigbit8 = sig device "u23", pin 11

S

e

The rampdata commands inside the arm . . . readout block are
used to generate repeatable data patterns for signature analysis.
Since the the data buffers are driven from the microprocessor,
the pod is used to provide the stimulus. The pod is also the
source of timing information: the I/O module is synchronized to
the pod data timing since the bus data buffers are being tested.

The checkstatus Command

When using external sync, the checkstatus command is used to
determine whether or not the measurement is complete. A
checkstatus command has the form:

status = checkstatus device "/probe"

It returns a 4-bit numeric result, which is interpreted as:

Bit Signal Value

4-31 none always 0

3 Stop received 1=yes, O=no
2 Start received 1=yes, O=no
1 Enable received 1=yes, 0=no
0 Data clocked 1=yes, O=no

When using external sync, the checkstatus command may be
used in a loop while block to check for completion of a
measurement prior to executing a readout command. As
illustrated in the example below, the loop checks for a complete
measurement every 50 milliseconds (approximate) until it has
checked eight times. If the measurement isn't complete by that
time, an error is reported: either the clock module lines were not
connected properly by the operator, or the stimulus circuit isn't
working.

probe ref "u43-16"

connect device "/probe”, start "TP1l", stop
"TP2%", clock "u3-25"

sync device "/probe", mode "ext"

enable device "/probe", mode "always"

3-109

edge device “/probe", clock "-"
arm device "/probe™
loops = 0
loop while ({(checkstatus device "/probe")
<> $F) and (loops < 8)
wait time 50
loops = loops + 1
end loop
readout device "/probe"
if loops = 8 then
1

! take action for incomplete measurement
!

end if

When the TL/1 program itself is providing the stimulus,
checkstatus is usually invoked following the arm . . . readout
block to ensure that the external sync leads were connected
properly and that the circuitry generating the sync signals was
operating correctly. The example below illustrates using
checkstatus when stimulus is provided by a TL/1 program.

iomod = clip ref "u40", pins 28
connect device iomod, start "u23-4",
stop "u2-15%", clock "ul5-5", common "u23-7"
sync device iomod, mode "ext"
sync device "/pod", mode "data"
edge device iomod, start "-", stop "-",
clock "+"
enable device iomod, mode "pod"
arm device iomod
rotate addr $1000, data $9669
loops = 0
loop while ({checkstatus device iomod)
<> 3F) and (loops < 8)
wait time 10
loops = loops +1
end loop
readout device iomod
if loops = 8 then
!

! take corrective action
!

end if

3-110

(‘\) Reading Data for Each Component Pin

Once a measurement has been made, the data gathered by the
measurement device is returned to the TL/1 program by using
the count, level, and sig commands. These commands return
the data associated with a single pin on a UUT component.
Although an I/O module measures counts, level histories, and
signatures for all pins on a UUT component at once, the count,
level, and sig commands return the measurements for single
pins.

Appendix E of the TL/1 Reference Manual shows how clip pins
and 1/O module pins are related.

When using the probe, the device name "/probe” is used:

probe ref "u3-13"
arm device "/probe"
! perform stimulus
readout device "/probe"
sig2 = sig device "/probe"

Q The data collected by an arm . . . readout block remains valid
until the probe or I/O module is probed or clipped again, and a
new measurement is made. Be sure to use the count, level, or
sig command before performing new measurements, so that it is
clear that the data being read is from the measurement just made
and that later measurements don't overwrite data that should
have been saved.

Data Comparison with the I/O Module 3.6.6.

The compare command causes an I/O module to continuously
(asynchronously) compare its inputs with a specified data word,;
whenever a match occurs, a iomod_dce condition is signalled.
Up to 40 bits of comparison information may be specified,
consisting of 0's, 1's, and X's (don't care values). Any invalid
levels measured are considered to be low when making
comparisons. The example below shows how a data buffer
could be used to generate a DCE (data-compare-equal) condition
whenever the pattern 11XXXXO00 (for inputs A; to Ag) occurs
on a 74245 octal bus transceiver:

3-111

handle iomod_dce
1
! code to handle jiomod _dce condition
1

end iomod_dce

module = clip ref "u2%, pins 20

compare device module, patt

"111XXXX00XXXXXXXXX0X"™, state "enable"

The patt argument indicates that the direction control, pin 1,
should be "A to B" and that the active-low G control line,
pin 19, should be false, in addition to the data pattern to be
matched.

Once a DCE condition has been raised, the compare command
must be used again before another comparison will be
performed.

Pattern Driving with the I/O Module 3.6.7.

The I/O modules can overdrive signals to a clipped component in
order to write patterns to a UUT component. The patterns are
written by the 9100A/9105A without regard for the
synchronization mode programmed for the I/O module. To
prevent damage to UUT circuitry, patterns are overdriven for a
maximum of 10 milliseconds.

The clearoutputs command places all I/O module outputs in the
high-impedance state, clearpatt removes any previously
programmed patterns, and storepatt stores new patterns to be
written to the UUT with the writepatt command. Figure 3-21
illustrates how signature analysis of both gates in a 7420 dual 4-
input NAND gate would be performed in parallel using an 1/O
module clip. Each NAND gate is driven with the patterns 0000,
0001, ...,1111. Generating a signature when using writepart
requires using internal sync. The example gathers a signature so
that the output of the component under test can be compared
with the response of a known-good 7420 device.

3-112

iomod = clip ref "ul2", pins 14
reset device iomod
sync device iomod, mode "int"
clearpatt device "ul2"® ! gate 1 inputs
storepatt device ™ul2", pin 1 , patt "0000000011111111"
storepatt device "ul2", pin 2 , patt "0000111100001111"™
storepatt device "ul2", pin 4 , patt "0011001100110011"™
storepatt device "ul2", pin 5 , patt "0101010101010101"
! gate 2 inputs
storepatt device "ul2", pin 13 , patt "0000000011111111"
T storepatt device "ul2", pin 12 , patt "0000111100001111"™
() storepatt device "ul2", pin 10 , patt "0011001100110011"
storepatt device "ul2", pin 9 , patt "0101010101010101"
arm device iomod
writepatt device "ul2", mode "pulse"
readout device iomod
gate_1 _sig = sig device "ul2", pin 6 t gate 1 output
gate 2 sig = sig device "ul2", pin 8 ! gate 2 output

Figure 3-21: Pattern Driving Example

3-113

The maximum pattern depth for writepart depends on the number

of I/O modules used:
Number of Maximum
I/O modules Pattern Depth
1 255
2 128
3 85
4 64

This restriction assures that writepatt will drive pins for no
longer than 10 milliseconds.

Probe Stimulus 3.6.8.

The sync and pulser commands are used together to generate
stimulus using the probe. The probe pulser will generate a
string of high, low, or alternating pulses synchronized to any
available timing source. For example, the following statements
will produce a low pulse at the trailing (rising) edge of the
~PodSync signal:

probe ref "ul4-5"

sync device "/probe", mode "pod"
sync mode "addr"

pulser mode "low"

The probe pulser can also be synchronized to the 1 kHz freerun
clock, to internal sync that generates a pulse whenever the
strobeclock command is invoked, or to an external sync source.
When external sync is used, the Start, Stop, and Enable signals
control when the pulser operates, as does any stop count in
effect. Signature gathering with the probe is possible while the
pulser is used.

3-114

— Changing the Calibration Delay Offset for the

... /0 Module or Probe 3.6.9.
Both the probe and I/O modules have hardware delay lines that
can adjust the relative timing between clock and data signals.
These delay lines are calibrated by using the MAIN MENU key
and then the CAL softkey on the operator's keypad. There is a
different offset value stored for each sync mode. See the
discussion in Appendix I of the TL/I Reference Manual for more
information.

When the calibrated offset delay for an I/O module or the probe
is not appropriate for a measurement, the sefoffset command
may be used to change the delay. For example, even though a
pod manual may indicate that data should be sampled at 30
nanoseconds after the rising edge of a signal, setoffset could be
used to sample at other times to check for marginal UUT
performance.

The setoffset command takes an argument for the desired offset

value. This offset has a bias of 1000000. So if you want to

program an offset for the probe of -30 nanoseconds in external
U sync mode, do the following:

sync device "/probe"™, mode "ext"
offset_in range = setoffset device "/probe",
offset 1000000 - 30

The setoffset command returns either 0 or I. A I is returned if
the delay could be programmed successfully. A 0 is returned if
the delay requested is outside the range of the hardware, in
which case, the delay lines will be set as close as possible to the
requested delay (that is, to the maximum or minimum delay
setting).

Delays can be varied in approximately 4-nanosecond steps for
the probe and 15-nanosecond steps for the I/O modules. After
the setoffset example (above), the current offset value might
equal 999972 (100000 - 28, or -28 nanoseconds). This would
indicate that -28 was the closest possible setting to the desired
-30.

3-115

The getoffset command is valuable for accessing the current
offset value for a sync mode in order to view or to save it:

current offset = getoffset device "/probe"

NOTE

Both the setoffset and getoffset commands reflect the
offset for the current sync mode only.

FAULT CONDITIONS AND FAULT HANDLING 3.7.

3-116

When a fault is detected in a UUT, the normal action of
9100A/9105A software is to "raise a fault condition." The
program raising the fault condition is suspended until some
corrective action is taken. The corrective action may be
performed automatically either by a fault condition handler or
manually by the operator using the operator's keypad.

TL/1 is designed to permit you to fully utilize the 9100A/9105A
fault condition handling and reporting mechanisms in your own
programs. A test may:

® Raise fault conditions in a TL/1 program, whenever the
TL/1 program detects a fault in a UUT.

¢ Handle any fault condition, whether it is reported by a
built-in test, or a test written in TL/1.

® Provide an exerciser for any fault condition, in response to
an operator pressing the LOOP key to cause a repeated
generation of the fault condition. This is also called
exercising a fault.

A test (whether built-in or written in TL/1) may either pass or
fail; this status may be tested by using TL/1 conditional
statements.

You may write TL/1 procedures to override or supplement the
9100A's normal fault-handling behavior whenever necessary.

The following paragraphs will give you the information needed
to write such procedures.

Raising a Fault Condition 3.7.1.

A fault condition is simply a notification by a program or
function (whether built-in or written in TL/1) that a fault has
been detected in a UUT. In TL/1, a fault condition is raised by
using the fault command, for exarnple

fault bus_data tied addr a, data d, mask m

This fault command would raise a bus_data_tied fault condition
for the bits given in the 64-bit mask m detected at address a with
data d.

A fault condition consists of:

®* Fault condition name: In the example, the name of the
fault condition is bus data_tied. A number of fault
condition names are predefined by the 9100A/9105A
software (see Appendix G of the TL/I Reference Manual).
The fault condition name describes the kind of fault
detected.

® Fault condition arguments: In the example, the
address and data which made the fault appear are reported
along with the fault name. The fault condition arguments
are just like the arguments for any other TL/1 program or
function.

Raising a fault condition is like calling a TL/1 function. The
fault command starts a search for a fault condition handler
designed to handle that particular fault condition. If your
program doesn't supply a handler for the fault condition, the
9100A/9105A will print a message describing the fault condition
on the operator's display and then wait for the operator to
choose a course of action.

Figure 3-22 shows how the 9100A/9105A acts when a program

raises a fault condition. The following sections will fill in the
details of this process.

3-117

Raises a
Fault
Condition

Handler Display Fault Message on
Available? Operator's Display
Execute H

Handler

A
‘ Resume Test ’

Figure 3-22: Raising and Handling a Fault Condition

3-118

G

Fault Condition Names 3.7.2.

Fault condition names take the form of any legal TL/1 name. A
number of fault condition names are predefined by the
9100A/9105A software; these fault condition names and their
arguments are listed in Appendix G of the TL/I Reference
Manual. When one of these fault conditions is reported on the
operator's display, the 9100A/9105A uses special message
formats appropriate to the fault condition. These messages are
listed in Appendix H of the TL/I Reference Manual and
Appendix F of the Technical User’s Manual.

You are free to choose any fault condition name you like for
faults unique to your UUT and testing requirements. But giving
non-standard meanings to the standard 9100A/9105A fault
condition names is probably not a good idea.

Creating a Fault Condition Handler 3.7.3.

Any TL/1 program or function can contain definitions for one or
more fault condition handlers. The name of the handler is the
name of the fault condition it is meant to handle: this name can
be one of the 9100A/9105A built-in fault condition names, or the
name of a fault condition you have created for your own use.
Figure 3-23 shows a program that includes handlers for the
pod_addr_tied and pod_forcing_active built-in fault conditions
(in the program uut_test), and a handler for the pod_addr tied
built-in fault condition (in the function mem_test).

A diagram of how the 9100A/9105A invokes uut_test, which in
turn invokes mem_test, which includes a read command is
illustrated in Figure 3-24,

A fault condition handler is a block of code, like a program or
function, possessing an optional argument list and local
variables. When the program uut test is invoked, its fault
condition handlers for pod_addr _tied and bus _data_tied will
become active. Likewise, when mem_test is called by uur _test,
its own fault condition handler for pod_addr_tied will become
active as well.

3-119

program uut_test

function mem_test (start, last)
declare numeric start = 0
declare numeric last
handle pod_addr tied (addr, access_attempted, mask)

end pod_addr_tied
first = read addr start ! Here is a read command

end mem_test

handle pod addr_tied (addr, access_attempted, mask)

end pod_addr_tied

handle pod_ forcing_active (addr, ctl, mask)

end pod_forcing_active

if mem test start 0, last S$FFFF fails then ! First command after
! definition blocks

end if

end uut_test

Figure 3-23: Example of a Program with Handlers

3-120

G

A fault condition handler defined within some program or
function, p, is active from the time p is called until p returns to
its caller.

How a Fault Condition Handler Is Chosen 3.7.4.

When a built-in test or TL/1 program raises a fault condition, the
9100A/9105A software searches for an active handler to deal
with the fault condition. This search begins in the program or
function that raised the fault condition, and then, if a handler is
not found, the search continues in the software block that called
the program or function, and so on. Figure 3-24 shows that at
each successive level of invocation, a new set of fault condition
handlers may be made available. And, when returning from
each program or function, the fault condition handlers for that
invocation become unavailable.

® The read command may raise pod_addr _tied,
pod_forcing_active, or pod_uut_power fault conditions.
Since read is a built-in function, it contains no fault
condition handlers.

® The mem_test function contains a fault condition handler
for the pod_addr _tied fault condition.

® The uut_test program contains fault condition handlers for
pod_addr_tied and pod_forcing_active fault conditions.

® The 9100A/9105A prints a message on the operator's
display for any unhandled fault conditions.

If the read command raises a fault condition when it has been
invoked as shown in Figure 3-24, which handler will take
control? :

The search for a fault condition handler begins in the test which
raised the fault condition. If no fault condition handler for the
fault condition is found in that software block, the search
continues in the block that called the test that raised the fault
condition, and so on.

3-121

Takes Care of All
9100A/9105A |-—m—=m Unhandled Fault
Conditions
Invokes Returns to
L
TL/A Fault Condition Handlers for
Program f-~———- pod_addr_tied and
“uut_test” pod_forcing_active
Invokes Returns to
A
FuTr:E:/t;on _______ Fault Condition Handlers for
“mem_ test” pod_addr_tied
7
Invokes 1 Retums to
A

read Command

No Fault Condition Handlers
May Raise Fault Conditions:
pod_addr_tied or
pod_forcing_active or
pod_uut_power

Figure 3-24: Locations of Fault Condition Handlers

3-122

®* Ifread raised a pod_addr_tied fault condition, the search
for an active pod_addr tied fault condition handler would
be unsuccessful within read itself (the built-in function,
read, contains no fault condition handlers), but would
succeed in the next software block searched, mem test, the
software block that invoked read. The fault condition
handler pod_addr_tied within mem_test will be used
instead of the pod_addr_tied fault condition handler within
uut_test.

® Ifread raised a pod_forcing active fault condition, the
search for an active fault condition handler would be
unsuccessful first in read (the built-in function read
contains no fault condition handlers) and also in mem _test,
but would finally succeed in uuz_test.

® Ifreadraised a pod_uut _power fault condition, the search
for an active fault condition handler would be unsuccessful
first in read (the built-in function read contains no fault
condition handlers), then in mem_test, and also in
uut_test. In this case, the fault condition name and any
arguments used would be displayed on the operator's
display.

So the rule for finding a fault condition handler is: the search
begins in the software block that raised the fault condition and
continues back through all of the calling programs and functions
until a fault condition handler that has the same name as the fault
condition being raised is found. If this search process is
unsuccessful, the fault condition name and arguments are
displayed on the operator's display.

How a TL/1 Fault Condition Handler Is Invoked 3.7.5.

The job of a fault condition handler is to perform some action
appropriate to the fault condition, and then dispose of the fault
by performing a return.

Once an active fault condition handler matching the current fault
condition is found, it is called, just like any other TL/1 block,
using the arguments supplied in the fault command. A fault
condition handler may do anything another TL/1 program or -

3-123

condition handler may do anything another TL/1 program or
function block may do, including raising fault conditions and
invoking tests.

If the fault condition handler itself executes a fault command, a
new fault condition is raised. As with any fault condition, the
search for a handler begins in the current software block (in this
case, the handler itself) and then continues to the calling block.
Therefore, a fault condition handler must not raise the same fault
condition it handles or an infinite recursion will result. In this
case, the 9100A/9105A would generate the following error
message:

Stack overflow or infinite recursion

A fault condition handler terminates its execution by performing
a return, which discards the fault condition and allows the test
program to proceed.

Unhandled Fault Conditions 3.7.6.

3-124

If you don't supply a handler for a fault condition, the
9100A/9105A does the following:

® Displays a predefined message describing the fault

condition for built-in fault conditions (see Appendix H of
the TL/1 Reference Manual).

¢ Displays a message giving the name of the fault condition,
and the fault condition argument names and values for
non-built-in fault conditions.

The 9100A/9105A will then wait for the operator to select an
action from the operator's keypad as shown in Figure 3-25. The
operator may:

4 Press CONT: This continues the test, but the test is
considered to have failed (see the "Termination Status"
section).

¢ Press REPEAT: The test is restarted by reinitiating
execution of the top-level program.

A Fault Message
Is Displayed

Operator's
Selection?

Repeat Test Resume Test

O Exerciser Dlj:_splay
4 Active? rror
Message

Execute Exerciser
Block

Figure 3-25: Alternative Actions for Unhandled Faults

3-125

Creating a Fault Condition Exerciser 3.7.7.

3-126

¢ Press LOOP: If an exerciser for the fault can be found,
it is invoked to try to re-create the UUT fault so that the
operator can diagnose the problem.

® Press HELP: Displays a user-defined message from the
HELP library if a message was defined for this fault name.

A fault condition exerciser is a software block designed
specifically to reproduce a fault condition in a UUT. A fault
condition exerciser resembles a fault condition handler in that;

® A fault condition exerciser is defined within a program or
function.

¢ A fault condition exerciser is active from the time that the
program or function that defines the exerciser is called,
until that program or function returns,

L4 A fault condition exerciser has a name that is the name of
the fault condition that invokes the exerciser.

® The search for an active fault condition exerciser proceeds
from the software block that raised the fault condition.

For example, the function test/8 could have an exerciser
designed to re-create an sw_short fault condition simply by
adding an exerciser block as shown below. The exerciser might
have arguments such as the position argument in the example
below:

function testl8 (start, last)
exercise sw_short (position)

end sw_short

end testl8

A fault condition exerciser has an argument list, just like a fault
condition handler, that is comprised of the fault condition
arguments.

A fault condition exerciser is invoked when the operator presses
the LOOP key on the operator’s keypad (see Figure 3-25). The
exerciser is invoked continually until the operator presses the
STOP key on the operator's keypad. When an exerciser raises a
fault condition, the exerciser is considered to have failed. No
fault condition handler is invoked, and a message appears on the
operator's display.

Termination Status (Passes or Fails) 3.7.8.

TL/1 programs and functions may either pass or fail. The TL/1
functions passes and fails are used to test this status in if
statements:

if testbus addr $8000 passes then y = 1
if write($1000, S$1FFF) fails then return

Every time a program, function, or built-in test is called, its
status is initially set to "passes.” But once a fault condition is
raised, the termination status may change as illustrated in
Figure 3-26 (when handling fault conditions) and Figure 3-27
(when exercising fault conditions).

¢ If the fault condition is handled by a TL/1 fault condition
handler that returns to the calling block, the test status is
not changed since the fault handler is assumed to have
fixed the problem.

i If the fault condition is not handled and the operator
presses the CONT key to continue the test before running
an exerciser, the test status is set to "fails".

® If the operator presses the LOOP key to run an exerciser,
the status of the last full invocation of the exerciser is
retained: if the last iteration of the exerciser raised a fault
condition, the retained status is "fails", otherwise it is
"passes”. Once the operator presses the CONT key to
continue the test, the status of the test is set to "fails" if the
exerciser's status was "fails".

3-127

3-128

(Invoke Program ’

Status Is
Setto
"passes”

All Fault
Conditions
Handled?

Any Fault
Conditions

Stop Test and
Raised? S

Display Fault Messag

Any
Programs
or Functions
Called?

Status Is
Set to
“fails”

d

Return Status
to Caller

Figure 3-26: Termination Status when Handling Fault Conditions

Operator’s Run Exerciser

Selection :an't;lresgs(:s

Was No
Exerciser

Run?

No
9

Status Is Status Is

Setto Setto
"passes” "fails”

‘ Resume Test ’

Figure 3-27: Termination Status when Exercising Fault Conditions

G

3-129

¢ If any program or function called by a software block fails,
the status of the calling software block is set to "fails".

HELP LIBRARY 3.8.

The HELP library allows you to associate a help message with
each fault name. Help messages may contain any text, but are
most often used to display UUT-specific troubleshooting hints
or procedures to follow.

HELP messages are stored together as text files in the HELP
library. The 9100A editor edits the HELP library as object
HELPLIB type LIBRARY. Refer to Figure 3-28 showing the
editor display of a HELP library.

INDEX File 3.8.1.

The text file INDEX in the HELP library is special. The INDEX
file contains zero or more lines of the form:

<fault name> <text file name>
<text file name> is an object name naming one of the text files in

the HELP library. Refer to Figure 3-29 showing a typical
INDEX file.

HELP Messages 3.8.2.

3-130

When an unhandled fault is displayed on the front panel of the
mainframe, press the HELP key on the operator's keypad. The
fault name is compared with each entry in the HELP library
INDEX file for the current USERDISK. If a match is found,
and the named text file exists, it is loaded from the disk and
displayed. Otherwise, the 9100A/9105A beeps to indicate that
no help is available for the current fault.

DESCRIPTION

PRESS A COMMAND KEY OR HELP KEY

lay of the HELP Library

isp

Editor Di

Figure 3-28

3-131

3-132

Figure 3-29: A Typical INDEX File

PN For the HELP facility to work, the fault must be displayed on
Q the application display. Thus, the HELP facility works only
when the 9100A/9105A is controlled from the operator's front
panel, and is not available when running programs from the
Debugger. Also, the fault must be an "unhandled" fault. This
means either that there is no active handler for the fault, or that
inside the handler is a refault or fault statement.

'The name of the fault must exactly match the <fault name> in the
HELP library's INDEX file. This name is the name appearing
in the most recently executed fault statement. For example, if
the program executes "fault bad_ DMA", and this fault is not
handled, and there is a line in "/hdr/helplib/INDEX" with the
form:

bad DMA dma msgl

Then the text file "dma_msg1" is displayed when the HELP key
is pressed.

If there is a handler for bad_DMA which does further diagnosis
and executes the statement "fault DMA_no_handshake", then the
HELP file associated with DMA _no_handshake (if any) is
displayed, not the file associated with bad_DMA.

HELP files may be written for both built-in and user-written
faults. A number of HELP files for built-in faults are provided
on the Master User Disk. For a list of built-in fault names, see
Appendix G of the TL/I Reference Manual.

GFI COMMANDS 3.9.

TL/1 programs and the Guided Fault Isolation (GFI) software of
the 9100A/9105A are designed to work together. TL/1
programs can call upon GFI to perform functional tests on
selected UUT circuit nodes; GFI invokes TL/1 stimulus
programs (also called stimulus routines) to initialize the UUT, to
initialize 9100A/9105A hardware, and to apply the stimulus to
the UUT.

3-133

3-134

The job of GFl is to interpret the UUT database stored on disk.
Section 5 of this manual gives full information on how GFI
databases are created. The GFI software is designed to use the
information in each UUT database to:

® Decide which node of the UUT should be tested next.
¢ Execute TL/1 stimulus programs to exercise the node.
® Compare the actual and expected results of the stimulus.

¢ Either make an accusation about a faulty part or
connection, or test another node.

TL/1 programs provide the customization required to gather
responses from a particular UUT in a form usable by GFI. This
section will show:

¢ How TL/1 stimulus programs, run under GFI control,
should retrieve information from GFI.

® How GFI can be used by TL/1 programs to automatically
run tests on UUT nodes.

Figure 3-30 summarizes the commands used to communicate
between TL/1 and GFIL.

Used When a
Program Is

Command

Purpose

Invoked by GFI

gfi control

Tells if program was invoked
by GFL

gfi device Name of measurement device
chosen by GFI.
gfi ref Get name of node being tested
by GFI.
gfi fail Forces GFI to fail a pin.
gfi pass Forces GFI to pass a pin.
Invoking GFI gfi accuse Get GFI diagnosis of problem.

gfi autostart

gfi clear

gfi hint

gfi status
gfi suggest

gfi test

Enable or disable automatic
startyp of GFI.

Reset GFI for new UUT.

Add node to end of GFI's
suggestion list.

Return status of test on node.
Get next node in GFI's hint list.

Invoke GFI on a node.

Figure 3-30: Commands Used to Communicate Between TL/1 and GF!

3-135

Stimulus Programs Called from GFI 3.9.1.

3-136

Whenever GFI decides that a UUT node needs to be tested, it
looks in the UUT database to find the names of one or more
TL/1 programs. A stimulus program should perform reads and
writes to the UUT that exercise a node in a repeatable way.
Sections 5.5.8. and 5.5.9. of this manual contain information on
how UUT nodes and stimulus programs are related.

A stimulus program is an independent program that must:

¢ Initialize the UUT as required in order for the stimulus to
be applied.

L Initialize the pod and the measurement device (I/O module
or probe) GFI has chosen to measure the response.

® Apply the stimulus to the UUT in an arm . . . readout
block. If any faults are detected, stimulus programs may
raise fault conditions.

® Read the results of the stimulus by using the readout
command.

Stimulus programs do not compare the results of the stimulus
with the results learned by GFI; the GFI software itself will do
the comparison. An outline of a GFI stimulus program is
shown in Figure 3-31. The only GFI command used is gfi
device, which gives the name of the device (probe or 1/O
module) to be used in the setup actions and in the arm and
readout commands. The gfi device command will report an
error if it is used in a program not called from GFI.

program examplel

!

! Find out name of measurement device
devlist = gfi device

!

! Initialize measurement device and pod. Include connect
! statements to attach external control lines.
!

1
! Perform stimulus in an arm . . . readout block
arm device devlist

Provide stimulus to make nodes wiggle

!

!

! Make sure signatures are complete by calling

! checkstatus if using external sync on I/0 module.
!

readout device devlist
end examplel

Figure 3-31: Stimulus Program Called from GFI

3-137

Stimulus Programs Called from Either GFI
or the Operator's Keypad 3.9.2.

The gfi control command returns the string "yes" when used in a
stimulus program called from GFI; otherwise it returns the
string "no" The gfi control command (as shown below) allows
you to write stimulus programs that may be called either by the
operator, using the operator's keypad, or from GFL

program example2
1
! If called from GFI, use measurement device
! chosen by GFI, otherwise use "/modl™.
if (gfi control) = "yes"™ then
devlist = gfi device
ref = gfi ref
else
devlist = "/modl"
end if
1
! Remainder of processing is identical whether
! or not this program was called by GFI.
1

end example2

Figure 3-32 shows the typical steps that most stimulus programs
should use.

3-138

G

Select
Measurement
Device

Stimulus Program
Is Called

Called
by GFI?

Get Measurement

Device from
GFl

!

~ SetUp Pod
and Measurement
Device

arm
Measurement
Device

Provide
Stimulus to the
uuT

Check

Using
External

Yes

4

Again

" D'oes No

SVHV

No

Return F?

Yes

readout Response
from Measurement
Device

3
End
Stimulus Program

Figure 3-32: Typical Steps for Stimulus Programs

3-139

Invoking GFI from a TL/1 Program 3.9.3.

GFI is designed to be run either from the operator's keypad or
from a TL/1 program. You may want to invoke GFI from a
program in order to:

® Generate commands for an autoprober - The 9100A/9105A
does not directly support automatic probing of components
on a UUT. But a TL/1 program can generate commands

for an autoprober, based upon suggestions generated by
GFI.

® Generate a report based on the results of GFI - Automatic
generation of a report of nodes tested, passed, failed, and
accused requires a TL/1 program that creates a record of
the GFI results.

¢ Provide hints to GFI - Functional tests for the functional
blocks of a UUT can use GFI to test just the outputs of the
functional blocks. When failures are discovered, the
functional tests can provide hints to GFI to identify the
nodes most likely related to any particular failure.

3-140

A TL/1 program that simulates the action of the GFI key on the
operator's keypad would use the gfi clear, gfi test, gfi accuse,
and gfi suggest commands. An example of such a program,
which begins operation at its argument, refdes, and drives an
autoprober, is illustrated in Figure 3-33. The commands used
are:

® gfi clear -initializes GFI for a new UUT.

® gfi hint - adds a pin name to GFI's suggestion list. It is

used in this example to give GFI a place to start on a new
UUT.

® gfi accuse - is a string that identifies the problem which
GFI has found.

® gfi suggest - is a string that is the name of the next node
on GFI's list of nodes to be tested.

® gfi test - invokes GFI to perform all stimulus programs
identified in the UUT database for that node. The
autoprompt "no” argument prevents GFI from telling the
operator where to place the probe, since the example uses
an automatic probe.

® gfi status - returns one of the strings "good", "bad", or
"untested". In this example, it is used to generate
messages sent to a log file which records the results of
testing each pin on each UUT.

3-141

program gficontrol (refdes)
declare string refdes = "U41-3"
!
! Initialize GFI operation
gfi clear
1
! Tell GFI to start at "refdes"
gfi hint refdes
1
! Test as long as GFI has no accusation but
! has another suggestion to offer.
loop while (gfi accuse) = "" and (gfi suggest) <> uw
! Probe to next pin, test it, and log test results.
nextpin = gfi suggest
! autoprobe is a user-defined program to move an
! autoprober arm to the specified pin
autoprobe moveto nextpin ! moveto is an argument name
gfi test nextpin, autoprompt "no"
! logtest is a user-defined program to log failure data
logtest pin nextpin, status (gfi status nextpin)

end loop
1
! Record test results in log file.
if (gfi accuse) <> "" then
! loguut is a user-defined program to log failure
! messages
loguut message (gfi accuse)
else
loguut message "GFI failed"
end if

end gficontrol

Figure 3-33: GFl Called from a TL/1 Program

3-142

3 Section 4
C Debugger

The debugger is an interactive tool for finding logical problems
in TL/1 programs. Using this tool, you can initiate and control
the execution of the TL/1 programs and functions. You can also
view and alter the values of variables at intermediate stages of
program execution. By following the path of execution and
examining the values of variables during execution, you can
determine if a program performs as intended.

The debugger requires compiled programs for execution and
setting breakpoints. If you have not compiled your programs
before entering the debugger, the debugger automatically
compiles them as they are executed. If a program cannot be
compiled due to errors, an error message is displayed and
debugging cannot be continued. Exit the debugger, edit the
program, and correct the error.

It is recommended that you use the COMPILE softkey and
compile all the programs that you will be executing before you
enter the debugger. This allows you to find all the compilation
errors at one time, instead of coming across them one at a time
during your debugging session.

4-1

ENTERING AND EXITING THE DEBUGGER 4.1.

You access the debugger by pressing the DEBUG softkey while
you are editing a program. To return to the editor, press the Quit
key. The cursor position is maintained when you move from the
editor to the debugger and vice versa.

If you enter the debugger from a program that has not been
compiled, the program is compiled automatically to ensure that
the program is free from syntax errors and that it can be
executed. If the compiler detects errors, an error message is
displayed. Exit the debugger, edit the program and correct the
error.

DEBUGGER SCREEN 4.2,

The debugger screen, shown in Figure 4-1, contains the same
windows as the editor screen. It also includes an additional
window, the execution window, which contains:

® Breakpoint indicators (BRK): Breakpoints may be set at
specific lines in the program; a breakpoint causes the
debugger to stop execution just before executing the
statement(s) on the line containing the breakpoint.

® Execution pointer (—): This symbol is located at the line
containing the next statement to be executed. The only
exception is if execution is stopped due to a fault or error;
then the execution pointer is located at the line that caused
the fault or error.

The execution pointer appears in boldface if it covers a
BRK.

™
Q PROGRAM EXECUTION 4.3.

Once you start execution of a program with the debugger,
execution can stop for any of these reasons:

. The end of the program is reached.
® A breakpoint is reached.

® An error occurs.

¢ A faultis detected on the UUT.

¢ The Quit key on the programmer's keyboard is pressed.

address)
declare

numeric num

numeric address
end declare

E:

open device “/termi”, as “output”

if num = @ then
print “The number of iterations is zero”
else
loop while num () @
data = read (address)
print "The data read = *, data
num = num -1
end loop
end if

{

end demo

Figure 4-1: Debugger Screen Example

4-3

When execution stops because of an error or because a
breakpoint is reached before the end of the program, the word
"STOPPED" appears on the status line. If a fault is detected, the
word "FAULTED" appears on the status line. If the end of the
program is reached, the word "COMPLETE" appears on the
status line. The debugger screen is updated to show the
statement at which execution is stopped; the execution pointer is
located at the line containing the next statement to be executed,
unless a fault or error has occurred, then the execution pointer is
located at the line that caused the fault or error. If a fault or error
has occurred, a message is displayed. While the program or
function is stopped, you can examine and/or change the value of
variables. You can then continue execution of the program or
function, or restart execution from the beginning.

Executions can be nested. For example, if program execution is
stopped at a breakpoint, you can start executing another program
or function by pressing the EXEC key. When that program or
function completes execution, the debugger returns to the point
at which you were originally stopped, and you can continue
debugging the original program.

When a program completes execution, the return value from that
program (if there is one) is displayed on the prompt line.
Normally, the screen is updated to display line 1 of the program
that finished executing. However, if the program that completed
was a nested execution, the display is updated to show where
execution was stopped on the original program.

DEBUGGER KEYBOARD 4.4.

4-4

The debugger keyboard is the same as for the editor. In
particular, the Msgs key, the Help key, the down arrow key,
and the up arrow key perform the same or similar functions.
The Info key is inactive because the display contains no
information window. The Edit key is inactive because you
cannot edit other files from the debugger; to return to the editor,
press the Quit key.

O DEBUGGER COMMANDS (SOFTKEYS) 4.5.

The following softkey commands are available only through the
debugger:

EXECUTE: Starts execution of a TL/1 program or a

function defined in the current program. You enter the
name of the program or function in response to the prompt
or use the default name provided. If the program or
function requires arguments, you are prompted for their
values.

If the argument being prompted for is numeric, you can
enter it with either a decimal or hexadecimal radix. The
default is decimal; to enter a hexadecimal number, place a
"$" character in front of the number.

You can EXEC any program that is within the standard
TL/1 search path. When you enter the name of a program
to be EXECed, the debugger first looks for the program in
the currently selected UUT directory. If the program is not
there and a pod is plugged into the 9100A, the pod
directory is searched for the program. If the program still
is not found, the program library is searched.

The debugger can only execute programs that have been
compiled. If you try to EXEC a program that has not been
compiled, the debugger automatically compiles it before
attempting to execute it. If the program cannot be
compiled, a compiler error message is displayed. At this
point you need to exit the debugger, edit the program, and
fix the error.

If the debugger stops in a function or handler that declares
a variable with the same name as another function,
EXECUTE will not allow you to execute that other
function.

During program execution, the messages window is
activated when necessary to display TL/1 output on the
monitor. The messages window remains active until
execution is completed. After program completion, the

4-5

4-6

messages window is replaced by the debugger screen.
Press the Msgs key to review the TL/1 output last
displayed.

If you want to stop program execution prior to completion,
press the Quit key on the programmer's keyboard or set a
breakpoint. The STEP, NEXT, CONT, SHOW, and SET
softkeys are valid only when the program is stopped prior
to completion.

VIEW: Displays an alternate TL/1 program. Enter the
name of the desired program in response to the prompt.
The program is loaded off the disk and displayed. Once a
program is displayed, you can scroll through it, set and
clear breakpoints, and execute it. This is a convenient way
to examine called programs from within the debugger.

When you enter the name of a program to be VIEWed, the
debugger uses the standard TL/1 program search path to
find the program. First it looks in the currently selected
UUT directory. If the program is not there and a pod is
plugged into the 9100A, the pod directory is searched for
the program. If the program still is not found, the program
library is searched.

The VIEW softkey does not affect program execution.
You can still CONT, STEP, or NEXT a stopped program
after using the VIEW softkey.

BREAK: Toggles the breakpoint status of the line at
which the cursor is located. If the line does not contain a
breakpoint, pressing the BREAK softkey sets a
breakpoint; an indicator appears in the execution window.
If the line already contains a breakpoint, pressing the
BREAK softkey clears the breakpoint; the indicator
disappears.

A breakpoint can be set for any program line that performs
an action. A blank line, the lines of a declaration block,
the first line of a definition block, and a line containing
only a label or a comment cannot contain a breakpoint.

If you try to set a breakpoint in a program that has not been
compiled, the debugger automatically compiles it before
setting the breakpoint. If the program cannot be compiled,
a compiler error message is displayed and the breakpoint is
not set. At this point you need to exit the debugger, edit
the program, and fix the error.

Setting a breakpoint is a convenient way to activate the
CONT, STEP, NEXT, SHOW, and SET softkeys.
Setting a breakpoint at the first executable statement of a
program allows you to gain control so you can step
through the program while following the path of execution
or examining (or setting) the value of variables. Setting a
breakpoint at the last executable statement of a program
allows you to examine variable values that exist at the end
of the program. Setting a breakpoint at intermediate points
in a program allows you to stop execution at these points
and then to single-step through the program after one of
these breakpoints is encountered.

CONT (CONTINUE): Continues the execution of a

stopped program from the statement at which it was
stopped. In some cases, it may not be possible to continue
execution. In these cases, the following message will
appear on the status line:

Execution cannot be continued. <PRESS RETURN>

Press the Return key followed by the EXECUTE softkey
to start execution again.

STEP: Executes the next TL/1 line; the execution pointer is

moved to the next line to be executed. If a line contains
multiple TL/1 statements, all the statements are executed.

If the executed line is a program or function invocation, the
execution pointer moves to the beginning of the function or
program, and the screen is updated as necessary. There
may be a slight delay while the program to be displayed is
loaded off the disk.

4-7

NEXT: Executes the next TL/1 line; the execution pointer

is moved to the next line to be executed. If a line contains
multiple TL/1 statements, all the statements are executed.

If the executed statement is a function or program
invocation, the function or program is executed
completely; execution does not pause inside the function
or program.

SHOW: Displays the current value of a variable. Ifis is a
numeric variable, it will be displayed as a decimal value.
To display the equivalent hexadecimal number, press the
Shift key and the SHOW softkey. You enter the variable
name in response to the prompt. If the variable name is
valid, the value of the variable is displayed. If the variable
name you specify is not valid, an error message is
displayed.

SET (SET VARIABLE): Sets the value of a variable. You
enter the variable name and a value in response to the
prompts. If the variable does not exist or the value is not

valid for the specified variable, an error message is
displayed.

If the variable being set is numeric, you can enter it with
either a decimal or hexadecimal radix. The default is
decimal; to enter a hexadecimal number, place a "$"
character in front of the number.

INIT (INITIALIZE): Clears all breakpoints, variable

values, and other execution information so a program may
be run (or re-run) from a known initial state. Also
discards all nested executions. The display is updated to
show the original program that was being edited when the
debugger was entered.

SEARCH: Moves thé cursor to the next occurrence of a
character string you specify at the prompt:

SEARCH FOR

The character string may be a word, part of a word, or
several words, up to 20 characters in length. The search is
case sensitive; the upper-case "A", for example, is
different from the lower-case "a".

If the debugger does not find the character string between
the cursor position and the end of the file, the search wraps
around to the beginning of the file and continues. If the
debugger does not find the character string anywhere in the
file, it displays an error message. The debugger retains
the string you enter and offers it as a default the next time
you issue the SEARCH command.

The search string can contain one or more wildcard
characters (*). For example, if you specify MOD*, the
debugger finds the next occurrence of MOD followed by
any set of characters: MOD2, MODULE, or MODE, for
example. If you want to search for a literal asterisk (*),
enter two asterisks (**) in the search string. For example,
to search for the expression 2*3, you would enter the
search string 2**3. By entering two asterisks, the
debugger interprets the character sequence as a literal
asterisk rather than as two wildcard characters.

To reissue your last search (and avoid re-typing the search
string), press the Shift key and hold it down while
pressing the SEARCH softkey.

FAULT: Turns the fault window on and off.

4-9

USING THE DEBUGGER 4.6.

This section shows how to use the debugger when:

¢ Execution errors occur.

¢ Debugging programs.

® Debugging blocks within programs.
¢ Debugging chained programs.

In addition, since some debugger commands are only valid at
particular times during the execution of a program, the section
below discusses when debugger commands are valid.

Availability of Debugger Commands 4.6.1.

Before Execution Begins

4-10

When the debugger is first started, program execution has not
yet begun. The debugger knows nothing about the contents of
the program, and program variables have not been created yet.
Therefore, trying to use the SET softkey or the SHOW softkey
prior to program execution will cause an error message to be
displayed.

Likewise, the STEP, NEXT, and CONT softkeys cannot be
used; they may be used only after execution of a program has
begun. Before execution begins, you may set and clear
breakpoints or initialize the debugger (which clears all

breakpoints).

The debugger is in this state when INIT is pressed.

O After Execution Ends

When program execution is complete (execution has not been
stopped by a breakpoint or by pressing the Quit key), all local
variables are discarded, but the breakpoints are not cleared.
Trying to use SET or SHOW after program execution has ended
will only work for global and persistent variables.

Likewise, the STEP, NEXT, and CONT softkeys cannot be
used.

As described below, program executions can be nested. If a
nested program completes execution, debugging can continue
with the original program.

When Execution Is Stopped

Program execution can be stopped by pressing the Quit key or
when a breakpoint is encountered. When execution is stopped,
it is possible to show and set variables, to execute the program
or one of the functions defined inside the program, to set and
clear breakpoints, or to initialize the debugger. The debugger
also stops execution when a fault is reported to the user. When
the fault window is displayed, only the FAULT softkey (F10) is
available. Pressing the FAULT softkey toggles the fault
window on and off and leaves the program stopped.

When execution is stopped, the debugger sees variables from the
perspective of the block containing the statement marked by the
execution pointer. If execution is stopped at a statement inside a
function or handler block, the debugger can set and show values
only for the variables that are declared within that block, not the
enclosing block. Other functions defined inside the program
may be executed if they are not masked by a local variable
declaration with the same name.

Execution may be resumed by pressing the CONT softkey, or
the next statement may be executed with NEXT or STEP.

Start a nested execution by pressing the EXEC key and entering
the name of a program or function to be executed. When that
program or function completes execution, the debugger returns
to the point at which you were originally stopped, and you can
continue debugging the original program.

When an Error Occurs 4.6.2.

If an error occurs in the executing program, execution is
interrupted and the line containing the error is marked by the
execution pointer. Because an error occurred, execution cannot
be resumed with STEP, NEXT, or CONT. However, you can
usually set and show variables or execute the program or one of
the functions defined inside the program. Some errors result in
more serious trouble for the debugger. These errors are called
fatal errors and cause execution to end. After a fatal error, the
following message will be displayed if you attempt an illegal
operation:

Cannot run program after a fatal error.

If the program that is being debugged calls another TL/1
program, and an error occurs in the called program, the display
is updated to show the called program.

Another type of error that can occur when a program is called is
a TL/1 compiler error. If the called program has not been
compiled, the debugger compiles it before attempting to execute
it. If a compilation error occurs, the display is updated to show
the point of the program call and the compiler error message is
displayed. At this point you should exit the debugger, edit the
called program, and fix the error.

O Debugging Programs 4.6.3.

Setting Breakpoints

A breakpoint may be set on any executable statement.
Declarations, comment lines, and blank lines are not executable
statements. The first line of a program, function, handler, or
exerciser block is not executable either.

Gaining Control of Program Execution

Normally, if you start the debugger and begin execution with the
EXECUTE softkey, the program is run without pause, as it
would run from the operator's interface. This does not provide
much assistance in debugging. However, it is easy to get
control of the program by setting a breakpoint early in the
program, either at the first executable statement or after
initializing functions are performed (but before the statements
you wish to examine). You could also watch either display for
output that indicates the progress of a program. When execution
seems to have progressed far enough, you can press the Quit
key to stop the program. This is less precise than setting
breakpoints but can be effective on long programs that
frequently send output to the displays.

4-13

Multiple Statements

If a breakpoint appears on a line containing multiple statements,
the breakpoint is encountered only once, before the first
statement is executed. If you press the STEP or NEXT softkey,
execution will continue through the rest of the line without
pause.

Setting and Showing Variables

The execution pointer indicates the next statement to be
executed. This is important to remember when examining
variables in an assignment statement. Suppose you wish to
examine the effect of this statement:

n = val (stringvar)

If you set a breakpoint on that line, when execution stops you
see:

|—>1 n = val (stringvar)

The debugger is ready to execute this statement. If you show
the value of #, it will be the value existing before the assignment
takes place. Then if you press STEP or NEXT, the assignment
will occur and the execution pointer will point to the next
statement to be executed. At that point you can show 7 to see
the effect of the assignment statement.

Debugging Blocks Within Programs 4.6.4.

Debugging If Blocks

When TL/1 encounters the if command, it evaluates the
condition for the first block of controlled statements. If the
condition is false, the second condition (supplied by an else if
command if any) is evaluated, and so forth. As soon as TL/1
finds a condition that is true, the first statement in that controlled
block is executed.

When TL/1 encounters an else if command or an else command
after executing the statements in a controlled block, TL/1 knows
the end of the controlled block of statements has been reached.
Execution continues with the first statement past the end if
command.

A breakpoint at an if command will stop execution before the
condition is evaluated. To determine whether a given branch of
the if has been taken, a breakpoint should be set on the first
statement of the controlled block, not at the if, else if, or else
command.

Debugging Loop Blocks

A breakpoint at the loop command will stop execution before the
loop is entered. A breakpoint at the first controlled statement
will stop execution at the beginning of each iteration of the loop,
and a breakpoint at the end loop command will stop execution at
the end of each iteration.

Debugging Functions

To get control of the debugger inside a function, a breakpoint
can be placed on the first executable statement of the function.
Or, you can set a breakpoint at the statement where the function
is invoked. Then, when execution is stopped, press the STEP
softkey to single-step through the function. Pressing the NEXT
softkey would execute the function completely, without pause
(unless a breakpoint is encountered while executing the
function).

If an error is found when debugging a function, execution of the
function cannot be continued. You can still set and show
variables or call another function defined inside the program.

Debugging Handlers

To get control of the debugger inside a handler, a breakpoint can
be placed on the first executable statement of the handler. Or, if
the handler is to be invoked through a TL/1 fault statement, you
can set a breakpoint on the line containing the faulr statement.
Then, when execution is stopped, press the STEP softkey to
single-step through the handler. Remember, since handlers for a
particular fault condition can be defined within different program
and function blocks, more than one handler may be available
when a fault statement is executed.

It is not possible to debug fault condition exercisers using the
debugger. However, they may be partially tested by temporarily
changing them to functions and adding a call to the function
either in the fault handler or following the statement that raised
the fault.

Debugging Chained Programs 4.6.5.

4-16

In a fully developed system of test and troubleshooting
programs, one program often calls another, creating chains that
can grow quite complex.

The VIEW softkey is useful for displaying called programs and
setting breakpoints in called programs. The STEP softkey is
useful for following execution into and out of called programs.
The SET and SHOW softkeys are useful for examining variables
when execution is stopped in a called program.

It is recommended that you first compile all the TL/1 programs
before attempting to debug a large set of programs. This allows
you to find and fix all the compilation errors before beginning
the debugging session. It also ensures that your debugging
session is not interrupted by compilation errors. Using the
debugger to find compilation errors is not recommended. It is
much easier to compile all the programs in advance, find, and fix
all the compilation errors before starting the debugging session.
To compile all the programs in a UUT, edit the UUT, and press
the COMPILE softkey.

Q Section 5
Guided Fault Isolation

(GFI)

INTRODUCTION 5.1,

This section introduces the 9100A/9105A Guided Fault Isolation
(GFDtroubleshooting utility. The material assumes that you are
familiar with the 9100A editor and TL/1 programming concepts.

The following features are described:

\
(“J ® The basic GFI algorithm.
® 5100A/9105A enhancements to GFL
® GFI database and stimulus program reference.
¢ UFI (Unguided Fault Isolation).
®* How GFI differs from UFI.
¢ Using GFI at the operator interface.

Functional tests determine whether a UUT performs as intended
and therefore indicate whether or not it is functional, If a UUT
fails a functional test, the test results generally cannot tell you
how to repair the UUT. If you wish to find out why the UUT
failed, you must troubleshoot it.

5-1

5-2

GFI is a troubleshooting procedure, implemented in the
9100A/9105A by a built-in program that directs the operator
through a series of steps to locate the cause of UUT failure. The
program uses a GFI algorithm to backtrace from a bad output to
the responsible fault.

The GFI program is general enough to troubleshoot any digital
circuit. To apply GFI to a particular UUT, you must supply
UUT-specific information to the GFI database. Once you have
stored the database in the UUT directory, an operator can use
GFI to troubleshoot the UUT without much knowledge of its
functionality. The operator has only to follow the directions
displayed by the GFI program.

Some examples in this section are designed for an 80286 pod
and the Demo/Trainer UUT (available as an option from Fluke).
Even if you do not have this option you will find it useful to
study the examples; they can be applied to other UUTs.

NOTE

In this section, "components” refers to parts such as
ICs on the UUT. "Devices" refers to 9100A/9105A
attachments such as the probe or an 1/0 module.

O

THE BASIC GFI ALGORITHM 5.2.

GFI locates UUT faults by backtracing from a bad output until it
finds the fault. GFI considers a fault located when it finds a
componentaccepting good input but producing bad output. The
component could be bad, or its outputs loaded. Loading is often
due to a bad connection that is (incorrectly) stuck at one level or
tied to another signal.

GFI also considers a fault located when it finds an open circuit: a
connection where the measured response is good at one end but
bad at the other.

The following example demonstrates the GFI backtracing
process. The circuit of Figure 5-1 represents a portion of a
UUT with a fault at point A, a short to ground. When you
perform the functional test for this portion of the UUT, the test
should fail with a bad output at point B.

To begin backtracing, first verify that the output at point B is
bad. You execute a stimulus (typically a combination of read
and write commands) from the operator's keypad and observe
the response at point B using the probe. With knowledge of the
UUT logic, you can decide whether the response indicates that
the circuit is performing correctly. A correct response
contradicts the result of the functional test, and you must
question whether the stimulus adequately reproduces conditions
that caused the circuit to fail.

5-3

U4

-III——o @

uto

15

Figure 5-1: Example UUT Circuit with Fault

U24

‘ Once you verify that the response at point B is incorrect, you
j follow these steps to locate the fault:

1. Verify that the signal is also bad at the output pin,
U24-9.

2. Check each input to U24 by applying a stimulus for
each input and observing its response. U24 has two
inputs, at pins 2 and 4.

3. Assuming that you first check the input at U24-2 and
find it good, you should then check U24-4.

4. The input signal at U24-4 is bad; according to
Figure 5-1 the input originated at U10-15.

5. When you probe U10-15, you will find that the
signal is bad. You have therefore eliminated the

chance of an open connection between U10-15 and
U24-4,

- 6. The input signal at U10-2 is bad; according to
‘) Figure 5-1 the input originated at U4-10.

7. Check the inputs to U4. They are all good so at this
point backtracing stops, having found that U4
accepts good inputs but produces bad output. The
result suggests either that U4 is bad or that its output
is loaded.

If U4 is defective, it can be replaced. If its outputs are loaded, a
little thought is necessary. Loading may be caused by a short
(as in this case), a bad component connected to U4-10, or a bad
control line on a component connected to U4-10. At this point it
should take little time to check all possibilities until you find the
short at A.

This backtracing method is the basis of the GFI algorithm
illustrated in Figure 5-2. GFI starts with a bad signal and
locates the immediate source of the signal. GFI then checks
each input of the source for more bad signals. As long as it

5-5

» component

Probe input to

with bad output

Input good?

All inputs
probed?

Backtrace to
source of
bad signal

Component is bad

Bad signal
source?

Open circuit between
good output and bad input

Figure 5-2: The Basic GF! Algorithm

or has loaded output.

. finds bad input signals, it will backtrace to the source of the
() signal and check the source for bad inputs.

ADDITIONAL GFlI FEATURES 5.3.

GFl is a very effective algorithm which locates faults in almost
any digital electronic circuit. The 9100A/9105A uses the
enhancements discussed in the following sections to reduce the
time needed by GFI to troubleshoot a circuit.

The /O Modules 5.3.1.

GFI algorithm efficiency is significantly increased if all pins on a
UUT component can be probed simultaneously. The I/O
modules were designed for this purpose. They are connected to
the ICs by adapters of various sizes. The operator, when
prompted by GFI, uses the adapter to clip over the IC to be
tested.

- Using I/O modules reduces the chances of probing the wrong IC
Q pin, and avoids the need to probe the same IC more than once.
Since many pins of an LSI chip may have to be probed during

one backtracing operation, the time saved can be substantial.

More information on the I/O modules and the use of the
I/0O MOD operator's keypad command can be found in the
Technical User's Manual.

5-7

Probing Inputs before Outputs 5.3.2.

5-8

Experience has shown that relatively few faults are caused by
bad connections. We can therefore usually assume that if an
input is bad, the output driving it is also bad. One of the easiest
ways of reducing backtracing time is to use this assumption and
initially probe only IC inputs.

Figure 5-3 shows how initially probing only inputs can save
time. In the example, (2n + 3) probes would be needed to
diagnose the bad node by probing outputs and inputs. By
probing only inputs, we reduce the number of probes needed to
(n+4).

Once a fault has been tentatively diagnosed, you must verify the
initial assumption that there was no bad connection. In this
example, a final probing of pin Ul-12 would verify the
assumption that U1-12 and U2-3 are connected.

O

e Bad

Good 1
G
ood _ 2 | ut |12 _Bad 3|
Good 3
Good 4
—————— — Un-1 Bad Un

5 Bad

Figure 5-3: Benefits of Probing Inputs before Qutputs

5-9

Related Inputs | 5.3.3.

5-10

Related inputs are the pins that should be examined if an output
pin is bad. These pins affect an output pin or a bidirectional pin
when it is acting as an output. Power and ground connections
are not related inputs, but they can cause an output pin to fail, so
they are always tested when an output is bad.

In Figure 5-4, related inputs to U7-3 are U7-1 and U7-2. If U7-
3 is bad, GFI probes only U7-1, U7-2, and power and ground
connections, ignoring other inputs.

U16 in Figure 5-4 is a component whose inputs have been
prioritized. According to the table, if output 02 fails, inputs are
probed in the following order: Enable, Select, A2, B2, Vcc, and
ground. It is not necessary to list Vcc or ground; they will be
checked automatically as the lowest priority pins. Backtracing
continues from the first input found to be bad. If they are all
good, U16 is bad or has loaded outputs.

The related input pins are specified in a list. You can control the
order in which they are probed by listing them in the desired
order. The highest priority pins should be listed first and the
lowest priority pins last.

If no related inputs are specified for a pin that has a bad output,
GFI will begin probing the component's inputs in the order of
their pin numbers.

— u7
U Vce —13'-0 +5V

11

P90

_13]
[—7 Gnd

ute

At vee F29%0 45v
B
B
Gnd

N =
Q2
~N Joo

Enable Select

w\

U16 Output | Related inputs, highest priority first

02 5,6,2,4, 20,10
(Enable, Select, A2, B2, Ve, Gnd)

o1 5,6,2,4,20,10
(Enable, Select, A2, B2, Vcc, Gnd)

U16 Related Input Priorities

Figure 5-4: Related Inputs and Their Priorities

Leapfrogging 5.3.4.

5-12

In Figure 5-5, if U6-10 is bad, a programmer may know from
experience that the bad output originates several components
away on the backtracing path at U3-2. Considerable time can be
saved by jumping directly to the suspect component. This
capability, called leapfrogging, is accomplished by specifying
priority pins in the stimulus program response files. In Figure
5-5, U3-2 might be specified as a priority pin.

If GFI finds that U6-10 is bad, it will jump to U3-2, avoiding
intermediate components. If U3-2 is bad, then the fault must lie

even further back on the path; backtracing will therefore resume
from U3-2.

If U3-2 is good, GFI will return to U6, where it will test related
inputs of U6-10. The related inputs are tested in the order of
their priorities. If U6-10 has no related inputs, all inputs to U6
are tested in the order of their pin numbers.

10

9 1
10 4
us U4 5 Us
—8
If defective Priority Related inputs, in order of
output is: pin is: priority (highest first), of U610
Us-10 Us-2 ue-1, Ue-4, Us-5, Us-8

Figure 5-5: Priority Pins

Feedback Loops 5.3.5.

5-14

The GFI backtracing algorithm is successful for most digital
circuitry where logic paths are straight lines. However, some
logic paths are circular rather than straight. Such paths are called
feedback loops.

Figure 5-6 shows a feedback loop. U6 receives input from U4,
and U4 receives input from U8; this much of the path is straight.
However, U8 receives input from U6, creating a loop.

If a loop is defective, none of its components will receive input
that is all good. A component can be called "bad" only if it
accepts good input but produces bad output. Therefore, a
component cannot be considered bad while forming part of a
feedback loop.

If a bad output is found at C, GFI will backtrace from U6 to U4
to U8 and then encounter U6 again. At this stage GFI will
realize that it has found a loop and will try to establish that the
cause of the fault lies outside the loop. It does so by testing all
inputs to the loop from components outside the loop (inputs A
and B). If GFI finds that one of those inputs is bad, it will
continue backtracing from the bad input to components outside
the loop.

If all inputs to the loop from outside are good, GFI will display
a message indicating that there is a bad feedback loop and will
list the output pins comprising the loop. For Figure 5-6, this list
would be U6-3, U8-3, and U4-2.

From component
outside the loop

LI L R T Yy Y Ty Yy Y YR Y Y Y YTy

seesalon,

sssssvocee

Ty TYYY Y

1 ™ 3 1 :

“essafosccscssscesccsaschececscrssccfectcrcocassesccoctecent

Bad output

». 10 component
" outside the loop

From component ssececccesssee [ndicates a feedback loop

outside the loop

Figure 5-6: Feedback Loops

GFI DATABASE OVERVIEW 5.4.

With GFI, troubleshooting becomes a routine matter of moving
a probe or an I/O module adapter to locations on the UUT as
prompted. An inexperienced technician can troubleshoot a UUT
without knowing how it works because you, the programmer,
have previously stored UUT-specific information in the GFI
database.

The Database and Stimulus Programs 5.4.1.

5-16

The compiled GFI database contains the following types of
items:

® Part descriptions.

® Reference designator list (REFLIST).
¢ Node list NODELIST).

¢ Stimulus program responses.

In addition to items in the database, GFI requires a set of TL/1
stimulus programs. The programs are used to generate the
stimulus program responses stored in the database. Stimulus
programs are stored along with other programs. Each stimulus
program should have a corresponding stimulus program
response file.

The stimulus programs and all items in the GFI database (except
for the part descriptions) are stored in the UUT directory. Part
descriptions are stored in a part library (PARTLIB) and can be
used for any UUT.

Items associated with the GFI database are described on the next
page and (in more detail) in the "GFI Database Reference"
further on in Section 5.

Part description: A UUT component description that
identifies the package type, number of pins, and functions
of each pin (such as input or output). The related input
pins are identified for each output.

Descriptions are stored in a UUT, or in a part library
(PARTLIB). Descriptions in the PARTLIB can be used
for any UUT. Thus, you do not need to enter the same
description into the database for every UUT that uses the
part.

Reference designator list (REFLIST): A pairing of
the name (reference designator) of each component on the
UUT with a part description from the part library. For
example, U5 may be a designator for the part 7400, whose
description is stored in the part library. The device needed
to test the part is also specified.

Node list (NODELIST): A description of all UUT
nodes. A node is a group of pins connected to each other.
All pins forming a node must be identified.

Stimulus programs: TL/1 programs that exercise UUT
nodes. For example, a data line stimulus is a sequence of
read and write commands, which cause the UUT to
transmit signals over the line. The responses caused at a
node by a stimulus can be measured and analyzed.

GFI uses a stimulus to check a suspect node, comparing
its response to that previously obtained from a good node.
A stimulus must be available for each node. You need
enough knowledge of the UUT logic to design stimuli that
thoroughly and accurately exercise all nodes on the UUT.

5-17

¢ Stimulus program responses: The responses

characterizing a known-good UUT. Responses have an
important role in GFI, linking a stimulus program to the
nodes that the program tests. A response file identifies the
nodes exercised by a stimulus program, and contains data
characterizing each node. A node is characterized by using
GFI LEARN to collect response data from that node on a
known-good UUT. Response data can be CRC
signatures, asynchronous level histories, clocked level
histories, and transition counts or frequency data. GFI
compares response data from a tested node to data stored
in the response file to determine if the node is good.

In GFI, each stimulus program is paired with an identically
named stimulus program response file: for example, the
response file dma_circ contains responses to the stimulus
program dma_circ. A stimulus program may exercise
several UUT nodes. Each node should be described by a
line in the corresponding response file. The line should
identify the node being exercised, specify its priority pin
(if any), and display the response data chosen to
characterize the node.

How GFl Uses the Database and Stimuli 5.4.2.

The table in Figure 5-7 summarizes how GFI uses the database
and stimuli to test a component and generate probing
suggestions if the component has bad output.

Consider the example of Figure 5-5; if we specified that pin
U6-10 was to be tested, GFI would:

1. Look in REFLIST to determine the device (probe or
I/O module) to test U6 with. GFI then prompts the
operator to probe or clip U6.

2. Look in NODELIST to see what other pins are on the
same node as U6-10. ,

5-18

Determine all suitable stimuli. GFI searches for
stimulus program response files specifying (as a
node signal source) U6-10 or a pin on the same node
as U6-10. Suppose the response file named
addr_out lists responses for node signal source
U34-1. If U34-1 is on the same node as U6-10,
then the stimulus program named addr_out is suitable
for testing U6-10 as an input.

Apply all suitable stimuli by executing all relevant
stimulus programs. In step 3, if it was found that
stimulus programs addr_out and micro_data
exercised U6-10, both are executed.

Determine whether the node is good or bad. In step
4, as each stimulus program is executed, responses
at U6-10 are compared to those stored in the
corresponding response file.

If step 5 shows U6-10 was bad, and if the stimulus
program response file specifies a priority pin, then
GFI would recommend probing at the priority pin.

If step 5 shows U6-10 to be bad and if no priority
pin is specified, then GFI would look at the part
description and recommend probing related inputs in
the order that they are listed.

5-19

When Lookat: |(TYPE) In order to:
Testing pins | REFLIST REF Determine the testing device
at a specified for the pin; prompt the operator.
location
NODELIST | NODE Determine suitable stimulus
programs:
 Check:which pins are on the
same node.
Stimulus RESPONSE | - Find all the stimulus programs
Program which use, as signal sources,
Responses the pin under test, or any other
pin on the same node.
Stimulus PROGRAM Execute all suitable stimulus
Programs programs.
Stimulus RESPONSE | Determine whether the pin is
Program good or bad by comparing
Responses responses to those stored in
program response files.
Generating | Stimulus RESPONSE | Suggest priority pin, if specified.
suggestions Program
Responses
REFLIST REF Suggest related inputs at the
component of steps 1-5, if
Part PART priority pin is unspecified or was
Descriptions not a useful hint.
gtrgg:,‘::.‘? RESPONSE , Suggest backtracking to source
Responses of bad signal.

Figure 5-7: How GFI Uses the Database and Stimuli

5-20

O GFl DATABASE REFERENCE 5.5.

This section is a reference for the following items, some of
which were described in the "GFI Database Overview" located
in Section 5.

® Partlibrary (PARTLIB).

¢ Part descriptions.

i Reference designator list (REFLIST).
® Node list (NODELIST).

¢ Stimulus programs.

¢ Stimulus program responses.

The compiled GFI databaseconsists of part descriptions, a
reference designator list, a node list, and stimulus program
response files. You can create or modify each of these files by
using the editor. GFI also uses stimulus programs, which are
not included in the database itself.

When you first create a UUT directory, it is empty. The editor
provides a framework for entering or editing each type of UUT
information.

Developing stimulus programs and stimulus program response
files requires a thorough knowledge of the UUT logic.
However, creating part descriptions, reference designator lists,
and node lists mainly entails data entry and can usually be
performed by a less skilled user.

Creating a GFI database involves:

® Describing the circuit by creating REFLIST, NODELIST,
and updating PARTLIB if necessary.

® Writing stimulus programs and storing them.

® Learning responses from a known-good UUT and storing
them in stimulus program response files.

¢ Compiling the GFI database.

5-21

¢ Generating a summary of the GFI database, which
analyzes the GFI test coverage.

Part Library 5.5.1.

5-22

Figure 5-8 shows a screen from the 9100A's standard part
library. Each item in the part library is a part description, which
can be accessed by any UUT's GFI database. You can modify
the existing descriptions or add new ones as described in
"Entering a Part Description." further on in Section 5.

The information window includes the following fields:

b NAME: The name PARTLIB. This field cannot be edited.

¢ DISK FREE: The amount of disk space that is still
available. This field cannot be edited.

¢ DESCRIPTION: An optional one-line description of the
part library.

Below the information window is a listing of the names of all
part descriptions contained in the part library.

©

DISK FREE: 18,399,232 BYTES

PRESS A COMMAND KEY OR HELP KEY
DIRECTORY OF PARTLIB (LIBRARY)

Parts (PART):
2016 2674 2675 2681 27128 27256
4000 4164 7400 7401 7402 7403
7404 7405 7405 7407 7408 7403
7419 74107 74108 7411 74111 74112
74113 74114 7412 74121 74122 74123
74125 74126 74128 7413 74131 74132
74133 74134 74138 74138 7414 74148
7415 74156 74151 74153 74157 7416
74160 74161 74162 74163 74164 74165
74166 7417 74175 7420 7421 7422
7423 7424 74244 74245 7425 74257

7426 742 74 7430 7431 743
== =t = =

SAVE coPY EDIT QUIT

Figure 5-8: Standard Part Library

5-23

Part Descriptions 5.5.2.

Part descriptions for SIPand DIP packages, are shown in
Figures 5-9 and 5-10, respectively. Each part description will
contain data about one type of component, such as a 2114 IC, or
an 74154148 IC, or a resistor. The part description fields that

are active depend upon whether the information window is on or
off.

Information Window on:

¢ NAME: The part identification. This field cannot be
edited.

¢ NO. PINS: The number of pins on the part. The number
must be in the range 1 through 255.

¢ PACKAGE: The package type for the part. Use the Field
Select key to set this field to either SIP (Single In-line

Package) or DIP (Dual In-line Package). Any part that is
not a Dual In-line Package should be specified as SIP.

¢ DISK FREE: The amount of disk space that is still
available. This field cannot be edited.

® WRITE PROTECT: The write-protection status of the file.

Use the Field Select key to set this field to YES to specify
write protection for the file. If the file is write protected,
the editor prompts you when the file is saved to ensure that
changes are intentional. If the file is not write protected,
you will not be prompted. A change in write-protection
status does not become effective until after you save your
current edits.

The NO. PINS and PACKAGE fields define how DIP
component pins are mapped to I/O module pins. The mapping is
performed during GFI. For SIP components, the probe should
be used for GFI.

5-24

NAME: JACK1S DISK FREE: 521,984 BYTES

NO. PINS: 56
PACKAGE: SIP WRITE PROTECT: NO
1] >
2| >
3l o
4 -
5 —
6|
7|
8 —
9| «
10| >
1] -
12 —
13| o
14 —
15| —
16 —

Information Window On

PIN NAME RELATED INPUT PINS

i
i
5
[
3
3
4
g
B
7
g
g

—
—*
—
—
—
—
“—
8 —
—
—
—
—
—
—

HARK PRSTE

Information Window Off

Figure 5-9: SIP Part Description

5-25

DISK FREE:

528,224 BYTES
URITE PROTECT: YES

=
T

FI

s
wn

— |1 14] AR
— 2 —
|3 —
— |4 UNU
— 5 —
— g —
8D |7 — 9,1#,12,13

RELATED INPUT PINS

RELATED INPUT PINS PIN NAME

I

PI

F1
6070

H

F2

" SAUE

PIN NAME RELATED INPUT PINS

—
Y
0
=
=

Tilell
LTTETT

BND 9,10,12,13

RELATED INPUT PINS

PASTE

5-26

Information Window Off

Figure 5-10: DIP Part Description

Information Window off:

Pin type field: Specifies the function of each IC pin

according to the guidelines laid out in Figure 5-11. The
fields are initially set to a default state. To change a pin
field, move the cursor next to a pin number on the IC
figure and use the Field Select key to change the field.

PIN NAME: The name of the pin. This field is typically
left blank and is only used for components that use names
rather than numbers to identify pins. For example, a
connector may label one row of pins "al" through "al2",
and the other row of pins "b1" through "b12".

If a component uses pin names, a name must be specified
for every pin. The 9100A/9105A will not recognize pin
numbers for these components. Use the pin name in the
node list, response files and with GFL

RELATED INPUT PINS: Related inputs are the pins that

should be examined if an output pin is bad. These pins
logically affect an output (or a bidirectional pin when it is
acting as an output). When GFI finds a bad output pin, it
uses this list to determine where to probe next. Related
inputs are specified for each output, including status lines
and bidirectional lines.

As a default, the 9100A/9105A assumes that all the input
pins and bidirectional pins are related inputs. It further
assumes that they should be probed in ascending order,
based on pin number. If these assumptions are correct for
a particular output pin, this field can be left blank.

However, for some pins this assumption is incorrect. For
example, on a 74L.S00, the list of related input pins for pin
3 should be limited to pins 1 and 2. If you wish to restrict
the set of related input pins to some subset of the default
list, or if you want to change the order in which the pins
are probed, you should enter a list of related input pins.
List the pins in the order that they should be examined
(i.e., the highest priority pins first, and the lowest priority
last). Itis not necessary to list power and ground pins as
related inputs; the 9100A/9105A assumes this.

5-27

5-28

If an output (such as a microprocessor pin or edge
connector pin) has no related inputs, you should type a
zero into this field. This will force GFI to immediately
make an accusation involving the pin when it finds that it is
bad.

To specify related inputs, move the cursor horizontally
away from the pin field and type in the pin numbers of
related inputs, separated by commas. If there are too many
related inputs for one line, you should move the cursor
below the IC figure to the PIN field and type the pin name
or number. Then move the cursor to the RELATED
INPUT PINS field and type in the list of related input pin
numbers. The extra related pins appearing below the IC
figure are treated as a continuation of the related pins listed
at the side of the IC. If desired, all related input pins may
be listed below the IC figure.

Pin Field
(In Part Description)

f

Typical IC
Qutline in Part
Description
Screen

GND
PWR
UNU
UNU

© o N O s W N

Figure 5-11: Specifying Pin Functions in a Part Description

Pin Function
(from Data Book)

Input

Control

Output

Status
Bidirectional
Ground

Power

Not Connected

No Function

5-29

2114 Example

5-30

The following figures show the block diagram, pin layout, and
logic symbol for a 2114 RAM chip. Each memory location is
addressed by lines Ao through Ay, which are therefore inputs.
Data is written to or read from an address on data lines I/0:
through I/0s, which are therefore bidirectional pins. The CS

(chip select) and WE (write enable) control lines are also
considered inputs.

= o,
As @——_m <—— GND
As (L———'B: row | - MEMORY ARRAY
Aa® m SELECT | : S COLUMNS
MOBEEENAS
C— .
_ 1 1
vor ® E] Yo SRS
Vo2 _E" INPUT B COLUMN SELECT
® CONTROL |
i _B_ @Ao ®A1 ®Az @As ‘ i
1
|l

S
® le

(® - PINNUMBERS

2114 Block Diagram

(This page is intentionally blank.)

5-31

5-32

W -/

As [11 18 [] Vee
1M Vo1 — As []2 17 [0 A
— A2 As 3 16 [] As
e Vo, |— As [4 15 [] Ag
— A4 Ao E 5 2114A 14] 1104
o A [e 13[] 10,
| Ae VO3 [— A [17 12[] o3
1M cs []s 11 [] 1o,
] 2: v0s b— GND [9 10 [WE

WE Cs
2114 Logic Symbol 2114 Pin Configuration

Figure 5-12 shows what the 2114 part description should look
like. Since bidirectional pins I/0: through I/0. sometimes act as
outputs, related inputs should be entered for them.

For example, the related inputs for I/0s (pin 11) are determined
by first locating all inputs that could affect the data at pin 11.
The previous block diagram shows these inputs to be Ao through
As, CS, and WE. Next, arrange the related inputs in the order
you would check them if you found bad data on pin 11. CS and
WE are the most important lines: if either is bad, these lines
should be checked out regardless of the state of the address line.

Thus, the pins are listed in order: CS, WE, and then the address
lines. In Figure 5-12, the related inputs were too long to fit on
one line so the line was continued below the symbol of the IC..

N,

i

v Sid

PING:

i
|
| FACKABE: DIP

i

18
i7
iB
15
14
13
12

o)
f
i)

WLl

TITIITTT

SHD

RELATED INPUT PINS
7,81

18

RELATED INPUT PINS PIN NAME

()

5070

SAVE

FIN NAME RELATED INPUT PINS

e
L=
T3
£
=i

Ll
LR AOSRON

oy
g
Ll

Information Window Off

Figure 5-12: 2114 Part Description

5-33

4034 Example

The following figures show some typical applications, the pin
layout, and logic symbols for a 4034. The 4034 is an eight-
stage bidirectional, parallel/serial, input/output, bus register. If
necessary, refer to a CMOS data book for details on its pin
functions.

DOUBLE-BUS SYSTEM
(ENABLE INPUTS ON BOTH SIDES)

[2 |

' 1 L Prs AEe— — AE PS (& AE[o—s
H et 1 1 t 1 1jer
[} e 2 2 2 2 2 2l
V) W REG X1REG | X(2) REG

' M%I:IOTRV leefa 3 3 3 3l
] I ol 4 4 4 4 4 4>
| \ B A A B 8 A TO SECOND
1 1“’2 : : : 2 :"’ BUS SYSTEM
) o je—p-
1]| cowa | ;| coswss |, 7] cpass |4
1 ¢

1 o8]] 8 8 =
L _________ _: S| ABAS CL S| ABAS CL SI_ABAS CL
:'""'""“: L_éﬁ‘m_h"s‘é&r ST ABAS CL J :“‘"""":

| 1 liprs AE}e- —s AE PSje 1 1

: :4—01 1 1 lo—Jl :

] a2 2 2 2f+—=)

\ PERIPHERAL | YREG |, 3| ZREG [| ARITHMETIC |

1 UNIT D 4 UNIT |

] H‘B 4 ‘A B4~—-| 1

1 1 |

' o : : o :

1 el

1 CD4034 €D4034 |

! leef7 7 7 714 {

1 8 8 8 8l [}

| SR Jd | P 4

THE *A" ENABLE (AE) AND A/B SIGNALS CONTROL BUS LINES

AL THE COMBINATIONS OF TRANSFER BETWEEN (SINGLE)

THE REGISTERS AND BUS SYSTEMS.

Single- and Double-Bus Application

5-34

SERIAL DATA —9

Voo

PiS
AS
CcL

Voo
!

Pt

s

e AB
— A/S
o CL

P/s

1)
\.“A" PARALLEL DATA/

CD4034

L DATA
/1-'9 PARALLE -\

IRRRXRR]

SERIAL
DATA

Voo
)

H.I.HH.I.

Voo +

1

g 955”

AE

1
\.“A" PARALLEL DATA-/

CD4034

/- ‘B"PARALLEL DATA-\

IREREXR

DATA

SERIAL

16-bit Register:
» parallel iVparallel out.
« paralle! in/serial out.
« serial in/parallet out.
« setial in/serial out.

s‘“”‘"’“"—luunn

SERIAL DATA —~

CLOCK —*

Vpo ==
AS —

8l
AB
NS
cL
Prs

\. *A" PARALLEL DATA/

r "B PARALLEL DATA

CD4034

e T TV TTTIY

parallel out.

A

"B DATA LINES
ool il il

CREXEYYE

23®

~

%

ol fefo e

2
)

TO DISPLAY, ETC.

Sample and Hold Register:

» serial-parallel in/

=

I
5 g A" DATA LNES——/ g
=

PS

TOP VIEW

Pin Layout

STEERNG
LOGIC

“A"DATA LINES

it
—e E-]
-
-
————
| estaces ﬁ
BN 1
=, £
3
- P
-
—
Q ———-
st
A8 B8

Functional Diagram

The 4034 part description should be designed and entered like
the 2114 part description of the previous section. Figure 5-13
shows what the 4034 part description should look like.

(-\\\
i
Do

5-35

PACKAGE: DIP

DISK FREE:

£28,224 BYTES
URITE PROTECT: NO

UnEBRNNE

TTTITITITL8

916

2LLLTTITLTLLL

PIH RELATED INFUT PINS

14,11

itk

PIH RELATED INPUT PINS
i 13,15,19,14,11,5,8,7,6,5,4,3,2,
4= f!

T PING PIN NAME PIN HAME RELATED INPUT PINS

B

TTTIITITLLLE

Ik e g LY [0 [0

oy
-~ R d]
ok e
0 n

11 14
12 13

2LLLTTTITLLT

1,9,16,17,18,18,20,21,22,23
F7 F& F9

F =
MARK PASTE

5-36

Information Window Off

Figure 5-13: 4034 Part Description

(This page is intentionally blank.)

5-37

Pull-Up Resistor Example

The figure below shows a pull-up resistor whose leads have
been assigned pin numbers. Pin 2 is connected to +5 volts so

that pin 1 can provide a pull-up voltage at the output of a
semiconductor component. :

+5V

ouT

Pull-Up Resistor (R) at Component Output

Figure 5-14 is the part description of the above resistor.
Resistors can be described in the same way as ICs: they are
two-pin SIP components. Each pin can be input, output, or
bidirectional, depending on current flow. Since pin numbers
must be assigned arbitrarily, the test or troubleshooting operator

should be provided with information describing the numbering
scheme.

5-38

TNIE: PULLLP §28, 224 BYTES
| N0, PING: 25
PACKAGE: SIP WRITE PROTECT: NO
IETIE
2| —

PIN RELATED INPUT PINS

Information Window On

PIN NAME RELATED INPUT PINS

PIN RELATED INPUT PINS

Information Window Off

Figure 5-14: Pull-Up Resistor Part Description

5-39

Entering a Part Description 5.5.3.

5-40

The part library (PARTLIB) contains component descriptions
that can be accessed by any UUT. A UUT can also contain part
descriptions. If REFLIST specifies a part that is not in the UUT
or library, that part must be added to the UUT or PARTLIB.
For example, to enter a 7420 description:

1.

Consult a TTL data book to see what each pin does.
A 7420 is a dual, four-input NAND gate. You need
to know if each pin is input, output, bidirectional,
ground, power, or unused. You also need to know
the related inputs for each output or bidirectional pin.

Press the Edit key and type:
/hdr/partlib/7420

Press Return, select PART as the TYPE field, and
press Return again to view the description, which
should appear with the information window on.

If this part description has already been created, the
information window won't be displayed unless you
press the Info key. Pressing the Info key a second
time turns the information window off.

Type the number of pins (14) on the IC and specify
the package type (DIP) at the information window;
then turn the information window off by pressing the
Info key.

Type the related inputs for each output, and use the
Field Select key to specify each pin's function
according to the information obtained in step 1.
Figure 5-15 shows the 7420 part description in its
final form.

Press Quit and use Field Select to specify whether or
not to save your changes.

\ 74L820
B DUAL 4-INPUT
. POSITIVE NAND GATES

Vee 2D 2C NC 28 2A 2y

14 13 (7] S PR} S pryy B ry By

-

1 2 3 4 5 6 7
1A 1B NC 1C 1D 1Y GND

POSITIVE LOGIC: Y =ABCD

RELATED INPUT PINS PIN NAME PIN NAME RELATED INPUT PINS
E —» |1 14 PR

— 12 13| «

UNU |3 12] &

— |4 11} UNU

— |5 18] «
1,2,4,5 — |8 9] «

BND |7 8] — 9,1¢,12,13

PIN RELATED INPUT PINS

G0T0 GAVE

After Edits
Figure 5-15: 7420 Part Description

5-41

Reference Designator List 5.5.4.

5-42

Figure 5-16 shows an example reference designator list
(REFLIST), which pairs the names (reference designators) of all
UUT components with part descriptions from the part library
and with the device needed to test each component.

Information Window on:

NAME: The name REFLIST. This field cannot be edited.

DESCRIPTION: An optional one-line description of
REFLIST.

DISK FREE, SIZE: The amount of disk space that is still-

available and the size of the reference designator list.
These fields cannot be edited.

WRITE PROTECT: The write-protection status of the file.
Use the Field Select key to set this field to YES to specify
write protection for the file. If the file is write protected,
the editor prompts you when the file is saved to ensure that
changes are intentional. If the file is not write protected,
you will not be prompted. A change in write-protection
status does not become effective until after you save your
current edits.

Information Window off:

REF: Enter a reference designator (such as U4 or J8) for

the UUT component referred to. A reference designator
can be from one to six characters long. It may include

only alphanumeric characters, underscores "_", and
periods ".". Also it must begin with an alphanumeric
character.

PART: Enter the name of the part (such as 7400) that

corresponds to the reference designator. The part library
will need to contain a description for the part with this
name.

TESTING DEVICE: The device (probe or I/O module) to

be used to test the component during GFI. Press the Field
Select key to change this field.

==

E: REFLIST S T DISK FREE: 337,696 BYTES
DESCRIPTION: SIZE: 258 BYTES
WRITE PROTECT: NO

Ji Jjack1s PROBE
uzd 8187 1/0 MODULE
u34 8228 1/0 MODULE
uz2 74139 PROBE
ull 2114 1/0 MODULE
uil 2114 170 MODULE
u3e 8255 1/0 MODULE
u2s 8080 PROBE
ri resistor PROBE
kmem key PROBE

TESTING
REF PART DEVICE
i JjacklB
u2d 8187
u3d4 8228 170 MODULE
u22 74133 PROBE
ull 2114 1/0 MODULE
ui3 2114 1/0 MODULE
u3e 8255 1/0 MODULE
u2s 8080 PROBE
rl resistor PROBE
kmem key PROBE

GOT0 SAVE WARK PASTE

Information Window Off

Figure 5-16 Reference Designator List (REFLIST)

5-43

SIP components must be tested with the probe, but DIP
components can be tested with either the probe or an I/O
module. If the I/O module is used, GFI will test all the
pins on the component whenever the component is
clipped.

Editing the Reference Designator List 5.5.5.

5-44

The reference designator list (REFLIST) contains a list of
reference designators, the component each designator identifies,
and the device needed to test each component of a UUT. For
example, assume that U99 designates a TTL 74LS20 IC. To
add U99 to REFLIST for the UUT abc:

1.

Press the Edit key and type:
/hdr/abc/reflist

Press Return, select REF as the TYPE field, and
press Return again. REFLIST should appear as
shown in Figure 5-17 "Before Edits."”

Move the cursor to the bottom (blank) line and type
U99 into the REF field.

Press Return and type 7420 into the PART field.

Press Return and use the Field Select key to select
the TESTING DEVICE as the probe or I/O module.

Repeat steps 3 through 5 for subsequent entries;
when done, press Quit and use Field Select to
specify whether or not to save your changes. Figure
5-17 "After Edits" shows the results of steps 3
through 5 on REFLIST.

Steps 3 through 5 identify U99 as a 7420 PART. If the UUT
and PARTLIB (the part library) does not contain a 7420
description, the UUT or library must be updated by entering the
necessary part description.

TESTING
REF PART DEVICE
rk] 74245 1/0 MODULE
uie 74373 1/0 MODULE
Uz 74373 1/0 MODULE
uz2 74373 1/0 MODULE
(119 82288 1/0 MODULE
J5 connl 1/0 MODULE
ui4 86286 1/0 MODULE
JIC connl PROBE
SW3 switchl PROBE
JIR connl PROBE
sz switchl PROBE
uz7 27256 170 MODULE
U3 74245 PROBE

TESTING
REF PART DEVICE
Uz23 74245 1/0 MODULE
uig 74373 1/0 MODULE
u2 74373 1/0 MODULE
u22 74373 1/0 MODULE
uis 82288 1/0 MODULE
J5 connl 1/0 MODULE
ui4 80286 1/0 MODULE
Jic connl PROBE
SW3 switchl PROBE
JIA connl PROBE
Su2 switchl PROBE
uz7 27256 1/0 MODULE

u3 74245 PROBE
uss 7420

5070 MARK. PASTE

After Edits
Figure 5-17: Editing the Reference Designator List

5-45

Node List 5.5.6.

5-46

Figure 5-18 shows an example node list, which describes all
UUT interconnections.

Information Window on:

¢ NAME: The name NODELIST appears in this field,
which cannot be edited.

®* DISK FREE, SIZE: The amount of disk space that is still

available and the size of the node list. These fields cannot
be edited.

¢ WRITE PROTECT: The write-protection status of the file.

Use the Field Select key to set this field to YES to specify
write protection for the file. If the file is write protected,
the editor prompts you when the file is saved to ensure that
changes are intentional. If the file is not write protected,
you will not be prompted. A change in write-protection
status does not become effective until after you save your
current edits.

Information Window off:

4 Each node field is one or more text lines, each listing the

pins connected together to form one node. Pin names are
separated by spaces or tab characters. Comments can be
inserted in node fields. As in TL/1 programs, precede a
comment with a "!" character. When you finish specifying

a node, press Return. When you do so, the editor checks
the line for errors.

§28, 224 BYTES |

HRIE: NODELIST DIGK FREE:

- SIZE: 1 017 BYTES
[WRITE PROTECT:
W21 uze-14 1A10
425-35 ull-15 ui3-15 A9
u25-34 uil-1f ul3-18 A8
WP5-33 uli-17 ui3-17 17
uZ8-32 ull-1 ui3-1 1AB
u?5-31 ull-z ul3-2 if5
uPE-38 ull-2 ul3-3 a4
u?5~79 yli-4 ul3-4 a3
uf5-27 uld-18 ing
u25-28 uzd-16 4
u25-25 uzd-14 s
#masters

u?5-35 u5-34 uf5-33 uls-32
ufS-31 u25-30 ut-28

Information Window On

u25-38 u3e-6 113
u25-37 u22-15 1A12
u25-40 u22-13 14981
uzgb-1 u22-14 1A10
u25-35 uii-15 ul3-15 A9
uz25-34 uii-16 ul3-16 IAB
uz25-33 ull-17 ui3-17 A7
u25-32 ull-1 ul3-1 125
ugst-31 uii-2 ui3-2 AS
u25-3¢ uli-3 ui3-3 A4
u25-28 ull-4 ul3-4 A3
u2s-27 uz24-18 a2
u2b-26 uz24-16 a1
uz5-25 u24-14 A0
*masters

u25-35 u2b-34 u25-33 ugb-32
u25-31 u25-3¢ u25-29

F2 =
B0TO SAVE MARK

Information Window Off

Figure 5-18: Node List (NODELIST)

5-47

To use more than one line for a node, you can:

L Type a backslash (\) character to end the first line, and then
type on the next line.

® Continue typing at the end of the first line; the editor
inserts a continuation marker (>) at the end of the first line
moves the cursor to the next line and inserts another
marker (<).

CHECK Command

The editor's CHECK command looks for errors in the node list.
CHECK indicates if a pin appears in more than one node.

Naming Bus-Master (*master) Pins

5-48

The screen's last lines in Figure 5-18 show a *masters (star
masters) entry. The entry lists all pins in the node list that are
"bus-masters.” A bus-master is a pin which can send data to
every other pin on the same node or receive data from every
other pin on the same node.

Figure 5-19 shows why U3-14 is a bus-master. U3-14, U12-1,
U13-1, U10-12, and U56-12 form a node. Information can
flow through the pins as indicated by the arrows. U3-14 is the
bus-master (the only one on the node) because it communicates
with all the other pins on the node.

Why is *masters necessary? Sometimes components that are
connected together do not communicate: the most common
examples are bus components, as in Figure 5-19. GFI
determines data flow from the node list and assumes that data
can be sent from a pin to any other pin on that same node. In
Figure 5-19 the assumption is incorrect because the RAM,
ROM, and I/O communicate only with U3. The *master entry
allows GFI to decide which pins actually send data to other pins.

Micro- 14 >
Processor | 4 [3
1] 14 12 12
RAM 1 RAM 2 ROM 1o
us3 uU12 U13
u10
Arrows indicate possible signal directions; RAM 1,
RAM 2, and I/O only send signals to the microprocessor
and not to each other. U3-14 is the bus-master (*master) pin.
use

Figure 5-19: Bus-Master (*master) Example

5-49

The *masters entry is optional; it is better to make the entry after
compiling the database once without it. The entry is helpful in
cases of nodes that:

® Are formed by three or more pins.

Have two or more signal sources.

Editing the Node List 5.5.7.

5-50

The node list NODELIST)contains a list of nodes on the UUT.
A node is formed by the connection of two or more pins. For
example, in Figure 5-20, node A is formed by U23-3, U14-49,
and connector pins J1a-25 and J5-49. To enter node A into the

node list for UUT abc:

1. Press the Edit key and type:
/hdr/abc/nodelist

2. Press Return, select NODE as the TYPE field, and
press Return again.

3. Move the cursor to the bottom (blank) line, and type
the pins forming node A. Press the Return key at the
end of each line. The line should read:
u23-3 jla-25 ul4-49 35-49

4. Repeat step 3 until all nodes have been entered,

5. Use the CHECK command to ensure that a pin does
not appear in more than one node.

6. Press Quit, and use Field Select to specify whether

or not to save any changes you have made.

Jla

u23

25

49

U4

Node (A)

“§23-2 [12-26 uld-51 |

u23-6 jla-22 ul4-43 j5-43
u23-8 j1a-20 su2-8 uld4-39 j5-39

u23-7 jla-21 uld-41 j5-41

u23-9 jla-19 su2-9 sue-11 uld-37 j5-37

uz23-§ jla-23 sw2-7 ul4-45 j5-45

ud-11 u27-11
u3d-12 uz7-12
ud-13 u27-13
u3-14 u27-15
u3-15 u27-16
ud-16 u27-17
u3-17 u27-18
u3-18 u27-18

uz23-3 jla-25 ui4-43 j5-43

= 7
PAST]

The Node A, Entered into the Node List, on the Bottom Line
Figure 5-20: Editing the Node List

5-51

Stimulus programs are TL/1 programs used by GFI to exercise
UUT nodes in such a way that the responses of nodes can be
analyzed and compared to responses of nodes on a known-good
UUT. The responses include CRC signatures, asynchronous
level histories, clocked level histories, and either a signal
frequency or the number of signal transitions.

Response data is gathered during program execution in an arm .
. . readout block. The stimulus should contain a sequence of
TL/1 commands that configures and synchronizes 9100A/9105A
hardware for response gathering.

Figure 5-21 shows an example stimulus program; note the TL/1
commands used to configure the response-gathering hardware.

Information Window on:

® NAME: The name of the stimulus program. This field
cannot be edited.

¢ DESCRIPTION: An optional one-line program
description. '

® DISK FREE, SIZE: The amount of disk space that is still

available and the size of the current program. These fields
cannot be edited.

¢ WRITE PROTECT: The write-protection status of the file.
Use the Field Select key to set this field to YES to specify
write protection for the file. If the file is write protected,
the editor prompts you when the file is saved to ensure that
changes are intentional. If the file is not write protected,
you will not be prompted. A change in write-protection
status does not become effective until after you save your
current edits.

5-52

! This program is a simplified example of a GFI stimulus program.
! The stimulus program is designed to stimulate a node, while

! the node'’s response is captured with the probe or I/0 module.

1

! This program has two main parts. First, the response-gathering

! hardware on the testing device 1is configured with the TL/1
reset,

! sync, threshold, and counter commands. Then the response-

! gathering hardware 1is activated, and the stimulus is applied.

!

! This program shows the TL/1 commands that are used to configure

! the probe or I/O module to collect responses using external
sync,

H

program ext_sync

devlist = gfi device ! get the device from GFI

reset device devlist ! reset device to a known
! state

threshold device devliist, 1level ®"ttl" ! set threshold levels

counter device devlist, mode "transition®™ t set counter mode

sync device devlist, mode "ext" ! sync device to external

edge device devlist, start "+", stop "+", clock "+"
connect device devlist, start "u3-1", stop "U7-8%", clock "U4-8"
enable device devlist, mode “always"
arm device devlist ! start the response
! capture
rampdata addr $F0000, data 0, ‘mask S$F ! apply the stimulus
rampdata addr $F0000, data O, mask SFO
rampdata addr S$F0000, data O, mask S$FO0O
rampdata addr $F0000, data 0, mask S$SF000
! Check that signatures are complete. Raise a fault if they
! aren't.
status = checkstatus device devlist
if status <> S$F then
if (status and 4) = 0 then
reason = "no valid start seen"
else if (status and 2) = 0 then
reason = "no valid enable seen"
else if (status and 1} = 0 then
reason = "no valid clock seen"
else if (status and 8) = 0 then
reason = "no valid stop seen™
end if
fault signatures_incomplete because reason
end if
readout device devlist ! terminate the response
{ capture

end ext_sync)
Figure 5-21: Stimulus Program (ext_sync)

5-53

5-54

Information Window off:

A stimulus program is simply a program written for the specific
purpose of providing a stimulus to exercise a UUT node.
Editing a stimulus program is identical to editing any other
program. When writing or changing a line, the editor checks the
line for correct TL/1 syntax before allowing the cursor to move
off the line. The CHECK command checks for syntax errors
which cannot be detected by the line check. The debugger can
be used to check the program's logical operation.

Stimulus programs written for GFI should not use the assign,
clip, or probe commands. GFI automatically prompts the
operator with the name of the reference designator or pin being
measured by the I/O module or probe. The stimulus does not
need to store or check the resulting response data, since GFI
makes troubleshooting decisions based on data stored in
response files. The stimulus program must do the necessary
UUT initialization and the setup and control of measurement
hardware.

A stimulus program has two main parts. First, the measurement
hardware must be configured:

¢ For a program using pod sync, threshold and counter

commands should be used.

For a program using external sync, the sync, threshold,

counter, enable, edge, and connect commands should be
used.

After measurement hardware is configured, it should be
activated and the stimulus applied:

o The arm and readout commands should be used.

d For a program using external sync, the checkstatus

command should be used before readout, to ensure that
signatures are complete.

G

¢ The stimulus is typically a sequence of read and write

commandes.

Stimulus programs should satisfy two very important criteria:

¢ The program must be independent, initializing the UUT as
required. This is because GFI can begin backtracing at
any node, and the state of the UUT, prior to running the

stimulus, is unknown.

¢ During stimulus execution, only one pin should drive a
node: that is, during the period between the arm and
readout commands, one and only one pin should be a node
signal source. There are two reasons for this that are

explained in the following examples:

Example 1: Node A (below) is bidirectional: either Ul-1 or
U3-1 can be signal sources. To exercise the node, two stimuli
are needed, one naming U1-1 as a source and the other naming
U3-1 as a source. The reason is, that if either pin is found to be
bad, GFI needs to know whether the pin is an output or an
input. If the pin is an output, GFI recommends probing that IC;
if the pin is an input, GFI recommends probing the source of

that input.

®

u1

us

@ Is a bidirectional node

5-565

Example 2: U10-4 in Figure 5-22 receives input from one
data line at a time. The source pin depends on the IC addressed,
according to Table 1. If a stimulus program were to be written
(to test U10-4) that reads data from locations 8000 through
88FF, each pin (U1-4, U2-4, and U3-4) would function as an
input to U10-4 at some time in the stimulus program. For this
reason, if U10-4 was found to be bad, GFI would not be able to
identify a unique source to backtrace toward. The solution is to
write three stimulus programs as shown in Table 2.

Writing Stimulus Programs 5.5.9.

5-56

Stimulus programs are TL/1 programs that exercise UUT nodes
in such a way that their responses can be characterized by a
signature, a level, a count, or a frequency. Figure 5-23 shows
pod_sync, an example stimulus program.To edit the pod_sync
program:

1. Press the Edit key and type:

/hdr/abc/pod_sync

2. Press Return, select PROGRAM as the TYPE field,
and press Return again. The pod_sync program
listing should appear on the screen, where it can be
edited.

Typically when writing a stimulus program, you:

1. Study the UUT logic to decide what commands will
exercise the node(s) to be tested.

2. Enter commands from the operator's keypad and
check the node's activity with the probe.

3. Repeat step 2 until you have accumulated a sequence
of commands that exercises the node(s) thoroughly.
All inputs associated with the node should be in all
possible states during the test.

AO0-A15 7

/E—,\ 4 o
—/ Do
U1
— /1 Do s
T U2
N uio
po 4
—'I/
la™ 4 U3
Hexadecimal value IC U10-4 gets
of address A0O-A15 addressed input from
8000-83FF Ut Ui-4
8400-87FF U2 uUz-4
8800—-88FF u3 uU3-4
Table 1: Multiple node signal sources
Hexadecimal value Example Node signal
of address A0—-A15 | stimulus name name
8000-83FF stim_one Ui-4
8400-87FF stim_two uz2-4
8800-88FF stim_three U3s-4

Table 2: One node signal source per stimulus

Figure 5-22: Multiple Signal Sources for One Node

5-57

This program is a simplified example of a GFI stimulus program.
! The stimulus program is designed to stimulate a node, while
! the node's response 1is captured with the probe or I/0 module.

! This program has two main parts. First, the response-gathering
! hardware on the testing device is configured with the TL/1 reset,
! sync, threshold, and counter commands. Then the response-

! gathering hardware is activated, and the stimulus is applied.

! This program shows the TL/1 commands that are used to configure
the probe or I/0 module to collect responses using external sync.

program pod_sync

devlist = gfi device ! get the testing device
! from GFI

reset device devlist

reset device to a known

! state

sync device devlist, mode “pod" ! sync the device to pod
! ADDR

sync device "/pod", mode "addr"

threshold device devlist, level “ttl" ! specify TTL logic
! levels

counter device devlist, mode "transition® ! select the counter mode

arm device devlist

start the response

! capture
rampdata addr $F0000, data 0, mask S$F ! apply the stimulus
rampdata addr $F0000, data 0, mask S$FO /
rampdata addr $F0000, data 0, mask S$F00
rampdata addr $F0000, data 0, mask S$F000

readout device devlist

terminate the response
! capture

end pod_sync

Figure 5-23: Stimulus Program (pod_sync)

5-58

4. Consult the TL/1 Reference Manual to convert the
keypad commands into TL/1 statements. Include
statements to configure the response-gathering
hardware as necessary.

5. Construct the program from TL/1 statements.

Once you write a stimulus program, you must verify that it
works as expected. The debugger can help you in this process;
see Section 4 "Debugger” for details.

When you write a stimulus program, its responses must be
stored in a stimulus program response file using the same name
as the program: in this case, pod_sync. When the pod_sync
program is executed, GFI measures responses at the node and
compares them to those stored in the response file named
pod_sync.

5-59

Stimulus Program Response Files 5.5.10.

Figure 5-24 shows a stimulus program response file named
addr out, which is a set of responses generated at various nodes
by the stimulus program named addr out. GFI will use the
response file to link stimulus program addr out with the nodes
that the stimulus exercises. A response file should contain
responses measured at nodes on a known-good UUT.

For example, if GFI tests node U27-11, GFI would run all
stimulus programs that exercise U27-11. Responses generated
at U27-11 by stimulus program addr out are compared to the
responses stored in the response file “addr_out. GFI uses the
comparison to decide whether U27-11 is good or bad.

Stimulus program addr_out, like most others, exercises several
nodes. Each node is identified by the pin that is that node's
signal source. When a stimulus program exercises a node, only
one pin can be specified as a signal source for that node.

Information Window on:

o STIMULUS PROGRAM NAME: The name of the

stimulus program response file. This field cannot be
edited and must match the corresponding stimulus program
name exactly.

¢ DESCRIPTION: An optional one-line description.

¢* DISK FREE, SIZE: The amount of disk space that is still

available and the size of the current stimulus program
response file. These fields cannot be edited.

5-60

8,417,024 BYTES

STIMULUS PROGRAM NAME: ADDR.OUT H
DESCRIPTION: = sIze: 204 BYTES
WRITE PROTECT: YES
ud?-11 I/OMODULE 3C3F 10 1@ TRANS 32
ug7-12 1/0 MODULE E735 TRANS
uf7-13 I/0 MODULE 6DB2 TRANS
ug?7-15 1/0 MODULE 8CC4 TRANS
ug7-1g I/0 MODULE 3479 TRANS
uZ7-17 1/0 MODULE 6891 TRANS
uf7-18 1/0 MODULE 2D8E TRANS
ug7-19 I/0 MODULE 1285 TRANS

Learned fisync Clk
Uith SI5 LWL Lt

I/OMIDULE 3C3F 10 19
1/0 MODULE E738
170 MODULE 8DB2

uf7-15 /0 MODULE 8CC4
u27-18 I/0 MODULE 3479
u27-17 I/0 MODULE 6681
ud7-18 I/0 MODULE 2DSE
uZ7-18 I/0 MODULE 1285

Response Data -

Counter

Mode

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

Counter Range

32

Information Window Off

Figure 5-24: Stimulus Program Response File {(addr_out)

5-61

® WRITE PROTECT: The write-protection status of the file.

Use the Field Select key to set this field to YES to specify
write protection for the file. If the file is write protected,
the editor prompts you when the file is saved to ensure that
changes are intentional. If the file is not write protected,
you will not be prompted. A change in write-protection
status does not become effective until after you save your
current edits.

Information Window off:

® Node Signal Src: Identifies a node by its signal source
pin. The node is exercised by the stimulus program named
in the information window. It is essential that while the
stimulus program is run, signal activity in the node
originates only from the pin specified in this field.

5-62

¢ Learned With: Identifies the device (probe or I/O module)
that the response data was learned with. This field cannot
be edited and instead is filled in by the 9100A during
LEARN.

¢ Response Data: Characterizes the node's response
(described below).

The Response Data fields characterize how nodes on a known-
good UUT responded to the stimulus program named in the
information window. When GFI tests a node, it compares node
responses to the Response Data, which is learned from a
known-good UUT using the LEARN command. If GFI is to
test the node, at least one of these fields must contain data.

¢ SIG: A hex CRC signature gathered at the node over the
duration of the stimulus program. The signature may be
modified by one of the following symbols: "*" to show
instability, or "+" or "-" to show that the signature is
marginal as explained in the "LEARN Command" section.

® Async LVL: The asynchronous level history gathered at
the node over the duration of the stimulus program. The
level history can include up to three characters, depending
on the levels detected at the node during the stimulus
program. The history can include a "1" (high), "0" (low),

and "x" or "X", where either character signifies an invalid
level. An "*" signifies unstable levels.

It is also possible to specify one or more don't care states
in an expected level history by using the "?" character. A
don't care state is ignored during the comparison of the
expected and measured level histories. This allows you to
specify level histories that require certain states, but don’t
care whether other states are present. For example, you
can specify a level history that requires a high and low to
be present, but doesn't care whether a tristate is present.

5-63

5-64

The "?" character is used to represent a don't care state.
The meaning of the "?" character is interpreted based on its
position in the field. The Async LVL field is three
columns wide. The columns represent (from left to right)
high, tristate and low. A "?" in the leftmost column means
don't care on high, in the middle column means don't
care on tristate, and in the rightmost column means don't
care on low.

For example, "1?0" means high is required, don’t care on
tristate, and low is required. This pattern would match
every level history that contained a high and low state (10
and 1X0 would both match). As another example, "??0"
means don't care on high, don't care on tristate, and low
is required. This pattern would match every level history
that contained a low (0, X0, 10 and 1X0 would match).

You can edit the learned level histories and insert "7"
characters as desired.

Clk LVL: The clocked level history gathered at the node
over the duration of the stimulus program. The level
history can include up to three characters, depending on
the levels detected at the node during the stimulus
program. The history can include a "1" (high), a
"0" (low), and "x" or "X", where either character signifies
an invalid level. An "*" signifies unstable levels. A "?"
represents a don't care state.

Counter Mode: A field that specifies whether the Counter
Range is a transition count (TRANS) or a frequency
(FREQ). This field reflects the way the counter was used
by the stimulus program. The counter mode is set in the
program by the counter command. This field cannot be
edited.

Counter Range: The frequency or the count measured at
the node over the duration of the stimulus program. A
stable count is shown by a single decimal number. An
unstable count is shown by a range of observed (lowest
and highest) values. Overflow is indicated by OVFL.

@

MORE Command

This command displays additional fields in the edit window. It
toggles between two screens. The first screen contains fields for
the response data and the second screen contains a priority pin
field. The node signal source field appears in both screens for
continuity. Figure 5-25 shows a response file before and after
the MORE command.

Priority Pin: Identifies the pin that should be checked next

if the response data measured at the current node does not
match the expected data.

This field is normally empty because GFI automatically
selects the next pin using related input information from
the part description. However, you may know that a
particular node failure is often caused by a bad output
several components away on the backtracing path.
Considerable time can be saved by jumping directly to this
suspect pin. This capability is called "leapfrogging", and
the suspect pin is called a "priority pin".

If a bad output has a priority pin, GFI will jump to that pin
and test it. If the priority pin is also bad, backtracing
resumes from there. If the priority pin is good, GFI
returns to the original bad output pin and continues
backtracing from there, just as if there had not been a
priority pin.

DELETE Command

This command deletes the line where the cursor is located.

5-65

Response Data
fisyne Clk Counter
5 B L Hode Counter Range

XF 10 10 TRANS 3R

E735 TRANS
8082 TRANS
8cc4 TRANS
3479 TRANS
5691 TRANS
209K TRANS
125 TRANS

MORE

5-66

Response File After A MORE Command
Figure 5-25: MORE Command Response File

(‘"“\ INSERT Command

This command inserts a new line below the line where the cursor
is located.

LEARN Command

This command, invoked while editing a stimulus program
response file, should be used to gather data from a known-good
UUT. The LEARN command gathers a set of response data for
one node while a stimulus is being executed. Learned responses
are then written to the stimulus program response file, where the
programmer can review and modify selected items before saving
them. The manual alternative to the LEARN command is to type
data known to be correct into the Response Data fields.

LEARN requires that the GFI data base is successfully compiled
for GFI or UFI LEARN, and the stimulus program is written.
The Info Window fields must be set for the desired LEARN
level, number of repetitions, and coverage.

To initiate LEARN, you must be editing a stimulus program
response file. To learn a node response, position the cursor
anywhere on the line for that node. After pressing the LEARN
softkey the following takes place:

1. LEARN will prompt you with USE CURRENT
LEARN OPTIONS. Use the Field Select key to
select YES and press the Return key to begin the
learn operation. Select NO if you want to change the
learn options (refer to "Changing LEARN Options").

2. The GFI database is loaded; LEARN looks here to
determine the testing device to be used.

3. Depending on the results of step 1, you will be
prompted to clip or probe a component, and to then
press the Ready button on the testing device.

4. The stimulus program is executed. If the program
needs the external control lines on the I/0 module or

5-67

5-68

clock module, you will be told where the lines are to
be connected.

The stimulus generates responses, which are
collected by LEARN, during the period defined by
the TL/1 arm and readout commands.

If more than one signal source is being learned, or
LEARN requires both measurement devices, steps 2
through 4 may be repeated several times. All pins
measured with the probe are learned first, followed
by all pins measured by the I/O module.

The learned responses can be reviewed and modified
by the programmer.

Select responses to be saved with the SELECT
command. Only data thus selected will be saved
when the response file is saved. LEARN
automatically selects stable CRC signatures.

Changing LEARN Options

The LEARN command can gather data in several different ways.
To change the way that LEARN gathers data, the following
steps should be taken:

1.

In a response file, press the LEARN softkey (F3).
The editor will then prompt USE CURRENT
LEARN OPTIONS. Use the Field Select key to
select NO, then press the Return key.

A dialog window appears with the current LEARN
options. There are three options which can be
changed:

Learn using: Indicates if the next LEARN is for UFI
or GFI. A UFI LEARN gathers responses using
only the measurement device specified for the signal
source pin. A GFI LEARN examines all other pins
on the same node and gathers responses using both
measurement devices if needed. Before executing a

GFI LEARN, a node list must be entered and the
GFI database must be compiled for GFI. Use the
Field Select key to select GFI or UFI.

Learn for: Indicates the number of pins covered by
LEARN. The following are three options that may
be entered using the Field Select key:

® ONE NODE: The line of the Edit Window
containing the cursor is examined. The signal
source pin is learned.

® ONE REF: The line of the Edit Window
containing the cursor is examined. Every line
of the response file whose signal source is on
the same reference designator is learned.

® ALL REFS: Every signal source in the
response file is learned.

Repeat stimulus: the LEARN operation is performed
several times to insure that marginal timing situations
are detected. This value controls how many times
the LEARN operation is repeated. Each LEARN
operation runs the stimulus program three times
(refer to "Standard LEARN Cycle Timing"). Enter a
numeric value between 1 and 99.

Use the cursor keys to move between the three
options.

Press the LEARN softkey (F3) to LEARN using the
options just explained. These options remain in
effect until you change them or exit the editor. You
can press the QUIT key to abort the LEARN
command, and return to editing the response file.

5-69

Standard LEARN Cycle Timing

5-70

The LEARN command normally executes a stimulus program
three times; each time, the clock edge (used to gather data at the
node) is varied slightly. The multiple executions can be used to
tell whether the response is:

° Stable.
A Unstable.
® Marginally stable.

Before each type of response is displayed, the results of the
three executions are merged into one reading using methods
described in the next section.

The clock edges of Figures 5-26 and 5-27 can be described as
follows:

¢ Edge B: The synchronized edge, which occurs at the same

instant as an event specified by the sync command (which
each stimulus should have).

¢ Edge C: The delayed edge, which occurs a fixed time
interval after edge B.

A Edge A: The advanced edge, which occurs a fixed time
interval before edge B.

Unstable Response: In Figure 5-26 Example 1, the
synchronized edge occurs when data changes from high to low
or vice versa. Therefore, the level recorded at the clock edges
A, B, and C will differ; the response is considered unstable.

Stable Response: In Figure 5-26 Example 2, the
synchronized clock edge occurs when data is always stable. The
level recorded at the clock edges A, B, and C will not vary
between stimulus program executions and is considered stable.

[}
[}
i
Data Valid X Valid

i
]
T
(A) Advanced Clock Edge Ar i
-_— [}
(B) Normal Clock Edge 4

1 F

(C) Delayed Clock Edge o4
:

Example 1: Unstable Response

I

]

]

L)

Data Valid >< i Valid

T

3

i

(A) Advanced Clock Edge y §

(B) Normal Clock Edge

(C) Delayed Clock Edge

[y S S

Example 2: Stable Response

Figure 5-26: Stable and Unstable Response Timing

5-71

5-72

Marginal Response: Figure 5-27 illustrates the marginal
timing case where data observed at edge B agrees with either
data at edge A or data at edge C. If the data at all three edges
agrees, the response would be stable and if the data at all three
edges differed, the response would be unstable. In cases where
two adjacent data points agree, the response is considered
marginally stable. If identical responses at A and C are
separated by a different response at B, the response is
considered unstable.

The marginal case is important, because the response learned on
a known-good UUT may not be the same as that on an unknown
UUT, if a slightly different clock edge is used with the unknown
UUT. This does not mean that the unknown UUT is defective.
On the contrary, if the response from the known-good UUT was
reported to be marginal, we may see a different response from
almost every good UUT.

I 1
1 '
Data valid | >< i Valid
! T
1 t
i 1
1)
(A) Advanced Clock Edge 4
B T !
1
(B) Normal Clock Edge ! 4
T
(C) Delayed Clock Edge ! ! r Y
N N
] 1
Marginally Unstable (—) Response
I 1
1 1
Data Valid lr>< 1 Valid
! T
I]
[} 1
] 1
T L]
(A) Advanced Clock Edge 7'\ E i
—_— 1 i
(B) Normal Clock Edge 4 i
1
1

(C) Delayed Clock Edge

Marginally Unstable (+) Response

Figure 5-27: Marginal Response Timing

5-73

Merging Responses

5-74

The stimulus program is run three times each LEARN cycle with
synchronized, delayed, and advanced clock edges, as described
in the previous section. At each execution, responses are
recorded. LEARN merges each type of data from all executions
into one set according to the following rules:

Signature Merging: If the same signature is measured

three times, this signature is recorded unchanged. This is
a stable signature.

If only the delayed and synchronized edge signatures
match, this signature is recorded with a "-" to indicate that
the advanced clock signature was different. This is a
marginal signature.

If only the advanced-clock and normal-clock signatures
match, this signature is recorded with a "+" to indicate that
the delayed-clock signature was different. This is a
marginal signature.

If different signatures are recorded each time, an "*" is
displayed to indicate an unstable signature. Figure 5-28
shows examples of how LEARN merges signatures from
three different stimulus program executions.

Asynchronous Level History Merging: If the same

level history is measured each time LEARN executes the
stimulus, that history is recorded; otherwise, the history is
reported as unstable (*).

Clock Level History Merging: If the same level

historyis measured each time LEARN executes the
stimulus, that history is recorded; otherwise, the history is
reported unstable (*).

Delayed-Clock Normal-Clock Advanced-Clock Recorded
Edge Signature (C) | Edge Signature (B) | Edge Signature (A) | Signature
14EA 14EA 14EA 14EA
14EA 14EA 225C 14EA-
800F 14EA 14EA 14EA+
14EA 907C 24E0 *
14EA 907C 14EA *

Figure 5-28: Merging Signatures Example

5-75

* Count or Frequency: If the same count or frequency is
measured each time LEARN executes the stimulus
program, that countor frequencyis recorded; otherwise, a
range (highest and lowest values) is recorded. In case of
an overflow, an "OVFL" message is displayed.

SELECT Command

Once the data has been recorded in the Response Data fields,
you can select the data you want to save by moving the cursor to
the appropriate field and pressing the SELECT softkey.
Selected data values are displayed highlighted. A stable
signature (one with no + or -) is automatically selected, but you
can de-select it using the SELECT softkey. Unstable data
cannot be selected. When you quit the editor, the response file
is saved containing only the selected data.

Pressing Shift and SELECT simultaneously selects or de-selects
an entire column of response data.

Editing a Stimulus Program Response File 5.5.11.

5-76

Response files contain data characterizing how nodes on a
known-good UUT responded to a stimulus program. To edit the
response file pod_sync, in the UUT directory abc:

1. Press the Edit key and type:
/hdr/abc/pod_sync

(pod_sync is also the name of an existing stimulus
program.)

2. Press the Return key, specify the TYPE field as
RESPONSE, and press Return again.

3. Move the cursor to the bottom line and position it in
the Node Signal Src field. This field is used to
identify the node exercised by the program. The node
is identified by typing the name of the pin (on that

node) that acts as the node signal source during the
stimulus program.

4. To use GFI's optional leapfrogging capability, press
the MORE softkey, move the cursor to the Priority
Pin field, and enter the name of a pin. This field can
be blank.

5. Repeat steps 3 and 4 until one line has been entered
for each node that is exercised by the stimulus
program.

6. Press Quit, and use Field Select to specify whether
or not to save your edits. The LEARN command can
be used later to fill in the Response Data fields.

Example LEARN Session 5.5.12.

Stimulus program response files are paired with stimulus
programs. Response files contain the response data that
characterizes how nodes on a known-good UUT responded to
the stimulus program.

Figures 5-29 through 5-31 show example screens (1 - 5) that
you would see when following this example. The steps are:

1. Press the Edit key and type:
/hdr/abc/addr_out

2. Press Return, select RESPONSE as the TYPE field,
and press the Return key again. Screen 1 shows the
response file named addr_out.

3. Move the cursor down to a node signal source for
which responses are to be learned (in this example it
will be U27-16).

4. Press the LEARN softkey. You will be prompted
USE CURRENT LEARN OPTIONS. Use the Field
Select key to select NO and then press the Return
key.

5-77

o o e o P eyt o

5-78

The dialog window for the learn options will appear.
Change the settings to the following:

Learn Using: GFI
Learn for: ONE NODE
Repeat Stimulus: 1 time(s)

Use the cursor keys to move between the options.
Use the Field Select key for the "Learn Using:" and
"Learn for" fields. Use the numeric keys for the
"Repeat Stimulus" field. Refer to screen 2 to see
how the LEARN options should be set up.

Press the LEARN softkey; the GFI database is
loaded, and a GFI LEARN of the node stimulated by
U27-16 begins. If many pins are to be learned,
measurements are made first with the probe,
followed by measurements made with 1/0O module
clips.

You are now prompted to probe U3-15. U27-16 is
on the same circuit node as U3-15. Refer to screen 3
in Figure 5-30 for the message prompting you to
probe U3-15.

{earned
Uith

I/0 MODULE
170 MODULE
I/0 MODULE
170 MODULE
170 MODULE
1/0 HMODULE
170 HODULE
1/0 MODULE

Elg

3F
E735
8082
8CC4

fisync
Lt

10

Response Daia

Cik
L

10

Counter
Hode Counter Range

TRANS 32
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

Screen 1

Figure 5-29: Example LEARN Session (Screen 1)

5-79

Screen 2

Loading GF D Databasze | ..

e LE-1k

Fress button on PEQOBE when RERDY

5-80

Screen 3

Figure 5-30: Example LEARN Session (Screens 2 and 3)

10.

11.

Connect the probe common clip to common, probe
U3-15, and press the Ready button. You should
hear a beep indicating that the LEARN operation is
beginning. Do not move the probe until you hear a
second beep indicating the end of the LEARN
operation.

You are now asked to clip U27, refer to screen 4 of
Figure 5-31. Using the correct I/O module adaptor
clip, clip onto U27 and press the I/O module Ready
button. You should hear a beep as LEARN executes
the stimulus program,

Screen 5 shows the learned responses. There are
two sets for U27-16: one each from steps 5 and 7.
Stable signatures are highlighted (selected).

To select or de-select a field, move the cursor to the
field and press the SELECT softkey.

Quit, saving changes if necessary. Only data
selected using SELECT will be saved.

5-81

T
i o

button on 1.0 MODULE when RERDY

Screen 4

Fesponse Data

Hode Learned fisync Clk Counter
Signal 5 With SIE WML M Hode Counter Range
IAGMODULE 3C3F 16 19 TRANS 3
4 170 MODULE E738 TRANS -
u27-13 1/0 MODULE 8082 TRANS
27-15 I/0 MODULE 8CC4 TRANS
yf7-1e2 PROBE 3479 10 19 TRANS 32
uZ7-18 I/0MIDULE 3473 16 1@ TRANS 32
ud7-17 1/0 MODULE TRANS
uz27-13 1/0 MODULE TRANS
uf?-15 1/0 MODULE TRANS

5-82

Screen 5

Figure 5-31: Example LEARN Session (Screens 4 and 5)

OFFSET Command

The probe and I/O module have hardware delay lines that adjust
the relative timing between clock and data signals. During probe
and I/O module calibration, these delay lines are adjusted and a
calibrated offset delay value is stored for each sync mode. The
offset value controls when the probe and I/O module latch data.

When the calibrated offset delay is not appropriate for a
measurement, the TL/1 setoffser command is used inside a TL/1
program to change the delay.

Offsets may need to be used when testing UUTs with slight
timing variations on one board, or if there are board-to-board
timing variations.

For example, assume that a properly-functioning board has a
slight timing variation from board-to-board and also that the
timing of the signal of interest can vary by several nanoseconds
as shown in Figure 5-32.

Note the variation in the signal state during time periods T3, T4,
TS5, T9 and T10. If this signal was being clocked by CRC
signatures and the signal state was latched at these time periods,
different CRC signatures could result. Even though a board is
functioning properly, it will occasionally fail during functional]
test because the measured CRC does not match the expected t
CRC.

The solution is to control the time at which the signal state is
latched for a CRC signature. In the previous example, the signal
should not be latched at time periods T3, T4, TS, T9, or T10 |
because the signal state can vary at these times. Instead, the
signal should be latched at time periods T6, T7, or T8 when the
signal is known to be at a consistent state. The TL/1 setoffset |
command is used to control when the probe and I/O module
latch data.

5-83

EARLIEST RISING EDGE

LATEST RISING EDGE EARLIEST
FALLING
EDGE
VALID DATA
BOARD #1
LATEST
VALID DATA & FALLING
GE
BOARD #2 €D

T1 T2 T3 T4 TS 9 T10 Ti1

/

VALID DATA FOR
CONSISTENT CRC MEASUREMENT

Figure 5-32: A Signal with Timing Variation

5-84

The GFI Offset procedure permits you 1o easily determine the
appropriate offset delay for a measurement. Once the
appropriate offset delay is determined, the TL/1 program that
applies the measurement stimulus can be modified to set the
offset.

The Offset Window EXEC softkey executes a TL/1 program
over a range of offsets. Samples are taken at various offsets
within the range and the response data gathered during each
sample is displayed.

To take a sample, the offset value is set, the TL/1 stimulus
program is executed, and the response data gathered during that
program's arm...readout block is displayed. Graphical
waveforms show the clocked level and CRC signature
throughout the offset range.

In addition, the LOOP softkey repeatedly loops through the
offset range, executing the TL/1 stimulus program until the loop
is terminated. Each iteration through the offset range is called a
sweep. Looping allows multiple samples to be taken at each
offset value. This allows the response stability at each offset
value to be checked.

Briefly, to use offsets with GFI, follow these steps:
1. Calibrate the probe or I/O module, or restore caldata
settings. This establishes the calibrated offset delay
to which additional offsets are added.

2. If the desired offset is known, go to step 7.

5-85

3. Compile the UUT database. The database is required
by the offset procedure.

4. Begin editing a response file. Position the cursor on
the line in which the offsets are to be checked.

5. Press the OFFSET softkey.

6. Press the EXEC or LOOP softkey to determine the
best offset.

7. Edit the TL/1 stimulus program and add a setoffset
command to set the offset to the desired value.
"Setting the Offset in a Stimulus Program” explains
how to set the offset.

The Offset procedure is designed to be used with GFI stimulus
programs and requires that a compiled UUT database exists.
Refer to "Compiling the GFI Database for a UUT" in this
section.

Probe and I/O module calibration are described in the Automated
Operations Manual, Technical User's Manual, and the TL/1
Reference Manual. The setoffset and getoffset commands are
described in the TL/1 Reference Manual. The Offset procedure
is described in the following paragraphs.

Description of the GFl Offset Window

5-86

The GFI Offset Window (shown in Figure 5-33) overlays the
existing editor screen. It has top and bottom status lines, tables
on the top left and right, waveforms for both clocked level and
CRC signature, a legend that describes symbols used on the
waveforms, and softkey labels.

Press the OFFSET softkey to toggle the GFI Offset Window on
and off. When selected, the GFI Offset Window overlays the
existing screen. Information displayed on this window
disappears when it is toggled off. The GFI Offset Window
(Figure 5-33) is described in the following paragraphs.

O

S

[STATUS LINE

—— UPPER LEFT TABLE UPPER RIGHT TABLE —

- Response Data

Node Learned fsync Clk Counter
Signal 3re With 516 LWL L¥L Hode Counter Range
ui-t
u2-2

Offset: Offset Rangs!

Clie LY¥L

LEGEND: B means the Clk L¥L was 1%, %0 or iX@
means the SIG or Clk LYL for one offset changed while looping

SIG: Sample Resolution!

Async LVL: Humber of Loops Through Range:!
Clk LVL: Node Signal Src:

Count ;

i = i FE
OFFSET EXEC LOOF FRULT
[SOFTKEY NUMBER L SOFTKEY LABEL LINE
| EGEND

— WAVEFORMS
The Offset Window Before Execution (EXEC or LOOP)

The Offset Window During Execution (EXEC)

Figure 5-33: The GFI Offset Window

5-87

5-88

Upper Left Table:

The table at the top left of the window displays response data
gathered in the current sample. This table is updated
continuously as samples are taken at various offsets in the offset
range. Data in the table corresponds to the place in the
waveform to which the arrow points.

The upper left table contains the following fields:

Offset: The offset for the current sample.

SIG: The CRC signature for the current sample.

Async LVL: The asynchronous level for the current sample.

CLKLVL: The clocked level for the current sample.

Count: The count for the current sample. The range of
counts seen in all samples is also displayed.

Upper Right Table:

The table at the top right of the window displays information
about the execution. It contains responses to the EXEC and
LOOP softkey prompts. This table has the following fields:

Offset Range: The range of offsets that are
being sampled.
Sample Resolution: The resolution between

samples in the offset range
(1=most resolution, 9 =
least resolution).

Number of Loops through Range: The number of times the
offset range has been
swept. This is used when
the LOOP softkey is
active.

Node Signal Src: The pin being sampled.

@

Waveforms

Waveforms for the clocked level and CRC signature are
displayed. Each character of the waveform represents the
response data gathered at a single offset. The characters
combine to form a waveform that graphically represents the
response data for the entire offset range. The waveform is
updated or extended to the right as each sample is taken.

Clk LVL:

SIG:

The clocked level waveform is drawn to display
the three states: high, low, tri-state and
combinations of these states. See the description
of "legend" in "The Bottom of the GFI Offset
Window" for more information.

The CRC signature waveform uses two symbols:
Parallel Lines

[Left Bracket

The parallel lines indicate that the CRC signature
at a sample is the same as the previous sample.

The left bracket indicates that the CRC signature at
a sample is different than the CRC signature at the
previous sample. This indicates that the sample
was taken near a signal edge.

The diamond shows the original offset before any
samples are taken.

The arrow points at the current sample in the SIG
waveform. The arrow position is automatically
updated during EXEC or LOOP. After the EXEC
or LOOP operation, use the left-arrow and right-
arrow keys to move the arrow along the waveform.
As the arrow is moved, the upper table is updated
to display the response data for the sample to
which the arrow points. This allows you to
examine the response data for all samples in the
offset range.

5-89

5-90

The Bottom of the GFI Offset Window:

The bottom of the GFI Offset Window contains a legend to
explain the waveform symbols and the softkey labels.

The graphic character set on the 9100A does not contain
symbols that draw the following combined states:

® Tri-state and high level.
. Tri-state and low level.

® Tri-state and high and low level.

The block symbol (o) represents these three states. The upper
left table identifies which of these three states actually occurred.

The asterisk (*) appears in a waveform during looping and
indicates an unstable CRC signature or an unstable clocked
level. Looping allows multiple samples to be taken at an offset
value (once each time the range is swept).

The asterisk appears in the Clk LVL waveform when the clocked
level for one offset value changes between sweeps. The asterisk
appears in the SIG waveform when the CRC signature for one
offset value changes between sweeps.

Status Line:

The status line displays the execution status: EXECUTING,
LOOPING, OR COMPLETE.

Softkeys on the GFI Offset Window:

Softkey numbers and their labels appear at the bottom of the
window. Error messages and prompts also appear on this line.

Sofkeys used with the GFI Offset Window are:

OFFSET: Toggles the Offset Window on and off. Information
displayed in the Offset Window disappears when it is
toggled off.

e

EXEC: Starts one sweep of the otfset range. The TL/1
program will be executed at various offsets within
the range. ’

LOOP: Starts sweeping through the offset range. The TL/1
program is executed at various offsets within the
range. The range is swept repeatedly, resulting in
multiple samples at each offset value. Press the
QUIT key to terminate the looping.

FAULT: Toggles the Fault Window on and off. The Fault
Window displays fault messages which are raised by
the TL/1 program.

The EXEC Softkey

The Offset Window EXEC softkey is used to execute a TL/1
program over a range of offsets. Samples are taken at various
offsets within the range and the response data gathered during
each sample is displayed.

To take a sample, the offset value is set, the TL/1 stimulus
program is executed, and the response data gathered during that
program's arm...readout block is displayed. One graphical
waveform shows the clocked level throughout the offset range.
Another waveform shows changes in the CRC signatures
throughout the offset range.

To begin execution, use the following procedure:
1. The Offset procedure requires that a compiled UUT
database exist. Refer to "Compiling the GFI
Database for a UUT" for instructions on compiling a
database.

2. Edit the response file in which you want to check the
offsets.

5-91

5-92

Determine which node to check for offsets. If the
response file already contains a line for that node,
position the cursor on that line. If the response file
does not contain a line for the node, add it. Leave
the cursor on the line for the desired node.

Press the OFFSET softkey. The UUT database is
loaded and the Offset Window appears.

Press the EXEC softkey. The following prompt
appears:

EXECUTE PROGRAM

Enter the name of the TL/1 program to be executed
throughout the offset range. Typically, you will
execute the stimulus program that is paired with this
response file (this name appears as the default).
However, you may specify any program in the
UUT. Press RETURN. See Figure 3-27 and 5-34
in this manual for stimulus program guidelines.

NOTE

The stimulus program cannot contain a
setoffset command when it is executed from the
Offset Window.

The following prompt appears:
OFFSET RANGE (ns) FROM

Enter the offset to be used as the beginning of the
offset range. The value entered represents
nanoseconds and is biased by a value of 1000000
(decimal). For example, if the first sample is to be
taken 100 nanoseconds before the calibration point,
enter 999900 (1000000-100). If the first sample is
to be taken 25 nanoseconds before the calibration
point, enter 999975 (1000000-25).

Enter the value 999000 (this appears as the initial
default) to ensure that the entire offset range is
sampled. Press RETURN.

The following prompt appears:
TO

Enter the offset to be used as the end of the offset
range. The value entered represents nanoseconds
and is biased by a value of 1000000 (decimal). For
example, if the last sample is to be taken 50

nanoseconds after the calibration point, enter
1000050 (1000000 + 50).

Enter the value 1001000 (this appears as the initial
default) to make sure that the entire offset range is
sampled. Press the RETURN key.

The following prompt appears:
SAMPLE RESOLUTION (1-9)

Enter a number representing how often samples
should be taken in the offset range. Enter 1 for the
most resolution and 9 for the least resolution. For
example, enter 1 to take a sample at every offset
value in the offset range. Enter 2 to take a sample at
every other offset value in the offset range. Enter 3
to take a sample at every third offset value in the
offset range.

Enter the value 1 (this appears as the initial default) to
make sure that samples are taken at every possible
offset value in the offset range.

A prompt to probe a pin or clip a component appears.
An example is:

Probe U3-14 and press button on PROBE
when READY

5-93

Follow the instructions in the message. When the
button is pressed, the message "EXECUTING..."
appears at the bottom of the screen and executions of
the TL/1 program begin. Do not move the probe or
I/O module until this message disappears and the
softkey labels reappear.

As each sample in the offset range is taken, the upper
left table and the waveforms are updated to display
the response data for that sample.

10. When the execution is complete, press the left-arrow
and right-arrow keys to move through the
waveforms and examine the response data at a
particular offset.

11. Position the waveform arrow at the point with the
desired offset. The actual offset at that point is listed
in the upper left table. Make a note of the offset
value. Modify the TL/1 stimulus program to set the
offset to that value. Refer to "Setting the Offsetin a
Stimulus Program" for instructions.

Press the QUIT key to abort from the prompts or to stop
execution of the TL/l program.

An Example of Selecting the Desired Offset

Figure 5-34 shows when address and data are valid for a simple
microprocessor write cycle. Assume that a data line is tested by
using the probe to gather a CRC signature while a series of UUT
writes is performed. The signal state should be latched during
the data valid period. At other times, the signal on the data line
changes, resulting in changing CRC's. The SIG waveform
indicates that the CRC is changing during the data invalid
period.

In Figure 5-34, the signal state should be latched in the middle
of the data valid period.

5-94

O

A0 - At5 ADDRESS VALID

DO-D7

DATA SIG
WAVEFORM

Figure 5-34: Selecting an Offset

5-95

The LOOP Softkey

Use the LOOP softkey to repeatedly loop through the offset
range, executing the TL/1 stimulus program until the loop is
terminated. Each iteration through the offset range is called a
"sweep". Looping allows multiple samples to be taken at each
offset value. This allows the response stability at each offset
value to be checked.

To begin looping, use the following procedure:

1. Press the LOOP softkey. The following prompt
appears:

LOOP and EXECUTE PROGRAM

2. You are prompted for the program name, offset range,
and sample resolution and instructed to probe or clip a
component. These steps are described in "The EXEC
Softkey" in this section.

The waveform drawn on the screen is the same as if you had
pressed the EXEC key. Looping continues until you press the
QUIT key.

NOTE

Unstable CRC signatures and unstable clocked levels
appear as asterisks. Looping allows multiple samples
to be taken at an offset value (once each time the range
is swept).

The field entitled "Number of Loops Through Range" in the
upper right table tells you how many loops are completed.

The FAULT Softkey

5-96

When both the EXEC and the LOOP functions are executing a
TL/1 program, faults can occur in the program. When a fault is
raised in a TL/1 program, it is reported to the user. The program
stops and the Fault Window pops up. When the Fault Window
is displayed, press the FAULT softkey to remove it.

(”\; Setting the Offset in a Stimulus Program

Once the desired offset value is determined, the TL/1 stimulus
program must be modified to set the offset to that value. The
program should also restore the original offset value when it
terminates.

A program containing an offset cannot be used for EXEC and
LOOP. The offset in the program overrides any offsets entered
in the EXEC and LOOP procedures and an error message
appears.

To set the offset in a TL/1 program, the program should do the
following:

d Initialize the UUT as required for the stimulus to be
applied.
. Configure the response-gathering hardware on the probe

or I/O module. This includes setting the sync mode,
threshold, counter mode, etc.

‘) . Get the original offset value using getoffset and save it.

i Set the offset to the desired value using sefoffset.

. Apply the stimulus within an arm...readout block. Read
the results of the stimulus by using the readout
command.

i Restore the original offset value using setoffset.

The TL/1 setoffset and getoffset commands apply to the current
sync mode. Therefore, the sync mode must be set (with the
TL/1 sync command) before these commands are used. If a
fault occurs during execution of the program, the original offset
must be restored. The program example includes a universal
fault handler which restores the offset and reraises the original
fault.

Figure 5-35 is a program example that shows a GFI stimulus
program that sets an offset.

5-97

5-98

program pod_sync

declare
! global variables shared with fault handler
global numeric orig offset
global string dev
end declare
! This fault handler ensures that the original offset gets restored
! if the program exits because a fault is raised. It restores the
! offset and then reraises the original fault.
handle
declare
! global variables shared with main program
global numeric orig offset
global string dev
end declare

setoffset device dev, offset orig offset
refault
end handle

————————————— main program starts here —-—=-=-=--—————===r--——

! get the measurement device name from GFI
dev = gfi device

! configure the measurement hardware on the probe I/) module
reset device dev ! reset device to a known state

threshold device dev, level "ttl" ! set threshold levels
counter device dev, mode "transition™ ! set counter mode
sync device dev, mode “pod" ! sync device to pod
sync device "/pod", mode "addr" ! sync pod to address

! save the original offset (must be done after the sync mode is set)
orig offset = getoffset device dev

! set the offset to 10 nanoseconds before the calibrated offset delay

setoffset device dev, offset 999990

(continued on the next page)

Figure 5-35: GFI Stimulus Program that Sets an Offset

TN ! apply the stimulus
‘ i arm device dev ! start the response capture

rampdata addr S$F0000, data 0, mask SF
rampdata addr S$F0000, data 0, mask $FO
ranpdata addr $F0000, data 0, mask S$SFOO
rampdata addr S$F0000, data 0, mask $F000
readout device dev ! terminate response capture

! restore the offset to the original value
setoffset device dev, offset orig offset

end program

Figure 5-35: GFI Stimulus Program that Sets an Offset (cont)

Compiling the GFI Database for a UUT 5.5.13.

To learn responses use the Response Offset Window, or
perform GFI or UFI, information from the UUT (REFLIST,
parts, NODELIST, and responses) must be compiled into a
binary form (the database). GFI, UFI, response LEARN, and
the Offset Window use the database rather than the individual
files.

Compilation is typically an iterative process with at least two
cycles. After the UUT topology information is entered
(NODELIST, RELIST, and parts), the UUT is compiled so that
responses are learned; then the UUT is compiled again so that
GFI or UFI can be performed.

Depending on the intended use of the compiled database,
different UUT files are compiled as shown in Figure 5-36.

Only one data base can be compiled for each UUT. Each time
you compile the UUT, the new database writes over the old one.
A database can be copied or removed using the COPY or
REMOVE softkey respectively.

When the UUT is compiled, the REFLIST, parts, NODELIST,
and responses are compiled into a binary database. GFI, UFI,
and LEARN use the database rather than the individual files. If
you change any of the UUT files (REFLIST, parts,
NODELIST, or responses), the UUT must be recompiled so that
the database includes the UUT file changes.

5-99

UUT FILES COMPILED

DATABASE USE REFLIST | PARTS | NODE LIST | RESPONSES | PROGRAMS
TROUBLESHOOT UUT for GFI YES YES YES YES NO
TROUBLESHOOT UUT for UFI YES YES NO YES NO
LEARN RESPONSES for GFl YES YES YES NO NO
LEARN RESPONSES for UFI YES YES NO NO NO

5-100

Figure 5-36: Compiled UUT Files

Compilation is a two pass process using the following seven
steps. The first pass allows the response to be learned. In step 4,
select LEARN RESPONSES.

Repeat steps 1 through 7 for the second pass (after learn). The
second pass readies the system for troubleshooting. In step 4,
select TROUBLESHOOTING UUT.

To compile a UUT called abc, refer to the following steps:

1.

Enter the UUT directory by pressing the EDIT key
and typing:

/hdr/abc

Press the Return key, select UUT as the TYPE field,
and press the Return key again.

Press the COMPILE softkey (F3), and the 9100A
issues the the following prompt:

COMPILE database to TROUBLESHOOT UUT
LEARN RESPONSES

Press the Field Select key to select
TROUBLESHOOT UUT or LEARN RESPONSES.

5-101

5. Press the Return key; an additional prompt is
appended to the original prompt shown below:

COMPILE database to TROUBLESHOOT UUT for GFI
UFI
or

COMPILE database to LEARN RESPONSES for GFI
UFI

6. Press the FIELD SELECT key to select GFI or UFI.

If the database will be used to perform GFI, select
GFl. Make this selection even if you are only
learning responses at this time. If the database will
be used to perform UFI, select UFL.

7. Press the Return key to compile the database.

If the UUT is successfully compiled with O errors,
the resulting compiled database is written to the disk.

If the compiler detects a problem, the Messages
Window displays an error message. Correct the
error and repeat steps 1 through 7.

Status messages, error messages, and warnings are displayed by
the UUT compiler on the Messages Window shown in Figure 5-
37. Screen 1 shows the information after a successful compile.
Screen 2 shows the information after a compile containing
eITOTS.

5-102

LT On

Screen 1

T Comgpiler CEFI:

nndw’r' i l'n—'d in
2 :l,-rl-:ﬂ'

—”:Ir‘l'lll'l—lu no responze dats on H.I'!E o
mizzing FROBE responzes for UZP-1

Eosrrors

Fress Msss kew to continus

Screen 2

Figure 5-37: Information Displayed After a Successful and Unsuccessful
Compile

5-103

Error

5-104

Error messages are displayed in the following format:

File Name (Line Number): Error Message

A database is not created by the compiler until all errors are
corrected.

Warnings are displayed in a similar format with one exception;
the message is preceded by the word "warning" as shown in the
following format:

File Name (Line Number): warning: Warning Message
Warnings do not stop the compiler from creating a database.

You should investigate the warning; it may indicate that there is a
mistake in the named file.

Messages

The following are possible error messages issued by the
compiler. An explanation of each message is provided with
instructions to remove the error.

‘ref-pin’ appears in multiple nodes

The named pin is listed in the NODELIST more than
once. Remove all extra references to the pin from the
NODELIST.

‘ref-pin’ has already appeared as a signal source
for this node

According to the NODELIST, the named pin and the pin
listed in the response file are on the same node. GFI
requires that only one pin drive the node during a
stimulus program. This pin should be listed as the signal
source. Remove all references to the pin that is not the
driver from the response file.

duplicate ref ‘ref’

The named reference designator has already appeared in
the REFLIST. Remove the duplicate entry from the
REFLIST.

incomplete list of pin names beside IC picture

Some of the pins on the named part have been given pin
names, but other pins do not have names. Add pin
names to the part for every pin on the IC.

missing I/0 MODULE responses for ‘ref-pin’
The node requires responses learned with the I/O

Module. Use the response LEARN command to
characterize the node again.

missing PROBE responses for ‘ref-pin’

The node requires responses learned with the Probe.
Use the response LEARN command to characterize the
node again.

more than one pin is named ‘pin’

The named part description has multiple pins with the
same name. Rename one of the pins.

no part listed for ref ‘ref’
The RELIST contains the named reference designator,

but the part field is blank. Fill in the part name in the
RELIST.

5-105

pin ‘pin’ has more than 255 related input pins

Too many related input pins have been listed for the
named pin. Look for duplicate entries in the lines below
the IC in the part description.

signal source ‘ref-pin’ is an input pin

The response file specifies that the named pin is driving
the node, but the part description identifies the pin as an
input pin. The error could be in any of three files. In the
response file, the wrong pin on the node has been named
as the signal source. In the REFLIST file, the wrong
part has been listed. In the part description file, the pin-
type is wrong.

too many name strings in UUT (max 65,534 characters)

The name table has overflowed. This table contains
reference designator names, pin names, and stimulus
program names. Shorten the names.

undefined part ‘part’

The named part is listed in the REFLIST, but does not
exist in the part library. Create the part in the part library.

undefined pin ‘ref~pin’

This message has multiple meanings, depending on what
file is being compiled when it is issued.

If the RELIST or part descriptions are being compiled,
the error message indicates the part description does not
have a matching pin name. Add the pin name to the part
description.

5-106

G

If the responses or NODELIST are being compiled,
either the reference designator did not appear in the
REFLIST, or there is no matching pin name in the part
description. Add the reference designator to the
REFLIST or add the pin name to the part description.
This message is also issued if the named pin appears in
the "*MASTERS" section of the NODELIST, but did
not appear previously in the NODELIST. Add the pin to
the NODELIST.

unknown number of pins

A part is referenced, but the part library description of
that part is incomplete. Enter the number of pins in the
part description.

Warning Messages

Warnings indicate a possible error that the compiler is ignoring.
These messages should be investigated to make sure that nothing
is wrong on the indicated line. The following are possible
warning messages issued by the compiler. Included with the
message is an explanation of the message and instructions on
how to avoid future similar warnings.

warning: no response data on line
A signal source pin is listed, but the response data was

not learned. Use the response LEARN command to
characterize the node.

warning: non-empty line ignored (I/0 MODULE
responses not required)

The node does not require responses learned with the 1/0
module. Delete the line from the response file.

5-107

warning: non-empty line ignored (PROBE responses
not required)

The node does not require responses learned with the
Probe. Delete the line from the response file.

warning: non-empty line ignored (no pin number
listed)

The output pin has not been entered in front of the list of
related input pins appearing below the IC. Enter the
output pin in the ‘pin’ field.

warning: non-empty line ignored (no ref listed)

A part is listed on this line, but the ‘ref’ field is empty.
Enter the name of the reference designator.

warning: non-empty line ignored (no signal source
listed)
This line contains learned response data or a priority pin,
but the signal source field is empty. Enter the name of
the signal source pin.
warning: signal source ‘ref-pin’ is an input pin
The response file specifies that the named pin is driving

the node, but the part description identifies the pin as an
input pin. Ignore this message for UFL

5-108

Generating a Summary of the GFI Database 5.5.14.

Q The 9100A provides a convenient means to check the
completeness of the information you have compiled into the GFI
database. When viewing the UUT directory display, you can
press the SUMMARY softkey to request generation of a
summary of GFI coverage for that particular UUT. The
compiled database (GFIDATA or UFIDATA) will be examined
and a summary will be generated, displayed on the monitor, and
stored in a UUT text file that you specify. If you press the Shift
key on the programmer’s keyboard and the SUMMARY
softkey, the summary will appear on the monitor without
sending a copy to a text file.

The summary can only be generated for databases that are
compiled to TROUBLESHOOT UUT. If the database was
compiled to LEARN RESPONSES, an error message is
displayed when an attempt is made to generate the summary.

Creating a Summary of GFI Coverage

</ \ The following procedure is used to generate a Summary of GFI
Coverage fora UUT:

1. Press the EDIT key on the operator’s keypad to enter
the Editor (unless you are already in the Editor).

2. Use the Edit key on the Programmer’s Keyboard to
enter the name of the UUT so that the UUT directory
for this UUT is displayed on the monitor. The UUT
directory you have selected must contain a compiled
database (either GFIDATA or UFIDATA).

3. Press the SUMMARY Softkey (F8) and the 9100A
will issue the prompt shown below to ask for a text
file name:

Generate GFI Summary to TEXT file

The Summary of GFI Coverage to be generated will
be stored in this text file.

5-109

4. Type in the text file name you wish and press the
Return key. The 9100A will then begin generating
the Summary of GFI Coverage for the UUT and will
display the results on the monitor.

When the generation is complete, the following message will
appear on the monitor:

Press Msgs key to continue

When you press the Msgs key on the programmer’s keyboard,
the UUT directory display will reappear on the monitor. You
can use the Edit key on the programmer’s keyboard to access the
text file you generated.

Statistical Summary

5-110

The first part of the Summary of GFI Coverage is a statistical
summary of the UUT, based on the GFI database you have
provided. Figure 5-38 shows a typical example of such a
summary. Each entry in the summary is described below:

® Summary for /<disk drive>/<UUT>: In Figure
5-31, HDR is the disk drive and the UUT directory name
is EXAMPLE.

® Parts: The number of unique part types in the UUT,
based on the reference designator list.

¢ Reference Designators: The number of reference
designators in the UUT, based on the node list.

¢ Connected Pins: The number of UUT pins that are
connected to other pins on the UUT, based on the node
. list.
b Unconnected Pins: The number of UUT pins that are
not connected to any other UUT pins, based on the node
list. :

® Total Pins: The total number of pins on the UUT.

Summary for /HDR/EXAMPLE:

53
167
1694
225
1919
42

1688
16
1704

6

— 209
(g) 215
99%

88%

Parts

Reference Designators
Connected Pins
Unconnected Pins
Total Pins

Programs

Testable Connected Pins
Testable Unconnected Pins
Total Testable Pins

Untestable Connected Pins
Untestable Unconnected Pins
Total Untestable Pins

Test Coverage of Connected Pins
Test Coverage of Total Pins

Figure 5-38: Statistical Summary Display for a UUT

5-111

5-112

Programs: The number of TL/1 programs that can be
used by GFI as stimulus programs. This number is equal
to the number of response files.

Testable Connected Pins: The number of connected
pins that can be tested by GFL. Testable pins have either
been characterized with LEARN, or are a member of a
node that has been characterized with LEARN,

Testable Unconnected Pins: The number of
unconnected pins that can be tested by GFI. Testable
unconnected pins have been characterized by LEARN and
appear in a response file.

Total Testable Pins: The total number of UUT pins
that can be tested with GFI, given the database you have
entered.

Untestable Connected Pins: The number of
connected pins that cannot be tested with GFI, due to an
incomplete database.

Untestable Unconnected Pins: The number of
unconnected pins that cannot be tested with GFI, due to an
incomplete database.

Total Untestable Pins: The total number of UUT pins
that cannot be tested with GFI, given the database you
have entered.

Test Coverage of Connected Pins: The percentage

of connected pins on the UUT that can be tested with GFI,
given the database you have entered. A figure of less than
100% indicates an incomplete database.

Test Coverage of Total Pins: The percentage of

UUT pins that can be tested with GFI, given the database
you have entered. This figure is typically less than 100%
because a UUT often has unused pins.

®

G

Pin Coverage Matrix

The second part of the GFI Summary of Coverage display is a
matrix showing how component pins are tested with the
database you have provided. Figure 5-34 shows a partial
example of a pin coverage matrix. The matrix is organized with
the reference designators listed vertically (in the left-most
column) and with component pin numbers listed horizontally.
The number of pins per line will be the number required by the
largest component in the list. If more than 35 pins are required,
the display will produce a second list of reference designators
following the first list and this second set will have pin numbers
starting with 36 and continuing up from there.

Each component pin has a one-character symbol that shows
what how GFI looks at the pin, given the database you have
provided. The table at the bottom of Figure 5-39 shows the
meaning of each symbol that is possible.

UNGUIDED FAULT ISOLATION (UFI) 5.6.

UFI is designed for a situation where the user wishes to use
GFI's pin-testing capability but does not need probing
suggestions. A UFI operator may, for example, use a
combination of functional test programs, keypad commands,
and UFI to troubleshoot a UUT. The UFI operator is normally
someone who is familiar with the UUT, who has a good idea
why it failed, and who can save time accordingly.

5-113

Differences between UFI and GFI 5.6.1.

GFI tests a pin and determines whether or not it is good. GFI
then evaluates the status (good or bad) of all other UUT pins,
and accordingly makes a probing recommendation. The process
is repeated until GFlIcan accuse a faulty component.

UFI only tests output pins; it will not make recommendations on
where to probe next. UFI is used to verify whether a pin is
good or bad. The choice of where to probe next is left to the
operator.

UFI does not require a node list to be entered; GFI uses the list
to make probing recommendations. Since UFI makes no
recommendations, the list is unnecessary.

The UFI User Interface 5.6.2.

5-114

At the operator's interface, UFI is invoked by using the GFI key
as described in the following section. Since the database was
compiled using TROUBLESHOOT UUT for UF], the node list
was not included. When UFI probes a pin, it will not suggest
the next probing point as GFI may do. Instead, the message
"UNGUIDED MODE" appears on the display.

: "\; Pin Coverage:

Pl
=]
-
OHQO *FHHHHHOOCOHHHHHM

0O000CO0O0O00C0000000IIIOOOT

Symbol Meaning

The pin is testable as an input only.

The pin is testable as an output
only.

The pin is testable as both an input
and an output.

The pin is testable as a power pin.

The pin is testable as a ground pin.

The pin is not testable (because it
has no associated stimulus
program or no known-good
response stored for this pin).

. There is no such pin in the
database.

* QO™ wm o

. Figure 5-39: Pin Coverage Display for a UUT
@

5-115

Converting from UFI to GFI 5.6.3.

To convert from UFI to GFI:

Enter the UUT node list.

Compile the UUT, selecting TROUBLESHOOT UUT for
GFI.

Since GFI may require node responses for both the probe

and the I/O module, and since UFI may not have required
both, additional response information may be required.
The compiler will identify nodes where this additional
information is needed. Use the response LEARN
command to gather this information, then compile the
UUT again.

USING THE GFi DATABASE WITH TL/
FUNCTIONS 5.7.

TL/1 contains several commands that interact with the GFI
database. These commands include dbquery, gfi, count, level,
sig, storepatt, and writepin.

5-116

The dbquery command allows a TL/1 program to retrieve
information from the UUT database.

The gfi commands allow TL/1 to interact with the resident
GFI software.

The count, level, and sig commands allow a TL/1 program
to retrieve data for a pin.

The storepatt and writepin commands allow a TL/1

program to overdrive a node with a sequence of patterns
sent through the I/O module.

The count, level, sig, storepatt, and writepin commands all have
a refpin option that allows information to be requested using
reference designator pin names, such as "Ul-b4" or "connl-

aa3". The option also supports numeric pin names, such as
"U1-12".

If the refpin option is used, the UUT directory must contain a
compiled GFI database (named UFIDATA or GFIDATA). The
database contains information that allows the system to
determine which physical pin corresponds to the pin name.

If you are using the resident GFI software, the database that you
created to perform GFI contains all the information that the
refpin option requires.

If you are not using GFI or UFI, you can create a minimal
database by using the editor. This minimal database requires a
reference designator list and part descriptions, but does not
require a node list, stimulus programs, or response files. To
create a minimal database:

1. Use the editor to create a reference designator list
(REFLIST) for the UUT. The reference designator
list should contain an entry for each reference
designator that will be used in the refpin option. Fill
in the REF and PART columns.

The refpin option ignores the TESTING DEVICE
column.

2. For each part that was named in the reference
designator list, use the editor to create a part
description in the part library. In the information
window, fill in the NO. PINS and PKG fields. In
the edit window, fill in the PIN NAME column if the
part has pin names. If the part uses numeric pin
names (such as "1", "2", "3", ...), leave this column
blank.

The refpin option ignores the pin type and related
input pin information.

5-117

Use the editor to compile the UUT, selecting
LEARN RESPONSES for UFI. The resulting
database will contain all the information needed by
the refpin option, although it will be inadequate to
perform GFL

Refer to previous paragraphs in this section for more detailed
information on how to edit the reference designator list and part
descriptions, and on how to compile the GFI database for a

UUT.

THE GFlI USER INTERFACE 5.8.

5-118

At the operator's interface, GFI provides a summary that shows
an overall picture of what GFI has found and a suggestion list
that indicates the location at which backtracing should resume.
To invoke GFI at the operator's interface:

1.

Press the GFI key on the operator's keypad and use
the left arrow key to position the cursor at the left-
most field.

Use one of the following softkeys to specify a
command. Figure 5-40 shows example displays for
complete commands. For details, refer to the
Technical User's Manual.

RUN: Executes GFI. Backtracing starts from the
specified location.

SUGGEST: Displays the GFI suggestion list that is
generated from previous GFI activity and shows
points at which backtracing can resume.

FER GFI UUT DEMD REF 22 PIMN I

Example 1: GFI RUN Command

HIMT Lz
HINT 1
HIMT

Example 2: Results of the GFI SUGGEST Command (suggestion list)

FEF EAD IHE BAL DTS LINEMHOHIM
L7 |5 1 28
] 5] &

-

Example 3: Results of the GFI SUMMARY Command

Figure 5-40: GFI User-Interface Example Commands

5-119

SUMMARY: Lists the number of bad inputs, bad
outputs, and untested pins of each component that

has been tested. Figure 5-35 shows an example GFI
SUMMARY display.

CLEAR: Frases the GFI summary and suggestion
list. Also can be done by executing a TL/1 gfi clear
command or by powering down the system.

SETUP: Enables or disables the automatic startup of
GFI. Also can be done by executing a TL/1 gfi
autostart command.

3. If you pressed the RUN softkey, the display will
instruct you to clip over or probe a component and
press the device's Ready button when done.

4. Follow the displayed instructions of step 3. Figure
5-41 shows examples of GFI recommendations
(resulting from step 3), which could take one of three
forms:

GFI accuses the probed component.

GFI recommends where next to probe. Use the left
and right arrow keys to move the cursor to each pin
of the displayed IC. A status message is shown for
each pin. Use the up and down arrow keys to scroll
through long messages.

GFI has no recommendations.

An operator who does not want to probe at the location
recommended by GFI can use the keypad GFI RUN command
to specify another location, based on knowledge of the UUT or
information from the suggestion list.

Hints in the suggestion list can be generated by any programs
that previously performed functional tests on the UUT. These
hints are generated by the TL/1 gfi hint command.

5-120

G

iz BAD or DOUTPUT &,
~1F 1w LOF 4 ko

Example 1: GFI Accuses Probed Component

CLIP 22 By,
E
K.

BRE - DETARILD | e

Example 2: GFl Makes Probing Recommendation

MO RECOMMEMEAT TOM

GO0 [DUTREUT

Example 3: GFI Makes No Recommendation

Figure 5-41: GFI User-Interface Example Recommendations

5-121

5-122

O

Section 6
Terminal Emulator

The terminal emulator lets you use the programmer's interface as
a 24-line by 80-column display terminal, to be connected to a
remote computer through one of the serial ports. With this
feature, you can transfer files between the 9100A and other
computers (including other 9100A/9105A machines). Such
transfers are useful for obtaining UUT information from CAD
systems, for example.

ENTERING AND EXITING THE TERMINAL
EMULATOR 6.1.

Before starting the terminal emulator, you must configure the
serial port that you will use as a communication channel. The
SETUP MENU key on the operator's keypad lets you set the
baud rate, parity, number of data bits and stop bits, protocol for
data flow control, and newline character. See the "Keypad
Reference" section of the Technical User's Manual for more
information about these port settings. The terminal emulator
automatically operates in full duplex mode.

You should use flow control protocol to prevent the loss of
characters at high baud rates. (The 9100A sounds a beep when
it detects character loss.) The flow control protocol must match
the setting of the computer at the other end of the communication

6-1

channel. The 9100A can implement software (XON/XOFF)
protocol, hardware (CTS/RTS) protocol, or both.

You invoke the terminal emulator from the editor by pressing the
TERM softkey and selecting the name (/PORT1 or /PORT2) of
the serial port to use. To return to the editor, press the Quit key.

TERMINAL EMULATOR DISPLAY 6.2.

6-2

When you invoke the terminal emulator, the monitor is cleared.
To turn on the information window, which is shown in
Figure 6-1, press the Info key. You set the terminal mode and
tab stops with this information window.

While the information window is on, you can press the Help key
to display help information. If the information window is off,
the Help key has no editor function, and pressing the Help key
causes a special character code to be sent to the device that is
connected to the terminal emulator.

When you turn the information window off (by pressing the
Info key), the keyboard and display send and receive characters
as a terminal.

The 9100A collects input characters in a buffer. If the buffer
becomes full, the 9100A automatically sends the signal required
by the flow control protocol to suspend input.

To exit the terminal emulator, press the Quit key. Pressing Shift
and Quit simultaneously will exit the editor directly to the
operator's keypad. Then the next time the editor is invoked, it
will return to the editor screen that invoked the terminal emulator
the previous time.

INSERT MOIOE: 2= AUTO NEW LINE: OFF LINE TERMINATOR: CR

AUTO URAP: ON TEXT CURSOR: ON WAIT FOR TERMINATOR: OFF
T T T T T T T T

E‘%SB?BSOI2345878901234567890123456789012345878901234587890123458789@123456789?

RESTORE SAVE RECEIVE SEND ABORT

Figure 6-1: Terminal Emulator Screen Example

6-3

The following fields in the information window set the terminal
modes. In all cases except for LINE TERMINATOR and WAIT
FOR TERMINATOR, you press the Field Select key to set the
field to either ON or OFF:

6-4

INSERT MODE -If ON, an incoming character is inserted
at the cursor location and the characters to the right are
move one column to the right. If OFF, an incoming
character replaces the character at the cursor location and
moves the cursor one column to the right. The default
setting is OFF.

AUTO WRAP -If ON, when the cursor is at column 80,

an incoming character moves the cursor to column 1 of the
next line. If OFF, when the cursor is at column 80, it
remains at column 80. The default setting is ON.

AUTO NEW LINE - If ON, an incoming newline

character moves the cursor to the beginning of the next line
and the Return key outputs a carriage return and a linefeed.
If OFF, an incoming newline character moves the cursor to
the next line in the same column and the Return key
outputs a carriage return only. The default setting is OFF.

TEXT CURSOR - If ON, a blinking cursor appears in the
display. If OFF, no cursor appears. The default setting is
ON.

LINE TERMINATOR - When using the send operation,
this field determines whether output is terminated with a
carriage return, a linefeed, or both. Press the Field Select
key to set this field to CR, LF, or CR/LF. The default
setting is CR.

WAIT FOR TERMINATOR - This field contains one of

four values: OFF, CR, LF, or CR/LF. When the setting is
other than OFF, the emulator waits for a carriage return,
linefeed, or carriage return then linefeed before sending the
next line of output. The default setting is OFF.

O

® A tab setting is indicated by a "T" in the line above the
column numbers line. Default tab stops are at every eighth
column. To set or clear a tab setting, position the cursor at
the desired column in the line above the column numbers
and press the Field Select key. (When you move the
cursor into the tab setting line, the cursor always moves to
column 1.)

The INSERT MODE, AUTO WRAP, and TEXT CURSOR
modes can be changed by the remote system through incoming
escape sequences. These sequences are listed in the "Control
Codes for Monitor and Operator's Display" appendix of the
TL/1 Reference Manual.

TERMINAL EMULATOR OUTPUT 6.3.

The terminal keyboard sends all standard, seven-bit ASCII
(ANSI X3.41-1974) key codes. To send the key codes from
hexadecimal 00 to 20, type the control sequences shown in
Figure 6-2. The softkeys, cursor control keys, and editor
keypad keys (except for Quit and Info) send the ANSI-
compatible escape sequences listed in Figure 6-3. The Quit and
Info keys perform their regular functions.

6-5

Control Key ASCII

Sequence HEX DEC CHR
CTRL~@ 00 0 NUL
CTRL-A 01 1 SOH 1
CTRL-B 02 2 STX E
CTRL-C 03 3 ETX
CTRL-D 04 4 EOT
CTRL-E 05 5 ENQ
CTRL~-F 06 6 ACK
CTRL-G 07 7 BEL
CTRL-H or Back Space 08 8 BS
CTRL-I or Tab 09 9 HT
CTRL-J OA 10 LF
CTRL~K 0B 11 vT
CTRL-L ocC 12 FFP
CTRL-M or Return oD 13 CR
CTRL~N OE 14 SO
CTRL-O oF 15 ST
CTRL-P 10 16 DLE
CTRL-Q 11 17 DC1
CTRL-R 12 18 DC2
CTRL~-S 13 19 DC3
CTRL~T 14 20 DC4
CTRL-U 15 21 NAK
CTRL-V 16 22 SYN
CTRL-W 17 23 ETB
CTRL-X 18 24 CAN
CTRL-Y 19 25 EM
CTRL-2Z 1A 26 SUB
CTRL~-[1B 27 ESC
CTRL~\ 1c 28 FS
CTRL~] ib 29 GS
CTRL~" 1E 30 RS
CTRL~-_ 1F 31 us

Figure 6-2: Keyboard Control Sequences

("\; Key Sequence

Up Arrow
Down Arrow
Right Arrow
Left Arrow
F1l
Shift-F1
F2
Shift-F2
F3
Shift-F3
F4
Shift-F4
F5
Shift-F5
Fé
Shift-Fe6
F7
Shift-F7
F8
Shift-F8
F9
Shift-F9
F1l0

i Shift-F10

O
Shift-Edit
Msgs
Shift-Msgs
Help
Shift-Help
Begin File
Shift-Begin File
End File
Shift-End File
Scroll Forward
Shift-Scroll Forward
Scroll Backward
Shift-Scroll Backward
Begin Line
Shift-Begin Line
End Line
Shift-End Line
Field Select
Shift-Field Select

Escape

ESC
ESC
EsC
EsC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
EsC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
EsSC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC

I e e e i e T T T e T e T e T e T i M B M T N T T e e B e B R I B R

BB DD S D B B B B W WWWWWWWWWNRNNONNMNNOMNNMNNNMNNODNNFRERERPREPRRPRRPRRERRDOTD

Sequence

OO WNPFP,OWYWOITAUS WNEPE O WU WNEHEOWR IO WNE O
?

Figure 6-3: Keyboard Escape Sequences

TERMINAL EMULATOR INPUT 6.4.

6-8

The terminal accepts all standard, seven-bit ASCII key codes
and recognizes a subset of the ANSI 3.64 terminal-control
sequences. All of the key codes from hexadecimal 00 to 20 are
ignored except for ESC (escape), CR (carriage return), LF
(linefeed), BS (backspace) and HT (horizontal tab). These
codes are interpreted as follows:

d CR (0D) moves the cursor to return to the beginning of the
current line.

® LF (0A) moves the cursor to the next line in the current
column if AUTO NEW LINE mode is disabled. LF moves
the cursor to the beginning of the next line and scrolls the
display when necessary if AUTO NEW LINE mode is
enabled.

i BS (08) moves the cursor one column to the left on the
current line.

d HT (09) moves the cursor forward to the next tab stop.

ANSI 3.64 terminal-control sequences are recognized by the
terminal emulator. These include terminal-control features such
as enabling or disabling the cursor, moving the cursor, enabling
or disabling AUTO WRAP mode, enabling or disabling AUTO
NEW LINE mode, changing display attributes (bolding,
underscoring, blinking, and reverse video), and setting or
clearing tabs. Also, included are terminal-control sequences for
inserting or deleting a line, inserting or deleting characters, and
block erasing functions. A complete listing of all available
terminal-control features and their associated terminal-control
sequences is provided in the "Control Codes for Monitor and
Operator's Display" appendix of the TL/I Reference Manual.
The actions associated with these control sequences are defined
in the ANSI standard.

Q FLOW CONTROL 6.5.

To suspend data input to the terminal, either press the Scroll
Lock key or type a CTRL-S (press the CTRL-Z key and the
letter "S" at the same time). To allow input again, either press
the Scroll Lock key a second time or type a CTRL-Q. The
9100A automatically sends the appropriate signal for the flow
control protocol you have specified. For example, in a
CTS/RTS protocol, typing CTRL-S causes the 9100A to assert
the CTS line; in an XON/XOFF protocol, typing CTRL-S
causes the 9100A to send a CTRL-S to the other computer.

TERMINAL COMMANDS
(SOFTKEY DEFINITIONS) 6.6.

The softkey commands described below are available only to the
terminal emulator:

RESTORE: This command sets the terminal modes and tab
settings to the default values stored on the system disk. (A
restore command is performed automatically when you
invoke the terminal emulator.)

SAVE: This command saves the current terminal modes
and tab settings on disk. These settings will be used as
future default settings when the RESTORE softkey is
pressed.

SEND: This command prompts you for the full pathname
of a text, program, or nodelist file. You can then select the
format of the file using the Field Select key. If the file
exists, it is output to the serial port using the current line
terminator and wait-for-terminator settings. To stop the
send operation, press the ABORT softkey or the Quit key
on the programmer's keyboard.

RECEIVE: This command prompts you for the full
pathname of a text, program, or nodelist file. You can
then select the format of the file using the Field Select key.

6-9

If the file exists, its contents are deleted and all input
characters are stored in the specific file name. An
incoming carriage return, line feed, or carriage return and
line feed is stored as a single end-of-line character. To
stop the receive operation and close the file, press the
ABORT key.

® ABORT: This key stops a send operation or a receive
operation in progress.

TRANSFERRING FILES TO AND FROM
THE 9100A 6.7.

6-10

Through the terminal emulator, programs, text files, and nodelist
files can be transferred between a 9100A and a remote computer.
Uploading files from the 9100A allows you to modify programs
and other files (part, response, REFLIST, NODELIST, etc.) on
another computer. This frees the 9100A for debugging and
executing programs.

Since some 9100A files (for example, parts and responses) are
field oriented, modification on another computer should be done
by first converting and uploading an existing file. This uploaded
file can be used as a template for creating new files on another
computer. The entries in field oriented files must be in the
correct columns for the conversion from a text file to another
type of file to be successful.

The following is the general transfer procedure. If you are
transferring a text file, program, or node list, skip steps 1 and 6:

Convert the desired file to a text file.

Upload the text, program, or nodelist file to another
computer.

Copy the file on the computer to a working file.
Make changes to the working file.

Download the working file to the 9100A.

Convert the downloaded text file to the proper type.

NN W BN =

O

O

Converting Files for Uploading
from the 9100A 6.7.1.

Before you upload a file that is not a text file, program, or node
file, it must be converted to a text file.

Text files can be stored in a UUT or USERDISK directory and
copied to the part or program library directory using the full path
name specification. For example, a text file version of a part in
the PARTLIB named "7400" can be copied to the USERDISK
directory using the 9100A COPY (softkey F4) function as
shown in the following:

FROM NAME /HDR/PARTLIB/7400 TYPE PART
TO NAME /HDR/7400 TYPE TEXT

These procedures can be reversed for copying (converting) a text
file to a part in the part library.

To convert a file, perform the following steps:

1. From the editor enter the COPY (softkey F4)
command.

2. At the FROM NAME prompt, enter the file name to
be converted.

3. At the TYPE prompt, use the Field Select key to
select the type (i.e. REF, PART, etc.).

At the TO NAME prompt, enter the new name of the
file.

5. At the TYPE prompt, select TEXT using the Field
Select key.

6. Press the Return key, and the file will be converted
to a text file that may now be uploaded to a remote
system.

General Upload Procedure 6.7.2.

6-12

Uploading from the 9100A requires the following steps:

1.

Connect the 9100A RS-232 Port 2 and host device
(see Figure 6-4) or modem (see Figure 6-5).
Although both 9100A RS-232 connectors are wired
as DTE, use Port 2 (the earth-referenced port) for
connections to other computers.

Set up Port 2's baud rate, parity, data bits, stop bits,
and other parameters using the SETUP MENU key
for PORT2 on the operator’s keypad. These
parameters must match the setup of the remote
computer. Use software handshake control
(XON/XOFF ENABLED; CLEAR TO SEND
DISABLED) for host computers and modems that
support this. If your host does not support software
handshaking, you must use CLEAR TO SEND
ENABLED hardware handshake control (see Figure
6-6). The 9100A monitors CTS (pin 5) to see if the
host device is asking the 9100A to hold sending of
data. Typically this signal is DTR (pin 20) from the
host.

Use the EDIT key on the operator’s keypad to start
the editor.

Select the appropriate UUT directory where the file is
to exist after the downloading is complete (edit the
appropriate UUT directory).

G

9100A

RX

HOST/PC
> 2
RX 3
GND z
DB-25S

DB-25P

FLUKE Y1702, Y1703 OR Y1705
NULL MODEM CABLES CAN
BE USED

GND

DB-2568

DB-25P

Figure 6-4: Host to 9100A Connections - XON/XOFF Control

6-13

6-14

MODEM 9100A
2
™ < ™
RX 3 »- RX
GND z GND
FLUKE Y1707 OR Y1708
INTERFACE CABLES
DB-255 EREACE ChBL DB-25S
DB-25P DB-25P

Figure 6-5: Modem to 9100A Connections - XON/XOFF Control

9100A

T

RX

CTS

GND

HOST
2P 2
RX 3
20
DTR
GND z
DB-25S
DB-25P

NON-STANDARD CABLE

DB-258

DB-25P

Figure 6-6: Host to 9100A Upload Connections -

Clear to Send Control

6-15

6-16

10.

11.

Use the TERM softkey to enter the terminal emulator;
then use the Field Select key to select /PORT2. The
terminal emulator starts with the screen that last
selected TERM. (The screen is blank the first time
TERM is selected after the 9100A is powered on.)
Keys pressed on the keyboard are sent to the remote
computer and characters received are shown on the
monitor.

Using the terminal emulator keyboard, instruct the
remote computer to receive the file to be uploaded.
This is called "log" for some emulators.

Press the Info key on the keyboard. Change the
LINE TERMINATOR in the top line of the
Information Window as required by the remote
computer (use right arrow and Field Select key).
Then press the SEND (softkey F5) to select
uploading. The SEND softkey prompts for the name
of the file to be sent and then the type of file format
to be sent. The file type is TEXT, press the Return
key to start the transfer.

The file is transferred to the remote computer. The
characters are not displayed unless the remote
computer echoes them.

When the file has been transferred, the message
"Send Completed" is displayed.

Press the Info key to get back to the terminal
emulator mode. Send the file terminal character (eg.
CTRL-Z) to close the file.

Press the Quit key to return to the UUT directory.

O Uploading from the 9100A to a PC 6.7.3.

To upload a file from the 9100A to a PC, a terminal emulation
software package must be running on the PC. The 9100A is
used in the software handshake control mode (XON/XOFF
ENABLED). The PC and the 9100A are connected as shown in
Figure 6-4.

Set up the PC communication port (com1) to match the 9100A
default RS-232 parameters (9600 baud, no parity, 8 bits, and 1
stop bit) by initiating the following DOS "mode" command:

mode com1:96,n,8,1,p

The “p” flag sets the retry on timeout error mode. The flag
prevents the system from aborting the communication if the
9100A stalls the transfer to prevent overrunning its buffer.

Refer to the "General Upload Procedure” for the step-by-step
uploading procedure. The DOS "copy" command does not
work for uploading. This command does not perform the
needed hardware handshake to hold off the 9100A from sending
data to prevent the PC's buffer from overrunning.

Downloading Files to the 9100A 6.7.4.

The main benefit of downloading files is that a program or data
file can be written on another system, then transferred to the
9100A. Creating program or data files on another system frees
the 9100A to be used only for debugging and executing
programs. Text, program, and node files can be downloaded
directly to the 9100A. To download any other file type, it must
be downloaded as a text file and then converted to the
appropriate file type.

The general steps required to download files are as follows:

¢ Transfer the file to the 9100A as a text, program, or node
file.

6-17

o If required, use the COPY softkey to convert the text file
to the desired file type. Refer to "Converting Files that
have been Downloaded to the 9100A" for information on
the conversion.

General Download Procedure 6.7.5.

Downloading to the 9100A requires the following steps:

1. Connect the 9100A RS-232 Port 2 to the host device
(see Figure 6-4) or modem (see Figure 6-5).
Although both 9100A RS-232 connectors are wired
as DTE (data terminal equipment), use Port 2 (the
earth-referenced port) for connections to other
computers.

2. Set up Port 2’s baud rate, parity, data bits, stop bits,
and other parameters using the SETUP MENU key
for PORT2 on the operator’s keypad. These
parameters must match the remote computer set up.
Use software handshake control (XON/XOFF
ENABLED, CLEAR TO SEND DISABLED) for
host computers and modems that support this. If
your host does not support software handshaking,
you must use CLEAR TO SEND ENABLED
hardware handshake control. The 9100A asserts
DTR (pin 20) to hold up the host when needed.
Connect this signal to the signal(s) of the host that
will hold sending of the data (typically DSR, pin 6)
shown in Figure 6-7.

3. Use the EDIT key on the operator's keypad to start
the editor.

4. Select the appropriate UUT directory where the file is
to exist after the downloading is complete (edit the
appropriate UUT directory).

6-18

O

HOST/PC

X

RX

RI L<_1
DSR 6 -4

GND

DB-258

DB-25P

FLUKE Y1702, Y1703 OR Y1705
NULL MODEM CABLES CAN
BE USED

9100A
~
2 ™
3 AX
20 DTR
z GND
DB-25S

DB-25P

Figure 6-7: Host to 9100A Download Connections -

Clear to Send Control

6-19

10.

11.

6-20

Use the TERM softkey to enter the terminal
emulator, and then use the Field Select key to select
/PORT2. The terminal emulator starts with the
screen that last selected TERM. (It will be blank the
first time TERM is selected after the 9100A has been
powered on.) Keys pressed on the keyboard are sent
to the remote computer and characters received are
shown on the monitor.

Press the Info key on the keyboard and then the
RECEIVE softkey. Enter the name of the file that the
download data should be stored in and press the
Return key.

Use the Field Select key to select the desired file
format (text, program, or node) and press the Return
key.

If the desired file format is not a text, program, or
node, receive the file as text and convert it to the
desired file type. Refer to "Converting Files that
have been Downloaded to the 9100A" for
information on the conversion.

The message "Receiving" appears at the bottom of
the CRT. Press the Return key to remove the Info
Window and initiate the actual download.

The data scrolls by as the file is being received. At
this point every character being sent from the remote
computer to the 9100A is being stored in the
specified file on the 9100A.

Using the terminal emulator keyboard, instruct the
remote computer either to display the file to be
downloaded or to otherwise send the file to its serial
port. This command will be stored as the first line of
the downloaded file since the receive operation has
been started.

After the file has been transferred, press the Info key
and use the ABORT softkey to stop storing
characters into the file.

Press the Quit key to return to the UUT directory.

Downloading Files from a PC to the 9100A 6.7.6.

The following three methods can be used to transfer files from a
PC to the 9100A:

¢ Using a terminal emulator with software handshaking.
Insure flow control is setup for XON/XOFF.

¢ Using the DOS "print" command and software
handshaking.

¢ Using the DOS "copy” command and hardware
handshaking.

USING A TERMINAL EMULATOR WITH
SOFTWARE HANDSHAKING

Set up the PC communication port to match the 9100A default
RS-232 parameters (9600 baud, no parity, 8 bits, and 1 stop bit)
by initiating the following DOS "mode" command:

mode com1:96,n,8,1,p

The "p" flag sets the retry on the timeout error mode. The flag
prevents the system from aborting the communication if the
9100A stalls the transfer to prevent overrunning its buffer.

If you use a terminal emulator software package, the procedure
is exactly as outlined in the "General Download Procedure"
using software handshake control (XON/XOFF ENABLED).
Most PC terminal emulator software packages have a "send file"
capability. Be sure to setup the file transfer to be an "ASCII"
transfer.

6-21

SENDING FILES TO THE 9100A USING THE
DOS "PRINT" COMMAND

Sending files to the 9100A using the DOS "print" command
requires the following steps:

1. Set up the PC communication port to match the
9100A default RS-232 parameters (9600 baud, no
parity, 8 bits, and 1 stop bit) by initiating the
following DOS "mode" command:

mode com1:96,n,8,1,p

The "p" flag sets the retry on the timeout error mode.
The flag prevents the system from aborting the
communication if the 9100A stalls the transfer to
prevent overrunning its buffer.

2. Connect the 9100A RS-232 Port 2 and the PC’s
communication port (com1) as shown in Figure 6-4.

3. Use the SETUP PORT2 XON/XOFF ENABLE and
SETUP PORT2 CLEAR TO SEND DISABLE
commands to enable software handshake control,

and disable hardware handshake control of the
9100A.

4. Follow steps 3 through 7 in the "General Download
Procedure”. From the PC, enter the following
command to send the file to the 9100A:

print filename

where filename is the name of the file that is to be
sent to the 9100A. The first time the DOS "print"
command is used, it asks:

Name of list device [PRN:]

Type: coml
then press the ENTER key.

6-22

O

After the file has been transferred, press the Info key
and use the ABORT softkey to stop storing
characters into the file.

Press the Quit key to return to the UUT directory.

SENDING FILES TO THE 9100A USING THE
DOS "COPY" COMMAND

Sending files to the 9100A using the DOS "copy" command
requires the following steps:

1.

Set up the PC communication port to match the
9100A default RS-232 parameters (9600 baud, no
parity, 8 bits, and 1 stop bit) by initiating the
following DOS "mode" command:

mode com1:96,n,8,1,p

The "p" flag sets the retry on timeout error mode.
The flag prevents the system from aborting the
communication if the 9100A stalls the transfer to
prevent overrunning its buffer.

Connect the 9100A RS-232 Port 2 and the PC's
communication port (com1) as shown in Figure 6-6.
The DTR line (pin 20) from the 9100A must connect
to the PC's DSR (pin 20) and RI (pin 22) lines to
allow the 9100A to hold the transfer when needed.

Use the SETUP PORT2 XON/XOFF ENABLE and
SETUP PORT2 CLEAR TO SEND ENABLE
commands to enable software handshake control,
and enable hardware handshake control of the
9100A.

6-23

4. Follow steps 3 through 7 in the "General Download
Procedure”. From the PC, enter the following
command to send the file to the 9100A:

copy filename com1:

Where filename is the name of the file that is to be
sent to the 9100A.

5. After the file has been transferred, press the Info key
and use the ABORT softkey to stop storing
characters into the file.

6. Press the Quit key to return to the UUT directory.

Converting Files Downloaded to the 9100A 6.7.7.

6-24

Command information in a downloaded text file should be
removed before the text file is converted to a file type that can be
edited on the 9100A. Removing the command information
involves editing the text file and removing lines at the beginning
or end of the file that were not part of the downloaded file. If a
terminal emulator "send file" sequence, or a DOS "copy" or
"print" command from a PC is used, command information does
not have to be removed, because no command information has
been received.

To convert the text file to another type of file, perform the
following steps:

1. Edit the UUT that contains the text file you wish to
convert to another file type.

2. Press the COPY (softkey F4). Atthe FROM NAME
prompt, enter the name of the text file to be
converted. At the TYPE prompt, press the Field
Select key to select the file type TEXT.

3. At the TO NAME prompt, enter the name of the file
after conversion. At the TYPE prompt, press the
Field Select key to select the file type (most likely
PROGRAM).

4. You can now use the 9100A's editor to edit the new
file. Any conversion error is flagged within the
newly created file. Any errors may be corrected
offline using a remote system, then repeating the
download/conversion process. Errors can also be
corrected directly on the 9100A, then
converted/uploaded (see the following paragraphs for
further information) to the remote system if you want
to have the corrected version on the remote system.

USING THE 9100A BULLETIN BOARD 6.8.

9100A users who have purchased a Software Support
Agreement have access to the Electronic Bulletin Board. Access
to the Electronic Bulletin Board allows 9100A users to
send/receive mail from other users and upload/download files
(programs, parts, etc.) that have been posted to the Electronic
Bulletin Board. Information about training and new 9100A
products are also posted.

The following paragraphs describe how to log in, download
files from, and send files to the Electronic Bulletin Board.

The Electronic Bulletin Board operates at 1200 baud, no parity,
8 data bits, and 1 stop bit.

Logging into the Bulletin Board from the
9100A Terminal Emulator 6.8.1.

To log into the Electronic Bulletin Board use the following steps:

1. Connect the 9100A RS-232 Port 2 to a modem as
shown in Figure 6-5.

2. Set up the 9100A's RS-232 Port 2 to 1200 baud, 8
bits, no parity, 1 stop bit, and XON/XOFF enabled
using the SETUP MENU key for PORT2 on the
operator's keypad.

6-25

3. Move to the UUT directory that you are transferring
files to or from by editing the UUT.

4. Start the terminal emulator by selecting the TERM
(F5) softkey.

A modem is required to dial the access number of the
Electronic Bulletin Board. Type the following dial
number command (Hayes compatible) to the modem,
then press the Return key:

ATD18008259100

This dials 1-800-825-9100 (the telephone number of
the Electronic Bulletin Board). Outside the U.S., the
number is (206) 356-5957. The modem indicates
when the modem link is established.

5. After the Electronic Bulletin Board connects, you are
prompted for your first name, last name, and
password. Enter this information and wait for the
Electronic Bulletin Board main menu. At this point
you have a series of options. The following sections
describe only the (U) Upload and (D) Download
opiicns. All of the other options are menu driven
and are self explanatory.

Downlioading Files from the Bulletin Board
to the 9100A 6.8.2.

To download a file to the 9100A from the Electronic Bulletin
Board use the following steps:

1. Enter the D (Download) menu or the M (Mail
System) menu.

2. If you are in the Download Menu, select the directory
from which you wish to download. Now select the
file number you wish to download.

3. If you are in Mail Menu, enter L (List) to obtain a list
of messages available.

6-26

10.
11.
12.

Enter the number of the message (file) you wish to
download.

Enter Y to set up the download. In either mode
(Download or Mail) you are now at the system
prompt that asks for an Enter (Return) to begin the
download.

Press the Info key on the 9100A Programmer's
Keyboard. This brings up the soft key selections.
Select the RECEIVE (softkey F4).

Enter the file name that will be created and press the
Return key.

Use the Field Select key to select the file type
(TEXT, PROGRAM, or NODE) and press the
Return key.

The message "Receiving" appears at the bottom of
the CRT. Press the Return key to remove the Info
window and initiate the actual download. The data
will scroll by as the file is being received.

When the transfer is complete, select ABORT
(softkey F6) to close the file on the 9100A.

To sign off the Electronic Bulletin Board, initiate the
hang up sequence.

Exit the terminal emulator by entering QUIT.

The received file will require some editing. Inspect the
beginning and ending of the file and delete any bulletin board
commands that have been added to the file.

Save this corrected text version of the file,

Refer to "Converting Files that have been Downloaded to the
9100A" to convert the text file types to a desired file type.
Program, text, and node file types can be received directly
without conversion, but all other file types must be received as
text files, and then converted.

6-27

Uploading Files to the Bulletin Board
from the 9100A 6.8.3.

6-28

Text, program, and node files can be uploaded to the Electronic
Bulletin Board. To upload any other file type, it must first be
converted to a text file. Refer to "Converting Files that have
been Downloaded to the 9100A" for information on the
conversion.

To upload a file to the Electronic Bulletin, use the following

steps:

1.

Log on to the Electronic Bulletin Board as shown in
"Downloading Files from the Bulletin Board to the
9100A."

Select the U (Upload) menu. Press U then the
Return key.

Select U (Upload) to upload to the system operator,
or select M (Mailbox) to upload to the system
mailbox.

Enter a name for the file to be uploaded. The system
is now ready to receive the file.

On the 9100A Programmer's Keyboard, press the
Info key to bring up the Information Window and the
soft key options. Change the Line Terminator in the
Information Window to CR/LF (carriage return/line
feed) by using the arrow key to move to the field and
the Field Select key to change the field.

Press the SEND (softkey F5). Enter the name of the
text file to be uploaded to the Electronic Bulletin
Board and press the Return key.

Use the Field Select key to select the file format
(TEXT, PROGRAM, or NODE) and press the
Return key to initiate the transfer of the file. The data
is not displayed as it is sent because the Electronic
Bulletin Board does not echo them. When the
transfer is complete, the 9100A reports "Send
Completed".

Press the Info key to remove the Information
Window.

Type a CTRL-Z to close the file that has been sent to
the Electronic Bulletin Board.

If the file was uploaded to the system operator, the transfer is
complete. If the file was uploaded to the mail system, continue
with the following steps:

1.

The system now prompts for a subject. Enter a
suitable subject.

The system now prompts for the name of the person
the file is to be sent to. Enter the first and last name
on the same line. It must match exactly the name of
user.

Sign off the Electronic Bulletin Board by initiating a
hang up sequence.

Exit the terminal emulator by entering QUIT.

6-29

6-30

Section 7

CAD Translator

INTRODUCTION 7.1.

The CAD Translator (also referred to as CADTrans) is a
software package that converts CAD output files into a
9100A/9105A node list and a reference designator list which are
readable by Guided Fault Isolation (GFI), the 9100A editor, and
other 9100A/9105A applications. ’

Section 7 begins with an overview of the CAD Translator. The
output file downloading procedure is described using a step-by-
step process that includes illustrations of the 9100A monitor
screen. The optional files prompted by CADTrans are
explained, and examples of name translation (aliasing) are
included. The section ends with an explanation of the regular
expression grammar used to match part and reference name
patterns to transform CAD output file format to legal 9100A
NODELIST and REFLIST format.

7-1

OVERVIEW OF THE CAD TRANSLATOR 7.2.

7-2

Figure 7-1 shows an overview of the CAD Translator process
and the files which are associated with it. The CAD Translator
translates CAD information from a CAD output file format into a
9100A/9105A-usable format. After the necessary CAD files
have been downloaded to the 9100A/9105A (see paragraph 7.3),
the CAD Translator is invoked to translate CAD system-specific
output files to 9100A/9105A Reference Designator List
(REFLIST) and Node List (NODELIST) formats. Because of
the display limitations on the 9100A/9105A front panel, part
names can be only 10 characters long and reference designators
are limited to 6 characters. There are also limitations on the
characters that are allowed. For example, the characters "-" and
"\" are not allowed in a reference designator or a part name. The
CAD Translator allows you to specify rules that help meet
9100A/9105A requirements for REFLIST and NODELIST files,
and automatically truncate long reference designators and part
names to their maximum length.

In addition to providing help when translating the CAD system
output files to a format acceptable by the 9100A, the CAD
Translator also helps speed programming by providing other
features. The most useful of the features is part name aliasing.
The part library contains information on device types and
pinouts. The library is keyed by the part name as described in
the REFLIST file on the 9100A. Because the device pinouts are
the same for functionally identical parts using different
technologies (i.e., "7400", "74LS00", "74C00", etc.), the
9100A/9105A can use a single entry in the library to cover all of
the devices of a type (in this case a quad NAND gate).
CADTrans assists its user by allowing aliasing of part names so
all of the similar parts can be coerced to a single name. In this
example, "7400" would be a likely library name choice.

Aliasing is a mechanism that allows for specification of a pattern
as a search string (see paragraph 7.5) and another pattern as a
replace string. Search patterns and replace patterns always come
in pairs: one specifies the pattern to be searched for and the other
is the type of replacement that is to done on that string. For
example, the search pattern may be something like, "All parts
starting with '74' and ending in numbers should be tagged." The
replace pattern corresponding to the search pattern

O
REFLIST
CAD omng 9100A TEXT
DATA gy MA%‘:_*?NE L F'Lgfo L TERMINAL |—pol FILEON |
AS
E oD | [EmuLaTOR 9100A
NODELIST
e i H CADTRANS
: PIN]
| SUBSTITUTION Loed-muiy
' FLE
1]
O
O i PART |
o ! ALIAS [P o =
- R : FILE : P :
[| OPTIONAL tommommeensd ! cHECK !
I poTTomomees H ~===1™ usTFALE
| ABSENT ' '
H PART [ER = feccrcmeanad
| ALASFILE
1]
I.'..'..-. S .
! REFERENCE 1
' PART beo]o-om
| AUASFILE
CONFIGURATION SAVE FILE
:\ Figure 7-1: CADTrans Process

may be, "Throw away everything between the '74' and the
ending numbers and write the result to the output file." The
results of running the string "74ALS00" through this aliasing
pattern would be "7400." Likewise, since we generalized the
rule to handle all 74-series parts, the string "74L.5273" would
resultin "74273", etc. Aliasing may be used to change reference
designators to legal 9100A names, to change part names to legal
9100A names, and to assign part names to parts without names
in the CAD source file based upon the reference designator.
(Information regarding the details of aliasing can be found in
paragraph 7.5.).

TRANSFERRING A CAD OUTPUT FILE
TO THE 9100A 7.3.

CADTrans expects the downloaded file to be available to the
9100A filesystem as a file of type TEXT. Refer to paragraph
6.7. for the general process of transferring a file from a remote
host.

USING THE CAD TRANSLATOR 7.4.

7:4

CADTrans is executed by pressing the F9 key while editing a
UUT directory. To execute CADTrans successfully, the UUT
being edited must not contain a REFLIST or NODELIST, and a
downloaded CAD file must be available. After the F9 key is
pressed, you are prompted for input file names. The majority of
the file names are optional. If you type the name of an input file
that does not exist, or you type an output file with an invalid
path name, CADTrans asks you to re-enter the file name. After
entering the correct information, CADTrans automatically creates
a REFLIST and a NODELIST that reside in that UUT directory.
The following paragraphs summarize the input files that are
prompted for and their use.

: Required Inputs 7.4.1.

The following inputs are required in order to use the CAD
Translator:

° System Type

L Source File name

System Type - System Type is a prompt that requires the
name of one of the supported CAD systems. No file name is
required. Press the HELP key to obtain a summary of currently
supported CAD systems. The name of the CAD system must be
entered. (It must match the spellings used in the HELP
window.)

Source File Name - The Source File Name is the downloaded
text file from the original CAD system. CADTransrequires an
unedited version, direct from the CAD system. This is the only
O required file, the following files are optional. As with all of the
other input files, if a simple file name is entered, CADTrans will
assume it is a file of type TEXT in the current UUT. If a file
path is entered, CADTrans will look for a file of type TEXT at
the location specified by the path.

Optional Files 7.4.2.

The following files are optional for use with the CAD Translator:

d Configuration File
® Pin Substitution File
b Part Alias File

7-5

o Absent Part Name Alias File

o Reference Alias File
d Output Check List File
i Name of Configuration Save File

Configuration File

7-6

The configuration file is an optional file that allows you to
execute a CADTransset-up configuration. It is a text file
containing a number of keywords followed by file names,
denoting which files CADTrans should use during its execution.
The following example shows how a configuration file might
appear when viewed with the editor:

SYSTEM! SCICARDS?2
INPUT! main brd3
PARTALIAS! parts?
PINSUB! ABSENTPARTS!
REFALIAS!
CHECKLIST! check?

1 denotes keyword

2 denotes name of CAD system

3 denotes name of CAD output file
4 denotes file name

If the name of the configuration file is entered at the
configuration file prompt, CADTrans uses the filenames after the
keywords as if you had entered them in response to a CADTrans
prompt. The configuration file may be edited using the 9100A
editor. The file names contained in the configuration file can be
changed, but the keyword names must remain the same. If a
keyword appears with no file name (as in Figure 7-2 for
PINSUB, ABSENTPARTS, and REFALIAS), CADTrans

missing file name and continues its execution. If a keyword
does not appear at all in the configuration file, you are prompted
for the missing keyword during CADTrans start-up. Not all of
the keywords shown in the Configuration File example need to
appear in the configuration file, nor do they need to appear in
any particular order.

:' assumes that you are not using the option associated with the

Pin Substitution File

Most users will not need the Pin Substitution File. It is an
optional file that is entered only if pin names are to be changed to
legal 9100A numbers, or if you wish to change the pinout on a
UUT part to match the definition in your part library. To create
a pin substitution file, begin by editing a new text file. For each
part for which you wish to change the pinouts, type the part
name when prompted, followed by a space and a list of the pins.
The order of the list determines the pin numbers assigned in the
node list. The following example is an entry used to change the
pin names on a 24 pin connector.

24-PIN 1A 2A3A 4A SA 6A7A 8A9A 10A 11A 12A \
1B 2B 3B 4B 5B 6B 7B.-8B 9B 10B 11B 12B

If pin 1B appeared in the CAD output file, it would be assigned
to pin number 13 in the 9100A node list, (1B is in the 13th
position of the pin list). The "\" character is used to denote the
continuation of a pin list to the next line. If you wish to include
comments with the pin configuration, begin the comment line
with a "!" character.

7-7

Part Alias File

The Part Alias file is an optional file that is used to change part
names from the CAD system's naming conventions to legal part
names which appear in the 9100A part library. Legal part names
are 1 to 10 characters in length and may contain any of the
following characters:

i A through Z (uppercase)
. a through z (lowercase)
hd 0 through 9

® it N

® "ot
.

The part alias file uses regular expression grammar to match
patterns in part names and reference designators and transform
them into a different pattern recognizable by the 9100A.

Absent Part Name Alias File

7-8

The Absent Part Name Alias file is an optional file that fills in
missing or absent part names in the CAD source file and uses the
same format as the part alias file. The file looks at the reference
name of parts with blank part names. A search string matches
the reference name and the part name is filled in with the
replacement string. This file is useful for capacitors, resistors,
and other parts that are given reference designators like "C12"
but no part description name.

o

Reference Alias File

The Reference Alias file is an optional file that modifies
reference designator names to legal 9100A format. This file has
the same format as the part alias file. For more information on
alias file format see paragraph 7.5. Reference names are from 1
to 6 characters long, and may contain the same characters listed
in paragraph 7.6. The characters must begin with a letter or
digit, and are case-insensitive.

Output Check List File

If a text file name is entered, the Output Check Listfile is written
in text format in the current UUT directory. The file allows you
to check aliasing by writing out all part aliases, absent part
aliases, and reference aliases that occur during the translation.
Also the file allows you to quickly check for inaccurate or
ambiguous aliases. Warning and error messages are written to
this file and to the screen.

NOTE

To avoid errors when using GFI you should
examine the output check list file when using
CADTrans.

Name Of Configuration Save File

The Name Of Configuration Save file is an optional output file
that contains all the file name parameters that are currently being
used by CADTrans. A prompt "Name Of Config Save File"
appears only if a configuration file name has not been previously
entered at the beginning of CADTrans execution. If a file name
is entered at the prompt, a configuration file is written by
CADTrans in text format to the current UUT directory. The next
time CADTrans is executed, you are only required to enter the
configuration file name.

7-9

ALIAS FILE FORMAT EXAMPLES 7.5.

The three types of alias files (Part, Absent Part, and Reference)
follow the same format of alternating search and replace lines.
Comments are legal, and may be placed anywhere in the file if
preceded by a "!" character. The following 1s an example of the
alias file format:

! This is a comment
SEARCH <regular expression>
REPLACE <regular expression>

The keywords SEARCH and REPLACE must be all upper case,
and a space must separate the SEARCH and REPLACE from the
regular expression. The order of regular expressions determines
the priority of the alias rules. The first rule that matches is used
for the alias. The most specific aliasing rules should be listed
first, continuing to the most general alias rules that affect the
greatest number of parts listed at the end of the alias file. Alias
files are created and edited using the 9100A editor, or
downloaded using term. Alias files are of type TEXT, and there
may be up to 50 alias rules associated with each alias file.

The following Part Alias file examples use rules (Figure 7-2)
that change CAD output file part names to 9100A part names.
You can use these alias rules as shown, modify them for your
application, or create new ones of your own.

O

O

! Use this rule for converting LSxxx parts to
' 7T4xxx

SEARCH ~LS\ ([0-9]+\)
REPLACE 74\1

! Use this rule for converting ALSxxx parts to
' T4xxx

SEARCH ~ALS\ ([0-91+\)
REPLACE 74\1

! Use this rule for converting SNxxx to 74xxx

SEARCH ~SN\ ([0-9]+\)
REPLACE 74\1

! Use this rule for converting HCxxx and
! HCTxxx to 74xxx

SEARCH ~HC["0-9]1*\ ([0-9]+\)
REPLACE 74\1

! Use this rule for converting parts ending in
! K to resistor (ex. 10K, 5K)

SEARCH K$
REPLACE RESISTOR

! Use these rules convert any 1, 2, or 3-digit
! number parts to RESISTOR

(continued on the next page)

Figure 7-2: Part Alias File Examples

SEARCH ~[0-9]$
REPLACE RESISTOR

SEARCH ~[0-9]([0-915
REPLACE RESISTOR

SEARCH ~[0-9]1[0-9]1[0-9]$
REPLACE RESISTOR

! Use these rules for converting names with uF
! or pF to CAP

SEARCH uF
REPLACE CAP

SEARCH pF
REPLACE CAP

Figure 7-2: Part Alias File Examples (continued)

The Absent Part Alias file allows you to use SEARCH strings to
locate the reference names and add part names that are missing
from the CAD output file. You can use the following examples
as a guide for writing rules to fill in missing part names in your
alias file.

Use this rule to convert reference names
beginning with C and followed by numbers
into CAP (example: Cl1l, C10, and C113 to CAP.
Missing part names only).

SEARCH C[0-9]+
REPLACE CAP

! Use this rule for reference names beginning
! in R to resistor.

SEARCH R[0-9]+
REPLACE RESISTOR

The Reference Alias file allows you to change CAD output file
reference names to legal 9100A reference names. When making
alias rules for the reference designators, make sure that each
reference name is unique. Avoid making rules that are
ambiguous. Also, determine if the proper aliases have been
made in the output check file. You can use the following
examples as a guide for reference aliases:

! Use this rules to change illegal "-"
! characters to legal "_" characters.

SEARCH \ ([*\=]1*\) =\ (.*\)
REPLACE \1_\2

! Use this rule to change illegal "/*
characters! to legal "." characters.

SEARCH \ (["\/1*\)/\(.*\)
REPLACE \1.\2

Lt g = e ———pm e wemw y Asase y AW

REGULAR EXPRESSIONS 7.6.

Regular expressions are used in alias files to match patterns in
part names and reference designators and transform them into a
different pattern recognizable by the 9100A. The regular
expression analyzer implemented in CADTrans can describe
almost any set of characters possible. If you are just beginning
to use regular expressions, they are used at a simplified level.
The following regular expressions progress from the simplest
expressions to more advanced expressions.

The simplest form of regular expression is a direct, one to one
correspondence between the SEARCH expression and the part.
For example, the alias entry:

SEARCH ALSO00
REPLACE 7400

The search statement finds every part with the identification
ALSO00 and replace it with 7400. This accomplishes the required
replacement, but a more general regular expression would cover
every ALS part and not just ALS00:

SEARCH ALS\ ([0-9]+\)
REPLACE 74\1

Notice how this alias rule finds any part with a name containing
ALS and replaces it with 74 along with the part number found
after the ALS. The grouping characters "\(\)" identify the
portion of the string used in the REPLACE statement; the [0-9]
identifies that portion as one or more numeric characters; and the
\1 appearing in the REPLACE string directs the new part name
to be filled with the contents of the grouping characters.

SEARCH \ (["\-1*\) -\ (.*\)
REPLACE \1_\2

In the search and replace strings above, the SEARCH string first
reads all characters that are not a "-" character ("not" is denoted
by the "A" character preceding the "\" character).

N
\
\

NOTE

A "\" character is placed before the "-"
character as a literal and not a set range of
characters delimiter.

When the search string finds a "-" character, it is read in and
ignored, because it is not contained in a \(\) grouping. Trailing
characters are read into a second grouping so they may be
restored in the replace string. The replace string recalls what
was read into the first grouping with a \1, followed by a "_"
character to replace the "-" character. \2 follows the "_"

character and recalls the last grouping read by the search string.

The types of characters used in a regular expression (including a
description of each) are listed in Figure 7-3. With the
description is an example to show how the character is used to
successfully write rules to convert CAD output file format to
9100A file format.

7-15

Character Description

char Matches itself, unless it is a special
character (metacharacter): ".", "\",
'I[ll, "]ll, ll*ll’ ll+l" HA", "$ll.

Example: Convert 74500 to 7400

SEARCH 74500
REPLACE 7400

\ Matches the character following it, except
when followed by a left or right
parentheses (), a digit (1 to 9), or a left
or right angle bracket < > A "\"
character can be used to literalize a
character, such as itself for searching.

Example: \ searches for \

* Any regular expression listed in this
example group followed by the closure
character "*", matches zero of more
occurrences of that form.

+ Same as "*" above, except it matches one

or more expression listed in this example
group. Used in alias files to specify the
search and replace rules.

Example: Convert 74S00 to 7400

SEARCH 7450+

REPLACE 7400

! Replaces one or more

! occurrences of 0 with 7400

(continued on the next page)

Figure 7-3: Regular Expression Characters

7-16

[set]

[a-z]
[*1-]
[rA-Z]

[a-zA-Z]
AQV

Matches one of the characters in the set.
If the first character in the set is "A", it
matches a character not in the set. A
shorthand [E-S] is used to specify a set of
characters E up to S, inclusive. The
special characters "]" and "-" have no
special meaning if they appear as the first
characters in the set.

Example: Convert 74S00, 74LS00,
74C00 to 7400

SEARCH 74[SLC]+00
REPLACE 7400

Matches any lowercase alpha.
Matches any character except "]" and "-".

Matches any character except uppercase
alpha.

Matches any alpha.

A regular expression listed in this
example shown as: \(form\), matches
what the expression "form" matches.
The enclosure creates a set of tags, used
for replacement. Replacement enclosures
are numbered starting from 1.

(continued on the next page)

Figure 7-3: Regular Expression Characters (continued)

7-17

7-18

n$

\<\>

A "\" followed by a digit 1 to 9 matches
whatever a previously enclosed \(\)
search regular expression matched.

Example: Convert 74Sxxx, 74LSxxx,
74Cxxx to 74xxx

SEARCH 74[SLC]1+\ ([0-9]+\)
REPLACE 74\1

A regular expression starting with a
"A"character and/or ending with a "$"
character, restricts the pattern matching to
the beginning of the line, or the end of
line. The "A" and "$" characters are
treated as ordinary characters in any other
location of the pattern.

Example: Convert LS00 to 74LS00
without confusing an existing 74LS00.
To obtain an incorrect result of
7474L.500.

SEARCH “\ (LS[0-9]+\)
REPLACE 74\1

Matches where a word is delimited by
whitespace.

Example: In the sentence, the six brown
mice are in a row. Row appears twice,
but you want to match on the word row
itself, use \<row\>.

Figure 7-3: Regular Expression Characters (continued)

.. SUGGESTIONS FOR USING
U THE CAD TRANSLATOR | 7.7.

To use CADTrans effectively, first use CADTrans on the CAD
output file with no file modifications. Then, if any errors occur,
add a part alias file or a pin substitution file that contains rules to
correct these errors. The translation becomes an iterative
process consisting of translating the output file, identifying the
errors, creating rules to correct the errors, and repeating the
process until all errors are corrected. The reference designator
list and node list are the result of executing CADTrans. The
node list is checked first for any errors during the translation
process. Correct the errors using the optional aliasing files.
Once the node list requires no further modification, the reference
designator list may need some changes to alleviate possible
errors with part name syntax. If you notice part name errors that
occur frequently, (for example: ALSO0 instead of 7400), the
following example solves this error:

1. Edit the part alias file.
2. Type in:

O SEARCH " [ALS]+\([0-9]+\)
REPLACE 74\1

The search string looks for one or more occurrences of ALS and
one or more occurrences of a number 0 through 9. The replace
string converts the CAD output file format into a format
recognizable by the 9100A. If a part name error occurs only
once or twice in the entire reference designator list, it is easier to
change the error manually, than to create a new rule.

NOTE

When making manual changes to reference
designator names in either the node list or
reference designator list, make sure the same
change. is made in both the node list and the
reference designator list.

7-19

SUPPORTED CAD SYSTEMS 7.8.

Futurenet*, Scicards®, and Cadnetix* are the CAD systems
supported by CADTrans. The output files of these systems are
downloaded to the 9100A using the terminal emulator (the
TERM softkey in the USERDISK directory screen or a UUT
directory screen).

NOTE

The output from the CAD systems must not
be altered. Any changes in the file output
format could cause CADTrans to fail.

Each CAD system paragraph contains an example of an output
file. Since CAD systems produce many output files, compare
the CAD output file with those in the following sections to make
sure you are using the correct file from your CAD system.

.
The following are trademarks of their respective companies: Cadnetix of Cadnetix Corporation, Futurenet of
Futurenet Corporation.

Scicards is a registered trademark of Scientific Calculations Incorporated.

7-20

(; Futurenet 7.8.1

CADTrans supports the NETLIST format created by Futurenet.
Refer to your Futurenet manual for specific instructions on
creating NETLIST output files. The following is an example of
Futurenet output file format:

NETLIST, 2

(DRAWING, \DASH3\BOARDEX1 .DWG, 1-1
DATA, 0, SHT-2

DATA,0,RAM 8K x 16 @ 00000
DATA, 0, ADDRESS DECODER

)

(SYM, 1-1,82

DATA,2,C13

DATA, 26,1

DATA, 24, 4

)

(SYM, 1-1,17

DATA, 2,U12

DATA, 3,ALS00

DATA,103,1

o,)
(;‘} (S1G,,RESET, 1,,

o PIN,1-1,25,C13,23,1
PIN,1-1,41,U12,23,2
)
(81G,,+5,1,,
PIN,1-1,25,C13,23,2
PIN,1-1,33,Ul12,23,1
)

7-21

Scicards

7.8.2

CADTrans supports output files from the Scicards system when
the "LIST PINS FULL ALL" option is used. The x-y
coordinate positions are not necessary, and are ignored. The
following data is an example of Scicards output:

SN7414 Ul 1
SN7414 Ul 2
SN7414 Ul 3
SN7414 Ul 4
SN7414 Ul 5
SN7414 Ul 6
SN7414 Ul 7
SN7414 Ul 8
SN7414 Ul 9
SN7414 Ul 10
SN7414 Ul 11
SN7414 Ul 12
Cadnetix

7-22

41 0.3125 5.1125
28 0.3125 5.0125
18 0.1325 4.9125

5 0.3125 4.8125
55 0.3125 4.7125
53 0.3125 4.6125
12 0.3125 4.5125
13 0.6125 4.5125
22 0.6125 4.6125

1 0.6125 4.7125
49 0.6125 4.8125
57 0.6125 4.9125

7.8.3.

The Cadnetix compilation process produces a standard parts list
and a net list. The following shows a sample Cadnetix output

file;

PARTS LIST

TESTPAT, 1
Cl206Vv,0.01UF
R1206V, 200K
S020V, IC,ALS244
8016V, IC,ALS668
EOS

NET LIST
NODE

TESTPAT, 1

o X X

1 $ ***x(050157-1-3
Ul8 1 U13

NODENAME NC $

Cl0 1 C13

U2 3 U18
NODE 2 $ ***(50158~1-2

R10 2 C1l1
EOS

TP101

Cl0 Cl1l1 C12 C13 Cl4 C15
R20 R21 R22 R23 R24 R10
Ul U2 U1l8

Ul3 vu22

10

1 Cl151R20 1 R23 1 Ul 8 5
8

2 Ul8 6

e

Section 8
Glossary

If you cannot find a term in the glossary, search the index for a
reference to that term.

Active Edge
A signal transition used to initiate action.

Address Decoding
The conversion of address bits into a signal that activates a
component or components.

Address Mapping
The correspondence between addresses and components in the
UUT.

Aliasing
A condition where a component address responds to more than
one combination of address bus bits.

Assert
To cause a signal to change to its logical "true" state.

Asynchronous

Not synchronized to the microprocessor or not synchronous to
any clock signal.

8-1

Automated Test
An automated activity that verifies the correct operation of a
circuit by comparing its output to the expected output.

Automated Troubleshooting
An automated process of locating a fault on a UUT.

Backtracing

A procedure for locating the source of a fault on a UUT by
checking logic along a logical path from bad outputs to bad
inputs until the point where no bad inputs are found.

BASIC
An acronym for Beginner's All-Purpose Symbolic Instruction
Code.

Bit Logical
Considering each bit of a value, rather than the value as a whole,
to perform a logical operation.

Block
A group of program lines delimited by a beginning statement and
an ending statement.

Buffer

1. In software, a storage area for holding characters until a
device is ready to accept them. 2. In hardware, a component
that drives an output identical to its input. A hardware buffer
provides electrical separation between two or more other
components.

Built-in Test
Functional tests built into the 9100A/9105A that test the bus,
ROM, and RAM.

Bus
A group of functionally similar signals.

CAD
An acronym for Computer-Aided Design. CAD systems let the
user create, manipulate, and store designs on a computer.

O

Case-Sensitive
Capable of distinguishing between upper-case and lower-case
characters.

Channel
A means for communication of data from one location to
another.

Comment
Text in a program that is not executed. A comment in a TL/1
program or a node list must begin with an exclamation point (!).

Component
A passive or active part on a UUT.

Conditional Branching
The execution of particular statements based on the value of a
logical expression.

Continuation Character
In the editor, a character that indicates that the next line is a
continuation of the same statement, not a new statement.

Control Line

A signal that comes out of a microprocessor and is used to
control the UUT.

Control Sequence

A combination of the CTRL key and another key. When these
keys are pressed simultaneously, a single key code is produced.
Control sequences are noted in this manual as CTRL-S, CTRL-

Q, etc.

CRC Signature

CRC is an acronym for Cyclic Redundancy Check. A CRC
signature is a compression of a long data stream into a 16-bit
number.

Cursor

A symbol on a display (usually a box or an underscore) that
indicates where a typed character will appear.

8-3

Cursor Control
Mechanisms that contro! the location and movement of the
cursor.

Data Bus
A set of signal paths on which parallel data is transferred
between two or more devices.

Data Type
In TL/1, the available data types are numeric and string. Both
numeric and string types can be used in arrays.

Declaration
A statement that sets scope, data type, or default value of a
variable.

Default Value
The value given a variable if no other value is specified.

Device

1. Refers to the probe, an I/O module, a reference designator,
or the pod. 2. Also used with I/O operations to specify a port
or a disk drive.

DIP
An acronym for Dual In-line Package. A DIP has an equal
number of pins on each of its long sides. See also SIP.

Directory
A collection of related sets of data (files, for example) on a disk.

Drivability
Testing whether lines can be driven to the appropriate active high
or active low level.

Dynamic Coupling
Data in one memory location is affected by combinations of data
in other memory locations.

Edge
The transition from one voltage level to a different voltage level.

Exerciser
See Fault Condition Exerciser.

Expression
A combination of symbols and names that can be evaluated
(according to TL/1 syntax rules) to yield a value.

External Synchronization
Synchronizing a node response measurement using signals
external to the pod.

Fault
A defect in a UUT that causes circuitry to operate in a manner
that is inconsistent with its design.

Fault Condition
A recognition by the 9100A/9105A that a fault exists on the
UUT.

Fault Condition Exerciser

A group of statements that attempts to repetitively reproduce the
conditions that generate a fault condition. (Sometimes called just
an "exerciser.")

Fault Condition Handler
A group of statements that is executed when a particular fault
condition occurs. (Sometimes called just a "handler.")

Fault Condition Raising
The generation of a fault condition either from detecting a fault
on a UUT or from using a TL/1 fault statement.

Feedback Loop
A circuit in which one or more outputs is routed to the circuit's
input.

Fill-in Field

An area of the monitor or the operator's display, usually shorter
than a single line, into which characters can be entered.

8-5

8-6

Forcing Line
Input to the microprocessor that forces it to a particular known
state.

Format Picture
A character string for formatted input or output that represents
the format for a single value.

Format String
One or more format pictures which represent the format for a
series of values. See also Format Picture.

Functional Test
An activity that verifies the correct operation of a circuit by
comparing its output to the expected output.

GFI
See Guided Fault Isolation.

GFI Summary
A record of the components that have been tested by GFL

Global Variable
A variable whose name and value are valid inside and outside of
the invocation of the block in which the variable is declared.

Guided Fault Isolation
An algorithm that uses backtracing to troubleshoot a UUT.

Handler
See Fault Condition Handler.

Hexadecimal
Pertaining to the base 16 numbering system. (Often abbreviated
as "hex.")

/0

An abbreviation for Input/Output. The transfer of data to and
from devices other than the local memory of the microprocessor
system.

I/O Module
An option for the 9100A/9105A that allows simultaneous
stimulus or response for multiple points on a UUT.

Implicit Declaration
A declaration assigned to a variable if no explicit declaration is
given. See also Declaration.

Invocation
The execution of a program, function, handler, or exerciser
block. Each invocation maintains its own set of local variables.

Keyword
The name of a value used in keyword notation of a TL/1
command.

Keyword Notation
The specification of arguments by name and value, in an
arbitrary order.

Label
A string that identifies a line.

Level History

A character string that represents a record of the logic levels
measured at a point over a period of time. "1", "X", and "0"
represent high, invalid, and low states, respectively.

Library

A directory that contains a collection of only a particular type of
file. The 9100A/9105A uses four libraries: a part library, a
program library, a pod library, and a help library.

Local Variable
A variable whose name and value are valid only for the
invocation of the block in which the variable is declared.

Mask
A value where each logic "1" represents a bit that is to be acted
on.

8-7

8-8

Monitor
A 24-line, 80-column display that connects to the rear panel of
the 9100A/9105A.

Node
A set of points that are all electrically interconnected.

Node List
A file containing a description of the interconnection of all pins
on a UUT.

Non-Printing Characters
ASCII codes that do not represent letters, numbers, or
punctuation.

One's Complement
The result of changing every bit of a binary number to its
complement value.

Operand
A value or expression that receives the action of an operator.
See Operator.

Operator

1. A symbol that acts on one or more values or expressions to
produce another value. 2. A person who uses the 9100A/
9105A for testing or troubleshooting.

Operator's Display
Three-line display on the mainframe of the 9100A/9105A.

Operator's Interface
The operator's display and the operator's keypad.

Operator's Keypad
The set of keys on the front panel of the mainframe of the
9100A/9105A.

Overdriver
A circuit in the probe or an I/O module that forces a voltage level
on the probe or a pin of the I/O module.

Part Description
A file that describes a component on a UUT.

Part Library
A library of part descriptions.

Pod Library
A library of pod descriptions, each of which contains a pod
database and pod-related TL/1 programs.

Pod Synchronization
Synchronizing a node response measurement using signals
generated by the pod to indicate the sampling time.

Positional Notation
The specification of command arguments without using
keywords.

Priority Pin
A pin that the GFI program will test first if a particular node is
bad.

Probe
A device that can stimulate and measure any single point on the
UUT. :

Program Library
A library of programs that can be called by any program in the
userdisk.

Programmer's Interface
The monitor and the programmer's keyboard.

Programmer's Keyboard
The keyboard that connects to the side panel of the 9100A.

Raise
See Fault Condition Raising.

Reference Designator
A one to ten character string naming a component on the UUT.

8-9

Reiated Input Pin
An input pin on a part that atfects «n cutput pin on that same
part.

Response File

A file containing data generated by executing a specific stimuius
program to a UUT and measuring the responses for the
execution of the stimulus program.

RUN UUT Test
A feature that allows the normal operation of a UUT using its
own program.

Scope

The definition of a variable as being valid oniy within an
invocation block (local scope) or as being valid both within an
invocation block and outside it (global scope).

Selectable Field

An area of the editor's display, usually shorter than a single line,
whose contents can be selected from a limited number of choices
(by pressing the Field Select key).

Signature
See CRC Signature.

SIP
An acronym for Single In-line Package. See also DIP.

Softkey
A key that has its function determined by software.

Statement
In a program, a group of words and/or symbols that cause the
9100A/9105A to perform some action.

Stimulus Program

A program that exercises a circuit while responses of circuit
nodes are gathered to see if the circuit produces the expected
response.

String
A group of characters enclosed in double-quote characters (")
and manipulated as a single entity.

Subscript
A number that selects one dimension of an array.

Synchronous
Activated by transitions of a clock signal.

Termination Status
An indication of whether a program or function ended with
"passes” or "fails" as a result.

Timeout
A condition in which an expected event has not occurred within
the expected time period.

Toggle
To change to the complementary logic state.

Transition Count
A record of the number of times the logic level at a point changes
to the high state within a period of time.

Troubleshooting
A process of locating the area of a UUT that is causing a fault.

Userdisk

1. A diskette containing test programs and information about a
particular UUT. 2. The current disk drive that is used as a
source for UUT programs and data.

UUT
Unit Under Test. A physical item, i.e., a board or a system to
be tested.

UUT Directory
A set of files that contain information about a particular UUT.

Wildcard

A symbol that represents any sequence of characters. The
9100A/9105A uses the asterisk character (*) for this purpose.

8-11

Window
An area of the monitor reserved for certain information to be
displayed.

Index

ABORT softkey, 6-10*
Active edge, 8-1*
Additional GFI features, 5-7
Address
bus stimulus commands, 3-85
decoding, 8-1
mapping, 8-1
space selection, 3-78
Alias file
absent part name, 7-8
format examples, 7-10
Aliasing, 7-4, 8-1
arm, 3-108
Arrays, 3-40
ASCII keyboard, 2-15
Assert, 8-1
Assigning
default values to variables, 3-42
values to variables, 3-41
Assignment statement, 3-50
Asynchronous, 8-1
AUTO
NEW LINE, 6-4
WRAP, 6-4
Automated
test, 8-2
troubleshooting, 8-2
Availability of debugger commands, 4-10

Index-1

Index-2

Backtracing, 8-2
Backup disk, 2-23
BASIC, 8-2
Bit logical, 8-2
Block, 8-2
commands, 2-39
structure of TL/1, 3-54
BREAK, 4-6
Breakpoints, 4-2, 4-6, 4-13
Bringing up a program screen, 3-2
BRK, 4-2, 4-6
Buffer, 8-2
Buffered
and unbutfered channels, 3-69
channels, 3-69
Built-in test, 3-85, 3-86, 8-2
Bulletin board
downloading from the bulletin board to the 9100A, 6-26
logging into the bulletin board from the 9100A terminal emulator, 6-25
uploading files to the bulletin board from the 9100A, 6-28
Bus, 8-2

CAD, 6-1, 8-2
CAD translator, 7-1
absent part alias file, 7-8
alias file format examples, 7-10
configuration file, 7-6
optional file, 7-5
output check list file, 7-9
part alias file, 7-8
pin substitution file, 7-7
source file name, 7-5
system type, 7-5
Cadnetix, 7-22
Calibration delay offset, 3-115
Case sensitive, 8-3
Changing LEARN options, 5-68
Changing the current compiler options procedure, 3-22
Changing the offset for the /O module or probe, 3-115
Channel, 3-67, 8-3
CHECK command, 2-29, 2-43, 3-11, 4-1*, 5-48, 5-54
Check procedure, 3-11
Checking for errors, 2-29
checkstatus, 3-109
clearpatt, 3-112
clip, 3-104
close, 3-67

O

Command
CHECK, 3-11
DELETE, 5-65
INSERT, 5-67
LEARN, 5-67
OFFSET, 5-83
Comment, 3-36, 8-3
compare, 3-111
COMPILE, 2-41*
Compiled database, 2-4, 5-21, 5-99
Compiler options for diagnostics, using the, 3-13
Compiling a TL/1 program, 3-19
Compiling procedures, 3-20
Compiling the GF! database for a UUT, 5-99
Component, 8-3
Components, 5-2
Compound conditions, 3-65
Conditional
branching, 8-3
expressions, 3-64
flow of control, 3-64
Configuration file, 7-6
Configuring measurement hardware, 3-105
connect, 3-105
Connecting external sync leads, 3-105
CONT (CONTINUE), 4-7
Continuation character, 2-23, 8-3
CONTINUE, 4-7
Control line, 8-3
stimulus commands, 3-86
Control sequence, 6-5, 8-3
Converting
files downloaded to the 9100A, 6-24
files for uploading from the 9100A, 6-11
from UFI to GFl, 5-116
COPY, 2-21
Count (transition count), 3-96, 5-64, 5-76
count, 3-95
command, 3-111
counter, 3-95
CRC signature, 8-3
Creating a fault condition
exerciser, 3-126
handler, 3-119
Creating a summary of GFI coverage, 5-109
CTS/RTS, 6-2, 6-9
Current compiler options procedure, 3-21

Index-3

Cursor, 8-3
commands, 2-37
control, 8-4

CUT, 2-39

Data
bus, 8-4
bus stimulus commands, 3-85
comparison with the I/O module, 3-111
type, 3-38, 8-4
types, variables, and expressions, 3-38
Data-compare-equal (DCE), 3-92, 3-111
DEBUG softkey, 4-1*
Debugger, 4-1
commands (softkeys), 4-5
keyboard, 4-4
screen, 4-2
using the debugger, 3-16, 4-10
Debugging
blocks with programs, 4-14
chained programs, 4-16
errors, 4-12
functions, 4-15
handiers, 4-16
if blocks, 4-14
loop blocks, 4-15
programs, 4-13
Declaration, 3-41, 3-59, 8-4
declare, 3-41
Default value, 3-41, 3-42, 8-4
Definition blocks, 3-7*
delete, 3-72
Deleting files, 2-22, 3-72
Description of the GF| offset window, 5-86
Device, 3-68, 5-2, 8-4
Differences between UFI and GFi, 5-114
DIP, 5-24, 8-4
Directory, 2-2, 8-4
Disk

backup, 2-21
pathnames in TL/1, 3-75
utilities, 2-21
Display windows, 2-9, 2-11
Downloading files
from a PC to the 9100A, 6-21
to the 9100A, 6-17
Drivability, 8-4

Index-4

Dynamic coupling, 8-4

edge, 8-4
command, 3-107
Edit window, 2-19
Editing a
node list, 5-50
part description, 5-40
program, 5-56
reference designator list, 5-44
response file, 5-76
stimulus program, 5-56
stimulus program response file, 5-76
userdisk, 2-32
Editor, 2-1
keypad, 2-17
end if, 3-65
Endless loop, 3-67
Entering a part description, 5-40
Entering and exiting the
debugger, 4-2
editor, 2-20
terminal emulator, 6-1
Error messages, 5-104
Errors, 4-12
Escape sequence, 6-6
Example LEARN session, 5-77
Example of
built-in function checking, 3-32
control flow checking, 3-34
return value checking, 3-33
EXEC (EXECUTE), 3-16
EXEC softkey, 5-91
execute, 3-59
Executing a TL/1 program, 3-36, 4-5
Execution pointer, 4-4
Exerciser, 3-56, 3-127, 8-5
Expression, 3-52, 8-5
External synchronization, 3-101, 3-106, 8-5

Index-5

Index-6

fails, 3-128
Fault, 3-116, 8-5
command, 3-117
condition, 3-116, 8-5
exerciser, 3-127
handler, 3-56, 3-121, 3-124, 4-16
names, 3-119
window, 2-11, 4-9, 4-11
Fault condition
exerciser, 8-5
handler, 3-56, 3-116, 3-122, 8-5
names, 3-119
raising, 3-117, 8-5
Fault conditions and fault handling, 3-116
FAULT softkey, 2-38, 4-9, 4-11, 5-96
Features of TL/1, 3-1
Feedback loop, 5-14, 8-5
Fields, 2-24
File
and device types, 3-68
and directory names, 2-31
commands, 3-68
conversion, 2-22, 6-10
Fill-in field, 2-25, 8-5
Filling a block of memory, 3-81
Flow control, 3-54, 6-1, 6-9
Forcing line, 8-6
Format, 2-22
picture, 8-6
string, 3-69, 8-6
Freerun synchronization, 3-103
Frequency, 3-94, 5-64, 5-76
Function, 3-56, 3-58, 4-15
Functional test, 8-6
Futurenet, 7-21

Gaining control of program execution, 4-13
General
downioad procedure, 6-18
upload procedure, 6-12
Generating a summary of GF| database, 5-109
getoffset, 3-115
getromsig, 3-77, 3-90
getspace, 3-77
Getting started with TL/1 programs, 3-1

@,

GFI (Guided Fault Isolation), 3-135, 5-1, 8-6
additional features, 5-7
algorithm, 5-3
conversion from UFI, 5-116
database overview, 5-21
database reference, 5-21
differences from UFI, 5-114
softkey commands, 2-41
statistical summary, 5-110
summary, 8-6
user interface, 5-118
writing stimulus programs, 3-137, 3-139, 5-56

GFI commands (TL/1), 3-133, 3-135
gfi accuse, 3-141
ofi clear, 3-141
gfi control, 3-138
gfi device, 3-135, 3-136
gfi hint, 3-141
gfi ref, 3-138
gfi status, 3-141
ofi suggest, 3-141
gfi test, 3-141

Gilobal
scope, 3-40, 3-63
variable, 3-42, 8-6
variables, 3-63

Glossary, 8-1

GOTO sofikey, 2-36

haltuut, 3-91
handle, 3-58
Handler, 3-56, 3-58, 3-116, 3-121, 3-125, 4-16, 8-6
HELP
library, 2-6, 3-130
messages, 3-130
window, 2-11
Hexadecimal, 8-6
How
a fault condition handler is chosen, 3-121
a TL/1 fault condition handler is invoked, 3-123
GFl uses the database and stimuli, 5-18
programs and functions are invoked, 3-59

110, 3-93, 8-6
I/0 module, 3-92, 5-7, 8-7

and probe commands, 3-93
if, 3-64, 4-14

Index-7

Index-8

Implicit declaration, 8-7
index file, 3-130
Information
entry, 2-23
window, 2-9
INIT (INITIALIZE), 4-8
input, 3-67, 3-68, 3-71
output and file commands, 3-67
using, 3-72
INSERT, 5-67
INSERT MODE, 6-4
Interface to special pod operations, 3-80
Internal synchronization, 3-101
invocation, 8-7
Invoking GFI from a TL/1 program, 3-140

Keyword, 8-7
notation, 3-32, 3-37, 3-38, 3-62, 8-7
Kinds of measurements that can be made, 3-98

Label, 8-7
Leapfrogging, 5-12
LEARN, 2-42, 5-70, 5-78
Level, 3-85
history, 3-99, 5-74, 8-7
Library, 2-2, 8-7
Line check, 2-29
LINE TERMINATOR, 6-4
Local scope, 3-40, 3-63
Local variable, 3-41, 3-63, 8-7
Locations of TL/1 programs, 3-2
Logical string operators, 3-51
Loop
blocks, 3-66, 4-15
until, 3-66
while, 3-66
LOOP softkey 5-96

Making measurements with the probe and I/0O module, 3-103
Marginal response, 5-72

MARK, 2-39

Mask, 8-7

Math functions, 3-53

Measurements
frequencies, 3-94, 5-64
level histories, 3-99, 5-74
signatures, 3-94
transition counts, 3-98, 5-64, 5-76
Merging responses, 5-74
Messages window, 2-11
Monitor, 2-6, 2-9, 8-8
MORE, 5-65

Name of configuration save file, 7-9
Naming
9100A/9105A devices, 3-97
bus-master (*master) pins, 5-48
UUT components and pins, 3-93
Newline character, 3-70
NEXT, 4-8
Node, 5-17, 8-8
Node list, 2-4, 5-17, 5-46, 5-50, 8-8
Non-printing characters, 3-39, 8-8
Numeric values, 3-39

Offset, 3-115
One's complement, 8-8
open
command, 3-67, 3-68, 3-73, 3-75
function, 3-76
Opening devices and files, 3-68
Operand, 8-8
Operator's
display, 8-8
interface, 3-68, 8-8
keypad, 8-8
Operators, 3-51, 8-8
Optional files, 7-5
Output, 3-67
check list file, 7-9
Overdriver, 8-8
Overview, 1-1
of the CAD translator, 7-2
of TL/1, 3-1

Part
alias file, 7-8
description, 2-6, 5-17, 5-24, 8-9
library, 2-6, 5-22, 8-9

Pass and fail status, 3-128

Index-9

passes, 3-132
Passing arguments, 3-51, 3-61
PASTE, 2-41
Pathname, 3-4, 3-75
Pattern driving with the 1/0 module, 3-112
Performing a measurement, 3-107
persistent variable, 3-42
Physical environment, 2-7
Pin
coverage matrix, 5-113
substitution file, 7-7
Placing
a pod in RUN UUT mode, 3-91
the probe, 3-105
Pod
description, 2-5
library, 2-5, 3-2, 8-9
related commands, 3-76
setup commands, 3-78
synchronization, 3-80, 3-106, 8-9
podsetup, 3-37, 3-78
poll, 3-72
polluut, 3-91
Positional notation, 3-37, 8-9
print, 3-67, 3-71 ;

using, 3-70
Printing
files, 2-22

newlines on output channels, 3-70
Priority pin, 5-12, 5-65, 8-9
Probe, 3-93, 8-9
stimulus, 3-114
Probing inputs before outputs, 5-8
Program
library, 2-5, 3-2, 8-9
statement, 3-55, 3-57
Programmer's
interface, 3-68, 8-9
keyboard, 2-7, 8-9
Programs
checking syntax, 2-43, 3-11
debugging, 3-16, 4-1, 4-10
locations of, 2-2, 3-2
stimulus programs, 2-5, 3-137, 5-52
structure of TL/1 programs, 3-7, 3-54
writing programs, 3-9
writing stimulus programs, 3-135, 3-137, 5-56

Index-10

Prompts and defaults, 2-27
puiser, 3-114

Raise, 8-9
Raising fault condition, 3-116
rampaddr, 3-84
rampdata, 3-85
read, 3-83
readblock, 3-82
Reading and writing
a single location, 3-81
microprocessor interface signals, 3-83
UUT memory and /O, 3-81
Reading data for each component pin, 3-111
readout, 3-108
readspecial, 3-80
readstatus, 3-83
RECEIVE, 6-9
Reference alias file, 7-9
Reference designator, 2-4, 3-93, 8-9
list, 2-4, 5-42
Related
input pin, 8-10
inputs, 5-10, 5-27
REMOVE, 2-22
Removing a pod from RUN UUT mode, 3-92
REPLACE, 2-37
Required inputs, 7-5
Response file, 2-4, 5-60, 5-76, 8-10
Responses, 2-4, 5-60, 5-70, 5-72, 5-74
RESTORE, 6-9
return, 3-62
Returning values from programs and functions, 3-62
rotate, 3-85
RUN UUT, 3-91
mode, 3-91
test, 8-10

SAVE, 2-22, 6-9
Saving and restoring UUT memory data, 3-82
Scicards, 7-22
Scope, 8-10
of a function, 3-61
of a program, 3-60
rules for programs and functions, 3-60
rules for variables, 3-40, 3-63
SEARCH, 2-37, 4-8

Index-11

Search and replace, 7-10
SELECT, 2-42, 5-76
Selectable field, 2-25, 8-10
Selecting and placing an I/0 module, 3-104
Selecting the desired offset, 5-94
SEND, 6-9
Serial port, 3-69, 6-1
SET (SET VARIABLE), 4-8
setoffset, 3-115
Setspace, 3-77
Setting
breakpoints, 4-10
pod error reporting and sync mode, 3-80
Setting the offset in a stimulus program 5-97
SHOW, 4-8
sig, 3-108
Signature, 3-99, 5-74, 8-10
Simple
if statements, 3-65
variable, 3-42
SIP, 5-24, 8-10
Softkey, 8-10
labels, 2-13
Softkeys
debugger commands, 4-5
function keys, 2-19
GFl commands, 2-42
terminal emulator commands, 6-9
Source file name, 7-5
Stable response, 5-70
Standard LEARN cycle timing, 5-70
Star master, 5-48
STARTUP UUT, 2-33
Statement, 8-10
Statistical summary, 5-110
Status line, 2-13
STEP, 4-7
Stimulus
commands for signature analysis, 3-84
program response file, 2-4, 5-56, 5-60, 5-76
program, 2-4, 3-136, 3-139, 5-16, 5-17, 5-52, 8-10
Stimulus programs called from GFl, 3-136
stopcount, 3-107
storepatt, 3-112
String constants, 3-39
String, 8-11
Structure of a TL/1 program, 3-7, 3-54

Index-12

Subscript, 3-40, 8-11
Suggestions for using CAD translator, 7-19
sync, 3-94, 3-98
Synchronization modes, 3-100
external, 3-101
freerun, 3-103
internal, 3-101
pod, 3-100, 3-106
Synchronous, 8-11
Syntax, 3-37
Sysaddr, 3-54
Sysdata, 3-54
Sysspace, 3-79
System functions, 3-53
System type, 7-5
Systime, 3-53

Tab setting, 6-5
TERM, 2-43, 6-2
Terminal emulation commands, 2-43
Terminal emulator, 6-1
commands (softkey definitions), 6-9
display, 6-2
downloading files to the 9100A, 6-10
input, 6-8
output, 6-5
Termination status, 3-128, 8-11
testbus, 3-87
Testing
RAM memory, 3-87
ROM memory, 3-90
the microprocessor buses, 3-87
testramfast, 3-87
testramfull, 3-87
Text
entry, 2-23
files, 2-2, 2-4
TEXT CURSOR, 6-4
threshold, 3-105
Timeout, 8-11
TLN
language, 3-1
syntax, 3-37
toggle, 8-11
addr, 3-84, 3-86
control, 3-86, 3-88
data, 3-84, 3-85

Index-13

Transferring

a CAD output file, 7-4

files to and from the 9100A, 6-10
Transition count, 3-100, 5-64, 5-76, 8-11
Troubleshooting, 8-11

UF! (Unguided Fault Isolation), 5-113
conveting to GFl, 5-116
differences from GFl, 5-114
user interface, 5-114

Unbutfered channels, 3-70

Unguided fault isolation, 5-113

Unhandled fault conditions, 3-124

Unstable response, 5-70

Uploading from the 9100A to a PC, 6-17

Userdisk, 2-1, 8-11
organization, 2-2
text files, 2-2

Using
CHECK, 3-11 ‘
external synchronization, 3-106
GFI| database with TL/1 functions, 5-116
pod synchronization, 3-106
the CAD translator, 7-4
the debugger, 3-16, 4-10

UUT, 8-11
address space selection, 3-78
directory, 2-4, 3-2, 8-11
text files, 2-4

Variable declarations, 3-41
Variables, 3-39

WAIT FOR TERMINATOR, 6-4
waituut, 3-91
Warning messages, 5-107
Wildcard, 2-37, 4-9, 8-11
Window, 8-12

commands, 2-38
Windows, 2-9, 2-11, 3-72
write, 3-77
writeblock, 3-77
writecontrol, 3-77
Write-protection, 2-23, 2-33
writefill, 3-54, 3-81
writepatt, 3-111
writespeciat, 3-80

index-14

- Writing
) a TL/1 program, 3-9
- stimulus programs, 3-137, 3-139, 5-56
XON/XOQFF, 6-2, 6-9
YANK, 2-41

index-15

index-16

