1l

Universal Firmware Development Tools

USER
MANUAL

PROMICE™

User Manual
Version 1.5

(C) Copyright 1990 Grammar Engine Inc.

Grammar Engine, Inc.
3314 Morse Rd. Columbus, OH 43231
(614) 471-1113

PROMICE User Manual
Version 1.5
All rights reserved

Copyright © 1990 by Grammar Engine Inc.

No part of this book may be reproduced in any formor by any
means without written permission.

PRINTED IN THE UNITED STATES OF AMERICA

PROMICE User Manual
TABLE OF CONTENTS

ORIENTATION
Product description
HOW TO USE THE PROMICE
HARDWARE
Attaching the unit to the target system
Setting emulation ROM size
Setting power supply options
If slave module is present
Connecting RESET signal to the target
Connecting the unit to the host
Connecting multiple units to the host
Unit IDs and ROM numbers
SOFTWARE
Installing the software
specifying working parameters
Initialization file
Example Initialization file
LoadICE command
Command line options
Dialog mode
Example command line
MESSAGES
TECHNICAL SPECIFICATIONS

Appendix - 1 PROMICE internal memory addressing scheme

Appendix - 2 Host/PROMICE interface
Appendix - 3 Terminal mode of operation

Appendix - 4 Using PROMICE in 32 bit mode

Appendix - 5 Emulating RAM

Appendix - 6 Host/Target Communication Protocols

Appendix - 7 File Formats
Appendix - 8 Modifier Boards
TUTORIAL

TROUBLE SHOOTING

10
10
10
10
1
12
12
13
13
14
15
15
15
16
17
18
18
21

24

28
30
35
37
39
40
59
61
62

Version 1.5 ©1990 Grammar Engine Inc.

4 PROMICE
ORIENTATION

You have purchased the best ROM emulator available on the
market. The PROMICE is a very capable tool. It is
configurable, expandable, upgradable and has potential that is
way beyond that of a simple ROM emulator. Not only can the
PROMICE emulate virtually any ROM, it can just as easily
emulate RAM. It can load data over the serial port or the
parallel port. The parallel port can also be used as a bi-
directional link, thus saving the serial port on your Host. The
PROMICE can also be set up to establish a direct communication
link between the Host and the Target systems, thus you can not
only emulate the ROMs but also talk to the downloaded code
from the same Host over the same port.

To get your unit doing useful work in short order it is
recommended that you familiarize yourself with a few of the
basic concepts. If the unit fails to operate properly you may go
to the very back of this manual and look for trouble shooting
hints. But first lets us orient you to a few basic concepts.

PROMICE replaces the ROM/PROM/EPROM from your target
system with a low-power, low-noise circuit that contain a micro
controller, static RAMs and buffers etc. It is attached to your
target ROM socket with a ribbon cable. Data intended for your
ROM is down-loaded over the serial or parallel cable from your
host computer. PROMICE powers itself either parasitically by
drawing power over the ROM cable from your target system's
ROM socket, or via the external power supply directly
attached to the unit. You must make the proper power source
selection on the back-panel of the unit by moving the shorting
block to the appropriate jumpers.

LoadICE is an application program that is supplied with your
PROMICE unit and is intended to be run on your host system.
LoadICE will communicate with, configure and down-load one
or more PROMICE units. You must help LoadICE program in
order to properly operate your units. The few basic things that
must be described to the LoadICE application are, number and
size of ROMs that you are emulating. The word length
configuration of the data being down loaded (8, 16 or 32 bits).

©1990 Grammar Engine Inc. Version 1.5

User Manual 5

The actual data files to be down loaded. The baud rate of the
serial port and whether you are also using the parallel port.
All these specifications are best specified by putting them in
the loadice.ini file on your host system. The data files can be
specified in this file as well as on the command line.

LoadICE will automatically figure out the format if your files
are in any of the popular HEX formats (HEX format files are
ASCII files where the actual binary data is encoded as ASCII
characters). Binary files must be explicitly specified to
LoadICE. In order to ensure that the data gets loaded into the
right place in the PROMICE unit(s) the information required to
properly map the HEX records or binary files must be specified
with each file. In some of the cases it can be very straight
forward where as in some other cases a little bit of pre-
planning can avoid hassles later on.

If you are anxious to get going and will read the documentation
only when absolutely necessary, then type the release.ini file
on your screen, look at it, copy it to loadice.ini, edit it to have
sensible contents for your situation and run the LoadICE
application. In most cases the going beyond this point is
relatively easy. If you think that the stuff still doesn't make
much sense, then we recommend that you read at least the
relevant sections in the manual. Also try loadice ? to get some
help printout.

Version 1.5 ©1990 Grammar Engine Inc.

6 PROMICE
PRODUCT DESCRIPTION

PROMICE is an In Circuit Emulator for a (Programmable) Read
Only Memory. It is a self contained unit that can emulate any
24,28 or 32 pin JEDEC standard ROM (2716 thru 27080). A given
unit can be expanded to emulate up to two ROMs. Furthermore,
the units can be daisy chained to emulate more than two ROMS.
Current limit is set at 256 ROMs.

The full blown PROMICE system consists of up to three modules.
A master module contains the micro controller and the host
interface circuitry as well as one bank of emulation RAM. A
slave module containing another bank of emulation RAM may
be added to extend the capability to emulate two ROMs. And
finally an analysis interface board may be added to allow
PROMICE to be used for more intensive firmware development .

The following is a simplified block-diagram for the PROMICE
master module.

Aux. Conn. @ 8

N et

—]

w o

Q

=~

o o

% 0

Serial

Port <

-

Micro o
Controller Up to 8 wla @
Mega Bit al~ A
0| ® o

Parallel of SRAM N
Port 51538
or ala x

The product is based on an intelligent micro controller (Signetics
87C451) communicating with the host processor (PC etc.) over
the RS-232C serial link or the parallel link. The emulator is
connected to the ROM socket on the target via a ribbon cable.
The auxiliary connector provides a programmable 'reset’ and
other signals for target control

©1990 Grammar Engine Inc. Version 1.5

User Manual 7

Hex or binary data may be down-loaded to the unit. The unit
can also self-test, diagnose, up-load and down-load data. The
user interface allows complete control of the unit's functions
either from the host or from a terminal. The parallel port may
be used to down load data much faster than the serial port.
Parallel ports can not be daisy chained, except by external

switching.

The unit is designed with CMOS parts where ever possible
resulting in very low power consumption. The unit can be
powered parasitically by the target system over the ROM
cable(s). However, external power supply may be used for
powering the unit separately.

All user settable options are either specified and controlled via
the host software or are selectable from the outside (back
panel) of the unit. The unit is constructed from quality
materials and is warranted for one year.

The slave module is mounted in the same box as the master.
The micro controller controls both the master and the slave
modules' loading, testing and emulation functions. Here is a
simplified block-diagram of the slave module:

o

o o

N o

- D

10w ©

= 3

(<]

& 0

s

ot

[-¥)
@ Up to 8 nlS T
Z,‘ Mega Bit ulw Ao
- Q| ©
- of SRAM N
= il =
o Il O
MmN @

Version 1.5 ©1990 Grammar Engine Inc.

8 PROMICE

The slave module extends a given unit's capacity to emulate
two ROMs. The maximum capacity of a unit equipped with a
slave module is thus 2 mega bytes or 16 mega bits!

The analysis interface contains a proprietary circuit that
allows for bidirectional communication between the host and
the software (debugger) running in the target system without
the need for any special modifications to the target. This
circuit enables the debugger and the host software to coordinate
their activities via the micro controller and allow easy
firmware development. Here is a simplified block diagram of
the analysis interface module:

uP Bus (P5/P4)

Control

8-Bit Data

24-Bit Addr
24-Bit Comparator

Status 8~-Bit Data

ROM Adr/Data etc.

A four byte area of the emulation ROM space is used as a control
block by this circuit. It allows for 8-bit bidirectional
communication with status bits indicating when data is
available and when data has been read. The debugger
interface to these functions is accomplished by a small driver
software that operates the four bytes block.

©1990 Grammar Engine Inc. Version 1.5

User Manual 9

Additionally the analysis interface allows for a hardware
break point to be set that is qualified by some target supplied
signals (write; ram select etc.). Upon detection of this trap a
signal is generated to trigger the target.

Another important feature of the analysis interface is to allow
changing of any byte in the emulated ROM space (master or
slave module) on the fly. This feature can be used to set and
remove 'break-points’ or otherwise 'patch’' code without
interrupting the Target system.

Analysis interface allows the PROMICE to be used as a
"Universal Firmware Development Tool". In order to adapt
the PROMICE to a different target processor only a different
debugger needs to be down-loaded.

The basic PROMICE unit is also capable of emulating a RAM
with an externally supplied "write' signal. It is also capable of
operating the Target BusRequest/BusGrant (HOLD/HOLDA)
protocol and thus allowing modification and examination of
emulation space by the Host processor, without crashing the
Target system. It can also generate interrupts to the Target
system and accept interrupts from it. These capabilities are
exploited to accomplish Host/Target communication without
the use of the Analysis Interface. See Appendix-6 for more
detail.

Version 1.5 ©1990 Grammar Engine Inc.

10 PROMICE

HOW TO USE THE PROMICE
HARDWARE

Attaching the unit to the target system:

The unit is attached to the target system via the ribbon cables
provided. One end of the cable has a DIP plug for insertion into
the target's ROM socket. The other end has a female header
(34 pins (2x17)) to be inserted in to the male header on the back
of the unit. Pin-1 orientation is marked on the back panel.
Notice that it is always on the right when looking from the
back of the unit. We make cables to emulate 24, 28 or 32 pin
devices. You may also have a custom cable to handle PLCC or
40-pin DIP or any other ROM foot-print. Please follow any
special instructions included with custom cables.

If your unit is a duplex unit then there is also a slave module
present. It is almost identical to the master module and
another ROM cable can be attached to the slave module from
your target's second ROM socket. This will allow you to
emulate two ROMs from one unit. They may be emulating a 16
bit target system or just be two ROMs in an 8 bit system or
working with another duplex PROMICE unit in a 32 bit system.

Setting emulation ROM size:

There is a 10-position dip switch on the back panel to the left
of the ROM cable header. The switches are marked 1 through
10 on the package itself. On the back panel there are numbers
printed that go with individual switches. The numbers are
paired as follows

Switch# ROMpart# 27xxx Address line connected

10 32 All
9 64 Al2
8 128 Al3

©1990 Grammar Engine Inc. Version 1.5

User Manual 11

7 256 Al4
6 512 Al5
5 010 Alé
4 020 A17
3 040 Al8
2 080 Al9

In order to emulate a given size ROM turn on switches starting
from #10 and going down till you have turned on the one for the
particular size that you are emulating. The switches connect
the address lines from the ROM cable through to the emulation
RAM. If you fail to turn on the proper switches, the unit may
fail to emulate properly, since your target system will end up
accessing wrong space within the unit. It is therefor very
important that the proper switches be turned on, and only the
proper ones be turned on. However, it is possible that different
modules in a given unit or configuration be emulating different
size ROMs.

Setting power supply options:

On the back of the unit to the right of the ROM cable header,
there is a row of male headers. The first four positions on this
header select power source for the unit. Power may come from
two different sources, the external power supply (9VDC) or
from the target via the ROM cable (parasitic operation). Use
the shorting-block (shunt) to jumper the pins appropriately to
supply power to the unit. There are three choices for parasitic
power, depending on the ROM cable size (24, 28 or 32 position).
In all cases there should be only one shunt on the back of a given
module selecting the power source, otherwise you may be
connecting the external and target power supplies!!.

When using the external power supply make sure that the
setting on the slave module (if present) is also set for external
power position. Wrong setting on the slave can result in
PROMICE powering your target system over the ROM cable. In
that case you are likely to overload the power supply circuit in
the PROMICE unit.

Version 1.5 ©1990 Grammar Engine Inc.

12 PROMICE

If the slave module is present:

If your unit includes a slave module then it is mounted on top of
the master module. It has identical headers and switches etc
on the back, as described so far. The master module is always
the first ROM in the unit and the slave is the second ROM.
Follow the same instructions for setting and hooking up the
slave as for the master.

If you are emulating a 16 bit system then the master and the
slave module will form odd and even byte pair or even and odd
byte pair depending on the byte addressing used by your target
system. If your data files are per ROM files (i.e. they contain 8
bit data) then you can arbitrarily specify which file goes into
which ROM (PROMICE module). If your data files contain
16bit data then the first byte always goes into master module
and the second byte into the slave module. Hook the
appropriate module to the appropriate ROM socket on the
target system.

Connecting RESET signal to the target (optional):

Next to the power options there are other header pins on the
master module that provide various auxiliary functions. The
one marked 'RST' provides a programmable reset signal that
can be used to reset the target. This signal is internally driven
by the micro controller through an active buffer. The default is
to drive this signal on power up for 500 milli seconds. The
signal is driven low unless the switch position #1 on the left
most side of the backpanel is on (this switch is unmarked on the
back panel). In that case the signal is high asserted (e.g. reset
on 8051 family micro). This signal can also be asserted by
giving commands to the PROMICE via LoadICE and its time
period can be specified (8ms to 2.3 seconds).

This concludes the procedures required to hook the
PROMICE to your target system.

©1990 Grammar Engine Inc. Version 1.5

User Manual 13

Connecting the unit to the host:

PROMICE is connected to the host computer (PC etc.) via the
RS-232C link. If you are also going to use the parallel link for
faster download then additionally the parallel cable is also
connected to the parallel port on the host system. However you
may choose to use the parallel link by itself. In that case the
parallel link is used in bi-directional mode. (This is supported
on the microCode version 4 and later). Bi-directional parallel
ports can not be daisy chained.

The RS-232 link is connected via a 6-conductor modular cable
and a modular to DB-25 or DB-9 adapter. All cables and
adapter are provided with each unit for easy hookup. The
parallel cable is designed to hook directly to the printer port
(DB-25 female) on the back of the PC or compatibles. On the
Macintosh system a DIN-8 to DB-25 cable is provided
additionally.

If you wish to make a cable of your own or have doubts about
whether the cable is working properly, check the 'Technical
specification’ elsewhere in this manual for the pin outs. The
PROMICE unit needs only three wires for proper communication
over RS-232, namely 'receive data’, 'transmit data' and 'signal
ground'

Connecting Multiple units to the host:

Multiple units can be daisy chained from a single RS-232 link.
Up to 256 unique ROMs can be emulated on a single daisy chain.
This limit is strictly enforced by the software only (IDs are 8-
bits). For each unit after the first one, a special daisy chaining
connector is used. These connectors are provided with all
multiple unit orders. Any word size up to 2048 bits can be
emulated. See appendix for how to use the daisy chain
connector and how to determine ROM IDs for chained units.

Version 1.5 ©1990 Grammar Engine Inc.

14 PROMICE

If you have the parallel port option on the PROMICE, then
connect the parallel port cable between the PC and the
PROMICE. Two units can be daisy chained on the parallel port.
We make a special cable that has two connectors on one end to
connect to two PROMICE units. By using some extra signals on
the parallel port we can talk to two units. The serial port must
also be used in conjunction with the parallel port. For 32 bit
emulation the parallel port only supports duplex units.

If you are emulating 16 or 32 bit systems then spedial attention
" should be paid to the byte numbering scheme forced by the
arrangements of the units. If data contained in the data files is
16 or 32 bit then the first byte goes to ID0 and so on. If data files
contain 8 bit data then any file may be loaded into any module.
Remember that the units are essentially modeless and the 16
and 32 bit data is handled and assigned to modules as a result of
implementation choices made within the LoadICE program.

Unit IDs and ROM numbers:

On start up the LoadICE software assigns IDs to each ROM it
finds on the Host to Promice link. The first unit's master ROM
will be ID 0 and if a slave is present, that will be ID 1. Next
unit's master will take the next ID# (1 or 2) and so on. LoadICE
lets you specify what data should go into which ROM. The
units operate in a modeless manner, i.e. they are always in 8 bit
mode with direct communication between LoadICE and the
particular ROM. Various word lengths are emulated by
LoadICE sifting the data out to per ROM images and then
loading particular ROM with its image etc. The host to
PROMICE protocol is specified in the appendix.

©1990 Grammar Engine Inc. Version 1.5

User Manual 15

SOFTWARE

Installing the software:

The software is distributed on a floppy disk. Insert the disk in
a drive and copy all the files to a specific directory. The disk
contains an executable LoadICE image as well as all the
sources. There are README and RELEASE files that should be
printed out and read for the latest information about the
software. If your host is not a PC or a MAC then you will need
to recompile the software. The sources are compilable on PC,
MAC, UNIX and VMS systems. If you have a different system
it will have to be ported. Contact us first, since we may have a
customer who has already ported the software to your type of
system. You may also prefer to copy the LoadICE executable
image to your directory where all the other commands live.
Use the release.ini file as a template and copy it to loadice.ini
name. Then edit and modify this new file to reflect your
particular setup. If you wish to access some on-line help then
make sure that loadice2.hlp and loadice.hlp files are also in
your working directory.

To install software on non-DOS machines see the instructions in
the README file distributed with the software.

Specifying working parameters:

You will want to specify what baud rate to use on the serial
port or to use the parallel port, what files to load in which
ROM , whether to verify data after it is loaded, whether your
host can handle the full speed transmission from the PROMICE
(applicable to serial I/O only). These things are best specified
in the initialization file called LoadICE.ini. This file is used
by the LoadICE if it is present. Almost everything can be
specified in this file. The command line options over-ride or
add to the stuff from the initialization file. In the dialog
mode, you can interactively specify information. You will use a
combination of these specifications, depending on your
particular needs. For example, you may specify baud rate etc.

Version 1.5 ©1990 Grammar Engine Inc.

16 PROMICE

in the ini file and file names on the command line etc. The
whole thing can be put in to a make or a batch file.

Initialization file:

The initialization file is named loadice.ini. It is read every
time the loadice command executes. The file as well the
parameters are optional. It contains the following parameters:

Parameter comment (not in file)
baud=rate 1200,2400,4800,9600,19200,57600
fill=character x00-xFF

ffill=character x00-xFF force fill all ROM space
output=device coml; /dev/tty2; tta2:

rom=size 27256, 27040, 64k, 131072 etc.
word=size 8,16, 32

noverify don't verify down-loaded data
high full speed response from PROMICE
parallel lptn down-load on parallel port
pponly lptn parallel port is bi-directional
reset nnn assert reset for nnn ms, after loading

filemfilename offset=ID:Address
specifies hex file to be down loaded

image=filename skip=ID:Address
specifies binary file to be down

loaded

FILE SPECIFICATIONS: The file specifications in the ini file
specify whether the file is hex or binary (See File Formats in
Appendix 7). For hex files the offset specifies the address in
hex files and its is mapped to the given unit (ID) at the given
Address . This allows loading of a hex file to any desired
address in the ROM. For binary files the skip value specifies
the number of bytes that must be skipped from the beginning of
the file and the ID:Address specifies the location where the
data in binary file must end up. In addition to all this up to 55
files specifications may be included in the ini file.

PARALLEL PORT: If your unit has the parallel port option,
then the 'parallel' specification tells Loadice that it should

©1990 Grammar Engine Inc. Version 1.5

User Manual 17

use the parallel link for down loading the data. We can daisy
chain two units on the parallel port, thus allowing emulation
and downloading of a 32 bit system over parallel link. If you
are connecting only one unit to the Host then you may prefer to
use the parallel port in the bi-directional mode. To invoke
that option specify 'pponly" in the initialization file. 'pponly’
units can not be daisy chained.

HIGH SPEED RESPONSE (RS-232C ONLY): In normal mode of
operation the PROMICE units will send back any response etc.
at a baud rate that does not exceed 9000 baud. This is done to
avoid overflow of data in a system where no buffering is
provided. For those systems where the data buffering is built
in (such as UNIX systems or the Mac), or for higher
performance PC systems the high option specifies that the
response be sent at full speed of the selected baud rate. If
Loadice seems to hang (specially during verification) then more
than likely some characters were lost due to overflow. It is
recommended that the keyword high or the command line
specification of -k be removed. In some versions of the system
Loadice might report a time-out error for the same reasons.

COMMENTS: Any line in the ini file may be started with an
"™ and will be treated as a comment line. This is a quick way to
disable commands in the ini file without deleting them.

Example loadice.ini file:

baud=19200

output=coml

rom=27512

word=16

file=filel.hex £0000=0:0
image=file2.bin 100=2:0

This loadice.ini file sets the baud rate to 19200 and configures
the loadice program to use the coml port. The ROMsize is set
for a 27512 ROM. The hex file filel.hex, which is linked at
address FOO0O (i.e. the address in the hex records starts at
F0000) will be loaded into PROMICE unit 0 and 1 starting at
address zero. The binary image file file2.bin will be loaded

Version 1.5 ©1990 Grammar Engine Inc.

18 PROMICE

into the units 2 and 3 after 100 (hex) bytes of header
information from the front of the file is skipped over.

LoadICE command:

A typical invocation of the LoadICE software might look like
this:

loadice filename

The file is an ascii file containing hex records. LoadICE
automatically figures out record type of data in the file. For
binary files and some peculiar hex formats the file type has to
be specified with switches. The following is a formal
description of the LoadICE command:

LoadICE establishes communication with one or more ROMs
being emulated by PROMICE units connected or daisy chained
from a single serial port. It establishes number and size for
each emulated ROM. Then it processes binary or hex data files
containing 8, 16 or 32 bit data and down loads the data to the
particular ROMs. It can also verify and otherwise manipulate
ROM data. It controls other function of the PROMICE units
such as resetting target system, and interactive editing of ROM
contents. It can also test the emulation RAM and obtain
microcode version number. If the command is entered with no
file specifications on the command line or in the initialization
file then the interactive (dialog) mode is entered. Interactive
mode is also entered if requested via switch specification on the
command line.

Command line options:
The minimum command line is:
loadice

loadice ? will display command line option help file.
Command line options over-ride or augment initialization file

©1990 Grammar Engine Inc. Version 1.5

User Manual 19

parameters. All options and fields are delimited by one or more
spaces. Following can be specified on the command line as
arguments to loadice

-b rate

Specifies the baud rate for the serial port. Allowable values
are 1200, 2400, 4800, 9600, 19200, 57600. However you must
assure that your system is capable of supporting the rate you
choose. On PC and MAC loadice can support any of these rates
automatically.

-f fillcharacter

Specifies the fill character to be used for filling gaps when
building ROM image from hex records. By default the memory
contents are uninitialized.

-ff fillcharacter
Same as fill above except, entire ROM image is filled instead
of only up to last good data.

-h
Set PROMICE to send response at full baud rate (instead of
<9000 baud)

-i skip filename

Specified a binary file and a number of bytes to skip from the
beginning of the file. The file can be loaded at any desired
location in ROM space by specifying an offset used as the start
address. See -s below.

-k startaddress endaddress storeaddress

Checksum the ROMimage from start address to the end address
and store the result in store address. The checksum is a simple
byte wide sum of all the addressed bytes and it is
complemented before it is stored.

-1

Used in conjunction with -d options, when specified it forces
down loading of data before entering the dialog mode.

Version 1.5 ©1990 Grammar Engine Inc.

20 PROMICE

-m ID:StartAddress EndAddress
Only loads the data in the specified range to the referred unit.

-0 device :
Specifies the serial port, can be COM1-4 on the PC, modem or
printer on the MAC and appropriate device-on other machines.

Enable parallel port option. Same as parallel in LoadICE.ini
file.

.q
Enable bi-directional parallel port option. Same as pponly in
LoadICE.ini file.

-r romsize
Specifies the emulation ROM size. It can be any value from the
matrix below

size in bytes size in K bytes generic
part#

2048 2k 2716
4096 4k 2732
8192 8k 2764
16348 16k 27128
32768 32k 27256
65536 64k 27512
131072 128k 27010
262144 256k 27020
524288 512k 27040
1048576 Im 27080

-s offset filename

Specifies the offset that must be added to each hex record in
the specified file. This allows mapping of a file anywhere
desired. Negative offsets are allowed. Precede the number
with '-' sign for negative offset. E.g. -x400000. The -5 option

©1990 Grammar Engine Inc. Version 1.5

User Manual 21

also applies to binary files. In that case the file name is
preceded by both the -s and -i options.

-ulD
Specifies which unit a file gets loaded into, used like -i and -s
options. Applies to next filename on the command line.

-v
If specified it inhibits verifying of the downloaded code. It is
strictly for speed purposes. Once you are comfortable with your
setup and it works reliably then the verification can be turned

off for speed.

-w width

Specifies a general operating mode. The data in files is
assumed to be organized in the width specified. Currently 8, 16
and 32 bit widths are supported.

-X
Inhibits validating checksum on hex records.

-z
Ignores Address out of Range errors. The errors are still
reported but the processing continues. This case is most frequent
when the HEX data contains initialized RAM data and hence
will fall way out of the range of addresses for the ROM space.

-d

Enter dialog mode. This mode is entered after any specified
files have been processed into images and before any PROMICE
units are loaded. It is also entered automatically when no files
are specified on the command line or in the initialization file.
In this mode loadice will take interactive commands from the
user and perform following functions:

c
Compare the PROMICE contents against the image built by
Loadice. No data is down loaded, it is only checked. This
allows verification of PROMICE contents against software built
by the host.

Version 1.5 ©1990 Grammar Engine Inc.

22 PROMICE

e id:address

Examine and Deposit. Data is examined and any new value
typed is deposited. An A character will backup the address one
byte.

d id:address

Dump 16 bytes.

f start-address end-address data

fill image with data.

g filename
Get image file.

h filename
get hex file.

1 [filename][ID:start end]

down load current image or given filename. OR load the given
ROM (ID) from addresses start to end. This allows partial load
of a ROM. (same as -m on command line)

m start-address end-address dest-address
move stuff around in image

r time
reset target system for time milliseconds.

s filename

Save the current image to the filename.
t id

Test PROMICE emulation RAM.

vid

Report PROMICE micro code version #.
X

exit. Also '.' works the same way:.

?

dialog mode help display.

!string

Escapes the string as a command for the operating system (not
supported all systems).

©1990 Grammar Engine Inc. Version 1.5

User Manual 23

Command line example:

loadice =b 19200 -0 coml -r 2764 -n 1 -w 8 -ff
xff -1 0 -s x200 tut.bin -s -x£f000 tut.int -s
-x£00 tut.mot -v

This command will perform the same operation as the example
for loadice.ini file. (This command is actually typed all on one
line, here the word processor broke in to three lines). See the
TUTORIAL for more insight into the example on the disk.

Version 1.5 ©1990 Grammar Engine Inc.

24 PROMICE

MESSAGES:

When loadice is executed it displays copyright information,
including its version#. If an initialization file is present, it
will inform about processing it. It then tries to establish link
with the PROMICE units on the serial chain. This is followed
by processing of any files and loading of ROM images etc. If
interactive mode is invoked that also happens at this time. As
the processing proceeds appropriate messages are displayed. If
errors are encountered then usually an error message is
displayed and processing stops. Following error messages may
be expected from loadice.

System error - (any system related error
message)

ERROR - loadice specific error message

Location -> string (indicating argument or data
in error) .

System error messages are displayed when appropriate.
loadice error messages may be any of the following:

End-O-File unexpected end of file reached.

Open failed failed to open a file specified.

Address out of range An addressin a file was out of range
of the ROM in which it is to be
loaded

Checksum error A hex record failed checksum

Bad argument loadice unable to interpret the
command line argument

I/0 error check system error for the real
problem.

Most of the message printed out of LoadICE are understandable
in the context they appear.

©1990 Grammar Engine Inc. Version 1.5

User Manual 25
Technical Specifications

IDENTIFICATION:

Plnnn- Simplex: Single (master) module for emulating 1 ROM.
P2nnn-Duplex: Two modules (master and slave in one box) for
emulating 2 ROMs.

where nnn is one of the following indicating the maximum
capacity of the ROM

256 Emulates 2716 - 27256 (32KBytes)
512 Emulates 2716 - 27512 (64KBytes)
010 Emulates 2716 - 27010

(128KBytes)
020 Emulates 2716 - 27020

- (256KBytes)

040 Emulates 2716 - 27040

(512KBytes)
080 Emulates 2716 - 27080 (1MBytes)
further affixes that may be added to indicate the following
options:

PP: Parallel Port on the master module for faster loading.
AI: Analysis Interface for special firmware development
features.

POWER:

Promice Master: +5VDC (+-5%) < 100mA (85mA typical)
Promice Slave : +5VDC (+-5%) < S0mA (45mA typical)
Promice Analysis Interface: +5VDC(+-5%) < 100mA (90mA
typical)

Power Jack:

Pin and sleeve plug, with pin as +ve and sleeve as ground.

INTERFACES:

Serial Port:

RS232-C, connects to host or a terminal via 6 conductor modular
cable. Pinout (pins numbered from left to right) is RD-3, TD4,
CTS-5, RTS-2, GND-1. Only TD, RD and GND are required for
communication.

Version 1.5 ©1990 Grammar Engine Inc.

26 PROMICE

Parallel Port

Centronics compatible parallel printer port configured for
direct connection to DB25 connector on back of PC or
Compatibles. Can operate bidirectionally by using ‘error lines’
for sending data back 4 bits at a time.

ROM Socket:
JEDEC 24/28/32 pin DIP socket w/150ns access. Non-JEDEC and
non-DIP footprints handled via custom cables.

Indicators:
Red LED indicating power-on.

Switches:

Back-panel: 10-position dip switch for selection of emulation
ROM sizes. Switches 2-10, when in 'on’ position, connect
through to address lines for emulation of 2732(sw10), 2764(sw9),
27128(sw8), 27256(sw7), 27512(swé), 27010(sw5), 27020(sw4),
27040(sw3), 27080(sw2). Switch position 1 is used to set RESET
signal polarity, when all switches (2-10) are in "off' position a
2716 is being emulated.

Jumpers:

Back-panel: Master module has 2x10 header. Slave module has
2x5 header. The first four position on Master are identical to
Slave. The four positions (from left, on both modules)
determine power supply options. Position-1 for external power
source, position-2 through 4 for parasitic operation from a 32, 28
and 24-pin ROM cables correspondingly. Jumper 5 is not used on
the Slave, on master it provides the bus request and bus grant
signal hookups for PiCOM protocol (see appendix 6).

Jumper position 6 has signal for resetting the target system
available on the lower pin and the 'nmi' signal generated by
the Al systems hardware trap feature (see appendix 6). Jumper
7 has the HandShakeOut and HandShakeln positions. They
provide interrupts to and from the target system and used by
PiCOM. Jumper position 8 allows for attaching ‘write enable'
signals for the Promice modules (for effective RAM emulation)
The rest of the header pins are for analysis interface board and
carry extended address lines and external chip select.

ENCLOSURE:
5.08" Wide, 15" High w/o rubber feet, 5.25" Deep, Impact-
resistant, ABS-molded, Grade DFA/R Plastic.

©1990 Grammar Engine Inc. Version 1.5

User Manual 27

Standard ROM Cable:

Standard (.6") DIP plug on 12" 24 and 28 Conductor Ribbon cable
with a 34-position Female Header for mating with connector on
back of unit.

Modular Adapter:

Modular to DB25 Male or Female and Modular to DB9 Male or
Female are available. The pin out at the DB25 side of the
adapter is RD-3, TD-2, RTS-4, CTS-5, GND-7, DTR-20 and the
DB9 side of the adapter is RD-2, TD-3, RTS-7, CTS-8, DTR+4,
GND-5. '

ENVIRONMENTAL RESTRICTIONS:

Operating Temperature: 5 to 32 degree C (41 to 90 degrees F)
Storage Temperature: 40 to 70 degrees C (-40 to 158 degrees F)
Humidity: 90% maximum without condensation.

Version 1.5 ©1990 Grammar Engine Inc.

28 PROMICE

Appendix-1
PROMICE internal memory addressing scheme

PROMICE can address up to 1 megabyte of memory per module.
Master and slave module are addresses by switching the
external circuit to select either module. There a total of 20
address lines required to access the 1 megabyte of memory.
When less than 1 meg of memory is present the higher address
lines are pulled up high. The exact reason for this is that the
micro controller in the PROMICE can set its i/0 lines to off state
and the internal pull up resisters will pull the signals up. The
emulation size switches on the back of the unit let the user
connect those line that are supplied by the target through. The
unused address lines will remain pulled up high. Therefor
internally PROMICE addresses memory by using this map:

address 0 last address Emulated ROM size
OFF8 00 OF FF FF 2K
OF FO 00 OF FF FF 4K
OF E0 00 OF FF FF 8K
OF C000 OF FF FF 16K
OF 8000 OF FF FF 32K
OF 0000 OF FF FF 64K
QE 0000 OF FF FF 128K
0C 0000 OF FF FF 256K
080000 OF FF FF 512K
000000 OF FF FF ™

When using a terminal or a terminal emulator to talk to the
PROMICE unit the actual address specified to the various
commands must have the appropriate bits turned on to address
a given location. An example would be a unit equipped with
128k bytes of memory when emulating a 32k byte ROM will
have to use address OF8000 to access the proper space. This will
compute to be the highest addressed one of the four chunks of
32k that comprise the 128k unit.

©1990 Grammar Engine Inc. Version 1.5

User Manual 29

This also explains why the LoadICE software must be told
exactly what size ROM you are emulating. It ensures that the
data is loaded at the proper place in the internal space. Also
the switches on the back on the unit must be set for proper
emulation size, otherwise the target system will end up
accessing the wrong emulation space.

Version 1.5 ©1990 Grammar Engine Inc.

30 - PROMICE

APPENDIX -2

Host/PROMICE interface

The host communicates with the PROMICE units over the
serial interface. When the parallel interface is present, the
same protocol is followed there as well, how ever any responses
that are generated will be sent over the serial link. Therefore,
in a unit with both interfaces, both must be connected for proper
use. This is not to say that parallel only interface could not be
used, it is just that you will not be able to know if all commands
completed properly etc. etc. The following protocol is used by
the host software in order to properly communicate with the
PROMICE units (all numbers are in hex):

1. Establishing baud rate: '03' (control-c) is sent by the host
software at the desired baud rate. The host will keep sending
'03's until is receives '03' back from the PROMICE chain. '03" is
used by the PROMICE units to determine the incoming baud
rate. If the parallel only mode is being used then this step is
used only to step the PROMICE through this part of its internal
code. The PROMICE unit will actually set the parallel port to
be bidirectional if it receives the '03' on the parallel port at
this point in its internal processing.

2. Establishing ROM IDs: Once '03' is received by the host. The
host will proceed to determine the number of ROMs present and
assign then IDs. This is done by sending a packet '00 00'. The
first unit receiving this packet will assign ID-0 to it self and if
it has a slave unit then will assign ID-1 to the slave ROM. It
will then send out '00 01' or '00 02'. The next unit in chain will
process the command to further assign IDs. The host will
ultimately receive '00 nn' where nn is between '01' and 'FF
(actually one of '01',02',...FF','00") indicating the actual
number of ROMs present on the link. Once the link is
established the two systems communicate in an unbalanced
mode, i.e. host is always the master of the link, PROMICE
units respond to host sent commands.

©1990 Grammar Engine Inc. Version 1.5

User Manual 31

3. Packet oriented communication: The host sends out commands
to the PROMICE units. Each command starts with an ID
followed by the command byte. That is followed by a count
byte for the count of all the data that follows. A count of '00'
means 256 bytes. This allows easy pass through of the
commands by each unit that is not addressed by the command.
Following commands may be issued by the host with
corresponding response from PROMICE unit addressed:

command coding response

Load Pointer ID,00,03,EX,HI,LO 1D,80,01,RC
Write ID,01,CC,DATA ID,81,01,RC

Read 1D,02,01,CC ID,82,CC,DATA
Restart ID,03,01,DD 1D,83,01,RC

Mode ID,04,01,mm ID,84,01,RS

Test RAM ID,05,01,pc ID,85,01,RC
response if Test failed ID,85,03,EX,HI,LO
Reset Target ID,06,01,pw ID,86,01,RC
Modify Byte ID,07,01,DD ID,87,01,RC

Establish Link ID,08,03,EX,HI,LO ID,88,01,RC

Write Message 1D,09,CC,DATA ID,89,01,RC

Read Message ID,0A,01,CC ID,8A,CC,DATA
Link Mode ID,0B,01,mm ID,8B,01,RC

Al BreakPoint ID,0C,04,Addr,DD ID,8C,01,RC

Al HdwTrap ID,0D,03,Addr ID,8D,01,RC

Pi Execute ID,0E,nn,data ID,8E,nn,data
Report Version# ID,0F,01,DD ID,8F,04,VERSION#

Where ID = unit id; EX,HI,LO/Addr = three bytes of address;
CC=character count; mm=mode; pc=pass count; pw=pulse
width; RC=response code; RS=ram size

In addition the commands may have a no-response bit set that
will cause the PROMICE unit to suppress the response. This
technique is useful in fast loading of data.

DATA TRANSFER: In order to transfer the data to and from
PROMICE units, three things must be done. 1) put the unit in
LOAD mode by using the Mode command. 2) Load the address to
which input or output is to be done. 3) Do the actual Read or

Version 1.5 ©1990 Grammar Engine Inc.

32 PROMICE

Write commands. After I/O is done the Mode command should
be used to put the unit back in to Emulation mode.

A brief description of each command follows: (if the command
byte is OR'd with x20 then PROMICE will generate no response
to the command. LoadICE uses this primarily on write
commands to speed up data transfer.)

Command 00: Load Pointer: This command is used to send a 20
bit pointer to the PROMICE unit. This is the address at which
read/write operation will be done. For each byte transferred
the pointer is incremented internally. The micro-controller
internally only has a 16 bit pointer that it increments on each
access. It is the responsibility of the external software to ensure
that the pointer is reloaded with proper values every time it
crosses the 64k boundary!!l.

Command 01: Write Data: This command transfers up to 256
bytes of data to the PROMICE. The count specified should be a
value between 00 and FF, with 00 meaning 256. The data is
stored in the RAM starting at the current pointer value.

Command 02: Read Data: Count bytes of data is sent from the
PROMICE to the host. Since there is no flow control, the
external software must ensure proper buffering or request small
amounts of data at a time. Once again the count value of 00
implies 256 bytes.

Command 03: Restart unit: This code is normally used when
the external software has done talking to the unit all together.
A unit will go back to where it will seek for auto baud code.

Command 04: Mode: This command is used for changing
operating mode of a given module. The response always
contains the Ram Size encoded as four bits. In case of the master
module the high nibble also contains the size of the slave
module's memory. This way the external software can make a
distinction between slave and master units. The size is encoded
as follows: 0-no ram; 1-2k; 2-4k; 3-8k; 4-16k; 5-32k; 6-64k; 7-
128k; 8-256k; 9-512k; A-lm. All sizes are in bytes. To change
the operating mode of the unit the argument passed is bit
encoded as follows: Bit-0/0-emulate, 1-load. Bit-7/ 1-send
response at full baud rate, 0-send response at baud rate <9000.

©1990 Grammar Engine Inc. Version 1.5

User Manual 33

Command 05: Test RAM: This command will cause the RAM on
the given module to be tested. The test will run as many passes
as specified by the pass-count. The response code will be zero
unless an error occurs, in which case the response is the address
at which the error was encountered.

Command 06: Reset Target: This command drives the reset pin
on the male header on the back of the unit. The signal is driven
for as many units of time as specified in the argument (pw). The
basic unit of time is 8.9 milli seconds. The maximum value that
can be specified is FF, or approximately 2.5 seconds. The signal
is driven low unless switch 1 on the back panel is on, in which
case the signal is driven high.

Command 07: Modify Byte: This command will cause the unit
to be taken out of emulation mode, a byte at the current pointer
modified and the unit is put back in emulation mode. There is a
request/grant protocol that is followed to suspend the target
system during the modification. The reset signal serves the
dual purpose as request line and HSI signal on the back panel is
used to sense the grant line. When the target grants the request,
the unit is taken out of emulation and the byte changed. The
unit is put back into emulation and the reguest is released.

Command 08-0E: Host/Target Communication Protocol
Commands: See Appendix -6 for description of these commands.

Command OF: Report Version#: This command is used to inquire
the micro code version#. The unit sends back four bytes or ASCII
data as the version#.

4. Flow control: The PROMICE can keep up with the data
coming in at any of the supported baud rates. However, very
often a host might not be able to accept data from the
PROMICE at the full rate. By default the PROMICE unit will
communicate back at a maximum of about 9000 baud. This is
accomplished by using a timer. The mode command may be used
to turn off this slow transmission. There is no other flow control
scheme implemented by PROMICE.

Version 1.5 ©1990 Grammar Engine Inc.

34 PROMICE

On the parallel port there is a hardware handshake for each
unit of data transfer. Therefor the flow is regulated by the
Host systems ability to serve the parallel interface.

5. RS-232C Parameters: Set the transmission for 8 bits, no
parity, and two stop bits. The two stop bits are necessary only
if you are going to daisy chain multiple units.

The specific reason for the two stop bits originates from the fact
that the UART in the micro controller (87C451) is buffered on
the receive side but is unbuffered on the transmit side. Since
some processing is required to determine when the transmitter is
empty and loading the transmit buffer with a new character, no
matter what the baud rate, the transmitter can not keep up
with a receiver getting data at full speed. The insertion of an
extra stop bit gives the micro enough time to do its processing
for transmitting the data to units further down the chain. Even
though the transmitter is transmitting with one stop bit , the
successive units will not see the problem since the data flow
rate is being limited by the transmitter speed of the first unit.

©1990 Grammar Engine Inc. Version 1.5

User Manual 35

APPENDIX-3
Terminal mode of operation

If a PROMICE unit detects '0D' (carriage return) code at the
auto baud time it decides that the user is communicating with it
from a terminal. It further assumes that only one unit is present
and no daisy chaining is supported. The unit will then take
commands interactively from the user and can also directly
load hex records (not implemented in current versions). Only
Motorola S1, S2 and S3 records and Intel hex (standard and
extended) records are supported. The commands all begin with
a'. Following are all the valid commands:

.a address operate Al as a tty with UART mapped at
the given address (control-shit-2 to exit).

.d address data deposit the data at the given address.

eaddressrange examine one or more bytes at given location.
Promice will display the actual address
being accesses (see Appendix-I). For slave
unit the high nibble contain a 1.

K4 go into emulation mode.
.h print help
mnn report or set mode, also reports size

.p address data do Al patch function with given data to
be patched at given address.

q quit emulation, go in to load mode

Inn reset the target for nn*8.9 milliseconds

.t test emulation RAM

X switch from master to slave or vice-versa
q restart interface

In the above commands all numbers are in hex. The examine
and deposit commands will open the next location if a line-feed
is typed instead of carriage-return. Test command can be
interrupted by hitting a key. typing 'q" will restart the

Version 1.5 ©1990 Grammar Engine Inc.

36 ‘ PROMICE

interface allowing re-establishing the communication link at a
different baud rate or via loadice program.

It may be notes that maximum transfer rate out of PROMICE is
limited to ~9000 baud as a result of default flow control scheme
implemented in the PROMICE.

The Al board if present in the system can be operated from the
terminal interface to emulate a transparent operation of the
PROMICE unit. If you have a piece of code running on the
Target system that can communicate to a serial line then it is
trivial to interface it to operate via the Al system. The ".a'
command is used to specify the mapped address of the Al and
enable this transparent mode. This way for all practical
purposes the PROMICE serial port can be used directly to
communicate with the downloaded code.

There is no particular reason why the terminal interface can not
be operated from the parallel port when it is used
bidirectionally. However it requires that some Host based
terminal emulator be able to handle the bidirectional parallel
protocol. The detail of this protocol can be found in the
LoadICE source code.

©1990 Grammar Engine Inc. Version 1.5

User Manual 37

APPENDIX-4
USING PROMICE IN 32 BIT MODE

PROMICE units can be daisy chained by using the daisy-chain
module . The daisy-chain module will allow you to hookup two
Promice units, each with two emulation modules to emulate four
ROMs in 32 bit mode. Refer to the following diagram for
connection of units and their IDs:

e =] PROMICE | Temoe

o

The IDs of the four modules are fixed by their position on the
daisy chain. When down-loading data that is in 32 bit format
in the host, the first byte goes into ID=0 and second into [D=1
and third into ID=2 and fourth into ID=3.

If the data is in 8 bit format, i.e. file per ROM then it can be
loaded in any particular ID by specifying where each file goes.

In general multiple units can be daisy chained by attaching
successive daisy-chain modules to each other. After the first
unit, one daisy chain module is required per additional unit. A
maximum of 256 ROMs worth of units can be daisy chained.

ocsr | PROMICE| merw 0-4
——— |

PACMICE| mww 02

sove D=3

PRCMICE| mom st

The IDs assigned in the above picture assume the units to be all
duplex models. If some of the model were simplex the IDs will
still be assigned sequentially, i.e. there are no holes in the ID
assignments.

Version 1.5 ©1990 Grammar Engine Inc.

38 PROMICE

DAISY CHAINING UNITS ON PARALLEL PORT:

Only two units can be daisy chained on the parallel port. This
requires a cable made specially to support two units. The
hookup is very simple, the cable has a DB25 male adapter on
one end to connect to the PC parallel port and two female
headers to connect to the two PROMICE units. Currently only
the duplex units to operate as four ROMs are supported.
However this restriction is strictly a result of Loadice software.

The serial port also needs to be daisy chained for this

operation. the parallel port only operation is not possible on
daisy chained units.

©1990 Grammar Engine Inc. Version 1.5

User Manual 39

APPENDIX-5
Emulating RAM

The PROMICE may be used to emulate a RAM. However some
consideration must be made when doing so. We do not emulate a
RAM in the sense that you can not simply plug the unit into a
RAM socket. The 'write' signal is provided to the PROMICE
over a separate wire. Use a mini-clip wire and attach the
jumper end to the pin marked 'WRT on the right angle headers
sticking out of the back panel. Make sure that you connect only
to the marked pin. Attach the other end of the cable, which
has a clip, to the R/W_ line of the target processor. It is
assumed that write signal is low asserted.

If the target processor does a write cycle to the ROM, i.e.
chip_select is low and write signal is low (output_enable is
ignored), then you will end up modifying the addressed byte in
the ROM. No other operation is affected.

Version 1.5 ©1990 Grammar Engine Inc.

40 PROMICE

Appendix-6

HOST/TARGET COMMUNICATIONS
PROTOCOLS

PROMICE product offers two sophisticated methods of
establishing communications between the software in the
Host system and the software in the Target system. The
physical link for these protocols is achieved via the
PROMICE ROM emulation cable connected to the Target's
ROM site and the RS232C link or the parallel link
connected to the appropriate port on the Host.

The first method, called PICOM, utilizes the basic design
of the PROMICE unit (Pi) and some capabilities of the
Target system. In general the communication mechanism
uses the ability of the Pi unit to emulate RAM from the
Target side, and the use of Bus Request/Bus Grant
(HOLD/HOLDA) handshake to read/write the emulation
memory without crashing the Target system.
Furthermore, Pi can interrupt the Target system when the
emulation RAM is written into by the Pi with Host data.
The Target can also interrupt the Pi by either directly
driving an interrupt line to the Pi or by a special
modification in the Pi that allows Target driven write
cycles to the ROM space (RAM emulation) to cause
interrupts within the P{ unit. A status byte is used in
conjunction with above mechanism to qualify significant
data movements, 1.e. actual data transfer to/from Host vs.
setting break points or patching code. This method also
requires hooking up the Request and Grant lines from the
back of the unit to the Target system. In addition if
interrupts to the target are desired then an interrupt line
needs to be hooked to the target as well. The Interrupt
from the target can also be hooked up to the Pi or the target
initiated memory writes into the emulation space can
cause interrupts.

The second method, called AICOM, is based on GEI's
proprietary Analysis Interface option (AI). This option
adds a board to the PROMICE system. Al implements a
full duplex UART that operates through the ROM space. Al
also allows changing of the down-loaded code for setting
break points etc. as well as the specification of a hardware

©1990 Grammar Engine Inc. Version 1.5

User Manual 41

trap. This method of communication is the least intrusive
on the Target system's hardware. No other connection
besides the emulation ROM cables are required between
the Target and the PROMICE unit.

PICOM:

In order to establish communication between the Host and
the Target system, following steps and commands are
involved:

1. Establishing the Link:

The link is established by passing to the Pi a pointer to the
Data Transfer Area (DXA). This area is a contiguous piece
of emulation space (within the Master ROM module) and
consists of the following:

|status_byte|byte_count|data_characters.........
!

The status byte contains the following bits:
|ENBlx]|x|BUSY|ERR|IACK|HDA|TDA|

Pi will monitor the Status byte on each interrupt from the
Target for completion of data transfer.

Status bits are as follows :

O:TDA : Target Data Available: Set by the Target after data
has been transferred into the DXA. Cleared by the P{ when
data has been transferred to the Host. Pi also clear the
BUSY bit.

1:HDA : Host Data Avallable: Set by the P{ when data from
the Host is stored into the DXA. Cleared by the Target
when data has been read out of the DXA. Target also clear
the BUSY bit.

2:IACK: Interrupt Acknowledgement: Set by the Pi when it
has seen the status byte updated by the Target. This is to
cope with the circumstance when P{ has missed the Target
interrupt that updated the TDA ,HDA or BUSY bits. If the
Target does not see the IACK bit after the status byte is
written, it will interrupt the Pi again (directly or by
writing the status byte in the DXA).

3:ERR: Error: This bit is set by P1 to inform the Target that
a Host write command has failed. This would happen if
somehow the Pi was not able to accept Host data.

Version 1.5 ©1990 Grammar Engine Inc.

42 PROMICE

4:BUSY: This bit is set either by the Target or the Pi when
either wishes to transfer data to the DXA and BUSY is not
already set. At the end of the data transfer either TDA or
HDA will be set by the respective system. BUSY remains
on until the data has reached its eventual destination.

5:6:X: unused.

7:ENB: Enable the Interface: This bit is set or cleared by
the Pi to turn the whole interface off or on. This bit is
controlled by the mode command (see #4 below). When the
interface is tumned off the interrupts from the target are
disabled and the write command will result in the error
link {s not up’.

The following command will setup the link, "' separates
bytes:

ID; CLINK+MASK; 03, EX;HI;LO

Where ID is the unit id of the PROMICE unit, typically O.
CLINK is the command code for this specific command (in
low nibble).

MASK contains the modifier bits in the high nibble of the
command byte. These bits are as follows:

Bit# 7 - 1 - set to indicate this protocol instead of the Al
protocol.

Bit# 6 - INIT - set to initialize the interface - zero's the
status byte (set 1lst time).

Bit# 5 - NORSP' - set to indicate no response to host at
command completion.

Bit# 4 - TINT - set to Indicate, interrupt the target when
done.

03: count of data to follow.

EX:HI:LO: three bytes containing 20 bit address of the
DXA.

The following is the typical response to the link
command:

ID;CLINR+MASK;01;dd. ..

* NORSP s a global bit used in all commands to speed up down-
loads and throughput. .

©1990 Grammar Engine Inc. Version 1.5

User Manual 43

where MASK contains the following bits:

Bit# 7 - DONE - command completed (always set).
Bit# 4 - ERR - if command encountered error.

If no ERR is set then dd=00 else:

dd=error code - one byte error code (standard P1 error
codes listed elsewhere).

2. Data Transfer from the Host to the Target (WRITE):

This is done via the write command. The operation will
write the byte count and the data into the DXA and then
interrupt the target.

The following command will cause data to be transferred:

ID;CWRITE+MASK;cec;dd. ..
Where ID is the unit id of the PROMICE unit, typically O.

CWRITE is the command code for the write command (in
low nibble).

MASK contains the modifier bits in the high nibble of the
command byte. These bits are as follows:

Bit# 7 - 1 - set to indicate this protocol instead of the Al
protocol.

Bit# 6 - ASYNC - set to indicate asynchronous response
required at completion of data transfer to the Target. i.e.
when the Pi sees data transfer complete as a result of
status update by the Target a response will be generated
and sent to the Host. This bit in conjunction with NORSP
can effectively synchronize write operations. Host sees a
full completion before doing the next write.

Bit# 5 - NORSP- set to indicate no response to Host at
command completion.

Bit# 4 - TINT - set to indicate, interrupt the Target when
done transferring data to the DXA.

cc - is the byte count of the data that follows, the byte count
is stored in the DXA.

dd.... - is the actual data, there must be cc number of bytes.

When the write command is issued, Pi will check to see if
DXA is free. If not .it will send back response indicating
command completion with error. The response will look
like this:

Version 1.5 ©1990 Grammar Engine Inc.

44 PROMICE

ID;CWRITE+MASK;02;error code;status byte
where MASK contains the following bits:

Bit# 7 - DONE - command completed (always set).
Bit# 4 - ERR - command encountered error.

error code - one byte error code (standard Pi error codes
listed elsewhere).

status byte - the status byte from the DXA.

If no error is encountered in the write, then immediate
execution of the command will result only in storing the
data etc. in the DXA. If NORSP is clear then the following
response will be sent to the Host:

ID;CWRITE+MASK; 01,00
The MASK will only contain the DONE bit.

If NORSP is set and ASYNC is also set then the response
will be generated only when Pi detects that the target has
read the data. The response will be same as above.

If NORSP is clear and ASYNC is set, then two responses
just like the above will be generated. One upon the
immediate completion of write (this basically will
indicate that the data was written into the DXA) and
another when the Target has read the data.

3. Data Transfer from the Target to the Host (READ):

This is done via the read command. The operation will
return any data in the DXA that may have been placed
there by the Target.

The following command will cause data to be transferred:
ID; CREAD+MASK;01;00
Where ID is the unit id of the PROMICE unit, typically O.

CREAD is the command code for the read command (low
nibble).

MASK contains the modifier bits in the high nibble of the
command byte. These bits are as follows:

Bit# 7 - 1 - set to indicate this protocol instead of the Al
protocol.

Bit# 6 - ASYNC - set to indicate that if no data is available
from the Target (right then) then to send data later
whenever it is available. This will happen when on

©1990 Grammar Engine Inc. Version 1.5

User Manual 45

interrupt from Target Pi finds that there is data in DXA
for the Host. It will then proceed to send that data to Host
at that time. This bit in conjunction with the NORSP bit
effectively synchronizes the read operation.

Bit# 5 - NORSP- set to indicate no response to Host at
command completion.

Bit# 4 - TINT - set to indicate, interrupt the Target when
done sending data to the Host.

Normally the read operation will not succeed without
knowing if Target has put the data in the DXA. However,
by setting the ASYNC bit a read can be issued to be
completed later. The following is the typical response to
the read command:

ID;CREAD+MASK;cc;dd. ..

where MASK contains the following bits:

Bit# 7 - DONE - command completed (always set).
Bit# 4 - ERR - if command encountered error.

If ERR is set then cc=2 and the two bytes that follow are as
below:

error code - one byte error code (standard Pi error codes
listed elsewhere).
status byte - the status byte from the DXA.

If no ERR then:

cc - is byte count of data to follow.

dd... - is the data from the DXA.

4. Mode setting:

The polarity and control of various signals is specified by
the mode command.

ID;CMODE+MASK; 01l;MODE

Where ID is the unit id of the PROMICE unit.

CMODE is the command code for the mode command, in
the low nibble.

MASK is the high nibble of the command byte, it contains
the following bits:

Bit# 7 - 1 - set to indicate this protocol instead of the Al
protocol.

Bit# 6 - CHANGE - change the mode per mode byte (clear
when only interrupting the Target).

Version 1.5 ©1990 Grammar Engine Inc.

46 PROMICE

Bit# 5 - NORSP- set to indicate no response to Host at
command completion.

Bit# 4 - TINT - set to indicate, interrupt the Target when
done, i.e. now.

MODE - This byte contains bit enccded values as follows:

Bit# 7 - PICOM - Turn the protocol on and off (controls
ENB bit in status in DXA).

Bit#6 - ASYNC - global asynchronous mode bit, all reads
are asyric. l.e. send data to Host whenever the Target has
data ready for it.

Bit# 5 - REQH - set to indicate that BusRequest (HOLD) be
high asserted.

Bit# 4 - ACKH- set to indicate that BusGrant (HOLDA) will
be high asserted.

Bit# 3 - INTH - set to indicate, that interrupt to Target is to
be high asserted.

Bit# 2 - GRINT - global sync read interrupt f{lag, goes with
ASYNC above. Cguses the Pi to interrupt the Target on
async reads.

The following is the typical response to the mode
command:

ID;CMODE+MASK;01;dd. ..
where MASK contains the following bits:

Bit# 7 - DONE - command completed (always set).
Bit# 4 - ERR - if command encountered error.

If no ERR is set then dd=00 else:

dd=error code - one byte error code (standard Pi error
codes listed elsewhere).

5 Miscellaneous:

Generally it is expected that the above protocol should
work fine as laid out. There i{s no provision in the
protocol for contention over DXA by the Host and the
Target at the same time. The BUSY bit should cope with
most of the contention cases, except where the Target and
Pt are reading the status byte very close to each other. In
reality since the two entities are in communication, it is
expected that they will be effectively in half-duplex mode,
L.e. Host sends a command and the Target executes it and
sends the results back. However there may be cases where
an interrupt type of mechanism may be desired to get the

©1990 Grammar Engine Inc. Version 1.5

User Manual 47

other ends attention. In such cases the Host may choose to
reinitialize the link and /or interrupt the Target via mode
command.

In addition the standard modify_byte command is
available for the Host to change any data in the emulation
memory by using the REQ/ACK mechanism. This
operation is transparent to the PICOM protocol.

NOTE: The asynchronous operation relies upon the
Targets systems ability to interrupt the PROMICE micro.
If the target can not interrupt the micro then the 1/0 is
expected to be accomplished by the CWRITE and CREAD
commands only. In other words, there is no way for
PROMICE to know when the Target is reading or writing
the data to/from the DXA and only at the execution of the
CWRITE and CREAD commands the micro looks for empty
or full buffer. Therefor if a previous CWRITE did not
complete, i.e. Target system did not read the data, then
only a successive CWRITE can indicate so by returning an
error. In the same way only a CREAD can determine if the
target has put any data in to the DXA.

Version 1.5 ©1990 Grammar Engine Inc.

48 PROMICE

AICOM:

In order to establish communication between the Host and
the Target system, following steps and commands are
involved:

1. Establishing the Link:

The link is established by passing to the Pi a pointer to the
Al Control Buffer (ACB). This area is a contiguous piece of
emulation space (within the Master ROM module) and
consists of the following: four bytes

|1]0|HostData|Status|
The status byte contains the following bits:

Ixlxlx]x10}{0|HDA|TDA|

Pi will monitor the Status byte on each pass through its
Main Scheduling Loop and take appropriate action as
programmed.

Status bits are as follows :

O:TDA : Target Data Available: This bit is set when the
Target has transferred one data byte to the Al interface. It
is cleared automatically when the Pi reads the Target data.

1:HDA : Host Data Available: Automatically set when Pi
writes a byte of data into the HostData location of the
ACB. It is cleared automatically when the Target reads the
same location (HostData location in the ACB.)

2-3:00: These bits are always zero. The target uses this
information to successfully decide that the Al
communications interface is active. This is as opposed to
the Al break or trap interface being active, in addition to
the Al system being initialized (and therefor inactive).

The following command will setup the link:'

ID; CLINK+MASK; 03;EX; HILO; (" separates the
bytes)

Where ID is the unit id of the PROMICE unit, typically O.

CLINK is the command code for this specific command (in
low nibble).

©1990 Grammar Engine Inc. Version 1.5

User Manual 49

MASK contains the modifier bits in the high nibble of the
command byte. These bits are as follows:

Bit# 7 - O - clear to indicate this protocol instead of the PI
protocol.

Bit# 6 - INIT - set to initialize the interface.

Bit# 5 - NORSP - set to indicate no response to host at
command completion.

Bit# 4 - TINT - set to indicate, interrupt the target when
done.

03: count of data to follow.

EX:HI:LO: three bytes containing 24 bit address of the
ACB.

The following is the typical response to the link
command:

ID;CLINK+MASK;01,;dd...
where MASK contains the following bits:

Bit# 7 - DONE - command completed (always set).
Bit# 4 - ERR - if command encountered error.

If no ERR is set then dd=00 else:

dd=error code - one byte error code (standard Pi error
codes listed elsewhere).

2. Data Transfer from the Host to the Target (WRITE):

This is done via the write command. The operation will
write the byte count and the data into the internal buffer
(IBUF) within Promice. Later in the Main Scheduler Loop
this data will be sent over the Al interface to the Target
system.

The following command will cause data to be transferred:
ID;CWRITE+MASK;cc;dd...
Where ID is the unit id of the PROMICE unit, typically O.

CWRITE is the command code for the write command (in
low nibble).

Version 1.5 ©1990 Grammar Engine Inc.

50 PROMICE

MASK contains the modifier bits in the high nibble of the
command byte. These bits are as follows:

Bit# 7 - O- clear to indicate this protocol instead of the PI
protocol.

Bit# 6 - ASYNC - set to indicate asynchronous response
required at completion of data transfer to the Target. i.e.
when the Pi has completed the data transfer a response
will be generated and sent to the Host. This bit in
conjunction with NORSP can effectively synchronize
write operations. Host sees a full completion before doing
the next write.

Bit# 5 - NORSP- set to indicate no response to Host at
command completion.

Bit# 4 - TINT - set to indicate, interrupt the Target when
done. le. data is ready for the target in the IBUF, Pi will
keep locking for opportunities to send this data during its
Main Scheduling Loop.

cc - is the byte count of the data that follows, the byte count
is stored in the IBUF.

dd.... - is the actual data, there must be cc number of bytes.

When the write command is issued, Pi will check to see if
IBUF is free. If not ,it will send back response indicating
command completion with error. The response will look
like this:

ID;CWRITE+MASK;02;error code;status byte
where MASK contains the following bits:

Bit# 7 - DONE - command completed (always set).
Bit# 4 - ERR - command encountered error.

error code - one byte error code (standard Pi error codes
listed elsewhere).

status byte - the status byte from the ACB.

If no error is encountered in the write, then immediate
execution of the command will result only in storing the
data etc. in the IBUF. If NORSP is clear then the following
response will be sent to the Host:

ID;CWRITE+MASK; 01,00

The MASK will only contain the DONE bit.

If NORSP is set and ASYNC is also set then the response
will be generated only when Pi has sent all the data

©1990 Grammar Engine Inc. Version 1.5

User Manual 51

successfully to the Target over the Al interface. The
response will be same as above.

If NORSP is clear and ASYNC is set, then two responses
just like the above will be generated. One upon the
immediate completion of write (this basically will
indicate that the data was written into the IBUF) and
another when all of the data has been transferred to the
Target.

Note that a time-out error may occur during the actual
data transfer, in that case the ASYNC bit will cause an
error response to be generated and sent to the Host.

3. Data Transfer from the Target to the Host (READ):

This is done via the read command. The operation will
return any data in the IBUF that may have been received
from the Target over the Al interface.

The following command will cause data to be transferred:

ID; CREAD+MASK;01;00
Where ID is the unit id of the PROMICE unit, typically O.

CREAD is the command code for the read command (low
nibble).

MASK contains the modifier bits in the high nibble of the
command byte. These bits are as follows:

Bit# 7 - O - clear to indicate this protocol instead of the PI
protocol.

Bit# 6 - ASYNC - set to indicate that if no data is available
from the Target then to send data later whenever it is
available. This will happen when in its Main Scheduler
Loop Pi finds that there is data coming in from the Target
system. It will accept the data from the Al interface and
put it in the IBUF. If ASYNC bit is set then it will proceed
to send this data to the Host . This bit in conjunction with
the NORSP bit effectively synchronizes the read
operation.

Bit# 5 - NORSP- set to indicate no response to Host at
command completion.

Bit# 4 - TINT - set to indicate, interrupt the Target when
done sending data to the Host. Le. there is room in IBUF to
accept more data.

Normally the read operation will not succeed without
knowing if P{ has put some Target data in the IBUF.

Version 1.5 ©1990 Grammar Engine Inc.

52 PROMICE

However, by setting the ASYNC bit a read can be issued to
be completed later. The following is the typical response
to the read command:

ID;CREAD+MASK;cec;dd. ..
where MASK contains the following bits:

Bit# 7 - DONE - command completed (always set).
Bit# 4 - ERR - if command encountered error.

If ERR is set then cc=2 and the two bytes that follow are as
below:
error code - one byte error code (standard Pi error codes

listed elsewhere).
status byte - the status byte from the ACB

If no ERR then:

cc - is byte count of data to follow.
dd... - is the data from the IBUF.
4, Mode setting:

The mode command does some minor tasks including
interrupting the target if so desired.

ID; CMODE+MASK;01;MODE
Where ID is the unit id of the PROMICE unit.

CMODE is the command code for the mode command, in
the low nibble.

MASK is the high nibble of the command byte, it contains
the following bits:

Bit# 7 - O - clear to indicate this protocol instead of the PI
protocol.

Bit# 6 - CHANGE - change the mode per mode byte (clear
when only interrupting the Target).

Bit# 5 - NORSP- set to indicate no response to Host at

command completion.
Bit# 4 - TINT - set to indicate, interrupt the Target when

done, i.e. now.
MODE - This byte contains bit encoded values as follows:

Bit# 7 - AICOM - Turn the protocol on and off (disables or
enables Al circuit).

Bit#6 - ASYNC - global asynchronous mode bit, all reads
are async. Le. send data to Host whenever the Target has
data ready for it.

©1990 Grammar Engine Inc. Version 1.5

User Manual 53

Bit# 5 - unused.

Bit# 4 - unused.

Bit# 3 - INTH - set to indicate, that interrupt to Target is to
be high asserted.

The following is the typical response to the mode
command: '

ID;CMODE+MASK;01;dd. ..
where MASK contains the following bits:

Bit# 7 - DONE - command completed (always set).
Bit# 4 - ERR - if command encountered error.

If no ERR is set then dd=00 else:

dd=error code - one byte error code (standard Pi error
codes listed elsewhere).

5. Break Points

In order to set a break point the Host must specify the
address and the new data value for any emulated ROM
space within the Master or the Slave module of the
PROMICE unit. Furthermore, the Host must pass this
information to the Target system before requesting the
break point from the Pi.

The Target system will commence reading the location
specified by the break point address from the Host. When
it detects that the contents of the addressed location have
changed, it will go on to reconnect with the P1 unit over the
Al interface.

The following command will cause the Pi to set up break
point at the given address, the actually setting is caused by
the Target reading the location: '
ID; CBREAK+MASK; 05;EX;HI;LO;DD;TIT

Where ID is the unit id of the PROMICE unit.

CBREAK is the command code for the break-point
command, in the low nibble.

MASK is the high nibble of the command byte, it contains
the following bits:

Bit# 7 - O - clear to indicate this protocol instead of the PI
protocol.

Bit# 6 - ASYNC - set to request response when the break
point is set. The Target may fail to set the break point in

Version 1.5 ©1990 Grammar Engine Inc.

54 PROMICE

which case the Pi will time out waiting for the Target. It
will at that point try to restore the communications link.
The failure to set the break point will be reported back to
the Host if ASYNC bit is set. This bit in conjunction to the
NORSP bit will synchronize this command.

Bit# 5 - NORSP- set to indicate no response to Host at
command completion.

Bit# 4 - TINT - set to indicate, interrupt the Target when
communication link is restored.

EX:HI:LO are the 24 bit address of the location where break
point is to be set.

DD- is the new data to be stored at the break point
location. :

TT - is the time-out value in units of 2.358 seconds each,
for Pi to wait for the break point to set. A value of 00 will
not time the event.

The following is the typical response to the break-point
command:

ID;CBREAK+MASK;cec;dd. ..
where MASK contains the following bits:

Bit# 7 - DONE - command completed (always set).
Bit# 4 - ERR - if command encountered error.

If no ERR is set then dd=00 else:

dd=error code - one byte error code (standard Pi error
codes listed elsewhere).

6. Hardware Trap

This feature of the Al system allows the Host to specify a
location within a 24 bit address space for a trap
condition. The lower 20 bits of this space are provided by
the Master module's emulation address bus. The target
supplies the top 4 lines via the header on the back of the
PROMICE unit. In addition the Target also supplies a
signal to be used as chip_select for the trap condition. The
purpose here to catch an arbitrary event in a 24 bit address
space that can be qualified by a 20 bit address derived
from the ROM cable interface and additional 4
(programmable as to be Os, 1s or don't cares) and an
external select line. This trap must be setup by the Pi;
armed by the Target system and then the Target must

©1990 Grammar Engine Inc. Version 1.5

User Manual 55

execute the offending code to cause the trap to occur. The
Pt will generate a low asserted signal on the back of the
unit as soon as the trap condition is detected. If this signal
is used as in interrupt or to trigger some other device then
the offending event occurred just as the signal is asserted.

The following command will cause the Pi to set a trap to
the given location:

ID; CTRAP+MASK; 04, EX;HI;LO;MM; TT
Where ID is the unit id of the PROMICE unit.

CTRAP is the command code for the trap command, in the
low nibble.

MASK is the high nibble of the command byte, it contains
the following bits:

Bit# 7 - O - clear to indicate this protocol instead of the PI
protocol.

Bit# 6 - ASYNC - set to request response when the trap has
occurred The Target may fail to arm or trigger the trap in
which case the Pi will time out waiting for it. It will at
that point try to restore the communications link. The
failure to trigger the trap will be reported back to the Host
if the ASYNC bit is set. This bit in conjunction to the
NORSP bit will synchronize this command.

Bit# 5 - NORSP- set to indicate no response to Host at
command completion.

Bit# 4 - TINT - set to indicate, interrupt the Target when
communication link is restored.

EX:HI:LO are the 24 bit address of the location where break
point is to be set.

MM is a one byte mask that specifies the treatment of the
top 4 lines of the 24 bit address space. They are specified
as follows:

la23la22la21|a201A23|A22|A211A20]

If the 'a' bit is on then the corresponding address is
expected to be a zero for the trap condition and if the ‘A’ bit
is on then it is expected to be a one. If both 'a’ and 'A’ are
zero then the bit is don't care.

TT - is the time-out value in units of 2.358 seconds each,
for Pi to wait for the trap to occur. A value of 00 will not
time the event.

Version 1.5 ©1990 Grammar Engine Inc.

56 . PROMICE

TRAP OPERATION: Before executing the above command
the Host must pass the trap information to the Target
system. At this point the Target will proceed to generate
the trap condition over and over. The Pi in mean time will
setup the trap circuit. The Target will know when the
circuit is armed, when it is able to trigger the trap. At this
point the Target will execute the offending code and wait
for the trap to occur. The trap must be cleared by the
Target by once more causing the trap intentionally.

These activities of the Target are monitored by the Pi and
when the last trap has occurred it will restore the Al
communications link. The target must execute its link
establishment procedure to reestablish link with Pi.

It is possible for the Target to fail to arm or trigger the
trap. In that case the Pi can time out and report the erro
back to the Host if ASYNC bit is set. .

The following is the typical response to the trap
command:

ID;CTRAP+MASK;cec;dd. ..
where MASK contains the following bits:

Bit# 7 - DONE - command completed (always set).
Bit# 4 - ERR - if command encountered error.

If no ERR is set then dd=00 else:

dd=error code - one byte error code (standard Pi error
codes listed elsewhere).

©1990 Grammar Engine Inc. Version 1.5

User Manual 57

DEFINITION OF ALL THE BITS AND BYTES USED BY
PiCOM AND AiCOM

Here are all the bits and variables and other things used in
PiCOM
They are directly taken from the micro-code listings:

Command codes for COM commands

CLINK 0x08 establish link

CWRITE O0x09 write data

CREAD 0Ox0a read data

CMODE 0Ox0b modecommand

CBREAK Ox0c set break point (Al only)
CTRAP 0xOd set hardware trap (Al only)

Command modifier masks for above commands:

NRSP 0x20 no response to command execution (all
commands)

MBRD 0x40 do aread byte (modify byte command only)
PICOM 0x80 command is for PiCOM (as to AiCOM)
CINIT 0x40 initialize the link (CLINK only)

ASYNC 0x40 doasynchronousi/o (CWRITE & CREAD)
CHANGE 0x40 change mode bits (CMODE only)

INTT 0x10 interrupt the target at command completion

Mode byte as passed by the COMDE command:

COMCOM 0x80 turnon/off the comm link

ASYNC 0x40 global asynchronous read

REQH 0x20 HOLD is high asserted

ACKH 0x10 HOLDA is high asserted

INTH 0x08 Interrupt to target is high asserted

GRINT 0x04 Global async read interrupt (for ASYNC
above)

PiCOM status bytes bits:

PITDA 0x01 target data available
PIHDA 0x02 host data available
PIACK 0x04 interrupt ack; Pi has seen status change

Version 1.5 ©1990 Grammar Engine Inc.

58 PROMICE

PIERR 0x08 host write failed (overrun)
PIBUSY O0x10 interface busy (has TDA or HDA)
PIENB 0x80 interface is enabled

Error Codes returned in the first byte when command is in error
(second byte will contain the status byte from data transfer
area)

NONE -1 no resource available (i.e. No Al board or

Link is down)
BUSY -2 interface is busy
TERR -3 timed out waiting for ACK
CERR -4 host write failed (overrun)
NODAT -5 no data to read from target
NYET -6 not implemented yet (Al only)

HOOKING UP PROMICE AUXILIARY SIGNALS TO TARGET
SYSTEM:

In order to hookup the PROMICE unit for HOST/TARGET
communication hookup the various mini-clips as follows:

BackPanel Target signal Description

RST Reset system reset signal

WRT Write system write signal

HSO Interrupt interrupt to the Target

HSI Interrupt interrupt from the Target
REQ Request System Bus Request (HOLD)
ACK Grant System Bus Grant (HOLDA)
XCS Chip_select Chip Select for Hardware Trap
A20 Address Extra address or other inputs -
A21 Address - for

A22 Address - Hardware

A23 Address - Trap use

©1990 Grammar Engine Inc. Version 1.5

User Manual 59

Appendix-7

FILE FORMATS

LoadICE supports HEX and BINARY file formats. The HEX
files are essentially ASCII files containing binary data that
has been encoded as ASCIL. This is done by taking each 8-bit
bytes and encoding it as two characters, one per hex digit. So if
the data byte is hex 'BY' (binary '10111001), it will be encodes
as two bytes containing the character 'B' (hex '42') and the next
byte containing the character '9' (hex '39'). The most popular
HEX formats are INTEL HEX and MOTOROLA HEX (also
called S-RECORDS). Besides containing the ASCII encoded
binary data there is other information contained in each HEX
records. There is the record type identifier ("' for INTEL and
'S' for MOTOROLA etc. followed by a number somewhere in the
record). Then there is the address information that specifies
where the data in this particular record is to be loaded.
Typically there is also a checksum in the record.

BINARY file on the other hand is not readable by human
beings. It contains binary data and is normally directly
produced by the compiler/linker etc. Most native development
systems will produce a binary file as their intermediate and
final output. Whereas most cross-development systems will
produce a HEX file as their final output. Usually the BINARY
file is an executable image intended to run on the native system.
There is no particular address information in a BINARY file
like the kind that is contained in each HEX record. However,
if a BINARY file is to be down-loaded in to the PROMICE then
the user must specify the address where it is to be loaded
(typically at address 0 unless loading multiple binary files)
furthermore, a BINARY file may contain information that is
used by the native system (loader) that specifies things like
execution start address, stack size, uninitialized data area size
etc. This information is usually at the beginning of the file,
hence the user must specify the number of bytes that the
LoadICE must skip from the beginning of the BINARY file.

Version 1.5 ©1990 Grammar Engine Inc.

60 PROMICE

LoadICE supports the following HEX file formats and they are
recognized by the software automatically:

Motorola S-record format S1, S2, S3.

Intel standard format, 64k byte limit.

Intel extended format, 1m byte limit.

Tektronix Hex format (Standard TEKHEX).
Tektronix Extended Hex format (Extended TEKHEX).
RCA COSMAC format.

MOSTEK format (as used by most 6502 assemblers).
Motorola DSP56001 format

Here are some example HEX records:

INTEL HEX RECORDS:

:200000000200340219C2...6C2AACOEO74805249003032000081
:20002000000000C299C2...0F6088880F8120906120A79
:200040000875880575A8...5C207C202C200020A7A06120941

MOTOROLA HEX RECORDS:

S00600004D414427
52204000000000040000...400508004005160040052447
522040001C0040053200...40056A00400578004005861C

©1990 Grammar Engine Inc. Version 1.5

User Manual 61
Appendix-8

Modifier Boards

- In order to adapt non-standard ROMs such as PLCC or 16-bit
devices, Grammar Engine currently supplies custom cables and
adapters. There are typically hand made and are subject to
breakage besides the high manufacturing costs. There are also
some ROMs that we currently do not support as a result of not
having the functionality within the PROMICE unit. An
example of such a device is ROMs that either have address
latches in them or paged ROMs line 27513 etc. where the page
address is expected to be latched from the data bus.

Then there are other emulation related problems such as
detecting target system power shutdown so that we can turn off
the emulation on the PROMICE. This normally causes problems
for very low power CMOS systems. The target shutting itself
down will appear to be accessing the ROM and hence the
PROMICE will drive the data lines out. This causes the target
system to draw power through input protection diode and in
some cases actually remain powered up even though the power
has been shut down. Parasitic operation of the PROMICE
would normally solve this problem but if the target is running
from a very limited supply or batteries then it is not desirable
to power the PROMICE from the target.

In any case, to find a solution to all these problems, we have
invented the ROM Function Modifier Boards. On the back of
the PROMICE unit, the ROM cable is attached to a 17x2 male
header. We are in process of designing small boards that are
approximately as long as the header and about an inch or so
wide. These boards will contain the various specialized
functions and will be inserted between the female header on the
ROM cable and the male header on the PROMICE unit. In some
cases these adapter boards may be inserted between the cable
itself, i.e. one short ROM cable and one short cables with
female headers at both ends.

Version 1.5 ©1990 Grammar Engine Inc.

62 PROMICE
TUTORIAL

Copy all the files onto your working directory.

At DOS (system) prompt type loadice -d which will start
the LoadICE application and then enter the dialog mode.
You should see:

LoadICE V 1.5a

Copyright (C) 1990 Grammar Engine, Inc.
Initializing defaults from file: loadice.ini
Force fill with ffff

filename = TUT.BIN skip = 0 offset = 200
filename = TUT.INT offset = - £000

filename = TUT.MOT offset = - £00
Establishing connection with Promice

Module #0 Model 512 Emulating 8192 bytes
Operating Mode 8 bits

Building ROM image

LoadICE: t 0 TEST THE PROMICE MEMORY

Unit number 0 passed the memory test
LoadICE: v 0 FIND OUT THE MICRO CODE VERSION#

Promice Version 4.0h

LoadICE: 1 LOAD THE IMAGE INTO PROMICE
Loading @ baudrate = 19200
Loaded

Loading complete - 8192 data bytes transfered
LoadICE: d00 DUMP FIRST 16 BYTES OF TUT.INT
00:00000 00 01 02 03 04 05 06 07 08 09 Oa Ob Oc 0d Ce Of
LoadICE: d0:100 DUMP FIRST 16 BYTES OF TUT.MOT
00:00100 00 01 02 03 04 05 06 07 08 09 Oa Ob Oc 0d Oe Of
LoadICE: d0:200 DUMP FIRST 16 BYTES OF TUT.BIN
00:00200 00 01 02 03 04 05 06 07 08 09 Oa Ob Oc 0d Oe Of
LoadICE: e0:0 EXAMINE/EDIT THE FIRST BYTE OF CODE
00:00000 00 [00] FF

00:00001 01 ([01] RO

00:00002 02 [02] OD

00:00003 03 [03] ~

00:00002 04 ([02] X

LoadICE: d00 DUMP 16 BYTES TO VIEW CHANGES
00:00000 £f £0 Od 03 04 05 06 07 08 09 Oa Ob Oc 0d Oe Of
LoadICE: C COMPARE PROMICE WITH IMAGE
(0:00000 I=00 P=ff) (0:00001 I=Ql P=£0) (0:00002 I=02 P=0d)

Verified
LoadICE: X EXIT LOADICE

©1990 Grammar Engine Inc. Version 1.5

User Manual

63

The initial setup parameters are set using file
loadice.ini The file supplied on the disk looks

like this:

ROM=2764
NUMBER=1

WORD=8

CUTPUT=COM1
BAUD=19200
IMAGE=TUT.BIN 0=0:200

FILE=TUT.INT F000=0:0

FILE=TUT.MOT 1000=0:100

NQVERIFY

Version 1.5

SET THE ROM SIZE TO 8KX8
TELL LOADICE YOU ARE USING
1 PROMICE

SET 8 BIT LOAD MODE

SET SERIAL PORT TO COM1

SET BAUD RATE TO 19200

LOAD BINARY IMAGE FILE
TUT.BIN, MAPPING THE FIRST
BYTE INTO PROMICE ADDRESS
200

LOAD INTEL HEX FILE TUT.INT,
MAPPING ADDRESS F000 INTO
PROMICE ADDRESS 0

LOAD MOTOROLA HEX FILE
TUT.MOT, MAPPING ADDRESS
1000 INTO PROMICE ADDRESS
100

SET THE NO VERIFY OPTION TO
SPEED UP LOADING

©1990 Grammar Engine Inc.

64 PROMICE

TROUBLE SHOOTING

Before getting frustrated check a few basic things:

1. POWER SOURCE: Make sure that you know how your unit is
being powered. The shorting block on the back of the unit
should be on one of the four positions marked for power. THERE
SHOULD ONLY BE ONE JUMPER FOR POWER PER
MODULE OR YOU WILL BE CONNECTING YOUR
EXTERNAL POWER TO YOUR TARGET SYSTEM POWER
ETC. If you are powering the unit parasitically, make sure that
the jumper is set on the right pins for your size of ROM cable
(24, 28 or 32). If you have a duplex unit then make sure that the
slave unit power selection is also set properly.

In some cases the unit may appear to have power to it (red LED
is on!) but actually is improperly powered. One such case is
when the unit is set for external power operation, it is connected
to the target system and the target system is powered on. In
this case the CMOS address buffers in the unit are drawing
power through the protection diodes on their input. The micro
in the unit may actually be operating but the non-volatile
memory controller in the unit will not let the memory be
accesses. Usually the LoadICE application will detect this
case, it can also be detected by the low level of illumination of
the power LED. The other case is when the external power
supply is inadequate to power the unit. This can happen if the
address and or data buffer in the unit are replaced with some
other type that draw far more power than the external supply
can provide. You may choose to use a heftier supply but it is
preferred that the unit be operated parasitically in such cases
as the internal regulator may overheat.

2. ROM SIZE: Make sure that you specify the proper ROM size
to LoadICE program. This is very crucial to proper emulation
since the wrong specification can result in the data getting
loaded in the wrong place in the unit. The size specification is
usually in the loadice.ini file or on the command line. Check
the message printed by LoadICE when it is run to see what size
ROM its thinks it is emulating.

©1990 Grammar Engine Inc. Version 1.5

User Manual 65

Also check the switches on the back of the unit. You should
have all the switches up to and including the size of the ROM
you are emulating in the 'on’ position. If you don't have some
'on' or have some extra ones 'on' then the target won't be
accessing the right space within the unit.

3. FILE SPECIFICATION: It is best to specify the files in the
ini file or on the command line. Make sure that you have
specified proper 'offset' for files that do not have data starting
at address zero in the file, or if you have multiple files then to
make sure that they get mapped properly.

If you are using binary files, then you must make sure that you
tell LoadICE so. When you specify files in the 'dialog’ mode
(interactive at Loadice: prompt) make sure that you are making
a distinction between HEX and binary files.

4. RS-232 HOOKUP: Make sure that you are using the cables
and adapter provided by us. If you are unable to establish
communication with the unit, most likely the problem is with
improper linkage to your host computer. A quick way to check
the unit's sanity is to hook a terminal or run a terminal
emulator (even Kermit will do) on your PC and hit the <CR>
key a few times. If the hookup is proper the unit will respond
with its prompt message. While you are in that mode do the
“h' (help) command and few other things like ".t' (test ram)
commands etc.

n. SUPPORT CALLS: If things are still out of control call us for
prompt and courteous help at : - (614) 471-1113.

Version 1.5 ©1990 Grammar Engine Inc.

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65

