
HP 16500A/HP 16501A 
Logic Analysis System 

Programming Reference 

Flidl HEWLETT 
~~ PACKARD 



Programming Reference 

HP 16500A/16501A 
Logic Analysis System 

rli~ HEWLETT 
~~ PACKARD 

©Copyright Hewlett Packard Company 1987, 1990 

Manual Part Number 16500-90913 Printed in U .SA. December 1990 



Printing History First Edition-October 1987 
Second Edition-December 1990 

Printed in U.S.A. 



Product Warranty This Hewlett-Packard product has a warranty against defects in materiai 
and workmanship for a period of 1 year from date of shipment. During 
warranty period, Hewlett-Packard Company will, at its option, either 
repair or replace products that prove to be defective. 

Umitation of 
Warranty 

For warranty service or repair, this product must be returned to a service 
facility designated by Hewlett-Packard. However, warranty service for 
products installed by Hewlett-Packard and certain other products 
designated by Hewlett-Packard will be performed at Buyer's facility at no 
charge within the Hewlett-Packard service travel area. Outside 
Hewlett-Packard service travel areas, warranty service will be performed 
at Buyer's facility only upon Hewlett-Packard's prior agreement and 
Buyer shall pay Hewlett-Packard's round trip travel expenses. 

For products returned to Hewlett-Packard for warranty service, the Buyer 
shall prepay shipping charges to Hewlett-Packard and Hewlett-Packard 
shall pay shipping charges to return the product to the Buyer. However, 
the Buyer shall pay all shipping charges, duties, and taxes for products 
returned to Hewlett-Packard from another country. 

Hewlett -Packard warrants that its software and firmware designated by 
Hewlett-Packard for use with an instrument will execute its programming 
instructions when properly installed on that instrument. Hewlett-Packard 
does not warrant that the operation of the instrument, software, or 
frrmware will be uninterrupted or error-free. 

The foregoing warranty shall not apply to defects resulting from improper 
or inadequate maintenance by the Buyer, Buyer-supplied software or 
interfacing, unauthorized modification or misuse, operation outside of the 
environmental specifications for the product, or improper site preparation 
or maintenance. 

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. 
HEWLETT -PACKARD SPECIFICALLY DISCLAIMS THE 
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 
FOR A PARTICULAR PURPOSE. 



Exclusive THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND 
Remedies EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL NOT BE 

LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, 
OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON 
CONTRACT, TORT, OR ANY OTHER LEGAL THEORY. 

Assistance Product maintenance agreements and other customer assistance 
agreements are available for Hewlett-Packard products. 

For assistance, contact your nearest Hewlett-Packard Sales and Service 
Office. Addresses are provided at the back of this operating manual. 

Certification Hewlett-Packard Company certifies that this product met its published 
specifications at the time of shipment from the factory. Hewlett-Packard 
further certifies that its calibration measurements are traceable to the 
United States National Bureau of Standards, to the extent allowed by the 
Bureau's calibration facility, and to the calibration facilities of other 
International Standards Organization members. 

Safety This product has been designed and tested according to International 
Safety Requirements. To ensure safe operation and to keep the product 
safe, the information, cautions, and warnings in this operating manual 
must be heeded. 



Contents 

Chapter 1: 

HP 16500A/16501A 
Programming Reference 

Introduction to Programming an Instrument 
Introduction ................................................ 1-1 
Programming Syntax ........................................ 1-2 

Talking to the Instrument .................................. 1-2 
Addressing the Instrument for HP-IB ........................ 1-4 
Addressing the Instrument for RS-232C ...................... 1-4 
Program Message Syntax ................................... 1-5 
Separator ................................................ 1-5 
Command Syntax ........................................• 1-5 
Query Command ......................................... 1-8 
Program Header Options ...............................••• 1-9 
Program Data ............................................ 1-9 
Program Message Terminator ............................. 1-10 
Selecting Multiple Subsystems ............................. 1-11 
Summary .............................................•. 1-11 

Programming an Instrument ................................. 1-12 
Initialization ............................................. 1-12 
Selecting a Module ...................................... 1-13 
Example Program ........................................ 1-14 
Program Overview ....................................... 1-15 
Receiving Information from the Instrument .................. 1-16 
Response Header Options ................................ 1-17 
Response Data Formats .................................. 1-18 
Numeric Base ........................................... 1-18 
String Variables ......................................... 1-19 
Numeric Variables ....................................... 1-20 
Definite-Length Block Response Data ...................... 1-20 
Multiple Queries ......................................... 1-21 
Instrument Status ........................................ 1-21 

Contents-1 



Chapter 2: 

Chapter 3: 

Chapter 4: 

Contents-2 

Programming Over HP-IB 
Introduction ................................................ 2-1 
Interface Capabilities ........................................ 2-1 
Command and Data Concepts ................................. 2-1 
Addressing ................................................. 2-2 
Communicating Over the HP-IB Bus (HP 9000 Series 200/300 
Controller) ....................................•.....•.....• 2-3 
Local, Remote, and Local Lockout .............•............... 2-4 
Bus Commands ............................................• 2-5 

Device Clear ............................................. 2-5 
Group Execute Trigger (GET) .............................. 2-5 
Interface Clear (IFC) ...................................... 2-5 

Programming Over RS-232C 
Introduction ................................................ 3-1 
Interface Operation .......................................... 3-2 
Cables .................................•.•................. 3-2 
Minimum Three-Wire Interface with Software Protocol ........... 3-3 
Extended Interface with Hardware Handshake .................. 3-4 
Cable Example .............................................. 3-5 
Configuring the Interface ....................................• 3-6 
Interface Capabilities ........................................ 3-6 

Protocol ................................................. 3-6 
DataBits ..................................•........•.... 3-7 

Communicating Over the RS-232C Bus 
(HP 9000 Series 200/300 Controller) ............•............... 3-8 
Lockout Command ............................•............. 3-8 

Programming and Documentation Conventions 
Introduction .......................•........................ 4-1 
Truncation Rule ...............................•............. 4-1 
The Command Tree ............................•............ 4-2 

Command Types .............................•............ 4-2 
Tree Traversal Rules ...................................... 4-4 
Examples •....•............................••............ 4-4 

Infinity Representation ....................................... 4-6 
Sequential and Overlapped Commands ......................... 4-6 

HP 16500A/16501A 
Programming Reference 



Chapter 5: 

Chapter 6: 

HP 16500A/16501A 
Programming Reference 

Response Generation ........................................ 4-6 
Notation Conventions and Definitions .......................... 4-7 
Syntax Diagrams ............................................ 4-8 
Command Structure ................. ~ ....................... 4=8 

Common Commands ...................................... 4-8 
Mainframe Commands .................................... 4-8 
Expansion Frame Commands ............................... 4-8 
Subsystem Commands ..................................... 4-9 

Program Examples .......................................... 4-9 
Command Set Organization .................................. 4-11 

Common Commands 

Introduction ................................................ 5-1 
*C~ ...................................................... 5-4 
*ESE ...................................................... 5-5 
*ESR ...................................................... 5-7 
*IDN ...................................................... 5-9 
*IST ..................................................... 5-10 
*OPC ..................................................... 5-12 
*OPT ..................................................... 5-13 
*PRE ..................................................... 5-14 
*RST .................................................... 5-16 
*SRE ..................................................... 5-17 
*STB ..................................................... 5-19 
*TRG .................................................... 5-21 
*TST ..................................................... 5-22 
*WAI ..................................................... 5-24 

Mainframe Commands 

Introduction ................................................ 6-1 
BEEPer .................................................... 6-3 
CAPability ................................................. 6-4 
CARD cage ................................................• 6-5 
CESE ...................................................... 6-7 
CESR ..................................................... 6-9 
EOI ...................................................... 6-11 
LER ...................................................... 6-12 
LOCKout ................................................. 6-13 
MENU ................................................... 6-14 

Contents-3 



Chapter 7: 

Chapter 8: 

Contents-4 

MESE<N> .................................•............ 6-16 
MESR<N> .............................................. 6-18 
RMODe .................................................. 6-20 
SEI..ect .................................................... 6-21 
SETColor ....................................•............ 6-23 
STARt .................................................... 6-24 
STOP ..................................................... 6-25 

SYSTem Subsystem 

Introduction ................................••.............. 7-1 
DATA ......................................•.•............ 7-3 

DefInition of Block Data ................................... 7-3 
DSP ....................................................... 7-6 
ERRor ..................................................... 7-7 
HEADer ................................................... 7-8 
LONG form .................................••.............. 7-9 
PRINt .................................................... 7-10 
SETup .................................................... 7-11 

DefInition of Block Data .................................. 7-11 

MMEMory Subsystem 

Introduction .................................•••.......•...• 8-1 
AUToload ..................................•.............. 8-4 
CATalog ........•................•......••.•••....•.•.•.••• 8-5 
COpy ..................................................... 8-6 
DOWNload ................................................ 8-7 
INITialize ..................................•............... 8-9 
LOAD .................................................... 8-10 
LOAD .................................................... 8-11 
MSI ...................................................... 8-12 
PACK ........................................•........... 8-13 
PURGe ................................................... 8-14 
REName .................................................. 8-15 
STORe ................................................... 8-16 
UPLoad .................................................. 8-17 

HP 16500A/16501A 
Programming Reference 



Chapter 9: 

Appendix A: 

Appendix B: 

HP 16500A/16501A 
Programming Reference 

INTermodule Subsystem 

Introduction ................................................ 9-1 
DEute .................................................... 9-3 
HTIMe .................................................... 9-4 
INPort ..................................................... 9-5 
INSert ..................................................... 9-6 
SKEW<N> ............................................... 9-7 
TREE ..................................................... 9-8 
TIIMe .................................................... 9-10 

Message Communication and System Functions 

Introduction ............................................... A-1 
Protocols .................................................. A-2 

Functional Elements ..................................... A-2 
Protocol Overview ....................................... A-3 
Protocol Operation ....................................... A-3 
Protocol Exceptions ...................................... A-4 

Syntax Diagrams ........................................... A-5 
Syntax Overview ............................................ A-6 

Device Listening Syntax ................................... A-8 
Device Talking Syntax ................................... A-21 

Common Commands ....................................... A-27 

Status Reporting 

Introduction ............................................... B-1 
Event Status Register ..................................... B-3 
Service Request Enable Register ........................... B-3 
Bit Def11litions ........................................... B-3 
Key Features ............................................ B-4 

Serial Poll ................................................. B-6 
Using Serial Poll (HP-IB) ................................. B-6 

Parallel Poll ............................................... B-8 
Polling HP-!B Devices ................................. = = B-10 
ConfIgUring Parallel Poll Responses ....................... B-10 
Conducting a Parallel Poll ................................ B-11 
Disabling Parallel Poll Responses ......................... B-11 
HP-IB Commands ...................................... B-12 

Contents-5 



Appendix C: 

Index 

Contents-6 

Error Messages 

Device Dependent Errors ....................••........... C-l 
Command Errors ........................................ C-2 
Execution Errors ........................................ C-3 
Internal Errors .......................................... C-4 
Query Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-5 

HP 16500A/16501A 
Programming Reference 



1 
1_ ..... _.--1 •• _ ... :_- ... - n ........ ,. .. a .......... : .... ,. 
IIILI UUU,",LIUII LV r I V~I 1I1111111~ 

an Instrument 

Introduction 

Note" 

HP 16500A/16501A 
Programming Reference 

This chapter introduces you to the basic concepts of bus 
communication and provides information and examples to get you 
started programming. The exact mnemonics for the commands are 
listed in chapters 5 through 9 of this manual and in the individual 
programming manuals for each module. There are three basic 
operations that can be done with a controller and this instrument via 
the bus. You can: 

1. Set up the instrument and start measurements 
2. Retrieve setup information and measurement results 
3. Send measurement data to the instrument 

Other more complicated tasks are accomplished with a combination of 
these basic functions. 

Chapter 1 deals mainly with how to set up the instrument, how to 
retrieve setup information and measurement results, and how to pass 
data to the controller. This chapter is divided into two sections. The 
fIrst section (page 1-2) concentrates on program syntax, and the second 
section (page 1-12) discusses programming an instrument. 

The programming examples in this manual are written in 
HP Basic 5.0 using an HP 9000 Series 200/300 Controller over HP-ffi 
and RS-232C. 

Introduction to Programming an Instrument 
1-1 



Programming 
Syntax 

Talking to the In general, computers acting as controllers communicate with the 
Instrument instrument by passing messages over a remote interface using the I/O 

statements provided in the instruction set of the controller's host 
language. Hence, the messages for programming the HP 16500A, 
described in this manual, will normally appear as ASCII character 
strings imbedded inside the I/O statements of your controller's 
program. 

I 
Note" 

When programming the HP 16500A with an HP 1650lA connected, 
most of the remote operation of the HP 1650lA is transparent. The 
only time a programming command is affected by the presence of an 
HP 1650lA is when the number of slots is specified or returned from 
the controller. 

For example, the HP 9000 Series 200/300 BASIC and PASCAL 
language systems use the OUTPUT statement for sending program 
messages to the HP 16500A, and the ENTER statement for receiving 
response messages from the HP 16500A. 

Messages are placed on the bus using an output command and passing 
the device address, program message, and terminator. Passing the 
device address ensures that the program message is sent to the correct 
interface and instrument. 

The following command turns the command headers on: 

OUTPUT < device address> ;·:SYSTEM:HEADER ON· <terminator > 

< device address > represents the address of the device being 
programmed. 

Introduction to Programming an Instrument 
1-2 

HP 16500A/16501A 
Programming Reference 



Note. 

HP 16500A/16501A 
Programming Reference 

The actual OUTPUT command you use when programming is 
dependent on the controller you are using, the programming language 
you are using, and which interface you are programming over (HP-IB 
or RS-232C). 

Angular brackets" < >," in this manual, enclose words or characters 
that symbolize a program code parameter or a bus command. 

Information that is displayed in quotes represents the actual message 
that is sent across the bus. The message terminator (NL or EOI) is the 
only additional information that is also sent across the bus. 

For HP 9000 Series 200/300 controllers, it is not necessary to type in the 
actual < terminator> at the end of the program message. These 
controllers automatically terminate the program message internally 
when the return key is pressed. 

Introduction to Programming an Instrument 
1-3 



Addressing the 
Instrument for 

HP-IB 

Addressing the 
Instrument for 

RS-232C 

Since HP-m can address multiple devices through the same interface 
card, the device address passed with the program message must 
include not only the correct interface code, but also the correct 
instrument address. 

Interface Select Code (Selects Interface). Each interface card has a 
unique interface select code. This code is used by the controller to 
direct commands and communications to the proper interface. The 
default is typically "7" for HP-m controllers. 

Instrument Address (Selects Instrument). Each instrument on an 
HP-m bus must have a unique instrument address between decimal 0 
and 30. The device address passed with the program message must 
include not only the correct instrument address, but also the correct 
interface select code. 

DEVICE ADDRESS = (Interface Select Code X 100) + (Instrument Address) 

For example, if the instrument address for the HP 16500A is 4 and the 
interface select code is 7, when the program message is passed, the 
routine performs its function on the instrument at device address 704. 

For the HP 16500A, the instrument address is typically set to "7" at the 
factory. This address can be changed in the HP-IB pop-up menu of the 
System Configuration menu. 

Since RS-232C can only be connected between two devices through the 
same interface card, only the correct interface code is required for the 
device address. 

Interface Select Code (Selects Interface). Each interface card has its 
own interface select code. This address is used by the controller to 
direct commands and communications to the proper interface. 
Generally, the interface select code can be any decimal value between 0 
and 31. This value can be selected through switches on the RS-232C 
interface card in the controller. 

For example, if the interface select code is 20, the device address 
required to communicate over the bus is 20. 

Introduction to Programming an Instrument 
1-4 

HP 16500A/16501A 
Programming Reference 



Program 
Message Syntax 

To program the instrument over the bus, you must have an 
understanding of the command format and structure expected by the 
instrument. The instrument is remotely programmed with program 
messages. These are composed of sequences of program message 
units, with each unit representing a program command or query. A 
program command or query is composed of a sequence of functional 
elements that include separators, headers, program data, and 
terminators. These are sent to the instrument over the system interface 
as a sequence of ASCII data messages. For example: 

PROGRAM MESSAGE UNIT 
,~--....I..!----... 

:~:.:~~ H_P_'_6S_0_0A_> ____ O_U_T_1P_U_T--1T; " : SVfM: HErR ON" 

PROGRAM MNEMONICS . . 
SEPARATOR ___________________ ----.J 

DATA--------------------------~ 

'65MIBl'6 

Separator The < separator> shown in the program message refers to a blank 
space which is required to separate the program mnemonic from the 
program data. 

Command Syntax A command is composed of a header, any associated data, and a 
terminator. The header is the mnemonic or mnemonics that represent 
the operation to be performed by the instrument. The different types 
of headers are discussed in the following paragraphs. 

HP 16500A!16501A 
Programming Reference 

Simple Command Header. Simple command headers contain a single 
mnemonic. START and STOP are examples of simple command 
headers typically used in this instrument. The syntax is: 

< program mnemonic> < terminator> 

Introduction to Programming an Instrument 
1-5 



When program data must be included with the simple command 
header (for example, :SELECf 1), a separator is added. The syntax is: 

< program mnemonic> < separator> < program data> < terminator> 

Compound Command Header. Compound command headers are a 
combination of two or more program mnemonics. The fIrst mnemonic 
selects the subsystem, and the last mnemonic selects the function within 
that subsystem. Additional mnemonics appear between the subsystem 
mnemonic and the function mnemonic when there are additional levels 
within the subsystem that must be transversed. The mnemonics within 
the compound message are separated by colons. For example: 

To execute a single function within a subsystem, use the following: 

: < subsystem> : < function> < separator> < program data> < terminator> 

(For example :SYSTEM:LONGFORM ON) 

To transverse down a level of a subsystem to execute a subsystem 
within that subsystem: 

: < subsystem> : < subsystem> : < function> < separator> < program data > 
< terminator> 

(For example :MMEMORY:LOAD:CONFIG "FILE_") 

To execute more than one function within the same subsystem a 
semi-colon is used to separate the functions: 

: < subsystem> : < function> < separator> < data> ; < function> < separator> 
< data> < terminator> 

(For example :SYSTEM:LONGFORM ON;HEADER ON) 

Introduction to Programming an Instrument 
1-6 

HP 16500A/16501A 
Programming Reference 



HP 16500A/16501A 
Programming Reference 

Identical function mnemonics can be used for more than one 
subsystem. For example, in the oscilloscope module the function 
mnemonic RANGE may be used to change the vertical range or to 
change the horizontal range: 

:CHANNEL1:RANGE .4 

- sets the vertical range of channell to 0.4 volts full scale. 

:TIMEBASE:RANGE 1 

- sets the horizontal timebase to 1 second full scale. 

CHANNELl and TIMEBASE are subsystem selectors and determine 
which range is being modified. 

Common Command Header. Common command headers control 
IEEE 488.2 functions within the instrument (such as clear status, etc.). 
Their syntax is: 

... < command header> < terminator> 

No space or separator is allowed between the asterisk and the 
command header. ·ClS is an example of a common command header. 

Introduction to Programming an Instrument 
1-7 



Query Command Command headers immediately followed by a question mark (?) are 
queries. After receiving a query, the instrument interrogates the 
requested function and places the answer in its output queue. The 
output message remains in the queue until it is read or another 
command is issued. When read, the message is transmitted across the 
bus to the designated listener (typically a controller). The logic 
analyzer query :MACHINEl:TW A VEFORM:RANGE? places the 
current seconds per division full scale range for machine 1 in the 
output queue. The controller input statement: 

l lill 
Note lIP 

ENTER < device address> ;Range 

passes the value across the bus to the controller and places it in the 
variable Range. 

Query commands are used to fmd out how the instrument is currently 
configured. They are also used to get results of measurements made by 
the instrument, with the query actually activating the measurement. 
For example, the oscilloscope command :MEASURE:RISETIME? 
instructs the instrument to measure the risetime of your waveform and 
place the result in the output queue. 

The output queue must be read before the next program message is 
sent. For example, when you send the oscilloscope query 
:MEASURE:RISETIME? you must follow that query with the 
program statement ENTER Value _ risetime to read the result of the 
query and place the result in a variable (Value_risetime). 

Sending another command before reading the result of the query will 
cause the output buffer to be cleared and the current response to be 
lost. This will also generate an error in the error queue. 

Introduction to Programming an Instrument 
1-8 

HP 16500A/16501A 
Programming Reference 



Program Header 
Options 

Program Data 

HP 16500A!16501A 
Programming Reference 

Program headers can be sent using any combination of uppercase or 
lowercase ASCII characters. Instrument responses, however, are 
always returned in uppercase. 

Both program command and query headers may be sent in either 
longform (complete spelling), shortform (abbreviated spelling), or any 
combination of longform and shortform. Either of the following 
examples turn the headers and longform on. 

: SYSTEM: HEADER ON;LONGFORM ON -Iongform 

:SYST:HEAD ON;LONG ON - shortform 

Programs written in longform are easily read and are almost 
self-documenting. The shortform syntax conserves the amount of 
controller memory needed for program storage and reduces the 
amount of 110 activity. 

The rules for shortform syntax are shown in the chapter "Programming 
and Documentation Conventions." 

Program data is used to convey a variety of types of parameter 
information related to the command header. At least one space must 
separate the command header or query header from the program data. 

< program mnemonic> < separator> < data> < terminator> 

When a program mnemonic or query has multiple data parameters a 
comma separates sequential program data. 

<program mnemonic> <separator> <data> ,<data> <terminator> 

For example, :MENU 0,2 has two data parameters: 0 and 2. 

Introduction to Programming an Instrument 
1-9 



Program 
Message 

Terminator 

I 
Note. 

Character Program Data. Character program data is used to convey 
parameter information as short alpha or alphanumeric strings. For 
example, the run mode command RMODE can be set to single or 
repetitive. The character program data in this case may be SINGLE or 
REPETITIVE. :RMODE SINGLE sets the run mode to single. 

Numeric Program Data. Some command headers require program 
data to be a number. For example, :MENU requires the desired menu 
selection to be expressed numerically. The instrument recognizes 
integers, real numbers, and scientific notation. With the proper prefix, 
the instrument will also recognize binary, octal, and hexadecimal base 
numbers. H no prefIX is added, the default is decimal. 

Table 1-1. Numeric Data Prefixes 

Base PrerlX Example 

Binary #B #B101010 
Octal #0 #01234567 
Hexadecimal #H #H123 .. .ABCDEF 
Decimal none 1234567890 

The program codes within a data message are executed after the 
program message terminator is received. The terminator may be either 
an NL (New Line) character, an EOI (End-Or-Identify) asserted, or a 
combination of the two. All three ways are equivalent with the exact 
encodings for the program terminators listed in the appendix "Message 
Communication and System Functions." Asserting the EOI sets the 
EOI control line low on the last byte of the data message. The NL 
character is an ASCII linefeed (decimal 10). 

The NL (New Line) terminator has the same function as an EOS (End 
Of String) and EOT (End Of Text) terminator. 

The EOI terminator only applies to HP-IB. 

Introduction to Programming an Instrument 
1-10 

HP 16500A/16501A 
Programming Reference 



Selecting Multiple 
Subsystems 

I 
Note. 

Summary 

HP 16500A/16501A 
Programming Reference 

You can send multiple program commands and program queries for 
different subsystems on the same line by separating each command 
with a semicolon. The colon following the semicolon enables you to 
enter a new subsystem. For example: 

< program mnemonic> < data> ;: < program mnemonic> < data> < terminator> 

: MMEMORY:CATALOG?;: SYSTEM: PRINT ALL 

Multiple commands may be any combination of compound and simple 
commands. 

The following illustration summarizes the syntax for programming over 
the bus. 

PROGRAM MESSAGE UNIT 
! , 

:~~~~~H_P_'_65_0_0A_) ____ O_U_T_r_U_T----,T : " : SYS1TEM: HErR 
ON" 

PROGRAM MNEMONICS . . 
SEPARATOR --_______________ ~_-..J 

DATA-------------------------~ 

'4I5NIBL'4I 

Introduction to Programming an Instrument 
1-11 



Programming 
an Instrument 

Initialization To make sure the bus and all appropriate interfaces are in a known 
state, begin every program with an initialization statement. For 
example: 

Note" 

CLEAR XXX ! initializes the interface of the instrument. 

Then load a predefined configuration file from the disc to preset the 
instrument to a known state. For example: 

OUTPUTXXX;·:MMEMORY:LOAD:CONAG 'DEFAULT_" 

would load the configuration file "DEF AUL T _" into all of the 
modules and mainframe. Refer to the chapter "Mmemory Subsystem" 
for more information on the LOAD command. 

The three Xs (XXX) after the "CLEAR" and "OUTPUT' statements in 
the previous examples refer to the device address required for 
programming over either HP-m or RS-232C. The commands and 
syntax for initializing the instrument are discussed in the chapter 
"Common Commands." 

Refer to your controller manual and programming language reference 
manual for information on initializing the interface. 

Introduction to Programming an Instrument 
1-12 

HP 16500A/16501A 
Programming Reference 



Selecting a 
Module 

Only available when an 

Before you can program a module in the lIP 16500A or the lIP 1650lA 
over the bus, you must first select the appropriate module. To select 
the module, use the mainframe command :SELEcr followed by the 
numeric reference for the slot location, of the master card for that 
module. For an lIP 16500A alone, 1 •. 5 refers to slot A .. .E respectively. 
When an lIP 1650lA is connected, 1 ... 10 refer to slot A..J. :SELEcr 
1 selects the module in slot A, :SELEcr 2 selects the module in slot B, 
etc. 

:SELECT 

0-- (SELECTS SYSTEM/INTERMODULE) 

1 -- (SELECTS MODULE IN SLOT A) 

2-- (SELECTS MODULE IN SLOT B) 

3-- (SELECTS MODULE IN SLOT C) 

4 -- (SELECTS MODULE IN SLOT D) 

5-- (SELECTS "MODULE IN SLOT E) 

HP 16501A is connected--: 

HP 16500A!16501A 
Programming Reference 

-2 -- (SELECTS OPTION 2) 

16500841 

Figure 1-1. Select Command Tree 

Introduction to Programming an Instrument 
1-13 



I 
Note ,. 

Example Program 

I 
Note ,. 

For example, if the TIMEBASE card for your oscilloscope module is in 
slot B, then the command: 

: SELECT 2 

would select the oscilloscope module. Figure 1-1 shows the command 
tree for the select command. For more information on the select 
command, refer to the chapter "Mainframe Commands." 

Commands may be sent over the bus for any module while in any menu 
as long as the appropriate module has been selected. 

This program demonstrates the basic command structure used to 
program a module of the HP 16500A. 

10 CLEAR XXX 'Initialize instrument interface 
20 OUTPUT XXX;-:SYSTEM:HEADER ON" 'Tum headers on 
30 OUTPUT XXX;-:SYSTEM:LONGFORM ON" 'Tum Iongform on 
40 DIM Card$[loo] 'Reserve memory for string variable 
50 OUTPUT XXX;-:CARDCAGE?- !Verify which module. are loaded 
60 ENTER XXX;Card$ 'Enter result in a string variable 
70 PRINT CardS IPrint result of query 
80 OUTPUT XXX;·:MMEM:LOAD:CONFIG 'TEST _E',S- I Load configuration file 

90 OUTPUT XXX;-:SELECT 5-
100 OUTPUT XXX;-:MENU 5,3-
110 OUTPUT XXX;-:RMODE SINGlE" 
120 OUTPUT XXX;-:START" 

linto module in slot E 
'Select module in slot E 
,Select menu for module In slot E 
'Select run mode 
'Run the measurement 

The three Xs (XXX) after the "OUTPUT' and "ENTER" statements in 
the previous examples refer to the device address required for 
programming over either HP-m or RS-232C. 

Introduction to Programming an Instrument 
1-14 

HP 16500A/16501A 
Programming Reference 



Program Overview Line 10 initializes the instrument interface to a known state, and lines 
20 and 30 turn the headers and longform on. 

HP 16500A/16501A 
Programming Reference 

Line 50 queries the cardcage to confrrm which modules are loaded in 
this mainframe. Then line 70 prints the result of the query on screen. 
In this example the query returns: 

:CARDCAGE -1,-1,12,11,31,0,0,4,4,5 

The fIrst five numbers returned are the card identification numbers. 
The last five numbers list the module assignment for each card. In this 
example, the response shows that there is an oscilloscope acquisition 
card in slot C which is assigned to the oscilloscope timebase card in slot 
D. Also, there is a logic analyzer card in slot E which is assigned to 
itself. Refer to the chapter "Mainframe Commands" for more 
information on CARD CAGE command. 

Line 80 loads the configuration me "TEST _ E" into the module in slot E 
and line 90 selects the module in slot E. Then line 100 displays one of 
menus of the module in slot E. 

Lines 110 and 120 tell the analyzer to run the measurement configured 
by the file "TEST _ E" one time. 

Introduction to Programming an Instrument 
1-15 



Receiving 
Information from 

the Instrument 

I 
Note. 

After receiving a query (command header followed by a question 
mark), the instrument interrogates the requested function and places 
the answer in its output queue. The answer remains in the output 
queue until it is read or another command is issued. When read, the 
message is transmitted across the bus to the designated listener 
(typically a controller). The input statement for receiving a response 
message from an instrument's output queue typically has two 
parameters;the device address and a format specification for handling 
the response message. For example, to read the result of the query 
command :SYSTEM:LONGFORM? you would execute the statement: 

ENTER < device address> ;Setting 

where < device address> represents the address of your device. This 
would enter the current setting for the longform command in the 
numeric variable Setting. 

All results for queries sent in a program message must be read before 
another program message is sent. For example, when you send the 
query :SELECI'?, you must follow that query with the program 
statement ENTER Setting to read the result of the query and place the 
result in a variable (Setting). 

Sending another command before reading the result of the query will 
cause the output buffer to be cleared and the current response to be 
lost. This will also cause an error to be placed in the error queue. 

The actual ENTER program statement you use when programming is 
dependent on the programming language you are using. 

The format specification for handling the response messages is 
dependent on both the controller and the programming language. 

Introduction to Programming an Instrument 
1-16 

HP 16500A/16501A 
Programming Reference 



Response Header 
Options 

I~I 
Note" 

HP 16500A!16501A 
Programming Reference 

The format of the returned ASCII string depends on the current 
settings of the SYSTEM HEADER and LONGFORM commands. 
The general format is: 

< header> < separator> < data> < terminator> 

The header identifies the data that follows and is controlled by issuing 
a :SYSTEM:HEADER ON/OFF command. If the state of the header 
command is OFF, only the data is returned by the query. The format 
of the header is controlled by the :SYSTEM:LONGFORM ON/OFF 
command. If longform is OFF , the header will be in its shortform and 
the header will vary in length depending on the particular query. The 
following would be returned from a :SELECT? command query: 

< data> <terminator> (with HEADER OFF ) 

: SEL < separator> < data> < terminator> (with HEADER ON/LONGFORM OFF) 

: SELECT <separator> <data> <terminator> (with HEADER ON/LONGFORM 
ON) 

A command or query may be sent in either longform or shortform, or 
in any combination of longform and shortform. The HEADER and 
LONGFORM commands only control the format of the returned data 
and have no effect on the way commands are sent. Common 
commands never return a header. 

Refer to chapter 1, "System Subsystem" for information on turning the 
HEADER and LONGFORM commands on and off. 

Introduction to Programming an Instrument 
1-17 



Response Data 
Formats 

I 
Note. 

Numeric Base 

Most data will be returned as exponential or integer numbers. 
However, query data of instrument setups may be returned as 
character data. Interrogating the run mode :RMODE? will return one 
of the following: 

:RMODE REPETITIVE <terminator> (with HEADER ONILONGFORM ON) 

:RMOD REP <terminator> (with HEADER ONILONGFORM OFF) 

REPETITIVE <terminator> (with HEADER OFF/LONGFORM ON) 

REP < terminator> (with HEADER OFF/LONGFORM OFF) 

Refer to the individual commands in this manual and in the individual 
programming manuals for each module for information on the format 
(alpha or numeric) of the data returned from each query. 

Most numeric data will be returned in the same base as shown on 
screen. When the prefix #B precedes the returned data, the value is in 
the binary base. Likewise, #0 is the octal base and #H is the 
hexadecimal base. If no prefIX precedes the returned numeric data, 
then the value is in the decimal base. 

Introduction to Programming an Instrument 
1-18 

HP 16500A/16501A 
Programming Reference 



String Variables If you want to observe the headers for queries, you must bring the 
returned data into a string variable. Reading queries into string 
variables is simple and straightforward, requiring little attention to 
formatting. For example: 

Note '" 

Note II 

HP 16500A/16501A 
Programming Reference 

ENTER < device address> ; Result$ 

places the output of the query in the string variable ResultS. 

string variables are case sensitive and must be expressed exactly the 
same each time they are used. 

The output of the instrument may be numeric or character data 
depending on what is queried. Refer to the specific commands for the 
formats and types of data returned from queries. 

For the example programs, the device being programmed is at device 
address XXX. The actual address will vary according to how you have 
configured the bus for your own application and whether you are 
programming over HP-ffi or RS-232C. 

The following example shows logic analyzer data being returned to a 
SU..!lllg variable with headers off: 

10 OUTPUT XXX;-:SYSTEM:HEADER OFP 
20 DIM Rang$[30] 
30 OUTPUT XXX;-:MACHINE1 :TWAVEFORM: RANGE?-
40 ENTER XXX; Rang$ 
50 PRINT Rang$ 
60 END 

After running this program, the controller displays: 

+ 1.00000E-05 

Introduction to Programming an Instrument 
1-19 



Numeric Variables If you do not need to see the headers when a numeric value is returned 
from the instrument, then you can use a numeric variable. When you 
are receiving numeric data into a numeric variable, turn the headers 
off. Otherwise the headers may cause misinterpretation of returned 
data. 

Definite-Length 
Block Response 

Data 

The following example shows logic analyzer data being returned to a 
numeric variable. 

10 OUTPUT XXX;·:SYSTEM:HEADER OFP 
20 OUTPUT XXX;·:MACHINE1 :TWAVEFORM:RANGE?· 
30 ENTER XXX;Rang 
40 PRINT Rang 
so END 

After running this program, the controller displays: 

1.E-5 

DefInite-length block response data allows any type of 
device-dependent data to be transmitted over the system interface as a 
series of 8-bit binary data bytes. This is particularly useful for sending 
large quantities of data or 8-bit extended ASCII codes. The syntax is a 
pound sign ( :# ) followed by a non-zero digit representing the number 
of digits in the decimal integer. After the non-zero digit is the decimal 
integer that states the number of 8-bit data bytes being sent. This is 
followed by the actual data. 

NUMBER OF DIGITS 
THAT FOLLON 

ACTUAL DATA / r"-~-_-..IA .... ___ ........ , 

.800000080<eighty bytes of doto><terminotor> 
~ 

NUMBER OF BYTES 
TO BE TRANSMITTED 1115HI8LU 

For example, for transmitting 80 bytes of data, the syntax would be: 

The "8" states the number of digits that follow, and "00000080'' states 
the number of bytes to be transmitted. 

Note" Indefinite-length block data is not supported on the HP16500A. 

Introduction to Programming an Instrument 
1-20 

HP 16500A/16501A 
Programming Reference 



Multiple Queries You can send multiple queries to the instrument within a single 
program message, but you must also read them back within a single 
program message. This can be accomplished by either reading them 
back into a string variable or into multipie numeric variables. For 
example, you could read the result of the query 
:SYSTEM:HEADER ?;LONGFORM? into the string variable 
ResultsS with the command: 

I!I Note. 

Instrument Status 

HP 16500A/16501A 
Programming Reference 

ENTER XXX; Results$ 

When you read the result of multiple queries into string variables, each 
response is separated by a semicolon. For example, the response of the 
query :SYSTEM:HEADER?:LONGFORM? with HEADER and 
LONGFORM on would be: 

:SYSTEM:HEADER 1;:SYSTEM:LONGFORM 1 

If you do not need to see the headers when the numeric values are 
returned, then you could use following program message to read the 
query :SYSTEM:HEADERS?;LONGFORtvI? into multiple numeric 
variables: 

ENTER XXX;Result1,Result2 

When you are receiving numeric data into numeric variables, the 
headers should be turned of[ Otherwise the headers may cause 
misinterpretation of returned data. 

Status registers track the current status of the instrument. By checking 
the instrument status, you can fmd out whether an operation has been 
completed, whether the instrument is receiving triggers, and more. The 
appendix "Status Reporting" explains how to check the status of the 
instrument. 

Introduction to Programming an Instrument 
1-21 



2 
Programming Over HP-IB 

Introduction 

Interface 
Capabilities 

Command and 
Data Concepts 

HP 16500A/16501A 
Programming Reference 

This chapter describes the interface functions and some general 
concepts of the HP-ffi. In general, these functions are defined by 
IEEE 488.1 (HP-ffi bus standard). They deal with general bus 
management issues, as well as messages which can be sent over the bus 
as bus commands. 

The HP-ffi information in this chapter is not affected when an 
HP 1650lA is connected to the HP 16500A. Therefore, all references 
to the HP 16500A apply whether or not an HP 1650lA is connected. 

The interface capabilities of the HP 16500A, as defmed by IEEE 488.1 
are SH1, AH1, T5, TEO, L3, LEO, SR1, RL1, PP1, DC1, DT1, CO, and 
E2. For more information, refer to table 6-1 in the chapter "Mainframe 
Commands." 

The HP-IB has two modes of operation: command mode and data 
mode. The bus is in command mode when the ATN line is true. The 
command mode is used to send talk and listen addresses and various 
bus commands, such as a group execute trigger (GET). The bus is in 
the data mode when the A TN line is false. The data mode is used to 
convey device-dependent messages across the bus. These 
device-dependent messages include all of the instrument commands 
and responses found in chapters 5 through 9 of this manual and in the 
individual programming manuals for each module. 

Programming Over HP-IB 
2-1 



Addressing 

Programming Over HP-IB 
2-2 

By using the front-panel touchscreen, the HP-m interface can be 
placed in either talk only mode (Printer) or addressed talk/listen mode 
(Controller) (see theHP 16500A/1650lA Reference Manual). Talk only 
mode should be used when you want the instrument to talk directly to a 
printer without the aid of a controller. Addressed talk/listen mode is 
used when the instrument will operate in conjunction with a controller. 
When the instrument is in the addressed talk/listen mode, the following 
is true: 

• Each device on the HP-IB resides at a particular address ranging 
from 0 to 30. 

• The active controller specifies which devices will talk, and which 
will listen. 

• An instrument, therefore, may be talk addressed, listen 
addressed, or unaddressed by the controller. 

If the controller addresses the instrument to talk, it will remain 
configured to talk until it receives an interface clear message (IFC), 
another instrument's talk address (OTA), its own listen address 
(MLA), or a universal untalk command (UNT). 

If the controller addresses the instrument to listen, it will remain 
configured to listen until it receives an interface clear message (IFC) its 
own talk address (MTA), or a universal unlisten command (UNL). 

HP 16500A/16501A 
Programming Reference 



Communicating 
Over the HP-iB 
Bus (HP 9000 
Series 200/300 
Controller) 

HP 16500A/16501A 
Programming Reference 

Since HP-m can address multiple devices through the same interface 
card, the device address passed \\ith the program message must 
include not only the correct instrument address, but also the correct 
interface code. 

Interface Select Code (Selects Interface). Each interface card has its 
own interface select code. This code is used by the controller to direct 
commands and communications to the proper interface. The default is 
typically "7" for HP-m controllers. 

Instrument Address (Selects Instrument). Each instrument on the 
HP-m port must have a unique instrument address between decimal 0 
and 30. The device address passed with the program message must 
include not only the correct instrument address, but also the correct 
interface select code. 

DEVICE ADDRESS = (Interface Select Code X 100) + (Instrument Address) 

For example, if the instrument address for the HP 16S00A is 4 and the 
interface select code is 7, when the program message is passed, the 
routine performs its function on the instrument at device address 704. 

Programming Over HP-IB 
2-3 



Local, Remote, 
and Local 
Lockout 

Note ,. 

Programming Over HP-IB 
2-4 

The local, remote, and remote with local lockout modes may be used 
for various degrees of front-panel control while a program is running. 
The instrument will accept and execute bus commands while in local 
mode, and the front panel will also be entirely active. If the HP 16500A 
is in remote mode, the instrument will go from remote to local with any 
touchscreen or mouse activity. In remote with local lockout mode, all 
controls (except the power switch) are entirely locked out. Local 
control can only be restored by the controller. 

Cycling the power will also restore local contro~ but this will also reset 
certain HP-ffi states. 

The instrument is placed in remote mode by setting the REN (Remote 
Enable) bus control line true, and then addressing the instrument to 
listen. The instrument can be placed in local lockout mode by sending 
the local lockout command (LLO). The instrument can be returned to 
local mode by either setting the REN line false, or sending the 
instrument the go to local command (GTL). 

HP 16500A/16501A 
Programming Reference 



Bus Commands The following commands are IEEE 488.1 bus commands (ATN true). 
IEEE 488.2 defmes many of the actions which are taken when these 
commands are received by an instrument. 

Device Clear The device clear (DCL) or selected device clear (SDC) commands 
clear the input and output buffers, reset the parser, clear any pending 
commands, and clear the Request-OPe flag. 

Group Execute 
Trigger (GET) 

The group execute trigger command will cause the same action as the 
START command for Group Run: the instrument will acquire data for 
the active waveform and listing display(s). 

Interface Clear This command halts all bus activity. This includes unaddressing all 
(IFC) listeners and the talker, disabling serial poll on all devices, and 

returning control to the system controller. 

HP 16500A/16501A 
Programming Reference 

Programming Over HP-IB 
2-5 



3 
Programming Over RS-232C 

Introduction 

I 
Note" 

HP16500A/16501A 
Programming Reference 

This chapter describes the interface functions and some general 
concepts of the RS-232C. The RS-232C information in this chapter is 
not affected when an HP 1650lA is connected to the HP 16500A. 
Therefore, all references to the HP 16500A apply whether or not an 
HP 1650lA is connected. 

The RS-232C interface on this instrument is Hewlett-Packard's 
implementation of EIA Recommended Standard RS-232C, "Interface 
Between Data Terminal Equipment and Data Communications 
Equipment Employing Serial Binary Data Interchange." With this 
interface, data is sent one bit at a time and characters are not 
synchronized with preceeding or subsequent data characters. Each 
character is sent as a complete entity without relationship to other 
events. 

IEEE 488.2 is designed to work with IEEE 488.1 as the physical 
interface. When RS-232C is used as the physical interface, as much of 
IEEE 488.2 is retained as the hardware differences will allow. No 
IEEE 488.1 messages such as DeL, GET, and E:Nu are availabie. 

Programming Over RS-232C 
3-1 



Interface 
Operation 

Cables 

The HP 16500A can be programmed with a controller over RS-232C 
using either a minimum three-wire or extended hardwire interface. 
The operation and exact connections for these interfaces are described 
in more detail in the following sections. 

When you are programming an HP 16500A over RS-232C with a 
controller, you are normally operating directly between two DTE 
(Data Terminal Equipment) devices as compared to operating 
between a DTE device and a DCE (Data Communications 
Equipment) device. 

When operating directly between two RS-232C devices, certain 
considerations must be taken into account. For three-wire operation, 
XON/XOFF must be used to handle protocol between the devices. 
For extended hardwire operation, protocol may be handled either with 
XON/XOFF or by manipulating the crs and RTS lines of the HP 
16500A. For both three-wire and extended hardwire operation, the 
DCD and DSR inputs to the HP 16500A must remain high for proper 
operation. 

With extended hardwire operation, a high on the crs input allows the 
HP 16500A to send data and a low on this line disables the HP 16500A 
data transmission. Likewise, a high on the R TS line allows the 
controller to send data and a low on this line signals a request for the 
controller to disable data transmission. 

Since three-wire operation has no control over the crs input, internal 
pull-up resistors in the HP 16500A assure that this line remains high for 
proper three-wire operation. 

Selecting a cable for the RS-232C interface is dependent on your 
specific application. The following paragraphs describe which lines of 
the HP 16500A are used to control the operation of the RS-232C bus 
relative to the HP 16500A. To locate the proper cable for your 
application, refer to the reference manual for your controller. This 
manual should address the exact method your controller uses to 
operate over the RS-232C bus. 

Programming Over RS-232C 
3-2 

HP16500A/16501A 
Programming Reference 



Minimum 
Three-Wire 
Interface with 
Software 
Protocol 

I 
Note. 

HP16500A/16501A 
Programming Reference 

With a three-wire interface, the software (as compared to interface 
hardware) controls me data flow between the hr 16500A and the 
controller. This provides a much simpler connection between devices 
since you can ignore hardware handshake requirements. The HP 
16500A uses the following connections on its RS-232C interface for 
three-wire communication: 

• Pin 7 SGND (Signal Ground) 
• Pin 2 TO (Transmit Data from HP 16500A) 
• Pin 3 RD (Receive Data into HP 16500A) 

The TO (Transmit Data) line from the HP 16500A must connect to the 
RD (Receive Data) line on the controller. Likewise, the RD line from 
the HP 16500A must connect to the TO line on the controller. Internal 
pull-up resistors in the HP 16500A assure the DeD, DSR, and crs 
lines remain high when you are using a three-wire interface. 

The three-wire interface provides no hardware means to control data 
flow between the controller and the HP 16500A. XON/OFF protocol 
is the only means to control this data flow. 

Programming Over RS-232C 
3-3 



Extended 
Interface with 
Hardware 
Handshake 

With the extended interface, both the software and the hardware can 
control the data flow between the HP 16500A and the controller. This 
allows you to have more control of data flow between devices. The HP 
16500A uses the following connections on its RS-232C interface for 
extended interface communication: 

• Pin 7 SGND {Signal Ground} 
• Pin 2 TO {Transmit Data from HP 16500A} 
• Pin 3 RD {Receive Data into HP 16500A} 

The additional lines you use depends on your controller's 
implementation of the extended hardwire interface. 

• Pin 4 RTS {Request To Send} is an output from the 
HP 16500A which can be used to control incoming data flow. 

• Pin 5 crs {Clear To Send} is an input to the HP 16500A which 
controls data flow from the HP 16500A. 

• Pin 6 DSR (Data Set Ready) is an input to the HP 16500A 
which controls data flow from the HP 16500A within two bytes. 

• Pin 8 DCD (Data Carrier Detect) is an input to the 
HP 16500A which controls data flow from the HP 16500A within 
two bytes. 

• Pin 20 DTR (Data Terminal Ready) is an output from the 
HP 16500A which is enabled as long as the HP 16500A is turned 
on. 

The TO (Transmit Data) line from the HP 16500A must connect to the 
RD {Receive Data} line on the controller. Likewise, the RD line from 
the HP 16500A must connect to the TO line on the controller. 

The RTS (Request To Send), is an output from the HP 16500A which 
can be used to control incoming data flow. A high on the RTS line 
allows the controller to send data and a low on this line signals a 
request for the controller to disable data transmission. 

Programming Over RS-232C 
3-4 

HP16500A/16501A 
Programming Reference 



Cable Example 

I 
Note ,. 

The crs (Clear To Send), DSR (Data Set Ready), and DCD (Data 
Carrier Detect) lines are inputs to the HP 16500A which control data 
flow from the HP 16500A (Pin 2). Internal pull-up resistors in the HP 
16500A assure the DeD and DSR lines remain high when they are not 
connected. 

When DCD or DSR are connected to the controller, the controller 
must keep these lines and the CTS line high to enable the HP 16500A 
to send data to the controller. A low on anyone of these lines will 
disable the HP 16500A data transmission. Dropping the crs line low 
during data transmission will stop HP 16500A data transmission 
immediately. Dropping either the DSR or DCD line low during data 
transmission will stop HP 16500A data transmission, but as many as 
two additional bytes may be transmitted from the HP 16500A. 

Figure 3-1 is an example of how to connect the HP 16500A to the 
HP 98628 Interface card of an HP 9000 series 200/300 controller. For 
more information on cabling, refer to the reference manual for your 
specific controller. 

Since this example does not have the correct connections for hardware 
handshake, XON/XOFF protocol must be used when connecting the 
HP 16500A as shown in figure 3-1 

HP 16500A 
REAR PANEL 

I T L--___ :~~~~~yY~---l ~~T~~~~~E CARD 

'-------0]- -

HP16500A/16501A 
Programming Reference 

13242N 
o.AALE-TCH.4ALE) 

5061-4216 
DeE OPT.002 

CFEMALE-To-FEMALE) 

Figure 3-1. Cable Example 

16~l8ltS 

Programming Over RS-232C 
3-5 



Configuring the 
Interface 

Interface 
Capabilities 

By using the front -panel touchscreen, the RS-232C interface can be 
placed in either the printer mode or the controller ~ode. The printer 
mode should be used when you want the instrument to talk directly to a 
printer over RS-232C without the aid of a controller. The controller 
mode is used when the instrument will operate in conjunction with a 
controller over RS-232C. 

H you are not familiar with how to conftgUl'e the RS-232C interface, 
refer to the HP 16500A/1650lA Reference Manual. 

The baud rate, stop bits, parity, protocol, and data bits must be 
conftgUl'ed exactly the same for both the controller and the HP 16500A 
to properly communicate over the RS-232C bus. The HP 16500A 
RS-232C interface capabilities are listed below: 

• Baud Rate: 110, 300, 600, 1200, 2400, 4800, 9600, or 19.2 k 
• Stop Bits: 1, 15, or 2 
• Parity: None, Odd, or Even 
• Protocol: None or XON/XOFF 
• Data Bits: 8 

Protocol NONE. With a three-wire interface, selecting NONE for the protocol 
does not allow the sending or receiving device to control data flow. No 
control over the data flow increases the possibility of missing data or 
transferring incomplete data. 

With an extended hardwire interface, selecting NONE allows a 
hardware handshake to occur. With hardware handshake, hardware 
signals control data flow. 

Programming Over RS-232C 
3-6 

HP16500A/16501A 
Programming Reference 



Data Bits 

• 
Note. 

HP16500A/16501A 
Programming Reference 

XON/XOFF. XON/XOFF stands for Transmit On{fransmit Off. With 
this mode the receiver (controller or HP 16500A) controls data flow 
and can request that the sender (HP 16500A or controller) stop data 
flow. By sending XOFF (ASCII 17) over its transmit data line, the 
receiver requests that the sender disables data transmission. A 
subsequent XON (ASCn 19) allows the sending device to resume data 
transmission. 

A controller sending data to the HP 16500A should send no more than 
32 bytes of data after an XOFF. 

The HP 16500A will not send any data after an XOFF is received until 
an XON is received. 

Data bits are the number of bits sent and received per character that 
represent the binary code of that character. The HP 16500A supports 
the 8-bit binary code . 

The controller must be in the 8-bit mode to properly communicate over 
the RS-232C. 

For more information on the RS-232C interface, refer to the HP 
16500A Reference Manual. For information on RS-232C voltage levels 
and connector pinouts, refer to the HP 165()(l4./1650lA Service Manual. 

Programming Over RS-232C 
3-7 



Communicating 
Over the 
RS-232C Bus 
(HP 9000 
Series 200/300 
Controller) 

Lockout 
Command 

Note Ii 

Each RS-232C interface card has its own interface select code. This 
code is used by the controller to direct commands and communications 
to the proper interface. Unlike HP-m, which allows multiple devices 
to be connected through a single interface card, RS-232C is only 
connected between two devices at a time through the same interface 
card. Because of this, only the interface code is required for the device 
address. 

Generally, the interface select code can be any decimal value between 0 
and 31, except for those interface codes which are reserved by the 
controller for internal peripherals and other internal interfaces. This 
value can be selected through switches on the interface card. For more 
information, refer to the reference manual for your interface card or 
controller. 

For example, if your RS-232C interface select code is 20, the device 
address required to communicate over the RS-232C bus is 20. 

To lockout the front panel controls use the system command 
LOCKOUT. When this function is on, all controls (except the power 
switch) are entirely locked out. Local control can only be restored by 
sending the command :LOCKOUT OFF. For more information on 
this command see the chapter "Mainframe Commands" in this manual. 

Cycling the power will also restore local contro~ but this will also reset 
certain RS-232C states. 

Programming Over RS-232C 
3-8 

HP16500A/16501A 
Programming Reference 



4 
P · - --d "" __ . ·m--.a._.a.:_-
rogrammin~ Clil LlU,",UII t:IILClLlUII 

Conventions 

Introduction This chapter covers the programming conventions used in 
programming the instrument, as well as the documentations 
conventions used in this manual. This chapter also contains a detailed 
description of the command tree and command tree traversal. 

Truncation Rule The truncation rule for the mnemonics used in headers and alpha 
arguments is: 

HP 16500A/16501A 
Programming Reference 

• The mnemonic is the fIrst four characters of the keyword unless 
the fourth character is a vowe~ then the mnemonic is the first 
three characters of the keyword. 

This rule will not be used if the length of the keyword is exactly four 
characters. When the keyword only contains four characters, there is 
no shortform of the command. 

Some examples of how the truncation rule is applied to various 
commands are shown in table 4-1. 

Programming and Documentation Conventions 
4-1 



The Command 
Tree 

Command Types 

Table 4-1. Mnemonic Truncation 

Longform Shortform 

START STAR 

CARD CAGE CARD 

MENU MENU 

SELEcr SEL 

PATI'ERN PAIT 

The command tree (figure 4-1) shows all commands in the HP 16500A 
mainframe and the relationship of the commands to each other. You 
should notice that the common commands are not actually included 
with the command tree. After a < NL > (linefeed - ASCII decimal 
10) has been sent to the instrument, the parser will be set to the "root" 
of the command tree. 

The commands for this instrument can be. placed into three types. The 
three types are: 

Common Commands. Common commands are independent of the 
tree, and do not affect the position of the parser within the tree. 

Example: -*CLS-

Mainframe Commands. The mainframe commands reside at the root 
of the command tree. These commands are always parsable if they 
occur at the beginning of a program message, or are preceded by a 
colon. 

Example: -:SELECT 1-

Subsystem Commands. Subsystem commands are grouped together 
under a common node of the tree, such as the MMEMORY commands. 

Programming and Documentation Conventions 
4-2 

HP 16500A/16501A 
Programming Reference 



SELect 01 

SYSTem t.t.4EMory INTermodule 
Conmon 

~ ~ ~ Comnands 

-CLS 
.ESE BEEPer DATA AUToload DELete 
.ESR CAPab iii ty DSP CATalog HTIMe 
.ION CARDcage ERRor COpy INPort 
-1ST CESE HEADer DOWNlaad INSert 
.OPC CESR LONGform INIT i a Ii ze SKEW<N> 
.OPT EOI PRINt LOAD [ :CONf i g) TREE 
-PRE LER SETup LOAD:IASSembler TTIMe 
.RST LOCKout MSI 
-SRE MENU PACK 
.STB MESE<N> PURge 
",TRG iviESR<N> REName 
.TST RMODe STORe [ : CONf i g) 
.WAI SELect UPLoad 

SETColor 
STARt 
STOP 165009"15 

Figure 4-1. The HP 16500A Mainframe Command Tree 

HP 16500A/16501A 
Programming Reference 

Programming and Documentation Conventions 
4-3 



Tree Traversal 
Rules 

Command headers are created by traversing down the command tree. 
A legal command header from the command tree in figure 4-1 would 
be ":MMEM:INITIALIZE." This is referred to as a compound header. 
A compound header is a header made of two or more mnemonics 
separated by colons. The mnemonic created contains no spaces. The 
following rules apply to traversing the tree: 

• A leading colon or a < program message terminator> (either a 
< NL> or EOI true on the last byte) places the parser at the 
root of the command tree. A leading colon is a colon that is the 
frrst character of a program header. 

• Executing a subsystem command places you in that subsystem 
(until a leading colon or a < program message terminator> is 
found). In the Command Tree, figure 4-1, use the last mnemonic 
in the compound header as a reference point (for example 
INITIALIZE). Then fmd the last colon above that mnemonic 
(MMEM:), and that is where the parser will be. Any command 
below that point can be sent within the current program message 
without sending the mnemonic(s) which appear above them 
(STORE, etc.). 

Examples The following examples are written using HP BASIC 5.0 on a HP 9000 
Series 200/300 Controller. The quoted string is placed on the bus, 
followed by a carriage return and linefeed (CRLF). 

The three Xs (XXX) shown in this manual after an ENTER or 
OUTPUT statement refers to the device address for either HP-IB or 
RS-232C. 

Example 1: OUTPUT XXX;-: SYSTEM: HEAOER ON;lONGFORM ON-

In example 1, the colon between SYSTEM and HEADER is necessary 
since SYSTEM:HEADER is a compound command. The semicolon 
between the HEADER command and the LONGFORM command is 
the required < program message unit separator>. The LONGFORM 
command does not need SYSTEM preceding it, since the 
SYSTEM:HEADER command sets the parser to the SYSTEM node 
in the tree. 

Programming and Documentation Conventions 
4-4 

HP 16500A/16501A 
Programming Reference 



Example 2: OUTPUT XXX;-:MMEMORY:INITIAUZE;STORE 'FILE_','ALE DESCRIPTION'-

or 

OUTPUT XXX;-: MMEMORY: INITIALIZE" 
OUTPUT XXX;-:MMEMORY:STORE 'FILE_', 'FILE DESCRIPTION'-

In the fIrst line of example 2, the "subsystem selector" is implied for the 
STORE command in the compound command. The STORE 
command must be in the same program message as the INITIALIZE 
command, since the < program message terminator> will place the 
parser back at the root of the command tree. 

A second way to send these commands is by placing "MMEMORY:" 
before the STORE command as shown in the fourth line of example 2. 

Example 3: OUTPUT XXX;-:MMEM:CATALOG?;:SYSTEM:PRINT All-

HP 16500A/16501A 
Programming Reference 

In example 3, the leading colon before SYSTEM tells the parser to go 
back to the root of the command tree. The parser can then see the 
SYSTEM:PRINT command. 

Programming and Documentation Conventions 
4-5 



Infinity 
Representation 

Sequential and 
Overlapped 
Commands 

Response 
Generation 

The representation of infInity is 9.9E + 37 for real numbers and 32767 
for integers. This is also the value returned when a measurement 
cannot be made. 

IEEE 488.2 makes the distinction between sequential and overlapped 
commands. Sequential commands fmish their task before the 
execution of the next command starts. Overlapped commands run 
concurrently, and therefore the command following an overlapped 
command may be started before the overlapped command is 
completed. Some examples of overlapped commands on the HP 
16500A are: 

START 
STOP 

IEEE 4882 defmes two times at which query responses may be 
buffered. The fust is when the query is parsed by the instrument and 
the second is when the controller addresses the instrument to talk so 
that it may read the response. The HP 16500A will buffer responses to 
a query when it is parsed. 

Programming and Documentation Conventions 
4-6 

HP 16500A/16501A 
Programming Reference 



Notation 
Conventions 
and Definitions 

HP 16500A/16501A 
Programming Reference 

The following conventions are used in this manual in descriptions of 
remote (hYfl-IE and RS-232C) operation: 

< > Angular brackets enclose words or characters that are used to 
symbolize a program code parameter or a bus command. 

:: = "is dermed as." For example, A :: = B indicates that A can be 
replaced by B in any statement containing A . 

I "or": Indicates a choice of one element from a list. For example, 
A I B indicates A or B, but not both. 

... An ellipsis ( trailing dots) is used to indicate that the preceding 
element may be repeated one or more times. 

[] Square brackets indicate that the enclosed items are optional. 

{ } When several items are enclosed by braces, one, and only one of 
these elements must be selected. 

xxx Three Xs after an ENTER or OUTPUT statement refer to the 
device address for HP-ffi or RS-232C. 

The following definitions are used: 

d :: = A single Ascn numeric character, 0-9. 

n :: = A single ASCn non-zero, numeric character, 1-9. 

< NL> :: = Linefeed (ASCn decimal 10). 

< sp > :: = < white space> 

white space :: = 0 through 32 (decimal) except !inefeed (decimallO) 

< msus > :: = < mass storage unit specifier> (INTernall specifies the 
front disc drive and INTernalO specifies the rear disc drive) 

Programming and Documentation Conventions 
~7 



Syntax 
Diagrams 

Command 
Structure 

Common 
Commands 

Mainframe 
Commands 

Expansion Frame 
Commands 

At the beginning of each of the following chapters are syntax diagrams 
showing the proper syntax for each command. All characters 
contained in a circle or oblong are literals, and must be entered exactly 
as shown. Words and phrases contained in rectangles are names of 
items used with the command and are described in the accompanying 
text of each command. Each line can only be entered from one 
direction as indicated by the arrow on the entry line. Any combination 
of commands and arguments that can be generated by following the 
lines in the proper direction is syntactically correct. An argument is 
optional if there is a path around it. When there is a rectangle which 
contains the word "space," a white space character must be entered. 
White space is optional in many other places. 

The HP 16500A programming commands are divided into three types: 
common commands, mainframe commands, and subsystem commands. 
A programming command tree is shown in figure 4-1 and a 
programming command cross-reference is shown in table 4-2. 

The common commands are the commands defmed by IEEE 488.2. 
These commands control some functions that are common to all IEEE 
488.2 instruments. Sending the common commands do not take the 
instrument out of a selected subsystem. 

The mainframe commands control many of the basic functions of the 
instrument. 

When an HP 1650lA Expansion frame is connected to the HP 16500A 
mainframe most of the programming is not affected and is transparent. 
The only commands affected by the presence of an HP 1650lA are 
those that specify a slot number or return a slot number. These 
commands are identified in their respective descriptions. 

Programming and Documentation Conventions 
4-8 

HP 16500A/16501A 
Programming Reference 



Subsystem 
Commands 

Note. 

Program 
Examples 

~I 

Note til 

HP 16500A/16501A 
Programming Reference 

There are several subsystems in this instrument. Only one subsystem 
may be selected at any given time. At power on, the command parser is 
set to the root of the command tree, and therefore, no subsystem is 
seiected. 

When a < program message terminator> or a leading colon (:) is sent 
in a program message, the command parser is returned to the root of 
the command tree. 

The 3 subsystems in the HP 16500A mainframe are: 

• System - controls some basic functions of the instrument. 
• Mmemory - provides access to both internal disc drives. 
• Intermodule - allows intermodule arming between multiple 

modules. 

The program examples given for each command in the following 
chapters and appendices were written on an HP 9000 Series 200/300 
controller using HP BASIC 5.0 language. The programs always assume 
a generic address of xxx. If a printer is used, it is always assumed to 
be connected to the non-controller interface and activated by the 
:SYSTEM:PRINT command. 

In these examples, special attention should be paid to the ways in which 
the command/query can be sent. The way the instrument is set up to 
respond to a command/query has no bearing on how you send the 
command/query. That is, the command/query can be sent using the 
longform or shortform if one exists for that command. You can send 
the command/query using upper case (capital) letters or lower case 
(small) letters; both work the same. Also, the data can be sent using 
almost any form you wish. If you were sending a channell range value 
to the oscilloscope module of 100 m V, that value could be sent using a 
decimal (.1), or an exponential (le-1 or 1.0E-1), or a SuffIX (100 mV or 
100MV). 

The contents oi a string is case sensitive and must be expressed exactly 
the same each time it is used. 

Programming and Documentation Conventions 
4-9 



I 
Note. 

As an example, set channell range of the oscilloscope module to 100 
m V by sending one of the following: 

• commands in longform and using the decimal format. 

OUTPUT XXX;-:CHANNEL1:RANGE .1-

• commands in shortform and using an exponential format. 

OUTPUT XXX;-:CHAN1:RANG 1E-1· 

• commands using lower case letters, shortforms, and a suffIx. 

OUTPUT XXX;-:chan1:rang 100 mV" 

In these examples, the colon shown as the first character of the 
command is optional on the HP 16500A. The space between RANGE 
and the argument is required. 

To observe the headers for queries, you must bring the returned data 
into a string variable. Generally, you should also dimension all string 
variables before reading the data. 

H you do not need to see the headers and a numeric value is returned 
from the HP 16500A, then you should use a numeric variable. In this 
case the headers should be turned off. 

Note" The contents of strings n n are case sensitive (label names, etc.). 

Programming and Documentation Conventions 
4-10 

HP 16500A/16501A 
Programming Reference 



Command Set 
Organization 

I 
Note II 

HP 16500A/16501A 
Programming Reference 

The command set for the HP 16500A mainframe is divided into 5 
separate groups: Common commands, mainframe commands and 3 
sets of subsystem commands. Each of the 5 groups of commands is 
described in the following chapters. Each of the chapters contain a 
brief description of the subsystem, a set of syntax diagrams for those 
commands, and finally, the commands for that subsystem in 
alphabetical order. The commands are shown in the longform and 
shortform using upper and lowercase letters. As an example SELect 
indicates that the longform of the command is SELECf and the 
shortform of the command is SEL. Each of the commands contain a 
description of the command and its arguments, the command syntax, 
and a programming example. 

Each module within the HP 16500A will include additional sets of 
subsystem commands. For a list of these subsystem commands, refer to 
the individual programming manuals for each module. 

Programming and Documentation Conventions 
4-11 



Table 4-2. Alphabetic Command Cross-Reference 

Command I Where Used 

AUToload MMEMory Subsystem 

BEEPer Mainframe Command 

CAPability? Mainframe Command 

CARD cage? Mainframe Command 

CATalog? MMEMory Subsystem 

*ClS Common Command 

COpy MMEMory Subsystem 

DEBug Mainframe Command 

DELete INTermodule Subsystem 

DOWNload MMEMory Subsystem 

DSP SYSTem Subsystem 

EOI Mainframe Command 

ERRor? SYSTem Subsystem 

* ESE Common Command 

*ESR? Common Command 

HEADer SYSTem Subsystem 

HTIMe? INTermodule Subsystem 

*IDN? Common Command 

INITialize MMEMory Subsystem 

INPort INTermodule Subsystem 

INSert INTermodule Subsystem 

:INTermodule Subsystem Selector 

* IST? Common Command 

LER? Mainframe Command 

LOAD MMEMory Subsystem 

LOCKout Mainframe Command 

LONGform SYSTem Subsystem 

MENU Mainframe Command 

Programming and Documentation Conventions 
4-12 

Command 

:MMEMory 

MSI 

*OPC 

* OPT? 

PACK 

*PRE 

PRINt 

PURGe 

REName 

RMODe 

*RST 

SELect 

SETColor 

SETup 

SKEW 

SOUNd 

*SRE 

STARt 

*STB? 

STOP 

STORe 

:SYSTem 

TREE 

*TRG 

*TST? 

TTIMe? 

UPLoad? 

*WAI 

I Where Used 

Subsystem Selector 

MMEMory Subsystem 

Common Command 

Common Command 

MMEMory Subsystem 

Common Command 

SYSTem Subsystem 

MMEMory Subsystem 

MMEMory Subsystem 

Mainframe Command 

Common Command 

Mainframe Command 

Mainframe Command 

SYSTem Subsystem 

INTermodule Subsystem 

Mainframe Command 

Common Command 

Mainframe Command 

Common Command 

Mainframe Command 

MMEMory Subsystem 

Subsystem Selector 

INTermodule Subsystem 

Common Command 

Common Command 

INTermodule Subsystem 

MMEMory Subsystem 

Common Command 

HP 16500A/16501A 
Programming Reference 



5 
Common Commands 

Introduction 

HP 16500A/16501A 
Programming Reference 

The common commands are defined by the IEEE 488.2 standard. 
These commands will be common to all instruments that comply with 
this standard. 

The common commands control some of the basic instrument 
functions, such as instrument identification and reset, how status is 
read and cleared, and how commands and queries are received and 
processed by the instrument. 

Common commands can be received and processed by the HP 16500A 
whether they are sent over the bus as separate program messages or 
within other program messages. If an instrument subsystem has been 
selected and a common command is received by the instrument, the 
instrument will remain in the selected sybsystem. For example if the 
program message 

-:MMEMORY:INITIALIZE;*CLS; STORE 'FILE_', 'DESCRIPTION'-

is received by the instrument, the instrument will initialize the disc and 
store the fIle; and clear the status information. This would not be the 
case if some other type of command were received within the program 
message. For example, the program message 

-:MMEMORY:INITIALIZE;:SELECT 1;:MMEMORY:STORE 'FILE_','DESCRIPTION" 

would initialize the disc, select the module in slot A, then store the file. 
In this example :MMEMORY must be sent again in order to reenter 
the mmemory subsystem and store the fIle. 

Common Commands 
5-1 



Common Commands 
5-2 

Each status register has an associated status enable (mask) regiSter. By 
setting the bits in the mask value you can select the status information 
you wish to use. Any status bits that have not been masked (enabled in 
the enable register) will not be used to report status summary 
information to bits in other status registers. 

Refer to Appendix B, "Status Reporting" for a complete discussion of 
how to read the status registers and how to use the status information 
available from this instrument. 

Refer to figure 5-1 for the common commands syntax diagram. 

HP 16500A/16501A 
Programming Reference 



HP 16500A/16501A 
Programming Reference 

lS,"/SX.l 

mask = An integer, 0 through 255. This number is the sum of all the bits 
in the mask corresponding to conditions that are enabled. Refer to the 
*ESE and *SRE commands for bit definitions in the enable registers. 

pre_mask = An integer, 0 through 65535. This number is the sum of all 
bits in the mask corresponding to conditions that are enabled. Refer to 
the * PRE command for bit definitions in the enable register. 

Figure 5-1. Common Commands Syntax Diagram 

Common Commands 
5-3 



*CLS 

*CLS 

Command Syntax: 

Example: 

I 
Note ,. 

Common Commands 
5-4 

(Clear Status) command 

The *CLS common command clears all event status registers, queues, 
and data structures, including the device dermed error queue and 
status byte. If the *cr..s command immediately follows a < program 
message terminator>, the output queue and the MA V (Message 
Available) bit will be cleared. 

*ClS 

Refer to Appendix B, "Status Reporting" for a complete discussion of 
status. 

HP 16500A/16501A 
Programming Reference 



*ESE 

aiel 
Note ... 

Command Syntax: 

where: 

*ESE 

(Event Status Enable) command/query 

The *ESE command sets the Standard Event Status Enable Register 
bits. The Standard Event Status Enable Register contains a mask value 
for the bits to be enabled in the Standard Event Status Register. A one 
in the Standard Event Status Enable Register will enable the 
corresponding bit in the Standard Event Status Register which sets the 
ESB bit in the status byte. A zero will disable the bit. Refer to table 
5-1 for information about the Standard Event Status Enable Register 
bits, bit weights, and what each bit masks. 

The *ESE query returns the current contents of the enable register. 

Refer to Appendix B, "Status Reporting" for a complete discussion of 
status. 

*ESE <mask> 

< mask> :: = 0 to 255 Onteger) 

Example: OUTPUT XXX;-*ESE 3~ 

HP 16500A/16501A 
Programming Reference 

In this example, the *ESE 32 command will enable CME (Command 
Error), bit 5 of the Standard Event Status Enable Register. Therefore, 
when a command error occurs, the event summary bit (ESB) in the 
Status Byte Register will also be set. 

Common Commands 
5-5 



*ESE 

Query Syntax: *ESE? 

Returned Format: <mask> <NL> 

Example: 10 DIM Event$[100] 
20 OUTPUT XXX;-*ESE?-
30 ENTER XXX;Event$ 
40 PRINT Event$ 
so END 

Table 5-1. Standard Event Status Enable Register 

Bit Weight 

7 128 

6 64 

5 32 

4 16 

3 8 

2 4 

1 2 

0 1 

High - enables the ESR bit 

Common Commands 
5-6 

Enables 

PON - Power On 

URO - User Request 

CME - Command Error 

EXE - Execution Error 

DDE - Device Dependent Error 

OYE - OueryError 

ROC - Request Control 

OPC - Operation Complete 

HP 16500A!16501A 
Programming Reference 



*ESR 

*ESR 

(Event Status Register) query 

The *ESR query returns the contents of the Standard Event Status 
Register. Reading the register clears the Standard Event Status 
Register. 

Query Syntax: *ESR? 

Returned Format: <status> < NL> 

where: 

< status> :: = 0 to 255 ~nteger) 

Example: 10 DIM Esr_event$[100] 
20 OUTPUT XXX;-*ESR?-
30 ENTER XXX;Esr event$ 
40 PRINT Esr _ even"i$ 

HP 16500A/16501A 
Programming Reference 

50 END 

With the example, if a command error has occurred the variable 
"Esf_event" will have bit 5 (the CME bit) set. 

Tabie 5-2 shows the Standard Event Status Register. The table shows 
each bit in the Standard Event Status Register, and the bit weight. 
When you read Standard Event Status Register, the value returned is 
the total bit weights of all bits that are high at the time you read the 
byte. 

Common Commands 
5-7 



*ESR 

Table 5-2. The Standard Event Status Register 

Bit Bit Weight 

7 128 

6 64 

5 32 

4 16 

3 8 

2 4 

1 2 

0 1 

Common Commands 
5-8 

Bit Name 

PON 

URO 

CME 

EXE 

DDE 

OYE 

ROC 

OPC 

Condition 

o = register read - not in power up mode 
1 = power up 

o = user request - not used - always zero 

o = no command errors 
1 = a command eror has been detected 

o = no execution errors 
1 = an execution error has been detected 

o = no device dependent error has been detected 
1 = a device dependent error has been detected 

o = no query errors 
1 = a query error has been detected 

o = request control - not used- always zero 

o = operation is not complete 
1 = operation is complete 

HP 16500A/16501A 
Programming Reference 



*IDN 

*IDN 

(Identification Number) query 

The *IDN? query allows the instrument to identify itself. It returns the 
string: 

-HEWLETT-PACKARD,16500A,0,REV < revision code>-

An *IDN? query must be the last query in a message. Any queries 
after the *IDN? in the program message will be ignored. 

Query Syntax: *IDN? 

Returned Format: HEWLETT-PACKARD,16500A,0,REV <revision code> 

where: 

< revision code> :: = four digit code in the format xx.XX representing the current ROM revision 

Example: 

HP 16500A/16501A 
Programming Reference 

10 DIM Id$[100] 
20 OUTPUT xxx.;-*IDN?· 
30 ENTER XXX;1d$ 
40 PRINT Id$ 
so END 

Common Commands 
5-9 



*IST 

*IST (Individual Status) query 

The *IST query allows the instrument to identify itseH during parallel 
poll by allowing the controller to read the current state of the IEEE 
488.1 defined "ist" local message in the instrument. The response to 
this query is dependent upon the current status of the instrument. 

Figure 5-2 shows the *IST data structure. 

Query Syntax: *IST? 

Returned Format: < id > < NL > 

where: 

< id > :: = 0 or 1 

Example: 

1:: = indicates the -ist-Iocal message is false 

0:: = indicates the -ist-Iocal message is true 

10 DIM Event$[100] 
20 OUTPUT XXX;-*IST1-
30 ENTER XXX;Event$ 
40 PRINT Event$ 
50 End 

Common Commands 
5-10 

HP 16500A/16501A 
Programming Reference 



DEVICE DEFINED CONDITIONS 

~ + + + + + + + 
DEVICE DEFINED 115 1141 131 121 11 110 1 9 1 8 1 CONDITIONS 

--4 

a: 
0 

-l 
< 
~ 
§ 

, 
INDIVIDUAL 

STATUS 
-1ST? 

-

-

-

-
-

J 
& 

~ 

& 

& 

~ 
&1 

I 

~ 
& , 
~ 

& 

I A 
& 

l 1s1 141 131 121 11 110 1 9 1 8 .J 

SlM1ARY MESSAGE 

+ + + + + + + + 1 7 IMSSIESBIMAVILCLI 2 1 1 IMSBI 

& 

& 

& ,. 
&1 

I 
• 
&1 . 

& 
I 

&1 

• 

'T 
l71SlS14131211Lej 

*IST 

STATUS BYTE 
REGISTER 

.STB? 

PARALLEL POLL 
ENABLE REGISTER 

.PRE 
-PRE? 

Figure 5-2. *IST Data Structure 

HP 16500A/16501A 
Programming Reference 

Common Commands 
5-11 



*OPC 

*OPC 

Command Syntax: 

Example: 

Query Syntax: 

Returned Format: 

Example: 

Common Commands 
5-12 

( Operation Complete) command/query 

The ·OPC command will cause the instrument to set the operation 
complete bit in the Standard Event Status Register when all pending 
device operations have finished. The commands which affect this bit 
are the Overlapped Commands. An Overlapped Command is a 
command that allows execution of subsequent commands while the 
device operations initiated by the Overlapped Command are still in 
progress. Some examples of overlapped commands for the HP 16500A 
are: 

STARt 
STOP 

Additional overlapped commands are dermed in the individual 
programming manuals for each module. 

The ·OPC query places an ASCII "1" in the output queue when all 
pending device operations have been completed. 

*OPC 

*OPC? 

1<NL> 

DIM Status$[100] 
20 OUTPUT XXX;·*OPC?· 
30 ENTER XXX; Status$ 
40 PRINT Status$ 
so END 

HP 16500A/16501A 
Programming Reference 



*OPT 

*OPT 

(Option Identification) query 

The ·OPT query identifies the software installed in the HP 16S00A. 
This query returns nine parameters. The fIrst parameter indicates 
whether you are in the System. The next two parameters indicate any 
software options installed, and the next parameter indicates whether 
intermodule is available for the System. The last five parameters list 
the installed software for the modules in slot A through E for an HP 
16500A mainframe. When an HP 1650lA Expansion frame is 
connected, there will be ten parameters after the INTERMODULE 
for modules in slots A through J. A zero in any of the last eight 
parameters indicates that the corresponding software is not currently 
installed. 

Query Syntax: *OPT? 

Returned Format: {SYSTEM}, { <option> 10}.{ <option> 10}.{INTERMODULEI0}.{ <module> 10}. 
{<module> 10}.{ <module> 10}.{ <module> 10}.{ <module> 10} 

where: 

[.{ <module> 10}.{ <module> 10}.{ <module> 10}.{ <module> 10}. 
{<module> 10}]<NL> 

< option> :: = name of software option 

< module>:: = name of module software 

I 
Note. 

Example: 

HP 16500A/16501A 
Programming Reference 

The name returned for software options and module software is the 
same name that appears in the field in the upper-left comer of the 
menu for each option or module. 

10 DIM Option$[200] 
20 OUTPUT XXX;··OPT?· 
30 ENTER XXX; Option$ 
40 PRINT OptionS 
so END 

Common Commands 
5-13 



*PRE 

*PRE (parallel Poll Enable Register Enable) command/query 

The ·PRE command sets the parallel poll register enable bits. The 
Parallel Poll Enable Register contains a mask value which is ANDed 
with the bits in the Status Bit Register to enable an "ist" during a 
parallel poll. The query returns the current value of the register. 

Refer to table 5-3 for the bits in the Parallel Poll Enable Register and 
what they mask. 

Command Syntax: ·PRE < mask> 

where: 

< pre _mask> :: = 0 to 65535 Qnteger) 

Example: Output XXX;-·PRE 16-

This example will allow the HP 16500A to generate an "ist" when a 
message is available in the output queue. When a message is available, 
the MA V (Message Available) bit in the Status Byte Register will be 
high. 

Query Syntax: -·PRE?-

Returned format: <mask> <NL> 

where: 

< mask> :: = sum of all bits that are set - 0 through 65535 

Example: 

Common Commands 
5-14 

10 DIM Pre_value$[100] 
20 OUTPUT XXX;-*PRE?-
30 ENTER XXX;Pre value$ 
40 PRINT Pre _ value$ 
so END 

HP 16500A/16501A 
Programming Reference 



*PRE 

Table 5-3. HP 16500A Parallel Poll Enable Register 

Bit 

15-8 

7 

6 

5 

4 

3 

2 

1 

0 

HP 16500A/16501A 
Programming Reference 

Weight 

128 

64 

32 

16 

8 

4 

2 

1 

Enables 

Not used 

Not used 

MSS - Master Summary Status 

ESB - Event Status 

MA V - Message Available 

LCL-Local 

Not used 

Not used 

MSB - Module Summary 

Common Commands 
5-15 



*RST 

*RST 

I 
Note. 

Common Commands 
5-16 

(Reset) command 

The *RST command (488.2) is not implemented on the HP 16500A. 
The HP 16500A will accept this command, but the command has no 
affect on the instrument. 

The *RST command is generally used to place the instrument in a 
predefmed state. Since the HP 16500A allows you to store predefined 
configuration mes for individual modules or the entire system, resetting 
the instrument can be accomplished by simply loading the appropriate 
configuration me. For more information, refer to the chapter 
"Mmemory Subsystem" in this manual. 

HP 16500A/16501A 
Programming Reference 



*SRE 

I 
Note" 

Command Syntax: 

where: 

*SRE 

(Service Request Enable) command/query 

The ·SRE command sets the Service Request Enable Register bits. 
The Service Request Enable Register contains a mask value for the bits 
to be enabled in the Status Byte Register. A one in the Service 
Request Enable Register will enable the corresponding bit in the Status 
Byte Register. A zero will disable the bit. Refer to table 5-4 for the 
bits in the Service Request Enable Register and what they mask. 

The ·SRE query returns the current value. 

Refer to Appendix B, "Status Reporting" for a complete discussion of 
status. 

*SRE <mask> 

< mask> :: = 0 to 255 Qnteger) 

HP 16500A/16501A 
Programming Reference 

This example enables a service request to be generated when a 
message is available in the output queue. When a message is available, 
the MA V (Message Available) bit will be high. 

Common Commands 
5-17 



*SRE 

Query Syntax: *SRE? 

Returned Format: <mask> <NL> 

where: 

< mask> :: = sum of all bits that are set - 0 through 255 

Example: 10 DIM Sre_value$[l00] 
20 OUTPUT XXX;-*SRE?-
30 ENTER XXX;Sre value$ 
40 PRINT Sre value$ 
50 END -

Table 5-4. HP 16500A Service Request Enable Register 

Bit 

15-8 

7 

6 

5 

4 

3 

2 

1 

0 

Common Commands 
5-18 

Weight 

128 

64 

32 

16 

8 

4 

2 

1 

Enables 

not used 

not used 

MSS - Master Summary Status 

ESB - Event Status 

MA V - Message Available 

LCL-Local 

not used 

not used 

MSB - Module Summary 

HP 16500A/16501A 
Programming Reference 



*STB 

I 
Note" 

Query Syntax: 

Returned Format: 

where: 

*STB 

(Status Byte) query 

The ·STB query returns the current value of the instrument's status 
byte. The MSS (Master Summary Status) bit and not RQS (Request 
Service) bit is reported on bit 6. The MSS indicates whether or not the 
device has at least one reason for requesting service. Refer to table 5-5 
for the meaning of the bits in the status byte. 

Refer to Appendix B, "Status Reporting" for a complete discussion of 
status. 

*STB? 

<value> <NL> 

<value>:: = 0 through 255 [Integer) 

Example: 

HP 16500A/16501A 
Programming Reference 

10 DIM Stb_value$[100] 
20 OUTPUT XXX;·*STB?· 
30 ENTER XXX;Stb_value$ 
40 PRINT Stb _ value$ 
so END 

Common Commands 
5-19 



*STB 

Bit Bit Weight 

7 

6 

5 

4 

3 

2 

1 

0 

o = False = Low 
1 = True = High 

128 

64 

32 

16 

8 

4 

2 

1 

Common Commands 
5-20 

Table 5-5. The Status Byte Register 

Bit Name 

--
MSS 

ESB 

MAV 

LCL 

-

---
MSB 

Condition 

0= not Used 

o = instrument has no reason for service 
1 = instrument is requesting service 

o = no event status conditions have occurred 
1 = an enabled event status condition has occurred 

o = no output messages are ready 
1 = an output message is ready 

o = a remote-to-Iocal transition has not occurred 
1 = a remote-to-Iocal transition has occurred 

not used 

not used 

o = a module or the system has activity to report 
1 = no activity to report 

HP 16500A/16501A 
Programming Reference 



*TRG 

Command Syntax: 

Example: 

HP 16500A/16501A 
Programming Reference 

*TRG 

(Trigger) command 

The *TRG command has the same effect as a Group Execute Trigger 
(GET). That effect is as if the START command had been sent for 
intermodule group run. H no modules are configured in the 
Intermodule menu, this command has no effect. 

*TRG 

Common Commands 
5-21 



*TST 

*TST (Test) query 

The *TST query returns the results of the power-up self-test. The 
result of the test is a 9-bit mapped value which is placed in the output 
queue. A one in the corresponding bit means that the test failed and a 
zero in the corresponding bit means that the test passed. Refer to table 
5-6 for the meaning of the bits returned by a TST? query. 

Query Syntax: *TST? 

Returned Format: <result> <NL> 

where: 

< result>:: = 0 through 511 Qnteger) 

Example: 

Common Commands 
5-22 

10 OUTPUT XXX;·*TST?-
20 ENTER XXX;Tst_value 
30 PRINT Tst_ value 
40 END 

HP 16500A/16501A 
Programming Reference 



Bit 

8 

7 

6 

5 

4 

3 

2 

1 

o 

HP 16500A/16501A 
Programming Reference 

Table 5-6. Bits Returned by *TST? Query 
(Power-Up Test Results) 

Bit Weight Test 

256 Front Disk Text 

128 Rear Disk Test 

64 Touchscreen Test 

32 (not used - always zero) 

16 (not used - always zero) 

8 Display Test 

4 Interupt Test 

2 RAM Test 

1 ROM Test 

*TST 

Common Commands 
5-23 



*WAI 

*WAI 

Command Syntax: 

Example: 

Common Commands 
5-24 

(Wait) command 

The ·W AI command causes the device to wait until the completion of 
all overlapped commands before executing any further commands or 
queries. An overlapped command is a command that allows execution 
of subsequent commands while the device operations initiated by the 
overlapped command are still in progress. Some examples of 
overlapped commands for the HP 16500A are: 

STARt 
STOP 

Additional overlapped commands are defined in the individual 
programming manuals for each module. 

*WAJ 

HP 16500A/16501A 
Programming Reference 



Mainframe Commands 

Introduction Mainframe commands control the basic operation of the instrument for 
both the HP 16500A alone or with the HP 1650lA connected. They 
can be called at anytime, and from any module. The only difference in 
mainframe commands with an HP 1650lA connected is the number of 
slots and modules. These differences will be noted in the affected 
command descriptions. Refer to figure 6-1 for the Mainframe 
commands syntax diagram. 

Figure 6-1. Mainframe Commands Syntax Diagram 

HP 16500A/16501A 
Programming Reference 

Mainframe Commands 
6-1 



value = integer, 0 to 65535. 
module = integer, -2 to 5 (HP 16500A only), or-2 to 10 (HP 1650lA connected) 
menu = integer. Refer to the individual programming manuals for each module and the system for 
specific menu number definitions. 
enable_value = integer, 0 to 255. 
index = integer, 0 to 5. 
color = integer, 0 to 7. Color number 0 cannot be changed. 
hue = integer, 0 to 100. 
sat = integer, 0 to 100. 
lum = integer, 0 to 100. 

Figure 6-1. Mainframe Commands Syntax Diagram (Continued) 

Mainframe Commands 
6-2 

HP 16500A/16501A 
Programming Reference 



BEEPer 

Command Syntax: 

Examples: 

Query Syntax: 

Returned Format: 

HP 16500A/16501A 
Programming Reference 

BEEPer 

command/query 

The BEEPer command sets the beeper mode, which turns the beeper 
sound of the instrument on and off. When BEEPer is sent with no 
argument, the beeper will be sounded without affecting the current 
mode. The query returns the mode currently selected. 

:BEEPer [{ONI1} I {OFFIO}] 

OUTPUT XXX;-:BEEPER­
OUTPUT XXX;-:BEEP ON-

: BEEPer? 

[:BEEPer] {110}<NL> 

10 DIM Mode$[100] 
20 OUTPUT XXX;-:BEEPER?-
30 ENTER XXX; ModeS 
40 PRINT ModeS 
so END 

Mainframe Commands 
6-3 



CAPability 

CAPability query 

The CAPability query returns the HP-SL and lower level capability sets 
implemented in the device. 

Table 6-1 lists the capability sets implemented in the HP 16500A 

Query Syntax: :CAPability? 

Returned Format: (:CAPability) IEEE488,1987,SH1,AH1,T5,L4,SR1,RL1,PP1,DC1,DT1,CO,E2<NL> 

Example: 10 DIM ResponseS[100] 

Mnemonic 

SH 

AH 

T 

L 

SR 

RL 

PP 

DC 

DT 

C 

E 

Mainframe Commands 
6-4 

20 OUTPUT XXX;·:CAPABIUTY?· 
30 ENTER XXX; ResponseS 
40 PRINT ResponseS 
so END 

Table 6-1. HP 16500A Capability Sets 

Capability Name 

Source Handshake 

Acceptor Handshake 
I 

Talker (or TE - Extended Talker) I 
Listener (or LE - Extended Listener) 

Service Request 

Remote Local 

Parallel Poll 

Device Clear 

Device Trigger 

Any Controller 

Electrical Characteristic 

Implementation 

SHI 

AHI 

T5 

L4 

SRI 

RLI 

PPI 

DCI 

DTI 

CO 

E2 

HP 16500A/16501A 
Programming Reference 



CARDcage 

CARDcage 

query 

The CARD cage query returns a series of integers which identifies the 
modules that are installed in the mainframe. For an HP 16500A alone, 
the fust five numbers returned are the card identification numbers (a 
-1 means no card is in the slot). The remaining five numbers returned 
indicate the module assignment for each card. The possible values for 
the module assignment are 0, 1, 2, 3, 4, and 5 where 0 indicates an 
empty slot or the module software is not recognized or not loaded. 
1 .. .5 indicates the number of the slot in which the master card for this 
card is located. 

When an HP 1650lA is connected., the first ten numbers returned are 
the card identification numbers (a -1 means no card is in the slot). The 
remaining ten numbers returned indicate the module assignment for 
each card. The possible values for the module assignment are 0 
through 10 where 0 indicates an empty slot or the module software is 
not recognized or not loaded. 1 ... 10 indicates the number of the slot in 
which the master card for this card is located. 

Table 6-2 lists the card identification numbers for the fust five 
parameters and their associated cards. 

Query Syntax: :CAROcage? 

Returned Format: [:CAROcage] 

where: 

< 10>. < 10 >. < 10>. < 10 >. < 10>.[ < 10 >. < 10>. < 10>. < 10>. < 10>.] 
< assign> • < assign> • < assign> • < assign> • < assign> 
[. < assign> • < assign> • < assign> • < assign> • < assign> ] < NL > 

< 10> :: = card identification number Qnteger) 

< assign> :: = module assignment Qnteger) 

Example: 

HP 16500A/16501A 
Programming Reference 

10 DIM Card$[100] 
20 OlJ'TPUT XXX;·:CARDCAGE?· 
30 ENTER XXX;Card$ 
40 PRINT Card$ 
SOENO 

Mainframe Commands 
6-5 



CARDcage 

d 
Note IIiI 

Mainframe Commands 
6-6 

Table 6-2. Card Identification Numbers 

IdNumber Card 

31 HP 16510A or B Logic Analyzer Card 

1 HP 16515A 1 GHz Timing Master Card 

2 HP 16516A 1 GHz Timing Expansion Card 

21 HP 16520A Pattern Generator Master Card 

22 HP 16521A Pattern Generator Expansion Card 

11 HP 16530A Oscilloscope Timebase Card 

U HP 16531A Oscilloscope Acquisition Card 

40 HP 16540A Logic Analyzer Card 

41 HP 16541A Logic Analyzer Card 

Refer to the individual programming manuals for each module for 
cards not listed in table 6-2. 

HP 16500A/16501A 
Programming Reference 



CESE 

CESE 

(Combined Event Status Enable) command/query 

The CESE command sets the Combined Event Status Enable register. 
This register is the enable register for the CESR register and contains 
the combined status of all of the MESE (Module Event Status Enable) 
registers of the HP 16500A. The query returns the current setting. 

Table 6-3 lists the bit values for the CESE register. 

Command Syntax: :CESE < value> 

where: 

<value>:: = 0 to 65535 Qnteger) 

Example: OUTPUT XXX;·:CESE 32" 

Query Syntax: :CESE? 

Returned Format: [:CESE] <value> <NL> 

HP 16500A/16501A 
Programming Reference 

Example: 

10 DiM Setting$[100] 
20 OUTPUT XXX;·:CESE?· 
30 ENTER XXX; Setting$ 
40 PRINT Setting$ 
so END 

Mainframe Commands 
6-7 



CESE 

Table 6-3. HP 16500A Combined Event Status Enable Register 

Bit 

11-15 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

Mainframe Commands 
6-8 

Weight 

1024 

512 

256 

128 

64 

32 

16 

8 

4 

2 

1 

Enables 

not used 

Module in slot J 

Module in slot I 

Module in slot H 

Module in slot G 

Module in slot F 

Module in slot E 

Module in slot D 

Module in slot C 

Module in slot B 

Module in slot A 

Intermodule 

HP 16500A/16501A 
Programming Reference 



CESR 

CESR 

(Combined Event Status Register) query 

The CESR query returns the contents of the Combined Event Status 
register. This register contains the combined status of all of the 
MESRs (Module Event Status Registers) of the HP 16500A. Table 6-4 
lists the bit values for the CESR register. 

Query Syntax: :CESR? 

Returned Format: [:CESR] <value> < NL> 

where: 

<value> :: = 0 to 65535 Onteger) 

Example: 

HP 16500A/16501A 
Programming Reference 

10 D!M Event$[100] 
20 OUTPUT XXX;-:CESR?-
30 ENTER XXX;EventS 
40 PRINT EventS 
50 END 

Mainframe Commands 
6-9 



CESR 

Table 6-4. HP 16500A Combined Event Status Register 

Bit Bit Weight 

11-15 

10 1024 

9 512 

8 256 

7 128 

6 64 

5 32 

4 16 

3 8 

2 4 

1 2 

0 1 

Mainframe Commands 
6-10 

Bit Name 

ModuleJ 

Module I 

I 
ModuleH 

ModuleG 

ModuleF 

ModuleE 

ModuleD 

ModuleC 

ModuleB 

Module A 

Intermodule 

I 

Condition 

o = not used 

o = No new status 
1 = Status to report 

o = No new status 
1 = Status to report 

o = No new status 
1 = Status to report 

o = No new status 
1 = Status to report 

o = No new status 
1 = Status to report 

o = No new status 
1 = Status to report 

o = No new status 
1 = Status to report 

o = No new status 
1 = Status to report 

o = No new status 
1 = Status to report 

o = No new status 
1 = Status to report 

o = No new status 
1 = Status to report 

HP 16500A/16501A 
Programming Reference 



EOI 

Command Syntax: 

Example: 

Query Syntax: 

Returned Format: 

Example: 

HP 16500A/16501A 
Programming Reference 

EOI 

(End Or Identify) command/query 

The EOI command specifies whether or not the last byte of a reply 
from the instrument is to be sent with the EOI bus control line set true 
or not. H EOI is turned off, the box will no longer be sending 488.2 
compliant responses. The query returns the current status of EO!. 

:EOI HONI1}1{OFFIO}} 

:EOI? 

[:EOI] {110} < NL> 

10 DIM Mode$[100] 
20 OUTPUT XXX;·:EOI?· 
30 ENTER XXX; Mode$ 
40 PRINT Mode$ 
so END 

Mainframe Commands 
6-11 



LER 

LER 

Query Syntax: 

Returned Format: 

Example: 

Mainframe Commands 
6-12 

(LCL Event Register) query 

The LER query allows the LCL Event Register to be read. After the 
LCL Event Register is read, it is cleared. A one indicates a 
remote-to-Iocal transition has taken place. A zero indicates a 
remote-to-Iocal transition has not taken place. 

:LER? 

[:LER] {O 11} < NL> 

10 DIM Event$[100] 
20 OUTPUT XXX;·:LER?· 
30 ENTER XXX; Event$ 
40 PRINT Event$ 
so END 

HP 16500A/16501A 
Programming Reference 



LOCKout 

Command Syntax: 

Example: 

Query Syntax: 

Returned Format: 

Example: 

HP 16500A/16501A 
Programming Reference 

LOCKout 

command/query 

The LOCKout command locks out or restores front panel operation. 
When this function is on, all controls (except the power switch) are 
entirely locked out. The LOCKout query returns the current status of 
the LOCKout command. 

:LOCKout {{ONI1} I{OFFIO}} 

OUTPUT XXX;-:LOCKOUT ON-

: LOCKout? 

[:LOCKout] {011}<NL> 

10 DIM Status$[100] 
"" "I ITI">I IT VVV._.1 ""VI"'\IIT"_ 
'U VU I ru I ""'" .I-V\.Ir\VU I r 

30 ENTER XXX;Status$ 
40 PRINT Status$ 
so END 

Mainframe Commands 
6-13 



MENU 

MENU command/query 

The MENU command puts a menu on the display. The rust parameter 
specifies the desired module. The optional second parameter specifies 
the desired menu in the module (defaults to 0). 

Command Syntax: :MENU < module> [. < menu> ] 

where: 

<module>:: = selects module or system (lnteger-2 to 5 for HP 16500A only). (Integer -2 to 10 
with HP 16501A connected) 

< menu> :: = selects menu (Integer) 

Example: OUTPUT XXX;-:MENU 0.1-

For the rust parameter: 

° -System/lntermodule 
1 - Module in slot A 
2 - Module in slot B 
3 - Module in slot C 
4 - Module in slot D 
5 - Module in slot E 

!~j.~~~1~;~~~::8::::!:!:1:i: 
~1~:;;~I:~!e;~~~~~d --;~~'~!~~!;r~.~;' 

:!:!:·i·:!q:.±:M~ill¢::~~gR!::·: 
-1 - Software option 1 
-2 - Software option 2 

For the System: 

MENU 0,0 
MENU 0,1 
MENU 0,2 
MENU 0,3 
MENU 0,4 
MENU 0,5 

- System Configuration menu 

Mainframe Commands 
6-14 

- Rear disc menu 
- Front disc menu 
- Utilities menu 
- Test menu 
- Intermodule menu 

HP 16500A/16501A 
Programming Reference 



Note ,. 

Query Syntax: 

Returned Format: 

Example: 

HP 16500A/16501A 
Programming Reference 

MENU 

Refer to the individual programming manuals for each module for 
specific menu number defmitions for each module. 

The MENU query returns the current menu selection. 

:MENU? 

[:MENU] < module>, < menu> < NL> 

10 DIM Response$[100] 
20 OUTPUT XXX;·:MENU?· 
30 ENTER XXX; Response$ 
40 PRINT Response$ 
so END 

Mainframe Commands 
6-15 



MESE<N> 

MESE<N> (Module Event Status Enable) command/query 

The MESE command sets the Module Event Status Enable register. 
This register is the enable register for the MESR register. The < N > 
index specifies the module, and the parameter specifies the enable 
value. For the HP 16500A only, the <N> index 1 .. .5 refers to module 
in slot A ... E and 0 refers to intermodule. When an HP 1650lA is 
connected, the <N> index 1 ... 10 refers to module is slot A .. J. The 
query returns the current setting. 

Refer to table 6-5 and the individual programming manuals for each 
module for information about the Module Event Status Enable register 
bits, bit weights, and what each bit masks. 

Command Syntax: :MESE<N> <enable_value> 

where: 

< N >:: = integer 0 through 5 (HP 16500A only integer), integer 0 through 10 (HP 16501A 
connected). 

< enable_value> :: = 0 through 255 ~nteger) 

Example: 

Query Syntax: 

Returned Format: 

Example: 

Mainframe Commands 
6-16 

OUTPUT XXX;-:MESE1 3-

:MESE<N>? 

[:MESE<N>] <enable_value> <NL> 

10 DIM Event$[100] 
20 OUTPUT XXX;-:MESE1?-
30 ENTER 707; Event$ 
40 PRINT Event$ 
so END 

HP 16500A/16501A 
Programming Reference 



MESE<N> 

Table 6-5. HP 16500A Mainframe (Intermodule) Module Event 
Status Enable Register 

Bit 

7 

6 

5 

4 

3 

2 

1 

0 

HP 16500A/16501A 
Programming Reference 

Weight 

128 

84 

32 

16 

8 

4 

2 

1 

Enables 

not used 

not used 

not used 

not used 

not used 

not used 

RNT - Intermodule Run Until Satisfied 

MC - Intermodule Measurement Complete 

Mainframe Commands 
6-17 



MESR<N> 

MESR<N> (Module Event Status Register) query 

The MESR query returns the contents of the Module Event Status 
register. The < N > index specifies the module. For the HP 16500A 
only, 1 .. .5 refers to module in slot A ... E and 0 refers to intermodule. 
When an HP 1650lA is connected, the < N > index 1 ... 10 refers to 
module is slot A .. J 

Refer to table 6-6 and the individual programming manuals for each 
module for information about the Module Event Status Register bits 
and their bit weights. 

Query Syntax: :MESR<N>? 

Returned Format: [:MESR<N>] <enable_value> <NL> 

where: 

< N >:: = integer 0 through 5 (HP 16500A only integer), integer 0 through 10 (HP 16501A 
connected). 

< enable_value> :: = 0 through 255 Onteger) 

Example: 

Mainframe Commands 
6-18 

10 DIM EventS[100] 
20 OUTPUT XXX;":MESR1?" 
30 ENTER XXX; eventS 
40 PRINT EventS 
50 END 

HP 16500A/16501A 
Programming Reference 



MESR<N> 

Table 6-6. HP 16500A Mainframe Module Event Status Register 

Bit Bit Weight 

7 128 

6 64 

5 32 

4 16 

3 8 

2 4 

1 2 

0 1 

HP 16500A/16501A 
Programming Reference 

Bit Name 

RNT 

Me 

Condition 

0= not used 

0= not used 

o = not used 

o = not used 

o = not used 

o = not used 

o = Intermodule Run until not satisfied 
1 = Intermodule Run until satisfied 

o = Intermodule Measurement not satisfied 
." .- . 

1 = Intermodule Measurement sausoea 

Mainframe Commands 
6-19 



RMODe 

RMODe 

I 
Note (I 

Command Syntax: 

Example: 

Query Syntax: 

Returned Format: 

Example: 

Mainframe Commands 
6-20 

command/query 

The RMODe command specifies the run mode for the selected module 
(or Intermodule). The query returns the current setting. If the 
selected module is in the intermodule configuration, then the 
"intermodule" run mode will be set by this command. 

After specifying the run mode, use the STARt command to start the 
acquisition. 

:RMODe {SINGle I REPetitive} 

OUTPUT XXX;-:RMODE SINGlE" 

:RMODe? 

[:RMODe] {SINGle I REPetitive} < NL > 

10 DIM Mode$[100] 
20 OUTPUT XXX;-: RMODE?" 
30 ENTER XXX; ModeS 
40 PRINT ModeS 
so END 

HP 16500A/16501A 
Programming Reference 



SELect 

SELect 

command/query 

The SELect command selects which module (or system) will have 
parser control. The appropriate module (or system) must be selected 
before any module (or system) specific commands can be sent. 
SELECf 0 selects System, SELECf 1 through 5 selects modules A 
through E in an HP 16500A only. SELECf 1 through 10 selects 
modules A through J when an HP 1650lA is connected. -1 and -2 
selects software options 1 and 2 respectively. The query returns the 
current module selection. 

Figure 6-2 shows the command tree for the SELect command. 

Note" SELect defaults to System (0) at power up. 

Command Syntax: :SELect < module> 

where: 

<module>:: = integer -2 through 5 (HP 16500A only). integer -2 through 10 (HP 16501A 
connected). 

Example: 

Query Syntax: 

Returned Format: 

Example: 

HP 16500A/16501A 
Programming Reference 

OUTPUT XXX;·:SELECT O· 

:SELect? 

[:SELect1 <module> <NL> 

10 DIM Module$[l00] 
20 OUTPUT XXX;·:SELECT?· 
30 ENTER XXX; Module$ 
40 PRINT Module$ 
50 END 

Mainframe Commands 
6-21 



SELect 

:SELECT 

0-- (SELECTS SYSTEM/INTERMOOULE) 

1-- (SELECTS MODULE IN SLOT A) 

2 -- (SELECTS MODULE IN SLOT B) 

3-- (SELECTS UODULE IN SLOT C) 

.. -- (SELECTS t.4OOULE IN SLOT D) 

Only available when an 
HP 16501A is connected __ 0 

Note ,. 

Mainframe Commands 
6-22 

-z- (SELECTS OPTION Z) 

'e500847 

Figure 6-2. Select Command Tree 

When a module is selected, the parser recognizes the module's 
commands and the System/Intermodule commands. When SELECf 0 
is used, only the System/Intermodule commands are reco~d by the 
parser. 

HP 16500A/16501A 
Programming Reference 



SETColor 

SETColor command/query 

The SETColor command is used to change one of the color selections 
on the CRT, or to return to the default screen colors. Four parameters 
are sent with the command to change a color: 

• Color Number (first parameter), 
• Hue (second parameter), 
• Saturation (third parameter), and 
• Luminosity (last parameter). 

Command Syntax: :SETColor {<color>,<hue>,<sat>,<lurn> I DEFault} 

where: 

<color>:: = 0 to 7 ~nteger) 

<hue>::= Oto 100 (Integer) 

<sat>::= Oto 100 ~nteger) 

< lurn >:: = 0 to 100 (Integer) 

d Color Number 0 cannot be changed. 
Note .. 

Example: OUTPUT XXX;-:SETCOLOR 3,60,100,60-
OUTPUT XXX;-:SETC DEFAUL,.. 

The SETColor query returns the hue, saturation, and luminosity values 
for a specified color. 

Query Syntax: :SETColor? <color> 

Returned Format: [:SETColor] <color>,<hue>,<sat>,<lurn> <NL> 

Example: 10 DIM Color$[1oo] 

HP 16500A/16501A 
Programming Reference 

20 OUTPUT XXX;-: SETCOLOR? 3-
30 Et-..'TER XXX;ColorS 
40 PRINT Color$ 
so END 

Mainframe Commands 
6-23 



STARt 

STARt 

Note ,. 

Command Syntax: 

Example: 

Mainframe Commands 
~24 

command 

The STARt command starts the selected module (or Intermodule) 
running in the specified run mode (see RMODe). If the specified 
module is in the Intermodule configuration, then the "Intermodule" run 
will be started. 

The STARt command is an Overlapped Command. An Overlapped 
Command is a command that allows execution of subsequent 
commands while the device operations initiated by the Overlapped 
Command are still in progress. For more information, refer to the 
·OPC and ·WAI commands in the chapter "Common Commands." 

: STARt 

OUTPUT XXX;·:ST ART" 

HP 16500A/16501A 
Programming Reference 



STOP 

Note '" 

Command Syntax: 

Example: 

HP 16500A/16501A 
Programming Reference 

STOP 

command 

The STOP command stops the selected module (or Intermodule). If 
the specified module is in the Intermodule configuration, then the 
"Intermodule" run will be stopped. 

The STOP command is an Overlapped Command. An Overlapped 
Command is a command that allows execution of subsequent 
commands while the device operations initiated by the Overlapped 
Command are still in progress. For more information, refer to the 
·OPC and ·W AI commands in the chapter "Common Commands." 

:STOP 

Mainframe Commands 
6-25 



7 
~V~T~~ ~ • • "S •• S+,ft .... 
i;l1i;l1~11I ~UU J ,,, ••• 

Introduction SYSTem subsystem commands control functions that are common to 
all modules, including formatting query responses and enabling reading 
and writing to the advisory line of the instrument. Refer to figure 7-1 
for the System Subsystem commands syntax diagram. 

Figure 7-1. System Subsystem Commands Syntax Diagram 

HP 16500A/16501A 
Programming Reference 

System Subsystem 
7-1 



block_data = data in IEEE 488.2 # fonnat. 
string = string of up to 68 alphanumeric chfJl'acters. 

Figure 7-1. System Subsystem Commands Syntax Diagram (Continued) 

System Subsystem 
7-2 

HP 16500A/16501A 
Programming Reference 



DATA 

I 
Note II 

Command Syntax: 

Query Syntax: 

Returned Format: 

Definition of 
Block Data 

where: 

DATA 

command/query 

The DATA command transmits the data part of the setup 
configuration ofthe selected module in block data format. The DATA 
query returns the current contents of the acquisition buffer from the 
selected module to the controller. 

The DATA command is only used in conjunction with modules that are 
loaded in the mainframe. The System does not contain any acquired 
data. 

: SYSTem: DATA <block data in:# format> 

: SYSTem: DATA? 

[:SYSTem:DATA] <block data in:# format> <NL> 

Block data in the # format is made up of a block length specifier and a 
variable number of sections. 

< block length specifier> < section 1 > < section 2 > 

The block length specifier is defmed as follows: 

:#8< length > 

< length> :: = the total length of all sections in byte format (must be represented with 8 digits) 

HP 16500A/16501A 
Programming Reference 

System Subsystem 
7-3 



DATA 

where: 

For example, if the total length of the block (all the sections) is 144 
bytes, the block length specifier would be "#800000144" since the 
length must be represented with 8 digits. 

Sections consist of a section header followed by the section data as 
follows: 

< section header> < section data > 

< section header> :: = 10 bytes for the section name 
1 byte reserved (always 0) 

Note ,. 

1 byte for the module 10 number (see table 7-1) 
4 bytes for the length of the section data in bytes 

The section data format varies for each section and may be any length. 

The total length of a section is 16 (for the section header) plus the 
length of the section data. Thus, when calculating the length of a block 
of configuration data, care should be taken to not forget to add the 
length of the section headers. 

HP-IB Example: 10 DIM Block$[32000] 
20 DIM Specifier$[2] 

!allocate enough memory for block data 

30 OUTPUT XXX;-:EOI ON-
40 OUTPUT XXX;-:SYSTEM:HEAD OFP 
50 OUTPUT XXX;-:SELECT 4-
60 OUTPUT XXX;-:SYSTEM:DATA?-
70 ENTER xxx USING -#,2A-;Specifier$ 
80 ENTER xxx USING -# ,SD-;Blocklength 
90 ENTER xxx USING --K";Block$ 
100 END 

!select module 
lsend data query 
tread in #S 
tread in block length 
tread in data 

System Subsystem 
7-4 

HP 16500A/16501A 
Programming Reference 



DATA 

Table 7-1. Card Identification Numbers 

IDnumber 

31 

1 

2 

21 

22 

11 

12 

40 

41 

HP 16500A/16501A 
Programming Reference 

Card 

HP 16510A or B Logic Analyzer Card 

HP 16515A 1 GHz Timing Master Card 

HP 16516A 1 GHz Timing Expansion Card 

HP 16520A Pattern Generator Master Card 

HP 16515A Pattern Generator Expansion Card 

HP 16530A Oscilloscope Timebase Card 

HP 16531A Oscilloscope Acquisition Card 

HP 16540A Logic Analyzer Card 

HP 16541A Logic Analyzer Card 

System Subsystem 
7-5 



DSP 

DSP (Display) command 

The DSP command writes the specified quoted string to a device 
dependent portion of the instrument display. 

Command Syntax: :SYSTem:DSP <string> 

where: 

<string>:: = string of up to 68 alphanumeric characters 

Example: 

System Subsystem 
7-6 

OUTPUT XXX;-:SYSTEM:DSP 'The message goes here'-

HP 16500A/16501A 
Programming Reference 



ERRor 

ERRor 

query 

The ERRor query returns the oldest error from the error queue. The 
optional parameter determines whether the error string should be 
returned along with the error number. If no parameter is received, or 
if the parameter is NUM, then only the error number is returned. If 
the value of the parameter is STRing, then the error should be returned 
in the following form: 

< error number> , < error message (string) > 

A complete list of error messages for the HP 16500A mainframe is 
shown in appendix C. If no errors are present in the error queue, a 
zero (No Error) is returned. 

Query Syntax: :SYSTem:ERRor? [NUMeric I STRing] 

Returned Formats: Numeric: 

[:SYSTem:ERRor) <error number> < NL> 

String: 

[:SYSTem:ERRor] <error number>, <string > <NL> 

where: 

< error number> :: = integer 

Examples: Numeric: 

HP 16500A/16501A 
Programming Reference 

10 OUTPUT XXX;-:SYSTEM:ERROR?-
20 ENTER XXX; Numeric 
30 PRINT Numeric 
40 END 

String: 

10 DIM String$[100] 
20 OUTPUT XXX;-: SYST: ERR? STRING-
30 ENTER XXX;String$ 
40 PRINT String$ 
so END 

System Subsystem 
7-7 



HEADer 

HEADer 

Command Syntax: 

Example: 

Query Command: 

Returned Format: 

Example: 

I~I 
Note" 

System Subsystem 
7-8 

command/query 

The HEADer command tells the instrument whether or not to output a 
header for query responses. When HEADer is set to ON, query 
responses will include the command header. 

The HEADer query returns the current state of the HEADer 
command. 

:SYSTem:HEADer {{ONI1}I{OFFI0}} 

OUTPUT XXX;·:SYSTEM:HEADER ON-

: SYSTem: HEADer? 

[:SYSTem:HEADer] {110} < NL> 

10 DIM Mode$[l00] 
20 OUTPUT XXX;a:SYSTEM:HEADER?-
30 ENTER XXX;Mode$ 
40 PRINT Mode$ 
so END 

Headers should be turned off when returning values to numeric 
variables. 

HP 16500A/16501A 
Programming Reference 



LONGform 

Command Syntax: 

Example: 

Query Syntax: 

Returned Format: 

Example: 

HP 16500A/16501A 
Programming Reference 

LONGform 

command/query 

The LONGform command sets the longform variable which tells the 
instrument how to format query responses. If the LONGform 
command is set to OFF, command headers and alpha arguments are 
sent from the instrument in the abbreviated form. If the the 
LONG form command is set to ON, the whole word will be output. 
This command has no affect on the input data messages to the 
instrument. Headers and arguments may be input in either the 
longform or shortform regardless of how the LONGform command is 
set. The query returns the status of the LONGform command. 

:SYSTem:LONGform {{ON 11} HOFF 1 O}} 

OUTPUT XXX;-:SYSTEM:LONGFORM ON-

: SYSTem: LONGform? 

[:SYSTem:LONGform] {110} < NL> 

10 DIM Mode$[100] 
20 OUTPUT XXX;-:SYSTEM:LONGFORM?-
30 ENTER XXX; Mode$ 
40 PRINT Mode$ 
so END 

System Subsystem 
7-9 



PRINt 

PRINt 

I 
Note II 

Command Syntax: 

Example: 

Query Syntax: 

I 
Note. 

HP-IB Example: 

System Subsystem 
7-10 

command/query 

The PRINt command initiates a print of the screen or listing buffer 
over the current PRINTER communication interface. The query sends 
the screen or listing buffer data over the current CONTROLLER 
communication interface. 

The print query should NOT be sent in conjunction with any other 
command or query on the same command line. 

The print query never returns a header. Also, since response data from 
a print query may be sent directly to a printer without modification, the 
data is not returned in block mode. 

:SYSTem:PRINt {SCReen I ALL} 

OUTPUT XXX;-:SYSTEM:PRINT SCREEN-

SYSTem:PRINt? {SCReen I ALL} 

PRINT? ALL is only available in menus that have the "Print All" option 
available on the front panel. For more information, refer to the 
individual front-panel manuals for each module. 

10 OUTPUT 707;-:SYSTEM:PRINT? SCREEN-
20 SEND 7;UNT UNL 
30 SEND7;USTEN 1 
40 SEND 7;T AU< 7 
50 SEND 7;DATA Idrop ATN line 
60 PRINT "WAITING FOR PRINT-
70 END 

HP 16500A/16501A 
Programming Reference 



SETup 

Command Syntax: 

Query Syntax: 

Returned Format: 

Definition of 
Block Data 

where: 

SETup 

command/query 

The SETup command configures the selected module (or 'System) as 
defined by the block of data sent by the controller. The query returns a 
block of data that contains the current configuration for the selected 
module (or System) to the controller. 

: SYSTem: SETup <block data in /I format> 

: SYSTem: SETup? 

[:SYSTem:SETup] <block data in /I format> < NL> 

Block data in the # format is made up of a block length specifier and a 
variable number of sections. 

< block length specifier> < section 1 > < section 2 > 

The block length specifier is defined as follows: 

#8 < length > 

< length> :: = the total length of all sections in byte format (must be represented with 8 digits) 

where: 

For example, if the total length of the block (all the sections) is 144 
bytes, the block length specifier would be "#800000144" since the 
length must be represented with 8 digits. 

Sections consist of a section header followed by the section data as 
follows: 

< section header> < section data > 

<section header>:: = 10 bytes fOi the section na .. Tie 
1 byte reserved (always 0) 

HP 16500A/16501A 
Programming Reference 

1 byte for the module 10 number (see table 7-2) 
4 bytes for the length of the section data in bytes 

System Subsystem 
7-11 



SETup 

I 
Note. 

HP-IB Example: 

System Subsystem 
7-12 

The section data format varies for each section and may be any length. 

The total length of a section is 16 (for the section header) plus the 
length of the section data. Thus, when calculating the length of a block 
of configuration setup data, care should be taken to not forget to add 
the length of the section headers. 

10 DIM 81ock$[32000] 
20 DIM Specifier$[2] 
30 DIM 81ocklength$[8] 
40 OUTPUT XXX;":EOI ON" 
50 OUTPUT XXX;":SYSTEM:HEAD OFP 
60 OUTPUT XXX;":SELECT 0" 
70 OUTPUT XXX;":SYSTEM:SETUP?" 
80 ENTER XXX USING "#,2A";Specifier$ 
90 ENTER XXX USING "# ,SA";Blocklength$ 
100 ENTER XXX USING "-I<";Block$ 
110 810cklength = IVAL(Blocklength$,10) 
200 I 
210 I Send setup back to the HP 16500A 
220 ! 

!allocate enough memory for block data 

!select System 
!send setup query 
tread in #8 
tread in block length 
tread in data 
!convert block string to integer 

230 OUTPUT XXX USING "#,14A";":SYSTEM:SETUP" 
240 OUTPUT XXX USING "#,2A";Specifier$ 
250 OUTPUT XXX USING "#,SA";Blocklength$ 
260 OUTPUT XXX USING ""&VAL$(Blocklength)&"A";Block$ 

300 END 

HP 16500A/16501A 
Programming Reference 



IDNumber 

31 

1 

2 

21 

22 

11 

12 

40 

41 

HP 16500A/16501A 
Programming Reference 

SETup 

Table 7-2. Card Identification Numbers 

Card 

HP 16510A or B Logic Analyzer Card 

HP 16515A 1 GHz Timing Master Card 

HP 16516A I GHz Timing Expansion Card 

HP 16520A Pattern Generator Master Card 

HP 16521A Pattern Generator Expansion Card 

HP 16530A Oscilloscope Timebase Card 

HP 16531A Oscilloscope Acquisition Card 

HP 16540A Logic Analyzer Card 

HP 16541A Logic Analyzer Card 

System Subsystem 
7-13 



MMEMory Subsystem 

Introduction 

I 
Note" 

MMEMory (mass memory) subsystem commands provide access to 
both internal disc drives. Refer to figure 8-1 for the MMEMory 
Subsystem commands syntax diagram. 

< msus > refers to the mass storage unit specifier. INTernal1 specifies 
the front disc drive and INTernalO specifies the rear disc drive. 

If you are not going to store information to the configuration disc, or if 
the disc you are using contains information you need, it is advisable to 
write protect your disc. This will protect the contents of the disc from 
accidental damage due to incorrect commands, etc. 

Figure 8-1. Mmemory Subsystem Commands Syntax Diagram 

HP 16500A/16501A 
Programming Reference 

Mmemory Subsystem 
8-1 



Figure 8-1. Mmemory Subsystem Commands Syntax Diagram (Continued) 

Mmemory Subsystem 
8-2 

HP 16500A/16501A 
Programming Reference 



auto_file = string of up to 10 alphanumeric characters. 
msus = INTemalllINTemalO 
name = string of up to 10 alphanumeric characters. 
description = string oj up to 32 alphanumeric characters. 
type = integer, refer to table 8-l. 
block_data = data in IEEE 488.2 # Jonnat. 
ia_name = string of up to 10 alphanumeric characters. 
new_name = string oj up to 10 alphanumeric characters. 

iSSWiSXi5 

module = integer, 1 to 5 (HP 16500A only), or 1 to 10 (HP 1650lA connected). 

Figure 8-1. Mmemory Subsystem Commands Syntax Diagram (Continued) 

HP 16500A/16501A 
Programming Reference 

Mmemory Subsystem 
8-3 



AUToload 

AUToload command/query 

The AUToload command controls the autoload feature which 
designates a set of configuration fIles to be loaded automatically the 
next time the instrument is turned on. The OFF parameter (or 0) 
disables the autoload feature. A string parameter may be specified 
instead to represent the desired autoload fIle. If the fIle is on the 
current < msus > , the autoload feature is enabled to the specified fIle. 

The AUToload query returns 0 if the autoload feature is disabled. If 
the autoload feature is enabled, the query returns a string parameter 
that specifies the current autoload ftle. The appropriate slot designator 
"_X" is included in the ftlename. "x" refers to the slot designator A ... E 
for the corresponding module for an HP 16500A alone. When an HP 
1650lA is connected "X" refers to slot designator A .. J. If the slot 
designator is " _ 'l" the fIle is for all modules. 

Command Syntax: :MMEMory:AUToload {{OFFIO} I{ <auto_file> }}[,<msus» 

where: 

< auto_file> :: = string of up to 10 alphanumeric characters 

< msus > :: = {INTemal11INTemalO} 

Examples: 

Query Command: 

Returned Format: 

Example: 

Mmemory Subsystem 
8-4 

OUTPUT XXX;-:MMEMORY:AUTOLOAO OFP 
OUTPUT XXX;-:MMEMORY:AUTOLOAO 'ALE1 A'-
OUTPUT XXX;":MMEMORY:AUTOLOAO 'ALE2: _' ,INTERNAL 1-

:MMEMory:AUToload? 

[:MMEMory:AUToload) {Ol <auto_file> },<msus> <NL> 

10 DIM Auto_status$[1(0) 
20 OUTPUT XXX;·:MMEMORY:AUTOLOAD?-
30 ENTER XXX;Auto status$ 
40 PRINT Auto statuSs 
so END -

HP 16500A/16501A 
Programming Reference 



CATalog 

CATalog 

query 

The CATalog query returns the directory of the currently selected disc 
in block data format. The directory consists of a 51 character string for 
each file on the disc. Each file entry is formatted as follows: 

-NNNNNNNNNN I I I I I I I DOOOODDDDDDDODODODODOOOOODOODDOO· 

where N is the filename, T is the file type ( a number), and D is the file 
descriptor. If the < msus > is not specified, the last disc drive specified 
by the MSI command will be used. 

For more information on block data format, refer to the section 
"DefInite-Length Block Response Data" in the chapter 1. 

Query Syntax: :MMEMory:CATalog? [<msus>] 

where: 

< msus >:: = {INTernallIINTernaIO} 

Returned Format: [:MMEMory:CATalog] <block data> 

where: 

<block data>:: = <filename> <file type> <file description> •.. 

Example: 10 DIM Rle$[51] 

HP 16500A/16501A 
Programming Reference 

20 OIM Specifier$[2] 
30 OUTPUT XXX;-:SYSTEM:HEAD OFP 
40 OUTPUT XXX;-:MMEMORY:CATALOG? INTERNAL1-!send catalog query 
50 ENTER XXX USING -#,2A-;Specifier$ tread in #8 
60 ENTER XXX USING -#,8D·;Length !read in length 
70 FOR 1= 1 TO Length STEP 51 tread and print each 

!file in the directory 
80 ENTER XXX USING ·#,51A·;Rle$ 
90 PRINT Rle$ 
100 NEXT I 
110 ENTER XXX USING -A·;Specifier$ 
120 END 

tread in final line feed 

Mmemory Subsystem 
8-5 



COpy 

COpy command 

The COpy command copies one ftle to a new ftle or an entire disc's 
contents to another disc. The two < name> parameters are the 
ftlenames. The first pair of parameters specifies the source ftle. The 
second pair specifies the destination ftle. An error is generated if the 
source ftle doesn't exist, or if the destination ftle already exists. 

H the ftlename is not specified for both the source and destination, then 
the entire contents of the source are transferred to the destination 
(same as the Duplicate Disc front panel operation). The previous 
contents of the destination media are destroyed. 

H the < msus > is not specified, the last disc drive specified by the MSI 
command will be used. 

Command Syntax: :MMEMory:COPY [ < name> ][, < msus > ],[ < name> ][, < msus > ] 

where: 

< name>:: = string of up to 10 alphanumeric characters 

< msus > :: = {INTemal11INTernaI0} 

Examples: To copy the contents of "FILE I " to "FILE2" when both mes are on a 
disc on the last disc drive specified by the MSI command: 

Mmemory Subsystem 
8-6 

OUTPUT XXX;·:MMEMORY:COPV 'ALE1', 'ALE2'-

To copy the contents of "FILEI" on the rear disc drive to "FILE2" on 
the front disc drive: 

OUTPUT XXX;-:MMEM:COPY 'ALE1' ,INTERNALO, 'ALE2' ,INTERNAL 1-

To copy the contents of "FILEI" on the last disc drive specified by the 
MSI command to "FILE2" on the rear disc drive: 

OUTPUT XXX;·:MMEMORY:COPY 'ALE1' ,'ALE2',INTERNAlO" 

To duplicate the contents of the disc in the rear disc drive to a disc in 
the front disc drive: 

OUTPUT XXX;-:MMEM:COPY INTERNALO,INTERNAL1-

HP 16500A/16501A 
Programming Reference 



DOWNload 

DOWNload 

command 

The DOWNload command downloads a file to the specified mass 
storage device. The < name> parameter specifies the filename, the 
< description> parameter specifies the file descriptor, and the 
< block_data> contains the contents of the file to be downloaded. 

If the < msus > is not specified, the last disc drive specified by the MSI 
command will be used. 

Table 8-1 lists the file types for the < type > parameter. 

Command Syntax: : MMEMory: DOWNload < name> [, < msus > ], 
< description> , <type > , < block_data > 

where: 

< name>:: = string of up to 10 alphanumeric characters 

< msus >:: = {INTernaIO) I INTernal 1 } 

< description> :: = string of up to 32 alphanumeric characters 

<type>:: = integer (see table 8-1) 

<block_data>:: "'" contents of file in block data format 

Example: OUTPUT XXX;·:MMEMORY:DOWNLOAD 'SETUP ',INTERNAlO,'ALE CREATED 
FROM SETUP QUERY',-16127,#800000643 ... • -

HP 16500A/16501A 
Programming Reference 

Mmemory Subsystem 
8-7 



DOWNload 

Table 8-1. File Types 

File 

HP 16500A System Software 

HP 16500A Mainframe (System) Configuration 

HP 16510A or B Logic Analyzer ConfIgUration 

HP 16515A 1 GHz Timing Configuration 

HP 16520A Pattern Generator ConfIgUration 

HP 16530A Oscilloscope Configuration 

HP 16540A Logic Analyzer Configuration 

HP 16541A Logic Analyzer Configuration 

Autoload FIle 

Inverse Assembler 

Option Software 

Calibration Factors 

Text (Generic) Type 

Mmemory Subsystem 
8-8 

File Type 

-16128 

-16U7 

-16096 

-16126 

-16106 

-16116 

-16087 

-16086 

-15615 

-15614 

-15613 

-15611 

-15610 

HP 16500A/16501A 
Programming Reference 



INITialize 

INITialize 

command 

The INITialize command formats the specified disc. If no disc drive is 
specified, then the initialize command will format the disc in the 
currently selected disc drive. 

Command Syntax: :MMEMory:INmaJize [<msus>] 

where: 

< msus > :: = {INT ernalO liNT ernal1 } 

Examples: OUTPUT XXX;-: MMEMORY: INITIALIZE-

Note 

HP 16500A/16501A 
Programming Reference 

OUTPUT XXX;-:MMEMORY:INITIALIZE INTERNALO· 

Once executed, the initialize command formats the specified disc, 
permanently erasing all existing information from the disc. After that, 
there is no way to retrieve the original information. 

Mmemory Subsystem 
8-9 



LOAD 

LOAD [:CONFig] command 

The LOAD command loads a configuration rue from the disc into 
modules, software options, or the system. The < name> parameter 
specifies the filename from the specified mass storage device. The 
optional < module> parameter specifies which module ( s) to load the 
file into. The accepted values are 0 for system, 1 .. .5 for the module in 
slot A ... E respectively for an HP 16500A alone, and -1, -2 for software 
options 1 and 2 respectively. When an HP 1650lA is connected, the 
accepted values are 0 for system, 1 ... 10 for the module in slot A .. J 
respectively, and -1, -2 for software options 1 and 2. Not specifying the 
< module> parameter is equivalent to performing a 'LOAD ALL' 
from the front panel which loads the appropriate file for every installed 
module, software option, and for the system. 

Command Syntax: :MMEMory:LOAD[:CONfig] < name> [, < msus > ][, < module> ] 

where: 

< name> :: = string of up to 10 alphanumeric characters 

<msus>:: = {INTemalOIiNTernaI1} 

< module> :: = integer, -2 through 5 (HP 16500A alone). or -2 through 10 (HP 16501A 
connected) 

Examples: 

Mmemory Subsystem 
8-10 

OUTPUT XXX;-: MMEMORY: LOAD:CONAG 'FILE .. 
OUTPUT XXX;-: MMEMORY: LOAD 'ALE ',0- -
OUTPUT XXX;-:MMEM:LOAD:CONAG 'FILE_A', INTERNAL 1.1-

HP 16500A/16501A 
Programming Reference 



LOAD 

LOAD 

:IASSembler command 

This variation of the LOAD command allows inverse assembler files to 
be loaded into a module that performs state analysis. The 
< lA_name> parameter specifies the inverse assembler filename from 
the desired < msus >. The parameter after the optional < msus > 
specifies which machine to load the inverse assembler into. 

The optional < module> parameter is used to specify which slot the 
state analysis module is in. 1 .. .5 refers to the module in slot A ... E for an 
HP 16500A alone. When an HP 1650lA is connected, 1 ... 10 refers to 
module A .. J. H this parameter is not specified, the state analysis 
module closest to slot A is selected. 

Command Syntax: :MMEMory:LOAD:IASSembler <lA_name> [,<msus> ],{1 !2}[,<module>] 

where: 

< lA_name>:: = string of up to 10 alphanumeric characters 

<msus>:: = {INTernaI01INTernaI1} 

< module>:: = integer, 1 through 5 (HP 16500A only), or 1 through 10 (HP 16501A connected) 

Examples: 

HP 16500A/16501A 
Programming Reference 

OUTPUT XXX;·:MMEMORY:LOAD:IASSEMBLER '168020 IP',1· 
OUTPUT XXX;·:MMEM:LOAD:IASS '168020 -,P' ,INTERNAl1, 1,~ 

Mmemory Subsystem 
8-11 



MSI 

MSI (Mass Storage Is) command/query 

The MSI command selects a default mass storage device. If the 
parameter is omitted, the default mass storage device (front disc drive) 
is selected. The query returns the current MSI setting. 

Command Syntax: :MMEMory:MSI [ < msus > ] 

where: 

< msus >:: = {INTemalOIINTemaI1} 

Examples: 

Query Syntax: 

Returned Format: 

Example: 

Mmemory Subsystem 
8-12 

OUTPUT XXX;-:MMEMORY:MSI­
OUTPUT XXX;-:MMEM:MSIINTERNAL 1-

:MMEMory:MSI? 

[:MMEMory:MSI] < msus > <NL> 

10 DIM Device$[100] 
20 OUTPUT XXX;-: MMEMORY: MSI?-
30 ENTER XXX; Device$ 
40 PRINT Device$ 
50 END 

HP 16500A/16501A 
Programming Reference 



PACK 

PACK 

command 

The PACK command packs the files on a disc on the specified mass 
storage device. If no disc drive is specified, this command will pack the 
disc in the last disc drive specified by the MSI command. 

Command Syntax: :MMEMory:PACK [<msus>] 

where: 

< msus >:: = {INTernalO I INTernal 1 } 

Examples: 

HP 16500A/16501A 
Programming Reference 

OUTPUT XXX;·:MMEMORY:PACK· 
OUTPUT XXX;·:MMEM:PACK INTERNAL1· 

Mmemory Subsystem 
8-13 



PURGe 

PURGe command 

The PURGe command deletes a flle from the specified mass storage 
device. The '< name> parameter specifies the fllename to be deleted. 

Command Syntax: :MMEMory:PURGe < name> [, < msus > ] 

where: 

< name>:: = string of up to 10 alphanumeric characters 

< msus > :: = {INTernalO I INTernal 1 } 

Examples: 

Mmemory Subsystem 
8-14 

OUTPUT XXX;-: MMEMORY: PURGE 'ALE1" 
OUTPUT XXX;-:MMEM:PURG 'ALE1',INTERNALD" 

Once executed, the purge command permanently erases all the existing 
information from the specified flle. After that, there is no way to 
retrieve the original information. 

HP 16500A/16501A 
Programming Reference 



REName 

I 

Note '" 

Command Syntax: 

where: 

REName 

command 

The REName command renames a file from the specified mass storage 
device. The < name> parameter specifies the fIlename to be changed 
and the < new_name> parameter specifies the new filename. 

You cannot rename a file to an already existing filename. 

:MMEMory:REName <name> [,<msus> ],<new_name> 

< name>:: = string of up to 10 alphanumeric characters 

< msus >:: = {INTernalO IINTernaJ1} 

< new_name> :: = string of up to 10 alphanumeric characters 

Examples: 

HP 16500A/16501A 
Programming Reference 

OUTPUT XXX;-:MMEMORY:RENAME 'OLDALE','NEWFILE'­
OUTPUT XXX;-:MMEM:REN 'OLDALE',INTERNAL 1 ,'NEWFILE'· 

Mmemory Subsystem 
8-15 



STORe 

STORe [:CONFig] command 

The STORe command stores module or system conftgurations onto a 
disc. The [:CONFig] specifier is optional and has no effect on the 
command. The < name> parameter specifies the file on the specified 
mass storage device. The < description> parameter describes the 
contents of the file. The optional < module> parameter allows you to 
store the configuration for a specific module or modules. 1 .. .5 refers to 
the module in slot A ... E in an HP 16500A or 1 ... 10 refers to module in 
slot A .. J when an HP 1650lA is connected. 0 refers to the system. -1 
and -2 are for software options. 

If the optional < module> parameter is not specified, the 
configurations for all of the modules are stored. 

Command Syntax: :MMEMory:STORe [:CONfig] < name> [, < msus > ], < description> [, < module> ] 

where: 

< name>:: = string of up to 10 alphanumeric characters 

< msus >:: = {INTernalO I INTernal 1 } 

< description> :: = string of up to 32 alphanumeric characters 

< module>:: = integer, -2 through 5 (HP 16500A only), or -2 through 10 (HP 16501A 
connected» 

Examples: 

I 
Note ,. 

Mmemory Subsystem 
8-16 

OUTPUT XXX;·:MMEM:STOR 'DEFAULTS','SETUPS FOR ALL MODULES" 
OUTPUT XXX;·:MMEMORY:STORE:CONAG 'SCOPE',INTERNAL 1 ,'SLOT 8 
SCOPE CONAG',~ 

The appropriate slot designator "_X" is added to all files when they are 
stored. "X" refers to the letter A ... E of the corresponding slot for each 
module in an HP 16500A alone or A .. J when an HP 1650lAis 
connected. 

HP 16500A/16501A 
Programming Reference 



UPLoad 

UPLoad 

query 

The UPLoad query uploads a file. The < name> parameter specifies 
the file to be uploaded from the specified mass storage device. The 
contents of the file are sent out of the instrument in block data form. 

Note" This command should only be used for HP 165XX or HP 165X files. 

Query Syntax: :MMEMory:UPLoad? < name> [, < msus > ] 

where: 

< name>:: = string of up to 10 alphanumeric characters 

< msus > :: = {INTemalOIlNTemal1} 

Returned Format: 

HP-IB Example: 

HP 16500A/16501A 
Programming Reference 

[:MMEMory:UPLoad] <block_data> <NL> 

10 DIM Block$[32000] lallocate enough memory for block data 
20 DIM Specifier$[2] 
30 OUTPUT XXX;-:EO! ON-
40 OUTPUT XXX;-:SYSTEM HEAD OFP 
50 OUTPUT XXX;-: MMEMORY: UPLOAD? 'ALE1',INTERNAL1- lsend upload query 
60 ENTER XXX USING -#,2A-;Specifier$ tread in #8 
70 ENTER XXX USING -#,8D-;Length tread in block length 
80 ENTER XXX USING --K";Block$ tread in file 
90 END 

Mmemory Subsystem 
8-17 



9 
iNTermodule Subsystem 

Introduction INTermodule subsystem commands specify intermodule arming 
between multiple modules. Refer to figure 9-1 for the INTermodule 
Subsystem commands syntax diagram. 

Figure 9-1. Intermodule Subsystem Commands Syntax Diagram 

HP 16500A!16501A 
Programming Reference 

Intermodule Subsystem 
9-1 



module = integer, 1 to 5 (HP 16500A alone), or 1 to 10 (HP 1650lA connected). 
index = integer, 1 to 5 (HP 16500A alone), or 1 to 10 (HP 1650lA connected). 
setting = numeric, -1.0 to 1.0 in seconds. 

Figure 9-1. Intermodule Subsystem Commands Syntax Diagram (Continued) 

Intermodule Subsystem 
9-2 

HP 16500A/16501A 
Programming Reference 



DELete 

DELete 

command 

The DELete command is used to delete a module, group of modules, 
PORT OUT, or an entire intermodule tree. The < module> 
parameter sent with the delete command refers to the slot location of 
the module (1. .. 5 modules in slots A ... E for the HP 16500A alone or 
1 ... 10 modules in slots A .. J when an HP 1650lA is connected). 

Command Syntax: :INTermodule:DELete {ALL I OUT I <module>} 

where: 

<module>::= integer. 1 through 5 (HP 16500Aonly). integer 1 through 10 (HP 16501A 
connected) 

Example: 

HP 16500A/16501A 
Programming Reference 

OUTPUT XXX;·:INTERMODULE:DELETE ALL· 
OUTPUT XXX;·:INT:DEL 2" 

Intermodule Subsystem 
9-3 



HTIMe 

HTIMe 

Note ,. 

Query Syntax: 

query 

The HTIMe query returns five values (HP 16500A alone) representing 
the internal hardware skew for all of the modules in the Intermodule 
configuration. When an HP 1650lA is connected, the HTIMe query 
returns 10 values. The fIrst value is the skew for the module in slot A, 
the second value is for the module in slot B, the third value is for slot C, 
etc. If there is no internal skew, 9.9E37 is returned. 

The internal hardware skew is only a display adjustment for time 
correlated waveforms. The values returned are the average 
propagation delays of the trigger lines through the intermodule bus 
circuitry for each module. These values are for reference only because 
the values returned by TIIMe include the internal hardware skew 
represented by HTIMe. 

:INTermodule:HTIMe? 

Returned Format: [:INTermodule:HTIMe] 
<value 1 >, <value 2> ,<value 3> ,<value 4> ,<value 5> 
[, <value_6> ,<value_7> , <value_a> ,<value_9> , <value_10>] < NL> 

where: 

<value 1 > :: = skew for module in slot A (real number) 
<value - 2>:: = skew for module in slot B (real number) 
< value -3> :: = skew for module in slot C (real number) 
< value -4> :: = skew for module in slot D (real number) 
< value - 5> :: == skew for module in slot E (real number) 
< value -6> :: = skew for module in slot F (real number) 
<value -7>:: = skew for module in slot G (real number) 
< value-a> :: = skew for module in slot H (real number) 
< value - 9> :: = skew for module in slot I (real number) 

<value_10>:: = skew for module in slot J (real number) 

Example: 

Intermodule Subsystem 
9-4 

10 DIM Setting$[100] 
20 OUTPUT XXX;-:INTERMODULE:HTIME?· 
30 ENTER XXX;Setting$ 
40 PRINT Setting$ 
so END 

HP 16500A!16501A 
Programming Reference 



INPort 

Command Syntax: 

Example: 

Query Syntax: 

Returned Format: 

Example: 

HP 16500A/16501A 
Programming Reference 

INPort 

command/query 

The INPort command causes Intermodule runs to be armed from the 
Input port. The INPort query returns the current setting. 

:INTermodule:INPort {{ONI1} I{OFF I O}} 

OUTPUT XXX;-:INTERMODULE:INPORT ON-

:INTermodule:INPort? 

[:INTermodule:INPort] {110}<NL> 

10 DIM Setting$[100] 
20 OUTPUT XXX;-:INTERMODULE:INPORT?-
30 ENTER XXX; Setting$ 
40 PRINT Setting$ 
so END 

Intermodule Subsystem 
9-5 



INSert 

INSert command 

The INSert command adds a module or PORT OUT to the 
Intermodule configuration. The fust parameter selects the module or 
PORT OUT to be added to the intermodule configuration, and the 
second parameter tells the instrument where the module or PORT 
OUT will be located. 1 .. .5 corresponds to the slot location of the 
module A ... E for the HP 16500A alone and 1 ... 10 modules in slots A .. J 
when an HP 1650lA is connected. 

Command Syntax: :INTermodule:INSert { < module> I OUT},{GROUP I < module> } 

where: 

< module> :: = integer, 1 through 5 (HP 16500A only), integer 1 through 10 (HP 16501A 
connected) 

Examples: OUTPUT XXX;.: INTERMODULE: INSERT 1 ,GROUp· 
OUTPUT XXX;·:INT:INSERT 2,GROUP-
OUTPUT XXX;·:INTERMODULE:INS 3,2;INS OUT,~ 

The following figure shows the result of the example output commands: 

Intermodule Subsystem 
9-6 

Group Run 

HP 16500A/16501A 
Programming Reference 



SKEW<N> 

SKEW<N> 

command/query 

The SKEW command sets the skew value for a module. The query 
returns the user defined skew setting. The < N> index value is the 
module number (1 .. .5 corresponds to the slot location of the module 
A ... E for the HP 16500A alone and 1 ... 10 modules in slots A .. J when 
an HP 1650lA is connected) and the < setting> parameter is the skew 
setting (-1.0 to 1.0) in seconds. 

Command Syntax: :INTermodule:SKEW<N> <setting> 

where: 

< N >:: = integer, 1 through 5 (HP 16500A only), integer 1 through 10 (HP 16501A 
connected) 

< setting> :: = -1.0 to 1.0 seconds (real number) 

Example: 

Query Syntax: 

Returned Format: 

Example: 

HP 16500A/16501A 
Programming Reference 

OUTPUT XXX;-:INTERMODULE:SKEW2 3.0E-9· 

:INTermodule:SKEW < N >? 

[INTermodule:SKEW<N>] <setting> <NL> 

10 DIM Setting$[100] 
20 OUTPUT XXX;·:INTERMODULE:SKEW2?· 
30 ENTER XXX; Setting$ 
40 PRINT Setting$ 
so END 

Intermodule Subsystem 
9-7 



TREE 

TREE command/query 

The TREE command allows an intermodule setup to be specified in 
one command. The query returns a string that represents the 
intermodule tree. A -1 means the module is not in the intermodule 
tree, a 0 value means the module is armed from the Intermodule run 
button (Group run), and a positive value indicates the module is being 
armed by another module with that slot location (1 .. 5 corresponds to 
the slot location of the module A ... E for the HP 16500A alone and 
1 ... 10 modules in slots A .. J when an HP 1650lA is connected). 

The rust five parameters are the intermodule arm values for modules A 
through J respectively. The last parameter corresponds to the 
intermodule arm value for PORT OUT. 

Command Syntax: :INTermodule:TREE 
< module> , < module> , < module> , < module> , < module> , < module> 

where: 

< module>:: = integer, ·1 through 5 (HP 16500A only), integer -1 through 10 (HP 16501A 
connected)-

Example: OUTPUT XXX;·:INTERMODULE:TREE 0,0,2,·1,-1,2" 

The following figure shows the result of the example output commands: 

Intermodule Subsystem 
9-8 

Group Run 

HP 16500A/16501A 
Programming Reference 



Query Syntax: 

Returned Format: 

Example: 

HP 16500A/16501A 
Programming Reference 

TREE 

:INTermodule:TREE? 

[INTermodule:TREE] 
< module> I < module> I < module> I < module> I < module> I < module> < NL> 

10 DIM Config$[100] 
20 OUTPUT XXX;·:INTERMODULE:TREE?· 
30 ENTER XXX; Config$ 
40 PRINT Config$ 
50 END 

Intermodule Subsystem 
9-9 



TTIMe 

TTIMe 

I 
Note. 

Intermodule Subsystem 
9-10 

query 

The TTIMe query returns five values (HP 16500A alone) representing 
the absolute intermodule trigger times for all of the modules in the 
Intermodule configuration. When an HP 1650lA is connected, the 
TTIMe query returns 10 values. The first value is the trigger time for 
the module in slot A, the second value is for the module in slot B, the 
third value is for slot C, etc. 

The value 9.9E37 is returned when: 

• No module is installed in the corresponding slot; 
• The module in the corresponding slot is not time correlated; or 
• A time correlatable module did not trigger. 

The trigger times returned by this command have already been offset 
by the INTermodule:SKEW values and internal hardware skews 
(INTermodule:HTIMe ). 

HP 16500A/16501A 
Programming Reference 



TTIMe 

Query Syntax: :INTermoduIe:TTIMe? 

Returned Format: [:INTermodule:TTIMe] 
<value 1 >.<value 2>.<value 3>.<value 4>.<value 5> 
[. <value _6>. <value _7>. < value _8>. <value _9>. <value _10> ] < NL> 

where: 

<value 1>:: = trigger time for module in slot A (real number) 
< value -2> :: = trigger time for module in slot B (real number) 
< value: 3> :: = trigger time for module in slot C (real number) 
< value 4>:: = trigger time for module in slot D (real number) 
<value:5>:: = trigger time for module in slot E (real number) 
< value 6>:: = trigger time for module in slot F (real number) 
<value:7>:: = trigger time for module in slot G (real number) 
<value_8>:: = trigger time for module in slot H (real number) 
< value _9> :: = trigger time for module in slot I (real number) 
< value _10:: = trigger time for module in slot J (real number) 

Examples: 10 DIM Setting$[100] 
20 OUTPUT XXX;·:INTERMODULE:TTIME?· 
30 ENTER XXX; Setting$ 
40 PRINT Setting$ 
50 END 

HP 16500A/16501A Intermodule Subsystem 
Programming Reference 9-11 



A 
aVlft~~~,.ft """",I"W"U .l"'IIil'~+i,,1"'II ~I"'II"" ~"S+ft"'" 
I I~~~a~~ 'JUIIIIIIUIII"QLIUI 1 QI IU ~J L~III 

Functions 

Introduction 

I 
Note. 

HP 16500A/16501A 
Programming Reference 

This appendix describes the operation of instruments that operate in 
compliance with the IEEE 488.2 (syntax) standard. The IEEE 488.2 
standard is a new standard. Instruments that are compatible with 
IEEE 488.2 must also be compatible with IEEE 488.1 (HP-m bus 
standard); however, IEEE 488.1 compatible instruments mayor may 
not conform to the IEEE 488.2 standard. The IEEE 488.2 standard 
dermes the message exchange protocols by which the instrument and 
the controller will communicate. It also dermes some common 
capabilities, which are found in all IEEE 488.2 instruments. This 
appendix also contains a few items which are not specifically dermed by 
IEEE 488.2, but deal with message communication or system function"_ 

The syntax and protocol for RS-232C program messages and response 
messages for the HP 16S00A are structured very similiar to those 
described by 488.2. In most cases, the same structure shown in this 
appendix for 488.2 will also work for RS-232C. Because of this, no 
additional information has been included for RS-232C. 

Also, the common commands listed in the chapter "Common 
Commands" may be sent over both HP-m and RS-232C. 

Message Communication and System Functions 
A-1 



Protocols 

Functional 
Elements 

The protocols of IEEE 488.2 derme the overall scheme used by the 
controller and the instrument to communicate. This includes derming 
when it is appropriate for devices to talk or listen, and what happens 
when the protocol is not followed. 

Before proceeding with the description of the protocol, a few system 
components should be understood. 

Input ButTer. The input buffer of the instrument is the memory area 
where commands and queries are stored prior to being parsed and 
executed. It allows a controller to send a string of commands to the 
instrument which could take some time to execute, and then proceed to 
talk to another instrument while the first instrument is parsing and 
executing commands. 

Output Queue. The output queue of the instrument is the memory 
area where all output data ( < response messages> ) are stored until 
read by the controller. 

Parser. The instrument's parser is the component that interprets the 
commands sent to the instrument and decides what actions should be 
taken. "Parsing" refers to the action taken by the parser to achieve this 
goal. Parsing and executing of commands begins when either the 
instrument sees a < program message terminator> (dermed later in 
this appendix) or the input buffer becomes full. If you wish to send a 
long sequence of commands to be executed and then talk to another 
instrument while they are executing, you should send all the commands 
before sending the < program message terminator> . 

Message Communication and System Functions 
A-2 

HP 16500A/16501A 
Programming Reference 



Protocol Overview 

Protocol 
Operation 

I 

Note '" 

HP 16500A/16501A 
Programming Reference 

The instrument and controller communicate using < program 
message> s and < response message> s. These messages serve as the 
containers into which sets of program commands or instrument 
responses are piaced. < program message> s are sent by the 
controller to the instrument, and < response message> s are sent from 
the instrument to the controller in response to a query message. A 
< query message> is defined as being a < program message> which 
contains one or more queries. The instrument will only talk when it has 
received a valid query message, and therefore has something to say. 
The controller should only attempt to read a response after sending a 
complete query message, but before sending another < program 
message>. The basic rule to remember is that the instrument will only 
talk when prompted to, and it then expects to talk before being told to 
do something else. 

When the instrument is turned on or when it receives a device clear 
command, the input buffer and output queue are cleared, and the 
parser is reset to the root level of the command tree. 

When the instrument receives a device clear command, the module (or 
system) selected prior to the command remains selected. 

The instrument and the controller communicate by exchanging 
complete < program message> s and < response message> s. This 
means that the controller should always terminate a < program 
message> before attempting to read a response. The instrument will 
terminate < response message> s except during a hardcopy output. 

If a query message is sent, the next message passing over the bus should 
be the < response message>. The controller should always read the 
complete < response message> associated with a query message 
before sending another < program message> to the same instrument. 

The instrument allows the controller to send multiple queries in one 
query message. This is referred to as sending a "compound query." As 
will be noted later in this appendix, multiple queries in a query message 
are separated by semicolons. The responses to each of the queries in a 
compound query will also be separated by semicolons. 

Message Communication and System Functions 
A-3 



Protocol 
Exceptions 

Commands are executed in the order they are received. This also 
applies to the reception of the HP-m group execute trigger (GET) bus 
command. The group execute trigger command should not be sent in 
the middle of a < program message> . 

If an error occurs during the information exchange, the exchange may 
not be completed in a normal manner. Some of the protocol 
exceptions are shown below. 

Addressed to talk with nothing to say. If the instrument is addressed 
to talk before it receives a query, it will indicate a query error and will 
not send any bytes over the bus. If the instrument has nothing to say 
because queries requested were unable to be executed because of some 
error, the device will not indicate a query error, but will simply wait to 
receive the next message from the controller. 

Addressed to talk with no listeners on the bus. If the instrument is 
addressed to talk and there are no listeners on the bus, the instrument 
will wait for a listener to listen, or for the controller to take control. 

Command Error. A command error will be reported if the instrument 
detects a syntax error or an unrecognized command header. An HP-IB 
group execute trigger (GET) sent in the middle of a < program 
message> will also cause a command error. 

Execution Error. An execution error will be reported if a parameter is 
found to be out of range, or if the current settings do not allow 
execution of a requested command or query. 

Device-specific Error. A device-specific error will be reported if the 
instrument is unable to execute a command for a strictly device 
dependent reason. 

Query Error. A query error will be reported if the proper protocol for 
reading a query is not followed. This includes the interrupted and 
unterminated conditions described in the following paragraphs. 

Message Communication and System Functions 
A-4 

HP 16500A/16501A 
Programming Reference 



Syntax 
Diagrams 

HP 16500A/16501A 
Programming Reference 

Unterminated Condition. If the controller attempts to read a 
< response message> before terminating the < program message> , a 
query error will be generated. The parser will reset itself, and the 
response 'Will be cleared from the output queue of the instrument 
without being sent over the bus. . 

Interrupted Condition. If the controller does not read the entire 
< response message> generated by a query message and then 
attempts to send another < program message>, the device will 
generate a query error. The unread portion of the response will then 
be discarded by the instrument. The interrupting < program 
message> will not be affected. 

Buffer Deadlock. The instrument may become deadlocked if the input 
buffer and output queue both become full. This condition can occur if 
a very long < program message> is sent containing queries that 
generate a great deal of response data. The instrument cannot accept 
any more bytes, and the controller cannot read any of the response 
data until it has completed sending the entire < program message> . 
Under this condition the instrument will break the deadlock by clearing 
the output queue, and continuing to discard responses until it comes to 
the end of the current < program message>. The query error bit will 
also be set. 

The syntax diagrams in this appendix are similar to the syntax diagrams 
in the IEEE 488.2 specification. Commands and queries are sent to the 
instrument as a sequence of data bytes. The allowable byte sequence 
for each functional element is defined by the syntax diagram that is 
shown with the element description. 

The allowable byte sequence can be determined by following a path in 
the syntax diagram. The proper path through the syntax diagram is any 
path that follows the direction of the arrows. If there is a path around 
an element, that element is optional. If there is a path from right to left 
around one or more elements, that element or those elements may be 
repeated as many times as desired. 

Message Communication and System Functions 
A-5 



Syntax 
Overview 

This overview is intended to give a quick glance at the syntax defined by 
IEEE 488.2. It should allow you to understand many of the things 
about the syntax you need to know. This appendix also contains the 
details of the IEEE 488.2 dermed syntax. 

IEEE 488.2 dermes the blocks used to build messages which are sent to 
the instrument. A whole string of commands can therefore be broken 
up into individual components. 

FIgUI'e A-I shows a breakdown of an example < program message> . 
There are a few key items to notice: 

1. A semicolon separates commands from one another. Each 
< program message unit> serves as a container for one 
command The < program message unit> s are separated by a 
semicolon. 

2. A < program message> is terminated by a < NL > (new line) , a 
< NL > with EOI asserted, or EOI being asserted on the last 
byte of the message. The recognition of the < program message 
terminator> , or < PMT > , by the parser serves as a signal for 
the parser to begin execution of commands. The < PMT > also 
affects command tree traversal (see the Programming and 
Documentation Conventions chapter). 

3. Multiple data parameters are separated by a comma. 

4. The rust data parameter is separated from the header with one or 
more spaces. 

5. The header INTERMODULE:INSERT is an example of a 
compound header. It places the parser in the intermodule 
subsystem until the < NL > is encountered. 

6. A colon preceding the command header returns you to the top of 
the command tree for the selected module. 

Message Communication and System Functions 
A-6 

HP 16500A/16501A 
Programming Reference 



:INTERMODULE:INSERT 3 • 1 SKEW3 3.8 ns <NL> 

I 
T I I 

i 
I 
I 

<program message unil> 

;:::;:VN~RT ~ 

<command program header> <program header separator> <program data> 
3 • , INTERNODULE,INSERT ~ 

<program mnemonic> 
INTERMODULE 

<white space> 

<program mnemonic> 
INSERT 

<program data> 
3 

T 
I 

/1\ 
SP • SP 

<.wh ito L> -<~ ,pm> 

<program dala separalor> <program dolo> 
1 

/ 
<decimal numeric program dolo> <decimal numeric program dolo> 

3 

<program message unit separator> 

/r~ <program message terminator> 

<white space> <white space> 
<program message unit> 

SKEW3 3.8 ns 

7~ 
!~ 

16$88/Bl Ie 

<wh i te space> NL 

<program header> <program header separator> <program data> 
3.8 ns SKEW3 SP 

~ ~-------<while space> <decimal program data> <suffix pragram dolo> 
3.8 SP ns 

~I~ 
<white space> <suffix multipl ier> <suffix 

n 

Figure A-1. <program message> Parse Tree 

unit> 
s 

HP 16500A/16501A 
Programming Reference 

Message Communication and System Functions 
A-7 



Device Listening 
Syntax 

The listening syntax of IEEE 488.2 is designed to be more forgiving 
than the talking syntax. This allows greater flexibility in writing 
programs, as well as allowing them to be easier to read. 

Upper/Lower Case Equivalence. Upper and lower case letters are 
equivalent. The mnemonic SINGLE has the same semantic meaning as 
the mnemonic single. 

< white space>. < white space> is defmed to be one or more 
characters from the ASCII set of 0 - 32 decimal, excluding 10 decimal 
(NL). < white space> is used by several instrument listening 
components of the syntax. It is usually optional, and can be used to 
increase the readability of a program. 

-

.. <wh i le space 
character> 

S4120/8L38 

Figure A-2. <white space> 

Message Communication and System Functions 
A-a 

HP 16500A/16501A 
Programming Reference 



HP 16500A/16501A 
Programming Reference 

< program message>. The < program message> is a complete 
message to be sent to the instrument. The instrument will begin 
executing commands once it has a complete < program message> , or 
when the input buffer becomes full. The parser is also repositioned to 
the root of the command tree after executing a complete < program 
message>. Refer to the Tree Traversal Rules in the Programming and 
Documentation Conventions chapter for more details. 

<program 
message unit> 

541201Bl39 

Figure A-3. < program message> 

< program message unit>. The < program message unit> is the 
container for individual commands within a < program message> . 

<command message unit> 

<query message unit> 

54120/BL40 

Figure A-4. < program message unit > 

Message Communication and System Functions 
A-9 



I--~--...I <program data> ~-'---I-

541201BL41 

Figure A-S. < command message unit > 

~--:""--I~ <program data> ~---''''''''''--~ 

Figure A-6. <query message unit> 

Message Communication and System Functions 
A-10 

~41201BL4Z 

HP 16S00A/16S01A 
Programming Reference 



HP 16500A/16501A 
Programming Reference 

< program message unit separator>. A semicolon separates 
< program message unit> s, or individual commands. 

1 ~I <wh;t. ,pac.> I J ~O-
~ 

5<C12018l<C3 

Figure A-7. < program message unit separator> 

< command program header> I < query program header>. These 
elements serve as the headers of commands or queries. They represent 
the action to be taken. 

<white space> 
<simple camnand 
program header> 

<compound command 
program header> 

<corrmon command 
program header> 

5<C1201BL4<C 

Figure A-S. < command program header> 

Message Communication and System Functions 
A-11 



Where < simple command program header> is defined as 

<program 
mnemonic> 

5412O/11L45 

Where < compound command program header> is defined as 

<program 
mnemon ic> 

<program 
mnemon i c> 

Where < common command program header> is defined as 

---01 <program ~ * mnernon i c> 

~-----.l 5412018L45 

Where <program mnemonic> is defined as 

-~ 

~ 
<upper/lower 

l case alpha> 

<upper/lower -. case alpha> 

1 

-

U "-+ <d i g i t> 

. 
5412018L45 

.. 

Where <upper/lowercase alpha> is defined as a single ASCII encoded 
byte in the range 41- 5A, 61-7A (65 - 90, 97 -122 decimal). 

Where <digit> is defined as a single ASCII encoded byte in the range 30 
- 39 (48 - 57 decimal). 

Where ( _) represents an nunderscore~ a single ASClI-encoded byte with 
the value 5F (95 decimal). 

Figure A-S. < command program header> (continued) 

Message Communication and System Functions 
A-12 

HP 16500A/16501A 
Programming Reference 



HP 16500A/16501A 
Programming Reference 

· <wh i le space> 
<simple query r------

1 
- .. 

f 
progrClll header> 

\ 
~ 

~ 
<compound query r------program header> 

~ 
<conmon query 

progrClll header> 

504120/llL46 

Where < simple query program header> is defined as 

~ <P'O"~ ~ ! mnemonic> ~ 

~lzo/lI.46 

Where < compound query program header> is defined as 

( 
<program 

mnemonic> 
<program 

mnemonic> 

54120IBL46 

Where < common query program header> is defined as 

<program 
mnemonic> 

Figure A-9. <query program header> 

Message Communication and System Functions 
A-13 



< program data>. The < program data> element represents the 
possible types of data which may be sent to the instrument. The 
HP 16500A will accept the following data types: < character program 
data>, < decimal numeric program data>, < SuffIX program data> , 
< string program data> , and < arbitrary block program data> . 

Figure A-10. < program data > 

----·~~l __ <_p_r_09_r_~ __ ~~--~~~ _ mnemon ic> 

5041Z01Bl48 

lH1ZCV111.47 

Figure A-11. < character program data> 

Message Communication and System Functions 
A-14 

HP 16500A/16501A 
Programming Reference 



<mantissa> <white 
space> <exponent> 

"'Where < mantisssa > is defined as 

<optional 
digits> 

<digit> 

"'Where < optional digits> is defined as 

... 

<digit> 

50412011!lSI 

"'Where < exponent> is defined as 

<white space> 

<digit> 

<optional 
digits> 

$412018L4t 

5412O/Bl411 

<digit> 

541Z0/BlSO 

Figure A-12. < decimal numeric program data> 

HP 16500A/16501A 
Programming Reference 

Message Communication and System Functions 
A-15 



<white space> <suffix mul t> f-......,-~ <su ff i x un it> 

Figure A-13. < suffix program data > 

SuiTlX Multiplier. The SuffIX multipliers that the instrument will accept 
are shown in table A-I. 

Table A-1. < suffix mult> 

Value Mnemonic 

lEI8 EX 
lE15 PE 

lE12 T 

lE9 G 

lE6 MA 

lE3 K 

lE-3 M 

lE-6 U 

lE-9 N 

IE-12 P 

lE-15 F 

IE-18 A 

SuiTlX Unit. The SuffIX units that the instrument will accept are shown 
in table A-2. 

Table A-2. < suffix unit > 

surrlX 

V 

S 

Message Communication and System Functions 
A-16 

Referenced Unit 

Volt 

Second 

HP 16500A/16501A 
Programming Reference 



HP 16500A/16501A 
Programming Reference 

r~hl 
'-/ I I 

<non-single 
quote char> 

<inserted"> 

<non-double 
quote char> 

~1201Bl53 

J¥here < inserted' > is defined as a single ASCII character with the value 
27 (39 decimal). 

J¥here <non-single quote char> is defined as a single ASCII character 
of any value except 27 (39 decimal). 

Where < inserted" > is defined as a single ASCII character with the value 
22 (34 decimal). 

J¥here <non-double quote char> is defined as a single ASCI! character 
of any value except 22 (34 decimal) 

Figure A-14. <string program data> 

Message Communication and System Functions 
A-17 



<non-zero 
di 9 it> 

<8-bit 
dato byte> 

<digit> <8-bit 
dota byte> 

54120/BU4 

Where < non-zero digit> is defined as a single AS ell encoded byte in the 
range 31- 39 (49 - 57 decimal). 

Where < 8-bit byte> is defined as an 8-bit byte in the range 00 - FF (0-
255 decimal). 

Figure A-15. < arbitrary block program data> 

< program data separator>. A comma separates multiple data 
parameters of a command from one another. 

- <white space> -C}-- <white space> 

. 
5412018155 

Figure A-16. < program data separator> 

Message Communication and System Functions 
A-18 

HP 16500A/16501A 
Programming Reference 



HP 16500A/16501A 
Programming Reference 

< program header separator>. A space separates the header from 
the first or only parameter of the command. 

I I 
"I <wh; t. 'pac.> 1 

54120/8L~ 

Figure A-17. < program header separator> 

< program message terminator>. The < program message 
terminator> or < PMT > serves as the terminator to a complete 
< program message>. When the parser sees a complete < program 
message> it will begin execution of the commands within that 
message. The < PMT > also resets the parser to the root of the 
command tree. 

---.--~ <wh i le space> I----,-+_~ 

54120/81.73 

Where <NL> is defined as a singleASClI-encoded byte OA (10 
decimal). 

Figure A-18. < program message terminator> 

Message Communication and System Functions 
A-19 



: INTERMODULE:INPORT 1; :INTERMODULE:SKEW3 3.8E-9 <NL> 

I I 
T 

<response message unil> <response message unit separator> 

?L[INPORT~ 

<response header> <response header separator> 

:/7~UL/~ , 
<response 

1 

I 
dolo> 

<response mnemonic> <response mnemonic> <while space> <NR1 numeric response data> 
INTERMODULE INPORT 1 

r 
<response message unit> <response message terminator> 

7ULE:SKEW3~L 

<response header> <response header separalor> <response dolo> 

://MOOUL/, , T 
<response mnemonic> <response mnemonic> <white space> <NR3 numeric response dolo> 

INTERMODULE SKEW3 3.8E-9 

1558818L111 

Figure A-19. < response message> Tree 

Message Communication and System Functions 
A-20 

HP 16500A/16501A 
Programming Reference 



Device Talking 
Syntax 

HP 16500A/16501A 
Programming Reference 

The talking syntax of IEEE 488.2 is designed to be more precise than 
the listening syntax. This allows the programmer to write routines 
which can easily interpret and use the data the instrument is sending. 
One of the implications of this is the absence oi < white space> in the 
talking formats. The instrument will not pad messages which are being 
sent to the controller with spaces. 

< response message>. This element serves as a complete response 
from the instrument. It is the result of the instrument executing and 
buffering the results from a complete < program message>. The 
complete < response message> should be read before sending 
another < program message> to the instrument. 

<response 
message unit> 

$4120I1IL57 

Figure A-20. < response message> 

< response message unit>. This element serves as the container of 
individual pieces of a response. Typically a < query message unit> 
will generate one < response message unit> , although a < query 
message unit> may generate multiple < response message unit> s. 

< response header>. The < response header>, when returned, 
indicates what the response data represents. 

Message Communication and System Functions 
A-21 



<simple 

- response -------header> 

<compound 
~ response -----.. 

header> 

<comnon 
~ response 

header> 

5041201Bl58 

Where < simple response mnenomic > is defined as 

<response 
mnemon i c> 

54120/8L~1I 

Where < compound response header> is defined as 

<response 
mnemonic> 

<response 
mnemonic> 

50412018L60 

Where < common response header> is defined as 

~ ____ ~~~I ___ <r_e_s_p_on_s_e __ ~ __ ~~~ ~ _ mnemon ic> 

504120IBLI1 

Figure A-21. < response message unit > 

Message Communication and System Functions 
A-22 

HP 16500A/16501A 
Programming Reference 



HP 16500A/16501A 
Programming Reference 

"'Where < response mnemonic> is defined as 

<upper 
case alpha> 

( 

5<41201Bl&2 

"'Where < uppercase alpha> is defined as a single ASCII encoded byte in 
the range 41- SA (65 - 90 decimal). 

"'Where ( _) represents an ''underscore", a single ASCll-encoded byte with 
the value 5F (95 decimal). 

Figure A-21. < response message unit> (Continued) 

< response data>. The < response data> element represents the 
various types of data which the instrument may return. These types 
include: < character response data>, < nr! numeric response data> , 
< nr3 numeric response data>, < string response data>, < defmite 
length arbitrary block response data> , and < arbitrary ASCII 
response data> . 

<response 
mnemon ic> 

5<41201Bl63 

--
Figure A-22. < character response data> 

Message Communication and System Functions 
A-23 



<digit> 

~120/Bl64 

Figure A-23. < nr1 numeric response data > 

<d i gi l> <digit> 

<di gi t> 

Figure A-24. < nr3 numeric response data > 

<inserted"> 

<non-double 
quote char> 

~120/Bl66 

Figure A-25. < string response data > 

~1201Bl65 

Message Communication and System Functions 
A-24 

HP 16500A/16501A 
Programming Reference 



• 

~L_<_n_on_-_z e_r_o----' '---'" _ d i 9 i l> 

[ ~Ir---<d-i-~-it->--~~~~~ 
I 

]J J ]~ <B-bit 

1 I 
doto byte> 

j 

I 
Note" 

HP 16500A/16501A 
Programming Reference 

.. 
5-41Z0/BU7 

Figure A-26. < definite length arbitrary block response data > 

<ASCII 
doto byte> 

5-4120/Bl68 

Where <ASCII data byte> represents anyASClI-encoded data byte 
except <NL> (OA,lOdecimal). 

1. The END message provides an unambiguous termination to an 
element that contains arbitrary ASCII characters. 

2. The IEEE 488.1 END message serves the dual function of 
terminating this element as well as terminating the < RESPONSE 
MESSAGE>. It is only sent once with the last byte of the indefmite 
block data. The NL is present for consistency with the 
< RESPONSE MESSAGE TERMINATOR>. Indefinite block 
data format is not supported in the HP 16500A. 

Figure A-27. < arbitrary ASCII response data> 

Message Communication and System Functions 
A-25 



I 
Note" 

< response data separator>. A comma separates multiple pieces of 
response data within a single < response message unit> . 

. ~ 
$41ZO/8lU 

Figure A-28. < response data separator> 

< response header separator>. A space (ASCII decimal 32) delimits 
the response header, if returned, from the frrst or only piece of data. 

Figure A-29. < response header separator> 

$41ZO/8l70 

< response message unit separator>. A semicolon delimits the 
< response message unit> s if multiple responses are returned. 

$41Z018L71 

Figure A-30. < response message unit separator> 

< response message terminator>. A < response message 
terminator> (NL) terminates a complete < response message>. It 
should be read from the instrument along with the response itself. 

If you do not read the < response message terminator> the 
HP 16500A will produce an interrupted error. 

Message Communication and System Functions 
A-26 

HP 16500A/16501A 
Programming Reference 



Common 
Commands 

IEEE 488.2 dermes a set of common commands. These commands 
perform functions which are common to ~ny type of instrument. They 
can therefore be implemented in a standard way across a wide variety 
of instrumentation. All the common commands of IEEE 488.2 begin 
with an asterisk. There is one key difference between the IEEE 488.2 
common commands and the rest of the commands found in this 
instrument. The IEEE 488.2 common commands do not affect the 
parser's position within the command tree. More information about 
the command tree and tree traversal can be found in the Programming 
and Documentation Conventions chapter. 

Table A-3. HP 16500A's Common Commands 

Command 

*CLS 

*ESE 

*ESE? 

*ESR? 

*IDN? 

*IST? 

*OPC 

*OPC? 

* OPT? 

* PRE 

*PRE? 

*RST 

*SRE 

*SRE? 

*STB? 

*TRG 

*TST? 

*WAI 

HP 16500A/16501A 
Programming Reference 

Command Name 

Clear Status Command 

Event Status Enable Command 

Event Status Enable Query 

Event Status Register Query 

Identification Query 

Individual Status Query 

Operation Complete Command 

Operation Complete Query 

Option Identification Query 

Parallel Poll Enable Register Enable Command 

Parallel Poll Enable Register Enable Query 

Reset (not implemented on HP 16500A) 

Service Request Enable Command 

Service Request Enable Query 

Read Status Byte Query 

Trigger Command 

Self-Test Query 

Wait-to-Continue Command 

Message Communication and System Functions 
A-27 



B 
~tat •• s Dennrtinn 
"'. ... • I t''' ..... ~ 

Introduction 

HP 16500A/16501A 
Programming Reference 

The status reporting features which are available over the bus include 
the serial and parallel polls. IEEE 488.2 defines data structures, 
commands, and common bit definitions for each. There are also 
instrument defined structures and bits. 

The bits in the status byte act as summary bits for the data structures 
residing behind them. In the case of queues, the summary bit is set if 
the queue is not empty. For registers, the summary bit is set if any 
enabled bit in the event register is set. The events are enabled via the 
corresponding event enable register. Events captured by an event 
register remain set until the register is read or cleared. Registers are 
read with their associated commands. The "*CLS" command clears all 
event registers and ::.11 queues except the output queue. If "*CLS" is 
sent immediately following a < program message terminator> , the 
output queue will also be cleared. 

Status Reporting 
B-1 



NOTE: THE INDIVIDUAL BIT ASSIGNMENTS FOR THE UODULE EVENT REGISTERS ARE UODULE SPECIFIC. 

HP165OC>11 

HP16501A 
CONNECTED 

I ~I~I INTERMODULE EVENT 
L......J.-'--'-...L.-........... ~T ...... --'. ~~~~~~R 

I ENABLE 

L...J.--L.--L-~~--L.-l ~~§~~~R 

I MODULE EVENT REGISTER 
FOR MODULE A 

L......J.-'--'-...L.-.......... -J---' (.a::SR 1 ) 

I ENABLE 

L......J.-'--'-...L.-.......... -J---' ~ti§~nR 
• 
• 
• 

I MODULE EVENT REGISTER 
FOR MODULE E 

L...J.--L.--L-~~--L.-l (.a::SR5) 

I ENABLE 

L...J.--L.--L-~~--L.--' ~~~~~R 

I t.fJOUlE EVENT REGISTER 
FOR MODULE F 

L......J.--L.--L-~.L.-.I-J--' (.a::SR6) 

I ENABLE 

L......I.--I....J-...L.-L......I.-'---' ~~~J~R 
• 
• 
• 

I t.«:lOUlE EVENT REGISTER 
FOR MODULE J 

L......I.--I....J-...L.-L......I.--'---' (~SE 10) 

I ENABLE 

L...-I-J--'-~~'--'-.-J ~~§~1~~ 

COMBINED EVENT REGISTER 
FOR ALL MODULES 
(CESR) 

ENABLE 
REGISTER 
(CESE) 

EVENT 
REGISTERS 
(-ESR) 

NOTE: URO AND ROC NOT IMPLEt.£NTED 

IIIIII111 

I LI~M I 

o C 
L 

o 1I1II1I 

ENABLE 
REGISTERS 
( -ESE) 

QUEUES: 
O-OUTPUT 
lCL READ BY LER? 

STATUS 
BYTE 
(-STB) 

SERVICE 
REQUEST 
ENABLE 
REGISTER 
(-SRE) 

1115OC184f 

Figure B-1. Status Byte Structures and Concepts 

Status Reporting 
B-2 

HP 16500A/16501A 
Programming Reference 



Event Status 
Register 

Service Request 
Enable Register 

Bit Definitions 

I 
Note .. 

HP 16500A/16501A 
Programming Reference 

The Event Status Register is a 488.2 defmed register. The bits in this 
register are "latched." That is, once an event happens which sets a bit, 
that bit will only be cleared if the register is read. 

The Service Request Enable Register is an 8-bit register. Each bit 
enables the corresponding bit in the status byte to cause a service 
request. The sixth bit does not logically exist and is always returned as 
a zero. To read and write to this register use the ·SRE? and ·SRE 
commands. 

MA V - message available. Indicates whether there is a response in the 
output queue. 

ESB - event status bit. Indicates if any of the conditions in the 
Standard Event Status Register are set and enabled. 

MSS - master summary status. Indicates whether the device has a 
reason for requesting service. This bit is returned for the ·STB? query. 

RQS - request senice. Indicates if the device is requesting service. 
This bit is returned during a serial poll. RQS will be set to 0 after being 
read via a serial poll (MSS is not reset by ·STB?). 

PON - power on. Indicates power has been turned on. 

URQ - user request. Always 0 on the HP 16500A 

CME - command error. Indicates whether the parser detected an 
error. 

The error numbers and/or strings for CME, EXE, DOE, and QYE can 
be read from a device defined queue (which is not part of 488.2) with 
the query :SYSTEM:ERROR? 

EXE - execution error. Indicates whether a parameter was out of 
range, or inconsistent with current settings. 

DDE - device specific error. Indicates whether the device was unable 
to complete an operation for device dependent reasons. 

Status Reporting 
8-3 



QYE - query error. Indicates whether the protocol for queries has 
been violated. 

RQC - request control. Always 0 on the HP 16500A. 

OPC - operation complete. Indicates whether the device has 
completed all pending operations. OPC is controlled by the ·OPC 
common command. Because this command can appear after any other 
command, it serves as a general purpose operation complete message 
generator. 

LCL - remote to local. Indicates whether a remote to local transition 
has occurred. 

MSB - module summary bit. Indicates that an enable event in one of 
the modules Status registers has occurred. 

Key Features A few of the most important features of Status Reporting are listed in 
the following paragraphs. 

Status Reporting 
8-4 

Operation Complete. The IEEE 488.2 structure provides one 
technique which can be used to find out if any operation is fmished. 
The ·OPC command, when sent to the instrument after the operation 
of interest, will set the OPC bit in the Standard Event Status Register. 
If the OPC bit and the RQS bit have been enabled a service request 
will be generated. The commands which affect the OPC bit are the 
overlapped commands. 

OUTPUT XXX;-*SRE 32; *ESE 1- !enables an ope service request 

Status Byte. The Status Byte contains the basic status information 
which is sent over the bus in a serial poll. If the device is requesting 
service (RQS set), and the controller serial polls the device, the RQS 
bit is cleared. The MSS (Master Summary Status) bit (read with 
·STB?) and other bits of the Status Byte are not be cleared by reading 
them. Only the RQS bit is cleared when read. To see how the RQS 
and MSS bits are set and used, see figure B-2. 

The Status Byte is cleared with the ·CLS common command. 

HP 16500A/16501A 
Programming Reference 



HP 16500A/16501A 
Programming Reference 

",--STATUS SUWARY MESSAGES------.. 

I ~ READ BY SERIAL POLL 

r STATUS BIT REGISTER 

j ~ READ 8Y *ST8? 

SERVICE REOUEST 
ENABLE REGISTER 

*SRE <NRf> 
*SRE? 

1&5H1Bl24 

Figure 8-2. Service Request Enabling 

Status Reporting 
8-5 



Serial Poll 

Using Serial Poll 
(HP-IB) 

Status Reporting 
8-6 

The HP 16500A supports the IEEE 488.1 serial poll feature. When a 
serial poll of the instrument is requested, the RQS bit is returned on bit 
6 of the status byte. 

This example will show how to use the service request by conducting a 
serial poll of all instruments on the HP-IB bus. In this example, assume 
that there are two instruments on the bus; a Logic Analysis System at 
address 7 and a printer at address 1. 

The program command for serial poll using HP BASIC 4.0 is Stat = 
SPOLL(707). The address 707 is the address of the Logic Analysis 
System in the this example. The command for checking the printer is 
Stat = SPOLL(701) because the address of that instrument is 01 on 
bus address 7. This command reads the contents of the HP-ffi Status 
Byte Register into the variable called Stat. At that time bit 6 (RQS bit) 
of the variable Stat can be tested to see if it is set (bit 6 = 1). 

The serial poll operation can be conducted in the following manner: 

1. Enable interrupts on the bus. This allows the controller to "see" 
the SRQ line. 

2. Disable interrupts on the bus. 

3. If the SRQ line is high (some instrument is requesting service) 
then check the instrument at address 1 to see if bit 6 of its status 
register is high. 

HP 16500A/16501A 
Programming Reference 



HP 16500A/16501A 
Programming Reference 

4. To check whether bit 6 of an instruments status register is high, 
use the following Basic statement: 

!F BIT (Stat, 6) THEN 

5. If bit 6 of the instrument at address 1 is not high, then check the 
instrument at address 7 to see if bit 6 of its status register is high. 

6. As soon as the instrument with status bit 6 high is found check the 
rest of the status bits to determine what is required. 

The SPOLL(707) command causes much more to happen on the bus 
than simply reading the register. This command clears the bus 
automatically, addresses the talker and listener, sends SPE (serial poll 
enable) and SPD (serial poll disable) bus commands, and reads the 
data. For more information about serial poll, refer to your controller 
manual, and programming language reference manuals. 

After the serial poll is completed, the RQS bit in the HP 16500A Status 
Byte Register will be reset if it was set. Once a bit in the Status Byte 
Register is set, it will remain set until the status is cleared with a *CLS 
command, or the instrument is reset. 

Status Reporting 
8-7 



Parallel Poll 

Status Reporting 
8-8 

Parallel poll is a controller initiated operation which is used to obtain 
information from several devices simultaneously. When a controller 
initiates a Parallel Poll, each device returns a Status Bit via one of the 
DID data lines. Device DID assignments are made by the controller 
using the PPC (Parallel Poll Configure) sequence. Devices respond 
either individually, each on a separate DID line; collectively on a single 
DID line; or any combination of these two ways. When responding 
collectively, the result is a logical AND (True High) or logical DR 
(True Low) of the groups of status bits. 

Figure B-3 shows the Parallel Poll Data Structure. The summary bit is 
sent in response to a Parallel Poll. This summary bit is the "ist" 
(individual status) local message. 

The Parallel Poll Enable Register determines which events are 
summarized in the ist. The -PRE command is used to write to the 
enable register and the -PRE? query is used to read the register. The 
-1ST? query can be used to read the "ist" without doing a parallel poll. 

HP 16500A/16501A 
Programming Reference 



DEVICE DEFINED CONDITIONS 

iii iii i i 
DEVICE DEFINED 1151 14 1131121 1, I ,e I 9 I 8 I CONDITIONS 

~ 

cr 
0 

-J 

'" u 

§ 

+ INDIVIDUAL 
STATUS 
-1ST? 

-
-

-

-

-

&: 

j 

&: 

&: 

&: 

&: 
1 

&: 

&: 

I 

115114 113112 111 110 I 9 1 8 1 

SUt.t.lARY MESSAGE 

~ ~ ~ ~ ~ ~ ~ ~ 
l 7 Jt.tSsl ESBI t.tAVI LCLI 2 I ,1t.tSB! 

&: 
d. 

&: ,. 
4 

lit 

lit 
1 

&: 

~ 
&: 

• &: 

~ 
[7161514131211101 

Figure 8-3. Parallel Poll Data Structure 

HP 16500A/16501A 
Programming Reference 

STATUS BYTE 
REGISTER 

.. STB? 

PARALLEL POLL 
ENABLE REGISTER 

.PRE 
.PRE? 

1.5H1IIlH 

Status Reporting 
8-9 



Polling HP-IB 
Devices 

Configuring 
Parallel Poll 
Responses 

Example: 

Parallel Poll is the fastest means of gathering device status when 
several devices are connected to the bus. Each device (with this 
capability) can be programmed to respond with one bit of status when 
parallel polled. This makes it possible to obtain the status of several 
devices in one operation. If a device responds affirmatively to a 
parallel poll, more information about its specific status can be obtained 
by conducting a serial poll of the device. 

Certain devices, including the HP 16500A, can be remotely 
programmed by a controller to respond to a parallel poll. A device 
which is currently configured for a parallel poll responds to the poll by 
placing its current status on one of the bus data lines. The response 
and the data-bit number can then be programmed by the PPC (parallel 
Poll Configure) statement. No multiple listeners can.be specified in 
this statement. If more than one device is to respond on a single bit, 
each device must be configured with a separate PPC statement. 

ASSIGN @Oevice TO 707 
PPOLl CONFIGURE @Oevice;Mask 

The value of Mask (any numeric expression can be specified) is rust 
rounded and then used to configure the device's parallel response. The 
least significant 3 bits (bits 0 through 2) of the expression are used to 
determine which data line the device is to respond on (place its status 
on). Bit 3 specifies the "true" state of the parallel poll response bit of 
the device. A value of 0 implies that the device's response is 0 when its 
status bit message is true. 

Example: The following statement configures the device at address 07 on the 
interface select code 7 to respond by placing a 0 on bit 4 when its status 
response is "true." 

Status Reporting 
8-10 

PPOLl CONFIGURE 707;4 

HP 16500A/16501A 
Programming Reference 



Conducting a 
Parallel Poll 

Example: 

Disabling Parallel 
Poll Responses 

Examples: 

HP 16500A/16501A 
Programming Reference 

The PPOLL (parallel Poll) function returns a single byte containing up 
to 8 status bit messages for all devices on the bus capable of responding 
to the poll. Each bit returned by the function corresponds to the status 
bit of the device(s) configured to respond to the parallel poll (one or 
more devices can respond on a single line). The PPOLL function can 
only be executed by the controller. It is initiated by the simultaneous 
assertion of A TN and EO!. 

Response = PPOLL(7) 

The PPU (Parallel Poll Unconfigure) statement gives the controller the 
capability of disabling the parallel poll responses of one or more 
devices on the bus. 

The following statement disables device 5 only: 

PPOLL UNCONFIGURE 705 

This statement disables all devices on interface select code 8 from 
responding to a parallel poll: 

PPOLL UNCONAGURE 8 

H no primary address is specified, all bus devices are disabled from 
responding to a parallel poll. H a primary address is specified, only the 
specified devices (which have the parallel poll configure capability) are 
disabled. 

Status Reporting 
8-11 



HP-IB Commands The following paragraphs describe actual HP-ffi commands which can 
be used to perform the functions of the Basic commands shown in the 
previous examples. 

Parallel Poll Unconfigure Command. The parallel poll unconflgure 
command (PPU) resets all parallel poll devices to the idle state (unable 
to respond to a parallel poll). 

Parallel Poll Configure Command. The parallel poll configure 
command (PPC) causes the addressed listener to be configured 
according to the parallel poll enable secondary command PPE. 

Parallel Poll Enable Command. The parallel poll enable secondary 
command (PPE) confIgures the devices which have received the PPC 
command to respond to a parallel poll on a particular HP-ffi DIO line 
with a particular level. 

Parallel Poll Disable Command. The parallel poll disable secondary 
command (PPD) disables the devices which have received the PPC 
command from responding to the parallel poll. 

Table 8-1. Parallel Poll Commands 

Command Mnemonic Decimal ASCII/ISO 

Parallel Poll Unconfigure 
(Multiline Command) 

Parallel Poll Configure 
(Addressed Command) 

Parallel Poll Enable 
(Secondary Command) 

Parallel Poll Disable 
(Secondary Command) 

Status Reporting 
8-12 

PPU 

PPC 

PPE 

PPD 

Code 

21 

05 

96-111 

112 

Character 

NAK 

ENQ 

1-0 

P 

HP 16500A/16501A 
Programming Reference 



c 
Error fv1essages 

Device 
Dependent Errors 

HP 16500A/16501A 
Programming Reference 

This section covers the error messages that relate to the HP 16500A 
mainframe and modules. 

200 

201 

202 

203 

300 

Label not found 

Pattern string invalid 

Qualifier invalid 

Data not available 

RS-232C error 

Error Messages 
C-1 



Command Errors -100 Command error (unknown command)(generic error) 

Error Messages 
C-2 

-101 Invalid character received 

-110 Command header error 

-111 Header delimiter error 

-120 Numeric argument error 

-121 Wron.g data type (numeric expected) 

-123 Numeric overflow 

-129 Missing numeric argument 

-130 Non numeric argument error (character,string, or block) 

-131 Wrong data type (character expected) 

-132 Wrong data type (string expected) 

-133 Wrong data type (block type #D required) 

-134 Data overflow (string or block too long) 

-139 Missing non numeric argument 

-142 Too many arguments 

-143 Argument delimiter error 

-144 Invalid message unit delimiter 

HP 16500A/16501A 
Programming Reference 



Execution Errors -200 No Can Do (generic execution error) 

-201 Not executable in Local Mode 

HP 16500A/16501A 
Programming Reference 

-202 Settings lost due to return-to-Iocal or power on 

-203 Trigger ignored 

-211 Legal command, but settings conflict 

-212 AJgurnnent out of range 

-221 Busy doing something else 

-222 Insufficient capability or configuration 

-232 Output buffer full or overflow 

-240 Mass Memory error (generic) 

-241 Ma~~ ~toTal!e device not nresent - - --- -- - - -g- - - . - - - - -,£ - - - -

-242 No media 

-243 Bad media 

-244 Media full 

-245 Directory full 

-246 File name not found 

-247 Duplicate fIle name 

-248 Media protected 

Error Messages 
C-3 



Internal Errors -300 Device Failure (generic hardware error) 

-301 Interrupt fault 

Error Messages 
C-4 

-302 System Error 

-303 Time out 

-310 RAM error 

-311 RAM failure (hardware error) 

-312 RAM data loss (software error) 

-313 Calibration data loss 

-320 ROM error 

-321 ROM checksum 

-322 Hardware and Firmware incompatible 

-330 Power on test failed 

-340 Self Test failed 

-350 Too Many Errors (Error queue overflow) 

HP 16500A/16501A 
Programming Reference 



Query Errors -400 Query Error (generic) 

-410 Query INTERRUPTED 

-420 Query UNTERMINATED 

-421 Query received. Indefinite block response in progress 

HP 16500A/16501A 
Programming Reference 

-422 Addressed to Talk, Nothing to Say 

-430 Query DEADLOCKED 

Error Messages 
C-5 



Index 

*CLS command, 5-4 
*ESE command, 5-5 
*ESR command, 5-7 
*IDN command, 5-9 
*IST command, 5-10 
*OPC command, 5-12 
*OPT command, 5-13 
*PRE command, 5-14 
*RST command, 5-16 
*SRE command, 5-17 
·STB command, 5-19 
*TRG command, 5-21 
*TST command, 5-22 
*W AI command, 5-24 
32767, 4-6 
9.9E+37, 4-6 
.. -, 4-7 

A 

Addressed talk/listen mode, 2-2 
Addressing the instrument 

HP-IB, 1-4 
RS 232C, 1-4 

Angular brackets, 1-3, 4-7 
AUToload command, 8-4 

HP 16500A/16501A 
Programming Reference 

B 

Baud rate, 3-6 
BEEPer command, 6-3 
Binary, 1-10 
Bit defmitions, B-3 
Braces, 4-7 

c 

Cable 
RS-232C, 3-2 

CAPability command, 6-4 
Card identification numbers~ 6-5 
CARD cage command, 6-5 
CARDcage query, 1-15 
CATalog command, 8-5 
CESE command, 6-7 
CESR command, 6-9 
Character data, 1-10, 1-18 
Character program data, 1-10, 1-18 
Clear To Send (crs), 3-5 
CME, B-3 
Command, 1-5,1-17 

·CLS, 5-4 
* ESE, 5-5 
*OPC, 5-12 
*PRE, 5-14 
*RST, 5-16 
*SRE, 5-17 

Index-1 



Command (continued) 
*TRG, 5-21 
*WAI, 5-24 
AUToload, 8-4 
BEEPer, 6-3 
CESE, 6-7 
COPY, 8-6 
DATA, 7-3 
DELete, 9-3 
DOWNload, 8-7 
DSP, 7-6 
EOI, 6-11 
HEADer, 1-17,7-8 
INITialize, 8-9 
INPort, 9-5 
INSert, 9-6 
LOAD:CONFig, 8-10 
LOAD:IASSembler, 8-11 
Lockout, 3-8, 6-13 
LONGform, 1-17, 7-9 
MENU, 6-14 
MESE, 6-16 
MSI, 8-12 
PACK, 8-13 
PRINt, 7-10 
PURGe, 8-14 
REName, 8-15 
RMODe, 6-20 
SELect, 1-13,6-21 
SETColor, 6-23 
SETup, 7-11 
SKEW, 9-7 
STARt, 6-24 
STOP, 6-25 
STORe:CONFig, 8-16 
TREE, 9-8 

Command cross-reference, 4-12 
Command errors, C-2 
Command header, 1-5 
Command mode, 2-1 
Command set organization, 4-11 

Index-2 

Command structure, 1-14,4-8 
Command tree, 4-2 - 4-3 

SELect, 6-22 
Command types, 4-2 
Commands 

Expansion frame, 4-8 
Mainframe, 4-8 

Common command header, 1-7 
Common commands, 4-2, 4-8, 5-1, A-27 
Compound command header, 1-6 
Compound header, 4-4 
Configuration file, 1-12, 1-15 
Controller mode, 2-2 

RS-232C, 3-6 
Controllers, 1-2 
COpy command, 8-6 

D 

Data bits, 3-6 - 3-7 
Data Carrier Detect (DCD), 3-5 
DATA command, 7-3 
Data Communications Equipment, 3-2 
Data mode, 2-1 
Data Set Ready (DSR), 3-5 
Data Terminal Equipment, 3-2 
Data Terminal Ready (DTR), 3-4 
DCE, 3-2 
DeL, 2-5 
DDE, B-3 
Decimal, 1-10 
DefInite-length block response data, 1-20 
DefInitions, 4-7 
DELete command, 9-3 
Device address 

HP-IB, 1-4,2-3 
RS-232C, 1-4,3-8 

Device clear, 2-5 
Device dependent errors, C-1 
DOWNload command, 8-7 

HP 16500A/16501A 
Programming Reference 



DSP command, 7-6 
DTE, 3-2 

E 

Ellipsis, 4-7 
Enter statement, 1-2 
EOI, 1-10 
EOI command, 6-11 
ERRor command, 7-7 
Error messages, C-l 
ESB, B-3 
Event Status Register, B-3 
EXE, B-3 
Execution errors, C-3 
Expansion frame commands, 4-8 
Extended interface, 3-4 

F 

File types, 8-8 

G 

GET, 2-5 
Group execute trigger, 2-5 

H 

HEADer command, 1-17, 7-8 
lIexadechnal, 1-10 
HP-lli, 1-4,2-1- 2-2, A-I, B-6 
IIP-IB address, 2-2 
HP-IB commands, B-12 
IIP-m device address, 2-3 

HP 16500A/16501A 
Programming Reference 

HP-m interface, 2-2 
HP-m interface code, 2-3 
HP-m interface functions, 2-1 
HTIMe query, 9-4 

I 

IEEE 488.1, 2-1,3-1, A-I 
IEEE 488.1 bus commands, 2-5 
IEEE 488.2, 3-1, A-I 
IFC, 2-5 
Infinity, 4-6 
Initialization, 1-12 
INITialize command, 8-9 
INPort command, 9-5 
Input buffer, A-2 
INSert command, 9-6 
Instrument address, 2-3 

HP-m, 1-4 
Interface capabilities, 2-1 

RS-232C, 3-6 
Interface clear, 2-5 
Interface code 

HP-m, 2-3 
Interface select code, 1-4 

HP-m, 1-4 
RS-232C, 3-8 

INTermodule subsystem, 9-1 
Internal errors, C-4 
InternalO, 4-7 
Internall, 4-7 

L 

LCL, B-4 
LER command, 6-12 
Linefeed, 4-7 
Listening syntax, A-8 

Index-3 



LOAD:CONFigcommand, 8-10 
LOAD:IASSembler command, 8-11 
Local, 2-4 
Local lockout, 2-4 
Lockout command, 3-8, 6-13 
Longform, 1-9 
LONGform command, 1-17,7-9 
Lowercase, 1-9 

M 

Mainframe commands, 4-2, 4-8, 6-1 
Mass storage unit specifier, 4-7 
MAV, B-3 
MENU command, 6-14 
MESE command, 6-16 
MESR command, 6-18 
Message terminator, 1-3 
MMEMory subsystem, 8-1 
MSB, B-4 
MSI command, 8-12 
MSS, B-3 
msus, 4-7,8-1 
Multiple data parameters, 1-9 
Multiple numeric variables, 1-21 
Multiple program commands, 1-11 
Multiple queries, 1-21 
Multiple subsystems, 1-11 

N 

NL, 1-10,4-7 
Notation conventions, 4-7 
Numeric base, 1-10, 1-18 
Numeric data, 1-10 
Numeric program data, 1-10 
Numeric variables, 1-20 

Index-4 

Octal, 1-10 
OPC, B-4 

o 

Operation Complete, B-4 
OR notation, 4-7 
OUTPUTcommand, 1-3 
Output queue, A-2 
Output statement, 1-2 
Overlapped command, 5-12,5-24,6-24 - 6-25 
Overlapped commands, 4-6 

p 

PACK command, 8-13 
Parallel poll, B-8 
Parallel poll commands, B-12 
Parity, 3-6 
Parse tree, A-7 
Parser, A-2 
PON, B-3 
PPC, B-12 
PPD, B-12 
PPE, B-12 
PPU, B-12 
PRINt command, 7-10 
Printer, 4-9 
Printer mode, 2-2 

RS-232C, 3-6 
Program command, 1-5 
Program data, 1-9, A-14 
Program examples, 4-9 
Program message, 1-5, A-9 
Program message syntax, 1-5 
Program message terminator, 1-10 
Program message unit, 1-5 
Program query, 1-5 

HP 16500A/16501A 
Programming Reference 



Program syntax, 1-5 
Programming examples, 1-1 
Protocol, 3-6, A-3 

None, 3-6 
XON/XOFF, 3-7 

Protocol exceptions, A-4 
Protocols, A-2 
PURGe command, 8-14 

Q 

Query, 1-5,1-8,1-17 
*ESE, 5-5 
*ESR, 5-7 
*IDN, 5-9 
*IST, 5-10 
*OPC, 5-1' 
* OPT, 5-13 
*PRE, 5-14 
*SRE, 5-17 
*STB, 5-19 
* TST, 5-22 
Atrroload, 8-4 
BEEPer, 6-3 
CAPability, 6-4 
CARDcage, 1-15,6-5 
CATalog, 8-5 
CESE, 6-7 
CESR, 6-9 
DATA, 7-3 
EOI, 6-11 
ERRor, 7-7 
FTIMe, 9-4 
HEADer, 7-8 
INPort, 9-5 
LER, 6-12 
LOCKout, 6-13 
LONGform, 7-9 
MENU, 6-15 
MESE, 6-16 

HP 16500A/16501A 
Programming Reference 

Query (continued) 
MESR, 6-18 
MSI, 8-12 
PRINt, 7-10 
RMODe, 6-20 
SELect, 6-21 
SETColor, 6-23 
SETup, 7-11 
SKEW, 9-7 
TREE, 9-8 
TTIMe, 9-10 
UPLoad, 8-17 

Query command, 1-8 
Query errors, C-5 
Query response, 1-16 
Query responses, 4-6 
Question mark, 1-8 
QYE, B-4 

R 

Receive Data (RD), 3-3 - 3-4 
Remote, 2-4 
Remote enable, 2-4 
REN, 2-4 
REName command, 8-15 
Request To Send (RTS), 3-4 
Response data, 1-20 
Response message, A-21 
RMODe command, 6-20 
Root, 4-2, 4-4, 4-9 
RQC, B-4 
RQS, B-3 
RS-232C, 1-4,3-1,3-8, A-1 

Index-5 



s 

SOC, 2-5 
SELect command, 1-13, 6-21 
Select command tree, 6-22 
Selected device clear, 2-5 
Selecting a module, 1-13 
Separator, 1-5, A-18 
Sequential commands, 4-6 
Serial poll, B-6 
Service Request Enable Register, B-3 
SETColor command, 6-23 
SETup command, 7-11 
Shortform, 1-9 
Simple command header, 1-5 
SKEW command, 9-7 
sp, 4-7 
Square brackets, 4-7 
STARt command, 6-24 
Status, 1-21,5-2, B-1 
Status byte, B-4 
Status registers, 1-21 
Status reporting, B-1 
Stop bits, 3-6 
STOP command, 6-25 
STORe:CONFig command, 8-16 
String variables, 1-19 
Subsystem 

INTermodule, 9-1 
MMEMory, 8-1 
SYSTem, 7-1 

Subsystem commands, 4-2,4-9 
SuffIX multiplier, A-16 
SuffIX units, A-16 
Syntax, A-8 
Syntax diagram, 4-8 

Common commands, 5-3 
IEEE 488.2, A-5 
INTermodule subsystem, 9-1- 9-2 

Index-6 

Syntax diagram (continued) 
Mainframe commands, 6-1 - 6-2 
MMEMory subsystem, 8-1 - 8-3 
SYSTem subsystem, 7-1-7-2 

SYSTem subsystem, 7-1 

T 

Talk only mode, 2-2 
Talking syntax, A-21 
Talking to the Instrument, 1-2 

HP 16500A, 1-2 
HP 1650lA, 1-2 

Terminator, 1-3,1-10, A-26 
Three-wire Interface, 3-3 
Trailing dots, 4-7 
Transmit Data (TO), 3-3 - 3-4 
TREE command, 9-8 
Tree traversal rules, 4-4 
Truncation rule, 4-1 
TTIMe query, 9-10 

u 

UPLoad command, 8-17 
Uppercase, 1-9 
URQ, B-3 

w 

White space, 4-7 

x 

xxx, 1-12, 1-14, 1-19,4-4,4-7 

HP 16500A/16501A 
Programming Reference 



Flin- HEWLETT 
~~ PACKARD 

Printed in U.S.A. 


	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	02-01
	02-02
	02-03
	02-04
	02-05
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	C-03
	C-04
	C-05
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	xBack

