
1 HP 64700-Series

Emulator Softkey
Interface
Reference Manual

HP Part No. 6 4700-97000
Printed in U.S.A.
February, 1990

Edition 3

Notice

Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1988–1990, Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

IBM and PC AT are registered trademarks of International
Business Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

Hewlett-Packard Company
Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

Printing History

New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1 64740-90905, November 1988 E1188

Edition 2 64740-90901, April 1989 E0489

Edition 3 64700-97000, February 1990

Using this Manual

This manual, the Softkey Interface Reference, explains the general
operation of the Softkey Interface. Use this manual with your
Emulator Softkey Interface User’s Guide. Each Emulator Softkey
Interface User’s Guide contains specific information about for your
emulator.

Topics Covered Topics covered in this manual include:

Introduction to the Softkey Interface - Chapter 1
 Configuring the Emulator - Chapter 2
Commands - Chapter 3
Command Syntax and Descriptions - Chapter 3
Coordinated Measurements - Chapter 4
Measurement System Operation - Chapter 4
Windowing Capabilities - Chapter 5
Command Files - Chapter 6
Manual Pages - Chapter 7
Performance Verification for HP 98659A - Appendix A
Error Messages - Appendix B

The Index contains terms and corresponding page numbers so that
you can locate information quickly.

 Understanding
HP 64700 Terms

If you do not understand a term in this manual, refer to the HP
64700 Emulators Glossary Of Terms for a definition.

1Conventions Used Examples in this manual use these conventions:

ENTER: run from START <RETURN>

ENTER: Instructs you to execute the command that
follows.

run from Softkeys are in bold italic type.

START Entries you make are in normal text.

step Bold type signifies commands and options in
text.

<RETURN> Press the keyboard Return key.

1Using the Manuals The HP 64700-Series Manual Maps direct you to the appropriate
manuals for the various interfaces and information on using your
emulator/analyzer. You can find the maps in the package marked
Read Me First.

Contents

1 Introducing the Softkey Interface

Topics in this Chapter . 1-1
Description of
HP 64700-Series Emulators . 1-1

Emulation Subsystem . 1-2
Emulation Controller . 1-2
Emulation Memory Subsystem 1-3
Emulator Probe . 1-4
Emulation Analyzer . 1-4
External Analysis Channels . 1-5

Features of the
HP 64700-Series Emulators . 1-6
Interactive Operation . 1-8

Using the CMB . 1-8
The Emulator and Your Program 1-8

Real-Time versus Nonreal-Time 1-8
Activity while Programs Run . 1-9

Emulation Monitor Program Control 1-10
The Emulator and Your Target System 1-10

Functional Transparency . 1-11
Timing
 Transparency . 1-11
Electrical Transparency . 1-11

The Emulation Process . 1-12
Prepare the Software . 1-12
Prepare the Emulator . 1-12
Use the Emulator . 1-12

Installing Software and Hardware 1-14
Installing Software . 1-14
Installing Hardware . 1-14

2 Emulation Configuration

Overview . 2-1
Address Conventions for Some Emulators 2-1

Contents-1

Physical Address . 2-2
Logical Address . 2-2

Real-Time and Non-Real Time Operation 2-2
Configuration Questions . 2-3

Microprocessor clock source? 2-3
Enter monitor after configuration? 2-4
Restrict to real-time runs? . 2-4
Modify memory configuration? 2-6

Mapping Memory . 2-7
Memory Map Definition . 2-7
Memory Map Organization 2-8
Entering Mapper Blocks . 2-9
Default Memory . 2-11
Deleting Blocks . 2-12
Ending the Mapping Session 2-12

Modify emulator pod configuration? 2-12
Modify debug/trace options? 2-13
Modify simulated I/O configuration? 2-13

Enable polling for simulated I/O? 2-13
Enable simio status messages? 2-14

Modify external analyzer configuration? 2-14
Modify interactive measurement specification? 2-14
Configuration file name? . 2-15

3 Commands

Overview . 3-1
Softkey Interface Features . 3-1

Softkeys . 3-1
Command Completion . 3-1
Command Word Selection . 3-1
Command Line Recall . 3-2
Command Line Erase . 3-2
Multiple Commands on one Line 3-2
Change Directory . 3-2
Working Symbol . 3-2
Name of Emulation Module 3-2
Set Environment Variables . 3-3
Filters and Pipes . 3-3
Command Files . 3-3
Help Command . 3-3

Syntax Conventions . 3-4

2-Contents

Oval-shaped Symbols . 3-4
Rectangular-shaped Symbols 3-4
Circles . 3-4
The —NORMAL— Key . 3-4

Summary of Commands . 3-5
A Syntax for all Emulators . 3-6

Function Codes . 3-6
break . break 1
cmb_execute . cmb_execute 1
copy . copy 1
copy io_port . copy 7
copy
local_symbols_in . copy 9
copy memory . copy 11
copy registers . copy 15
copy trace . copy 17
COUNT . COUNT 1
display . display 1
display data . display 5
display global_symbols . display 11
display io_port . display 13
display local_symbols_in display 17
display memory . display 19
display registers . display 27
display simulated_io . display 29
display software
_breakpoints . display 31
display trace . display 33
end . end 1
--EXPR-- . EXPR 1
help . help 1
load . load 1
log_commands . log_commands 1
modify . modify 1
modify configuration . modify 3
modify io_port . modify 5
modify keyboard
_to_simio . modify 7
modify memory . modify 9
modify register . modify 15
modify software _breakpoints modify 17

Contents-3

performance
_measurement
_end performance_measurement 1
performance
_measurement
_initialize performance_measurement 3
performance
_measurement
_run performance_measurement 7
pod_command . pod_command 1
QUALIFIER . QUALIFIER 1
RANGE . RANGE 1
reset . reset 1
run . run 1
SEQUENCING SEQUENCING 1
set . set 1
specify . specify 1
STATE . STATE 1
step . step 1
stop_trace . stop_trace 1
store . store 1
--SYMB-- . SYMB 1
trace . trace 1
TRIGGER . TRIGGER 1
wait . wait 1
WINDOW . WINDOW 1

4 Coordinated Measurements

Introduction . 4-1
Target Systems with Multiple Microprocessors 4-1
Example Measurements . 4-1

Getting Started . 4-2
About the HP 64306A Interface 4-2
Background Information on the CMB 4-3

Trigger . 4-3
Ready . 4-3
Execute . 4-3

BNC Trigger Signal . 4-4
Comparison Between CMB and BNC Triggers 4-4
Where to Find More Information 4-4
Before Continuing . 4-5

4-Contents

Modifying the Interactive Measurement Specification 4-5
Using the Analyzer Trigger to Drive External Signals 4-6

Analyzer Drives CMB Trigger 4-7
Analyzer Drives BNC Trigger 4-7
Analyzer Drives Both CMB and BNC Triggers 4-7

Using External Signals to Trigger the Analyzer 4-8
Using CMB Trigger . 4-8
Using BNC Trigger . 4-8

Using External Signals to Break the Emulator 4-8
CMB Trigger Causes Emulator to Break 4-8
BNC Trigger Causes Emulator to Break 4-9

Accessing the Emulator via Measurement System 4-9
Other Commands . 4-11

Accessing the Emulator via the emul700 Command 4-11
Example Measurements . 4-11

Example # 1 . 4-12
Two or more HP 64700 emulators start and stop executing
user programs simultaneously. 4-12

Example # 2 . 4-13
An HP 64700 analyzer triggers another HP 64700 analyzer
when it finds its specified trigger. 4-13

5 Windowing Capabilities

Using Windows . 5-1
Using Multiple Terminals . 5-1
Examples of Using Windows 5-1

Window Environment Documentation 5-2
Maximum Number of Windows 5-2

Start the Window Environment and the Emulator 5-2
Using other Window Environments 5-2
Start the Emulator . 5-3
Start another Window . 5-3
Activities that Occur in the Windows 5-3

Event Log is Displayed . 5-3
Commands Complete in Sequence 5-4
Status Line is Updated . 5-4
Ending the Emulation Session 5-4

6 Using Command Files

Topics in this Chapter . 6-1
What are Command Files? . 6-1

Contents-5

Nesting Command Files . 6-2
For More Information . 6-2

How to Create Command Files 6-2
Using an Editor to Create a Command File 6-2
Logging Commands to Create a Command File 6-3
Using the wait Command . 6-3

How to Use Command Files . 6-3

7 Manual Pages

Commands . 7-1
Files . 7-1
emul700 . 37-1
64700tab . 38-1

A Performance Verification for the HP 98659A

Introduction . A-1
If Powerup Tests Fail . A-1

Customer/Field Test Hood Requirements A-2
Part Numbers . A-2
Test without Looping . A-5

Error Messages . A-7
DTR or DSR failure . A-7
Data Read Failure . A-7
Data Character Loss Failure A-8
Data Corruption Failure . A-8
RTS/CTS and Clock Test Failure A-9
Looping Options . A-9
Additional Information . A-11

B Error Messages

Introduction . B-1
Messages Recorded in Error Log B-1
Terminal Interface Error Messages B-1
Organization of the Messages B-1
Groups of Messages . B-1

Analyzer Usage . B-3
Configuration File Building . B-3
Display Workarea . B-3
Emulator Grammar Usage . B-4
Emulator Initialization . B-4

6-Contents

emul700dmn Communications B-6
Ending the Emulation Session B-7
Expression Usage . B-7
Fatal to the Emulation Session B-7

Recovery Action . B-8
Initialize/Load/
Modify Emulation Configuration B-9
Inverse Assembler Initialization B-9
Load/Store Absolute File . B-10
Memory Display . B-10
Miscellaneous . B-11
Miscellaneous Numbered . B-11
Performance Measurement . B-13
Processor Control . B-14
Symbol Usage . B-14
Trace Display/Load . B-15

Contents-7

Illustrations

Figure 1-1. Integrated Products Solution 1-3
Figure 1-2. HP 64700 Emulation System Block Diagram 1-5
Figure 1-3. Steps for Using the Emulator 1-13
Figure 2-1. Default Memory Map (68000 Emulator) 2-9
Figure 2-2. Memory Mapper Block Syntax 2-10
Figure 2-3. Default Memory Syntax 2-11
Figure 2-4. Deleting Memory Map Blocks 2-12
Figure 2-5. Example 68000 Configuration File 2-16
Figure 4-1. Interactive Measurement Specification 4-6
Figure 4-2. Creating a Measurement System 4-10

8-Contents

Tables

Table 1-1. Emulator Softkey Interface Features 1-6
Table 3-1. Summary of Commands 3-5
Table A-1. Customer/Field Test Hood Requirements A-3

Contents-9

1Notes

10-Contents

1

Introducing the Softkey Interface

Topics in this
Chapter

Description of HP 64700-Series Emulators

Features of the HP 64700-Series Emulators

Interactive Operation

The Emulator and Your Program

Activity while Programs Run

The Emulator and Your Target System

The Emulation Process

Installing Software and Hardware

1Description of
HP 64700-Series
Emulators

Each HP 64700-Series emulation system is a separate functional
module when used with the Softkey Interface in the HP 64000-UX
system environment. Each emulation system has three hardware
modules packaged in a unit, with the emulation software and
technical manuals.

Introducing the Softkey Interface 1-1

The hardware modules include:

Emulation Subsystem

Emulation Memory Subsystem

Emulation Analyzer (with optional external channels)

HP 64700-Series emulation systems may be used with “external”
analysis for more sophisticated measurements. These are available
as options to the HP 64700-Series emulators.

The HP 64700-Series emulator/analyzer is a tool used to aid you in
the development of your target system hardware and software.
Proper use can help ensure that your hardware and software work
together. The HP 64700-Series emulator/analyzer can be used with
or without target system hardware, or with other products to debug
your target system hardware and to integrate your software and
hardware. Figure 1-1 shows an example emulation solution.

Emulation Subsystem The emulation subsystem allows you to access and modify internal
microprocessor registers, and locations or blocks of memory. In
addition, you can access code instruction-by-instruction by
stepping through a program.

Emulation Controller The emulation controller controls the interaction between the HP
64000-UX operating system software and the HP 64700-Series
emulation hardware. This board is the major interface between the
emulator and memory and analysis. The HP 64000-UX operating
software can control the emulation microprocessor “reset” and the
bus activity directly through the controller. The two main functions
of the controller are to convert emulator timing signals to
compatible memory and analysis bus signals and to provide a
channel to the emulator for hardware configuration.

1-2 Introducing the Softkey Interface

Emulation Memory
Subsystem

The emulation system includes emulation memory implemented in
static RAM. Emulation memory can be used in place of your target
system ROM or RAM. Program modules that will ultimately reside
in target system ROM can be developed and thoroughly tested
before being permanently stored in ROM.

Figure 1-1. Integrated Products Solution

Introducing the Softkey Interface 1-3

The memory controller supervises emulation and target memory.
The controller monitors the emulation memory bus to determine
the type of memory that is to be accessed (emulation memory or
target system memory). The memory controller is the interface
between emulation memory and the HP 64000-UX operating
system. The operating software communicates with the emulation
microprocessor, transferring data to and from emulation memory.
This transfer is accomplished through the memory controller
board. Besides providing an access port into emulation memory,
the memory controller contains a hardware mapper programmed
to map the memory resources into emulation or target system
RAM or ROM, or guarded memory spaces.

Emulator Probe The emulator probe is at the end of the probe cable. This flexible
cable extending from the lower right part of the HP 64700-Series
emulator front panel allows you to connect the emulator to the
target system. You can then use the emulator to help in the design
and debugging of target system hardware and software.

Emulation Analyzer The emulator can be used for software development before you
finish target system hardware development. Program modules can
be run by the emulator, and trace measurements can be made by
the emulation analyzer.

The emulation analyzer is the equivalent of a logic analyzer. It
accepts trigger specifications, then monitors the emulation analysis
bus to determine if the specified event has occurred. When the
event occurs, the analyzer traces 1024 states of program execution
and stores them in a trace memory. Trace data can then be
displayed on the terminal. When you specify counts, the analyzer
will capture 512 states.

1-4 Introducing the Softkey Interface

External Analysis
Channels

Your emulator may contain an optional external analyzer. The
external analyzer provides sixteen external trace signals, with 2
external clock inputs. You can use the external analyzer as an
extension to the emulation analyzer, as an independent state
analyzer, or as an independent timing analyzer.

Figure 1-2 shows a basic block diagram of the HP 64700 emulation
system.

Figure 1-2. HP 6 4700 Emulat ion System Block Diagram

Introducing the Softkey Interface 1-5

1Features of the
HP 64700-Series
Emulators

The HP 64700-Series emulator/analyzer is just one tool available
for embedded microprocessor design, test, and debug. The tasks
simplified by the HP 64700-Series emulators include software
debugging, hardware debugging, and hardware and software
integration. You can do these using the basic emulator features
described in table 1-1.

Note The asterisk (*) listed by the following features indicate that the
feature does not exist on all emulators. Refer to your Emulator
Softkey Interface User’s Guide for details.

Program Loading and
Execution

The code you develop using the editor, compilers, assembler, and
linker can be loaded into memory and executed by the emulator.

Run and Stop Controls Programs may be run from address or symbolic locations.
Emulation can be stopped by breaking into the emulation
foreground/background monitor or by resetting the
microprocessor.

Memory Display and
Modification

You can display locations or blocks of memory and modify any
that can be changed.

I/O Ports Display and
Modification*

You can display and modify input/output (I/O) port address
locations and values.

Global and Local Symbols
Display

You can display the addresses associated with your program’s
global and local symbols while working in emulation.

Table 1-1. Emulator Softkey Interface Features

1-6 Introducing the Softkey Interface

Registers Display and
Modification

You can display and modify internal registers of the
microprocessor.

Analysis (With Optional
External Channels)

You can use the analyzer to observe real-time activity on the
emulation microprocessor bus. With external channels, you can
observe real-time activity on the external signals where you have
connected the probes.

Program Stepping You can execute code instruction-by-instruction, at the assembly
level or by source lines, gaining access to the internal machine
states between instructions.

Memory Mapping You can use emulation memory and target memory at the same
time by defining the characteristics of the blocks of memory.

Memory Characterization You can assign emulation and target system memory as ROM or
RAM. By doing this, you can test “ROM” code without using
ROM hardware.

Breakpoint Generation You can transfer program execution to a monitor routine with the
occurrence of a particular machine state or range of states.

Clock Source Selection You can select the target system clock for the emulation clock
source. If a target system clock is not available, use the internal
clock in the emulator.

Simulated I/O You can set up your emulation system to communicate with HP
9000 files, the workstation keyboard, and the workstation display
using simulated I/O. In addition, you can use the emulation
system to execute HP-UX commands, which allows the emulator
to communicate with other HP 9000 input/output devices, such as
printers, plotters, and modems.

Table 1-1. Emulator Softkey Interface Features (Cont’d)

Introducing the Softkey Interface 1-7

1Interactive
Operation

Emulation and analysis features can be used in an interactive
manner between an emulator and another module through the HP
64000-UX measurement system. That module could be another
emulator or a state or timing analyzer. Interaction allows the
integration of development work on multi-processor designs, or
more elaborate and detailed analysis of a design, or both.

Using the CMB You can use the Coordinated Measurement Bus (CMB) between
two HP 64700 Series emulators to synchronize a measurement. Or,
you can use one or more HP 64700 Series emulators, with the HP
64306A IMB/CMB Interface board, to make coordinated
measurements with instruments in the HP 64120 Logic
Development Station. Functions provided include:

cross-triggering of analyzers

coordinated emulation starts

simultaneous emulation breaks

simultaneous emulation resume operations

Chapter 4 contains additional information about the CMB.

1The Emulator and
Your Program

The emulator does not permanently alter your program, but it may
affect the execution of your program. The way in which the
emulator affects your program depends on the emulation
operations you select.

Real-Time versus
Nonreal-Time

You can configure the emulator to operate in either of two modes:
real-time or nonreal-time.

1-8 Introducing the Softkey Interface

“Real-time” refers to continuous execution of your target system
program without interaction with the HP 64000-UX host computer
(except as instructed by you).

Interaction occurs when a break to the emulation monitor program
is initiated either manually by you or automatically. The emulation
monitor is the tool that allows you access to the internal registers
of the microprocessor and target system memory.

Whenever the emulator is running under control of the emulation
monitor program, your program is no longer executing in
real-time. The emulation monitor program may be described in
more detail in your Emulator Softkey Interface User’s Guide.

1Activity while
Programs Run

While your program is running, the emulation microprocessor
generates address information for each cycle. The hardware
differentiates between your target system and the emulation system
resources based on that address information.

If the emulator identifies a target system resource having the
current address, data path buffers between your target system and
the emulation processor are enabled. If the address is mapped to
emulation memory space, data path buffers between the emulation
processor and the emulation bus are enabled.

As your program runs, the emulation analyzer monitors activity on
the emulation analysis bus. You can instruct the analyzer to store
this program flow for later display without interrupting the
real-time flow of the program.

Introducing the Softkey Interface 1-9

Emulation Monitor
Program Control

Emulation functions are implemented by seizing control of the
emulation processor from your program, and transferring control
to the monitor program.

The emulation monitor program is the link between the emulation
processor and the host system. The foreground emulation monitor
is a program written in assembly code. It is located within
emulation memory, because this is the only memory directly
accessible in the HP 64700-Series emulators. The background
monitor is in background memory, which you cannot access.

The monitor program is constructed of several separate routines.
Some routines execute automatically whenever the monitor
program is entered. These routines extract the internal
microprocessor information that existed at the time of entry. You
can then display this information on your terminal. If, for instance,
the monitor program is entered after the execution of one of your
program instructions, the internal machine state that exists then is
available.

1The Emulator and
Your Target
System

The goal of the HP 64700-Series emulator is to appear just like the
microprocessor that will eventually control your target system. The
emulator can give you complete and immediate insight into the
clock-by-clock operation of the target system. The function, signal
quality, drive capacity, and other factors at the emulation probe
should be indistinguishable from those of the actual
microprocessor. This characteristic is called transparency.

1-10 Introducing the Softkey Interface

Functional
Transparency

Functional transparency refers to the ability of the emulator to
function in the same way as the microprocessor you will use in your
target system. Functional transparency requires that the emulator
execute your program, generate outputs, and respond to inputs in
the same manner as the actual target microprocessor.

Timing
 Transparency

Timing transparency refers to the timing relationships between
signals at the location where you plug the emulator in to the target
system. There may be a difference between the timing of signals at
the emulation probe, and the timing of signals in the target system.
Execution in the emulation environment is designed to run at the
maximum speed of the microprocessor.

Timing diagrams for your emulator and target system
microprocessor may be included in the Terminal Interface User’s
Guide for your emulator.

Electrical
Transparency

Electrical transparency refers to the electrical characteristics of the
emulator probe plug-in pins compared to the pins of the actual
target microprocessor. These characteristics include such things as
rise and fall times, input loading, output drive capacity, and
transmission line considerations. The electrical requirements of
the emulation probe plug-in pins are designed to be equivalent to
the microprocessor it replaces in your target system.

Introducing the Softkey Interface 1-11

1The Emulation
Process

There are three steps to the entire emulation process:

1. Prepare the software.

2. Prepare the emulator.

3. Use the emulator.

Prepare the Software Preparing the software consists of creating a program, assembling
or compiling the program, and linking the assembled or compiled
program modules. Refer to the appropriate Assembler/L inker
Manual or Compiler Manual for more information.

Prepare the Emulator Preparing the emulator consists of starting the emulator using the
emul700 command (or using the HP 64000-UX measurement
system). The emulator device file named /usr/hp64000/etc/64700tab
must contain the emulator name. Optionally, you can initialize and
define a measurement system for each HP 64700-Series emulator.
This is described in chapter 4 . After defining the emulator, you
configure it for your particular application. Configuration details
are covered in each Emulator Softkey Interface User’s Guide.

Use the Emulator Using the emulator consists of loading absolute code (generated
by linking program modules) into the emulator. Then you use the
emulator to observe the program as it runs, display the contents of
the registers and/or memory, and to debug your hardware and
software. Use of the emulator with the Softkey Interface is
described in your Emulator Softkey Interface User’s Guide.

1-12 Introducing the Softkey Interface

Figure 1-3. Steps for Using the Emulator

Introducing the Softkey Interface 1-13

1Installing
Software and
Hardware

A Softkey Interface Installation Notice is supplied with your HP
64700-Series emulator Softkey Interface documentation. This
notice describes what you should do to install and/or update the
Softkey Interface software for your emulation system. It also
describes the interface hardware you must install in the host
computer.

Installing Software As described in the Softkey Interface Installation Notice, you must
install software for:

HP 64801 Operating System

HP 64700-Series Emulator

Interface Card driver (for HP 98628A, HP 98642A, or
HP 98659A)

Depending on your host computer system configuration and
current software, you may need to update the host operating
system. Refer to the Softkey Interface Installation Notice supplied
with your HP 64700-Series product for more information.

The Softkey Interface Installation Notice also describes how to make
a device file for the interface card you are using, and how to modify
the “64700tab” file.

Installing Hardware After you install software, you must install an interface card to
allow the HP 9000 to communicate with your HP 64700-Series
emulator. Then you can connect your HP 64700-Series Emulator
to the interface card.

1-14 Introducing the Softkey Interface

2

Emulation Configuration

Overview This chapter describes:

Address Conventions for some Emulators

Real-Time and Nonreal-Time Operation

Emulation Configuration Questions

The emulator needs to know about the clock and memory
resources available on your target system. The emulation
configuration questions allow you to define your target system
microprocessor for the emulator.

Because emulation memory provides memory to be used if your
target system memory is not yet available, you must define the
mapping of memory resources. Also, you must define the mode of
operation (real-time or non-real-time) for the emulator, and
whether you want to be notified of attempts to write to ROM.

Your Emulator Softkey Interface User’s Guide contains details
about configuring your emulator.

1Address
Conventions for
Some Emulators

You must understand the address conventions for your
microprocessor to map the emulation and target system memory
later in this chapter. Depending on your emulator, the emulation
software may use two different memory address conventions
(physical address and logical address). If your emulator uses both
physical and logical addressing, it will accept either address
convention after configuration is complete.

Emulation Configuration 2-1

Physical Address You use physical addresses for specifying the memory map during
configuration setup. The address takes the form 0XXXXb, where
“b” is the number base (B = binary, Q or O = octal,
 D = decimal, and H = hexadecimal). A leading zero is only
required where the leading character is a non-numeric hexadecimal
character (as in 0FFFH).

Logical Address Logical addresses have a segment number, a colon separator, and
an offset number within the given segment. The logical address
takes the form 0XXXXb:YYYYb, where “b” is the number base (B
= binary, O = Octal, D = decimal, and
H = hexadecimal). The “X” term is the segment identifier, and the
“Y” term is the offset identifier. A leading zero is only required if
the leading character is a non-numeric hexadecimal character (as in
0FFFH).

1Real-Time and
Non-Real Time
Operation

The emulator allows you to restrict operation to real-time program
execution. “Real-time” here is not based on whether wait states are
inserted or not, because none are needed. Instead, real-time refers
to the continuous execution of your program without interaction
from the host computer, except as instructed by you.

Caution POSSIBLE DAMAGE TO CIRCUITRY !

When the emulator detects a guarded memory access or other
illegal condition, it stops executing your code and enters the
monitor. Thus, if you have circuitry that can be damaged because
the emulator is not executing code, you should exercise special
caution. For example, you should configure the emulator to restrict
to real-time runs, and you should not break into the monitor. Or,
you should enable the emulator to drive monitor cycles to the
target system.

2-2 Emulation Configuration

1Configuration
Questions

To modify the emulator configuration after you have entered the
emulator Softkey Interface. . .

PRESS: modify config <RETURN>

The following questions and options appear sequentially when you
choose default values. Some options may be different for your
particular emulator.

Microprocessor clock source? internal
Enter monitor after configuration? yes
Restrict to real-time runs? no
Modify memory configuration? no
Modify emulator pod configuration? no
Modify debug/trace options? no
Modify simulated I/O configuration? no
Modify external analyzer configuration? no
Modify interactive measurement specification? no
Configuration file name?

Depending on the answers you supply, you may enter other levels
of the configuration process. The options are described on the
screen as you go through the configuration process.

For details about the configuration items for your emulator, refer
to your Emulator Softkey Interface User’s Guide. For information
about configuring the analyzer, refer to the Analyzer Softkey
Interface User’s Guide.

The rest of this chapter describes the emulation configuration
questions and available options.

Microprocessor clock
source?

internal When you select “internal”, the emulation
processor will use the oscillator contained in
the emulator as its clock source. The
oscillator speed may be different for each
emulator, so check your Emulator Softkey
Interface User’s Guide for details.

Emulation Configuration 2-3

external When you select “external”, the emulation
processor will use the clock contained in the
target system.

When you change this part of the emulation configuration, the
emulator will enter the reset state.

Enter monitor after
configuration?

yes When you choose “yes”, the emulator will
enter the monitor after you modify the
emulation configuration. If this process fails,
the previous configuration will be restored.
The process could fail if you select an
external clock, but don’t provide one.

no When you choose “no”, the emulator will
not enter the monitor after you modify the
emulation configuration.

Restrict to real-time
runs?

no If runs are not restricted to real time, the
emulation software performs all commands
upon request, and detects entry to the
emulation monitor at any time.

To allow this to happen, the emulation system must be capable of
entering the monitor program at any time. The monitor program
enables the emulation system controller to access the memory
mapped as user (target system) memory. User memory is accessed
when a command to display, list, modify, load, or store user
memory is processed.

In nonreal-time mode, the emulation system forces entry into the
emulation monitor program whenever a command that requires
access to the microprocessor registers, target system I/O, or target
system memory is processed. If your program was executing at the

2-4 Emulation Configuration

time of the request, the emulation system forces entry into the
emulation monitor. When the monitor obtains the necessary
information, your program resumes execution.

Entering the emulation monitor program extends the execution
time of your program. If your system is dependent on execution
time, try restricting operation to real-time.

yes While your program is executing, emulation
commands that require the monitor program
are restricted.

The commands that are restricted during real-time runs are listed
below:

copy data

copy memory

copy registers

display data

display memory

display registers

load <file>

load user_mem

modify memory

modify register

modify software_breakpoints

store memory

The above commands are restricted if applied to user (target system) memory.

Following a program run, the emulator remains in the real-time
mode until a break from one of the following sources is detected by
the emulation software. The break conditions can be:

1. A memory break caused by a write to ROM (if this
configuration item is enabled) or an access to guarded
memory.

2. An analysis break from a trace command that includes a
break_on_trigger specification.

3. A break command.

4. A run from command.

Emulation Configuration 2-5

5. A step command.

6. The lack of a READY signal on the Coordinated
Measurement Bus (CMB) if CMB operation is enabled.

Once a break is detected, the emulator enters the emulation
monitor. Once the emulation monitor is detected, the commands
listed above in steps 1 through 6 are enabled. The emulation
system returns to the real-time mode when execution returns to
your program with a run command.

Modify memory
configuration?

This question provides you with the opportunity to review and
modify the memory configuration stored in the emulation
configuration file.

When you begin an initial emulation session, the emulator starts in
the default emulation configuration. The default configuration
assigns some blocks of memory as emulation RAM. You must
configure (map) the memory space used by your program.

Base your decisions about memory mapping on the length and
features of your target system program(s). As you progress with
your program development, your memory map requirements
probably will change.

For example, additional memory in the target system may become
available. Rather than start a new configuration session from the
beginning, you can modify your present configuration. You can
then either keep the same configuration file name (by writing over
the current file) or assign the new configuration a new file name.

If you assign a new configuration file name, and you use a
command file to enter the emulation session, remember to change
the name of the configuration file in the command file.

Options to the “Modify memory configuration?” question are:

yes This response allows you to alter the way in
which emulation and target system memory
is defined and used. The microprocessor is
reset, and the configuration questions are
presented one at a time with their current
default values. Each default response can be

2-6 Emulation Configuration

entered as listed by pressing < RETURN> .
Or, you can modify the response for the
current emulation session, then enter it
using the < RETURN> key.

no This response skips modifications to the
memory definitions. A response of “no”
configures the memory as specified in the
current emulation configuration file.

Mapping Memory

To perform emulation, the memory mapper must be set up to use
emulation memory and/or target system memory resources. The
memory mapper allows you to divide the microprocessor address
space into several blocks that can be individually assigned any one
of the five available descriptors: emulation RAM, emulation
ROM, target RAM, target ROM, or guarded memory.

During emulation, the mapper monitors the address bus and gives
the descriptor for the address present at any given time. The
emulator hardware uses this information to control data and
program activity between the emulation microprocessor and the
memory resources.

Memory Map Definition

The map has several address range definition entries and a choice
for default memory. The number of ranges depends on the
emulator type. Each entry defines a particular address range as a
possible memory type. Any address range not defined by an entry
maps to the memory default specification.

Entries do not need to be an integral multiple of the block size.
Once the mapper software processes the inputs, the boundaries
round to integral multiples of the block size. Therefore, assuming a
block size of 4 kilobytes, if you enter an address range of 0 through
07FH, one entire 4 kilobyte block of memory is allocated (0 thru
0FFFH). The block size for your emulator is listed at the top of the
memory map display as shown in figure 2-1.

The final boundaries include all the memory space specified, plus
the remainder of any partially specified blocks. The remaining

Emulation Configuration 2-7

parts of your microprocessor address range, not covered by an
entry, map to the memory default.

When you specify target memory for a given address range, all
memory cycles within that address range are sent to the target
system. All memory load and display operations for target system
memory are done using the emulation monitor program.

Emulation memory can be specified as either ROM or RAM. As
with target memory ROM, write attempts to emulation ROM can
generate a break, if desired. Additionally, any write attempt to
emulation ROM will not change the contents of that memory
location. All emulation memory is displayed and loaded directly by
the emulation software.

Guarded memory is memory that the emulation system cannot
access. Examples of this may occur where there is a memory
shadow from another memory block in the same address space
(due to partial address decoding in your target system memory).
Or, memory in that range is either not developed or not available
to your system. The block of memory may not even exist.

Memory Map Organization

The default memory map is shown in figure 2-1. The top line of the
display shows the number of emulation memory blocks available
for mapping, the number of blocks currently mapped, and the size
of the blocks. Each new mapper entry updates the “available” and
“mapped” block numbers to reflect the current values. The number
of available blocks depends on the amount of emulation memory in
the emulator.

If you enter emulation without loading a configuration file, the
map contains the default map entries. Any attempt to end the
emulation session while the memory map is blank causes an error
message to be displayed.

The softkey labels on the mapping display identify the options
available during the mapping session. You can specify individual
map blocks, define the default memory type, delete any or all of the
currently defined blocks, copy the current map display to a printer,
or end the map definition session. These options are described on
the following pages.

2-8 Emulation Configuration

Entering Mapper Blocks

All mapper entries consist of an address or address range and a
descriptor, which defines the type of memory within the specified
addresses. Once you enter the desired address or address range, the
available descriptors appear as softkeys.

You must select one of five memory descriptors for each memory
address range that you map. The descriptors are target ROM,
target RAM, emulation ROM, emulation RAM, and guarded.

Define the mapper blocks using the syntax shown in figure 2-2.

The memory mapper options are defined as:

target This refers to memory supplied by your
target system. Mapping an address range to
target memory space does not require any
emulation memory. Therefore, the number
of available memory blocks listed at the top
of the mapper screen does not change when
specifying target space.

 Emulation memory blocks: available = 0 mapped = 252 size = 512 bytes
 entry range type function code
 1 0H- 1F7FFH EMUL/RAM

 <ADDR> default delete print end

Figure 2-1 Default Memory Map (68000 Emulator)

Emulation Configuration 2-9

emulation This refers to memory supplied by the
emulation system. When specifying
emulation memory, the number of available
blocks of emulation memory decreases by
the number of blocks required for the
assignment.

guarded This option designates an address range that
you do not plan to access. Any
microprocessor access to a location within
such a range results in a break of the
program execution. No emulation memory is
used when specifying an address range as
“guarded”.

rom ROM defines memory that can be read but
cannot be modified by the processor. The
emulator can detect an error on the
occurrence of write cycles to this memory.
Emulation memory that is RAM but is
mapped as ROM performs as ROM during
emulation.

ram RAM defines memory that can be read from
or written to without restriction.

Figure 2-2. Memory Mapper Block Syntax

2-10 Emulation Configuration

< ADDR> The address specifying a particular memory
location can be a pattern of 32 bits or less.
The pattern can be represented by a binary,
octal, decimal, or hexadecimal number.

The first < ADDR> of a range specification can be the starting
address of a block boundary, or an address within the memory
block. If you enter an address within the memory block, the system
converts this address to the starting address of the block prior to its
mapping. If the most significant digit in the address is numeric, you
do not have to include a leading zero.

If you specify a single address, rather than a range of addresses,
only the block containing that address is mapped. Because the
entire block is automatically used, the “thru < ADDR> ” portion
of the syntax does not need to be entered. Enter only a single
address and a descriptor.

Default Memory

Any address ranges that are unmapped when the mapping session
ends are assigned to the memory type specified as the default. The
default descriptor can be defined as target RAM, target ROM, or
guarded by using the default command. If no default descriptor is
specified, all unmapped memory blocks are defined as guarded
memory.

The syntax for the default memory type command is shown in
figure 2-3.

Figure 2-3. Default Memory Syntax

Emulation Configuration 2-11

Deleting Blocks

 One or all of the memory map entries can be removed by using the
delete command. The syntax for the delete command is shown in
figure 2-4.

Ending the Mapping Session

You can exit the memory map configuration session by pressing
the end softkey followed by < RETURN> . If you try to end the
mapping session while the memory map is blank, an error message
is displayed.

Modify emulator pod
configuration?

When you select yes to modify the emulator configuration, you see
all the emulator-specific configuration questions. These will differ
for each emulator, so refer to your Emulator Softkey Interface
User’s Guide for details.

yes The emulator-specific set of configuration
questions are accessed, allowing you to view
and/or modify the emulator configuration
items.

no When you answer no to this question, you
bypass modifying the emulator-specific
configuration questions.

Figure 2-4. Deleting Memory Map Blocks

2-12 Emulation Configuration

Note Do not use pod_command to modify the emulator configuration. If
you do this, you will not see the new configuration changes
reflected when you use the modify configuration command.

Modify debug/trace
options?

Answering yes allows you to change the way the emulation or
external analyzer debugs programs and captures trace information.

yes When you choose yes, you see questions
about breaking the emulation processor on
writes to ROM. In addition, depending on
the emulator you are using, you can redefine
the trap number for software breakpoints,
and define whether to trace foreground or
background operation, or both.

no Answering no leaves the debug/trace options
as previously defined.

Modify simulated I/O
configuration?

This configuration question allows you to simulate various
functions of the HP 64700-Series emulator running on the host
computer.

no By answering no to the “Modify simulated
I/O configuration?” question, you bypass all
modifications to the simulated I/O features.

yes Once you have responded with yes to this
question, you are asked the following
question:

Enable polling for simulated I/O?

no Answering no bypasses modification to the
simulated I/O control addresses.

yes Answering yes allows you to define addresses
for control address 1 through 6. Once you
have answered those questions, you can

Emulation Configuration 2-13

specify names for standard input, output,
and error files.

The last simulated I/O question to appear is:

Enable simio status messages?

yes If you enable display of simulated I/O status
messages, the command and return code will
be shown on screen.

no If you disable simulated I/O status messages,
simulated I/O will run faster than if the
status messages are enabled.

Refer to the HP 64000-UX Simulated I/O Manual for details about
using simulated I/O.

Modify external
analyzer

configuration?

The external analyzer is used to capture information on signals
external to the HP 64700-Series emulator. If you want to modify
the external analyzer configuration, answer yes to this question.

no When you answer no to this question, all
modifications to the analyzer configuration
are bypassed.

yes When you answer yes, a specific set of
analyzer configuration questions will be
presented for your viewing and/or
modification. The specific questions are
described in the Analyzer Softkey Interface
User’s Guide.

Modify interactive
measurement
specification?

When you choose yes to modify the interactive measurement
specification, you can define drivers and receivers for the internal
trigger signals in the emulation analyzer (trig1 and trig2).

You can configure trig1 to drive or receive the BNC port trigger
and CMB trigger. You can configure trig2 to drive or receive the
BNC port trigger, or receive CMB trigger. In addition, trig2 can be

2-14 Emulation Configuration

configured to drive the emulator or analyzer, or can be received
from the analyzer.

yes If you want interaction or to modify a
previously defined specification, answering
yes to this question allows you to review and
modify this specification as necessary.

no You bypass access to the specific set of
interactive measurement configuration
questions when you answer no to this
question.

For details about making measurements, see the chapter on
Coordinated Measurements in this manual.

Configuration file
name?

You can save modifications to the emulator configuration in a file
that can be loaded into the emulator at another time. To do this,
when this question appears, type in the name of a file where you
want the configuration stored. You can include multiple levels of
subdirectories.

The first time you go through the configuration process, you will
not see a default file name. If you modify the configuration again
during the emulation session, the file name specified last will
appear as the selection to this question.

An example default configuration file (for the 68000 emulator) is
shown in figure 2-5.

Emulation Configuration 2-15

BEGIN MEMORY MAP
default guarded
0H thru 01F7FFH emulation ram
END MEMORY MAP
Micro-processor clock source? internal
Restrict to real-time runs? no
Enter monitor after configuration? yes
Inverse assembly syntax to use? 64845
Monitor type? background
Monitor address? 0FFF800H
Monitor function code? none
Enable bus arbitration? yes
Tag bus arbitration for analyzer? no
Interlock emulator DTACK with user DTACK? no
Enable Bus Error on emulation memory accesses? no
Respond to target system interrupts? yes
Reset value for Supervisor Stack Pointer? 1FFEH
Target memory access size? bytes
Drive background cycles to target system? yes
Value for address bits A23-A16 during background cycles? 0
Function code for background cycles? supr prog
Break processor on write to ROM? yes
Enable software breakpoints? yes
Trap number for software breakpoint (0..0FH)? 0000FH
Trace background or foreground operation? foreground
Should BNC drive or receive Trig1? neither
Should CMBT drive or receive Trig1? neither
Should BNC drive or receive Trig2? neither
Should CMBT drive or receive Trig2? neither
Should Emulator break receive Trig2? no
Should Analyzer drive or receive Trig2? neither
Should emulation control the external bits? yes
Threshold voltage for bits 0-7 and J clock? TTL
Threshold voltage for bits 8-15 and K clock? TTL
External analyzer mode? emulation
Slave clock mode for external bits? off
Edges of J clock used for slave clock? none
Edges of K clock used for slave clock? none
Edges of L clock used for slave clock? none
Edges of M clock used for slave clock? none
First external label name? xbits
First external label start bit? 0
First external label width? 16
First external label polarity? positive
Define a second external label? no
Second external label name? low_byte
Second external label start bit? 0
Second external label width? 8
Second external label polarity? positive

Figure 2-5. Example 6 8000 Conf iguration File

2-16 Emulation Configuration

Define a third external label? no
Third external label name? hi_byte
Third external label start bit? 8
Third external label width? 8
Third external label polarity? positive
Define a fourth external label? no
Fourth external label name? bit0
Fourth external label start bit? 0
Fourth external label width? 1
Fourth external label polarity? positive
Define a fifth external label? no
Fifth external label name? bit1
Fifth external label start bit? 1
Fifth external label width? 1
Fifth external label polarity? positive
Define a sixth external label? no
Sixth external label name? bit2
Sixth external label start bit? 2
Sixth external label width? 1
Sixth external label polarity? positive
Define a seventh external label? no
Seventh external label name? bit3
Seventh external label start bit? 3
Seventh external label width? 1
Seventh external label polarity? positive
Define an eighth external label? no
Eighth external label name? bit4
Eighth external label start bit? 4
Eighth external label width? 1
Eighth external label polarity? positive
Enable polling for simulated I/O? no
Simio control address 1? SIMIO_CA_ONE
Simio control address 2? SIMIO_CA_TWO
Simio control address 3? SIMIO_CA_THREE
Simio control address 4? SIMIO_CA_FOUR
Simio control address 5? SIMIO_CA_FIVE
Simio control address 6? SIMIO_CA_SIX
File used for standard input? /dev/simio/keyboard
File used for standard output? /dev/simio/display
File used for standard error? /dev/simio/display
Enable simio status messages? yes

Figure 2-5. Example 6 8000 Conf iguration File (Cont’d)

Emulation Configuration 2-17

1Notes

2-18 Emulation Configuration

3

Commands

Overview This chapter describes:

Softkey Interface Features

Syntax Conventions

Summary of Commands

A Syntax for all Emulators

Command Descriptions

1Softkey Interface
Features

Softkeys You enter Softkey Interface commands by pressing softkeys whose
labels appear at the bottom of the screen. Softkeys provide for
quick command entry, and minimize the possibility of errors.

Command Completion You can type the first few characters of a command (enough to
uniquely identify the command) and then press Tab. The Softkey
Interface completes the command word for you.

Command Word
Selection

If you entered a command, but want to make a change or
correction, press the Tab key to position the cursor at that word.
Pressing Tab moves the cursor to the next word on the command
line. Pressing Shift Tab moves the cursor to the previous word.

Commands 3-1

Command Line Recall Softkey Interface commands that you enter are stored in a buffer
and may be recalled by pressing CTRL r . Pressing CTRL b cycles
forward through the recall buffer.

Command Line Erase Instead of pressing the Back space key to erase command lines,
press CTRL u . You can then reenter the command. Pressing Clear
line erases the command line from the cursor position to the end of
the line.

Multiple Commands
on one Line

You can enter more than one command at a time by separating the
commands with a semicolon (;).

Change Directory You can change your working directory while in emulation using
the cd command. This command does not appear on the softkey
labels. Typing pwd on the command line will display the name of
your current working directory on the status line.

Working Symbol The Symbolic Retrieval Utilities (SRU) handle symbol access
within emulation. SRU maintains trees representing the symbol
structure and scoping within your program code. You can specify a
specific path in the tree using the cws (current working symbol)
command. After you specify a symbol in this way, other symbol
accesses are assumed to be relative to this symbol unless you
specify complete paths. You can display the working symbol in use
with the pws (print working symbol) command. The working
symbol will be displayed on the emulator status line.

Refer to the --SYMB-- syntax pages and the HP 64000-UX System
User’s Guide for more information on symbols and the Symbolic
Retrieval Utilities.

Name of Emulation
Module

While operating your emulator Softkey Interface, you can verify
the name of the emulation module. This is also the logical name of
the emulator in the emulator device file. To find the name of your
emulation module, enter name_of_module < RETURN>. The
name of the emulation module appears on the Status line.

3-2 Commands

Set Environment
Variables

You can set an HP-UX shell environment variable from within the
Softkey Interface. To do this, use the format:

set <environment variable> = <value>

For example, you could enter:

set PRINTER = "lp -s" <RETURN>
export PRINTER

After you set an environment variable from within the Softkey
Interface, you can verify the value of it by entering !set
< RETURN> . Be sure to export the value of a variable after setting
it. This ensures the variable is visible to application programs.

Filters and Pipes You can specify HP-UX filters and pipes as the destination for
information while using the copy command. See the description of
the copy command in this chapter for details.

Command Files You can execute a series of commands that have been stored in a
command file. You can create command files using the
log_commands command or by using an editor on your host
computer. Once you create a command file, you can execute the
file in the emulation environment by typing the name of the file on
the command line and pressing < RETURN> . See the chapter on
Command Files for more information.

Help Command A help command is available to you within an emulation session.
Several methods are available for displaying help information
about a command. You can use any of these methods:

1. ENTER: help and press a softkey that appears

2. ENTER: ? and press a softkey that appears

3. ENTER: pod_command "help emul"

ENTER: display pod_command

Commands 3-3

1Syntax
Conventions

Conventions used in the command syntax diagrams are defined
below.

Oval-shaped Symbols Oval-shaped symbols show options available on the softkeys and
other commands that are available, but do not appear on softkeys
(such as log_commands and wait). These appear in the syntax
diagrams as:

Rectangular-shaped
Symbols

Rectangular-shaped symbols contain prompts or references to
other syntax diagrams. Prompts are enclosed with angle brackets
(< and >). References to other diagrams are shown in all capital
letters. Also, references to expressions are shown in all capital
letters. Examples of expressions are —EXPR— and —SYMB—
(see those syntax diagrams). These appear in the following syntax
diagrams as:

Circles Circles indicate operators and delimiters used in expressions and
on the command line as you enter commands. These appear in the
syntax diagrams as:

The —NORMAL— Key The softkey labeled —NORMAL— allows you exit the
—SYMB— definition, and access softkeys that are not displayed
when defining expressions. You can press this key after you have
defined an expression to view other available options.

3-4 Commands

1Summary of
Commands

Softkey Interface commands are summarized in table 3-1.

!HP-UX_COMMAND

break

cd (change directory) 3

cmb_execute

<command file> 3

copy data 4

copy display

copy error_log

copy event_log

copy global_symbols

copy help

copy io_port 1

copy local_symbols_in

copy memory 4

copy pod_command

copy registers 1

copy software_breakpoints

copy status

copy trace

cws(change working symbol) 3

display data 4

display error_log

display event_log

display global_symbols

display io_port 1

performance_measure-
ment_run

pod_command

pwd (print working
directory) 3

pws (print working
symbol) 3

reset

run

set

specify

step

stop_trace

store memory

store trace

store trace_spec

trace

wait 3

1 This option is not available in real-time mode.
2 This is only available when simulated I/O is defined.
3 These commands are not displayed on softkeys.
4 This option is not available in real-time mode if addresses are in user memory.

display local_symbols_in

display memory 4

display registers 1

display simulated_io 2

display software_breakpoints

display status

display trace

end

help 3

load <absolute_file>

load configuration

load emul_mem

load trace

load trace_spec

load user_memory

log_commands 3

modify configuration

modify io_port 1

modify keyboard_to_simio 2

modify memory 4

modify register 1

modify software_breakpoints 1

name_of_module 3

performance _measurement_end

performance_measurement_init

Table 3-1. Summary of Commands

Commands 3-5

1A Syntax for all
Emulators

This syntax chapter contains information that is applicable to all
HP 64700-Series emulators. In certain cases, you may want to refer
to your Emulator Softkey Interface User’s Guide for details about
your emulator.

Function Codes Function codes may be mentioned in some of the following syntax
diagrams. When you see a reference to function codes, you should
refer to your Emulator Softkey Interface User’s Guide, or your
Emulator Terminal Interface User’s Guide to determine whether
your emulator supports function codes.

Note Not all HP 64700-Series emulators support the use of function
codes.

3-6 Commands

1break This command causes the emulator to leave user program
execution and begin executing in the monitor.

Syntax

Function The behavior of break depends on the state of the emulator:

running Break diverts the processor from execution
of your program to the emulation monitor.

reset Break releases the processor from reset, and
diverts execution to the monitor.

running in monitor The break command does not perform any
operation while the emulator is executing in
the monitor.

Default Value none

Parameters none

Example

break <RETURN>

Related Commands

help break

run

step

break 1

1Notes

2 break

1cmb_execute This command causes an EXECUTE signal to be put on the
Coordinated Measurement Bus (CMB), and starts a trace
measurement on receipt of a CMB EXECUTE signal.

Syntax

Function The cmb_execute command causes the emulator to emit an
EXECUTE pulse on its rear panel CMB connector. All emulators
connected to the CMB (including the one sending the CMB
EXECUTE pulse) and configured to respond to this signal will
take part in the measurement.

Default Value none

Parameters none

Example

cmb_execute <RETURN>

Related Commands

help cmb

help cmb_execute

help specify

specify run

specify trace

cmb_execute 1

1Notes

2 cmb_execute

1copy Use this command with various parameters to save or print
emulation and analysis information.

Syntax

copy 1

Note The copy io_port command is not used by all HP 64700 emulators
because some do not have I/O ports. Refer to your Emulator
Softkey Interface User’s Guide for details.

Function The copy command copies selected information to your system
printer or listing file, or directs it to an HP-UX process.

Default Values Depending on the information you choose to copy, default values
may be options selected for the previous execution of the display
command. For example, if you display memory locations 10h
through 20h, then issue a copy memory to myfile command, myfile
will list only memory locations 10h through 20h.

Parameters

data This allows you to copy a list of memory
contents formatted in various data types (see
display data).

display This allows you to copy the display to a
selected destination.

error_log This allows you to copy the most recent
errors that occurred.

event_log This allows you to copy the most recent
events that occurred.

< FILE> This prompts you for the name of a file
where you want the specified information to
be copied. If you want to specify a file name
that begins with a number, you must precede
the file name with a backslash. For example:
copy display to \12.10 < RETURN>

global
_symbols

This lets you copy a list of global symbols to
the selected destination.

2 copy

help This allows you to copy the contents of the
emulation help files to the selected
destination.

< HELP
_FILE>

This represents the name of the help file to
be copied. Available help file names are
displayed on the softkey labels.

HP-UX CMD This represents an HP-UX filter or pipe
where you want to route the output of the
copy command. HP-UX commands must be
preceded by an exclamation point (!). An
exclamation point following the HP-UX
command continues Softkey Interface
command line execution after the HP-UX
command executes. Emulation is not
affected when using an HP-UX command
that is a shell intrinsic.

io_port This lets you copy a list of the I/O port
contents to the selected destination. Not all
HP 64700-Series emulators have I/O ports.
Refer to your Emulator Softkey Interface
User’s Guide for details.

local
_symbols_in

This lets you copy all the children of a given
symbol to the selected destination. See the
--SYMB-- syntax page and the HP 64000-UX
User’s Guide for information on symbol
hierarchy.

memory This allows you to copy a list of the contents
of memory to the selected destination.

noappend This causes any copied information to
overwrite an existing file with the same name
specified by < FILE> . If this option is not
selected, the default operation is to append
the copied information to the end of an

copy 3

existing file with the same name that you
specify.

noheader This copies the information into a file
without headings.

pod_command This allows you to copy the most recent
commands sent to the HP 64700-Series
emulator/analyzer.

printer This option specifies your system printer as
the destination device for the copy
command. Before you can specify the printer
as the destination device, you must define
PRINTER as a shell variable. For example,
you could enter the text shown below after
the “$” symbol:

$ PRINTER= lp
$ export PRINTER

If you don’t want the print message to
overwrite the command line, execute:

$ set PRINTER = "lp -s"

registers This allows you to copy a list of the contents
of the emulation processor registers to the
selected destination.

software
_breakpoints

This option lets you copy a list of the current
software breakpoints to a selected
destination.

status This allows you to copy emulation and
analysis status information.

to This allows you to specify a destination for
the copied information.

4 copy

trace This lets you copy the current trace listing to
the selected destination.

! An exclamation point specifies the delimiter
for HP-UX commands. An exclamation
point must precede all HP-UX commands. A
trailing exclamation point should be used if
you want to return to the command line and
specify noheader. Otherwise, the trailing
exclamation point is optional. If an
exclamation point is part of the HP-UX
command, a backslash (\) must precede the
exclamation point.

Note If your emulator uses function codes, refer to the Emulator Softkey
Interface User’s Guide for details.

Examples See the following pages on various copy syntax diagrams.

Related Commands

help copy

See the following pages on various copy syntax diagrams.

copy 5

1Notes

6 copy

2copy io_port This command copies the current values at the emulator I/O ports
to the selected destination.

Syntax

Function This command can be executed only when the emulator is running
in the monitor or running a user program.

Note Some HP 64700-Series emulators do not have I/O ports. Refer to
your Emulator Softkey Interface User’s Guide for information about
whether your emulator has I/O ports.

Default Values Initial values are the same as those specified by the command
display io_port 0 absolute bytes. Defaults are to values specified in
the previous display io_port command.

copy 7

Parameters

--EXPR-- This is a combination of numeric values,
symbols, operators, and parentheses,
specifying I/O port addresses. See the EXPR
syntax diagram.

thru This allows you to specify a range of I/O port
locations to be copied.

, A comma used immediately after io_port in
the command line appends the current copy
io_port command to the preceding display
io_port command. The data specified in both
commands is copied to the destination
selected in the current command.
Formatting is specified by the current
command. The comma is also used as a
delimiter between I/O port address values.

Examples

copy io_port 1h , 45h , 60h thru 80h ,
0FFH to printer <RETURN>

copy io_port , CLEAR thru OUTPUT to
iofile <RETURN>

Related Commands

display io_port

help copy

8 copy

1copy
local_symbols_in

This command lets you copy local symbols contained in a source
file and relative segments (program, data, or common) to the
selected destination.

Syntax

Function Local symbols are symbols that are children of the particular file or
symbol defined by --SYMB--, that is, they are defined in that file or
scope.

For additional information on symbols, refer to the --SYMB--
syntax pages and the HP 64000-UX System User’s Guide.

Default Value --SYMB-- is the current working symbol.

Parameters

--SYMB-- This option represents the symbol whose
children are to be listed. See the --SYMB--
syntax diagram and the HP 64000-UX System
User’s Guide for information on symbol
hierarchy.

Examples

copy local_symbols_in prog68k.S: to
printer <RETURN>
copy local_symbols_in cmd_rdr.s: to
myfile <RETURN>

copy 9

The result may resemble:

Related Commands

display local_symbols_in <SYMB>

help copy

cws

pws

Symbols in cmd_rdr.s:
Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
Again 000450 PROG 0050
Cmd_A 000428 PROG 0028
Cmd_B 000434 PROG 0034
Cmd_I 000440 PROG 0040
Cmd_Input 000600 DATA 0000
End_Msgs 000534 COMM 0034
Exe_Cmd 000416 PROG 0016
Fill_Dest 000456 PROG 0056
Init 000400 PROG 0000
Msg_A 000500 COMM 0000
Msg_B 000512 COMM 0012
Msg_Dest 000602 DATA 0002
Msg_I 000524 COMM 0024
Msgs 000500 COMM 0000
Read_Cmd 000406 PROG 0006
Scan 00040E PROG 000E
Stack 0006FA DATA 00FA
Write_Msg 00044A PROG 004A

10 copy

1copy memory This command copies the contents of a memory location or series
of locations to the specified output.

Syntax

Function The memory contents are copied in the same format as specified in
the last display memory command.

Contents of memory can be displayed if program runs are not
restricted to real-time. Memory contents are listed as an asterisk
(*) under the following conditions:

1. The address refers to guarded memory.

2. Runs are restricted to real-time, the emulator is running a
user program, and the address is located in user memory.

Values in emulation memory can always be displayed.

Default Values Initial values are the same as those specified by the command
display memory 0 blocked bytes offset_by 0.

Defaults are to values specified in the previous display memory
command.

copy 11

Parameters

--EXPR-- An expression is a combination of numeric
values, symbols, operators, and parentheses,
specifying a memory address or offset value.
See the EXPR syntax diagram.

, A comma used immediately after memory in
the command line appends the current copy
memory command to the preceding display
memory command. The data specified in
both commands is copied to the destination
specified in the current command. Data is
formatted as specified in the current
command. The comma is also used as a
delimiter between values when specifying
multiple memory addresses.

Note If your emulator uses function codes, refer to the Emulator Softkey
Interface User’s Guide.

Examples

copy memory START to printer <RETURN>

copy memory 0 thru 100H , START thru
+5 , 500H , TARGET2 to memlist <RETURN>

12 copy

copy memory 2000h thru 204fh to
memlist <RETURN>

The result of the last command could resemble:

Memory :bytes :blocked

address data :hex :ascii

--

002000-07 24 79 00 00 10 00 26 79 $ y & y

002008-0F 00 00 10 04 14 BC 00 00

002010-17 10 12 0C 00 00 00 67 F8 g .

002018-1F 0C 00 00 41 67 00 00 0E . . . A g . . .

002020-27 0C 00 00 43 67 00 00 14 . . . C g . . .

002028-2F 60 00 00 1E 10 3C 00 11 ‘

002030-37 20 7C 00 00 10 08 60 00 | ‘ .

002038-3F 00 1A 10 3C 00 11 20 7C |

002040-47 00 00 10 19 60 00 00 0C ‘ . . .

002048-4F 10 3C 00 0F 20 7C 00 00 . . . | . .

Related Commands

display memory

help copy

modify memory

store memory

copy 13

1Notes

14 copy

2copy registers This command copies the contents of the processor program
counter and registers to a file or printer.

Syntax

Function The copy register process does not occur in real-time. The
emulation system must be configured for nonreal-time operation
to list the registers while the processor is running.

Note Refer to your Emulator Softkey Interface User’s Guide for details
about your emulator registers.

Default Values With no options specified, the basic register class is displayed. This
will differ for each emulator type.

Parameters

< CLASS> Specifies a particular class of the emulator
registers.

< REGISTER> Specifies the name of an individual register.

copy 15

Examples

copy registers BASIC to printer <RETURN>

copy registers to reglist <RETURN>

The results of the last command could resemble:

Registers

Next_PC 002012@sp

PC 00002012 STATUS 2704 z USP 00000000 SSP 00005000

D0-D7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A0-A7 00000000 00000000 00003000 00004000 00000000 00000000 00000000 00005000

Related Commands

display registers

help copy

help registers

modify registers

16 copy

1copy trace This command copies the contents of the trace buffer to a file or to
the printer.

Syntax

Function Trace information is copied in the same format as specified in the
last display trace command.

Default Values Initial values are the same as specified by the last display trace
command.

Parameters

 from_line
_number

This specifies the trace list line number from
which copying will begin.

< LINE# > Use this with from_line_number and
thru_line_number to specify the starting and
ending trace list lines to be copied.

thru_line_number Specifies the last line number of the trace list
to include in the copied range.

copy 17

Examples

copy trace to tlist <RETURN>

copy trace from_line_number 0
thru_line_number 5
to longtrac <RETURN>

Related Commands

display trace

help copy

help trace

store trace

18 copy

1COUNT Allows you to select whether the emulation analyzer counts time,
states, or nothing during a trace measurement.

Syntax

Function A state is a unique combination of address, data, and status values
occurring on the emulation bus simultaneously.

Default Value The analyzer will count time by default.

Parameters

anystate This option allows you to set up the
counting parameter for the analyzer to count
on any state.

off This option turns off trace counting
capability. This provides a larger trace depth.
See the note below.

QUALIFIER This is defined by you and used with the
state option to define the states to be
captured by the analyzer. External labels are
described in the STATE definition. See the
QUALIFIER and STATE syntax diagrams
for details.

COUNT 1

state This causes the emulation analyzer to count
occurrences of the specified state during a
trace measurement.

time This option causes the emulation analyzer to
count the time between states acquired in
the trace measurement.

Note When counting is specified, the analyzer will capture 512 states. It
will capture 1024 states when counting is off.

By default, the number of states displayed is 256. You can display
all the captured states by increasing the trace display depth. For
example, you would execute:

 display trace depth 512 <RETURN>

Examples

trace after START counting state LOOP2
<RETURN>

trace counting time <RETURN>

Related Commands

help trace

trace

2 COUNT

1display This command displays selected information on your screen.

Syntax

Function You can use the up arrow, down arrow, PREV PAGE, and NEXT
PAGE keys to view the displayed information. For
software_breakpoints, data, memory, and trace displays you can use
the CTRL g and CTRL f keys to scroll left and right if the
information goes past the edge of the screen.

Default Values Depending on the information you select, defaults may be the
options selected for the previous execution of the display
command.

display 1

Parameters

data This allows you to display a list of memory
contents formatted in various data types (see
the display data pages for details).

error_log This option displays the recorded list of
error messages that occurred during the
emulation session.

event_log This option displays the recorded list of
events.

global
_symbols

This option lets you display a list of all
global symbols in memory.

io_port This option allows you to display the
contents of emulator I/O port locations.

Note Not all HP 64700-Series emulators have I/O ports. Refer to the
Emulator Softkey Interface User’s Guide for details.

local
_symbols_in

This option lets you display all the children
of a given symbol. See the --SYMB-- syntax
page and the HP 64000-UX System User’s
Guide for details on symbol hierarchy.

memory This option allows you to display the
contents of memory.

pod_command This option lets you display the output of
previously executed emulator pod commands.

registers This allows you to display the contents of
emulation processor registers.

simulated_io This lets you display data written to the
simulated I/O display buffer after you have

2 display

enabled polling for simulated I/O in the
emulation configuration.

software
_breakpoints

This option lets you display the current list
of software breakpoints.

status This displays the emulator and trace status.

trace This displays the current trace list.

Examples

display event_log <RETURN>

The result of this command may resemble:

Event Log

Time Type Message

 __

11:17:36 SYSTEM cd: /users/yourself

11:17:40 OTHER Loaded configuration file: /usr/hp64000/inst/emul/tmp/.C000002.pod
/default

11:17:40 PROC M68000--Running in monitor

12:12:23 OTHER Loaded configuration file: /users/yourself/newconfig

12:23:23 OTHER Loaded configuration file: /usr/hp64000/inst/emul/tmp/.C000002.pod
/config

display 3

display local_symbols_in cmd_rdr.s:
<RETURN>

The result of this command may resemble:

Related Commands

help display

copy

The following pages describe various display syntax diagrams.

Symbols in cmd_rdr.s:
Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
Again 000450 PROG 0050
Cmd_A 000428 PROG 0028
Cmd_B 000434 PROG 0034
Cmd_I 000440 PROG 0040
Cmd_Input 000600 DATA 0000
End_Msgs 000534 COMM 0034
Exe_Cmd 000416 PROG 0016
Fill_Dest 000456 PROG 0056
Init 000400 PROG 0000
Msg_A 000500 COMM 0000
Msg_B 000512 COMM 0012
Msg_Dest 000602 DATA 0002
Msg_I 000524 COMM 0024
Msgs 000500 COMM 0000
Read_Cmd 000406 PROG 0006
Scan 00040E PROG 000E
Stack 0006FA DATA 00FA
Write_Msg 00044A PROG 004A

4 display

1display data Displays the values of variables of simple data types from your
program.

Syntax

Function display data can display the values of simple data types in your
program. Using this command can save you time—you would
otherwise need to search through memory displays for the location
and value of a particular variable.

The address, identifier, and data value of each symbol may be
displayed. You must issue the command set symbols on to see the
symbol names displayed.

Default Value For the first display data command after you begin an emulation
session, you must supply at least one expression specifying the data
item(s) to display.

display 5

Thereafter, the display data command defaults to the expressions
specified in the last display data command, unless new expressions
are supplied or appended (with a leading comma).

Symbols are normally set off until you give the command set
symbols on. Otherwise, only the address, data type, and value of the
data item will be displayed.

Parameters

, A leading comma allows you to append
additional expressions to the previous
display data command.

Commas between expression/data type
specifications allow you to specify multiple
variables and types for display with the
current command.

--EXPR-- Prompts you for an expression specifying the
data item to display. The expression can
include various math operators and program
symbols. See the --EXPR-- and --SYMB--
syntax pages for more information.

Note If your processor supports function codes, you can specify
additional --EXPR-- qualifiers using the function code
information. Refer to the Emulator Softkey Interface User’s Guide
for more information.

thru --EXPR-- Allows you to specify a range of addresses
for which you want data display. Typically,
you use this to display the contents of an
array. You can display both
single-dimensioned and multi-dimensioned
arrays. Arrays are displayed in the order
specified by the language definition, typically

6 display

row major order for most Algol-like
languages.

< TYPE> Specifies the format in which to display the
information. (Data type information is not
available from the symbol database, so you
must specify.)

byte Hex display of one 8 bit location.

word Hex display of one 16 bit location.

long Hex display of one 32 bit location.

Note Byte ordering in word and long displays is determined by the
conventions of the processor in use.

int8 Display of one 8 bit location as a signed
integer using two’s complement notation.

int16 Display of two bytes as a signed integer using
two’s complement notation.

int32 Display of four bytes as a signed integer
using two’s complement notation.

u_int8 Display of one byte as an unsigned positive
integer.

u_int16 Display of two bytes as an unsigned positive
integer.

u_int32 Display of four bytes as an unsigned positive
integer.

char Displays one byte as an ASCII character in
the range 0..127. Control characters and

display 7

values in the range 128..255 are displayed as
a period (.).

Examples

display data Msg_A thru +17 char , Stack long

 Data
 address type data
--
 000500 char[] Command A entered
 0006FA long 48790000

STATUS: M68000--Running in monitor____________________________________........

8 display

set symbols on

set width label 30

display data , Msg_B thru +17 char , Msg_Dest
thru +17 char

Related Commands

copy data

help copy

set

 Data :noupdate
 address label type data
 000500 COMM|Msgs char[] Command A entered
 0006FA DATA|davek/68k/cmd_rdr.s:Stack long 48790000
 000512 COMM|davek/68k/cmd_rdr.s:Msg_B char[] Entered B command
 000602 DATA|Msg_Dest char[] p...@.(5|...,Hx..

STATUS: M68000--Running in monitor____________________________________........

display 9

1Notes

10 display

2display
global_symbols

This command displays the global symbols defined for the current
absolute file.

Syntax

Function Global symbols are symbols declared as global in the source file.
They include procedure names, variables, constants, and file
names. When the display global_symbols command is used, the
listing will include the symbol name and its logical address.

Default Value none

Examples

display global_symbols <RETURN>

Related Commands

copy global_symbols

help display

display 11

1Notes

12 display

2display io_port This command displays the current values at the I/O ports.

 Syntax

Function I/O port values can be displayed in formats you define. The values
at the I/O ports also can be displayed repetitively.

Note Some HP 64700-Series emulators do not have I/O ports. Refer to
your Emulator Softkey Interface User’s Guide for more information
about your emulator.

Default Values The address list defaults to any previously specified list or to 0 if no
value is specified. The format of the list is the previously specified
format or in absolute bytes.

display 13

Parameters

absolute This formats the list of I/O ports in a single
column.

blocked This formats the list of I/O ports in multiple
columns.

bytes This displays the absolute or blocked I/O
ports listing as byte values.

--EXPR-- This is a combination of numeric values,
symbols, operators, and parentheses,
specifying an I/O port address. See the
EXPR syntax diagram.

repetitively Continuously updates the I/O port display
listing.

thru This allows you to specify a range of I/O
ports to be displayed. Only 16 lines of
information can be displayed on the screen
at a time. To display additional lines, use the
up arrow, down arrow, NEXT PAGE, or
PREV PAGE keys.

words Displays the I/O ports listing as word values.

, A comma immediately after io_port in the
command line appends the current display
io_port command to the preceding display
io_port command. The data specified in both
commands is displayed. The data is
formatted as specified in the current
command.

The comma also is a delimiter between
values when specifying multiple I/O port
addresses.

14 display

Examples

display io_port 1h , 45h , 60h thru 80h,
0FFH blocked words <RETURN>

display io_port 1 , 45 , 60 thru 80 , 0FFH
absolute bytes <RETURN>

display io_port START thru READ_INPUT
<RETURN>

Related Commands

copy io_port

help display

display 15

1Notes

16 display

2display
local_symbols_in

Displays the local symbols in a specified source file and their
relative segment (program, data, or common).

Syntax

Function Local symbols of --SYMB-- are the ones which are children of the
file and/or scope specified by --SYMB--. That is, they are defined in
that file or scope.

See the --SYMB-- syntax pages and the HP 64000-UX System User’s
Guide for further explanation of symbols.

Displaying the local symbols sets the current working symbol to the
one specified.

Default Value --SYMB-- is the current working symbol.

Parameters

--SYMB-- This option represents the symbol whose
children are to be listed. See the --SYMB--
syntax diagram and the HP 64000-UX System
User’s Guide for more information on
symbol hierarchy and representation.

display 17

Examples

display local_symbols_in temp1.S: <RETURN>

display local_symbols_in prog68k.S:main
<RETURN>

Related Commands

copy local_symbols_in <FILE>

help display

cws

pws

18 display

1display memory This command displays the contents of the specified memory
location or series of locations.

Syntax

Function The memory contents can be displayed in mnemonic, hexadecimal,
or real number format. In addition, the memory addresses can be
listed offset by a value, which allows the information to be easily
compared to the program listing.

When displaying memory mnemonic and stepping, the next
instruction that will step is highlighted. The memory mnemonic
display autopages to the new address if the next PC goes outside

display 19

the currently displayed address range. This feature works even if
stepping is performed in a different emulation window than the
one displaying memory mnemonic (see chapter on windowing
capabilities).

Pending software breakpoints are shown in the memory mnemonic
display by an asterisk (*) in the leftmost column of the assembly
instruction or source line that has a pending breakpoint.

A label column (symbols) may be displayed for all memory displays
except blocked mode. Memory mnemonic may be displayed with
source and assembly code intermixed, or with source code only.
Symbols also can be displayed in the memory mnemonic string.
(See the set command.)

Note If your emulator uses function codes, refer to the Emulator User’s
Guide for details.

Default Values Initial values are the same as specified by the command:

display memory 0 blocked bytes offset_by 0

Defaults are values specified in a previous display memory
command.

The symbols and source defaults are:

 set source off symbols off

Parameters

absolute Formats the memory listing in a single
column.

blocked Formats the memory listing in multiple
columns.

bytes Displays the absolute or blocked memory
listing as byte values.

20 display

--EXPR-- An expression is a combination of numeric
values, symbols, operators, and parentheses,
specifying a memory address or memory
offset value. See the EXPR syntax diagram.

long Displays the memory listing as long word
values. When used with the real parameter,
long displays memory in a 64-bit real number
format.

mnemonic This causes the memory listing to be
formatted in assembly language instruction
mnemonics with associated operands. When
specifying mnemonic format, you should
include a starting address that corresponds
to the first byte of an operand to ensure that
the listed mnemonics are correct. If set
source only is on, you will see only the high
level language statements and corresponding
line numbers.

offset_by This option lets you specify an offset that is
subtracted from each of the absolute
addresses before the addresses and
corresponding memory contents are listed.
You might select the offset value so that
each module appears to start at address
0000H. The memory contents listing will
then appear similar to the assembler or
compiler listing.

This option is also useful for displaying
symbols and source lines in dynamically
relocated programs.

real Formats memory values in the listing as real
numbers. (NaN in the display list means
“Not a Number.”)

display 21

repetitively Updates the memory listing display
continuously. You should only use this to
monitor memory while running user code,
since it is very CPU intensive. To allow
updates to the current memory display
whenever memory is modified, a file is
loaded, software breakpoint is set, etc., use
the set update command.

short Formats the memory list as 32-bit real
numbers.

thru This option lets you specify a range of
memory locations to be displayed. Use the
up arrow, down arrow, NEXT PAGE, and
PREV PAGE keys to view additional
memory locations.

words Displays the memory listing as word values.

, A comma after memory in the command line
appends the current display memory
command to the preceding display memory
command. The data specified in both
commands is displayed. The data will be
formatted as specified in the current
command. The comma is also a delimiter
between values when specifying multiple
addresses.

22 display

Examples

display memory 2000h thru 204fh
blocked words <RETURN>

The result of this command may resemble:

Memory :words :blocked

address data :hex :ascii
__

002000-0E 2479 0000 1000 2679 0000 1004 14BC 0000 $y....&y

002010-1E 1012 0C00 0000 67F8 0C00 0041 6700 000E g. ...Ag...

002020-2E 0C00 0043 6700 0014 6000 001E 103C 0011 ...Cg... ‘......

002030-3E 207C 0000 1008 6000 001A 103C 0011 207C |....‘. |

002040-4E 0000 1019 6000 000C 103C 000F 207C 0000 ‘... ... |..

display memory 2000h thru 202fh ,
2100h real long <RETURN>

The result of this command may resemble:

Memory :long real

address data :real

002000 5.50328431726029E-133

002008 0.00000000000000E+000

002010 2.90606516754831E-231

002018 6.98394306836813E-251

002020 6.98395638835160E-251

002028 2.68163846825574E+154

002100 -5.49484035779135E+152

display 23

display memory 400h mnemonic

set symbols on

set source on

display memory main mnemonic

 Memory :mnemonic :file = main.c:
 address label data
 99 extern void update_state_of_system();
 100 extern void get_operator_input();
 101
 102 main()
 103 {
 00106A PROG|_main 4E560000 LINK A6,#00000
 00106E 2F0A MOVE.L A2,-(A7)
 001070 247C000601 MOVEA.L #0000601AA,A2
 104 initialize_system();
 001076 4EB9000011 JSR |_initialize_sys
 105
 106 while (system_is_running)
 00107C 600000B0 BRA.W main.c:continue1
 001080 4E71 NOP
 107 {
 108 if (time_to_update_system)

STATUS: M68000--Running in monitor____________________________________........

 Memory :mnemonic :file = cmd_rdr.s:
 address label data
 000400 PROG|Init 2E7C000006 MOVEA.L #0000006FA,A7
 000406 P|cmd_rdr.s:Read_Cmd 13FC000000 MOVE.B #000,DATA|Cmd_Input
 00040E PROG|/cmd_rdr.s:Scan 1039000006 MOVE.B DATA|Cmd_Input,D0
 000414 67F8 BEQ.B P|cmd_rdr.s:Scan
 000416 PR|cmd_rdr.s:Exe_Cmd 0C000041 CMPI.B #041,D0
 00041A 6700000C BEQ.W |cmd_rdr.s:Cmd_A
 00041E 0C000042 CMPI.B #042,D0
 000422 67000010 BEQ.W |cmd_rdr.s:Cmd_B
 000426 6018 BRA.B |cmd_rdr.s:Cmd_I
 000428 PROG|cmd_rdr.s:Cmd_A 323C0011 MOVE.W #00011,D1
 00042C 207C000005 MOVEA.L #000000500,A0
 000432 6016 BRA.B cmd_rd:Write_Msg
 000434 PROG|cmd_rdr.s:Cmd_B 323C0011 MOVE.W #00011,D1
 000438 207C000005 MOVEA.L #000000512,A0
 00043E 600A BRA.B cmd_rd:Write_Msg
 000440 PROG|cmd_rdr.s:Cmd_I 323C000F MOVE.W #0000F,D1

STATUS: M68000--Running in monitor____________________________________........

24 display

Related Commands

copy memory

cws

help display

modify memory

pws

set

store memory

display 25

1Notes

26 display

2display registers This command displays the current contents of the emulation
processor program counter and registers.

Syntax

Function If a step command just executed, the mnemonic representation of
the last instruction is also displayed, if the current display is the
register display. This process does not occur in real-time. The
emulation system must be configured for nonreal-time operation
to display registers while the processor is running. Symbols also
may be displayed in the register step mnemonic string (see set
symbols).

Default Values With no options specified, the basic register class is displayed as
the default. This differs for each emulator type.

Parameters

< CLASS> This allows you to display a particular class
of emulation processor registers. The classes
differ for each emulator.

< REGISTER> This displays an individual register.

Examples

display registers <RETURN>

display registers BASIC <RETURN>

Related Commands

copy registers

help display

display 27

help registers

modify registers

set

step

28 display

1display
simulated_io

This command displays information written to the simulated I/O
display buffer.

Syntax

Function After you have enabled polling for simulated I/O during the
emulation configuration process, six simulated I/O addresses can
be defined. You then define files used for standard input, standard
output, and standard error.

For details on setting up simulated I/O, refer to the question
“Modify simulated I/O configuration?” in the Emulation
Configuration chapter.

Default Value none

Parameters none

Example

display simulated_io <RETURN>

Related Commands

help display

display 29

1Notes

30 display

2display software
_breakpoints

This command displays the currently defined software breakpoints
and their status.

Syntax

Function If the emulation session is continued from a previous session, the
listing will include any previously defined breakpoints. The column
marked “status” shows whether the breakpoint is pending,
inactivated, or unknown.

An “unknown” breakpoint status will occur if you set the
breakpoint, then remap the breakpoint address as guarded. A
pending breakpoint causes the processor to enter the emulation
monitor or background memory upon execution of that
breakpoint. Executed breakpoints are listed as inactivated. Entries
that show an inactive status can be reactivated by executing the
following command:

modify software_breakpoints set <RETURN>

A label column also may be displayed for addresses that
correspond to a symbol. See the set command for details.

Default Value none

Parameters

--EXPR-- An expression is a combination of numeric
values, symbols, operators, and parentheses,
specifying an offset value for the breakpoint
address. See the --EXPR-- syntax diagram.

display 31

offset_by This option allows you to offset the listed
software breakpoint address value from the
actual address of the breakpoint. By
subtracting the offset value from the
breakpoint address, the system can cause the
listed address to match that given in the
assembler or compiler listing.

Examples

display software_breakpoints <RETURN>

display software_breakpoints offset_by
1000H <RETURN>

Related Commands

copy software_breakpoints

help display

help software_breakpoints

modify software_breakpoints

set

32 display

1display trace This command displays the contents of the trace buffer.

Syntax

Function Captured information can be presented as absolute hexadecimal
values or in mnemonic form. The processor status values captured

display 33

by the analyzer can be listed mnemonically or in hexadecimal or
binary form.

Addresses captured by the analyzer are physical addresses.

The offset_by option subtracts the specified offset from the
addresses of the executed instructions before listing the trace. With
an appropriate entry for offset, each instruction in the listed trace
will appear as it does in the assembled or compiled program listing.

The count parameter lists the current trace of time or state either
relative to the previous event in the trace list or as an absolute
count measured from the trigger event. If time counts are currently
selected, the count parameter causes an absolute or relative time
count to be listed. If the current trace contains state counts, a
relative or absolute state count results.

The source parameter allows display of source program lines in the
trace listing, enabling you to quickly correlate the trace list with
your source program.

Default Values Initial values are the same as specified by the command:

display trace mnemonic count relative
offset_by 0 <RETURN>

Parameters

absolute Lists trace information in hexadecimal
format, rather than mnemonic opcodes.

count

 absolute This lists the state or time count for each
event of the trace as the total count
measured from the trigger event.

 relative This lists the state or time count for each
event of the trace as the count measured
relative to the previous event.

34 display

depth

 < DEPTH# > This defines the number of states to be
uploaded by the Softkey Interface.

Note After you have changed the trace depth, execute the command wait
measurement_complete before displaying the trace. Otherwise the
new trace states will not be available.

disassemble
_from_line
_number

This causes the inverse assembly software to
begin disassembling the trace code from the
specified line number. This feature is
required for processors where the inverse
assembler cannot uniquely identify the first
state of an instruction on the processor bus.
The command is not available on emulators
where the corresponding inverse assembler
can identify instructions on the processor
bus.

--EXPR-- An expression is a combination of numeric
values, symbols, operators, and parentheses,
specifying an offset value to be subtracted
from the addresses traced by the emulation
analyzer. See the EXPR syntax diagram.

external

 binary Displays the external analyzer trace list in
binary format.

 < external
 _label>

This option displays a defined external
analyzer label.

 hex Displays the external analyzer trace list in
hexadecimal format.

display 35

 off Use this option to turn off the external trace
list display.

 then This allows you to display multiple external
analysis labels. This option appears when
more than one external analyzer label is in
use.

< LINE# > This prompts you for the trace list line
number to be centered in the display. Also,
you can use < LINE# > with
disassemble_from_line_number. < LINE# >
prompts you for the line number from which
the inverse assembler attempts to
disassemble data in the trace list.

mnemonic Lists trace information with opcodes in
mnemonic format.

offset_by This option allows you to offset the listed
address value from the address of the
instruction. By subtracting the offset value
from the physical address of the instruction,
the system makes the listed address match
that given in the assembler or compiler
listing.

This option is also useful for displaying
symbols and source lines in dynamically
relocated programs.

36 display

Note When using the set source only command, the analyzer may
operate more slowly than when using the set source on command.
This is an operating characteristic of the analyzer:

When you use the command set source on, and are
executing only assembly language code (not high-level
language code), no source lines are displayed. The trace
list will then fill immediately with the captured assembly
language instructions.

When using set source only, no inverse assembled code is
displayed. Therefore, the emulation software will try to fill
the display with high-level source code. This requires the
emulation software to search for any captured analysis
data generated by a high-level language statement.

In conclusion, you should not set the trace list to set source only
when tracing assembly code. This will result in optimum analyzer
performance.

status

 binary Lists absolute status information in binary
form.

 hex Lists absolute status information in
hexadecimal form.

 mnemonic Lists absolute status information in
mnemonic form.

display 37

Examples

display trace count absolute <RETURN>

The result of this command may resemble:

Trace List Offset=0 More data off screen (ctrl-F, ctrl-G)
Label: Address Data Opcode or Status time count
Base: hex hex mnemonic absolute
______ _______ ______ ___ ____________
after 004FFA 2700 2700 supr data rd word ------------
+001 004FFC 0000 0000 supr data rd word + 520 nS
+002 004FFE 2000 2000 supr data rd word + 1.0 uS
+003 002000 2479 MOVEA.L 0001000,A2 + 1.5 uS
+004 002002 0000 0000 supr prog + 2.0 uS
+005 002004 1000 1000 supr prog + 2.5 uS
+006 002006 2679 MOVEA.L 0001004,A3 + 3.0 uS
+007 001000 0000 0000 supr data rd word + 3.5 uS
+008 001002 3000 3000 supr data rd word + 4.00 uS
+009 002008 0000 0000 supr prog + 4.52 uS
+010 00200A 1004 1004 supr prog + 5.00 uS
+011 00200C 14BC MOVE.B #000,[A2] + 5.52 uS
+012 001004 0000 0000 supr data rd word + 6.00 uS
+013 001006 4000 4000 supr data rd word + 6.52 uS
+014 00200E 0000 0000 supr prog + 7.00 uS

display trace absolute status binary
<RETURN>

The result of this command may resemble:

Trace List Offset=0 More data off screen (ctrl-F, ctrl-G)
Label: Address Data Absolute Status time count
Base: hex hex binary absolute
______ _______ ______ ___ ____________
after 004FFA 2700 11101110 ------------
+001 004FFC 0000 11101110 + 520 nS
+002 004FFE 2000 11101110 + 1.0 uS
+003 002000 2479 10110110 + 1.5 uS
+004 002002 0000 10110110 + 2.0 uS
+005 002004 1000 10110110 + 2.5 uS
+006 002006 2679 10110110 + 3.0 uS
+007 001000 0000 11101110 + 3.5 uS
+008 001002 3000 11101110 + 4.00 uS
+009 002008 0000 10110110 + 4.52 uS
+010 00200A 1004 10110110 + 5.00 uS
+011 00200C 14BC 10110110 + 5.52 uS
+012 001004 0000 11101110 + 6.00 uS
+013 001006 4000 11101110 + 6.52 uS
+014 00200E 0000 10110110 + 7.00 uS

38 display

set source on

display trace mnemonic

set source only

Trace List Offset=0 More data off screen (ctrl-F, ctrl-G)
Label: Address Data Opcode or Status w/ Source Lines time
Base: symbols hex mnemonic w/symbols rel
+009 sysstack:+003FC2 0738 0738 supr data wr word 520
+010 sysstack:+003FC0 0006 0006 supr data wr word 480
+011 main:main+00000A 01AA 01AA supr prog 520
 ##########main.c - line 104 ##
 initialize_system();
+012 main:main+00000C 4EB9 JSR |_initialize_sys 480
+013 main:main+00000E 0000 0000 supr prog 520
+014 main:main+000010 114A 114A supr prog 480
 ##########initSystem.c - line 1 thru 38 ###########################
 void refresh_menu_window();

 void
 initialize_system()
 {
+015 |_initialize_sys 4E56 LINK A6,#00000 520

STATUS: M68000--Running user program Emulation trace complete______........

Trace List Offset=0 More data off screen (ctrl-F, ctrl-G)
Label: Source Lines Only time
Base: rel
+012 ##main.c - line 104 ## 480
 initialize_system();
+015 ##initSystem.c - line 1 thru 38 ########################### 520
 void refresh_menu_window();

 void
 initialize_system()
 {
+038 ##initSystem.c - line 39 thru 45 ########################### 480
 buffered. */
 /* setvbuf(stdin, NULL, _IONBF, 1); */

 /* Initialize system clock. */
 time = &time_struct;
+041 ##initSystem.c - line 46 ###################################### 520

STATUS: M68000--Running user program Emulation trace complete______........

display 39

Related Commands

copy trace

help display

help trace

store trace

set

40 display

1end This command terminates the current emulation session.

Syntax

Function You can end the emulation session and keep the emulator in a
locked state. The current emulation configuration is stored, so that
you can continue the emulation session on reentry to the emulator.
If you choose, you can select another measurement system when
ending the current session. You also can release the emulation
system when ending the session so that others may use the
emulator.

Note Pressing CNTL d performs the same operation as pressing end
< RETURN> . Pressing CNTL \ or CNTL | performs the same as
end release_system < RETURN>.

Default Value When the emulation session ends, control returns to the HP-UX
shell without releasing the emulator.

Parameters

locked This option allows you to stop all active
instances of an emulator Softkey Interface
session in one or more windows and/or

end 1

terminals. This option is not available when
operating the emulator in the measurement
system.

measurement
_system

This is used with the select option, and
represents another emulation system in the
HP 64000-UX measurement system. This
option is only available when operating the
HP 64700-Series emulator in the
measurement system.

< MODNAME> Choose this option with select to enter
another module in the measurement system
after ending the current one.
< MODNAME> appears when other
measurement system modules are defined in
the HP 64000-UX measurement system. This
option is only available when operating the
HP 64700-Series emulator in the
measurement system.

release
_system

This option stops all instances of the Softkey
Interface in one or more windows or
terminals. The emulation system is released
for other users. If you do not release the
emulation system when ending, others
cannot access it.

select This option lets you choose another defined
emulation measurement system when you
end the current emulation session. One or
more different measurement systems must
be active for this option to appear.

Examples

end <RETURN>

end release_system <RETURN>

end select measurement_system <RETURN>

2 end

Related Commands

emul700 <emulator_name>

help end

end 3

1Notes

4 end

1--EXPR-- An expression is a combination of numeric values, symbols,
operators, and parentheses used to specify address, data, or status,
or any other value used in the emulation commands.

Syntax

Function The function of an expression (--EXPR--) is to let you define the
address, data, or status expression that fits your needs. You can
combine multiple values to define the expression.

Certain emulation commands will allow the option of < + EXPR>
after pressing a thru softkey. This allows you to enter a range
without retyping the original base address or symbol. For example,
you could specify the address range

disp_buf thru disp_buf + 25

as

disp_buf thru +25

Default Value none

Parameters

DON’T CARE
NUMBER

You can include “don’t care numbers” in
expressions. These are indicated by a number
containing an “x.” These numbers may be
defined as binary, octal, decimal, or

EXPR 1

hexadecimal. For example: 1fxxh, 17x7o, and
011xxx10b are valid.

Note “Don’t care numbers” are not valid for all commands.

--NORMAL-- This appears as a softkey label to enable you
to return to the --EXPR-- key. The
--NORMAL-- label can be accessed
whenever defining an expression, but is only
valid when “C” appears on the status line,
which indicates a valid expression has been
defined.

< NUMBER> This can be an integer in any base (binary,
octal, decimal, or hexadecimal), or can be a
string of characters enclosed with quotation
marks.

< OP> This represents an algebraic or logical
operand and may be any of the following (in
order of precedence):

mod modulo

* multiplication

/ division

& logical AND

+ addition

- subtraction

| logical OR

--SYMB-- This allows you to define symbolic
information for an address, range of
addresses, or a file. See the --SYMB-- syntax
pages and the HP 64000-UX System User’s
Guide for more information on symbols.

2 EXPR

 end This displays the last location where the
symbol information may be located. For
example, if a particular symbol is associated
with a range of addresses, end will represent
the last address in that range.

 start This displays first memory location where
the symbol you specify may be located. For
example, if a particular symbol is associated
with a range of addresses, start will represent
the first address in that range.

< UNARY> This defines either the algebraic negation
(minus) sign (-) or the logical negation
(NOT) sign (~).

() Parentheses may be used in expressions to
enclose numbers. For every opening
parenthesis, a closing parenthesis must exist.

Note When “C” appears on the right side of the status line, a valid
expression exists. The --NORMAL-- key can be accessed at any
time, but is only valid when “C” is on the command line.

Examples

05fxh

DISP_BUF + 5

SYMB_TBL + (OFFSET / 2)

START

cprog.C: line 15 end

Related Commands

help expressions

SYMB

EXPR 3

Note When a thru softkey has been entered, a < + EXPR> prompt
appears. This saves you from tedious repeated entry of long
symbols and expressions. For example:

disp_buf thru +25

is the same as

disp_buf thru disp_buf + 25

4 EXPR

1help Displays information about system and emulation features during
an emulation session.

Syntax

Function Typing help or ? displays softkey labels that list the options on
which you may receive help. When you select an option, the system
will list the information to the screen.

The help command is not displayed on the softkeys. You must
enter it into the keyboard. You may use a question mark in place of
help to access the help information.

Default Value none

Parameters

< HELP
_FILE>

This represents one of the available options
on the softkey labels. You can either press a
softkey representing the help file, or type in
the help file name. If you are typing in the
help file name, make sure you use the
complete syntax. Not all of the softkey labels
reflect the complete file name.

help 1

Examples

help system_commands <RETURN>

? run <RETURN>

This is a summary of the commands that appear on the softkey
labels when you type help or press ?:

system_commands
run
trace
step
display
modify
break
end
load
store
stop_trace
copy
reset
specify
software_breakpoints
cmb_execute
expressions (--EXPR--)
symbols (--SYMB--)
registers
cmb
wait
pod_command
bbaunload
coverage
performance_measurement_initialize
performance_measurement_run
performance_measurement_end
set

For example, to display information about the command named
pod_command, enter:

help pod_command <RETURN>

2 help

The result resembles:

Related Commands See the list under Examples.

 ---Syntax---

pod_command

---Function---

This command allows you to send commands directly to the HP 64700 emulation pod
and view the results in the "pod_command" display.

 --- WARNING ---

Care should be taken when using the "pod_command." The user interface, and
the configuration files in particular, assume that the configuration of the
64700 pod is NOT changed except by the user interface. Be aware that what
you see in "modify configuration" will NOT reflect the 64700 pod’s
configuration if you change the pod’s configuration with this command. Also,
commands which affect the communications channel should NOT be used at all.
Other commands may confuse the protocol depending upon how they are used.
The following commands are not recommended for use with "pod_command":

 stty, po, xp - do not use, will change channel operation and hang
 echo, mac - usage may confuse the protocol in use on the channel
 wait - do not use, will tie up the pod, blocking access
 init, pv - will reset pod and force end release_system
 t - do not use, will confuse trace status polling and unload

---Parameters---

STRING A quoted string to send to the HP 64700 pod for execution.
 ~ Quote characters are matched pairs of double quotes ("),
 ~ single quotes (’), or carats (^).

---Examples---

pod_command "map" Display the memory map in the pod.
pod_command ’cf’ Display the configuration settings for the emulator.

---See Also:---

1) Terminal Interface User’s Manual

help 3

1Notes

4 help

1load This command transfers absolute files from the HP 9000 into
emulation or target system RAM. With other parameters, the load
command can load emulator configuration files, trace records,
trace specifications, or symbol files.

Syntax

Function The absolute file contains information about where the file is
stored. The memory map specifies that the locations of the file are
in user (target system) memory or emulation memory. This
command also allows you to access and display previously stored
trace data, load a previously created configuration file, and load
absolute files with symbols.

Note Any file specified by < FILE> cannot be named “configuration”,
“emul_mem”, “user_mem”, “symbols”, “trace”, or “trace_spec”
because these are reserved words, and are not recognized by the
HP 64000-UX system as ordinary file names. Other reserved words
may exist for your emulator (for example, “bkg_mon” and
“fg_mon” are reserved words for the 80186 emulator).

load 1

Note If your emulator uses function codes, refer to your Emulator
Softkey Interface User’s Guide for details.

Default Value The absolute file is loaded into emulation memory by default.

Parameters

configuration This option specifies that a previously
created emulation configuration file will be
loaded into the emulator. You can follow
this option with a file name. Otherwise the
previously loaded configuration will be
reloaded.

< FILE> This represents the absolute file to be loaded
into either target system memory, emulation
memory (.X files are assumed), or the trace
memory (.TR files are assumed).

< memory
_type>

This indicates the type of memory that you
choose for the load operation. The memory
type can be emulation or user memory. You
also can load a background monitor file.

noabort This option allows you to load a file even if
part of the file is located at memory mapped
as “guarded” or “target ROM” (trom).

nosymbols This option causes the file specified to be
loaded without symbols.

noupdate This option suppresses rebuilding of the
symbol data base when you load an absolute
file. If you load an absolute file, end
emulation, then modify the file (and relink
it), the symbol database will not be updated

2 load

upon reentering emulation and reloading the
file. The default is to rebuild the database.

symbols This option causes the file specified to be
loaded with symbols.

trace This option allows you to load a previously
generated trace file.

trace_spec This option allows you to load a previously
generated trace specification.

Note The current trace specification will be modified, but a new trace
will not be started. To start a trace with the newly loaded trace
specification, enter trace again or specify trace again (not trace). If
you specify trace, a new trace will begin with the default trace
specification, not the one you loaded.

Examples

load sort1 <RETURN>

load configuration config3 <RETURN>

load trace trace3 <RETURN>

Related Commands

display trace

help load

load 3

1Notes

4 load

1log_commands This command allows you to record commands that are executed
during an emulation session.

Syntax

Function Commands executed during an emulation session are stored in a
file until this feature is turned off. This is a handy method for
creating command files.

To execute the saved commands after the file is closed, type the
filename on the command line.

Default Value Commands are not logged (stored) in a file.

Parameters

< FILE> This represents the file where you want to
store commands that are executed during an
emulation session.

off This option turns off the capability to log
commands.

to This allows you to specify a file for the
logging of commands.

Examples

log_commands to logfile
log_commands off

Related Commands

help system_commands

log_commands 1

1Notes

2 log_commands

1modify This command allows you to observe or change information
specific to the emulator.

Syntax

Function The modify command is used to:

View or edit the current emulation configuration.

Modify contents of memory (as integers, strings, or real
numbers).

Modify the contents of the processor registers.

Write specified values to I/O port addresses.

Modify the software breakpoints table.

Note If your emulator uses function codes, refer to the Emulator Softkey
Interface User’s Guide for details.

The following pages contain detailed information about the
various modify syntax diagrams.

modify 1

1Notes

2 modify

2modify
configuration

This command allows you to view and edit the current emulation
configuration items.

Syntax

Function The configuration questions are presented in sequence with either
the default response, or the previously entered response. You can
select the currently displayed response by pressing < RETURN> .
Otherwise, you can modify the response as you desire, then press
< RETURN> .

Default Value For each emulator, default responses defined on powerup are
displayed. For details on these default configuration question
responses, refer to your Emulator Softkey Interface User’s Guide and
chapter 2 of this manual.

Parameters none

Example

modify configuration <RETURN>

Related Commands

help modify

modify 3

1Notes

4 modify

2modify io_port This command allows you to write a value to a specified I/O
address or to a range of I/O addresses.

Syntax

Function Data may be written as bytes or words, and may be specified as a
single entry or as a list of entries. Modifying large ranges may take
longer than you expect.

Default Value The default for modification is to the current display I/O port
mode, if one is in effect. Otherwise the default is to “byte.”

Note Not all HP 64700-Series emulators support the use of I/O ports.
Refer to your Emulator Softkey Interface User’s Guide for details
about your emulator.

Parameters

bytes Modify the I/O ports with byte values.

--EXPR-- An expression is a combination of numeric
values, symbols, operators, and parentheses

modify 5

specifying an I/O port address or I/O port
value. See the --EXPR-- syntax diagram.

thru This option enables you to specify a range of
I/O locations to be modified.

to This allows you to specify the values to
which the selected I/O port locations will be
changed.

words This option allows you to select I/O
locations to be modified as word values.

, A comma is a delimiter between values when
multiple I/O port locations are modified.

Examples

modify io_port 0 to 12H <RETURN>

modify io_port PRINTER words to 0F3H
<RETURN>

modify io_port DISPLAY thru DISPLAY+60H
bytes to 1 , 2 , 3 , 4 , 5 , 6 <RETURN>

Related Commands

copy io_port

display io_port

help modify

6 modify

1modify keyboard
_to_simio

This command allows the keyboard to interact with your program
through the simulated I/O software.

Syntax

Function When the keyboard is activated for simulated I/O, its normal
interaction with emulation is disabled. The emulation softkeys are
blank and the softkey labeled “suspend” is displayed on your
screen. Pressing suspend < RETURN> will deactivate keyboard
simulated I/O and return the keyboard to normal emulation mode.
For details about setting up simulated I/O on your HP 9000 host
computer system, refer to the HP 64000-UX Simulated I/O Manual.

Note This feature is not available on all HP 64700-Series emulators.
Refer to your Emulator Softkey Interface User’s Guide for more
information.

Default Value none

Parameters none

Example

modify keyboard_to_simio <RETURN>

modify 7

Related Commands

help modify

8 modify

1modify memory This command lets you modify the contents of selected memory
locations.

Syntax

Function You can modify the contents of individual memory locations to
individual values. Or, you can modify a range of memory to a single
value or a sequence of values.

Modify a series of memory locations by specifying the address of
the first location in the series to be modified, and the values to
which the contents of that location and successive locations are to
be changed. The first value listed will replace the contents of the
first memory location. The second value replaces the contents of
the next memory location in the series, and so on, until the list is
exhausted. When more than one value is listed, the value
representations must be separated by commas. (See the examples
for more information.)

A range of memory can be modified such that the content of each
location in the range is changed to the single specified value, or to
a single or repeated sequence. This type of memory modification is

modify 9

done by entering the limits of the memory range to be modified
(--EXPR-- thru --EXPR--) and the value or list of values
(--EXPR--, ... , --EXPR--) to which the contents of all locations in
the range are to be changed.

Note If the specified address range is not large enough to contain the
new data, only the specified addresses are modified.

If the address range contains an odd number of bytes and a word
operation is being executed, the last word of the address range will
be modified. Thus the memory modification will stop one byte after
the end of the specified address range.

If an error occurs in writing to memory (to guarded memory or
target memory with no monitor) the modification is aborted at the
address where the error occurred.

Note If your emulator uses function codes, refer to the Emulator Softkey
Interface User’s Guide for details.

Default Values For integer memory modifications, the default is to the current
display memory mode, if one is in effect. Otherwise the default is to
“byte.”

For real memory modifications, the default is to the current display
memory mode, if one is in effect. Otherwise the default is “short.”

Parameters

bytes Modify memory in byte values.

--EXPR-- An expression is a combination of numeric
values, symbols, operators, and parentheses,
specifying a memory address. See the EXPR
syntax diagram.

10 modify

long Modify memory as long word values. When
used with the real parameter, long specifies
that memory be modified as a 64-bit real
number value.

real Modify memory as real number values.

< REAL# > This prompts you to enter a real number as
the value.

short Modify memory values as 32-bit real
numbers.

string Modify memory values to the ASCII
character string given by < STRING> .

< STRING> Quoted ASCII string including special
characters as follows:

null \0

newline \n

horizontal tab \t

backspace \b

carriage return \r

form feed \f

backslash \\

single quote \’

bit pattern \ooo (where ooo is an
octal number)

thru This option lets you specify a range of
memory locations to be modified.

to This lets you specify values to which the
selected memory locations will be changed.

modify 11

words Modify memory locations as word values.

, A comma is used as a delimiter between
values when modifying multiple memory
addresses.

Examples

modify memory 00A0H words to 1234H
<RETURN>

modify memory DATA1 bytes to 0E3H , 01H
, 08H <RETURN>

modify memory DATA1 thru DATA100 to
0FFFFH <RETURN>

modify memory 0675H real to -1.303
<RETURN>

modify memory TEMP real long to
0.5532E-8 <RETURN>

modify memory buffer string to "This is a
test \n\0"

The following pages show some additional examples of modify
memory, with screen displays shown to help you see the effects of a
particular modification.

12 modify

display memory blocked bytes

modify memory Msg_Dest thru +50 to 41h, 42h,
43h

modify memory Msg_Dest string to "HP 64000
Softkey Interface"

 Memory :bytes :blocked :update
 address data :hex :ascii
 000602-09 41 42 43 41 42 43 41 42 A B C A B C A B
 00060A-11 43 41 42 43 41 42 43 41 C A B C A B C A
 000612-19 42 43 41 42 43 41 42 43 B C A B C A B C
 00061A-21 41 42 43 41 42 43 41 42 A B C A B C A B
 000622-29 43 41 42 43 41 42 43 41 C A B C A B C A
 00062A-31 42 43 41 42 43 41 42 43 B C A B C A B C
 000632-39 41 42 43 53 41 E8 03 FC A B C S A . . .
 00063A-41 28 88 20 6B 00 04 41 E8 (. k . . A .
 000642-49 03 FC 29 48 00 04 70 18 . .) H . . p .
 00064A-51 D0 82 29 40 00 08 33 FC . .) @ . . 3 .
 000652-59 00 0C 00 06 10 A8 33 FC 3 .
 00065A-61 03 FC 00 06 10 AA 42 B9 B .
 000662-69 00 06 04 90 42 79 00 06 B y . .
 00066A-71 04 60 42 B9 00 06 04 9A . ‘ B
 000672-79 13 FC 00 01 00 06 04 98
 00067A-81 70 01 23 C0 00 06 04 94 p . #

STATUS: M68000--Running in monitor____________________________________........

 Memory :bytes :blocked :update
 address data :hex :ascii
 000602-09 48 50 20 36 34 30 30 30 H P 6 4 0 0 0
 00060A-11 20 53 6F 66 74 6B 65 79 S o f t k e y
 000612-19 20 49 6E 74 65 72 66 61 I n t e r f a
 00061A-21 63 65 43 41 42 43 41 42 c e C A B C A B
 000622-29 43 41 42 43 41 42 43 41 C A B C A B C A
 00062A-31 42 43 41 42 43 41 42 43 B C A B C A B C
 000632-39 41 42 43 53 41 E8 03 FC A B C S A . . .
 00063A-41 28 88 20 6B 00 04 41 E8 (. k . . A .
 000642-49 03 FC 29 48 00 04 70 18 . .) H . . p .
 00064A-51 D0 82 29 40 00 08 33 FC . .) @ . . 3 .
 000652-59 00 0C 00 06 10 A8 33 FC 3 .
 00065A-61 03 FC 00 06 10 AA 42 B9 B .
 000662-69 00 06 04 90 42 79 00 06 B y . .
 00066A-71 04 60 42 B9 00 06 04 9A . ‘ B
 000672-79 13 FC 00 01 00 06 04 98
 00067A-81 70 01 23 C0 00 06 04 94 p . #

STATUS: M68000--Running in monitor____________________________________........

modify 13

modify memory Msg_Dest thru +50 to 0

Related Commands

copy memory

display memory

help modify

store memory

Also see the m syntax pages in the HP 64700 Emulators Terminal
Interface Reference manual for more information on memory
handling and byte ordering in memory modifications.

 Memory :bytes :blocked :update
 address data :hex :ascii
 000602-09 00 00 00 00 00 00 00 00
 00060A-11 00 00 00 00 00 00 00 00
 000612-19 00 00 00 00 00 00 00 00
 00061A-21 00 00 00 00 00 00 00 00
 000622-29 00 00 00 00 00 00 00 00
 00062A-31 00 00 00 00 00 00 00 00
 000632-39 00 00 00 53 41 E8 03 FC . . . S A . . .
 00063A-41 28 88 20 6B 00 04 41 E8 (. k . . A .
 000642-49 03 FC 29 48 00 04 70 18 . .) H . . p .
 00064A-51 D0 82 29 40 00 08 33 FC . .) @ . . 3 .
 000652-59 00 0C 00 06 10 A8 33 FC 3 .
 00065A-61 03 FC 00 06 10 AA 42 B9 B .
 000662-69 00 06 04 90 42 79 00 06 B y . .
 00066A-71 04 60 42 B9 00 06 04 9A . ‘ B
 000672-79 13 FC 00 01 00 06 04 98
 00067A-81 70 01 23 C0 00 06 04 94 p . #

STATUS: M68000--Running in monitor____________________________________........

14 modify

1modify register This command allows you to modify the contents of one or more of
the emulation processor internal registers.

Syntax

Function The entry you specify for < REGISTER> determines which
register is modified.

Register modification cannot be performed during real-time
operation of the emulation processor. A break command or
condition must occur before you can modify the registers.

Default Value none

Parameters

< CLASS> This represents the name of a processor
register class. Register classes are displayed
on the softkey labels.

--EXPR-- An expression is a combination of numeric
values, symbols, operators, and parentheses,
specifying a register value. See the --EXPR--
syntax diagram.

< REGISTER> This represents the name of a register that
you specify.

modify 15

to This allows you to specify the values to
which the selected registers will be changed.

Examples

modify register D0 to 9H <RETURN>

modify register BASIC PC to 2000H
<RETURN>

Note These examples apply to the 68000 emulator. If you are not using a
68000 emulator, these specific examples will not work with your
emulator.

Related Commands

copy registers

display registers

help modify

help registers

modify registers

16 modify

1modify software
_breakpoints

Change the specification of software breakpoints.

Syntax

Function Software breakpoints allow you to break program execution when
the breakpoint address is encountered. Any valid address (number,
label, or expression) may be specified as a breakpoint. Valid
addresses identify the first byte of valid instructions. Operation of
the program can be resumed after the breakpoint is encountered,
by specifying either a run or step command.

If you modify software breakpoints while the memory mnemonic
display is active, the new breakpoints are indicated by a “* ” in the
leftmost column of the instruction containing the breakpoint.

Note Do not modify software breakpoints while the user program is
running. If you do, program execution may be unpredictable.

modify 17

Note If your emulator uses function codes, refer to the Emulator Softkey
Interface User’s Guide for details.

You must enable software breakpoints before you can perform an
action on them.

 Default Values When you set software breakpoints, the emulator will search
through the existing software breakpoint list and reactivate all
entries that are inactivated.

When you clear software breakpoints, the entire software
breakpoint list is deleted and memory is restored to its original
values.

Parameters

clear This option erases the specified breakpoint
address and restores the original content of
the memory location. (The location must not
have changed (by loading a file or modifying
memory) after the breakpoint was set.) If no
breakpoints are specified in the command,
all currently specified breakpoints are
cleared and the memory locations restored
to their original values.

disable This option turns off the software
breakpoint capability.

enable This option allows you to modify the
software breakpoint specification.

--EXPR-- An expression is a combination of numeric
values, symbols, operators, and parentheses,
specifying a software breakpoint address. See
the EXPR syntax diagram.

set This option allows you to activate software
breakpoints in your program. If no

18 modify

breakpoint addresses are specified in the
command, all breakpoints that have been
inactivated (executed) are reactivated.

, A comma is used as a delimiter between
specified breakpoint values.

Examples

modify software_breakpoints enable
<RETURN>

modify software_breakpoints clear 99H ,
1234H <RETURN>

modify software_breakpoints set LOOP1
END , LOOP2END , 0EH <RETURN>

modify software_breakpoints clear <RETURN>

modify software_breakpoints set <RETURN>

Related Commands

copy software_breakpoints

display memory mnemonic

display software_breakpoints

help modify

help software_breakpoints

modify 19

1Notes

20 modify

1performance
_measurement
_end

This command stores data previously generated by the
performance_measurement_run command, in a file named
“perf.out" in the current working directory.

Syntax

Function The file named “perf.out” is overwritten each time this command is
executed. Current measurement data existing in the emulation
system is not altered by this command.

Default Value none

Parameters none

Example

performance_measurement_end <RETURN>

Related Commands

help performance_measurement_initialize

help performance_measurement_run

performance_measurement_initialize

performance_measurement_run

Refer to the Analyzer Softkey Interface User’s Guide for examples of
performance measurement specification and use.

performance measurements 1

1Notes

2 performance measurements

2performance
_measurement
_initialize

This command sets up performance measurements.

Syntax

Function The emulation system will verify whether a symbolic database has
been loaded. If a symbolic database has been loaded, the
performance measurement is set up with the addresses of all global
procedures and static symbols. If a valid database has not been
loaded, the system will default to a predetermined set of addresses,
which covers the entire emulation processor address range.

Default Value The measurement will default to “activity” mode.

Default values will vary, depending on the type of operation
selected, and whether symbols have been loaded.

performance measurements 3

Parameters

activity This option causes the performance
measurement process to operate as though
an option is not specified.

duration This option sets the measurement mode to
“duration.” Time ranges will default to a
predetermined set (unless a user-defined file
of time ranges is specified).

< FILE> This represents a file you specify to supply
user-defined address or time ranges to the
emulator.

global
_symbols

This option specifies that the performance
measurement will be set up with the
addresses of all global symbols and
procedures in the source program.

local
_symbols_in

This causes addresses of the local symbols to
be used as the default ranges for the
measurement.

restore This option restores old measurement data
so that a measurement can be continued
when using the same trace command as
previously used.

--SYMB-- This represents the source file that contains
the local symbols to be listed. This also can
be a program symbol name, in which case all
symbols that are local to a function or
procedure are used. See the SYMB syntax
diagram.

4 performance measurements

Examples

performance_measurement_initialize <RETURN>

performance_measurement_initialize duration
<RETURN>

performance_measurement_initialize
local_symbols_in prog68k.S: <RETURN>

Related Commands

help performance_measurement_initialize

help performance_measurement_run

performance_measurement_run

performance_measurement_end

Refer to the Analyzer Softkey Interface User’s Guide for examples of
performance measurement specification and use.

performance measurements 5

1Notes

6 performance measurements

1performance
_measurement
_run

This command begins a performance measurement.

Syntax

Function This command causes the emulation system to reduce trace data
contained in the emulation analyzer, which will then be used for
analysis by the performance measurement software.

Default Value The default is to process data presently contained in the analyzer.

Parameters

< COUNT> This represents the number of consecutive
traces you specify. The emulation system will
execute the trace command, process the
resulting data, and combine it with existing
data. This sequence will be repeated the
number of times specified by the COUNT
option.

performance measurements 7

Note The trace command must be set up correctly for the requested
measurement. For an activity measurement, you can use the default
trace command (trace counting time < RETURN>).

For a duration measurement, you must set up the trace
specification to store only the points of interest. To do this, for
example, you could enter:

trace only <symbol_entry> or <symbol_exit>

Examples

performance_measurement_run 10 <RETURN>

performance_measurement_run <RETURN>

Related Commands

help performance_measurement_initialize

help performance_measurement_run

performance_measurement_end

performance_measurement_initialize

Refer to the Analyzer Softkey Interface User’s Guide for examples of
performance measurement specification and use.

8 performance measurements

1pod_command Allows you to control the emulator through the direct HP 64700
Terminal Interface.

Syntax

Function The HP 64700 Series emulators contain a low-level Terminal
Interface, which allows you to control the emulator’s functions
directly. You can access this interface using pod_command. The
options to pod_command allow you to supply only one command
at a time. Or, you can select a keyboard mode which gives you
interactive access to the Terminal Interface.

The Terminal Interface Reference and User’s Guide for your
emulator are excellent sources of information on using the
Terminal Interface to control the emulator. But, there are certain
commands that you should avoid while using the Terminal
Interface through pod_command.

stty, po, xp Do not use. These commands will change the
operation of the communications channel, and are
likely to hang the Softkey Interface and the channel.

echo, mac Using these may confuse the communications
protocols in use on the channel.

wait Do not use. The pod will enter a wait state, blocking
access by the Softkey Interface.

init, pv These will reset the emulator pod and force an end
release_system command.

t Do not use. The trace status polling and unload will
become confused.

pod_command 1

To see the results of a particular pod_command (the information
returned by the emulator pod), you use display pod_command.

Default None. You must specify either a particular Terminal Interface
command as a quoted string or enter the keyboard mode.

Parameters

keyboard Enters an interactive mode where you can
simply type Terminal Interface commands
(unquoted) on the command line. Use
display pod_command to see the results
returned from the emulator.

< POD_CMD> Prompts you for a Terminal Interface
command as a quoted string. Enter the
command in quotes and press < RETURN> .

suspend This command is displayed once you have
entered keyboard mode. Select it to stop
interactive access to the Terminal Interface
and return to the Softkey Interface.

2 pod_command

Examples This example shows a simple interactive session with the Terminal
Interface.

display pod_command

pod_command keyboard

cf

tsq

tcq

Enter suspend to return to the Softkey Interface.

Related Commands

display pod_command

help pod_command

Also see the Terminal Interface Reference and User’s Guide manuals
for your emulator.

Pod Commands
 Time Command
 cf lfc=x
 cf mon=bg
 cf rrt=dis
 cf rssp=01ffe
 cf swtp=0f
 cf ti=en

16:18:37 tsq

 tif 1 any
 tsto all
 telif never

16:18:44 tcq

 tcq time

STATUS: M68000--Running in monitor____________________________________........

pod_command 3

1Notes

4 pod_command

1QUALIFIER The QUALIFIER parameter is used with trace only, trace prestore,
TRIGGER , and trace counting to specify states captured during
the trace measurement.

Syntax

Function You may specify a range of states (RANGE) or specific states
(STATE) to be captured. You can continue to “or” states until the
analyzer resources are depleted. You can use only one RANGE
statement in the entire trace command.

You can include “don’t care numbers.” These contain an “x”
preceded and/or followed by a number. Some examples include
1fxxh, 17x7o, and 011xxx10b. “Don’t care numbers” may be entered
in binary, octal, or hexadecimal base.

Default Value The default is to qualify on all states.

Parameters

or This option allows you to specify multiple
states (STATE) to be captured during a
trace measurement. See the STATE syntax
diagram.

RANGE This allows you to specify a range of states to
be captured during a trace measurement. See
the RANGE syntax diagram.

STATE This represents a unique state that can be a
combination of address, data, status values,

QUALIFIER 1

and external labels. See the STATE syntax
diagram.

Examples

trace only address prog68k.S:READ_INPUT
<RETURN>

trace only address range
prog68k.S:READ_INPUT thru OUTPUT <RETURN>

trace only address range prog68k.S:CLEAR
thru READ_INPUT <RETURN>

Related Commands

help trace

trace

2 QUALIFIER

1RANGE The RANGE parameter allows you to specify a condition for the
trace measurement, made up of one or more values.

Syntax

Function The range option can be used for address, data, status, and external
labels. Range can only be used once in a trace measurement.

Default Value Expression types are “address” when none is chosen.

Parameters

address This specifies that the expression that
follows is an address value.

data This specifies that the expression that
follows is a data value on the emulation
processor data bus.

RANGE 1

--EXPR-- An expression is a combination of numeric
values, symbols, operators, and parentheses,
specifying an address, data or status value.
See the EXPR syntax diagram for details.

< external
_label>

This represents a defined external analyzer
label.

not This specifies that the analyzer search for the
logical "not” of the specified range (this
includes any addresses not in the specified
range).

range This indicates a range of addresses to be
specified (--EXPR-- thru --EXPR--).

status This allows the analyzer to trace status
information, such as read operations.

thru This indicates that the following address
expression is the upper address in a range.

Examples See the trace command examples.

Related Commands

help trace

QUALIFIER

trace

2 RANGE

1reset This command suspends target system operation and reestablishes
initial emulator operating parameters, such as reloading control
registers.

Syntax

Function The reset signal is latched when the reset command is executed and
released by either the run or break command.

Default Value The emulator is reset to background.

Parameters none

Example

reset <RETURN>

Related Commands

help reset

reset 1

1Notes

2 reset

1run This command causes the emulator to execute a program.

Syntax

Function If the processor is in a reset state, run releases the reset condition.
If you specify run from --EXPR-- or run from transfer_address,
the processor is directed to the particular address. If the processor
is running in the emulation monitor or background memory, a run
command causes the processor to exit into your program. The
program can either run from a specified address (--EXPR--), from
the address stored in the emulation processor program counter, or
from a label specified in the program.

For an explanation of how your emulator runs from a reset
condition (using the run from reset command), refer to your
Emulator Terminal Interface User’s Guide.

Note If your emulator uses function codes, refer to the Emulator Softkey
Interface User’s Guide for details.

Default Value If you omit the address option (--EXPR--), the emulator begins
program execution at the current address specified by the
emulation processor program counter. If an absolute file
containing a transfer address has just been loaded, execution starts
at that address.

run 1

Parameters

--EXPR-- An expression is a combination of numeric
values, symbols, operators, and parentheses,
specifying a memory address. See the EXPR
syntax diagram.

from This specifies the address from which
program execution is to begin.

reset This option starts the processor executing
from the reset address, or when a reset signal
is initiated in the target system. Refer to the
Emulator Softkey Interface User’s Guide for
details about the run from reset operation.

transfer
_address

This represents the starting address of the
program loaded into emulation or target
memory. The transfer address is defined in
the linker map.

Examples

run <RETURN>

run from 810H <RETURN>

run from COLD_START <RETURN>

Related Commands

help run

help step

step

2 run

1SEQUENCING Lets you specify complex branching activity that must be satisfied
to trigger the analyzer.

Syntax

Function Sequencing provides you with parameters for the trace command
that let you define branching conditions for the analyzer trigger.

You are limited to a total of seven sequence terms, including the
trigger, if no windowing specification is given. If windowing is
selected, you are limited to a total of four sequence terms.

Default Value The analyzer default is no sequencing terms. If you select the
sequencer using the find_sequence parameter, you must specify at
least one qualifying sequence term.

Parameters

find_sequence Specifies that you want to use the analysis
sequencer. You must enter at least one
qualifier.

QUALIFIER Specifies the address, data, or status value or
value range that will satisfy this sequence
term if looking for a sequence
(find_sequence), or will restart at the
beginning of the sequence (restart). See the

SEQUENCING 1

QUALIFIER syntax pages for further
information.

occurs Selects the number of times a particular
qualifier must be found before the analyzer
proceeds to the next sequence term or the
trigger term. This option is not available
when trace windowing is in use. See the
WINDOW syntax pages.

< # TIMES> Prompts you for the number of times a
qualifier must be found.

then Allows you to add multiple sequence terms,
each with its own qualifier and occurrence
count.

restart Selects global restart. If the analyzer finds
the restart qualifier while searching for a
sequence term, the sequencer is reset and
searching begins for the first sequence term.

Examples The following example uses the "Getting Started" program from
the 68000/68010 Emulator User’s Guide.

The program reads a one-byte command location and writes one of
three messages to an output area depending on what was input.

We want to trace only when we see the program startup, followed
by clearing the command input, and an access to the address for a
particular message. We want to restart the analyzer if the compare
is passed for that particular message, indicating that it was not the
message input.

display trace

trace find_sequence Init then Read_Cmd
restart Exe_Cmd + 8 trigger after Msg_A

modify Cmd_Input to 41h

2 SEQUENCING

The result is shown in the following display:

Related Commands

trace

QUALIFIER

WINDOW

help trace

Trace List Offset=0 More data off screen (ctrl-F, ctrl-G)
Label: Address Data Opcode or Status time count
Base: hex hex mnemonic relative
after 000500 436F 43 supr data rd byte 480 nS
+001 000602 4343 43 supr data wr byte 520 nS
+002 000454 FFFC Unimplemented Instruction:0FFFC 480 nS
+003 000450 12D8 MOVE.B [A0]+,[A1]+ 760 nS
+004 000452 57C9 DBEQ D1,0000450 520 nS
+005 000501 436F 6F supr data rd byte 480 nS
+006 000603 6F6F 6F supr data wr byte 520 nS
+007 000454 FFFC FFFC supr prog 480 nS
+008 000450 12D8 MOVE.B [A0]+,[A1]+ 760 nS
+009 000452 57C9 DBEQ D1,0000450 480 nS
+010 000502 6D6D 6D supr data rd byte 520 nS
+011 000604 6D6D 6D supr data wr byte 480 nS
+012 000454 FFFC FFFC supr prog 520 nS
+013 000450 12D8 MOVE.B [A0]+,[A1]+ 760 nS
+014 000452 57C9 DBEQ D1,0000450 480 nS

STATUS: M68000--Running user program Emulation trace complete______........

SEQUENCING 3

1Notes

4 SEQUENCING

1set Controls the display format for the data, memory, register, software
breakpoint, and trace displays.

Syntax

Function With the set command, you can adjust the display format results
for various measurements, making them easier to read and
interpret.

set 1

Formatting of source lines, symbol display selection and width, and
update after measurement can be modified to your needs.

The display command uses the set command specifications to
format measurement results for the display window.

Another option to the set command, < ENV_VAR> = < VALUE> ,
allows you to set and export system variables to the HP-UX and
HP 64000-UX environments.

Default Values The default display format parameters are the same as those set by
the commands:

set update

set source off symbols off

You can return the display format to this state by simply using the
command:

set default

Parameters

default This option restores all the set options to
their default settings.

< ENV_VAR> Specifies the name of an environment
variable to be set within the HP 64000-UX
environment or the system environment.

= The equals sign is used to equate the
< ENV_VAR> parameter to a particular
value represented by < VALUE> .

inverse video

 off This displays source lines in normal video.

 on This highlights the source lines on the screen
(dark characters on light background) to
differentiate the source lines from other data
on the screen.

2 set

noupdate When using multiple windows or terminals,
and specifying this option, the display buffer
in that window or terminal will not update
when a new measurement completes.
Displays showing memory contents are not
updated when a command executes that
could have caused the values in memory to
change (modify memory, load, etc.).

number_of_
source_lines

This allows you to specify the number of
source lines displayed for the actual
processor instructions with which they
correlate. Only source lines up to the
previous actual source line will be displayed.
Using this option, you can specify how many
comment lines are displayed preceding the
actual source line. The default value is 5.

 < NUMSRC> This prompts you for the number of source
lines to be displayed. Values in the range
1..50 may be entered.

source

 off This option prevents inclusion of source
lines in the trace and memory mnemonic
display lists.

 on This option displays source program lines
preceding actual processor instructions with
which they correlate. This enables you to
correlate processor instructions with your
source program code. The option works for
both the trace list and memory mnemonic
displays.

 only This option displays only source lines.
Processor instructions are only displayed in
memory mnemonic if no source lines
correspond to the instructions. Processor

set 3

instructions are never displayed in the trace
list.

symbols

 off This prevents symbol display.

 on This displays symbols. This option works for
the trace list, memory, software breakpoints,
and register step mnemonics.

 high Displays only high level symbols, such as
those available from a compiler. See the HP
64000-UX System User’s Guide for a
detailed discussion of symbols.

 low Displays only low level symbols, such as
those generated internally by a compiler, or
an assembly symbol.

 all Displays all symbols.

tabs_are This option allows you to define the number
of spaces inserted for tab characters in the
source listing.

 < TABS> Prompts you for the number of spaces to use
in replacing the tab character. Values in the
range of 2..15 may be entered.

update When using multiple windows or terminals,
and specifying this option, the display buffer
in that window or terminal will be updated
when a new measurement completes. This is
the default. Note that for displays that show
memory contents, the values will be updated
when a command executes that changes
memory contents (such as modify memory,
load, and so on).

4 set

< VALUE> Specifies the logical value to which a
particular HP-UX or HP 64000-UX system
environment variable is to be set.

width

 source This allows you to specify the width (in
columns) of the source lines in the memory
mnemonic display. To adjust the width of the
source lines in the trace display, increase the
widths of the label and/or mnemonic fields.

 label This lets you specify the address width (in
columns) of the address field in the trace list
or label (symbols) field in any of the other
displays.

 mnemonic This lets you specify the width (in columns)
of the mnemonic field in memory
mnemonics, trace list and register step
mnemonics displays. It also changes the
width of the status field in the trace list.

 symbols This lets you specify the maximum width of
symbols in the mnemonic field of the trace
list, memory mnemonic, and register step
mnemonic displays.

 < WIDTH> This prompts you for the column width of
the source, label, mnemonic, or symbols field.

Note < CTRL> f and < CTRL> g may be used to shift the display left or
right to display information which is off the screen.

set 5

Examples

set noupdate

set source on inverse_video on tabs_are 2

set symbols on width label 30 mnemonic 20

set PRINTER = "lp -s"

set HP64KSYMBPATH=".file1:proc1
.file2:proc2:code_block_1"

Related Commands

display data

display memory

display software_breakpoints

display trace

6 set

1specify This command prepares a run or trace command for execution,
and is used with the cmb_execute command.

Syntax

Function When you precede a run or trace command with specify, the
system does not execute your command immediately. Instead, it
waits until you enter a cmb_execute command.

If the processor is reset and no address is specified, a cmb_execute
command will run the processor from the “reset” condition.

If your emulator uses function codes, refer to the Emulator Softkey
Interface User’s Guide for details.

Note The run specification is active until you enter specify run disable.
The trace specification is active until you enter another trace
command without the specify prefix.

specify 1

Default Value The emulator will run from the current program counter address.

Parameters

disable This option turns off the specify condition of
the run process.

from

 --EXPR-- This is used with the specify run from
command. An expression is a combination of
numeric values, symbols, operators, and
parentheses, specifying a memory address.
See the EXPR syntax diagram.

 transfer
 _address

This is used with the specify run from
command, and represents the address from
which the program will begin running.

run This option specifies that the emulator will
run from either an expression or from the
transfer address when a CMB EXECUTE
signal is received.

TRACE This option specifies that a trace
measurement will be taken when a CMB
EXECUTE signal is received.

Examples

specify run from START <RETURN>

specify trace after address 1234H
<RETURN>

Related Commands

cmb_execute

help specify

2 specify

1STATE This parameter lets you specify a trigger condition as a unique
combination of address/data/ status values and external analyzer
labels.

Syntax

Function The STATE option is part of the QUALIFIER parameter to the
trace command, and allows you to specify a condition for the trace
measurement.

Default Value The default STATE expression type is address.

Parameters

address This specifies that the expression following is
an address value. This is the default, and is

STATE 1

therefore not required on the command line
when specifying an address expression.

and This lets you specify a combination of status
and expression values when status is
specified in the state specification.

data This specifies that the expression following is
a data value on the processor data bus.

--EXPR-- An expression is a combination of numeric
values, symbols, operators, and parentheses,
specifying an address, data, or status value.
See the EXPR syntax diagram.

< external
_label>

This specifies an external analyzer label to be
included in the trace measurement.

not This specifies that the analyzer will search
for the logical “not” of a specified state (this
includes any address that is not in the
specified state).

status This specifies that the expression following,
or status word, is a status value for the
processor.

< STATUS> This prompts you to enter a status value in
the command line. Status values can be
entered from softkeys or typed into the
keyboard. Numeric values may be entered
using symbols, operators, and parentheses to
specify a status value. See the EXPR syntax
diagram.

2 STATE

Examples See the trace command examples.

Related Commands

help trace

QUALIFIER

trace

STATE 3

1Notes

4 STATE

1step The step command allows sequential analysis of program
instructions by causing the emulation processor to execute a
specified number of assembly instructions or source lines.

Syntax

Function You can display the contents of the processor registers, trace
memory, and emulation or target memory after each step
command.

Source line stepping is implemented by single stepping assembly
instructions until the next PC is beyond the address range of the
current source line. When attempting source line stepping on
assembly code (with no associated source line), stepping will
complete when a source line is found. Therefore, stepping only
assembly code may step forever. To abort stepping, type
< CTRL> c.

When displaying memory mnemonic and stepping, the next
instruction that will step is highlighted. The memory mnemonic
display autopages to the new address if the next PC goes outside of
the currently displayed address range. This feature works even if
stepping is performed in a different emulation window than one
displaying memory mnemonic (see the chapter on windowing
capabilities).

Note If your emulator uses function codes, refer to the Emulator Softkey
Interface User’s Guide for details.

step 1

Default Values If no value is entered for < NUMBER> times, only one step
instruction is executed each time you press < RETURN> . Multiple
instructions can be executed by holding down the < RETURN>
key. Also, the default step is for assembly code lines, not source
code lines.

If the from address option (defined by --EXPR-- or
transfer_address) is omitted, stepping begins at the next program
counter address.

Parameters

--EXPR-- An expression is a combination of numeric
values, symbols, operators, and parentheses
specifying a memory address. See the EXPR
syntax diagram.

from Use this option to specify the address from
which program stepping begins.

< NUMBER> This defines the number of instructions that
will be executed by the step command. The
number of instructions to be executed can be
entered in binary (B), octal (O or Q),
decimal (D), or hexadecimal (H) notation.

silently This option updates the register step
mnemonic only after stepping is complete.
This will speed up stepping of many
instructions. The default is to update the
register step mnemonic after each assembly
instruction (or source line) executes (if
stepping is performed in the same window as
the register display).

transfer
_address

This represents the starting address of the
program you loaded into emulation or target
memory. The transfer_address is defined in
the linker map.

2 step

source This option performs stepping on source
lines.

Examples

step <RETURN>

step from 810H <RETURN>

step 20 from 0A0H <RETURN>

step 5 source <RETURN>

step 20 silently <RETURN>

step 4 from main

Related Commands

help step

display registers

display memory mnemonic

set symbols

Registers

 A0-A7 00000000 00000000 00000000 00000000 00000000 00000000 00043FFC 00043FF8

Step_PC 001070@sp MOVEA.L #0000601AA,A2
Next_PC 001076@sp
 PC 00001076 STATUS 2704 s z USP 00000000 SSP 00043FF8
 D0-D7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 A0-A7 00000000 00000000 000601AA 00000000 00000000 00000000 00043FFC 00043FF8

Step_PC 001076@sp JSR |_initialize_sys
Next_PC 00114A@sp
 PC 0000114A STATUS 2704 s z USP 00000000 SSP 00043FF4
 D0-D7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 A0-A7 00000000 00000000 000601AA 00000000 00000000 00000000 00043FFC 00043FF4

STATUS: M68000--Stepping complete_____________________________________........

step 3

1Notes

4 step

1stop_trace This command terminates the current trace and stops execution of
the current measurement.

Syntax

Function The analyzer stops searching for trigger and trace states. If trace
memory is empty (no states acquired), nothing will be displayed.

Default Value none

Parameters none

Example

stop_trace <RETURN>

Related Commands

help stop_trace

trace

stop_trace 1

1Notes

2 stop_trace

1store This command lets you save the contents of specific memory
locations in an absolute file. You also can save trace memory
contents in a trace file.

Syntax

Function The store command creates a new file with the name you specify, if
there is not already an absolute file with the same name. If a file
represented by < FILE> already exists, you must decide whether to
keep or delete the old file. If you respond with yes to the prompt,
the new file replaces the old one. If you respond with no, the store
command is canceled and no data is stored.

Note If your emulator uses function codes, refer to the Emulator Softkey
Interface User’s Guide for details.

Default Value The transfer address of the absolute file is set to zero.

store 1

Parameters

--EXPR-- This is a combination of numeric values,
symbols, operators, and parentheses,
specifying a memory address. See the EXPR
syntax diagram.

< FILE> This represents a file name you specify for
the absolute file identifier or trace file where
data is to be stored. If you want to name a
file beginning with a number, you must
precede the file name with a backslash (\) so
the system will recognize it as a file name.

memory This causes selected memory locations to be
stored in the specified file with a .X
extension.

thru This allows you to specify that ranges of
memory be stored.

to Use this in the store memory command to
separate memory locations from the file
identifier.

trace This option causes the current trace data to
be stored in the specified file with a .TR
extension.

trace_spec This option stores the current trace
specification in the specified file with a .TS
extension.

, A comma separates memory expressions in
the command line.

2 store

Examples

store memory 800H thru 20FFH to TEMP2
<RETURN>

store memory EXEC thru DONE to \12.10
<RETURN>

store trace TRACE <RETURN>

store trace_spec TRACE <RETURN>

Related Commands

display memory

display trace

help store

load

store 3

1Notes

4 store

1--SYMB-- This parameter is a symbolic reference to an address, address
range, file, or other value.

Syntax

SYMB 1

Note If no default file was defined by executing the command display
local_symbols_in --SYMB--, or with the cws command, a source
file name (< FILE>) must be specified with each local symbol in a
command line.

Function Symbols may be:

Combinations of paths, filenames, and identifiers defining
a scope, or referencing a particular identifier or location
(including procedure entry and exit points).

Combinations of paths, filenames, and line numbers
referencing a particular source line.

Combinations of paths, filenames, and segment identifiers
identifying a particular PROG, DATA or COMN segment
or a user-defined segment.

The Symbolic Retrieval Utilities (SRU) handle symbol scoping and
referencing. These utilities build trees to identify unique symbol
scopes.

If you use the SRU utilities to build a symbol database before
entering the emulation environment, the measurements involving a
particular symbol request will occur immediately. If you then
change a module and reenter the emulation environment without
rebuilding the symbol database, the emulation software rebuilds
the changed portions of the database in increments as necessary.

Further information regarding the SRU and symbol handling is
available in the HP 64000-UX System User’s Guide. Also refer to
that manual for information on the HP64KSYMBPATH
environment variable.

Default Value The last symbol specified in a display local_symbols_in --SYMB--
command, or with the cws command, is the default symbol scope.
The default is “none” if no current working symbol was set in the
current emulation session.

2 SYMB

You also can specify the current working symbol by typing the cws
command on the command line and following it with a symbol
name. The pws command displays the current working symbol on
the status line.

Display memory mnemonic also can modify the current working
symbol.

Parameters

< FILENAME> This is an HP-UX path specifying a source
file. If no file is specified, and the identifier
referenced is not a global symbol in the
executable file that was loaded, then the
default file is assumed (the last absolute file
specified by a display local_symbols_in
command). A default file is only assumed
when other parameters (such as line) in the
--SYMB-- specification expect a file.

line This specifies that the following numeric
value references a line number in the
specified source file.

 < LINE# > Prompts you for the line number of the
source file.

< IDENTIFIER> Identifier is the name of an identifier as
declared in the source file.

SCOPE Scope is the name of the portion of the
program where the specified identifier is
defined or active (such as a procedure block).

segment This indicates that the following string
specifies a standard segment (such as PROG,
DATA, or COMN) or a user-defined
segment in the source file.

< SEG_NAME> Prompts you for entry of the segment name.

SYMB 3

(< TYPE>) When two identifier names are identical and
have the same scope, you can distinguish
between them by entering the type (in
parentheses). Do not type a space between
the identifier name and the type
specification. The type will be one of the
following:

 filename Specifies that the identifier is a source file.

 fsegment Used by the 80386 emulator only; holds
information about code or data fsegments in
the global descriptor table.

 module These refer to module symbols. For the
80386 C compiler, these names derive from
the source file name. For Ada, they are
packages. Other language systems may allow
user-defined module names.

 procedure Any procedure or function symbol. For
languages that allow a change of scope
without explicit naming, SRU assigns an
identifier and tags it with type procedure.

 static Static symbols, which includes global
variables. The logical address of these
symbols will not change.

 task Task symbols, which are specifically defined
by the processor and language system in use.

: A colon is used to specify the HP-UX file
path from the line, segment, or symbol
specifier. When following the file name with
a line or segment selection, there must be a
space after the colon. For a symbol, there
must not be a space after the colon.

4 SYMB

Examples The following short C code example should help illustrate how
symbols are maintained by SRU and referenced in your emulation
commands.

delay()
{

int i,j;
int waste_time;

 for (i = 0; i <= 256000; i++)
 for (j = 0; j <= 256000; j++)
 waste_time = 0;

} /* end delay */

/system/project1/utils.c

#include "utils.c"

process_port (int *port_num, int port_data)
{
static int i;
static int i2;

 for (i = 0; i <= 64; i++) {
 *port_num = port_data;
 delay ();
 {
 static int i;
 i = 3;
 port_data = port_data + i;
 }
 }
} /* end of process_port */

/system/project1/porthand.c

int *port_one;
main ()
{

int port_value;

 port_one = 255;
 port_value = 10;

 process_port (port_one, port_value);

} /* end main */

/users/dave/control.c

SYMB 5

The symbol tree as built by SRU might appear as follows,
depending on the object module format (OMF) and compiler used:

Note that SRU does not build tree nodes for variables that are
dynamically allocated on the stack at run-time, such as i and j
within the delay () procedure. SRU has no way of knowing where

6 SYMB

these variables will be at run time and therefore cannot build a
corresponding symbol tree entry with run time address.

Here are some examples of referencing different symbols in the
above programs:

control.c:main

control.c:port_one

porthand.c:utils.c:delay

The last example above only works with IEEE-695 object module
format; the HP object module format does not support referencing
of include files that generate program code.

porthand.c:process_port.i

porthand.c:process_port.BLOCK_1.i

Notice how you can reference different variables with matching
identifiers by specifying the complete scope. You also can save
typing by specifying a scope with cws. For example, if you are
making many measurements involving symbols in the file
porthand.c, you could specify:

cws porthand.c:process_port

Then:

i

BLOCK_1.i

are prefixed with porthand.c: process_port before the database
lookup.

If a symbol search with the current working symbol prefix is
unsuccessful, the last scope on the current working symbol is
stripped. The symbol you specified is then retested with the
modified current working symbol. Note that this does not change
the actual current working symbol.

For example, if you set the current working symbol as

cws porthand.c:process_port.BLOCK_1

and made a reference to symbol i2, the retrieval utilities attempt to
find a symbol called

porthand.c:process_port.BLOCK_1.i2

SYMB 7

which would not be found. The symbol utilities would then strip
BLOCK_1 from the current working symbol, yielding

porthand.c:process_port.i2

which is a valid symbol.

You also can specify the symbol type if conflicts arise. Although
not shown in the tree, assume that a procedure called port_one is
also defined in control.c. This would conflict with the identifier
port_one which declares an integer pointer. SRU can resolve the
difference. You must specify:

control.c:port_one(static)

to reference the variable, and

control.c:port_one(procedure)

to reference the procedure address.

Related Commands

copy local_symbols_in

cws

display local_symbols_in

help symbols

pws

Also refer to the HP 64000-UX System User’s Guide for further
information on symbols.

8 SYMB

1trace This command allows you to trace program execution using the
emulation analyzer.

Syntax

Note The options shown can be executed once for each trace command.
Refer to the TRIGGER, QUALIFIER, and COUNT diagrams for
details on setting up a trace.

trace 1

Function You can perform analysis tasks either by starting a program run
and then specifying the trace parameters, or by specifying the trace
parameters first and then initiating the program run. Once a trace
begins, the analyzer monitors the system busses of the emulation
processor to detect the states specified in the trace command.

When the trace specification is satisfied and trace memory is filled,
a message will appear on the status line indicating the trace is
complete. You can then use display trace to display the contents of
the trace memory. If a previous trace list is on screen, the current
trace automatically updates the display. If the trace memory
contents exceed the page size of the display, the NEXT PAGE,
PREV PAGE, up arrow, or down arrow keys may be used to display
all the trace memory contents. You also can press CTRL f and
CTRL g to move the display left and right.

You can set up trigger and storage qualifications using the specify
trace command. The analyzers will begin tracing when a
cmb_execute command executes, which causes an EXECUTE
signal on the Coordinated Measurement Bus.

Default Value The analyzer will trace any state, counting time by default.

Parameters

again This option repeats the previous trace
measurement. It also begins a trace
measurement with a newly loaded trace
specification. (Using trace without the again
parameter will start a trace with the default
specification rather than the loaded
specification.)

anything This causes the analyzer to capture any type
of information.

arm_trig2 This option allows you to specify the
external trigger as a trace qualifier, for
coordinating measurements between
multiple HP 64700-Series emulators, or an

2 trace

HP 64700-Series emulator and another
instrument.

Before arm_trig2 can appear as an option,
you must modify the emulation
configuration interactive measurement
specification. When doing this, you must
specify that either BNC or CMBT drive
trig2, and that the analyzer receive trig2. See
the chapter on “Coordinated
Measurements” for more information.

break_on
_trigger

This stops target system program execution
when the trigger is found. The emulator
begins execution in the emulation monitor.
When using this option, the on_halt option
cannot be included in the command.

COUNT This specifies whether time or state
occurrences, or nothing, will be counted
during the trace. See the COUNT syntax
diagram for details.

counting This option specifies whether the analyzer
will count time or occurrences of states
during a trace, or whether the option is to
be turned off.

modify
_command

This recalls the last trace command that was
executed.

on_halt When using this option, the analyzer will
continue to capture states until the
emulation processor halts or until a
stop_trace command is executed. When this
option is used, the break_on_trigger,
repetitively, and TRIGGER options cannot
be included in the command.

only This option allows you to qualify the states
that are stored, as defined by QUALIFIER .

trace 3

prestore This option instructs the analyzer to save
specific states that occur prior to states that
are stored (as specified with the “only”
option).

QUALIFIER This determines which of the traced states
will be stored or prestored in the trace
memory for display upon completion of the
trace. Events can be selectively saved by
using trace only to enter the specific events
to be saved. When this is used, only the
indicated states are stored in the trace
memory. See the QUALIFIER syntax.

repetitively This initiates a new trace after the results of
the previous trace are displayed. The trace
will continue until a stop_trace or a new
trace command is issued. When using this
option, you cannot use the on_halt option.

SEQUENCING Allows you to specify up to seven sequence
terms including the trigger. The analyzer
must find each of these terms in the given
order before searching for the trigger. You
are limited to four sequence terms if
windowing is enabled. See the
SEQUENCING syntax pages for more details.

TRIGGER This represents the event on the emulation
bus to be used as the starting, ending, or
centering event for the trace. See the
TRIGGER syntax diagram. When using this
option, you cannot include the on_halt
option.

WINDOW Selectively enables and disables analyzer
operation based upon independent enable
and disable terms. This can be used as a
simple storage qualifier. Or, you may use it
to further qualify complex trigger

4 trace

specifications. See the WINDOW syntax
pages for details.

Examples

trace after 1000H <RETURN>

trace only address range 1000H thru
1004H <RETURN>

trace counting state address 1004H
<RETURN>

trace after address 1000H occurs 2 only
address range 1000H thru 1004H counting
time break_on_trigger <RETURN>

Related Commands

copy trace

display trace

help trace

load trace

load trace_spec

specify trace

store trace

store trace_spec

trace 5

1Notes

6 trace

1TRIGGER This parameter lets you define where the analyzer will begin
tracing program information during a trace measurement.

Syntax

Function A trigger is a QUALIFIER. When you include the occurs option,
you can specify the trigger to be a specific number of occurrences
of a QUALIFIER (see the QUALIFIER syntax diagram).

Default Value The default is to trace after any state occurs once.

Parameters

about This option captures trace data leading to
and following the trigger qualifier. The
trigger is centered in the trace listing.

after Trace data is acquired after the trigger
qualifier is found.

before Trace data is acquired prior to the trigger
qualifier.

TRIGGER 1

occurs This specifies a number of qualifier
occurrences of a range or state on which the
analyzer is to trigger.

QUALIFIER This determines which of the traced states
will be stored in trace memory.

< # TIMES> This prompts you to enter a number of
qualifier occurrences.

Examples

trace after MAIN <RETURN>

trace after 1000H then data 5 <RETURN>

Also see the trace command examples.

Related Commands

help trace

trace

Also refer to the chapter on Coordinated Measurements.

2 TRIGGER

1wait This command allows you to present delays to the system.

Syntax

Function The wait command can be an enhancement to a command file, or
to normal operation at the main emulation level. Delays allow the
emulation system and target processor time to reach a certain
condition or state before executing the next emulation command.

The wait command does not appear on the softkey labels. You
must type the wait command into the keyboard. After you type
wait, the command parameters will be accessible through the
softkeys.

Default Value The system will pause until it receives a < CTRL> c signal.

Note If set intr < CTRL> c was not executed on your system,
 < CRTL> c normally defaults to the backspace key. See your
HP-UX system administrator for more details regarding keyboard
definitions.

1 wait

Parameters

measurement
_complete

This causes the system to pause until a
pending measurement completes (a trace
data upload process completes), or until a
< CTRL> c signal is received. If a
measurement is not in progress, the wait
command will complete immediately.

or This causes the system to wait for a
< CTRL> c signal or for a pending
measurement to complete. Whichever occurs
first will satisfy the condition.

seconds This causes the system to pause for a specific
number of seconds.

< TIME> This prompts you for the number of seconds
to insert for the delay.

Note A wait command in a command file will cause execution of the
command file to pause until a < CTRL> c signal is received, if
< CTRL> c is defined as the interrupt signal. Subsequent
commands in the command file will not execute while the
command file is paused.

You can verify whether the interrupt signal is defined as
< CTRL> c by typing set at the system prompt.

Examples

wait <RETURN>

wait 5; wait measurement_complete <RETURN>

2 wait

Related Commands

help system_commands

help wait

3 wait

1Notes

4 wait

1WINDOW Lets you select which states are stored by the analyzer.

Syntax

Function WINDOW allows you to selectively toggle analyzer operation.
When enabled, the analyzer will recognize sequence terms, trigger
terms, and will store states. When disabled, the analyzer is
effectively off, and only looks for a particular enable term.

You specify windowing by selecting an enable qualifier term; the
analyzer will trigger or store all states after this term is satisfied. If
the disable term occurs after the analyzer is enabled, the analyzer
will then stop storing states, and will not recognize trigger or
sequence terms. You may specify only one enable term and one
disable term.

Default The analyzer defaults to recognizing all states. If you specify
enable, you must supply a qualifier term. If you then specify
disable, you must specify a qualifier term.

Parameters

disable Allows you to specify the term which will
stop the analyzer from recognizing states
once the enable term has been found.

enable Allows you to specify the term which will
enable the analyzer to begin monitoring
states.

QUALIFIER Specifies the actual address, data, status
value or range of values that cause the
analyzer to enable or disable recognition of

WINDOW 1

states. Note that the enable qualifier can be
different from the disable qualifier. Refer to
the QUALIFIER syntax pages for further
details on analyzer qualifier specification.

Examples The following example uses the sample program from the
68000/68010 Softkey Interface User’s Guide.

The program reads a command input byte and writes one of three
messages to an output area based upon the value of that byte. We
want to capture only the data writes to the output message area.

display trace

trace enable Write_Msg disable Read_Cmd only
status write

modify Cmd_Input to 42h

The display will appear as follows:

Related Commands

help trace

SEQUENCING

trace

QUALIFIER

Also refer to the Analyzer Softkey Interface User’s Guide.

Trace List Offset=0 More data off screen (ctrl-F, ctrl-G)
Label: Address Data Opcode or Status time count
Base: hex hex mnemonic relative
after 00044C 0000 ORI.B #**,D0 520 nS
+001 000602 4545 45 supr data wr byte 2.5 uS
+002 000603 6E6E 6E supr data wr byte 2.8 uS
+003 000604 7474 74 supr data wr byte 2.8 uS
+004 000605 6565 65 supr data wr byte 2.7 uS
+005 000606 7272 72 supr data wr byte 2.8 uS
+006 000607 6565 65 supr data wr byte 2.8 uS
+007 000608 6464 64 supr data wr byte 2.8 uS
+008 000609 2020 20 supr data wr byte 2.7 uS
+009 00060A 4242 42 supr data wr byte 2.8 uS
+010 00060B 2020 20 supr data wr byte 2.8 uS
+011 00060C 6363 63 supr data wr byte 2.8 uS
+012 00060D 6F6F 6F supr data wr byte 2.7 uS
+013 00060E 6D6D 6D supr data wr byte 2.8 uS
+014 00060F 6D6D 6D supr data wr byte 2.8 uS

STATUS: M68000--Running user program Emulation trace started_______........

2 WINDOW

4

Coordinated Measurements

Introduction The Coordinated Measurement Bus (CMB) allows coordinated
measurements between multiple HP 64700-Series emulators,
between HP 64700-Series and HP 64000-UX emulators, or
between an HP 64700 and another instrument, using the BNC
connector. The CMB has a cable and software, and depending on
the configuration, additional hardware may be required (as in IMB
to CMB measurements).

Coordinated measurements made between an emulator and
another instrument use the BNC connector labeled TRIGGER
IN/OUT on the rear panel of the HP 64700. For example, an HP
64700 analyzer can trigger or be triggered by an HP 1630 Logic
Analyzer via the trigger signal on the BNC connector. Another
instrument also can cause the emulator to break into the monitor
by driving the BNC connector.

Target Systems with
Multiple

Microprocessors

For target systems that contain multiple microprocessors, multiple
HP 64700-Series emulators can perform synchronous runs and
emulator breaks into the monitor. HP 64700-Series analyzers can
cross-trigger on the CMB.

Example
Measurements

Some example coordinated measurements include:

Two or more HP 64700 emulators start and stop executing
user programs simultaneously.

An HP 64700 analyzer triggers another HP 64700 analyzer
when it finds its specified trigger.

Coordinated Measurements 4-1

An HP 64700 analyzer causes another HP 64700 emulator
to break into the monitor.

An HP 64700 emulator and an HP 64000-UX emulator
begin executing user programs simultaneously.

An HP 64000-UX analyzer triggers an HP 64700 analyzer
when it finds its specified trigger.

An external analyzer causes an HP 64700 emulator to
break into the monitor by driving the BNC connector.

Detailed examples are given at the end of this chapter.

1Getting Started If you plan to make coordinated measurements between multiple
HP 64700-Series emulators/analyzers, you must physically connect
them with one or more CMB cables. For details, refer to the CMB
User’s Guide and the Hardware Installation And Configuration
manual for HP 64700-Series emulators. Then return here.

About the HP 64306A
Interface

To make measurements between HP 64700-Series and HP
64000-UX emulators you must use the HP 64306A IMB/CMB
Interface Board. The HP 64306A IMB/CMB Interface allows the
Coordinated Measurement Bus (CMB) and InterModule Bus
(IMB) to operate together. With the HP 64306A, you can
cross-trigger HP 64000-UX and HP 64700-Series analyzers, and
can coordinate the start of HP 64000-UX and HP 64700-Series
emulators. You must physically connect the HP 64700 emulator(s)
and the HP 64306A Interface with the CMB cable. Refer to the
chapter on Using the IMB and CMB in the CMB User’s Guide for
HP 64700-Series emulators.

To find out more about installing the HP 64306A, refer to the
Installation Notice supplied with that board.

4-2 Coordinated Measurements

Background
Information on the

CMB

There are three bi-directional signal lines on the CMB, and an
associated BNC connector on the rear panel of the emulator.
These CMB signals are:

Trigger

The CMB TRIGGER line is low true. This signal can be driven or
received by any HP 64700 or HP 64306A IMB/CMB Interface
connected on the CMB. This signal can be used to trigger an
analyzer. It can be used as a break source for the emulator.

Ready

The CMB READY line is high true. It is an open collector and
performs an ANDing of the ready state of enabled emulators on
the CMB. Each emulator on the CMB releases this line when it is
ready to run. This line goes true when all enabled emulators are
ready to run, providing for a synchronized start.

When CMB is enabled, each emulator is required to break to
background when CMB READY goes false, and will wait for CMB
READY to go true before returning to the run state. When an
enabled emulator breaks, it will drive the CMB READY false and
will hold it false until it is ready to resume running. When an
emulator is reset, it also drives CMB READY false.

Execute

The CMB EXECUTE line is low true. Any HP 64700 on the CMB
can drive this line. It serves as a global interrupt and is processed
by both the emulator and the analyzer. This signal causes an
emulator to run from a specified address when CMB READY
returns true.

Coordinated Measurements 4-3

Note You must use a background emulation monitor when using the
CMB READY and CMB EXECUTE signals to make coordinated
measurements. Refer to chapter on Configuring the Emulator in
your Emulator Softkey Interface User’s Guide for more information
about the emulation monitor.

BNC Trigger Signal The BNC trigger signal is edge-sensitive. This signal can either
drive or receive an analyzer trigger, or receive a break request for
the emulator.

Comparison Between
CMB and BNC

Triggers

The CMB trigger and BNC trigger lines have the same logical
purpose: to provide a means for connecting the internal trigger
signals (trig1 and trig2) to external instruments. The CMB and
BNC trigger lines are bi-directional. Either signal may be used
directly as a break condition. Configure both by modifying the
Interactive Measurement Specification using the modify
configuration command.

The CMB trigger is level-sensitive, while the BNC trigger is
edge-sensitive. The CMB trigger line puts out a true pulse
following receipt of EXECUTE, despite the commands used to
configure it. This pulse is internally ignored.

Note If you use the EXECUTE function, the CMB trigger should not be
used to trigger external instruments, because a false trigger will be
generated when EXECUTE is activated.

Where to Find More
Information

You may need to use other sources of information when setting up
and starting to use your HP 64700-Series emulator with the HP
64000-UX Measurement System. The following references should
help.

For details about using the Coordinated Measurement Bus, refer
to the HP 64700 Emulators Terminal Interface CMB User’s Guide.

4-4 Coordinated Measurements

This manual describes using the CMB separately, and with the HP
64000-UX InterModule Bus (IMB).

For additional information about using an emulator with the HP
64000-UX measurement system, refer to the HP 64000-UX
Measurement System Operating Manual. This manual is part of the
HP 64000-UX manual set for the HP 64801 operating software
(which runs on the HP 9000).

You can use the HP 64808 User Interface Software with
HP 64700-Series emulators. For details, refer to the User Interface
Software Operating Manual for HP 64000-UX.

Before Continuing Make sure that you have:

Installed the appropriate software.

Installed the HP 64700 emulation hardware.

Installed the HP 64306A IMB/CMB Interface Board if you
are going to make measurements between
HP 64700-Series and HP 64000-UX emulators.

Made the correct CMB connections.

1Modifying the
Interactive
Measurement
Specification

Before an HP 64700-Series emulator/analyzer can drive or receive
an external trigger, you must modify the interactive measurement
specification. To begin . . .

ENTER: modify configuration <RETURN>

Now, press the < RETURN> key, until you see the following
question.

Modify interactive measurement specification? no

Coordinated Measurements 4-5

Press the yes softkey to present the interactive measurement
configuration questions. After answering yes, the information
shown in figure 4-1 is displayed. It illustrates the possible
connections between the internal trigger signals (trig1 and trig2)
and external devices.

Notice in figure 4-1 that the analyzer always drives trig1, and the
emulator always receives trig1. This provides for the
break_on_trigger syntax of the trace command.

Using the Analyzer
Trigger to Drive

External Signals

The analyzer can be configured to drive an external trigger signal
when it finds its trigger condition. Do this by setting up the
analyzer to drive an internal trigger and setting up an external
signal to receive it. Either or both of the internal triggers can be
used.

 Interactive Measurement Specification

 BNC <<-??->> ---- BNC <<-??->> ----
 | |
 CMBT <<-??->> ---- CMBT <<-??->> ----
 | Trig1 | Trig2
 Emulator <<------ ---- Emulator <<-??--- ----
 | |
 Analyzer ------>> ---- Analyzer <<-??->> ----

 NOTE: drive = ---->> receive = <<----
 The connections marked "??" are set up here in configuration.

 STATUS: Interactive Measurement Specification_________________________........
 Should BNC drive or receive Trig1? neither

 drive receive neither both RECALL

Figure 4-1. Interactive Measurement Specification

4-6 Coordinated Measurements

Analyzer Drives CMB Trigger

For example, you might want the analyzer to drive the CMB
TRIGGER signal when it finds its specified trigger using trig2. Set
up the analyzer to drive trig2, and the CMB TRIGGER to receive
it by responding to these questions as follows:

Should CMBT drive or receive Trig2? receive

Should Analyzer drive or receive Trig2? drive

All other interactive measurement questions should be answered
neither or no.

Analyzer Drives BNC Trigger

Perhaps the analyzer is to drive BNC TRIGGER when it finds its
specified trigger. Set up the analyzer to drive trig2 and BNC
TRIGGER to receive trig2 by responding to these questions as
follows:

Should BNC drive or receive Trig2? receive

Should Analyzer drive or receive Trig2? drive

All other interactive measurement questions should be answered
neither or no.

Analyzer Drives Both CMB and BNC Triggers

If the analyzer is to drive both CMB TRIGGER and BNC
TRIGGER using trig1, set up both the CMB TRIGGER and BNC
TRIGGER to receive trig1 by responding to these questions as
follows:

Should CMBT drive or receive Trig1? receive

Should BNC drive or receive Trig1? receive

Notice that you do not need to set up the analyzer to drive trig1
since it always drives trig1 as explained previously. All other
interactive measurement questions should be answered neither or
no.

Coordinated Measurements 4-7

Using External
Signals to Trigger the

Analyzer

The analyzer can be configured to receive its trigger from an
external trigger signal. Do this by setting an external trigger signal
to drive trig2 and setting the analyzer to receive it. Notice that trig2
must be used here, because the analyzer cannot receive trig1.

Using CMB Trigger

For example, if the analyzer is to be triggered by the external CMB
TRIGGER signal generated by another analyzer on the CMB, set
up CMB TRIGGER to drive trig2 and the analyzer to receive trig2
by responding to these questions as follows:

Should CMBT drive or receive Trig2? drive

Should Analyzer drive or receive Trig2? receive

All other interactive measurement questions should be answered
neither or no.

Using BNC Trigger

If the analyzer is to be triggered by the external BNC TRIGGER
signal generated by another instrument, set up the BNC
TRIGGER to drive trig2 and the analyzer to receive it by
responding to these questions as follows:

Should BNC drive or receive Trig2? drive

Should Analyzer drive or receive Trig2? receive

All other interactive measurement questions should be answered
neither or no.

Using External
Signals to Break the

Emulator

Besides using the external trigger signals to trigger the analyzer,
you can use these signals to cause the emulator to break into
background. Do this by configuring one of the external trigger
signals to drive trig1 or trig2 and having the emulator receive it.

CMB Trigger Causes Emulator to Break

For example, if you want the CMB TRIGGER signal generated by
another analyzer on the CMB bus, to cause the emulator to break
into background, set up the CMB TRIGGER to drive trig2 and set

4-8 Coordinated Measurements

up the emulator to receive trig2 by responding to these questions
as follows:

Should CMBT drive or receive Trig2? drive

Should Emulator break receive Trig2? yes

All other interactive measurement questions should be answered
neither or no.

BNC Trigger Causes Emulator to Break

If you want the BNC TRIGGER signal to cause the emulator to
break into background using trig1, set up the BNC TRIGGER to
drive trig1 by responding to this question as follows:

Should BNC drive or receive Trig1? drive

All other interactive measurement questions should be answered
neither or no. Notice that the emulator is already set up to receive
trig1 as explained above.

1Accessing the
Emulator via
Measurement
System

You can put your HP 64700-Series emulator in a measurement
system. Once you configure that emulator into a measurement
system, the HP 64700-Series emulator will appear just as an HP
64000-UX emulator appears in a measurement system. If you have
used HP 64000-UX emulators before, this may be a familiar
process.

Before you can create a measurement system, you must run the
msinit command to set up HP 64700 measurement system modules.

ENTER: msinit <RETURN>

Besides searching for HP 64120 Instrumentation Cardcages, this
command searches for all HP 64700-Series emulators listed in the
“64700tab” file, and will set up HP 64700 measurement system
modules.

Next you can configure your HP 64700-Series emulator into a
measurement system. To do this . . .

Coordinated Measurements 4-9

ENTER: msconfig <RETURN>

This command displays a list of modules that can be configured
into measurement systems. The HP 64700 measurement system
modules are indicated by an asterisk (*) in the “slot” field. The
process of creating a measurement system is described in the HP
64000-UX Measurement System Manual.

Note Each HP 64700-Series emulator must be put in a measurement
system by itself. If you are using two HP 64700-Series emulators,
you must create an individual measurement system for each.

After you have created a measurement system with your HP
64700-Series emulator, the “msconfig” display should be similar to
figure 4-2. Your display probably will differ.

 Instruments

 Module Select Addr Slot Description

 0 12 00 * m68000: M68000 126K; int/ext analysis

 Meas_Sys: em64742 (Use ’display’ key to see other systems.)

 Module Select Addr Slot Description

 m68000 12 00 * em68k: M68000 126K; int/ext analysis

Figure 4-2. Creating a Measurement System

4-10 Coordinated Measurements

You can then access the emulator by typing the name of the
measurement system followed by the module name. For example:

ENTER: em64742 m68000 <RETURN>

Other Commands Other measurement system commands are available. To display the
status of a measurement system you can use the msstat command.
To unlock a measurement system you can use the msunlock
command. You may want to refer to the HP 64000-UX
Measurement System Manual for details on how to set up a
measurement system, and more about these commands.

1Accessing the
Emulator via the
emul700
Command

Another way to access the emulator quickly and directly (without
entering the measurement system) is to use the emul700 command.
The emul700 command starts the emulator directly from the
HP-UX system level.

To start the emulator using this command, for example . . .

ENTER: emul700 m68000 <RETURN>

The emulator name (m68000) is defined in the emulator device
table file named /usr/hp64000/etc/64700tab.

For more information about the emul700 command, refer to
chapter 7 or the on-line manual page. To use the on-line manual
page, just type: man emul700

1Example
Measurements

Following are some example measurements. These may help you
understand how an HP 64700-Series emulator/analyzer operates in
the measurement system.

Coordinated Measurements 4-11

Example # 1

Two or more HP 6 4700 emulators start and stop executing
user programs simultaneously.

This example uses two HP 64700s connected to the CMB. Each
emulator should be reset or executing in the monitor, with a user
program loaded into memory.

1. Using the specify run from command, set up each
emulator to run from a specified address in the user
program. This command sets up the stack and program
counter, and enables the emulator to start once the CMB
becomes ready and the CMB EXECUTE signal is
received. The CMB will become ready after both emulators
connected on the CMB are set to run.

2. To generate the CMB EXECUTE signal and
synchronously start both emulators running, enter the
cmb_execute command on either # 1 or # 2.

Observe the status on both emulators to make sure they
are running.

3. To synchronously stop both emulators, press break on
either # 1 or # 2.

4-12 Coordinated Measurements

Observe the status of each emulator to see that they have
stopped running. The one on which you entered break will
be executing in the monitor, and the other will be waiting
for CMB to become ready.

4. To start both emulators running again, type run on the
emulator that is currently executing in the monitor.

You can observe the status of each emulator to see that
they are both running again.

Example # 2

An HP 64700 analyzer triggers another HP 64700 analyzer
when it finds its specified trigger.

This example uses two HP 64700s connected to the CMB. Each
emulator should be reset or executing in the monitor, with a user
program loaded into memory. Analyzer # 1 will find its trigger
condition, then trigger analyzer # 2.

Cross-triggering is done using the CMB TRIGGER (CMBT)
signal, driven by analyzer # 1 and received by analyzer # 2. Though
both analyzers connect through the CMB cable, neither can
participate in CMB measurements until you enable them.

1. To enable analyzer # 1 to drive the CMBT signal, enter the
modify configuration command and answer yes to the
“Modify interactive measurement specification?” question.

Coordinated Measurements 4-13

The interactive measurement specification display shows
two (internal) trigger terms named trig1 and trig2, which
can be configured in various combinations. For this
example, select CMBT to receive trig1. Because the
analyzer is always set up to drive trig1, this is all you need
to do to configure the analyzer to drive the CMBT via
trig1. Alternatively, you could use the trig2 trigger term by
selecting the analyzer to drive trig2 and CMBT to receive
trig2.

2. To enable analyzer # 2 to receive CMBT, enter the modify
configuration command and answer yes to the “Modify
interactive measurement specification?” question.

Select CMBT to drive trig2 and the analyzer to receive
trig2. This is all you need to do to configure the analyzer to
receive CMBT via trig2. Note that trig2 must be used here
since the analyzer cannot be configured to receive trig1.

3. Using the specify run from command, set up each
emulator to run from a specified address in the user
program, as described earlier in example # 1.

4. Using the specify trace command, set up the trace
specification for both analyzers. This command sets up the
triggering conditions and enables the analyzer to start once
the CMB EXECUTE signal is received.

For analyzer # 1, the specify trace command will include a
trigger condition qualified by some address in the user
program. For example:

ENTER: specify trace after MAIN <RETURN>

5. For analyzer # 2, the specify trace command will include a
trigger condition, which is driven from trig2. For example:

 specify trace after arm_trig2

6. To generate the CMB EXECUTE signal, synchronously
start both emulators and analyzers by executing the
cmb_execute command from either # 1 or # 2.

4-14 Coordinated Measurements

Observe the status on both emulators to make sure they
are running and that the analysis traces are in progress or
completed.

Once analyzer # 1 finds its trigger condition, it will drive
the CMBT signal, triggering analyzer # 2. Depending on
the amount of trace data stored, both traces should soon
complete.

Coordinated Measurements 4-15

1Notes

4-16 Coordinated Measurements

5

Windowing Capabilities

Using Windows A window environment can give you a variety of views of the
measurements made with your emulator/analyzer.

If you have a window environment installed on your host
computer, you can operate your emulator in multiple windows on
your screen. The window environment allows you to view multiple
events occurring in a single emulator on a single screen.

Using Multiple
Terminals

If you do not have a window environment installed on your host
computer, you can still obtain the benefits of multiple windows by
logging into the HP-UX system from several terminals, and
starting the emulator on each terminal, just as described here for
several windows.

Examples of Using
Windows

You may want to start two windows so that you can observe your
source program while stepping the emulation processor through
the program. You also may want to use multiple windows to
compare an old trace measurement with a new one.

For example, you may start the emulator in four windows such that:

1. Window # 1 shows your original program in memory.

2. Window # 2 shows the simulated I/O keyboard and display
used as a “virtual” console to your target system.

3. Window # 3 shows the emulation processor stepping
through your program.

4. Window # 4 shows a trace of your program execution.

Two supported window environments run on the HP 9000 host
computer. These are HP Windows and X Windows. If you have

Windowing Capabilities 5-1

either of these windowing environments installed and operating on
an HP 9000 host computer, you can use your HP 64700 emulator in
the windows.

You also can operate your emulator in the HP Windows-X
environment. This is an X Window program that emulates HP
Windows.

Window Environment Documentation

For additional information about HP Windows, refer to the HP
Windows/9000 User’s Manual. For additional details about X
Windows or HP Windows-X, refer to the manual titled Getting
Started With the X Window System or the manual titled Using the X
Window System (if you are using the X11 windowing environment).

Maximum Number of
Windows

Four is the maximum number of windows that you can use to view
HP 64700 emulator/analyzer operation. You can start up more
than four windows, but if you try to start the emulator in a fifth
window, the system will display the following message:

ERROR: No more processes may be attached to this session________........

1Start the Window
Environment and
the Emulator

Suppose you have the HP Windows software installed and
operating on your host computer, and want to use your emulator in
that environment. To start the HP Window environment . . .

ENTER: wmstart <RETURN>

You will see the first window appear on screen labeled “wconsole.”

Using other Window
Environments

The examples in this chapter are oriented to HP Windows. If
necessary, refer to any other appropriate window documentation
for details about how to start up and use another window
environment on your host computer.

5-2 Windowing Capabilities

Start the Emulator Start up the emulator as you would at the host computer level. For
example, if you are using the 68000 emulator, and you have the
emulator name defined in the /usr/hp64000/etc/64700tab file as
“em68k”, this is how you would start the emulator in the first
window:

ENTER: emul700 em68k <RETURN>

In several moments, you will see the emulation session appear in
the window.

Start another Window Start another window. To start the emulator in the new window,
execute the same command as you did before.

ENTER: emul700 em68k <RETURN>

In several moments, you will see another emulation session appear
in the new window. The status will show that this session is joining
the session already in progress. The event log will be displayed in
this window also.

Note Additional windows may be added to the emulation session at any
time. You do not have to add them only when starting the
emulator.

Activities that Occur
in the Windows

When using an HP 64700-Series emulator in a window
environment (or with multiple terminals), the following activities
occur in the windows where the emulator is currently operating.

Event Log is Displayed

After starting the emulator, the event log is displayed in the
window. This lists all events that have occurred in the emulator
since you began the emulation session.

Windowing Capabilities 5-3

Commands Complete in Sequence

When you execute commands that access the emulator (in multiple
windows) the first command you specified will complete before the
second command begins executing.

Status Line is Updated

When you perform an emulation task in one window that updates
the status line, status lines are updated in all other windows where
the emulator is operating. The event log is also updated in each
window.

Ending the Emulation Session

When you are using the emulator in multiple windows, you can
choose to either release the emulation session in a single window,
or in all the windows. The end command by itself just ends the
window where the command is executed. When you choose to end
the session in all windows, control of the system returns to the host
computer.

5-4 Windowing Capabilities

6

Using Command Files

Topics in this
Chapter

This chapter describes how to create and use command files with
the Softkey Interface. Topics included are:

What are Command Files?

How to Create Command Files

How to Use Command Files

1What are
Command Files?

Command files are ASCII files created by you that contain Softkey
Interface commands. They allow you to accomplish and duplicate
activities without entering all the commands manually. For
example, let’s assume you start the Softkey Interface and want to:

1. Load an existing configuration file.

2. Load a program.

3. Set up a trace specification.

4. Run the program you loaded.

5. Display the trace results.

You can save time and keystrokes by creating a command file, and
then using that command file each time you want this set of
commands executed. You need only create the command file once
and the bulk of your work is done.

Using Command Files 6-1

Any Softkey Interface commands that you execute at the emulation
system level can be included in a command file. Commands that
you cannot include in command files are those that require you to
specify parameters, such as the emulator configuration, memory
map, and CMB and BNC trigger specifications. These must be
stored in a configuration file.

Nesting Command
Files

You can nest a maximum of eight levels of command files. Nesting
command files means one command file calls another.

For More Information The HP 64000-UX User’s Guide contains additional details about
using command files (including parameter passing).

1How to Create
Command Files

You can create command files by:

1. Using an editor.

2. Using the Softkey Interface log_commands command.

Using an Editor to
Create a Command

File

You can use any editor on your host computer to create a
command file. Create the command file as you would any text file.
When you finish, name the file “goemul,” or whatever other name
you choose.

This is an example command file created using the “vi” editor:

load configuration /yourproject/config4

load /yourproject/program4

trace after START

run from 2000h

wait 10

display trace

6-2 Using Command Files

Logging Commands
to Create a Command

File

Rather than using an editor to create a command file, you can use
the log_commands command. This allows you to record all
commands that you execute.

Logging both commands and output can be helpful when executing
a set of commands that you are not sure will produce the results
you are seeking. By logging commands that you type, you can
record everything you try. By logging the resulting output, you can
verify that the expected results occurred. When you have finished
logging commands, you can use the “log” file as a command file.

Note You do not have to modify the “log” file to use it as a command
file, because all commands and output are stored in a format that
the Softkey Interface can read when you load the file. You may
want to edit the log file to remove any unwanted commands or
results, or add any other commands or comments.

If a file exists with the same name in the present working directory,
the log_commands command will try to overwrite the existing file.

Using the wait
Command

You can use the wait command in command files. This allows you
to pause execution of the command file between commands.

Use the wait measurement_complete command after changing the
trace depth. By doing this, when you copy or display the trace after
changing the trace depth, the new trace states will be available.
Otherwise the new states won’t be available.

1How to Use
Command Files

Suppose you want to use the command file you created in this
chapter. Enter the Softkey Interface. Then just enter the command
file name. For example:

ENTER: goemul <RETURN>

Using Command Files 6-3

All the commands contained in the command file named “goemul”
would execute in sequence.

You also can start the Softkey Interface and immediately begin a
command file. There are two ways to do this.

emul700 <emul_name> < <cmd_file>

starts the interface and redirects input from the command file to
the interface.

echo ’<cmd_file>’ | emul700 <emul_name>

starts the softkey interface, which then starts the command file.

6-4 Using Command Files

7

Manual Pages

This chapter contains manual pages for some relevant HP
64700-Series emulator commands and files.

Commands This command is described:

emul700

Files This file is described:

64700tab

Manual Pages 7-1

1Notes

7-2 Manual Pages

1emul700 The emul700 command starts an emulation session using an
HP 64700-Series emulation pod.

Synopsis emul700 [-d] [-u userinterface] logicalname

emul700 -l [-v] [logicalname [logicalname . . .]]

emul700 -U [-v] logicalname

Description The emul700 command starts a user interface that controls an HP
64700-Series emulator. It may be used to obtain information about
one or more HP 64700-Series emulators, or may be used to unlock
an emulator locked by a previous user.

The command arguments and options are:

logicalname This is a logical name defined in the
“64700tab” file. These names uniquely
identify a specific emulator.

-d This option defaults the emulator
configuration if you are starting a session.
This option has no effect if joining a session
already in progress.

-l This option lists the status of the emulators
defined in the “64700tab” file, or the
emulator(s) specified by the last argument(s)
to the emul700 command.

-u
userinterface

This option selects the user interface to
control the requested emulator. To find
which user interfaces are available for one or
more emulators, use the -v option with the
emul700 -l command. The default user
interface, when more than one is available, is
skemul, the softkey-driven user interface for
the emulator.

emul700 1

-v This option reports actions and/or
information verbosely with the -l or -U
option.

-U This option unlocks the emulator(s)
specified by the last argument(s) to emul700,
if there is no current session in progress.

Related Files /usr/hp64000/etc/64700tab

This emulator device table file associates a
name for an HP 64700-Series emulator (its
logical name) with the actual I/O device used
to communicate with that emulator. Channel
attributes such as baud rate and protocol are
also specified in this file.

/usr/hp64000/inst/emul/<productID>

This directory contains user interface
support for specific HP 64700-Series
emulators. The < productID> represents the
directory for your product.

See Also 64700tab(4)

2 emul700

164700tab The “64700tab” file describes the format of HP 64700-Series
emulator information.

Description The “64700tab” file lists the Hewlett-Packard 64700-Series
emulators attached (or that may be attached from time to time) to
this HP-UX host.

The file is originally installed as:

/usr/hp64000/etc/newconfig/64700tab

The first installation also copies this file to:

/usr/hp64000/etc/64700tab

This file must be modified by the system administrator or other
knowledgeable person. It must include the information described
below for each HP 64700-Series emulator that may be attached to
the host. After modification, the file should remain at:

/usr/hp64000/etc/64700tab

This file must be a Configuration Dependent File if this host is a
node in an HP-UX diskless cluster. (The installation process
should take care of this. See also makecdf(1M)).

This file is the reference used by HP 64000-UX software when an
HP 64700-Series emulator is accessed. Each HP 64700-Series
emulator connects to an HP-UX host via its own dedicated serial
interface channel. This file allows you to define a unique name for
each emulator, its logical name, the channel to which it connects,
and the channel settings used to communicate with the emulator.
Each uncommented line in the “64700tab” file describes one
emulator. Each line has 9 fields separated by blanks or tabs:

logical name This is the name associated with this
emulator/serial channel combination. Each
logical name must conform to the following
syntax (using the notation of regular
expressions):

[a-zA-Z][a-zA-Z0-9_]*

64700tab 1

For example, “emul68k” and “emul_68k” are
valid names, whereas “68000” and
“emul-68k” are not.

Each logical name in this file must be
unique. The logical name also must be
unique among the module names defined in
msconfig on this host. Only the first 14
characters in logical name are used.

processor type This represents the type of processor in the
emulator. This field is used to locate all
emulators supporting a specific type of
processor.

physical device The name of the device file controlling the
serial I/O channel connected to the emulator
(for example, /dev/emcom15). Names such as
/dev/tty15 should be avoided since some
system administration tools (like reconfig)
rely on the prefix “tty” to automatically
configure login ports. The device file should
have read/write permission for all users who
will be using the emulator (crw-rw-rw-, for
example). There should not be a getty
running on the channel.

Each emulator should have its own
dedicated channel. If a channel must be
shared among several emulators, only one
session for one emulator may be active at
any time.

xpar mode HP 64700-Series emulation pods support a
“transparent mode” of operation on the two
serial ports built into the pod. This mode is
not supported in HP 64000-UX software.
The only setting allowed for this field is OFF.

2 64700tab

baud rate This is the serial channel baud rate.
Supported values are:

1200 2400 9600 19200 57600 230400

parity This refers to the parity mode in use on the
serial channel. The only valid setting is
NONE.

flow This enables or disables flow (pacing)
control in the serial channel. Two protocols
are supported: XON/XOFF and RTS/CTS.
The difference between these is that
XON/XOFF uses characters in the data
stream for pacing, whereas RTS/CTS uses
separate signals. Valid settings for flow are:

XON RTS

Caution RTS/CTS is preferred over XON/XOFF because it is a more
reliable means of pacing. It is supported for only the HP 98659
card.

Without some form of pacing or flow
control, overrun may occur during
non-binary transfers from the
HP 64700-Series emulation pod to the
HP-UX host. (Binary transfers, such as
uploading trace data or emulation memory,
have a record protocol with built-in flow
control.)

stop bits This is the number of stop bits used in the
serial channel protocol. The only supported
setting is 2.

64700tab 3

char size This option refers to the number of bits used
for each character (or byte) transferred on
the serial channel. The only supported size is
8.

Note The switches on the rear panel of the HP 64700-Series emulator
must match the settings for baud rate, parity, flow, stop bits, and
char size when the emulator is turned on. You should not change
these settings without cycling power on the emulator pod.

The file /usr/hp64000/etc/64700tab must be kept up to date as HP
64700-Series emulators are added to (or removed from) the host.
The contents of this file are the reference data for all HP
64000-UX software that uses the emulators.

Example The following is an example of the relevant portion of a completed
“64700tab” file:

Hardware
Dependencies

The only interface cards characterized for support by
HP 64000-UX software are the HP 98628 RS-232, HP 98642

#---
xpar baud parity flow stop char
#logical name processor physical mode rate bits size
(14 chars) type device XON
OFF NONE RTS 2 8
#---

#exampleRS232 m68000 /dev/emcom15 OFF 19200 NONE XON 2 8

#exampleRS422 i80186 /dev/emcom23 OFF 230400 NONE RTS 2 8

#

 emul68k m68000 /dev/emcom14 OFF 9600 NONE XON 2 8

 scarecrow z80 /dev/emcom25 OFF 230400 NONE RTS 2 8

4 64700tab

RS-232 MUX, and HP 98659 RS-422 cards. Of these, the
HP 98659A is the only interface card recommended for connection
to HP 64700-Series emulators. (See the table on the next page.)

Caution The other two interface cards (HP 98628 and HP 98642) are
designed primarily for host-to-peripheral transfers. They are less
capable for the large peripheral-to-host transfers required by HP
64700-Series emulators. You may see dropped characters or other
communications failures with these cards. If these occur, you may
need to press CTRL c (send a SIGINT signal) in the user interface
to recover control. Some information may be lost.

Each card has limits to the configurations that are supported. The
following table contains an “x” for the supported fields, and a “.”
for the unsupported fields. For example, the HP 98628 card will
support operation at 19200 baud, but not at 57600 baud.

The following table shows the compatibility of these cards with the
available options.

Fields in 64700tab File Supported Interface Cards

HP 98659 HP 98628 HP 98642

baud rate:
 1200
 2400
 9600
 19200
 57600
 230400

 x
 x
 x
 x
 x
 x

 x
 x
 x (2)
 x (2)
 .
 .

 x
 x
 x (2) (3)
 x (2) (3)
 .
 .

 parity:
 NONE x x x

 flow:
 XON
 RTS

 x
 x

 x
 .

 x
 .

64700tab 5

Fields in 64700tab File Supported Interface Cards

HP 98659 HP 98628 HP 98642

 stop bits:
 2 x x x

 char size:
 8 x x x

(1) These baud rates must use the RTS/CTS pacing protocol.

(2) The HP 98628 and HP 98642 cards may have an unacceptable error rate in some applications. Reducing

 the baud rate and/or the load on the host computer may help.

(3) The HP 98642 card has four ports. The “modem” port has the lowest error rate when used with an HP

 64700 emulator. Port 3 has the highest error rate.

Related Files /usr/hp64000/etc/newconfig/64700tab

This is the template file shipped with the software for
an HP 64700-Series emulator. This file must be
modified and installed as:
/usr/hp64000/etc/64700tab

/usr/hp64000/etc/64700tab

This is the customized version of the original
“64700tab” file. The contents of this file should reflect
the device(s) and settings used to communicate with
HP 64700-Series emulator(s) on this host. If this host
is configured as a node in an HP-UX diskless cluster,
this file must be a Configuration Dependent File.

See Also emul700(1), makecdf(1M)

6 64700tab

A

Performance Verification for the HP 98659A

Introduction The HP 98659A High-Speed RS-422 Interface has two levels of
performance verification (PV). The first level is a series of built-in
ROM-based power up tests which perform a checksum on the
ROM, test the on-board RAM, and test other local resources.
These tests are the same as those embedded in the other
programmable datacomm interface products. Other programmable
datacomm interfaces include the HP 98628, HP 98629, HP 98641,
and HP 98649.

The second level is an HP-UX based test, which is unique for this
interface. It exercises the drivers and receivers and provides data
integrity testing.

If Powerup Tests Fail If any of the powerup tests fail, the bootrom initialization in the
HP 9000 Series 300 during powerup or rebooting of the HP-UX
system will display the following message:

HP98659 at "sc" Failed

“sc” is the select code of the interface.

During the HP-UX booting process, if the powerup tests fail, the
error message will read:

HP98691 at select code "sc" ignored; unrecognized card option

Performance Verification for the HP 9 8659A A-1

This error message occurs after the powerup test fails, because the
kernel.s procedure (data_com_type) returns a value of -1 instead of
the protocol ID of the board. The HP 98691 message comes from
the kernel.s procedure (last_make_entry). These failures prevent
the driver from being linked, and therefore the HP-UX based tests
cannot be run. The failure mode is available on the card but there
is no present way under HP-UX to access it.

The second level of HP-UX based performance verification can be
run as a field verification test. The field verification test is
described in this appendix. The HP-UX based tests check the
external interface logic and the user cable, if connected. It will use
a test hood to feed back all used signals for verification of both
drivers and receivers.

1Customer/Field
Test Hood
Requirements

Table A-1 shows the interconnections in the test hood used with
the HP 98659A High-Speed RS-422 Interface. This test hood is for
customer and Hewlett-Packard Customer Engineer (CE) testing.

Part Numbers The part number of the test hood is 98659-67950. The test hood
has a 25-pin connector, which plugs into the cable assembly (part
number 98659-63001) that connects the interface card to the
emulator.

A-2 Performance Verification for the HP 9 8659A

 Signal
 Type

 Signal Definition Pin
 Direction

 Data Flow

Data SD(A) --> RD(A)

SD(B) --> RD(B)

9 --> 25

10 --> 18

SD= Send Data (from cable)
RD= Receive Data (to cable)

Control RS(A) --> CS(A)

RS(B) --> CS(B)

DM(A),RR(A) < -- TR

DM(B),RR(B) < -- SG

17 --> 21

19 --> 23

12 < -- 20

13 < -- 7

RS= Request to Send (from cable)
CS= Clear to Send (to cable)

DM= Data Mode, RR= Receiver Ready
 (to cable)
TR= Terminal Ready (from cable)
SG= Signal Ground

Timing TT(A) --> RT(A),ST(A)

TT(B) --> RT(B),ST(B)

24 --> 11

14 --> 16

TT= Terminal Timing (from cable)
RT= Receive Timing, ST= Send Timing
 (to cable)

Note: Some pins in the connector have two names (representing functions). For example, pin 12 serves as both Data Mode

and Receiver Ready.

Table A-1. Customer/Field Test Hood Requirements

Performance Verification for the HP 9 8659A A-3

Invocation of the HP-UX based PV is through an executable file
named /usr/CE.utilities/98659/98659pv . Executing the
program without any options displays the following:

HP 98659A Performance Verification Test:

Usage

98659pv /dev/xxx [loop]

"/dev/xxx" is the special device file for the HP 98659A card

under test. "loop" is an optional request to loop on a

portion of the test. Adding a loop option provides a

regular stimulus response which is useful for repair of

a faulty interface card. "DTR" or "DSR" will toggle the DTR

output/DSR input. "DATA" will loop at 19200 baud with

no handshake, toggling the data lines. "RTS" or "CTS"

will toggle the RTS/CTS Handshake, in a 230400 baud data loop.

A CTRL C will exit from any of the loops.

A-4 Performance Verification for the HP 9 8659A

Test without Looping If the test starts with a valid special device file, no looping options,
and a working card (and cable if connected), the following is
displayed:

98659A Performance Verification Test:

Test Requires Test Hood # 98659-67950

Driver opened for /dev/ody25, fildes = 3

Passed DTR Toggle Test

sending a 5K byte file out at 19200 baud,

No pacing enabled, checking data out/in lines

returned string same as send string

Passed Data Transfer Test at 19200 Baud

sending a 5K byte file out at 460800 baud,

RTS/CTS pacing enabled, checking clock and RTS/CTS lines

returned string same as send string

Passed Data Transfer Test at 460800 Baud

Passed EXTERNAL CLOCK and RTS/CTS check

Driver closed for /dev/ody25

98659A Performance Verification PASSED for device /dev/ody25

Performance Verification for the HP 9 8659A A-5

If the test starts with an invalid special device file, the following is
displayed:

If you specify an invalid looping option, the following is displayed:

“xxx” represents the invalid option entered.

If any failures occur during these tests, an error message is printed
and the test terminates. The fault can be in either the card or the
cable.

98659A Performance Verification Test:

Test Requires Test Hood # 98659-67950

ERROR!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Failure to OPEN

errno = 20

ERROR EXIT

ERROR!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Unsupported Option: xxx

ERROR EXIT

A-6 Performance Verification for the HP 9 8659A

1Error Messages Various failures display the following error messages:

DTR or DSR failure The DTR or DSR error occurs when DTR or DSR will not go true.
The result on screen resembles:

98659A Performance Verification Test:

Test Requires Test Hood # 98659-67950

Driver opened for /dev/ody25, fildes = 4

ERROR!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 DTR will not go true (false)

ERROR!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Failure in modem line test

errno = 25

ERROR EXIT

Data Read Failure The Data Read error occurs when the test fails to read the data.
The result on screen resembles:

98659A Performance Verification Test:

Test Requires Test Hood # 98659-67950

Driver opened for /dev/ody25, fildes = 3

Passed DTR Toggle Test

sending a 5K byte file out at 19200 baud,

No pacing enabled, checking data out/in lines

ERROR!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Failure to read

errno = 5

ERROR EXIT

Performance Verification for the HP 9 8659A A-7

Data Character Loss
Failure

The Data Character Loss Failure error occurs when the test fails to
read all the data. The result on screen resembles:

98659A Performance Verification Test:

Test Requires Test Hood # 98659-67950

Driver opened for /dev/ody25, fildes = 3

Passed DTR Toggle Test

sending a 5K byte file out at 19200 baud,

No pacing enabled, checking data out/in lines

ERROR!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Failure to read all of data

ERROR EXIT

Data Corruption
Failure

The Data Corruption Failure error occurs when the test returns a
string that differs from the string sent. The result on screen
resembles:

98659A Performance Verification Test:

Test Requires Test Hood # 98659-67950

Driver opened for /dev/ody25, fildes = 3

Passed DTR Toggle Test

sending a 5K byte file out at 19200 baud,

No pacing enabled, checking data out/in lines

ERROR!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

return string not same as sent string

ERROR EXIT

A-8 Performance Verification for the HP 9 8659A

RTS/CTS and Clock
Test Failure

The RTS/CTS and Clock Test Failure error occurs when the test
fails to read the data when RTS/CTS pacing is enabled. The result
on screen resembles:

returned string same as send string

Passed Data Transfer Test at 19200 Baud

sending a 5K byte file out at 460800 baud,

RTS/CTS pacing enabled, checking clock and RTS/CTS lines

ERROR!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Failure to read

errno = 5

ERROR EXIT

Looping Options If you specify the “DTR” or “DSR” option, the following is
displayed:

The lines will be toggling so that any open or short circuits in the
path can be located.

98659A Performance Verification Test:

Test Requires Test Hood # 98659-67950

Driver opened for /dev/ody25, fildes = 3

toggling DTR out, DSR in

Performance Verification for the HP 9 8659A A-9

If you specify the “DATA” option, the following is displayed:

This will allow the data path to be traced so that any problems in
the data loop can be isolated.

If invoked with the “RTS” or “CTS” option, the following is
displayed:

98659A Performance Verification Test:

Test Requires Test Hood # 98659-67950

Driver opened for /dev/ody25, fildes = 3

Passed DTR Toggle Test

Loop is sending out 5K binary 8 bit file

Reading back as much as possible

98659A Performance Verification Test:

Test Requires Test Hood # 98659-67950

Driver opened for /dev/ody25, fildes = 3

Passed DTR Toggle Test

sending a 5K byte file out at 19200 baud,

No pacing enabled, checking data out/in lines

returned string same as send string

Passed Data Transfer Test at 19200 Baud

Loop is sending out 5K binary 8 bit file

at 460800 baud using RTS/CTS handshaking and

the external X1 clock

Reading back as much as possible

Failures could be in data, clock, or RTS/CTS

A-10 Performance Verification for the HP 9 8659A

This provides stimulus for checking the clock path and the RTS
output to CTS input path.

These tests, when used without a looping option, provide a simple
yes/no test for use in field testing. With the addition of the looping
option, they also provide a tool for repair.

Additional Information For additional information about the HP 98659A, refer to the
Installation Guide supplied with that card. Also, you can refer to
the Installation Notice for the HP 64700-Series Emulators Softkey
Interface, supplied with your Emulator Softkey Interface
documentation.

Performance Verification for the HP 9 8659A A-11

1Notes

A-12 Performance Verification for the HP 9 8659A

B

Error Messages

Introduction This appendix contains a list of error messages that may occur
while operating your HP 64700-Series Emulator.

Messages Recorded
in Error Log

The error log records error messages received during the emulation
session. You may want to display the error log to view the error
messages. Sometimes several messages will be displayed for a single
error to help you locate a problem quickly. To prevent overrun, the
error log purges the oldest messages to make room for the new
ones.

To display the error log. . .

ENTER: display error_log <RETURN>

Terminal Interface
Error Messages

Terminal Interface error messages may be displayed. If you don’t
find the error message in this appendix, try locating it in the
Terminal Interface Reference or Emulator Terminal Interface User’s
Guide. These messages have designated numbers under 10000.

Organization of the
Messages

The Softkey Interface Error Messages are listed in alphabetical
order in groups according to the type of task you are performing.

Groups of Messages These are the groups of error messages listed in alphabetical order:

Analyzer Usage

Configuration File Building

Display Workarea

Error Messages B-1

Emulator Grammar Usage

Emulator Initialization

emul700dmn Communications

Ending the Emulation Session

Expression Usage

Fatal to the Emulation Session

Initialize/Load/Modify Emulation Configuration

Inverse Assembler Initialization

Load/Store Absolute File

Memory Display

Miscellaneous

Miscellaneous Numbered

Performance Measurement

Processor Control

Symbol Usage

Trace Display/Load

B-2 Error Messages

1Analyzer Usage These messages can occur while using the emulation analyzer.

Messages Emulation analyzer defaulted to delete label

Slave clock requires at least one edge

1Configuration File
Building

These messages can occur while the host system is building a
configuration file.

Messages Configuration process caught SIGQUIT

Could not create < CONFIGURATION BINARY FILENAME>

Could not exec configuration process

Could not fork configuration process

Error in configuration process

Error starting configuration process

Insufficient emulation memory, memory map may be incomplete

Invalid answer in < CONFIGURATION FILENAME> ignored

Module file missing or invalid, end and run msinit

Question file missing or invalid

1Display Workarea This message can occur when a window cannot be opened.

Error Messages B-3

Message Can’t open a display workarea

1Emulator
Grammar Usage

These messages can occur while specifying commands.

Messages Illegal status combination

Illegal symbol name

Inverse assembly not available

No address label defined

Number of lines not in range: 1 < = valid lines < = 50

Number of spaces not in range: 2 < = valid spaces < = 15

Performance tool must be initialized

Performance tool not initialized

Warning: at least one integer truncated to 32 bits

Width not in range: 1 < = valid width < = 80

1Emulator
Initialization

These messages can occur during emulator initialization.

Messages Cannot create module file:

Cannot start. Ending previous session, try again

Cannot start. Pod initialization failed

B-4 Error Messages

Connecting to < LOGICAL NAME>

Continue load failed

Continuing previous session, continue file loaded

Continuing previous session, user interface defaulted

Could not create default configuration

Could not create new default configuration

Could not initialize with default config

Could not initialize with new default config

Could not load default configuration

Could not load new default configuration

Emul700dmn continuation failed

Error: display size is < LINES> lines by < COLUMNS> columns.
It must be at least 24 by 80.

Initialization failed

Initialization load failed

Initializing emulator with default configuration

Initializing user interface with default config file

Joining session already in progress, continue file loaded

Joining session already in progress, user interface defaulted

Measurement system not found

Memory block list unreadable

No more processes may be attached to this session

Starting new session, continue file loaded

Starting new session, user interface defaulted

unknown hardware id: < HARDWARE ID>

Error Messages B-5

1emul700dmn
Communications

These messages can occur when the host system cannot
communicate properly with the HP 64700 emulation daemon.

Messages Emul700dmn failed to start

Emul700dmn message too large

Emul700dmn message too small

Emul700dmn queue and/or semaphores missing

Emul700dmn queue failure

Emul700dmn queue full

Timeout in emul700dmn communication

Unexpected message from emul700dmn

Note The messages listed above are all fatal to the emulation session and
require you to press end_release_system. You must exit this
emulation session completely, then start a new session.

Emul700dmn executable not found

Emul700dmn sem op failed, perhaps kernel limits too low

Emul700dmn version incompatible with this product

HP 64700 I/O error; communications timeout

Note The messages listed above are encountered when starting up the
emulation session.

B-6 Error Messages

1Ending the
Emulation Session

These messages can occur while ending the emulation session.

Messages Ending released

Fatal error from function < ADDRESS OF FUNCTION>

< LOGICAL NAME> : End, continuing

< LOGICAL NAME> : End, released

Memory allocation failed, ending released

Session aborted

Session cannot be continued, ending released

Status unknown, run "emul700 -l < LOGICAL NAME> "

1Expression Usage These messages can occur while defining expressions.

Messages Don’t care number unexpected

Unknown expression type

1Fatal to the
Emulation Session

The following messages appear due to fatal errors in the emulation
session. If you cannot recover from any one of these error
messages, call your HP Response Center or HP Representative to
answer any questions.

Error Messages B-7

Recovery Action Recovery action for these error messages is the same: you must
end the current emulation session by pressing the
end_release_system softkey to exit the emulation session
completely. Then you must start a new session.

Messages Cannot start. Ending previous session, try again

Cannot start. Pod initialization failed

Emul700dmn continuation failed

Emul700dmn error in file operation

Emul700dmn executable not found

Emul700dmn failed to start

Emul700dmn message too large

Emul700dmn message too small

Emul700dmn parameter unknown

Emul700dmn queue and/or semaphores missing

Emul700dmn queue failure

Emul700dmn queue full

Emul700dmn sem op failed, perhaps kernel limits too low

Emul700dmn version incompatible with this product

Measurement system not found

Memory allocation fault

No error

No more processes may be attached to this session

Session aborted

Timeout in emul700dmn communication

Unexpected message from emul700dmn

B-8 Error Messages

64700 command failed

64700 error

1Initialize/Load/
Modify Emulation
Configuration

These messages can occur while the host system is initializing,
loading, or modifying the emulation configuration.

Messages Cannot build < CONFIGURATION FILENAME>

Cannot modify < CURRENT CONFIGURATION FILENAME>

< CONFIGURATION FILENAME> does not exist

Configuration not valid, restoring previous configuration

Configuration update failed, previous one restored

1Inverse
Assembler
Initialization

These messages can occur while initializing the inverse assembler.

Messages Inverse assembly file < INVERSE ASSEMBLER FILENAME>
could not be loaded

Inverse assembly file < INVERSE ASSEMBLER FILENAME>
not found, < filename>

Warning: No inverse assembly file specified

Error Messages B-9

1Load/Store
Absolute File

These messages can occur while loading or storing absolute files.

Messages File could not be opened

File is not executable or absolute - load aborted

File name too long, truncated to: < BASENAME OF
ABSOLUTE FILE NAME>

Load aborted

Load completed with errors

Position must be -500 through 500

Read memory failed at < PHYSICAL ADDRESS> - store aborted

Store aborted

1Memory Display These messages can occur when controlling memory.

Messages Address range too small for request - request truncated

Memory range overflow

opcode extends beyond specified address range

Range crosses segment boundary

Starting address greater than ending address

B-10 Error Messages

1Miscellaneous This message can occur if the host system cannot determine the
current time.

Message Wait time failure, could not determine system time

1Miscellaneous
Numbered

These numbered messages can occur because of various problems
with the emulator/analyzer.

Messages 10315 Logical emulator name unknown; not found in
 64700tab file

10316 < FILENAME> file error; open failed

 < FILENAME> file error; permission denied

 < FILENAME> file error; read failed

 < FILENAME> file error; incompatible file format

 < FILENAME> file error; invalid %s on line %s

 < FILENAME> file error; duplicate logical name
 \(%s\) on line %s

 < FILENAME> file error; expected type %s on line
 %s

 < FILENAME> = "64700tab" or "lockinfo"

10326 Emulator locked by another user

10327 Cannot lock emulator; failure in obtaining the
 accessid

 Cannot lock emulator; failure in < ERRNO MSG>

10328 Cannot unlock emulator; emulator not locked

Error Messages B-11

 Cannot unlock emulator; lock file missing

 Cannot unlock emulator; semaphore missing

 Cannot unlock emulator; emulator in use by user:
 < USER NAME>

10329 Emulator locked by user: < USER NAME>

10330 Emulator locked by another user interface

10331 HP64700 I/O channel in use by emulator:
 < LOGICAL NAME>

10332 Cannot default emulator; already in use

10340 HP64700 I/O channel semaphore failure:
 < SEMOP ERROR>

 Cannot open HP64700 I/O channel; channel already
 open

 Cannot open HP64700 I/O channel; channel does
 not exist

 Cannot open HP64700 I/O channel; RS232 RTS/CTS
 unsupported

 Cannot open HP64700 I/O channel; Cannot stat
 HP64700 I/O channel; < DEVICE NAME>

 Cannot close HP64700 I/O channel;
 < ERRNO MSG>

 HP64700 I/O error; communications timed out

 HP64700 I/O error; channel not open

 HP64700 I/O error; power down detected

 HP64700 I/O error; invalid channel name

 HP64700 I/O error; channel locking aborted

B-12 Error Messages

Note The messages listed above are all fatal to the emulation session and
require you to press end_release_system. You must exit this
emulation session completely, then start a new session.

10350 Cannot interpret emulator output

10351 Exceeded maximum 64700 command line length

10352 Incompatible with 64700 firmware version

10353 Unexpected emulator %s, expected %s

10360 Analyzer limitation; all range resources in use

 Analyzer limitation; all pattern resources in use

 Analyzer limitation; all expression resources in use

1Performance
Measurement

These messages can occur while using the Software Performance
Measurement Tool (SPMT).

Messages File could not be opened

File perf.out does not exists

File perf.out not generated by measurement software

No address(es) entered

Perfinit - Absolute file (database) must be loaded line < LINE
NUMBER>

Perfinit - error in input file line < LINE NUMBER> invalid
symbol

Perfinit - error in input file line < NUMBER>

Error Messages B-13

Perfinit < ---EXPR--- ERROR> line < LINE NUMBER>

Perfinit - File could not be opened

Perfinit - No events in file

perf.out file could not be opened - created

Processing trace complete

Symbols not accessible, symbol database not loaded

1Processor Control These messages can occur while you are controlling the emulation
processor.

Messages No symbols loaded

< PROCESSOR NAME>--Stepping aborted; number steps
completed: < STEPS TAKEN>

< PROCESSOR NAME>--Stepping complete

Step count must be 1 through 999

Stepping aborted; number steps completed: < STEPS TAKEN>

1Symbol Usage These messages can occur while specifying symbols.

Messages Rebuilding symbol data base

Symbols not accessible, Symbol database not loaded

Unknown type of scope

Warning: Can’t build symbol data base

B-14 Error Messages

1Trace
Display/Load

These messages can occur while displaying a trace or loading
information from a trace file.

Messages File could not be opened

Inverse assembly not available

No valid trace data

Not a valid trace file - load aborted

Not compatible trace file - load aborted

Software break: < PHYSICAL ADDRESS>

Symbols not accessible; Symbol database not loaded

Trace file not found

Unload trace data failed

Error Messages B-15

1Notes

B-16 Error Messages

Index

64700tab file, 38-1
manual page, 7-1

A absolute file, load 1
access the emulator via emul700 command, 4-11
activities occurring in windows, 5-3 - 5-4
address conventions, 2-1
analysis bus signals, 1-2
analyzer, 1-4

B background monitor, 1-10
baud rate, 64700tab 3
block diagram of emulation system, 1-5
BNC

connector, 4-1
trigger signal, 4-4

break
conditions, 2-5

memory break, 2-5 - 2-6

C change directory, 3-2
char (character) size, 64700tab 4
clock inputs, external, 1-5
CMB

EXECUTE line, 4-3
EXECUTE signal, cmb_execute 1
READY line, 4-3
signals, 4-3
TRIGGER line, 4-3

CMB signals, 4-3
cmb_execute command, cmb_execute 1
command

completion, 3-1
files, 3-3, 6-1, 6-3, log_commands 1
line erase, 3-2
line recall, 3-2
summary, 3-5

Index-1

word selection, 3-1
command files

how to create, 6-2
how to use, 6-3

command summary, 3-5
commands, 3-1

restricted during real-time, 2-5
configuration questions, 2-3
connecting HP 64700s on the CMB, 4-2
Coordinated Measurement Bus (CMB), 1-8, 4-1
coordinated measurements, 4-1, 4-4 - 4-6, 4-8 - 4-9, 4-11

definition, 4-1
copy

command, copy 1
data, copy 2
io_port, copy 7
local_symbols_in, copy 9
memory, copy 11
registers, copy 15
trace, copy 17

COUNT option to trace command, COUNT 1
creating

command files, 6-2

D device file, 1-14
diskless cluster, 64700tab 1
display

command, display 1
data, display 5
global_symbols, display 11
io_port, display 13
local_symbols_in, display 17
memory, display 19
registers, display 27
simulated_io, display 29
software_breakpoints, display 31
trace, display 33

E emul700 command, 4-11, 7-1, emul700 1
emulation

analyzer, 1-4
configuration, 2-1, modify 3

2-Index

controller, 1-2
memory bus, 1-4
memory subsystem, 1-3
monitor, 1-9 - 1-10
process, 1-12
subsystem, 1-2
system, 1-1

prepare the software, 1-12
emulator

description, 1-10
probe, 1-4
timing signals, 1-2

emulator configuration, 2-3 - 2-4, 2-6, 2-12 - 2-15
default memory, 2-11
deleting blocks, 2-12
enable polling for simulated I/O, 2-13
enable simio status messages, 2-14
ending the mapping session, 2-12
entering mapper blocks, 2-9
mapping memory, 2-7
memory map definition, 2-7
memory map organization, 2-8

end command, end 1
error messages, B-1

during PV of HP 98659A, A-7
example

64700tab file, 64700tab 4
configuration file, 2-15

EXECUTE
CMB signal, 4-3

expressions (--EXPR--), EXPR 1
external

analysis, 1-2
analyzer, 1-5, 2-14
channels, 1-7
clock inputs, 1-5
trace signals, 1-5

F features, 1-6
analysis, 1-7
breakpoint generation, 1-7
clock source selection, 1-7

Index-3

I/O port display and modify, 1-6
local symbols display, 1-6
memory characterization, 1-7
memory display and modify, 1-6
memory mapping, 1-7
of the HP 64700-Series Emulators, 1-6
program loading and execution, 1-6
program stepping, 1-7
register display and modify, 1-7
run control, 1-6
simulated I/O, 1-7
simulated I/O and HP 9000 files, 1-7
simulated I/O and HP 9000 I/O devices, 1-7
simulated I/O and HP-UX commands, 1-7

flow control, 64700tab 3
function codes, 3-6

G global symbols, display 11
guarded memory access, 2-2

H hardware
debugging, 1-6
dependencies, 64700tab 4
mapper, 1-4

help command, 3-3, help 1
high-speed RS-422 interface, A-1
how to

create command files, 6-2
use command files, 6-3

HP 64000-UX operating system, 1-2
HP 64306A IMB/CMB Interface Board, 4-2
HP 64700-Series emulation hardware, 1-2
HP-UX filters and pipes, 3-3

I I/O ports, copy 7, display 13
illegal conditions, 2-2
IMB/CMB Interface Board, 4-2, 4-5
installing software and hardware, 1-14
interactive

measurement specification, 4-5
operation, 1-8

interface cards, 64700tab 4
InterModule Bus (IMB), 4-5

4-Index

K kernel.s procedure, A-2

L load command, load 1
local symbols, copy 9, display 17
log_commands command, 6-2, log_commands 1
logic analyzer, 1-4
logical

address, 2-1
name, 64700tab 1

M manual pages, 7-1
manuals, 1-1, 1-12, 1-14, 2-3, 2-14, 3-6, 4-2, 4-5, 4-11, 5-2, A-11
mapper, 1-4
memory, copy 11, display 19, modify 9

bus signals, 1-2
mapper block syntax, 2-9

Memory contents listed as asterisk (*), copy 11
microprocessor design, test, and debug, 1-6
modify

command, modify 1
configuration, modify 3
io_port, modify 5
keyboard_to_simio, modify 7
memory, modify 9
register, modify 15
software_breakpoints, modify 17
the emulator configuration, 2-3

module, 1-1
monitor, 2-5

background, 1-10
emulation, 1-9

msconfig command, 4-9
multi-processor designs, 1-8
multiple commands, 3-2

N nesting command files, 6-2
nonreal-time mode, 1-8, 2-4
—NORMAL— key, 3-4, EXPR 2

O on-line manual page for emul700 command, 4-11

P parity, 64700tab 3
perf.out file, performance_measurement 1

Index-5

performance measurements
end, performance_measurement 1
initialize, performance_measurement 3
run, performance_measurement 7

performance verification (for HP 98659A), A-1
physical

address, 2-1
device, 64700tab 2

pod_command command, help 2, pod_command 1
probe, 1-4, 1-10 - 1-11
processor type, 64700tab 2
program modules, 1-3 - 1-4
PV (performance verification), A-1

Q QUALIFIER parameter, QUALIFIER 1

R RANGE parameter, RANGE 1
READY, CMB signal, 4-3
real-time

mode, 1-8
program execution, 2-2

registers, copy 15, display 27, modify 15
reset command, reset 1
restrict operation to real-time, 2-5
RS-422 interface, A-1
run command, run 1

S SEQUENCING parameter, SEQUENCING 1
set command, set 1
signals on the CMB, 4-3
simulated I/O, display 29, modify 7
Softkey Interface, 1-1, 1-12, 3-1
softkeys, 3-1
software

breakpoints, display 31, modify 17
debugging, 1-6

specify command, specify 1
start

another window, 5-3
emulator in windows, 5-3
window environment, 5-2

state analyzer, independent, 1-5
STATE parameter, STATE 1

6-Index

step command, step 1
stop bits, 64700tab 3
stop_trace command, stop_trace 1
stopping emulation, 1-6
store command, store 1
summary of commands, 3-5
symbols (--SYMB--), SYMB 1
synchronous runs, 4-1
syntax, 3-6

conventions, 3-4

T target microprocessor, 1-11
target system, 1-2, 1-11, 2-1

memory, 1-4
test hood, A-2
timing

analyzer (independent), 1-5
diagrams, 1-11

trace, copy 17, display 33
command, trace 1
measurements, 1-4

transparency, 1-10 - 1-11
trigger

parameter, TRIGGER 1
specifications, 1-4

trigger signal
on BNC connector, 4-1
trig1, 2-14
trig2, 2-14

trigger signals (trig1 and trig2), 2-14
TRIGGER, CMB signal, 4-3

U user memory, 2-4

W wait
command, wait 1
states, 2-2

window environment, 5-1 - 5-2
windows (maximum number), 5-2
WINDOW parameter, WINDOW 1

X xpar (transparent) mode, 64700tab 2

Index-7

1Notes

8-Index

	Using this Manual
	Contents
	Introducing the Softkey Interface
	Emulation Configuration
	Commands
	Coordinated Measurements
	Windowing Capabilities
	Using Command Files
	Manual Pages
	Performance Verification for the HP 98659A
	Error Messages
	Index

