
1 HP 64000-UX
CASE Solutions for Microprocessors

HP 64700-Series
Analyzer

Softkey Interface User’s Guide

HP Part No. 6 4700-97005
Printed in U.S.A.
September 1992

Edition 4





1Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1989, 1990, 1992 Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

AdvanceLink, Vectra and HP are trademarks of Hewlett-Packard
Company.

IBM and PC AT are registered trademarks of International
Business Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

SPARCsystem is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories Inc.
in the U.S.A. and other countries.

TORX is a registered trademark of Camcar Division of Textron,
Inc.

Hewlett-Packard
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1)(ii) of the Rights in Technical Data and



Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304 U.S.A.  Rights for non-DOD U.S. Government
Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

1Printing History New editions are complete revisions of the manual.  The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued.  Many product updates and fixes do not require manual
changes and, conversely, manual corrections may be done without
accompanying product changes.  Therefore, do not expect a one to
one correspondence between product updates and manual
revisions.

Edition 1
Edition 2
Edition 3
Edition 4

64740-90910 E1188, November 1988
64740-97002, August 1989
64700-97001, February 1990
64700-97005, September 1992



Using this Manual

This manual will show you how to use the HP 64700-Series
analyzer with the host computer Softkey Interface.

This manual will:

Briefly introduce the analyzer and its features.

Show you how to use the analyzer in its simplest, power-up
condition.  From there, it will progressively show you how
and why you would use additional trace commands.

Show you how to use the trace display options.

Show you how to connect the external analyzer probe to
target system signals and how to configure and use the
external analyzer.

Show you how to set up the analyzer trigger to break the
emulator into the monitor program.

Show you how to drive external Coordinated
Measurement Bus (CMB) or BNC trigger signals with the
analyzer trigger.

Show you how to use the Timing Analyzer Softkey
Interface.

This manual will not:

Show you how to use every Softkey Interface command
and option; the Softkey Interface is described in the
Softkey Interface Reference.

Show you how to use coordinate measurements between
multiple emulators; specifics on background,
specifications and use are described in the "Coordinated



Measurements" chapter of the HP64700-Series Emulators
Softkey Interface Reference.

1Organization

Chapter 1 Introducing the Analyzer.  This chapter lists the basic features of
the analyzer.  The following chapters show you how to use these
features.

Chapter 2 Getting Started.  This chapter shows you how to use the analyzer
from its simplest power-up condition to specifying trigger
conditions, storage qualifiers, prestore qualifiers, and count
qualifiers.

Chapter 3 Displaying Traces.  This chapter describes options available when
displaying the trace.

Chapter 4 Making Software Performance Measurements.  This chapter
describes software performance measurements, describes the steps
in making measurements with the Software Performance
Measurement Tool (SPMT), and shows you example
measurements made on the demo program.

Chapter 5 Using the External Analyzer.  This chapter shows you how to
connect the external analyzer probe to target system signals and
how to configure and use the external analyzer.

Chapter 6 Timing: Introduction . This chapter introduces the external timing
analyzer and describes its features.

Chapter 7 Timing: Getting Started. This chapter shows you how to start up
the timing analyzer Softkey Interface and how to do a simple
timing measurement.



Chapter 8 Timing: Using the Analyzer. This chapter reviews the functions of
the timing analyzer, gives specific information on the use of each of
the functions, and gives examples.

Chapter 9 Timing: Commands. This chapter furnishes a reference for each of
the timing analyzer Softkey Interface commands, describes the
command using syntax diagrams, provides a detailed description
for each of the parameters, and follows up with examples for the
use of the command.

Appendix A External Analyzer Specifications.

Appendix B Timing Output and Display.

Appendix C Timing Messages.

Appendix D Accurate Timing Measurements.



1Conventions Example commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command
syntax.

bold italic Commands, options, and parts of command
syntax which may be entered by pressing
softkeys.

normal User specified parts of a command.

$ Represents the HP-UX prompt.  Commands
which follow the "$" are entered at the
HP-UX prompt.

<RETURN> The new line key.



Contents

1 Introducing the Analyzer

Analyzer Features  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-1
Simple Measurements  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-1
Trace Storage, Prestore, and Count  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-1
Sequencer and Windowing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-2
Coordinated Measurements  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-2
Performance Measurements  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-2
External Analysis .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-2
Timing Analyzer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-2

2 Getting Started

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-1
Prerequisites  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-2
The Sample Program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-2

Description of the Sample Program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-2
Before You Can Use the Analyzer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-6

Load the Program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-6
Run the Program .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-6

The Default Trace Command  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-6
Displaying the Trace  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-6

Expressions in Trace Commands  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-8
Values  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-9
Symbols  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-9
Operators  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-9

Qualifying the Trigger Condition  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-10
Trigger Position  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-10
Trace List Description  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-11

Modifying Previous Trace Commands  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-14
Command Recall  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-14
Trace Modify Command .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-14

Specifying Storage Qualifiers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-15
Prestoring States .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-16
Changing the Count Qualifier  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-18

Turning Counting Off  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-19

Contents-1



Triggering on the Nth Occurrence of a State .  .  .  .  .  .  .  .  .  .  . 2-19
Triggering on Multiple States  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-20
Using Address, Data, and Status Qualifiers  .  .  .  .  .  .  .  .  .  .  . 2-21
Using the Sequencer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-22

Specifying a Restart Term .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-24
Tracing "Windows" of Activity  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-25
Storing and Loading Trace Commands  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-27
Trace Commands in the Event Log Display  .  .  .  .  .  .  .  .  .  .  . 2-28
Storing and Loading Traces  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-28
Stopping the Trace  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-29
Tracing on Halt  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-30
Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-30

3 Displaying Traces

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-1
Display Positioning  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-2

Up/Down  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-2
Left/Right  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-3

Changing the Trace Depth  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-3
Displaying About a Line Number  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-4
Disassembling the Trace Information  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-5
Displaying in Absolute Format  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-6
Displaying in Mnemonic Format  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-7
Including High-Level Source Lines  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-8

Additional Options with Source On/Only .  .  .  .  .  .  .  .  .  .  .  . 3-8
Inverse Video.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-8
Tabs Are.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-9
Number of Source Lines.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-9

Including Symbol Information  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-10
Changing Column Widths  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-11
Displaying Count Absolute/Relative  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-12
Offsetting Address Information  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-13
Returning to the Default Trace Display  .  .  .  .  .  .  .  .  .  .  .  .  . 3-14
Displaying External Analyzer Information  .  .  .  .  .  .  .  .  .  .  .  . 3-15
Trace Status Display  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-16

4 Making Software Performance Measurements

Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-1
Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-1

Activity Measurements  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-2
Memory Activity  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-2

2-Contents



Program Activity  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-2
Duration Measurements  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-2

Module Duration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-4
Module Usage  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-5

Using the Software Performance Measurement Tool  .  .  .  .  .  .  . 4-5
Setting Up the Trace Command  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-5

Activity Measurements .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-5
Using Trace Commands Other than the Default.  .  .  .  . 4-6

Duration Measurements  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-6
Initializing the Performance Measurement  .  .  .  .  .  .  .  .  .  .  . 4-6

Default Initialization  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-7
Initialization with User Defined Ranges  .  .  .  .  .  .  .  .  .  .  . 4-7

Address Range File Format.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-7
Time Range File Format. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-8

Selecting Duration Measurements  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-8
Initialization with Global Symbols  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-9
Initialization with Local Symbols  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-9
Restoring the Current Measurement  .  .  .  .  .  .  .  .  .  .  .  .  . 4-9

Running the Performance Measurement  .  .  .  .  .  .  .  .  .  .  . 4-10
Ending the Performance Measurement  .  .  .  .  .  .  .  .  .  .  .  . 4-10
Using the "perf32" Report Generator  .  .  .  .  .  .  .  .  .  .  .  .  . 4-11

Options to "perf32"  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-11
Interpreting Reports of Activity Measurements  .  .  .  .  . 4-12

Memory Activity.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-12
Program Activity.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-12
Relative.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-13
Absolute.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-13
Mean.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-13
Standard Deviation.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-13
Symbols Within Range.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-13
Additional Symbols for Address.  .  .  .  .  .  .  .  .  .  .  .  . 4-13
Relative and Absolute Counts.  .  .  .  .  .  .  .  .  .  .  .  .  . 4-14
Error Tolerance and Confidence Level.  .  .  .  .  .  .  .  . 4-14

Interpreting Reports of Duration Measurements .  .  .  .  . 4-15
Number of Intervals.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-15
Maximum Time.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-15
Minimum Time.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-15
Average Time.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-15
 Standard Deviation.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-16
Error Tolerance and Confidence Level.  .  .  .  .  .  .  .  . 4-16

Examples  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-17

Contents-3



The SPMT Demo Program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-17
Example of Compiling and Executing the Demo Program 4-19

Copying the Demo Program. .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-19
Compiling the Demo Program.  .  .  .  .  .  .  .  .  .  .  .  .  . 4-19
Copying the Default Emulator Configuration File.  .  . 4-19
Entering the Emulation System. .  .  .  .  .  .  .  .  .  .  .  .  . 4-20
Configuring the Emulator.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-20
Loading the Demo Program. .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-20
Running the Demo Program.  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-20

Activity Measurement Example  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-21
Duration Measurement Examples  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-30

Prefetch and Recursion Considerations  .  .  .  .  .  .  .  .  .  . 4-30
Example Duration Measurement  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-32

5 Using the External Analyzer

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-1
Before You Can Use the External Analyzer  .  .  .  .  .  .  .  .  .  .  .  . 5-1

Assembling the Analyzer Probe  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-2
Connecting the Probe to the Emulator  .  .  .  .  .  .  .  .  .  .  .  .  . 5-3
Connecting Probe Wires to the Target System  .  .  .  .  .  .  .  .  . 5-6

Configuring the External Analyzer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-7
Should Emulation Control the External Bits?  .  .  .  .  .  .  .  .  . 5-8
Threshold Voltage?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-8
External Analyzer Mode?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-8
Slave Clock Mode for External Bits? (State Mode Only)  .  .  . 5-9

Edges of J (K,L,M) clock used for slave clock?  .  .  .  .  .  . 5-13
Defining External Labels  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-13

Configuring Interactive Measurements  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-14
Using the Analyzer Trigger to Drive the External Analyzer 5-15

Saving the Configuration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-16

6 Timing: Introduction

Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-1
Features of the Timing Analyzer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-1
Measurement Modes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-2

Standard Mode  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-2
Glitch Capture Mode .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-3

Trace Memory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-4
The Trace Specification  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-4
The Format Specification  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-4
The Post-Process Specification  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-4

4-Contents



The Timing Diagram .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-5
The Trace List  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-5

7 Timing: Getting Started

Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7-1
Prerequisites for Using the Timing Analyzer Softkey Interface  . 7-1

Installation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7-2
Entering the Timing Analyzer Softkey Interface .  .  .  .  .  .  .  .  .  . 7-2
Making a Simple Timing Measurement .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7-3
Entering Numerical Values  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7-5

8 Timing: Using the Analyzer

Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-1
Moving Around the Analyzer Interface .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-2
Referencing Analyzer Signals  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-3

Specifying Threshold Voltages  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-3
Testing for Signal Activity .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-4
Managing Labels  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-4

Defining Labels  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-4
Modifying Label Definitions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-5
Deleting Labels  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-5
Renaming Labels  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-5

Selecting Measurement Options .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-6
Selecting the Timing Analyzer Mode  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-6

Standard Mode  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-6
Glitch Capture Mode .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-6

Selecting the Sample Period or Rate  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-7
Specifying the Trigger Condition  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-7

Trigger on Anything  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-7
Trigger on Pattern  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-7
Trigger on Pattern Duration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-8

Greater Than Duration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-8
Less Than Duration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-9

Trigger on Any Glitch  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-9
Qualifying Patterns  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-9
Trigger Delay  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-10
Trigger Positioning  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-10
Modifying the Trigger Condition .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-10

Starting and Stopping a Trace  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-10
Execute  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-11
Execute Repetitively .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-11

Contents-5



Halt  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-11
Using the Timing Diagram  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-12

Timing Diagram Organization  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-12
Signal Labels.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-13
Waveform.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-13
Mode.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-13
Sample Period. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-13
Mark Locations.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-13
Statistical Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-13
Reference Points.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-13
Memory Reference.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-14

Presenting Signals  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-14
Moving the Cursor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-15
Showing Levels at the Cursor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-16
Magnifying the Diagram .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-16
Changing the Waveform Size  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-16
Scrolling the Diagram  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-17

Using the Trace List .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-17
Trace List Organization  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-17

Sample Number. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-18
Reference Points.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-18
Mode.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-19
Sample Period. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-19
Statistical Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-19
Cursor.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-19
Trace Data.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-19

Displaying Trace Data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-19
Moving the Cursor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-20
Scrolling the Trace List  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-21

Analyzing Trace Memory .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-21
Locating Events in Trace Memory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-21
Marking Events .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-23
Processing for Data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-25
Determining Intervals  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-25
Statistics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-26

Choosing Statistics Types  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-26
Interval Statistics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-26
Occurrence Statistics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-26

Excluding Samples  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-26
Logging Statistics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-27

Comparing Current and Stored Measurements  .  .  .  .  .  .  .  .  . 8-28

6-Contents



Storing Measurements .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-28
Selecting a Compare File  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-28
Presenting Stored Signals  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-29

Copy Analyzer Data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-30
Copying Specifications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-30
Copying Trace Data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-31
Copying Measurement Data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-32

Ending a Session .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-32
Releasing the System  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-32
Ending to Continue Later  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-33
Ending and Blocking other Access  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-33
Selecting the Measurement System or Another Module  .  . 8-33

9 Timing : Commands

Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-1
Softkey Interface Features  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-1

Softkeys  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-1
Command Completion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-1
Command Word Selection  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-1
Command Line Recall .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-2
Command Line Erase  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-2
Multiple Commands on One Line  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-2
Change Directory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-2
Filters and Pipes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-2
Command Files .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-2
Help Command  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-3

Syntax Conventions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-3
Oval-shaped Symbols  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-3
Rectangular-shaped Symbols  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-3
Circles  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-3

Summary of Commands  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-4
Command Syntax  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-6
activity_test .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-7
compare  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-8
configuration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-12
copy  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-14
CURSOR  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-19
default  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-20
define  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-21
delete  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-24
diagram  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-25

Contents-7



display .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-26
end  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-28
execute  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-31
find  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-33
format  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-38
halt  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-39
halt_repetitive_execution .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-40
help  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-44
indicate  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-46
list  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-48
magnify  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-49
mark .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-51
mode_is  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-58
modify .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-59
pod  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-60
pod_command  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-61
post  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-63
present  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-64
process_for_data .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-68
QUALIFIER  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-72
rename  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-75
< ROLL>  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-76
sample  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-78
statistics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-80
threshold  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-83
trace  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-85
trigger  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-86
wait  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-90
waveform_size  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-92

A External Analyzer Specifications

General Specifications .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-1
State Analyzer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-1
Timing Analyzer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-2

B Timing Output and Diagrams

Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-1
Timing Diagram Outputs .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-1
Graphics Timing Diagrams .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-2

TERM Shell Variable  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-2
WMSCRN Shell Variable .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-3

8-Contents



WMBASEFONT Shell Variable  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-3
Required Filesets .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-4

Using the Timing Analyzer Under the X Window System  .  .  . B-4
DISPLAY Shell Variable  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-4
WINDOWID Shell Variable  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-5
LINES and COLUMNS Shell Variables  .  .  .  .  .  .  .  .  .  .  . B-5
X Defaults   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-5
Remote Connections  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-7

ASCII Timing Diagrams  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-8
Default ASCII Diagram  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-8
Customizing the ASCII Diagram .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-9

Waveform Sizes and ASCII Characters  .  .  .  .  .  .  .  .  .  . B-9
Row Locations for Mark Indicators  .  .  .  .  .  .  .  .  .  .  .  . B-10
Row Locations for Cursor Indicators .  .  .  .  .  .  .  .  .  .  .  . B-10
Characters to Define the Cursor  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-11
Assigning the TIMING_ASCII Shell Variable  .  .  .  .  .  . B-11

Printer Requirements .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-12
Using Measurement Data in Hexadecimal  .  .  .  .  .  .  .  .  .  .  .  . B-13

Understanding the Measurement Data Output  .  .  .  .  .  .  . B-13
Standard Mode Data Format  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-13
Glitch Capture Mode Data Format  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-14
Comparing Measurement Data to a Trace List  .  .  .  .  .  .  .  . B-15

C Timing Messages

Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-1
Status Messages  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-1
Informational Messages  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-3

"Waiting for trigger" .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-3
"External trace running"  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-3
"External trace complete" .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-4
"External trace halted"  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-4

Error Messages  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-4

D Accurate Timing Measurements

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . D-1
Time Interval Resolution  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . D-1

Factors .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . D-2
Sample Period .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . D-2
Interchannel Skew  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . D-2
Memory Depth  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . D-2

Calculation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . D-3

Contents-9



Improving the Accuracy of Time Interval Measurements  .  .  . D-3
Improving the Accuracy of Mean Value Measurements  .  .  .  . D-4
Accuracy of Standard Deviation Measurements  .  .  .  .  .  .  .  .  . D-5

Example 1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . D-5
Example 2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . D-5

Statistical Errors Caused by Sampling Process .  .  .  .  .  .  .  .  .  . D-6

Illustrations

Figure 2-1.  Pseudo-Code Algorithm of Sample Program  .  .  .  . 2-3
Figure 2-2.  Sample Program Listing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-4
Figure 2-3.  Sample Program Listing (Cont’d)  .  .  .  .  .  .  .  .  .  .  . 2-5
Figure 3-1.  Program Used for Example Displays  .  .  .  .  .  .  .  .  . 3-2
Figure 4-1.  Memory Activity and Program Activity .  .  .  .  .  .  .  . 4-3
Figure 4-2.  Demo Program Function Calls  .  .  .  .  .  .  .  .  .  .  . 4-18
Figure 4-3.  Example Activity Measurement  .  .  .  .  .  .  .  .  .  .  . 4-23
Figure 4-4.  Prefetch Correction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-30
Figure 4-5.  Example Duration Measurement  .  .  .  .  .  .  .  .  .  . 4-34
Figure 4-5.  Example Duration Measurement (Cont’d) .  .  .  .  . 4-35
Figure 5-1.  Assembling the Analyzer Probe  .  .  .  .  .  .  .  .  .  .  .  . 5-2
Figure 5-2.  Attaching Grabbers to Probe Wires .  .  .  .  .  .  .  .  .  . 5-3
Figure 5-3.  Removing Cover to Emulator Connector  .  .  .  .  .  . 5-4
Figure 5-4.  Connecting the Probe to the Emulator  .  .  .  .  .  .  .  . 5-5
Figure 5-5.  Connecting the Probe to the Target System  .  .  .  .  . 5-6
Figure 5-6.  Mixed Clock Demultiplexing  .  .  .  .  .  .  .  .  .  .  .  . 5-10
Figure 5-7.  Slave Clocks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-11
Figure 5-8.  True Demultiplexing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-12
Figure 5-9. Interactive Measurement Configuration  .  .  .  .  .  . 5-15
Figure 6-1.  Standard Data Acquisition Mode  .  .  .  .  .  .  .  .  .  .  . 6-3
Figure 6-2.  Glitch Capture Data Acquisition Mode  .  .  .  .  .  .  . 6-4
Figure 8-1.  Timing Diagram Organization .  .  .  .  .  .  .  .  .  .  .  . 8-12
Figure 8-2.  Trace List Organization  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-18
Figure 8-3.  Comparing Stored and Current Traces  .  .  .  .  .  .  . 8-29

10-Contents



Tables

Table 9-1.  Summary of Commands  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-4
Table 9-2.  Command Assignments  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-5

Contents-11



1Notes

12-Contents



1

Introducing the Analyzer

This manual describes the HP 64700-Series analyzer.  Each HP
64700-Series emulator contains an emulation analyzer.  Your
emulator may optionally contain an external analyzer.  (If your
emulator contains an external analyzer, an "L" suffix appears on the
serial number tag, for example, "64742AL SN ...".)

The emulation analyzer captures emulator bus cycle information
synchronously with the processor’s clock signal.  A trace is a
collection of these captured states.  The trigger state specifies when
the trace measurement is taken.  The external analyzer captures
activity on signals external to the emulator, typically other target
system signals.

The analyzer commands are the same in every emulator;
consequently, this manual is shipped with every HP 64700-Series
emulator ordered with the Softkey Interface.

1Analyzer Features This chapter lists basic features of the HP 64700-Series analyzer.
The chapters which follow show you how to use these features.

Simple Measurements The default condition of the analyzer allows you to perform a
simple measurement by entering a simple "trace" command.  You
can add qualifiers to the trace command to specify when execution
should be traced and which bus cycle states should be stored.

Trace Storage,
Prestore, and Count

The analyzer can store up to 1024 states in trace memory.  These
states can be normal storage states or prestore states (states which
precede normal storage states).  A count qualifier may be
associated with normal storage states; you can specify that the

Introduction  1-1



analyzer count in either time or the occurrences of some state.
When counts are specified, only 512 states can be stored.

Sequencer and
Windowing

The analyzer’s sequencer allows you to trigger after a sequence of
states are captured.  Up to 7 sequence terms (the last of which is
the trigger term), each with an option occurrence count, are
available.  A sequence restart term is also available.

Windowing refers to the ability to capture activity between one
state and another.  Up to 4 sequence terms are available when
windowing is in effect.

Coordinated
Measurements

When multiple HP 64700-Series emulators are connected via the
Coordinated Measurement Bus (CMB), you can use the analyzer to
trigger the analyzers of other emulators.  You can also use the
analyzer to trigger instruments connected to the BNC port.
Conversely, analyzer measurements may be started by other
emulators and instruments.

Performance
Measurements

The Software Performance Measurement Tool (SPMT), which is
part of the Softkey Interface, allows you to make measurements on
the performance of your programs.  You can measure activity in
address ranges, or you can measure the average time it takes during
and between execution of a program module.

External Analysis Your HP 64700-Series emulator may optionally contain an
external analyzer.  The external analyzer provides 16 external trace
signals and two external clock inputs.  You can use the external
analyzer as an extension to the emulation analyzer, as an
independent state analyzer, or as an independent timing analyzer.

Timing Analyzer The timing analysis information is available through the Softkey
Interface timing analyzer software residing on a HP-UX host. The
software allows you to control the external timing analyzer, acquire
timing measurements, analyze the trace measurements for specific
occurrences, display the information in graphic or tabular form,
and save the trace information for subsequent comparisons.

1-2  Introduction



The list above is only a basic description of the HP 64700-Series
analyzer features.  The chapters which follow show you how to use
these features.

Introduction  1-3



1Notes

1-4  Introduction



2

Getting Started

1Introduction This chapter shows you how to use the emulation analyzer from
within the Softkey Interface.

This chapter describes:

The sample program on which example measurements are
made.

The default, power-up condition of the analyzer (including
how to begin the trace measurement and display the trace).

Expressions in trace command qualifiers.

This chapter shows you how to:

Specify a simple trigger (and change the trigger position).

Specify a storage qualifier.

Use trace prestore.

Change the count qualifier.

Trigger on the Nth occurrence of some state.

Trigger on multiple states.

Use the sequencer.

Stop a trace measurement.

Getting Started  2-1



1Prerequisites Before reading this chapter you should already know how the
emulator operates.  You should know how to use the Softkey
Interface, and how to control the emulator from within the Softkey
Interface.  Refer to the appropriate Emulator Softkey Interface
User’s Guide manual to learn about the emulator; then, return to
this manual.

1The Sample
Program

The sample program is used to illustrate analyzer examples.  The
sample program is written in assembly language so the
disassembled trace listings will be more meaningful.

The examples in this chapter have been generated using a 68000
(HP 64742) emulator.  The sample program is written in 68000
assembly language.  (A similar program written in 80186 assembly
language can be found in the HP 64700-Series Emulators Terminal
Interface Reference.)

It is not important that you know 68000 assembly language;
however, you should understand what the various sections of the
program do and associate these tasks with the labels used in the
program.

You are encouraged to rewrite the sample program in the assembly
language appropriate for your emulator.  Then, you can use your
analyzer to perform the examples shown in this chapter.  Of course,
the output of your commands will be different than those shown
here.

Description of the
Sample Program

A pseudo-code algorithm of the sample program is shown in figure
2-1.

2-2  Getting Started



The sample program is not intended to represent a real routine.
The program uses four different callers of the WRITE_NUMBER
subroutine to simulate situations in real programs where routines
are called from many different places.  An example later in this
chapter shows you how to use the analyzer prestore feature to
determine where a routine is called from.

An assembler listing of the sample program is shown in figure 2-2.
It is provided so that you can see the addresses associated with the
program labels.  The program area, which contains the instructions
to be executed by the microprocessor, is located at 400H when
linking the program.  The RESULTS area, to which the random
numbers are written, is located at 500H.  The area which contains a
variable used by the RAND subroutine and memory locations for
the stack is located at 600H.

                Initialize the stack pointer.
        AGAIN:  Save the two previous random numbers.
                Call the RAND random number generator subroutine.
                Test the two least significant bits of the previous random number.
                    If 00B then goto CALLER_0.
                    If 01B then goto CALLER_1.
                    If 10B then goto CALLER_2.
                    If 11B then goto CALLER_3.
     CALLER_0:  Call the WRITE_NUMBER subroutine.
                Goto AGAIN (repeat program).
     CALLER_1:  Call the WRITE_NUMBER subroutine.
                Goto AGAIN (repeat program).
     CALLER_2:  Call the WRITE_NUMBER subroutine.
                Goto AGAIN (repeat program).
     CALLER_3:  Call the WRITE_NUMBER subroutine.
                Goto AGAIN (repeat program).

 WRITE_NUMBER:  Write the random number to a 256 byte data area, using the second
                previous random number as an offset into that area.
                RETURN from subroutine.

         RAND:  Pseudo-random number generator which returns a random number
                from 0-0FFH.
                RETURN from subroutine.

Figure 2-1.  Pseudo-Code Algorithm of Sample Program

Getting Started  2-3



Cmdline - as68k -Lh anly.s  
Line Address 
1                                               XDEF   START,AGAIN 
2                                               XDEF   RESULTS,RAND_SEED 
3                                               SECT    PROG,,C 
4    00000000 2E7C 0000 01FC  R START           MOVE.L  #STACK,A7 
5                              ********************************************* 
6                               * The next two instructions move the second 
7                               * previous random number into A1 (offset to  
8                               * RESULTS area, and the previous random  
9                               * number into D1. 
10                             ********************************************* 
11   00000006 2241              AGAIN           MOVE.L  D1,A1 
12   00000008 2200                              MOVE.L  D0,D1 
13                             ********************************************* 
14                              * RAND returns random number in D0. 
15                             ********************************************* 
16   0000000A 6100 0044                         BSR     RAND 
17                             ********************************************* 
18                              * The following instructions determine which  
19                              * caller calls WRITE_NUMBER (depends on last 
20                              * two bits of the previous random number). 
21                             ********************************************* 
22   0000000E 0801 0001                         BTST    #1,D1 
23   00000012 6700 0006                         BEQ     ZERO_ONE 
24   00000016 6000 000E                         BRA     TWO_THREE 
25   0000001A 0801 0000         ZERO_ONE        BTST    #0,D1 
26   0000001E 6700 0012                         BEQ     CALLER_0 
27   00000022 6000 0014                         BRA     CALLER_1 
28   00000026 0801 0000         TWO_THREE       BTST    #0,D1 
29   0000002A 6700 0012                         BEQ     CALLER_2 
30   0000002E 6000 0014                         BRA     CALLER_3 
31                             ********************************************* 
32                              * The WRITE_NUMBER routine is called from 
33                              * four different places.  The program is 
34                              * repeated after the subroutine return. 
35                             ********************************************* 
36   00000032 6100 0016         CALLER_0        BSR    WRITE_NUMBER 
37   00000036 60CE                              BRA     AGAIN 
38   00000038 6100 0010         CALLER_1        BSR    WRITE_NUMBER 
39   0000003C 60C8                              BRA     AGAIN 
40   0000003E 6100 000A         CALLER_2        BSR    WRITE_NUMBER 
41   00000042 60C2                              BRA     AGAIN 
42   00000044 6100 0004         CALLER_3        BSR    WRITE_NUMBER 
43   00000048 60BC                              BRA     AGAIN 
44                             ********************************************* 
45                              * The WRITE_NUMBER routine writes the random 
46                              * number to the RESULTS area. The second 
47                              * previous number is the offset in this area. 
48                             ********************************************* 
49   0000004A 1340 0000       R WRITE_NUMBER    MOVE.B D0,RESULTS(A1) 
50   0000004E 4E75                              RTS 
51                             ********************************************* 
52                              * The RAND routine generates a pseudo-random 
53                              * number from 0-0FFH, and leaves the result 
54                              * in D0. 
55                             ********************************************* 
56   00000050 2039 0000 0100  R RAND            MOVE.L RAND_SEED,D0 

Figure 2-2.  Sample Program Listing

2-4  Getting Started



The sample program is assembled and linked with the following
HP 64870 68000/10/20 Assembler/Linker/Librarian commands
(which assume that /usr/hp64000/bin is defined in the PATH
environment variable):

$ as68k -Lh  anly.s > anly.lis <RETURN>

$ ld68k -c  anly.k -Lh >  anly.map <RETURN>

The linker command file, anly.k, contains the information below.

                               name anly
                               sect PROG=400h
                               sect DATA=500h
                               load anly.o
                               end

57   00000056 C1FC 4E6D                         MULS.W  #4E6DH,D0 
58   0000005A 2040                              MOVEA.L D0,A0 
59   0000005C 41E8 0339                         LEA    339H(A0),A0 
60   00000060 2008                              MOVE.L  A0,D0 
61   00000062 23C0 0000 0100  R                 MOVE.L D0,RAND_SEED 
62   00000068 4240                              CLR.W   D0 
63   0000006A 4840                              SWAP    D0 
64   0000006C 0280 0000 00FF                    ANDI.L #000000FFH,D0 
65   00000072 4E75                              RTS 
66                               
67                                              SECT    DATA,,D 
68                             ********************************************* 
69                              * Random numbers written to this area. 
70                             ********************************************* 
71   00000000                   RESULTS         DS.B    100H 
72                             ********************************************* 
73                              * Variable used in RAND subroutine and 
74                              * stack area. 
75                             ********************************************* 
76   00000100 0000 0001         RAND_SEED       DC.L    1 
77   00000104                                   DS.L    3EH 
78   000001FC                   STACK           DS.W    2 
79                                              END     START 

Figure 2-3.  Sample Program Listing (Cont’d)

Getting Started  2-5



1Before You Can
Use the Analyzer

Before you can use the analyzer to perform measurements on the
sample program, you must load and run the sample program.  The
following examples assume you are using the default emulator
configuration which maps locations 0 through 1F7FFH as
emulation RAM and which specifies a reset stack pointer value of
1FFEH.

Load the Program If you have already assembled and linked the sample program, you
can load the absolute file by entering the following command:

load  anly <RETURN>

Run the Program To start the emulator executing the sample program, enter:

run from transfer_address  <RETURN>

The status line will show that the emulator is "Running [the] user
program".

1The Default Trace
Command

The default trace command (shown below) will trigger on any state,
store all captured states, and count time.  To trace the states
currently executing, enter:

trace  <RETURN>

A message will flash on the status line to show you that the
"Emulation trace [has] started", and another message will show you
when the "Trace [is] complete".

Displaying the Trace To display the trace, enter:

display trace  <RETURN>

2-6  Getting Started



The first column on the trace list contains the line number.  The
trigger is always on line 0.

The second column contains the address information associated
with the trace states.  Addresses in this column may be locations of
instruction opcodes on fetch cycles, or they may be sources or
destinations of operand cycles.

The third column contains the data information associated with the
trace states.

The fourth column shows mnemonic information about the
emulation bus cycle.  The disassembled instruction mnemonic is
shown for opcode fetch cycles.  The data and mnemonic status
("0010 supr prog", for example) are shown for operand cycles.

The fifth column shows the count information (time is counted by
default).  The trace list header indicates that each count is
"relative" to the previous state.

If your emulator contains an external analyzer, a sixth column
shows the external data captured by the external analyzer.  On
80-column display terminals, the external data will be off screen;
use < CTRL> -F  and < CTRL> -G  to move the screen left and right.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status               time count
Base:     hex     hex                     mnemonic                    relative
after    000424     0014  ORI.B   #**,[A4]                          ------------
+001     000438     6100  BSR.W   000044A                             600     nS
+002     00043A     0010    0010  supr prog                           400     nS
+003     0006F8     0000    0000  supr data wr word                   600     nS
+004     0006FA     043C    043C  supr data wr word                   400     nS
+005     00044A     1340  MOVE.B  D0,00500[A1]                        400     nS
+006     00044C     0500    0500  supr prog                           400     nS
+007     00044E     4E75  RTS                                         400     nS
+008     0005E0     B5B5    B5    supr data wr byte                   400     nS
+009     000450     2039  MOVE.L  0000600,D0                          400     nS
+010     0006F8     0000    0000  supr data rd word                   400     nS
+011     0006FA     043C    043C  supr data rd word                   400     nS
+012     00043C     60C8  BRA.B   0000406                             400     nS
+013     00043E     6100    6100   unused prefetch                    400     nS
+014     000406     2241  MOVEA.L D1,A1                               600     nS

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 trace

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started  2-7



Sometimes, the trace will show opcode fetches for instructions
which are not executed because of a transfer of execution to other
addresses (see line 13 in the previous trace list).  This can happen
with microprocessors like the 68000 and the 80186 because they
have pipelined architectures or instruction queues which allow
them to prefetch the next few instructions before the current
instruction is finished executing.

You can use the < NEXT>  and < PREV>  keys to scroll through
the trace list a page at a time.  The < uparrow>  and
< downarrow>  keys will scroll through the trace list a line at a
time.  You can also display the trace list starting with a specific line
number (for example, display trace 100 < RETURN> ).  Refer to
the "Displaying Traces" chapter for more information the trace list
display.

Note When a trigger condition is found but not enough states are
captured to fill trace memory, the status line will show that the
trace is still running.  You can display all but the last captured state
in this situation; you must halt the trace to display the last captured
state.

1Expressions in
Trace Commands

When modifying the analysis specification (as shown throughout
the remainder of this chapter), you can enter expressions which
consist of values, symbols, and operators.

2-8  Getting Started



Values Values are numbers in hexadecimal, decimal, octal, or binary.
These number bases are specified by the following characters:

B b Binary (example: 10010110b).

Q q O o Octal (example: 377o or 377q).

D d (default) Decimal (example: 2048d or 2048).

H h Hexadecimal (example: 0a7fh).
You must precede any hexadecimal number
that begins with an A, B, C, D, E, or F with a
zero.

Don’t care digits may be included in binary, octal, or hexadecimal
numbers and they are represented by the letters X or x. A zero
must precede any numerical value that begins with an "X". 

Symbols A symbol database is built when the absolute file is loaded into the
emulator.  Both global and local symbols can be used when
entering expressions.  Global symbols are entered as they appear in
the source file or in the global symbols display.  When specifying a
local symbol, you must include the name of the source file (anly.s)
as shown below.

anly.s:START

Operators Analysis specification expressions may contain operators.  All
operations are carried out on 32-bit, two’s complement integers.
(Values which are not 32 bits will be sign extended when
expression evaluation occurs.)

Getting Started  2-9



The available operators are listed below in the order of evaluation
precedence.  Parentheses are also allowed in expressions to change
the order of evaluation.

-, ~ Unary two’s complement, unary one’s
complement.  The unary two’s complement
operator is not allowed on constants
containing don’t care bits.

* , /, % Integer multiply, divide, and modulo.  These
operators are not allowed on constants
containing don’t care bits.

+ , - Addition, subtraction.  These operators are
not allowed on constants containing don’t
care bits.

& Bitwise AND.

| Bitwise inclusive OR.

Values, symbols, and operators may be used together in analysis
specification expressions.  For example, if the local symbol exists,
the following is a valid expression:

file.c:symb+0b67dh&0fff00h

1Qualifying the
Trigger Condition

Suppose you want to look at the execution of the sample program
after the address of AGAIN label (406H) occurs.  To trigger on the
address of label AGAIN, enter:

trace after  AGAIN <RETURN>

Trigger Position The "after" option in the command above supplies trigger position
information.  It says that states captured after the trigger should be
saved; in other words, the trigger is positioned at the top of the
trace.  You can also specify that the trigger be positioned in the
middle of the trace (about) or at the end of the trace (before).

2-10  Getting Started



Trace List Description In the preceding trace list, line 0 (labeled "after") shows the
beginning of the program loop and line 2 shows the call of the
RAND subroutine.  The disassembled mnemonics on lines 6, 9, 13,
and 14 show instructions which are executed in the RAND
subroutine.

Press the < NEXT>  key to see more lines of the trace.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status               time count
Base:     hex     hex                     mnemonic                    relative
after    000406     2241  MOVEA.L D1,A1                               600     nS
+001     000408     2200  MOVE.L  D0,D1                               400     nS
+002     00040A     6100  BSR.W   0000450                             400     nS
+003     00040C     0044    0044  supr prog                           400     nS
+004     0006F8     0000    0000  supr data wr word                   600     nS
+005     0006FA     040E    040E  supr data wr word                   400     nS
+006     000450     2039  MOVE.L  0000600,D0                          400     nS
+007     000452     0000    0000  supr prog                           400     nS
+008     000454     0600    0600  supr prog                           400     nS
+009     000456     C1FC  MULS.W  #04E6D,D0                           400     nS
+010     000600     064D    064D  supr data rd word                   400     nS
+011     000602     8FD0    8FD0  supr data rd word                   400     nS
+012     000458     4E6D    4E6D  supr prog                           400     nS
+013     00045A     2040  MOVEA.L D0,A0                               400     nS
+014     00045C     41E8  LEA.L   00339[A0],A0                        400     nS

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 trace  after AGAIN

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started  2-11



In the trace list above you see the last few instructions executed by
the RAND subroutine (the RTS is the last instruction).  To see
more lines of the trace, press < NEXT>  once again.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status               time count
Base:     hex     hex                     mnemonic                    relative
+015     00045E     0339    0339  supr prog                             5.80  uS
+016     000460     2008  MOVE.L  A0,D0                               400     nS
+017     000462     23C0  MOVE.L  D0,0000600                          400     nS
+018     000464     0000    0000  supr prog                           400     nS
+019     000466     0600    0600  supr prog                           400     nS
+020     000468     4240  CLR.W   D0                                  400     nS
+021     000600     DDA1    DDA1  supr data wr word                   400     nS
+022     000602     9EC9    9EC9  supr data wr word                   400     nS
+023     00046A     4840  SWAP.W  D0                                  400     nS
+024     00046C     0280  ANDI.L  #0000000FF,D0                       400     nS
+025     00046E     0000    0000  supr prog                           400     nS
+026     000470     00FF    00FF  supr prog                           400     nS
+027     000472     4E75  RTS                                         400     nS
+028     000474     0000    0000   unused prefetch                    400     nS
+029     0006F8     0000    0000  supr data rd word                   800     nS

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 trace  after AGAIN

  run     trace     step   display           modify   break     end    ---ETC--

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status               time count
Base:     hex     hex                     mnemonic                    relative
+030     0006FA     040E    040E  supr data rd word                   400     nS
+031     00040E     0801  BTST.L  #01,D1                              400     nS
+032     000410     0001    0001  supr prog                           400     nS
+033     000412     6700  BEQ.W   000041A                             400     nS
+034     000414     0006    0006  supr prog                           400     nS
+035     00041A     0801  BTST.L  #00,D1                              800     nS
+036     00041C     0000    0000  supr prog                           400     nS
+037     00041E     6700  BEQ.W   0000432                             400     nS
+038     000420     0012    0012  supr prog                           400     nS
+039     000422     6000  BRA.W   0000438                               1.0   uS
+040     000424     0014    0014  supr prog                           400     nS
+041     000438     6100  BSR.W   000044A                             600     nS
+042     00043A     0010    0010  supr prog                           400     nS
+043     0006F8     0000    0000  supr data wr word                   600     nS
+044     0006FA     043C    043C  supr data wr word                   400     nS

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 trace  after AGAIN

  run     trace     step   display           modify   break     end    ---ETC--

2-12  Getting Started



Line 31 shows the first instruction executed after return from the
RAND subroutine.  The instructions shown in the previous trace
list decide which caller will call the WRITE_NUMBER
subroutine.  Line 41 shows the disassembled mnemonic of the
instruction which calls the WRITE_NUMBER subroutine.  The
address information shows that the caller is CALLER_1.  To view
the instruction cycles of the WRITE_NUMBER subroutine, press
< NEXT>  again.

Line 45 shows the MOVE.B instruction associated with the
WRITE_NUMBER subroutine.

Line 47 in the trace list above shows the RTS instruction
associated with the WRITE_NUMBER subroutine.  Line 48 shows
the random number 0A1H is written to address 54EH.

Line 54 shows the AGAIN address associated with the next loop of
the program.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status               time count
Base:     hex     hex                     mnemonic                    relative
+045     00044A     1340  MOVE.B  D0,00500[A1]                        400     nS
+046     00044C     0500    0500  supr prog                           400     nS
+047     00044E     4E75  RTS                                         400     nS
+048     00054E     A1A1    A1    supr data wr byte                   400     nS
+049     000450     2039  MOVE.L  0000600,D0                          400     nS
+050     0006F8     0000    0000  supr data rd word                   400     nS
+051     0006FA     043C    043C  supr data rd word                   400     nS
+052     00043C     60C8  BRA.B   0000406                             400     nS
+053     00043E     6100    6100   unused prefetch                    400     nS
+054     000406     2241  MOVEA.L D1,A1                               600     nS
+055     000408     2200  MOVE.L  D0,D1                               400     nS
+056     00040A     6100  BSR.W   0000450                             400     nS
+057     00040C     0044    0044  supr prog                           400     nS
+058     0006F8     0000    0000  supr data wr word                   600     nS
+059     0006FA     040E    040E  supr data wr word                   400     nS

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 trace  after AGAIN

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started  2-13



1Modifying
Previous Trace
Commands

Many of the examples presented in this chapter build on previous
examples.  If you are entering the trace commands shown, you will
sometimes find it easier to modify a previous trace command than
to enter the new command.  If the command you wish to modify
was the last command entered, it is still on the command line and
you may edit it using the command line editing features (for
example, using the left arrow and right arrow keys, using type-over,
insert, delete, etc.).  If the command you wish to modify was not the
last command entered, you will have to recall the command.  There
are two ways to recall trace commands: command recall and the
"trace modify_command" command.

Command Recall If the command you wish to modify has been recently entered
(within the last 20 commands), you can use the command recall
feature.  Press < CTRL> -R  to recall commands.  If you pass up the
command of interest, you can use < CTRL> -B  to move forward
through the list.

Trace Modify
Command

The "trace modify_command" command recalls the last trace
command.  The advantage of this command over command recall is
that you do not have to move forward and backward over other
commands to find the last trace command; also, the last trace
command is always available, no matter how many commands have
been entered since.

2-14  Getting Started



1Specifying
Storage Qualifiers

By default, all captured states are stored; however, you can qualify
which states get stored.  For example, to store only the states which
write random numbers to the RESULTS area, enter:

trace after  AGAIN 
only range  RESULTS thru  RESULTS+0ffh <RETURN>

Note You can only select one range in the emulation analysis
specification.  If you store states in a range, for example, you will
not be allowed to select a range in any of the other analyzer
specifications.

Notice that the trigger state (line 0, labeled "after") is included in
the trace list; trigger states are always stored.

This trace shows that the last two hex digits of the address in the
RESULTS area are the same as the random number which gets
written two states earlier (see the data in the "mnemonic" column

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status               time count
Base:     hex     hex                     mnemonic                    relative
after    000406     2241  MOVEA.L D1,A1                                 2.6   uS
+001     0005F3     4949      49  supr data wr byte                    26.6   uS
+002     0005FD     9999      99  supr data wr byte                    29.2   uS
+003     000549     4242      42  supr data wr byte                    29.2   uS
+004     000599     3A3A      3A  supr data wr byte                    29.2   uS
+005     000542     0505    05    supr data wr byte                    29.2   uS
+006     00053A     5757    57    supr data wr byte                    29.2   uS
+007     000505     B6B6      B6  supr data wr byte                    30.4   uS
+008     000557     A0A0      A0  supr data wr byte                    29.2   uS
+009     0005B6     2B2B    2B    supr data wr byte                    28.0   uS
+010     0005A0     BDBD    BD    supr data wr byte                    30.4   uS
+011     00052B     E1E1      E1  supr data wr byte                    29.2   uS
+012     0005BD     1919      19  supr data wr byte                    29.2   uS
+013     0005E1     D9D9      D9  supr data wr byte                    29.2   uS
+014     000519     7D7D      7D  supr data wr byte                    29.2   uS

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 trace  after AGAIN only  range RESULTS thru RESULTS+0ffh

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started  2-15



of the trace list).  This is expected because the sample program
writes the current random number using the second previous
random number as an offset into the RESULTS area.

1Prestoring States Suppose you find a defect in a subroutine, but you determine that
the problem is actually due to something set up by the calling
routine.  If the subroutine is called from a variety of places in your
program, you need to find out which callers cause the problem.
Prestore can be used to find the callers of the subroutine.

Prestore allows you to save up to two states which precede a
normal store state.  Prestore is turned off by default.  However, you
can include a prestore qualifier in the command line to qualify the
states which are prestored.

As an example, let’s use a prestore qualifier to show which caller of
WRITE_NUMBER corresponds to each value written to the
RESULTS area.  Because the BSR assembly language instruction
is used to call a subroutine, you can qualify prestore states as states
whose data equals the BSR opcode (6100H).  For example:

trace after  AGAIN 
only range  RESULTS thru  RESULTS+0ffh 
prestore data  6100h <RETURN>

2-16  Getting Started



The prestore state immediately preceding each write state shows
the address of the caller.

The analyzer uses the same resource to save prestore states as it
does to save count tags.  Consequently, no count appears for
prestore states.  Time counts are relative to the previous normal
storage state.

States which satisfy the prestore qualifier and the storage qualifier
at the same time are stored as normal states.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status               time count
Base:     hex     hex                     mnemonic                    relative
after    000406     2241  MOVEA.L D1,A1                                 2.6   uS
pstore   00040A     6100  BSR.W********
pstore   000438     6100  BSR.W********
+003     000530     3737    37    supr data wr byte                    26.6   uS
pstore   00040A     6100  BSR.W********
pstore   000444     6100  BSR.W********
+006     000545     7070      70  supr data wr byte                    30.4   uS
pstore   00040A     6100  BSR.W********
pstore   000432     6100  BSR.W********
+009     000537     8E8E      8E  supr data wr byte                    28.0   uS
pstore   00040A     6100  BSR.W********
pstore   00043E     6100  BSR.W********
+012     000570     3434    34    supr data wr byte                    29.2   uS
pstore   00040A     6100  BSR.W********
pstore   000432     6100  BSR.W********

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 trace  after AGAIN only  range RESULTS thru RESULTS+0ffh prestore  data 6100h

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started  2-17



1Changing the
Count Qualifier

Suppose now that you are interested in only one address in the
RESULTS area, say 5C2H.  You wish to see how many loops of the
program occur between each write of a random number to this
address.  You can enter a trace command that triggers on address
5C2H (since it’s the only address of interest), stores only writes to
address 5C2H, and counts the address of the AGAIN label (406H).
For example:

trace after  5c2h 
only  5c2h 
counting state  AGAIN <RETURN>

The trace listing above shows that the number of times the
program executes between writes to 5C2H varies.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status              state count
Base:     hex     hex                     mnemonic                    relative
after    0005C2     0606    06    supr data wr byte                 ------------
+001     0005C2     5353    53    supr data wr byte                           51
+002     0005C2     3333    33    supr data wr byte                         1343
+003     0005C2     E2E2    E2    supr data wr byte                          291
+004     0005C2     D3D3    D3    supr data wr byte                          351
+005     0005C2     3B3B    3B    supr data wr byte                          793
+006     0005C2     2E2E    2E    supr data wr byte                           61
+007     0005C2     1818    18    supr data wr byte                          432
+008     0005C2     1A1A    1A    supr data wr byte                           40
+009     0005C2     B3B3    B3    supr data wr byte                         1245
+010     0005C2     5C5C    5C    supr data wr byte                           87
+011     0005C2     BCBC    BC    supr data wr byte                          660
+012     0005C2     3F3F    3F    supr data wr byte                          425
+013     0005C2     BABA    BA    supr data wr byte                          345
+014     0005C2     8686    86    supr data wr byte                          729

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 trace  after 5c2h only 5c2h counting  state AGAIN

  run     trace     step   display           modify   break     end    ---ETC--

2-18  Getting Started



Turning Counting Off Turning the count off allows the analyzer to store 1024 states
instead of 512 states.  For example:

trace after  5c2h 
only  5c2h 
counting off  <RETURN>

(The default trace depth is 256, which means that only 256 states
are uploaded and are available to be displayed.  You can increase
the trace depth so that more states can be viewed; however, it takes
longer to upload more states.  Refer to the "Changing the Trace
Depth" section in the "Displaying Traces" chapter.)

1Triggering on the
Nth Occurrence of
a State

In the trace command, you can specify a trigger on the Nth
occurrence of a state.  To specify an occurrence count, enter:

trace about  5c2h occurs  5 
only  5c2h 
counting state  AGAIN <RETURN>

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status              state count
Base:     hex     hex                     mnemonic                    relative

-004     0005C2     4141    41    supr data wr byte                 ------------
-003     0005C2     4B4B    4B    supr data wr byte                          447
-002     0005C2     E0E0    E0    supr data wr byte                           81
-001     0005C2     8F8F    8F    supr data wr byte                            9
about    0005C2     EFEF    EF    supr data wr byte                          150
+001     0005C2     9797    97    supr data wr byte                          601
+002     0005C2     1E1E    1E    supr data wr byte                           71
+003     0005C2     2F2F    2F    supr data wr byte                          534
+004     0005C2     0E0E    0E    supr data wr byte                          511
+005     0005C2     0505    05    supr data wr byte                           35
+006     0005C2     F7F7    F7    supr data wr byte                          101
+007     0005C2     5E5E    5E    supr data wr byte                           81

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 trace  about 5c2h occurs 5 only 5c2h counting  state AGAIN

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started  2-19



Notice that the trigger position has been moved to the center of
the trace so that states which occur before the trigger are saved.

Usually, when you enter a "trace about" command, the trigger state
(line 0) is labeled "about".  However, if there are three or fewer
states before the trigger, the trigger state is labeled "after".
Likewise, if there are 3 or fewer states after the trigger, the trigger
state is labeled "before".

1Triggering on
Multiple States

The analysis specification allows you to trigger on multiple states.
That is, when one state, or a second state, or a third state, etc.,
occur the specified number of times, the analyzer triggers.  For
example, suppose you wish to change the previous analysis
specification to trigger on the fifth occurrence of address 5C2H or
5C3H.  Enter:

trace about  5c2h or  5c3h occurs  5 
only  5c2h 
counting state  AGAIN <RETURN>

Press the < downarrow>  key a few times to view the states that are
stored before the trigger.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status              state count
Base:     hex     hex                     mnemonic                    relative

-002     0005C2     5656    56    supr data wr byte                 ------------
-001     0005C2     6A6A    6A    supr data wr byte                          136
after    0005C3     9393      93  supr data wr byte                           35
+001     0005C2     2626    26    supr data wr byte                          177
+002     0005C2     D3D3    D3    supr data wr byte                          213
+003     0005C2     0707    07    supr data wr byte                          300
+004     0005C2     9797    97    supr data wr byte                          125
+005     0005C2     E3E3    E3    supr data wr byte                          452
+006     0005C2     4747    47    supr data wr byte                           79
+007     0005C2     1010    10    supr data wr byte                          225
+008     0005C2     6E6E    6E    supr data wr byte                          280
+009     0005C2     7474    74    supr data wr byte                          617
+010     0005C2     C0C0    C0    supr data wr byte                          194
+011     0005C2     0202    02    supr data wr byte                          990

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 trace  about 5c2h  or 5c3h occurs 5 only 5c2h counting  state AGAIN

  run     trace     step   display           modify   break     end    ---ETC--

2-20  Getting Started



Notice, in the preceding display, that only two accesses of address
5C2H occur before the trigger.  Because the occurrence count is
still five, two accesses of 5C3H must have also occurred before the
trigger.  The trace  command above causes the analyzer to trigger
on the fifth occurrence of either address 5C2H or 5C3H.

1Using Address,
Data, and Status
Qualifiers

So far, the examples have not used address, data, and status
qualifiers in combination.  When an address qualifier is specified,
additional data and status specifications serve to further qualify a
state.

For example, specifying a trigger on variable RAND_SEED
(address 600H in the sample program) will cause the analyzer to
trigger on the first access of 600H, regardless of the value being
read or written to this address.

However, suppose you wish to trigger on the read of a specific
value from 600H, say 0XX5AH (where "X"s are "don’t cares").  To
trigger on the occurrence of this state, you can include data and
status qualifiers along with the address qualifier.

Suppose also that you want to go back to storing addresses in the
range 500H through 5FFH, but that you only want to store the
writes of bytes whose first hex digit is "5".  To do this, enter:

trace about  RAND_SEED data  0xx5ah status
read 
only range  RESULTS thru  RESULTS+0ffh data
0xx5xh <RETURN>

Note Status qualifiers will differ from one emulator to another.  For
more information on the status qualifiers refer to your Emulator
Softkey Interface User’s Guide.

Getting Started  2-21



1Using the
Sequencer

The examples shown previously in this chapter are all of trace
specifications in which the analyzer is triggered on a single state.
However, if you use the analyzer’s sequencer, you can specify traces
that trigger on a series, or sequence, of states.

The analyzer’s sequencer has several levels (also called sequence
terms).  Each state in the series of states to be found before
triggering, as well as the trigger state, is associated with a sequence
term.

The sequencer works like this: the analyzer searches for the state
associated with the first sequence term.  When that state is
captured, the analyzer starts searching for the state associated with
the second term, and so on.  The last sequence term used is
associated with the trigger state.  When the trigger state is captured
the analyzer is triggered.  Up to seven sequence terms and an
optional occurrence count for each term are available.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status              state count
Base:     hex     hex                     mnemonic                    relative
-007     00054E     5858    58    supr data wr byte                           31
-006     0005F8     5C5C    5C    supr data wr byte                            6
-005     000565     5E5E      5E  supr data wr byte                           20
-004     000576     5D5D    5D    supr data wr byte                           16
-003     0005F2     5454    54    supr data wr byte                           12
-002     000588     5151    51    supr data wr byte                            7
-001     0005A6     5A5A    5A    supr data wr byte                           17
about    000600     F45A    F45A  supr data rd word                            1
+001     0005A7     5B5B      5B  supr data wr byte                            3
+002     000502     5757    57    supr data wr byte                           11
+003     000564     5454    54    supr data wr byte                           16
+004     000520     5555    55    supr data wr byte                           10
+005     000516     5555    55    supr data wr byte                           12
+006     00059E     5A5A    5A    supr data wr byte                            9
+007     000584     5A5A    5A    supr data wr byte                           23

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 trace  about RAND_SEED data 0xx5ah status  read  only  range RESULTS thru RESUL
TS+0ffh data 0xx5xh

  run     trace     step   display           modify   break     end    ---ETC--

2-22  Getting Started



Here is an example trace command that uses the sequencer:

trace find_sequence  STATE_1 occurs  2 then
STATE_2 occurs  5 then  STATE_3 then  STATE_4
then  STATE_5 then  STATE_6 trigger after
TRIGGER_STATE <RETURN>

In the "Specifying Storage Qualifiers" section earlier in this
chapter, the example trace specification triggered on an address
and stored only states in which values were written to the
RESULTS area.  Now you’d like to trigger after a series of states
while continuing to store only the states that write to the
RESULTS area.

For example, suppose you’d like to trigger the flow of execution
from TWO_THREE to CALLER_3 after CALLER_0 has
occurred 8 times.  To do this, you would enter the following
commands.  (The "cws" command saves you from having to include
"anly.s:" when specifying local symbols in the trace command.)

cws anly.s: <RETURN>

trace find_sequence  CALLER_0 occurs  8 
then  TWO_THREE 
then  CALLER_3 
trigger about  WRITE_NUMBER 
only range  RESULTS thru  RESULTS+0ffh <RETURN>

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status              state count
Base:     hex     hex                     mnemonic                    relative
-007     000571     D9D9      D9  supr data wr byte                            1
-006     000523     A0A0      A0  supr data wr byte                            1
sq adv   000432     6100  BSR.W********                                        1
-004     0005D9     5E5E      5E  supr data wr byte                            0
sq adv   000426     0801  BTST.L  #**,D1                                       1
-002     0005A0     E3E3    E3    supr data wr byte                            0
sq adv   000444     6100  BSR.W********                                        0
about    00044A     1340  MOVE.B  D0,****[A1]                                  1
+001     00055E     F2F2    F2    supr data wr byte                            0
+002     0005E3     9898      98  supr data wr byte                            1
+003     0005F2     0E0E    0E    supr data wr byte                            1
+004     000598     5A5A    5A    supr data wr byte                            1
+005     00050E     9292    92    supr data wr byte                            1
+006     00055A     8383    83    supr data wr byte                            1
+007     000592     2929    29    supr data wr byte                            1

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 trace  find_sequence CALLER_0 then TWO_THREE then CALLER_3 trigger  about WRITE
_NUMBER only  range RESULTS thru RESULTS+0ffh

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started  2-23



Notice the states that contain "sq adv" in the line number column.
These are the states associated with (or captured for) each
sequence term.  Just as the trigger state is always stored in trace
memory, the states captured in the sequence are always stored if
the trace buffer is deep enough.

Because the trigger is the last sequence term, the remaining states
stored after the trigger state are writes to the RESULTS area.

Specifying a Restart
Term

When using the analyzer’s sequencer, an additional sequence
restart term is also allowed.  This restart is a "global restart"; that
is, it applies to all the sequence terms.

The restart term is a state which, when captured before the
analyzer has found the trigger state, causes the sequencing to start
from the beginning again.  You can use the restart term to make
certain some state does not occur in the sequence that triggers the
analyzer.

For example, you may have noticed in the previous trace that a
write to the RESULTS area occurred between the TWO_THREE
and CALLER_3 states in the sequence and that the state count
associated with WRITE_NUMBER state shows that AGAIN
occurred before the trigger.  What was actually captured in the
previous trace was the flow of execution where TWO_THREE
occurs, then CALLER_2, then WRITE_NUMBER, then a
prefetch of CALLER_3 on the return from WRITE_NUMBER,
and then the capture of WRITE_NUMBER occurred the next time
through the program.  By specifying a restart on CALLER_2, you
can fix the previous trace command so that only the flow of
execution from TWO_THREE to CALLER_3 is captured.

trace find_sequence  CALLER_0 occurs  8 
then  TWO_THREE 
then  CALLER_3 
restart  CALLER_2 
trigger about  WRITE_NUMBER 
only range  RESULTS thru  RESULTS+0ffh <RETURN>

2-24  Getting Started



Notice in the resulting trace (you may have to press < PREV>  in
order to see the states captured prior to the trigger) that "sq adv" is
also shown next to states which cause a sequencer restart.

The sequencing capabilities from within the Softkey Interface are
not as powerful or flexible as they are from within the Terminal
Interface.  If you do not find the sequencing flexibility you need
from within Softkey Interface, refer to the Terminal Interface:
Analyzer User’s Guide.

1Tracing "Windows"
of Activity

Windowing refers to the analyzer feature that allows you to turn
on, or enable, the capturing of states after some state occurs then
to turn off, or disable, the capturing of states when another state
occurs.  In effect, windowing allows you capture segments, or
windows, of code execution.

Windowing is different than storing states in a range (the "only
range" option in the trace command syntax) because it allows you
to capture execution of all states in a window of code whereas
storing states in a range won’t capture the execution of subroutine

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status              state count
Base:     hex     hex                     mnemonic                    relative
sq adv   00043E     6100  BSR.W********                                        0
-006     000568     DFDF    DF    supr data wr byte                            0
-005     000596     6C6C    6C    supr data wr byte                            1
sq adv   000432     6100  BSR.W********                                        1
-003     0005DF     CBCB      CB  supr data wr byte                            0
sq adv   000426     0801  BTST.L  #**,D1                                       1
sq adv   000444     6100  BSR.W********                                        0
about    00044A     1340  MOVE.B  D0,****[A1]                                  0
+001     00056C     2121    21    supr data wr byte                            0
+002     0005CB     0E0E      0E  supr data wr byte                            1
+003     000521     2A2A      2A  supr data wr byte                            1
+004     00050E     C3C3    C3    supr data wr byte                            1
+005     00052A     5A5A    5A    supr data wr byte                            1
+006     0005C3     2929      29  supr data wr byte                            1
+007     00055A     ADAD    AD    supr data wr byte                            1

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 trace  find_sequence CALLER_0 then TWO_THREE then CALLER_3 restart CALLER_2 tri
gger  about WRITE_NUMBER only  range RESULTS thru RESULTS+0ffh

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started  2-25



that are called in that range or reads and writes to locations outside
that range.

When you use the windowing feature of the analyzer, the trigger
state must be in the window or else the trigger will never be found.

If you wish to combine the windowing and sequencing functions of
the analyzer, there are some restrictions:

Up to four sequence terms are available when windowing
is in effect.

Global restart is not available when windowing is in effect.

Occurrence counts are not available.

Suppose that you are only interested in the execution that occurs
within the RAND subroutine of the sample program.  You could
specify the address of the subroutine call as the window enable
state and the address of the subroutine’s last instruction as the
window disable state (and you could trigger on any state in that
window by not specifying a trigger).  For example:

trace enable  40ah disable  472h <RETURN>

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status              state count
Base:     hex     hex                     mnemonic                    relative
+015     000464     0000    0000  supr prog                                    0
+016     000466     0600    0600  supr prog                                    0
+017     000468     4240  CLR.W   D0                                           0
+018     000600     091B    091B  supr data wr word                            0
+019     000602     576B    576B  supr data wr word                            0
+020     00046A     4840  SWAP.W  D0                                           0
+021     00046C     0280  ANDI.L  #0000000FF,D0                                0
+022     00046E     0000    0000  supr prog                                    0
+023     000470     00FF    00FF  supr prog                                    0
sq adv   000472     4E75  RTS                                                  0
sq adv   00040A     6100  BSR.W   0000450                                      1
+026     00040C     0044    0044  supr prog                                    0
+027     0006F8     0000    0000  supr data wr word                            0
+028     0006FA     040E    040E  supr data wr word                            0
+029     000450     2039  MOVE.L  0000600,D0                                   0

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 trace  enable 40ah disable anly.s:RAND+022h

  run     trace     step   display           modify   break     end    ---ETC--

2-26  Getting Started



Notice in the resulting trace (you may have to press < NEXT> )
that the enable and disable states have the "sq adv" string in the line
number column.  This is because the windowing feature uses the
analyzer’s sequencer.

The windowing capabilities from within the Softkey Interface are
not as powerful or flexible as they are from within the Terminal
Interface.  For example, in the Terminal Interface, you can set up a
windowing trace specification where the trigger does not have to be
in the window.  If you do not find the windowing flexibility you
need from within Softkey Interface, refer to the Terminal Interface:
Analyzer User’s Guide.

1Storing and
Loading Trace
Commands

You can save a trace command to a "trace specification" file and
reload it at a later time.  To store the current trace command, enter:

store trace_spec  tspecfile <RETURN>

The trace command is saved in a file named "tspecfile.TS" in the
current directory.  The extension ".TS" is appended to trace
specification files if no extension is specified in the "store
trace_spec" command.  Enter another trace command to overwrite
the existing trace command:

trace  <RETURN>

To bring back the trace command saved in "tspecfile.TS" and
perform a trace measurement using it, enter the commands:

load trace_spec  tspecfile <RETURN>

trace again  <RETURN>

Trace commands that have just been loaded will always work, even
if symbols have been changed; however, once you modify the trace
command, it may no longer work.

Getting Started  2-27



1Trace Commands
in the Event Log
Display

The event log display shows the previous trace commands.  To view
the event log display, enter:

display event_log  <RETURN>

1Storing and
Loading Traces

You can save a trace to a trace file and reload it at a later time.  To
store the current trace, enter the command:

store trace  trcfile <RETURN>

The trace is saved in a file named "trcfile.TR" in the current
directory.  The extension ".TR" is appended to trace files if it is not
specified in the "store trace" command.  Enter another trace
command to overwrite the existing trace:

trace  <RETURN>

Event Log
  Time     Type           Message
11:58:52 TRACE   Emulation trace started
11:58:52 TRACE   Emulation trace complete
12:00:25 TRACE   trace find_sequence CALLER_0 then TWO_THREE then CALLER_3 rest
                 art CALLER_2 trigger about WRITE_NUMBER only range RESULTS thr
                 u RESULTS+0ffh
12:00:26 TRACE   Emulation trace started
12:00:26 TRACE   Emulation trace complete
12:01:27 TRACE   trace enable 40ah disable 472h
12:01:28 TRACE   Emulation trace started
12:01:28 TRACE   Emulation trace complete
12:02:19 TRACE   trace
12:02:20 TRACE   Emulation trace started
12:02:20 TRACE   Emulation trace complete
12:02:40 TRACE   trace enable 40ah disable 472h
12:02:48 TRACE   Emulation trace started
12:02:49 TRACE   Emulation trace complete

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 display  event_log

  run     trace     step   display           modify   break     end    ---ETC--

2-28  Getting Started



To bring back the trace of the previous section, enter the command:

load trace  trcfile <RETURN>

display trace  <RETURN>

The trace information stored in "trcfile.TR" is restored, and you
can view the trace as you would any other trace.

The restored trace depth is the depth specified when the trace was
stored and cannot be increased.  You may want to increase the
trace depth before storing traces.

When a trace is loaded, the trace command is not restored.  A
"trace again" or "trace modify" command will use the last trace
command entered, not the command which resulted in the loaded
trace.  Also, the trace status shown by the "display status" command
does not reflect the loaded trace.

1Stopping the Trace You can, and most likely will, specify traces whose trigger or
storage states are never found.  When this happens, the "Trace
complete" message is never shown, and the trace continues to run
("Trace running").  When these situations occur, you can choose to
halt the trace measurement with the following command:

stop_trace  <RETURN>

The "stop_trace" command is also useful to deactivate signals
which are driven when the trigger is found (refer to the
"Coordinated Measurements" chapter in the Softkey Interface
Reference manual).

Getting Started  2-29



1Tracing on Halt The "trace on_halt" command allows you to prevent triggering.  In
other words, the trace runs until you enter the "stop_trace"
command (described in the next section).  The "trace on_halt"
command is the same as tracing "before" a state that never occurs.

The "trace on_halt" command is useful, for example, when you wish
to trace the states leading up to a break into the monitor (provided
that you are using the background monitor and tracing only
foreground operation).  Suppose your program breaks on an access
to guarded memory.  To trace the states that lead up to the break,
enter the "trace on_halt" command, and run the program.  When
the break occurs, the emulator is running in the background
monitor, and the analyzer is no longer capturing states.  To display
the states leading up to the break, enter the "stop_trace" command
(and the "display trace" command if traces are not currently being
displayed).

When the "on_halt" option is used in a trace command, the trigger
condition (and position) options, as well as the "repetitively" and
"break_on_trigger" options, cannot be included in the command.

1Conclusion This concludes the "Getting Started" chapter.  You have learned
about the basic trace commands and how to specify trigger
conditions, storage, prestore, and count qualifiers, occurrence
qualifiers, and address, data, and status qualifiers.

2-30  Getting Started



3

Displaying Traces

1Introduction This chapter describes the options available when displaying trace
lists.

The trace list can contain high-level source file information.

The trace used to illustrate the various display options throughout
this chapter was generated in the following manner.  (The
commands shown below assume that /usr/hp64000/bin is specified
in the PATH environment variable.)

First, the program shown in figure 3-1 was compiled and linked
with the following HP 64902 C Cross Compiler command:

$ cc68000 -hvONr  hp64742 -o  cprg cprg.c
<RETURN>

Then, the default emulator configuration for the HP 64742
environment was copied to the current directory with the following
command:

$ cp  /usr/hp64000/env/hp64742/config.EA
config.EA <RETURN>

Next, the emulation system (Softkey Interface) was entered:

$ emul700  <emul_name> <RETURN>

The < emul_name>  in the previous command is the logical
emulator name given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab).

After the emulation system was entered, the default configuration
was loaded:

load configuration  config <RETURN>

Displaying Traces  3-1



Then, the absolute file was loaded:

load  cprg <RETURN>

The following trace command was entered, and the program was
run.

trace after  main <RETURN>
run from transfer_address  <RETURN>

Display Positioning The trace display command displays 256 states, not all of which can
appear on the screen at the same time.  However, you can
reposition the display on the screen with the keys described below.

Up/Down

The < uparrow>  and < downarrow>  (or roll up and roll down)
keys move the display up or down on the screen one line at a time.

unsigned short dest[0x7f]; 
unsigned short *dest_ptr; 
 
main () 
{ 
/*****************************************/ 
/* This is a comment block               */ 
/* to demonstrate the "number            */ 
/* of source lines" trace                */ 
/* display option.                       */ 
/*****************************************/ 
 
char *message; 
 
     for (;;) 
     { 
          message = "This message is to be written indefinitely. "; 
          dest_ptr = dest; 
          while (*message != ’\0’) 
          { 
               *dest_ptr = *message; 
               dest_ptr++; 
               message++; 
          } 
     } 
} 

Figure 3-1.  Program Used for Example Displays

3-2  Displaying Traces



The page up and page down keys allow you to move the display up
or down a page at a time.

Left/Right

The < CTRL> -F  and < CTRL> -G  keys allow you to move the
display left or right, respectively.  These keys are used if the
emulator contains an external analyzer and you have an 80 column
display  (The default trace display includes the external bits
information in this case, but this information cannot be displayed
on an 80 column display.)

The < CTRL> -F  and < CTRL> -G  keys are also used when the
width of the address or mnemonic/absolute columns is increased so
that not all the trace display data can be displayed across the screen.

1Changing the
Trace Depth

The "display trace depth" command allows you to specify the
number of states that are displayed.  By reducing the trace depth,
you can shorten the time it takes for the Softkey Interface to
upload the trace information.  You can increase the trace depth to
view more states of the current trace.

The maximum number of trace states is 1024 when counting is
turned off, 512 when counting is on.  When you initially enter the
Softkey Interface, the trace depth is 256.  The minimum trace
depth is 9.

If you wish to reduce the number of states that are displayed, the
"display trace depth" command must be entered before the trace is
displayed.  You cannot use this command to reduce the number of
states displayed in the current trace.

Displaying Traces  3-3



1Displaying About
a Line Number

The "< LINE # > " trace display option allows you to specify the
line number to be centered in the display.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status               time count
Base:     hex     hex                     mnemonic                    relative
+193     06017C     008E    008E  supr data rd word                   520     nS
+194     000B00     5493    5493  supr prog                           480     nS
+195     06008E     0061    0061  supr data wr word                   520     nS
+196     000B02     528A    528A  supr prog                           480     nS
+197     06017A     0006    0006  supr data rd word                   520     nS
+198     06017C     008E    008E  supr data rd word                   480     nS
+199     000B04     4A12    4A12  supr prog                           520     nS
+200     06017C     0090    0090  supr data wr word                   480     nS
+201     06017A     0006    0006  supr data wr word                   520     nS
+202     000B06     66F0    66F0  supr prog                           480     nS
+203     000B16     6765    67    supr data rd byte                     1.0   uS
+204     000B08     60E0    60E0  supr prog                           520     nS
+205     000AF8     1012    1012  supr prog                           760     nS
+206     000AFA     4880    4880  supr prog                           480     nS
+207     000B16     6765    67    supr data rd byte                   520     nS

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 display  trace 200

  run     trace     step   display           modify   break     end    ---ETC--

3-4  Displaying Traces



1Disassembling the
Trace Information

The "disassemble_from_line_number" trace display option causes
the inverse assembler to attempt to begin disassembling the trace
information from the specified line number.  This option is
required for inverse assemblers that cannot uniquely identify
opcode fetch states on the processor bus.  This option is not
present for emulators whose inverse assembler can determine
opcode fetch states on the processor bus.

If the line number specified is not an opcode fetch state, the
disassembled information will be incorrect.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status               time count
Base:     hex     hex                     mnemonic                    relative
+200     06017C     0090    0090  supr data wr word                   480     nS
+201     06017A     0006    0006  supr data wr word                   520     nS
+202     000B06     66F0  BNE.B   0000AF8                             480     nS
+203     000B16     6765    67    supr data rd byte                     1.0   uS
+204     000B08     60E0  BRA.B   0000AEA                             520     nS
+205     000AF8     1012  MOVE.B  (A2),D0                             720     nS
+206     000AFA     4880  EXT.W   D0                                  520     nS
+207     000B16     6765    67    supr data rd byte                   480     nS
+208     000AFC     2053  MOVEA.L (A3),A0                             520     nS
+209     000AFE     3080  MOVE.W  D0,(A0)                             480     nS
+210     06017A     0006    0006  supr data rd word                   520     nS
+211     06017C     0090    0090  supr data rd word                   480     nS
+212     000B00     5493  ADDQ.L  #2,(A3)                             520     nS
+213     060090     0067    0067  supr data wr word                   480     nS
+214     000B02     528A  ADDQ.L  #1,A2                               520     nS

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 display  trace  disassemble_from_line_number 200

  run     trace     step   display           modify   break     end    ---ETC--

Displaying Traces  3-5



1Displaying in
Absolute Format

The "absolute" trace display option allows you to display status
information in absolute format (binary, hex, or mnemonic).  The
"absolute status mnemonic" display is the same as default
mnemonic display, except that opcodes are not disassembled.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                 Absolute Status               time count
Base:     hex     hex                      binary                     relative
+200     06017C     0090  11101100                                    480     nS
+201     06017A     0006  11101100                                    520     nS
+202     000B06     66F0  10110110                                    480     nS
+203     000B16     6765  10101111                                      1.0   uS
+204     000B08     60E0  10110110                                    520     nS
+205     000AF8     1012  10110110                                    720     nS
+206     000AFA     4880  10110110                                    520     nS
+207     000B16     6765  10101111                                    480     nS
+208     000AFC     2053  10110110                                    520     nS
+209     000AFE     3080  10110110                                    480     nS
+210     06017A     0006  11101110                                    520     nS
+211     06017C     0090  11101110                                    480     nS
+212     000B00     5493  10110110                                    520     nS
+213     060090     0067  11101100                                    480     nS
+214     000B02     528A  10110110                                    520     nS

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 display  trace  absolute  status  binary

  run     trace     step   display           modify   break     end    ---ETC--

3-6  Displaying Traces



1Displaying in
Mnemonic Format

The "mnemonic" trace display option allows you to display the
trace information in mnemonic format (that is, opcodes and
status).  The default trace display is in mnemonic format.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status               time count
Base:     hex     hex                     mnemonic                    relative
+011     000AEA     247C  MOVEA.L #000000B0C,A2                       480     nS
+012     000AEC     0000    0000  supr prog                           520     nS
+013     000AEE     0B0C    0B0C  supr prog                           480     nS
+014     000AF0     26BC  MOVE.L  #00006007C,(A3)                     520     nS
+015     000AF2     0006    0006  supr prog                           480     nS
+016     000AF4     007C    007C  supr prog                           520     nS
+017     000AF6     600C  BRA.B   0000B04                             480     nS
+018     06017A     0006    0006  supr data wr word                   520     nS
+019     06017C     007C    007C  supr data wr word                   480     nS
+020     000AF8     1012  MOVE.B  (A2),D0                             520     nS
+021     000B04     4A12  TST.B   (A2)                                720     nS
+022     000B06     66F0  BNE.B   0000AF8                             520     nS
+023     000B0C     5468    54    supr data rd byte                   480     nS
+024     000B08     60E0  BRA.B   0000AEA                             520     nS
+025     000AF8     1012  MOVE.B  (A2),D0                             760     nS

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 display  trace  disassemble_from_line_number 11

  run     trace     step   display           modify   break     end    ---ETC--

Displaying Traces  3-7



1Including
High-Level Source
Lines

To include high-level source lines in the trace display, you must use
the "set" command.  The "set" command allows you to include
symbolic information in trace, memory, register, and software
breakpoint displays.  The "set" command affects all displays for the
current window.

The "set source on/off/only" command allows you to include source
file information in the trace list or memory mnemonic display.  The
"source only" option specifies that only the source file information
will be displayed.

When source lines are included, comments that contain file and
line information appear before the source lines.

Additional Options
with Source On/Only

Also, when source lines are turned on, three additional options are
available in the set command: inverse video, tabs are, and number
of source lines.

Inverse Video. This option allows you to display source lines in
inverse video.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data        Opcode or Status w/ Source Lines       time count
Base:     hex     hex                     mnemonic                    relative
      ##########cprg.c - line     6 thru    17 #################################
      char *message;

           for (;;)
           {
                message = "This message is to be written indefinitely. ";
+011     000AEA     247C  MOVEA.L #000000B0C,A2                       480     nS
+012     000AEC     0000    0000  supr prog                           520     nS
+013     000AEE     0B0C    0B0C  supr prog                           480     nS
      ##########cprg.c - line    18 ############################################
                dest_ptr = dest;
+014     000AF0     26BC  MOVE.L  #00006007C,(A3)                     520     nS
+015     000AF2     0006    0006  supr prog                           480     nS
+016     000AF4     007C    007C  supr prog                           520     nS
      ##########cprg.c - line    19 ############################################

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 set  source  on

pod_cmd    set    perfinit perfrun          perfend                    ---ETC--

3-8  Displaying Traces



Tabs Are. This option allows you to specify the number of spaces
between tab stops so that the appropriate number of spaces can be
inserted for source lines.  The default value is eight.  Values from
two to 15 can be entered.

Number of Source Lines. Typically, there are lines in the source
file that are not associated with actual instructions (declarations,
comments, etc.).  This option allows you to specify the number of
these source lines to be displayed for every source line that is
associated with an actual instruction.  Only source lines up to the
the previous source line that corresponds to actual code will be
displayed.  The default value is five.  Values from one to 50 can be
entered.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data        Opcode or Status w/ Source Lines       time count
Base:     hex     hex                     mnemonic                    relative
      ##########cprg.c - line     6 thru    17 #################################
      /*****************************************/
      /* This is a comment block               */
      /* to demonstrate the "number            */
      /* of source lines" trace                */
      /* display option.                       */
      /*****************************************/

      char *message;

           for (;;)
           {
                message = "This message is to be written indefinitely. ";
+011     000AEA     247C  MOVEA.L #000000B0C,A2                       480     nS
+012     000AEC     0000    0000  supr prog                           520     nS

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 set  source  on  number_of_source_lines 12

pod_cmd    set    perfinit perfrun          perfend                    ---ETC--

Displaying Traces  3-9



1Including Symbol
Information

The "set symbols on/off" command allows you to specify that
address information be displayed in terms of program symbols.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:      Address       Data            Opcode or Status           time count
Base:       symbols       hex            mnemonic w/symbols           relative
+011   |cprg.c:forLoop1     247C  MOVEA.L #000000B0C,A2               520     nS
+012   cprg:main+00000C     0000    0000  supr prog                   480     nS
+013   cprg:main+00000E     0B0C    0B0C  supr prog                   520     nS
+014   cprg:main+000010     26BC  MOVE.L  #00006007C,(A3)             480     nS
+015   cprg:main+000012     0006    0006  supr prog                   520     nS
+016   cprg:main+000014     007C    007C  supr prog                   480     nS
+017   cprg:main+000016     600C  BRA.B   cprg.c:continue2            520     nS
+018    DATA|dest_ptr       0006    0006  supr data wr word           480     nS
+019   D|cprg.c:+000100     007C    007C  supr data wr word           520     nS
+020   cprg.:whileLoop1     1012  MOVE.B  (A2),D0                     480     nS
+021   cprg.c:continue2     4A12  TST.B   (A2)                        760     nS
+022   cprg:main+000026     66F0  BNE.B   cprg.:whileLoop1            480     nS
+023   C|cprg.c:String1     5468    54    supr data rd byte           520     nS
+024   cprg.c:continue1     60E0  BRA.B   |cprg.c:forLoop1            480     nS
+025   cprg.:whileLoop1     1012  MOVE.B  (A2),D0                     760     nS

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 set  source  off  symbols  on

pod_cmd    set    perfinit perfrun          perfend                    ---ETC--

3-10  Displaying Traces



1Changing Column
Widths

The "set width" command allows you to change the width of the
address and mnemonic (or absolute) columns in the trace list.
Values from one to 80 can be entered.

When address information is being displayed in terms of symbols
(in other words, symbols on), you may wish to increase the width of
the address column to display more of the symbol information.

When trace information is displayed in mnemonic format, you can
additionally specify the width of symbols in the "Opcode or Status"
column.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:                  Address                   Data            Opcode or Stat
Base:                   symbols                   hex            mnemonic w/symb
+011   PROG|/users/guest/dir68k/cprg.c:forLoop1     247C  MOVEA.L #000000B0C,A2
+012   PROG|use/guest/dir68k/cprg.c:main+00000C     0000    0000  supr prog
+013   PROG|use/guest/dir68k/cprg.c:main+00000E     0B0C    0B0C  supr prog
+014   PROG|use/guest/dir68k/cprg.c:main+000010     26BC  MOVE.L  #00006007C,(A3
+015   PROG|use/guest/dir68k/cprg.c:main+000012     0006    0006  supr prog
+016   PROG|use/guest/dir68k/cprg.c:main+000014     007C    007C  supr prog
+017   PROG|use/guest/dir68k/cprg.c:main+000016     600C  BRA.B   cprg.c:continu
+018                DATA|dest_ptr                   0006    0006  supr data wr w
+019    DATA|/users/guest/dir68k/cprg.c:+000100     007C    007C  supr data wr w
+020   PROG|user/guest/dir68k/cprg.c:whileLoop1     1012  MOVE.B  (A2),D0
+021   PROG|users/guest/dir68k/cprg.c:continue2     4A12  TST.B   (A2)
+022   PROG|use/guest/dir68k/cprg.c:main+000026     66F0  BNE.B   cprg.:whileLoo
+023   COMM|/users/guest/dir68k/cprg.c:String1      5468    54    supr data rd b
+024   PROG|users/guest/dir68k/cprg.c:continue1     60E0  BRA.B   |cprg.c:forLoo
+025   PROG|user/guest/dir68k/cprg.c:whileLoop1     1012  MOVE.B  (A2),D0

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 set  width  label 40

pod_cmd    set    perfinit perfrun          perfend                    ---ETC--

Displaying Traces  3-11



1Displaying Count
Absolute/Relative

Count information may be displayed two ways: relative (which is
the default), or absolute.  When relative is selected, count
information is displayed relative to the previous state.  When
absolute is selected, count information is displayed relative to the
trigger condition.

The "count absolute/relative" trace display option is not available
when counting is turned off in the trace command.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data            Opcode or Status           time count    xbits
Base:     hex     hex                 mnemonic                absolute     hex
+011     000AEA     247C  MOVEA.L #000000B0C,A2             +   5.48  uS     000
+012     000AEC     0000    0000  supr prog                 +   6.00  uS     000
+013     000AEE     0B0C    0B0C  supr prog                 +   6.48  uS     000
+014     000AF0     26BC  MOVE.L  #00006007C,(A3)           +   7.00  uS     000
+015     000AF2     0006    0006  supr prog                 +   7.48  uS     000
+016     000AF4     007C    007C  supr prog                 +   8.00  uS     000
+017     000AF6     600C  BRA.B   0000B04                   +   8.48  uS     000
+018     06017A     0006    0006  supr data wr word         +   9.00  uS     000
+019     06017C     007C    007C  supr data wr word         +   9.48  uS     000
+020     000AF8     1012  MOVE.B  (A2),D0                   +  10.0   uS     000
+021     000B04     4A12  TST.B   (A2)                      +  10.7   uS     000
+022     000B06     66F0  BNE.B   0000AF8                   +  11.2   uS     000
+023     000B0C     5468    54    supr data rd byte         +  11.7   uS     000
+024     000B08     60E0  BRA.B   0000AEA                   +  12.2   uS     000
+025     000AF8     1012  MOVE.B  (A2),D0                   +  13.0   uS     000

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 set  symbols  off  width  label 8; display  trace  count  absolute

pod_cmd    set    perfinit perfrun          perfend                    ---ETC--

3-12  Displaying Traces



1Offsetting
Address
Information

The "offset_by" trace display option allows you to cause the address
information in the trace display to be offset by the amount
specified.  The offset value is subtracted from the instruction’s
physical address to yield the address that is displayed.

By specifying an offset, you can still display symbols and source
lines (providing they’re turned on) after a program gets relocated.

You can also specify an offset to cause the listed addresses to
match the addresses in compiler or assembler listings.

Trace List                  Offset=A00    More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data            Opcode or Status           time count    xbits
Base:     hex     hex                 mnemonic                absolute     hex
+011     0000EA     247C  MOVEA.L #000000B0C,A2             +   5.48  uS     000
+012     0000EC     0000    0000  supr prog                 +   6.00  uS     000
+013     0000EE     0B0C    0B0C  supr prog                 +   6.48  uS     000
+014     0000F0     26BC  MOVE.L  #00006007C,(A3)           +   7.00  uS     000
+015     0000F2     0006    0006  supr prog                 +   7.48  uS     000
+016     0000F4     007C    007C  supr prog                 +   8.00  uS     000
+017     0000F6     600C  BRA.B   0000104                   +   8.48  uS     000
+018     05F77A     0006    0006  supr data wr word         +   9.00  uS     000
+019     05F77C     007C    007C  supr data wr word         +   9.48  uS     000
+020     0000F8     1012  MOVE.B  (A2),D0                   +  10.0   uS     000
+021     000104     4A12  TST.B   (A2)                      +  10.7   uS     000
+022     000106     66F0  BNE.B   00000F8                   +  11.2   uS     000
+023     00010C     5468    54    supr data rd byte         +  11.7   uS     000
+024     000108     60E0  BRA.B   00000EA                   +  12.2   uS     000
+025     0000F8     1012  MOVE.B  (A2),D0                   +  13.0   uS     000

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 display  trace  offset_by 0a00h

  run     trace     step   display           modify   break     end    ---ETC--

Displaying Traces  3-13



1Returning to the
Default Trace
Display

The "set default" command allows you to return to the default
display.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:  Address   Data                Opcode or Status               time count
Base:     hex     hex                     mnemonic                    relative
+011     000AEA     247C  MOVEA.L #000000B0C,A2                       480     nS
+012     000AEC     0000    0000  supr prog                           520     nS
+013     000AEE     0B0C    0B0C  supr prog                           480     nS
+014     000AF0     26BC  MOVE.L  #00006007C,(A3)                     520     nS
+015     000AF2     0006    0006  supr prog                           480     nS
+016     000AF4     007C    007C  supr prog                           520     nS
+017     000AF6     600C  BRA.B   0000B04                             480     nS
+018     06017A     0006    0006  supr data wr word                   520     nS
+019     06017C     007C    007C  supr data wr word                   480     nS
+020     000AF8     1012  MOVE.B  (A2),D0                             520     nS
+021     000B04     4A12  TST.B   (A2)                                720     nS
+022     000B06     66F0  BNE.B   0000AF8                             520     nS
+023     000B0C     5468    54    supr data rd byte                   480     nS
+024     000B08     60E0  BRA.B   0000AEA                             520     nS
+025     000AF8     1012  MOVE.B  (A2),D0                             760     nS

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 set  default

pod_cmd    set    perfinit perfrun          perfend                    ---ETC--

3-14  Displaying Traces



1Displaying
External Analyzer
Information

The "external" trace display option allows you to include data from
the external analyzer in the trace list.  External bits are displayed by
default if your emulator contains an external analyzer.  If you do
not wish to have the external bits information in the display, you
can turn them off.

The bits associated with the external analyzer labels may be
displayed in binary or hexadecimal format.

The following display shows three external labels (< CTRL> -F was
entered to scroll the screen left).  Labels must be defined in the
external analyzer configuration (and prior to trace command entry)
before they appear as softkey selections when displaying the trace.
Refer to the "Defining External Labels" section in the "Using the
External Analyzer" chapter.

Trace List                  Offset=0      More data off screen (ctrl-F, ctrl-G)
Label:     Opcode or Status               time count    xbits   hi_byte low_byte
Base:          mnemonic                    relative     hex     binary   binary
+011   #000000B0C,A2                       480     nS     0000 00000000 00000000
+012   supr prog                           520     nS     0000 00000000 00000000
+013   supr prog                           480     nS     0000 00000000 00000000
+014   #00006007C,(A3)                     520     nS     0000 00000000 00000000
+015   supr prog                           480     nS     0000 00000000 00000000
+016   supr prog                           520     nS     0000 00000000 00000000
+017   0000B04                             480     nS     0000 00000000 00000000
+018   supr data wr word                   520     nS     0000 00000000 00000000
+019   supr data wr word                   480     nS     0000 00000000 00000000
+020   (A2),D0                             520     nS     0000 00000000 00000000
+021   (A2)                                720     nS     0000 00000000 00000000
+022   0000AF8                             520     nS     0000 00000000 00000000
+023   supr data rd byte                   480     nS     0000 00000000 00000000
+024   0000AEA                             520     nS     0000 00000000 00000000
+025   (A2),D0                             760     nS     0000 00000000 00000000

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 display  trace  external  xbits  hex  then  hi_byte  binary  then  low_byte  bi
nary

  run     trace     step   display           modify   break     end    ---ETC--

Displaying Traces  3-15



1Trace Status
Display

In addition to the trace display options mentioned in this chapter,
you can display analyzer status with the command below.

display status  <RETURN>

The trace status information displayed with this command is the
same as displayed with the pod command "ts".  Refer to the
Terminal Interface: Analyzer User’s Guide for a complete
description of this status information.

Status

Emulator Status

  M68000--Running user program

Trace Status

  Emulation trace complete
  Arm ignored
  Trigger in memory
  Arm to trigger ?
  States 512 (512) -1..510
  Sequence term 2
  Occurrence left 1

STATUS:   M68000--Running user program    Emulation trace complete______...R....
 display  status

  run     trace     step   display           modify   break     end    ---ETC--

3-16  Displaying Traces



4

Making Software Performance Measurements

1Overview This chapter:

Introduces you to the Software Performance Measurement
Tool (SPMT) and describes the types of measurements
you can make with it.

Describes the process of using the SPMT.

Shows you how to make SPMT measurements on the
supplied demo program.

1Introduction The Software Performance Measurement Tool (SPMT) is a feature
of the Softkey Interface that allows you to make software
performance measurements on your programs.

The SPMT post-processes information from the analyzer trace list.
When you end a performance measurement, the SPMT dumps the
post-processed information to a binary file, which is then read
using the perf32 report generator utility.

Two types of software performance measurements can be made
with the SPMT: activity measurements, and duration
measurements.

Performance Measurements  4-1



Activity
Measurements

Activity measurements are measurements of the number of
accesses (reads or writes) within an address range.  The SPMT
shows you the percentage of analyzer trace states that are in the
specified address range, as well as the percentage of time taken by
those states.  Two types of activity are measured: memory activity,
and program activity.

Memory Activity

Memory activity is all activity that occurs within the address range.

Program Activity

Program activity is the activity caused by instruction execution in
the address range.  Program activity includes opcode fetches and
the cycles that result from the execution of those instructions
(reads and writes to memory, stack pushes, etc.).

For example, suppose an address range being measured for activity
contains an opcode that causes a stack push, which results in
multiple write operations to the stack area (outside the range).
The memory activity measurement will count only the stack push
opcode cycle.  However, the program activity measurement will
count the stack push opcode cycle and the write operations to the
stack.

By comparing the program activity and the memory activity in an
address range, you can get an idea of how much activity in other
areas is caused by the code being measured.  An activity
measurement report of the code (prog), data, and stack sections of
a program is shown in figure 4-1.

Duration
Measurements

Duration measurements provide a best-case/worst-case
characterization of code execution time.  These measurements
record execution times that fall within a set of specified time
ranges.  The analyzer trace command is set up to store only the
entry and exit states of the module to be measured (for example, a
C function or Pascal procedure).  The SPMT provides two types of
duration measurements: module duration, and module usage.

4-2  Performance Measurements



 Label 
 
prog  
      Address Range       ADEH thru     1261H  
 
 
      Memory Activity  
           State Percent  Rel =  57.77  Abs =  57.77  
                         Mean = 295.80  Sdv =  26.77  
           Time  Percent  Rel =  60.97  Abs =  60.97  
 
      Program Activity  
           State Percent  Rel =  99.82  Abs =  99.82  
                         Mean = 511.10  Sdv =   0.88  
           Time  Percent  Rel =  99.84  Abs =  99.84  
 
data  
      Address Range     6007AH thru    603A5H  
 
 
      Memory Activity  
           State Percent  Rel =  30.51  Abs =  30.51  
                         Mean = 156.20  Sdv =  31.87  
           Time  Percent  Rel =  28.09  Abs =  28.09  
 
      Program Activity  
           State Percent  Rel =   0.18  Abs =   0.18  
                         Mean =   0.90  Sdv =   0.88  
           Time  Percent  Rel =   0.16  Abs =   0.16  
 
stack  
      Address Range     40000H thru    43FFFH  
 
 
      Memory Activity  
           State Percent  Rel =  11.72  Abs =  11.72  
                         Mean =  60.00  Sdv =  29.24  
           Time  Percent  Rel =  10.94  Abs =  10.94  
 
      Program Activity  
           State Percent  Rel =   0.00  Abs =   0.00  
                         Mean =   0.00  Sdv =   0.00  
           Time  Percent  Rel =   0.00  Abs =   0.00  
 
 
  
         Graph of Memory Activity relative state percents >= 1 
prog                  57.77%  *****************************  
data                  30.51%  ****************  
stack                 11.72%  ******  
 

Figure 4-1.  Memory Activity and Program Activity

Performance Measurements  4-3



Module Duration

Module duration measurements record how much time it takes to
execute a particular code segment (for example, a function in the
source file).

  
         Graph of Memory Activity relative time percents >= 1 
prog                  60.97%  ******************************* 
data                  28.09%  **************  
stack                 10.94%  ******  
 
 
  
         Graph of Program Activity relative state percents >= 1 
prog                  99.82% **************************************************  
 
  
         Graph of Program Activity relative time percents >= 1 
prog                  99.84% **************************************************  
 
      Summary Information for     10 traces 
 
 
           Memory Activity  
           State count 
                Relative count     5120  
                Mean sample      170.67  
                Mean Standard Dv 29.30  
                95% Confidence 12.28% Error tolerance  
           Time  count  
                Relative Time - Us 2221.20  
 
 
           Program Activity  
           State count 
                Relative count     5120  
                Mean sample      170.67  
                Mean Standard Dv 0.58  
                95% Confidence 0.24% Error tolerance  
           Time  count  
                Relative Time - Us 2221.20  
      Absolute Totals  
                Absolute count - state     5120  

Figure 4-1.  Memory and Program Activity (Cont’d)

4-4  Performance Measurements



Module Usage

Module usage shows how much of the execution time is spent
outside of the module (from exit to entry).  This measurement
gives an indication of how often the module is being used.

1Using the
Software
Performance
Measurement Tool

Activity and duration measurements are made with the SPMT in a
five-step process, as follows:

1.  Set up the trace command.

2.  Initialize the performance measurement.

3.  Run the performance measurement.

4.  End the performance measurement.

5.  Generate the performance measurement report.

These five steps are described in the following paragraphs.

Setting Up the Trace
Command

Before you initialize and run performance measurements, the
current trace command (in other words, the last trace command
entered) must be properly set up.

In general, you want to give the SPMT as many trace states as
possible to post-process, so you should increase the trace depth to
the maximum number, as shown in the following command.

display trace depth  512 <RETURN>

Also it is important that "time" be counted by the analyzer;
otherwise, the SPMT measurements will not be correct.

Activity Measurements

If you wish to measure activity as a percentage of all activity, the
current trace command should be the default (in other words,
"trace counting time < RETURN> ").  The default trace command

Performance Measurements  4-5



triggers on any state, and all captured states are stored.  Also, since
states are stored "after" the trigger state, the maximum number of
captured states appears in each trace list.

Using Trace Commands Other than the Default. You can
qualify trace commands any way you like to obtain specific
information.  However, when you qualify the states that get stored
in the trace memory, your SPMT results will be biased by your
qualifications; the percentages shown will be of only those states
stored in the trace list.

Duration Measurements

For duration measurements, the trace command must be set up to
store only the entry and exit points of the module of interest.  Since
the trigger state is always stored, you should trigger on the entry or
exit points.  For example:

trace after  symbol_entry or  symbol_exit only
symbol_entry or  symbol_exit counting time
<RETURN>

Or:

trace after  module_name start or  module_name
end only  module_name start or  module_name
end counting time  <RETURN>

Where "symbol_entry" and "symbol_exit" are symbols from the user
program.  Or, where "module_name" is the name of a C function or
Pascal procedure (and is listed as a procedure symbol in the global
symbol display).

Initializing the
Performance

Measurement

After you set up the trace command, you must tell the SPMT the
address ranges on which you wish to make activity measurements
or the time ranges to be used in the duration measurement.  This is
done by initializing the performance measurement.  You can
initialize the performance measurement in the following ways:

Default initialization (activity measurement using global
symbols if the symbols database is loaded).

4-6  Performance Measurements



Initialize with user-defined files (activity or duration
measurement).

Initialize with global symbols (activity measurement).

Initialize with local symbols (activity measurement).

Restore a previous performance measurement (if the
emulation system has been exited and reentered).

Default Initialization

Entering the "performance_measurement_initialize" command
with no options specifies an activity measurement.  If a valid
symbolic database has been loaded, the addresses of all global
procedures and static symbols will be used; otherwise, a default set
of ranges that cover the entire processor address range will be used.

Initialization with User Defined Ranges

You can specifically give the SPMT address or time ranges to use
by placing the information in a file and entering the file name in
the "performance_measurement_initialize" command.  The formats
for the address range file (activity measurements) and time range
file (duration measurements) are described below.

Address Range File Format. Address range files may contain
program symbols (procedure name or static), user defined address
ranges, and comments.  An example address range file is shown
below.

# Any line which starts with a # is a comment. 
# All user’s labels must be preceded by a "|". 
 
|users_label  10H 1000H 
program_symbol 
 
# A program symbol can be a procedure name or a static.  In the case of a pro- 
# cedure name the range of that procedure will be used. 

|users_label2 program_symbol1 -> program_symbol2 
 
# "->" means thru.  The above will define a range which starts with symbol1 
# and goes thru symbol2.  If both symbols are procedures then the range will 
# be defined as the start of symbol1 thru the end of symbol2. 

dir1/dir2/source_file.s:local_symbol 

Performance Measurements  4-7



 
# The above defines a range based on the address of local_symbol. 
 

Time Range File Format. Time range files may contain
comments and time ranges in units of microseconds (us),
milliseconds (ms), or seconds (s).  An example time range file is
shown below.

# Any line which starts with a # is a comment. 

1 us 20 us 
10.1 ms 100.6 ms 
3.55 s  6.77 s 
 
# us microseconds 
# ms milliseconds 
#  s seconds 
# 
# The above are the only abbreviations allowed.  The space between the  number 
# and the units abbreviation is required. 

Selecting Duration Measurements

Activity measurements are selected when the
"performance_measurement_initialize" command is entered with
no options, with just a file name, or with the global or local symbol
options.  You must enter one of the following commands to select
a duration measurement.

performance_measurement_initialize duration
<RETURN>

performance_measurement_initialize <FILE>
duration  <RETURN>

When no user defined time range file is specified,  the following set
of default time ranges are used.

1 us 10 us
10.1 us 100 us
100.1 us 500 us
500.1 us 1 ms
1.001 ms 5 ms
5.001 ms 10 ms
10.1 ms 20 ms
20.1 ms 40 ms
40.1 ms 80 ms
80.1 ms 160 ms
160.1 ms 320 ms
320.1 ms 640 ms
640.1 ms 1.2 s

4-8  Performance Measurements



Initialization with Global Symbols

When the "performance_measurement_initialize" command is
entered with no options or with the "global_symbols" option, the
global symbols in the symbols database become the address ranges
for which activity is measured.  If the symbols database is not
loaded, a default set of ranges that cover the entire processor
address range will be used.

The global symbols database contains procedure symbols, which
are associated with the address range from the beginning of the
procedure to the end, and static symbols, which are associated with
the address of the static variable.

Initialization with Local Symbols

When the "performance_measurement_initialize" command is
entered with the "local_symbols_in" option and a source file name,
the symbols associated with that source file become the address
ranges for which activity is measured.  If the symbols database is
not loaded, an error message will occur telling you that the source
filename symbol was not found.

You can also use the "local_symbols_in" option with procedure
symbols; this allows you to measure activity related to the symbols
defined in a single function or procedure.

Below are example commands showing performance measurement
initialization with local symbols.

performance_measurement_initialize
local_symbols_in  spmt_demo.C: <RETURN>

performance_measurement_initialize
local_symbols_in  spmt_demo.C:math_library
<RETURN>

performance_measurement_initialize
local_symbols_in  math_library <RETURN>

Restoring the Current Measurement

The "performance_measurement_initialize restore" command
allows you to restore old performance measurement data from the
perf.out file in the current directory.

Performance Measurements  4-9



If you have not exited and reentered emulation, you can add traces
to a performance measurement simply by entering another
"performance_measurement_run" command.  However, if you exit
and reenter the emulation system, you must enter the
"performance_measurement_initialize restore" command before
you can add traces to a performance measurement.  When you
restore a performance measurement, make sure your current trace
command is identical to the command used with the restored
measurement.

The "restore" option checks the emulator software version and will
only work if the perf.out files you are restoring were made with the
same software version as is presently running in the emulator.  If
you ran tests using a former software version and saved perf.out
files, then updated your software to a new version number, you will
not be able to restore old perf.out measurement files.

Running the
Performance

Measurement

The "performance_measurement_run" command processes
analyzer trace data.  When you end the performance measurement,
this processed data is dumped to the binary "perf.out" file in the
current directory.  The perf32 report generator utility is used to
read the binary information in the "perf.out" file.

If the "performance_measurement_run" command is entered
without a count, the current trace data is processed.  If a count is
specified, the current trace command is executed consecutively the
number of times specified.  The data that results from each trace
command is processed and combined with the existing processed
data.  The STATUS line will say "Processing trace < NO.> " during
the run so you will know how your measurement is progressing.
The only way to stop this series of traces is by using < CTRL> -C
(sig INT).

The more traces you include in your sample, the more accurate will
be your results.  At least four consecutive traces are required to
obtain statistical interpretation of activity measurement results.

Ending the
Performance

Measurement

The "performance_measurement_end" command takes the data
generated by the "performance_measurement_run" command and
places it in a file named perf.out in the current directory.  If a file
named "perf.out" already exists in the current directory, it will be
overwritten.  Therefore, if you wish to save a performance

4-10  Performance Measurements



measurement, you must rename the perf.out file before performing
another measurement.

The "performance_measurement_end" command does not affect
the current performance measurement data which exists within the
emulation system.  In other words, you can add more traces later to
the existing performance measurement by entering another
"performance_measurement_run" command.

Once you have entered the "performance_measurement_end"
command, you can use the perf32 report generator to look at the
data saved in the perf.out file.

Note The "perf.out" file is a binary file.  Do not try to read it with the
HP-UX more or cat commands.  The perf32 report generator
utility (described in the following section) must be used to read the
contents of the "perf.out" file.

Using the "perf32"
Report Generator

The perf32 report generator utility must be used to read the
information in the "perf.out" file and other files dumped by the
SPMT (in other words, renamed "perf.out" files).  The perf32 utility
is run from the HP-UX shell.  You can fork a shell while in the
Softkey Interface and run perf32, or you can exit the Softkey
Interface and run perf32.

Options to "perf32"

A default report, containing all performance measurement
information, is generated when the perf32 command is used
without any options.  The options available with perf32 allow you
to limit the information in the generated report.  These options are
described below.

-h Produce outputs limited to histograms.

-s Produce a summary limited to the statistical
data.

Performance Measurements  4-11



-p Produce a summary limited to the program
activity.

-m Produce a summary limited to the memory
activity.

-f< file> Produce a report based on the information
contained in < file>  instead of the
information contained in perf.out.

For example, the following commands save the current
performance measurement information in a file called "perf1.out",
and produce a histogram showing only the program activity
occupied by the functions and variables.

mv perf.out perf1.out <RETURN> 
perf32 -hpf  perf1.out <RETURN>

Options -h, -s, -p, and -m affect the contents of reports generated
for activity measurements.  These options have no effect on the
contents of reports generated for duration (time interval)
measurements.

Interpreting Reports of Activity Measurements

Activity measurements are measurements of the number of
accesses (reads or writes) within an address range.  The reports
generated for activity measurements show you the percentage of
analyzer trace states that are in the specified address range, as well
as the percentage of time taken by those states.  The performance
measurement must include four traces before statistics (mean and
standard deviation) appear in the activity report.  The information
you will see in activity measurement reports is described below.

Memory Activity. All activity found within the address range.

Program Activity. All activity caused by instruction execution in
the address range.  Program activity includes opcode fetches and
the cycles that result from the execution of those instructions
(reads and writes to memory, stack pushes, etc.).

4-12  Performance Measurements



Relative. With respect to activity in all ranges defined in the
performance measurement.

Absolute. With respect to all activity, not just activity in those
ranges defined in the performance measurement.

Mean. Average number of states in the range per trace.  The
following equation is used to calculate the mean:

 

Standard Deviation.

Deviation from the mean of state count.
The following equation is used to calculate standard deviation:

Where:

N Number of traces in the measurement.

mean Average number of states in the range per
trace.

Ssumq Sum of squares of states in the range per
trace.

Symbols Within Range. Names of other symbols that identify
addresses or ranges of addresses within the range of this symbol.

Additional Symbols for Address. Names of other symbols that
also identify this address.

Performance Measurements  4-13



Note Some compilers emit more than one symbol for certain addresses.
For example, a compiler may emit "math_library" and
"_math_library" for the first address in a routine named
math_library.  The analyzer will show the first symbol it finds to
represent a range of addresses, or a single address point, and it will
show the other symbols under either "Symbols within range" or
"Additional symbols for address", as applicable.  In the
"math_library" example, it may show either "math_library" or
"_math_library" to represent the range, depending on which symbol
it finds first.  The other symbol will be shown below "Symbols
within range" in the report.  These conditions appear particularly
in default measurements that include all global and local symbols.

Relative and Absolute Counts. Relative count is the total
number of states associated with the address ranges in the
performance measurement.  Relative time is the total amount of
time associated with the address ranges in the performance
measurement.  The absolute counts are the number of states or
amount of time associated with all the states in all the traces.

Error Tolerance and Confidence Level. An approximate error
may exist in displayed information.  Error tolerance for a level of
confidence is calculated using the mean of the standard deviations
and the mean of the means.  Error tolerance gives an indication of
the stability of the information.  For example, if the error is 5% for
a confidence level of 95%, then you can be 95% confident that the
information has an error of 5% or less.

The Student’s "T" distribution is used in these calculations because
it improves the accuracy for small samples.  As the size of the
sample increases, the Student’s "T" distribution approaches the
normal distribution.

4-14  Performance Measurements



The following equation is used to calculate error tolerance:

 Where:

Om Mean of the standard deviations.

t Table entry in Student’s "T" table for a given
confidence level.

N Number of traces in the measurement.

Pm Mean of the means (i.e., mean sample).

Interpreting Reports of Duration Measurements

Duration measurements provide a best-case/worst-case
characterization of code execution time.  These measurements
record execution times that fall within a set of specified time
ranges.  The information you will see in duration measurement
reports is described below.

Number of Intervals. Number of "from address" and "to address"
pairs (after prefetch correction).

Maximum Time. The greatest amount of time between the "from
address" to the "to address".

Minimum Time. The shortest amount of time between the "from
address" to the "to address".

Average Time. Average time between the "from address" and the
"to address".  The following equation is used to calculate the
average time:

Performance Measurements  4-15



 Standard Deviation. Deviation from the mean of time.  The
following equation is used to calculate standard deviation:

 

Where:

N Number of intervals.

mean Average time.

Ssumq Sum of squares of time in the intervals.

Error Tolerance and Confidence Level. An approximate error
may exist in displayed information.  Error tolerance for a level of
confidence is calculated using the mean of the standard deviations
and the mean of the means.  Error tolerance gives an indication of
the stability of the information.  For example, if the error is 5% for
a confidence level of 95%, then you can be 95% confident that the
information has an error of 5% or less.

The Student’s "T" distribution is used in these calculations because
it improves the accuracy for small samples.  As the size of the
sample increases, the Student’s "T" distribution approaches the
normal distribution.

The following equation is used to calculate error tolerance: 

Where:

Om Mean of the standard deviations in each time
range.

t Table entry in Student’s "T" table for a given
confidence level.

4-16  Performance Measurements



N Number of intervals.

Pm Mean of the means (i.e., mean of the average
times in each time range).

1Examples This section:

Describes the SPMT demo program.

Performs an example activity measurement on the demo
program and describes the results.

Performs an example duration measurement on the demo
program and describes the results.

The SPMT Demo
Program

The SPMT demo program is a C program that has been supplied
with your Softkey Interface.  This program is used in examples in
this chapter to illustrate the SPMT.  A diagram of the function
calls in the demo program is shown in figure 4-2.

Refer to your compiler documentation for information on
compiling the demo program and to your Emulator Softkey
Interface User’s Guide for information on configuring the emulator
and loading and executing programs.

Generally, you perform the following steps before using the SPMT
to make software performance measurements.

Compile the demo program.

Enter the emulation system and configure the emulator
(map memory, restrict to real-time).

Load and run the demo program.

Performance Measurements  4-17



Main Program      1st Level         2nd Level         3rd Level         4th Level
Module            Function Calls    Function Calls    Function Calls    Function calls

main

                  request_command

                                    initialze

                                                      input_line

                                                      clear_buffer

                  parse_command

                                    get_next_token                      move_byte

                                                      lookup_token

                                                                        scan_string

                                                      scan_number

                                    apply_controller

                                                      syntax_check

                                                      semantic_check

                                                                        report_errors

                                                                        stack_library

                                                      apply_productions

                  report_result                                         math_library

                                    calculate_answer

                                                      format_result

                  endcommand                                            outputline

Figure 4-2.  Demo Program Function Calls

4-18  Performance Measurements



Example of Compiling and Executing the Demo Program

If you wish to step through the examples in this chapter, you must
have the appropriate C compiler for your particular emulator.
You do not have to step through the examples to learn how the
SPMT works; reading through the examples should be sufficient.

Note The following procedure for compiling the SPMT demo program
(with the HP 64902 C Cross Compiler), modifying the emulator
configuration, and loading and running the sample program is for
the HP 64742 68000 Emulator.

Most likely, there will be differences when compiling, configuring,
and loading for other HP 64700 Series emulators.

Copying the Demo Program. The demo program can be copied
with the following command.

$ cp
/usr/hp64000/demo/emul/hp64742/spmt_demo.c
spmt_demo.c <RETURN>

Compiling the Demo Program. The absolute file used to
generate the SPMT examples shown later in this chapter was
generated with the following HP 64902 68000 C Cross Compiler
command:

$ cc68000 -hvOGNr  hp64742 -o  spmt_demo
spmt_demo.c <RETURN>

Copying the Default Emulator Configuration File. Since the
HP 64902 68000 C Cross Compiler provides default configuration
files for the HP 64742 68000 Emulator, copy the default emulator
configuration file to the current directory before you enter the
emulation system.

$ cp  /usr/hp64000/env/hp64742/config.EA
config.EA <RETURN>

Performance Measurements  4-19



To configure the emulator to restrict to real-time runs, edit the
default configuration file:

$ chmod 644 config.EA <RETURN>
$ vi  config.EA <RETURN>

Add a line which reads "Restrict to real-time runs? yes" just before
the memory map definition, save your changes, and exit out of the
editor.

Entering the Emulation System. If you have installed your
emulator and Softkey Interface software as directed in the HP
64700-Series Emulators Softkey Interface Installation Notice, you can
enter the emulation system.

If /usr/hp64000/bin is specified in your PATH environment
variable, you can enter the Softkey Interface with the following
command:

$ emul700  <emul_name> <RETURN>

The < emul_name>  in the command above is the logical emulator
name given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab).

Configuring the Emulator. Once you have entered the
emulation system, you can load the default emulator configuration
(copied and modified earlier) with the following command:

load configuration  config <RETURN>

Loading the Demo Program. Enter the following command to
load the demo program:

load spmt_demo  <RETURN>

Running the Demo Program. Finally, to run the demo program,
enter the following command:

run from transfer_address  <RETURN>

4-20  Performance Measurements



Activity Measurement
Example

The following examples assume that the SPMT demo program has
been loaded into the emulator and is executing.

display trace depth  512 <RETURN>

trace counting time  <RETURN>

performance_measurement_initialize
addr_ranges <RETURN>

The "addr_ranges" file contains the names of all the functions in
the demo program:

                             apply_controlle 
                             apply_productio 
                             calculate_answe 
                             clear_buffer 
                             endcommand 
                             format_result 
                             get_next_token 
                             initialze 
                             input_line 
                             lookup_token 
                             math_library 
                             move_byte 
                             outputline 
                             parse_command 
                             report_errors 
                             report_result 
                             request_command 
                             scan_number 
                             scan_string 
                             semantic_check 
                             stack_library 
                             syntax_check 

Since these labels are program symbols, you do not have to specify
the address range associated with each label; the SPMT will search
the symbol database for the addresses of each label.

An easy way to create the "addr_ranges" file is to use the "copy
global_symbols" command to copy the global symbols to a file
named "addr_ranges"; then, fork a shell to HP-UX (by entering "!
< RETURN> " on the Softkey Interface command line) and edit
the file so that it contains the procedure names shown in figure 4-2.
Enter a < CTRL> -D  at the HP-UX prompt to return to the
Softkey Interface.

To run the performance measurement, enter the following
command:

performance_measurement_run  20 <RETURN>

Performance Measurements  4-21



The command above causes 20 traces to occur.  The SPMT
processes the trace information after each trace, and the number of
the trace being processed is shown on the status line.

Enter the following command to cause the processed trace
information to be dumped to the "perf.out" file.

performance_measurement_end  <RETURN>

Now, to generate a report from the "perf.out" file, type the
following on the command line to fork a shell and run the perf32
utility:

!perf32 | more

Information similar to the listing in figure 4-3 is scrolled onto your
display.

4-22  Performance Measurements



 Label 
 
math_library  
      Address Range       C54H thru      CA6H  
 
 
      Memory Activity  
           State Percent  Rel =  41.31  Abs =  23.72  
                         Mean = 121.45  Sdv = 105.82  
           Time  Percent  Rel =  41.28  Abs =  25.00  
 
      Program Activity  
           State Percent  Rel =  46.60  Abs =  46.49  
                         Mean = 238.05  Sdv = 206.72  
           Time  Percent  Rel =  46.12  Abs =  46.00  
 
apply_productio  
      Address Range       E5CH thru      ED4H  
 
 
      Memory Activity  
           State Percent  Rel =  13.20  Abs =   7.58  
                         Mean =  38.80  Sdv =  38.34  
           Time  Percent  Rel =  14.03  Abs =   8.50  
 
      Program Activity  
           State Percent  Rel =  11.16  Abs =  11.13  
                         Mean =  57.00  Sdv =  59.68  
           Time  Percent  Rel =  11.89  Abs =  11.86  
 
scan_string  
      Address Range       B5CH thru      B98H  
 
 
      Memory Activity  
           State Percent  Rel =  10.54  Abs =   6.05  
                         Mean =  31.00  Sdv =  72.87  
           Time  Percent  Rel =  10.22  Abs =   6.19  
 
      Program Activity  
           State Percent  Rel =   9.83  Abs =   9.80  
                         Mean =  50.20  Sdv = 117.57  
           Time  Percent  Rel =   9.67  Abs =   9.65  
 
move_byte  
      Address Range       B1EH thru      B5AH  
 
 
      Memory Activity  
           State Percent  Rel =   9.13  Abs =   5.24  
                         Mean =  26.85  Sdv =  62.77  
           Time  Percent  Rel =   8.87  Abs =   5.37  
 
      Program Activity  
           State Percent  Rel =   8.49  Abs =   8.47  
                         Mean =  43.35  Sdv = 101.60  
           Time  Percent  Rel =   8.37  Abs =   8.35  

Figure 4-3.  Example Activity Measurement 

Performance Measurements  4-23



 
stack_library  
      Address Range       C16H thru      C52H  
 
 
      Memory Activity  
           State Percent  Rel =   8.45  Abs =   4.85  
                         Mean =  24.85  Sdv =  42.28  
           Time  Percent  Rel =   8.08  Abs =   4.89  
 
      Program Activity  
           State Percent  Rel =   8.13  Abs =   8.12  
                         Mean =  41.55  Sdv =  70.29  
           Time  Percent  Rel =   7.91  Abs =   7.89  
 
initialze  
      Address Range       F24H thru      F88H  
 
 
      Memory Activity  
           State Percent  Rel =   3.40  Abs =   1.95  
                         Mean =  10.00  Sdv =  44.72  
           Time  Percent  Rel =   3.40  Abs =   2.06  
 
      Program Activity  
           State Percent  Rel =   3.21  Abs =   3.20  
                         Mean =  16.40  Sdv =  73.34  
           Time  Percent  Rel =   3.22  Abs =   3.22  
 
syntax_check  
      Address Range       DA8H thru      DF4H  
 
 
      Memory Activity  
           State Percent  Rel =   3.37  Abs =   1.93  
                         Mean =   9.90  Sdv =  44.04  
           Time  Percent  Rel =   3.36  Abs =   2.03  
 
      Program Activity  
           State Percent  Rel =   3.17  Abs =   3.16  
                         Mean =  16.20  Sdv =  71.75  
           Time  Percent  Rel =   3.18  Abs =   3.17  
 
report_errors  
      Address Range       BD8H thru      C14H  
 
 
      Memory Activity  
           State Percent  Rel =   2.45  Abs =   1.41  
                         Mean =   7.20  Sdv =  23.49  
           Time  Percent  Rel =   2.35  Abs =   1.42  

 
      Program Activity  
           State Percent  Rel =   2.35  Abs =   2.34  
                         Mean =  12.00  Sdv =  39.15  
           Time  Percent  Rel =   2.30  Abs =   2.29  
 

Figure 4-3.  Example Activity Measurement (Cont’d)

4-24  Performance Measurements



lookup_token  
      Address Range       D42H thru      DA6H  
 
 
      Memory Activity  
           State Percent  Rel =   2.07  Abs =   1.19  
                         Mean =   6.10  Sdv =  14.29  
           Time  Percent  Rel =   2.20  Abs =   1.33  
 
      Program Activity  
           State Percent  Rel =   1.55  Abs =   1.54  
                         Mean =   7.90  Sdv =  19.78  
           Time  Percent  Rel =   1.66  Abs =   1.66  
 
semantic_check  
      Address Range       DF6H thru      E5AH  
 
 
      Memory Activity  
           State Percent  Rel =   1.99  Abs =   1.14  
                         Mean =   5.85  Sdv =  25.70  
           Time  Percent  Rel =   2.04  Abs =   1.23  
 
      Program Activity  
           State Percent  Rel =   1.76  Abs =   1.76  
                         Mean =   9.00  Sdv =  38.63  
           Time  Percent  Rel =   1.81  Abs =   1.80  
 
apply_controlle  
      Address Range       FF0H thru     1072H  
 
 
      Memory Activity  
           State Percent  Rel =   1.80  Abs =   1.04  
                         Mean =   5.30  Sdv =   7.73  
           Time  Percent  Rel =   1.95  Abs =   1.18  
 
      Program Activity  
           State Percent  Rel =   1.16  Abs =   1.15  
                         Mean =   5.90  Sdv =   8.52  
           Time  Percent  Rel =   1.32  Abs =   1.32  
 
request_command  
      Address Range      10E6H thru     1132H  
 
 
      Memory Activity  
           State Percent  Rel =   0.61  Abs =   0.35  
                         Mean =   1.80  Sdv =   8.05  
           Time  Percent  Rel =   0.61  Abs =   0.37  
 
      Program Activity  
           State Percent  Rel =   0.59  Abs =   0.59  
                         Mean =   3.00  Sdv =  13.42  
           Time  Percent  Rel =   0.59  Abs =   0.59  
 

Figure 4-3.  Example Activity Measurement (Cont’d)

Performance Measurements  4-25



outputline  
      Address Range       CA8H thru      CF2H  
 
 
      Memory Activity  
           State Percent  Rel =   0.37  Abs =   0.21  
                         Mean =   1.10  Sdv =   0.97  
           Time  Percent  Rel =   0.33  Abs =   0.20  
 
      Program Activity  
           State Percent  Rel =   0.71  Abs =   0.71  
                         Mean =   3.65  Sdv =   3.23  
           Time  Percent  Rel =   0.66  Abs =   0.66  
 
format_result  
      Address Range       ED6H thru      F22H  
 
 
      Memory Activity  
           State Percent  Rel =   0.37  Abs =   0.21  
                         Mean =   1.10  Sdv =   3.77  
           Time  Percent  Rel =   0.37  Abs =   0.22  
 
      Program Activity  
           State Percent  Rel =   0.42  Abs =   0.42  
                         Mean =   2.15  Sdv =   6.02  
           Time  Percent  Rel =   0.41  Abs =   0.41  
 
calculate_answe  
      Address Range      1074H thru     10E4H  
 
 
      Memory Activity  
           State Percent  Rel =   0.31  Abs =   0.18  
                         Mean =   0.90  Sdv =   4.02  
           Time  Percent  Rel =   0.31  Abs =   0.19  
 
      Program Activity  
           State Percent  Rel =   0.27  Abs =   0.27  
                         Mean =   1.40  Sdv =   6.26  
           Time  Percent  Rel =   0.28  Abs =   0.28  
 
report_result  
      Address Range      119AH thru     11ECH  
 
 
      Memory Activity  
           State Percent  Rel =   0.31  Abs =   0.18  
                         Mean =   0.90  Sdv =   4.02  
           Time  Percent  Rel =   0.32  Abs =   0.19  
 
      Program Activity  
           State Percent  Rel =   0.27  Abs =   0.27  
                         Mean =   1.40  Sdv =   6.26  
           Time  Percent  Rel =   0.29  Abs =   0.28  
 

Figure 4-3.  Example Activity Measurement (Cont’d)

4-26  Performance Measurements



get_next_token  
      Address Range       F8AH thru      FEEH  
 
 
      Memory Activity  
           State Percent  Rel =   0.15  Abs =   0.09  
                         Mean =   0.45  Sdv =   2.01  
           Time  Percent  Rel =   0.17  Abs =   0.10  
 
      Program Activity  
           State Percent  Rel =   0.09  Abs =   0.09  
                         Mean =   0.45  Sdv =   2.01  
           Time  Percent  Rel =   0.10  Abs =   0.10  
 
endcommand  
      Address Range      11EEH thru     11F6H  
 
 
      Memory Activity  
           State Percent  Rel =   0.10  Abs =   0.06  
                         Mean =   0.30  Sdv =   1.34  
           Time  Percent  Rel =   0.09  Abs =   0.05  
 
      Program Activity  
           State Percent  Rel =   0.14  Abs =   0.14  
                         Mean =   0.70  Sdv =   3.13  
           Time  Percent  Rel =   0.13  Abs =   0.13  
 
scan_number  
      Address Range       B9AH thru      BD6H  
 
 
      Memory Activity  
           State Percent  Rel =   0.03  Abs =   0.02  
                         Mean =   0.10  Sdv =   0.31  
           Time  Percent  Rel =   0.03  Abs =   0.02  
 
      Program Activity  
           State Percent  Rel =   0.07  Abs =   0.07  
                         Mean =   0.35  Sdv =   0.93  
           Time  Percent  Rel =   0.06  Abs =   0.06  

clear_buffer  
      Address Range       CF4H thru      D40H  
 
 
      Memory Activity  
           State Percent  Rel =   0.02  Abs =   0.01  
                         Mean =   0.05  Sdv =   0.22  
           Time  Percent  Rel =   0.01  Abs =   0.01  
 
      Program Activity  
           State Percent  Rel =   0.03  Abs =   0.03  
                         Mean =   0.15  Sdv =   0.67  
           Time  Percent  Rel =   0.03  Abs =   0.03  
 

Figure 4-3.  Example Activity Measurement (Cont’d)

Performance Measurements  4-27



input_line  
      Address Range       ADEH thru      B1CH  
 
 
      Memory Activity  
           State Percent  Rel =   0.00  Abs =   0.00  
                         Mean =   0.00  Sdv =   0.00  
           Time  Percent  Rel =   0.00  Abs =   0.00  
 
      Program Activity  
           State Percent  Rel =   0.00  Abs =   0.00  
                         Mean =   0.00  Sdv =   0.00  
           Time  Percent  Rel =   0.00  Abs =   0.00  
 
parse_command  
      Address Range      1134H thru     1198H  
 
 
      Memory Activity  
           State Percent  Rel =   0.00  Abs =   0.00  
                         Mean =   0.00  Sdv =   0.00  
           Time  Percent  Rel =   0.00  Abs =   0.00  
 
      Program Activity  
           State Percent  Rel =   0.00  Abs =   0.00  
                         Mean =   0.00  Sdv =   0.00  
           Time  Percent  Rel =   0.00  Abs =   0.00  
 
 
  
         Graph of Memory Activity relative state percents >= 1
math_library          41.31%  *********************  
apply_productio       13.20%  *******  
scan_string           10.54%  ******  
move_byte              9.13%  *****  
stack_library          8.45%  ****  
initialze              3.40%  **  
syntax_check           3.37%  **  
report_errors          2.45%  *  
lookup_token           2.07%  *  
semantic_check         1.99%  *  
apply_controlle        1.80%  *  

 
  
         Graph of Memory Activity relative time percents >= 1 
math_library          41.28%  *********************  
apply_productio       14.03%  *******  
scan_string           10.22%  *****  
move_byte              8.87%  *****  
stack_library          8.08%  ****  
initialze              3.40%  **  
syntax_check           3.36%  **  
report_errors          2.35%  *  
lookup_token           2.20%  *  
semantic_check         2.04%  *  
apply_controlle        1.95%  *  

Figure 4-3.  Example Activity Measurement (Cont’d)

4-28  Performance Measurements



 
  
         Graph of Program Activity relative state percents >= 1 
math_library          46.60%  ************************  
apply_productio       11.16%  ******  
scan_string            9.83%  *****  
move_byte              8.49%  ****  
stack_library          8.13%  ****  
initialze              3.21%  **  
syntax_check           3.17%  **  
report_errors          2.35%  *  
lookup_token           1.55%  *  
semantic_check         1.76%  *  
apply_controlle        õ.16%  *  
 
  
         Graph of Program Activity relative time percents >= 1 
math_library          46.12%  ***********************  
apply_productio       11.89%  ******  
scan_string            9.67%  *****  
move_byte              8.37%  ****  
stack_library          7.91%  ****  
initialze              3.22%  **  
syntax_check           3.18%  **  
report_errors          2.30%  *  
lookup_token           1.66%  *  
semantic_check         1.81%  *  
apply_controlle        1.32%  *  
 
      Summary Information for     20 traces 
 
 
           Memory Activity  
           State count 
                Relative count     5880  
                Mean sample       13.36  
                Mean Standard Dv 23.03  
                95% Confidence 80.71% Error tolerance  
           Time  count  
                Relative Time - Us 2682.00  
 
 
           Program Activity  
           State count 
                Relative count    10216  
                Mean sample       23.22  
                Mean Standard Dv 38.59  
                95% Confidence 77.82% Error tolerance  
           Time  count  
                Relative Time - Us 4417.52  
      Absolute Totals  
                Absolute count - state    10240  
                Absolute count - time - Us 4428.68  

Figure 4-3. Example Activity Measurements (Cont’d)

Performance Measurements  4-29



The measurements for each label are printed in descending order
according to the amount of activity.  You can see that the
"math_library" function has the most activity.  Also, you can see
that no activity is recorded for several of the functions.  The
histogram portion of the report compares the activity in the
functions that account for at least 1% of the activity for all labels
defined in the measurement.

Duration
Measurement

Examples

Before you perform duration measurements, you should be aware
of the prefetch and recursion considerations associated with these
measurements.

Prefetch and Recursion Considerations

When using the SPMT to perform duration measurements, there
should be only two addresses stored in the trace memory: the entry
address, and the exit address.  Prefetches or recursion can place
several entry addresses before the first exit address, and/or several
exit addresses before the first entry address.  Duration
measurements are made between the last entry address in a series
of entry addresses, and the last exit address in a series of exit
addresses (see figure 4-4).  All of the entry and exit addresses which
precede these last addresses are assumed to be unused prefetches,
and are ignored during time measurements.

                    START  - unused prefetch 
                    START  - unused prefetch 
                    START  - unused prefetch 
                    START  - START actually taken -
                    END    - unused prefetch 
                    END    - unused prefetch             Measure duration
                    END    - unused prefetch 
                    END    - END actually taken   -
                    START  - unused prefetch 
                    START  - unused prefetch             Measure duration
                    START  - unused prefetch 
                    START  - START actually taken -
                    END    - unused prefetch 
                    END    - unused prefetch 

Figure 4-4.  Prefetch Correction

4-30  Performance Measurements



If you are using the HP 64902 68000 C Cross Compiler, version
number 2.00 or higher, prefetches will not be a problem because
the debug option of the compiler inserts no-op padding ahead of
the entry and exit events in the code.

If you are using any other compiler, including earlier versions of
the HP 64902 68000 C Cross Compiler, the prefetches will be
present.  Even so, duration measurements will not be affected.  The
SPMT makes its duration measurements from the last start address
in the series of start addresses, to the last end address in the series
of end addresses.  The other start and end addresses are unused
prefetches and are ignored by the software of the SPMT.

Recursive procedures will still affect the accuracy of your
measurements.

The prefetch correction has the following consequences:

Prefetches are ignored.  They do not affect the accuracy of
the measurement in process.

When measuring a recursive function, module duration
will be measured between the last recursive call and the
true end of the recursive execution.  This will affect the
accuracy of the measurement.

If a module is entered at the normal point, and then exited
by a point other than the defined exit point, the entry
point will be ignored.  It will be judged the same as any
other unused prefetch, and no time-duration measurement
will be made.  Its time will be included in the measure of
time spent outside the procedure or function.

If a module is exited from the normal point, and then
reentered from some other point, the exit will also be
assumed to be an unused prefetch of the exit state.

Performance Measurements  4-31



Note If you are making duration measurements on a function that is
recursive, or one that has multiple entry and/or exit points, you
may wind up with invalid information.

Example Duration Measurement

The following examples assume that the SPMT demo program has
been loaded into the emulator and is executing.

display trace depth  512 <RETURN>

trace after  math_library start or
math_library end only  math_library start or
math_library end <RETURN>

The "trace" specification sets up the analyzer to capture only the
states that contain the start address of the "math_library" function
or the end address of the "math_library" function.  Since the trigger
state is also stored, the analyzer is set up to trigger on the entry or
exit address of the "math_library" function.  With these states in
memory, the analyzer will derive two measurements: time from
start to end of math_library, and time from end to start of
math_library.

Enter the following command to initialize the duration
measurement:

performance_measurement_initialize
time_ranges duration  <RETURN>

The "time_ranges" file contains:

                             1 us 20 us 
                             21 us 40 us 
                             41 us 60 us 
                             61 us 80 us 
                             81 us 100 us 
                             101 us 120 us 
                             121 us 140 us 
                             141 us 160 us 
                             161 us 180 us 
                             181 us 200 us 
                             201 us 5 ms 

You can fork a shell to HP-UX (by entering "! < RETURN> " on
the Softkey Interface command line) and create the "time_ranges"

4-32  Performance Measurements



file.  Enter a < CTRL> -D  at the HP-UX prompt to return to the
Softkey Interface.

To run the performance measurement, enter the following
command:

performance_measurement_run  10 <RETURN>

The command above causes 10 traces to occur.  The SPMT
processes the trace information after each trace, and the number of
the trace being processed is shown on the status line.

Enter the following command to cause the processed trace
information to be dumped to the "perf.out" file.

performance_measurement_end  <RETURN>

Now, to generate a report from the "perf.out" file, type the
following on the command line to fork a shell and run the perf32
utility:

!perf32 | more

Information similar to the listing in figure 4-5 is scrolled onto your
display.

Two sets of information are given in the duration measurement
report: module duration and module usage.  The first set is the
"module duration" measurement.  (You can tell because the "from
address" is lower than the "to address".)

The module duration report in figure 4-5 shows that the average
amount of time it takes for the "math_library" module to execute is
roughly 82 microseconds.

Module usage measurements show how much time is spent outside
the module of interest; they indicate how often the module is used.
The report shown in the second part of figure 4-5 shows that there
is heavy demand for the "math_library" function.  In fact, the time
between executions of the "math_library" module is generally less
than the amount of time it takes for the "math_library" module to
execute.

Performance Measurements  4-33



           Time Interval Profile  
 
 
 
 
 
From Address       C54   
      File /users/guest/dir68k/spmt_demo.c  
      Symbolic Reference at math_library+0  
To Address         CA6   
      File /users/guest/dir68k/spmt_demo.c  
      Symbolic Reference at math_library+52  
Number of intervals   2132  
Maximum Time 173.600 us  
Minimum Time 22.800 us  
Avg Time     81.748 us  
 
 
      Statistical summary - for     10 traces 
           Stdv  39.09  
           95% Confidence 2.03% Error tolerance  
 
  
         Graph of relative percents   
1 us 20 us             0.00%    
21 us 40 us           17.92%  *********  
41 us 60 us           16.84%  *********  
61 us 80 us           10.13%  *****  
81 us 100 us          10.08%  *****  
101 us 120 us         16.09%  ********  
121 us 140 us         10.65%  ******  
141 us 160 us          3.42%  **  
161 us 180 us          3.42%  **  
181 us 200 us          0.00%    
201 us 5 ms            0.00%    
 
 
 
From Address       CA6   
      File /users/guest/dir68k/spmt_demo.c  
      Symbolic Reference at math_library+52  
To Address         C54   
      File /users/guest/dir68k/spmt_demo.c  
      Symbolic Reference at math_library+0  
Number of intervals   2132  
Maximum Time 12859.320 us  
Minimum Time 11.400 us  
Avg Time     82.540 us  
 
 
      Statistical summary - for     10 traces 
           Stdv 747.44  
           95% Confidence 38.44% Error tolerance  
 

Figure 4-5.  Example Duration Measurement

4-34  Performance Measurements



  
         Graph of relative percents   
1 us 20 us            88.27% ********************************************  
21 us 40 us            0.00%    
41 us 60 us            0.00%    
61 us 80 us            0.00%    
81 us 100 us           0.00%    
101 us 120 us          0.00%    
121 us 140 us          0.00%    
141 us 160 us          0.00%    
161 us 180 us          0.00%    
181 us 200 us          0.00%    
201 us 5 ms            1.13%  *  
 

Figure 4-5.  Example Duration Measurement (Cont’d)

Performance Measurements  4-35



1Notes

4-36  Performance Measurements



5

Using the External Analyzer

1Introduction An HP 64700-Series emulator may be ordered with an external
analyzer.  The external analyzer provides 16 external trace
channels.  These trace channels allow you to capture activity on
signals external to the emulator, typically other target system
signals.  The external analyzer may be configured as an extension to
the emulation analyzer, as an independent state analyzer, or as an
independent timing analyzer.

If your emulator contains an external analyzer, you can define up to
eight labels for the 16 external data channels in the configuration.
These external analyzer labels can be used in trace commands, and
the data associated with these labels can be displayed in the trace
list.  One external analyzer label, "xbits", is defined by the default
configuration and is included in the default trace list.

1Before You Can
Use the External
Analyzer

There are several things to do before you can use the external
analyzer; these things are listed below and explained in the
following paragraphs.

Assemble the analyzer probe.

Connect the probe to the emulator.

Connect the probe wires to the target system.

Using the External Analyzer  5-1



Assembling the
Analyzer Probe

The analyzer probe is a two-piece assembly, consisting of a ribbon
cable and 18 probe wires (16 data channels and the J and K clock
inputs) attached to a connector.  Either end of the ribbon cable
may be connected to the 18-wire connector, and the connectors are
keyed so that you can only attach them in one way.  Align the key
of the ribbon cable connector with the slot in the 18-wire
connector, and firmly press the connectors together (see figure 5-1).

Each of the 18 probe wires has a signal and a ground connection.
Each probe wire is labeled for easy identification.  Thirty-six
grabbers are provided for the signal and ground connections of
each of the 18 probe wires.  The signal and ground connections are
attached to the pin in the grabber handle (see figure 5-2).

Figure 5-1.  Assembling the Analyzer Probe

5-2  Using the External Analyzer



Connecting the
Probe to the Emulator

The external analyzer probe is attached to a connector under the
snap-on cover in the front upper right corner of the emulator.
Remove the snap-on cover by pressing the side tabs toward the
center of the cover; then, pull the cover out (see figure 5-3).

Caution Check for bent connector pins before connecting the analyzer
probe to the emulator.

Figure 5-2.  Attaching Grabbers to Probe Wires

Using the External Analyzer  5-3



Each end of the ribbon cable connector is keyed so that you can
connect it to the emulator in only one way.  Align the key of the
ribbon cable connector with the slot in the emulator connector,
and gently press the ribbon cable connector into the emulator
connector (see figure 5-4).

Figure 5-3.  Removing Cover to Emulator Connector

5-4  Using the External Analyzer



Caution Turn OFF target system power before connecting analyzer probe
wires to the target system.  The probe grabbers are difficult to
handle with precision, and it is extremely easy to short the pins of a
chip (or other connectors which are close together) with the probe
wire while trying to connect it.

Figure 5-4.  Connecting the Probe to the Emulator

Using the External Analyzer  5-5



Connecting Probe
Wires to the Target

System

You can connect the grabbers to pins, connectors, wires, etc., in the
target system.  Pull the hilt of the grabber towards the back of the
grabber handle to uncover the wire hook.  When the wire hook is
around the desired pin or connector, release the hilt to allow the
tension of the grabber spring to hold the connection (see figure
5-5).

Figure 5-5.  Connecting the Probe to the Target System

5-6  Using the External Analyzer



1Configuring the
External Analyzer

After you have assembled the external analyzer probe and
connected it to the emulator and target system, the next step is to
configure the external analyzer.

The external analyzer is a versatile instrument, and you can
configure it to suit your needs.  For example, you can specify
threshold voltage levels on the external analyzer channels, and you
can operate the external analyzer in several different modes.  The
external analyzer configuration options allow you to:

Specify the threshold voltages for the external channels.

Select the external analyzer mode.

Specify the slave clock mode (only if the "state" external
analyzer mode is selected).

Define external analyzer labels.

The default configuration specifies that the external analyzer is
aligned with the emulation analyzer.  TTL level threshold voltages
are defined, as well as an external label named "xbits" which
contains all 16 channels.

To modify the external analyzer configuration, enter the following
command:

modify configuration  <RETURN>

Now, press the < RETURN>  key until you see the following
question.  (If you pass this question, you can use the RECALL
softkey to back up to it.)

Modify external analyzer configuration?

Pressing the "yes" softkey causes the external analyzer
configuration questions to be asked.  These questions are described
in the paragraphs that follow.

Using the External Analyzer  5-7



Should Emulation
Control the External

Bits?

This configuration question allows you to specify whether the
emulation interface should control the external analyzer.

yes The default configuration selects "yes".  You
must answer "yes" to access the remaining
external analyzer configuration questions.

At the end of the configuration process the
external analyzer mode and threshold voltages
will be set; existing labels will be deleted, and
only the labels specified in response to the
questions below will be defined.

no If emulation does not control the external bits,
the external analyzer configuration will not be
modified in any way by the emulation interface.

Threshold Voltage? The external analyzer probe signals are divided into two groups:
the lower byte (channels 0 through 7 and the J clock), and the
upper byte (channels 8 through 15 and the K clock).  You can
specify a threshold voltage for each of these groups with the
configuration questions shown below.

Threshold voltage for bits 0-7 and J clock? TTL
Threshold voltage for bits 8-15 and K clock? TTL

The default threshold voltages are specified as TTL  which
translates to 1.40 volts.

Voltages may be in the range from -6.40 volts to 6.35 volts (with a
0.05V resolution).  You may also specify CMOS (which translates
to 2.5 volts), or ECL (which translates to -1.3 volts).

External Analyzer
Mode?

This configuration question allows you to select the mode of the
external analyzer.

The default configuration selects the "emulation" external analyzer
mode.  In this mode, you have 16 external trace signals on which
data is captured synchronously with the emulation clock.

5-8  Using the External Analyzer



The external analyzer may also operate as an independent state
analyzer, or it may operate as an independent timing analyzer if a
host computer interface program is used.

emulation Selects the emulation mode (which is the
default). In this mode, the external analyzer
becomes an extension of the emulation analyzer.
In other words, they operate as one analyzer.

The external bits are clocked with the emulation
clock.  External labels may be used in trace
commands to qualify trigger, storage, prestore,
or count states.  External labels may be viewed in
the trace display.

state Selects the independent state mode of the
external analyzer.  The external bits are not
available for use from the emulation interface.
You can, however, use pod commands to control
the external state analyzer in its independent
mode.

timing Selects the timing mode of the external analyzer.
The external bits are not available for use from
the emulation interface.  Because the pod
commands for the timing analyzer dump
information in binary format, you will need to
use Timing Analyzer Softkey Interface, or other
interface program, to capture the timing
analyzer data.

Slave Clock Mode for
External Bits? (State

Mode Only)

There are two modes of demultiplexing that can be set for the 16
channels of the external analyzer: mixed clocks and true
demultiplexing.

off By default, the slave clocks are turned OFF.  If
the slave clock is "off", all 16 external bits are
clocked with the emulation clock.

Using the External Analyzer  5-9



mixed When the slave clock mode is "mixed", the lower
eight external bits (0-7) are latched when the
slave clock (as specified by your answers to the
next four questions) is received.  The upper eight
bits and the latched lower eight are then clocked
into the analyzer when the emulation clock is
received (see figure 5-6).

If no slave clock has appeared since the last
master clock, the data on the lower 8 bits of the
pod will be latched at the same time as the upper
8 bits.  If more than one slave clock has appeared
since the last master clock, only the first slave
data will be available to the analyzer (see figure
5-7).

Figure 5-6.  Mixed Clock Demultiplexing

5-10  Using the External Analyzer



demux When the slave clock mode is "demux", only the
lower eight external channels (0-7) are used.
The slave clock (as specified by your answers to
the next four questions) latches these bits and
the emulation clock samples the same channels
again.  The latched bits show up as bits 0-7 in the
trace data, and the second sample shows up as
bits 8-15 (see figure 5-8).

If no slave clock has appeared since the last
master clock, the data on the lower 8 bits of the
pod will be the same as the upper 8 bits.  If more
than one slave clock has appeared since the last
master clock, only the first slave data will be
available to the analyzer.

Figure 5-7.  Slave Clocks

Using the External Analyzer  5-11



Figure 5-8.  True Demultiplexing

5-12  Using the External Analyzer



Edges of J (K,L,M) clock used for slave clock?

These four questions are asked when you select either the "mixed"
or "demux" slave clock mode.  They allow you to define the slave
clock.  You can specify rising, falling, both, or neither (none) edges
of the J, K, L, and M clocks.  When several clock edges are
specified, any one of the edges clocks the trace.

Clocks J and K are the external clock inputs of the external
analyzer probe.  The L and M clocks are generated by the
emulator.  Typically, the L clock is the emulation clock derived by
the emulator and the M clock is not used.

Defining External
Labels

The remaining external analyzer configuration questions allow you
to define external labels.

Note The Timing Analyzer Softkey Interface does not use then external
labels from the configuration. You maintain labels for the timing
analyzer software within the Timing Analyzer Softkey Interface
itself.

First external label name?
First external label start bit?
First external label width?

External labels can be defined with bits in the range of 0 through
15.  The start bit may be in the range 0 through 15, but the width of
the label must not cause the label to extend past bit 15.  Thus, the
sum of the start bit number plus the width must not exceed 16.

Once external labels are defined, they may be used in trace
commands to qualify events (if the emulation controls the external
analyzer).  Also, you can modify the trace display to include data
for the various trace labels.

Using the External Analyzer  5-13



First external label polarity?

This configuration question allows you to specify positive or
negative logic for the external bits.  In other words, positive means
high= 1, low= 0.  Negative means low= 1, high= 0.

Define second external label?

Allows you to define additional labels.  Up to eight external labels
can be defined.

1Configuring
Interactive
Measurements

When using the "state" or "timing" options for the external analyzer
mode, you can configure the analyzer to trigger the external
analyzer. This ensures that traces are returned only when the
analyzer is running.

To configure the analyzer for interactive measurements, enter

modify configuration   <RETURN>

in the emulator Softkey Interface.

Now, press the < RETURN>  key until you see the question:

Modify Interactive Measurement Specification?

Answer the prompt "yes" by pressing the yes softkey, or entering
"yes" at the command line. You then see a display as depicted in
figure 5-9.

5-14  Using the External Analyzer



Note The "External Analyzer" option for Trig2  only appears if you have
selected state or timing  for the external analyzer mode.

Using the Analyzer
Trigger to Drive the

External Analyzer

The analyzer can be used to drive the external analyzer when it
finds its trigger condition. This is done by setting up the analyzer to
drive the trig2 internal trigger and set up the external analyzer to
receive it.

In this configuraton, the analyzer triggers the external analyzer to
start a trace only after it finds its trigger condition. This allows you
to coordinate timing measurements with the occurrence of a
specific analyzer state.

 
                    Interactive Measurement Specification
 
              BNC <-??-> ---\                      BNC <-??-> ---\
                            |                                    |
             CMBT <-??-> ---|                     CMBT <-??-> ---|
                            | Trig1                              | Trig2
         Emulator <---------|                 Emulator <-??------|
                            |                                    |
         Analyzer ------> --/                  Analyzer <-??-> --|
                                                                 |
                                      External Analyzer <-??-> --/
 
 NOTES:
   1. The connections marked "??" are set up here in configuration.
   2. drive = ---->  receive = <----  (The display won’t change, however.)
   3. The External Analyzer question is only asked when the External Analyzer
      mode is state or timing.
 
 
 STATUS:   Interactive Measurement Specification_________________________........
 Should BNC drive or receive Trig1? neither
 
 
  drive   receive  neither    both                                       RECALL
 

Figure 5-9. Interactive Measurement Configuration

Using the External Analyzer  5-15



Refer to the chapter on "Coordinated Measurements" in the HP
64700-Series Emulators Softkey Interface Reference for more
information on setting up interactive measurements.

1Saving the
Configuration

Save the changes to the configuration file either in a system defined
file or in a user file of your choice. The system defined file is:

/usr/hp64000/inst/emul/< product_number> /userconfig.EA

where < product_number>  is the Hewlett-Packard product
number, such as "64742A" for the HP 64742A Motorola 68000
Emulator.

The user defined file can be any file name you specify.

If a system defined file name is used, the emulator will used that
configuration as the default when initializing the emulator.

5-16  Using the External Analyzer



6

Timing: Introduction

1Overview External timing commands are present in the firmware resident
Terminal Interface.  However, these commands output data in a
binary format, and a host computer interface program is necessary
to interpret and display the binary information.  The Timing
Analyzer Softkey Interface program is one such host computer
interface.

1Features of the
Timing Analyzer

The Timing Analyzer Softkey Interface features include:

16 Channels at up to 100 MHz.

Standard or glitch capture modes.

Trace memory holding 1010 samples; 505 samples in glitch
capture mode.

Trigger when signals on the external probe match a
specified pattern for greater than or less than a specified
duration.  Edge and glitch qualifiers may be included in
the trigger specification.

Trigger point at the start, center, or end of the trace to
view signals after, about, or before the trigger.

Display of data in graphic or list format.

Timing: Introduction 6-1



User-defined labels for the external probes signals.

Store measurement data along with the system
configuration.

Comparison of stored and current measurements.

Automatically mark user-specified events in trace data
memory.

Calculation of statistics on marked events.

Support of graphics monitors as well as terminals (with an
ASCII character waveform display).

Support of screen dumps to graphics printers (for printing
waveform displays).

Support for cross triggering between the analyzer and the
external analyzer.

1Measurement
Modes

You can use the external timing analyzer in either of two modes:
standard (data acquisition) or glitch capture (data and glitch
acquisition).

Standard Mode

In the standard mode, the timing analyzer samples data on the
external analyzer probe at the selected sample rate.  Up to 1010
samples can be stored, and the maximum sample rate is 100 MHz
(10 ns intervals). See figure 6-1.

6-2 Timing: Introduction



Glitch Capture Mode

This is the same as the standard mode except that glitch
information is also stored for each sample.  A glitch is detected
when there are two or more transitions on a signal between
samples.  The storing of glitch information reduces the number of
samples that can be stored to 505, and the maximum sample rate is
50 MHz (20 ns intervals). See figure 6-2.

Figure 6-1.  Standard Data Acquisition Mode

Timing: Introduction 6-3



Trace Memory Trace memory can store 1010 trace states if the standard mode is
used or 505 states if the glitch capture mode is used.

The Trace
Specification

The trace specification allows you to define the trigger condition
about which trace states are captured.  The trigger specification can
be defined on transitions of signals, levels of signals, or glitches on
signals.  The trace memory can be positioned anywhere about the
trigger condition or after the trigger condition by a specified
amount of time.  

The Format
Specification

The format specification defines the labels which are to be
associated with the probe signals along with the logical polarity of
the signal.  The format specification also defines the threshold
values to be used during the capture of trace memory.

The Post-Process
Specification

The post processing specification defines the analysis to be done on
each set of sampled data. It enhances productivity by reducing the
amount of time needed to make a range of computations about the
trace memory.  There are features to find, mark, compare, and
gather statistics about events occurring in trace memory.  In

Figure 6-2.  Glitch Capture Data Acquisition Mode

6-4 Timing: Introduction



addition, a repetitive execution can be halted when a post
processing event is found.

The Timing Diagram The timing diagram presents the trace memory in a waveform
display.  The diagram will appear as a graphics diagram on high or
medium resolution monitors, and as an ASCII character diagram
on standard terminals.  In either case, the diagram is easy to
magnify, roll, and define so that the pertinent trace memory data is
shown.  In addition, marks can be added to the diagram to highlight
events in trace memory.

The Trace List The trace list displays the trace memory contents in list format.
The trace memory data can be displayed in binary, octal, decimal,
and hexadecimal formats, along with a time tag which indicates
when the samples were captured in relationship to the trigger.  The
trace list data also can be marked to indicate events in trace
memory.  Finally, the trace list can be processed to show only
samples which meet specified conditions.

Timing: Introduction 6-5



1Notes

6-6 Timing: Introduction



7

Timing: Getting Started

1Overview This chapter describes:

Prerequites for using the Timing Analyzer Softkey
Interface.

Entering the Timing Analyzer Softkey Interface.

Making a simple measurement.

Entering numerical values.

1Prerequisites for
Using the Timing
Analyzer Softkey
Interface

Before you can use the external timing analyzer, you must have
already completed the following tasks:

Verified that the emulator contains an external analyzer.

Installed the Timing Analyzer Softkey Interface software.

Assembled the analyzer probe and connected the analyzer
probe grabbers to points which have signals of interest
(refer to "Using the External Analyzer" earlier in this
manual).

Timing: Getting Started 7-1



Installation The Timing Analyzer Softkey Interface is included with the Softkey
Interface software for you emulator. Refer to the HP 64700-Series
Emulators Softkey Interface Reference for information on installing
the software and hardware.

If you are using the Timing Analyzer with the X Window System,
refer to Installing X on the Series 300: Version 11, or the equivalent
manual for your system.

1Entering the
Timing Analyzer
Softkey Interface

To enter the Timing Analyzer Softkey Interface, you must enter the
Softkey Interface as you normally enter the Emulator Softkey
Interface. For example, you would enter: 

$ emul700 em68k   <RETURN>

at the HP-UX prompt. This initializes the emulator and loads the
configuration. If you have not already modified the configuration
for the external analyzer, you should do so here. Refer to chapter 5
"Using the External Analyzer" for information on configuring the
external analyzer.

After the configuration for external timing has been loaded, exit
out of the interface locked, and then enter the Timing Analyzer
Softkey Interface with the following command:

$ emul700 -u sktiming em68k  <RETURN>

Note The Timing Analyzer Softkey Interface can also be entered within
an X Window System window, or as a "measurement system"
option. The commands listed earlier can be entered at the "$"
prompt within a X Windows window. Refer to appendix B "Timing
Output and Diagrams" for information on setting up the X
Windows System. For information on adding the Timing Analyzer
to your measurement system, refer to your Emulation/Internal
Analysis Operating Manual.

7-2 Timing: Getting Started



1Making a Simple
Timing
Measurement

A simple timing analyzer measurement can be made using the
following sequence.

1.  Default the analyzer to an initialized condition.

display format_specification  <RETURN>
default all_specifications  <RETURN>

2.  Set the threshold for the logic family which you desire to
analyze.

threshold xbits ecl  <RETURN>

3.  Connect the probe grabbers to points which have signals
you desire to analyze and define label names.

define My_label xbits_bit 0 <RETURN>

Caution Remember to turn off the power to the target system before
connecting the probe grabbers.

4.  Determine the trigger point upon which you are desiring
to trigger.  To trigger on My_label being logically true,
enter the commands:

display trace_specification  <RETURN>
trigger on pattern My_label = 1 <RETURN>

5.  Match the sampling rate of the analyzer to about 10 times
the rate of your system clock.  Higher rates for more
resolution and lower rates for a longer trace period.

sample period_is 20 nsec  <RETURN>

6.  Display the desired information on the timing diagram.

display timing_diagram  <RETURN>
present My_label then X_upper  <RETURN>

7.  Execute the analyzer measurement.

execute  <RETURN>

Timing: Getting Started 7-3



8.  Move the cursor on the timing diagram by pressing the
softkey CURSOR and then using the < leftarrow>  and
< rightarrow>  to move the cursor. 

Note Use < CTRL> -F  and < CTRL> -G  along with < PREV>  and
< NEXT>  to roll the timing diagram.

9.  Magnify the diagram to see more detail.

magnify x10  <RETURN>

10.  Mark two points on the diagram to measure the time
between them.

mark x  <RETURN>

Move the cursor.

mark o on_cursor  <RETURN>

Move cursor to examine time interval between mark_x and
mark_o.

7-4 Timing: Getting Started



1Entering
Numerical Values

As with the emulator Softkey Interface, you can enter numerical
values in four standard bases: binary, decimal, octal, and
hexadecimal. You must include the base letter after the number
you enter, as follows:

B b Binary (example: 10010110b).

Q q O o Octal (example: 377o or 377q).

D d (default) Decimal (example: 2048d or 2048).

H h Hexadecimal (example: 0a7fh).
You must precede any hexadecimal number
that begins with an A, B, C, D, E, or F with a
zero.

Don’t care digits may be included in binary, octal, or hexadecimal
numbers and they are represented by the letters X or x. A zero
must precede any numerical value that begins with an "X". 

Timing: Getting Started 7-5



1Notes

7-6 Timing: Getting Started



8

Timing: Using the Analyzer

1Overview This chapter shows you how to use the external timing analyzer.
The main sections in this chapter describe how to:

Move around the analyzer interface.

Reference analyzer signals.

Select measurement options.

Specify the trigger condition.

Start and stop a trace.

Use the timing diagram.

Use the trace list.

Analyze trace memory.

Compare current and store measurements.

Copy analyzer data.

End a session.

Timing: Using the Analyzer 8-1



1Moving Around
the Analyzer
Interface

The Timing Analyzer Softkey Interface uses eight screens to
display analyzer information. Each screen has a set of associated
functions. Some of the functions are common to all of the screens
and some of the functions are specific to a particular screen.

The interface has three "specification" screens that are used to set
up the measurement environment; two output screens, one graphic
and one tabular; a screen to enter and display native analyzer
("pod") commands; and two screens to display logging information,
one for errors and one for analyzer events.

You use the "display" command to change from one screen to the
other. The "display" command has the following options:

Trace Specification which controls the data acquisition mode,
trigger condition definition, and sample rate. 

Format Specification which controls the probe, including the
definition of labels that refer to probe
signals.

Post Process
Specification

which defines procedures to be executed
after each trace measurement.

Timing Diagram which displays the measurement data in a
graphic form.

Trace List which displays the measurement data in
tabular form.

Pod Commands which allows you to send some native
analyzer specific commands and to display
the responses. 

Error Log which displays a log of command line errors.

Event Log which displays a log of analyzer events.

8-2 Timing: Using the Analyzer



The command

display trace_specification   <RETURN>

will display and set the Softkey labels for the trace specification
options.

1Referencing
Analyzer Signals

This section will describe how to specify threshold voltages for the
probe signals, test for activity on the probe, and manage labels for
each of the signals.

Specifying Threshold
Voltages

The external probe signals are divided into two groups named
x_lower and x_upper. The x_lower group refers to probe signals 0
through 7; the x_upper group refers to probe signals 8 through 15.
In addition, an xbits group is used to refer to all of the probe signals
(0 through 15).  Threshold voltage levels can be specified for each
group separately or for both by specifying the xbits group.  TTL
threshold voltage levels are specified by default.

You use the threshold command to change the threshold voltage
specification.  After you select the group for which you will be
specifying the threshold voltage, the following options are available:

ttl sets the threshold at + 1.40V.

ecl sets the threshold at -1.30V.

cmos sets the threshold at + 2.50V.

< VOLTS> which prompts you for a voltage in the range of
-6.40V to 6.35V (with a 50 mV resolution).

The commands 

display format_specification  <RETURN>

threshold xbits cmos  <RETURN>

specifies a CMOS threshold voltage level for all signals.

Timing: Using the Analyzer 8-3



Note The threshold settings will not take effect until the next time you
execute a trace or activity test.

Testing for Signal
Activity

After you have connected the probe grabbers to the points which
have signals of interest, you can test for activity on the probe. The
command

activity_test  <RETURN>

starts the sampling test.

A high or low status is indicated under each probe bit number on
the display, and the word "Activity" is included in the list of labels,
indicating the activity test is turned on.  Enter activity_test
< RETURN>  again to turn off the activity test.

Managing Labels The timing analyzer provides you a means of labeling probe signals,
either individually or in groups. You can use the three default
labels or define new ones. Any label can be modified, deleted, or
renamed.

Defining Labels

The "define" command allows you to label the analyzer probe
signals. Each label refers to one or more probe signals. Once a
label is defined, you can then use this label name when specifying
patterns, edges, or glitches on data signals.  Label names can be up
to eight characters long, must begin with a letter, and may be
followed by up to seven alphanumeric characters.  

Three labels are predefined: "XBITS", "X_lower", and "X_upper".
To define these labels yourself you would use the commands:

define  XBITS xbits_bit  0 width  16
logic_polarity positive_true  <RETURN>

define  X_lower xbits_bit  0 width  8
logic_polarity positive_true  <RETURN>

define  X_upper xbits_bit  8 width  8
logic_polarity positive_true  <RETURN>

8-4 Timing: Using the Analyzer



Note You should not confuse the default labels XBITS, X_lower, and
X_upper with the probe signal groups xbits, x_lower, and x_upper.

The command

define  CLK xbits_bit  0 logic_polarity
positive_true  <RETURN>

gives probe signal "0" the label CLK and uses a positive polarity as
logical true.

Modifying Label Definitions

The "modify" command retrieves the command used to define a
particular label.  Once the definition is returned to the command
line, you can use the command line editing features to modify the
label definition.

Deleting Labels

The "delete" command can be used to delete all labels, or
individual labels, that are not used in any other specification.

The command

delete X_upper   <RETURN>

deletes the default label "X_upper" from the format specification.

Renaming Labels

The "rename" command allows you to change a label name.

The command

rename CLK to  clock <RETURN>

renames the label "CLK" to "clock".

Timing: Using the Analyzer 8-5



1Selecting
Measurement
Options

The section describes how to select one of the two analyzer modes
and the sample period or rate.

Selecting the Timing
Analyzer Mode

The Timing Analyzer Softkey Interface has two modes: standard
and glitch capture.

Standard Mode

The standard mode is the usual data acquisition mode. In this
mode, all sixteen probe signals can be analyzed and 1010 samples
can be taken. This is the default mode for the analyzer.

The commands 

display trace_specification   <RETURN>
mode_is standard   <RETURN>

change the mode to standard.

Glitch Capture Mode

The glitch capture mode is used to detect and display multiple
signal transitions between data samples. If more than one
transition is detected between samples, the information is stored in
a portion of trace memory reserved for glitch information and is
displayed on the screen. A glitch is displayed as a broken vertical
bar or a series of broken vertical bars depending on the
magnification. (In ASCII diagrams, the default symbol is a colon
":".) A vertical bar also indicates the occurrence of multiple data
transitions too close together to be displayed at the selected
horizontal magnification.

The command

mode_is glitch_capture   <RETURN>

sets the analyzer mode to glitch capture.

8-6 Timing: Using the Analyzer



Selecting the Sample
Period or Rate

You can select the sample period (or rate, if it’s more convenient)
with the "sample" command. Valid periods in the standard mode
are between 10 ns (100 MHz) and 50 ms (20 Hz). Valid periods in
the glitch capture mode are between 20 ns (50 MHz) and 50 ms (20
Hz). The accuracy of the sample rate is that of the crystal oscillator,
approximately + /- 0.01%.

The command

sample period_is  10 nsec   <RETURN>

sets the sample rate to once every 10 nanoseconds.

1Specifying the
Trigger Condition

The "mode" and "sample" commands control the acquisition of
data, but they do not tell the analyzer when to acquire data. This is
done by using the "trigger" command to specifying a trigger
condition.

The trigger condition is the combined specifications of all labels
(that is, the pattern, edge, or glitch specifications for each label
ORed together to form the complete specification for the 16
external data signals).

The "trigger" command is part of the trace specification.

Trigger on Anything The default condition is to trigger on any activity on the probe
signals.

The command

trigger on anything   <RETURN>

sets the analyzer to its default condition.

Trigger on Pattern In this type of trigger condition, a specific set of signal activities, a
pattern, must be present in order for the trigger condition to be
met.

You specify a data pattern consisting of 1s, 0s, or X’s (don’t cares)
on one or more of the labels or label signals.  The most significant
bit is probe signal 15, or the highest bit number for the label

Timing: Using the Analyzer 8-7



specified, and the least significant bit is probe signal 0, or the least
significant bit of the label specified. Refer to "Entering Numerical
Values" in the previous chapter for valid pattern value options.

The command 

trigger on pattern X_lower =  3AH  <RETURN>

sets analyzer to test for the pattern of bits 00111010B on the lower
eight signals of the probe and, if found, trigger the filling of trace
memory.

Note The "hold" time for the trigger on a pattern is 30 nanoseconds.
Therefore the "trigger on pattern..." command is equivalent to
"trigger on greater_than 20 nsec_of ....". Refer to "Trigger on
Pattern Duration" below.

Trigger on Pattern
Duration

You can specify, as part of the trigger condition, a pattern
duration. The duration specifies that a pattern will exceed
("greater_than") or not exceed ("less_than") the amount of time
specified in order for the trigger condition to be met.

If the pattern is valid but the duration is not met, there is a 20 ns
reset time before looking for a pattern again.

Greater Than Duration

The trigger occurs after the pattern is present on the probe for at
least the specified time duration.  You can select a duration from
30 ns to 10 ms in 10 ns increments.

The command 

trigger on greater_than  100 nsec_of XBITS  .2
=0 <RETURN>

sets the analyzer to trigger a trace if probe bit 2 is logically false for
more than 100 nanoseconds.

8-8 Timing: Using the Analyzer



Less Than Duration

The trigger occurs when the specified pattern is present on the
probe signals for greater than 20 ns but less than the specified time
duration.  Durations from 40ns to 10 ms in 10 ns increments can be
selected.

The command 

trigger on less_than  60 nsec_of XBITS  .2 =0
<RETURN>

sets the analyzer to trigger a trace if probe bit 2 is logically false for
less than 60 nanoseconds and more than 20 nanoseconds.

Trigger on Any Glitch This type of trigger condition can only occur in the glitch capture
mode. In order for this trigger condition to become true, a glitch
must be found on the specified signals.

The command 

trigger on any_glitch   <RETURN>

sets the analyzer to only trigger if a glitch is found on any signal.

Qualifying Patterns When you specify this "trigger on" option, the trigger is further
qualified by a selected change in another signal or set of signals.
The change can be a "positive_edge", a "negative_edge", or any edge
condition ("positive_or_negative_edge") on a specific bit or bits.

In glitch capture mode, the qualifiers are glitches on one or more
signals.

This option is useful as a means to locate the effects of an
occasional event such as a reset or interrupt.

The command 

trigger on anything qualified_with
positive_edge XBITS  .10 or_on positive_edge
XBITS  .2  <RETURN>

sets the analyzer to trigger a trace on any activity after a positive
edge is detected on probe signal 10 or probe signal 2.

Timing: Using the Analyzer 8-9



Trigger Delay Trigger delay is the amount of time to delay the trigger after a valid
trigger condition.  Trigger delay can be anywhere between 0 and 10
ms in 10 ns increments.

The command

trigger  100 nsec_after pattern  . . . <RETURN>

sets the analyzer to trigger a trace 100 nanoseconds after a selected
pattern condition is met.

Trigger Positioning The "trigger position_is" command allows you to place the trigger
at the start, center, or end of the trace.  Therefore, if you want to
look at events before the trigger, you place the trigger at the end of
the trace; if you want to look at events after the trigger, you place
the trigger at the start of the trace. If you want to look at events
near the trigger, you place the trigger at the center of the trace.

The command

trigger position_is start_of_trace   <RETURN>

positions the trigger at the start of the trace so that most of trace
memory is available to store data samples after the trigger.

Modifying the Trigger
Condition

A trigger condition can be changed by entering a new condition or
by using the

trigger modify  <RETURN>

command to return the trigger condition to the command line for
editing.

1Starting and
Stopping a Trace

The purpose of the Timing Analyzer software is to acquire and
process data from the external analyzer. You initiate the data
acquisition by executing a trace. After a trace is started, the data
from the external analyzer is scanned until the trigger condition is
met or you stop the trace with the "halt" command. Traces can also
be "repetitive" so that statistical analysis can be performed on the
acquired data. 

8-10 Timing: Using the Analyzer



Note Refer to appendix D "Accurate Timing Measurements" for
information on the statistical analysis of timing data.

Execute The "execute" command starts a single trace. The trace is normally
completed when the analyzer encounters the trigger condition. At
that point trace memory is filled, the data is processed, and, finally,
it is displayed, either in the timing diagram or the trace list form.

The command

execute   <RETURN>

starts a trace.

Execute Repetitively You use the "execute repetitively" command to acquire data for
statistical analysis. The analyzer software continuously acquires
traces until one of four condition are met:

The execution is stopped by a "halt" command.

The execution is stopped by a post process
"halt_repetitive_execution" condition being met.

A total of 9999 trace runs have been completed.

The system is stopped.

The command

execute repetitively   <RETURN>

starts a repetitive trace.

Halt The "halt" command stops a trace that is waiting for a trigger or is
executing repetitively.

The command 

halt restore_last_trace   <RETURN>

allows you to restore the last completed trace when executing a
repetitive analysis.

Timing: Using the Analyzer 8-11



1Using the Timing
Diagram

This section describes the timing diagram and the features that
allow you to change the display format. The timing diagram
displays the currently in trace memory. Unless you are currently
displaying the trace list, when you start a timing trace ("execute"),
the timing diagram is automatically displayed.

Timing Diagram
Organization

The organization of the timing diagram is shown in figure 8-1.

signal labels waveform mode sample period

memory reference reference points mark locations statistical summary

Figure 8-1.  Timing Diagram Organization

8-12 Timing: Using the Analyzer



Signal Labels. The labels for the signals are displayed here. If the
label refers to more than one probe signal, the logical bit number is
added to the label display. If the signal refers to a label in a
compare file, the signal reference is followed by an "x".

You can change the signals displayed and the order they are
displayed at any time. You can also choose to display the signal
level at the cursor ("L" or "H" for low or high, respectively). If this
option is selected, the signal level at the cursor is displayed in the
place of the "> " on the right of the signal label.

Waveform. The waveform depicts the trace data using graphics
characters, or ASCII characters if graphics are not supported. The
waveform is segmented horizontally into divisions. The relative
width of each division is controlled by the sample period/rate and
the magnification. The size of each division is displayed below the
sample period. The relative vertical size of the waveform can be set
to small, medium, or large.

Mode. The mode for the current trace is displayed here. 

Sample Period. The sample period for the current trace is
displayed here.

Mark Locat ions. The locations of the cursor, mark_x and mark_o
are displayed here. The number displayed is the relative sample
number in trace memory.

Statistical Summary. The statistical summary displays the
currently selected information. You can choose to display
("indicate") amount of time between the mark_x and mark_o
points (interval statistics) or the number of occurrence marks
(abcd) between the mark_x and mark_o points (occurrence
statistics). For each of the two types of analysis, you can choose to
display the range (maximum and minimum), or the mean and
standard deviation. The number of samples (runs) is also displayed.

Reference Points. Four reference points are displayed: the
cursor, the trigger point, and the mark_x and mark_o points. If the
reference point is in the current waveform display, a vertical
dashed line depicts the point and is labeled below. If the reference
point is not in the portion of trace memory currently in the

Timing: Using the Analyzer 8-13



waveform display, the label drops down into the memory reference
line in its relative location in trace memory. If more than one
reference point is in the same location, an "m" is used to denote
multiple references.

The cursor is always in the display area, but is not labeled. In the
lower magnifications, the cursor contains an optional horizontal
set of bars. These "magnify indicators" depict the amount of trace
memory that will be displayed if the magnification is increased by a
factor of ten.

The multiple occurrence mark (abcd) positions are also depicted
with vertical dashed lines but are not labeled.

Memory Reference. The "depth" of trace memory is depicted in
a memory reference line. The relative portion of trace memory
currently in the waveform display is depict with a caret ("̂ "). Any
portion of memory not in the display is depicted with a dash ("-").
Reference points not currently in the waveform display are labeled
in the memory reference line. The current magnification is
displayed to the right of the memory reference line.

Presenting Signals By default, the timing diagram presents all of the defined signals,
initially XBITS, X_lower, and X_upper. You can choose any of the
signals to be presented, as well as the order in which they are
presented.

Signals are presented by selecting the labels defined in the format
specification. If a label refers to more than one signal, you can
choose to present all of the signals, or select one using the logical
bit number.

The command

present X_lower   <RETURN>

presents all of the signals referred to by the default label X_lower.

8-14 Timing: Using the Analyzer



The command

present X_lower then blank then X_upper  .0
<RETURN>

presents all of the signals referred to by the default label X_lower,
a blank line, and then the first signal in label X_upper (probe
signal "8").

The command

present   <RETURN>

toggles between user-defined labels and the corresponding probe
signal labels. Therefore, if the user-defined label "CLK" refers to
probe signal "0", the display would toggle between "CLK" and
"xbits_bit_0".

Refer to the section on Comparing Current and Stored
Measurements later in this chapter for information on presenting
compare file signals.

Moving the Cursor The cursor is an arbitrary reference point. On the timing diagram,
it is used primarily to identify a particular event on the waveform.
The cursor can be directly moved in three ways: using control keys,
using the "CURSOR" softkey toggle, or entering the trace memory
sample number.

The control keys < CTRL> -F  and < CTRL> -G  move the cursor to
the right and left, respectively, without effecting command line
editing. The incremental shift using this method is relatively large.

If you use the "CURSOR" softkey, the right and left arrows can be
used to move the cursor. The "CURSOR" softkey serves as a toggle
to switch the function of the arrow keys from use on the command
line to use on the waveform, and back again. When the arrow keys
are used to move the cursor in the waveform, the label on the
softkey appears as "CURSOR*". The CURSOR/arrow key method
of moving the cursor allows for more detailed control.

Timing: Using the Analyzer 8-15



The cursor can also be positioned by entering the relative sample
number on the command line. The command

100   <RETURN>

moves the cursor to sample number one hundred, while the
command

-50   <RETURN>

positions the cursor at sample number minus fifty. In all cases, if
the corresponding sample is not currently on the display, it will be
centered in the display.

Refer "Locating Events in Trace Memory" later in this section for
more information on positioning the cursor.

Showing Levels at
the Cursor

The level for each of the signals is depicted in the waveform. You
can also choose to display the signal level, high ("H"), low ("L"), or
glitch ("G"), at the current cursor position by enabling that feature.

The command

indicate levels_at_cursor on  <RETURN>

enables the display of signals levels at the cursor. The levels are
indicated to the right of the labels.

Magnifying the
Diagram

The default magnification of the trace memory data is x4. With this
magnification, a standard mode sample fills the waveform. A
higher magnification indicates that more detail is displayed (less
trace memory is depicted in the waveform) and a lower
magnification indicates that less detail is displayed.

The command 

magnify x100  <RETURN>

changes the "magnification" on the trace to 100 times.

Changing the
Waveform Size

The relative vertical size of the waveform can be changed to make
visualization easier. You can set the waveform to small, medium,
or large. Small is the default waveform size.

8-16 Timing: Using the Analyzer



The command

waveform_size large   <RETURN>

sets the waveform size to large.

Scrolling the Diagram If you "magnify" the signal resolution or change the waveform size,
all of the information may not fit in the waveform display area. The
display area can then be thought of as a window on the whole
waveform. The window can be scrolled (rolled) left and right, or up
and down.

You can move the display area left and right using the cursor, as
described earlier, or you can move it using the < Prev>  and
< Next>  keys. The < Prev>  key moves the display area to the left,
earlier in trace memory, and < Next>  move the display area to the
right, later in trace memory. 

If the timing diagram cannot display all of the signals on one
screen, you can scroll the display area up and down. The ^
(< uparrow> ) and the v (< downarrow> ) keys scroll the display up
and down one signal for each keystroke. The Shift-^
(Shift-< uparrow> ) and Shift-v (Shift-< downarrow> ) keys move
the display up and down one screen display for each keystroke.

If all of trace memory is displayed, either left and right, or up and
down, the keys have no effect.

1Using the Trace
List

The trace list displays the trace memory data in a columnar (table)
format.

Trace List
Organization

The organization of the trace list is shown in figure 8-2.

Timing: Using the Analyzer 8-17



sample number mode sample period statistical summary

reference points trace data cursor

Sample Number. The relative sample number is displayed in this
column. The trigger point, labeled "trigger" is relative sample
number zero. If reference points appear at the trigger, the sample
number appears as "trigg_".

Reference Points. The reference points mark_x, mark_o, and
the four multiple occurrence points (abcd). The reference points
appear in the column immediately to the right of the sample
number. If more than one reference point is in the same location,
an "m" is used to denote multiple references.

         Trace List                  Timing (64700), 16 channels, 100MHz 
        STANDARD MODE             10 nsec/sample        Time x_o  6.00 usec 
                                Runs=0     Mean=0.0 nsec     Stdv=0.0 nsec 
  Label:   X_upper   X_lower        XBITS         time count 
  Base:      bin       bin           bin              abs 
 -0003   __01111111  10111110  0111111110111110  -30.0 nsec   __ 
 -0002     01111111  10111110  0111111110111110  -20.0 nsec 
 -0001     01111111  10111110  0111111110111110  -10.0 nsec 
 trigg_x   01111111  10111110  0111111110111110   0.0 nsec 
 +0001     01111111  10111110  0111111110111110   10.0 nsec 
 +0002     01111111  10111111  0111111110111111   20.0 nsec 
 +0003     01111111  10111111  0111111110111111   30.0 nsec 
 +0004     01111111  10111111  0111111110111111   40.0 nsec 
 +0005     01111111  10111111  0111111110111111   50.0 nsec 
 +0006     01111111  10111111  0111111110111111   60.0 nsec 
 +0007     01111111  10111111  0111111110111111   70.0 nsec 
 +0008     01111111  10111111  0111111110111111   80.0 nsec 
 +0009     01111111  10111111  0111111110111111   90.0 nsec 
 +0010     01111111  10111111  0111111110111111   100.0 nsec 

Figure 8-2.  Trace List Organization

8-18 Timing: Using the Analyzer



Mode. The mode for the current trace is displayed here. 

Sample Period. The sample period for the current trace is
displayed here.

Statistical Summary. The statistical summary displays the
currently selected information. You can choose to display
("indicate") amount of time between the mark_x and mark_o
points (interval statistics) or the number of occurrence marks
(abcd) between the mark_x and mark_o points (occurrence
statistics). For each of the two types of analysis, you can choose to
display the range (maximum and minimum), or the mean and
standard deviation. The number of samples (runs) is also displayed.

Cursor. The cursor has the same function as the cursor in the
timing diagram.

Trace Data. The trace data includes one or more of the following:
trace memory data samples, time count, mark names, and compare
file memory samples. Memory samples are displayed by label name
and can be presented in binary, octal, decimal, or hexadecimal
formats. The time count can be displayed as "absolute", the
accumulated time before or since the trigger, or "relative", the
amount of time since the last sample. 

Displaying Trace Data As with the timing diagram, you have control of the information
included on the trace list display. However, unlike the timing
diagram, the trace list cannot be scrolled left and right to display
extra information. Therefore, if you specify more information to be
displayed than will fit on the screen, the extra information will be
truncated.

The default condition is to display all of the labels included in the
format specification in the order they are listed there. If enough
space is left in the display area, the absolute time count is also
included.

Timing: Using the Analyzer 8-19



Using default label names, the command

present X_lower then X_upper  .0  <RETURN>

displays the probe signals "0" through "8" in the display, grouped
eight and one, and displayed as binary number, while the command

present X_lower in_hex then X_upper in_hex
then time_count absolute   <RETURN>

displays all of the probe signals in two eight bit groups in
hexadecimal format along with the absolute time count.

The command

present X_lower then X_upper then time_count
absolute then mark_names   <RETURN>

again displays all of the probe signals, this time in binary format,
the absolute time count, and mark names, where included with
mark definitions in the format specification.

Moving the Cursor The cursor is an arbitrary reference point. Like the timing diagram,
it is used primarily to identify a particular event in trace memory.
The cursor can be directly moved using cursor movement keys or
entering the trace memory sample number.

The cursor can be moved by using the "̂ " (< uparrow> ) or "v"
(< downarrow> ) keys to move the cursor up and down through the
trace samples.

The cursor can also be positioned by entering the relative sample
number on the command line. The command

100   <RETURN>

moves the cursor to sample number one hundred, while the
command

-50   <RETURN>

positions the cursor at sample number minus fifty. In all cases, if
the corresponding sample is not currently on the display, it will be
centered in the display.

Refer "Locating Events in Trace Memory" later in this section for
more information on positioning the cursor.

8-20 Timing: Using the Analyzer



Scrolling the Trace
List

The trace list display area can then be thought of as a window on
trace memory. The window can be scrolled up and down.

The Shift-^  (Shift-< uparrow> ) and Shift-v
(Shift-< downarrow> ) keys move the display up and down one line
for each keystroke. Use the < Prev>  and < Next>  keys to move the
display area up one screen full, earlier in trace memory, and
< Next>  to move the display area to down on screen full, later in
trace memory. 

Using the ̂  (< uparrow> ) at the sample at the top of the screen
has the same effect as Shift-^ ; using the v (< downarrow> ) at the
sample at the bottom of the screen has the same effect as Shift-v.

1Analyzing Trace
Memory

Trace memory can be analyzed interactively, that is by commands
entered at the command line, or automatically by using post
processing definitions. The "find" command is an interactive
command, while the "mark" and "process_for_data" commands
work both interactively and in post processing. All of these
commands work for both the timing diagram and the trace list.

Locating Events in
Trace Memory

The "find" command locates specified events in trace memory and
positions the cursor at that point.

The command 

find trigger   <RETURN>

moves the cursor to the trigger reference point and attempts to
center that point in the middle of the display.

Timing: Using the Analyzer 8-21



You can search for a specific signal pattern with a command like

find entering X_lower =01010111   <RETURN>

that looks for specific combination of true an false signals on probe
bits "0" through "7", or for a transition specific signal with a
command like

find entering X_lower .2 = 1   <RETURN>

which attempts to find where bit 2 of X_lower (probe signal "2")
becomes true. In both cases, the search begins at the cursor and, if
the pattern is found, the sample is positioned in the middle of the
display. The "entering" syntax denotes that a signal or signals are
changing to the indicated logical value for the pattern specified.

Note The trigger command does not have a corresponding "entering"
function. It simply matches the pattern specified.

The command

find entering X_lower .2 = 1 all   <RETURN>

is has the same effect as the last search, but starts from the
beginning of trace memory instead of at the cursor.

You can also look for any change on a signal.  The command

find any_transition on X_lower .2 = 1 thru
end   <RETURN>

searches for any change on bit 2 of X_lower from the cursor to the
end of trace memory. Other options can terminate the search:
trigger, mark_x, mark_o, a specific sample number, the start of
trace memory, as well as the end of the trace. If the specified "thru"
location is before the cursor, the search starts at that location and
ends at the cursor.

8-22 Timing: Using the Analyzer



You can designate a search pattern must last for a specified
duration; it can be less than or greater than a selected amount of
time. The command

find greater_than 100 nsec_of X_lower .2 = 1
thru 600   <RETURN>

searches for at least one hundred nanoseconds of a high signal on
bit 2 of X_lower from the cursor to sample number 600. A duration
of less than 20 nanoseconds cannot be specified because of
hardware reset cycles.

The events you search for can be simple, as described to this point,
or complex combinations of signals. The command

find entering X_lower .2 = 1 and X_lower .4
= 0   <RETURN>

specifies a search of trace memory from the cursor to the end to
find a sample where bit 2 of X_lower is going high (true) and bit 4
of X_lower is going low (false). Any combination of signals and
labels, as well as ranges, can be specified.

You can also search for marked events, both single occurrence
(mark_x and mark_o) and multiple occurrence (abcd) marks.

Marking Events The "find" command locates events in trace memory for interactive
analysis. The Timing Analyzer Softkey Interface has the added
feature of assigning identifiers (marks) to events. Marks can be
assigned from the command line for events in current trace
memory, or automatically after each trace measurement in the post
processing specification. Any marks specified at the command line
are also store for subsequent post processing.

The two single occurrence marks, mark_x and mark_o, are used to
identify the first occurrence of a specified event. These two marks
always exist. Their primary purpose is to define a range of samples.
The multiple occurrence marks (mark_a, mark_b, mark_c, and
mark_d) are used to identify all occurrences of a specified event.

Timing: Using the Analyzer 8-23



The syntax for the "mark" command is very much like that for the
"find" command. The command

mark x on_first_occurrence_of entering
X_lower =01010111   <RETURN>

places mark_x on the first occurrence of the pattern 01010111B on
X_lower in trace memory while the command

mark x on_first_occurrence_of entering
X_lower .2  = 1   <RETURN>

places mark_x on the first occurrence of bit 2 of X_lower being
high.

In addition, the "mark" command can automatically mark an event
before or after another condition: the trigger, another mark a
specific sample number, the cursor, or the end of memory. As an
example, the command

mark o on_first_occurrence_of entering
X_lower .2  = 1 after mark_x   <RETURN>

places mark_o on the first occurrence after the mark_x point of bit
2 of X_lower being high. The mark_x and mark_o points locate and
determine specific intervals.

The multiple occurrence marks (abcd) mark all occurrences of the
specified event. A range can be used to limit the marking process.
The marks can be used to count events and are an effective means
of performing statistical analyses on trace measurements. The
command 

mark a on_all_occurrences_of entering
X_lower .2  = 1 after trigger   <RETURN>

places a mark_a on all occurrences of bit 2 of X_lower occurring
after the trigger.

You can assign names to any of the marks. These names can then
be displayed in the trace list to facilitate analysis. In addition, the
multiple occurrence marks can be turned off or on without losing
the marking condition.

8-24 Timing: Using the Analyzer



Processing for Data The "process_for_data" command is a way to limit the samples
displayed on the trace list. As with the "find" and "mark"
commands, a simple or complex set of conditions can be specified.
You can display only samples that have been previously marked,
specified new conditions for the display, or display samples a set
number of samples after a new condition. The "process_for_data"
command definition is also retained, like the "mark" command
definitions, for post processing.

The command

process_for_data marked   <RETURN>

displays all previously marked data on the trace list. The command

process_for_data sampled  10 samples_after
pos_transition_on X_lower .2   <RETURN>

displays only trace samples that are ten samples after any positive
(from low to high) transition on bit 2 of X_lower. The amount of
time represented by the ten samples is dependent on the sample
rate. Therefore, if the sample period is 10 nanoseconds, the
samples displayed will be 100 nanoseconds after the positive
transition.

Determining Intervals Both the timing diagram and the trace list display the time interval
between the mark_x and mark_o points. Therefore, the simplest
way to determine an interval between two events is to mark the two
events of interest with mark_x and mark_o, and then read the
interval from the display. 

If the events are not already marked, simply move the cursor to the
event of interest and position one of the marks at that point using a
command like

mark x   <RETURN>

The command

mark x on_cursor   <RETURN>

"attaches" the mark to the cursor. You can then move the cursor to
the desired location, and use

mark x   <RETURN>

to position the mark at its current location.

Timing: Using the Analyzer 8-25



Statistics The Timing Analysis Softkey Interface can perform statistical
analyses on repetitive executions traces. Two types of analysis are
available: interval statistics and occurrence statistics. For both
types of analysis, you can calculate the minimum and maximum
values, or the mean and standard deviations.

Choosing Statistics Types

Interval Statistics Interval statistics are based on the time
interval between mark_x and mark_o samples. The interval
between the mark_x and mark_o points is calculated and includes
as a statistical sample.

Occurrence Statistics Occurrence statistics are based on the
number of multiple occurrence marks (abcd) assigned during post
processing of each trace measurement. The number of marks
between the mark_x and mark_o points are totaled included as a
statistical sample.

The type of statistical analysis can be specified on either the timing
diagram or trace list screen. The commands

display timing_diagram   <RETURN>
indicate time_interval_x_o
mean_and_standard_deviation   <RETURN>

specifies interval statistics calculating the mean and standard
deviation for the samples collected.

You can disable the calculation of statistic by specifying a statistics
type without a calculation, as in

indicate number_of_marks_x_o   <RETURN>

which will only display the number of marks between mark_x and
mark_o.

Excluding Samples

The "statistics" post process command allows you to exclude
samples from the statistical calculations. The default condition is
to always include traces in the calculation. You exclude traces
when they have a interval from mark_x to mark_o of greater than
(or less than) a specified amount of time, or when the number of

8-26 Timing: Using the Analyzer



marks from mark_x to mark_o is greater than (or less than) a
specified number of marks.

Logging Statistics

You can log the detail from each sample to a file for subsequent
review. The "statistics"‘ command in the post processing
specification allows you to specify a file name to write the
information. For logging to occur, one of the statistical analysis
calculation options must have been previously chosen.

The commands

display timing_diagram   <RETURN> 

indicate time_interval_x_o
mean_and_standard_deviation   <RETURN> 

post statistics log_to_file  STATISTICS
<RETURN> 

post halt_repetitive_execution
when_runs_equal  8 <RETURN> 

execute repetitively  <RETURN>

start a eight run statistical trace. After execution halts, enter the
command

post statistics log_to_file none   <RETURN>

to disable statistics logging. The generated output logs will look
like:

64700 Timing Analyzer                   Mon Jun 19 14:47:05 1989

  Time x_o  1.66 usec      x=-54    o=+112   Runs=1     Mon Jun 19 14:47:20 1989
        Max=1.66 usec     Min=1.66 usec      Mean=1.66 usec      Stdv=0.0 nsec
  Time x_o  5.77 usec      x=-54    o=+523   Runs=2     Mon Jun 19 14:47:30 1989
        Max=5.77 usec     Min=1.66 usec      Mean=3.71 usec      Stdv=2.91 usec
  Time x_o  7.82 usec      x=-54    o=+728   Runs=3     Mon Jun 19 14:47:40 1989
        Max=7.82 usec     Min=1.66 usec      Mean=5.08 usec      Stdv=3.14 usec
  Time x_o  3.47 usec      x=-54    o=+293   Runs=4     Mon Jun 19 14:47:50 1989
        Max=7.82 usec     Min=1.66 usec      Mean=4.68 usec      Stdv=2.69 usec
  Time x_o  1.62 usec      x=-54    o=+108   Runs=5     Mon Jun 19 14:48:00 1989
        Max=7.82 usec     Min=1.62 usec      Mean=4.07 usec      Stdv=2.70 usec
  Time x_o  7.10 usec      x=-54    o=+656   Runs=6     Mon Jun 19 14:48:11 1989
        Max=7.82 usec     Min=1.62 usec      Mean=4.57 usec      Stdv=2.71 usec
  Time x_o  2.32 usec      x=-54    o=+178   Runs=7     Mon Jun 19 14:48:21 1989
        Max=7.82 usec     Min=1.62 usec      Mean=4.25 usec      Stdv=2.62 usec
  Time x_o  2.32 usec      x=-54    o=+178   Runs=8     Mon Jun 19 14:48:34 1989
        Max=7.82 usec     Min=1.62 usec      Mean=4.01 usec      Stdv=2.52 usec

Timing: Using the Analyzer 8-27



1Comparing
Current and
Stored
Measurements

The Timing Analyzer Softkey Interface allows you to store trace
memory measurements in a file and then compare the stored data
to a subsequent trace measurement.

Storing
Measurements

In order to properly compare a saved trace measurement, its data is
stored with all the specification (configuration) information. A
configuration save file that is saved with the data can then be
referred to as a "compare file".

The command

configuration save_in  COMPARE with_data
write_protect   <RETURN>

creates a file "COMPARE.TR" that contains specification
information along with the current trace memory data. The file is
write protected so that you cannot write to the file with a
subsequent "configuration save_in" command.

Selecting a Compare
File

In order to compare current trace data with previously stored trace
data, you must first select a compare file.

The command

compare file_is  COMPARE  <RETURN>

from the post processing specification screen will select the
previously generated "COMPARE.TR" as the current compare file.
You can also enter

post compare file_is  COMPARE  <RETURN>

from any screen to select "COMPARE.TR".

Compare files must have:

All labels referenced in the compare file must have
equivalent definitions in the current format specification,
and

8-28 Timing: Using the Analyzer



The trigger position must be the same

or a "Compare file spec does not agree with hardware" error will
occur.

Presenting Stored
Signals

Once a compare file is selected, the signals from the previous trace
can be presented, just as the current labels can be presented, on
either the timing diagram or the trace list. If a compare file has
been selected the "compare" Softkey label appears in place of the
"< COMPAR> " Softkey label. This Softkey allow you to select one
of the "external" (compare file) labels.

The command

present compare_file X_lower then X_lower
<RETURN>

on the timing diagram will present the probe signals "0" through "7"
from the store data and then the current trace data. The display
will look like figure 8-3.

Figure 8-3.  Comparing Stored and Current Traces

Timing: Using the Analyzer 8-29



1Copy Analyzer
Data

The Timing Analyzer Softkey Interface can copy all or part of its
information to a file or to a printer, or "pipe" it to a HP-UX
process. Refer to appendix B "Timing Output and Diagrams" for
information on setting up the system printer environment.

Copying
Specifications

You can copy one of the three specifications, or all of the
specifications, to the selected output. The command

copy all_specifications to printer  <RETURN>

to copy all specification information to the printer. The "default"
specifications will look like:

64700 Timing Analyzer                    Tue Jun 16 09:13:31 1989 
 
     Trace Specification             Timing (64700), 16 channels, 100MHz 
 
     STANDARD MODE 
 
    TRIGGER 
         on 
            anything 
         position_is start_of_trace 
 
    SAMPLE 
         period_is 10 nsec 
         rate_is 100 MHz 
 
 
    Format Specification             Timing (64700), 16 channels, 100MHz 

     STANDARD MODE 
 
                    Xbits_upper               Xbits_lower 
 Threshold:          ttl +1.40V                ttl +1.40V 
  Label      15 14 13 12  11 10  9  8   7  6  5  4   3  2  1  0   polarity 
 XBITS        *  *  *  *   *  *  *  *   *  *  *  *   *  *  *  *   pos_true 
 X_lower                                *  *  *  *   *  *  *  *   pos_true 
X_upper      *  *  *  *   *  *  *  *                             pos_true 
 
 
 Post_process Specification          Timing (64700), 16 channels, 100MHz 
        STANDARD MODE             10 nsec/sample 
 
 MARK  STATUS  on_first_occurrence_of                                  NAME 
   x     on    default (start_of_trace) 
   o     on    default (end_of_trace) 

8-30 Timing: Using the Analyzer



When selecting a file as output, data is appended to an existing file
by default. You can choose to overwrite an existing file with a
command like

copy trace_specification to  TRACESPEC
noappend  <RETURN>

which copies the current trace specification to a file TRACESPEC,
replacing any data in the file if it already exists.

Copying Trace Data You can copy the trace memory data in either the timing diagram
or trace list format. Use

copy timing_diagram to printer  <RETURN>

to print the current timing diagram on a graphics printer.

Note The output of a "copy timing_diagram", or "copy display" when
displaying the timing diagram, is a PCL file and should only be
used with devices or programs capable of handling that format.

These commands only work on the HP 9000 Series 300/400
computer.  If you are using an HP 9000 Series 700 or Sun
SPARCsystem computer running the X Window System, you can
use the UNIX xwd and xpr  commands to print the contents of the
timing analyzer window.

The "copy trace_list" command allows you to print the entire listing
or to choose a range of trace memory samples. When choosing a
range, the cursor position is one end and a selected reference point
is the other. Reference points can be the trigger, mark_x or
mark_o, a selected sample number, or the start or end of trace
memory. If the cursor is at sample number zero, the command

copy trace_list thru  100 to  TraceRange
<RETURN>

will copy trace memory samples zero through 100 to the file
"TraceRange" in trace list format.

Timing: Using the Analyzer 8-31



Copying
Measurement Data

The Timing Analyzer can also create a file containing "raw" trace
memory data in hexadecimal format. This file can be used for other
analysis. The command

copy measurement_data_in_hex to TIMING_DUMP
<RETURN>

copies the current trace memory data to a file named
TIMING_DUMP in hexadecimal format.

Note Refer to appendix B "Timing Output and Diagrams" for
information on the format of the file.

1Ending a Session The Softkey system maintains the current status of the analyzer for
all users. The method you use to end a timing, or emulator, session
determines how the status information is used to coordinate
interactions if more than process is using the same analyzer.

There are four options when ending a timing analysis session:
exiting and releasing the emulator/analyzer session, exiting with the
intent of continuing but not effecting other users, exiting with the
intent of continuing and blocking access to the emulator/analyzer,
and exiting and selecting another measurement system. The latter
option is available only if you are using the timing interface under
pmon or MEAS_SYS environment.

Releasing the System If you use the command

end release_system  <RETURN>

the Timing Analyzer coordinates the normal shutdown of all
processes using the analyzer. The sessions of all users, whether on
separate machines, on one machine, or running in multiple
windows on one monitor, are ended and the analyzer status
information is discarded.

8-32 Timing: Using the Analyzer



In order to use the system again, you must reinitialize the analyzer
configuration.

Ending to Continue
Later

You can continue later without effecting other users by simply
using the command

end  <RETURN>

which ends the current session, but preserves the configuration
status. Other users are not effected.

Ending and Blocking
other Access

You can also end a session with the intention to continue later and
block other users access to the analyzer by using the command

end locked  <RETURN>

which ends the current session, preserves the configuration status,
and ends other users sessions. You can then reexecute the Timing
Analysis Softkey Interface later, assuring that you return to the
system as you left it.

Selecting the
Measurement System

or Another Module

In the pmon or MEAS_SYS environment, if you have configured
the system with more than one measurement system, you can select
one of the other measurement systems when ending the Timing
Analysis interface.

Timing: Using the Analyzer 8-33



1Notes

8-34 Timing: Using the Analyzer



9

Timing : Commands

1Overview This chapter includes:

Softkey Interface Features

Syntax Conventions

A Summary of Commands

Command Descriptions

1Softkey Interface
Features

Softkeys Softkey Interface commands are entered by pressing softkeys
whose labels appear at the bottom of the screen.  Softkeys provide
for quick command entry, and minimize the possibility of errors.

Command Completion You can type the first few characters of a command (enough to
uniquely identify the command) and then press < Tab> .  The
Softkey Interface completes the command word for you.

Command Word
Selection

If you have entered a command, but want to make a change or
correction, you can press the < Tab>  key to position the cursor at
that word.  Pressing < Tab>  moves the cursor to the next word on

Timing: Commands 9-1



the command line.  Pressing < Shift> -< Tab>  moves the cursor to
the previous word.

Command Line Recall Softkey Interface commands that you enter are stored in a buffer
and may be recalled by pressing < CTRL> -R . Pressing < CTRL> -B
cycles forward through the recall buffer.

Command Line Erase Instead of pressing the < Back space> key to erase command lines,
< CTRL> -U  is a quick way to erase the current command line.
You can then reenter the command.  Pressing < Clear line>  erases
the command line from the cursor position to the end of the line.

Multiple Commands
on One Line

You can enter more than one command at a time on the command
line by separating the commands with a semicolon (;).

Change Directory You can change your working directory while in emulation using
the "cd" command.  This command does not appear on the softkey
labels.

Filters and Pipes You can specify HP-UX filters and pipes as the destination for
information while using the "copy" command.  See the description
of the "copy" command in this chapter for details.

Command Files You can execute a series of commands that have been stored in a
command file.  You can create command files using the
"log_commands" command or by using one of the editors available
on your host computer.  See the chapter on command files in the
HP 64700-Series Emulators Softkey Interface Reference for more
information.

9-2 Timing: Commands



Help Command A "help" command is available to you within an emulation session.
Several methods are available for displaying help information
about a command.  You can use any of these methods:

enter: help then press a softkey that appears

enter: ? then press a softkey that appears

enter: pod_commands
"help emul"

this will return help from the emulator
(include quotation marks)

1Syntax
Conventions

Conventions used in the command syntax diagrams are defined
below.

Oval-shaped Symbols Oval-shaped symbols indicate options available on the softkeys and
other commands that are available, but do not appear on softkeys
(such as "log_commands" and "wait").  These appear in the syntax
diagrams as:

Rectangular-shaped
Symbols

Rectangular-shaped symbols contain prompts or references to
other syntax diagrams.  Prompts are enclosed with angle brackets
(<  and > ).  References to other diagrams are shown in all capital
letters.

Circles Circles are used to indicate operators and delimiters that are used
in expressions and on the command line as you enter commands.
These appear in the syntax diagrams as:

Timing: Commands 9-3



1Summary of
Commands

Softkey Interface commands for the external timing analyzer are
summarized in table 9-1.

The commands available on each screen are outlined in table 9-2.
The following commands can be entered at the command line on
all screens: !HP-UX_COMMAND, cd, diagram, format, help, list,
log_commands, pod, trace, and wait.

!HP-UX_COMMAND1

activity_test
cd1

compare
configuration
copy
CURSOR
default
define
delete
diagram1,2

display
end
execute
find
format1,2

halt
halt_repetitive_execution
help1

indicate
list1,2

log_commands1

magnify
mark
mode_is
modify
pod1,2

pod_command
post1,2

present (timing_diagram)
present (trace_list)
process_for_data
rename
< ROLL>
sample
statistics
threshold
trace1,2

trigger
wait1

waveform_size

1 These commands are not displayed on softkeys.

2 These commands invoke the corresponding softkey commands.

Table 9-1.  Summary of Commands

9-4 Timing: Commands



                Commands

t
r
a
c
e

f
o
r
m
a
t

p
o
s
t

d
i
a
g
r
a
m

l
i
s
t

p
o
d

e
r
r
o
r

e
v
e
n
t

activity_test
compare
configuration
copy
CURSOR
default
define
delete
display
end
execute
find
halt
halt_repetitive_execution
indicate
magnify
mark
mode_is
modify
pod_command
present
process_for_data
rename
< ROLL>
sample
statistics
threshold
trigger
waveform_size

x
x

x

x
x
x

x

x

x

x

x

x
x

x
x
x
x
x
x

x

x
x

x

x

x
x
x

x

x
x
x

x
x

x

x

x

x
x
x

x
x
x
x
x

x
x
x

x

x
x

x

x
x

x
x
x
x
x

x

x

x
x

x
x

x
x

x

x
x
x

x

x

x
x

x

x
x
x

x

x
x

x

x
x
x

x

Table 9-2.  Command Assignments

Timing: Commands 9-5



1Command Syntax The syntax for the HP 64700 external timing analyzer varies
considerably from that used in the HP 64700-Series emulators.
Therefore, the complete timing analyzer syntax is presented here.
In certain cases, you may want to refer to your Emulator Softkey
Interface User’s Guide or the HP 64700-Series Emulators Softkey
Interface Reference for details about how your emulator operates.

9-6 Timing: Commands



1activity_test This command toggles the display of probe signal activity.

Syntax

Function This is a format specification command that displays the activity on
the external analyzer probe. If the activity_test is currently being
displayed, this command turns the activity_test display off. The
activity line appears at the top of the label list.

Default Values Probe signal activity is not displayed.  If you display another screen,
the activity_test is set to its default value, toggled off.

Parameters none

Examples

display format_specification  <RETURN>

activity_test  <RETURN>

Related Commands none

Timing: Commands 9-7



1compare This command specifies a post processing compare definition.

Syntax

9-8 Timing: Commands



Function This post process specification command is used to select a
compare file or to specify a comparison to be performed after each
measurement.

Default Values none

Parameters

< BIT# > This prompts you to enter the integer bit
number to be used.

consecutive_faults_
allowed_is

This option allows you to define the number
of consecutive faults that will be processed.

     < SAMPLE> This prompts you to enter the integer
number of faults.

< DOT> This prompts you to enter the literal "."
which, if used, indicates that a specific bit
number will be designated.

file_is This option allows you to select a compare
file compare file for compare and display
(refer to "present").  Compare files are
configuration files saved using the
"with_data" option.  

< FILE> This prompts you to enter the name of the
compare file.

from This option specifies the trace memory
location point from which the comparison
will begin.

    trigger This parameter specifies the trigger point as
the beginning point of the comparison.

     < SAMPLE> This parameter specifies the sample number
entered as beginning point of the
comparison.

Timing: Commands 9-9



    cursor This parameter specifies the cursor location
as the beginning point of the comparison.

    start This parameter specifies the start of trace
memory as the beginning point of the
comparison.

    end This parameter specifies the end of trace
memory as the beginning point of the
comparison.

< LABEL> This prompts you to enter a label name or to
select a label from one of the softkeys.

< LABELX> This prompts you to enter a label from the
compare file or to select a compare file label
from one of the softkeys.

modify This option returns the current compare
command to the command line for editing.

off This option defaults the comparison
definition.

rewritten_with_
current_
measurement

This option allows you to rewrite the current
trace measurements to the currently selected
compare file.

to_compare_file This option allows you to compare
measurement data from a previously selected
compare file with data from "current"
measurements.

thru This specifies the end comparison range
point. The valid parameters are the same as
those for the from option.

9-10 Timing: Commands



Examples

display post_process_specification  <RETURN>

compare file_is  FIRST_TRACE <RETURN>

Related Commands configuration
present

Timing: Commands 9-11



1configuration This command creates or retrieves a configuration file.

Syntax

Function The configuration command allow you to save configurations or to
load a previously saved file to reset specifications. Measurement
data may also be saved with the configuration information. In that
case, the configuration can be used as a compare file.

Default Values none

Parameters

load_from This option allows you to specify a
configuration file to load. The saved
configuration specifications are retrieved
and reset the current specifications.

save_in This option allows you to specify a file for
saving the current specification settings.

< FILE> This prompts you for a file name. A trace
(.TR) file is created.

with_data This parameter specifies the inclusion of the
current measurement data in the file along
with the specifications; use this option to

9-12 Timing: Commands



create a file for use with the compare
command.

write_protect This parameter sets the write protect
variable in the file descriptor.

Examples

configuration save_in  FIRST_TRACE with_data
<RETURN>

Related Commands compare

Timing: Commands 9-13



1copy This command copies specifications, displays or measurement data
to selected output.

Syntax

9-14 Timing: Commands



Function The copy command allows you to copy the all or selected
specifications, displays or lists, statistics, help, or measurement
data to a file, printer or HP-UX command.

Note < CTRL> -C  (SIGINT) will interrupt a copy command.

Default Values none

Parameters

all_specifications This option copies all of the specifications
(trace, format, and post process) to the
selected output in their entirety.

display This option copies the current screen to the
selected output.

format_specification This option copies only the format
specification information to the selected
output.

measurement_data_
in_hex

This option copies the captured timing
measurement data to the selected output in
hexadecimal form. This allows for other
analysis of the raw data. The format for this
information is described in appendix B later
in this manual.

noappend This parameter forces the overwrite of a
file’s information if the selected file name
already exists.

noheader This parameter suppresses the report header
from the output. The header contains the
source ("64700 Timing Analyzer") and the
day, date and time of the output. This
parameter is useful when building a listing

Timing: Commands 9-15



file from multiple executions of the
command.

post_process_
specification

This option copies only the post process
specification information to the selected
output.

timing_diagram This option copies the timing diagram to the
selected output. The default format is in
"raw" HP PCL format.

    vertically_in_ascii This parameter specifies the timing diagram
output to be in ASCII characters oriented
vertically on the page. That is rotated
clockwise ninety degrees from its normal
orientation.

trace_list This option copies the trace list to the
selected output. This option is available in
all display forms except trace_specification,
format_specification and timing_diagram.

    all This parameter specifies that all of the trace
memory data will be copied.

    thru This parameter selects a range in trace
memory for the copy. The first point is the
cursor position. The second point is a
selected parameter.

    trigger This parameter specifies that trace memory
data between the cursor and the trigger will
be copied.

    mark_x This parameter specifies that trace memory
data between the cursor and mark_x will be
copied.

    mark_o This parameter specifies that trace memory
data between the cursor and mark_o will be
copied.

9-16 Timing: Commands



    < SAMPLE> This prompts for you to enter a sample
number. Trace memory data between the
cursor and the entered sample number will
be copied.

    start This parameter specifies that trace memory
data between the start of memory and the
cursor will be copied.

    end This parameter specifies that trace memory
data between the cursor and the end of
memory will be copied.

trace_specification This option copies only the trace
specification information to the selected
output.

help This is a "hidden" option that copies the help
files to the selected output.

< FILE> This prompts you for a file name to contain
the output information.

printer The option selects the printer as output. If
text output is being generated the output is
piped to the program in the PRINTER
environment variable. If the output is
graphics, the GPRINTER environment
variable is used. See "Timing Output and
Diagrams" in appendix B later in this manual.

< !CMD!> This prompts you to enter the literal "!" to
indicate that a program name will be
entered. In this case, the output is piped to
standard output.

    < CMD!> This prompts you to enter the program name
to receive the piped output from the copy
command.

Timing: Commands 9-17



to This option initiates the selection of a
destination for the specified data.

Examples

copy measurement_data_in_hex to  HEXDUMP
<RETURN>

copy display to printer  <RETURN>

copy all_specifications to  specfile<RETURN>

Related Commands none

9-18 Timing: Commands



1CURSOR This command toggles the use of the cursor keys from the
command line to the timing diagram.

Syntax None

Function When the CURSOR softkey appears without the asterisk, the right
and left arrow keys are available for command line editing.  When
the CURSOR softkey appears with an asterisk (CURSOR*), you
can move the cursor in the timing diagram display with the right
and left arrow.  The sample number of the cursor position is shown
on the right of the display. This command is only available from the
softkeys.

Default Values The right and left arrow keys are set up for command line editing.

Parameters None.

Examples

display timing_diagram  <RETURN>

CURSOR <RETURN>

CURSOR* <RETURN>

Related Commands magnify

Timing: Commands 9-19



1default This command sets specifications to their default values.

Syntax

Function The default specifications can be set for the trace or post process
specifications or for all specifications.

Default Values none

Parameters

all_specifications This option sets the trace, format, and post
process specifications to their default values.

post_process_
specification

This option sets the post process
specification to its default values.

trace_specification This option sets the trace specification to its
default values.

Examples

default all_specifications  <RETURN>

Related Commands configuration

9-20 Timing: Commands



1define This command creates a label which is used to refer to probe
signals.

Syntax

Function This is a format specification command that creates a new label
and associates one or more probe signals to the label. Logic
polarity can also be designated. An existing label definition can be
modified using this command.  

Default Values The default polarity is "positive true".

Parameters

< LABELN> This represents the prompt < LABEL>  for a
new label. The label name is entered in the
command line. Labels can be up to eight
characters long and must begin with a letter.

Timing: Commands 9-21



< LABEL> This prompts you for the name of an existing
label either entered or selected from a
softkey.

xbits_bit This is a syntactical item referring to the
external probe signal bits.

< BIT# > This prompts you to enter the starting bit
number.

width This option selects the signals from the
previously selected < BIT# >  for an integer
number (< WIDTH> ) of signals.

< WIDTH> This prompts you for the integer number of
consecutive signals to associate with the
label.

and This parameter allows the logical "and" of
the previously selected signals with those to
follow.

logic_polarity This parameter is used to set the sense of a
"1" as more positive or more negative than
the probe threshold voltage. This allows
trigger definitions to be made in terms of 1s
and 0s, independent of the voltage sense of
the lines being measured. The trace list
values will reflect these definitions.

    positive_true This sets the logic_polarity to true if the
voltage is positive.

    negative_true This sets the logic_polarity to true if the
voltage is negative.

Examples

define CLOCK xbits  0 logic_polarity
positive_true  <RETURN>

9-22 Timing: Commands



define DATA xbits  8 width  8  <RETURN>

Related Commands delete
rename
threshold

Timing: Commands 9-23



1delete This command deletes one or all labels.

Syntax

Function This format specification command deletes one or more labels. If a
label is used in another specification, an error message will inform
you it cannot be deleted. If a deleted label has been reference in the
timing diagram or trace list, it is automatically removed from the
display.

Default Values none

Parameters

all_labels This option deletes all of the defined labels.
It is normally used to clear the default labels
before defining new ones.

< LABEL> This prompts you to enter the name of the
label to delete or to select one from a
soktkey.

Examples

delete X_lower  <RETURN>

Related Commands rename
define

9-24 Timing: Commands



1diagram This command initiates the timing diagram softkeys.

Syntax none

Function This command invokes the "diagram" softkeys from whatever
"display" mode you are currently in. This allows you to enter
timing_diagram specific commands without the necessity of using
"display" to change specification modes.

Default Values none

Parameters Any of the available timing diagram commands. 

Note Some of the timing diagram softkeys are not activated from this
command.

Examples

diagram mark x on_trigger  <RETURN>

Related Commands format
list
pod
post
trace

Timing: Commands 9-25



1display This command selects the screen to display.

Syntax

Function The display commands moves between the three specification
screens  and the two output screens. Three special function screens
can also be displayed: pod commands, error log, and event log.

Entering any of the words trace, format, pod, post, diagram, and
list will allow the commands from that specification or output
screen to be accessible.  As an example, from the timing diagram
display you can change the "mode" by entering: "trace mode_is
standard".

Default Values The default screen is the trace specification.

Parameters

trace_specification This option selects the trace specification
where you can specify an event that will

9-26 Timing: Commands



trigger the timing analyzer to begin acquiring
data.

format_specification This option selects the format specification
where you can define labels and set
thresholds which the analyzer will use.

post_process_
specification

This option selects the post processing
specification where you can define events to
be completed after every execution.

timing_diagram This option selects the timing diagram where
you can observe the measurement data in a
graphic representation.

trace_list This option selects the trace list where you
can observe the measurement data in a
columnar report format.

pod_commands This option select the pod commansd screen
where you can enter native pod commands
and display text from the analyzer firmware.

err_log This option selects the error log screen
which displays a roster of command errors.
The information displayed includes time, the
erroneous command line, and the text of the
error message.

event_log This option select the event log screen which
displays a roster of recent events such as
changes of status of the analyzer. The
information displayed includes time, type of
event, and an event message.

Examples

display timing_diagram   <RETURN>

Related Commands none

Timing: Commands 9-27



1end This command terminates the analyzer session.

Syntax

Function This command terminates the current timing session. If you end or
end locked, you keep the analyzer in a locked state. In addition,
end locked terminates the any other sessions running on the
analyzer in other windows or on other terminals. This saves the
current emulation configuration so that on reentry of the analyzer,
you can continue the analyzer session. If you are in the
Measurement System, you can select another measurement system
when ending the analyzer. You can also release the system when
ending the session so that others may access and use the analyzer.

The options  available for the "end" command depend upon how
this emulation session was started:

emul700: This command allows you to start multiple
instances of the interface controlling the same
emulator/analyzer from one or more windows
and/or terminals.  You can "end" just one
instance or all instances at once.

Measurement
System:

Only a single instance of the user interface is
allowed.  The "end" command ends that instance,
and optionally allows you to select  another
module defined in the same Measurement
System, or the "measurement_system" user
interface itself.

9-28 Timing: Commands



You return to the HP-UX shell or PMON depending on how you
entered  emulation.  Unless you choose "end release_system", the
current emulation configuration is stored so that on reentry to the
emulation module, you can resume the emulation session.

Note Entering < CTRL> -D  performs the same operation as entering
"end < RETURN> ".

Entering < CTRL> -\  or < CTRL> -|  (in other words, sending
SIGQUIT to the user interface process) is the same as entering
"end release_system < RETURN> ".

Default Values When the analyzer session is ended, control is returned to the
environment (HP-UX or PMON) you were in when the Softkey
Interface was entered without releasing the analyzer. The analyzer
is locked to the current user so that the session may be continued
later.  Other instances of the user interface are not affected. 

Parameters

locked This option closes all active instances of the
user interface in any combination of
windows and terminals.  Each closed
instance will return to the environment in
which the Softkey Interface was entered.
Thus, "end locked" is the same as entering
"end" at all of the instances. The
configuration of the ending instance
becomes the configuration used when you
start the analyzer later. This option is not
available when operating the analyzer in the
measurement system.

release_system This option closes all active instances of the
user interface in any combination of
windows and terminals.  Each closed
instance will return to the environment in

Timing: Commands 9-29



which the Softkey Interface was entered.  In
addition, the emulator is unlocked so that it
may be used by other users on your HP-UX
system.  The information needed to continue
your session is also removed.  (If you do not
release the system, no other users may access
it.)

select This measurement system option allows you
to select another module or to enter the
measurement system.

    < MODNAME> This prompts you for the name of another
module in the measurement system.  The
analyzer ends and the named module
immediately starts.  This option will only
appear if other modules are in configured in
your Measurement System.  The current
configuration is saved so that you can return
to this module later.

    measurement_
    system

This measurement system option ends the
analyzer and enter into the measurement
system module.

Examples

end  <RETURN>

end release_system  <RETURN>

end select measurement_system  <RETURN>

Related Commands none

9-30 Timing: Commands



1execute This command starts one or more timing measurements.

Syntax

Function The timing analyzer can make both single module or multiple
module measurements by using the execute and halt commands.
The execute command will start the timing analyzer alone (single
module measurement) if the timing analyzer is not connected to
the intermodule bus (IMB).

The execute command will start the timing analyzer and all other
modules connected to the IMB if the timing analyzer is connected
(trigger enable, trigger received, etc).

Default Values An execute command with no parameters will start an execution of
this module or if this module is connected to the IMB (trigger
enable, trigger received, etc.) the execution will start all modules
connected to the IMB.

Parameters

repetitively This option allows you to repetitively
execute measurements. This allows you to
accumulate measurements for statistical
analysis. As soon as one execution completes
another will be started until a "halt" is
executed from the command line or the
"halt_repetitive_execution" conditions are
met.

Timing: Commands 9-31



Examples

execute repetitively  <RETURN>

Related Commands halt
halt_repetitive_execution

9-32 Timing: Commands



1find This command finds a trigger-like event in trace memory.

Syntax

Timing: Commands 9-33



Function This command locates the specified event in trace memory and
brings it into the display, centers it, if possible, and locates the
cursor at that point. You can use this command to locate the
trigger, any of the marked samples, or specified signal conditions
on a label, multiple labels or a combination of label bits.

Default Values none.

Parameters

all This parameter specifies that all of the trace
memory data will be searched.

any_glitch This option locates the object label, labels,
or combination of label bits that have a
"glitch" within the range specified.This
option is available only in glitch_capture
mode.

any_transition This option locates the object label, labels,
or combination of label bits that have a
"transition" within the range specified .

< BIT# > This prompts you to enter the integer bit
number.

< DOT> This prompts you to enter the literal "." to
designate a specific bit number for a label.

entering This option locates the object label, labels,
or combinations of label bits entering the
specified pattern within the specified range.

= This designates the assignment of a specific
pattern entered as a numerical value for
comparison.

greater_than This option locates the object label, labels,
or combinations of label bits with the

9-34 Timing: Commands



specified pattern for more than the selected
duration within the specified range.

< LABEL> This prompts you to enter a label name or
select the label name from the softkeys.

leaving This option locates the object label, labels,
or combinations of label bits leaving the
specified pattern within the specified range.

less_than This option locates the object label, labels,
or combinations of label bits with the
specified pattern for less than the selected
duration within the specified range.

mark_x This option locates and displays the mark_x
event.

mark_o This option locates and displays the mark_o
event.

mark_a This option locates a "a" marked event
within the specified range.

mark_b This option locates a "b" marked event
within the specified range.

mark_c This option locates a "c" marked event within
the specified range.

mark_d This option locates a "d" marked event
within the specified range.

< PATT> This prompts you to enter a pattern of
signals. The pattern is a numerical value, the
significance of which is dependent on the
number of signals being tested. Refer to the
section on Entering Numerical Values in this
manual for options on entering patterns.

Timing: Commands 9-35



thru This parameter selects a range in trace
memory to search. The first point is the
cursor position. The second point is a
selected parameter.

    trigger This parameter specifies that trace memory
data between the cursor and the trigger will
be searched.

    mark_x This parameter specifies that trace memory
data between the cursor and mark_x will be
searched.

    mark_o This parameter specifies that trace memory
data between the cursor and mark_o will be
searched.

     < SAMPLE> This prompts for you to enter a sample
number. Trace memory data between the
cursor and the entered sample number will
be searched.

     start This parameter specifies that trace memory
data between the start of memory and the
cursor will be searched.

     end This parameter specifies that trace memory
data between the cursor and the end of
memory will be searched.

< TIME> This prompts you to enter the amount of
time a pattern should exceed (greater_than)
or not exceed (less_than).

    nsec_of,
    usec_of,
    msec_of,
    sec_of

These parameters specify the units of
measurement of < TIME>  in nanoseconds,
microseconds, milliseconds, or seconds,
respectively.

trigger This option locates and displays the trigger.

9-36 Timing: Commands



on This option specifies the label, labels, or
combination of label bits in the
"any_transition" and "any_glitch" options.

or_on This option further specifies the objects
referred to in the "on" option.

and This option further specifies the objects
referred to in the entering, leaving,
greater_than, or less_than options.

Examples

find entering XBITS  .3 = 0 <RETURN>

find mark_a thru mark_o  <RETURN>

Related Commands mark

Timing: Commands 9-37



1format This command initiates the format specification softkeys.

Syntax none

Function This command invokes the "format" softkeys from whatever
"display" mode you are currently in. This allows you to enter format
specification specific commands without the necessity of using
"display" to change specification modes.

Default Values none

Parameters Any of the available format specification commands. 

Note Some of the format_specification softkeys are not activated from
this command.

Examples

format mode_is glitch_capture  <RETURN>

Related Commands diagram
list
pod
post
trace

9-38 Timing: Commands



1halt This command terminates the execution in process.

Syntax

Function The halt command will terminate the current measurement and
display the last segment of captured data before the halt command
was entered. This command is only available while executing
measurements and is most useful to halt a repetitive execution.

Default Values The available measurement information is retrieved. If trace
memory was only partially filled, only that information will be
available for display.

Parameters

restore_last_trace This option will restore the last completed
trace.  This is available when using repetitive
execution and is most useful when the trigger
event does not happen very often. 

Examples

halt restore_last_trace  <RETURN>

Related Commands execute
halt_repetitive_execution

Timing: Commands 9-39



1halt_repetitive_exec
ution

This command conditionally halts a repetitive execution.

Syntax

Function This post processing command terminates a repetitive execution if
the conditions specified in the command are met. Conditions
include numbers of runs, specified sequences of marks, specified
mark counts, or when the time between mark_x and mark_o is
more or less than a certain value.

9-40 Timing: Commands



Default Values A repetitive execution will continue until halted by command or
post processing conditions are specified.

Parameters

modify This option returns the current
halt_repetitive_execution command to the
command line for editing.

when_marks_x_o This option specifies a count of the marks
(a,b,c,d) between the mark_x and mark_o as
the condition to halt a repetitive execution.
The count can be more or less than a
specified amount.

    greater_than This parameter specifies that the count must
be more than the selected value.

    less_than This parameter specifies that the count must
be less than the selected value.

    < MARKS> This prompts you to enter the count of
marks.

when_runs_equal This option specifies the halt condition to be
a prescribed number of measurements. This
is useful when gathering statistical
information.

    < RUNS> This prompts you to enter the integer
number of runs.

when_sequence_x_o This option specifies a sequence of marks, or
an absence of marks, between mark_x and
mark_o as the condition to halt a repetitive
execution.

Timing: Commands 9-41



      mark_a,
      mark_b,
      mark_c,
      mark_d,
    any_mark

One of these parameters is selected as a
condition.

    then This parameter allows you to include an
additional condition in a sequence.

    then_not This parameter allows you to exclude a
condition from a sequence.

when_time_x_o This option specifies a mark_x to mark_o
duration as the condition for halting a
repetitive execution. If the interval is
greater_than or less_than the interval
between mark_x and mark_o then execution
is halted.

    greater_than This parameter specifies the duration must
be more than the selected time.

    less_than This parameter specifies the duration must
be less than the selected time.

    < TIME> This prompts you to enter the amount of
time for the duration.

      nsec,
      usec,
      msec,
    sec

These parameters specify the units of
measurement of < TIME>  in nanoseconds,
microseconds, milliseconds, or seconds,
respectively.

off

9-42 Timing: Commands



Examples

halt_repetitive_execution when_time_x_o
greater_than   100 nsec   <RETURN>

halt_repetitive_execution when_sequence_x_o
mark_a then mark_b then_not mark_c   <RETURN>

Related Commands execute
halt

Timing: Commands 9-43



1help This command allows you to display information about the system
and analyzer features during an analyzer session.

Syntax

Function Typing "help" or "?" causes the available help options to be
displayed on the softkey labels. The system will display the help
information on the screen when you select an option.

The help command is not displayed on a softkey. You must enter it
into the command line from the keyboard. A question mark may be
used in place of "help" to access the help information.

Default Values none

Parameters

< HELP_FILE> This represents one of the available options
on the softkey labels. You can either press a
softkey for the help file, or type in the help
file name. If you are typing in the name,
make sure you use the complete syntax. Not
all of the labels reflect the complete file
name.

Examples

help system_commands   <RETURN>

? format_specification_commands   <RETURN>

9-44 Timing: Commands



This is a summary of the commands that appear on the softkey
labels when you type "help" or press "?":

system_commands
simple_measurement_commands
trace_specification_commands
format_specification_commands
post_process_specification_commands
display_commands
execute_commands
diagram_commands
list_commands
configuration_commands
copy_commands
graphic_diagrams
ascii_diagrams
diagram_outputs
end_commands

Related Commands none

Timing: Commands 9-45



1indicate This command selects the statistical information displayed.

Syntax

Function This command allows you to select display information. The
display information can be either the time between mark_x and
mark_o or the number of marks (a, b, c, d) between mark_x and
mark_o. For each of the two measures, the maximum and
minimum values or the mean and standard deviation values are
displayed. On the timing diagram, you can also set the display of
signal levels at the cursor on or off.

Default Values The default display uses the time interval between mark_x and
mark_o. The signal levels at cursor are off.

Parameters

time_interval_x_o This option specifies the mark_x to mark_o
time interval is to be displayed.

number_of_marks_
x_o

This option specifies the mark count
between mark_x and mark_o is to be
displayed.

9-46 Timing: Commands



maximum_and_
minimum

This parameter specifies the maximum and
minimum values for the selected display
option are to be displayed.

mean_and_
standard_deviation

This parameter specifies the mean and
standard deviation for the selected display
option are to be displayed.

levels_at_cursor This option selects the display of signal
levels at the diagram cursor on the timing
diagram. The level indicator can be turned
on or off.

on This parameter sets the level indicators for
each of the displayed signals on.

off This parameter sets the level indicators for
each of the displayed signals off. 

Examples

indicator time_interval_x_o
maximum_and_minimum   <RETURN>

indicator levels_at_cursor on  <RETURN>

Related Commands statistics

Timing: Commands 9-47



1list This command initiates the trace list softkeys.

Syntax None

Function This command invokes the "list" softkeys from whatever "display"
mode you are currently in. This allows you to enter trace list
specific commands without the necessity of using "display" to
change specification modes.

Default Values none

Parameters Any of the available trace list commands.

Note Some of the trace list softkeys are not activated from this command.

Examples

list process_for_data off  <RETURN>

Related Commands diagram
format
pod
post
trace

9-48 Timing: Commands



1magnify This command changes the timing diagram display resolution.

Syntax

Function This timing diagram command allows you to change the time per
division specification in the timing diagram display. This allows you
to observe the signals in greater or lesser detail. 

It also allows you to turn the indicator bar on or off. The indicator
bar depicts the sample width that will be displayed after increasing
the magnification by a factor of ten.

Default Values The default magnification is x4 with the magnify indicator on.

Timing: Commands 9-49



Parameters

x1,
x2,
x4,
x10,
x20,
x40,
x100

Choose one of these options to set the
magnification to a factor of 1, 2, 4, 10, 20, 40,
or 100, respectively.  The time per division
information on the screen changes
accordingly, along with the magnification
value field.  In ASCII diagrams, the time per
character is indicated.

indicator This option turns the magnify indicator on
or off.  The indicator shows the area of the
display that will appear during the next x10
level of magnification.  In x4 magnification,
the magnify indicator shows the area of the
display that will appear in the x40
magnification display. The indicator does
not appear for magnifications over x10. 

    on This parameter turns the indicator bar on.  

    off This parameter turns the indicator off.

Examples

magnify x100   <RETURN>

Related Commands CURSOR

9-50 Timing: Commands



1mark This command marks specified conditions in trace memory.

Syntax

Timing: Commands 9-51



Function Marks are identifiers assigned to samples in trace memory. They
can be assigned to any "event" you specify. Marks can be assigned
from the command line for events in current trace memory, or as a
post processing function. Marks specified at the command line are
also store for subsequent post processing.

Marks can be used to:

Define statistical ranges.

Calculate time intervals.

Select samples for display.

9-52 Timing: Commands



Specify conditions for halting repetitive executions.

There six mark names recognized: mark_x, mark_o, mark_a,
mark_b, mark_c, and mark_d. The first two marks, mark_x and
mark_o, are single occurrence marks and are used to identify the
first occurrence of a specified event. These two marks always exist
and are used to define a range of samples. The others are multiple
occurrence marks and are used to identify all occurrences of a
specified event.

You can assign names to any of the marks. These names can be
displayed in the trace list.  Marks can also be turned off or on to
facilitate processing.

Default Values The defaults for mark_x and mark_o are "start of trace" and "end of
trace", respectively. The other marks have no defaults.

Parameters

x,
o,
a,
b,
c,
d

Choose one of these options to select the
mark to be defined or modified.

after This option qualifies the positioning of a
mark by specifying it will be after certain
condition.

and This option allows you to specify an
additional label or label bit to be added to
the conditions.

any_glitch This option specifies glitch samples be
marked

    on This parameter qualifies the glitch condition
by specifying a label name or label bit
number.

Timing: Commands 9-53



    or_on This parameter allow you to add an
additional glitch condition label name or
label bit number.

any_transition

    on This parameter qualifies the transition
condition by specifying a label name or label
bit number.

    or_on This parameter allow you to add an
additional transition condition label name or
label bit number.

before This option qualifies the positioning of a
mark by specifying it will be before certain
condition.

< BIT# > This prompts you to enter the label integer
bit number.

cursor This parameter specifies the position of the
mark to be before or after the trigger.

default This option resets the mark to its default
value.

< DOT> This prompts you to enter the literal "." to
designate a specific bit number for a label.

end This parameter specifies the position of the
mark is to be before the end of trace memory.

entering This option specifies a pattern condition will
be entered.

= This designates the assignment of a specific
pattern entered as a numerical value for
comparison.

9-54 Timing: Commands



greater_than This option specifies a pattern will exist for
more than an specified duration.

< LABEL> This prompts you to enter a label name or
select the label name from the softkeys.

leaving This option specifies a pattern condition will
be exited.

less_than This option specifies a pattern will exist for
less than an specified duration.

< MARK> This prompts you to enter < RETURN>  to
place the mark at the current cursor location.

mark_o This parameter specifies the position of
mark_x before or after mark_o.

mark_x This parameter specifies the position of
mark_o before or after mark_x.

modify This option returns the current mark
command to the command line for editing.

named This option specifies an name will be
assigned to the mark. The names can be
displayed in the trace list.

    < NAME> This prompts you to enter the mark name.

on_all_
occurrences_of

This option specifies a signal pattern as the
condition for marking events for mark_a,
mark_b, mark_c, and mark_d.

on_cursor This option specifies the mark is to be
moved to the current cursor location.

on_first_
occurrence_of

This option specifies a signal pattern as the
condition for marking an event for mark_x
and mark_o.

Timing: Commands 9-55



on_sample This option specifies the mark is to be
moved to the specified trace memory sample
number.

on_trigger This option specifies the mark is to be
moved to the current trigger location.

< PATT> This prompts you to enter a pattern of
signals. The pattern is a numerical value, the
significance of which is dependent on the
number of signals being tested. Refer to the
section on Entering Numerical Values in this
manual for options on entering patterns.

< SAMPLE> This prompts you to enter an integer sample
number.

start This parameter specifies the position of the
mark is to be after the start of trace memory.

< TIME> This prompts you for the time period to look
for a specified pattern.

    nsec_of,
    usec_of,
    msec_of,
    sec_of

These parameters specify the units of
measurement of < TIME>  in nanoseconds,
microseconds, milliseconds, or seconds,
respectively.

trigger This parameter specifies the position of the
mark to be before or after the trigger.

9-56 Timing: Commands



Examples

mark x on_first_occurrence_of entering XBITS
= 0B0H <RETURN>

mark a on_all_occurrences_of any_transition
after mark_x   <RETURN>

mark d on  <RETURN>

mark c on_all_occurrences_of entering XBITS
.1 = 0 named EVENT <RETURN>

Related Commands find

Timing: Commands 9-57



1mode_is This command sets the data acquisition mode.

Syntax

Function This command sets mode to either "standard" or "glitch_capture".
In the standard mode, trace memory can hold 1024 samples taken
at the rate specified. In the glitch_capture mode, trace memory can
hold 512 samples and glitchs are noted.

Default Values The analyzer defaults to standard mode.

Parameters

standard This option allows full analyzer depth to be
used.

glitch_capture This option will set the analyzer to detect
glitches using half the analyzer depth.

Examples

mode_is standard  <RETURN>

Related Commands none

9-58 Timing: Commands



1modify This command returns the define label command for editing.

Syntax

Function This format specification command allows you to modify the
definition of any existing label.

Default Values none

Parameters

< LABEL> This prompts you to enter a label name or
select the label name from the softkeys.

Examples

modify CLOCK   <RETURN>

Related Commands none

Timing: Commands 9-59



1pod This command initiates the pod commands softkeys.

Syntax None

Function This command invokes the "pod_commands" softkeys from
whatever "display" mode you are currently in. This allows you to
enter pod_command specific commands without the necessity of
using "display" to change specification modes.

Default Values none

Parameters Any of the available pod_commands commands.

Note Some of the pod_commands softkeys are not activated from this
command.

Examples

pod pod_command "ver"  <RETURN>

Related Commands diagram
format
list
post
trace

9-60 Timing: Commands



1pod_command This command sends native commands to the analyzer.

Syntax

Function This command sends native commands to the analyzer terminal
interface. You should be very careful to avoid command which will
effect the interface or the configuration. Those commands would
"confuse" the protocol, and more likely than not, cause the analyzer
to hang.

The Softkey Interface provides the following warning when
displaying the pod_commands softkeys:

 
____________________________________________________________________________
                             --- WARNING ---
Care should be taken when using the "pod_command". The user interface, and
the configuration files in particular, assume that the configuration of the
64700 pod is NOT changed except by the user interface. Be aware that what 
you see in "modify configuration" will NOT reflect the 64700 pod’s 
configuration if you change the pod’s configuration with this command. Also,
commands which effect the communications channel should NOT be used at all.
Other commands may confuse the protocol depending upon how they are used.
The following commands are not recommended for use with "pod_command":

    sttty, po, xp - do not use, will change channel operation and hang
    echo, mac     - usage may confuse the protocol in use on the channel
    wait          - do not use, will tie up the pod, blocking process
    init, pv      - will reset pod and force end release_system
    t             - do not use, will confuse trace status polling and unload
____________________________________________________________________________

Default Values none

Timing: Commands 9-61



Parameters

< CMD> This prompts you to enter a quoted sting
literal to send to the analyzer firmware. The
contents of the quoted string are sent and
the results are displayed on the screen.

Examples

pod_command "ver"   <RETURN>

Related Commands none

9-62 Timing: Commands



1post This command initiates post_process specification softkeys.

Syntax none

Function This command invokes the "post_process" softkeys from whatever
"display" mode you are currently in. This allows you to enter post
process specific commands without the necessity of using "display"
to change specification modes.

Default Values none

Parameters Any of the available post_process specification commands.

Note Some of the post_process softkeys are not activated from this
command.

Examples

post compare file_is  COMP_FILE <RETURN>

Related Commands diagram
format
list
pod
trace

Timing: Commands 9-63



1present This command specifies the objects to be presented.

Syntax The timing diagram syntax is:

The trace list syntax is:

9-64 Timing: Commands



Function This command controls the display format for the timing diagram
and trace list. The timing diagram display can include all defined
labels or any combination of blank lines, labels or label bits, or
compare file labels or label bits (if the compare file has been
selected). The trace list display can include all labels or any
combination of time counts, mark names, labels or label bits, or
compare file labels or label bits (if the compare file has been
selected).

In the timing diagram, entering the display command with no
options allows you to toggle the between the default labels
referring to probe signals and the user-defined labels.

Labels display from a compare file have a trailing "x" appended to
indicate an external reference.

Default Values All defined labels are displayed by default.

Parameters

all_labels This option displays all of the labels
currently defined in the format specification.

blank This timing diagram option inserts a blank
line in the display.

< BIT# > This prompts you to enter the integer bit
number.

compare_file This option selects the compare file labels
for display.  This is available only when a
compare file has been defined in the post
process specification. The softkey label
appears as < COMPAR>  if a compare file
has not been selected. User-defined labels
from the compare file are displayed with a
trailing "x" to designate an external reference.

< DISPLY> This timing diagram softkey label is used to
remind the you that the display command
without parameters is used to toggle

Timing: Commands 9-65



between default and user-defined labels on
the timing diagram.

< DOT> This prompts you to enter the literal "." to
designate a specific bit number for a label.

in_hex,
in_oct,
in_bin,
in_dec

Specifies the number base when the trace list
is being shown. The bases are hexadecimal,
octal, binary, and decimal, respectively.

mark_names This trace list option creates a column for
user-specified mark names.

modify This option returns the current display
command to the command line for editing.

then This option selects another object for display.

time_count This trace list option creates a column for
the time count. Counts are absolute or
relative.

    absolute This parameter specifies an absolute count
for the display. The time displayed is the
cumulative amount of time before or after
the trigger.

    relative This parameter specifies a relative count for
the display. The time displayed is then the
amount of time between samples.

9-66 Timing: Commands



Examples

present TIMER then DATA  .0 thru  3 then blank
then DATA  .4 thru  7 <RETURN>

present DATA then blank then compare_file
DATA <RETURN>

present mark_names then TIMER in_bin then
DATA in_hex then time_count relative  <RETURN>

Related Commands define

Timing: Commands 9-67



1process_for_data This command limits the trace list display to specified samples.

Syntax

9-68 Timing: Commands



Function This trace list command limits the samples displayed to those from
trace memory that meet the specified conditions. Conditions can
include samples with a specified pattern, samples a fixed count
from specified transition, only marked samples, or samples with a
specified pattern lasting more than a specific time period.

Default Values The trace list displays all of the samples in trace memory.

Parameters

and This option allows you to specify an
additional label or label bit to be added to
entering or leaving.

< BIT# > This prompts you to enter the label integer
bit number.

default This option clear any conditions and set it to
its default value.

< DOT> This prompts you to enter the literal "." to
designate a specific bit number for a label.

= This designates the assignment of a specific
pattern entered as a numerical value for
comparison.

greater_than This option specifies a pattern will exist for
more than an specified duration.

< LABEL> This prompts you to enter a label name or
select the label name from the softkeys.

marked This option specifies that only marked
samples are to be displayed.

modify This option returns the current process for
data command to the command line for
editing.

Timing: Commands 9-69



off This option turns the process for data
condition off. When there is no process for
data condition, all of the samples in trace
memory are displayed in the trace list.

on This parameter qualifies the transition
condition by specifying a label name or label
bit number.

< PATT> This prompts you to enter a pattern of
signals. The pattern is a numerical value, the
significance of which is dependent on the
number of signals being tested. Refer to the
section on Entering Numerical Values in this
manual for options on entering patterns.

samples_of This option specifies that only samples
matching a specified pattern will be
displayed.

sampled This option specifies that only samples a
user-selected number of samples before or
after a specific condition will be displayed.
The condition can only be a transition
(positive, negative, or positive or negative)
on a specific signal.

    < SAMPLE> This prompts you to enter a number of
samples before or after a specified event that
will be displayed.

    samples_after This parameter specifies the displayed
samples are after the event specified.

    samples_before This parameter specifies the displayed
samples are before the event specified.

    neg_transition_on This parameter specifies a negative
transition on the target signal.

9-70 Timing: Commands



    pos_transition_on This parameter specifies a positive transition
on the target signal.

    pos_or_neg_
transition_on

This parameter specifies any transition on
the target  signal.

< TIME> This prompts you for the time period to look
for a specified pattern.

      nsec,
      usec,
      msec,
    sec

These parameters specify the units of
measurement of < TIME>  in nanoseconds,
microseconds, milliseconds, or seconds,
respectively.

Examples

process_for_data samples_of X_lower  .1 = 1
<RETURN>

Related Commands none

Timing: Commands 9-71



1QUALIFIER The QUALIFIER  parameter is used with the "trigger" command to
specify  a conditions after which a trigger condition will be tested.

Syntax

9-72 Timing: Commands



Function You can specify a condition or set of conditions that must be met
before the trigger condition will be evaluated. In standard mode,
qualifiers on "edges", or changes in signal values, while in glitch
capture mode, qualifiers are glitches.

Default Values There is no default for qualifying standard mode triggers. Glitch
capture mode triggers can be qualified with a glitch on any signal.

Parameters

< BIT# > This prompts you to enter bit number for the
glitch or edge test.

< DOT> This prompts you to enter the literal "." to
designate a specific bit number of a label.

< LABEL> This prompts you to enter a label name or
select the label name from the softkeys.

on You use this option to qualify the signals on
which a glitch may trigger the analyzer. 

or_on This option used to add additional signals to
the qualifier.

qualified_with This option qualifies the trigger condition by
allowing you to specify "edge conditions" on
labels or label bits.

    negative_edge This parameter qualifies the trigger by
looking for a "negative edge" (transition).

    positive_or_
negative_edge

This parameter qualifies the trigger by
looking for any edge (transition).

    positive_edge This parameter qualifies the trigger by
looking for 

qualified_with_
any_glitch

This option qualifies the trigger condition in
glitch capture mode by specifying the trigger
condition can only be met after a glitch has

Timing: Commands 9-73



occurred. If you specify one or more signals,
the trigger will be qualified by glitches only
on those lines. Otherwise, glitches on any
line will cause the qualification to be true.

Examples

trigger on pattern XBITS  .0 = 0
qualified_with positive_edge XBITS  .1
<RETURN>

trigger position_is center_of_trace   <RETURN>

Related Commands none

9-74 Timing: Commands



1rename This command renames a defined label.

Syntax

Function This format specification command renames any previously defined
to another name.

Default Values none

Parameters

to This option initiates the entry of the new
name for the label.

< LABEL> This prompts you to enter a label name or
select the label name from the softkeys. The
new label name can only be entered.

Examples

rename CLOCK to CLOCK1   <RETURN>

Related Commands define
delete

Timing: Commands 9-75



1< ROLL> This softkey describes how to move around the timing diagram.

Syntax none

Function The < ROLL>  softkey reminds you that you can enter a sample
number, or use the < CTRL> -F  and < CTRL> -G  (or < NEXT>
and < PREV> ) keys, to roll the timing diagram.  The cursor
position, as indicated to the right of the waveforms, changes
accordingly.

The timing diagram can also be scrolled up and down if the
waveform size or the number of signals displayed exceeds the size
of the screen.

Default Values none

Parameters

< SAMPLE>  By entering a sample number on the
command line, you reposition the cursor to
that sample number on the display. 

< CTRL> -F Causes the cursor to move to the right on
the waveform (to higher samples numbers in
trace memory).

< CTRL> -G Causes the cursor to move to the left on the
waveform (to lower sample numbers in trace
memory).

< NEXT> Causes the next page of waveform data to be
displayed (higher samples numbers).

< PREV> Causes the previous page of waveform data
to be displayed (lower sample numbers).

^
< uparrow>

Scrolls the diagram up by one line if all of
the displayed signals do not fit on one screen.

9-76 Timing: Commands



v
< downarrow>

Scrolls the diagram down by one line if all of
the displayed signals do not fit on one screen.

< Shift> -^
< Shift> -< uparrow>

Scrolls the diagram up by one screen if all of
the displayed signals do not fit on one screen.

< Shift> -v
< Shift> -< downarrow>

Scrolls the diagram down by one screen if all
of the displayed signals do not fit on one
screen.

Examples

436 <RETURN>

Related Commands none

Timing: Commands 9-77



1sample This command specifies the sampling period or rate.

Syntax

Function The sample command sets the sampling period or rate for
subsequent measurements. Data is acquired by the analyzer and
stored in trace memory at that effective rate.

Default Values The default is the fastest sample rate in each mode.

Parameters

period_is This option specifies the sample rate based
on the period.

< PERIOD> This prompts you to enter the length of the
sample period. The allowed range is 10 nsec
(20 nsec in glitch_capture mode) to 500 msec.

    nsec,
    usec,
    msec

These parameters specify the units of
measurement of < PERIOD>  in
nanoseconds, microseconds, or milliseconds,
respectively.

9-78 Timing: Commands



rate_is This option specifies the sample rate based
on the frequency if sampling.

< FREQ> This prompts you to enter the sample
frequency. The allowed range is 100
megahertz (50 megahertz in glitch_capture
mode) to 2 hertz.

    MHz,
    kHz,
    Hz

These parameters specify the units of
measurement of < FREQ>  in megahertz,
kilohertz, and hertz, respectively.

Examples

sample rate_is  100 MHz <RETURN>

Related Commands none

Timing: Commands 9-79



1statistics This command selects samples to be included in statistical analysis.

Syntax

Function This command specifies samples on which statistics are to be
calculated. Samples are qualified with mark counts or time
intervals from mark_x to mark_o.  

This command can also log the statistics after every execution to a
specified file. In order for logging to take place, the sampling type
must be selected with the "indicate" command.

Default Values All measurements are included in a statistical sample unless
excluded by this command.

9-80 Timing: Commands



Parameters

always This option resets this option to its default
condition.

when_marks_x_o This option specifies that only traces with a
number of marks between the mark_x and
mark_o points (inclusive) will be included in
the statistical sample.

    greater_than This parameter specifies the mark count
must be greater than the number entered.

    less_than This parameter specifies the mark count
must be less than the number entered.

< MARKS> This prompts you to enter the number of
marks below or above which the trace will be
included in the sample.

when_time_x_o This option specifies that only traces with a
specified time interval between the mark_x
and mark_o points will be included in the
statistical sample.

    greater_than This parameter specifies the duration must
be more than the time entered.

    less_than This parameter specifies the duration must
be less than the time entered.

< TIME> This prompts you to enter the time interval
below or above which the trace will be
include in the sample.

    nsec,
    usec,
    msec,
    sec

These parameters specify the units of
measurement of < TIME>  in nanoseconds,
microseconds, milliseconds, or seconds,
respectively.

Timing: Commands 9-81



log_to_file The option selects a file name to receive
statistical information.

    < FILE> This prompts you for a file name to contain
the output information.

    noappend This parameter forces the overwrite of a
file’s information if the selected file name
already exists.

    noheader This parameter suppresses the report header
from the output. The header contains the
source ("64700 Timing Analyzer") and the
day, date and time of the output. This
parameter is useful when building a listing
file from multiple executions of the
command.

    off This option turns off the logging of statistics.

Examples

statistics log_to_file  testcounts  <RETURN>

statistics when_time_x_o greater_than  100
nsec   <RETURN>

Related Commands indicate

9-82 Timing: Commands



1threshold This command sets the point at which a signal voltage is considered
a logical true.

Syntax

Function This command sets the voltage level at which a signal is considered
true (a logical "1") for each of the two signal groups, or for all
signals. Threshold voltages can be in the range of + 6.35V to
-6.40V in 50mV increments. The defined levels for TTL, ECL and
CMOS can be selected.

Default Values The threshold defaults are TTL for all signals.

Parameters

xbits This option is a system default reference to
all 16 of the probe signals.

x_lower This option is a system default reference to
the first eight probe signals (bits 0 through
7).

x_upper This option is a system default reference to
the second eight probe signals (bits 8
through 15).

Timing: Commands 9-83



ttl This parameter sets the threshold voltage to
+ 1.40V.

ecl This parameter sets the threshold voltage to
-1.30V.

cmos This parameter sets the threshold voltage to
+ 2.50V.

< VOLTS> This prompts you to enter the voltage if it is
non-standard.

    volts This is a syntactic element used when
entering the voltage.

Examples

threshold x_lower ecl   <RETURN>

Related Commands define

9-84 Timing: Commands



1trace This command initiates the trace specification softkeys.

Syntax none

Function This command invokes the "trace" softkeys from whatever "display"
mode you are currently in. This allows you to enter trace
specification specific commands without the necessity of using
"display" to change specification modes.

Default Values none

Parameters Any of the available trace specification commands. 

Note Some of the trace specification softkeys are not activated from this
command.

Examples

trace mode_is glitch_capture   <RETURN>

Related Commands diagram
format
list
pod
post

Timing: Commands 9-85



1trigger This command specifies trigger conditions.

Syntax

9-86 Timing: Commands



Function The trigger is an event on the probe which causes the analyzer to
begin acquiring data and filling trace memory. 

The trigger command can also position the trigger at the start,
center, or end of trace memory.

Default Values The default is a "don’t care" trigger positioned at the start of the
trace.

Parameters

and This option allows you to specify an
additional label or label bit to be added to
the conditions. 

anything This option specifies the trigger to be any
signal change. The change can be qualified
with an edge condition.

any_glitch This option specifies the trigger to be a
glitch. The glitch can be on any signal, or
qualified by label or label bit.  This option is
available only in glitch capture mode.

    on You use this option to qualify the signals on
which a glitch may trigger the analyzer. 

    or_on This option used to add additional signals to
the glitch condition qualifier.

< BIT# > This prompts you to enter bit number for the
pattern or edge.

< DELAY> This prompts you to enter a delay. The
analyzer waits the duration of the delay after
the trigger before beginning to sample the
signals.

    nsec_after,
    usec_after,
  msec_after

These parameters specify the units of
measurement of < DELAY>  in

Timing: Commands 9-87



nanoseconds, microseconds, or milliseconds,
respectively.

< DOT> This prompts you to enter the literal "." to
designate a specific bit number of a label.

greater_than This option specifies a duration a pattern
should last for the specified signals. If the
pattern is detected but does not last at least
the specified amount of time, the trigger
condition is not met.

less_than This option specifies a duration a pattern
should not exceed for the specified signals. If
the pattern is detected an lasted longer than
the specified amount of time, the trigger
condition is not met.

modify This option returns the current trigger
command to the command line for editing.

pattern This option specifies the trigger condition
will be a signal pattern.

on This option specifies the trigger point of a
measurement or set of measurements.

< PATT> This prompts you to enter a pattern of
signals. The pattern is a numerical value, the
significance of which is dependent on the
number of signals being tested. Refer to the
section on Entering Numerical Values in this
manual for options on entering patterns.

position_is This option specifies the positioning of the
trigger in trace memory. If the trigger is
positioned at the start of trace memory, the
majority of samples will be after the trigger;
if it is positioned at the end of trace memory,
the majority of samples will be before the
trigger; and if it is positioned at the center,

9-88 Timing: Commands



the samples will be evenly distributed on
either side of the trigger.

    start_of_trace This parameter positions the trigger near the
start of trace memory.

    center_of_trace This parameter positions the trigger near the
middle of trace memory.

    end_of_trace This parameter positions the trigger near the
end of trace memory.

QUALIFIER This qualifies the trigger condition by
allowing you to specify "edge conditions" on
labels or label bits which must occur before
the trigger condition will be evaluated. In
glitch capture mode, you specify signals on
which glitches will occur before the trigger
condition will be evaluated.

with Specifies that a glitch must occur on the
previously named channels while the
following condition is true.

< TIME> This prompts you to enter the time a signal
pattern should be evaluated.

      nsec_of,
      usec_of,
    msec_of

These parameters specify the units of
measurement of < TIME>  in nanoseconds,
microseconds, or milliseconds, respectively.

Examples

trigger on pattern XBITS  .0 = 0
qualified_with positive_edge XBITS  .1
<RETURN>

trigger position_is center_of_trace   <RETURN>

Related Commands none

Timing: Commands 9-89



1wait This command allows you to present delays to the system.

Syntax

Function The wait command can be an enhancement to a command file, or
to normal operation at the main analyzer level. The usefulness of
delays is to allow the analyzer system and external analyzer time to
reach a certain condition or state before executing the next
command.

The wait command does not appear on the softkey labels. You
must type the wait command on the command line. After you type
"wait", the command parameters will be accessible on the softkeys.

Default Values The system will pause until it receives a < CTRL> -C  signal.

Note If set intr < CTRL> -C  has not been executed on your system,
< CTRL> -C  may be defined as the backspace key.

9-90 Timing: Commands



Parameters

measurement_
complete

This option causes the system to pause until
a pending measurement completes, or until a
< CTRL> -C  signal is received. If a
measurement is not in progress, the wait
command will be completed immediately.

or This causes the system to wait for a
< CTRL> -C  signal or for a pending
measurement to complete. Whichever occurs
first will satisfy the condition.

< TIME> This prompts you to enter the number of
seconds to insert for the delay.

    seconds This sets the unit of measure for the delay to
seconds. Seconds is the only option.

Note A wait command in a command file will cause execution of the
command file to pause until a < CTRL> -C  signal is received, if
< CTRL> -C  was previously defined as the interrupt signal.
Subsequent commands in the command file will not execute while
the command file is paused.

You can verify whether or not the interrupt signal is defined as
< CTRL> -C  by typing "set" at the system prompt.

Examples

wait  <RETURN>

wait 10  <RETURN>

Related Commands none

Timing: Commands 9-91



1waveform_size This command adjust the waveform size on the display.

Syntax

Function This timing diagram command allows you to adjust the size of the
displayed waveforms.  A small waveform size allows you to
compare waveforms of a greater number of signals.  A large
waveform size allows you to view the signal in more detail.

If you are displaying more channels than can be shown on the
screen, you can use the < Shift> -< up arrow>  and
< Shift> -< down arrow>  keys to page down or page up through
the channels.  The up arrow and down arrow keys shift the display
down or up a waveform at a time.

Default Values Small waveforms are displayed by default.

Parameters

large This option displays the waveforms with a
maximum vertical height.

medium This option displays the waveforms with a
moderate vertical height.

small This option displays the waveforms with a
minimum vertical height.

9-92 Timing: Commands



Examples

display timing_diagram  <RETURN>

waveform_size medium  <RETURN>

Related Commands present

Timing: Commands 9-93



1Notes

9-94 Timing: Commands



A

External Analyzer Specifications

General
Specifications

Threshold Accuracy =  + /- 50 mV.

Threshold Voltage Range =  -6.40V to 6.35V.

Dynamic Range =  + /- 10 V about threshold setting.

Minimum Input Swing =  600 mV pp.

Minimum Input Overdrive =  250 mV or 30% of threshold
setting, whichever is greater.

Absolute Maximum Input Voltage =  + /- 40 V.

Probe Input Resistance =  100K ohms + /- 2%.

Probe Input Capacitance =  approximately 8 pF.

Maximum + 5 V Probe Current =  0.650 A.

+ 5 V Probe Voltage Accuracy =  + 5.0 + /- 5%.

State Analyzer Data Setup Time =  10 ns min.

Data Hold Time =  0 ns min.

Qualifier Setup Time =  20 ns min.

Qualifier Hold Time =  5 ns min.

External Analyzer Specifications A-1



Minimum Clock Width =  10 ns.

Minimum Clock Period:

– No Tagging Mode =  40 ns (25 Mhz clock).

– Event Tagging Mode =  50 ns (20 MHz clock).

– Time Tagging Mode =  60 ns (16 MHz clock).

Minimum Time from Slave Clock to Master Clock =  10 ns.

Minimum Time from Master Clock to Slave Clock =  50 ns.

Timing Analyzer Sample Rate Accuracy =  0.01%.

Asychronous Pattern - Trigger on pattern is less than or
than specified duration. Pattern is logical AND of
specified low, high or don’t care for each channel. If the
pattern is true then false for less than the duration there is
a 20 ns reset time before looking for the pattern again.

Greater Than Duration =  Range 30 ns to 10 ms.
Resolution is + /-10 ns or 0.01% whichever is greater.
Accuracy is + /-10 ns +  0.01% + 20/-0 ns.

Less Than Duration =  Range 40 ns to 10 ms. Resolution
is + /-10 ns or 0.01% whichever is greater. Pattern must be
valid for at least 20 ns. Accuracy is + /-10 ns +  0.01%
+ 20/-0 ns.

Delay Accuracy =  0.01% + /-10 ns.

Minimum Detectable Glitch =  5 ns at threshold.

Skew =  4 ns (typical).

A-2 External Analyzer Specifications



B

Timing Output and Diagrams

1Overview The Timing Analyzer Softkey Interface provides you a mechanism
to generate output for a variety of environments and hardware.
Measurements can be displayed in diagrammatic or list form.
Diagrams are created using ASCII characters, the default, for
ASCII terminals and non-graphics printers, or in graphics format
for terminals and printers with graphics support. 

1Timing Diagram
Outputs

The timing analyzer will produce a graphics diagram output if you
are using the graphics diagram, and an ASCII diagram output if
you are using an ASCII character diagram.  The ASCII diagram
output is suitable for including in ASCII files and printing on
standard ASCII printers.

The graphics timing diagram output, on the other hand, is raw
raster output and can not be sent to the printer like standard
ASCII data.  In fact, it is best not to mix ASCII outputs and
graphics even in the same files because a print out of the file will
yield only ASCII or only graphics and will NOT yield desirable
results.  The graphics data must be sent to the printer character
device and the ASCII must be sent to the printer block device. 

Timing Diagrams and Outputs B-1



1Graphics Timing
Diagrams

The graphic timing diagram is available when using a high or
medium resolution bit-mapped monitor on the host SPU which
controls a timing analyzer.  Bit-mapped displays are listed at boot
up as ITE (Internal Terminal Emulator).

Graphic timing diagrams are available when using the X Window
System on a bit-mapped display, but are not available when
running HP Windows/9000 on a bit-mapped display, or on an
ASCII terminal.

Graphic timing diagrams are available on a remote SPU only with
the X Window System. For information on this option, refer to
"Using the Timing Analyzer Under the X Window System" later.

TERM Shell Variable To access the timing analyzer graphic diagrams make sure that
your TERM shell variable is set properly.  It should be one of the
following values: hp300h, hp300l, hp98548, hp98549, hp98550,
hp98700, or hp98720w.

The value for TERM must match the monitor video board or
graphics display system installed in your host; refer to the list below.

hp300h HP 98544A High-resolution Monochromatic
Video Board.

hp300h HP 98545A / HP 98547A High-resolution
Color Video Boards.

hp300l HP 98542A Medium-resolution
Monochromatic Video Board.

hp300l HP 98543A Medium-resolution Color Video
Board.

hp98548 HP 98548A Super High-resolution Video
Board.

hp98549 HP 98549A High-resolution Color Video
Board.

B-2 Timing Diagrams and Outputs



hp98550 HP 98550A Super High-resolution Color
Video Board.

hp98700 HP 98700H Graphics Display Station.

hp98720w HP 98720H / HP 98721 Graphics Display
Stations.

WMSCRN Shell
Variable

Now when you enter the timing analyzer and press "execute" a
graphics timing diagram should appear.  If graphics do not appear
then perhaps the timing analyzer software can not find your
monitor.  The timing analyzer assumes that the monitor is
"/dev/crt" but if your monitor is something different you can inform
the timing analyzer software of that fact by setting the shell
variable WMSCRN to your monitor with a command like:

WMSCRN=/dev/crt1 <RETURN>
export WMSCRN <RETURN>

You may want to set the WMSCRN shell variable in your ".profile"
file so that you do not have to redefine WMSCRN upon each login.

WMBASEFONT Shell
Variable

In the timing analyzer we can also accept different font sizes which
yield different size graphic diagrams.  The font size can be set to
any of the available fonts with the exception that a resultant 24 line
x80 column display must be available.  If this display is not possible
with the font which you select then the timing analyzer will have a
display initialization failure.

To change the font size (in timing analyzer only), set the shell
variable WMBASEFONT with a command like:

WMBASEFONT=/usr/lib/raster/12x20/cour.b.0U
<RETURN>
 export WMBASEFONT <RETURN>

The value 12x20/cour.b.0U specifies that you want to use a pixel
cell 12 dots wide by 20 high in a courier bold font.  By examining
the files in the sub-directories of "/usr/lib/raster" you can determine
the font sizes available for your host and pick an appropriate one.
A larger font cell size will yield a larger diagram and a smaller font
cell size will yield a smaller diagram.

Timing Diagrams and Outputs B-3



You may also want to set the WMBASEFONT shell variable in
your ".profile" file so that you do not have to redefine
WMBASEFONT upon each login.

Required Filesets The fileset AFA_FM, which contains raster fonts for graphics and
text, is required for the timing analyzer to produce graphic displays.
See the HP-UX System Administrator Manual, Part 2 for
information on loading the required filesets.

1Using the Timing
Analyzer Under
the X Window
System

The graphic timing diagram is available under the X Window
System Version 11. X Windows refers to applications running on a
bit-mapped display with the X Window System managing the
display.  To access the timing analyzer graphic diagram within the
X Window System, simply start up the timing analyzer in a general
purpose terminal emulator window, such as "hpterm(1)". 

As long as the appropriate shell variables are defined, the timing
analyzer will detect that its running under X Windows and will
create a special subwindow within the terminal emulator window
for displaying the graphic timing diagram.  The terminal emulator
window is still used for displaying ASCII text.  If the appropriate
shell variables are not defined, or the timing analyzer is unable to
create the graphics subwindow, an ASCII timing diagram will be
displayed. 

DISPLAY Shell
Variable

The shell variable DISPLAY is used by X Window applications to
specify the host, display number and screen number to receive
bit-mapped output. It is automatically defined by the X Window
System during startup if does not already exist. This shell variable
must be defined or the timing analyzer will not attempt to initialize
the graphic timing diagram for X Windows. Enter a command like:

DISPLAY="mynode:0.0" <RETURN>
export DISPLAY <RETURN> 

to specify the DISPLAY variable, where "mynode" is the local host
name.

B-4 Timing Diagrams and Outputs



For information on using the Timing Analyzer connected to a
remote host, refer to "Remote Connections" later in this section.

WINDOWID Shell
Variable

The timing analyzer looks for the shell variable WINDOWID to
determine the windowid of the terminal emulator window which
the timing analyzer is running in.  This information is required by
the timing analyzer to create the graphics subwindow for displaying
the graphic timing diagram.  This shell variable is automatically
defined by the "hpterm" general purpose terminal emulator.

LINES and
COLUMNS Shell

Variables

The timing analyzer looks for the shell variables LINES and
COLUMNS to determine the size and location to place the
graphics subwindow within the terminal emulator window. These
variables are defined automatically when the "hpterm" terminal
emulator window is created. 

Note If the terminal emulator window is resized and/or the shell
variables LINES and COLUMNS do not reflect the correct size of
the terminal emulator window, the timing analyzer will position it’s
graphics subwindow incorrectly.  If this occurs, you should exit the
timing analyzer and run the command 

     eval ‘/usr/bin/X11/resize‘ <RETURN>

to reset these shell variables to the correct values.

X Defaults  The timing analyzer recognizes the following X defaults, which
when placed in your $HOME/.Xdefaults file, will change the
appearance of the timing analyzer’s graphics subwindow. 

foreground Specifies the foreground color (for drawing
the waveforms) of the timing analyzer’s
graphics subwindow. The default is black.

background Specifies the background color of the timing
analyzer’s graphics subwindow.  The default
is white.

Timing Diagrams and Outputs B-5



reverseVideo Specifies that the foreground and
background colors should be reversed.

timingGeometry Specifies the location and size to create the
timing analyzer’s graphics subwindow.  This
X default should not be used unless the
timing analyzer is positioning and/or sizing
it’s graphics subwindow incorrectly. This can
occur if the terminal emulator window is
created with an unusually large internal
border or a left-justified scroll bar is being
used. 

The geometry is specified as "= WxH+ X+ Y" indicating that the
window should have a width "W" and height "H" in pixels and the
upper left corner "X" pixels to the right and "Y" pixels below the
upper left corner of the terminal emulator window. "W" should be
set to 57 times the width of the terminal emulator’s font cell and
"H" should be equal to 7 less than the total number of rows in the
terminal emulator window times the height of the font cell. "X"
should be set to 13 times the width of the font cell plus the width of
any internal border and left-justified scroll bar.  "Y" should be
equal to the height of the font cell plus the width of any internal
border. Either "WxH" or "+ X+ Y"can be omitted to obtain the
default window size or window position as calculated by the timing
analyzer. 

The timing analyzer attempts to match the foreground and
background colors used in the terminal emulator window by
recognizing the same X defaults used by "hpterm". The timing
analyzer will use these X defaults when they are not qualified with
the client name "hpterm" or when they are qualified with the timing
analyzer’s client name "timing".  For example, if your .Xdefaults file
contains the following lines: 

                             *foreground:   green
                             *background:   blue 

both the terminal emulator window and the timing analyzer’s
graphics subwindow will use a blue background with green text

B-6 Timing Diagrams and Outputs



(waveforms). However, if you have specified these X defaults for
"hpterm" only: 

                             hpterm*foreground:   green
                             hpterm*background:   blue 

the timing analyzer will use the default black on white because
these X defaults were specified for the "hpterm" terminal emulator
only and not the timing analyzer.  By adding two more X defaults
specifically for the timing analyzer, the graphics subwindow will
once again match the colors used in terminal emulator window: 

                             hpterm*foreground:   green
                             hpterm*background:   blue

                             timing*foreground:   green
                             timing*background:   blue 

Remote Connections It is possible in the X Window environment to run the timing
analyzer from a remote host. To gain access to a remote host, the
following criteria must first be observed: 

You must have the internet address and hostname of the
remote host in your system’s "/etc/hosts" file.

You must have a valid login on the remote host.

You must have the remote host listed in the
"/etc/X0.hosts" file.

You must have the remote host listed in a ".rhost" file in
your home directory on your local system, and your local
system listed in a ".rhost" file on the remote host. 

You should refer to the "Customizing Your Local X Environment"
in Using the X Window System: HP 9000 Series 300/800 Computers
for more information on using remote hosts.

Timing Diagrams and Outputs B-7



Once this environment has been configured, an "hpterm" window
can be opened for the timing analyzer on the remote host with the
command: 

remsh timingnode -n "DISPLAY=mynode:0.0
/usr/bin/X11/hpterm" & <RETURN>

where:

timingnode is the remote host name, and

mynode is the local host name.

The remote host will open an "hpterm" window with the shell
variable, DISPLAY indicating to send the bit-mapped output back
to your local machine. You should now be able to run the timing
analyzer in this "hpterm" terminal emulator window.

1ASCII Timing
Diagrams

The ASCII timing diagram is a user definable diagram.  All of the
characters which form the diagram characters can be user defined
by the shell variable TIMING_ASCII.  In addition the locations of
the cursor and the marks can be defined by this shell variable.

Default ASCII Diagram If the TIMING_ASCII shell variable is not found a default diagram
is  put up which is equivalent to using this value for the shell
variable.

TIMING_ASCII="  _ ,  * ,  : , _, *, :,_,*,::1,4,2,4,2,4:0,4,0,4,0,4:v,|"

The TIMING_ASCII shell variable expects four types of
information:

ASCII characters to represent low, high, and glitch
conditions.

Starting and interval rows for the marks to be located.

Starting and interval rows for the cursors to be located.

Initial and subsequent characters for the cursor.

B-8 Timing Diagrams and Outputs



These four types of input are loosely delimited by the colon
character ":".

Note The first three colon ":" characters in the example above are ASCII
characters used to represent the glitch capture mode in large,
medium and small waveforms, respectively.

Customizing the
ASCII Diagram

Waveform Sizes and ASCII Characters

The first part of the shell variable determines the ASCII diagram
characters which are to define the three waveforms sizes.

              <----large---><medium-><small> 
              low ,high,glch, l, h, g,l,h,g,
TIMING_ASCII="abcd,abcd,abcd,ef,ef,ef,g,g,g:..." 

Where "abcd" represent the four characters to be displayed for a
low, high, and glitch level in the large waveform.  As examples, the
default diagram is:

For a low "abcd" =  "  _ ".

For a high "abcd" =  "  * ".

For a glitch "abcd" =  "  : ".

Where "ef" represent the two characters to be displayed for a low,
high, and glitch level in the medium waveform.  As examples, the
default diagram is:

For a low "ef" =  " _".

For a high "ef" =  " *".

For a glitch "ef" =  " :".

Timing Diagrams and Outputs B-9



Where "g" represents the one character to be displayed for a  low,
high, glitch, and middle level in the small waveform.  As examples,
the default diagram is:

For a low "g" =  "_".

For a high "g" =  "*".

For a glitch "g" =  ":".

Row Locations for M ark Indicators

The second part of the shell variable determines the row locations
for the mark indicators.

 TIMING_ASCII="...:m_st_l,m_int_l,m_st_s,m_int_s:..."

where:

m_st_l is the mark starting row for large waveform

m_int_l is the mark interval row for large waveform

m_st_s is the mark starting row for small waveform 

m_int_s is the mark interval row for small waveform. 

 

Acceptable values for all variables are integers between "0" and "15".

A "m_st_l" value of "1" implies that in the large waveform marks
are to be indicated starting with the second row of data ("0" =  first
row).

A "m_int_l" value of "4" implies that in the large waveform marks
are to located on every four rows after the starting row.

Row Locations for Cursor Indicators

The third part of the shell variable determines the row locations
for the cursor indicators.

 TIMING_ASCII="...:c_st_l,c_int_l,c_st_s,c_int_s:..."

where:

B-10 Timing Diagrams and Outputs



c_st_l is the cursor starting row for large waveform

c_int_l is the cursor interval row for large waveform

c_st_s is the cursor starting row for small waveform

c_int_s is the cursor interval row for small waveform

Acceptable values for all variables are integers between "0" and "15".

A "c_st_l" value of "0" implies that in the large waveform the cursor
is to be indicated starting with the first row of data.

A "c_int_l" value of "4" implies that in the large waveform the
cursor is to located on every four rows after the starting row.

Characters to Define the Cursor

The fourth part of the shell variable determines the start character
and subsequent character which is to define the cursor.

 TIMING_ASCII="...:cursor_start_character,cursor_subsequent_character"

A cursor_start_character of "v" implies that "v" is to be the first
character displayed in the cursor.

A cursor_subsequent_character of "| " implies that "| " is to be the
character displayed in all of the other cursor locations.

Assigning the TIMING_ASCII Shell Variable

To set the TIMING_ASCII shell variable from the shell, enter:

TIMING_ASCII="... " <RETURN>
export TIMING_ASCII <RETURN>

To view what was entered as the shell variable, enter:

set <RETURN>

You may also want to set the TIMING_ASCII shell variable in
your ".profile" file so that you do not have to redefine
TIMING_ASCII after each login.

The TIMING_ASCII shell variable is read until an error in format
is found.  Therefore if an error is indicated you should be able to

Timing Diagrams and Outputs B-11



determine approximately where the error occurred by looking at
the diagram and noting which of the displays are as you expected
them to be.

1Printer
Requirements

The graphic timing diagram outputs can be saved in files or sent to
a laser (HP LaserJet) printer, or an equivalent, as well as a
dot-matrix printer which supports raw raster dumps.

The timing analyzer needs two printer shell variables setup to
function properly PRINTER and GPRINTER.  The PRINTER
shell variable should be set to "lp -s" with the commands

PRINTER="lp -s" <RETURN>
export PRINTER <RETURN>

or an equivalent command.  The PRINTER variable determines
where all the ASCII displays of the timing analyzer are "piped"
when a "copy < specification>  to printer" command is entered.

The GPRINTER variable should be setup to "lp -or -s" with the
command

GPRINTER="lp -or -s" <RETURN>
export GPRINTER <RETURN>

or an equivalent command. The GPRINTER variable determines
where the graphics display of the timing analyzer is "piped" when a
"copy timing_diagram to printer" command is entered.

Finally graphics dumps tend to create rather large files. Therefore,
if you keep your graphics outputs in files you may want to limit the
number that you keep.

Your system administrator may need to adjust the model for your
printer to include the raw option (r, raw).  A complete example of
an appropriate printer model can be found in the manual.

B-12 Timing Diagrams and Outputs



1Using
Measurement
Data in
Hexadecimal

You can store raw measurement data in a ASCII file in hexidecimal
format by using the "copy measurement_data_in_hex to < FILE> "
command. This file can be used for further analysis or comparison.

Understanding the
Measurement Data

Output

The measurement data output is a list of all the data samples in
trace memory stored from first to last. In all cases, the first data
sample in the file corresponds to the first sample in trace memory
regardless of the starting sample number. Each data sample is in
the form 

             BBAA

where: 

BB represents data from the upper eight signals
(x_upper)

AA represents data from the lower eight signals
(x_lower).

Standard Mode Data
Format

In the standard mode, each of the data sample bits represents a
signal bit value.

Bit0 =  xbit0 data
Bit1 =  xbit1 data
Bit2 =  xbit2 data
Bit3 =  xbit3 data
Bit4 =  xbit4 data
Bit5 =  xbit5 data
Bit6 =  xbit6 data
Bit7 =  xbit7 data

Timing Diagrams and Outputs B-13



A "1" in a bit indicates the data sample is high.
A "0" in a bit indicates the data sample is low.

Glitch Capture Mode
Data Format

In the glitch capture mode, the data sample represent the values:

Bit0 =  xbit0 data
Bit1 =  xbit1 data
Bit2 =  xbit2 data
Bit3 =  xbit3 data
Bit4 =  xbit0 glitch
Bit5 =  xbit1 glitch
Bit6 =  xbit2 glitch
Bit7 =  xbit3 glitch

A "1" in a data bit indicates the data sample is high.
A "0" in a data bit indicates the data sample is low.
A "1" in a glitch bit indicates that a glitch occurred.
A "0" in a glitch bit  indicates that a glitch did not occur.

B-14 Timing Diagrams and Outputs



Comparing
Measurement Data to

a Trace List

To illustrate the relationship between the raw measurement data
file and the trace memory samples, review at the two listings below.
The first listing a the first portion of a measurement data file. 

64700 Timing Analyzer                  Fri Jun  9 11:00:59 1989 
 
7EB4 
7EB4 
7EB4 
7EB4 
7EB5 
7EB5 
7EB5 
7EB5 
7EB5 
7EB5 
7EB5 
7EB5 
7EB5 
7EB5 
7EB5 
7EB5 
7EB5 

The second is a portion of a trace list corresponding to the same
set of data.

64700 Timing Analyzer                 Fri Jun  9 11:05:25 1989 
 
         Trace List                  Timing (64700), 16 channels, 100MHz 
        STANDARD MODE             10 nsec/sample        Time x_o  10.09 usec 
 
  Label:   X_upper  X_lower   time count 
  Base:      hex      hex         abs 
 -0013_x __  7E       B4     -130.0 nsec  __ 
 -0012       7E       B4     -120.0 nsec 
 -0011       7E       B4     -110.0 nsec 
 -0010       7E       B4     -100.0 nsec 
 -0009       7E       B5     -90.0 nsec 
 -0008       7E       B5     -80.0 nsec 
 -0007       7E       B5     -70.0 nsec 
 -0006       7E       B5     -60.0 nsec 
 -0005       7E       B5     -50.0 nsec 
 -0004       7E       B5     -40.0 nsec 
 -0003       7E       B5     -30.0 nsec 
 -0002       7E       B5     -20.0 nsec 
 -0001       7E       B5     -10.0 nsec 
 trigger     7E       B5      0.0 nsec 
 +0001       7E       B5      10.0 nsec 
 +0002       7E       B5      20.0 nsec 
 +0003       7E       B5      30.0 nsec 

Timing Diagrams and Outputs B-15



1Notes

B-16 Timing Diagrams and Outputs



C

Timing Messages

1Overview Three types of messages appear in the analyzer message line: status
messages, informational messages, and error messages. The
message text along with an explanation and possible responses are
detailed later.

A measurement status message also appears on the right hand side
of the status line. This message will be "External trace complete". It
will be one of the "trace" status messages if in an execution phase.

1Status Messages STATUS: xxxxxxx--Running in monitor

This message indicates the type of emulator/analyzer monitor used.
The "xxxxxxx" may be M68000, Z80, or other any other emulator
type that is running with an analyzer installed.

STATUS: Connecting to xxxxxx

This start up message indicates the timing analysis software is
beginning the process of communicating with the external analyzer.
The "xxxxxxx" is the emulator name entered at the command line.

STATUS: Initializing user interface

This start up message indicates the timing analysis software is
beginning the diagram initialization process. If a graphics interface
is not found, the message "ERROR: Timing graphics initialization
failed" is displayed, and an ASCII diagram format is used.

Timing Messages C-1



STATUS: External analysis not configured for timing

This message appears when the configuration file loaded into the
emulator/analyzer has not been configured for external timing
analysis. The following message also appears:

The configuration file loaded has not configured the external
analyzer for Timing measurements. This can be accomplished by
entering the emulation interface and modifying the configuration.

 The configuration questions that need to be answered are as follows:

    Modify external analyzer configuration: yes
    Should emulation control the external bits: yes
    External analyzer mode? timing

NOTE: To make this the default powerup configuration, save the 
configuration file as userconfig.EA in the associated product directory. 

/usr/hp64000/inst/emul/<product_number>/userconfig.

The emulation software is used to modify and load the new
configuration, as indicated by the message. See "Configuring the
External Analyzer" in "Using the External Analyzer" in this manual
and the "Emulation Configuration" chapter in the HP64700-Series
Emulators Softkey Interface Reference for more information.

STATUS: Indicated max_min/mean_stdv forced halt at 9999 runs

This message indicates that a repetitive execution has been halted
to avoid an overflow on the counter. Only 9999 runs can be
executed.

STATUS: Mark found on sample number < sample>

This message is displayed when the find command locates on of the
four marks (abcd).

STATUS: HP64700 I/O error; communications timed out

This message indicates that the communications connection has
been lost or interrupted. No further communications will be made
between the Timing Analyzer software and the emulator. The usual
response is to end the session, which must release the system, and
restart the emulator. Analysis of current trace data may be
possible, however. Check for loose cables before restarting the
Timing Analyzer.

C-2 Timing Messages



STATUS: Marking complete, found xxx marks (abcd)

This message indicates marking has been completed in the post
processing. The xxx represents the total number of marks found for
all mark names (mark_a, mark_b, mark_c, and mark_d).

STATUS: Marking complete, marking limit of 511 exceeded

This message indicates marking has been completed in the post
processing and more than 511 events meet the conditions for
marking (abcd).

STATUS: Sample period is now < period>  nsec/usec/msec

This message is displayed after a new sample period is entered.
Note that the entered values are rounded to values appropriate for
the analyzer.

STATUS: Sample rate is now < freqency>  MHz/kHz/Hz

This message is displayed after a new sample rate is entered. Note
that the enterd values are rounded to values appropriate for the
analyzer.

1Informational
Messages

Enter: ’Return’ to toggle diagram labels between defined and
default

This message appears when entering the softkey labelled
< DISPLY>  for the display option in the timing_diagaram. It is
used as a reminder on the toggle function.

< Execution messages>

The following messages indicate the status of an execute cycle:

"Waiting for trigger" Trigger event is not being found or not
enabled (trigger enable false, master enable false).

"External trace running" Trigger event has been found and trace
is being made.

Timing Messages C-3



"External trace complete" Trigger event was found and trace is
complete.

"External trace halted" The last trace was halted.

ENTER: ’Return’ to place the mark at the current cursor location 

This message appears when entering the < MARK>  softkey under
the "mark x" or "mark o" commands. The specified mark will be
moved to the cursor location if a < RETURN>  is entered. The
result is the same as entering "mark x on_cursor" or "mark o
on_cursor", respectively.

ENTER: Sample number, ctrl-f/g or Next/Prev to roll the diagram

This message appears when using the < ROLL>  softkey in the
timing diagram. The graphic can be rolled left and right, up and
down, in order to display all of the information on the diagram.
Refer to < ROLL>  in the "Timing: Commands" chapter for more
details.

1Error Messages ERROR: ’and’ is not possible, all bit are already specified

The message appears when you try to enter a trigger specification
which uses bits that have already been spcified. You need to
reenter the trigger specification.

ERROR: Cannot save configuration without data into compare file

This message is displayed when you try to save a configuration
without data into the currently assigned compare file. Use the
"with_data" parameter, or turn off the compare file.

ERROR: Cannot start; Emulator not initialized

This message indicates that the emulator/analyzer has not been
initialized. Start the emulator Softkey Interface and load a timing
configuration file set up for timing. Then "end" the emulator
session and restart the Timing Analysis Softkey Interface.

C-4 Timing Messages



ERROR: Compare definition is invalid

This message is displayed then you redefine labels in such a way
that the compare definition is no longer valid. The compare
definition will need to be recreated.

ERROR: Compare file is invalid, compare file is removed

This message indicates that a compare file has been modified and is
no longer recognized as a compare file. You will need to reassign a
compare file.

ERROR: Compare file is invalid, data does not exist in file

You have tried to use a compare file which has not been saved
"with_data". Resave the configuration with data before assigning a
compare file or use a valid file.

ERROR: Compare file is invalid, data is halted

This message is displayed when you try to define a halted
measurement as a compare file. You need to use a file with the
correct format.

ERROR: Compare file spec does not agree with hardware

This message indicates that the current measurement was acquired
with a configuration that does not match that used to acquire the
compare file data; the sample rate, trigger position, or mode used
does not match. You need to correct the conditions before a
compare will succeed.

ERROR: Compare label < LABEL>  specified bit does not exist

This message indicates your compare specification includes a
label-bit that was not defined in the format specification of the
compare coinfiguration file. You need to correct the compare
specification to match the configuration file.

ERROR: Compare label < LABEL>  with does not match data label

This message appears when the compare label you enter does not
have the same number of bits as the data label you have entered.
You need to correct the reference.

Timing Messages C-5



ERROR: Compare not possible on data which is halted

This message appears after you halt a measurement and a compare
file is assigned. Only a completed measurement can be compared
to the compare file data.

ERROR: Configuration f ile version is not compatible with software

This message indicates that you are trying to use a timing analysis
configuration file with a later data (future version). You need to
check the dates on the system.

ERROR: Configuration load failure

This message appears when the configuration file could not be
loaded due to an interrupt or other HP-UX system problem. You
identify the problem and try to reload the configuration file.

ERROR: Data is not present in hardware

This message appears when you try to save a configuration file
"with_data" but there is no data in the analyzer. You should
execute a measurement before saving the configuration file.

ERROR: Data label < LABEL>  bits are already specified

This message is displayed when your trigger specification includes
the same bit or bits in two or more labels. You need to correct the
references.

ERROR: Data label < LABEL>  is not a valid entry

This message indicates your trigger specification includes a label
which is not valid for the current mode. You need to correct the
reference.

ERROR: Data label "< LABEL> .xx" specifed bit does not exist

This message is associated with the "process_for_data" command
and appears when you enter a label bit reference that is not one of
the logical bits in that label. < LABEL>  is the label name and xx is
the bit number entered. You should choose a correct bit number
reference.

C-6 Timing Messages



ERROR: Duration is greater than trace memory

This message indicates you have entered a duration that is greater
than the duration of the entire trace memory. You need to enter a
valid duration or change the sample period to extend the trace
memory duration length.

ERROR: Duration is less than one sample period

This message is associated with the "process_for_data" command
and appears when you enter a duration less than the system sample
period. You should shorten the sample period or choose an longer
duration.

ERROR: Emul700dmn attach error, verify product version
compatibility

This message appears when an error occurs starting multiple
processes. This occurs most often while trying to start an emulator
and timing interface session in multiple X Window System
windows at the same time. Verify product version compatibility,
and reexecute the programs.

ERROR: Expression too long, shorten mark and trigger
expressions

This message is displayed when the combination of all the trigger
and mark definitions is too long. You need to shorten or remove
unused definitions.

ERROR: < FILE>  is not a timing configuration file

This message is displayed when you try to save or load a
configuration file that already is used to store a configuration of
some other instrument, such as a state/software analyzer. You need
to remove to the or use a different file name.

ERROR: File name must be less than or equal to 1024 characters

This message indicates a file name reference is too long. You need
to correct the entry.

ERROR: < FILE>  No such file or directory

This message is displayed when the specified file could not be
found. You need to correct the entry.

Timing Messages C-7



ERROR: Halt_repetitive_execution definition is invalid

This message is displayed when you change the mode or redefine
the sample period is such a way that the halt_repetitive_execution
condition is not longer valid. You need to correct the
halt_repetitive_execution condition.

ERROR: Help keys are not defined properly

This message indicates the timing analyzer help keys have been
incorrectly defined. You need to contact Hewlett-Packard
Customer Support.

ERROR: Label table is full

This message appears when you try to define more than 32 labels.
You need to remove unused labels before continuing.

ERROR: Label width exceeds instrument’s capabilities

This message is displayed when you try to create a label having
more probe bits than are available in the analyzer. You need to
limit your entry.

ERROR: Labels used in any other specification cannot be deleted

This message appears when trying to delete a label that is used in
another specification. A label cannot be deleted if it is reference in
a specification. In order to delete the label, remove the reference to
it in all specifications.

ERROR: Mark not found

This message indicats that a find could not locate the mark in the
segment of memory searched. You can try broadening the search
conditions.

ERROR: Mark x or o not found

This message indicates the mark command could not locate the
conditions for one or both of the marks x and o. You should
correct the conditions.

ERROR: Mode is not glitch capture

This message appears when you try to enter a trigger specification
requiring glitch detection and the analyzer is not in glitch capture

C-8 Timing Messages



mode. You need to correct the trigger specification or change
modes.

ERROR: New label already exists

This message appears when trying to rename a format specification
label to a new name. The new name already exits and cannot be
reused without removing the existing name. The existing name can
itself be renamed or deleted.

ERROR: "or_on" is not possible, all bits are already specified

This message is displayed when you try to enter a trigger
specification which uses bits which have already been specified.
You need to correct the specification.

ERROR: Pattern not found

This message indicates a find command could not locate the
specified pattern and condition in the segment of memory
searched. You can try broadening the search conditions.

ERROR: Permission denied

This message indicates the read or write permissions inhibit the
analyzer from reading or modifying the specified file. You correct
the permissions or use a different file.

ERROR: Process_for_data definition is invalid

This message appears when you change mode or redefine the labels
in such a way that the "process_for_data" definition is no longer
valid. You need to correct the "process_for_data" definition.

ERROR: Range must be greater than one sample

This message appears when you try to find an event and the range
you specify is only one sample wide. You need to expand the search
range specification.

ERROR: Sample exceeds memory depth

This message appears when you enter a "process_for_data"
command with a number of samples "before" or "after" a transition
and the number of samples is greater than the memory depth of the
analyzer. You need to correct the "process_for_data" condition.

Timing Messages C-9



ERROR: Sample rate is too slow for sampled trigger duration

This message is displayed when you try to enter a combinational
glitch trigger definition where the sample period is longer than the
trigger duration. Glitch triggering requires all data to be sampled
before trigger duration detection circuitry, and thus requires the
sample period to be less than one-half the specified duration.

ERROR: Shell variable TIMING_ASCII is incorrect format

This message is displayed when the timing analyzer is using an
ASCII diagram and the TIMING_ASCII shell variable is
incorrectly defined. You need to correct the shell variable or
remove it to use the default values. Refer to "Appendix C: Timing
Output and Diagrams" for information on assiging the
TIMING_ASCII shell variable.

ERROR: Single bit label must be entered

This message is displayed when you try to "process_for_data"
relative to a transition on a label, and the label is defined as more
than one bit wide. You should use a different label or change the
"process_for_data" condition.

ERROR: Specification does not agree with captured data

This message appears when you attempt to save the configuration
"with_data" after you have changed the specification from that used
to capture the data. Change the specification to match that used to
capture the data or execute a measurement to update the captured
data.

ERROR: Specified compare labels do not exist in compare file

This message appears when loading a new compare file and one or
more of the specifications or displays contain references to
compare file labels that do not exist in the new file. You correct the
invalid references.

ERROR: Statistics definition is invalid

This message is displayed when you change the mode or redefine
the sample period in such a way that the statistics definition is no
longer valid. You need to correct the statistic definition.

C-10 Timing Messages



ERROR: Timing graphics initialization failed

This message appears when the timing analyzer is unable to use
graphics for displaying the timing diagram; the ASCII diagram
format will be used. Refer to appendix C "Timing Output and
Diagrams" for information on setting up a graphics environment.

Timing Messages C-11



1Notes

C-12 Timing Messages



D

Accurate Timing Measurements

1Introduction This appendix provides information for making accurate time
interval measurements with the timing analyzer.

Accurate time interval measurements depend primarily on the time
interval resolution of the timing analyzer.  If you have a good time
interval resolution, using statistics can improve the accuracy of a
measured time interval by the amount described in the equations
which you will find in this appendix.  Accurate statistical
measurements can be made only if the input intervals are a uniform
distribution of the interval to be measured.  The following
information describes important aspects in making accurate time
interval measurements.

1Time Interval
Resolution

Resolution is a measurement of the precision of a timing trace and
depends on the following factors:

Sample Period.

Interchannel Skew.

Memory Depth.

Accurate Timing Measurements D-1



Factors

Sample Period

The sample period is the amount of time between samples. 

Interchannel Skew

Interchannel skew is the difference in delays of the probe channels,
including delay differences from one channel to another, and delay
differences in recognizing negative and positive transitions.

Skew is a function of several input variables as follows:

Input signal slew rate in volts/ns (low slew rate increases
the skew).

Signal overdrive above the threshold as a percent of skew
(low overdrive increases skew).

Threshold value selected (high threshold settings increase
skew).

The skew specifications of 4 ns for all signals within the probe is
measured according to the following conditions:

A 0.25-volt per nanosecond slew rate.

A 0.6-volt amplitude signal with equal swings on either
side of the threshold.

A minus 1.3-volt threshold.

Memory Depth

The depth of trace memory is also important in time interval
resolution.  The memory depth sets the maximum time interval
that can be measured with any sample period.  In the 100 MHz
standard mode of operation, a total interval of 10.24 us can be
measured with full accuracy:

10.24 us =  1024 samples X 10 ns per sample 

D-2 Accurate Timing Measurements



To measure longer intervals, the sample period must be increased.

Calculation Resolution is formally defined as:

resolution =  + /- (sample period +  skew).

A high sample rate (100 MHz), coupled with low skew (plus or
minus 4 ns for both opposite and same direction transitions), gives
the timing analyzer very good resolution.

1Improving the
Accuracy of Time
Interval
Measurements

You can improve the accuracy of an interval measurement by
making the measurement with a series of repetitive executions.
When a single execution is made, the resolution is equal to
+ /-(sample period +  skew).  When measuring a stable interval
using a series of repetitive executions, the accuracy of the
measurement improves by the following:

accuracy =  + /-(((sample period)/sqrt(n)) +  skew)

where:

sample period is the sample period specified in the timing
analyzer trace specifications.

sqrt(n) is the square root of the number of
executions included in the measurement.

skew is the delay differences between input
channels.

A tenfold improvement (x10) is obtained in the accuracy of your
measurement when using one hundred repetitive executions for the
measurement.

Accurate Timing Measurements D-3



Note The time interval being measured must not be synchronous to the
sampling clock of the timing analyzer.  Typically, this is not a
problem in the timing analyzer unless the sample rate is extremely
low.  The timing analyzer halts its interval sample clock between
each measurement; therefore, the probability is low that the time
interval being measured is synchronous with the timing interval
sample clock.

1Improving the
Accuracy of Mean
Value
Measurements

The accuracy of the displayed mean value of a single interval
depends on the number of executions in the series used to
determine the mean value.

Assume the timing analyzer is measuring a stable, repetitive time
interval approximately 100 us long.  Using a 20 MHz sample rate
(50 ns sample period), you capture 51.2 us of timing data,
calculated as follows:

51.2 us =  1024 samples X 50 ns sample period.

A single measurement will have an accuracy of plus or minus the
sum of the sample period plus the skew specification, or:

    + /-(50 ns +  4 ns)
=  + /- 54 ns

By making one hundred measurements in a repetitive series, the
accuracy of the mean value displayed will be improved by a factor
of the square root of the number of traces included in the series, as
shown in the following:

    + /-((50 ns/sqrt(100)) +  4 ns)
=  + /- (5 ns +  4 ns)
=  + /- 9 ns

D-4 Accurate Timing Measurements



1Accuracy of
Standard
Deviation
Measurements

An interval that does not vary still can be shown to have a large
standard deviation due to the sampling process.  The error in the
displayed standard deviation depends on the size of two elements:

the portion of the interval that exceeds the multiple of the
sample periods; and 

the portion of the interval that includes complete sample
periods.

Example 1 Assume the timing analyzer is measuring a time interval of exactly
25.0 ns.  It makes 10 executions using a 10 ns sample period.  Five
of the executions show the interval to last 30 ns (three sample
clocks), and five of the executions show the interval to last 20 ns
(two sample clocks).  Even though the input signal has a true
standard deviation of 0.0 ns, the timing analyzer will calculate the
standard deviation of this signal to be 5.28 ns and display this
standard deviation on-screen.  When the sampled standard
deviation is less than one sample period, its value is determined
mainly by the sampling process.

Example 2 Assume the timing analyzer is measuring a time interval that varies
from 5 to 8 us.  The timing analyzer is operating with a 10 ns
sample period.  After a series of repetitive measurements, the
timing analyzer shows a standard deviation of 1.5 us for the interval
being measured.  This dispersion is determined by variations in the
time interval itself, and not by the sampling process.  In this case,
the standard deviation is much larger than one sample period.

Accurate Timing Measurements D-5



1Statistical Errors
Caused by
Sampling Process

The timing analyzer calculates statistics on the sampled data in its
memory, not on all of the data generated by the system under test.
The data in memory may misrepresent the actual data.  Misleading
data can be captured when you trigger your trace on some
occurrence that causes the timing analyzer to capture samples at
misleading points in the data flow of a system under test.

Use of the "trigger on anything" specification may not overcome all
measurement bias problems.  Consider the case where the timing
analyzer is measuring an interval of time between positive edges
occurring on a probe line.  Suppose there are two intervals on that
line, and they are occurring alternately (one is 10 us long and the
other is 20 us long).  Interval measurements are made by marking
"x" on the first positive edge of the selected label and marking "o"
on the next positive edge after "x".  The random beginning of a new
trace will probably occur twice as often during the 20 us interval as
during th 10 us interval.  Because of this, the timing analyzer will
appear to be finding twice as many 10 us intervals as 20 us
intervals, but in the system under test there are equal numbers of
10 us and 20 us intervals.

One possible approach to solving the problem of misleading data
in the above example is to find another line with a uniform
squarewave operating at twice the frequency of the combined
intervals.  Such a squarewave will have as many positive edges
preceding 10 us intervals as 20 us intervals.  By triggering the
interval measurements on positive edges in that squarewave, and
marking "x" and "o" on the first interval after each trigger, the
timing analyzer will measure as many 20 us intervals as 10 us
intervals.

D-6 Accurate Timing Measurements



Index

A about, trigger position specification, 2-10
absolute files, loading, 2-6
absolute, displaying count information, 3-12
absolute, trace display option, 3-6
activity measurements (SPMT), 4-2

additional symbols for address, 4-13
confidence level, 4-14
error tolerance, 4-14
example, 4-21
interpreting reports, 4-12
mean, 4-13
relative and absolute counts, 4-14
standard deviation, 4-13
symbols within range, 4-13
trace command setup, 4-5

activity_test, 8-4, 9-7
address qualifiers, 2-21
address range file format (SPMT measurements), 4-7
after, trigger position specification, 2-10
all_labels, 9-65
analysis specification

address, data, and status qualifiers, 2-21
count qualifiers, 2-18
occurrence count, 2-19
prestore qualifiers, 2-16
storage qualifiers, 2-15
trigger condition, 2-10
trigger on multiple states, 2-20

analyzer
emulation, 1-1
See also emulation analyzer
external, 1-1
features, 1-1
overview, 1-1
specifications, A-1

Index-1



analyzer probe
assembling, 5-2
connecting to the emulator, 5-3
connecting to the target system, 5-5

B bases (number), 2-9
before, trigger position specification, 2-10
binary numbers, 2-9, 7-5
blank, 9-65
break on guarded memory access, 2-30

C cautions
check for bent pins when connecting analyzer probe, 5-3
turn off target before connecting analyzer probe, 5-5

change directory, 9-2
clocks

See also slave clocks
column width, trace display option, 3-11
command

completion, 9-1
files, 9-2
line erase, 9-2
line recall, 9-2
multiple, 9-2
Softkey Interface, 9-1
word selection, 9-1

command files, 9-2
command recall, 2-14
command summary, 9-4
compare, 9-8

 modify, 9-10
compare file, 9-9, 9-13, 9-65

creating, 8-28
display on timing diagram, 8-13
presenting, 8-29

configuration, 9-12
control-c, 4-10
coordinated measurements, 1-2
copy, 9-14

measurement data (in hex), 8-32
specifications, 8-30
timing analyzer information, 8-30

2-Index



copy (continued)
trace data, 8-31

count absolute/relative, trace display option, 3-12
count information in trace listing, 2-7
count qualifier, 1-1
count qualifiers, 2-18
count, occurrence, 2-19
cursor, 9-19

moving in timing diagram, 8-15
moving in trace list, 8-20

D data (external), trace display option, 3-15
data qualifiers, 2-21
decimal numbers, 2-9, 7-5
default, 9-20
default trace command, 2-6
default trace display, 2-6
default trace display, returning to, 3-14
define, 9-21
defining labels, 8-4
definitions

emulation analyzer, 1-1
external analyzer, 1-1
trace, 1-1
trigger, 1-1

delete, 9-24
deleting labels, 8-5
demo program (SPMT), 4-17
demultiplexing

using slave clocks for, 5-9
demux, slave clock mode, 5-11
depth of the trace, 3-3
diagram, 9-25
disassemble from line number, trace display option, 3-5
display, 9-26

trace data, 8-19
display command, 8-2
display trace, 3-1

about line number, 3-4
absolute format, 3-6
count absolute/relative, 3-12
default, 3-14

Index-3



display trace (continued)
disassemble from line number, 3-5
external data, 3-15
mnemonic format, 3-7
offset by, 3-13
positioning, left/right, 3-3
positioning, up/down, 3-2
source line inclusion, 3-8
symbol information inclusion, 3-10
width of columns, 3-11

display trace status, 3-16
displaying the trace, 2-6
don’t care digits, 2-9, 7-5
duration measurements (SPMT), 4-2

average time, 4-15
confidence level, 4-16
error tolerance, 4-16
examples, 4-30, 4-32
interpreting reports, 4-15
maximum time, 4-15
minimum time, 4-15
number of intervals, 4-15
prefetch and recursion considerations, 4-30
selecting, 4-8
standard deviation, 4-16
trace command setup, 4-6

E emulation analyzer
definition, 1-1

emulation, external analyzer mode, 5-9
emulator

syntax, 9-6
end, 8-32, 9-28

emul700, 9-28
Measurement System, 9-28

error log, 8-2
event log, 8-2
event log display, trace commands in, 2-28
events

intervals, 8-25
marking, 8-23

4-Index



execute, 9-31
repetitive timing trace, 8-11
timing trace, 8-11

executing programs, 2-6
exiting the timing analyzer, 8-32
expressions, 2-8
external analyzer, 1-2

configuration, 5-7
definition, 1-1
mode, 5-8
serial number suffix, 1-1
should emulation control?, 5-8
specifications, A-1
timing analyzer, using the, 8-1
using, 5-1

external analyzer labels, 5-8
external data, trace display option, 3-15
external labels, defining, 5-13

F features of the analyzer, 1-1
file formats

address ranges for SPMT measurements, 4-7
time ranges for SPMT measurements, 4-8

find, 9-33
description, 8-21

format, 9-38
format specification, 8-2

G glitch
 triggering on, 8-9

glitch capture mode, 6-3, 8-6
glitch_capture

trigger, 9-87
glitch_capture mode, 9-58
global restart, 2-24
global symbols, 2-9

initializing the SPMT measurement with, 4-9
grabbers

connecting to analyzer probe, 5-2
connecting to the target system, 5-6

guarded memory accesses, 2-30

Index-5



H halt, 9-39
restoring the last trace, 8-11
timing trace, 8-11

halt_repetitive_execution, 9-40
help, 9-3, 9-17, 9-44
hexadecimal numbers, 2-9, 7-5
HP-UX filters and pipes, 9-2

I in_bin, 9-66
in_dec, 9-66
in_hex, 9-66
in_oct, 9-66
indicate, 9-46
installation

timing interface information, 7-2
instruction queues, 2-8
interchannel skew, D-2
intervals

determining, 8-25
inverse video, source line display option, 3-8

L labels
configuration file, 5-13
defining, 8-4, 9-21
deleting, 8-5, 9-24
modifying, 8-5
renaming, 8-5, 9-75

line numbers, 2-6
line numbers (trace), displaying about, 3-4
list, 9-48
load trace command, 2-28
load trace_spec command, 2-27
loading absolute files, 2-6
local symbols, 2-9

initializing the performance measurement with, 4-9

M magnify, 9-49
Emulator Softkey Interface User’s Guide, 9-6
mark, 9-51

description, 8-23
mark_names, 9-66
measurement data (in hex)

copying, 8-32

6-Index



measurement modes, 6-2
measurements, simple, 1-1
memory activity measurements (SPMT), 4-2, 4-12
mixed, slave clock mode, 5-10
mnemonic (format), trace display option, 3-7
mnemonic information in trace listing, 2-7
mode, 9-58

glitch_capture, 9-58
standard, 9-58

mode_is, 9-58
modify, 9-59

compare, 9-10
modify_command, trace command option, 2-14
modifying labels, 8-5
module duration measurements (SPMT), 4-4
module usage measurements (SPMT), 4-5
multiple commands, 9-2
multiple states, triggering on, 2-20

N notes
"perf.out" file is in binary format, 4-11
colons characters in ASCII definition, B-9
default labels should not be confused with signal groups, 8-5
differences in SPMT demo program between compilers, 4-19
external timing analyzer does not use configuration labels, 5-13
format of measurement data file in appendix B, 8-32
interval must not by synchronous with sample clock, D-4
measurement errors on recursive/multiple entry routines, 4-32
no "entering" option with trigger command, 8-22
only one range resource available, 2-15
output of copy timing_diagram is PCL file, 8-31
pattern hold time is 30 nanoseconds, 8-8
some compilers emit more than one symbol for an address, 4-14
statistical analysis of timing data, 8-11
threshold settings take effect when you begin the trace, 8-4
trigger found but trace memory not filled, 2-8

number bases, 2-9
number of source lines, trace display option, 3-9
numerical values

entering, 2-9, 7-5

Index-7



O occurrence count, 2-22
occurrence counts, 2-19
octal numbers, 2-9, 7-5
offset by, trace display option, 3-13
on_halt, trace command option, 2-30
only, trace command storage qualifier, 2-15
operators, 2-9

P pattern, 9-35, 9-56, 9-70, 9-88
 duration, 8-8
 trigger condition, 8-7

perf.out, SPMT output file, 4-9/4-12, 4-22, 4-33
perf32, SPMT report generator utility, 4-1, 4-10/4-11

interpreting reports, 4-12, 4-15
options, 4-11
using the, 4-11

performance measurements, 1-2, 4-1
absolute information, 4-13
activity measurements, 4-2
adding traces, 4-10
demo program, 4-17
duration, 4-2
ending, 4-10
how they are made, 4-1
initializing, 4-6
initializing, default, 4-7
initializing, duration measurements, 4-8
initializing, user defined ranges, 4-7
initializing, with global symbols, 4-9
initializing, with local symbols, 4-9
memory activity, 4-2, 4-12
module duration, 4-4
module usage, 4-5
prefetch and recursion considerations, 4-30
program activity, 4-2, 4-12
relative information, 4-13
restoring the current measurement, 4-9
running, 4-10
steps involved, 4-5
trace command setup, 4-5
trace counting time, 4-5
trace display depth, 4-5

8-Index



period, sample, 8-7
pipelined architecture, 2-8
pod commands, 8-2
pod_command, 9-61
positioning the trace display left/right, 3-3
positioning the trace display up/down, 3-2
post process specification, 8-2
prefetch, 2-8
prefetch correction in SPMT, 4-30
prerequisites

Softkey Interface, 7-1
present, 9-64

signals, 8-14
prestore, 1-1
prestore qualifiers, 2-16
probe

connecting to the target system, 5-6
probe signals

displaying, 8-17
presenting, 8-14

process_for_data, 9-68
description, 8-25

program activity measurements (SPMT), 4-2, 4-12
programs

loading, 2-6
running, 2-6

Q qualifier
slave clock, 5-9

qualifiers
address, data, and status, 2-21
count, 2-18
prestore, 2-16
storage, 2-15
trigger, 9-72

R range resource, note on, 2-15
rate, sample, 8-7
recall, command, 2-14
recursion in SPMT measurements, 4-30
relative display of count information, 2-7
relative, displaying count information, 3-12

Index-9



rename, 9-75
renaming labels, 8-5
resolution, of timing measurements, D-3
restart term, 2-24
restoring the last trace, 8-11
ROLL, 9-76
running programs, 2-6

S sample, 9-78
sample numbers, 8-18
sample period, 8-7, D-2
sample program, 2-2

algorithm, 2-2
listing, 2-3

sample rate, 8-7
scrolling

the trace list, 8-21
the waveform, 8-17

sequence terms
definition, 2-22

sequencer, using the, 2-22
sig INT, 4-10
signal

activity test, 8-4
signals

labels, 8-13
presenting, 8-14
referencing, 8-3

simple measurements, 1-1
skew, interchannel, D-2
slave clocks, 5-9
Softkey Interface, 9-1

entering, 4-20
prerequisites, 7-1
timing analyzer, 1-2

softkeys, 9-1
software performance measurements

See performance measurements
source line inclusion, trace display option, 3-8
source lines (number of), trace display option, 3-9

10-Index



specifications
copying, 8-30
external analyzer, A-1

SPMT (Software Performance Measurement Tool)
See performance measurements

SPMT measurements using recursion, 4-30
SPMT measurements with prefetch correction, 4-30
sq adv, captured sequence state, 2-24
standard mode, 6-2, 8-6, 9-58
state, external analyzer mode, 5-9
statistics, 9-80

logging, 8-27
sampling, 8-26
timing, 8-26

status qualifiers, 2-21
status, displaying analyzer, 3-16
stopping the trace, 2-29
storage (trace), 1-1
storage qualifiers, 2-15
store trace command, 2-28
store trace_spec command, 2-27
summary of commands, 9-4
symbol information inclusion, trace display option, 3-10
symbols, 2-9
syntax

conventions, 9-3
timing analyzer, 9-6

T tabs are, source line display option, 3-9
Terminal Interface, 6-1
threshold, 9-83
threshold voltages, 5-8, 8-3
time range file format (SPMT measurements), 4-8
time_count, 9-66
timing

 improving accuracy of mean value, D-4
 improving accuracy of time interval, D-3
accuracy of standard deviation, D-5
accurate measurements, D-1
statisitcal errors, D-6

timing analyzer, 1-2
 using the, 8-1

Index-11



Timing Analyzer Softkey Interface
entering the, 7-2

timing diagram, 8-2
copying, 8-31
magnifying, 8-16
reference points, 8-13
scrolling, 8-17
showing levels at the cursor, 8-16
statistical display, 8-13
using, 8-12
waveform, 8-13
waveform size, 8-16

timing interface
installation, 7-2

timing, external analyzer mode, 5-9
trace

command, 9-85
definition, 1-1
depth of, 3-3, D-2
displaying the, 2-6, 8-12, 8-17
loading, 2-28
on_halt, 2-30
stopping the, 2-29
storing, 2-28

trace command, 1-1
default, 2-6
loading and storing, 2-27
setting up for SPMT measurements, 4-5

trace command, modifying previous, 2-14
trace display, 3-1

about line numbers, 3-4
absolute format, 3-6
count absolute/relative, 3-12
default, 3-14
description of default, 2-6
disassemble from line number, 3-5
external data, 3-15
mnemonic format, 3-7
offset by, 3-13
positioning, left/right, 3-3
positioning, up/down, 3-2

12-Index



trace display (continued)
source line inclusion, 3-8
symbol information inclusion, 3-10
width of columns, 3-11

trace display depth
SPMT measurements, 4-5

trace list, 8-2
copying, 8-31
displaying data, 8-19
reference points, 8-18
sample numbers, 8-18
scrolling, 8-21
statistical display, 8-19
using, 8-17

trace specification, 8-2
trace status display, 3-16
trigger

any_glitch, 9-87
default, 8-7
definition, 1-1, 8-7
delay, 8-10
described, 8-7
modifying, 8-10
on any glitch, 8-9
on anything, 8-7
on greater_than duration, 8-8
on less_than duration, 8-9
on multiple states, 2-20
on pattern, 8-7
on pattern, duration, 8-8
pattern, 9-88
position, 8-10
qualified_with, 8-9

trigger condition, 2-10
trigger position, 2-10
TTL (softkey for specifying threshold voltages), 5-8

U using the external timing analyzer, 8-1

Index-13



V values, 2-9
voltages

 threshold, 8-3
voltages, threshold, 5-8

W waveform
 scrolling, 8-17

width of columns, trace display option, 3-11

X xbits, external analyzer label, 5-1

14-Index


	Using this Manual
	Contents
	Introducing the Analyzer
	Getting Started
	Displaying Traces
	Making Software Performance Measurements
	Using the External Analyzer
	Timing: Introduction
	Timing: Getting Started
	Timing: Using the Analyzer
	Timing : Commands
	External Analyzer Specifications
	Timing Output and Diagrams
	Timing Messages
	Accurate Timing Measurements
	Index

